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Preface to the Second Edition

Automorphism groups survey similarities on mathematical systems, which appear nearly
in all mathematical branches, such as those of algebra, combinatorics, geometry, - - - and
theoretical physics, theoretical chemistry, etc.. In geometry, conf gurations with high
symmetry born symmetrical patterns, a kind of beautiful pictures in aesthetics. Naturally,
automorphism groups enable one to distinguish systems by similarity. More automor-
phisms imply more symmetries of that system. This fact has established the fundamental
role of automorphism groups in modern sciences. So it is important for graduate students
knowing automorphism groups with applications.

The frst edition of this book is in fact consisting of my post-doctoral reports in Chi-
nese Academy of Sciences in 2005, not self-contained and not suitable as a textbook for
graduate students. Many friends of mine suggested me to extend it to a textbook for
graduate students in past years. That is the initial motivation of this edition. Besides, I
also wish to survey applications of Smarandache’s notion with combinatorics, i.e., math-
ematical combinatorics to automorphism groups of maps, surfaces and Smarandache ge-
ometries in this edition. The two objectives advance me to complete this self-contained
book.

Indeed, there are many ways for introducing automorphism groups. I plan them for
graduate students both in combinatorics and geometry. The materials in this book include
groups with actions, graphs with symmetries, graphs on surfaces with enumeration, reg-
ular maps, isometries on f nitely or inf nitely pseudo-Euclidean spaces and an interesting
notion for developing mathematical sciences in 21th century, i.e. the CC conjecture.

Contents in in this book are outlined following.

Chapters 1 and 2 are an introduction to groups. Topics such as those of groups and
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subgroups, regular representations, homomorphism theorems, structures of f nite Abelian
groups, transitive groups, automorphisms of groups, characteristic subgroups, p-groups,
primitive groups, regular normal subgroups are discussed and a few useful results, for ex-
amples, these Burnside lemma, Sylow theorem and O’Nan-Scott theorem are established.
Furthermore, an elementary introduction to multigroups and permutation multigroups, in-
cluding locally or globally transitive groups, locally or globally regular groups can be also

found in Chapters 1 and 2.

For getting automorphism groups of graphs, these symmetric graphs, including vertex-
transitive graphs, edge-transitive graphs, arc-transitive graphs and semi-arc transitive graphs
are introduced in Chapter 3. Indeed, the automorphism group of a normally Cayley graph
or GRR of a fnite group can be completely determined. For classifying maps on sur-
faces underlying a graph G, one needs to consider the action of semi-arc automorphism
group Aut; G on its semi-arc set X' 1G. Such groups are not very different from that of
automorphism group of G. In fact, Aut 1 G = AutG if G is loop-free. This chapter also
discuses multigroup action graphs, which make a few results on globally transitive groups

in Chapter 2 simple.

As a preparing for combinatorial maps with applications to Klein surfaces, Chapter
4 is mainly on surfaces, including both topological surfaces and Klein surfaces. Indeed,
Sections 4.1-4.3 can be used to an introduction on topological surfaces and Sections 4.4-
4.5 on Klein surfaces. These fundamental techniques or results on surfaces, such as those
of classifying theorem of surfaces by elementary operations, Seifert-Van Kampen theo-
rem, fundamental groups of surfaces, NEC groups and automorphism groups of Klein

surfaces are well discussed in this chapter.

Chapters 5-7 are an introduction on algebraic maps, i.e., graphs on surfaces, partic-
ularly, automorphisms of maps. The rotation embedding scheme on graphs and its con-
tribution to algebraic maps can be found in Sections 5.1-5.2. Then map groups, regular
maps and the technique for constructing regular maps by triangle groups are interpreted
in Sections 5.3-5.5.

Chapter 6 concentrates on lifting automorphisms of maps by that of voltage assign-
ment technique. A condition for a group being that of a lifted map and a combinatorial
ref nement of the Hurwitz theorem on Riemann surfaces are gotten in Sections 6.1-6.4.
After that, Section 6.5 concerns the order of an automorphism of Klein surfaces by that

of map, which is an interesting problem in Klein surfaces.
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The objective of Chapter 7 is to fnd presentations of automorphisms of maps un-
derlying a graph. A general condition for a graph group being that of map is established
in the frst section. Then all these presentations for automorphisms of maps underlying a
complete graph, a semi-regular graph or a bouquet are found, which are useful for enu-

merating maps underlying such a graph.

Applying results in Chapter 7 enables one to classify maps, i.e., enumerating rooted
maps or maps underlying a graph in Chapter 8. These enumerating results on rooted
maps underlying a graph are presented in Sections 8.1-8.2 by group action. It is worth
to celebrate that a sum-free formula for rooted maps underlying a graph is found by the
action semi-arc automorphism group of graph. Then a general scheme for enumerating
maps underlying a graph is established in Section 8.3. By applying this scheme and those
presentations of automorphisms of maps in Chapter 7, these complete maps, semi-regular

maps and one-vertex maps are enumerated in Sections 8.4-8.6, respectively.

Chapter 9 turns on a special kind of automorphisms, i.e., isometries on Smarandache
geometry, a mixed geometry with an axiom validated or invalided, or only invalided but in
at least two distinct ways. A formally def nition with examples for such geometry can be
found in Sections 9.1-9.2. Then all isometries on fnitely or inf nitely pseudo-Euclidean
spaces (R”, i) are determined in Sections 9.3-9.4. It should be noted that for the fnite
case, all such isometries can be combinatorially characterized by graphs embedded in the

Euclidean space R”.

The fnal chapter concentrates on an important notion for developing mathematical
sciences in 21th century, i.e., the CC conjecture appeared in Chapter 5 of the frst edition
in 2005. That is the originality of mathematical combinatorics. Its contributions to math-
ematics and physics are introduced, and research problems are presented in this chapter.
These interested readers are referred to [Mao25] for its further applications to geometry

or Riemann geometry.

This edition was began to prepare in 2009. Many colleagues and friends of mine
have given me enthusiastic support and endless helps in writing. Here I must mention
some of them. On the frst, I would like to give my sincerely thanks to Dr.Perze for his
encourage and endless help. Without his encourage, I would do some else works, can not
investigate mathematical combinatorics for years and f nish this edition. Second, I would
like to thank Professors Feng Tian, Yanpei Liu, Mingyao Xu, Jiyi Yan, Fuji Zhang and

Wenpeng Zhang for them interested in my research works. Their encouraging and warm-
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hearted supports advance this book. Thanks are also given to Professors Han Ren, Yanqiu
Huang, Junliang Cai, Rongxia Hao, Wenguang Zai, Goudong Liu, Weili He and Erling
Wei for their kindly helps and often discussing problems in mathematics altogether. Par-
tially research results of mine were reported at Chinese Academy of Mathematics & Sys-
tem Sciences, Beijing Jiaotong University, Beijing Normal university, East-China Normal
University and Hunan Normal University in past years. Some of them were also reported
at The 2nd and 3rd Conference on Graph Theory and Combinatorics of China in 2006
and 2008. My sincerely thanks are also give to these audiences discussing mathematical
topics with me in these periods.

Of course, I am responsible for the correctness all of these materials presented here.
Any suggestions for improving this book or solutions for open problems in this book are

welcome.

L.F.Mao

June 24, 2011
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There are many wonderful things in nature, but the most wonderful
of all is man.

Sophocles, an ancient Greek dramatist



CHAPTER 1.

Groups

A group is surely the laws of combinations on its symbols, an important con-
ception of mathematics. One classif es groups into two categories, i.e., the ab-
stract groups and permutation groups. Its application f elds includes physics,
chemistry, biology, crystallography,..., etc.. Now it has become a fundamental
of all branches of mathematical sciences. For introducing readers to abstract
groups, these algebraic systems, groups with subgroups, regular representa-
tion, homomorphism theorems, Abelian groups with structures, multigroups
and submultigroups with elementary properties are discussed in this chapter,
where multigroups are generalized algebraic systems of groups by Smaran-

dache multi-space, i.e., a union of groups, different two by two.
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§1.1 SETS

1.1.1 Set. A set G is a category consisting of parts, i.e., a collection of objects possessing

with a property &?. Usually, a set G is denoted by
S = { x| x possesses the property & }.

If an element x possesses the property /2, we say that x is an element of the set S, denoted
by x € G. On the other hand, if an element y does not possesses the property &, then it
is not an element of G, denoted by y ¢ S.

For examples,

P = {cities with more than 2 million peoples in China},
E={x0<x<1,0<y<1}

are 3 sets by def nition, and the number n > 1, city with more than 2 million peoples in
China and point (x, y) with 0 < x,y < 1 are elements of sets Z*, P and E, respectively.

Let S, T be two sets. These binary operations union S U T and intersection S N T of
sets S and 7 are def ned by

SUT:{xlxeSorxeT}, SﬂT:{xlxeSandxeT}.

These operations U and N have the following laws.
Theorem 1.1.1 Let X, T and R be sets. Then
() XUX=X and XNX=X;
(i) XUT =TUX and XO\T =T X;
(@) XUTUR) =X UT)UR and X(NTNR)=XNT)NR;
() XU NR) =X UT)NXUR),
XATUR) =XNT)UXNR).

Proof These laws (i)-(iii) can be verif ed immediately by def nition. For the law (iv),
letx e XU(TNR) = XUT)NX UR). Thenx € Xorx € T(R,ie,x € T and
x € R. Now if x € X, we know that x € XU T and x € X U R. Whence, we get that



Sec.1.1 Sets 3

x € XU NXUR). Otherwise, x € TR, 1.e., x € T and x € R. We also get that
xe XUT)NXUR).

Conversely, for Vx € (XU T)NXUR), we know that x € X|(J T and x € X{JR,
ie,x € Xorxe Tandx € R. If x € X, we getthat x € X J(TNR). If x € T and
x € R, we also get that x € X | J(T (" R). Therefore, X J(T R) =X UT) X UR) by
def nition.

Similarly, we can also get the law X N7 = X U T. U

Let G, and G, be two sets. If for Vx € G, there must be x € G,, then we say that
G, is a subset of G,, denoted by G; C G,. A subset G, of &, is proper, denoted by
S, C G, if there exists an element y € G, with y ¢ &, hold. It should be noted that the
void (empty) set () is a subset of all sets by defnition. All subsets of a set & naturally
form a set Z(O), called the power set of G.

Now let & be a set and X € Z(S). We def ne the complement X of X ¢ & to be

X={y|lyeGhbuty¢X)

Then we know the following result.
Theorem 1.1.2 Let G be aset, S, T C &. Then

() XNX=0and XUX = &;

(i) X = X;

(i) XUT =XNTandXNT=XUT.

Proof The laws (i) and (i7) can be immediately verif ed by defnition. For (iii), let
x€XUT. Thenxe Sbutx¢ XUT,ie,x¢ Xandx ¢ 7. Whence, x € Xand x € T.
Therefore, x € X N T. Now for Vx € XN T, there mustbe x € Xand x € T, i.e,x € &
but x ¢ X and x ¢ T. Hence, x ¢ X U T. This fact implies that x € X U T. By def nition,

we fnd that YUT = X N T. Similarly, we can also get the law XN T = X U 7. This
completes the proof. U

1.1.2 Cardinality. A mapping f from a set S to T is a subset of S X T such that for
Vx e S, |f(n({x} x T)| = 1, 1.e., f N ({x} X T) only has one element. Usually, we denote
a mapping f from S to 7 by f : § — T and f(x) the second component of the unique
element of /' N ({x} x T), called the image of x under f.
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A mapping f : S — T is called injection if for Vy € T, [f N (S X {y})| < 1 and
surjection if | f N (S x{y})| = 1. If it is both injection and surjection, i.e., |[f N (S X {y})| = 1,

then it is called a bijection or a 1 — 1 mapping.

Def nition 1.1.1 Let S, T be two sets. If there is a bijection f : S — T, then the
cardinality of S is equal to that of T. Particularly, if T = {1,2,---,n}, the cardinal
number, usually called the order of S is def ned to be n, denoted by |S| = n.

Def nition 1.1.2 A4 set S is fnite if and only if ¢(S) < co. Otherwise, S is inf nite.
Def nition 1.1.3 A set S is countable if there is a bijection f : S — Z*.

By this defnition, one can enumerate all elements of S by an infnite sequence
S1,82,°*, 8, . These Z*, P and E in Subsection 1.1.1 are countable, fnite and inf -

nite set, respectively. Generally, we have the following result.

Theorem 1.1.3 A4 set S is inf nite if and only if it contains a countable subset.

Proof 1f S contains a countable subset, by Def nition 1.1.3 it is inf nite. Now if S is
inf nite, choose 51 € S, 5, € S \ {s1}, 53 € S\ {s1,5}, ... s, € S\ {51,852, , S-1},.... By
assumption, S is inf'nite, so for any integer n > 1, the set § \ {sy, 2, -, 5,1} can never
be empty. Therefore, we can always choose an element s, from it and this process will

never stop until we get an inf nite sequence sy, 2, - -, S, - - -, @ countable subset of §. [

Theorem 1.1.4 The set R of all real numbers is not countable.

Proof Assume there is an enumeration ry, 75, - - -, 7, - - - of all real numbers. Then list
the decimal expansion of these numbers after the decimal point in their enumerated order

in a square array:

ry =---anappdizdig o
Fy = .dp1dnpdazdag - -
r3 =0 .d31032033034 7 -
Fqg = -0 .041042043044 ° * *

where a,,, is the nth digit after the decimal point of »,. Then we construct a new real
number ¢ between 0 and 1 as follows:
Let the bth digit b, in the decimal expansion of b be a,, — 1 if a,, # 0 and 1 if

A, = 0. Then b = .b1byb3by - - - 1s the decimal expansion of b, which is a real number by
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def nition but differs from the nth number 7, of the enumeration in the nth decimal place
for any integer n > 1. Whence, b is not in the sequence r,7,, - - -, 7, - - -. This contradicts

our assumption. 0
1.1.3 Subset Enumeration. Let G be a countable set, i.e.,

S = {51,508}
We adopt the following convention for subsets.

Convention 1.1.1 For a subset S = {s;,,s;,, -+, s;} of 6, [ > 1, assign it to a monomial

SiSiy 0 Sip-
Applying this convention, we can f nd the generator of subsets of a set G.

Theorem 1.1.5 Under Convention 1.1.1, the generator of elements in the power set 7 (S)

is

G(P(&)) = Z ]_[ 5©

€=0or 1 ses

Proof Let T = {s;, S5, -+, s}, [ = 1 be an element in Z(S). Then it is the term
$i,Si, -+ 5110 G(Z(G)). Conversely, let s;,s;, - - - ¢, kK = 1 be a term in G(Z(G)). Then it
is the subset {s;,, s;,, - - -, sx} by Convention 1.1.1. O

For a fnite set G, we can get a closed formula for counting its subsets following.

Theorem 1.1.6 Let G be a fnite set. Then the number of its subsets is
| 2(6) = 2°.

S
Proof Notice that for any integer i, 1 < i < |&|, there are [ | _ | ) subsets of cardinal-
i

ity 7 in &. Therefore, we fnd that

[S]
S :Z[ |<;3| J:2|6|_ -

i=1
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§1.2 GROUPS

1.2.1 Algebra System. Let .o be a nonempty set. A binary operation on <7 is a bijection
0: 9 Xo/ — <. Thus o associates each ordered pair (a, b) of elements of .o/ with an
element o(a, b) that of .«7. For simplicity, we write a o b for o(a, b) and refer to o as a
binary operation on 7. A set .o/ associated with a binary operation o is called to be an
algebraic system, denoted by (7; o).

If & is fnite, let &7 = {x,x,,---,X,}, we can present an algebraic system (.7; o)

easily by operation table following.

o xl x2 PR xn

X1 X1 00Xy Xp0xy - X1 0 Xy

X2 X2 0 Xy X20Xy - X2 O Xy

Xn Xn © X1 Xp © X2 Xn O Xy
Table 1.2.1

For example, let K = {1, @, B, y} with an operation o determined by the following
table.

o 1 B v
1|1 a B v
a| a I v pB
BB v 1 «a
yly B a« 1
Table 1.2.2

Then we easily get that
lol=aoa=BoB=yoy=1,
loa=aol=a,lof=Fol=F1loy=yo0l=y,
aoB=Boa=y.aoy=yoa=pRoy=yof=a

by Table 1.2.2. Notice that xo (yoz) = (xoy)ozand xoy = yo x for Vx,y,z € K in Table

1.2.2. These properties enables us to introduce the associative and commutative laws for

operation following.
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Def nition 1.2.1 An algebraic system (<7; o) is associative if for Va, b, c € 7,
(aob)oc=ao(boc).

An associative system (/'; o) is usually called a semigroup. A system (7; o) is Abelian if
forVa,b e o,

aob=boa.
There are many non-Abelian systems. For example, let M, (R) be all n X n matrixes
with matrix multiplication o. We have known that the equality

AoB=BoA

does not always hold for V4, B € M,(R) from linear algebra. Whence, (M, (R), o) is a non-
Abelian system. Notice that each element associated with the element 1,,,,, is unchanging
in M,(R). Such an element is called to be a unit def ned following, which also enables us

to introduce the inverse element of an element in (.27, o).

Def nition 1.2.2 Let (<7 o) be an algebraic system. An element 1! € o7 (or 1" € o, or
1 € &) is called to be a left unit (or right unit, or unit) if for Va € <f

l'oca=a (or aol"=a, or loa=aol =a).

Def nition 1.2.3 Let (7; o) be an algebraic system with a unit 1,.,. An element b € < is
called to be a right inverse of a € of ifaob = 1,.

Certainly, there are algebra systems without unit. For example, let H = {a, b, ¢, d}

with an operation - determined by the following table.

b ¢ d

a c a d

bl c d b a

cla b d c

d a ¢ b
Table 1.2.3

Then (H, -) is an algebraic system without unit.
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1.2.2 Group. A group is an algebraic associative system with unit and inverse elements,

formally def ned in the following.

Def nition 1.2.4 An algebraic system (¢;0) is a group if conditions (1)-(3) following
hold:

(I)(xoy)oz=xo0(yoz),Vx,y,z€Y;

2)3dly € G suchthat lyox=xo0ly =x, x€Y;

B)Vxe¥, Aye Y suchthatxoy =yox = lg.

A group (¥; o) is Abelian if it is itself Abelian, i.e., an additional condition (4) fol-
lowing holds:

4)V¥x,ye G, xoy=yox, Yx,ye¥.

For example, the system (K; o) determined by Table 1.2.2 is such an Abelian group,

usually called Klein 4-group. More examples of groups are shown following.

Example 1.2.1(Groups of Numbers) Let Z,Q, R and C denote respectively sets of all
integers, rational numbers, real numbers and complex numbers and +, - the ordinary

addition, multiplication. Then we know

(1) (Z;+), (Q; +), (R; +) and (C; +) are four Abelian inf nite groups with identity 0
and inverse —x for Vx € Z, Q,R or C;

(2) (Z\ {0}; ), (Q\ {0}; ), (R \ {0}; -) and (C \ {0}; -) are four Abelian inf nite groups
with identity 1 and inverse 1/x for Vx € Z, Q, R or C.

(3) Let n be an integer. Def ne an equivalent relation ~ on Z following:
a ~ b © a = b(modn).

Denoted by i the equivalent class including i. We get n equivalent classes 0, 1,---, n — 1.
Let Z, = {0,1,---,n—1}. Then (Z,; +) is an Abelian n-group with identity 0, inverse
—x forx € Z, and (Z, \ {0}; -) an Abelian (n — 1)-group with identity 1, inverse 1/x for
X € Z, \ {0}, where 1/x denotes the equivalent class including such 1/x with x - (1/x) =
1(modn).

Example 1.2.2(Groups of Matrixes) Let GL(n, R) be the set of all invertible nxn matrixes

with coefficients in R and +, - the ordinary matrix addition and multiplication. Then

(1) (GL(n,R); +) is an Abelian inf nite group with identity 0,,,, the n X n zero matrix
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and inverse —A4 for A € GL(n, R), where —4 is the matrix replacing each entry a by —a in

matrix 4.
(2) (GL(n, R); ) is a non-Abelian inf nite group if n > 2 with identity 1,,, the n X n
unit matrix and inverse A~! for 4 € GL(n,R), where 4 - A" = 1,,,,. For its non-Abelian,

let n = 2 for simplicity and

Calculations show that

I ek

Whence, 4-B # B - A.

Example 1.2.3(Groups of Linear Transformation) Let /' be an n-dimensional vector
space over R and GL(V,R) the set of all bijection linear transformation of /. We have
known that each bijection linear transformation of V is associated with a non-singular
n X n matrix and the composition o of two such transformations is correspondent with that
of matrixes if a f xed basis of V' is chosen. Therefore, (GL(V,R); o) is a group by Example
1.2.2.

Example 1.2.4(Isometries of £?) Let £? be a Euclidean plane. There are three basic
isometries in E?, i.e., rotations about a point, ref ections in a line and translations moving
a point (x, y) to (x,,y + b) for some fxed a,b € R. We have know that any isometry is a
rotation, a ref ection, a translation, or their product.

If X is a bounded subset of E?, for example, the regular polygon shown in Fig.1.2.1
in the next page, then it is clear that an isometry leaving X invariant must be a rotation
or a ref ection, can not be a translation. In this case, the rotations that leave X invariant
are about the center of X through angles 2zi/n forn = 0,1,2,---,n — 1. The ref ections
which preserve X are lines joining opposite vertices if n = 0(mod2) (see Fig.1.2.1) or
lines through a vertex and the midpoint of the opposite edge if n = 1(mod2).

Let p be a rotation about the center of X through angles 2n/n from the vertex 1
in counterclockwise and 7 a ref ection joining the vertex 1 with its opposite vertex if

n = 0(mod2) or midpoint of its opposite edge if n = 1(mod2).
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Fig.1.2.1
Then we know that

=1y, =1y, tlpr=p7".

We thereafter get the isometry group D, of regular n-polygon to be
D,={p70<i<n-1,0<;< 1}

This group is usually called the dihedral group of order 2n.

Def nition 1.2.5 Let (¢;0), (F7;-) be groups. A bijection ¢ : ¢ — F€ is an isomorphism
if
$(a o b) = ¢(a) - p(b)

forNa,b € 9. If such an isomorphism ¢ exists, the group (¢, o) is called to be isomorphic
to (5 ), denoted by (;0) ~ (;-).

Example 1.2.5 Each group pair in the following is isomorphic.
(D) x)5-), x" = 1 with (Zy; +);
(2) Klein 4-group in Table 2.2 with Z;, X Z,;
(3) GL(V,R), dimV = n with (GL(n, R); -).
1.2.3 Group Property. Elementary properties of groups are listed following.

P1. There is only one unit 1o in a group (¢; o).

In fact, if there are two units 14 and 1/, in (¢; 0), then we get 14y = 1y o 1/, = 1/, a

contradiction.
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P2. There is only one inverse a™! for a € 4 in a group (4; o).

If a;', a;' both are the inverses of a € ¢, then we get that a;' = a;' caoa;' = a;',

a contradiction.

P3. a)'=a,ac¥9.

This is by the def nition of inverse, i.e., aoa™! =a ' oa = 14.

P4. Ifaob=aocorboa=coa, wherea,b,c €Y, then b = c.

Ifaob=aoc,thena' o(aob)=a'o(aoc). According to the associative law, we
getthath=1lyob=(a'oa)ob=a'o(aoc)=(a'oa)oc = 1yoc=c. Similarly, if

boa=coa,wecanalsogeth =c.

P5. There is a unique solution for equations ao x = b andy o a = b in a group (¢; o) for
a,be¥.

1

In fact, x =a'oband y = b o a”! are such solutions.

Denote by a” = @oao---oa. Then the following property is obvious.
—_——

P6. For any integers n,m and a,b € 4, a"oa™ = a"", (a")" = a™. Particularly, if (¢, o)
is Abelian, then (a o b)" = a" o b".

Def nition 1.2.6 Let (¢;0) be a group, a € . If there exists a least integer k > 0 with
a* = 1y, such k is called the order of a and denoted by o(a) = k. If there are no positive

power of a equal to 14, a has order inf nity.

Theorem 1.2.1 Let (¢;0) be a group, x € 4 and o(x) = k. Then

(1) x! = 14 if and only if k|I;
(2) if o(x) < +oo, x! = x™ if and only if k|l — m, and if o(x) = +co, then x' = X" if and
only if | = m.

Proof 1f k|1, let | = kd for an integer d. Then
== (Y = 14 = 1,

Conversely, if & is not a divisor of /, let / = kd + r for integers d and r, 0 < r < k — 1.
Then we know that

A=t = ox = lyox + g

by the def nition of order. So we get (1).
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Notice that x' = x" if and only if X = 1y, i.e., [ — mlk by (1). Furthermore, if

o(x) = +oo, then x/ = ¥ only if / = m by def nition. We get conclusion (2). 0J

1.2.4 Subgroup. Let 77 be a subset of a group (¥; o). If (JZ; o) is a group itself, then
it is called a subgroup of (¢, 0), denoted by 77 < 4. If 7 < & but 7 # ¢, then
is called a proper subgroup of ¢, denoted by 57 < ¢. We know a criterion of subgroups

following.

Theorem 1.2.2 Let 77 be a subset of a group (¢ 0). Then (J¢; o) is a subgroup of (¢; o)
ifand only if 5 # 0 and a o b™" € 37 forNa,b € .

Proof By def nition if (J#; o) is a group itself, then # # 0, there is b~! € 7 and
aob isclosedin 7, i.e.,aob™! € A forVa,b € .

Now if 77 # 0 and a o b™! € # for Va,b € H, then,

(1) there existsan 7 € 57 and 1y = ho h™!' € 7

(2) ifx,y € #,theny™! =14y 0y! € 7 and hence xo (y 1) = xoy e #;

(3) the associative law x o (yoz) = (x oy) oz for x,y,z € ¢ is hold in (¥; o). By
(2), it is also hold in 7. Thus (7Z; o) is a group. U

Corollary 1.2.1 Let 761 <4 and 765 <G. Then 74N 75 < 9.

Proof Obviously, 1y = 1,4 = 1,45 € NI, So FANIEG + 0. Letx,y € 74N .
Applying Theorem 1.2.2, we get that

xoy e, xoylesb.

Whence,
xoy ' e AN .
Thus, (7741 N 7%3; o) is a subgroup of (¥; o). U
Let X be a subset of a group (¢; o). Defne the subgroup (X) generated by X to be
the intersection of all subgroups of (¢; o) which contains X. Notice that there will be one
such subgroup, i.e., (¢; o) at least. So (X) is a subgroup of (¢; o) by Corollary 1.2.1. A
subgroup generated by one element x € ¢; o) is usually called a cyclic group, denoted by

(x). The next result determines the form of each element in the subgroup (X).

Theorem 1.2.3 Let X be a nonempty subset of a group (¢;0). Then (X) is the set of all
elements of the form x{' x5 - - - x’, where x; € X, ¢ = +1 and s > 0 (if's = 0, this product

is interpreted to be 14).
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Proof Let S denote the set of all such elements. Applying Theorem 1.2.2, we know
that (S; o) is a subgroup of (¢;0). It is clear that X c S. Whence, (X) Cc S. But by
def nition, it is obvious that S C (X). So we get that S = (X). L.

For a fnite subgroup 7 of (¢; o), the criterion of Theorem 1.2.2 can be simplif ed
to the following.

Theorem 1.2.4 Let 7 be a f nite subset of a group (¢; 0). Then (; o) is a subgroup of
(¥;0)ifand only if 7€ + 0 and a o b € F forVa,b € .

Proof The necessity is clear. We prove the sufficiency. By Theorem 1.2.2, we only
need to check h™! € 7 in this case. In fact, let b € 7. Then we get b" € # for any
integer m € Z* by assumption. But 77 is fnite. Whence, there are integers &, /, k # [
such that b* = b/. Not loss of generality, we assume k > [. Then p*~-! = p~! € 7.
Whence, (77; o) is a subgroup of (¢; o). U

Def nition 1.2.7 Let (¢, 0) be a group, 7 <9 and a € 4. Def ne
ao ={aohlhe A}

and

H oa=1{hoalhe A},
called the left or right coset of 7€, respectively.

Because the behavior of left coset is the same of that the right. We only discuss the

left coset following.

Theorem 1.2.5 Let 7 < & with an operation o and a,b € 4. Then

(1) forNbeao ', a0 =bo I,
(2) a0 =boH ifand only if b oa € H;
(3)aost =bost orao I Nbo =0.

Proof (1) If b € a o 2, then there exists an element # € .7 such that b = a o h.
Therefore, bo 7 =(aoh)o 5 =ao(ho H =ao .

(2) If a o =b o SZ, then there exist elements s, h, € 7 such thatao hy = b o h,.
Whence, b~ o a = hy o h{' € 7. Conversely, if ' o a € A, then there exists h € A
such thatb™'oa = h, i.e.,a € bo 7. Applying the conclusion (1), we get ao ¥ = bo 7.

3) Infact,ifac s Nbo s #0,letc e (a0 Nbo ). Then,co I =ao
and c o 5 = b o J by the conclusion (1). Therefore, a o 57 = b o I . U
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Let us denote by ¢ /.77 all these left (or right) cosets and & : 7 the resulting sets
by selecting an element from each left coset of 77, called the left coset representation.
By Theorem 1.2.5, we get that

9= ] tor

eG A
and Yg € ¢ can be uniquely written in the form to h fort € 4 : 7, h € . Usually,

|9 . | is called the index of 77 in . For such indexes, we have a theorem following.

Theorem 1.2.6 (Lagrange) Let 5 <. Then|9| = |7\ : H|.

Proof Let
9= ] toor

teq. 7

Notice that t, o 7 Nty o 7 =0 ift; # t, and |t o F| = |7|. We get that
4= Y tot =|HIG : H). 0
teq. A

Generally, we know the following theorem for indexes of subgroups. In fact, Theo-

rem 1.2.6 is just its a special case of 2" = {1 4}, the trivial group.

Theorem 1.2.7 Let ¥ < 7 < 9 with an operation o. Then (4 . 7N . X') is a left

coset representation of & in9Y. Thus

G - X | =G . HNAH . K|

Proof Let9 = |J tosand " = |J wuo % . Whence,

[S% 4 ue K

&G = U touo % .

€97, ueIH. K

We show that all these cosets o u o % are distinct. In fact, if fouo % =+t ou’ o # for

somet,t’' €4 : ,uu € A : K ,thent' ot € 7 and to S =t o S by Theorem

1.2.5. By the uniqueness of left coset representations in ¢4 : 7, we fnd that r = 7.

Consequently, u o % = u’ o . Applying the uniqueness of left coset representations in

HC . K, we getthatu = u'. O
Let 5 < ¢ and # < ¢ with an operation o. Def ne

HYG ={hoglhe H#,ge 9}
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The subgroups .77 and % are said to be permute it 79 = 4.7 . Particularly, if for
Vg € ¥, go 0 = I o g, such subgroups 7 are very important, called the normal
subgroups of (¢; o), denoted by 77 <1 ¥ .

Theorem 1.2.8 Let (¢;0) be a group and 7€ < 9. Then the following three statements

are equivalent.

(1) xo = oxforVNxe ¥,
Q) x o ox=H forNxe¥;
() x'ohoxe H forNx €9 and h € .

Proof For (1) = (2), multiply both sides of (1) by x™!, we get (2). The (2) = (3)
is clear by defnition. Now for (3) = (1), let 7 € 57 and x € 4. Then we fnd that
hox=xo(x'ohox)exos andxoh = (x")' ohox € H# ox. Therefore,
xo = ox. O

Obviously, {14} <% and ¥ <«¥. A group (¥; o) is called simple if there are no normal
subgroups different from ({14}; o) and (¥; o) in (¥, o).

Although it is an arduous work for determining all subgroups, or normal subgroups

of a given group. But there is little difficulty in the case of cyclic groups.

Theorem 1.2.9 Let ¢ = (x) and 7 < G with an operation o. Then

(1) if'Y is inf nite, 7 is either inf nite cyclic or trivial;
(2) if'Y is fnite, H is cyclic of order dividing n. Conversely, to each positive divisor
d of n, there is exactly one subgroup of order d, i.e., <x”/ d>.

Proof (1) If 27 is trivial, the conclusion is obvious. So let 57 # {1 }. Then there
is a minimal positive number k such that .7’ contains some positive power x* # 1.
Obviously, <x"> c . 1fx' € ,wewritet = kg +r, where 0 < r < k—1. Then we fnd
that X" = (x*)™% o x € . Contradicts the minimality of k. Whence, = 0 and k|z. Hence
x' e <xk> and 57 = <xk>. If ¢ is inf nite, then x has inf nite order, as does x*. Therefore,
€ 1s also inf nite.

(2) Let o(x) = n. Then |7Z| divides n by Theorem 1.2.6. Conversely, suppose d|n.
Then o(x"/¢) = d and |<x”/d>| = d. If there is another subgroup (x*) of order d. Then
x*? = 1, and n|sd. Consequently, we get n/d divides s. Whence, (x*) < <x”/ d>. But they
both have the same order d, so (x*) = <x”/ d>. O

Certainly, every subgroup of a cyclic group is normal. The following result com-



16 Chap.1 Groups

pletely determines simply cyclic groups.
Theorem 1.2.10 A cyclic group (x) is simple if and only if o(x) is prime.

Proof The sufficiency is immediately by Theorems 1.2.6 and 1.2.9. Moreover, (x)
should be f nite. Otherwise, the subgroup <x2> would be its a normal subgroup, contradicts

to the assumption. By Theorem 1.2.9, we know that o(x) must be a prime number. U

1.2.5 Symmetric Group. Let Q = {ay,a,, -, a,} be an n-set. A permutation on Q is a
bijection o : Q — Q. The cardinality |Q| of Q is called the degree of such a permutation

o. Denoted by a{ the image of o<(a;) for 1 < i < n. Then o can be also represented by

a; a, -+ a,

g = .
a a e o
al az a

n

Usually, we adopt Q = {1, 2, - - -, n} for simplicity. In this case, we represent o by

1 2 - n
o= .
19 20 ... po
Let o, 7 be two permutations on Q. The product o7 is def ned by

=0, fori=1,2,---,n.

1 2 3 4 1 2 3 4
o= , T= .
2 413 2143
Then we get that

1 2 3 4 1 2 3 4 1 2 3 4
oT = = .
2 41 3 21 43 1 3 2 4

Let o be a permutation on Q such that

For example, let

a __ g __ a _— o _
al =ay,a; =asz,---,d,_; = Ay, d,, = a

and fxes each element Q \ {ay,a,--,a,}. We call such a permutation o a m-cycle,
denoted it by (a;, ay, - - -, a,,) and its elements by [o]. [f m = 1, o is the identity; if m = 2,

i.e., (a1, ay), such a o is called involution.
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Theorem 1.2.11 Any permutation o can be written as a product of disjoint cycles, and

these cycles are unique.

Proof Let o be a permutation on Q = {1,2,---,n}. Choose an element a € Q.

Construct a sequence

where ¢

such that ¢ = a”, 0 < i < m. Now if i # 0, we get that (" )” = (a° ')’. But

e Q for any integer £k > 0. Whence, there must be a least positive integer m

m—
aO’

' # a” ' by assumption. Whence, a”" = (") # (a” ')"a”, a contradiction. So
i=0,ie.,a”" = a,orin other words, T, = (a,a”,a” ,---,a”" ) is an m-cycle.

IfQ\[1] = 0, then m = n and o is an n-cycle. Otherwise, we can choose b € Q\ [1]
and get a s-cycle 7, = (b, b7, -+, b7 ).

Similarly, if choose Q \ ([t1] U [12] # 0, choose ¢ in it and fnd a /-cycle 73 =
(c,c”, -, c‘TM).

Continue this process. Because of the f niteness of 2, we fnally get an integer ¢ and
cycles 71,75, --,7, such that Q \ ([r;] U [,]U---U[7,] = 0 and o = 7175 - - 7, with
disjoint cycles 7;, 1 < i < ¢. The uniqueness of 7;, 1 < i < tis clear by their construction.
O

Notice that
(ar,az, -+, ay) = (a1, ax)(ar, az) - - - (ay, an).

We can always represent a permutation by product of involutions by Theorem 1.2.11. For

example,

1 23 45 12.34.5)
231 5 4] 70T

(1,2)(1,3)(4,5) = (2,3)(1,2)4,5)
(2,3)(1,2)(1,3)(4,5)(1, 3).

Def nition 1.2.8 A permutation is odd (even) if it can be presented by a product of odd

(even) involutions.

Theorem 1.2.12 The property of odd or even of a permutation o is uniquely determined
by o itself.
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Proof Let P be a homogeneous polynomial with form
P= l_l (x,- - Xj).
1<i<j<n

Clearly, any permutation leaves P unchanged as to its sign. For example, the involution
(x1x2) changes (x;—x,) into its negative (x,—x;), interchanges (x; —x;) with (x,—x;), j > 2
and leaves the other factor unchanged. Whence, it changes P to —P. This fact means that

an odd (even) permutation o always changes P to —P (P), only dependent on o itself. [

The next result is clear by def nition.

Theorem 1.2.13 All permutations and all even permutations on Q form groups, called

the symmetric group S o or alternating group Agq, respectively.
Let 7, o be permutations on Q and o = (a1, as, - - -, a,). A calculation shows that

1

ToT = (aj, a3, -, a,).

Generally, if

g =01030y
is written a product of disjoint cycles for an integer s > 1, Then

L _
=0,0, g,

TOT g

where the o/ is obtained from o; replacing each entry a in o; by 7(a).

1.2.6 Regular Representation. Let (¢;0) be a group with
g = {al = lg’a29' ' '?an}'

For Ya; € 4, we know these elements

ayoaq;,dxod,- - -,d,04a;
or
a_loa -lo cooalto
i 1s ai as, ) ai ay
still in ¢. Whence, they are both rearrangements of ay, a,, - - -, a,. We get permutations

ap [25) a, a
O-a,-: = ’
aoa; axod; - 4,04 aoa;
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In this way, we get two sets of n permutations
Ry ={04, 04, ,0,}) and Ly ={1,,T4, ", T4}

Notice that each permutation ¢ in Ry or Ly is f xed-free, i.e.,a* = a,a € Qonly if¢ = 14.
We say Ry, Ly the right or left regular representation of ¢4, respectively. The cardinality
|9 = n is called the degree of Ry or Ly.

Example 1.2.6 Let K = {1, @, 3, v} be the Klein 4-group with an operation o determined

by Table 1.2.2. Then we get elements o, 0, 0, 0y in Ri as follows.

o1 = (@B ),
I o B vy

a’: = 1’ b b
o ¢ 1y B (1, )(B,7)
I a g vy
= = 1
0p 5y 1 a (L, B)(a,y),
1l o B vy
= = 1
Oy Y B el (L y)(a,pB),

That is,
Rg = {()(@)B)(y), (1, 2)(B, 7). (1, B)(a, ), (1, y)(a,B)}.

Theorem 1.2.14 Ry and Ly both are subgroups of the symmetric group S«.

Proof Applying Theorem 1.2.4, we only need to prove that for two integers 7, j, 1 <

i,j<n,0,0,. € Ry and 1,7, € Ly. In fact,

a a a
04,0q; = = = Ogoa; € Ry,
aoa; )\ aoa; aoa;oa;

a a a
TaTa; = -1 -1 - -1 -1
a; oa a, oa a, ca; oa
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Therefore, Ry and Ly both are subgroups of S«. OJ

The importance of Ry and Ly are shown in the proof of next result.

Theorem 1.2.15(Cayley) Any group is isomorphic to a subgroup of S 4.

Proof Let (¢4;0) be a group with ¢ = {a; = lg,a,---,a,}. Defne mappings
f 19 > Ryand h : 9 — Ly by f(a;) = o,, h(a;) = 17,. Then f and h both are
one-to-one because of f(a;) # f(a;), h(a;) # h(a;) if a; # a;. By the proof of Theorem
1.2.14, we know that

f(ai ° aj) = 0-111‘0(1]' = O-aio-llj = f(al)f(a/)’

h(al' o aj) = Ta,-oaj = Ta,-Taj = h(al')h(aj)

for integers 1 < i, j < n. So f and A are isomorphisms by def nition. Consequently, ¥ is
respective isomorphic to permutations Ry and L. Both of them are subgroups of S« by
Theorem 1.2.14. U

§1.3 HOMOMORPHISM THEOREMS

1.3.1 Homomorphism. Let (¢;0), (¢4’;-) be groups. A mapping ¢ : 4 — ¥’ is a
homomorphism if

¢(a o b) = ¢(a) - #(b)

for Ya,b € 4. A homomorphism ¢ is called to be a monomorphism or epimorphism if
it is one-to-one or surjective. Particularly, if ¢ is a bijection, such a homomorphism ¢ is
nothing but an isomorphism by def nition.

Now let ¢ be a homomorphism. Def ne the image Im¢ and kernel Ker¢g respectively

as follows:
Imp=9’={¢(g)|ge ¥},

Kerg ={gl|¢(g) =1y, g€ ¥ }.

For example, let (Z;+) and (Z,; +) be groups defned in Example 1.2.1. Defne
¢ : Z — Z, by ¢(x) = x(modn). Then ¢ is a surjection from (Z; +) to (Z,; +).
Let ¢ : 4 — 7 be a homomorphism. Some elementary properties of homomor-

phism are listed following.
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H1. ¢(x") = ¢"(x) for all integers n, x € G, whence, ¢(1y) = 1,0 and $(x~') = ¢~1(x).

By induction, this fact is easily proved for n > 0. If n = 0, by ¢(x) = ¢(x o ly) =
d(x)- d(lg), we know that p(1y) = 1. Now letn < 0. Then 1 ;p = ¢(lg) = p(x" 0 x™") =
G(x") - p(x), e, p(X) = 7' (x7) = ($7'(X)) 7 = ¢"(x).

H2. o(¢(x))o(x), x € 9.

In fact, Let o(x) = k. Then x* = 14. Applying the property H1, we get that

¢"(x) = ¢(x") = ¢(1ly) = Ly

By Theorem 1.2.1, we get that o(¢(x))|o(x).

The following property is obvious by def nition.
H3. Ifxoy=yox then §(x) - p(y) = ¢(y) - $(x).
H4. Im¢ < 57 and Kergp < 9.

This is an immediately conclusion of Theorems 1.2.2 and 1.2.8.

Theorem 1.3.1 A homomorphism ¢ : ¢ — F is an isomorphism if and only if Ker¢ =
{1g}.

Proof The necessity is clear. We prove the sufficiency. Let Ker¢ = {14}. We prove
that ¢ is a bijection. If not, let ¢(x) = ¢(y) for two different element x,y € ¢, then

pxoy ™) =¢(x)-¢7' () = 1x

1

by defnition. Therefore, x o y! € Kerg, i.e., x o y~! = 14. Whence, we get x = y, a

contradiction. O

1.3.2 Quotient Group. Let (¢;0) be a group, .74, 76, 74 < 4. Def ne the multiplica-

tion and inverse of set by
JO56G ={xoy|xe H,ye )} and %”fl ={x"|xesA).

It is clear that J¢(J4.743) = (74.743).74. By this def nition, the criterion for a subset
JC C ¢ to be a subgroup of ¢4 can be written by

A A
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Now we can consider this operation in ¢ /¢ and determine when it is a group.

Generally, for Ya, b € ¢, we do not always get
(ao HYVbo )G | H
unless 77 <1¥. In fact, we have the following result for & /.77.
Theorem 1.3.2 &/ is a group if and only if 7 is normal.
Proof 1If S is a normal subgroup, then
(a0 ) boH)=ao(H ob)yoH =ao(boH)oH =(aob)oH

by the def nition of normal subgroup. This equality enables us to check laws of a group

following.

(1) Associative laws in &/ .

[(a o )b o ) (co ) [(acb)oclo s =[ao(boc) ot

(@ o A)(bo H)co )

(2) Existence of identity element 1y, ,» in ¢/ .77 .
In fact, ly,p = 1 0 = .
(3) Inverse element for Vx o 7 € & /.

Because of (x! o ) (x 0 #) = (x™! 0 x) o H# = H = 14, we know the inverse
element of x 0 7 € 4/ is x™' o I .
Conversely, if /.7 is a group, then for a o 77, b o 7 € G |7, we have

(a0 ) boH)=coH.
Obviously, a o b € (a o ) (b o ). Therefore,
(a0 ) bo )= (aob)o .
Multiply both sides by a~!, we get that
H obo =bo .
Notice that 14 € .77, we know that

bO%C%ObO%:bO%,
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i.e., bo# ob™! c . Consequently, we also fnd b~ o 5# o b C S ifreplace b by b™!,
ie., s Ccbo. s ob~'. Whence,

b'os# ob=t
for Vb € . Namely, 77 is a normal subgroup of ¢. U

Def nition 1.3.1 [f /7 is a group under the set multiplication, we say it is a quotient
group of ¢ by .

1.3.3 Isomorphism Theorem. If .7 is a normal subgroup of ¢, by Theorem 1.3.2 we
know that ¢ /27 is a group. In this case, the mapping ¢ : ¢ — ¥/ determined by

#(x) = x o ¢ is a homomorphism because

p(xoy)=(xoy)o =(xo0H)yo H)=d(x)p(y)
for all x,y € ¢. It is clear that Im¢ = ¥/ and Ker¢ = . Such a ¢ is called to be

natural homomorphism of groups. Generally, we know the following result.

Theorem 1.3.3(First I[somorphism Theorem) If ¢ : & — I is a homomorphism of
groups, then the mapping s : x o Ker¢p — ¢(x) is an isomorphism from ¢ [Kerg to Img.

Proof We have known that Ker¢ <1 ¢ by the property (H4) of homomorphism. So
¢ /Ker¢ is a group by Theorem 1.3.2. Applying Theorem 1.3.1, we only need to check
that Ker¢ = {ly/ker¢}. In fact, x o Ker¢ € Kerg if and only if x € Ker¢. Thus ¢ is an
isomorphism from from ¢ /Ker¢ to Img. U

Particularly, if Im¢ = 57, we get a conclusion following, usually called the funda-

mental homomorphism theorem.

Corollary 1.3.1(Fundamental Homomorphism Theorem) If' ¢ : ¢ — 7 is an epimor-
phism, then ¢4 [Ker¢ is isomorphic to .

Theorem 1.3.4(Second Isomorphism Theorem) Let 77 < 4 and N <Y. Then 7 N N <
G and x o (N N) — xo N isan isomorphism from 7€ | NN to I N |N.

Proof Clearly, the mapping 7 : x — xo./4" is an epimorphism from J¢ to N € | N
with Kerr = 77 N 4. Applying Theorem 1.3.3, we know that it is an isomorphism from
TN NN 0NN O

Theorem 1.3.5(Third Isomorphism Theorem) Let 4, N <G with N < #. Then
MIN Q9G|N and (G| N)[(M|N) =G| A .



24 Chap.1 Groups

Proof Defne a mapping ¢ : G/ N — G| # by p(x o N) =xo0 4. Then

ol(xoA)o(yo.AN)] gl(xoy)oN]=(xop)o.ll

(xoll)o(yo.d)=qg(xoN)opyoN)

and Kerp = 4|, Imp = &/ .#. So ¢ is an epimorphism. Applying Theorem 1.3.3,
we know that ¢ is an isomorphism from (/A /(A | NV ) to G | # . O

§1.4 ABELIAN GROUPS

1.4.1 Direct Product. An Abelian group is such a group (¥; o) with the commutative
law @ o b = b o a hold for a,b € ¢&. The structure of such a group can be completely

characterized by direct product of subgroups following.

Def nition 1.4.1 Let (¢;0) be a group. If there are subgroups A, B < 9 such that

(1) for Vg € ¢, there are uniquely a € A and b € B such that g = a o b,
2Q)aob=boaforac Aandb € B, then we say (¢;0) is a direct product of A and
B, denoted by 4 = A ® B.

Theorem 1.4.1 IfY = AQ B, then

(HA<Y and B Y,
(2)9 = AB;
(3) AN B = {ly).

Conversely, if there are subgroups A, B of ¢ with conditions (1)-(3) hold, then ¢ = AQ B.

Proof 1f 9 = A ® B, by defnition we immediately get that 4 = AB. If there is
c € AN Bwith c # 14, we get

c=coly, ceAd, 14 €B

and

c=1lgoc, ly€ A, c€B,

contradicts the uniqueness of direct product. So 4 N B = {l1}.
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Now we prove 4 <<¥. For Ya € A4, g € ¢, by def nition there are uniquely g, € 4,
&> € Bsuch that g = g; o g,. Therefore,

(giog) ' oao(giog) =g, ogi'caogiog

g'loaogiogy ogy=g'caog €A

gloaog

So A <1%. Similarly, we get B <1 Y.
Conversely, if there are subgroups 4, B of ¢ with conditions (1)-(3) hold, we prove
9 =AQB.ForVge ¥, by¥ = AB there are a € A and b € B such that g = a o b. If there

area’ € A,b" € Balso with g = a’ o b’, then
adloa=bob'€dnB.

But ANB = {ly}. Whence, @’ 'oa=0b"0ob"! = 1y,ie.,a = a and b = b’. So the equality
g = ao bisunique.

Now we proveaob =boaforaec Aand b € B. Notice that 4 <<¥4 and B < ¥, we
know that

aoboa'ob ' =ao(boaob)e4

and
aoboa'ob ' =(@oboa)ob ! eB.

But 4N B ={l4}. So
aoboa'ob =1y, ie, aob=boa.
By Def nition 1.4.1, we know that Y = 4 ® B. U

Generally, we def ne the semidirect product of two groups as follows:

Def nition 1.4.2 Let G and € be two subgroups of a group (7 ;0), a : & — AutY a
homomorphism. Def ne the semidirect product 4 x, 7 of 9 and F respect to a to be

G xa =g h)geG he )
with operation - determined by

(g1, h1) - (22.12) = (g1 0 &2 hy o hy).

Clearly, if « is the identity homomorphism, then the semidirect product ¢ X, 7 is
nothing but the direct product ¢ ® 7.
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Def nition 1.4.3 Let (¥;0) be a group. If there are subgroups A, A»,---, Ay < 9 such
that

(1) for Vg € ¢, there are uniquely a; € A;, 1 < i < s such that

g=aioao---oag
(2)ajoa;=a;oa;forac A;andb € A;, where 1 < i, j <s, i+ j, then we say (¢; o)
is a direct product of Ay, A, - - -, As, denoted by
g :Al ®A2®"'®As.

Applying Theorem 1.4.1, by induction we can easily get the following result.

Theorem 1.4.2 IfA,,A>,---,A; <Y, thend = A, A, ® --- ® A if and only if

()49, 1<i<s
Q)Y =414y Ay,
B) (A1 A Aig1---A)NA; ={lg}, 1 <i<s.

1.4.2 Basis. Let¥ = (a;,as, -, a,) be an Abelian group with an operation o. If

ki k> ks _
diodo.oah =1y

for integers ki, ky, - - -, ky implies that af.“" =lg, i = 1,2,---,s, then such a;,a,, -, a,
are called a basis of the Abelian group (¢; o), denoted by A(¥) = {ai,ay, - -,a,}. The

following properties on basis of a group are clear by def nition.
Bl. If9Y = A® B and B(A) = {a,ay,---,as}, B(B) = {by,by,---,b,}, then B(9) =
{al’az’ cr, Ay, bl’ bZ, o ’bt}'

B2. If A(9) = {a1,a2,--,as} and A = {a\,az,---,a;), B = {ay1, a1, -, a), where
l<l<s thend = AQ®B.

An importance of basis is shown in the next result.

Theorem 1.4.3 Any fnite Abelian group has a basis.

Proof Let¥ = (a,as,---,a,) be an Abelian group with an operation o. If r = 1,
then ¢ is a cyclic group with a basis #(9) = {a;}.
Assume our conclusion is true for generators less than ». We prove it is also true for

r generators. Let

ko ke _
a'od}o---o0a’ =lg (1-1



Sec.1.4 Abelian Groups 27

for integers ki, ky, - - -, k.. Defne m = min{k, k,, - - -, k,}. Without loss of generality, we

assume m = k;. If m = 1, we fnd that

_ ,k —ks

DY _k)-
ay=a, oa, o---oa,.

Hence, 4 = (ay, a3, - -, a,) and the conclusion is true by the induction assumption.
So we can assume our conclusion is true for the power of a; less than m and fnd

integers t;, s; fori = 2, - - -, r such that
ki=tm+s;, 0<s; <m.
Let
aj=ajoa}o---oal. (1-2)
Substitute (1 — 2) into (1 — 1), we know that
(@))"oayo---oa’ =lg.

If there is an integer i, 1 < i < r such that s; # 0, then by the induction assumption, ¢ has

a basis. So we can assume that

and get
(a7)" = lg.

Notice that

—t,

— F -
al—aloaz 0---04a," .

Whence, 4 = <a*1‘, Ay, -+, a,,>. Now we prove that
G =(a})®(az, -, a,).
For this objective, we only need to check that
(@) N<a, -+, a) = {1}
In fact, leta € <a‘l‘> N<{ay, -+, a,). Then we know that

a=(@) =(@odo-od) =do--od.
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Therefore,

/ til-h
a; o Clz o

v =1y (1-3)

...oa

By the Euclidean algorithm, we can always f nd an integer d such that
0</!/—dm<m.

By equalities (1 — 1) and (1 — 3), we get that

I—dm trl—l—dm ti—l.—dm

a; " oa, o---o0a = lg.

By the induction assumption, we must have / — dm = 0. So
a=(ay) = (a)™ = lg.
Whence, we get that
G =(a})®az, -, a,).
By the induction assumption again, let {a,, - -, a,) = (b2) ® - - - ® (b,). We know that
G =(a})(b)®---®(b,).
This completes the proof. O

Corollary 1.4.1 Any fnite Abelian group is a direct product of cyclic groups.

1.4.3 Finite Abelian Group Structure. Theorem 1.4.3 enable us to know that a fnite
Abelian group is the direct product of its cyclic subgroups. In fact, the structure of a
fnite Abelian group is completely determined by its order. That is the objective of this

subsection.

Def nition 1.4.4 Let p be a prime number, (4;0) a group, g € G and 7 <. Then g
is called a p-element, or 7 a p-subgroup if o(g) = p* or || = p' for some integers
k,1>0.

Def nition 1.4.5 Let (¢, 0) be a group with || = p®n, (p,n) = 1. Then each subgroup
<G with | 7€) = p® is called a Sylow p-subgroup of (¢; o).

Theorem 1.4.4 Let (4;0) be a fnite Abelian group with || = p{'p5*---ps’, where
P1, P2, -+, Ps are prime numbers, different two by two. Then

G =(a;)®{a) ® - ®{ay)
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with o(a;) = p* for 1 <i<s.
Proof By Corollary 1.4.1, a fnite Abelian group is a direct product of cyclic groups,
1.€.,
G =(a1)®(a)® - ®a,).

pﬁlpiz---pii’ with p;. € {p;;1 <i < s}, B, > 0for 1 < j < I We prove that a; can be

If there is an integer i, 1 < i < r such that o(aq;) is not a prime power, let o(a;) =

uniquely written as a; = by o by o---o0b; such that o(b;) = piij, bijob;=b;ob;,1 <i,j<I.
Now let o(a;) = mym, with (my, m;) = 1. By a result in elementary number theory,

uymy+uymy uymi

— uzmp __
i =q;

there are integers u,, u, such that uym; + u,m, = 1. Whence, a oa =

uymi

Uy
i i

al

o a/"™. Choose ¢ = a*™ and ¢; = a/'™'. Then c{" = 1y and ¢J* = 14. Whence,

o(cy)|lmy, o(cy)lm,. Because ¢y o ¢; = ¢; o ¢ and (o(cy), o(c;)) = 1, we know that mym, =
o(a;) = o(cy0¢y) = o(cy)o(cz). So there must be o(c;) = my and o(c;) = m,. Repeating the
previous process, we fnally get elements by, by, ---, b, € 4 such thata; = byobyo---0b,
with o(b)) = p,’. b0 b; = byobu 1 <ij <.

Whence, we can assume that the order of each cyclic group in the direct product

G =(a)®(a)®--®(a,).

is a prime power. Now if the order of (a;,), {(a;), - -, {a;,) are all with a same base p;,

replacing a;, o a;, o --- o a; by a; we get a direct product

G =(a1)®(a)® - ®(ay)
with o(a;) = pi',1 <i <[ O
Theorem 1.4.5 Let (¥, 0) be a f nite Abelian p-group. If

g:A1®A2®“‘®Ar and ng]@Bz@“‘@Bs,

where A;, B; are cyclic p-groups for 1 < i <r, 1 < j < s, thens = r and there is a
bijection @ : {A, A, -+, A} = {B1, B2, -+, B,} such that |4;| = |w(4;)|, 1 <i<r

Proof We prove this result by induction on |¥4|. If || = p, the conclusion is clear.
Defne ¥, = {a € Y|a’ = 14} and 94”7 = {a’|a € ¢}. Notice that

g:A1®A2®"'®Ar.

If a; € A; is the generator of 4;, 1 < i < r, then Z(Y) = {a,,as,- -, a,}. Let o(a;) = p°.

Without loss of generality, we can assume thate; > e; > --- > e, > 1. Then #A(¥,) =
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{aferl,afezil,---,aferil} and |9,| = p'. Ife; = e =--- = ¢ = 1, then 97 = {ly}.
Otherwise, lete; > e, > -+ > €, > €1 = -+ = e, = 1. Then B(Y?) = {a],d}, - -, ay}.
Now let b; € B; be its a generator for 1 < i < s. Then A(¥) = {by, b,,---,b,}. Let
o(b)) = p,1 <i<swith f{ > o > - > f. Similarly, we know that |%,| = p*. So s = r.
Now if 97 = {14}, there must be f; = f, = --- = f; = 1. Otherwise, if 97 # {14}, let
fizfoz > for > fywsr =+ = fy = 1. Then B(4?) = (b}, b}, ---,b",}. Notice that
|97| < |¥|, by the induction assumption, we get that m = m’ and e; = f; for 1 < i < r.
Therefore, o(a;) = o(b;) for 1 <i<r. Nowdefne w : {4,,4,,---,4,} = {B1,B,,---, B,}
by @w(4;) = B;, 1 <i <r. We get |4;| = |w(4;)| for integers 1 <i < r. O
Combining Theorems 1.4.4 and 1.4.5, we get the fundamental theorem of fnite

Abelian groups following.

Theorem 1.4.6 Any f nite Abelian group (¥; o) is a direct product
G ={a)®(a)® - ®(ay)

of cyclic p-groups uniquely determined up to their cardinality.

These cardinalities | {a;) |, [{a2) |, --,|{a,)| in Theorem 1.4.6 are defned to be the
invariants of Abelian group (¥¢; o), denoted by Invar¥. Then we immediately get the

following conclusion by Theorem 1.4.6.

Corollary 1.4.2 Letd, 7 be fnite Abelian groups. Then G ~ F if and only if Invar¥ =
Invars?.

§1.5 MULTIGROUPS

1.5.1 MultiGroup. Let 4 be a set with binary operations 0. A pair ({Z; O)isan algebraic
multi-system if for Ya, b € 4 and o € O,ao0be¢ E?provided a o b existing.

We consider algebraic multi-systems in this section.

Def nition 1.5.1 For an integer n > 1, an algebraic multi-system ({Z; 5) is an n-multigroup
if there are 9,%, - -+, %, C g O ={o;, 1 <i<n}with
DY =U%
i=1
(2) (¥:;0,) is a group for 1 <i < n.
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For Yo € O, denoted by %, the group (¥; o) and 4™ the maximal group (¢; o), i.e.,
(&M o) is a group but (4™ U {x}; o) is not for Yx € G\ GmX in (% 0).

Def nition 1.5.2 Let (E?l; 51) and (%;; 52) be multigroups. Then (%T; 51) is isomorphic to
(f%; 52), denoted by (1) : (f%; 51) - (f%; 52) if there are bijections 9 : f% - f% and
L: 51 — 52 such that for a, b € f% and o € 51,

¥Ha o b) = Ha)(0)d(b)
provided aob existing in (E?l ; 51). Such isomorphic multigroups are denoted by (%T ; 51) ~
(%; 52)

Clearly, if (%, 1) is an n-multigroup with (:J, ¢) an isomorphism, the image of (19 L)
is also an n-multigroup. Now let (¥, ¢) : (%, 01) — (%, 02) with % = U 4., % = U <,

O, ={oy;, 1 <i<nland O, = {0y, 1 < i < n}, then for o € O, %oma" is 1somorphlc to
HY),e) by def nition. The following result shows that its converse is also true.

Theorem 1.5.1 Let (%T; 51) and (E%; 52) be n-multigroups with

5?1 = O%i, g~2 = ngi,
i=1 i=1

51 ={o;, 1 <i<nj 52 ={opn, | <i<n} If¢;: G - %, is an isomorphism for each
integer i, 1 < i < n with ¢ily,ng, = Gilg,na, for integers 1 < k,1 < n, then (f%; 51) is

isomorphic to (sz ; 52).
Proof Def ne mappings ¥ : 4 —> % andi: O, > O, by
HNa) = ¢pi(a)ifac ¥ C 4 and t(oy;) = oy; for each integer 1 < i < n.
Notice that ¢¢lg,nw, = Pil,ng, for integers 1 < k,/ < n. We know that ¢, ¢ both are
bijections. Let a, b € ¥4, for an integer s, 1 < s < n. Then
B(a o1, b) = 9u(@ 01, b) = 9:(@) 02, $,(5) = Mak(©1)9(b).
Whence, (#,1) : (41;01) = (%;0)). 0

1.5.2 Submultigroup. Let (fg; O) be a multigroup, A cGandOc O. If (J?; 0) is
multigroup itself, then (J7; O) is called a submultigroup, denoted by (%;; 0) < (g; 5).

Then the following criterion is obvious for submultigroups.
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Theorem 1.5.2 An multi-subsystem (jzz; 0) of a multigroup (f?; O)isa submultigroup if
and only if%ﬂ G, <G for Yo € O.

Proof By def nition, if (%FZ; 0) is a multigroup, then for Vo € O, A NG, isa group.
Whence, H NG, < Gmax,

Conversely, if H NG, < ¢gm* for Yo € O, then H NG, isa group. Therefore,
(j?,; 0) is a multigroup by def nition. UJ

Applying Theorem 1.2.2, we get corollaries following.

Corollary 1.5.1 An multi-subsystem (%Z; 0) of a multigroup (E?; 5) is a submultigroup
if and only ifao b™' € N G for Yo € O and a,b € Jpzzprovided a o b existing in
(A3 0).

Particularly, if O = {o}, we get a conclusion following.

Corollary 1.5.2 Let o € O. Then (J; 0) is submultigroup of a multigroup (g; 5) for
I C gifandonly if (;0)is a group, i.e., aob™' €  fora,be .

A multigroup (g; 5) is said to be a symmetric n-multigroup if there are .7, .75,
o, I C G, 0= o, 1 <i<n)with
DY =U %
i=1
(2) (.}; 0;) is a symmetric group S, for 1 < i < n. We call the n-tuple (|Q4], [, - - -, [,
the degree of the symmetric n-multigroup (E?; 5).

Now let multigroup (E?; O) be a n-multigroup with 4, %, ---, %4, C g7, O={o, 1<

i < n}). Forany integeri, | <i < n. Let¥, = {a; = lgol_,a,-z,~--,a,~noi}. For VYay € %,,,
defne
_ ail ai Ain _ a
Ouy = = ,
ail © Qi Qi O djg -+ i, O djk ao aj
ai ap in,, a
Tay = -1 -1 -1 - -1
Ay ©din Ay ©dp -+ dy Odip, Ay ©a
— — r /
Denote by Ry, = {074, 0ap " 10, } and Ly = {74,, T4y, "+, Tq,, } and X} or X; the

induced multiplication in Ry, or Ly. Then we get two sets of permutations

n n

R?i = U{O-ail’ Oaps* s O-ainoi} and L‘f = U{Tail’ Taps ™" "> Tainoi }

i=1 =1
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We say Rz, L the right or left regular representation of 2 respectively. Similar to
Theorem 1.2.15, the Cayley theorem, we get the following representation result for multi-

groups.

Theorem 1.5.3 Every multigroup is isomorphic to a submultigroup of symmetric multi-
group.
Proof Let multigroup (E?; 5) be a n-multigroup with ¢4,,%,---,9, C E?, O =

{o;,, 1 < i < m}. For any integer i, 1 < i < n. By Theorem 1.2.14, we know that
Ry and Ly, both are subgroups of the symmetric group S¢ for any integer | < i < n.
Whence, (Rz; 0") and (L; O') both are submultigroup of symmetric multigroup by def -
nition, where 0" = {X[|l <i < n} and O = {Xf|1 <i<n.

We only need to prove that (g; 5) is isomorphic to (Rz; O"). For this objective,
def ne a mapping (f,¢) : (f?; 0) > (Rz O") by

Sflaw) = 04, and (o)) = X}

for integers 1 < i < n. Such a mapping is one-to-one by def nition. It is easily to see that

f(aij 0 i) = O o0y = Oay Xi O gy = f(aij)t(oz’)f(aik)
for integers 1 < i,k,/ < n. Whence, (f,¢) is an isomorphism from (fg; 5) to (R O").
Similarly, we can also prove that ({47; 5) =~ (Lg; ) U
1.5.3 Normal Submultigroup. A submultigroup (J?; 0) of (fg; O) is normal, denoted
by (J;0) <1 (¥;0) if for Vg € 4 and Yo € O
go = Fog,
where g o H = {gohlh e A provided g o 4 existing} and H o g is similarly def ned.

Then we get a criterion for normal submultigroups of a multigroup following.

Theorem 1.5.4 Let (JZ 0) < (fg; 5). Then (JZ 0) < (f?; 5) if and only if

T g q g
for Yo € O.

Proof 1f AN G 4 Gm™ for Yo € O, then g o H = A o g for Vg € 4™ by
def nition, i.e., all such g € 4 and h € . with goh and hog defned. So (S7; 0)<I(¥; O).
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Now if (J7; 0) <1 (¥: O), it is clear that 7 N G™* < G™ for Vo € O,

For a normal submultigroup (jz,”v; O) of (g; 5), we know that
(aojf)ﬂ(b-%;):@ or ao H# =b- .
In fact, if c € (a o % N - j;), then there exists 4, i, € A such that
aohy=c=>b-h,.
So a ! and 7! exist in 4™ and ¥™*, respectively. Thus,
bl -aoh =b"-b-hy=hy.

Whence,
b™'-a=hyohi e A

We fnd that
a0 =b-(hyoh)o# =b-H.

This fact enables one to fnd a partition of g following

G = U goj?.

g€¥ ,0€0
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O

Choose an element 4 from each g o A and denoted by H all such elements, called the

representation of a partition of ¢, i.e.,

G = U ho .

heH,065

Def ne the quotient set of g by A 10 be
G| ={ho AH)h e H,o e O).

Notice that %7/ is normal. We f nd that

(aojz;)'(boe%’;):%oa'bO%:(a-b)OﬁO%:(a-b)O%

in g/ S foro, e, - € 0,ie., (E?~ / fZ 0) is an algebraic system. It is easily to check that
(E?~ / ,ﬁZ 0) is a multigroup by def nition, called the quotient multigroup of g by A
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Now let (@ :0;) and (f% :0,) be multigroups. A mapping pair (¢, ¢) with ¢ : G -G

and ¢ : 51 - 52 is a homomorphism if

¢(a o b) = ¢(a)()¢p(b)

for Ya,b € 4 and o € O, provided a o b existing in (é% ; 51). Def ne the image Im(¢, 1)
and kernel Ker(¢, ¢) respectively by

Im(s,0) = { #(2) | g €% ),

Ker(d,0) = {g | ¢(g) = 14, g€ % ,0 € Oy).

Then we get the following isomorphism theorem for multigroups.

Theorem 1.5.5 Let (¢,0) : (%T; 51) — (E%; 52) be a homomorphism. Then
G [Ker(, ) = Im(¢, 0).

Proof Notice that Ker(¢, ¢) is a normal submultigroup of (f% :0y). We prove that the
induced mapping (o, w) determined by (o, w) : x o Ker(¢, ) — ¢(x) is an isomorphism
from %T /Ker(¢, ¢) to Im(o, ¢).

Now if (07, w)(x1) = (0, w)(x2), then we get that (o, w)(xj0x;') = 1g, provided xjox;!
existing in (%T; 51), i.e., x; o x7! € Ker(¢,1). Thus x; o Ker(¢,1) = x, o Ker(¢, 1), i.e., the
mapping (o, w) is one-to-one. Whence it is a bijection from E?l /Ker(¢, ¢) to Im(g, ¢).

For Va o Ker(¢, t), b o Ker(¢, 1) € fé: /Ker(¢,t) and - € 0,, we get that

(0, w)[a o Ker(p,t) - b e Ker(g,1)]
= (o, w)l(a - b) o Ker(¢, )] = ¢(a - b)
= Pp(a)(-)p(b) = (0, w)[a o Ker(¢, )]u(-)(o, w)[b & Ker(¢, 1)].

Whence, (0, w) is an isomorphism from @ /Ker(¢, ¢) to Im(g, ¢). O

Particularly, let (%; ; 52) be a group in Theorem 1.5.4, we get a generalization of the

fundamental homomorphism theorem, i.e., Corollary 1.3.1 following.

Corollary 1.5.3 Let (E?; 5) be a multigroup and (w, ) : (52; 5) — (&; o) an epimorphism
from ({Z; 5) to a group (<7 0). Then

G [Ker(w,1) = (o;0).
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1.5.4 Abelian Multigroup. For an integer n > 1, an n-multigroup (f?; O) is Abelian if
there are <7, b5, -+, ), C?Z, O = {o;, 1 <i < n} with
DY =U s
i=1
(2) (o; 0;) is Abelian for integers 1 < i < n.

For Vo € O, a commutative set of ¥ is defned by
C,)={a,be 4™ aob=0>boal.

Such a set is called maximal if C(¥4,) U {x} for x € ¢\ C(%¥,) is not commutative again.
Denoted by Z™*(%,) the maximal commutative set of ¢"**. Then it is clear that Z™**(¥,)

is an Abelian subgroup of ™,

Theorem 1.5.6 An n-multigroup (fZ; 0) is Abelian if and only if there are Z™(%,) for
Vo € O such that
G = U 7@,

065

Proof If 9 = |J Z™*(%,), it is clear that (¢; O) is Abelian since Z™(%,) is an

o€

Abelian subgroup of 4™, Now if ({2; 5) is Abelian, then there are <7, %, - - -, %, C fg,
O = {o;, 1 <i < n}such that
G =)
i=1

and (4;; o;) is an Abelian group for 1 < i < n. Whence, there exists a maximal commuta-

tive set 2™ (¥,,) C ¢4 such that 4; ¢ Z™(¥,,). Consequently, we get that
G = U 7"(L,).
i=1

This completes the proof. O

Combining Theorems 1.5.6 with 1.4.6, we get the structure of fnite Abelian multi-

group following.

Theorem 1.5.7 A fnite multigroup (E?; 5) is Abelian if and only if there are generators

a’, 1 <i<s, forVoe O such that

7= J@ahe()e--e(a).

065
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1.5.5 Bigroup. A bigroup is nothing but a 2-multigroup. There are many examples of
bigroups in algebra. For example, these natural number feld (Q; +, ), real number num-
ber feld (R; +, -) and complex number feld (C; +, -) are all Abelian bigroups. Generally,

afeld (F;+,-) is an algebraic system F with two operations +, - such that

(1) (F; +) is an Abeilan group with identity 0;
(2) (F \ {0}; ) is an Abelian group;
B)a-(b+c)=a-b+a-cforVa,b,ceF.

Thus a feld is an Abelian 2-group with an additional condition (3) called the dis-

tributive law following.

Def nition 1.5.3 A bigroup (¢; +, -) is distributive if
a-(b+c)=a-b+a-c
hold for all a, b, c € A.

Theorem 1.5.8 Let (6; +, -) be a distributive bigroup of order> 2 with € = A, U A, such
that (Ay; +) and (A4,, -) are groups. Then there must be A, # A,.

Proof Denoted by 0,, 1. the identities in groups (4;; +), (42, -), respectively. If
A=A, =%,wegetl,, 1 €A and 4,. Because (4,, -) is a group, there exists an inverse

element 07! in 4, such that 07" - 0, = 1.. By the distributive laws, we know that
a'0+ :a'(0++0+):a'0++a'0+

hold for Ya € €. Whence, a - 0, = 0,. Particularly, let a = 07!, we get that 0;' - 0, = 0,,

which means that 0, = 1.. But if so, we must get that
a=aol,=ao00, =0,,

contradicts to the assumption || > 2. ]

Theorem 1.5.8 implies the following conclusions.

Corollary 1.5.3 Let (¢;0) be a non-trivial group. Then there are no operations - # o on

& such that (¢, o, ) is a distributive bigroup.

Corollary 1.5.4 Any bigroup (€’;0,-) of order> 2 with groups (¢; o) and (¢ ,") is not

distributive.
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Corollary 1.5.4 enables one to classify bigroups into the following categories:

Class 1. ({14}; +,), i.e.,, which is a union of two trivial groups ({14}; +) and ({1¢}; ).
Class 2. Non-distributive bigroups of order> 2.

This kind of bigroup is easily found. Let (¢;; o) and (¢;-) be two groups without
the defnition a o b - ¢ and a - bo for a,b,c € €, where € = 4, U %,. Then (¢;0,-)is a

non-distributive bigroup with order> 2.

Class 3. Distributive bigroups of order> 2.

In fact, any f'eld is such a distributive Abelian bigroup. Certainly, we can f nd a more

general result for the existence of fnite distributive bigroups.

Theorem 1.5.9 There are fnite distributive Abelian bigroups (¢'; +, -) of order> 2 with
groups (Ay; +) and (Ay, -) such that € = A, U A, for |A, — A>| = |€|—m, where (m+1)||E).

Proof In fact, let (% ; +,-) be a feld. Then (.%; +) and (% \ {0, }; -) both are Abelian
group. Applying Theorem 1.4.6, we know that there are subgroups (45; -) of (% \ {0,}; )
with order m, where (m+1)||€|. Obviously, € = 4,U4’. So (F; +, ) is also a distributive
Abelian bigroup with groups (4; +) and (4, ) such that € = 4, U 4, and |4, — 4;| =
|€’| — m. O

A group (J7; o) (or (J€;+)) is maximum in a bigroup (¢ o, ) if there are no groups
(7;0)(or (7)) in (¥; 0, ) such that |77 < |.7|. Combining Theorem 1.5.9 with Corol-
laries 1.5.3 and 1.5.4, we get the following result on f elds.

Theorem 1.5.10 A4 feld (% ;+, ) is a distributive Abelian bigroup with maximum groups
(F;+) and (F \{0.};).

1.5.6 Constructing Multigroup. There are many ways to get multigroups. For example,
let ¢ be a set. Def ne n binary operations oy, 0,, - - -, 0, such that (¢; o;) is a group for any
integer i, 1 < i < n. Then (¥;{o;, 1 < i < n})is a multigroup by def nition. In fact, the
structure of a multigroup is dependent on its combinatorial structure, i.e., its underlying
graph, which will be discussed in Chapter 3. In this subsection, we construct multigroups

only by one group or one feld.

Construction 1.5.1 Let (¢; o) be a group and S« the symmetric group on ¢. For Ya, b €
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a
w = €Sy,

defne a binary operation o, on ¥“ = ¢ by

¢ and

ao,b=(a" ob” )

for Ya,b € ¢4, Clearly, (4“; 0,) is a group and w : (¢;0) — (4%; o,,) is an isomorphism.

Now for an integer n > 1, choose n permutations w1, w», - - -, w,. Then we get a multi-
group (¥;{o,,|1 < i < n}), where groups (¥; o,,) is isomorphic to (¥; o) for integers

1 <i,j < n. Therefore, we get the following result of multigroups.

Theorem 1.5.11 There is a multigroup & such that each of its group is isomorphic to
others in 2.

Construction 2.5.2 Let (%;+,-) be a feld and S # the symmetric group acting on .%.

ForVYe,d € 4 and w € S #, def ne a binary operation o, on .#“ = .% by
a+,b= (" +b)

and
a,b=(@" by

for Ya, b € ¢. Choose n permutations ¢, ¢z, -+, <, € S #. Then we get a multigroup
T = (Fil+e. 1 Si<nhic. 1 <i<n)),

which enables us immediately to get a result following.

Theorem 1.5.12 There is a multigroup (% ;{+; ,1 < i < n},{-;;1 < i < n}) such that
for any integer i, (F;+;,+;) is a feld and it is isomorphic to (¥ ;+;,-;) for any integer

jo1<i, j<n.

§1.6 REMARKS

1.6.1 There are many standard books on abstract groups, such as those of [BiM 1], [Rob1],

[Wanl], [Xum]l] and [Zhal] for examples. In fact, the materials in Sections 1.1-1.4 are
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mainly extracted from references [BiM1] and [Wanl] as an elementary introduction to

groups.

1.6.2 For an integer n > 1, a Smarandache multi-space is a union of spaces Ay, 4>, - -, A,
different two by two. Let 4;, 1 < i < n be mathematical structures appeared in sciences,
such as those of groups, rings, felds, metric spaces or physical felds, we therefore get
multigroups, multrings, multf elds, multmetric spaces or physical multi-f elds. The mate-
rial of Section 1.5 is on multigroups with new results. More results on multi-spaces can be
found in references [Mao4]-[Mao10], [Mao20], [Mao24]-[Mao25] and [Smal]-[Sma2].

1.6.3 The conceptions of bigroup and sub-bigroup were frst appeared in [Magl] and
[MaK1]. Certainly, they are special cases of multigroup and submultigroup, i.e., special
cases of Smarandache multi-spaces. More results on bigroups can be found in [Kanl].
In fact, Theorems 1.5.2-1.5.5 are the generalization of results on bigroups appeared in
[Kanl].

1.6.4 The applications of groups to other sciences are mainly by surveying symmetries of
objects, i.e., the action groups. For this objective, an elementary introduction has been ap-
peared in Subsection 1.2.6, i.e., regular representation of group. In fact, those approaches
can be only surveying global symmetries of objects. For locally surveying symmetries,

we are needed locally action groups, which will be introduced in the following chapter.



CHAPTER 2.

Action Groups

Action groups, i.e., group actions on objects are the oldest form, also the
origin of groups. The action idea enables one to measure similarity of ob-
jects, classify algebraic systems, geometrical objects by groups, which is the
fountain of applying groups to other sciences. Besides, it also allows one to
fnd symmetrical conf gurations, satisfying the aesthetic feeling of human be-
ings. Topics covered in this chapter including permutation groups, transitive
groups, multiply transitive groups, primitive and non-primitive groups, auto-
morphism groups of groups and p-groups. Generally, we globally measure
the symmetry of an object by group action. If allowed the action locally, then
we need the conception of locally action group, i.e., action multi-group, a

generalization of group actions to multi-groups discussed in this chapter.
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§2.1 PERMUTATION GROUPS

2.1.1 Group Action. Let (¢;0) be a group and Q = {a,ay, - - -, a,}. By a right action of
¢ on Q is meant a mapping p : Q X ¢4 — Q such that

(x,g10&)p = ((x,g1)p, g)p and (x, ly)p = x.
It is more convenient to write x4 instead of (x, g)p. Then the def ning equations become
x$182 = (x)% and x'9 =x, xeQ, g,2,€9.

For a fxed g € ¢, the inverse mapping of x — x%is x — x¢'. Whence. x — xgisa
permutation of Q. Denote this permutation by g”. Then (g; o g,)” maps x to x%¢2, as does
g]g5. We fnd that (g1 0 g2)” = g]g}. Therefore, the group action determines a homomor-
phismy : ¢ — Sgq. Such a homomorphism v is called a permutation representation of 4
on Q.

Two permutation representations of a groupy : 4 — Syand 6 : 4 — Sy of a group

¢ on X and Y are said to be equivalent if there exists a bijection 6 : X — Y such that
0g° = 276, .., X% =y

for all x € X and g € ¢4. Particularly, if X = Y, then there are some 6 € Sy such that
g° = 67'g70. Certainly, we do not distinguish equivalent representations of permutation
groups in the view of action.

Lety : 4 — Sq be a permutation representation of ¢ on Q. The cardinality of
Q is called the degree of this representation. A permutation representation is faithful if
Kery = {lg}. So the subgroups & of S are particularly important, called permutation

groups. For a € Q and T € &2, we usually denote the image of @ under 7 by a°,

As a special case of equivalent representations of groups, let &, and &%, be two
permutation groups action on Q,, ,, respectively. A similarity from & to &7, is a pair
(v, 0) consisting of an isomorphism y : &, — %, and a bijection 6 : Q; — Q, which are
related by

. Y
70 =0n", ie., a=a"
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forall a € Q; and n € &,. Particularly, if Q; = Q,, this equality means that 77 = "' 76
for Vr, 0 € for VY € .

2.1.2 Stabilizer. The stabilizer &2, and orbit a” of an element a in & are respectively

def ned as follows:
P,={c|la"=a,ce P} and a” ={b|a” =b, 0 € P ).

Then we know the following result.

Theorem 2.1.1 Let &2 be a permutation group acting on Q, x,y € & and a,b € Q. Then
()a”? Nnb? =0ora” =b?, ie., all orbits forms a partition of Q;
(2) P, is a subgroup of P and if b = a*, then Py, = x ' P, x. Moreover, if a* = I,
then x, = yP,;
() la?| = |2 : P,|, particularly, if P is fnite, then | 2P| = | 2,|la”| for Va € Q.

Proof If c € a”, then there is z € & such that ¢ = a°. Whence,
¢ = {c"Ix € P} ={a|x e P} =a”.

Soa? Nb? =0 ora” = b”. Notice that an element a € Z lies in at least one obit a”,
we know that all obits forms a partition of the set Q. This proves (1).

For (2), it is clear that 1 » € 2, and for x,y € Z,, xy~' € Z,. So 2, is a subgroup
of & by Theorem 1.2.2. Now if b = a*, then we know that

yeEPy o a¥=a ©xyxe P,
ie., ye€x12,x, Whence, x ! Zx = &, Finally,
-1
= oad maexy'e P, oxP, =y,

So (2) is proved.

Applying the conclusion (2), we know that there is a bijection between the distinct
elements in a” and right cosets of &2, in &. Therefore |a”| = | : Z2,|. Particularly, if
P is fnite, then [a”| = |22 : P,| = |P|/|2,|. So we get that | 2| = |2, |la”|. O

Now let A ¢ Q. We def ne the pointwise stabilizer and setwise stabilizer respectively
by

Pny={ola’=a,aceAando € ¥}
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and
@{A}:{O'|AO—:A,O'€¢@}.

It is clear that &,y and &, are subgroups of &. By def nition, we know that

Py =) Pu

acA

and
Paony = Pan [ | P = (Pian)o
Applying Theorem 2.1.1, for a, b € Q we also know that

P+ Paspl = 1a” 67| = b7 ||la”].
Clearly, Z) < &) Furthermore, we have the following result.

Theorem 2.1.2 ,@(A) < gZ{A}_

Proof Let g € Py and h € Py We prove that h~'gh € P,,. In fact, leta € A, we

know that "' € A. Therefore,
" =@ =) = a
Whence, h™'gh € P 4. O

2.1.3 Burnside Lemma. For counting the number of orbital sets Orb(Q2) of Q under the

action of 2, the following result, usually called Burnside Lemma is useful.

Theorem 2.1.3(Cauchy-Frobenius Lemma) Let & be a permutation group action on Q.
Then

1 .
0rb(@) = Z; fix()l,
where fx(x) = {a € Qla* = a}.

Proof Defneaset.of = {(a,x) € Qx P|a* = a}. We count the number of elements of
</ in two ways. Assuming the orbits of Q under the action of & are Q;, s, - - -, Qorp()-

Applying Theorem 2.1.1(3), we get that
|Orb(Q)|
2,7
i=1 LlE.Q,'
lOrb(Q)| 10rb(Q)]

S S AL S 91 = (o)1

=1 aeQ €2 i=1

7|
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By defnition, |&7| = ) |[fx(x)|. Therefore,

xe&

1
0rb(@) = 1= ) ITX(0)l.

xe&
This completes the proof. 0
Notice that |f x(x)| remains constant on each conjugacy class of &2, we get the fol-

lowing conclusion by Theorem 2.1.3.

Corollary 2.1.1 Let & be a permutation group action on Q with conjugacy classes
Cl,Cg,"',Ck. Then

1 k
0rb(@) = = ) ICHTX (i)

=1
where x; € C,.

Example 2.1.1 Let & = {0, 03,03,04,05, 0607, 0g} be a permutation group action on
Q={1,2,3,4,5,6,7,8}, where

or=1p, 0,=(1,4,3,2)5,8,7,6),

o3 =(1,3)(2,4)(5,7)6,8), o04=(1,2,3,4)5,6,7,8),
os=(1,7,3,5)2,6,4,8), o06=(1,8,3,6)(2,7,4,5),
o7 =(1,5,3,7)(2,8,4,6), o03=(1,6,3,8)2,5,4,7).

Calculation shows that
fx(1) =fx(2) =fx(3) = fx(4) = fx(5) = fx(6) = fx(7) = £x(8) = {1 »},

Applying Theorem 2.1.3, the number of obits of Q under the action of &7 is

8
10rb(Q)| = % Z Ifx(x)| = = x Z 1=1.

| | xe&# i=1

In fact, for Vi € Q, the orbit of i under the action of & is

i7 ={1,2,3,4,5,6,7,8).

§2.2 TRANSITIVE GROUPS

2.2.1 Transitive Group. A permutation group & action on Q is transitive if for x,y € Q,

there exists a permutation 7 € & such that x* = y. Whence, a transitive group & only has
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one obit, i.e., Q under the action of &Z. A permutation group & which is not transitive is
called intransitive. According to Theorem 2.1.1, we get the following result for transitive

groups.

Theorem 2.2.1 Let & be a transitive group acting on Q, a € Q. Then |&| = |Q|| 2,
ie,|Z .2, =|Q|.

A permutation group &2 action on Q is said to be semi-regular if &2, = {15} for

Ya € Q. Furthermore, if &7 is transitive, Such a semi-regular group is called regular.

Corollary 2.2.1 Let & be a regular group action on Q. Then || = |Q).

Particularly, we know the following result for Abelian transitive groups.

Theorem 2.2.2 Let & be a transitive group action on Q. If it is Abelian group, it must

be regular.

Proof Leta € Qand r € &. Then (£,)" = &= by Theorem 2.1.1(2). But &, <1 &
because & is Abelian. We know that &2, = & for Yr € &2. By assumption, & is
transitive. It follows that if ™ = a, then b™ = b for Vb € Q. Thus &, = {1 »}. (]

2.2.2 Multiply Transitive Group. Let &7 be a permutation group acting on Q =
{al’ az,: -+, an} and

O = {(aar, - apla; € Q.1 <i <k).
Defne & act on QF by
(a1, a2, ap)" = (a], a3, -+, a;), me .

If & acts transitive on QF, then Z is said to be k-transitive on Q. The following result is

a criterion on multiply transitive groups.

Theorem 2.2.3 For an integer k > 1, a transitive permutation group & acting on € is

k-transitive if and only if for a fxed element a € Q, &, is (k — 1)-transitive on Q \ {a}.

Proof Assume that & is k-transitive acting on ( and

(ar,az, -+, a5-1), (b1, ba, -+, biy) € Q\ {al.

Then a; # a # b; for 1 <i < k— 1. Notice that & is k-transitive. There is a permutation
7 such that

T
a, a ar1.aY =(b:.br.---.b._1.0).
(1 25 ) kl’) (1’ 25 ) kl,)
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Thus 7 fxes @ and maps (a1, ay, - - -, a,_1) to (by, ba, - - -, by_1), which shows that &, acts
(k — 1)-transitively on Q \ {a}.

Conversely, let 2, is (k—1)-transitive on Q\{a}, (a1, as, - - -, ar), (b1, ba, - - -, by) € QF.
By the transitivity of 22 acting on Q, there exist elements 7, 7" € & such that af = a and

b’f' = a. Because Z, is (k — 1)-transitive on Q \ {a}, there is an element o~ € &, such that
N N /1 a1
((02),"',(ak)):(b2 "",bk )

—1 . ’ . . ’
Whence, a7 = b7 ', ie., a’’™ = b; for2 <i < k. Since o € &,, we know that a["" =

o

a’™ =" = b,. Therefore, the element non’ maps (ay,as, -+, ag) to (by,by,---,by). U

A simple calculation shows that
Q9 =n(n-1)---(n—k+1).
Applying Theorems 2.2.1 and 2.2.3, we get the next conclusion.

Theorem 2.2.4 Let &2 be k-transitive on Q. Then

nn—1)---(n—k+1)|2|.

2.2.3 Sharply k-Transitive Group. A transitive group &2 on Q is said to be sharply
k-transitive if & acts regularly on QF, i.e., for two k-tuples in QF, there is a unique permu-
tation in % mapping one k-tuple to another. The following is an immediately conclusion
by Theorem 2.1.1.

Theorem 2.2.5 A k-transitive group &7 acting on Q with |Q| = n is sharply k-transitive
ifand only if | | =n(n—1)---(n —k+1).

These symmetric and alternating groups are examples of multiply transitive groups

shown in the following.

Theorem 2.2.6 Let n > 1 be an integer and Q = {1,2,---,n}. Then
(1) Sq is sharply n-transitive;
(2) If n = 3, the alternating group Aq is sharply (n — 2)-transitive group of degree n.

Proof For the claim (1), it is obvious by def nition. We prove the claim (2). First, it
is easy to f nd that 4, is transitive. Notice that if Q = {1, 2, 3}, Ag is generated by (1, 2, 3).

It is regular and therefore sharply 1-transitive. Whence, the claim is true for n = 3. Now
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assume this claim is true for all integers< n. Let n > 4 and defne H to be the stabilizer
of n. Then H acts on the set Q \ {n}, produce all even permutations. By induction, H is
(n — 3)-transitive group on Q \ {n}. Applying Theorem 2.2.3, Ag is (n — 2)-transitive. Thus
|Aq| = %(n!) =n(n—1)---3. By Theorem 2.2.5, it is sharply (n — 2)-transitive. 0

More sharply multiply transitive groups are shown following. The reader is referred
to references [DiM1] and [Rob1] for their proofs.

Sharply 2, 3-transitive group. Let F' be a Galois feld GF(q) with g = p™ for a prime
number p. Defne X = F'U {oo} and think it as the projective line consisting of ¢ + 1 lines.
Let L(g) be the set of all functions / : X — X of the form

ax+b
cex+d

Jfx) =

for a,b,c,d € F with ad — bc # 0, where the symbol oo is subject to rulers x + co =
00, co/co = 1, etc. Then it is easily to verify that L(g) is a group under the functional
composition. Defne H(q) to be the stabilizer of co in L(g), which is consisting of all
functions x — ax + b, a # 0. Then H(q) is sharply 2-transitive on GF(q) of degree g and
L(q) is sharply 3-transitive on F' U {oo} of degree g + 1.

Particularly, if ¢ = d = 0, i.e., for a linear transformation ¢ and a vector v € F¥, we

def ne the affine transformation
. pd d N
tyv  F* = F* by t,5:u—ua+v.

Then the set of all ¢, form the affine group AGL,(g) of dimensional d > 1.
Sharply 4, 5-transitive group Let Q ={1,2,3,---,11,12} and
¢ =1(4,56)(7,8,9)(10,11,12), x =(4,7,10)(5,8,11)(6,9,12),
v =(57,6,10)8,9,12,11), w=1(5,8,6,12)(7,11,10,9),
m = (1,4)(7,8)(9,11)(10,12), m = (1,2)(7,10)(8, 11)(9, 12);
my =(2,3)(7,12)(8,10)(9, 11).

Defne My, = {p, x, ¥, w, my, 1, m3) and M1, = (@, x, ¥, w, Ty, Tp), called Mathieu groups.
Then M, is sharply 5-transitive of degree 12 with order 95040, and M, is sharply 4-
transitive of degree 11 on Q \ {3} with order 7920.
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Theorem 2.2.7(Jordan) For an integer k > 4, let &7 be a sharply k-transitive group of
degree n which is neither symmetric nor alternating groups. Then either k = 4 andn = 11,
ork=>5andn =12

Combining Examples 2.2.1, 2.2.2 with Theorem 2.2.7, we know that there are sharply

k-transitive group of fnite degree if and only if 1 < k£ < 5.

§2.3 AUTOMORPHISMS OF GROUPS

2.3.1 Automorphism Group. An automorphism of a group (¢; o) is an isomorphism
from ¢ to ¢. All automorphisms of a group form a group under the functional compo-
sition, i.e., O¢(x) = 6(g(x)) for x € 4. Denoted by Aut¥, which is a permutation group

action on ¥ itself. We discuss this kind of permutation groups in this section.

Example 2.3.1 Let¥ = {e,a, b, c} be an Abelian 4-group with operation - determined by
the following table.

e a c
el e a c
ala e c¢ b
b| b ¢ e a
clc b a e
Table 2.3.1

We determine the automorphism group Aut¥. Notice that e is the identity element of
¢. By property (H1) of homomorphism, if 6 is an automorphism on ¢, then 6(e) = e.

Whence, there are six cases for possible 8 following:

Sb
Il
—
[N
Q Q
[S T
————
N
Il
—
[N
Q Q
o o
—————
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e a b c e a b c
95 = ’ 96 = .
e ¢ a b e ¢ b a
It is easily to check that all these 6;, 1 < i < 6 are automorphisms of (¢;-). We get the

automorphism group
Autg = {919 923 933 949 959 96}'

Let x,g € 4. An element x4 = g7 o x o g is called the conjugate of x by g. Defne a
mapping g” 1 4 — 4 by g7(x) = x¢. Then (xoy)* = x¥0)¥ and g"(¢™")" = lauw = (¢7')'g".
So g" € Aut¥, i.e., an automorphism on (¢;0). Such an automorphism g" is called
the inner automorphism of (¢; o) induced by g. It is easily to check that all such inner

automorphisms form a subgroup of Aut¥, denoted by Inn¥.

Theorem 2.3.1 Let (¢;0) be a group. Then the mapping T : ¢ — AwY defned by
7(x) = g'(x) = x% for Vx € ¢ is a homomorphism with image Inn and kernel the set of

elements commutating with every element of 4.

Proof By def nition, we know that x&°"" = (goh)'oxo(goh) = h'log-loxogoh =
(x¢)". So (g o h)" = g"h7, which means that 7 is a homomorphism.

Notice that g" = 14 is equivalent to g 'oxog = x by def nition. Namely, gox = xog
for Vx € ¢. This completes the proof. 0

Def nition 2.3.1 The center Z(¢9) of a group (¢; o) is def ned by
Z(9)={xe¥Yxog=gox forallge¥Y}.

Then Theorem 2.3.1 can be restated as follows.

Theorem 2.3.2 Let (¢;0) be a group. Then Z(9) <Y and G |Z(¥) ~ Inn¥Y.

The properties of inner automorphism group Inn¥ induced it to be a normal sub-

group of Aut¥ following.

Theorem 2.3.3 Let (¢;0) be a group. Then InnY <1 Aut¥.

Proof Let g € &4 and h € Aut¥. Then for Yx € ¥,

hg'h™ (x) = hg'(h™'(x)) = h(g™' o h™'(x) 0 g)

h(g) o x 0 h(g) = x"® € Inn¥.
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Whence, Inn¥ <1 Aut¥. O

Def nition 2.3.2 The quotient group Aut¥ /Inn% is usually called the outer automor-
phism group of a group (¢ o).

Similarly, we can also consider the conjugating relation between subgroups of a

group.

Def nition 2.3.3 Let (¢;-) be a group, ¢, 7°<19. Then F4 is conjugated to ¢ if there
is x € G such that
xS x = .

Def nition 2.3.4 Let (¥;0) be a group, 7€ <19Y. The normalizer Ny(F) of 7 in (¥ 0)
is def ned by
Ny(H)={xebG|x ' o ox=).

Theorem 2.3.4 The set of conjugates of 7 in 4 has cardinality |9 : Ny(F¢)|.

Proof Notice that |4 : Ny(77)| is the number of left cosets of Ny(77°) in 4. Now if
a'os#f oa=b"0o# ob,then

boa'o# oaob™ = .

That is,
(@aob)y o o(aoh)=H.

By def nition, a o b € Ng(5). This completes the proof. U

Def nition 2.3.5 Let (¥;0) be a group, 7€ 1Y and a,b € 4. If there is an element x € G
such that x™' oa o x = b, a and b is called to be conjugacy. The centralizer Zy4(a) of a in
9 is def ned by

Zg(a) = lge¥lg" caog=al).

It is easily to check that Zy(a) is a subgroup of ¥.

Theorem 2.3.5 Let (¢, 0) be a group and a € 4. Then the number of conjugacy elements
toain is |9 . Zy(a)|.

1

Proof We only need to prove thatif x ' caox =yl oaoy, thenxoy™! € Zy(a). In

1

fact,if x 'oaox =y 'oagoy, thenyox'ogoxoy=a,ie,(xoy ) loao(xoy™)=a.

Therefore, x o y~! € Zy(a). O



52 Chap.2 Action Groups

A relation between the center and normalizer of subgroup of a group is determined

in the next result.

Theorem 2.3.6 Let (¢;0) be a group, 7 < 9. Then Z(F) < Ny(F).

Proof 1f g € Ny(H), let g" denote the mapping h — g~! o h o h. It is clear an
automorphism of 5#. Furthermore, 7 : Ny(77) — Auts is a homomorphism with
kernel Z(.77). Then this result follows from Theorem 1.3.3. U

2.3.2 Characteristic Subgroup. Let (¢;0) be a group, 77 <% and g € Aut¥. By
def nition, there must be g(¢) =~  but g(7) # ¢ in general. If g(7) = 5 for
Vg € Aut¥, then such a subgroup is particular and called a characteristic subgroup of
(¢4; o). For example, the center of a group is in fact a characteristic subgroup by Def nition
2.3.1.

According to the def nition of normal subgroup, For V4 € Inn¥, a subgroup .7 of
a group (¥; o) is norma if and only if 4(77) = S for Vh € Inn¥. So a characteristic

subgroup must be a normal subgroup. But the converse is not always true.

Example 2.3.2 Let % = {e,a,a*,a’,b,b-a,b-a* b -a’} be a dihedral group of order 8

with an operation - determined by the following table.

e a a’ a’ a-b a*- 3

e e a a’ a’ a-b a-b &

a a a’ a’ e a-b &b & b
a’ a’ a’ e a a-b a-b b a-b
a’ a’ e a a? a-b b a-b a*

b b a-b a*-b ab a e a’
a-b| a-b b a’ a’ a’ a’ a e
a*-b| a*-b a-b b a - e a’ a’ a
a-b| a-b a-b a-b b a e a’ a’

Table 2.3.2

Notice that all subgroups of g are normal and «a is a unique element of degree 2. So
(<a2> ; 0) is a characteristic subgroup of Z.

Now let (b) = {e,b,a?,a* - b}. Clearly, it is a subgroup of Z. We prove it is not a
characteristic subgroup of Z. In fact, let ¢ :  — % be a one-to-one mapping def ned by
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e—e a—a, at—a’, a@—a,
b—a-b, a-b—>ad-b a-b—>a-b a-b—b.
Then ¢ is an automorphism. But
d((bY) ={e,a-b,a*,a’ - b} # (b).
Therefore, it is not a characteristic subgroup of Z.

The following result is clear by def nition.

Theorem 2.3.7 If9) < 9 is a characteristic subgroup of ¢ and %, < %, a characteristic
subgroup of 9\, then %, is also a characteristic subgroup of 4.

2.3.3 Commutator Subgroup. Let (¢;0) be a group and a,b € ¢. The element
[a,b]=a'oboaoh

is called the commutator of a and b. Obviously, a group (¢; o) is commutative if and only
if [a,b] = 1g for Ya,b € 4. The commutator subgroup is generated by all commutators
of (¢; o), denoted by ¢’ or [¢, 9], i.e.,

4" =([a,b]|a,be b ).

Theorem 2.3.8 [S,,S,] =4,.

Proof Notice that we can always represent a permutation by product of involutions.
By the def nition of commutator, it is obvious that [S,,, S ,] € 4,. Now for Vg € 4, we can
always write it as g = (ay,1, ds,1)(as,2, A5,2) - = (A5, m» Asym) With m = 0(mod2) by def nition,

where a,; € {1,2,---,n} fori = 1,2 and 1 < j < m. Calculation shows that
(i, DU k) = G, k)T, DU R, 7) = [ k), @ )]
ifi # j, j # kand
(@, Nk, D) = (@, NG DG, k), D) = [ k), (@ DI D), (7, 6)]

if i, j, k, [ are all distinct. Whence, each element in 4, can be written as a product of
elements in [S,,S,],1.e., 4, C[S,,S,]. O
A commutator subgroup is always a characteristic subgroup, such as those shown in

the next result.
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Theorem 2.3.9 Any commutator subgroup of a group (¢; o) is a characteristic subgroup.

Proof Let ¢ € 4. We prove ¢(94’) = 94’. In fact, for Ya, b € &, we know that

¢([a,b]) = ¢(a”' ob™ 0aob)
= d@)og(b™) o ¢(a) o ¢(b)
= ¢ (@) 0 ¢ (b) © #(a) o ¢(b) = [¢(a). $(D)].
Whence, ¢’ is a characteristic subgroup of (¢ o). U

Corollary 2.3.1 Any non-commutative group (¢; o) has a non-trivial characteristic sub-
group.

Proof 1f (¢;0) is non-commutative, then there are elements a,b € ¢ such that

[a, b] # 1. Whence, it has a non-trivial characteristic subgroup ¢” at least. U

The most important properties of commutator subgroups is the next.

Theorem 2.3.10 Let (¢;0) be a group. Then

(1) The quotient group 9|9’ is commutative;
(2) The quotient group G | 7€ is commutative for 7€ <\ if and only if 7€ > 4’

Proof (1) Leta,b € 4. Then

(aog')_1 o(bog’)_l o(@ao¥)o(bo%¥")
=a'o@ob oW oqo¥ obo¥’
:(a_lob_loaob)og’:g’.

Therefore,a0 9’ ocbo9d’ =bo¥9 cao¥’.
(2) Notice that ¢ /.7 is commutative if and only if for a,b € ¥,

ao s obo st =bo ocao .
This equality is equivalent to
(@ao ) o(bost) o(ao H)o(bo )=,

ie., (@'obloaob)o# = #. Whence, we fnd that[a,b] =a'oboaobe 2,
which means that 77 > ¥4’ O
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§2.4 P-GROUPS

As one applying felds of permutations to abstract groups, we discuss p-groups in this

section.

2.4.1 Sylow Theorem. By defnition, a Sylow p-subgroup of a group (¢, o) with |¢| =
p*n, (p,n) = 1 is essentially a subgroup with maximum order p®. Such p-subgroups are
important for knowing the structure of f nite groups, for example, the structure Theorems
1.4.4-1.4.6 for Abelian groups.

Theorem 2.4.1(Sylow’s First Theorem) Let (¢;0) be a fnite group, p a prime number
and |9\ = p*n, (p,n) = 1. Then for any integer i, 1 < i < a, there exists a subgroup of

order p', particularly, the Sylow subgroup always exists.

Proof  The proof is by induction on [¢|. Clearly, our conclusion is true for n = 1.
Assume it is true for all groups of order< p“n.

Denoted by z the order of center Z°(¥). Notice that Z(¥) is a Abelian subgroup
of 4. If p|z, there exists an element a of order p by Theorem 1.4.6. So (a) is a normal
subgroup of ¢ with order p. We get a quotient group ¢/ (a) with order p*~'n < n.
By the induction assumption, we know that there are subgroups P;/ (a) of order p', i =
1,2,---,a-1in¥/{a). So P;, i=1,2,---,a — 1 are subgroups of order p’*! in 4.

Now if p [z, let Cy, Cs, - - -, C, be conjugacy classes of 4. Notice that p[|¢| but p /z.
By

4 =12 @)+ ) ICi,
i=1
we know that there must be an integer /, 1 <i < s such that p f|C)|. Let b € C;. Then

Ny(b) ={ge¥lg" obog=b)
is a subgroup of ¢4 with index
19« Z4(b) = h; > 1.

Since p* and Z%(b) < p®n, by the induction assumption we know that there are subgroups
of order p' for 1 <i < ain Z4(b) < 9. O

Corollary 2.4.1 Let (¢;0) be a fnite group and p a prime number. If p||Y|, then there

are elements of order p in (¢; o).
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Theorem 2.4.2(Sylow’s Second Theorem) Let (¢;0) be a fnite group, p a prime with
pli4|. Then

(1) If n, is the number of Sylow p-subgroups in &, then n, = 1(modp);
(2) All Sylow subgroups are conjugate in (¢ o).

Proof Let P, Py, P,,---, P, be all Sylow p-subgroups in ¢. Notice that a conjugacy
subgroup of Sylow p-subgroup is still a Sylow subgroup of ¢. For Ya € ¢, defne a

permutation

P P, P,

g, =
4 1

a'oPoa a'oPyoa --- a'oP,oa

and S, = {o,la € P}. Then §, is a homomorphic image of P. It is also a p-subgroup.

If Py is invariant under the action S, for an integer 1 < k < r, thenao P, = P, oa for
VYa € P. Whence, PP; is a p-subgroup of ¢. But P, P, are Sylow p-subgroups of 4. We
get PP, = P = Py, contradicts to the assumption. So all P, 1 < k < r are not invariant
under the action of § , except P. By Theorem 2.1.1, we know that |Pf "INSpl forl <k <7,
Let Pfl", sz", cee P‘,i" be a partition of {Py, P,,-- -, P,}. Then

t
n,=1+r=1 +Z|P‘Z"| = 1(modp).
i=1

This is the conclusion (1).

For the conclusion (2), assume there are s conjugate subgroups to P. Similarly, we
know that s = 1(modp). If there exists another conjugcy class in which there are s;
Sylow p-subgroups, we can also fnd s; = 1(modp), a contradiction. So there are just
one conjugate class of Sylow p-subgroups. This fact enables us to know that all Sylow

subgroups are conjugate in (¢; o). U
Corollary 2.4.2 Let P be a Sylow p-subgroup of (¢; o). Then

(1) P <9 if and only if P is uniquely the Sylow p-subgroup of (¢; o),

(2) P is uniquely the Sylow p-subgroup of N4 (P).
Theorem 2.4.3(Sylow’s Third Theorem) Let (¥;0) be a fnite group, p a prime with
plI¥|. Then each p-subgroup A is a subgroup of a Sylow p-subgroup of (¢; o).

Proof Let o, be the same in the proof of Theorem 2.4.2 and S, = {o,la € A4}.
Consider the action of S 4 on Sylow p-subgroups {P, Py, - - -, P,}. Similar to the proof of
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Theorem 2.4.2(1), we know that |PfA|||SA| for 1 < k < r. Because of r = O(modp).
Whence, there are at least one obit with only one Sylow p-subgroups. Let it be P;. Then
forVae€ A,a™' o P;oa = P,. So AP, is a p-subgroup. Notice that P; < AP;. We get that
AP, = P, i.e., A <P, O

2.4.2 Application of Sylow Theorem. Sylow theorems enables one to know the p-

subgroup structures of fnite groups.

Theorem 2.4.4 Let P be a Sylow p-subgroup of (; o). Then

(1) If Ny(P) < 7 <Y, then 7 = Ngy(FC),
2) If N < ¥, then PN N is a sylow p-subgroup of (N;o) and PN/N is a Sylow
p-subgroup of (G/N; o).

Proof (1) Let x € Ny(37). Because P < H <INy (), we know that x"' o Pox < 7.

o P o x are both Sylow p-subgroup of #. By Theorem 2.4.2, there is

Clearly, P and x~
an element & € # such that x™' o Pox = h™' o Po h. Whence, x o h™! € Ny(P) < 7.
Sox € A, 1.e., H = Ny(F).

(2) Notice that PN is a union of cosets a o P, a € N and N a union of cosets ho (PN

N),b € N. Now leta,b € N. By
aoP=boPoa'lobePoa'lobe NNPoaoNNP=boNNP,

we get that [V : PN N| = |PN : P|, which is prime to p. Since N N P, NP/N are respective
p-subgroups of N or ¢ /N by Theorem 1.2.6, this relation implies that they must be Sylow
p-subgroup of N or ¢ /N. U

Theorem 2.4.5(Fratini) Let N << and P a Sylow p-subgroup of (N;o). Then 4 =
Ny (P)N.

Proof Choose a € 4. Since N <1¥, we know that a™! o P o a < N, which implies
that a™! o P o a is also a Sylow p-subgroup of (N; o). According to Theorem 2.4.2, there
ish € Nsuchthatb' o(a! o Poa)ob = P. Whence, ao b € Ny(P), i.e.,a € Ny(P)N.
Thus 4 = Ny(P)N. O

As we known, a f nite group with prime power p® for an integer « is called a p-group

in group theory. For p-groups, we know the following results.

Theorem 2.4.6 Let (¢, 0) be a non-trivial p-group. Then Z(9) > {14}.
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Proof Let |9| = p™, m an integer and C; = {1}, C,, - -+, C, conjugate classes of 4.
By

Ylcl=141=p",
i=1
we know that |C;| = 1 or a multiple of p by Theorem 2.4.5. But |Cy| = 1. Whence, there

are at least an integer k, 1 < k < s such that |Cy| = 1, i.e., C; = {a}. Then a € Z(¥9). O

Theorem 2.4.7 Let p be a prime number. A group (4; o) of order p or p* is Abelian.

Proof 1f|¥9| = p, then 4 = (a) with a” = 14 by Theorem 1.2.6.

Now let || = p?. If there is an element b € ¢4 with o(b) = p?, then 4 = (b), a cyclic
group of order p? by Theorem 1.2.6. If such b does not exist, by Theorem 2.4.6 Z(¥4) >
{14}, we can always choose l¢ # a € Z(¥) and b € 4 \ Z(¥). Then o(a) = o(b) = p by
Theorem 1.2.6. We get that Z(¥) = (a) and ¥ /Z(¥) = (b o Z(¥)). Whence, & = (a, b)
witha o b = b o a and o(a) = o(b) = p. So it is Abelian. OJ

For groups of order pg or p*q, we have the following result.

Theorem 2.4.8 Let p, q be odd prime numbers, p # q. Then groups (¢, o) of order pq or

p*q are not simple groups.

Proof By Sylow’s theorem, we know that there are n,, = 1(modp) Sylow g-subgroups
Pin(¥;0). Letn, = 1 + kp for an integer k.

If|Y| = pq, p > q, we get that p(1 + kp)|pg, i.e., 1 + kplq. So k = 0 and there is only
one p-subgroup P in (¢;0). We know that P < ¢. Similarly, if p < ¢, then the Sylow
g-subgroup Q <1¥. So a group of order pq is not simple.

If|9| = p*q and p > g, then 1 +kp|q implies that k = 0, and the only one p-subgroup
P <1%9. Otherwise, p < g, we know 1 + Ig|p*. Notice that p < g, we know that n, = 1 or
p*. Butifn, = p?, ie.,lqg = p* — 1, we get that g|(p — 1)(p + 1). Whence, g = p+ 1. It
is impossible since p and p + 1 can not both be prime numbers. So n, = 1. Let Q be the
only one Sylow g-subgroup in (¥¢; o). Then Q <1%. Therefore, a group of order p?q is not
simple. 0

. 4\ .
2.4.3 Listing p-Group. For listing p-groups, we need a symbol (—), i.e., the Legendre
p

symbol in number theory. For a prime p [A, the number (ﬁ) is def ned by

(/1) ~ { 1, if x> = A(modp) has solution;

p) | -1, ifx?= A(modp) has no solution.
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We have known that
A p-
(—) = ﬂTl(modp)
p

and the well-known Gauss reciprocity law

e
pP/\q

for prime numbers p and ¢ in number theory, .

Completely list all p-groups is a very difficult work. Today, we can only list those of
p-groups with small power. For example, these p-groups of orders p” for 1 < n < 4 are
listed in Tables 2.4.1 — 2.4.4 without proofs.

19| p-group Abelian?
p (1) <a), a’=lg Yes
P (1) (ay, a”” = lg4 Yes
(2)<¢a,b), a? =b? =1y, aob=boa Yes
(1) {a), a” =lg4 Yes
(2) <a, b), apzszzlg,aOb:boa Yes
3)<a,b,c), a> =b? =c’ =1y, aob=boa,
aoc=coa,boc=cob Yes
P (4) {a, by, a” =b? =14, b oaob = a'*r No
(p#2)| 5)<a,b,c),a’ =b° =cP =ly,aob=boaoc,
coa=aoc,cob=boc No
Table 2.4.1

For p = 2, these 2-groups of order 2* are completely listed in Table 2.4.2.

19| | 2-group Abelian?
(D <a), a® =1y Yes
(2){a,by, a*=b*> =1y, aob=hoa Yes
25 | 3){a,b,c), a*=b*=c*=1y, aob=boa,
aoc=coa,boc=cob Yes
(4) Qs ={a,b),a* =14y, b* =a*b ' oaob=aqa’! No
(5) Dg ={a,b),a* =b* =1y, b ' caob=a"" No

Table 2.4.2
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9] | p-group Abelian?
(1) <a), a*= Yes
(2) <a, b), a” —bp ly, Yes
P Gy, o = b =1y, Yes
p#2| @ {ab,c), a’ =b" =cf = 1y, Yes
(5)<a,b,c,d), a? = b = cP =dP = 14{a,b),
a? = bP = ly, Yes
() {a,by, a” =bP =1y, b ' oaob=a*" No
(2){a, by, a” =b” =1y, b oaob = a'*r No
(3) (a, b, c), a’ = b =P = lg, [a,b] =[a,c] = 1g
[b,c] = a” No
(4)<a,b,c), a’ = bP =P = lg, [a,b] =[b,c] = 1y
[a,c] = a” No
(5) <a, b, c) a’ = b =P = lg, [a,b] =[a,c] = g,
[a,c] = No
p* (6) {a, b, c), ap2 =b’=cP=1gy,b'oaob=aqgl*?
p#2 cloaoc=aob,c'oboc=b No
(7) {a,b,c), a” =bP =1y, cP =aP, b oqob=a'*?
cloaoc=aob,c'oboc=b No
(8) (a, b, c), a” = bP = ly, c? = a® (;):—1
cloaoc=aob,c'oboc=b,b"'oaob=a"?, No
9)<a,b,c,d), a’ =bhP =cP =dP = lg, [c,d] = a,
[a.b] = [a,c] = [a.d] = [b,c] = [b,d] = 14. No
(10-1)<a,b,c,d), p>3,a’ =bP =cP =dP = lg,
[a,b] = [a,c] =[a,d] = [D,c] = 1g,
d'obod=aob,d'ocod=boc No
(10-2) {a,b,c), p=3,a° =b> = = 1y, [a,b] = 1y,
cloaoc=aob,cloboc=a>ob No
Table 2.4.3

For groups of order 2", the situation is more complex. For example, there are 6 types
for n = 3, 14 types for n = 4, 31 types for n = 5 and 267 types for n = 6. Generally, we

do not know the relation for the number of types with n. We have listed 2-groups of order
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23 in Table 2.4.2. Similarly, these non-Abelian 2-groups of order 2* are listed in Table
2.4.4 following.

9] | 2-group Abelian?
() {a,b), a®=b>=1y,b' caob=aqa! No
(2){a,b), a® =b*>=1y,b ' oaob=ad’ No
(3){a,b), a® =b*>=1y,b' oaob=a’ No
4){a,b), a® =1y, b* =a*, b ' caob=a’! No

24| (5){a,b), a*=b*=1y,b'caob=a"' No
(6)(a,b,c), a* =b*=c* =1y, b ' oaob=a,

cloaoc=a, [b,c]=ad* No
(7){a,b,cy, a* =b*=c* =1y, b ' oaob=a,
cloaoc=al, [bc]=d No
(8)(a,b,c), a* =b*=1y,c* =a*, b oaob=a,
cloaoc=al, [bc]=1y No
9){a,b,c), a*=b*>=c*>=1y,b ' ocaob=a,
cloaoc=aob, [b,c]=ly No
Table 2.4.4

A complete proof for listing results in Tables 2.4.1-2.4.4 can be found in references,

for example, [Zhal] or [Xuml].

§2.5 PRIMITIVE GROUPS

2.5.1 Imprimitive Block. Let & be a permutation group action on Q. A proper subset
A C Q, |A] = 2 is called an imprimitive block of &7 if for Vo € &, either 4 = A"
or AN A" = (. If such blocks 4 exist, we say & imprimitive. Otherwise, it is called

primitive, i.e., & has no imprimitive blocks.
Example 2.5.1 Let & be a permutation group generated by
g=1(1,2,3,4,5,6) and h=(2,6)3,5).

Notice that &2 is transitive on Q = {1,2,3,4,5,6} and hg = g°h. There are only 12
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elements with form g’h’", where [ =0,1,2,3,4,5and m =0, 1. Let 4 = {1,4}. Then
{1,4) = {2,5}, (1,4) = {3,6),

{1,4) = {1,4}, {1,4)" = {1,4).

Whence, A" = Aor A" NA =0 for VT € £, 1i.e., A is an imprimitive block.

The following result is followed immediately by Theorem 2.1.1 on primitive groups.

Theorem 2.5.1 Let & be a transitive group actin on Q, A an imprimitive block of &7 and
H the subgroup of all win &7 such that A™ = A. Then

(1) The subsets A™, T € & : H form a partition of ;
(2) 19 = 4|l : H|.

Proof Leta € Q and b € 4. By the transitivity of &2 on Q, there is a permutation
m e & suchthata = b". Writingn = or witho € Hand 7 € & : H, we fnd that
a = (b7)" € A". Whence, Q is certainly the union of 47,7 € H. Now if A" N A™ # 0, then
AN(A7)" # 0. Consequently, 4 = (A7) and 7't € H. But 7,7 € & : H, we get that
T=7.S0A", 7€ % : H is apartition of Q. Thus we establish (1).

Notice that |[4]| = |47| for T € &7 : H. We immediately get that |Q| = |4||Z? : H| by
(D). O

2.5.2 Primitive Group. Applying Theorem 2.3.1, the following result on primitive

groups is obvious.

Theorem 2.5.2 A transitive group of prime degree is primitive.

These multiply at least 2-transitive groups constitute a frequently encountered prim-

itive groups shown following.

Theorem 2.5.3 Every 2-transitive group is primitive.

Proof Let & be a 2-transitive group action on Q. If it is imprimitive, then there
exists an imprimitive block 4 of &?. Whence we can fnd elements a,b € A and c € Q\ A.
By the 2-transitivity, there is an element 7 € &2 such that (a, b)" = (a,c). Soa € AN A”.
Consequently, 4 = A™. But this will implies that ¢ = ™ € A4, a contradiction. U

Let (¢;0) be a group. A subgroup 57 < % is maximal if there are no subgroups
K < ¢ suchthat 777 < % < &. The next result is a more valuable criterion on primitiv-

ity of permutation groups.
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Theorem 2.5.4 A transitive group & action on Q is primitive if and only if &, is maximal
forVa € Q.

Proof 1f &2, is not maximal, then there exists a subgroup 7 of & such that &2, <
A < Z. Defne a subset of Q by

A ={a"|r € ).

Then |A| > 2 because of 7 > £2,. First, if A = Q, then for Vr € &2 we can fnd
an element o € . such that ¢ = a°. Thus no™! € £,, which gives n € # and
= . Now if there is 1 € & with A N A" # 0 hold, then there are 07|, 0, € .77 such
that ™ = ¢°?". Thus o' € &, < . Whence, n € J, which implies that 4 = A4".
Therefore, A4 is an iprimitive block and & is imprimitive.

Conversely, let 4 be an imprimitive block of &?. By the transitivity of & on Q, we

can assume that a € 4. Defne

H ={ne PA" = A,n e Z}.

Then 7 < 9. For b, c € A, there is a w € ¢4 such that b™ = ¢. Thus ¢ € A N A™. Whence,
A = A" and n € J by defnition. Therefore, 7 is transitive on 4. Consequently,
A=A : )| Nowifre P, thena=a" € ANA". So A = A" and & € 7. Thereafter,
P, < A and P, = . Applying Theorem 2.1.1, we know that [Q] = |&? : &,| and
|A| = |7 . )| = | . P,|. So P, < H < P and &, is not maximal in &, O

Corollary 2.5.1 Let & be a transitive group action on Q. If there is a proper subset
A C Q, |A| = 2 such that

ac€A,deAd=>A4"=4

forme P, then & is imprimitive.

Proof By Theorem 2.5.4, we only need to prove that &, < &y < &, i.e., &, is
not maximal of &. In fact, &, < &, is obvious by def nition. Applying the transitivity
of &, for Vb € A there is an element o € & such that a” = b. Clearly, o € &4, but
o ¢ P, Whence, &, < Py.

Now let ¢ € Q\ A. Applying the transitivity of & again, there is an element 7 € &
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such that a” = c. Clearly, T € 4 but 7 ¢ ¢ 4,. So we fnally get that
'@a < g@{A} < c@,

i.e., &, is not maximal in &. O

Theorem 2.5.5 Let & be a nontrivial primitive group action on Q. If N <1 P, then N

is transitive on Q.

Proof Leta € Qand 4 = {a"|r € 4}. Notice that (¢”)" = (a*)” and 0™ € A if
ne P, o€ N. Thus A" is an obit containing a”. Whence, A = A" or a N A™ = (), which
implies that 4 is an imprimitive block. This is impossible because & is primitive on Q.
Whence, 4 = Q, i.e., A is transitive on Q. O

Theorem 2.5.5 also implies the next result for imprimitive groups.

Corollary 2.5.2 Let & be a transitive group action on Q with a non-transitive normal

subgroup N . Then & is imprimitive.

The following result relates primitive groups with simple groups.

Theorem 2.5.6 Let &2 be a nontrivial primitive group action on Q. If there is an element
x € Q such that &, is simple, then there is a subgroup N <1 & action regularly on Q

unless & is itself simple.

Proof 1f & is not simple, then there is a proper normal subgroup .4~ <1 &. Consider
A N P, which is a normal subgroup of &2,. Notice that &, is simple. We know that
N NP, =P, or{lz}

Now if /' NP, = P, then &, < 4. Applying Theorem 2.5.5, we know that .4 is
transitive on Q. Whence, 4 < 2, since x° = x for V¢ € 2, i.e., &, is not transitive on
Q. By Theorem 2.5.4, there must be .4 = &2, a contradiction. Whence, 4" N2, = {1 »}.
Applying the transitivity of .4#” on Q, we immediately get that .4, = {1 »} for Vy € Q, i.e.,
A acts regularly on Q. O

2.5.3 Regular Normal Subgroup. Theorem 2.5.5 shows the importance of normal
subgroups of primitive groups. In fact, we can determine all regular normal subgroups of

multiply transitive groups. First, we prove the next result.

Theorem 2.5.7 Let (¢; o) be a nontrivial f nite group and & = Aut¥.
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(1) If & is transitive, then (¢ 0) is an elementary Abelian p-group for some prime

(2) If & is 2-transitive, then either p = 2 or |9| = 3;
(3) If & is 3-transitive, then |9| = 4;
(4) & can not be 4-transitive.

Proof (1) Let p be a prime dividing |¢|. Then there exists an element x of order
p by Corollary 2.4.1. By the transitivity we know that every element in ¢ \ {14} is the
form x", 7 € & and hence of order p also. Thus ¢ is a fnite p-group and its center
Z(%) is nontrivial by Theorem 2.4.6. By defnition, Z(%) is characteristic in (¢; o) and
thus is invariant in ¢. Applying the transitivity of &7 enables us to know that Z(¥¢) = ¢.
Whence, ¢ is an elementary Abelian p-groups.

(2)If p > 2, let x € & with x # 14. Thus x # x~!. If there is also an element y € ¥,
y # lg, x, x7!, then the 2-transitivity assures us of a 7 € £ such that (x, x™!)" = (x,y).

! a contradiction. Therefore, ¢ = {1y, x,x”'} and

Plainly, this fact implies that y = x~
14| = 3.

(3) If & is 3-transitive on 4 \ {14}, the later must has 3 elements at least, i.e., |¥4| > 4.
Applying (2) we know that ¢ is an elementary Abelian 2-group. Let 7 = {1, x,y, x o y}
be a subgroup of order 4. If there is an elementz € &4 \ 77, then xoz,yozand xoyoz

are distinct. So there must be an automorphism 7 € & such that
xX"=xo0z, y' =yozand(xoy) =xoyoz

by the 3-transitivity of &7 on 4. However, these relations imply that z = 14, a contradic-
tion. Whence, 77 = 9.

(4) If & were 4-transitive, it would be 3-transitive and || = 4 by (3), which excludes
the possibility of 4-transitivity. Whence, & can not be 4-transitive. U

By Theorem 2.5.7, the regular normal subgroups of multiply transitive groups can

be completely determined.

Theorem 2.5.8 Let & be a k-transitive group of degree n with k > 2 and A a nontrivial
regular normal subgroup of . Then,

() Ifk =2, thenn = || = p"and N is an elementary Abelian p-group for some
prime p and integer m;
(2) If k = 3, then either p =2 orn = 3;
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() Ifk=4, thenn = 4,
(4) k = 5 is impossible.

Proof Clearly, 1 < k < n. Let & be a k-transitive group acting on Q with |Q| = n
and a € Q. By Theorem 2.2.3, we know that &, is (k — 1)-transitive on Q \ {a}.

Consider the action of &, on .4\ {1 »} by conjugation. Now if 7 € 4"\ {14}, by
the regularity of .4~ we know that a™ # a. Thus there is a mapping ® from .4\ {1 5} to
Q \ {a} determined by ® : 7 — a". Applying the regularity of .4~ again, we know that
O is injective. Besides, since ./ is transitive by Theorem 2.5.5, we know that ® is also
surjective. Whence,

0: A \{lzp} > Q\{d}

is a bijection.

Now let 1, # 7 € & and o € Z2,. Then we have that (¢*)” = &, or (O(r))” =
O(n”). Thereafter, the permutation representations of &2, on .4 \ {15} and Q \ {a} are
equivalent. Whence &, is (k — 1)-transitive on .4 \ {1 »}. Notice that &, < Aut.4". We
therefore know that Aut.4" is (k — 1)-transitive on .4 \ {1 »} also. By Theorem 2.5.7, we
immediately get all these conclusions (1) — (4). 0

2.5.4 O’Nan-Scott Theorem. The main approach in classif cation of primitive groups
is to study the subgroup generated by the minimal subgroups, i.e., the socle of a group

defned following.

Def nition 2.5.1 Let (¥;0) be a group. A minimal normal subgroup of (¢; o) is such a
normal subgroup (N ';0), A # {lg} which does not contain other properly nontrivial

normal subgroup of 9.

Def nition 2.5.2 Let (¢;0) be a group with all minimal normal subgroups Ny, N5, -+,
Nm. The socle soc(9) of (¥ o) is determined by

SOC(Y) = (M, Ny ).

Then we know the following results on socle of fnite groups without proofs.

Theorem 2.5.9 Let (¢;0) be a nontrivial f nite group. Then

(1) If K is a minimal normal subgroup and L a normal subgroup of (¢; o), then either
K<Lor{(K,Ly=KxL;
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(2) There exist minimal normal subgroups K, K, - - -, K,, of (¢ o) such that
soc(¥9) =K x Ky, X--- X K,;

(3) Every minimal normal subgroup K of (¢;0) is a direct product K = Ty X T, X
-+ X Ty, where these T;, 1 < i < k are simple normal subgroups of K which are conjugate
under (4, 0);

(4) If these subgroup K;, 1 < i < min (2) are all non-Abelian, then K, K>, - --, K,
are the only minimal normal subgroups of (¢; o). Similarly, if these T;, 1 < i < k in (3)

are non-Abelian, then they are the only minimal normal subgroups of K.

Theorem 2.5.10 Let & be a f'nite primitive group of S and K a minimal normal sub-
group of &2. Then exactly one of the following holds:

(1) For some prime p and integer d, K is a regular elementary Abelian group of
order p?, and soc(P) = K = Zy(K), where Zy(K) is the centralizer of K in &;

(2) K is a regular non-Abelian group, Z4(K) is a minimal normal subgroup of &
which is permutation isomorphic to K, and soc(?) = K X Zy(K),

(3) K is non-Abelian, Z4(K) = {1 »} and soc(Z?) = K.

Particularly, for the socle of a primitive group, we get the following conclusion.

Corollary 2.5.3 Let & be a f nite primitive group of S o with the socle H. Then

(1) H is a direct product of isomorphic simple groups,
(2) H is a minimal normal subgroup of Ns,(H). Moreover, if H is not regular, then
it is the only minimal normal subgroup of s, (H).

Let Q and A be two sets or groups. Denoted by Fun(Q, A) the set of all functions
from Q into A. For two groups %', ¢ acting on a non-empty set Q, the wreath product
H wrq F of & by 7 with respect to this action is def ned to be the semidirect product
Fun(Q, %) x ¢, where 7 acts on the group Fun(Q, %) is determined by

f(a) = f(@ ) forall feFun(Q, %), acQandye .
and the operation - in Fun(Q, .#") x 7 is def ned to be

(fi-g) (g2) = (ifS.g120).

Usually, the group B = {(f, 1»)|f € Fun(Q, %)} is called the base group of the wreath
product % wrq S
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A permutation group & acting on Q with the socle H is said to be diagonal type
if & is a subgroup of the normalizer .45, (H) such that & contains the base group H =
Ty x Ty X --- x T,. Then by Theorem 2.5.9 these groups Ty, T, --,T,, are the only
minimal normal subgroups of A and H <1 &. So & acts by conjugation on the set
{T',T,,---,T,}. Then we know the next result characterizing those primitive groups of

diagonal type without proof.

Theorem 2.5.11 Let & < N5, (H) be a diagonal type group with the socle H = T, X
Ty X --- X T,. Then & is primitive subgroup of S q either if

(1)ym=2;or
(2) m > 3 and the action of & by conjugation on {T,T,,- -, Ty} of the minimal

normal subgroups of H is primitive.

Now we can present the O’Nan-Scott theorem following, which characterizes the

structure of primitive groups.

Theorem 2.5.12(O’Nan-Scott Theorem) Let & be a fnite primitive group of degree n
and F€ the socle of &2. Then either

(1) A is a regular elementary Abelian p-group for some prime p, n = p" = ||
and & is isomorphic to a subgroup of the affine group AGL,,(p), or

(2) A is isomorphic to a direct power T™ of a non-Abelian simple group T and one
of the following holds:

(i) m=1and & is isomorphic to a subgroup of AutT,

(i) m > 2 and & is a group of diagonal type with n = |T|;

(iti)y m = 2 and for some proper divisor d of m and some primitive group 7 with a so-
cle isomorphic to T, 2 is isomorphic to a subgroup of the wreath product 7 wr S q, |Q| =
m/d with the product action, and n = I"'?, where [ is the degree of T ;

(iv) m > 6, I is regular and n = |T|".

A complete proof of the O’Nan-Scott theorem can be found in the reference [DiM1].
It should be noted that the O’Nan-Scott theorem is a useful result for research problems
related with permutation groups. By Corollary 2.5.3, a fnite primitive group & has a
socle H = T, a direct product of m copies of some simple group 7. Applying this result

enables one to divide a problem into the following f ve types in general:
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1. Affine Type: H is an elementary Abelian p-group, n = p” and & is a subgroup of
AGL,,(p) containing the translations.

2. Regular Non-Abelian Type: H and T are non-Abelian, n = |T|", m > 6 and the group

& can be constructed as a twisted wreath product.
3. Almost Simple Type: H is simple and & < AutH.
4. Diagonal Type: H = T™ withm > 2, n = |T|""! and & is a subgroup of a wreath

product with the diagonal action.

5. Product Type: H = 7" with m = rs, s > 1. There is a primitive non-regular group .7
with socle 77 and of type in Cases 3 or 4 such that &7 is isomorphic to a subgroup of the

wreath product .7 wr S A, |A| = s with the product action.

All these types are contributed to applications of O’Nan-Scott theorem, particularly

for the classif cation of symmetric graphs in Chapter 3.

§2.6 LOCAL ACTION AND EXTENDED GROUPS

Let (g; 5} be a multigroup with @G = Lmj 4, 0 = {01 <i < m}and Q= [nj Q, aset. An
i=1 i=1

action (¢, t) of (fg; 5‘") on Q is defned to be a homomorphism
0.0 G:0)->| JSa
i=1

such that ¢lo, : % — Sg, is a homomorphism, i.e., for Vx € Q;, ¢(h) : x — x" with

conditions following hold,
¥ = x"(0)xE, h,ge A
for any integer 1 < i < m. We say ¢|q, the local action of (¢, 1) on Q for integers 1 <i < m.

2.6.1 Local Action Group. If the multigroup (EZ; 5) is in fact a permutation group &

with Q = U Q;, we call such a & to be a local action group on Q; for integers 1 < i < m.
i=1

In this case, a local action of &7 on Q is determined by

Q7 =0, and (Q\Q)” =Q\Q

1

for integers 1 <i < m.



70 Chap.2 Action Groups

If the local action of & on Q; is transitive or regular, then we say it is a locally
transitive group or locally regular group on Q; for an integer 1 < i < m. We know the
following necessary condition for locally transitive or regular groups by Theorem 2.2.1
and Corollary 2.2.1.

Theorem 2.6.1 Let & be a group action on Q= U Q; and 7€ < P. Then € is locally

=1
transitive only if there is an integer ko, 1 < ky < m such that Q| | |7€|. Furthermore, if

it is locally regular, then there is an integer ly, 1 < ly < m such that |Q;)| = |7).

Let &2 be a group locally acting on Q, where Q U Q,. If there are integers

k,i,k > 2,1 <i < m such that the action of & on Q; is k—transmve or sharply k-transitive,
we say it is a locally k-transitive group or locally sharply k-transitive group on Q. The
following necessary condition for locally k-transitive or sharply groups is by Theorems
2.2.3-2.25.

Theorem 2.6.2 Let & be a group action on Q= U Q;and 7 < P. Then € is locally
i=1
k-transitive only if there is an integer iy, 1 < iy < m such that for Ya € Q,, 4, is

(k = D)-transitive acting on Q \ {a}. Particularly, |Q; (19| = 1)--- (1| =k + 1) | |Z].
Furthermore, if it is locally sharply k-transitive, then there is an integer jy, 1 < jo < m
such that 1,1 = 1)+ (1| - k + 1) = |72].

Theorems 2.6.1 and 2.6.2 enables us to know what kind subgroups maybe locally

action groups.

Example 2.6.1 Let & be a permutation group with
Z = {12,(1,2,3,4,5),(1,4,2,5,3),(1,5,4,3,2)

(2,3,5,4),(1,3,2,5),(1,5,4,3),(1,2,4,3),(1,4,5,2)

(2,4,5,3),(1,4,3,5),(1,2,5,4),(1,5,2,3),(1,3,4,2)

(2,5)3,4),(1,5)(2,4),(1,4)(2,3), (1,3)(4,5),(1,2)3, 5)}
Then

H ={12,(1,2,3,4,5),(1,4,2,5,3),(1,5,4,3,2)},
T ={12,(1,2,3,4),(1,3)(2,4),(1,4,3,2)}

both are subgroups of <. Notice that |77| = 5, |.7| = 4. We know that 7# and .7 are
transitive acting on Q = {1,2,3,4,5} and A = {1, 2, 3, 4}, respectively. But none of them

is k-transitive for k > 2.
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Corollary 2.6.1 Let & be a group action on Q=Q, H# < P. For integers i, 1 <i <
=1
mand k > 1, if |11 — (1] = 2) - - - (1| = k + 1) is not a divisor of | 7|, then (F; o)

is not locally k-transitive on €.

—_— —_— m
For a local action group &2 on Q with Q = (J €;, if there is an integeri, 1 <i < m
i=1

such that the action of Z on (), is primitive, we say it is a locally primitive group on Q.

The following condition for locally primitive group is by Theorems 2.5.4.

Theorem 2.6.3 Let & be a local action group on Q= U Q; with 7€ < . Then (J; 0)
i=1

is locally primitive if and only if there is an integer [, 1 < | < m such that 7€ action on

Q, is transitive and ¢, is maximal for Va € Q.

2.6.2 Action Extended Group. Conversely, let &2 be a permutation group action on €,
A a set with A N Q = (. A permutation group 27 action on Q U A is an action extended
of # on Q if (%A = A, and k-transitive extended or primitive extended if 2 action on
QUA is k-transitive for an integer k > 1 or primitive. Particularly, if |A| = 1, such a action
extended group is called one-point extended on &.

The following result is simple.

Theorem 2.6.4 Let & be a permutation group action on Q, AN Q =0, k > 1 an integer
and P an extension of & action on AU Q. If

(1) P is k-transitive on A;
(2) there are k elements xy, x,,- -+, X; € A such that for | elements y,,v,, -,y € Q,

where 1 < [ < k there exists an element 1, € P with
vi'=x; for 1 <i<l but x; =x; if |+1<i<k,

hold, then P is k-transitive extended on A U Q.

Proof Let x;,y;, 1 < i < kbe 2k elements in Q U A. Firstly, we prove that for any

choice of x1, xp, - - -, xx € QUA, there always exists an element 6 € 2 such that all xli" eA
for 1 <i<k. If xi,x5,---,x; €A, there are no words need to say. Not loss of generality,
we assume that x;, x5, -+, x; € Q but x4, X542, -+, X € A for an integer 1 < s < k. Then

by the assumption (2), there is an element 7, € 2 such that x;* e Aforl <i < sbut
X' =x;fors+1<i<k Whence, x]* € Afor 1 <i<k,i.e.,#@ =n,is for our objective.

Similarly, there also exists an element 7 € 2 such that yi €Aforl <i<k.
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Applying the assumption (1), there is an element 7 € 2 such that (x?y" = yT for

integers 1 < i < k. Consequently, we know that

=y, for 1<i<k

1

This completes the proof. 0

Particularly, if £ = 1, we get the following conclusion for transitive extended by
Theorem 2.6.4.

Corollary 2.6.2 Let & be a permutation group action on Q, AN Q = 0 and P an
extension of & action on AU Q. If
(1) P is transitive on A;

(2) there is one element x € A such that for any element y € CQ, there exists an
element it € ﬁwithy” = x hold,

then & is transitive extended on A U Q.

Furthermore, if P is one-point extended of P, we get the following result.

Corollary 2.6.3 Let Z be an one-point extension of & action on Q by x ¢ Q. For
Yy € Q, if there exists an element € P such that V* = X, then P is transitive extended
of Z.

These conditions in Corollaries 2.6.2-2.6.3 is too strong. In fact, we improve condi-

tions in them as in the following result.

Theorem 2.6.5 Let & be a permutation group action on S with orbits B, B>, -, B,
ANQ =0 and

P =(P,2),

with 2 = {(x,y),1 <i <m;(x',z),x’ € A,x" # x}, where x € A, y; € P, z = x or y;

for 1 <i < m. Then & is transitive extended. Furthermore, if & is transitive on Q or

—_—

A = {x}, i.e., & is one-point extension of &, then
P = (P (x,y),(x,2), X € A,x" #x) or (Z;(x,y;),1 <i<m)

withy € Q, z = x or y is transitive extended of & on QU A or Q U {x}.

Proof We only prove the frst assertion since all others are then followed.
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Firstly, for Vz; € %i, zZj € ‘@jﬂ let Z;Tl = Vi and Z(;—z =Y, 0,0; € Z. Then

27T — 2 Now if x1,x, € A, by defnition x> = x, or fM-000E0) =

or x(IXI,yi)(xz,yi) = Xp, Or x(l)q ’yi)(yi’X)(x,yj)O}j,XZ) = X2 lf (xl’ X), (X2, X), or (xl 5 X), (x’yi)’ (yi’ x2)7 or

(x1,20), (x2,4), or (x1,y:), i, X), (x, ), (v, X2) € P. Finally, if x; € A and z; € %, let
O—(x’yj)g

Therefore, P is transitive extended on Q U A. ]

o S — —
x; =xandz; =y;. Then x = zj.

The k-transitive number @w{*'(Z?; A) of a permutation group & action on Q by a
set A with AN Q = 0 is defned to be the minimum number of involutions appeared in

permutations presented by product of inventions added to &7 such that 7 is k-transitive

extended of & on QUA. Particularly, if k = 1, we abbreviate @{“"(2; A) to @"*"'(Z; A).

We know the number @w(Z; A) in the following result.

Theorem 2.6.6 Let &7 be a permutation group action on Q with an orbital set Orb(Q),
ANQ =0and P an extended action of # on AU Q. Then

@ (P; A) = |A| + |Orb(Q)| - 1.
Furthermore, if & is transitive or P is one-point extension of &, then

@ (P A) = |A| or |Orb(Q).

Proof Let x € AU Q be a chosen element. denoted by A[x] all elements determined
by

—_—

Alx] ={y| X" =y, Vmr e Z}.

If & is a transitive extended action of & on AU Q, there must be A[x] = AU Q. Enumer-
ating all inventions appeared in permutations 7 presented by product of inventions such
that x™ = y € A[x], we know that

@ (P, A) > |A| + |Orb(Q)] - 1.
Applying Theorem 2.6.5, we get that
@ (P; A) < |A| + |Orb(Q)| - 1.

Whence,
T (P; A) = |A| + |0Orb(Q)| - 1.
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Notice that |Orb(Q)| = 1 or |A] = 1 if &2 is transitive or P is one-point extension of &,
We therefore f nd that
@ (P, A) = |A| or |Orb(Q)|

if 2 is transitive or 7 is one-point extended. 0

Now we turn our attention to primitive extended groups. Applying Theorem 2.5.3,

we have the following result.

Theorem 2.6.7 Let & be a permutation group action on Q and A a nonempty set with
AN Q = 0. Then there exist primitive extended permutation groups 7 of & action on
QUAIfIAl =2 or|Al =1 but & is transitive on Q.

Proof Let %,,%,, -, %, be orbits of & action on Q. Defne
P =(P;(x,y), 1 <i<m;(X,x),x €A X #x),

where x € A, y; € %;. Then P is 2-transitive extended of &2 by Theorem 2.6.4 if |A| > 2.
Notice that é’: = X, If A = {x} and & is transitive on Q, we also know that P is

2-transitive extended of &2 by Theorem 2.2.3. Whence, we know that P is primitive
extended of &7 on Q U A by Theorem 2.5.3 in each case. 0

2.6.3 Action MultiGroup. Let P be a permutation multigroup action on Q with 2 =

m —~ m
U Z:,Q = | Q; and for each integer i, 1 < i < m, the permutation group &; acts on .
i=1 i=1

Such a permutation multigroup 2 is said to be globally k-transitive for an integer k > 1

if for any two k-tuples x;, x5, - -, x; € Q; and y1,y2, - -+, € Q;, where 1 <1, j < m, there
are permutations 7y, 71, - - -, 7, such that
T T Ty Ty
xllz _yl’lez z_yl_’___,xklz "=y

For simplicity, we abbreviate the globally 1-transitive to that globally transitive of a per-

mutation multigroup.

Remark 2.6.1: There are no meaning if we defne the globally k-transitive on two k-

tuples x, xp, -+, X; € Q, Vi, V2 5 Vi € Qina permutation multigroup 2 because there

are no def nition for the actions x7 if x; € Q; butmr € &, 1 <i<m,where 1 </ <k

Theorem 2.6.8 Let & be a permutation multigroup action on Q with 7 = U Z., Q=
i=1

m
U Q;, where each permutation group &; transitively acts on Q; for each integers 1 < i <
i=1
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m. Then P is globally transitive on Q if and only if for any integer i, 1 < i < m, there

exists an integer j, 1 < j <m, j # i such that
Q[ Q0.

Proof 1f P is globally transitive action on ﬁ, by def nition for x € Q; and y ¢ Q,,

1 <i < m, there are elements 7y, 75, -, m, € & such that
xﬂ'lﬂZ“'ﬂ'n — y.

Not loss of generality, we assume 7y, 715, - - -, 11 € & but my, 7wy, -+, 1, € Py, 1.€., [ be
the least integer such that 7, ¢ & Let m; € &2;. Notice that &7;, &; act on ; and Q;,
respectively. We get that X" € ; N Q, i.e.,

Q[ Q0.

Conversely, if for any integer i, 1 < i < m, there always exists an integer j, 1 < j <

m, j # i such that
Q[ Q0

let x € Q; and y ¢ ;. Then there exist integers /1, [, - - -, [; such that

Q[ )@ #0, Q[ Q0 #0,---,Q (), 0.

Letx,x; € Qi Q, x0€Q, NQ, - x,€ Q. (N, ye and ) € P, m) € P,

— T — Ts—1 s __
ce, Moy € Py, g € P such that X7 = xy,, x,l2 =Xy X0 =X, X =y by the

transitivity of &;, 1 < i < m. Therefore, we fnd that
KIS =y,

This completes the proof. ]

The condition of transitivity on each permutation &;, 1 < i < m in Theorem 2.6.8 is
not necessary for the globally transitive of Z on §~2, such as those shown in the following

example.

Example 2.6.2 Let Pbea permutation multigroup action on Q with

P = P, U P, and Q =11,2.3,4,5,6,7,8) U{1,2,5,6,9, 10,11, 12},
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where &) =((1,2,3,4),(5,6,7,8)yand &, =((1,5,9,10),(2,6,11, 12)), i.e.,

Py = {1y,(13)24),(1,2,3,4),(1,4,3,2),
(5,7)(6,8),(5,8,7,6),(5,6,7,8),
(13)(24)(5,7)(6, 8), (13)(24)(5, 6,7, 8), (13)(24)(5, 8,7, 6)
(1,2,3,4)(5,7)(6,8),(1,2,3,4)(5,6,7,8),(1,2,3,4)(5,8,7,6)
(1,4,3,2)(5,7)(6,8),(1,4,3,2)(5,6,7,8),(1,4,3,2)(5,8,7,6)}

and

P, = {15,(1,9)5,10),(1,5,9,10),(1, 10,9, 5)
(2,11)(6,12),(2,6,11,12),(2,12,11,6)
(1,9)(5, 10)(2, 11)(6, 12), (1,9)(5, 10)(2, 6, 11, 12),(1,9)(5, 10)(2, 12, 11, 6)
(1,5,9,10)(2, 11)(6, 12),(1,5,9,10)(2,6, 11, 12),(1,5,9, 10)(2, 12,11, 6)
(1,10,9,5)(2, 11)(6, 12), (1, 10,9,5)(2,6, 11, 12),(1, 10,9, 5)(2, 12, 11,6).

Calculation shows that & is transitive on ﬁ, i.e., for any element, for example 1 € ﬁ,
17 = {1,2,3,4,5,6,7,8,9,10,11, 12}.

Generally, we know the following result on the globally transitive of permutation

multigroup, a generalization of Theorem 2.6.8 motivated by Example 2.6.2.

Theorem 2.6.9 Let & be a permutation multigroup action on Q with P = U <, Q=
i=1

U Q;, where each permutation group &; acts on Q; with orbits %;;, 1 < j < |0rb(;)| for

i=1

integers 1 < i < m. Then P is globally transitive on Q if and only if for integer i, j, 1 <
i<m, 1< j<|0rb(Q)) there exist integers k, 1 <k <m,1 <1 <|0rb(Qy)|, k # i such
that

Q[ ) Qu #0.

Proof Def ne a multiset

_ m m  (10rb()|
a-{)a.- _U( y ,@]

j=1
Then &2; acts on each %;; is transitive by defnition for 1 <i <m, 1 < j <|0Orb(;)| and
the result is followed by Theorem 2.6.8. 0
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Counting elements in each Q;, 1 < i < m, we immediately get the following conse-

quence by Theorem 2.6.9.

Corollary 2 6.3 Let 97 be a permutation multigroup globally transitive action on Q
with P = U P,Q = U Q,, where each permutation group &; acts on Q; with orbits

i=1
Bij, 1< < |0rb(Q )| for integers 1 < i < m. Then for any integeri, 1 <i <m,

Q\ Qi > [0rb(Q),
particularly, if m = 2 then
|Q| > |Orb(,)| and |Qy| > |Orb(Qy)].

A permutation multigroup P = U & action on Q = |J is said to be globally
i=1 i=1

primitive if there are no proper subsets 4 C Q, |A] > 2 such that either 4 = A" or
ANA™ =0 forVne 2 provided a” existing for Ya € A.

Theorem 2.6.10 A permutation multigroup P = U P action on Q = U is globally

primitive if and only if &; action on Q; is primitive for any integer 1 <1 < m

Proof 1f 27 action on Q is globally primitive, by def nition we know that there are
no proper subsets 4 C Q;, |A| > 2 such that either 4 = A" or A N A" = O for Yn € &,
where 1 < i < m. Whence, each &7; primitively acts on €;.

Conversely, if each &7; action on €; is primitive for integers 1 < i < m, then there
are no proper subsets 4 C €;, |4| > 2 such that either 4 = A" or A N A" = () for Vn € &,
for 1 < i < m by defnition. Now let 7 € &; for an integer i, 1 < i < m. Notice that A"
is existing for V4 C Q if and only if 4 ¢ Q;. Consequently, 2 action on Q is globally
primitive by def nition. 0

Combining Theorems 2.6.10 with 2.5.4, we get the following consequence.

Corollary 2.6.4 Let P = U & be a permutation multigroup action on Q= U, where
i=1 i=1

P, is transitive and (), is maximal for Ya € Q;, 1 < i < m. Then D is globally

primitive action on L.

§2.7 REMARKS

2.7.1 There are many monographs on action groups such as those of [Wiel] and [DiM1].

In fact, every book on group theory partially discusses action groups with applications.
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These materials in Sections 2.1, 2.2 2.3 and 2.5 are mainly extracted from [Wanl], [Rob1]
and [DiM 1], particularly, the O’Nan-Scott theorem on primitive groups.

2.7.2 A central but difficult problem in group theory is to classify groups of order n for
any integer n > 1. The Sylow’s theorem on p-groups enables one to see a glimmer on
classifying p-groups. However, this problem is also difficult in general. Today, we can
only fnd the classif cation of p-groups with small power (See [Xuml] and [Zhal] for
details). In fact, these techniques used for classifying p-groups are nothing but the group

actions, i.e., application of action groups.

2.7.3 These permutation multigroups in Section 2.6 is in fact action multigroups, a kind
of Smarandache multi-spaces frst discussed in [Mao21] and [Mao25]. These concep-
tions such as those of locally k-transitive, locally primitive, k-transitive extended, prim-
itive extended, globally transitive and globally primitive are frst presented in this book.
Certainly, there are many open problems on permutation multigroups, for example, for a
permutation group & action on Q, is there always an extended primitive action of & on
QUA foraset A, AN Q = 0? Can we characterize such permutation groups & or such

sets A?

2.7.4 Theorems 2.6.8 and 2.6.9 completely determine the globally transitive multigroups.
However, we can also f nd a more simple characterization by graphs in Chapter 3, in where
we clarify the property of globally transitive is nothing but the connectedness on graphs.
In fact, these conditions in Theorems 2.6.8 and 2.6.9 are essentially enables one to fnd a

spanning tree, a kind of most simple connected graph on Q.



CHAPTER 3.

Graph Groups

An immediate applying feld of action groups is to that of graphs for them
easily to handle by intuition. By def nition, a graph group is a subgroup of
the automorphism group of a graph viewed as a permutation group of its ver-
tices. In fact, graphs has a nice mathematical structure on objectives. Usu-
ally, the investigation on such structures enables one to fnd new important
results in mathematics. For example, the well-known Higman-Sims group,
one of these 26 sporadic simple groups was found by that of graph groups
in 1968. Topics covered in the frst 4 sections including graphs with opera-
tions, graph properties with results, Smarandachely graph properties, graph
groups, vertex-transitive graphs, edge-transitive graphs, arc-transitive graphs,
semi-arc groups with semi-arc transitive graph, ---, etc.. A graph is itself
a Smarandache multi-space by def nition, which naturally provide us a nice
source for get multigroups. In Section 3.5, we show how to get mutligroups
on graphs, also f nd new graph invariants by that of graph multigroups, which

will be useful for research graphs and getting localized symmetric graphs.
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§3.1 GRAPHS

3.1.1 Graph. A graph G is an ordered 3-tuple (V; E; I), where V, E are fnite sets, V # 0
and I : E — V x V. Call V the vertex set and E the edge set of G, denoted by V(G)
and E(G), respectively. An elements v € V(G) is incident with an element e € E(G)
if I(e) = (v,x) or (x,v) for an x € V(G). Usually, if (u,v) = (v,u), denoted by uv or
vu € E(G) for Y(u,v) € E(G), then G is called to be a graph without orientation and
abbreviated to graph for simplicity. Otherwise, it is called to be a directed graph with an

orientation u — v on each edge (u, v).

The cardinal numbers of |V(G)| and |E(G))| are called its order and size of a graph G,
denoted by |G| and &(G), respectively.

Let G be a graph. We can represent a graph G by locating each vertex u in G by a
point p(u), p(u) # p(v) if u # v and an edge (u, v) by a curve connecting points p(u) and
p(v) on a plane R?, where p : G — P is a mapping from the V(G) to R?.

For example, a graph G = (V, E; 1) with V = {vi, vy, v3,w}, E = {ey, es, €3, €4, €5,
e, €7, €3, €9, €10} and I(e;) = (vi, v;), 1 <1 < 4;1(es) = (vi,v2) = (va, V1), I(es) = (v3,v4) =
(va,v3), 1(e6) = 1(€7) = (v2,v3) = (v3,n2), L(es) = I(e9) = (va,v1) = (v1,v4) can be drawn

on a plane as shown in Fig.3.1.1.

€l €
V1 €s V)
e
€9 |€10 e; |®
V4 es V3
ey €3
Fig. 3.1.1

Let G = (V, E; I)be a graph. For Ve € E,ifI(e) = (u,u),u € V, then e is called a loop,
For example, edges e; — e4 in Fig.3.1.1. For non-loop edges e, e, € E, if I(e)) = I(ey),
then ey, e, are called multiple edges of G. In Fig.3.1.1, edges es, €7 and ey, ;¢ are multiple
edges. A graph is simple if it is loopless without multiple edges, i.e., I(e) = (u, v) implies
that u # v, and I(ey) # I(e,) if e; # e, for Ve, e; € E(G). In the case of simple graphs, an

edge (u, v) is commonly abbreviated to uv.
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A walk of a graph G is an alternating sequence of vertices and edges uy, ey, uy, ;,
ey ep,u, With e; = (u;,u;1) for 1 < i < n. The number 7 is called the length of the
walk. A walk is closed if u; = u,,|, and opened, otherwise. For example, the sequence
viejviesvegVzesviervaesv, is a walk in Fig.1.3.1. A walk is a trail if all its edges are
distinct and a path if all the vertices are distinct also. A closed path is usually called a
circuit or cycle. For example, viv,v3v4 and viv,v3v4v; are respective path and circuit in
Fig.3.1.1.

A graph G = (V, E; I) is connected if there is a path connecting any two vertices in
this graph. In a graph, a maximal connected subgraph is called its a component.

Let G be a graph. For Yu € V(G), the neighborhood Ng(u) of the vertex u in G is
defned by Ng(u) = {v|Y(u,v) € E(G)}. The cardinal number |Ng(u)| is called the valency
of vertex u in G and denoted by pg(u). A vertex v with ps(v) = 0 is an isolated vertex
and pg(v) = 1 a pendent vertex. Now we arrange all vertices valency of G as a sequence
pc(u), pc(v), - -+, pc(w) with pG(u) > pg(v) = -+ = ps(w), and denote A(G) = pg(u),
0(G) = pg(w) and call then the maximum or minimum valency of G, respectively. This
sequence pg(u), pg(v), - - -, pg(w) 1s usually called the valency sequence of G. If A(G) =
0(G) = r, such a graph G is called a r-regular graph. For example, the valency sequence
of graph in Fig.3.1.11s (5, 5,5, 5), which is a 5-regular graph.

By enumerating edges in £(G), the following equality is obvious.

D po(w) = 21E(G)]

ueV(G)

A graph G with a vertex set V(G) = {vi, v, -+, v,} and an edge set E(G) = {ej, ez, - -,
e,} can be also described by those of matrixes. One such matrix is a p X g adjacency ma-
trix A(G) = [a;j]pxg» Where a;; = [I7'(v;, v;)I. Thus, the adjacency matrix of a graph G is
symmetric and is a 0, I-matrix having 0 entries on its main diagonal if G is simple. For

example, the matrix A(G) of the graph in Fig.3.1.1 is

1102
1120
A(G) =
0211
201 1

Let G, = (V1, Ey; 1)) and G, = (V3, Ey; 1) be two graphs. They are identical, denoted
by Gy = G, it V|, = V,,Ey = E; and [} = I,. If there exists a 1 — 1 mapping ¢ : E; —
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E, and ¢ : V7 — V, such that ¢l,(e) = L¢(e) for Ve € E; with the convention that
o(u,v) = (d(u), (v)), then we say that G is isomorphic to G,, denoted by G, = G, and
¢ an isomorphism between G| and G,. For simple graphs H;, H,, this defnition can be
simplif ed by (u, v) € I;(E,) if and only if (¢(u), ¢(v)) € L(E,) for Yu,v € V.

For example, let G, = (V1, E; 1) and G, = (V>, E,; ) be two graphs with

Vi={vi,va,v3}, E;|={er, ez e3, €4},

Ii(e1) = (vi, ), Li(e2) = (va, v3), L1(e3) = (v3,v1), Li(es) = (vi, V1)
and

Vo =Aui, ua,us}, Ex={fi, /o, f5, fa},

Iz(fl) = (ul, uz), Iz(fz) = (uz, u3), 12(f3) = (u3, ul)’ Iz(ﬁl) = (”2, uz),
i.e., those graphs shown in Fig.3.1.2.

€4 4
€3 €1 f 2
V3 o V2 u3 7 Uz
G 1 G2
Fig. 3.1.2

Defne a mapping ¢ : E\UVi — ExUV2 by ¢ler) = fr.d(ex) = fr.9(e3) =
fi.d(es) = fyand ¢(v;) = u; for 1 < i < 3. It can be verifed immediately that
ol (e) = Lo(e) for Ve € E;. Therefore, ¢ is an isomorphism between G, and G, i.e.,
G, and G, are isomorphic.

A graph H = (V1, Ey; 1) is a subgraph of a graph G = (V,E; )itV C V,E, C E
and [; : Ey — Vi X Vy. We use H < G to denote that H is a subgraph of G. For example,
graphs G, G,, G5 are subgraphs of the graph G in Fig.3.1.3.

u Uy U Uy u Uy
Uy us Uy Ugs U3 Uy
G G G G;

Fig. 3.1.3
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For a nonempty subset U of the vertex set V'(G) of a graph G, the subgraph (U) of G
induced by U is a graph having vertex set U and whose edge set consists of these edges
of G incident with elements of U. A subgraph H of G is called vertex-induced it H = (U)
for some subset U of V(G). Similarly, for a nonempty subset F' of £(G), the subgraph (F)
induced by F in G is a graph having edge set /" and whose vertex set consists of vertices
of G incident with at least one edge of F'. A subgraph H of G is edge-induced if H = (F)
for some subset F' of E(G). In Fig.3.1.3, subgraphs G, and G, are both vertex-induced
subgraphs ({u1, us}), ({us, u3}) and edge-induced subgraphs ({(u, us)}), {{(u2,u3)}). For
a subgraph H of G, if |V (H)| = |V(G)|, then H is called a spanning subgraph of G. In
Fig.3.1.3, the subgraph G; is a spanning subgraph of the graph G.

K(4’ 4) K6

Fig.3.1.4

A graph G is n-partite for an integer n > 1, if it is possible to partition V(G) into n
subsets Vi, V5, - - -, V, such that every edge joints a vertex of V;to a vertex of V;, j # i, 1 <
i, j < n. A complete n-partite graph G is such an n-partite graph with edges uv € E(G) for
Yu e Viandv € V; for 1 <i,j < n, denoted by K(p1, p2,-- -, p,) if |[Vi| = p; for integers
1 <i < n. Particularly, if |V;| = 1 for integers 1 < i < n, such a complete n-partite graph
is called complete graph and denoted by K. In Fig.3.1.4, we can f nd the bipartite graph
K(4,4) and the complete graph K¢. Usually, a complete subgraph of a graph is called a

clique, and its a k-regular vertex-spanning subgraph also called a k-factor.

3.1.2 Graph Operation. A union G, | J G, of graphs G| with G, is def ned by

vGi | o) =nlJr, BGi| 6 = Ei| B, 1B )E2) = 1(ED | B(E).

A graph consists of & disjoint copies of a graph H, k > 1 is denoted by G = kH. As an

example, we fnd that

5
Ke=|JSu
i=1
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for graphs shown in Fig.3.1.5 following

2, 3 ) 3 4 6
1 62‘ 6 3 6 4 6 5
S1.5 S1.4 S1.3

S1.2 Sl.l

Fig. 3.1.5

and generally, K, = nL_Jl S'1.;. Notice that kG is a multigraph with edge multiple & for any
integer k, k > 2 and al:slimple graph G.

A complement G of a graph G is a graph with vertex set ¥(G) such that vertices are
adjacent in G if and only if these are not adjacent in G. A join G, + G, of G, with G, is
def ned by

V(G + Gy) = V(G) U V(G),
E(G1 + Gy) = E(G) U E(G2) Ul(u, v)lu € V(Gy), v € V(G)}
and
I(Gy + G2) = 1(G) U L(G2) Ul (u,v) = (u,v)|lu € V(Gy),v € V(Ga)}

Applying the join operation, we know that K(m, n) = K,, + K,. A Cartesian product
G X G, of graphs G| with G, is def ned by V(G| X G,) = V(G;) X V(G,) and two vertices
(uy,uy) and (v1, v;) of Gy X G, are adjacent if and only if either #; = v; and (u,, v2) € E(G»)

or uy = v, and (u;, vy) € E(Gq). For example, K, X Pg is shown in Fig.3.1.6 following.

u

| 2 3 4 5 6
K
2 P6

v
23] Uy us Uy Us Ug
V1 %) V3 V4 Vs Ve

K> X Pg

Fig.3.1.6
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3.1.3 Graph Property. A graph property &7 is in fact a graph family
‘gZ = {GI’GZ’G?)"“’GH’“'}

closed under isomorphism, i.e., G¥ € & for any isomorphism on a graph G € . We

alphabetically list some graph properties and results without proofs following.

Colorable. A coloring of a graph G by colors in 4 is a mapping ¢ : € —
V(G) U E(G) such that o(u) # ¢(v) if u is adjacent or incident with v in G. Usually, a
coloring ¢ly) : € — V(G) is called a vertex coloring and ¢|g) : € — E(G) an edge
coloring. A graph G is n-colorable if there exists a color set % for an integer n > |%’|. The
minimum number z for which a graph G is vertex n-colorable, edge n-colorable is called
the vertex chromatic number or edge chromatic number and denoted by y(G) or y1(G),

respectively. The following result is well-known for colorable of a graph.

Theorem 3.1.1 Let G be a connected graph. Then
(1) x(G) < A(+) + 1 and with the equality hold if and only if G is either an odd

circuit or a complete graph,; (Brooks theorem)
(2) x1(G) = A(G) or A(G)+1; (Vizing theorem)

Theorem 3.1.1(2) enables one to classify graphs into Class 1, Class 2 by y(G) =
A(G) or x1(G) = A(G) + 1, respectively.

Connectivity. For an integer £ > 1, a graph G is said to be k-connected if removing
elements in X € V(G)U E(G) with |X]| = £ still remains a connected graph G — X. Usually,
we call G to be vertex k-connected or edge k-connected if X C V(G) or X C E(G) and
abbreviate vertex k-connected to k-connected in reference. The minimum cardinal number
of X c V(G) or X c E(G) is defned to be the connectivity or edge-connectivity of G,
denoted respective by «(G), k;(G). A fundamental result for characterizing connectivity

of a graph is the Menger theorem following.

Theorem 3.1.2(Menger) Let u and v be non-adjacent vertices in a graph G. Then the
minimum number of vertices that separate u and v is equal to that the maximum number

of internally disjoint u — v paths in G.
Then we can characterize k-connected or k-edge-connected graphs following.

Theorem 3.1.3 Let G be a non-trivial graph. Then
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(1) G is k-connected if and only if for Yu,v € V(G), u # v, there are at least k
internally disjoint u — v paths in G. (Whinety)

(2) G is k-edge-connected if and only if for Yu,v € V(G), u # v, there are at least k
edge-disjoint u — v paths in G.

Covering. A subset W c V(G) U E(G) is independent if any two element in W
is non-adjacent or non-incident. A vertex and an edge in a graph are said to be cover
each other if they are incident and a cover of G is such a subset U C V(G) U E(G) such
that any element in V(G) U E(G) \ U is incident to an element in U. If U c V(G) or
U c E(G), such an independent set is called vertex independent or edge independent and
such a covering a vertex cover or edge cover. Usually, we denote the minimum cardinality
of vertex cover, edge cover of a graph G by @(G) an @(G) and the maximum cardinality

of vertex independent set, edge independent set by B(G) and S3,(G), respectively.

Theorem 3.1.4(Gallai) Let G be a graph of order p without isolated vertices. Then
a(G) +B(G) = p and a(G) +B:1(G) = p.

A dominating set D of a graph G is such a subset D C V(G) U E(G) such that every
element is adjacent to an element in D. If D C V(G) or D C E(G), such a dominating set
D of G is called a vertex or edge dominating set. The minimum cardinality of vertex or
edge dominating set is denoted by o(G) or 01(G), called the vertex or edge dominating

number, respectively. The following is obvious by def nition.

Theorem 3.1.5 Let G be a graph. Then

0(G) < a(G) and o(G) < B1(G).

Decomposable. A decomposition of a graph G is subgraphs H;; 1 < i < m of G such
that /7; = (E;) for some subset £; C E(G) with £, N E; = @ for j # i,1 < j < m, usually

denoted by
G =P H.
i=1

If every H; is a spanning subgraph of G, such a decomposition is called a factorization of
G into factors H;; 1 < i < m. Furthermore, if every H; is k-regular, such a decomposition
is called k-factorable and each H; is a k-factor of G.
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U U Vi V2
Ug £ X » U3
Us Uy V4 V3
G1 G2
Fig.3.1.7

For example, we know that

G, :Hl@H2, and G2:F1@F2@F3

for graphs Gy, G, in Fig.3.1.8, where H, = (ujuq, usuz, usug), hy = (ujug, uslis, ustiy)
and F1 = <V1V2,V3V4>, F2 = <V1V4,V2V3>, F3 = <V1V3, V2V4>. Notice that cevery [Jl or Fl' is

1-regular. Such a spanning subgraph in a graph G is called a perfect matching of G.

Theorem 3.1.6(Tutte) A non-trivial graph G has a perfect matching if and only if for
every proper subset S C V(G),
w(G-S8)<|S],

where w(H) denotes the number of odd components in a graph H.
Theorem 3.1.7(Konig) Every k-regular bipartite graph with k > 1 is 1-factorable.

Theorem 3.1.8(Petersen) A non-trivial graph G is 2-factorable if and only if G is 2n-

regular for some integer n > 1.

Embeddable. A graph G is said to be embeddable into a topological space 7 if there
isa 1 — 1 continuous mapping f : G — 7 with f(p) # f(q) if p, q ¢ V(G). Particularly, if
7 is a Euclidean plane R?, we say that G is a planar graph. In a planar graph G, its face
is def ned to be that region F' in which any simple curve can be continuously deformed in
this region to a single point p € F. For example, the graph in Fig.3.1.8 is a planar graph.

V1 V2

U1 u

V4 V3

Fig.3.1.8
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whose faces are F1 = UiUV3U4U 1, F2 = V1 V2V3V4Vq, F3 = Uivivauruy, F4 = UV V3U3Uy,
Fs = uzvsvquaus and Fg = ugvgviuguy. It should be noted that each boundary of a face

in this planar graph is a circuit. Such an embedding graph is called a strong embedded

graph.

Theorem 3.1.9(Euler) Let G be a planar graph with p vertices, q edges and r faces. Then
p—q+r=2

An elementary subdivision of a graph G is such a graph obtained from G by removing
some edge e = uv and adding a new vertex and two edges uw, vw. A subdivision of a graph
G is a graph by a succession of elementary subdivision. Def ne a graph H homeomorphic
from that of G if either H = G or H is isomorphic to a subdivision of G. The following

result characterizes planar graphs.

Theorem 3.1.10(Kuratowski) 4 graph is planar if and only if it contains no subgraphs
homeomorphic with Ks or K(3, 3).

Theorem 3.1.11(The Four Color Theorem) Every planar graph is 4-colorable.

Travelable. A graph G is eulerian if there is a closed trail containing all edges and
is hamiltonian if there is a circuit containing all vertices of G. For example, the graph in
Fig.3.1.6 is with a hamiltonian circuit C = v|v,v3vaugusu,u, vy, but it is not eulerian. We

know a necessary and sufficient condition for eulerian graphs following.

Theorem 3.1.12(Euler) 4 graph G is eulerian if and only if pc(v) = 0(mod2), Vv € V(G).

But for hamiltonian graphs, we only know some sufficient conditions. For example,

the following results.

Theorem 3.1.13(Chvatal and Erdos) Let G be a graph with at least 3 vertices. If k(G) >
B(G), then G is hamiltonian.

A closure C(G) of a graph G is the graph obtained by recursively joining pairs of

non-adjacent vertices whose valency sum is at least |G|. Then we know the next result.

Theorem 3.1.14(Bondy and Chétal) A graph is hamiltonian if and only if its closure is

hamiltonian.

Theorem 3.1.15(Tutte) Every 4-connected planar graph is hamiltonian.
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3.1.4 Smarandachely Graph Property. A graph property & is Smarandachely if it
behaves in at least two different ways on a graph, i.e., validated and invalided, or only
invalided but in multiple distinct ways. Such a graph with at least one Smarandachely
graph property is called a Smarandachely graph. Here, we only alphabetically list some

Smarandachely graph properties and results with some open problems following.

Smarandachely Coloring. Let A be a subgraph of a graph G. A Smarandachely
A-coloring of a graph G by colors in € is a mapping ¢, : ¢ — V(G) U E(G) such
that p(u) # ¢(v) if u and v are elements of a subgraph isomorphic to A in G. Similarly,
a Smarandachely A-coloring paly) : € — V(G) or ¢alg) : € — E(G) is called
a vertex Smarandachely A-coloring or an edge Smarandachely A-coloring. A graph G
is Smarandachely n A-colorable if there exists a color set € for an integer n > |4|. The
minimum number z for which a graph G is Smarandachely vertex n A-colorable, Smaran-
dachely edge n A-colorable is called the vertex Smarandachely chromatic A-number or
edge Smarandachely chromatic A-number and denoted by x*(G) or x(G), respectively.
Particularly, if A = P,, i.e., an edge, then a vertex Smarandachely A-coloring or an edge
Smarandachely A-coloring is nothing but the vertex coloring or edge coring of a graph.
This implies that y*(G) = x(G) and x}(G) = x1(G) if A = P,. But in general, the
Smarandachely A-coloring of a graph G is different from that of its coloring. For exam-
ple, x"*(P,) = x1* = 2, x""(P,) = k, x{*(P,) = k — 1 for any integer | < k < nand a

Smarandachely P;-coloring on P; can be found in Fig.3.1.9 following.

Fig.3.1.9

For the star S, and circuit C, for integers 1 < k < n, we can easily fnd that

2 if k =2,
XS 1) =4 n+1 if k =3,
1 if4 <k<n,

1 ifk=2,
XSy =4 n  ifk=3,
1 ifd<k<n
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and

XHC,) = xTH(C,) =

=minfk+(@—-1)+s,1<i<n—-k|ln=s(modk+i—-1), 0<s; <k+i-1}.

The following result is known by def nition.

Theorem 3.1.16 Let H be a connected graph. Then

(1) x"(nH) = V(H)| and x{(nH) = |E(H)|, particularly, x°(G) = |V(G)| and
X7(G) = |E(G)|;

) X"(G) =x{(G)=1ifH A G.

Generally, we present the following problem.

Problem 3.1.1 For a graph G, determine the numbers x™(G) and x'\(G) for subgraphs
A<G.

Smarandachely Decomposition. Let &7, and &2, be graphical properties. A
Smarandachely (9?,, &?,)-decomposition of a graph G is a decomposition of G into sub-
graphs G, Gy, -+, G, € & such that G; € &2, or G; ¢ &, for integers 1 <i < /.

If &, or &, = {all graphs}, a Smarandachely (<, &%,)-decomposition of a graph G
is said to be a Smarandachely &?-decomposition. Particularly, if £(G;) N E(G;) < k and
A(Gy) < d for integers 1 < i, j < [, such a Smarandachely #-decomposition is called a
Smarandache graphoidal (k, d)-cover of a graph G.

Furthermore, if d = A(G) or k = |G|, i.e., a Smarandachely graphoidal (k, A(G))-
cover with & = {path} or a Smarandachely graphoidal (k, A(G))-cover with &7 = {tree}
is called a Smarandachely path k-cover or a Smarandache graphoidal tree d-cover of a
graph G for integers k, d > 1. The minimum cardinalities of Smarandachely (7, £%,)-
decomposition and Smarandache graphoidal (k, d)-cover of a graph G are denoted by
15, 2,(G), H(gl,;’“”(G), respectively.

Problem 3.1.3 For a graph G and properties &, &2\, &, determine Il », »,(G) and
n%%aG).

We only know partially results for Problem 3.1.3. For example,

k
GAOT) = (1) = 5
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for a tree T with k vertices of odd degree and

6 ifn =4,

H(/I,A(G)) W,) =
s |2]+3  ifn>s

for a wheel W, = K, + C,_; appeared in references [SNM1]-[SNM2].

Smarandachely Embeddable. Let 7 and 7, be two topological spaces. A graph
G is said to be Smarandachely (T, T>)-embeddable into topological spaces 77 and 7 if
there exists a decomposition G = F €P H, €p H,, where F is a subgraph of G with a given
property &, H,, H, are spanning subgraphs of G with two 1 — 1 continuous mappings
f i+ H — Tyand g : H, = 7, such that f(p) # f(q) and g(p) # g(q) if p,q ¢ V(G).
Furthermore, if 77 or 7, = 0, i.e., a Smarandachely (7, 0)-embeddable graph G is such a
graph embeddable in 7 if we remove a subgraph of G with a property &2. Whence, we
know the following result for Smarandachely embeddable graphs by def nition.

Theorem 3.1.17 Let T be topological space, G a graph and & a graphical property.
Then G is Smarandachely embedable in T if and only if there is a subgraph H < G such
that G — H is embeddable in T .

Particularly, if 7 is the Euclidean plane R? and F a 1-factor, such a Smarandachely
embeddable graph G is called to be a Smarandachely planar graph. For example, al-
though the graph K;3 is not planar, but it is a Smarandachely planar graph shown in

Fig.3.1.10, where F' = {u;vy, uyvy, u3vs}.

In

w |

Fig.3.1.10

Problem 3.1.4 Let T be a topological space. Determine which graph G is Smaran-
dachely T -embeddable.

The following result is an immediately consequence of Theorem 3.1.10.



92 Chap.3 Graph Groups

Theorem 3.1.18 A graph G is Smarandachely planar if and only if there exists a 1-factor
F < G such that there are no subgraphs homeomorphic to Ks or K33 in G — F.

§3.2 GRAPH GROUPS

3.2.1 Graph Automorphism. Let G| and G, be two isomorphic graphs. If G; = G, = G,
an isomorphism between G; and G is called to be an automorphism of G. It should be
noted that all automorphisms of a graph G form a group under the composition operation,
i.e., #0(x) = ¢(6(x)), where x € E(G)|J V(G). Such a graph is called the automorphism
group of G and denoted by AutG.

G AutG order
P, Z, 2
Cy D, 2n
K, S, n!
Kyn(m # n) SnxS, m!n!
K oS, | 2n?
Table 3.2.1

It can be immediately verif ed that AutG < §,, where n = |G|. In Table 3.2.1, we
present automorphism groups of some graphs. But in general, it is very hard to present

the automorphism group AutG of a graph G.

3.2.2 Graph Group. Let (I'; o) be a group. Then (I'; o) is said to be a graph group if
there is a graph G such that (I, o) is isomorphic to a subgroup of AurG. Frucht proved
that for any fnite group (I'; o) there are always exists a graph G such that I' = AutG in
1938. Whence, the set of automorphism groups of graphs is equal to that of groups.

LetS cTwithlp ¢ Sand S~ = {x'|lx €S} =S. A Cayley graph G = Cay(T' : §)
of"'on S cI'is defned by

V(G) =T;
E(G) ={(g.h)g ' oheS}.

Then we know the following result.
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Theorem 3.2.1 Let (I'; 0) be a fnite group, S CT,S™' =S and 11 ¢ S. Then £ < AutX,
where X = Cay(I : S).

Proof For Vg € T, we prove that the left representation 7, : x — g~' o x of g for

Vx € I is an automorphism of X. In fact, by

(g'ox)o(gloy)=x"ogogloy=x"0y,

we know that
Tg(X,y) = (T4(x), T, (),
i.e., 7, € Aut(Cay(G : §)). Whence, we get that £ < Cay(I" : S). 0

A Cayley graph Cay(T" : §) is called to be normal if £+ <1 Aut(Cay(G : S)), which
was introduced by Xu for the study of arc-transitive or half-transitive graphs in [Xum?2].

The importance of this conception on Cayley graphs can be found in the following result.

Theorem 3.2.2 A Cayley graph Cay(I : S) of a f nite group (I'; 0) on S C I is normal if
and only if Aut(rmCay(I" : S)) = £ o Aut(I, S), where Aut(G, S) = {a € Autl'|S* = S}.

Proof Notice that the normalizer of % in the symmetric group St is .21 o Autl”. We
get that

NAut(Cay(l":S))(gl") = gr o Autl’ ﬂ Aut(Cay(F . S)) = gr o (AutF ﬂ Alr)-
That is Naugcapr:s)(-Zr) = Zr o Aut(I', §'). Whence, Cay(I" : §) is normal if and only if
Aut(Cay(I' : §)) = 2t o Aut(T, S). O

The following open problem presented by Xu in [Xum2] is important for f nding the

automorphism group of a graph.

Problem 3.2.1 Determine all normally Cayley graphs for a fnite group (T; o).

Today, we have know a few results partially answer Problem 3.2.1. Here we only list
some of them without proof. The frst result shows that all fnite groups have a normal

representation except for two special families.

Theorem 3.2.3(|[WWX1]) There is a normal Cayley graph for a f nite group except for
groups Zy X Z and Qg X Z3' for m > 0.

For Abelian groups, we know the following result for the normality of Cayley graphs.
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Theorem 3.2.4([YYHX]) Let X = Cay(I : S) be a connected Cayley graph of an Abelian
group (I'; 0) on S with the valency of X at most 4. Then X is normal except for graphs
listed in Table 3.2.2 following.

row r S X
1 Zy [\ {Ir} 2K,
2 Zy X Zy = (a) x(b) {a,a™", b) 0s
(cube)
Zs = (a) {a,d’,a’) Ki;
4 Z3 = (u)y X (v) x (w) (w, wu, wv, wuv} K4
Zy X Zy = (@) X (b) la,a*,a*, b} 0;
(complement cube)
Z4 X Zy = {a) x (b) {a,a” ", a*b, b} K4
Zy x Z3 = {a)y x {b) X {c) {a,a” ', d’, b} O,
(4-dimensional cube)
Ze X Zr = {a) X {b) {a,a”',a’, b) K33 X K,
9 Zy X Zy = {ay X {b) {a,a',b, b7} CyxCy
10 | Z, X Zy ={a) x{b),m >3 {a,ab,a”',a"'b} C,[2K]
11 Ly ={a),m>2 {a,a®* ", a7, a®" 1) Con[2K,]
12 Zs ={a) I\ {lIr} Ks
11 Zio = {(a) {a,a’,d’,a’} Kss — 5K,
Table 3.2.2

3.2.3 I'-Action. Let I be a group of a graph G. Generally, there are three cases of I'

action on G shown in the following.

['-Action on Vertex Set. In this case, I' acts on the vertex set V(G) with or-
bits V1, Vo, -+, Vi, where m < |V(G)|. For example, let C, be a circuit with V(C,) =

{vi,v2, -+, v,}. We have known its automorphism group by Table 3.2.1 to be
D,={pT0<i<n-1,0<j<1}

with
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such as the presentation in Example 1.2.4. Now let
I' =<{p) and I, ={(1).

Then we know that there are only one orbit of I'; action on C,, i.e., {vi,v,,---,v,}. But
there are [g] orbits if n = 1(mod2) or [g] + 1 orbits n = 0(mod2). For example, let T
a ref ection joining the vertex v; with its opposite vertex if n = 0(mod2) or midpoint of
its opposite edge if » = 1(mod2). Then we know the orbits of I'; action on V(C,) to be
Vi=whVe={vuphVi=1{v,ve} forl <i < g if n = O(mod2) or V; = (w}; V; =

+1
{vi,v,_itforl <i< "

if n = 1(mod2).

A graph G is called to be I'-transitive or I'-semiregular for its a group I' if T is
transitive or semi-regular action on V(G). Particularly, if ' = AutG, a I'-transitive graph
G is called a transitive graph. By defnition, a I'-transitive graph G for any subgroup
VI' < AutG must be a transitive graph. But the inverse is not always true. For example,
I’y is transitive action on C, in the previous example. Consequently it is a transitive graph
but I'; is not transitive on V(G).

A simple calculation shows that the order of a I'-semiregular graph G is multiple of
length of'its orbits. Let n = 0(mod2). If we choose 7 to be a ref ection joining the midpoint
v1v, with that midpoint of v,,v,,»4; in the previous example, then I'; is I';-semiregular

action on V(G). In this case, there are 1 orbits of length 2, i.e., V; = {vi,v,_;11} for

1<i<—.

['-Action on Edge Set. The I'-action on E(G) is an action

o(x,y) = (¢(x), () € E(G) for VY(x,y) € E(G)

induced by an automorphism ¢ € I" with orbits £, E,, - - -, E;, where [ < |E(G)|. Naturally,
all orbits of " action on E(G) form a partition of E(G).

Consider the graph G, shown in Fig.3.1.5. In this case, it is easily fnd that D¢ =
{710 <i<5,0<;<1}withp® =1p,7° = 1p, 7 'pr = p~! isits a graph group, where
7 is a ref ection joining the midpoint u,v with that midpoint of u3u4. The orbits £, E;, of

Dg action on E(G) are listed in the following.
Ey = {uyuy, upus, usug, ugits, usue, ustt1}, Er = {uyus, usuis, usug}.

A graph G is called to be edge I'-transitive for its a group " if T is transitive on E(G).
Particularly, if I' = AutG, an edge I'-transitive graph G is called an edge-transitive graph.
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Certainly, an edge I'-transitive graph G for any subgroup YI' < AutG must be an edge-
transitive graph. But the inverse is not always true. For example, the complete graph X,
for an integer n > 3 is an edge-transitive graph with AutK, = S,. LetI" = (o), where o €
M) ek,

AutK, with 0" = 1g,. Then K, is not edge I'-transitive since |1 = n <

By Theorem 2.2.1, I' can not be transitive on E(K,).

I'-Action on Arc Set. Denoted by X(G) = {(u, v)luv € E(G)} the arc set of a graph
G. The I'action on X(G) is an action on X(G) induced by

o(x,y) = (¢(x), (y)) € X(G) for VY(x,y) € X(G)

for an automorphism ¢ € I'. Similarly, a graph G is called to be arc I'-transitive for its a
graph group I' if I is transitive on X(G), and to be arc-transitive if AutG is transitive on

X(G). The following result is obvious by def nition.

Theorem 3.2.5 Any arc T-transitive graph G is an edge I'-transitive graph. Conversely,
an edge TU-transitive graph G is arc U-transitive if and only if there are involutions 6 € T’
such that (x,y)? = (v, x) for V(x,y) € E(G).

§3.3 SYMMETRIC GRAPHS

3.3.1 Vertex-Transitive Graph. There are many vertex-transitive graphs. For example,

by Theorem 3.2.1 we know that all Cayley graphs is vertex-transitive.

Theorem 3.3.1 Any Cayley graph Cay(I' : §) on S C I is vertex-transitive.

Denoted by (Z,; +) the additive group module n with Z, = {0,1,2,---,n — 1}. A
circulant graph is a Cayley graph Cay(Z, : S) for § € §,. Theorem 3.3.1 implies that
Cayley graphs are a subclass of vertex-transitive graphs. But if the order |V(G)| of a
vertex-transitive graph G is prime, Turner showed each of them is a Cayley graph, i.e.,

the following result in 1967.

Theorem 3.3.2 If G is a vertex-transitive graph of prime order p, then it is a circulant
graph.

Proof Let V(G) = {ug,ui,---,u,—1} and H the stabilizer of uy. Suppose that o; €
AutG is such an element that o;(uy) = u;. Applying Theorem 2.2.1, we get that |AutG| =
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|H||u6““tG| = p|H|. Thus p||AutG|. By Sylow’s theorem, there is a subgroup K = {1,6,-- -,
67~} of order p in AutG. Relabeling the vertices ug, u;, - - -, u,-1 by vo, vi, -+, v,_; so that
O(v;) = virr and 8(v,—1) = vo for 0 <7 < p—2. Suppose (v, vi) € E(G). Then by def nition,
Vi, vai) = (Vo,Vi)eia (vai» v3i) = (v, Vzi)ei, oy (Vp=1yi> Vo) = (V(p—2)i,v(p—1)i)9i € E(G). Thus
VoViva; - - V(p-1y; forms a circuit in G. Now if we write v; as 7 and defne S’ = {i|(vo, V) €
E(G)}, then G is nothing but the circulant graph Cay(Z, : S). U

It should be noted that not every every vertex-transitive graph is a Cayley graph. For
example, the Petersen graph shown in Fig.3.3.1 is vertex-transitive but it is not a Cayley

graph (See [Yap!] for details).
231
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Fig.3.3.1

However, there is a constructing way shown in Theorem 3.3.4 following such that every
vertex-transitive graph almost likes a Cayley graph, found by Sabidussi in 1964. For

proving this result, we need the following result frst.

Theorem 3.3.3 Let J7 be a subgroup of a f nite group (I'; 0) and S a subset of T with
St =8,8n# = 0. If Gis a graph with vertex set V(G) = T'/ and edge set
E(G) ={(xo s, yo ) x" oy € S ), called the group-coset graph of T'| S respect
to S and denoted by G(I'/| ¢ : S), then G is vertex-transitive.

Proof First, we claim the graph G is well-defned. This assertion need us to show
that if (x o 57,y 0o ) € E(G) and x; € x o J, y; € y o J, then there must be
(x1 0,y 0 ) € E(G). In fact, there are &, g € 57 such that x; = xohandy, =yog
by def nition. Notice that

xoye HSH = (xoh)  o(yog)e HSH = x[' oy, € HSH.

Whence, (x o 5,y o #°) € E(G) implies that (x; o 57,y o ) € E(G).
Now for each g € T, defne a permutation ¢, on V(G) = I'/F7 by ¢4(x 0 ) =
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goxoJ for xo i € I'/5¢. Then by
xloye #SH = (gox)! O(goy)E%S%:>¢;,1(x)0¢g(y)€<%”5<%”,

we f'nd that (xo 77, yo ) € E(G) implies that (¢o(x)0 77, po(v)o ) € E(G). Therefore,
¢, is an automorphism of G.

Finally, for any x o 7,y o 7 € V(G), letg = yox™'. Then ¢g(x 0 #) =yox'o
(x 0o ) =y o . Whence, G is vertex-transitive. O

Now we can prove the Sabidussi’s representation theorem for f nite groups following.

Theorem 3.3.4 Let G be a vertex-transitive graph and 7 = (AutQ), the stabilizer of a
vertex u € V(G) with the composition operation o. Then G is isomorphic with the group-
coset graph G(AwWG /3¢ : S), where S is the set of automorphisms o of G such that
(u, o(u)) € E(G).

Proof By defnition, we are easily fnd that S™' = S and § N 2 = 0. Defne
m: AutG/ A — G by n(x o H) = x(u), where x o 5 € I'/. We show that r is a
mapping. In fact, let x o 7 =y o 5. Then there is h € ¢ such that y = x o . So

n(y o H) = y(u) = (x o h)(u) = x(h(u)) = x(u) = 7(x o (H)).

Now we show that r is in fact a graph isomorphism following.

(1) mis 1 — 1. Otherwise, let m(x o 5#) = n(y o). Then x(u) = y(u) = y~! o x(u) =
u=syloxe X syexol =>xoH =yo.

(2) mis onto. Let v € V(G). Notice that G is vertex-transitive. There exists z € AutG
such that z(u) = v, i.e., m(z 0 ) = z(u) = v.

(3) m preserves adjacency in G. By def nition, (xo.77, yo7¢’) € E(G(AutG/ ., S)) ©
xloye#SH o x'oy=hozogforsomeh,ge #,zeS &h'oxloyog!=
ze wh'oxtoyog () € E(G) & (u,x"' oy(u) € E(G) & (x(u),yw)) € E(G) &
(m(x 0 FO),n(y o F)) € E(G).

Combining (1)-(3), the proof is completes. 0

Theorem 3.3.4 enables one to know which vertex-transitive graph G is a Cayley
graph. By Theorem 2.1.1(2), we know that any two stabilizers (AutG),, (AutG), for u,v €
V(G) are conjugate in AutG. Consequently, (AutG), is normal if and only if (AutG), =
{lauc}.- By defnition, the group-coset graph G(AutG/.Z : S) in Theorem 3.3.4 is a
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Cayley graph if and only if AutG /57 is a quotient group. But this just means that .77 <
AutG by Theorem 1.3.2. Combining these facts, we get the necessary and sufficient
condition for a vertex-transitive graph to be a Cayley graph by Theorem 3.3.4 following.

Theorem 3.3.5 A vertex-transitive graph G is a Cayley graph if and only if the action of
AutG on V(G) is regular.

Generally, let (I'; o) be a fnite group. A graph G is called to be a graphical regular
representation (GRR) of I if AutG = I" and AutG acts regularly transitive on V(G). Such
a group I is called to have a GRR. We needed to answer the following problem.

Problem 3.3.1 Determine each fnite group I" with a GRR.

A simple case for Problem 3.3.1 is fnite Abelian groups. We know the following
result due to Chao and Sabidussi in 1964.

Theorem 3.3.6 Let G be a graph with an Abelian automorphism group AutG acts transi-
tively on V(G). Then AutG acts regularly transitive on V(G) and AutG is an elementary
Abelian 2-group.

Proof According to Theorem 2.2.2, we know that AutG acts regularly transitive
on V(G). Now since AutG acts regularly on V(G), G is isomorphic to a Cayley graph
Cay(AutG : S). Because AutG is Abelian, 7 : ¢ — g~! is an automorphism of AutG
and fxes S setwise. It can be shown that this automorphism is an automorphism of
Cay(AutG : S) fxing the identity element of AutG. Whence, g = 7(g) = g~' by the fact
of regularity for every g € AutG. So AutG is an elementary 2-groups. U

Theorem 3.3.6 claims that an Abelian group I" has a GRR only if I' = Z] for some
integers n > 1. In fact, by the work of McAndrew in 1965, we know a complete answer

for Problem 3.3.1 in this case following.

Theorem 3.3.7 An Abelian group I has a GRR if and only if U = Z% forn = 1 orn > 5.

A generalized dicylic group (T'; o) is a non-Abelian group possing a subgroup (.7¢; o)
of index 2 and an element y of order 4 such that y"'ohoy = h~! for Vh € 5. By following
the work of Imrich, Nowitz, Watkins, Babai, etc., Hetzel and Godsil respective answered
Problem 3.3.1 for solvable groups and non-solvable groups. They get the following result
(See [God1]-[God2] and [Cam1] for details) independently.
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Theorem 3.3.8 A fnite group (I'; o) possesses no GRR if and only if it is an Abelian group
of exponent greater than 2, a generalized dicyclic group, or one of 13 exceptional groups
following:

(1) 23,23, Z5;

(2) Ds, Ds, D1o;

(3) Aa;

(4)<a,b,cla2 =b*=¢ = lr,aOboc:bocoa:coa0b>;

(5) (a.bla® = b* = Ir,boao b =b°);

(6) <a,b,cla3 = =c=(@ob)’=(cob) =lr,ao0c= coa>;

(7)<a,b,c|a3 = =c=1r,aoc=coa,boc=cob,c=a'ob™! oa0b>;

(8) Os X Z3, Og X Zy.

3.3.2 Edge-Transitive Graph. Certainly, the edge-transitive graphs are closely related

with vertex-transitive graphs by def nition. We can easily obtain the following result.

Theorem 3.3.9 Let G be an edge-transitive graph without isolated vertices. Then

(1) G is vertex-transitive, or
(2) G is bipartite with two vertex-orbits under the action AutG on V(G) to be its

vertex bipartition.

Proof Choose an edge e = uv € E(G). Denoted by V' and V, the orbits of u and
v under the action of AutG on V(G). Then we know that V; U V, = V(G) by the edge-

transitivity of G. Our discussion is divided into toe cases following.
Case 1. If V1 NV, # 0, then G is vertex-transitive.

Let x and y be any two vertices of G. If x,y € V; or x,y € V, for example, x,y € V;,
then there exist o, ¢ € AutG such that (1) = x and ¢(u) = y. Thus ¢o~! is such an
automorphism with go='(x) = y. If x € V; and y € V5, let w € V; N V5. By assumption,
there are ¢, ¢ € AutG such that ¢(x) = ¢(y) = w. Then we get that ¢~ '¢(x) = y, i.e., G is

vertex-transitive.
Case 2. If V1, NV, =0, then G is bipartite.

Let x,y € V;. If xy € E(G), then there are o € AutG such that o(uv) = xy. But this
implies that one of x,y in V| and another in V5, a contradiction. Similarly, if x,y € V5,
then xy ¢ E(G). Whence, G is a bipartite graph. 0
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We get the following consequences by this result.

Corollary 3.3.1 Let G be a regular edge-transitive graph with an odd degree d > 1. If

|G| = 1(mod2), then G is vertex-transitive.

Proof Notice that if G is bipartite, then |Vi|d = |V2ld = &(G). Whence, |G| =
[V1| + V5| = 0(mod2), a contradiction. O

Corollary 3.3.2 Let G be a regular edge-transitive graph of degree d > |G|/2. Then G is
vertex-transitive.

23] [7%)

Us Ug

Uy Us

Fig.3.3.2

In fact, there are many edge-transitive but not vertex-transitive graphs, and vertex-transitive
but not edge-transitive graphs. For example, the complete graph K, ,, with n; # n, is
edge-transitive but not vertex-transitive, and the graph shown in Fig.3.3.2 is a vertex-

transitive but not edge-transitive graph.

3.3.3 Arc-Transitive Graph. An s-arc of a graph G is a sequence of vertices vy, vy, - - -, Vg
such that consecutive vertices are adjacent and v;_; # v;;; for 0 < i < 5. For example, a
circuit C, is s-arc transitive for all s < n. A graph G is s-arc transitive if AutG is transitive
on s-arcs. For s > 1, it is obvious that an s-arc transitive graph is also (s—1)-arc transitive.
A 0-arc transitive graph is just the vertex-transitive, and a 1-arc transitive graph is usually
called to be arc-transitive graph or symmetric graph.

Tutte proved the following result for s-arc transitive cubic graphs in 1947 (See in

[Yap1] for its proof).
Theorem 3.3.10 Let G be a s-arc transitive cubic graph. Then s < 5.

Examples of s-arc transitive cubic graphs for s < 5 can be found in [Big2] or [GoR1].

Now we turn our attention to symmetric graphs.

LetZ, ={0,1,---, p—1} be the cyclic group of order p written additively. We know
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that AutZ, is isomorphic to Z,_,. For a positive divisor » of p—1, let H, denote the unique

subgroup of AutZ, of order r, H, ~ Z,. Defne a graph G(p, ) of order p by
V(G(p’ I")) = Zp’ E(G(p’ I")) = {xy|x -y € Hr}

A classif cation of symmetric graph with a prime order p was obtained by Chao. He

proved the following result in 1971.

Theorem 3.3.11 Let p be an odd prime. Then a graph G of order p is symmetric if and
only if G = pK; or G = G(p, r) for some even divisor r of p — 1.

In the reference [PWX1] and [WaX1], we can also f nd the classif cation of symmet-
ric graphs of order a product of two distinct primes. For example, there are 12 classes
of symmetric graphs of order 3p, where p > 3 is a prime, including 3pK;, pKs, 3G(p,r)
for an even divisor r of p — 1, G(3p,r) for a divisor of p — 1, G(p,7)[3K;], K3, and
other 6 classes, where G(3p,r) is defned by V(G(3p,r)) = { x; | i € Z3,x € Z, } and
E(GQp,r) ={(xi,yir1) i€ Z3,x,y € Z,and y — x € H,}.

A graph G is half-transitive if G is vertex-transitive and edge-transitive, but not arc-

transitive. Tuute found the following result.

Theorem 3.3.12 If a graph G is vertex-transitive and edge-transitive with a odd valency,

then G must be arc-transitive.

Proof Let uv € E(G). Then we get two arcs (u, v) and (v, u). Defne Q; = (u, v)A"° =
{(u, v)¥lg € AutG} and Q, = (v, )™ = {(v,u)%lg € AutG}. By the transitivity of AutG
on E(G), we know that Q; U Q, = A(G), where A(G) denote the arc set of G. If G is
not arc-transitive, there must be Q; N €, = (. Namely, there are no g € AutG such that
(x,y)® = (3, x) for Y(x,y) € A(G). Now let X, = {x|(v,x) € Q;} and ¥, = {y|(y,Vv) € Q4}.
Then X, N Y, = 0. Whence, Ng(v) = X, U Y,. This fact enables us to know the valency
of G is k = |X,| + |Y,|. By the transitivity of AutG on V(G), we know that |X,| = |X,| and
1Y,| = |Y,| for Yu € V(G). So |E(G)| = |X,IIV(G)| = |V|IV(G)|. We get that |X,| = |Y,], i.e.,

k is an even number, a contradiction. ]

By Theorem 3.3.12, a half-transitive graph must has even valency. In 1970, Bouwer
constructed half-transitive graphs of valency & for each even number & > 2 and the mini-
mum half-transitive graph is a 4-regular graph with 27 vertices found by Holt in 1981. In
1992, Xu proved this minimum half-transitive graph is unique (See [ XHLL1] for details).
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§3.4 GRAPH SEMI-ARC GROUPS

3.4.1 Semi-Arc Set. Let G be a graph, maybe with loops and multiple edges, e = uv €
E(G). We divide e into two semi-arcs e, e, (or e, e}), and call such a vertex u to be the

root vertex of e . Here, we adopt a convention following:
Convention 3.4.1 Let G be a graph. Then for e = uv € E(G),

e,=e; ifu#v,
5oifu=w.
Denote by X 1(G) the set of all such semi-arcs of a graph G. We present a few

examples for X 1 (G). Let Dys,,B3,K4 be the dipole, bouquet and the complete graph
shown in Fig.3.4.1.

e
23] U
1
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u \%
w
o 7} Uy
Do, B; K4

Fig.3.4.1

Then, we know their semi-arc sets as follows:

X%(DO.S.O):{eH €2+ e3+ el+ €2+ 63+},

X,(By) = e, €5 5 €0 €5 - €0 ),

X% (Ka) = {uguy, uyuy, uyuy , uyus , uytiy, uyldy, Upliy , Upliy , Ugly , Ually , Usldyy , U3ty }.

Notice that the Convention 3.4.1 and these examples show that we can represent all
semi-arcs of a graph G by elements in V(G) U E(G) U {+, —} in general, and all semi-arcs
of G can be represent by elements in V(G) U E(G) U {+} or by elements in V(G) U {+}
if and only if G is a graph without loops, or neither with loops or multiple edges, i.e., a
simple graph G.

Two semi-arc e;, f with o, ® € {+, —} are said incident if u = v, e # f witho = e =
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+,0re= f,u+#vwitho=e ore= f,u=vwitho = +, ¢ = — For example, ¢>* and

e;™in Dy, €, and €7, in B; in Fig.3.4.1 both are incident.

3.4.2 Graph Semi-Arc Group. We have know the conception of automorphism of a
graph in Section 3.1. Generally, an automorphism of a graph G on V(G) | E(G) is an
1 — 1 mapping (£, n7) on G such that

& V(G) = V(G), n: E(G)— EG)

satisfying that for any incident elements e, f, (£, 1)(e) and (£, n)(f) are also incident. Cer-
tainly, all such automorphisms of a graph G also form a group, denoted by AutG.

We generalize this conception to that of the semi-arc set X’ 1 (G). The semi-arc auto-
morphism of a graph was f rst appeared in [Maol], and then applied for the enumeration
maps on surfaces underlying a graph I" in [MaL3] and [MLW 1], which is formally def ned

following.

Def nition 3.4.1 Let G be a graph. A 1 — 1 mapping & on X%(G) is called a semi-arc
automorphism of the graph G if forVe), f7 € Xi (G) with o, e € {+,—}, &(e;) and E(f)) are

incident if and only if €] and f; are incident.

By Def nition 3.4.1, all semi-arc automorphisms of a graph form a group under the
composition operation, denoted by Aut 1 G, which is important for the enumeration of
maps on surfaces underlying a graph and determining the conformal transformations on a
Klein surface.

The Table 3.4.1 following lists semi-arc automorphism groups of a few well-known

graphs.
G Aut; G order
K, S n!
Kon(m # 1) Su XS, m!n!
K., S5[S,] IE
B, S,[S2] 2!
Do o S, xS, 2n!
Dk # 1) | So[S] xS, xS,[S,] | 2Mnlk!l
Dy i S X8, X (S2[Sk])? | 2% nlk!?

Table 3.4.1
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In this table, Dy, is a dipole graph with 2 vertices, n multiple edges and D, ;; is a
generalized dipole graph with 2 vertices, » multiple edges, and one vertex with k£ bouquets
and another, / bouquets. This table also enables us to fnd some useful information for
semi-arc automorphism groups. For example, Aut %Kn = AutK, = §,, Aut %Bn = S.,[S,]
but AutB, = S,, i.c., Aut ! B, # AutB, for any integer n > 1.

Comparing semi-arc automorphism groups in Table 3, 4, 1 with that of Table 3.2.1, it
is easily to f'nd that the semi-arc automorphism group are the same as the automorphism
group in the frst two cases. Generally, we know a result related the semi-arc automor-
phism group with that of automorphism group of a graph, i.e., Theorem 3.4.1 following.

For this objective, we introduce a few conceptions f rst.

For Vg € AutG, there is an induced action gl% on X 1 (G), g: X 1 G) » X 1 (G)
determined by
Ve, € X1(G), glew) = (g(€)gq)-
All induced action of the elements in AutG on X ! (G) is denoted by AutG|:. Notice that
AutG = AutGl%. We get the following result.

Theorem 3.4.1 Let G be a graph without loops. Then Aut ! G = AutG|>.

Proof By the def nition, we only need to prove that for V& 1€ Aut ! G, éE=¢€ ! lc €
AutG and £, = 7. In fact, Let ¢}, /7 € X,(G) with o, e € {+,—}, where e = uv € E(G),
f =xy e E(G). Now if

§i(e) = /5,
by def nition, we know that & 1 (ey) = f;. Whence, & 1 (e) = f. Thatis, & 1 lc € AutG.

By assumption, there are no loops in G. Whence, we know that & 1 lc = 1auwc if and

only ifg% = lAut%G. So 5% is induced by f% |c on X% (G). Thus,

Aut; G = AutGl?. O

We have know that Aut 1 B, # AutB, for any integer n > 1. Combining this fact with

Theorem 3.4.1, we know the following.

Theorem 3.4.2 Let G be a graph. Then Aut%G = AutGlé if and only if G is a loopless
graph.

3.4.3 Semi-Arc Transitive Graph. A graph G is called to be semi-arc transitive if

Aut 1 G 1is action transitively on X 1 (G). For example, each of K,,, B,_; and Dy, for any
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integer n > 2 is semi-arc transitive. We know the following result for semi-arc transitive

graphs.

Theorem 3.4.3 A graph G is semi-arc transitive if and only if it is arc-transitive.

Proof A semi-arc transitive graph G is arc-transitive by the def nition of its preserv-
ing incidence of semi-arcs.

Conversely, let G be an arc-transitive graph. Let e and f" € X 1 (G) with e = (u, x)
and f = (v,y). By assumption, G is arc-transitive. Consequently, there is an automor-
phism ¢ € AutG such that ¢(u, x) = (v,y). Then it is easily to know that ¢(e}) = £, i.e.,

G is semi-arc transitive. [

§3.5 GRAPH MULTIGROUPS

3.5.1 Graph Multigroup. There is a natural way for getting multigroups on graphs. Let
G be a graph, H < G and o € AutG. Consider the localized action 0|y of o on H. In
general, this action must not be an automorphism of H. For example, let G be the graph

shown in Fig.3.5.1 and H = (v, v2, v3)5.

Vi V6
\ %) Vs
V3 V4
Fig.3.5.1
Let ooy = (vi,v3)(v4,v6)(»2)(vs) and o = (vi,V6)(v2, vs)(v3,v4). Then it is clear that

0,0, € AutG and
H” = (vi,va,v3)g = H and H' = (v4,vs,ve)g # H.

Whence, o is an automorphism of H, but o is not. In fact, let V¢ € (AutG)y. Then

H* = H, i.e., ¢|y is an automorphism of H. Now def ne

AutGy = (¢lu | s € (AutG)y ).

Then AutGy is an automorphism group of H.
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An extended action g|® for an automorphism g € AutH; is the action of g on G by
introducing new actions of g on G \ V(H;), | < i < m. The previous discussion enables

one to get the following result.

Theorem 3.5.1 Let G be a graph and G = €P H; a decomposition of G. Then for any
i=1
integer i, 1 < i < m, there is a subgroup &?; < AutH; such that Z|° < AutG, i.e.,
P = U & is a multigroup.
i=1

Proof Choose &; = AutGy, for any integer i, 1 < i < m. Then the result follows. [

For a given decomposition G = @5 H; of a graph G, we can always get automorphism
i=1

m
multigroups Aut™'G = |J ¢, 7 < AutH; for integers 1 < i < m, which must not be
i=1

m
an automorphism group of G. For its dependence on the structure of G = P H;, such
i=1

a multigroup Aut™"G is denoted by (+) 7% in this book. Generally, the automorphism

i=1
multigroups of a graph G are not unique unless G = K;. The maximal automorphism

multigroup of a graph G is Aut"™G = (©) AutH; and the minimal is that of Aut"’'G =

i=1
m

@{ 1L autrz,}. We frst determine automorphism groups of G in these multigroups following.

i=1
Let G be a graph, H < G and o € AutH, 7 € Aut(G \ V(H)). They are called to be
in coordinating with each other if the mapping g : G — G determined by

o(v), ifveV(H),
g(v) = :
7(v), ifveG\V(H)
is an automorphism of G for Vv € V(G). If such a g exists, we say 7 can be extended to
G and denoted g by 7¢. Denoted by Aut®H = { 0¥ |o € AutH }. Then it is clear that

AuwtGy = Aut®Hly < AutH. We fnd the following result for the automorphism group of
a graph.

Theorem 3.5.2 Let G be a graph and H < G. Then the mapping ¢¢ : AutG — AutH
determined by ¢;(g) = gly is a homomorphism, i.e., AutG/Kergs ~ AutGy.

Proof For any automorphism g € AutG, by Theorem 3.5.1, there is a localized action
gly such that H® = H, g = g|y € AutGy, i.e., such a correspondence ¢ is a mapping. We
are needed to prove the equality ¢g(ab) = ¢g(a)ps(b) holds for Va, b € AutG. In fact,

d(a)pa(b) = alfy blfy = (ab)l; = dg(ab)
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by the property of automorphism. Whence, ¢¢ is a homomorphism. Applying the homo-
morphism theorem of groups, we get AutG/Kerg; ~ Kergg. Notice that Kergg = AutGy.
We fnally get that AutG/Kergg ~ AutGy. 0

If ¢ is onto or 1 —1, then Kergg = 12y or AutH. We get the following consequence
by Theorem 3.5.2.

Corollary 3.5.1 Let G be a graph and H < G. If the homomorphism ¢ : AutG — AutH
is onto or 1 — 1, then AutG/Ker¢p ~ AutH or AutG ~ AutGy.

For example, Let G be the graph shown in Fig.3.5.1 and H = (v, v3, v4, V6)g. Then
oilg = (vi,v3)(v4, v6) and o3|y = (v, v6)(v3, v4), 1.€., the homomorphism ¢g : AutG —

AutGy is 1 — 1 and onto. Whence, we know that
AutG ~ AutGH = <0'1|H, O'zl[-[) .

Although it is very difficult for determining the automorphism group of a graph G in

general, it is easy for that of automorphism multigroups if the decomposition G = €P H;
i=1
is chosen properly. The following result is easy obtained by def nition.

Theorem 3.5.3 For any connected graph G,

AutEG = @ S{u,v}
(u)EE(G)
is an automorphism multigroup of G, where S, is the symmetric group action on the
vertices u and v.
Proof Certainly, any graph G has a decomposition G = P (u,v). Notice that

(uEE(G)
the automorphism on each edge (u,v) € E(G) is that symmetric group Sy,,;. Then the

assertion is followed. 0

The automorphism multigroup AutzG is a graphical property by Theorem 3.5.3.

Furthermore, we know that AutzG is a graph invariant on G by the following result.

Theorem 3.5.4 Let G, H be two connected graphs. Then G is isomorphic to H if and
only if AutyG and AutgH are permutation equivalent, i.e., there is an isomorphism g :
AutyG — AutgH and a 1 — 1 mapping « : E(G) — E(H) such that ¢(2)(t(e)) = u(g(e)) for
Vg € AutG and e € E(G).
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Proof If G ~ H, we are easily getting an isomorphism o : V(G) — V(H), which
induces an isomorphism ¢ : Aut;G — AutgH and a 1 — 1 mapping ¢ : E(G) — E(H) by
o(u,v) = (o(u), o(v)) for Ve = (u,v) € E(G).

Now if there is an isomorphism ¢ : Aut;G — AutgH and a 1 -1 mapping¢ : E(G) —
E(H) such that ¢(g)(«(e)) = «(g(e)) for Vg € AutG and e € E(G), by def nition

AutsG = (*) Spuw,

(u,)eEG)

we know that

S: @ Stuy = @ S v

(u,x)eE(G) for xeV(G) (vy)eE(H) for yeV(H)

where ¢ : (1, x) € E(G) — (v,y) € E(H). Whence, ¢ and ¢ induce a 1 — 1 mapping

o @ (u,x) = @ (v, ).

(ux)EE(G) for xeV(G) (vy)eE(H) for yeV(H)

This fact implies that o : u € V(G) — v € V(H) if we represent the vertices u, v re-

spectively by those of u = oy (u,x) and v = oy (v,y) in graphs
) (u.x)eE(G) for xeV(G) o (vy)eE(H) for yeV(H) )
G and H, where the notation @ = b means the defnition of a by that of 5. Essentially,

such a mapping o : V(G) — V(H) is an isomorphism between graphs G and H for easily

checking that
o (u, x) = (0(u), o7(x))
for ¥(u, x) € E(G) by such representation of vertices in a graph. Thus G ~ H. U
The decomposition G = & (u,v) is a K,-decomposition. A clique decomposi-

wV)EEG)
m
tion of a graph G is such a decomposition G = P K, where K, is a maximal complete

i=1
subgraph in G for integers 1 < i < m. We have know AutK,, = §,, from Table 3.2.1.

Whence, we know the following result on automorphism multigroups of a graph.

Theorem 3.5.5 Let G = (P K,, be a clique decomposition of a graph G. Then Aut™'G =

i=1
m
() A is an automorphism multigroup of G, where 7, < S V(Kn,)-
i=1

Proof Notice that AutK,, = §,.. Whence, Aut,,,G = @ ¢ 1s an automorphism
i=1
multigroup of G for each 77/ < § V(Ky)- O
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Similar to that of Theorem 3.5.4, we also know that the maximal automorphism

multigroup Aut,G = () S v(k,) 18 also a graph invariant following.
i=1

Theorem 3.5.6 Let G, H be two connected graphs. Then G is isomorphic to H if and
only if Aut,G and Aut. H are permutation equivalent.

Proof This result is an immediately consequence of Theorem 3.5.4 by applying the
fact SV(K,,) ={(vi,v2), (vi,v3), -, (vi, v I V(K,) = {vi,va, - -, vl O

3.5.2 Multigroup Action Graph. Let P bea multigroup action on a set Q. For two
elements a,b € ﬁ, if there is an element o€ & such that ¢” = b, we can represent this

relation by a directed edge (a, b) shown in Fig.3.5.2 following:

(on

Fig.3.5.2

Applying this notion to all elements in §~2, we get the action graph. An action graph
G[eﬁ; ﬁ] of 2 on Q is a directed graph def ned by

VGLZ7;0) = Q,
E(G[,ﬁ; §~2]) ={(a,b)|Va,be Qand Jdo € 2 such thata” = b ).

Since ! always exists in a multigroup 3,5, we also get that b =a. So edges between
aand b in G[@i; ﬁ] must be the case shown in Fig.3.5.3.

Fig.3.5.3

Such edges (a, b) and (b, a) are called parallel edges. For simplicity, we draw each parallel
edges (a, b) and (b, a) by a non-directed edge ab in the graph G[ézv; ﬁ], ie.,

V(GLZ;Q) = Q,

E(G[,ﬁ; §~2]) ={ab|Va,be Q and Ao € & such thata” = b }.
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Example 3.5.1 Let & ={(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2, 3)} be a permutation group
action on Q = {1,2,3,4}. Then the action graph G[Z7; Q] is the complete graph K, with
labels shown in Fig.3.5.4,

Fig.3.5.4

in where @ = (1,2)(3,4), 8= (1,3)(2,4) and y = (1,4)(2, 3).

Example 3.5.2 Let P bea permutation multigroup action on Q with
P =2 )P and Q=11,2,3,4,5,6,7,8}|_Ji1,2,5,6,9,10,11,12},

where & = ((1,2,3,4),(5,6,7,8)) and &, = ((1,5,9,10),(2,6, 11,12)). Then the ac-
tion graph G[Z; Q] of Z on Q = {1,2,3,4,5,6,7,8,9, 10, 11, 12} is shown in Fig.3.5.5,
in where labels on edges are removed. It should be noted that this action graph is in fact

a union graph of four complete graphs K, with intersection vertices.

12 11
3 2 6 7
4 1 5 8
10 9
Fig.3.5.5

These Examples 3.5.1 and 3.5.2 enables us to f nd the following result on the action

graphs of multigroups.
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Theorem 3.5.7 Let 2 be a multigroup action on a set Q with
,@i:Uc@iandﬁ:UQi,
i=1 i=1

where each permutation group &; acts on Q; with orbits Q;1, Qp, - - -, Qy5, for each integer

GL7:Q] = O (@ Kiay)
=1

-1

i, 1 <i<m Then

with intersections Ko, nq, only if for integers 1 < i # k<m, 1< j<s,l<1[< s
Particularly, ifm =1, i.e, P is just a permutation group, then its action graph G[ég; ﬁ]

is a union of complete graphs without intersections.

Proof" Notice that for each orbit Q;; of &; action on €;, the subgraph of the action
i | N ]qujzl = 0.
This result follows by def nition. (]

graph is the complete graph Ko | and Q;;, N Q;;, = 0 if j; # j», i.e.,, Ko

By Theorem 3.5.5, we are easily fnd the automorphism groups of the graph shown

in Fig.3.5.5, particularly the maximal automorphism group following:

AUtch[v@; Q] = S{1,2,3,4} @ S{5,6,7,8} @ S{1,5,9,10} @ S{2,6,11,12}-

Generally, we get the following result.

Theorem 3.5.8 Let 7 bea multigroup action on a set Qwith P = U < and Q= U Q;,
i=1 i=1
where each permutation group &; acts on Q; with orbits Q;1, Qp, - - -, Q. for each integer

i, 1 <i < m. Then the maximal automorphism group ofG[:@/; £~2] is
Aut,G[Z: Q] = O @ S,
=1 j=1
Particularly, if |Q; N Qul = 1fori# k 1 <i,k<m, 1 <j<s;, <1< 5y then
Aut,G[Z; Q] = é) @ Sa,-
=1 j=1

Proof Notice that if [Q;; NQy| = 1 fori# k, 1 <i,k<m,1 < j<s;,[ <1< s, then

m

GL7:01= P @Klg,ﬂ.
1

=l j=

This result follows from Theorems 3.5.5 and 3.5.7. O
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3.5.3 Globally Transitivity. Let P be a permutation multigroup action on Q. This

permutation multigroup P is said to be globally k-transitive for an integer £ > 1 if for

any two k-tuples x1,x2, -+, x¢ € Q; and yi,y», -+, vk € Q;, where 1 < i, j < m, there are
permutations 7y, 7y, - - -, m, € & such that x['™"™ =y, X377 =y, o, X =

We have obtained Theorems 2.6.8-2.6.10 for characterizing the globally transitivity of
multigroups. In this subsection, we characterize it by the action graphs of multigroups.
First, we know the following result on globally 1-transitivity, i.e., the globally transitivity

of a multigroup.

Theorem 3.5.9 Let & be a multigroup action on a set Q with
:@7=Uc@iand§~2:UQi,
i=1 i=1

where each permutation group &; acts on Q; for integers 1 <i < m. Then P is globally

transitive action on Q if and only if G[tﬁ; ﬁ] is connected.

Proof Let x,y € Q. If Zis globally transitive action on §~2, then there are elements
My, 7T, , Ty € P such that X7 = y for an integer n > 1. Defne v; = x™,v, =
X2 ey, o= XMt Notice that vy, vy, -, v,o € Q. By defnition, we conse-
quently fnd a walk (path) xv;v; - - - v,_;y in the action graph G[BF;; ﬁ] for any two vertices
X,y € V(G[@i; EZ]), which implies that G[,é;; §~2] is connected.

Conversely, if G[,é;; §~2] is connected, for Vx,y € V((G[,é;; 5])) = §~2, let xuy - - u,_1y
be a shortest path connected the vertices x and y in G[37; Q] for an integer n > 1. By

def nition, there are must be 7y, 715, --, 7, € P such that ¥ = UL Ul =y, U =
Whence,

X =y,
Thus & is globally transitive action on Q. U

For a multigroup action 2 action on Q with
‘@/:U‘@" and ﬁzUQi,
i=1 i=1

where each permutation group &; acts on €; for integers 1 < i < m, defne

Qf_‘:{(xl,xz,--~,xk)|x1€Q} and QF = UQ{‘

i=1
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for integers k£ > 1 and 1 < i < m. Then we are easily proved that a permutation group
P action on Q is k-transitive if and only if & action on QF is transitive for an integer
k > 1. Combining this fact with that of Theorem 3.5.9, we get the following result on the
globally A-transitivity of multigroups.

Theorem 3.5.10 Let & be a multigroup action on a set Q with
§=U32i and §=UQI',
=1 i=1

1

where each permutation group &; acts on Q; for integers 1 < i < m. Then P is globally

k-transitive action on Q for an integer k > 1 if and only if G[tﬁ; ﬁ"] is connected.

Proof Replacing Q by OF in the proof of Theorem 3.5.9 and applying the fact that a
permutation group & action on Q is k-transitive if and only if & action on QF is transitive

for an integer k > 1, we get our conclusion. O

Applying the action graph G[,é;; §~2] and G[,é;; §~2k], we can also characterize the
globally primitivity or other properties of permutation multigroups by graph structure.

All of those are laid the reader as exercises.

§3.6 REMARKS

3.6.1 For catering to the need of computer science, graphs were out of games and turned
into graph theory in last century. Today, it has become a fundamental tool for dealing
with relations of events applied to more and more felds, such as those of algebra, topol-
ogy, geometry, probability, computer science, chemistry, electrical network, theoretical
physics, - -- and real-life problems. There are many excellent monographs for its theo-
retical results with applications, such as these references [ChL1], [Whil] and [Yap1] for
graphs with structures, [GrT1], [MoT1] and [Liul] for graphs on surfaces.

3.6.2 The conception of Smarandachely graph property in Subsection 3.1.4 is presented
by Smarandache systems or Smarandache’s notion, i.e., such a mathematical system in
which there is a rule that behaves in at least two different ways, i.e., validated and in-
valided, or only invalided but in multiple distinct ways (See [Mao2]-[Mao4], [Mao25]

and [Smal]-[Sma2] for details). In fact, there are two ways to look a graph with more
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than one edges as a Smarandachely graph. One is by its graphical structure. Another
is by graph invariants on it. All of those Smarandachely conceptions are new and open

problems in this subsection are valuable for further research.

3.6.3 For surveying symmetries on graphs, automorphisms are needed, which is permu-
tations on graphs. This is the closely related place of groups with that of graphs. In fact,
fnite graphs are a well objectives for applying groups, particularly for classifying sym-
metric graphs in recent two decades. To determining the automorphism groups AutG of
a graph G is an important but more difficult problem, which enables one to enumerating
maps on surfaces underlying G, or f nd regular maps on surfaces (See following chapters
in this book). Sections 3.2-3.3 present two ways already known. One is the GRR of f nite
group. Another is the normally Cayley graphs for fnite groups. More results and exam-
ples can be found in references [Big2], [GoR1], [Xum2], [XHL1] and [Yap1] for further

reading.

3.6.4 A hypergraph A is a triple (V, f, E) with disjoints V, E and f : E — Z2(V),
where each element in V' is called the vertex and that in £ is called the edge of A. If
f + E — V xV, then a hypergraph A is nothing but just a graph G. Two elements
x € V, e € E of a hypergraph (V, f, E) are called to be incident if x € f(e). Two hy-
pergraphs Ay = (V1, f1, E1) and Ay = (V2, f>, E) are isomorphic if there exists bijections
p:E — Ey q: Vi — V;such that g[ fi(e)] = fa(p(e)) holds for Ve € E. Particularly,
if A; = A,, i.e., isomorphism between a hypergraph A, such an isomorphism is called
an automorphism of A. All automorphisms of a hypergraph A form a group, denoted
by AutA. For hypergraphs, we can also introduce conceptions such as those of vertex-
transitive, edge-transitive, arc-transitive, semi-arc transitive and primitive by the action of
AutA on A and get results for symmetric hypergraphs. As we known, there are nearly

none such results found in publication.

3.6.5 The semi-arc automorphism of a graph is frstly introduced in [Maol] and [Mao2]
for enumerating maps on surfaces underlying a graph. Besides of these two references,
further applications of this conception can be found in [Mao5], [MalL3], [MLW1] and
[Liu4]. It should be noted that the semi-arc automorphism is called semi-automorphism
of'a graph in [Liu4]. In fact, the semi-arc automorphism group of a graph G is the induced
action of AutG on semi-arcs of G if G is loopless. Thus is the essence of Theorems 3.4.1

and 3.4.2. But if G has loops, the situation is very different. So the semi-arc automorphism
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group of a graph is valuable at least for enumerating maps on surface underlying a graph G
with loops because we need the semi-arc automorphism group, not just the automorphism

group of G in this case.

3.6.6 Considering the local symmetry of a graph, graphs can be seen as the sources of
permutation multigroups. In fact, automorphism of a graph surveys its globally symmetry.
But this can be only applied for that of f elds understood by mankind. For the limitation
of recognition, we can only know partially behaviors of World. So a globally symmetry
in one’s eyes is localized symmetry in the real-life World. That is the motivation of
multigroups. Although to determine the automorphism of a graph is very difficult, it is
easily to determine the automorphism multigroups in many cases. Theorems 3.5.3 and
3.5.5 are such typical examples. It should be noted that Theorems 3.5.4 and 3.5.6 show
that the automorphism multigroups Aut;G and Aut,G are new invariants on graphs. So
we can survey localized symmetry of graphs or classify graphs by the action of AutzG
and Aut,,G.



CHAPTER 4.

Surface Groups

The surface group is generated by loops on a surface with or without bound-
ary. There are two disguises for a surface group in mathematics. One is the
fundamental group in topology and another is the non-Euclidean crystallo-
graphic group, shortly NEC group in geometry. Both of them can be viewed
as an action group on a planar region, enables one to know the structures of
surfaces. Consequently, topics covered in this chapter consist of two parts
also. Sections 4.1.-4.3 are an introduction to topological surfaces, includ-
ing topological spaces, classif cation theorem of compact surfaces by that
of polygonal presentations under elementary transformations, fundamental
groups, Euler characteristic, ---, etc.. These sections 4.4 and 4.5 consist a
general introduction to the theory of Klein surfaces, including the antiana-
lytic functions, planar Klein surfaces, NEC groups and automorphism groups
of Klein surfaces, - -, etc.. All of these are the preliminary for fnding au-
tomorphism groups of maps on surfaces or Klein surfaces in the following

chapters.
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§4.1 SURFACES

4.1.1 Topological Space. Let .7 be a set. A topology on a set .7 is a collection € of

subsets of .7, called open sets satisfying properties following:

(T1)0 e € and 7 € E,
(T2) if U,U, e Cg, then U nU,e Cg;

(T3) the union of any collection of open sets is open.

For example, let . = {a, b,c}and ¢ = {0, {b}, {a, b}, {b, c}, 7}. Then € is a topology
on .7 . Usually, such a topology on a discrete set is called a discrete topology, otherwise,
a continuous topology. A pair (7, %) consisting of a set .7 and a topology % on .7 is
called a topological space and each element in .7 is called a point of 7. Usually, we also
use .7 to indicate a topological space if its topology is clear in the context. For example,
the Euclidean space R” for an integer n > 1 is a topological space.

For a point u in a topological space .7, its an open neighborhood is an open set U
such that u € U in 7 and a neighborhood in .7 is a set containing some of its open
neighborhoods. Similarly, for a subset 4 of .7, a set U is an open neighborhood or
neighborhood of A if U is open itself or a set containing some open neighborhoods of
that set in .7. A basis in .7 is a collection £ of subsets of .7 such that .7 = U 4B and
By, B, € #,x € B; N By implies that B3 € & with x € B; C B; N B, hold.

Let .7 be a topological space and / = [0,1] € R. An arc a in .7 is defned to be a
continuous mapping a : I — 7. We call a(0), a(1) the initial point and end point of a,
respectively. A topological space .7 is connected if there are no open subspaces A and B
such that § = 4 U B with 4, B # 0 and called arcwise-connected if every two points u, v
in 7 can be joined by an arc ¢ in .7, i.e., a(0) = uand a(l1) = v. Anarca : [ — 7 is
a loop based at p if a(0) = a(1) = p € . A —it degenerated loope, : I —» x € S, i.e.,
mapping each element in / to a point x, usually called a point loop.

A topological space .7 is called Hausdorff if each two distinct points have disjoint
neighborhoods and f7st countable if for each p € 7 there is a sequence {U,} of neigh-
borhoods of p such that for any neighborhood U of p, there is an n such that U, ¢ U. The
topology is called second countable if it has a countable basis.

Let {x,} be a point sequence in a topological space 7. If there is a point x € .7 such
that for every neighborhood U of u, there is an integer N such that n > N implies x,, € U,

then {u,} is said converges to u or u is a limit point of {u,} in the topological space .7.
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4.1.2 Continuous Mapping. For two topological spaces .7] and .% and a point u € .7,
a mapping ¢ : 7] — 2 is called continuous at u if for every neighborhood V of ¢(u),
there is a neighborhood U of u such that ¢(U) c V. Furthermore, if ¢ is continuous at
each point u in .77, then ¢ is called a continuous mapping on 7.

For examples, the polynomial function /' : R — R determined by f(x) = a,x" +
a,.1xX" ' + -+ + a;x + ay and the linear mapping L : R” — R” for an integer n > 1 are

continuous mapping. The following result presents properties of continuous mapping.

Theorem 4.1.1 Let Z, .¥ and T be topological spaces. Then

(1) 4 constant mapping ¢ : Z — . is continuous,

(2) The identity mapping Id : # — % is continuous,

Q) If f : Z — 7 is continuous, then so is the restriction f|y of f to an open subset
Uof %,

DIff X —> S andg: .S — T are continuous at x € % and f(x) € .7, then so
is their composition mapping gf : # — 7 at x.

Proof The results of (1)-(3) is clear by defnition. For (4), notice that f and g are
respective continuous at x € R and f(x) € .. For any open neighborhood W of point
g(f(x)) € 7, g (W) is opened neighborhood of f(x) in .. Whence, f~'(g"!(W)) is an
opened neighborhood of x in Z by def nition. Therefore, g(f) is continuous at x. 0

A refnement of Theorem 4.1.1(3) enables us to know the following criterion for

continuity of a mapping.

Theorem 4.1.2 Let # and . be topological spaces. Then a mapping f : Z# — .7 is

continuous if and only if each point of % has a neighborhood on which f is continuous.

Proof By Theorem 4.1.1(3), we only need to prove the sufficiency of condition. Let
f % — . be continuous in a neighborhood of each point of % and U c .. We show
that /~1(U) is open. In fact, any point x € f~!(U) has a neighborhood ¥ (x) on which f
is continuous by assumption. The continuity of ]y implies that (f1y))~'(U) is open in

V(x). Whence it is also open in %. By def nition, we are easily fnd that

Areo) (V) = x € ZIf(x) € U} = £1(O) [ ) V),

in /~1(U) and contains x. Notice that /~!(U) is a union of all such open sets as x ranges
over f~'(U). Thus f~'(U) is open followed by this fact. O
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For constructing continuous mapping on a union of topological spaces 2, the fol-

lowing result is a very useful tool, called the Gluing Lemma.

Theorem 4.1.3 Assume that a topological space X is a f nite union of closed subsets:
n

Z = X. If for some topological space %, there are continuous maps f; : X; — % that
i=1

agree on overlaps, i.e., filx.nx, = filx.,nx, for alli, j, then there exists a unique continuous

[ X - X with fly. = fiforalli.

Proof Obviously, the mapping f def ned by
J(x) = filx), xekX;

is the unique well def ned mapping from 2" to % with restrictions f|x, = f; hold for all i.
So we only need to establish the continuity of f on 2. In fact, if U is an open set in %/,
then

oy = x( o= (CJX» '

ey = wn =Us o
=1 i=1 i=1

By assumption, each f; is continuous. We know that f;"'(U) is open in X;. Whence,
Y (U) is open in 2. Thus f is continuous on 2. O

Let 2 be a topological space. A collection C ¢ Z(Z") is called to be a cover of 2~

Jc=2.

CeC
If each set in C is open, then C is called an opened cover and if |C] is fnite, it is called

if

a f'nite cover of 2. A topological space is compact if there exists a fnite cover in its
any opened cover and locally compact if it is Hausdorff with a compact neighborhood for
its each point. As a consequence of Theorem 4.1.3, we can apply the gluing lemma to

ascertain continuous mappings shown in the next.

Corollary 4.1.1 Let Let Z and % be topological spaces and {4, A>,---,A,} be a f-
nite opened cover of a topological space Z". If a mapping  : X — % is continuous

constrained on each A;, 1 <i < n, then f is a continuous mapping.

4.1.3 Homeomorphic Space. Let . and .7 be two topological spaces. They are

homeomorphic if there is a 1 — 1 continuous mapping ¢ : . — .7 such that the inverse
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maping ¢! : .7 — .7 is also continuous. Such a mapping ¢ is called a homeomorphic
or topological mapping. A few examples of homeomorphic spaces can be found in the

following.

Example 4.1.1 Each of the following topological space pairs are homeomorphic.

(1) A Euclidean space R” and an opened unit n-ball B" = { (x1,x2, -+, x,) | X3 + X3 +
ek x2 <1l
(2) A Euclidean plane R"*! and a unit sphere S” = { (x1, X2, - -+, Xp1) | X] + X5+ +

x2,, = 1} with one point p = (0,0, ---,0, 1) on it removed.

In fact, def ne a mapping f from B” to R” for (1) by
(xl?xz’ et ,xn)

1- \/xf+x§+---+xﬁ

f(xl?xz" * "xﬂ) =

for V(xi, x2,- -+, x,) € B". Then its inverse is

(xl’x2,' . ',xn)

fl(xl?xz" * "xﬂ) =

1+ \/x§+x§+~-+xﬁ

for V(x, x5, -+, x,) € R". Clearly, both fand /! are continuous. So B" is homeomorphic
to R". For (2), def ne a mapping f from §” — p to R"™*! by

f(xls X2, axn+l) =
Its inverse /! : R™! — S§" — p is determined by

S X, Xat) = (00X, -+, 10X, 1 = 1(x)),

where
2

2 2 2
L+xp+x3+--+x,,,

(x) =
Notice that both f and /! are continuous. Thus S” — p is homeomorphic to R"*!.

4.1.4 Surface. For an integer n > 1, an n-dimensional topological manifold is a second
countable Hausdorff space such that each point has an open neighborhood homeomorphic
to an open n-dimensional ball B" = {(x1, xp, - - -, X,)|x] +x5+- - -+x; < 1} in R". We assume
all manifolds is connected considered in this book. A 2-manifold is usually called surface

in literature. Several examples of surfaces are shown in the following.
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Example 4.1.1 These 2-manifolds shown in the Fig.4.1.1 are surfaces with boundary.

plane torus rectangle cylinder

Fig.4.1.1

Example 4.1.2 These 2-manifolds shown in the Fig.4.1.2 are surfaces without boundary.

o &

sphere torus

Fig.4.1.2

By def nition, we can always distinguish the right-side and left-side when one object
moves along an arc on a surface S. Now let N be a unit normal vector of the surface S.
Consider the result of a normal vector moves along a loop L on surfaces in Fig.4.1.1 and
Fig.4.1.2. We fnd the direction of N is unchanged as it come back at the original point u.

For example, it moves on the sphere and torus shown in the Fig.4.1.3 following.

& @

sphere torus

Fig.4.1.3
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Such loops L in Fig.4.1.3 are called orientation-preserving. However, there are also loops
L in surfaces which are not orientation-preserving. In such case, we get the opposite
direction of N as it come back at the original point v. Such a loop is called orientation-
reversing. For example, the process (1)-(3) for getting the famous Mobius strip shown in

Fig.4.1.4, in where the loop L is an orientation-reversing loop.

A B’ A A’
N
X ,
- B’ B E
B A’ B B’
1 2
(1) A (2)
L
B
(3)
Fig.4.1.4

A surface S is defned to be orientable if every loop on S is orientation-preserving.
Otherwise, non-orientable if there at least one orientation-reversing loop on S. Whence,
the surfaces in Examples 4.1.1-4.1.2 are orientable and the Mdbius strip are non-orientable.
It should be noted that the boundary of a Mbius strip is a closed arc formed by AB’ and
A’B. Gluing the boundary of a Mgbius strip by a 2-dimensional ball B?, we get a non-

orientable surface without boundary, which is usually called crosscap in literature.

4.1.5 Quotient Space. A natural way for constructing surfaces is by the quotient space
from a surface. For introducing such spaces, let 2", % be a topological spaces and
n . Z — Y be a surjective and continuous mapping. A subset U C % is defned to be
open if and only if 77!(U) is open in .2". Such a topology on % is called the quotient
topology induced by 7, and 7 is called a quotient mapping. It can be shown easily that the

quotient topology is indeed a topology on %/

Let ~ be an equivalent relation on 2. Denoted by [¢] the equivalence class for each
g € Z and let &'/ ~ be the set of equivalence classes. Now let 7 : 2" — 2/ ~ be
the natural mapping sending each element g to the equivalence class [¢]. Then 27/ ~

together with the quotient topology determined by = is called the quotient space and n



124 Chap.4 Surface Groups

the projection. For example, the Mobius strip constructed in Fig.4.1.4 is in fact a quotient
space 2"/ ~, where 2" is the rectangle AEBA’E’B’, and

- X if|xd| = |¥A'),x € AB,y € A'B’,
TX) =
x ifxe Z\(ABUAB).

Applying quotient spaces, we can also construct surfaces without boundary. For ex-
ample, a projective plane is def ned to be the quotient space of the 2-sphere by identifying
every pair of diametrically opposite points, i.e., 2 = {(x1, x2, x3)lx] + x5 + x3 = 1} with
n(=x1, =x2, =X3) = (X1, X2, X3).

Now let 2" be a rectangle 4BA’B’ shown in Fig.4.1.5. Then different identif cation
of points on 4B with A’B" and 44’ with BB’ yields different surfaces without boundary
shown in Fig.4.1.5,

b
A A A
a a a a
B B B
sphere S? torus 72

b
A b x A A
a a a a
B b B’ B B’

projection plane P? Klein bottle K> b

Fig.4.1.5

where the projection 7 is determined by

" X ifxA'| = |X'A'|,x € AB'B,y € A'AB,
T\X) =
x ifxe Z\(ABUA'B UAA UBB)



Sec.4.2 Classif cation Theorem 125

in the sphere,

' if |xA'| = |X'B'),x € AA’, X’ € BB/,
a(x) =9 x7  if |x4| = [¥A'l,x € AB,x' € A'B/,
ifxe 2\ (ABUA'B'UAA' U BB

=

><

=

in the torus,
) x' if |xB| = |x’4’|,x € BAA’,x' € A’B’'B,
n(x) =
x ifxe Z\(ABUA'B UAA" U BBR’)

in the projection plane and

x  if|xA'| = |x'B'|,x € AA’, x’ € BB’,
n(x) =9 x” if [xA| = |x"B’|,x € AB,x’ € A'B’,
x ifxe Z\(ABUA'B" UAA" UBB)

in the Klein bottle, respectively.

$4.2 CLASSIFICATION THEOREM

4.2.1 Connected Sum. Let S, S, be disjoint surfaces. A connected sum of S, and S,
denoted by S 1#S, is formed by cutting a circular hole on each surface and then gluing the

two surfaces along the boundary of holes.

A A A A C C
g I I,
c C D D’
ol o 57
a0 Ak . lB(B’)
B B’ B B’ C C
(1) (2) 3)

Fig.4.2.1

For example, we show that a Klein bottle constructed in Fig.4.1.5 is in fact the connected
sum of two Mdbius strips in Fig.4.2.1, in where, (1) is the Klein bottle in Fig.4.1.5. It
should be noted that the rectangles CDC’ D’ and DACC’ B’ D’ are two Mdbius strips after
we cut ABA’B’ along CC’, DD’ and then glue along AB, A’B’ in (3).
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For a precise def nition of connected sum, let D; ¢ S and D, C §, be closed 2-
dimensional discs, i.e., homeomorphic to B = {(x1,x2)lx7 + x5 < 1} with boundary 8Dy,
dD, homeomorphic to S' = {(x}, x,)Ix? + x5 = 1}. Notice that each dD; homeomorphic to
S'fori=1,2. Leth; : 0D, — S'and h, : dD, — S' be such homeomorphisms. Then
h3 Yhy : D, — 0Dy, i.e., there always exists a homeomorphism dD; — dD,. Chosen
a homoeomorphism /4 : dD; — dD,, then S #S, is defned to be the quotient space
(S1 U S,)/h. By defnition, S#S, is clearly a surface and does not dependent on the
choice of Dy, D, and A.

Example 4.2.1 The following connected sums of orientable or non-orientable surfaces

are orientable or non-orientable surfaces.

(1) A connected sum T?#T2#- - -#T* of n toruses is orientable. Particularly, 72#7°

n

1s called the double torus.

(2) A connected sum P*#P*# - - -#P* of k projection planes is non-orientable. Partic-

k
ularly, K? = P*#P? as we shown in Fig.4.2.1.

4.2.2 Polygonal Presentation. A triangulation of a surface S consisting of a fnite
family of closed subsets {7, T, - - -, T,,} that covers S with T; N T; = 0, a vertex v or an
entire edge e in common, and a family of homeomorphisms ¢; : 7/ — T;, where each T
is a triangle in the plane R?, i.e., a compact subset bounded by 3 distinct straight lines.
The images of vertices and edges of the triangle 7} under ¢; are called also the vertices
and edges, respectively. For example, a triangulation of the Mobius strip can be found in
Fig.4.2.2.

Vi A %) V3 V4 Vs
U [Z5) us Uy Us
Fig.4.2.2

In fact, there are many non-isomorphic triangulation for a surface, which is the central
problem of enumerative theory of maps (See [Liu2]-[Liu4] for details). T.Rad6 proved
the following result in 1925.
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Theorem 4.2.1(Rado) Any compact surface S admits a triangulation.

The proof of this theorem is not difficult but very tedious. We will not present it
here. The reader can refers references, such as those of [AhS1] and [Leel] for details.

The following result is fundamental for classifying surfaces without boundary.

Theorem 4.2.2 Let S be a compact surface with a triangulation 7. Then S is homeo-

morphic to a quotient surface by identifying edge pairs of triangles in T .

Proof Let 7 = {T;; 1 <i < nbe a triangulation of §. Our proof is divided into two

assertions following:

(A1) Let v be a vertex of T. Then there is an arrangement of triangles with v as a

vertex in cyclic order T\, T,,---, T . such that T; and T}, have an edge in common for

integers 1 < i < p(v) (modp(v)). "

Def'ne an equivalence on two triangles T}, T H by that of 7 and T H have exactly an
edge in common in 7. It is clear that this relation is indeed an equivalent relation on 7.
Denote by [77] all such equivalent classes in 7. Then if |[7]| = 1, we get the assertion
(A1). Otherwise, |[[77]| > 2, we can choose [T}], [T)] € [7 ] such that [T]] N [T}] = {v} in
7 . Whence, there is a neighborhood W, of v small enough such that W, —v is disconnected.
But by the def nition of surface, there is a neighborhood W of v homeomorphic to an open
sphere B? in S. Consequently, W’ — v is connected for any neighborhood W, of v small

enough, a contradiction.

(A2) Each edge is an edge of exactly two triangles.

First, each edge is an edge of two triangles at least in 77, i.e., there are no vertices
x on an edge of 7; for an integer, i, 1 < i < n with a neighborhood W, homeomorphic
to an open ball B%. Otherwise, a loop L encircled x in 7; — W, can not be continuously
contracted to the point in 7. But it is clear that any loop in 7; — W, for neighborhoods W,
of x small enough can be continuously contracted to a point in 7; — W, for any point x on
an edge of T, a contradiction.

Second, each edge is exactly an edge of two triangles. Notice that we can continu-
ously subdivide a triangulation such that triangles 7 with a common edge e are contained
in an e-neighborhood of a point in 7". Not loss of generality, we assume 7" is such a trian-
gulation of §. By applying Jordan curve theorem, i.e., the moving of any closed curve C on

S?2 reminds two connected components W, W, with W;N\W, = C, we know that each edge
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is exactly an edge of two triangles in 7°. In fact, let ee;je;1, eejpen, - - -, ees ey be trian-
gles contained in an e-neighborhood W with a common edge e, where e, ej;, ey, 1 <i<'s
are edges of these triangles. Then W — ee; e, has two connected components by Jordan
curve theorem. One of them is the interior of triangle eey;e;; and another is W — T, where

T, is the triangle with boundary ee;;e;;. So there must be s = 2.

Combining assertions (A1)-(A2), we consequently get the result. 0

According to Theorem 4.2.2, we know that a compact surface can be presented by
identifying edges of triangles, where each edge is exactly an edge of two triangles. Gen-
erally, let <7 be a set. A word is def ned to be an ordered k-tuple of elements a € o7 with

the form a or a™!. A polygonal presentation, denoted by
W =(A | W), Wy, Wi)

is a f nite set .7 together with f nitely many words Wy, W,, - - -, W} in &7 such that each ele-
ment of .o/ appears in at least one words. A polygonal presentation (o7 |W, W, -+, W}) is
called a surface presentation if each element a € .o/ occurs exactly twice in Wy, Wy, -- -, W
with the form a or a~'. We call elements a € 27 to be edges, W;, 1 < i < k to be faces
of § and vertices appeared in each face vertices if each words is represented by a poly-
gon on the plane R2. It can be known that a surface is orientable if and only if the two

occurrences of each element a € o7 are with different power, otherwise, non-orientable.

For example, let S be the torus 77 with short side a and length side b in Fig.4.1.5.
Then we get its polygonal presentation 72 = <a, b|aba‘1b‘1>. Generally, Theorem 4.2.2
enables one knowing that the existence of polygonal presentation for compact surfaces S,

at least by triangles, i.e., each words W is length of 3 in 7.

4.2.3 Elementary Equivalence. Let o/ be a set of English alphabets, the minuscules
a,b,c,--- € o but the Greek alphabets a,8,y,--- ¢ &/, S = (AW, W,,---, W,) be a
surface presentation and let the capital letters 4, B, - - - be sections of successive elements
in order and 47!, B!, - - - in reserving order in words W. For two words W;, W, in S, the
notation W, W, denotes the word formed by concatenating W, with W, in order. We adopt

the convention that (¢a')~! = g in this book.

Def ne operations El.1-El.6, called elementary transformations on S following:

El.1(Relabeling): Changing all occurrences of a by a ¢ <, interchanging all oc-
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currences of two elements a and b, or interchanging all occurrences a and a™', i.e.,

(A \aAbB, Wy, -, W) < (of|bAaB, Wy, -, W),
<d|aAa—lB, Wz,---,Wk> o (ma—lAa, Wz,m,Wk> or
(maA, a'B,- -, Wk> PN <,Q%|a_1A, aB,- -, Wk> :

EL.2(Subdividing or Consolidating) Replacing every occurrence of a by a8 and a™'

by B~'a!, or vice versa, i.e.,

(H\ada™ B, W, W) o (BB~ ™ B Wy, W)
(1ad,a”'B,--- . W) o (a4, B B, Wy).

El.3(Refecting) Reversing the order of a word W = aya, - - - a,, i.e.,

(A Nay,ar -~ ay, Wa, -+, Wi) & <@7|a;l1 "'aglal_l, Wy, -, Wk>.
El.4(Rotating) Changing the order of a word W = aya, - - - a,, by rotating, i.e.,
(Alay,az -+ am W, -+, Wiy o AL awar - ap-1, Wa, -+, W) .
EL5(Cutting or Pasting) If the length of W, W, are both not less than 2, then
(AN W, Wiy & (A Wy, y™ W, W)

EL.6(Folding or Unfolding) If the length of W is at least 3, then
(A \W1867 W, W) & (|1, W, W)

Let S; and S, be two surface presentations. If S; can be conversed to that of S; by
a series of elementary transformations my, 7, -+, w1, in E[.1 — —EL.6, we say S; and S,
to be elementary equivalent and denote by S; ~z; S,. It is obvious that the elementary
equivalence is indeed an equivalent relation on surface presentations. The following result

is fundamental for applying surface presentations to that of classifying compact surfaces.

Theorem 4.2.3 Let S| and S, be compact surfaces with respective presentations Sy, S,.

If S| ~g1 Sy, then S| is homeomorphic to S .

Proof By the defnition of elementary transformation, it is clear that each pairs of
cutting and pasting, folding and unfolding, subdividing and consolidating are inverses of

each other. Whence, we are only need to prove our result for one of such pairs.
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Cutting. Let P; and P, be convex polygons labeled by W,y and y~! W5, respectively
and P be a convex polygon labeled by W, W,. Not loss of generality, we assume these are
the only words in their respective presentations. Let7 : Py U P,/ ~— S;and 7’ : P/ ~—
S, be the quotient mappings. The line segment going from the terminal vertex of /; in
P to its initial vertex lies in P by convexity, labeled this line segment by . Such as those

shown in Fig.4.2.3 following.

pasting
<>
cutting

Fig.4.2.3

Applying the gluing lemma, there is a continuous mapping f : P; U P, — P that takes
each edge of P, or P, to the edge in P with a corresponding label, and whose restriction
to P or P, is a homeomorphism, i.e., f is a quotient mapping. Because f identifying two
edges labeled by y and y~! but nothing else, the quotient mapping r o f and 7’ makes the

same identif cations. So their quotient spaces are homeomorphic.

folding %/ |§
S Y
unfolding

Fig.4.2.4

If £ > 3, extending f by declaring it to be the identity on the respective polygons and

processed as above, we also get the result.

Folding. Similarly, we can ignore the additional words W, - - -, W;. If the length of
Wy is 2, subdivide it and then perform the folding transformation and then consolidate.
So we can assume the length of W, is not less than 3. First, let W, = abc and P, P’ be

1

convex polygons with edge labels abcee™ and abc, respectively. Letr : P — §; and

7’ . PP — S, be the quotient mappings. Now adding edges in P, P’, turns them into
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polyhedra, such as those shown in Fig.4.2.4. There is a continuous mapping f : P — P’
that takes each edge of P to that the edge of P’ with the same label. Then " o f and 7 are
quotient mappings that make the same identif cations.

If the length> 4 of W, we can write W, = Abc for some section A of length at least

2. Cutting along a we obtain
<sz, b, c, e|Abcee‘1> ~El <,527, a,b,c,elda”", abcee_1>

and processed as before to get the result.

Iand

Subdividing. Similarly, let P,, P, be distinct polygons with sections a or a~
P|, P} with sections replacing a by 8 and ™' by 8'a™! in P; and P,. Such as those

shown in Fig.4.2.5.

™

subdividing
¢ <>

consolidating \
@

Fig.4.2.5

Certainly, there is a continuous mapping f : P; U P, — P U P) that takes each edge of
P, P, to that the edge of P}, P, with the same label, and the edge with label a to the edge
with label o in P{ U P,. Thenn’o f: PyUP,/ ~— Syandr : Py UP,/ ~— §, are
quotient mappings that make the same identif cations.

If a or a! appears twice in a polygon P, the proof is similar. Thus S; is homeomor-

phic to S in each case. [

4.2.4 Classif cation Theorem. Let S be a compact surface with a presentation S =
(AW, W,,---, W;)and let 4, B, - - - be sections of successive elements in a word ¥ in S.

Theorems 4.2.1-4.2.3 enables one to classify compact surfaces as follows.

Theorem 4.2.4 Any connected compact surface S is either homeomorphic to a sphere,
or to a connected sum of tori, or to a connected sum of projective planes, i.e., its sur-
face presentation S is elementary equivalent to one of the standard surface presentations

following:
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(1) The sphere S? = <a|aa 1);
(2) The connected sum of p tori
P
THT - #T = < anb,1<i<p] naibiai‘lb{1>;
p i=1

(3) The connected sum of q projective planes

q
P2#P2---#P2:<a,~,1 <i<gq| Hai>.
q i=1

Proof Let S = (A |W,, W,,---, W;). For establishing this theorem, we frst prove

several claims on elementary equivalent presentations of surfaces following.

Claim 1. There is a word W in </ such that
S=( AN W, Wy, - Wiy ~p (| W).

If £ > 2, we can concatenate W, W,, - - -, W, by elementary transformations E/.1 —

EL.6. In fact, by def nition, there is an element a only appears once in W;. Thus W, = Aa

-1

and a does not appears in 4. Not loss of generality, let a or a= appears in W, i.e.,

W, = Ba or W, = a”'B. Applying EI.1 — EI.6, we know that

S = <JZ{|AG,BG,W3,"',W]C>
~o (o | Aa,a” B Wa,o Wi )~ (o | AB™ Wy W ).

S=(o | da,a” B, Ws, -+, Wy )~ ( f | AB, Wy, -, Wi ).

Furthermore, by induction on k£ we know that S is elementary equivalent to a surface just
with one word W if k > 2. Thus

S=(Ad | W\, Wy, Wi ) ~p (| W).
Claim 2. ( /| AaBbCa™'Db™'E ) ~p; ( /| ADCBEaba™'b™" ).
In fact, by El.1 — El.6, we know that
(| 4aBbCa™'Db™'E ) ~p; ( o/ U {6} | Db™'EAas, 6~'BbCa™ )
~p b}| EAasDCa™'67'B ) ~p; { o/ U8} | Aadb, b™'DCa™' 57 BE )
~p (| bAaBEb™'DCa™" ) ~g, ( o/ U {6} | AaBES, 67'b™'DCa”'b )
(o a) | BESAbS™'b™'DC ) ~; ( ./ U 16} | Aba, a™'6”'b™' DCBES )
(o b} | ADCBESas™"a™ ) ~p, ( o/ | ADCBEaba™'b™" ).

~El

~EIl
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Claim 3. (o7 | AcBcC Y ~p ( o/ | AB™'Cee )

By El.1 — EL.6, we fnd that

(o | AaBaC ) ~p ( o/ U {6} | Aas, 5~ BaC )

~p (U6} 6da, a”' B'6C™" ) ~p ( o/ U (6} \ (a} | 64B7'6C7" )
~p (A UL} | AB™'6a,a™'C7'6 ) ~pi ( o/ U6} | adB™'5, 57! Ca )
~p ( o/ | AB'Caa ).

Claim 4. < o | Accaba™'b™! > ~p & | Accaabb ).

Applying El.1 — E[.6 and Claim 3, we get that

< of | Accaba™'b™! > ~El < o/ Uy | a b Acs, 5 cab >
~p ( o US| 8a~ b " e, ¢ ob ' a! ) ~p ( o UL\ {c} | 6a b 4sbh ' a™! )
~p ( o ULSY\ {c} | Aob'a '6a b ) .

Applying Claim 3, we therefore have

( o | Accaba™' b ) ~g ( o ULSY\ (¢} | A6as  ab™" b )
~g ( o USY\ (¢} | 466b7 b aa ) ~p (o | Accaabb ) .

Now we can prove the classif cation for connected compact surfaces. If |.o/| = 1, let
o/ = {a}, then we get
S:<a|aa_1> or {(alaa),

i.e., the sphere or the projective plane. If |o/| > 2, by Claim 1 we are only needed to
prove the classif cation for compact surfaces with one word, i.e., S = ( a | W ). Our proof

is divided into two cases following.
Case 1. There are no elements a € </ such that W = AaBaC.

In this case, there are sections 4, B, C, D, E of W such that W = AaBbCa™'Db™'E
or W = AaBbCb™'Da™'E. If there are no elements a, b such that W = AaBbCa™'Db™'E,
then W must be the form of - - - ¢G(a1 H,b1b7 ' Hy ' ayY) - - - (aHibyb, ' Hy ra; )G Tld! - - . By
the elementary transformation E/.5, we fnally get that S ~ < | aa‘1>, the sphere. Not
loss of generality, we will assume that this case never appears in our discussion, i.e., for
Ya € o/, there are always exists b € .27 such that W = AaBbCa™'Db~'E. In this case, by
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Claim 2 we know that S ~; < o/ | ADCBEaba™'b™! > Notice that elements in ADCBE
also satisfy the condition of Case 1. So we can applying Claim 2 repeatedly and f nally

get that
p
S ~El < eQ{ | l—[ a,-b,-aibl-_1>

i=1

for an integer p > 1.
Case 2. There are elements a € </ such that W = AaBaC.

In this case, by Claim 3 we know that S ~g <£f |AB‘1Caa>. Applying Claim 3 to
AB~'C repeatedly, we fnally get that

S~El<d|Hnal~a,~>
i=1

for an integer s > 1 such that there are no elements b € H such that H = DbChE. Thus
each element x € .7 \ {a;;1 < i < s} appears x at one time and x~! at another. Similar to

the discussion of Case 1, we know that

N s t
S ~El < of | Hl_la,-ai > ~El < 14 | a;a; xjij‘/_‘ly—l >

i=1 i=1 i=1

for some integers s, ¢ by applying Claim 2. Applying Claim 4 also, we fnally get that

S~E1<%|Hﬁaiai>~ﬂ<ﬂf| ﬁaiaz’>,
i=1

i=1
for an integer ¢ = s + 2¢. This completes the proof. UJ

Notice that each step in the proof of Theorem 4.2.4 does not change the orientability

of a surface S with a presentation S. We get the following conclusion.

Corollary 4.2.1 A surface S is orientable if and only if it is elementary equivalent to the

sphere S? or the connected sum T*#T?# - - -#T* of p tori.
p

4.2.5 Euler Characteristic. Let S = (& | Wi, W,,---, W, ) be a surface presentation
and 7 : (& | Wi, Ws,---, W) — 8 a projection by identifying a with a~! for Ya € <.
The Euler characteristic of S is def ned by

X(S) = V(S - [ES)| + IF(S),
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where V(S), E(S) and F(S) are respective the set of vertex set, edge set and face set of the
surface S. We are easily knowing that |E(S)| = |.<7|, |F(F)| = k and |V (S)| the number of
orbits of vertices in polygons Wy, W,, - - -, W, under n. The Euler characteristic of a sur-

face is topological invariant. Furthermore, it is unchange by elementary transformations.

Theorem 4.2.5 If S| ~g Sy, then x(S1) = x(8»), i.e., the Euler characteristic is an

invariant under elementary transformations.

Proof Let ( &/ | W\, W»,---, W) ) be a presentation of a surface S. We only need
to prove each elementary E/.1 — EL.6 on S does not change the value y(S). Notice the
elementary transformations E/.1(Relabeling), E/.3(Ref ecting) and E/.4(Rotating) leave
the numbers of vertices, edges and faces unchanged. Consequently, y(S) is invariant
under El.1, EI.3 — El.4. We only need to check the result for elementary transforma-
tions E/.2(Subdividing or Consolidating), E/.5(Cutting or Pasting) and E/.6(Folding or
Unfolding). In fact, £/.2(Subdividing or Consolidating) increase or decrease both the
number of edges and the number of vertices by 1, leaves the number of faces unchanged,
E1.5(Cutting or Pasting) increases or decreases both the number of edges and the number
of faces by 1, leaves the number of vertices unchanged and E/.6(Folding or Unfolding)
increases or decreases the number of edges and the number of vertices, leaves the number
of faces unchanged. Whence, y(S) is invariant under these elementary transformations
El.1 — EL.6. This completes the proof. 0

Applying Theorems 4.2.4 and 4.2.5, we get the Euler characteristic of connected

compact surfaces following.

Theorem 4.2.6 Let S be a connected compact surface with a presentation S. Then

2, if S~z S2,
2-2p, ifS ~p THT*# .- #T°,
X(S) = D

2—q, ifS~g PH#PH#---#P.
q

Proof Notice that the numbers of vertices, edges and faces of a surface S are re-
spective [V(S)| = 2,IES)| = 1, IF(S)| = 1if 8 = (alaa™') (See Fig4.1.5 for de-

P
tails), [V(S)| = 1L, IES)| = 2p, IF(S)| = 1if S = <a,-, bl1<i<p] Ha,.b,.a;lb;1> and
i=1

V(S) = LIES)|=¢q, |[F(S)|=1ifS = <a,~, 1<i<gq| lz[ai>. By def nition, we know
i=1
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that
2, if S ~g S2,
2-2p, ifS ~g T*HT*#-- - #T°,
X(§) = M
2—q, ifS ~g P*#PH - -#P?
q
by Theorem 4.2.5. Applying Theorems 4.2.4, the conclusion is followed. 0

The numbers p and ¢ is usually defned to be the genus of the surface S, denoted
by g(S). Theorem 4.2.6 implies that g(S) = 0, p or ¢ if S is elementary equivalent to the

sphere, the connected sum of p tori or the connected sum of ¢ projective plane.

$4.3 FUNDAMENTAL GROUPS

4.3.1 Homotopic Mapping. Let .7}, % be two topological spaces and let ¢y, ¢, : J] —
7, be two continuous mappings. If there exists a continuous mapping H : 7 X I —» %
such that

H(x,0) = ¢1(x) and H(x, 1) = ¢x(x)

for Yx € 77, then ¢, and ¢, are called homotopic, denoted by ¢; =~ ¢,. Furthermore, if
there is a subset 4 C .7 such that
H(a,t) = ¢1(a) = pa(a), acA,tel,

then ¢, and ¢, are called homotopic relative to A. Clearly, ¢; is homotopic to ¢, if 4 = 0.

Theorem 4.3.1 For two topological spaces 7, ¢, the homotopic =~ on the set of all
continuous mappings from J to ¥ is an equivalent relation, i.e, all homotopic mappings

to a mapping f is an equivalent class, denoted by [ f].

Proof Let f, g, h be continuous mappings from .7 to 7, f ~ gand g ~ h with
homotopic mappings H; and H,. Then we know that

(1) f= fifchoose H:IxXI— 7 by H(t,s) = f(t) for Vs € I.
(2) g = fifchoose H(t, s) = H(t, 1 —s) for Vs, ¢t € I which is obviously continuous.
(3) Defne H(t,s) = H,H,(t, s) for Vs,t € [ by

Hi(x,21), if0 <t
H(x,2t-1), if

IA
—_ ol
- N

H(t,s)= H H(t,s) = {
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Notice that H(x,2¢) = Hi(x,1) = g(x) = Hy(x,2t - 1) if t = % Applying Theorem 4.1.3,
we know the continuousness of H;H,. Whence, f ~ h. O
Theorem 432 If fi,/,: T — 7 and g,8, : 7 — £ are continuous mappings with
Ji= frand gy = g, then fio g = f,0g,.

Proof Assume F' : f; ~ f,and G : g, ~ g, are homotopies. Def ne a new homotopy
H: 7 xI - £byH(x,t) = G(F(x,t),t). Then H(x,0) = G(f1(x),0) = g1(f1(x)) for
t=0and H(x, 1) = G(f2(x), 1) = g2(f2(x)) for ¢t = 1. Thus H is a homopoty from g; o f;
to g o f>. U

We present two examples for homotopies of topological spaces.

Example 4.3.1 Let f, g : R — R? determined by

S = (6,27, g(x) = (x,%)
and H(x,t) = (x,x> — tx* + tx). Then H : R x I — R is continuous with H(x,0) = f(x)
and H(x, 1) = g(x). Whence, H : f~g.

Example 4.3.2 Let f, g: .7 — R? be continuous mappings from a topological space .7
to R?. Defne a mapping H : 7 x I — 7 by

Hx,t)=(1 -0)f(x) +1tg(x), xe 7.

Clearly, H is continuous with H(x,0) = f(x) and H(x, 1) = g(x). Therefore, H : f ~ g.
Such a homotopy H is called a straight-line homotopy between f and g.

4.3.2 Fundamental Group. Particularly, let a,b : I — 7 be two arcs with a(0) = b(0)
and a(1) = b(1) in a topological space .7. In this case, @ ~ b implies that there exists a
continuous mapping

H:IxI—>S

such that H(z,0) = a(t), H(t, 1) = b(¢) for V¢t € I by def nition.
Now let a and b be two arcs in a topological space .7 with a(1) = b(0). A product
arc a - b of a with b is def ned by

B a(2?), if 0<r<3,
a- =
b2t-1), if 3<t<1

and an inverse mapping of @ by a = a(1 — ¢).



138 Chap.4 Surface Groups

Notice thata-b : [ — 7 anda : [ — 7 are continuous by Corollary 4.1.1. Whence,
they are indeed arcs by def nition, called the product arc of a with b and the inverse arc
of a. Sometimes it is needed to distinguish the orientation of an arc. We say the arc a
orientation-preserving and its inverse a orientation-reversing.

Let a, b be arcs in a topological space 7. Properties on product of arcs following

are hold obviously by def nition.

(Pl) a = a;
(P2) b-a = a- b providing ab existing;
(P3) e, = e,, where x = e(0) = e(1).

Theorem 4.3.3 Let a, b, c and d be arcs in a topological space S. Then

(1) a=~bifa=~b;
2)a-b~c-difa~b, c ~dwitha-canarc.

proof Let H; be a homotopic mapping from a to b. Defne a continuous mapping
H :IxI— SbyH(ts)=H(l—-t,bs)forVt,s € I. Then we fnd that H'(¢,0) = a(r)
and H'(t, 1) = b(f). Whence, we get that @ =~ b, i.e., the assertion (1).

For (2), let H, be a homotopic mapping from c to d. Def ne a mapping H : IXI — S
by
H(2t,s), if 0<t
H,(2t-1,s), if t

IA
—_ ol
; >

H(t,s) = {

IA
IA

1
2
Notice that a(1) = ¢(0) and H;(1,s) = a(1) = ¢(0) = H,(0, s). Applying Corollary 4.1.1,

we know that H is continuous. Therefore, a - b ~ ¢ - d. O

For a topological space .7, xo € .7, let m1(.7, xy) be a set consisting of equivalent

classes of loops based at xo. Def ne an operation o in (.7, xj) by
[a]o [b] = [a-b] and [a]' = [a'].

Then we know that 7,(.7, x¢) is a group shown in the following result.

Theorem 4.3.4 (7, xy) is a group.

Proof We check each condition of a group for 7;(.7, xy). First, it is closed under

the operation o since [a] o [b] = [a - b] is an equivalent class of loop « - b based at x, for

Y[a], [b] € m(T, x0).
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Now let a, b,c : I — 7 be three loops based at xy. By def nition we know that

a(4),  if 0<r<i,
(@a-b)-c(t)=4 b4t-1), if {<r<1,
c2t-1), if 1<r<1
and
a2r),  if 0<r<i,
a-(b-c)t) =3 bAr-2), if 1<tr<3,
c4r-3), if 3<r<1
Defne a function H : I X I — 7 by
4t 1
a(—), if 0<r< ™ ,
bts +1 4 +2
H(t,s) =1 b4t —1-s), H’S4 srss4,
41-1). .. s+2
1 - f <t<l1
ol-——) if —==<1<

Then H is continuous by applying Corollary 4.1.1, H(¢,0) = ((a - b) - ¢)(t) and H(¢, 1) =
(a - (b-c))(t). Thereafter, we know that ([a] o [b]) o [c] = [a] o ([b] o [c]).
Now let e,, : I — xo € .7 be the point loop at x,. Then it is easily to check that

a-ax=ey,, a-a=e,

and

e, -a=a, a-e,=>a.

We conclude that (.7, x,) is a group with a unit [e,,] and an inverse element [a™']

for any [a] € m1(S, x¢) by def nition. O

Let .7 be a topological space, xg, x; € 7 and £ an arc from x, to x;. For Y[a] €
(T, xy), we know that £ o [a] o £7! € m(.7, x1) (see Fig.4.31.1 below). Whence, the
mapping £; = £o [a] o £7' : 1(T, x0) = m (T, x1).

X1
/'
[a]

Xo

Fig.4.3.1
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Then we know the following result.

Theorem 4.3.5 Let .7 be a topological space. If xy, x; € 7 and £ is an arc from x, to x,
in 7, then mi(7,x0) ~ m(7,x1).

Proof We have known that £ : 7;(7, x9) = m1(7,x). For [a],[b] € m1(T, x0),
[a] # [b], we fnd that

£4(la]) = £ofalo £ # £0[b] o £7 = £4([h)),
i.e., £y isa 1 — 1 mapping. Choose [c] € (7, x¢). Then

£[a) o £4([c]) = £ola]o£'oLo[b]lof™ =£o[a]oe, o[a]of™
= £o[a]o[b]o£™ = £4([a] o [b)).

Therefore, £ is a homomorphism.

Similarly, £,' = £7' o [a] o £ is also a homomorphism from 7(.7, x1) to 711(.7, o)
and £;' o £4 = [e, ], £4 0 £;' = [e,, ] are the identity mappings between (.7, x¢) and
m1(7, x1).Hence, £4 is an isomorphism form (.7, x¢) to 71(7, x). OJ

Theorem 4.3.5 implies the fundamental group of a arcwise-connected space 7 is
independent on the choice of base point xo. Whence, we can denote the fundamental
group of .7 by (7). If m(7) = {[ey]}, then .7 is called to be a simply connected
space. For example, the Euclidean space R”, n-ball B" are simply connected spaces for
n > 2. We determine the fundamental groups of graphs embedded in topological spaces

in the followiing.

Theorem 4.3.6 Let G be an embedded graph on a topological space S and T a spanning
treein G. Thenmi(G)=(T +elec E(G\T)).

Proof We prove this assertion by induction on the number of n = |E(T)|. If n = 0,
G is a bouquet, then each edge e is a loop itself. A closed walk on G is a combination of
edges e in E(G), i.e., m11(G) = ( e | e € E(G) ) in this case.

Assume the assertion is true for n = k, i.e., 1(G) = (T +e|lec E(G\T)). Con-
sider the case of » = k + 1. For any edge e € E(T), we consider the embedded graph
G /e, which means continuously to contract e to a point v in S. A closed walk on G
passes or not through e in G is homotopic to a walk passes or not through v in G/e for
k(T) = 1. Therefore, we conclude that 7,(G) = (T +e|e € E(G\ T) ) by the induction

assumption. 0
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4.3.3 Seifert-Van Kampen Theorem. For a subset 4 of B, an inclusion mapping i :
A — Bis defned by i(a) = a for Va € A. A subset 4 of a topological space X is called a
deformation retract of X if there exists a continuous mapping » : X — A and a homotopy
f : X x I — X such that

f(x,0)=x, f(x,1)=r(x), Vxe X and f(a,t)=a,Vaec A and t € I

we have the following result.

Theorem 4.3.7 If A is a deformation retract of X, then the inclusion mappingi : A — X

induces an isomorphism of m(4, a) onto (X, a) for any a € A.

Proof Let i, : my(4,a) = m(X,a) and r, : m1(X,a) — m(4,a) be induced homo-
morphisms by i and ». We conclude that 7,7, is the identity mapping of (4, a). Notice
that ir is homotopic to the identity mapping X — X relative to {a}. We know that i.r, is
the identity mapping of m(X, a). Thus i, : m1(4, a) — m(X, @) is an isomorphism. O

Generally, to determine the fundamental group 71 (.7") of a topological space .7 is not
easy, particularly for f nding its presentation. For this objective, a useful tool is the Seifert-

Van Kampen theorem. Its modern form is presented by homomorphisms following.

Theorem 4.3.8(Seifert and Van-Kampen) Let X = U U V with U, V open subsets and let
X, U, V, UNV be non-empty arcwise-connected with x, € UNV and H a group. If there

are homomorphisms

¢1:m(U,xo) > H and ¢, : mi(V,x0) > H

and
1 (Ui x) ol
J1
)
m(U NV, xg) —mi(X, x0) - -H
J2
— i (V, x0)———
2 : ’ o

with ¢1 . il = ¢2 . iz, where il . 7T1(Um V,XO) - 7r1(U,x0), iz . 7T1(Um V,xo) g JTI(V,X()),

J1 (U, x0) = m(X, x0) and j, : 711(V, x9) = m1(X, xo) are homomorphisms induced by
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inclusion mappings, then there exists a unique homomorphism © : (X, xo) — H such
thatd)-j1 :¢1 andd)-jz :¢2.

The classical form of the Seifert-Van Kampen theorem is by the following.
Theorem 4.3.9(Seifert and Van-Kampen theorem, Classical Version) Let X = U UV
with U, V open subsets and let X, U, V, U NV be non-empty arcwise-connected with
xo € U NV, inclusion mappings iy, ji, i2, j» as the same in Theorem 4.3.7. If

J (U, xo) * m(V, x0) — m1(X, Xo)

is an extension homomorphism of j, and j,, then j is an epimorphism with kernel Kerj
generated by i7(g)ir(g), g € m(U NV, xp), ie.,

71 (U, xo) * m1(V; xo)
i@ - (@l g € mU N V)|

where [A] denotes the minimal normal subgroup of a group ¢ included A C 9.

7T1(X,xo) =

A complete proof of the Seifert-Van Kampen theorem can be found in references,
such as those of [Leel] [Mas1] or [Munl]. By this result, we immediately get the follow-

ing conclusions.

Corollary 4.3.1 Let X1, X; be two open sets of a topological space X with X = X; U X,
X, simply connected and X, X, and Xy = X| N X, non-empty arcwise-connected, then for

VX() S Xo,
7T1(X1,x0)

[ @)x([aDl[a] € 71(Xo, x0) 1
Corollary 4.3.2 Let X1, X, be two open sets of a topological space X with X = X; U X.

m(X, x) =

If there X, Xy, X, are non-empty arcwise-connected and X, = X; N X, simply connected,
then for ¥x, € X,
m(X, xo) = mi(X1, x0)m1(X2, Xo).

Corollary 4.3.2 can be applied to fnd the fundamental group of an embedded graph,

particularly, a bouquet B, = U L; consisting of n loops L;, 1 < i < n again following,
i=1
which is the same as in Theorem 4.3.6.

Let x¢ be the common point in B,,. Forn = 2,let U = B, —{x;}, V' = B, —{x,}, where
x1 € Ly and x; € L,. Then U N V is simply connected. Applying Corollary 3.1.2, we get
that

m1(B2, xo) = m (U, xo)m(V, x0) = (L1){La) = (L1, L2).
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Generally, let x; € L;, W; = L; — {x;} for | <i < nand

v=L| Jm| )\ w and v=m | | ) L
Then UV = §,, an arcwise-connected star. Whence,
m1(By, O) = m(U, O) * m(V, 0) = (Ly) * 711(By-1, O).
By induction induction, we fnally fnd the fundamental group

m(B,,0)=(L;, 1 <i<nm).

4.3.4 Fundamental Group of Surface. Applying the Seifert-Van Kampen theorem and
the classif cation theorem of connected compact surfaces, we can easily get the funda-
mental groups following, usually called the surface groups in literature.

Theorem 4.3.10 The fundamental groups m1(S) of compact surfaces S are respective

(1), the trivial group if S ~g S
p

<a1,b1,---,ap,bp| [Tabia;'b:! =1 > ifS ~p T*HT?*# - -#T?;

m(S) = =1 »
1 - 242 2
cl e e | [T =1 if S ~g PHP#---#P?,
1 —_—

q

Proof If S ~g; S?, then it is clearly that 7, (S) is trivial. Whence, we consider S is
elementary equivalent to the connected sum of p tori or g projective planes following.
Casel. S ~p T#HTH# .- #T°.

p

Let S = < ai,by,---,a,b,| f[laibiai‘lbi‘l > be the surface representation of S. By
Theorem 4.2.2, we can represent S by a 4p-gon on the plane with sides identif ed in pairs
such as those shown in Fig.4.3.2(a). By the identif cation, these edges ai, by, a2, b, -+ -, a,, b,
become circuits, and any two of them intersect only in the base point xo. Now let
U = S\ {y}, the complement of the center y and let V' be the image of the interior of
the 4 p-gon under the identif cation. Then U, V both are arewise-connected. Furthermore,
the union of circuits ay, by, as, by, - - -, a,, b, is a deformation retract of U, and V' is simply

connected. Therefore,

ﬂ-l(lf’xl) = < 1 |0 >’ ﬂ'l((],.X()) = <(11,ﬁ1,a/2,ﬁ2,' ' "ap’ﬁp | 0 >’
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where a1, 81, a2, B2, - -, @, B, are circuits represented by ay, by, as, by, - - -, a,, b,, respec-

tively.

Fig.4.3.2

Notice that U N V" has the homotopy type of circuit. Whence, 7;(U N V, x;) is an
inf nite cyclic group generated vy, the equivalent class of a loop ¢ around the point y once
with

P
o) = | | Bl )",
i=1
where o = d'a;d, B, = d™'Bd for integers 1 <i < p.
Applying Corollary 4.3.1, we immediately get that

m1(S)

<%Mwwd&,thW)wY >

p
<a1,b1,---,ap,b Il—[aba >

Case?2. S ~p P#PMt---#P°.

1

p
The proof is similar to that of Case 1. In this case, S is presented by identify-

ing in pairs sides of a 2¢g-gon with sides ay,a,a»,a,,- -, ay, a4, such as those shown
in Fig.4.3.2(b). Similarly choose U, V' as them in Case 1. Then the union of circuits

ai,ay, -, a, 1s a deformation retract of U, and V' is simply connected. Therefore,
n(Vx)=(110), mUx)=(a,ay, - al0),

where @y, as,- -+, a, are circuits represented by ai, a,,- -, a,, respectively and 7 (U N

V,x1) is an inf nite cyclic group generated vy, the equivalent class of a loop ¢ around the
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point y once with
q
o) = |,
i=1

where o, = d”'a;d for integers 1 < i < g. Whence,

<a1,az,~ aqln(a)2—1>
.
<C1,6’2, Cq 1_[ >

by applying Corollary 4.3.1. 0

m(S)

1

Corollary 4.3.3 The fundamental groups of the torus T* and projective plane P? are
n(T?)={a,b|lab=ba) and m(P?) = < ala*>=1 >, respectively.

$4.4 NEC GROUPS

We show how to construct a polygon used in last section on a Klein surface, i.e., funda-
mental region of a non-Euclidean crystallographic group, abbreviated to NEC group in

this section. Thus will be used in next chapter.

4.4.1 Dianalytic Function. Let C be the complex plane, A c C a open subset and
f: 4 — C amapping. Asusual, wewritez=x+iyeC, x,yeR,i= V-1,Z2=x—iy
and f(z) = u(x,y) + iv(x,y) for certain functions u,v : 4 — R of C2. Then by def nition,
we know that

Gf 6u+i6v (9u(9x+ 6u6y+ 6v6x+ 0v dy
8z 0z 0z Oxoz dy 0z 0x 0z ay 0z)

G_f_%_ﬂﬁv (9u(9x+ 6u6y+ 6v6x+ 0v Oy
2 & oz oxoz aveoz  \oxéz  ayoE)
Notice that x = itz and y = 1(22—2 , we know that
ox ox 1 dy ay 1
P A S U R
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Particularly, let f : 4 — C be determined by [ : z = x + iy = f(2) = u(x,y) — iv(x, y).

Then we get the fundamental equalities following:

of _(35\ of _(df)
(%) % (%) @b

0z

Let C* ={z|Imz > 0}. Amapping f : 4 — C (or C) is called to be analytic

on A4 if 86—]; = 0 (Cauchy-Riemann equation) and antianlytic on A if ol 0. A mapping
f A — C (or C%) is dianalytic if its restriction to every connected component of 4
is analytic or antianalytic. The following properties of dianalytic mappings is clearly by

formulae (4-1) and def nition.

(P1) A mapping [ : A — C (or C*) is analytic if and only if f is antianalytic;

(P2) If a mapping f : A — C (or C*) is both analytic and antianalytic, then f is
constant;

(P3) Iff: A —> Bc C(rC)andg : B — C (or C*) are both analytic or
antianalytic, then the composition go [ : A — C (or C*) is analytic. Otherwise, g o f is

antianalytic.

Example 4.4.1 Let a,b,c,d € R, ¢ # 0 and 4 = C\ {—d/c}. Clearly, the mapping

+b
f A — C determined by f(z) = & p for Vz € A is analytic. Whence, the mapping

cz +

- —— az+b
f: 4 — C determined by f(z) = Z : p for Vz € A4 is antianalytic by (P1).
Let f(z) = u(x,y) + iv(x, y). Calculation shows that
ou Ou , ,
Ox @ B ou ov
ol 5 B |=<|(@) (3|
ox dy

where € = 1 if f is analytic and —1 if f is antianalytic. This fact implies that an analytic

function preserves orientation but that an antianalytic one reverses the orientation.

4.4.2 Klein Surface. A Klein surface is a topological surface S together with a family
X ={(U;,¢,)|ie A}suchthat

(1) {U;]ie A}isanopencoverof S;
(2) ¢; : U; = A; is a homeomorphism onto an open subset 4; of C or C*;

(3) the transition functions of £ def ned in the following are dianalytic:

by = it Ui U — (Ui U, isjeA.
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Usually, the family X is called to be an atlas and each (U;, ¢;) a chart on S, which is
positive if ¢p,(U;) € C*. The boundary of S is determined by

0S = {x € S| there exists i € I, x € U, ¢;(x) € R and ¢,(U;) € C*}.

Particularly, if each transition function ¢;; is analytic, such a Klein surface is called a
Riemann surface in literature. Denote respectively by &(S), g(S) and x(S) the number
of connected components of S, the genus and the Euler characteristic of S, where if
0S # 0, we defne its genus g(S) to be the genus of the compact surface obtained by
attaching a 2-dimensional disc EZ to each boundary component of S. Then by applying

Theorem 4.2.6, we know the following result.

Theorem 4.4.1 Let S be a Klein surface. Then

() = 2 —2g(S) - k(S) if Sis orientable,
X 2-g(S)—-k(S) if Sisnon— orientable.

Proof Let S be a surface without boundary, i.e., S = ( with a def nite triangulation.
We remove the interior of one triangle 7 to form a new surface S’. Clearly, V(S’) =
V(S),E(S’) = E(S) and F(S’) = F(S) \ {T}. Whence, y(S’) = x(S) — 1. Continuous
this process, we fnally get that y(S”") = x(§) — k if we remove £ triangles on S. Then we
know the result by Theorem 4.2.6. 0

Some important examples of Klein surfaces are shown in the following.

Example 442 Let H={z€ C|Imz>0}and D ={z € C||z|] < 1} be respectively the
upper half plane and the unit disc in C shown in Fig.4.4.1 following.

Imz
C o
,,,,,
,,,,,

,,,,,,,,
,,,,,

/////

/////
//////

//////

Fig.4.4.1

Choose atlas {(U = H,¢ = 1)} and {(U = D, ¢ = 1p)} on H and D, respectively. Then
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we know that both of them are Klein surfaces without boundary. Such Klein surfaces will
be always denoted by H and D in this book.

Example 4.4.3 The surface C* with a structure induced by the analytic atlas {(C, 1¢)} is
a Klein surface with boundary 0C* = R.

Example 4.4.4 Let C = CU{oo}and A = C*U{co}. Then they are compact Klein surfaces

with atlas

21 = {(Ul = (C’ ¢1 = I(C)’ (U2 = 6{0}’ ¢2 = Z_l)}’

% ={(Ur =C* ¢ = Iey), (Un = A0}, =27},
respectively. Clearly, dC = 0 and A = R U {oo}.

4.4.3 Morphism of Klein Surface. Let 4 be a subset of C*, defned ={zeC|ze 4}.

A folding mapping is the continuous mapping ® : C — C* determined by ®(x + iy) =

x + i|y|. Clearly, ®@ is an open mapping and ®~!(4) = 4 U 4. Particularly, ®~'(R) = R.
Let S and S’ be Klein surfaces. A morphism f : S — S’ from § to S’ is a continuous

mapping such that

(1) f(9S) < aS";
(2) for Vs € S, there exist charts (U, ¢) and (V, ¢) at points s and f(s), respectively
and an analytic function F : ¢(U) — C such that the following diagram

U f

V

¢ Y (4-2)

oy — £+ ¢ —2 c*

commutes. It should be noted that in the case of Riemann surfaces, we only deal with
orientation-preserving morphisms, in which the diagram (4—2) is replaced by the diagram
(4 — 3) following.

¢ Y (4-3)




Sec.4.4 NEC Groups 149

Let S and S’ be Klein surfaces and f : S — S’ a morphism. If f is a homeomor-
phism, then S and S’ are called to be isomorphic. Such a morphism f" is isomorphism
between S and S’. Particularly, if § = §’, such a f is called automorphism of a Klein sur-
face S. Similarly, all automorphisms of S form a group with respect to the composition
of automorphisms, denoted by AutS. We present an example of automorphisms between

Klein surfaces following.

Example 4.4.5 Let H and D be Klein surfaces constructed in Example 4.4.2 and a map-
ping by p(z) = (z+1)/(iz+ 1). Then p : D — H is well-def ned because if z = x + iy € D,
so there must be x> + )* < 1 and consequently

2x +i(1 — x* —y?)

2+ (1 -y)?

Furthermore, it is analytic, particularly continuous by def nition. For s € D, we choose
(U = D,1p) and (V = H, 1y) to be charts at s € D and p(s) € H, respectively. Then
®p = p for p(D) c H c C* and the following diagram is commute.

€ H.

p(2) =

U P 14

lU 1V

oy =0, ¢ @ c

Whence, p is a morphism between from Klein surfaces D to H. Now if g : H — Cis
defned by g(z) = IZ;,Z, then g o p = 1. Because p is onto, Img C D and pg = 1y, we
—iz

know that p is an isomorphism of Klein surfaces.
4.4.4 Planar Klein Surface. Let H = {z € C | Imz > 0 } be a planar Klein surface
defned in Example 4.4.2 and let PGL(#n, G) be the subgroup of GL(#, R) determined by

c
we associate a mapping f, : H — H determined by

b
all 4 € GL(n,R) with Det4 # 0. Now for 4 = [ ¢ J ] € PGL(2, R) with real entries,

az+b

s =4 214

cz +

if Det4 > 0,

if Det4 < 0.

Clearly, f; € AutH and f; = f.4 for any non-zero ¢ € R. Hence, the mapping 4 — f4
embeds PGL(2, R) in AutH. We prove this mapping is also surjective. In fact, let f €
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AutH and let p : D — H be the isomorphism determined in Example 4.4.5. Notice that

f is analytic, and so the same holds true for ¢ = p! o f o p. Applying the maximum
principle of analytic function, g(z) = IZ —a

for some @ € D, u € C with |u| = 1. Hence,

—az

az+b

for some a,b,c,d € C.
cz+d

@) =

Because f(H) = H, we know that f(R \ {-d/c}) c R by continuity, and it is easy to
see that we can choose real numbers a, b, ¢, d. Notice that /(i) € H implies that Det4 =
ad — bc > 0.

If f reverses the orientation, let 2 : H — H be a mapping determined by A(z) =
—1(z). Notice that % is an automorphism of H, i.e., h € AutH and it preserves the orienta-
tion. We know that

az+b

f2) = for some a,b,c,d € R with Detd = ad — bc < 0.

cz+
Whence, we get the following result for the automorphism group of H.

Theorem 4.4.2 Let H={ze€ C|Imz > 0}. Then

(1) AutH = PGL(2,R);
(2) AutH is a topological group, i.e., AutH is both a topological space and a group
with a continuous mapping N f o g™! for f,g € AutH.

4.4.5 NEC Group. A subgroup I' of AutH is said to be discrete if it is discrete as a
topological subspace of AutH. Such a discrete group I' is called to be a non-Euclidean
crystallographic group (shortly NEC group) if the quotient space H/I" is compact.
Notice that there exist just two matrixes 4, B € GL(2,R) such that f;, fz for any
f €€ AutH with [Detd| = |DetB| = 1, i.e., B = —A4, Det4d = —Det4 and TrB = —TrA.
Defne Detf = Detd and Trf = TrA, respectively. Then we classify f/ € AutH into 3

classes with conditions following:

Hyperbolic. Detf = 1 and [Trf] > 2.
Elliptic. Detf =1 and |Trf] < 2.
Parabolic. Detf =1 and |Trf] = 2.

Furthermore, f is called a glide refection if Detf = —1, [Trf] # 0 or a refection if
Detf = —1, [Trf] = 0. Denote by Aut™H the subgroup of AutH formed by all orien-
tation preserving elements in AutH. Then it is clear that [AutH : Aut"H] = 2. Call
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an NEC group I to be Fuchsian if I' < Aut"H. Otherwise, a proper NEC group. For
any NEC group T, the subgroup I'* = I' N Aut”H is always a Fuchsian group, called the
canonical Fuchsian subgroup.

Calculation shows the following result is hold.
Theorem 4.4.3 Extend each f; € AutH to fon C U {0} in the natural way for A =

¥

€ PGL(2, R) by

—d/c ifz= 00,
0o ifz=-dJc,

fi(z) = b

S = EXDepetf, = 1, 2 # 0o, —dJe,
cg+%l
af+ if Detfy = -1, z # o0, —=d/c.
cz+d

Let [ € AutH and Fixf = {z € C U {oo}|f(2) = z}. Then

two points on R U {oo} if f is hyperbolic or glide refection,
. one point on R U {oo} i f isparabolic,
Fixf =
two non — real conjugate points if f is elliptic,

a circle or a line perpendicular to R if f is a reflection.
Let I be an NEC group. A fundamental region for I' is a closed subset /' of H
satisfying conditions following:

(1) Ifz € H, then there exists g € I" such that g(z) € F;
(2) Ifze Hand f,g €I verity f(z), g(z) € IntF, then f = g;

(3) The non-Euclidean area of F'\ IntF is zero, i.c.,

4(F \ IntF) = f f dxfy - 0.
F\IntF YV

The existence of fundamental region for an NEC group can be seen by the following

construction for the Dirichlet region with center p.

Construction 4.4.1 Let I be an NEC group. We construct its fundamental region in the
following. First, we show that there exists a point p € H such that g(p) # pfor Iy # g€ T.
In fact, we can assume the existence of an upper half Euclidean line / perpendicular to R

such that / # Fix(y) for every v € I'. Otherwise, we can get a sequence {x,|n € N}
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convergent to a point @ € H, lying on a Euclidean line parallel to R, and the upper half
Euclidean line /, perpendicular to R and passing through x,, verifes /, = Fix(y,) for some
v, € I'. Consequently, y, # vy, if n # m and lim{y,(a)} = lim{y,(x,)} = lim{x,} = a,
contradicts to the continuity of the mapping o : AutH X H — H determined by o(f, x) =
f(x) for f € AutH, x € H.

Choose a sequence {y,|n € N} of points H lying on / convergent to some point b € H.
By assumption, there exists a sequence of pairwise distinct transformations {g,|n € N} c I"

such that g,,(y,) = y, for every n € N, which leads to a contradiction as before.
Now it is easy to check that
F=F,={z¢€ Hld(z p) <d(g(z),p) foreachg €T}
is a fundamental region of I', where d(u, v) is the non-Euclidean distance between u

d 2 d 2\1/2
d(u,v) = f M,
Cuw Yy

C.,, being the geodesic joining u and v, i.e., a circle or a line orthogonal to R. Then F,

and v, i.e.,

verif es conditions (1)-(3):

(1) Let z be a point in H. Since I' is discrete, the orbit O, of z under I is closed. Thus
there exists w € O, such that d(w, p) < d(w', p) foreach w’ € O,. If w = g(z), g € T, then
itis clear that g(z) = w € F,.

(2) Obviously that

IntF, = {z € H|d(z, p) < d(g(2), p), foreachgel \ {14}}.
Thenz € H, f,g € I" and f(2), g(z) € IntF, imply that for " # g,

d(f(2), p) <d(gf™'(f(2). p)) = d(g(z). p), d(g(z).p) < d(fg”'(g(2), p)) = d(f(2). p),

a contradiction. Thus, f = g.
(3) This is follows easily from the fact that the boundary of F, is a convex polygon

with a f nite number of sides in the non-Euclidean metric.
Usually, a fundamental region F' of an NEC group verifying conditions following is

called regular:

(1) Fisabounded convex polygon with a f nite number of sides in the non-Euclidean

metric;
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(2) F is homeomorphic to a closed disc;

(3) F\ IntF is a closed Jordan curve and there are f nite vertices on F' \ IntF” which
divide it into the following classes e of Jordan arcs:

(3.1) e= FngF,where g € I is a ref ection;

(32) e=FngF,wheregel, g+ ly;

(3.3) e for which there exists an elliptic transformation g € I', g = I such that
eUge=FnNgF;

(4) If F, gF do not have an edge in common for a g € I, then F N gF has just one

point.

Then we know the following conclusion.

Theorem 4.4.4 For any NEC group T, there exist regular fundamental regions, such as

F, for example.

Construction 4.4.2 Let F be a regular fundamental region of an NEC group I'. For a
given g € I', gF is said to be a face. Clearly, the mapping I' — {faces} determined by

g — gF is abijection and H = J gF. In fact, {gF|g € I'} is a tessellation of H.
gel

(1) Given a side e of F, let g, be the unique transformation for which g.F meets F
in the edge e, i.e., e = F N g, F. then {g.|e € sides of I'} is a set of generators of y. In
fact, for Vg € T there exists a sequence of elements g; = ly,g - 2,---, g, in I such
that g;F' meet g;;1 F' one to another in a side, say gi(e;), where ¢; is a side of /. Clearly,
gi(ge.f) = g1 F and so g1 = gig., for 1 < i < n. Consequently, g = g., &, - g, for
some sides e, e, -+, e, of F.

(2) First, we label sides of type (3.1). Afterward, if we label e a side of type (3.2)
or (3.3), the side ge is labeled ¢’ if g € I'", and e* if g € T\ I'". We write down the labels
of the sides in counter-clockwise order and say (e, €’), (e, €*) pair sides. In this way, we
obtain the surface symbols, which enables one to determine the presentation of I" and the

topological structure H/I', such as those claimed in Theorem 4.2.2.

(3) Let a and @ be pair sides and let g € T be an element such that g7!(a) = @.
For a hyperbolic arc f joining two vertices of F' and splitting F' into two regions 4 and B
containing a and @, respectively, 4UgB is a new fundamental region of I" which has a new
pair sides b and b with b = g !(b) instead of a and @ and suitably relabeled other sides.

Repeating this procedure in suitable way one can arrive to a fundamental region with the
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following side labelings
§i€1 - EE€a1Y10 V15 8] E Yk Vs Er i Bl - BB, (4-4)

E1ELEEL€81Y107 Y15 EL T ERYRO T Vi E4010] - 040, (4-5)

according to H/I" orientable or not.

(4) Identify points on pair side, we get that H/T" is a sphere with & disc removed and
p handles or ¢ crosscups added if (4 — 3) or (4 — 4) holds.

(5) For getting the def ning relations for I', consider the faces meeting at each vertex
of F. Notice that I is discrete. The number of these faces is f nite. Choose one of vertices
of 'and let / = Ly,Ly, -+, L,,L,y1 = L be the corresponding chain faces. Obviously,

there exist gy, - - -, g, of elements of I" such that
Ly=giL,L, =ggL,---,L=L,1 =g, gL
Whence, every vertex induces a relation

ZnGn-1"-82g1 = lpy.

It turns out that these relations of this type and g2 = 1;; coming from such sides of F' f'xed
by a unique nontrivial element g, € I" form all def ning relations of T

(6) As we get a surface symbol (4 — 4) or (4 — 5) and using procedures described in
(1) and (5), we fnd the presentation of I" following:

Generators: X, 1 <i<r
e, 1 <i<k;
cij, 1 <i<k 1<j<s;
a;, b;, 1 <i < pinthe case (4 —4);
d;, 1 <i< qinthecase (4 -5).

Relations:

X' =1p, 1<i<r

-1 — : .
€, Cio€Cis; = 11", 1<i< k,

¢t = ¢ = ()™ = 1;
xi---x.e---ea, bi] -+ [ay, b,] = 11in case (4 — 4);

Xi - xpe - --edy -+ -ds = 1in case (4 - 5),
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where a, b, ¢, d, e, x correspond to these transformations induced by edges a, 3, v, 9, &, &,
[a;, b;] = a;ibja;'b;! and m;, n; are numbers of faces meeting £~ at common vertices for
sides (&, £7) and (y; j-1,vi;), respectively.

For an NEC group I" with the previous presentation, we def ne the signature o(I') of
I' by

o) = (g = [my, - ,m ) {(ng, - mg), - (B, -+, g},

and its hyperbolic area u(I') by

1
(1__) >

1 k Si
=1 nij

- 1
(@) = ozg+k—2+Z(1——)+§
=1 m;

! i

=1
where g = p, the sign + and @ = 2 in (4 — 4) or g = ¢, the sign — and @ = 1 in (4-5), i.e.,
orientable in the f rst and non-orientable otherwise. It has been shown that u(T') is just the
hyperbolic area of the fundamental of I' and independent on its choice.

Usually, if » = 0, s; = 0 or k£ = 0, we denote these [m;, - --,m,], (n;1,- -, n;,) by [-],

(=) or {—}, respectively. For example,
o) =@+ [, . (D
k

if r = 0and s;, = 0. Such an NEC group is called to be a surface group. Partic-
ularly, if £ = 0, i.e., these fundamental groups in Theorem 4.3.10, the signature is

o(l) = (g; £;[-]; (—)). Clearly, the area of a surface group I' is u(I') = 2n(ag + k — 2).

Theorem 4.4.5(Hurwitz-Riemann formula) Let I be a NEC subgroup of a NEC group

I". Then
D o,
7009
Proof Notice that I is a discrete as a subgroup of I'". By def nition, H/I"” and H/T’
are compact, so [ and I have compact fundamental regions F” and F. Let Ay, -- -, h; € TV

be the coset representatives of I', where £ = [I” : I']. Then It is easily to know that
F=nh(F")U---Uh(F"). Consequently,

k
w() = area(F) = Z area(h;(F")) = k x area(F") = k x u(I"").
=1

1

Thus,
p@) _
()

[T : T7. O
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$4.5 AUTOMORPHISMS OF KLEIN SURFACES

4.5.1 Morphism Property. We prove the automorphism group of a Klein surface is f nite
in this section. For this objective, we need to characterize morphisms of Klein surfaces in
the frst.

Theorem 4.5.1 Let f : S — S’ be a non-constant morphism and (U, ¢), (V&) two
charts in S and S’ with f(U) Cc V, y(V) c C*. Then there exists a unique analytic
mapping F : $(U) — C such that the following diagram

U f

w(V)

$(U) C

commutes.

Proof First, if there are two non-constant analytic mappings F, F’ : ¢(U) — C such
that OF = ®F’, then F = F' or F = F’. Let Y ¢ F~'(C \ R) be a nonempty connected
set. Choose M, = {x € Y|F(x) = F’'(x)} and M, = {x € Y|F(x) = F’(x)}. Then M; and M,
are closed and disjoint with ¥ = M; U M,, which enables one to get M} = Y or M, = Y.
If M, = Y, F must be both analytic and antianalytic on Y. Thus F|y is constant, and so F'

is constant by the properties of analytic functions, a contradiction. Whence, F' = F”.
Now suppose that we can cover U by {U||;j € J} such that there are analytic mappings

F;: ¢(U;) — C with the following diagram

U /

¢ ¥

oy Li . ¢ @

w(V)

commutes. Then these mappings F'; glue together will produce a function /' that we are
looking for. So we only need to fnd such mappings F';.

By def nition, for x € U and y = f(x) € V, there exist charts (U*, ¢, and (V7 ) and
an analytic mapping F, with U* c U, V¥ C V such that the following diagram commutes:
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U* S |24
¢x \ '7[’)/
o) Lo ¢ Uy (V%)

We construct a mapping F; such that the following diagram also commutes:

/

U" P

¢x \ wy

o (U Lo ¢ O Ly

In fact, for any given u € ¢(U*), we know that F¢,¢~' (1) € O~ '(Imy,) = ¢, (V) Ui, (V7).
Consider (yy;")" 1 ¥, (7?) Uy, (?) — C. Then according with ¢,¢~" and y;' were
analytic or antianalytic, we take F* or F: to be Wy, "F.¢.¢~". Then we get such F; as
one wish. O

A fundamental result concerning the behavior of morphisms under composition is

shown in the following.

Theorem 4.5.2 Let S,S’ and S” be Klein surfaces and f : S — S’, g : S8 — §”
continuous mappings such that f(0S) c 0S’, g(0S’) c dS”. Consider the following

assertions:

(1) fis a morphism;

(2) gis a morphism;

(3) go fis a morphism.
Then (1) and (2) imply (3). Furthermore, if f is surjective, (1) and (3) imply (2), and if f
is open, (2) and (3) imply (1).

The proof of Theorem 4.5.2 is not difficult. Consequently, we lay it to the reader as

an exercise.

Corollary 4.5.1 Let S and S’ be topological surfaces and f : S — S’ a continuous
mapping. Then
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(1) If' S’ is a Klein surface, then there is at most one structure of Klein surface on S
such that f is a morphism.
(2) If f is surjective and S is a Klein surface, then there exists at most one structure

of Klein surface on S’ such that f is a morphism.

4.5.2 Double Covering of Klein Surface. Let S be a Klein surface with atlas ), =

{(u;, ¢;)|i € I}. Suppose S is not a Riemann surface and def ne
U =U;x{i}x{1} and U’ =U;x{i} x{-1},

where i runs over /. We identify some points in

el

iel iel

(1) Fori e land D; = dS N U, identify D; x {i} x {1} with D; x {i} x {—1}.

(2) For (j,k) € I x I such that U; meets Uy, let W be a connected component in
U; N Uy. Identify W x {j} x {6} with W x {k} x {6} for 6 = =1 if ¢;¢;' : (W) - C
is analytic, and W x {j} x {6} with W x {k} x {=6} for § = £l if ¢;¢,' : (W) — Cis
antianalytic.

Put §¢ = X/{identif cationsabove}. For each i € /, let ¢/ : U/ — C determined by
#i(x,i,1) = ¢i(x) and ¢ : U — C determined by ¢/(x,7,—1) = ¢:(x). Obviously, if
p : X — Scdenotes the canonical projection and l~],- = p(U! U U?), the family {l7,-|i el}
is an open cover of S ¢. Furthermore, each mapping ¢; U; - C defned by ¢i(u) = ¢’ (1)
ifu € Ul or di(u) = ¢"(u) ifu € U is a homeomorphism onto its image. Thus }- =
{((7,-,5,11' € )} is an analytic atlas on S¢. Clearly, 0S¢ = 0. Whence, S is a Riemann
surface by construction.

We claim that there exists a morphism f : S¢ — § and an antianalytic mapping
o : Sc¢c — S¢such that fo = f and 0 = lg. In fact, it is suffices to determine
f:Sc—>Sbyf:u=pid — viorve U and § = +1. It should be noted that each

fbers of f has one or two points and we def ne

u ifl /' (@)l = 1,
S @) il )l = 2.
Such a triple (S¢, f, o) is called the double cover of S.

We know the following result due to Alling-Greenleaf ((BEGG]):

O'ZSC—>SCZM—>{
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Theorem 4.5.3 Let g be a morphism from a Riemann surface S onto a Klein surface S’

with the double cover (S¢., f’, o). Then there exists a unique morphism g’ : S — S such

that g’ = g.

4.5.3 Discontinuous Action. Let S be a Klein surface and G < AutS. We say G
acts discontinuously on S if each point x € § possesses a neighborhood U such that
Gy is fnite. Furthermore, G is said to be acts properly discontinuously on S if it acts

discontinuously on S satisfying conditions following:

(1) For Vx,y € S with x ¢ %, there are open neighborhoods U and V at points x
and y such that there are no f € G with U N f(V) # 0;

(2) Forx € S, 15 # f € G, and the mapping ¢, f¢.' is analytic restricted suitably, x
is isolated in Fix(f).

For the existence of properly discontinuously groups, we know the following result

as an example.
Theorem 4.5.4 Every discrete subgroup I of AutH acts properly discontinuously on H.

Proof First, the stabilizer I' of each x € H is fnite. Otherwise, let {f,|n € Z*} C T,
such that f, # f,, if n # m and so lim{f,(x)|n € Z*} = x. But then I must be not discrete.

Now let N be the set of natunrzfonumbers m such that H contains the Euclidean ball
B,, with center x and radius 1/m. LetI',, = I'g . Then there must be

Ce=( )T
nez+

In fact, if f ¢ I',, take open disjoint neighborhoods U and V" of x and f(x). If m is bigger
enough, B,, c U, f(B,) C V. Thus there must be /" ¢ I',,. On the other hand, if f € I',,
then there is an integer m, such that for any integer m > ny, B,, = f(B,,). This establishes
the previous equality.

(1) I acts discontinuously on H. Assume that each I',, is inf nite. Then the f niteness

of I', and the above equality imply that

2T

Ly 2

...
my 2
for some sequence {mylk € Z*} c Z*. Choose f; € I, \ I,,,,,. Clearly, f; # f;ifk # L
However, if we take x € B,,, N fi(B,,) and y € B,, with x; = f()x), then

lim{x ke Z}=x= ;im{yklk eZ*).

k—o0
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So ]11_{?0 {f(xp)lk € Z*} = x, which contradicts the discreteness of I'.

(2) For x,y € H, x ¢ y*"#, there are neighborhoods U of x and V of y such that
there are no f € G with U N f(V) # 0. In fact, let P be the set of numbers m € Z* such
that the balls B,, and B, of radius 1/m with centers x and y, respectively, are contained
in H. We prove that there are no f € I with B,, N f(B;,) # 0 for all m € P. Denoted by
D,, = {f € I'|B, N f(B,,) # 0}. Clearly, (| D,, = 0. Otherwise, for some f € I there
are points x,, € B,, and y,, € B, with f(yrfne)P: Xm, m € P, which implies f(y) = x, i.e.,

AutH

x € y*" a contradiction. So we have

2D

Dy, 2

DN
my =

for some sequence {mlk € Z*} c P. Choose f; € D,, \ Dy,.,. then we know that
]}im{ fiOlk € Z*) = x, fr # f;if k # [, contradicts the discontinuousness of I.
(3) Given 1y # f €T, f has the form

b
f@) = e (b,c,d—a) #(0,0,0).
cz+d
Thus Fix(f) \ {x} is fnite, i.e., x is isolated in Fix(f). ]

The importance of these properly discontinuously groups on Klein surfaces is im-

plied in the next result.

Theorem 4.5.5 Let G be a subgroup of AutS which acts properly discontinuously on the
Klein surface S. Then S’ = S/G admits a unique structure of Klein surface such that

n:S — S’ is a morphism.

A complete prof of Theorem 4.5.5 can be found in [BEGG1]. Applying Theorems

4.5.4 and 4.5.5 to the planar Klein surface H, we know the following conclusion.

Theorem 4.5.6 For a discrete subgroup I of AutH, the quotient H/T" admits a unique
structure of Klein surface such that the canonical projection H — H|T is a morphism of

Klein surfaces. Particularly, this holds true if T is an NEC group.

Generally, we also know the following result with proof in [BEGG1], which enables

one to fnd Klein surfaces on topological surfaces with genus> 3.

Theorem 4.5.7 If' S is a Klein surface and 2g(S) + k(S) > 3 if S is orientable, or
g(S) + k(S) > 3 otherwise. Then there exists a surface NEC group I such that S and
H/T are isomorphic Klein surfaces and S = H/T*, where I'* is a subgroup formed by
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orientation preserving elements in . In fact, |U : T'"| = 2. Furthermore, if 1’ : H - H/T

be the canonical projection, i.e, I = (f € AutH|r' f = n’).

According to this theorem, we can construct Klein surfaces on compact surfaces S

unless S is the sphere, torus, projective plane or Klein bottle.

4.5.4 Automorphism of Klein Surface. LetS and S’ be compact Klein surfaces. Denote
by Isom(S’, S) all isomorphisms from S’ to .. If they satisfy these conditions in Theorem
4.5.6, then they can be represented by H/I”, H/T" for some NEC group I and I'. Let
n:H — H/T'and " : H — H/I"” be the canonical projections and

A, T) = {g € AutH|x'(x) = #/(y) if and only if 7g(x) = ng(y)}.
Then we know the following result.

Theorem 4.5.8 Let g € AutH. The following statements are equivalent:
(1) g€ A", I);
(2) thereis a unique’g € Isom(H/T", H/T') with the following commutative diagram:
H £ H

S’ g S

() I"'=g'Tg.

Proof (1) = (2). For X' = n'(x) € S/, defne g(x') = gr’(x) = ng(x). Applying
Theorem 4.5.2, we know that g is a homeomorphism on H by the def nition of A(T, 7).
(2) = (3). Applying Theorem 4.5.7,if f € I and h = gfg™!, then

nh=rngfg ' =gn'fg' =gn'g =ngg”' =n,

i.e., heandsoI” c g''T'g. Conversely, if h € g7'T'g, then ghg™' €T, i.e., nghg™! = n.
So gn’h = gn’. Notice that g is bijective. We know n’h = 7/, i.e., h € T.

(3) = (1). Let x,y € H with n/(x) = 7/(y) and y = f(x) forsome f € " = g"'T'g.
Now & = gfg™! € I. Notice that hg = gf and 7k = 7. We fnd that

m(g(y) = m(g(f(x))) = n(h(g(x))) = 7(g(x)).

The converse is similarly proved. 0
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Theorem 4.5.9 Let S = H/T'and S’ = H/1”. Then

(1) S and S’ are isomorphic if and only if T and I are conjugate in AutH.
(2) AutS =~ Npwu(D)/T, where Nayy (D) is the normalizer of T in AutH.

Proof Obviously, S and S’ are isomorphic if and only if A(I',I”) # 0. By Theorem
4.5.8, we get the assertion (1).

For (2), we prove frst that the mapping A(I', ") — Isom(S’,S) is surjective. In
fact, if § and S’ are Riemann surfaces, let ¢ € Isom(S’,S) and (H,n) and (H’, pi’) be
the universal coverings of S and S’, respectively. Then by the Monodromy theorem and

Theorem 4.5.2, there exists g € AutH such that the following diagram is commutative.

H g H

It is clear that g € A(T',T”). So ¢ = g by Theorem 4.5.8.
Generally, let /' : S¢ — § and f” : S — §’ be the double coverings with the
corresponding antianalytic involutions o : S¢ — Sc¢ and o’ : §, — S;. By Theorem

4.5.3, there exists ¥ € Isom(S ., S ¢) such that the following diagram

St ¢ Sc
I f
s’ ¢ S

is commutative. Let p : H — S¢and p’ : H — S, be the canonical projections. As we

shown for Riemann surfaces, there exists g € AutH such that the following diagram

H g H

p p

St ¢ Sc

is commutative. Now up to the identif cations of S with H/I" and S’ with H/T”, the
mappings ' = f'p’ : H— S’ and 7 = fp : H— § are the canonical projections, which

enables us to obtain a commutative diagram following.
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S’ ¢ S

Applying Theorem 4.5.8 again, we know that g € A(T',T") and ¢ =g. Now let S = §’. It
follows that A(I',T") = Nawg(I'). Thus

2 Nawr(T) = Aut(S) determined by u(g) =g

is a surjective mapping. We prove it is also an epimorphism. In fact, let g;, g, € A(I',1”)
with g, g> such that 7g, = g7 and mg, = gn. Then n(g,2,) = g17rg, = (g122)7. But
219, € I, we know that 7(g12,) = g1g>m. Whence, g12; = ¢8> by Theorem 4.5.8. Thus u
is an epimorphism. Finally, we check that Keru = I'. Clearly, if g € I, we have ng = n,
ie.,

H g H

S Ls S

By Theorem 4.5.8, we get'g = 15. So g € Keru. Conversely, g = 15 implies that 7g = 7.
Thus g € I'. This completes the proof. U

Theorem 4.5.10 Let f,g € Aut"H \ {14}. If fg = gf, then Fix(f) = Fix(g).

Proof Not loss of generality, we assume that 1 < [Fix(f)| < [Fix|(g) < 2. By
fe = gf, we conclude that g(Fix(f)) = Fix(f) and f(Fix(g)) = Fix(g).

Now if Fix(f) = {x¢}, then g(xo) = xo, and if g(y) = y we know f(y) =y, .i.e., ¥ = Xo.
Thus Fix(f) = Fix(g) in this case.

If Fix(f) = xo, 0, then {g(xo),g(0)} = {x0,10}. Whence, either Fix(f) = Fix(g) or
Fix(f) # Fix(g) with g(xo) = yo, g000) = xo. In the second case, choose zy € Fix(g) \
Fix(f). Notice that xo, yo and z, are distinct ' xed points of g?>. We know that g> = 1.
Let 4 € GL(2,R) with Det4 = 1 such that g¢ = f,. Then by g = 1, we get that
A? = I and so the minimal polynomial of 4 # +/ is x> + 1. Consequently, g(z) = —1/z
and Fix(g) = {+i}. Since f(H) = H and f(Fix(g)) = Fix(g), we get f(i) = i, and so
f(=i) = —i. Thus Fix(f) = Fix(g). 0

The following result shows that Nay(I) is also an NEC group.
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Theorem 4.5.11 Let I" be an NEC group. Then Nayy(I') in AutH is also an NEC group.

Proof Notice n : H — H/I'. We immediately fnd the compactness of H/Nauz(I)
from H under n. Because AutH is a topological group, we only need to check that the
identity {1} is an open subset in Ny (D).

We claim that there exist 15 # Ay, h, € I'" such that Fix(h,) # Fix(h,). In fact, let
hy, € T'" defned by h(z) = roz for some ry € R. Then Fix(h;) = {0, co}. If there are
another 4 € I'*, h # hy such that Fix(%) = {0, oo}, then

I"cA={f:H-> H|f(z)=rz,re R",ze C}.

Since H/T'* is compact, the same holds for H/4 =~ (0, 1), a contradiction.

Now let Cayp(hy, hy) = {h € AutH|hh; = hh,i = 1,2}, We prove that Cayy(hy, )
is trivial. Applying Theorem 4.5.10, if there are 15 # h € Cauu(hi, hy) N Aut™H,
then Fix(4;) = Fix(h) = Fix(h;), a contradiction. On the other hand, if there are 4 €
Caurr(hi, hy) \ Aut™H, then h*> = 1y, and so h(z) = —z. Now hh; = h;h implies that
hi(z) = —1/z for i = 1,2, also a contradiction. Thus the mapping ¢; : Naug(I') — I by
g — gh;g™! are well-def ned and continuous with (1) = ;.

Since I is discrete, we can fnd open neighborhoods V7, V5 of 15 in Nayy(I') such
that &;(V;) C {h;}, i.e., ghig™ = h;, i = 1,2 foreach g € V = V; N V,. In other words,
V C Cawn(hy, hy) = {14}, Thus {14} = V is open in Npyg(D). ]

A group of automorphism of a Klein surface S is a subgroup of AutS. We get the

following consequence by Theorem 4.5.11.
Corollary 4.5.2 A4 group G < AutS with S = H/T if and only if G ~ 1" /T for some NEC
group I withT" < T7.

Proof Applying Theorem 4.5.11, G is a subgroup of Nauy(I')/I". So there is a
subgroup I" of Ny (1)) containing I' such that H/I” is compact. Notice I is also discrete.
Whence, I'" is a NEC group. 0J

Now we prove the main result of this section.

Theorem 4.5.12 Let S be a compact Klein surface with conditions in Theorem 4.5.7 hold.
Then AutS is f nite.

Proof Let S = H/I'. By Theorem 4.5.10, Nayy(I') is an NEC group. Applying
Theorem 4.4.5, we know AutS is fnite by that of the group index [Nayu(I') : T']. 0



Sec.4.6 Remarks 165

$4.6 REMARKS

4.6.1 Topology, including both the point topology and the algebraic topology has become
one of the fundamentals of modern mathematics, particularly for geometrical spaces.
Among them, the simplest is the surfaces fascinating mathematicians in algebra, geome-
try, mathematical analysis, combinatorics, - - -, and mechanics. There are many excellent
graduated textbooks on topology, in which the reader can f nd more interested materials,
for examples, [Mas1]-[Mas2] and [Munl].

4.6.2 Similar to Theorem 4.2.4 on compact surface without boundary, we can classify

compact surface with boundary and prove the following result.
Theorem 4.6.1 Let S be a connected compact surface with k > 1 boundaries. Then its

surface presentation is elementary equivalent to one of the following:

(1) Sphere with k > 1 holes
aa‘lclBlcl_lcszcgl - -ckBkc,Zl;
(2) Connected sum of p tori with k > 1 holes
alblal_lbl_lazbzaglbgl . 'apbpaljlb;lclBlcl_lcszcgl . -ckBkc,Zl;
(3) Connected sum of q projection planes with k > 1 holes

aay - - ~aqclBlcl_1cszc;1 - -ckBkc,ZI.

4.6.3 The conception of fundamental group was introduced by H.Poincaré in 1895. Sim-
ilarly, replacing equivalent loops of dimensional 1 based at x, by equivalent loops of
dimensional d, we can extend this conception for characterize those higher dimensional

topological spaces with resemble structure of surface.

4.6.4 The conception of Klein surface was introduced by Alling and Greenleaf in 1971
concerned with real algebraic curves, correspondence with that of Riemann surface con-
cerned with complex algebraic curves (See [Alll] for details). The materials in Sections
4.5.4 and 4.5.5 are mainly extracted from the reference [BEGGI1]. Certainly, all Rie-
mann surfaces are orientable. Their surface group is usually called the Fuchsian group

constructed similarly to that of Construction 4.4.2. It should be noted that each surface
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in Construction 4.4.2 for an NEC group maybe with boundary. This construction also
establishes the relation of surfaces with that of NEC groups, enables one to research au-

tomorphisms of Kleins surface by that of combinatorial maps.



CHAPTER 5.

Map Groups

A map group is a subgroup of an automorphism group of map, which is also a
kind of geometrical group, i.e., a subgroup of triangle groups. There are two
ways for such groups in literature. One is by combinatorial techniques. An-
other is the classical by that of algebraic techniques. Both of them have their
self-advantages and covered in this chapter. The materials in Sections 5.1—
5.2 are an elementary introduction to combinatorial maps. By the discussion
of Chapter 4, we explain how to embed a graph and how to characterize an
embedding of graph on surface in Section 5.1, particularly these techniques
related to algebraic maps, such as those of rotation system, band decompo-
sition of surface, traveling ruler and orientability algorithm in Section 5.1.
This way naturally introduce the reader to understand the correspondence be-
tween embeddings and maps, and the essence of notations a,8 and &, or
fags in an algebraic map (Z,, &?). The automorphisms of map with prop-
erties are discussed in Section 5.3, characterized by behavior of maps or the
semi-arc automorphism of its underlying graph. The materials in Sections
5.4-5.5 concentre on regular maps, both by combinatorial and algebraic tech-
niques, which are closely related combinatorics with geometry and algebra.
By explaining how to get a regular tessellation of a plane, a geometrical way
for constructing regular maps by triangle group is introduced in Section 5.5.
After generalizing the conception of surface to multisurface S in section 5.5,
we also show how to construct maps M on multisurfaces S such that the pro-

jection of M on each surface of S is a regular map.
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§5.1 GRAPHS ON SURFACES

5.1.1 Cell Embedding. Let G be a connected graph with vertex set V(G) and edge set
E(G) and S a surface. An 2-cell embedding of G on S is geometrical def ned to be a con-
tinuous 1 — 1 mapping 7 : G — S such that each component in S — 7(G) homeomorphic to
an open 2-disk. Certainly, the image 7(G) is contained in the 1-skeleton of a triangulation
of the surface S. Usually, components in S — 7(G) are called faces. For example, we have
shown an embedding of K4 on the sphere and Klein bottle in Fig.5.1.1(a) and Fig.5.1.1(b)

respectively.

23]

[2%)

us Uy

(a)

Fig.5.1.1

For v € V(G), denote by N{.(v) = {ej, ez, -, ey} all the edges incident with the
vertex v. A permutation on ej, e, -, ey 1S said a pure rotation. All pure rotations

incident with v is denoted by o(v). A pure rotation system of the graph G is def ned to be

p(G) = {o()lv € V(G)}.

For example, the pure rotation systems for embeddings of K, on the sphere and Klein

bottle are respective

P(Ks) = {(uiug, uyus, uyuy), (uauy, usus, usts), (Usly, usty, ustty), (sl , Usly, Usui3)},

P(Ks) = {(uiug, uyus, uyug), (uauy, urus, usts), (Uzty, ustis, usity), (Ualty, Usly, Usliz)}

and intuitively, we can get a pure rotation system for each embedding of K4 on a locally
orientable surface S'.

In fact, there is a relation between these pure rotation systems of a graph G and its
embeddings on orientable surfaces S, called the rotation embedding scheme, observed
and used by Dyck in 1888, Heffter in 1891 and then formalized by Edmonds in 1960

following.
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Theorem 5.1.1 Every embedding of a graph G on an orientable surface S induces a
unique pure rotation system p(G). Conversely, Every pure rotation system p(G) of a graph

G induces a unique embedding of G on an orientable surface S.

Proof If there is a 2-cell embedding of G on an orientable surface S, by the def nition
of surface, there is a neighborhood D, on § for u € V(G) which homeomorphic to a
dimensional 2 disc ¢ : D, — {(x1, x;) € 9?2|x% + x% < 1} such that each edge incident with
u possesses segment not in D,,. Denoted by dD,, = {(x1, x2) € %*|x; + x5 = 1} and let the
counterclockwise order of intersection points of edges uv, v € Ng(u) with that of 9D, be
Dvis Dvys ™ > Dy, - Def e a pure rotation of u by o(u) = (uvy, uvy, - - -, uvyuy). Then we get
a pure rotation system p(G) = {o(u), u € V(G)}.

Conversely, assume that we are given a pure rotation system p(G). We show that this
determines a 2-cell embedding of G on a surface. Let D denote the digraph obtained by
replacing each edge uv € G with (u,v) and (v, u). Defne a mapping n : E(D) — E(D)
by m(u,v) = o(v)(v,u), which is 1 — 1, i.e., a permutation on E(D). Whence 7 can be
expressed as a product of disjoint cycles. Each cycle is an orbit of 7 action on D(EO.
Thus the orbits partition the set £(D). Assume

Fo(u,v)(v,w) - - (2, u)
is such a orbit under the action of 7, simply written as
F: (uv,w,--,z,u).

Notice this implies a traveling ruler, i.e., beginning at u and proceed along (u, v) to v,
the next arc we encounter after (u, v) in a counterclockwise direction about v is p(v)(v, u).
Continuing this process we f nally arrive at the arc (z, u), return to u and get the boundary
of'a 2-cell.

Let Fy, F,,- -+, F; be all 2-cells obtained by the traveling ruler on E(D). Applying
Theorem 4.2.2, we know it is a polygonal representation of an orientable surface S by
identifying arc pairs (u, v) with (v, u) in E(D). 0

According to this theorem, we get the number of embeddings of a graph on orientable

surfaces following.

Corollary 5.1.1 The number of embeddings of a connected graph G on orientable sur-

faces is l—[ (p(v) — D

VeV (G)
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5.1.2 Rotation System. For a 2-cell embedding of a graph G on a surface S, its embed-
ded vertex and face can be viewed as 0 and 2-disks, and its embedded edge can be viewed
as a 1-band def ned as a topological space B with a homeomorphism 4 : I X I — B, where
I = [0, 1], the unit interval. The arcs A(/ X {i}) for i = 0, 1 are called the ends of B, and
the arcs A({i} x I) for i = 0,1 are called the sides of B. A 0-band or 2-band is just a
homeomorphism of the unit disk. A band decomposition of the surface S is def ned to be
a collection Z of 0-bands, 1-bands and 2-bands with conditions following hold:

(1) The different bands intersect only along arcs in their boundary;

(2) The union of all the bands is S, i.e., Ug B=S;

(3) The ends of each 1-band are containgz}in a 0-band;

(4) The sides of each 1-band are contained in a 2-band;

(5) The 0-bands are pairwise disjoint, and the 2-bands are pairwise disjoint.

For example, a band decomposition of the torus is shown in Fig.5.1.2, which is an

embedding of the bouquet B, on 72,

Fig.5.1.2

A band decomposition is called locally orientable if each 0-band is assigned an ori-
entation. Then a 1-band is called orientation-preserving if the direction induced on its
ends by adjoining 0-bands are the same as those induced by one of the two possible orien-
tations of the 1-band. Otherwise, the 1-band is called orientation-reversing, such as those

shown in Fig.5.1.3 following.

@ © @ ©

Orientation-preserving band Orientation-reversing band

Fig.5.1.3
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An edge e in a graph G embedded on a surface S associated with a locally ori-
entable band decomposition is said to be #ype 0 if its corresponding 1-band is orientation-
preserving, and type 2, otherwise. A walk in this associated graph is #ype 1 if it has an
odd number of type 1 edges and #ype 0, otherwise.

For such a graph G associated with a locally orientable band decomposition, we
defne a rotation system p*(v) of v € V(G) to be a pair (J(v), 1), where J (V) is a pure
rotation system and A : E(G) — Z; is determined by A(e) = 0 or A(e) = 1 if e is fype 0 or
type 1 edge, respectively. For simplicity, we denote the pairs (e, 0) and (e, 1) by e and e',
respectively. The rotation system p’(G) of G is def ned by

PH(G) = (T M), DIT () € p(G), A : E(G) — Za).

For example, the rotation system of the complete graph K4 on the Klein bottle shown in
Fig.5.1.1(b) is

P (Ky) = {(uyua, wyuy, wyug), (uattr, uauis, uaus), (Ustin, tsita, usuy), (Uatty, talln, Ustiz)}.

It should be noted that the traveling ruler in the proof of Theorem 5.1.1 can be gener-
alized for fnding 2-cells, i.e., faces in both of a graph embedded on an orientable or

non-orientable surface following.

Generalized Traveling Ruler. Not loss of generality, assume that there are no 2-valent

vertices in G.

(1) Choose an initial vertex vy of G, a frst edge e; incident with vy and v; be the
other end of e;.

(2) The second edge e, in the boundary walk is the edge after (respective, before) e,
at vy if e; is type O (respective, type 1). If the edge e is a loop, then e, is the edge after
(respective, before) the other occurrence of ey at v;.

(3) In general, if the walk traced so far ends with edge e; at vertex v;, then the next
edge e 1s the edge after (respective, before) e; at vertex v; if the walk is type 0 (respec-
tive, type 1).

(4) The boundary walk is fnished at edge e, if the next two edges in the walk would
be e; and e, again.

For example, calculation shows that the faces of K4 embedded on the Klein bottle
shown in fg.5.1.1(b) is

Fy = (uy, ug, uz, ug, uy),  Fo = (uy, us, ug, up, uz, uy, g, U, Uy).
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The general scheme for embedding graphs on locally orientable surfaces was used
extensively by Ringel in the 1950s and then formally proved by Stahl in 1978 following
([Stal]-[Sta2]).

Theorem 5.1.2 Every rotation system on a graph G def nes a unique locally orientable
2-cell embedding of G — S. Conversely, every 2-cell embedding of a graph G — S

defnes a rotation system for G.

Proof The proofis the same as that of Theorem 5.1.1 by replacing the traveling ruler

with that of the generalized traveling ruler. 0

For any embedding of a graph G on a surface S with a band decomposition %4, we
can always fnd a spanning tree 7 of G such that every edge on this tree is type 0 by the

following algorithm.

Orientability Algorithm. Let 7" be a spanning tree of G.

(1) Choose a root vertex u for 7 and an orientation for the 0-band of u.

(2) For each vertex u; adjacent to u, in 7', choose the orientation for the 0-band of u;,
so that the edge of T from u, to u; is type 0.

(3) If u; and u;,, for an integer are adjacent in 7" and the orientation at u; has been
already determined but that of ;1 has not been determined yet, choose an orientation at
u;y1 such that the type of the edge from u; to u;,; is type 0.

(4) Continuous the process on 7" until every 0-band has an orientation.

Combining the orientability algorithm with that of Theorem 5.1.2, we get the number

of embeddings of a graph on locally orientable surfaces following.

Corollary 5.1.2 Let G be a connected graph. Then the number of embeddings of G on

locally orientable surfaces is

280) ]_[ (o(v) = 1)!

veV(G)
and the number of embeddings of G on the non-orientable surfaces is

@0 -1 [ ] e -1,

veV(I)

where B(G) = |E(G)| — |V(G)| + 1 is the Betti number of G.

5.1.3 Equivalent Embedding. Two embeddings (77, 41), (J2,42) of a graph G on a

locally orientable surface S are called to be equivalent if there exists an orientation-
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preserving homeomorphism 7 of the surface S such that 7 : 77 — 95, and 74 = Ar.
If (J1,4) = (J2,42) = (J,4), then such an orientation-preserving homeomorphism
mapping (1, A1) to (2, 42) is called an automorphism of the embedding (7, 1). Clearly,
all automorphisms of an embedding (', 1) form a group under the composition operation
of mappings, denoted by Aut(. 7, A).

For example, the two embeddings of K4 shown in Fig.5.1.4(a) and (b) are equivalent,

Fig.5.1.4

where the orientation-preserving homeomorphism /4 is determined by

h(uy) = wy, h(uy) = uz, h(uz) = u and h(us) = us.

The following result is immediately gotten by def nition.

Theorem 5.1.3 Let (,A) be an embedding of a connected graph G on a locally ori-
entable surface S. Then

Aut( 7, ) < AutG.

5.1.4 Euler-Poincaré Characteristic. Applying Theorems 4.2.5-4.2.6, we get the Euler-

Poincaré¢ characteristic of an embedded graph G on a surface S following.

Theorem 5.1.4 Let G be a graph embedded on a surface S. Then

V(G) = &(G) + ¢(G) = x(S),

where, v(G), &(G) and ¢(G) are the order, size and the number of faces of the embedded
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graph G on S, and x(S) is the Euler-Poincaré characteristic of S determined by

2 if S ~g S?,
2-2p if S ~p THT*# - #T?,
X(S) = M

2—q if S ~p P#HP# - -#P*.
q

§5.2 COMBINATORIAL MAPS

5.2.1 Combinatorial Map. The embedding characteristic of a graph G on surfaces S,
particularly, Theorems 5.1.1-5.1.2 and the generalized traveling ruler present embryonic
maps. In fact, a map is nothing but a graph cellularly embedded on a surface. That
is why one can enumerates maps by means of embedded graphs on surfaces. In 1973,
Tutte found an algebraic representation for the embedding of graphs on locally orientable
surfaces (see [Tutl]-[Tut2] for details), which completely transfers 2-cell partitions of
surfaces to permutations in algebra.

Let G be an embedded graph on a surface S with a band decomposition & and e €
E(G). Then the band B, of e is a topological space B with a homeomorphism /4 : IxX] — B
and sides A({i} x I) for i = 0, 1. For characterizing its embedding behavior, i.e., initial and
end vertices, left and right sides of 1-band B,, a natural idea is to introduce quadricells for

e, such as those shown in Fig.5.2.1 following,

X,
u (= v u= =3
ax apx,
Be e Kxe e

Fig.5.2.1

where we denote one quarter beginning at the vertex u of B, by x. and its ref ective quar-
ters on the symmetric axis e, on the perpendicular mid-line of e and on the central point
of e by ax,, Bx, and afx,, respectively.

Let K = {1, @,8,aB}. Then K is a 4-element group under the composition operation

by def nition with
a =1, ,82: I, af=pa,
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called the Klein group. The action of K on an edge e € E(G) is def ned to be
Ke = {x., axe, Bxe, afix.},

called the quadricells of e. Notice that Theorems 5.1.1-5.1.2 and the generalize traveling

ruler claim the embedded graph G on surface S is correspondent with
PH(@) = (T M. DIT () € p(G), 1 E(G) = Lo}.

Whence, if we turn 1-bands to quadricells for e € E(G), the rotation system o(u) at a
vertex u becomes to two cyclic permutations (Xe,, Xe,s "+ Xe, ) ) (XX @Xeys > AXey) I
Ng(u) = {er, ez, -+, eyu}. By defnition, Kx.,, N Kx,, = 0if e; # e,. We therefore get a

set

Zop = U Kx, = @ {Xe, @Xe, BXe, BX,}.

ecE(G) ecE(G)
Def ne a permutation

P = ]—[ (Xers Xeys * ** s Xy N@Xey s AXgyys o o5 AXey) = l—[ C,-(aCla™),

ueV(G) ueV(G)

called the basic permutation on 2,4, i, P*x # ax for any integer k > 1, x €
Zap, Where C, = (X, Xep, " - - » Xey,)- This permutation also make one understanding
the embedding of G on surface S if we view a vertex u € V(G) as the conjugate cycles
C-(aC'a™") = (Xe;s Xeyo o+ Xey N@Xe s X )5 -+, X, and an edge e as the quadricell

Kx,. We have two claims following.

Claim1. aoZPa ! =22

Let Z = [ (Xep»Xeys s Xep N @Xey s @Xey,»+ +» XX, ). Calculation shows that
ueV(G)
— -1
aPa = « l_l (Xeps Xeys "+ * s Xepoy N@Xey» AXeys ™ 5 AXXey) |
uel(G)
_ -1 -1
- 1_[ (a[(xe‘l s Xeys "7 xep(u))a/ ) ' (a(axel ’ a/xe‘p(u), T a[xez)a/ )
ueV(G)
_ _ op1
N (@Xe,, WXy + s WXy ) Xeys Xeys** 75 X)) = P70
ueV(G)

Claim 2. The group {(a, 3, &) is transitive on Z,p.

For Yx,y € %45, assume they are the quadricells of edges e' and ¢*. By the con-

2.

nectedness of G, we know that there is a path P = e'e? - - - ¢* connected ¢’ and e’ in G for
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an integer s > 0. Notice that edges ¢’ with e! and ¢” with ¢* are adjacent. Not loss of

generality, let 2% x = x,1 and 9% x, = y. Then we know that
(@B)’x,1 = Xes, OF @Xps, OF BXes OF @f3Xes.
Whence, we must have that

PR (ap)y Phx =y, or PRa(af)y P"x=y, or
Prp(ap)y Phx =y, or Pha(af)y ™ Phx =y.

Notice that 2% (ap)* 2", PRa(ap) P4, PR () P and PR a(aB) ™ 21 are ele-
ments in the group (a, 8, &). Thus (@, B, &) is transitive on Z, 4.

Claims 1 and 2 enable one to def ne a map M algebraically following.

Def nition 5.2.1 Let X be fnite set, K = {1, , 3, af8} the Klein group and
Zop = @{x, ax, Bx, afix}.
xeX

Then a map M is def ned to be a pair (£, 5, &), where & is a basic permutation action
on Ay p such that the following axioms hold:

Axiom 1. o = P q;
Axiom 2. The group ¥, = (B, &) with J = {a, 8, &} is transitive on X, p.

Notice that Axiom 2 enables one to decompose & to a production of conjugate

cycles C, and aC;'a! correspondent to the vertices of the M, i.e.,
Z =] c-acla
vel (M)

We present an example for maps correspondent to embedded graphs following.

Example 5.2.1 The embedded graph K4 on the tours 7> shown in Fig.5.2.2 following
can be algebraic represented by a map (2,4, &) with 2,5 = {x,y,z,u, v, w, ax, ay, az,
au, av, aw, Bx, By, Bz, Bu, Bv, Bw, afx, afy, afz, afu, afv, afw} and

= (x,y,2)(aBx,u, w)afz, afu, v)(aBy, afv, affw)
X (ax,az,ay)(Bx, aw, au)(Bz, av, Bu)(By, Bw, BV).
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Its four vertices are

uy = {(x,»,2), (ax, az, ay)}, uy = {(afx, u,w), (Bx, aw, au)},

uz = {(afz, afu, v), (Bz, av,fu)},  us = {(aBy, apv, apw), (By, w, Bv)}.

and its six edges are {e, ae, Be, afe}, where, e € {x,y,z, u, v, w}.
5.2.2 Dual Map. Let M = (Z,4, &7) be a map. Notice that
aZal =77 = B(Pap)B = (Pap)’!

and ¥, = (@, B, &) is transitive on 23, also. We known that M* = (Xj,, Pap) is also a

map by def nition, called the dual map of M. Now the generalized traveling ruler becomes

Traveling Ruler on Map. For Vx € Z,p, the successor of x is the element y after afx

in &, thus each face of M is a pair of conjugate cycles in the decomposition

o= || C-Ccp?),
V(M)

i.e., a vertex of its dual map M*. The length of a face f of M is called the valency of f.

Example 5.2.2 The faces of K4 embedded on torus shown in Fig.5.2.2 are respective

fi = (x,u, v, afw, aBx, y, affv, afz)(Bx, az, av, By, ax, aw, Bv, fu),
ﬁ = (ay’ﬁw’ @”,ﬁz)(aﬁy, Z, aﬁu, W)

By the def nitions of map M with its dual M*, we immediately get the following

results according to Theorems 5.1.1-5.1.2.

Theorem 5.2.1 Every map M = (Z,p, Z?) def nes a unique locally orientable 2-cell
embedding of G — S with

VG)={{C-aC a7 ' |Ce¥})}), E(G)={Kx|xeX)
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and the face set F(G) determined by cycle pairs {F, BFB~'} in the decomposition of Za.
Conversely, every 2-cell embedding of a graph G — S defnes a map M = (Z,p, P)
determined by

%y,ﬂ = U Kx, = @ {Xe, X, BXe, X}

ecE(G) ecE(G)
and

P = l_[ (Xeps Xeys "+ » Xepoy N @Xey  AXgys ** 7 5 AXe,),
ueV(G)

#NG(U) = {ela €, ", ep(u)}-

By Theorem 5.2.1, the embedded graph G (the map M) correspondent to the map M

(the embedded graph G) is called the underlying graph of M (map underlying G), denoted
by G(M) and M(G), respectively.

Theorem 5.2.2 Let M = (X5, &?) be a map. Then its Euler-Poincaré characteristic is

XM) = v(M) = &(M) + ¢(M),

where v(M), e(M), (M) are the number of vertices, edges and faces of the map M, re-
spectively.

Example 5.2.2 The Euler-Poincaré characteristic y(M) of the map shown in Fig.5.2.2 is
X(M) =v(M) —e(M) +¢(M) =4-6+2=0.

5.2.3 Orientability. For defning a map (X, 4, #) is orientable or not, we frst prove the

following result.

Theorem 5.2.3 Let M = (X5, &) be a map. Then the number of orbits of the group
Y, =<aB, &) action on Z,p with L = {af, P} is at most 2.

Proof Notice that [V, : ¥;| = 2, i.e., (@, B, &) = (aB, Z)|J a{aB, ¥). For x,y €
4, if there are no elements / € P, such that ¥ = y, by Axiom 2 there must be an element
6 € ¥, with x’ = y. Clearly, 6 € a¥;. Let # = ah. Then ax”" = y and Bx = y, i.e., x, ffx
in one orbit and ax, Bx in another. This fact enables us to know the number of orbits of

¥, action on 2,z is 2. O

If amap M = (Z,p, &) is on an orientable surface, i.e., each 1-band is type 0, then

any x € 4,z can be not transited to ax by the generalized traveling ruler on its edges,
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i.e., the number of orbits of ¥, action on 2,4 is 2. This fact enables us to introduce the

orientability of map following.

Def nition 5.2.2 A map M = (X, p, &) is non-orientable if it satisf es Axiom 3 following,

otherwise, orientable.
Axiom 3. The group ¥, = (a8, &) is transitive on Z,p.

Def nition 5.2.3 Let M be a map on a surface S. Then the genus g(S) is called the genus

of M, i.e.,
0 if S ~pS?
p if S ~p T*#HT*# - -#T?,
g(M) = M

q if S ~g P#HPH-- - #P*.
q

It can be shown that the number of orbits of the group ¥ actionon X, 5 = {x,y,z,u, v,
w, ax, ay, az, au, av, aw, Bx, By, Bz, Bu, Bv, fw, afx, afy, afz, afu, afv, ¢fw} in Fig.5.2.2

is 2. Whence, it is an orientable map and the genus g(M) satisf es

2-2g(M) =v(M) — (M) +p(M) =4-6+2=-2.
Thus g(M) = 1, i.e., M is on the torus 7?2, being the same with its geometrical meaning.

5.2.4 Standard Map. A map M is standard if it only possesses one vertex and one face.
We show that all the standard surfaces in Chapter 4 is standard maps. From Theorem
4.2.4 we have known the standard surface presentations as follows:

(1) The sphere S? = <a|aa‘1>;

(2) The connected sum of p tori

P
THTH - #T” = <az‘, bi,1<i<p] ]—[a,-b,-a;lb;1>;
P i=1

(3) The connected sum of g projective planes

q
PZ#PZ---#P2:<a,-,1 <i<q| ]_[a,->.
i=1

q
All of these surface presentations is in fact maps, i.e.,
(1) The sphere Oy = (Zop, &) with Z,4(0y) = {a,aa,fa,afa} and FP(0) =
(a, afa)(aa, B);
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(2") The connected sum of p tori O, = (2,5, &) with

O{ai, aa;, Bai, aﬁai}) g [O{b,-, aby, Bby, abi} |,

i=1 i=1

(al’ bl’ afﬁal, a,ﬁbls as, b29 a[BaZs a’ﬁb2s Tty apa bpa a,ﬁaln a[Bbp)
(a{aluBbpalBaps a,bp9 aapa e 3[Bb29ﬁa2a a,b23 a,aZanl’ﬁal’ a'/bl)'

%,B(Op)

Z(0p)

(3") The connected sum of ¢ projective planes N, = (Z, 4, &7) with

P
%a,ﬁ(Nq) = U{ai’ a{ai’ﬁai’ a'/ﬁai},
i=1
‘@(Nq) = (alaﬁa19a29ﬁa29 o '9ap’ﬁap)(a'ala a[ﬁap’ a/apa c ',aﬁa2, ady, alﬁal).

Then we know the following result.

Theorem 5.2.4 These maps Oy, O, and N, are standard maps. Furthermore,

(1) The map O, is orientable with genus g(O,) = p for integers p > 0;
(2) The map N, is non-orientable with genus g(N,) = q for integers q > 1.

Proof Clearly, v(O,) = 1 and v(N,) = 1 by def nition. Calculation shows that

Z(Op)ap = (a,afa)(aa,Ba);

P(0y)ap = (ar,afb,afay, by, as,afb,, afas, by, -, a,,afb,, afa,,b,)
(Bai,pb,, aa,,ab,,Ba,,- -, Bb,, aas, ab,,pa,, by, aa,, ab,);

P(Npapf = (ai,aa,ar,aay,- -, a4 aa,)Bar, afay, Bag, - - -, afay, fas, afa,).

Therefore, there only one face in O, and N,. Consequently, they are standard maps for
integers p > 0 and g > 1.

Obviously, the number of orbits of V', action on .2, 5(0,) is 2, but that on 2, 3(0,) is
1. Whence, O, is orientable for integers p > 0 and N, is non-orientable for integers ¢ > 1.

Calculation shows that the Euler-Poincaré characteristics of O, and N, are respective
x(O,)=1-2p+1 and x(N,)=1-q+2.

Whence, g(O,) = p and g(N,) = q. 0J
By the view of map, the standard surface presentation in Theorem 4.2.4 is nothing

but the dual maps (Z,4, &) of bouquets B,,, B, on T2HT*# - - -#T* or P*#P*# - - - #P*
p q
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with

P(Bayp) (a1, aBby, apay, by, az, afiby, afay, by, -+ -, a,, afb,, afay,, by)
(Bay,pby, aa,, ab,,Ba,, - -, Bby, aay, ab,,fas, by, aa;, ab);

'@(Bq) = (al’ ady, dz, ady, - -+, dg, aaq)(ﬁal’ aﬁaq,ﬁaq’ Tt aﬁaz,ﬁaz, aﬁal).
For example, we have shown this dual relation in Fig.5.2.3 for p = 1 and ¢ = 2

following.

Fig.5.2.3

In fact, the embedded graph B, on torus and Klein bottle are maps (£, 4, &?), where
Zop(B2) = {a,aa,fa,afa,b,ab,Bb, apb}, & = (a,afb, afa, b)(aa, ab,Ba,pb), Paof =
(a, b, afa, apb)(aa,Bb,Ba, ab) on the torus, and & = (a,aa,b,ab)(Ba,afb,Bb, aBa),
Pap = (a,Ba, b, Bb)(aa, afb, ab, aBa) on the Klein bottle, respectively.

§5.3 MAP GROUPS

5.3.1 Isomorphism of Maps. Let M, = (2}, %)) and M, = (2, &) be maps. If

there exists a bijection
. gl 2
E: Zop— Zog

such that for Vx € 3&”“1 5

§a(x) = ag(x), EB(x) = p4(x) and  &P1(x) = PrE(x).

Such a bijection ¢ is called an isomorphism from maps M, to M,.

Clearly, ¢ 'a(y) = aé7'(»).67'B(v) = BE7'() and €' P(y) = PE7(y) for y €
275 Thus the bijection é™' : 22, — Z.); is an isomorphism from maps M, to M.
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Whence, we can just say such M; and M, are isomorphic without distinguishing that the

isomorphism ¢ is from M, to M, or from M, to M, if necessary.

Theorem 5.3.1 Let M, and M, be isomorphic maps. Then

(1) M, is orientable if and only if M, is orientable;
(2) v(My) = v(M,), (M) = &(M>) and $p(M,) = ¢(M,), particularly, the Euler-
Poincaré characteristics y(My) = x(M>).

Proof Let My = (25, P1), My = (X5, P2), 71 2}, — 2., an isomorphism
from M; to M, and x;,x; € %alﬁ such that there exists a o € V] = (aB, &) with
o(x1) = x,. Then There must be 7077 (7(x1)) = 7(xy), i.e.,, TV} 77" = (B, P) = V5.
Whence, '} is not transitive on 2, if and only if V] is not transitive on 2}, That is
the conclusion (1).

For (2), let x; be an element in the conjugate pair C - (aC'a™") of &, and y; an
element in C’ - (@C'~'a™") of 2,. It is easily know that 7(C - (aC~'a™")) = C" - (aC"'a™")
and 7({xy, ax,Bx1,afx1}) = {1, a1, By, b}, ie, T 0 Kx; — Ky;. Whence, 7 is
an bijection between V(M) and V(M,), E(M;) and E(M,). Thus v(M;) = v(M,) and
e(My) = e(Ms).

By def nition, we know that 7(#,afB) = (ZaB)r. So similarly we know that 7 is
also a bijection between the vertices, i.e., faces of M; and M,. Consequently, we get that
¢(M) = ¢(M). O

ForVx € 2,4, letv,, e, and f, be the vertex, edge and face containing the quadricell
xinamap M = (Z,p, Z). The triple (vy, ey, ;) is called a fag incident with that of x in
M. Denoted by .% (M) all f ags in a map M. Then we get the following result by the proof
of Theorem 5.3.1.

Corollary 5.3.1 Let My and M, be isomorphic maps. Then there is a bijection between
fag sets F (M) and ¥ (M,).

Theorem 5.3.2 A map M, = (2,5, P)) is isomorphic to My = (2.}5, &) if and only if
the dual map M; = (2,

o Z1aP) is isomorphic to that of M = (EKB?“, Pap).

Proof Let 1 : %alﬁ - %fﬁ be an isomorphism from M; to M,. Then ta — art,
78 = Brand 7 ¥, = Z,71. Consequently, 7(Z1af) = Pyt(af) = (FaB)t. Notice that
2 g = 24, and 22, = 27 . We therefore know that 7 is an isomorphism between M;
and M;. 0
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Applying isomorphisms between maps, an alternative approach for determining equiv-
alent embeddings and maps on locally orientable surfaces underlying a graph can be de-

fned as follows:

For a given map M underlying a graph G, it is obvious that AutM|; < Aut ! G.
Whence, we can extend the action of Vg € Aut 1 G on V(G) to that of gl% on X,z with
X = E(G) by defning that for Vx € X, 4, if x* =y, then

1 1

L L 1 1
¥ =y, (axf = ay, (Bxy" =By and (afx}" = ofy.
Then we can characterize equivalent embeddings and isomorphic maps following.

Theorem 5.3.3 Let M| = (Zop. &) and My = (X4 p, &%2) be maps underlying a graph
G. Then

(1) M, and M, are equivalent if and only if there is an element { € Aut%G such that
ﬂf =P,

(2) M, and M, are isomorphic if and only if there is an element { € Aut 1 G such that
ﬂf =P, orﬂf =75

Proof Let k be an equivalence between embeddings M; and M,. Then by def nition,
k must be an isomorphism between maps M; and M, induced by an automorphism ¢ €
AutG. Notice that
AutG = AutGl* < Aut,G.

We know that ¢ € Aut 1 G.

Now if thereisa € Aut, G such that ,@f = &, then Ve, € X (G), L(ey) = L(e)¢)-
Assume that e = (x,y) € E(G), then by convention, we know that if e, = e € 2,4, there
must be e, = Be. Now by the defnition of automorphism on the semi-arc set X’ ] (G), if
{(ey) = fu, where f = (u,v), then there must be {(e,) = f,. Notice that X’ 1(G) = Zp. We
therefore know that {(e,) = {(Be) = Bf = f,. Now extend the action of { on X 1 (G) to
Zaop by {(ae) = al(e). We get that Ve € 2,4,

al(e) = Lale), BL(e) = {B(e) and P (e) = Ps(e).

So the extend action of { on 2, 4 is an isomorphism between the map M, and M,, which
preserve the orientation on M; and M,. Whence, { is an equivalence between the map M,

and M,;. That is the assertion (1).
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For the assertion (2), if there is an element { € Aut ! G such that ng = &,, then the
map M, is isomorphic to M,. If ng = 25, then there must be ﬂfa = %,. So M, is also
isomorphic to M,. This is the sufficiency of (2).

Let £ be an isomorphism between maps M; and M,. Then for Vx € Z, 4,

aé(x) = £a(x), BE(x) = €B(x) and T (x) = Po(x).

By convention, the condition

BE(X) = €B(x) and P (x) = Pa(x)

is just the condition of an automorphism & or @é on X 1 (G). Whence, the assertion (2) is

also true. O

5.3.2 Automorphism of Map. If M, = M, = M, such an isomorphism between M, and

M, is called an automorphism of M, which surveys symmetries on a map.
Example 5.3.1 Let M = (%, 4, &) be a map with
Zop(B2) = {a,aa,Ba, afa, b, ab, b, b}

and

P = (a,afb, afa,b)aa, ab,Ba,Bb),

i.e., the bouquet B, on the torus shown in Fig.5.3.1 following.

Fig.5.3.1

We determine its automorphisms following. Def ne

a aa Pa aBa b ab pBb apb
aa a afa Pa Pb aBb b ab
(a, aa)(Ba, afa)(b, Bb)(ab, afb),

T =
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a aa Pa afa b ab pb aﬁb]

©os Ba aBfa a aa ab b aBb pb
= (a,Ba)(aa,apa)(b, ab)(Bb, apb),
B a aa Pa aBa b ab pb apb
oo afa Ba aa a afb pb ab b ]

(a, afa)(aa, Ba)(b, apb)(ab, Bb),

| a aa Ba aBa b ab Bb aBb
s b ab Bb aofb aBa Ba aa a )
(a, b, aBa, apb)(aa, ab,Ba, ),

a aa Pa aBfa b ab pb apb
5oz ab b aofb pb aa a aBa Pa )
(a, ab)(aa, b)(Ba, apb)(afa,Bb),

a aa fa aBfa b ab b afb
Bb apb b ab Pa afa a a/a]

= (a,pb)(aa,apb)(Ba, b)(epa, ab),

3 a aa Pa aBfa b ab pb afb
oo apb Bb ab b a aa Pa aﬁa)
(a, apb, afa, b)(aa,Bb,Ba, ab).

Te =

We are easily to verify that these permutations 14, ,, 7;, 1 < i < 7 are automorphisms of

the map M shown in Fig.5.3.1.

Theorem 5.3.4 All automorphisms of a map M = (Z, g, &) form a group.

Proof Let 1, 7, and 7, be automorphisms of M. Then we know that T = at, 76 =
pr, 7P = Prand 11 = at, 118 = fr1, 11 P = P1). Clearly, 14, is an automorphism
of Mand 7'a = at™', 771 = Br !, 1P = 217! ie., v is an automorphism of M.

Furthermore, it is easily to know that
(tt))a = a(tty), ()8 =pB(r7)) and (t71)Z = P(171)),
i.e., 77 is also an automorphism of M with

X2 — 1)

for Vx € Zyp,1.e., (171)12 = 7(7172). So all automorphisms form a group by def nition.[]
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Such a group formed by all automorphisms of a map M is called the automorphism
group of M, denoted by AutM and any subgroup I' of automorphism groups of maps is

called a map group.

Theorem 5.3.5 Any map group U is fxed-free.

Proof Let M = (Z,p5, &) beamap, x € Z,pand I < AutM. If x” = x, we prove
that

g = 1%?#.

In fact, for Vy € 2,4, by defnition ¥, = (@, B, &) is transitive on 2, 4, there exists an

element 4 € ¥, such that x" = y. Hence,

i.e., o fxes all elements in 2, 4. OJ
For a group (T'; o), denoted by Zr(H) = {g € I|gohog! = h,Vh € H} the
centralizer of H in (I'; o) for H < I'. Then we are easily to get the following result for

automorphism group of map.

Theorem 5.3.6 Let M = (Z,p5, &) be a map. Then AutM = Zj 7oy (a,B, 7)), where

S 2, is the symmetric group on Zp.

Proof Let VT € AutM be an automorphism. Then we know that ra = at, 78 = 7
and 77 = 27 by defnition. Whence, 7 € Zg %M((oz, B, Z?)). Conversely, for o €
Zs Zg (a,B, #)), Itis clear that oca = a0, 08 = Bo and 0¥ = Po by defnition. [

A characterizing for automorphism group of map can be found in the following.

Theorem 5.3.7 Let M = (X5, &) be a map with A = AutM and v € V(M). Then the
stabilizer A, is isomorphic to a subgroup H < <Ev> generated by C, = C, - aCla™l, ie,
a product of conjugate pair of cycles in .

Proof By Theorem 2.1.1, if g¢ € 4,, we know that gC,g™! = Cyy = C,. That is
2C, = C,g. Whence, if w is a quadricell in C,, then g(w) is also so. Denote the constraint
action of an automorphism g € 4, on elements in C, by g. Notice that C, is a product of
conjugate pairs of cycles in &?. There must be an integer i such that g(w) = 61. Choose
X = f‘i(w) be a quadricell in C,. Then

g(x) = 2C,(w) = C,” (w) = C,().
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Whence, g = 61. Defne a homomorphism 6 : 4, — <€v> by 6(a) = g for Vg € 4,.
Then it is also a monomorphism by Theorem 5.3.5. Thus A4, is isomorphic to a subgroup
H<(C,). 0

Applying isomorphisms between maps, similar to that of Theorem 5.3.3 we can also
characterize automorphisms of a map by extended actions of semi-arc automorphisms of

its underlying graph following.

Theorem 5.3.8 Let M = (2,5, &) be a map underlying graph G, g € Aut | G. Then the
extend action glé of g on Xy p with X = E(G) is an automorphism of map M if and only if
Vv e V(M), gl% preserves the cyclic order of v.

Proof Let g|% € AutM be extended by g € Aut 1 G with u® = vforu,v € V(M). Let

u=(x1,%2, ", Xo)N@Xpw), -+, X2, @X1),

V=LY, ,yp(v))(ayp(v), CeL, @), a))).

Then there must be

(y1ay2,""yp(v)) or

1
(xl, X2yttt xp(u))g|2

1
(s X2, X)) = (@ @y, ).
1
Without loss of generality, we assume that (x1, x2, -+, Xp0))¢"° = (V1,12,* * *» Vp(v))- Thus,
1 1 1
(gl>(x1), 12 (x2), - - -, 812 (X)) = V1,125 5 Vo))-

Whence, gl% preserves the cyclic order of vertices in the map M.

Conversely, if the extend action gl% of g € Aut 1 G on X, g preserves the cyclic order

1
of each vertex in M, i.e., Yu € V(G), Av € V(G) such that u#* = v. Let

ueV(M)
Then
Bzgl% = 1—[ ugl% = 1_[ v=2.
ueV(M) vel (M)
Whence, the extend action gl% is an automorphism of map M. U

Combining Corollary 5.3.1 and Theorem 5.3.5 enables us to get the following result.
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Theorem 5.3.9 Let M = (Z,p4.8) be a map with v; of vertices and ¢; faces of valency
i, 1> 1. Then

AutM| | 2ivi, 2j, s P> 1, j> 1),

where (2iv;,2j¢; ; i > 1, j > 1) denotes the greatest common divisor of 2iv;,2 j¢; for an

integer pair i, j > 1.

Proof Let A; and A; respectively be the sets of quadricells incident with a vertex of
valency i or incident with a face of valency j for integers i, j > 1. Consider the action
of AutM on A; and A;. By Corollary 5.3.1, such an action is closed in A; or A;. Then
applying Theorem 2.1.1(3), we know that

[AutM]| = [(AutM),[x*] = x|

for Vx € A; for |(AutM),| = 1 by Theorem 5.3.5. Therefore, the length of each orbit of
AutM action on A; or A; is the same |AutM|. Notice that [A;| = 2iv; and |A;| = 2j¢p,;. We
get that

|AutM| | |A;| = 2iv; and |AutM]|||A;| = 2j¢;

for any integer pairs i, j > 1. Thus
|[AutM| | 2iv;, 2jp; 5 i>1, j>1). O

Corollary 5.3.2 Let M = (2,5, &) be a map with vertex valency k and face valency I.
Then |AutM| | (2k|M|, 2[|M*|), where M* is the dual of M. Particularly, |AutO,| | 2p and
|AutO,| | 2p for standard maps O, and N,.

By Theorem 5.3.9, we can get automorphism groups AutM of map M in sometimes.

Example 5.3.2 Let M = (Z,3, &) be the map shown in Fig.5.2.2, i.e., K4 on torus with
one face length 4 and another 8. By Theorem 5.3.9, there must be |[AutM| | (4x3,8,4) = 4,
1.e., |JAutM| < 4. Defne

o = (X, ozx)(ﬁx, an)(y, OZZ)(OZJ’, Z)(BZ’ aﬁz)(aﬁz, BJ’)
(v, Bv)(av, aBv)(u, aw)(au, w)(Bu, afw)(afu, fw)
and
oy = (%, Bx)(ax, afx)(y, aw)(ay, w) By, eBw)(apy, Bw)

(v, av)(Bv, aBb)(z, au)(az, u)(Bz, afu)(apBz, fu).
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It can be verifes that o; and o, both are automorphisms of M and O'f == lg,, and

05 = lg,,. So AutM = (o, 02).
Example 5.3.3 We have construct automorphisms 14, , and 7;, 1 < i < 7 for the map
shown in Fig.5.3.1 in Example 5.3.1. Consequently, we get that

AutM = {14, 71,72, T3, T4, Ts, Tg, T7)

by Corollary 5.3.2.
Notice that

2ZiVi = 2Zi¢z’ = |<%t,ﬁ|

i>1 i>1

for amap M = (2,43, &?). Therefore, we get the following conclusion.
Corollary 5.3.3 For any map M = (Zop, P), |AutM| | |2, 4l = 4e(M).

Proof Applying Theorem 5.3.9, we know that

|AutM] | Z2ivi and |AutM] | Z2i¢,~.

i>1 i>1
Because of
2> =2 ig =1 Zugl,
i>1 i>1
we immediately get that [AutM|| |2, 4 = 4e(M). O

Now we determine automorphisms of standard maps on surfaces.

Theorem 5.3.10 Let O, = (Z,4(0,), #(0,)) be an orientable standard map with

O{ai, aa;, fay aﬁai}J g [ij{b,-, abi, fbi, afb} |,

i=1 i=1

(al’ bl’ a,ﬁal’ a,ﬁbl’ aj, bz’ a,ﬁaZ’ a,ﬁbZ’ S ap’ bp’ aﬁap’ Q,Bbp)
(a{abﬁbp’Baps a,bps a,ap9 e 9ﬁb2318a23 a,b23 aaZ’ﬁbl’ﬁab a,bl)'

%hﬂ(op)

Z(0p)

and let N, = (A, 3, &) be a non-orientable map with

p

ZapNy) = | Jas0a;, Bai, apas),

i=1
(a1,Bai, az, Pas, - - -, ay, Pay)aar, afa,, aay, - - -, afar, aay, afay).

P(N,)
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Def ne
7, = P%0,), 0<s<p-1,
p
o = | (@ aa)bipb)aBas pa)aph:, aby),
i=1
p p
0 = [ |@nopbiaa.pb). <= |(@aBa)b,opb)
i=1 i=1
and .
m=2UN,), 0<l<q-1; 9= n(ai,afg’ai)(aai, Ba,).
i=1
Then

AutO, =0, o, ¢, 7, 1 <s<p-1) and AutN, >}, 7, 1 <1 <qg-1).

Proof 1t is easily to verify that xa = ax, x8 = Bx, x2(0,) = P(0,)x if
x €, o 6 17,1 <s <p-1tandya = ay, yB = By, yP2(N,) = PN,y if
yel{d, g, 1 <1 <qg-1}. Thus AutO, > (0, 0, ¢, 75, 1 <s < p—1) and AutN, >
(¥, m, 1 <1 <qg-1). Notice that [0, 0, ¢, 75, | <s<p—=1)]=8p=|Z,s(0,)l. Ap-
plying Corollary 5.3.3, AutO, = (0, o, ¢, 75, 1 <5 < p—1)is followed. O

5.3.3 Combinatorial Model of Klein Surface. For a complex algebraic curve, a very
important problem is to determine its birational automorphisms. For curve C of genus
g > 2, Schwarz proved that Aut(C) is fnite in 1879 and then Hurwitz proved [Aut(C)| <
84(g — 1), seeing [FaK1] for details. As observed by Riemann, the groups of birational
automorphisms of complex algebraic curves are the same as the automorphism groups of
compact Riemann surfaces which can be combinatorially dealt with the approach of maps

on surfaces. Jones and Singerman proved the following result in [JoS1].

Theorem 5.3.11 If M is an orientable map of genus p, then AutM is isomorphic to a

group of conformal transformations of a Riemann surface.

Notice that the automorphism group of Klein surface possesses the same represen-
tation as that of Riemann surface by Theorem 4.5.7. This enables us to get a result likely

for Klein surfaces following.

Theorem 5.3.12 If M is a locally orientable map on a Klein surface S, then AutM

is isomorphic to a group of conformal transformations of a Klein surface, particularly,
AutM < AutS.
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Proof According to Theorem 4.5.7, there exists a NEC group I such that AutS =~
No(I)/T, where Q = AutH = PGL(2, R) being the automorphism group of the upper half
plane H. Because M is embeddable on Klein surface S, so there is a fundamental region
F, apolygon in H such that {gF|g € T'} is a tessellation of H, i.e., S is homeomorphic to
H/T'. By Constructions 4.4.1-4.4.2, we therefore know that AutM < No(I')/T, i.e., AutM

is a subgroup of conformal transformation of Klein surface S U

§5.4 REGULAR MAPS

5.4.1 Regular Map. A regular map M = (%, 4, &) is such a map that its automorphism
group AutM is transitive on Z,g, i.e., |AutM| = 4e(M). For example, the map discussed
in Example 5.3.2 is such a regular map, but that map in Example 5.3.1 is not.

If M is regular, then AutM is transitive on vertices, edges and faces of M by Corollary
5.3.1. This fact enables us to get the following result.

Theorem 5.4.1 Let M be a regular map with vertex valency k > 3 and face valency | > 3,
called a type (k, [) regular maps. Then kv(M) = lp(M) = 2&(M) and

1+ (k= 2)(5”_ -4 (M), if M is orientable;
g(M) = —2)([-2)-4
- ((k )(; : ) )y( M), if M is non — orientable.

Proof Let vy = v(M), ¢; = ¢(M)and v; = ¢, = 0if i # k, j # [ in the equalities
23 =2 iy = |2 gl = 46(M),

izl izl
we immediately get that kv(M) = [p(M) = 2&(M).
Substitute e(M) = EV(M) and ¢(M) = 7v(M) in the Euler-Poincaré genus formulae

2 + &(M) — V(M) — (M)

gM) = { 2
2 +e&e(M)—-v(M) - ¢$(M), if M is non — orientable.

, 1f M is orientable

We get that
. (k_z)(il_ 2)—4
gM) = (k=2)(I-2)—4
2+( 57

)V(M), if M is orientable;

)V(M), if M is non — orientable.
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This theorem enables us to f nd type (k, /) regular maps on orientable or non-orientable

surfaces with small genus following.

Corollary 5.4.1 4 map M is regular of g(M) = 0 if and only if G(M) = C;, | > 1 or the
1-skeleton of the fve Platonic solids.

Proof If k = 2 then v(M) = &(M) = [ and ¢(M) = 2. Whence, M is a map underlying
a circuit C; on the sphere. Indeed, such a map M is regular by the fact AutM = {p, @),
where p is the rotation about the center of C; through angles 27// from a chosen vertex
uy € V(C)) with p' = Lo,

Let £ > 3. Then by Theorem 5.4.1, we get that

1+((k—2)(1-2)-4

4] )V(M) =0, ie, (k=2)(-2) < 4

by Theorem 5.4.1, i.e., (k1) = (3,3), (3,4), (3,5), (4,3), (5,3), which are just the Pla-

tonic solids shown in Fig.5.4.1 following. O
(3.3) (3.4) 4.3)
tetrahedron hexahedron octahedron
(3.5) (5,3)
dodecahedron 1cosahedron
Fig.5.4.1

Corollary 5.4.2 There are inf nite regular maps M of torus T?.

Proof In this case, we get (k — 2)(I — 2) = 4 by Theorem 5.4.1. Whence, (k,[) =
(3,6), (4,4), (6,3). Indeed, there exist regular maps on torus for such integer pairs. For
regular map on torus with (3, 6) or (4,4), see (a) or (b) in Fig.5.4.2. It should be noted
that the regular map on torus with (6, 3) is just the dual that of (3, 6) and we can construct

such regular maps of order 6s or 4s for integer s > 1. So there are inf nite many such
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regular maps on torus. O

Fig.5.4.2

Corollary 5.4.3 There are f nite regular maps on projective plane P* with vertex valency>

3 and face valency> 3.

Proof Similarly, we know that (k — 2)(/ — 2) < 4 by Theorem 5.4.1, i.e., the possible
types of M are (3, 3), (3,4), (4,3), (5,3), (5,3) and it can verif ed easily that there are no

(3, 3) regular maps on P?. Calculation shows that

(k, 1) | v(M) | (M) | G(M) Existing? | M Existing?
(3,3) 2 3 Yes No
(3,4) 4 6 Yes Yes
4,3) 3 6 Yes Yes
3,5 | 10 15 Yes Yes
(5,3) 6 15 Yes Yes

Therefore, regular maps on projective plane P? with vertex valency> 3 and face valency>

3 is f'nite. The regular maps of types ((3,5)) and (3, 4) are shown in Fig.5.4.3. 0
L 2
S o
(a) (b)

Fig.5.4.3
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The following result approves the existence of regular maps on every orientable sur-

face.

Theorem 5.4.2 For any integer p > 0, there are regular maps on every orientable surface
of genus p.

Proof Applying Theorem 5.3.10, the standard map O, is regular on the orientable
surface of genus p. Combining the result in Corollary 5.4.1, we get the conclusion.  [J

Notice that Theorem 4.5.2 has claimed that the automorphism group of a Klein sur-
face is fnite. In fact, by Theorem 5.4.1, we can also determine the upper bound of AutM

for regular maps M on a surface of genus g > 2.
Theorem 5.4.3 Let M be a regular map on a surface S of genus g > 2 with vertex valency
k > 3 and face valency | > 3. Then

168(g— 1), if S is orientable,

|AutM| <
84(g—1), if S isnon— orientable.
and with the equality holds if and only if (k, 1) = (3,7) or (7, 3).

Proof By defnition, a map M = (Z,4, &) on S is regular if and only if |AutM| =
. 2 .
| Za gl = 4e(M). Substitute v(M) = ]—CS(M) in Theorem 5.4.1, we get that

8kl ) e
(g—1), if Sis orientable,
AutM] = (<k ~(-2)-4
4kl o .
k—2(-2)—-4 (g—1), if Sisnon — orientable.
| Kl | o
Clearly, the maximum value of h—i-2)-4 is 21 occurring precisely at (k, /) = (3,7)

or (7,3). Therefore,

168(g—1), if S is orientable,
|AutM| <
84(g—1), if S isnon— orientable.
and with the equality holds if and only if (£, /) = (3,7) or (7, 3). 0

5.4.2 Map NEC-Group. We have known that ¥, = (a, 8, &) acts transitively on 2,4,
ie, x¥ = 2,5. Furthermore, if M is regular, then its vertex valency and face valency
both are constant, say n and m. Usually, such a regular map M is called with type (n, m).

Then we get the presentation of ¥, for M following

¥ =(a.p P =p =P =(Pap)" =14, ).
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We regard relations of the form &* = 14, or (Zaf)™ = 14,, as vacuous. The free
group y generated by «, 8, <, i.e., Y = (a,B, &) is called the universal map of M, a
tessellation of planar Klein surface H. It should be note that ¥, is isomorphic to the NEC
group generated by facial boundaries of M. Whence, M ~ H/x" = xrf'/x‘*"’ ~ ‘?’/‘I’ 7,

where x is a chosen point in H. Applying Theorem 4.5.9, we get the following result.

Theorem 5.4.4 Let M = (Z,p) be a regular map on a Klein surface S. Then AutM =~
Ng(¥,)/Y,, where Ng(¥) is the normalizer of ¥ ; in ¥,

This result will be applied for constructing regular maps on surfaces in Section 5.5.
5.4.3 Cayley Map. Let (I'; o) be a fnite group generated by S. A Cayley map of I" to S
with 1r ¢ S and S™' = §, denoted by CayM(I'" : S,7) is a map (2,45 : S), 2 : S)),
where

ZopT S, 7) =1 gn agnPerafgr| g€, heSandg ' oheS },

P :8,r)= l—[ (&h> &rims &y =+ Nagh, A1y AGr2hy * )
gel', heS

with rag;, = atg,, 162, = prg, for 7 € ', where » : § — S is a cyclic permutation.

Clearly, the underlying graph of a Cayley map Cay™(I" : S, r) is Cay(I : §).

Example 5.4.1 Let (I'; o) be the Klein group I' = {1,@,8,a8}, S = {a,B,aB8} and r =
(@, B, aB). Then the Cayley map Cay™(I" : S, r) is K4 on the plane shown in Fig.5.4.4.

(01

Fig.5.4.4

Theorem 5.4.5 Any Cayley map CayM(I' : S,r) is vertex-transitive. In fact, there is a
regular subgroup of AutCayM(I" : S, r) isomorphic toT.

Proof Consider the action of left multiplication L on vertices of CayM(T : S, 7),
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ie, Ly, : h — gohfor g,h € I'. We have known it is transitive on vertices of Cayley
graph Cay(I" : S') by Theorem 3.2.1. It only remains to show that such a permutation
L, is a map automorphism of CayM(T" : S,r). In fact, for g, € 2,4 : S,r) we know
Lyagy, = oag, = aog, = aL,g, i.e., L,a = aL, by def nition. Similarly, L, = BL,.

Notice that if g' o2 € S, then (cog) ' o(coh)=gloheS,ie., (Lo(Q),u €
Zap 2 S, r). Calculation shows that

L, 2T :8,r)L;!

-1
=Lo 1_[ (gh’ gr(h)’grz(h)’ o ')(agh’ agr’l(h),agrﬂ(h)’ e ')Lo-

gel, g loheS

= (Lo (@) 1,ty> Lo (@) 1otrinyy» = WAL Q)1 hy> AL AL 1 -1 h))s " )
gel, g~ loheS

= (O&ahs Trr(h)> T&er2(hys * * NACT ey XT L) 11 (1y> AT &2y * * *)
gel, g~loheS

= (‘St’ Sr(t) Srz(t)? o ')(CYS;, asr’l(t),asr,z(t)? o ) = ‘@(F : S)’

seT, s7loteS
i.e., L, is an automorphism of Cay™(I' : S, 7). We have known that Ly ~ I' by Theorem
1.2.14. OJ
Although every Cayley map is vertex-transitive, there are non-regular Cayley maps
on surfaces. For example, let (I'; o) be an Abelian group withI" = {11, a, b, ¢}, S = {a, b, c},
a?=b=c*=1r,aob=boa=c,aoc=coa=b,boc=cob=aandr = (a,b,c).
Then the Cayley map Cay™(I" : S,7) is K, on the projective plane shown in Fig.5.4.5,

which is not regular.

Fig.5.4.5

Now we f'nd regular maps in Cayley maps of f nite groups. First, we need to prove

the following result.
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Theorem 5.4.6 Let Cay™(I" : S,7) be a Cayley map and let ¢ be an automorphism of
group (T; o) such that g|s = ' for an integer [, 1 < [ <|S|, then ¢ € (AutCay™(T : S, r));,.

Proof Notice that ¢ is an automorphism of group (I'; o). There must be ¢(1r) = 1r.
Let g, € Zap(l : S,r). Theng™' o h € S. Because of (g7 o h) = ¢7'(g) o s(h) € S, we
know that (s(g), s(h)) € E(Cay™(T : S,r)) and ¢(g)cn) € Zap( : S, 7). We only need to
show that ¢ € AutCayM(T" : S, r). By def nition, we know that ¢ = ¢ and g8 = Bg. We
verify ¢ 2 : S,r)¢™! = (I : S, r). Calculation shows that

cP(T: S, )"
=< l_l (8> &rthrg oy N> A1y, 2" IS -
gerl, g lohes
= (S(Q)sthy> S(&)stryys * + NaS(g(iy> AS(L)sr-1(hy)> * * *)
gell, g7 loheS
= (S(Q)sry> S(@)risryys = * NS(Q)gry> @S (g)r‘l(g(h))’ )
gel, g~ loheS
= (St $rt0500 NS @S, 20 ) = P S)T 8.7,
sel, g~loheS

Therefore g is an automorphism of map CayM(I : S, r), i.e., ¢ € (AutCayM(I" : S,7)),.. O

The following result enables one to get regular maps in Cayley maps.

Theorem 5.4.7 Let CayM(T' : S,r) be a Cayley map with v € Autl such that t|s = r.

Then CayM(T : S, r) is an orientable regular map.

Proof According to Theorem 5.4.6, we know that v € (AutM);.. By Theorem
5.3.7, [(AutCay™M(T : S, r)),,| divides |S|. But 7|s = r, a |S|-cycle, so that |(AutCay™(T :
S, M| = 1S|. Clearly, (AutCay™(T : S, r));, is generated by 7. Applying Theorem 5.4.5,
(AutCayM(T" : S, 7)) is transitive on I’ = V(CayM(T : S,7)). Whence,
| ZapT 2 S,7)l
— 5
Therefore, AutCayM(T" : S, r) X (@) is transitive on 2 4T : S, 7). 0

|AutCayM(I" : S, )| = [T]|(AutCay™ (I : S, 7))1.| = [T|IS] =

5.4.4 Complete Map. A complete map M is such a map underlying a complete graph
K, for an integer n > 3. We fnd regular maps in complete maps in this subsection. The

following result is an immediately conclusion of Theorem 5.3.5.

Theorem 5.4.8 There are no automorphisms o in a complete map M = (2,5, &) fxing

more than one vertex unless o = 14,,,.
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Proof 1If o(u) = v, o(v) = v for two vertices u,v € V(M), let uv = {x, ax, Bx, afx},
then there must be o-(x) = x because of uv € V(M). Applying Theorem 5.3.5, we get the

conclusion. O

A Frobenius group I' is def ned to be a transitive group action on a set £ such that
only 1 has more than one fxed points in Q. By Theorem 5.4.8, thus the automorphism
group AutM of a complete vertex-transitive map M is necessarily Frobenius. For f nding

complete regular map, we need a characterization due to Frobenius in 1902 following.

Theorem 5.4.9 Let I be a Frobenius group action on Q with N* the set of fxed-free
elements of I and N = N* U {1r}. Then there are must be

(1) INl =€
(2) N is a regular normal subgroup of T..

Theorem 5.4.10 Let I" be a sharply 2-transitive group action on Q. Then |Q| is a prime

power.

A complete proof of Theorems 5.4.9 and 5.4.10 can be found in [Rob1] by applying
the character theory on linear representations of groups. But if the condition that I’ is
Abelian for a point x € Q is added, Theorem 5.4.9 can be proved without characters of
groups. See [BiW1] for details.

Theorem 5.4.11 Let M be a complete map. Then AutM acts transitively on the vertices
of M if and only if M is a Cayley map.

Proof The sufficiency is implied in Theorem 5.4.5. For the necessity, applying The-
orem 5.4.8 we know that AutM is a Frobenius group. Now by Theorem 5.3.7, (AutM),
is isomorphic to a subgroup generated by C, = C, - «C;'a™", i.e., a product of conjugate
pair of cycles in &?. Whence, we get a regular normal subgroup N of AutM by Theorem
5.49. LetT = Z, and defne a bijection o : V(Cay™(Z,,Z, \ {1},7)) — N by o(i) = a,
where a; is the unique element transforming point 0 to i in N. Calculation shows that
r: N\ {l} — N\ {1} is given by r(a;) = az@, z\1),)(i) for i # 0. Thus we get a Cay-
ley map Cay™(Z,,Z, \ {1}, 7). It can be verif ed that the bijection ¢ is an automorphism
between maps M and Cay™(Z,, Z, \ {1}, 7). O

Now we summarize all properties of AutM in the following obtained in previous on

regular map M underlying K,,:
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(1) AutM is a Frobenius group of order n(n — 1);

(2) AutM has a regular normal subgroup isomorphic to Z for a prime p and an
integerm > 1,1.e.,n = p”;

(3) AutM is transitive on vertices, edges and faces of M, and regular on 2, g;

(4) For Vv e V(M), (AutM), ~ Z,_,.

We prove the main result on complete regular maps of this subsection following.

Theorem 5.4.12 A complete map M underlying K, is regular on an orientable surface if

and only if n is a prime power.

Proof 1f M is regular on an orientable surface, then |[AutM| = 4&(K,) = 2n(n — 1).
Whence, |AutM/(a)| = n(n - 1), i.e., AutM/ (@) acts on a2, is Frobenius. Applying
Theorem 5.4.10, we know that # is a prime power.

Conversely, if n = p™, let I' = Z7, i.e., the additive group in GF(n), where p is
a prime and # a positive integer and let # € I generate this multiplicative group. Take
I =T — {0}, where 0 is the identity of Z)' and r : I — I'" determined by r(x) = ¢x for
x € I'". By def nition, we know that 7 is cyclic permutation on A*. We extend r from I'* to
I" by def ning 7(0) = 0. Notice that #(x+y) = rx+ry for x,y € I'. Such an extended r is an
automorphism of group I'. Applying Theorem 5.4.7, we know that Cay”(T" : T, r) ~ M

is a regular map on orientable surface. 0

§5.5 CONSTRUCTING REGULAR MAPS BY GROUPS

5.5.1 Regular Tessellation. Let R? be a Euclidean plane and p, ¢ > 3 be integers. We
know that the angle of a regular p-gon is (1 — 2/p)r. If g such p-gons f't together around

a common point # € R?, then the angle of p-gons must be 27r/g. Thus

2 2
(1 - —)n = e, (p=2)g-2)=4
q
We so get three planar regular tessellations of type (p, ¢) on a Euclidean plane following:
4,4), (3,6), (6,3).

For example, a tessellation of type (4,4) on R? is shown in Fig.5.5.1.
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Fig.5.5.1

Now let S? be a sphere. Consider regular p-gons on S2. The angle of a spherical p-
gon is greater than (1 — 2/p)r, and gradually increases this value to r if the circum-radius

increases from 0 to 7/2. Consequently, if

(r—2)¢g-2) <4,

we can adjust the size of the polygon so that the angle is exactly 2n/g, i.e., g such p-gons
will 't together around a common point v € S2. This fact enables one to get spherical

tessellations of type (p, q) following:

2.9), (¢,2), 3,3), 3,4), (4.3), 3,5), (5,3).

The type of (2, g) is formed by ¢ lues joining the two antipodal points and the type (¢, 2)
is formed by two g-gons, each covering a hemisphere. All of these rest types of spherical
tessellations are the blown up of these f ve Platonic solids shown in Fig.5.4.1.

Finally, let H? be a hyperbolic plane. Consider the regular p-gons on H>. Then the
angle of such a p-gon is less than (1 — 2/p)r, and gradually decreases this value to zero if

the circum-radius increases from 0 to co. Now if

(r—2)q-2)>4,

we can adjust the size of the polygon so that the angle is exactly 27/q. Thus ¢ such
p-gons will 't together around a common point w € H?. This enables one to construct
a hyperbolic tessellation of type (p, q), which is an inf nite collection of regular p-gons
f1ling the hyperbolic plane H-.

Consider a tessellation of type (p, q) drawn in thick lines and pick a point in the
interior of each face and call it the icenter of the face. In each face, join the center by

dashed and thin line segments with every point covered by g-gons and the midpoint of
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every edge, respectively. This structure of tessellation is called the barycentric subdivision
of tessellation. Each of the triangle formed by a thick, a thin and a dashed sides is called
a f'ag, such as those shown in Fig.5.5.2. Denote all fags of a tessellation by ..

Fig.5.5.2

A tessellation of type (p, g) is symmetrical by ref ection in certain lines, which may
be a successive ref ections of three types: X : g » Xg, YV : g » Ygand Z : g — Zg,
where for each fag g, the fag Wg is such the unique f ag different from g that shares with
g the thin, the thick or the dashed sides depending on W = X, Y or Z. Obviously,

X =Y =7"=XYP =2Z2Y =ZX)? =1 and XY =YX,

Furthermore, the group (X, Y, Z) is transitive permutation group on .#.

A tessellation of type (p, ¢) on surface S is naturally a map M = (Z,4, &) on S
with 2, 5 = #. The behaviors of X, Y and YZ are more likely to those of 8, and & on
M. But essentially, X # 8, Y # @ and YZ # & because X, Y and YZ act on a given g, not
onall gin .#. Such X, Y or YZ can be only seen as the localization of 8, @ or & on a

quadricell g of map M.
5.5.2 Regular Map on Finite Group. Let (I'; o) be a fnite group with presentation
F=(xyz1¥ =y =2 =@l =(oz) =(ox)=--=1Ir),

where we assume that all exponents are true orders of the elements and dots indicate a pos-
sible presence of other relations in this subsection. Then a regular map M = M(T’; x,y, z)

of type (p, g) on group (I'; o) is constructed as follows.
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Construction 5.5.1 Let g € I'. Consider a topological triangle, i.e., a fag labeled by g
with its thin, thick and dashed sides labeled by generators x, y and z, respectively. Such

as those shown in Fig.5.5.3.

g
y

Fig.5.5.3

For simplicity, we will identify such f ags with their group element labels. Then for each
g eTl'and w € {x,y,z}, we identify the sides labeled w in the fag g and g o w in such a
way that points on the thick, thin or dashed sides meet are identif ed as well. For example,

such an identif cation for g = x, y or z is shown in Fig.5.5.4.

Fig.5.5.4

This way we get a connected surface S without boundary by Theorem 4.2.2. The cellular
decomposition of S induced by the union of all thick segments forms a regular map M =

M(T; x,y,z) of type (p,q). Such thick segments of S consist of the underlying graph
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G(M) with vertices, edges and faces identif ed with the left cosets of subgroups generated
by (x, 1), (v,z) and (z, x) in the group (I; o), respectively. We therefore get the following

result by this construction.

Theorem 5.5.1 Let (I'; o) be a f nite group with a presentation
P=(x 2@ =p=2=@op=(orf =Gox)fi==1It).

Then there always exists a regular map M(I; x, y, z) of type (p, q) on (I'; o).

Consider the actions of left and right multiplication of I" on f ags of M. By Construc-
tion 5.5.1, we have known that the right multiplication by generators x, y and z on a fag
g € I gives the permutations X, Y and Z defned in Fig.5.5.2. For the left multiplication

of I' on f ags of M, we have an important result following.

Theorem 5.5.2 Let M = M(T; x,y,z) be a regular map of type (p, q) on a fnite group
(T; 0), wherel = <x, yozlxt=yP=22=(x0y) ) =(yozl =(zox){=---=Ip > Then

AutM = Ly =~ (I;0).

Proof Notice that if two fags F and F” are related by a homeomorphism % on §,
e, h: F — F'thenh : Fog — F’ og. Therefore, the left multiplication preserves
the cell structure of M on S and induces an automorphism of M. Whence, Lr < AutM.
Now Z, (M) = #(M) = I'. By Corollary 5.3.3, there is |AutM| < |Z, (M) = I
Consequently, there must be AutM = Lr. By Theorem 1.2.15, Ly ~ (I';0). This
completes the proof. 0

There is a simple criterion for distinguishing isomorphic maps M(I'y; x1, y1,2;) and

M(rz, X2,32, 22) fOHOWng.

Theorem 5.5.3 Two regular maps M(I'y; x1, 1, z1) and M(I'y; X3, y2, 23) are isomorphic if
and only if there is a group isomorphism ¢ : I'y — 'y such that ¢(x1) = x2, ¢(y1) = »>
and ¢(z) = z;.

Proof If there is a group isomorphism ¢ : I’y — I'; such that ¢(x) = x5, ¢(y1) =
v, and ¢(z;) = z, we extend this isomorphism ¢ from fags .#(M(; x1,y1,21)) to
F (M35 x2,¥2,22)) by

Puitug - us) = Pu)p(us) - - - Pus)
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for u; € {x1,y1,21}, € € {+,—} and integers s > 1. Then ¢ is an isomorphism between
M(Ty; x1,y1,21) and M(I5; x5, v, z) because it preserves the incidence of fags.
Conversely, if ¢ is an isomorphism from M(I'y; x1,y1,21) to M(I; x2,2,2,), then
it preserves the incidence of vertices, edges and faces. Whence it induces an isomor-
phism from fags #(M(['y; x1,y1,21)) to F(M('y; x2,)2,22)), 1.€., a group isomorphism
¢ : I't — I',, which preserve the incidence of vertices, edges and faces if and only if
d(x1) = x2, ¢(v1) =y, and ¢(z;) = z, by Construction 5.5.1. O
Similarly, it can be shown that a regular map M(T, x’,)’,z’) is a dual of M(T, x, y, z)
if and only if I” = I"and X’ = y, )/ = x. By this way, regular maps of small genus are

included in the next result.

Theorem 5.5.4 Let M = M(T', x,y, z) be a regular map on a f nite group .

(A) If M is on the sphere S?, then

() T'= <xy,z|x =y? =22 = (xy)* = (y2)" = (2x)* = 1r> ~ D, X Z, and M is an
embedded n-dipoles with dual C, on S*;

)T = <x yz|x* =y =22 = (xp)* = (v2)’ = (zx)’ = 11 > ~ S 4 and M is the tetra-
hedron, which is self-dual on S?;

3) T=(xyzlx®=)"=2= () =02 = (2x) = Ir ) = 4 X Zy and M is the
octahedron with dual cube on S?;

@) T=(xpyzl=)"=22= () =(2)° = (x) = Ir ) = 45 X Zy and M is the
icosahedron with dual dodecahedron on S*.

(B) If M is on the projective plane P?, let r = yz and s = zx, then

() T=(xyz|@=)" =22 =) =2 = (@)’ =z5¢" = Iy } = Dy, and M is
the embedded bouquet B,, with dual C,, on P?;

@) T=(xyzl? =) =2 =P =02 = () =zs"s=1r ) = Syand M
is the embedded K( ) with dual K4 on P?, where K( ) is the graph K; with double edges;

3 I' = <xy,z|x =y? =22 = (xy)* = (2)’ = (2x)’ = zr?sr sr2s = 11-> ~ As
and M is the embedded K¢ on P>.

(C) If M is on the torus T?, let b, c be integers, then T = < rs|rt=st=(rs)? =
(rs™He(rts) = Iy > or <r, s|r8 =8 =(rs)* = (rs7')(s'?)° = Iy > if be(b—c¢) # 0
and T = <r,s | =5 = (rs ) (r s = 1p > or < rs | =8 = (rsT'r)P (s = 1p >
if be(b—c) = 0.

A complete proof of Theorem 5.5.4 can be found in the reference [CoM1]. With the
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help of parallel program, orientable regular maps of genus 2 to 15, and non-orientable
regular maps of genus 4 to 30 are determined in [CoD1]. Particularly, the regular maps

on a double-torus or a non-orientable surface of genus 4 are known in the following.

Theorem 5.5.5 M = M(T, x,y,z) be a regular map on a fnite group I, r = yz, s = zx

andt = xr.

(A) If M is orientable of genus 2, then T = <r, s|rP=s8=@s?)? =1 > or

<r,s |t =50 =(rs™)? = 11 > 0r< rslrt=st= s = rsdrlsT!

10

= 1r>,0r<r,s|r5
=510 = %3 = 1r>, 0r<r,s|r6:36:r2s‘4: 1r>,OV<V,S|7'8:S =1r

8 >
(B) If M is non-orientable of genus 4, then T’ = < ros,t|rt =50 =12 =ts sl

=1r), or < rost|rt =50 =12 =(rs?)? = s*rsT'r?t = 1p >

=rs

We have known that there are regular maps on every orientable surface by Theorem
5.4.2, and there are no regular maps M on non-orientable surfaces of genus 2, 3, 18, 24,
27, 39 and 48 in literature. Whether or not there are inf nite non-orientable surfaces
which do not support regular maps is a problem for a long time. However, a general result
appeared in 2004 ([DNS1]), which completely classif es regular maps on non-orientable
surface of genus p+2 for an odd prime p # 3,7 and 13. For presenting this general result,
let v(p) be the number of pairs of coprime integers (/, /) such that j > / > 3, both j and /
are oddand (j — 1)(/— 1) = p + 1 for a prime p.

Theorem 5.5.6 Let p be an odd prime, p # 3, 7, 13 and let N ., be a non-orientable
surface of genus p + 2. Then

(1) If p = 1(mod 12), then there are no regular maps on N,.»;

(2) If p = 5(mod 12), then, up to isomorphism and duality, there is exactly one

regular map on N .,

(3) If p = —5(mod 12), then, up to isomorphism and duality, there are v(p) regular

maps on N,

(4) If p = —1(mod 12), then, up to isomorphism and duality, N,,» supports exactly
v(p) + 1 regular maps.

5.5.3 Regular Map on Finite Multigroup. Let Py, P,,---, P, be a family of topological
polygons with even sides for an integer » > 1. Denoted by 0P; the boundary of P;,
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1 <i < n. Defne a projectionz : | J P; = (IJ P;)/ ~ by
i=1 i=1

m(x)) #n(xy) # - #n(x,) ifx; e P,\0P;,1 <i<n,
ay1) =x()=---=n(y,) ify;€dP,1<i<n,

i.e.,  is an identif cation on boundaries of Py, P,,---, P,. Such an identif cation space

(U Py)/ ~ is called an m-multipolygon by n polygons and denoted by P. The cross section
i=1

of P is shown in Fig.5.5.5(a). Sometimes, a multipolygon maybe homeomorphic to a
surface. For example, the sphere S? is in fact a topological multipolygon of 2 polygons
shown in Fig.4.1.2.

It should be noted that the boundary of an m-multipolgon P is the same as any of
its m-polygon. So we can also get the polygonal presentation of an m-multipolygon such
as we have done in Section 4.2. Similarly, an orientable or non-orientable multisurface
S is defned on P by identifying side pairs of P. Certainly, S = QPi/ ~= CJIS i» where

S; = P;/ ~ is a surface for integers 1 < i < n. The inclusion mapping 7; : S — 5,
determined by 7;(x) = x for x € S, is called the natural projection of SonS.

By def nition, (9?/ ~ 1s a closed curve on 5, called the base line, denoted by L4 and
a multisurface S possesses the hierarchical structure, i.e., S \ L 1s disconnected union of

P;\ 0P;, 1 <i < n. Such as those shown in Fig.5.5.5(b) for longitudinal and cross section

boundary Ly Ly
) (b)

Fig.5.5.5

of a multitorus.

boundary
(a

Similarly considering maps on surface S, we can fnd such a decomposition of S
with each components homeomorphic to a open disk of dimensional 2, i.e., a map M on

S.Soa problem for maps on multisurfaces is presented in the following.

n

Problem 5.5.1 Determine maps MonS = U S; such that ﬂi(M) is a transitive map,
i=1

furthermore a regular map on S; for any integer i, 1 <i < n.

If S is orientable, the answer is affirmed by Theorem 5.4.2 by applying to standard
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map O, on S; for an integer 1 <7 < n. We construct more such maps on f nite multigroups
following.
Cayley Map on Multigroup. Let (g7; 5) be a multigroup with G = U, O =

i=1
{o;, 1 < i < n} such that (¢;0;) is a fnite group generated by 4; = Al.‘l, ly ¢ A;

for integers 1 < i < n. Furthermore, we assume each 4; = A4 is minimal for integers
1 <i < n. Whence 4 is an independent vertex set in Cayley graphs Cay(¥; : A). Such 4
is always existed if we choose the group (¥;; o;) = (¥¢; o) for integers 1 < i < n.

Let » : § — S be a cyclic permutation on 4. For an integer i, 1 < i < n, we
construct a Cayley map Cay™(%; : 4, r). Not loss of generality, assume that the genus of
Cay™(¥, : A,r)is g for 1 <[ < s. Particularly, s = n if (¥;0,) = (¢;0) for integers
1 <i < n. Now let S be a multisurface consisting of s surfaces S, S5, -, S of genus g.

We place each element of 4 on the base line L4 of S. Then the map

Cay"(& : A,r) = U Cay™(¥, : 4,7)

J=1

is such a map that ;, : Cay (g : A,r) = CayM (¢, : A,r). We therefore get the following

result.

Theorem 5.5.7 For any integers g > 0, n > 1, if there is a Cayley map Cay™(T" : A4,r)

of genus g, then there is a map M on multisurface S = U S consisting of n surfaces of
i=1
genus g such that m(M) is a Cayley map, i.e., a transitive map, particularly, these is a

map M on S such that 7r,~(]\~4) = Cay™(I" : 4, r) for integers 1 <i < n.

Regular Map on Triangle Multigroup. Let r= U(T;; o;) be a multigroup, where
i=1

(T';; 0;) is a fnite triangle group with I'; = <x,-, yozix? = y* =22 = (x; 0,3 = (i 0z =
(zj o; x;)? = -+ = Ir) for integers 1 < i < n. Then there is a regular map M(L;; x;,, z;)
correspondent to (I';; o;) by Construction 5.5.1.

Not loss of generality, assume that the genus of M(I';; x;,,y,z;) is p for integers
1 < j < k. Particularly, s = n if M(T';; x;,v,z;) = M(T; x, y, z) for integers 1 < i < n. Now
let S be a multisurface consisting of s surfaces S, S5, - -, S, of genus p. Choose a fag g
in M(T';;; x;;, y, ;) with thick sides of g and g o;; x identifying with a segment PQ on the
base line L of S for integers 1 < j < s. Then the map M on S defned by
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M= M(rij;xij’y’zij)

J=

—_

is such a map that r;, : M — M (I'i;; xi;, ¥, z;;), a regular map on §;,. This fact enables one

to get the following result.

Theorem 5.5.8 For any integers g > 0, n > 1 and p,q > 3, if there is a regular map

M(T; x,v,z) of genus g correspondent to a triangle group T’ = ( x,y,z | x> =y> =2° =
X,y genus g P gle group y y

(x0p)P? =(@yoz) =(zox) = lr>, then there is a map M on multisurface S = U S
i=1

consisting of n surfaces of genus g such that (M) is a regular map M(LU;; x;, v, z;), par-
ticularly, there is a map M on'S such that 7rl~(]\71) = M(T; x,y,z) for integers 1 <i < n.

§5.6 REMARKS

5.6.1 A topological map M is essentially a decomposition of a surface S with com-
ponents homeomorphic to 2-disk, which can be also characterized by the embedding of
graph G[M] on §. Many mathematicians had contributed to the foundation of map theory,
such as those of Tutte in [Tutl], Jones and Singerman in [JoS1], Vince in [Vinl]-[Vn2]
and Bryant and Singerman in [BrS1] characterizing a map by qurdricells or fags. They
are essentially equivalent. There are many excellent books on these topics today. For
example, [GrT1] and [Whil] on embedding and topological maps, [MoT1] on the topo-
logical behavior of embeddings and [Liu2]-[Liu4] on algebraic maps with enumerative

theory.

5.6.2 Although it is difficult to determine the automorphism group of a graph in general,
it is easy to f nd the automorphism group of a map. By Theorem 5.3.6, the automorphism
group of map M = (Z,p, &) is the centralizer of the group (e, S, &) in the symmetric
group S 2, ,. In fact, there is an efficient algorithm for getting an automorphism group
of map with complexity not bigger than O(g*(M)). See [Liul], [Liu3]-[liu4] for details.
Besides, a few mathematicians also characterized automorphism group of map by that of
its underlying graph. This enables one to know that the automorphism group of map is an
extended action subgroup of the semi-arc automorphism group of its underlying graph.
See also [Mao2] and [MLW 1] for details.
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5.6.3 The research of regular maps, beginning for searching stellated polyhedra of sym-
metrical beauty, is more early than that of general map, which appeared f rstly in the work
of Kepler in 1619. The well-known such polyhedra are the f ve Platonic polyhedra. There
are two equivalent def nitions for regular map by let the automorphism group of map M
transitive on its quadricells or fags. Both of them makes the largest possible on auto-
morphisms of a map, i.e., transitive and fxed-free. This enables one knowing that the
automorphism group of a map is transitive on its vertices, edges and faces, and also its
upper bound of regular maps of genus> 2. For many years, one construct regular maps
by that of symmetric graphs, such as those of Cayley graphs, complete graphs, cubic
graph and Paley graph on surfaces. The materials in references [Bigl]-[Big2], [BiW1]
and [JaJ1] are typical such examples.

Such as those discussions in the well-know book [CoM1] on discrete group with
geometry. A more efficient way for constructing regular map is by that of the triangle
group I’ = < X,z X2 =y =22 = (xp)? = (y2)! = (zx)! = lr>. In fact, by the barycentric
subdivision of map on surface, a regular map M is unique correspondent to a triangle
group I and vice vera. This correspondence turns the question of f nding regular maps to
that of classifying or constructing such triangle groups and enables one to classify regular
maps of small genus. For example, the classif cation of regular maps on N, for an odd
prime p in [DNS1] is by this way, and the classif cation of regular maps for orientable
genus from 2 to 15, non-orientable from 4 to 30 in [CoD1] is also by this way with the
help of parallel program.

5.6.4 A multisurface S is introduced for characterizing hierarchical structures of topo-
logical space. Besides this structure, its base line L4 is common and the same as that of
standard surface O, or N,. We have shown that there is a map M on S such that its projec-
tion on any surface of Sisa regular map by applying Cayley maps on f nite groups, and
by regular maps on fnite triangle group. Besides for regular map, we can also consider
embedding question on multisurface S. Since all genus of surface in a multisurface S is
the same, we def ne the genus g(g) of S to be the genus of its surface.

Let G be a connected graph. Defne its orientable or non-orientable genus Y9(G),

¥Y(G) on multisurface S consisting of m surfaces S by
Y9(G) = min{ g(§ )| G is 2 — cell embeddable on orinetable multisurface S,

YY(G) = min{ g(g) | G is 2 — cell embeddable on orinetable multisurface S }.
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Then we are easily knowing that Y?(G) = ¥(G) and ¥)'(G) = ¥(G) by defnition. The

problems for embedded graphs following are particularly interesting for researchers.

Problem 5.6.1 Let n,m > 1 be integers. Determine y%(G) and y"(G) for a connected
graph G, particularly, the complete graph K, and the complete bipartite graph K,, .

Problem 5.6.2 Let G be a connected graph. Characterize the embedding behavior of G
on multisurface S, particularly, those embeddings whose every facial walk is a circuit,

i.e, a strong embedding of G on S.

The enumeration of non-isomorphic objects is an important problem in combina-
torics, particular for maps on surface. See [Liu2] and [Liu4] for details. Similar problems

for multisurface are as follows.

Problem 5.6.3 Let S bea multisurface. Enumerate embeddings or maps on S by param-

eters, such as those of order, size, valency of rooted vertex or rooted face, - - -.
Problem 5.6.4 Enumerate embeddings on multisurfaces for a connected graph G.

For a connected graph G, its orientable, non-orientable genus polynomial g, [G](x),
2,[G](x) is defned to be

gnlG1(0) = )" G and Z,[GI(x) = ) (G,
>0 i>0
where g%/(G), gV (G) are the numbers of G on orientable or non-orientable multisurface

S consisting of m surfaces of genus i.

Problem 5.6.5 Let m > 1 be an integer. Determine g,,[G1(x) and g,,[ G](x) for a connected
graph G, particularly, for the complete or complete bipartite graph, the cube, the ladder,
the bouquet, - - -.



CHAPTER 6.

Lifting Map Groups

The voltage assignment technique on graphs or maps is in fact a construction
of regular coverings of graphs or maps, i.e., covering spaces in lower dimen-
sional cases. For such covering spaces, an interesting problems is that f nding
conditions on the assignment so that an automorphism of graph or map is also
an automorphism of the lifted graph or map, and then apply this technique
to f nding regular maps or solving problems on Klein surfaces. For these ob-
jectives, we introduce topological covering spaces, covering mappings frst,
and then voltage graphs and maps in Section 6.1. The lifting map group is
discussed in the following section. These conditions such as those of locally
invariant, 4 ;-uniform and 4 ,-compatible, and furthermore, a condition for a
f nite group to be that of a map by voltage assignment can be found in Section
6.2, which enables one fnding a formulae related the Euler-Poincaré charac-
teristic with parameters on maps or its quotient maps. These formulae enables
us to discussing the minimum or maximum order of automorphisms of a map,
i.e., conformal transformations realizable by maps M on Riemann or Klein
surfaces in Section 6.5. Section 6.4 presents a combinatorial generalization of
the famous Hurwitz theorem on orientation-preserving automorphism groups
of Riemann surfaces, which enables us to get the upper or lower bounds of
automorphism groups of Klein surfaces. All these discussions support a con-
jecture in forewords of Chapter 5 in [Mao2], i.e., CC conjecture discussed in

the last chapter of this book.



212 Chap.6 Lifting Map Groups

§6.1 VOLTAGE MAPS

6.1.1 Covering Space. Let S be a topological space. A covering space S of consisting
of'a space S with a continuous mapping p : S — S such that any point x € S possesses an
arcwise connected neighborhood Uy, and any arcwise connected component of p~'(U,)
is mapped topologically onto U, by p. Such an opened neighborhoods U, is called an
elementary neighborhood and p a projection from StoS.

Def nition 6.1.1 Let S, T be topological spaces, xo € S,yo € T and [ : (T,y) — (S, x0)
a continuous mapping. If (E, p) is a covering space of S, Xy € S, xo = p(xo) and there
exists a mapping f' : (T,yo) — (S,Xo) such that f = flo p, then f'is a lifting of f,
particularly, if f is an arc, f'is called a lifting arc.

The following result asserts the lifting of an arc is uniquely dependent on the initial

point.

Theorem 6.1.1 Let (§, p) be a covering space of S, Xy € X and p(x0) = xo. Then there
exists a unique lifting arc ' : I — S with initial point Xy for each arc f : I — S with

initial point x.

A complete proof of Theorem 6.1.1 can be found in references [Masl] or [Munl],

which applied the property of Lebesgue number on metric space.

Theorem 6.1.2 Let (S, p) be a covering space of S, Xy € S and p(Xo) = xo. Then

(1) the induced homomorphism p, : 7r(§, Xo) — 71(S, x0) is a monomorphism;
(2) for x € p~'(xy), the subgroups p*ﬂ'(g, Xo) are exactly a conjugacy class of sub-
groups of (S, xo).

Proof Applying Theorem 6.1.1, for Xy € S and p(xj) = x, there is a unique mapping
on loops from S with base point x, to S with base point x,. Now let L; : [ — §, i=1,2
be two arcs with the same initial point X, in S. We prove that if pL; ~ pL,, then L ~ L,.

Notice that pL; ~ pL, implies the existence of a continuous mapping H : I X[ — S
such that H(s, 0) = pl,(s) and H(s, 1) = pL,(s). Similar to the proof of Theorem 3.10, we
can fnd numbers 0 = 5o < sy <---<s,=land0 =1 <t <---<t, =1 such that each
rectangle [s,_1, ;] X [¢;-1, ¢;] is mapped into an elementary neighborhood in S by H.

Now we construct a mapping G : [ X I — S with pG = H,G(0,0) = X, hold by the

following procedure.
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First, we can choose G to be a lifting of H over [0, s;] X [0, #;] since H maps this
rectangle into an elementary neighborhood of p(xy). Then we extend the def nition of G
successively over the rectangles [s;_1, s;] X [0,#,] for i = 2,3, ---, m by taking care that it
is agree on the common edge of two successive rectangles, which enables us to get G over
the strip 7 X [0, #;]. Similarly, we can extend it over these rectangles I X [#1, 1;], [f2, 53], - -,
etc.. Consequently, we get a lifting /' of H, i.e., L; ~ L, by this construction.

Particularly, if L, and L, were two loops, we get the induced monomorphism homo-
morphism p, : 7r(§, Xo) — 7(S, xo). This is the assertion of (1).

For (2), suppose ¥; and X, are two points of S such that p(x}) = p(5) = xo. Choose
a class L of arcs in S from X1 to X,. Similar to the proof of Theorem 3.1.7, we know that
% = L[d]L™",[a] € n(S,%;) defnes an isomorphism . : 7(S, %) — n(S,%,). Whence,
p.(7(S, %)) = p(L)n(S, %)p.(L™"). Notice that p.(L) is a loop with a base point x,. We
know that p.(L) € n(S, xp), i.e., p*n'(g, Xo) are exactly a conjugacy class of subgroups of
(S, xo). 0

Theorem 6.1.3 If (§ ,p) is a covering space of S, then the sets p~'(x) have the same

cardinal number for all x € S.

Proof For any points x; and x, € S, choosing an arc f in S with initial point x; and
terminal point x,. Applying f, we can defne a mapping ¥ : p~'(x;) — p~!(x,) by the
following procedure.

For ¥y, € p~'(x1), we lift f to an arc /! in S with initial point y; such that p/! = f.
Denoted by y, the terminal point of f’. Defne W(y,) = y».

By applying the inverse arc f~!, we can defne ¥~!()»,) = y; in an analogous way.
Therefore,  is a 1 — 1 mapping form p~'(x;) to p~'(x»). O

Usually, this cardinal number of the sets p~!(x) for x € S is called the number of
sheets of the covering space (5, p)onS. If [p~'(x)] = n for x € S, we also say it an

n-sheeted covering.

6.1.2 Covering Mapping. Let M= ((%7%3, 37) and M = (Z,p, &) be two maps. The
map M is called to be covered by map M if there is a mapping 7 : %ﬁ — X, 4 such that
Vx € X’:ﬁ,

an(x) = nra(x), Br(x) = nB(x) and 7r33/(x) = Pn(x).

Such a mapping r is called a covering mapping. For Vx € 2, 5, def ne the quadricell set
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n~!(x) by
77 (x) = (% € (Zop and 7(X) = x}.

Then we konw the following result.

Theorem 6.1.4 Letn : X, 5 — Z4p be a covering mapping. Then for any two quadricells
X1, X2 € Xog,

() I ep)l = 7 ()l

(2) If x| # x,, then i~ (x)) 77 (x2) = 0.

Proof (1) By the defnition of a map, for x,x, € 2,4, there exists an element
oceV¥,=<aq,B, Z > such that x, = o(x)).
Since x is an covering mapping from M to M, it is commutative with «, 8 and 2.

Whence, 7 is also commutative with o-. Therefore,

7 (x2) = 17 (o (x1)) = o (7 (xy).

Notice that - € ¥, is an 1 — 1 mapping on 2, s. Hence, |77 (x))| = |77 (x2).
(2) If x; # x, and there exists an element y € 77'(x;) () 7~ (x»), then there must be

x1 = m(y) = x,. Contradicts the assumption. O

Then we know the following result.

Theorem 6.1.5 Let r: Xa,ﬁ — Zaop be a covering mapping. Then n is an isomorphism if
and only ifwis a 1 — 1 mapping.
Proof If 7 is an isomorphism between the maps M = (Zﬁ, % and M = (Zop, &),
then it must be an 1 — 1 mapping by the def nition, and vice via. UJ
A covering mapping 7 from Mto M naturally induces a mapping " by the condition
following:
Vx € Zop, &€ AutM, 7 : g — mgn ' (%).

Whence, we have the following result.

Theorem 6.1.6 Ifm: 2,5 — Zap is a covering mapping, then the induced mapping n*
is a homomorphism from AutM to AutM.

Proof First, we prove that for Vg € AutM and x € Zop, '(g) € AutM. Notice that
for Vg € AutM and x € Zaps

ngn”! (x) = n(gn (x) € Lo
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and ¥xi, x, € Zaop, if X1 # xa, then mgn~'(x1) # mgn'(x,). Otherwise, let
ngn ! (x1) = mgn” (x2) = X0 € g

Then we must have that x; = 7g~'77!(xy) = x,, which contradicts to the assumption.

By defnition, for x € Z, s we have that
m*a(x) = ngn'a(x) = ngan' (x) = nagn™' (x) = angn' (x) = an’(x),

n'B(x) = mgr'B(x) = ngBr~'(x) = nBgn” (x) = Prgn” (x) = B’ (x).
Now ﬂ(% = Z. We therefore get that

P (x) = ngn ' P(x) = ﬂg@ﬂ‘l(x) = Jr,é;gn_l(x) = Pnrgn ! (x) = Pr*(x).

Consequently, nrgn~! € AutM, ie., n*: AutM — AutM.
Now we prove that 7* is a homomorphism from AutM to AutM. In fact, for Vg, €
AutM, , we have that

m(2182) = m(gig)n” = (mgin mgon ™) = 7 (g7 (22).
Whence, 7* : AutM — AutM is a homomorphism. U

6.1.3 Voltage Map with Lifting. Let G be a connected graph and (I'; o) a group. For
each edge e € E(G),e = uv, an orientation on e is such an orientation on e from u to
v, denoted by e = (u,v), called the plus orientation and its minus orientation, from v

to u, denoted by e7!

= (v,u). For a given graph G with plus and minus orientation on
edges, a voltage assignment on G is a mapping o from the plus-edges of G into a group I
satisfying o(e™!) = 07 !(e), e € E(G). These elements o(e), e € E(G) are called voltages,
and (G, o) a voltage graph over the group (T’; o).

For a voltage graph (G, 0), its lifting G = (V(G?), E(G?); [(G”)) is def ned by

V(G”) = V(G) X T, (u,a) € V(G) x T abbreviated to u,;

E(GO—) = {(ua’vaob)|e+ = (u’ V) € E(G)’ 0'(€+) = b}

and
1(G?) = {(tg, Vaop)I(€) = (g, Vaop) if € = (Ug, Vaop) € E(G7)}.
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This is a [I']-sheet covering of the graph G. For example, let G = Kz and I = Z,.
Then the voltage graph (K3, o) with o : K3 — Z, and its lifting are shown in Fig.6.1.1.

Ug

0 1
wl L\
w 0 v w Vi

(G, o) G

Fig.6.1.1

We can fnd easily that there is a unique lifting path in I’ with an initial point X for
each path with an initial point x in T, and for Yx € T, |[p~!(x)| = 2.

For fnding a homomorphism between Klein surfaces, voltage maps are extensively
used, which is introduced by Gustin in 1963 and extensively used by Youngs in 1960s for
proving the Heawood map coloring theorem and generalized by Gross in 1974 ([GrT1]).
By applying voltage graphs, the 2-factorable graphs are enumerated in [MaT2] also.

Now we present a formally algebraic def nition for voltage maps, not using geomet-

rical intuition following.

Def nition 6.1.2 Let M = (£, 5, &?) be a map and (T'; o) a f nite group. A pair (M, ) is a
voltage map with group (I'; 0) if O : X, — T, satisfying conditions following:

(1) For¥x € Zp Hax) = ¥(x), HaBx) = #(Bx) = 97 (x);
(2) For YF = (x,y,---,2)(Bz,---,By,Bx) € F(M), the face set of M, H(F) =
Hx)YHY) - - - HNz) and (NF)F € F(u),u € V(M)) =T, where % (u) denotes all the faces

incident with vertex u.

For a voltage map (M, 1), def ne
‘%/;lﬂ,ﬁﬂ = %d,ﬁ X F,

)
:@ = 1_[ l—[(xg, yg, SN Zg)(azg’ cee a,yg’ a,xg)
(e, z)az, - ay,ax)eV(M) gel’

and
9 _ P _
= || Goax). A= || GeBraw).
XE%Y@ gel XE%aﬁ, gEF

where u, denotes the element (1, g) € Z, 5 XT.
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Then it can be shown immediately that M? = (X, g0, 2”) also satisf es the condi-
tions of map, and with the same orientation as map M. Whence, we def ne the lifting map

of a voltage map in the following def nition.

Def nition 6.1.3 Let (M, ) be a voltage map with group (T;o). Then the map M’ =
(X] 5, P7) is def ned to be the lifting map of (M, 9).
There is a natural projection 7 : M” — M from the lifted map M” to M by n(x,) = x

for Vg € I' and x € 2, s(M), which means that M” is a |['|-cover M. Denote by
7' (x) = {xg € Zop(M') | geT ),

called the fber over x € Z,3(M). For a vertex v = (C)(aCa™") € V(M), let {C} denote

the set of quadricells in cycle C. Then the following result is obvious by def nition.

Theorem 6.1.7 The numbers of vertices and edges in a lifting map M” of voltage map
(M, ) with group (I'; o) are respectively

V(M"Y = v(M)IT| and e(M”) = (M)|T].

Theorem 6.1.8 Let F = (C*)(aC*a™") be a face in the map M. Then there are |I'|/o(F)
faces in the lifting map M? with group (T';0) of length |Flo(F) lifted from the face F,

where o(F) denotes the order of [| 9(x) in group (T; o).
xe(C}

Proof Let F = (u,v---,w)(Bw,---,Bv,Bu) be a face in the map M and & is the length
of F. Then, for Vg € I" the conjugate cycles

s\
(C)" = (g, Vepy > Ugh(F)s VeaFyowys = > Wea(FRs ™" » W 1())
“1 -1
B(Ug, Vath(u)s ** s Ugh(F)s Vgd(F)dw)s *° * s Wad(F)2> " " » Wgﬂ"(F)’l(F)) B
is a face in M” with length ko(F) by def nition. Therefore, there are |I/o(F) faces in the
lifting map M?. 0
We therefore get the Euler-Poincaré characteristic of a lifted map following.

Theorem 6.1.9 The Euler-Poincaré characteristic y(M?) of the lifting map M of a volt-
age map (M, ) with group (I'; o) is

1
XM =D+ Y (<1+ ),

meO(F(M))
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where O(F(M)) denotes the set of faces in M of order o(F).

Proof According to the Theorems 6.1.7 and 6.1.8, the lifting map M?” has |T|v(M)

) 1
vertices, [['le(M) edges and |G| >, — faces. Therefore, we know that
meO(F(M)) M

X(M") = V(M) = (M) + $(M") 1

IC(M) — |Tle(M) + T E —
m
meO(F(M))

Gl ~ o)+ S )

meO(F(M))

1
GO+ >, (~1+-). 0

meO(F(M))

§6.2 GROUP BEING THAT OF A MAP

6.2.1 Lifting Map Automorphism. Let (M, o) beavoltage map witho : 2,5 =T, u €
V(M) and W = xyx, - -- x; a walk encoded by the corresponding sequence of quadricells
x;, i =1,2,---,kin M, i.e., the qudricell after x; is Zafx; by the traveling ruler on M.
Def ne the net voltage on W to be the product

o(W) = o(x1) o o(xz) 000 (xg)
and the local voltage group I'(«) by
I'(u) ={ (W) | W is a closed walk based at a quadricell u }.

By Defnition 6.1.2, we know that I'(«) = I' for Yu € Z,43(M). For x € Z,z, denote
by TI(M, x) the set of all such closed walks based at x. Then II(M, x) = m;(M, x), the
fundamental group of M based at x.

Let o1, 0 : Zop — I be two voltage assignments on a map M = (2,4, &) and
idy an identity transformation on 2, i.e., both of M“" and M are |[']-covers of M with

natural projections 1y : M“' — M and n, : M> — M on M. Then we know
%‘a,ﬁ(MU'I) = %yﬁ(MO'z) = { Xg | X € %,ﬂ(M’), ge I }

by defnition. Then oy, o, are said to be equivalent if there exists an isomorphism 7 :

M7 — M?? that makes the following diagram
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MO’1 T MO’Z

T YY)

idy

M

commutate. The following result is fundamental.

Theorem 6.2.1 Let oy, 0, : Zap — I be two voltage assignments on a map M =
(Zap, P), u € Zoyp(M). Then oy, 0 are equivalent if and only if there exists an auto-
morphism T of group T such that

0 (W) = 0a(W)

for every closed walk W in M based at u.

Proof Choose a closed walk W in map M based at u. If oy and o, are equivalent,
then there exists an automorphism 7 : M°" — M2 such that 7(W7') = W72, Defne
™ : T > Tbyt :10(W) - oo(W). Let W be another closed walk in M based at u.
Notice that W’ is also a closed walk based at # in M. We f'nd that

T (WW') = 7o (W)t (W) = oo(W)oa (W),

re., (o (W)Yo, (W")) = (o1 (W))t*(oy(W’)). Thus 7* is an automorphism of I'. By
def nition, we are easily get that %o (W) = o,(W).

Conversely, if there exists an automorphism 7 € Autl such that /o (W) = o (W)
for every closed walk W in M based at u, let 7 : 2, s(M7") = 2, 5(M") be determined
by T: W' = W, ie, T'o W(T'o)! = 0 Wo;'. Then it is easily to know that

(Zap) T = (o) [ (g 22z axy) | (o)
(x, - 2)(az,ax)eV(M), gel’
= l—[ Tla-l(xgayg’ e ’Zg)(azga Y Q'J’g, a[xg)(Tlo-l)_l
(X, z)az, - ay,ax)eV(M), gel’
-1
= l—[ O2(Xgs Vs ** 5 2N QZg, * + +, Vg, AXg)05

(X, 2)(az, - ax)eV(M), gel’

= (Zap)”
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1e.,

Pt =177

and

o't =12%?, BTt =16"".

Thus 7 is an isomorphism from M?' to M2 by def nition. Whence, we know that o; and

o, are equivalent. 0

Such an isomorphism 7 from M“' to M?? induced by an automorphism 7’ of M is
called a lifted isomorphism of 7’. Particularly, if oy = 0, = o, a lifted isomorphism from
M7 to M?? is called a lifted automorphism of 7. Theorem 6.2.1 enables one to get the

following result.

Theorem 6.2.2 An automorphism ¢ of voltage map M with assignment o — T is a lifted
automorphism of map M? if and only if every closed walk W with net voltage o(W) = 1r
implies that o(¢(W)) = 1r in (M, o).

Furthermore, let M = (%, 4, &?) be a map, (I'; o) a fnite group and &/ < AutM, a
map group. We say that a voltage assignment o : 2,3 — I is locally </-invariant at a

quadricell u if, for Y1 € <7 and every walk W € I1(M, u), we have

o(W) =1r = o(@(W)) = Ir.

Particularly, a voltage assignment is locally t-invariant for T € AutM if it is locally in-
variant respect to the group (7) generated by 7. Then Theorem 6.2.2 implies the following

conclusion.

Corollary 6.2.1 Let M = (Z4p5, &) be a map with a voltage assignment o : Z,5 — T,
M7 — Mand o/ < AutM. Then o/ < AutM? if and only if o is locally <7 -invariant.

Notice that a map M = (Z,p, ) is regular if |AutM| = |2, 4. We know the
following result by Corollary 6.2.1.

Corollary 6.2.2 Let M be a regular map with a locally AutM-invariant voltage assign-

ment o : Xop — I. Then M is also regular.

Proof Notice that the action g : u, — ug., naturally induced an automorphism on
fber 77! (u) of M” for Yu € , 5 and g € I'. Now all automorphisms of M are lifted to M”.
Whence, [AutM7| = [[|AutM| = 4l'le(M) = | Z,5(M7)|. Thus M7 is a regular map. [
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6.2.2 Map Exponent Group. Let M = (2,5, &) be amap. An integer k is an exponent
of M if the map M* = (2, 3, %) is isomorphic to M, i.e., there exists a permutation 7 on
Zop such that o = a1, 78 = Br and 72 = P7. Such a permutation 7 € Aut; G[M] is
called an isomorphism associated with exponent k.

If k is an exponent of M, then Z7* is also a basic permutation on 2,z with Axioms
1 — 2 hold. So ged(k, py(v)) = 1 for v € V(M). Consequently, k£ must be a coprime with
the order o(#?) of 2, the least common multiple of valencies of vertices in M.

Obviously, 1 is an exponent of M. On the other hand, the integer —1 is an exponent
if M is isomorphic to its mirror (24, 27'). Now let / = k(modo(#?)) and k an exponent
of M. Then &' = 2% Thus [ is also an exponent of M. Let k, / be two exponents

associated with isomorphisms 7, 6, respectively. Then
PHor = (PYYor = 02"t = 1.2,

1.e., k/ is also an exponent of M associated with isomorphism 67 € Aut%G[M]. We

therefore f nd the following result.

Theorem 6.2.3 Let M be a map. Then all residue classes of exponents mod(o(Z?)) of M
form a group, and all isomorphisms associated with exponents of M form a subgroup of
Aut ! G[M], denoted by Ex(M) and Exo(M), respectively.

Now let (I'; o) be a fnite group and let ¢ : I' — Ex(M), ¥ : Exo(M) — Ex(M) be
homomorphisms with Ker¥ = AutM = 4. Denote by 4; = ¥~!(J), where J = ¢(T). Then
the derived map M”* is a map (Zyou gre, P7*) with

%a/u-,z,ﬁ(r.z = %a,ﬁ X r

and
ug)
P = ]—[ ((xg,J/gs ez @Zg, L AV, a/xg)) ’
(X, z)(az, - ay,ax)eV(M), gel
a™ = l_l (xg, @Xg), B = l—[ (Xgs BXg(x))-
X€ X p, geT € Zap, g€l

A voltage assignment o : 2, 3(M) — T is called 4 -uniform if for every u-based
closed walk W on M with oo(W) = 11 and every isomorphism 7 € 4, one has o (7(W)) =
Ir. Similarly, an exponent homomorphism 7 of M is 4;-compatible with o if for every
u-based walk W and every T € 4, one always has to(W) = to(t(W)). Then we have the

following result.
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Theorem 6.2.4 Let M be an orientable regular map, o : Z,5(M) — T a voltage assign-
ment and ¢ : I’ — Ex(M) with (') = J. Then M°* is an orientable regular map if o is

A j-uniform and v is A j-compatible with o.

A complete proof of theorem 6.2.4 was established in [NeS2]. Certainly, the reader

can f nd more results on constructing regular maps by graphs in [NeS1]-[NeS2].

6.2.3 Group being That of a Lifted Map. A permutation group I action on Q is called

[fxed-free if T’y = 1 for Vx € Q. We have the following result on f xed-free permutation

group.
Lemma 6.2.1 Any automorphism group I" of a map M = (Z o5, &) is fxed-free on Z .

Proof Notice that I' < AutM, we get that I', < (AutM), for Vx € Z,5. We have
known that (AutM), = 1r. Whence, there must be that I', = 1, i.e., I" is f xed-free. O

Notice that the automorphism group of a lifted map has a obvious subgroup deter-

mined by the following lemma.

Lemma 6.2.2 Let M” be a lifted map of a voltage assignment 9 : 2453 — T. ThenT is
isomorphic to a fxed-free subgroup of AutM? on V(M™).

Proof For Yg € I', we prove that the induced action g* : Z,r g — Zyo g by
g" 1 X) = Xg is an automorphism of map M”.

In fact, g" is a mapping on Z,» g» and for Vx, € 2,0 go, we know that g* : xg-1, — Xx,.

Now if for x;,y, € Ao, x, # yy, we have that g*(x,) = g"(vy). Thus xg = yer
by the defnition. So we must have x = y and gh = gf, i.e,, h = f. Whence, x; = yy,
contradicts to the assumption. Therefore, g"is 1 — 1 on 2,0 .

We prove that for x, € 2, g, g* is commutative with ”, 3” and 2?”. Notice that
g'a’x, = g'(ax), = (@X)qu = aXg, = @g"(Xy);

g*ﬁﬂ(xu) = g*(ﬁx)uﬁ(x) = (BX)quo(x) = BXguox) = :819(ng) = ,Bﬂg*(xu)

and

g P (xy)

3k

= g l—[ l—[(xu,yu, oo 9Zu)(alzu, cee a,yu’ axu)(xu)
(x . z)az, - ap,ax)eV (M) ueG

g*yu = Yeu
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1_[ (xgu,ygu, B Zgu)(azgu, cs gy a'xgu)(xgu)
(x,z)az, - ay,ax)eV(M) gueG

yﬁ(xgu) = gzﬂg*(xu)-

Therefore, g* is an automorphism of the lifted map M”.
To see that g* is f xed-free on V(M), choose Yu = (x;, v, - - -, zp)@zp, - - -, ayp, @x;) €
ViM),heTl. If g*(u) = u, i.e.,

(xgh9ygh9 et 9Zgh)(alzgh9 Y a'ygh, Q'Xgh) = (xh,J’h, et ,Zh)(ath, Y a)’h, Q’Xh),

assume that x,, = wy, where wy, € {x4, Vs, -, 2Zn, @Xp, @Yy, - - -, @z}. By defnition, there
must be that x = w and gh = h. Therefore, g = 1r, i.e., Vg € T, g" is f xed-free on V' (M).
Defne 7 : g8 — g. Then 7 is an isomorphism between the action of elements in I" on
Ao gr and the group I itself. O

According to Lemma 6.2.1, for a given map M and a group I' < AutM, we defne a
quotient map M|T" = (Z, /T, Z/T) as follows.

%a,ﬁ/r = {xle € %a,ﬁ}a
where x' denotes the orbit of I action on x in 2,4 and

PIT = 1—[ GEL G T, axd)
(X, z)az, - apy,ax)e V(M)
since I action on 2,4 is f xed-free.
Such a map M may be not a regular covering of its quotient M/I". We have the

following result characterizing f xed-free automorphism groups of map on V(M).

Theorem 6.2.5 An fnite group (I; o) is a fxed-free automorphism group of map M =
(Zap. &) on V(M) if and only if there is a map (M/T,T’) with a voltage assignment
O ZaplT — T such that M = (M/T)".

Proof The necessity of the condition is already proved in the Lemma 2.2.2. We only
need to prove its sufficiency.

Denote by 7 : M — M/T the quotient mapping from M to M/I". For each element of
7~ 1(x"), we give it a label. Choose x € n~!(x"). Assignits label / : x — xj,, i.e., [(x) = xy,.
Since the group I acting on 2,4 is f xed-free, if u € 7' (x") and u = g(x), g € T, we label

u with /(u) = x,. Whence, each element in 77! (x") is labeled by a unique element in .
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Now we assign voltages on the quotient map M/I" = (Z,4/I', Z/I'). If Bx = y,y €
n~'(y") and the label of y is I(y) = y;,h € T, where, I(y*) = 1r, then we assign a voltage

r

hon x',i.e., 9(x") = h. We should prove this kind of voltage assignment is well-done,

which means that we must prove that for Vv € 77!(x") with /(v) = j, j € T, the label of Bv
is /(Bv) = jh. In fact, by the previous labeling technique, we know that the label of Sv is

l(Bv) = l(Bgx) = U(gBx) = I(gy) = l(ghy”) = gh.

Denote by M’ the labeled map M on each element in 2, 3. Whence, M’ = M. By the
previous voltage assignment, we also know that M’ is a lifting of the quotient map M/T’

with the voltage assignment ¢ : 2, 5/I" — I'. Therefore,
M = (MT)’.

This completes the proof. 0
According to the Theorem 6.2.5, we get the following result for a group to be a map

group.

Theorem 6.2.6 Ifa group I’ < AutM is fxed-free on V(M), then

1
NIeM/TY + >0 (=1+ =) = x(M).
m
me6(F(M/T))
Proof By the Theorem 6.2.5, we know that there is a voltage assignment @ on the
quotient map M/I" such that
M = (MT)’.
Applying Theorem 6.1.9, we know the Euler characteristic of map M is
1
X(M) = TIe(M/Ty + > (=1+ =), O
m
meO(F(M/T))

Theorem 6.2.6 has some applications for determining the automorphism group of a

map such as those of results following.

Corollary 6.2.3 If M is an orientable map of genus p, I' < AutM is fxed-free on V(M)
and the genus of the quotient map M/T is 7y, then
2p-2

C2y-2+ Y (1-dy
meO(F(M/T))

Il
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Particularly, if MT is planar, then
2p-2
2+ ¥ -1y

med(F(M/T))

Il =

Corollary 6.2.4 If M is a non-orientable map of genus g, I' < AutM is fxed-free on
V(M) and the genus of the quotient map M/T is 6, then
q-2

§-2+ % (1-1y
meO(F(M/T))

Il =

Particularly, if M|T is projective planar, then

q-—2
-1+ ¥ (A-1y

med(F(M/T))

I =

By applying Theorem 6.2.5, we can also f nd the Euler characteristic of the quotient

map, which enables us to get the following result for a group being that of map.

Theorem 6.2.7 If a group I' < AutM, then

X(M)+ > (10,()] + [0(2)]) = [Tl (M/T),
gell,g#1r
where, @,(g) = {v[v € V(M),V¢ = v}, Dy(g) = {fIf € F(M), f¢ = f}, and if " is f xed-free
on V(M), then

X(M)+ > (@)l = IT(M/T),

gellg#1r

Proof By the def nition of quotient map, we know that

8./1) = orb () = . 37 D,

gel

and

1
81 (M/T) = orb D) = o= ) 10/(),

gel
by applying the Burnside lemma. Since I" is f xed-free on 2, 3 by Lemma 6.1.4, we also

know that
&(M)

e(MIT) = o
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Applying the Euler-Poincaré formula for the quotient map M/I", we get that
2 Du(g)l 2 Ds(g)l

gel B e(M) N gel 4

Il Il Il

= x(M/T).

Whence,
D104 - (M) + ) 1®(2)] = [T (MT).

gel gel

Notice that v(M) = |®,(1r)], p(M) = |D (1r)| and V(M) — (M) + (M) = x(M). We fnd
that

X(M)+ Y (10 + D)) = T (M/T).

gEF,g#lr
Furthermore, if I is f xed-free on V' (M), by Theorem 6.2.5 there is a voltage assign-
ment ¢ on the quotient map M/T such that M = (M/G)”. According to Theorem 6.1.7,

there must be

V(M)
v(M/T) = .
Whence, ) |®,(g)l =v(M)and ), (|®,(g)| = 0. Therefore, we get that
gel gelg#lr
X(M)y+ > [®(g)l = T (MT). O
gell,g#1r

Consider the action properties of group I' on F (M), we immediately get some inter-

esting results following.

Corollary 6.2.5 IfT < AutM is fxed-free on V(M) and transitive on F(M), for example,
M is regular and I = AutM, then M/T is an one face map and

X(M) = TIQ(M/T) = 1) + ¢(M).
Corollary 6.2.6 For an one face map M, if I < AutM is fxed-free on V(M), then
xXM) -1 = (M/T) - 1),

and |U'|. Particularly, |AutM| is an integer factor of y(M) — 1.

Remark 6.2.1 For a one face planar map, i.e., the plane tree, the only fxed-free auto-

morphism group on its vertices is the trivial group by the Corollary 6.2.6.
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§6.3 MEASURES ON MAPS

On the classical geometry, a central question is to determine the measures on objects,
such as those of the distance, angle, area, volume, curvature, .... For maps being that of
a combinatorial model of Klein surfaces, we also wish to introduce various measures on

maps and then enlarge its application to more branches of mathematics.

6.3.1 Angle on Map. For a map M = (Z,4, &), x € Z,p, the permutation pair
{(x, Px), (ax, P 'ax)} is called an angle of M incident with x introduced by Tutte in
[Tutl]. We prove that any automorphism of a map is a conformal mapping and affirm the
Theorem 5.3.12 in Chapter 5 again in this section.

We def ne the angle transformation ® of a map M = (2,5, &) by

O = ]—[ (x, Px).

Xe <9//£y B

Then we have

Theorem 6.3.1 Any automorphism of map M = (Z,p, &) is conformal.

Proof By the def nition, for Vg € AutM we know that

ag = ga, pg=gBand Pg=gP.

Therefore, for Vx € 2,4,
Og(x) = (g(x), ¥g(x))
and
gO(x) = g(x, Zx) = (g(x), Pg(x)).
Whence, we get that for Yx € 2, 5, ©g(x) = gO(x). So Og = g0,i.c., gBg™' = O.
Since for Vx € 244, 2027 (x) = (g(x), Pg(x)) and O(x) = (x, P(x)), we get that

(g(x), Zg(x)) = (x, Z(x)).
Thus g is a conformal mapping. O

6.3.2 Non-Euclid Area on Map. For a voltage map (M, o) with a assignment o :
Zop(M) — T, its non-Euclid area u(M,T') is def ned by

1
HMD) = 2m(x (M) + Y (<14 ).

meO(F(M))



228 Chap.6 Lifting Map Groups

Particularly, since any map M can be viewed as a voltage map (M, 1), we get the non-

Euclid area of a map M
pu(M) = p(M, 1r) = 2y (M).

Notice that the area of a map is only dependent on the genus of the surface. We know

the following result.

Theorem 6.3.2 Two maps on one surface S have the same non-Euclid area.

By the non-Euclid area, we fnd the Riemann-Hurwitz formula for map in the fol-

lowing.
Theorem 6.3.3 [fT < AutM is fxed-free on V(M), then

o uM)
= w(M/T,9)’

where 9 is constructed in the proof of the Theorem 6.2.5.

Proof According to the Theorem 6.2.6, we know that

r = —X(M)
M)+ ¥ (-1+3)
meO(F(M))
3 —2my (M) __HWM) -
2r(—x(M)+ Y (-1+1)  wM/T9)
meO(F(M))

As an interesting result, we can obtain the same result for the non-Euclid area of a

triangle as in the classical differential geometry following, seeing [Car1] for details.

Theorem 6.3.4 The non-Euclid area u(A) of a triangle A on surface S with internal
angles n,0, 0 is

uA)y=n+6+o0c—m.

Proof According to the Theorems 4.2.1 and 6.2.5, we can assume that there exists
a triangulation M with internal angles 7, 6, o on §, and with an equal non-Euclid area on

each triangular disk. Then

PMuA) = p(M) = =2y (M)

—27(V(M) — &(M) + $(M)).
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Since M is a triangulation, we know that 2&(M) = 3¢(M). Notice that the sum of all the
angles in the triangles on the surface S is 27v(M). We get that

dMuA) = 2n(v(M) - &(M) + (M)) = 2v(M) — p(M))m
H(M)
= D m+0+0) -] =M)n+0+0 - .
i=1
Whence, u(A)=n+60+ o —n. O

§6.4 A COMBINATORIAL REFINEMENT OF HURIWTZ THEOREM

6.4.1 Combinatorially Huriwtz Theorem. In 1893, Hurwitz obtained a famous result
on orientation-preserving automorphism groups Aut*S of Riemann surfaces S ((BEGG1],
[FaK1] and [GrT1]) following:

For a Riemann surface S of genus g(S) > 2, Aut*S < 84(g(S) — 1).

We have established the combinatorial model for Klein surfaces, especially, the Riemann
surfaces by maps. Then what is its combinatorial counterpart? What can we know the
bound for the automorphisms group of map?

For a given graph I', a graphical property P is def ned to be a family of its subgraphs,
such as, regular subgraphs, circuits, trees, stars, wheels, - - -. Let M = (2, 5, &) be a map.
Call a subset 4 of 2,4 has the graphical property P if its underlying graph of possesses
property P. Denote by A(P, M) the set of all the 4 subset with property P in the map M.

For ref ning the Huriwtz theorem, we get a general combinatorial result in the fol-

lowing.
Theorem 6.4.1 Let M = (Z,p3, &) be a map. Then for VH < AutM,
[Vllv e V(M)] | |H|

and
|H| | |A|AP, M),

where, [a, b, - - -] denotes the least common multiple of a, b, - - -.
Proof According to Theorem 2.1.1(3), for Vv € V(M), |H| = |H,|V?|. So V|| |H].

Whence,
[Vlv € V(M)] | |H].
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We have know that the action of H on .2, 4 is f xed-free by Theorem 5.3.5, i.e., Vx € 2,4,
there must be |H,| = 1. We consider the action of the automorphism group H on A(P, M).

Notice that if 4 € A(P, M), then for Vg € H, 4%) € AP, M), i.e., A" € AP, M).
Thus the action of H on A(P, M) is closed. Whence, we can classify the elements in
AP, M) by H. For Vx,y € A(P,M), defne x ~ y if and only if there is an element
g, g € H such that x2 = y.

Since |H,| = 1, i.e., [x”| = |H|, each orbit of H action on 2, 4 has a same length |H|.
By the previous discussion, the action of H on A(P, M) is closed. Therefore, the length
of each orbit of H action on A(P, M) is |H|. Notice that there are |4||A(P, M)| quadricells
in A(P, M). We get that

\H| | |4 AP, M)

This completes the proof. H

Choose the property P to be tours with each edge appearing at most 2 in the map M.
Then we get the following results by the Theorem 6.4.1.

Corollary 6.4.1 Let T r, be the set of tours with each edge appearing 2 times. Then for

H < AutM,

T
\HI | (AT 7, 1=1T] = 7' >1, T€Tr,).

Let Try be the set of tours without repeat edges. Then

T
[H| | NT 7|, I =|T| = 7' >1, TeTry,).

Particularly, denote by ¢(i, j) the number of faces in M with facial length i and singular
edges j, then

|HI | ((2i = ), j), 1, ] = 1),
where,(a, b, - - -) denotes the greatest common divisor of a, b, - - -.

Corollary 6.4.2 Let T be the set of trees in the map M. Then for H < AutM,
|H| | 21,12 1),

where t; denotes the number of trees with [ edges.

Corollary 6.4.3 Let v; be the number of vertices with valence i. Then for H < AutM,

H | Qivy,i > 1).
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6.4.2 Application to Klein Surface. Theorem 6.4.1 is a combinatorial ref nement of the

Hurwitz theorem. Applying it, we can get the automorphism group of map as follows.

Theorem 6.4.2 Let M be an orientable map of genus g(M) > 2 and T* < Aut'M,
I' < AutM. Then

IT*| < 84(g(M)—1) and | < 168(g(M)—1).

Proof Def ne the average vertex valence v(M) and the average face valence ¢(M) of

amap M by .
(M) = YO ; i,
1 .
p(M) = o ;1%,

where,v(M),p(M),p(M) and ¢; denote the number of vertices, faces, vertices of valence i
and faces of valence j, respectively. Then we know that v(M)v(M) = ¢(M)P(M) = 2&e(M).

2
Whence, v(M) = & and ¢(M) = 8(M>. According to the Euler formula, we have

V(M) P(M)

that
V(M) — e(M) + ¢(M) = 2 - 2g(M),
where,e(M), g(M) denote the number of edges and genus of the map M. We get that

2(g(M) - 1)
8(M>:(1_ 2 _ 2y
V(M) ¢(M)
Choose the integers k = [v(M)] and [ = [¢(M)]. We fnd that
2 -1
o < 280D =)
(I-%-7
2 2k . .
Because of 1 == - - > 0,Sok >3,/ > o Calculation shows that the minimum
2
value of 1 — 777 is 71 and attains the minimum value if and only if (k,/) = (3,7) or

(7,3). Therefore,
e(M < 42(g(M) - 1)).
According to the Theorem 6.4.1 and its corollaries, we know that [['] < 4e(M) and if

['* is orientation-preserving, then || < 2&(M). Whence,

I < 168(g(M) - 1))
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and
I < 84(g(M) - 1)),
with equality hold if and only if I' = I'* = AutM, (k,/) = (3,7) or (7, 3). O

For the automorphism of Riemann surface, we have
Corollary 6.4.4 For any Riemann surface S of genus g > 2,
4g(S) +2 < |Aut’S| < 84(g(S)- 1)
and
8g(S) +4 < |AutS| < 168(g(S) - 1).

Proof By the Theorems 5.3.11 and 6.4.2, we know the upper bound for |AutS| and
|Aut*S|. Now we prove the lower bound. We construct a regular map M; = (2}, ) on

a Riemann surface of genus g > 2 as follows, where k = 2g + 1.
T = {x1, X2, 7+ + ) Xp, @X1, X2, -+, X, BX1, BX, +++ BXy, X1, afxa, - - -, Xy}

D= (X1, X2,y Xpy OBX1, BX2, - -+, BX)(BXk, - -+, BX2, BX1, AXpy - -+, AX, AXY).

It can be shown that M, is a regular map, and its orientation-preserving automorphism
group Aut™ M; =< £, >. Calculation shows that if & = 0(mod2), M, has 2 faces, and if
k = 1, Mj is an one face map. Therefore, By Theorem 5.3.11, we get that

|[Aut™S| > 2&(M;) > 4g + 2,
and
|AutS| > 4e(M;) > 8g + 4. O

For the non-orientable case, we can also get the bound for the automorphism group

of a map.

Theorem 6.4.3 Let M be a non-orientable map of genus g (M) > 3. Then for I't <
Aut™ M,

I < 42(g'(M) - 2)
and for I < AutM,

Il < 84(g'(M) - 2),
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with the equality hold if and only if M is a regular map with vertex valence 3 and face

valence 7 or vice via.

Proof Similar to the proof of the Theorem 6.4.2, we can also get that

&(M < 21(g'(M) - 2))

and with equality hold if and only if IT = AutM and M is a regular map with vertex

valence 3, face valence 7 or vice via. According to the Corollary 6.4.3, we get that

Il < 4s(M)

and
IT*| < 2e(M).
Whence, for I't < Aut™ M,
I < 42(g' (M) - 2)
and for I' < AutM,
Il < 84(g'(M) - 2)
with the equality hold if and only if M is a regular map with vertex valence 3 and face
valence 7 or vice via. U

Similar to Hurwtiz theorem for that of Riemann surfaces, we can also get the upper

bound of Klein surfaces underlying a non-orientable surface.

Corollary 6.4.5 For a Klein surface K underlying a non-orientable surface of genus
q >3,
|Aut™ K| < 42(q — 2)

and
[AutK| < 84(q — 2).

§6.5 THE ORDER OF AUTOMORPHISM OF KLEIN SURFACE

6.5.1 The Minimum Genus of a Fixed-Free Automorphism. Harvey [Harl] in 1966,
Singerman [Sinl] in 1971 and Bujalance [Bujl] in 1983 considered the order of an au-

tomorphism of a Riemann surface of genus p > 2 and a compact non-orientable Klein
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surface without boundary of genus ¢ > 3. Their approach is by using the Fuchsian groups
or NEC groups for Klein surfaces. Their approach is by applying the Riemann-Hurwitz

equation, i.e., Theorem 4.4.5. Here we restate it in the following:
Let T be an NEC graph and I a subgroup of T with f nite index. Then

u(I)
u(I)

where, u(I') is the non-Euclid area of group I def ned by

=[I:T7],

w(G) = 2n[ng + k - 2+Z(1—1/m)+1/2ZZ(1 1/n;)]

=1 j=1

if the signature of the group T is

o= (g my, - m () (i, g))),

where, n = 2 if sign(o) = + and n = 1 otherwise.

Notice that we have introduced the conception of non-Euclid area for the voltage
maps and have gotten the Riemann-Hurwitz equation in Theorem 6.2.6 for a group action
f xed-free on vertices of map. Similarly, we can fnd the minimum genus of a f xed-free
automorphism of a map on its vertex set by the voltage assignment technique on one of

its quotient map and get the maximum order of an automorphism of map.

Lemma 6.5.1 Let N = H P p1 < p2 < -+ < py be the arithmetic decomposition of an
integer N and m; > 1, m; |Nf0rz =1,2,---,k Then for any integer s > 1,

° 1 1. s
D -—)z201 - =5
i=1 m; P2
Proof If s = 0(mod?2), it is obvious that

: 1, < 1 1
;(1—?2;(1—5)2(1—5)&

Assume that s = 1(mod2) and there are mi, # p1,j =12, [. If the assertion is not

true, we must have that

] ! ] ]
1——)I-1 § - —)> (1 - —)L
( pl)(l )>j=1( mi,.)z( pz)l
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Whence,
1 1 1 1
1-—)>U-—)+1-— >(1-—)],
p1 P2 Pi Pi

a contradiction. Therefore, we get that

N 1 1
Sa-—)z20-—)21 O
P mi pr 2

Lemma 6.5.2 For a map M = (X5, &) with ¢(M) faces and N = ﬁp?”,pl < py <
-+ < P the arithmetic decomposition of an integer N, there exists a vé:l;age assignment
O Zop — Zy such that for VF € F(M), o(F) = p, if (M) = 0(mod2) or there exists a
face Fy € F(M) such that o(F) = p; for VF € F(M) \ {F,}, but o(F) = 1.

Proof Assume that fi, f5, - - -, f, are the n faces of the map M, where n = ¢(M). By
the def nition of voltage assignment, if x, Sx or x, @fx appear on one face f;,1 <i < n
altogether, then they contribute to ¢9(f;) only with 9(x)9~!(x) = 1,. Whence, not loss of
generality, we only need to consider the voltage x;; on the common boundary among the

faces f; and f; for 1 < i, j < n. Then the voltage assignment on the n faces are
H(f1) = X12%13** * X1

W(f2) = X21%23 - - Xy,

ﬁ(.ﬁi) = Xn1Xn2 *° Xp(n-1)-

We wish to f nd an assignment on M which can enables us to get as many faces as possible
with the voltage of order p;. Not loss of generality, we choose ¢#”'(f;) = 1, in the frst.
To make 97! (f3) = 1z, choose x5 = x73,- -+, X2, = x7). If we have gotten 97! (f;) = 1z,

andi < nifn = 0(mod2)ori <n—1ifn = 1(mod2), we can choose that

_ -1 _ -1 _ -1
Xi+1)+2) = Xi+2)> XE+DE+3) = Xi+3)s " s X+ n = Xy

which also make 97! (fi,1) = 1z,.

Now if n = 0(mod2), this voltage assignment makes each face f;, 1 < i < n satisfying
that 97! (f;) = 1z,. But if n = 1(mod2), it only makes ¥7'(f;) = 14, for 1 <i<n -1, but
W f,) = 1z,. This completes the proof. 0
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Now we can fnd a result on the minimum genus of a fxed-free automorphism of

map by Lemmas 6.5.1-6.5.2 following.

Theorem 6.5.1 Let M = (245, ) beamap and N = p' ---p/f,p1 <p> <--- < pithe

arithmetic decomposition of integer N. Then for any voltage assignment 0 : Zop5 — Zy,

(1) If M is orientable, the minimum genus g, of the lifted map M? which admits a
fxed-free automorphism on V(M) of order N is

g =1+ Mg -1+ - Y 20y,

meoFm) P!
(2) If M is non-orientable, the minimum genus g,. of the lifted map M” which
admits a fxed-free automorphism on V(M?) of order N is

1
@ =24 Nig(M) -2 +2(1 - ) 220
P 2

Proof (1) According to Theorem 6.2.5, we know that

1
2-2¢(M") = NI@=2g(M) +  » (~1+-)),
meO(F(M))

Whence,

1
26(M") =2+ N2g(M) -2+ Y (1--)).
meOFM)

Applying Lemmas 6.5.1 and 6.5.2, we get that

1
G = 1+ Nig(M) — 1 + (1 — 220y
P1 2

(2) Similarly, by Theorem 6.2.1, we know that

1
2-gM") = NIQ-g) + ) (-1+-)),
meO(F(M))

Whence,
g(M?) =2+ N{g(M) -2 + § (1—1»
m

meO(F(M))
Applying Lemmas 6.5.1 and 6.5.2, we get that

1
o = 2+ NgW) =2+ 201 = 1 252, 0
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6.5.2 The Maximum Order of Automorphisms of a Map. For the maximum order of

automorphisms of a map, we have the following result.

Theorem 6.5.2 The maximum order N, of automorphisms g of an orientable map M

with genus> 2 is

Npax <2g(M) + 1

and the maximum order N’

" o Of automorphisms g of a non-orientable map with genus> 3

is
Nypar < 8(M) + 1,
where g(M) denotes the genus of map M.

Proof According to Theorem 6.2.3, denote by I' = (g), we get that

X(M)+ > (10,()] + [0(2)]) = [Tl (M/T),

gl g#1Ir
where, ®(g) = (F|IFF € F(M),F¢ = F} and ®,(g) = {vlv € V(M),»* = v}. Notice
that a vertex of M is a pair of conjugacy cycles in &2, and a face of M is a pair of
conjugacy cycles in Zap. If g # I, direct calculation shows that @ (g) = ©(g*) and
®,(g) = @,(g°). Whence,

D 10()] = (T = DIDy(9)

gell,g#1r

and

D 104(2) = (T = DI(Q).

gell,g#1r

Therefore, we get that

X(M) + (T = DI®y(g)l + (I = DI () = [T (M/T).

Whence,

X(M) = (12,(2)] + 1@ (g)]) = N1 (M/T) = (1Du(Q)] + [P £(2)]))-
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Ifx(M/G) = (1Du(g)] + D 4(g)]) = 0, i.e., x(M/T) = |Dy(g)| + | /(g)| = 0, then we get
that g(M) < 1 if M is orientable or g(M) < 2 if M is non-orientable. Contradicts to the
assumption. Therefore, y(M/I") — (|0, (g)| + [P ,(g)) # 0. Whence, we get that

X(M) = (1Dy()l + 1P 4()])
| = L= = Hv, f )
XMIT) = (12u(Q)] + 1P ()]
Notice that [[1, x (M) = ((2)| + |,(2)]) and x(M/G) = (1D(2)] + |/ (g)]) are integers. We
know that the function H(v, f g) takes its maximum value at y(M/T")—(|®,(g)|+|P A(g)]) =
—1 since y(M) < —1. But in this case, we get that

T = @) + |Ds(g) — x(M) = 1 + x(M/T) = x(M).

We divide our discussion into two cases.
Case 1. M is orientable.

Since y(M/T') + 1 = (|@,(g)| + |P(g)]) > 0, we know that y(M/T") > —1. Whence,
x(M/T') =0 or 2. We get that

U] = 1+ x(M/T) = x(M) <3 = x(M) = 2g(M) + 1.

Thatis, Ny. < 2g(M) + 1.
Case 2. M is non-orientable.

In this case, since y(M/I') > —1, we know that y(M/I') = —1,0,1 or 2. Whence,
we get that

I =1+ x(M/T) = x(M) <3 = x(M) = g(M) + 1.
This completes the proof. 0

According to this theorem, we get the following result for the order of an automor-
phism of a Klein surface without boundary by the Theorem 5.3.12, which is even more

better than the results already known.

Corollary 6.5.1 The maximum order of conformal transformations realizable by maps M
on a Riemann surface of genus> 2 is 2g(M) + 1 and the maximum order of conformal
transformations realizable by maps M on a non-orientable Klein surface of genus> 3

without boundary is g(M) + 1.
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The maximum order of an automorphism of map can be also determined by its un-

derlying graph as follows.

Theorem 6.5.3 Let M be a map underlying graph G and let 0,,,,(M, g), 0,,4x(G, g) be the

maximum ovders of orientation-preserving automorphisms in AutM and in Aut 1 G. Then

Omax(M, g) < 0max(G, ),

and the equality holds for at least one such map M underlying graph G.

The proof of the Theorem 6.5.3 will be delayed to the next chapter after we proved

Theorem 7.1.1. By this result, we f nd some interesting conclusions following.

Corollary 6.5.2 The maximum order of orientation-preserving automorphisms of a com-

plete map K,,n > 3 is at most n.

Corollary 6.5.3 The maximum order of orientation-preserving automorphisms of a plane

tree T is at most |T| — 1 and attains the upper bound only if the underlying tree is a star.

§6.6 REMARKS

6.6.1 The lifted graph of a voltage graph (G, o) with o : X 1 (G) — T'is in fact a regular
covering of 1-complex G constructing dependent on a group (I'; o). This technique was
extensively applied to coloring problem, particularly, its dual, i.e., current graph for deter-
mining the genus of complete graph K, on surface. The reference [GrT1] is an excellent
book systematically dealing with voltage graphs. One can also fnd the combinatorial
counterparts of a few important results, such as those of the Riemann-Hurwitz equation
and Alexander’s theorem on branch points in Riemann geometry in this book. Certainly,
the references [Liul] and [Whil] also partially discuss voltage graphs. A similar consid-

eration for non-regular covering space presents the following problem:

Problem 6.6.1 Apply the voltage assignment technique for constructing non-regular cov-

ering of graphs or maps.

6.6.2 The technique of voltage graphs and voltage maps is essentially a discrete realiza-
tion of regular covering spaces with dimensional 1 or 2. Many results on covering spaces

can be found the combinatorial counterparts in voltage graphs or maps. For example,
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Theorem 6.1.1 asserts that if 7 : S — S isa covering projection, then for any arc f in S
with initial point x, there exists a unique lifting arc f? with initial point X, in S.1In voltage

graphs, we know its combinatorial counterpart following.

Theorem 6.6.1 Let W be a walk with initial vertex u € V(G) in a voltage graph (G, o)
with assignment o : X% (G) > I'and g € 1. then there is a unique lifting of W that starts

at ug in G7.

Certainly, there are many such results by f nding the combinatorial counterparts, for
example in voltage graphs or maps for results known in topology or geometry. The book
[MoT1] can be seen as a discrete deal with surface geometry, i.e., combinatorics on sur-
face geometry. These results in Sections 4 and 5 are also such kind results. Generally, a
combinatorial speculation for mathematical science will f nally arrived at the CC conjec-

ture for developing mathematics discussed in the fnal chapter of this book.

6.6.3 For a map (M, o) with voltage assignment o : 2, s(M) — T, it is easily to know
that the group (T';0) is a map group of M action closed in each fber n~!(x) for x €
Zap(M), 1.e., T < AutM?. In this way, one can get regular maps in lifted maps. Such a
role of voltage maps is known in Theorem 6.2.2, which enables one to get regular maps by
voltage assignments. Similarly, the exponent group Ex(A) of map and the construction
of derived map M“* also enables one to f nd more regular maps. The reader is refereed to
[Nedl1] and [NeS1] for its techniques.

6.6.4 Theorem 6.2.5 is an important result related the quotient map with that of voltage
assignment, which enables one to fnd relations between voltage group, Euler-Poincare
characteristic and fxed point sets. Theorems 6.2.6 and 6.2.7 are such results. This theo-
rem is in fact a generalization of a result on voltage graph following, obtained by Gross
and Tucker in 1974.

Theorem 6.6.2 Let o/ be a group acting freely on a graph G and let G be the resulting
quotient graph. Then there is an assignment o of voltages in </ to the quotient graph G
and a labeling of the vertices of G by the elements of V(G) X </ such that G = G” and
that the given action of </ on G is the natural left action of o/ on G°.

6.6.5 For applying ideas of maps to metric mathematics, various metrics on maps are need
to introduce besides angles and non-Euclid area discussed in Section 3. For example,

the length and arc length, the circumference, the volume and the curvature, - - -, which
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needs one to speculate the classical mathematics by combinatorics, i.e., combinatorially

reconstruct such a mathematical science.

6.6.6 We have know that maps can be viewed as a combinatorial model of Klein surfaces
in Chapter 5. Usually, a problem is difficult in Klein surface but it is easy for its counter-
part in combinatorics, such as those in Corollary 6.5.1. Further applying this need us to

solve the following problem.

Problem 6.6.2 Determine these behaviors of Klein surfaces S, such as automorphisms

that can not be realizable by maps M on §.

As we known, there are few results on Problem 6.6.1 in publication. But it is funda-

mental for applying combinatorial technique to metric mathematics.



CHAPTER 7.

Map Automorphisms Underlying a Graph

A complete classif cation of non-equivalent embeddings of graph G on sur-
faces or maps M = (Z,p4, <) underlying G requires to fnd permutation
presentations of automorphisms of G on Z,. For this objective, an alter-
nate approach is to consider the induced action of semi-arc automorphisms
of graph G(M) on quadricells 2, 4. In fact, the automorphism group AutM
= P,

Topics covered in this chapter include a necessary and sufficient characteris-

is nothing but consisting of all such automorphisms g|#=# that &7¢

tic for a subgroup of G being that of map and permutation presentations for
automorphisms of maps underlying a complete graph, a semi-regular graph
or a bouquet. Certainly, these presentations of complete maps or semi-regular
maps can be also applied to maps underlying wheels K; + C, or GRR graphs
of a fnite group (I'; o). All of these permutation presentations are typical ex-
amples for characterizing the behavior of map groups, and can be also applied

for the enumeration of non-isomorphic maps in Chapter 8.
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§7.1 A CONDITION FOR GRAPH GROUP BEING THAT OF MAP

7.1.1 Orientation-Preserving or Reversing. Let G = (V,E) be a connected graph.
Its automorphism is denoted by AutG. Choose the base set of maps underlying G to be
X = E. Then its quadricells 2,z is def ned by

Zop = |Jtx, ax, px, papx),
xeXx

where, K = {1, a, 8, @f} is the Klein 4-elements group. For Yg € AutG, an induced action
gl of g on 2,z is def ned as follows:

ForVx € Zyp, if x =y, then def ne (ax)? = ay, (Bx)? = By and (afx)? = afy.
Let M = (Z.5, <) be a map. According to the Theorem 5.3.8, for an automorphism g €
AutM, letglyon : u — v, u,v € V(M). If u® = v, then g is called an orientation-preserving
automorphism and if u® = v™', such a g is called an orientation-reversing automorphism.
For any g € AutM, it is obvious that g|; is orientation-preserving or orientation-reversing,
and the product of two orientation-preserving or orientation-reversing automorphisms is
orientation-preserving, but the product of an orientation-preserving with an orientation-
reversing automorphism is orientation-reversing.

For a subgroup I' < AutM, defne I'" < T being the orientation-preserving sub-
group of H. Then it is clear that the index of I'* in I" is 2. Let v be a vertex with
v =(x1,X2, ", X)) (@Xp(), - - -, @X2, a@xyp). Denote by (v) the cyclic group generated by v.

Then we get a property following for automorphisms of a map.

Lemma 7.1.1 Let ' < AutM be an automorphism group of map M. Then ¥v € V(M),

(1) If Vg €T, gis orientation-preserving, then I, < (v) is a cyclic group;
2) T, < (v) x<a).

Proof (i) Let M = (Z,p, 7). For any Vg € G, since g is orientation-preserving, we
know that v = v for Vv € V(M), h € T,. Assume

V= (X1, X2, Xpu)(@Xp), AXpy—1, 7+, AXY).

Then

(61, 225+ + s X)) (@X s+ 5 X2, X)) = (X1, X2, 5 Xp) @Xp(r)s * * +» XX, AXY).
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Therefore, if A(x)) = x441, 1 < k < p(v), then

k_ k
h=[(x1,x2, "+, Xpu)(@Xp0)5 AXpy-1, -+ + @Xp)]* = V.

Now if A(x1) = axy0)-r+1, | < k < p(v), then

= [(x1 X2, -5 X)) (@ WXyt - - > axp) e = Ve

But if & = Vo, we know that v = v = v~! i.e., & is not orientation-preserving. Whence,
h=V5 1<k < p(v),ie., every element in I, is a power of v. Let & be the least power of
elements inT',. Then T, = <vf > < (v) is a cyclic group generated by ¢

(2) ForVge G, =v,ie.,

[(x1, X, -+ o, Xp)(@Xp, Xy, -+, @) ] = (1, X, -, X @Xp, Xy, - - -, @),

Similar to the proof of (1), we know that there exists an integer 5,1 < s < p such that

g =V or g =Vv'a. Consequently, g € (v) or g € (V) a, i.e.,
[, < (v x{a). O

Lemma 7.1.2 Let G be a connected graph. If T < Autl’, and Vv € V(G), T, < (v) X (@),
then the action of T on Z, g is [ xed-free.

Proof Choose a quadricell x € 2, 5. We prove that I', = {14;,}. In fact, if g € T,
then x% = x. Particularly, the incident vertex u is stable under the action of g, i.e., u® = u.
Let

u= (X,yl, e ,yp(u)—l)(Q'X, ayp(u)—l9 e 9ayl)a

then because of I', < (u) X (@), we get that

x5 = x,yf =)V, ,yi(u)_l = Vo(u)-1

and
(@x)® = ax, (@) = ayi, -, (@pw-1)° = AWpw)-15

thus for any quadricell e, incident with the vertex u, €5 = e,. According to the def nition

of induced action AutG on 2, 3, we know that

(Bx)2 = Bx, (By1)f = Byis- 5 (BYou)-1)° = BYpw)-1
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and
(aBx)* = apx, (@By1)* = afyr, -, (@BYpu-1)F = ABYpw)-1-

Whence, for any quadricell y € Z, g, if the incident vertex of y is w, then by the connect-
edness of graph G, there is a path P(u, w) = uv;v; - - - vyw connecting the vertices u and
w in G. Not loss of generality, we assume that Sy is incident with the vertex v;. Since
By)¢ = Pyrand Iy, < (v;) X (@), we know that for any quadricell e,, incident with the
vertex vy, €5, = e,,.

Similarly, if a quadricell e,, incident with the vertex v; is stable under the action of g,
ie., (e,)* = e, then we can prove that any quadricell e,,,, incident with the vertex v;;; is
stable under the action of g. This process can be well done until we arrive the vertex w.
Therefore, we know that any quadricell e,, incident with the vertex w is stable under the
action of g. Particularly, we get that 2 = y.

Therefore, g = 1r. Whence, I', = {1} O

7.1.2 Group of a Graph Being That of Map. Now we obtain a necessary and sufficient
condition for a subgroup of a graph being that an automorphism group of map underlying

this graph.

Theorem 7.1.1 Let G be a connected graph. If ' < AutG, then I is an automorphism
group of map underlying graph G if and only if for Vv € V(G), the stabilizer ', < (v)x{a).

Proof According to Lemma 7.1.1(ii), the condition of Theorem 7.1.1 is necessary.
Now we prove its sufficiency.

By Lemma 7.1.2, we know that the action of I on Z, 4 is fxed-free, i.e., for¥x €
Zops Tyl = 14;,. Whence, the length of orbit of x under the action of T"is |x"| = [['[|x"| =
I, i.e., for Vx € 2,4, the length of orbit of x under the action of I' is |I'.

Assume that there are s orbits Oy, O, - - -, O, in V(I') under the action of I', where,

O1 = {ur, up, -+, g,
Oy ={vi, vy, -+, vih,
.................. ,
O = {w,wa, -, wi}.

We construct a conjugatcy permutation pair for every vertex in the graph G such that their
product & is stable under the action of T".
Notice that for Yu € V(G), because of [I'| = |[,|ju"|, we know that [k, /,-- -, ¢] | |T].
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First, we determine the conjugatcy permutation pairs for each vertex in the orbit O;.
m—1

Choose any vertex u; € O;. Assume that the stabilizer I',, is {1 2, g1, 281, > [1 u-i}s
i=1

where, m = |I',,| and the quadricells incident with vertex u; is N(u;) in the graph G. We

arrange the elements in ]V(\LZ ) as follows.

Choose a quadricell u{ € ]\//(\uT ). We apply I',, action on u{ and auf, respectively.

m—1
Then we get a quadricell set 4; = {u{, g1 (u{), -+, [ gn-i(u})} and a4, = {au], agi(uf), -,
i=1
m—1
a [] gu-i(u])}. By the defnition of a graph automorphism action on its quadricells, we
i=1

m—1
know that 4, (" @4, = (. Arrange the elements in 4, as Zl) =uf, g}, -+, [1 gn-i(uf).
i=1
If ]7(;1/ )\ 4 Jad, = 0, then the arrangement of elements in W) is Zl) If
]V(\LZ) \ A1 Jad; # 0, choose a quadricell ui’ € W) \ 4, JaA,. Similarly, apply-

m—1
ing the group I, acts on u?, we get that 4, = {u},g (), -, 11:[1 gn-i(u?)} and ad, =

m—1
{au’l’, a/gl(u}f), S Hl gm_i(u’f)}. Arrange the elements in 4, | 4, as

5 m—1 m—1
4 U Az = uf, g1(u), -+, ]—[ gn-iu); u, 1), l_[ gn-i(t}).
i=1 i=1

Ifﬁ(\uT)\(Al U A4, Jad, Jad,) = 0, then the arrangement of elements in 4, | 4, is
Ay U A,. Otherwise, ]V(\L; N4 U A Jad, | ad,) # 0. We can choose another quadri-
cell u{ € ]V(\LZ )\ (41 UA4r U ad; U ad,). Generally, If we have gotten the quadricell sets
Ay, Az, -+, Ary 1 < 7 < 2k, and the arrangement of element in them is A4, U A U e U A,,
ifNwu)\ (A4 U4, U---UA,Jad, Jad, | ---|Jad,) # 0, we can choose an element
ul € ]V(\uT) \A U4 J---UA4, Jad, Jad, - - ad,) and def ne the quadricell set

-1
A1 = {ugll, 81 (ui{)’ ) gm—l(ugll)}

14

3

l
—

m—1
dy = e, agi@), - o | [ gniwh)
i=1

and the arrangement of elements in 4, is

m—1

—

Ay = uil, gl(ugll)’ M) | | gm—l(uil)
i=1
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r+1
Now def ne the arrangement of elements in [ 4; to be
J=1

Whence,

k k
N(uy) = (U 4;) U(“ U 45)
J=1 J=1

247

and Ay is obtained by the action of the stabilizer I, on u{. At the same time, the arrange-

k
k P
ment of elements in the subset ( J 4; of N(u;) to be U A;.
J=1 =
J=1

We def ne the conjugatcy permutation pair of the vertex u; to be
0u = (O)aC '),

where,

m—1 m—1 m—1
RN ACHN-TCNERNSTCOREEN [ (CON B (G [ ()
i=1 i=1 i=1

For any vertex u; € Oy, 1 <i < k, assume that 4(u;) = u;, where 4 € G, we def ne the

conjugatcy permutation pair g,, of the vertex u; to be
0y = 0, = (C)(@C ™).

Since O is an orbit of the action G on V' (I'), then we get that

k k
(n Qu,‘)r = l—[ Qu,“
i=1 i=1

Similarly, we can defne the conjugatcy permutation pairs o, ,0y,," ", Oy *

Owy» " * +» Ow, Of vertices in the orbits O, - - -, O;. We also have that

! /
(l—[ QW)F = l—[QW'
i=1 i=1

“’le’
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Now def ne the permutation

k ! t
2 = ([ |ew) x| o) x---x ([ Jow)
i=1 i=1 i=1

Since all Oy, Os, - - -, Oy are the orbits of V(G) under the action of I, we get that

k / t

([ [ (| [ > x(] Jewr
i=1 i=1 i=1
k / t

(l—[Qu,) X (l_lQVi) XX (l_lQWi) =Z.
i=1 i=1 i=1

Whence, if let map M = (Z,4, &?), thenT is an automorphism of M. U

For the orientation-preserving automorphisms, we know the following result.

321"

Theorem 7.1.2 Let G be a connected graph. If T < AutG, then I is an orientation-
preserving automorphism group of map underlying graph G if and only if for Vv € V(G),

the stabilizer I, < (v) is a cyclic group.

Proof According to Lemma 7.1.1(7), we know the necessary. Notice that the ap-
proach of construction the conjugatcy permutation pair in the proof of Theorem 7.1.1 can
be also applied in the orientation-preserving case. We know that I" is also an orientation-

preserving automorphism group of map M. 0

Corollary 7.1.1 For any positive integer n, there exists a vertex transitive map M un-
derlying a circultant such that Z, is an orientation-preserving automorphism group of
M.

By Theorem 7.1.2, we can prove the Theorem 6.5.3 now.

The Proof of Theorem 6.5.3

Since every subgroup of a cyclic group is also a cyclic group, we know that any cyclic
orientation-preserving automorphism group of the graph G is an orientation-preserving

automorphism group of a map underlying I by Theorem 7.1.2. Whence, we get that

Omax(M, ) < 01ax(G, Q). O

Note 7.1.1 Gardiner et al. proved in [GNSS1] that if add an additional condition in The-
orem 7.1.1, i.e, I is transitive on the vertices in G, then there is a regular map underlying

the graph G.
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§7.2 AUTOMORPHISMS OF A COMPLETE GRAPH ON SURFACES

7.2.1 Complete Map. A map is called a complete map if its underlying graph is a
complete graph. For a connected graph G, the notations E9(G), EY(G) and EX(G) denote
the embeddings of I" on the orientable surfaces, non-orientable surfaces and locally sur-
faces, respectively. For Ve = (u,v) € E(G), its quadricell Ke = {e, ae, Be, afe} can be
represented by Ke = {u"*, u"~, v** v~}

Let K, be a complete graph of order n. Label its vertices by integers 1,2, - - -, n. Then
its edge setis {ij|1 <i,j <nm,i# jij = ji}and

ZapK) =7 1 <ij<miz jH| Jim 10 j<ni# ),

o= [] @i,

1<i j<n,i#]
B = ]—[ (ij+, ij+)(ij_, ij_).
1<i j<n,i#]
We determine all automorphisms of complete maps of order » and f nd presentations
for them in this section.
First, we need some useful lemmas for an automorphism of map induced by an

automorphism of its underlying graph.

Lemma 7.2.1 Let G be a connected graph and g € AutG. If there is a map M € EX(G)
such that the induced action g* € AutM, then for ¥Y(u,v), (x,y) € E(G),

[5@), EW)] = [E(x), B()] = constant,

where, [¥(w) denotes the length of the cycle containing the vertex w in the cycle decompo-

sition of g.

Proof According to the Lemma 6.2.1, we know that the length of a quadricell u"* or
u”~ under the action g* is [/4(u), [2(v)]. Since g* is an automorphism of map, therefore, g*

is semi-regular. Whence, we get that
[5(u), B(v)] = [5(x), I5(y)] = constant. O

Now we consider conditions for an induced automorphism of map by that of graph

to be an orientation-reversing automorphism of map.

Lemma 7.2.2 If éa is an automorphism of map, then éa = aé.
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Proof Since £a is an automorphism of map, we know that
(Ea)a = a(éa).
That is, éa = aé. U

Lemma 7.2.3 If¢ is an automorphism of map M = (2,5, P), then Ea is semi-regular on
Zop with order o(€) if o(¢) = 0(mod2) and 20(€) if o(¢) = 1(mod?2).

Proof Since £ is an automorphism of map by Lemma 7.2.2, we know that the cyclic

decomposition of ¢ can be represented by
§= l_l(xl,xz, s X (@Xy, X, - Xy,
k

where, [ [, denotes the product of disjoint cycles with length £ = o(¢).
Therefore, if k£ = 0(mod2), then
fa = l_[(xl,axz,xs, S, @Xg)

k
and if k£ = 1(mod2), then

é:a'/ = l_l(xl9 AXp, X3, " 00y Xfp, XX, X, XX3, 00 0, a’.Xk).
2k
Whence, £ is semi-regular acting on 2, 4. O

Now we can prove the following result for orientation-reversing automorphisms of

maps.

Lemma 7.2.4 For a connected graph G, let K be all automorphisms in AutG whose
extending action on Z,5 X = E(G) are automorphisms of maps underlying graph G.
Then for V¢ € K, o(¢*) = 2, & a € K if and only if o(¢7) = 0(mod?2).

Proof Notice that by Lemma 7.2.3, if £ is an automorphism of map underlying
graph G, then £*a is semi-regular acting on 2, .
Assume £ is an automorphism of map M = (2,4, &?). Without loss of generality,
we assume that
P =CCy---Cy,

where,C; = (xi1, Xn, -+, X;;,) is a cycle in the decomposition of &y and x; = {(¢'!, €2,

ey (e, ae, - -, ae?)} and.

§|E(G) = (e1, €12, -, esl)(e2l, €22, ", e2sz) ~-(en,ep, -, els;)-
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and
& =CaC'a),
where, C = (ejj, e, -+, e )€, en, . exy,) - (en,en, -+, ey). Now since £ is an
automorphism of map, we get that s, = 5, = --- = 5, = 0(£*) = s.
If o(¢*) = 0(mod2), defne a map M* = (Z, 5, &) with
P =CC--C,
where, C7 = (x]}, x5, ~-,x:.‘ji), x;, = {(e}}. ey, ~~,eftl_)(aej1,ae;i,---,ej.‘z)} and e:.‘j = ey

Take € = epg if ¢ = 1(mod2) and e = aepy if ¢ = 0(mod2). Then we get that M*® = M.

Now if 0(¢*) = 1(mod2), by Lemma 7.2.3, o(&*@) = 20(¢7). Therefore, any chosen
quadricells (¢!, €2, - - -, ') adjacent to the vertex x;; fori = 1,2, -, n, where, n = |G|, the
resultant map M is unstable under the action of £éa. Whence, &« is not an automorphism

of map underlying graph G. 0

7.2.2 Automorphisms of Complete Map. We determine all automorphisms of complete
maps of order n by applying the previous results. Recall that the automorphism group of

K, is the symmetry group of degree n, that is, AutK, = Sy,).

Theorem 7.2.1 All orientation-preserving automorphisms of non-orientable complete

maps of order n > 4 are extended actions of elements in
8[5’31 ] ) 8 nA—l

and all orientation-reversing automorphisms of non-orientable complete maps of order

n > 4 are extended actions of elements in

a& a& Q’S[l,l,z],

[29)%7° [(2s) % ik

where, &y denotes the conjugatcy class containing element 0 in the symmetry group of

degree n.

Proof First, we prove that an induced permutation £&* on a complete map of order
n by an element £ € Sy, is a cyclic order-preserving automorphism of non-orientable

map, if and only if
e Ssg US[I,S%]'
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Assume the cycle index of £ is [1%1,2%, ... n*]. If there exist two integers k;, k; # 0

and i, j > 2,i # j, then in the cyclic decomposition of &, there are two cycles
(ur,uzy .u;) and  (vi,vo, ..., v)).

Since

[F(u), Eu)] =i and  [F(v),Em)] =)

and i # j, we know that £ is not an automorphism of embedding by Theorem 5.3.8.
Whence, the cycle index of & must be the form of [1, s/].

Now if k£ > 2, let (u), (v) be two cycles of length 1 in the cycle decomposition of &.
By Theorem 5.3.8, we know that

[F(u), E)] = 1.

If there is a cycle (w, ...) in the cyclic decomposition of ¢ whose length greater or equal to

2, we get that
[ (u), F(w)] = [1, E(W)] = E(w).

According to Lemma 7.2.1, we get that /(w) = 1, a contradiction. Therefore, the cycle

index of & must be the forms of [s'] or [1, s']. Whence, s/ = n or s/ + 1 = n. Calculation

shows that / = % or [ = % That is, the cycle index of & is one of the following three
types [17], [1, s"%] and [s+] for some integer s > 1.

Now we only need to prove that for each element & in 8[ L and STy there exists
an non-orientable complete map M of order n with the induced permutation &* being its
cyclic order-preserving automorphism of surface. The discussion are divided into two

cases.
Case 1. &€&,

Assume the cycle decomposition of & being & = (a,b,---,¢)---(x,y,---,2) - (u,,
---,w), where the length of each cycleiskand 1 < a,b,---,c,x,y, -, z,u,v,---,w < n.

In this case, we construct a non-orientable complete map M; = (X Clyﬁ, #1) by def ning

Ly =1 1< j<niGH | J@ 1 <ij<ni# ),

P = [ (CENC) ' a),

XE{@,D, .y XY, 2,1V, W
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where
C(x) = (x‘”,---,xx*,---,x“*,x’”,xy*,---,---,x”,x”,---,x“,---,x‘”),
x** denotes an empty position and
a,c(x)—la,:(xa—,xw—,...,xz—,...,xc—,xv—,...,x X T, ).

It is clear that M f* = M,. Therefore, £ is an cyclic order-preserving automorphism
of map M,.
Case 2. 568[1 5

We assume the cyclic decomposition of & being that

E=(ab,...c)..(x,p,...2)...(u, v, ..., w)(1),

where, the length of each cycle is & beside the fnal cycle, and 1 < a,b...c,x,y...,z,

u,v,...,w,t < n. In this case, we construct a non-orientable complete map M, = ( %Izﬁ, )
by def ning
2=t i j<niz | @1 <ij<ni# ),
Py = (A)(ad™) 1_[ (Cx))aC(x)" ),
x€{a,b,....Cr....X,),..ZU,V,..., W}
where

A= 0, O T L L),
ad o = (7, T T, T, T T, L),
a+ X% u+ b+ + v+ c+ + w+
Clx) = (X", X X, X, L2, X, L x T, L X, LX)

and

ozC(x)_loz = (X, X, X, X, X, P o)

It is also clear that Mg = M,. Therefore, £* is an automorphism of a map M, .
Now we consider the case of orientation-reversing automorphisms of complete maps.
According to Lemma 7.2.4, we know that an element £a, where & € Sy, 1s an orientation-

reversing automorphism of complete map only if,

teé

n-n

KT .0 ]
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Our discussion is divided into two parts.

Case 3. n; =n.

Without loss of generality, we can assume the cycle decomposition of & has the

following form in this case.
E=,2,-- k) k+ L, k+2,---2k)---(n—k+1,n—k+2,---,n).

Subcase 3.1 & = 1(mod2)and k > 1.

According to Lemma 7.2.4, we know that £*« is not an automorphism of map since
o(¢*) = k = 1(mod2).
Subcase 3.2 &k = 0(mod2).

Construct a non-orientable map Mz = (273, 923), where X°> = E(K,) by

B’
Zy= [ ] Coyech)'e),
i€f1,2,n}
where if i = 1(mod2), then
C(i) — (i1+, ik+1+, e l-n—k+1+, i2+, e l-n—k+2+, . l-z'*, e ik+, i2k+, e in+),

aCi) o =G, 2L, T

and if i = 0(mod2), then
: q- ktl- —k+l- 2 —k+2— i Je— 2k -
C(l) o (l . l . DT . ln . l . DT . ln . ... . ll*’ DT . l . l . DT . ln )’

a{C(l)—la — (i1+, l-n+, cee i2k+, ik+, cee ik+1+),

where, i denotes the empty position, for example, (2', 2%, 23,24,2%) = (2!,23,24,2%). It
is clear that 95" = I, that is, £« is an automorphism of map M;.

Case 4. ny # n.

Without loss of generality, we can assume that

E = (L2, k)k+Lk+2,---m)--(m—k+1,ny—k+2,---,n)
X (m+1,nm+2,---,n+2k)m +2k+1,---,ny+4k)---(n-2k+1,---,n)

Subcase 4.1 £ = 0(mod2).
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Consider the orbits of 12" and n; + 2k + 1'* under the action of (£a), we get that
lorb((1°7)7)| = k

and
lorb(((ny + 2k + 1)) = 2k.

Contradicts to Lemma 7.2.1.

Subcase 4.2 &k = 1(mod2).

In this case, if £ # 1, then k£ > 3. Similar to the discussion of Subcase 3.1, we know

that £« is not an automorphism of complete map. Whence, £ = 1 and
f c 8[1)11’2)12]_
Without loss of generality, assume that
E=)Q2)-(n)(m + Lng +2)(ny +3,n +4) - (n1 +ny — 1,y + na).
If n, > 2, and there exists a map M = (£, 4, &), assume a vertex v, in M being
vy = (111z+, 1113+, . 111"+)(1112_, 111,1—, . 1113—)
where, [}; € {+2,-2,+3,-3,---,+n,—n}and [}; # [,; if i # j. Then we get that
(Vl)é’d = (1112—, 1113—, . llln_)(1112+, llln+, . 1113+) V.

Whence, &éa is not an automorphism of map M, a contradiction. Therefore, n, = 1.
Similarly, we can also get that n; = 2. Whence, & = (1)(2)(34) and n = 4. We construct a

stable non-orientable map M, under the action of £aby def ning
My = (2,50 Pa),
where,
Py = (12,13, 1)1, 23+ 2431+, 32+ 34) 41+ 42+ 4%)
X (177,17, P2, 24,2 (31,3%,3)@!,4°7,47).

Therefore, all orientation-preserving automorphisms of non-orientable complete maps

are extended actions of elements in
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and all orientation-reversing automorphisms of non-orientable complete maps are ex-

tended actions of elements in

Q’S[ a& 08[1,1,2] .

@9)%] [25)5]

This completes the proof. 0

According to the Rotation Embedding Scheme for orientable embedding of a graph,
presented by Heffter frstly in 1891 and formalized by Edmonds in [Edm1], an orientable
complete map is just the case of eliminating the sign + and - in our representation for
complete maps. Whence, we get the following result for automorphism of orientable

complete maps.

Theorem 7.2.2 All orientation-preserving automorphisms of orientable complete maps

of order n > 4 are extended actions of elements in

8 8 n—1

5517 s

and all orientation-reversing automorphisms of orientable complete maps of order n > 4

are extended actions of elements in

a& a&

[(23)%], [(2s)%]’ 018[1,1,2],

where, &y denotes the conjugatcy class containing 0 in S yx,).

Proof The proof is similar to that of Theorem 7.2.1. For completion, we only need
to construct orientable maps Ml.O,i = 1,2,3,4 to replace non-orientable maps M;,i =
1,2, 3,4 in the proof of Theorem 7.2.1. In fact, for orientation-preserving cases, we only
need to take MIO, M20 to be the resultant maps eliminating the sign + and - in M, M,
constructed in the proof of Theorem 7.2.1. For the orientation-reversing cases, we take
M = (E(K,)ap, 29) with

7= || @
ief1,2,-n}
where, if i = 1(mod2), then
C(i) = (i), ket 2 k2 ek gk

and if i = 0(mod2), then

AN B 23 | n—k+1 2 n—k+2 oIk k 2k 1\~ 1
C(l)—(l,l AR Y A I AT A ,"',Z) N
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where i denotes the empty position and MY = (E(K4)a 5, P4) with
94 — (12, 13, 14)(21,23, 24)(31’ 34, 32)(41,42’43).

It can be shown that (M?)¥* = M? fori =1,2,3 and 4. O

§7.3 MAP-AUTOMORPHISM GRAPHS

7.3.1 Semi-Regular Graph. A graph is called to be a semi-regular graph if it is simple
and its automorphism group action on its ordered pair of adjacent vertices is fxed-free,
which is considered in [Maol] and [MLT1] for enumerating its non-equivalent embed-
dings on surfaces. A map underlying a semi-regular graph is called to be a semi-regular
map. We determine all automorphisms of maps underlying a semi-regular graph in this
section.

Comparing with the Theorem 7.1.2, we get a necessary and sufficient condition for

an automorphism of a graph being that of a map.

Theorem 7.3.1 For a connected graph G, an automorphism & € AutG is an orientation-
preserving automorphism of non-orientable map underlying graph G if and only if ¢ is

semi-regular acting on its ordered pairs of adjacent vertices.

Proof According to Theorem 5.3.5, if £ € AutG is an orientation-preserving auto-
morphism of map M underlying graph G, then ¢ is semi-regular acting on its ordered pairs
of adjacent vertices.

Now assume that £ € AutG is semi-regular action on its ordered pairs of adjacent
vertices. Denote by &ly6), €le@), the action of & on V(G) and on its ordered pairs of

adjacent vertices, respectively. By conditions in this theorem, we can assume that

flV(G)=(a,b,---,c)-"(g,h,---,k)---(x,y,---,z)
and
§|E(G)ﬂ :Clclcm,

Where, let Sq = |{aa ba T, C}l, RS Sg = |{ga ha ) k}|7 e, Sy = |{x’y3 e aZ}ly then Salc(a)l =
o= 8,|C(g)| = -+ - = 5¢C(x)], and C(g) denotes the cycle containing g in €|y and

Cl :(al,bl,...,cl,az,bz,...,cz,...,asa’bsa,...’csa),
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— 1,1 1 2 .2
Cm_(x ,y’...’Z’...’x’y’...’Z,...,x

Now for V&, & € AutG, we construct a stable map M = (2,5, &) under the action
of & as follows.
X=E)

and

7=]]]€oach.

geT! xeC(®)

Assume that u = £/(g), and

NG(g) = {gZI’gzz""’ng}-

Obviously, all degrees of vertices in C(g) are same. Notices that &y, 1S circular acting
on Ng(g) by Theorem 7.1.2. Whence, it is semi-regular acting on Ng(g). Without loss of

generality, we assume that

leg(g) — (gzl’gZZ, . ,gzs)(gzs+l’gzs+2’ . ’gzz,r) . (gz(k—l)ﬁl,gz(k—l)ﬁZ, . ’gzks),

where, [ = ks. Choose

Cg — (g21+,gzs+1+, - ,gz(k—1)5-+1+’g22+’gzs+z+’ . ’gzs+’gzzs’ . ’gzkﬁ)_

Then,
Cx — (le+, xzs+1+, . xz(k—l)s+1+’ xZ”, st+2+’ e st+, xzzs, e xzks"'),

where,
X = (g,
fori=1,2,---,ks. and

a,c;l — (a,le+, a,xzs+1+, . axz(kfl)ﬁl*" a,xzs+, a,szs’ e a,kaﬁ)'

Immediately, we get that M* = &éM&! = M by this construction. Whence, & is an

orientation-preserving automorphism of map M. 0



Sec.7.3 Map-Automorphism Graphs 259

By the rotation embedding scheme, eliminating @ on each quadricell in Tutte’s rep-
resentation of embeddings induces an orientable embedding underlying the same graph.
Since an automorphism of embedding is commutative with a and S, we get the follow-
ing result for the orientable-preserving automorphisms of orientable maps underlying a

semi-regular graph.

Theorem 7.3.2 If G is a connected semi-regular graph, then for V¢ € AutG, & is an

orientation-preserving automorphism of orientable map underlying graph G.

According to Theorems 7.3.1 and 7.3.2, if G is semi-regular, i.e., each automor-
phism acting on the ordered pairs of adjacent vertices in G is f xed-free, then every auto-
morphism of graph G is an orientation-preserving automorphism of orientable map and

non-orientable map underlying graph G. We restated this result in the following.

Theorem 7.3.3 If G is a connected semi-regular graph, then for V¢ € AutG, & is an
orientation-preserving automorphism of orientable map and non-orientable map under-

lying graph G.

Notice that if ¢* is an orientation-reversing automorphism of map, then ¢*a is an
orientation-preserving automorphism of the same map. By Lemma 7.2.4, if 7 is an auto-
morphism of map underlying a graph G, then ta is an automorphism of map underlying
this graph if and only if o(r) = 0(mod2). Whence, we have the following result for

automorphisms of maps underlying a semi-regular graph

Theorem 7.3.4 Let G be a semi-regular graph. Then all the automorphisms of orientable
maps underlying graph T are

2% and ah|”**, g, h € AutG with o(h) = 0(mod2).
and all the automorphisms of non-orientable maps underlying graph G are also

g% and ah|”**, g, h € Autl’ with o(h) = 0(mod2).

Theorem 7.3.4 will be used in Chapter 8 for the enumeration of maps on surfaces
underlying a semi-regular graph.
An circulant transitive graph of prime order is Cayley graph Cay(Z, : §), B.Alspach

completely determined its automorphism group as follows([Als1]):
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IfS =0, 0rS =7, then Au(Cay(Z, : S)) = ., the symmetric group of degree p,
otherwise,
Aut(Cay(Z, : ) ={Tupla € Hb € Z}},
where T, is the permutation on Z,, which maps x to ax+b and H is the largest even order

subgroup of Z,, such that S is a union of cosets of H.

We get a corollary from Theorem 7.3.4 for circulants of prime order.

Corollary 7.3.1 Every automorphism of a circulant graph G, not be a complete graph,
with prime order is an orientation-preserving automorphism of map underlying graph G

on orientable surfaces.

Proof According to Theorem 7.3.4, we only need proving that each automorphism
6 = ax + b of the circulant graph Cay(Z, : §), Cay(Z, : S) # K" is semi-regular acting
on its order pairs of adjacent vertices, where p is a prime number. Now for an arc g°¢ =

(g,sg) € A(Cay(Z, : S)), where A(G) denotes the arc set of the graph I', we have that

(€)' = (ag + b)s*;
(gsg)(?z = (a(ag + b) + b)a(asg+b)+b — (aZg +ab+ b)azsg+ab+b;

(a) - - o(a) o(@)-1p 4 go@=-2p4 ...
(gcg)é)” — (ao(a)g+ ao(a) lb + ao(a) 2b 4ot b)a sg+a b+a b+--+b
o@p — 1 o(a)
_ o(a) a "D ggr bzl oo
= a + — a-1 = s
(@ g+ ———7)

where o(a) denotes the order of a. Therefore, 6 is semi-regular acting on the order pairs
of adjacent vertices of the graph Cay(Z, : S). 0

For symmetric circulant of prime order, not being a complete graph, Chao proved
that the automorphism group is regular acting on its order pairs of adjacent vertices([Chal]).

Whence, we get the following result.

Corollary 7.3.2 Every automorphism of a symmetric circulant graph G of prime order
p, G # K,, is an orientation-preserving automorphism of map on orientable surface

underlying graph G.

Now let s be an even divisor of ¢ — 1 and » a divisor of p — 1. Choose H(p,r) =< a >
, 1 € Z, be such that t? € —H(p, r) and u the least common multiple of » and the order of

tin Z,. The graph G(pg;r, s, u) is def ned as follows:
V(G(pg; 1, s,u)) = Z, X Z, = {(i, X)|i € Z,,x € Z,}.
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E(G(pgq;r, s,u)) = {((i.x),(j,y)Al € Z*such that j —i = @',y — x € ' H(p, r)}.

It is proved that the automorphism group of G(pgq;r, s, u) is regular acting on the
ordered pairs of adjacent pairs in [PWX1]. By Theorem 7.3.4, we get the following

result.

Corollary 7.3.3 Every automorphism of graph G(pq; r, s, u) is an orientation-preserving

automorphism of map on orientable surface underlying graph G(pq;r, s, u).

7.3.2 Map-Automorphism Graph. A graph G is a map-automorphism graph if all
automorphisms of G is that of maps underlying graph G. Whence, every semi-regular
graph is a map-automorphism graph. According to Theorems 7.1.1-7.1.2, we know the

following result.

Theorem 7.3.5 A4 graph G is a map-automorphism graph if and only if for Vv € V(G),
the stabilizer (AutG), < (v) X ().

Proof By defnition, G is a map-automorphism graph if all automorphisms of G
are automorphisms of maps underlying G, i.e., AutG is an automorphism group of map.
According to Theorems 7.1.1 and 7.1.2, we know that this happens if and only if for
Yv € V(G), the stabilizer (AutG), < (v) X {a). O

We therefore get the following result again.

Theorem 7.3.6 Every semi-regular graph G is a map-automorphism graph.

Proof In fact, we know that (AutG), = 1y < (v) X {a@) for a semi-regular graph G.
By Theorem 7.3.5, G is a map-automorphism graph. 0

Further application of Theorem 7.3.6 enables us to get the following result for vertex

transitive graphs.

Theorem 7.3.7 A Cayley graph X = Cay(I" : S) is a map-automorphism graph if and
only if (AutX),. < (S), where (S) denotes a cyclic permutation on S. Furthermore, there
is a regular map underlying Cay(I' : §) if (AutX);. < (5).

Proof Notice that a Cayley graph Cay(I" : ) is transitive by Theorem 3.2.1. For
Vg, h € V(Cay( : S)), such a transitive automorphismis t = g ' oh : g — h. We
therefore know that (AutX), ~ (AutX), for g,h € V(Cay(I' : §)). Whence, X is a map-
automorphism graph if and only if (AutX),. < (') by Theorem 7.3.6. In this case, there is
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a regular map underlying Cay(I" : S') was verif ed by Gardiner et al. in [GNSS1], seeing
Note 7.1.1. O

Particularly, we get the following conclusion for map-automorphism graphs.
Corollary 7.3.4 A GRR graph of a f nite group (I'; o) is a map-automorphism graph.

Corollary 7.3.5 A Cayley map Cay" (T : S,r) is regular if and only if there is an auto-

morphism T € Autl’ such that t|s = r.

Proof This is an immediately conclusion of Theorems 5.4.7 and 7.3.7. O

A few map-automorphism graphs can be found in Table 7.3.1 following.

G AutG | Map-automorphism Graph?
P, 2 Yes
Ca D, Yes
P, X Py | Zy X2, Yes
C,xXxPy, | D, X2, Yes
Table 7.3.1

§7.4 AUTOMORPHISMS OF ONE FACE MAPS

7.4.1 One-Face Map. A one face map is such a map just with one face, which means
that the underlying graph of one face maps is the bouquets. Therefore, for determining
the automorphisms of one face maps, we only need to determine the automorphisms of
bouquets B, on surfaces. There is a well-know result for automorphisms of a map and its
dual in topological graph theory, i.e., the automorphism group of map is the same as its
dual.

A map underlying graph B, for an integer n > 1 has the form 8, = (2,4, &,) with
X =E(B,) ={e,e,--,e,} and

'@n = (X1,X2, Tt ,X2n)(a'.X1, aX2py° ,X2),

where, x; € X, X or ¢fX and satisfying Axioms 1 and 2 in Section 5.2 of Chapter 5. For

a given bouquet B, with n edges, its semi-arc automorphism group is

Aut, B, = S,[S].
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From group theory, we know that each element in §,[S,] can be represented by (g; 41, &,
<o hy)withge §,and h; € S, ={1,aB}fori = 1,2,---,n. Theactionof (g; Ay, hy, -~ -, hy)
on a map B, underlying graph B, by the following rule:

If x € {e;, ae;, Be;, afe;}, then (g; hy, hy, - - -, hy)(x) = g(hi(x)).
For example, if h; = af, then, (g; hy, ha, -, hy)(er) = aBg(er), (g;hi, hay -, hy)(aer)

= Bg(er), (g5 hy, ha, - -+, hy)(Ber) = agler) and (g; 7y, ha, - -, hy)(eBer) = gley).
The following result for automorphisms of a map underlying graph B, is obvious.

Lemma 7.4.1 Let (g; hy, hy, - -, hy,) be an automorphism of map B, underlying a graph
B,. Then
(ga hla h29 Y hn) = (X1, X2y eees X2n)k

and if (g; hy, hy, - - -, hy)a is an automorphism of map B,, then
(g5 s oy ) = (X1, X2, -+, X0)*

for some integer k,1 < k < n, where x; € {ej, ey, --,e,}, i = 1,2,---,2n and x; # x; if
i # ]
7.4.2 Automorphisms of One-Face Map. Analyzing the structure of elements in group

S.[S2], we get the automorphisms of maps underlying graph B, by Theorems 7.3.1 and
7.3.2 as follows.

Theorem 7.4.1 Let B, be a bouquet with n edges e; fori = 1,2, ---,n. Then the automor-
phisms (g; hy, hy, - - -, hy,) of orientable maps underlying B, for n > 1 are respectively

(01) geg[k%]’ hi = l’i: 192""”/1;
nlk
(02) g€ S[k%] and if g = l_l(il’iz""ik)’ wherei; € {1,2,---,n},n/k = 0(mod2),

i=1
then h; = (1,aB),i=1,2,---,7and h;, = 1 for j > 2;
(n—2ks)/2k

2s
(03) g € a[kzx’(Zk)n—ﬁks] and if g = l—[(il,ig,"'ik) l_l (ej,ej,, ", ej,), where
i=1 j=1

ij,e;, € {1,2,---,n}, then h;, = (1,aB), i = 1,2,---,5,h; = 1 forl > 2 and h; =
1 fort=1,2,---,2k,

and the automorphisms (g; hy, hy, - - -, h,) of non-orientable maps underlying B, for n > 1

are respectively

(Nl) geg[k%]’ hi: l,l: 1323“"”;
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nlk
(N2) g€ S[k%] andif g = l_l(il’iz’ --+1), wherei; € {1,2,---,n},n/k = 0(mod2),
i=1
then 4;, = (1, ap), (1, B) with at least one h;,, = (1,p) fori = 1,2,---, 7 and h;, = 1 for j >

2;
(n—2ks)/2k

2s
8[/@? 2™ and if g = l_l(ll,lz,"'lk) l—[ (ej,,ej,, "+, ej,), where

J=1

ije;, € {1,2,---,n}, then h; = (l,a,B),(_l,,B) with at least one h;,, = (1,p) fori =
1,2,---,sand h; = 1 forl > 2and h;, = 1, t = 1,2,---,2k, where &y denotes the

conjugacy class in symmetry group S y(g,) containing the element 6.

(N3) g €

Proof By the structure of group S,[S,], it is clear that the elements in the cases
(1),(2) and (3) are all semi-regular. We only need to construct an orientable or non-
orientable map B, = (Z,z, &, underlying B, stable under the action of elements in

each case.
nlk
(1) g= ]_[(il,iz,.--ik) and h; = 1,i=1,2,---,n, where i; € {1,2,---,n}.
i=1

Choose
nlk

CY,B_UKZI’Z2’ ) 9

where K = {1, @, 8, @B} and
P} = Ci(aCi'a™)

with
n n n
Cl :( 11’ 21,"',(%)1,alﬁ11,(1'ﬁ21,"’,Q’B(%)],12,22,”’,(%)2,
n n n
QBIZ’ a,ﬁ22’ Y aB(%)Za Y lka 2k’ Y (%)k’ Olﬁlk, Olﬁlk, e 9aﬁ(%)k)

Then the map B, = (£ ﬁ,
the action of (g; iy, hy, - - -, hy).

1) is an orientable map underlying graph B, and stable under

For the non-orientable case, we chose
n n n
= 1.2 o (= 1B o B(=)1. 1.2 o e (=
Ci= (12 BB B T2 2 (D,
n n n
B129B227“'7ﬁ(l_€)27“'71k72k7""(%)kaﬁlkaﬁllm“"ﬁ(l_c)k)-

Then the map B! = (Z aﬁ’
under the action of (g; &1, hy, - - -, hy).

1) is a non-orientable map underlying graph B, and stable
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nlk
) g = l—[(il,i2,---ik), hi = (1,B) or (1,aB),i = 1,2,---,n, = 0(mod2), where

i=1

i;e{l,2,---,nk
Ifh;, = (l,eB) fori=1,2,---,%and ; = 1 for t > 2, then

nlk

(ga hl’ hz, et ,hn) = l—[(il’ a/Bi29 o 'a[ﬁika aﬁila i2’ S lk)

i=1
Similar to the case of (1), let 2}, = 25 and

Pr= CyaCyla™)
with
n n
C2 = (1 1s 213 Tty (%)19 a[BIZs a’B22, Tty a’ﬁ(%)29 alBlk9 aﬁ2k3

n n n n
s afﬁ(%)ka aﬁlls aﬁzls T 90'/18(%)19 123 229 Y (%)23 Y 1k3 2k3 Y (%)k) .

Then the map B; = (2,5, &;) is an orientable map underlying graph B, and stable under
the action of (g; &y, hy, - - -, h,). For the non-orientable case, the construction is similar.
Now it only need to replace each element o3i; by that of Si; in the construction of the
orientable case if h;, = (1, ).

2s (n—2ks)/2k
@) g=[[Grin-i) [] (eroemren)and by = (1Lap), i = 1,2,---,5,
i=1 j=1

h,=1for/>2andh; =1fort=1,2,---,2k.

In this case, we know that

s (n—2ks)/2k
(g;hl’hZ"“’hn) = ﬂ(il’aﬁiZa"'aﬁik3 aﬁil3i29"'9ik) l_l (ej19ej29“'9ej2k)-
i=1 J=1

Denote by p the number (n — 2ks)/2k. We construct an orientable map B2 = (%jﬂ, 23
underlying B, stable under the action of (g; /1, hs, - - -, h,,) as follows.
Take
Ly = Loy and P = Cy(aCsla™)
with
C3 = (11’21" - '9S13ellse2la o '3eplsa,ﬁl23 a’B22, o ‘,Q’BS2,
€10 €0 Cpys 5 1k a2, - afisy, €1y 00
ep Bl af2y, -, afsi, er, €0, s €y 12,220,000,

S2, elk+23 e2k+29 T ep/Hz, T 1k9 2/(9 c sy Sk 612k3 e22k9 T eka) .
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Then the map B; = (£, ;) is an orientable map underlying graph B, and stable under
the action of (g; &y, hy, - - -, hy).

Similarly, replacing each element af3i; by Bi; in the construction of the orientable
case if 4;; = (1, ), a non-orientable map underlying graph B, and stable under the action

of (g; hy, hy, - - -, h,) can be also constructed. This completes the proof. 0

We will apply Theorem 7.4.1 for the enumeration of one face maps on surfaces in
Chapter 8.

§7.5 REMARKS

7.5.1 An automorphism of map M is an automorphism of graph underlying that of M.
But the conversely is not always true. Any map automorphism is fxed-free, i.e., semi-
regular, particularly, an automorphism of regular map is regular. This fact enables one
to characterize those automorphisms of maps underlying a graph. Certainly, there is an
naturally induced action g|#=# for an automorphism g € AutG of graph G on quadricells

in maps underlying G, i.e.,

(ax)* = ay, (Bx)* = By, (apx)* = afy

if x2 = y for Vx € Z,5(M(G)). Consider the action of AutG on Z, z(M(G)). Then we
get the following result by def nition.

Theorem 7.5.1 An automorphism g of G is a map automorphism if and only if there is a
map M(G) stabilized under the action of g|”«*.

Theorems 7.1.1 and 7.1.2 enables one to characterize such map automorphisms in

another wayj, i.e., the following.

Theorem 7.5.2 An automorphism g € AutG of graph G is an automorphism of map
underlying G if and only if (g), < (v) X {(a) for Vv € V(G).

7.5.2 We get these permutation presentations for automorphisms of maps underlying a
complete graph, a semi-regular graph and a bouquet, which enables us to calculate the
stabilizer ®(g) of g on maps underlying such a graph in Chapter 8. A general problem is
the following.
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Problem 7.5.1 Find a permutation presentation for map automorphisms induced by such
automorphisms of a graph G on quadricells 2,z with base set X = E(G), particularly,
f'nd such presentations for complete bipartite graphs, cubes, generalized Petersen graphs

or regular graphs in general.

7.5.3 We had introduced graph multigroup for characterizing the local symmetry of a
graph, i.e., let G be a connected graph, H < G a connected subgraph and 7 € AutG.
Similarly, consider the induced action of 7 on 2, s with base set X = E(#). Then the

following problem is needed to answer.

Problem 7.5.2 Characterize automorphisms of maps underlying H induced by auto-
morphisms of graph G, or verse via, characterize automorphisms of maps underlying G
induced by automorphisms of graph H by introducing the action of AutH on G \ H with

a stabilizer H.



CHAPTER 8.

Enumerating Maps on Surfaces

There are two kind of maps usually considered for enumeration in literature.
One is the rooted map, i.e., a quadricell on map marked beforehand. Such a
map is symmetry-freed, i.e., its automorphism group is trivial. Another is the
map without roots marked. The enumeration of maps on surfaces underlying

a graph can be carried out by the following programming:

STEP 1. Determine all automorphisms g of maps underlying graph G;
STEP 2. Calculate the the fxing set ®@(g) or ¥,(g) for each automorphism
ge€ Aut% G;

STEP 3. Enumerate the maps on surfaces underlying graph G by Burnside

lemma.

This approach is independent on the orientability of maps. So it enables one to
enumerate orientable or non-orientable maps on surfaces both. The roots dis-
tribution and a formula for rooted maps underlying a graph are included in the
frst two sections. Then a general enumeration scheme for maps underlying a
graph is introduced in Section 3. By applying this scheme, the enumeration
formulae for maps underlying a complete graph, a semi-regular graph or a
bouquet are obtained by applying automorphisms of maps determined in last

chapter in Sections 8.3-8.6, respectively.
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§8.1 ROOTS DISTRIBUTION ON EMBEDDINGS

8.1.1 Roots on Embedding. A root of am embedding M = (£, 4, &) of graph G is an
element in X, 3. A root r is called an i-root if it is incident with a vertex of valency i. Two
i-roots 7, r, are transitive if there exists T € AutM such that 7(r|) = r,. An enumerator
v(D, x) and the root polynomials r(M, x), r(M(D), x) of M are def ned by

(D, x) = Z ivix';

i>1

(M, x)= > r(M, ¥,

i>1

where (M, i) denotes the number of non-transitive i-roots in M and
H(M(D), x) = Z (M, x).

MeM(D)

Theorem 8.1.1 For any embedding M (orientable or non-orientable),
2iv,-

|AutM|’

where v; denotes the number of vertices with valency i in M.

r(M, 1) =

Proof Let U be all i-roots on M. Since U™ = U, AutM is also a permutation
group acting on U, and (M, i) is the number of orbits in U under the action of AutM.
It is clear that |U| = 2iv;. For Vr € U, (AutM), is the trivial group by Theorem 5.3.5.
According to Theorem 2.1.1(3), |AutM| = |(AutM),||[r*"™|, we get that [r*"™M| = |AutM].
Thus the length of each orbit inU under this action has |AutM| elements. Whence,

|l 2y
|AutM|  |AutM|
Applying Theorem 8.1.1, we get a relation between v(D, x) and (M, x) following.

O

r(M,i) =

Theorem 8.1.2 For an embedding M (orientable or non-orientable ) with valency se-

quence D, 2D, %)
v(D, x
M, x) = X
M0 = A am
2iv;
Proof By Theorem 8.1.1, we know that »(M,i) = A l:M|, where v; denotes the
u

number of vertices of valency i in M. So we have

r(Mx) = ) (M, i)Y

i>1
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2ivi  2v(D, x)
£ |AutM|  |AutM|

U

Let #(M) denotes the number of non-transitive roots on an embedding M. As a by-

product, we get #(M) by Theorem 8.1.2 following.

Corollary 8.1.1 For a given embedding M,

4e(M)
|[AutM|’

r(M) =
where (M) denotes the number of edges of M.

Proof According to Theorem 8.1.2, we know that

2u(D, 1) ] .
- HM.1) = - 2iv.
r(M) =r(M, 1) AutM|  [AutM] Z‘ i

Notice )’ iv; = 2e(M). We get that

i>1

4e(M)

. U
|AutM]|

r(M) =

8.1.2 Root Distribution. Let G be a connected simple graph and D = {d,,d,,---,d,}
its valency sequence. For Yg € AutG, there is an extended action g|”*# acting on 2
with X = E(G). Defne the orientable embedding index 6°(G) of G and the orientable
embedding index 8°(D) of D respectively by

1
0°(G) = ;
MGZM( ) IAUM]

1
|AutM|’

D)= Y
GeG(D) MeM(G)
where G(D) denotes the family of graphs with valency sequence D. Then we have the

following results.

Theorem 8.1.3 For any connected simple graph G and a valency sequence D ,

RINCER J1 @
0°(G) = “—"——— and °(D) = ——— |
@) == ama @ D =105

where

1
Geg(D)
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Proof Let W be the set of all embedings of graph G on orientable surfaces. Since
there is a bijection between the rotation scheme set o(G) of G and W, it is clear that

[W| = lo(G)l = T[] (d—1)!. Notice that every element ¢ € AutG naturally induces an
deD(G)

g|”*# action on W. Since for an embeding M, £ € AutM if and only if & € (AutG X (@),
so AutM = (AutG X {@))y. By |AutG X (@) | = [(AutG X {@))y||MAYCX?| we get that

|AutG X (@) |

MAuth(a) —
| | |AutM|

Therefore, we have that

1
°G) =
M;(G) |AutM]|

1 |AutG X (@) |
[AutG X {a)| |AutM|

MeM(G)

_ 1 Z | MAutGX(a)|
|AutG| MERG)

[l (d-1)!

/4 _ deD(G)
21AutG|  2|AutG]

and
[T (d-1)!
deD(G)

O —
D) = 2|AutGl)

Geg(D)

1 1
P | KO ve)

deD(G) GeG(D)

[T (d-1)!

deD(G)
2|AMD)|

Now we prove the main result of this subsection.

Theorem 8.1.4 For a given valency sequence D = {d,,d,,---,d,},

wWD,x) T (d-1)!

deD(G)
IA(D)|

r(M(D), x) =

where,

1
A" = ), AutG|

Geg(D)
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Proof By the def nition of #(M(D), x), we know that

r(M(D), x)

r(M, x)
MeM(D)

r(M, x).
GeG(D) MeM(G)

According to Theorem 8.1.3, we know that

rMD).x) =y 2UD-0) _ D, 1)(D).

GEG(D) MEM(G) |AutM|
Whence,
1 d-1)
deD(G)
ogpy =229
D)= —5a0)

Therefore, we fnally get that
v(D,x) ] (d-1)!

deD(G)

TP = TR D)

O

Corollary 8.1.2 For a connected simple graph G, let D(G) = {d,,d,, - - -, d,} be its valency

sequence. Then

wWD,x) T d~-1)!

deD(G)
|AutG|

Corollary 8.1.4 The number of all non-transitive i-roots in embeddings underlying a

r(M(G), x) =

connected simple graph G is

v TI (d-1)!

deD(G)
|AutG] ’
where v; denotes the number of vertices of valency i in G.

Corollary 8.1.5 The number r(M(G)) of non-transitive roots in embeddings of simple

graph G on orientable surfaces is
2¢(G) ] @-1)
deD(G)

r(M(G)) = AUtG

Proof According to Theorem 8.1.2 and Corollary 8.1.2, we know that

rM(G)) = r(M(G), 1)
[I (d-1MD,1)
deD(G)

|AutGl|
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Notice that v(D, 1) = ) iv; = 2&(M). So we fnd that

i>1

26(G) T] (d-1)!

deD(G)

O
|AutG|

rM(G)) =

Theorem 8.1.4 enables one to enumerate roots on edmeddings underlying a vertex-transitive
graphs, a symmetric graph, - - -, etc. For example, we can apply Corollary 8.1.5 to count
the roots on embeddings underlying a complete graph K,,. In this case, AutK, = Sy«,),
so |AutK,,| = n!. Therefore,

r(M(K")) = (n=2)"H" "

n(n—1)((n —2)!)"
n! -

let n = 4. Calculation shows that there are eight non-transitive roots on embeddings

underlying K*, shown in the Fig.8.1.1, in which each arrow represents a root.

Fig.8.1.1

8.1.3 Rooted Map. A rooted map M" is such a map M = (2", &?) with one quadricell
r € Z,p1s marked beforehand, which is introduced by Tutte for the enumeration of planar
maps. Two rooted maps M|' and M>’ are said to be isomorphic if there is an isomorphism
0 : My — M, between M; and < M, such that 6(r|) = r,, particularly, if M, = M, = M,
two rooted maps M and M™ are isomorphic if and only if there is an automorphism
7 € AutM such that 7(r;) = r,. All automorphisms of a rooted map M" form a group,
denoted by AutM”. By Theorem 5.3.5, we know the following result.

Theorem 8.1.5 AutM" is a trivial group.

The importance of the idea introduced a root on map is that it turns any map to a
non-symmetry map. The following result enables one to enumerate rooted maps by that

of roots on maps.
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Theorem 8.1.6 For a map M = (X445, &), the number of non-isomorphic rooted maps

is equal to that of non-transitive roots on map M.

Proof Let r| and r, be two non-transitive roots on M. Then M and M" are non-
isomorphic by def nition. Conversely, if M and M"™ are non-isomorphic, there are no

automorphisms 7 € AutM such that 7(r) = r,, i.e., | and r, are non-transitive. (R

Theorem 8.1.6 turns the enumeration of rooted maps by that of roots on maps.

Theorem 8.1.7 The number r°(G) of rooted maps on orientable surfaces underlying a

connected graph G is

26(G) [1 (p(v) = D!

Vel (G)
|Aut% €] ’

r(G) =

where p(v) denotes the valency of vertex v.

Proof Denotes the set of all non-isomorphic orientable maps with underlying graph
G by MP(G). According to Corollary 8.1.1 and Theorem 8.1.6, we know that

4e(M)

(0]

G) = .

G = ), IAULM]
MeMO(G)

Notice that every element ¢ € AutG 1 X (@) natural induces an action on E°(G). By
Theorem 5.3.3, VM € M(G), T € AutM if and only if, 7 € (AutG% X {a))y. Whence,
AutM = (AutG% X {@))y. According to Theorem 2.1.1(3), |AutG% X A{a)| = |(AutG 1 X
<a/))M||MA utG%X<a>|. We therefore get that

|MAutG% x(a)l _ 2|AutGl|

"~ JAutM|”
Whence,
1
9G) = 4&(G
°(G) &G) Y A
MeMO(G)
45(G) 3 [AutGy X (@) |
JAWGy X (@) | oo |AutM)|
48(G) utG | x{a)
—_— M)
JAWGy X (@) | Me;«;)
2&(G v) — !
4e(GE(G) ( )veg(@(p() )

2|AutG| B |Aut, G|
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By Theorems 3.4.1 and 8.1.7, we get a corollary for the number of rooted orientable

maps underlying a simple graph, which is the same as Corollary 8.1.5 following.

Corollary 8.1.6 The number r°(G) of rooted maps on orientable surfaces underlying a

connected simple graph G is

26(H) T1 (p(v) = 1)!

Vel (G)
|AutG|

For rooted maps on locally orientable surfaces underlying a connected graph G, we

r(G) =

know the following result.

Theorem 8.1.8 The number r*(G) of rooted maps on surfaces underlying a connected

graph G is
22OMe(G) T1 (p(v) = 1)!

VeV (G)

L
G) =
r(G) [Aut, Gl

Proof The proof is similar to that of Theorem 8.1.7. In fact, by Corollaries 5.1.2,

8.1.1 and Theorem 8.1.6, let MX(G) be the set of all non-isomorphic maps underlying
graph G. Then

4e(M) 1
L
G) = = 4¢&(G
(6 2 Auy O 2 IAutM|
MeML(G) MeML(G)
~ 45(G) Z |AutG% X {a) |
|AutG% X {a)| MG |AutM|
_ 4e(G) Z | s ><<a>|
|AutG% X {a)| MG
2O+ (G v)—1)!
_ 4e(QIENG) _ D P~
B 2|AutG| - |Aut, G|
This completes the proof. U

Since 5(G) = r9(G) + rV(G), we also get the number »V(G) of rooted maps on

non-orientable surfaces underlying a connected graph G following.

Theorem 8.1.9 The number r"(G) of rooted maps on non-orientable surfaces underlying
a connected graph G is
QPO =2)e(G) 1 (p(v) = 1!

vel(G)

r(G) = |Aut, G]
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According to Theorems 8.1.8 and 8.1.9, we get the following table for the numbers

of rooted maps on surfaces underlying a few well-known graphs.

G r’(G) N(G)
Pn n—1 0
Cn 1 1
K, (l’l — 2)!”_1 (2 ("7—1)2("72) — 1)(1’1 _ 2)!n—1
K # 1) | 20m = )P n = D! | @772~ 2)(m = 1) = 1)
I{n,n (l’l - l)!Zn—Z (2”2_2”+2 - 1)(7’1 _ 1)!2;1—2
B o (21 - 12
Dp, (n—1)! Q" = 1)(n - 1)!
k k—1)! I-1)! ntk+l_ k 1)1 —1)!
Dpi(k#1) | e T
D ke ke (n+2k)(n+2k-1)!? (272K 1)+ 24) (n+2k—1)12
pn 22kp1k12 22kp)k!12

Table 8.1.1

§8.2 ROOTED MAP ON GENUS UNDERLYING A GRAPH

8.2.1 Rooted Map Polynomial.

For a graph G with maximum valency > 3, assume

that r,(G),7(G),i > 0 are respectively the numbers of rooted maps underlying graph

G on orientable surface of genus y(G) + i — 1 or on non-orientable surface of genus

¥(G)+i—1, where y(G) and y(G) denote the minimum orientable genus and the minimum

non-orientable genus of G, respectively. The rooted orientable map polynomial r|G](x) ,

rooted non-orientable map polynomial ¥[G](x) and rooted total map polynomial R[G](x)

on genus are def ned by

and

We have known that the total number of orientable embeddings of G is

rGIx) = ) 16X,

i>0

G = ) UGN

i>0

R[G](x) = Z r(G)x' + Z FH(G)x.

>0

i>1

[T @-1)

deD(G)

and non-orientable embeddings is (2°©) = 1) [] (d-1)! by Corollary 5.1.2, where D(G)

deD(G)
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is its valency sequence. Similarly, let g;(G) and g,(G), i > 0 respectively be the number
of embeddings of G on the orientable surface with genus y(G) + i — 1 and on the non-
orientable surface with genus y(G) + i — 1. The orientable genus polynomial g[G](x),
non-orientable genus polynomial g G](x) and total genus polynomial G[G](x) of graph G
are def ned respectively by

2lGIx) = > &G,

i>0

2AGIx) = ), &(G)¥

i>0

and

GIGI(x) = ) &G’ + ) GG,

>0 i>1
All these polynomials 7[G](x), 7[G](x), R[G](x) and g[G](x), g[G](x), G[G](x) are f nite
by properties of G on surfaces, for example, Theorem 5.1.2.
We establish relations between r[G](x) and g[G](x), ¥F[G](x) and g[G](x), R[G](x)
and G[G](x) in the following result.

Theorem 8.2.1 For a connected graph G,
|Aut; G| 1[G](x) = 2£(G) g[G](x),

[Aut, GITIGI(x) = 26(G) BGIX)

and
|Aut I G| R[G](x) = 2&(G) G(x).

Proof For an integer k, denotes by M;(G,S) all the non-isomorphic maps on an
orientable surface S with genus y(G) + k — 1. According to the Corollary 8.1.1, we know
that

e 4e(M)
'y =
MeM(G,S) |AUtM|
4&(G) |Aut%G X (@) |
|Aut%G X ()| MAT6.5) |AutM|

ut| Gx{a)

Since IAut%G x{a)| = |(Aut%G X (a'))MllMA p) | and |(Aut%G X))yl = |AutM],
we know that

4&(G) O 28(G)gk(G)_

G -~
r(G) [Aut, G % (@) ] [Aut, G|

MeMi(G.S)
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Consequently,

|Aut, Gl 1[G](x) = |Aut;G| Y r(G)

i>0

> At Glr(G)x’

i>0

2, 26(G)g(G)¥ = 25(G) g[G().

i=0
Similarly, let E(G, §) be all non-isomorphic maps on an non-orientable surface S

with genus y(G) + k£ — 1. Similar to the orientable case, we get that

_ 4¢(G |Aut1 G X ()|
7(G) = . O Z - DR
|Aut: G X {a)| £ _ |AutM|
2 MeMi(G,S)
4(G) el
Ao @] 2 M
2 MeM(G.S)
28(G)gi(G)
Aut, G|
Whence,
|Aut, GIT[G](x) = ZIAut%Glﬁ(G)xi
>0
= ) 26(G)G)Y = 26(G) FGI(X).
>0
Notice that
RIGI(x) = ) (G + Y (G
>0 i>1
and

GIGI(x) = ) &G’ + ) GG,

i>0 i>1

We also get that

_2602(G) =) 26OFG)

G
ri(G) [Aut,G] [Aut, G|

for integers k > 0. Therefore, we get that

Aty Gl r(G)x' + ) TG

i>0 i>1

|Aut, G| R[G](x)

Z |Aut, Glry(G)x' + Z |Auty GIF(G)x

>0 i>1

D 26(G)g(G)F + Y 26(QNZ(G)x " = 26(G) GIG().

>0 i>0
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This completes the proof. U

Corollary 8.2.1 Let G be a graph and s > 0 an integer. If ri(G) and g, G) are the numbers
of rooted maps and embeddings on a locally orientable surface of genus s underlying

graph G, respectively. Then
26(G)gs(G)

s(G) =
rs(0) [Aut, ]

8.2.2 Rooted Map Sequence. Corollary 8.2.1 can be used to fnd the implicit relations
among r[G](x), 7[G](x) or R[G](x) if the implicit relations among g[G](x), g[G](x) or
G[G](x) are known, and vice via.

Denote the variable vector (x;, x;, - - -) by X,
Q) = (--+,72(G), 71(G), 10(G), 1 (G), r2(G), - - ),

g(G) = (-, 22(G), 21(G), g0(G), £1(G), g2(G), - - ).

We call 1(G) and g(G) the rooted map sequence and the embedding sequence of graph G,
respectively.

Defne a function F(x, y) to be y-linear if it can be represented as the following form
F(GY) = [0, x0,0+) + h(x, ) D v + 10,5, D AW,
iel AeO
where / denotes a subset of index and O a set of linear operators. Notice that f(x;, x5, ) =

F(x,0), where 0 = (0,0, - - -). We get the following general result.

Theorem 8.2.2 Let G be a graph family and H C G. If their embedding sequences
2(G), G € ‘H satisfy the equation

Fa(x, g(G)) = 0, (4.1)

then the rooted map sequences r(G), G € H satisfy the equation

|Aut: G|

Fa(x, 28(&) nG)) =0,

and vice via, if the rooted map sequences r(G), G € H satisfy the equation

Foy(x, 1(G)) = 0, (4.2)
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then the embedding sequences g(G), G € H satisfy the equation

2&(G)
, G)) =0.
"o T G
: - 2¢(G) :
Furthermore, assume the function F(x,y) is y-linear and AL Gl G € H is a constant.
ut:
2

If the embedding sequences g(G), G € H satisfy equation (4.1), then

Fy(x,1(G)) = 0,

2&(G)
|Aut% G|
2(G), G € H satisfy equation (4.2), then

where F (x,y) = F(x,y) + ( — 1)F(x, Q) and vice via, if the rooted map sequences

Fi(x,g(G)) = 0.

N |Aut 1 G|
where Fy, = F(x,y) + ( 220 - DF(x, 0).
Proof” According to the Corollary 8.2.1, for any integer s > 0 and G € H, we know

that

2&(G)
s G) = s
rs(0) Aut, G] &

(G)

and
|Aut 1 G|

S(G) = S(G).
8(0) = —57657(0)
Therefore, if the embedding sequences g(G), G € H satisfy equation (4.1), then

|Aut: G|

Fu(x, 2.9(&) 1(G)) = 0,

and vice via, if the rooted map sequences 1(G), G € H satisfy equation (4.2), then

2&(G)
|Aut, G

Fu(x, g(G)) = 0.

Now assume that Fig/(X,y) is a y-linear function with a form

Fp(,y) = (1,20, +) + h(xixa, ) Yy + () ) A@),
iel AeO
where O is a set of linear operators. If Fg/(x, g(G)) = 0, that is
SGrx )+ hGrsx) ) &(G) + lvx,-) ) A@G) =0,

i€l, GeH A€O, GeH
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we get that
|Aut: G|
f(x19x29'“) + h(xl’XZ"“) Z 2 z; ri(G)
iel, GeH 8( )
|Aut: G|
+o ) Y A GO =0,
A€O0, GeH €
) ) ) 2&(G) )
Since A € O is a linear operator and , G € H is a constant, we also have
|Aut 1 G|
|Aut1 G|
SGxa, )+ ——=—h(x,x0,50) > (@)
2£(G) el Gl
|Aut: G| Z
I(x1, X2, ) A((G)) =0,
28(G) v A€O, GeH
that is,
2e(G
G ) + b)Y AG) + lonm) Y AGG) =0,
|Aut: G| .
2 iel, GeH A€O, GeH

Consequently, we get that
F3 (%, 1(G)) = 0.

Similarly, if
Fu(x,1(G)) = 0,
we can also get that
Fi(x.g(G)) = 0.
This completes the proof. U

Corollary 8.2.2 Let G be a graph family and H C G. If the embedding sequences g(G)

of graph G € G satisfy a recursive relation

> ali,G)g(G) =0,

ieJ, GeH

where J is the set of index, then the rooted map sequences r(G) satisfy a recursive relation

2.

ieJ, GeH

a(i, G)IAut% G|

G D=0
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and vice via.

A typical example of Corollary 8.2.2 is the graph family bouquets B,, n > 1. Notice
that the following recursive relation for the number g,,(n) of embeddings of a bouquet B,

on an orientable surface with genus m for n > 2 was found in [GrF2].

(n+ Dgn(n) = 4@2n—1)2n=3)n—1)*(n = 2)gu-1(n - 2)
+ 42n—-1)(n—-1)g,(n—-1)

with boundary conditions

gn(n)=0ifm <0orn <0;

20(0) = go(1) = 1 and g,,(0) = g,,(1) = 0 for m > 0;

202)=4,212)=2,2,(2) =0 form > 1.

Since |Aut I B,| = 2"n!, we get a recursive relation for the number r,,(n) of rooted
maps on an orientable surface of genus m underlying graph B, by Corollary 8.2.2 follow-

ing.

(" = D)(n—=2)ru(n) = (2n—1)2n-3)n—1(n—2)ru1(n—-2)
+ 2Qn—=1)(n - D)= 2)mn—-1)

with the boundary conditions 7,,(n) = 0ifm < 0 orn < 0;
ro(0) = ro(1) = 1 and r,,(0) = 7,,(1) = 0 for m > 0O;
r0(2) =2,r1(2)=1,2,2) =0 form > 1.

Corollary 8.2.3 Let G be a graph family and H C G. If the embedding sequences
2(G), G € G satisfy an operator equation

Ag(G)) =0,
A€O, GeH
where O denotes a set of linear operators, then the rooted map sequences *(G), G € H

satisfy an operator equation

|Aut: G|
> A 356y O =0

A€O, GeH

and vice via.
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Let 8 = (61,60,,---,6) F 2n, ie., zk: 6; = 2n with positive integers 6;. Kwak and
Shim introduced three linear operators i":,1® and A to fnd the total genus polynomial of
bouquets B, n > 1 in [KwS1] def ned as follows.

Denotes by z4 and z;l = 1/z, the multivariate monomials 112[291. and 1/ _Ili[z@l., where

i=1 i=1
0 = (6,,6,,---,6;) F 2n. Then the linear operators I', ® and A are def ned respectively by

)—1

Z9;+229
20

k
O = ) (6 + )X
j=1

and
Z, 20,+6;+2

A= Y 200l i

1<i<j<k

)z} 1.

26,26,

Denote by i[B,](z ;) the sum of all monomial z, or 1/z, taken over all embeddings of B,

into an orientable or non-orientable surface, that is

B,1E) = D iBzo+ ) (B

0r2n Or2n
where, ig(B,) and 7y(B,) denote the number of embeddings of B, into orientable and non-
orientable surface of region type 6. They found that
. A 1
i[B,i1]z) = T+ 0+ A)i[B,]z) = [ + O+ A)'(— +2}).
)
and
1
Q[Bn+l](x) = (F +0 + A)n(z_ + Z%)|zj:x for j>1 and (Cx)»
2
where, (Cx) denotes the condition
(Cx): replacing the power 1 + n—2iof x by iifi > 0and —(1 +n+1i)by —iif i <0.
Notice that

A B 2! 1y,
2&(B,) 2n
and I', ®, A are linear. By Corollary 8.2.3 we know that
(T + O + A)[B,](z))
R[Bn+l](x) = Iy . z;=x for j=1 and (Cx)

nel 2
T+0+A)"(; +2)
- n R zj=x for j=1 and (Cx)-
[T 2%k!

k=1
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Calculation shows that

1
R[Bi](x) = x+—;
X
4
R[B](x) = 2+x+§+—2;
X X
41 42 22
R[B3](x) = —+—=+—+5+10x
X X X
and 488 690 304 93
R[B,](x) = + + + = + 14+ 70x + 21x%

x4 x3 x2 X

§8.3 A SCHEME FOR ENUMERATING MAPS UNDERLYING A GRAPH

For a given graph G, denoted by E(G), EV(G) and E(G) the sets of embeddings of G
on orientable surfaces, non-orientable surfaces and on locally orientable surfaces, respec-
tively. For determining the number of non-equivalent embeddings of a graph on sur-
faces and maps underlying a graph, another form of the Theorem 5.3.3 by group action is

needed, which is restated as follows.

Theorem 8.3.1 Let M, = (Zop, ) and My, = (Z4p, %) be two maps underlying
graph G, then

(1) My, M, are equivalent if and only if My, M, are in one orbit ofAut% G action on
X1(G);
(2) M, M, are isomorphic if and only if My, M, are in one orbit ofAut%G X (@)

action on Zyp.

Now we can established a scheme for enumerating the number of non-isomorphic
maps and non-equivalent embeddings of a graph on surfaces by applying the well-known

Burnside Lemma, i.e., Theorem 2.1.3 in the following.

Theorem 8.3.2 For a graph G, let & C EX(G), then the numbers n(E, G) and n(E, G) of

non-isomorphic maps and non-equivalent embeddings in & are respective

1
E,G6)= ——— D(g)l,
.6 =5 Au%Glgeg;lG' (@)
2

WG = —— 5 (o).

|Aut% Gl geAut| G
2
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where, ®(g) = {P|Y € Eand P¢ = &P or P8 = P}, Dy(g) = {A|X € & and
P = D).

Proof Def ne the group H = Aut 1G x{a). Then by the Burnside Lemma and the
Theorem 8.3.1, we get that

1
E,G6G)=— () ,
nE.6) = o gezw| 16
where, @(g) = {Z|Z € Eand ¢ = Z}. Now |H| = 2|Aut%G|. Notice that if ¢ = &,
then 78 # &, and if 8% = &, then ¢ # &. Whence, ®,(g) N Pi(ga) = 0. We
have that

1
E,G)= o D(2)l,
6.0 = Sl D, 0@

geAut| G
2

where ©(g) = {HX| ¥ € & and P8 = & or 8 = P},

Similarly,

1
S,G = CI) )
(&, G) | Aut%Gng D2(2)l

GAut% G
where, @,(g) = {A| ¥ € & and ¢ = ). O
From Theorem 8.3.2, we get results following.

Corollary 8.3.1 The numbers n°(G), n"(G) and n*(G) of non-isomorphic orientable

maps, non-orientable maps and locally orientable maps underlying a graph G are re-

spectively
1
0 0
G)= —— ® ; 8.3.1
w6 = s D (9 (83.1)
2 gEAut%G
1
N N
G)=—— ® ; 8.3.2
MO = s 2 12l @k (832)
2 geAut%G
1
L L
G)=—— d , 833
nG) = s 2 9@ (833)
2 geAut%G

where, 09(g) = (2|2 € E%(G) and P = P or D% = D), BV(g) = (P|P € EV(G)
and P& = P or P = P}, PX(g) = {P|P € EX(G) and ¢ = P or P = D).
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Corollary 8.3.2 The numbers n°(G), n"(G) and n*(G) of non-equivalent embeddings of

graph G on orientable ,non-orientable and locally orientable surfaces are respectively

1
°G) = DY(2); 8.3.4
Q) = g 2 1Y) (8.3.4)
2 geAut%G
N — q)N . 3.
1O =g 2 1@l (8.3.5)
2 gEAut%G
HG) = DI, 8.3.6
1O = ag 2 %@ (8.3.6)
2 gEAut%G

where, ®9(g) = {P|P € E°(G) and ¢ = P}, D) (g) = {P|P € EN(G) and P¢ = P},
O(g) = (PP € EXG) and D% = ),

For a simple graph G, since Aut 1G = AutG by Theorem 3.4.1, the formula (8.3.4)
is just the scheme used for counting the non-equivalent embeddings of a complete graph,
a complete bipartite graph in references [MRW1], [Mull]. For an asymmetric graph G,
that is, Aut 1 G=id X, ) we get the numbers of non-isomorphic maps and non-equivalent

embeddings underlying graph G by the Corollaries 8.3.1 and 8.3.2 following.

Theorem 8.3.3 The numbers n°(G), n"(G) and n*(G) of non-isomorphic maps on ori-
entable, non-orientable surfaces or locally orientable surfaces underlying an asymmetric

graph G are respectively

[T (p(») = 1)!
nO(G) GO ' ,
nh(G) = 22 [ (o - 1!
vel(G)

and

nN(G) — (2,3(G)—1 — l) l—[ (p(v) - 1)',
2 velV(G)

where, B(G) is the Betti number of graph G.
The numbers n°(G), nV(G) and n*(G) of non-equivalent embeddings underlying an

asymmetric graph G are respectively

°@) = | | (o) -1,

VeV (G)
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n"(G) =229 || (o) - 1)!

vel(G)

and

7'(G) = (279 - 1) 1—[ (p(v) = DL

veV(G)
All these formulae are useful for enumerating non-isomorphic maps underlying a com-

plete graph, semi-regular graph or a bouquet on surfaces in sections following.

§8.4 THE ENUMERATION OF COMPLETE MAPS ON SURFACES

We frst consider a permutation with its stabilizer. A permutation with the following form
(x1, X2, - =+, Xp)(@X,, Xy, - - -, ax) is called a permutation pair. The following result is

obvious.

Lemma 8.4.1 Let g be a permutation on set Q = {x1,x, - -, x,} such that ga = ag. If

(X1, X2, X ) @Xy @y, -+ X)) = (X1, X2, 5 X))@, @Xp g, o5 XY,
then
k
g= ()C],Xz, o ',X,,)
and if
ga(xy, X, - -+, X ) @Xp, X1, -+ @x)) (@)™ = (1, Xa, -+ -, X)) (@Xy AXp g, -+ o, X)),
then
ga = (ax,, ax,_1, -, a/xl)k

for some integer k, 1 < k < n.

Lemma 8.4.2 For each permutation g, g € &_u. satisfying ga = ag on set Q =

[kt
{x1, X2, -+, x,}, the number of stable permutation pairs in Q under the action of g or
ga is
2¢(k)(n —1)!
€

where ¢(k) denotes the Euler function.

Proof Denote the number of stable pair permutations under the action of g or g«

by n(g) and C the set of pair permutations. Defne the set A = {(g,C)lg € S[k%], C e
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C and C% = Cor (2 = C}. Clearly, for Vg;,2, € &
Whence, we get that

iy We have n(g;) = n(g,).

On the other hand, by the Lemma 8.4.1, for any permutation pair C = (x, x2, -, X;,)
(x,, @x,_1,- -+, ax;), since C is stable under the action of g, there must be g = (x1, x5, - - -, x,,)’
or g = (ax,,ax,_, --,ax;), where [ = 57,1 < s < kand (s,k) = 1. Therefore, there

are 2¢(k) permutations in S[k%] acting on it stable. Whence, we also have
|[A| = 2¢(k)|C|. (8.4.2)

Combining (8.4.1) with (.4.2), we get that

2¢(0)ICI _ 2¢(k)(n — D!
= = . O]
" |8[k%]| |8[k%]|

Now we can enumerate the unrooted complete maps on surfaces.

Theorem 8.4.1 The number n*(K,) of complete maps of order n > 5 on surfaces is

1 20040 — )11 $()2P D (n = 1T
n*(K,) = E(Z + Z —aay _— :
A knk=0(mod2) (! H(n—1) k1 n
where,
”(”2; D if k= 10mod2);
WOZN 0D e e
T 1 = 0(mod2),
and
(n-1)(n-2)

TS B T if k= 1(mod2);
B(n, k) = _ _

#, it k= 0(mod2).
and nt(Ky) = 11.

Proof According to formula (8.3.3) in Corollary 8.3.1 and Theorem 7.2.1 forn > 5,
we know that

1
L
K, = X () + () + O(h
n-(K,) SAUK] § |D(g1)l E |D(g2)| E |D(h)|
glES n g2€8 n he& n—1
[k ] (29251 [k F

1
S X | e+ ) I8 IR@l + 318, w IO,

kln ln,I=0(mod2) l(n-1)
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1]
Without loss of generality, we assume that an element g, g € 8[ s has the following

where, g| € S[k;.], & € 8[ » and h € 8[1 (i are three chosen clements.

cycle decomposition.

g= (1,2, k) (k + l,k+2,m,2k)---((% - 1)k+ 1(% - 1)k+2,...,n)
and
7= <[]
where
[, = (110 1) (202,20 2) o o, i),
and

-1
nz - 0‘(1—[1 )a_l’
being a complete map which is stable under the action of g, where s;; € {k+,k — |k =
1,2,---,n}.
Notice that the quadricells adjacent to the vertex 1 can make 2"~%(n — 2)! different

pair permutations and for each chosen pair permutation, the pair permutations adjacent to

the vertices 2, 3, - - -, k are uniquely determined since & is stable under the action of g.
Similarly, for each pair permutation adjacent to the vertex k+ 1,2k+1,-- -, (% - 1) k
+1, the pair permutations adjacent to k + 2,k + 3,---,2k, and 2k + 2,2k + 3,---, 3k, - -,

and (% - 1) k+2, (% - 1) k + 3,---,n are also uniquely determined because & is stable

under the action of g.

Now for an orientable embedding M; of K, all the induced embeddings by ex-
changing two sides of some edges and retaining the others unchanged in M, are the same
as M, by the defnition of maps. Whence, the number of different stable embeddings
under the action of g gotten by exchanging x and ax in M, for x € U, U C Xj, where

Xg= U {x,Bx},is2¢®%, where g(¢) is the number of orbits of £(K,,) under the action
xeE(Ky)

of g and we substract % because we can chosen 12+, k+ 1", 2k + 1, -« n—k+ 1" frst
in our enumeration.

Notice that the length of each orbit under the action of g is & for Vx € E(K,) if k is
odd and is 7 for x = i”g,i =1,k+1,---,n—k+ 1, or k for all other edges if & is even.

Therefore, we get that
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S(K”), if k= 1(mod2);
ge) =1 ok, -z

Tz, if k= 0(mod2).
Whence, we have that

. M =3) e k= 1(mod2):

an k) =gle) =7 =1 47k . )
T, 1 = O(mo 2),
and
[D(g)| = 27" (n — )%, (8.4.3)

Similarly, if £ = 0(mod2), we get also that
|D(ga)| = 2900 (n — 2)1% (8.4.4)

for an chosen element g,g € 8[ Kby

Now for Vi € 8[1 i without loss of generality, we assume that 2 = (1,2,---,k)

~1
k+ 1,k+2,,2k) ”k

above statement is also true for the complete graph K,,_; with the vertices 1,2,---,n — 1.

1
1 k+1, ”T—l k+2,---,(n=1)|(n). Then the

n

Notice that the quadricells n'*, n**, - -, n"~'* can be chosen frst in our enumeration and

they are not belong to the graph K,,_;. According to the Lemma 8.4.2, we get that

[ n—1

, (8.4.5)
1,kT]|
Where
e(K,-1) n-1 _ (n—1)(n-4)
B =he) =1 o ) nX1 oo
ko ko 2k

Combining (8.4.3) — (8.4.5), we get that

, if k= 1(mod2);

, if k= 0(mod2).

1
L —
KD = X Q80+ Y 18y l0ae)

kln ln,I=0(mod2)

+ 18, e 00D

l(n=1)
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1 10k — 217 ey _ 12
:FXZH H(Zv)k-'_ z a(’:,)k
A kr (! i mod2) ki (2)!

: 26(k)(n — 2)1250P (5 — 2)1"7
+ n L 2000 ==

(n=1)!

n-l p—|
(=)
K(n=1).k#1 ke (50! k%(%)!

1 220 -1k $(k)2P" D (n = DT

= 50 ) 0
2 A knk=0(mod2) ke (! (-1 k1 n—1

For n = 4, similar calculation shows that n“(K;) = 11 by consider the fxing set of

& 4, a& 4 and (1’8[1 1,2] ]
[(25)25] [(25)2s] ”

For the orientable case, we get the number n°(K,,) of orientable complete maps of

permutations in S[Sg_t_ . 8[ Lsip

order n as follows.

Theorem 8.4.2 The number n°((K,) of complete maps of order n > 5 on orientable
surfaces is
1 (n—2)% P(k)(n — 21T
0
n(K,)=5() + )t -
2 kZm kln,kso%ma'Z) ke () k|(n—Zl);k¢1 n—1
and n(K,) = 3.

Proof According to the algebraic representation of map, a map M = (Z,4,P) is
orientable if and only if for Vx € Z, 4, x and afx are in a same orbit of 2, s under the
action of the group ¥; = (af, £). Now applying (8.3.1) in Corollary 8.3.1 and Theorem
7.2.1, similar to the proof of Theorem 8.4.1, we get the number n°(K,,) for n > 5 to be

1 (n—2)% (k) (n — 2)!"F
KD =3Q0% D Y 1
kin kln,k=0(mod2) t (E) kl(n—1),k#1 n
and for the complete graph K4, calculation shows that n(K4) = 3. U

Notice that n9(K,) + n¥(K,)) = n*(K,). Therefore, we get also the number n"(K,)
of complete maps of order n on non-orientable surfaces by Theorems 8.4.1 and 8.4.2

following.

Theorem 8.4.3 The number n™(K,) of complete maps of order n,n > 5 on non-orientable
surfaces is
(200D — 1)(n - 2)!%

ki (%)!

1
N = —
KD = S D)
kln kln,k=0(mod2)
k)(25H — 1) (n = 21"F
G ClaR (et T
K(n=1)k1 n—1
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and n™(K4) = 8. Where, a(n, k) and B(n, k) are the same as in Theorem 8.4.1.

For n = 5, calculation shows that n*(Ks) = 1080 and n°(Ks) = 45 by Theorems 8.4.1
and 8.4.2. For n = 4, there are 3 orientable complete maps and 8 non-orientable complete

maps shown in the Fig.8.4.1.

Fig.8.4.1

Now consider the action of orientation-preserving automorphisms of complete maps,
determined in Theorem 7.2.1 on all orientable embeddings of a complete graph of order
n. Similar to the proof of the Theorem 8.4.2, we can get the number of non-equivalent
embeddings of a complete graph of order n, which has been found in [Mao1] and it is the
same gotten by Mull et al. in [MRW1].
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§8.5 THE ENUMERATION OF MAPS UNDERLYING A SEMI-REGULAR GRAPH

8.5.1 Crosscap Map Group. For a given map M = (2,4, &), its crosscap map group
is def'ned to be

T :=<1¥Vxe 2,7 =(x,ax) >,

where, X = E(G). Consider the action of 7 on M. For V8 € 7, we defne
M? = (Zop. 022671
M = MV € T).

Then we have the following lemmas.

Lemma 8.5.1 Let G be a connected graph. Then for VM € ET(G), there exists an element
7,7 € T and an embedding My, My € E°(G) such that

M = M;
Lemma 8.5.2 For a connected graph G,
ENG) = (MM e EG), TeT).

We need to classify maps in E7(G). The following lemma is fundamental for this

objective.

Lemma 8.5.3 For maps M, M, € E°(G), if there exist g € AutG and T € T such that
(M?8)" = M,, then there must be M, isomorphic to M and v € T, and moreover, if
M, = M, then g € AutM.

Proof We only need to prove that if M® = M],g € AutG and 7 € 7 ,then 7 € T,.
Assume that M = (2,5, P), M| = (Zop, P1), P = CaC', P = C1aC;' and 7 = 75,

where S c {C,}. For Yx € {C}, a direct calculation shows that

P = (2,800, 80n). -, 8O, ag(). -+, ag(r)) -+

Pl = (TX,T21, T2, -+, TZ)NQTX, QTZg, -+, QTZY) -, (8.5.1)

where

y:“'(x’xlax29"'9xs)(y9y19y2"“’yt)“';

91 — ... (x,Zl,Z2, - ,ZS)(a,x’ AZg, ", a’Zl)
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and g(y) = x,z; € vy, i €{1,2,- -+, 5}
Since g € AutG, we know that

{)7,)’1,”’,yt}g = {x,X1,"',xS}

= {xz1,---,z (8.5.2)
and ¢ = 5. Now we consider two cases.
Case 1. xé¢s.
In this case, we get that &7 = ---(x, 721,72y, - - -, 72,)(@X, @724, - - -, @TZ1) - - -, from

(8.5.2). Since &7¢ = ¥, we get that g(y1) = 721, 8(2) = 722, - -, g(Vs) = 7z,. According
to (8.5.2), we know that g(y;) = z1,200») = z2,---,2(vs) = z,. Therefore, z; ¢ S,z, ¢
S,-,z,¢ S, thatis{v,} ¢ S.

Case 2. xes.

In this case, we have that 917 = ---(ax,1z1,722, "+, TZs)(X, @TZg, - - -, @TZ1) - - -, Be-
cause of Z¢ = Z[°, we get that g(y1) = atz,,g0») = atz,y,---,8(s) = atz;. Ac-
cording to (8.5.2) again, we fnd that g(yy) = z,,20») = z51,---,g(ys) = z1. Whence,
z1€8,20€8,---,z,€ S, thatis {v,} C S.

Combining the discussion of Cases 1 and 2, we know that there exists a vertex subset
Vi € V(G) such that V; = §. Whence 7 € T),. Since M® = M[ = M;, we get that M, is
isomorphic to M.

Now if M| = M, we also get that M¢ = M. Therefore, g € AutM [

We get the following result by Lemmas 8.5.1 - 8.3.1.

Theorem 8.5.1 Let G be a connected graph. Then
(1) For VM € M|, M;* € M], where My, M, € E%(G), if M[® is isomorphic to

M;R, then M, is also isomorphic to M,.

(2) For a given M € E°(G), YM™ , M™ € M”, there exists an isomorphism g such
thatg : M™ — M™ if and only if g € AutM and 1 € To1(5) - T i

Proof (1) Assume g ia an isomorphism between M[* and M:*, thus (M[*)¢ = M*.

Since

g ([ |wag =] | xag"0

xeS xeS

= l—[ (x, Q’X) = Tg’l(S)’

xeg™!(S)

g 152
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we get that 7gg = g7,-1(5). Whence,
(M{)'«' o = My,

According to Lemma 8.5.3, M, is isomorphic to M,.
(2) Notice that there must be g € AutG. Since (M™)% = M™, we fnd that

(ME)=' & " = M.
According to Lemma 8.5.3 again, we get that
g € AutM and 7 € T,1(5)T -
On the other hand, if there exist T € 7" and g € AutM such that 7z = 74-1(5) - 7, then
(M) = (ME)'«'® = M«'®) = M™,
Therefore, g is an isomorphism between M™ and M™%, 0

8.5.2 Enumerating Semi-Regular Map. We enumerate maps underlying a semi-regular

graph on orientable or non-orientable surfaces.

Lemma 8.5.4 Let G = (V, E) be a semi-regular graph. Then for ¢ € AutG

©°(&)l = ]‘[( — 1!

(§|Nc(x))

and

E\_ TV d(x)
D" 2'T"T'|| !,
| (§)| (0(§|Nc(x)) )

where, T, v v E are the representations of orbits of ¢ acting on V(G) and E(G) ,respectively
and Engx) the restriction of € to Ng(x).

Proof According to Theorem 8.5.1, we know that
EN(G) = {712 € E°(G), T T)

Notice that if M¢ = M, then M™ = M". Now since AutG is semi-regular acting on E(G),

we can assume that

é:lV(G):(a’b""ac)"'(d’e,"',f)"'(X,y,"',Z)
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and
§|E(G) = (e11, e, ", 6111) (e, en, e, eil,-) (g1, e, 0, esls)-

For a stable orientable embedding My = (E(G),s, &) under the action of &, it is clear
that
DM, &)| = 20rbEle@)—orbiélr),

where orb(£)g() and orb(€ly(s)) are the number of orbits of £(G), V(G) under the action
of £ and we subtract orb(£|y(g)) because one of quadricells in vertices a,---,d, - -+, x can
be chosen frst in our enumeration. Now since orb(€lgq)) = IT f | and orb(€lyc)) = IT, ;’ l,

we get that
DM, &)| = 2T,

Notice that if the rotation of the quadricells adjacent to the vertex a has been given,
then the rotations adjacent to the vertices b, - - -, ¢ are uniquely determined if the cor-
respondence embedding is stable under the action of &. Similarly, if a rotation of the
quadricells adjacent to the vertices a,---,d,---, x have been given, then the map M =
(E(G)ap,P) 1s uniquely determined if M is stable under the action of &. Since &|y, () 1s

semi-regular, for Vx € V(G) we can assume that
§|NG(_X) — (le , xZZ, S xzs)(xzs+l, xZS+2, e xZZv) . (xZ(kfl)Hl’ xz(k71)5+2’ e kaS).

Consequently, we get that

@)1= | [ s~ - .

ETV §|NG(X))

According to the Corollary 8.3.1, we get enumeration results following.

Theorem 8.5.2 Let G be a semi-regular graph. Then the numbers of maps underlying the

graph G on orientable or non-orientable surfaces are respectively

(G I
© = ‘[G|(§;G/l(§)xl;[[,(0(§|NG(x)) V'
and
N ITE - |
6) = o f;G(z m@)l_l( (ﬂw) ).

1
where A(€) = 1 if o(¢) = 0(mod2) and X otherwise.
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Proof By the Corollary 8.3.1, we know that

1
o o
G)= ——— E ()
n(G) 2[Aut, G| DY ()
2 gEAut%G

and

1
Lgy= —— d7 (o).
"6 = Ko ]

geAut| G
2

According to the Theorem 7.3.4, all automorphisms of orientable maps underlying graph

G are respectively
gl¥e and ah|¥#, g, h € AutG with o(h) = 0(mod2).

and all the automorphisms of non-orientable maps underlying graph G are also
g%« and ah|X4 g, h € AutG with o(h) = 0(mod2).

Whence, we get the number of orientable maps by the Lemma 8.5.4 as follows.

0o — 0
n’(G) = MAtGlg%l ')

) )
N 2|A1115G| ( Z l_ (0(§|Nc(x)) D!

feAutG xET

Cy [

§€AUG,0(5)=0(mod2) xeT) 0(§|NG(X))

B d(x)
N |AUtG|( Z —[( (§|Nc(x))

feAutG

~ Y

Similarly, we enumerate maps underlying graph G on locally orientable surface by
(8.3.3) in Corollary 8.3.1 following.

1
L T
G = —— § )
n (G) SIAUG] D7 (2)l
geAutG
ITE|-IT}|

_ 1 (Z 1—[( d(x)

2AutGl 4t L 1 o)

+ > 2'TE' I ]—[( A0y

seAutG,0(9)=0(mod2) o(Slng)

E Vv d
>, A n<0@|<;>( -

EeAutG

— 1!

|AutG|
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Notice that n9(G) + n™(G) = n*(G). We get the number of maps on non-orientable
surfaces underlying graph G to be

n(G) = nL(G) n°(G)
E\_ TV d(x)
= 2TeHTel _yp - 1!
o tGI fgmc( JAE) ]_[( TR
This completes the proof. 0

Furthermore, if G is k-regular, we get a simple result for the numbers of maps on

orientable or non-orientable surfaces following.

Corollary 8.5.1 Let G be a k-regular semi-regular graph. Then the numbers of maps on

orientable or non-orientable surfaces underlying graph G are respectively

0 _ |T|
#(6) = e IR
and
Neeny — \TEITY | _ N4
n (G)—| AutGlx E Ag)(2 D(k = D!"el,

geAUG
1
where, A(¢) = 1 if o(¢) = 0(mod2) and o otherwise.

Proof Notice that for V¢ € AutG, ¢ is semi-regular acting on ordered pairs of adja-
cent vertices of G. Therefore, £ is an orientation-preserving automorphism of map with
underlying graph of G.

Assume that
é:V(G) = (al’az, Tty as)(bl’ bz, Tt bS) e (Cl’ cz, e ’cs)’
It can be directly checked that for Ve € E(G),

s
<> = g or=

le >

The later is true only if s is an even number. Therefore, we have that
Yx € V(G), o(énw) = 1.

Whence, we get n%(G) and n"(G) by Theorem 8.5.2. 0

Similarly, if G = Cay(Z, : §) for a prime p, we can also get closed formulas for the

number of maps underlying graph I'.
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Corollary 8.5.2 Let G = Cay(Z, : S) be a connected graph of prime order p with
(p—1,|S]) = 2. Then

p+

(S| = D +2p(S| = DT + (p = 1)(S| - 1)!

O —
n (G, #) = "
and
NGty = G DOSIZ DY+ 20T - DpsI = DU
’ — 2p
(2"F = (p - 1)(SI - 1!

4p
Proof We calculate |T' gV [,IT, 5 | now. Since p is a prime number, there are p—1 elements
of degree p, p elements of degree 2 and one element of degree 1. Therefore, we know
that
if o(g)=p
IT/=1 L i o) =2
p, 1if o(g) =1

and
Bl if o@=p
ITE =1 29 i o(g) =2

e
2Bif o(g) =1

Notice that AutG = D, and there are p elements order 2, one order 1 and p — 1 order p.

Whence, we have

(S| = D +2p(S| = DT + (p = 1)(S| - 1)!

O —
n (G, #) = "
and
NGty = G DOSIZ DI+ 20T - Dp(sI = DY
b 2p
. Q% - DE-10s1- 1!

4p
By Corollary 8.5.1. 0
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§8.6 THE ENUMERATION OF A BOUQUET ON SURFACES

8.6.1 Cycle Index of Group. Let (I';0) be a group. Its cycle index of a group, denoted
by Z(I'; s1, 82, - -, 5,) 1s def ned by
Z(F, 1,89, Sn) _ A1(g) /lz(g) . sﬁn(g),
ey
where, 4;(g) is the number of i-cycles in the cycle decomposition of g. For the symmetric

group S, its cycle index is known to be

A A A
S11S22...Skk
Z(Sn; 81,582,775 80) = Z

' N2 N I =T N
/11+2/12+-~-+k/1k=n1 Ai12%0 2! k!

S‘+2

For example, we have that Z(S,) =

. By a result of Polya ( See [GrW1] for details),
we know that the cycle index of §,[S 2] is
! (P2 (k. (RN

"n! 1’11/11 !2/12/12! .- 'k’lk/lk!

C 20+ +hk=n

Z(Sn[Sz]; 81,82, Szn) =

8.6.2 Enumerating One-Vertex Map. For any integer k, k|2n, let J; be the conjugacy
class in §,[S,] with each cycle in the decomposition of a permutation in J; being k-cycle.
According to Corollary 8.3.1, we need to determine the numbers |®9(&)| and |®(£)| for

each automorphism of map underlying B,,.

Lemma 8.6.1 Let & = H (CO))aC@H)a™) € Ji be a cycle decomposition of &, where

C@) = (X1, X2, -5 Xig) zs a k-cycle. Then
(1) If'k # 2n, then
2n 2”

D) = k* (&~ D!

and if k = 2n, then |D°(&)| = ¢(2n).
(2) If k> 3 and k # 2n, then

2n

(€)= (2k)"1( - D!

and
|0*(&) = 2"(2n—1)!

if &= (x)(x2) - - (xp)(@xy)(@xz) - - - (@x,)(Bx1)(Bx2) - - - (Bxn)(@fBx1 )(@Bxz) - - - (aBixy), and
L) =



Sec.8.6 The Enumeration of Bouquet on Surfaces 301

if & = (x1, afxi)(x2, afxz) - - - (X, Afx, ) (@1, Bx1 )(@x2, BX3) - - - (@, 5X,), and

. 3 !
PN = (n—2s)!s!

ifé = (e, 0,8, and { € Epnas o) for some integer s, & = (1,af) for 1 < i <5
and g; = 1 for s + 1 < j < n, where Ejn2s 551 denotes the conjugate class with the type

[1725,25] in the symmetry group S ,, and

DH(E)] = ¢(2n)

ifé =0,e1,8, ,g,and € Epyand g; = 1 for 1 <i<n-1, g, = (1,ap), where ¢(1)

is the Euler function.

2
Proof (1) Notice that for a representation of C(i), i = 1,2,---, 7”, because the
group (Z,, af) is not transitive on 2,4, there is one and only one stable orientable map
B, = (Zop, P,) with X = E(B,) and 2, = C(aC'a™), where,

C = (‘xll’x21, o ',xZ_k”l,be‘xZZ, o ',xZ_knz,xlk’XZk’ o ',xz—k”k)'

) ) 2 )
Counting ways for each possible order for C(i),i = 1,2,---, Tn and different representa-

tions for C(7), we know that

w2
09€)] = k¥ (= 1!

for k # 2n.
Now if k = 2n, then the permutation is itself a map underlying graph B,. Whence,

its power is also an automorphism of this map. Therefore, we get that

|0°(E)| = ¢(2n).

(2) For k > 3 and k # 2n, because the group (&, af) is transitive on 2,4 or
not, we can interchange C(i) by aC(i)"'a~! for each cycle not containing the quadricell
x11. Notice that we get the same map if the two sides of some edges are interchanged
altogether or not. Whence, we f nd that

n n 2 n 2
@) = 2% E (S - D= @R F (S - Dt
Now if & = (x1, @Bx1)(x2, @Bx2) - - - (X, BXn)(@x1, Bx1)(@X2, BX2) - - - (@, BX), there

is one and only one stable map (2,4, 7)) under the action of &, where

’gz;i = (X],xz,"‘,xn,aleXbaﬁxz,"‘,aﬁxn)(a.Xblen,'",ﬁX],a/xn,“‘,a/.X]),
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which is orientable. Whence, |®*(¢)| = |D9(€)| = 1.

If& = (x)(x2) - - - (rn)(ax)(@x2) - - - (@x,)(Bx1)(Bx2) - - - (Bxn)(@fBx1 )(afx2) - - - (ax),
we can interchange (afx;) with (8x;) and obtain different embeddings of B, on surfaces.
Whence,

@ (&)] = 2"2n - 1)\,

Now if & = ({;e1,&2,+++,&,) and { € Epynaspsy for some integer s, & = (1, af) for
l<i<sandg; =1 fors+1 < j<n, we can not interchange (x;, aBx;) with (ax;, Bx;)
to get different embeddings of B, for it is just interchanging the two sides of one edge.

Consequently, we get that

n! n!
L)l = X2 = ——
@) 17725(n — 25)1255! (n —2s)!s!
Foré = (6;e1,82,-++,84),0 €Epyandg; = 1forl1 <i<n-1,¢g, =(1,ap), we can

not get different embeddings of B, by interchanging the two conjugate cycles. Whence,
we get that

DX = [0°(€)] = ¢(2n).
This completes the proof. H

Now we enumerate maps on surfaces underlying graph B, by Lemma 8.6.1.

Theorem 8.6.1 For an integer n > 1, the number n°(B,) of maps on orientable surfaces

underlying graph B, is

.2 1 0% (Z(S,[S
w0y = ey ECRD),
K2mdet2n ! GSZ
ANZ(S IS
v s XSS,
Son

Proof According to the formula (8.3.1) in Corollary 8.3.1, we know that

1
(0] T
n°(B,) = > 0@l
npl
2x2"n! £€8,[S2]x<a>

Since for V&,,& € S,[S,], if there exists an element § € S,[S,] such that & = 6£,67!,
then |DO(&))| = |D(&,)| and |DO(&)] = |DO(£a)|. Notice that |[P(&)| has been gotten by
Lemma 8.6.1. Applying Lemma 8.6.1(1) and the cycle index Z(S,[S>]), we get that

WOB) = (3 K - IS+ 92T

npl
2 x2"n! kl2n,k#2n
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2n

= Z k%—l(z_n —- 1! zi aT(Z(SZn[SZ]))kk:O
K2mk#2n k () dsf
rpnECD 0
S2n

Now we consider maps on non-orientable surfaces underlying graph B,. Similar to
the discussion of Theorem 8.6.1, we get the following enumeration result for the maps on

non-orientable surfaces.

Theorem 8.6.2 For an integer n > 1, the number n™(B,) of maps on non-orientable

surfaces underlying graph B, is

n(B)) = w+ Z 2k %‘1(27"_1)!%@

I’l' |sk:0

K2n3<k<2n ds,f

1 n! ., F(Z(SA[S2)) n
Tt st 0 D g = 5D

Proof Similar to the proof of Theorem 8.6.1, applying formula (1.3.3) in Corollary
8.3.1 and Lemma 8.6.1(2), we get that

-1
2n - 1)! N
n!

a"(Z(Sn[Sz]))|
(9S” $2,=0
2n
1 n! ; 0"(Z(S4[S2]) n
2l (; CET T A S Pt

K2n,3<k<2n s k"

n*(B,) $(2n)

+

|sk:0-
Notice that n°(B,) + nV(B,) = n*(B,). Applying Theorem 8.6.1, we fnd that

|sk:0

n"(B,) = w+ Z (2k)27"‘1(27n_1)!87n(L;[S2]))

n! k2n,3<k<2n dsf
1 n! 0"(Z(S ,[S2]) n
+4"(n - DH(—————|5=0 — L=))).
2nn,(; 2 0 D = 13D)
This completes the proof. U
Calculation shows that
5T+ 52
Z(S1[S2)) = 5

and
S‘ll + Zstz + 3S§ + 254

8 2

Z(S1[S2]) =
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Whence, if n = 2, calculation shows that there are 1 map on the plane, 2 maps on the
projective plane, 1 map on the torus and 2 maps on the Klein bottle. All of those maps are

non-isomorphic and the same as gotten by Theorems 8.6.1 and 8.6.2 shown in Fig.8.6.1.

§8.7 REMARKS

8.7.1 The enumeration problem of maps was frst introduced by Tutte on planar rooted
triangulation by solving a functional equation in 1962. After him, more and more papers
and enumeration result on rooted maps on surfaces published. For surveying such an

enumeration, the readers are refereed to references [Liu2]-[Liu4] for details.

8.7.2 The enumeration of rooted maps on surfaces is canonically by an analytic approach.

Usually, this approach for enumeration of rooted maps applies four steps as follows:

STEP 1. Decompose the set of rooted maps M considered;
STEP 2. Def ne the enumeration function f»; on maps by parameters, such as those of

order n(M), size m(M), valency of rooted vertex or rooted face, - - - of maps, for example,
i = Z xn(M)’ fu= Z xm(M)’ fm = Z xn(M)ym(M) and fy = Z xn(M)ym(M)Zl(M)
MeM MeM MeM MeM

are four enumeration functions respectively by order n(M), size m(M) and valency of

rooted vertex /(M) of map and then establish equations satisf ed by fj.
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STEP 3. Find properly parametric expression for variables x, y, z, - - -
STEP 4. Applying the Lagrange inversion, i.e., if x = #¢(x) with ¢(0) # 0, then

109250+ 3. e I

solves the equations for enumeration.

The importance of Theorems 8.1.7 and 8.1.8 is that they clarify the essence of the

enumeration of rooted maps on surfaces, i.e., a calculation of the summation

26(G) 11 (p(v) = 1)! 229 5(G) T1 (p(v) = D!
Z VeV (G) or Z VeV (G)
b |Aut%G| o IAut%GI

where G denzote's a graph family. For example, we know that the number of rooted tree of
size n is l Whence,

nl(n+1)!

5 deg(n(d_l)! _@n-1)

AutT|  nl(n+ 1)’

TeT (n)

where 7~ and D(T') denote sets of non-isomorphic trees of size n and the valency sequence
ofatree T € 7, respectively.

Similarly, Theorem 8.2.1 implies the enumeration of rooted maps on a surface S of
genus i is in fact a calculation of the summation

Z 26(G)gi(G)

G<G(S) |Aut, Gl

where G(S) denotes a graph family embeddable on S. For example, We know that there

arc
221 — 1)!I(2n + 1)!

(m+2)!(n+ D!nl(n-1)!
planar cubic hamiltonian rooted maps. Whence,

26(@)go(G)  2Q2n—1)!2n + 1)!
Z AutG]  (n+2)!(n+ Dnl(n-1)"

GeCy

where %} denotes the family of hamiltonian cubic.

8.7.3 By applying Burnside lemma, Biggs and White suggested a scheme for enumerat-

ing non-equivalent embeddings of a graph G on surfaces, i.e., orbits under the action of
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AutG on all embeddings of G in [BiW1]. Such an action is in fact orientation-preserving.
Theorem 8.3.2 is a generalization of their result by considering the action of Aut 1 G x{a)
on all embeddings of G on surfaces. This scheme enables one to fnd non-isomorphic
maps on surfaces underlying a graph. Indeed, complete maps, semi-regular maps and
one-vertex maps are enumerated in Sections 8.4-8.6. Certainly, there are more maps on

surfaces needed to enumerated, such as those of maps included in problems following.

Problem 8.7.1 Enumerate maps on surfaces underlying a vertex-transitive, an edge-

transitive or a regular graph, particularly, a Cayley graph Cay(I" : S).

Problem 8.7.2 Enumeration maps on surfaces underlying a graph G with known Aut ! G,

such as those of C, X P, and C,, X C,, X C; for integers n, m, [ > 1.

Problem 8.7.3 Enumerate a typical maps underlying a graph, for example, regular maps

or Cayley maps.

The enumeration of maps on surfaces underlying a graph also brings about problems

following on graphs.

Problem 8.7.4 Find a graph family G on a surface S such that the number of non-

isomorphic maps underlying graph in G is summable.

Problem 8.7.5 For a surface S and an integer n > 2, determine the family G,(S) embed-
dable on S with |Aut%| =nforVG € G,(S).



CHAPTER 9.

Isometries on Smarandache Geometry

We have known that classical geometry includes those of Euclid geometry,
Lobachevshy-Bolyai-Gauss geometry and Riemann geometry. Each of the
later two is proposed by denial the 5th postulate for parallel lines in Euclid
postulates on geometry. For generalizing classical geometry, a new geometry,
called Smarandache geometry was proposed by Smarandache in 1969, which
may enables these three geometries to be united in the same space altogether
such that it can be either partially Euclidean and partially non-Euclidean, or
non-Euclidean. Such a geometry is really a hybridization of these geome-
tries. It is important for destroying the law that all points are equal in status
and introducing contradictory laws in a same geometrical space. For an in-
troduction to such geometry, we formally def ne Smarandache geometry, par-
ticularly, those of mixed geometries in Section 9.1, and classify s-manifolds,
a kind of Smarandache 2-manifolds by applying planar maps in Section 2.
After then, Sections 3 and 4 concentrate on the isometries on fnite or inf -
nite pseudo-Euclidean spaces (R”, i) by verifying the action of isometries of
R” on (R", u) for n > 2. Certainly, all isometries on fnite pseudo-Euclidean
spaces (R”, i) are automorphisms of (R”, ), and can be characterized combi-
natorially by that of maps on surfaces if » = 2 or embedded graphs in R” if

n>3.
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§9.1 SMARANDACHE GEOMETRY

9.1.1 Geometrical Axiom. As we known, the Euclidean geometrical axiom system

consists of fve axioms following:

(E1) There is a straight line between any two points.

(E2) A fnite straight line can produce a inf nite straight line continuously.
(E3) Any point and a distance can describe a circle.

(E4) All right angles are equal to one another.

(E5) If a straight line falling on two straight lines make the interior angles on the
same side less than two right angles, then the two straight lines, if produced indef nitely,

meet on that side on which are the angles less than the two right angles.

The last axiom (ES5) is usually replaced by:

(ES’) For a given line and a point exterior this line, there is one line parallel to this

line.

Then a hyperbolic geometry is replaced axiom (E5) by (L5) following

(L5) There are infnitely many lines parallel to a given line passing through an

exterior point,

and an elliptic geometry is replaced axiom (ES5) by (RS5) following:

There are no parallel to a given line passing through an exterior point.

9.1.2 Smarandache Geometry. These non-Euclidean geometries constructed in the
previous subsection implies that one can fnd more non-Euclidean geometries replacing
Euclidean axioms by non-Euclidean axioms. In fact, a Smarandache geometry is such a

geometry by denied some axioms (E1)-(ES) following.

Def nition 9.1.1 4 rule R € R in a mathematical system (X;R) is said to be Smaran-
dachely denied if it behaves in at least two different ways within the same set X, i.e.,

validated and invalided, or only invalided but in multiple distinct ways.

Def nition 9.1.2 A4 Smarandache geometry is such a geometry in which there are at
least one Smarandachely denied ruler and a Smarandache manifold (M; A) is an n-
dimensional manifold M that support a Smarandache geometry by Smarandachely denied

axioms in A.
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In a Smarandache geometry, points, lines, planes, spaces, triangles, -- - are called
respectively s-points, s-lines, s-planes, s-spaces, s-triangles, - - - in order to distinguish

them from that in classical geometry.

Example 9.1.1 Let us consider a Euclidean plane R? and three non-collinear points 4, B
and C. Def ne s-points as all usual Euclidean points on R? and s-lines any Euclidean line
that passes through one and only one of points 4, B and C. Then such a geometry is a

Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist
one line passing through them is now replaced by: one s-line and no s-line. Notice that
through any two distinct s-points D, E collinear with one of 4, B and C, there is one
s-line passing through them and through any two distinct s-points F, G lying on AB or
non-collinear with one of 4, B and C, there is no s-line passing through them such as
those shown in Fig.9.1.1(a).

Observation 2. The axiom (ES5) that through a point exterior to a given line there is
only one parallel passing through it is now replaced by two statements: one parallel and
no parallel. Let L be an s-line passes through C and is parallel in the Euclidean sense to
AB. Notice that through any s-point not lying on 4B there is one s-line parallel to L and
through any other s-point lying on 4B there is no s-lines parallel to L such as those shown
in Fig.9.1.1(b).

Fig.9.1.1

9.1.3 Mixed Geometry. In references [Smal]-[Sma2], Smarandache introduced a
few mixed geometries, such as those of the paradoxist geometry, the non-geometry, the
counter-projective geometry and the anti-geometry by contradicts axioms (E1) — (ES)
in a Euclid geometry following. All of these geometries are examples of Smarandache

geometry.
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Paradoxist Geometry. In this geometry, its axioms consist of (E1) — (E£4) and one of the

following:

(1) There are at least a straight line and a point exterior to it in this space for which
any line that passes through the point intersect the initial line.

(2) There are at least a straight line and a point exterior to it in this space for which
only one line passes through the point and does not intersect the initial line.

(3) There are at least a straight line and a point exterior to it in this space for which
only a f nite number of lines /y, L, - - -, [y, k > 2 pass through the point and do not intersect
the initial line.

(4) There are at least a straight line and a point exterior to it in this space for which
an inf nite number of lines pass through the point (but not all of them) and do not intersect
the initial line.

(5) There are at least a straight line and a point exterior to it in this space for which

any line that passes through the point and does not intersect the initial line.

Non-Geometry. The non-geometry is a geometry by denial some axioms of (£1) —(E5),

such as those of the following:

(E17) It is not always possible to draw a line from an arbitrary point to another
arbitrary point.

(E£27) Itis not always possible to extend by continuity a f nite line to an inf nite line.

(E37) It is not always possible to draw a circle from an arbitrary point and of an
arbitrary interval.

(E47) Not all the right angles are congruent.

(E57) If aline cutting two other lines forms the interior angles of the same side of it
strictly less than two right angle, then not always the two lines extended towards inf nite

cut each other in the side where the angles are strictly less than two right angle.

Counter-Projective Geometry. Denoted by P the point set, L the line set and R a relation
included in PX L. A counter-projective geometry is a geometry with these counter-axioms
(Cy) — (C5) following:

(C1) There exist either at least two lines, or no line, that contains two given distinct
points.

(C2) Let py, p2, p3 be three non-collinear points and ¢, g, two distinct points. Sup-
pose that {p;.q1, p3} and {p,, g2, p3} are collinear triples. Then the line containing p;, p,
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and the line containing ¢, ¢, do not intersect.

(C3) Every line contains at most two distinct points.

Anti-Geometry. A geometry by denial some axioms of the Hilbert’s 21 axioms of Eu-

clidean geometry.

§9.2 CLASSIFYING ISERI’S MANIFOLDS

9.2.1 Iseri’s Manifold. The idea of Iseri’s manifolds was based on a paper [Weel] and
credited to W.Thurston. A more general idea can be found in [PoS1]. Such a manifold is

combinatorially def ned in [Isel] as follows:

An Iseri’s manifold is any collection C(T,n) of these equilateral triangular disks

T:,1 < i < n satisfying the following conditions:

(1) Each edge e is the identif cation of at most two edges e;, e; in two distinct trian-
gular disks T;, T;,1 <i,j<nandi# j;
(2) Each vertex v is the identif cation of one vertex in each of fve, six or seven

distinct triangular disks.

The vertices of an Iseri’s manifold are classif ed by the number of the disks around
them. A vertex around fve, six or seven triangular disks is called an elliptic vertex, a
Euclid vertex or a hyperbolic vertex, respectively.

An Iseri’s manifold is called closed if the number of triangular disks is fnite and
each edge is shared by exactly two triangular disks, each vertex is completely around
by triangular disks. It is obvious that a closed Iseri’s manifold is a surface and its Euler
characteristic can be def ned by Theorem 4.2.6.

Two Iseri’s manifolds C;(7, n) and C,(7, n) are called to be isomorphic if there is an
1 — 1 mapping 7 : C(T,n) — C,(T,n) such that for VT, 7, € C\(T,n), 7(T1 (T>) =
(Ty) N 7(Ty). If Ci(T,n) = C(T,n) = C(T,n), 7 is called an automorphism of Iseri’s
manifold C(7, n). All automorphisms of an Iseri’s manifold form a group under the com-

position operation, called the automorphism group of C(7, n) and denoted by AutC(7’, n).

9.2.2 A Model of Closed Iseri’s Manifold. For a closed Iseri’s manifold C(7, n), we
can defne a map M by V(M) = {the vertices in C(7,n)}, E(M) = {the edges in C(7, n)}
and F(M) ={T,T € C(T,n)}. Then M is a triangular map with vertex valency € {5, 6, 7}.
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On the other hand, if M is a triangular map on surface with vertex valencye {5, 6, 7}, we
can def ne an Iseri’s manifold C(7, #(M)) by

C(T, ¢(M)) = {f1f € F(M)}.
Then C(T, ¢(M)) is an Iseri’s manifold. Consequently, we get a result following.

Theorem 9.2.1 Let 6‘(T, n), M(T,n) and M*(T, n) be the set of Iseri’s manifolds with n
triangular disks, triangular maps with n faces and vertex valency € {5,6,7} and cubic

maps of order n with face valency € {5, 6,7}. Then

(1) There is a bijection between M(T, n) and 6‘(T, n),
(2) There is also a bijection between M*(T,n) and aT ,n).

According to Theorem 9.2.1, we get the following result for the automorphisms of

an Iseri’s manifold following.

Theorem 9.2.2 Let C(T,n) be a closed s-manifold with negative Euler characteristic.
Then |AutC(T, n)| < 6n and

|AutC(T, n)| < -21x(C(T, n)),

with equality hold only if C(T,n) is hyperbolic, where x(C(T,n)) denotes the genus of
C(T,n).

Proof The inequality |[AutC(7, n)| < 6n is known by the Corollary 6.4.1. Similar to
the proof of Theorem 6.4.2, we know that

—X(C(T,n))
eC(T\n) = —F——:
37k
1
where k = ————— ) iv; < 7 and with the equality holds only if k = 7, i.e., C(T, n) is
T &
hyperbolic. O

9.2.3 Classifying Closed Iseri’s Manifolds. According to Theorem 9.2.1, we can clas-
sify closedlIseri’s manifolds by that of triangular maps with valency in {5, 6, 7} as follows:
Classical Type:

(1) Ay = {5 —regular triangular maps} (e/liptic);

(2) A, = {6 —regular triangular maps}(euclid);
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(3) A; = {7 —regular triangular maps}(hyperbolic).
Smarandachely Type:

(4) A4 = {triangular maps with vertex valency 5 and 6} (euclid-elliptic);

(5) As = {triangular maps with vertex valency 5 and 7} (elliptic-hyperbolic);
(6) Ag = {triangular maps with vertex valency 6 and 7} (euclid-hyperbolic);
(7) A; = {triangular maps with vertex valency 5, 6 and 7} (mixed).

We prove each of these types is not empty following.

Theorem 9.2.3 For classical types Ay — A, there are
(1) Ay = {020, Pio};
(2) A ={T;,K;,1 <1i,j < +oo};
(3) A ={H;, 1 < i< +oo},
where Oy, Pygareshownin Fig.9.2.1, Ts, K5 are shown in Fig.9.2.2 and H; is the Hurwitz

maps, i.e., triangular maps of valency 7.

1

‘\

020 PIO

Fig.9.2.2
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Proof If M is a k-regular triangulation, we get that 2e(M) = 3¢p(M) = kv(M).

Whence, we have

e(M) = @ and v(M) =

By the Euler-Poincare formula, we know that

3e(M)
k

X(M) = (M) = (M) + 6(M) = 5 — 3)(M).

If M is elliptic, then £ = 5. Whence, y(M) = ¢(112)/[) > 0. Therefore, if M is orientable,

then y(M) = 2, Whence, ¢(M) = 20,v(M) = 12 and &(M) = 30, which is just the
map O,. If M is non-orientable, then y(M) = 1, Whence, ¢(M) = 10,v(M) = 6 and
&(M) = 15, which is the map Pyy.

If M is Euclidean, then k = 6. Thus y(M) = 0, i.e., M is a 6-regular triangulation 7;

or K; for some integer i or j on the torus or Klein bottle, which is inf nite.
If M is hyperbolic, then £ = 7. Whence, y(M) < 0. M is a 7-regular triangulation,
i.e., the Hurwitz map. According to the results in [Surl], there are inf nite Hurwitz maps
on surfaces. This completes the proof. 0
For these Smarandache Types, the situation is complex. But we can also obtain the
enumeration results for each of the types A4 - A;. First, we prove a condition for the

numbers of vertex valency 5 with that of 7.

Lemma 9.2.1 Let C(T, n) be an Iseri’s manifold. Then
vy > vs+2

if x(C(T,n)) < -1 and

v S Vs — 2
if x(C(T, n)) > 1, where v; denotes the number of vertices of valency i in C(T, n).

Proof Notice that we have know

s(C(T,n) = 21,

3 k

where k is the average valency of vertices in C(7, n). Since

S5vs + 6vg + 7V7
B Vs + Vg + V7

k

and &(C(T, n)) > 3. Consequently, we get that
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(1) If x(C(T, n)) < —1, then

1 2vs + 2v6 + 2V7

3 5vs + 6V + vy

1.e.,v; >vs+ 1. Nowif v; = vs + 1, then
S5vs + 6vg + 7V7 =12vs+ 6vg+ 7 = 1(m0d2)
Contradicts to the fact that

Z 06(v) = 2&(G) = 0(mod?2)
vel(G)

for a graph G. Whence there must be
vy > vs + 2.

(2) If ¥(C(T, n)) > 1, then

1 2V5+2V6+2V7 <0
3 S5vs + 6ve + Tvq ’

1.e.,v; <vs—1. Nowifv; = vs — 1, then
S5vs + 6vg + 7Tv; = 12v5 + 6vg — 7 = 1(mod?2).
Also contradicts to the fact that

> pa(v) = 26(G) = 0(mod2)
vel(G)

for a graph G. Whence, there must be

v; < vs—2. ]
Corollary 9.2.1 There are no Iseri’s manifolds C(T, n) such that

lv; —vs| <1,

where v; denotes the number of vertices of valency i in C(7, n).

Def ne an operator ® : M — M* on a triangulation M of a surface by
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Choose each midpoint on each edge in M and connect the midpoint in each triangle
as shown in Fig.9.2.3. Then the resultant M* is a triangulation of the same surface and

the valency of each new vertex is 6.

Fig. 9.2.3

Then we get the following result.

Theorem 9.2.4 For these Smarandache Types Ay-A;, there are

(1) As| = 25
(2) Each of |A4l, |Ag| and |A;| is inf nite.

Proof For M € Ay, let k be the average valency of vertices in M. Since

k= Svs * Ove <6 and &(M)= _X(m,
Vs + Vg l_%
3 k

we have that y(M) > 1. Calculation shows that vs = 6 if (M) = 1 and vs = 12 if
x(M) = 2. We can construct a triangulation with vertex valency 5, 6 on the plane and the

projective plane in Fig.9.2.4.

(@) (b)

Fig.9.2.4

Now let M be amap in Fig.9.2.4. Then M® is also a triangulation of the same surface
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with vertex valency 5, 6 and M® # M. Whence, |A4| is inf nite.

For M € As, by the Lemma 9.2.1, we know that v; < vs — 2 if y(M) > 1 and
v7 > vs + 2 if y(M) < —1. We construct a triangulation on the plane and projective plane
in Fig.9.2.5.

Fig.9.2.5

6 7
For M € Ag, we know that k = @ > 6. Whence, y(M) < —1. Since
v, 1%
3p(M) = 6vg + Tv; = 2e(M), we get that e
6ve + 7 6ve + 7
Ve + V7 — V62 v7+ V63 v7:)((M).

Therefore, we have v; = —y(M). Notice that there are inf nite Hurwitz maps M on sur-

faces. Then the resultant triangular map M is a triangulation with vertex valency 6, 7 and
M* # M. Thus |Ag| is inf nite.
For M € A;, we construct a triangulation with vertex valency 5, 6, 7 in Fig.9.2.6.
6 >4
% 3\\
2 2

3 1

Fig.9.2.6

Let M be one of the maps in Fig.9.2.6. Then the action of ® on M results inf nite

triangulations of valency 5, 6 or 7. This completes the proof. U

For the set As, we have the following conjecture.

Conjecture 9.2.1 The number |As| is inf nite.
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§9.3 ISOMETRIES OF SMARANDACHE 2-MANIFOLDS

9.3.1 Smarandachely Automorphism. Let (M;A) be a Smarandache manifold. By
def'nition a Smarandachely denied axiom 4 € A can be considered as an action of 4
on subsets S € M, denoted by S*. Now let (M;; A;) and (M>; A,) be two Smarandache
manifolds, where A;, A, are the Smarandachely denied axioms on manifolds M; and M,,
respectively. They are said to be isomorphic if there is 1 — 1 mappings 7 : M; — M, and
o A — A, such that 7(S4) = 7(S)"™ for VS ¢ M, and 4 € A,. Such a pair (7, o) is
called an isomorphism between (M, ; A, ) and (M,; A,). Particularly, if M} = M, = M and
A = Ay = A, such an isomorphism (7, o) is called a Smarandachely automorphism of
(M, A). Clearly, all such automorphisms of (M, A) form an group under the composition
operation on 7 for a given 0. Denoted by Aut(M, A).

9.3.2 Isometry on R%, Let X be asetandp : X X X — R a metric on X, i.e.,

(1) p(x,y) > 0 for x,y € X, and with equality hold if and only if x = y;
(2) p(x,y) = p(y,x) for x,y € X;
3) p(x,y)+ p(y,z) = p(x,z) for x,y,z € X.

A set X with such a metric p is called a metric space, denoted by (X, p).

Example 9.3.1 LetR?> = {(x,) | x,y € R}. Defne

p(X1,X;) = \/(xl - x2)> + (1 = 12)?

forx; = (x1,)1), X» = (x2,),) € R?. Then such a p is a metric on R?. We verify conditions
(1)-(3) in the following.
Clearly, conditions (1) and (2) are consequence of x> = 0 = x = 0 and x* = (—x)?

for x € R. Now let (x,1), (x2,)») and (x3, y3) be three points on R? with

(x1 +a;, )y + bl)

(x2,)2)

(x1 +a +a,y + b1 + bz)

(x3,¥3)

Then the condition (3) implies that

@+ b2+ Jad + 52 > ar + a2 + (b1 + by,

which can be verif ed to be hold immediately.
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An isometry of a metric space (X, p) is a bijective mapping ¢ : X — X that preserves
distance, i.e., p(¢(x), #(y)) = p(x,y). Denote by Isom(X, p) the set of all isometries of
(X, p). Then we know the following.

Theorem 9.3.1 Isom(X, p) is a group under the composition operation of mapping.

Proof Clearly, 1y € Isom(X) and if ¢ € Isom(X), then ¢~' € Isom(X). Furthermore,
if ¢1, ¢, € Isom(X), by def nition we know that

P(P182(x), $192(y)) = p(¢2(X), $a(y)) = p(X, y).

Whence, ¢;¢, is also an isometry, i.e., ¢1¢, € [som(X). So Isom(X, p) is a group. 0

Let A, A’ be two triangles on R?. They are said to be congruent if we can label their
vertices, for instance A = ABC and A’ = A’ B’C’ such that

[4B| = |A"B'|, |BC| = |B'C’|, |CA| =|C"4'],
/CAB = /C'A'B', /ABC = ZA'B'C’, /BCA=/BCA.

Theorem 9.3.2 Let ¢ be an isometry on R%. Then ¢ maps a triangle to its a congruent

triangle, preserves angles and maps lines to lines.

Proof Let A be a triangle with vertex labels 4, B and C on R?. Then ¢(A) is congruent
with A by the def nition of isometry.

Notice that an angle / < & and an angle £ > & can be realized respectively as an
angle ZCAB, or an exterior angle of a triangle ABC. We have known that ¢(4BC) is
congruent with ABC. Consequently, Z¢(C)p(A)p(B) = LCAB, i.e., ¢ preserves angles in
R?. If Z = r, this result follows the law of trichotomy.

For a line L in R?, let B, C be two distinct points on L, and let L’ be the line through
points B’ = ¢(B) and C’ = ¢(C). Then for any point 4 € R?, it follows that

dA)¢dl) & A¢Le0<LCAB<r
& 0</CHAB <ne ¢(d)¢ L.

Therefore, ¢(L) = L'. 0

The behavior of an isometry is completely determined by its action on three non-

collinear points shown in the next result.
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Theorem 9.3.3 An isometry of R? is determined by its action on three non-collinear

points.

Proof Let A, B, C be three non-collinear points on R? and let ¢;, ¢, € Isom(R?)

have the same action on 4, B, C. Thus

$1(4) = ¢2(4),  $1(B) = ¢a2(B),  ¢1(C) = $a2(C).

1.e.,,
¢, '01(A) =4, ¢,'¢:1(B) =B, ¢,'¢:(C) =C.

Whence, we must show that if there exists ¢ € Isom(R?) such that ¢(4) = 4, ¢(B) =
B, ¢(C) = C, then ¢(P) = P for each point P € R

In fact, since ¢ preserves distance and ¢(4) = A, it follows that P and ¢(P) are
equidistant from A. Thus ¢(P) lies on the circle 4] centered at A with radius |4P|. Sim-
ilarly, ¢(P) also lies on the circle %, centered at B with radius |BP|. Whence, ¢(P) €
6 N 6.

Because 4] and %, are not concentric, they intersect in at most two points, such as

those shown in Fig.9.3.1 following.

%, @(P)
2

Fig.9.3.1

Notice that P lies on both of 4| and %,. Thus 4} N %> # 0. Therefore, |6, N 65| = 1
or 2. If |6, N 6| = 1, then p(P) = P. If |6, N 65| = 2, let L be the line through 4, B,
which is the perpendicular bisector of ¢(P) and P, such as those shown in Fig.9.3.1. By
assumption, C ¢ L, we get that |CP| # |Ce(P)|. Contradicts to the fact that P, ¢(P) are
equidistant from C. Whence |47 N %,| = 1 and we get the conclusion. O
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There are three types of isometries on R? listed in the following.

Translation T. A translation 7 is a mapping that moves every point of R? through

a constant distance in a f xed direction, i.e.,

T.p: R >R, (x1,1)) = (x; +a,y +b),
where (a, b) is a constant vector. Call the direction of (a, b) the axis of T and denoted by
T =Tup.

Rotation R,. A rotation R is a mapping that moves every point of R? through a
fxed angle about a fxed point, called the center. By taking the center O to be the origin

of polar coordinates (r, ), a rotation R, : R — R? is
R:(r,0)— (r,0 +w),

where @ is a constant angle, @ € R (mod2x). Denoted by R = Ry.

Ref ection F. A refection F is a mapping that moves every point of R? to its mirror-
image in a f'xed line. That line L is called the axis of F', denoted by F' = F(L). Thus for a
point P in R?,if P € L, then F(P) = P, and if P ¢ L, then F(P) is the unique point in R?
such that L is the perpendicular bisector of P and F(P).

Theorem 9.3.4 For a chosen line L and a fxed point O € L in R%, any element ¢ €

Isom(R?) can written uniquely in the form
¢ = TRF*,
where F denotes the ref ectionin L, € = 0 or 1, R is the rotation centered at O, T € T, and

the subgroup of orientation-preserving isometries of R? consists of those ¢ with € = 0.

Proof Let T be the translation transferring O to ¢(0). Clearly, T~'¢(O) = O. Now
let P € L be a point with P # O. By def nition,

0 < p(0,P) = p(T™'(0), T ¢(P)) = p(O, T ¢(P)),

there exists a rotation R centered at O transferring P to T~ '¢(P). Thus R~'T~!¢ f xes both
points O and P.

Finally, let O ¢ L be a point. Then points Q and R™! T '¢(Q) are equidistant both
from points O and P. Similar to the proof of Theorem 9.3.3, we know that points QO and
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R'T7'¢(Q) are either equal or mirror-images in L. Choose € = 0if O = R™!T"!¢(Q) and
€ =1if Q # R°'T '¢(Q). Then the isometry FR™' T~ f xes non-collinear points O, P
and Q. According to Theorem 9.3.3, there must be

FR'T g = 1g.

Thus
¢ = TRF".

For the uniqueness of the form, assume that
TRF*=T'R'F,

where €, 6 € {0,1}, T, 7" € T and R, R’ € Ry. Clearly, € = § by previous argument.
Cancelling F if necessary, we get that TR = T’R’. But then (7")"'T = R’'R™! belongs
to Rp N T, i.e., a translation f'xes point O. Whence, it is the identity mapping 1,.. Thus
T=TandR=FR.

Notice that 7', R are orientation-preserving but ' is orientation-reversing. It follows
that TRF€ is orientation-preserving or orientation-reversing according to € = 0 or 1. This

completes the proof. O

9.3.3 Finitely Smarandache 2-Manifold. A point P on a Euclidean plane R? is in fact
associated with a real number 7. Generally, we consider a function u : R? — [0, 27) and

classify points on R? into three classes following:
Elliptic Type. All points P € R? with u(P) < n.
Euclidean Type. All points Q € R? with u(P) = .
Hyperbolic Type. All points U € R? with u(P) > .

Such a Euclidean plane R? with elliptic or hyperbolic points is called a Smarandache
plane, denoted by (R?, i) and these elliptic or hyperbolic points are called non-Euclidean
points. A fnitely Smarandache plane is such a Smarandache plane with fnite non-
Euclidean points.

Let L be an s-line in a Smarandache plane (R?, i) with non-Euclisedn points 4, 45,

.-+, A, for an integer n > 0. Its curvature R(L) is def ned by

R(L) = ) (m~ p(4).
i=1
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An s-line L is called Euclidean or non-Euclidean if R(L) = £2n or # +2nx. The following

result characterizes s-lines on (R2, u).

Theorem 9.3.5 An s-line without self-intersections is closed if and only if it is Euclidean.

Proof Let (R?, i) be a Smarandache plane and let L be a closed s-line without self-
intersections on (R?, 1) with vertices 4;, A, -+, A,. From the Euclid geometry on plane,
we know that the angle sum of an n-polygon is (n — 2)xr. Whence, the curvature R(L) of
s-line L is £2x by def nition, i.e., L is Euclidean.

Now if an s-line L is Euclidean, then R(L) = +2x by defnition. Thus there exist

non-Euclidean points By, By, - - -, B, such that
2= u(B)) = £2m.
i=1

Whence, L is nothing but an n-polygon with vertices By, B,, - - -, B, on R?. Therefore, L

is closed without self-intersection. O

Furthermore, we fnd conditions for an s-line to be that of regular polygon on R?

following.

Corollary 9.3.1 An s-line without self-intersection passing through non-Euclidean points

Ay, As, - -+, Ay s a regular polygon if and only if all points Ay, Ay, - - -, A, are elliptic with
2
u(4;) = (1 - —)ﬂ
n
orall Ay, A,,- -+, A, are hyperbolic with
2
w(d;) = (1 + —)71
n
for integers 1 <i < n.

Proof If an s-line L without self-intersection passing through non-Euclidean points
Ay, Ay, -+, A, 1s a regular polygon, then all points 4, 4,, - - -, 4, must be elliptic (hyper-

bolic) and calculation easily shows that

u(4;) = (1 — %)Tl’ or w(Ad;) = (1 + z)ﬂ'
n n

for integers 1 < i < n by Theorem 9.3.5. On the other hand, if L is an s-line passing

through elliptic (hyperbolic) points 4, 45, - - -, 4, with

u(4;) = (1 — %)Tl’ or uw(Ad;) = (1 + z)ﬂ'
n n
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for integers 1 < i < n, then it is closed by Theorem 9.3.5. Clearly, L is a regular polygon
with vertices A, 4>, -+, A,,. O

Let p be the metric on R? defned in Example 9.3.1. An isometry on a Smarandache
plane (R?, 1) is such an isometry 7 : R> — R? with u(r(x)) = u(x) for x € R2. Clearly,
all isometries on (R?, 1) also form a group under the composition operation, denoted by
Isom(R?, ). Corollary 9.3.1 enables one to determine isometries of fnitely Smarandache

planes following.

Theorem 9.3.6 Let (R, u) be a fnitely Smarandache plane. Then any isometry 7 of
(R2, ) is generated by a rotation R and a ref ection F on R?, i.e., 7 = RF€ withe = 0, 1.

Proof Let .7 be an isometry on a fnitely Smarandache plane (R?, ). Then for a
point 4 on (R?, i), the type of A4 and .7 (A4) must be the same with u(.7(4)) = u(4) by
defnition. Whence, if there is constant vector (a,b) € R? such that 7, : (R*,u) —
(R?, i) determined by

(x,y) > (x+a,y+b)

is an isometry and 4 a non-Euclidean point in (R?, u1), then there are inf nite non-Euclidean
points 4, T,,(A), T ib(A), o, T, (A), - - -, for integers n > 1, contradicts the assumption
that (R?, i) is fnitely Smarandache. Thus .7 can be only generated by a rotation and a
refection. Thus .7 = RF€. Conversely, we are easily constructing a rotation R and a
refection F on (R?,u). For example, a rotation R : § — 6 + x/2 centered at O and
a refection F in line L on a fnitely Smarandache plane (R?, u) is shown in Fig.9.3.2
(a) and (b) in which the labeling number on a point P is u(P) if u(P) # n. Otherwise,

u(P) = n if there are no a label for p € R?, O
n ¥
2 "2
w |
s ) 3
™ 09 il il o) il
2 2 2 1 2
% L
e g
2 2
(a) (b)

Fig.9.3.2



325

Sec.9.3 Isometries on Smarndache 2-Manifolds

The classif cation on f nitely Smarandache planes is the following result.

Theorem 9.3.7 Let kln or kl(n — 1) and 0 < d| < d, < ---d; an integer sequence. Then

there exist one and only one fnitely Smarandache plane (R?, i) with n non-Euclidean

points Ay, A, -+, A, such that

Isom(Rz, ) = Dy

and
2

p(0.4,) = d, ,u(A,-j):(l—]—c), G- Dk+1<i, < jk; 13]3%

if kln, or

2
with O = A4, if kl(n — 1).

Proof Choose w =

Assume kln. Let Py, P, - - -, P2 be 1 concentrically regular k-polygons at O with radius
-, Ao on vertices

2 .
2% and a rotation R, : (r,0) — (.0 + @) centered at O.

-, dy. Place points 4y, 4,, - - -, Ay on vertices of Py, Ay, Ak+2, -

di, d, -
of Py, ---,and 4,31, A2, * + -, A, On vertices of?’%, such as those shown in Fig.9.3.3.
An—k+§ 77777777777777777 A n—k+2
Ags3 W - I.’/ Ak+\2
A3 . As . .
(0) . A, ,/’Ak+1 At
DRV I
\ ,"' ’’’’’’’’’’’ "42k
A "4,
Fig.9.3.3
Then we are easily know that
Isom(R?, i) =~ Dy.
For the uniqueness, let P, %5, -+, P, be % concentrically regular k-polygons at O’
k

with radius d,, d», ---, d; and vertices 47, A4),---, A, labeled likely that in Fig.9.3.3.
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Choose 7o o being a translation moving point O’ to O and Ry, 4, a rotation centered at O
moving A’ to A;. Transfer it frst by Ty o and then by R A4y Then each non-Euclidean
point 4} coincides with 4; for integers 1 < i < n, i.e., they are the same Smarandache
plane (R?, u).

Similarly, we can get the result for the case of k|(n — 1) by putting O = A4,,. U

9.3.4 Smarandachely Map. Let S be a surface associated with u : x — [0, 2x) for
each point x € §, denoted by (S,u). A point x € § is called elliptic, Euclidean or
hyperbolic if it has a neighborhood U, homeomorphic to a 2-disk neighborhood of an
elliptic, Euclidean or a hyperbolic point in (R?, u). Similarly, a line on (S, i) is called an
s-line.

A map M = (Zop, &) on (S,p) is called Smarandachely if all of its vertices is
elliptic (hyperbolic). Notice that these pendent vertices is not important because it can
be always Euclidean or non-Euclidean. We concentrate our attention to non-separated
maps. Such maps always exist circuit-decompositions. The following result characterizes

Smarandachely maps.

Theorem 9.3.8 A non-separated planar map M is Smarandachely if and only if there

exist a directed circuit-decomposition
N
E\(M) = D EC)
i=1

of M such that one of the linear systems of equations

or

is solvable, where E 1 (M) denotes the set of semi-arcs of M.

Proof 1f M is Smarandachely, then each vertex v € V(M) is non-Euclidean, i.e.,

u(v) # m. Whence, there exists a directed circuit-decomposition

Ey(M) = @E(ﬁi)
i=1
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of semi-arcs in M such that each of them is an s-line in (R?, i). Applying Theorem 9.3.5,

we know that
D, @=p)=2mor Y (x-p(v)=-2m
wei(C)) ver(Ch)

for each circuit C;, 1 <i < s. Thus one of the linear systems of equations

Z (m—x,)=2n, 1<i<s or Z (m—x,)=-2m 1<i<s
wer(C) e (Co)

is solvable.

Conversely, if one of the linear systems of equations

Z (m—x,)=2n, 1<i<s or Z (m=—x,)=-2n, 1<i<s
wer(C) e (Co)

is solvable, def ne a mapping u : R? — [0, 47) by

) = x, ifx=veV (M),
Y2V 7 itxe v,

Then M is a Smarandachely map on (R?, ). This completes the proof. 0

In Fig.9.3.4, we present an example of a Smarandachely planar maps with u def ned

by numbers on vertices.

T T T

2 2 2
T T
2 n 2

2
T T T
2 2 2
Fig.9.3.4

Let wy € (0, 7). An s-line L is called non-Euclidean of type wy if R(L) = 21 + wy.

Similar to Theorem 9.3.8, we can get the following result.
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Theorem 9.3.9 A non-separated map M is Smarandachely if and only if there exist a

directed circuit-decomposition
E\(M) = EC)
i=1

of M into s-lines of type wy, wy € (0, ) for integers 1 < i < s such that one of the linear

systems of equations

Z (m—x,) =21 — wy, 1<i<s,
wer(Co)
Z (m—x,) =21 — woy, 1<i<s,
wer(Co)
Z (m—x,) =27 + wy, 1<i<s,
wer(Co)
Z (m—x,) = 27+ wo, I1<i<s

ve V(?,-)

is solvable.

9.3.5 Inf nitely Smarandache 2-Manifold. Notice that the function u : R> — [0, 27)
is not continuous if there are only fnitely non-Euclidean points in (R?, u). We consider
a continuous function u : R?> — [0, 2n) in this subsection, in which we meet inf nite

non-Euclidean points.

Fig.9.3.5

Letr : (a,b) — R? be a plane curve C parametrized by arc length s, seeing Fig.9.3.5.

Notice that u(x) is an angle variant from 7 of a Euclidean point to u(x) of a non-Euclidean
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x in fnitely Smarandache plane. Consider points moves from X to Y on r(s). Then the

d
variant of angles from /; to [, is 6 = ¢ — . Thus u(x) = d—f' . Def ne the curvature R(C)

rer- [

C

of curve C by

Then if C is a closed curve on R? without self-intersection, we get that

2nr

d d
R(C):fd—‘f:fd—‘f=¢|m—¢|o:2n.
C 0

Let r = (x(s), y)(s)) be a plane curve in R?. Then

@ cos ¢ Q = sin¢
ds T ods )
Consequently,
ds> ds  dsds’ ds? ds dsds’

d d
Multiplying the frst formula by —d—y, the second by d_x on both sides and plus them, we
s s

get that
d _dsdy dxdy
ds dsds® ds?ds
by applying sin® ¢ + cos? ¢ = 1.

If r(r) = (x(¢), y(¢?)) is a plane curve C parametrized by ¢, where ¢ maybe not the arc

t
dx\’ dy ?
S = f (E) + (E) df,
0
we know that

ds dx\’ dy > dx  (dx\ (ds dy (dy\  (ds
— = —| +(=), —=(—]|/|—=] and —={|—=|/[-].
dt dt dt ds dt dt ds dt dt

dxdy _dxiy
d¢ _ dtd* 4P dt

NERG

length, since

Whence,

3"
2
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Consequently, we get the following result by def nition.

Theorem 9.3.10 A curve C determined by r = (x(t), y)(t)) exists in a Smarandache plane
(R2, w) if and only if the following differential equation

dt d*  df* dt _

3
@ 2+ Q 2\2
dt dt

Example 9.3.1 Let r(6) = (cos 6,siné) (0 < 6 < 2r) be a unit circle C on R?. Calculation

is solvable.

shows that

) 2, _
Eﬁ_ﬁd_e_sm O+cos =1

and \
2

2 2
((%) +(%)) =sin’6 + cos’6 = 1.

Whence, the circle C exists in a Smarandache plane (R?, u) if and only if u(x,y) = 1 for
Y(x,y) € C.

Example 9.3.2 Let r(r) = (a(t — sint),a(1 — cost)) (0 < t < 2r) be a spiral line on R2.

Calculation shows that

dp 1
Fri—
4 Z
asin >
Whence, this spiral line exists in a Smarandache plane (R?, i) if and only if
1
:u(x’y ) ==
4asin —
asin >

for x = a(t — sint) and y = a(1 — cos?).

Now we turn our attention to isometries of Smarandache plane (R?, i) with inf nitely
Smarandache points. These points in (R?, ) can be classifed into three classes, i.e.,

elliptic points V., Euclidean points V., and hyperbolic points V}, following:

Vo ={uce (R2nu) |/,L(I/l) <}
Ve =1{ve (Rz’:u) |,U(V) =7},
Vip ={we R u) | u(w) >}
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Theorem 9.3.11 Let (R, 1) be a Smarandache plane. If Vo # 0 and Vy, # 0, then Ve, # 0.

Proof By assumption, we can choose points u € V,; and v € V},. Consider points on
line segment uv in (R, i1). Notice that u(u) < m and u(v) > nr. Applying the connectedness
of u, there exists at least one point w, w € uv such that u(w) = n, i.e., w € V,, by the

intermediate value theorem on continuous function. Thus V,, # 0. O

Corollary 9.3.2 Let (R, 1) be a Smarandache plane. If V,, = 0, then either all points of
(R, u) are elliptic or hyperbolic.

Corollary 9.3.2 enables one to classify Smarandache planes into classes following:

Euclidean Type. These Smarandache planes in which each point is Euclidean.
Elliptic Type. These Smarandache planes in which each point is elliptic.
Hyperbolic Type. These Smarandache planes in which each point is hyperbolic.
Smarandachely Type. These Smarandache planes in which there are elliptic, Eu-
clidean and hyperbolic points simultaneously. This type can be further classifed into

three classes by Corollary 9.3.2:

(S1) Such Smarandache planes just containing elliptic and Euclidean points;
(S2) Such Smarandache planes just containing Euclidean and hyperbolic points;

(S3) Such Smarandache planes containing elliptic, Euclidean and hyperbolic points.

By def nition, these isometries of a Euclidean plane R?, i.e., translation, rotation and
ref ection exist also in Smarandache planes (R?, ) of elliptic and hyperbolic types if we
let u : R? — [0,7) be a constant< 7 or > 7. We concentrate our discussion on these

Smarandachely types.
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For convenience, we respectively colour the elliptic, Euclidean and hyperbolic points
by colors red (R), yellow (Y) and white (W). For the cases (S1) or (S2), if there is an
isometry of translation 7, on (R?, i), then this Smarandache plane can be only the case
shown in Fig.9.3.6, where X =R or W and all other points colored by Y. Whence, if there
is also a rotation R, on (R?, u), there must be ¢ = b and § = 7/2 with center at X or
the center of one square. In this case, w can easily fnd a ref ection F in a horizontal or a

vertical line passing through X. Whence, there are isometries of types translation, rotation

and ref ection in cases (S1) and (S2).

Furthermore, if there is an isometry of rotation Ry on (R?, i), then this Smarandache
plane can be only the case shown in Fig.9.3.7, where X, U, Z € {R, W} and all other
points colored by Y. In this case, there are ref ections F in lines passing through points O,

X and there are translations 7, on (R?, i) only if = 7/2 and a = b.

Fig.9.3.7

RS

@

o 8 o

-@

2

=R SR

a @
@@
2

Fig.9.3.8
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Consider the case of (S3). In this case, if there is an isometry of translation 7,
on (R?, ), then this Smarandache plane can be only the case shown in Fig.9.3.8, where
X € {R, W}, Z € {R, W} \ {X} and all other points colored by Y. Now if there is an
isometry of rotation Ry on (R?, i), there must be a = b and 6 = 7/2 centered at X, Z or
the center of one square.

Similarly, if there is an isometry of rotation Ry on (R?, ) such as those shown in
Fig.9.3.7. Then there are ref ections F in lines passing through points O, X. In this case,
there exist translations 7, on (R?, i) only if § = 7/2 and a = b.

Summarizing up all the previous discussions, we get the following result on isome-

tries of Smarandache planes (R?, i) with a continuous function i : R*> — [0, 27).

Theorem 9.3.12 Let (R?, i) be a Smarandachely type plane with u : R*> — [0,2n) a
continuous function. Then there are isometries of translation T,, and rotations Ry only
ifa = band 6 = n/2, and there are indeed such a Smarandache plane (R?, ) with
isometries of types translation, rotation and ref ection concurrently in each of classes
(S1)-(S3).

§9.4 ISOMETRIES OF PSEUDO-EUCLIDEAN SPACES

9.4.1 Euclidean Space. A Euclidean space on a real vector space E overa feld .# isa
mapping
( c o > : EXE — Rwith (El,éz) - (El,éz> fOI'VEl,Ez e E
such that fore,e;,e; € E, « € ¥
(A1) (e,e1 +e) = (e, e) + (e, e);

(43) (e1,e) = (e, e1);
(44) (e,e) > 0 and (e, e) = 0 if and only if e = 0.

In an Euclidean space E, the number +/(e, e) is called its norm, denoted by |le|| for

abbreviation. It can be shown that
(1) (0.2) = (€,0) = 0 for Ve € E;

(2) <Z xiE}, > y,-E§> = 2 DXy <E},E§>, fore; € E, where 1 < i < max{m,n} and
i=1 j=1 '
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s=1or2.
Certainly, lete; = e, = 01in (41), we fnd that <E, 6> = 0. Applying (43), we get that
<6, E) = 0. This is the formula in (1). For (2), applying (41)-(42), we know that

<Zn: xie}, zm:)’i55> <z": x,-E},y,-E§> B Zm:yi <zn: Xi€; E§>
i=1 =1

i=1 i=1

Il Il Il
M= iVs
M =
g o
= M-
v =
IR 81
~ ~———
Il
i S
M=
=
>
0
oL
~

9.4.2 Linear Isometry on Euclidean Space. Let E be an n-dimensional Euclidean space
with normal basis {€;, €, - - -, €,}, i.€., <E,~,Ej> =0and|¢] =1 forintegers 1 <i,j<n. A

linear isometry T : E — E is such a transformation that
T(Clél + 0222) =C T(El) + C2T(E2) and <T(El), T(Ez)) = <El,22>
fore,, e; e Eand ¢, ¢, € 7.

Theorem 9.4.1 Let E be an n-dimensional Euclidean space with normal basis {€,, €,,
-+, €,} and T a linear transformation on E. Then T is an isometry on E if and only if
{T(e), T(€),---,T(€,)} is a normal basis of E.

Proof If T is a linear isometry, then <T (€), T (E‘,‘)> = <E,-,Ej> = 0;; by defnition,
where 0;; = 1 ifi = j and 0 otherwise. Whence, {T'(€,), T'(€>), - - -, T(€,)} is a normal basis
of E.

Conversely, let {€,,€,---,€,}, {T(€1),T(€), -, T(€,)} be normal basis of E and
v € E. Without loss of generality, assume v = a;€; + a;€, + - - - + a,€,. Then we know that
T() = a\T(€)+aT(&)+: - +a,T(,). Notice that (T(€,). T(€;)) = 6, and (€., €;) = 6,
for integers 1 < i, j < n. We get that

<‘_}, v) = a%, a% + -+ a2 and <T(\_/), T(V)) = a%,az 4+ -+ a2

n n*

Thus (T (v), T(v)) = (v, V). O
A matrix 4 = [ai-/]an is called orthogonal if A4’ = I,,, where A’ is the transpose of
Aif

ajy+a,+--+a, =1 and apa; +apap+-+ apa;, =0
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forintegers 1 <i,j<n, i # j.

Theorem 9.4.2 Let E be an n-dimensional Euclidean space with normal basis {€,€,,
-+, €,} and T a linear transformation on E determined by 7 = [aif]an )_(t, where X =

(€1,6, -+, &) and Y = (T(€,), T(&), -, T(€,)). Then T is a linear isometry on E if and

only if [a,- j] ., Isan orthogonal matrix.
nxn
Proof If T is a linear isometry on E, then <T(E,-), T(Ej)> = <E,~, Ej> = 0;;. Thus
anaj +apdp + -+ Andjp = 0,
ie., [ai j] y is an orthogonal matrix by def nition.
nxn

On the other hand, if [a,- j] y is an orthogonal matrix, then we are easily know that
nxn

{T(€),T(€),- -, T(€,)} is anormal basis of E. Leth = b€ +byé;+---+b,€, € E. Then
T(Z) = T(bla + bzgz + -+ bnEn) = b]T(El) + bgT(Eg) + -+ bnT(En)

Thus
(T(B).T(B)) = b} + b3 +---+ b = (b,b),

i.e., T is a linear isometry by def nition. U

9.4.3 Isometry on Euclidean Space. Let E be an n-dimensional Euclidean space with
normal basis {€|, €, - - -, €,}. As in the case of R? by the distance-preserving property, any

isometry on E is a composition of three isometries on E following:

Translation Tz. A mapping that moves every point (x;, X, - - -, x,,) of E by
To i (x1,x2, -+, %) = (X1 + e, X0 + 2,00+, X, + €),
where e = (e1, e, -, €,).

Rotation R;. A mapping that moves every point of E through a f xed angle about a
fxed point. Similarly, taking the center O to be the origin of polar coordinates (7, @1, ¢,

<, Pp-1), arotation Ry, g,..9,, : E—> E is

R91,€2,-~-,€y,_1 : (l", ¢1’ ¢2’ ) ¢n1) - (l", ¢1 + 919 ¢2 + 929 Tt ¢I11 + Hn—l)’
where 6; is a constant angle, 6; € R (mod2r) for integers 1 <i <n— 1.

Ref ection F. A refection F is a mapping that moves every point of E to its mirror-

image in a f xed Euclidean subspace £’ of dimensional n— 1, denoted by F' = F(E”). Thus
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forapoint PinE, F(P) = Pif P € E’,and if P ¢ E’, then F(P) is the unique point in E
such that £’ is the perpendicular bisector of P and F(P).

The following result is easily to know similar to the proof of Theorem 9.3.4 by the

distance-preserving property of isometries.

Theorem 9.4.3 All isometries fxing the origin on a Euclidean space E are linear.

Whence, by Theorems 9.4.1-9.4.2, we get the following result.

Theorem 9.4.4 Any isometry I on a Euclidean space E is affine, i.e.,

Y =afay] X+z

nx

where A is a constant number, [ai j] @ orthogonal matrix and e a constant vector in E.
nxn

9.4.4 Pseudo-Euclidean Space. Let R” = {(x, x2, -+, x,)} be a Euclidean space of di-
mensional #» with anormal basis€; = (1,0,---,0),€;, =(0,1,---,0),---,€, =(0,0,---, 1),
x € R" and T/)g, ET/) two vectors with end or initial point at X, respectively. A pseudo-
Euclidean space (R", ) is such a Euclidean space R” associated with a mapping u :
T/)f — ;T/) for x € R”, such as those shown in Fig.9.4.1,

=1
=1

(2) (b)

Fig.9.4.1

where T}g and yT} are in the same orientation in case (@), but not in case (b). Such points in
case (a) are called Euclidean and in case (b) non-Euclidean. A pseudo-Euclidean (R”, )
is f nite if it only has f nite non-Euclidean points, otherwise, inf nite.

Notice that a vector 7 can be uniquely determined by the basis of R”.— For x € R”,
there are inf nite orthogonal frames at point x. Denoted by O the set of all normal bases
at point X. Then a pseudo-Euclidean space (R, y) is nothing but a Euclidean space R”
associated with a linear mapping u : {€;,€,--,€,} — {€,&, -+,€,} € Os such that
(&) = €, (&) = &, - -, u(€,) = €, at point ¥ € R”. Thus if Vs = ¢/€, + 262+ - -+ Cpen,
then M(YT}) = C1i(€)) + Cot(€) + -+ - + Cupi(€,) = CIE€] + C2E) + + -+ + €4,
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Without loss of generality, assume that

H(El) = X11€ + X126 + - -+ + X|,€p,
H(€r) = X21€] + X00€x + - -+ + X2,€p,

Then we f nd that
HET) = (cren - e) @) u@E), &)
X111 X120 X
= (oo R M @, 5,
Xnl Xp2 0 Xun
Denoted by
X1 X1zt Xi (u(er), €1) u(er),e) -+ (u(€) €
] = Xol Xppottr Xou | (u(er), €1) (e, €) -+ (u(er), €y
Xnl Xp2 0 X </J(En)’gl> <ﬂ(Elz)’E2> <ﬂ(Elz)’En>

called the rotation matrix of x in (R”, u). Then u : T/)g - gT/) is determined by u(x) = [x]
for ¥ € R”. Furthermore, such an rotation matrix [x] is orthogonal for points X € R” by
defnition, i.e., [X] [X]' = L. Particularly, if X is Euclidean, then such an orientation ma-
trix is nothing but u(x) = I,x,. Summing up all these discussions, we know the following

result.

Theorem 9.4.5 [f (R",u) is a pseudo-Euclidean space, then u(x) = [X| is an n X n

orthogonal matrix for ¥ x € R”.

Likewise that the case of (R?, 1), a line L in pseudo-Euclidean space (R”, u) is usually
called an s-/ine. Def ne the curvature R(L) of an s-line L passing through non-Euclidean

points X, X, - - -, X,, € R" for m > 0 in (R”, u) to be a matrix determined by

R = | [u@)
i=1
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and Euclidean if R(L) = I,,, otherwise, non-Euclidean. 1t is obvious that a point in a
Euclidean space R” is indeed Euclidean by this def nition. Furthermore, we immediately

get the following result for Euclidean s-lines in (R”, u).

Theorem 9.4.6 Let (R”, u) be a pseudo-Euclidean space and L an s-line in (R", i) passing
through non-Euclidean points X,%, -+, X, € R". Then L is closed if and only if L is

FEuclidean.
Proof If L is a closed s-line, then L is consisted of vectors Xx;X;, X2X3, - -+, X,X. By
def nition,
Xl Xi XX
p—y R — u(x;)
xi+1xi‘ 'xi—lxi‘

for integers 1 < i < m, where i + 1 = (modm). Consequently,

m
xlxz = X1X2 ]—[ u(x;).

=1
Thus [ | 4(%) = Ly ie., L is Euclidean.

Conversely, let L be Euclidean, i.e., l_l u(x;) = Lx,. By def nition, we know that
i=1

—
Xir1X; Xio1Xi . — [Mlil—s
= (X)), 1€, XX = X1 % H(X;)
xi+1xi‘ ‘xi—lxi' 'xz 1%‘

for integers 1 < i < m, where i + 1 = (modm). Whence, if l—[ w(x;) = L, then there
i=1

must be
- - - _
XX = X1X2 1—[ u(x;).
i=1
Thus L consisted of vectors X x5, X»X3, - - -, X,X; 1S a closed s-line in (R”, u). O

Let n = 2. We consider the pseudo-Euclidean space (R?, ) and fnd the rotation
matrix u(X) for points X € R?. Let 65 be the angle form €, to ue€,. Then it is easily to know
that

cosfs sinfx
sin@z —cosfx

u(x) = (
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Now if an s-line L passing through non-Euclidean points X;, X, - - -, X,, € R?, then Theo-

rem 9.4.6 implies that

cosflz,  sinfx, cosflz, sinfy, cosfz, sinfx, | ;
sinfz, —cosfx J{ sinfx, —cosfx, sinfx, —cosfx, e
Thus
_ cos(@z +05 +---+05,) sin(@z +60% +---+6%,)
p) =1 I
sin(@x, +6% +---+65,) cos(@x +0x +---+053,)

Whence, 5, + 65, +---+ 05, = 2kn for an integer k. This fact is in agreement with that
of Theorem 9.3.5.

An embedded graph G on R" is a 1 — 1 mapping 7 : G — R” such that for Ve, e’ €
E(G), 1(e) has no self-intersection and 7(e), 7(e’) maybe only intersect at their end points.
Such an embedded graph G in R” is denoted by Ggr.. For example, the n-cube C,, is such
an embedded graph with vertex set V(C,) = { (x1, x2,---,x,) |x; =0 or 1 forl <i<nm}
and two vertices (x;,x, -+, x,)) and (x}, x5, -+, x;) are adjacent if and only if they are

differ exactly in one entry. We present two n-cubes in Fig.9.4.2 forn = 2 and n = 3.

(1,0) (1,1) (1,1,0) (1,1,1)
(1,0,0) (1,0,1)
(0,1,0) (0,1,1)
(0,0) (0,1) (0,0,0) (0,0,1)
n=2 n=3
Fig.9.4.2

An embedded graph G- is called Smarandachely if there exists a pseudo-Euclidean
space (R”,u) with a mapping u : ¥ € R" — [x] such that all of its vertices are non-
Euclidean points in (R”, ). Certainly, these vertices of valency 1 is not important for
Smarandachely embedded graphs. We concentrate our attention on embedded 2-connected

graphs.
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Theorem 9.4.7 An embedded 2-connected graph Ggn is Smarandachely if and only if

there is a mapping u : x € R" — x| and a directed circuit-decomposition

E, = @ E(C)
=1

such that these matrix equations

l_[ Xo=1,, 1<i<s
}EV(?,‘)

are solvable.

Proof By defnition, if Gr is Smarandachely, then there exists a mapping u : X €
R” — [x] on R” such that all vertices of Gr» are non-Euclidean in (R”, u). Notice there are
only two orientations on an edge in E(Gg). Traveling on Ggr» beginning from any edge
with one orientation, we get a closed s-line ?, 1.e., a directed circuit. After we traveled

all edges in Gr» with the possible orientations, we get a directed circuit-decomposition

E, = @E(ﬁ)
i=1

with an s-line Ezi for integers 1 <i < s. Applying Theorem 9.4.6, we get

[T 4@ =t 1<is<s,
EEV(?,-)

Thus these equations

1_[ Xo=1I,, l<i<s

Ye V(?,-)

have solutions X7 = u(x) for x € V(?i).

Conversely, if these is a directed circuit-decomposition

E, = @E(ﬁ)
i=1

such that these matrix equations

1_[ Xo=1,, l1<i<s

¥e V(?,-)
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are solvable, let X5 = A5 be such a solution for x € V(?i), 1 <i < s. Defne a mapping

u:x €R" - [x] on R" by

_ Ag ifxe V(GRn),
u(x) = .
[n><n if x ¢ V(GRn)

Then we get a Smarandachely embedded graph Gg- in the pseudo-Euclidean space (R”, u)
by Theorem 9.4.6. U

Now let C(¢) = (x1(2), x2(¢), - - -, x,(f)) be a curve in R”, i.e.,
C(t) = x1(t)€1 + x2(t)€r + -+ - + x,(2)Ep-

If it is an s-line in a pseudo-Euclidean space (R”, ), then

x1(2) <
@

Whence, we get the following result.

xu(0)

x(2) -
PO

— €2,
2 (2)]

u(er) = u(e) = e, u(Ey) =

Theorem 9.4.8 A curve C(t) = (x1(2), x2(¢), - - -, x,(¢)) with parameter t in R" is an s-line
of a pseudo-Euclidean space (R", ) if and only if

x1(2)
(o) = w0

Xu(2)

9.4.5 Isometry on Pseudo-Euclidean Space. We have known Isom(R") = (T;, Rz, F).
An isometry T of a pseudo-Euclidean space (R”, i) is an isometry on R” such that u(7(x)) =
u(x) for Vx € R”. Clearly, all such isometries form a group Isom(R”, ) under composition
operation with Isom(R”, u) < Isom(R”). We determine isometries of pseudo-Euclidean
spaces in this subsection.

Certainly, if u(¥) is a constant matrix [c] for VX € R”, then all isometries on R” is
also isometries on (R”, u). Whence, we only discuss those cases with at least two values

for y : X € R" — [x] similar to that of (R?, u).

Translation. Let (R”, u) be a pseudo-Euclidean space with an isometry of transla-

tion Tz, where e = (e, e;,--+,¢,) and P, O € (R”, u) a non-Euclidean point, a Euclidean
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point, respectively. Then u(T5(P)) = u(P), u(T(Q)) = u(Q) for any integer k > 0 by

def nition. Consequently,

P, T«(P), TA(P), ---, TX(P), -,
0, TAQ), TXQ), -+, TKQ),- -

are respectively inf nite non-Euclidean and Euclidean points. Thus there are no isometries
of translations if (R”, w) is fnite.

In this case, if there are rotations Ry, 4,..4, ,, then there must be 6,,6,,---,6,_, €
{0,7/2}and if 0, = /2 for 1 <i<[,0,=0ifi> [+ 1,thene; = e, =--- = ¢4,.

Rotation. Let (R",u) be a pseudo-Euclidean space with an isometry of rotation
Ro, 9,0, , and P, O € (R", u) anon-Euclidean point, a Euclidean point, respectively. Then

/’L(R91,€2,"-,€n-1(P)) = /J(P)a /J(R€1,€2,“-,9n—1(Q)) = /J(Q) for any integer k=0 by def nition.
Whence,

P’ R91,92a"'a9n—1(P)’ Rzlﬁz,---,()n,l(P)’ ) R§1,92,---,9,,,1(P)’ T
Q’ R91,92a"'a9n—1(Q)’ R§1,92,~-~,€,,_1(Q)’ T RZI,OQ,---,O,,,I(Q)’ e

are respectively non-Euclidean and Euclidean points.

In this case, if there exists an integer k such that 6;2kx for all integers 1 < i <
n — 1, then the previous sequences is f nite. Thus there are both f nite and inf nite pseudo-
Euclidean space (R”, ) in this case. But if there is an integer iy, 1 < iy < n — 1 such
that 6;, [ 2kn for any integer k, then there must be either inf nite non-Euclidean points or
inf nite Euclidean points. Thus there are isometries of rotations in a f nite non-Euclidean
space only if there exists an integer & such that ;|2kn for all integers 1 < i < n — 1.

Similarly, an isometry of translation exists in this case only if 6;,6,,---,6,_; € {0, 7/2}.

Ref ection. By defnition, a ref ection F in a subspace E’ of dimensional n — 1 is an
involution, i.e., F? = Ig.. Thus if (R”, ) is a pseudo-Euclidean space with an isometry
of refection F in £ and P, O € (R",u) are respectively a non-Euclidean point and a
Euclidean point. Then it is only need that P, F(P) are non-Euclidean points and O, F(Q)
are Euclidean points. Therefore, a ref ection F' can be exists both in fnite and inf nite

pseudo-Euclidean spaces (R”, u).

Summing up all these discussions, we get results following for fnite or infnite

pseudo-Euclidean spaces.
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Theorem 9.4.9 Let (R”, u) be a fnite pseudo-Euclidean space. Then there maybe isome-

tries of translations Tg, rotations Ry and ref ections on (R", ). Furthermore,

(1) If there are both isometries T; and Ry where e = (e, ey, ---,e,) and 0 =
(61,6,--+,6,1), then 6,,6,,---,6,_1 € {0,n/2} and if 6; = n/2 for 1 < i <[ 6, =0
ifi>l+1,theney =e; =---=ey.

(2) Ifthereis anisometry Ry, g,....q, ,, then there must be an integer k such that 6; | 2kn
for all integers 1 <i<n-1.

(3) There always exist isometries by putting Euclidean and non-Euclidean points

x € R" with u(x) constant on symmetric positions to E' in (R", u).

Theorem 9.4.10 Let (R”, i) be a inf nite pseudo-Euclidean space. Then there maybe

isometries of translations T, rotations Ry and ref ections on (R", u). Furthermore,

(1) There are both isometries Tz and Ry with e = (e, e, -, e,) and 0 = (61,65,
coo,60,1), onlyif 01,05, --,0,_1 €{0,n/2Yand if 0, = /2 for 1 <i <[ 6, =0ifi>[+1,
thene, = e, = -+ =ej.

(2) There exist isometries of rotations and ref ections by putting Euclidean and non-

Euclidean points in the orbits X&) and fm with a constant u(x) in (R”, ).

We determine isometries on (R?, i) with a 3-cube C* shown in Fig.9.4.2. Let [a] be
an 3 X 3 orthogonal matrix, [a] # Lx; and let u(x;, x2, x3) = [a] for x1, x5, x3 € {0, 1},

otherwise, u(xy, X2, X3) = I3x3. Then its isometries consist of two types following:
Rotations:

Ry, R,, R;3: these rotations through 7/2 about 3 axes joining centres of opposite
faces;

R4, Rs, Rg, R7, Rg, Ro: these rotations through 7 about 6 axes joining midpoints of
opposite edges;

Ry0, Ri1, Ri2, Ry3: these rotations through about 4 axes joining opposite vertices.

Ref ection F': the ref ection in the centre f xes each of the grand diagonal, reversing

the orientations.

Then Isom(R* u) = (R;, F, 1 <i<13) ~ S, X Z,. But if let [E] be another 3 x 3
orthogonal matrix, [E] # [a] and defne u(x, x2,x3) = [a] for x; = 0, x,,x3 € {0, 1},
u(xy, x2,x3) = [Z] for x; =1, x5, x3 € {0, 1} and u(x, x3, x3) = I3x3 otherwise. Then only

the rotations R, R*, R*, R* through n/2, n, 37/2 and 27 about the axis joining centres of
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opposite face

{(0,0,0),(0,0,1),(0,1,0),(0,1, 1)} and {(1,0,0), (1,0, 1), (1,1,0), (1, 1, 1)},
and ref ection F through to the plane passing midpoints of edges

(0,0,0) - (0,0,1), (0,1,0)-(0,1,1), (1,0,0) — (1,0, 1), (1,1,0) - (1,1,1)
or (0,0,0)-(0,1,0), (0,0,1)-(0,1,1), (1,0,0)—(1,1,0), (1,0,1)—(1,1,1)
are isometries on (R?, i). Thus Isom(R?, u) = (R, R,, R3, R4, F) ~ Dy.

Furthermore, let [a;], 1 < i < 8 be orthogonal matrixes distinct two by two and de-
fne u(0,0,0) = [a1], u(0,0,1) = [a2], u(0, 1,0) = [as], u(0, 1, 1) = [as], u(1,0,0) = [as],
(1,0, 1) = [ag], u(1,1,0) = [a7], u(1, 1, 1) = [as] and p(x1, x2, x3) = Lz if X1, x2, X3 # 0
or 1. Then Isom(R?, 1) is nothing but a trivial group.

§9.5 REMARKS

9.5.1 The Smarandache geometry is proposed by Smarandache by denial the 5th postu-
late for parallel lines in Euclidean postulates on geometry in 1969 (See [Smal]-[Sma2]
for details). Then a formal def nition on such geometry was suggested by Kuciuk and An-
tholy in [KuA1]. More materials and results on Smarandache geometry can be found in
references, such as those of [Smal]-[Sma2], [Iserl]-[Iser2], [Mao4], [Mao25] and [Liu4].

9.5.2 For Smarandache 2-manifolds, Iseri constructed 2-manifolds by equilateral triangu-
lar disks on Euclidean plane R2. Such manifold can be really come true by paper model in
R? for elliptic, Euclidean and hyperbolic cases ([Iseil]). Observing the essence of identif -
cation 5, 6, 7 equilateral triangles in Iseri’s manifolds is in fact a mapping u : R?> — 57/3,
27 or 7t/3, a general construction for Smarandache 2-manifolds, i.e., map geometry was
suggested in [Mao3] by applying a general mapping u : R> — [0,27) on vertices of a
map, and then proved such approach can be used for constructing paradoxist geometry,
anti-geometry and counter-geometry in [Mao4]. It should be noted that a more general
Smarandache n-manifold, i.e., combinatorial manifold was combinatorially constructed
in [Maol5]. Moreover, a differential theory on such manifold was also established in

[Maol5]-[Maol7], which can be also found in the surveying monograph [Mao25].

9.5.3 All points are equal in status in a Euclidean space E. But it is not always true in
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Smarandache 2-manifolds and pseudo-Euclidean spaces. This fact means that not every
isometry of R” is still an isometry of (R”,u). For fnite Smarandache 2-manifolds or
pseudo-Euclidean space, we can determine isometries by a combinatorial approach, i.e.,
maps on surfaces or embedded graphs in Euclidean spaces. But for inf nite Smarandache
2-manifolds or pseudo-Euclidean spaces, this approach is not always effective. However,
we have know all isometries of Euclidean spaces. Applying the fact that every isometry
of a pseudo-Euclidean space (R”,u) must be that of R”, It is not hard for determining

isometries of a pseudo-Euclidean space (R”, u).

9.5.4 Let D : E — E be a mapping on a Euclidean space E. If
1DGx) = DOVl = [Ix = ¥

holds for all X,y € E, then D is called a norm-preserving mapping. Notice that Theorems
9.4.3 and 9.4.4 is established on the condition of distance-preserving. Whence, They are
also true for norm-preserving mapping, i.e., there exist a orthogonal matrix [aij]m, a

constant vector e and a constant number A such that

G=2ala;| +e

nxn

9.5.5 Let E be a Euclidean space and 7' : E — E be a linear mapping. If there exists a

real number A such that

(T, T(m)) = 2> (v, W),

for all vi, v, € E, then T is called a linear conformal mapping. 1t is easily to verify that
TG = |AlIV]

for v € bfE. Such a linear conformal mapping 7 is indeed an angle-preserving mapping.

In fact, let v;, v, be two vectors with angle 6. Then by def nition

(T(v1), T(m)) _ 22 (v, v _ i, )
WTGONNTEIN A2l vl

cos Z(T(vy), T(»)) = = cos 6.

Thus Z(T(vy), T(vy)) =60 for 0 < L(T(vy), T(v2)), 6 < .

Problem 9.5.1 Determine linear conformal mappings on f nite or inf nite pseudo-Euclidean

spaces (R", p).
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9.5.6 For a Euclidean spaces E, a homeomorphism f : E — E is called a differentiable

isometry or conformal differentiable mapping if there is an real number A such that

), df(m)) = V1, W) or  (df(W),df(n)) = 2> (¥, V)

for V vy, v, € E. Then it is clear that the integral of a linear isometry is a differen-
tiable. and that of a linear conformal mapping is a differentiable conformal mapping by
def nition. Thus the differentiable isometry or conformal differentiable mapping is a gen-
eralization of that linear isometry or linear conformal mapping, respectively. Whence, a

natural question arises on pseudo-Euclidean spaces following.

Problem 9.5.2 Determine all differentiable isometries and conformal differentiable map-

pings on a pseudo-Euclidean space (R", ).



CHAPTER 10.

CC Conjecture

The main trend of modern sciences is overlap and hybrid, i.e., combining dif-
ferent felds into one underlying a combinatorial structure. This implies the
importance of combinatorics to modern sciences. As a powerful tool for deal-
ing with relations among objectives, combinatorics mushroomed in the past
century, particularly in catering to the need of computer science and children
games. However, an even more important work for mathematician is to apply
it to other mathematics and other sciences besides just to fnd combinatorial
behavior for objectives. How can it contributes more to the entirely mathemat-
ical science, not just in various games, but in metric mathematics? What is a
right mathematical theory for the original face of our world? 1 have brought
a heartening conjecture for advancing mathematics in 2005, i.e., 4 mathemat-
ical science can be reconstructed from or made by combinatorialization after
a long time speculation on combinatorics, also a bringing about Smarandache
multi-space for mathematics. This conjecture is not just like an open prob-
lem, but more like a deeply thought for advancing the modern mathematics.
1.e., the mathematical combinatorics resulting in the combinatorial conjecture
for mathematics. For example, maps and graphs embedded on surfaces con-
tribute more and more to other branch of mathematics and sciences discussed

in Chapters 1 — 8.
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§10.1 CC CONJECTURE ON MATHEMATICS

10.1.1 Combinatorial Speculation. Modern science has so advanced that to fnd a
universal genus in the society of sciences is nearly impossible. Thereby a scientist can
only give his or her contribution in one or several felds. The same thing also happens for

researchers in combinatorics. Generally, combinatorics deals with twofold:

Question 1.1. to determine or f nd structures or properties of conf gurations, such as those

structure results appeared in graph theory, combinatorial maps and design theory,..., etc..

Question 1.2. to enumerate conf gurations, such as those appeared in the enumeration of

graphs, labeled graphs, rooted maps, unrooted maps and combinatorial designs,...,etc..

Consider the contribution of a question to science. We can separate mathematical

questions into three ranks:

Rank 1 they contribute to all sciences.
Rank 2 they contribute to all or several branches of mathematics.

Rank 3 they contribute only to one branch of mathematics, for instance, just to the graph

theory or combinatorial theory.

Classical combinatorics is just a rank 3 mathematics by this view. This conclusion
is despair for researchers in combinatorics, also for me 5 years ago. Whether can combi-
natorics be applied to other mathematics or other sciences? Whether can it contributes
to human'’s lives, not just in games?

Although become a universal genus in science is nearly impossible, our world is a
combinatorial world. A combinatorician should stand on all mathematics and all sciences,
not just on classical combinatorics and with a real combinatorial notion, i.e., combine
different felds into a unifying feld, such as combine different or even anti-branches in
mathematics or science into a unifying science for its freedom of research. This notion
requires us answering three questions for solving a combinatorial problem before. What
is this problem working for? What is its objective? What is its contribution to science or
human’s society? After these works be well done, modern combinatorics can applied to

all sciences and all sciences are combinatorialization.

10.1.2 CC Conjecture. There is a prerequisite for the application of combinatorics

to other mathematics and other sciences, i.e, to introduce various metrics into combina-
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torics, ignored by the classical combinatorics since they are the fundamental of scientif ¢
realization for our world. For applying combinatorics to other branch of mathematics, a
good idea is to pullback measures on combinatorial objects again, ignored by the classical
combinatorics and reconstructed or make combinatorial generalization for the classical
mathematics, such as those of algebra, Euclidean geometry, differential geometry, Rie-
mann geometry, metric geometries, - - - and the mechanics, theoretical physics, - --. This
notion naturally induces the combinatorial conjecture for mathematics, abbreviated to CC

conjecture following.

Conjecture 10.1.1(CC Conjecture) The mathematical science can be reconstructed from

or made by combinatorialization.
Remark 10.1.1 We need some further clarif cations for this conjecture.

(1) This conjecture assumes that one can select f nite combinatorial rulers and ax-
ioms to reconstruct or make generalization for classical mathematics.

(2) The classical mathematics is a particular case in the combinatorialization of
mathematics, i.e., the later is a combinatorial generalization of the former.

(3) We can make one combinatorialization of different branches in mathematics and

fnd new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been combinato-
rialization and all mathematics can not be ended if its combinatorialization has not com-
pleted. There is an assumption in one’s realization of our world, i.e., science can be made
by mathematicalization, which enables us get a similar combinatorial conjecture for the

science.

Conjecture 10.1.2(CCS Conjecture) Science can be reconstructed from or made by com-

binatorialization.

A typical example for the combinatorialization of classical mathematics is the com-
binatorial surface theory, i.e., a combinatorial theory for surfaces discussed in Chapter 4.
Combinatorially, a surface S is topological equivalent to a polygon with even number of
edges by identifying each pairs of edges along a given direction on it. If label each pair of
edges by a letter e, e € &, a surface S is also identifying to a cyclic permutation such that
each edge e, e € & just appears two times in S, one is e and another is e!. Let a, b, c, - - -

denote the letters in & and A4, B, C, - - - the sections of successive letters in a linear order on
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a surface S (or a string of letters on S'). Then, a surface can be represented as follows:
S = ("'9A3asB3a_19Ca“')3

where, a € &, 4, B, C denote a string of letters. Def ne three elementary transformations

as follows:
(0y) (4,a,a”',B) & (4, B);
(0) (i) (A,a,b,B,b7',a™") © (4,c,B,c™Y);
(ii) (A,a,b,B,a,b) & (4,c,B,c);
(03) (i) (A,a,B,C,a”',D) & (B,a,A,D,a™',C);
(ii) (4,a,B,C,a,D) s (B,a,A,C',a,D™).
If a surface S can be obtained from S by these elementary transformations O;-0Os,

we say that S is elementary equivalent with S, denoted by S ~gz S(. Then we can get

the classif cation theorem of compact surface as follows:

Any compact surface S is homeomorphic to one of the following standard surfaces:
(Py) the sphere: aa™';

(P,) the connected sum of n,n > 1 tori:

~1p-1 ~17-1 ~1p-1.
a\bia; by axbya; by ---a,bya, b,

(O,) the connected sum of n,n > 1 projective planes:

aja aap - - - a,a,.

We have known what is a map in Chapter 5. By the view of combinatorial maps,
these standard surfaces Py, P,, O, for n > 1 is nothing but the bouquet B, on a locally
orientable surface with just one face. Therefore, the maps are nothing but the combinato-

rialization of surfaces.

10.1.3 CC Problems in Mathematics. Many open problems are motivated by the CC

conjecture. Here we present some of them.

Problem 10.1.1 Simple-Connected Riemann Surface. The uniformization theorem on
simple connected Riemann surfaces is one of those beautiful results in Riemann surfaces
stated as follows ([FaK1]).
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Theorem 10.1.1 If'S is a simple connected Riemann surface, then S is conformally

equivalent to one and only one of the following three:

(1) CUoo;

2 G

3) a={zeClz| <1}
We have proved in Chapter 5 that any automorphism of map is conformal. Therefore, we
can also introduced the conformal mapping between maps. Then, how can one def ne the
conformal equivalence for maps enabling us to get the uniformization theorem of maps?

What is the correspondence class maps with the three type (1)-(3) Riemann surfaces?

Problem 10.1.2 Riemann-Roch Theorem. Let S be a Riemann surface. A divisor on

k
_ a(P;)
u-[lr
i=1

with P; € S, a(P;) € Z. Denote by Div(S) the free commutative group on the points in S

S is a formal symbol

and def ne .
degU = > a(P,).
i=1
Denote by H(S) the feld of meromorphic function on 8. Then for Vf € H(S) \ {0}, f
determines a divisor () € Div(S) by
=112,

PeS
where, if we write f(z) = z"g(z) with g holomorphic and non-zero at z = P, then the
ordpf = n. For U, = [ P*D, U, = ] P2P, e DiuS), call U; > U, if a1(P) >

PeS PeS
a>(P). Now we def ne a vector space

L(U) ={f € HSOI(S) = U, U € Div(S)}
Q(U) = {w|w is an abelian dif ferential with (w) > U}.
Then the Riemann-Roch theorem says that([WLC1])
dim(L(U™")) = degU — g(S) + 1 + dimQ(S).

Comparing with the divisors and their vector space, there ia also cycle space and cocycle
space in graphical space theory ([Liul]). Then what is their relation? whether can one

rebuilt the Riemann-Roch theorem by maps, i.e., f nd its discrete form?
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Problem 10.1.3 Combinatorial Construction of Algebraic Curve. A complex plane
algebraic curve C; is a homogeneous equation f(x,y,z) = 0 in P,C = (C?\ (0,0,0))/ ~,
where f(x,y,z) is a polynomial in x, y and z with coefficients in C. The degree of f(x,y,z)
is def ned to be the degree of the curve C,. For a Riemann surface S, a well-known result is
that ((WSY1]) there is a holomorphic mapping ¢ : S — P,C such that ¢(S) is a complex
plane algebraic curve and

(d@S)) — Dd(S)) - 2)
> :

g(s) =

By def nition, we have known that a combinatorial map is on surface with genus. Then
whether can one get an algebraic curve by all edges in a map or by make operations on
the vertices or edges of the map to get plane algebraic curve with given k-multiple points?

and then how do one f nd the equation f(x,y,z) = 0?

Problem 10.1.4 Classif cation of s-Manifolds by Map. We have classif ed the closed
s-manifolds by maps in the last chapter. For the general s-manifolds, their correspon-
dence combinatorial model is the map on surfaces with boundary, founded by Bryant and
Singerman in 1985. The later is also related to that of modular groups of spaces and need

to investigate further itself. Now the questions are

(1) How can one combinatorially classify the general s-manifolds by maps with
boundary?

(2) How can one fnd the automorphism group of an s-manifold?

(3) How can one know the numbers of non-isomorphic s-manifolds, with or without
roots?

(4) Find rulers for drawing an s-manifold on surface, such as, the torus, the projec-

tive plane or Klein bottle, not just the plane.

These s-manifolds only apply such triangulations of surfaces with vertex valency in
{5, 6, 7}. Then what is its geometrical meaning of other maps, such as, 4-regular maps on
surfaces. It is already known that the later is related to the Gauss cross problem of curves
([Liul]).

Problem 10.1.5 Gauss Mapping. In the classical differential geometry, a Gauss map-

ping among surfaces is def ned as follows([Car1]):

Def nition 10.1.1 Let S C R? be a surface with an orientation N. The mapping N : S —
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R3 takes its value in the unit sphere
S?={(x,y,z) e R’ +y* + 22 =1}

along the orientation N. Themap N : S — S?, thus def ned, is called the Gauss mapping.

We know that for a point P € S such that the Gaussian curvature K(P) # 0 and V' a

connected neighborhood of P with K does not change sign,

N(4
K = i X

where 4 is the area of a region B C V" and N(A) is the area of the image of B by the Gauss

mapping N : S — S?. Now the questions are

(1) What is its combinatorial meaning of the Gauss mapping? How to realizes it by
maps?
(2) how we can def ne various curvatures for maps and rebuilt the results in the

classical differential geometry?

Problem 10.1.6 Gauss-Bonnet Theorem. Let S be a compact orientable surface. Then

f fs Kdo = 2my(S),

where K is Gaussian curvature on S. This is the famous Gauss-Bonnet theorem for com-
pact surface ((WLC1], [WSY1]). This theorem should has a combinatorial form. Now

the questions are

(1) How can one def ne various metrics for combinatorial maps, such as those of
length, distance, angle, area, curvature, - - -?
(2) Can one rebuilt the Gauss-Bonnet theorem by maps for dimensional 2 or higher

dimensional compact manifolds without boundary?

§10.2 CC CONJECTURE TO MATHEMATICS

10.2.1 Contribution to Algebra. By the view of combinatorics, algebra can be seen
as a combinatorial mathematics itself. The combinatorial speculation can generalize it by
the means of combinatorialization. For this objective, a Smarandachely multi-algebraic

system is combinatorially def ned in the following def nition.
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Def nition 10.2.1 For any integers n,n > 1 and i,1 < i < n, let A; be a set with an

operation set O(A;) such that (4;, O(4;)) is a complete algebraic system. Then the union
i, o)
i=1

is called an n multi-algebra system.

An example of multi-algebra systems is constructed by a f nite additive group. Now
let n be an integer, Z; = ({0,1,2,---,n — 1},+) an additive group (modn) and P =

(0,1,2,---,n— 1) a permutation. For any integeri,0 <i < n — 1, defne
Zi+1 = Pi(Zl)

satisfying that if k + [ = m in Z,, then P'(k) +; P'(l) = P'(m) in Z;,;, where +; denotes the
binary operation +; : (P!(k), Pi(l)) — P(m). Then we know that

)
i=1

is an n multi-algebra system .

The conception of multi-algebra systems can be extensively used for generalizing
conceptions and results for these existent algebraic structures, such as those of groups,
rings, bodies, felds and vector spaces, - - -, etc.. Some of them are explained in the fol-
lowing.

Def nition 10,2.2 Let G = U G; be a closed multi-algebra system with a binary operation
i=1

set 0(5) = {X;, 1 < i < n}. If for any integer i,1 < i < n, (G;;%;) is a group and for
Vx,y,z € G and any two binary operations “X” and “o” , X # o, there is one operation,

7]
[¢]

for example the operation X satisfying the distribution law to the operation provided

their operation results existing, i.e.,
xX(yoz)=(xXy)o(xXz),
(yoz)Xx=(yXx)o(zXx),
then G is called a multi-group.
For a multi-group (G, O(G)), G, ¢ G and O(G,) ¢ O(G), call (G, O(G})) a sub-
multi-group of ((~?, 0(G)) if G, is also a multi-group under the operations in O(Z?T), de-
noted by Gi < G. For two sets 4 and B, if 4 (N B = 0, we denote the union 4 | J B by

A P B. Then we get a generalization of the Lagrange theorem on f nite group following.
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Theorem 10.2.1 For any sub-multi-group H of a fnite multi-group G, there is a repre-
sentation set T, T C G, such that

G =

xeT

For a sub-multi-group HofG,x € O(EO and Vg € g(x), if for Yh € H,
gxhxg'e H,

then call H a normal sub-multi-group of G. An order of operations in 0(5) is said an
oriented operation sequence, denoted by 6((7). We get a generalization of the Jordan-

Hoélder theorem for f nite multi-groups following.

Theorem 10.2.2 For a fnite multi-group G = \U G; and an oriented operation sequence
i=1

6(5), the length of maximal series of normal sub-multi-groups is a constant, only depen-
dent on G itself.

A complete proof of Theorems 10.2.1 and 10.2.2 can be found in the reference
[Mao6]. Notice that if we choose n = 2 in Defnition 10.2.2, G; = G, = G. Then G
is a body. If (Gy; ;) and (G,; X;) both are commutative groups, then G is a feld. For
multi-algebra systems with two or more operations on one set, we introduce the concep-

tion of multi-rings and multi-vector spaces in the following.

Def nition 10.2.3 Let R = \U R; be a closed multi-algebra system with double binary
i=1
operation set O(R) = {(+;,%;),1 < i < m}. If for any integers i, j, i # j,1 < i,j < m,

(R;; +i, %X;) is a ring and for Vx,y,z € R,
(x+,-y)+jZ:x+l~(y+jz), (xX,-y)XjZ:xX,-(ijz)
and
x><,-(y+jz):x><,-y+jx><l~z, (y+jz)><,~x:y><,-x+jz><,~x

provided all their operation results exist, then R is called a multi-ring. If for any integer
1 <i<m, (R;+;,%;)is afled, then R is called a multi-fled.
-k
Def nition 10.2.4 Let V = |J V; be a closed multi-algebra system with binary operation
i=1

— — ok
set OV) ={(+i-) |1 <i<m}and F = \J F; a multi-f led with double binary operation
i=1
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set O(ﬁ) = {(+:, %) | 1 <i < k). If for any integers i,j, 1 <i,j < k and Va,b,c¢ € 17
ki ky € F,

(1) (Vs 44, ) is a vector space on F; with vector additive +; and scalar multiplication

(2) (a+,b)+jc = a-i—,-(b-i-jc);
(3) (ki +iky)-ja=k +; (ky-;a);

provided all those operation results exist, then V is called a multi-vector space on the
multi-f led F with a binary operation set O(AV), denoted by (AV; F ).

Similarly, we also obtained results for multi-rings and multi-vector spaces to gener-

alize classical results in rings or linear spaces.

10.2.2 Contribution to Metric Space. First, we generalize classical metric spaces by

the combinatorial speculation.

—_— m
Def nition 10.2.5 A multi-metric space is a union M = | ) M; such that each M; is a space
i=1
with metric p; for Vi, 1 <i < m.

We generalized two well-known results in metric spaces.

Theorem 10.2.3 Let M = U M; be a completed multi-metric space. For an e-disk se-

i=1
quence {B(e,, x,)}, where €, > 0 forn = 1,2,3, - - -, the following conditions hold:

(1) B(er,x1) D B(&,x2) O B(&s,x3) D -+ D B(&y, X)) D -+ 5
(2) lim ¢, =0.

n—+oo

+00
Then (N B(e€,, x,,) only has one point.

n=1
Theorem 10.2.4 Let M = U M; be a completed multi-metric space and T a contraction
i=1
on M. Then

1 <* O(T) < m.
A complete proof of Theorems 10.2.3 and 10.2.4 can be found in the reference
[Mao7]. Particularly, let m = 1. We get the Banach f xed-point theorem again.

Corollary 10.2.1(Banach) Let M be a metric space and T a contraction on M. Then T

has just one fxed point.
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A Smarandache n-manifold is an n-dimensional manifold that supports a Smaran-
dache geometry. Now there are many approaches to construct Smarandache manifolds
for n = 2. A general way is by the so called map geometries without or with boundary

underlying orientable or non-orientable maps.

Def nition 10.2.6 For a combinatorial map M with each vertex valency> 3, endow with

a real number u(u),0 < u(u) < =2 to each vertex u,u € V(M). Call (M,u) a

.DM(“)’
map geometry without boundary, u(u) an angle factor of the vertex u and orientablle or

non-orientable if M is orientable or not.

Def nition 10.2.7 For a map geometry (M, u) without boundary and faces f, f>,---, fi €

F(M),1 <1< p(M)-1, if S(M)\{f1, fo,- - -, [3} is connected, then call (M, 1)~ = (S (M)\
{f1, o, -+, fi}, ) @ map geometry with boundary fi, f5,-- -, f, where S(M) denotes the

locally orientable surface underlying map M.

The realization for vertices u, v, w € V(M) in a space R? is shown in Fig.3.2, where
ov(wu(u) < 2x for the vertex u, py(v)u(v) = 2x for the vertex v and pp,(w)u(w) > 2 for

the vertex w, are called to be elliptic, Euclidean or hyperbolic, respectively.

u

pu(uu(u) < 27 pu(pu(u) = 2n pu(uu(u) > 21

Fig.10.2.1

Theorem 10.2.5 There are Smarandache geometries, including paradoxist geometries,

non-geometries and anti-geometries in map geometries without or with boundary.

A proof of this result can be found in [Mao4]. Furthermore, we generalize the ideas

in Def nitions 10.2.6 and 10.2.7 to metric spaces and f nd new geometries.

Def nition 10.2.8 Let U and W be two metric spaces with metricp, W € U. ForVu € U, if
there is a continuous mapping w : u — w(u), where w(u) € R” for an integer n,n > 1 such

that for any number € > 0, there exists a number 6 > 0 and a pointv € W, p(u —v) < 6
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such that p(w(u) — w(v)) < €, then U is called a metric pseudo-space if U = W or a
bounded metric pseudo-space if there is a number N > 0 such that Yw € W, p(w) < N,
denoted by (U, w) or (U™, w), respectively.

For the case n = 1, we can also explain w(u) being an angle function with 0 < w(u) <

47 as in the case of map geometries without or with boundary, i.e.,
w(u)(modan), ifueW,
w(u) = :
2, ifueU\W (%)

and get some interesting metric pseudo-space geometries. For example, let U = W =
Euclid plane = }’, then we obtained some interesting results for pseudo-plane geometries

(2, w) as shown in results following ([Mao4]).

Theorem 10.2.6 In a pseudo-plane (3, w), if there are no Euclidean points, then all
points of (3., w) is either elliptic or hyperbolic.

Theorem 10.2.7 There are no saddle points and stable knots in a pseudo-plane plane

(2, w).
Theorem 10.2.8 For two constants py, 6o, po > 0 and 6y # 0, there is a pseudo-plane
(3, w) with
w(p. ) = 2 - LX) or w(p, ) = 2(n + £L)
Bop Bop
such that

P =Po
is a limiting ring in (3, w).
Now for an m-manifold M" and Yu € M™, choose U = W = M™ in Def nition 10.2.8

for n = 1 and w(u«) a smooth function. We get a pseudo-manifold geometry (M™, w) on
M™. By def nitions , a Minkowski norm on M™ is a function F' : M™ — [0, +00) such that

(1) F is smooth on M™ \ {0};
(2) F is 1-homogeneous, i.e., F(Au) = AF(u) foru € M™ and A > 0;
(3) for Yy € M™ \ {0}, the symmetric bilinear form g, : M" X M™ — R with

@) 1 0°F?(y + su + ﬁ)l
V)= — g
SULVI =7 st (=520

is positive def nite and a Finsler manifold is a manifold M™ endowed with a function
F : TM" — [0, +00) such that
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(1) Fis smoothon TM" \ {0} = | H{T=M" \ {0} : X € M™};

(2) Flr.pm — [0, +00) is a Minkowski norm for Vx € M™.

As a special case, we choose w(x) = F(x) for x € M™, then (M, w) is a Finsler
manifold. Particularly, if w(X) = gx(y,y) = F*(x,y), then (M™, w) is a Riemann mani-
fold. Therefore, we get a relation for Smarandache geometries with Finsler or Riemann

geometry.

Theorem 10.2.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler and

Riemann geometries as shown in the following:

{Smarandache geometries} O {pseudo — manifold geometries}
D {Finsler geometry}

D {Riemann geometry}.

§10.3 CC CONJECTURE TO PHYSICS

The progress of theoretical physics in last twenty years of the 20th century enables human
beings to probe the mystic cosmos: where are we came from? where are we going to?.
Today, these problems still confuse eyes of human beings. Accompanying with research
in cosmos, new puzzling problems also arose: Whether are there f'nite or inf nite cos-
moses? Are there just one? What is the dimension of the Universe? We do not even know
what the right degree of freedom in the Universe is, as Witten said.

We are used to the idea that our living space has three dimensions: length, breadth
and height, with time providing the fourth dimension of spacetime by Einstein. Applying
his principle of general relativity, i.e. all the laws of physics take the same form in any
reference system and equivalence principle, i.e., there are no difference for physical effects

of the inertial force and the gravitation in a f eld small enough., Einstein got the equation

of gravitational f eld |
R,y - ERg’” + gy, = —8nGTy,.
where R, = R,,, = RZI.V,
ar.,. or _ ,
Ra — e H + Iﬂa.rz _ ra rz

uiv Ox¥ le' Mt av uve ai’
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re = 1 pq(agml’ 4 98np B agmn)
2 ou  ou™  ouf
and R = g"¥R,,,. Combining the Einstein’s equation of gravitational f eld with the cosmo-
logical principle, 1.e., there are no difference at different points and different orientations
at a point of a cosmos on the metric 10*1.y. , Friedmann got a standard model of cosmos.
The metrics of the standard cosmos are

2

d
ds’ = ~cdf’ + (o) 5 L 1 12(d6 + sin? 0dg?)]

— K2

and ,
R (¢ .
gy = 1, g = —1_—§<)r2’g¢¢ = —rsz([) Sln2 g.

The standard model of cosmos enables the birth of big bang model of the Universe
in thirties of the 20th century. The following diagram describes the developing process of

our cosmos in different periods after the big bang.

finy fraction
ol & Second

380,000
yaars

Fig.4.1

10.3.1 M-Theory. The M-theory was established by Witten in 1995 for the unity of
those fve already known string theories and superstring theories, which postulates that
all matter and energy can be reduced to branes of energy vibrating in an 11 dimensional

space, then in a higher dimensional space solve the Einstein’s equation of gravitational
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feld under some physical conditions. Here, a brane is an object or subspace which can
have various spatial dimensions. For any integer p > 0, a p-brane has length in p di-
mensions. For example, a 0-brane is just a point or particle; a 1-brane is a string and a
2-brane is a surface or membrane, - - -.

We mainly discuss line elements in differential forms in Riemann geometry. By a
geometrical view, these p-branes in M-theory can be seen as volume elements in spaces.
Whence, we can construct a graph model for p-branes in a space and combinatorially

research graphs in spaces.

Def nition 10.3.1 For each m-brane B of a space R™, let (n;(B), ny(B), - - -, n,(B)) be its
unit vibrating normal vector along these p directions and q : R™ — R* a continuous

mapping. Now construct a graph phase (G, w, ) by

V(G) = {p — branes q(B)},

E(G) = {(¢(By), q(By))|there is an action between B and B,},

w(q(B)) = (n1(B), ny(B), - - -, ny(B)),

and

A(g(By),q(By)) = forces between By and B,.

Then we get a graph phase (G, w, A) in R*. Similarly, if m = 11, it is a graph phase for
the M-theory.
As an example for applying M-theory to fnd an accelerating expansion cosmos of

4-dimensional cosmoses from supergravity compactif cation on hyperbolic spaces is the

Townsend-Wohlfarth type metric in which the line element is
ds* = e"(=8°de* + S*dx3) + ree*Vdsy,

where
1

m—1

¢(1) = (In K(2) = 3400),

Sz = K%e_:_ﬁ/lot
and

/1057%
(m — 1) sin[ApL|t + #1]]

K(t) =
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with £ = /3 +6/m. This solution is obtainable from space-like brane solution and if
the proper time ¢ is defned by d¢ = S3(f)dt, then the conditions for expansion and
acceleration are % > 0 and ZZT‘E > 0. For example, the expansion factor is 3.04 if m = 7,
i.e., a really expanding cosmos.

According to M-theory, the evolution picture of our cosmos started as a perfect 11
dimensional space. However, this 11 dimensional space was unstable. The original 11
dimensional space f nally cracked into two pieces, a 4 and a 7 dimensional subspaces. The
cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing the remaining 4

dimensions to inf ate at enormous rates, the Universe at the f nal.

10.3.2 Combinatorial Cosmos. The combinatorial notion made the following combi-

natorial cosmos in the reference.

Def nition 10.3.2 4 combinatorial cosmos is constructed by a triple (2, A, T), where
a=|Jo. a={Jo
i>0 i>0
and T = {t;;i > 0} are respectively called the cosmos, the operation or the time set with

the following conditions hold.

(1) (Q,A) is a Smarandache multi-space dependent on T, i.e., the cosmos (€, O;) is
dependent on time parameter t; for any integer i,i > 0.

(2) For any integer i,i > 0, there is a sub-cosmos sequence
(S) QiD"'DQil DQI'O
in the cosmos (£, O;) and for two sub-cosmoses (€;;, O;) and (Qy, O;), if Q;; D L, then
there is a homomorphism Poy.0 - (Qij, 0) = (Qy, Op) such that

(1) for Y(Q:1, 0,),(Qn, 0,), (23, 0;) € (S), if Qi D Qp D Qp, then

P15 = POi.Qn © POR.Qs»

“©
(@]

where denotes the composition operation on homomorphisms.
(i1) for Vg, h € Q,, if for any integer i, poo.(g) = paq,(h), then g = h.

(iii) for Vi, if there is an f; € Q; with

PN Q‘,(ﬁ) = Po,N9; ()
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Jor integers i, j,Q; (" Q; # 0, then there exists an f € Q such that poo.(f) = f; for any

integer 1.
By this def nition, there is just one cosmos €2 and the sub-cosmos sequence is
R'ODROR’ODR'OR’={P}DR; >--- D R; D R; = {0}

in the string/M-theory. In Fig.10.3.2, we have shown the idea of the combinatorial cos-

mos.

Fig.10.3.2

For spaces of dimensional 5 or 6, it has been established a dynamical theory by
combinatorial notion (see [Papl]-[Pap2] for details). In this dynamics, we look for a
solution in the Einstein’s equation of gravitational feld in 6-dimensional spacetime with

a metric of the form
2
ds* = —n*(t,y,2)dt* + a*(t,y,z)d Z +b2(t,y, z)dy* + d*(t,y,2)dz*
%

where d Z,% represents the 3-dimensional spatial sections metric with £k = —1, 0, 1 respec-
tive corresponding to the hyperbolic, fat and elliptic spaces. For 5-dimensional space-
time, deletes the indef nite z in this metric form. Now consider a 4-brane moving in a

6-dimensional Schwarzschild-ADS spacetime, the metric can be written as
2
ds* = —h(z)di* + l—zdzk: +h™\(2)d2,

where
\ dr’ 2 1032 NI
dZ = T + AR + (1= kr)dy
k
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and ,
zz M
h(z) =k+ 1_2 - 2—3
Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is
4 pr
R 35 2 Ko K3
2—+3 -3=-=
R ( - Seal TP TR

by applying the Darmois-Israel conditions for a moving brane. Similarly, for the case of
a(z) # b(z), the equations of motion of the brane are
d*dR - dR mm an
V1 + &R n

52 K?6) A~
—nd.d)R°) = —?(3(19 +p)+P),

0.
VLR = - (6’(p+p P

ad

0b ——
pa VIR =~ (6)00 3(p - P,

where the energy-momentum tensor on the brane 1s
1

7 Tha

with T = diag(-p, p, p, p, p) and the Darmois-Israel conditions

T = hyaTy -

(K, v] K(6) s

where K, is the extrinsic curvature tensor.

The combinatorial cosmos also presents new questions to combinatorics, such as:

(1) Embed a graph into spaces with dimensional> 4;
(2) Research the phase space of a graph embedded in a space;

(3) Establish graph dynamics in a space with dimensional> 4, - - -, etc..

For example, we have gotten the following result for graphs in spaces.

Theorem 10.3.1 A graph G has a nontrivial including multi-embedding on spheres P, D
P, D --- D Py ifand only if there is a block decomposition G = |+ G; of G such that for
i=1
any integeri,1 <i < s,
(1) G; is planar,

(2) for Vv € V(G)), No(x) < ( U V(G)).

J=i-1

A complete proof of Theorem 10.3.1 can be found in [Mao4]. Further consideration
of combinatorial cosmos will enlarge the knowledge of combinatorics and cosmology,

also get the combinatorialization for cosmological science.
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