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Preface

A combinatorial map is a connected topological graph cellularly embedded in a

surface. As a linking of combinatorial configuration with the classical mathematics,

it fascinates more and more mathematician’s interesting. Its function and role in

mathematics are widely accepted by mathematicians today.

On the last century, many works are concentrated on the combinatorial prop-

erties of maps. The main trend is the enumeration of maps, particularly the rooted

maps, pioneered by W. Tutte, and today, this kind of papers are still appeared on

the journals frequently today. All of those is surveyed in Liu’s book [33]. To deter-

mine the embedding of a graph on surfaces, including coloring a map on surfaces

is another trend in map theory. Its object is combinatorialization of surfaces, see

Gross and Tucker [22], Mohar and Thomassen [53] and White [70], especially the

[53] for detail. The construction of regular maps on surfaces, related maps with

groups and geometry is a glimmer of the map theory with other mathematics.

In fact, maps as a kind of the decomposition of surfaces, should be given more

attention to its role in surfaces theory, such as the Riemann surfaces, Klein surfaces

and manifolds theory. As a simple case of the general manifolds, we know that

Riemann surfaces have become a source of the mathematical creative power. Many

good ideas for the manifolds with higher dimension are inspired by the Riemann

surfaces. The relation of maps with Riemann surfaces has been known in 80s in the

last century. Then how to realization or making combinatorial refinement for the

Riemann surfaces, Riemann geometry and finally, the Smarandache geometries by

maps is a very interesting problem. Unless the enumeration of unrooted maps on

surfaces, more attentions are given to the combinatorial refinement of some famous

results in Riemann surfaces, Klein surfaces and s-manifolds in this book. Although

the results obtained are quite elementary, it is still valuable probe by researchers,

especially, those of mathematicians in combinatorics, Klein surfaces or Smarandache

geometries.

Now we outline the main contents in each chapter.

Chapter 1 is preliminary. We introduce the conceptions of Klein surfaces,

Smarandache geometries, maps and the semi-arc automorphism group of a graph.
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A relation for maps and Smarandache manifolds (abbreviated s-manifolds) and a

scheme for the enumeration of unrooted maps are established in this chapter. The

last section determines the relation of the number of embeddings and rooted maps

of a graph on genus. A general equation for the total genus polynomial and rooted

total map polynomial is found in this section.

As a combinatorial model of the Klein surfaces and s-manifolds, Chapter 2 con-

cerns the automorphisms of a map, a Klein surface and an s-manifold. The voltage

map in the topological graph theory is defined by algebraic and some common results

are reproved under this definition. Conditions for a group being that of a map are

gotten in the first two sections. A combinatorial refinement of the Hurwitz theorem

in Riemann surfaces, and similar results for the Klein surfaces and s-manifolds are

obtained in the Section 3. The Section 4 concerns the order of an automorphism

of Klein surfaces and s-manifolds by maps, which is an interesting problem for re-

searchers in the Klein surfaces and Smarandache geometries. The results gotten in

this section are better than those of results already known.

Chapter 3 presents a necessary and sufficient condition for a group of a graph

being that of a map. This chapter also give all concrete representation of automor-

phisms of maps underlying a complete graph, a semi-regular graph and a bouquet,

which is difficult in the researching of Klein surfaces.

Chapter 4 is concentrated on the enumeration of unrooted maps and s-manifolds

by applying the results obtained in the previous chapters. The enumeration prob-

lem of unrooted maps on surfaces is generally recognized a difficult problem. The

unrooted complete maps, the semi-regular maps and one face maps on orientable

and non-orientable surfaces are enumerated in this chapter. The last section gives

an elementary classification for the closed s-manifolds by maps.

The last chapter presents some open problems related to the Riemann geometry

and Smarandache geometries for the combinatorial maps. Although it is called

open problems, in fact, any solution for one of these problems needs to establish

a new mathematical system first. But as soon as the system has been established,

the contribution of combinatorics to classical mathematics, such as, the Riemann

geometry and Smarandache geometries is realized. Those are the wish of mine, and

they are also the main problems considered by me in the following times.

The main part of this book is my post-doctor report in the Chinese Academy
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of Sciences in 2005. Many colleagues and friends of mine have given me enthusiastic

support and endless helps in preparing this book. Without their helps, this book

will never appears. Here I must mention some of them. On the first, I would like to

give my sincerely thanks to Professor Feng Tian for his encouraging and invaluable

helps and to professor Yanpei Liu introduced me into the filed of combinatorial map

theory. Thanks are also given to Professor Mingyao Xu, Professor Yanxun Chang,

Professor Xiaodong Hu, Professor Han Ren, Professor Rongxia Hao, Professor Weili

He and Erling Wei for their kindly helps and often discussing problems in mathe-

matics altogether. Of course, I am responsible for the correctness all of the material

presented here. Any suggestions for improving this book are welcome.

L.F.Mao

AMSS, Beijing

June, 2005
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Chapter 1 Preliminary

All surfaces are 2-dimensional compact manifolds without boundary, graphs are

connected, possibly with loops or multiple edges and groups are finite in the context.

For terminology and notation not defined in this book can be seen in [33], [34] and

[35] for graphs and maps and in [6], [73] for groups.

§1. Klein surface and s-manifold

1.1 Definitions

1.1.1 Definition of a Klein surface

The notion of Klein surface is introduced by Alling and Greenleaf [2] in 1971

concerned with real algebraic curves, correspondence with that of Riemann surface

concerned with complex algebraic curves. For introducing this concept, it is need

to enlarge analytic functions to those of dianalytic functions first.

Now let f : A −→ C be a mapping. Write z = x + iy, x, y ∈ R, i =
√
−1, z =

x − iy and f(z) = u(x, y) + iv(x, y) f(z) = u(x, y) − iv(x, y)for certain functions

u, v : A −→ R.
A mapping f : A −→ C is analytic on A if ∂f

∂z
= 0 (Cauchy-Riemann equation)

and is antianlytic on A if ∂f
∂z

= 0.

A mapping f is said to be dianalytic if its restriction to every connected com-

ponent of A is analytic or antianalytic.

Now we can formally define a Klein surface.

A Klein surface is a Hausdorff, connected, topological space S together with a

family
∑

= {(Ui, φi) |i ∈ I} such that the chart {Ui|i ∈ I} is an open covering of

S, each map φi : Ui −→ Ai is a homeomorphism onto an open subset Ai of C or

C+ = {z ∈ C : Imz ≥ 0} and the transition functions

φij = φiφ
−
j : φj(Ui

⋂
Uj) −→ φi(Ui

⋂
Uj).

are dianalytic.

The family
∑

is said to be a topological atlas on S.
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The boundary of S is the set

∂S = {x ∈ S|there exists i ∈ I, x ∈ Ui, φi(x) ∈ R
and φi(Ui) ⊆ C+}.

The existence of Klein surfaces is obvious, for example, a Riemann surface is

a Klein surface viewed as an orientable surface with empty boundary and
∑

to be

analytic functions. Whence, we have the following relation:

{Riemann Sufaces} ⊂ {Klein surfaces}.

The upper half plane H = {z ∈ C|Imz > 0} with {(U1 = H, φ1 = 1H)} and the

open unit disc D = {z ∈ C||z| < 1} with {(U1 = d, φ1 = 1D)} in C are two Klein

surfaces with empty boundary and analytic structures.

If k(S), g(S) and χ(S) are the number of connected components of ∂S, the

topological genus and the Euler characteristic of a surface S, then we have that

Theorem 1.1.1([2])

χ(S) =





2 − 2g(S) − k(S), if S is orientable,

2 − g(S) − k(S). if Sis non − orientable.

1.1.2 Definition of a Smarandache geometry

By the history, we know that classical geometries include the Euclid geom-

etry, the hyperbolical geometry and the Riemann’s geometry. Each of the later

two is proposed by denial the 5th postulate for parallel lines in the Euclid postu-

lates of geometry. The Smarandache geometries is proposed by Smarandache in

1969 ([61]), which is a generalization of the classical geometries, i.e., the Euclid,

Lobachevshy-Bolyai-Gauss and Riemannian geometries may be united altogether in

the same space, by some Smarandache geometries. These last geometries can be

either partially Euclidean and partially Non-Euclidean, or Non-Euclidean. It seems

that the Smarandache geometries are connected with the Relativity Theory (because

they include the Riemann geometry in a subspace) and with the Parallel Universes

(because they combine separate spaces into one space) too([32]).
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In [61], Smarandache defined several specific types of Smarandache geometries,

such as the paradoxist geometry, the non-geometry, the counter-projective geometry

and the anti-geometry. He also posed a question on the paradoxist geometry, i.e.,

find a nice model on manifolds for this paradoxist geometry and study some of its

characteristics.

An axiom is said smarandachely denied if in the same space the axiom behaves

differently (i.e., validated and invalided; or only invalided but in at least two district

ways).

A Smarandache geometry is a geometry which has at least one smarandachely

denied axiom1∗ . At present, the Smarandache manifolds (abbreviated s-manifolds)

are the central object discussed in the Smarandache geometries today. More results

for the Smarandache geometries can be seen in the references [4], [16],[27]− [28], [32]

and [58] − [59] etc..

The idea of an s-manifold was based on a hyperbolic paper in [69] and credited

to W.Thurston. A more general idea can be found in [59]. According to the survey

[27] of H.Iseri, an s-manifold is combinatorially defined as follows:

An s-manifold is any collection C(T, n) of these equilateral triangular disks

Ti, 1 ≤ i ≤ n satisfying the following conditions:

(i) Each edge e is the identification of at most two edges ei, ej in two distinct

triangular disks Ti, Tj, 1 ≤ i, j ≤ n and i 6= j;

(ii) Each vertex v is the identification of one vertex in each of five, six or seven

distinct triangular disks.

The vertices are classified by the number of the disks around them. A vertex

around five, six or seven triangular disks is called an elliptic vertex, a Euclid vertex

or a hyperbolic vertex, respectively.

An s-manifold is called closed if the number of triangular disks is finite and each

edge is shared by exactly two triangular disks, each vertex is completely around by

triangular disks. It is obvious that a closed s-manifold is a surface and its Euler

characteristic can be defined by the Theorem 1.1.1.

1.2 Classification of Klein surfaces and s-manifolds

A morphism between the Klein surfaces S and S ′ is a continuous map f : S → S ′

1Also see www.gallup.unm.edu/˜ samrandache/geometries.htm
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such that f(∂S) ⊆ ∂S ′ and given s ∈ S, there exist chart (U, φ) and (V, ψ) at s and

f(s) respectively, and an analytic function F : φ(U) → C such that

ψ(f(s)) = Φ(F (φ(s))),

where, Φ : C → C+ : x+ iy → x+ i|y| is a continuous map.

An automorphism of a Klein surface S is an 1− 1 morphism f : S → S. It has

been known that for a given Klein surface S, the set AutS of automorphisms of S

forms a group with respect to the composition operation and AutH = PGL(2, R).

Let Γ be a discrete subgroup of AutH . We say that Γ is a non-euclidean

crystallographic group( shortly NEC group) if the quotient H/Γ is compact.

More results can be seen in [11]. Typical results for automorphisms of a Klein

surface S are as follows.

Theorem 1.1.2([11]) Let S be a compact Klein surface, g = g(S) and k = k(S),

then

(i) there exists an NEC group Γ such that AutS ∼= NΩ(Γ)/Γ, where Ω = AutH.

(ii) if S satisfies the condition 2g + k ≥ 3 if S is orientable and g + k ≥ 3 if S

is non-orientable, then AutS is finite.

Similarly, two s-manifolds C1(T, n) and C2(T, n) are called to be isomorphic if

there is an 1 − 1 mapping τ : C1(T, n) → C2(T, n) such that for ∀T1, T2 ∈ C1(T, n),

τ(T1

⋂
T2) = τ(T1)

⋂
τ(T2).

If C1(T, n) = C1(T, n) = C(T, n), τ is called an automorphism of the s-manifold

C(T, n). All automorphisms of an s-manifold form a group under the composition

operation, called the automorphism group of an s-manifold C(T, n), denoted by

AutC(T, n).

§2. Map and embedding of a graph on surface

2.1 Graphs

Combinatorially, a graph Γ is a 2-tuple (V,E) consists of a finite non-empty

set V of vertices together with a set E of unordered pairs of vertices, i.e., E ⊆
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V × V ([22], [35], [70]). Often denoted by V (Γ), E(Γ) the vertex set and edge set of

the graph Γ.

The cardinal numbers of |V | and |E| are called the order and the size of the

graph Γ.

We can also obtain a representation of a graph Γ representing a vertex u by a

point p(u), p(u) 6= p(v) if u 6= v and an edge (u, v) by a curve connecting the points

p(u) and p(v) on the plane.

For example, the graph in the Fig. 1.1

Fig 1.1

is a graph Γ = (V,E) with V = {u, v, w, x} and

E = {(u, u), (v, v), (w,w), (x, x), (u, v), (v, w), (w, x), (x, u)}.

A walk of a graph Γ is an alternating sequence of vertices and edges u1, e1, u2, e2,

· · · , en, un1 with ei = (ui, ui+1) for 1 ≤ i ≤ n. The number n is the length of the

walk. If u1 = un+1, the walk is said to be closed, and open otherwise. For example,

ue1ve2we6we3xe3we2v is a walk in the graph of the Fig. 1.1. A walk is called a trail

if all its edges are distinct and a path if all the vertices are distinct. A closed path

is said to be a circuit.

A graph Γ is connected if there is paths connecting any two vertices in this

graph and is simple if any 2-tuple (u, v) ∈ E(Γ) ⊆ V (Γ) × V (Γ) appears once at

most and u 6= v.

Let Γ be a graph. For ∀u ∈ V (Γ), the neighborhood Nv
Γ(u) is defined by

Nv
Γ(u) = {v|(u, v) or (v, u) ∈ E(Γ)}. Its cardinal |Nv

Γ(u)| is called the valency of the
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vertex u in the graph Γ, denoted by ρΓ(u). By the enumeration of edges, we know

the following result

∑
u ∈ V (Γ)ρΓ(u) = 2|E(Γ)|.

2.2 The embedding of a graph on surfaces

A map on a surface S is a kind of partition S which enables us to obtain

homeomorphisms of 2-cells {(x, y)|x2 + y2 < 1, x, y ∈ R} if we remove from S all

the curves used to partite S. There is a classical result for the partition of a surface

gotten by T.Radó in 1925.

Theorem 1.2.1([52]) For any compact surface S, there exist a triangulation {Ti, i ≥
1} on S.

This theorem is fundamental for the topological graph theory, which enables us

to discussion a surface combinatorially.

For any connected graph Γ = (V (Γ), E(Γ)) and a surface S, an embedding of

the graph Γ in the surface S is geometrical defined to be a continuous 1−1 mapping

τ : Γ → S. The image τ(Γ) is contained in the 1-skeleton of a triangulation of the

surface S. If each component in S − τ(Γ) homeomorphic to an open disk, then the

embedding is said a 2-cell embedding, where, components in S − τ(Γ) are called

faces. All embeddings considered in this book are 2-cell embeddings.

Let Γ be a graph. For v ∈ V (Γ), denote by N e
Γ(v) = {e1, e2, · · · , eρ(v)} all the

edges incident with the vertex v. A permutation on e1, e2, · · · , eρ(v) is said a pure

rotation. All pure rotations incident a vertex v is denoted by ̺(v). A pure rotation

system of the graph Γ is defined to be

ρ(Γ) = {̺(v)|v ∈ V (Γ)}

and all pure rotation systems of the graph Γ is denoted by ̺(Γ).

The first characteristic for embedding of a graph on orientable surfaces is found

by Heffter in 1891 and formulated by Edmonds in 1962, states as follows.

Theorem 1.2.2([17]) Every pure rotation system for a graph Γ induces a unique
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embedding of Γ into an orientable surface. Conversely, every embedding of a graph

Γ into an orientable surface induces a unique pure rotation system of Γ.

According to this theorem, we know that the number of orientable embeddings

of a graph Γ is
∏

v∈V (Γ)(ρ(v) − 1)!.

The characteristic for embedding of a graph on locally orientable surface is used

by Ringel in the 1950s and gave a formal proof by Stahl in 1978([22][62]).

From the topological theory, embedded vertex and face can be viewed as disk,

and an embedded edge can be viewed as an 1-band which is defined as a topological

space B together with a homeomorphism h : I × I → B, where I = [0, 1], the unit

interval.

Define a rotation system ρL(Γ) to be a pair (J , λ), where J is a pure rotation

system of Γ, and λ : E(Γ) → Z2. The edge with λ(e) = 0 or λ(e) = 1 is called type

0 or type 1 edge, respectively. The rotation system of a graph Γ are defined by

̺L(Γ) = {(J , λ)|J ∈ ̺(Γ), λ : E(Γ) → Z2}.

Then we know that

Theorem 1.2.3([22][62]) Every rotation system on a graph Γ defines a unique locally

orientable embedding of Γ → S. Conversely, every embedding of a graph Γ → S

defines a rotation system for Γ.

For any embedding of the graph Γ, there is a spanning tree T such that every

edge on this tree is type 0([43]). Whence the number of embeddings of a graph Γ

on locally orientable surfaces is

2β(Γ)
∏

v∈V (Γ)

(ρ(v) − 1)!

and the number of embeddings of Γ on the non-orientable surfaces is

(2β(Γ) − 1)
∏

v∈V (Γ)

(ρ(v) − 1)!.

The following result is the Euler-Poincaré formula for an embedding of a graph

on surface.

Theorem 1.2.4 If a graph Γ can be embedded into a surface S, then
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ν(Γ) − ε(Γ) + φ(Γ) = χ(S),

where, ν(Γ), ε(Γ) and φ(Γ) are the order, size and the number of faces of the graph

Γ, and χ(S) is the Euler characteristic of the surface S:

χ(S) =





2 − 2p, if S is orientable,

2 − q, if S is non− orientable.

2.3. Map and rooted map on surface

In 1973, Tutte gave an algebraic representation for an embedding of a graph on

locally orientable surface ([66], which transfer a geometrical partition of a surface

to a kind of permutation in algebra.

According to the summary in [33], a map M = (Xα,β,P) is defined to be a

basic permutation P, i.e, for any x ∈ Xα,β, no integer k exists such that Pkx = αx,

acting on Xα,β , the disjoint union of quadricells Kx of x ∈ X (the base set), where

K = {1, α, β, αβ} is the Klein group, satisfying the following two conditions:

(Ci) αP = P−1α;

(Cii) the group ΨJ =< α, β,P > is transitive on Xα,β.

For a given map M = (Xα,β,P), it can be shown that M∗ = (Xβ,α,Pαβ) is

also a map, call it the dual of the map M . The vertices of M are defined as the

pairs of conjugatcy orbits of P action on Xα,β by the condition (Ci) and edges the

orbits of K on Xα,β, for example,∀x ∈ Xα,β, {x, αx, βx, αβx} is an edge of the map

M . Define the faces of M to be the vertices in the dual map M∗. Then the Euler

characteristic χ(M) of the map M is

χ(M) = ν(M) − ε(M) + φ(M)

where,ν(M), ε(M), φ(M) are the number of vertices, edges and faces of the map M ,

respectively.

For example, the graph K4 on the tours with one face length 4 and another 8 ,

shown in the Fig. 1.2, can be algebraic represented as follows:



Chapter 1 Preliminary 9

A map (Xα,β,P) with Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw, βx, βy, βz,
βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)

The four vertices of this map are {(x, y, z), (αx, αz, αy)}, {(αβx, u, w), (βx, αw, αu)},
{(αβz, αβu, v), (βz, αv, βu)} and {(αβy, αβv, αβw), (βy, βw, βv)} and six edges are

{e, αe, βe, αβe}, where, e ∈ {x, y, z, u, v, w}. The Euler characteristic χ(M) is

χ(M) = 4 − 6 + 2 = 0.

Fig 1.2

Geometrically, an embedding M of a graph Γ on a surface is a map and has an

algebraic representation. The graph Γ is said the underlying graph of the map M

and denoted by Γ = Γ(M). For determining a given map (Xα,β,P) is orientable or

not, the following condition is needed.

(Ciii) If the group ΨI =< αβ,P > is transitive on Xα,β, then M is non-

orientable. Otherwise, orientable.

It can be shown that the number of orbits of the group ΨI =< αβ,P > in

the Fig.1.1 action on Xα,β = {x, y, z, u, v, w, αx, αy, αz, αu, αv, αw, βx, βy, βz, βu,
βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} is 2. Whence, it is an orientable map and

the genus of the surface is 1. Therefore, the algebraic representation is correspondent

with its geometrical mean.
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A rooted map Mx is a map M such that one quadricell x ∈ Xα,β is marked

beforehand, which is introduced by Tutte in the enumeration of planar maps. The

importance of the root is to destroy the symmetry in a map. That is the reason why

we can enumerate rooted maps on surfaces by combinatorial approaches.

2.4. Classification maps and embeddings of a graph on surfaces

2.4.1 Equivalent embeddings of a graph

From references, such as, [22], [70], etc., two embeddings (J1, λ1), (J2, λ2) of

Γ on an orientable surface S are called equivalent if there exists an orientation-

preserving homeomorphism τ of the surface S such that τ : J1 → J2, and τλ = λτ .

If (J1, λ1) = (J2, λ2) = (J , λ), then an orientation-preserving homeomorphism

mapping (J1, λ1) to (J2, λ2) is called an automorphism of the embedding (J , λ).

Certainly, all automorphisms of an embedding form a group, denoted by Aut(J , λ).

Enumerating the non-equivalent orientable embeddings of a complete graph

and a complete bipartite graph are considered by Biggs, White, Mull and Rieper

et al in [6], [54] − [55]. Their approach is generalized in the following Section 2.3.2

for enumerating non-equivalent embeddings of a given graph on locally orientable

surface in the view of maps on surfaces.

2.4.2 Isomorphism of maps

Two maps M1 = (X 1
α,β,P1) and M2 = (X 2

α,β,P2) are said to be isomorphic if

there exists a bijection ξ

ξ : X 1
α,β −→ X 2

α,β

such that for ∀x ∈ X 1
α,β,

ξα(x) = αξ(x), ξβ(x) = βξ(x) and ξP1(x) = P2ξ(x).

Call ξ an isomorphism between M1 and M2. If M1 = M2 = M , then an isomorphism

between M1 and M2 is called an automorphism of M . All automorphisms of a map

M form a group, called the automorphism group of M and denoted by AutM .

Similarly, two rooted maps Mx
1 , M

y
2 are said to be isomorphic if there is an

isomorphism θ between them such that θ(x) = y. All automorphisms of a rooted
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map M r also form a group, denoted by AutM r. It has been known that AutM r is

trivial ([33]).

Using isomorphisms between maps, an alternative approach for determining

equivalent embeddings of a graph on locally orientable surfaces can be gotten, which

has been used in [43], [49]−[50] for determining the number of non-equivalent embed-

dings of a complete graph, a semi-regular graph and a Cayley graph Γ = Cay(G : S)

with AutΓ ∼= R(G) ×H , is defined as follows.

For a given map M underlying a graph Γ, it is obvious that AutM |Γ ≤ AutΓ.

We extend the action ∀g ∈ AutΓ on V (Γ) to Xα,β, where X = E(Γ), as follows:

∀x ∈ Xα,β, if xg = y, then define (αx)g = αy, (βx)g = βy and (αβx)g = αβy.

Two maps (embeddings) M1,M2 with a given underlying graph Γ are equivalent

if there exists an isomorphism ζ between them induced by an element ξ. Call ζ an

equivalence between M1,M2. Certainly, on an orientable surface, an equivalence

preserve the orientation on this surface.

Theorem 1.2.5 Let M = (Xα,β ,P) be a map with an underlying graph Γ, ∀g ∈ AutΓ.

Then the extend action of g on Xα,β with X = E(Γ) is an automorphism of map M

iff ∀v ∈ V (M), g preserves the cyclic order of v.

Proof Assume that ζ ∈ AutM is induced by the extend action of an automor-

phism g in Γ, u, v ∈ V (M) and ug = v. Not loss of the generality, we assume

that

u = (x1, x2, · · · , xρ(u))(αxρ(u), · · · , αx2, αx1)

v = (y1, y2, · · · , yρ(v))(αyρ(v), · · · , αy2, αy1).

Without loss of generality , we can assume that

(x1, x2, · · · , xρ(u))
g = (y1, y2, · · · , yρ(v)),

that is,

(g(x1), g(x2), · · · , g(xρ(u))) = (y1, y2, · · · , yρ(v)).

Whence, g preserves the cyclic order of vertices in the map M .
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On the other hand, if the extend action of g ∈ AutΓ on Xα,β preserves the cyclic

order of each vertex in M , i.e., ∀u ∈ V (Γ), ∃v ∈ V (Γ) such that ug = v. Assume

that

P =
∏

u∈V (M)

u.

Then

Pg =
∏

u∈V (M)

ug =
∏

v∈V (M)

v = P.

Therefore, the extend action of g on Xα,β is an automorphism of the map M . ♮

2.5 Maps as a combinatorial model of Klein surfaces and s-manifolds

2.5.1 The model of Klein surfaces

Given a complex algebraic curve, it is a very important problem to determine its

birational automorphisms. For curve C of genus g ≥ 2, Schwarz proved that Aut(C)

is finite in 1879 and Hurwitz proved |Aut(C)| ≤ 84(g− 1)(see [18] ). As observed by

Riemann, groups of birational automorphisms of complex algebraic curves are the

same as the automorphism groups of the compact Riemann surfaces. The latter can

be combinatorially dealt with the approach of maps.

Theorem 1.2.6([8][29]) If M is an orientable map of genus p, then AutM is iso-

morphic to a group of conformal transformations of a Riemann surface of genus

p.

According to the Theorem 1.1.2, the automorphism group of a Klein surface

has the same form as a Riemann surface. Similar to the proof of the Theorem 5.6

in [29], we can get a result similar to the Theorem 1.2.6 for Klein surfaces.

Theorem 1.2.7 IfM is a locally orientable map of genus q, then AutM is isomorphic

to a group of conformal transformations of a Klein surface of genus q.

Proof By a result in [8], AutM ∼= NT (A)/A, Where T =< a, b, c|a2 = b2 = c2 =

(ba)2 = (ac)m = (cb)n = 1 >, A ≤ T and T can be realized by an automorphism

group of a tessellation on the upper plane, A a NEC subgroup. According to the
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Theorem 1.1.2, The underlying surface S of M has S = H/A with Ω = AutH =

PGL(2,R) being the automorphism group of the upper half plane H . Since T ≤ Ω,

we know that AutM ∼= NT (A)/A ≤ NΩ(A)/A, isomorphic to a group of conformal

transformations of the Klein surface S = H/G. ♮

2.5.2 The model of closed s-manifolds

For a closed s-manifold C(T, n), we can define a mapM by V (M) = {the vertices in

C(T, n)}, E(M) = {the edges in C(T, n)} and F (M) = {T, T ∈ C(T, n)}. Then, M

is a triangular map with vertex valency ∈ {5, 6, 7}. On the other hand, if M is a

triangular map on surface with vertex valency ∈ {5, 6, 7}, we can define C(T, φ(M))

by

C(T, φ(M)) = {f |f ∈ F (M)}.

Then, C(T, φ(M)) is an s-manifold. Therefore, we get the following result.

Theorem 1.2.8 Let ̂C(T, n), M(T, n) and M∗(T, n) be the set of s-manifolds with

n triangular disks, triangular maps with n faces and vertex valency ∈ {5, 6, 7} and

cubic maps of order n with face valency ∈ {5, 6, 7}. Then

(i) There is a bijection between M(T, n) and ̂C(T, n);

(ii) There is also a bijection between M∗(T, n) and ̂C(T, n).

§3. The semi-arc automorphism group of a graph with application to

maps enumeration

3.1 The semi-arc automorphism group of a graph

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). By the definition,

an automorphism of Γ on V (Γ)
⋃
E(Γ) is an 1 − 1 mapping (ξ, η) on Γ such that

ξ : V (Γ) → V (Γ), η : E(Γ) → E(Γ),

satisfying that for any incident elements e, f , (ξ, η)(e) and (ξ, η)(f) are also incident.

Certainly, all automorphisms of a graph Γ form a group, denoted by AutΓ.
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Now an edge e = uv ∈ E(Γ) can be divided into two semi-arcs eu, ev. Call u

the root vertex in the semi-arc eu. Two semi-arc eu, fv are said incident if u = v

or e = f . The set of all semi-arcs of a graph Γ is denoted by X 1
2
(Γ). A semi-arc

automorphism of a graph, first appeared in [43] and then applied to the enumeration

rooted maps on surfaces underlying a graph Γ in [46], is defined as follows.

Definition 1.3.1 An 1 − 1 mapping ξ on X 1
2
(Γ) such that ∀eu, fv ∈ X 1

2
(Γ), ξ(eu)

and ξ(fv) are incident if eu and fv are incident, is called a semi-arc automorphism

of the graph Γ.

All semi-arc automorphisms of a graph also form a group under the composition

operation, denoted by Aut 1
2
Γ, which is more important for the enumeration of maps

on surfaces underlying a graph and by the discussion of the Section 2, which is

also important for determine the conformal transformations on a Klein surface.

The following table lists semi-arc automorphism groups of some well-known graphs,

which give us some useful information for the semi-arc automorphism groups, for

example, Aut 1
2
Kn = Sn but Aut 1

2
Bn = Sn[S2] 6= AutBn.

Γ Aut 1
2
Γ order

Kn Sn n!

Km,n(m 6= n) Sm × Sn m!n!

Kn,n S2[Sn] 2n!2

Bn Sn[S2] 2nn!

Dpn S2 × Sn 2n!

Dpk,l
n (k 6= l) S2[Sk] × Sn × S2[Sl] 2k+ln!k!l!

Dpk,k
n S2 × Sn × (S2[Sk])

2 22k+1n!k!2

table 3.1

Here, Dpn is a dipole graph with 2 vertices, n multiple edges and Dpk,l
n is a general-

ized dipole graph with 2 vertices, n multiple edges, and one vertex with k bouquets

and another, l bouquets. Comparing the semi-arc automorphism groups in the sec-

ond column with automorphism groups of graphs in the first column in table 3.1,

it is easy to note that the semi-arc automorphism group are the same as the auto-

morphism group in the first two cases. In fact, it is so by the following Theorem

1.3.1.
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For ∀g ∈ AutΓ, there is also an induced action g| 12 on X 1
2
(Γ), g : X 1

2
(Γ) →

X 1
2
(Γ), as follows:

∀eu ∈ X 1
2
(Γ), g(eu) = (g(e)g(u).

All induced action of the elements in AutΓ on X 1
2
(Γ) is denoted by AutΓ| 12 . Notice

that

AutΓ ∼= AutΓ| 12 .

We have the following result.

Theorem 1.3.1 For a graph Γ without loops,

Aut 1
2
Γ = AutΓ| 12 .

Proof By the definition, we only need to prove that for ∀ξ 1
2
∈ Aut 1

2
Γ, ξ = ξ 1

2
|Γ ∈

AutΓ and ξ 1
2

= ξ| 12 . In fact, for any ∀eu, fx ∈ X 1
2
(Γ), where, e = uv ∈ E(Γ) and

f = xy ∈ E(Γ), if

ξ 1
2
(eu) = fx,

then by the definition, we know that

ξ 1
2
(ev) = fy.

Whence, ξ 1
2
(e) = f . That is, ξ 1

2
|Γ ∈ AutΓ.

Now since there is not a loop in Γ, we know that ξ 1
2
|Γ = idΓ if and only if

ξ 1
2

= idΓ. Therefore, ξ 1
2

is induced by ξ 1
2
|Γ on X 1

2
(Γ), that is,

Aut 1
2
Γ = AutΓ| 12 . ♮

Notice that for a given graph Γ, X 1
2
(Γ) = Xβ, if we equal eu to e and ev to βe

for an edge e = uv ∈ E(Γ).

For a given map M = (Xα,β,P) underlying a graph Γ, we have known that

AutM |Γ ≤ AutΓ, which made us to extend the action of an automorphism g of
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the graph Γ on Xα,β with X = E(Γ) to get automorphisms of a map induced by

automorphisms of its underlying graph. More detail, we can get the following result.

Theorem 1.3.2 Two maps M1 = (Xα,β,P1) and M2 = (Xα,β,P2) underlying a graph

Γ are

(i) equivalent iff there is an element ζ ∈ Aut 1
2
Γ such that Pζ

1 = P2 and

(ii)isomorphic iff there is an element ζ ∈ Aut 1
2
Γ such that Pζ

1 = P2 or Pζ
1 =

P−1
2 .

Proof By the definition of equivalence between maps, if κ is an equivalence

between M1 and M2, then κ is an isomorphism between M1 and M2 induced by an

automorphism ι ∈ AutΓ. Notice that

AutΓ ∼= AutΓ| 12 ≤ Aut 1
2
Γ.

Whence, we know that ι ∈ Aut 1
2
Γ.

Now if there is a ζ ∈ Aut 1
2
Γ such that Pζ

1 = P2, then ∀ex ∈ X 1
2
(Γ), ζ(ex) =

ζ(e)ζ(x). Now assume that e = (x, y) ∈ E(Γ), then by our convention, we know that

if ex = e ∈ Xα,β, then ey = βe. Now by the definition of an automorphism on the

semi-arc set X 1
2
(Γ), if ζ(ex) = fu, where f = (u, v), then there must be ζ(ey) = fv.

Notice that X 1
2
(Γ) = Xβ . We know that ζ(ey) = ζ(βe) = βf = fv. We can also

extend the action of ζ on X 1
2
(Γ) to Xα,β by ζ(αe) = αζ(e). Whence, we know that

∀e ∈ Xα,β,

αζ(e) = ζα(e), βζ(e) = ζβ(e) and Pζ
1 (e) = P2(e).

Therefore, the extend action of ζ on Xα,β is an isomorphism between the map M1

and M2. Whence, ζ is an equivalence between the map M1 and M2. So the assertion

in (i) is true.

For the assertion in (ii), if there is an element ζ ∈ Aut 1
2
Γ such that Pζ

1 = P2,

then the map M1 is isomorphic to M2. If Pζ
1 = P−1

2 , then Pζα
1 = P2. The map M1

is also isomorphic to M2. This is the sufficiency of (ii).

By the definition of an isomorphism ξ between maps M1 and M2, we know that

∀x ∈ Xα,β,

αξ(x) = ξα(x), βξ(x) = ξβ(x) and Pξ
1(x) = P2(x).
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By the convention, the condition

βξ(x) = ξβ(x) and Pξ
1(x) = P2(x).

is just the condition of an automorphism ξ or αξ on X 1
2
(Γ). Whence, the assertion

in (ii) is also true. ♮

3.2 A scheme for enumerating maps underlying a graph

For a given graph Γ, denoted by EO(Γ), EN(Γ) and EL(Γ) the sets of embeddings

of Γ on the orientable surfaces, on the non-orientable surfaces and on the locally

orientable surfaces, respectively. For determining the number of non-equivalent

embeddings of a graph on surfaces and non-isomorphic unrooted maps underlying a

graph, another form of the Theorem 1.3.2 using the group action idea is need, which

is stated as follows.

Theorem 1.3.3 For two maps M1 = (Xα,β,P1) and M2 = (Xα,β,P2) underlying a

graph Γ, then

(i) M1,M2 are equivalent iff M1,M2 are in one orbits of Aut 1
2
Γ action on

X 1
2
(Γ);

(ii) M1,M2 are isomorphic iff M1,M2 are in one orbits of Aut 1
2
Γ× < α >

action on Xα,β.

Now we can established a scheme for enumerating the number of non-isomorphic

unrooted maps and non-equivalent embeddings in a given set of embeddings of a

graph on surfaces by using the Burnside Lemma as the following.

Theorem 1.3.4 For a given graph Γ, let E ⊂ EL(Γ), then the numbers n(E ,Γ) and

η(E ,Γ) of non-isomorphic unrooted maps and non-equivalent embeddings in E are

respective

n(E ,Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|Φ1(g)|,

where, Φ1(g) = {P|P ∈ E and Pg = P or Pgα = P} and
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η(E ,Γ) =
1

|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|Φ2(g)|,

where, Φ2(g) = {P|P ∈ E and Pg = P}.

Proof Define the group H = Aut 1
2
Γ× < α >. Then by the Burnside Lemma

and the Theorem 1.3.3, we get that

n(E ,Γ) =
1

|H|
∑

g∈H

|Φ1(g)|,

where, Φ1(g) = {P|P ∈ E and Pg = P}. Now |H| = 2|Aut 1
2
Γ|. Notice that if

Pg = P, then Pgα 6= P, and if Pgα = P, then Pg 6= P. Whence, Φ1(g)
⋂

Φ1(gα) = ∅.
We have that

n(E ,Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|Φ1(g)|,

where, Φ1(g) = {P|P ∈ E and Pg = P or Pgα = P}.
A similar proof enables us to obtain that

η(E ,Γ) =
1

|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|Φ2(g)|,

where, Φ2(g) = {P|P ∈ E and Pg = P}. ♮

From the Theorem 1.3.4, we get the following results.

Corollary 1.3.1 The numbers nO(Γ), nN(Γ) and nL(Γ) of non-isomorphic unrooted

orientable maps ,non-orientable maps and locally orientable maps underlying a graph

Γ are respective

nO(Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦO
1 (g)|; (1.3.1)

nN(Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦN
1 (g)|; (1.3.2)

nL(Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦL
1 (g)|, (1.3.3)
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where, ΦO
1 (g) = {P|P ∈ EO(Γ) and Pg = P or Pgα = P}, ΦN

1 (g) = {P|P ∈ EN(Γ)

and Pg = P or Pgα = P}, ΦL
1 (g) = {P|P ∈ EL(Γ) and Pg = P or Pgα = P}.

Corollary 1.3.2 The numbers ηO(Γ), ηN(Γ) and ηL(Γ) of non-equivalent embeddings

of a graph Γ on orientable ,non-orientable and locally orientable surfaces are respec-

tive

ηO(Γ) =
1

|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦO
2 (g)|; (1.3.4)

ηN(Γ) =
1

|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦN
2 (g)|; (1.3.5)

ηL(Γ) =
1

|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦL
2 (g)|, (1.3.6)

where, ΦO
2 (g) = {P|P ∈ EO(Γ) and Pg = P}, ΦN

2 (g) = {P|P ∈ EN(Γ) and Pg =

P}, ΦL
2 (g) = {P|P ∈ EL(Γ) and Pg = P}.

For a simple graph Γ, since Aut 1
2
Γ = AutΓ by the Theorem 1.3.1, the formula

(1.3.4) is just the scheme used for counting the non-equivalent embeddings of a

complete graph, a complete bipartite graph in the references [6], [54]− [55], [70]. For

an asymmetric graph Γ, that is, Aut 1
2
Γ = idΓ, we get the numbers of non-isomorphic

maps underlying a graph Γ and the numbers of non-equivalent embeddings of the

graph Γ by the Corollary 1.3.1 and 1.3.2 as follows.

Theorem 1.3.5 The numbers nO(Γ), nN(Γ) and nL(Γ) of non-isomorphic unrooted

maps on orientable, non-orientable surface or locally surface with an asymmetric

underlying graph Γ are respective

nO(Γ) =

∏
v∈V (Γ)

(ρ(v) − 1)!

2
,

nL(Γ) = 2β(Γ)−1
∏

v∈V (Γ)

(ρ(v) − 1)!

and
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nN(Γ) = (2β(Γ)−1 − 1

2
)

∏

v∈V (Γ)

(ρ(v) − 1)!,

where, β(Γ) is the Betti number of the graph Γ.

The numbers ηO(Γ), ηN(Γ) and ηL(Γ) of non-equivalent embeddings of an asym-

metric underlying graph Γ are respective

ηO(Γ) =
∏

v∈V (Γ)

(ρ(v) − 1)!,

ηL(Γ) = 2β(Γ)
∏

v∈V (Γ)

(ρ(v) − 1)!

and

ηN(Γ) = (2β(Γ) − 1)
∏

v∈V (Γ)

(ρ(v) − 1)!.

§4. A relation among the total embeddings and rooted maps of a

graph on genus

4.1 The rooted total map and embedding polynomial of a graph

For a given graph Γ with maximum valency ≥ 3, assume that ri(Γ), r̃i(Γ), i ≥ 0

are respectively the numbers of rooted maps with an underlying graph Γ on the

orientable surface with genus γ(Γ) + i − 1 and on the non-orientable surface with

genus γ̃(Γ) + i − 1, where γ(Γ) and γ̃(Γ) denote the minimum orientable genus

and minimum non-orientable genus of the graph Γ, respectively. Define its rooted

orientable map polynomial r[Γ](x) , rooted non-orientable map polynomial r̃[Γ](x)

and rooted total map polynomial R[Γ](x) on genus by:

r[Γ](x) =
∑

i≥0

ri(Γ)xi,

r̃[Γ](x) =
∑

i≥0

r̃i(Γ)xi
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and

R[Γ](x) =
∑

i≥0

ri(Γ)xi +
∑

i≥1

r̃i(Γ)x−i.

The total number of orientable embeddings of Γ is
∏

d∈D(Γ)
(d − 1)! and non-

orientable embeddings is (2β(Γ)−1)
∏

d∈D(Γ)
(d−1)!, where D(Γ) is its valency sequence.

Now let gi(Γ) and g̃i(Γ), i ≥ 0 respectively be the number of embeddings of Γ on

the orientable surface with genus γ(Γ)+ i−1 and on the non-orientable surface with

genus γ̃(Γ) + i− 1. The orientable genus polynomial g[Γ](x) , non-orientable genus

polynomial g̃[Γ](x) and total genus polynomial G[Γ](x) of Γ are defined by

g[Γ](x) =
∑

i≥0

gi(Γ)xi,

g̃[Γ](x) =
∑

i≥0

g̃i(Γ)xi

and

G[Γ](x) =
∑

i≥0

gi(Γ)xi +
∑

i≥1

g̃i(Γ)x−i.

The orientable genus polynomial g[Γ](x) is introduced by Gross and Furst in

[23], and in [19], [23]−[24], the orientable genus polynomials of a necklace, a bouquet,

a closed-end ladder and a cobblestone are determined. The total genus polynomial is

introduced by Chern et al. in [13], and in [31], recurrence relations for the total genus

polynomial of a bouquet and a dipole are found. The rooted orientable map polyno-

mial is introduced in [43]− [44], [47] and the rooted non-orientable map polynomial

in [48]. All the polynomials r[Γ](x), r̃[Γ](x), R[Γ](x) and g[Γ](x), g̃[Γ](x), G[Γ](x) are

finite by the properties of embeddings of Γ on surfaces.

Now we establish relations of r[Γ](x) with g[Γ](x), r̃[Γ](x) with g̃[Γ](x) and

R[Γ](x) with G[Γ](x) as follows.

Lemma 1.4.1([25][45]) For a given map M , the number of non-isomorphic rooted

maps by rooting on M is

4ε(M)

|AutM | ,
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where ε(M) is the number of edges in M .

Theorem 1.4.1 For a given graph Γ,

|Aut 1
2
Γ|r[Γ](x) = 2ε(Γ)g[Γ](x),

|Aut 1
2
Γ|r̃[Γ](x) = 2ε(Γ)g̃[Γ](x)

and

|Aut 1
2
Γ|R[Γ](x) = 2ε(Γ)G[Γ](x),

where Aut 1
2
Γ and ε(Γ) denote the semi-arc automorphism group and the size of Γ,

respectively.

Proof For an integer k, denotes by Mk(Γ, S) all the non-isomorphic unrooted

maps on an orientable surface S with genus γ(Γ) + k− 1. According to the Lemma

1.4.1, we know that

rk(Γ) =
∑

M∈Mk(Γ,S)

4ε(M)

|AutM |

=
4ε(Γ)

|Aut 1
2
Γ× < α > |

∑

M∈Mk(Γ,S)

|Aut 1
2
Γ× < α > |
|AutM | .

Since |Aut 1
2
Γ× < α > | = |(Aut 1

2
Γ× < α >)M ||MAut 1

2
Γ×<α>| and |(Aut 1

2
Γ ×

< α >)M | = |AutM |, we have that

rk(Γ) =
4ε(Γ)

|Aut 1
2
Γ× < α > |

∑

M∈Mk(Γ,S)

|MAut 1
2
Γ×<α>|

=
2ε(Γ)gk(Γ)

|Aut 1
2
Γ| .

Therefore, we get that

|Aut 1
2
Γ|r[Γ](x) = |Aut 1

2
Γ|

∑

i≥0

ri(Γ)xi
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=
∑

i≥0

|Aut 1
2
Γ|ri(Γ)xi

=
∑

i≥0

2ε(Γ)gi(Γ)xi = 2ε(Γ)g[Γ](x).

Similarly, let M̃k(Γ, S̃) be all the non-isomorphic unrooted maps on an non-

orientable surface S̃ with genus γ̃(Γ) + k − 1. Similar to the proof for orientable

case, we can get that

r̃k(Γ) =
4ε(Γ)

|Aut 1
2
Γ× < α > |

∑

M∈M̃k(Γ,S̃)

|Aut 1
2
Γ× < α > |
|AutM |

=
4ε(Γ)

|Aut 1
2
Γ× < α > |

∑

M∈M̃k(Γ,S̃)

|MAut 1
2
Γ×<α>|

=
2ε(Γ)g̃k(Γ)

|Aut 1
2
Γ| .

Therefore, we also get that

|Aut 1
2
Γ|r̃[Γ](x) =

∑

i≥0

|Aut 1
2
Γ|r̃i(Γ)xi

=
∑

i≥0

2ε(Γ)g̃i(Γ)xi = 2ε(Γ)g̃[Γ](x).

Notice that

R[Γ](x) =
∑

i≥0

ri(Γ)xi +
∑

i≥1

r̃i(Γ)x−i

and

G[Γ](x) =
∑

i≥0

gi(Γ)xi +
∑

i≥1

g̃i(Γ)x−i.

By the previous discussion, we know that for k ≥ 0,

rk(Γ) =
2ε(Γ)gk(Γ)

|Aut 1
2
Γ| and r̃k(Γ) =

2ε(Γ)g̃k(Γ)

|Aut 1
2
Γ| .

Therefore, we get that
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|Aut 1
2
Γ|R[Γ](x) = |Aut 1

2
Γ|(

∑

i≥0

ri(Γ)xi +
∑

i≥1

r̃i(Γ)x−i)

=
∑

i≥0

|Aut 1
2
Γ|ri(Γ)xi +

∑

i≥1

|Aut 1
2
Γ|r̃i(Γ)x−i

=
∑

i≥0

2ε(Γ)gi(Γ)xi +
∑

i≥0

2ε(Γ)g̃i(Γ)x−i = 2ε(Γ)G[Γ](x).

This completes the proof. ♮

Corollary 1.4.1 Let be Γ a graph and s ≥ 0 be an integer. If rs(Γ) and gs(Γ) are

the numbers of rooted maps underlying the graph Γ and embeddings of Γ on a locally

orientable surface of genus s, respectively, then

|Aut 1
2
Γ|rs(Γ) = 2ε(Γ)gs(Γ).

4.2 The number of rooted maps underlying a graph on genus

The Corollary 1.4.1 in the previous section can be used to find the implicit

relations among r[Γ](x), r̃[Γ](x) or R[Γ](x) if the implicit relations among g[Γ](x),

g̃[Γ](x) or G[Γ](x) are known, and vice via.

Denote the variable vector (x1, x2, · · ·) by x
¯
,

r
¯
(Γ) = (· · · , r̃2(Γ), r̃1(Γ), r0(Γ), r1(Γ), r2(Γ), · · ·),

g
¯
(Γ) = (· · · , g̃2(Γ), g̃1(Γ), g0(Γ), g1(Γ), g2(Γ), · · ·).

The r
¯
(Γ) and g

¯
(Γ) are called the rooted map sequence and the embedding sequence

of the graph Γ.

Define a function F (x
¯
, y
¯
) to be y-linear if it can be represented as the following

form

F (x
¯
, y
¯
) = f(x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I

yi + l(x1, x2, · · ·)
∑

Λ∈O

Λ(y
¯
),

where, I denotes a subset of index and O a set of linear operators. Notice that

f(x1, x2, · · ·) = F (x
¯
, 0
¯
), where 0

¯
= (0, 0, · · ·). We have the following general result.
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Theorem 1.4.2 Let G be a graph family and H ⊆ G. If their embedding sequences

g
¯
(Γ),Γ ∈ H, satisfies the equation

FH(x
¯
, g
¯
(Γ)) = 0, (4.1)

then its rooted map sequences r
¯
(Γ),Γ ∈ H satisfies the equation

FH(x
¯
,
|Aut 1

2
Γ|

2ε(Γ)
r
¯
(Γ)) = 0,

and vice via, if the rooted map sequences r
¯
(Γ),Γ ∈ H satisfies the equation

FH(x
¯
, r
¯
(Γ)) = 0, (4.2)

then its embedding sequences g
¯
(Γ),Γ ∈ H satisfies the equation

FH(x
¯
,

2ε(Γ)

|Aut1
2
Γ|g¯

(Γ)) = 0.

Even more, assume the function F (x
¯
, y
¯

) is y-linear and 2ε(Γ)
|Aut 1

2
Γ|
,Γ ∈ H is a constant.

If the embedding sequences g
¯
(Γ),Γ ∈ H satisfies the equation (4.1), then

F ⋄
H(x

¯
, r
¯
(Γ)) = 0,

where F ⋄
H(x

¯
, y
¯

) = F (x
¯
, y
¯

)+( 2ε(Γ)
|Aut 1

2
Γ|
−1)F (x

¯
, 0
¯

) and vice via, if its rooted map sequence

g
¯
(Γ),Γ ∈ H satisfies the equation (4.2), then

F ⋆
H(x

¯
, g
¯
(Γ)) = 0.

where F ⋆
H = F (x

¯
, y
¯

) + (
|Aut 1

2
Γ|

2ε(Γ)
− 1)F (x

¯
, 0
¯

).

Proof According to the Corollary 1.4.1 in this chapter, for any integer s ≥ o

and Γ ∈ H, we know that

|Aut 1
2
Γ|rs(Γ) = 2ε(Γ)gs(Γ).

Whence,

rs(Γ) =
2ε(Γ)

|Aut 1
2
Γ| gs(Γ)
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and

gs(Γ) =
|Aut 1

2
Γ|

2ε(Γ)
rs(Γ).

Therefore, if the embedding sequences g
¯
(Γ),Γ ∈ H satisfies the equation (4.1),

then

FH(x
¯
,
|Aut 1

2
Γ|

2ε(Γ)
r
¯
(Γ)) = 0,

and vice via, if the rooted map sequences r
¯
(Γ),Γ ∈ H satisfies the equation (4.2),

then

FH(x
¯
,

2ε(Γ)

|Aut 1
2
Γ|g¯

(Γ)) = 0.

Now assume that FH(x
¯
, y
¯
) is a y-linear function and has the following form

FH(x
¯
, y
¯
) = f(x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I

yi + l(x1, x2, · · ·)
∑

Λ∈O

Λ(y
¯
),

where O is a set of linear operators. If FH(x
¯
, g
¯
(Γ)) = 0, that is

f(x1, x2, · · ·) + h(x1, x2, · · ·)
∑

i∈I,Γ∈H

gi(Γ) + l(x1, x2, · · ·)
∑

Λ∈O,Γ∈H

Λ(g
¯
(Γ)) = 0,

we get that

f(x1, x2, · · ·) + h(x1, x2, · · ·)
∑

i∈I,Γ∈H

|Aut 1
2
Γ|

2ε(Γ)
ri(Γ)

+ l(x1, x2, · · ·)
∑

Λ∈O,Γ∈H

Λ(
|Aut1

2
Γ|

2ε(Γ)
r
¯
(Γ)) = 0.

Since Λ ∈ O is a linear operator and 2ε(Γ)
|Aut 1

2
Γ|
,Γ ∈ H is a constant, we also have

f(x1, x2, · · ·) +
|Aut1

2
Γ|

2ε(Γ)
h(x1, x2, · · ·)

∑

i∈I,Γ∈H

ri(Γ)

+
|Aut1

2
Γ|

2ε(Γ)
l(x1, x2, · · ·)

∑

Λ∈O,Γ∈H

Λ(r
¯
(Γ)) = 0,
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that is,

2ε(Γ)

|Aut 1
2
Γ|f(x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I,Γ∈H

ri(Γ) + l(x1, x2, · · ·)
∑

Λ∈O,Γ∈H

Λ(r
¯
(Γ)) = 0.

Therefore, we get that

F ⋄
H(x

¯
, r
¯
(Γ)) = 0.

Similarly, if

FH(x
¯
, r
¯
(Γ)) = 0,

then we can also get that

F ⋆
H(x

¯
, g
¯
(Γ)) = 0.

This completes the proof. ♮

Corollary 1.4.2 Let G be a graph family and H ⊆ G. If the embedding sequence

g
¯
(Γ) of a graph Γ ∈ G satisfies a recursive relation

∑

i∈J,Γ∈H

a(i,Γ)gi(Γ) = 0,

where J is the set of index, then the rooted map sequence r
¯
(Γ) satisfies a recursive

relation

∑

i∈J,Γ∈H

a(i,Γ)|Aut 1
2
Γ|

2ε(Γ)
ri(Γ) = 0,

and vice via.

A typical example of the Corollary 1.4.2 is the graph family bouquets Bn, n ≥
1. Notice that in [24], the following recursive relation for the number gm(n) of

embeddings of a bouquet Bn on an orientable surface with genus m for n ≥ 2 was

found.

(n+ 1)gm(n) = 4(2n− 1)(2n− 3)(n− 1)2(n− 2)gm−1(n− 2)

+ 4(2n− 1)(n− 1)gm(n− 1).
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and with the boundary conditions

gm(n) = 0 if m ≤ 0 or n ≤ 0;

g0(0) = g0(1) = 1 and gm(0) = gm(1) = 0 for m ≥ 0;

g0(2) = 4, g1(2) = 2, gm(2) = 0 for m ≥ 1.

Since |Aut1
2
Bn| = 2nn!, we get the following recursive relation for the number

rm(n) of rooted maps on an orientable surface of genus m underlying a graph Bn by

the Corollary 1.4.2

(n2 − 1)(n− 2)rm(n) = (2n− 1)(2n− 3)(n− 1)2(n− 2)rm−1(n− 2)

+ 2(2n− 1)(n− 1)(n− 2)rm(n− 1),

and with the boundary conditions

rm(n) = 0 if m ≤ 0 or n ≤ 0;

r0(0) = r0(1) = 1 and rm(0) = rm(1) = 0 for m ≥ 0;

r0(2) = 2, r1(2) = 1, gm(2) = 0 for m ≥ 1.

Corollary 1.4.3 Let G be a graph family and H ⊆ G. If the embedding sequences

g
¯
(Γ),Γ ∈ G satisfies an operator equation

∑

Λ∈O,Γ∈H

Λ(g
¯
(Γ)) = 0,

where O denotes a set of linear operators, then the rooted map sequences r
¯
(Γ),Γ ∈ H

satisfies an operator equation

∑

Λ∈O,Γ∈H

Λ(
|Aut 1

2
Γ|

2ε(Γ)
r
¯
(Γ)) = 0,

and vice via.

Let θ = (θ1, θ2, · · · , θk) ⊢ 2n, i.e.,
k∑

j=1
θj = 2n with positive integers θj . Kwak

and Shim introduced three linear operators Γ,Θ and ∆ to find the total genus

polynomial of the bouquets Bn, n ≥ 1 in [31], which are defined as follows.

Denotes by zθ and z−1
θ = 1/zθ the multivariate monomials

k∏
i=1

zθi
and 1/

k∏
i=1

zθi
,

where θ = (θ1, θ2, · · · , θk) ⊢ 2n. Then the linear operators Γ,Θ and ∆ are defined

by
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Γ(z±1
θ ) =

k∑

j=1

θj∑

l=0

θj{(
z1+lzθj+1−l

zθj

)zθ}±1

Θ(z±1
θ ) =

k∑

j=1

(θ2
j + θj)(

zθj+2zθ

zθj

)−1

and

∆(z±1
θ ) =

∑

1≤i<j≤k

2θiθj [{(
zθj+θi+2

zθj
zθi

)zθ}±1 + {(zθj+θi+2

zθj
zθi

)zθ}−1]

Denotes by î[Bn](zj) the sum of all monomial zθ or 1/zθ taken over all embed-

dings of Bn into an orientable or non-orientable surface, that is

î[Bn](zj) =
∑

θ⊢2n

iθ(Bn)zθ +
∑

θ⊢2n

ĩθ(Bn)z−1
θ ,

where, iθ(Bn) and ĩθ(Bn) denote the number of embeddings of Bn into orientable

and non-orientable surface of region type θ. They proved in [31] that

î[Bn+1](zj) = (Γ + Θ + ∆)̂i[Bn](zj) = (Γ + Θ + ∆)n(
1

z2
+ z2

1).

and

G[Bn+1](x) = (Γ + Θ + ∆)n(
1

z2
+ z2

1)|zj=x for j≥1 and (C∗).

Where, (C∗) denotes the condition

(C∗): replacing the power 1 + n− 2i of x by i if i ≥ 0 and −(1 + n + i) by −i
if i ≤ 0.

Since

|Aut 1
2
Bn|

2ε(Bn)
=

2nn!

2n
= 2n−1(n− 1)!

and Γ,Θ,∆ are linear, by the Corollary 1.4.3 we know that

R[Bn+1](x) =
(Γ + Θ + ∆)̂i[Bn](zj)

2nn!
|zj=x for j≥1 and (C∗)

=
(Γ + Θ + ∆)n( 1

z2
+ z2

1)
n∏

k=1
2kk!

|zj=x for j≥1 and (C∗).
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For example, calculation shows that

R[B1](x) = x+
1

x
;

R[B2](x) = 2 + x+
5

x
+

4

x2
;

R[B3](x) =
41

x3
+

42

x2
+

22

x
+ 5 + 10x;

and

R[B4](x) =
488

x4
+

690

x3
+

304

x2
+

93

x
+ 14 + 70x+ 21x2.



Chapter 2 On the Automorphisms of a Klein Surface

and a s-Manifold

Many papers concerned the automorphisms of a Klein surface, such as,[1], [15],

[26], [38] for a Riemann surface by using Fuchsian group and [9] − [10], [21] for a

Klein surface without boundary by using NEC groups. Since maps is a natural

model for the Klein surfaces, an even more efficient approach is, perhaps, by using

the combinatorial map theory. Establishing some classical results again and finding

their combinatorial refinement are the central topics in this chapter.

§1. An algebraic definition of a voltage map

1.1 Coverings of a map

For two maps M̃ = (X̃α,β, P̃) and M = (Xα,β,P), call the map M̃ covering the

map M if there is a mapping π : X̃α,β → Xα,β such that ∀x ∈ X̃α,β,

απ(x) = πα(x), βπ(x) = πβ(x) and πP̃(x) = Pπ(x).

The mapping π is called a covering mapping. For ∀x ∈ Xα,β, define the quadricell

set π−1(x) by

π−1(x) = {x̃|x̃ ∈ (X̃α,β and π(x̃) = x}.

We have the following result.

Lemma 2.1.1 Let π : X̃α,β → Xα,β be a covering mapping. Then for any two

quadricells x1, x2 ∈ Xα,β,

(i) |π−1(x1)| = |π−1(x2)|.
(ii) If x1 6= x2, then π−1(x1)

⋂
π−1(x2) = ∅.

Proof (i) By the definition of a map, for x1, x2 ∈ Xα,β, there exists an element

σ ∈ ΨJ =< α, β,P > such that x2 = σ(x1).
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Since π is an covering mapping from M̃ to M , it is commutative with α, β and

P. Whence, π is also commutative with σ. Therefore,

π−1(x2) = π−1(σ(x1)) = σ(π−1(x1)).

Notice that σ ∈ ΨJ is an 1− 1 mapping on Xα,β. Hence, |π−1(x1)| = |π−1(x2)|.
(ii) If x1 6= x2 and there exists an element y ∈ π−1(x1)

⋂
π−1(x2), then there

must be x1 = π(y) = x2. Contradicts the assumption. ♮

The relation of a covering mapping with an isomorphism is in the following

theorem.

Theorem 2.1.1 Let π : X̃α,β → Xα,β be a covering mapping. Then π is an isomor-

phism iff π is an 1 − 1 mapping.

Proof If π is an isomorphism between the maps M̃ = (X̃α,β, P̃) and M =

(Xα,β,P), then it must be an 1 − 1 mapping by the definition, and vice via. ♮

A covering mapping π from M̃ to M naturally induces a mapping π∗ by the

following condition:

∀x ∈ Xα,β, g ∈ AutM̃, π∗ : g → πgπ−1(x).

We have the following result.

Theorem 2.1.2 If π : X̃α,β → Xα,β is a covering mapping, then the induced mapping

π∗ is a homomorphism from AutM̃ to AutM .

Proof First, we prove that for ∀g ∈ AutM̃ and x ∈ Xα,β, π∗(g) ∈ AutM.

Notice that for ∀g ∈ AutM̃ and x ∈ Xα,β,

πgπ−1(x) = π(gπ−1(x)) ∈ Xα,β

and ∀x1, x2 ∈ Xα,β, if x1 6= x2, then πgπ−1(x1) 6= πgπ−1(x2). Otherwise, assume

that

πgπ−1(x1) = πgπ−1(x2) = x0 ∈ Xα,β,

then we have that x1 = πg−1π−1(x0) = x2. Contradicts to the assumption.

By the definition, for x ∈ Xα,β we get that
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π∗α(x) = πgπ−1α(x) = πgαπ−1(x) = παgπ−1(x) = απgπ−1(x) = απ∗(x),

π∗β(x) = πgπ−1β(x) = πgβπ−1(x) = πβgπ−1(x) = βπgπ−1(x) = βπ∗(x).

Notice that π(P̃) = P. We get that

π∗P(x) = πgπ−1P(x) = πgP̃π−1(x) = πP̃gπ−1(x) = Pπgπ−1(x) = Pπ∗(x).

Therefore, we get that πgπ−1 ∈ AutM , i.e., π∗ : AutM̃ → AutM .

Now we prove that π∗ is a homomorphism from AutM̃ to AutM . In fact, for

∀g1, g2 ∈ AutM̃ , we have that

π∗(g1g2) = π(g1g2)π
−1 = (πg1π

−1)(πg2π
−1) = π∗(g1)π

∗(g2).

Whence, π∗ : AutM̃ → AutM is a homomorphism. ♮

1.2 Voltage maps

For creating a homomorphism between Klein surfaces, voltage maps are exten-

sively used, which is introduced by Gustin in 1963 and extensively used by Youngs

in 1960s for proving the Heawood map coloring theorem and generalized by Gross

in 1974 ([22]). Now it already become a powerful approach for getting regular maps

on a surface, see [5], [7], [56]− [57], [65]], especially, [56]− [57]. It often appears as an

embedded voltage graph in references. Notice that by using the voltage graph the-

ory, the 2-factorable graphs are enumerated in [51]. Now we give a purely algebraic

definition for voltage maps, not using geometrical intuition and establish its theory

in this section and the next section again.

Definition 2.1.1 Let M = (Xα,β,P) be a map and G a finite group. Call a pair

(M,ϑ) a voltage map with group G if ϑ : Xα,β → G, satisfying the following condi-

tion:

(i) ∀x ∈ Xα,β, ϑ(αx) = ϑ(x), ϑ(αβx) = ϑ(βx) = ϑ−1(x);
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(ii) ∀F = (x, y, · · · , z)(βz, · · · , βy, βx) ∈ F (M), the face set of M , ϑ(F ) =

ϑ(x)ϑ(y) · · ·ϑ(z) and < ϑ(F )|F ∈ F (u), u ∈ V (M) >= G, where, F (u) denotes all

the faces incident with the vertex u.

For a given voltage graph (M,ϑ), define

Xαϑ,βϑ = Xα,β ×G

Pϑ =
∏

(x,y,···,z)(αz,···,αy,αx)∈V (M)

∏

g∈G

(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg),

and

αϑ = α

βϑ =
∏

x∈Xα,β ,g∈G

(xg, (βx)gϑ(x)).

where, we use ug denoting an element (u, g) ∈ Xα,β ×G.

It can be shown that Mϑ = (Xαϑ,βϑ,Pϑ) also satisfying the conditions of a map

with the same orientation as the map M . Hence, we can define the lifting map of a

voltage map as follows.

Definition 2.1.2 For a voltage map (M,ϑ) with group G, the map Mϑ = (X ϑ
α,β,Pϑ)

is called its lifting map.

For a vertex v = (C)(αCα−1) ∈ V (M), denote by {C} the quadricells in the

cycle C. The following numerical result is obvious by the definition of a lifting map.

Lemma 2.1.2 The numbers of vertices and edges in the lifting map Mϑ are respective

ν(Mϑ) = ν(M)|G| and ε(Mϑ) = ε(M)|G|

Lemma 2.1.3 Let F = (C∗)(αC∗α−1) be a face in the map M . Then there are

|G|/o(F ) faces in the lifting map Mϑ with length |F |o(F ) lifted from the face F ,

where o(F ) denotes the order of
∏

x∈{C}
ϑ(x) in the group G.
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Proof Let F = (u, v · · · , w)(βw, · · · , βv, βu) be a face in the map M and k is

the length of F . Then, by the definition, for ∀g ∈ G, the conjugate cycles

(C∗)ϑ = (ug, vgϑ(u), · · · , ugϑ(F ), vgϑ(F )ϑ(u), · · · , wgϑ(F )2 , · · · , wgϑo(F )−1(F ))

β(ug, vgϑ(u), · · · , ugϑ(F ), vgϑ(F )ϑ(u), · · · , wgϑ(F )2 , · · · , wgϑo(F )−1(F ))
−1β−1.

is a face in Mϑ with length ko(F ). Therefore, there are |G|/o(F ) faces in the lifting

map Mϑ. altogether. ♮.

Therefore,we get that

Theorem 2.1.3 The Euler characteristic χ(Mϑ) of the lifting map Mϑ of the voltage

map (M,G) is

χ(Mϑ) = |G|(χ(M) +
∑

m∈O(F (M))

(−1 +
1

m
)),

where O(F (M)) denotes the order o(F ) set of the faces in M .

Proof According to the Lemma 2.1.2 and 2.1.3, the lifting map Mϑ has |G|ν(M)

vertices, |G|ε(M) edges and |G| ∑
m∈O(F (M))

1
m

faces. Therefore, we get that

χ(Mϑ) = ν(Mϑ) − ε(Mϑ) + φ(Mϑ)

= |G|ν(M) − |G|ε(M) + |G|
∑

m∈O(F (M))

1

m

= |G|(χ(M) − φ(M) +
∑

m∈O(F (M))

1

m
)

= |G|(χ(M) +
∑

m∈O(F (M))

(−1 +
1

m
)). ♮

§2. Combinatorial conditions for a group being that of a map

Locally characterizing that an automorphism of a voltage map is that of its

lifting is well-done in the references [40]− [41]. Among them, a typical result is the

following:
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An automorphism ζ of a map M with voltage assignment ϑ → G is an auto-

morphism of its lifting map Mϑ if for each face F with ϑ(F ) = 1G, ϑ(ζ(F )) = 1G.

Since the central topic in this chapter is found what a finite group is an automor-

phism group of a map, i.e., a global question, the idea used in the references [40]−[41]

are not applicable. New approach should be used.

2.1 Combinatorial conditions for an automorphism group of a map

First, we characterize an automorphism group of a map.

A permutation group G action on Ω is called fixed-free if Gx = 1G for ∀x ∈ Ω.

We have the following.

Lemma 2.2.1 Any automorphism group G of a map M = (Xα,β,P) is fixed-free on

Xα,β.

Proof For ∀x ∈ Xα,β ,since G � AutM , we get that Gx � (AutM)x. Notice that

(AutM)x = 1G. Whence, we know that Gx = 1G, i.e., G is fixed-free. ♮

Notice that the automorphism group of a lifting map has a obvious subgroup,

determined by the following lemma.

Lemma 2.2.2 Let Mϑ be a lifting map by the voltage assignment ϑ : Xα,β → G.

Then G is isomorphic to a fixed-free subgroup of AutMϑ on V (Mϑ).

Proof For ∀g ∈ G, we prove that the induced action g∗ : Xαϑ,βϑ → Xαϑ,βϑ by

g∗ : xh → xgh is an automorphism of the map Mϑ.

In fact, g∗ is a mapping on Xαϑ,βϑ and for ∀xu ∈ Xαϑ,βϑ , we get g∗ : xg−1u → xu.

Now if for xh, yf ∈ Xαϑ,βϑ, xh 6= yf , we have that g∗(xh) = g∗(yf), that is,

xgh = ygf , by the definition, we must have that x = y and gh = gf , i.e., h = f .

Whence, xh = yf , contradicts to the assumption. Therefore, g∗ is 1 − 1 on Xαϑ,βϑ.

We prove that for xu ∈ Xαϑ,βϑ , g∗ ia commutative with αϑ, βϑ and Pϑ. Notice

that

g∗αϑxu = g∗(αx)u = (αx)gu = αxgu = αg∗(xu);

g∗βϑ(xu) = g∗(βx)uϑ(x) = (βx)guϑ(x) = βxguϑ(x) = βϑ(xgu) = βϑg∗(xu)
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and

g∗Pϑ(xu)

= g∗
∏

(x,y,···,z)(αz,···,αy,αx)∈V (M)

∏

u∈G

(xu, yu, · · · , zu)(αzu, · · · , αyu, αxu)(xu)

= g∗yu = ygu

=
∏

(x,y,···,z)(αz,···,αy,αx)∈V (M)

∏

gu∈G

(xgu, ygu, · · · , zgu)(αzgu, · · · , αygu, αxgu)(xgu)

= Pϑ(xgu) = Pϑg∗(xu).

Therefore, g∗ is an automorphism of the lifting map Mϑ.

To see g∗ is fixed-free on V (M), choose ∀u = (xh, yh, · · · , zh)(αzh, · · · , αyh, αxh) ∈
V (M), h ∈ G. If g∗(u) = u, i.e.,

(xgh, ygh, · · · , zgh)(αzgh, · · · , αygh, αxgh) = (xh, yh, · · · , zh)(αzh, · · · , αyh, αxh).

Assume that xgh = wh, where wh ∈ {xh, yh, · · · , zh, αxh, αyh, · · · , αzh}. By the

definition, there must be that x = w and gh = h. Therefore, g = 1G, i.e., ∀g ∈ G,

g∗ is fixed-free on V (M).

Now define τ : g∗ → g. Then τ is an isomorphism between the action of

elements in G on Xαϑ,βϑ and the group G itself. ♮

According to the Lemma 2.2.1, given a map M and a group G � AutM , we

can define a quotient map M/G = (Xα,β/G,P/G) as follows.

Xα,β/G = {xG|x ∈ Xα,β},

where xG denotes an orbit of G action on Xα,β containing x and

P/G =
∏

(x,y,···,z)(αz,···,αy,αx)∈V (M)

(xG, yG, · · ·)(· · · , αyG, αxG),

since G action on Xα,β is fixed-free.

Notice that the map M may be not a regular covering of its quotient map M/G.

We have the following theorem characterizing a fixed-free automorphism group of a

map on V (M).
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Theorem 2.2.1 An finite group G is a fixed-free automorphism group of a map

M = (Xα,β,P) on V (M) iff there is a voltage map (M/G,G) with an assignment

ϑ : Xα,β/G→ G such that M ∼= (M/G)ϑ.

Proof The necessity of the condition is already proved in the Lemma 2.2.2. We

only need to prove its sufficiency.

Denote by π : M →M/G the quotient map from M to M/G. For each element

of π−1(xG), we give it a label. Choose x ∈ π−1(xG). Assign its label l : x → x1G
,

i.e., l(x) = x1G
. Since the group G acting on Xα,β is fixed-free, if u ∈ π−1(xG) and

u = g(x), g ∈ G, we label u with l(u) = xg. Whence, each element in π−1(xG) is

labelled by a unique element in G.

Now we assign voltages on the quotient map M/G = (Xα,β/G,P/G). If βx =

y, y ∈ π−1(yG) and the label of y is l(y) = y∗h, h ∈ G, where, l(y∗) = 1G, then

we assign a voltage h on xG,i.e., ϑ(xG) = h. We should prove this kind of voltage

assignment is well-done, which means that we must prove that for ∀v ∈ π−1(xG)

with l(v) = j, j ∈ G, the label of βv is l(βv) = jh. In fact, by the previous labelling

approach, we know that the label of βv is

l(βv) = l(βgx) = l(gβx)

= l(gy) = l(ghy∗) = gh.

Denote by M l the labelled map M on each element in Xα,β. Whence, M l ∼= M .

By the previous voltage assignment, we also know that M l is a lifting of the quotient

map M/G with the voltage assignment ϑ : Xα,β/G→ G. Therefore,

M ∼= (M/G)ϑ.

This completes the proof. ♮

According to the Theorem 2.2.1, we get the following result for a group to be

an automorphism group of a map.

Theorem 2.2.2 If a group G,G � AutM , is fixed-free on V (M), then

|G|(χ(M/G) +
∑

m∈O(F (M/G))

(−1 +
1

m
)) = χ(M).



Chapter 2 On the Automorphisms of a Klein Surface and a s-Manifold 39

Proof By the Theorem 2.2.1, we know that there is a voltage assignment ϑ on

the quotient map M/G such that

M ∼= (M/G)ϑ.

Applying the Theorem 2.1.3, we know the Euler characteristic of the map M is

χ(M) = |G|(χ(M/G) +
∑

m∈O(F (M/G))

(−1 +
1

m
)). ♮

Theorem 2.2.2 has some useful corollaries for determining the automorphism

group of a map.

Corollary 2.2.1 If M is an orientable map of genus p, G � AutM is fixed-free on

V (M) and the quotient map M/G with genus γ, then

|G| =
2p− 2

2γ − 2 +
∑

m∈O(F (M/G))
(1 − 1

m
))
.

Particularly, if M/G is planar, then

|G| =
2p− 2

−2 +
∑

m∈O(F (M/G))
(1 − 1

m
))
.

Corollary 2.2.2 If M is a non-orientable map of genus q, G � AutM is fixed-free

on V (M) and the quotient map M/G with genus δ, then

|G| =
q − 2

δ − 2 +
∑

m∈O(F (M/G))
(1 − 1

m
))
.

Particularly, if M/G is projective planar, then

|G| =
q − 2

−1 +
∑

m∈O(F (M/G))
(1 − 1

m
))
.

By applying the Theorem 2.2.1, we can also calculate the Euler characteristic

of the quotient map, which enables us to get the following result for a group being

that of a map.
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Theorem 2.2.3 If a group G,G � AutM , then

χ(M) +
∑

g∈G,g 6=1G

(|Φv(g)| + |Φf(g)|) = |G|χ(M/G),

where, Φv(g) = {v|v ∈ V (M), vg = v} and Φf (g) = {f |f ∈ F (M), f g = f}, and if

G is fixed-free on V (M), then

χ(M) +
∑

g∈G,g 6=1G

|Φf(g)| = |G|χ(M/G).

Proof By the definition of a quotient map, we know that

φv(M/G) = orbv(G) =
1

|G|
∑

g∈G

|Φv(g)|

and

φf(M/G) = orbf(G) =
1

|G|
∑

g∈G

|Φf (g)|,

by applying the Burnside Lemma. Since G is fixed-free on Xα,β by the Lemma 2.1,

we also know that

ε(M/G) =
ε(M)

|G| .

Applying the Euler-Poincaré formula for the quotient map M/G, we get that

∑
g∈G

|Φv(g)|

|G| − ε(M)

|G| +

∑
g∈G

|Φf (g)|

|G| = χ(M/G).

Whence, we have

∑

g∈G

|Φv(g)| − ε(M) +
∑

g∈G

|Φf (g)| = |G|χ(M/G).

Notice that ν(M) = |Φv(1G)|, φ(M) = |Φf(1G)| and ν(M)−ε(M)+φ(M) = χ(M).

We know that

χ(M) +
∑

g∈G,g 6=1G

(|Φv(g)| + |Φf(g)|) = |G|χ(M/G).
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Now if G is fixed-free on V (M), by the Theorem 2.1, there is a voltage as-

signment ϑ on the quotient map M/G such that M ∼= (M/G)ϑ. According to the

Lemma 2.1.2, we know that

ν(M/G) =
ν(M)

|G| .

Whence,
∑

g∈G
|Φv(g)| = ν(M) and

∑
g∈G,g 6=1G

(|Φv(g)| = 0. Therefore, we get that

χ(M) +
∑

g∈G,g 6=1G

|Φf (g)| = |G|χ(M/G). ♮

Consider the properties of the group G on F (M), we get the following interest-

ing results.

Corollary 2.2.3 If a finite group G,G � AutM is fixed-free on V (M) and transitive

on F (M), for example, M is regular and G = AutM , then M/G is an one face map

and

χ(M) = |G|(χ(M/G) − 1) + φ(M)

Particularly, for an one face map, we know that

Corollary 2.2.4 For an one face map M , if G, G � AutM is fixed-free on V (M),

then

χ(M) − 1 = |G|(χ(M/G) − 1),

and |G|, especially, |AutM | is an integer factor of χ(M) − 1.

Remark 2.2.1 For an one face planar map, i.e., the plane tree, the only fixed-free

automorphism group on its vertices is the trivial group by the Corollary 2.4.

2.2 The measures on a map

On the classical geometry, its central question is to determine the measures on

the objects, such as the distance, angle, area, volume, curvature, . . .. For maps being

a combinatorial model of Klein surfaces, we also wish to introduce various measures

on a map and enlarge its application filed to other branch of mathematics..
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2.2.1 The angle on a map

For a mapM = (Xα,β,P), x ∈ Xα,β, the permutation pair {(x,Px), (αx,P−1αx)}
is called an angle incident with x, which is introduced by Tutte in [66]. We prove

in this section that any automorphism of a map is a conformal mapping and affirm

the Theorem 1.2.7 in Chapter 1 again.

Define an angle transformation Θ of angles of a map M = (Xα,β,P) as follows.

Θ =
∏

x∈Xα,β

(x,Px).

Then we have

Theorem 2.2.4 Any automorphism of a map M = (Xα,β,P) is conformal.

Proof By the definition, for ∀g ∈ AutM , we know that

αg = gα, βg = gβ and Pg = gP.

Therefore, for ∀x ∈ Xα,β, we have

Θg(x) = (g(x),Pg(x))

and

gΘ(x) = g(x,Px) = (g(x),Pg(x)).

Whence, we get that for ∀x ∈ Xα,β, Θg(x) = gΘ(x). Therefore, we get that

Θg = gΘ,i.e., gΘg−1 = Θ.

Since for ∀x ∈ Xα,β , gΘg−1(x) = (g(x),Pg(x)) and Θ(x) = (x,P(x)), we have

that

(g(x),Pg(x)) = (x,P(x)).

That is, g is a conformal mapping. ♮

2.2.2 The non-Euclid area on a map

For a given voltage map (M,G), its non-Euclid area µ(M,G) is defined by
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µ(M,G) = 2π(−χ(M) +
∑

m∈O(F (M))

(−1 +
1

m
)).

Particularly, since any map M can be viewed as a voltage map (M, 1G), we get the

non-Euclid area of a map M

µ(M) = µ(M, 1G) = −2πχ(M).

Notice that the area of a map is only dependent on the genus of the surface.

We know the following result.

Theorem 2.2.5 Two maps on one surface have the same non-Euclid area.

By the non-Euclid area, we get the Riemann-Hurwitz formula in Klein surface

theory for a map in the following result.

Theorem 2.2.6 If G � AutM is fixed-free on V (M), then

|G| =
µ(M)

µ(M/G, ϑ)
,

where ϑ is constructed in the proof of the Theorem 2.2.1.

Proof According to the Theorem 2.2.2, we know that

|G| =
−χ(M)

−χ(M) +
∑

m∈O(F (M))
(−1 + 1

m
)

=
−2πχ(M)

2π(−χ(M) +
∑

m∈O(F (M))
(−1 + 1

m
))

=
µ(M)

µ(M/G, ϑ)
. ♮

As an interesting result, we can obtain the same result for the non-Euclid area

of a triangle as the classical differential geometry.

Theorem 2.2.7([42]) The non-Euclid area µ(∆) of a triangle ∆ on a surface S with

internal angles η, θ, σ is

µ(∆) = η + θ + σ − π.
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Proof According to the Theorem 1.2.1 and 2.2.5, we can assume there is a

triangulation M with internal angles η, θ, σ on S and with an equal non-Euclid area

on each triangular disk. Then

φ(M)µ(∆) = µ(M) = −2πχ(M)

= −2π(ν(M) − ε(M) + φ(M)).

Since M is a triangulation, we know that

2ε(M) = 3φ(M).

Notice that the sum of all the angles in the triangles on the surface S is 2πν(M),

we get that

φ(M)µ(∆) = −2π(ν(M) − ε(M) + φ(M)) = (2ν(M) − φ(M))π

=
φ(M)∑

i=1

[(η + θ + σ) − π] = φ(M)(η + θ + σ − π).

Whence, we get that

µ(∆) = η + θ + σ − π. ♮

§3. A combinatorial refinement of Huriwtz theorem

In 1893, Hurwitz obtained a famous result for the orientation-preserving auto-

morphism group Aut+S of a Riemann surface S([11][18][22]):

For a Riemann surface S of genus g(S) ≥ 2, Aut+S ≤ 84(g(S) − 1).

We have known that the maps are the combinatorial model for Klein surfaces,

especially, the Riemann surfaces. What is its combinatorial counterpart? What we

can say for the automorphisms of a map?

For a given graph Γ, define a graphical property P to be its a kind of subgraphs,

such as, regular subgraphs, circuits, trees, stars, wheels, · · ·. Let M = (Xα,β,P) be
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a map. Call a subset A of Xα,β has the graphical property P if the underlying graph

of A has property P . Denote by A(P,M) the set of all the A subset with property

P in the map M .

For refinement the Huriwtz theorem, we get a general combinatorial result in

the following.

Theorem 2.3.1 Let M = (Xα,β,P) be a map. Then for ∀G � AutM ,

[|vG||v ∈ V (M)] | |G|

and

|G| | |A||A(P,M)|,

where�[a, b, · · ·] denotes least common multiple of a, b, · · ·.

Proof According to a well-known result in the permutation group theory, for

∀v ∈ V (M), we know |G| = |Gv||vG|. Therefore, |vG| | |G|. Whence,

[|vG||v ∈ V (M)] | |G|.

The group G is fixed-free action on Xα,β, i.e., ∀x ∈ Xα,β, we have |Gx| = 1 (see

also [28]).

Now we consider the action of the automorphism group G on A(P,M). Notice

that if A ∈ A(P,M), then then ∀g ∈ G,Ag) ∈ A(P,M), i.e., AG ⊆ A(P,M). That

is, the action of G on A(P,M) is closed. Whence, we can classify the elements in

A(P,M) by G. For ∀x, y ∈ A(P,M), define x ∼ y if and only if there is an element

g, g ∈ G such that xg = y.

Since |Gx| = 1, i.e., |xG| = |G|, we know that each orbit of G action on Xα,β

has a same length |G|. By the previous discussion, the action of G on A(P,M) is

closed, therefore, the length of each orbit of G action on A(P,M) is also |G|. Notice

that there are |A||A(P,M)| quadricells in A(P,M). We get that

|G| | |A||A(P,M)|.

This completes the proof. ♮
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Choose property P to be tours with each edge appearing at most 2 in the map

M . Then we get the following results by the Theorem 2.3.1.

Corollary 2.3.1 Let T r2 be the set of tours with each edge appearing 2 times. Then

for ∀G � AutM ,

|G| | (l|T r2|, l = |T | =
|T |
2

≥ 1, T ∈ T r2, ).

Let T r1 be the set of tours without repeat edges. Then

|G| | (2l|T r1|, l = |T | =
|T |
2

≥ 1, T ∈ T r1, ).

Particularly, denote by φ(i, j) the number of faces in M with facial length i and

singular edges j, then

|G| | ((2i− j)φ(i, j), i, j ≥ 1),

where,(a, b, · · ·) denotes the greatest common divisor of a, b, · · ·.

Corollary 2.3.2 Let T be the set of trees in the map M . Then for ∀G � AutM ,

|G| | (2ltl, l ≥ 1),

where tl denotes the number of trees with l edges.

Corollary 2.3.3 Let vi be the number of vertices with valence i. Then for ∀G �
AutM ,

|G| | (2ivi, i ≥ 1).

Theorem 2.3.1 is a combinatorial refinement of the Hurwitz theorem. Applying

it, we can get the automorphism group of a map as follows.

Theorem 2.3.2 Let M be an orientable map of genus g(M) ≥ 2. Then for ∀G �
Aut+M ,

|G| ≤ 84(g(M) − 1)

and for ∀G � AutM ,
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|G| ≤ 168(g(M) − 1).

Proof Define the average vertex valence ν(M) and the average face valence

φ(M) of a map M by

ν(M) =
1

ν(M)

∑

i≥1

iνi,

φ(M) =
1

φ(M)

∑

j≥1

jφj,

where,ν(M),φ(M),φ(M) and φj denote the number of vertices, faces, vertices of

valence i and faces of valence j, respectively.

Then we know that ν(M)ν(M) = φ(M)φ(M) = 2ε(M). Whence, ν(M) =
2ε(M)

ν(M)
and φ(M) = 2ε(M)

φ(M)
. According to the Euler formula, we have that

ν(M) − ε(M) + φ(M) = 2 − 2g(M),

where,ε(M), g(M) denote the number of edges and genus of the map M . We get

that

ε(M) =
2(g(M) − 1)

(1 − 2

ν(M)
− 2

φ(M)
)
.

Choose the integers k = ⌈ν(M)⌉ and l = ⌈φ(M)⌉. We have that

ε(M) ≤ 2(g(M) − 1)

(1 − 2
k
− 2

l
)
.

Because 1 − 2
k
− 2

l
> 0, So k ≥ 3, l > 2k

k−2
. Calculation shows that the

minimum value of 1 − 2
k
− 2

l
is 1

21
and attains the minimum value if and only if

(k, l) = (3, 7) or (7, 3). Therefore,

ε(M ≤ 42(g(M) − 1)).

According to the Theorem 2.3.1 and its corollaries, we know that |G| ≤ 4ε(M)

and if G is orientation-preserving, then |G| ≤ 2ε(M). Whence,



Chapter 2 On the Automorphisms of a Klein Surface and a s-Manifold 48

|G| ≤ 168(g(M) − 1))

and if G is orientation-preserving, then

|G| ≤ 84(g(M) − 1)),

with equality hold if and only if G = AutM, (k, l) = (3, 7) or (7, 3)� ♮

For the automorphism of a Riemann surface, we have

Corollary 2.3.4 For any Riemann surface S of genus g ≥ 2,

4g(S) + 2 ≤ |Aut+S| ≤ 84(g(S) − 1)

and

8g(S) + 4 ≤ |AutS| ≤ 168(g(S) − 1).

Proof By the Theorem 1.2.6 and 2.3.2, we know the upper bound for |AutS| and

|Aut+S|. Now we prove the lower bound. We construct a regular mapMk = (Xk,Pk)

on a Riemann surface of genus g ≥ 2 as follows, where k = 2g + 1.

Xk = {x1, x2, · · · , xk, αx1, αx2, · · · , αxk, βx1, βx2, · · · , βxk, αβx1, αβx2, · · · , αβxk}

Pk = (x1, x2, · · · , xk, αβx1, αβx2, · · · , αβxk)(βxk, · · · , βx2, βx1, αxk, · · · , αx2, αx1).

It can be shown that Mk is a regular map, and its orientation-preserving auto-

morphism group Aut+Mk =< Pk >. Direct calculation shows that if k ≡ 0(mod2),

Mk has 2 faces, and if k ≡ 1, Mk is an one face map. Therefore, according to the

Theorem 1.2.6, we get that

|Aut+S| ≥ 2ε(Mk) ≥ 4g + 2,

and

|AutS| ≥ 4ε(Mk) ≥ 8g + 4. ♮



Chapter 2 On the Automorphisms of a Klein Surface and a s-Manifold 49

For the non-orientable case, we can also get the bound for the automorphism

group of a map.

Theorem 2.3.3 Let M be a non-orientable map of genus g′(M) ≥ 3. Then for

∀G � Aut+M ,

|G| ≤ 42(g′(M) − 2)

and for ∀G � AutM ,

|G| ≤ 84(g′(M) − 2),

with the equality hold iff M is a regular map with vertex valence 3 and face valence

7 or vice via.

Proof Similar to the proof of the Theorem 2.3.2, we can also get that

ε(M ≤ 21(g′(M) − 2))

and with equality hold if and only if G = AutM and M is a regular map with vertex

valence 3, face valence 7 or vice via. According to the Corollary 2.3.3, we get that

|G| ≤ 4ε(M)

and if G is orientation-preserving, then

|G| ≤ 2ε(M).

Whence, for ∀G � Aut+M ,

|G| ≤ 42(g′(M) − 2)

and for ∀G � AutM ,

|G| ≤ 84(g′(M) − 2),

with the equality hold iff M is a regular map with vertex valence 3 and face valence

7 or vice via. ♮
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Similar to the Hurwtiz theorem for a Riemann surface, we can get the upper

bound for a Klein surface underlying a non-orientable surface.

Corollary 2.3.5 For any Klein surface K underlying a non-orientable surface of

genus q ≥ 3,

|Aut+K| ≤ 42(q − 2)

and

|AutK| ≤ 84(q − 2).

According to the Theorem 1.2.8, similar to the proof of the Theorem 2.3.2 and

2.3.3, we get the following result for the automorphisms of an s-manifold as follows.

Theorem 2.3.4 Let C(T, n) be a closed s-manifold with negative Euler characteristic.

Then |AutC(T, n)| ≤ 6n and

|AutC(T, n)| ≤ −21χ(C(T, n)),

with equality hold only if C(T, n) is hyperbolic, where χ(C(T, n)) denotes the genus

of C(T, n).

Proof The inequality |AutC(T, n)| ≤ 6n is known by the Corollary 2.3.1. Similar

to the proof of the Theorem 2.3.2, we know that

ε(C(T, n)) =
−χ(C(T, n))

1
3
− 2

k

,

where k = 1
ν(C(T,n))

∑
i≥1

iνi ≤ 7 and with the equality holds only if k = 7, i.e., C(T, n)

is hyperbolic. ♮

§4. The order of an automorphism of a Klein surface

Harvey [26] in 1966, Singerman [60] in 1971 and Bujalance [9] in 1983 considered

the order of an automorphism of a Riemann surface of genus p ≥ 2 and a compact

non-orientable Klein surface without boundary of genus q ≥ 3. Their approach is
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by using the Fuchsian groups and NEC groups for Klein surfaces. The central idea

is by applying the Riemann-Hurwitz equation, stated as follows:

Let G be an NEC graph and G′ be a subgroup of G with finite index. Then

µ(G′)

µ(G)
= [G : G′],

where, µ(G) denotes the non-Euclid area of the group G, which is defined as if

σ = (g;±; [m1, · · · , mr]; {(n11,···,n1s1
), · · · , (nk1, · · · , nks)})

is the signature of the group G, then

µ(G) = 2π[ηg + k − 2 +
r∑

i=1

(1 − 1/mi) + 1/2
k∑

i=1

si∑

j=1

(1 − 1/nij)],

where, η = 2 if sign(σ) = + and η = 1 otherwise.

Notice that we have introduced the conception of non-Euclid area for the voltage

maps and have gotten the Riemann-Hurwitz equation in the Theorem 2.2.6 for a

fixed-free on V (M) group. Similarly, we can find the minimum genus of a map,

fixed-free on its vertex set by the voltage assignment on its quotient map and the

maximum order of an automorphism of a map.

4.1 The minimum genus of a fixed-free automorphism

Lemma 2.4.1 Let N =
k∏

i=1
pri

i , p1 < p2 < · · · < pk be the arithmetic decomposition

of the integer N and mi ≥ 1, mi|N for i = 1, 2, · · · , k. Then for any integer s ≥ 1,

s∑

i=1

(1 − 1

mi

) ≥ 2(1 − 1

p1

)⌊s
2
⌋.

Proof If s ≡ 0(mod2), it is obvious that

s∑

i=1

(1 − 1

mi
) ≥

s∑

i=1

(1 − 1

p1
) ≥ (1 − 1

p1
)s.

Now assume that s ≡ 1(mod2) and there are mij 6= p1, j = 1, 2, · · · , l. If the

assertion is not true, we must have that



Chapter 2 On the Automorphisms of a Klein Surface and a s-Manifold 52

(1 − 1

p1
)(l − 1) >

l∑

j=1

(1 − 1

mij

) ≥ (1 − 1

p2
)l.

Whence, we get that

(1 − 1

p1
)l > (1 − 1

p2
)l + 1 − 1

p1
> (1 − 1

p1
)l.

A contradiction. Therefore, we have that

s∑

i=1

(1 − 1

mi
) ≥ 2(1 − 1

p1
)⌊s

2
⌋. ♮

Lemma 2.4.2 For a map M = (Xα,β,P) with φ(M) faces and N =
k∏

i=1
pri

i , p1 <

p2 < · · · < pk, the arithmetic decomposition of the integer N , there exists a voltage

assignment ϑ : Xα,β → ZN such that for ∀F ∈ F (M), o(F ) = p1 if φ(M) ≡ 0(mod2)

or there exists a face F0 ∈ F (M), o(F ) = p1 for ∀F ∈ F (M) \ {F0}, but o(F0) = 1.

Proof Assume that f1, f2, · · · , fn, where,n = φ(M), are the n faces of the map

M . By the definition of voltage assignment, if x, βx or x, αβx appear on one face

fi, 1 ≤ i ≤ n altogether, then they contribute to ϑ(fi) only with ϑ(x)ϑ−1(x) = 1ZN
.

Whence, not loss of generality, we only need to consider the voltage xij on the

common boundary among the face fi and fj for 1 ≤ i, j ≤ n. Then the voltage

assignment on the n faces are

ϑ(f1) = x12x13 · · ·x1n,

ϑ(f2) = x21x23 · · ·x2n,

· · · · · · · · · · · · · · · · · ·

ϑ(fn) = xn1xn2 · · ·xn(n−1).

We wish to find an assignment on M which can enables us to get as many

faces as possible with the voltage of order p1. Not loss of generality, we can choose

ϑp1(f1) = 1ZN
in the first. To make ϑp1(f2) = 1ZN

, choose x23 = x−1
13 , · · · , x2n = x−1

1n .



Chapter 2 On the Automorphisms of a Klein Surface and a s-Manifold 53

If we have gotten ϑp1(fi) = 1ZN
and i < n if n ≡ 0(mod2) or i < n − 1 if

n ≡ 1(mod2), we can choose that

x(i+1)(i+2) = x−1
i(i+2), x(i+1)(i+3) = x−1

i(i+3), · · · , x(i+1)n = x−1
in ,

which also make ϑp1(fi+1) = 1ZN
.

Now if n ≡ 0(mod2), this voltage assignment makes each face fi, 1 ≤ i ≤ n

satisfying that ϑp1(fi) = 1ZN
. But if n ≡ 1(mod2), it only makes ϑp1(fi) = 1ZN

for

1 ≤ i ≤ n− 1, but ϑ(fn) = 1ZN
. This completes the proof. ♮

Now we can prove a result for the minimum genus of a fixed-free automorphism

of a map.

Theorem 2.4.1 Let M = (Xα,β,P) be a map and N = pr1
1 · · · prk

k , p1 < p2 <

· · · < pk, be the arithmetic decomposition of the integer N . Then for any voltage

assignment ϑ : Xα,β → ZN ,

(i) if M is orientable, the minimum genus gmin of the lifting map Mϑ which

admits an automorphism of order N , fixed-free on V (Mϑ), is

gmin = 1 +N{g(M) − 1 + (1 −
∑

m∈O(F (M))

1

p1

)⌊φ(M)

2
⌋}.

(ii) if M is non-orientable, the minimum genus g′min of the lifting map Mϑ

which admits an automorphism of order N , fixed-free on V (Mϑ), is

g′min = 2 +N{g(M) − 2 + 2(1 − 1

p1

)⌊φ(M)

2
⌋}. ♮

Proof (i) According to the Theorem 2.2.1, we know that

2 − 2g(Mϑ) = N{(2 − 2g(M)) +
∑

m∈O(F (M))

(−1 +
1

m
)}.

Whence,

2g(Mϑ) = 2 +N{2g(M) − 2 +
∑

m∈O(F (M))

(1 − 1

m
)}.

Applying the Lemma 2.4.1 and 2.4.2, we get that
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gmin = 1 +N{g(M) − 1 + (1 − 1

p1

)⌊φ(M)

2
⌋}

.

(ii) Similarly, by the Theorem 2.2.1, we know that

2 − g(Mϑ) = N{(2 − g(M)) +
∑

m∈O(F (M))

(−1 +
1

m
)}.

Whence,

g(Mϑ) = 2 +N{g(M) − 2 +
∑

m∈O(F (M))

(1 − 1

m
)}.

Applying the Lemma 2.4.1 and 2.4.2, we get that

g′min = 2 +N{g(M) − 2 + 2(1 − 1

p1

)⌊φ(M)

2
⌋}. ♮

4.2 The maximum order of an automorphism of a map

For the maximum order of an automorphism of a map, we have the following

result.

Theorem 2.4.2 The maximum order Nmax of an automorphism g of an orientable

map M of genus≥ 2 is

Nmax ≤ 2g(M) + 1

and the maximum order N ′
max of a non-orientable map of genus≥ 3 is

N ′
max ≤ g(M) + 1,

where g(M) is the genus of the map M .

Proof According to the Theorem 2.2.3, denote G =< g >, we get that

χ(M) +
∑

g∈G,g 6=1G

(|Φv(g)| + |Φf(g)|) = |G|χ(M/G),

where, Φf (g) = {F |F ∈ F (M), F g = F} and Φv(g) = {v|v ∈ V (M), vg = v}. If

g 6= 1G, direct calculation shows that Φf (g) = Φf (g
2) and Φv(g) = Φv(g

2). Whence,
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∑

g∈G,g 6=1G

|Φv(g)| = (|G| − 1)|Φv(g)|

and

∑

g∈G,g 6=1G

|Φf(g)| = (|G| − 1)|Φf (g)|.

Therefore, we get that

χ(M) + (|G| − 1)|Φv(g)| + (|G| − 1)|Φf(g)| = |G|χ(M/G)

Whence, we have that

χ(M) − (|Φv(g)| + |Φf (g)|) = |G|(χ(M/G) − (|Φv(g)| + |Φf(g)|)).

If χ(M/G)− (|Φv(g)|+ |Φf(g)|) = 0,i.e., χ(M/G) = |Φv(g)|+ |Φf(g)| ≥ 0, then

we get that g(M) ≤ 1 if M is orientable or g(M) ≤ 2 if M is non-orientable. Con-

tradicts to the assumption. Therefore, χ(M/G)− (|Φv(g)|+ |Φf (g)|) 6= 0. Whence,

we get that

|G| =
χ(M) − (|Φv(g)| + |Φf (g)|)
χ(M/G) − (|Φv(g)| + |Φf(g)|)

= H(v, f ; g).

Notice that |G|, χ(M)− (|Φv(g)|+ |Φf(g)|) and χ(M/G)− (|Φv(g)|+ |Φf(g)|) are in-

tegers. We know that the function H(v, f ; g) takes its maximum value at χ(M/G)−
(|Φv(g)| + |Φf (g)|) = −1 since χ(M) ≤ −1. But in this case, we get that

|G| = |Φv(g)| + |Φf (g)| − χ(M) = 1 + χ(M/G) − χ(M).

We divide the discussion into to cases.

Case 1 M is orientable.

Since χ(M/G) + 1 = (|Φv(g)| + |Φf (g)|) ≥ 0, we know that χ(M/G) ≥ −1.

Whence, χ(M/G) = 0 or 2. Therefore, we have that

|G| = 1 + χ(M/G) − χ(M) ≤ 3 − χ(M) = 2g(M) + 1.

That is, Nmax ≤ 2g(M) + 1.
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Case 2 M is non-orientable.

In this case, since χ(M/G) ≥ −1, we know that χ(M/G) = −1, 0, 1 or 2.

Whence, we have that

|G| = 1 + χ(M/G) − χ(M) ≤ 3 − χ(M) = g(M) + 1.

This completes the proof. ♮

According to this theorem, we get the following result for the order of an auto-

morphism of a Klein surface without boundary by the Theorem 1.2.7, which is even

more better than the results already known.

Corollary 2.4.1 The maximum order of an automorphism of a Riemann surface

of genus≥ 2 is 2g(M) + 1, and the maximum order of an automorphism of a non-

orientable Klein surface of genus≥ 3 without boundary is g(M) + 1.

The maximum order of an automorphism of a map can be also determined by

its underlying graph, which is stated as follows.

Theorem 2.4.3 Let M be a map underlying the graph G and omax(M, g), omax(G, g)

be the maximum order of orientation-preserving automorphism in AutM and in

Aut 1
2
G. Then

omax(M, g) ≤ omax(G, g),

and the equality hold for at least one map underlying the graph G.

The proof of the Theorem 2.4.3 will be delayed to the next chapter after we

prove the Theorem 3.1.1. By this theorem, we get the following interesting results.

Corollary 2.4.2 The maximum order of an orientation-preserving automorphism of

a complete map Kn, n ≥ 3, is at most n.

Corollary 2.4.3 The maximum order of an orientation-preserving automorphism of

a plane tree T is at most |T | − 1 and attains the upper bound only if the underlying

tree is the star.



Chapter 3 On the Automorphisms of a Graph on Sur-

faces

For determining the automorphisms of a map, an alternate approach is to con-

sider the action of the semi-arc automorphism group of its underlying graph on

the quadricells and to distinguish which is an automorphism of the map and which

is not. This approach is first appeared in the reference [43] as an initial step for

the enumeration of the non-equivalent embeddings of a graph on surfaces, and also

important for enumeration unrooted maps underlying a graph on surfaces used in

Chapter 4.

§1. A necessary and sufficient condition for a group of a graph being

that of a map

Let Γ = (V,E) be a connected graph. Its automorphism is denoted by AutΓ.

Choose the base set X = E(Γ). Then its quadricells Xα,β is defined to be:

Xα,β =
⋃

x∈X

{x, αx, βx, βαβx},

where, K = {1, α, β, αβ} is the Klein 4- elements group.

For ∀g ∈ AutΓ, define an induced action g|Xα,β of g on Xα,β as follows.

For ∀x ∈ Xα,β, if xg = y, then define (αx)g = αy, (βx)g = βy and (αβx)g =

αβy.

Let M = (Xα,β,P) be a map. According to the Theorem 1.2.5, for an auto-

morphism g ∈ AutM and g|V (M) : u → v, u, v ∈ V (M), if ug = v, then call g

an orientation-preserving automorphism. if ug = v−1, then call g an orientation-

reversing automorphism. For any g ∈ AutM , it is obvious that g|Γ is orientation-

preserving or orientation-reversing and the product of two orientation-preserving au-

tomorphisms or orientation-reversing automorphisms is orientation-preserving, the

product of an orientation-preserving automorphism with an orientation-reversing

automorphism is orientation-reversing.
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For a subgroup G � AutM , define G+ � G being the orientation-preserving

subgroup of G. Then the index of G+ in G is 2. Assume the vertex v to be

v = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1). Denote by < v > the cyclic group

generated by v. Then we get the following property for the automorphisms of a

map.

Lemma 3.1.1 Let G � AutM be an automorphism group of a map M . Then

∀v ∈ V (M),

(i) if ∀g ∈ G,g is orientation-preserving, then Gv � < v >, is a cyclic group;

(ii) Gv � < v > × < α >.

Proof (i)Let M = (Xα,β,P). since for any ∀g ∈ G, g is orientation-preserving,

we know for ∀v ∈ V (M), h ∈ Gv, v
h = v. Assume the vertex

v = (x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1).

Then

[(x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1)]
h = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1).

Therefore, if h(x1) = xk+1, 1 ≤ k ≤ ρ(v), then

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]
k = vk.

If h(x1) = αxρ(v)−k+1, 1 ≤ k ≤ ρ(v), then

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]
kα = vkα.

But if h = vkα, then we know that vh = vα = v−1, i.e., h is not orientation-

preserving. Whence, h = vk, 1 ≤ k ≤ ρ(v), i.e., each element in Gv is the power of

v. Assume ξ is the least power of elements in Gv. Then Gv =< vξ >� < v > is a

cyclic group generated by vξ.

(ii)For ∀g ∈ Gv, v
g = v, i.e.,

[(x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1)]
g = (x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1).
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Similar to the proof of (i), we know there exists an integer s, 1 ≤ s ≤ ρ, such

that g = vs or g = vsα. Whence, g ∈< v > or g ∈< v > α, i.e.,

Gv � < v > × < α > . ♮

Lemma 3.1.2 Let Γ be a connected graph. If G � AutΓ, and ∀v ∈ V (Γ),Gv � <

v > × < α >, then the action of G on Xα,β is fixed-free.

Proof Choose a quadricell x ∈ Xα,β. We prove that Gx = {1G}. In fact, if

g ∈ Gx, then xg = x. Particularly, the incident vertex u is stable under the action

of g, i.e., ug = u. assume

u = (x, y1, · · · , yρ(u)−1)(αx, αyρ(u)−1, · · · , αy1),

then since Gu � < u > × < α >, we get that

xg = x, yg
1 = y1, · · · , yg

ρ(u)−1 = yρ(u)−1

and

(αx)g = αx, (αy1)
g = αy1, · · · , (αyρ(u)−1)

g = αyρ(u)−1,

that is, for any quadricell eu incident with the vertex u, eg
u = eu. According to the

definition of the induced action AutΓ on Xα,β, we know that

(βx)g = βx, (βy1)
g = βy1, · · · , (βyρ(u)−1)

g = βyρ(u)−1

and

(αβx)g = αβx, (αβy1)
g = αβy1, · · · , (αβyρ(u)−1)

g = αβyρ(u)−1.

Whence, for any quadricell y ∈ Xα,β, assume the incident vertex of y is w,

then by the connectivity of the graph Γ, we know that there is a path P (u, w) =

uv1v2 · · · vsw in Γ connecting the vertex u andw. Not loss of generality, we assume

that βyk is incident with the vertex v1. Since (βyk)
g = βyk and Gv1 � < v1 > × <

α >, we know that for any quadricell ev1 incident with the vertex v1, e
g
v1

= ev1 .
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Similarly, if a quadricell evi
incident with the vertex vi is stable under the action

of g, i.e., (evi
)g = evi

, then we can prove that any quadricell evi+1
incident with the

vertex vi+1 is stable under the action of g. This process can be well done until we

arrive the vertex w. Therefore, we can get that any quadricell ew incident with the

vertex w is stable under the action of g. Particularly, we have that yg = y.

Therefore, we get that g = 1G. Whence,Gx = {1G}. ♮

Now we prove a necessary and sufficient condition for a subgroup of a graph

being an automorphism group of a map underlying this graph.

Theorem 3.1.1 Let Γ be a connected graph. If G � AutΓ, then G is an auto-

morphism group of a map underlying the graph Γ iff for ∀v ∈ V (Γ), the stabler

Gv � < v > × < α >.

Proof According to the Lemma 3.1.1(ii), the condition of the Theorem 3.1.1 is

necessary. Now we prove its sufficiency.

By the Lemma 3.1.2, we know that the action of G on Xα,β is fixed-free, i.e.,

for∀x ∈ Xα,β, |Gx| = 1. Whence, the length of orbit of x under the action G is

|xG| = |Gx||xG| = |G|, i.e., for ∀x ∈ Xα,β, the length of x under the action of G is

|G|.
Assume that there are s orbits O1, O2, · · · , Os of G action on � V (Γ), where,

O1 = {u1, u2, · · · , uk}, O2 = {v1, v2, · · · , vl},· · ·,Os = {w1, w2, · · · , wt}. We construct

the conjugatcy permutation pair for every vertex in the graph Γ such that they

product P is stable under the action of G.

Notice that for ∀u ∈ V (Γ), since |G| = |Gu||uG|, we know that [k, l, · · · , t]| |G|.
In the first, we determine the conjugate permutation pairs for each vertex

in the orbit O1. Choose any vertex u1 ∈ O1, assume that the stabler Gu1 is

{1G, g1, g2g1, · · · ,
m−1∏
i=1

gm−i}, where, m = |Gu1| and the quadricells incident with

vertex u1 is ˜N(u1) in the graph Γ . We arrange the elements in ˜N(u1) as follows.

Choose a quadricell ua
1 ∈ ˜N(u1). We use Gu1 action on ua

1 and αua
1, respec-

tively. Then we get the quadricell set A1 = {ua
1, g1(u

a
1), · · · ,

m−1∏
i=1

gm−i(u
a
1)} and

αA1 = {αua
1, αg1(u

a
1), · · · , α

m−1∏
i=1

gm−i(u
a
1)}. By the definition of the action of an

automorphism of a graph on its quadricells we know that A1
⋂
αA1 = ∅. Arrange

the elements in A1 as
−→
A1 = ua

1, g1(u
a
1), · · · ,

m−1∏
i=1

gm−i(u
a
1).
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If ˜N(u1) \ A1
⋃
αA1 = ∅, then the arrangement of elements in ˜N(u1) is

−→
A1.

If ˜N(u1) \ A1
⋃
αA1 6= ∅, choose a quadricell ub

1 ∈ ˜N(u1) \ A1
⋃
αA1. Similarly,

using the group Gu1 acts on ub
1, we get that A2 = {ub

1, g1(u
b
1), · · · ,

m−1∏
i=1

gm−i(u
b
1)} and

αA2 = {αub
1, αg1(u

b
1), · · · , α

m−1∏
i=1

gm−i(u
b
1)}. Arrange the elements in A1

⋃
A2 as

−−−−−→
A1

⋃
A2 = ua

1, g1(u
a
1), · · · ,

m−1∏

i=1

gm−i(u
a
1); u

b
1, g1(u

b
1), · · · ,

m−1∏

i=1

gm−i(u
b
1).

If ˜N(u1) \ (A1
⋃
A2

⋃
αA1

⋃
αA2) = ∅, then the arrangement of elements in

A1
⋃
A2 is

−−−−−→
A1

⋃
A2. Otherwise, ˜N(u1) \ (A1

⋃
A2

⋃
αA1

⋃
αA2) 6= ∅. We can choose

another quadricell uc
1 ∈ ˜N(u1) \ (A1

⋃
A2

⋃
αA1

⋃
αA2). Generally, If we have got-

ten the quadricell sets A1, A2, · · · , Ar, 1 ≤ r ≤ 2k, and the arrangement of ele-

ment in them is
−−−−−−−−−−−−−−→
A1

⋃
A2

⋃
· · ·

⋃
Ar, if ˜N(u1) \ (A1

⋃
A2

⋃ · · ·⋃Ar
⋃
αA1

⋃
αA2

⋃

· · ·⋃αAr) 6= ∅, then we can choose an element ud
1 ∈ ˜N(u1)\(A1

⋃
A2

⋃ · · ·⋃Ar
⋃
αA1

⋃
αA2

⋃ · · ·⋃αAr) and define the quadricell set

Ar+1 = {ud
1, g1(u

d
1), · · · ,

m−1∏

i=1

gm−i(u
d
1)}

αAr+1 = {αud
1, αg1(u

d
1), · · · , α

m−1∏

i=1

gm−i(u
d
1)}

and the arrangement of elements in Ar+1 is

−−→
Ar+1 = ud

1, g1(u
d
1), · · · ,

m−1∏

i=1

gm−i(u
d
1).

Define the arrangement of elements in
r+1⋃
j=1

Aj to be

−−−→
r+1⋃

j=1

Aj =

−−−→r⋃

i=1

Ai;
−−→
Ar+1.

Whence,

˜N(u1) = (
k⋃

j=1

Aj)
⋃

(α
k⋃

j=1

Aj)

and Ak is obtained by the action of the stabler Gu1 on ue
1. At the same time, the

arrangement of elements in the subset
k⋃

j=1
Aj of ˜N(u1) to be

−−−→
k⋃

j=1

Aj .
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Define the conjugatcy permutation pair of the vertex u1 to be

̺u1 = (C)(αC−1α),

where�
C = (ua

1, u
b
1, · · · , ue

1; g1(u
a
1), g1(u

b
1), · · · , g1(u

e
1), · · · ,

m−1∏

i=1

(ua
1),

m−1∏

i=1

(ub
1), · · · ,

m−1∏

i=1

(ue
1)).

For any vertex ui ∈ O1, 1 ≤ i ≤ k, assume that h(u1) = ui, where h ∈ G, then

we define the conjugatcy permutation pair ̺ui
of the vertex ui to be

̺ui
= ̺h

u1
= (Ch)(αC−1α−1).

Since O1 is an orbit of the action G on V (Γ), then we have that

(
k∏

i=1

̺ui
)G =

k∏

i=1

̺ui
.

Similarly, we can define the conjugatcy permutation pairs ̺v1 , ̺v2 , · · · , ̺vl
, · · · , ̺w1,

̺w2 , · · · , ̺wt
of vertices in the orbits O2, · · · , Os. We also have that

(
l∏

i=1

̺vi
)G =

l∏

i=1

̺vi
.

· · · · · · · · · · · · · · · · · · · · ·

(
t∏

i=1

̺wi
)G =

t∏

i=1

̺wi
.

Now define the permutation

P = (
k∏

i=1

̺ui
) × (

l∏

i=1

̺vi
) × · · · × (

t∏

i=1

̺wi
).

Then since O1, O2, · · · , Os are the orbits of V (Γ) under the action of G, we get

that
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PG = (
k∏

i=1

̺ui
)G × (

l∏

i=1

̺vi
)G × · · · × (

t∏

i=1

̺wi
)G

= (
k∏

i=1

̺ui
) × (

l∏

i=1

̺vi
) × · · · × (

t∏

i=1

̺wi
) = P.

Whence, if we define the map M = (Xα,β,P)�then G is an automorphism of

the map M . ♮

For the orientation-preserving automorphism, we have the following result.

Theorem 3.1.2 Let Γ be a connected graph. If G � AutΓ, then G is an orientation-

preserving automorphism group of a map underlying the graph Γ iff for ∀v ∈ V (Γ),

the stabler Gv � < v > is a cyclic group.

Proof According to the Lemma 3.1.1(i)�we know the necessary. Notice the ap-

proach of construction the conjugatcy permutation pair in the proof of the Theorem

3.1.1. We know that G is also an orientation-preserving automorphism group of the

map M . ♮

According to the Theorem 3.1.2, we can prove the Theorem 2.4.3 now.

The Proof of the Theorem 2.4.3

Since every subgroup of a cyclic group is also a cyclic group, we know that any

cyclic orientation-preserving automorphism group of the graph Γ is an orientation-

preserving automorphism group of a map underlying the graph Γ by the Theorem

3.1.2. Whence, we get that

omax(M, g) ≤ omax(G, g). ♮

Corollary 3.1.1 For any positive integer n, there exists a vertex transitive map

M underlying a circultant such that Zn is an orientation-preserving automorphism

group of the map M .

Remark 3.1.1 Gardiner et al proved in [20] that if add an additional condition ,

i.e, G is transitive on the vertices in Γ, then there is a regular map underlying the

graph Γ.
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§2. The automorphisms of a complete graph on surfaces

A map is called a complete map if its underlying graph is a complete graph.

For a connected graph Γ, the notations EO(Γ), EN(Γ) and EL(Γ) denote the embed-

dings of Γ on the orientable surfaces, non-orientable surfaces and locally surfaces,

respectively. For ∀e = (u, v) ∈ E(Γ), its quadricell Ke = {e, αe, βe, αβe} can be

represented by Ke = {uv+, uv−, vu+, vu−}.
Let Kn be a complete graph of order n. Label its vertices by integers 1, 2, ..., n.

Then its edge set is {ij|1 ≤ i, j ≤ n, i 6= j ij = ji}, and

Xα,β(Kn) = {ij+ : 1 ≤ i, j ≤ n, i 6= j}
⋃
{ij− : 1 ≤ i, j ≤ n, i 6= j},

α =
∏

1≤i,j≤n,i6=j

(ij+, ij−),

β =
∏

1≤i,j≤n,i6=j

(ij+, ij+)(ij−, ij−).

We determine all the automorphisms of complete maps of order n and give they

concrete representation in this section.

First, we need some useful lemmas for an automorphism of a map induced by

an automorphism of its underlying graph.

Lemma 3.2.1 Let Γ be a connected graph and g ∈ AutΓ. If there is a map M ∈
EL(Γ) such that the induced action g∗ ∈ AutM, then for ∀(u, v), (x, y) ∈ E(Γ),

[lg(u), lg(v)] = [lg(x), lg(y)] = constant,

where, lg(w) denotes the length of the cycle containing the vertex w in the cycle

decomposition of g.

Proof According to the Lemma 2.2.1, we know that the length of a quadricell

uv+ or uv− under the action g∗ is [lg(u), lg(v)]. Since g∗ is an automorphism of map,

therefore, g∗ is semi-regular. Whence, we get that

[lg(u), lg(v)] = [lg(x), lg(y)] = constant. ♮
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Now we consider conditions for an induced automorphism of a map by an

automorphism of graph to be an orientation-reversing automorphism of a map.

Lemma 3.2.2 If ξα is an automorphism of a map, then ξα = αξ.

Proof Since ξα is an automorphism of a map, we know that

(ξα)α = α(ξα).

That is, ξα = αξ. ♮

Lemma 3.2.3 If ξ is an automorphism of map M = (Xα,β,P), then ξα is semi-

regular on Xα,β with order o(ξ) if o(ξ) ≡ 0(mod2) and 2o(ξ) if o(ξ) ≡ 1(mod2).

Proof Since ξ is an automorphism of map by the Lemma 3.2.2, we know that

the cycle decomposition of ξ can be represented by

ξ =
∏

k

(x1, x2, · · · , xk)(αx1, αx2, · · · , αxk),

where,
∏

k denotes the product of disjoint cycles with length k = o(ξ).

Therefore, if k ≡ 0(mod2), we get that

ξα =
∏

k

(x1, αx2, x3, · · · , αxk)

and if k ≡ 1(mod2), we get that

ξα =
∏

2k

(x1, αx2, x3, · · · , xk, αx1, x2, αx3, · · · , αxk).

Whence, ξ is semi-regular acting on Xα,β. ♮

Now we can prove the following result for orientation-reversing automorphisms

of a map.

Lemma 3.2.4 For a connected graph Γ, let K be all automorphisms in AutΓ whose

extending action on Xα,β, X = E(Γ), are automorphisms of maps underlying the

graph Γ. Then for ∀ξ ∈ K, o(ξ∗) ≥ 2, ξ∗α ∈ K if and only if o(ξ∗) ≡ 0(mod2).

Proof Notice that by the Lemma 3.2.3, if ξ∗ is an automorphism of map with

underlying graph Γ, then ξ∗α is semi-regular acting on Xα,β.
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Assume ξ∗ is an automorphism of map M = (Xα,β,P). Without loss of gener-

ality, we assume that

P = C1C2 · · ·Ck,

where,Ci = (xi1, xi2, · · · , xiji
) is a cycle in the decomposition of ξ|V (Γ) and xit =

{(ei1, ei2, · · · , eiti)(αei1, αeiti, · · · , αei2)} and.

ξ|E(Γ) = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl
).

and

ξ∗ = C(αC−1α),

where, C = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl
). Now since ξ∗ is

an automorphism of map, we get that s1 = s2 = · · · = sl = o(ξ∗) = s.

If o(ξ∗) ≡ 0(mod2), define a map M∗ = (Xα,β,P∗), where,

P∗ = C∗
1C

∗
2 · · ·C∗

k ,

where, C∗
i = (x∗i1, x

∗
i2, · · · , x∗iji

), x∗it = {(e∗i1, e∗i2, · · · , e∗iti)(αe∗i1, αe∗iti , · · · , e∗i2)} and

e∗ij = epq. Take e∗ij = epq if q ≡ 1(mod2) and e∗ij = αepq if q ≡ 0(mod2). Then

we get that M ξα = M .

Now if o(ξ∗) ≡ 1(mod2), by the Lemma 3.2.3, o(ξ∗α) = 2o(ξ∗). Therefore, any

chosen quadricells (ei1, ei2, · · · , eiti) adjacent to the vertex xi1 for i = 1, 2, · · · , n,

where, n = |Γ|, the resultant map M is unstable under the action of ξα. Whence,

ξα is not an automorphism of one map with underlying graph Γ. ♮

Now we determine all automorphisms of a complete map underlying a graph

Kn by applying the previous results. Recall that the automorphism group of the

graph Kn is just the symmetry group of degree n, that is, AutKn = Sn.

Theorem 3.2.1 All orientation-preserving automorphisms of non-orientable com-

plete maps of order≥ 4 are extended actions of elements in

E
[s

n
s ]
, E

[1,s
n−1

s ]
,

and all orientation-reversing automorphisms of non-orientable complete maps of

order≥ 4 are extended actions of elements in
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αE
[(2s)

n
2s ]
, αE

[(2s)
4
2s ]
, αE[1,1,2],

where, Eθ denotes the conjugatcy class containing element θ in the symmetry group

Sn

Proof First, we prove that the induced permutation ξ∗ on a complete map of

order n by an element ξ ∈ Sn is an cyclic order-preserving automorphism of non-

orientable map, if, and only if,

ξ ∈ E
s

n
s

⋃
E

[1,s
n−1

s ]

Assume the cycle index of ξ is [1k1 , 2k2, ..., nkn ]. If there exist two integers

ki, kj 6= 0, and i, j ≥ 2, i 6= j, then in the cycle decomposition of ξ , there are two

cycles

(u1, u2, ..., ui) and (v1, v2, ..., vj).

Since

[lξ(u1), l
ξ(u2)] = i and [lξ(v1), l

ξ(v2)] = j

and i 6= j, we know that ξ∗ is not an automorphism of embedding by the Lemma

2.5. Whence, the cycle index of ξ must be the form of [1k, sl].

Now if k ≥ 2, let (u), (v) be two cycles of length 1 in the cycle decomposition

of ξ. By the Lemma 2.5, we know that

[lξ(u), lξ(v)] = 1.

If there is a cycle (w, ...) in the cycle decomposition of ξ whose length greater

or equal to two, we get that

[lξ(u), lξ(w)] = [1, lξ(w)] = lξ(w).

According to the Lemma 3.2.1, we get that lξ(w) = 1, a contradiction. There-

fore, the cycle index of ξ must be the forms of [sl] or [1, sl]. Whence,sl = n or

sl + 1 = n. Calculation shows that l = n
s

or l = n−1
s

. That is, the cycle index of ξ

is one of the following three types [1n], [1, s
n−1

s ] and [s
n
s ] for some integer s .
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Now we only need to prove that for each element ξ in E
[1,s

n−1
s ]

and E
[s

n
s ]

, there

exists an non-orientable complete map M of order n with the induced permutation

ξ∗ being its cyclic order-preserving automorphism of surface. The discussion are

divided into two cases.

Case 1 ξ ∈ E
[s

n
s ]

Assume the cycle decomposition of ξ being ξ = (a, b, · · · , c) · · · (x, y, · · · , z) · · · (u, v,
· · · , w), where, the length of each cycle is k, and 1 ≤ a, b, · · · , c, x, y, · · · , z, u, v, · · · , w ≤
n . In this case, we can construct a non-orientable complete map M1 = (X 1

α,β,P1)

as follows.

X 1
α,β = {ij+ : 1 ≤ i, j ≤ n, i(j}

⋃
{ij− : 1 ≤ i, j ≤ n, i 6= j},

P1 =
∏

x∈{a,b,···,c,···,x,y,···,z,u,v,···,w}

(C(x))(αC(x)−1α),

where,

C(x) = (xa+, · · · , xx∗, · · · , xu+, xb+, xy+, · · · , · · · , xv+, xc+, · · · , xz+, · · · , xw+),

where xx∗ denotes an empty position and

αC(x)−1α = (xa−, xw−, · · · , xz−, · · · , xc−, xv−, · · · , xb−, xu−, · · · , xy−, · · ·).

It is clear that M ξ∗

1 = M1. Therefore, ξ∗ is an cyclic order-preserving automor-

phism of the map M1.

Case 2 ξ ∈ E
[1,s

n−1
s ]

We assume the cycle decomposition of ξ being

ξ = (a, b, ..., c)...(x, y, ..., z)...(u, v, ..., w)(t),

where, the length of each cycle is k beside the final cycle, and 1 ≤ a, b...c, x, y..., z,

u, v, ..., w, t ≤ n . In this case, we construct a non-orientable complete map M2 =

(X 2
α,β,P2) as follows.
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X 2
α,β = {ij+ : 1 ≤ i, j ≤ n, i 6= j}

⋃
{ij− : 1 ≤ i, j ≤ n, i 6= j},

P2 = (A)(αA−1)
∏

x∈{a,b,...,c,...,x,y,...z,u,v,...,w}

(C(x))(αC(x)−1α),

where,

A = (ta+, tx+, ...tu+, tb+, ty+, ..., tv+, ..., tc+, tz+, ..., tw+)

and

αA−1α = (ta−, tw−, ...tz−, tc−, tv−, ..., ty−, ..., tb−, tu−, ..., tx−)

and

C(x) = (xa+, ..., xx∗, ..., xu+, xb+, ..., xy+, ..., xv+, ..., xc+, ..., xz+, ..., xw+)

and

αC(x)−1α = (xa−, xw−, .., xz−, ..., xc−, ..., xv−, ..., xy−, ..., xb−, xu−, ...).

It is also clear that M ξ∗

2 = M2. Therefore, ξ∗ is an automorphism of a map M2

.

Now we consider the case of orientation-reversing automorphism of a complete

map. According to the Lemma 3.2.4, we know that an element ξα, where, ξ ∈ Sn,

is an orientation-reversing automorphism of a complete map, only if,

ξ ∈ E
[k

n1
k ,(2k)

n−n1
2k ]

.

Our discussion is divided into two parts.

Case 3 n1 = n

Without loss of generality, we can assume the cycle decomposition of ξ has the

following form in this case.

ξ = (1, 2, · · · , k)(k + 1, k + 2, · · · , 2k) · · · (n− k + 1, n− k + 2, · · · , n).
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Subcase 3.1 k ≡ 1(mod2) and k > 1

According to the Lemma 3.2.4, we know that ξ∗α is not an automorphism of

map since o(ξ∗) = k ≡ 1(mod2).

Subcase 3.2 k ≡ 0(mod2)

Construct a non-orientable map M3 = (X 3
α,β,P3), where X3 = E(Kn) and

P3 =
∏

i∈{1,2,···,n}

(C(i))(αC(i)−1α),

where, if i ≡ 1(mod2), then

C(i) = (i1+, ik+1+, · · · , in−k+1+, i2+, · · · , in−k+2+, · · · , ii∗, · · · , ik+, i2k+, · · · , in+),

αC(i)−1α = (i1−, in−, · · · , i2k−, ik−, · · · , ik+1−)

and if i ≡ 0(mod2), then

C(i) = (i1−, ik+1−, · · · , in−k+1−, i2−, · · · , in−k+2−, · · · , ii∗, · · · , ik−, i2k−, · · · , in−),

αC(i)−1α = (i1+, in+, · · · , i2k+, ik+, · · · , ik+1+).

Where, ii∗ denotes the empty position, for example, (21, 22∗, 23, 24, 25) = (21, 23, 24, 25).

It is clear that Pξα
3 = P3, that is, ξα is an automorphism of map M3.

Case 4 n1 6= n

Without loss of generality, we can assume that

ξ = (1, 2, · · · , k)(k + 1, k + 2, · · · , n1) · · · (n1 − k + 1, n1 − k + 2, · · · , n1)

× (n1 + 1, n1 + 2, · · · , n1 + 2k)(n1 + 2k + 1, · · · , n1 + 4k) · · · (n− 2k + 1, · · · , n)

Subcase 4.1 k ≡ 0(mod2)
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Consider the orbits of 12+ and n1 + 2k + 11+ under the action of < ξα >, we

get that

|orb((12+)<ξα>)| = k

and

|orb(((n1 + 2k + 1)1+)<ξα>)| = 2k.

Contradicts to the Lemma 3.2.1.

Subcase 4.2 k ≡ 1(mod2)

In this case, if k 6= 1, then k ≥ 3. Similar to the discussion of the Subcase 3.1,

we know that ξα is not an automorphism of complete map. Whence, k = 1 and

ξ ∈ E[1n1 ,2n2 ].

Without loss of generality, assume that

ξ = (1)(2) · · · (n1)(n1 + 1, n1 + 2)(n1 + 3, n1 + 4) · · · (n1 + n2 − 1, n1 + n2).

If n2 ≥ 2, and there exists a map M = (Xα,β,P), assume the vertex v1 in M

being

v1 = (1l12+, 1l13+, · · · , 1l1n+)(1l12−, 1l1n−, · · · , 1l13−)

where, l1i ∈ {+2,−2,+3,−3, · · · ,+n,−n} and l1i 6= l1j if i 6= j.

Then we get that

(v1)
ξα = (1l12−, 1l13−, · · · , 1l1n−)(1l12+, 1l1n+, · · · , 1l13+) 6= v1.

Whence, ξα is not an automorphism of map M . A contradiction.

Therefore, n2 = 1. Similarly, we can also get that n1 = 2. Whence, ξ =

(1)(2)(34) and n = 4. We construct a stable non-orientable map M4 under the

action of ξα as follows.

M4 = (X 4
α,β,P4),
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where,

P4 = (12+, 13+, 14+)(21+, 23+, 24+)(31+, 32+, 34+)(41+, 42+, 43+)

× (12−, 14−, 13−)(21−, 24−, 23−)(31−, 34−, 32−)(41−, 43−, 42−).

Therefore, all orientation-preserving automorphisms of non-orientable complete

maps are extended actions of elements in

E
[s

n
s ]
, E

[1,s
n−1

s ]

and all orientation-reversing automorphisms of non-orientable complete maps are

extended actions of elements in

αE
[(2s)

n
2s ]
, αE

[(2s)
4
2s ]

αE[1,1,2].

This completes the proof. ♮

According to the Rotation Embedding Scheme for orientable embedding of

a graph, First presented by Heffter in 1891 and formalized by Edmonds in [17],

each orientable complete map is just the case of eliminating the sign + and - in

our representation for complete map. Whence,we have the following result for an

automorphism of orientable surfaces, which is similar to the Theorem 3.2.1.

Theorem 3.2.2 All orientation-preserving automorphisms of orientable complete

maps of order≥ 4 are extended actions of elements in

E
[s

n
s ]
, E

[1,s
n−1

s ]

and all orientation-reversing automorphisms of orientable complete maps of order≥
4 are extended actions of elements in

αE
[(2s)

n
2s ]
, αE

[(2s)
4
2s ]
, αE[1,1,2],

where,Eθ denotes the conjugatcy class containing θ in Sn.

Proof The proof is similar to that of the Theorem 3.2.1. For completion, we only

need to construct orientable maps MO
i , i = 1, 2, 3, 4, to replace the non-orientable

maps Mi, i = 1, 2, 3, 4 in the proof of the Theorem 3.2.1.
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In fact, for orientation-preserving case, we only need to take MO
1 , MO

2 to be

the resultant maps eliminating the sign + and - in M1, M2 constructed in the proof

of the Theorem 3.2.1.

For the orientation-reversing case, we take MO
3 = (E(Kn)α,β,PO

3 ) with

P3 =
∏

i∈{1,2,···,n}

(C(i)),

where, if i ≡ 1(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , ii∗, · · · , ik, i2k, · · · , in),

and if i ≡ 0(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , ii∗, · · · , ik, i2k, · · · , in)−1,

where ii∗ denotes the empty position and MO
4 = (E(K4)α,β,P4) with

P4 = (12, 13, 14)(21, 23, 24)(31, 34, 32)(41, 42, 43).

It can be shown that (MO
i )ξ∗α = MO

i for i = 1, 2, 3 and 4. ♮

§3. The automorphisms of a semi-regular graph on surfaces

A graph is called a semi-regular graph if it is simple and its automorphism

group action on its ordered pair of adjacent vertices is fixed-free, which is considered

in [43], [50] for enumeration its non-equivalent embeddings on surfaces. A map

underlying a semi-regular graph is called a semi-regular map. We determine all

automorphisms of maps underlying a semi-regular graph in this section.

Comparing with the Theorem 3.1.2, we get a necessary and sufficient condition

for an automorphism of a graph being that of a map.

Theorem 3.3.1 For a connected graph Γ, an automorphism ξ ∈ AutΓ is an orientation-

preserving automorphism of a non-orientable map underlying the graph Γ iff ξ is

semi-regular acting on its ordered pairs of adjacent vertices.
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Proof According to the Lemma 2.2.1, if ξ ∈ AutΓ is an orientation-preserving

automorphism of a map M underlying graph Γ, then ξ is semi-regular acting on its

ordered pairs of adjacent vertices.

Now assume that ξ ∈ AutΓ is semi-regular acting on its ordered pairs of adja-

cent vertices. Denote by ξ|V (Γ), ξ|E(Γ)β
the action of ξ on V (Γ) and on its ordered

pairs of adjacent vertices,respectively. By the given condition, we can assume that

ξ|V (Γ) = (a, b, · · · , c) · · · (g, h, · · · , k) · · · (x, y, · · · , z)

and

ξ|E(Γ)β
= C1 · · ·Ci · · ·Cm,

where, sa|C(a)| = · · · = sg|C(g)| = · · · = sx|C(x)|, and C(g) denotes the cycle

containing g in ξ|V (Γ) and

C1 = (a1, b1, · · · , c1, a2, b2, · · · , c2, · · · , asa , bsa, · · · , csa),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Ci = (g1, h1, · · · , k1, g2, k2, · · · , k2, · · · , gsg , hsg , · · · , ksg),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Cm = (x1, y1, · · · , z1, · · · , x2, y2, · · · , z2, · · · , xsx , ysx, · · · , zsx).

Now for ∀ξ, ξ ∈ AutΓ. We construct a stable map M = (Xα,β,P) under the

action of ξ as follows.

X = E(Γ)

and

P =
∏

g∈T V
ξ

∏

x∈C(g)

(Cx)(αC
−1
x ).

Assume that u = ξf(g), and

NΓ(g) = {gz1, gz2, · · · , gzl}.
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Obviously, all degrees of vertices in C(g) are same. Notices that ξ|NΓ(g) is

circular acting on NΓ(g) by the Theorem 3.1.2. Whence, it is semi-regular acting

on NΓ(g). Without loss of generality, we can assume that

ξ|NΓ(g) = (gz1, gz2, · · · , gzs)(gzs+1, gzs+2, · · · , gz2s) · · · (gz(k−1)s+1, gz(k−1)s+2, · · · , gzks),

where, l = ks. Choose

Cg = (gz1+, gzs+1+, · · · , gz(k−1)s+1+, gz2+, gzs+2+, · · · , gzs+, gz2s, · · · , gzks+).

Then,

Cx = (xz1+, xzs+1+, · · · , xz(k−1)s+1+, xz2+, xzs+2+, · · · , xzs+, xz2s , · · · , xzks+),

where,

xzi+ = ξf(gzi+),

for i = 1, 2, · · · , ks. and

αC−1
x = (αxz1+, αxzs+1+, · · · , αxz(k−1)s+1+, αxzs+, αxz2s , · · · , αxzks+).

Immediately, we get that M ξ = ξMξ−1 = M by this construction. Whence, ξ

is an orientation-preserving automorphism of the map M . ♮

By the Rotation Embedding Scheme, eliminating α on each quadricell in Tutte’s

representation of an embedding induces an orientable embedding with the same

underlying graph. Since an automorphism of an embedding is commutative with α

and β, we get the following result for the orientable-preserving automorphisms of

the orientable maps underlying a semi-regular graph.

Theorem 3.3.2 If Γ is a connected semi-regular graph, then for ∀ξ ∈ AutΓ, ξ is an

orientation-preserving automorphism of orientable maps underlying the graph Γ.

According to the Theorem 3.3.1 and 3.3.2, if Γ is semi-regular, i.e., each au-

tomorphism acting on the ordered pairs of adjacent vertices in Γ is fixed-free, then
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every automorphism of the graph Γ is an orientation-preserving automorphism of

orientable maps and non-orientable maps underlying the graph Γ. We restated this

result as the following.

Theorem 3.3.3 If Γ is a connected semi-regular graph, then for ∀ξ ∈ AutΓ, ξ

is an orientation-preserving automorphism of orientable maps and non-orientable

maps underlying the graph Γ.

Notice that if ς∗ is an orientation-reversing automorphisms of a map, then ς∗α

is an orientation-preserving automorphism of the same map. By the Lemma 3.2.4,

if τ is an automorphism of maps underlying a graph Γ, then τα is an automorphism

of maps underlying this graph if and only if τ ≡ 0(mod2). Whence, we have the

following result for the automorphisms of maps underlying a semi-regular graph

Theorem 3.3.4 Let Γ be a semi-regular graph. Then all the automorphisms of

orientable maps underlying the graph Γ are

g|Xα,β and αh|Xα,β , g, h ∈ AutΓ with h ≡ 0(mod2).

and all the automorphisms of non-orientable maps underlying the graph Γ are also

g|Xα,β and αh|Xα,β , g, h ∈ AutΓ with h ≡ 0(mod2).

Theorem 3.3.4 will be used in the Chapter 4 for the enumeration of unrooted

maps on surfaces underlying a semi-regular graph.

§4. The automorphisms of one face maps

There is a well-know result for the automorphisms of a map and its dual in

topological graph theory, i.e., the automorphism group of a map is same as its dual.

Therefore, for determining the automorphisms of one face maps, we can determine

them by the automorphisms of a bouquet Bn on surfaces.

A map underlying a graph Bn, n ≥ 1 has the form Bn = (Xα,β,Pn) with X =

E(Bn) = {e1, e2, · · · , en} and
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Pn = (x1, x2, · · · , x2n)(αx1, αx2n, · · · , x2)

where, xi ∈ X, βX or αβX and satisfying the condition (Ci) and (Cii) in the Section

2.2 of Chapter 1. For a given bouquet Bn with n edges, its semi-arc automorphism

group is

Aut 1
2
Bn = Sn[S2].

Form group theory, we know that each element in Sn[S2] can be represented by

(g; h1, h2, · · · , hn) with g ∈ Sn and hi ∈ S2 = {1, αβ} for i = 1, 2, · · · , n. The action

of (g; h1, h2, · · · , hn) on a map Bn underlying a graph Bn by the following rule:

if x ∈ {ei, αei, βei, αβei}, then (g; h1, h2, · · · , hn)(x) = g(hi(x)).

For example, if h1 = αβ, then,(g; h1, h2, · · · , hn)(e1) = αβg(e1), (g; h1, h2, · · · , hn)(αe1)

= βg(e1), (g; h1, h2, · · · , hn)(βe1) = αg(e1) and (g; h1, h2, · · · , hn)(αβe1) = g(e1).

The following result for automorphisms of a map underlying a graph Bn is

obvious.

Lemma 3.4.1 Let (g; h1, h2, · · · , hn) be an automorphism of a map Bn underlying a

graph Bn. Then

(g; h1, h2, · · · , hn) = (x1, x2, ..., x2n)k,

and if (g; h1, h2, · · · , hn)α is an automorphism of a map Bn, then

(g; h1, h2, · · · , hn)α = (x1, x2, · · · , x2n)k

for some integer k, 1 ≤ k ≤ n. Where, xi ∈ {e1, e2, · · · , en}, i = 1, 2, · · · , 2n and

xi 6= xj if i 6= j.

Analyzing the structure of elements in the group Sn[S2], we get the automor-

phisms of maps underlying a graph Bn by the Theorem 3.3.1 and 3.3.2 as follows.

Theorem 3.4.1 Let Bn be a bouquet with n edges 1, 2, · · · , n. Then the automor-

phisms (g; h1, h2, · · · , hn) of orientable maps underlying a Bn, n ≥ 1, are respective

(O1) g ∈ E
[k

n
k ]
, hi = 1, i = 1, 2, · · · , n;
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(O2) g ∈ E
[k

n
k ]
and if g =

n/k∏
i=1

(i1, i2, · · · ik), where ij ∈ {1, 2, · · · , n}, n/k ≡
0(mod2), then hi1 = (1, αβ), i = 1, 2, · · · , n

k
and hij = 1 for j ≥ 2;

(O3) g ∈ E
[k2s,(2k)

n−2ks
2k ]

and if g =
2s∏

i=1
(i1, i2, · · · ik)

(n−2ks)/2k∏
j=1

(ej1 , ej2, · · · , ej2k
),

where ij , ejt
∈ {1, 2, · · · , n}, then hi1 = (1, αβ), i = 1, 2, · · · , s, hil = 1 for l ≥

2 and hjt
= 1 for t = 1, 2, · · · , 2k

and the automorphisms (g; h1, h2, · · · , hn) of non-orientable maps underlying a Bn, n

≥ 1, are respective

(N1) g ∈ E
[k

n
k ]
, hi = 1, i = 1, 2, · · · , n;

(N2) g ∈ E
[k

n
k ]
and if g =

n/k∏
i=1

(i1, i2, · · · ik), where ij ∈ {1, 2, · · · , n}, n/k ≡
0(mod2), then hi1 = (1, αβ), (1, β)with at least one hi01

(1, β), i = 1, 2, · · · , n
k
and hij =

1 for j ≥ 2;

(N3) g ∈ E
[k2s,(2k)

n−2ks
2k ]

and if g =
2s∏

i=1
(i1, i2, · · · ik)

(n−2ks)/2k∏
j=1

(ej1 , ej2, · · · , ej2k
),

where ij , ejt
∈ {1, 2, · · · , n}, then hi1 = (1, αβ), (1, β) with at least one hi01

=

(1, β), i = 1, 2, · · · , s, hil = 1 for l ≥ 2 and hjt
= 1 for t = 1, 2, · · · , 2k,

where, Eθ denotes the conjugacy class in the symmetry group Sn containing the

element θ.

Proof By the structure of the group Sn[S2], it is clear that the elements in the

cases (i), (ii) and (iii) are its all semi-regular elements. We only need to construct

an orientable or non-orientable map Bn = (Xα,β,Pn) underlying Bn stable under the

action of an element in each case.

(i) g =
n/k∏
i=1

(i1, i2, · · · ik) and hi = 1, i = 1, 2, · · · , n, where ij ∈ {1, 2, · · · , n}.

Choose

X 1
α,β =

n/k⋃

i=1

K{i1, i2, · · · , ik},

where K = {1, α, β, αβ} and

P1
n = C1(αC

−1
1 α−1)

with
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C1 = ( 11, 21, · · · , (
n

k
)1, αβ11, αβ21, · · · , αβ(

n

k
)1, 12, 22, · · · , (

n

k
)2,

αβ12, αβ22, · · · , αβ(
n

k
)2, · · · , 1k, 2k, · · · , (

n

k
)k, αβ1k, αβ1k, · · · , αβ(

n

k
)k).

Then the map B1
n = (X 1

α,β ,P1
n) is an orientable map underlying the graph Bn and

stable under the action of (g; h1, h2, · · · , hn).

For the non-orientable case, we can chose

C1 = ( 11, 21, · · · , (
n

k
)1, β11, β21, · · · , β(

n

k
)1, 12, 22, · · · , (

n

k
)2,

β12, β22, · · · , β(
n

k
)2, · · · , 1k, 2k, · · · , (

n

k
)k, β1k, β1k, · · · , β(

n

k
)k).

Then the map B1
n = (X 1

α,β ,P1
n) is a non-orientable map underlying the graph Bn

and stable under the action of (g; h1, h2, · · · , hn).

(ii) g =
n/k∏
i=1

(i1, i2, · · · ik), hi = (1, β) or (1, αβ), i = 1, 2, · · · , n, n
k
≡ 0(mod2),

where ij ∈ {1, 2, · · · , n}.

If hi1 = (1, αβ) for i = 1, 2, · · · , n
k

and hit = 1 for t ≥ 2. Then

(g; h1, h2, · · · , hn) =
n/k∏

i=1

(i1, αβi2, · · ·αβik, αβi1, i2, · · · , ik).

Similar to the case (i), we take X 2
α,β = X 1

α,β and

P2
n = C2(αC

−1
2 α−1)

with

C2 = ( 11, 21, · · · , (
n

k
)1, αβ12, αβ22, · · · , αβ(

n

k
)2, αβ1k, αβ2k,

· · · , αβ(
n

k
)k, αβ11, αβ21, · · · , αβ(

n

k
)1, 12, 22, · · · , (

n

k
)2, · · · , 1k, 2k, · · · , (

n

k
)k).

Then the map B2
n = (X 2

α,β ,P2
n) is an orientable map underlying the graph Bn and

stable under the action of (g; h1, h2, · · · , hn). For the non-orientable case, the con-

struction is similar. It only need to replace each element αβij by βij in the con-

struction of the orientable case if hij = (1, β).
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(iii) g =
2s∏

i=1
(i1, i2, · · · ik)

(n−2ks)/2k∏
j=1

(ej1 , ej2, · · · , ej2k
) and hi1 = (1, αβ), i =

1, 2, · · · , s, hil = 1 for l ≥ 2 and hjt
= 1 for t = 1, 2, · · · , 2k

In this case, we know that

(g; h1, h2, · · · , hn) =
s∏

i=1

(i1, αβi2, · · ·αβik, αβi1, i2, · · · , ik)
(n−2ks)/2k∏

j=1

(ej1 , ej2, · · · , ej2k
).

Denote by p the number (n− 2ks)/2k. We construct an orientable map B3
n =

(X 3
α,β,P3

n) underlying Bn stable under the action of (g; h1, h2, · · · , hn) as follows.

Take X 3
α,β = X 1

α,β and

P3
n = C3(αC

−1
3 α−1)

with

C3 = ( 11 , 21, · · · , s1, e11 , e21 , · · · , ep1 , αβ12, αβ22, · · · , αβs2,

e12 , e22 , · · · , ep2, · · · , αβ1k, αβ2k, · · · , αβsk, e1k
, e2k

, · · · ,
epk
, αβ11, αβ21, · · · , αβs1, e1k+1

, e2k+1
, · · · , epk+1

, 12, 22, · · · ,
s2, e1k+2

, e2k+2
, · · · , epk+2

, · · · , 1k, 2k, · · · , sk, e12k
, e22k

, · · · , ep2k
).

Then the map B3
n = (X 3

α,β ,P3
n) is an orientable map underlying the graph Bn and

stable under the action of (g; h1, h2, · · · , hn).

Similarly, replacing each element αβij by βij in the construction of the ori-

entable case if hij = (1, β), a non-orientable map underlying the graph Bn and stable

under the action of (g; h1, h2, · · · , hn) can be also constructed. This completes the

proof. ♮

We use the Lemma 3.4.1 for the enumeration of unrooted one face maps on

surfaces in the next chapter.



Chapter 4 Application to the Enumeration of Unrooted

Maps and s-manifolds

All the results gotten in the Chapter 3 is more useful for the enumeration of

unrooted maps on surfaces underlying a graph. According to the theory in Chapter

1, the enumeration of unrooted maps on surfaces underlying a graph can be carried

out by the following programming:

STEP 1. Determine all automorphisms of maps underlying a graph;

STEP 2. Calculate the the fixing set Fix(ς) for each automorphism ς of a map;

STEP 3. Enumerate the unrooted maps on surfaces underlying a graph by

Corollary 1.3.1.

The advantage of this approach is its independence of the orientability, which enables

us to enumerate orientable or non-orientable maps on surafces. We present the

enumeration results by this programming in this chapter.

§1. The enumeration of unrooted complete maps on surfaces

We first consider a permutation and its stabilizer . A permutation with the

following form (x1, x2, ..., xn)(αxn, αx2, ..., αx1) is called a permutation pair. The

following result is obvious.

Lemma 4.1.1 Let g be a permutation on the set Ω = {x1, x2, ..., xn} such that

gα = αg. If

g(x1, x2, ..., xn)(αxn, αxn−1, ..., αx1)g
−1 = (x1, x2, ..., xn)(αxn, αxn−1, ..., αx1),

then

g = (x1, x2, ..., xn)k

and if
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gα(x1, x2, ..., xn)(αxn, αxn−1, ..., αx1)(gα)−1 = (x1, x2, ..., xn)(αxn, αxn−1, ..., αx1),

then

gα = (αxn, αxn−1, ..., αx1)
k

for some integer k, 1 ≤ k ≤ n.

Lemma 4.1.2 For each permutation g, g ∈ E
[k

n
k ]

satisfying gα = αg on the set

Ω = {x1, x2, ..., xn}, the number of stable permutation pairs in Ω under the action

of g or gα is

2φ(k)(n− 1)!

|E
[k

n
k ]
| ,

where φ(k) denotes the Euler function.

Proof Denote the number of stable pair permutations under the action of g or

gα by n(g) and C the set of pair permutations. Define the set A = {(g, C)|g ∈
E

[k
n
k ]
, C ∈ C and Cg = C or Cgα = C}. Clearly, for ∀g1, g2 ∈ E

[k
n
k ]

, we have

n(g1) = n(g2). Whence, we get that

|A| = |E
[k

n
k ]
|n(g). (4.1.1)

On the other hand, by the Lemma 4.1.1, for any permutation pair C = (x1, x2, ..., xn)

(αxn, αxn−1, ..., αx1), since C is stable under the action of g, there must be g =

(x1, x2, ..., xn)l or gα = (αxn, αxn−1, ..., αx1)
l, where l = sn

k
, 1 ≤ s ≤ k and (s, k) =

1. Therefore, there are 2φ(k) permutations in E
[k

n
k ]

acting on it stable. Whence, we

also have

|A| = 2φ(k)|C|. (4.1.2)

Combining (4.1.1) with (4.1.2), we get that

n(g) =
2φ(k)|C|
|E

[k
n
k ]
| =

2φ(k)(n− 1)!

|E
[k

n
k ]
| . ♮

Now we can enumerate the unrooted complete maps on surfaces.
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Theorem 4.1.1 The number nL(Kn) of complete maps of order n ≥ 5 on surfaces

is

nL(Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
2α(n,k)(n− 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)2β(n,k)(n− 2)!
n−1

k

n− 1
,

where,

α(n, k) =





n(n−3)
2k

, if k ≡ 1(mod2);
n(n−2)

2k
, if k ≡ 0(mod2),

and

β(n, k) =





(n−1)(n−2)
2k

, if k ≡ 1(mod2);
(n−1)(n−3)

2k
, if k ≡ 0(mod2).

and nL(K4) = 11.

Proof According to (1.3.3) in the Corollary 1.3.1 and the Theorem 3.2.1 for

n ≥ 5, we know that

nL(Kn) =
1

2|AutKn|
× (

∑

g1∈E
[k

n
k ]

|Φ(g1)| +
∑

g2∈E
[(2s)

n
2s ]

|Φ(g2α)|

+
∑

h∈E
[1,k

n−1
k ]

|Φ(h)|)

=
1

2n!
× (

∑

k|n

|E
[k

n
k ]
||Φ(g1)| +

∑

l|n,l≡0(mod2)

|E
[l

n
l ]
||Φ(g2α)|

+
∑

l|(n−1)

|E
[1,l

n−1
l ]

||Φ(h)|),

where, g1 ∈ E
[k

n
k ]
, g2 ∈ E

[l
n
l ]

and h ∈ E
[1,k

n−1
k ]

are three chosen elements.

Without loss of generality, we assume that an element g, g ∈ E
[k

n
k ]

has the

following cycle decomposition.

g = (1, 2, ..., k)(k + 1, k + 2, ..., 2k)...((
n

k
− 1)k + 1, (

n

k
− 1)k + 2, ..., n)

and
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P =
∏

1
×

∏
2
,

where,

∏
1

= (1i21 , 1i31, ..., 1in1)(2i12 , 2i32 , ..., 2in2)...(ni1n , ni2n , ..., ni(n−1)n),

and

∏
2

= α(
∏

1

−1
)α−1,

being a complete map which is stable under the action of g, where sij ∈ {k+, k−|k =

1, 2, ...n}.
Notice that the quadricells adjacent to the vertex ”1” can make 2n−2(n −

2)!different pair permutations and for each chosen pair permutation, the pair permu-

tations adjacent to the vertices 2, 3, ..., k are uniquely determined since P is stable

under the action of g.

Similarly, for each given pair permutation adjacent to the vertex k + 1, 2k +

1, ..., (n
k
− 1)k + 1, the pair permutations adjacent to k + 2, k + 3, ..., 2k and 2k +

2, 2k+3, ..., 3k and,...,and (n
k
−1)k+2, (n

k
−1)k+3, ...n are also uniquely determined

because P is stable under the action of g.

Now for an orientable embedding M1 of Kn, all the induced embeddings by

exchanging two sides of some edges and retaining the others unchanged in M1 are

the same as M1 by the definition of maps. Whence, the number of different stable

embeddings under the action of g gotten by exchanging x and αx in M1 for x ∈
U,U ⊂ Xβ, where Xβ =

⋃
x∈E(Kn)

{x, βx} , is 2g(ε)−n
k , where g(ε) is the number of

orbits of E(Kn) under the action of g and we substract n
k

because we can chosen

12+, k + 11+, 2k + 11+, · · · , n− k + 11+ first in our enumeration.

Notice that the length of each orbit under the action of g is k for ∀x ∈ E(Kn)

if k is odd and is k
2

for x = ii+
k
2 , i = 1, k + 1, · · · , n− k + 1, or k for all other edges

if k is even. Therefore, we get that

g(ε) =





ε(Kn)
k
, if k ≡ 1(mod2);

ε(Kn)−n
2

k
, if k ≡ 0(mod2).

Whence, we have that
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α(n, k) = g(ε) − n

k
=





n(n−3)
2k

, if k ≡ 1(mod2);
n(n−2)

2k
, if k ≡ 0(mod2),

and

|Φ(g)| = 2α(n,k)(n− 2)!
n
k , (4.1.3)

Similarly, if k ≡ 0(mod2), we get also that

|Φ(gα)| = 2α(n,k)(n− 2)!
n
k (4.1.4)

for an chosen element g,g ∈ E
[k

n
k ]
.

Now for ∀h ∈ E
[1,k

n−1
k ]

, without loss of generality, we assume that h = (1, 2, ..., k)

(k+ 1, k+ 2, ..., 2k)...((n−1
k

− 1)k+ 1, (n−1
k

− 1)k+ 2, ..., (n− 1))(n). Then the above

statement is also true for the complete graph Kn−1 with the vertices 1, 2, · · · , n− 1.

Notice that the quadricells n1+, n2+, · · · , nn−1+ can be chosen first in our enumera-

tion and they are not belong to the graph Kn−1. According to the Lemma 4.1.2, we

get that

|Φ(h)| = 2β(n,k)(n− 2)!
n−1

k × 2φ(k)(n− 2)!

|E
[1,k

n−1
k ]

| , (4.1.5)

Where

β(n, k) = h(ε) =





ε(Kn−1)
k

− n−1
k

= (n−1)(n−4)
2k

, if k ≡ 1(mod2);
ε(Kn−1)

k
− n−1

k
= (n−1)(n−3)

2k
, if k ≡ 0(mod2).

Combining (4.1.3) − (4.1.5), we get that

nL(Kn) =
1

2n!
× (

∑

k|n

|E
[k

n
k ]
||Φ(g0)| +

∑

l|n,l≡0(mod2)

|E
[l

n
l ]
||Φ(g1α)|

+
∑

l|(n−1)

|E
[1,l

n−1
l ]

||Φ(h)|)

=
1

2n!
× (

∑

k|n

n!2α(n,k)(n− 2)!
n
k

k
n
k (n

k
)!

+
∑

k|n,k≡0(mod2)

n!2α(n,k)(n− 2)!
n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

n!

k
n−1

k (n−1
k

)!
× 2φ(k)(n− 2)!2β(n,k)(n− 2)!

n−1
k

(n−1)!

k
n−1

k (n−1
k

)!

)
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=
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
2α(n,k)(n− 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)2β(n,k)(n− 2)!
n−1

k

n− 1
.

For n = 4, similar calculation shows that nL(K4) = 11 by consider the fixing

set of permutations in E
[s

4
s ]

,E
[1,s

3
s ]

, E
[(2s)

4
2s ]

,αE
[(2s)

4
2s ]

and αE[1,1,2]. ♮

For the orientable case, we get the number nO(Kn) of orientable complete maps

of order n as follows.

Theorem 4.1.2 The number nO((Kn) of complete maps of order n ≥ 5 on orientable

surfaces is

nO(Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
(n− 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)(n− 2)!
n−1

k

n− 1
.

and n(K4) = 3.

Proof According to Tutte’s algebraic representation of map, a mapM = (Xα,β,P)

is orientable if and only if for ∀x ∈ Xα,β, x and αβx are in a same orbit of Xα,β un-

der the action of the group ΨI =< αβ,P >. Now applying (1.3.1) in the Corollary

1.3.1 and the Theorem 3.2.1, Similar to the proof of the Theorem 4.1.1, we get the

number nO(Kn) for n ≥ 5 as follows

nO(Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
(n− 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)(n− 2)!
n−1

k

n− 1
.

and for the complete graph K4, calculation shows that n(K4) = 3. ♮

Notice that nO(Kn)+n
N (Kn) = nL(Kn). Therefore, we can also get the number

nN (Kn) of unrooted complete maps of order n on non-orientable surfaces by the

Theorem 4.1.1 and the Theorem 4.1.2 as follows.

Theorem 4.1.3 The number nN (Kn) of unrooted complete maps of order n, n ≥ 5

on non-orientable surfaces is

nN (Kn) =
1

2
(
∑

k|n

+
∑

k|n,k≡0(mod2)

)
(2α(n,k) − 1)(n− 2)!

n
k

k
n
k (n

k
)!

+
∑

k|(n−1),k 6=1

φ(k)(2β(n,k) − 1)(n− 2)!
n−1

k

n− 1
,
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and nN (K4) = 8. Where, α(n, k) and β(n, k) are same as in Theorem 4.1.1.

For n = 5, calculation shows that nL(K5) = 1080 and nO(K5) = 45 based on

the Theorem 4.1.1 and 4.1.2. For n = 4, there are 3 unrooted orientable maps and

8 non-orientable maps shown in the Fig.4.1. All the 11 maps of K4 on surfaces are

non-isomorphic.

Fig.4.1

Now consider the action of orientation-preserving automorphisms of complete

maps, determined in the Theorem 3.2.1 on all orientable embeddings of a complete

graph of order n. Similar to the proof of the Theorem 4.1.2, we can get the number

of non-equivalent embeddings of a complete graph of order n, which has been done

in [43] and the result gotten is same as the result of Mull et al in [54].
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§2. The enumeration of a semi-regular graph on surfaces

The non-equivalent embeddings of a semi-regular graph on surfaces are enu-

merated in the reference [50]. Here, we enumerate the unrooted maps underlying a

semi-regular graph on orientable or non-orientable surfaces.

The following lemma is implied in the proof of the Theorem 4.1 in [50].

Lemma 4.2.1 Let Γ = (V,E) be a semi-regular graph. Then for ξ ∈ AutΓ

|ΦO(ξ)| =
∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!

and

|ΦL(ξ)| = 2|T
E
ξ
|−|T V

ξ
|

∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!,

where, T V
ξ , T

E
ξ are the representations of orbits of ξ acting on v(Γ) and E(Γ) ,re-

spectively and ξNΓ(x) the restriction of ξ to NΓ(x).

According to the Corollary 1.3.1, we get the following enumeration results.

Theorem 4.2.1 Let Γ be a semi-regular graph. Then the numbers of unrooted maps

on orientable and non-orientable surfaces underlying the graph Γ are

nO(Γ) =
1

|AutΓ|(
∑

ξ∈AutΓ

λ(ξ)
∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!

and

nN (Γ) =
1

|AutΓ| ×
∑

ξ∈AutΓ

(2|T
E
ξ
|−|T V

ξ
| − 1)λ(ξ)

∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!,

where λ(ξ) = 1 if o(ξ) ≡ 0(mod2) and 1
2
, otherwise.

Proof By the Corollary 1.3.1, we know that

nO(Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦO
1 (g)|
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and

nL(Γ) =
1

2|Aut 1
2
Γ|

∑

g∈Aut 1
2
Γ

|ΦT
1 (g)|.

According to the Theorem 3.3.4, all the automorphisms of orientable maps

underlying the graph Γ are

g|Xα,β and αh|Xα,β , g, h ∈ AutΓ with h ≡ 0(mod2).

and all the automorphisms of non-orientable maps underlying the graph Γ are also

g|Xα,β and αh|Xα,β , g, h ∈ AutΓ with h ≡ 0(mod2).

Whence, we get the number of unrooted orientable maps by the Lemma 4.2.1

as follows.

nO(Γ) =
1

2|AutΓ|
∑

g∈AutΓ

|ΦO
1 (g)|

=
1

2|AutΓ|{(
∑

ξ∈AutΓ

∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!

+
∑

ς∈AutΓ,o(ς)≡0(mod2)

∏

x∈T V
ς

(
d(x)

o(ς|NΓ(x))
− 1)!)

=
1

|AutΓ|(
∑

ξ∈AutΓ

λ(ξ)
∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!.

Similarly, we enumerate the unrooted maps on locally orientable surface under-

lying the graph Γ by (1.3.3) in the Corollary 1.3.1 as follows.

nL(Γ) =
1

2|AutΓ|
∑

g∈AutΓ

|ΦT
1 (g)|

=
1

2|AutΓ|(
|T E

ξ
|−|T V

ξ
|∑

ξ∈AutΓ

∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!

+
∑

ς∈AutΓ,o(ς)≡0(mod2)

2|T
E
ς |−|T V

ς |
∏

x∈T V
ς

(
d(x)

o(ς|NΓ(x))
− 1)!)

=
1

|AutΓ|
∑

ξ∈AutΓ

λ(ξ)2|T
E
ξ
|−|T V

ξ
|

∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!.
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Notice that nO(Γ) + nN(Γ) = nL(Γ), we get the number of unrooted maps on

non-orientable surfaces underlying the graph Γ as follows.

nN (Γ) = nL(Γ) − nO(Γ)

=
1

|AutΓ| ×
∑

ξ∈AutΓ

(2|T
E
ξ
|−|T V

ξ
| − 1)λ(ξ)

∏

x∈T V
ξ

(
d(x)

o(ξ|NΓ(x))
− 1)!

This completes the proof. ♮

If Γ is also a k-regular graph, we can get a simple result for the numbers of

unrooted maps on orientable or non-orientable surfaces.

Corollary 4.2.1 Let Γ be a k-regular semi-regular graph. Then the numbers of

unrooted maps on orientable or non-orientable surfaces underlying the graph Γ are

respective

nO(Γ) =
1

|AutΓ| ×
∑

g∈AutΓ

λ(g)(k − 1)!|T
V
g |

and

nN(Γ) =
1

|AutΓ| ×
∑

g∈AutΓ

λ(g)(2|T
E
g |−|T V

g | − 1)(k − 1)!|T
V
g |,

where, λ(ξ) = 1 if o(ξ) ≡ 0(mod2) and 1
2
, otherwise.

Proof In the proof of the Theorem 4.2 in [50], it has been proved that

∀x ∈ V (Γ), o(ξNΓ(x)) = 1.

Whence, we get nO(Γ) and nN(Γ) by the Theorem 4.2.1. ♮

Similarly, if Γ = Cay(Zp : S) for a prime p, we can also get closed formulas for

the number of unrooted maps underlying the graph Γ.

Corollary 4.2.2 Let Γ = Cay(Zp : S) be connected graph of prime order p with

(p− 1, |S|) = 2. Then

nO(Γ,M) =
(|S| − 1)!p + 2p(|S| − 1)!

p+1
2 + (p− 1)(|S| − 1)!

4p

and
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nN (Γ,M) =
(2

p|S|
2

−p − 1)(|S| − 1)!p + 2(2
p|S|−2p−2)

4 − 1)p(|S| − 1)!
p+1
2

2p

+
(2

|S|−2
2 − 1)(p− 1)(|S| − 1)!

4p
.

Proof By the proof of the Corollary 4.1 in [50], we have known that

|T V
g | =





1, if o(g) = p
p+1
2
, if o(g) = 2

p, if o(g) = 1

and

|TE
g | =





|S|
2
, if o(g) = p

p|S|
4
, if o(g) = 2

p|S|
2
, if o(g) = 1

Notice that AutΓ = Dp (see [3][12]) and there are p elements order 2, one order

1 and p− 1 order p. Whence, we have

nO(Γ,M) =
(|S| − 1)!p + 2p(|S| − 1)!

p+1
2 + (p− 1)(|S| − 1)!

4p

and

nN (Γ,M) =
(2

p|S|
2

−p − 1)(|S| − 1)!p + 2(2
p|S|−2p−2)

4 − 1)p(|S| − 1)!
p+1
2

2p

+
(2

|S|−2
2 − 1)(p− 1)(|S| − 1)!

4p
.

By the Corollary 4.2.1. ♮

§3. The enumeration of a bouquet on surfaces

For any integer k, k|2n, let Jk be the conjugacy class in Sn[S2] with each cycle in

the decomposition of a permutation in Jk being k-cycle. According to the Corollary
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1.3.1, we need to determine the numbers |ΦO(ξ)| and |ΦL(ξ)| for each automorphism

of a map underlying a graph Bn.

Lemma 4.3.1 Let ξ =
2n/k∏
i=1

(C(i))(αC(i)α−1) ∈ Jk, where, C(i) = (xi1, xi2, · · · , xik)

is a k-cycle, be a cycle decomposition. Then

(i) If k 6= 2n, then

|ΦO(ξ)| = k
2n
k (

2n

k
− 1)!

and if k=2n, then |ΦO(ξ)| = φ(2n).

(ii) If k ≥ 3 and k 6= 2n, then

|ΦL(ξ)| = (2k)
2n
k
−1(

2n

k
− 1)!,

and

|ΦL(ξ)| = 2n(2n− 1)!

if ξ = (x1)(x2) · · · (xn)(αx1)(αx2) · · · (αxn)(βx1)(βx2) · · · (βxn)(αβx1)(αβx2) · · · (αβxn),

and

|ΦL(ξ)| = 1

if ξ = (x1, αβx1)(x2, αβx2) · · · (xn, αβxn)(αx1, βx1)(αx2, βx2) · · · (αxn, βxn), and

|ΦL(ξ)| =
n!

(n− 2s)!s!

if ξ = ζ ; ε1, ε2, · · · , εn and ζ ∈ E[1n−2s,2s] for some integer s, εi = (1, αβ) for 1 ≤ i ≤ s

and εj = 1 for s + 1 ≤ j ≤ n,where, E[1n−2s,2s] denotes the conjugate class with the

type [1n−2s, 2s] in the symmetry group Sn, and

|ΦL(ξ)| = φ(2n)

if ξ = θ; ε1, ε2, · · · , εn and θ ∈ E[n1] and εi = 1 for 1 ≤ i ≤ n − 1, εn = (1, αβ),

where, φ(t) is the Euler function.

Proof (i) Notice that for a given representation of C(i), i = 1, 2, · · · , 2n
k

, since

< Pn, αβ > is not transitive on Xα,β, there is one and only one stable orientable

map Bn = (Xα,β,Pn) with X = E(Bn) and Pn = C(αC−1α−), where,
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C = (x11, x21, · · · , x 2n
k

1, x21, x22, · · · , x 2n
k

2, x1k, x2k, · · · , x 2n
k

k).

Counting ways of each possible order for C(i), i = 1, 2, · · · , 2n
k

, and different repre-

sentations for C(i), we know that

|ΦO(ξ)| = k
2n
k (

2n

k
− 1)!

for k 6= 2n.

Now if k = 2n, then the permutation itself is a map with the underlying graph

Bn. Whence, it is also an automorphism of the map with the permutation is its

power. Therefore, we get that

|ΦO(ξ)| = φ(2n)

.

(ii) For k ≥ 3 and k 6= 2n, since the group < Pn, αβ > is transitive on Xα,β

or not, we can interchange C(i) by αC(i)−1α−1 for each cycle not containing the

quadricell x11. Notice that we only get the same map if the two sides of some edges

are interchanged altogether or not. Whence, we get that

|ΦL(ξ)| = 2
2n
k
−1k

2n
k
−1(

2n

k
− 1)! = (2k)

2n
k
−1(

2n

k
− 1)!.

Now if ξ = (x1, αβx1)(x2, αβx2) · · · (xn, αβxn)(αx1, βx1)(αx2, βx2) · · · (αxn, βxn),

there is one and only one stable map (Xα,β,P1
n) under the action of ξ, where

P1
n = (x1, x2, · · · , xn, αβx1, αβx2, · · · , αβxn)(αx1, βxn, · · · , βx1, αxn, · · · , αx1).

Which is an orientable map. Whence, |ΦL(ξ)| = |ΦO(ξ)| = 1.

If ξ = (x1)(x2) · · · (xn)(αx1)(αx2) · · · (αxn)(βx1)(βx2) · · · (βxn)(αβx1)(αβx2)

· · · (αβxn), we can interchange (αβxi) with (βxi) and obtain different embeddings

of Bn on surfaces. Whence, we know that

|ΦL(ξ)| = 2n(2n− 1)!.

Now if ξ = (ζ ; ε1, ε2, · · · , εn) and ζ ∈ E[1n−2s,2s] for some integer s, εi = (1, αβ)

for 1 ≤ i ≤ s and εj = 1 for s + 1 ≤ j ≤ n, we can not interchange (xi, αβxi) with
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(αxi, βxi) to get different embeddings of Bn for it just interchanging the two sides

of one edge. Whence, we get that

|ΦL(ξ)| =
n!

1n−2s(n− 2s)!2ss!
× 2s =

n!

(n− 2s)!s!
.

For ξ = (θ; ε1, ε2, · · · , εn), θ ∈ E[n1] and εi = 1 for 1 ≤ i ≤ n−1, εn = (1, αβ), we

can not get different embeddings of Bn by interchanging the two conjugate cycles,

whence, we get that

|ΦL(ξ)| = |ΦO(ξ)| = φ(2n).

This completes the proof. ♮

Recall that the cycle index of a group G, denoted by Z(G; s1, s2, · · · , sn), is

defined by ([30])

Z(G; s1, s2, · · · , sn) =
1

|G|
∑

g∈G

s
λ1(g)
1 s

λ2(g)
2 · · · sλn(g)

n ,

where, λi(g) is the number of i-cycles in the cycle decomposition of g. For the

symmetric group Sn, its cycle index is known as follows:

Z(Sn; s1, s2, · · · , sn) =
∑

λ1+2λ2+···+kλk=n

sλ1
1 s

λ2
2 · · · sλk

k

1λ1λ1!2λ2λ2! · · ·kλkλk!
.

For example, we have that Z(S2) =
s2
1+s2

2
. By a result of Polya ([56]), we know the

cycle index of Sn[S2] as follows:

Z(Sn[S2]; s1, s2, · · · , s2n) =
1

2nn!

∑

λ1+2λ2+···+kλk=n

(
s2
1+s2

2
)λ1(

s2
2+s4

2
)λ2 · · · ( s2

k
+s2k

2
)λk

1λ1λ1!2λ2λ2! · · · kλkλk!

Now we can count maps on surfaces with an underlying graph Bn.

Theorem 4.3.1 The number nO(Bn) of non-isomorphic maps on orientable surfaces

underlying a graph Bn is

nO(Bn) =
∑

k|2n,k 6=2n

k
2n
k
−1(

2n

k
− 1)!

1

(2n
k

)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+ φ(2n)
∂(Z(Sn[S2]))

∂s2n
|s2n=0
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Proof According to the formula (1.3.1) in the Corollary 1.3.1, we know that

nO(Bn) =
1

2 × 2nn!

∑

ξ∈Sn[S2]×≺α≻

|ΦT (ξ)|.

Now since for ∀ξ1, ξ2 ∈ Sn[S2], if there exists an element θ ∈ Sn[S2], such that

ξ2 = θξ1θ
−1, then we have that |ΦO(ξ1)| = |ΦO(ξ2)| and |ΦO(ξ)| = |ΦO(ξα)|. Notice

that |ΦO(ξ)| has been gotten by the Lemma 4.3.1. Using the Lemma 4.3.1(i) and

the cycle index Z(Sn[S2]), we get that

nO(Bn) =
1

2 × 2nn!
(

∑

k|2n,k 6=2n

k
2n
k
−1(

2n

k
− 1)!|Jk| + φ(2n)|J2n|)

=
∑

k|2n,k 6=2n

k
2n
k
−1(

2n

k
− 1)!

1

(2n
k

)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+ φ(2n)
∂(Z(Sn[S2]))

∂s2n
|s2n=0 ♮

Now we consider maps on the non-orientable surfaces with an underlying graph

Bn. Similar to the discussion of the Theorem 4.1, we get the following enumeration

result for the non-isomorphic maps on the non-orientable surfaces.

Theorem 4.3.2 The number nN(Bn) of non-isomorphic maps on the non-orientable

surfaces with an underlying graph Bn is

nN (Bn) =
(2n− 1)!

n!
+

∑

k|2n,3≤k<2n

(2k)
2n
k
−1(

2n

k
− 1)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+
1

2nn!
(
∑

s≥1

n!

(n− 2s)!s!
+ 4n(n− 1)!(

∂n(Z(Sn[S2]))

∂sn
2

|s2=0 − ⌊n
2
⌋)).

Proof Similar to the proof of the Theorem 4.3.1, applying the formula (1.3.3)

in the Corollary 1.3.1 and the Lemma 4.3.1(ii), we get that

nL(Bn) =
(2n− 1)!

n!
+ φ(2n)

∂n(Z(Sn[S2]))

∂sn
2n

|s2n=0

+
1

2nn!
(
∑

s≥0

n!

(n− 2s)!s!
+ 4n(n− 1)!(

∂n(Z(Sn[S2]))

∂sn
2

|s2=0 − ⌊n
2
⌋))

+
∑

k|2n,3≤k<2n

(2k)
2n
k
−1(

2n

k
− 1)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0.
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Notice that nO(Bn) + nN (Bn) = nL(Bn). Applying the result in the Theorem

4.3.1, we know that

nN (Bn) =
(2n− 1)!

n!
+

∑

k|2n,3≤k<2n

(2k)
2n
k
−1(

2n

k
− 1)!

∂
2n
k (Z(Sn[S2]))

∂s
2n
k

k

|sk=0

+
1

2nn!
(
∑

s≥1

n!

(n− 2s)!s!
+ 4n(n− 1)!(

∂n(Z(Sn[S2]))

∂sn
2

|s2=0 − ⌊n
2
⌋)).

This completes the proof. ♮

Calculation shows that

Z(S1[S2]) =
s2
1 + s2

2

and

Z(S2[S2]) =
s4
1 + 2s2

1s2 + 3s2
2 + 2s4

8
,

For n = 2, calculation shows that there are 1 map on the plane, 2 maps on the

projective plane, 1 map on the torus and 2 maps on the Klein bottle. All of those

maps are non-isomorphic and same as the results gotten by the Theorem 4.3.1 and

4.3.2, which are shown in the Fig. 2.

Fig. 4.2
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§4. A classification of the closed s-manifolds

According to the Theorem 1.2.8, We can classify the closed s-manifolds by

triangular maps with valency in {5, 6, 7} as follows:

Classical Type:

(1) ∆1 = {5 − regular triangular maps} (elliptic);

(2) ∆2 = {6 − regular triangular maps}(euclid);

(3) ∆3 = {7 − regular triangular maps}(hyperbolic).

Smarandache Type:

(4) ∆4 = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);

(5) ∆5 = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);

(6) ∆6 = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);

(7) ∆7 = {triangular maps with vertex valency 5, 6 and 7} (mixed).

We prove each type is not empty in this section.

Theorem 4.4.1 For classical types ∆1 ∼ ∆3, we have that

(1) ∆1 = {O20, P10};
(2) ∆2 = {Ti, Kj, 1 ≤ i, j ≤ +∞};
(3) ∆3 = {Hi, 1 ≤ i ≤ +∞},

where, O20, P10 are shown in the Fig.4.3, T3, K3 are shown in the Fig. 4.4 and Hi

is the Hurwitz maps, i.e., triangular maps of valency 7.

Fig. 4.3
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Fig. 4.4

Proof If M is a k-regular triangulation, we get that 2ε(M) = 3φ(M) = kν(M).

Whence, we have

ε(M) =
3φ(M)

2
and ν(M) =

3ε(M)

k
.

By the Euler-Poincare formula, we know that

χ(M) = ν(M) − ε(M) + φ(M) = (
3

k
− 1

2
)φ(M).

If M is elliptic, then k = 5. Whence, χ(M) = φ(M)
10

> 0. Therefore, if M

is orientable, then χ(M) = 2, Whence, φ(M) = 20, ν(M) = 12 and ε(M) = 30,

which is the map O20. If if M is non-orientable, then χ(M) = 1, Whence, φ(M) =

10, ν(M) = 6 and ε(M) = 15, which is the map P10.

If M is euclid, then k = 6. Whence, χ(M) = 0, i.e., M is a 6-regular tri-

angulation Ti or Kj for some integer i or j on the torus or Klein bottle, which is

infinite.

If M is hyperbolic, then k = 7. Whence, χ(M) < 0. M is a 7-regular

triangulation, i.e., the Hurwitz map. According to the results in [65], there are

infinite Hurwitz maps on surfaces. This completes the proof. ♮

For the Smarandache Types, the situation is complex. But we can also obtain

the enumeration results for each of the types ∆4 ∼ ∆7. First, we prove a condition

for the numbers of vertex valency 5 with 7.

Lemma 4.4.1 Let Let C(T, n) be an s-manifold. Then
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v7 ≥ v5 + 2

if χ(C(T, n)) ≤ −1 and

v7 ≤ v5 − 2

if χ(C(T, n)) ≥ 1. where vi denotes the number of vertices of valency i in C(T, n).

Proof Notice that we have know

ε(C(T, n)) =
−χ(C(T, n))

1
3
− 2

k

,

where k is the average valency of vertices in C(T, n). Since

k =
5v5 + 6v6 + 7v7

v5 + v6 + v7

and ε(C(T, n)) ≥ 3. Therefore, we get that

(i) If χ(C(T, n)) ≤ −1, then

1

3
− 2v5 + 2v6 + 2v7

5v5 + 6v6 + 7v7
> 0,

i.e., v7 ≥ v5 + 1. Now if v7 = v5 + 1, then

5v5 + 6v6 + 7v7 = 12v5 + 6v6 + 7 ≡ 1(mod2).

Contradicts to the fact that
∑

v∈V (Γ) ρΓ(v) = 2ε(Γ) ≡ 0(mod2) for a graph Γ.

Whence we get that

v7 ≥ v5 + 2.

(ii) If χ(C(T, n)) ≥ 1, then

1

3
− 2v5 + 2v6 + 2v7

5v5 + 6v6 + 7v7

< 0,

i.e., v7 ≤ v5 − 1. Now if v7 = v5 − 1, then

5v5 + 6v6 + 7v7 = 12v5 + 6v6 − 7 ≡ 1(mod2).
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Also contradicts to the fact that
∑

v∈V (Γ) ρΓ(v) = 2ε(Γ) ≡ 0(mod2) for a graph Γ.

Whence, we have that

v7 ≤ v5 − 2. ♮

Corollary 4.4.1 There is no an s-manifold C(T, n) such that

|v7 − v5| ≤ 1,

where vi denotes the number of vertices of valency i in C(T, n).

Define an operator Ξ : M →M∗ on a triangulation M of a surface as follows:

Choose each midpoint on each edge in M and connect the midpoint in each

triangle as shown in the Fig.4.5. Then the resultant M∗ is a triangulation of the

same surface and the valency of each new vertex is 6.

Fig. 4.5

Then we get the following result.

Theorem 4.4.2 For the Smarandache Types ∆4 ∼ ∆7, we have

(i) |∆5| ≥ 2;

(ii) Each of |∆4|, |∆6| and |∆7| is infinite.

Proof For M ∈ ∆4, let k be the average valency of vertices in M , since

k =
5v5 + 6v6

v5 + v6
< 6 and ε(M) =

−χ(M)
1
3
− 2

k

,
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we have that χ(M) ≥ 1. Calculation shows that v5 = 6 if χ(M) = 1 and v5 = 12 if

χ(M) = 2. We can construct a triangulation with vertex valency 5, 6 on the plane

and the projective plane in the Fig. 4.6.

Fig. 4.6

Now let M be a map in the Fig. 4.6. Then MΘ is also a triangulation of the

same surface with vertex valency 5, 6 and MΘ 6= M . Whence, |∆4| is infinite.

For M ∈ ∆5, by the Lemma 4.4.1, we know that v7 ≤ v5 − 2 if χ(M) ≥ 1 and

v7 ≥ v5 + 2 if χ(M) ≤ −1. We construct a triangulation on the plane and on the

projective plane in the Fig.4.6.

Fig. 4.7
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For M ∈ ∆6, we know that k = 6v6+7v7

v6+v7
> 6. Whence, χ(M) ≤ −1. Since

3φ(M) = 6v6 + 7v7 = 2ε(M), we get that

v6 + v7 −
6v6 + 7v7

2
+

6v6 + 7v7

3
= χ(M).

Therefore, we have v7 = −χ(M). Since there are infinite Hurwitz maps M on

surfaces. Then the resultant triangular map M∗ is a triangulation with vertex

valency 6, 7 and M∗ 6= M . Whence, |∆6| is infinite.

For M ∈ ∆7, we construct a triangulation with vertex valency 5, 6, 7 in the Fig.

4.8 as follows.

Fig. 4.8

Let M be one of the maps in the Fig.4.8. Then the action of Θ on M results

infinite triangulations of valency 5, 6 or 7. This completes the proof. ♮

Conjecture 4.4.1 The number |∆5| is infinite.
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As a well kind of decomposition of a surface, maps are more concerned by math-

ematician in the last century, especially in the enumeration of maps ([33]− [35]) and

graphs embedding on a surface ([22], [35], [53], [70]). This has its own right,also its

contribution to other branch of mathematics and sciences. Among those map ap-

plication to other branch mathematics, one typical example is its contribution to

the topology for the classification of compact surfaces by one face, or its dual, one

vertex maps, i.e., a bouquet Bn on surfaces. Another is its contribution to the group

theory for finding the Higman-Sims group (a sporadic simple group ([6])) and an

one sentence proof of the Nielsen-Schreier theorem, i.e., every subgroup of a free

group is also free ([63]− [64]). All those applications are to the algebra, a branch of

mathematics without measures. From this view, the topics discussed in the graph

theory can be seen just the algebraic questions. But our world is full of measures.

For applying combinatorics to other branch of mathematics, a good idea is pullback

measures on combinatorial objects again, ignored by the classical combinatorics and

reconstructed or make combinatorial generalization for the classical mathematics,

such as, the algebra, differential geometry, Riemann geometry, Smarandache ge-

ometries, · · · and the mechanics, theoretical physics, · · ·. For doing this, the most

possible way is, perhaps by the combinatorial maps. Here is a collection of open

problems concerned maps with the Riemann geometry and Smarandache geometries.

5.1 The uniformization theorem for simple connected Riemann sur-

faces

The uniformization theorem for simple connected Riemann surfaces is one of

those beautiful results in the Riemann surface theory, which is stated as follows([18]).

If S is a simple connected Riemann surface, then S is conformally equivalent

to one and only one of the following three:

(a) C ⋃∞;

(b) C;
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(c) △ = {z ∈ C||z| < 1}.

We have proved in the Chapter 2 that any automorphism of a map is conformal.

Therefore, we can also introduced the conformal mapping between maps. Then, how

can we define the conformal equivalence for maps enabling us to get the uniformiza-

tion theorem of maps? What is the correspondence class maps with the three type

(a) − (c) Riemann surfaces?

5.2 The Riemann-Roch theorem

Let S be a Riemann surface. A divisor on S is a formal symbol

U =
k∏

i=1

P
α(Pi)
i

with Pi ∈ S, α(Pi) ∈ Z. Denote by Div(S) the free commutative group on the

points in S and define

degU =
k∑

i=1

α(Pi).

Denote by H(S) the field of meromorphic function on S. Then for ∀f ∈ H(S)\
{0}, f determines a divisor (f) ∈ Div(S) by

(f) =
∏

P∈S

P ordP f ,

where, if we write f(z) = zng(z) with g holomorphic and non-zero at z = P , then

the ordPf = n. For U1 =
∏

P∈S
P α1(P ),U2 =

∏
P∈S

P α2(P ),∈ Div(S), call U1 ≥ U2 if

α1(P ) ≥ α2(P ). Now we define a vector space

L(U) = {f ∈ H(S)|(f) ≥ U ,U ∈ Div(S)}

Ω(U) = {ω|ω is an abelian differential with (ω) ≥ U}.

The Riemann-Roch theorem says that([71])

dim(L(U−1)) = degU − g(S) + 1 + dimΩ(S).
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Comparing with the divisors and their vector space, there ia also cycle space

and cocycle space in graphical space theory ([35]). What is their relation? Whether

can we rebuilt the Riemann-Roch theorem by map theory?

5.3 Combinatorial construction of an algebraic curve of genus

A complex plane algebraic curve Cl is a homogeneous equation f(x, y, z) = 0

in P2C = (C2 \ (0, 0, 0))/ ∼, where f(x, y, z) is a polynomial in x, y and z with

coefficients in C. The degree of f(x, y, z) is said the degree of the curve Cl. For

a Riemann surface S, a well-known result is ([71])there is a holomorphic mapping

ϕ : S → P2C such that ϕ(S) is a complex plane algebraic curve and

g(S) =
(d(ϕ(S)) − 1)(d(ϕ(S)) − 2)

2
.

By map theory, we know a combinatorial map also is on a surface with genus.

Then whether we can get an algebraic curve by all edges in a map or by make

operations on the vertices or edges of the map to get plane algebraic curve with

given k-multiple points? and how do we find the equation f(x, y, z) = 0?

5.4 Classification of s-manifolds by maps

We have classified the closed s-manifolds by maps in the Section 4 of Chapter 4.

For the general s-manifolds, their correspondence combinatorial model is the maps

on surfaces with boundary, founded by Bryant and Singerman in 1985 ([8]). The

later is also related to the modular groups of spaces and need to investigate further

itself. The questions are

(i) how can we combinatorially classify the general s-manifolds by maps with

boundary?

(ii) how can we find the automorphism group of an s-manifold?

(iii) how can we know the numbers of non-isomorphic s-manifolds, with or

without root?

(iv) find rulers for drawing an s-manifold on a surface, such as, the torus, the

projective plane or Klein bottle, not the plane.
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The Smarandache manifolds only using the triangulations of surfaces with ver-

tex valency in {5, 6, 7}. Then what are the geometrical mean of the other maps, such

as, the 4-regular maps on surfaces. It is already known that the later is related to

the Gauss cross problem of curves([35]). May be we can get a geometry even more

general than that of the Smarandache geometries.

5.5 Gauss mapping among surfaces

In the classical differential geometry, a Gauss mapping among surfaces is defined

as follows([42]):

Let S ⊂ R3 be a surface with an orientation N. The mapping N : S → R3

takes its value in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientation N. The map N : S → S2, thus defined, is called the Gauss

mapping.

we know that for a point P ∈ S such that the Gaussian curvature K(P ) 6= 0

and V a connected neighborhood of P with K does not change sign,

K(P ) = lim
A→0

N(A)

A
,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by

the Gauss mapping N : S → S2. The questions are

(i) what is its combinatorial meaning of the Gauss mapping? How to realizes

it by maps?

(ii) how we can define various curvatures for maps and rebuilt the results in

the classical differential geometry?

5.6 The Gauss-Bonnet theorem

Let S be a compact orientable surface. Then
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∫ ∫

S
Kdσ = 2πχ(S),

where K is Gaussian curvature on S.

This is the famous Gauss-Bonnet theorem for compact surface ([14], [71]− [72]).

This theorem should has a combinatorial form. The questions are

(i) how can we define the area of a map? (Notice that we give a definition of

non-Euclid area of maps in Chapter 2.)

(ii) can we rebuilt the Gauss-Bonnet theorem by maps?

5.7 Riemann manifolds

A Riemann surface is just a Riemann 2-manifold. A Riemann n-manifold (M, g)

is a n-manifold M with a Riemann metric g. Many important results in Riemann

surfaces are generalized to Riemann manifolds with higher dimension ([14], [71] −
[72]). For example, let M be a complete, simple-connected Riemann n-manifold

with constant sectional curvature c, then we know that M is isometric to one of the

model spaces Rn, SRn or HRn . There is also a combinatorial map theory for higher

dimension manifolds (see [67] − [68]). Whether can we systematically rebuilt the

Riemann manifold theory by combinatorial maps? or can we make a combinatorial

generalization of results in the Riemann geometry, for example, the Chern-Gauss-

Bonnet theorem ([14], [37], [71])? If we can, a new system for the Einstein’s relative

theory will be found.
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Abstract

A combinatorial map is a connected topological graph cellularly embedded

in a surface. This monograph concentrates on the automorphism group

of a map, which is related to the automorphism groups of a Klein surface

and a Smarandache manifold, also applied to the enumeration of unrooted

maps on orientable and non-orientable surfaces. A number of results for the

automorphism groups of maps, Klein surfaces and Smarandache manifolds

and the enumeration of unrooted maps underlying a graph on orientable

and non-orientable surfaces are discovered. An elementary classification for

the closed s-manifolds is found. Open problems related the combinatorial

maps with the differential geometry, Riemann geometry and Smarandache

geometries are also presented in this monograph for the further applications

of the combinatorial maps to the classical mathematics.


