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Preface to the Second Edition

Automorphism groups survey similarities on mathematical systems, which appear nearly
in all mathematical branches, such as those of algebra, combinatorics, geometry, · · · and
theoretical physics, theoretical chemistry, etc.. In geometry, conf gurations with high
symmetry born symmetrical patterns, a kind of beautiful pictures in aesthetics. Naturally,
automorphism groups enable one to distinguish systems by similarity. More automor-
phisms imply more symmetries of that system. This fact has established the fundamental
role of automorphism groups in modern sciences. So it is important for graduate students
knowing automorphism groups with applications.

The f rst edition of this book is in fact consisting of my post-doctoral reports in Chi-
nese Academy of Sciences in 2005, not self-contained and not suitable as a textbook for
graduate students. Many friends of mine suggested me to extend it to a textbook for
graduate students in past years. That is the initial motivation of this edition. Besides, I
also wish to survey applications of Smarandache’s notion with combinatorics, i.e., math-
ematical combinatorics to automorphism groups of maps, surfaces and Smarandache ge-
ometries in this edition. The two objectives advance me to complete this self-contained
book.

Indeed, there are many ways for introducing automorphism groups. I plan them for
graduate students both in combinatorics and geometry. The materials in this book include
groups with actions, graphs with symmetries, graphs on surfaces with enumeration, reg-
ular maps, isometries on f nitely or inf nitely pseudo-Euclidean spaces and an interesting
notion for developing mathematical sciences in 21th century, i.e. the CC conjecture.

Contents in in this book are outlined following.
Chapters 1 and 2 are an introduction to groups. Topics such as those of groups and



ii Automorphism Groups of Maps, Surfaces and Smarandache Geometries

subgroups, regular representations, homomorphism theorems, structures of f nite Abelian
groups, transitive groups, automorphisms of groups, characteristic subgroups, p-groups,
primitive groups, regular normal subgroups are discussed and a few useful results, for ex-
amples, these Burnside lemma, Sylow theorem and O’Nan-Scott theorem are established.
Furthermore, an elementary introduction to multigroups and permutation multigroups, in-
cluding locally or globally transitive groups, locally or globally regular groups can be also
found in Chapters 1 and 2.

For getting automorphism groups of graphs, these symmetric graphs, including vertex-
transitive graphs, edge-transitive graphs, arc-transitive graphs and semi-arc transitive graphs
are introduced in Chapter 3. Indeed, the automorphism group of a normally Cayley graph
or GRR of a f nite group can be completely determined. For classifying maps on sur-
faces underlying a graph G, one needs to consider the action of semi-arc automorphism
group Aut 1

2
G on its semi-arc set X 1

2
G. Such groups are not very different from that of

automorphism group of G. In fact, Aut 1
2
G = AutG if G is loop-free. This chapter also

discuses multigroup action graphs, which make a few results on globally transitive groups
in Chapter 2 simple.

As a preparing for combinatorial maps with applications to Klein surfaces, Chapter
4 is mainly on surfaces, including both topological surfaces and Klein surfaces. Indeed,
Sections 4.1-4.3 can be used to an introduction on topological surfaces and Sections 4.4-
4.5 on Klein surfaces. These fundamental techniques or results on surfaces, such as those
of classifying theorem of surfaces by elementary operations, Seifert-Van Kampen theo-
rem, fundamental groups of surfaces, NEC groups and automorphism groups of Klein
surfaces are well discussed in this chapter.

Chapters 5-7 are an introduction on algebraic maps, i.e., graphs on surfaces, partic-
ularly, automorphisms of maps. The rotation embedding scheme on graphs and its con-
tribution to algebraic maps can be found in Sections 5.1-5.2. Then map groups, regular
maps and the technique for constructing regular maps by triangle groups are interpreted
in Sections 5.3-5.5.

Chapter 6 concentrates on lifting automorphisms of maps by that of voltage assign-
ment technique. A condition for a group being that of a lifted map and a combinatorial
ref nement of the Hurwitz theorem on Riemann surfaces are gotten in Sections 6.1-6.4.
After that, Section 6.5 concerns the order of an automorphism of Klein surfaces by that
of map, which is an interesting problem in Klein surfaces.
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The objective of Chapter 7 is to f nd presentations of automorphisms of maps un-
derlying a graph. A general condition for a graph group being that of map is established
in the f rst section. Then all these presentations for automorphisms of maps underlying a
complete graph, a semi-regular graph or a bouquet are found, which are useful for enu-
merating maps underlying such a graph.

Applying results in Chapter 7 enables one to classify maps, i.e., enumerating rooted
maps or maps underlying a graph in Chapter 8. These enumerating results on rooted
maps underlying a graph are presented in Sections 8.1-8.2 by group action. It is worth
to celebrate that a sum-free formula for rooted maps underlying a graph is found by the
action semi-arc automorphism group of graph. Then a general scheme for enumerating
maps underlying a graph is established in Section 8.3. By applying this scheme and those
presentations of automorphisms of maps in Chapter 7, these complete maps, semi-regular
maps and one-vertex maps are enumerated in Sections 8.4-8.6, respectively.

Chapter 9 turns on a special kind of automorphisms, i.e., isometries on Smarandache
geometry, a mixed geometry with an axiom validated or invalided, or only invalided but in
at least two distinct ways. A formally def nition with examples for such geometry can be
found in Sections 9.1-9.2. Then all isometries on f nitely or inf nitely pseudo-Euclidean
spaces (Rn, µ) are determined in Sections 9.3-9.4. It should be noted that for the f nite
case, all such isometries can be combinatorially characterized by graphs embedded in the
Euclidean space Rn.

The f nal chapter concentrates on an important notion for developing mathematical
sciences in 21th century, i.e., the CC conjecture appeared in Chapter 5 of the f rst edition
in 2005. That is the originality of mathematical combinatorics. Its contributions to math-
ematics and physics are introduced, and research problems are presented in this chapter.
These interested readers are referred to [Mao25] for its further applications to geometry
or Riemann geometry.

This edition was began to prepare in 2009. Many colleagues and friends of mine
have given me enthusiastic support and endless helps in writing. Here I must mention
some of them. On the f rst, I would like to give my sincerely thanks to Dr.Perze for his
encourage and endless help. Without his encourage, I would do some else works, can not
investigate mathematical combinatorics for years and f nish this edition. Second, I would
like to thank Professors Feng Tian, Yanpei Liu, Mingyao Xu, Jiyi Yan, Fuji Zhang and
Wenpeng Zhang for them interested in my research works. Their encouraging and warm-



iv Automorphism Groups of Maps, Surfaces and Smarandache Geometries

hearted supports advance this book. Thanks are also given to Professors Han Ren, Yanqiu
Huang, Junliang Cai, Rongxia Hao, Wenguang Zai, Goudong Liu, Weili He and Erling
Wei for their kindly helps and often discussing problems in mathematics altogether. Par-
tially research results of mine were reported at Chinese Academy of Mathematics & Sys-
tem Sciences, Beijing Jiaotong University, Beijing Normal university, East-China Normal
University and Hunan Normal University in past years. Some of them were also reported
at The 2nd and 3rd Conference on Graph Theory and Combinatorics of China in 2006
and 2008. My sincerely thanks are also give to these audiences discussing mathematical
topics with me in these periods.

Of course, I am responsible for the correctness all of these materials presented here.
Any suggestions for improving this book or solutions for open problems in this book are
welcome.

L.F.Mao

June 24, 2011
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There are many wonderful things in nature, but the most wonderful
of all is man.

Sophocles, an ancient Greek dramatist



CHAPTER 1.

Groups

A group is surely the laws of combinations on its symbols, an important con-
ception of mathematics. One classif es groups into two categories, i.e., the ab-
stract groups and permutation groups. Its application f elds includes physics,
chemistry, biology, crystallography,..., etc.. Now it has become a fundamental
of all branches of mathematical sciences. For introducing readers to abstract
groups, these algebraic systems, groups with subgroups, regular representa-
tion, homomorphism theorems, Abelian groups with structures, multigroups
and submultigroups with elementary properties are discussed in this chapter,
where multigroups are generalized algebraic systems of groups by Smaran-
dache multi-space, i.e., a union of groups, different two by two.



2 Chap.1 Groups

§1.1 SETS

1.1.1 Set. A setS is a category consisting of parts, i.e., a collection of objects possessing
with a property P . Usually, a set S is denoted by

S = { x | x possesses the property P }.

If an element x possesses the propertyP , we say that x is an element of the setS, denoted
by x ∈ S. On the other hand, if an element y does not possesses the property P , then it
is not an element of S, denoted by y < S.

For examples,

Z+ = {1, 2, · · · , n, · · ·},

P = {cities with more than 2 million peoples in China},

E = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

are 3 sets by def nition, and the number n ≥ 1, city with more than 2 million peoples in
China and point (x, y) with 0 ≤ x, y ≤ 1 are elements of sets Z+, P and E, respectively.

Let S , T be two sets. These binary operations union S ∪ T and intersection S ∩ T of
sets S and T are def ned by

S
⋃

T = {x|x ∈ S or x ∈ T }, S
⋂

T = {x|x ∈ S and x ∈ T }.

These operations ∪ and ∩ have the following laws.

Theorem 1.1.1 Let X, T and R be sets. Then

(i) X
⋃
X = X and X

⋂
X = X;

(ii) X
⋃
T = T

⋃
X and X

⋂
T = T

⋂
X;

(iii) X
⋃
(T

⋃
R) = (X

⋃
T )

⋃
R and X

⋂
(T

⋂
R) = (X

⋂
T )

⋂
R;

(iv) X
⋃
(T

⋂
R) = (X

⋃
T )

⋂
(X

⋃
R),

X
⋂
(T

⋃
R) = (X

⋂
T )

⋃
(X

⋂
R).

Proof These laws (i)-(iii) can be verif ed immediately by def nition. For the law (iv),
let x ∈ X⋃

(T
⋂
R) = (X

⋃
T )

⋂
(X

⋃
R). Then x ∈ X or x ∈ T ⋂

R, i.e., x ∈ T and
x ∈ R. Now if x ∈ X, we know that x ∈ X ∪ T and x ∈ X ∪ R. Whence, we get that
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x ∈ (X⋃
T )

⋂
(X

⋃
R). Otherwise, x ∈ T ⋂

R, i.e., x ∈ T and x ∈ R. We also get that
x ∈ (X⋃

T )
⋂
(X

⋃
R).

Conversely, for ∀x ∈ (X⋃
T )

⋂
(X

⋃
R), we know that x ∈ X⋃

T and x ∈ X⋃
R,

i.e., x ∈ X or x ∈ T and x ∈ R. If x ∈ X, we get that x ∈ X⋃
(T

⋂
R). If x ∈ T and

x ∈ R, we also get that x ∈ X⋃
(T

⋂
R). Therefore, X

⋃
(T

⋂
R) = (X

⋃
T )

⋂
(X

⋃
R) by

def nition.

Similarly, we can also get the law X ∩ T = X ∪ T . �

Let S1 and S2 be two sets. If for ∀x ∈ S1, there must be x ∈ S2, then we say that
S1 is a subset of S2, denoted by S1 ⊆ S2. A subset S1 of S2 is proper, denoted by
S1 ⊂ S2 if there exists an element y ∈ S2 with y < S1 hold. It should be noted that the
void (empty) set ∅ is a subset of all sets by def nition. All subsets of a set S naturally
form a set P(S), called the power set of S.

Now let S be a set and X ∈P(S). We def ne the complement X of X ⊂ S to be

X = { y | y ∈ S but y < X}.

Then we know the following result.

Theorem 1.1.2 Let S be a set, S , T ⊂ S. Then

(i) X ∩ X = ∅ and X ∪ X = S;

(ii) X = X;

(iii) X ∪ T = X ∩ T and X ∩ T = X ∪ T .

Proof The laws (i) and (ii) can be immediately verif ed by def nition. For (iii), let
x ∈ X ∪ T . Then x ∈ S but x < X ∪ T , i.e., x < X and x < T . Whence, x ∈ X and x ∈ T .
Therefore, x ∈ X ∩ T . Now for ∀x ∈ X ∩ T , there must be x ∈ X and x ∈ T , i.e., x ∈ S

but x < X and x < T . Hence, x < X ∪ T . This fact implies that x ∈ X ∪ T . By def nition,
we f nd that X ∪ T = X ∩ T . Similarly, we can also get the law X ∩ T = X ∪ T . This
completes the proof. �

1.1.2 Cardinality. A mapping f from a set S to T is a subset of S × T such that for
∀x ∈ S , | f (∩({x} × T )| = 1, i.e., f ∩ ({x} × T ) only has one element. Usually, we denote
a mapping f from S to T by f : S → T and f (x) the second component of the unique
element of f ∩ ({x} × T ), called the image of x under f .
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A mapping f : S → T is called injection if for ∀y ∈ T , | f ∩ (S × {y})| ≤ 1 and
surjection if | f ∩ (S ×{y})| ≥ 1. If it is both injection and surjection, i.e., | f ∩ (S ×{y})| = 1,
then it is called a bijection or a 1 − 1 mapping.

Def nition 1.1.1 Let S , T be two sets. If there is a bijection f : S → T, then the
cardinality of S is equal to that of T . Particularly, if T = {1, 2, · · · , n}, the cardinal
number, usually called the order of S is def ned to be n, denoted by |S | = n.

Def nition 1.1.2 A set S is f nite if and only if c(S ) < ∞. Otherwise, S is inf nite.

Def nition 1.1.3 A set S is countable if there is a bijection f : S → Z+.

By this def nition, one can enumerate all elements of S by an inf nite sequence
s1, s2, · · · , sn, · · ·. These Z+, P and E in Subsection 1.1.1 are countable, f nite and inf -
nite set, respectively. Generally, we have the following result.

Theorem 1.1.3 A set S is inf nite if and only if it contains a countable subset.

Proof If S contains a countable subset, by Def nition 1.1.3 it is inf nite. Now if S is
inf nite, choose s1 ∈ S , s2 ∈ S \ {s1}, s3 ∈ S \ {s1, s2}, ..., sn ∈ S \ {s1, s2, · · · , sn−1},.... By
assumption, S is inf nite, so for any integer n ≥ 1, the set S \ {s1, s2, · · · , sn−1} can never
be empty. Therefore, we can always choose an element sn from it and this process will
never stop until we get an inf nite sequence s1, s2, · · · , sn, · · ·, a countable subset of S . �

Theorem 1.1.4 The set R of all real numbers is not countable.

Proof Assume there is an enumeration r1, r2, · · · , rn, · · · of all real numbers. Then list
the decimal expansion of these numbers after the decimal point in their enumerated order
in a square array:

r1 = · · · .a11a12a13a14 · · ·
r2 = · · · .a21a22a23a24 · · ·
r3 = · · · .a31a32a33a34 · · ·
r4 = · · · .a41a42a43a44 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · ,

where amn is the nth digit after the decimal point of rm. Then we construct a new real
number ζ between 0 and 1 as follows:

Let the bth digit bn in the decimal expansion of b be ann − 1 if ann , 0 and 1 if
ann = 0. Then b = .b1b2b3b4 · · · is the decimal expansion of b, which is a real number by
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def nition but differs from the nth number rn of the enumeration in the nth decimal place
for any integer n ≥ 1. Whence, b is not in the sequence r1, r2, · · · , rn, · · ·. This contradicts
our assumption. �

1.1.3 Subset Enumeration. Let S be a countable set, i.e.,

S = {s1, s2, · · · , sn, · · ·}.

We adopt the following convention for subsets.

Convention 1.1.1 For a subset S = {si1 , si2 , · · · , sil} of S, l ≥ 1, assign it to a monomial
si1 si2 · · · sil .

Applying this convention, we can f nd the generator of subsets of a set S.

Theorem 1.1.5 Under Convention 1.1.1, the generator of elements in the power setP(S)
is

G(P(S)) =
∑

ǫs=0 or 1

∏

s∈s
sǫs .

Proof Let T = {si1 , si2 , · · · , sl}, l ≥ 1 be an element in P(S). Then it is the term
si1 si2 · · · sl in G(P(S)). Conversely, let si1 si2 · · · sk, k ≥ 1 be a term in G(P(S)). Then it
is the subset {si1 , si2 , · · · , sk} by Convention 1.1.1. �

For a f nite set S, we can get a closed formula for counting its subsets following.

Theorem 1.1.6 Let S be a f nite set. Then the number of its subsets is

|P(S)| = 2|S|.

Proof Notice that for any integer i, 1 ≤ i ≤ |S|, there are

|S|
i

 subsets of cardinal-

ity i in S. Therefore, we f nd that

|P(S)| =
|S|∑

i=1


|S|
i

 = 2
|S|. �
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§1.2 GROUPS

1.2.1 Algebra System. LetA be a nonempty set. A binary operation onA is a bijection
o : A × A → A . Thus o associates each ordered pair (a, b) of elements of A with an
element o(a, b) that of A . For simplicity, we write a ◦ b for o(a, b) and refer to ◦ as a
binary operation on A . A set A associated with a binary operation ◦ is called to be an
algebraic system, denoted by (A ; ◦).

If A is f nite, let A = {x1, x2, · · · , xn}, we can present an algebraic system (A ; ◦)
easily by operation table following.

◦ x1 x2 · · · xn
x1 x1 ◦ x1 x1 ◦ x2 · · · x1 ◦ xn
x2 x2 ◦ x1 x2 ◦ x2 · · · x2 ◦ xn
· · · · · · · · · · · · · · ·
xn xn ◦ x1 xn ◦ x2 · · · xn ◦ xn

Table 1.2.1

For example, let K = {1, α, β, γ} with an operation ◦ determined by the following
table.

◦ 1 α β γ

1 1 α β γ

α α 1 γ β

β β γ 1 α

γ γ β α 1

Table 1.2.2

Then we easily get that

1 ◦ 1 = α ◦ α = β ◦ β = γ ◦ γ = 1,

1 ◦ α = α ◦ 1 = α, 1 ◦ β = β ◦ 1 = β, 1 ◦ γ = γ ◦ 1 = γ,

α ◦ β = β ◦ α = γ, α ◦ γ = γ ◦ α = β, β ◦ γ = γ ◦ β = α

by Table 1.2.2. Notice that x ◦ (y ◦ z) = (x ◦ y) ◦ z and x ◦ y = y ◦ x for ∀x, y, z ∈ K in Table
1.2.2. These properties enables us to introduce the associative and commutative laws for
operation following.
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Def nition 1.2.1 An algebraic system (A ; ◦) is associative if for ∀a, b, c ∈ A ,

(a ◦ b) ◦ c = a ◦ (b ◦ c).

An associative system (A ; ◦) is usually called a semigroup. A system (A ; ◦) is Abelian if
for ∀a, b ∈ A ,

a ◦ b = b ◦ a.

There are many non-Abelian systems. For example, let Mn(R) be all n × n matrixes
with matrix multiplication ◦. We have known that the equality

A ◦ B = B ◦ A

does not always hold for ∀A, B ∈ Mn(R) from linear algebra. Whence, (Mn(R), ◦) is a non-
Abelian system. Notice that each element associated with the element 1n×n is unchanging
in Mn(R). Such an element is called to be a unit def ned following, which also enables us
to introduce the inverse element of an element in (A , ◦).

Def nition 1.2.2 Let (A ; ◦) be an algebraic system. An element 1l ∈ A (or 1r ∈ A , or
1 ∈ A ) is called to be a left unit (or right unit, or unit) if for ∀a ∈ A

1l ◦ a = a (or a ◦ 1r = a, or 1 ◦ a = a ◦ 1 = a).

Def nition 1.2.3 Let (A ; ◦) be an algebraic system with a unit 1A . An element b ∈ A is
called to be a right inverse of a ∈ A if a ◦ b = 1A .

Certainly, there are algebra systems without unit. For example, let H = {a, b, c, d}
with an operation · determined by the following table.

· a b c d
a b c a d
b c d b a
c a b d c
d d a c b

Table 1.2.3

Then (H, ·) is an algebraic system without unit.
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1.2.2 Group. A group is an algebraic associative system with unit and inverse elements,
formally def ned in the following.

Def nition 1.2.4 An algebraic system (G ; ◦) is a group if conditions (1)-(3) following
hold:

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z), ∀x, y, z ∈ G ;

(2) ∃1G ∈ G such that 1G ◦ x = x ◦ 1G = x, x ∈ G ;

(3) ∀x ∈ G , ∃y ∈ G such that x ◦ y = y ◦ x = 1G .

A group (G ; ◦) is Abelian if it is itself Abelian, i.e., an additional condition (4) fol-
lowing holds:

(4) ∀x, y ∈ G, x ◦ y = y ◦ x, ∀x, y ∈ G .

For example, the system (K; ◦) determined by Table 1.2.2 is such an Abelian group,
usually called Klein 4-group. More examples of groups are shown following.

Example 1.2.1(Groups of Numbers) Let Z,Q,R and C denote respectively sets of all
integers, rational numbers, real numbers and complex numbers and +, · the ordinary
addition, multiplication. Then we know

(1) (Z;+), (Q;+), (R;+) and (C;+) are four Abelian inf nite groups with identity 0
and inverse −x for ∀x ∈ Z,Q,R or C;

(2) (Z \ {0}; ·), (Q \ {0}; ·), (R \ {0}; ·) and (C \ {0}; ·) are four Abelian inf nite groups
with identity 1 and inverse 1/x for ∀x ∈ Z,Q,R or C.

(3) Let n be an integer. Def ne an equivalent relation ∼ on Z following:

a ∼ b⇔ a ≡ b(modn).

Denoted by i the equivalent class including i. We get n equivalent classes 0, 1, · · · , n − 1.
Let Zn = {0, 1, · · · , n − 1}. Then (Zn;+) is an Abelian n-group with identity 0, inverse
−x for x ∈ Zn and (Zn \ {0}; ·) an Abelian (n − 1)-group with identity 1, inverse 1/x for
x ∈ Zn \ {0}, where 1/x denotes the equivalent class including such 1/x with x · (1/x) ≡
1(modn).

Example 1.2.2(Groups of Matrixes) LetGL(n,R) be the set of all invertible n×nmatrixes
with coefficients in R and +, · the ordinary matrix addition and multiplication. Then

(1) (GL(n,R);+) is an Abelian inf nite group with identity 0n×n, the n×n zero matrix
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and inverse −A for A ∈ GL(n,R), where −A is the matrix replacing each entry a by −a in
matrix A.

(2) (GL(n,R); ·) is a non-Abelian inf nite group if n ≥ 2 with identity 1n×n, the n × n
unit matrix and inverse A−1 for A ∈ GL(n,R), where A · A−1 = 1n×n. For its non-Abelian,
let n = 2 for simplicity and

A =


1 2
2 1

 , B =


2 −3
3 1

 .

Calculations show that

1 2
2 1

 ·

2 −3
3 1

 =

8 −1
7 −5

 ,

2 −3
3 1

 ·

1 2
2 1

 =

−4 1
5 7

 .

Whence, A · B , B · A.

Example 1.2.3(Groups of Linear Transformation) Let V be an n-dimensional vector
space over R and GL(V,R) the set of all bijection linear transformation of V . We have
known that each bijection linear transformation of V is associated with a non-singular
n×nmatrix and the composition ◦ of two such transformations is correspondent with that
of matrixes if a f xed basis of V is chosen. Therefore, (GL(V,R); ◦) is a group by Example
1.2.2.

Example 1.2.4(Isometries of E2) Let E2 be a Euclidean plane. There are three basic
isometries in E2, i.e., rotations about a point, ref ections in a line and translationsmoving
a point (x, y) to (xa, y + b) for some f xed a, b ∈ R. We have know that any isometry is a
rotation, a ref ection, a translation, or their product.

If X is a bounded subset of E2, for example, the regular polygon shown in Fig.1.2.1
in the next page, then it is clear that an isometry leaving X invariant must be a rotation
or a ref ection, can not be a translation. In this case, the rotations that leave X invariant
are about the center of X through angles 2πi/n for n = 0, 1, 2, · · · , n − 1. The ref ections
which preserve X are lines joining opposite vertices if n ≡ 0(mod2) (see Fig.1.2.1) or
lines through a vertex and the midpoint of the opposite edge if n ≡ 1(mod2).

Let ρ be a rotation about the center of X through angles 2π/n from the vertex 1
in counterclockwise and τ a ref ection joining the vertex 1 with its opposite vertex if
n ≡ 0(mod2) or midpoint of its opposite edge if n ≡ 1(mod2).
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n
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Fig.1.2.1

Then we know that
ρn = 1X, τ2 = 1X, τ−1ρτ = ρ−1.

We thereafter get the isometry group Dn of regular n-polygon to be

Dn = {ρiτ j|0 ≤ i ≤ n − 1, 0 ≤ j ≤ 1}.

This group is usually called the dihedral group of order 2n.

Def nition 1.2.5 Let (G ; ◦), (H ; ·) be groups. A bijection φ : G →H is an isomorphism
if

φ(a ◦ b) = φ(a) · φ(b)

for ∀a, b ∈ G . If such an isomorphism φ exists, the group (G ; ◦) is called to be isomorphic
to (H ; ·), denoted by (G ; ◦) ≃ (H ; ·).

Example 1.2.5 Each group pair in the following is isomorphic.

(1) (〈x〉 ; ·), xn = 1 with (Zn;+);
(2) Klein 4-group in Table 2.2 with Z2 × Z2;
(3) GL(V,R), dimV = n with (GL(n,R); ·).

1.2.3 Group Property. Elementary properties of groups are listed following.

P1. There is only one unit 1G in a group (G ; ◦).

In fact, if there are two units 1G and 1′G in (G ; ◦), then we get 1G = 1G ◦ 1′G = 1′G , a
contradiction.
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P2. There is only one inverse a−1 for a ∈ G in a group (G ; ◦).

If a−11 , a
−1
2 both are the inverses of a ∈ G , then we get that a−11 = a

−1
1 ◦ a ◦ a−12 = a−12 ,

a contradiction.

P3. (a−1)−1 = a, a ∈ G .

This is by the def nition of inverse, i.e., a ◦ a−1 = a−1 ◦ a = 1G .

P4. If a ◦ b = a ◦ c or b ◦ a = c ◦ a, where a, b, c ∈ G , then b = c.

If a ◦ b = a ◦ c, then a−1 ◦ (a ◦ b) = a−1 ◦ (a ◦ c). According to the associative law, we
get that b = 1G ◦ b = (a−1 ◦ a) ◦ b = a−1 ◦ (a ◦ c) = (a−1 ◦ a) ◦ c = 1G ◦ c = c. Similarly, if
b ◦ a = c ◦ a, we can also get b = c.

P5. There is a unique solution for equations a ◦ x = b and y ◦ a = b in a group (G ; ◦) for
a, b ∈ G .

In fact, x = a−1 ◦ b and y = b ◦ a−1 are such solutions.
Denote by an = a ◦ a ◦ · · · ◦ a︸          ︷︷          ︸

n

. Then the following property is obvious.

P6. For any integers n,m and a, b ∈ G , an ◦am = an+m, (an)m = anm. Particularly, if (G ; ◦)
is Abelian, then (a ◦ b)n = an ◦ bn.

Def nition 1.2.6 Let (G ; ◦) be a group, a ∈ G . If there exists a least integer k ≥ 0 with
ak = 1G , such k is called the order of a and denoted by o(a) = k. If there are no positive
power of a equal to 1G , a has order inf nity.

Theorem 1.2.1 Let (G ; ◦) be a group, x ∈ G and o(x) = k. Then

(1) xl = 1G if and only if k|l;
(2) if o(x) < +∞, xl = xm if and only if k|l −m, and if o(x) = +∞, then xl = xm if and

only if l = m.

Proof If k|l, let l = kd for an integer d. Then

xl = xkd = (xk)d = 1dG = 1G .

Conversely, if k is not a divisor of l, let l = kd + r for integers d and r, 0 < r < k − 1.
Then we know that

xl = xkd+r = xkd ◦ xr = 1G ◦ xr , 1G

by the def nition of order. So we get (1).
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Notice that xl = xm if and only if xl−m = 1G , i.e., l − m|k by (1). Furthermore, if
o(x) = +∞, then xl = xm only if l = m by def nition. We get conclusion (2). �

1.2.4 Subgroup. Let H be a subset of a group (G ; ◦). If (H ; ◦) is a group itself, then
it is called a subgroup of (G ; ◦), denoted by H ≤ G . If H ≤ G but H , G , then H

is called a proper subgroup of G , denoted by H < G . We know a criterion of subgroups
following.

Theorem 1.2.2 LetH be a subset of a group (G ; ◦). Then (H ; ◦) is a subgroup of (G ; ◦)
if and only ifH , ∅ and a ◦ b−1 ∈H for ∀a, b ∈H .

Proof By def nition if (H ; ◦) is a group itself, then H , ∅, there is b−1 ∈ H and
a ◦ b−1 is closed in H , i.e., a ◦ b−1 ∈H for ∀a, b ∈H .

Now if H , ∅ and a ◦ b−1 ∈H for ∀a, b ∈H , then,

(1) there exists an h ∈H and 1G = h ◦ h−1 ∈H ;
(2) if x, y ∈H , then y−1 = 1G ◦ y−1 ∈H and hence x ◦ (y−1)−1 = x ◦ y ∈H ;
(3) the associative law x ◦ (y ◦ z) = (x ◦ y) ◦ z for x, y, z ∈ H is hold in (G ; ◦). By

(2), it is also hold in H . Thus (H ; ◦) is a group. �

Corollary 1.2.1 Let H1 ≤ G andH2 ≤ G . Then H1 ∩H2 ≤ G .

Proof Obviously, 1G = 1H1 = 1H2 ∈H1∩H2. SoH1∩H2 , ∅. Let x, y ∈H1∩H2.
Applying Theorem 1.2.2, we get that

x ◦ y−1 ∈H1, x ◦ y−1 ∈H2.

Whence,
x ◦ y−1 ∈H1 ∩H2.

Thus, (H1 ∩H2; ◦) is a subgroup of (G ; ◦). �

Let X be a subset of a group (G ; ◦). Def ne the subgroup 〈X〉 generated by X to be
the intersection of all subgroups of (G ; ◦) which contains X. Notice that there will be one
such subgroup, i.e., (G ; ◦) at least. So 〈X〉 is a subgroup of (G ; ◦) by Corollary 1.2.1. A
subgroup generated by one element x ∈ G ; ◦) is usually called a cyclic group, denoted by
〈x〉. The next result determines the form of each element in the subgroup 〈X〉.

Theorem 1.2.3 Let X be a nonempty subset of a group (G ; ◦). Then 〈X〉 is the set of all
elements of the form xǫ11 x

ǫ2
2 · · · x

ǫs
s , where xi ∈ X, ǫi = ±1 and s ≥ 0 (if s = 0, this product

is interpreted to be 1G ).
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Proof Let S denote the set of all such elements. Applying Theorem 1.2.2, we know
that (S ; ◦) is a subgroup of (G ; ◦). It is clear that X ⊂ S . Whence, 〈X〉 ⊂ S . But by
def nition, it is obvious that S ⊂ 〈X〉. So we get that S = 〈X〉. �.

For a f nite subgroup H of (G ; ◦), the criterion of Theorem 1.2.2 can be simplif ed
to the following.

Theorem 1.2.4 LetH be a f nite subset of a group (G ; ◦). Then (H ; ◦) is a subgroup of
(G ; ◦) if and only ifH , ∅ and a ◦ b ∈H for ∀a, b ∈H .

Proof The necessity is clear. We prove the sufficiency. By Theorem 1.2.2, we only
need to check b−1 ∈ H in this case. In fact, let b ∈ H . Then we get bm ∈ H for any
integer m ∈ Z+ by assumption. But H is f nite. Whence, there are integers k, l, k , l
such that bk = bl. Not loss of generality, we assume k > l. Then bk−l−1 = b−1 ∈ H .
Whence, (H ; ◦) is a subgroup of (G ; ◦). �

Def nition 1.2.7 Let (G , ◦) be a group,H ≤ G and a ∈ G . Def ne

a ◦H = {a ◦ h|h ∈H }

and
H ◦ a = {h ◦ a|h ∈H },

called the left or right coset of H , respectively.

Because the behavior of left coset is the same of that the right. We only discuss the
left coset following.

Theorem 1.2.5 Let H ≤ G with an operation ◦ and a, b ∈ G . Then

(1) for ∀b ∈ a ◦H , a ◦H = b ◦H ;
(2) a ◦H = b ◦H if and only if b−1 ◦ a ∈H ;
(3) a ◦H = b ◦H or a ◦H ∩ b ◦H = ∅.

Proof (1) If b ∈ a ◦H , then there exists an element h ∈ H such that b = a ◦ h.
Therefore, b ◦H = (a ◦ h) ◦H = a ◦ (h ◦H = a ◦H .

(2) If a ◦ =b ◦H , then there exist elements h1, h2 ∈ H such that a ◦ h1 = b ◦ h2.
Whence, b−1 ◦ a = h2 ◦ h−11 ∈ H . Conversely, if b−1 ◦ a ∈ H , then there exists h ∈ H

such that b−1◦a = h, i.e., a ∈ b◦H . Applying the conclusion (1), we get a◦H = b◦H .
(3) In fact, if a ◦H ∩ b ◦H , ∅, let c ∈ (a ◦H ∩ b ◦H ). Then, c ◦H = a ◦H

and c ◦H = b ◦H by the conclusion (1). Therefore, a ◦H = b ◦H . �
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Let us denote by G /H all these left (or right) cosets and G : H the resulting sets
by selecting an element from each left coset of H , called the left coset representation.
By Theorem 1.2.5, we get that

G =
⋃

t∈G :H
t ◦H

and ∀g ∈ G can be uniquely written in the form t ◦ h for t ∈ G : H , h ∈ H . Usually,
|G : H | is called the index of H in G . For such indexes, we have a theorem following.

Theorem 1.2.6 (Lagrange) Let H ≤ G . Then |G | = |H ||G : H |.

Proof Let
G =

⋃

t∈G :H

t ◦H .

Notice that t1 ◦H ∩ t2 ◦H = ∅ if t1 , t2 and |t ◦H | = |H |. We get that

|G | =
∑

t∈G :H
t ◦H = |H ||G : H |. �

Generally, we know the following theorem for indexes of subgroups. In fact, Theo-
rem 1.2.6 is just its a special case of K = {1K }, the trivial group.

Theorem 1.2.7 Let K ≤H ≤ G with an operation ◦. Then (G : H )(H : K ) is a left
coset representation ofK in G . Thus

|G : K | = |G : H ||H : K |.

Proof Let G =
⋃

t∈G :H
t ◦H and H =

⋃
u∈H :K

u ◦K . Whence,

G =
⋃

t∈G :H , u∈H :K

t ◦ u ◦K .

We show that all these cosets t ◦ u ◦K are distinct. In fact, if t ◦ u ◦K = t′ ◦ u′ ◦K for
some t, t′ ∈ G : H , u, u′ ∈ H : K , then t−1 ◦ t′ ∈ H and t ◦H = t′ ◦H by Theorem
1.2.5. By the uniqueness of left coset representations in G : H , we f nd that t = t′.
Consequently, u ◦K = u′ ◦K . Applying the uniqueness of left coset representations in
H : K , we get that u = u′. �

Let H ≤ G and K ≤ G with an operation ◦. Def ne

H G = {h ◦ g|h ∈H , g ∈ G }.
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The subgroups H and K are said to be permute if H G = G H . Particularly, if for
∀g ∈ G , g ◦ H = H ◦ g, such subgroups H are very important, called the normal
subgroups of (G ; ◦), denoted by H ⊳ G .

Theorem 1.2.8 Let (G ; ◦) be a group and H ≤ G . Then the following three statements
are equivalent.

(1) x ◦H =H ◦ x for ∀x ∈ G ;
(2) x−1 ◦H ◦ x =H for ∀x ∈ G ;
(3) x−1 ◦ h ◦ x ∈H for ∀x ∈ G and h ∈H .

Proof For (1) ⇒ (2), multiply both sides of (1) by x−1, we get (2). The (2) ⇒ (3)
is clear by def nition. Now for (3) ⇒ (1), let h ∈ H and x ∈ G . Then we f nd that
h ◦ x = x ◦ (x−1 ◦ h ◦ x) ∈ x ◦H and x ◦ h = (x−1)−1 ◦ h ◦ x ∈ H ◦ x. Therefore,
x ◦H =H ◦ x. �

Obviously, {1G } ⊳G and G ⊳G . A group (G ; ◦) is called simple if there are no normal
subgroups different from ({1G }; ◦) and (G ; ◦) in (G ; ◦).

Although it is an arduous work for determining all subgroups, or normal subgroups
of a given group. But there is little difficulty in the case of cyclic groups.

Theorem 1.2.9 Let G = 〈x〉 and H ≤ G with an operation ◦. Then

(1) if G is inf nite,H is either inf nite cyclic or trivial;
(2) if G is f nite,H is cyclic of order dividing n. Conversely, to each positive divisor

d of n, there is exactly one subgroup of order d, i.e.,
〈
xn/d

〉
.

Proof (1) If H is trivial, the conclusion is obvious. So let H , {1H }. Then there
is a minimal positive number k such that H contains some positive power xk , 1H .
Obviously,

〈
xk

〉
⊂H . If xt ∈H , we write t = kq+ r, where 0 ≤ r ≤ k − 1. Then we f nd

that xr = (xk)−q ◦ xt ∈H . Contradicts the minimality of k. Whence, r = 0 and k|t. Hence
xt ∈

〈
xk

〉
and H =

〈
xk

〉
. If G is inf nite, then x has inf nite order, as does xk. Therefore,

H is also inf nite.
(2) Let o(x) = n. Then |H | divides n by Theorem 1.2.6. Conversely, suppose d|n.

Then o(xn/d) = d and |
〈
xn/d

〉
| = d. If there is another subgroup 〈xs〉 of order d. Then

xsd = 1H and n|sd. Consequently, we get n/d divides s. Whence, 〈xs〉 ≤
〈
xn/d

〉
. But they

both have the same order d, so 〈xs〉 =
〈
xn/d

〉
. �

Certainly, every subgroup of a cyclic group is normal. The following result com-
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pletely determines simply cyclic groups.

Theorem 1.2.10 A cyclic group 〈x〉 is simple if and only if o(x) is prime.

Proof The sufficiency is immediately by Theorems 1.2.6 and 1.2.9. Moreover, 〈x〉
should be f nite. Otherwise, the subgroup

〈
x2

〉
would be its a normal subgroup, contradicts

to the assumption. By Theorem 1.2.9, we know that o(x) must be a prime number. �

1.2.5 Symmetric Group. Let Ω = {a1, a2, · · · , an} be an n-set. A permutation on Ω is a
bijection σ : Ω → Ω. The cardinality |Ω| of Ω is called the degree of such a permutation
σ. Denoted by aσi the image of σ(ai) for 1 ≤ i ≤ n. Then σ can be also represented by

σ =


a1 a2 · · · an
aσ1 aσ2 · · · aσn

 .

Usually, we adopt Ω = {1, 2, · · · , n} for simplicity. In this case, we represent σ by

σ =


1 2 · · · n
1σ 2σ · · · nσ

 .

Let σ, τ be two permutations on Ω. The product στ is def ned by

iστ = (σ)τ, for i = 1, 2, · · · , n.

For example, let

σ =


1 2 3 4
2 4 1 3

 , τ =


1 2 3 4
2 1 4 3

 .

Then we get that

στ =


1 2 3 4
2 4 1 3




1 2 3 4
2 1 4 3

 =

1 2 3 4
1 3 2 4

 .

Let σ be a permutation on Ω such that

aσ1 = a2, a
σ
2 = a3, · · · , aσm−1 = am, aσm = a1

and f xes each element Ω \ {a1, a2, · · · , am}. We call such a permutation σ a m-cycle,
denoted it by (a1, a2, · · · , am) and its elements by [σ]. If m = 1, σ is the identity; if m = 2,
i.e., (a1, a2), such a σ is called involution.
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Theorem 1.2.11 Any permutation σ can be written as a product of disjoint cycles, and
these cycles are unique.

Proof Let σ be a permutation on Ω = {1, 2, · · · , n}. Choose an element a ∈ Ω.
Construct a sequence

a = aσ0 , aσ, aσ2 , · · · , aσk , · · · ,

where aσk ∈ Ω for any integer k ≥ 0. Whence, there must be a least positive integer m
such that aσm = aσi , 0 ≤ i < m. Now if i , 0, we get that (aσm−1)σ = (aσi−1)σ. But
aσm−1 , aσi−1 by assumption. Whence, aσm = (aσm−1)σ , (aσi−1)σaσi , a contradiction. So
i = 0, i.e., aσm = a, or in other words, τ1 = (a, aσ, aσ

2
, · · · , aσm−1) is an m-cycle.

IfΩ\[τ1] = ∅, thenm = n and σ is an n-cycle. Otherwise, we can choose b ∈ Ω\[τ1]
and get a s-cycle τ2 = (b, bσ, · · · , bσ

s−1).

Similarly, if choose Ω \ ([τ1] ∪ [τ2] , ∅, choose c in it and f nd a l-cycle τ3 =
(c, cσ, · · · , cσl−1).

Continue this process. Because of the f niteness of Ω, we f nally get an integer t and
cycles τ1, τ2, · · · , τt such that Ω \ ([τ1] ∪ [τ2] ∪ · · · ∪ [τt] = ∅ and σ = τ1τ2 · · · τt with
disjoint cycles τi, 1 ≤ i ≤ t. The uniqueness of τi, 1 ≤ i ≤ t is clear by their construction.
�

Notice that

(a1, a2, · · · , am) = (a1, a2)(a1, a2) · · · (a1, am).

We can always represent a permutation by product of involutions by Theorem 1.2.11. For
example,

σ =


1 2 3 4 5
2 3 1 5 4

 = (1, 2, 3)(4, 5)

= (1, 2)(1, 3)(4, 5) = (2, 3)(1, 2)(4, 5)

= (2, 3)(1, 2)(1, 3)(4, 5)(1, 3).

Def nition 1.2.8 A permutation is odd (even) if it can be presented by a product of odd
(even) involutions.

Theorem 1.2.12 The property of odd or even of a permutation σ is uniquely determined
by σ itself.
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Proof Let P be a homogeneous polynomial with form

P =
∏

1≤i< j≤n
(xi − x j).

Clearly, any permutation leaves P unchanged as to its sign. For example, the involution
(x1x2) changes (x1−x2) into its negative (x2−x1), interchanges (x1−x j) with (x2−x j), j > 2
and leaves the other factor unchanged. Whence, it changes P to −P. This fact means that
an odd (even) permutation σ always changes P to −P (P), only dependent on σ itself. �

The next result is clear by def nition.

Theorem 1.2.13 All permutations and all even permutations on Ω form groups, called
the symmetric group S Ω or alternating group AΩ, respectively.

Let τ, σ be permutations on Ω and σ = (a1, a2, · · · , am). A calculation shows that

τστ−1 = (aτ1, a
τ
2, · · · , aτm).

Generally, if
σ = σ1σ2 · · ·σs

is written a product of disjoint cycles for an integer s ≥ 1, Then

τστ−1 = σ′1σ
′
2 · · ·σ′s,

where the σ′i is obtained from σi replacing each entry a in σi by τ(a).

1.2.6 Regular Representation. Let (G ; ◦) be a group with

G = {a1 = 1G , a2, · · · , an}.

For ∀ai ∈ G , we know these elements

a1 ◦ ai, a2 ◦ ai, · · · , an ◦ ai

or
a−1i ◦ a1, a−1i ◦ a2, · · · , a−1i ◦ an

still in G . Whence, they are both rearrangements of a1, a2, · · · , an. We get permutations

σai =


a1 a2 · · · an

a1 ◦ ai a2 ◦ ai · · · an ◦ ai

 =


a
a ◦ ai

 ,
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τai =


a1 a2 · · · an

a−1i ◦ a1 a−1i ◦ a2 · · · a−1i ◦ an

 =


a
a−1i ◦ a

 .

In this way, we get two sets of n permutations

RG = {σa1 , σa2, · · · , σan} and LG = {τa1 , τa2 , · · · , τan}.

Notice that each permutation ς in RG or LG is f xed-free, i.e., aς = a, a ∈ Ω only if ς = 1G .
We say RG , LG the right or left regular representation of G , respectively. The cardinality
|G | = n is called the degree of RG or LG .

Example 1.2.6 Let K = {1, α, β, γ} be the Klein 4-group with an operation ◦ determined
by Table 1.2.2. Then we get elements σ1, σα, σβ, σγ in RK as follows.

σ1 = (1)(α)(β)(γ),

σα =


1 α β γ

α 1 γ β

 = (1, α)(β, γ),

σβ =


1 α β γ

β γ 1 α

 = (1, β)(α, γ),

σγ =


1 α β γ

γ β α 1

 = (1, γ)(α, β),

That is,
RK = {(1)(α)(β)(γ), (1, α)(β, γ), (1, β)(α, γ), (1, γ)(α, β)}.

Theorem 1.2.14 RG and LG both are subgroups of the symmetric group S G .

Proof Applying Theorem 1.2.4, we only need to prove that for two integers i, j, 1 ≤
i, j ≤ n, σaiσa j ∈ RG and τaiτa j ∈ LG . In fact,

σaiσa j =


a

a ◦ ai




a

a ◦ a j

 =


a
a ◦ ai ◦ a j

 = σai◦a j ∈ RG ,

τaiτa j =


a

a−1i ◦ a




a

a−1j ◦ a

 =


a
a−1j ◦ a−1i ◦ a



=


a

(ai ◦ a j)−1 ◦ a

 = τai◦a j ∈ LG .
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Therefore, RG and LG both are subgroups of S G . �

The importance of RG and LG are shown in the proof of next result.

Theorem 1.2.15(Cayley) Any group G is isomorphic to a subgroup of S G .

Proof Let (G ; ◦) be a group with G = {a1 = 1G , a2, · · · , an}. Def ne mappings
f : G → RG and h : G → LG by f (ai) = σai , h(ai) = τai . Then f and h both are
one-to-one because of f (ai) , f (a j), h(ai) , h(a j) if ai , a j. By the proof of Theorem
1.2.14, we know that

f (ai ◦ a j) = σai◦a j = σaiσa j = f (ai) f (a j),

h(ai ◦ a j) = τai◦a j = τaiτa j = h(ai)h(a j)

for integers 1 ≤ i, j ≤ n. So f and h are isomorphisms by def nition. Consequently, G is
respective isomorphic to permutations RG and LG . Both of them are subgroups of S G by
Theorem 1.2.14. �

§1.3 HOMOMORPHISM THEOREMS

1.3.1 Homomorphism. Let (G ; ◦), (G ′; ·) be groups. A mapping φ : G → G ′ is a
homomorphism if

φ(a ◦ b) = φ(a) · φ(b)

for ∀a, b ∈ G . A homomorphism φ is called to be a monomorphism or epimorphism if
it is one-to-one or surjective. Particularly, if φ is a bijection, such a homomorphism φ is
nothing but an isomorphism by def nition.

Now let φ be a homomorphism. Def ne the image Imφ and kernel Kerφ respectively
as follows:

Imφ ≡ G φ = { φ(g) | g ∈ G },

Kerφ = { g | φ(g) = 1G , g ∈ G }.

For example, let (Z;+) and (Zn;+) be groups def ned in Example 1.2.1. Def ne
φ : Z→ Zn by φ(x) = x(modn). Then φ is a surjection from (Z;+) to (Zn;+).

Let φ : G → H be a homomorphism. Some elementary properties of homomor-
phism are listed following.
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H1. φ(xn) = φn(x) for all integers n, x ∈ G , whence, φ(1G ) = 1H and φ(x−1) = φ−1(x).

By induction, this fact is easily proved for n > 0. If n = 0, by φ(x) = φ(x ◦ 1G ) =
φ(x) ·φ(1G ), we know that φ(1G ) = 1H . Now let n < 0. Then 1H = φ(1G ) = φ(xn ◦ x−n) =
φ(xn) · φ(x−n), i.e., φ(xn) = φ−1(x−n) = (φ−n(x))−1 = φn(x).

H2. o(φ(x))|o(x), x ∈ G .

In fact, Let o(x) = k. Then xk = 1G . Applying the property H1, we get that

φk(x) = φ(xk) = φ(1G ) = 1H .

By Theorem 1.2.1, we get that o(φ(x))|o(x).

The following property is obvious by def nition.

H3. If x ◦ y = y ◦ x, then φ(x) · φ(y) = φ(y) · φ(x).

H4. Imφ ≤H and Kerφ⊳ G .

This is an immediately conclusion of Theorems 1.2.2 and 1.2.8.

Theorem 1.3.1 A homomorphism φ : G → H is an isomorphism if and only if Kerφ =
{1G }.

Proof The necessity is clear. We prove the sufficiency. Let Kerφ = {1G }. We prove
that φ is a bijection. If not, let φ(x) = φ(y) for two different element x, y ∈ G , then

φ(x ◦ y−1) = φ(x) · φ−1(y) = 1H

by def nition. Therefore, x ◦ y−1 ∈ Kerφ, i.e., x ◦ y−1 = 1G . Whence, we get x = y, a
contradiction. �

1.3.2 Quotient Group. Let (G ; ◦) be a group, H1,H2,H3 ≤ G . Def ne the multiplica-
tion and inverse of set by

H1H2 = { x ◦ y | x ∈H1, y ∈H2 } and H −1
1 = { x−1 | x ∈H1 }.

It is clear that H1(H2H3) = (H1H2)H3. By this def nition, the criterion for a subset
H ⊂ G to be a subgroup of G can be written by

H H −1 ⊂H .
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Now we can consider this operation in G /H and determine when it is a group.
Generally, for ∀a, b ∈ G , we do not always get

(a ◦H )(b ◦H ) ∈ G /H

unless H ⊳ G . In fact, we have the following result for G /H .

Theorem 1.3.2 G /H is a group if and only ifH is normal.

Proof If H is a normal subgroup, then

(a ◦H )(b ◦H ) = a ◦ (H ◦ b) ◦H = a ◦ (b ◦H ) ◦H = (a ◦ b) ◦H

by the def nition of normal subgroup. This equality enables us to check laws of a group
following.

(1) Associative laws in G /H .

[(a ◦H )(b ◦H )](c ◦H ) = [(a ◦ b) ◦ c] ◦H = [a ◦ (b ◦ c)] ◦H

= (a ◦H )[(b ◦H )(c ◦H )].

(2) Existence of identity element 1G /H in G /H .

In fact, 1G /H = 1 ◦H =H .

(3) Inverse element for ∀x ◦H ∈ G /H .

Because of (x−1 ◦H )(x ◦H ) = (x−1 ◦ x) ◦H =H = 1G /H , we know the inverse
element of x ◦H ∈ G /H is x−1 ◦H .

Conversely, if G /H is a group, then for a ◦H , b ◦H ∈ G /H , we have

(a ◦H )(b ◦H ) = c ◦H .

Obviously, a ◦ b ∈ (a ◦H )(b ◦H ). Therefore,

(a ◦H )(b ◦H ) = (a ◦ b) ◦H .

Multiply both sides by a−1, we get that

H ◦ b ◦H = b ◦H .

Notice that 1G ∈H , we know that

b ◦H ⊂H ◦ b ◦H = b ◦H ,
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i.e., b ◦H ◦ b−1 ⊂H . Consequently, we also f nd b−1 ◦H ◦ b ⊂H if replace b by b−1,
i.e., H ⊂ b ◦H ◦ b−1. Whence,

b−1 ◦H ◦ b =H

for ∀b ∈ G . Namely, H is a normal subgroup of G . �

Def nition 1.3.1 If G /H is a group under the set multiplication, we say it is a quotient
group of G byH .

1.3.3 Isomorphism Theorem. If H is a normal subgroup of G , by Theorem 1.3.2 we
know that G /H is a group. In this case, the mapping φ : G → G /H determined by
φ(x) = x ◦H is a homomorphism because

φ(x ◦ y) = (x ◦ y) ◦H = (x ◦H )(y ◦H ) = φ(x)φ(y)

for all x, y ∈ G . It is clear that Imφ = G /H and Kerφ = H . Such a φ is called to be
natural homomorphism of groups. Generally, we know the following result.

Theorem 1.3.3(First Isomorphism Theorem) If φ : G → H is a homomorphism of
groups, then the mapping ς : x ◦ Kerφ→ φ(x) is an isomorphism from G /Kerφ to Imφ.

Proof We have known that Kerφ ⊳ G by the property (H4) of homomorphism. So
G /Kerφ is a group by Theorem 1.3.2. Applying Theorem 1.3.1, we only need to check
that Kerς = {1G /Kerφ}. In fact, x ◦ Kerφ ∈ Kerς if and only if x ∈ Kerφ. Thus ς is an
isomorphism from from G /Kerφ to Imφ. �

Particularly, if Imφ = H , we get a conclusion following, usually called the funda-
mental homomorphism theorem.

Corollary 1.3.1(Fundamental Homomorphism Theorem) If φ : G → H is an epimor-
phism, then G /Kerφ is isomorphic toH .

Theorem 1.3.4(Second IsomorphismTheorem) LetH ≤ G andN ⊳G . ThenH ∩N ⊳

G and x ◦ (H ∩N )→ x ◦N is an isomorphism fromH /H ∩N toH N /N .

Proof Clearly, the mapping τ : x→ x◦N is an epimorphism fromH toN H /N

with Kerτ =H ∩N . Applying Theorem 1.3.3, we know that it is an isomorphism from
H /H ∩N to H N /N . �

Theorem 1.3.5(Third Isomorphism Theorem) Let M ,N ⊳ G with N ≤M . Then
M /N ⊳ G /N and (G /N )/(M /N ) ≃ G /M .
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Proof Def ne a mapping ϕ : G /N → G /M by ϕ(x ◦N ) = x ◦M . Then

ϕ[(x ◦N ) ◦ (y ◦N )] = ϕ[(x ◦ y) ◦N ] = (x ◦ y) ◦M

= (x ◦M ) ◦ (y ◦M ) = ϕ(x ◦N ) ◦ ϕ(y ◦N )

and Kerϕ = M /N , Imϕ = G /M . So ϕ is an epimorphism. Applying Theorem 1.3.3,
we know that ϕ is an isomorphism from (G /N )/(M /N ) to G /M . �

§1.4 ABELIAN GROUPS

1.4.1 Direct Product. An Abelian group is such a group (G ; ◦) with the commutative
law a ◦ b = b ◦ a hold for a, b ∈ G . The structure of such a group can be completely
characterized by direct product of subgroups following.

Def nition 1.4.1 Let (G ; ◦) be a group. If there are subgroups A, B ≤ G such that

(1) for ∀g ∈ G , there are uniquely a ∈ A and b ∈ B such that g = a ◦ b;
(2) a ◦ b = b ◦ a for a ∈ A and b ∈ B, then we say (G ; ◦) is a direct product of A and

B, denoted by G = A ⊗ B.

Theorem 1.4.1 If G = A ⊗ B, then

(1) A⊳ G and B⊳ G ;

(2) G = AB;

(3) A ∩ B = {1G }.

Conversely, if there are subgroups A, B of G with conditions (1)-(3) hold, then G = A⊗B.

Proof If G = A ⊗ B, by def nition we immediately get that G = AB. If there is
c ∈ A ∩ B with c , 1G , we get

c = c ◦ 1G , c ∈ A, 1G ∈ B

and

c = 1G ◦ c, 1G ∈ A, c ∈ B,

contradicts the uniqueness of direct product. So A ∩ B = {1G }.
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Now we prove A ⊳ G . For ∀a ∈ A, g ∈ G , by def nition there are uniquely g1 ∈ A,
g2 ∈ B such that g = g1 ◦ g2. Therefore,

g−1 ◦ a ◦ g = (g1 ◦ g2)−1 ◦ a ◦ (g1 ◦ g2) = g−12 ◦ g−11 ◦ a ◦ g1 ◦ g2
= g−11 ◦ a ◦ g1 ◦ g−12 ◦ g2 = g−11 ◦ a ◦ g1 ∈ A.

So A⊳ G . Similarly, we get B⊳ G .
Conversely, if there are subgroups A, B of G with conditions (1)-(3) hold, we prove

G = A⊗ B. For ∀g ∈ G , by G = AB there are a ∈ A and b ∈ B such that g = a ◦ b. If there
are a′ ∈ A, b′ ∈ B also with g = a′ ◦ b′, then

a′−1 ◦ a = b′ ◦ b−1 ∈ A ∩ B.

But A∩B = {1G }. Whence, a′−1 ◦a = b′ ◦b−1 = 1G , i.e., a = a′ and b = b′. So the equality
g = a ◦ b is unique.

Now we prove a ◦ b = b ◦ a for a ∈ A and b ∈ B. Notice that A⊳ G and B⊳ G , we
know that

a ◦ b ◦ a−1 ◦ b−1 = a ◦ (b ◦ a−1 ◦ b−1) ∈ A

and
a ◦ b ◦ a−1 ◦ b−1 = (a ◦ b ◦ a−1) ◦ b−1 ∈ B.

But A ∩ B = {1G }. So

a ◦ b ◦ a−1 ◦ b−1 = 1G , i.e., a ◦ b = b ◦ a.

By Def nition 1.4.1, we know that G = A ⊗ B. �

Generally, we def ne the semidirect product of two groups as follows:

Def nition 1.4.2 Let G and H be two subgroups of a group (T ; ◦), α : H → AutG a
homomorphism. Def ne the semidirect product G ⋊α H of G andH respect to α to be

G ⋊α H = {(g, h)|g ∈ G , h ∈H }

with operation · determined by

(g1, h1) · (g2, h2) = (g1 ◦ gα(h1)
−1

2 , h1 ◦ h2).

Clearly, if α is the identity homomorphism, then the semidirect product G ×α H is
nothing but the direct product G ⊗H .
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Def nition 1.4.3 Let (G ; ◦) be a group. If there are subgroups A1, A2, · · · , As ≤ G such
that

(1) for ∀g ∈ G , there are uniquely ai ∈ Ai, 1 ≤ i ≤ s such that

g = a1 ◦ a2 ◦ · · · ◦ as;

(2) ai ◦ a j = a j ◦ ai for a ∈ Ai and b ∈ A j, where 1 ≤ i, j ≤ s, i , j, then we say (G ; ◦)
is a direct product of A1, A2, · · · , As, denoted by

G = A1 ⊗ A2 ⊗ · · · ⊗ As.

Applying Theorem 1.4.1, by induction we can easily get the following result.

Theorem 1.4.2 If A1, A2, · · · , As ≤ G , then G = A1 ⊗ A2 ⊗ · · · ⊗ As if and only if

(1) Ai ⊳ G , 1 ≤ i ≤ s;
(2) G = A1A2 · · ·As;
(3) (A1 · · ·Ai−1Ai+1 · · ·As) ∩ Ai = {1G }, 1 ≤ i ≤ s.

1.4.2 Basis. Let G = 〈a1, a2, · · · , as〉 be an Abelian group with an operation ◦. If

ak11 ◦ a
k2
2 ◦ · · · ◦ a

ks
s = 1G

for integers k1, k2, · · · , ks implies that akii = 1G , i = 1, 2, · · · , s, then such a1, a2, · · · , as
are called a basis of the Abelian group (G ; ◦), denoted by B(G ) = {a1, a2, · · · , as}. The
following properties on basis of a group are clear by def nition.

B1. If G = A ⊗ B and B(A) = {a1, a2, · · · , as}, B(B) = {b1, b2, · · · , bt}, then B(G ) =
{a1, a2, · · · , as, b1, b2, · · · , bt}.

B2. If B(G ) = {a1, a2, · · · , as} and A = 〈a1, a2, · · · , al〉, B = 〈al+1, al+2, · · · , as〉, where
1 < l < s, then G = A ⊗ B.

An importance of basis is shown in the next result.

Theorem 1.4.3 Any f nite Abelian group has a basis.

Proof Let G = 〈a1, a2, · · · , ar〉 be an Abelian group with an operation ◦. If r = 1,
then G is a cyclic group with a basis B(G ) = {a1}.

Assume our conclusion is true for generators less than r. We prove it is also true for
r generators. Let

ak11 ◦ a
k2
2 ◦ · · · ◦ a

kr
r = 1G (1 − 1)
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for integers k1, k2, · · · , kr. Def ne m = min{k1, k2, · · · , kr}. Without loss of generality, we
assume m = k1. If m = 1, we f nd that

a1 = a−k22 ◦ a
−k3
3 ◦ · · · ◦ a

−kr
r .

Hence, G = 〈a2, a3, · · · , ar〉 and the conclusion is true by the induction assumption.
So we can assume our conclusion is true for the power of a1 less than m and f nd

integers ti, si for i = 2, · · · , r such that

ki = tim + si, 0 ≤ si < m.

Let

a∗1 = a1 ◦ at22 ◦ · · · ◦ a
tr
r . (1 − 2)

Substitute (1 − 2) into (1 − 1), we know that

(a∗1)
m ◦ as22 ◦ · · · ◦ a

sr
r = 1G .

If there is an integer i, 1 ≤ i ≤ r such that si , 0, then by the induction assumption, G has
a basis. So we can assume that

s2 = s3 = · · · = sr = 0

and get
(a∗1)

m = 1G .

Notice that
a1 = a∗1 ◦ a−t22 ◦ · · · ◦ a

−tr
r .

Whence, G =
〈
a∗1, a2, · · · , ar

〉
. Now we prove that

G =
〈
a∗1

〉 ⊗ 〈a2, · · · , ar〉 .

For this objective, we only need to check that

〈
a∗1

〉 ∩ 〈a2, · · · , ar〉 = {1G }.

In fact, let a ∈
〈
a∗1

〉
∩ 〈a2, · · · , ar〉. Then we know that

a = (a∗1)
l = (a1 ◦ at22 ◦ · · · ◦ a

tr
r )
l = al22 ◦ · · · ◦ a

lr
r .
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Therefore,

al1 ◦ at2l−l22 ◦ · · · ◦ atr i−lrr = 1G (1 − 3)

By the Euclidean algorithm, we can always f nd an integer d such that

0 ≤ l − dm < m.

By equalities (1 − 1) and (1 − 3), we get that

al−dm1 ◦ at2l−l2−dm2 ◦ · · · ◦ atr i−lr−dmr = 1G .

By the induction assumption, we must have l − dm = 0. So

a = (a∗1)
l = (a∗1)

dm = 1G .

Whence, we get that
G =

〈
a∗1

〉 ⊗ 〈a2, · · · , ar〉 .

By the induction assumption again, let 〈a2, · · · , ar〉 = 〈b2〉 ⊗ · · · ⊗ 〈br〉. We know that

G =
〈
a∗1

〉 ⊗ 〈b2〉 ⊗ · · · ⊗ 〈br〉 .

This completes the proof. �

Corollary 1.4.1 Any f nite Abelian group is a direct product of cyclic groups.

1.4.3 Finite Abelian Group Structure. Theorem 1.4.3 enable us to know that a f nite
Abelian group is the direct product of its cyclic subgroups. In fact, the structure of a
f nite Abelian group is completely determined by its order. That is the objective of this
subsection.

Def nition 1.4.4 Let p be a prime number, (G ; ◦) a group, g ∈ G and H ≤ G . Then g
is called a p-element, or H a p-subgroup if o(g) = pk or |H | = pl for some integers
k, l ≥ 0.

Def nition 1.4.5 Let (G , ◦) be a group with |G | = pαn, (p, n) = 1. Then each subgroup
H ≤ G with |H | = pα is called a Sylow p-subgroup of (G ; ◦).

Theorem 1.4.4 Let (G ; ◦) be a f nite Abelian group with |G | = pα11 p
α2
2 · · · p

αs
s , where

p1, p2, · · · , ps are prime numbers, different two by two. Then

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈as〉
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with o(ai) = pαi for 1 ≤ i ≤ s.

Proof By Corollary 1.4.1, a f nite Abelian group is a direct product of cyclic groups,
i.e.,

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈ar〉 .

If there is an integer i, 1 ≤ i ≤ r such that o(ai) is not a prime power, let o(ai) =
pβ1i1 p

β2
i2 · · · p

βil
il with pi j ∈ {pi, 1 ≤ i ≤ s}, βi j > 0 for 1 ≤ j ≤ l. We prove that ai can be

uniquely written as ai = b1 ◦b2 ◦ · · ·◦bl such that o(b j) = p
βi j
i j , bi ◦b j = b j ◦bi, 1 ≤ i, j ≤ l.

Now let o(ai) = m1m2 with (m1,m2) = 1. By a result in elementary number theory,
there are integers u1, u2 such that u1m1 + u2m2 = 1.Whence, au1m1+u2m2

i = au1m1
i ◦ au2m2

i =

au2m2
i ◦ au1m1

i . Choose c1 = au2m2
i and c2 = au1m1

i . Then cm1
1 = 1G and cm2

2 = 1G . Whence,
o(c1)|m1, o(c2)|m2. Because c1 ◦ c2 = c2 ◦ c1 and (o(c1), o(c2)) = 1, we know that m1m2 =

o(ai) = o(c1◦c2) = o(c1)o(c2). So there must be o(c1) = m1 and o(c2) = m2. Repeating the
previous process, we f nally get elements b1, b2, · · · , bl ∈ G such that ai = b1 ◦ b2 ◦ · · · ◦ bl
with o(b j) = p

βi j
i j , bi ◦ b j = b j ◦ bi, 1 ≤ i, j ≤ l.

Whence, we can assume that the order of each cyclic group in the direct product

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈ar〉 .

is a prime power. Now if the order of
〈
ai1

〉
,
〈
ai2

〉
,· · ·, 〈aik

〉
are all with a same base pi,

replacing ai1 ◦ ai2 ◦ · · · ◦ aik by ai we get a direct product

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈as〉

with o(ai) = pαii , 1 ≤ i ≤ l. �

Theorem 1.4.5 Let (G ; ◦) be a f nite Abelian p-group. If

G = A1 ⊗ A2 ⊗ · · · ⊗ Ar and G = B1 ⊗ B2 ⊗ · · · ⊗ Bs,

where Ai, B j are cyclic p-groups for 1 ≤ i ≤ r, 1 ≤ j ≤ s, then s = r and there is a
bijection̟ : {A1, A2, · · · , Ar} → {B1, B2, · · · , Br} such that |Ai| = |̟(Ai)|, 1 ≤ i ≤ r.

Proof We prove this result by induction on |G |. If |G | = p, the conclusion is clear.
Def ne Gp = {a ∈ G |ap = 1G } and G p = {ap|a ∈ G }. Notice that

G = A1 ⊗ A2 ⊗ · · · ⊗ Ar.

If ai ∈ Ai is the generator of Ai, 1 ≤ i ≤ r, then B(G ) = {a1, a2, · · · , ar}. Let o(ai) = pei .
Without loss of generality, we can assume that e1 ≥ e2 ≥ · · · ≥ er ≥ 1. Then B(Gp) =
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{ap
e1−1

1 , ap
e2−1

2 , · · · , ap
er−1
r } and |Gp| = pr. If e1 = e2 = · · · = er = 1, then G p = {1G }.

Otherwise, let e1 ≥ e2 ≥ · · · ≥ em > em+1 = · · · = er = 1. Then B(G p) = {ap1 , a
p
2 , · · · , a

p
m}.

Now let bi ∈ Bi be its a generator for 1 ≤ i ≤ s. Then B(G ) = {b1, b2, · · · , bs}. Let
o(bi) = p fi , 1 ≤ i ≤ s with f1 ≥ f2 ≥ · · · ≥ fs. Similarly, we know that |Gp| = ps. So s = r.
Now if G p = {1G }, there must be f1 = f2 = · · · = fs = 1. Otherwise, if G p

, {1G }, let
f1 ≥ f2 ≥ · · · ≥ fm′ > fm′+1 = · · · = fs = 1. Then B(G p) = {bp1 , b

p
2 , · · · , b

p
m′}. Notice that

|G p| < |G |, by the induction assumption, we get that m = m′ and ei = fi for 1 ≤ i ≤ r.
Therefore, o(ai) = o(bi) for 1 ≤ i ≤ r. Now def ne ̟ : {A1, A2, · · · , Ar} → {B1, B2, · · · , Br}
by̟(Ai) = Bi, 1 ≤ i ≤ r. We get |Ai| = |̟(Ai)| for integers 1 ≤ i ≤ r. �

Combining Theorems 1.4.4 and 1.4.5, we get the fundamental theorem of f nite
Abelian groups following.

Theorem 1.4.6 Any f nite Abelian group (G ; ◦) is a direct product

G = 〈a1〉 ⊗ 〈a2〉 ⊗ · · · ⊗ 〈as〉

of cyclic p-groups uniquely determined up to their cardinality.

These cardinalities | 〈a1〉 |, | 〈a2〉 |, · · · , | 〈as〉 | in Theorem 1.4.6 are def ned to be the
invariants of Abelian group (G ; ◦), denoted by InvarG . Then we immediately get the
following conclusion by Theorem 1.4.6.

Corollary 1.4.2 Let G ,H be f nite Abelian groups. Then G ≃H if and only if InvarG =
InvarH .

§1.5 MULTIGROUPS

1.5.1 MultiGroup. Let G̃ be a set with binary operations Õ. A pair (G̃ ; Õ) is an algebraic
multi-system if for ∀a, b ∈ G̃ and ◦ ∈ Õ, a ◦ b ∈ G̃ provided a ◦ b existing.

We consider algebraic multi-systems in this section.

Def nition 1.5.1 For an integer n ≥ 1, an algebraicmulti-system (G̃ ; Õ) is an n-multigroup
if there are G1,G2, · · · ,Gn ⊂ G̃ , Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃
i=1

Gi;

(2) (Gi; ◦i) is a group for 1 ≤ i ≤ n.
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For ∀◦ ∈ Õ, denoted by G◦ the group (G ; ◦) and G max
◦ the maximal group (G ; ◦), i.e.,

(G max
◦ ; ◦) is a group but (G max

◦ ∪ {x}; ◦) is not for ∀x ∈ G̃ \ G max
◦ in (G̃ ; Õ).

Def nition 1.5.2 Let (G̃1; Õ1) and (G̃2; Õ2) be multigroups. Then (G̃1; Õ1) is isomorphic to
(G̃2; Õ2), denoted by (ϑ, ι) : (G̃1; Õ1) → (G̃2; Õ2) if there are bijections ϑ : G̃1 → G̃2 and
ι : Õ1 → Õ2 such that for a, b ∈ G̃1 and ◦ ∈ Õ1,

ϑ(a ◦ b) = ϑ(a)ι(◦)ϑ(b)

provided a◦b existing in (G̃1; Õ1). Such isomorphic multigroups are denoted by (G̃1; Õ1) ≃
(G̃2; Õ2)

Clearly, if (G̃1; Õ1) is an n-multigroup with (ϑ, ι) an isomorphism, the image of (ϑ, ι)
is also an n-multigroup. Now let (ϑ, ι) : (G̃1; Õ1)→ (G̃2; Õ2) with G̃1 =

n⋃
i=1

G1i, G̃2 =
n⋃
i=1

G2i,

Õ1 = {◦1i, 1 ≤ i ≤ n} and Õ2 = {◦2i, 1 ≤ i ≤ n}, then for ◦ ∈ Õ, G max
◦ is isomorphic to

ϑ(G )max
ι(◦) by def nition. The following result shows that its converse is also true.

Theorem 1.5.1 Let (G̃1; Õ1) and (G̃2; Õ2) be n-multigroups with

G̃1 =

n⋃

i=1

G1i, G̃2 =

n⋃

i=1

G2i,

Õ1 = {◦i1, 1 ≤ i ≤ n}, Õ2 = {◦i2, 1 ≤ i ≤ n}. If φi : G1i → G2i is an isomorphism for each
integer i, 1 ≤ i ≤ n with φk|G1k∩G1l = φl|G1k∩G1l for integers 1 ≤ k, l ≤ n, then (G̃1; Õ1) is
isomorphic to (G̃2; Õ2).

Proof Def ne mappings ϑ : G̃1 → G̃2 and ι : Õ1 → Õ1 by

ϑ(a) = φi(a) if a ∈ Gi ⊂ G̃ and ι(◦1i) = ◦2i for each integer 1 ≤ i ≤ n.

Notice that φk|G1k∩G1l = φl|G1k∩G1l for integers 1 ≤ k, l ≤ n. We know that ϑ, ι both are
bijections. Let a, b ∈ G1s for an integer s, 1 ≤ s ≤ n. Then

ϑ(a ◦1s b) = φs(a ◦1s b) = φs(a) ◦2s φs(b) = ϑ(a)ι(◦1s)ϑ(b).

Whence, (ϑ, ι) : (G̃1; Õ1)→ (G̃1; Õ1). �

1.5.2 Submultigroup. Let (G̃ ; Õ) be a multigroup, H̃ ⊂ G̃ and O ⊂ Õ. If (H̃ ;O) is
multigroup itself, then (H ;O) is called a submultigroup, denoted by (H̃ ;O) ≤ (G̃ ; Õ).
Then the following criterion is obvious for submultigroups.
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Theorem 1.5.2 An multi-subsystem (H̃ ;O) of a multigroup (G̃ ; Õ) is a submultigroup if
and only if H̃ ∩ G◦ ≤ G max

◦ for ∀◦ ∈ O.

Proof By def nition, if (H̃ ;O) is a multigroup, then for ∀◦ ∈ O, H̃ ∩G◦ is a group.
Whence, H̃ ∩ G◦ ≤ G max

◦ .
Conversely, if H̃ ∩ G◦ ≤ G max

◦ for ∀◦ ∈ O, then H̃ ∩ G◦ is a group. Therefore,
(H̃ ;O) is a multigroup by def nition. �

Applying Theorem 1.2.2, we get corollaries following.

Corollary 1.5.1 An multi-subsystem (H̃ ;O) of a multigroup (G̃ ; Õ) is a submultigroup
if and only if a ◦ b−1 ∈ H̃ ∩ G max

◦ for ∀◦ ∈ O and a, b ∈ H̃ provided a ◦ b existing in
(H̃ ;O).

Particularly, if O = {◦}, we get a conclusion following.

Corollary 1.5.2 Let ◦ ∈ Õ. Then (H ; ◦) is submultigroup of a multigroup (G̃ ; Õ) for
H ⊂ G̃ if and only if (H ; ◦) is a group, i.e., a ◦ b−1 ∈H for a, b ∈H .

A multigroup (G̃ ; Õ) is said to be a symmetric n-multigroup if there are S1,S2,

· · · ,Sn ⊂ G̃ , Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃
i=1

Si;

(2) (Si; ◦i) is a symmetric group S Ωi for 1 ≤ i ≤ n. We call the n-tuple (|Ω1|, |Ω2|, · · · , |Ωn||)
the degree of the symmetric n-multigroup (G̃ ; Õ).

Now let multigroup (G̃ ; Õ) be a n-multigroup with G1,G2, · · · ,Gn ⊂ G̃ , Õ = {◦i, 1 ≤
i ≤ n}. For any integer i, 1 ≤ i ≤ n. Let G◦i = {ai1 = 1G◦i

, ai2, · · · , ain◦i }. For ∀aik ∈ G◦i ,
def ne

σaik =


ai1 ai2 · · · ain

ai1 ◦ aik ai2 ◦ aik · · · ain◦i ◦ aik

 =


a
a ◦ aik

 ,

τaik =


ai1 ai2 · · · ain◦i

a−1ik ◦ ai1 a−1ik ◦ ai2 · · · a−1ik ◦ ain◦i

 =


a
a−1ik ◦ a



Denote by RGi = {σai1 , σai2, · · · , σain◦i } and LGi = {τai1 , τai2 , · · · , τain◦i } and ×
r
i or ×li the

induced multiplication in RGi or LGi . Then we get two sets of permutations

RG̃ =

n⋃

i=1

{σai1 , σai2, · · · , σain◦i } and LG =

n⋃

i=1

{τai1 , τai2 , · · · , τain◦i }.
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We say RG̃ , LG̃ the right or left regular representation of G̃ , respectively. Similar to
Theorem 1.2.15, the Cayley theorem, we get the following representation result for multi-
groups.

Theorem 1.5.3 Every multigroup is isomorphic to a submultigroup of symmetric multi-
group.

Proof Let multigroup (G̃ ; Õ) be a n-multigroup with G1,G2, · · · ,Gn ⊂ G̃ , Õ =
{◦i, 1 ≤ i ≤ n}. For any integer i, 1 ≤ i ≤ n. By Theorem 1.2.14, we know that
RGi and LGi both are subgroups of the symmetric group S Gi for any integer 1 ≤ i ≤ n.
Whence, (RG̃ ;O

r) and (LG̃ ;O
l) both are submultigroup of symmetric multigroup by def -

nition, where Or = {×ri |1 ≤ i ≤ n} and Ol = {×li|1 ≤ i ≤ n}.
We only need to prove that (G̃ ; Õ) is isomorphic to (RG̃ ;O

r). For this objective,
def ne a mapping ( f , ι) : (G̃ ; Õ)→ (RG̃ ;O

r) by

f (aik) = σaik and ι(◦i) = ×ri
for integers 1 ≤ i ≤ n. Such a mapping is one-to-one by def nition. It is easily to see that

f (ai j ◦i aik) = σai j◦iaik = σai j ×ri σaik = f (ai j)ι(◦i) f (aik)

for integers 1 ≤ i, k, l ≤ n. Whence, ( f , ι) is an isomorphism from (G̃ ; Õ) to (RG̃ ;O
r).

Similarly, we can also prove that (G̃ ; Õ) ≃ (LG̃ ;O
l). �

1.5.3 Normal Submultigroup. A submultigroup (H̃ ;O) of (G̃ ; Õ) is normal, denoted
by (H̃ ;O)⊳ (G̃ ; Õ) if for ∀g ∈ G̃ and ∀◦ ∈ O

g ◦ H̃ = H̃ ◦ g,

where g ◦ H̃ = {g ◦ h|h ∈ H̃ provided g ◦ h existing} and H̃ ◦ g is similarly def ned.
Then we get a criterion for normal submultigroups of a multigroup following.

Theorem 1.5.4 Let (H̃ ;O) ≤ (G̃ ; Õ). Then (H̃ ;O)⊳ (G̃ ; Õ) if and only if

H̃ ∩ G max
◦ ⊳ G max

◦

for ∀◦ ∈ O.

Proof If H̃ ∩ G max
◦ ⊳ G max

◦ for ∀◦ ∈ O, then g ◦ H̃ = H̃ ◦ g for ∀g ∈ G max
◦ by

def nition, i.e., all such g ∈ G̃ and h ∈ H̃ with g◦h and h◦g def ned. So (H̃ ;O)⊳(G̃ ; Õ).
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Now if (H̃ ;O)⊳ (G̃ ; Õ), it is clear that H̃ ∩ G max
◦ ⊳ G max

◦ for ∀◦ ∈ O. �

For a normal submultigroup (H̃ ;O) of (G̃ ; Õ), we know that

(a ◦ H̃ )
⋂

(b · H̃ ) = ∅ or a ◦ H̃ = b · H̃ .

In fact, if c ∈ (a ◦ H̃ )
⋂
(b · H̃ ), then there exists h1, h2 ∈ H̃ such that

a ◦ h1 = c = b · h2.

So a−1 and b−1 exist in G max
◦ and G max

· , respectively. Thus,

b−1 · a ◦ h1 = b−1 · b · h2 = h2.

Whence,
b−1 · a = h2 ◦ h−11 ∈ H̃ .

We f nd that
a ◦ H̃ = b · (h2 ◦ h1) ◦ H̃ = b · H̃ .

This fact enables one to f nd a partition of G̃ following

G̃ =
⋃

g∈G̃ ,◦∈Õ

g ◦ H̃ .

Choose an element h from each g ◦ H̃ and denoted by H all such elements, called the
representation of a partition of G̃ , i.e.,

G̃ =
⋃

h∈H,◦∈Õ

h ◦ H̃ .

Def ne the quotient set of G̃ by H̃ to be

G̃ /H̃ = {h ◦ H̃ |h ∈ H, ◦ ∈ O}.

Notice that H̃ is normal. We f nd that

(a ◦ H̃ ) · (b • H̃ ) = H̃ ◦ a · b • H̃ = (a · b) ◦ H̃ • H̃ = (a · b) ◦ H̃

in G̃ /H̃ for ◦, •, · ∈ Õ, i.e., (G̃ /H̃ ;O) is an algebraic system. It is easily to check that
(G̃ /H̃ ;O) is a multigroup by def nition, called the quotient multigroup of G̃ by H̃ .
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Now let (G̃1; Õ1) and (G̃2; Õ2) be multigroups. Amapping pair (φ, ι) with φ : G̃1 → G̃2

and ι : Õ1 → Õ2 is a homomorphism if

φ(a ◦ b) = φ(a)ι(◦)φ(b)

for ∀a, b ∈ G and ◦ ∈ Õ1 provided a ◦ b existing in (G̃1; Õ1). Def ne the image Im(φ, ι)
and kernel Ker(φ, ι) respectively by

Im(φ, ι) = { φ(g) | g ∈ G̃1 },

Ker(φ, ι) = { g | φ(g) = 1G◦ , g ∈ G̃1 , ◦ ∈ Õ2}.

Then we get the following isomorphism theorem for multigroups.

Theorem 1.5.5 Let (φ, ι) : (G̃1; Õ1)→ (G̃2; Õ2) be a homomorphism. Then

G̃1/Ker(φ, ι) ≃ Im(φ, ι).

Proof Notice that Ker(φ, ι) is a normal submultigroup of (G̃1; Õ1). We prove that the
induced mapping (σ,ω) determined by (σ,ω) : x ◦ Ker(φ, ι) → φ(x) is an isomorphism
from G̃1/Ker(φ, ι) to Im(φ, ι).

Now if (σ,ω)(x1) = (σ,ω)(x2), then we get that (σ,ω)(x1◦x−12 ) = 1G◦ provided x1◦x−12
existing in (G̃1; Õ1), i.e., x1 ◦ x−1 ∈ Ker(φ, ι). Thus x1 ◦ Ker(φ, ι) = x2 ◦ Ker(φ, ι), i.e., the
mapping (σ,ω) is one-to-one. Whence it is a bijection from G̃1/Ker(φ, ι) to Im(φ, ι).

For ∀a ◦ Ker(φ, ι), b ◦Ker(φ, ι) ∈ G̃1/Ker(φ, ι) and · ∈ Õ1, we get that

(σ,ω)[a ◦ Ker(φ, ι) · b • Ker(φ, ι)]

= (σ,ω)[(a · b) ◦ Ker(φ, ι)] = φ(a · b)

= φ(a)ι(·)φ(b) = (σ,ω)[a ◦Ker(φ, ι)]ι(·)(σ,ω)[b • Ker(φ, ι)].

Whence, (σ,ω) is an isomorphism from G̃1/Ker(φ, ι) to Im(φ, ι). �

Particularly, let (G̃2; Õ2) be a group in Theorem 1.5.4, we get a generalization of the
fundamental homomorphism theorem, i.e., Corollary 1.3.1 following.

Corollary 1.5.3 Let (G̃ ; Õ) be a multigroup and (ω, ι) : (G̃ ; Õ)→ (A ; ◦) an epimorphism
from (G̃ ; Õ) to a group (A ; ◦). Then

G̃ /Ker(ω, ι) � (A ; ◦).
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1.5.4 Abelian Multigroup. For an integer n ≥ 1, an n-multigroup (G̃ ; Õ) is Abelian if
there are A1,A2, · · · ,An ⊂ G̃ , Õ = {◦i, 1 ≤ i ≤ n} with

(1) G̃ =
n⋃
i=1

Ai;

(2) (Ai; ◦i) is Abelian for integers 1 ≤ i ≤ n.

For ∀◦ ∈ Õ, a commutative set of G max
◦ is def ned by

C(G◦) = {a, b ∈ G max
◦ |a ◦ b = b ◦ a}.

Such a set is called maximal if C(G◦)∪ {x} for x ∈ G max
◦ \C(G◦) is not commutative again.

Denoted by Zmax(G◦) the maximal commutative set of G max
◦ . Then it is clear that Zmax(G◦)

is an Abelian subgroup of G max
◦ .

Theorem 1.5.6 An n-multigroup (G̃ ; Õ) is Abelian if and only if there are Zmax(G◦) for
∀◦ ∈ Õ such that

G̃ =
⋃

◦∈Õ

Zmax(G◦).

Proof If G̃ =
⋃
◦∈Õ
Zmax(G◦), it is clear that (G̃ ; Õ) is Abelian since Zmax(G◦) is an

Abelian subgroup of G max
◦ . Now if (G̃ ; Õ) is Abelian, then there are A1,A2, · · · ,An ⊂ G̃ ,

Õ = {◦i, 1 ≤ i ≤ n} such that

G̃ =
n⋃

i=1

Ai

and (Ai; ◦i) is an Abelian group for 1 ≤ i ≤ n. Whence, there exists a maximal commuta-
tive set Zmax(G◦i) ⊂ G max

◦ such that Ai ⊂ Zmax(G◦i). Consequently, we get that

G̃ =
n⋃

i=1

Zmax(G◦i).

This completes the proof. �

Combining Theorems 1.5.6 with 1.4.6, we get the structure of f nite Abelian multi-
group following.

Theorem 1.5.7 A f nite multigroup (G̃ ; Õ) is Abelian if and only if there are generators
a◦i , 1 ≤ i ≤ s◦ for ∀◦ ∈ Õ such that

G̃ =
⋃

◦∈Õ

〈
a◦1

〉 ⊗ 〈
a◦2

〉 ⊗ · · · ⊗
〈
a◦s◦

〉
.
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1.5.5 Bigroup. A bigroup is nothing but a 2-multigroup. There are many examples of
bigroups in algebra. For example, these natural number f eld (Q;+, ·), real number num-
ber f eld (R;+, ·) and complex number f eld (C;+, ·) are all Abelian bigroups. Generally,
a f eld (F;+, ·) is an algebraic system F with two operations +, · such that

(1) (F;+) is an Abeilan group with identity 0;
(2) (F \ {0}; ·) is an Abelian group;
(3) a · (b + c) = a · b + a · c for ∀a, b, c ∈ F.

Thus a f eld is an Abelian 2-group with an additional condition (3) called the dis-
tributive law following.

Def nition 1.5.3 A bigroup (C ;+, ·) is distributive if

a · (b + c) = a · b + a · c

hold for all a, b, c ∈ B.

Theorem 1.5.8 Let (C ;+, ·) be a distributive bigroup of order≥ 2 with C = A1 ∪ A2 such
that (A1;+) and (A2, ·) are groups. Then there must be A1 , A2.

Proof Denoted by 0+, 1· the identities in groups (A1;+), (A2, ·), respectively. If
A1 = A2 = C , we get 1+, 1· ∈ A1 and A2. Because (A2, ·) is a group, there exists an inverse
element 0−1+ in A2 such that 0−1+ · 0+ = 1·. By the distributive laws, we know that

a · 0+ = a · (0+ + 0+) = a · 0+ + a · 0+

hold for ∀a ∈ C . Whence, a · 0+ = 0+. Particularly, let a = 0−1+ , we get that 0−1+ · 0+ = 0+,
which means that 0+ = 1·. But if so, we must get that

a = a ◦ 1◦ = a ◦ 0+ = 0+,

contradicts to the assumption |C | ≥ 2. �

Theorem 1.5.8 implies the following conclusions.

Corollary 1.5.3 Let (G ; ◦) be a non-trivial group. Then there are no operations · , ◦ on
G such that (G ; ◦, ·) is a distributive bigroup.

Corollary 1.5.4 Any bigroup (C ; ◦, ·) of order≥ 2 with groups (C ; ◦) and (C , ·) is not
distributive.



38 Chap.1 Groups

Corollary 1.5.4 enables one to classify bigroups into the following categories:

Class 1. ({1C };+, ·), i.e., which is a union of two trivial groups ({1C };+) and ({1C }; ·).

Class 2. Non-distributive bigroups of order≥ 2.

This kind of bigroup is easily found. Let (G1; ◦) and (G2; ·) be two groups without
the def nition a ◦ b · c and a · b◦ for a, b, c ∈ C , where C = G1 ∪ G2. Then (C ; ◦, ·) is a
non-distributive bigroup with order≥ 2.

Class 3. Distributive bigroups of order≥ 2.

In fact, any f eld is such a distributive Abelian bigroup. Certainly, we can f nd a more
general result for the existence of f nite distributive bigroups.

Theorem 1.5.9 There are f nite distributive Abelian bigroups (C ;+, ·) of order≥ 2 with
groups (A1;+) and (A2, ·) such that C = A1∪A2 for |A1−A2| = |C | −m, where (m+1)||C |.

Proof In fact, let (F ;+, ·) be a f eld. Then (F ;+) and (F \ {0+}; ·) both are Abelian
group. Applying Theorem 1.4.6, we know that there are subgroups (A′2; ·) of (F \ {0+}; ·)
with orderm, where (m+1)||C |. Obviously,C = A1∪A′2. So (F ;+, ·) is also a distributive
Abelian bigroup with groups (A1;+) and (A′2, ·) such that C = A1 ∪ A2 and |A1 − A2| =
|C | − m. �

A group (H ; ◦) (or (H ; ·)) is maximum in a bigroup (G ; ◦, ·) if there are no groups
(T ; ◦) (or (T ; ·)) in (G ; ◦, ·) such that |H | < |T |. Combining Theorem 1.5.9 with Corol-
laries 1.5.3 and 1.5.4, we get the following result on f elds.

Theorem 1.5.10 A f eld (F ;+, ·) is a distributive Abelian bigroup with maximum groups
(F ;+) and (F \ {0+}; ·).

1.5.6 Constructing Multigroup. There are many ways to get multigroups. For example,
let G be a set. Def ne n binary operations ◦1, ◦2, · · · , ◦n such that (G ; ◦i) is a group for any
integer i, 1 ≤ i ≤ n. Then (G ; {◦i, 1 ≤ i ≤ n}) is a multigroup by def nition. In fact, the
structure of a multigroup is dependent on its combinatorial structure, i.e., its underlying
graph, which will be discussed in Chapter 3. In this subsection, we construct multigroups
only by one group or one f eld.

Construction 1.5.1 Let (G ; ◦) be a group and S G the symmetric group on G . For ∀a, b ∈
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G and

ω =


a
aω

 ∈ S G ,

def ne a binary operation ◦ω on G ω = G by

a ◦ω b = (aω
−1 ◦ bω−1)ω

for ∀a, b ∈ G , Clearly, (G ω; ◦ω) is a group and ω : (G ; ◦) → (G ω; ◦ω) is an isomorphism.
Now for an integer n ≥ 1, choose n permutations ω1, ω2, · · · , ωn. Then we get a multi-
group (G ; {◦ωi |1 ≤ i ≤ n}), where groups (G ; ◦ωi) is isomorphic to (G ; ◦ω j) for integers
1 ≤ i, j ≤ n. Therefore, we get the following result of multigroups.

Theorem 1.5.11 There is a multigroup P such that each of its group is isomorphic to
others inP .

Construction 2.5.2 Let (F ;+, ·) be a f eld and SF the symmetric group acting on F .
For ∀c, d ∈ G and ω ∈ SF , def ne a binary operation ◦ω on F ω = F by

a +ω b = (aω
−1
+ bω−1)ω

and
a ·ω b = (aω

−1 · bω−1)ω

for ∀a, b ∈ G . Choose n permutations ς1, ς2, · · · , ςn ∈ SF . Then we get a multigroup

F̃ = (F ; {+ςi , 1 ≤ i ≤ n}, {·ςi, 1 ≤ i ≤ n}),

which enables us immediately to get a result following.

Theorem 1.5.12 There is a multigroup (F ; {+i , 1 ≤ i ≤ n}, {·i ; 1 ≤ i ≤ n}) such that
for any integer i, (F ;+i, ·i) is a f eld and it is isomorphic to (F ;+ j, · j) for any integer
j, 1 ≤ i, j ≤ n.

§1.6 REMARKS

1.6.1 There are many standard books on abstract groups, such as those of [BiM1], [Rob1],
[Wan1], [Xum1] and [Zha1] for examples. In fact, the materials in Sections 1.1-1.4 are
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mainly extracted from references [BiM1] and [Wan1] as an elementary introduction to
groups.

1.6.2 For an integer n ≥ 1, a Smarandache multi-space is a union of spaces A1, A2, · · · , An
different two by two. Let Ai, 1 ≤ i ≤ n be mathematical structures appeared in sciences,
such as those of groups, rings, f elds, metric spaces or physical f elds, we therefore get
multigroups, multrings, multf elds, multmetric spaces or physical multi-f elds. The mate-
rial of Section 1.5 is on multigroups with new results. More results on multi-spaces can be
found in references [Mao4]-[Mao10], [Mao20], [Mao24]-[Mao25] and [Sma1]-[Sma2].

1.6.3 The conceptions of bigroup and sub-bigroup were f rst appeared in [Mag1] and
[MaK1]. Certainly, they are special cases of multigroup and submultigroup, i.e., special
cases of Smarandache multi-spaces. More results on bigroups can be found in [Kan1].
In fact, Theorems 1.5.2-1.5.5 are the generalization of results on bigroups appeared in
[Kan1].

1.6.4 The applications of groups to other sciences are mainly by surveying symmetries of
objects, i.e., the action groups. For this objective, an elementary introduction has been ap-
peared in Subsection 1.2.6, i.e., regular representation of group. In fact, those approaches
can be only surveying global symmetries of objects. For locally surveying symmetries,
we are needed locally action groups, which will be introduced in the following chapter.



CHAPTER 2.

Action Groups

Action groups, i.e., group actions on objects are the oldest form, also the
origin of groups. The action idea enables one to measure similarity of ob-
jects, classify algebraic systems, geometrical objects by groups, which is the
fountain of applying groups to other sciences. Besides, it also allows one to
f nd symmetrical conf gurations, satisfying the aesthetic feeling of human be-
ings. Topics covered in this chapter including permutation groups, transitive
groups, multiply transitive groups, primitive and non-primitive groups, auto-
morphism groups of groups and p-groups. Generally, we globally measure
the symmetry of an object by group action. If allowed the action locally, then
we need the conception of locally action group, i.e., action multi-group, a
generalization of group actions to multi-groups discussed in this chapter.
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§2.1 PERMUTATION GROUPS

2.1.1 Group Action. Let (G ; ◦) be a group and Ω = {a1, a2, · · · , an}. By a right action of
G on Ω is meant a mapping ρ : Ω × G → Ω such that

(x, g1 ◦ g2)ρ = ((x, g1)ρ, g2)ρ and (x, 1G )ρ = x.

It is more convenient to write xg instead of (x, g)ρ. Then the def ning equations become

xg1g2 = (xg1)g2 and x1G = x, x ∈ Ω, g1, g2 ∈ G .

For a f xed g ∈ G , the inverse mapping of x→ xg is x→ xg−1 . Whence. x→ xg is a
permutation of Ω. Denote this permutation by gγ. Then (g1 ◦ g2)γ maps x to xg1g2 , as does
gγ1g

γ

2. We f nd that (g1 ◦ g2)γ = gγ1g
γ

2. Therefore, the group action determines a homomor-
phism γ : G → S Ω. Such a homomorphism γ is called a permutation representation of G

on Ω.
Two permutation representations of a group γ : G → S X and δ : G → S X of a group

G on X and Y are said to be equivalent if there exists a bijection θ : X → Y such that

θgδ = gγθ, i.e., xθgδ = xgγθ

for all x ∈ X and g ∈ G . Particularly, if X = Y , then there are some θ ∈ S X such that
gδ = θ−1gγθ. Certainly, we do not distinguish equivalent representations of permutation
groups in the view of action.

Let γ : G → S Ω be a permutation representation of G on Ω. The cardinality of
Ω is called the degree of this representation. A permutation representation is faithful if
Kerγ = {1G }. So the subgroups P of S Ω are particularly important, called permutation
groups. For a ∈ Ω and τ ∈P , we usually denote the image of a under τ by aτ,

τ =


a1 a2 · · · an
aτ1 aτ2 · · · aτn

 =

a
aτ

 .

As a special case of equivalent representations of groups, let P1 and P2 be two
permutation groups action on Ω1, Ω2, respectively. A similarity from P1 to P2 is a pair
(γ, θ) consisting of an isomorphism γ : P1 →P2 and a bijection θ : Ω1 → Ω2 which are
related by

πθ = θπγ, i.e., aπθ = aθπγ
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for all a ∈ Ω1 and π ∈ P1. Particularly, if Ω1 = Ω2, this equality means that πγ = θ−1πθ
for ∀π, θ ∈ for ∀π ∈P1.

2.1.2 Stabilizer. The stabilizerPa and orbit aP of an element a in P are respectively
def ned as follows:

Pa = { σ | aσ = a, σ ∈P } and aP = { b | aσ = b, σ ∈P }.

Then we know the following result.

Theorem 2.1.1 LetP be a permutation group acting on Ω, x, y ∈P and a, b ∈ Ω. Then

(1) aP ∩ bP = ∅ or aP = bP , i.e., all orbits forms a partition of Ω;
(2) Pa is a subgroup of P and if b = ax, then Pb = x−1Pax. Moreover, if ax = by,

then xPa = yPa;
(3) |aP | = |P : Pa|, particularly, ifP is f nite, then |P | = |Pa||aP | for ∀a ∈ Ω.

Proof If c ∈ aP , then there is z ∈P such that c = az. Whence,

cP = {cx|x ∈P} = {azx|x ∈P} = aP .

So aP ∩ bP = ∅ or aP = bP . Notice that an element a ∈P lies in at least one obit aP ,
we know that all obits forms a partition of the set Ω. This proves (1).

For (2), it is clear that 1P ∈Pa and for x, y ∈Pa, xy−1 ∈Pa. So Pa is a subgroup
of P by Theorem 1.2.2. Now if b = ax, then we know that

y ∈Pb ⇔ axy = ax ⇔ xyx−1 ∈Pa,

i.e., y ∈ x−1Pax, Whence, x−1Px =Pb. Finally,

ax = ay ⇔ axy−1 = a⇔ xy−1 ∈Pa ⇔ xPa = yPa.

So (2) is proved.
Applying the conclusion (2), we know that there is a bijection between the distinct

elements in aP and right cosets of Pa in P . Therefore |aP | = |P : Pa|. Particularly, if
P is f nite, then |aP | = |P : Pa| = |P |/|Pa|. So we get that |P | = |Pa||aP |. �

Now let ∆ ⊂ Ω. We def ne the pointwise stabilizer and setwise stabilizer respectively
by

P(∆) = { σ | aσ = a, a ∈ ∆ and σ ∈P }
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and
P{∆} = { σ | ∆σ = ∆, σ ∈P }.

It is clear that P(∆) and P{∆} are subgroups of P . By def nition, we know that

P(∆) =
⋂

a∈∆
Pa,

and
P(∆1∪∆2) =P(∆1)

⋂
P(∆1) = (P(∆1))(∆2).

Applying Theorem 2.1.1, for a, b ∈ Ω we also know that

|P : Pa,b| = |aP ||bPa | = |bP ||aPb |.

Clearly, P(∆) ≤P{∆}. Furthermore, we have the following result.

Theorem 2.1.2 P(∆) ⊳ P{∆}.

Proof Let g ∈P(∆) and h ∈P{∆}. We prove that h−1gh ∈P(∆). In fact, let a ∈ ∆, we
know that ah−1 ∈ ∆. Therefore,

ah−1gh = [(ah−1)g]h = [ah−1]h = a.

Whence, h−1gh ∈P(∆). �

2.1.3 Burnside Lemma. For counting the number of orbital sets Orb(Ω) of Ω under the
action of P , the following result, usually called Burnside Lemma is useful.

Theorem 2.1.3(Cauchy-Frobenius Lemma) Let P be a permutation group action on Ω.
Then

|Orb(Ω)| = 1
|P |

∑

x∈P
| f ix(x)|,

where f x(x) = {a ∈ Ω|ax = a}.

Proof Def ne a setA = {(a, x) ∈ Ω×P |ax = a}. We count the number of elements of
A in two ways. Assuming the orbits of Ω under the action of P are Ω1,Ω2, · · · ,Ω|Orb(Ω)|.
Applying Theorem 2.1.1(3), we get that

|A | =
|Orb(Ω)|∑

i=1

∑

a∈Ωi

Pa

=

|Orb(Ω)|∑

i=1

∑

a∈Ωi

|P |
|Ωi|
=

|Orb(Ω)|∑

i=1

|P | = |Orb(Ω)||P |.
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By def nition, |A | = ∑
x∈P
|f x(x)|. Therefore,

|Orb(Ω)| = 1
|P |

∑

x∈P
|f x(x)|.

This completes the proof. �

Notice that |f x(x)| remains constant on each conjugacy class of P , we get the fol-
lowing conclusion by Theorem 2.1.3.

Corollary 2.1.1 Let P be a permutation group action on Ω with conjugacy classes
C1,C2, · · · ,Ck. Then

|Orb(Ω)| = 1
|P |

k∑

i=1

|Ci||f x(xi)|,

where xi ∈ Ci.

Example 2.1.1 Let P = {σ1, σ2, σ3, σ4, σ5, σ6σ7, σ8} be a permutation group action on
Ω = {1, 2, 3, 4, 5, 6, 7, 8}, where

σ1 = 1P , σ2 = (1, 4, 3, 2)(5, 8, 7, 6),

σ3 = (1, 3)(2, 4)(5, 7)(6, 8), σ4 = (1, 2, 3, 4)(5, 6, 7, 8),

σ5 = (1, 7, 3, 5)(2, 6, 4, 8), σ6 = (1, 8, 3, 6)(2, 7, 4, 5),

σ7 = (1, 5, 3, 7)(2, 8, 4, 6), σ8 = (1, 6, 3, 8)(2, 5, 4, 7).

Calculation shows that

f x(1) = f x(2) = f x(3) = f x(4) = f x(5) = f x(6) = f x(7) = f x(8) = {1P},

Applying Theorem 2.1.3, the number of obits of Ω under the action of P is

|Orb(Ω)| = 1
|P |

∑

x∈P
|f x(x)| = 1

8
×

8∑

i=1

1 = 1.

In fact, for ∀i ∈ Ω, the orbit of i under the action of P is

iP = {1, 2, 3, 4, 5, 6, 7, 8}.

§2.2 TRANSITIVE GROUPS

2.2.1 Transitive Group. A permutation groupP action onΩ is transitive if for x, y ∈ Ω,
there exists a permutation π ∈P such that xπ = y. Whence, a transitive groupP only has
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one obit, i.e., Ω under the action of P . A permutation group P which is not transitive is
called intransitive. According to Theorem 2.1.1, we get the following result for transitive
groups.

Theorem 2.2.1 Let P be a transitive group acting on Ω, a ∈ Ω. Then |P | = |Ω||Pa|,
i.e., |P : Pa| = |Ω|.

A permutation group P action on Ω is said to be semi-regular if Pa = {1P} for
∀a ∈ Ω. Furthermore, if P is transitive, Such a semi-regular group is called regular.

Corollary 2.2.1 Let P be a regular group action on Ω. Then |P | = |Ω|.

Particularly, we know the following result for Abelian transitive groups.

Theorem 2.2.2 Let P be a transitive group action on Ω. If it is Abelian group, it must
be regular.

Proof Let a ∈ Ω and π ∈P . Then (Pa)π =Paπ by Theorem 2.1.1(2). But Pa⊳P

because P is Abelian. We know that Pa = Paπ for ∀π ∈ P . By assumption, P is
transitive. It follows that if aπ = a, then bπ = b for ∀b ∈ Ω. Thus Pa = {1P}. �

2.2.2 Multiply Transitive Group. Let P be a permutation group acting on Ω =
{a1, a2, · · · , an} and

Ωk = {(a1, a2, · · · , ak)|ai ∈ Ω, 1 ≤ i ≤ k}.

Def ne P act on Ωk by

(a1, a2, · · · , ak)π = (aπ1, aπ2, · · · , aπk), π ∈P .

If P acts transitive on Ωk, then P is said to be k-transitive on Ω. The following result is
a criterion on multiply transitive groups.

Theorem 2.2.3 For an integer k > 1, a transitive permutation group P acting on Ω is
k-transitive if and only if for a f xed element a ∈ Ω,Pa is (k − 1)-transitive on Ω \ {a}.

Proof Assume that P is k-transitive acting on Ω and

(a1, a2, · · · , ak−1), (b1, b2, · · · , bk−1) ∈ Ω \ {a}.

Then ai , a , bi for 1 ≤ i ≤ k − 1. Notice that P is k-transitive. There is a permutation
π such that

(a1, a2, · · · , ak−1, a)π = (b1, b2, · · · , bk−1, a).
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Thus π f xes a and maps (a1, a2, · · · , ak−1) to (b1, b2, · · · , bk−1), which shows that Pa acts
(k − 1)-transitively on Ω \ {a}.

Conversely, letPa is (k−1)-transitive onΩ\{a}, (a1, a2, · · · , ak), (b1, b2, · · · , bk) ∈ Ωk.
By the transitivity of P acting on Ω, there exist elements π, π′ ∈P such that aπ1 = a and
bπ′1 = a. Because Pa is (k − 1)-transitive on Ω \ {a}, there is an element σ ∈Pa such that

((aπ2)
σ, · · · , (aπk)σ) = (bπ

′−1

2 , · · · , bπ′−1k ).

Whence, aπσi = b
π′−1

i , i.e., aπσπ′i = bi for 2 ≤ i ≤ k. Since σ ∈ Pa, we know that aπσπ′1 =

aσπ′ = aπ′ = b1. Therefore, the element πσπ′ maps (a1, a2, · · · , ak) to (b1, b2, · · · , bk). �

A simple calculation shows that

|Ωk| = n(n − 1) · · · (n − k + 1).

Applying Theorems 2.2.1 and 2.2.3, we get the next conclusion.

Theorem 2.2.4 Let P be k-transitive on Ω. Then

n(n − 1) · · · (n − k + 1)||P |.

2.2.3 Sharply k-Transitive Group. A transitive group P on Ω is said to be sharply
k-transitive ifP acts regularly onΩk, i.e., for two k-tuples inΩk, there is a unique permu-
tation in P mapping one k-tuple to another. The following is an immediately conclusion
by Theorem 2.1.1.

Theorem 2.2.5 A k-transitive group P acting on Ω with |Ω| = n is sharply k-transitive
if and only if |P | = n(n − 1) · · · (n − k + 1).

These symmetric and alternating groups are examples of multiply transitive groups
shown in the following.

Theorem 2.2.6 Let n ≥ 1 be an integer and Ω = {1, 2, · · · , n}. Then

(1) S Ω is sharply n-transitive;
(2) If n ≥ 3, the alternating group AΩ is sharply (n − 2)-transitive group of degree n.

Proof For the claim (1), it is obvious by def nition. We prove the claim (2). First, it
is easy to f nd that AΩ is transitive. Notice that ifΩ = {1, 2, 3}, AΩ is generated by (1, 2, 3).
It is regular and therefore sharply 1-transitive. Whence, the claim is true for n = 3. Now
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assume this claim is true for all integers< n. Let n ≥ 4 and def ne H to be the stabilizer
of n. Then H acts on the set Ω \ {n}, produce all even permutations. By induction, H is
(n−3)-transitive group onΩ \ {n}. Applying Theorem 2.2.3, AΩ is (n−2)-transitive. Thus
|AΩ| = 1

2(n!) = n(n − 1) · · · 3. By Theorem 2.2.5, it is sharply (n − 2)-transitive. �

More sharply multiply transitive groups are shown following. The reader is referred
to references [DiM1] and [Rob1] for their proofs.

Sharply 2, 3-transitive group. Let F be a Galois f eld GF(q) with q = pm for a prime
number p. Def ne X = F ∪ {∞} and think it as the projective line consisting of q+ 1 lines.
Let L(q) be the set of all functions f : X → X of the form

f (x) =
ax + b
cx + d

for a, b, c, d ∈ F with ad − bc , 0, where the symbol ∞ is subject to rulers x + ∞ =
∞, ∞/∞ = 1, etc. Then it is easily to verify that L(q) is a group under the functional
composition. Def ne H(q) to be the stabilizer of ∞ in L(q), which is consisting of all
functions x→ ax + b, a , 0. Then H(q) is sharply 2-transitive on GF(q) of degree q and
L(q) is sharply 3-transitive on F ∪ {∞} of degree q + 1.

Particularly, if c = d = 0, i.e., for a linear transformation a and a vector v ∈ Fd, we
def ne the affine transformation

ta,v : Fd → Fd by ta,v : u→ ua + v.

Then the set of all ta,v form the affine group AGLd(q) of dimensional d ≥ 1.

Sharply 4, 5-transitive group Let Ω = {1, 2, 3, · · · , 11, 12} and

ϕ = (4, 5, 6)(7, 8, 9)(10, 11, 12), χ = (4, 7, 10)(5, 8, 11)(6, 9, 12),

ψ = (5, 7, 6, 10)(8, 9, 12, 11), ω = (5, 8, 6, 12)(7, 11, 10, 9),

π1 = (1, 4)(7, 8)(9, 11)(10, 12), π2 = (1, 2)(7, 10)(8, 11)(9, 12);

π3 = (2, 3)(7, 12)(8, 10)(9, 11).

Def ne M11 = 〈ϕ, χ, ψ, ω, π1, π2, π3〉 and M12 = 〈ϕ, χ, ψ, ω, π1, π2〉, called Mathieu groups.
Then M11 is sharply 5-transitive of degree 12 with order 95040, and M12 is sharply 4-
transitive of degree 11 on Ω \ {3} with order 7920.



Sec.2.3 Automorphisms of Groups 49

Theorem 2.2.7(Jordan) For an integer k ≥ 4, let P be a sharply k-transitive group of
degree n which is neither symmetric nor alternating groups. Then either k = 4 and n = 11,
or k = 5 and n = 12.

Combining Examples 2.2.1, 2.2.2with Theorem 2.2.7, we know that there are sharply
k-transitive group of f nite degree if and only if 1 ≤ k ≤ 5.

§2.3 AUTOMORPHISMS OF GROUPS

2.3.1 Automorphism Group. An automorphism of a group (G ; ◦) is an isomorphism
from G to G . All automorphisms of a group form a group under the functional compo-
sition, i.e., θς(x) = θ(ς(x)) for x ∈ G . Denoted by AutG , which is a permutation group
action on G itself. We discuss this kind of permutation groups in this section.

Example 2.3.1 Let G = {e, a, b, c} be an Abelian 4-group with operation · determined by
the following table.

· e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Table 2.3.1

We determine the automorphism group AutG . Notice that e is the identity element of
G . By property (H1) of homomorphism, if θ is an automorphism on G , then θ(e) = e.
Whence, there are six cases for possible θ following:

θ1 =


e a b c
e a b c

 , θ2 =


e a b c
e a c b

 ,

θ3 =


e a b c
e b a c

 , θ4 =


e a b c
e b c a

 ,
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θ5 =


e a b c
e c a b

 , θ6 =


e a b c
e c b a

 .

It is easily to check that all these θi, 1 ≤ i ≤ 6 are automorphisms of (G ; ·). We get the
automorphism group

AutG = {θ1, θ2, θ3, θ4, θ5, θ6}.

Let x, g ∈ G . An element xg = g−1 ◦ x ◦ g is called the conjugate of x by g. Def ne a
mapping gτ : G → G by gτ(x) = xg. Then (x◦y)g = xg◦yg and gτ(g−1)τ = 1AutG = (g−1)τgτ.
So gτ ∈ AutG , i.e., an automorphism on (G ; ◦). Such an automorphism gτ is called
the inner automorphism of (G ; ◦) induced by g. It is easily to check that all such inner
automorphisms form a subgroup of AutG , denoted by InnG .

Theorem 2.3.1 Let (G ; ◦) be a group. Then the mapping τ : G → AutG def ned by
τ(x) = gτ(x) = xg for ∀x ∈ G is a homomorphism with image InnG and kernel the set of
elements commutating with every element of G .

Proof By def nition, we know that x(g◦h)τ = (g◦h)−1◦ x◦(g◦h) = h−1◦g−1◦ x◦g◦h =
(xgτ)hτ . So (g ◦ h)τ = gτhτ, which means that τ is a homomorphism.

Notice that gτ = 1AutG is equivalent to g−1◦x◦g = x by def nition. Namely, g◦x = x◦g
for ∀x ∈ G . This completes the proof. �

Def nition 2.3.1 The center Z(G ) of a group (G ; ◦) is def ned by

Z(G ) = {x ∈ G |x ◦ g = g ◦ x f or all g ∈ G }.

Then Theorem 2.3.1 can be restated as follows.

Theorem 2.3.2 Let (G ; ◦) be a group. Then Z(G ) ⊳ G and G /Z(G ) ≃ InnG .

The properties of inner automorphism group InnG induced it to be a normal sub-
group of AutG following.

Theorem 2.3.3 Let (G ; ◦) be a group. Then InnG ⊳AutG .

Proof Let g ∈ G and h ∈ AutG . Then for ∀x ∈ G ,

hgτh−1(x) = hgτ(h−1(x)) = h(g−1 ◦ h−1(x) ◦ g)

= h−1(g) ◦ x ◦ h(g) = xh(g) ∈ InnG .
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Whence, InnG ⊳ AutG . �

Def nition 2.3.2 The quotient group AutG /InnG is usually called the outer automor-
phism group of a group (G ; ◦).

Similarly, we can also consider the conjugating relation between subgroups of a
group.

Def nition 2.3.3 Let (G ; ·) be a group,H,H ⊳ G . Then H1 is conjugated toH2 if there
is x ∈ G such that

x−1 ·H · x =H2.

Def nition 2.3.4 Let (G ; ◦) be a group,H ⊳ G . The normalizer NG (H ) of H in (G ; ◦)
is def ned by

NG (H ) = { x ∈ G | x−1 ◦H ◦ x =H }.

Theorem 2.3.4 The set of conjugates of H in G has cardinality |G : NG (H )|.

Proof Notice that |G : NG (H )| is the number of left cosets of NG (H ) in G . Now if
a−1 ◦H ◦ a = b−1 ◦H ◦ b, then

b ◦ a−1 ◦H ◦ a ◦ b−1 =H .

That is,
(a ◦ b)−1 ◦H ◦ (a ◦ b) =H .

By def nition, a ◦ b ∈ NG (H ). This completes the proof. �

Def nition 2.3.5 Let (G ; ◦) be a group,H ⊳ G and a, b ∈ G . If there is an element x ∈ G

such that x−1 ◦ a ◦ x = b, a and b is called to be conjugacy. The centralizer ZG (a) of a in
G is def ned by

ZG (a) = {{g ∈ G |g−1 ◦ a ◦ g = a}}.

It is easily to check that ZG (a) is a subgroup of G .

Theorem 2.3.5 Let (G ; ◦) be a group and a ∈ G . Then the number of conjugacy elements
to a in G is |G : ZG (a)|.

Proof We only need to prove that if x−1 ◦ a ◦ x = y−1 ◦ a ◦ y, then x ◦ y−1 ∈ ZG (a). In
fact, if x−1 ◦ a ◦ x = y−1 ◦ a ◦ y, then y◦ x−1 ◦ a ◦ x◦ y = a, i.e., (x◦ y−1)−1 ◦ a ◦ (x◦ y−1) = a.
Therefore, x ◦ y−1 ∈ ZG (a). �
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A relation between the center and normalizer of subgroup of a group is determined
in the next result.

Theorem 2.3.6 Let (G ; ◦) be a group,H ≤ G . Then Z(H )⊳ NG (H ).

Proof If g ∈ NG (H ), let gτ denote the mapping h → g−1 ◦ h ◦ h. It is clear an
automorphism of H . Furthermore, τ : NG (H ) → AutH is a homomorphism with
kernel Z(H ). Then this result follows from Theorem 1.3.3. �

2.3.2 Characteristic Subgroup. Let (G ; ◦) be a group, H ≤ G and g ∈ AutG . By
def nition, there must be g(H ) ≃ H but g(H ) , H in general. If g(H ) = H for
∀g ∈ AutG , then such a subgroup is particular and called a characteristic subgroup of
(G ; ◦). For example, the center of a group is in fact a characteristic subgroup by Def nition
2.3.1.

According to the def nition of normal subgroup, For ∀h ∈ InnG , a subgroup H of
a group (G ; ◦) is norma if and only if h(H ) = H for ∀h ∈ InnG . So a characteristic
subgroup must be a normal subgroup. But the converse is not always true.

Example 2.3.2 Let D8 = {e, a, a2, a3, b, b · a, b · a2, b · a3} be a dihedral group of order 8
with an operation · determined by the following table.

· e a a2 a3 b a · b a2 · b a3 · b
e e a a2 a3 b a · b a2 · b a3 · b
a a a2 a3 e a · b a2 · b a3 · b b
a2 a2 a3 e a a2 · b a3 · b b a · b
a3 a3 e a a2 a3 · b b a · b a2 · b
b b a3 · b a2 · b a · b a2 a e a3

a · b a · b b a3 · b a2 · b a3 a2 a e
a2 · b a2 · b a · b b a3 · b e a3 a2 a
a3 · b a3 · b a2 · b a · b b a e a3 a2

Table 2.3.2

Notice that all subgroups of D8 are normal and a is a unique element of degree 2. So
(
〈
a2

〉
; ◦) is a characteristic subgroup of D8.
Now let 〈b〉 = {e, b, a2, a2 · b}. Clearly, it is a subgroup of D8. We prove it is not a

characteristic subgroup ofD8. In fact, let φ : D → D be a one-to-one mapping def ned by
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e→ e, a→ a, a2 → a2, a3 → a3,

b→ a · b, a · b→ a2 · b, a2 · b→ a3 · b, a3 · b→ b.

Then φ is an automorphism. But

φ(〈b〉) = {e, a · b, a2, a3 · b} , 〈b〉 .

Therefore, it is not a characteristic subgroup of D8.

The following result is clear by def nition.

Theorem 2.3.7 If G1 ≤ G is a characteristic subgroup of G and G2 ≤ G1 a characteristic
subgroup of G1, then G2 is also a characteristic subgroup of G .

2.3.3 Commutator Subgroup. Let (G ; ◦) be a group and a, b ∈ G . The element

[a, b] = a−1 ◦ b−1 ◦ a ◦ b

is called the commutator of a and b. Obviously, a group (G ; ◦) is commutative if and only
if [a, b] = 1G for ∀a, b ∈ G . The commutator subgroup is generated by all commutators
of (G ; ◦), denoted by G ′ or [G ,G ], i.e.,

G ′ = 〈 [a, b] | a, b ∈ G 〉 .

Theorem 2.3.8 [S n, S n] = An.

Proof Notice that we can always represent a permutation by product of involutions.
By the def nition of commutator, it is obvious that [S n, S n] ⊂ An. Now for ∀g ∈ An we can
always write it as g = (as11, as21)(as12, as22) · · · (as1m, as2m) withm ≡ 0(mod2) by def nition,
where asi j ∈ {1, 2, · · · , n} for i = 1, 2 and 1 ≤ j ≤ m. Calculation shows that

(i, j)( j, k) = ( j, k)(i, j)( j, k)(i, j) = [( j, k), (i, j)]

if i , j, j , k and

(i, j)(k, l) = (i, j)( j, k)( j, k)(k, l) = [( j, k), (i, j)][(k, l), ( j, k)]

if i, j, k, l are all distinct. Whence, each element in An can be written as a product of
elements in [S n, S n], i.e., An ⊂ [S n, S n]. �

A commutator subgroup is always a characteristic subgroup, such as those shown in
the next result.
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Theorem 2.3.9 Any commutator subgroup of a group (G ; ◦) is a characteristic subgroup.

Proof Let φ ∈ G . We prove φ(G ′) = G ′. In fact, for ∀a, b ∈ G , we know that

φ([a, b]) = φ(a−1 ◦ b−1 ◦ a ◦ b)

= φ(a−1) ◦ φ(b−1) ◦ φ(a) ◦ φ(b)

= φ−1(a) ◦ φ−1(b) ◦ φ(a) ◦ φ(b) = [φ(a), φ(b)].

Whence, G ′ is a characteristic subgroup of (G ; ◦). �

Corollary 2.3.1 Any non-commutative group (G ; ◦) has a non-trivial characteristic sub-
group.

Proof If (G ; ◦) is non-commutative, then there are elements a, b ∈ G such that
[a, b] , 1G . Whence, it has a non-trivial characteristic subgroup G ′ at least. �

The most important properties of commutator subgroups is the next.

Theorem 2.3.10 Let (G ; ◦) be a group. Then

(1) The quotient group G /G ′ is commutative;
(2) The quotient group G /H is commutative forH ⊳ G if and only ifH ≥ G ′.

Proof (1) Let a, b ∈ G . Then

(a ◦ G ′)−1 ◦ (b ◦ G ′)−1 ◦ (a ◦ G ′) ◦ (b ◦ G ′)

= a−1 ◦ G ′ ◦ b−1 ◦ G ′ ◦ a ◦ G ′ ◦ b ◦ G ′

= (a−1 ◦ b−1 ◦ a ◦ b) ◦ G ′ = G ′.

Therefore, a ◦ G ′ ◦ b ◦ G ′ = b ◦ G ′ ◦ a ◦ G ′.
(2) Notice that G /H is commutative if and only if for a, b ∈ G ,

a ◦H ◦ b ◦H = b ◦H ◦ a ◦H .

This equality is equivalent to

(a ◦H )−1 ◦ (b ◦H )−1 ◦ (a ◦H ) ◦ (b ◦H ) =H ,

i.e., (a−1 ◦ b−1 ◦ a ◦ b) ◦H =H .Whence, we f nd that [a, b] = a−1 ◦ b−1 ◦ a ◦ b ∈H ,
which means that H ≥ G ′. �
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§2.4 P-GROUPS

As one applying f elds of permutations to abstract groups, we discuss p-groups in this
section.

2.4.1 Sylow Theorem. By def nition, a Sylow p-subgroup of a group (G , ◦) with |G | =
pαn, (p, n) = 1 is essentially a subgroup with maximum order pα. Such p-subgroups are
important for knowing the structure of f nite groups, for example, the structure Theorems
1.4.4-1.4.6 for Abelian groups.

Theorem 2.4.1(Sylow’s First Theorem) Let (G ; ◦) be a f nite group, p a prime number
and |G | = pαn, (p, n) = 1. Then for any integer i, 1 ≤ i ≤ α, there exists a subgroup of
order pi, particularly, the Sylow subgroup always exists.

Proof The proof is by induction on |G |. Clearly, our conclusion is true for n = 1.
Assume it is true for all groups of order≤ pαn.

Denoted by z the order of center Z (G ). Notice that Z (G ) is a Abelian subgroup
of G . If p|z, there exists an element a of order p by Theorem 1.4.6. So 〈a〉 is a normal
subgroup of G with order p. We get a quotient group G / 〈a〉 with order pα−1n < n.
By the induction assumption, we know that there are subgroups Pi/ 〈a〉 of order pi, i =
1, 2, · · · , α − 1 in G / 〈a〉. So Pi, i = 1, 2, · · · , α − 1 are subgroups of order pi+1 in G .

Now if p 6 |z, let C1,C2, · · · ,Cs be conjugacy classes of G . Notice that p||G | but p 6 |z.
By

|G | = |Z (G )| +
s∑

i=1

|Ci|,

we know that there must be an integer l, 1 ≤ i ≤ s such that p 6 ||Cl|. Let b ∈ Cl. Then

NG (b) = {g ∈ G |g−1 ◦ b ◦ g = b}

is a subgroup of G with index

|G : ZG (b)| = hl > 1.

Since pα andZG (b) < pαn, by the induction assumption we know that there are subgroups
of order pi for 1 ≤ i ≤ α in ZG (b) ≤ G . �

Corollary 2.4.1 Let (G ; ◦) be a f nite group and p a prime number. If p||G |, then there
are elements of order p in (G ; ◦).
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Theorem 2.4.2(Sylow’s Second Theorem) Let (G ; ◦) be a f nite group, p a prime with
p||G |. Then

(1) If np is the number of Sylow p-subgroups in G , then np ≡ 1(modp);
(2) All Sylow subgroups are conjugate in (G ; ◦).

Proof Let P, P1, P2, · · · , Pr be all Sylow p-subgroups in G . Notice that a conjugacy
subgroup of Sylow p-subgroup is still a Sylow subgroup of G . For ∀a ∈ G , def ne a
permutation

σa =


P P1 · · · Pr

a−1 ◦ P ◦ a a−1 ◦ P1 ◦ a · · · a−1 ◦ Pr ◦ a

 .

and S p = {σa|a ∈ P}. Then S p is a homomorphic image of P. It is also a p-subgroup.
If Pk is invariant under the action S p for an integer 1 ≤ k ≤ r, then a ◦Pk = Pk ◦ a for

∀a ∈ P. Whence, PPk is a p-subgroup of G . But P, Pk are Sylow p-subgroups of G . We
get PPk = P = Pk, contradicts to the assumption. So all Pk, 1 ≤ k ≤ r are not invariant
under the action of S p except P. By Theorem 2.1.1, we know that |PS pk |||S p| for 1 ≤ k ≤ r.
Let PS pk1 , P

S p
k2 , · · · , P

S p
kt be a partition of {P1, P2, · · · , Pr}. Then

np = 1 + r = 1 +
t∑

i=1

|PS pki | ≡ 1(modp).

This is the conclusion (1).
For the conclusion (2), assume there are s conjugate subgroups to P. Similarly, we

know that s ≡ 1(modp). If there exists another conjugcy class in which there are s1
Sylow p-subgroups, we can also f nd s1 ≡ 1(modp), a contradiction. So there are just
one conjugate class of Sylow p-subgroups. This fact enables us to know that all Sylow
subgroups are conjugate in (G ; ◦). �

Corollary 2.4.2 Let P be a Sylow p-subgroup of (G ; ◦). Then

(1) P⊳ G if and only if P is uniquely the Sylow p-subgroup of (G ; ◦);
(2) P is uniquely the Sylow p-subgroup of NG (P).

Theorem 2.4.3(Sylow’s Third Theorem) Let (G ; ◦) be a f nite group, p a prime with
p||G |. Then each p-subgroup A is a subgroup of a Sylow p-subgroup of (G ; ◦).

Proof Let σa be the same in the proof of Theorem 2.4.2 and S A = {σa|a ∈ A}.
Consider the action of S A on Sylow p-subgroups {P, P1, · · · , Pr}. Similar to the proof of
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Theorem 2.4.2(1), we know that |PS Ak |||S A| for 1 ≤ k ≤ r. Because of r ≡ 0(modp).
Whence, there are at least one obit with only one Sylow p-subgroups. Let it be Pl. Then
for ∀a ∈ A, a−1 ◦ Pl ◦ a = Pl. So APl is a p-subgroup. Notice that Pl ≤ APl. We get that
APl = Pl, i.e., A ≤ Pl. �

2.4.2 Application of Sylow Theorem. Sylow theorems enables one to know the p-
subgroup structures of f nite groups.

Theorem 2.4.4 Let P be a Sylow p-subgroup of (G ; ◦). Then

(1) If NG (P) ≤H ≤ G , then H = NG (H );
(2) If N ⊳ G , then P ∩ N is a sylow p-subgroup of (N; ◦) and PN/N is a Sylow

p-subgroup of (G/N; ◦).

Proof (1) Let x ∈ NG (H ). Because P ≤ H⊳NG (H ), we know that x−1◦P◦x ≤H .
Clearly, P and x−1 ◦ P ◦ x are both Sylow p-subgroup of H . By Theorem 2.4.2, there is
an element h ∈ H such that x−1 ◦ P ◦ x = h−1 ◦ P ◦ h. Whence, x ◦ h−1 ∈ NG (P) ≤ H .
So x ∈H , i.e., H = NG (H ).

(2) Notice that PN is a union of cosets a ◦ P, a ∈ N and N a union of cosets b ◦ (P ∩
N), b ∈ N. Now let a, b ∈ N. By

a ◦ P = b ◦ P⇔ a−1 ◦ b ∈ P⇔ a−1 ◦ b ∈ N ∩ P⇔ a ◦ N ∩ P = b ◦ N ∩ P,

we get that |N : P∩N| = |PN : P|, which is prime to p. Since N ∩P, NP/N are respective
p-subgroups of N or G /N by Theorem 1.2.6, this relation implies that they must be Sylow
p-subgroup of N or G /N. �

Theorem 2.4.5(Fratini) Let N ⊳ G and P a Sylow p-subgroup of (N; ◦). Then G =

NG (P)N.

Proof Choose a ∈ G . Since N ⊳ G , we know that a−1 ◦ P ◦ a ≤ N, which implies
that a−1 ◦ P ◦ a is also a Sylow p-subgroup of (N; ◦). According to Theorem 2.4.2, there
is b ∈ N such that b−1 ◦ (a−1 ◦ P ◦ a) ◦ b = P. Whence, a ◦ b ∈ NG (P), i.e., a ∈ NG (P)N.
Thus G = NG (P)N. �

As we known, a f nite group with prime power pα for an integer α is called a p-group
in group theory. For p-groups, we know the following results.

Theorem 2.4.6 Let (G ; ◦) be a non-trivial p-group. Then Z(G ) > {1G }.
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Proof Let |G | = pm, m an integer and C1 = {1G },C2, · · · ,Cs conjugate classes of G .
By

s∑

i=1

|Ci| = |G | = pm,

we know that |Ci| = 1 or a multiple of p by Theorem 2.4.5. But |C1| = 1. Whence, there
are at least an integer k, 1 ≤ k ≤ s such that |Ck| = 1, i.e., Ck = {a}. Then a ∈ Z(G ). �

Theorem 2.4.7 Let p be a prime number. A group (G ; ◦) of order p or p2 is Abelian.

Proof If |G | = p, then G = 〈a〉 with ap = 1G by Theorem 1.2.6.
Now let |G | = p2. If there is an element b ∈ G with o(b) = p2, then G = 〈b〉, a cyclic

group of order p2 by Theorem 1.2.6. If such b does not exist, by Theorem 2.4.6 Z(G ) >
{1G }, we can always choose 1G , a ∈ Z(G ) and b ∈ G \ Z(G ). Then o(a) = o(b) = p by
Theorem 1.2.6. We get that Z(G ) = 〈a〉 and G /Z(G ) = 〈b ◦ Z(G )〉. Whence, G = 〈a, b〉
with a ◦ b = b ◦ a and o(a) = o(b) = p. So it is Abelian. �

For groups of order pq or p2q, we have the following result.

Theorem 2.4.8 Let p, q be odd prime numbers, p , q. Then groups (G ; ◦) of order pq or
p2q are not simple groups.

Proof By Sylow’s theorem, we know that there are np ≡ 1(modp) Sylow q-subgroups
P in (G ; ◦). Let np = 1 + kp for an integer k.

If |G | = pq, p ≥ q, we get that p(1+ kp)|pq, i.e., 1+ kp|q. So k = 0 and there is only
one p-subgroup P in (G ; ◦). We know that P ⊳ G . Similarly, if p ≤ q, then the Sylow
q-subgroup Q⊳ G . So a group of order pq is not simple.

If |G | = p2q and p ≥ q, then 1+kp|q implies that k = 0, and the only one p-subgroup
P⊳ G . Otherwise, p ≤ q, we know 1 + lq|p2. Notice that p ≤ q, we know that nq = 1 or
p2. But if nq = p2, i.e., lq = p2 − 1, we get that q|(p − 1)(p + 1). Whence, q = p + 1. It
is impossible since p and p + 1 can not both be prime numbers. So nq = 1. Let Q be the
only one Sylow q-subgroup in (G ; ◦). Then Q⊳G . Therefore, a group of order p2q is not
simple. �

2.4.3 Listing p-Group. For listing p-groups, we need a symbol
(
λ

p

)
, i.e., the Legendre

symbol in number theory. For a prime p 6 |λ, the number
(
λ
p

)
is def ned by

(
λ

p

)
=


1, if x2 ≡ λ(modp) has solution;
−1, if x2 ≡ λ(modp) has no solution.
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We have known that (
λ

p

)
≡ λ

p−1
2 (modp)

and the well-known Gauss reciprocity law
(
q
p

) (
p
q

)
= (−1)

(p−1)(q−1)
4

for prime numbers p and q in number theory, .
Completely list all p-groups is a very difficult work. Today, we can only list those of

p-groups with small power. For example, these p-groups of orders pn for 1 ≤ n ≤ 4 are
listed in Tables 2.4.1 − 2.4.4 without proofs.

|G | p-group Abelian?
p (1) 〈a〉, ap = 1G Yes
p2 (1) 〈a〉, ap2 = 1G Yes

(2) 〈a, b〉, ap = bp = 1G , a ◦ b = b ◦ a Yes
(1) 〈a〉, ap3 = 1G Yes
(2) 〈a, b〉, ap2 = bp = 1G , a ◦ b = b ◦ a Yes
(3) 〈a, b, c〉, ap = bp = cp = 1G , a ◦ b = b ◦ a,

a ◦ c = c ◦ a, b ◦ c = c ◦ b Yes
p3 (4) 〈a, b〉, ap2 = bp = 1G , b−1 ◦ a ◦ b = a1+p No

(p , 2) (5) 〈a, b, c〉, ap = bp = cp = 1G ,a ◦ b = b ◦ a ◦ c,
c ◦ a = a ◦ c, c ◦ b = b ◦ c No

Table 2.4.1

For p = 2, these 2-groups of order 23 are completely listed in Table 2.4.2.

|G | 2-group Abelian?
(1) 〈a〉, a8 = 1G Yes
(2) 〈a, b〉, a4 = b2 = 1G , a ◦ b = b ◦ a Yes

23 (3) 〈a, b, c〉, a2 = b2 = c2 = 1G , a ◦ b = b ◦ a,
a ◦ c = c ◦ a, b ◦ c = c ◦ b Yes

(4) Q8 = 〈a, b〉, a4 = 1G , b2 = a2 b−1 ◦ a ◦ b = a−1 No
(5) D8 = 〈a, b〉, a4 = b2 = 1G , b−1 ◦ a ◦ b = a−1 No

Table 2.4.2
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|G | p-group Abelian?
(1) 〈a〉, a4 = 1G Yes
(2) 〈a, b〉, ap3 = bp = 1G , Yes

p4 (3) 〈a, b〉, ap2 = bp2 = 1G , Yes
p , 2 (4) 〈a, b, c〉, ap2 = bp = cp = 1G , Yes

(5) 〈a, b, c, d〉, ap = bp = cp = dp = 1G 〈a, b〉,
ap3 = bp = 1G , Yes

(1) 〈a, b〉, ap3 = bp = 1G , b−1 ◦ a ◦ b = a1+p
2 No

(2) 〈a, b〉, ap2 = bp2 = 1G , b−1 ◦ a ◦ b = a1+p No
(3) 〈a, b, c〉, ap2 = bp = cp = 1G , [a, b] = [a, c] = 1G ,

[b, c] = ap No
(4) 〈a, b, c〉, ap2 = bp = cp = 1G , [a, b] = [b, c] = 1G ,

[a, c] = ap No
(5) 〈a, b, c〉, ap2 = bp = cp = 1G , [a, b] = [a, c] = 1G ,

[a, c] = b No
p4 (6) 〈a, b, c〉, ap2 = bp = cp = 1G , b−1 ◦ a ◦ b = a1+p,
p , 2 c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = b No

(7) 〈a, b, c〉, ap2 = bp = 1G , cp = ap, b−1 ◦ a ◦ b = a1+p,
c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = b No

(8) 〈a, b, c〉, ap2 = bp = 1G , cp = aλp,
(
λ
p

)
= −1

c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = b, b−1 ◦ a ◦ b = a1+p, No
(9) 〈a, b, c, d〉, ap2 = bp = cp = dp = 1G , [c, d] = a,

[a, b] = [a, c] = [a, d] = [b, c] = [b, d] = 1G , No
(10-1) 〈a, b, c, d〉, p > 3, ap = bp = cp = dp = 1G ,

[a, b] = [a, c] = [a, d] = [b, c] = 1G ,
d−1 ◦ b ◦ d = a ◦ b, d−1 ◦ c ◦ d = b ◦ c No

(10-2) 〈a, b, c〉, p = 3, a9 = b3 = c3 = 1G , [a, b] = 1G ,
c−1 ◦ a ◦ c = a ◦ b, c−1 ◦ b ◦ c = a−3 ◦ b No

Table 2.4.3

For groups of order 2n, the situation is more complex. For example, there are 6 types
for n = 3, 14 types for n = 4, 31 types for n = 5 and 267 types for n = 6. Generally, we
do not know the relation for the number of types with n. We have listed 2-groups of order



Sec.2.5 Primitive Groups 61

23 in Table 2.4.2. Similarly, these non-Abelian 2-groups of order 24 are listed in Table
2.4.4 following.

|G | 2-group Abelian?
(1) 〈a, b〉, a8 = b2 = 1G , b−1 ◦ a ◦ b = a−1 No
(2) 〈a, b〉, a8 = b2 = 1G , b−1 ◦ a ◦ b = a3 No
(3) 〈a, b〉, a8 = b2 = 1G , b−1 ◦ a ◦ b = a5 No
(4) 〈a, b〉, a8 = 1G , b2 = a4, b−1 ◦ a ◦ b = a−1 No

24 (5) 〈a, b〉, a4 = b4 = 1G , b−1 ◦ a ◦ b = a−1 No
(6) 〈a, b, c〉, a4 = b2 = c2 = 1G , b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a, [b, c] = a2 No
(7) 〈a, b, c〉, a4 = b2 = c2 = 1G , b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a−1, [b, c] = a2 No
(8) 〈a, b, c〉, a4 = b2 = 1G , c2 = a2, b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a−1, [b, c] = 1G No
(9) 〈a, b, c〉, a4 = b2 = c2 = 1G , b−1 ◦ a ◦ b = a,

c−1 ◦ a ◦ c = a ◦ b, [b, c] = 1G No

Table 2.4.4

A complete proof for listing results in Tables 2.4.1-2.4.4 can be found in references,
for example, [Zha1] or [Xum1].

§2.5 PRIMITIVE GROUPS

2.5.1 Imprimitive Block. Let P be a permutation group action on Ω. A proper subset
A ⊂ Ω, |A| ≥ 2 is called an imprimitive block of P if for ∀π ∈ P , either A = Aπ

or A ∩ Aπ = ∅. If such blocks A exist, we say P imprimitive. Otherwise, it is called
primitive, i.e., P has no imprimitive blocks.

Example 2.5.1 Let P be a permutation group generated by

g = (1, 2, 3, 4, 5, 6) and h = (2, 6)(3, 5).

Notice that P is transitive on Ω = {1, 2, 3, 4, 5, 6} and hg = g5h. There are only 12
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elements with form glhm, where l = 0, 1, 2, 3, 4, 5 and m = 0, 1. Let A = {1, 4}. Then

{1, 4}g = {2, 5}, {1, 4}g2 = {3, 6},

{1, 4}g3 = {1, 4}, {1, 4}h = {1, 4}.

Whence, Aτ = A or Aτ ∩ A = ∅ for ∀τ ∈P , i.e., A is an imprimitive block.
The following result is followed immediately by Theorem 2.1.1 on primitive groups.

Theorem 2.5.1 LetP be a transitive group actin onΩ, A an imprimitive block ofP and
H the subgroup of all π inP such that Aπ = A. Then

(1) The subsets Aτ, τ ∈P : H form a partition of Ω;
(2) |Ω| = |A||P : H|.

Proof Let a ∈ Ω and b ∈ A. By the transitivity of P on Ω, there is a permutation
π ∈ P such that a = bπ. Writing π = στ with σ ∈ H and τ ∈ P : H, we f nd that
a = (bσ)τ ∈ Aτ. Whence, Ω is certainly the union of Aτ, τ ∈ H. Now if Aτ ∩ Aτ′ , ∅, then
A∩ (Aτ′)τ−1 , ∅. Consequently, A = (Aτ′)τ−1 and τ′τ−1 ∈ H. But τ, τ′ ∈P : H, we get that
τ = τ′. So Aτ, τ ∈P : H is a partition of Ω. Thus we establish (1).

Notice that |A| = |Aτ| for τ ∈ P : H. We immediately get that |Ω| = |A||P : H| by
(1). �

2.5.2 Primitive Group. Applying Theorem 2.3.1, the following result on primitive
groups is obvious.

Theorem 2.5.2 A transitive group of prime degree is primitive.

These multiply at least 2-transitive groups constitute a frequently encountered prim-
itive groups shown following.

Theorem 2.5.3 Every 2-transitive group is primitive.

Proof Let P be a 2-transitive group action on Ω. If it is imprimitive, then there
exists an imprimitive block A of P . Whence we can f nd elements a, b ∈ A and c ∈ Ω\A.
By the 2-transitivity, there is an element π ∈ P such that (a, b)π = (a, c). So a ∈ A ∩ Aπ.
Consequently, A = Aπ. But this will implies that c = bπ ∈ A, a contradiction. �

Let (G ; ◦) be a group. A subgroup H < G is maximal if there are no subgroups
K < G such that H < K < G . The next result is a more valuable criterion on primitiv-
ity of permutation groups.
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Theorem 2.5.4 A transitive groupP action onΩ is primitive if and only ifPa is maximal
for ∀a ∈ Ω.

Proof If Pa is not maximal, then there exists a subgroup H of P such that Pa <

H < P . Def ne a subset of Ω by

A = {aτ|τ ∈H }.

Then |A| ≥ 2 because of H > Pa. First, if A = Ω, then for ∀π ∈ P we can f nd
an element σ ∈ H such that aπ = aσ. Thus πσ−1 ∈ Pa, which gives π ∈ H and
H = P . Now if there is π ∈ P with A ∩ Aπ , ∅ hold, then there are σ1, σ2 ∈ H such
that aσ1 = aσ2π. Thus σ−11 ∈ Pa < H . Whence, π ∈ H , which implies that A = Aπ.
Therefore, A is an iprimitive block and P is imprimitive.

Conversely, let A be an imprimitive block of P . By the transitivity of P on Ω, we
can assume that a ∈ A. Def ne

H = {π ∈P |Aπ = A, π ∈P}.

Then H ≤ G . For b, c ∈ A, there is a π ∈ G such that bπ = c. Thus c ∈ A ∩ Aπ. Whence,
A = Aπ and π ∈ H by def nition. Therefore, H is transitive on A. Consequently,
A = |H : Ha|. Now if π ∈P , then a = aπ ∈ A ∩ Aπ. So A = Aπ and π ∈H . Thereafter,
Pa < H and Pa = Ha. Applying Theorem 2.1.1, we know that |Ω| = |P : Pa| and
|A| = |H : Ha| = |H : Pa|. So Pa < H < P and Pa is not maximal in P . �

Corollary 2.5.1 Let P be a transitive group action on Ω. If there is a proper subset
A ⊂ Ω, |A| ≥ 2 such that

a ∈ A, aπ ∈ A⇒ Aπ = A

for π ∈P , thenP is imprimitive.

Proof By Theorem 2.5.4, we only need to prove that Pa < P{A} < P , i.e., Pa is
not maximal of P . In fact, Pa ≤P{A} is obvious by def nition. Applying the transitivity
of P , for ∀b ∈ A there is an element σ ∈ P such that aσ = b. Clearly, σ ∈ P{A}, but
σ <Pa. Whence, Pa < P{A}.

Now let c ∈ Ω \ A. Applying the transitivity of P again, there is an element τ ∈P
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such that aτ = c. Clearly, τ ∈ G but τ < G{A}. So we f nally get that

Pa < P{A} < P ,

i.e., Pa is not maximal in P . �

Theorem 2.5.5 Let P be a nontrivial primitive group action on Ω. If N ⊳ P , thenN

is transitive on Ω.

Proof Let a ∈ Ω and A = {aτ|τ ∈ N }. Notice that (aσ)π = (aπ)σπ and σπ ∈ N if
π ∈P , σ ∈ N . Thus Aπ is an obit containing aπ. Whence, A = Aπ or a ∩ Aπ = ∅, which
implies that A is an imprimitive block. This is impossible because P is primitive on Ω.
Whence, A = Ω, i.e., N is transitive on Ω. �

Theorem 2.5.5 also implies the next result for imprimitive groups.

Corollary 2.5.2 Let P be a transitive group action on Ω with a non-transitive normal
subgroupN . Then P is imprimitive.

The following result relates primitive groups with simple groups.

Theorem 2.5.6 LetP be a nontrivial primitive group action on Ω. If there is an element
x ∈ Ω such that Px is simple, then there is a subgroup N ⊳ P action regularly on Ω
unlessP is itself simple.

Proof IfP is not simple, then there is a proper normal subgroupN ⊳ P . Consider
N ∩Px, which is a normal subgroup of Px. Notice that Px is simple. We know that
N ∩Px =Px or {1P}.

Now ifN ∩Px =Px, thenPx ≤ N . Applying Theorem 2.5.5, we know thatN is
transitive on Ω. Whence, N < Px since xς = x for ∀ς ∈Px, i.e., Px is not transitive on
Ω. By Theorem 2.5.4, there must beN =P , a contradiction. Whence,N ∩Px = {1P}.
Applying the transitivity ofN onΩ, we immediately get thatNy = {1P} for ∀y ∈ Ω, i.e.,
N acts regularly on Ω. �

2.5.3 Regular Normal Subgroup. Theorem 2.5.5 shows the importance of normal
subgroups of primitive groups. In fact, we can determine all regular normal subgroups of
multiply transitive groups. First, we prove the next result.

Theorem 2.5.7 Let (G ; ◦) be a nontrivial f nite group andP = AutG .
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(1) If P is transitive, then (G ; ◦) is an elementary Abelian p-group for some prime
p;

(2) If P is 2-transitive, then either p = 2 or |G | = 3;
(3) If P is 3-transitive, then |G | = 4;
(4) P can not be 4-transitive.

Proof (1) Let p be a prime dividing |G |. Then there exists an element x of order
p by Corollary 2.4.1. By the transitivity we know that every element in G \ {1G } is the
form xτ, τ ∈ P and hence of order p also. Thus G is a f nite p-group and its center
Z(G ) is nontrivial by Theorem 2.4.6. By def nition, Z(G ) is characteristic in (G ; ◦) and
thus is invariant in G . Applying the transitivity of P enables us to know that Z(G ) = G .
Whence, G is an elementary Abelian p-groups.

(2) If p > 2, let x ∈ G with x , 1G . Thus x , x−1. If there is also an element y ∈ G ,
y , 1G , x, x−1, then the 2-transitivity assures us of a τ ∈ P such that (x, x−1)τ = (x, y).
Plainly, this fact implies that y = x−1, a contradiction. Therefore, G = {1G , x, x−1} and
|G | = 3.

(3) IfP is 3-transitive on G \{1G }, the later must has 3 elements at least, i.e., |G | ≥ 4.
Applying (2) we know that G is an elementary Abelian 2-group. Let H = {1, x, y, x ◦ y}
be a subgroup of order 4. If there is an element z ∈ G \H , then x ◦ z, y ◦ z and x ◦ y ◦ z
are distinct. So there must be an automorphism τ ∈P such that

xτ = x ◦ z, yτ = y ◦ z and (x ◦ y)τ = x ◦ y ◦ z

by the 3-transitivity of P on G . However, these relations imply that z = 1G , a contradic-
tion. Whence, H = G .

(4) IfP were 4-transitive, it would be 3-transitive and |G | = 4 by (3), which excludes
the possibility of 4-transitivity. Whence, P can not be 4-transitive. �

By Theorem 2.5.7, the regular normal subgroups of multiply transitive groups can
be completely determined.

Theorem 2.5.8 LetP be a k-transitive group of degree n with k ≥ 2 andN a nontrivial
regular normal subgroup ofP . Then,

(1) If k = 2, then n = |N | = pm and N is an elementary Abelian p-group for some
prime p and integer m;

(2) If k = 3, then either p = 2 or n = 3;
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(3) If k = 4, then n = 4;
(4) k ≥ 5 is impossible.

Proof Clearly, 1 < k ≤ n. Let P be a k-transitive group acting on Ω with |Ω| = n
and a ∈ Ω. By Theorem 2.2.3, we know that Pa is (k − 1)-transitive on Ω \ {a}.

Consider the action of Pa on N \ {1P} by conjugation. Now if π ∈ N \ {1P}, by
the regularity of N we know that aπ , a. Thus there is a mapping Θ from N \ {1P} to
Ω \ {a} determined by Θ : π → aπ. Applying the regularity of N again, we know that
Θ is injective. Besides, since N is transitive by Theorem 2.5.5, we know that Θ is also
surjective. Whence,

Θ : N \ {1P} → Ω \ {a}

is a bijection.
Now let 1P , π ∈ P and σ ∈ Pa. Then we have that (aπ)σ = aπ

σ , or (Θ(π))σ =
Θ(πσ). Thereafter, the permutation representations of Pa on N \ {1P} and Ω \ {a} are
equivalent. Whence Pa is (k − 1)-transitive on N \ {1P}. Notice that Pa ≤ AutN . We
therefore know that AutN is (k − 1)-transitive on N \ {1P} also. By Theorem 2.5.7, we
immediately get all these conclusions (1) − (4). �

2.5.4 O’Nan-Scott Theorem. The main approach in classif cation of primitive groups
is to study the subgroup generated by the minimal subgroups, i.e., the socle of a group
def ned following.

Def nition 2.5.1 Let (G ; ◦) be a group. A minimal normal subgroup of (G ; ◦) is such a
normal subgroup (N ; ◦), N , {1G } which does not contain other properly nontrivial
normal subgroup of G .

Def nition 2.5.2 Let (G ; ◦) be a group with all minimal normal subgroups N1,N2, · · · ,
Nm. The socle soc(G ) of (G ; ◦) is determined by

soc(G ) = 〈N1,N2, · · · ,Nm〉 .

Then we know the following results on socle of f nite groups without proofs.

Theorem 2.5.9 Let (G ; ◦) be a nontrivial f nite group. Then

(1) If K is a minimal normal subgroup and L a normal subgroup of (G ; ◦), then either
K ≤ L or 〈K, L〉 = K × L;
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(2) There exist minimal normal subgroups K1,K2, · · · ,Km of (G ; ◦) such that

soc(G ) = K1 × K2 × · · · × Km;

(3) Every minimal normal subgroup K of (G ; ◦) is a direct product K = T1 × T2 ×
· · ·×Tk, where these Ti, 1 ≤ i ≤ k are simple normal subgroups of K which are conjugate
under (G ; ◦);

(4) If these subgroup Ki, 1 ≤ i ≤ m in (2) are all non-Abelian, then K1,K2, · · · ,Km
are the only minimal normal subgroups of (G ; ◦). Similarly, if these Ti, 1 ≤ i ≤ k in (3)
are non-Abelian, then they are the only minimal normal subgroups of K.

Theorem 2.5.10 Let P be a f nite primitive group of S Ω and K a minimal normal sub-
group of P . Then exactly one of the following holds:

(1) For some prime p and integer d, K is a regular elementary Abelian group of
order pd, and soc(P) = K = ZG (K), where ZG (K) is the centralizer of K inP;

(2) K is a regular non-Abelian group, ZG (K) is a minimal normal subgroup of P

which is permutation isomorphic to K, and soc(P) = K × ZG (K);
(3) K is non-Abelian, ZG (K) = {1P} and soc(P) = K.

Particularly, for the socle of a primitive group, we get the following conclusion.

Corollary 2.5.3 Let P be a f nite primitive group of S Ω with the socle H. Then

(1) H is a direct product of isomorphic simple groups;
(2) H is a minimal normal subgroup of NSΩ(H). Moreover, if H is not regular, then

it is the only minimal normal subgroup ofNSΩ(H).

Let Ω and ∆ be two sets or groups. Denoted by Fun(Ω,∆) the set of all functions
from Ω into ∆. For two groups K , H acting on a non-empty set Ω, the wreath product
K wrΩ H of K byH with respect to this action is def ned to be the semidirect product
Fun(Ω,K ) ⋊ H , where H acts on the group Fun(Ω,K ) is determined by

f γ(a) = f (aγ−1) for all f ∈ Fun(Ω,K ), a ∈ Ω and γ ∈H .

and the operation · in Fun(Ω,K ) ×H is def ned to be

( f1, g1) · ( f2, g2) = ( f1 f
g−11
2 , g1g2).

Usually, the group B = {( f , 1H )| f ∈ Fun(Ω,K )} is called the base group of the wreath
product K wrΩ H .
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A permutation group P acting on Ω with the socle H is said to be diagonal type
if P is a subgroup of the normalizer NSΩ(H) such that P contains the base group H =
T1 × T2 × · · · × Tm. Then by Theorem 2.5.9 these groups T1, T2, · · · , Tm are the only
minimal normal subgroups of H and H ⊳ P . So P acts by conjugation on the set
{T1, T2, · · · , Tm}. Then we know the next result characterizing those primitive groups of
diagonal type without proof.

Theorem 2.5.11 Let P ≤ NSΩ(H) be a diagonal type group with the socle H = T1 ×
T2 × · · · × Tm. Then P is primitive subgroup of S Ω either if

(1) m = 2; or

(2) m ≥ 3 and the action of P by conjugation on {T1, T2, · · · , Tm} of the minimal
normal subgroups of H is primitive.

Now we can present the O’Nan-Scott theorem following, which characterizes the
structure of primitive groups.

Theorem 2.5.12(O’Nan-Scott Theorem) Let P be a f nite primitive group of degree n
andH the socle of P . Then either

(1) H is a regular elementary Abelian p-group for some prime p, n = pm = |H |
andP is isomorphic to a subgroup of the affine group AGLm(p); or

(2) H is isomorphic to a direct power Tm of a non-Abelian simple group T and one
of the following holds:

(i) m = 1 andP is isomorphic to a subgroup of AutT;

(ii) m ≥ 2 andP is a group of diagonal type with n = |T |;
(iii)m ≥ 2 and for some proper divisor d of m and some primitive groupT with a so-

cle isomorphic to T d,P is isomorphic to a subgroup of the wreath productT wr S Ω, |Ω| =
m/d with the product action, and n = lm/d, where l is the degree of T ;

(iv) m ≥ 6,H is regular and n = |T |m.

A complete proof of the O’Nan-Scott theorem can be found in the reference [DiM1].
It should be noted that the O’Nan-Scott theorem is a useful result for research problems
related with permutation groups. By Corollary 2.5.3, a f nite primitive group P has a
socle H � Tm, a direct product of m copies of some simple group T . Applying this result
enables one to divide a problem into the following f ve types in general:



Sec.2.6 Local Action and Extension Groups 69

1. Affine Type: H is an elementary Abelian p-group, n = pm and P is a subgroup of
AGLm(p) containing the translations.

2. Regular Non-Abelian Type: H and T are non-Abelian, n = |T |m, m ≥ 6 and the group
P can be constructed as a twisted wreath product.

3. Almost Simple Type: H is simple and P ≤ AutH.

4. Diagonal Type: H = Tm with m ≥ 2, n = |T |m−1 and P is a subgroup of a wreath
product with the diagonal action.

5. Product Type: H = Tm with m = rs, s > 1. There is a primitive non-regular group T

with socle T r and of type in Cases 3 or 4 such that P is isomorphic to a subgroup of the
wreath product T wr S ∆, |∆| = s with the product action.

All these types are contributed to applications of O’Nan-Scott theorem, particularly
for the classif cation of symmetric graphs in Chapter 3.

§2.6 LOCAL ACTION AND EXTENDED GROUPS

Let (G̃ ; Õ) be a multigroup with G̃ =
m⋃
i=1

Gi, Õ = {◦i|1 ≤ i ≤ m} and Ω̃ =
m⋃
i=1
Ωi a set. An

action (ϕ, ι) of (G̃ ; Õ) on Ω̃ is def ned to be a homomorphism

(ϕ, ι) : (G̃ ; Õ)→
m⋃

i=1

S Ωi

such that ϕ|Ωi : Gi → S Ωi is a homomorphism, i.e., for ∀x ∈ Ωi, ϕ(h) : x → xh with
conditions following hold,

xh◦ig = xhι(◦i)xg, h, g ∈Hi

for any integer 1 ≤ i ≤ m. We say ϕ|Ωi the local action of (ϕ, ι) on Ω̃ for integers 1 ≤ i ≤ m.

2.6.1 Local Action Group. If the multigroup (G̃ ; Õ) is in fact a permutation group P

with Ω̃ =
m⋃
i=1
Ωi, we call such a P to be a local action group on Ωi for integers 1 ≤ i ≤ m.

In this case, a local action of P on Ω̃ is determined by

ΩP
i = Ωi and (Ω̃ \Ωi)P = Ω̃ \ Ωi

for integers 1 ≤ i ≤ m.
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If the local action of P on Ωi is transitive or regular, then we say it is a locally
transitive group or locally regular group on Ωi for an integer 1 ≤ i ≤ m. We know the
following necessary condition for locally transitive or regular groups by Theorem 2.2.1
and Corollary 2.2.1.

Theorem 2.6.1 Let P be a group action on Ω̃ =
m⋃
i=1
Ωi and H ≤P . Then H is locally

transitive only if there is an integer k0, 1 ≤ k0 ≤ m such that |Ωk0 | | |H |. Furthermore, if
it is locally regular, then there is an integer l0, 1 ≤ l0 ≤ m such that |Ωi0 | = |H |.

Let P be a group locally acting on Ω̃, where Ω̃ =
m⋃
i=1
Ωi. If there are integers

k, i, k ≥ 2, 1 ≤ i ≤ m such that the action of P on Ωi is k-transitive or sharply k-transitive,
we say it is a locally k-transitive group or locally sharply k-transitive group on Ω̃. The
following necessary condition for locally k-transitive or sharply groups is by Theorems
2.2.3– 2.2.5.

Theorem 2.6.2 Let P be a group action on Ω̃ =
m⋃
i=1
Ωi and H ≤P . Then H is locally

k-transitive only if there is an integer i0, 1 ≤ i0 ≤ m such that for ∀a ∈ Ωi0 , Ha is
(k − 1)-transitive acting on Ω \ {a}. Particularly, |Ωi0 |(|Ωi0 | − 1) · · · (|Ωi0 | − k + 1) | |H |.
Furthermore, if it is locally sharply k-transitive, then there is an integer j0, 1 ≤ j0 ≤ m
such that |Ω j0 |(|Ω j0 | − 1) · · · (|Ω j0 | − k + 1) = |H |.

Theorems 2.6.1 and 2.6.2 enables us to know what kind subgroups maybe locally
action groups.

Example 2.6.1 Let P be a permutation group with

P = {1P , (1, 2, 3, 4, 5), (1, 4, 2, 5, 3), (1, 5, 4, 3, 2)

(2, 3, 5, 4), (1, 3, 2, 5), (1, 5, 4, 3), (1, 2, 4, 3), (1, 4, 5, 2)

(2, 4, 5, 3), (1, 4, 3, 5), (1, 2, 5, 4), (1, 5, 2, 3), (1, 3, 4, 2)

(2, 5)(3, 4), (1, 5)(2, 4), (1, 4)(2, 3), (1, 3)(4, 5), (1, 2)(3, 5)}

Then
H = {1P , (1, 2, 3, 4, 5), (1, 4, 2, 5, 3), (1, 5, 4, 3, 2)},

T = {1P , (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}

both are subgroups of P . Notice that |H | = 5, |T | = 4. We know that H and T are
transitive acting on Ω = {1, 2, 3, 4, 5} and ∆ = {1, 2, 3, 4}, respectively. But none of them
is k-transitive for k ≥ 2.
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Corollary 2.6.1 LetP be a group action on Ω̃ =
m⋃
i=1
Ωi,H ≤P . For integers i, 1 ≤ i ≤

m and k ≥ 1, if |Ωi|(|Ωi| − 1)(|Ωi| − 2) · · · (|Ωi| − k + 1) is not a divisor of |H |, then (H ; ◦)
is not locally k-transitive on Ωi.

For a local action group P on Ω̃ with Ω̃ =
m⋃
i=1
Ωi, if there is an integer i, 1 ≤ i ≤ m

such that the action of P on Ωi is primitive, we say it is a locally primitive group on Ω̃.
The following condition for locally primitive group is by Theorems 2.5.4.

Theorem 2.6.3 LetP be a local action group on Ω̃ =
m⋃
i=1
Ωi withH < P . Then (H ; ◦)

is locally primitive if and only if there is an integer l, 1 ≤ l ≤ m such that H action on
Ωl is transitive andHa is maximal for ∀a ∈ Ωl.

2.6.2 Action Extended Group. Conversely, let P be a permutation group action on Ω,
∆ a set with ∆ ∩ Ω = ∅. A permutation group P̃ action on Ω ∪ ∆ is an action extended
of P on Ω if (P̃)∆ =P , and k-transitive extended or primitive extended if P̃ action on
Ω∪∆ is k-transitive for an integer k ≥ 1 or primitive. Particularly, if |∆| = 1, such a action
extended group is called one-point extended on P .

The following result is simple.

Theorem 2.6.4 Let P be a permutation group action on Ω, ∆ ∩Ω = ∅, k ≥ 1 an integer
and P̃ an extension ofP action on ∆ ∪Ω. If

(1) P̃ is k-transitive on ∆;
(2) there are k elements x1, x2, · · · , xk ∈ ∆ such that for l elements y1, y2, · · · , yl ∈ Ω,

where 1 ≤ l ≤ k there exists an element πl ∈ P̃ with

yπli = xi f or 1 ≤ i ≤ l but xπi = xi i f l + 1 ≤ i ≤ k,

hold, then P̃ is k-transitive extended on ∆ ∪ Ω.

Proof Let xi, yi, 1 ≤ i ≤ k be 2k elements in Ω ∪ ∆. Firstly, we prove that for any
choice of x1, x2, · · · , xk ∈ Ω∪∆, there always exists an element θ ∈ P̃ such that all xθi ∈ ∆
for 1 ≤ i ≤ k. If x1, x2, · · · , xk ∈ ∆, there are no words need to say. Not loss of generality,
we assume that x1, x2, · · · , xs ∈ Ω but xs+1, xs+2, · · · , xk ∈ ∆ for an integer 1 ≤ s ≤ k. Then
by the assumption (2), there is an element πs ∈ P̃ such that xπsi ∈ ∆ for 1 ≤ i ≤ s but
xπsi = xi for s + 1 ≤ i ≤ k. Whence, xπsi ∈ ∆ for 1 ≤ i ≤ k, i.e., θ = πs is for our objective.
Similarly, there also exists an element τ ∈ P̃ such that yτi ∈ ∆ for 1 ≤ i ≤ k.
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Applying the assumption (1), there is an element π ∈ P̃ such that (xθi )
π = yτi for

integers 1 ≤ i ≤ k. Consequently, we know that

xθπτ−1i = yi for 1 ≤ i ≤ k.

This completes the proof. �

Particularly, if k = 1, we get the following conclusion for transitive extended by
Theorem 2.6.4.

Corollary 2.6.2 Let P be a permutation group action on Ω, ∆ ∩ Ω = ∅ and P̃ an
extension ofP action on ∆ ∪Ω. If

(1) P̃ is transitive on ∆;
(2) there is one element x ∈ ∆ such that for any element y ∈ Ω, there exists an

element π ∈ P̃ with yπ = x hold,

then P̃ is transitive extended on ∆ ∪Ω.

Furthermore, if P̃ is one-point extended of P̃, we get the following result.

Corollary 2.6.3 Let P̃ be an one-point extension of P action on Ω by x < Ω. For
∀y ∈ Ω, if there exists an element π ∈ P̃ such that yπ = x, then P̃ is transitive extended
ofP .

These conditions in Corollaries 2.6.2–2.6.3 is too strong. In fact, we improve condi-
tions in them as in the following result.

Theorem 2.6.5 Let P be a permutation group action on Ω with orbitsB1,B2, · · · ,Bm,
∆ ∩Ω = ∅ and

P̃ = 〈P;Q〉 ,

with Q = {(x, yi), 1 ≤ i ≤ m; (x′, z), x′ ∈ ∆, x′ , x}, where x ∈ ∆, yi ∈ Bi, z = x or yi
for 1 ≤ i ≤ m. Then P̃ is transitive extended. Furthermore, if P is transitive on Ω or
∆ = {x}, i.e., P̃ is one-point extension of P , then

P̃ = 〈P; (x, y), (x′, z), x′ ∈ ∆, x′ , x〉 or 〈P; (x, yi), 1 ≤ i ≤ m〉

with y ∈ Ω, z = x or y is transitive extended ofP on Ω ∪ ∆ or Ω ∪ {x}.

Proof We only prove the f rst assertion since all others are then followed.
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Firstly, for ∀zi ∈ Bi, z j ∈ B j, let zσ1i = yi and zσ2j = y j, σi, σ j ∈ P . Then
zσi(x,yi)(x,y j)σ ji = z j. Now if x1, x2 ∈ ∆, by def nition x(x1 ,x)(x2 ,x)1 = x2, or x(x1 ,x)(x,yi)(yi ,x2)1 = x2,
or x(x1 ,yi)(x2 ,yi)1 = x2, or x

(x1 ,yi)(yi ,x)(x,y j)(y j ,x2)
1 = x2 if (x1, x), (x2, x), or (x1, x), (x, yi), (yi, x2), or

(x1, yi), (x2, yi), or (x1, yi), (yi, x), (x, y j), (y j, x2) ∈ P̃. Finally, if xi ∈ ∆ and z j ∈ B j, let
xσi = x and z

ς

j = y j. Then x
σ(x,y j)ς
i = z j.

Therefore, P̃ is transitive extended on Ω ∪ ∆. �

The k-transitive number ̟tran
k (P;∆) of a permutation group P action on Ω by a

set ∆ with ∆ ∩ Ω = ∅ is def ned to be the minimum number of involutions appeared in
permutations presented by product of inventions added to P such that P̃ is k-transitive
extended ofP onΩ∪∆. Particularly, if k = 1, we abbreviate̟tran

k (P;∆) to̟tran(P;∆).
We know the number̟(P;∆) in the following result.

Theorem 2.6.6 Let P be a permutation group action on Ω with an orbital set Orb(Ω),
∆ ∩ Ω = ∅ and P̃ an extended action ofP on ∆ ∪Ω. Then

̟tran(P;∆) = |∆| + |Orb(Ω)| − 1.

Furthermore, ifP is transitive or P̃ is one-point extension ofP , then

̟tran(P;∆) = |∆| or |Orb(Ω)|.

Proof Let x ∈ ∆ ∪ Ω be a chosen element. denoted by A[x] all elements determined
by

A[x] = { y| xπ = y, ∀π ∈ P̃}.

If P̃ is a transitive extended action of P on ∆∪Ω, there must be A[x] = ∆∪Ω. Enumer-
ating all inventions appeared in permutations π presented by product of inventions such
that xπ = y ∈ A[x], we know that

̟tran(P;∆) ≥ |∆| + |Orb(Ω)| − 1.

Applying Theorem 2.6.5, we get that

̟tran(P;∆) ≤ |∆| + |Orb(Ω)| − 1.

Whence,
̟tran(P;∆) = |∆| + |Orb(Ω)| − 1.
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Notice that |Orb(Ω)| = 1 or |∆| = 1 if P is transitive or P̃ is one-point extension of P .
We therefore f nd that

̟tran(P;∆) = |∆| or |Orb(Ω)|

if P is transitive or P̃ is one-point extended. �

Now we turn our attention to primitive extended groups. Applying Theorem 2.5.3,
we have the following result.

Theorem 2.6.7 Let P be a permutation group action on Ω and ∆ a nonempty set with
∆ ∩ Ω = ∅. Then there exist primitive extended permutation groups P̃ of P action on
Ω ∪ ∆ if |∆| ≥ 2 or |∆| = 1 butP is transitive on Ω.

Proof Let B1,B2, · · · ,Bm be orbits of P action on Ω. Def ne

P̃ = 〈P; (x, yi), 1 ≤ i ≤ m; (x′, x), x′ ∈ ∆, x′ , x〉 ,

where x ∈ ∆, yi ∈ Bi. Then P̃ is 2-transitive extended of P by Theorem 2.6.4 if |∆| ≥ 2.
Notice that P̃x = P . If ∆ = {x} and P is transitive on Ω, we also know that P̃ is
2-transitive extended of P by Theorem 2.2.3. Whence, we know that P̃ is primitive
extended of P on Ω ∪ ∆ by Theorem 2.5.3 in each case. �

2.6.3 Action MultiGroup. Let P̃ be a permutation multigroup action on Ω̃ with P̃ =
m⋃
i=1

Pi, Ω̃ =
m⋃
i=1
Ωi and for each integer i, 1 ≤ i ≤ m, the permutation group Pi acts on Ωi.

Such a permutation multigroup P̃ is said to be globally k-transitive for an integer k ≥ 1
if for any two k-tuples x1, x2, · · · , xk ∈ Ωi and y1, y2, · · · , yk ∈ Ω j, where 1 ≤ i, j ≤ m, there
are permutations π1, π2, · · · , πn such that

xπ1π2···πn1 = y1, xπ1π2···πn2 = yi, · · · , xπ1π2···πnk = yk.

For simplicity, we abbreviate the globally 1-transitive to that globally transitive of a per-
mutation multigroup.

Remark 2.6.1: There are no meaning if we def ne the globally k-transitive on two k-
tuples x1, x2, · · · , xk ∈ Ω̃, y1, y2, · · · , yk ∈ Ω̃ in a permutation multigroup P̃ because there
are no def nition for the actions xπl if xl < Ωi but π ∈Pi, 1 ≤ i ≤ m, where 1 ≤ l ≤ k.

Theorem 2.6.8 Let P̃ be a permutation multigroup action on Ω̃ with P̃ =
m⋃
i=1

Pi, Ω̃ =

m⋃
i=1
Ωi, where each permutation groupPi transitively acts on Ωi for each integers 1 ≤ i ≤
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m. Then P̃ is globally transitive on Ω̃ if and only if for any integer i, 1 ≤ i ≤ m, there
exists an integer j, 1 ≤ j ≤ m, j , i such that

Ωi

⋂
Ω j , ∅.

Proof If P̃ is globally transitive action on Ω̃, by def nition for x ∈ Ωi and y < Ωi,
1 ≤ i ≤ m, there are elements π1, π2, · · · , πn ∈ P̃ such that

xπ1π2···πn = y.

Not loss of generality, we assume π1, π2, · · · , πl−1 ∈ Pi but πl, πl+1, · · · , πn < Pi, i.e., l be
the least integer such that πl < Pi. Let πl ∈ P j. Notice that Pi, P j act on Ωi and Ω j,
respectively. We get that xπ1π2···πi ∈ Ωi ∩ Ω j, i.e.,

Ωi

⋂
Ω j , ∅.

Conversely, if for any integer i, 1 ≤ i ≤ m, there always exists an integer j, 1 ≤ j ≤
m, j , i such that

Ωi

⋂
Ω j , ∅,

let x ∈ Ωi and y < Ωi. Then there exist integers l1, l2, · · · , ls such that

Ωi

⋂
Ωl1 , ∅, Ωl1

⋂
Ωl2 , ∅, · · · ,Ωls−1

⋂
Ωls , ∅.

Let x, x1 ∈ Ωi
⋂
Ωl1 , x2 ∈ Ωl1

⋂
Ωl2 , · · ·, xs ∈ Ωls−1

⋂
Ωls , y ∈ Ωls and π1 ∈ P1, π2 ∈ Pl1 ,

· · ·, πs−1 ∈ Pls−1 , πs ∈ Pls such that xπ1 = xl1 , x
π2
l1 = xl2 ,· · ·, x

πs−1
ls−1 = xls , x

πs
ls = y by the

transitivity of Pi, 1 ≤ i ≤ m. Therefore, we f nd that

xπ1π2···πs = y.

This completes the proof. �

The condition of transitivity on each permutationPi, 1 ≤ i ≤ m in Theorem 2.6.8 is
not necessary for the globally transitive of P̃ on Ω̃, such as those shown in the following
example.

Example 2.6.2 Let P̃ be a permutation multigroup action on Ω̃ with

P̃ =P1

⋃
P2 and Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8}

⋃
{1, 2, 5, 6, 9, 10, 11, 12},
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where P1 = 〈(1, 2, 3, 4), (5, 6, 7, 8)〉 and P2 = 〈(1, 5, 9, 10), (2, 6, 11, 12)〉, i.e.,

P1 = {1P1, (13)(24), (1, 2, 3, 4), (1, 4, 3, 2),

(5, 7)(6, 8), (5, 8, 7, 6), (5, 6, 7, 8),

(13)(24)(5, 7)(6, 8), (13)(24)(5, 6, 7, 8), (13)(24)(5, 8, 7, 6)

(1, 2, 3, 4)(5, 7)(6, 8), (1, 2, 3, 4)(5, 6, 7, 8), (1, 2, 3, 4)(5, 8, 7, 6)

(1, 4, 3, 2)(5, 7)(6, 8), (1, 4, 3, 2)(5, 6, 7, 8), (1, 4, 3, 2)(5, 8, 7, 6)}

and

P2 = {1P2 , (1, 9)(5, 10), (1, 5, 9, 10), (1, 10, 9, 5)

(2, 11)(6, 12), (2, 6, 11, 12), (2, 12, 11, 6)

(1, 9)(5, 10)(2, 11)(6, 12), (1, 9)(5, 10)(2, 6, 11, 12), (1, 9)(5, 10)(2, 12, 11, 6)

(1, 5, 9, 10)(2, 11)(6, 12), (1, 5, 9, 10)(2, 6, 11, 12), (1, 5, 9, 10)(2, 12, 11, 6)

(1, 10, 9, 5)(2, 11)(6, 12), (1, 10, 9, 5)(2, 6, 11, 12), (1, 10, 9, 5)(2, 12, 11, 6).

Calculation shows that P̃ is transitive on Ω̃, i.e., for any element, for example 1 ∈ Ω̃,

1P̃ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Generally, we know the following result on the globally transitive of permutation
multigroup, a generalization of Theorem 2.6.8 motivated by Example 2.6.2.

Theorem 2.6.9 Let P̃ be a permutation multigroup action on Ω̃ with P̃ =
m⋃
i=1

Pi, Ω̃ =

m⋃
i=1
Ωi, where each permutation groupPi acts onΩi with orbitsBi j, 1 ≤ j ≤ |Orb(Ωi)| for

integers 1 ≤ i ≤ m. Then P̃ is globally transitive on Ω̃ if and only if for integer i, j, 1 ≤
i ≤ m, 1 ≤ j ≤ |Orb(Ωi)|, there exist integers k, 1 ≤ k ≤ m, 1 ≤ l ≤ |Orb(Ωk)|, k , i such
that

Ωi j

⋂
Ωkl , ∅.

Proof Def ne a multiset

Ω̃ =

m⋃

i=1

Ωi =

m⋃

i=1


|Orb(Ωi)|⋃

j=1

Bi j

 .

Then Pi acts on each Bi j is transitive by def nition for 1 ≤ i ≤ m, 1 ≤ j ≤ |Orb(Ωi)| and
the result is followed by Theorem 2.6.8. �
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Counting elements in each Ωi, 1 ≤ i ≤ m, we immediately get the following conse-
quence by Theorem 2.6.9.

Corollary 2.6.3 Let P̃ be a permutation multigroup globally transitive action on Ω̃
with P̃ =

m⋃
i=1

Pi, Ω̃ =
m⋃
i=1
Ωi, where each permutation group Pi acts on Ωi with orbits

Bi j, 1 ≤ j ≤ |Orb(Ωi)| for integers 1 ≤ i ≤ m. Then for any integer i, 1 ≤ i ≤ m,

|Ω̃ \Ωi| ≥ |Orb(Ωi)|,

particularly, if m = 2 then

|Ω1| ≥ |Orb(Ω2)| and |Ω2| ≥ |Orb(Ω1)|.

A permutation multigroup P̃ =
m⋃
i=1

Pi action on Ω̃ =
m⋃
i=1

is said to be globally

primitive if there are no proper subsets A ⊂ Ω̃, |A| ≥ 2 such that either A = Aπ or
A ∩ Aπ = ∅ for ∀π ∈ P̃ provided aπ existing for ∀a ∈ A.

Theorem 2.6.10 A permutation multigroup P̃ =
m⋃
i=1

Pi action on Ω̃ =
m⋃
i=1
is globally

primitive if and only ifPi action on Ωi is primitive for any integer 1 ≤ i ≤ m.

Proof If P̃ action on Ω̃ is globally primitive, by def nition we know that there are
no proper subsets A ⊂ Ωi, |A| ≥ 2 such that either A = Aπ or A ∩ Aπ = ∅ for ∀π ∈ Pi,
where 1 ≤ i ≤ m. Whence, each Pi primitively acts on Ωi.

Conversely, if each Pi action on Ωi is primitive for integers 1 ≤ i ≤ m, then there
are no proper subsets A ⊂ Ωi, |A| ≥ 2 such that either A = Aπ or A ∩ Aπ = ∅ for ∀π ∈Pi

for 1 ≤ i ≤ m by def nition. Now let π ∈ Pi for an integer i, 1 ≤ i ≤ m. Notice that Aπ

is existing for ∀A ⊂ Ω̃ if and only if A ⊂ Ωi. Consequently, P̃ action on Ω̃ is globally
primitive by def nition. �

Combining Theorems 2.6.10 with 2.5.4, we get the following consequence.

Corollary 2.6.4 Let P̃ =
m⋃
i=1

Pi be a permutation multigroup action on Ω̃ =
m⋃
i=1
, where

Pi is transitive and (Pi)a is maximal for ∀a ∈ Ωi, 1 ≤ i ≤ m. Then P̃ is globally
primitive action on Ω̃.

§2.7 REMARKS

2.7.1 There are many monographs on action groups such as those of [Wie1] and [DiM1].
In fact, every book on group theory partially discusses action groups with applications.
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These materials in Sections 2.1, 2.2 2.3 and 2.5 are mainly extracted from [Wan1], [Rob1]
and [DiM1], particularly, the O’Nan-Scott theorem on primitive groups.

2.7.2 A central but difficult problem in group theory is to classify groups of order n for
any integer n ≥ 1. The Sylow’s theorem on p-groups enables one to see a glimmer on
classifying p-groups. However, this problem is also difficult in general. Today, we can
only f nd the classif cation of p-groups with small power (See [Xum1] and [Zha1] for
details). In fact, these techniques used for classifying p-groups are nothing but the group
actions, i.e., application of action groups.

2.7.3 These permutation multigroups in Section 2.6 is in fact action multigroups, a kind
of Smarandache multi-spaces f rst discussed in [Mao21] and [Mao25]. These concep-
tions such as those of locally k-transitive, locally primitive, k-transitive extended, prim-
itive extended, globally transitive and globally primitive are f rst presented in this book.
Certainly, there are many open problems on permutation multigroups, for example, for a
permutation groupP action on Ω, is there always an extended primitive action ofP on
Ω ∪ ∆ for a set ∆, ∆ ∩Ω = ∅? Can we characterize such permutation groupsP or such
sets ∆?

2.7.4 Theorems 2.6.8 and 2.6.9 completely determine the globally transitive multigroups.
However, we can also f nd a more simple characterization by graphs in Chapter 3, in where
we clarify the property of globally transitive is nothing but the connectedness on graphs.
In fact, these conditions in Theorems 2.6.8 and 2.6.9 are essentially enables one to f nd a
spanning tree, a kind of most simple connected graph on Ω̃.



CHAPTER 3.

Graph Groups

An immediate applying f eld of action groups is to that of graphs for them
easily to handle by intuition. By def nition, a graph group is a subgroup of
the automorphism group of a graph viewed as a permutation group of its ver-
tices. In fact, graphs has a nice mathematical structure on objectives. Usu-
ally, the investigation on such structures enables one to f nd new important
results in mathematics. For example, the well-known Higman-Sims group,
one of these 26 sporadic simple groups was found by that of graph groups
in 1968. Topics covered in the f rst 4 sections including graphs with opera-
tions, graph properties with results, Smarandachely graph properties, graph
groups, vertex-transitive graphs, edge-transitive graphs, arc-transitive graphs,
semi-arc groups with semi-arc transitive graph, · · ·, etc.. A graph is itself
a Smarandache multi-space by def nition, which naturally provide us a nice
source for get multigroups. In Section 3.5, we show how to get mutligroups
on graphs, also f nd new graph invariants by that of graph multigroups, which
will be useful for research graphs and getting localized symmetric graphs.
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§3.1 GRAPHS

3.1.1 Graph. A graph G is an ordered 3-tuple (V, E; I), where V, E are f nite sets, V , ∅
and I : E → V × V . Call V the vertex set and E the edge set of G, denoted by V(G)
and E(G), respectively. An elements v ∈ V(G) is incident with an element e ∈ E(G)
if I(e) = (v, x) or (x, v) for an x ∈ V(G). Usually, if (u, v) = (v, u), denoted by uv or
vu ∈ E(G) for ∀(u, v) ∈ E(G), then G is called to be a graph without orientation and
abbreviated to graph for simplicity. Otherwise, it is called to be a directed graph with an
orientation u→ v on each edge (u, v).

The cardinal numbers of |V(G)| and |E(G)| are called its order and size of a graph G,
denoted by |G| and ε(G), respectively.

Let G be a graph. We can represent a graph G by locating each vertex u in G by a
point p(u), p(u) , p(v) if u , v and an edge (u, v) by a curve connecting points p(u) and
p(v) on a plane R2, where p : G → P is a mapping from the V(G) to R2.

For example, a graph G = (V, E; I) with V = {v1, v2, v3, v4}, E = {e1, e2, e3, e4, e5,
e6, e7, e8, e9, e10} and I(ei) = (vi, vi), 1 ≤ i ≤ 4; I(e5) = (v1, v2) = (v2, v1), I(e8) = (v3, v4) =
(v4, v3), I(e6) = I(e7) = (v2, v3) = (v3, v2), I(e8) = I(e9) = (v4, v1) = (v1, v4) can be drawn
on a plane as shown in Fig.3.1.1.

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig. 3.1.1

LetG = (V, E; I) be a graph. For ∀e ∈ E, if I(e) = (u, u), u ∈ V , then e is called a loop,
For example, edges e1 − e4 in Fig.3.1.1. For non-loop edges e1, e2 ∈ E, if I(e1) = I(e2),
then e1, e2 are called multiple edges ofG. In Fig.3.1.1, edges e6, e7 and e9, e10 are multiple
edges. A graph is simple if it is loopless without multiple edges, i.e., I(e) = (u, v) implies
that u , v, and I(e1) , I(e2) if e1 , e2 for ∀e1, e2 ∈ E(G). In the case of simple graphs, an
edge (u, v) is commonly abbreviated to uv.
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A walk of a graph G is an alternating sequence of vertices and edges u1, e1, u2, e2,
· · · , en, un with ei = (ui, ui+1) for 1 ≤ i ≤ n. The number n is called the length of the
walk. A walk is closed if u1 = un+1, and opened, otherwise. For example, the sequence
v1e1v1e5v2e6v3e3v3e7v2e2v2 is a walk in Fig.1.3.1. A walk is a trail if all its edges are
distinct and a path if all the vertices are distinct also. A closed path is usually called a
circuit or cycle. For example, v1v2v3v4 and v1v2v3v4v1 are respective path and circuit in
Fig.3.1.1.

A graph G = (V, E; I) is connected if there is a path connecting any two vertices in
this graph. In a graph, a maximal connected subgraph is called its a component.

Let G be a graph. For ∀u ∈ V(G), the neighborhood NG(u) of the vertex u in G is
def ned by NG(u) = {v|∀(u, v) ∈ E(G)}. The cardinal number |NG(u)| is called the valency
of vertex u in G and denoted by ρG(u). A vertex v with ρG(v) = 0 is an isolated vertex
and ρG(v) = 1 a pendent vertex. Now we arrange all vertices valency of G as a sequence
ρG(u), ρG(v), · · · , ρG(w) with ρG(u) ≥ ρG(v) ≥ · · · ≥ ρG(w), and denote ∆(G) = ρG(u),
δ(G) = ρG(w) and call then the maximum or minimum valency of G, respectively. This
sequence ρG(u), ρG(v), · · · , ρG(w) is usually called the valency sequence of G. If ∆(G) =
δ(G) = r, such a graph G is called a r-regular graph. For example, the valency sequence
of graph in Fig.3.1.1 is (5, 5, 5, 5), which is a 5-regular graph.

By enumerating edges in E(G), the following equality is obvious.
∑

u∈V(G)
ρG(u) = 2|E(G)|.

A graphGwith a vertex set V(G) = {v1, v2, · · · , vp} and an edge set E(G) = {e1, e2, · · · ,
eq} can be also described by those of matrixes. One such matrix is a p × q adjacency ma-
trix A(G) = [ai j]p×q, where ai j = |I−1(vi, v j)|. Thus, the adjacency matrix of a graph G is
symmetric and is a 0, 1-matrix having 0 entries on its main diagonal if G is simple. For
example, the matrix A(G) of the graph in Fig.3.1.1 is

A(G) =



1 1 0 2
1 1 2 0
0 2 1 1
2 0 1 1



LetG1 = (V1, E1; I1) andG2 = (V2, E2; I2) be two graphs. They are identical, denoted
by G1 = G2 if V1 = V2, E1 = E2 and I1 = I2. If there exists a 1 − 1 mapping φ : E1 →
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E2 and φ : V1 → V2 such that φI1(e) = I2φ(e) for ∀e ∈ E1 with the convention that
φ(u, v) = (φ(u), φ(v)), then we say that G1 is isomorphic to G2, denoted by G1 � G2 and
φ an isomorphism between G1 and G2. For simple graphs H1,H2, this def nition can be
simplif ed by (u, v) ∈ I1(E1) if and only if (φ(u), φ(v)) ∈ I2(E2) for ∀u, v ∈ V1.

For example, let G1 = (V1, E1; I1) and G2 = (V2, E2; I2) be two graphs with

V1 = {v1, v2, v3}, E1 = {e1, e2, e3, e4},

I1(e1) = (v1, v2), I1(e2) = (v2, v3), I1(e3) = (v3, v1), I1(e4) = (v1, v1)

and

V2 = {u1, u2, u3}, E2 = { f1, f2, f3, f4},

I2( f1) = (u1, u2), I2( f2) = (u2, u3), I2( f3) = (u3, u1), I2( f4) = (u2, u2),

i.e., those graphs shown in Fig.3.1.2.

u1

v2v3

e1

e2

e3

e4

G1

v1

u2u3

f1 f2

f3

f4

G2

Fig. 3.1.2

Def ne a mapping φ : E1
⋃
V1 → E2

⋃
V2 by φ(e1) = f2, φ(e2) = f3, φ(e3) =

f1, φ(e4) = f4 and φ(vi) = ui for 1 ≤ i ≤ 3. It can be verif ed immediately that
φI1(e) = I2φ(e) for ∀e ∈ E1. Therefore, φ is an isomorphism between G1 and G2, i.e.,
G1 and G2 are isomorphic.

A graph H = (V1, E1; I1) is a subgraph of a graph G = (V, E; I) if V1 ⊆ V , E1 ⊆ E
and I1 : E1 → V1 × V1. We use H ≺ G to denote that H is a subgraph of G. For example,
graphs G1,G2,G3 are subgraphs of the graph G in Fig.3.1.3.

u1 u2

u3u4
G

u1 u2

u3 u4

u1 u2

u3 u4
G1 G2 G3

Fig. 3.1.3
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For a nonempty subset U of the vertex set V(G) of a graphG, the subgraph 〈U〉 ofG
induced by U is a graph having vertex set U and whose edge set consists of these edges
ofG incident with elements of U. A subgraph H ofG is called vertex-induced if H � 〈U〉
for some subsetU of V(G). Similarly, for a nonempty subset F of E(G), the subgraph 〈F〉
induced by F in G is a graph having edge set F and whose vertex set consists of vertices
of G incident with at least one edge of F. A subgraph H of G is edge-induced if H � 〈F〉
for some subset F of E(G). In Fig.3.1.3, subgraphs G1 and G2 are both vertex-induced
subgraphs 〈{u1, u4}〉, 〈{u2, u3}〉 and edge-induced subgraphs 〈{(u1, u4)}〉, 〈{(u2, u3)}〉. For
a subgraph H of G, if |V(H)| = |V(G)|, then H is called a spanning subgraph of G. In
Fig.3.1.3, the subgraph G3 is a spanning subgraph of the graph G.

K(4, 4) K6

Fig.3.1.4

A graph G is n-partite for an integer n ≥ 1, if it is possible to partition V(G) into n
subsets V1,V2, · · · ,Vn such that every edge joints a vertex of Vito a vertex of V j, j , i, 1 ≤
i, j ≤ n. A complete n-partite graph G is such an n-partite graph with edges uv ∈ E(G) for
∀u ∈ Vi and v ∈ V j for 1 ≤ i, j ≤ n, denoted by K(p1, p2, · · · , pn) if |Vi| = pi for integers
1 ≤ i ≤ n. Particularly, if |Vi| = 1 for integers 1 ≤ i ≤ n, such a complete n-partite graph
is called complete graph and denoted by Kn. In Fig.3.1.4, we can f nd the bipartite graph
K(4, 4) and the complete graph K6. Usually, a complete subgraph of a graph is called a
clique, and its a k-regular vertex-spanning subgraph also called a k-factor.

3.1.2 Graph Operation. A union G1
⋃
G2 of graphs G1 with G2 is def ned by

V(G1

⋃
G2) = V1

⋃
V2, E(G1

⋃
G2) = E1

⋃
E2, I(E1

⋃
E2) = I1(E1)

⋃
I2(E2).

A graph consists of k disjoint copies of a graph H, k ≥ 1 is denoted by G = kH. As an
example, we f nd that

K6 =

5⋃

i=1

S 1.i
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for graphs shown in Fig.3.1.5 following

1

2 3
4
5
6
2

3
4

5

6
3

4
5

6
4

5

6
5

6

S 1.5 S 1.4 S 1.3 S 1.2 S 1.1

Fig. 3.1.5

and generally, Kn =
n−1⋃
i=1
S 1.i. Notice that kG is a multigraph with edge multiple k for any

integer k, k ≥ 2 and a simple graph G.
A complement G of a graph G is a graph with vertex set V(G) such that vertices are

adjacent in G if and only if these are not adjacent in G. A join G1 + G2 of G1 with G2 is
def ned by

V(G1 +G2) = V(G1)
⋃
V(G2),

E(G1 +G2) = E(G1)
⋃
E(G2)

⋃{(u, v)|u ∈ V(G1), v ∈ V(G2)}

and

I(G1 +G2) = I(G1)
⋃
I(G2)

⋃{I(u, v) = (u, v)|u ∈ V(G1), v ∈ V(G2)}.

Applying the join operation, we know that K(m, n) � Km + Kn. A Cartesian product
G1×G2 of graphsG1 withG2 is def ned by V(G1 ×G2) = V(G1)×V(G2) and two vertices
(u1, u2) and (v1, v2) ofG1×G2 are adjacent if and only if either u1 = v1 and (u2, v2) ∈ E(G2)
or u2 = v2 and (u1, v1) ∈ E(G1). For example, K2 × P6 is shown in Fig.3.1.6 following.

u

v

1 2 3 4 5
K2

6
P6

K2 × P6

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6

Fig.3.1.6



Sec.3.1 Graphs 85

3.1.3 Graph Property. A graph propertyP is in fact a graph family

P = {G1,G2,G3, · · · ,Gn, · · ·}

closed under isomorphism, i.e., Gϕ ∈ P for any isomorphism on a graph G ∈ P . We
alphabetically list some graph properties and results without proofs following.

Colorable. A coloring of a graph G by colors in C is a mapping ϕ : C →
V(G) ∪ E(G) such that ϕ(u) , ϕ(v) if u is adjacent or incident with v in G. Usually, a
coloring ϕ|V(G) : C → V(G) is called a vertex coloring and ϕ|E(G) : C → E(G) an edge
coloring. A graphG is n-colorable if there exists a color set C for an integer n ≥ |C |. The
minimum number n for which a graph G is vertex n-colorable, edge n-colorable is called
the vertex chromatic number or edge chromatic number and denoted by χ(G) or χ1(G),
respectively. The following result is well-known for colorable of a graph.

Theorem 3.1.1 Let G be a connected graph. Then

(1) χ(G) ≤ ∆(+) + 1 and with the equality hold if and only if G is either an odd
circuit or a complete graph; (Brooks theorem)

(2) χ1(G) = ∆(G) or ∆(G) + 1; (Vizing theorem)

Theorem 3.1.1(2) enables one to classify graphs into Class 1, Class 2 by χ1(G) =
∆(G) or χ1(G) = ∆(G) + 1, respectively.

Connectivity. For an integer k ≥ 1, a graph G is said to be k-connected if removing
elements in X ⊂ V(G)∪E(G) with |X| = k still remains a connected graphG−X. Usually,
we call G to be vertex k-connected or edge k-connected if X ⊂ V(G) or X ⊂ E(G) and
abbreviate vertex k-connected to k-connected in reference. The minimum cardinal number
of X ⊂ V(G) or X ⊂ E(G) is def ned to be the connectivity or edge-connectivity of G,
denoted respective by κ(G), κ1(G). A fundamental result for characterizing connectivity
of a graph is the Menger theorem following.

Theorem 3.1.2(Menger) Let u and v be non-adjacent vertices in a graph G. Then the
minimum number of vertices that separate u and v is equal to that the maximum number
of internally disjoint u − v paths in G.

Then we can characterize k-connected or k-edge-connected graphs following.

Theorem 3.1.3 Let G be a non-trivial graph. Then
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(1) G is k-connected if and only if for ∀u, v ∈ V(G), u , v, there are at least k
internally disjoint u − v paths in G. (Whinety)

(2) G is k-edge-connected if and only if for ∀u, v ∈ V(G), u , v, there are at least k
edge-disjoint u − v paths in G.

Covering. A subset W ⊂ V(G) ∪ E(G) is independent if any two element in W
is non-adjacent or non-incident. A vertex and an edge in a graph are said to be cover
each other if they are incident and a cover of G is such a subset U ⊂ V(G) ∪ E(G) such
that any element in V(G) ∪ E(G) \ U is incident to an element in U. If U ⊂ V(G) or
U ⊂ E(G), such an independent set is called vertex independent or edge independent and
such a covering a vertex cover or edge cover. Usually, we denote the minimum cardinality
of vertex cover, edge cover of a graph G by α(G) an α1(G) and the maximum cardinality
of vertex independent set, edge independent set by β(G) and β1(G), respectively.

Theorem 3.1.4(Gallai) Let G be a graph of order p without isolated vertices. Then

α(G) + β(G) = p and α1(G) + β1(G) = p.

A dominating set D of a graph G is such a subset D ⊂ V(G) ∪ E(G) such that every
element is adjacent to an element in D. If D ⊂ V(G) or D ⊂ E(G), such a dominating set
D of G is called a vertex or edge dominating set. The minimum cardinality of vertex or
edge dominating set is denoted by σ(G) or σ1(G), called the vertex or edge dominating
number, respectively. The following is obvious by def nition.

Theorem 3.1.5 Let G be a graph. Then

σ(G) ≤ α(G) and σ1(G) ≤ β1(G).

Decomposable. A decomposition of a graphG is subgraphs Hi; 1 ≤ i ≤ m ofG such
that Hi = 〈Ei〉 for some subset Ei ⊂ E(G) with Ei ∩ E j = ∅ for j , i, 1 ≤ j ≤ m, usually
denoted by

G =
m⊕

i=1

Hi.

If every Hi is a spanning subgraph of G, such a decomposition is called a factorization of
G into factors Hi; 1 ≤ i ≤ m. Furthermore, if every Hi is k-regular, such a decomposition
is called k-factorable and each Hi is a k-factor of G.
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u1 u2

u3

u4u5

u6

v1 v2

v3v4
G1 G2

Fig.3.1.7

For example, we know that

G1 = H1

⊕
H2, and G2 = F1

⊕
F2

⊕
F3

for graphs G1, G2 in Fig.3.1.8, where H1 = 〈u1u4, u2u3, u5u6〉, h2 = 〈u1u6, u2u5, u3u4〉
and F1 = 〈v1v2, v3v4〉, F2 = 〈v1v4, v2v3〉, F3 = 〈v1v3, v2v4〉. Notice that every Hi or Fi is
1-regular. Such a spanning subgraph in a graph G is called a perfect matching of G.

Theorem 3.1.6(Tutte) A non-trivial graph G has a perfect matching if and only if for
every proper subset S ⊂ V(G),

ω(G − S ) ≤ |S |,

where ω(H) denotes the number of odd components in a graph H.

Theorem 3.1.7(König) Every k-regular bipartite graph with k ≥ 1 is 1-factorable.

Theorem 3.1.8(Petersen) A non-trivial graph G is 2-factorable if and only if G is 2n-
regular for some integer n ≥ 1.

Embeddable. A graphG is said to be embeddable into a topological spaceT if there
is a 1− 1 continuous mapping f : G → T with f (p) , f (q) if p, q < V(G). Particularly, if
T is a Euclidean plane R2, we say that G is a planar graph. In a planar graph G, its face
is def ned to be that region F in which any simple curve can be continuously deformed in
this region to a single point p ∈ F. For example, the graph in Fig.3.1.8 is a planar graph.

v1 v2

v3v4

u1 u2

u3u4

Fig.3.1.8
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whose faces are F1 = u1u2v3u4u1, F2 = v1v2v3v4v1, F3 = u1v1v2u2u1, F4 = u2v2v3u3u2,
F5 = u3v3v4u4u3 and F6 = u4v4v1u1u4. It should be noted that each boundary of a face
in this planar graph is a circuit. Such an embedding graph is called a strong embedded
graph.

Theorem 3.1.9(Euler) Let G be a planar graph with p vertices, q edges and r faces. Then

p − q + r = 2.

An elementary subdivision of a graphG is such a graph obtained fromG by removing
some edge e = uv and adding a new vertex and two edges uw, vw. A subdivision of a graph
G is a graph by a succession of elementary subdivision. Def ne a graph H homeomorphic
from that of G if either H � G or H is isomorphic to a subdivision of G. The following
result characterizes planar graphs.

Theorem 3.1.10(Kuratowski) A graph is planar if and only if it contains no subgraphs
homeomorphic with K5 or K(3, 3).

Theorem 3.1.11(The Four Color Theorem) Every planar graph is 4-colorable.

Travelable. A graph G is eulerian if there is a closed trail containing all edges and
is hamiltonian if there is a circuit containing all vertices of G. For example, the graph in
Fig.3.1.6 is with a hamiltonian circuit C = v1v2v3v4u4u3u2u2v1, but it is not eulerian. We
know a necessary and sufficient condition for eulerian graphs following.

Theorem 3.1.12(Euler) A graphG is eulerian if and only if ρG(v) ≡ 0(mod2), ∀v ∈ V(G).

But for hamiltonian graphs, we only know some sufficient conditions. For example,
the following results.

Theorem 3.1.13(Chvátal and Erdös) Let G be a graph with at least 3 vertices. If κ(G) ≥
β(G), then G is hamiltonian.

A closure C(G) of a graph G is the graph obtained by recursively joining pairs of
non-adjacent vertices whose valency sum is at least |G|. Then we know the next result.

Theorem 3.1.14(Bondy and Chätal) A graph is hamiltonian if and only if its closure is
hamiltonian.

Theorem 3.1.15(Tutte) Every 4-connected planar graph is hamiltonian.
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3.1.4 Smarandachely Graph Property. A graph property P is Smarandachely if it
behaves in at least two different ways on a graph, i.e., validated and invalided, or only
invalided but in multiple distinct ways. Such a graph with at least one Smarandachely
graph property is called a Smarandachely graph. Here, we only alphabetically list some
Smarandachely graph properties and results with some open problems following.

Smarandachely Coloring. Let Λ be a subgraph of a graph G. A Smarandachely
Λ-coloring of a graph G by colors in C is a mapping ϕΛ : C → V(G) ∪ E(G) such
that ϕ(u) , ϕ(v) if u and v are elements of a subgraph isomorphic to Λ in G. Similarly,
a Smarandachely Λ-coloring ϕΛ|V(G) : C → V(G) or ϕΛ|E(G) : C → E(G) is called
a vertex Smarandachely Λ-coloring or an edge Smarandachely Λ-coloring. A graph G
is Smarandachely n Λ-colorable if there exists a color set C for an integer n ≥ |C |. The
minimum number n for which a graphG is Smarandachely vertex n Λ-colorable, Smaran-
dachely edge n Λ-colorable is called the vertex Smarandachely chromatic Λ-number or
edge Smarandachely chromatic Λ-number and denoted by χΛ(G) or χΛ1 (G), respectively.
Particularly, if Λ = P2, i.e., an edge, then a vertex Smarandachely Λ-coloring or an edge
Smarandachely Λ-coloring is nothing but the vertex coloring or edge coring of a graph.
This implies that χΛ(G) = χ(G) and χΛ1 (G) = χ1(G) if Λ = P2. But in general, the
Smarandachely Λ-coloring of a graph G is different from that of its coloring. For exam-
ple, χP2(Pn) = χ

P2
1 = 2, χPk(Pn) = k, χPk1 (Pn) = k − 1 for any integer 1 ≤ k ≤ n and a

Smarandachely P3-coloring on P7 can be found in Fig.3.1.9 following.

1 2 3 1 2 3 1

Fig.3.1.9

For the star S 1,n and circuit Cn for integers 1 ≤ k ≤ n, we can easily f nd that

χPk(S 1,n) =



2 if k = 2,
n + 1 if k = 3,
1 if 4 ≤ k ≤ n,

χ
Pk
1 (S 1,n) =



1 if k = 2,
n if k = 3,
1 if 4 ≤ k ≤ n



90 Chap.3 Graph Groups

and

χPk(Cn) = χPk1 (Cn) =

= min{k + (i − 1) + si, 1 ≤ i ≤ n − k | n ≡ si(mod k + i − 1), 0 ≤ si < k + i − 1}.

The following result is known by def nition.

Theorem 3.1.16 Let H be a connected graph. Then

(1) χH(nH) = |V(H)| and χH1 (nH) = |E(H)|, particularly, χG(G) = |V(G)| and
χG1 (G) = |E(G)|;

(2) χH(G) = χH1 (G) = 1 if H ⊀ G.

Generally, we present the following problem.

Problem 3.1.1 For a graph G, determine the numbers χΛ(G) and χΛ1 (G) for subgraphs
Λ ≺ G.

Smarandachely Decomposition. Let P1 and P2 be graphical properties. A
Smarandachely (P1,P2)-decomposition of a graph G is a decomposition of G into sub-
graphs G1,G2, · · · ,Gl ∈P such that Gi ∈P1 or Gi <P2 for integers 1 ≤ i ≤ l.

If P1 or P2 = {all graphs}, a Smarandachely (P1,P2)-decomposition of a graphG
is said to be a Smarandachely P-decomposition. Particularly, if E(Gi) ∩ E(G j) ≤ k and
∆(Gi) ≤ d for integers 1 ≤ i, j ≤ l, such a Smarandachely P-decomposition is called a
Smarandache graphoidal (k, d)-cover of a graph G.

Furthermore, if d = ∆(G) or k = |G|, i.e., a Smarandachely graphoidal (k,∆(G))-
cover with P = {path} or a Smarandachely graphoidal (k,∆(G))-cover with P = {tree}
is called a Smarandachely path k-cover or a Smarandache graphoidal tree d-cover of a
graph G for integers k, d ≥ 1. The minimum cardinalities of Smarandachely (P1,P2)-
decomposition and Smarandache graphoidal (k, d)-cover of a graph G are denoted by
ΠP1,P2(G), Π

(k,d)
P (G), respectively.

Problem 3.1.3 For a graph G and properties P , P1, P2, determine ΠP1,P2(G) and
Π
(k,d)
P (G).

We only know partially results for Problem 3.1.3. For example,

Π
(1,∆(G))
P (T ) = π(T ) =

k
2
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for a tree T with k vertices of odd degree and

Π
(1,∆(G))
P (Wn) =


6 if n = 4,⌊
n
2

⌋
+ 3 if n ≥ 5

for a wheel Wn = K1 +Cn−1 appeared in references [SNM1]-[SNM2].

Smarandachely Embeddable. Let T1 and T2 be two topological spaces. A graph
G is said to be Smarandachely (T1,T2)-embeddable into topological spaces T1 and T2 if
there exists a decompositionG = F

⊕
H1

⊕
H2, where F is a subgraph ofG with a given

property P , H1,H2 are spanning subgraphs of G with two 1 − 1 continuous mappings
f : H1 → T1 and g : H2 → T2 such that f (p) , f (q) and g(p) , g(q) if p, q < V(G).
Furthermore, if T1 or T2 = ∅, i.e., a Smarandachely (T , ∅)-embeddable graph G is such a
graph embeddable in T if we remove a subgraph of G with a property P . Whence, we
know the following result for Smarandachely embeddable graphs by def nition.

Theorem 3.1.17 Let T be topological space, G a graph and P a graphical property.
Then G is Smarandachely embedable in T if and only if there is a subgraph H ≺ G such
that G − H is embeddable in T .

Particularly, if T is the Euclidean plane R2 and F a 1-factor, such a Smarandachely
embeddable graph G is called to be a Smarandachely planar graph. For example, al-
though the graph K3,3 is not planar, but it is a Smarandachely planar graph shown in
Fig.3.1.10, where F = {u1v1, u2v2, u3v3}.

u1 u2 u3

v1 v2 v3

Fig.3.1.10

Problem 3.1.4 Let T be a topological space. Determine which graph G is Smaran-
dachely T -embeddable.

The following result is an immediately consequence of Theorem 3.1.10.
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Theorem 3.1.18 A graph G is Smarandachely planar if and only if there exists a 1-factor
F ≺ G such that there are no subgraphs homeomorphic to K5 or K3,3 in G − F.

§3.2 GRAPH GROUPS

3.2.1 Graph Automorphism. LetG1 andG2 be two isomorphic graphs. IfG1 = G2 = G,
an isomorphism between G1 and G2 is called to be an automorphism of G. It should be
noted that all automorphisms of a graphG form a group under the composition operation,
i.e., φθ(x) = φ(θ(x)), where x ∈ E(G)⋃V(G). Such a graph is called the automorphism
group of G and denoted by AutG.

G AutG order
Pn Z2 2
Cn Dn 2n
Kn S n n!

Km,n(m , n) S m × S n m!n!
Kn,n S 2[S n] 2n!2

Table 3.2.1

It can be immediately verif ed that AutG ≤ S n, where n = |G|. In Table 3.2.1, we
present automorphism groups of some graphs. But in general, it is very hard to present
the automorphism group AutG of a graph G.

3.2.2 Graph Group. Let (Γ; ◦) be a group. Then (Γ; ◦) is said to be a graph group if
there is a graph G such that (Γ, ◦) is isomorphic to a subgroup of AurG. Frucht proved
that for any f nite group (Γ; ◦) there are always exists a graph G such that Γ � AutG in
1938. Whence, the set of automorphism groups of graphs is equal to that of groups.

Let S ⊂ Γ with 1Γ < S and S −1 = {x−1|x ∈ S } = S . A Cayley graph G = Cay(Γ : S )
of Γ on S ⊂ Γ is def ned by

V(G) = Γ;

E(G) = {(g, h)|g−1 ◦ h ∈ S }.

Then we know the following result.
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Theorem 3.2.1 Let (Γ; ◦) be a f nite group, S ⊂ Γ, S −1 = S and 1Γ < S . ThenLΓ ≤ AutX,
where X = Cay(Γ : S ).

Proof For ∀g ∈ Γ, we prove that the left representation τg : x → g−1 ◦ x of g for
∀x ∈ Γ is an automorphism of X. In fact, by

(g−1 ◦ x)−1 ◦ (g−1 ◦ y) = x−1 ◦ g ◦ g−1 ◦ y = x−1 ◦ y,

we know that

τg(x, y) = (τg(x), τg(y)),

i.e., τg ∈ Aut(Cay(G : S )). Whence, we get that LΓ ≤ Cay(Γ : S ). �

A Cayley graph Cay(Γ : S ) is called to be normal if LΓ ⊳ Aut(Cay(G : S )), which
was introduced by Xu for the study of arc-transitive or half-transitive graphs in [Xum2].
The importance of this conception on Cayley graphs can be found in the following result.

Theorem 3.2.2 A Cayley graph Cay(Γ : S ) of a f nite group (Γ; ◦) on S ⊂ Γ is normal if
and only if Aut(rmCay(Γ : S )) = LΓ ◦ Aut(Γ, S ), where Aut(G, S ) = {α ∈ AutΓ|S α = S }.

Proof Notice that the normalizer of LΓ in the symmetric group S Γ isLΓ ◦AutΓ. We
get that

NAut(Cay(Γ:S ))(LΓ) = LΓ ◦ AutΓ
⋂

Aut(Cay(Γ : S )) = LΓ ◦ (AutΓ
⋂

A1Γ).

That is NAut(Cay(Γ:S ))(LΓ) = LΓ ◦ Aut(Γ, S ). Whence, Cay(Γ : S ) is normal if and only if
Aut(Cay(Γ : S )) = LΓ ◦Aut(Γ, S ). �

The following open problem presented by Xu in [Xum2] is important for f nding the
automorphism group of a graph.

Problem 3.2.1 Determine all normally Cayley graphs for a f nite group (Γ; ◦).

Today, we have know a few results partially answer Problem 3.2.1. Here we only list
some of them without proof. The f rst result shows that all f nite groups have a normal
representation except for two special families.

Theorem 3.2.3([WWX1]) There is a normal Cayley graph for a f nite group except for
groups Z4 × Z2 and Q8 × Zm2 for m ≥ 0.

For Abelian groups, we know the following result for the normality of Cayley graphs.
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Theorem 3.2.4([YYHX]) Let X = Cay(Γ : S ) be a connected Cayley graph of an Abelian
group (Γ; ◦) on S with the valency of X at most 4. Then X is normal except for graphs
listed in Table 3.2.2 following.

row Γ S X
1 Z4 Γ \ {1Γ} 2K4

2 Z4 × Z2 = 〈a〉 × 〈b〉 {a, a−1, b} Q3

(cube)
3 Z6 = 〈a〉 {a, a3, a5} K3,3

4 Z32 = 〈u〉 × 〈v〉 × 〈w〉 {w,wu,wv,wuv} K4,4

5 Z4 × Z2 = 〈a〉 × 〈b〉 {a, a2, a3, b} Q3

(complement cube)
6 Z4 × Z2 = 〈a〉 × 〈b〉 {a, a−1, a2b, b} K4,4

7 Z4 × Z22 = 〈a〉 × 〈b〉 × 〈c〉 {a, a−1, a3, b} Q4

(4-dimensional cube)
8 Z6 × Z2 = 〈a〉 × 〈b〉 {a, a−1, a3, b} K3,3 × K2

9 Z4 × Z4 = 〈a〉 × 〈b〉 {a, a−1, b, b−1} C4 ×C4

10 Zm × Z2 = 〈a〉 × 〈b〉, m ≥ 3 {a, ab, a−1, a−1b} Cm[2K1]
11 Z4m = 〈a〉, m ≥ 2 {a, a2m+1, a−1, a2m−1} C2m[2K1]
12 Z5 = 〈a〉 Γ \ {1Γ} K5

11 Z10 = 〈a〉 {a, a3, a7, a9} K5,5 − 5K2

Table 3.2.2

3.2.3 Γ-Action. Let Γ be a group of a graph G. Generally, there are three cases of Γ
action on G shown in the following.

Γ-Action on Vertex Set. In this case, Γ acts on the vertex set V(G) with or-
bits V1,V2, · · · , Vm, where m ≤ |V(G)|. For example, let Cn be a circuit with V(Cn) =
{v1, v2, · · · , vn}. We have known its automorphism group by Table 3.2.1 to be

Dn = {ρiτ j|0 ≤ i ≤ n − 1, 0 ≤ j ≤ 1}

with

ρn = 1Dn , τ2 = 1Dn , τ−1ρτ = ρ−1,
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such as the presentation in Example 1.2.4. Now let

Γ1 = 〈ρ〉 and Γ2 = 〈τ〉 .

Then we know that there are only one orbit of Γ1 action on Cn, i.e., {v1, v2, · · · , vn}. But
there are

[n
2

]
orbits if n ≡ 1(mod2) or

[n
2

]
+ 1 orbits n ≡ 0(mod2). For example, let τ

a ref ection joining the vertex v1 with its opposite vertex if n ≡ 0(mod2) or midpoint of
its opposite edge if n ≡ 1(mod2). Then we know the orbits of Γ2 action on V(Cn) to be
V1 = {v1},V2 = {vn/2};Vi = {vi, vn−i} for 1 < i <

n
2
if n ≡ 0(mod2) or V1 = {v1};Vi =

{vi, vn−i} for 1 < i <
n + 1
2

if n ≡ 1(mod2).
A graph G is called to be Γ-transitive or Γ-semiregular for its a group Γ if Γ is

transitive or semi-regular action on V(G). Particularly, if Γ = AutG, a Γ-transitive graph
G is called a transitive graph. By def nition, a Γ-transitive graph G for any subgroup
∀Γ ≤ AutG must be a transitive graph. But the inverse is not always true. For example,
Γ1 is transitive action on Cn in the previous example. Consequently it is a transitive graph
but Γ2 is not transitive on V(G).

A simple calculation shows that the order of a Γ-semiregular graph G is multiple of
length of its orbits. Let n ≡ 0(mod2). If we choose τ to be a ref ection joining the midpoint
v1vn with that midpoint of vn/2vn/2+1 in the previous example, then Γ2 is Γ2-semiregular
action on V(G). In this case, there are

n
2
orbits of length 2, i.e., Vi = {vi, vn−i+1} for

1 ≤ i ≤ n
2
.

Γ-Action on Edge Set. The Γ-action on E(G) is an action

ϕ(x, y) = (ϕ(x), ϕ(y)) ∈ E(G) for ∀(x, y) ∈ E(G)

induced by an automorphism ϕ ∈ Γwith orbits E1, E2, · · · , El, where l ≤ |E(G)|. Naturally,
all orbits of Γ action on E(G) form a partition of E(G).

Consider the graph G1 shown in Fig.3.1.5. In this case, it is easily f nd that D6 =

{ρiτ j|0 ≤ i ≤ 5, 0 ≤ j ≤ 1}with ρ6 = 1D6 , τ
2 = 1D6, τ

−1ρτ = ρ−1 is its a graph group, where
τ is a ref ection joining the midpoint u1v6 with that midpoint of u3u4. The orbits E1, E2 of
D6 action on E(G1) are listed in the following.

E1 = {u1u2, u2u3, u3u4, u4u5, u5u6, u6u1}, E2 = {u1u4, u2u5, u3u4}.

A graphG is called to be edge Γ-transitive for its a group Γ if Γ is transitive on E(G).
Particularly, if Γ = AutG, an edge Γ-transitive graph G is called an edge-transitive graph.



96 Chap.3 Graph Groups

Certainly, an edge Γ-transitive graph G for any subgroup ∀Γ ≤ AutG must be an edge-
transitive graph. But the inverse is not always true. For example, the complete graph Kn
for an integer n ≥ 3 is an edge-transitive graph with AutKn = S n. Let Γ = 〈σ〉, where σ ∈
AutKn with σn = 1S n . Then Kn is not edge Γ-transitive since |Γ| = n <

n(n − 1)
2

= |E(Kn)|.
By Theorem 2.2.1, Γ can not be transitive on E(Kn).

Γ-Action on Arc Set. Denoted by X(G) = {(u, v)|uv ∈ E(G)} the arc set of a graph
G. The Γ-action on X(G) is an action on X(G) induced by

ϕ(x, y) = (ϕ(x), ϕ(y)) ∈ X(G) for ∀(x, y) ∈ X(G)

for an automorphism ϕ ∈ Γ. Similarly, a graph G is called to be arc Γ-transitive for its a
graph group Γ if Γ is transitive on X(G), and to be arc-transitive if AutG is transitive on
X(G). The following result is obvious by def nition.

Theorem 3.2.5 Any arc Γ-transitive graph G is an edge Γ-transitive graph. Conversely,
an edge Γ-transitive graph G is arc Γ-transitive if and only if there are involutions θ ∈ Γ
such that (x, y)θ = (y, x) for ∀(x, y) ∈ E(G).

§3.3 SYMMETRIC GRAPHS

3.3.1 Vertex-Transitive Graph. There are many vertex-transitive graphs. For example,
by Theorem 3.2.1 we know that all Cayley graphs is vertex-transitive.

Theorem 3.3.1 Any Cayley graph Cay(Γ : S ) on S ⊂ Γ is vertex-transitive.

Denoted by (Zn;+) the additive group module n with Zn = {0, 1, 2, · · · , n − 1}. A
circulant graph is a Cayley graph Cay(Zn : S ) for S ⊂ S n. Theorem 3.3.1 implies that
Cayley graphs are a subclass of vertex-transitive graphs. But if the order |V(G)| of a
vertex-transitive graph G is prime, Turner showed each of them is a Cayley graph, i.e.,
the following result in 1967.

Theorem 3.3.2 If G is a vertex-transitive graph of prime order p, then it is a circulant
graph.

Proof Let V(G) = {u0, u1, · · · , up−1} and H the stabilizer of u0. Suppose that σi ∈
AutG is such an element that σi(u0) = ui. Applying Theorem 2.2.1, we get that |AutG| =
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|H||uAutG0 | = p|H|. Thus p||AutG|. By Sylow’s theorem, there is a subgroup K = {1, θ, · · · ,
θp−1} of order p in AutG. Relabeling the vertices u0, u1, · · · , up−1 by v0, v1, · · · , vp−1 so that
θ(vi) = vi+1 and θ(vp−1) = v0 for 0 ≤ i ≤ p−2. Suppose (v0, v1) ∈ E(G). Then by def nition,
(vi, v2i) = (v0, vi)θ

i , (v2i, v3i) = (vi, v2i)θ
i , · · ·, (v(p−1)i, v0) = (v(p−2)i, v(p−1)i)θ

i ∈ E(G). Thus
v0viv2i · · · v(p−1)i forms a circuit in G. Now if we write vi as i and def ne S = {i|(v0, vi) ∈
E(G)}, then G is nothing but the circulant graph Cay(Zp : S ). �

It should be noted that not every every vertex-transitive graph is a Cayley graph. For
example, the Petersen graph shown in Fig.3.3.1 is vertex-transitive but it is not a Cayley
graph (See [Yap1] for details).

u1

u2
v1

u3u4

u5
v2
v3v4

v5

Fig.3.3.1

However, there is a constructing way shown in Theorem 3.3.4 following such that every
vertex-transitive graph almost likes a Cayley graph, found by Sabidussi in 1964. For
proving this result, we need the following result f rst.

Theorem 3.3.3 Let H be a subgroup of a f nite group (Γ; ◦) and S a subset of Γ with
S −1 = S , S ∩ H = ∅. If G is a graph with vertex set V(G) = Γ/H and edge set
E(G) = {(x◦H , y◦H )|x−1 ◦ y ∈H SH }, called the group-coset graph of Γ/H respect
to S and denoted by G(Γ/H : S ), then G is vertex-transitive.

Proof First, we claim the graph G is well-def ned. This assertion need us to show
that if (x ◦ H , y ◦ H ) ∈ E(G) and x1 ∈ x ◦ H , y1 ∈ y ◦ H , then there must be
(x1 ◦H , y1 ◦H ) ∈ E(G). In fact, there are h, g ∈H such that x1 = x ◦ h and y1 = y ◦ g
by def nition. Notice that

x−1 ◦ y ∈H SH ⇒ (x ◦ h)−1 ◦ (y ◦ g) ∈H SH ⇒ x−11 ◦ y1 ∈H SH .

Whence, (x ◦H , y ◦H ) ∈ E(G) implies that (x1 ◦H , y1 ◦H ) ∈ E(G).
Now for each g ∈ Γ, def ne a permutation φg on V(G) = Γ/H by φg(x ◦ H ) =



98 Chap.3 Graph Groups

g ◦ x ◦H for x ◦H ∈ Γ/H . Then by

x−1 ◦ y ∈H SH ⇒ (g ◦ x)−1 ◦ (g ◦ y) ∈H SH ⇒ φ−1g (x) ◦ φg(y) ∈H SH ,

we f nd that (x◦H , y◦H ) ∈ E(G) implies that (φg(x)◦H , φg(y)◦H ) ∈ E(G). Therefore,
φg is an automorphism of G.

Finally, for any x ◦H , y ◦H ∈ V(G), let g = y ◦ x−1. Then φg(x ◦H ) = y ◦ x−1 ◦
(x ◦H ) = y ◦H . Whence, G is vertex-transitive. �

Nowwe can prove the Sabidussi’s representation theorem for f nite groups following.

Theorem 3.3.4 Let G be a vertex-transitive graph and H = (AutG)u the stabilizer of a
vertex u ∈ V(G) with the composition operation ◦. Then G is isomorphic with the group-
coset graph G(AutG/H : S ), where S is the set of automorphisms σ of G such that
(u, σ(u)) ∈ E(G).

Proof By def nition, we are easily f nd that S −1 = S and S ∩ H = ∅. Def ne
π : AutG/H → G by π(x ◦H ) = x(u), where x ◦H ∈ Γ/H . We show that π is a
mapping. In fact, let x ◦H = y ◦H . Then there is h ∈H such that y = x ◦ h. So

π(y ◦H ) = y(u) = (x ◦ h)(u) = x(h(u)) = x(u) = π(x ◦ (H)).

Now we show that π is in fact a graph isomorphism following.

(1) π is 1 − 1. Otherwise, let π(x ◦H ) = π(y ◦ ). Then x(u) = y(u) ⇒ y−1 ◦ x(u) =
u⇒ y−1 ◦ x ∈H ⇒ y ∈ x ◦H ⇒ x ◦H = y ◦H .

(2) π is onto. Let v ∈ V(G). Notice that G is vertex-transitive. There exists z ∈ AutG
such that z(u) = v, i.e., π(z ◦H ) = z(u) = v.

(3) π preserves adjacency inG. By def nition, (x◦H , y◦H ) ∈ E(G(AutG/H , S ))⇔
x−1 ◦ y ∈H SH ⇔ x−1 ◦ y = h ◦ z ◦ g for some h, g ∈H , z ∈ S ⇔ h−1 ◦ x−1 ◦ y ◦ g−1 =
z⇔ (u, h−1 ◦ x−1 ◦ y ◦ g−1(u)) ∈ E(G) ⇔ (u, x−1 ◦ y(u)) ∈ E(G) ⇔ (x(u), y(u)) ∈ E(G) ⇔
(π(x ◦H ), π(y ◦H )) ∈ E(G).

Combining (1)-(3), the proof is completes. �

Theorem 3.3.4 enables one to know which vertex-transitive graph G is a Cayley
graph. By Theorem 2.1.1(2), we know that any two stabilizers (AutG)u, (AutG)v for u, v ∈
V(G) are conjugate in AutG. Consequently, (AutG)u is normal if and only if (AutG)u =
{1AutG}. By def nition, the group-coset graph G(AutG/H : S ) in Theorem 3.3.4 is a
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Cayley graph if and only if AutG/H is a quotient group. But this just means that H ⊳

AutG by Theorem 1.3.2. Combining these facts, we get the necessary and sufficient
condition for a vertex-transitive graph to be a Cayley graph by Theorem 3.3.4 following.

Theorem 3.3.5 A vertex-transitive graph G is a Cayley graph if and only if the action of
AutG on V(G) is regular.

Generally, let (Γ; ◦) be a f nite group. A graph G is called to be a graphical regular
representation (GRR) of Γ if AutG � Γ and AutG acts regularly transitive on V(G). Such
a group Γ is called to have a GRR. We needed to answer the following problem.

Problem 3.3.1 Determine each f nite group Γ with a GRR.

A simple case for Problem 3.3.1 is f nite Abelian groups. We know the following
result due to Chao and Sabidussi in 1964.

Theorem 3.3.6 Let G be a graph with an Abelian automorphism group AutG acts transi-
tively on V(G). Then AutG acts regularly transitive on V(G) and AutG is an elementary
Abelian 2-group.

Proof According to Theorem 2.2.2, we know that AutG acts regularly transitive
on V(G). Now since AutG acts regularly on V(G), G is isomorphic to a Cayley graph
Cay(AutG : S ). Because AutG is Abelian, τ : g → g−1 is an automorphism of AutG
and f xes S setwise. It can be shown that this automorphism is an automorphism of
Cay(AutG : S ) f xing the identity element of AutG. Whence, g = τ(g) = g−1 by the fact
of regularity for every g ∈ AutG. So AutG is an elementary 2-groups. �

Theorem 3.3.6 claims that an Abelian group Γ has a GRR only if Γ = Zn2 for some
integers n ≥ 1. In fact, by the work of McAndrew in 1965, we know a complete answer
for Problem 3.3.1 in this case following.

Theorem 3.3.7 An Abelian group Γ has a GRR if and only if Γ = Zn2 for n = 1 or n ≥ 5.

A generalized dicylic group (Γ; ◦) is a non-Abelian group possing a subgroup (H ; ◦)
of index 2 and an element γ of order 4 such that γ−1◦h◦γ = h−1 for ∀h ∈H . By following
the work of Imrich, Nowitz, Watkins, Babai, etc., Hetzel and Godsil respective answered
Problem 3.3.1 for solvable groups and non-solvable groups. They get the following result
(See [God1]-[God2] and [Cam1] for details) independently.
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Theorem 3.3.8 A f nite group (Γ; ◦) possesses no GRR if and only if it is an Abelian group
of exponent greater than 2, a generalized dicyclic group, or one of 13 exceptional groups
following:

(1) Z22 , Z
3
2 , Z

4
2;

(2) D6,D8,D10;
(3) A4;
(4)

〈
a, b, c|a2 = b2 = c2 = 1Γ, a ◦ b ◦ c = b ◦ c ◦ a = c ◦ a ◦ b

〉
;

(5)
〈
a, b|a8 = b2 = 1Γ, b ◦ a ◦ b = b5

〉
;

(6)
〈
a, b, c|a3 = b2 = c3 = (a ◦ b)2 = (c ◦ b)2 = 1Γ, a ◦ c = c ◦ a

〉
;

(7)
〈
a, b, c|a3 = b3 = c3 = 1Γ, a ◦ c = c ◦ a, b ◦ c = c ◦ b, c = a−1 ◦ b−1 ◦ a ◦ b

〉
;

(8) Q8 × Z3,Q8 × Z4.

3.3.2 Edge-Transitive Graph. Certainly, the edge-transitive graphs are closely related
with vertex-transitive graphs by def nition. We can easily obtain the following result.

Theorem 3.3.9 Let G be an edge-transitive graph without isolated vertices. Then

(1) G is vertex-transitive, or
(2) G is bipartite with two vertex-orbits under the action AutG on V(G) to be its

vertex bipartition.

Proof Choose an edge e = uv ∈ E(G). Denoted by V1 and V2 the orbits of u and
v under the action of AutG on V(G). Then we know that V1 ∪ V2 = V(G) by the edge-
transitivity of G. Our discussion is divided into toe cases following.

Case 1. If V1 ∩ V2 , ∅, then G is vertex-transitive.

Let x and y be any two vertices of G. If x, y ∈ V1 or x, y ∈ V1, for example, x, y ∈ V1,
then there exist σ, ς ∈ AutG such that σ(u) = x and ς(u) = y. Thus ςσ−1 is such an
automorphism with ςσ−1(x) = y. If x ∈ V1 and y ∈ V2, let w ∈ V1 ∩ V2. By assumption,
there are φ, ϕ ∈ AutG such that φ(x) = ϕ(y) = w. Then we get that ϕ−1φ(x) = y, i.e., G is
vertex-transitive.

Case 2. If V1 ∩ V2 = ∅, then G is bipartite.

Let x, y ∈ V1. If xy ∈ E(G), then there are σ ∈ AutG such that σ(uv) = xy. But this
implies that one of x, y in V1 and another in V2, a contradiction. Similarly, if x, y ∈ V2,
then xy < E(G). Whence, G is a bipartite graph. �
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We get the following consequences by this result.

Corollary 3.3.1 Let G be a regular edge-transitive graph with an odd degree d ≥ 1. If
|G| ≡ 1(mod2), then G is vertex-transitive.

Proof Notice that if G is bipartite, then |V1|d = |V2|d = ε(G). Whence, |G| =
|V1| + |V2| ≡ 0(mod2), a contradiction. �

Corollary 3.3.2 Let G be a regular edge-transitive graph of degree d ≥ |G|/2. Then G is
vertex-transitive.

u1 u2

u3u4

u5 u6

Fig.3.3.2

In fact, there are many edge-transitive but not vertex-transitive graphs, and vertex-transitive
but not edge-transitive graphs. For example, the complete graph Kn1 ,n2 with n1 , n2 is
edge-transitive but not vertex-transitive, and the graph shown in Fig.3.3.2 is a vertex-
transitive but not edge-transitive graph.

3.3.3 Arc-Transitive Graph. An s-arc of a graphG is a sequence of vertices v0, v1, · · · , vs
such that consecutive vertices are adjacent and vi−1 , vi+1 for 0 < i < s. For example, a
circuitCn is s-arc transitive for all s ≤ n. A graphG is s-arc transitive if AutG is transitive
on s-arcs. For s ≥ 1, it is obvious that an s-arc transitive graph is also (s−1)-arc transitive.
A 0-arc transitive graph is just the vertex-transitive, and a 1-arc transitive graph is usually
called to be arc-transitive graph or symmetric graph.

Tutte proved the following result for s-arc transitive cubic graphs in 1947 (See in
[Yap1] for its proof).

Theorem 3.3.10 Let G be a s-arc transitive cubic graph. Then s ≤ 5.

Examples of s-arc transitive cubic graphs for s ≤ 5 can be found in [Big2] or [GoR1].
Now we turn our attention to symmetric graphs.

Let Zp = {0, 1, · · · , p − 1} be the cyclic group of order p written additively. We know
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that AutZp is isomorphic to Zp−1. For a positive divisor r of p−1, let Hr denote the unique
subgroup of AutZp of order r, Hr ≃ Zr. Def ne a graph G(p, r) of order p by

V(G(p, r)) = Zp, E(G(p, r)) = {xy|x − y ∈ Hr}.

A classif cation of symmetric graph with a prime order p was obtained by Chao. He
proved the following result in 1971.

Theorem 3.3.11 Let p be an odd prime. Then a graph G of order p is symmetric if and
only if G = pK1 or G = G(p, r) for some even divisor r of p − 1.

In the reference [PWX1] and [WaX1], we can also f nd the classif cation of symmet-
ric graphs of order a product of two distinct primes. For example, there are 12 classes
of symmetric graphs of order 3p, where p > 3 is a prime, including 3pK1, pK3, 3G(p, r)
for an even divisor r of p − 1, G(3p, r) for a divisor of p − 1, G(p, r)[3K1], K3p and
other 6 classes, where G(3p, r) is def ned by V(G(3p, r)) = { xi | i ∈ Z3, x ∈ Zp } and
E(G(3p, r)) = { (xi, yi+1) | i ∈ Z3, x, y ∈ Zp and y − x ∈ Hr}.

A graph G is half-transitive if G is vertex-transitive and edge-transitive, but not arc-
transitive. Tuute found the following result.

Theorem 3.3.12 If a graph G is vertex-transitive and edge-transitive with a odd valency,
then G must be arc-transitive.

Proof Let uv ∈ E(G). Then we get two arcs (u, v) and (v, u). Def neΩ1 = (u, v)AutG =
{(u, v)g|g ∈ AutG} and Ω2 = (v, u)AutG = {(v, u)g|g ∈ AutG}. By the transitivity of AutG
on E(G), we know that Ω1 ∪ Ω2 = A(G), where A(G) denote the arc set of G. If G is
not arc-transitive, there must be Ω1 ∩ Ω2 = ∅. Namely, there are no g ∈ AutG such that
(x, y)g = (y, x) for ∀(x, y) ∈ A(G). Now let Xv = {x|(v, x) ∈ Ω1} and Yv = {y|(y, v) ∈ Ω1}.
Then Xv ∩ Yv = ∅. Whence, NG(v) = Xv ∪ Yv. This fact enables us to know the valency
of G is k = |Xv| + |Yv|. By the transitivity of AutG on V(G), we know that |Xv| = |Xu| and
|Yv| = |Yu| for ∀u ∈ V(G). So |E(G)| = |Xv||V(G)| = |Yv||V(G)|. We get that |Xv| = |Yv|, i.e.,
k is an even number, a contradiction. �

By Theorem 3.3.12, a half-transitive graph must has even valency. In 1970, Bouwer
constructed half-transitive graphs of valency k for each even number k > 2 and the mini-
mum half-transitive graph is a 4-regular graph with 27 vertices found by Holt in 1981. In
1992, Xu proved this minimum half-transitive graph is unique (See [XHLL1] for details).
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§3.4 GRAPH SEMI-ARC GROUPS

3.4.1 Semi-Arc Set. Let G be a graph, maybe with loops and multiple edges, e = uv ∈
E(G). We divide e into two semi-arcs e+u , e−u (or e+u , e+v ), and call such a vertex u to be the
root vertex of e+u . Here, we adopt a convention following:

Convention 3.4.1 Let G be a graph. Then for e = uv ∈ E(G),

e−u = e+v if u , v,
e−u , e+v if u = v.

Denote by X 1
2
(G) the set of all such semi-arcs of a graph G. We present a few

examples for X 1
2
(G). Let D0.3.0,B3,K4 be the dipole, bouquet and the complete graph

shown in Fig.3.4.1.

D0,3,0 B3 K4

u v

O

u1 u2

u3 u4

e1

e2

e3

e1

e2

e3

Fig.3.4.1

Then, we know their semi-arc sets as follows:

X 1
2
(D0.3.0) = {e1+u , e2+u , e3+u , e1+v , e2+v , e3+v },

X 1
2
(B3) = {e1+O , e2+O , e3+O , e1−O , e2−O , e3−O },

X 1
2
(K4) = {u1u+2 , u1u−2 , u1u+3 , u1u−3 , u1u+4 , u1u−4 , u2u+3 , u2u−3 , u2u+4 , u2u−4 , u3u+4 , u3u−4 }.

Notice that the Convention 3.4.1 and these examples show that we can represent all
semi-arcs of a graph G by elements in V(G) ∪ E(G) ∪ {+,−} in general, and all semi-arcs
of G can be represent by elements in V(G) ∪ E(G) ∪ {+} or by elements in V(G) ∪ {+}
if and only if G is a graph without loops, or neither with loops or multiple edges, i.e., a
simple graph G.

Two semi-arc e◦u, f •v with ◦, • ∈ {+,−} are said incident if u = v, e , f with ◦ = • =
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+, or e = f , u , v with ◦ = •, or e = f , u = v with ◦ = +, • = −. For example, e2+u and
e2+v in D0.3.0, e2+O and e2−O in B3 in Fig.3.4.1 both are incident.

3.4.2 Graph Semi-Arc Group. We have know the conception of automorphism of a
graph in Section 3.1. Generally, an automorphism of a graph G on V(G)

⋃
E(G) is an

1 − 1 mapping (ξ, η) on G such that

ξ : V(G)→ V(G), η : E(G)→ E(G)

satisfying that for any incident elements e, f , (ξ, η)(e) and (ξ, η)( f ) are also incident. Cer-
tainly, all such automorphisms of a graph G also form a group, denoted by AutG.

We generalize this conception to that of the semi-arc set X 1
2
(G). The semi-arc auto-

morphism of a graph was f rst appeared in [Mao1], and then applied for the enumeration
maps on surfaces underlying a graph Γ in [MaL3] and [MLW1], which is formally def ned
following.

Def nition 3.4.1 Let G be a graph. A 1 − 1 mapping ξ on X 1
2
(G) is called a semi-arc

automorphism of the graph G if for ∀e◦u, f •v ∈ X 1
2
(G) with ◦, • ∈ {+,−}, ξ(e◦u) and ξ( f •v ) are

incident if and only if e◦u and f •v are incident.

By Def nition 3.4.1, all semi-arc automorphisms of a graph form a group under the
composition operation, denoted by Aut 1

2
G, which is important for the enumeration of

maps on surfaces underlying a graph and determining the conformal transformations on a
Klein surface.

The Table 3.4.1 following lists semi-arc automorphism groups of a few well-known
graphs.

G Aut 1
2
G order

Kn S n n!
Km,n(m , n) S m × S n m!n!

Kn,n S 2[S n] 2n!2

Bn S n[S 2] 2nn!
D0.n.0 S 2 × S n 2n!

Dn.k.l(k , l) S 2[S k] × S n × S 2[S l] 2k+ln!k!l!
Dn.k.k S 2 × S n × (S 2[S k])2 22k+1n!k!2

Table 3.4.1
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In this table, D0.n.0 is a dipole graph with 2 vertices, n multiple edges and Dn.k.l is a
generalized dipole graph with 2 vertices, nmultiple edges, and one vertex with k bouquets
and another, l bouquets. This table also enables us to f nd some useful information for
semi-arc automorphism groups. For example, Aut 1

2
Kn = AutKn = S n, Aut 1

2
Bn = S n[S 2]

but AutBn = S n, i.e., Aut 12Bn , AutBn for any integer n ≥ 1.
Comparing semi-arc automorphism groups in Table 3, 4, 1 with that of Table 3.2.1, it

is easily to f nd that the semi-arc automorphism group are the same as the automorphism
group in the f rst two cases. Generally, we know a result related the semi-arc automor-
phism group with that of automorphism group of a graph, i.e., Theorem 3.4.1 following.
For this objective, we introduce a few conceptions f rst.

For ∀g ∈ AutG, there is an induced action g| 12 on X 1
2
(G), g : X 1

2
(G) → X 1

2
(G)

determined by
∀eu ∈ X 1

2
(G), g(eu) = (g(e)g(u).

All induced action of the elements in AutG on X 1
2
(G) is denoted by AutG| 12 . Notice that

AutG � AutG| 12 . We get the following result.

Theorem 3.4.1 Let G be a graph without loops. Then Aut 1
2
G = AutG| 12 .

Proof By the def nition, we only need to prove that for ∀ξ 1
2
∈ Aut 1

2
G, ξ = ξ 1

2
|G ∈

AutG and ξ 1
2
= ξ| 12 . In fact, Let e◦u, f •x ∈ X 1

2
(G) with ◦, • ∈ {+,−}, where e = uv ∈ E(G),

f = xy ∈ E(G). Now if
ξ 1
2
(e◦u) = f

•
x ,

by def nition, we know that ξ 1
2
(e◦v) = f •y .Whence, ξ 1

2
(e) = f . That is, ξ 1

2
|G ∈ AutG.

By assumption, there are no loops in G. Whence, we know that ξ 1
2
|G = 1AutG if and

only if ξ 1
2
= 1Aut 1

2
G. So ξ 1

2
is induced by ξ 1

2
|G on X 1

2
(G). Thus,

Aut 1
2
G = AutG| 12 . �

We have know that Aut 1
2
Bn , AutBn for any integer n ≥ 1. Combining this fact with

Theorem 3.4.1, we know the following.

Theorem 3.4.2 Let G be a graph. Then Aut 1
2
G = AutG| 12 if and only if G is a loopless

graph.

3.4.3 Semi-Arc Transitive Graph. A graph G is called to be semi-arc transitive if
Aut 1

2
G is action transitively on X 1

2
(G). For example, each of Kn, Bn−1 and D0.n.0 for any
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integer n ≥ 2 is semi-arc transitive. We know the following result for semi-arc transitive
graphs.

Theorem 3.4.3 A graph G is semi-arc transitive if and only if it is arc-transitive.

Proof A semi-arc transitive graph G is arc-transitive by the def nition of its preserv-
ing incidence of semi-arcs.

Conversely, let G be an arc-transitive graph. Let e+u and f +v ∈ X 1
2
(G) with e = (u, x)

and f = (v, y). By assumption, G is arc-transitive. Consequently, there is an automor-
phism ς ∈ AutG such that ς(u, x) = (v, y). Then it is easily to know that ς(e+u ) = f +v , i.e.,
G is semi-arc transitive. �

§3.5 GRAPHMULTIGROUPS

3.5.1 Graph Multigroup. There is a natural way for getting multigroups on graphs. Let
G be a graph, H ≺ G and σ ∈ AutG. Consider the localized action σ|H of σ on H. In
general, this action must not be an automorphism of H. For example, let G be the graph
shown in Fig.3.5.1 and H = 〈v1, v2, v3〉G.

v1

v2

v3 v4

v5

v6

Fig.3.5.1

Let σ1 = (v1, v3)(v4, v6)(v2)(v5) and σ2 = (v1, v6)(v2, v5)(v3, v4). Then it is clear that
σ1, σ2 ∈ AutG and

Hσ2 = 〈v1, v2, v3〉G = H and Hσ1 = 〈v4, v5, v6〉G , H.

Whence, σ1 is an automorphism of H, but σ2 is not. In fact, let ∀ς ∈ (AutG)H. Then
Hς = H, i.e., ς|H is an automorphism of H. Now def ne

AutGH = 〈 ς|H | ς ∈ (AutG)H 〉 .

Then AutGH is an automorphism group of H.
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An extended action g|G for an automorphism g ∈ AutHi is the action of g on G by
introducing new actions of g on G \ V(Hi), 1 ≤ i ≤ m. The previous discussion enables
one to get the following result.

Theorem 3.5.1 Let G be a graph and G =
m⊕
i=1
Hi a decomposition of G. Then for any

integer i, 1 ≤ i ≤ m, there is a subgroup Pi ≤ AutHi such that Pi|G ≤ AutG, i.e.,
P̃ =

m⋃
i=1

Pi is a multigroup.

Proof Choose Pi = AutGHi for any integer i, 1 ≤ i ≤ m. Then the result follows.�

For a given decompositionG =
m⊕
i=1
Hi of a graphG, we can always get automorphism

multigroups AutmulG =
m⋃
i=1

Hi, Hi ≤ AutHi for integers 1 ≤ i ≤ m, which must not be

an automorphism group of G. For its dependence on the structure of G =
m⊕
i=1
Hi, such

a multigroup AutmulG is denoted by
m⊙
i=1

Hi in this book. Generally, the automorphism

multigroups of a graph G are not unique unless G = K1. The maximal automorphism

multigroup of a graph G is AutmulG =
m⊙
i=1

AutHi and the minimal is that of AutmulG =
m⊙
i=1
{1AutHi}. We f rst determine automorphism groups ofG in these multigroups following.

Let G be a graph, H ≺ G and σ ∈ AutH, τ ∈ Aut(G \ V(H)). They are called to be
in coordinating with each other if the mapping g : G → G determined by

g(v) =


σ(v), if v ∈ V(H),
τ(v), if v ∈ G \ V(H)

is an automorphism of G for ∀v ∈ V(G). If such a g exists, we say τ can be extended to
G and denoted g by τG. Denoted by AutGH = { σG |σ ∈ AutH }. Then it is clear that
AutGH = AutGH|H ≺ AutH. We f nd the following result for the automorphism group of
a graph.

Theorem 3.5.2 Let G be a graph and H ≺ G. Then the mapping φG : AutG → AutH
determined by φG(g) = g|H is a homomorphism, i.e., AutG/KerφG ≃ AutGH.

Proof For any automorphism g ∈ AutG, by Theorem 3.5.1, there is a localized action
g|H such that Hg = H, g = g|H ∈ AutGH, i.e., such a correspondence φG is a mapping. We
are needed to prove the equality φG(ab) = φG(a)φG(b) holds for ∀a, b ∈ AutG. In fact,

φG(a)φG(b) = a|GH b|GH = (ab)|GH = φG(ab)
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by the property of automorphism. Whence, φG is a homomorphism. Applying the homo-
morphism theorem of groups, we get AutG/KerφG ≃ KerφG. Notice that KerφG = AutGH.
We f nally get that AutG/KerφG ≃ AutGH. �

If φG is onto or 1−1, then KerφG = 1AutG or AutH. We get the following consequence
by Theorem 3.5.2.

Corollary 3.5.1 Let G be a graph and H ≺ G. If the homomorphism φ : AutG → AutH
is onto or 1 − 1, then AutG/Kerφ ≃ AutH or AutG ≃ AutGH.

For example, Let G be the graph shown in Fig.3.5.1 and H = 〈v1, v3, v4, v6〉G. Then
σ1|H = (v1, v3)(v4, v6) and σ2|H = (v1, v6)(v3, v4), i.e., the homomorphism φG : AutG →
AutGH is 1 − 1 and onto. Whence, we know that

AutG ≃ AutGH = 〈σ1|H, σ2|H〉 .

Although it is very difficult for determining the automorphism group of a graphG in

general, it is easy for that of automorphism multigroups if the decomposition G =
m⊕
i=1
Hi

is chosen properly. The following result is easy obtained by def nition.

Theorem 3.5.3 For any connected graph G,

AutEG =
⊙

(u,v)∈E(G)
S {u,v}

is an automorphism multigroup of G, where S {u,v} is the symmetric group action on the
vertices u and v.

Proof Certainly, any graph G has a decomposition G =
⊕

(u,v)∈E(G)
(u, v). Notice that

the automorphism on each edge (u, v) ∈ E(G) is that symmetric group S {u,v}. Then the
assertion is followed. �

The automorphism multigroup AutEG is a graphical property by Theorem 3.5.3.
Furthermore, we know that AutEG is a graph invariant on G by the following result.

Theorem 3.5.4 Let G, H be two connected graphs. Then G is isomorphic to H if and
only if AutEG and AutEH are permutation equivalent, i.e., there is an isomorphism ς :
AutEG → AutEH and a 1− 1 mapping ι : E(G)→ E(H) such that ς(g)(ι(e)) = ι(g(e)) for
∀g ∈ AutG and e ∈ E(G).
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Proof If G ≃ H, we are easily getting an isomorphism σ : V(G) → V(H), which
induces an isomorphism ς : AutEG → AutEH and a 1 − 1 mapping ι : E(G) → E(H) by
σ(u, v) = (σ(u), σ(v)) for ∀e = (u, v) ∈ E(G).

Now if there is an isomorphism ς : AutEG → AutEH and a 1−1 mapping ι : E(G)→
E(H) such that ς(g)(ι(e)) = ι(g(e)) for ∀g ∈ AutG and e ∈ E(G), by def nition

AutEG =
⊙

(u,v)∈E(G)
S {u,v},

we know that

ς :
⊙

(u,x)∈E(G) for x∈V(G)
S {u,x} →

⊙

(v,y)∈E(H) for y∈V(H)
S {v,y},

where ι : (u, x) ∈ E(G)→ (v, y) ∈ E(H). Whence, ς and ι induce a 1 − 1 mapping

σ :
⊕

(u,x)∈E(G) for x∈V(G)
(u, x)→

⊕

(v,y)∈E(H) for y∈V(H)
(v, y).

This fact implies that σ : u ∈ V(G) → v ∈ V(H) if we represent the vertices u, v re-
spectively by those of u �

⊕
(u,x)∈E(G) for x∈V(G)

(u, x) and v �
⊕

(v,y)∈E(H) for y∈V(H)
(v, y) in graphs

G and H, where the notation a � b means the def nition of a by that of b. Essentially,
such a mapping σ : V(G)→ V(H) is an isomorphism between graphs G and H for easily
checking that

σ(u, x) = (σ(u), σ(x))

for ∀(u, x) ∈ E(G) by such representation of vertices in a graph. Thus G ≃ H. �

The decomposition G =
⊕

(u,v)∈E(G)
(u, v) is a K2-decomposition. A clique decomposi-

tion of a graph G is such a decomposition G =
m⊕
i=1
Kni , where Kni is a maximal complete

subgraph in G for integers 1 ≤ i ≤ m. We have know AutKni = S ni from Table 3.2.1.
Whence, we know the following result on automorphism multigroups of a graph.

Theorem 3.5.5 Let G =
m⊕
i=1
Kni be a clique decomposition of a graph G. Then Aut

mulG =
m⊙
i=1

Hi is an automorphism multigroup of G, whereHi ≤ S V(Kni ).

Proof Notice that AutKni = S ni . Whence, AutmulG =
m⊙
i=1

Hi is an automorphism

multigroup of G for each Hi ≤ S V(Kni ). �



110 Chap.3 Graph Groups

Similar to that of Theorem 3.5.4, we also know that the maximal automorphism

multigroup AutclG =
m⊙
i=1
S V(Kni ) is also a graph invariant following.

Theorem 3.5.6 Let G, H be two connected graphs. Then G is isomorphic to H if and
only if AutclG and AutclH are permutation equivalent.

Proof This result is an immediately consequence of Theorem 3.5.4 by applying the
fact S V(Kn) = 〈(v1, v2), (v1, v3), · · · , (v1, vn)〉 if V(Kn) = {v1, v2, · · · , vn}. �

3.5.2 Multigroup Action Graph. Let P̃ be a multigroup action on a set Ω̃. For two
elements a, b ∈ Ω̃, if there is an element σ∈̃P such that aσ = b, we can represent this
relation by a directed edge (a, b) shown in Fig.3.5.2 following:-a b

σ

Fig.3.5.2

Applying this notion to all elements in Ω̃, we get the action graph. An action graph
G[P̃; Ω̃] of P̃ on Ω̃ is a directed graph def ned by

V(G[P̃; Ω̃]) = Ω̃,

E(G[P̃; Ω̃]) = { (a, b) | ∀a, b ∈ Ω̃ and ∃σ ∈ P̃ such that aσ = b }.

Since σ−1 always exists in a multigroup P̃ , we also get that bσ−1 = a. So edges between
a and b in G[P̃; Ω̃] must be the case shown in Fig.3.5.3.-�a

σ

σ−1

b

Fig.3.5.3

Such edges (a, b) and (b, a) are called parallel edges. For simplicity, we draw each parallel
edges (a, b) and (b, a) by a non-directed edge ab in the graph G[P̃ ; Ω̃], i.e.,

V(G[P̃; Ω̃]) = Ω̃,

E(G[P̃; Ω̃]) = { ab | ∀a, b ∈ Ω̃ and ∃σ ∈ P̃ such that aσ = b }.
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Example 3.5.1 Let P = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} be a permutation group
action on Ω = {1, 2, 3, 4}. Then the action graph G[P;Ω] is the complete graph K4 with
labels shown in Fig.3.5.4,

1

2

34

α

α

β

β

γ

γ

Fig.3.5.4

in where α = (1, 2)(3, 4), β = (1, 3)(2, 4) and γ = (1, 4)(2, 3).

Example 3.5.2 Let P̃ be a permutation multigroup action on Ω̃ with

P̃ =P1

⋃
P2 and Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8}

⋃
{1, 2, 5, 6, 9, 10, 11, 12},

where P1 = 〈(1, 2, 3, 4), (5, 6, 7, 8)〉 and P2 = 〈(1, 5, 9, 10), (2, 6, 11, 12)〉. Then the ac-
tion graph G[P̃;Ω] of P̃ on Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is shown in Fig.3.5.5,
in where labels on edges are removed. It should be noted that this action graph is in fact
a union graph of four complete graphs K4 with intersection vertices.

23

14 5

6 7

8

910

1112

Fig.3.5.5

These Examples 3.5.1 and 3.5.2 enables us to f nd the following result on the action
graphs of multigroups.
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Theorem 3.5.7 Let P̃ be a multigroup action on a set Ω̃ with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi,

where each permutation groupPi acts onΩi with orbitsΩi1,Ωi2, · · · ,Ωisi for each integer
i, 1 ≤ i ≤ m. Then

G[P̃; Ω̃] =
m⋃

i=1


si⊕

j=1

K|Ωi j |



with intersections K|Ωi j∩Ωkl | only if for integers 1 ≤ i , k ≤ m, 1 ≤ j ≤ si, l ≤ l ≤ sk.
Particularly, if m = 1, i.e., P̃ is just a permutation group, then its action graph G[P̃ ; Ω̃]
is a union of complete graphs without intersections.

Proof Notice that for each orbit Ωi j of Pi action on Ωi, the subgraph of the action
graph is the complete graph K|Ωi j | and Ωi j1 ∩ Ωi j2 = ∅ if j1 , j2, i.e.,, K|Ωi j1 | ∩ K|Ωi j2 | = ∅.
This result follows by def nition. �

By Theorem 3.5.5, we are easily f nd the automorphism groups of the graph shown
in Fig.3.5.5, particularly the maximal automorphism group following:

AutclG[P̃; Ω̃] = S {1,2,3,4}
⊙

S {5,6,7,8}
⊙

S {1,5,9,10}
⊙

S {2,6,11,12}.

Generally, we get the following result.

Theorem 3.5.8 Let P̃ be a multigroup action on a set Ω̃ with P̃ =
m⋃
i=1

Pi and Ω̃ =
m⋃
i=1
Ωi,

where each permutation groupPi acts onΩi with orbitsΩi1,Ωi2, · · · ,Ωisi for each integer
i, 1 ≤ i ≤ m. Then the maximal automorphism group of G[P̃; Ω̃] is

AutclG[P̃; Ω̃] =
m⋃

i=1

si⊙

j=1

S Ωi j .

Particularly, if |Ωi j ∩Ωkl| = 1 for i , k, 1 ≤ i, k ≤ m, 1 ≤ j ≤ si, l ≤ l ≤ sk, then

AutclG[P̃; Ω̃] =
m⊙

i=1

si⊙

j=1

S Ωi j .

Proof Notice that if |Ωi j ∩Ωkl| = 1 for i , k, 1 ≤ i, k ≤ m, 1 ≤ j ≤ si, l ≤ l ≤ sk, then

G[P̃; Ω̃] =
m⊕

i=1

si⊕

j=1

K|Ωi j |.

This result follows from Theorems 3.5.5 and 3.5.7. �
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3.5.3 Globally Transitivity. Let P̃ be a permutation multigroup action on Ω̃. This
permutation multigroup P̃ is said to be globally k-transitive for an integer k ≥ 1 if for
any two k-tuples x1, x2, · · · , xk ∈ Ωi and y1, y2, · · · , yk ∈ Ω j, where 1 ≤ i, j ≤ m, there are
permutations π1, π2, · · · , πn ∈ P̃ such that xπ1π2···πn1 = y1, xπ1π2···πn2 = yi, · · · , xπ1π2···πnk = yk.
We have obtained Theorems 2.6.8-2.6.10 for characterizing the globally transitivity of
multigroups. In this subsection, we characterize it by the action graphs of multigroups.
First, we know the following result on globally 1-transitivity, i.e., the globally transitivity
of a multigroup.

Theorem 3.5.9 Let P̃ be a multigroup action on a set Ω̃ with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi,

where each permutation group Pi acts on Ωi for integers 1 ≤ i ≤ m. Then P̃ is globally
transitive action on Ω̃ if and only if G[P̃; Ω̃] is connected.

Proof Let x, y ∈ Ω̃. If P̃ is globally transitive action on Ω̃, then there are elements
π1, π2, · · · , πn ∈ P̃ such that xπ1π2···πn = y for an integer n ≥ 1. Def ne v1 = xπ1 , v2 =
xπ1π2 , · · · , vn−1 = xπ1π2···πn−1 . Notice that v1, v2, · · · , vn−1 ∈ Ω̃. By def nition, we conse-
quently f nd a walk (path) xv1v2 · · · vn−1y in the action graphG[P̃; Ω̃] for any two vertices
x, y ∈ V(G[P̃; Ω̃]), which implies that G[P̃; Ω̃] is connected.

Conversely, ifG[P̃; Ω̃] is connected, for ∀x, y ∈ V((G[P̃; Ω̃])) = Ω̃, let xu1 · · · un−1y
be a shortest path connected the vertices x and y in G[P̃; Ω̃] for an integer n ≥ 1. By
def nition, there are must be π1, π2, · · · , πn ∈ P̃ such that xπ1 = u1, uπ21 = u2, · · · , u

πn
n−1 = y.

Whence,
xπ1π2···πn = y.

Thus P̃ is globally transitive action on Ω̃. �

For a multigroup action P̃ action on Ω̃ with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi,

where each permutation group Pi acts on Ωi for integers 1 ≤ i ≤ m, def ne

Ωki = { (x1, x2, · · · , xk) | xl ∈ Ω } and Ω̃k =
m⋃

i=1

Ωki
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for integers k ≥ 1 and 1 ≤ i ≤ m. Then we are easily proved that a permutation group
P action on Ω is k-transitive if and only if P action on Ωk is transitive for an integer
k ≥ 1. Combining this fact with that of Theorem 3.5.9, we get the following result on the
globally k-transitivity of multigroups.

Theorem 3.5.10 Let P̃ be a multigroup action on a set Ω̃ with

P̃ =

m⋃

i=1

Pi and Ω̃ =
m⋃

i=1

Ωi,

where each permutation group Pi acts on Ωi for integers 1 ≤ i ≤ m. Then P̃ is globally
k-transitive action on Ω̃ for an integer k ≥ 1 if and only if G[P̃; Ω̃k] is connected.

Proof Replacing Ω̃ by Ω̃k in the proof of Theorem 3.5.9 and applying the fact that a
permutation groupP action onΩ is k-transitive if and only ifP action onΩk is transitive
for an integer k ≥ 1, we get our conclusion. �

Applying the action graph G[P̃; Ω̃] and G[P̃; Ω̃k], we can also characterize the
globally primitivity or other properties of permutation multigroups by graph structure.
All of those are laid the reader as exercises.

§3.6 REMARKS

3.6.1 For catering to the need of computer science, graphs were out of games and turned
into graph theory in last century. Today, it has become a fundamental tool for dealing
with relations of events applied to more and more f elds, such as those of algebra, topol-
ogy, geometry, probability, computer science, chemistry, electrical network, theoretical
physics, · · · and real-life problems. There are many excellent monographs for its theo-
retical results with applications, such as these references [ChL1], [Whi1] and [Yap1] for
graphs with structures, [GrT1], [MoT1] and [Liu1] for graphs on surfaces.

3.6.2 The conception of Smarandachely graph property in Subsection 3.1.4 is presented
by Smarandache systems or Smarandache’s notion, i.e., such a mathematical system in
which there is a rule that behaves in at least two different ways, i.e., validated and in-
valided, or only invalided but in multiple distinct ways (See [Mao2]-[Mao4], [Mao25]
and [Sma1]-[Sma2] for details). In fact, there are two ways to look a graph with more
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than one edges as a Smarandachely graph. One is by its graphical structure. Another
is by graph invariants on it. All of those Smarandachely conceptions are new and open
problems in this subsection are valuable for further research.

3.6.3 For surveying symmetries on graphs, automorphisms are needed, which is permu-
tations on graphs. This is the closely related place of groups with that of graphs. In fact,
f nite graphs are a well objectives for applying groups, particularly for classifying sym-
metric graphs in recent two decades. To determining the automorphism groups AutG of
a graph G is an important but more difficult problem, which enables one to enumerating
maps on surfaces underlying G, or f nd regular maps on surfaces (See following chapters
in this book). Sections 3.2-3.3 present two ways already known. One is the GRR of f nite
group. Another is the normally Cayley graphs for f nite groups. More results and exam-
ples can be found in references [Big2], [GoR1], [Xum2], [XHL1] and [Yap1] for further
reading.

3.6.4 A hypergraph Λ is a triple (V, f , E) with disjoints V , E and f : E → P(V),
where each element in V is called the vertex and that in E is called the edge of Λ. If
f : E → V × V , then a hypergraph Λ is nothing but just a graph G. Two elements
x ∈ V , e ∈ E of a hypergraph (V, f , E) are called to be incident if x ∈ f (e). Two hy-
pergraphs Λ1 = (V1, f1, E1) and Λ1 = (V2, f2, E2) are isomorphic if there exists bijections
p : E1 → E2, q : V1 → V2 such that q[ f1(e)] = f2(p(e)) holds for ∀e ∈ E. Particularly,
if Λ1 = Λ2, i.e., isomorphism between a hypergraph Λ, such an isomorphism is called
an automorphism of Λ. All automorphisms of a hypergraph Λ form a group, denoted
by AutΛ. For hypergraphs, we can also introduce conceptions such as those of vertex-
transitive, edge-transitive, arc-transitive, semi-arc transitive and primitive by the action of
AutΛ on Λ and get results for symmetric hypergraphs. As we known, there are nearly
none such results found in publication.

3.6.5 The semi-arc automorphism of a graph is f rstly introduced in [Mao1] and [Mao2]
for enumerating maps on surfaces underlying a graph. Besides of these two references,
further applications of this conception can be found in [Mao5], [MaL3], [MLW1] and
[Liu4]. It should be noted that the semi-arc automorphism is called semi-automorphism
of a graph in [Liu4]. In fact, the semi-arc automorphism group of a graphG is the induced
action of AutG on semi-arcs of G if G is loopless. Thus is the essence of Theorems 3.4.1
and 3.4.2. But ifG has loops, the situation is very different. So the semi-arc automorphism
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group of a graph is valuable at least for enumerating maps on surface underlying a graphG
with loops because we need the semi-arc automorphism group, not just the automorphism
group of G in this case.

3.6.6 Considering the local symmetry of a graph, graphs can be seen as the sources of
permutationmultigroups. In fact, automorphism of a graph surveys its globally symmetry.
But this can be only applied for that of f elds understood by mankind. For the limitation
of recognition, we can only know partially behaviors of World. So a globally symmetry
in one’s eyes is localized symmetry in the real-life World. That is the motivation of
multigroups. Although to determine the automorphism of a graph is very difficult, it is
easily to determine the automorphism multigroups in many cases. Theorems 3.5.3 and
3.5.5 are such typical examples. It should be noted that Theorems 3.5.4 and 3.5.6 show
that the automorphism multigroups AutEG and AutclG are new invariants on graphs. So
we can survey localized symmetry of graphs or classify graphs by the action of AutEG
and AutclG.



CHAPTER 4.

Surface Groups

The surface group is generated by loops on a surface with or without bound-
ary. There are two disguises for a surface group in mathematics. One is the
fundamental group in topology and another is the non-Euclidean crystallo-
graphic group, shortly NEC group in geometry. Both of them can be viewed
as an action group on a planar region, enables one to know the structures of
surfaces. Consequently, topics covered in this chapter consist of two parts
also. Sections 4.1.-4.3 are an introduction to topological surfaces, includ-
ing topological spaces, classif cation theorem of compact surfaces by that
of polygonal presentations under elementary transformations, fundamental
groups, Euler characteristic, · · ·, etc.. These sections 4.4 and 4.5 consist a
general introduction to the theory of Klein surfaces, including the antiana-
lytic functions, planar Klein surfaces, NEC groups and automorphism groups
of Klein surfaces, · · ·, etc.. All of these are the preliminary for f nding au-
tomorphism groups of maps on surfaces or Klein surfaces in the following
chapters.
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§4.1 SURFACES

4.1.1 Topological Space. Let T be a set. A topology on a set T is a collection C of
subsets of T , called open sets satisfying properties following:

(T1) ∅ ∈ C and T ∈ C ;

(T2) if U1,U2 ∈ C , then U1 ∩ U2 ∈ C ;

(T3) the union of any collection of open sets is open.

For example, letT = {a, b, c} andC = {∅, {b}, {a, b}, {b, c},T }. ThenC is a topology
on T . Usually, such a topology on a discrete set is called a discrete topology, otherwise,
a continuous topology. A pair (T ,C ) consisting of a set T and a topology C on T is
called a topological space and each element inT is called a point ofT . Usually, we also
use T to indicate a topological space if its topology is clear in the context. For example,
the Euclidean space Rn for an integer n ≥ 1 is a topological space.

For a point u in a topological space T , its an open neighborhood is an open set U
such that u ∈ U in T and a neighborhood in T is a set containing some of its open
neighborhoods. Similarly, for a subset A of T , a set U is an open neighborhood or
neighborhood of A if U is open itself or a set containing some open neighborhoods of
that set in T . A basis in T is a collection B of subsets of T such that T = ∪B∈BB and
B1, B2 ∈ B, x ∈ B1 ∩ B2 implies that ∃B3 ∈ B with x ∈ B3 ⊂ B1 ∩ B2 hold.

Let T be a topological space and I = [0, 1] ⊂ R. An arc a in T is def ned to be a
continuous mapping a : I → T . We call a(0), a(1) the initial point and end point of a,
respectively. A topological space T is connected if there are no open subspaces A and B
such that S = A ∪ B with A, B , ∅ and called arcwise-connected if every two points u, v
in T can be joined by an arc a in T , i.e., a(0) = u and a(1) = v. An arc a : I → T is
a loop based at p if a(0) = a(1) = p ∈ T . A —it degenerated loop ex : I → x ∈ S , i.e.,
mapping each element in I to a point x, usually called a point loop.

A topological space T is called Hausdorff if each two distinct points have disjoint
neighborhoods and f rst countable if for each p ∈ T there is a sequence {Un} of neigh-
borhoods of p such that for any neighborhoodU of p, there is an n such that Un ⊂ U. The
topology is called second countable if it has a countable basis.

Let {xn} be a point sequence in a topological space T . If there is a point x ∈ T such
that for every neighborhood U of u, there is an integer N such that n ≥ N implies xn ∈ U,
then {un} is said converges to u or u is a limit point of {un} in the topological space T .
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4.1.2 Continuous Mapping. For two topological spaces T1 and T2 and a point u ∈ T1,
a mapping ϕ : T1 → T2 is called continuous at u if for every neighborhood V of ϕ(u),
there is a neighborhood U of u such that ϕ(U) ⊂ V . Furthermore, if ϕ is continuous at
each point u in T1, then ϕ is called a continuous mapping on T1.

For examples, the polynomial function f : R → R determined by f (x) = anxn +
an−1xn−1 + · · · + a1x + a0 and the linear mapping L : Rn → Rn for an integer n ≥ 1 are
continuous mapping. The following result presents properties of continuous mapping.

Theorem 4.1.1 Let R,S and T be topological spaces. Then

(1) A constant mapping c : R → S is continuous;
(2) The identity mapping Id : R → R is continuous;
(3) If f : R → S is continuous, then so is the restriction f |U of f to an open subset

U ofR;
(4) If f : R → S and g : S → T are continuous at x ∈ R and f (x) ∈ S , then so

is their composition mapping g f : R → T at x.

Proof The results of (1)-(3) is clear by def nition. For (4), notice that f and g are
respective continuous at x ∈ R and f (x) ∈ S . For any open neighborhood W of point
g( f (x)) ∈ T , g−1(W) is opened neighborhood of f (x) in S . Whence, f −1(g−1(W)) is an
opened neighborhood of x in R by def nition. Therefore, g( f ) is continuous at x. �

A ref nement of Theorem 4.1.1(3) enables us to know the following criterion for
continuity of a mapping.

Theorem 4.1.2 Let R and S be topological spaces. Then a mapping f : R → S is
continuous if and only if each point ofR has a neighborhood on which f is continuous.

Proof By Theorem 4.1.1(3), we only need to prove the sufficiency of condition. Let
f : R → S be continuous in a neighborhood of each point of R and U ⊂ S . We show
that f −1(U) is open. In fact, any point x ∈ f −1(U) has a neighborhood V(x) on which f
is continuous by assumption. The continuity of f |V(x) implies that ( f |V(x))−1(U) is open in
V(x). Whence it is also open in R. By def nition, we are easily f nd that

( f |V(x))−1(U) = {x ∈ R | f (x) ∈ U} = f −1(U)
⋂

V(x),

in f −1(U) and contains x. Notice that f −1(U) is a union of all such open sets as x ranges
over f −1(U). Thus f −1(U) is open followed by this fact. �
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For constructing continuous mapping on a union of topological spaces X , the fol-
lowing result is a very useful tool, called the Gluing Lemma.

Theorem 4.1.3 Assume that a topological space X is a f nite union of closed subsets:
X =

n⋃
i=1
Xi. If for some topological space Y , there are continuous maps fi : Xi → Y that

agree on overlaps, i.e., fi|Xi⋂ X j = f j|Xi⋂ X j for all i, j, then there exists a unique continuous
f : X → Y with f |Xi = fi for all i.

Proof Obviously, the mapping f def ned by

f (x) = fi(x), x ∈ Xi

is the unique well def ned mapping from X to Y with restrictions f |Xi = fi hold for all i.
So we only need to establish the continuity of f on X . In fact, if U is an open set in Y ,
then

f −1(U) = X
⋂

f −1(U) = (
n⋃

i=1

Xi)
⋂

f −1(U)

=

n⋃

i=1

(Xi
⋂

f −1(U)) =
n⋃

i=1

(Xi
⋂

f −1i (U)) =
n⋃

i=1

f −1i (U).

By assumption, each fi is continuous. We know that f −1i (U) is open in Xi. Whence,
f −1(U) is open in X . Thus f is continuous on X . �

Let X be a topological space. A collection C ⊂P(X ) is called to be a cover of X

if ⋃

C∈C
C = X .

If each set in C is open, then C is called an opened cover and if |C| is f nite, it is called
a f nite cover of X . A topological space is compact if there exists a f nite cover in its
any opened cover and locally compact if it is Hausdorff with a compact neighborhood for
its each point. As a consequence of Theorem 4.1.3, we can apply the gluing lemma to
ascertain continuous mappings shown in the next.

Corollary 4.1.1 Let Let X and Y be topological spaces and {A1, A2, · · · , An} be a f -
nite opened cover of a topological space X . If a mapping f : X → Y is continuous
constrained on each Ai, 1 ≤ i ≤ n, then f is a continuous mapping.

4.1.3 Homeomorphic Space. Let S and T be two topological spaces. They are
homeomorphic if there is a 1 − 1 continuous mapping ϕ : S → T such that the inverse
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maping ϕ−1 : T → S is also continuous. Such a mapping ϕ is called a homeomorphic
or topological mapping. A few examples of homeomorphic spaces can be found in the
following.

Example 4.1.1 Each of the following topological space pairs are homeomorphic.

(1) A Euclidean space Rn and an opened unit n-ball Bn = { (x1, x2, · · · , xn) | x21 + x22 +
· · · + x2n < 1 };

(2) A Euclidean plane Rn+1 and a unit sphere S n = { (x1, x2, · · · , xn+1) | x21+ x22+ · · ·+
x2n+1 = 1 } with one point p = (0, 0, · · · , 0, 1) on it removed.

In fact, def ne a mapping f from Bn to Rn for (1) by

f (x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1 −
√
x21 + x

2
2 + · · · + x2n

for ∀(x1, x2, · · · , xn) ∈ Bn. Then its inverse is

f −1(x1, x2, · · · , xn) =
(x1, x2, · · · , xn)

1 +
√
x21 + x

2
2 + · · · + x2n

for ∀(x1, x2, · · · , xn) ∈ Rn. Clearly, both f and f −1 are continuous. So Bn is homeomorphic
to Rn. For (2), def ne a mapping f from S n − p to Rn+1 by

f (x1, x2, · · · , xn+1) =
1

1 − xn+1
(x1, x2, · · · , xn).

Its inverse f −1 : Rn+1 → S n − p is determined by

f −1(x1, x2, · · · , xn+1) = (t(x)x1, · · · , t(x)xn, 1 − t(x)),

where
t(x) =

2
1 + x21 + x

2
2 + · · · + x2n+1

.

Notice that both f and f −1 are continuous. Thus S n − p is homeomorphic to Rn+1.

4.1.4 Surface. For an integer n ≥ 1, an n-dimensional topological manifold is a second
countable Hausdorff space such that each point has an open neighborhood homeomorphic
to an open n-dimensional ball Bn = {(x1, x2, · · · , xn)|x21+x22+· · ·+x2n < 1} inRn. We assume
all manifolds is connected considered in this book. A 2-manifold is usually called surface
in literature. Several examples of surfaces are shown in the following.
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Example 4.1.1 These 2-manifolds shown in the Fig.4.1.1 are surfaces with boundary.

rectangle cylinderplane torus

Fig.4.1.1

Example 4.1.2 These 2-manifolds shown in the Fig.4.1.2 are surfaces without boundary.

sphere torus

Fig.4.1.2

By def nition, we can always distinguish the right-side and left-side when one object
moves along an arc on a surface S . Now let N be a unit normal vector of the surface S .
Consider the result of a normal vector moves along a loop L on surfaces in Fig.4.1.1 and
Fig.4.1.2. We f nd the direction of N is unchanged as it come back at the original point u.
For example, it moves on the sphere and torus shown in the Fig.4.1.3 following.

L

u u6 6
sphere torus

O

Fig.4.1.3
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Such loops L in Fig.4.1.3 are called orientation-preserving. However, there are also loops
L in surfaces which are not orientation-preserving. In such case, we get the opposite
direction of N as it come back at the original point v. Such a loop is called orientation-
reversing. For example, the process (1)-(3) for getting the famous Möbius strip shown in
Fig.4.1.4, in where the loop L is an orientation-reversing loop.

A

B

E

A’

B’

E’

(1)

A

B

E

A’

B’

E’

(2)
A

E

B
(3)

K
v

N

L

Fig.4.1.4

A surface S is def ned to be orientable if every loop on S is orientation-preserving.
Otherwise, non-orientable if there at least one orientation-reversing loop on S . Whence,
the surfaces in Examples 4.1.1-4.1.2 are orientable and theMöbius strip are non-orientable.
It should be noted that the boundary of a Möbius strip is a closed arc formed by AB′ and
A′B. Gluing the boundary of a Möbius strip by a 2-dimensional ball B2, we get a non-
orientable surface without boundary, which is usually called crosscap in literature.

4.1.5 Quotient Space. A natural way for constructing surfaces is by the quotient space
from a surface. For introducing such spaces, let X , Y be a topological spaces and
π : X → Y be a surjective and continuous mapping. A subset U ⊂ Y is def ned to be
open if and only if π−1(U) is open in X . Such a topology on Y is called the quotient
topology induced by π, and π is called a quotient mapping. It can be shown easily that the
quotient topology is indeed a topology on Y .

Let ∼ be an equivalent relation on X . Denoted by [q] the equivalence class for each
q ∈ X and let X / ∼ be the set of equivalence classes. Now let π : X → X / ∼ be
the natural mapping sending each element q to the equivalence class [q]. Then X / ∼
together with the quotient topology determined by π is called the quotient space and π
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the projection. For example, the Möbius strip constructed in Fig.4.1.4 is in fact a quotient
space X / ∼, where X is the rectangle AEBA′E′B′, and

π(x) =


x′ if |xA′| = |x′A′|, x ∈ AB, y ∈ A′B′,
x if x ∈X \ (AB ∪ A′B′).

Applying quotient spaces, we can also construct surfaces without boundary. For ex-
ample, a projective plane is def ned to be the quotient space of the 2-sphere by identifying
every pair of diametrically opposite points, i.e., X = {(x1, x2, x3)|x21 + x22 + x23 = 1} with
π(−x1,−x2,−x3) = (x1, x2, x3).

Now let X be a rectangle ABA′B′ shown in Fig.4.1.5. Then different identif cation
of points on AB with A′B′ and AA′ with BB′ yields different surfaces without boundary
shown in Fig.4.1.5,

A A

B

BB

AA

A’

B’

A’

B’

A’

B’

- 6
-
-6 6

-
�

6 ?
-
-

6 ?
B

sphere S 2 torus T 2

projection plane P2 Klein bottle K2

a a a a

b

b

a aa a

b

b

b

b

Fig.4.1.5

where the projection π is determined by

π(x) =


x′ if |xA′| = |x′A′|, x ∈ AB′B, y ∈ A′AB,
x if x ∈X \ (AB ∪ A′B′ ∪ AA′ ∪ BB′)
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in the sphere,

π(x) =



x′ if |xA′| = |x′B′|, x ∈ AA′, x′ ∈ BB′,
x” if |xA| = |x′A′|, x ∈ AB, x′ ∈ A′B′,
x if x ∈X \ (AB ∪ A′B′ ∪ AA′ ∪ BB′)

in the torus,

π(x) =


x′ if |xB| = |x′A′|, x ∈ BAA′, x′ ∈ A′B′B,
x if x ∈X \ (AB ∪ A′B′ ∪ AA′ ∪ BB′)

in the projection plane and

π(x) =



x′ if |xA′| = |x′B′|, x ∈ AA′, x′ ∈ BB′,
x” if |xA| = |x”B′|, x ∈ AB, x′ ∈ A′B′,
x if x ∈X \ (AB ∪ A′B′ ∪ AA′ ∪ BB′)

in the Klein bottle, respectively.

$4.2 CLASSIFICATION THEOREM

4.2.1 Connected Sum. Let S 1, S 2 be disjoint surfaces. A connected sum of S 1 and S 2,
denoted by S 1#S 2 is formed by cutting a circular hole on each surface and then gluing the
two surfaces along the boundary of holes.

- --
-6 ? -

-666 ??? 66 ??
A

B

A’

B’

A(A’)

A

B

C
D

A’

B’

C’
D’

C
D

C’
D’

D

C

D’

C’
B(B’)

(1) (2) (3)

I

II
II
I

Fig.4.2.1

For example, we show that a Klein bottle constructed in Fig.4.1.5 is in fact the connected
sum of two Möbius strips in Fig.4.2.1, in where, (1) is the Klein bottle in Fig.4.1.5. It
should be noted that the rectangles CDC′D′ and DACC′B′D′ are two Möbius strips after
we cut ABA′B′ along CC′, DD′ and then glue along AB, A′B′ in (3).
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For a precise def nition of connected sum, let D1 ⊂ S 1 and D2 ⊂ S 2 be closed 2-
dimensional discs, i.e., homeomorphic to B

2
= {(x1, x2)|x21 + x22 ≤ 1} with boundary ∂D1,

∂D2 homeomorphic to S 1 = {(x1, x2)|x21 + x22 = 1}. Notice that each ∂Di homeomorphic to
S 1 for i = 1, 2. Let h1 : ∂D1 → S 1 and h1 : ∂D2 → S 1 be such homeomorphisms. Then
h−12 h1 : ∂D1 → ∂D2, i.e., there always exists a homeomorphism ∂D1 → ∂D2. Chosen
a homoeomorphism h : ∂D1 → ∂D2, then S 1#S 2 is def ned to be the quotient space
(S 1 ∪ S 2)/h. By def nition, S 1#S 2 is clearly a surface and does not dependent on the
choice of D1,D2 and h.

Example 4.2.1 The following connected sums of orientable or non-orientable surfaces
are orientable or non-orientable surfaces.

(1) A connected sum T 2#T 2# · · ·#T 2
︸             ︷︷             ︸

n

of n toruses is orientable. Particularly, T 2#T 2

is called the double torus.
(2) A connected sum P2#P2# · · · #P2︸            ︷︷            ︸

k

of k projection planes is non-orientable. Partic-

ularly, K2 = P2#P2 as we shown in Fig.4.2.1.

4.2.2 Polygonal Presentation. A triangulation of a surface S consisting of a f nite
family of closed subsets {T1, T2, · · · , Tn} that covers S with Ti ∩ T j = ∅, a vertex v or an
entire edge e in common, and a family of homeomorphisms φi : T ′i → Ti, where each T ′i
is a triangle in the plane R2, i.e., a compact subset bounded by 3 distinct straight lines.
The images of vertices and edges of the triangle T ′i under φi are called also the vertices
and edges, respectively. For example, a triangulation of the Möbius strip can be found in
Fig.4.2.2.

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5
? 6

Fig.4.2.2

In fact, there are many non-isomorphic triangulation for a surface, which is the central
problem of enumerative theory of maps (See [Liu2]-[Liu4] for details). T.Radó proved
the following result in 1925.
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Theorem 4.2.1(Radó) Any compact surface S admits a triangulation.

The proof of this theorem is not difficult but very tedious. We will not present it
here. The reader can refers references, such as those of [AhS1] and [Lee1] for details.
The following result is fundamental for classifying surfaces without boundary.

Theorem 4.2.2 Let S be a compact surface with a triangulation T . Then S is homeo-
morphic to a quotient surface by identifying edge pairs of triangles in T .

Proof Let T = {Ti; 1 ≤ i ≤ n be a triangulation of S . Our proof is divided into two
assertions following:

(A1) Let v be a vertex of T . Then there is an arrangement of triangles with v as a
vertex in cyclic order T v1 , T

v
2 , · · · , T vρ(v) such that Ti and Ti+1 have an edge in common for

integers 1 ≤ i ≤ ρ(v) (modρ(v)).

Def ne an equivalence on two triangles T vi , T
v
j by that of T

v
i and T

v
j have exactly an

edge in common in T . It is clear that this relation is indeed an equivalent relation on T .
Denote by [T ] all such equivalent classes in T . Then if |[T ]| = 1, we get the assertion
(A1). Otherwise, |[T ]| ≥ 2, we can choose [T vs ], [T vl ] ∈ [T ] such that [T vs ] ∩ [T vl ] = {v} in
T . Whence, there is a neighborhoodWv of v small enough such thatWv−v is disconnected.
But by the def nition of surface, there is a neighborhoodWv of v homeomorphic to an open
sphere B2 in S . Consequently, Wv − v is connected for any neighborhood Wv of v small
enough, a contradiction.

(A2) Each edge is an edge of exactly two triangles.

First, each edge is an edge of two triangles at least in T , i.e., there are no vertices
x on an edge of Ti for an integer, i, 1 ≤ i ≤ n with a neighborhood Wx homeomorphic
to an open ball B2. Otherwise, a loop L encircled x in Ti − Wx can not be continuously
contracted to the point in Ti. But it is clear that any loop in Ti −Wx for neighborhoodsWx

of x small enough can be continuously contracted to a point in Ti −Wx for any point x on
an edge of Tx, a contradiction.

Second, each edge is exactly an edge of two triangles. Notice that we can continu-
ously subdivide a triangulation such that triangles T with a common edge e are contained
in an ǫ-neighborhood of a point in T . Not loss of generality, we assume T is such a trian-
gulation of S . By applying Jordan curve theorem, i.e., the moving of any closed curve C on
S 2 reminds two connected components W1, W2 with W1∩W2 = C, we know that each edge
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is exactly an edge of two triangles in T . In fact, let ee11e21, ee12e22, · · · , ees1es1 be trian-
gles contained in an ǫ-neighborhoodW with a common edge e, where e, e1i, e2i, 1 ≤ i ≤ s
are edges of these triangles. Then W − ee11e21 has two connected components by Jordan
curve theorem. One of them is the interior of triangle ee11e21 and another isW−Te, where
Te is the triangle with boundary ee11e21. So there must be s = 2.

Combining assertions (A1)-(A2), we consequently get the result. �

According to Theorem 4.2.2, we know that a compact surface can be presented by
identifying edges of triangles, where each edge is exactly an edge of two triangles. Gen-
erally, let A be a set. A word is def ned to be an ordered k-tuple of elements a ∈ A with
the form a or a−1. A polygonal presentation, denoted by

W = 〈 A |W1,W2, · · · ,Wk 〉

is a f nite setA together with f nitely manywordsW1,W2, · · · ,Wk inA such that each ele-
ment ofA appears in at least one words. A polygonal presentation 〈A |W1,W2, · · · ,Wk〉 is
called a surface presentation if each element a ∈ A occurs exactly twice inW1,W2, · · · ,Wk

with the form a or a−1. We call elements a ∈ A to be edges, Wi, 1 ≤ i ≤ k to be faces
of S and vertices appeared in each face vertices if each words is represented by a poly-
gon on the plane R2. It can be known that a surface is orientable if and only if the two
occurrences of each element a ∈ A are with different power, otherwise, non-orientable.

For example, let S be the torus T 2 with short side a and length side b in Fig.4.1.5.
Then we get its polygonal presentation T 2 =

〈
a, b|aba−1b−1

〉
. Generally, Theorem 4.2.2

enables one knowing that the existence of polygonal presentation for compact surfaces S ,
at least by triangles, i.e., each wordsW is length of 3 in A .

4.2.3 Elementary Equivalence. Let A be a set of English alphabets, the minuscules
a, b, c, · · · ∈ A but the Greek alphabets α, β, γ, · · · < A , S = 〈A |W1,W2, · · · ,Wk〉 be a
surface presentation and let the capital letters A, B, · · · be sections of successive elements
in order and A−1, B−1, · · · in reserving order in words W. For two words W1,W2 in S, the
notationW1W2 denotes the word formed by concatenatingW1 withW2 in order. We adopt
the convention that (a−1)−1 = a in this book.

Def ne operations El.1–El.6, called elementary transformations on S following:

El.1(Relabeling): Changing all occurrences of a by α < A , interchanging all oc-
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currences of two elements a and b, or interchanging all occurrences a and a−1, i.e.,

〈A |aAbB,W2, · · · ,Wk〉 ↔ 〈A |bAaB,W2, · · · ,Wk〉 ,〈
A |aAa−1B,W2, · · · ,Wk

〉
↔

〈
A |a−1Aa,W2, · · · ,Wk

〉
or

〈
A |aA, a−1B, · · · ,Wk

〉
↔

〈
A |a−1A, aB, · · · ,Wk

〉
.

El.2(Subdividing or Consolidating) Replacing every occurrence of a by αβ and a−1

by β−1α−1, or vice versa, i.e.,
〈
A |aAa−1B,W2, · · · ,Wk

〉
↔

〈
A |αβAβ−1α−1B,W2, · · · ,Wk

〉
〈
A |aA, a−1B, · · · ,Wk

〉
↔

〈
A |αβA, β−1α−1B, · · · ,Wk

〉
.

El.3(Ref ecting) Reversing the order of a word W = a1a2 · · · am, i.e.,

〈A |a1, a2 · · · am,W2, · · · ,Wk〉 ↔
〈
A |a−1m · · · a−12 a−11 ,W2, · · · ,Wk

〉
.

El.4(Rotating) Changing the order of a word W = a1a2 · · · am by rotating, i.e.,

〈A |a1, a2 · · · am,W2, · · · ,Wk〉 ↔ 〈A |ama1 · · · am−1,W2, · · · ,Wk〉 .

El.5(Cutting or Pasting) If the length of W1,W2 are both not less than 2, then

〈A |W1W2, · · · ,Wk〉 ↔
〈
A |W1γ, γ

−1W2, · · · ,Wk
〉
.

El.6(Folding or Unfolding) If the length of W1 is at least 3, then
〈
A |W1δδ

−1,W2, · · · ,Wk
〉
↔ 〈A |W1,W2, · · · ,Wk〉 .

Let S1 and S2 be two surface presentations. If S1 can be conversed to that of S2 by
a series of elementary transformations π1, π2, · · · , πm in El.1 − −El.6, we say S1 and S2
to be elementary equivalent and denote by S1 ∼El S2. It is obvious that the elementary
equivalence is indeed an equivalent relation on surface presentations. The following result
is fundamental for applying surface presentations to that of classifying compact surfaces.

Theorem 4.2.3 Let S 1 and S 2 be compact surfaces with respective presentations S1, S2.
If S1 ∼El S2, then S 1 is homeomorphic to S 2.

Proof By the def nition of elementary transformation, it is clear that each pairs of
cutting and pasting, folding and unfolding, subdividing and consolidating are inverses of
each other. Whence, we are only need to prove our result for one of such pairs.
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Cutting. Let P1 and P2 be convex polygons labeled byW1γ and γ−1W2, respectively
and P be a convex polygon labeled byW1W2. Not loss of generality, we assume these are
the only words in their respective presentations. Let π : P1 ∪ P2/ ∼→ S 1 and π′ : P/ ∼→
S 2 be the quotient mappings. The line segment going from the terminal vertex of W1 in
P to its initial vertex lies in P by convexity, labeled this line segment by γ. Such as those
shown in Fig.4.2.3 following.

W1 W1

W2 W2
γ K
K

γ γ
pasting

cutting

Fig.4.2.3

Applying the gluing lemma, there is a continuous mapping f : P1 ∪ P2 → P that takes
each edge of P1 or P2 to the edge in P with a corresponding label, and whose restriction
to P1 or P2 is a homeomorphism, i.e., f is a quotient mapping. Because f identifying two
edges labeled by γ and γ−1 but nothing else, the quotient mapping π ◦ f and π′ makes the
same identif cations. So their quotient spaces are homeomorphic.

a

b

c

e

e
a

b

ce
	U - �R � -K?folding

unfolding

Fig.4.2.4

If k ≥ 3, extending f by declaring it to be the identity on the respective polygons and
processed as above, we also get the result.

Folding. Similarly, we can ignore the additional words W2, · · · ,Wk. If the length of
W1 is 2, subdivide it and then perform the folding transformation and then consolidate.
So we can assume the length of W1 is not less than 3. First, let W1 = abc and P, P′ be
convex polygons with edge labels abcee−1 and abc, respectively. Let π : P → S 1 and
π′ : P′ → S 2 be the quotient mappings. Now adding edges in P, P′, turns them into
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polyhedra, such as those shown in Fig.4.2.4. There is a continuous mapping f : P → P′

that takes each edge of P to that the edge of P′ with the same label. Then π′ ◦ f and π are
quotient mappings that make the same identif cations.

If the length≥ 4 of W1, we can write W1 = Abc for some section A of length at least
2. Cutting along a we obtain

〈
A , b, c, e|Abcee−1

〉
∼El

〈
A , a, b, c, e|Aa−1, abcee−1

〉

and processed as before to get the result.

Subdividing. Similarly, let P1, P2 be distinct polygons with sections a or a−1 and
P′1, P

′
2 with sections replacing a by αβ and a

−1 by β−1α−1 in P1 and P2. Such as those
shown in Fig.4.2.5.

subdividing

consolidating
a

6
α

β

aK
�

Fig.4.2.5

Certainly, there is a continuous mapping f : P1 ∪ P2 → P′1 ∪ P′2 that takes each edge of
P1, P2 to that the edge of P′1, P

′
2 with the same label, and the edge with label a to the edge

with label αβ in P′1 ∪ P′2. Then π′ ◦ f : P1 ∪ P2/ ∼→ S 1 and π : P′1 ∪ P′2/ ∼→ S 2 are
quotient mappings that make the same identif cations.

If a or a−1 appears twice in a polygon P, the proof is similar. Thus S 1 is homeomor-
phic to S 2 in each case. �

4.2.4 Classif cation Theorem. Let S be a compact surface with a presentation S =
〈A |W1,W2, · · · ,Wk〉 and let A, B, · · · be sections of successive elements in a wordW in S.
Theorems 4.2.1–4.2.3 enables one to classify compact surfaces as follows.

Theorem 4.2.4 Any connected compact surface S is either homeomorphic to a sphere,
or to a connected sum of tori, or to a connected sum of projective planes, i.e., its sur-
face presentation S is elementary equivalent to one of the standard surface presentations
following:



132 Chap.4 Surface Groups

(1) The sphere S 2 =
〈
a|aa−1

〉
;

(2) The connected sum of p tori

T 2#T 2# · · · #T 2
︸             ︷︷             ︸

p

=

〈
ai, bi, 1 ≤ i ≤ p |

p∏

i=1

aibia−1i b−1i

〉
;

(3) The connected sum of q projective planes

P2#P2 · · · #P2︸           ︷︷           ︸
q

=

〈
ai, 1 ≤ i ≤ q |

q∏

i=1

ai
〉
.

Proof Let S = 〈A |W1,W2, · · · ,Wk〉. For establishing this theorem, we f rst prove
several claims on elementary equivalent presentations of surfaces following.

Claim 1. There is a word W in A such that

S = 〈 A |W1,W2, · · · ,Wk 〉 ∼El 〈 A |W 〉 .

If k ≥ 2, we can concatenate W1,W2, · · · ,Wk by elementary transformations El.1 −
El.6. In fact, by def nition, there is an element a only appears once in W1. Thus W1 = Aa
and a does not appears in A. Not loss of generality, let a or a−1 appears in W2, i.e.,
W2 = Ba orW2 = a−1B. Applying El.1 − El.6, we know that

S = 〈 A | Aa, Ba,W3, · · · ,Wk 〉

∼El
〈

A | Aa, a−1B−1,W3, · · · ,Wk
〉
∼El

〈
A | AB−1,W3, · · · ,Wk

〉
.

S =
〈
A | Aa, a−1B,W3, · · · ,Wk

〉
∼El 〈 A | AB,W3, · · · ,Wk 〉 .

Furthermore, by induction on k we know that S is elementary equivalent to a surface just
with one wordW if k ≥ 2. Thus

S = 〈 A |W1,W2, · · · ,Wk 〉 ∼El 〈 A |W 〉 .

Claim 2.
〈

A | AaBbCa−1Db−1E
〉
∼El

〈
A | ADCBEaba−1b−1

〉
.

In fact, by El.1 − El.6, we know that
〈
A | AaBbCa−1Db−1E

〉
∼El

〈
A ∪ {δ} | Db−1EAaδ, δ−1BbCa−1

〉

∼El
〈

A ∪ {δ} \ {b} | EAaδDCa−1δ−1B
〉
∼El

〈
A ∪ {δ} | Aaδb, b−1DCa−1δ−1BE

〉

∼El
〈

A | bAaBEb−1DCa−1
〉
∼El

〈
A ∪ {δ} | AaBEδ, δ−1b−1DCa−1b

〉

∼El
〈

A ∪ {δ} \ {a} | BEδAbδ−1b−1DC
〉
∼El

〈
A ∪ {δ} | Aba, a−1δ−1b−1DCBEδ

〉

∼El
〈

A ∪ {δ} \ {b} | ADCBEδaδ−1a−1
〉
∼El

〈
A | ADCBEaba−1b−1

〉
.
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Claim 3. 〈 A | AcBcC 〉 ∼El
〈
A | AB−1Ccc

〉
.

By El.1 − El.6, we f nd that

〈 A | AaBaC 〉 ∼El
〈
A ∪ {δ} | Aaδ, δ−1BaC

〉

∼El
〈
A ∪ {δ} | δAa, a−1B−1δC−1

〉
∼El

〈
A ∪ {δ} \ {a} | δAB−1δC−1

〉

∼El
〈
A ∪ {δ} | AB−1δa, a−1C−1δ

〉
∼El

〈
A ∪ {δ} | aAB−1δ, δ−1Ca

〉

∼El
〈
A | AB−1Caa

〉
.

Claim 4.
〈
A | Accaba−1b−1

〉
∼El 〈 A | Accaabb 〉.

Applying El.1 − El.6 and Claim 3, we get that

〈
A | Accaba−1b−1

〉
∼El

〈
A ∪ {δ} | a−1b−1Acδ, δ−1cab

〉

∼El
〈

A ∪ {δ} | δa−1b−1Ac, c−1δb−1a−1
〉
∼El

〈
A ∪ {δ} \ {c} | δa−1b−1Aδb−1a−1

〉

∼El
〈

A ∪ {δ} \ {c} | Aδb−1a−1δa−1b−1
〉
.

Applying Claim 3, we therefore have

〈
A | Accaba−1b−1

〉
∼El

〈
A ∪ {δ} \ {c} | Aδaδ−1ab−1b−1

〉

∼El
〈

A ∪ {δ} \ {c} | Aδδb−1b−1aa
〉
∼El 〈 A | Accaabb 〉 .

Now we can prove the classif cation for connected compact surfaces. If |A | = 1, let
A = {a}, then we get

S =
〈
a | aa−1

〉
or 〈 a | aa 〉 ,

i.e., the sphere or the projective plane. If |A | ≥ 2, by Claim 1 we are only needed to
prove the classif cation for compact surfaces with one word, i.e., S = 〈 a | W 〉. Our proof
is divided into two cases following.

Case 1. There are no elements a ∈ A such that W = AaBaC.

In this case, there are sections A, B,C,D, E of W such that W = AaBbCa−1Db−1E
or W = AaBbCb−1Da−1E. If there are no elements a, b such that W = AaBbCa−1Db−1E,
thenW must be the form of · · · cG(a1H1b1b−11 H

−1
1 a

−1
1 ) · · · (alHlblb−1l H−1l a−1l )G−1d−1 · · ·. By

the elementary transformation El.5, we f nally get that S ∼El
〈

A | aa−1
〉
, the sphere. Not

loss of generality, we will assume that this case never appears in our discussion, i.e., for
∀a ∈ A , there are always exists b ∈ A such that W = AaBbCa−1Db−1E. In this case, by
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Claim 2 we know that S ∼El
〈

A | ADCBEaba−1b−1
〉
. Notice that elements in ADCBE

also satisfy the condition of Case 1. So we can applying Claim 2 repeatedly and f nally
get that

S ∼El
〈

A |
p∏

i=1

aibiaib−1i

〉

for an integer p ≥ 1.

Case 2. There are elements a ∈ A such that W = AaBaC.

In this case, by Claim 3 we know that S ∼El
〈
A |AB−1Caa

〉
. Applying Claim 3 to

AB−1C repeatedly, we f nally get that

S ∼El
〈

A | H
s∏

i=1

aiai
〉

for an integer s ≥ 1 such that there are no elements b ∈ H such that H = DbCbE. Thus
each element x ∈ A \ {ai; 1 ≤ i ≤ s} appears x at one time and x−1 at another. Similar to
the discussion of Case 1, we know that

S ∼El
〈

A | H
s∏

i=1

aiai
〉
∼El

〈
A |

s∏

i=1

aiai
t∏

i=1

x jy jx−1j y−1
〉

for some integers s, t by applying Claim 2. Applying Claim 4 also, we f nally get that

S ∼El
〈

A | H
s∏

i=1

aiai
〉
∼El

〈
A |

q∏

i=1

aiai
〉
,

for an integer q = s + 2t. This completes the proof. �

Notice that each step in the proof of Theorem 4.2.4 does not change the orientability
of a surface S with a presentation S. We get the following conclusion.

Corollary 4.2.1 A surface S is orientable if and only if it is elementary equivalent to the
sphere S 2 or the connected sum T 2#T 2# · · ·#T 2

︸             ︷︷             ︸
p

of p tori.

4.2.5 Euler Characteristic. Let S = 〈 A |W1,W2, · · · ,Wk 〉 be a surface presentation
and π : 〈 A | W1,W2, · · · ,Wk 〉 → S a projection by identifying a with a−1 for ∀a ∈ A .
The Euler characteristic of S is def ned by

χ(S) = |V(S)| − |E(S)| + |F(S)|,
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where V(S), E(S) and F(S) are respective the set of vertex set, edge set and face set of the
surface S. We are easily knowing that |E(S)| = |A |, |F(F )| = k and |V(S)| the number of
orbits of vertices in polygons W1,W2, · · · ,Wk under π. The Euler characteristic of a sur-
face is topological invariant. Furthermore, it is unchange by elementary transformations.

Theorem 4.2.5 If S1 ∼El S2, then χ(S1) = χ(S2), i.e., the Euler characteristic is an
invariant under elementary transformations.

Proof Let 〈 A | W1,W2, · · · ,Wk 〉 be a presentation of a surface S. We only need
to prove each elementary El.1 − El.6 on S does not change the value χ(S). Notice the
elementary transformations El.1(Relabeling), El.3(Ref ecting) and El.4(Rotating) leave
the numbers of vertices, edges and faces unchanged. Consequently, χ(S) is invariant
under El.1, El.3 − El.4. We only need to check the result for elementary transforma-
tions El.2(Subdividing or Consolidating), El.5(Cutting or Pasting) and El.6(Folding or
Unfolding). In fact, El.2(Subdividing or Consolidating) increase or decrease both the
number of edges and the number of vertices by 1, leaves the number of faces unchanged,
El.5(Cutting or Pasting) increases or decreases both the number of edges and the number
of faces by 1, leaves the number of vertices unchanged and El.6(Folding or Unfolding)
increases or decreases the number of edges and the number of vertices, leaves the number
of faces unchanged. Whence, χ(S) is invariant under these elementary transformations
El.1 − El.6. This completes the proof. �

Applying Theorems 4.2.4 and 4.2.5, we get the Euler characteristic of connected
compact surfaces following.

Theorem 4.2.6 Let S be a connected compact surface with a presentation S. Then

χ(S ) =



2, if S ∼El S 2,

2 − 2p, if S ∼El T 2#T 2# · · · #T 2
︸             ︷︷             ︸

p

,

2 − q, if S ∼El P2#P2# · · · #P2︸            ︷︷            ︸
q

.

Proof Notice that the numbers of vertices, edges and faces of a surface S are re-
spective |V(S)| = 2, |E(S)| = 1, |F(S)| = 1 if S =

〈
a|aa−1

〉
(See Fig.4.1.5 for de-

tails), |V(S)| = 1, |E(S)| = 2p, |F(S)| = 1 if S =
〈
ai, bi, 1 ≤ i ≤ p |

p∏
i=1
aibia−1i b

−1
i

〉
and

|V(S)| = 1, |E(S)| = q, |F(S)| = 1 if S =
〈
ai, 1 ≤ i ≤ q |

q∏
i=1
ai
〉
. By def nition, we know
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that

χ(S ) =



2, if S ∼El S 2,

2 − 2p, if S ∼El T 2#T 2# · · · #T 2
︸             ︷︷             ︸

p

,

2 − q, if S ∼El P2#P2# · · · #P2︸            ︷︷            ︸
q

by Theorem 4.2.5. Applying Theorems 4.2.4, the conclusion is followed. �

The numbers p and q is usually def ned to be the genus of the surface S , denoted
by g(S ). Theorem 4.2.6 implies that g(S ) = 0, p or q if S is elementary equivalent to the
sphere, the connected sum of p tori or the connected sum of q projective plane.

$4.3 FUNDAMENTAL GROUPS

4.3.1 Homotopic Mapping. Let T1,T2 be two topological spaces and let ϕ1, ϕ2 : T1 →
T2 be two continuous mappings. If there exists a continuous mapping H : T1 × I → T2

such that
H(x, 0) = ϕ1(x) and H(x, 1) = ϕ2(x)

for ∀x ∈ T1, then ϕ1 and ϕ2 are called homotopic, denoted by ϕ1 ≃ ϕ2. Furthermore, if
there is a subset A ⊂ T such that

H(a, t) = ϕ1(a) = ϕ2(a), a ∈ A, t ∈ I,

then ϕ1 and ϕ2 are called homotopic relative to A. Clearly, ϕ1 is homotopic to ϕ2 if A = ∅.

Theorem 4.3.1 For two topological spaces T ,J , the homotopic ≃ on the set of all
continuous mappings fromT toJ is an equivalent relation, i.e, all homotopic mappings
to a mapping f is an equivalent class, denoted by [ f ].

Proof Let f , g, h be continuous mappings from T to J , f ≃ g and g ≃ h with
homotopic mappings H1 and H2. Then we know that

(1) f ≃ f if choose H : I × I → T by H(t, s) = f (t) for ∀s ∈ I.
(2) g ≃ f if choose H(t, s) = H1(t, 1− s) for ∀s, t ∈ I which is obviously continuous.
(3) Def ne H(t, s) = H2H1(t, s) for ∀s, t ∈ I by

H(t, s) = H2H1(t, s) =


H1(x, 2t), if 0 ≤ t ≤ 1

2 ,

H2(x, 2t − 1), if 1
2 ≤ t ≤ 1.
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Notice that H1(x, 2t) = H1(x, 1) = g(x) = H2(x, 2t − 1) if t = 1
2 . Applying Theorem 4.1.3,

we know the continuousness of H1H2. Whence, f ≃ h. �

Theorem 4.3.2 If f1, f2 : T →J and g1, g2 : J → L are continuous mappings with
f1 ≃ f2 and g1 ≃ g2, then f1 ◦ g1 ≃ f2 ◦ g2.

Proof Assume F : f1 ≃ f2 andG : g1 ≃ g2 are homotopies. Def ne a new homotopy
H : T × I → L by H(x, t) = G(F(x, t), t). Then H(x, 0) = G( f1(x), 0) = g1( f1(x)) for
t = 0 and H(x, 1) = G( f2(x), 1) = g2( f2(x)) for t = 1. Thus H is a homopoty from g1 ◦ f1
to g2 ◦ f2. �

We present two examples for homotopies of topological spaces.

Example 4.3.1 Let f , g : R→ R2 determined by

f (x) = (x, x2), g(x) = (x, x)

and H(x, t) = (x, x2 − tx2 + tx). Then H : R × I → R is continuous with H(x, 0) = f (x)
and H(x, 1) = g(x). Whence, H : f ≃ g.

Example 4.3.2 Let f , g : T → R2 be continuous mappings from a topological space T

to R2. Def ne a mapping H : T × I → T by

H(x, t) = (1 − t) f (x) + tg(x), x ∈ T .

Clearly, H is continuous with H(x, 0) = f (x) and H(x, 1) = g(x). Therefore, H : f ≃ g.
Such a homotopy H is called a straight-line homotopy between f and g.

4.3.2 Fundamental Group. Particularly, let a, b : I → T be two arcs with a(0) = b(0)
and a(1) = b(1) in a topological space T . In this case, a ≃ b implies that there exists a
continuous mapping

H : I × I → S

such that H(t, 0) = a(t), H(t, 1) = b(t) for ∀t ∈ I by def nition.
Now let a and b be two arcs in a topological space T with a(1) = b(0). A product

arc a · b of a with b is def ned by

a · b(t) =

a(2t), if 0 ≤ t ≤ 1

2 ,

b(2t − 1), if 1
2 ≤ t ≤ 1

and an inverse mapping of a by a = a(1 − t).
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Notice that a ·b : I → T and a : I → T are continuous by Corollary 4.1.1. Whence,
they are indeed arcs by def nition, called the product arc of a with b and the inverse arc
of a. Sometimes it is needed to distinguish the orientation of an arc. We say the arc a
orientation-preserving and its inverse a orientation-reversing.

Let a, b be arcs in a topological space T . Properties on product of arcs following
are hold obviously by def nition.

(P1) a = a;
(P2) b · a = a · b providing ab existing;
(P3) ex = ex, where x = e(0) = e(1).

Theorem 4.3.3 Let a, b, c and d be arcs in a topological space S . Then

(1) a ≃ b if a ≃ b;
(2) a · b ≃ c · d if a ≃ b, c ≃ d with a · c an arc.

proof Let H1 be a homotopic mapping from a to b. Def ne a continuous mapping
H′ : I × I → S by H′(t, s) = H1(1 − t, s) for ∀t, s ∈ I. Then we f nd that H′(t, 0) = a(t)
and H′(t, 1) = b(t). Whence, we get that a ≃ b, i.e., the assertion (1).

For (2), let H2 be a homotopic mapping from c to d. Def ne a mapping H : I× I → S
by

H(t, s) =


H1(2t, s), if 0 ≤ t ≤ 1

2 ,

H2(2t − 1, s), if 1
2 ≤ t ≤ 1.

Notice that a(1) = c(0) and H1(1, s) = a(1) = c(0) = H2(0, s). Applying Corollary 4.1.1,
we know that H is continuous. Therefore, a · b ≃ c · d. �

For a topological space T , x0 ∈ T , let π1(T , x0) be a set consisting of equivalent
classes of loops based at x0. Def ne an operation ◦ in π1(T , x0) by

[a] ◦ [b] = [a · b] and [a]−1 = [a−1].

Then we know that π1(T , x0) is a group shown in the following result.

Theorem 4.3.4 π1(T , x0) is a group.

Proof We check each condition of a group for π1(T , x0). First, it is closed under
the operation ◦ since [a] ◦ [b] = [a · b] is an equivalent class of loop a · b based at x0 for
∀[a], [b] ∈ π1(T , x0).
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Now let a, b, c : I → T be three loops based at x0. By def nition we know that

(a · b) · c(t) =



a(4t), if 0 ≤ t ≤ 1
4 ,

b(4t − 1), if 1
4 ≤ t ≤

1
2 ,

c(2t − 1), if 1
2 ≤ t ≤ 1.

and

a · (b · c)(t) =



a(2t), if 0 ≤ t ≤ 1
2 ,

b(4t − 2), if 1
2 ≤ t ≤

3
4 ,

c(4t − 3), if 3
4 ≤ t ≤ 1.

Def ne a function H : I × I → T by

H(t, s) =



a(
4t

1 + s
), if 0 ≤ t ≤ s + 1

4
,

b(4t − 1 − s), if
s + 1
4
≤ t ≤ s + 2

4
,

c(1 − 4(1 − t)
2 − s ), if

s + 2
4
≤ t ≤ 1.

Then H is continuous by applying Corollary 4.1.1, H(t, 0) = ((a · b) · c)(t) and H(t, 1) =
(a · (b · c))(t). Thereafter, we know that ([a] ◦ [b]) ◦ [c] = [a] ◦ ([b] ◦ [c]).

Now let ex0 : I → x0 ∈ T be the point loop at x0. Then it is easily to check that

a · a ≃ ex0 , a · a ≃ ex0

and
ex0 · a ≃ a, a · ex0 ≃ a.

We conclude that π1(T , x0) is a group with a unit [ex0 ] and an inverse element [a−1]
for any [a] ∈ π1(S , x0) by def nition. �

Let T be a topological space, x0, x1 ∈ T and £ an arc from x0 to x1. For ∀[a] ∈
π1(T , x0), we know that £ ◦ [a] ◦ £−1 ∈ π1(T , x1) (see Fig.4.31.1 below). Whence, the
mapping £# = £ ◦ [a] ◦ £−1 : π1(T , x0)→ π1(T , x1).� *

x0

x1
£

[a]

Fig.4.3.1
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Then we know the following result.

Theorem 4.3.5 Let T be a topological space. If x0, x1 ∈ T and £ is an arc from x0 to x1
in T , then π1(T , x0) ≃ π1(T , x1).

Proof We have known that £# : π1(T , x0) → π1(T , x1). For [a], [b] ∈ π1(T , x0),
[a] , [b], we f nd that

£#([a]) = £ ◦ [a] ◦ £−1 , £ ◦ [b] ◦ £−1 = £#([b]),

i.e., £# is a 1 − 1 mapping. Choose [c] ∈ π1(T , x0). Then

£#([a]) ◦ £#([c]) = £ ◦ [a] ◦ £−1 ◦ £ ◦ [b] ◦ £−1 = £ ◦ [a] ◦ ex1 ◦ [a] ◦ £−1

= £ ◦ [a] ◦ [b] ◦ £−1 = £#([a] ◦ [b]).

Therefore, £# is a homomorphism.
Similarly, £−1# = £−1 ◦ [a] ◦ £ is also a homomorphism from π1(T , x1) to π1(T , x0)

and £−1# ◦ £# = [ex1], £# ◦ £−1# = [ex0 ] are the identity mappings between π1(T , x0) and
π1(T , x1).Hence, £# is an isomorphism form π1(T , x0) to π1(T , x1). �

Theorem 4.3.5 implies the fundamental group of a arcwise-connected space T is
independent on the choice of base point x0. Whence, we can denote the fundamental
group of T by π1(T ). If π1(T ) = {[ex0]}, then T is called to be a simply connected
space. For example, the Euclidean space Rn, n-ball Bn are simply connected spaces for
n ≥ 2. We determine the fundamental groups of graphs embedded in topological spaces
in the followiing.

Theorem 4.3.6 Let G be an embedded graph on a topological space S and T a spanning
tree in G. Then π1(G) = 〈 T + e | e ∈ E(G \ T ) 〉.

Proof We prove this assertion by induction on the number of n = |E(T )|. If n = 0,
G is a bouquet, then each edge e is a loop itself. A closed walk on G is a combination of
edges e in E(G), i.e., π1(G) = 〈 e | e ∈ E(G) 〉 in this case.

Assume the assertion is true for n = k, i.e., π1(G) = 〈 T + e | e ∈ E(G \ T ) 〉. Con-
sider the case of n = k + 1. For any edge ê ∈ E(T ), we consider the embedded graph
G/̂e, which means continuously to contract ê to a point v in S . A closed walk on G
passes or not through ê in G is homotopic to a walk passes or not through v in G/̂e for
κ(T ) = 1. Therefore, we conclude that π1(G) = 〈 T + e | e ∈ E(G \ T ) 〉 by the induction
assumption. �
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4.3.3 Seifert-Van Kampen Theorem. For a subset A of B, an inclusion mapping i :
A → B is def ned by i(a) = a for ∀a ∈ A. A subset A of a topological space X is called a
deformation retract of X if there exists a continuous mapping r : X → A and a homotopy
f : X × I → X such that

f (x, 0) = x, f (x, 1) = r(x), ∀x ∈ X and f (a, t) = a,∀a ∈ A and t ∈ I.

we have the following result.

Theorem 4.3.7 If A is a deformation retract of X, then the inclusion mapping i : A → X
induces an isomorphism of π1(A, a) onto π1(X, a) for any a ∈ A.

Proof Let i∗ : π1(A, a) → π1(X, a) and r∗ : π1(X, a) → π1(A, a) be induced homo-
morphisms by i and r. We conclude that r∗i∗ is the identity mapping of π1(A, a). Notice
that ir is homotopic to the identity mapping X → X relative to {a}. We know that i∗r∗ is
the identity mapping of π1(X, a). Thus i∗ : π1(A, a)→ π1(X, a) is an isomorphism. �

Generally, to determine the fundamental group π1(T ) of a topological spaceT is not
easy, particularly for f nding its presentation. For this objective, a useful tool is the Seifert-
Van Kampen theorem. Its modern form is presented by homomorphisms following.

Theorem 4.3.8(Seifert and Van-Kampen) Let X = U ∪ V with U, V open subsets and let
X, U, V, U ∩V be non-empty arcwise-connected with x0 ∈ U ∩V and H a group. If there
are homomorphisms

φ1 : π1(U, x0)→ H and φ2 : π1(V, x0)→ H

and

π1(U ∩ V, x0)

π1(U, x0)

π1(X, x0)

π1(V, x0)

H

-
- ?6- -i1

i2

φ1

φ2

?6j1j2 Φ

with φ1 · i1 = φ2 · i2, where i1 : π1(U ∩ V, x0) → π1(U, x0), i2 : π1(U ∩ V, x0) → π1(V, x0),
j1 : π1(U, x0) → π1(X, x0) and j2 : π1(V, x0) → π1(X, x0) are homomorphisms induced by
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inclusion mappings, then there exists a unique homomorphism Φ : π1(X, x0) → H such
that Φ · j1 = φ1 and Φ · j2 = φ2.

The classical form of the Seifert-Van Kampen theorem is by the following.

Theorem 4.3.9(Seifert and Van-Kampen theorem, Classical Version) Let X = U ∪ V
with U, V open subsets and let X, U, V, U ∩ V be non-empty arcwise-connected with
x0 ∈ U ∩ V, inclusion mappings i1, j1, i2, j2 as the same in Theorem 4.3.7. If

j : π1(U, x0) ∗ π1(V, x0)→ π1(X, x0)

is an extension homomorphism of j1 and j2, then j is an epimorphism with kernel Ker j
generated by i−11 (g)i2(g), g ∈ π1(U ∩ V, x0), i.e.,

π1(X, x0) ≃
π1(U, x0) ∗ π1(V, x0)[

i−11 (g) · i2(g)| g ∈ π1(U ∩ V, x0)
] ,

where [A] denotes the minimal normal subgroup of a group G included A ⊂ G .

A complete proof of the Seifert-Van Kampen theorem can be found in references,
such as those of [Lee1] [Mas1] or [Mun1]. By this result, we immediately get the follow-
ing conclusions.

Corollary 4.3.1 Let X1, X2 be two open sets of a topological space X with X = X1 ∪ X2,
X2 simply connected and X, X1 and X0 = X1 ∩ X2 non-empty arcwise-connected, then for
∀x0 ∈ X0,

π1(X, x0) ≃
π1(X1, x0)

[ (i1)π([a])|[a] ∈ π1(X0, x0) ]
.

Corollary 4.3.2 Let X1, X2 be two open sets of a topological space X with X = X1 ∪ X2.
If there X, X1, X2 are non-empty arcwise-connected and X0 = X1 ∩ X2 simply connected,
then for ∀x0 ∈ X0,

π1(X, x0) ≃ π1(X1, x0)π1(X2, x0).

Corollary 4.3.2 can be applied to f nd the fundamental group of an embedded graph,

particularly, a bouquet Bn =
n⋃

i=1

Li consisting of n loops Li, 1 ≤ i ≤ n again following,

which is the same as in Theorem 4.3.6.
Let x0 be the common point in Bn. For n = 2, let U = B2−{x1}, V = B2−{x2}, where

x1 ∈ L1 and x2 ∈ L2. Then U ∩ V is simply connected. Applying Corollary 3.1.2, we get
that

π1(B2, x0) ≃ π1(U, x0)π1(V, x0) ≃ 〈L1〉 〈L2〉 = 〈L1, L2〉 .
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Generally, let xi ∈ Li, Wi = Li − {xi} for 1 ≤ i ≤ n and

U = L1
⋃

W2

⋃
· · ·

⋃
Wn and V = W1

⋃
L2

⋃
· · ·

⋃
Ln.

Then U
⋂
V = S 1.n, an arcwise-connected star. Whence,

π1(Bn,O) = π1(U,O) ∗ π1(V,O) ≃ 〈L1〉 ∗ π1(Bn−1,O).

By induction induction, we f nally f nd the fundamental group

π1(Bn,O) = 〈Li, 1 ≤ i ≤ n〉 .

4.3.4 Fundamental Group of Surface. Applying the Seifert-Van Kampen theorem and
the classif cation theorem of connected compact surfaces, we can easily get the funda-
mental groups following, usually called the surface groups in literature.
Theorem 4.3.10 The fundamental groups π1(S ) of compact surfaces S are respective

π1(S ) =



〈 1 〉 , the trivial group if S ∼El S 2;〈
a1, b1, · · · , ap, bp |

p∏
i=1
aibia−1i b−1i = 1

〉
if S ∼El T 2#T 2# · · ·#T 2

︸             ︷︷             ︸
p

;
〈
c1, c2, · · · , cq |

q∏
i=1
c2i = 1

〉
if S ∼El P2#P2# · · · #P2︸            ︷︷            ︸

q

,

Proof If S ∼El S 2, then it is clearly that π1(S ) is trivial. Whence, we consider S is
elementary equivalent to the connected sum of p tori or q projective planes following.

Case 1. S ∼El T 2#T 2# · · · #T 2
︸             ︷︷             ︸

p

.

Let S =
〈
a1, b1, · · · , ap, bp |

p∏
i=1
aibia−1i b

−1
i

〉
be the surface representation of S . By

Theorem 4.2.2, we can represent S by a 4p-gon on the plane with sides identif ed in pairs
such as those shown in Fig.4.3.2(a). By the identif cation, these edges a1, b1, a2, b2, · · · , ap, bp
become circuits, and any two of them intersect only in the base point x0. Now let
U = S \ {y}, the complement of the center y and let V be the image of the interior of
the 4p-gon under the identif cation. Then U, V both are arewise-connected. Furthermore,
the union of circuits a1, b1, a2, b2, · · · , ap, bp is a deformation retract of U, and V is simply
connected. Therefore,

π1(V, x1) = 〈 1 |∅ 〉 , π1(U, x0) =
〈
α1, β1, α2, β2, · · · , αp, βp | ∅

〉
,
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where α1, β1, α2, β2, · · · , αp, βp are circuits represented by a1, b1, a2, b2, · · · , ap, bp, respec-
tively. � i

� �
3
R

�Wx0 x1 y

- ?�d
a1

b1
a−11 b−11

apbp
a−1p

b−1p

c

�* RM �x0
x1
d

y

- ?� c

a1

a1

a2
a2

aq
aq

(a) (b)

Fig.4.3.2

Notice that U ∩ V has the homotopy type of circuit. Whence, π1(U ∩ V, x1) is an
inf nite cyclic group generated γ, the equivalent class of a loop c around the point y once
with

φ1(γ) =
p∏

i=1

α′iβ
′
i(α
′
i)
−1(β′i)

−1,

where α′i = d
−1αid, β′i = d

−1βid for integers 1 ≤ i ≤ p.
Applying Corollary 4.3.1, we immediately get that

π1(S ) =
〈
α′1, β

′
1, · · · , α′p, β′p |

p∏

i=1

α′iβ
′
i(α′i)−1(β′i)−1 = 1

〉

≃
〈
a1, b1, · · · , ap, bp |

p∏

i=1

aibia−1i b
−1
i = 1

〉
.

Case 2. S ∼El P2#P2# · · · #P2︸            ︷︷            ︸
p

.

The proof is similar to that of Case 1. In this case, S is presented by identify-
ing in pairs sides of a 2q-gon with sides a1, a1, a2, a2, · · · , aq, aq, such as those shown
in Fig.4.3.2(b). Similarly choose U,V as them in Case 1. Then the union of circuits
a1, a2, · · · , aq is a deformation retract of U, and V is simply connected. Therefore,

π1(V, x1) = 〈 1 |∅ 〉 , π1(U, x0) =
〈
α1, α2, · · · , αq | ∅

〉
,

where α1, α2, · · · , αq are circuits represented by a1, a2, · · · , aq, respectively and π1(U ∩
V, x1) is an inf nite cyclic group generated γ, the equivalent class of a loop c around the



Sec.4.4 NEC Groups 145

point y once with

φ1(γ) =
q∏

i=1

(α′i)
2,

where α′i = d−1αid for integers 1 ≤ i ≤ q. Whence,

π1(S ) =
〈
α1, α2, · · · , αq |

q∏

i=1

(α′i)
2 = 1

〉

≃
〈
c1, c2, · · · , cq |

q∏

i=1

c2i = 1
〉

by applying Corollary 4.3.1. �

Corollary 4.3.3 The fundamental groups of the torus T 2 and projective plane P2 are
π1(T 2) = 〈 a, b | ab = ba 〉 and π1(P2) =

〈
a | a2 = 1

〉
, respectively.

$4.4 NEC GROUPS

We show how to construct a polygon used in last section on a Klein surface, i.e., funda-
mental region of a non-Euclidean crystallographic group, abbreviated to NEC group in
this section. Thus will be used in next chapter.

4.4.1 Dianalytic Function. Let C be the complex plane, A ⊂ C a open subset and
f : A → C a mapping. As usual, we write z = x + iy ∈ C, x, y ∈ R, i =

√
−1, z = x − iy

and f (z) = u(x, y) + iv(x, y) for certain functions u, v : A → R of C2. Then by def nition,
we know that

∂ f
∂z
=
∂u
∂z
+ i

∂v
∂z
=
∂u
∂x
∂x
∂z
+ i

∂u
∂y
∂y
∂z
+ i

(
∂v
∂x
∂x
∂z
+ i

∂v
∂y
∂y
∂z

)
,

∂ f
∂z
=
∂u
∂z
+ i

∂v
∂z
=
∂u
∂x
∂x
∂z
+ i

∂u
∂y
∂y
∂z
+ i

(
∂v
∂x
∂x
∂z
+ i

∂v
∂y
∂y
∂z

)
.

Notice that x =
z + z
2

and y =
i(z − z)

2
, we know that

∂x
∂z
=
∂x
∂z
=
1
2
,
∂y
∂z
= −1

2
i and

∂y
∂z
=
1
2
i.

Whence,

∂ f
∂z
=
1
2

(
∂u
∂x
− i∂u

∂y
+ i

∂v
∂x
+
∂v
∂y

)
and

∂ f
∂z
=
1
2

(
∂u
∂x
+ i

∂u
∂y
+ i

∂v
∂x
− ∂v
∂y

)
.
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Particularly, let f : A → C be determined by f : z = x + iy → f (z) = u(x, y) − iv(x, y).
Then we get the fundamental equalities following:

∂ f
∂z
=

(
∂ f
∂z

)
,

∂ f
∂z
=

(
∂ f
∂z

)
. (4 − 1)

Let C+ = { z | Imz ≥ 0 }. A mapping f : A −→ C (or C+) is called to be analytic

on A if
∂ f
∂z
= 0 (Cauchy-Riemann equation) and antianlytic on A if

∂ f
∂z
= 0. A mapping

f : A → C (or C+) is dianalytic if its restriction to every connected component of A
is analytic or antianalytic. The following properties of dianalytic mappings is clearly by
formulae (4-1) and def nition.

(P1) A mapping f : A→ C (or C+) is analytic if and only if f is antianalytic;
(P2) If a mapping f : A → C (or C+) is both analytic and antianalytic, then f is

constant;
(P3) If f : A → B ⊂ C (or C+) and g : B → C (or C+) are both analytic or

antianalytic, then the composition g ◦ f : A → C (or C+) is analytic. Otherwise, g ◦ f is
antianalytic.

Example 4.4.1 Let a, b, c, d ∈ R, c , 0 and A = C \ {−d/c}. Clearly, the mapping
f : A → C determined by f (z) =

az + b
cz + d

for ∀z ∈ A is analytic. Whence, the mapping

f : A→ C determined by f (z) =
az + b
cz + d

for ∀z ∈ A is antianalytic by (P1).

Let f (z) = u(x, y) + iv(x, y). Calculation shows that

det



∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


= ǫ


(
∂u
∂x

)2
+

(
∂v
∂y

)2 ,

where ǫ = 1 if f is analytic and −1 if f is antianalytic. This fact implies that an analytic
function preserves orientation but that an antianalytic one reverses the orientation.

4.4.2 Klein Surface. A Klein surface is a topological surface S together with a family
Σ = { (Ui, φi) | i ∈ Λ } such that

(1) { Ui | i ∈ Λ } is an open cover of S ;
(2) φi : Ui → Ai is a homeomorphism onto an open subset Ai of C or C+;
(3) the transition functions of Σ def ned in the following are dianalytic:

φi j = φiφ
−
j : φ j(Ui

⋂
U j) −→ φi(Ui

⋂
U j), i, j ∈ Λ.
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Usually, the family Σ is called to be an atlas and each (Ui, φi) a chart on S , which is
positive if φi(Ui) ⊂ C+. The boundary of S is determined by

∂S = {x ∈ S | there exists i ∈ I, x ∈ Ui, φi(x) ∈ R and φi(Ui) ⊆ C+}.

Particularly, if each transition function φi j is analytic, such a Klein surface is called a
Riemann surface in literature. Denote respectively by k(S ), g(S ) and χ(S ) the number
of connected components of ∂S , the genus and the Euler characteristic of S , where if
∂S , ∅, we def ne its genus g(S ) to be the genus of the compact surface obtained by
attaching a 2-dimensional disc B

2
to each boundary component of S . Then by applying

Theorem 4.2.6, we know the following result.

Theorem 4.4.1 Let S be a Klein surface. Then

χ(S ) =


2 − 2g(S ) − k(S ) if S is orientable,
2 − g(S ) − k(S ) if S is non − orientable.

Proof Let S̃ be a surface without boundary, i.e., ∂S = ∅ with a def nite triangulation.
We remove the interior of one triangle T to form a new surface S ′. Clearly, V(S ′) =
V(S ), E(S ′) = E(S ) and F(S ′) = F(S ) \ {T }. Whence, χ(S ′) = χ(S ) − 1. Continuous
this process, we f nally get that χ(S ′) = χ(S ) − k if we remove k triangles on S̃ . Then we
know the result by Theorem 4.2.6. �

Some important examples of Klein surfaces are shown in the following.

Example 4.4.2 Let H = { z ∈ C | Imz > 0 } and D = { z ∈ C | |z| < 1 } be respectively the
upper half plane and the unit disc in C shown in Fig.4.4.1 following.

-6
H

Imz

Rez

(a)

-|z| < 1
O

O
(b)

Fig.4.4.1

Choose atlas {(U = H, φ = 1H)} and {(U = D, φ = 1D)} on H and D, respectively. Then
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we know that both of them are Klein surfaces without boundary. Such Klein surfaces will
be always denoted by H and D in this book.

Example 4.4.3 The surface C+ with a structure induced by the analytic atlas {(C, 1C)} is
a Klein surface with boundary ∂C+ = R.

Example 4.4.4 LetC = C∪{∞} and ∆ = C+∪{∞}. Then they are compact Klein surfaces
with atlas

Σ1 = {(U1 = C, φ1 = 1C), (U2 = C{0}, φ2 = z−1)},

Σ2 = {(U1 = C+, φ1 = 1C+), (U2 = ∆{0}, φ2 = z−1)},

respectively. Clearly, ∂C = ∅ and ∂∆ = R ∪ {∞}.

4.4.3 Morphism of Klein Surface. Let A be a subset of C+, def ne A = { z ∈ C | z ∈ A }.
A folding mapping is the continuous mapping Φ : C → C+ determined by Φ(x + iy) =
x + i|y|. Clearly, Φ is an open mapping and Φ−1(A) = A ∪ A. Particularly, Φ−1(R) = R.

Let S and S ′ be Klein surfaces. Amorphism f : S → S ′ from S to S ′ is a continuous
mapping such that

(1) f (∂S ) ⊆ ∂S ′;
(2) for ∀s ∈ S , there exist charts (U, φ) and (V, ψ) at points s and f (s), respectively

and an analytic function F : φ(U) → C such that the following diagram

U V-
φ(U)
? - C - C+

?f

F Φ

φ ψ (4 − 2)

commutes. It should be noted that in the case of Riemann surfaces, we only deal with
orientation-preserving morphisms, in which the diagram (4−2) is replaced by the diagram
(4 − 3) following.

U V-
φ(U)
? - ψ(V)

(4 − 3)

F
?f

φ ψ



Sec.4.4 NEC Groups 149

Let S and S ′ be Klein surfaces and f : S → S ′ a morphism. If f is a homeomor-
phism, then S and S ′ are called to be isomorphic. Such a morphism f is isomorphism
between S and S ′. Particularly, if S = S ′, such a f is called automorphism of a Klein sur-
face S . Similarly, all automorphisms of S form a group with respect to the composition
of automorphisms, denoted by AutS . We present an example of automorphisms between
Klein surfaces following.

Example 4.4.5 Let H and D be Klein surfaces constructed in Example 4.4.2 and a map-
ping by ρ(z) = (z + i)/(iz + 1). Then ρ : D→ H is well-def ned because if z = x + iy ∈ D,
so there must be x2 + y2 < 1 and consequently

ρ(z) =
2x + i(1 − x2 − y2)
x2 + (1 − y)2 ∈ H.

Furthermore, it is analytic, particularly continuous by def nition. For s ∈ D, we choose
(U = D, 1D) and (V = H, 1H) to be charts at s ∈ D and ρ(s) ∈ H, respectively. Then
Φρ = ρ for ρ(D) ⊂ H ⊂ C+ and the following diagram is commute.

U V-
φ(U)
? - C - C+

?ρ

F = ρ Φ

1U 1V

Whence, ρ is a morphism between from Klein surfaces D to H. Now if g : H → C is
def ned by g(z) =

z − i
1 − iz , then g ◦ ρ = 1H. Because ρ is onto, Img ⊂ D and ρg = 1H, we

know that ρ is an isomorphism of Klein surfaces.

4.4.4 Planar Klein Surface. Let H = { z ∈ C | Imz > 0 } be a planar Klein surface
def ned in Example 4.4.2 and let PGL(n,G) be the subgroup of GL(n,R) determined by

all A ∈ GL(n,R) with DetA , 0. Now for A =


a b
c d

 ∈ PGL(2,R) with real entries,

we associate a mapping fA : H → H determined by

fA(z) =



az + b
cz + d

if DetA > 0,
az + b
cz + d

if DetA < 0.

Clearly, fA ∈ AutH and fA = fcA for any non-zero c ∈ R. Hence, the mapping A → fA
embeds PGL(2,R) in AutH. We prove this mapping is also surjective. In fact, let f ∈
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AutH and let ρ : D → H be the isomorphism determined in Example 4.4.5. Notice that
f is analytic, and so the same holds true for g = ρ−1 ◦ f ◦ ρ. Applying the maximum
principle of analytic function, g(z) =

z − α
1 − αz for some α ∈ D, µ ∈ C with |µ| = 1. Hence,

f (z) =
az + b
cz + d

for some a, b, c, d ∈ C.

Because f (H) = H, we know that f (R \ {−d/c}) ⊂ R by continuity, and it is easy to
see that we can choose real numbers a, b, c, d. Notice that f (i) ∈ H implies that DetA =
ad − bc > 0.

If f reverses the orientation, let h : H → H be a mapping determined by h(z) =
− f (z). Notice that h is an automorphism of H, i.e., h ∈ AutH and it preserves the orienta-
tion. We know that

f (z) =
az + b
cz + d

for some a, b, c, d ∈ R with DetA = ad − bc < 0.

Whence, we get the following result for the automorphism group of H.

Theorem 4.4.2 Let H = { z ∈ C | Imz > 0 }. Then

(1) AutH = PGL(2,R);
(2) AutH is a topological group, i.e., AutH is both a topological space and a group

with a continuous mapping ∀ f ◦ g−1 for f , g ∈ AutH.

4.4.5 NEC Group. A subgroup Γ of AutH is said to be discrete if it is discrete as a
topological subspace of AutH. Such a discrete group Γ is called to be a non-Euclidean
crystallographic group (shortly NEC group) if the quotient space H/Γ is compact.

Notice that there exist just two matrixes A, B ∈ GL(2,R) such that fA, fB for any
f ∈∈ AutH with |DetA| = |DetB| = 1, i.e., B = −A, DetA = −DetA and TrB = −TrA.
Def ne Det f = DetA and Tr f = TrA, respectively. Then we classify f ∈ AutH into 3
classes with conditions following:

Hyperbolic. Det f = 1 and |Tr f | > 2.
Elliptic. Det f = 1 and |Tr f | < 2.
Parabolic. Det f = 1 and |Tr f | = 2.

Furthermore, f is called a glide refection if Det f = −1, |Tr f | , 0 or a refection if
Det f = −1, |Tr f | = 0. Denote by Aut+H the subgroup of AutH formed by all orien-
tation preserving elements in AutH. Then it is clear that [AutH : Aut+H] = 2. Call
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an NEC group Γ to be Fuchsian if Γ ≤ Aut+H. Otherwise, a proper NEC group. For
any NEC group Γ, the subgroup Γ+ = Γ ∩ Aut+H is always a Fuchsian group, called the
canonical Fuchsian subgroup.

Calculation shows the following result is hold.

Theorem 4.4.3 Extend each fA ∈ AutH to f̃ on C ∪ {∞} in the natural way for A =
a b
c d

 ∈ PGL(2,R) by

f̃A(z) =



−d/c i f z = ∞,
∞ i f z = −d/c,
az + b
cz + d

i f Det fA = 1, z , ∞,−d/c,
az + b
cz + d

i f Det fA = −1, z , ∞,−d/c.

Let f ∈ AutH and Fix f = {z ∈ C ∪ {∞}| f̃ (z) = z}. Then

Fix f =



two points on R ∪ {∞} i f f is hyperbolic or glide re f ection,
one point on R ∪ {∞} i f isparabolic,
two non − real con jugate points i f f is elliptic,
a circle or a line perpendicular to R i f f is a re f lection.

Let Γ be an NEC group. A fundamental region for Γ is a closed subset F of H
satisfying conditions following:

(1) If z ∈ H, then there exists g ∈ Γ such that g(z) ∈ F;
(2) If z ∈ H and f , g ∈ Γ verify f (z), g(z) ∈ IntF, then f = g;
(3) The non-Euclidean area of F \ IntF is zero, i.e.,

µ(F \ IntF) =
∫ ∫

F\IntF

dxdy
y2
= 0.

The existence of fundamental region for an NEC group can be seen by the following
construction for the Dirichlet region with center p.

Construction 4.4.1 Let Γ be an NEC group. We construct its fundamental region in the
following. First, we show that there exists a point p ∈ H such that g(p) , p for 1Γ , g ∈ Γ.
In fact, we can assume the existence of an upper half Euclidean line l perpendicular to R

such that l , Fix(γ) for every γ ∈ Γ. Otherwise, we can get a sequence {xn|n ∈ N}
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convergent to a point a ∈ H, lying on a Euclidean line parallel to R, and the upper half
Euclidean line ln perpendicular to R and passing through xn verif es ln = Fix(γn) for some
γn ∈ Γ. Consequently, γn , γm if n , m and lim{γn(a)} = lim{γn(xn)} = lim{xn} = a,
contradicts to the continuity of the mapping o : AutH × H → H determined by o( f , x) =
f (x) for f ∈ AutH, x ∈ H.

Choose a sequence {yn|n ∈ N} of points H lying on l convergent to some point b ∈ H.
By assumption, there exists a sequence of pairwise distinct transformations {gn|n ∈ N} ⊂ Γ
such that gn(yn) = yn for every n ∈ N, which leads to a contradiction as before.

Now it is easy to check that

F = Fp = {z ∈ H|d(z, p) ≤ d(g(z), p) for each g ∈ Γ}

is a fundamental region of Γ, where d(u, v) is the non-Euclidean distance between u
and v, i.e.,

d(u, v) =
∫

Cu,v

(dx2 + dy2)1/2

y
,

Cu,v being the geodesic joining u and v, i.e., a circle or a line orthogonal to R. Then Fp
verif es conditions (1)-(3):

(1) Let z be a point in H. Since Γ is discrete, the orbit Oz of z under Γ is closed. Thus
there exists w ∈ Oz such that d(w, p) ≤ d(w′, p) for each w′ ∈ Oz. If w = g(z), g ∈ Γ, then
it is clear that g(z) = w ∈ Fp.

(2) Obviously that

IntFp = {z ∈ H|d(z, p) < d(g(z), p), for each g ∈ Γ \ {1H}}.

Then z ∈ H, f , g ∈ Γ and f (z), g(z) ∈ IntFp imply that for f , g,

d( f (z), p) < d(g f −1( f (z), p)) = d(g(z), p), d(g(z), p) < d( f g−1(g(z), p)) = d( f (z), p),

a contradiction. Thus, f = g.
(3) This is follows easily from the fact that the boundary of Fp is a convex polygon

with a f nite number of sides in the non-Euclidean metric.

Usually, a fundamental region F of an NEC group verifying conditions following is
called regular:

(1) F is a bounded convex polygon with a f nite number of sides in the non-Euclidean
metric;
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(2) F is homeomorphic to a closed disc;

(3) F \ IntF is a closed Jordan curve and there are f nite vertices on F \ IntF which
divide it into the following classes e of Jordan arcs:

(3.1) e = F ∩ gF, where g ∈ Γ is a ref ection;
(3.2) e = F ∩ gF, where g ∈ Γ, g2 , 1H;
(3.3) e for which there exists an elliptic transformation g ∈ Γ, g2 = 1Γ such that

e ∪ ge = F ∩ gF;
(4) If F, gF do not have an edge in common for a g ∈ Γ, then F ∩ gF has just one

point.

Then we know the following conclusion.

Theorem 4.4.4 For any NEC group Γ, there exist regular fundamental regions, such as
Fp for example.

Construction 4.4.2 Let F be a regular fundamental region of an NEC group Γ. For a
given g ∈ Γ, gF is said to be a face. Clearly, the mapping Γ → {faces} determined by
g→ gF is a bijection and H =

⋃
g∈Γ
gF. In fact, {gF |g ∈ Γ} is a tessellation of H.

(1) Given a side e of F, let ge be the unique transformation for which geF meets F
in the edge e, i.e., e = F ∩ geF. then {ge|e ∈ sides of Γ} is a set of generators of γ. In
fact, for ∀g ∈ Γ there exists a sequence of elements g1 = 1H, g − 2, · · · , gn+1 in Γ such
that giF meet gi+1F one to another in a side, say gi(ei), where ei is a side of F. Clearly,
gi(gei f ) = gi+1F and so gi+1 = gigei for 1 ≤ i ≤ n. Consequently, g = ge1ge2 · · · gen for
some sides e1, e2, · · · , en of F.

(2) First, we label sides of type (3.1). Afterward, if we label e a side of type (3.2)
or (3.3), the side ge is labeled e′ if g ∈ Γ+, and e∗ if g ∈ Γ \ Γ+. We write down the labels
of the sides in counter-clockwise order and say (e, e′), (e, e∗) pair sides. In this way, we
obtain the surface symbols, which enables one to determine the presentation of Γ and the
topological structure H/Γ, such as those claimed in Theorem 4.2.2.

(3) Let a and â be pair sides and let g ∈ Γ be an element such that g−1(a) = â.
For a hyperbolic arc f joining two vertices of F and splitting F into two regions A and B
containing a and â, respectively, A∪gB is a new fundamental region of Γ which has a new
pair sides b and b̂ with b̂ = g−1(b) instead of a and â and suitably relabeled other sides.
Repeating this procedure in suitable way one can arrive to a fundamental region with the
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following side labelings

ξ1ξ
′
1 · · · ξrξ′rǫε1γ10 · · ·γ1s1ε′1 · · · εkγk0 · · ·γkskε′kα1β1α′1β′1 · · ·αpβpα′pβ′p (4 − 4)

ξ1ξ
′
1 · · · ξrξ′rǫε1γ10 · · · γ1s1ε′1 · · · εkγk0 · · · γkskε′kδ1δ′1 · · · δqδ′q (4 − 5)

according to H/Γ orientable or not.
(4) Identify points on pair side, we get that H/Γ is a sphere with k disc removed and

p handles or q crosscups added if (4 − 3) or (4 − 4) holds.
(5) For getting the def ning relations for Γ, consider the faces meeting at each vertex

of F. Notice that Γ is discrete. The number of these faces is f nite. Choose one of vertices
of Γ and let l = L0, L1, · · · , Ln, Ln+1 = L be the corresponding chain faces. Obviously,
there exist g1, · · · , gn of elements of Γ such that

L1 = g1L, L2 = g2g1L, · · · , L = Ln+1 = gn · · · g1L.

Whence, every vertex induces a relation

gngn−1 · · · g2g1 = 1H.

It turns out that these relations of this type and g2e = 1H coming from such sides of F f xed
by a unique nontrivial element ge ∈ Γ form all def ning relations of Γ.

(6) As we get a surface symbol (4 − 4) or (4 − 5) and using procedures described in
(1) and (5), we f nd the presentation of Γ following:

Generators: xi, 1 ≤ i ≤ r;
ei, 1 ≤ i ≤ k;
ci j, 1 ≤ i ≤ k, 1 ≤ j ≤ si;
ai, bi, 1 ≤ i ≤ p in the case (4 − 4);
di, 1 ≤ i ≤ q in the case (4 − 5).

Relations:
xm−ii = 1Γ, 1 ≤ i ≤ r;
e−1i ci0eicisi = 1Γ, 1 ≤ i ≤ k;
c2i, j−1 = c

2
i j = (ci, j−1ci j)

ni j = 1;
x1 · · · xre1 · · · ek[a1, b1] · · · [ap, bp] = 1 in case (4 − 4);
x1 · · · xre1 · · · ekd21 · · · d2q = 1 in case (4 − 5),
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where a, b, c, d, e, x correspond to these transformations induced by edges α, β, γ, δ, ε, ξ,
[ai, bi] = aibia−1i b

−1
i and mi, n j are numbers of faces meeting F at common vertices for

sides (ξi, ξ′i ) and (γi, j−1, γi j), respectively.
For an NEC group Γ with the previous presentation, we def ne the signature σ(Γ) of

Γ by
σ(Γ) = (g;±; [m1, · · · ,mr]; {(n11, · · · , n1s1), · · · , (nk1, · · · , nksk)}),

and its hyperbolic area µ(Γ) by

µ(Γ) =

αg + k − 2 +
r∑

i=1

(1 − 1
mi
) +

1
2

k∑

i=1

si∑

j=1

(1 − 1
ni j
)

 ,

where g = p, the sign + and α = 2 in (4 − 4) or g = q, the sign − and α = 1 in (4-5), i.e.,
orientable in the f rst and non-orientable otherwise. It has been shown that µ(Γ) is just the
hyperbolic area of the fundamental of Γ and independent on its choice.

Usually, if r = 0, si = 0 or k = 0, we denote these [m1, · · · ,mr], (ni1, · · · , nisi) by [−],
(−) or {−}, respectively. For example,

σ(Γ) = (g;±; [−]; {(−), · · · , (−)︸        ︷︷        ︸
k

})

if r = 0 and si = 0. Such an NEC group is called to be a surface group. Partic-
ularly, if k = 0, i.e., these fundamental groups in Theorem 4.3.10, the signature is
σ(Γ) = (g;±; [−]; (−)). Clearly, the area of a surface group Γ is µ(Γ) = 2π(αg + k − 2).

Theorem 4.4.5(Hurwitz-Riemann formula) Let Γ be a NEC subgroup of a NEC group
Γ′. Then

µ(Γ)
µ(Γ′)

= [Γ′ : Γ].

Proof Notice that Γ is a discrete as a subgroup of Γ′. By def nition, H/Γ′ and H/Γ
are compact, so Γ′ and Γ have compact fundamental regions F′ and F. Let h1, · · · , hk ∈ Γ′

be the coset representatives of Γ, where k = [Γ′ : Γ]. Then It is easily to know that
F = h1(F′) ∪ · · · ∪ hk(F′). Consequently,

µ(Γ) = area(F) =
k∑

i=1

area(hi(F′)) = k × area(F′) = k × µ(Γ′).

Thus,
µ(Γ)
µ(Γ′)

= [Γ′ : Γ]. �
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$4.5 AUTOMORPHISMS OF KLEIN SURFACES

4.5.1 Morphism Property. We prove the automorphism group of a Klein surface is f nite
in this section. For this objective, we need to characterize morphisms of Klein surfaces in
the f rst.

Theorem 4.5.1 Let f : S → S ′ be a non-constant morphism and (U, φ), (V, ψ) two
charts in S and S ′ with f (U) ⊂ V, ψ(V) ⊂ C+. Then there exists a unique analytic
mapping F : φ(U)→ C such that the following diagram

U V-
φ(U)
? - C - ψ(V)

?f

F Φ

φ ψ

commutes.

Proof First, if there are two non-constant analytic mappings F, F′ : φ(U)→ C such
that ΦF = ΦF′, then F = F′ or F = F′. Let Y ⊂ F−1(C \ R) be a nonempty connected
set. Choose M1 = {x ∈ Y |F(x) = F′(x)} and M2 = {x ∈ Y |F(x) = F′(x)}. Then M1 and M2

are closed and disjoint with Y = M1 ∪ M2, which enables one to get M1 = Y or M2 = Y .
If M2 = Y , F must be both analytic and antianalytic on Y . Thus F |Y is constant, and so F
is constant by the properties of analytic functions, a contradiction. Whence, F = F′.

Now suppose that we can coverU by {U j| j ∈ J} such that there are analytic mappings
F j : φ(U j)→ C with the following diagram

U V-
φ(U)
? - C - ψ(V)

?f

F j Φ

φ ψ

commutes. Then these mappings F j glue together will produce a function F that we are
looking for. So we only need to f nd such mappings F j.

By def nition, for x ∈ U and y = f (x) ∈ V , there exist charts (U x, φx and (Vy, ψy) and
an analytic mapping Fx with U x ⊂ U, Vy ⊂ V such that the following diagram commutes:
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U x Vy-
φx(U x)

? - C - ψy(Vy)
?f

Fx Φ

φx ψy

We construct a mapping F∗x such that the following diagram also commutes:

U x Vy-
φx(U x)

? - C - ψy(Vy)
?f

F∗x Φ

φx ψy

In fact, for any given u ∈ φ(U x), we know that Fxφxφ−1(u) ∈ Φ−1(Imψy) = ψy(Vy)∪ψy(Vy).
Consider (ψψ−1y )∧ : ψy(Vy) ∪ ψy(Vy) → C. Then according with φxφ−1 and ψψ−1y were
analytic or antianalytic, we take F∗x or F∗x to be (ψψ−1y )∧Fxφxφ−1. Then we get such F j as
one wish. �

A fundamental result concerning the behavior of morphisms under composition is
shown in the following.

Theorem 4.5.2 Let S , S ′ and S ′′ be Klein surfaces and f : S → S ′, g : S ′ → S ′′

continuous mappings such that f (∂S ) ⊂ ∂S ′, g(∂S ′) ⊂ ∂S ′′. Consider the following
assertions:

(1) f is a morphism;

(2) g is a morphism;

(3) g ◦ f is a morphism.

Then (1) and (2) imply (3). Furthermore, if f is surjective, (1) and (3) imply (2), and if f
is open, (2) and (3) imply (1).

The proof of Theorem 4.5.2 is not difficult. Consequently, we lay it to the reader as
an exercise.

Corollary 4.5.1 Let S and S ′ be topological surfaces and f : S → S ′ a continuous
mapping. Then
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(1) If S ′ is a Klein surface, then there is at most one structure of Klein surface on S
such that f is a morphism.

(2) If f is surjective and S is a Klein surface, then there exists at most one structure
of Klein surface on S ′ such that f is a morphism.

4.5.2 Double Covering of Klein Surface. Let S be a Klein surface with atlas
∑
=

{(ui, φi)|i ∈ I}. Suppose S is not a Riemann surface and def ne

U′i = Ui × {i} × {1} and U′′i = Ui × {i} × {−1},

where i runs over I. We identify some points in

X =

⋃

i∈I
U′i


⋃

⋃

i∈I
U′′i

 .

(1) For i ∈ I and Di = ∂S ∩ Ui, identify Di × {i} × {1} with Di × {i} × {−1}.
(2) For ( j, k) ∈ I × I such that U j meets Uk, let W be a connected component in

U j ∩ Uk. Identify W × { j} × {δ} with W × {k} × {δ} for δ = ±1 if φ jφ−1k : φk(W) → C

is analytic, and W × { j} × {δ} with W × {k} × {−δ} for δ = ±1 if φ jφ−1k : φk(W) → C is
antianalytic.

Put SC = X/{identif cationsabove}. For each i ∈ I, let φ′i : U′i → C determined by
φ′i(x, i, 1) = φi(x) and φ′′i : U′′i → C determined by φ′i(x, i,−1) = φi(x). Obviously, if
p : X → SCdenotes the canonical projection and Ũi = p(U′i ∪ U′′i ), the family {Ũi|i ∈ I}
is an open cover of SC. Furthermore, each mapping φ̃i : Ũi → C def ned by φ̃i(u) = φ′(u)
if u ∈ U′i or φ̃i(u) = φ′′(u) if u ∈ U′′i is a homeomorphism onto its image. Thus

∑
C =

{(Ũi, φ̃i|i ∈ I)} is an analytic atlas on SC. Clearly, ∂SC = ∅. Whence, SC is a Riemann
surface by construction.

We claim that there exists a morphism f : SC → S and an antianalytic mapping
σ : SC → SC such that fσ = f and σ2 = 1S . In fact, it is suffices to determine
f : SC → S by f : u = p(v, i, δ) → v for v ∈ Ui and δ = ±1. It should be noted that each
f bers of f has one or two points and we def ne

σ : SC → SC : u→

u if| f −1( f (u))| = 1,
f −1( f (u)) if| f −1( f (u))| = 2.

Such a triple (SC , f , σ) is called the double cover of S .
We know the following result due to Alling-Greenleaf ([BEGG]):
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Theorem 4.5.3 Let g be a morphism from a Riemann surface S onto a Klein surface S ′

with the double cover (S ′C, f
′, σ). Then there exists a unique morphism g′ : S → S ′C such

that f ′g′ = g.

4.5.3 Discontinuous Action. Let S be a Klein surface and G ≤ AutS . We say G
acts discontinuously on S if each point x ∈ S possesses a neighborhood U such that
GU is f nite. Furthermore, G is said to be acts properly discontinuously on S if it acts
discontinuously on S satisfying conditions following:

(1) For ∀x, y ∈ S with x < yG, there are open neighborhoods U and V at points x
and y such that there are no f ∈ G with U ∩ f (V) , ∅;

(2) For x ∈ S , 1S , f ∈ Gx and the mapping φx fφ−1x is analytic restricted suitably, x
is isolated in Fix( f ).

For the existence of properly discontinuously groups, we know the following result
as an example.

Theorem 4.5.4 Every discrete subgroup Γ of AutH acts properly discontinuously on H.

Proof First, the stabilizer Γ of each x ∈ H is f nite. Otherwise, let { fn|n ∈ Z+} ⊂ Γx
such that fn , fm if n , m and so lim

n→∞
{ fn(x)|n ∈ Z+} = x. But then Γ must be not discrete.

Now let N be the set of natural numbers m such that H contains the Euclidean ball
Bm with center x and radius 1/m. Let Γm = ΓBm . Then there must be

Γx =
⋂

n∈Z+
Γm.

In fact, if f < Γx, take open disjoint neighborhoods U and V of x and f (x). If m is bigger
enough, Bm ⊂ U, f (Bm) ⊂ V . Thus there must be f < Γm. On the other hand, if f ∈ Γx,
then there is an integer m0 such that for any integer m ≥ n0, Bm = f (Bm). This establishes
the previous equality.

(1) Γ acts discontinuously on H. Assume that each Γm is inf nite. Then the f niteness
of Γx and the above equality imply that

Γm1 % Γm2 % · · ·

for some sequence {mk|k ∈ Z+} ⊂ Z+. Choose fk ∈ Γmk \ Γmk+1 . Clearly, fk , fl if k , l.
However, if we take x ∈ Bmk ∩ fk(Bmk) and y ∈ Bmk with xk = f (yk), then

lim
k→∞
{xk|k ∈ Z+} = x = lim

k→∞
{yk|k ∈ Z+}.
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So lim
k→∞
{ f (xk)|k ∈ Z+} = x, which contradicts the discreteness of Γ.

(2) For x, y ∈ H, x < yAutH, there are neighborhoods U of x and V of y such that
there are no f ∈ G with U ∩ f (V) , ∅. In fact, let P be the set of numbers m ∈ Z+ such
that the balls Bm and B′m of radius 1/m with centers x and y, respectively, are contained
in H. We prove that there are no f ∈ Γ with Bm ∩ f (B′m) , ∅ for all m ∈ P. Denoted by
Dm = { f ∈ Γ|Bm ∩ f (B′m) , ∅}. Clearly,

⋂
m∈P

Dm = ∅. Otherwise, for some f ∈ Γ there
are points xm ∈ Bm and ym ∈ B′m with f (ym) = xm, m ∈ P, which implies f (y) = x, i.e.,
x ∈ yAutH, a contradiction. So we have

Dm1 % Dm2 % · · ·

for some sequence {mk|k ∈ Z+} ⊂ P. Choose fk ∈ Dmk \ Dmk+1 . then we know that
lim
k→∞
{ fk(y)|k ∈ Z+} = x, fk , fl if k , l, contradicts the discontinuousness of Γ.
(3) Given 1H , f ∈ Γ, f has the form

f (z) =
az + b
cz + d

, (b, c, d − a) , (0, 0, 0).

Thus Fix( f ) \ {x} is f nite, i.e., x is isolated in Fix( f ). �

The importance of these properly discontinuously groups on Klein surfaces is im-
plied in the next result.

Theorem 4.5.5 Let G be a subgroup of AutS which acts properly discontinuously on the
Klein surface S . Then S ′ = S/G admits a unique structure of Klein surface such that
π : S → S ′ is a morphism.

A complete prof of Theorem 4.5.5 can be found in [BEGG1]. Applying Theorems
4.5.4 and 4.5.5 to the planar Klein surface H, we know the following conclusion.

Theorem 4.5.6 For a discrete subgroup Γ of AutH, the quotient H/Γ admits a unique
structure of Klein surface such that the canonical projection H → H/Γ is a morphism of
Klein surfaces. Particularly, this holds true if Γ is an NEC group.

Generally, we also know the following result with proof in [BEGG1], which enables
one to f nd Klein surfaces on topological surfaces with genus≥ 3.

Theorem 4.5.7 If S is a Klein surface and 2g(S ) + k(S ) ≥ 3 if S is orientable, or
g(S ) + k(S ) ≥ 3 otherwise. Then there exists a surface NEC group Γ such that S and
H/Γ are isomorphic Klein surfaces and SC = H/Γ+, where Γ+ is a subgroup formed by
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orientation preserving elements in Γ. In fact, |Γ : Γ+| = 2. Furthermore, if π′ : H → H/Γ
be the canonical projection, i.e, Γ = 〈 f ∈ AutH|π′ f = π′〉.

According to this theorem, we can construct Klein surfaces on compact surfaces S
unless S is the sphere, torus, projective plane or Klein bottle.

4.5.4 Automorphism of Klein Surface. Let S and S ′ be compact Klein surfaces. Denote
by Isom(S ′, S ) all isomorphisms from S ′ to S . If they satisfy these conditions in Theorem
4.5.6, then they can be represented by H/Γ′, H/Γ for some NEC group Γ′ and Γ. Let
π : H → H/Γ and π′ : H → H/Γ′ be the canonical projections and

A(Γ′, Γ) = {g ∈ AutH|π′(x) = π′(y) if and only if πg(x) = πg(y)}.

Then we know the following result.

Theorem 4.5.8 Let g ∈ AutH. The following statements are equivalent:

(1) g ∈ A(Γ′, Γ);
(2) there is a unique ĝ ∈ Isom(H/Γ′,H/Γ) with the following commutative diagram:

H H

S ′ S

--? ?g

ĝ

π′ π

(3) Γ′ = g−1Γg.

Proof (1) ⇒ (2). For x′ = π′(x) ∈ S ′, def ne ĝ(x′) = ĝπ′(x) = πg(x). Applying
Theorem 4.5.2, we know that ĝ is a homeomorphism on H by the def nition of A(Γ, Γ′).

(2)⇒ (3). Applying Theorem 4.5.7, if f ∈ Γ′ and h = g f g−1, then

πh = πg f g−1 = ĝπ′ f g−1 = ĝπ′g−1 = πgg−1 = π,

i.e., h ∈ Γ and so Γ′ ⊂ g−1Γg. Conversely, if h ∈ g−1Γg, then ghg−1 ∈ Γ, i.e., πghg−1 = π.
So ĝπ′h = ĝπ′. Notice that ĝ is bijective. We know π′h = π′, i.e., h ∈ Γ.

(3) ⇒ (1). Let x, y ∈ H with π′(x) = π′(y) and y = f (x) for some f ∈ Γ′ = g−1Γg.
Now h = g f g−1 ∈ Γ. Notice that hg = g f and πh = π. We f nd that

π(g(y)) = π(g( f (x))) = π(h(g(x))) = π(g(x)).

The converse is similarly proved. �
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Theorem 4.5.9 Let S = H/Γ and S ′ = H/Γ′. Then

(1) S and S ′ are isomorphic if and only if Γ and Γ′ are conjugate in AutH.
(2) AutS ≃ NAutH(Γ)/Γ, where NAutH(Γ) is the normalizer of Γ in AutH.

Proof Obviously, S and S ′ are isomorphic if and only if A(Γ, Γ′) , ∅. By Theorem
4.5.8, we get the assertion (1).

For (2), we prove f rst that the mapping A(Γ, Γ′) → Isom(S ′, S ) is surjective. In
fact, if S and S ′ are Riemann surfaces, let φ ∈ Isom(S ′, S ) and (H, π) and (H′, pi′) be
the universal coverings of S and S ′, respectively. Then by the Monodromy theorem and
Theorem 4.5.2, there exists g ∈ AutH such that the following diagram is commutative.

H H

S ′ S

--? ?g

φ

π′ π

It is clear that g ∈ A(Γ, Γ′). So φ = ĝ by Theorem 4.5.8.
Generally, let f : SC → S and f ′ : S ′C → S ′ be the double coverings with the

corresponding antianalytic involutions σ : SC → SC and σ′ : S ′c → S ′C. By Theorem
4.5.3, there exists ψ ∈ Isom(S ′C , SC) such that the following diagram

S ′C SC

S ′ S

--? ?φ

φ

f ′ f

is commutative. Let p : H → SC and p′ : H → S ′C be the canonical projections. As we
shown for Riemann surfaces, there exists g ∈ AutH such that the following diagram

H H

S ′C SC

--? ?g

φ

p′ p

is commutative. Now up to the identif cations of S with H/Γ and S ′ with H/Γ′, the
mappings π′ = f ′p′ : H → S ′ and π = f p : H → S are the canonical projections, which
enables us to obtain a commutative diagram following.
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H H

S ′ S

--? ?g

φ

π′ π

Applying Theorem 4.5.8 again, we know that g ∈ A(Γ, Γ′) and φ = ĝ. Now let S = S ′. It
follows that A(Γ, Γ′) = NAutH(Γ). Thus

µ : NAutH(Γ) → Aut(S ) determined by µ(g) = ĝ

is a surjective mapping. We prove it is also an epimorphism. In fact, let g1, g2 ∈ A(Γ, Γ′)
with ĝ1, ĝ2 such that πg1 = ĝ1π and πg2 = ĝ2π. Then π(g1g2) = ĝ1πg2 = (̂g1ĝ2)π. But
g1g2 ∈ Γ, we know that π(g1g2) = ĝ1g2π. Whence, ĝ1ĝ2 = ĝ1ĝ2 by Theorem 4.5.8. Thus µ
is an epimorphism. Finally, we check that Kerµ = Γ. Clearly, if g ∈ Γ, we have πg = π,
i.e.,

H H

S S

--? ?g

1S

π π

By Theorem 4.5.8, we get ĝ = 1S . So g ∈ Kerµ. Conversely, ĝ = 1S implies that πg = π.
Thus g ∈ Γ. This completes the proof. �

Theorem 4.5.10 Let f , g ∈ Aut+H \ {1H}. If f g = g f , then Fix( f ) = Fix(g).

Proof Not loss of generality, we assume that 1 ≤ |Fix( f )| ≤ |Fix|(g) ≤ 2. By
f g = g f , we conclude that g(Fix( f )) = Fix( f ) and f (Fix(g)) = Fix(g).

Now if Fix( f ) = {x0}, then g(x0) = x0, and if g(y) = y we know f (y) = y, .i.e., y = x0.
Thus Fix( f ) = Fix(g) in this case.

If Fix( f ) = x0, y0, then {g(x0), g(y0)} = {x0, y0}. Whence, either Fix( f ) = Fix(g) or
Fix( f ) , Fix(g) with g(x0) = y0, g(y0) = x0. In the second case, choose z0 ∈ Fix(g) \
Fix( f ). Notice that x0, y0 and z0 are distinct f xed points of g2. We know that g2 = 1H.
Let A ∈ GL(2,R) with DetA = 1 such that g = fA. Then by g2 = 1H, we get that
A2 = ±I and so the minimal polynomial of A , ±I is x2 + 1. Consequently, g(z) = −1/z
and Fix(g) = {±i}. Since f (H) = H and f (Fix(g)) = Fix(g), we get f (i) = i, and so
f (−i) = −i. Thus Fix( f ) = Fix(g). �

The following result shows that NAutH(Γ) is also an NEC group.
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Theorem 4.5.11 Let Γ be an NEC group. Then NAutH(Γ) in AutH is also an NEC group.

Proof Notice π : H → H/Γ. We immediately f nd the compactness of H/NAutH(Γ)
from H under π. Because AutH is a topological group, we only need to check that the
identity {1H} is an open subset in NAutH(Γ).

We claim that there exist 1H , h1, h2 ∈ Γ+ such that Fix(h1) , Fix(h2). In fact, let
h1 ∈ Γ+ def ned by h1(z) = r0z for some r0 ∈ R. Then Fix(h1) = {0,∞}. If there are
another h ∈ Γ+, h , h1 such that Fix(h) = {0,∞}, then

Γ+ ⊂ A = { f : H → H| f (z) = rz, r ∈ R+, z ∈ C}.

Since H/Γ+ is compact, the same holds for H/A ≈ (0, 1), a contradiction.
Now let CAutH(h1, h2) = {h ∈ AutH|hhi = hih, i = 1, 2}. We prove that CAutH(h1, h2)

is trivial. Applying Theorem 4.5.10, if there are 1H , h ∈ CAutH(h1, h2) ∩ Aut+H,
then Fix(h1) = Fix(h) = Fix(h2), a contradiction. On the other hand, if there are h ∈
CAutH(h1, h2) \ Aut+H, then h2 = 1H, and so h(z) = −z. Now hhi = hih implies that
hi(z) = −1/z for i = 1, 2, also a contradiction. Thus the mapping ζi : NAutH(Γ) → Γ by
g→ ghig−1 are well-def ned and continuous with ζi(1H) = hi.

Since Γ is discrete, we can f nd open neighborhoods V1, V2 of 1H in NAutH(Γ) such
that ζi(Vi) ⊂ {hi}, i.e., ghig−1 = hi, i = 1, 2 for each g ∈ V = V1 ∩ V2. In other words,
V ⊂ CAutH(h1, h2) = {1H}. Thus {1H} = V is open in NAutH(Γ). �

A group of automorphism of a Klein surface S is a subgroup of AutS . We get the
following consequence by Theorem 4.5.11.

Corollary 4.5.2 A group G ≤ AutS with S = H/Γ if and only if G ≃ Γ′/Γ for some NEC
group Γ′ with Γ⊳ Γ′.

Proof Applying Theorem 4.5.11, G is a subgroup of NAutH(Γ)/Γ. So there is a
subgroup Γ′ of NAutH(Γ) containing Γ such thatH/Γ′ is compact. Notice Γ′ is also discrete.
Whence, Γ′ is a NEC group. �

Now we prove the main result of this section.

Theorem 4.5.12 Let S be a compact Klein surface with conditions in Theorem 4.5.7 hold.
Then AutS is f nite.

Proof Let S = H/Γ. By Theorem 4.5.10, NAutH(Γ) is an NEC group. Applying
Theorem 4.4.5, we know AutS is f nite by that of the group index [NAutH(Γ) : Γ]. �
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$4.6 REMARKS

4.6.1 Topology, including both the point topology and the algebraic topology has become
one of the fundamentals of modern mathematics, particularly for geometrical spaces.
Among them, the simplest is the surfaces fascinating mathematicians in algebra, geome-
try, mathematical analysis, combinatorics, · · ·, and mechanics. There are many excellent
graduated textbooks on topology, in which the reader can f nd more interested materials,
for examples, [Mas1]-[Mas2] and [Mun1].

4.6.2 Similar to Theorem 4.2.4 on compact surface without boundary, we can classify
compact surface with boundary and prove the following result.

Theorem 4.6.1 Let S be a connected compact surface with k ≥ 1 boundaries. Then its
surface presentation is elementary equivalent to one of the following:

(1) Sphere with k ≥ 1 holes

aa−1c1B1c−11 c2B2c
−1
2 · · · ckBkc−1k ;

(2) Connected sum of p tori with k ≥ 1 holes

a1b1a−11 b
−1
1 a2b2a

−1
2 b
−1
2 · · · apbpa−1p b−1p c1B1c−11 c2B2c−12 · · · ckBkc−1k ;

(3) Connected sum of q projection planes with k ≥ 1 holes

a1a2 · · · aqc1B1c−11 c2B2c−12 · · · ckBkc−1k .

4.6.3 The conception of fundamental group was introduced by H.Poincaré in 1895. Sim-
ilarly, replacing equivalent loops of dimensional 1 based at x0 by equivalent loops of
dimensional d, we can extend this conception for characterize those higher dimensional
topological spaces with resemble structure of surface.

4.6.4 The conception of Klein surface was introduced by Alling and Greenleaf in 1971
concerned with real algebraic curves, correspondence with that of Riemann surface con-
cerned with complex algebraic curves (See [All1] for details). The materials in Sections
4.5.4 and 4.5.5 are mainly extracted from the reference [BEGG1]. Certainly, all Rie-
mann surfaces are orientable. Their surface group is usually called the Fuchsian group
constructed similarly to that of Construction 4.4.2. It should be noted that each surface
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in Construction 4.4.2 for an NEC group maybe with boundary. This construction also
establishes the relation of surfaces with that of NEC groups, enables one to research au-
tomorphisms of Kleins surface by that of combinatorial maps.



CHAPTER 5.

Map Groups

A map group is a subgroup of an automorphism group of map, which is also a
kind of geometrical group, i.e., a subgroup of triangle groups. There are two
ways for such groups in literature. One is by combinatorial techniques. An-
other is the classical by that of algebraic techniques. Both of them have their
self-advantages and covered in this chapter. The materials in Sections 5.1–
5.2 are an elementary introduction to combinatorial maps. By the discussion
of Chapter 4, we explain how to embed a graph and how to characterize an
embedding of graph on surface in Section 5.1, particularly these techniques
related to algebraic maps, such as those of rotation system, band decompo-
sition of surface, traveling ruler and orientability algorithm in Section 5.1.
This way naturally introduce the reader to understand the correspondence be-
tween embeddings and maps, and the essence of notations α, β and P , or
f ags in an algebraic map (Xα,P). The automorphisms of map with prop-
erties are discussed in Section 5.3, characterized by behavior of maps or the
semi-arc automorphism of its underlying graph. The materials in Sections
5.4–5.5 concentre on regular maps, both by combinatorial and algebraic tech-
niques, which are closely related combinatorics with geometry and algebra.
By explaining how to get a regular tessellation of a plane, a geometrical way
for constructing regular maps by triangle group is introduced in Section 5.5.
After generalizing the conception of surface to multisurface S̃ in section 5.5,
we also show how to construct maps M̃ on multisurfaces S̃ such that the pro-
jection of M̃ on each surface of S̃ is a regular map.



168 Chap.5 Map Groups

§5.1 GRAPHS ON SURFACES

5.1.1 Cell Embedding. Let G be a connected graph with vertex set V(G) and edge set
E(G) and S a surface. An 2-cell embedding of G on S is geometrical def ned to be a con-
tinuous 1−1 mapping τ : G → S such that each component in S −τ(G) homeomorphic to
an open 2-disk. Certainly, the image τ(G) is contained in the 1-skeleton of a triangulation
of the surface S . Usually, components in S − τ(G) are called faces. For example, we have
shown an embedding of K4 on the sphere and Klein bottle in Fig.5.1.1(a) and Fig.5.1.1(b)
respectively. 6 66-

� u3

2

2

(b)(a)

u1

u2

u4u3

u1 u2
1
u4

1

Fig.5.1.1

For v ∈ V(G), denote by NeG(v) = {e1, e2, · · · , eρ(v)} all the edges incident with the
vertex v. A permutation on e1, e2, · · · , eρ(v) is said a pure rotation. All pure rotations
incident with v is denoted by ̺(v). A pure rotation system of the graph G is def ned to be

ρ(G) = {̺(v)|v ∈ V(G)}.

For example, the pure rotation systems for embeddings of K4 on the sphere and Klein
bottle are respective

ρ(K4) = {(u1u4, u1u3, u1u2), (u2u1, u2u3, u2u4), (u3u1, u3u4, u3u2), (u4u1, u4u2, u4u3)},
ρ(K4) = {(u1u2, u1u3, u1u4), (u2u1, u2u3, u2u4), (u3u2, u3u4, u3u1), (u4u1, u4u2, u4u3)}

and intuitively, we can get a pure rotation system for each embedding of K4 on a locally
orientable surface S .

In fact, there is a relation between these pure rotation systems of a graph G and its
embeddings on orientable surfaces S , called the rotation embedding scheme, observed
and used by Dyck in 1888, Heffter in 1891 and then formalized by Edmonds in 1960
following.



Sec.5.1 Graphs on Surfaces 169

Theorem 5.1.1 Every embedding of a graph G on an orientable surface S induces a
unique pure rotation system ρ(G). Conversely, Every pure rotation system ρ(G) of a graph
G induces a unique embedding of G on an orientable surface S .

Proof If there is a 2-cell embedding ofG on an orientable surface S , by the def nition
of surface, there is a neighborhood Du on S for u ∈ V(G) which homeomorphic to a
dimensional 2 disc ϕ : Du → {(x1, x2) ∈ R2|x21+ x22 < 1} such that each edge incident with
u possesses segment not in Du. Denoted by ∂Du = {(x1, x2) ∈ R2|x21 + x22 = 1} and let the
counterclockwise order of intersection points of edges uv, v ∈ NG(u) with that of ∂Du be
pv1 , pv2 , · · · , pvρ(u) . Def ne a pure rotation of u by ̺(u) = (uv1, uv2, · · · , uvρ(u)). Then we get
a pure rotation system ρ(G) = {̺(u), u ∈ V(G)}.

Conversely, assume that we are given a pure rotation system ρ(G). We show that this
determines a 2-cell embedding of G on a surface. Let D denote the digraph obtained by
replacing each edge uv ∈ G with (u, v) and (v, u). Def ne a mapping π : E(D) → E(D)
by π(u, v) = ̺(v)(v, u), which is 1 − 1, i.e., a permutation on E(D). Whence π can be
expressed as a product of disjoint cycles. Each cycle is an orbit of π action on D(E0.
Thus the orbits partition the set E(D). Assume

F : (u, v)(v,w) · · · (z, u)

is such a orbit under the action of π, simply written as

F : (u, v,w, · · · , z, u).

Notice this implies a traveling ruler, i.e., beginning at u and proceed along (u, v) to v,
the next arc we encounter after (u, v) in a counterclockwise direction about v is ρ(v)(v, u).
Continuing this process we f nally arrive at the arc (z, u), return to u and get the boundary
of a 2-cell.

Let F1, F2, · · · , Fl be all 2-cells obtained by the traveling ruler on E(D). Applying
Theorem 4.2.2, we know it is a polygonal representation of an orientable surface S by
identifying arc pairs (u, v) with (v, u) in E(D). �

According to this theorem, we get the number of embeddings of a graph on orientable
surfaces following.

Corollary 5.1.1 The number of embeddings of a connected graph G on orientable sur-
faces is

∏

v∈V(G)
(ρ(v) − 1)!.
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5.1.2 Rotation System. For a 2-cell embedding of a graph G on a surface S , its embed-
ded vertex and face can be viewed as 0 and 2-disks, and its embedded edge can be viewed
as a 1-band def ned as a topological space B with a homeomorphism h : I × I → B, where
I = [0, 1], the unit interval. The arcs h(I × {i}) for i = 0, 1 are called the ends of B, and
the arcs h({i} × I) for i = 0, 1 are called the sides of B. A 0-band or 2-band is just a
homeomorphism of the unit disk. A band decomposition of the surface S is def ned to be
a collection B of 0-bands, 1-bands and 2-bands with conditions following hold:

(1) The different bands intersect only along arcs in their boundary;

(2) The union of all the bands is S , i.e.,
⋃
B∈B

B = S ;

(3) The ends of each 1-band are contained in a 0-band;

(4) The sides of each 1-band are contained in a 2-band;

(5) The 0-bands are pairwise disjoint, and the 2-bands are pairwise disjoint.

For example, a band decomposition of the torus is shown in Fig.5.1.2, which is an
embedding of the bouquet B2 on T 2.

O -
-6 6

e1

e2

Fig.5.1.2

A band decomposition is called locally orientable if each 0-band is assigned an ori-
entation. Then a 1-band is called orientation-preserving if the direction induced on its
ends by adjoining 0-bands are the same as those induced by one of the two possible orien-
tations of the 1-band. Otherwise, the 1-band is called orientation-reversing, such as those
shown in Fig.5.1.3 following.

Orientation-preserving band Orientation-reversing band

Fig.5.1.3
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An edge e in a graph G embedded on a surface S associated with a locally ori-
entable band decomposition is said to be type 0 if its corresponding 1-band is orientation-
preserving, and type 2, otherwise. A walk in this associated graph is type 1 if it has an
odd number of type 1 edges and type 0, otherwise.

For such a graph G associated with a locally orientable band decomposition, we
def ne a rotation system ρL(v) of v ∈ V(G) to be a pair (J(v), λ), where J(v) is a pure
rotation system and λ : E(G) → Z2 is determined by λ(e) = 0 or λ(e) = 1 if e is type 0 or
type 1 edge, respectively. For simplicity, we denote the pairs (e, 0) and (e, 1) by e and e1,
respectively. The rotation system ρL(G) of G is def ned by

ρL(G) = {(J(v), λ)|J(v) ∈ ρ(G), λ : E(G)→ Z2}.

For example, the rotation system of the complete graph K4 on the Klein bottle shown in
Fig.5.1.1(b) is

ρL(K4) = {(u1u2, u1u13, u1u4), (u2u1, u2u3, u2u4), (u3u2, u3u4, u3u11), (u4u1, u4u2, u4u3)}.

It should be noted that the traveling ruler in the proof of Theorem 5.1.1 can be gener-
alized for f nding 2-cells, i.e., faces in both of a graph embedded on an orientable or
non-orientable surface following.

Generalized Traveling Ruler. Not loss of generality, assume that there are no 2-valent
vertices in G.

(1) Choose an initial vertex v0 of G, a f rst edge e1 incident with v0 and v1 be the
other end of e1.

(2) The second edge e2 in the boundary walk is the edge after (respective, before) e1
at v1 if e1 is type 0 (respective, type 1). If the edge e1 is a loop, then e2 is the edge after
(respective, before) the other occurrence of e1 at v1.

(3) In general, if the walk traced so far ends with edge ei at vertex vi, then the next
edge ei+1 is the edge after (respective, before) ei at vertex vi if the walk is type 0 (respec-
tive, type 1).

(4) The boundary walk is f nished at edge en if the next two edges in the walk would
be e1 and e2 again.

For example, calculation shows that the faces of K4 embedded on the Klein bottle
shown in f g.5.1.1(b) is

F1 = (u1, u2, u3, u4, u1), F2 = (u1, u3, u4, u2, u3, u1, u4, u2, u1).
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The general scheme for embedding graphs on locally orientable surfaces was used
extensively by Ringel in the 1950s and then formally proved by Stahl in 1978 following
([Sta1]-[Sta2]).

Theorem 5.1.2 Every rotation system on a graph G def nes a unique locally orientable
2-cell embedding of G → S . Conversely, every 2-cell embedding of a graph G → S
def nes a rotation system for G.

Proof The proof is the same as that of Theorem 5.1.1 by replacing the traveling ruler
with that of the generalized traveling ruler. �

For any embedding of a graph G on a surface S with a band decomposition B, we
can always f nd a spanning tree T of G such that every edge on this tree is type 0 by the
following algorithm.

Orientability Algorithm. Let T be a spanning tree of G.

(1) Choose a root vertex u for T and an orientation for the 0-band of u0.
(2) For each vertex u1 adjacent to u0 in T , choose the orientation for the 0-band of u1

so that the edge of T from u0 to u1 is type 0.
(3) If ui and ui+1 for an integer are adjacent in T and the orientation at ui has been

already determined but that of ui+1 has not been determined yet, choose an orientation at
ui+1 such that the type of the edge from ui to ui+1 is type 0.

(4) Continuous the process on T until every 0-band has an orientation.

Combining the orientability algorithmwith that of Theorem 5.1.2, we get the number
of embeddings of a graph on locally orientable surfaces following.

Corollary 5.1.2 Let G be a connected graph. Then the number of embeddings of G on
locally orientable surfaces is

2β(G)
∏

v∈V(G)
(ρ(v) − 1)!

and the number of embeddings of G on the non-orientable surfaces is

(2β(Γ) − 1)
∏

v∈V(Γ)
(ρ(v) − 1)!,

where β(G) = |E(G)| − |V(G)| + 1 is the Betti number of G.

5.1.3 Equivalent Embedding. Two embeddings (J1, λ1), (J2, λ2) of a graph G on a
locally orientable surface S are called to be equivalent if there exists an orientation-
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preserving homeomorphism τ of the surface S such that τ : J1 → J2, and τλ = λτ.
If (J1, λ1) = (J2, λ2) = (J , λ), then such an orientation-preserving homeomorphism
mapping (J1, λ1) to (J2, λ2) is called an automorphism of the embedding (J , λ). Clearly,
all automorphisms of an embedding (J , λ) form a group under the composition operation
of mappings, denoted by Aut(J , λ).

For example, the two embeddings of K4 shown in Fig.5.1.4(a) and (b) are equivalent,-
-

6 61

1

2 2

u1
u2u3

u4

-
-
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1

2 2
u2

u3

u1

u4

(a) (b)

Fig.5.1.4

where the orientation-preserving homeomorphism h is determined by

h(u1) = u1, h(u2) = u3, h(u3) = u2 and h(u4) = u4.

The following result is immediately gotten by def nition.

Theorem 5.1.3 Let (J , λ) be an embedding of a connected graph G on a locally ori-
entable surface S . Then

Aut(J , λ) ≤ AutG.

5.1.4 Euler-Poincaré Characteristic. Applying Theorems 4.2.5-4.2.6, we get the Euler-
Poincaré characteristic of an embedded graph G on a surface S following.

Theorem 5.1.4 Let G be a graph embedded on a surface S . Then

ν(G) − ε(G) + φ(G) = χ(S ),

where, ν(G), ε(G) and φ(G) are the order, size and the number of faces of the embedded
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graph G on S , and χ(S ) is the Euler-Poincaré characteristic of S determined by

χ(S ) =



2 i f S ∼El S 2,

2 − 2p i f S ∼El T 2#T 2# · · · #T 2
︸             ︷︷             ︸

p

,

2 − q i f S ∼El P2#P2# · · · #P2︸            ︷︷            ︸
q

.

§5.2 COMBINATORIALMAPS

5.2.1 Combinatorial Map. The embedding characteristic of a graph G on surfaces S ,
particularly, Theorems 5.1.1-5.1.2 and the generalized traveling ruler present embryonic
maps. In fact, a map is nothing but a graph cellularly embedded on a surface. That
is why one can enumerates maps by means of embedded graphs on surfaces. In 1973,
Tutte found an algebraic representation for the embedding of graphs on locally orientable
surfaces (see [Tut1]-[Tut2] for details), which completely transfers 2-cell partitions of
surfaces to permutations in algebra.

Let G be an embedded graph on a surface S with a band decomposition B and e ∈
E(G). Then the band Be of e is a topological space Bwith a homeomorphism h : I×I → B
and sides h({i} × I) for i = 0, 1. For characterizing its embedding behavior, i.e., initial and
end vertices, left and right sides of 1-band Be, a natural idea is to introduce quadricells for
e, such as those shown in Fig.5.2.1 following,

.....................................................................u v
Be

u v-- ��
Kxe

xe
αxe

βxe
αβxe

-
Fig.5.2.1

where we denote one quarter beginning at the vertex u of Be by xe and its ref ective quar-
ters on the symmetric axis e, on the perpendicular mid-line of e and on the central point
of e by αxe, βxe and αβxe, respectively.

Let K = {1, α, β, αβ}. Then K is a 4-element group under the composition operation
by def nition with

α2 = 1, β2 = 1, αβ = βα,
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called the Klein group. The action of K on an edge e ∈ E(G) is def ned to be

Ke = {xe, αxe, βxe, αβxe},

called the quadricells of e. Notice that Theorems 5.1.1-5.1.2 and the generalize traveling
ruler claim the embedded graph G on surface S is correspondent with

ρL(G) = {(J(v), λ)|J(v) ∈ ρ(G), λ : E(G)→ Z2}.

Whence, if we turn 1-bands to quadricells for e ∈ E(G), the rotation system ̺(u) at a
vertex u becomes to two cyclic permutations (xe1 , xe2 , · · · , xeρ(u)), (αxe1 , αxeρ(u) , · · · , αxe2) if
NG(u) = {e1, e2, · · · , eρ(u)}. By def nition, Kxe1 ∩ Kxe2 = ∅ if e1 , e2. We therefore get a
set

Xα,β =
⋃

e∈E(G)
Kxe =

⊕

e∈E(G)
{xe, αxe, βxe, αβxe}.

Def ne a permutation

P =
∏

u∈V(G)
(xe1 , xe2 , · · · , xeρ(u))(αxe1 , αxeρ(u) , · · · , αxe2) =

∏

u∈V(G)
Cv · (αC−1v α−1),

called the basic permutation on Xα,β, i.e., Pkx , αx for any integer k ≥ 1, x ∈
Xα,β, where Cv = (xe1 , xe2 , · · · , xeρ(u)). This permutation also make one understanding
the embedding of G on surface S if we view a vertex u ∈ V(G) as the conjugate cycles
C · (αC−1α−1) = (xe1 , xe2 , · · · , xeρ(u))(αxe1 , αxeρ(u) , · · · , αxe2) and an edge e as the quadricell
Kxe. We have two claims following.

Claim 1. αPα−1 =P−1.

Let P =
∏

u∈V(G)
(xe1 , xe2 , · · · , xeρ(u))(αxe1 , αxeρ(u) , · · · , αxe2). Calculation shows that

αPα = α


∏

u∈V(G)
(xe1 , xe2 , · · · , xeρ(u))(αxe1 , αxeρ(u) , · · · , αxe2)

α
−1

=
∏

u∈V(G)

(
α(xe1 , xe2 , · · · , xeρ(u))α−1

)
·
(
α(αxe1 , αxeρ(u) , · · · , αxe2)α−1

)

=
∏

u∈V(G)
(αxe1 , αxe2 , · · · , αxeρ(u))(xe1 , xeρ(u) , · · · , xe2) =P−1.

Claim 2. The group 〈α, β,P〉 is transitive on Xα,β.

For ∀x, y ∈ Xα,β, assume they are the quadricells of edges e1 and e2. By the con-
nectedness of G, we know that there is a path P = e1e2 · · · es connected e′ and e′′ in G for
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an integer s ≥ 0. Notice that edges e′ with e1 and e′′ with es are adjacent. Not loss of
generality, let Pk1 x = xe1 and Pk2 xes = y. Then we know that

(αβ)sxe1 = xes , or αxes , or βxes or αβxes .

Whence, we must have that

Pk2(αβ)sPk1x = y, or Pk2α(αβ)sPk1x = y, or
Pk2β(αβ)sPk1 x = y, or Pk2α(αβ)s+1Pk1 x = y.

Notice that Pk2(αβ)sPk1 , Pk2α(αβ)sPk1 , Pk2β(αβ)sPk1 and Pk2α(αβ)s+1Pk1 are ele-
ments in the group 〈α, β,P〉. Thus 〈α, β,P〉 is transitive on Xα,β.

Claims 1 and 2 enable one to def ne a map M algebraically following.

Def nition 5.2.1 Let X be f nite set, K = {1, α, β, αβ} the Klein group and

Xα,β =
⊕

x∈X
{x, αx, βx, αβx}.

Then a map M is def ned to be a pair (Xα,β,P), where P is a basic permutation action
onXα,β such that the following axioms hold:

Axiom 1. αP =P−1α;
Axiom 2. The group ΨJ = 〈α, β,P〉 with J = {α, β,P} is transitive onXα,β.

Notice that Axiom 2 enables one to decompose P to a production of conjugate
cycles Cv and αC−1v α−1 correspondent to the vertices of the M, i.e.,

P =
∏

v∈V(M)
Cv · αC−1v α−1.

We present an example for maps correspondent to embedded graphs following.

Example 5.2.1 The embedded graph K4 on the tours T 2 shown in Fig.5.2.2 following
can be algebraic represented by a map (Xα,β,P) with Xα,β = {x, y, z, u, v,w, αx, αy, αz,
αu, αv, αw, βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u,w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv).
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-
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Fig 5.2.2

Its four vertices are

u1 = {(x, y, z), (αx, αz, αy)}, u2 = {(αβx, u,w), (βx, αw, αu)},
u3 = {(αβz, αβu, v), (βz, αv, βu)}, u4 = {(αβy, αβv, αβw), (βy, βw, βv)}.

and its six edges are {e, αe, βe, αβe}, where, e ∈ {x, y, z, u, v,w}.

5.2.2 Dual Map. Let M = (Xα,β,P) be a map. Notice that

αPα−1 =P−1 ⇒ β(Pαβ)β−1 = (Pαβ)−1

and ΨJ = 〈α, β,P〉 is transitive on Xβ,α also. We known that M∗ = (Xβ,α,Pαβ) is also a
map by def nition, called the dual map of M. Now the generalized traveling ruler becomes

Traveling Ruler on Map. For ∀x ∈ Xα,β, the successor of x is the element y after αβx
inP , thus each face of M is a pair of conjugate cycles in the decomposition

Pαβ =
∏

f∈V(M∗)
C∗ · (βC−∗β−1),

i.e., a vertex of its dual map M∗. The length of a face f of M is called the valency of f .

Example 5.2.2 The faces of K4 embedded on torus shown in Fig.5.2.2 are respective

f1 = (x, u, v, αβw, αβx, y, αβv, αβz)(βx, αz, αv, βy, αx, αw, βv, βu),
f2 = (αy, βw, αu, βz)(αβy, z, αβu,w).

By the def nitions of map M with its dual M∗, we immediately get the following
results according to Theorems 5.1.1-5.1.2.

Theorem 5.2.1 Every map M = (Xα,β,P) def nes a unique locally orientable 2-cell
embedding of G → S with

V(G) = {{ C · αC−1α−1 | C ∈ C }}, E(G) = { Kx | x ∈ X }
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and the face set F(G) determined by cycle pairs {F, βFβ−1} in the decomposition ofPαβ.
Conversely, every 2-cell embedding of a graph G → S def nes a map M = (Xα,β,P)
determined by

Xα,β =
⋃

e∈E(G)
Kxe =

⊕

e∈E(G)
{xe, αxe, βxe, αβxe}

and

P =
∏

u∈V(G)
(xe1 , xe2 , · · · , xeρ(u))(αxe1 , αxeρ(u) , · · · , αxe2),

if NG(u) = {e1, e2, · · · , eρ(u)}.

By Theorem 5.2.1, the embedded graph G (the map M) correspondent to the map M
(the embedded graphG) is called the underlying graph of M (map underlying G), denoted
by G(M) and M(G), respectively.

Theorem 5.2.2 Let M = (Xα,β,P) be a map. Then its Euler-Poincaré characteristic is

χ(M) = ν(M) − ε(M) + φ(M),

where ν(M), ε(M), φ(M) are the number of vertices, edges and faces of the map M, re-
spectively.

Example 5.2.2 The Euler-Poincaré characteristic χ(M) of the map shown in Fig.5.2.2 is

χ(M) = ν(M) − ε(M) + φ(M) = 4 − 6 + 2 = 0.

5.2.3 Orientability. For def ning a map (Xα,β,P) is orientable or not, we f rst prove the
following result.

Theorem 5.2.3 Let M = (Xα,β,P) be a map. Then the number of orbits of the group
ΨL = 〈αβ,P〉 action on Xα,β with L = {αβ,P} is at most 2.

Proof Notice that |ΨJ : ΨL| = 2, i.e., 〈α, β,P〉 = 〈αβ,P〉⋃α 〈αβ,P〉. For x, y ∈
X , if there are no elements h ∈ Ψl such that xh = y, by Axiom 2 there must be an element
θ ∈ ΨJ with xθ = y. Clearly, θ ∈ αΨL. Let θ = αh. Then αxh = y and βx = y, i.e., x, αβx
in one orbit and αx, βx in another. This fact enables us to know the number of orbits of
ΨL action on Xα,β is 2. �

If a map M = (Xα,β,P) is on an orientable surface, i.e., each 1-band is type 0, then
any x ∈ Xα,β can be not transited to αx by the generalized traveling ruler on its edges,
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i.e., the number of orbits of ΨL action on Xα,β is 2. This fact enables us to introduce the
orientability of map following.

Def nition 5.2.2 A map M = (Xα,β,P) is non-orientable if it satisf es Axiom 3 following,
otherwise, orientable.

Axiom 3. The group ΨL = 〈αβ,P〉 is transitive on Xα,β.

Def nition 5.2.3 Let M be a map on a surface S . Then the genus g(S ) is called the genus
of M, i.e.,

g(M) =



0 i f S ∼El S 2,

p i f S ∼El T 2#T 2# · · ·#T 2
︸             ︷︷             ︸

p

,

q i f S ∼El P2#P2# · · · #P2︸            ︷︷            ︸
q

.

It can be shown that the number of orbits of the groupΨL action onXα,β = {x, y, z, u, v,
w, αx, αy, αz, αu, αv, αw, βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} in Fig.5.2.2
is 2. Whence, it is an orientable map and the genus g(M) satisf es

2 − 2g(M) = ν(M) − ε(M) + φ(M) = 4 − 6 + 2 = −2.

Thus g(M) = 1, i.e., M is on the torus T 2, being the same with its geometrical meaning.

5.2.4 Standard Map. A map M is standard if it only possesses one vertex and one face.
We show that all the standard surfaces in Chapter 4 is standard maps. From Theorem
4.2.4 we have known the standard surface presentations as follows:

(1) The sphere S 2 =
〈
a|aa−1

〉
;

(2) The connected sum of p tori

T 2#T 2# · · · #T 2
︸             ︷︷             ︸

p

=

〈
ai, bi, 1 ≤ i ≤ p |

p∏

i=1

aibia−1i b
−1
i

〉
;

(3) The connected sum of q projective planes

P2#P2 · · · #P2︸           ︷︷           ︸
q

=

〈
ai, 1 ≤ i ≤ q |

q∏

i=1

ai
〉
.

All of these surface presentations is in fact maps, i.e.,

(1′) The sphere O0 = (Xα,β,P) with Xα,β(O0) = {a, αa, βa, αβa} and P(O0) =
(a, αβa)(αa, β);
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(2′) The connected sum of p tori Op = (Xα,β,P) with

Xα,β(Op) =

p⋃

i=1

{ai, αai, βai, αβai}

⋃

p⋃

i=1

{bi, αbi, βbi, αβbi}
 ,

P(Op) = (a1, b1, αβa1, αβb1, a2, b2, αβa2, αβb2, · · · , ap, bp, αβap, αβbp)

(αa1, βbp, βap, αbp, αap, · · · , βb2, βa2, αb2, αa2, βb1, βa1, αb1).

(3′) The connected sum of q projective planes Nq = (Xα,β,P) with

Xα,β(Nq) =
p⋃

i=1

{ai, αai, βai, αβai},

P(Nq) = (a1, βa1, a2, βa2, · · · , ap, βap)(αa1, αβap, αap, · · · , αβa2, αa2, αβa1).

Then we know the following result.

Theorem 5.2.4 These maps O0, Op and Nq are standard maps. Furthermore,

(1) The map Op is orientable with genus g(Op) = p for integers p ≥ 0;
(2) The map Nq is non-orientable with genus g(Nq) = q for integers q ≥ 1.

Proof Clearly, ν(Op) = 1 and ν(Nq) = 1 by def nition. Calculation shows that

P(O0)αβ = (a, αβa)(αa, βa);

P(Op)αβ = (a1, αβb1, αβa1, b1, a2, αβb2, αβa2, b2, · · · , ap, αβbp, αβap, bp)

(βa1, βbp, αap, αbp, βap, · · · , βb2, αa2, αb2, βa2, βb1, αa1, αb1);

P(Nq)αβ = (a1, αa1, a2, αa2, · · · , aq, αaq)(βa1, αβaq, βaq, · · · , αβa2, βa2, αβa1).

Therefore, there only one face in Op and Nq. Consequently, they are standard maps for
integers p ≥ 0 and q ≥ 1.

Obviously, the number of orbits ofΨL action onXα,β(Op) is 2, but that onXα,β(Op) is
1. Whence, Op is orientable for integers p ≥ 0 and Nq is non-orientable for integers q ≥ 1.
Calculation shows that the Euler-Poincaré characteristics of Op and Nq are respective

χ(Op) = 1 − 2p + 1 and χ(Nq) = 1 − q + 2.

Whence, g(Op) = p and g(Nq) = q. �

By the view of map, the standard surface presentation in Theorem 4.2.4 is nothing
but the dual maps (Xα,β,P) of bouquets B2p, Bq on T 2#T 2# · · · #T 2

︸             ︷︷             ︸
p

or P2#P2# · · ·#P2︸            ︷︷            ︸
q
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with

P(B2p) = (a1, αβb1, αβa1, b1, a2, αβb2, αβa2, b2, · · · , ap, αβbp, αβap, bp)

(βa1, βbp, αap, αbp, βap, · · · , βb2, αa2, αb2, βa2, βb1, αa1, αb1);

P(Bq) = (a1, αa1, a2, αa2, · · · , aq, αaq)(βa1, αβaq, βaq, · · · , αβa2, βa2, αβa1).

For example, we have shown this dual relation in Fig.5.2.3 for p = 1 and q = 2
following.

O O

-
-

6 6
a

b

αβa

αβb

6-
? � a

βa
b

βb

-6� ? -6� ?a

αβbαβa

b a

αab

αb

Fig.5.2.3

In fact, the embedded graph B2 on torus and Klein bottle are maps (Xα,β,P), where
Xα,β(B2) = {a, αa, βa, αβa, b, αb, βb, αβb},P = (a, αβb, αβa, b)(αa, αb, βa, βb),Pαβ =

(a, b, αβa, αβb)(αa, βb, βa, αb) on the torus, and P = (a, αa, b, αb)(βa, αβb, βb, αβa),
Pαβ = (a, βa, b, βb)(αa, αβb, αb, αβa) on the Klein bottle, respectively.

§5.3 MAP GROUPS

5.3.1 Isomorphism of Maps. Let M1 = (X 1
α,β,P1) and M2 = (X 2

α,β,P2) be maps. If
there exists a bijection

ξ : X 1
α,β →X 2

α,β

such that for ∀x ∈X 1
α,β
,

ξα(x) = αξ(x), ξβ(x) = βξ(x) and ξP1(x) = P2ξ(x).

Such a bijection ξ is called an isomorphism from maps M1 to M2.
Clearly, ξ−1α(y) = αξ−1(y), ξ−1β(y) = βξ−1(y) and ξ−1P(y) = Pξ−1(y) for y ∈

X 2
α,β
. Thus the bijection ξ−1 : X 2

α,β
→ X 1

α,β
is an isomorphism from maps M2 to M1.
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Whence, we can just say such M1 and M2 are isomorphic without distinguishing that the
isomorphism ξ is from M1 to M2 or from M2 to M1 if necessary.

Theorem 5.3.1 Let M1 and M2 be isomorphic maps. Then

(1) M1 is orientable if and only if M2 is orientable;
(2) ν(M1) = ν(M2), ε(M1) = ε(M2) and φ(M1) = φ(M2), particularly, the Euler-

Poincaré characteristics χ(M1) = χ(M2).

Proof Let M1 = (X 1
α,β
,P1), M2 = (X 2

α,β
,P2), τ : X 1

α,β
→ X 2

α,β
an isomorphism

from M1 to M2 and x1, x2 ∈ X 1
α,β

such that there exists a σ ∈ Ψ1
L = 〈αβ,P1〉 with

σ(x1) = x2. Then There must be τστ−1(τ(x1)) = τ(x2), i.e., τΨ1
Lτ
−1 = 〈αβ,P2〉 = Ψ2

L.
Whence, Ψ1

L is not transitive on X 1
α,β

if and only if Ψ2
L is not transitive on X 2

α,β
. That is

the conclusion (1).
For (2), let x1 be an element in the conjugate pair C · (αC−1α−1) of P1 and y1 an

element in C′ · (αC′−1α−1) of P2. It is easily know that τ(C · (αC−1α−1)) = C′ · (αC′−1α−1)
and τ({x1, αx1, βx1, αβx1}) = {y1, αy1, βy1, αβy1}, i.e., τ : Kx1 → Ky1. Whence, τ is
an bijection between V(M1) and V(M2), E(M1) and E(M2). Thus ν(M1) = ν(M2) and
ε(M1) = ε(M2).

By def nition, we know that τ(P1αβ) = (P2αβ)τ. So similarly we know that τ is
also a bijection between the vertices, i.e., faces of M1 and M2. Consequently, we get that
φ(M1) = φ(M2). �

For ∀x ∈Xα,β, let vx, ex and fx be the vertex, edge and face containing the quadricell
x in a map M = (Xα,β,P). The triple (vx, ex, fx) is called a f ag incident with that of x in
M. Denoted byF (M) all f ags in a map M. Then we get the following result by the proof
of Theorem 5.3.1.

Corollary 5.3.1 Let M1 and M2 be isomorphic maps. Then there is a bijection between
f ag setsF (M1) andF (M2).

Theorem 5.3.2 A map M1 = (X 1
α,β,P1) is isomorphic to M2 = (X 2

α,β,P2) if and only if
the dual map M∗1 = (X

1
β,α
,P1αβ) is isomorphic to that of M∗2 = (X

2
β,α
,P2αβ).

Proof Let τ : X 1
α,β → X 2

α,β be an isomorphism from M1 to M2. Then τα − ατ,
τβ = βτ and τP1 = P2τ. Consequently, τ(P1αβ) = P2τ(αβ) = (P2αβ)τ. Notice that
X 1

α,β = X 1
β,α and X 2

α,β = X 2
β,α. We therefore know that τ is an isomorphism between M∗1

and M∗2. �
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Applying isomorphisms betweenmaps, an alternative approach for determining equiv-
alent embeddings and maps on locally orientable surfaces underlying a graph can be de-
f ned as follows:

For a given map M underlying a graph G, it is obvious that AutM|G ≤ Aut 1
2
G.

Whence, we can extend the action of ∀g ∈ Aut 1
2
G on V(G) to that of g| 12 on Xα,β with

X = E(G) by def ning that for ∀x ∈ Xα,β, if xg = y, then

xg|
1
2
= y, (αx)g|

1
2
= αy, (βx)g|

1
2
= βy and (αβx)g|

1
2
= αβy.

Then we can characterize equivalent embeddings and isomorphic maps following.

Theorem 5.3.3 Let M1 = (Xα,β,P1) and M2 = (Xα,β,P2) be maps underlying a graph
G. Then

(1) M1 and M2 are equivalent if and only if there is an element ζ ∈ Aut 1
2
G such that

Pζ

1 =P2.
(2) M1 and M2 are isomorphic if and only if there is an element ζ ∈ Aut 1

2
G such that

Pζ

1 =P2 orPζ

1 =P−1
2 .

Proof Let κ be an equivalence between embeddings M1 and M2. Then by def nition,
κ must be an isomorphism between maps M1 and M2 induced by an automorphism ι ∈
AutG. Notice that

AutG � AutG| 12 ≤ Aut 1
2
G.

We know that ι ∈ Aut 1
2
G.

Now if there is a ζ ∈ Aut 1
2
G such that Pζ

1 =P2, then ∀ex ∈ X 1
2
(G), ζ(ex) = ζ(e)ζ(x).

Assume that e = (x, y) ∈ E(G), then by convention, we know that if ex = e ∈ Xα,β, there
must be ey = βe. Now by the def nition of automorphism on the semi-arc set X 1

2
(G), if

ζ(ex) = fu, where f = (u, v), then there must be ζ(ey) = fv. Notice that X 1
2
(G) = Xβ. We

therefore know that ζ(ey) = ζ(βe) = β f = fv. Now extend the action of ζ on X 1
2
(G) to

Xα,β by ζ(αe) = αζ(e). We get that ∀e ∈Xα,β,

αζ(e) = ζα(e), βζ(e) = ζβ(e) and Pζ

1 (e) =P2(e).

So the extend action of ζ on Xα,β is an isomorphism between the map M1 and M2, which
preserve the orientation on M1 and M2. Whence, ζ is an equivalence between the map M1

and M2. That is the assertion (1).
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For the assertion (2), if there is an element ζ ∈ Aut 1
2
G such that Pζ

1 =P2, then the
map M1 is isomorphic to M2. If Pζ

1 =P−1
2 , then there must be Pζα

1 =P2. So M1 is also
isomorphic to M2. This is the sufficiency of (2).

Let ξ be an isomorphism between maps M1 and M2. Then for ∀x ∈Xα,β,

αξ(x) = ξα(x), βξ(x) = ξβ(x) and Pξ

1(x) =P2(x).

By convention, the condition

βξ(x) = ξβ(x) and Pξ

1(x) =P2(x)

is just the condition of an automorphism ξ or αξ on X 1
2
(G). Whence, the assertion (2) is

also true. �

5.3.2 Automorphism of Map. If M1 = M2 = M, such an isomorphism between M1 and
M2 is called an automorphism of M, which surveys symmetries on a map.

Example 5.3.1 Let M = (Xα,β,P) be a map with

Xα,β(B2) = {a, αa, βa, αβa, b, αb, βb, αβb}

and
P = (a, αβb, αβa, b)(αa, αb, βa, βb),

i.e., the bouquet B2 on the torus shown in Fig.5.3.1 following.

O

-
-6 6-6� ? a

αβbαβa

b

Fig.5.3.1

We determine its automorphisms following. Def ne

τ1 =


a αa βa αβa b αb βb αβb
αa a αβa βa βb αβb b αb



= (a, αa)(βa, αβa)(b, βb)(αb, αβb),
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τ2 =


a αa βa αβa b αb βb αβb
βa αβa a αa αb b αβb βb



= (a, βa)(αa, αβa)(b, αb)(βb, αβb),

τ3 =


a αa βa αβa b αb βb αβb
αβa βa αa a αβb βb αb b



= (a, αβa)(αa, βa)(b, αβb)(αb, βb),

τ4 =


a αa βa αβa b αb βb αβb
b αb βb αβb αβa βa αa a



= (a, b, αβa, αβb)(αa, αb, βa, βb),

τ5 =


a αa βa αβa b αb βb αβb
αb b αβb βb αa a αβa βa



= (a, αb)(αa, b)(βa, αβb)(αβa, βb),

τ6 =


a αa βa αβa b αb βb αβb
βb αβb b αb βa αβa a αa



= (a, βb)(αa, αβb)(βa, b)(αβa, αb),

τ7 =


a αa βa αβa b αb βb αβb
αβb βb αb b a αa βa αβa



= (a, αβb, αβa, b)(αa, βb, βa, αb).

We are easily to verify that these permutations 1Xα,β
, τi, 1 ≤ i ≤ 7 are automorphisms of

the map M shown in Fig.5.3.1.

Theorem 5.3.4 All automorphisms of a map M = (Xα,β,P) form a group.

Proof Let τ, τ1 and τ2 be automorphisms of M. Then we know that τα = ατ, τβ =
βτ, τP =Pτ and τ1α = ατ1, τ1β = βτ1, τ1P =Pτ1. Clearly, 1Xα,β

is an automorphism
of M and τ−1α = ατ−1, τ−1β = βτ−1, τ−1P = Pτ−1, i.e., τ−1 is an automorphism of M.
Furthermore, it is easily to know that

(ττ1)α = α(ττ1), (ττ1)β = β(ττ1) and (ττ1)P =P(ττ1),

i.e., ττ1 is also an automorphism of M with

x(ττ1)τ2 = xτ(τ1τ2)

for ∀x ∈Xα,β, i.e., (ττ1)τ2 = τ(τ1τ2). So all automorphisms form a group by def nition.�
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Such a group formed by all automorphisms of a map M is called the automorphism
group of M, denoted by AutM and any subgroup Γ of automorphism groups of maps is
called a map group.

Theorem 5.3.5 Any map group Γ is f xed-free.

Proof Let M = (Xα,β,P) be a map, x ∈ Xα,β and Γ ≤ AutM. If xσ = x, we prove
that

σ = 1Xα,β
.

In fact, for ∀y ∈ Xα,β, by def nition ΨJ = 〈α, β,P〉 is transitive on Xα,β, there exists an
element h ∈ ΨJ such that xh = y. Hence,

yσ = xσh = xhσ = xh = y,

i.e., σ f xes all elements in Xα,β. �

For a group (Γ; ◦), denoted by ZΓ(H) = { g ∈ Γ| g ◦ h ◦ g−1 = h,∀h ∈ H } the
centralizer of H in (Γ; ◦) for H ≤ Γ. Then we are easily to get the following result for
automorphism group of map.

Theorem 5.3.6 Let M = (Xα,β,P) be a map. Then AutM = ZSXα,β
(〈α, β,P〉), where

SXα,β
is the symmetric group onXα,β.

Proof Let ∀τ ∈ AutM be an automorphism. Then we know that τα = ατ, τβ = βτ
and τP = Pτ by def nition. Whence, τ ∈ ZSXα,β

(〈α, β,P〉). Conversely, for σ ∈
ZSXα,β

(〈α, β,P〉), It is clear that σα = ασ, σβ = βσ and σP =Pσ by def nition. �

A characterizing for automorphism group of map can be found in the following.

Theorem 5.3.7 Let M = (Xα,β,P) be a map with A = AutM and v ∈ V(M). Then the
stabilizer Av is isomorphic to a subgroup H ≤

〈
Cv

〉
generated by Cv = Cv · αC−1v α−1, i.e.,

a product of conjugate pair of cycles inP .

Proof By Theorem 2.1.1, if g ∈ Av, we know that gCvg−1 = Cg(v) = Cv. That is
gCv = Cvg. Whence, if w is a quadricell in Cv, then g(w) is also so. Denote the constraint
action of an automorphism g ∈ Av on elements in Cv by g. Notice that Cv is a product of
conjugate pairs of cycles in P . There must be an integer i such that g(w) = C

i
v. Choose

x = C
j
v(w) be a quadricell in Cv. Then

g(x) = gC
i
v(w) = C

i+ j
v (w) = C

i
v(x).
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Whence, g = C
i
v. Def ne a homomorphism θ : Av →

〈
Cv

〉
by θ(a) = g for ∀g ∈ Av.

Then it is also a monomorphism by Theorem 5.3.5. Thus Av is isomorphic to a subgroup
H ≤

〈
Cv

〉
. �

Applying isomorphisms between maps, similar to that of Theorem 5.3.3 we can also
characterize automorphisms of a map by extended actions of semi-arc automorphisms of
its underlying graph following.

Theorem 5.3.8 Let M = (Xα,β,P) be a map underlying graph G, g ∈ Aut 1
2
G. Then the

extend action g| 12 of g onXα,β with X = E(G) is an automorphism of map M if and only if
∀v ∈ V(M), g| 12 preserves the cyclic order of v.

Proof Let g| 12 ∈ AutM be extended by g ∈ Aut 1
2
G with ug = v for u, v ∈ V(M). Let

u = (x1, x2, · · · , xρ(u))(αxρ(u), · · · , αx2, αx1),

v = (y1, y2, · · · , yρ(v))(αyρ(v), · · · , αy2, αy1).

Then there must be

(x1, x2, · · · , xρ(u))g|
1
2
= (y1, y2, · · · , yρ(v)) or

(x1, x2, · · · , xρ(u))g|
1
2
= (αyρ(v), · · · , αy2, αy1).

Without loss of generality, we assume that (x1, x2, · · · , xρ(u))g|
1
2
= (y1, y2, · · · , yρ(v)). Thus,

(g| 12 (x1), g|
1
2 (x2), · · · , g|

1
2 (xρ(u))) = (y1, y2, · · · , yρ(v)).

Whence, g| 12 preserves the cyclic order of vertices in the map M.
Conversely, if the extend action g| 12 of g ∈ Aut 1

2
G on Xα,β preserves the cyclic order

of each vertex in M, i.e., ∀u ∈ V(G),∃v ∈ V(G) such that ug|
1
2
= v. Let

P =
∏

u∈V(M)
u.

Then

Pg|
1
2
=

∏

u∈V(M)
ug|

1
2
=

∏

v∈V(M)
v =P .

Whence, the extend action g| 12 is an automorphism of map M. �

Combining Corollary 5.3.1 and Theorem 5.3.5 enables us to get the following result.
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Theorem 5.3.9 Let M = (Xα,β, β) be a map with νi of vertices and φi faces of valency
i, i ≥ 1. Then

|AutM| | (2iνi, 2 jφ j ; i ≥ 1, j ≥ 1),

where (2iνi, 2 jφ j ; i ≥ 1, j ≥ 1) denotes the greatest common divisor of 2iνi, 2 jφ j for an
integer pair i, j ≥ 1.

Proof Let Λi and ∆ j respectively be the sets of quadricells incident with a vertex of
valency i or incident with a face of valency j for integers i, j ≥ 1. Consider the action
of AutM on Λi and ∆ j. By Corollary 5.3.1, such an action is closed in Λi or ∆ j. Then
applying Theorem 2.1.1(3), we know that

|AutM| = |(AutM)x||xAutM | = |xAutM |

for ∀x ∈ Λi for |(AutM)x| = 1 by Theorem 5.3.5. Therefore, the length of each orbit of
AutM action on Λi or ∆ j is the same |AutM|. Notice that |Λi| = 2iνi and |∆ j| = 2 jφ j. We
get that

|AutM| | |Λi| = 2iνi and |AutM| | |∆ j| = 2 jφ j

for any integer pairs i, j ≥ 1. Thus

|AutM| | (2iνi, 2 jφ j ; i ≥ 1, j ≥ 1). �

Corollary 5.3.2 Let M = (Xα,β,P) be a map with vertex valency k and face valency l.
Then |AutM| | (2k|M|, 2l|M∗|), where M∗ is the dual of M. Particularly, |AutOp| | 2p and
|AutOp| | 2p for standard maps Op and Nq.

By Theorem 5.3.9, we can get automorphism groups AutM of map M in sometimes.

Example 5.3.2 Let M = (Xα,β,P) be the map shown in Fig.5.2.2, i.e., K4 on torus with
one face length 4 and another 8. By Theorem 5.3.9, there must be |AutM| | (4×3, 8, 4) = 4,
i.e., |AutM| ≤ 4. Def ne

σ1 = (x, αx)(βx, αβx)(y, αz)(αy, z)(βz, αβz)(αβz, βy)

(v, βv)(αv, αβv)(u, αw)(αu,w)(βu, αβw)(αβu, βw)

and

σ2 = (x, βx)(αx, αβx)(y, αw)(αy,w)(βy, αβw)(αβy, βw)

(v, αv)(βv, αβb)(z, αu)(αz, u)(βz, αβu)(αβz, βu).
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It can be verif es that σ1 and σ2 both are automorphisms of M and σ2
1 == 1Xα,β

and
σ2
2 = 1Xα,β

. So AutM = 〈σ1, σ2〉.

Example 5.3.3 We have construct automorphisms 1Xα,β
and τi, 1 ≤ i ≤ 7 for the map

shown in Fig.5.3.1 in Example 5.3.1. Consequently, we get that

AutM = {1Xα,β
, τ1, τ2, τ3, τ4, τ5, τ6, τ7}

by Corollary 5.3.2.
Notice that

2
∑

i≥1
iνi = 2

∑

i≥1
iφi = |Xα,β|

for a map M = (Xα,β,P). Therefore, we get the following conclusion.

Corollary 5.3.3 For any map M = (Xα,β,P), |AutM| | |Xα,β| = 4ε(M).

Proof Applying Theorem 5.3.9, we know that

|AutM| |
∑

i≥1
2iνi and |AutM| |

∑

i≥1
2iφi.

Because of

2
∑

i≥1
iνi = 2

∑

i≥1
iφi = |Xα,β|,

we immediately get that |AutM| | |Xα,β| = 4ε(M). �

Now we determine automorphisms of standard maps on surfaces.

Theorem 5.3.10 Let Op = (Xα,β(Op),P(Op)) be an orientable standard map with

Xα,β(Op) =

p⋃

i=1

{ai, αai, βai, αβai}

⋃

p⋃

i=1

{bi, αbi, βbi, αβbi}
 ,

P(Op) = (a1, b1, αβa1, αβb1, a2, b2, αβa2, αβb2, · · · , ap, bp, αβap, αβbp)

(αa1, βbp, βap, αbp, αap, · · · , βb2, βa2, αb2, αa2, βb1, βa1, αb1).

and let Nq = (Xα,β,P) be a non-orientable map with

Xα,β(Nq) =
p⋃

i=1

{ai, αai, βai, αβai},

P(Nq) = (a1, βa1, a2, βa2, · · · , ap, βap)(αa1, αβap, αap, · · · , αβa2, αa2, αβa1).
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Def ne

τs = P4s(Op), 0 ≤ s ≤ p − 1,

σ =

p∏

i=1

(ai, αai)(bi, βbi)(αβai, βai)(αβbi, αbi),

θ =

p∏

i=1

(ai, αβbi)(αai, βbi), ς =

p∏

i=1

(ai, αβai)(bi, αβbi)

and

ηl =P2l(Nq), 0 ≤ l ≤ q − 1; ϑ =

q∏

i=1

(ai, αβai)(αai, βai).

Then

AutOp = 〈θ, σ, ς, τs, 1 ≤ s ≤ p − 1〉 and AutNq ≥ 〈ϑ, ηl, 1 ≤ l ≤ q − 1〉 .

Proof It is easily to verify that xα = αx, xβ = βx, xP(Op) = P(Op)x if
x ∈ {θ, σ, ς, τs, 1 ≤ s ≤ p − 1} and yα = αy, yβ = βy, yP(Nq) = P(Nq)y if
y ∈ {ϑ, ηl, 1 ≤ l ≤ q − 1}. Thus AutOp ≥ 〈θ, σ, ς, τs, 1 ≤ s ≤ p − 1〉 and AutNq ≥
〈ϑ, ηl, 1 ≤ l ≤ q − 1〉. Notice that | 〈θ, σ, ς, τs, 1 ≤ s ≤ p − 1〉 | = 8p = |Xα,β(Op)|. Ap-
plying Corollary 5.3.3, AutOp = 〈θ, σ, ς, τs, 1 ≤ s ≤ p − 1〉 is followed. �

5.3.3 Combinatorial Model of Klein Surface. For a complex algebraic curve, a very
important problem is to determine its birational automorphisms. For curve C of genus
g ≥ 2, Schwarz proved that Aut(C) is f nite in 1879 and then Hurwitz proved |Aut(C)| ≤
84(g − 1), seeing [FaK1] for details. As observed by Riemann, the groups of birational
automorphisms of complex algebraic curves are the same as the automorphism groups of
compact Riemann surfaces which can be combinatorially dealt with the approach of maps
on surfaces. Jones and Singerman proved the following result in [JoS1].

Theorem 5.3.11 If M is an orientable map of genus p, then AutM is isomorphic to a
group of conformal transformations of a Riemann surface.

Notice that the automorphism group of Klein surface possesses the same represen-
tation as that of Riemann surface by Theorem 4.5.7. This enables us to get a result likely
for Klein surfaces following.

Theorem 5.3.12 If M is a locally orientable map on a Klein surface S , then AutM
is isomorphic to a group of conformal transformations of a Klein surface, particularly,
AutM ≤ AutS .
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Proof According to Theorem 4.5.7, there exists a NEC group Γ such that AutS ≃
NΩ(Γ)/Γ, where Ω = AutH = PGL(2,R) being the automorphism group of the upper half
plane H. Because M is embeddable on Klein surface S , so there is a fundamental region
F, a polygon in H such that {gF |g ∈ Γ} is a tessellation of H, i.e., S is homeomorphic to
H/Γ. By Constructions 4.4.1-4.4.2, we therefore know that AutM ≤ NΩ(Γ)/Γ, i.e., AutM
is a subgroup of conformal transformation of Klein surface S . �

§5.4 REGULAR MAPS

5.4.1 Regular Map. A regular map M = (Xα,β,P) is such a map that its automorphism
group AutM is transitive on Xα,β, i.e., |AutM| = 4ε(M). For example, the map discussed
in Example 5.3.2 is such a regular map, but that map in Example 5.3.1 is not.

IfM is regular, then AutM is transitive on vertices, edges and faces ofM by Corollary
5.3.1. This fact enables us to get the following result.

Theorem 5.4.1 Let M be a regular map with vertex valency k ≥ 3 and face valency l ≥ 3,
called a type (k, l) regular maps. Then kν(M) = lφ(M) = 2ε(M) and

g(M) =



1 +
(
(k − 2)(l − 2) − 4

4l

)
ν(M), i f M is orientable;

2 +
(
(k − 2)(l − 2) − 4

2l

)
ν(M), i f M is non − orientable.

Proof Let νk = ν(M), φl = φ(M) and νi = φ j = 0 if i , k, j , l in the equalities

2
∑

i≥1
iνi = 2

∑

i≥1
iφi = |Xα,β| = 4ε(M),

we immediately get that kν(M) = lφ(M) = 2ε(M).
Substitute ε(M) =

k
2
ν(M) and φ(M) =

k
l
ν(M) in the Euler-Poincaré genus formulae

g(M) =



2 + ε(M) − ν(M) − φ(M)
2

, if M is orientable

2 + ε(M) − ν(M) − φ(M), if M is non − orientable.
We get that

g(M) =



1 +
(
(k − 2)(l − 2) − 4

4l

)
ν(M), if M is orientable;

2 +
(
(k − 2)(l − 2) − 4

2l

)
ν(M), if M is non − orientable.

�
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This theorem enables us to f nd type (k, l) regular maps on orientable or non-orientable
surfaces with small genus following.

Corollary 5.4.1 A map M is regular of g(M) = 0 if and only if G(M) = Cl, l ≥ 1 or the
1-skeleton of the f ve Platonic solids.

Proof If k = 2 then ν(M) = ε(M) = l and φ(M) = 2. Whence, M is a map underlying
a circuit Cl on the sphere. Indeed, such a map M is regular by the fact AutM = 〈ρ, α〉,
where ρ is the rotation about the center of Cl through angles 2π/l from a chosen vertex
u0 ∈ V(Cl) with ρl = 1Xα,β

.
Let k ≥ 3. Then by Theorem 5.4.1, we get that

1 +
(
(k − 2)(l − 2) − 4

4l

)
ν(M) = 0, i.e., (k − 2)(l − 2) < 4

by Theorem 5.4.1, i.e., (k, l) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3), which are just the Pla-
tonic solids shown in Fig.5.4.1 following. �

tetrahedron hexahedron octahedron

dodecahedron icosahedron

(3,3) (3,4) (4,3)

(3,5) (5,3)

Fig.5.4.1

Corollary 5.4.2 There are inf nite regular maps M of torus T 2.

Proof In this case, we get (k − 2)(l − 2) = 4 by Theorem 5.4.1. Whence, (k, l) =
(3, 6), (4, 4), (6, 3). Indeed, there exist regular maps on torus for such integer pairs. For
regular map on torus with (3, 6) or (4, 4), see (a) or (b) in Fig.5.4.2. It should be noted
that the regular map on torus with (6, 3) is just the dual that of (3, 6) and we can construct
such regular maps of order 6s or 4s for integer s ≥ 1. So there are inf nite many such
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regular maps on torus. �-
-

6 61 2 3 4 5

1 2 3 4 5

1’ 1’

2’ 2’

1 2

1 2

1’ 1’

2’ 2’

(a) (b)

-
-

6 6
Fig.5.4.2

Corollary 5.4.3 There are f nite regular maps on projective plane P2 with vertex valency≥
3 and face valency≥ 3.

Proof Similarly, we know that (k − 2)(l − 2) < 4 by Theorem 5.4.1, i.e., the possible
types of M are (3, 3), (3, 4), (4, 3), (5, 3), (5, 3) and it can verif ed easily that there are no
(3, 3) regular maps on P2. Calculation shows that

(k, l) ν(M) ε(M) G(M) Existing? M Existing?
(3, 3) 2 3 Yes No
(3, 4) 4 6 Yes Yes
(4, 3) 3 6 Yes Yes
(3, 5) 10 15 Yes Yes
(5, 3) 6 15 Yes Yes

Therefore, regular maps on projective plane P2 with vertex valency≥ 3 and face valency≥
3 is f nite. The regular maps of types ((3, 5)) and (3, 4) are shown in Fig.5.4.3. �

1

1

2

2

3 3? 6
5

5

4

4

1 2

2 1

(a) (b)

? 666
Fig.5.4.3
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The following result approves the existence of regular maps on every orientable sur-
face.

Theorem 5.4.2 For any integer p ≥ 0, there are regular maps on every orientable surface
of genus p.

Proof Applying Theorem 5.3.10, the standard map Op is regular on the orientable
surface of genus p. Combining the result in Corollary 5.4.1, we get the conclusion. �

Notice that Theorem 4.5.2 has claimed that the automorphism group of a Klein sur-
face is f nite. In fact, by Theorem 5.4.1, we can also determine the upper bound of AutM
for regular maps M on a surface of genus g ≥ 2.

Theorem 5.4.3 Let M be a regular map on a surface S of genus g ≥ 2 with vertex valency
k ≥ 3 and face valency l ≥ 3. Then

|AutM| ≤

168(g − 1), i f S is orientable,
84(g − 1), i f S is non − orientable.

and with the equality holds if and only if (k, l) = (3, 7) or (7, 3).

Proof By def nition, a map M = (Xα,β,P) on S is regular if and only if |AutM| =
|Xα,β| = 4ε(M). Substitute ν(M) =

2
k
ε(M) in Theorem 5.4.1, we get that

|AutM| =



(
8kl

(k − 2)(l − 2) − 4

)
(g − 1), if S is orientable,

(
4kl

(k − 2)(l − 2) − 4

)
(g − 1), if S is non − orientable.

Clearly, the maximum value of
kl

(k − 2)(l − 2) − 4 is 21 occurring precisely at (k, l) = (3, 7)
or (7, 3). Therefore,

|AutM| ≤

168(g − 1), i f S is orientable,
84(g − 1), i f S is non − orientable.

and with the equality holds if and only if (k, l) = (3, 7) or (7, 3). �

5.4.2 Map NEC-Group. We have known that ΨJ = 〈α, β,P〉 acts transitively on Xα,β,
i.e., xΨJ = Xα,β. Furthermore, if M is regular, then its vertex valency and face valency
both are constant, say n and m. Usually, such a regular map M is called with type (n,m).
Then we get the presentation of ΨJ for M following

ΨJ =
〈
α, β,P | α2 = β2 =Pn = (Pαβ)m = 1Xα,β

〉
.
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We regard relations of the form P∞ = 1Xα,β
or (Pαβ)∞ = 1Xα,β

as vacuous. The free
group Ψ̃ generated by α, β,P , i.e., Ψ̃ = 〈α, β,P〉 is called the universal map of M, a
tessellation of planar Klein surface H. It should be note that ΨJ is isomorphic to the NEC
group generated by facial boundaries of M. Whence, M ≃ H/xΨJ = xΨ̃/xΨJ ≃ Ψ̃/ΨJ,
where x is a chosen point in H. Applying Theorem 4.5.9, we get the following result.

Theorem 5.4.4 Let M = (Xα,β) be a regular map on a Klein surface S . Then AutM ≃
NΨ̃(ΨJ)/ΨJ , where NΨ̃(ΨJ) is the normalizer of ΨJ in Ψ̃.

This result will be applied for constructing regular maps on surfaces in Section 5.5.

5.4.3 Cayley Map. Let (Γ; ◦) be a f nite group generated by S . A Cayley map of Γ to S
with 1Γ < S and S −1 = S , denoted by CayM(Γ : S , r) is a map (Xα,β(Γ : S ),P(Γ : S )),
where

Xα,β(Γ : S , r) = { gh, αgh, βgh, αβgh | g ∈ Γ, h ∈ S and g−1 ◦ h ∈ S },

P(Γ : S , r) =
∏

g∈Γ, h∈S
(gh, gr(h), gr2(h), · · · · · ·)(αgh, αgr−1(h), αgr−2(h), · · · · · ·)

with ταgh = ατgh, τβgh = βτgh for τ ∈ Γ, where r : S → S is a cyclic permutation.
Clearly, the underlying graph of a Cayley map CayM(Γ : S , r) is Cay(Γ : S ).

Example 5.4.1 Let (Γ; ◦) be the Klein group Γ = {1, α, β, αβ}, S = {α, β, αβ} and r =
(α, β, αβ). Then the Cayley map CayM(Γ : S , r) is K4 on the plane shown in Fig.5.4.4.

α

1

βαβ

β αβ

α

α

βαβ

Fig.5.4.4

Theorem 5.4.5 Any Cayley map CayM(Γ : S , r) is vertex-transitive. In fact, there is a
regular subgroup of AutCayM(Γ : S , r) isomorphic to Γ.

Proof Consider the action of left multiplication LΓ on vertices of CayM(Γ : S , r),
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i.e., Lσ : h → g ◦ h for g, h ∈ Γ. We have known it is transitive on vertices of Cayley
graph Cay(Γ : S ) by Theorem 3.2.1. It only remains to show that such a permutation
Lg is a map automorphism of CayM(Γ : S , r). In fact, for gh ∈ Xα,β(Γ : S , r) we know
Lσαgh = σαgh = ασgh = αLσgh i.e., Lσα = αLσ by def nition. Similarly, Lσβ = βLσ.

Notice that if g−1 ◦ h ∈ S , then (σ ◦ g)−1 ◦ (σ ◦ h) = g−1 ◦ h ∈ S , i.e., (Lσ(g))Lσ(h) ∈
Xα,β(Γ : S , r). Calculation shows that

LσP(Γ : S , r)L−1σ
= Lσ

∏

g∈Γ, g−1◦h∈S

(gh, gr(h),gr2(h), · · ·)(αgh, αgr−1(h),αgr−2(h) , · · ·)L
−1
σ

=
∏

g∈Γ, g−1◦h∈S

(Lσ(g)Lσ(h), Lσ(g)Lσ(r(h)), · · ·)(αLσ(g)Lσ(h), αLσ(g)Lσ(r−1(h)), · · ·)

=
∏

g∈Γ, g−1◦h∈S
(σgσh, σgσr(h), σgσr2(h), · · ·)(ασgσh, ασg)σr−1(h), ασgr−2(σh), · · ·)

=
∏

s∈Γ, s−1◦t∈S

(st, sr(t), sr2(t), · · ·)(αst, αsr−1(t),αsr−2(t), · · ·) =P(Γ : S ),

i.e., Lg is an automorphism of CayM(Γ : S , r). We have known that LΓ ≃ Γ by Theorem
1.2.14. �

Although every Cayley map is vertex-transitive, there are non-regular Cayley maps
on surfaces. For example, let (Γ; ◦) be an Abelian group with Γ = {1Γ, a, b, c}, S = {a, b, c},
a2 = b2 = c2 = 1Γ, a ◦ b = b ◦ a = c, a ◦ c = c ◦ a = b, b ◦ c = c ◦ b = a and r = (a, b, c).
Then the Cayley map CayM(Γ : S , r) is K4 on the projective plane shown in Fig.5.4.5,
which is not regular. -

� a

1’

a

a

a

1Γ

1’

b
b

c
c

cb

Fig.5.4.5

Now we f nd regular maps in Cayley maps of f nite groups. First, we need to prove
the following result.
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Theorem 5.4.6 Let CayM(Γ : S , r) be a Cayley map and let ς be an automorphism of
group (Γ; ◦) such that ς|S = rl for an integer l, 1 ≤ l ≤ |S |, then ς ∈ (AutCayM(Γ : S , r))1Γ .

Proof Notice that ς is an automorphism of group (Γ; ◦). There must be ς(1Γ) = 1Γ.
Let gh ∈ Xα,β(Γ : S , r). Then g−1 ◦ h ∈ S . Because of ς(g−1 ◦ h) = ς−1(g) ◦ ς(h) ∈ S , we
know that (ς(g), ς(h)) ∈ E(CayM(Γ : S , r)) and ς(g)ς(h) ∈ Xα,β(Γ : S , r). We only need to
show that ς ∈ AutCayM(Γ : S , r). By def nition, we know that ςα = ας and ςβ = βς. We
verify ςP(Γ : S , r)ς−1 =P(Γ : S , r). Calculation shows that

ςP(Γ : S , r)ς−1

= ς
∏

g∈Γ, g−1◦h∈S

(gh, gr(h),gr2(h) , · · ·)(αgh, αgr−1(h),αgr−2(h) , · · ·)ς
−1

=
∏

g∈Γ, g−1◦h∈S

(ς(g)ς(h), ς(g)ς(r(h)), · · ·)(ας(g)ς(h), ας(g)ς(r−1(h)), · · ·)

=
∏

g∈Γ, g−1◦h∈S

(ς(g)ς(h), ς(g)r(ς(h)), · · ·)(ας(g)ς(h), ας(g)r−1(ς(h)), · · ·)

=
∏

s∈Γ, g−1◦h∈S

(st, sr(t),sr2(t), · · ·)(αst, αsr−1(t),αsr−2(t), · · ·) =P(Γ : S )(Γ : S , r).

Therefore ς is an automorphism of map CayM(Γ : S , r), i.e., ς ∈ (AutCayM(Γ : S , r))1Γ . �

The following result enables one to get regular maps in Cayley maps.

Theorem 5.4.7 Let CayM(Γ : S , r) be a Cayley map with τ ∈ AutΓ such that τ|S = r.
Then CayM(Γ : S , r) is an orientable regular map.

Proof According to Theorem 5.4.6, we know that τ ∈ (AutM)1Γ . By Theorem
5.3.7, |(AutCayM(Γ : S , r))1Γ | divides |S |. But τ|S = r, a |S |-cycle, so that |(AutCayM(Γ :
S , r))1Γ | = |S |. Clearly, (AutCayM(Γ : S , r))1Γ is generated by τ. Applying Theorem 5.4.5,
(AutCayM(Γ : S , r)) is transitive on Γ = V(CayM(Γ : S , r)). Whence,

|AutCayM(Γ : S , r)| = |Γ||(AutCayM(Γ : S , r))1Γ | = |Γ||S | =
|Xα,β(Γ : S , r)|

2
.

Therefore, AutCayM(Γ : S , r) × 〈α〉 is transitive on Xα,β(Γ : S , r). �

5.4.4 Complete Map. A complete map M is such a map underlying a complete graph
Kn for an integer n ≥ 3. We f nd regular maps in complete maps in this subsection. The
following result is an immediately conclusion of Theorem 5.3.5.

Theorem 5.4.8 There are no automorphisms σ in a complete map M = (Xα,β,P) f xing
more than one vertex unless σ = 1Xα,β

.
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Proof If σ(u) = v, σ(v) = v for two vertices u, v ∈ V(M), let uv = {x, αx, βx, αβx},
then there must be σ(x) = x because of uv ∈ V(M). Applying Theorem 5.3.5, we get the
conclusion. �

A Frobenius group Γ is def ned to be a transitive group action on a set Ω such that
only 1Γ has more than one f xed points in Ω. By Theorem 5.4.8, thus the automorphism
group AutM of a complete vertex-transitive map M is necessarily Frobenius. For f nding
complete regular map, we need a characterization due to Frobenius in 1902 following.

Theorem 5.4.9 Let Γ be a Frobenius group action on Ω with N∗ the set of f xed-free
elements of Γ and N = N∗ ∪ {1Γ}. Then there are must be

(1) |N| = |Ω|;
(2) N is a regular normal subgroup of Γ.

Theorem 5.4.10 Let Γ be a sharply 2-transitive group action on Ω. Then |Ω| is a prime
power.

A complete proof of Theorems 5.4.9 and 5.4.10 can be found in [Rob1] by applying
the character theory on linear representations of groups. But if the condition that Γx is
Abelian for a point x ∈ Ω is added, Theorem 5.4.9 can be proved without characters of
groups. See [BiW1] for details.

Theorem 5.4.11 Let M be a complete map. Then AutM acts transitively on the vertices
of M if and only if M is a Cayley map.

Proof The sufficiency is implied in Theorem 5.4.5. For the necessity, applying The-
orem 5.4.8 we know that AutM is a Frobenius group. Now by Theorem 5.3.7, (AutM)x
is isomorphic to a subgroup generated by Cv = Cv · αC−1v α−1, i.e., a product of conjugate
pair of cycles in P . Whence, we get a regular normal subgroup N of AutM by Theorem
5.4.9. Let Γ = Zn and def ne a bijection σ : V(CayM(Zn,Zn \ {1}, r)) → N by σ(i) = ai,
where ai is the unique element transforming point 0 to i in N. Calculation shows that
r : N \ {1} → N \ {1} is given by r(ai) = aP(Zn ,Zn\{1},r))(i) for i , 0. Thus we get a Cay-
ley map CayM(Zn,Zn \ {1}, r). It can be verif ed that the bijection σ is an automorphism
between maps M and CayM(Zn,Zn \ {1}, r). �

Now we summarize all properties of AutM in the following obtained in previous on
regular map M underlying Kn:
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(1) AutM is a Frobenius group of order n(n − 1);
(2) AutM has a regular normal subgroup isomorphic to Zm

p for a prime p and an
integer m ≥ 1, i.e., n = pm;

(3) AutM is transitive on vertices, edges and faces of M, and regular on Xα,β;

(4) For ∀v ∈ V(M), (AutM)v ≃ Zn−1.

We prove the main result on complete regular maps of this subsection following.

Theorem 5.4.12 A complete map M underlying Kn is regular on an orientable surface if
and only if n is a prime power.

Proof If M is regular on an orientable surface, then |AutM| = 4ε(Kn) = 2n(n − 1).
Whence, |AutM/ 〈α〉 | = n(n − 1), i.e., AutM/ 〈α〉 acts on αXα,β is Frobenius. Applying
Theorem 5.4.10, we know that n is a prime power.

Conversely, if n = pm, let Γ = Zm
p , i.e., the additive group in GF(n), where p is

a prime and n a positive integer and let t ∈ Γ generate this multiplicative group. Take
Γ∗ = Γ − {0}, where 0 is the identity of Zm

p and r : Γ∗ → Γ∗ determined by r(x) = tx for
x ∈ Γ∗. By def nition, we know that r is cyclic permutation on ∆∗. We extend r from Γ∗ to
Γ by def ning r(0) = 0. Notice that r(x+y) = rx+ ry for x, y ∈ Γ. Such an extended r is an
automorphism of group Γ. Applying Theorem 5.4.7, we know that CayM(Γ : Γ∗, r) ≃ M
is a regular map on orientable surface. �

§5.5 CONSTRUCTING REGULAR MAPS BY GROUPS

5.5.1 Regular Tessellation. Let R2 be a Euclidean plane and p, q ≥ 3 be integers. We
know that the angle of a regular p-gon is (1 − 2/p)π. If q such p-gons f t together around
a common point u ∈ R2, then the angle of p-gons must be 2π/q. Thus

(
1 − 2

p

)
π =

2π
q
, i.e., (p − 2)(q − 2) = 4.

We so get three planar regular tessellations of type (p, q) on a Euclidean plane following:

(4, 4), (3, 6), (6, 3).

For example, a tessellation of type (4, 4) on R2 is shown in Fig.5.5.1.
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Fig.5.5.1

Now let S 2 be a sphere. Consider regular p-gons on S 2. The angle of a spherical p-
gon is greater than (1− 2/p)π, and gradually increases this value to π if the circum-radius
increases from 0 to π/2. Consequently, if

(p − 2)(q − 2) < 4,

we can adjust the size of the polygon so that the angle is exactly 2π/q, i.e., q such p-gons
will f t together around a common point v ∈ S 2. This fact enables one to get spherical
tessellations of type (p, q) following:

(2, q), (q, 2), (3, 3), (3, 4), (4, 3), (3, 5), (5, 3).

The type of (2, q) is formed by q lues joining the two antipodal points and the type (q, 2)
is formed by two q-gons, each covering a hemisphere. All of these rest types of spherical
tessellations are the blown up of these f ve Platonic solids shown in Fig.5.4.1.

Finally, let H2 be a hyperbolic plane. Consider the regular p-gons on H2. Then the
angle of such a p-gon is less than (1− 2/p)π, and gradually decreases this value to zero if
the circum-radius increases from 0 to∞. Now if

(p − 2)(q − 2) > 4,

we can adjust the size of the polygon so that the angle is exactly 2π/q. Thus q such
p-gons will f t together around a common point w ∈ H2. This enables one to construct
a hyperbolic tessellation of type (p, q), which is an inf nite collection of regular p-gons
f lling the hyperbolic plane H2.

Consider a tessellation of type (p, q) drawn in thick lines and pick a point in the
interior of each face and call it the ıcenter of the face. In each face, join the center by
dashed and thin line segments with every point covered by q-gons and the midpoint of
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every edge, respectively. This structure of tessellation is called the barycentric subdivision
of tessellation. Each of the triangle formed by a thick, a thin and a dashed sides is called
a f ag, such as those shown in Fig.5.5.2. Denote all f ags of a tessellation by F .

g XgZg

Yg

Fig.5.5.2

A tessellation of type (p, q) is symmetrical by ref ection in certain lines, which may
be a successive ref ections of three types: X : g → Xg, Y : g → Yg and Z : g → Zg,
where for each f ag g, the f agWg is such the unique f ag different from g that shares with
g the thin, the thick or the dashed sides depending on W = X, Y or Z. Obviously,

X2 = Y2 = Z2 = (XY)2 = (YZ)p = (ZX)q = 1 and XY = YX.

Furthermore, the group 〈X, Y, Z〉 is transitive permutation group on F .
A tessellation of type (p, q) on surface S is naturally a map M = (Xα,β,P) on S

with Xα,β = F . The behaviors of X, Y and YZ are more likely to those of β ,α and P on
M. But essentially, X , β, Y , α and YZ ,P because X, Y and YZ act on a given g, not
on all g in F . Such X, Y or YZ can be only seen as the localization of β, α or P on a
quadricell g of map M.

5.5.2 Regular Map on Finite Group. Let (Γ; ◦) be a f nite group with presentation

Γ =
〈
x, y, z | x2 = y2 = z2 = (x ◦ y)2 = (y ◦ z)p = (z ◦ x)q = · · · = 1Γ

〉
,

where we assume that all exponents are true orders of the elements and dots indicate a pos-
sible presence of other relations in this subsection. Then a regular map M = M(Γ; x, y, z)
of type (p, q) on group (Γ; ◦) is constructed as follows.
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Construction 5.5.1 Let g ∈ Γ. Consider a topological triangle, i.e., a f ag labeled by g
with its thin, thick and dashed sides labeled by generators x, y and z, respectively. Such
as those shown in Fig.5.5.3.

x

y

z
g

Fig.5.5.3

For simplicity, we will identify such f ags with their group element labels. Then for each
g ∈ Γ and w ∈ {x, y, z}, we identify the sides labeled w in the f ag g and g ◦ w in such a
way that points on the thick, thin or dashed sides meet are identif ed as well. For example,
such an identif cation for g = x, y or z is shown in Fig.5.5.4.

g g ◦ xx x

y y

z z g g ◦ x

g ◦ y x
g

g ◦ y

z

x

y g ◦ z

y

z

g
g ◦ z

Fig.5.5.4

This way we get a connected surface S without boundary by Theorem 4.2.2. The cellular
decomposition of S induced by the union of all thick segments forms a regular map M =
M(Γ; x, y, z) of type (p, q). Such thick segments of S consist of the underlying graph
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G(M) with vertices, edges and faces identif ed with the left cosets of subgroups generated
by 〈x, y〉, 〈y, z〉 and 〈z, x〉 in the group (Γ; ◦), respectively. We therefore get the following
result by this construction.

Theorem 5.5.1 Let (Γ; ◦) be a f nite group with a presentation

Γ =
〈
x, y, z | x2 = y2 = z2 = (x ◦ y)2 = (y ◦ z)p = (z ◦ x)q = · · · = 1Γ

〉
.

Then there always exists a regular map M(Γ; x, y, z) of type (p, q) on (Γ; ◦).

Consider the actions of left and right multiplication of Γ on f ags of M. By Construc-
tion 5.5.1, we have known that the right multiplication by generators x, y and z on a f ag
g ∈ Γ gives the permutations X, Y and Z def ned in Fig.5.5.2. For the left multiplication
of Γ on f ags of M, we have an important result following.

Theorem 5.5.2 Let M = M(Γ; x, y, z) be a regular map of type (p, q) on a f nite group
(Γ; ◦), where Γ =

〈
x, y, z | x2 = y2 = z2 = (x ◦ y)2 = (y ◦ z)p = (z ◦ x)q = · · · = 1Γ

〉
. Then

AutM = LΓ ≃ (Γ; ◦).

Proof Notice that if two f ags F and F′ are related by a homeomorphism h on S ,
i.e., h : F → F′, then h : F ◦ g → F′ ◦ g. Therefore, the left multiplication preserves
the cell structure of M on S and induces an automorphism of M. Whence, LΓ ≤ AutM.
Now Xα,β(M) = F (M) = Γ. By Corollary 5.3.3, there is |AutM| ≤ |Xα,β(M)| = |Γ|.
Consequently, there must be AutM = LΓ. By Theorem 1.2.15, LΓ ≃ (Γ; ◦). This
completes the proof. �

There is a simple criterion for distinguishing isomorphic maps M(Γ1; x1, y1, z1) and
M(Γ2; x2, y2, z2) following.

Theorem 5.5.3 Two regular maps M(Γ1; x1, y1, z1) and M(Γ2; x2, y2, z2) are isomorphic if
and only if there is a group isomorphism φ : Γ1 → Γ2 such that φ(x1) = x2, φ(y1) = y2
and φ(z1) = z2.

Proof If there is a group isomorphism φ : Γ1 → Γ2 such that φ(x1) = x2, φ(y1) =
y2 and φ(z1) = z2, we extend this isomorphism φ from f ags F (M(Γ1; x1, y1, z1)) to
F (M(Γ2; x2, y2, z2)) by

φ(uǫ11 u
ǫ2
2 · · · u

ǫs
s ) = φ(u

ǫ1
1 )φ(u

ǫ2
2 ) · · ·φ(u

ǫs
s )
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for ui ∈ {x1, y1, z1}, ǫi ∈ {+,−} and integers s ≥ 1. Then φ is an isomorphism between
M(Γ1; x1, y1, z1) and M(Γ2; x2, y2, z2) because it preserves the incidence of f ags.

Conversely, if φ is an isomorphism from M(Γ1; x1, y1, z1) to M(Γ2; x2, y2, z2), then
it preserves the incidence of vertices, edges and faces. Whence it induces an isomor-
phism from f ags F (M(Γ1; x1, y1, z1)) to F (M(Γ2; x2, y2, z2)), i.e., a group isomorphism
φ : Γ1 → Γ2, which preserve the incidence of vertices, edges and faces if and only if
φ(x1) = x2, φ(y1) = y2 and φ(z1) = z2 by Construction 5.5.1. �

Similarly, it can be shown that a regular map M(Γ, x′, y′, z′) is a dual of M(Γ, x, y, z)
if and only if Γ′ = Γ and x′ = y, y′ = x. By this way, regular maps of small genus are
included in the next result.

Theorem 5.5.4 Let M = M(Γ, x, y, z) be a regular map on a f nite group Γ.

(A) If M is on the sphere S 2, then

(1) Γ =
〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)n = (zx)2 = 1Γ

〉
≃ Dn × Z2 and M is an

embedded n-dipoles with dual Cn on S 2;
(2) Γ =

〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)3 = (zx)3 = 1Γ

〉
≃ S 4 and M is the tetra-

hedron, which is self-dual on S 2;
(3) Γ =

〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)4 = (zx)3 = 1Γ

〉
≃ S 4 × Z2 and M is the

octahedron with dual cube on S 2;
(4) Γ =

〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)5 = (zx)2 = 1Γ

〉
≃ A5 × Z2 and M is the

icosahedron with dual dodecahedron on S 2.

(B) If M is on the projective plane P2, let r = yz and s = zx, then

(1) Γ =
〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)2n = (zx)3 = zsrn = 1Γ

〉
≃ D2n and M is

the embedded bouquet B2n with dual C2n on P2;
(2) Γ =

〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)4 = (zx)3 = zrs−1r2s = 1Γ

〉
≃ S 4 and M

is the embedded K(2)
3 with dual K4 on P2, where K(2)

3 is the graph K3 with double edges;
(3) Γ =

〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)5 = (zx)3 = zr2sr−1sr−2s = 1Γ

〉
≃ A5

and M is the embedded K6 on P2.

(C) If M is on the torus T 2, let b, c be integers, then Γ =
〈
r, s | r4 = s4 = (rs)2 =

(rs−1)b(r−1s)c = 1Γ
〉
or

〈
r, s | r6 = s3 = (rs)2 = (rs−1r)b(s−1r2)c = 1Γ

〉
if bc(b − c) , 0

and Γ =
〈
r, s | r4 = s4 = (rs−1)b(r−1s)c = 1Γ

〉
or

〈
r, s | r6 = s3 = (rs−1r)b(s−1r2)c = 1Γ

〉

if bc(b − c) = 0.

A complete proof of Theorem 5.5.4 can be found in the reference [CoM1]. With the
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help of parallel program, orientable regular maps of genus 2 to 15, and non-orientable
regular maps of genus 4 to 30 are determined in [CoD1]. Particularly, the regular maps
on a double-torus or a non-orientable surface of genus 4 are known in the following.

Theorem 5.5.5 M = M(Γ, x, y, z) be a regular map on a f nite group Γ, r = yz, s = zx
and t = xr.

(A) If M is orientable of genus 2, then Γ =
〈
r, s | r3 = s8 = (rs−3)2 = 1Γ

〉
, or〈

r, s | r4 = s6 = (rs−1)2 = 1Γ
〉
, or

〈
r, s | r4 = s8 = (rs−1)2 = rs3r−1s−1 = 1Γ

〉
, or

〈
r, s | r5

= s10 = s2r−3 = 1Γ
〉
, or

〈
r, s | r6 = s6 = r2s−4 = 1Γ

〉
, or

〈
r, s | r8 = s8 = rs−3 = 1Γ

〉
.

(B) If M is non-orientable of genus 4, then Γ =
〈
r, s, t | r4 = s6 = t2 = ts−1rs−1r−2

= 1Γ 〉, or
〈
r, s, t | r4 = s6 = t2 = (rs−2)2 = s2rs−1r−2t = 1Γ

〉
.

We have known that there are regular maps on every orientable surface by Theorem
5.4.2, and there are no regular maps M on non-orientable surfaces of genus 2, 3, 18, 24,
27, 39 and 48 in literature. Whether or not there are inf nite non-orientable surfaces
which do not support regular maps is a problem for a long time. However, a general result
appeared in 2004 ([DNS1]), which completely classif es regular maps on non-orientable
surface of genus p+2 for an odd prime p , 3, 7 and 13. For presenting this general result,
let ν(p) be the number of pairs of coprime integers ( j, l) such that j > l > 3, both j and l
are odd and ( j − 1)(l − 1) = p + 1 for a prime p.

Theorem 5.5.6 Let p be an odd prime, p , 3, 7, 13 and let Np+2 be a non-orientable
surface of genus p + 2. Then

(1) If p ≡ 1(mod 12), then there are no regular maps onNp+2;

(2) If p ≡ 5(mod 12), then, up to isomorphism and duality, there is exactly one
regular map onNp+2;

(3) If p ≡ −5(mod 12), then, up to isomorphism and duality, there are ν(p) regular
maps on Np+2;

(4) If p ≡ −1(mod 12), then, up to isomorphism and duality, Np+2 supports exactly
ν(p) + 1 regular maps.

5.5.3 Regular Map on Finite Multigroup. Let P1, P2, · · · , Pn be a family of topological
polygons with even sides for an integer n ≥ 1. Denoted by ∂Pi the boundary of Pi,
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1 ≤ i ≤ n. Def ne a projection π :
n⋃
i=1
Pi → (

n⋃
i=1
Pi)/ ∼ by


π(x1) , π(x2) , · · · , π(xn) if xi ∈ Pi \ ∂Pi, 1 ≤ i ≤ n,
π(y1) = π(y2) = · · · = π(yn) if yi ∈ ∂Pi, 1 ≤ i ≤ n,

i.e., π is an identif cation on boundaries of P1, P2, · · · , Pn. Such an identif cation space
(
n⋃
i=1
Pi)/ ∼ is called an m-multipolygon by n polygons and denoted by P̃. The cross section

of P̃ is shown in Fig.5.5.5(a). Sometimes, a multipolygon maybe homeomorphic to a
surface. For example, the sphere S 2 is in fact a topological multipolygon of 2 polygons
shown in Fig.4.1.2.

It should be noted that the boundary of an m-multipolgon P̃ is the same as any of
its m-polygon. So we can also get the polygonal presentation of an m-multipolygon such
as we have done in Section 4.2. Similarly, an orientable or non-orientable multisurface
S̃ is def ned on P̃ by identifying side pairs of P̃. Certainly, S̃ =

n⋃
i=1
Pi/ ∼=

n⋃
i=1
S i, where

S i = Pi/ ∼ is a surface for integers 1 ≤ i ≤ n. The inclusion mapping πi : S̃ → S i
determined by πi(x) = x for x ∈ S i is called the natural projection of S̃ on S i.

By def nition, ∂P̃/ ∼ is a closed curve on S̃ , called the base line, denoted by LB and
a multisurface S̃ possesses the hierarchical structure, i.e., S̃ \ LB is disconnected union of
Pi \ ∂Pi, 1 ≤ i ≤ n. Such as those shown in Fig.5.5.5(b) for longitudinal and cross section
of a multitorus.

(a)
boundary boundary LB LB

(b)

Fig.5.5.5

Similarly considering maps on surface S , we can f nd such a decomposition of S̃
with each components homeomorphic to a open disk of dimensional 2, i.e., a map M̃ on
S̃ . So a problem for maps on multisurfaces is presented in the following.

Problem 5.5.1 Determine maps M̃ on S̃ =
n⋃

i=1

S i such that πi(M̃) is a transitive map,

furthermore a regular map on S i for any integer i, 1 ≤ i ≤ n.

If S̃ is orientable, the answer is affirmed by Theorem 5.4.2 by applying to standard
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mapOp on S i for an integer 1 ≤ i ≤ n. We construct more such maps on f nite multigroups
following.

Cayley Map on Multigroup. Let (G̃ ; Õ) be a multigroup with G̃ =
n⋃
i=1

Gi, Õ =

{◦i, 1 ≤ i ≤ n} such that (Gi; ◦i) is a f nite group generated by Ai = A−1i , 1Gi < Ai
for integers 1 ≤ i ≤ n. Furthermore, we assume each Ai = A is minimal for integers
1 ≤ i ≤ n. Whence A is an independent vertex set in Cayley graphs Cay(Gi : A). Such A
is always existed if we choose the group (Gi; ◦i) = (G ; ◦) for integers 1 ≤ i ≤ n.

Let r : S → S be a cyclic permutation on A. For an integer i, 1 ≤ i ≤ n, we
construct a Cayley map CayM(Gi : A, r). Not loss of generality, assume that the genus of
CayM(Gil : A, r) is g for 1 ≤ l ≤ s. Particularly, s = n if (Gi; ◦i) = (G ; ◦) for integers
1 ≤ i ≤ n. Now let S̃ be a multisurface consisting of s surfaces S 1, S 2, · · · , S s of genus g.
We place each element of A on the base line LB of S̃ . Then the map

CayM(G̃ : A, r) =
s⋃

j=1

CayM(Gi j : A, r)

is such a map that πi j : Cay
M(G̃ : A, r)→ CayM(Gi j : A, r). We therefore get the following

result.

Theorem 5.5.7 For any integers g ≥ 0, n ≥ 1, if there is a Cayley map CayM(Γ : A, r)

of genus g, then there is a map M̃ on multisurface S̃ =
n⋃

i=1

S i consisting of n surfaces of

genus g such that πi(M̃) is a Cayley map, i.e., a transitive map, particularly, these is a
map M̃ on S̃ such that πi(M̃) = CayM(Γ : A, r) for integers 1 ≤ i ≤ n.

Regular Map on Triangle Multigroup. Let Γ̃ =
n⋃
i=1
(Γi; ◦i) be a multigroup, where

(Γi; ◦i) is a f nite triangle group with Γi =
〈
xi, y, zi|x2i = y2 = z2i = (xi ◦i yi)2 = (yi ◦i zi)pi =

(zi ◦i xi)qi = · · · = 1Γ〉 for integers 1 ≤ i ≤ n. Then there is a regular map M(Γi; xi, y, zi)
correspondent to (Γi; ◦i) by Construction 5.5.1.

Not loss of generality, assume that the genus of M(Γi j ; xi j , y, zi j) is p for integers
1 ≤ j ≤ k. Particularly, s = n if M(Γi; xi, y, zi) = M(Γ; x, y, z) for integers 1 ≤ i ≤ n. Now
let S̃ be a multisurface consisting of s surfaces S 1, S 2, · · · , S s of genus p. Choose a f ag g
in M(Γi j ; xi j , y, zi j) with thick sides of g and g ◦i j x identifying with a segment PQ on the
base line LB of S̃ for integers 1 ≤ j ≤ s. Then the map M̃ on S̃ def ned by
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M̃ =
s⋃

j=1

M(Γi j ; xi j , y, zi j)

is such a map that πi j : M̃ → M(Γi j ; xi j , y, zi j), a regular map on S i j . This fact enables one
to get the following result.

Theorem 5.5.8 For any integers g ≥ 0, n ≥ 1 and p, q ≥ 3, if there is a regular map
M(Γ; x, y, z) of genus g correspondent to a triangle group Γ =

〈
x, y, z | x2 = y2 = z2 =

(x ◦ y)2 = (y ◦ z)p = (z ◦ x)q = 1Γ
〉
, then there is a map M̃ on multisurface S̃ =

n⋃

i=1

S i

consisting of n surfaces of genus g such that πi(M̃) is a regular map M(Γi; xi, y, zi), par-
ticularly, there is a map M̃ on S̃ such that πi(M̃) = M(Γ; x, y, z) for integers 1 ≤ i ≤ n.

§5.6 REMARKS

5.6.1 A topological map M is essentially a decomposition of a surface S with com-
ponents homeomorphic to 2-disk, which can be also characterized by the embedding of
graphG[M] on S . Many mathematicians had contributed to the foundation of map theory,
such as those of Tutte in [Tut1], Jones and Singerman in [JoS1], Vince in [Vin1]-[Vn2]
and Bryant and Singerman in [BrS1] characterizing a map by qurdricells or f ags. They
are essentially equivalent. There are many excellent books on these topics today. For
example, [GrT1] and [Whi1] on embedding and topological maps, [MoT1] on the topo-
logical behavior of embeddings and [Liu2]-[Liu4] on algebraic maps with enumerative
theory.

5.6.2 Although it is difficult to determine the automorphism group of a graph in general,
it is easy to f nd the automorphism group of a map. By Theorem 5.3.6, the automorphism
group of map M = (Xα,β,P) is the centralizer of the group 〈α, β,P〉 in the symmetric
group SXα,β

. In fact, there is an efficient algorithm for getting an automorphism group
of map with complexity not bigger than O(ε2(M)). See [Liu1], [Liu3]-[liu4] for details.
Besides, a few mathematicians also characterized automorphism group of map by that of
its underlying graph. This enables one to know that the automorphism group of map is an
extended action subgroup of the semi-arc automorphism group of its underlying graph.
See also [Mao2] and [MLW1] for details.
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5.6.3 The research of regular maps, beginning for searching stellated polyhedra of sym-
metrical beauty, is more early than that of general map, which appeared f rstly in the work
of Kepler in 1619. The well-known such polyhedra are the f ve Platonic polyhedra. There
are two equivalent def nitions for regular map by let the automorphism group of map M
transitive on its quadricells or f ags. Both of them makes the largest possible on auto-
morphisms of a map, i.e., transitive and f xed-free. This enables one knowing that the
automorphism group of a map is transitive on its vertices, edges and faces, and also its
upper bound of regular maps of genus≥ 2. For many years, one construct regular maps
by that of symmetric graphs, such as those of Cayley graphs, complete graphs, cubic
graph and Paley graph on surfaces. The materials in references [Big1]-[Big2], [BiW1]
and [JaJ1] are typical such examples.

Such as those discussions in the well-know book [CoM1] on discrete group with
geometry. A more efficient way for constructing regular map is by that of the triangle
group Γ =

〈
x, y, z | x2 = y2 = z2 = (xy)2 = (yz)p = (zx)q = 1Γ

〉
. In fact, by the barycentric

subdivision of map on surface, a regular map M is unique correspondent to a triangle
group Γ and vice vera. This correspondence turns the question of f nding regular maps to
that of classifying or constructing such triangle groups and enables one to classify regular
maps of small genus. For example, the classif cation of regular maps on Np+2 for an odd
prime p in [DNS1] is by this way, and the classif cation of regular maps for orientable
genus from 2 to 15, non-orientable from 4 to 30 in [CoD1] is also by this way with the
help of parallel program.

5.6.4 A multisurface S̃ is introduced for characterizing hierarchical structures of topo-
logical space. Besides this structure, its base line LB is common and the same as that of
standard surface Op or Nq. We have shown that there is a map M̃ on S̃ such that its projec-
tion on any surface of S̃ is a regular map by applying Cayley maps on f nite groups, and
by regular maps on f nite triangle group. Besides for regular map, we can also consider
embedding question on multisurface S̃ . Since all genus of surface in a multisurface S̃ is
the same, we def ne the genus g(S̃ ) of S̃ to be the genus of its surface.

Let G be a connected graph. Def ne its orientable or non-orientable genus γ̃Om(G),
γ̃Nm(G) on multisurface S̃ consisting of m surfaces S by

γ̃Om(G) = min{ g(S̃ ) | G is 2 − cell embeddable on orinetable multisurface S̃ },

γ̃Nm(G) = min{ g(S̃ ) | G is 2 − cell embeddable on orinetable multisurface S̃ }.
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Then we are easily knowing that γ̃O1 (G) = γ(G) and γ̃N1 (G) = γ̃(G) by def nition. The
problems for embedded graphs following are particularly interesting for researchers.

Problem 5.6.1 Let n,m ≥ 1 be integers. Determine γ̃Om(G) and γ̃Nm(G) for a connected
graph G, particularly, the complete graph Kn and the complete bipartite graph Kn,m.

Problem 5.6.2 Let G be a connected graph. Characterize the embedding behavior of G
on multisurface S̃ , particularly, those embeddings whose every facial walk is a circuit,
i.e, a strong embedding of G on S̃ .

The enumeration of non-isomorphic objects is an important problem in combina-
torics, particular for maps on surface. See [Liu2] and [Liu4] for details. Similar problems
for multisurface are as follows.

Problem 5.6.3 Let S̃ be a multisurface. Enumerate embeddings or maps on S̃ by param-
eters, such as those of order, size, valency of rooted vertex or rooted face, · · ·.

Problem 5.6.4 Enumerate embeddings on multisurfaces for a connected graph G.

For a connected graph G, its orientable, non-orientable genus polynomial gm[G](x),
g̃m[G](x) is def ned to be

gm[G](x) =
∑

i≥0
gOmi(G)x

i and g̃m[G](x) =
∑

i≥0
gNmi(G)x

i,

where gOmi(G), g
N
mi(G) are the numbers of G on orientable or non-orientable multisurface

S̃ consisting of m surfaces of genus i.

Problem 5.6.5 Let m ≥ 1 be an integer. Determine gm[G](x) and g̃m[G](x) for a connected
graph G, particularly, for the complete or complete bipartite graph, the cube, the ladder,
the bouquet, · · ·.



CHAPTER 6.

Lifting Map Groups

The voltage assignment technique on graphs or maps is in fact a construction
of regular coverings of graphs or maps, i.e., covering spaces in lower dimen-
sional cases. For such covering spaces, an interesting problems is that f nding
conditions on the assignment so that an automorphism of graph or map is also
an automorphism of the lifted graph or map, and then apply this technique
to f nding regular maps or solving problems on Klein surfaces. For these ob-
jectives, we introduce topological covering spaces, covering mappings f rst,
and then voltage graphs and maps in Section 6.1. The lifting map group is
discussed in the following section. These conditions such as those of locally
invariant, AJ-uniform and AJ-compatible, and furthermore, a condition for a
f nite group to be that of a map by voltage assignment can be found in Section
6.2, which enables one f nding a formulae related the Euler-Poincaré charac-
teristic with parameters on maps or its quotient maps. These formulae enables
us to discussing the minimum or maximum order of automorphisms of a map,
i.e., conformal transformations realizable by maps M on Riemann or Klein
surfaces in Section 6.5. Section 6.4 presents a combinatorial generalization of
the famous Hurwitz theorem on orientation-preserving automorphism groups
of Riemann surfaces, which enables us to get the upper or lower bounds of
automorphism groups of Klein surfaces. All these discussions support a con-
jecture in forewords of Chapter 5 in [Mao2], i.e., CC conjecture discussed in
the last chapter of this book.
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§6.1 VOLTAGEMAPS

6.1.1 Covering Space. Let S be a topological space. A covering space S̃ of S consisting
of a space S̃ with a continuous mapping p : S̃ → S such that any point x ∈ S possesses an
arcwise connected neighborhood Ux, and any arcwise connected component of p−1(Ux)
is mapped topologically onto Ux by p. Such an opened neighborhoods Ux is called an
elementary neighborhood and p a projection from S̃ to S .

Def nition 6.1.1 Let S , T be topological spaces, x0 ∈ S , y0 ∈ T and f : (T, y0) → (S , x0)
a continuous mapping. If (S̃ , p) is a covering space of S , x̃0 ∈ S̃ , x0 = p(x̃0) and there
exists a mapping f l : (T, y0) → (S̃ , x̃0) such that f = f l ◦ p, then f l is a lifting of f ,
particularly, if f is an arc, f l is called a lifting arc.

The following result asserts the lifting of an arc is uniquely dependent on the initial
point.

Theorem 6.1.1 Let (S̃ , p) be a covering space of S , x̃0 ∈ X̃ and p(x̃0) = x0. Then there
exists a unique lifting arc f l : I → S̃ with initial point x̃0 for each arc f : I → S with
initial point x0.

A complete proof of Theorem 6.1.1 can be found in references [Mas1] or [Mun1],
which applied the property of Lebesgue number on metric space.

Theorem 6.1.2 Let (S̃ , p) be a covering space of S , x̃0 ∈ S̃ and p(x̃0) = x0. Then

(1) the induced homomorphism p∗ : π(S̃ , x̃0)→ π(S , x0) is a monomorphism;
(2) for x̃ ∈ p−1(x0), the subgroups p∗π(S̃ , x̃0) are exactly a conjugacy class of sub-

groups of π(S , x0).

Proof Applying Theorem 6.1.1, for x̃0 ∈ S and p(x̃0) = x0, there is a unique mapping
on loops from S̃ with base point x̃0 to S with base point x0. Now let Li : I → S̃ , i = 1, 2
be two arcs with the same initial point x̃0 in S̃ . We prove that if pL1 ≃ pL2, then L1 ≃ L2.

Notice that pL1 ≃ pL2 implies the existence of a continuous mapping H : I × I → S
such that H(s, 0) = pl1(s) and H(s, 1) = pL2(s). Similar to the proof of Theorem 3.10, we
can f nd numbers 0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1 such that each
rectangle [si−1, si] × [t j−1, t j] is mapped into an elementary neighborhood in S by H.

Now we construct a mapping G : I × I → S̃ with pG = H,G(0, 0) = x̃0 hold by the
following procedure.
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First, we can choose G to be a lifting of H over [0, s1] × [0, t1] since H maps this
rectangle into an elementary neighborhood of p(x̃0). Then we extend the def nition of G
successively over the rectangles [si−1, si] × [0, t1] for i = 2, 3, · · · ,m by taking care that it
is agree on the common edge of two successive rectangles, which enables us to getG over
the strip I × [0, t1]. Similarly, we can extend it over these rectangles I × [t1, t2], [t2, t3], · · ·,
etc.. Consequently, we get a lifting Hl of H, i.e., L1 ≃ L2 by this construction.

Particularly, if L1 and L2 were two loops, we get the induced monomorphism homo-
morphism p∗ : π(S̃ , x̃0)→ π(S , x0). This is the assertion of (1).

For (2), suppose x̃1 and x̃2 are two points of S̃ such that p(x̃1) = p(x̃2) = x0. Choose
a class L of arcs in S̃ from x̃1 to x̃2. Similar to the proof of Theorem 3.1.7, we know that
L = L[a]L−1, [a] ∈ π(S̃ , x̃1) def nes an isomorphism L : π(S̃ , x̃1) → π(S̃ , x̃2). Whence,
p∗(π(S̃ , x̃1)) = p∗(L)π(S̃ , x̃2)p∗(L−1). Notice that p∗(L) is a loop with a base point x0. We
know that p∗(L) ∈ π(S , x0), i.e., p∗π(S̃ , x̃0) are exactly a conjugacy class of subgroups of
π(S , x0). �

Theorem 6.1.3 If (S̃ , p) is a covering space of S , then the sets p−1(x) have the same
cardinal number for all x ∈ S .

Proof For any points x1 and x2 ∈ S , choosing an arc f in S with initial point x1 and
terminal point x2. Applying f , we can def ne a mapping Ψ : p−1(x1) → p−1(x2) by the
following procedure.

For ∀y1 ∈ p−1(x1), we lift f to an arc f l in S̃ with initial point y1 such that p f l = f .
Denoted by y2 the terminal point of f l. Def ne Ψ(y1) = y2.

By applying the inverse arc f −1, we can def ne Ψ−1(y2) = y1 in an analogous way.
Therefore, ψ is a 1 − 1 mapping form p−1(x1) to p−1(x2). �

Usually, this cardinal number of the sets p−1(x) for x ∈ S is called the number of
sheets of the covering space (S̃ , p) on S . If |p−1(x)| = n for x ∈ S , we also say it an
n-sheeted covering.

6.1.2 Covering Mapping. Let M̃ = (X̃α,β, P̃) and M = (Xα,β,P) be two maps. The
map M̃ is called to be covered by map M if there is a mapping π : X̃α,β → Xα,β such that
∀x ∈ X̃α,β,

απ(x) = πα(x), βπ(x) = πβ(x) and πP̃(x) =Pπ(x).

Such a mapping π is called a covering mapping. For ∀x ∈ Xα,β, def ne the quadricell set
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π−1(x) by
π−1(x) = {x̃|x̃ ∈ (X̃α,β and π(x̃) = x}.

Then we konw the following result.

Theorem 6.1.4 Let π : X̃α,β →Xα,β be a covering mapping. Then for any two quadricells
x1, x2 ∈ Xα,β,

(1) |π−1(x1)| = |π−1(x2)|.
(2) If x1 , x2, then π−1(x1)

⋂
π−1(x2) = ∅.

Proof (1) By the def nition of a map, for x1, x2 ∈ Xα,β, there exists an element
σ ∈ ΨJ =< α, β,P > such that x2 = σ(x1).

Since π is an covering mapping from M̃ to M, it is commutative with α, β and P .
Whence, π is also commutative with σ. Therefore,

π−1(x2) = π−1(σ(x1)) = σ(π−1(x1)).

Notice that σ ∈ ΨJ is an 1 − 1 mapping on Xα,β. Hence, |π−1(x1)| = |π−1(x2)|.
(2) If x1 , x2 and there exists an element y ∈ π−1(x1)

⋂
π−1(x2), then there must be

x1 = π(y) = x2. Contradicts the assumption. �

Then we know the following result.

Theorem 6.1.5 Let π : X̃α,β →Xα,β be a covering mapping. Then π is an isomorphism if
and only if π is a 1 − 1 mapping.

Proof If π is an isomorphism between the maps M̃ = (X̃α,β, P̃) and M = (Xα,β,P),
then it must be an 1 − 1 mapping by the def nition, and vice via. �

A covering mapping π from M̃ to M naturally induces a mapping π∗ by the condition
following:

∀x ∈Xα,β, g ∈ AutM̃, π∗ : g→ πgπ−1(x).

Whence, we have the following result.

Theorem 6.1.6 If π : X̃α,β → Xα,β is a covering mapping, then the induced mapping π∗

is a homomorphism from AutM̃ to AutM.

Proof First, we prove that for ∀g ∈ AutM̃ and x ∈ Xα,β, π∗(g) ∈ AutM. Notice that
for ∀g ∈ AutM̃ and x ∈Xα,β,

πgπ−1(x) = π(gπ−1(x)) ∈Xα,β
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and ∀x1, x2 ∈Xα,β, if x1 , x2, then πgπ−1(x1) , πgπ−1(x2). Otherwise, let

πgπ−1(x1) = πgπ−1(x2) = x0 ∈Xα,β.

Then we must have that x1 = πg−1π−1(x0) = x2, which contradicts to the assumption.
By def nition, for x ∈ Xα,β we have that

π∗α(x) = πgπ−1α(x) = πgαπ−1(x) = παgπ−1(x) = απgπ−1(x) = απ∗(x),

π∗β(x) = πgπ−1β(x) = πgβπ−1(x) = πβgπ−1(x) = βπgπ−1(x) = βπ∗(x).

Now π(P̃) =P . We therefore get that

π∗P(x) = πgπ−1P(x) = πgP̃π−1(x) = πP̃gπ−1(x) =Pπgπ−1(x) = Pπ∗(x).

Consequently, πgπ−1 ∈ AutM, i.e., π∗ : AutM̃ → AutM.
Now we prove that π∗ is a homomorphism from AutM̃ to AutM. In fact, for ∀g1, g2 ∈

AutM̃, we have that

π∗(g1g2) = π(g1g2)π−1 = (πg1π−1)(πg2π−1) = π∗(g1)π∗(g2).

Whence, π∗ : AutM̃ → AutM is a homomorphism. �

6.1.3 Voltage Map with Lifting. Let G be a connected graph and (Γ; ◦) a group. For
each edge e ∈ E(G), e = uv, an orientation on e is such an orientation on e from u to
v, denoted by e = (u, v), called the plus orientation and its minus orientation, from v
to u, denoted by e−1 = (v, u). For a given graph G with plus and minus orientation on
edges, a voltage assignment on G is a mapping σ from the plus-edges of G into a group Γ
satisfying σ(e−1) = σ−1(e), e ∈ E(G). These elements σ(e), e ∈ E(G) are called voltages,
and (G, σ) a voltage graph over the group (Γ; ◦).

For a voltage graph (G, σ), its lifting Gσ = (V(Gσ), E(Gσ); I(Gσ)) is def ned by

V(Gσ) = V(G) × Γ, (u, a) ∈ V(G) × Γ abbreviated to ua;

E(Gσ) = {(ua, va◦b)|e+ = (u, v) ∈ E(G), σ(e+) = b}

and
I(Gσ) = {(ua, va◦b)|I(e) = (ua, va◦b) i f e = (ua, va◦b) ∈ E(Gσ)}.
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This is a |Γ|-sheet covering of the graph G. For example, let G = K3 and Γ = Z2.
Then the voltage graph (K3, σ) with σ : K3 → Z2 and its lifting are shown in Fig.6.1.1.

u

w

10

0
(G, σ)

v

u0

u1

v0
v1

w0

w1

Gσ

Fig.6.1.1

We can f nd easily that there is a unique lifting path in Γl with an initial point x̃ for
each path with an initial point x in Γ, and for ∀x ∈ Γ, |p−1(x)| = 2.

For f nding a homomorphism between Klein surfaces, voltage maps are extensively
used, which is introduced by Gustin in 1963 and extensively used by Youngs in 1960s for
proving the Heawood map coloring theorem and generalized by Gross in 1974 ([GrT1]).
By applying voltage graphs, the 2-factorable graphs are enumerated in [MaT2] also.

Now we present a formally algebraic def nition for voltage maps, not using geomet-
rical intuition following.

Def nition 6.1.2 Let M = (Xα,β,P) be a map and (Γ; ◦) a f nite group. A pair (M, ϑ) is a
voltage map with group (Γ; ◦) if ϑ : Xα,β → Γ, satisfying conditions following:

(1) For ∀x ∈ Xα,β, ϑ(αx) = ϑ(x), ϑ(αβx) = ϑ(βx) = ϑ−1(x);
(2) For ∀F = (x, y, · · · , z)(βz, · · · , βy, βx) ∈ F(M), the face set of M, ϑ(F) =

ϑ(x)ϑ(y) · · ·ϑ(z) and 〈ϑ(F)|F ∈ F (u), u ∈ V(M)〉 = Γ, where F (u) denotes all the faces
incident with vertex u.

For a voltage map (M, ϑ), def ne

Xαϑ,βϑ =Xα,β × Γ,

Pϑ =
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

∏

g∈Γ
(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)

and
αϑ =

∏

x∈Xα,β, g∈Γ

(xg, αxg), βϑ =
∏

x∈Xα,β, g∈Γ
(xg, βxgϑ(x)),

where ug denotes the element (u, g) ∈ Xα,β × Γ.
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Then it can be shown immediately that Mϑ = (Xαϑ,βϑ ,Pϑ) also satisf es the condi-
tions of map, and with the same orientation as map M. Whence, we def ne the lifting map
of a voltage map in the following def nition.

Def nition 6.1.3 Let (M, ϑ) be a voltage map with group (Γ; ◦). Then the map Mϑ =

(Xϑ
α,β
,Pϑ) is def ned to be the lifting map of (M, ϑ).

There is a natural projection π : Mϑ → M from the lifted map Mϑ to M by π(xg) = x
for ∀g ∈ Γ and x ∈Xα,β(M), which means that Mϑ is a |Γ|-cover M. Denote by

π−1(x) = { xg ∈ Xα,β(Mϑ) | g ∈ Γ },

called the f ber over x ∈ Xα,β(M). For a vertex v = (C)(αCα−1) ∈ V(M), let {C} denote
the set of quadricells in cycle C. Then the following result is obvious by def nition.

Theorem 6.1.7 The numbers of vertices and edges in a lifting map Mϑ of voltage map
(M, ϑ) with group (Γ; ◦) are respectively

ν(Mϑ) = ν(M)|Γ| and ε(Mϑ) = ε(M)|Γ|.

Theorem 6.1.8 Let F = (C∗)(αC∗α−1) be a face in the map M. Then there are |Γ|/o(F)
faces in the lifting map Mϑ with group (Γ; ◦) of length |F |o(F) lifted from the face F,
where o(F) denotes the order of

∏
x∈{C}

ϑ(x) in group (Γ; ◦).

Proof Let F = (u, v · · · ,w)(βw, · · · , βv, βu) be a face in the map M and k is the length
of F. Then, for ∀g ∈ Γ the conjugate cycles

(C∗)ϑ = (ug, vgϑ(u), · · · , ugϑ(F), vgϑ(F)ϑ(u), · · · ,wgϑ(F)2 , · · · ,wgϑo(F)−1(F))

β(ug, vgϑ(u), · · · , ugϑ(F), vgϑ(F)ϑ(u), · · · ,wgϑ(F)2 , · · · ,wgϑo(F)−1(F))−1β−1.

is a face in Mϑ with length ko(F) by def nition. Therefore, there are |Γ|/o(F) faces in the
lifting map Mϑ. �

We therefore get the Euler-Poincaré characteristic of a lifted map following.

Theorem 6.1.9 The Euler-Poincaré characteristic χ(Mϑ) of the lifting map Mϑ of a volt-
age map (M, ϑ) with group (Γ; ◦) is

χ(Mϑ) = |Γ|(χ(M) +
∑

m∈O(F(M))
(−1 + 1

m
)),
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where O(F(M)) denotes the set of faces in M of order o(F).

Proof According to the Theorems 6.1.7 and 6.1.8, the lifting map Mϑ has |Γ|ν(M)
vertices, |Γ|ε(M) edges and |G| ∑

m∈O(F(M))

1
m
faces. Therefore, we know that

χ(Mϑ) = ν(Mϑ) − ε(Mϑ) + φ(Mϑ)

= |Γ|ν(M) − |Γ|ε(M) + |Γ|
∑

m∈O(F(M))

1
m

= |G|(χ(M) − φ(M) +
∑

m∈O(F(M))

1
m
)

= |G|(χ(M) +
∑

m∈O(F(M))
(−1 + 1

m
)). �

§6.2 GROUP BEING THAT OF AMAP

6.2.1 Lifting Map Automorphism. Let (M, σ) be a voltage map with σ : Xα,β → Γ, u ∈
V(M) and W = x1x2 · · · xk a walk encoded by the corresponding sequence of quadricells
xi, i = 1, 2, · · · , k in M, i.e., the qudricell after xi is Pαβxi by the traveling ruler on M.
Def ne the net voltage onW to be the product

σ(W) = σ(x1) ◦ σ(x2) ◦ · · · ◦ σ(xk)

and the local voltage group Γ(u) by

Γ(u) = { σ(W) | W is a closed walk based at a quadricell u }.

By Def nition 6.1.2, we know that Γ(u) = Γ for ∀u ∈ Xα,β(M). For x ∈ Xα,β, denote
by Π(M, x) the set of all such closed walks based at x. Then Π(M, x) = π1(M, x), the
fundamental group of M based at x.

Let σ1, σ2 : Xα,β → Γ be two voltage assignments on a map M = (Xα,β,P) and
idM an identity transformation onXα,β, i.e., both of Mσ1 and Mσ2 are |Γ|-covers of M with
natural projections π1 : Mσ1 → M and π2 : Mσ2 → M on M. Then we know

Xα,β(Mσ1) =Xα,β(Mσ2) = { xg | x ∈Xα,β(M), g ∈ Γ }

by def nition. Then σ1, σ2 are said to be equivalent if there exists an isomorphism τ :
Mσ1 → Mσ2 that makes the following diagram
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? ?

Mσ1 Mσ2

M

τ

M-idM

π1 π2

commutate. The following result is fundamental.

Theorem 6.2.1 Let σ1, σ2 : Xα,β → Γ be two voltage assignments on a map M =
(Xα,β,P), u ∈ Xα,β(M). Then σ1, σ2 are equivalent if and only if there exists an auto-
morphism τ of group Γ such that

τσ1(W) = σ2(W)

for every closed walk W in M based at u.

Proof Choose a closed walk W in map M based at u. If σ1 and σ2 are equivalent,
then there exists an automorphism τ : Mσ1 → Mσ2 such that τ(Wσ1) = Wσ2 . Def ne
τ∗ : Γ → Γ by τ∗ : τσ1(W) → σ2(W). Let W ′ be another closed walk in M based at u.
Notice thatWW ′ is also a closed walk based at u in M. We f nd that

τσ1(WW ′) = τσ1(W)τσ1(W ′) = σ2(W)σ2(W ′),

i.e., τ∗(σ1(W)σ1(W ′)) = τ∗(σ1(W))τ∗(σ1(W ′)). Thus τ∗ is an automorphism of Γ. By
def nition, we are easily get that τ∗σ1(W) = σ2(W).

Conversely, if there exists an automorphism τ′ ∈ AutΓ such that τ′σ1(W) = σ2(W)
for every closed walk W in M based at u, let τ : Xα,β(Mσ1) → Xα,β(Mσ1) be determined
by τ : Wτ′σ1 → Wσ2 , i.e, τ′σ1W(τ′σ1)−1 = σ2Wσ−12 . Then it is easily to know that

τ (Pαβ)σ1 τ−1 = (τ′σ1)


∏

(x,···,z)(αz,···,αx)∈V(M), g∈Γ
(xg, · · · , zg)(αzg, · · · , αxg)

 (τ
′σ1)−1

=
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M), g∈Γ
τ′σ1(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)(τ′σ1)−1

=
∏

(x,···,z)(αz,···,αx)∈V(M), g∈Γ
σ2(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)σ−12

= (Pαβ)σ2
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i.e.,
Pσ1τ = τPσ2

and
ασ1τ = τασ2 , βσ1τ = τβσ1 .

Thus τ is an isomorphism from Mσ1 to Mσ2 by def nition. Whence, we know that σ1 and
σ2 are equivalent. �

Such an isomorphism τ from Mσ1 to Mσ2 induced by an automorphism τ′ of M is
called a lifted isomorphism of τ′. Particularly, if σ1 = σ2 = σ, a lifted isomorphism from
Mσ1 to Mσ2 is called a lifted automorphism of τ′. Theorem 6.2.1 enables one to get the
following result.

Theorem 6.2.2 An automorphism φ of voltage map M with assignment σ→ Γ is a lifted
automorphism of map Mσ if and only if every closed walk W with net voltage σ(W) = 1Γ
implies that σ(φ(W)) = 1Γ in (M, σ).

Furthermore, let M = (Xα,β,P) be a map, (Γ; ◦) a f nite group and A ≤ AutM, a
map group. We say that a voltage assignment σ : Xα,β → Γ is locally A -invariant at a
quadricell u if, for ∀τ ∈ A and every walkW ∈ Π(M, u), we have

σ(W) = 1Γ ⇒ σ(τ(W)) = 1Γ.

Particularly, a voltage assignment is locally τ-invariant for τ ∈ AutM if it is locally in-
variant respect to the group 〈τ〉 generated by τ. Then Theorem 6.2.2 implies the following
conclusion.

Corollary 6.2.1 Let M = (Xα,β,P) be a map with a voltage assignment σ : Xα,β → Γ,
π : Mσ → M and A ≤ AutM. Then A ≤ AutMσ if and only if σ is locallyA -invariant.

Notice that a map M = (Xα,β,P) is regular if |AutM| = |Xα,β|. We know the
following result by Corollary 6.2.1.

Corollary 6.2.2 Let M be a regular map with a locally AutM-invariant voltage assign-
ment σ : Xα,β → Γ. Then Mσ is also regular.

Proof Notice that the action g̃ : uh → ug◦h naturally induced an automorphism on
f ber π−1(u) of Mσ for ∀u ∈ α,β and g ∈ Γ. Now all automorphisms of M are lifted to Mσ.
Whence, |AutMσ| = |Γ||AutM| = 4|Γ|ε(M) = |Xα,β(Mσ)|. Thus Mσ is a regular map. �
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6.2.2 Map Exponent Group. Let M = (Xα,β,P) be a map. An integer k is an exponent
of M if the map Mk = (Xα,β,Pk) is isomorphic to M, i.e., there exists a permutation τ on
Xα,β such that τα = ατ, τβ = βτ and τPk = Pτ. Such a permutation τ ∈ Aut 1

2
G[M] is

called an isomorphism associated with exponent k.
If k is an exponent of M, then Pk is also a basic permutation on Xα,β with Axioms

1 − 2 hold. So gcd(k, ρM(v)) = 1 for v ∈ V(M). Consequently, k must be a coprime with
the order o(P) of P , the least common multiple of valencies of vertices in M.

Obviously, 1 is an exponent of M. On the other hand, the integer −1 is an exponent
if M is isomorphic to its mirror (Xα,β,P−1). Now let l ≡ k(modo(P)) and k an exponent
of M. Then P l = Pk. Thus l is also an exponent of M. Let k, l be two exponents
associated with isomorphisms τ, θ, respectively. Then

Pklθτ = (Pk)lθτ = θP lτ = θτP ,

i.e., kl is also an exponent of M associated with isomorphism θτ ∈ Aut 1
2
G[M]. We

therefore f nd the following result.

Theorem 6.2.3 Let M be a map. Then all residue classes of exponents mod(o(P)) of M
form a group, and all isomorphisms associated with exponents of M form a subgroup of
Aut 1

2
G[M], denoted by Ex(M) and Exo(M), respectively.

Now let (Γ; ◦) be a f nite group and let ι : Γ → Ex(M), Ψ : Exo(M) → Ex(M) be
homomorphisms with KerΨ = AutM = A. Denote by AJ = Ψ−1(J), where J = ι(Γ). Then
the derived map Mσ,ι is a map (Xασ,ι,βσ,ι ,Pσ,ι) with

Xασ,ι,βσ,ι =Xα,β × Γ

and
Pσ,ι =

∏

(x,y,···,z)(αz,···,αy,αx)∈V(M), g∈Γ

(
(xg, yg, · · · , zg)(αzg, · · · , αyg, αxg)

)ι(g)
,

ασ,ι =
∏

x∈Xα,β, g∈Γ

(xg, αxg), βσ,ι =
∏

x∈Xα,β, g∈Γ
(xg, βxgϑ(x)).

A voltage assignment σ : Xα,β(M) → Γ is called AJ-uniform if for every u-based
closed walk W on M with σ(W) = 1Γ and every isomorphism τ ∈ AJ , one has σ(τ(W)) =
1Γ. Similarly, an exponent homomorphism τ of M is AJ-compatible with σ if for every
u-based walk W and every τ ∈ AJ , one always has ισ(W) = ισ(τ(W)). Then we have the
following result.
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Theorem 6.2.4 Let M be an orientable regular map, σ : Xα,β(M)→ Γ a voltage assign-
ment and ι : Γ → Ex(M) with ι(Γ) = J. Then Mσ,ι is an orientable regular map if σ is
AJ-uniform and τ is AJ-compatible with σ.

A complete proof of theorem 6.2.4 was established in [NeS2]. Certainly, the reader
can f nd more results on constructing regular maps by graphs in [NeS1]-[NeS2].

6.2.3 Group being That of a Lifted Map. A permutation group Γ action on Ω is called
f xed-free if Γx = 1Γ for ∀x ∈ Ω. We have the following result on f xed-free permutation
group.

Lemma 6.2.1 Any automorphism group Γ of a map M = (Xα,β,P) is f xed-free onXα,β.

Proof Notice that Γ ≤ AutM, we get that Γx ≤ (AutM)x for ∀x ∈ Xα,β. We have
known that (AutM)x = 1Γ. Whence, there must be that Γx = 1Γ, i.e., Γ is f xed-free. �

Notice that the automorphism group of a lifted map has a obvious subgroup deter-
mined by the following lemma.

Lemma 6.2.2 Let Mϑ be a lifted map of a voltage assignment ϑ : Xα,β → Γ. Then Γ is
isomorphic to a f xed-free subgroup of AutMϑ on V(Mϑ).

Proof For ∀g ∈ Γ, we prove that the induced action g∗ : Xαϑ,βϑ → Xαϑ,βϑ by
g∗ : xh → xgh is an automorphism of map Mϑ.

In fact, g∗ is a mapping onXαϑ,βϑ and for ∀xu ∈Xαϑ,βϑ , we know that g∗ : xg−1u → xu.
Now if for xh, y f ∈ Xαϑ,βϑ , xh , y f , we have that g∗(xh) = g∗(y f ). Thus xgh = yg f

by the def nition. So we must have x = y and gh = g f , i.e., h = f . Whence, xh = y f ,
contradicts to the assumption. Therefore, g∗ is 1 − 1 on Xαϑ,βϑ .

We prove that for xu ∈Xαϑ,βϑ, g∗ is commutative with αϑ, βϑ and Pϑ. Notice that

g∗αϑxu = g∗(αx)u = (αx)gu = αxgu = αg∗(xu);

g∗βϑ(xu) = g∗(βx)uϑ(x) = (βx)guϑ(x) = βxguϑ(x) = βϑ(xgu) = βϑg∗(xu)

and

g∗Pϑ(xu)

= g∗
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

∏

u∈G
(xu, yu, · · · , zu)(αzu, · · · , αyu, αxu)(xu)

= g∗yu = ygu
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=
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)

∏

gu∈G
(xgu, ygu, · · · , zgu)(αzgu, · · · , αygu, αxgu)(xgu)

= Pϑ(xgu) =Pϑg∗(xu).

Therefore, g∗ is an automorphism of the lifted map Mϑ.
To see that g∗ is f xed-free on V(M), choose ∀u = (xh, yh, · · · , zh)(αzh, · · · , αyh, αxh) ∈

V(M), h ∈ Γ. If g∗(u) = u, i.e.,

(xgh, ygh, · · · , zgh)(αzgh, · · · , αygh, αxgh) = (xh, yh, · · · , zh)(αzh, · · · , αyh, αxh),

assume that xgh = wh, where wh ∈ {xh, yh, · · · , zh, αxh, αyh, · · · , αzh}. By def nition, there
must be that x = w and gh = h. Therefore, g = 1Γ, i.e., ∀g ∈ Γ, g∗ is f xed-free on V(M).
Def ne τ : g∗ → g. Then τ is an isomorphism between the action of elements in Γ on
Xαϑ,βϑ and the group Γ itself. �

According to Lemma 6.2.1, for a given map M and a group Γ ≤ AutM, we def ne a
quotient map M/Γ = (Xα,β/Γ,P/Γ) as follows.

Xα,β/Γ = {xΓ|x ∈Xα,β},

where xΓ denotes the orbit of Γ action on x in Xα,β and

P/Γ =
∏

(x,y,···,z)(αz,···,αy,αx)∈V(M)
(xΓ, yΓ, · · ·)(· · · , αyΓ, αxΓ)

since Γ action on Xα,β is f xed-free.
Such a map M may be not a regular covering of its quotient M/Γ. We have the

following result characterizing f xed-free automorphism groups of map on V(M).

Theorem 6.2.5 An f nite group (Γ; ◦) is a f xed-free automorphism group of map M =
(Xα,β,P) on V(M) if and only if there is a map (M/Γ, Γ) with a voltage assignment
ϑ : Xα,β/Γ→ Γ such that M � (M/Γ)ϑ.

Proof The necessity of the condition is already proved in the Lemma 2.2.2. We only
need to prove its sufficiency.

Denote by π : M → M/Γ the quotient mapping from M to M/Γ. For each element of
π−1(xΓ), we give it a label. Choose x ∈ π−1(xΓ). Assign its label l : x→ x1Γ , i.e., l(x) = x1Γ .
Since the group Γ acting on Xα,β is f xed-free, if u ∈ π−1(xΓ) and u = g(x), g ∈ Γ, we label
u with l(u) = xg. Whence, each element in π−1(xΓ) is labeled by a unique element in Γ.
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Now we assign voltages on the quotient map M/Γ = (Xα,β/Γ,P/Γ). If βx = y, y ∈
π−1(yΓ) and the label of y is l(y) = y∗h, h ∈ Γ, where, l(y∗) = 1Γ, then we assign a voltage
h on xΓ,i.e., ϑ(xΓ) = h. We should prove this kind of voltage assignment is well-done,
which means that we must prove that for ∀v ∈ π−1(xΓ) with l(v) = j, j ∈ Γ, the label of βv
is l(βv) = jh. In fact, by the previous labeling technique, we know that the label of βv is

l(βv) = l(βgx) = l(gβx) = l(gy) = l(ghy∗) = gh.

Denote by Ml the labeled map M on each element in Xα,β. Whence, Ml
� M. By the

previous voltage assignment, we also know that Ml is a lifting of the quotient map M/Γ
with the voltage assignment ϑ : Xα,β/Γ→ Γ. Therefore,

M � (M/Γ)ϑ.

This completes the proof. �

According to the Theorem 6.2.5, we get the following result for a group to be a map
group.

Theorem 6.2.6 If a group Γ ≤ AutM is f xed-free on V(M), then

|Γ|(χ(M/Γ) +
∑

m∈O(F(M/Γ))

(−1 + 1
m
)) = χ(M).

Proof By the Theorem 6.2.5, we know that there is a voltage assignment ϑ on the
quotient map M/Γ such that

M � (M/Γ)ϑ.

Applying Theorem 6.1.9, we know the Euler characteristic of map M is

χ(M) = |Γ|(χ(M/Γ) +
∑

m∈O(F(M/Γ))
(−1 + 1

m
)). �

Theorem 6.2.6 has some applications for determining the automorphism group of a
map such as those of results following.

Corollary 6.2.3 If M is an orientable map of genus p, Γ ≤ AutM is f xed-free on V(M)
and the genus of the quotient map M/Γ is γ, then

|Γ| = 2p − 2
2γ − 2 + ∑

m∈O(F(M/Γ))
(1 − 1

m ))
.
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Particularly, if M/Γ is planar, then

|Γ| = 2p − 2
−2 + ∑

m∈O(F(M/Γ))
(1 − 1

m ))
.

Corollary 6.2.4 If M is a non-orientable map of genus q, Γ ≤ AutM is f xed-free on
V(M) and the genus of the quotient map M/Γ is δ, then

|Γ| = q − 2
δ − 2 + ∑

m∈O(F(M/Γ))
(1 − 1

m ))
.

Particularly, if M/Γ is projective planar, then

|Γ| = q − 2
−1 + ∑

m∈O(F(M/Γ))
(1 − 1

m ))
.

By applying Theorem 6.2.5, we can also f nd the Euler characteristic of the quotient
map, which enables us to get the following result for a group being that of map.

Theorem 6.2.7 If a group Γ ≤ AutM, then

χ(M) +
∑

g∈Γ,g,1Γ

(|Φv(g)| + |Φ f (g)|) = |Γ|χ(M/Γ),

where, Φv(g) = {v|v ∈ V(M), vg = v}, Φ f (g) = { f | f ∈ F(M), f g = f }, and if Γ is f xed-free
on V(M), then

χ(M) +
∑

g∈Γ,g,1Γ

|Φ f (g)| = |Γ|χ(M/Γ).

Proof By the def nition of quotient map, we know that

φv(M/Γ) = orbv(Γ) =
1
|Γ|

∑

g∈Γ
|Φv(g)|

and

φ f (M/Γ) = orb f (Γ) =
1
|Γ|

∑

g∈Γ
|Φ f (g)|,

by applying the Burnside lemma. Since Γ is f xed-free on Xα,β by Lemma 6.1.4, we also
know that

ε(M/Γ) =
ε(M)
|Γ| .
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Applying the Euler-Poincaré formula for the quotient map M/Γ, we get that
∑
g∈Γ
|Φv(g)|

|Γ| − ε(M)|Γ| +

∑
g∈Γ
|Φ f (g)|

|Γ| = χ(M/Γ).

Whence, ∑

g∈Γ
|Φv(g)| − ε(M) +

∑

g∈Γ
|Φ f (g)| = |Γ|χ(M/Γ).

Notice that ν(M) = |Φv(1Γ)|, φ(M) = |Φ f (1Γ)| and ν(M) − ε(M) + φ(M) = χ(M). We f nd
that

χ(M) +
∑

g∈Γ,g,1Γ

(|Φv(g)| + |Φ f (g)|) = |Γ|χ(M/Γ).

Furthermore, if Γ is f xed-free on V(M), by Theorem 6.2.5 there is a voltage assign-
ment ϑ on the quotient map M/Γ such that M � (M/G)ϑ. According to Theorem 6.1.7,
there must be

ν(M/Γ) =
ν(M)
|Γ| .

Whence,
∑
g∈Γ
|Φv(g)| = ν(M) and

∑
g∈Γ,g,1Γ

(|Φv(g)| = 0. Therefore, we get that

χ(M) +
∑

g∈Γ,g,1Γ

|Φ f (g)| = |Γ|χ(M/Γ). �

Consider the action properties of group Γ on F(M), we immediately get some inter-
esting results following.

Corollary 6.2.5 If Γ ≤ AutM is f xed-free on V(M) and transitive on F(M), for example,
M is regular and Γ = AutM, then M/Γ is an one face map and

χ(M) = |Γ|(χ(M/Γ) − 1) + φ(M).

Corollary 6.2.6 For an one face map M, if Γ ≤ AutM is f xed-free on V(M), then

χ(M) − 1 = |Γ|(χ(M/Γ) − 1),

and |Γ|. Particularly, |AutM| is an integer factor of χ(M) − 1.

Remark 6.2.1 For a one face planar map, i.e., the plane tree, the only f xed-free auto-
morphism group on its vertices is the trivial group by the Corollary 6.2.6.
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§6.3 MEASURES ONMAPS

On the classical geometry, a central question is to determine the measures on objects,
such as those of the distance, angle, area, volume, curvature, . . .. For maps being that of
a combinatorial model of Klein surfaces, we also wish to introduce various measures on
maps and then enlarge its application to more branches of mathematics.

6.3.1 Angle on Map. For a map M = (Xα,β,P), x ∈ Xα,β, the permutation pair
{(x,Px), (αx,P−1αx)} is called an angle of M incident with x introduced by Tutte in
[Tut1]. We prove that any automorphism of a map is a conformal mapping and affirm the
Theorem 5.3.12 in Chapter 5 again in this section.

We def ne the angle transformationΘ of a map M = (Xα,β,P) by

Θ =
∏

x∈Xα,β

(x,Px).

Then we have

Theorem 6.3.1 Any automorphism of map M = (Xα,β,P) is conformal.

Proof By the def nition, for ∀g ∈ AutM we know that

αg = gα, βg = gβ and Pg = gP .

Therefore, for ∀x ∈Xα,β,
Θg(x) = (g(x),Pg(x))

and
gΘ(x) = g(x,Px) = (g(x),Pg(x)).

Whence, we get that for ∀x ∈Xα,β, Θg(x) = gΘ(x). So Θg = gΘ,i.e., gΘg−1 = Θ.
Since for ∀x ∈Xα,β, gΘg−1(x) = (g(x),Pg(x)) and Θ(x) = (x,P(x)), we get that

(g(x),Pg(x)) = (x,P(x)).

Thus g is a conformal mapping. �

6.3.2 Non-Euclid Area on Map. For a voltage map (M, σ) with a assignment σ :
Xα,β(M)→ Γ, its non-Euclid area µ(M, Γ) is def ned by

µ(M, Γ) = 2π(−χ(M) +
∑

m∈O(F(M))
(−1 + 1

m
)).
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Particularly, since any map M can be viewed as a voltage map (M, 1Γ), we get the non-
Euclid area of a map M

µ(M) = µ(M, 1Γ) = −2πχ(M).

Notice that the area of a map is only dependent on the genus of the surface. We know
the following result.

Theorem 6.3.2 Two maps on one surface S have the same non-Euclid area.

By the non-Euclid area, we f nd the Riemann-Hurwitz formula for map in the fol-
lowing.

Theorem 6.3.3 If Γ ≤ AutM is f xed-free on V(M), then

|Γ| = µ(M)
µ(M/Γ, ϑ)

,

where ϑ is constructed in the proof of the Theorem 6.2.5.

Proof According to the Theorem 6.2.6, we know that

|Γ| = −χ(M)
−χ(M) + ∑

m∈O(F(M))
(−1 + 1

m )

=
−2πχ(M)

2π(−χ(M) + ∑
m∈O(F(M))

(−1 + 1
m ))
=

µ(M)
µ(M/Γ, ϑ)

. �

As an interesting result, we can obtain the same result for the non-Euclid area of a
triangle as in the classical differential geometry following, seeing [Car1] for details.

Theorem 6.3.4 The non-Euclid area µ(∆) of a triangle ∆ on surface S with internal
angles η, θ, σ is

µ(∆) = η + θ + σ − π.

Proof According to the Theorems 4.2.1 and 6.2.5, we can assume that there exists
a triangulation M with internal angles η, θ, σ on S , and with an equal non-Euclid area on
each triangular disk. Then

φ(M)µ(∆) = µ(M) = −2πχ(M)

= −2π(ν(M) − ε(M) + φ(M)).
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Since M is a triangulation, we know that 2ε(M) = 3φ(M). Notice that the sum of all the
angles in the triangles on the surface S is 2πν(M). We get that

φ(M)µ(∆) = −2π(ν(M) − ε(M) + φ(M)) = (2ν(M) − φ(M))π

=

φ(M)∑

i=1

[(η + θ + σ) − π] = φ(M)(η + θ + σ − π).

Whence, µ(∆) = η + θ + σ − π. �

§6.4 A COMBINATORIAL REFINEMENT OF HURIWTZ THEOREM

6.4.1 Combinatorially Huriwtz Theorem. In 1893, Hurwitz obtained a famous result
on orientation-preserving automorphism groups Aut+S of Riemann surfaces S ([BEGG1],
[FaK1] and [GrT1]) following:

For a Riemann surface S of genus g(S) ≥ 2, Aut+S ≤ 84(g(S) − 1).

We have established the combinatorial model for Klein surfaces, especially, the Riemann
surfaces by maps. Then what is its combinatorial counterpart? What can we know the
bound for the automorphisms group of map?

For a given graph Γ, a graphical property P is def ned to be a family of its subgraphs,
such as, regular subgraphs, circuits, trees, stars, wheels, · · ·. Let M = (Xα,β,P) be a map.
Call a subset A of Xα,β has the graphical property P if its underlying graph of possesses
property P. Denote byA(P,M) the set of all the A subset with property P in the map M.

For ref ning the Huriwtz theorem, we get a general combinatorial result in the fol-
lowing.

Theorem 6.4.1 Let M = (Xα,β,P) be a map. Then for ∀H ≤ AutM,

[|vH ||v ∈ V(M)] | |H|

and
|H| | |A||A(P,M)|,

where�[a, b, · · ·] denotes the least common multiple of a, b, · · ·.
Proof According to Theorem 2.1.1(3), for ∀v ∈ V(M), |H| = |Hv||vH |. So |vH | | |H|.

Whence,
[|vH ||v ∈ V(M)] | |H|.
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We have know that the action of H onXα,β is f xed-free by Theorem 5.3.5, i.e., ∀x ∈Xα,β,
there must be |Hx| = 1. We consider the action of the automorphism group H onA(P,M).

Notice that if A ∈ A(P,M), then for ∀g ∈ H, Ag) ∈ A(P,M), i.e., AH ⊆ A(P,M).
Thus the action of H on A(P,M) is closed. Whence, we can classify the elements in
A(P,M) by H. For ∀x, y ∈ A(P,M), def ne x ∼ y if and only if there is an element
g, g ∈ H such that xg = y.

Since |Hx| = 1, i.e., |xH | = |H|, each orbit of H action on Xα,β has a same length |H|.
By the previous discussion, the action of H on A(P,M) is closed. Therefore, the length
of each orbit of H action onA(P,M) is |H|. Notice that there are |A||A(P,M)| quadricells
inA(P,M). We get that

|H| | |A||A(P,M)|.

This completes the proof. �

Choose the property P to be tours with each edge appearing at most 2 in the map M.
Then we get the following results by the Theorem 6.4.1.

Corollary 6.4.1 Let T r2 be the set of tours with each edge appearing 2 times. Then for
H ≤ AutM,

|H| | (l|T r2|, l = |T | =
|T |
2
≥ 1, T ∈ T r2, ).

Let T r1 be the set of tours without repeat edges. Then

|H| | (2l|T r1|, l = |T | =
|T |
2
≥ 1, T ∈ T r1, ).

Particularly, denote by φ(i, j) the number of faces in M with facial length i and singular
edges j, then

|H| | ((2i − j)φ(i, j), i, j ≥ 1),

where,(a, b, · · ·) denotes the greatest common divisor of a, b, · · ·.

Corollary 6.4.2 Let T be the set of trees in the map M. Then for H ≤ AutM,

|H| | (2ltl, l ≥ 1),

where tl denotes the number of trees with l edges.

Corollary 6.4.3 Let vi be the number of vertices with valence i. Then for H ≤ AutM,

|H| | (2ivi, i ≥ 1).
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6.4.2 Application to Klein Surface. Theorem 6.4.1 is a combinatorial ref nement of the
Hurwitz theorem. Applying it, we can get the automorphism group of map as follows.

Theorem 6.4.2 Let M be an orientable map of genus g(M) ≥ 2 and Γ+ ≤ Aut+M,
Γ ≤ AutM. Then

|Γ+| ≤ 84(g(M) − 1) and |Γ| ≤ 168(g(M) − 1).

Proof Def ne the average vertex valence ν(M) and the average face valence φ(M) of
a map M by

ν(M) =
1

ν(M)

∑

i≥1
iνi,

φ(M) =
1

φ(M)

∑

j≥1
jφ j,

where,ν(M),φ(M),φ(M) and φ j denote the number of vertices, faces, vertices of valence i
and faces of valence j, respectively. Then we know that ν(M)ν(M) = φ(M)φ(M) = 2ε(M).
Whence, ν(M) =

2ε(M)
ν(M)

and φ(M) =
2ε(M)
φ(M)

. According to the Euler formula, we have

that
ν(M) − ε(M) + φ(M) = 2 − 2g(M),

where,ε(M), g(M) denote the number of edges and genus of the map M. We get that

ε(M) =
2(g(M) − 1)

(1 − 2
ν(M)
− 2

φ(M)
)
.

Choose the integers k = ⌈ν(M)⌉ and l = ⌈φ(M)⌉. We f nd that

ε(M) ≤ 2(g(M) − 1)
(1 − 2

k −
2
l )
.

Because of 1 − 2
k
− 2
l
> 0, So k ≥ 3, l >

2k
k − 2. Calculation shows that the minimum

value of 1 − 2
k
− 2
l
is

1
21

and attains the minimum value if and only if (k, l) = (3, 7) or
(7, 3). Therefore,

ε(M ≤ 42(g(M) − 1)).

According to the Theorem 6.4.1 and its corollaries, we know that |Γ| ≤ 4ε(M) and if
Γ+ is orientation-preserving, then |Γ+| ≤ 2ε(M). Whence,

|Γ| ≤ 168(g(M) − 1))
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and
|Γ+| ≤ 84(g(M) − 1)),

with equality hold if and only if Γ = Γ+ = AutM, (k, l) = (3, 7) or (7, 3). �

For the automorphism of Riemann surface, we have

Corollary 6.4.4 For any Riemann surface S of genus g ≥ 2,

4g(S) + 2 ≤ |Aut+S| ≤ 84(g(S) − 1)

and
8g(S) + 4 ≤ |AutS| ≤ 168(g(S) − 1).

Proof By the Theorems 5.3.11 and 6.4.2, we know the upper bound for |AutS| and
|Aut+S|. Now we prove the lower bound. We construct a regular map Mk = (Xk,Pk) on
a Riemann surface of genus g ≥ 2 as follows, where k = 2g + 1.

Xk = {x1, x2, · · · , xk, αx1, αx2, · · · , αxk, βx1, βx2, · · · , βxk, αβx1, αβx2, · · · , αβxk}

Pk = (x1, x2, · · · , xk, αβx1, αβx2, · · · , αβxk)(βxk, · · · , βx2, βx1, αxk, · · · , αx2, αx1).

It can be shown that Mk is a regular map, and its orientation-preserving automorphism
group Aut+Mk =< Pk >. Calculation shows that if k ≡ 0(mod2), Mk has 2 faces, and if
k ≡ 1, Mk is an one face map. Therefore, By Theorem 5.3.11, we get that

|Aut+S| ≥ 2ε(Mk) ≥ 4g + 2,

and

|AutS| ≥ 4ε(Mk) ≥ 8g + 4. �

For the non-orientable case, we can also get the bound for the automorphism group
of a map.

Theorem 6.4.3 Let M be a non-orientable map of genus g′(M) ≥ 3. Then for Γ+ ≤
Aut+M,

|Γ+| ≤ 42(g′(M) − 2)

and for Γ ≤ AutM,
|Γ| ≤ 84(g′(M) − 2),
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with the equality hold if and only if M is a regular map with vertex valence 3 and face
valence 7 or vice via.

Proof Similar to the proof of the Theorem 6.4.2, we can also get that

ε(M ≤ 21(g′(M) − 2))

and with equality hold if and only if ΓΓ = AutM and M is a regular map with vertex
valence 3, face valence 7 or vice via. According to the Corollary 6.4.3, we get that

|Γ| ≤ 4ε(M)

and
|Γ+| ≤ 2ε(M).

Whence, for Γ+ ≤ Aut+M,
|Γ+| ≤ 42(g′(M) − 2)

and for Γ ≤ AutM,
|Γ| ≤ 84(g′(M) − 2)

with the equality hold if and only if M is a regular map with vertex valence 3 and face
valence 7 or vice via. �

Similar to Hurwtiz theorem for that of Riemann surfaces, we can also get the upper
bound of Klein surfaces underlying a non-orientable surface.

Corollary 6.4.5 For a Klein surface K underlying a non-orientable surface of genus
q ≥ 3,

|Aut+K| ≤ 42(q − 2)

and
|AutK| ≤ 84(q − 2).

§6.5 THE ORDER OF AUTOMORPHISM OF KLEIN SURFACE

6.5.1 The Minimum Genus of a Fixed-Free Automorphism. Harvey [Har1] in 1966,
Singerman [Sin1] in 1971 and Bujalance [Buj1] in 1983 considered the order of an au-
tomorphism of a Riemann surface of genus p ≥ 2 and a compact non-orientable Klein
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surface without boundary of genus q ≥ 3. Their approach is by using the Fuchsian groups
or NEC groups for Klein surfaces. Their approach is by applying the Riemann-Hurwitz
equation, i.e., Theorem 4.4.5. Here we restate it in the following:

Let Γ be an NEC graph and Γ′ a subgroup of Γ with f nite index. Then

µ(Γ′)
µ(Γ)

= [Γ : Γ′],

where, µ(Γ) is the non-Euclid area of group Γ def ned by

µ(G) = 2π[ηg + k − 2 +
r∑

i=1

(1 − 1/mi) + 1/2
k∑

i=1

si∑

j=1

(1 − 1/ni j)]

if the signature of the group Γ is

σ = (g;±; [m1, · · · ,mr]; {(n11,···,n1s1 ), · · · , (nk1, · · · , nks)}),

where, η = 2 if sign(σ) = + and η = 1 otherwise.

Notice that we have introduced the conception of non-Euclid area for the voltage
maps and have gotten the Riemann-Hurwitz equation in Theorem 6.2.6 for a group action
f xed-free on vertices of map. Similarly, we can f nd the minimum genus of a f xed-free
automorphism of a map on its vertex set by the voltage assignment technique on one of
its quotient map and get the maximum order of an automorphism of map.

Lemma 6.5.1 Let N =
k∏
i=1
prii , p1 < p2 < · · · < pk be the arithmetic decomposition of an

integer N and mi ≥ 1,mi|N for i = 1, 2, · · · , k. Then for any integer s ≥ 1,
s∑

i=1

(1 − 1
mi
) ≥ 2(1 − 1

p1
)⌊ s
2
⌋.

Proof If s ≡ 0(mod2), it is obvious that
s∑

i=1

(1 − 1
mi
) ≥

s∑

i=1

(1 − 1
p1
) ≥ (1 − 1

p1
)s.

Assume that s ≡ 1(mod2) and there are mi j , p1, j = 1, 2, · · · , l. If the assertion is not
true, we must have that

(1 − 1
p1
)(l − 1) >

l∑

j=1

(1 − 1
mi j

) ≥ (1 − 1
p2
)l.
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Whence,
(1 − 1

p1
)l > (1 − 1

p2
)l + 1 − 1

p1
> (1 − 1

p1
)l,

a contradiction. Therefore, we get that

s∑

i=1

(1− 1
mi
) ≥ 2(1− 1

p1
)⌊ s
2
⌋. �

Lemma 6.5.2 For a map M = (Xα,β,P) with φ(M) faces and N =
k∏
i=1
prii , p1 < p2 <

· · · < pk, the arithmetic decomposition of an integer N, there exists a voltage assignment
ϑ : Xα,β → ZN such that for ∀F ∈ F(M), o(F) = p1 if φ(M) ≡ 0(mod2) or there exists a
face F0 ∈ F(M) such that o(F) = p1 for ∀F ∈ F(M) \ {F0}, but o(F0) = 1.

Proof Assume that f1, f2, · · · , fn are the n faces of the map M, where n = φ(M). By
the def nition of voltage assignment, if x, βx or x, αβx appear on one face fi, 1 ≤ i ≤ n
altogether, then they contribute to ϑ( fi) only with ϑ(x)ϑ−1(x) = 1ZN . Whence, not loss of
generality, we only need to consider the voltage xi j on the common boundary among the
faces fi and f j for 1 ≤ i, j ≤ n. Then the voltage assignment on the n faces are

ϑ( f1) = x12x13 · · · x1n,

ϑ( f2) = x21x23 · · · x2n,

· · · · · · · · · · · · · · · · · ·

ϑ( fn) = xn1xn2 · · · xn(n−1).

Wewish to f nd an assignment on M which can enables us to get as many faces as possible
with the voltage of order p1. Not loss of generality, we choose ϑp1( f1) = 1ZN in the f rst.
To make ϑp1( f2) = 1ZN , choose x23 = x−113 , · · · , x2n = x−11n . If we have gotten ϑp1( fi) = 1ZN
and i < n if n ≡ 0(mod2) or i < n − 1 if n ≡ 1(mod2), we can choose that

x(i+1)(i+2) = x−1i(i+2), x(i+1)(i+3) = x
−1
i(i+3), · · · , x(i+1)n = x−1in ,

which also make ϑp1( fi+1) = 1ZN .
Now if n ≡ 0(mod2), this voltage assignment makes each face fi, 1 ≤ i ≤ n satisfying

that ϑp1( fi) = 1ZN . But if n ≡ 1(mod2), it only makes ϑp1( fi) = 1ZN for 1 ≤ i ≤ n − 1, but
ϑ( fn) = 1ZN . This completes the proof. �
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Now we can f nd a result on the minimum genus of a f xed-free automorphism of
map by Lemmas 6.5.1-6.5.2 following.

Theorem 6.5.1 Let M = (Xα,β,P) be a map and N = pr11 · · · p
rk
k , p1 < p2 < · · · < pk the

arithmetic decomposition of integer N. Then for any voltage assignment ϑ : Xα,β → ZN ,

(1) If M is orientable, the minimum genus gmin of the lifted map Mϑ which admits a
f xed-free automorphism on V(Mϑ) of order N is

gmin = 1 + N{g(M) − 1 + (1 −
∑

m∈O(F(M))

1
p1
)⌊φ(M)

2
⌋}.

(2) If M is non-orientable, the minimum genus g′min of the lifted map M
ϑ which

admits a f xed-free automorphism on V(Mϑ) of order N is

g′min = 2 + N{g(M) − 2 + 2(1 −
1
p1
)⌊φ(M)

2
⌋}.

Proof (1) According to Theorem 6.2.5, we know that

2 − 2g(Mϑ) = N{(2 − 2g(M)) +
∑

m∈O(F(M))
(−1 + 1

m
)}.

Whence,
2g(Mϑ) = 2 + N{2g(M) − 2 +

∑

m∈O(F(M))
(1 − 1

m
)}.

Applying Lemmas 6.5.1 and 6.5.2, we get that

gmin = 1 + N{g(M) − 1 + (1 −
1
p1
)⌊φ(M)

2
⌋}

. (2) Similarly, by Theorem 6.2.1, we know that

2 − g(Mϑ) = N{(2 − g(M)) +
∑

m∈O(F(M))
(−1 + 1

m
)}.

Whence,
g(Mϑ) = 2 + N{g(M) − 2 +

∑

m∈O(F(M))
(1 − 1

m
)}.

Applying Lemmas 6.5.1 and 6.5.2, we get that

g′min = 2 + N{g(M) − 2 + 2(1 −
1
p1
)⌊φ(M)

2
⌋}. �
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6.5.2 The Maximum Order of Automorphisms of a Map. For the maximum order of
automorphisms of a map, we have the following result.

Theorem 6.5.2 The maximum order Nmax of automorphisms g of an orientable map M
with genus≥ 2 is

Nmax ≤ 2g(M) + 1

and the maximum order N′max of automorphisms g of a non-orientable map with genus≥ 3
is

N′max ≤ g(M) + 1,

where g(M) denotes the genus of map M.

Proof According to Theorem 6.2.3, denote by Γ = 〈g〉, we get that

χ(M) +
∑

g∈Γ,g,1Γ

(|Φv(g)| + |Φ f (g)|) = |Γ|χ(M/Γ),

where, Φ f (g) = {F |F ∈ F(M), Fg = F} and Φv(g) = {v|v ∈ V(M), vg = v}. Notice
that a vertex of M is a pair of conjugacy cycles in P , and a face of M is a pair of
conjugacy cycles in Pαβ. If g , 1Γ, direct calculation shows that Φ f (g) = Φ f (g2) and
Φv(g) = Φv(g2). Whence,

∑

g∈Γ,g,1Γ

|Φv(g)| = (|Γ| − 1)|Φv(g)|

and

∑

g∈Γ,g,1Γ

|Φ f (g)| = (|Γ| − 1)|Φ f (g)|.

Therefore, we get that

χ(M) + (|Γ| − 1)|Φv(g)| + (|Γ| − 1)|Φ f (g)| = |Γ|χ(M/Γ).

Whence,

χ(M) − (|Φv(g)| + |Φ f (g)|) = |Γ|(χ(M/Γ) − (|Φv(g)| + |Φ f (g)|)).
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If χ(M/G) − (|Φv(g)| + |Φ f (g)|) = 0, i.e., χ(M/Γ) = |Φv(g)| + |Φ f (g)| ≥ 0, then we get
that g(M) ≤ 1 if M is orientable or g(M) ≤ 2 if M is non-orientable. Contradicts to the
assumption. Therefore, χ(M/Γ) − (|Φv(g)| + |Φ f (g)|) , 0. Whence, we get that

|Γ| =
χ(M) − (|Φv(g)| + |Φ f (g)|)
χ(M/Γ) − (|Φv(g)| + |Φ f (g)|)

= H(v, f ; g).

Notice that |Γ|, χ(M)− (|Φv(g)|+ |Φ f (g)|) and χ(M/G)− (|Φv(g)|+ |Φ f (g)|) are integers. We
know that the function H(v, f ; g) takes its maximum value at χ(M/Γ)−(|Φv(g)|+|Φ f (g)|) =
−1 since χ(M) ≤ −1. But in this case, we get that

|Γ| = |Φv(g)| + |Φ f (g)| − χ(M) = 1 + χ(M/Γ) − χ(M).

We divide our discussion into two cases.

Case 1. M is orientable.

Since χ(M/Γ) + 1 = (|Φv(g)| + |Φ f (g)|) ≥ 0, we know that χ(M/Γ) ≥ −1. Whence,
χ(M/Γ) = 0 or 2. We get that

|Γ| = 1 + χ(M/Γ) − χ(M) ≤ 3 − χ(M) = 2g(M) + 1.

That is, Nmax ≤ 2g(M) + 1.

Case 2. M is non-orientable.

In this case, since χ(M/Γ) ≥ −1, we know that χ(M/Γ) = −1, 0, 1 or 2. Whence,
we get that

|Γ| = 1 + χ(M/Γ) − χ(M) ≤ 3 − χ(M) = g(M) + 1.

This completes the proof. �

According to this theorem, we get the following result for the order of an automor-
phism of a Klein surface without boundary by the Theorem 5.3.12, which is even more
better than the results already known.

Corollary 6.5.1 The maximum order of conformal transformations realizable by maps M
on a Riemann surface of genus≥ 2 is 2g(M) + 1 and the maximum order of conformal
transformations realizable by maps M on a non-orientable Klein surface of genus≥ 3
without boundary is g(M) + 1.
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The maximum order of an automorphism of map can be also determined by its un-
derlying graph as follows.

Theorem 6.5.3 Let M be a map underlying graph G and let omax(M, g), omax(G, g) be the
maximum orders of orientation-preserving automorphisms in AutM and in Aut 1

2
G. Then

omax(M, g) ≤ omax(G, g),

and the equality holds for at least one such map M underlying graph G.

The proof of the Theorem 6.5.3 will be delayed to the next chapter after we proved
Theorem 7.1.1. By this result, we f nd some interesting conclusions following.

Corollary 6.5.2 The maximum order of orientation-preserving automorphisms of a com-
plete map Kn, n ≥ 3 is at most n.

Corollary 6.5.3 The maximum order of orientation-preserving automorphisms of a plane
tree T is at most |T | − 1 and attains the upper bound only if the underlying tree is a star.

§6.6 REMARKS

6.6.1 The lifted graph of a voltage graph (G, σ) with σ : X 1
2
(G) → Γ is in fact a regular

covering of 1-complex G constructing dependent on a group (Γ; ◦). This technique was
extensively applied to coloring problem, particularly, its dual, i.e., current graph for deter-
mining the genus of complete graph Kn on surface. The reference [GrT1] is an excellent
book systematically dealing with voltage graphs. One can also f nd the combinatorial
counterparts of a few important results, such as those of the Riemann-Hurwitz equation
and Alexander’s theorem on branch points in Riemann geometry in this book. Certainly,
the references [Liu1] and [Whi1] also partially discuss voltage graphs. A similar consid-
eration for non-regular covering space presents the following problem:

Problem 6.6.1 Apply the voltage assignment technique for constructing non-regular cov-
ering of graphs or maps.

6.6.2 The technique of voltage graphs and voltage maps is essentially a discrete realiza-
tion of regular covering spaces with dimensional 1 or 2. Many results on covering spaces
can be found the combinatorial counterparts in voltage graphs or maps. For example,
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Theorem 6.1.1 asserts that if π : S̃ → S is a covering projection, then for any arc f in S
with initial point x0 there exists a unique lifting arc f l with initial point x̃0 in S̃ . In voltage
graphs, we know its combinatorial counterpart following.

Theorem 6.6.1 Let W be a walk with initial vertex u ∈ V(G) in a voltage graph (G, σ)
with assignment σ : X 1

2
(G) → Γ and g ∈ Γ. then there is a unique lifting of W that starts

at ug in Gσ.

Certainly, there are many such results by f nding the combinatorial counterparts, for
example in voltage graphs or maps for results known in topology or geometry. The book
[MoT1] can be seen as a discrete deal with surface geometry, i.e., combinatorics on sur-
face geometry. These results in Sections 4 and 5 are also such kind results. Generally, a
combinatorial speculation for mathematical science will f nally arrived at the CC conjec-
ture for developing mathematics discussed in the f nal chapter of this book.

6.6.3 For a map (M, σ) with voltage assignment σ : Xα,β(M) → Γ, it is easily to know
that the group (Γ; ◦) is a map group of Mσ action closed in each f ber π−1(x) for x ∈
Xα,β(M), i.e., Γ ≤ AutMσ. In this way, one can get regular maps in lifted maps. Such a
role of voltage maps is known in Theorem 6.2.2, which enables one to get regular maps by
voltage assignments. Similarly, the exponent group Ex(M) of map and the construction
of derived map Mσ,ι also enables one to f nd more regular maps. The reader is refereed to
[Ned1] and [NeS1] for its techniques.

6.6.4 Theorem 6.2.5 is an important result related the quotient map with that of voltage
assignment, which enables one to f nd relations between voltage group, Euler-Poincarè
characteristic and f xed point sets. Theorems 6.2.6 and 6.2.7 are such results. This theo-
rem is in fact a generalization of a result on voltage graph following, obtained by Gross
and Tucker in 1974.

Theorem 6.6.2 Let A be a group acting freely on a graph G̃ and let G be the resulting
quotient graph. Then there is an assignment σ of voltages in A to the quotient graph G
and a labeling of the vertices of G̃ by the elements of V(G) × A such that G̃ = Gσ and
that the given action of A on G̃ is the natural left action of A on Gσ.

6.6.5 For applying ideas of maps to metric mathematics, various metrics on maps are need
to introduce besides angles and non-Euclid area discussed in Section 3. For example,
the length and arc length, the circumference, the volume and the curvature, · · ·, which
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needs one to speculate the classical mathematics by combinatorics, i.e., combinatorially
reconstruct such a mathematical science.

6.6.6 We have know that maps can be viewed as a combinatorial model of Klein surfaces
in Chapter 5. Usually, a problem is difficult in Klein surface but it is easy for its counter-
part in combinatorics, such as those in Corollary 6.5.1. Further applying this need us to
solve the following problem.

Problem 6.6.2 Determine these behaviors of Klein surfaces S , such as automorphisms
that can not be realizable by maps M on S .

As we known, there are few results on Problem 6.6.1 in publication. But it is funda-
mental for applying combinatorial technique to metric mathematics.



CHAPTER 7.

Map Automorphisms Underlying a Graph

A complete classif cation of non-equivalent embeddings of graph G on sur-
faces or maps M = (Xα,β,P) underlying G requires to f nd permutation
presentations of automorphisms of G on Xα,β. For this objective, an alter-
nate approach is to consider the induced action of semi-arc automorphisms
of graph G(M) on quadricells Xα,β. In fact, the automorphism group AutM
is nothing but consisting of all such automorphisms g|Xα,β that Pg|Xα,β

= P .
Topics covered in this chapter include a necessary and sufficient characteris-
tic for a subgroup of G being that of map and permutation presentations for
automorphisms of maps underlying a complete graph, a semi-regular graph
or a bouquet. Certainly, these presentations of complete maps or semi-regular
maps can be also applied to maps underlying wheels K1 + Cn or GRR graphs
of a f nite group (Γ; ◦). All of these permutation presentations are typical ex-
amples for characterizing the behavior of map groups, and can be also applied
for the enumeration of non-isomorphic maps in Chapter 8.
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§7.1 A CONDITION FOR GRAPH GROUP BEING THAT OFMAP

7.1.1 Orientation-Preserving or Reversing. Let G = (V, E) be a connected graph.
Its automorphism is denoted by AutG. Choose the base set of maps underlying G to be
X = E. Then its quadricells Xα,β is def ned by

Xα,β =
⋃

x∈X
{x, αx, βx, βαβx},

where, K = {1, α, β, αβ} is the Klein 4-elements group. For ∀g ∈ AutG, an induced action
g|Xα,β of g on Xα,β is def ned as follows:

For ∀x ∈Xα,β, if xg = y, then def ne (αx)g = αy, (βx)g = βy and (αβx)g = αβy.

Let M = (Xα,β,P) be a map. According to the Theorem 5.3.8, for an automorphism g ∈
AutM, let g|V(M) : u→ v, u, v ∈ V(M). If ug = v, then g is called an orientation-preserving
automorphism and if ug = v−1, such a g is called an orientation-reversing automorphism.
For any g ∈ AutM, it is obvious that g|G is orientation-preserving or orientation-reversing,
and the product of two orientation-preserving or orientation-reversing automorphisms is
orientation-preserving, but the product of an orientation-preserving with an orientation-
reversing automorphism is orientation-reversing.

For a subgroup Γ ≤ AutM, def ne Γ+ ≤ Γ being the orientation-preserving sub-
group of H. Then it is clear that the index of Γ+ in Γ is 2. Let v be a vertex with
v = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1). Denote by 〈v〉 the cyclic group generated by v.
Then we get a property following for automorphisms of a map.

Lemma 7.1.1 Let Γ ≤ AutM be an automorphism group of map M. Then ∀v ∈ V(M),

(1) If ∀g ∈ Γ, g is orientation-preserving, then Γv ≤ 〈v〉 is a cyclic group;
(2) Γv ≤ 〈v〉 × 〈α〉.

Proof (i) Let M = (Xα,β,P). For any ∀g ∈ G, since g is orientation-preserving, we
know that vh = v for ∀v ∈ V(M), h ∈ Γv. Assume

v = (x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1).

Then

[(x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1)]h = (x1, x2, · · · , xρ(v))(αxρ(v), · · · , αx2, αx1).
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Therefore, if h(x1) = xk+1, 1 ≤ k ≤ ρ(v), then

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]k = vk.

Now if h(x1) = αxρ(v)−k+1, 1 ≤ k ≤ ρ(v), then

h = [(x1, x2, · · · , xρ(v))(αxρ(v), αxρ(v)−1, · · · , αx1)]kα = vkα.

But if h = vkα, we know that vh = vα = v−1, i.e., h is not orientation-preserving. Whence,
h = vk, 1 ≤ k ≤ ρ(v), i.e., every element in Γv is a power of v. Let ξ be the least power of
elements in Γv. Then Γv =

〈
vξ

〉
≤ 〈v〉 is a cyclic group generated by vξ.

(2) For ∀g ∈ Gv, vg = v, i.e.,

[(x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1)]g = (x1, x2, · · · , xρ)(αxρ, αxρ−1, · · · , αx1).

Similar to the proof of (1), we know that there exists an integer s, 1 ≤ s ≤ ρ such that
g = vs or g = vsα. Consequently, g ∈ 〈v〉 or g ∈ 〈v〉α, i.e.,

Γv ≤ 〈v〉 × 〈α〉 . �

Lemma 7.1.2 Let G be a connected graph. If Γ ≤ AutΓ, and ∀v ∈ V(G), Γv ≤ 〈v〉 × 〈α〉,
then the action of Γ onXα,β is f xed-free.

Proof Choose a quadricell x ∈ Xα,β. We prove that Γx = {1Xα,β
}. In fact, if g ∈ Γx,

then xg = x. Particularly, the incident vertex u is stable under the action of g, i.e., ug = u.
Let

u = (x, y1, · · · , yρ(u)−1)(αx, αyρ(u)−1, · · · , αy1),

then because of Γu ≤ 〈u〉 × 〈α〉, we get that

xg = x, yg1 = y1, · · · , y
g
ρ(u)−1 = yρ(u)−1

and
(αx)g = αx, (αy1)g = αy1, · · · , (αyρ(u)−1)g = αyρ(u)−1,

thus for any quadricell eu incident with the vertex u, egu = eu. According to the def nition
of induced action AutG on Xα,β, we know that

(βx)g = βx, (βy1)g = βy1, · · · , (βyρ(u)−1)g = βyρ(u)−1
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and

(αβx)g = αβx, (αβy1)g = αβy1, · · · , (αβyρ(u)−1)g = αβyρ(u)−1.

Whence, for any quadricell y ∈Xα,β, if the incident vertex of y is w, then by the connect-
edness of graph G, there is a path P(u,w) = uv1v2 · · · vsw connecting the vertices u and
w in G. Not loss of generality, we assume that βyk is incident with the vertex v1. Since
(βyk)g = βyk and Γv1 ≤ 〈v1〉 × 〈α〉, we know that for any quadricell ev1 incident with the
vertex v1, egv1 = ev1 .

Similarly, if a quadricell evi incident with the vertex vi is stable under the action of g,
i.e., (evi)g = evi , then we can prove that any quadricell evi+1 incident with the vertex vi+1 is
stable under the action of g. This process can be well done until we arrive the vertex w.
Therefore, we know that any quadricell ew incident with the vertex w is stable under the
action of g. Particularly, we get that yg = y.

Therefore, g = 1Γ. Whence, Γx = {1Γ}. �

7.1.2 Group of a Graph Being That of Map. Now we obtain a necessary and sufficient
condition for a subgroup of a graph being that an automorphism group of map underlying
this graph.

Theorem 7.1.1 Let G be a connected graph. If Γ ≤ AutG, then Γ is an automorphism
group of map underlying graphG if and only if for ∀v ∈ V(G), the stabilizer Γv ≤ 〈v〉×〈α〉.

Proof According to Lemma 7.1.1(ii), the condition of Theorem 7.1.1 is necessary.
Now we prove its sufficiency.

By Lemma 7.1.2, we know that the action of Γ on Xα,β is f xed-free, i.e., for∀x ∈
Xα,β, |Γx| = 1Xα,β

. Whence, the length of orbit of x under the action of Γ is |xΓ| = |Γx||xΓ| =
|Γ|, i.e., for ∀x ∈Xα,β, the length of orbit of x under the action of Γ is |Γ|.

Assume that there are s orbits O1,O2, · · · ,Os in V(Γ) under the action of Γ, where,

O1 = {u1, u2, · · · , uk},
O2 = {v1, v2, · · · , vl},
· · · · · · · · · · · · · · · · · ·,
Os = {w1,w2, · · · ,wt}.

We construct a conjugatcy permutation pair for every vertex in the graphG such that their
product P is stable under the action of Γ.

Notice that for ∀u ∈ V(G), because of |Γ| = |Γu||uΓ|, we know that [k, l, · · · , t] | |Γ|.
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First, we determine the conjugatcy permutation pairs for each vertex in the orbit O1.

Choose any vertex u1 ∈ O1. Assume that the stabilizer Γu1 is {1Xα,β
, g1, g2g1, · · · ,

m−1∏
i=1
gm−i},

where, m = |Γu1 | and the quadricells incident with vertex u1 is Ñ(u1) in the graph G. We
arrange the elements in Ñ(u1) as follows.

Choose a quadricell ua1 ∈ Ñ(u1). We apply Γu1 action on ua1 and αu
a
1, respectively.

Then we get a quadricell set A1 = {ua1, g1(ua1), · · · ,
m−1∏
i=1
gm−i(ua1)} and αA1 = {αua1, αg1(ua1), · · · ,

α
m−1∏
i=1
gm−i(ua1)}. By the def nition of a graph automorphism action on its quadricells, we

know that A1
⋂
αA1 = ∅. Arrange the elements in A1 as −→A1 = ua1, g1(ua1), · · · ,

m−1∏
i=1
gm−i(ua1).

If Ñ(u1) \ A1
⋃
αA1 = ∅, then the arrangement of elements in Ñ(u1) is

−→A1. If
Ñ(u1) \ A1

⋃
αA1 , ∅, choose a quadricell ub1 ∈ Ñ(u1) \ A1

⋃
αA1. Similarly, apply-

ing the group Γu1 acts on ub1, we get that A2 = {ub1, g1(ub1), · · · ,
m−1∏
i=1
gm−i(ub1)} and αA2 =

{αub1, αg1(ub1), · · · , α
m−1∏
i=1
gm−i(ub1)}. Arrange the elements in A1

⋃
A2 as

−−−−−−−→
A1

⋃
A2 = ua1, g1(u

a
1), · · · ,

m−1∏

i=1

gm−i(ua1); u
b
1, g1(u

b
1), · · · ,

m−1∏

i=1

gm−i(ub1).

If Ñ(u1)\(A1
⋃
A2

⋃
αA1

⋃
αA2) = ∅, then the arrangement of elements in A1

⋃
A2 is−−−−−−−→

A1
⋃

A2. Otherwise, Ñ(u1)\(A1
⋃
A2

⋃
αA1

⋃
αA2) , ∅. We can choose another quadri-

cell uc1 ∈ Ñ(u1) \ (A1
⋃
A2

⋃
αA1

⋃
αA2). Generally, If we have gotten the quadricell sets

A1, A2, · · · , Ar, 1 ≤ r ≤ 2k, and the arrangement of element in them is
−−−−−−−−−−−−−−−−−−−−→
A1

⋃
A2

⋃
· · ·

⋃
Ar,

if Ñ(u1) \ (A1
⋃
A2

⋃ · · ·⋃ Ar
⋃
αA1

⋃
αA2

⋃ · · ·⋃αAr) , ∅, we can choose an element
ud1 ∈ Ñ(u1) \ (A1

⋃
A2

⋃ · · ·⋃Ar
⋃
αA1

⋃
αA2

⋃ · · ·⋃αAr) and def ne the quadricell set

Ar+1 = {ud1, g1(ud1), · · · ,
m−1∏

i=1

gm−i(ud1)}

αAr+1 = {αud1, αg1(ud1), · · · , α
m−1∏

i=1

gm−i(ud1)}

and the arrangement of elements in Ar+1 is

−−−→Ar+1 = ud1, g1(ud1), · · · ,
m−1∏

i=1

gm−i(ud1).
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Now def ne the arrangement of elements in
r+1⋃
j=1
A j to be

−−−−→
r+1⋃

j=1

A j =
−−−−→r⋃

i=1

Ai;
−−−→Ar+1.

Whence,

Ñ(u1) = (
k⋃

j=1

A j)
⋃

(α
k⋃

j=1

A j)

and Ak is obtained by the action of the stabilizer Γu1 on ue1. At the same time, the arrange-

ment of elements in the subset
k⋃
j=1
A j of Ñ(u1) to be

−−−−→
k⋃

j=1

A j.

We def ne the conjugatcy permutation pair of the vertex u1 to be

̺u1 = (C)(αC
−1α),

where�
C = (ua1, u

b
1, · · · , ue1; g1(ua1), g1(ub1), · · · , g1(ue1), · · · ,

m−1∏

i=1

(ua1),
m−1∏

i=1

(ub1), · · · ,
m−1∏

i=1

(ue1)).

For any vertex ui ∈ O1, 1 ≤ i ≤ k, assume that h(u1) = ui, where h ∈ G, we def ne the
conjugatcy permutation pair ̺ui of the vertex ui to be

̺ui = ̺
h
u1 = (C

h)(αC−1α−1).

Since O1 is an orbit of the action G on V(Γ), then we get that

(
k∏

i=1

̺ui)
Γ =

k∏

i=1

̺ui .

Similarly, we can def ne the conjugatcy permutation pairs ̺v1 , ̺v2 , · · · , ̺vl , · · · , ̺w1,
̺w2 , · · · , ̺wt of vertices in the orbits O2, · · · ,Os. We also have that

(
l∏

i=1

̺vi)
Γ =

l∏

i=1

̺vi .

· · · · · · · · · · · · · · · · · · · · ·

(
t∏

i=1

̺wi)
Γ =

t∏

i=1

̺wi .
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Now def ne the permutation

P = (
k∏

i=1

̺ui) × (
l∏

i=1

̺vi) × · · · × (
t∏

i=1

̺wi).

Since all O1,O2, · · · ,Os are the orbits of V(G) under the action of Γ, we get that

PΓ = (
k∏

i=1

̺ui)
Γ × (

l∏

i=1

̺vi)
Γ × · · · × (

t∏

i=1

̺wi)
Γ

= (
k∏

i=1

̺ui) × (
l∏

i=1

̺vi) × · · · × (
t∏

i=1

̺wi) =P .

Whence, if let map M = (Xα,β,P)�then Γ is an automorphism of M. �

For the orientation-preserving automorphisms, we know the following result.

Theorem 7.1.2 Let G be a connected graph. If Γ ≤ AutG, then Γ is an orientation-
preserving automorphism group of map underlying graph G if and only if for ∀v ∈ V(G),
the stabilizer Γv ≤ 〈v〉 is a cyclic group.

Proof According to Lemma 7.1.1(i)�we know the necessary. Notice that the ap-
proach of construction the conjugatcy permutation pair in the proof of Theorem 7.1.1 can
be also applied in the orientation-preserving case. We know that Γ is also an orientation-
preserving automorphism group of map M. �

Corollary 7.1.1 For any positive integer n, there exists a vertex transitive map M un-
derlying a circultant such that Zn is an orientation-preserving automorphism group of
M.

By Theorem 7.1.2, we can prove the Theorem 6.5.3 now.

The Proof of Theorem 6.5.3

Since every subgroup of a cyclic group is also a cyclic group, we know that any cyclic
orientation-preserving automorphism group of the graph G is an orientation-preserving
automorphism group of a map underlying Γ by Theorem 7.1.2. Whence, we get that

omax(M, g) ≤ omax(G, g). �

Note 7.1.1 Gardiner et al. proved in [GNSS1] that if add an additional condition in The-
orem 7.1.1, i.e, Γ is transitive on the vertices in G, then there is a regular map underlying
the graph G.
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§7.2 AUTOMORPHISMS OF A COMPLETE GRAPH ON SURFACES

7.2.1 Complete Map. A map is called a complete map if its underlying graph is a
complete graph. For a connected graph G, the notations EO(G),EN(G) and EL(G) denote
the embeddings of Γ on the orientable surfaces, non-orientable surfaces and locally sur-
faces, respectively. For ∀e = (u, v) ∈ E(G), its quadricell Ke = {e, αe, βe, αβe} can be
represented by Ke = {uv+, uv−, vu+, vu−}.

Let Kn be a complete graph of order n. Label its vertices by integers 1, 2, · · · , n. Then
its edge set is {i j|1 ≤ i, j ≤ n, i , j i j = ji} and

Xα,β(Kn) = {i j+ : 1 ≤ i, j ≤ n, i , j}
⋃
{i j− : 1 ≤ i, j ≤ n, i , j},

α =
∏

1≤i, j≤n,i, j
(i j+, i j−),

β =
∏

1≤i, j≤n,i, j
(i j+, i j+)(i j−, i j−).

We determine all automorphisms of complete maps of order n and f nd presentations
for them in this section.

First, we need some useful lemmas for an automorphism of map induced by an
automorphism of its underlying graph.

Lemma 7.2.1 Let G be a connected graph and g ∈ AutG. If there is a map M ∈ EL(G)
such that the induced action g∗ ∈ AutM, then for ∀(u, v), (x, y) ∈ E(G),

[lg(u), lg(v)] = [lg(x), lg(y)] = constant,

where, lg(w) denotes the length of the cycle containing the vertex w in the cycle decompo-
sition of g.

Proof According to the Lemma 6.2.1, we know that the length of a quadricell uv+ or
uv− under the action g∗ is [lg(u), lg(v)]. Since g∗ is an automorphism of map, therefore, g∗

is semi-regular. Whence, we get that

[lg(u), lg(v)] = [lg(x), lg(y)] = constant. �

Now we consider conditions for an induced automorphism of map by that of graph
to be an orientation-reversing automorphism of map.

Lemma 7.2.2 If ξα is an automorphism of map, then ξα = αξ.
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Proof Since ξα is an automorphism of map, we know that

(ξα)α = α(ξα).

That is, ξα = αξ. �

Lemma 7.2.3 If ξ is an automorphism of map M = (Xα,β,P), then ξα is semi-regular on
Xα,β with order o(ξ) if o(ξ) ≡ 0(mod2) and 2o(ξ) if o(ξ) ≡ 1(mod2).

Proof Since ξ is an automorphism of map by Lemma 7.2.2, we know that the cyclic
decomposition of ξ can be represented by

ξ =
∏

k

(x1, x2, · · · , xk)(αx1, αx2, · · · , αxk),

where,
∏

k denotes the product of disjoint cycles with length k = o(ξ).
Therefore, if k ≡ 0(mod2), then

ξα =
∏

k

(x1, αx2, x3, · · · , αxk)

and if k ≡ 1(mod2), then

ξα =
∏

2k

(x1, αx2, x3, · · · , xk, αx1, x2, αx3, · · · , αxk).

Whence, ξ is semi-regular acting on Xα,β. �

Now we can prove the following result for orientation-reversing automorphisms of
maps.

Lemma 7.2.4 For a connected graph G, let K be all automorphisms in AutG whose
extending action on Xα,β, X = E(G) are automorphisms of maps underlying graph G.
Then for ∀ξ ∈ K , o(ξ∗) ≥ 2, ξ∗α ∈ K if and only if o(ξ∗) ≡ 0(mod2).

Proof Notice that by Lemma 7.2.3, if ξ∗ is an automorphism of map underlying
graph G, then ξ∗α is semi-regular acting on Xα,β.

Assume ξ∗ is an automorphism of map M = (Xα,β,P). Without loss of generality,
we assume that

P = C1C2 · · ·Ck,

where,Ci = (xi1, xi2, · · · , xi ji) is a cycle in the decomposition of ξ|V(G) and xit = {(ei1, ei2,
· · · , eiti)(αei1, αeiti , · · · , αei2)} and.

ξ|E(G) = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl).
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and

ξ∗ = C(αC−1α),

where, C = (e11, e12, · · · , es1)(e21, e22, · · · , e2s2) · · · (el1, el2, · · · , elsl). Now since ξ∗ is an
automorphism of map, we get that s1 = s2 = · · · = sl = o(ξ∗) = s.

If o(ξ∗) ≡ 0(mod2), def ne a map M∗ = (Xα,β,P∗) with

P∗ = C∗1C
∗
2 · · ·C∗k ,

where, C∗i = (x∗i1, x
∗
i2, · · · , x∗i ji), x

∗
it = {(e∗i1, e∗i2, · · · , e∗iti)(αe

∗
i1, αe

∗
iti , · · · , e

∗
i2)} and e∗i j = epq.

Take e∗i j = epq if q ≡ 1(mod2) and e∗i j = αepq if q ≡ 0(mod2). Then we get that Mξα = M.
Now if o(ξ∗) ≡ 1(mod2), by Lemma 7.2.3, o(ξ∗α) = 2o(ξ∗). Therefore, any chosen

quadricells (ei1, ei2, · · · , eiti) adjacent to the vertex xi1 for i = 1, 2, · · · , n, where, n = |G|, the
resultant map M is unstable under the action of ξα. Whence, ξα is not an automorphism
of map underlying graph G. �

7.2.2 Automorphisms of Complete Map. We determine all automorphisms of complete
maps of order n by applying the previous results. Recall that the automorphism group of
Kn is the symmetry group of degree n, that is, AutKn = S V(Kn).

Theorem 7.2.1 All orientation-preserving automorphisms of non-orientable complete
maps of order n ≥ 4 are extended actions of elements in

E[s ns ], E[1,s n−1s ],

and all orientation-reversing automorphisms of non-orientable complete maps of order
n ≥ 4 are extended actions of elements in

αE[(2s) n2s ], αE
[(2s)

4
2s ]
, αE[1,1,2],

where, Eθ denotes the conjugatcy class containing element θ in the symmetry group of
degree n.

Proof First, we prove that an induced permutation ξ∗ on a complete map of order
n by an element ξ ∈ S V(Kn) is a cyclic order-preserving automorphism of non-orientable
map, if and only if

ξ ∈ Es ns
⋃
E
[1,s

n−1
s ]
.
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Assume the cycle index of ξ is [1k1 , 2k2 , ..., nkn]. If there exist two integers ki, k j , 0
and i, j ≥ 2, i , j, then in the cyclic decomposition of ξ, there are two cycles

(u1, u2, ..., ui) and (v1, v2, ..., v j).

Since

[lξ(u1), lξ(u2)] = i and [lξ(v1), lξ(v2)] = j

and i , j, we know that ξ∗ is not an automorphism of embedding by Theorem 5.3.8.
Whence, the cycle index of ξ must be the form of [1k, sl].

Now if k ≥ 2, let (u), (v) be two cycles of length 1 in the cycle decomposition of ξ.
By Theorem 5.3.8, we know that

[lξ(u), lξ(v)] = 1.

If there is a cycle (w, ...) in the cyclic decomposition of ξ whose length greater or equal to
2, we get that

[lξ(u), lξ(w)] = [1, lξ(w)] = lξ(w).

According to Lemma 7.2.1, we get that lξ(w) = 1, a contradiction. Therefore, the cycle
index of ξ must be the forms of [sl] or [1, sl]. Whence, sl = n or sl + 1 = n. Calculation
shows that l = n

s or l =
n−1
s . That is, the cycle index of ξ is one of the following three

types [1n], [1, s n−1s ] and [s ns ] for some integer s ≥ 1.
Now we only need to prove that for each element ξ in E[1,s n−1s ] and E[s ns ], there exists

an non-orientable complete map M of order n with the induced permutation ξ∗ being its
cyclic order-preserving automorphism of surface. The discussion are divided into two
cases.

Case 1. ξ ∈ E[s ns ]
Assume the cycle decomposition of ξ being ξ = (a, b, · · · , c) · · · (x, y, · · · , z) · · · (u, v,

· · · ,w), where the length of each cycle is k and 1 ≤ a, b, · · · , c, x, y, · · · , z, u, v, · · · ,w ≤ n.
In this case, we construct a non-orientable complete map M1 = (X1

α,β
,P1) by def ning

X 1
α,β = {i j+ : 1 ≤ i, j ≤ n, i( j}

⋃
{i j− : 1 ≤ i, j ≤ n, i , j},

P1 =
∏

x∈{a,b,···,c,···,x,y,···,z,u,v,···,w}
(C(x))(αC(x)−1α),
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where

C(x) = (xa+, · · · , xx∗, · · · , xu+, xb+, xy+, · · · , · · · , xv+, xc+, · · · , xz+, · · · , xw+),

xx∗ denotes an empty position and

αC(x)−1α = (xa−, xw−, · · · , xz−, · · · , xc−, xv−, · · · , xb−, xu−, · · · , xy−, · · ·).

It is clear that M ξ∗

1 = M1. Therefore, ξ∗ is an cyclic order-preserving automorphism
of map M1.

Case 2. ξ ∈ E[1,s n−1s ]

We assume the cyclic decomposition of ξ being that

ξ = (a, b, ..., c)...(x, y, ..., z)...(u, v, ...,w)(t),

where, the length of each cycle is k beside the f nal cycle, and 1 ≤ a, b...c, x, y..., z,
u, v, ...,w, t ≤ n. In this case, we construct a non-orientable complete mapM2 = (X 2

α,β
,P2)

by def ning

X 2
α,β = {i j+ : 1 ≤ i, j ≤ n, i , j}

⋃
{i j− : 1 ≤ i, j ≤ n, i , j},

P2 = (A)(αA−1)
∏

x∈{a,b,...,c,...,x,y,...z,u,v,...,w}
(C(x))(αC(x)−1α),

where
A = (ta+, tx+, ...tu+, tb+, ty+, ..., tv+, ..., tc+, tz+, ..., tw+),

αA−1α = (ta−, tw−, ...tz−, tc−, tv−, ..., ty−, ..., tb−, tu−, ..., tx−),

C(x) = (xa+, ..., xx∗, ..., xu+, xb+, ..., xy+, ..., xv+, ..., xc+, ..., xz+, ..., xw+)

and
αC(x)−1α = (xa−, xw−, .., xz−, ..., xc−, ..., xv−, ..., xy−, ..., xb−, xu−, ...).

It is also clear that Mξ∗

2 = M2. Therefore, ξ∗ is an automorphism of a map M2 .
Nowwe consider the case of orientation-reversing automorphisms of complete maps.

According to Lemma 7.2.4, we know that an element ξα, where ξ ∈ S V(Kn) is an orientation-
reversing automorphism of complete map only if,

ξ ∈ E
[k
n1
k ,(2k)

n−n1
2k ]
.
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Our discussion is divided into two parts.

Case 3. n1 = n.

Without loss of generality, we can assume the cycle decomposition of ξ has the
following form in this case.

ξ = (1, 2, · · · , k)(k + 1, k + 2, · · · , 2k) · · · (n − k + 1, n − k + 2, · · · , n).

Subcase 3.1 k ≡ 1(mod2) and k > 1.

According to Lemma 7.2.4, we know that ξ∗α is not an automorphism of map since
o(ξ∗) = k ≡ 1(mod2).

Subcase 3.2 k ≡ 0(mod2).

Construct a non-orientable map M3 = (X 3
α,β
,P3), where X3 = E(Kn) by

P3 =
∏

i∈{1,2,···,n}
(C(i))(αC(i)−1α),

where if i ≡ 1(mod2), then

C(i) = (i1+, ik+1+, · · · , in−k+1+, i2+, · · · , in−k+2+, · · · , ii∗, · · · , ik+, i2k+, · · · , in+),

αC(i)−1α = (i1−, in−, · · · , i2k−, ik−, · · · , ik+1−)

and if i ≡ 0(mod2), then

C(i) = (i1−, ik+1−, · · · , in−k+1−, i2−, · · · , in−k+2−, · · · , ii∗, · · · , ik−, i2k−, · · · , in−),

αC(i)−1α = (i1+, in+, · · · , i2k+, ik+, · · · , ik+1+),

where, ii∗ denotes the empty position, for example, (21, 22∗, 23, 24, 25) = (21, 23, 24, 25). It
is clear that Pξα

3 =P3, that is, ξα is an automorphism of map M3.

Case 4. n1 , n.

Without loss of generality, we can assume that

ξ = (1, 2, · · · , k)(k + 1, k + 2, · · · , n1) · · · (n1 − k + 1, n1 − k + 2, · · · , n1)

× (n1 + 1, n1 + 2, · · · , n1 + 2k)(n1 + 2k + 1, · · · , n1 + 4k) · · · (n − 2k + 1, · · · , n)

Subcase 4.1 k ≡ 0(mod2).
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Consider the orbits of 12+ and n1 + 2k + 11+ under the action of 〈ξα〉, we get that

|orb((12+)<ξα>)| = k

and
|orb(((n1 + 2k + 1)1+)<ξα>)| = 2k.

Contradicts to Lemma 7.2.1.

Subcase 4.2 k ≡ 1(mod2).

In this case, if k , 1, then k ≥ 3. Similar to the discussion of Subcase 3.1, we know
that ξα is not an automorphism of complete map. Whence, k = 1 and

ξ ∈ E[1n1 ,2n2 ].

Without loss of generality, assume that

ξ = (1)(2) · · · (n1)(n1 + 1, n1 + 2)(n1 + 3, n1 + 4) · · · (n1 + n2 − 1, n1 + n2).

If n2 ≥ 2, and there exists a map M = (Xα,β,P), assume a vertex v1 in M being

v1 = (1l12+, 1l13+, · · · , 1l1n+)(1l12−, 1l1n−, · · · , 1l13−)

where, l1i ∈ {+2,−2,+3,−3, · · · ,+n,−n} and l1i , l1 j if i , j. Then we get that

(v1)ξα = (1l12−, 1l13−, · · · , 1l1n−)(1l12+, 1l1n+, · · · , 1l13+) , v1.

Whence, ξα is not an automorphism of map M, a contradiction. Therefore, n2 = 1.
Similarly, we can also get that n1 = 2. Whence, ξ = (1)(2)(34) and n = 4. We construct a
stable non-orientable map M4 under the action of ξαby def ning

M4 = (X 4
α,β,P4),

where,

P4 = (12+, 13+, 14+)(21+, 23+, 24+)(31+, 32+, 34+)(41+, 42+, 43+)

× (12−, 14−, 13−)(21−, 24−, 23−)(31−, 34−, 32−)(41−, 43−, 42−).

Therefore, all orientation-preserving automorphisms of non-orientable complete maps
are extended actions of elements in

E[s ns ], E
[1,s

n−1
s ]
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and all orientation-reversing automorphisms of non-orientable complete maps are ex-
tended actions of elements in

αE[(2s) n2s ], αE
[(2s)

4
2s ]

αE[1,1,2].

This completes the proof. �

According to the Rotation Embedding Scheme for orientable embedding of a graph,
presented by Heffter f rstly in 1891 and formalized by Edmonds in [Edm1], an orientable
complete map is just the case of eliminating the sign + and - in our representation for
complete maps. Whence, we get the following result for automorphism of orientable
complete maps.

Theorem 7.2.2 All orientation-preserving automorphisms of orientable complete maps
of order n ≥ 4 are extended actions of elements in

E[s ns ], E[1,s n−1s ]

and all orientation-reversing automorphisms of orientable complete maps of order n ≥ 4
are extended actions of elements in

αE[(2s) n2s ], αE
[(2s)

4
2s ]
, αE[1,1,2],

where, Eθ denotes the conjugatcy class containing θ in S V(Kn).

Proof The proof is similar to that of Theorem 7.2.1. For completion, we only need
to construct orientable maps MO

i , i = 1, 2, 3, 4 to replace non-orientable maps Mi, i =
1, 2, 3, 4 in the proof of Theorem 7.2.1. In fact, for orientation-preserving cases, we only
need to take MO

1 , M
O
2 to be the resultant maps eliminating the sign + and - in M1, M2

constructed in the proof of Theorem 7.2.1. For the orientation-reversing cases, we take
MO

3 = (E(Kn)α,β,P
O
3 ) with

P3 =
∏

i∈{1,2,···,n}
(C(i)),

where, if i ≡ 1(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , ii∗, · · · , ik, i2k, · · · , in),

and if i ≡ 0(mod2), then

C(i) = (i1, ik+1, · · · , in−k+1, i2, · · · , in−k+2, · · · , ii∗, · · · , ik, i2k, · · · , in)−1,
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where ii∗ denotes the empty position and MO
4 = (E(K4)α,β,P4) with

P4 = (12, 13, 14)(21, 23, 24)(31, 34, 32)(41, 42, 43).

It can be shown that (MO
i )

ξ∗α = MO
i for i = 1, 2, 3 and 4. �

§7.3 MAP-AUTOMORPHISM GRAPHS

7.3.1 Semi-Regular Graph. A graph is called to be a semi-regular graph if it is simple
and its automorphism group action on its ordered pair of adjacent vertices is f xed-free,
which is considered in [Mao1] and [MLT1] for enumerating its non-equivalent embed-
dings on surfaces. A map underlying a semi-regular graph is called to be a semi-regular
map. We determine all automorphisms of maps underlying a semi-regular graph in this
section.

Comparing with the Theorem 7.1.2, we get a necessary and sufficient condition for
an automorphism of a graph being that of a map.

Theorem 7.3.1 For a connected graph G, an automorphism ξ ∈ AutG is an orientation-
preserving automorphism of non-orientable map underlying graph G if and only if ξ is
semi-regular acting on its ordered pairs of adjacent vertices.

Proof According to Theorem 5.3.5, if ξ ∈ AutG is an orientation-preserving auto-
morphism of map M underlying graphG, then ξ is semi-regular acting on its ordered pairs
of adjacent vertices.

Now assume that ξ ∈ AutG is semi-regular action on its ordered pairs of adjacent
vertices. Denote by ξ|V(G), ξ|E(G)β the action of ξ on V(G) and on its ordered pairs of
adjacent vertices, respectively. By conditions in this theorem, we can assume that

ξ|V(G) = (a, b, · · · , c) · · · (g, h, · · · , k) · · · (x, y, · · · , z)

and
ξ|E(G)β = C1 · · ·Ci · · ·Cm,

where, let sa = |{a, b, · · · , c}|, · · ·, sg = |{g, h, · · · , k}|, · · ·, sx = |{x, y, · · · , z}|, then sa|C(a)| =
· · · = sg|C(g)| = · · · = sx|C(x)|, and C(g) denotes the cycle containing g in ξ|V(G) and

C1 = (a1, b1, · · · , c1, a2, b2, · · · , c2, · · · , asa, bsa , · · · , csa),
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Ci = (g1, h1, · · · , k1, g2, k2, · · · , k2, · · · , gsg , hsg, · · · , ksg),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Cm = (x1, y1, · · · , z1, · · · , x2, y2, · · · , z2, · · · , xsx , ysx , · · · , zsx).

Now for ∀ξ, ξ ∈ AutG, we construct a stable map M = (Xα,β,P) under the action
of ξ as follows.

X = E(Γ)

and
P =

∏

g∈TV
ξ

∏

x∈C(g)
(Cx)(αC−1x ).

Assume that u = ξ f (g), and

NG(g) = {gz1, gz2 , · · · , gzl}.

Obviously, all degrees of vertices in C(g) are same. Notices that ξ|NG(g) is circular acting
on NG(g) by Theorem 7.1.2. Whence, it is semi-regular acting on NG(g). Without loss of
generality, we assume that

ξ|NG(g) = (gz1 , gz2, · · · , gzs)(gzs+1 , gzs+2 , · · · , gz2s) · · · (gz(k−1)s+1, gz(k−1)s+2, · · · , gzks),

where, l = ks. Choose

Cg = (gz1+, gzs+1+, · · · , gz(k−1)s+1+, gz2+, gzs+2+, · · · , gzs+, gz2s , · · · , gzks+).

Then,
Cx = (xz1+, xzs+1+, · · · , xz(k−1)s+1+, xz2+, xzs+2+, · · · , xzs+, xz2s , · · · , xzks+),

where,
xzi+ = ξ f (gzi+),

for i = 1, 2, · · · , ks. and

αC−1x = (αx
z1+, αxzs+1+, · · · , αxz(k−1)s+1+, αxzs+, αxz2s , · · · , αxzks+).

Immediately, we get that Mξ = ξMξ−1 = M by this construction. Whence, ξ is an
orientation-preserving automorphism of map M. �
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By the rotation embedding scheme, eliminating α on each quadricell in Tutte’s rep-
resentation of embeddings induces an orientable embedding underlying the same graph.
Since an automorphism of embedding is commutative with α and β, we get the follow-
ing result for the orientable-preserving automorphisms of orientable maps underlying a
semi-regular graph.

Theorem 7.3.2 If G is a connected semi-regular graph, then for ∀ξ ∈ AutG, ξ is an
orientation-preserving automorphism of orientable map underlying graph G.

According to Theorems 7.3.1 and 7.3.2, if G is semi-regular, i.e., each automor-
phism acting on the ordered pairs of adjacent vertices in G is f xed-free, then every auto-
morphism of graph G is an orientation-preserving automorphism of orientable map and
non-orientable map underlying graph G. We restated this result in the following.

Theorem 7.3.3 If G is a connected semi-regular graph, then for ∀ξ ∈ AutG, ξ is an
orientation-preserving automorphism of orientable map and non-orientable map under-
lying graph G.

Notice that if ς∗ is an orientation-reversing automorphism of map, then ς∗α is an
orientation-preserving automorphism of the same map. By Lemma 7.2.4, if τ is an auto-
morphism of map underlying a graph G, then τα is an automorphism of map underlying
this graph if and only if o(τ) ≡ 0(mod2). Whence, we have the following result for
automorphisms of maps underlying a semi-regular graph

Theorem 7.3.4 Let G be a semi-regular graph. Then all the automorphisms of orientable
maps underlying graph Γ are

g|Xα,β and αh|Xα,β , g, h ∈ AutG with o(h) ≡ 0(mod2).

and all the automorphisms of non-orientable maps underlying graph G are also

g|Xα,β and αh|Xα,β , g, h ∈ AutΓ with o(h) ≡ 0(mod2).

Theorem 7.3.4 will be used in Chapter 8 for the enumeration of maps on surfaces
underlying a semi-regular graph.

An circulant transitive graph of prime order is Cayley graph Cay(Zp : S ), B.Alspach
completely determined its automorphism group as follows([Als1]):
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If S = ∅, or S = Z∗p, then Aut(Cay(Zp : S )) =
∑
p, the symmetric group of degree p,

otherwise,
Aut(Cay(Zp : S )) = {Ta,b|a ∈ H, b ∈ Z∗p},

where Ta,b is the permutation on Zp which maps x to ax+b and H is the largest even order
subgroup of Z∗p such that S is a union of cosets of H.

We get a corollary from Theorem 7.3.4 for circulants of prime order.

Corollary 7.3.1 Every automorphism of a circulant graph G, not be a complete graph,
with prime order is an orientation-preserving automorphism of map underlying graph G
on orientable surfaces.

Proof According to Theorem 7.3.4, we only need proving that each automorphism
θ = ax + b of the circulant graph Cay(Zp : S ), Cay(Zp : S ) , Kn is semi-regular acting
on its order pairs of adjacent vertices, where p is a prime number. Now for an arc gsg =
(g, sg) ∈ A(Cay(Zp : S )), where A(G) denotes the arc set of the graph Γ, we have that

(gsg)θ = (ag + b)asg+b;
(gsg)θ2 = (a(ag + b) + b)a(asg+b)+b = (a2g + ab + b)a2sg+ab+b;
· · · · · · · · · · · · · · · · · · · · · · · · ;

(gsg)θo(a) = (ao(a)g + ao(a)−1b + ao(a)−2b + · · · + b)ao(a)sg+ao(a)−1b+ao(a)−2b+···+b

= (ao(a)g +
ao(a)b − 1
a − 1 )ao(a)sg+

ao(a)b−1
a−1 = gsg,

where o(a) denotes the order of a. Therefore, θ is semi-regular acting on the order pairs
of adjacent vertices of the graph Cay(Zp : S ). �

For symmetric circulant of prime order, not being a complete graph, Chao proved
that the automorphism group is regular acting on its order pairs of adjacent vertices([Cha1]).
Whence, we get the following result.

Corollary 7.3.2 Every automorphism of a symmetric circulant graph G of prime order
p, G , Kp, is an orientation-preserving automorphism of map on orientable surface
underlying graph G.

Now let s be an even divisor of q−1 and r a divisor of p−1. Choose H(p, r) =< a >
, t ∈ Z∗p be such that t

s
2 ∈ −H(p, r) and u the least common multiple of r and the order of

t in Z∗p. The graph G(pq; r, s, u) is def ned as follows:

V(G(pq; r, s, u)) = Zq × Zp = {(i, x)|i ∈ Zq, x ∈ Zp}.
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E(G(pq; r, s, u)) = {((i.x), ( j, y))|∃l ∈ Z+such that j − i = al, y − x ∈ tlH(p, r)}.

It is proved that the automorphism group of G(pq; r, s, u) is regular acting on the
ordered pairs of adjacent pairs in [PWX1]. By Theorem 7.3.4, we get the following
result.

Corollary 7.3.3 Every automorphism of graph G(pq; r, s, u) is an orientation-preserving
automorphism of map on orientable surface underlying graph G(pq; r, s, u).

7.3.2 Map-Automorphism Graph. A graph G is a map-automorphism graph if all
automorphisms of G is that of maps underlying graph G. Whence, every semi-regular
graph is a map-automorphism graph. According to Theorems 7.1.1-7.1.2, we know the
following result.

Theorem 7.3.5 A graph G is a map-automorphism graph if and only if for ∀v ∈ V(G),
the stabilizer (AutG)v ≤ 〈v〉 × 〈α〉.

Proof By def nition, G is a map-automorphism graph if all automorphisms of G
are automorphisms of maps underlying G, i.e., AutG is an automorphism group of map.
According to Theorems 7.1.1 and 7.1.2, we know that this happens if and only if for
∀v ∈ V(G), the stabilizer (AutG)v ≤ 〈v〉 × 〈α〉. �

We therefore get the following result again.

Theorem 7.3.6 Every semi-regular graph G is a map-automorphism graph.

Proof In fact, we know that (AutG)v = 1V(G) ≤ 〈v〉 × 〈α〉 for a semi-regular graph G.
By Theorem 7.3.5, G is a map-automorphism graph. �

Further application of Theorem 7.3.6 enables us to get the following result for vertex
transitive graphs.

Theorem 7.3.7 A Cayley graph X = Cay(Γ : S ) is a map-automorphism graph if and
only if (AutX)1Γ ≤ (S ), where (S ) denotes a cyclic permutation on S . Furthermore, there
is a regular map underlying Cay(Γ : S ) if (AutX)1Γ ≤ (S ).

Proof Notice that a Cayley graph Cay(Γ : S ) is transitive by Theorem 3.2.1. For
∀g, h ∈ V(Cay(Γ : S )), such a transitive automorphism is τ = g−1 ◦ h : g → h. We
therefore know that (AutX)g ≃ (AutX)h for g, h ∈ V(Cay(Γ : S )). Whence, X is a map-
automorphism graph if and only if (AutX)1Γ ≤ (S ) by Theorem 7.3.6. In this case, there is
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a regular map underlying Cay(Γ : S ) was verif ed by Gardiner et al. in [GNSS1], seeing
Note 7.1.1. �

Particularly, we get the following conclusion for map-automorphism graphs.

Corollary 7.3.4 A GRR graph of a f nite group (Γ; ◦) is a map-automorphism graph.

Corollary 7.3.5 A Cayley map CayM(Γ : S , r) is regular if and only if there is an auto-
morphism τ ∈ AutΓ such that τ|S = r.

Proof This is an immediately conclusion of Theorems 5.4.7 and 7.3.7. �

A few map-automorphism graphs can be found in Table 7.3.1 following.

G AutG Map-automorphism Graph?
Pn Z2 Yes
Cn Dn Yes

Pn × P2 Z2 × Z2 Yes
Cn × P2 Dn × Z2 Yes

Table 7.3.1

§7.4 AUTOMORPHISMS OF ONE FACE MAPS

7.4.1 One-Face Map. A one face map is such a map just with one face, which means
that the underlying graph of one face maps is the bouquets. Therefore, for determining
the automorphisms of one face maps, we only need to determine the automorphisms of
bouquets Bn on surfaces. There is a well-know result for automorphisms of a map and its
dual in topological graph theory, i.e., the automorphism group of map is the same as its
dual.

A map underlying graph Bn for an integer n ≥ 1 has the form Bn = (Xα,β,Pn) with
X = E(Bn) = {e1, e2, · · · , en} and

Pn = (x1, x2, · · · , x2n)(αx1, αx2n, · · · , x2),

where, xi ∈ X, βX or αβX and satisfying Axioms 1 and 2 in Section 5.2 of Chapter 5. For
a given bouquet Bn with n edges, its semi-arc automorphism group is

Aut 1
2
Bn = S n[S 2].
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From group theory, we know that each element in S n[S 2] can be represented by (g; h1, h2,
· · · , hn) with g ∈ S n and hi ∈ S 2 = {1, αβ} for i = 1, 2, · · · , n. The action of (g; h1, h2, · · · , hn)
on a map Bn underlying graph Bn by the following rule:

If x ∈ {ei, αei, βei, αβei}, then (g; h1, h2, · · · , hn)(x) = g(hi(x)).

For example, if h1 = αβ, then, (g; h1, h2, · · · , hn)(e1) = αβg(e1), (g; h1, h2, · · · , hn)(αe1)
= βg(e1), (g; h1, h2, · · · , hn)(βe1) = αg(e1) and (g; h1, h2, · · · , hn)(αβe1) = g(e1).

The following result for automorphisms of a map underlying graph Bn is obvious.

Lemma 7.4.1 Let (g; h1, h2, · · · , hn) be an automorphism of map Bn underlying a graph
Bn. Then

(g; h1, h2, · · · , hn) = (x1, x2, ..., x2n)k

and if (g; h1, h2, · · · , hn)α is an automorphism of map Bn, then

(g; h1, h2, · · · , hn)α = (x1, x2, · · · , x2n)k

for some integer k, 1 ≤ k ≤ n, where xi ∈ {e1, e2, · · · , en}, i = 1, 2, · · · , 2n and xi , x j if
i , j.

7.4.2 Automorphisms of One-Face Map. Analyzing the structure of elements in group
S n[S 2], we get the automorphisms of maps underlying graph Bn by Theorems 7.3.1 and
7.3.2 as follows.

Theorem 7.4.1 Let Bn be a bouquet with n edges ei for i = 1, 2, · · · , n. Then the automor-
phisms (g; h1, h2, · · · , hn) of orientable maps underlying Bn for n ≥ 1 are respectively

(O1) g ∈ E[k nk ], hi = 1, i = 1, 2, · · · , n;

(O2) g ∈ E[k nk ] and i f g =
n/k∏

i=1

(i1, i2, · · · ik), where i j ∈ {1, 2, · · · , n}, n/k ≡ 0(mod2),

then hi1 = (1, αβ), i = 1, 2, · · · , nk and hi j = 1 f or j ≥ 2;

(O3) g ∈ E
[k2s ,(2k)

n−2ks
2k ]

and i f g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(e j1 , e j2 , · · · , e j2k), where

i j, e jt ∈ {1, 2, · · · , n}, then hi1 = (1, αβ), i = 1, 2, · · · , s, hil = 1 f or l ≥ 2 and h jt =
1 f or t = 1, 2, · · · , 2k,

and the automorphisms (g; h1, h2, · · · , hn) of non-orientable maps underlying Bn for n ≥ 1
are respectively

(N1) g ∈ E[k nk ], hi = 1, i = 1, 2, · · · , n;
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(N2) g ∈ E[k nk ] and i f g =
n/k∏

i=1

(i1, i2, · · · ik), where i j ∈ {1, 2, · · · , n}, n/k ≡ 0(mod2),

then hi1 = (1, αβ), (1, β)with at least one hi01 = (1, β) for i = 1, 2, · · · , nk and hi j = 1 f or j ≥
2;

(N3) g ∈ E
[k2s ,(2k)

n−2ks
2k ]

and i f g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(e j1 , e j2 , · · · , e j2k), where

i j, e jt ∈ {1, 2, · · · , n}, then hi1 = (1, αβ), (1, β) with at least one hi01 = (1, β) f or i =
1, 2, · · · , s and hil = 1 f or l ≥ 2 and h jt = 1, t = 1, 2, · · · , 2k, where Eθ denotes the
conjugacy class in symmetry group S V(Bn) containing the element θ.

Proof By the structure of group S n[S 2], it is clear that the elements in the cases
(1), (2) and (3) are all semi-regular. We only need to construct an orientable or non-
orientable map Bn = (Xα,β,Pn) underlying Bn stable under the action of elements in
each case.

(1) g =
n/k∏

i=1

(i1, i2, · · · ik) and hi = 1, i = 1, 2, · · · , n, where i j ∈ {1, 2, · · · , n}.

Choose

X 1
α,β =

n/k⋃

i=1

K{i1, i2, · · · , ik},

where K = {1, α, β, αβ} and
P1

n = C1(αC−11 α
−1)

with

C1 = ( 11, 21, · · · , (
n
k
)1, αβ11, αβ21, · · · , αβ(

n
k
)1, 12, 22, · · · , (

n
k
)2,

αβ12, αβ22, · · · , αβ(
n
k
)2, · · · , 1k, 2k, · · · , (

n
k
)k, αβ1k, αβ1k, · · · , αβ(

n
k
)k).

Then the mapB1
n = (X 1

α,β
,P1

n ) is an orientable map underlying graph Bn and stable under
the action of (g; h1, h2, · · · , hn).

For the non-orientable case, we chose

C1 =

(
11, 21, · · · , (

n
k
)1, β11, β21, · · · , β(

n
k
)1, 12, 22, · · · , (

n
k
)2,

β12, β22, · · · , β(
n
k
)2, · · · , 1k, 2k, · · · , (

n
k
)k, β1k, β1k, · · · , β(

n
k
)k
)
.

Then the map B1
n = (X 1

α,β,P
1
n ) is a non-orientable map underlying graph Bn and stable

under the action of (g; h1, h2, · · · , hn).
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(2) g =
n/k∏

i=1

(i1, i2, · · · ik), hi = (1, β) or (1, αβ), i = 1, 2, · · · , n, n
k ≡ 0(mod2), where

i j ∈ {1, 2, · · · , n}.

If hi1 = (1, αβ) for i = 1, 2, · · · , nk and hit = 1 for t ≥ 2, then

(g; h1, h2, · · · , hn) =
n/k∏

i=1

(i1, αβi2, · · ·αβik, αβi1, i2, · · · , ik).

Similar to the case of (1), let X 2
α,β =X 1

α,β and

P2
n = C2(αC−12 α

−1)

with

C2 =

(
11, 21, · · · , (

n
k
)1, αβ12, αβ22, · · · , αβ(

n
k
)2, αβ1k, αβ2k,

· · · , αβ(
n
k
)k, αβ11, αβ21, · · · , αβ(

n
k
)1, 12, 22, · · · , (

n
k
)2, · · · , 1k, 2k, · · · , (

n
k
)k
)
.

Then the mapB2
n = (X 2

α,β,P
2
n ) is an orientable map underlying graph Bn and stable under

the action of (g; h1, h2, · · · , hn). For the non-orientable case, the construction is similar.
Now it only need to replace each element αβi j by that of βi j in the construction of the
orientable case if hi j = (1, β).

(3) g =
2s∏

i=1

(i1, i2, · · · ik)
(n−2ks)/2k∏

j=1

(e j1 , e j2 , · · · , e j2k) and hi1 = (1, αβ), i = 1, 2, · · · , s,

hil = 1 for l ≥ 2 and h jt = 1 for t = 1, 2, · · · , 2k.

In this case, we know that

(g; h1, h2, · · · , hn) =
s∏

i=1

(i1, αβi2, · · ·αβik, αβi1, i2, · · · , ik)
(n−2ks)/2k∏

j=1

(e j1 , e j2 , · · · , e j2k).

Denote by p the number (n − 2ks)/2k. We construct an orientable map B3
n = (X 3

α,β
,P3

n )
underlying Bn stable under the action of (g; h1, h2, · · · , hn) as follows.
Take

X 3
α,β =X 1

α,β and P3
n = C3(αC−13 α

−1)

with

C3 =
(
11, 21, · · · , s1, e11 , e21 , · · · , ep1 , αβ12, αβ22, · · · , αβs2,

e12 , e22 , · · · , ep2 , · · · , αβ1k, αβ2k, · · · , αβsk, e1k , e2k , · · · ,

epk , αβ11, αβ21, · · · , αβs1, e1k+1 , e2k+1, · · · , epk+1 , 12, 22, · · · ,

s2, e1k+2 , e2k+2 , · · · , epk+2 , · · · , 1k, 2k, · · · , sk, e12k , e22k , · · · , ep2k
)
.
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Then the mapB3
n = (X 3

α,β
,P3

n ) is an orientable map underlying graph Bn and stable under
the action of (g; h1, h2, · · · , hn).

Similarly, replacing each element αβi j by βi j in the construction of the orientable
case if hi j = (1, β), a non-orientable map underlying graph Bn and stable under the action
of (g; h1, h2, · · · , hn) can be also constructed. This completes the proof. �

We will apply Theorem 7.4.1 for the enumeration of one face maps on surfaces in
Chapter 8.

§7.5 REMARKS

7.5.1 An automorphism of map M is an automorphism of graph underlying that of M.
But the conversely is not always true. Any map automorphism is f xed-free, i.e., semi-
regular, particularly, an automorphism of regular map is regular. This fact enables one
to characterize those automorphisms of maps underlying a graph. Certainly, there is an
naturally induced action g|Xα,β for an automorphism g ∈ AutG of graph G on quadricells
in maps underlying G, i.e.,

(αx)g = αy, (βx)g = βy, (αβx)g = αβy

if xg = y for ∀x ∈ Xα,β(M(G)). Consider the action of AutG on Xα,β(M(G)). Then we
get the following result by def nition.

Theorem 7.5.1 An automorphism g of G is a map automorphism if and only if there is a
map M(G) stabilized under the action of g|Xα,β .

Theorems 7.1.1 and 7.1.2 enables one to characterize such map automorphisms in
another way, i.e., the following.

Theorem 7.5.2 An automorphism g ∈ AutG of graph G is an automorphism of map
underlying G if and only if 〈g〉v ≤ 〈v〉 × 〈α〉 for ∀v ∈ V(G).

7.5.2 We get these permutation presentations for automorphisms of maps underlying a
complete graph, a semi-regular graph and a bouquet, which enables us to calculate the
stabilizer Φ(g) of g on maps underlying such a graph in Chapter 8. A general problem is
the following.
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Problem 7.5.1 Find a permutation presentation for map automorphisms induced by such
automorphisms of a graph G on quadricells Xα,β with base set X = E(G), particularly,
f nd such presentations for complete bipartite graphs, cubes, generalized Petersen graphs
or regular graphs in general.

7.5.3 We had introduced graph multigroup for characterizing the local symmetry of a
graph, i.e., let G be a connected graph, H ≤ G a connected subgraph and τ ∈ AutG.
Similarly, consider the induced action of τ on Xα,β with base set X = E(H). Then the
following problem is needed to answer.

Problem 7.5.2 Characterize automorphisms of maps underlying H induced by auto-
morphisms of graph G, or verse via, characterize automorphisms of maps underlying G
induced by automorphisms of graph H by introducing the action of AutH on G \ H with
a stabilizer H.



CHAPTER 8.

Enumerating Maps on Surfaces

There are two kind of maps usually considered for enumeration in literature.
One is the rooted map, i.e., a quadricell on map marked beforehand. Such a
map is symmetry-freed, i.e., its automorphism group is trivial. Another is the
map without roots marked. The enumeration of maps on surfaces underlying
a graph can be carried out by the following programming:

STEP 1. Determine all automorphisms g of maps underlying graph G;
STEP 2. Calculate the the f xing set Φ1(g) or Ψ2(g) for each automorphism
g ∈ Aut 1

2
G;

STEP 3. Enumerate the maps on surfaces underlying graph G by Burnside
lemma.

This approach is independent on the orientability of maps. So it enables one to
enumerate orientable or non-orientable maps on surfaces both. The roots dis-
tribution and a formula for rooted maps underlying a graph are included in the
f rst two sections. Then a general enumeration scheme for maps underlying a
graph is introduced in Section 3. By applying this scheme, the enumeration
formulae for maps underlying a complete graph, a semi-regular graph or a
bouquet are obtained by applying automorphisms of maps determined in last
chapter in Sections 8.3-8.6, respectively.
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§8.1 ROOTS DISTRIBUTION ON EMBEDDINGS

8.1.1 Roots on Embedding. A root of am embedding M = (Xα,β,P) of graph G is an
element in Xα,β. A root r is called an i-root if it is incident with a vertex of valency i. Two
i-roots r1, r2 are transitive if there exists τ ∈ AutM such that τ(r1) = r2. An enumerator
v(D, x) and the root polynomials r(M, x), r(M(D), x) of M are def ned by

v(D, x) =
∑

i≥1
ivixi;

r(M, x) =
∑

i≥1
r(M, i)xi,

where r(M, i) denotes the number of non-transitive i-roots in M and

r(M(D), x) =
∑

M∈M(D)

r(M, x).

Theorem 8.1.1 For any embedding M (orientable or non-orientable),

r(M, i) =
2ivi
|AutM| ,

where vi denotes the number of vertices with valency i in M.

Proof Let U be all i-roots on M. Since UAutM = U, AutM is also a permutation
group acting on U, and r(M, i) is the number of orbits in U under the action of AutM.
It is clear that |U | = 2ivi. For ∀r ∈ U, (AutM)r is the trivial group by Theorem 5.3.5.
According to Theorem 2.1.1(3), |AutM| = |(AutM)r||rAutM|, we get that |rAutM| = |AutM|.
Thus the length of each orbit inU under this action has |AutM| elements. Whence,

r(M, i) =
|U |
|AutM| =

2ivi
|AutM| . �

Applying Theorem 8.1.1, we get a relation between v(D, x) and r(M, x) following.

Theorem 8.1.2 For an embedding M (orientable or non-orientable ) with valency se-
quence D,

r(M, x) =
2v(D, x)
|AutM| .

Proof By Theorem 8.1.1, we know that r(M, i) =
2ivi
|AutM| , where vi denotes the

number of vertices of valency i in M. So we have

r(M, x) =
∑

i≥1
r(M, i)xi
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=
∑

i≥1

2ivi
|AutM| =

2v(D, x)
|AutM| �

Let r(M) denotes the number of non-transitive roots on an embedding M. As a by-
product, we get r(M) by Theorem 8.1.2 following.

Corollary 8.1.1 For a given embedding M,

r(M) =
4ε(M)
|AutM| ,

where ε(M) denotes the number of edges of M.

Proof According to Theorem 8.1.2, we know that

r(M) = r(M, 1) =
2v(D, 1)
|AutM| =

1
|AutM|

∑

i≥1
2ivi.

Notice
∑
i≥1
ivi = 2ε(M). We get that

r(M) =
4ε(M)
|AutM| . �

8.1.2 Root Distribution. Let G be a connected simple graph and D = {d1, d2, · · · , dv}
its valency sequence. For ∀g ∈ AutG, there is an extended action g|Xα,β acting on Xα,β

with X = E(G). Def ne the orientable embedding index θO(G) of G and the orientable
embedding index θO(D) of D respectively by

θO(G) =
∑

M∈M(G)

1
|AutM| ,

θO(D) =
∑

G∈G(D)

∑

M∈M(G)

1
|AutM| ,

where G(D) denotes the family of graphs with valency sequence D. Then we have the
following results.

Theorem 8.1.3 For any connected simple graph G and a valency sequence D ,

θO(G) =

∏
d∈D(G)

(d − 1)!

2|AutG| and θO(D) =

∏
d∈D(G)

(d − 1)!

2|∆(D)| ,

where
|∆(D)|−1 =

∑

G∈G(D)

1
|AutG| .
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Proof Let W be the set of all embedings of graph G on orientable surfaces. Since
there is a bijection between the rotation scheme set ̺(G) of G and W, it is clear that
|W | = |̺(G)| = ∏

d∈D(G)
(d − 1)!. Notice that every element ξ ∈ AutG naturally induces an

g|Xα,β action onW. Since for an embeding M, ξ ∈ AutM if and only if ξ ∈ (AutG × 〈α〉)M,
so AutM = (AutG × 〈α〉)M . By |AutG × 〈α〉 | = |(AutG × 〈α〉)M ||MAutG×〈α〉|, we get that

|MAutG×〈α〉| = |AutG × 〈α〉 ||AutM| .

Therefore, we have that

θO(G) =
∑

M∈M(G)

1
|AutM|

=
1

|AutG × 〈α〉 |
∑

M∈M(G)

|AutG × 〈α〉 |
|AutM|

=
1

|AutG|
∑

M∈M(G)

|MAutG×〈α〉|

=
|W |

2|AutG| =

∏
d∈D(G)

(d − 1)!

2|AutG|

and

θO(D) =
∑

G∈G(D)

∏
d∈D(G)

(d − 1)!

2|AutG|)

=
1
2

∏

d∈D(G)
(d − 1)!(

∑

G∈G(D)

1
|AutG| )

=

∏
d∈D(G)

(d − 1)!

2|∆(D)| . �

Now we prove the main result of this subsection.

Theorem 8.1.4 For a given valency sequence D = {d1, d2, · · · , dv},

r(M(D), x) =
v(D, x)

∏
d∈D(G)

(d − 1)!

|∆(D)| .

where,

|∆(D)|−1 =
∑

G∈G(D)

1
|AutG| .
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Proof By the def nition of r(M(D), x), we know that

r(M(D), x) =
∑

M∈M(D)

r(M, x)

=
∑

G∈G(D)

∑

M∈M(G)

r(M, x).

According to Theorem 8.1.3, we know that

r(M(D), x) =
∑

G∈G(D)

∑

M∈M(G)

2v(D, x)
|AutM| = 2v(D, x)θ(D).

Whence,

θ(D) =

∏
d∈D(G)

(d − 1)!

2|∆(D)| .

Therefore, we f nally get that

r(M(D), x) =
v(D, x)

∏
d∈D(G)

(d − 1)!

|∆(D)| . �

Corollary 8.1.2 For a connected simple graphG, let D(G) = {d1, d2, · · · , dv} be its valency
sequence. Then

r(M(G), x) =
v(D, x)

∏
d∈D(G)

(d − 1)!

|AutG| .

Corollary 8.1.4 The number of all non-transitive i-roots in embeddings underlying a
connected simple graph G is

ivi
∏

d∈D(G)
(d − 1)!

|AutG| ,

where vi denotes the number of vertices of valency i in G.

Corollary 8.1.5 The number r(M(G)) of non-transitive roots in embeddings of simple
graph G on orientable surfaces is

r(M(G)) =
2ε(G)

∏
d∈D(G)

(d − 1)!

|AutG| .

Proof According to Theorem 8.1.2 and Corollary 8.1.2, we know that

r(M(G)) = r(M(G), 1)

=

∏
d∈D(G)

(d − 1)!v(D, 1)

|AutG| .
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Notice that v(D, 1) =
∑
i≥1
ivi = 2ε(M). So we f nd that

r(M(G)) =
2ε(G)

∏
d∈D(G)

(d − 1)!

|AutG| . �

Theorem 8.1.4 enables one to enumerate roots on edmeddings underlying a vertex-transitive
graphs, a symmetric graph, · · ·, etc. For example, we can apply Corollary 8.1.5 to count
the roots on embeddings underlying a complete graph Kn. In this case, AutKn = S V(Kn),
so |AutKn| = n!. Therefore,

r(M(Kn)) =
n(n − 1)((n − 2)!)n

n!
= ((n − 2)!)n−1.

let n = 4. Calculation shows that there are eight non-transitive roots on embeddings
underlying K4, shown in the Fig.8.1.1, in which each arrow represents a root.-

-
6 61

1

2 2- ?IR +3 ?6 -
-

6 61

1

2 2

Fig.8.1.1

8.1.3 Rooted Map. A rooted map Mr is such a map M = (X ,P) with one quadricell
r ∈Xα,β is marked beforehand, which is introduced by Tutte for the enumeration of planar
maps. Two rooted maps Mr1

1 and Mr2
2 are said to be isomorphic if there is an isomorphism

θ : M1 → M2 between M1 and < M2 such that θ(r1) = r2, particularly, if M1 = M2 = M,
two rooted maps Mr1 and Mr2 are isomorphic if and only if there is an automorphism
τ ∈ AutM such that τ(r1) = r2. All automorphisms of a rooted map Mr form a group,
denoted by AutMr. By Theorem 5.3.5, we know the following result.

Theorem 8.1.5 AutMr is a trivial group.

The importance of the idea introduced a root on map is that it turns any map to a
non-symmetry map. The following result enables one to enumerate rooted maps by that
of roots on maps.
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Theorem 8.1.6 For a map M = (Xα,β,P), the number of non-isomorphic rooted maps
is equal to that of non-transitive roots on map M.

Proof Let r1 and r2 be two non-transitive roots on M. Then Mr1 and Mr2 are non-
isomorphic by def nition. Conversely, if Mr1 and Mr2 are non-isomorphic, there are no
automorphisms τ ∈ AutM such that τ(r1) = r2, i.e., r1 and r2 are non-transitive. �.

Theorem 8.1.6 turns the enumeration of rooted maps by that of roots on maps.

Theorem 8.1.7 The number rO(G) of rooted maps on orientable surfaces underlying a
connected graph G is

rO(G) =
2ε(G)

∏
v∈V(G)

(ρ(v) − 1)!

|Aut 1
2
G| ,

where ρ(v) denotes the valency of vertex v.

Proof Denotes the set of all non-isomorphic orientable maps with underlying graph
G byMO(G). According to Corollary 8.1.1 and Theorem 8.1.6, we know that

rO(G) =
∑

M∈MO(G)

4ε(M)
|AutM| .

Notice that every element ξ ∈ AutG 1
2
× 〈α〉 natural induces an action on EO(G). By

Theorem 5.3.3, ∀M ∈ M(G), τ ∈ AutM if and only if, τ ∈ (AutG 1
2
× 〈α〉)M . Whence,

AutM = (AutG 1
2
× 〈α〉)M . According to Theorem 2.1.1(3), |AutG 1

2
× 〈α〉 | = |(AutG 1

2
×

〈α〉)M ||M
AutG 1

2
×〈α〉|. We therefore get that

|MAutG 1
2
×〈α〉| = 2|AutG|

|AutM| .

Whence,

rO(G) = 4ε(G)
∑

M∈MO(G)

1
|AutM|

=
4ε(G)

|AutG 1
2
× 〈α〉 |

∑

M∈MO(G)

|AutG 1
2
× 〈α〉 |

|AutM|

=
4ε(G)

|AutG 1
2
× 〈α〉 |

∑

M∈MO(G)

|MAutG 1
2
×〈α〉|

=
4ε(G)|EO(G)|
2|AutG 1

2
| =

2ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G| �
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By Theorems 3.4.1 and 8.1.7, we get a corollary for the number of rooted orientable
maps underlying a simple graph, which is the same as Corollary 8.1.5 following.

Corollary 8.1.6 The number rO(G) of rooted maps on orientable surfaces underlying a
connected simple graph G is

rO(G) =
2ε(H)

∏
v∈V(G)

(ρ(v) − 1)!

|AutG| .

For rooted maps on locally orientable surfaces underlying a connected graph G, we
know the following result.

Theorem 8.1.8 The number rL(G) of rooted maps on surfaces underlying a connected
graph G is

rL(G) =
2β(G)+1ε(G)

∏
v∈V(G)

(ρ(v) − 1)!

|Aut 1
2
G| .

Proof The proof is similar to that of Theorem 8.1.7. In fact, by Corollaries 5.1.2,
8.1.1 and Theorem 8.1.6, let ML(G) be the set of all non-isomorphic maps underlying
graph G. Then

rL(G) =
∑

M∈ML(G)

4ε(M)
|AutM| = 4ε(G)

∑

M∈ML(G)

1
|AutM|

=
4ε(G)

|AutG 1
2
× 〈α〉 |

∑

M∈ML(G)

|AutG 1
2
× 〈α〉 |

|AutM|

=
4ε(G)

|AutG 1
2
× 〈α〉 |

∑

M∈ML(G)

|MAutG 1
2
×〈α〉|

=
4ε(G)|EL(G)|
2|AutG 1

2
| =

2β(G)+1ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G| .

This completes the proof. �

Since rL(G) = rO(G) + rN(G), we also get the number rN(G) of rooted maps on
non-orientable surfaces underlying a connected graph G following.

Theorem 8.1.9 The number rN(G) of rooted maps on non-orientable surfaces underlying
a connected graph G is

rN(G) =
(2β(G)+1 − 2)ε(G) ∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G| .
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According to Theorems 8.1.8 and 8.1.9, we get the following table for the numbers
of rooted maps on surfaces underlying a few well-known graphs.

G rO(G) rN(G)
Pn n − 1 0
Cn 1 1
Kn (n − 2)!n−1 (2

(n−1)(n−2)
2 − 1)(n − 2)!n−1

Km,n(m , n) 2(m − 1)!n−1(n − 1)!m−1 (2mn−m−n+2 − 2)(m − 1)!n−1(n − 1)!m−1

Kn,n (n − 1)!2n−2 (2n2−2n+2 − 1)(n − 1)!2n−2

Bn (2n)!
2nn! (2n+1 − 1) (2n)!2nn!

Dpn (n − 1)! (2n − 1)(n − 1)!
Dpk,ln (k , l)

(n+k+l)(n+2k−1)!(n+2l−1)!
2k+l−1n!k!l!

(2n+k+l−1)(n+k+l)(n+2k−1)!(n+2l−1)!
2k+l−1n!k!l!

Dpk,kn
(n+2k)(n+2k−1)!2

22kn!k!2
(2n+2k−1)(n+2k)(n+2k−1)!2

22kn!k!2

Table 8.1.1

§8.2 ROOTED MAP ON GENUS UNDERLYING A GRAPH

8.2.1 Rooted Map Polynomial. For a graph G with maximum valency ≥ 3, assume
that ri(G), r̃i(G), i ≥ 0 are respectively the numbers of rooted maps underlying graph
G on orientable surface of genus γ(G) + i − 1 or on non-orientable surface of genus
γ̃(G)+ i−1, where γ(G) and γ̃(G) denote the minimum orientable genus and the minimum
non-orientable genus of G, respectively. The rooted orientable map polynomial r[G](x) ,
rooted non-orientable map polynomial r̃[G](x) and rooted total map polynomial R[G](x)
on genus are def ned by

r[G](x) =
∑

i≥0
ri(G)xi,

r̃[G](x) =
∑

i≥0
r̃i(G)xi

and
R[G](x) =

∑

i≥0
ri(G)xi +

∑

i≥1
r̃i(G)x−i.

We have known that the total number of orientable embeddings of G is
∏

d∈D(G)
(d − 1)!

and non-orientable embeddings is (2β(G)−1) ∏
d∈D(G)

(d−1)! by Corollary 5.1.2, where D(G)
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is its valency sequence. Similarly, let gi(G) and g̃i(G), i ≥ 0 respectively be the number
of embeddings of G on the orientable surface with genus γ(G) + i − 1 and on the non-
orientable surface with genus γ̃(G) + i − 1. The orientable genus polynomial g[G](x),
non-orientable genus polynomial g̃[G](x) and total genus polynomial G[G](x) of graphG
are def ned respectively by

g[G](x) =
∑

i≥0
gi(G)xi,

g̃[G](x) =
∑

i≥0
g̃i(G)xi

and
G[G](x) =

∑

i≥0
gi(G)xi +

∑

i≥1
g̃i(G)x−i.

All these polynomials r[G](x), r̃[G](x), R[G](x) and g[G](x), g̃[G](x), G[G](x) are f nite
by properties of G on surfaces, for example, Theorem 5.1.2.

We establish relations between r[G](x) and g[G](x), r̃[G](x) and g̃[G](x), R[G](x)
and G[G](x) in the following result.

Theorem 8.2.1 For a connected graph G,

|Aut 1
2
G| r[G](x) = 2ε(G) g[G](x),

|Aut 1
2
G| r̃[G](x) = 2ε(G) g̃[G](x)

and
|Aut 1

2
G| R[G](x) = 2ε(G) G(x).

Proof For an integer k, denotes by Mk(G, S ) all the non-isomorphic maps on an
orientable surface S with genus γ(G) + k − 1. According to the Corollary 8.1.1, we know
that

rk(G) =
∑

M∈Mk(G,S )

4ε(M)
|AutM|

=
4ε(G)

|Aut 1
2
G × 〈α〉 |

∑

M∈Mk(G,S )

|Aut 1
2
G × 〈α〉 |
|AutM| .

Since |Aut 1
2
G × 〈α〉 | = |(Aut 1

2
G × 〈α〉)M ||M

Aut 1
2
G×〈α〉| and |(Aut 1

2
G × 〈α〉)M | = |AutM|,

we know that

rk(G) =
4ε(G)

|Aut 1
2
G × 〈α〉 |

∑

M∈Mk(G,S )

|MAut 1
2
G×〈α〉| = 2ε(G)gk(G)

|Aut 1
2
G| .
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Consequently,

|Aut 1
2
G| r[G](x) = |Aut 1

2
G|

∑

i≥0
ri(G)xi

=
∑

i≥0
|Aut 1

2
G|ri(G)xi

=
∑

i≥0
2ε(G)gi(G)xi = 2ε(G) g[G](x).

Similarly, let M̃k(G, S̃ ) be all non-isomorphic maps on an non-orientable surface S̃
with genus γ̃(G) + k − 1. Similar to the orientable case, we get that

r̃k(G) =
4ε(G)

|Aut 1
2
G × 〈α〉 |

∑

M∈M̃k(G,S̃ )

|Aut 1
2
G × 〈α〉 |
|AutM|

=
4ε(G)

|Aut 1
2
G × 〈α〉 |

∑

M∈M̃k(G,S̃ )

|MAut 1
2
G×〈α〉|

=
2ε(G)g̃k(G)
|Aut 1

2
G| .

Whence,

|Aut 1
2
G| r̃[G](x) =

∑

i≥0
|Aut 1

2
G|̃ri(G)xi

=
∑

i≥0
2ε(G)g̃i(G)xi = 2ε(G) g̃[G](x).

Notice that
R[G](x) =

∑

i≥0
ri(G)xi +

∑

i≥1
r̃i(G)x−i

and
G[G](x) =

∑

i≥0
gi(G)xi +

∑

i≥1
g̃i(G)x−i.

We also get that

rk(G) =
2ε(G)gk(G)
|Aut 1

2
G| and r̃k(G) =

2ε(G)g̃k(G)
|Aut 1

2
G|

for integers k ≥ 0. Therefore, we get that

|Aut 1
2
G| R[G](x) = |Aut 1

2
G|(

∑

i≥0
ri(G)xi +

∑

i≥1
r̃i(G)x−i)

=
∑

i≥0
|Aut 1

2
G|ri(G)xi +

∑

i≥1
|Aut 1

2
G|̃ri(G)x−i

=
∑

i≥0
2ε(G)gi(G)xi +

∑

i≥0
2ε(G)g̃i(G)x−i = 2ε(G) G[G](x).
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This completes the proof. �

Corollary 8.2.1 Let G be a graph and s ≥ 0 an integer. If rs(G) and gs(G) are the numbers
of rooted maps and embeddings on a locally orientable surface of genus s underlying
graph G, respectively. Then

rs(G) =
2ε(G)gs(G)
|Aut 1

2
G| .

8.2.2 Rooted Map Sequence. Corollary 8.2.1 can be used to f nd the implicit relations
among r[G](x), r̃[G](x) or R[G](x) if the implicit relations among g[G](x), g̃[G](x) or
G[G](x) are known, and vice via.

Denote the variable vector (x1, x2, · · ·) by x¯,

r
¯
(G) = (· · · , r̃2(G), r̃1(G), r0(G), r1(G), r2(G), · · ·),

g
¯
(G) = (· · · , g̃2(G), g̃1(G), g0(G), g1(G), g2(G), · · ·).

We call r
¯
(G) and g

¯
(G) the rooted map sequence and the embedding sequence of graph G,

respectively.
Def ne a function F(x

¯
, y
¯
) to be y-linear if it can be represented as the following form

F(x
¯
, y
¯
) = f (x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I
yi + l(x1, x2, · · ·)

∑

Λ∈O
Λ(y

¯
),

where I denotes a subset of index andO a set of linear operators. Notice that f (x1, x2, · · ·) =
F(x
¯
, 0
¯
), where 0

¯
= (0, 0, · · ·). We get the following general result.

Theorem 8.2.2 Let G be a graph family and H ⊆ G. If their embedding sequences
g
¯
(G), G ∈ H satisfy the equation

FH(x¯
, g
¯
(G)) = 0, (4.1)

then the rooted map sequences r
¯
(G), G ∈ H satisfy the equation

FH(x¯
,
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0,

and vice via, if the rooted map sequences r
¯
(G), G ∈ H satisfy the equation

FH(x¯
, r
¯
(G)) = 0, (4.2)
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then the embedding sequences g
¯
(G), G ∈ H satisfy the equation

FH (x¯
,
2ε(G)
|Aut 1

2
G|g¯

(G)) = 0.

Furthermore, assume the function F(x
¯
, y
¯
) is y-linear and

2ε(G)
|Aut 1

2
G| , G ∈ H is a constant.

If the embedding sequences g
¯
(G), G ∈ H satisfy equation (4.1), then

F⋄H(x¯
, r
¯
(G)) = 0,

where F⋄H(x¯
, y
¯
) = F(x

¯
, y
¯
)+ (

2ε(G)
|Aut 1

2
G| − 1)F(x¯, 0¯ ) and vice via, if the rooted map sequences

g
¯
(G), G ∈ H satisfy equation (4.2), then

F⋆H (x¯
, g
¯
(G)) = 0.

where F⋆H = F(x¯
, y
¯
) + (
|Aut 1

2
G|

2ε(Γ)
− 1)F(x

¯
, 0
¯
).

Proof According to the Corollary 8.2.1, for any integer s ≥ o and G ∈ H , we know
that

rs(G) =
2ε(G)
|Aut 1

2
G| gs(G)

and

gs(G) =
|Aut 1

2
G|

2ε(G)
rs(G).

Therefore, if the embedding sequences g
¯
(G),G ∈ H satisfy equation (4.1), then

FH(x¯
,
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0,

and vice via, if the rooted map sequences r
¯
(G), G ∈ H satisfy equation (4.2), then

FH(x¯
,
2ε(G)
|Aut 1

2
G|g¯

(G)) = 0.

Now assume that FH(x¯
, y
¯
) is a y-linear function with a form

FH(x¯
, y
¯
) = f (x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I
yi + l(x1, x2, · · ·)

∑

Λ∈O
Λ(y

¯
),

where O is a set of linear operators. If FH (x¯, g¯
(G)) = 0, that is

f (x1, x2, · · ·) + h(x1, x2, · · ·)
∑

i∈I, G∈H
gi(G) + l(x1, x2, · · ·)

∑

Λ∈O, G∈H
Λ(g

¯
(G)) = 0,
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we get that

f (x1, x2, · · ·) + h(x1, x2, · · ·)
∑

i∈I, G∈H

|Aut 1
2
G|

2ε(G)
ri(G)

+ l(x1, x2, · · ·)
∑

Λ∈O, G∈H
Λ(
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0.

Since Λ ∈ O is a linear operator and 2ε(G)
|Aut 1

2
G| , G ∈ H is a constant, we also have

f (x1, x2, · · ·) +
|Aut 1

2
G|

2ε(G)
h(x1, x2, · · ·)

∑

i∈I, G∈H
ri(G)

+
|Aut 1

2
G|

2ε(G)
l(x1, x2, · · ·)

∑

Λ∈O, G∈H
Λ(r
¯
(G)) = 0,

that is,

2ε(G)
|Aut 1

2
G| f (x1, x2, · · ·) + h(x1, x2, · · ·)

∑

i∈I, G∈H
ri(G) + l(x1, x2, · · ·)

∑

Λ∈O, G∈H
Λ(r
¯
(G)) = 0.

Consequently, we get that
F⋄H (x¯

, r
¯
(G)) = 0.

Similarly, if
FH (x¯

, r
¯
(G)) = 0,

we can also get that
F⋆H(x¯

, g
¯
(G)) = 0.

This completes the proof. �

Corollary 8.2.2 Let G be a graph family and H ⊆ G. If the embedding sequences g
¯
(G)

of graph G ∈ G satisfy a recursive relation
∑

i∈J, G∈H
a(i,G)gi(G) = 0,

where J is the set of index, then the rooted map sequences r
¯
(G) satisfy a recursive relation

∑

i∈J, G∈H

a(i, G)|Aut 1
2
G|

2ε(G)
ri(G) = 0,
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and vice via.

A typical example of Corollary 8.2.2 is the graph family bouquets Bn, n ≥ 1. Notice
that the following recursive relation for the number gm(n) of embeddings of a bouquet Bn
on an orientable surface with genus m for n ≥ 2 was found in [GrF2].

(n + 1)gm(n) = 4(2n − 1)(2n − 3)(n − 1)2(n − 2)gm−1(n − 2)

+ 4(2n − 1)(n − 1)gm(n − 1)

with boundary conditions

gm(n) = 0 if m ≤ 0 or n ≤ 0;
g0(0) = g0(1) = 1 and gm(0) = gm(1) = 0 for m ≥ 0;
g0(2) = 4, g1(2) = 2, gm(2) = 0 for m ≥ 1.

Since |Aut 1
2
Bn| = 2nn!, we get a recursive relation for the number rm(n) of rooted

maps on an orientable surface of genus m underlying graph Bn by Corollary 8.2.2 follow-
ing.

(n2 − 1)(n − 2)rm(n) = (2n − 1)(2n − 3)(n − 1)2(n − 2)rm−1(n − 2)

+ 2(2n − 1)(n − 1)(n − 2)rm(n − 1)

with the boundary conditions rm(n) = 0 if m ≤ 0 or n ≤ 0;
r0(0) = r0(1) = 1 and rm(0) = rm(1) = 0 for m ≥ 0;
r0(2) = 2, r1(2) = 1, gm(2) = 0 for m ≥ 1.

Corollary 8.2.3 Let G be a graph family and H ⊆ G. If the embedding sequences
g
¯
(G), G ∈ G satisfy an operator equation

∑

Λ∈O, G∈H
Λ(g
¯
(G)) = 0,

where O denotes a set of linear operators, then the rooted map sequences r
¯
(G), G ∈ H

satisfy an operator equation

∑

Λ∈O, G∈H
Λ(
|Aut 1

2
G|

2ε(G)
r
¯
(G)) = 0

and vice via.
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Let θ = (θ1, θ2, · · · , θk) ⊢ 2n, i.e.,
k∑
j=1
θ j = 2n with positive integers θ j. Kwak and

Shim introduced three linear operators Γ,Θ and ∆ to f nd the total genus polynomial of
bouquets Bn, n ≥ 1 in [KwS1] def ned as follows.

Denotes by zθ and z−1θ = 1/zθ the multivariate monomials
k∏
i=1
zθi and 1/

k∏
i=1
zθi , where

θ = (θ1, θ2, · · · , θk) ⊢ 2n. Then the linear operators Γ,Θ and ∆ are def ned respectively by

Γ(z±1θ ) =
k∑

j=1

θ j∑

l=0

θ j{(
z1+lzθ j+1−l
zθ j

)zθ}±1,

Θ(z±1θ ) =
k∑

j=1

(θ2j + θ j)(
zθ j+2zθ
zθ j

)−1

and
∆(z±1θ ) =

∑

1≤i< j≤k
2θiθ j[{(

zθ j+θi+2
zθ jzθi

)zθ}±1 + {(
zθ j+θi+2
zθ jzθi

)zθ}−1].

Denote by î[Bn](z j) the sum of all monomial zθ or 1/zθ taken over all embeddings of Bn
into an orientable or non-orientable surface, that is

î[Bn](z j) =
∑

θ⊢2n
iθ(Bn)zθ +

∑

θ⊢2n
ĩθ(Bn)z−1θ ,

where, iθ(Bn) and ĩθ(Bn) denote the number of embeddings of Bn into orientable and non-
orientable surface of region type θ. They found that

î[Bn+1](z j) = (Γ + Θ + ∆)î[Bn](z j) = (Γ + Θ + ∆)n(
1
z2
+ z21).

and
G[Bn+1](x) = (Γ + Θ + ∆)n(

1
z2
+ z21)|z j=x f or j≥1 and (C∗),

where, (C∗) denotes the condition

(C∗): replacing the power 1 + n − 2i of x by i if i ≥ 0 and −(1 + n + i) by −i if i ≤ 0.

Notice that
|Aut 1

2
Bn|

2ε(Bn)
=
2nn!
2n
= 2n−1(n − 1)!

and Γ,Θ,∆ are linear. By Corollary 8.2.3 we know that

R[Bn+1](x) =
(Γ + Θ + ∆)î[Bn](z j)

2nn!
|z j=x f or j≥1 and (C∗)

=
(Γ + Θ + ∆)n( 1z2 + z

2
1)

n∏
k=1

2kk!
|z j=x f or j≥1 and (C∗).
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Calculation shows that

R[B1](x) = x +
1
x
;

R[B2](x) = 2 + x +
5
x
+

4
x2
;

R[B3](x) =
41
x3
+
42
x2
+
22
x
+ 5 + 10x

and
R[B4](x) =

488
x4
+
690
x3
+
304
x2
+
93
x
+ 14 + 70x + 21x2.

§8.3 A SCHEME FOR ENUMERATINGMAPS UNDERLYING A GRAPH

For a given graph G, denoted by EO(G),EN(G) and EL(G) the sets of embeddings of G
on orientable surfaces, non-orientable surfaces and on locally orientable surfaces, respec-
tively. For determining the number of non-equivalent embeddings of a graph on sur-
faces and maps underlying a graph, another form of the Theorem 5.3.3 by group action is
needed, which is restated as follows.

Theorem 8.3.1 Let M1 = (Xα,β,P1) and M2 = (Xα,β,P2) be two maps underlying
graph G, then

(1) M1,M2 are equivalent if and only if M1, M2 are in one orbit of Aut 1
2
G action on

X 1
2
(G);
(2) M1,M2 are isomorphic if and only if M1, M2 are in one orbit of Aut 1

2
G × 〈α〉

action onXα,β.

Now we can established a scheme for enumerating the number of non-isomorphic
maps and non-equivalent embeddings of a graph on surfaces by applying the well-known
Burnside Lemma, i.e., Theorem 2.1.3 in the following.

Theorem 8.3.2 For a graph G, let E ⊂ EL(G), then the numbers n(E,G) and η(E,G) of
non-isomorphic maps and non-equivalent embeddings in E are respective

n(E,G) = 1
2|Aut 1

2
G|

∑

g∈Aut 1
2
G

|Φ1(g)|,

η(E,G) = 1
|Aut 1

2
G|

∑

g∈Aut 1
2
G

|Φ2(g)|,
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where, Φ1(g) = {P |P ∈ E and Pg = P or Pgα = P}, Φ2(g) = {P |P ∈ E and
Pg =P}.

Proof Def ne the group H = Aut 1
2
G × 〈α〉. Then by the Burnside Lemma and the

Theorem 8.3.1, we get that

n(E,G) = 1
|H|

∑

g∈H
|Φ1(g)|,

where, Φ1(g) = {P |P ∈ E andPg =P}. Now |H| = 2|Aut 1
2
G|. Notice that ifPg =P ,

then Pgα
, P , and if Pgα = P , then Pg

, P . Whence, Φ1(g)
⋂
Φ1(gα) = ∅. We

have that

n(E,G) = 1
2|Aut 1

2
G|

∑

g∈Aut 1
2
G

|Φ1(g)|,

where Φ1(g) = {P |P ∈ E and Pg =P or Pgα =P}.
Similarly,

η(E,G) = 1
|Aut 1

2
G|

∑

g∈Aut 1
2
G

|Φ2(g)|,

where, Φ2(g) = {P |P ∈ E and Pg =P}. �

From Theorem 8.3.2, we get results following.

Corollary 8.3.1 The numbers nO(G), nN(G) and nL(G) of non-isomorphic orientable
maps, non-orientable maps and locally orientable maps underlying a graph G are re-
spectively

nO(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2
G

|ΦO1 (g)|; (8.3.1)

nN(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2
G

|ΦN1 (g)|; (8.3.2)

nL(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2
G

|ΦL1(g)|, (8.3.3)

where, ΦO1 (g) = {P |P ∈ EO(G) and Pg = P or Pgα = P}, ΦN1 (g) = {P |P ∈ EN(G)
andPg =P or Pgα =P}, ΦL1(g) = {P |P ∈ EL(G) and Pg =P orPgα =P}.
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Corollary 8.3.2 The numbers ηO(G), ηN(G) and ηL(G) of non-equivalent embeddings of
graph G on orientable ,non-orientable and locally orientable surfaces are respectively

ηO(G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2
G

|ΦO2 (g)|; (8.3.4)

ηN(G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2
G

|ΦN2 (g)|; (8.3.5)

ηL(G) =
1

|Aut 1
2
G|

∑

g∈Aut 1
2
G

|ΦL2(g)|, (8.3.6)

where, ΦO2 (g) = {P |P ∈ EO(G) andPg =P},ΦN2 (g) = {P |P ∈ EN(G) andPg =P},
ΦL2(g) = {P |P ∈ EL(G) andPg =P}.

For a simple graph G, since Aut 1
2
G = AutG by Theorem 3.4.1, the formula (8.3.4)

is just the scheme used for counting the non-equivalent embeddings of a complete graph,
a complete bipartite graph in references [MRW1], [Mul1]. For an asymmetric graph G,
that is, Aut 1

2
G = idX 1

2
(G), we get the numbers of non-isomorphic maps and non-equivalent

embeddings underlying graph G by the Corollaries 8.3.1 and 8.3.2 following.

Theorem 8.3.3 The numbers nO(G), nN(G) and nL(G) of non-isomorphic maps on ori-
entable, non-orientable surfaces or locally orientable surfaces underlying an asymmetric
graph G are respectively

nO(G) =

∏
v∈V(G)

(ρ(v) − 1)!

2
,

nL(G) = 2β(G)−1
∏

v∈V(G)
(ρ(v) − 1)!

and

nN(G) = (2β(G)−1 − 1
2
)

∏

v∈V(G)
(ρ(v) − 1)!,

where, β(G) is the Betti number of graph G.
The numbers ηO(G), ηN(G) and ηL(G) of non-equivalent embeddings underlying an

asymmetric graph G are respectively

ηO(G) =
∏

v∈V(G)
(ρ(v) − 1)!,
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ηL(G) = 2β(G)
∏

v∈V(G)
(ρ(v) − 1)!

and
ηN(G) = (2β(G) − 1)

∏

v∈V(G)
(ρ(v) − 1)!.

All these formulae are useful for enumerating non-isomorphic maps underlying a com-
plete graph, semi-regular graph or a bouquet on surfaces in sections following.

§8.4 THE ENUMERATION OF COMPLETE MAPS ON SURFACES

We f rst consider a permutation with its stabilizer. A permutation with the following form
(x1, x2, · · · , xn)(αxn, αx2, · · · , αx1) is called a permutation pair. The following result is
obvious.

Lemma 8.4.1 Let g be a permutation on set Ω = {x1, x2, · · · , xn} such that gα = αg. If

g(x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1)g−1 = (x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1),

then
g = (x1, x2, · · · , xn)k

and if

gα(x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1)(gα)−1 = (x1, x2, · · · , xn)(αxn, αxn−1, · · · , αx1),

then
gα = (αxn, αxn−1, · · · , αx1)k

for some integer k, 1 ≤ k ≤ n.

Lemma 8.4.2 For each permutation g, g ∈ E[k nk ] satisfying gα = αg on set Ω =
{x1, x2, · · · , xn}, the number of stable permutation pairs in Ω under the action of g or
gα is

2φ(k)(n − 1)!
|E[k nk ]|

,

where φ(k) denotes the Euler function.

Proof Denote the number of stable pair permutations under the action of g or gα
by n(g) and C the set of pair permutations. Def ne the set A = {(g,C)|g ∈ E[k nk ],C ∈
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C and Cg = C or Cgα = C}. Clearly, for ∀g1, g2 ∈ E[k nk ], we have n(g1) = n(g2).
Whence, we get that

|A| = |E[k nk ]|n(g). (8.4.1)

On the other hand, by the Lemma 8.4.1, for any permutation pair C = (x1, x2, · · · , xn)
(αxn, αxn−1, · · · , αx1), sinceC is stable under the action of g, there must be g = (x1, x2, · · · , xn)l

or gα = (αxn, αxn−1, · · · , αx1)l, where l = s nk , 1 ≤ s ≤ k and (s, k) = 1. Therefore, there
are 2φ(k) permutations in E[k nk ] acting on it stable. Whence, we also have

|A| = 2φ(k)|C|. (8.4.2)

Combining (8.4.1) with (.4.2), we get that

n(g) =
2φ(k)|C|
|E[k nk ]|

=
2φ(k)(n − 1)!
|E[k nk ]|

. �

Now we can enumerate the unrooted complete maps on surfaces.

Theorem 8.4.1 The number nL(Kn) of complete maps of order n ≥ 5 on surfaces is

nL(Kn) =
1
2
(
∑

k|n
+

∑

k|n,k≡0(mod2)
)
2α(n,k)(n − 2)! nk

k nk (nk )!
+

∑

k|(n−1),k,1

φ(k)2β(n,k)(n − 2)! n−1k
n − 1 ,

where,

α(n, k) =



n(n − 3)
2k

, if k ≡ 1(mod2);
n(n − 2)

2k
, if k ≡ 0(mod2),

and

β(n, k) =



(n − 1)(n − 2)
2k

, if k ≡ 1(mod2);
(n − 1)(n − 3)

2k
, if k ≡ 0(mod2).

and nL(K4) = 11.

Proof According to formula (8.3.3) in Corollary 8.3.1 and Theorem 7.2.1 for n ≥ 5,
we know that

nL(Kn) =
1

2|AutKn|
×



∑

g1∈E
[k
n
k ]

|Φ(g1)| +
∑

g2∈E
[(2s)

n
2s ]

|Φ(g2α)| +
∑

h∈E
[1,k

n−1
k ]

|Φ(h)|



=
1
2n!
×


∑

k|n
|E[k nk ]||Φ(g1)| +

∑

l|n,l≡0(mod2)
|E[l nl ]||Φ(g2α)| +

∑

l|(n−1)
|E

[1,l
n−1
l ]
||Φ(h)|

 ,
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where, g1 ∈ E[k nk ], g2 ∈ E[l nl ] and h ∈ E[1,k n−1k ]
are three chosen elements.

Without loss of generality, we assume that an element g, g ∈ E[k nk ] has the following
cycle decomposition.

g = (1, 2, · · · , k) (k + 1, k + 2, · · · , 2k) · · ·
((n
k
− 1

)
k + 1,

(n
k
− 1

)
k + 2, · · · , n

)

and

P =
∏

1
×

∏
2
,

where

∏
1
=

(
1i21 , 1i31 , · · · , 1in1

) (
2i12 , 2i32, · · · , 2in2

)
· · ·

(
ni1n , ni2n , · · · , ni(n−1)n

)
,

and ∏
2
= α

(∏
1

−1)
α−1,

being a complete map which is stable under the action of g, where si j ∈ {k+, k − |k =
1, 2, · · · , n}.

Notice that the quadricells adjacent to the vertex 1 can make 2n−2(n − 2)! different
pair permutations and for each chosen pair permutation, the pair permutations adjacent to
the vertices 2, 3, · · · , k are uniquely determined since P is stable under the action of g.

Similarly, for each pair permutation adjacent to the vertex k+1, 2k+1, · · · ,
(n
k
− 1

)
k

+1, the pair permutations adjacent to k + 2, k + 3, · · · , 2k, and 2k + 2, 2k + 3, · · · , 3k,· · ·,
and

(n
k
− 1

)
k + 2,

(n
k
− 1

)
k + 3, · · · , n are also uniquely determined because P is stable

under the action of g.
Now for an orientable embedding M1 of Kn, all the induced embeddings by ex-

changing two sides of some edges and retaining the others unchanged in M1 are the same
as M1 by the def nition of maps. Whence, the number of different stable embeddings
under the action of g gotten by exchanging x and αx in M1 for x ∈ U,U ⊂ Xβ, where
Xβ =

⋃
x∈E(Kn)

{x, βx} , is 2g(ε)− nk , where g(ε) is the number of orbits of E(Kn) under the action

of g and we substract
n
k
because we can chosen 12+, k + 11+, 2k + 11+, · · · , n − k + 11+ f rst

in our enumeration.
Notice that the length of each orbit under the action of g is k for ∀x ∈ E(Kn) if k is

odd and is
k
2
for x = ii+ k2 , i = 1, k + 1, · · · , n − k + 1, or k for all other edges if k is even.

Therefore, we get that
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g(ε) =



ε(Kn)
k

, if k ≡ 1(mod2);
ε(Kn) − n

2

k
, if k ≡ 0(mod2).

Whence, we have that

α(n, k) = g(ε) − n
k
=



n(n − 3)
2k

, if k ≡ 1(mod2);
n(n − 2)

2k
, if k ≡ 0(mod2),

and

|Φ(g)| = 2α(n,k)(n − 2)! nk , (8.4.3)

Similarly, if k ≡ 0(mod2), we get also that

|Φ(gα)| = 2α(n,k) (n − 2)! nk (8.4.4)

for an chosen element g,g ∈ E[k nk ].
Now for ∀h ∈ E

[1,k
n−1
k ]
, without loss of generality, we assume that h = (1, 2, · · · , k)

(k + 1, k + 2, · · · , 2k) · · ·
((
n − 1
k
− 1

)
k + 1,

(
n − 1
k
− 1

)
k + 2, · · · , (n − 1)

)
(n). Then the

above statement is also true for the complete graph Kn−1 with the vertices 1, 2, · · · , n − 1.
Notice that the quadricells n1+, n2+, · · · , nn−1+ can be chosen f rst in our enumeration and
they are not belong to the graph Kn−1. According to the Lemma 8.4.2, we get that

|Φ(h)| = 2β(n,k)(n − 2)! n−1k × 2φ(k)(n − 2)!
|E

[1,k
n−1
k ]
| , (8.4.5)

Where

β(n, k) = h(ε) =



ε(Kn−1)
k

− n − 1
k
=
(n − 1)(n − 4)

2k
, if k ≡ 1(mod2);

ε(Kn−1)
k

− n − 1
k
=
(n − 1)(n − 3)

2k
, if k ≡ 0(mod2).

Combining (8.4.3) − (8.4.5), we get that

nL(Kn) =
1
2n!
× (

∑

k|n
|E[k nk ]||Φ(g0)| +

∑

l|n,l≡0(mod2)
|E[l nl ]||Φ(g1α)|

+
∑

l|(n−1)
|E

[1,l
n−1
l ]
||Φ(h)|)
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=
1
2n!
× (

∑

k|n

n!2α(n,k)(n − 2)! nk
k nk (nk )!

+
∑

k|n,k≡0(mod2)

n!2α(n,k)(n − 2)! nk
k nk (nk )!

+
∑

k|(n−1),k,1

n!
k n−1k (n−1k )!

× 2φ(k)(n − 2)!2
β(n,k)(n − 2)! n−1k

(n−1)!
k
n−1
k ( n−1k )!

)

=
1
2
(
∑

k|n
+

∑

k|n,k≡0(mod2)
)
2α(n,k)(n − 2)! nk

k nk (nk )!
+

∑

k|(n−1),k,1

φ(k)2β(n,k)(n − 2)! n−1k
n − 1 .

For n = 4, similar calculation shows that nL(K4) = 11 by consider the f xing set of
permutations in E[s 4s ], E[1,s 3s ], E[(2s) 42s ], αE[(2s) 42s ] and αE[1,1,2]. �

For the orientable case, we get the number nO(Kn) of orientable complete maps of
order n as follows.

Theorem 8.4.2 The number nO((Kn) of complete maps of order n ≥ 5 on orientable
surfaces is

nO(Kn) =
1
2
(
∑

k|n
+

∑

k|n,k≡0(mod2)
)
(n − 2)! nk
k nk (nk )!

+
∑

k|(n−1),k,1

φ(k)(n − 2)! n−1k
n − 1 .

and n(K4) = 3.

Proof According to the algebraic representation of map, a map M = (Xα,β,P) is
orientable if and only if for ∀x ∈ Xα,β, x and αβx are in a same orbit of Xα,β under the
action of the group ΨI = 〈αβ,P〉. Now applying (8.3.1) in Corollary 8.3.1 and Theorem
7.2.1, similar to the proof of Theorem 8.4.1, we get the number nO(Kn) for n ≥ 5 to be

nO(Kn) =
1
2
(
∑

k|n
+

∑

k|n,k≡0(mod2)
)
(n − 2)! nk
k nk (nk )!

+
∑

k|(n−1),k,1

φ(k)(n − 2)! n−1k
n − 1 .

and for the complete graph K4, calculation shows that n(K4) = 3. �

Notice that nO(Kn) + nN(Kn) = nL(Kn). Therefore, we get also the number nN(Kn)
of complete maps of order n on non-orientable surfaces by Theorems 8.4.1 and 8.4.2
following.

Theorem 8.4.3 The number nN(Kn) of complete maps of order n, n ≥ 5 on non-orientable
surfaces is

nN(Kn) =
1
2
(
∑

k|n
+

∑

k|n,k≡0(mod2)
)
(2α(n,k) − 1)(n − 2)! nk

k nk (nk )!

+
∑

k|(n−1),k,1

φ(k)(2β(n,k) − 1)(n − 2)! n−1k
n − 1 ,
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and nN(K4) = 8. Where, α(n, k) and β(n, k) are the same as in Theorem 8.4.1.

For n = 5, calculation shows that nL(K5) = 1080 and nO(K5) = 45 by Theorems 8.4.1
and 8.4.2. For n = 4, there are 3 orientable complete maps and 8 non-orientable complete
maps shown in the Fig.8.4.1.
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Now consider the action of orientation-preserving automorphisms of complete maps,
determined in Theorem 7.2.1 on all orientable embeddings of a complete graph of order
n. Similar to the proof of the Theorem 8.4.2, we can get the number of non-equivalent
embeddings of a complete graph of order n, which has been found in [Mao1] and it is the
same gotten by Mull et al. in [MRW1].
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§8.5 THEENUMERATIONOFMAPSUNDERLYINGA SEMI-REGULARGRAPH

8.5.1 Crosscap Map Group. For a given map M = (Xα,β,P), its crosscap map group
is def ned to be

T :=< τ|∀x ∈X , τ = (x, αx) >,

where, X = E(G). Consider the action of T on M. For ∀θ ∈ T , we def ne

Mθ := (Xα,β, θPθ−1);

MT := {Mθ|∀θ ∈ T }.

Then we have the following lemmas.

Lemma 8.5.1 Let G be a connected graph. Then for ∀M ∈ ET (G), there exists an element
τ, τ ∈ T and an embedding M0,M0 ∈ EO(G) such that

M = Mτ
0 .

Lemma 8.5.2 For a connected graph G,

ET (G) = {Mτ|M ∈ EO(G), τ ∈ T }.

We need to classify maps in ET (G). The following lemma is fundamental for this
objective.

Lemma 8.5.3 For maps M,M1 ∈ EO(G), if there exist g ∈ AutG and τ ∈ T such that
(Mg)τ = M1, then there must be M1 isomorphic to M and τ ∈ TM1 , and moreover, if
M1 = M, then g ∈ AutM.

Proof We only need to prove that if Mg = Mτ
1, g ∈ AutG and τ ∈ T ,then τ ∈ TM1 .

Assume that M = (Xα,β,P), M1 = (Xα,β,P1), P = CαC−1,P1 = C1αC−11 and τ = τS ,
where S ⊂ {C1}. For ∀x ∈ {C}, a direct calculation shows that

Pg = · · · (x, , g(y1), g(y2), · · · , g(yt))(αx, αg(yt), · · · , αg(y1)) · · · ;

Pτ
1 = · · · (τx, τz1, τz2, · · · , τzs)(ατx, ατzs, · · · , ατz1) · · · , (8.5.1)

where
P = · · · (x, x1, x2, · · · , xs)(y, y1, y2, · · · , yt) · · · ;

P1 = · · · (x, z1, z2, · · · , zs)(αx, αzs, · · · , αz1)
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and g(y) = x, zi ∈ vx, i ∈ {1, 2, · · · , s}
Since g ∈ AutG, we know that

{y, y1, · · · , yt}g = {x, x1, · · · , xs}

= {x, z1, · · · , zs} (8.5.2)

and t = s. Now we consider two cases.

Case 1. x < S .

In this case, we get that Pτ
1 = · · · (x, τz1, τz2, · · · , τzs)(αx, ατzs, · · · , ατz1) · · · , from

(8.5.2). Since Pg =PτS
1 , we get that g(y1) = τz1, g(y2) = τz2, · · · , g(ys) = τzs. According

to (8.5.2), we know that g(y1) = z1, g(y2) = z2, · · · , g(ys) = zs. Therefore, z1 < S , z2 <
S , · · · , zs < S , that is {vx} 1 S .

Case 2. x ∈ S .

In this case, we have that Pτ
1 = · · · (αx, τz1, τz2, · · · , τzs)(x, ατzs, · · · , ατz1) · · · , Be-

cause of Pg = PτS
1 , we get that g(y1) = ατzs, g(y2) = ατzs−1, · · · , g(ys) = ατz1. Ac-

cording to (8.5.2) again, we f nd that g(y1) = zs, g(y2) = zs−1, · · · , g(ys) = z1. Whence,
z1 ∈ S , z2 ∈ S , · · · , zs ∈ S , that is {vx} ⊂ S .

Combining the discussion of Cases 1 and 2, we know that there exists a vertex subset
V1 ⊂ V(G) such that V1 = S . Whence τ ∈ TM1 . Since Mg = Mτ

1 = M1, we get that M1 is
isomorphic to M.

Now if M1 = M, we also get that Mg = M. Therefore, g ∈ AutM �

We get the following result by Lemmas 8.5.1 - 8.3.1.

Theorem 8.5.1 Let G be a connected graph. Then

(1) For ∀MτS
1 ∈ MT1 ,M

τR
2 ∈ MT2 , where M1,M2 ∈ EO(G), if MτS

1 is isomorphic to
MτR

2 , then M1 is also isomorphic to M2.
(2) For a given M ∈ EO(G), ∀MτS ,MτR ∈ MT , there exists an isomorphism g such

that g : MτS → MτR if and only if g ∈ AutM and τR ∈ τg−1(S ) · TM.

Proof (1) Assume g ia an isomorphism between MτS
1 and MτR

2 , thus (M
τS
1 )

g = MτR
2 .

Since

g−1τSg = g−1(
∏

x∈S
(x, αx))g =

∏

x∈S
(g−1x, αg−1x)

=
∏

x∈g−1(S )

(x, αx) = τg−1(S ),
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we get that τSg = gτg−1(S ). Whence,

(Mg
1)
τg−1(S )·τ

−1
R = M2.

According to Lemma 8.5.3, M1 is isomorphic to M2.
(2) Notice that there must be g ∈ AutG. Since (MτS )g = MτR , we f nd that

(Mg)τg−1(S ) ·τ
−1
R = M.

According to Lemma 8.5.3 again, we get that

g ∈ AutM and τR ∈ τg−1(S )T M.

On the other hand, if there exist τ ∈ T and g ∈ AutM such that τR = τg−1(S ) · τ, then

(MτS )g = (Mg)τg−1(S ) = Mτg−1(S ) = MτR .

Therefore, g is an isomorphism between MτS and MτR . �

8.5.2 Enumerating Semi-RegularMap. We enumerate maps underlying a semi-regular
graph on orientable or non-orientable surfaces.

Lemma 8.5.4 Let G = (V, E) be a semi-regular graph. Then for ξ ∈ AutG

|ΦO(ξ)| =
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

and
|ΦL(ξ)| = 2|TEξ |−|TVξ |

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!,

where, TV
ξ
, T E

ξ
are the representations of orbits of ξ acting on V(G) and E(G) ,respectively

and ξNG(x) the restriction of ξ to NG(x).

Proof According to Theorem 8.5.1, we know that

ET (G) = {Pτ|P ∈ EO(G), τ ∈ T }

Notice that if Mξ = M, then Mτξ = Mτ. Now since AutG is semi-regular acting on E(G),
we can assume that

ξ|V(G) = (a, b, · · · , c) · · · (d, e, · · · , f ) · · · (x, y, · · · , z)
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and
ξ|E(G) = (e11, e12, · · · , e1l1) · · · (ei1, ei2, · · · , eili) · · · (es1, es2, · · · , esls).

For a stable orientable embedding M0 = (E(G)α,β,P0) under the action of ξ, it is clear
that

|Φ(MT0 , ξ)| = 2orb(ξ|E(G))−orb(ξ|V(G)),

where orb(ξ)E(G) and orb(ξ|V(G)) are the number of orbits of E(G), V(G) under the action
of ξ and we subtract orb(ξ|V(G)) because one of quadricells in vertices a, · · · , d, · · · , x can
be chosen f rst in our enumeration. Now since orb(ξ|E(G)) = |T Eξ | and orb(ξ|V(G)) = |TVξ |,
we get that

|Φ(MT0 , ξ)| = 2
|TE
ξ
|−|TV

ξ
|
.

Notice that if the rotation of the quadricells adjacent to the vertex a has been given,
then the rotations adjacent to the vertices b, · · · , c are uniquely determined if the cor-
respondence embedding is stable under the action of ξ. Similarly, if a rotation of the
quadricells adjacent to the vertices a, · · · , d, · · · , x have been given, then the map M =
(E(G)α,β,P) is uniquely determined if M is stable under the action of ξ. Since ξ|NG(x) is
semi-regular, for ∀x ∈ V(G) we can assume that

ξ|NG(x) = (xz1 , xz2 , · · · , xzs)(xzs+1 , xzs+2 , · · · , xz2s) · · · (xz(k−1)s+1 , xz(k−1)s+2, · · · , xzks).

Consequently, we get that

|ΦO(ξ)| =
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!. �

According to the Corollary 8.3.1, we get enumeration results following.

Theorem 8.5.2 Let G be a semi-regular graph. Then the numbers of maps underlying the
graph G on orientable or non-orientable surfaces are respectively

nO(G) =
1

|AutG| (
∑

ξ∈AutG
λ(ξ)

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

and
nN(G) =

1
|AutG| ×

∑

ξ∈AutG
(2|T

E
ξ
|−|TV

ξ
| − 1)λ(ξ)

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!,

where λ(ξ) = 1 if o(ξ) ≡ 0(mod2) and 1
2
, otherwise.
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Proof By the Corollary 8.3.1, we know that

nO(G) =
1

2|Aut 1
2
G|

∑

g∈Aut 1
2
G

|ΦO1 (g)|

and
nL(G) =

1
2|Aut 1

2
G|

∑

g∈Aut 1
2
G

|ΦT1 (g)|.

According to the Theorem 7.3.4, all automorphisms of orientable maps underlying graph
G are respectively

g|Xα,β and αh|Xα,β , g, h ∈ AutG with o(h) ≡ 0(mod2).

and all the automorphisms of non-orientable maps underlying graph G are also

g|Xα,β and αh|Xα,β , g, h ∈ AutG with o(h) ≡ 0(mod2).

Whence, we get the number of orientable maps by the Lemma 8.5.4 as follows.

nO(G) =
1

2|AutG|
∑

g∈AutG
|ΦO1 (g)|

=
1

2|AutG| {(
∑

ξ∈AutG

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

+
∑

ς∈AutG,o(ς)≡0(mod2)

∏

x∈TVς

(
d(x)

o(ς|NG(x))
− 1)!)

=
1

|AutG| (
∑

ξ∈AutG
λ(ξ)

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!.

Similarly, we enumerate maps underlying graph G on locally orientable surface by
(8.3.3) in Corollary 8.3.1 following.

nL(G) =
1

2|AutG|
∑

g∈AutG
|ΦT1 (g)|

=
1

2|AutG| (
|TE
ξ
|−|TV

ξ
|∑

ξ∈AutG

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

+
∑

ς∈AutG,o(ς)≡0(mod2)
2|T

E
ς |−|TVς |

∏

x∈TVς

(
d(x)

o(ς|NG(x))
− 1)!)

=
1

|AutG|
∑

ξ∈AutG
λ(ξ)2|T

E
ξ
|−|TV

ξ
|
∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!.
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Notice that nO(G) + nN(G) = nL(G). We get the number of maps on non-orientable
surfaces underlying graph G to be

nN(G) = nL(G) − nO(G)

=
1

|AutG| ×
∑

ξ∈AutG
(2|T

E
ξ
|−|TV

ξ
| − 1)λ(ξ)

∏

x∈TV
ξ

(
d(x)

o(ξ|NG(x))
− 1)!

This completes the proof. �

Furthermore, if G is k-regular, we get a simple result for the numbers of maps on
orientable or non-orientable surfaces following.

Corollary 8.5.1 Let G be a k-regular semi-regular graph. Then the numbers of maps on
orientable or non-orientable surfaces underlying graph G are respectively

nO(G) =
1

|AutG| ×
∑

g∈AutG
λ(g)(k − 1)!|TVg |

and
nN(G) =

1
|AutG| ×

∑

g∈AutG
λ(g)(2|TEg |−|TVg | − 1)(k − 1)!|TVg |,

where, λ(ξ) = 1 if o(ξ) ≡ 0(mod2) and 1
2
, otherwise.

Proof Notice that for ∀ξ ∈ AutG, ξ is semi-regular acting on ordered pairs of adja-
cent vertices of G. Therefore, ξ is an orientation-preserving automorphism of map with
underlying graph of G.

Assume that

ξV(G) = (a1, a2, · · · , as)(b1, b2, · · · , bs) · · · (c1, c2, · · · , cs).

It can be directly checked that for ∀e ∈ E(G),

|e<ξ>| = s or s
2
.

The later is true only if s is an even number. Therefore, we have that

∀x ∈ V(G), o(ξNΓ(x)) = 1.

Whence, we get nO(G) and nN(G) by Theorem 8.5.2. �

Similarly, if G = Cay(Zp : S ) for a prime p, we can also get closed formulas for the
number of maps underlying graph Γ.
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Corollary 8.5.2 Let G = Cay(Zp : S ) be a connected graph of prime order p with
(p − 1, |S |) = 2. Then

nO(G,M ) =
(|S | − 1)!p + 2p(|S | − 1)! p+12 + (p − 1)(|S | − 1)!

4p

and

nN(G,M ) =
(2

p|S |
2 −p − 1)(|S | − 1)!p + 2(2 p|S |−2p−2)

4 − 1)p(|S | − 1)! p+12
2p

+
(2
|S |−2
2 − 1)(p − 1)(|S | − 1)!

4p
.

Proof We calculate |TVg |, |T Eg | now. Since p is a prime number, there are p−1 elements
of degree p, p elements of degree 2 and one element of degree 1. Therefore, we know
that

|TVg | =



1, if o(g) = p
p+1
2 , if o(g) = 2
p, if o(g) = 1

and

|T Eg | =



|S |
2 , if o(g) = p
p|S |
4 , if o(g) = 2
p|S |
2 , if o(g) = 1

Notice that AutG = Dp and there are p elements order 2, one order 1 and p − 1 order p.
Whence, we have

nO(G,M ) =
(|S | − 1)!p + 2p(|S | − 1)! p+12 + (p − 1)(|S | − 1)!

4p

and

nN(G,M ) =
(2

p|S |
2 −p − 1)(|S | − 1)!p + 2(2 p|S |−2p−2)

4 − 1)p(|S | − 1)! p+12
2p

+
(2
|S |−2
2 − 1)(p − 1)(|S | − 1)!

4p
.

By Corollary 8.5.1. �
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§8.6 THE ENUMERATION OF A BOUQUET ON SURFACES

8.6.1 Cycle Index of Group. Let (Γ; ◦) be a group. Its cycle index of a group, denoted
by Z(Γ; s1, s2, · · · , sn) is def ned by

Z(Γ; s1, s2, · · · , sn) =
1
|G|

∑

g∈G
sλ1(g)1 sλ2(g)2 · · · sλn(g)n ,

where, λi(g) is the number of i-cycles in the cycle decomposition of g. For the symmetric
group S n, its cycle index is known to be

Z(S n; s1, s2, · · · , sn) =
∑

λ1+2λ2+···+kλk=n

sλ11 s
λ2
2 · · · s

λk
k

1λ1λ1!2λ2λ2! · · · kλkλk!
.

For example, we have that Z(S 2) =
s21+s2
2 . By a result of Polya ( See [GrW1] for details),

we know that the cycle index of S n[S 2] is

Z(S n[S 2]; s1, s2, · · · , s2n) =
1

2nn!

∑

λ1+2λ2+···+kλk=n

( s
2
1+s2
2 )λ1( s

2
2+s4
2 )λ2 · · · ( s

2
k+s2k
2 )λk

1λ1λ1!2λ2λ2! · · · kλkλk!

8.6.2 Enumerating One-Vertex Map. For any integer k, k|2n, let Jk be the conjugacy
class in S n[S 2] with each cycle in the decomposition of a permutation inJk being k-cycle.
According to Corollary 8.3.1, we need to determine the numbers |ΦO(ξ)| and |ΦL(ξ)| for
each automorphism of map underlying Bn.

Lemma 8.6.1 Let ξ =
2n/k∏
i=1
(C(i))(αC(i)α−1) ∈ Jk be a cycle decomposition of ξ, where

C(i) = (xi1, xi2, · · · , xik) is a k-cycle. Then

(1) If k , 2n, then
|ΦO(ξ)| = k 2n

k (
2n
k
− 1)!

and if k = 2n, then |ΦO(ξ)| = φ(2n).
(2) If k ≥ 3 and k , 2n, then

|ΦL(ξ)| = (2k) 2nk −1(2n
k
− 1)!

and
|ΦL(ξ)| = 2n(2n − 1)!

if ξ = (x1)(x2) · · · (xn)(αx1)(αx2) · · · (αxn)(βx1)(βx2) · · · (βxn)(αβx1)(αβx2) · · · (αβxn), and

|ΦL(ξ)| = 1
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if ξ = (x1, αβx1)(x2, αβx2) · · · (xn, αβxn)(αx1, βx1)(αx2, βx2) · · · (αxn, βxn), and

|ΦL(ξ)| = n!
(n − 2s)!s!

if ξ = ζ; ε1, ε2, · · · , εn and ζ ∈ E[1n−2s,2s] for some integer s, εi = (1, αβ) for 1 ≤ i ≤ s
and ε j = 1 for s + 1 ≤ j ≤ n, where E[1n−2s,2s] denotes the conjugate class with the type
[1n−2s, 2s] in the symmetry group S n, and

|ΦL(ξ)| = φ(2n)

if ξ = θ; ε1, ε2, · · · , εn and θ ∈ E[n1] and εi = 1 for 1 ≤ i ≤ n − 1, εn = (1, αβ), where φ(t)
is the Euler function.

Proof (1) Notice that for a representation of C(i), i = 1, 2, · · · , 2n
k
, because the

group 〈Pn, αβ〉 is not transitive on Xα,β, there is one and only one stable orientable map
Bn = (Xα,β,Pn) with X = E(Bn) and Pn = C(αC−1α−), where,

C = (x11, x21, · · · , x 2n
k 1
, x21, x22, · · · , x 2n

k 2
, x1k, x2k, · · · , x 2n

k k
).

Counting ways for each possible order for C(i), i = 1, 2, · · · , 2n
k
and different representa-

tions for C(i), we know that
|ΦO(ξ)| = k 2n

k (
2n
k
− 1)!

for k , 2n.
Now if k = 2n, then the permutation is itself a map underlying graph Bn. Whence,

its power is also an automorphism of this map. Therefore, we get that

|ΦO(ξ)| = φ(2n).

(2) For k ≥ 3 and k , 2n, because the group 〈Pn, αβ〉 is transitive on Xα,β or
not, we can interchange C(i) by αC(i)−1α−1 for each cycle not containing the quadricell
x11. Notice that we get the same map if the two sides of some edges are interchanged
altogether or not. Whence, we f nd that

|ΦL(ξ)| = 2 2n
k −1k

2n
k −1(

2n
k
− 1)! = (2k) 2nk −1(2n

k
− 1)!.

Now if ξ = (x1, αβx1)(x2, αβx2) · · · (xn, αβxn)(αx1, βx1)(αx2, βx2) · · · (αxn, βxn), there
is one and only one stable map (Xα,β,P1

n ) under the action of ξ, where

P1
n = (x1, x2, · · · , xn, αβx1, αβx2, · · · , αβxn)(αx1, βxn, · · · , βx1, αxn, · · · , αx1),
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which is orientable. Whence, |ΦL(ξ)| = |ΦO(ξ)| = 1.
If ξ = (x1)(x2) · · · (xn)(αx1)(αx2) · · · (αxn)(βx1)(βx2) · · · (βxn)(αβx1)(αβx2) · · · (αβxn),

we can interchange (αβxi) with (βxi) and obtain different embeddings of Bn on surfaces.
Whence,

|ΦL(ξ)| = 2n(2n − 1)!.

Now if ξ = (ζ; ε1, ε2, · · · , εn) and ζ ∈ E[1n−2s,2s] for some integer s, εi = (1, αβ) for
1 ≤ i ≤ s and ε j = 1 for s + 1 ≤ j ≤ n, we can not interchange (xi, αβxi) with (αxi, βxi)
to get different embeddings of Bn for it is just interchanging the two sides of one edge.
Consequently, we get that

|ΦL(ξ)| = n!
1n−2s(n − 2s)!2ss! × 2

s =
n!

(n − 2s)!s! .

For ξ = (θ; ε1, ε2, · · · , εn), θ ∈ E[n1] and εi = 1 for 1 ≤ i ≤ n − 1, εn = (1, αβ), we can
not get different embeddings of Bn by interchanging the two conjugate cycles. Whence,
we get that

|ΦL(ξ)| = |ΦO(ξ)| = φ(2n).

This completes the proof. �

Now we enumerate maps on surfaces underlying graph Bn by Lemma 8.6.1.

Theorem 8.6.1 For an integer n ≥ 1, the number nO(Bn) of maps on orientable surfaces
underlying graph Bn is

nO(Bn) =
∑

k|2n,k,2n
k
2n
k −1(

2n
k
− 1)! 1

(2nk )!
∂

2n
k (Z(S n[S 2]))

∂s
2n
k
k

|sk=0

+ φ(2n)
∂(Z(S n[S 2]))

∂s2n
|s2n=0

Proof According to the formula (8.3.1) in Corollary 8.3.1, we know that

nO(Bn) =
1

2 × 2nn!
∑

ξ∈S n[S 2]×≺α≻
|ΦT (ξ)|.

Since for ∀ξ1, ξ2 ∈ S n[S 2], if there exists an element θ ∈ S n[S 2] such that ξ2 = θξ1θ
−1,

then |ΦO(ξ1)| = |ΦO(ξ2)| and |ΦO(ξ)| = |ΦO(ξα)|. Notice that |ΦO(ξ)| has been gotten by
Lemma 8.6.1. Applying Lemma 8.6.1(1) and the cycle index Z(S n[S 2]), we get that

nO(Bn) =
1

2 × 2nn!(
∑

k|2n,k,2n
k
2n
k −1(

2n
k
− 1)!|Jk| + φ(2n)|J2n|)
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=
∑

k|2n,k,2n
k
2n
k −1(

2n
k
− 1)! 1

(2nk )!
∂

2n
k (Z(S n[S 2]))

∂s
2n
k
k

|sk=0

+φ(2n)
∂(Z(S n[S 2]))

∂s2n
|s2n=0 �

Now we consider maps on non-orientable surfaces underlying graph Bn. Similar to
the discussion of Theorem 8.6.1, we get the following enumeration result for the maps on
non-orientable surfaces.

Theorem 8.6.2 For an integer n ≥ 1, the number nN(Bn) of maps on non-orientable
surfaces underlying graph Bn is

nN(Bn) =
(2n − 1)!

n!
+

∑

k|2n,3≤k<2n
(2k)

2n
k −1(

2n
k
− 1)!∂

2n
k (Z(S n[S 2]))

∂s
2n
k
k

|sk=0

+
1

2nn!
(
∑

s≥1

n!
(n − 2s)!s! + 4

n(n − 1)!(∂
n(Z(S n[S 2]))

∂sn2
|s2=0 − ⌊

n
2
⌋)).

Proof Similar to the proof of Theorem 8.6.1, applying formula (1.3.3) in Corollary
8.3.1 and Lemma 8.6.1(2), we get that

nL(Bn) =
(2n − 1)!

n!
+ φ(2n)

∂n(Z(S n[S 2]))
∂sn2n

|s2n=0

+
1

2nn!
(
∑

s≥0

n!
(n − 2s)!s! + 4

n(n − 1)!(∂
n(Z(S n[S 2]))

∂sn2
|s2=0 − ⌊

n
2
⌋))

+
∑

k|2n,3≤k<2n
(2k)

2n
k −1(

2n
k
− 1)!∂

2n
k (Z(S n[S 2]))

∂s
2n
k
k

|sk=0.

Notice that nO(Bn) + nN(Bn) = nL(Bn). Applying Theorem 8.6.1, we f nd that

nN(Bn) =
(2n − 1)!

n!
+

∑

k|2n,3≤k<2n
(2k)

2n
k −1(

2n
k
− 1)!∂

2n
k (Z(S n[S 2]))

∂s
2n
k
k

|sk=0

+
1

2nn!
(
∑

s≥1

n!
(n − 2s)!s! + 4

n(n − 1)!(∂
n(Z(S n[S 2]))

∂sn2
|s2=0 − ⌊

n
2
⌋)).

This completes the proof. �

Calculation shows that

Z(S 1[S 2]) =
s21 + s2
2

and

Z(S 2[S 2]) =
s41 + 2s

2
1s2 + 3s

2
2 + 2s4

8
,
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Whence, if n = 2, calculation shows that there are 1 map on the plane, 2 maps on the
projective plane, 1 map on the torus and 2 maps on the Klein bottle. All of those maps are
non-isomorphic and the same as gotten by Theorems 8.6.1 and 8.6.2 shown in Fig.8.6.1.
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2 2

11

2

2

3
3

4

4

5 5

-
-6 6 6 6-

� 6 6-
�

Fig.8.6.1

§8.7 REMARKS

8.7.1 The enumeration problem of maps was f rst introduced by Tutte on planar rooted
triangulation by solving a functional equation in 1962. After him, more and more papers
and enumeration result on rooted maps on surfaces published. For surveying such an
enumeration, the readers are refereed to references [Liu2]-[Liu4] for details.

8.7.2 The enumeration of rooted maps on surfaces is canonically by an analytic approach.
Usually, this approach for enumeration of rooted maps applies four steps as follows:

STEP 1. Decompose the set of rooted mapsM considered;
STEP 2. Def ne the enumeration function fM on maps by parameters, such as those of
order n(M), size m(M), valency of rooted vertex or rooted face, · · · of maps, for example,

fM =
∑

M∈M
xn(M), fM =

∑

M∈M
xm(M), fM =

∑

M∈M
xn(M)ym(M) and fM =

∑

M∈M
xn(M)ym(M)zl(M)

are four enumeration functions respectively by order n(M), size m(M) and valency of
rooted vertex l(M) of map and then establish equations satisf ed by fM.
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STEP 3. Find properly parametric expression for variables x, y, z, · · ·.
STEP 4. Applying the Lagrange inversion, i.e., if x = tφ(x) with φ(0) , 0, then

f (x) = f (0) +
∑

i≥1

ti

i!
di−1

dxi−1

(
φi
d f
dx

)
|x=0

solves the equations for enumeration.

The importance of Theorems 8.1.7 and 8.1.8 is that they clarify the essence of the
enumeration of rooted maps on surfaces, i.e., a calculation of the summation

∑

G∈G

2ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G| or

∑

G∈G

2β(G)+1ε(G)
∏

v∈V(G)
(ρ(v) − 1)!

|Aut 1
2
G|

where G denotes a graph family. For example, we know that the number of rooted tree of
size n is

(2n)!
n!(n + 1)!

. Whence,

∑

T∈T (n)

∏
d∈D(T )

(d − 1)!

|AutT| =
(2n − 1)!
n!(n + 1)!

,

where T and D(T ) denote sets of non-isomorphic trees of size n and the valency sequence
of a tree T ∈ T , respectively.

Similarly, Theorem 8.2.1 implies the enumeration of rooted maps on a surface S of
genus i is in fact a calculation of the summation

∑

G∈G(S )

2ε(G)gi(G)
|Aut 1

2
G| ,

where G(S ) denotes a graph family embeddable on S . For example, We know that there
are

2(2n − 1)!(2n + 1)!
(n + 2)!(n + 1)!!n!(n − 1)!

planar cubic hamiltonian rooted maps. Whence,
∑

G∈CH

2ε(G)g0(G)
|AutG| =

2(2n − 1)!(2n + 1)!
(n + 2)!(n + 1)!!n!(n − 1)! ,

where CH denotes the family of hamiltonian cubic.

8.7.3 By applying Burnside lemma, Biggs and White suggested a scheme for enumerat-
ing non-equivalent embeddings of a graph G on surfaces, i.e., orbits under the action of
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AutG on all embeddings of G in [BiW1]. Such an action is in fact orientation-preserving.
Theorem 8.3.2 is a generalization of their result by considering the action of Aut 1

2
G × 〈α〉

on all embeddings of G on surfaces. This scheme enables one to f nd non-isomorphic
maps on surfaces underlying a graph. Indeed, complete maps, semi-regular maps and
one-vertex maps are enumerated in Sections 8.4-8.6. Certainly, there are more maps on
surfaces needed to enumerated, such as those of maps included in problems following.

Problem 8.7.1 Enumerate maps on surfaces underlying a vertex-transitive, an edge-
transitive or a regular graph, particularly, a Cayley graph Cay(Γ : S ).

Problem 8.7.2 Enumeration maps on surfaces underlying a graph G with known Aut 1
2
G,

such as those of Cn × P2 and Cm ×Cn × Cl for integers n, m, l ≥ 1.

Problem 8.7.3 Enumerate a typical maps underlying a graph, for example, regular maps
or Cayley maps.

The enumeration of maps on surfaces underlying a graph also brings about problems
following on graphs.

Problem 8.7.4 Find a graph family G on a surface S such that the number of non-
isomorphic maps underlying graph in G is summable.

Problem 8.7.5 For a surface S and an integer n ≥ 2, determine the family Gn(S ) embed-
dable on S with |Aut 1

2
| = n for ∀G ∈ Gn(S ).



CHAPTER 9.

Isometries on Smarandache Geometry

We have known that classical geometry includes those of Euclid geometry,
Lobachevshy-Bolyai-Gauss geometry and Riemann geometry. Each of the
later two is proposed by denial the 5th postulate for parallel lines in Euclid
postulates on geometry. For generalizing classical geometry, a new geometry,
called Smarandache geometry was proposed by Smarandache in 1969, which
may enables these three geometries to be united in the same space altogether
such that it can be either partially Euclidean and partially non-Euclidean, or
non-Euclidean. Such a geometry is really a hybridization of these geome-
tries. It is important for destroying the law that all points are equal in status
and introducing contradictory laws in a same geometrical space. For an in-
troduction to such geometry, we formally def ne Smarandache geometry, par-
ticularly, those of mixed geometries in Section 9.1, and classify s-manifolds,
a kind of Smarandache 2-manifolds by applying planar maps in Section 2.
After then, Sections 3 and 4 concentrate on the isometries on f nite or inf -
nite pseudo-Euclidean spaces (Rn, µ) by verifying the action of isometries of
Rn on (Rn, µ) for n ≥ 2. Certainly, all isometries on f nite pseudo-Euclidean
spaces (Rn, µ) are automorphisms of (Rn, µ), and can be characterized combi-
natorially by that of maps on surfaces if n = 2 or embedded graphs in Rn if
n ≥ 3.
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§9.1 SMARANDACHE GEOMETRY

9.1.1 Geometrical Axiom. As we known, the Euclidean geometrical axiom system
consists of f ve axioms following:

(E1) There is a straight line between any two points.

(E2) A f nite straight line can produce a inf nite straight line continuously.

(E3) Any point and a distance can describe a circle.

(E4) All right angles are equal to one another.

(E5) If a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, then the two straight lines, if produced indef nitely,
meet on that side on which are the angles less than the two right angles.

The last axiom (E5) is usually replaced by:

(E5’) For a given line and a point exterior this line, there is one line parallel to this
line.

Then a hyperbolic geometry is replaced axiom (E5) by (L5) following

(L5) There are inf nitely many lines parallel to a given line passing through an
exterior point,

and an elliptic geometry is replaced axiom (E5) by (R5) following:

There are no parallel to a given line passing through an exterior point.

9.1.2 Smarandache Geometry. These non-Euclidean geometries constructed in the
previous subsection implies that one can f nd more non-Euclidean geometries replacing
Euclidean axioms by non-Euclidean axioms. In fact, a Smarandache geometry is such a
geometry by denied some axioms (E1)-(E5) following.

Def nition 9.1.1 A rule R ∈ R in a mathematical system (Σ;R) is said to be Smaran-
dachely denied if it behaves in at least two different ways within the same set Σ, i.e.,
validated and invalided, or only invalided but in multiple distinct ways.

Def nition 9.1.2 A Smarandache geometry is such a geometry in which there are at
least one Smarandachely denied ruler and a Smarandache manifold (M;A) is an n-
dimensional manifold M that support a Smarandache geometry by Smarandachely denied
axioms inA.
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In a Smarandache geometry, points, lines, planes, spaces, triangles, · · · are called
respectively s-points, s-lines, s-planes, s-spaces, s-triangles, · · · in order to distinguish
them from that in classical geometry.

Example 9.1.1 Let us consider a Euclidean plane R2 and three non-collinear points A, B
and C. Def ne s-points as all usual Euclidean points on R2 and s-lines any Euclidean line
that passes through one and only one of points A, B and C. Then such a geometry is a
Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist
one line passing through them is now replaced by: one s-line and no s-line. Notice that
through any two distinct s-points D, E collinear with one of A, B and C, there is one
s-line passing through them and through any two distinct s-points F,G lying on AB or
non-collinear with one of A, B and C, there is no s-line passing through them such as
those shown in Fig.9.1.1(a).

Observation 2. The axiom (E5) that through a point exterior to a given line there is
only one parallel passing through it is now replaced by two statements: one parallel and
no parallel. Let L be an s-line passes through C and is parallel in the Euclidean sense to
AB. Notice that through any s-point not lying on AB there is one s-line parallel to L and
through any other s-point lying on AB there is no s-lines parallel to L such as those shown
in Fig.9.1.1(b).

L

l1

l2

D

BA

C

E

(b)(a)

D C E

A BF G

l1

Fig.9.1.1

9.1.3 Mixed Geometry. In references [Sma1]-[Sma2], Smarandache introduced a
few mixed geometries, such as those of the paradoxist geometry, the non-geometry, the
counter-projective geometry and the anti-geometry by contradicts axioms (E1) − (E5)
in a Euclid geometry following. All of these geometries are examples of Smarandache
geometry.
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Paradoxist Geometry. In this geometry, its axioms consist of (E1)− (E4) and one of the
following:

(1) There are at least a straight line and a point exterior to it in this space for which
any line that passes through the point intersect the initial line.

(2) There are at least a straight line and a point exterior to it in this space for which
only one line passes through the point and does not intersect the initial line.

(3) There are at least a straight line and a point exterior to it in this space for which
only a f nite number of lines l1, l2, · · · , lk, k ≥ 2 pass through the point and do not intersect
the initial line.

(4) There are at least a straight line and a point exterior to it in this space for which
an inf nite number of lines pass through the point (but not all of them) and do not intersect
the initial line.

(5) There are at least a straight line and a point exterior to it in this space for which
any line that passes through the point and does not intersect the initial line.

Non-Geometry. The non-geometry is a geometry by denial some axioms of (E1)− (E5),
such as those of the following:

(E1−) It is not always possible to draw a line from an arbitrary point to another
arbitrary point.

(E2−) It is not always possible to extend by continuity a f nite line to an inf nite line.
(E3−) It is not always possible to draw a circle from an arbitrary point and of an

arbitrary interval.
(E4−) Not all the right angles are congruent.
(E5−) If a line cutting two other lines forms the interior angles of the same side of it

strictly less than two right angle, then not always the two lines extended towards inf nite
cut each other in the side where the angles are strictly less than two right angle.

Counter-Projective Geometry. Denoted by P the point set, L the line set and R a relation
included in P×L. A counter-projective geometry is a geometry with these counter-axioms
(C1) − (C3) following:

(C1) There exist either at least two lines, or no line, that contains two given distinct
points.

(C2) Let p1, p2, p3 be three non-collinear points and q1, q2 two distinct points. Sup-
pose that {p1.q1, p3} and {p2, q2, p3} are collinear triples. Then the line containing p1, p2
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and the line containing q1, q2 do not intersect.
(C3) Every line contains at most two distinct points.

Anti-Geometry. A geometry by denial some axioms of the Hilbert’s 21 axioms of Eu-
clidean geometry.

§9.2 CLASSIFYING ISERI’S MANIFOLDS

9.2.1 Iseri’s Manifold. The idea of Iseri’s manifolds was based on a paper [Wee1] and
credited to W.Thurston. A more general idea can be found in [PoS1]. Such a manifold is
combinatorially def ned in [Ise1] as follows:

An Iseri’s manifold is any collection C(T, n) of these equilateral triangular disks
Ti, 1 ≤ i ≤ n satisfying the following conditions:

(1) Each edge e is the identif cation of at most two edges ei, e j in two distinct trian-
gular disks Ti, T j, 1 ≤ i, j ≤ n and i , j;

(2) Each vertex v is the identif cation of one vertex in each of f ve, six or seven
distinct triangular disks.

The vertices of an Iseri’s manifold are classif ed by the number of the disks around
them. A vertex around f ve, six or seven triangular disks is called an elliptic vertex, a
Euclid vertex or a hyperbolic vertex, respectively.

An Iseri’s manifold is called closed if the number of triangular disks is f nite and
each edge is shared by exactly two triangular disks, each vertex is completely around
by triangular disks. It is obvious that a closed Iseri’s manifold is a surface and its Euler
characteristic can be def ned by Theorem 4.2.6.

Two Iseri’s manifolds C1(T, n) and C2(T, n) are called to be isomorphic if there is an
1 − 1 mapping τ : C1(T, n) → C2(T, n) such that for ∀T1, T2 ∈ C1(T, n), τ(T1

⋂
T2) =

τ(T1)
⋂
τ(T2). If C1(T, n) = C1(T, n) = C(T, n), τ is called an automorphism of Iseri’s

manifold C(T, n). All automorphisms of an Iseri’s manifold form a group under the com-
position operation, called the automorphism group of C(T, n) and denoted by AutC(T, n).

9.2.2 A Model of Closed Iseri’s Manifold. For a closed Iseri’s manifold C(T, n), we
can def ne a map M by V(M) = {the vertices in C(T, n)}, E(M) = {the edges in C(T, n)}
and F(M) = {T, T ∈ C(T, n)}. Then M is a triangular map with vertex valency ∈ {5, 6, 7}.
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On the other hand, if M is a triangular map on surface with vertex valency∈ {5, 6, 7}, we
can def ne an Iseri’s manifold C(T, φ(M)) by

C(T, φ(M)) = { f | f ∈ F(M)}.

Then C(T, φ(M)) is an Iseri’s manifold. Consequently, we get a result following.

Theorem 9.2.1 Let Ĉ(T, n),M(T, n) andM∗(T, n) be the set of Iseri’s manifolds with n
triangular disks, triangular maps with n faces and vertex valency ∈ {5, 6, 7} and cubic
maps of order n with face valency ∈ {5, 6, 7}. Then

(1) There is a bijection betweenM(T, n) and Ĉ(T, n);
(2) There is also a bijection betweenM∗(T, n) and Ĉ(T, n).

According to Theorem 9.2.1, we get the following result for the automorphisms of
an Iseri’s manifold following.

Theorem 9.2.2 Let C(T, n) be a closed s-manifold with negative Euler characteristic.
Then |AutC(T, n)| ≤ 6n and

|AutC(T, n)| ≤ −21χ(C(T, n)),

with equality hold only if C(T, n) is hyperbolic, where χ(C(T, n)) denotes the genus of
C(T, n).

Proof The inequality |AutC(T, n)| ≤ 6n is known by the Corollary 6.4.1. Similar to
the proof of Theorem 6.4.2, we know that

ε(C(T, n)) = −χ(C(T, n))1
3 −

2
k

,

where k =
1

ν(C(T, n))
∑

i≥1
iνi ≤ 7 and with the equality holds only if k = 7, i.e., C(T, n) is

hyperbolic. �

9.2.3 Classifying Closed Iseri’s Manifolds. According to Theorem 9.2.1, we can clas-
sify closedIseri’s manifolds by that of triangular maps with valency in {5, 6, 7} as follows:

Classical Type:

(1) ∆1 = {5 − regular triangular maps} (elliptic);
(2) ∆2 = {6 − regular triangular maps}(euclid);



Sec.9.2 Classifying Iseri’s Manifolds 313

(3) ∆3 = {7 − regular triangular maps}(hyperbolic).

Smarandachely Type:

(4) ∆4 = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);
(5) ∆5 = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);
(6) ∆6 = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);
(7) ∆7 = {triangular maps with vertex valency 5, 6 and 7} (mixed).

We prove each of these types is not empty following.

Theorem 9.2.3 For classical types ∆1 − ∆3, there are

(1) ∆1 = {O20, P10};
(2) ∆2 = {Ti,K j, 1 ≤ i, j ≤ +∞};
(3) ∆3 = {Hi, 1 ≤ i ≤ +∞},

where O20, P10 are shown in Fig.9.2.1, T3, K3 are shown in Fig.9.2.2 and Hi is the Hurwitz
maps, i.e., triangular maps of valency 7.
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Proof If M is a k-regular triangulation, we get that 2ε(M) = 3φ(M) = kν(M).
Whence, we have

ε(M) =
3φ(M)
2

and ν(M) =
3ε(M)
k

.

By the Euler-Poincare formula, we know that

χ(M) = ν(M) − ε(M) + φ(M) = (3
k
− 1
2
)φ(M).

If M is elliptic, then k = 5. Whence, χ(M) =
φ(M)
10

> 0. Therefore, if M is orientable,
then χ(M) = 2, Whence, φ(M) = 20, ν(M) = 12 and ε(M) = 30, which is just the
map O20. If M is non-orientable, then χ(M) = 1, Whence, φ(M) = 10, ν(M) = 6 and
ε(M) = 15, which is the map P10.

If M is Euclidean, then k = 6. Thus χ(M) = 0, i.e., M is a 6-regular triangulation Ti
or K j for some integer i or j on the torus or Klein bottle, which is inf nite.

If M is hyperbolic, then k = 7. Whence, χ(M) < 0. M is a 7-regular triangulation,
i.e., the Hurwitz map. According to the results in [Sur1], there are inf nite Hurwitz maps
on surfaces. This completes the proof. �

For these Smarandache Types, the situation is complex. But we can also obtain the
enumeration results for each of the types ∆4 - ∆7. First, we prove a condition for the
numbers of vertex valency 5 with that of 7.

Lemma 9.2.1 Let C(T, n) be an Iseri’s manifold. Then

v7 ≥ v5 + 2

if χ(C(T, n)) ≤ −1 and
v7 ≤ v5 − 2

if χ(C(T, n)) ≥ 1, where vi denotes the number of vertices of valency i in C(T, n).

Proof Notice that we have know

ε(C(T, n)) = −χ(C(T, n))1
3 −

2
k

,

where k is the average valency of vertices in C(T, n). Since

k =
5v5 + 6v6 + 7v7
v5 + v6 + v7

and ε(C(T, n)) ≥ 3. Consequently, we get that
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(1) If χ(C(T, n)) ≤ −1, then

1
3
− 2v5 + 2v6 + 2v7
5v5 + 6v6 + 7v7

> 0,

i.e., v7 ≥ v5 + 1. Now if v7 = v5 + 1, then

5v5 + 6v6 + 7v7 = 12v5 + 6v6 + 7 ≡ 1(mod2).

Contradicts to the fact that
∑

v∈V(G)
ρG(v) = 2ε(G) ≡ 0(mod2)

for a graph G. Whence there must be

v7 ≥ v5 + 2.

(2) If χ(C(T, n)) ≥ 1, then

1
3
− 2v5 + 2v6 + 2v7
5v5 + 6v6 + 7v7

< 0,

i.e., v7 ≤ v5 − 1. Now if v7 = v5 − 1, then

5v5 + 6v6 + 7v7 = 12v5 + 6v6 − 7 ≡ 1(mod2).

Also contradicts to the fact that
∑

v∈V(G)
ρG(v) = 2ε(G) ≡ 0(mod2)

for a graph G. Whence, there must be

v7 ≤ v5−2. �

Corollary 9.2.1 There are no Iseri’s manifolds C(T, n) such that

|v7 − v5| ≤ 1,

where vi denotes the number of vertices of valency i in C(T, n).

Def ne an operator Θ : M → M∗ on a triangulation M of a surface by
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Choose each midpoint on each edge in M and connect the midpoint in each triangle
as shown in Fig.9.2.3. Then the resultant M∗ is a triangulation of the same surface and
the valency of each new vertex is 6.

Θ

M M∗

Fig. 9.2.3
Then we get the following result.

Theorem 9.2.4 For these Smarandache Types ∆4-∆7, there are

(1) |∆5| ≥ 2;
(2) Each of |∆4|, |∆6| and |∆7| is inf nite.

Proof For M ∈ ∆4, let k be the average valency of vertices in M. Since

k =
5v5 + 6v6
v5 + v6

< 6 and ε(M) =
−χ(M)
1
3
− 2
k

,

we have that χ(M) ≥ 1. Calculation shows that v5 = 6 if χ(M) = 1 and v5 = 12 if
χ(M) = 2. We can construct a triangulation with vertex valency 5, 6 on the plane and the
projective plane in Fig.9.2.4.
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Now let M be a map in Fig.9.2.4. Then MΘ is also a triangulation of the same surface
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with vertex valency 5, 6 and MΘ , M. Whence, |∆4| is inf nite.
For M ∈ ∆5, by the Lemma 9.2.1, we know that v7 ≤ v5 − 2 if χ(M) ≥ 1 and

v7 ≥ v5 + 2 if χ(M) ≤ −1. We construct a triangulation on the plane and projective plane
in Fig.9.2.5.

1

1234
5
6

2

7

3 4
5

6

7
�

-
Fig.9.2.5

For M ∈ ∆6, we know that k =
6v6 + 7v7
v6 + v7

> 6. Whence, χ(M) ≤ −1. Since
3φ(M) = 6v6 + 7v7 = 2ε(M), we get that

v6 + v7 −
6v6 + 7v7

2
+
6v6 + 7v7

3
= χ(M).

Therefore, we have v7 = −χ(M). Notice that there are inf nite Hurwitz maps M on sur-
faces. Then the resultant triangular map M∗ is a triangulation with vertex valency 6, 7 and
M∗ , M. Thus |∆6| is inf nite.

For M ∈ ∆7, we construct a triangulation with vertex valency 5, 6, 7 in Fig.9.2.6.

1
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3

456

1
2

3

4

7

5 6
7-
�

Fig.9.2.6

Let M be one of the maps in Fig.9.2.6. Then the action of Θ on M results inf nite
triangulations of valency 5, 6 or 7. This completes the proof. �

For the set ∆5, we have the following conjecture.

Conjecture 9.2.1 The number |∆5| is inf nite.
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§9.3 ISOMETRIES OF SMARANDACHE 2-MANIFOLDS

9.3.1 Smarandachely Automorphism. Let (M;A) be a Smarandache manifold. By
def nition a Smarandachely denied axiom A ∈ A can be considered as an action of A
on subsets S ⊂ M, denoted by S A. Now let (M1;A1) and (M2;A2) be two Smarandache
manifolds, whereA1,A2 are the Smarandachely denied axioms on manifolds M1 and M2,
respectively. They are said to be isomorphic if there is 1 − 1 mappings τ : M1 → M2 and
σ : A1 → A2 such that τ(S A) = τ(S )σ(A) for ∀S ⊂ M1 and A ∈ A1. Such a pair (τ, σ) is
called an isomorphism between (M1;A1) and (M2;A2). Particularly, ifM1 = M2 = M and
A1 = A2 = A, such an isomorphism (τ, σ) is called a Smarandachely automorphism of
(M,A). Clearly, all such automorphisms of (M,A) form an group under the composition
operation on τ for a given σ. Denoted by Aut(M,A).

9.3.2 Isometry on R2. Let X be a set and ρ : X × X → R a metric on X, i.e.,

(1) ρ(x, y) ≥ 0 for x, y ∈ X, and with equality hold if and only if x = y;
(2) ρ(x, y) = ρ(y, x) for x, y ∈ X;
(3) ρ(x, y) + ρ(y, z) ≥ ρ(x, z) for x, y, z ∈ X.

A set X with such a metric ρ is called a metric space, denoted by (X, ρ).

Example 9.3.1 Let R2 = { (x, y) | x, y ∈ R }. Def ne

ρ(x1, x2) =
√
(x1 − x2)2 + (y1 − y2)2

for x1 = (x1, y1), x2 = (x2, y2) ∈ R2. Then such a ρ is a metric onR2. We verify conditions
(1)-(3) in the following.

Clearly, conditions (1) and (2) are consequence of x2 = 0 ⇒ x = 0 and x2 = (−x)2

for x ∈ R. Now let (x1, y1), (x2, y2) and (x3, y3) be three points on R2 with

(x2, y2) = (x1 + a1, y1 + b1)

(x3, y3) = (x1 + a1 + a2, y1 + b1 + b2)

Then the condition (3) implies that
√
a21 + b

2
1 +

√
a22 + b

2
2 ≥

√
(a1 + a2)2 + (b1 + b2)2,

which can be verif ed to be hold immediately.
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An isometry of a metric space (X, ρ) is a bijective mapping φ : X → X that preserves
distance, i.e., ρ(φ(x), φ(y)) = ρ(x, y). Denote by Isom(X, ρ) the set of all isometries of
(X, ρ). Then we know the following.

Theorem 9.3.1 Isom(X, ρ) is a group under the composition operation of mapping.

Proof Clearly, 1X ∈ Isom(X) and if φ ∈ Isom(X), then φ−1 ∈ Isom(X). Furthermore,
if φ1, φ2 ∈ Isom(X), by def nition we know that

ρ(φ1φ2(x), φ1φ2(y)) = ρ(φ2(x), φ2(y)) = ρ(x, y).

Whence, φ1φ2 is also an isometry, i.e., φ1φ2 ∈ Isom(X). So Isom(X, ρ) is a group. �

Let ∆, ∆′ be two triangles on R2. They are said to be congruent if we can label their
vertices, for instance ∆ = ABC and ∆′ = A′B′C′ such that

|AB| = |A′B′|, |BC| = |B′C′|, |CA| = |C′A′|,

∠CAB = ∠C′A′B′, ∠ABC = ∠A′B′C′, ∠BCA = ∠B′C′A′.

Theorem 9.3.2 Let φ be an isometry on R2. Then φ maps a triangle to its a congruent
triangle, preserves angles and maps lines to lines.

Proof Let ∆ be a triangle with vertex labels A, B andC onR2. Then φ(∆) is congruent
with ∆ by the def nition of isometry.

Notice that an angle ∠ < π and an angle ∠ > π can be realized respectively as an
angle ∠CAB, or an exterior angle of a triangle ABC. We have known that φ(ABC) is
congruent with ABC. Consequently, ∠φ(C)φ(A)φ(B) = ∠CAB, i.e., φ preserves angles in
R2. If ∠ = π, this result follows the law of trichotomy.

For a line L in R2, let B, C be two distinct points on L, and let L′ be the line through
points B′ = φ(B) and C′ = φ(C). Then for any point A ∈ R2, it follows that

φ(A) < φ(L) ⇔ A < L⇔ 0 ≤ ∠CAB < π

⇔ 0 < ∠C′φ(A)B′ < π⇔ φ(A) < L′.

Therefore, φ(L) = L′. �

The behavior of an isometry is completely determined by its action on three non-
collinear points shown in the next result.
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Theorem 9.3.3 An isometry of R2 is determined by its action on three non-collinear
points.

Proof Let A, B, C be three non-collinear points on R2 and let φ1, φ2 ∈ Isom(R2)
have the same action on A, B, C. Thus

φ1(A) = φ2(A), φ1(B) = φ2(B), φ1(C) = φ2(C).

i.e.,,

φ−12 φ1(A) = A, φ−12 φ1(B) = B, φ
−1
2 φ1(C) = C.

Whence, we must show that if there exists ϕ ∈ Isom(R2) such that ϕ(A) = A, ϕ(B) =
B, ϕ(C) = C, then ϕ(P) = P for each point P ∈ R2.

In fact, since ϕ preserves distance and ϕ(A) = A, it follows that P and ϕ(P) are
equidistant from A. Thus ϕ(P) lies on the circle C1 centered at A with radius |AP|. Sim-
ilarly, ϕ(P) also lies on the circle C2 centered at B with radius |BP|. Whence, ϕ(P) ∈
C1 ∩ C2.

Because C1 and C2 are not concentric, they intersect in at most two points, such as
those shown in Fig.9.3.1 following.

A B

ϕ(P)

P

C1
C2

C

L

Fig.9.3.1

Notice that P lies on both of C1 and C2. Thus C1 ∩ C2 , ∅. Therefore, |C1 ∩ C2| = 1
or 2. If |C1 ∩ C2| = 1, then ϕ(P) = P. If |C1 ∩ C2| = 2, let L be the line through A, B,
which is the perpendicular bisector of ϕ(P) and P, such as those shown in Fig.9.3.1. By
assumption, C < L, we get that |CP| , |Cϕ(P)|. Contradicts to the fact that P, ϕ(P) are
equidistant from C. Whence |C1 ∩ C2| = 1 and we get the conclusion. �
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There are three types of isometries on R2 listed in the following.

Translation T. A translation T is a mapping that moves every point of R2 through
a constant distance in a f xed direction, i.e.,

Ta,b : R2 → R2, (x1, y1)→ (x1 + a, y1 + b),

where (a, b) is a constant vector. Call the direction of (a, b) the axis of T and denoted by
T = Ta,b.

Rotation Rθ. A rotation R is a mapping that moves every point of R2 through a
f xed angle about a f xed point, called the center. By taking the center O to be the origin
of polar coordinates (r, θ), a rotation Rθ : R2 → R2 is

R : (r, θ)→ (r, θ +̟),

where ̟ is a constant angle,̟ ∈ R (mod2π). Denoted by R = Rθ.

Ref ection F. A ref ection F is a mapping that moves every point of R2 to its mirror-
image in a f xed line. That line L is called the axis of F, denoted by F = F(L). Thus for a
point P in R2, if P ∈ L, then F(P) = P, and if P < L, then F(P) is the unique point in R2

such that L is the perpendicular bisector of P and F(P).

Theorem 9.3.4 For a chosen line L and a f xed point O ∈ L in R2, any element ϕ ∈
Isom(R2) can written uniquely in the form

ϕ = TRFǫ ,

where F denotes the ref ection in L, ǫ = 0 or 1, R is the rotation centered at O, T ∈ T, and
the subgroup of orientation-preserving isometries of R2 consists of those ϕ with ǫ = 0.

Proof Let T be the translation transferring O to ϕ(O). Clearly, T−1ϕ(O) = O. Now
let P ∈ L be a point with P , O. By def nition,

0 < ρ(O, P) = ρ(T−1ϕ(O), T−1ϕ(P)) = ρ(O, T−1ϕ(P)),

there exists a rotation R centered at O transferring P to T−1ϕ(P). Thus R−1T−1ϕ f xes both
points O and P.

Finally, let Q < L be a point. Then points Q and R−1T−1ϕ(Q) are equidistant both
from points O and P. Similar to the proof of Theorem 9.3.3, we know that points Q and
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R−1T−1ϕ(Q) are either equal or mirror-images in L. Choose ǫ = 0 if Q = R−1T−1ϕ(Q) and
ǫ = 1 if Q , R−1T−1ϕ(Q). Then the isometry FǫR−1T−1ϕ f xes non-collinear points O, P
and Q. According to Theorem 9.3.3, there must be

FǫR−1T−1ϕ = 1R2 .

Thus
ϕ = TRFǫ .

For the uniqueness of the form, assume that

TRFǫ = T ′R′Fδ,

where ǫ, δ ∈ {0, 1}, T, T ′ ∈ T and R, R′ ∈ RO. Clearly, ǫ = δ by previous argument.
Cancelling F if necessary, we get that TR = T ′R′. But then (T ′)−1T = R′R−1 belongs
to RO ∩ T, i.e., a translation f xes point O. Whence, it is the identity mapping 1r2 . Thus
T = T ′ and R = R′.

Notice that T, R are orientation-preserving but F is orientation-reversing. It follows
that TRFǫ is orientation-preserving or orientation-reversing according to ǫ = 0 or 1. This
completes the proof. �

9.3.3 Finitely Smarandache 2-Manifold. A point P on a Euclidean plane R2 is in fact
associated with a real number π. Generally, we consider a function µ : R2 → [0, 2π) and
classify points on R2 into three classes following:

Elliptic Type. All points P ∈ R2 with µ(P) < π.

Euclidean Type. All points Q ∈ R2 with µ(P) = π.

Hyperbolic Type. All points U ∈ R2 with µ(P) > π.

Such a Euclidean plane R2 with elliptic or hyperbolic points is called a Smarandache
plane, denoted by (R2, µ) and these elliptic or hyperbolic points are called non-Euclidean
points. A f nitely Smarandache plane is such a Smarandache plane with f nite non-
Euclidean points.

Let L be an s-line in a Smarandache plane (R2, µ) with non-Euclisedn points A1, A2,
· · · , An for an integer n ≥ 0. Its curvature R(L) is def ned by

R(L) =
n∑

i=1

(π − µ(Ai)).
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An s-line L is called Euclidean or non-Euclidean if R(L) = ±2π or , ±2π. The following
result characterizes s-lines on (R2, µ).

Theorem 9.3.5 An s-line without self-intersections is closed if and only if it is Euclidean.

Proof Let (R2, µ) be a Smarandache plane and let L be a closed s-line without self-
intersections on (R2, µ) with vertices A1, A2, · · · , An. From the Euclid geometry on plane,
we know that the angle sum of an n-polygon is (n − 2)π. Whence, the curvature R(L) of
s-line L is ±2π by def nition, i.e., L is Euclidean.

Now if an s-line L is Euclidean, then R(L) = ±2π by def nition. Thus there exist
non-Euclidean points B1, B2, · · · , Bn such that

n∑

i=1

(π − µ(Bi)) = ±2π.

Whence, L is nothing but an n-polygon with vertices B1, B2, · · · , Bn on R2. Therefore, L
is closed without self-intersection. �

Furthermore, we f nd conditions for an s-line to be that of regular polygon on R2

following.

Corollary 9.3.1 An s-line without self-intersection passing through non-Euclidean points
A1, A2, · · · , An is a regular polygon if and only if all points A1, A2, · · · , An are elliptic with

µ(Ai) =
(
1 − 2

n

)
π

or all A1, A2, · · · , An are hyperbolic with

µ(Ai) =
(
1 +

2
n

)
π

for integers 1 ≤ i ≤ n.

Proof If an s-line L without self-intersection passing through non-Euclidean points
A1, A2, · · · , An is a regular polygon, then all points A1, A2, · · · , An must be elliptic (hyper-
bolic) and calculation easily shows that

µ(Ai) =
(
1 − 2

n

)
π or µ(Ai) =

(
1 +

2
n

)
π

for integers 1 ≤ i ≤ n by Theorem 9.3.5. On the other hand, if L is an s-line passing
through elliptic (hyperbolic) points A1, A2, · · · , An with

µ(Ai) =
(
1 − 2

n

)
π or µ(Ai) =

(
1 +

2
n

)
π
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for integers 1 ≤ i ≤ n, then it is closed by Theorem 9.3.5. Clearly, L is a regular polygon
with vertices A1, A2, · · · , An. �

Let ρ be the metric on R2 def ned in Example 9.3.1. An isometry on a Smarandache
plane (R2, µ) is such an isometry τ : R2 → R2 with µ(τ(x)) = µ(x) for x ∈ R2. Clearly,
all isometries on (R2, µ) also form a group under the composition operation, denoted by
Isom(R2, µ). Corollary 9.3.1 enables one to determine isometries of f nitely Smarandache
planes following.

Theorem 9.3.6 Let (R2, µ) be a f nitely Smarandache plane. Then any isometry T of
(R2, µ) is generated by a rotation R and a ref ection F on R2, i.e.,T = RFǫ with ǫ = 0, 1.

Proof Let T be an isometry on a f nitely Smarandache plane (R2, µ). Then for a
point A on (R2, µ), the type of A and T (A) must be the same with µ(T (A)) = µ(A) by
def nition. Whence, if there is constant vector (a, b) ∈ R2 such that Ta,b : (R2, µ) →
(R2, µ) determined by

(x, y)→ (x + a, y + b)

is an isometry and A a non-Euclidean point in (R2, µ), then there are inf nite non-Euclidean
points A, Ta,b(A), T 2

a,b(A), · · · , T na,b(A), · · · , for integers n ≥ 1, contradicts the assumption
that (R2, µ) is f nitely Smarandache. Thus T can be only generated by a rotation and a
refection. Thus T = RFǫ . Conversely, we are easily constructing a rotation R and a
ref ection F on (R2, µ). For example, a rotation R : θ → θ + π/2 centered at O and
a ref ection F in line L on a f nitely Smarandache plane (R2, µ) is shown in Fig.9.3.2
(a) and (b) in which the labeling number on a point P is µ(P) if µ(P) , π. Otherwise,
µ(P) = π if there are no a label for p ∈ R2. �

-6� ? π

2
O

π

2

π

2
π

2

π

2

(a)

O
� -π

2

π

2
π

2

π

2
L

(b)

Fig.9.3.2
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The classif cation on f nitely Smarandache planes is the following result.

Theorem 9.3.7 Let k|n or k|(n − 1) and 0 < d1 < d2 < · · · dk an integer sequence. Then
there exist one and only one f nitely Smarandache plane (R2, µ) with n non-Euclidean
points A1, A2, · · · , An such that

Isom(R2, µ) ≃ D2k

and
ρ(O, Ai j) = d j, µ(Ai j ) =

(
1 − 2

k

)
, ( j − 1)k + 1 ≤ i j ≤ jk; 1 ≤ j ≤ n

k
if k|n, or

ρ(O, Ai j) = d j, µ(Ai j ) =
(
1 − 2

k

)
, ( j − 1)k + 1 ≤ i j ≤ jk; 1 ≤ j ≤ n − 1

k

with O = An if k|(n − 1).

Proof Choose ̟ =
2π
k

and a rotation R̟ : (r, θ) → (r, θ + ̟) centered at O.

Assume k|n. Let P1,P2, · · · ,P n
k
be
n
k
concentrically regular k-polygons at O with radius

d1, d2, · · · , dk. Place points A1, A2, · · · , Ak on vertices of P1, Ak1 , Ak+2, · · · , A2k on vertices
of P2, · · ·, and An−k+1, An−k+2, · · · , An on vertices of P n

k
, such as those shown in Fig.9.3.3.

O A1

A2A3

Ak

Ak+1

Ak+2Ak+3

A2k

An−k+1

An−k+2An−k+3

AnAn−1

Fig.9.3.3

Then we are easily know that
Isom(R2, µ) ≃ D2k.

For the uniqueness, let P′1,P′2, · · · ,P′nk be
n
k
concentrically regular k-polygons at O′

with radius d1, d2, · · · , dk and vertices A′1, A
′
2, · · · , A′n labeled likely that in Fig.9.3.3.
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Choose TO′,O being a translation moving point O′ to O and RA′1,A1 a rotation centered at O
moving A′1 to A1. Transfer it f rst by TO′,O and then by RA′1,A1. Then each non-Euclidean
point A′i coincides with Ai for integers 1 ≤ i ≤ n, i.e., they are the same Smarandache
plane (R2, µ).

Similarly, we can get the result for the case of k|(n − 1) by putting O = An. �

9.3.4 Smarandachely Map. Let S be a surface associated with µ : x → [0, 2π) for
each point x ∈ S , denoted by (S , µ). A point x ∈ S is called elliptic, Euclidean or
hyperbolic if it has a neighborhood Ux homeomorphic to a 2-disk neighborhood of an
elliptic, Euclidean or a hyperbolic point in (R2, µ). Similarly, a line on (S , µ) is called an
s-line.

A map M = (Xα,β,P) on (S , µ) is called Smarandachely if all of its vertices is
elliptic (hyperbolic). Notice that these pendent vertices is not important because it can
be always Euclidean or non-Euclidean. We concentrate our attention to non-separated
maps. Such maps always exist circuit-decompositions. The following result characterizes
Smarandachely maps.

Theorem 9.3.8 A non-separated planar map M is Smarandachely if and only if there
exist a directed circuit-decomposition

E 1
2
(M) =

s⊕

i=1

E(−→C i)

of M such that one of the linear systems of equations
∑

v∈V(
−→C i)

(π − xv) = 2π, 1 ≤ i ≤ s

or ∑

v∈V(
−→C i)

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, where E 1
2
(M) denotes the set of semi-arcs of M.

Proof If M is Smarandachely, then each vertex v ∈ V(M) is non-Euclidean, i.e.,
µ(v) , π. Whence, there exists a directed circuit-decomposition

E 1
2
(M) =

s⊕

i=1

E(−→C i)
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of semi-arcs in M such that each of them is an s-line in (R2, µ). Applying Theorem 9.3.5,
we know that ∑

v∈V(
−→C i)

(π − µ(v)) = 2π or
∑

v∈V(
−→C i)

(π − µ(v)) = −2π

for each circuit Ci, 1 ≤ i ≤ s. Thus one of the linear systems of equations
∑

v∈V(
−→C i)

(π − xv) = 2π, 1 ≤ i ≤ s or
∑

v∈V(
−→C i)

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable.
Conversely, if one of the linear systems of equations

∑

v∈V(
−→C i)

(π − xv) = 2π, 1 ≤ i ≤ s or
∑

v∈V(
−→C i)

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, def ne a mapping µ : R2 → [0, 4π) by

µ(x) =


xv if x = v ∈ V(M),
π if x < v(M).

Then M is a Smarandachely map on (R2, µ). This completes the proof. �

In Fig.9.3.4, we present an example of a Smarandachely planar maps with µ def ned
by numbers on vertices.

π

2

π

2
π

2
π

2

π

2

π

2

π

2

π

2
π

2

Fig.9.3.4

Let ω0 ∈ (0, π). An s-line L is called non-Euclidean of type ω0 if R(L) = ±2π ± ω0.
Similar to Theorem 9.3.8, we can get the following result.
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Theorem 9.3.9 A non-separated map M is Smarandachely if and only if there exist a
directed circuit-decomposition

E 1
2
(M) =

s⊕

i=1

E(−→C i)

of M into s-lines of type ω0, ω0 ∈ (0, π) for integers 1 ≤ i ≤ s such that one of the linear
systems of equations

∑

v∈V(
−→C i)

(π − xv) = 2π − ω0, 1 ≤ i ≤ s,

∑

v∈V(
−→C i)

(π − xv) = −2π − ω0, 1 ≤ i ≤ s,

∑

v∈V(
−→C i)

(π − xv) = 2π + ω0, 1 ≤ i ≤ s,

∑

v∈V(
−→C i)

(π − xv) = −2π + ω0, 1 ≤ i ≤ s

is solvable.

9.3.5 Inf nitely Smarandache 2-Manifold. Notice that the function µ : R2 → [0, 2π)
is not continuous if there are only f nitely non-Euclidean points in (R2, µ). We consider
a continuous function µ : R2 → [0, 2π) in this subsection, in which we meet inf nite
non-Euclidean points.

-
6

x

y

O

l1 l2 r(s)

X
Y

φψ

δ

Fig.9.3.5

Let r : (a, b)→ R2 be a plane curveC parametrized by arc length s, seeing Fig.9.3.5.
Notice that µ(x) is an angle variant from π of a Euclidean point to µ(x) of a non-Euclidean
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x in f nitely Smarandache plane. Consider points moves from X to Y on r(s). Then the
variant of angles from l1 to l2 is δ = φ − ψ. Thus µ(x) =

dφ
ds

∣∣∣∣∣
x
. Def ne the curvature R(C)

of curve C by

R(C) =
∫

C

dφ
ds
.

Then if C is a closed curve on R2 without self-intersection, we get that

R(C) =
∫

C

dφ
ds
=

2πr∫

0

dφ
ds
= φ|2πr − φ|0 = 2π.

Let r = (x(s), y)(s)) be a plane curve in R2. Then

dx
ds
= cos φ,

dy
ds
= sinφ.

Consequently,

d2x
ds2
= − sinφdφ

ds
= −dy

ds
dφ
ds
,

d2y
ds2
= cos φ

dφ
ds
=
dx
ds
dφ
ds
.

Multiplying the f rst formula by −dy
ds
, the second by

dx
ds

on both sides and plus them, we
get that

dφ
ds
=
dx
ds
d2y
ds2
− d

2x
ds2

dy
ds

by applying sin2 φ + cos2 φ = 1.
If r(t) = (x(t), y(t)) is a plane curve C parametrized by t, where t maybe not the arc

length, since

s =
t∫

0

√(
dx
dt

)2
+

(
dy
dt

)2
dt,

we know that

ds
dt
=

√(
dx
dt

)2
+

(
dy
dt

)2
,
dx
ds
=

(
dx
dt

)
/

(
ds
dt

)
and

dy
ds
=

(
dy
dt

)
/

(
ds
dt

)
.

Whence,

dφ
ds
=

dx
dt
d2y
dt2
− d

2x
dt2

dy
dt


(
dx
dt

)2
+

(
dy
dt

)2
3
2
.
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Consequently, we get the following result by def nition.

Theorem 9.3.10 A curve C determined by r = (x(t), y)(t)) exists in a Smarandache plane
(R2, µ) if and only if the following differential equation

dx
dt
d2y
dt2
− d

2x
dt2

dy
dt


(
dx
dt

)2
+

(
dy
dt

)2
3
2
= µ

is solvable.

Example 9.3.1 Let r(θ) = (cos θ, sin θ) (0 ≤ θ ≤ 2π) be a unit circle C on R2. Calculation
shows that

dx
dθ
d2y
dθ2
− d

2x
dθ2

dy
dθ
= sin2 θ + cos2 θ = 1

and 
(
dx
dt

)2
+

(
dy
dt

)2
3
2

= sin2 θ + cos2 θ = 1.

Whence, the circle C exists in a Smarandache plane (R2, µ) if and only if µ(x, y) = 1 for
∀(x, y) ∈ C.

Example 9.3.2 Let r(t) = (a(t − sin t), a(1 − cos t)) (0 ≤ t ≤ 2π) be a spiral line on R2.
Calculation shows that

dφ
ds
= − 1

4a sin
t
2

.

Whence, this spiral line exists in a Smarandache plane (R2, µ) if and only if

µ(x, y) = − 1

4a sin
t
2

for x = a(t − sin t) and y = a(1 − cos t).

Now we turn our attention to isometries of Smarandache plane (R2, µ) with inf nitely
Smarandache points. These points in (R2, µ) can be classif ed into three classes, i.e.,
elliptic points Vel, Euclidean points Veu and hyperbolic points Vhy following:

Vel = { u ∈ (R2, µ) | µ(u) < π },
Veu = { v ∈ (R2, µ) | µ(v) = π },
Vhy = { w ∈ (R2, µ) | µ(w) > π }.
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Theorem 9.3.11 Let (R, µ) be a Smarandache plane. If Vel , ∅ and Vhy , ∅, then Veu , ∅.

Proof By assumption, we can choose points u ∈ Vel and v ∈ Vhy. Consider points on
line segment uv in (R2, µ). Notice that µ(u) < π and µ(v) > π. Applying the connectedness
of µ, there exists at least one point w, w ∈ uv such that µ(w) = π, i.e., w ∈ Veu by the
intermediate value theorem on continuous function. Thus Veu , ∅. �

Corollary 9.3.2 Let (R, µ) be a Smarandache plane. If Veu = ∅, then either all points of
(R2, µ) are elliptic or hyperbolic.

Corollary 9.3.2 enables one to classify Smarandache planes into classes following:

Euclidean Type. These Smarandache planes in which each point is Euclidean.
Elliptic Type. These Smarandache planes in which each point is elliptic.
Hyperbolic Type. These Smarandache planes in which each point is hyperbolic.
Smarandachely Type. These Smarandache planes in which there are elliptic, Eu-

clidean and hyperbolic points simultaneously. This type can be further classif ed into
three classes by Corollary 9.3.2:

(S1) Such Smarandache planes just containing elliptic and Euclidean points;
(S2) Such Smarandache planes just containing Euclidean and hyperbolic points;
(S3) Such Smarandache planes containing elliptic, Euclidean and hyperbolic points.

By def nition, these isometries of a Euclidean plane R2, i.e., translation, rotation and
ref ection exist also in Smarandache planes (R2, µ) of elliptic and hyperbolic types if we
let µ : R2 → [0, π) be a constant< π or > π. We concentrate our discussion on these
Smarandachely types.

X X X X

X X X X

X X X X

a

b

Fig.9.3.6
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For convenience, we respectively colour the elliptic, Euclidean and hyperbolic points
by colors red (R), yellow (Y) and white (W). For the cases (S1) or (S2), if there is an
isometry of translation Ta,b on (R2, µ), then this Smarandache plane can be only the case
shown in Fig.9.3.6, where X =R or W and all other points colored by Y. Whence, if there
is also a rotation Rθ on (R2, µ), there must be a = b and θ = π/2 with center at X or
the center of one square. In this case, w can easily f nd a ref ection F in a horizontal or a
vertical line passing through X. Whence, there are isometries of types translation, rotation
and ref ection in cases (S1) and (S2).

O X U Z

X

U

Z

X

U

Z

XUZ

Fig.9.3.7

Furthermore, if there is an isometry of rotation Rθ on (R2, µ), then this Smarandache
plane can be only the case shown in Fig.9.3.7, where X, U, Z ∈ {R, W} and all other
points colored by Y. In this case, there are ref ections F in lines passing through points O,
X and there are translations Ta,b on (R2, µ) only if θ = π/2 and a = b.

X X X X

X X X X

X X X X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

a

a

Fig.9.3.8
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Consider the case of (S3). In this case, if there is an isometry of translation Ta,b
on (R2, µ), then this Smarandache plane can be only the case shown in Fig.9.3.8, where
X ∈ {R, W}, Z ∈ {R, W} \ {X} and all other points colored by Y. Now if there is an
isometry of rotation Rθ on (R2, µ), there must be a = b and θ = π/2 centered at X, Z or
the center of one square.

Similarly, if there is an isometry of rotation Rθ on (R2, µ) such as those shown in
Fig.9.3.7. Then there are ref ections F in lines passing through points O, X. In this case,
there exist translations Ta,b on (R2, µ) only if θ = π/2 and a = b.

Summarizing up all the previous discussions, we get the following result on isome-
tries of Smarandache planes (R2, µ) with a continuous function µ : R2 → [0, 2π).

Theorem 9.3.12 Let (R2, µ) be a Smarandachely type plane with µ : R2 → [0, 2π) a
continuous function. Then there are isometries of translation Ta,b and rotations Rθ only
if a = b and θ = π/2, and there are indeed such a Smarandache plane (R2, µ) with
isometries of types translation, rotation and ref ection concurrently in each of classes
(S1)-(S3).

§9.4 ISOMETRIES OF PSEUDO-EUCLIDEAN SPACES

9.4.1 Euclidean Space. A Euclidean space on a real vector space E over a f eld F is a
mapping

〈 · · 〉 : E × E→ R with (e1, e2)→ 〈e1, e2〉 for ∀e1, e2 ∈ E

such that for e, e1, e2 ∈ E, α ∈ F

(A1) 〈e, e1 + e2〉 = 〈e, e1〉 + 〈e, e2〉;
(A2) 〈e, αe1〉 = α 〈e, e1〉;
(A3) 〈e1, e2〉 = 〈e2, e1〉;
(A4) 〈e, e〉 ≥ 0 and 〈e, e〉 = 0 if and only if e = 0.

In an Euclidean space E, the number
√
〈e, e〉 is called its norm, denoted by ‖e‖ for

abbreviation. It can be shown that

(1)
〈
0, e

〉
=

〈
e, 0

〉
= 0 for ∀e ∈ E;

(2)
〈
n∑
i=1
xie1i ,

m∑
j=1
yie2j

〉
=

n∑
i=1

m∑
i=1
xiy j

〈
e1i , e

2
j

〉
, for esi ∈ E, where 1 ≤ i ≤ max{m, n} and
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s = 1 or 2.

Certainly, let e1 = e2 = 0 in (A1), we f nd that
〈
e, 0

〉
= 0. Applying (A3), we get that〈

0, e
〉
= 0. This is the formula in (1). For (2), applying (A1)-(A2), we know that

〈 n∑

i=1

xie1i ,
m∑

j=1

yie2j

〉
=

m∑

j=1

〈 n∑

i=1

xie1i , yie
2
j

〉
=

m∑

j=1

yi
〈 n∑

i=1

xie1i , e
2
j

〉

=

m∑

j=1

yi
〈
e2j ,

n∑

i=1

xie1i

〉
=

n∑

i=1

m∑

j=1

xiyi
〈
e2j , e

1
i

〉

=

n∑

i=1

m∑

j=1

xiyi
〈
e1i , e

2
j

〉
.

9.4.2 Linear Isometry on Euclidean Space. Let E be an n-dimensional Euclidean space
with normal basis {ǫ1, ǫ2, · · · , ǫn}, i.e.,

〈
ǫi, ǫ j

〉
= 0 and |ǫi| = 1 for integers 1 ≤ i, j ≤ n. A

linear isometry T : E→ E is such a transformation that

T (c1e1 + c2e2) = c1T (e1) + c2T (e2) and 〈T (e1), T (e2)〉 = 〈e1, e2〉

for e1, e2 ∈ E and c1, c2 ∈ F .

Theorem 9.4.1 Let E be an n-dimensional Euclidean space with normal basis {ǫ1, ǫ2,
· · · , ǫn} and T a linear transformation on E. Then T is an isometry on E if and only if
{T (ǫ1), T (ǫ2), · · · , T (ǫn)} is a normal basis of E.

Proof If T is a linear isometry, then
〈
T (ǫ i), T (ǫ j)

〉
=

〈
ǫ i, ǫ j

〉
= δi j by def nition,

where δi j = 1 if i = j and 0 otherwise. Whence, {T (ǫ1), T (ǫ2), · · · , T (ǫn)} is a normal basis
of E.

Conversely, let {ǫ1, ǫ2, · · · , ǫn}, {T (ǫ1), T (ǫ2), · · · , T (ǫn)} be normal basis of E and
v ∈ E. Without loss of generality, assume v = a1ǫ1 + a2ǫ2 + · · ·+ anǫn. Then we know that
T (v) = a1T (ǫ1)+a2T (ǫ2)+ · · ·+anT (ǫn). Notice that

〈
T (ǫ i), T (ǫ j)

〉
= δi, j and

〈
ǫ i, ǫ j

〉
= δi j

for integers 1 ≤ i, j ≤ n. We get that

〈v, v〉 = a21, a22 + · · · + a2n and 〈T (v), T (v)〉 = a21, a22 + · · · + a2n.

Thus 〈T (v), T (v)〉 = 〈v, v〉. �

A matrix A =
[
ai j

]
n×n

is called orthogonal if AAt = In×n, where At is the transpose of
A if

a2i1 + a
2
i2 + · · · + a2in = 1 and ai1a j1 + ai2a j2 + · · · + aina jn = 0
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for integers 1 ≤ i, j ≤ n, i , j.

Theorem 9.4.2 Let E be an n-dimensional Euclidean space with normal basis {ǫ1, ǫ2,
· · · , ǫn} and T a linear transformation on E determined by Y

t
=

[
ai j

]
n×n
X
t
, where X =

(ǫ1, ǫ2, · · · , ǫn) and Y = (T (ǫ1), T (ǫ2), · · · , T (ǫn)). Then T is a linear isometry on E if and
only if

[
ai j

]
n×n

is an orthogonal matrix.

Proof If T is a linear isometry on E, then
〈
T (ǫ i), T (ǫ j)

〉
=

〈
ǫ i, ǫ j

〉
= δi j. Thus

ai1a j1 + ai2a j2 + · · · + aina jn = δi j,

i.e.,
[
ai j

]
n×n

is an orthogonal matrix by def nition.
On the other hand, if

[
ai j

]
n×n

is an orthogonal matrix, then we are easily know that
{T (ǫ1), T (ǫ2), · · · , T (ǫn)} is a normal basis of E. Let b = b1ǫ1+b2ǫ2+ · · ·+bnǫn ∈ E. Then

T (b) = T (b1ǫ1 + b2ǫ2 + · · · + bnǫn) = b1T (ǫ1) + b2T (ǫ2) + · · · + bnT (ǫn).

Thus 〈
T (b), T (b)

〉
= b21 + b

2
2 + · · · + b2n =

〈
b, b

〉
,

i.e., T is a linear isometry by def nition. �

9.4.3 Isometry on Euclidean Space. Let E be an n-dimensional Euclidean space with
normal basis {ǫ1, ǫ2, · · · , ǫn}. As in the case of R2 by the distance-preserving property, any
isometry on E is a composition of three isometries on E following:

Translation Te. A mapping that moves every point (x1, x2, · · · , xn) of E by

Te : (x1, x2, · · · , xn)→ (x1 + e1, x2 + e2, · · · , xn + en),

where e = (e1, e2, · · · , en).

Rotation Rθ. A mapping that moves every point of E through a f xed angle about a
f xed point. Similarly, taking the center O to be the origin of polar coordinates (r, φ1, φ2,
· · · , φn−1), a rotation Rθ1,θ2,···,θn−1 : E→ E is

Rθ1,θ2,···,θn−1 : (r, φ1, φ2, · · · , φn1)→ (r, φ1 + θ1, φ2 + θ2, · · · , φn1 + θn−1),

where θi is a constant angle, θi ∈ R (mod2π) for integers 1 ≤ i ≤ n − 1.

Ref ection F. A ref ection F is a mapping that moves every point of E to its mirror-
image in a f xed Euclidean subspace E′ of dimensional n−1, denoted by F = F(E′). Thus
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for a point P in E, F(P) = P if P ∈ E′, and if P < E′, then F(P) is the unique point in E
such that E′ is the perpendicular bisector of P and F(P).

The following result is easily to know similar to the proof of Theorem 9.3.4 by the
distance-preserving property of isometries.

Theorem 9.4.3 All isometries f xing the origin on a Euclidean space E are linear.

Whence, by Theorems 9.4.1-9.4.2, we get the following result.

Theorem 9.4.4 Any isometry I on a Euclidean space E is affine, i.e.,

Y
t
= λ

[
ai j

]
n×n
X
t
+ e,

where λ is a constant number,
[
ai j

]
n×n

a orthogonal matrix and e a constant vector in E.

9.4.4 Pseudo-Euclidean Space. Let Rn = {(x1, x2, · · · , xn)} be a Euclidean space of di-
mensional nwith a normal basis ǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, · · · , 0), · · ·, ǫn = (0, 0, · · · , 1),
x ∈ Rn and −→V x, x

−→V two vectors with end or initial point at x, respectively. A pseudo-
Euclidean space (Rn, µ) is such a Euclidean space Rn associated with a mapping µ :
−→V x → x

−→V for x ∈ Rn, such as those shown in Fig.9.4.1,- - - >
x x

−→V x x
−→V −→V x

x
−→V

(a) (b)

Fig.9.4.1

where −→V x and x
−→V are in the same orientation in case (a), but not in case (b). Such points in

case (a) are called Euclidean and in case (b) non-Euclidean. A pseudo-Euclidean (Rn, µ)
is f nite if it only has f nite non-Euclidean points, otherwise, inf nite.

Notice that a vector −→V can be uniquely determined by the basis of Rn.−→ For x ∈ Rn,
there are inf nite orthogonal frames at point x. Denoted by Ox the set of all normal bases
at point x. Then a pseudo-Euclidean space (R, µ) is nothing but a Euclidean space Rn

associated with a linear mapping µ : {ǫ1, ǫ2, · · · , ǫn} → {ǫ′1, ǫ′2, · · · , ǫ′n} ∈ Ox such that
µ(ǫ1) = ǫ′1, µ(ǫ2) = ǫ

′
2, · · ·, µ(ǫn) = ǫ′n at point x ∈ Rn. Thus if −→V x = c1ǫ1+c2ǫ2+ · · ·+cnǫn,

then µ(x
−→V ) = c1µ(ǫ1) + c2µ(ǫ2) + · · · + cnµ(ǫn) = c1ǫ′1 + c2ǫ′2 + · · · + cnǫ′n.
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Without loss of generality, assume that

µ(ǫ1) = x11ǫ1 + x12ǫ2 + · · · + x1nǫn,

µ(ǫ2) = x21ǫ1 + x22ǫ2 + · · · + x2nǫn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

µ(ǫn) = xn1ǫ1 + xn2ǫ2 + · · · + xnnǫn.

Then we f nd that

µ(x
−→V ) = (c1, c2, · · · , cn)(µ(ǫ1), µ(ǫ2), · · · , µ(ǫn))t

= (c1, c2, · · · , cn)



x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · · · · · · · ·
xn1 xn2 · · · xnn


(ǫ1, ǫ2, · · · , ǫn)t.

Denoted by

[
x
]
=



x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · · · · · · · ·
xn1 xn2 · · · xnn


=



〈µ(ǫ1), ǫ1〉 〈µ(ǫ1), ǫ2〉 · · · 〈µ(ǫ1), ǫn〉
〈µ(ǫ2), ǫ1〉 〈µ(ǫ2), ǫ2〉 · · · 〈µ(ǫ2), ǫn〉
· · · · · · · · · · · ·

〈µ(ǫn), ǫ1〉 〈µ(ǫn), ǫ2〉 · · · 〈µ(ǫn), ǫn〉


,

called the rotation matrix of x in (Rn, µ). Then µ : −→V x → x
−→V is determined by µ(x) =

[
x
]

for x ∈ Rn. Furthermore, such an rotation matrix
[
x
]
is orthogonal for points x ∈ Rn by

def nition, i.e.,
[
x
] [
x
]t
= In×n. Particularly, if x is Euclidean, then such an orientation ma-

trix is nothing but µ(x) = In×n. Summing up all these discussions, we know the following
result.

Theorem 9.4.5 If (Rn, µ) is a pseudo-Euclidean space, then µ(x) =
[
x
]
is an n × n

orthogonal matrix for ∀ x ∈ Rn.

Likewise that the case of (R2, µ), a line L in pseudo-Euclidean space (Rn, µ) is usually
called an s-line. Def ne the curvature R(L) of an s-line L passing through non-Euclidean
points x1, x2, · · · , xm ∈ Rn for m ≥ 0 in (Rn, µ) to be a matrix determined by

R(L) =
m∏

i=1

µ(xi)
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and Euclidean if R(L) = In×n, otherwise, non-Euclidean. It is obvious that a point in a
Euclidean space Rn is indeed Euclidean by this def nition. Furthermore, we immediately
get the following result for Euclidean s-lines in (Rn, µ).

Theorem 9.4.6 Let (Rn, µ) be a pseudo-Euclidean space and L an s-line in (Rn, µ) passing
through non-Euclidean points x1, x2, · · · , xm ∈ Rn. Then L is closed if and only if L is
Euclidean.

Proof If L is a closed s-line, then L is consisted of vectors −−−→x1x2,
−−−→x2x3, · · ·,

−−−→xnx1. By
def nition,

−−−−→xi+1xi∣∣∣∣
−−−−→xi+1xi

∣∣∣∣
=

−−−−→xi−1xi∣∣∣∣
−−−−→xi−1xi

∣∣∣∣
µ(xi)

for integers 1 ≤ i ≤ m, where i + 1 ≡ (modm). Consequently,

−−−→x1x2 =
−−−→x1x2

m∏

i=1

µ(xi).

Thus
m∏

i=1

µ(xi) = In×n, i.e., L is Euclidean.

Conversely, let L be Euclidean, i.e.,
m∏

i=1

µ(xi) = In×n. By def nition, we know that

−−−−→xi+1xi∣∣∣∣
−−−−→xi+1xi

∣∣∣∣
=

−−−−→xi−1xi∣∣∣∣
−−−−→xi−1xi

∣∣∣∣
µ(xi), i.e., −−−−→xi+1xi =

∣∣∣∣
−−−−→xi+1xi

∣∣∣∣
∣∣∣∣
−−−−→xi−1xi

∣∣∣∣
−−−−→xi−1xi µ(xi)

for integers 1 ≤ i ≤ m, where i + 1 ≡ (modm). Whence, if
m∏

i=1

µ(xi) = In×n, then there

must be
−−−→x1x2 =

−−−→x1x2
m∏

i=1

µ(xi).

Thus L consisted of vectors −−−→x1x2,
−−−→x2x3, · · ·,

−−−→xnx1 is a closed s-line in (Rn, µ). �

Let n = 2. We consider the pseudo-Euclidean space (R2, µ) and f nd the rotation
matrix µ(x) for points x ∈ R2. Let θx be the angle form ǫ1 to µǫ1. Then it is easily to know
that

µ(x) =


cos θ x sin θ x

sin θ x − cos θ x

 .
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Now if an s-line L passing through non-Euclidean points x1, x2, · · · , xm ∈ R2, then Theo-
rem 9.4.6 implies that


cos θ x1 sin θ x1

sin θ x1 − cos θ x1




cos θ x2 sin θ x2

sin θ x2 − cos θ x2

 · · ·

cos θ xm sin θ xm

sin θ xm − cos θ xm

 = In×n.

Thus

µ(x) =


cos(θ x1 + θ x2 + · · · + θ xm) sin(θ x1 + θ x2 + · · · + θ xm)
sin(θ x1 + θ x2 + · · · + θ xm) cos(θ x1 + θ x2 + · · · + θ xm)

 = In×n.

Whence, θ x1 + θ x2 + · · · + θ xm = 2kπ for an integer k. This fact is in agreement with that
of Theorem 9.3.5.

An embedded graph G on Rn is a 1 − 1 mapping τ : G → Rn such that for ∀e, e′ ∈
E(G), τ(e) has no self-intersection and τ(e), τ(e′) maybe only intersect at their end points.
Such an embedded graph G in Rn is denoted by GRn . For example, the n-cube Cn is such
an embedded graph with vertex set V(Cn) = { (x1, x2, · · · , xn) | xi = 0 or 1 f or 1 ≤ i ≤ n }
and two vertices (x1, x2, · · · , xn)) and (x′1, x′2, · · · , x′n) are adjacent if and only if they are
differ exactly in one entry. We present two n-cubes in Fig.9.4.2 for n = 2 and n = 3.

(0,0) (0,1)

(1,1)(1,0)

n = 2

(0,0,0) (0,0,1)

(0,1,0)

(1,0,0)

(0,1,1)

(1,0,1)

(1,1,1)(1,1,0)

n = 3

Fig.9.4.2

An embedded graph GRn is called Smarandachely if there exists a pseudo-Euclidean
space (Rn, µ) with a mapping µ : x ∈ Rn → [

x
]
such that all of its vertices are non-

Euclidean points in (Rn, µ). Certainly, these vertices of valency 1 is not important for
Smarandachely embedded graphs. We concentrate our attention on embedded 2-connected
graphs.
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Theorem 9.4.7 An embedded 2-connected graph GRn is Smarandachely if and only if
there is a mapping µ : x ∈ Rn → [

x
]
and a directed circuit-decomposition

E 1
2
=

s⊕

i=1

E(−→C i)

such that these matrix equations
∏

x∈V(
−→C i)

Xx = In×n 1 ≤ i ≤ s

are solvable.

Proof By def nition, if GRn is Smarandachely, then there exists a mapping µ : x ∈
Rn → [

x
]
onRn such that all vertices ofGRn are non-Euclidean in (Rn, µ). Notice there are

only two orientations on an edge in E(GRn). Traveling on GRn beginning from any edge
with one orientation, we get a closed s-line −→C , i.e., a directed circuit. After we traveled
all edges in GRn with the possible orientations, we get a directed circuit-decomposition

E 1
2
=

s⊕

i=1

E(−→C i)

with an s-line −→C i for integers 1 ≤ i ≤ s. Applying Theorem 9.4.6, we get
∏

x∈V(
−→C i)

µ(x) = In×n 1 ≤ i ≤ s.

Thus these equations ∏

x∈V(
−→C i)

Xx = In×n 1 ≤ i ≤ s

have solutions Xx = µ(x) for x ∈ V(
−→C i).

Conversely, if these is a directed circuit-decomposition

E 1
2
=

s⊕

i=1

E(−→C i)

such that these matrix equations
∏

x∈V(
−→C i)

Xx = In×n 1 ≤ i ≤ s
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are solvable, let Xx = Ax be such a solution for x ∈ V(
−→C i), 1 ≤ i ≤ s. Def ne a mapping

µ : x ∈ Rn → [
x
]
on Rn by

µ(x) =


Ax if x ∈ V(GRn),
In×n if x < V(GRn).

Then we get a Smarandachely embedded graphGRn in the pseudo-Euclidean space (Rn, µ)
by Theorem 9.4.6. �

Now let C(t) = (x1(t), x2(t), · · · , xn(t)) be a curve in Rn, i.e.,

C(t) = x1(t)ǫ1 + x2(t)ǫ2 + · · · + xn(t)ǫn.

If it is an s-line in a pseudo-Euclidean space (Rn, µ), then

µ(ǫ1) =
x1(t)
|x1(t)|

ǫ1, µ(ǫ2) =
x2(t)
|x2(t)|

ǫ2, · · · , µ(ǫn) =
xn(t)
|xn(t)|

ǫn.

Whence, we get the following result.

Theorem 9.4.8 A curve C(t) = (x1(t), x2(t), · · · , xn(t)) with parameter t in Rn is an s-line
of a pseudo-Euclidean space (Rn, µ) if and only if

µ(t) =



x1(t)
x2(t) O

O . . .

xn(t)



.

9.4.5 Isometry on Pseudo-Euclidean Space. We have known Isom(Rn) =
〈
Te,Rθ,F

〉
.

An isometry τ of a pseudo-Euclidean space (Rn, µ) is an isometry onRn such that µ(τ(x)) =
µ(x) for ∀x ∈ Rn. Clearly, all such isometries form a group Isom(Rn, µ) under composition
operation with Isom(Rn, µ) ≤ Isom(Rn). We determine isometries of pseudo-Euclidean
spaces in this subsection.

Certainly, if µ(x) is a constant matrix [c] for ∀x ∈ Rn, then all isometries on Rn is
also isometries on (Rn, µ). Whence, we only discuss those cases with at least two values
for µ : x ∈ Rn → [

x
]
similar to that of (R2, µ).

Translation. Let (Rn, µ) be a pseudo-Euclidean space with an isometry of transla-
tion Te, where e = (e1, e2, · · · , en) and P, Q ∈ (Rn, µ) a non-Euclidean point, a Euclidean
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point, respectively. Then µ(T ke (P)) = µ(P), µ(T ke (Q)) = µ(Q) for any integer k ≥ 0 by
def nition. Consequently,

P, Te(P), T 2
e (P), · · · , T ke (P), · · · ,

Q, Te(Q), T 2
e (Q), · · · , T ke (Q), · · ·

are respectively inf nite non-Euclidean and Euclidean points. Thus there are no isometries
of translations if (Rn, µ) is f nite.

In this case, if there are rotations Rθ1 ,θ2,···,θn−1, then there must be θ1, θ2, · · · , θn−1 ∈
{0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0 if i ≥ l + 1, then e1 = e2 = · · · = el+1.

Rotation. Let (Rn, µ) be a pseudo-Euclidean space with an isometry of rotation
Rθ1,θ2,···,θn−1 and P, Q ∈ (Rn, µ) a non-Euclidean point, a Euclidean point, respectively. Then
µ(Rθ1,θ2,···,θn−1(P)) = µ(P), µ(Rθ1 ,θ2,···,θn−1(Q)) = µ(Q) for any integer k ≥ 0 by def nition.
Whence,

P, Rθ1,θ2,···,θn−1(P), R
2
θ1,θ2,···,θn−1(P), · · · , R

k
θ1,θ2,···,θn−1(P), · · · ,

Q, Rθ1,θ2,···,θn−1(Q), R
2
θ1,θ2,···,θn−1(Q), · · · , R

k
θ1,θ2,···,θn−1(Q), · · ·

are respectively non-Euclidean and Euclidean points.
In this case, if there exists an integer k such that θi|2kπ for all integers 1 ≤ i ≤

n− 1, then the previous sequences is f nite. Thus there are both f nite and inf nite pseudo-
Euclidean space (Rn, µ) in this case. But if there is an integer i0, 1 ≤ i0 ≤ n − 1 such
that θi0 6 | 2kπ for any integer k, then there must be either inf nite non-Euclidean points or
inf nite Euclidean points. Thus there are isometries of rotations in a f nite non-Euclidean
space only if there exists an integer k such that θi|2kπ for all integers 1 ≤ i ≤ n − 1.
Similarly, an isometry of translation exists in this case only if θ1, θ2, · · · , θn−1 ∈ {0, π/2}.

Ref ection. By def nition, a ref ection F in a subspace E′ of dimensional n − 1 is an
involution, i.e., F2 = 1Rn . Thus if (Rn, µ) is a pseudo-Euclidean space with an isometry
of ref ection F in E′ and P, Q ∈ (Rn, µ) are respectively a non-Euclidean point and a
Euclidean point. Then it is only need that P, F(P) are non-Euclidean points and Q, F(Q)
are Euclidean points. Therefore, a ref ection F can be exists both in f nite and inf nite
pseudo-Euclidean spaces (Rn, µ).

Summing up all these discussions, we get results following for f nite or inf nite
pseudo-Euclidean spaces.
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Theorem 9.4.9 Let (Rn, µ) be a f nite pseudo-Euclidean space. Then there maybe isome-
tries of translations Te, rotations Rθ and ref ections on (Rn, µ). Furthermore,

(1) If there are both isometries Te and Rθ, where e = (e1, e2, · · · , en) and θ =
(θ1, θ2, · · · , θn−1), then θ1, θ2, · · · , θn−1 ∈ {0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0
if i ≥ l + 1, then e1 = e2 = · · · = el+1.

(2) If there is an isometry Rθ1,θ2,···,θn−1 , then there must be an integer k such that θi | 2kπ
for all integers 1 ≤ i ≤ n − 1.

(3) There always exist isometries by putting Euclidean and non-Euclidean points
x ∈ Rn with µ(x) constant on symmetric positions to E′ in (Rn, µ).

Theorem 9.4.10 Let (Rn, µ) be a inf nite pseudo-Euclidean space. Then there maybe
isometries of translations Te, rotations Rθ and ref ections on (Rn, µ). Furthermore,

(1) There are both isometries Te and Rθ with e = (e1, e2, · · · , en) and θ = (θ1, θ2,
· · · , θn−1), only if θ1, θ2, · · · , θn−1 ∈ {0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0 if i ≥ l + 1,
then e1 = e2 = · · · = el+1.

(2) There exist isometries of rotations and ref ections by putting Euclidean and non-
Euclidean points in the orbits x〈Rθ〉 and y〈F〉 with a constant µ(x) in (Rn, µ).

We determine isometries on (R3, µ) with a 3-cube C3 shown in Fig.9.4.2. Let [a] be
an 3 × 3 orthogonal matrix, [a] , I3×3 and let µ(x1, x2, x3) =

[
a
]
for x1, x2, x3 ∈ {0, 1},

otherwise, µ(x1, x2, x3) = I3×3. Then its isometries consist of two types following:

Rotations:

R1, R2, R3: these rotations through π/2 about 3 axes joining centres of opposite
faces;

R4, R5, R6, R7, R8, R9: these rotations through π about 6 axes joining midpoints of
opposite edges;

R10, R11, R12, R13: these rotations through about 4 axes joining opposite vertices.

Ref ection F: the ref ection in the centre f xes each of the grand diagonal, reversing
the orientations.

Then Isom(R3, µ) = 〈Ri, F, 1 ≤ i ≤ 13〉 ≃ S 4 × Z2. But if let
[
b
]
be another 3 × 3

orthogonal matrix,
[
b
]
,

[
a
]
and def ne µ(x1, x2, x3) =

[
a
]
for x1 = 0, x2, x3 ∈ {0, 1},

µ(x1, x2, x3) =
[
b
]
for x1 = 1, x2, x3 ∈ {0, 1} and µ(x1, x2, x3) = I3×3 otherwise. Then only

the rotations R,R2,R3,R4 through π/2, π, 3π/2 and 2π about the axis joining centres of
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opposite face

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)} and {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},

and ref ection F through to the plane passing midpoints of edges

(0, 0, 0) − (0, 0, 1), (0, 1, 0) − (0, 1, 1), (1, 0, 0) − (1, 0, 1), (1, 1, 0) − (1, 1, 1)

or (0, 0, 0) − (0, 1, 0), (0, 0, 1) − (0, 1, 1), (1, 0, 0) − (1, 1, 0), (1, 0, 1) − (1, 1, 1)

are isometries on (R3, µ). Thus Isom(R3, µ) = 〈R1, R2, R3, R4, F〉 ≃ D8.

Furthermore, let
[
ai
]
, 1 ≤ i ≤ 8 be orthogonal matrixes distinct two by two and de-

f ne µ(0, 0, 0) =
[
a1

]
, µ(0, 0, 1) =

[
a2

]
, µ(0, 1, 0) =

[
a3

]
, µ(0, 1, 1) =

[
a4

]
, µ(1, 0, 0) =

[
a5

]
,

µ(1, 0, 1) =
[
a6

]
, µ(1, 1, 0) =

[
a7

]
, µ(1, 1, 1) =

[
a8

]
and µ(x1, x2, x3) = I3×3 if x1, x2, x3 , 0

or 1. Then Isom(R3, µ) is nothing but a trivial group.

§9.5 REMARKS

9.5.1 The Smarandache geometry is proposed by Smarandache by denial the 5th postu-
late for parallel lines in Euclidean postulates on geometry in 1969 (See [Sma1]-[Sma2]
for details). Then a formal def nition on such geometry was suggested by Kuciuk and An-
tholy in [KuA1]. More materials and results on Smarandache geometry can be found in
references, such as those of [Sma1]-[Sma2], [Iser1]-[Iser2], [Mao4], [Mao25] and [Liu4].

9.5.2 For Smarandache 2-manifolds, Iseri constructed 2-manifolds by equilateral triangu-
lar disks on Euclidean planeR2. Such manifold can be really come true by paper model in
R3 for elliptic, Euclidean and hyperbolic cases ([Isei1]). Observing the essence of identif -
cation 5, 6, 7 equilateral triangles in Iseri’s manifolds is in fact a mapping µ : R2 → 5π/3,
2π or 7π/3, a general construction for Smarandache 2-manifolds, i.e., map geometry was
suggested in [Mao3] by applying a general mapping µ : R2 → [0, 2π) on vertices of a
map, and then proved such approach can be used for constructing paradoxist geometry,
anti-geometry and counter-geometry in [Mao4]. It should be noted that a more general
Smarandache n-manifold, i.e., combinatorial manifold was combinatorially constructed
in [Mao15]. Moreover, a differential theory on such manifold was also established in
[Mao15]-[Mao17], which can be also found in the surveying monograph [Mao25].

9.5.3 All points are equal in status in a Euclidean space E. But it is not always true in
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Smarandache 2-manifolds and pseudo-Euclidean spaces. This fact means that not every
isometry of Rn is still an isometry of (Rn, µ). For f nite Smarandache 2-manifolds or
pseudo-Euclidean space, we can determine isometries by a combinatorial approach, i.e.,
maps on surfaces or embedded graphs in Euclidean spaces. But for inf nite Smarandache
2-manifolds or pseudo-Euclidean spaces, this approach is not always effective. However,
we have know all isometries of Euclidean spaces. Applying the fact that every isometry
of a pseudo-Euclidean space (Rn, µ) must be that of Rn, It is not hard for determining
isometries of a pseudo-Euclidean space (Rn, µ).

9.5.4 Let D : E→ E be a mapping on a Euclidean space E. If

‖D(x) − D()y‖ = ‖x − y‖

holds for all x, y ∈ E, then D is called a norm-preserving mapping. Notice that Theorems
9.4.3 and 9.4.4 is established on the condition of distance-preserving. Whence, They are
also true for norm-preserving mapping, i.e., there exist a orthogonal matrix

[
ai j

]
n×n

, a
constant vector e and a constant number λ such that

G = λ
[
ai j

]
n×n
+ e.

9.5.5 Let E be a Euclidean space and T : E → E be a linear mapping. If there exists a
real number λ such that

〈T (v1), T (v2)〉 = λ2 〈v1, v2〉 ,

for all v1, v2 ∈ E, then T is called a linear conformal mapping. It is easily to verify that

‖T (v)‖ = |λ|‖v‖

for v ∈ b f E. Such a linear conformal mapping T is indeed an angle-preserving mapping.
In fact, let v1, v2 be two vectors with angle θ. Then by def nition

cos∠(T (v1), T (v2)) =
〈T (v1), T (v2)〉
‖T (v1)‖ ‖T (v2)‖

=
λ2 〈v1, v2〉
λ2‖v1‖ ‖v2‖

=
〈v1, v2〉
‖v1‖ ‖v2‖

= cos θ.

Thus ∠(T (v1), T (v2)) = θ for 0 ≤ ∠(T (v1), T (v2)), θ ≤ π.

Problem 9.5.1 Determine linear conformal mappings on f nite or inf nite pseudo-Euclidean
spaces (Rn, µ).
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9.5.6 For a Euclidean spaces E, a homeomorphism f : E → E is called a differentiable
isometry or conformal differentiable mapping if there is an real number λ such that

〈d f (v1), d f (v2)〉 = 〈v1, v2〉 or 〈d f (v1), d f (v2)〉 = λ2 〈v1, v2〉

for ∀ v1, v2 ∈ E. Then it is clear that the integral of a linear isometry is a differen-
tiable. and that of a linear conformal mapping is a differentiable conformal mapping by
def nition. Thus the differentiable isometry or conformal differentiable mapping is a gen-
eralization of that linear isometry or linear conformal mapping, respectively. Whence, a
natural question arises on pseudo-Euclidean spaces following.

Problem 9.5.2 Determine all differentiable isometries and conformal differentiable map-
pings on a pseudo-Euclidean space (Rn, µ).



CHAPTER 10.

CC Conjecture

The main trend of modern sciences is overlap and hybrid, i.e., combining dif-
ferent f elds into one underlying a combinatorial structure. This implies the
importance of combinatorics to modern sciences. As a powerful tool for deal-
ing with relations among objectives, combinatorics mushroomed in the past
century, particularly in catering to the need of computer science and children
games. However, an even more important work for mathematician is to apply
it to other mathematics and other sciences besides just to f nd combinatorial
behavior for objectives. How can it contributes more to the entirely mathemat-
ical science, not just in various games, but in metric mathematics? What is a
right mathematical theory for the original face of our world? I have brought
a heartening conjecture for advancing mathematics in 2005, i.e., A mathemat-
ical science can be reconstructed from or made by combinatorialization after
a long time speculation on combinatorics, also a bringing about Smarandache
multi-space for mathematics. This conjecture is not just like an open prob-
lem, but more like a deeply thought for advancing the modern mathematics.
i.e., themathematical combinatorics resulting in the combinatorial conjecture
for mathematics. For example, maps and graphs embedded on surfaces con-
tribute more and more to other branch of mathematics and sciences discussed
in Chapters 1 − 8.
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§10.1 CC CONJECTURE ONMATHEMATICS

10.1.1 Combinatorial Speculation. Modern science has so advanced that to f nd a
universal genus in the society of sciences is nearly impossible. Thereby a scientist can
only give his or her contribution in one or several f elds. The same thing also happens for
researchers in combinatorics. Generally, combinatorics deals with twofold:

Question 1.1. to determine or f nd structures or properties of conf gurations, such as those
structure results appeared in graph theory, combinatorial maps and design theory,..., etc..

Question 1.2. to enumerate conf gurations, such as those appeared in the enumeration of
graphs, labeled graphs, rooted maps, unrooted maps and combinatorial designs,...,etc..

Consider the contribution of a question to science. We can separate mathematical
questions into three ranks:

Rank 1 they contribute to all sciences.

Rank 2 they contribute to all or several branches of mathematics.

Rank 3 they contribute only to one branch of mathematics, for instance, just to the graph
theory or combinatorial theory.

Classical combinatorics is just a rank 3 mathematics by this view. This conclusion
is despair for researchers in combinatorics, also for me 5 years ago. Whether can combi-
natorics be applied to other mathematics or other sciences? Whether can it contributes
to human’s lives, not just in games?

Although become a universal genus in science is nearly impossible, our world is a
combinatorial world. A combinatorician should stand on all mathematics and all sciences,
not just on classical combinatorics and with a real combinatorial notion, i.e., combine
different f elds into a unifying f eld, such as combine different or even anti-branches in
mathematics or science into a unifying science for its freedom of research. This notion
requires us answering three questions for solving a combinatorial problem before. What
is this problem working for? What is its objective? What is its contribution to science or
human’s society? After these works be well done, modern combinatorics can applied to
all sciences and all sciences are combinatorialization.

10.1.2 CC Conjecture. There is a prerequisite for the application of combinatorics
to other mathematics and other sciences, i.e, to introduce various metrics into combina-
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torics, ignored by the classical combinatorics since they are the fundamental of scientif c
realization for our world. For applying combinatorics to other branch of mathematics, a
good idea is to pullback measures on combinatorial objects again, ignored by the classical
combinatorics and reconstructed or make combinatorial generalization for the classical
mathematics, such as those of algebra, Euclidean geometry, differential geometry, Rie-
mann geometry, metric geometries, · · · and the mechanics, theoretical physics, · · ·. This
notion naturally induces the combinatorial conjecture for mathematics, abbreviated to CC
conjecture following.

Conjecture 10.1.1(CC Conjecture) The mathematical science can be reconstructed from
or made by combinatorialization.

Remark 10.1.1 We need some further clarif cations for this conjecture.

(1) This conjecture assumes that one can select f nite combinatorial rulers and ax-
ioms to reconstruct or make generalization for classical mathematics.

(2) The classical mathematics is a particular case in the combinatorialization of
mathematics, i.e., the later is a combinatorial generalization of the former.

(3) We can make one combinatorialization of different branches in mathematics and
f nd new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been combinato-
rialization and all mathematics can not be ended if its combinatorialization has not com-
pleted. There is an assumption in one’s realization of our world, i.e., science can be made
by mathematicalization, which enables us get a similar combinatorial conjecture for the
science.

Conjecture 10.1.2(CCS Conjecture) Science can be reconstructed from or made by com-
binatorialization.

A typical example for the combinatorialization of classical mathematics is the com-
binatorial surface theory, i.e., a combinatorial theory for surfaces discussed in Chapter 4.
Combinatorially, a surface S is topological equivalent to a polygon with even number of
edges by identifying each pairs of edges along a given direction on it. If label each pair of
edges by a letter e, e ∈ E, a surface S is also identifying to a cyclic permutation such that
each edge e, e ∈ E just appears two times in S , one is e and another is e−1. Let a, b, c, · · ·
denote the letters in E and A, B,C, · · · the sections of successive letters in a linear order on
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a surface S (or a string of letters on S ). Then, a surface can be represented as follows:

S = (· · · , A, a, B, a−1,C, · · ·),

where, a ∈ E, A, B,C denote a string of letters. Def ne three elementary transformations
as follows:

(O1) (A, a, a−1, B)⇔ (A, B);

(O2) (i) (A, a, b, B, b−1, a−1)⇔ (A, c, B, c−1);
(ii) (A, a, b, B, a, b)⇔ (A, c, B, c);

(O3) (i) (A, a, B,C, a−1,D)⇔ (B, a, A,D, a−1,C);
(ii) (A, a, B,C, a,D)⇔ (B, a, A,C−1, a,D−1).

If a surface S can be obtained from S 0 by these elementary transformations O1-O3,
we say that S is elementary equivalent with S 0, denoted by S ∼El S 0. Then we can get
the classif cation theorem of compact surface as follows:

Any compact surface S is homeomorphic to one of the following standard surfaces:
(P0) the sphere: aa−1;
(Pn) the connected sum of n, n ≥ 1 tori:

a1b1a−11 b
−1
1 a2b2a

−1
2 b
−1
2 · · · anbna−1n b−1n ;

(Qn) the connected sum of n, n ≥ 1 projective planes:

a1a1a2a2 · · · anan.

We have known what is a map in Chapter 5. By the view of combinatorial maps,
these standard surfaces P0, Pn,Qn for n ≥ 1 is nothing but the bouquet Bn on a locally
orientable surface with just one face. Therefore, the maps are nothing but the combinato-
rialization of surfaces.

10.1.3 CC Problems in Mathematics. Many open problems are motivated by the CC
conjecture. Here we present some of them.

Problem 10.1.1 Simple-Connected Riemann Surface. The uniformization theorem on
simple connected Riemann surfaces is one of those beautiful results in Riemann surfaces
stated as follows ([FaK1]).
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Theorem 10.1.1 If S is a simple connected Riemann surface, then S is conformally
equivalent to one and only one of the following three:

(1) C⋃∞;
(2) C;
(3) △ = {z ∈ C||z| < 1}.

We have proved in Chapter 5 that any automorphism of map is conformal. Therefore, we
can also introduced the conformal mapping between maps. Then, how can one def ne the
conformal equivalence for maps enabling us to get the uniformization theorem of maps?
What is the correspondence class maps with the three type (1)-(3) Riemann surfaces?

Problem 10.1.2 Riemann-Roch Theorem. Let S be a Riemann surface. A divisor on
S is a formal symbol

U =
k∏

i=1

Pα(Pi)i

with Pi ∈ S, α(Pi) ∈ Z. Denote by Div(S) the free commutative group on the points in S
and def ne

degU =
k∑

i=1

α(Pi).

Denote by H(S) the f eld of meromorphic function on S. Then for ∀ f ∈ H(S) \ {0}, f
determines a divisor ( f ) ∈ Div(S) by

( f ) =
∏

P∈S
PordP f ,

where, if we write f (z) = zng(z) with g holomorphic and non-zero at z = P, then the
ordP f = n. For U1 =

∏
P∈S

Pα1(P),U2 =
∏
P∈S

Pα2(P), ∈ Div(S), call U1 ≥ U2 if α1(P) ≥
α2(P). Now we def ne a vector space

L(U) = { f ∈ H(S)|( f ) ≥ U,U ∈ Div(S)}

Ω(U) = {ω|ω is an abelian di f f erential with (ω) ≥ U}.

Then the Riemann-Roch theorem says that([WLC1])

dim(L(U−1)) = degU − g(S) + 1 + dimΩ(S).

Comparing with the divisors and their vector space, there ia also cycle space and cocycle
space in graphical space theory ([Liu1]). Then what is their relation? whether can one
rebuilt the Riemann-Roch theorem by maps, i.e., f nd its discrete form?
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Problem 10.1.3 Combinatorial Construction of Algebraic Curve. A complex plane
algebraic curve Cl is a homogeneous equation f (x, y, z) = 0 in P2C = (C2 \ (0, 0, 0))/ ∼,
where f (x, y, z) is a polynomial in x, y and z with coefficients in C. The degree of f (x, y, z)
is def ned to be the degree of the curve Cl. For a Riemann surface S , a well-known result is
that ([WSY1]) there is a holomorphic mapping ϕ : S → P2C such that ϕ(S ) is a complex
plane algebraic curve and

g(S ) =
(d(ϕ(S )) − 1)(d(ϕ(S )) − 2)

2
.

By def nition, we have known that a combinatorial map is on surface with genus. Then
whether can one get an algebraic curve by all edges in a map or by make operations on
the vertices or edges of the map to get plane algebraic curve with given k-multiple points?
and then how do one f nd the equation f (x, y, z) = 0?

Problem 10.1.4 Classif cation of s-Manifolds by Map. We have classif ed the closed
s-manifolds by maps in the last chapter. For the general s-manifolds, their correspon-
dence combinatorial model is the map on surfaces with boundary, founded by Bryant and
Singerman in 1985. The later is also related to that of modular groups of spaces and need
to investigate further itself. Now the questions are

(1) How can one combinatorially classify the general s-manifolds by maps with
boundary?

(2) How can one f nd the automorphism group of an s-manifold?
(3) How can one know the numbers of non-isomorphic s-manifolds, with or without

roots?
(4) Find rulers for drawing an s-manifold on surface, such as, the torus, the projec-

tive plane or Klein bottle, not just the plane.

These s-manifolds only apply such triangulations of surfaces with vertex valency in
{5, 6, 7}. Then what is its geometrical meaning of other maps, such as, 4-regular maps on
surfaces. It is already known that the later is related to the Gauss cross problem of curves
([Liu1]).

Problem 10.1.5 Gauss Mapping. In the classical differential geometry, a Gauss map-
ping among surfaces is def ned as follows([Car1]):

Def nition 10.1.1 Let S ⊂ R3 be a surface with an orientation N. The mapping N : S →
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R3 takes its value in the unit sphere

S 2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientationN. The map N : S → S 2, thus def ned, is called the Gauss mapping.

We know that for a point P ∈ S such that the Gaussian curvature K(P) , 0 and V a
connected neighborhood of P with K does not change sign,

K(P) = lim
A→0

N(A)
A

,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by the Gauss
mapping N : S → S 2. Now the questions are

(1) What is its combinatorial meaning of the Gauss mapping? How to realizes it by
maps?

(2) how we can def ne various curvatures for maps and rebuilt the results in the
classical differential geometry?

Problem 10.1.6 Gauss-Bonnet Theorem. Let S be a compact orientable surface. Then
∫ ∫

S
Kdσ = 2πχ(S),

where K is Gaussian curvature on S. This is the famous Gauss-Bonnet theorem for com-
pact surface ([WLC1], [WSY1]). This theorem should has a combinatorial form. Now
the questions are

(1) How can one def ne various metrics for combinatorial maps, such as those of
length, distance, angle, area, curvature, · · ·?

(2) Can one rebuilt the Gauss-Bonnet theorem by maps for dimensional 2 or higher
dimensional compact manifolds without boundary?

§10.2 CC CONJECTURE TO MATHEMATICS

10.2.1 Contribution to Algebra. By the view of combinatorics, algebra can be seen
as a combinatorial mathematics itself. The combinatorial speculation can generalize it by
the means of combinatorialization. For this objective, a Smarandachely multi-algebraic
system is combinatorially def ned in the following def nition.
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Def nition 10.2.1 For any integers n, n ≥ 1 and i, 1 ≤ i ≤ n, let Ai be a set with an
operation set O(Ai) such that (Ai,O(Ai)) is a complete algebraic system. Then the union

n⋃

i=1

(Ai,O(Ai))

is called an n multi-algebra system.

An example of multi-algebra systems is constructed by a f nite additive group. Now
let n be an integer, Z1 = ({0, 1, 2, · · · , n − 1},+) an additive group (modn) and P =
(0, 1, 2, · · · , n − 1) a permutation. For any integer i, 0 ≤ i ≤ n − 1, def ne

Zi+1 = Pi(Z1)

satisfying that if k + l = m in Z1, then Pi(k) +i Pi(l) = Pi(m) in Zi+1, where +i denotes the
binary operation +i : (Pi(k), Pi(l))→ Pi(m). Then we know that

n⋃

i=1

Zi

is an n multi-algebra system .
The conception of multi-algebra systems can be extensively used for generalizing

conceptions and results for these existent algebraic structures, such as those of groups,
rings, bodies, f elds and vector spaces, · · ·, etc.. Some of them are explained in the fol-
lowing.

Def nition 10, 2.2 Let G̃ =
n⋃
i=1
Gi be a closed multi-algebra system with a binary operation

set O(G̃) = {×i, 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is a group and for
∀x, y, z ∈ G̃ and any two binary operations�×�and�◦�, × , ◦, there is one operation,
for example the operation × satisfying the distribution law to the operation�◦�provided
their operation results existing, i.e.,

x × (y ◦ z) = (x × y) ◦ (x × z),

(y ◦ z) × x = (y × x) ◦ (z × x),

then G̃ is called a multi-group.

For a multi-group (G̃,O(G)), G̃1 ⊂ G̃ and O(G̃1) ⊂ O(G̃), call (G̃1,O(G̃1)) a sub-
multi-group of (G̃,O(G)) if G̃1 is also a multi-group under the operations in O(G̃1), de-
noted by G̃1 � G̃. For two sets A and B, if A

⋂
B = ∅, we denote the union A⋃

B by
A

⊕
B. Then we get a generalization of the Lagrange theorem on f nite group following.
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Theorem 10.2.1 For any sub-multi-group H̃ of a f nite multi-group G̃, there is a repre-
sentation set T , T ⊂ G̃, such that

G̃ =
⊕

x∈T
xH̃.

For a sub-multi-group H̃ of G̃, × ∈ O(H̃) and ∀g ∈ G̃(×), if for ∀h ∈ H̃,

g × h × g−1 ∈ H̃,

then call H̃ a normal sub-multi-group of G̃. An order of operations in O(G̃) is said an
oriented operation sequence, denoted by −→O(G̃). We get a generalization of the Jordan-
Hölder theorem for f nite multi-groups following.

Theorem 10.2.2 For a f nite multi-group G̃ =
n⋃
i=1
Gi and an oriented operation sequence

−→O(G̃), the length of maximal series of normal sub-multi-groups is a constant, only depen-
dent on G̃ itself.

A complete proof of Theorems 10.2.1 and 10.2.2 can be found in the reference
[Mao6]. Notice that if we choose n = 2 in Def nition 10.2.2, G1 = G2 = G̃. Then G̃
is a body. If (G1;×1) and (G2;×2) both are commutative groups, then G̃ is a f eld. For
multi-algebra systems with two or more operations on one set, we introduce the concep-
tion of multi-rings and multi-vector spaces in the following.

Def nition 10.2.3 Let R̃ =
m⋃
i=1
Ri be a closed multi-algebra system with double binary

operation set O(R̃) = {(+i,×i), 1 ≤ i ≤ m}. If for any integers i, j, i , j, 1 ≤ i, j ≤ m,
(Ri;+i,×i) is a ring and for ∀x, y, z ∈ R̃,

(x +i y) + j z = x +i (y + j z), (x ×i y) × j z = x ×i (y × j z)

and
x ×i (y + j z) = x ×i y + j x ×i z, (y + j z) ×i x = y ×i x + j z ×i x

provided all their operation results exist, then R̃ is called a multi-ring. If for any integer
1 ≤ i ≤ m, (R;+i,×i) is a f led, then R̃ is called a multi-f led.

Def nition 10.2.4 Let Ṽ =
k⋃
i=1
Vi be a closed multi-algebra system with binary operation

set O(Ṽ) = {(+̇i, ·i) | 1 ≤ i ≤ m} and F̃ =
k⋃
i=1
Fi a multi-f led with double binary operation
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set O(F̃) = {(+i,×i) | 1 ≤ i ≤ k}. If for any integers i, j, 1 ≤ i, j ≤ k and ∀a, b, c ∈ Ṽ,
k1, k2 ∈ F̃,

(1) (Vi; +̇i, ·i) is a vector space on Fi with vector additive +̇i and scalar multiplication
·i;

(2) (a+̇ib)+̇ jc = a+̇i(b+̇ jc);

(3) (k1 +i k2) · j a = k1 +i (k2 · j a);

provided all those operation results exist, then Ṽ is called a multi-vector space on the
multi-f led F̃ with a binary operation set O(Ṽ), denoted by (Ṽ; F̃).

Similarly, we also obtained results for multi-rings and multi-vector spaces to gener-
alize classical results in rings or linear spaces.

10.2.2 Contribution to Metric Space. First, we generalize classical metric spaces by
the combinatorial speculation.

Def nition 10.2.5 A multi-metric space is a union M̃ =
m⋃
i=1
Mi such that each Mi is a space

with metric ρi for ∀i, 1 ≤ i ≤ m.

We generalized two well-known results in metric spaces.

Theorem 10.2.3 Let M̃ =
m⋃
i=1
Mi be a completed multi-metric space. For an ǫ-disk se-

quence {B(ǫn, xn)}, where ǫn > 0 for n = 1, 2, 3, · · ·, the following conditions hold:

(1) B(ǫ1, x1) ⊃ B(ǫ2, x2) ⊃ B(ǫ3, x3) ⊃ · · · ⊃ B(ǫn, xn) ⊃ · · ·;
(2) lim

n→+∞
ǫn = 0.

Then
+∞⋂
n=1
B(ǫn, xn) only has one point.

Theorem 10.2.4 Let M̃ =
m⋃
i=1
Mi be a completed multi-metric space and T a contraction

on M̃. Then

1 ≤# Φ(T ) ≤ m.

A complete proof of Theorems 10.2.3 and 10.2.4 can be found in the reference
[Mao7]. Particularly, let m = 1. We get the Banach f xed-point theorem again.

Corollary 10.2.1(Banach) Let M be a metric space and T a contraction on M. Then T
has just one f xed point.
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A Smarandache n-manifold is an n-dimensional manifold that supports a Smaran-
dache geometry. Now there are many approaches to construct Smarandache manifolds
for n = 2. A general way is by the so called map geometries without or with boundary
underlying orientable or non-orientable maps.

Def nition 10.2.6 For a combinatorial map M with each vertex valency≥ 3, endow with
a real number µ(u), 0 < µ(u) < 4π

ρM(u)
, to each vertex u, u ∈ V(M). Call (M, µ) a

map geometry without boundary, µ(u) an angle factor of the vertex u and orientablle or
non-orientable if M is orientable or not.

Def nition 10.2.7 For a map geometry (M, µ) without boundary and faces f1, f2, · · · , fl ∈
F(M), 1 ≤ l ≤ φ(M)−1, if S (M)\{ f1, f2, · · · , fl} is connected, then call (M, µ)−l = (S (M)\
{ f1, f2, · · · , fl}, µ) a map geometry with boundary f1, f2, · · · , fl, where S (M) denotes the
locally orientable surface underlying map M.

The realization for vertices u, v,w ∈ V(M) in a space R3 is shown in Fig.3.2, where
ρM(u)µ(u) < 2π for the vertex u, ρM(v)µ(v) = 2π for the vertex v and ρM(w)µ(w) > 2π for
the vertex w, are called to be elliptic, Euclidean or hyperbolic, respectively.

u

u

u

ρM(u)µ(u) < 2π ρM(u)µ(u) = 2π ρM(u)µ(u) > 2π

Fig.10.2.1

Theorem 10.2.5 There are Smarandache geometries, including paradoxist geometries,
non-geometries and anti-geometries in map geometries without or with boundary.

A proof of this result can be found in [Mao4]. Furthermore, we generalize the ideas
in Def nitions 10.2.6 and 10.2.7 to metric spaces and f nd new geometries.

Def nition 10.2.8 Let U andW be two metric spaces with metric ρ, W ⊆ U. For ∀u ∈ U, if
there is a continuous mappingω : u→ ω(u), where ω(u) ∈ Rn for an integer n, n ≥ 1 such
that for any number ǫ > 0, there exists a number δ > 0 and a point v ∈ W, ρ(u − v) < δ
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such that ρ(ω(u) − ω(v)) < ǫ, then U is called a metric pseudo-space if U = W or a
bounded metric pseudo-space if there is a number N > 0 such that ∀w ∈ W, ρ(w) ≤ N,
denoted by (U, ω) or (U−, ω), respectively.

For the case n = 1, we can also explainω(u) being an angle function with 0 < ω(u) ≤
4π as in the case of map geometries without or with boundary, i.e.,

ω(u) =


ω(u)(mod4π), if u ∈W,

2π, if u ∈ U \W (∗)

and get some interesting metric pseudo-space geometries. For example, let U = W =
Euclid plane =

∑
, then we obtained some interesting results for pseudo-plane geometries

(
∑
, ω) as shown in results following ([Mao4]).

Theorem 10.2.6 In a pseudo-plane (
∑
, ω), if there are no Euclidean points, then all

points of (
∑
, ω) is either elliptic or hyperbolic.

Theorem 10.2.7 There are no saddle points and stable knots in a pseudo-plane plane
(
∑
, ω).

Theorem 10.2.8 For two constants ρ0, θ0, ρ0 > 0 and θ0 , 0, there is a pseudo-plane
(
∑
, ω) with

ω(ρ, θ) = 2(π − ρ0

θ0ρ
) or ω(ρ, θ) = 2(π +

ρ0

θ0ρ
)

such that
ρ = ρ0

is a limiting ring in (
∑
, ω).

Now for an m-manifold Mm and ∀u ∈ Mm, choose U = W = Mm in Def nition 10.2.8
for n = 1 and ω(u) a smooth function. We get a pseudo-manifold geometry (Mm, ω) on
Mm. By def nitions , aMinkowski norm on Mm is a function F : Mm → [0,+∞) such that

(1) F is smooth on Mm \ {0};
(2) F is 1-homogeneous, i.e., F(λu) = λF(u) for u ∈ Mm and λ > 0;
(3) for ∀y ∈ Mm \ {0}, the symmetric bilinear form gy : Mm × Mm → R with

gy(u, v) =
1
2
∂2F2(y + su + tv)

∂s∂t
|t=s=0

is positive def nite and a Finsler manifold is a manifold Mm endowed with a function
F : TMm → [0,+∞) such that
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(1) F is smooth on TMm \ {0} = ⋃{TxMm \ {0} : x ∈ Mm};
(2) F |TxMm → [0,+∞) is a Minkowski norm for ∀x ∈ Mm.

As a special case, we choose ω(x) = F(x) for x ∈ Mm, then (Mm, ω) is a Finsler
manifold. Particularly, if ω(x) = gx(y, y) = F2(x, y), then (Mm, ω) is a Riemann mani-
fold. Therefore, we get a relation for Smarandache geometries with Finsler or Riemann
geometry.

Theorem 10.2.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler and
Riemann geometries as shown in the following:

{Smarandache geometries} ⊃ {pseudo − mani f old geometries}

⊃ {Finsler geometry}

⊃ {Riemann geometry}.

§10.3 CC CONJECTURE TO PHYSICS

The progress of theoretical physics in last twenty years of the 20th century enables human
beings to probe the mystic cosmos: where are we came from? where are we going to?.
Today, these problems still confuse eyes of human beings. Accompanying with research
in cosmos, new puzzling problems also arose: Whether are there f nite or inf nite cos-
moses? Are there just one? What is the dimension of the Universe? We do not even know
what the right degree of freedom in the Universe is, as Witten said.

We are used to the idea that our living space has three dimensions: length, breadth
and height, with time providing the fourth dimension of spacetime by Einstein. Applying
his principle of general relativity, i.e. all the laws of physics take the same form in any
reference system and equivalence principle, i.e., there are no difference for physical effects
of the inertial force and the gravitation in a f eld small enough., Einstein got the equation
of gravitational f eld

Rµν −
1
2
Rgµν + λgµν = −8πGTµν.

where Rµν = Rνµ = Rαµiν,

Rαµiν =
∂Γi

µi

∂xν
−
∂Γiµν

∂xi
+ ΓαµiΓ

i
αν − ΓαµνΓiαi,



360 Chap.10 CC Conjecture

Γgmn =
1
2
gpq(

∂gmp
∂un
+
∂gnp
∂um
− ∂gmn
∂up

)

and R = gνµRνµ. Combining the Einstein’s equation of gravitational f eld with the cosmo-
logical principle, i.e., there are no difference at different points and different orientations
at a point of a cosmos on the metric 104l.y. , Friedmann got a standard model of cosmos.
The metrics of the standard cosmos are

ds2 = −c2dt2 + a2(t)[ dr2

1 − Kr2 + r
2(dθ2 + sin2 θdϕ2)]

and
gtt = 1, grr = −

R2(t)
1 − Kr2 , gφφ = −r

2R2(t) sin2 θ.

The standard model of cosmos enables the birth of big bang model of the Universe
in thirties of the 20th century. The following diagram describes the developing process of
our cosmos in different periods after the big bang.

Fig.4.1

10.3.1 M-Theory. The M-theory was established by Witten in 1995 for the unity of
those f ve already known string theories and superstring theories, which postulates that
all matter and energy can be reduced to branes of energy vibrating in an 11 dimensional
space, then in a higher dimensional space solve the Einstein’s equation of gravitational
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f eld under some physical conditions. Here, a brane is an object or subspace which can
have various spatial dimensions. For any integer p ≥ 0, a p-brane has length in p di-
mensions. For example, a 0-brane is just a point or particle; a 1-brane is a string and a
2-brane is a surface or membrane, · · ·.

We mainly discuss line elements in differential forms in Riemann geometry. By a
geometrical view, these p-branes in M-theory can be seen as volume elements in spaces.
Whence, we can construct a graph model for p-branes in a space and combinatorially
research graphs in spaces.

Def nition 10.3.1 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B)) be its
unit vibrating normal vector along these p directions and q : Rm → R4 a continuous
mapping. Now construct a graph phase (G, ω,Λ) by

V(G) = {p − branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action between B1 and B2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and

Λ(q(B1), q(B2)) = f orces between B1 and B2.

Then we get a graph phase (G, ω,Λ) in R4. Similarly, if m = 11, it is a graph phase for
the M-theory.

As an example for applying M-theory to f nd an accelerating expansion cosmos of
4-dimensional cosmoses from supergravity compactif cation on hyperbolic spaces is the
Townsend-Wohlfarth type metric in which the line element is

ds2 = e−mφ(t)(−S 6dt2 + S 2dx23) + r
2
Ce

2φ(t)ds2Hm,

where

φ(t) =
1

m − 1(lnK(t) − 3λ0t),

S 2 = K
m
m−1 e−

m+2
m−1λ0t

and

K(t) =
λ0ζrc

(m − 1) sin[λ0ζ |t + t1|]
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with ζ =
√
3 + 6/m. This solution is obtainable from space-like brane solution and if

the proper time ς is def ned by dς = S 3(t)dt, then the conditions for expansion and
acceleration are dS

dς > 0 and d2S
dς2 > 0. For example, the expansion factor is 3.04 if m = 7,

i.e., a really expanding cosmos.
According to M-theory, the evolution picture of our cosmos started as a perfect 11

dimensional space. However, this 11 dimensional space was unstable. The original 11
dimensional space f nally cracked into two pieces, a 4 and a 7 dimensional subspaces. The
cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing the remaining 4
dimensions to inf ate at enormous rates, the Universe at the f nal.

10.3.2 Combinatorial Cosmos. The combinatorial notion made the following combi-
natorial cosmos in the reference.

Def nition 10.3.2 A combinatorial cosmos is constructed by a triple (Ω,∆, T ), where

Ω =
⋃

i≥0
Ωi, ∆ =

⋃

i≥0
Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set with
the following conditions hold.

(1) (Ω,∆) is a Smarandache multi-space dependent on T , i.e., the cosmos (Ωi,Oi) is
dependent on time parameter ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S ) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the cosmos (Ωi,Oi) and for two sub-cosmoses (Ωi j,Oi) and (Ωil,Oi), if Ωi j ⊃ Ωil, then
there is a homomorphism ρΩi j,Ωil : (Ωi j,Oi)→ (Ωil,Oi) such that

(i) for ∀(Ωi1,Oi), (Ωi2,Oi), (Ωi3,Oi) ∈ (S ), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3 = ρΩi1,Ωi2 ◦ ρΩi2,Ωi3 ,

where�◦�denotes the composition operation on homomorphisms.
(ii) for ∀g, h ∈ Ωi, if for any integer i, ρΩ,Ωi(g) = ρΩ,Ωi(h), then g = h.
(iii) for ∀i, if there is an fi ∈ Ωi with

ρΩi,Ωi
⋂
Ω j( fi) = ρΩ j,Ωi ⋂Ω j( f j)
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for integers i, j,Ωi
⋂
Ω j , ∅, then there exists an f ∈ Ω such that ρΩ,Ωi( f ) = fi for any

integer i.

By this def nition, there is just one cosmos Ω and the sub-cosmos sequence is

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−7 ⊃ · · · ⊃ R−1 ⊃ R−0 = {Q}.

in the string/M-theory. In Fig.10.3.2, we have shown the idea of the combinatorial cos-
mos.

Fig.10.3.2

For spaces of dimensional 5 or 6, it has been established a dynamical theory by
combinatorial notion (see [Pap1]-[Pap2] for details). In this dynamics, we look for a
solution in the Einstein’s equation of gravitational f eld in 6-dimensional spacetime with
a metric of the form

ds2 = −n2(t, y, z)dt2 + a2(t, y, z)d
2∑

k

+b2(t, y, z)dy2 + d2(t, y, z)dz2

where d
∑2
k represents the 3-dimensional spatial sections metric with k = −1, 0, 1 respec-

tive corresponding to the hyperbolic, f at and elliptic spaces. For 5-dimensional space-
time, deletes the indef nite z in this metric form. Now consider a 4-brane moving in a
6-dimensional Schwarzschild-ADS spacetime, the metric can be written as

ds2 = −h(z)dt2 + z
2

l2
d

2∑

k

+h−1(z)dz2,

where

d
2∑

k

=
dr2

1 − kr2 + r
2dΩ2

(2) + (1 − kr2)dy2
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and
h(z) = k +

z2

l2
− M
z3
.

Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is

2
R̈
R
+ 3(

Ṙ
R
)2 = −3

κ4(6)

64
ρ2 −

κ4(6)

8
ρp − 3 κ

R2
− 5
l2

by applying the Darmois-Israel conditions for a moving brane. Similarly, for the case of
a(z) , b(z), the equations of motion of the brane are

d2ḋṘ − dR̈
√
1 + d2Ṙ2

−
√
1 + d2Ṙ2
n

(dṅṘ +
∂zn
d
− (d∂zn − n∂zd)Ṙ2) = −

κ4(6)

8
(3(p + ρ) + p̂),

∂za
ad

√
1 + d2Ṙ2 = −

κ4(6)

8
(ρ + p − p̂),

∂zb
bd

√
1 + d2Ṙ2 = −

κ4(6)

8
(ρ − 3(p − p̂)),

where the energy-momentum tensor on the brane is

T̂µν = hναTαµ −
1
4
Thµν

with Tαµ = diag(−ρ, p, p, p, p̂) and the Darmois-Israel conditions

[Kµν] = −κ2(6)T̂µν,

where Kµν is the extrinsic curvature tensor.
The combinatorial cosmos also presents new questions to combinatorics, such as:

(1) Embed a graph into spaces with dimensional≥ 4;
(2) Research the phase space of a graph embedded in a space;
(3) Establish graph dynamics in a space with dimensional≥ 4, · · ·, etc..

For example, we have gotten the following result for graphs in spaces.

Theorem 10.3.1 A graph G has a nontrivial including multi-embedding on spheres P1 ⊃
P2 ⊃ · · · ⊃ Ps if and only if there is a block decomposition G =

s⊎
i=1
Gi of G such that for

any integer i, 1 < i < s,

(1) Gi is planar;

(2) for ∀v ∈ V(Gi), NG(x) ⊆ (
i+1⋃
j=i−1

V(G j)).

A complete proof of Theorem 10.3.1 can be found in [Mao4]. Further consideration
of combinatorial cosmos will enlarge the knowledge of combinatorics and cosmology,
also get the combinatorialization for cosmological science.
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semi-arc set 103
semi-arc transitive 105
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semidirect product 25

semi-regular group 46
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semi-regular map 256
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Smarandache plane 321
Smarandachely automorphism 317
Smarandachely chromatic number 89
Smarandachely coloring 89
Smarandachely decomposition 89
Smarandachely denied 307
Smarandachely embeddable graph 89
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union set 2
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