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Abstract: As we known, the Seifert-Van Kampen theorem handles fun-

damental groups of those topological spaces X = U ∪ V for open subsets

U, V ⊂ X such that U ∩ V is arcwise connected. In this paper, this theo-

rem is generalized to such a case of maybe not arcwise-connected, i.e., there

are C1, C2,· · · , Cm arcwise-connected components in U ∩ V for an integer

m ≥ 1, which enables one to find fundamental groups of combinatorial spaces

by that of spaces with theirs underlying topological graphs, particularly, that

of compact manifolds by their underlying graphs of charts.
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§1. Introduction

All spaces X considered in this paper are arcwise-connected, graphs are connected
topological graph, maybe with loops or multiple edges and interior of an arc a :
(0, 1) → X is opened. For terminologies and notations not defined here, we follow
the reference [1]-[3] for topology and [4]-[5] for topological graphs.

Let X be a topological space. A fundamental group π1(X, x0) of X based at a
point x0 ∈ X is formed by homotopy arc classes in X based at x0 ∈ X . For an
arcwise-connected space X , it is known that π1(X, x0) is independent on the base
point x0, that is, for ∀x0, y0 ∈ X ,

π1(X, x0) ∼= π1(X, y0).

Find the fundamental group of a space X is a difficult task in general. Until
today, the basic tool is still the Seifert-Van Kampen theorem following.

Theorem 1.1(Seifert and Van-Kampen) Let X = U ∪ V with U, V open subsets

and let X, U, V , U ∩ V be non-empty arcwise-connected with x0 ∈ U ∩ V and H a

group. If there are homomorphisms

φ1 : π1(U, x0) → H and φ2 : π1(V, x0) → H
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and

¸

with φ1 · i1 = φ2 · i2, where i1 : π1(U ∩ V, x0) → π1(U, x0), i2 : π1(U ∩ V, x0) →
π1(V, x0), j1 : π1(U, x0) → π1(X, x0) and j2 : π1(V, x0) → π1(X, x0) are homomor-

phisms induced by inclusion mappings, then there exists a unique homomorphism

Φ : π1(X, x0) → H such that Φ · j1 = φ1 and Φ · j2 = φ2.

Applying Theorem 1.1, it is easily to determine the fundamental group of such
spaces X = U ∪ V with U ∩ V an arcwise-connected following.

Theorem 1.2(Seifert and Van-Kampen theorem, classical version) Let spacesX,U, V
and x0 be in Theorem 1.1. If

j : π1(U, x0) ∗ π1(V, x0) → π1(X, x0)

is an extension homomorphism of j1 and j2, then j is an epimorphism with kernel

Kerj generated by i−1
1 (g)i2(g), g ∈ π1(U ∩ V, x0), i.e.,

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0)[

i−1
1 (g) · i2(g)| g ∈ π1(U ∩ V, x0)

] ,

where [A] denotes the minimal normal subgroup of a group G included A ⊂ G .

Now we use the following convention.

Convention 1.3 Assume that

(1) X is an arcwise-connected spaces, x0 ∈ X;

(2) {Uλ : λ ∈ Λ} is a covering of X by arcwise-connected open sets such that

x0 ∈ Uλ for ∀λ ∈ Λ;

(3) For any two indices λ1, λ2 ∈ Λ there exists an index λ ∈ Λ such that Uλ1
∩

Uλ2
= Uλ

If Uλ ⊂ Uµ ⊂ X , then the notation

φλµ : π1(Uλ, x0) → π1(Uµ, x0) and φλ : π1(Uλ, x0) → π1(X, x0)

denote homomorphisms induced by the inclusion mapping Uλ → Uµ and Uλ → X ,
respectively. It should be noted that the Seifert-Van Kampen theorem has been
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generalized in [2] under Convention 1.3 by any number of open subsets instead of
just by two open subsets following.

Theorem 1.4([2]) Let X,Uλ, λ ∈ Λ be arcwise-connected space with Convention

1.3 satisfies the following universal mappping condition: Let H be a group and let

ρλ : π1(Uλ, x0) → H be any collection of homomorphisms defined for all λ ∈ Λ such

that the following diagram is commutative for Uλ ⊂ Uµ:

¸

Then there exists a unique homomorphism Φ : π1(X, x0) → H such that for any

λ ∈ Λ the following diagram is commutative:

¸

Moreover, this universal mapping condition characterizes π1(X, x0) up to a unique

isomorphism.

Theorem 1.4 is useful for determining the fundamental groups of CW-complexes,
particularly, the adjunction of n-dimensional cells to a space for n ≥ 2. Notice that
the essence in Theorems 1.2 and 1.4 is that ∩λ∈ΛUλ is arcwise-connected, which
limits the application of such kind of results. The main object of this paper is
to generalize the Seifert-Van Kampen theorem to such an intersection maybe non-
arcwise connected, i.e., there are C1, C2,· · · , Cm arcwise-connected components
in U ∩ V for an integer m ≥ 1. This enables one to determine the fundamental
group of topological spaces, particularly, combinatorial manifolds introduced in [6]-
[8] following which is a special case of Smarandache multi-space ([9]-[10]).

Definition 1.4 A combinatorial Euclidean space EG(nν ; ν ∈ Λ) underlying a con-

nected graph G is a topological spaces consisting of Rnν , ν ∈ Λ for an index set Λ
such that

V (G) = {Rnν |ν ∈ Λ};

E(G) = { (Rnµ,Rnν)| Rnµ ∩Rnν 6= ∅, µ, ν ∈ Λ}.

A combinatorial fan-space R̃(nν ; ν ∈ Λ) is a combinatorial Euclidean space
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EK|Λ|
(nν ; ν ∈ Λ) of Rnν , ν ∈ Λ such that for any integers µ, ν ∈ Λ, µ 6= ν,

Rnµ

⋂
Rnν =

⋂

λ∈Λ

Rnλ ,

which enables us to generalize the conception of manifold to combinatorial manifold,
also a locally combinatorial Euclidean space following.

Definition 1.5 For a given integer sequence 0 < n1 < n2 < · · · < nm, m ≥ 1, a
topological combinatorial manifold M̃ is a Hausdorff space such that for any point

p ∈ M̃ , there is a local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in

M̃ and a homoeomorphism ϕp : Up → R̃(n1(p), n2(p), · · · , ns(p)(p)) =
s(p)⋃
i=1

Rni(p) with

{n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm} and
⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} =

{n1, n2, · · · , nm}, denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).

A topological combinatorial manifold M̃(n1, n2, · · · , nm) is finite if it is just com-

bined by finite manifolds without one manifold contained in the union of others.

If these manifolds Mi, 1 ≤ i ≤ m in M̃(n1, n2, · · · , nm) are Euclidean spaces

Rni, 1 ≤ i ≤ m, then M̃(n1, n2, · · · , nm) is nothing but a combinatorial Euclidean
space EG(nν ; ν ∈ Λ) with Λ = {1, 2, · · · , m}. Furthermore, If m = 1 and n1 = n,

or nν = n for ν ∈ Λ, then M̃(n1, n2, · · · , nm) or EG(nν ; ν ∈ Λ) is exactly a manifold
Mn by definition.

§2. Topological Space Attached Graphs

A topological graph G is itself a topological space formally defined as follows.

Definition 2.1 A topological graph G is a pair (S, S0) of a Hausdorff space S with

its a subset S0 such that

(1) S0 is discrete, closed subspaces of S;

(2) S − S0 is a disjoint union of open subsets e1, e2, · · · , em, each of which is

homeomorphic to an open interval (0, 1);

(3) the boundary ei − ei of ei consists of one or two points. If ei − ei consists of
two points, then (ei, ei) is homeomorphic to the pair ([0, 1], (0, 1)); if ei − ei consists
of one point, then (ei, ei) is homeomorphic to the pair (S1, S1 − {1});

(4) a subset A ⊂ G is open if and only if A ∩ ei is open for 1 ≤ i ≤ m.

4



¸

Fig.2.1¸

Notice that a topological graph maybe with semi-edges, i.e., those edges e+ ∈
E(G) with e+ : [0, 1) or (0, 1] → S. A topological space X attached with a graph G
is such a space X ⊙G such that

X
⋂

G 6= ∅, G 6⊂ X

and there are semi-edges e+ ∈ (X
⋂
G) \ G, e+ ∈ G \ X . An example for X ⊙ G

can be found in Fig.2.1. In this section, we characterize the fundamental groups of
such topological spaces attached with graphs.

Theorem 2.2 Let X be arc-connected space, G a graph and H the subgraph X ∩G
in X ⊙G. Then for x0 ∈ X ∩G,

π1(X ⊙G, x0) ∼=
π1(X, x0) ∗ π1(G, x0)[

i−1
1 (αeλ)i2(αeλ)| eλ ∈ E(H) \ Tspan)

] ,

where i1 : π1(H, x0) → X, i2 : π1(H, x0) → G are homomorphisms induced by

inclusion mappings, Tspan is a spanning tree in H, αλ = AλeλBλ is a loop associated

with an edge eλ = aλbλ ∈ H \ Tspan, x0 ∈ G and Aλ, Bλ are unique paths from x0 to

aλ or from bλ to x0 in Tspan.

Proof This result is an immediately conclusion of Seifert-Van Kampen theorem.
Let U = X and V = G. Then X ⊙ G = X ∪ G and X ∩ G = H . By definition,
there are both semi-edges in G and H . Whence, they are opened. Applying the
Seifert-Van Kampen theorem, we get that

π1(X ⊙G, x0) ∼=
π1(X, x0) ∗ π1(G, x0)[

i−1
1 (g)i2(g)| g ∈ π1(X ∩G, x0)

] ,

Notice that the fundamental group of a graph H is completely determined by
those of its cycles ([2]), i.e.,

π1(H, x0) = 〈αλ|eλ ∈ E(H) \ Tspan〉 ,¸
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where Tspan is a spanning tree in H , αλ = AλeλBλ is a loop associated with an edge
eλ = aλbλ ∈ H \ Tspan, x0 ∈ G and Aλ, Bλ are unique paths from x0 to aλ or from
bλ to x0 in Tspan. We finally get the following conclusion,

π1(X ⊙G, x0) ∼=
π1(X, x0) ∗ π1(G, x0)[

i−1
1 (αeλ)i2(αeλ)| eλ ∈ E(H) \ Tspan)

] �

Corollary 2.3 Let X be arc-connected space, G a graph. If X ∩ G in X ⊙ G is a

tree, then

π1(X ⊙G, x0) ∼= π1(X, x0) ∗ π1(G, x0).

Particularly, if G is graphs shown in Fig.2.2 following

¸

Fig.2.2¸

and X ∩G = K1,m, Then

π1(X ⊙BT
m, x0) ∼= π1(X, x0) ∗ 〈Li|1 ≤ i ≤ m〉 ,

where Li is the loop of parallel edges (x0, xi) in BT
m for 1 ≤ i ≤ m− 1 and

π1(X ⊙ ST
m, x0) ∼= π1(X, x0).

Theorem 2.4 Let Xm⊙G be a topological space consisting of m arcwise-connected

spaces X1, X2, · · · , Xm, Xi ∩ Xj = ∅ for 1 ≤ i, j ≤ m attached with a graph G,

V (G) = {x0, x1, · · · , xl−1}, m ≤ l such that Xi ∩G = {xi} for 0 ≤ i ≤ l − 1. Then

π1(Xm ⊙G, x0) ∼=

(
m∏

i=1

π1(X
∗

i , x0)

)
∗ π1(G, x0)

∼=

(
m∏

i=1

π1(Xi, xi)

)
∗ π1(G, x0),

where X∗

i = Xi

⋃
(x0, xi) with Xi ∩ (x0, xi) = {xi} for (x0, xi) ∈ E(G), integers

1 ≤ i ≤ m.

Proof The proof is by induction on m. If m = 1, the result is hold by Corollary
2.3.
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Now assume the result on Xm ⊙ G is hold for m ≤ k < l − 1. Consider m =
k+ 1 ≤ l. Let U = Xk ⊙G and V = Xk+1. Then we know that Xk+1 ⊙G = U ∪ V
and U ∩ V = {xk+1}.

Applying the Seifert-Van Kampen theorem, we find that

π1(Xk+1 ⊙G, xk+1) ∼=
π1(U, xk+1) ∗ π1(V, xk+1)[

i−1
1 (g)i2(g)| g ∈ π1(U ∩ V, xk+1)

]

∼=
π1(Xk ⊙G, x0) ∗ π1(Xk+1, xk+1)[

i−1
1 (g)i2(g)| g ∈ {exk+1

}
]

∼=

((
k∏

i=1

π1(X
∗

i , x0)

)
∗ π1(G, x0)

)
∗ π1(Xk+1, xk+1)

∼=

(
k+1∏

i=1

π1(X
∗

i , x0)

)
∗ π1(G, x0)

∼=

(
m∏

i=1

π1(Xi, xi)

)
∗ π1(G, x0),

by the induction assumption. �

Particularly, for the graph BT
m or star ST

m in Fig.2.2, we get the following con-
clusion.

Corollary 2.5 Let G be the graph BT
m or star ST

m. Then

π1(Xm ⊙ BT
m, x0) ∼=

(
m∏

i=1

π1(X
∗

i , x0)

)
∗ π1(B

T
m, x0)

∼=

(
m∏

i=1

π1(Xi, xi−1)

)
∗ 〈Li|1 ≤ i ≤ m〉 ,

where Li is the loop of parallel edges (x0, xi) in BT
m for integers 1 ≤ i ≤ m− 1 and

π1(Xm ⊙ ST
m, x0) ∼=

m∏

i=1

π1(X
∗

i , x0) ∼=

m∏

i=1

π1(Xi, xi−1).

Corollary 2.6 Let X = Xm ⊙ G be a topological space with simply-connected
spaces Xi for integers 1 ≤ i ≤ m and x0 ∈ X ∩G. Then we know that

π1(X, x0) ∼= π1(G, x0).

§3. A Generalization of Seifert-Van Kampen Theorem
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These results and graph BT
m shown in Section 2 enables one to generalize the Seifert-

Van Kampen theorem to the case of U ∩ V maybe not arcwise-connected.

Theorem 3.1 Let X = U ∪ V , U, V ⊂ X be open subsets, X, U, V arcwise-

connected and let C1, C2, · · · , Cm be arcwise-connected components in U ∩ V for an

integer m ≥ 1, xi−1 ∈ Ci, b(x0, xi−1) ⊂ V an arc : I → X with b(0) = x0, b(1) = xi−1

and b(x0, xi−1)∩U = {x0, xi−1}, C
E
i = Ci

⋃
b(x0, xi−1) for any integer i, 1 ≤ i ≤ m,

H a group and there are homomorphisms

φi
1 : π1(U

⋃
b(x0, xi−1), x0) → H, φi

2 : π1(V, x0) → H

such that

¸

with φi
1 · ii1 = φi

2 · ii2, where ii1 : π1(C
E
i , x0) → π1(U ∪ b(x0, xi−1), x0), ii2 :

π1(C
E
i , x0) → π1(V, x0) and ji1 : π1(U∪b(x0, xi−1, x0)) → π1(X, x0), ji2 : π1(V, x0)) →

π1(X, x0) are homomorphisms induced by inclusion mappings, then there exists a

unique homomorphism Φ : π1(X, x0) → H such that Φ · ji1 = φi
1 and Φ · ji2 = φi

2

for integers 1 ≤ i ≤ m.

Proof Define UE = U
⋃
{ b(x0, xi) | 1 ≤ i ≤ m − 1}. Then we get that

X = UE ∪ V , UE , V ⊂ X are still opened with an arcwise-connected intersection
UE ∩ V = Xm ⊙ ST

m, where ST
m is a graph formed by arcs b(x0, xi−1), 1 ≤ i ≤ m.

Notice that Xm ⊙ SmT =
m⋃
i=1

CE
i and CE

i

⋂
CE

j = {x0} for 1 ≤ i, j ≤ m, i 6= j.

Therefore, we get that

π1(Xm ⊙ ST
m, x0) =

m⊗

i=1

π1(C
E
i , x0).

This fact enables us knowing that there is a unique m-tuple (h1, h2, · · · , hm), hi ∈
π1(C

E
i , xi−1), 1 ≤ i ≤ m such that

I =

m∏

i=1

hi

for ∀I ∈ π1(Xm ⊙ ST
m, x0).

By definition,

ii1 : π1(C
E
i , x0) → π1(U ∩ b(x0, xi−1), x0),

8



ii2 : π1(C
E
i , x0) → π1(V, x0)

are homomorphisms induced by inclusion mappings. We know that there are homo-
morphisms

iE1 : π1(Xm ⊙ ST
m, x0) → π1(U

E , x0),

iE2 : π1(Xm ⊙ ST
m, x0) → π1(V, x0)

with iE1 |π1(CE
i ,x0) = ii1, i

E
2 |π1(CE

i ,x0) = ii2 for integers 1 ≤ i ≤ m.
Similarly, because of

π1(U
E , x0) =

m⋃

i=1

π1(U ∪ b(x0, xi−1, x0))

and
ji1 : π1(U ∪ b(x0, xi−1, x0)) → π1(X, x0),

ji2 : π1(V → π1(X, x0)

being homomorphisms induced by inclusion mappings, there are homomorphisms

jE1 : π1(U
E , x0) → π1(X, x0), jE2 : π1(V, x0) → π1(X, x0)

induced by inclusion mappings with jE1 |π1(U∪b(x0,xi−1,x0)) = ji1, j
E
2 |π1(V,x0) = ji2 for

integers 1 ≤ i ≤ m also.
Define φE

1 and φE
2 by

φE
1 (I ) =

m∏

i=1

φi
1(ii1(hi)), φE

2 (I ) =
m∏

i=1

φi
2(ii2(hi)).

Then they are naturally homomorphic extensions of homomorphisms φi
1, φi

2 for
integers 1 ≤ i ≤ m. Notice that φi

1 · ii1 = φi
2 · ii2 for integers 1 ≤ i ≤ m, we get that

φE
1 · iE1 (I ) = φE

1 · iE1

(
m∏

i=1

hi

)

=

m∏

i=1

(
φi
1 · ii1(hi)

)
=

m∏

i=1

(
φi
2 · ii2(hi)

)

= φE
2 · iE2

(
m∏

i=1

hi

)
= φE

2 · iE2 (I ),

i.e., the following diagram

9



¸

is commutative with φE
1 · iE1 = φE

2 · iE2 . Applying Theorem 1.1, we know that there
exists a unique homomorphism Φ : π1(X, x0) → H such that Φ · jE1 = φE

1 and
Φ · jE2 = φE

2 . Whence, Φ · ji1 = φi
1 and Φ · ji2 = φi

2 for integers 1 ≤ i ≤ m. �

The following result is a generalization of the classical Seifert-Van Kampen the-
orem to the case of maybe non-arcwise connected.

Theorem 3.2 Let X, U , V , CE
i , b(x0, xi−1) be arcwise-connected spaces for any

integer i, 1 ≤ i ≤ m as in Theorem 3.1, UE = U
⋃
{ b(x0, xi) | 1 ≤ i ≤ m− 1} and

BT
m a graph formed by arcs a(x0, xi−1), b(x0, xi−1), 1 ≤ i ≤ m, where a(x0, xi−1) ⊂ U

is an arc : I → X with a(0) = x0, a(1) = xi−1 and a(x0, xi−1) ∩ V = {x0, xi−1}.
Then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0) ∗ π1(B

T
m, x0)[

(iE1 )
−1(g) · i2(g)| g ∈

m∏
i=1

π1(C
E
i , x0)

] ,

where iE1 : π1(U
E ∩ V, x0) → π1(U

E , x0) and iE2 : π1(U
E ∩ V, x0) → π1(V, x0) are

homomorphisms induced by inclusion mappings.

Proof Similarly, X = UE ∪V , UE , V ⊂ X are opened with UE ∩V = Xm⊙ST
m.

By the proof of Theorem 3.1 we have known that there are homomorphisms φE
1 and

φE
2 such that φE

1 · iE1 = φE
2 · iE2 . Applying Theorem 1.2, we get that

π1(X, x0) ∼=
π1(U

E , x0) ∗ π1(V, x0)

[(iE1 )
−1(I ) · iE2 (I )|I ∈ π1(UE ∩ V, x0)]

.

Notice that UE ∩ V E = Xm ⊙ ST
m. We have known that

π1(U
E , x0) ∼= π1(U, x0) ∗ π1(B

T
m, x0)

by Corollary 2.3. As we have shown in the proof of Theorem 3.1, an element I in

10



π1(Xm ⊙ ST
m, x0) can be uniquely represented by

I =

m∏

i=1

hi,

where hi ∈ π1(C
E
i , x0), 1 ≤ i ≤ m. We finally get that

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0) ∗ π1(B

T
m, x0)[

(iE1 )
−1(g) · iE2 (g)| g ∈

m∏
i=1

π1(CE
i , x0)

] . �

The form of elements in π1(Xm ⊙ ST
m, x0) appeared in Corollary 2.5 enables one

to obtain another generalization of classical Seifert-Van Kampen theorem following.

Theorem 3.3 Let X, U , V , C1, C2, · · · , Cm be arcwise-connected spaces, b(x0, xi−1)
arcs for any integer i, 1 ≤ i ≤ m as in Theorem 3.1, UE = U

⋃
{ b(x0, xi−1) | 1 ≤

i ≤ m} and BT
m a graph formed by arcs a(x0, xi−1), b(x0, xi−1), 1 ≤ i ≤ m. Then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0) ∗ π1(B

T
m, x0)[

(iE1 )
−1(g) · iE2 (g)| g ∈

m∏
i=1

π1(Ci, xi−1)

] ,

where iE1 : π1(U
E ∩ V, x0) → π1(U

E , x0) and iE2 : π1(U
E ∩ V, x0) → π1(V, x0) are

homomorphisms induced by inclusion mappings.

Proof Notice that UE ∩ V = Xm ⊙ ST
m. Applying Corollary 2.5, replacing

π1(Xm ⊙ ST
m, x0) =

[
(iE1 )

−1(g) · iE2 (g)| g ∈
m∏

i=1

π1(C
E
i , x0)

]

by

π1(Xm ⊙ ST
m, x0) =

[
(iE1 )

−1(g) · iE2 (g)| g ∈
m∏

i=1

π1(Ci, xi−1)

]

in the proof of Theorem 3.2. We get this conclusion. �

Particularly, we get corollaries following by Theorems 3.1, 3.2 and 3.3.

Corollary 3.4 Let X = U ∪ V , U, V ⊂ X be open subsets and X, U, V and U ∩ V
arcwise-connected. Then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(V, x0)[

i−1
1 (g) · i2(g)| g ∈ π1(U ∩ V, x0)

] ,

where i1 : π1(U ∩ V, x0) → π1(U, x0) and i2 : π1(U ∩ V, x0) → π1(V, x0) are homo-

morphisms induced by inclusion mappings.
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Corollary 3.5 Let X, U , V , Ci, a(x0, xi), b(x0, xi) for integers i, 1 ≤ i ≤ m be as

in Theorem 3.1. If each Ci is simply-connected, then

π1(X, x0) ∼= π1(U, x0) ∗ π1(V, x0) ∗ π1(B
T
m, x0).

Proof Notice that CE
1 , C

E
2 , · · · , C

E
m are all simply-connected by assumption. Ap-

plying Theorem 3.3, we easily get this conclusion. �

Corollary 3.6 Let X, U , V , Ci, a(x0, xi), b(x0, xi) for integers i, 1 ≤ i ≤ m be as

in Theorem 3.1. If V is simply-connected, then

π1(X, x0) ∼=
π1(U, x0) ∗ π1(B

T
m, x0)[

(iE1 )
−1(g) · iE2 (g)| g ∈

m∏
i=1

π1(CE
i , x0)

] ,

where iE1 : π1(U
E ∩ V, x0) → π1(U

E , x0) and iE2 : π1(U
E ∩ V, x0) → π1(V, x0) are

homomorphisms induced by inclusion mappings.

§4. Fundamental Groups of Combinatorial Spaces

4.1 Fundamental groups of combinatorial manifolds

By definition, a combinatorial manifold M̃ is arcwise-connected. So we can apply
Theorems 3.2 and 3.3 to find its fundamental group π1(M̃) up to isomorphism in
this section.

Definition 4.1 Let M̃ be a combinatorial manifold underlying a graph G[M̃ ]. An

edge-induced graph Gθ[M̃ ] is defined by

V (Gθ[M̃ ]) = {xM , xM ′, x1, x2, · · · , xµ(M,M ′)| for ∀(M,M ′) ∈ E(G[M̃ ])},

E(Gθ[M̃ ]) = {(xM , xM ′), (xM , xi), (xM ′ , xi)| 1 ≤ i ≤ µ(M,M ′)},

where µ(M,M ′) is called the edge-index of (M,M ′) with µ(M,M ′) + 1 equal to the

number of arcwise-connected components in M ∩M ′.

By the definition of edge-induced graph, we finally get Gθ[M̃ ] of a combinatorial

manifold M̃ if we replace each edge (M,M ′) in G[M̃ ] by a subgraph TBT
µ(M,M ′)

shown in Fig.4.1 with xM = M and xM ′ = M ′.

¸

12



Fig.4.1¸

Then we have the following result.

Theorem 4.2 Let M̃ be a finitely combinatorial manifold. Then

π1(M̃) ∼=

(
∏

M∈V (G[M̃ ])

π1(M)

)
∗ π1(G

θ[M̃ ])

[
(iE1 )

−1(g) · iE2 (g)| g ∈
∏

(M1,M2)∈E(G[M̃ ])

π1(M1

⋂
M2)

] ,

where iE1 and iE2 are homomorphisms induced by inclusion mappings iM : π1(M ∩
M ′) → π1(M), iM ′ : π1(M ∩ M ′) → π1(M

′) such as those shown in the following

diagram:

¸

for ∀(M,M ′) ∈ E(G[M̃ ]).

Proof This result is obvious for |G[M̃ ]| = 1. Notice that Gθ[M̃ ] = BT
µ(M,M ′)+1 if

V (G[M̃ ]) = {M, M ′}. Whence, it is an immediately conclusion of Theorem 3.2 for

|G[M̃ ]| = 2.

Now let k ≥ 3 be an integer. If this result is true for |G[M̃ ]| ≤ k, we prove it hold

for |G[M̃ ]| = k. It should be noted that for an arcwise-connected graph H we can
always find a vertex v ∈ V (H) such that H−v is also arcwise-connected. Otherwise,
each vertex v ofH is a cut vertex. There must be |H| = 1, a contradiction. Applying

this fact to G[M̃ ], we choose a manifold M ∈ V (G[M̃ ]) such that M̃ −M is arcwise-
connected, which is also a finitely combinatorial manifold.

Let U = M̃ \ (M \ M̃) and V = M . By definition, they are both opened.
Applying Theorem 3.2, we get that

π1(M̃) ∼=
π1(M̃ −M) ∗ π1(M) ∗ π1(B

T
m)[

(iE1 )
−1(g) · iE2 (g)| g ∈

m∏
i=1

π1(Ci)

] ,
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where Ci is an arcwise-connected component in M ∩ (M̃ −M) and

m =
∑

(M,M ′)∈E(G[M̃ ])

µ(M,M ′).

Notice that
π1(B

T
m)

∼=
∏

(M,M ′)∈E(G[M̃ ]

π1(TBµ(M,M ′)).

By the induction assumption, we know that

π1(M̃ −M) ∼=


 ∏

M∈V (G[M̃−M ])

π1(M)


 ∗ π1(G

θ[M̃ −M ])


(iE1 )−1(g) · iE2 (g)| g ∈

∏

(M1,M2)∈E(G[M̃−M ])

π1(M1 ∩M2)



,

where iE1 and iE2 are homomorphisms induced by inclusion mappings iM1
: π1(M1 ∩

M2) → π1(M1), iM2
: π1(M1 ∩ M2) → π1(M2) for ∀(M1,M2) ∈ E(G[M̃ − M ]).

Therefore, we finally get that

π1(M̃) ∼=
π1(M̃ −M) ∗ π1(M) ∗ π1(B

T
m)[

(iE1 )
−1(g) · iE2 (g)| g ∈

m∏

i=1

π1(Ci)

]

∼=




∏

M∈V (G[M̃−M ])

π1(M)


 ∗ π1(G

θ[M̃ −M ])


(i

E
1 )

−1(g) · iE2 (g)| g ∈
∏

(M1,M2)∈E(G[M̃−M ])

π1(M1 ∩M2)




[
(iE1 )

−1(g) · i2(g)| g ∈
m∏

i=1

π1(Ci)

]

∗

π1(M) ∗
∏

(M,M ′)∈E(G[M̃ ]

π1(TBµ(M,M ′))

[
(iE1 )

−1(g) · i2(g)| g ∈
m∏

i=1

π1(Ci)

]

∼=


 ∏

M∈V (G[M̃ ])

π1(M)


 ∗ π1(G

θ[M̃ ])


(iE1 )−1(g) · iE2 (g)| g ∈

∏

(M1,M2)∈E(G[M̃ ])

π1(M1

⋂
M2)
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by facts
(G /H ) ∗H ∼= G ∗H/H

for groups G , H , G and

Gθ[M̃ ] = Gθ[M̃ −M ]
⋃

(M,M ′)∈E(G[M̃ ]

TBµ(M,M ′),

π1(G
θ[M̃ ]) = π1(G

θ[M̃ −M ]) ∗
∏

(M,M ′)∈E(G[M̃ ]

π1(TBµ(M,M ′)),

∏

M∈V (G[M̃ ])

π1(M) =


 ∏

M∈V (G[M̃−M ])

π1(M)


 ∗ π1(M),

where iE1 and iE2 are homomorphisms induced by inclusion mappings iM : π1(M ∩

M ′) → π1(M), iM ′ : π1(M ∩ M ′) → π1(M
′) for ∀(M,M ′) ∈ E(G[M̃ ]). This

completes the proof. �

Applying Corollary 3.5, we get a result known in [8] by noted that Gθ[M̃ ] = G[M̃ ]

if ∀(M1,M2) ∈ E(GL[M̃ ]), M1 ∩M2 is simply connected.

Corollary 4.3([8]) Let M̃ be a finitely combinatorial manifold. If for ∀(M1,M2) ∈

E(GL[M̃ ]), M1 ∩M2 is simply connected, then

π1(M̃) ∼=


 ⊕

M∈V (G[M̃ ])

π1(M)


⊕π1(G[M̃ ]).

4.2 Fundamental groups of manifolds

Notice that π1(R
n) = identity for any integer n ≥ 1. If we choose M ∈ V (G[M̃ ]) to

be a chart (Uλ, ϕλ) with ϕλ : Uλ → Rn for λ ∈ Λ in Theorem 4.2, i.e., an n-manifold,
we get the fundamental group of n-manifold following.

Theorem 4.4 Let M be a compact n-manifold with charts {(Uλ, ϕλ)| ϕλ : Uλ →
Rn, λ ∈ Λ)}. Then

π1(M) ∼=
π1(G

θ[M ])[
(iE1 )

−1(g) · iE2 (g)| g ∈
∏

(Uµ,Uν)∈E(G[M ])

π1(Uµ ∩ Uν)

] ,

where iE1 and iE2 are homomorphisms induced by inclusion mappings iUµ
: π1(Uµ ∩

Uν) → π1(Uµ), iUν
: π1(Uµ ∩ Uν) → π1(Uν), µ, ν ∈ Λ.

Corollary 4.5 Let M be a simply connected manifold with charts {(Uλ, ϕλ)| ϕλ :
Uλ → Rn, λ ∈ Λ)}, where |Λ| < +∞. Then Gθ[M ] = G[M ] is a tree.
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Particularly, if Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then we obtain an
interesting result following.

Corollary 4.6 Let M be a compact n-manifold with charts {(Uλ, ϕλ)| ϕλ : Uλ →
Rn, λ ∈ Λ)}. If Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then

π1(M) ∼= π1(G[M ]).

Therefore, by Theorem 4.4 we know that the fundamental group of a manifold
M is a subgroup of that of its edge-induced graph Gθ[M ]. Particularly, if Gθ[M ] =

G[M̃ ], i.e., Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then it is nothing but the

fundamental group of G[M̃ ].
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