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PREFACE 
 

 

Zadeh introduced the degree of membership/truth (t) in 

1965 and defined the fuzzy set. Atanassov introduced the degree 

of non membership/falsehood (f) in 1986 and defined the 

intuitionistic fuzzy set. Smarandache introduced the degree of 

indeterminacy/neutrality (i) as independent component in 1995 

(published in 1998) and defined the neutrosophic set on three 

components (t,i,f) = (truth, indeterminacy, falsehood).  

 

The words “neutrosophy” and “neutrosophic” were 

coined/invented by F. Smarandache in his 1998 book. 

Etymologically, “neutro-sophy” (noun) 

[French neutre <Latin neuter, neutral, and Greek sophia, 

skill/wisdom] means knowledge of neutral thought. While 

“neutrosophic” (adjective), means having the nature of, or 

having the characteristic of Neutrosophy. 

 

Neutrosophic Logic is a general framework for unification 

of many existing logics, such as fuzzy logic (especially 

intuitionistic fuzzy logic), paraconsistent logic, intuitionistic 

logic, etc.  The main idea of NL is to characterize each logical 

statement in a 3D-Neutrosophic Space, where each dimension 

of the space represents respectively the truth (T), the falsehood 

(F), and the indeterminacy (I) of the statement under 

consideration, where T, I, F are standard or non-standard real 

subsets of ]
-
0, 1

+
[ with not necessarily any connection between 

them. For software engineering proposals the classical unit 

interval [0, 1] may be used. T, I, F are independent components, 

leaving room for incomplete information (when their superior 

sum < 1), paraconsistent and contradictory information (when 

the superior sum > 1), or complete information (sum of 

components = 1).  

For software engineering proposals the classical unit 

interval [0, 1] is used. For single valued neutrosophic logic, the 

sum of the components is: 
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0 ≤ t+i+f ≤ 3 when all three components are independent;  

0 ≤ t+i+f ≤ 2 when two components are dependent, while the 

third one is independent from them;  

0 ≤ t+i+f ≤ 1 when all three components are dependent. 

 

When three or two of the components T, I, F are 

independent, one leaves room for incomplete information (sum 

< 1), paraconsistent and contradictory information (sum > 1), or 

complete information (sum = 1). If all three components T, I, F 

are dependent, then similarly one leaves room for incomplete 

information (sum < 1), or complete information (sum = 1).  

 

In 2013 Smarandache refined the neutrosophic set to n 

components: T1, T2, ...; I1, I2, ...; F1, F2, ... 

See http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic-

PiP.pdf . 

 

Neutrosophy <philosophy> (From Latin "neuter" - neutral, 

Greek "sophia" - skill/wisdom) A branch of philosophy, 

introduced by Florentin Smarandache in 1980, which studies the 

origin, nature, and scope of neutralities, as well as their 

interactions with different ideational spectra. 

 

Neutrosophy considers a proposition, theory, event, 

concept, or entity, "A" in relation to its opposite, "Anti-A" and 

that which is not A, "Non-A", and that which is neither "A" nor 

"Anti-A", denoted by "Neut-A". 

 

Neutrosophy is the basis of neutrosophic 

logic, neutrosophic probability, neutrosophic set, and 

neutrosophic statistics. {From: The Free Online Dictionary of 

Computing, is edited by Denis Howe from England. 

Neutrosophy is an extension of the Dialectics.} 

 

The most important books and papers in the development of 

neutrosophics 

 



 6

1995-1998 - Introduction of neutrosophic set/ logic/ probability/ 

statistics; generalization of dialectics to neutrosophy; 

http://fs.gallup.unm.edu/eBook-neutrosophics4.pdf (4th edition) 

  

2003 – Introduction of neutrosophic numbers (a+bI, where I = 

indeterminacy). 

2003 – Introduction of I-neutrosophic algebraic structures. 

2003 – introduction to neutrosophic cognitive maps. 

http://fs.gallup.unm.edu/NCMs.pdf 

  

2005 - Introduction of interval neutrosophic set/logic. 

http://fs.gallup.unm.edu/INSL.pdf 

  

2009 – Introduction of N-norm and N-conorm 

http://fs.gallup.unm.edu/N-normN-conorm.pdf 

  

2013 - Development of neutrosophic probability (chance that an 

event occurs, indeterminate chance of occurrence, chance that 

the event does not occur) 

http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbabilit

y.pdf 

  

2013 - Refinement of components (T1, T2, ...; I1, I2, ...; F1, F2, ...) 

http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic.pdf 

  

2014 – Introduction of the law of included multiple middle 

(<A>; <neut1A>, <neut2A>, …; <antiA>) 

http://fs.gallup.unm.edu/LawIncludedMultiple-Middle.pdf 

  

2014 - Development of neutrosophic statistics (indeterminacy is 

introduced into classical statistics with respect to the 

sample/population, or with respect to the individuals that only 

partially  belong to a sample/population) 

http://fs.gallup.unm.edu/NeutrosophicStatistics.pdf 

  

2015 - Introduction of neutrosophic precalculus and 

neutrosophic calculus 

http://fs.gallup.unm.edu/NeutrosophicPrecalculusCalculus.pdf 

  



 7

2015 – Refined neutrosophic numbers (a+ b1I1 + b2I2 + … + 

bnIn), where I1, I2, …, In are subindeterminacies of 

indeterminacy I; 

2015 – Neutrosophic graphs; 

2015 - Thesis-Antithesis-Neutrothesis, and Neutrosynthesis, 

Neutrosophic Axiomatic System, neutrosophic dynamic 

systems, symbolic neutrosophic logic, (t, i, f)-Neutrosophic 

Structures, I-Neutrosophic Structures,  Refined Literal 

Indeterminacy, Multiplication Law of Subindeterminacies:   

http://fs.gallup.unm.edu/SymbolicNeutrosophicTheory.pdf 

 

2015 – Introduction of the subindeterminacies of the form 

 0
0

n k
I = , for k ∈ {0, 1, 2, …, n-1}, into the ring of modulo 

integers Zn, are called natural neutrosophic zeros 

http://fs.gallup.unm.edu/MODNeutrosophicNumbers.pdf 

 

In this book  authors for the first time construct a MOD 

Relational Maps model analogous to Fuzzy Relational Maps 

(FRMs) model or Neutrosophic Relational Maps (NRMs) model 

using the MOD rectangular or relational matrices with entries 

from Zn or I

nZ  〈Zn ∪ g〉  or 〈Zn ∪ g〉I or C(Zn) or C
I
(Zn) or 〈Zn ∪ 

I〉  or 〈Zn ∪ I〉I and  so on.   

The advantage of using these models is that we are sure to 

get the MOD fixed point pair or a MOD limit cycle pair after a 

finite number of iterations.  However we as in case of FRMs or 

NRMs need not at each stage threshold the resultant  state 

vectors. We do updating when the on state which we started 

becomes zero.  This is yet another advantage of using these 

newly constructed models.   

 

Finally the resultant state vector pair can be real MOD values 

or finite complex or neutrosophic or a dual number or a special 

quasi dual number or special dual like number.  

 

However we can use I

nZ or C
I
(Zn) or 〈Zn ∪ I〉I or 〈Zn ∪ g〉I 

and so on.  We can have various types of natural neutrosophic 

numbers or indeterminacies as resultant pairs. 
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This will address all practical problems as we cannot always 

get real values as resultant it can be anything or in some cases it 

may be unpredictable.  

 

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 

FLORENTIN SMARANDACHE 

 



 
 
 
  
 
Chapter One 
 
 

 
 
BASIC CONCEPTS  
 
 
 
  
In this chapter we just indicate the references of the concepts 

which we have used in this book.  

 

This book basically builds the notion of MOD Relational 

Maps (MOD RMs) models using  

 

Zn or 〈Zn ∪ I〉 or 〈Zn ∪ g〉 or C(Zn) or 〈Zn ∪ h〉 or 〈Zn ∪ k〉. 

 

MOD Relational Maps model also built using 
I

nZ  or R
I
(n) or 

C
I
(Zn) and so on. 

 

These two models are different and distinct as the former 

uses only modulo integers but the later uses the MOD natural 

neutrosophic numbers generated by division in Zn, C(Zn) and so 

on.   

 

For more about the concept of MOD natural neutrosophic 

elements in particular and for properties of MOD structures in 

general please refer [57-66]. 
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Further these new models are obtained analogous to Fuzzy 

Relational Maps (FRMs) model and Neutrosophic Relational 

Maps (NRMs) model [25].  

 

In the case of FRMs or NRMs we can get the nodes as 0 or 

1 or 0 or 1 or I respectively. 

 

But in case of MODRMs we can get the nodes from  

 

Zn or 〈Zn ∪ g〉 or C(Zn)  

 

or 〈Zn ∪ I〉 or 〈Zn ∪ k〉 or 〈Zn ∪ k〉. 

 

Such type of study is both new and innovative.  

 

These models need not undertake the operation  

of thresholding for that is taken care of by modulo  

integer n. 

 

The MOD rectangular matrices as operators have been 

elaborately dealt with in [66]. In fact in that book these MOD 

rectangular matrix operator contribute to special type of fixed 

point pair.  

 

This study is also carried out in [66].  The special  

features enjoyed by this new MOD Relational Maps model is 

carried out. 

 

Next we study analogously the MOD Interval Relational 

Maps model using  

 

[0, n), 〈[0, n) ∪I〉  

 

or C([0, n)  

 

or 〈[0, n) ∪ g〉; 

 

g
2
 = 0 or 〈[0,n ∪ h〉,  
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h
2
 = h or  〈[0,n ∪ k〉;  

 

k
2
 = (n – 1)k. 

 

Each of these MOD intervals behave in a distinct way when 

used as MOD Interval Relational Maps Models. 

 

The limitations of this model is we can have only one type 

of operation that is thresholding and updating at each stage for 

us to arrive at a MOD resultant after a finite number iterations. 

 

Next we study the MOD natural neutrosophic numbers 

Relational Maps model using  

 
I
[0,n) or  〈[0,n ∪ I〉I  

 

or C
I
(0, n)) or  ([0, n)) 

 

or  〈[0,n ∪ g〉I or  〈[0,n ∪ g〉I  

 

or  〈[0,n ∪ h〉I or 〈[0,n ∪ k〉I. 

 

We see in case of using MOD Interval Relational Maps 

model the initial state vectors nodes can only take  

 

{0, 1} or {0, 1, g} or {0, 1, h} or {0, 1, I} or {0, 1, iF}  

 

and so on.   

 

But in case of MOD natural neutrosophic Interval Relational 

Maps model the MOD resultant nodes can take values as  

 
n

tI  or I

tI  or g

tI  or h

tI  or c

tI  or k

tI  

 

where t varies over a finite index and all such elements form a 

semigroup under ×.  

 

Unless this is guaranteed we will not be in a position to 

arrive at a MOD resultant after a finite number of iterations.  
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This is also discussed in the forth chapter of this book. 

 

We have suggest several problems in this book some of 

which can be considered as open conjectures. On the whole the 

MOD Relational Maps Models is an innovative piece of work 

which will certainly in due course of time find lots of 

applications.   



 
 
 
  
Chapter Two 
 
 

 
 
MOD RELATIONAL MAPS MODELS  
 
 

 

   

In this chapter  for the first time we define the new notion of 

MOD Relational Maps models analogous to FRMs models. 

 

 FRMs model can be realized as the special type of 

generalization of the FCMs when the nodes / concepts 

associated with it can be divided into two classes as domain 

space and range space. The MOD Relational Maps (MODRMs) 

model can be realized as a generalization of MOD Cognitive 

Maps model [69]. To build them we need the concept of MOD 

directed relational graphs and MOD relational matrices which we 

will describe with examples. 

 

 Throughout this chapter Zn = {0, 1, 2, …, n – 1} denote 

MOD integers 〈Zn ∪ I〉 = {a + bI / a, b ∈ Zn, I
2
 = I} will be 

redefined as MOD neutrosophic integers,  

 

〈Zn ∪ g〉 = {a + bg / a, b ∈ Zn, g
2
 = 0} is described as MOD dual 

number, 〈Zn ∪ h〉 = {a + bh / a, b ∈ Zn, h
2
 = h} is defined as 

MOD special dual like numbers,  

 

〈Zn ∪ k〉 = {a + bk / a, b ∈ Zn, k
2
 = (n – 1)k} is defined as the 

MOD special quasi dual numbers and   
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C(Zn) = {a + biF / a, b ∈ Zn, 
2

Fi = n – 1} is the MOD finite 

complex modulo integers. 

 

Example 2.1:  Let G be the MOD relational directed graph. G is 

a bipartite graph will also be known as MOD bipartite relational 

directed graph with edge weights from Zn. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 

 

Example 2.2:  Let G be MOD bipartite directed graph with edge 

weights from Z11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 
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Now we proceed onto give examples of MOD rectangular 

matrices. 

 

Example 2.3: Let  

 

M = 

0 2 4

5 6 8

11 12 16

17 18 0

1 3 7

6 10 15

 
 
 
 
 
 
 
 
  

 

 

 

with entries from Z19.   

 

We call M as the MOD rectangular matrix. 

 

Example 2.4: Let  

 

W = 

0 3 4 5 7 1

5 0 0 9 0 4

0 1 2 0 3 0

4 2 0 1 0 0

 
 
 
 
 
 

 

 

be the MOD rectangular matrix with entries from Z10.   

 

Now we define MOD directed bipartite graph and MOD 

rectangular matrices in the following. 

 

 Let G be a directed bipartite graph with edge weights from 

Zn, then we define G to be a MOD directed bipartite graph. 

 

Let M = (mij)m×n be a m × n matrix (m ≠ n) with entries from 

Zs then we define M to be a MOD rectangular matrix. 
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Now having seen examples we show how MOD adjacency 

matrix can be got related with the MOD bipartite directed graph. 

 

Example 2.5: Let G be a MOD directed bipartite graph with edge 

weight from Z6 given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 

 

 

The adjacency matrix M associated with the graph G is as 

follows; 

 

 

 

M = 

1 2 3 4

1

2

3

4

5

w w w w

0 2 0 0v

v 1 0 0 0

v .0 4 0 0

v 0 0 3 3

v 0 0 0 5

 
 
 
 
 
 
  

 

5 

3 

3 

v5 

v4 

w3 

w4 

4 

2 

1 

v3 

v2 

v1 
w1 

w2 
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Example 2.6:  Let H be the MOD directed bipartite graph with 

edge weights from Z10 given by the following Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 

 

 

 

 Let S be the MOD adjacency matrix associated with the MOD 

bipartite graph H. 
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S =

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

w w w w w w w w w w

0 9 0 0 0 0 0 0 0 0v

v 0 6 0 0 0 0 0 0 0 0

v 8 0 0 0 0 0 0 0 0 0

v 0 0 0 2 0 2 0 0 0 0
.

v 0 0 7 0 3 0 4 0 0 0

v 0 0 0 0 0 0 8 0 0 6

v 0 0 0 0 0 0 0 4 2 0

v 0 0 0 0 0 0 0 0 0 5

 
 
 
 
 
 
 
 
 
 
 
  

   

 

 

Now we need to define only a special type of operations on 

these MOD rectangular matrices.  

 

Already in book [66] MOD realized fixed points and MOD 

realized limit cycles are defined and described.  

 

However as the idea is new and as we have no books only 

two [65, 66] so we just give a few examples  of them. 

 

Example 2.7: Let B be a MOD rectangular matrix with entries 

from Z12. 

 

B = 

0 2 4 1 0 0 0 3 1 2

1 0 0 0 2 1 0 0 0 0

.0 0 1 0 0 0 2 0 0 1

4 0 0 0 0 0 0 0 10 0

0 6 0 2 0 0 0 3 0 0

 
 
 
 
 
 
  

 

 

X = {(a1, a2, a3, a4, a5) / ai ∈ {0, 1}; 1 ≤ i ≤ 5} is defined as 

the MOD domain space of initial state vectors associated with B. 

 

Y = {(y1, y2, …, y10) / yi ∈ {0, 1}; 1 ≤ i ≤ 10} is defined as 

the MOD range space of initial state vectors associated with B. 
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We now define special type of operations using elements X and 

Y and the MOD matrix B. 

 

Let x = (1, 0, 0, 0, 0) ∈ X to find the effect of x on B. 

 

xB = (0, 2, 4, 1, 0, 0, 0, 0, 3 1 2) = y1; 

y1B
t
 = (11, 0, 3, 10, 11) = x1; 

x1B = (4, 4, 11, 9, 0, 0, 6, 6, 3, 1) = y2; 

y2B
t 
= (0, 4, 0, 10, 0) = x2; 

x2B = (8, 0, 0, 0, 8, 4, 0, 0, 4, 0) = y3; 

y3B
t
 = (4, 4, 0, 0, 0) = x3; 

x3B = (4, 8, 4, 4, 8, 4, 0, 0, 4, 8) = y4; 

y4B
t
 = (8, 4, 0, 8, 8) = x4; 

x4B = (0, 4, 8, 0, 8, 4, 0, 0, 4, 4) = y5; 

y5B
t
 = (4, 8, 0, 4, 0) and so on. 

 

We are sure after a finite number of iterations to arrive at a 

MOD realized fixed point pair or a MOD realized limit cycle pair. 

 

Let x2 = (0, 1, 0, 0, 0) ∈ X; to find the effect of x2 on B. 

 

x2B = (1, 0, 0, 0, 2, 1, 0, 0, 0, 0) = y1; 

y1B
t
 = (0, 6, 0, 4, 0) = x3; 

x3B = (10, 0, 0, 0, 0, 6, 0, 0, 4, 0) = y2; 

y2B
t
 = (4, 4, 0, 8, 0) = x4; 

x4B = (0, 8, 4, 4, 8, 4, 0, 0, 0, 8) = y3; 

y3B
t
 = (4, 8, 0, 0, 8) = x5; 

x5B = (8, 8, 4, 8, 4, 8, 0, 0, 4, 8) = y4; 

y4B
t
 = (0, 0, 0, 0, 4) = x6; 

x6B = (0, 0, 0, 8, 0, 0, 0, 0, 0, 0) = y5; 

y5B
t
 = (8, 0, 0, 0, 4) = x7; 

x7B = (0, 4, 8, 0, 0, 0, 0, 0, 8, 4) = y6; 

y6B
t
 = (1, 0, 0, 0, 8, 0) = x8; 

x8B = (8, 8, 4, 10, 0, 0, 0, 6, 6, 8) = y7; 

y7B
t
 = (4, 8, 0, 8, 6) = x9; 

x9B = (4, 8, 4, 4, 4, 8, 0, 0, 0, 8) = y8; 

y8B
t
 = (4, 8, 0, 4, 8) = x10; 

x10B = (0, 8, 4, 8, 4, 8, 0, 0, 8) = y9; 

y9B
t
 = (4, 4, 4, 8, 4) = x11; 
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x11B = (0, 8, 8, 0, 8, 4, 8, 0, 0, 0) = y10; 

y10B
t
 = (0, 8, 0, 0, 0) = x12; 

x12B = (8, 0, 0, 0, 4, 8, 0, 0, 0, 0) = y11; 

y11B
t
 = (0, 0, 0, 8, 0) = x13; 

x13B = (8, 0, 0, 0, 0, 0, 0, 0, 8, 0) = y12; 

y12B
t
 = (8, 8, 0, 4, 0) = x14; 

x14B = (0, 4, 8, 8, 4, 8, 0, 0, 0, 4) = y13; 

y13B
t
 = (8, 4, 0, 0, 4) = x15; 

x15B = (4, 4, 8, 4, 8, 4, 0, 0, 8, 4) = y14; 

y14B
t
 = (0, 0, 0, 0, 8) = x16; 

x16B = (0, 0, 0, 4, 0, 0, 0, 0, 0, 0) = y15; 

y15B
t
 = (4, 0, 0, 0, 8) = x17; 

x17B = (0, 8, 4, 8, 0, 0, 0, 0, 4, 8) = y16; 

y16B
t
 = (0, 0, 0, 4, 4) = x18; 

x18B = (4, 0, 0, 8, 0, 0, 0, 0, 4, 0) = y17; 

y17B
t
 = (0, 4, 0, 8, 0) = x19; 

x19B = (0, 0, 0, 0, 8, 4, 0, 0, 8, 0) = y18; 

y18B
t
 = (8, 8, 0, 8, 0) = x20; 

and so on. 

 

We are sure to arrive at a MOD realized fixed point pair or a 

MOD realized limit cycle pair. 

 

Let y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) ∈ Y. 

 

To find the effect of y on B; 

 

yB
t
 = (2, 0, 1, 0, 0) = x1; 

x1B = (0, 4, 9, 2, 0, 0, 2, 6, 2, 5) = y1; 

y1B
t
 = (4, 0, 6, 8, 6) = x2; 

x2B = (8, 8, 10, 4, 0, 0, 0, 6, 0, 2) = y2; 

y2B
t
 = (10, 8, 0, 8, 2) = x3; 

x3B = (4, 8, 6, 2, 4, 8, 0, 0, 6, 6) = y3 and so on. 

 

We are sure after a finite number of iterations to get at the 

MOD resultant to be a MOD realized fixed point pair or a MOD 

realized limit cycle pair. 
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Here in this type of operations we do not update or 

threshold the resultants at each stage or in the final state. 

 

We will illustrate this situation by some examples. 

 

Example 2.8: Let  

 

M = 

3 0 1 2

0 0 0 4

5 0 0 0

0 1 0 0

0 0 2 0

0 0 0 0

0 3 0 0

 
 
 
 
 
 
 
 
 
 
 

 

 

be the MOD rectangular matrix, which we may also address as a 

MOD rectangular matrix operator with entries from Z6. 

 

Let X= {(a1, a2, …, a7) / ai ∈ Z6; 1 ≤ i ≤ 7} and  

 

Y = {(a1, a2, a3, a4) / ai ∈ Z6; 1 ≤ i ≤ 4} be the MOD state 

vectors of the domain and range space respectively associated 

with the MOD matrix operator M.  

 

This is yet another type of operation using the MOD matrix 

operator M. 

 

Let x = (1, 0, 0, 0, …, 0) ∈ X.   

 

To find the effect of x on the MOD matrix operator M. 

 

xM = (3, 0, 1, 2) = y1; 

y1M
t 
= (2, 2, 3, 0, 2, 0, 0) = x1; 

x1M = (3, 0, 0, 0) = y2; 

y2M
t
 = (3, 0, 3, 0, 0, 0, 0) = x2; 

x2M = (0, 0, 3, 0) = y3; 
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y3M
t
 = (3, 0, 0, 0, 0, 0, 0) = x3; 

x3M = (3, 0, 3, 0) = y4; 

y4M
t
 = (0, 0, 3, 0, 0, 0, 0) = x4; 

x4M = (3, 0, 0, 0) = y5 (=y2). 

 

Thus the MOD resultant is MOD realized limit cycle pair 

given by {(3, 0, 3, 0, 0, 0, 0), (3, 0, 0, 0)}    ---  I 

 

Let x = (2, 0, 0, 0, 0, 0, 0) ∈ X to find the effect of x on the 

MOD matrix operator M. 

 

xM = (0, 0, 2, 4) = y1; 

y1M
t 
= (4, 4, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 4, 0) = y2; 

y2M
t
 = (4, 0, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 2, 2) = y3; 

y3M
t
 = (0, 2, 0, 0, 4, 0, 0) = x3; 

x3M = (0, 0, 2, 2) = y4 (=y3). 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 2, 0, 0, 4, 0, 0), (0, 0, 2, 2)}         II 

 

We see when x = (1, 0, 0, …, 0) the MOD resultant is a MOD 

realized limit cycle pair where as when x = (2, 0, 0, …, 0) the 

MOD resultant is a MOD realized fixed point pair. 

 

Let x = (3, 0, …, 0) ∈ X to find the effect of x on the MOD 

operator M. 

 

xM = (3, 0, 3, 0) = y1; 

y1M
t 
= (0, 0, 3, 0, 0, 0, 0) = x1; 

x1M = (3, 0, 0, 0) = y2; 

y2M
t
 = (3, 0, 3, 0, 0, 0, 0) = x2; 

x2M = (0, 0, 3, 0) = y3; 

y3M
t
 = (3, 0, 0, 0, 0, 0, 0) = x3 ( =x). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given  by {(3, 0, …, 0), (3, 0, 3, 0)}      --- III 
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So this MOD resultant is different from the earlier ones. 

 

Consider x = (4, 0, …, 0) ∈ X; to find the effect of x on the 

MOD matrix operator M. 

 

xM = (0, 0, 4, 2) = y1; 

y1M
t 
= (2, 2, 0, 0, 2, 0, 0) = x1; 

x1M = (0, 0, 0, 0) = y2; 

y2M
t
 = (0, 0, ..., 0) = x2. 

 

This the MOD resultant is a MOD realized fixed point pair 

given by {(0, 0 ,…, 0), (0, 0, 0, 0)}      --- IV 

 

Let x = (5, 0, 0, …, 0) ∈ X, to find the effect of x on MOD 

operator M. 

 

xM = (3, 0, 5, 4) = y1; 

y1M
t 
= (4, 4, 3, 0, 4, 0, 0) = x1; 

x1M = (3, 0, 0, 0) = y2; 

y2M
t
 = (3, 0, 3, 0, 0, 0, 0) = x2; 

x2M = (0, 0, 3, 0) = y3; 

y3M
t
 = (3, 0, 0, 0, … ,0) = x3; 

x3M = (3, 0, 3, 0) = y4; 

y4M
t
 = (0, 0, 3, 0, 0, 0, 0) = x4; 

x4M = (3, 0, 0, 0) = y5 (=y2). 

 

Thus the MOD resultant is a MOD realized limit cycle given 

by {(3, 0, 3, 0, 0, 0, 0), (3, 0, 0, 0)}.    ---  V 

 

Now the resultant (I) to (V) are compared and we see only 

the MOD state vector (1, 0, 0, 0, 0, 0, 0) and (5, 0, 0, 0, 0, 0, 0) 

give same resultant all the other initial state vectors give 

different values. 

 

Thus this method has a significance of its own. 

 

Further 5
2
 = 1 (mod n) may be the cause for same resultant 

for 1 and 5.  One has to ponder over this. 
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Let x = (0, 1, 0, ..., 0) ∈ X to find the effect of x on M. 

 

xM = (0, 0, 0, 4) = y1; 

y1M
t 
= (2, 4, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 2, 2) = y2; 

y2M
t
 = (0, 2, 0, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 2, 2) = y3. 

  

 Thus the MOD resultant is MOD realized fixed  point pair 

given by {(0, 2, 0, 0, 4, 0, 0), (0, 0, 2, 2)}    --- I 

 

Let x = (0, 2, 0, 0, …, 0) ∈ X, to find the effect of x on M 

 

xM = (0, 0, 0, 2) = y1; 

y1M
t 
= (4, 2, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y2; 

y2M
t
 = (0, 4, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y3 (= y2). 

 

 Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 4, 0, 0, 2, 0, 0), (0, 0, 4, 4)}   --- II 

 

 Let x = (0, 3, 0, 0, … ,0) ∈ X to find the effect of x on the 

MOD rectangular matrix operator M. 

 

xM = (0, 0, 0, 0) = y1; 

y1M
t 
= (0, 0, … , 0). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 . . .  0), (0, 0, 0, 0)}     --- III 

 

Let x = (0, 4, 0, 0, 0, ..., 0) ∈ X to find the effect of x on M. 

 

xM = (0, 0, 0, 4) = y1; 

y1M
t 
= (2, 4, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 2, 4) = y2; 

y2M
t
 = (0, 4, 0, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 2, 4) = y3 (= y2). 
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Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 4, 0, 0, 4, 0, 0), (0, 0, 2, 4)}    --- IV 

 

Finally let x = (0, 5, 0, …, 0) ∈ X to find the effect of x on 

M. 

 

xM = (0, 0, 0, 2) = y1; 

y1M
t 
= (4, 2, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y2; 

y2M
t
 = (0, 4, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(4, 2, 0, 0, 0, 0, 0), (0, 0, 4, 4)}    --- V 

 

From equations (I), (II) … (V) we see all the five are 

distinct but it is observed the resultant is I and II are related that 

is II = 2I. 

 

Let us now consider the initial state vector  

x1 = (0, 0, 3, 0, 0, 0, 0) ∈ X; to find the effect of x1 is as  

follows. 

 

x1M = (3, 0, 0, 0) = y1; 

y1M
t 
= (3, 0, 3, 0, 0, 0, 0) = x2; 

x2M = (0, 0, 3, 0) = y2; 

y2M
t
 = (3, 0, 0, 0, 0, 0, 0) = x3; 

x3M = (3, 0, 3, 0) = y3; 

y3M
t
 = (0, 0, 3, 0, 0, 0, 0) = x4 (=x1). 

 

Let x2 = (0, 0, 1, 0, 0, 0, 0) ∈ X to find the effect of x2 on 

M. 

 

x2M = (5, 0, 0, 0) = y1; 

y1M
t 
= (3, 0, 1, 0, 0, 0, 0) = x3; 

x3M = (2, 0, 3, 0) = y2; 

y2M
t
 = (3, 0, 4, 0, 0, 0, 0) = x4; 

x4M = (5, 0, 3, 0) = y3; 

y3M
t
 = (0, 0, 1, 0, 0, 0, 0) = x5 (=x2). 
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Thus the MOD resultant is a MOD realized limit cycle given  

by {(0, 0, 1, 0, 0, 0, 0), (5, 0, 0, 0)}     --- I 

 

Let x = (0, 0, 2, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (4, 0, 0, 0) = y1; 

y1M
t 
= (0, 0, 2, 0, 0, 0, 0) = x1; 

x1M = (4, 0, 0, 0) = y2 (=y1). 

 

 Thus the MOD resultant is a MOD realized fixed point given 

by {(0, 0, 2, 0, 0, 0, 0), (4, 0, 0, 0)}      ---  II 

 

Let x = (0, 0, 3, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (3, 0, 0, 0) = y1; 

y1M
t 
= (3, 0, 3, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 3, 0) = y2; 

y2M
t
 = (3, 0, 0, 0, 0, 0, 0) = x2; 

x2M = (3, 0, 3, 0) = y3; 

y3M
t
 = (0, 0, 3, 0, 0, 0, 0) = x3 (=x). 

  

Thus the MOD resultant is MOD realized limit cycle pair 

given by {(0, 0, 3, 0, 0, 0, 0), (3, 0, 0, 0)}     ---  III 

 

Let x = (0, 0, 4, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (2, 0, 0, 0) = y1; 

y1M
t 
= (0, 0, 4, 0, 0, 0, 0) = x1; 

x1M = (2, 0, 0, 0) = y2 (=y1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0, 0, 4, 0, 0, 0, 0), (2, 0, 0, 0)    --- IV 

 

Let x = (0, 0, 5, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (1, 0, 0, 0) = y1; 

y1M
t 
= (3, 0, 5, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 3, 0) = y2; 

y2M
t
 = (3, 0, 0, 0, 0, 0, 0) = x2; 
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x2M = (3, 0, 3, 0) = y3; 

y3M
t
 = (0, 0, 3, 0, 0, 0, 0) = x3; 

x3M = (3, 0, 0, 0) = y4; 

y4M
t
 = (3, 0, 3, 0, 0, 0, 0) = x4; 

x4M = (0, 0, 3, 0) = y5 (=y2). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given  by {(3, 0, 0, 0, 0, 0, 0), (0, 0, 3, 0)}          --- V 

 

Now compare (I) to (V) MOD resultants and see all are 

distinct. 

 

Let x = (0, 0, 0, 1, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 1, 0, 0) = y1; 

y1M
t 
= (0, 0, 0, 1, 0, 0, 3) = x1; 

x1M = (0, 4, 0, 0) = y2; 

y2M
t
 = (0, 0, 0, 4, 0, 0, 0) = x2; 

x2M = (0, 4, 0, 0) = y3 (= y2). 

  

 Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 0, 0, 4, 0, 0, 0), (0, 4, 0, 0)}    --- I 

 

 Let x = (0, 0, 0, 2, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 2, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 2, 0, 0, 0) = x1 (=x). 

 

Thus the MOD resultant is a MOD special classical fixed point 

pair given by {(0, 0, 0, 2, 0, 0, 0), (0, 2, 0, 0)}   --- II 

 

Consider x = (0, 0, 0, 3, 0, 0, 0) ∈ X, to find the effect of x 

on M. 

 

xM = (0, 3, 0, 0) = y1; 

y1M
t 
= (0, 0, 0, 3, 0, 0, 3) = x1; 

x1M = (0, 0, 0, 0) = y2; 

y2M
t
 = (0, 0, 0, 0, 0, 0, 0) = x2. 
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Thus the MOD resultant is a MOD realized fixed point pair 

given  by {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}  ---  III 

 

Let x = (0, 0, 0, 4, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 4, 0, 0 ) = y1; 

y1M
t
 = (0, 0, 0, 4, 0, 0, 0) = x1 (=x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}   --- IV 

 

 Consider x = (0, 0, 0, 5, 0, 0, 0) ∈ X 

 

To find the effect of x on M. 

 

xM = (0, 5, 0, 0) = y1; 

y1M
t 
= (0, 0, 0, 5, 0, 0, 3) = x1; 

x1M = (0, 2, 0, 0) = y2; 

y2M
t
 = (0, 0, 0, 2, 0, 0, 0) = x2; 

x2M = (0, 2, 0, 0) = y3 (=y2). 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 0, 0, 2, 0, 0, 0), (0, 2, 0, 0)}   --- V 

 

From the 5 equation I to V we see two and 5 are same. III 

and IV are equal to zero pairs. 

 

Next we find for x = (0, 0, 0, 0, 1, 0, 0) ∈ X the effect on M. 

 

xM = (0, 0, 2, 0) = y1; 

y1M
t 
= (2, 0, 0, 0, 4, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y2; 

y2M
t
 = (0, 4, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(0, 4, 0, 0, 2, 0, 0), (0, 0, 4, 4)}       ---   a 

 

Let x = (0, 0, 0, 0, 2, 0, 0) ∈ X; to find the effect of x on M. 
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xM = (0, 0, 4, 0) = y1; 

y1M
t 
= (4, 0, 0, 0, 2, 0, 0) = x1; 

x1M = (0, 0, 0, 2) = y2; 

y2M
t
 = (4, 2, 0, 0, 0, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y3; 

y3M
t
 = (0, 4, 0, 0, 2, 0, 0) = x3; 

x3M = (0, 0, 4, 4) = y4 (=y3). 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given  by {(0, 4, 0, 0, 2, 0, 0), (0, 0, 4, 4)}   ---  b 

 

Let x = (0, 0, 0, 0, 3, 0, 0) ∈ X, to find the effect of x on M. 

 

  xM = (0, 0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 0, 0, 0) = x1. 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}     ---  c 

 

Let x = (0, 0, 0, 0, 4, 0, 0) ∈ X to find the effect of x on M. 

 

  xM = (0, 0, 2, 0) = y1; 

y1M
t 
= (2, 0, 0, 0, 4, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y2; 

y2M
t
 = (0, 4, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y3 (=y2). 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given  by {(0, 4, 0, 0, 2, 0, 0), (0, 0, 4, 4)}     ---  d 

 

 Let x = (0, 0, 0, 0, 5, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 0, 4, 0) = y1; 

y1M
t 
= (4, 0, 0, 0, 2, 0, 0) = x1; 

x1M = (0, 0, 2, 2) = y2; 

y2M
t
 = (0, 2, 0, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 2, 2) = y3 (=y2). 
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Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 2, 0, 0, 4, 0, 0), (0, 0, 2, 2)} ---   e 

 

Clearly of the 5 equations a, b, c, d and e we see a b and d 

are the same. 

 

 Let x = (0, 0, 0, 0, 0, 1, 0) ∈ X, the effect of x on M is  

 

  xM = (0, 0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 0, 0, 0). 

 

For every x = (0, 0, 0, 0, 0, t, 0); t = 1, 2, 3, 4 and 5 we see 

the MOD resultant is a MOD fixed point pair given by  

{(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}. 

 

Let x = (0, 0, 0, 0, 0, 0, 1) ∈ X, to find the effect of x on M . 

 

xM = (0, 3, 0, 0) = y1; 

y1M
t 
= (0, 0, 0, 3, 0, 0, 3) = x1; 

x1M
t
 = (0, 0, 0, 0) = y2; 

y2M
t
 = (0, 0, 0, 0, 0, 0, 0) = x2. 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}      --- 1 

 

Let x = (0, 0, 0, 0, 0, 0, 2) ∈ X; to find the effect of x on M. 

 

xM = (0, 0, 0, 0) = y1; 

y1M
t 
= (0, 0, 0, 0, 0, 0, 0) = x1. 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}   --- 2 

 

Clearly (1) and (2) are the same. 

 

Consider x = (0, 0, 0, 0, 0, 0, 3) ∈ X to find the effect of x 

on M. 

 

xM = (0, 3, 0, 0) = y2; 
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y1M
t
 = (0, 0, 0, 3, 0, 0, 3) = x1; 

x1M = (0, 0, 0, 0) = y2  ; 

y2M
t 
= (0, 0, 0, 0, 0, 0, 0) = x2. 

 

Thus in this case also the MOD resultant is a MOD realized 

fixed point pair given by {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}  --- 3 

 

Let x = (0, 0, 0, 0, 0, 0, 4) ∈ X, to find the effect of x on M. 

 

xM = (0, 0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 0, 0, 0) = x1. 

 

The MOD resultant is a MOD realized fixed pair  

{(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}     --- 4 

 

All the resultants (1), (2), (3) and (4) are the same. 

 

Let x = (0, 0, 0, 0, 0, 0, 5) ∈ X, to find the effect of x on M. 

 

xM = (0, 3, 0, 0) = y1; 

y1M
t 
= (0, 0, 0, 3, 0, 0, 3) = x1; 

x1M = (0, 0, 0, 0) = y2; 

y2M
t
 = (0, 0, 0, 0, 0, 0, 0) = x2. 

 

Thus the MOD resultant is a MOD realized fixed point given 

by {(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}    ---   5 

 

 All the 5 resultants are the same. 

 

 Thus it is clearly observed since we have taken the 

coordinates to be all values in Z6 as initial state vectors in most 

cases we have distinct resultants.  

 

So this is one of the advantages and the main difference 

between usual models.  

 

Secondly we are not following the theory of updating at the 

appropriate states. 
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Now we consider y = (1, 0, 0, 0 ) ∈ Y and find its effect on 

M 

 

yM
t 
= (3, 0, 5, 0, 0, 0, 0) = x1; 

x1M = (4, 0, 3, 0) = y1; 

y1M
t
 = (3, 0, 2, 0, 0, 0, 0) = x2; 

x2M = (1, 0, 3, 0) = y2 ; 

y2M
t
 = (0, 0, 3, 0, 0, 0, 0) = x3; 

x3M = (3, 0, 0, 0) = y3 ; 

y3M
t
 = (3, 0, 3, 0, 0, 0, 0) = x4; 

x4M = (0, 0, 3, 0) = y4; 

y4M
t
 = (3, 0, 0, 0, 0, 0, 0) = x5; 

x5M = (3, 0, 3, 0) = y5; 

y5M
t
 = (0, 0, 3, 0, 0, 0, 0) = x6 (= x3). 

 

Thus the M is a MOD realized limit cycle pair  

{(0, 0, 3, 0, 0, 0, 0), (3, 0, 0, 0)}     ---  1 

 

Let y = (2, 0, 0, 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0, 0, 4, 0, 0, 0, 0) = x1; 

x1M = (2, 0, 0, 0) = y. 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0, 0, 4, 0, 0, 0, 0), (2, 0, 0, 0)} ---  2 

 

Let y = (3, 0, 0, 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (3, 0, 3, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 3, 0) = y1; 

y1M
t
 = (3, 0, 0, 0, 0, 0, 0) = x2; 

x2M = (3, 0, 3, 0) = y2; 

y2M
t
 = (0, 0, 3, 0, 0, 0, 0) = x3; 

x3M = (3, 0, 0, 0) = y3 ( = y). 

 

Thus the MOD resultant is a MOD realized limit cycle given 

by {(3, 0, 3, 0, 0, 0, 0), (3, 0, 0, 0)}      --- 3   

 

 Let y = (4, 0, 0, 0) ∈ Y to find the effect of y on M. 



MOD Relational Maps Models 33 

 

 

 

 

 

 

 

yM
t
 = (0, 0, 2, 0, 0, 0, 0) = x1; 

x1M = (4, 0, 0, 0) = y1 (= y5). 

 

Thus the MOD resultant is MOD special classical fixed point 

pair given  by {(4, 0, 0, 0), (0, 0, 2, 0, 0, 0, 0)}   --- 4 

 

Let y = (5, 0, 0, 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (3, 0, 1, 0, 0, 0, 0) = x1; 

x1M = (2, 0, 3, 0) = y1; 

y1M
t
 = (3, 0, 4, 0, 0, 0, 0) = x2; 

x2M = (5, 0, 3, 0) = y2; 

y2M
t
 = (0, 0, 1, 0, 0, 0, 0) = x3; 

x3M = (5, 0, 0, 0) = y3 (= y1). 

 

Thus the MOD resultant is a MOD limit cycle given by  

{(3, 0, 1, 0, 0, 0, 0), (5, 0, 0, 0)}     --- 5 

 

All the 5 MOD resultants are distinct. 

 

Let y = (0, 1, 0, 0) ∈ Y 

 

yM
t
 = (0, 0, 0, 1, 0, 0, 3) = x1; 

x1M = (0, 4, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 4, 0, 0, 0) = x2; 

x2M = (0, 4, 0, 0) = y2 (= y1)  . 

 

Thus the MOD resultant is a MOD realized fixed point given 

by {(0, 0, 0, 4, 0, 0, 0), (0, 4, 0, 0)}   --- 1 

 

Let y = (0, 2, 0, 0) ∈ Y, to find the effect of y on M. 

 

  yM
t
 = (0, 0, 0, 2, 0, 0, 0) = x1; 

x1M = (0, 2, 0, 0) = y2 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  {(0, 2, 0, 0), (0, 0, 0, 2, 0, 0, 0)}  ---  2 
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Let y = (0, 3, 0, 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0, 0, 0, 3, 0, 0, 3) = x1; 

x1M = (0, 0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 0, 0, 0) = x2. 

 

The MOD resultant is a MOD realized fixed point given by 

{(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}    --- 3 

 

(1), (2) and (3) are all distinct pair of vectors. 

 

Let y = (0, 4, 0, 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0, 0, 0, 4, 0, 0, 0) = x1; 

x1M = (0, 4, 0, 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  {(0, 0, 0, 4, 0, 0, 0), (0, 4, 0, 0)}   --- 4 

 

Let y = (0, 5, 0, 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0, 0, 0, 5, 0, 0, 3) = x1; 

x1M = (0, 2, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 2, 0, 0, 0) = x2; 

x2M = (0, 2, 0, 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given by  {(0, 0, 0, 2, 0, 0, 0), (0, 2, 0, 0)}     ---  5 

 

This is same as equation (2) 

 

Let y = (0, 0, 1, 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (1, 0, 0, 0, 2, 0, 0) = x1; 

x1M = (3, 0, 5, 2) = y1; 

y1M
t
 = (0, 2, 3, 0, 4, 0, 0) = x2; 

x2M = (3, 0, 2, 2) = y2; 

y2M
t
 = (3, 2, 3, 0, 4, 0, 0) = x3; 

x3M = (0, 0, 5, 2) = y3; 
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y3M
t
 = (3, 2, 0, 0, 4, 0, 0) = x4; 

x4M = (3, 0, 5, 2) = y4 (= y1). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given by {(0, 2, 3, 0, 4, 0, 0), (3, 0, 5, 2)}   ---  1 

 

Let y = (0, 0, 2, 0) ∈ Y to find the effect of y on M. 

 

  yM
t
 = (2, 0, 0, 0, 4, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y1; 

y1M
t 
= (0, 4, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y2 (=y1). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given by{(0, 4, 0, 0, 2, 0, 0), (0, 0, 4, 4)}    --- 2 

 

(1) and (2) are distinct 

 

Let y = (0, 0, 3, 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (3, 0, 0, 0, 0, 0, 0) = x1; 

x1M = (3, 0, 3, 0) = y1; 

y1M
t
 = (0, 0, 3, 0, 0, 0, 0) = x2; 

x2M = (3, 0, 0, 0) = y2; 

y2M
t
 = (3, 0, 3, 0, 0, 0, 0) = x3; 

x3M = (0, 0, 3, 0) = y3 (= y). 

 

Thus the MOD resultant is a MOD limit cycle pair given  by 

{(0, 0, 3, 0), (3, 0, 0, 0, 0, 0, 0)}     --- 3 

 

(1), (2) and (3) are distinct. 

 

Let y = (0, 0, 4, 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (4, 0, 0, 0, 2, 0, 0) = x1; 

x1M = (0, 0, 2, 2) = y1; 

y1M
t
 = (0, 2, 0, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 2, 2) = y2 (= y1). 
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Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 0, 2, 2), (0, 2, 0, 0, 4, 0, 0)}   --- 4 

 

(1), (2), (3) and (4) are all different. 

 

 Let y = (0, 0, 5, 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (5, 0, 0, 0, 4, 0, 0) = x1; 

x1M = (3, 0, 1, 4) = y1; 

y1M
t
 = (0, 4, 3, 0, 2, 0, 0) = x2; 

x2M = (3, 0, 4, 4) = y2; 

y2M
t
 = (3, 4, 3, 0, 2, 0, 0) = x3; 

x3M = (0, 0, 1, 4) = y3; 

y3M
t
 = (3, 4, 0, 0, 2, 0, 0) = x4; 

x4M = (3, 0, 1, 4) = y4 (= y1). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given by {(3, 0, 1, 4), (0, 4, 3, 0, 2, 0, 0)}   --- 5 

 

(5) is different from (1), (2), (3) and (4). 

 

Thus all the 5 vector give 5 different MOD resultants. 

 

Let y = (0, 0, 0, 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (2, 4, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 2, 2) = y1; 

y1M
t
 = (0, 2, 0, 0, 4, 0, 0) = x1; 

x1M = (0, 0, 2, 2) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(0, 0, 2, 2), (0, 2, 0, 0, 4, 0, 0)}    --- I 

 

 Let y = (0, 0, 0, 2) ∈ Y, to find the effect of y on M 

 

yM
t
 = (4, 2, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y1; 

y1M
t
 = (0, 4, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y2 (= y1). 
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Thus the MOD resultant is a MOD fixed  point pair given by 

{(0, 0, 4, 4), (0, 4, 0, 0, 2, 0, 0)}   ---  II 

 

Let y = (0, 0, 0, 3) ∈ Y to find the effect of y on M 

 

yM
t
 = (0, 0, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 0, 0) = y1. 

 

Thus the MOD resultant is the MOD fixed point pair given by 

{(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}   ---  III 

 

I, II and III are distinct. 

 

Let  y = (0, 0, 0, 4) ∈ Y. 

 

yM
t
 = (2, 4, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 2, 4) = y1; 

y1M
t
 = (4, 4, 0, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 0, 0) = y2; 

y2M
t
 = (0, 0, 0, 0, 0, 0, 0) = x3. 

 

The MOD resultant is a MOD fixed point pair given by  

{(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}    ---  IV 

 

Clearly III and IV are identical MOD resultants. 

 

Let y = (0, 0, 0, 5) ∈ Y, to find the effect of y on M . 

 

yM
t
 = (4, 2, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y1; 

y1M
t
 = (0, 4, 0, 0, 2, 0, 0) = x2; 

x2M = (0, 0, 4, 4) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 0, 4, 4), (0, 4, 0, 0, 2, 0, 0)}    ---  V 

 

Clearly V and II are identical.  
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Now we will show for the same MOD matrix operator if the 

initial vector which was in the on state was updated at each 

stage we show certainly the MOD resultant will be different.  

 

We will prove this for a few MOD initial state vectors. 

 

Let x = (1, 0, 0, 0, 0, 0, 0) ∈ X to find the effect of x on M. 

 

xM = (3, 0, 1, 2) = y1; 

y1M
t
 = (1, 2, 3, 0, 2, 0, 0) = x1; 

x1M = (0, 0, 5, 4) = y2; 

y2M
t
 = (1, 4, 0, 0, 4, 0, 0) = x2; 

x2M = (3, 0, 3, 0) = y3; 

y3M
t
 = (1, 0, 3, 0, 0, 0, 0) = x3; 

x3M = (0, 0, 1, 2) = y4; 

y4M
t
 = (1, 2, 0, 0, 2, 0, 0) = x4; 

x4M = (3, 0, 5, 4) = y5; 

y5M
t
 = (1, 4, 3, 0, 4, 0, 0) = x5; 

x5M = (0, 0, 3, 0) = y6; 

y6M
t
 = (1, 0, 0, 0, 0, 0, 0) = x6 (= x). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given by {(1, 0, 0, 0, 0, 0, 0), (3, 0, 1, 2)} which is different 

from all MOD resultants using this M. 

 

Let x = (0, 1, 0, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 0, 0, 4) = y1; 

y1M
t
 → (2, 1, 0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 2, 2) = y2; 

y2M
t
 → (0, 1, 0, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 2, 4) = y3; 

y3M
t
 → (4, 1, 0, 0, 4, 0, 0) = x3; 

x3M = (0, 0, 0, 0) = y4; 

y4M
t
 → (0, 1, 0, 0, 0, 0, 0) = x4 (= x). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0)}. 
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This is also different from all other MOD resultants 

associated with this M. 

 

Let x = (0, 0, 1, 0, 0, 0, 0) ∈ X, to find the MOD resultant of 

x on M. 

 

xM = (5, 0, 0, 0) = y1; 

y1M
t
 → (3, 0, 1, 0, 0, 0, 0) = x1; 

x1M = (2, 0, 3, 0) = y2; 

y2M
t
 = (3, 0, 1, 0, 0, 0, 0) = x2 (=x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(3, 0, 1, 0, 0, 0, 0), (2, 0, 3, 0)} which is different from all other 

MOD resultants. 

 

Let x = (0, 0, 0, 1, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 1, 0, 0) = y1; 

y1M
t
 → (0, 0, 0, 1, 0, 0, 3) = x1; 

x1M = (0, 4, 0, 0) = y2; 

y2M
t
 → (0, 0, 0, 1, 0, 0, 0) = x2 (= x). 

 

Thus the MOD resultant is MOD realized limit cycle pair 

given by {(0, 0, 0, 1, 0, 0, 0), (0, 1, 0, 0)}. 

 

Now we find the MOD resultant of y = (0, 1, 0, 0) ∈ Y. 

 

yM
t 
= (0, 0, 0, 1, 0, 0, 3) = x1; 

x1M → (0, 1, 0, 0) = y1 (= y1). 

 

Thus the MOD resultant is the MOD special classical fixed 

point pair given by {(0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0, 3)}. 

 

Let y = (0, 0, 1, 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (1, 0, 0, 0, 2, 0, 0) = x1; 

x1M → (3, 0, 1, 2) = y1; 

y1M
t
 = (2, 2, 3, 0, 2, 0, 0) = x2 ; 

x2M → (3, 0, 1, 0) = y2; 
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y2M
t
 = (4, 0, 3, 0, 2, 0, 0) = x3; 

x3M → (3, 0, 1, 2) = y3. 

  

Thus the MOD resultant is a MOD realized limit cycle pair  

   {(3, 0, 1, 2), (2, 2, 3, 0, 2, 0, 0)}. 

 

This MOD resultant is distinctly different from the existing 

MOD resultants so far calculated. 

 

Let x = (0, 2, 0, 0, 0, 0, 0) ∈ X to find the effect of x on M. 

 

xM = (0, 0, 0, 2) = y1; 

y1M
t
 → (4, 2, 0, 0, 0, 0, 0) = x1 ; 

x1M = (0, 0, 4, 4 ) = y2; 

y2M
t
 → (0, 2, 0, 0, 2, 0, 0) = x2 ; 

x2M = (0, 0, 4, 2) = y3; 

y3M
t
 → (2, 2, 0, 0, 2, 0, 0) = x3; 

x3M = (0, 0, 0, 0) = y4; 

y4M
t
 → (0, 2, 0, 0, 0, 0, 0) = x . 

 

Thus the MOD resultant is a MOD limit cycle pair given by  

   {(0, 0, 0, 0), (0, 2, 0, 0, 0, 0, 0)}. 

 

This is also very much different from the other MOD 

resultants. 

 

Let x = (0, 0, 0, 0, 4, 0, 0) ∈ X to find the effect of x on M. 

 

xM = (0, 0, 2, 0) = y1; 

y1M
t
 = (2, 0, 0, 0, 4, 0, 0) = x1; 

x1M = (0, 0, 4, 4) = y1; 

y1M
t
 → (0, 4, 0, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 0, 4) = y2; 

y2M
t
 → (2, 4, 0, 0, 4, 0, 0) = x3; 

x3M = (0, 0, 4, 4) = y2 (=y1). 

 

Thus the MOD resultant is a MOD realized limit point pair 

given by {(0, 0, 4, 4), (0, 4, 0, 0, 4, 0, 0)}.  
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This MOD resultants is also different from other MOD 

resultants so far calculated. 

 

Let x = (0, 0, 0, 0, 0, 5, 0) ∈ X.  

 

To find the effect of x on M. 

 

xM = (0, 0, 0, 0) = y1; 

y1M
t
 → (0, 0, 0, 0, 0, 5, 0). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0, 0, 0, 0, 0, 5, 0), (0, 0, 0, 0)}. 

 

Let x = (0, 0, 0, 0, 0, 0, 3) ∈ X, to find the effect of x on M; 

 

xM = (0, 3, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 3, 0, 0, 3) = x1; 

x1M = (0, 0, 0, 0) = y2; 

y2M
t
 → (0, 0, 0, 0, 0, 0, 3). 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given by {(0, 0, 0, 0, 0, 0, 3), (0, 0, 0, 0)}. 

 

Let y = (0, 0, 0, 5) ∈ Y; to find the effect of y on M. 

 

yM
t
 = (4, 2, 0, 0, 0, 0, 0) = x1; 

x1M → (0, 0, 4, 5) = y1; 

y1M
t
 = (2, 2, 0, 0, 2, 0, 0) = x2; 

x2M → (0, 0, 0, 5) = y2 (= y1). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given by {(4, 2, 0, 0, 0, 0, 0), (0, 0, 0, 5)}. 

 

This MOD resultant is also different from other MOD 

resultants. 

 

Thus we see depending on the type of operations on the 

MOD matrix operator we get the MOD resultants. 
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Now we proceed onto define the new notion of MOD 

Relational Maps model MOD Cognitive Maps models of various 

types have been defined, developed and described in [68].  

 

Here we define MOD Relational Maps model analogous to 

FRMs when the very casual associations can be divided into 

two disjoint units. We have a MOD domain space and MOD 

range space associated with MOD Relational Maps model.  

 

We denote by R1… Rm the range space  

R = {(a1, …, am) / ai ∈ 0 or 1; 1 ≤ i ≤ m}. 

 

If ai = 1 then the node Ri is in on state if ai = 0 the node Ri is 

in the off state. Similarly D denotes the nodes D1, …, Dn of the 

domain space where  

D = {(b1, …, bn) / bj = 0 or 1} for i = 1, 2, …, n. 

 

If bi = 1 it means the node Di is on state and if bi = 0 the 

node Di is in the off state.  

 

Further in case MOD Relational Maps we still have  

RS = {(a1, …, am) / ai ∈ Zs where Zs is the modulo integer 1 ≤ i ≤ 

m}.  

If ai = t ∈Zs then we say the node has the value t associated 

with it. 

 

Similarly Ds = {(b1, …, bn) / bi ∈ Zs where Zs is the modulo 

integer, 1 ≤ i ≤ n}. 

 

DEFINITION 2.1: A MOD Relational Map (MODRM) is a directed 

bipartite graph or a map from D to R (Ds to Rs) with concepts 

like policies or events etc, as nodes and causalities as edges. It 

represents causal relations between spaces D and R (DS and 

RS). Let Di and Rj denote that two nodes of the MOD RM.  

 

The directed edge from Di to Rj denotes the causality of Di 

to Rj called MOD relations. Every edge in the MODRM is 

weighted with a number in the set Zs. If eij is weight of the edge 
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Di Rj, eij ∈ Zs. The other relations are defined analogous to 

FRMs. 

 

 Let D1, …,  Dn be the nodes of the MOD domain space D of 

the MODRM and R1, …, Rm be the nodes of the MOD range space 

of the MODRM.  

 

E = (eij) where eij is the MOD weight of the directed edge  

Di Rj (or Rj Di). E is defined as the MOD relational matrix of the 

MODRMs. 

 

Let D, R, DS and RS (as said above) denote the MOD nodes 

of the MODRM.  

 

Let A = {(a1, …, an) / ai ∈ {0, 1} (ai ∈ Zs) 1 ≤ i ≤ n}. A is 

called the MOD instantaneous state vector of the MOD domain 

space and it denotes the on-off position of nodes at any instant. 

Similarly let B = {(b1, b2, …, bm) /  bi ∈ {0, 1} (bi ∈ Zs); 1 ≤ i ≤ 

m}.  B is called the MOD instantaneous state vector of the MOD 

range space and it denotes the on-off (the value of number 

associated with the node) position of the nodes at an instant. 

Such theme is new.  

 

Thus with  D1, …, Dn and R1, …, Rn the nodes of an 

MODRM. 

 

Let DiRj (or Rj Di) be the edges of the MODRM 1 ≤ i ≤ n and 

1 ≤ j ≤ m be the edges form a MOD directed cycle.  

 

An MODRM is said to be MOD cycle if it posses a MOD 

directed cycle.  

 

A MODRM is a said to be MOD acyclic if it does not possess 

any MOD directed cycle. 

 

A MODRM with MOD cycles is said to be a MODRM with 

MOD feed back. A MODRM with a MOD feedback is one which 

MOD causal relations flow through a MOD cycle in a 
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revolutionary manner, the MODRM is defined as the MOD 

dynamical system. 

 

Let Di Rj (or Rj Di);  1≤ j ≤ m, 1≤ i ≤ n when  Ri (or Dj) is 

switched on if the causality flows through edges of the MOD 

cycle and again it causes Ri (or Dj) we say the MOD dynamical 

system goes rounded and round. This is true for any MOD node 

Rj (or Di) for 1 ≤ i ≤ n (1 ≤ j ≤ m).  

 

The MOD equilibrium state of this MOD dynamical system is 

called the MOD hidden pattern. 

 

If the MOD equilibrium state of a MOD dynamical system is 

a unique MOD state vectors then it is defined as the MOD fixed 

point. 

 

Consider a MODRM with R1, R2, …, Rm and D1, D2, …, Dn 

as MOD nodes. For instance let us start the MOD dynamical 

system by switching on R1 (or D1).  Let us assume that MODRM 

settles down with R1 and Rm (or D1 and Dn) on i.e. the MOD state 

vector remains as (1 0 0 0 .., 0 1) in R ((t 0 0 0 … u) in RS) (or 1 

0 … 1) in D or (t, …, u) in DS).  This MOD state is called the 

MOD fixed point. 

 

If the MODRM settles down with a MOD state vector 

repeating in the form 

 

A1  → A2 → … → Ai → A1 

(or B1 → B2 → … → Bi → Bi). 

 

Then this MOD equilibrium is called the MOD limit cycle. 

 

We will  be describing the methods of obtaining the MOD 

hidden patterns by some examples. 

 

Example 2.9: Let P be a problem in hand. Here we wish to 

study the teacher-student relationship. Let D1, D2, …, D6 be the 

nodes associated with the MOD domain space. 
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MOD domain space 

 

  D1 – Devoted to profession 

D2 – Good 

D3 – Poor in teaching skills 

D4 – Mediocre 

D5 – Kind 

D6 – Harsh. 

 

Let the MOD range space represent the MOD nodes 

associated with the students MOD range space. 

 

R1 - Good student 

R2 - Bad student 

R3 - Average student 

R4 - No motivation to study. 

 

The MOD relational directed graph G with edge weights 

from Z6 of the teacher-student MODRM model is given in the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 
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The MOD connection matrix M associated with G is as 

follows. 

 

M = 

1 2 3 4

1

2

3

4

5

6

R R R R

D 5 0 0 0

D 0 0 2 0

D 0 1 0 2
.

D 0 0 0 3

D 2 0 0 0

D 0 2 0 4

 
 
 
 
 
 
 
 
    

 

M serves as the MOD dynamical system of the MODRM. 

 

 Let X = {(a1, a2, …, a6) / ai ∈ {0, 1}; 1 ≤ i ≤ 6}, 

 

Y = {(a1, a2, a3, a4) / ai ∈ {0, 1}; 1 ≤ i ≤ 6}, 

 

 XS = {(a1, a2, …, a6) / ai ∈ Z6 1 ≤ i ≤ 6} and  

 

YS = {(a1, a2, a3, a4) / ai ∈ Z6; 1 ≤ i ≤ 4} are the MOD 

instantaneous state vectors and MOD special state vectors. 

 

 Let x = (1, 0, 0, 0, 0, 0) ∈ X to find the effect of x on M 

 

  xM = (5, 0, 0, 0) = y1; 

y1M
t
 = (1, 0, 0, 0, 4, 0) = x1; 

x1M = (1, 0, 0, 0) = y2; 

y2M
t
 = (5, 0, 0, 0, 2, 0) = x2; 

x2M = (5, 0, 0, 0) = y3 (= y1). 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

{(1, 0, 0, 0, 4, 0), (5, 0, 0, 0)}. 

 

Let x1 = (3, 0, 0, 0, 0, 0) ∈ X, to find the effect of x1 on M. 

 

x1M = (3, 0, 0, 0) = y; 

y1M
t
 = (3, 0, 0, 0, 0, 0) = x2 (= x1). 
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Thus the MOD resultant is a MOD special classical fixed 

point given by {(3, 0, 0, 0, 0, 0), (3, 0, 0, 0)}. 

 

Clearly the resultants are not equal 

 

x = (2, 0, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (4, 0, 0, 0) = y1; 

y1M
t
 = (2, 0, 0, 0, 2, 0) = x1; 

x1M = (2, 0, 0, 0) = y2; 

y2M
t
 = (4, 0, 0, 0, 4, 0) = x2; 

x2M = (4, 0, 0, 0) = y3 (=y1). 

 

Thus the MOD resultant is a MOD realized limit cycle given 

by {(4, 0, 0, 0), (2, 0, 0, 0, 2, 0)}.  This is also different from the 

other two resultants. 

 

Let x = (0, 1, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 0, 2, 0) = y1; 

y1M
t
 = (0, 4, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 2, 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point given by {(0, 

4, 0, 0, 0, 0), (0, 0, 2, 0)}. 

 

Thus if teacher is good we are certain to get average 

students. 

 

Let x = (0, 0, 0, 0, 1, 0) ∈ X, to find the effect of x on M 

 

xM = (2, 0, 0, 0) = y1; 

y1M
t
 = (0, 4, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 2, 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point given by  

{(0, 4, 0, 0, 0, 0), (0, 0, 2, 0)}.   
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Thus if teacher is good we are certain to get average 

students. 

 

Let x = (0, 0, 0, 0, 1, 0) ∈ X, to find the effect of x on M. 

 

xM = (2, 0, 0, 0) = y1; 

y1M
t
 = (0, 4, 0, 0, 4, 0) = x2; 

x2M = (4, 0, 0, 0) = y2  ; 

y2M
t
 = (2, 0, 0, 0, 2, 0) = x3; 

x3M = (2, 0, 0, 0) = y3 (= y1). 

 

Thus the MOD resultant is a MOD limit cycle given by the 

pair {(4, 0, 0, 0, 4, 0), (2, 0, 0, 0)}. 

 

Let x = (0, 0, 0, 0, 0, 2) ∈ xS 

 

xM = (0, 4, 0, 2) = y1; 

y1M
t
 = (0, 0, 2, 0, 0, 4) = x1; 

x1M = (0, 4, 0, 4) = y2  ; 

y2M
t
 = (0, 0, 4, 0, 0, 4) = x2; 

x2M = (0, 0, 0, 0) = y3; 

y3M
t
 = (0, 0, 0, 0, 0, 0) = x3. 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}. 

 

Let x = (0, 0, 0, 0, 0, 1) ∈ X, to find the effect of x on M. 

 

xM = (0, 2, 0, 4) = y1; 

y1M
t
 = (0, 0, 4, 0, 0, 4) = x1; 

x1M = (0, 0, 0, 0) = y2; 

y2M
t
 = (0, 0, 0, 0, 0, 0) = x2. 

 

Thus the MOD resultant is a MOD fixed point given by  

{(0, 0, 0, 0, 0, 0), (0, 0, 0, 0)}. 

 

Let y = (4, 0, 0, 0) ∈ Y to find the effect of y on M. 
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yM
t
 = (4, 0, 0, 0, 2, 0) = x1; 

x1M = (0, 0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 0, 0) = x2. 

 

Thus the MOD resultant is a MOD fixed point  given by {(0, 

0, 0, 0, 0, 0), (0, 0, 0, 0)}. 

 

Let y = (0, 2, 0, 0) ∈ YS, to find the effect of y on M. 

 

yM
t
 = (0, 0, 2, 0, 0, 4) = x1; 

x1M = (0, 2, 0, 4) = y1; 

y1M
t
 = (0, 0, 4, 0, 0, 4) = x2; 

x2M = (0, 0, 0, 0) = y2 ; 

y2M = (0, 0, 0, 0, 0, 0) = x3. 

 

Once again the MOD resultant is a MOD fixed point pair 

given by {(0, 0, 0, 0), (0, 0, 0, 0, 0, 0)}. 

 

Let y = (0, 0, 0, 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0, 0, 2, 3, 0, 4) = x1; 

x1M = (0, 4, 0, 5) = y1; 

y1M
t
 = (0, 0, 2, 3, 0, 4) = x2 (=x1). 

 

Thus the MOD resultant is a MOD fixed pair given by  

{(0, 0, 2, 3, 0, 4), (0, 4, 0, 5)}. 

 

Let y = (0, 0, 0, 3) ∈ YS, to find the effect of y on M. 

 

yM
t
 = (0, 0, 0, 3, 0, 0) = x1; 

x1M = (0, 0, 0, 3) = y1 (= y1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point given by {(0, 0, 0, 3, 0, 0), (0, 0, 0, 3)}. 

 

This is the way operations without updating the values at 

each stage is worked out. 
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Next we see the effect of x = (1, 0, 0, 0, 0, 0) ∈ X, to find 

the effect of x on M. 

 

xM = (5, 0, 0, 0) = y1; 

y1M
t
 = (1, 0, 0, 0, 4, 0) = x1; 

x1M = (1, 0, 0, 0) = y2 ; 

y2M
t
 = (1, 0, 0, 0, 2, 0) = x2; 

x2M = (1, 0, 0, 0) = y3 (= y2). 

 

Thus the MOD resultant of x using updating gives a MOD 

fixed point pair {(1, 0, 0, 0, 2, 0),  (1, 0, 0, 0)}. 

 

Clearly this resultant is different from the other resultants 

which is not updated at each stage. 

 

Let y = (0, 1, 0, 0) ∈ Y, to find the effect of y on M using 

the notion of updating stage by stage. 

 

yM
t
 = (0, 0, 1, 0, 0, 2) = x1; 

x1M = (0, 1, 0, 4) = y1; 

y1M
t
 = (0, 0, 3, 0, 0, 0) = x2; 

x2M = (0, 1, 0, 0) = y2 (= y). 

 

Thus the MOD resultant is a MOD limit cycle given  by {(0, 

1, 0, 0), (0, 0, 1, 0, 0, 2)}. 

 

Let x = (0 0 0 4 0 0) ∈ XS to find the effect of x on M using 

the method of updating at each stage. 

 

xM = (0 0 0 0) = y1; 

y1M
t
 → (0 0 0 4 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0 0 0 4 0 0), (0 0 0 0)}. 

 

Let x = (0 0 0 0 1 0) ∈ X to find the MOD resultant using the 

method of updating  
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xM = (2 0 0 0) = y1; 

y1M
t
 = (4 0 0 0 1 0) = x1; 

x1M = (4 0 0 0) = y2; 

y2M
t
 = (2 0 0 0 1 0) = x2; 

x2M = (0 0 0 0) = y3; 

y3M
t
 = (0 0 0 0 1 0) = x3 (= x1). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0 0 0 0 1 0), (2 0 0 0)}. 

 

Thus we see in general we have different values of the MOD 

resultant depending on the method used in finding the MOD 

resultant. 

 

In view of all this study we have the following theorem. 

 

THEOREM 2.1:  Let M be the MOD dyamical system associated 

with MODRMs model. 

 

D = {(a1, …, an) / ai ∈ {0, 1}, 1 ≤ i ≤ n} and  

 

R = {(b1, …, bm) / bj ∈ {0, 1}; 1 ≤ j ≤ m} be the MOD initial 

instantaneous state vectors of the domain and range spaces 

respectively. 

 

 Let DS = {(a1, …, an) / ai ∈ Zt; 1 ≤ i ≤ n} and  

 

RS = {(b1, …, bm) / bj ∈ Zt; 1 ≤ j ≤ m} be the MOD special 

initial state vectors of the MOD domain and range space 

respectively. 

 

i) R ⊆ RS and D ⊆ DS. 

 

ii) The MOD resultant of x ∈ D (y ∈ R) in general is 

different from MOD resultant of x ∈ DS \ D  

(y ∈ RS \ R). 

 

iii) The MOD resultant any x ∈ DS (y ∈ RS) in general is 

distinctly different from the MOD resultant 
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calculated using updating at each stage from the 

MOD resultant calculated not using the updating 

process. 

 

Proof is direct and hence left as an exercise to the reader. 

 

 One of the advantages of using this new MODRMs model is 

that it can give more information about the resultant.  

 

The resultant need not always be on or off state. 

 

The second advantage is the nodes can take any value in Zt 

their by making the weightage of it relative to other on state 

nodes.  

 

This MODRMs are handy for we can always arrive at a MOD 

resultant after a finite number of iterations.  

 

It is easy to find the MOD resultant once a programming 

using C++ is made. 

 

Next we proceed onto describe. 

 

Now we build the MOD Complex Relational Maps 

(MODCRMs) model using C(Zn).   

 

To do this we need the notion of MOD complex directed 

graph and MOD complex rectangular or relational matrix.  

 

We only give examples of them. 

 

Example 2.10: Let G be a bipartite directed graph with edge 

weights from C(Z10).   

 

Then we define G to be a MOD complex bipartite directed 

graph.  

 

The graph G is  as follows. 
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Figure 2.6 

 

 

We give another example of a MOD complex bipartite 

graph. 

 

 

Example 2.11:  Let G be the MOD complex bipartite graph with 

edge weights from C(Z7) which is as follows. 

 

 

 

v1 

u1 
v2 

u2 v3 

u3 v4 

3iF+1 

4iF 

1 4 

v5 

u4 v6 

u5 v7 

3iF 1+iF 

2 

v8 
7+8iF 
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Figure 2.7 

 

Now we just describe the MOD complex directed bipartite 

graph. 

 

Let G be a MOD directed bipartite graph. If G takes edge 

weights from C(Zn) then we define G to be a MOD directed 

bipartite graph. 

 

We have already given examples of them. 

 

Next we proceed onto describe the MOD complex 

rectangular matrix or MOD complex relational matrix by some 

examples. 

 

a1 

b1 

a3 

b3 
a2 

b2 

b5 

b4 

b6 

b7 

b8 

b9 

a4 

a5 

a6 

1+iF 

6iF 

iF+5 

3 

5iF 

4 

4iF 

2iF+4 

3 + iF 
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Example 2.12: Let  

 

M = 

F F F F

F F

F F F

F F F

F F F

3 4i 0 i 2 1 i 3 4i

0 3 2 0 0 0

1 i 0 0 2 0 1 i

1 4i 2i 1 0 4i 0

0 0 0 1 2 3

4i 2 i 0 i 0

2 0 2 1 0 1

i 1 3i 0 3 i 2 0

+ + + 
 
 
 + +

 
+ 

 
 
 
 
 

+ +  

 

 

be a MOD complex 8 × 6 rectangular matrix with entries from 

C(Z5). 

 

Example 2.13: Let B be the MOD complex rectangular matrix 

with entries from C(Z12). 

 

B = 

F F

F F

F F

F F

3i 0 2 4i 3

0 1 0 0

.5 2 i 3i 7

10 i 0 0 11 10i

3i 4 1 i 0

+ 
 
 
 +

 
+ + 

 + 

 

 

Thus if M is a m × n rectangular matrix with entries from 

C(Zt), 2 ≤ t < ∞; then we define M to be a MOD complex 

rectangular matrix. 

 

Now we proceed onto describe the MOD complex relational 

matrix associated with a MOD complex bipartite directed graph 

with entries from C(Zn).  

 

Example 2.14: Let G be the MOD complex bipartite directed 

graph G with entries from C(Z12) given by the following figure. 
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Figure 2.8 

 

 

 Let S be the related connection matrix which we choose to 

call as MOD relational matrix. 

 

c1 

c3 

c2 

c5 

c4 

c6 

c7 

c8 

c9 

4+iF 

d1 

d3 

d2 

d4 

d5 

d6 

3 

4 

3iF+2 

2+iF 

4+iF 

7+iF 

5+7iF 

3iF 

2 
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S =  

1 2 3 4 5 6

1

2 F

3

4 F

5 F

6 F

7 F

8 F F

9

d d d d d d

3 0 0 0 0 0C

C 0 0 4 i 0 0 0

C 0 4 0 0 0 0

C 0 0 0 2 i 0 0

C 0 3i 2 0 0 0 0

C 0 0 0 0 7 i 0

C 4 i 0 0 0 0 0

C 0 0 0 0 5 7i 3i

C 0 0 2 0 0 0

 
 

+ 
 
 

+ 
 +

 
+ 

 
+

 
+ 

 
 

 

 

This is the way the matrix S is obtained using the graph G. 

 

Example 2.15:  Let G1 be the MOD complex bipartite directed 

graph with edge weights from C(Z9) which is in the following 

figure. 

 

 

 

 

 

 

 

 

  

G1 = 

 

   

   

 

   

 

 

 

 

Figure 2.9 

c1 

c3 

c2 

c5 

c4 

c6 

c7 

4+3iF 

d1 

d3 

d4 

d2 

3 

2iF 

7+iF 

3iF 

1 
2iF 

iF 

1+iF 
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 The MOD connection or relational matrix associated with G1 

is as follows. 

 

 

 

1 2 3 4

1 F F

2 F

3

4 F F

5 F

6

7 F

D D D D

C 0 4 3i 7 i 0

C 0 2i 0 0

C 3 0 0 0

C .0 0 3i 2i

C 0 0 0 i

C 0 1 0 0

C 0 0 0 1 i

+ + 
 
 
 
 
 
 
 
 
 

+ 

 

 

This is the way one get the MOD relational matrix associated 

with the MOD directed complex bipartite graph G1 

 

 Next we proceed onto described the MOD operation on MOD 

complex relational matrices by some examples. 

 

Example 2.16: Let  

 

M = 

F

F

F

F

F

i 3 0 0

0 0 1 i 2

0 0 1 i 3

1 i 0 0 0

0 i 0 0

1 0 0 1

 
 

+ 
 +

 
+ 

 
 
  

 

 

be the MOD relational complex matrix which will also be known 

as MOD relational complex matrix operator [66] with entries 

from C(Z4). 

 

Let X = {(a1 a2 a3 … a6) / ai ∈ {0, 1}, 1 ≤ i ≤ 6} be the MOD 

initial state vectors of domain space and  
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Y = {(b1 b2 b3 b4) / bi ∈ {0, 1} be the range space of MOD 

initial state vectors associated with the matrix operator M. 

 

 Let x = (1 0 0 0 0 0) ∈ X to find the effect of x on M. 

 

  xM = (iF 3 0 0) = y1 

y1M
t
 = (0 0 0 3 + iF 3iF iF) = x1 

x1M = (2 + iF 1 0 iF) = y2 

y2M
t
 = (2 + 2iF 2iF 3iF + 3 1 + 3iF iF 2 + 2iF) = x2 

 

and so on.   

 

However we are sure after a finite number of iterations we 

will arrive at a MOD realized fixed point pair or a MOD realized 

limit cycle pair. 

 

x = (0 1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0   0   1+iF   2) = y1; 

y1M
t
 = (0    2iF   3+3iF  0  0  2) = x1; 

x1M = (2   0   1+iF  2) = y2; 

y2M
t
 = (2iF    2iF   3+3iF   2+2iF  0  2) = x2; 

x2M = (0   2iF   1+iF    2) = y3; 

y3M
t
 = (2iF  2iF  3+3iF  0  2  2) = x3; 

x3M = (0   0   1+iF   2) = y4; 

y4M
t
 = (0  2iF  3+3iF   0   0  2) = x4; 

x4M = (2   0   2iF+2   0) = y5; 

y5M
t
 = (2iF  0  2+2iF   2+2iF   0  2) = x5; 

x5M = (0   2iF   2+2iF   2) = y6; 

y6M
t
 = (2iF  0  2+2iF   0   2  2) = x6; 

x6M = (0   0   2+2iF  2) = y7; 

y7M
t
 = (0   0   0   0   0  2) = x7; 

x7M = (2  0   0   2) = y8; 

y8M
t
 = (2iF   0   2+2iF  2+2iF  0  0) = x8;  

x8M = (2   2iF    2+2iF   0) = y9; 

y9M
t
 = (0   0   2+2iF  2+2iF   2   2) = x9; 

x9M = (2  2iF   0  2) = y10; 

y10M
t
 = (0  0   0  2+2iF   2iF+2  0) = x10; 
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x10M = (0   2+2iF   0  0) = y11; 

y11M
t
 = (2+2iF   0  0  0  2iF+2  0) = x11   

 

and so on we are sure to arrive a MOD fixed point pair or a MOD 

limit cycle pair. 

 

Let x = (0 0 0 0 0 1) ∈ X, to find the effect of x on M. 

 

xM = (1 0 0 1) = y1 

y1M
t
 = (iF  2 iF + 3  1 + iF 0 2) = x1 

x1M = (1 + 2iF 3iF 1 + 3iF 2iF + 2) = y2 

y2M
t
 = (2iF + 2iF 2 1 + 3iF 3 + 3iF 1 3) = x2 

x2M = (1 2 + 3iF 3 + 2iF) = y3 

y3M
t
 = (2 + 2iF  0 1 + iF 1 + iF 3iF + 3 2iF) = x3 

 

and so on.  

 

We will arrive at a MOD fixed point pair or a MOD limit 

cycle pair. 

 

Let y = (1 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (iF  0 0 1 + iF 0 1) = x1; 

x1M = (2iF 3iF 0 1) = y1; 

y1M
t
 = (2 + iF  2 iF + 3  2iF + 2 1 + 2iF) = x2; 

x2M = (0 2 0 3iF + 1 1) = y2; 

y2M
t
 = (2 0 0 0  2iF 1) = x3; 

x3M = (2iF + 1 0 0 1) = y3; 

y3M
t
 = (2 + iF  2 3 + iF  3 + 3iF 0 2 + 2iF) = x4; 

x4M = (1 2+3iF 1 + 3iF 2) = y4; 

y4M
t
 = (2 + 2iF  2 3 + iF 1 + iF 2iF 3) = x5; 

x5M = (2iF + 3 1 + 3iF 1 + iF 2iF + 3) = y5; 

 

and so on. 

 

We are sure to get after a finite number of iterations either a 

MOD fixed point pair or a MOD limit cycle pair. 

 

Let y = (0 0 0 1) ∈ Y to find the effect of y on M. 
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yM
t
 = (0 2 iF + 3 0 0 1) = x1; 

x1M = (1 0 3iF + 1  2iF + 1) = y1; 

y1M
t
 = (iF  0 2 + 2iF 1 + iF 0 2 + 2iF) = x2; 

x2M = (iF + 2 3iF  2 + 2iF 2 + 2iF) = y2; 

y2M
t
 = (3 + 3iF 0 2 + 2iF  1 + 3iF 1 3iF) = x3 and so on. 

 

We are sure to arrive at a MOD resultant. 

 

We give get another example. 

 

Example 2.17: Let  

 

M  = 

F

F

0 i 0 0

1 0 0 0

0 0 2 0

0 0 0 1 i

2 0 0 0

 
 
 
 
 

+ 
  

 

 

be a MOD relational complex matrix using elements from C(Z3). 

 

X = {(a1 a2 a3 a4 a5) / ai ∈ {0, 1}; 1 ≤ i ≤ 5} and  

 

XS = {(a1 … a5) / ai ∈ C(Z3); 1 ≤ i ≤ 5} be the MOD domain 

space of initial state vectors or MOD complex state vectors 

respectively. 

 

Similarly let Y = {(a1 a2 a3 a4) / ai ∈ {0, 1}; 1 ≤ i ≤ 4} and  

 

YS = {(a1 a2 a3 a4) / ai ∈ C(Z3); 1 ≤ i ≤ 4} be the MOD range 

space of initial state vector and special state vectors respectively 

associated with M.  

 

Here we will use two types of MOD operations using M and 

will illustrate how the MOD resultant varies. 

 

Let x = (1 0 0 0 0) ∈ X, the effect of x on M. 

xM = (0 iF 0 0) = y1; 
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yM
t
 = (2 0 0 0 0) = x1;  

x1M = (0 2iF 0 0) = y2; 

y2M
t
 = (1 0 0 0 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD limit cycle pair given  by 

{(1 0 0 0 0), (0 iF 0 0)}. 

 

Let x = (0 1 0 0 0) ∈ X, to find the effect of x on M 

 

xM = (1 0 0 0) = y1; 

y1M
t
 = (0 1 0 0 2) = x1; 

x1M = (2 0 0 0) = y2; 

y2M
t
 = (0 2 0 0 1) = x2; 

x2M
t
 = (1 0 0 0) = y3 (= y1). 

 

Thus the MOD resultant is a MOD limit cycle pair given by  

    {(0 1 0 0 2), (1 0 0 0)}. 

 

Let x = (0 0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 2 0) = y1; 

y1M
t
 = (0 0 1 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0 0 1 0 0), (0 0 2 0)}. 

 

Let x = (0 0 0 1 0) ∈ X to find the effect of x on M. 

 

xM = (0 0 0 1 + iF) = y1; 

y1M
t
 = (0 0 0 2iF, 0) = x1; 

x1M = (0 0 0 2iF + 1) = y2; 

y2M
t
 = (0 0 0 2 0) = x2; 

x2M = (0 0 0 2 + iF) = y3; 

y3M
t
 = (0 0 0 iF 0) = x3; 

x3M = (0 0 0 iF + 2) = y4; 

y4M
t
 = (0 0 0 1 0)  = x4 (= x). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0 0 0 1 0), (0 0 0 1 + iF)}. 
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Let x = (0 0 0 0 1) ∈ X to find the effect of x on M. 

 

xM = (2 0 0 0) = y1; 

y1M
t
 = (0 2 0 0 1) = x1; 

x1M = (1 0 0 0) = y2; 

y2M
t
 = (0 1 0 0 2) = x2; 

x2M = (2 0 0 0) = y3; 

y3M
t
 = (0 2 0 0 1) = x3 (=x1). 

 

The MOD resultant is a MOD limit cycle pair given by  

{(0 2 0 0 1), (2 0 0 0)}. 

 

Let y = (1 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
  = (0 1 0 0 2) = x1; 

x1M = (2 0 0 0) = y1; 

y1M
t
 = (0 2 0 0 1) = x2; 

x2M = (1 0 0 0) = y2 (=y). 

 

Thus the MOD resultant is a MOD limit cycle given by  

{(0 2 0 0 1), (1 0 0 0)}. 

 

Let y = (0 1 0 0) ∈ X to find the effect of y on M. 

 

yM
t
 = (iF 0 0 0 0) = x1; 

x1M = (0 2 0 0) = y1; 

y1M
t
 = (2iF  0 0 0 0) = x2; 

x2M = (0 1 0 0) = y2 (= y). 

 

Thus the MOD resultant is MOD limit cycle pair given by {(iF 

0 0 0 0), (0 1 0 0)}. 

 

Let y = (0 0 1 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 2 0 0) = x1; 

x1M = (0 0 1 0) = y1 (= y1). 

Thus the MOD resultant is a MOD fixed pair given by  

{(0 0 2 0 0), (0 0 1 0)}. 
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Let y = (0 0 0 1) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0 0 0 1 + iF 0) = x1; 

x1M = (0 0 0 2iF) = y1; 

y1M
t
 = (0 0 0 2iF  + 1 0) = x2; 

x2M = (0 0 0 2) = y2; 

y2M
t
 = (0 0 0 2 + 2iF  0) = x3; 

x3M = (0 0 0 iF) = y3; 

y3M
t
 = (0 0 0 iF  + 2 0) = x4; 

x4M = (0 0 0 1) = y4 (= y). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0 0 0 iF + 2 0), (0 0 0 1)}.   

 

Now having seen how the MOD resultant for state vectors in 

X and Y behave we proceed onto work with yet another 

example. 

 

Example 2.18: Let  

 

M = 

F

0 0 1 4 0

1 0 0 0 0

2 i 0 0 0

 
 
 
  

 

 

be MOD relational matrix with entries from C(Z6). 

 

Let X = {(a1 a2 a3) / ai ∈ {0, 1}, 1 ≤ i ≤ 3} and  

 

XS = {(a1 a2 a3) / ai ∈ C(Z6), 1 ≤ i ≤ 3} be the MOD domain 

initial state vectors and MOD domain special initial state vectors 

respectively. 

 

Let Y = {(a1 a2 a3 a4 a5) / ai ∈ {0, 1}; 1 ≤ i ≤ 5} and  
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YS = {(a1 a2 … a5) / ai ∈ C(Z6); 1 ≤ i ≤ 5} be the MOD range 

initial state vectors and MOD range special initial state vectors 

respectively. 

 

Let x = (1 0 0) ∈ X to find the effect of x on M. 

 

xM = (0 0 1 4 0) = y1; 

y1M
t
 = (5 0 0) = x1; 

x1M = (0 0 5 2 0) = y2; 

y2M
t
 = (1 0 0) = x2 (= x). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(1 0 0), (0 0 5 2 0)}. 

 

Let x = (0 1 0) ∈ X to find the effect of x on M. 

 

xM = (1 0 0 0 0) = y; 

yM
t
 = (0 1 2) = x1; 

x1M = (5 2iF 0 0 0) = y1; 

y1M
t
 = (0 5 2) = x2 ; 

x2M = (3 2iF 0 0 0) = y2; 

y2M
t
 = (0 3 4) = x3; 

x3M = (5 4iF 0 0 0) = y3; 

y3M
t
 = (0 5 0) = x4  ; 

x4M = (5 0 0 0 0) = y4; 

y4M
t
 = (0 5 4) = x5; 

x5M = (1 4iF 0 0 0) = y5; 

y5M
t
 = (0 1 4) = x6 ;  

x6M = (3 4iF 0 0 0) = y6; 

y6M
t
 = (0 3 2) = x7; 

x7M = (1 2iF 0 0 0) = y7; 

y7M
t
 = (0 1 0) = x8 (= x). 

   

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0 1 0), (1 2iF 0 0 0)}. 

 

 

Let x = (0 0 1) ∈ X to find the effect of x on M. 

 



66 MOD  Relational Maps Models and MOD Natural … 

 

 

 

 

 

 

xM = (2, iF 0 0 0) = y1; 

y1M
t
 = (0 2 3) = x1; 

x1M = (2 3iF 0 0 0) = y2; 

y2M
t
 = (0 2 1) = x2; 

x2M = (4 iF 0 0 0) = y3; 

y3M
t
 = (0 4 1) = x3; 

x3M = (0 iF 0 0 0) = y4; 

y4M
t
 = (0 0 5) = x4;   

x4M = (4 5iF 0 0 0) = y5; 

y5M
t
 = (0 4 3) = x5; 

x5M = (4 3iF 0 0 0) = y6; 

y6M
t
 = (0 4 5) = x6 ; 

x6M = (2 5iF 0 0 0) = y7; 

y7M
t
 = (0 2 5) = x7; 

x7M = (0 5iF 0 0 0) = y8; 

y8M
t
 = (0 0 1) = x8 (= x). 

 

Thus the MOD resultant is again a MOD limit cycle pair 

given by {(0 0 1), (0 5iF 0 0 0)}. 

 

Let x = (2 0 4) ∈ XS
 
to find

 
the effect of x on M 

 

xM = (3 4iF 2 2 0) = y1; 

y1M
t
 = (4 3 2) = x1; 

x1M = (1 2iF 4 4 0) = y2; 

y2M
t
 = (2 1 0) = x2; 

x2M = (1 0 2 2 0) = y3; 

y3M
t
 = (4 2 2) = x3; 

x3M = (0 2iF 4 4 0) = y4; 

y4M
t
 = (2 0 4) = x4 (= x). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(2 0 4), (0 2iF 4 4 0)}. 

 

Let y = (4 0 0 2 0) ∈ YS to find the effect of y on M. 
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yM
t
 = (2 4 2) = x1; 

x1M = (2 2iF 2 2 0) = y1; 

y1M
t
 = (4 2 2) = x2; 

x2M = (0 2iF 0 0 0) = y2; 

y2M
t
 = (0 0 4) = x3; 

x3M = (2 4iF 0 0 0) = y3; 

y3M
t
 = (0 2 0) = x4; 

x4M = (2 0 0 0 0) = y4; 

y4M
t
 = (0 2 4) = x5; 

x5M = (4 4iF 0 0 0) = y5; 

y5M
t
 = (0 4 4) = x6; 

x6M = (0 4iF 0 0 0) = y6; 

y6M
t
 = (0 0 4) = x7 (= x3). 

 

Thus the MOD resultant is a MOD limit cycle pair given by  

{(0 0 4), (2 4iF 0 0 0)}. 

 

In this way one can find the MOD resultants in case of MOD 

Complex Relational Maps model. 

 

Next we proceed onto describe the MOD Neutrosophic 

Relational Maps model. 

 

We first describe the MOD neutrosophic directed bipartite 

graph and then MOD neutrosophic relational (rectangular matrix) 

[66]. 

 

Example 2.19: Let G be a bipartite directed graph.  

 

The edge weight of G are taken from 〈Z11 ∪ I〉. 
 

 We call G as the MOD directed neutrosophic bipartite graph 

or MOD neutrosophic bipartite directed graph which is described 

in the following figure; 
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Figure 2.10 

 

Example 2.20: Let H be a MOD neutrosophic bipartite graph 

with edge weights from 〈Z6 ∪ I〉, which is given in the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 

 

Example 2.21: Let  

v1 

v2 

v3 

v4 

v5 

w1 

w1 

w3 

w2 

10+I 

9I 
8I 

3I 
6 

8 

4I+7 

5I+1 
w1 

w2 

w3 

w4 

w5 

w6 

w7 

u1 

u2 

u3 

u4 

u5 

1 
1+I 

5+5I 

3 

2I 3I+4 

5 

2+4I 

3+3I 
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M = 

0 3I 4 0 4I 6I

4 0 3I 2 0

4 I 2 0 0 2 5I

0 0 1 2 3I 0

1 0 0 0 00

0 2 1 I 0

5 0 0 0 0

+ 
 
 
 + +

 
+ 

 
 
 
 
 

 

 

is a MOD neutrosophic relational matrix with entries from  

〈Z7 ∪ I〉.  
 

Now we describe some operations by an example or two for 

if in the place of complex modulo integers C(Zn) we replace  

〈Zn ∪ I〉 we get MOD Neutrosophic Relational Maps model.  

 

Hence the reader is left with the task of defining, 

developing and describing them. 

 

Example 2.22: Let  

 

B = 

0 3 2 0

1 0 0 0

0 0 0 I

0 0 0 0

4 0 0 0

0 2 0 0

0 0 3 0

 
 
 
 
 
 
 
 
 
 
 

 

 

be the MOD neutrosophic relational matrix with entries from 〈Z6 

∪ I〉.  
 

Let X = {(x1 x2 … x7) / xi ∈ {0, 1}; 1 ≤ i ≤ 7} and  
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Y = {(y1 y2 y3 y4) / yi ∈ {0, 1}; 1 ≤ i ≤ 4} be the MOD 

instantaneous state vectors associated with B. 

 

Let x = (1 0 0 0 0 0 0) ∈ X to find the effect of x on B. 

 

xB = (0 3 2 0) = y1; 

y1B
t
 = (1 0 0 0 0 0 0) = (x1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(1 0 0 0 0 0 0), (0 3 2 0)}. 

 

Let x = (0 1 0 0 0 0 0) ∈ X to find the effect of x on B. 

 

xB = (1 0 0 0) = y1; 

y1B
t
 = (0 1 0 0 4 0 0) = x1; 

x1B = (5 0 0 0) = y2; 

y2B
t
 = (0 5 0 0 2 0 0) = x2; 

x2B = (3 0 0 0) = y3; 

y3B
t
 = (0 3 0 0 0 0 0) = x3; 

x3B = (3 0 0 0) = y4 (= y3); 

y4B
t
 = (0 3 0 0 0 0 0) = x4 (= x3). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 3 0 0 0 0 0), (3 0 0 0)}. 

 

Let x = (0 0 1 0 0 0 0) ∈ X. 

 

xB = (0 0 0 I) = y1; 

y1B
t
 = (0 0 I 0 0 0 0) = x1; 

x1B = (0 0 0 I) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

  {(0 0 0 I), (0 0 I 0 0 0 0)}. 

 

Let x = (0 0 0 1 0 0 0) ∈ X to find the effect of x on B. 

 

xB = (0 0 0 0) = y1; 

y1B
t
 = (0 0 0 0 0 0 0) = x1. 
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Thus the MOD resultant is a MOD fixed point pair given  by 

{(0 0 0 0) (0 0 0 0 0 0 0)}. 

 

Let x = (0 0 0 0 1 0 0) ∈ X, to find the effect of x on B . 

 

xB = (4 0 0 0) = y1; 

y1B
t
 = (0 4 0 0 4 0 0) = x1; 

x1B = (2 0 0 0) = y2; 

y2B
t
 = (0 2 0 0 2 0 0) = x2; 

x2B = (4 0 0 0) = y3 (= y1). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0 4 0 0 4 0 0), (4 0 0 0)}. 

 

Let x = (0 0 0 0 0 1 0) ∈ X, to find the effect of x on B. 

 

xB = (0 2 0 0) = y1; 

yB
t
 = (4 0 0 0 0 4 0) = x1; 

x1B = (0 2 2 0) = y2; 

y2B
t
 = (4 0 0 0 0 4 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(4 0 0 0 0 4 0), (0 2 2 0)}. 

 

Let x = (0 0 0 0 0 0 1) ∈ X, to find the effect of x on B. 

 

xB = (0 0 3 0) = y1; 

y1B
t
 = (0 0 0 0  0 0 3) = x1; 

x1B = (0 0 3 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 0 0 3), (0 0 3 0)}. 

 

Let y = (1 0 0 0) ∈ Y, to find the effect of y on B. 

 

yB
t
 = (0 1 0 0 4 0 0) = x1; 

x1B = (5 0 0 0) = y1; 

y1B
t
 = (0 5 0 0 2 0 0) = x2; 

x2B = (3 0 0 0) = y2; 
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y2B
t
 = (0 3 0 0 0 0 0) = x3; 

x3B = (3 0 0 0) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 3, 0, 0, 0, 0, 0), (3, 0, 0, 0)}. 

 

Let y = (0, 1, 0, 0) ∈ Y; to find the effect of y on B 

 

yB
t
 = (3, 0, 0, 0, 0, 2, 0) = x1; 

x1B = (0, 1, 0, 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by {(3, 0, 0, 0, 0, 2, 0), (0, 1, 0, 0)}. 

 

Let y = (0, 0, 1, 0) ∈ Y to find the effect of y on B. 

 

yBt = (2, 0, 0, 0, 0, 0, 3) = x1; 

x1B = (0, 0, 1, 0) = y1 (= y). 

 

Thus the MOD resultant in this case also is a MOD special 

classical fixed point pair give by  

{(2, 0, 0, 0, 0, 0, 3), (0, 0, 1, 0)}. 

 

Y = (0 0 0 1) ∈ Y, to find the effect of y on B 

 

yB
t
 = (0 0 I 0 0 0 0) = x1; 

x1B = (0 0 0 I) = y1; 

y1B
t
 = (0 0 I 0 0 0 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 I 0 0 0 0), (0 0 0 I)}. 

 

Let x = (1 0 0 0 0 1 0) ∈ X to find the effect of x on B. 

 

xB = (0 5 2 0) = y1; 

y1B
t
 = (1 0 0 0 0 4 0) = x1; 

x1B = (0 5 2 0) = y2 (= y1). 

 



MOD Relational Maps Models 73 

 

 

 

 

 

 

Hence the MOD resultant is a MOD fixed point pair given by 

{(1 0 0 0 0 4 0), (0 5 2 0)}. 

 

Let x = (0 1 0 0 1 0 0) ∈ X, to find the effect of x on B. 

 

xB = (5 0 0 0) = y1; 

y1B
t
 = (0 5 0 0 2 0 0) = x1; 

x1B = (1 0 0 0) = y2; 

y2B
t 
= (0 1 0 0 4 0 0) = x2; 

x2B = (5 0 0 0) = y3 (= y1). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(5 0 0 0), (0 5 0 0 2 0 0)}. 

 

Let y = (0 1 0 1) ∈ Y, to find the effect of y on B. 

 

yB
t
 = (3 0 I 0 0 2 0) = x1; 

x1B = (0 1 0 I) = y1; 

y1B
t
 = (3 0 I 0 0 2 0) = x2 (= x1). 

 

Thus the MOD resultant is MOD fixed point pair given by {(3 

0 I 0 0 2 0), (0 1 0 I)}. 

 

This is the way one can work with MOD Neutrosophic 

Relational Maps model. 

 

Example 2.23: Let  

 

V = 

3 0 1 0 0 1

0 1 0 0 I 0

0 0 0 I 0 0

 
 
 
  

 

 

be the MOD neutrosophic relational matrix with entries from 〈Z4 

∪ I〉.  
 

X = {(a1 a2 a3) / ai ∈ {0, 1, I}; 1 ≤ i ≤ 3} and  
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XS = {(a1 a2 a3) / ai ∈ 〈Z4 ∪ I〉; 1 ≤ i ≤ 3} be the MOD 

domain space and MOD special domain space of initial state 

vector respectively associated with V. 

 

 Let Y = {(a1 a2 … a6) / ai ∈ {0, 1, I}; 1 ≤ i ≤ 6} and  

YS = {(a1 a2 … a6) / ai ∈ 〈Z4 ∪ I〉, 1 ≤ i ≤ 6} be the MOD range 

space of initial state vectors and special initial state vectors 

respectively associated with V. 

 

Let x = (1 0 0) ∈ X to find the effect of x on V. 

 

xV = (3 0 1 0 0 1) = y1; 

y1V
t
 = (3 0 0) = x1; 

x1V = (1 0 3 0 0 3) = y2; 

y2V
t
 = (1 0 0) = x2 (= x). 

 

Thus the MOD resultant is a MOD limit cycle pair given  by 

{(1 0 0), (1 0 3 0 0 3)}. 

 

Let y = (0 I 0 0 0 0) ∈ Y, to find the effect of y on V. 

 

yV
t
 = (0 I 0) = x1; 

x1V = (0 I 0 0 I 0) = y1; 

y1V
t
 = (0 2I 0) = x2; 

x2V = (0 2I 0 0 2I 0) = y2; 

y2V
t
 = (0 0 0) = x3; 

x3V = (0 0 0 0 0 0) =  y3. 

 

The MOD resultant is a MOD fixed point pair given by  

{(0 0 0), (0 0 0 0 0 0)}. 

 

Let x = (0 0 I) ∈ X to find the effect of  x on V. 

 

xV = (0 0 0 I 0 0) = y1; 

y1V
t
 = (0 0 I) = x1 (=x). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by {(0 0 I), (0 0 0 I 0 0)}. 
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Let x = (3 + 2I 0 0) ∈ XS to find the effect of x on V. 

 

xV = (1 + 2I 0 3 + 2I 0 0 3 + 2I) = y1;
 

y1V
t
 = (1 + 2I, 0 0) = x1; 

x1V = (3 + 2I, 0 1 + 2I 0 0 1 + 2I) = y2; 

y2V
t
 = (2 + 2I 0 0) = x2; 

x2V = (2 + 2I, 0 2 + 2I 0 0 2 + 2I) = y3; 

y3V = (2 + 2I 0  0) = x3 (=x3). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(2 + 2I 0 0), (2 + 2I 0 2 + 2I 0 0 2 + 2I)}. 

 

Let y = (0 0 0 3 + I 0 0) ∈ YS to find the effect of y on V. 

 

yV
t
 = (0 0 0) = x1; 

x1V = (0 0 0 0 0 0). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0), (0 0 0 0 0 0)}. 

 

Hence we can find the MOD resultant for any initial state 

vector in X or XS or Y or YS. 

 

This paves way for the description of the MOD Neutrosophic 

Relational Maps (MODNRMs) model. Let P be a problem in 

hand. The expert wishes to work with a domain space and range 

space of nodes. The edge weight of the MOD directed bipartite 

graph G takes its edge weight values from  

〈Zn ∪ I〉; that G is the MOD neutrosophic directed bipartite 

graph.  

 

Further if M is the connection matrix associated with G, 

then M is the MOD Neutrosophic Relational matrix and M is 

also known as the dynamical system of the MOD Neutrosophic 

Relational Maps model.  

 

This model also functions in a similar way as that of the 

MOD Relational Maps model or MOD Complex Relational Maps 

model. 
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Next we proceed onto describe and develop the notion of 

MOD Dual Number Relational Maps (MODDNRM) model. 

 

To this end one needs the notion of MOD dual number 

directed bipartite graph which takes edge weights from 〈Zn ∪ I〉; 
g

2
 = 0. This will  be illustrated by examples. 

 

Example 2.24: Let G be a MOD directed bipartite graph with 

edge weights from 〈Z10 ∪ g〉 = {a + bg / a, b ∈ Z10, g
2
 = 0}. 

 

We call G as the MOD dual number directed bipartite graph 

which is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 
 

Example 2.25: Let G1 be the MOD dual number bipartite 

directed graph with edge weights from 〈Z5 ∪ g〉 given by the 

following figure. 
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Figure 2.13 

 

Next we give examples of MOD dual number 

rectangular matrix or MOD dual number relational matrix 

operator [66]. 

 

Example 2.26: Let  

 

M = 

2 g g 0 3 4g 0

0 2 g 5g 0 0 1 g

1 2 0 2g 0 1

5g 1 0 2 0 3 0

4g 3 g 0 g 5 0 0

0 0 5 4g 0 2 3g 3g

1 2 3g g 0 0

5 g 0 0 1 g 2 g 0

+ 
 

+ + 
 
 

+ 
 + +

 
+ + 

 
 

+ + +  

 

 

2+2g 

3 

v1 
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v4 

v5 
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w5 
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be  the MOD dual number matrix operator or MOD dual number 

relational matrix operator with entries from 〈Z6 ∪ g〉. 
 

 

Example 2.27: Let  P =  

 

 

2g 5 0 8g g 11g 0 0 2

0 4 4g 0 0 2g 1 g 0

g 0 5g 10 12 0 0 11g 1

4g 2g 0 0 5 10g 4 0

+ + 
 

+ + 
 + +

 
+ 

 

 

 

be the MOD dual number relational matrix operator with entries 

from 〈Z12 ∪ g〉. 
 

 Now having seen examples of MOD dual number directed 

bipartite graphs and MOD dual number relational (rectangular) 

matrix operators.  

 

We now proceed onto describe the means of getting MOD 

dual number relational matrix (operators) from the MOD dual 

number directed  bipartite graph which is nothing but the 

adjacency matrix associated with the graph. 

 

Example 2.28: Let G be the MOD dual number directed  

bipartite graph with entries from 〈Z8 ∪ g〉. 
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              G =  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 

 

 The MOD dual number relational matrix M associated with 

G is as follows. 

 

 

M = 

1 2 3 4 5 6

1

2

3

4

w w w w w w

v 0 0 3g 4 0 0 0

v 7 0 0 2 0 0
.

v 0 2 2 g 0 4g 7 0

v 0 0 0 5g 0 3 g

+ 
 
 
 + +

 
+ 

 

 

 

Example 2.29: Let H be the MOD dual number directed bipartite 

graph with edge weights from 〈Z12 ∪ g〉.  
 

The figure of H is as follows. 
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Figure 2.15 

 

 

 

 Let N be the MOD dual number relational matrix associated 

with the MOD dual number bipartite directed graph H. 
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N = 

1 2 3 4 5 6

1

2

3

4

5

6

7

8

w w w w w w

10 g 0 0 0 0 0v

v 2 0 0 10g 3 0 0

v 8g 0 0 0 0 0

v 0 5g 3 0 0 0 8 9g
.

v 0 3 0 0 0 0

v 0 0 4g 0 0 0

v 0 0 0 4g 0 0

v 0 0 3g 1 0 8 9g 0

+ 
 

+ 
 
 

+ + 
 
 
 
 
 

+ +  

 

 

 

Now we can describe the MOD Dual Number Relational 

Maps (MOD DNRMs) model.   

 

Let P be a problem in hand.  Suppose expert wishes to work 

with the problem using the MOD Dual Number Relational Maps 

model with entries from  

〈Zn ∪ g〉 = {a + bg / a, b ∈ Zn, g
2
 = 0}.  

 

Let G the MOD dual number bipartite directed graph with 

edge weights from 〈Zn ∪ g〉 where the expert has D1 … Dt to be 

the MOD domain space and R1, …, RS the MOD range space. 

 

G is built using D1 ,…, Dt and R1 ,…, RS. 

 

Let M be the MOD dual number relational (connection) 

matrix associated with G.  

 

Then M is called the MOD Dual Number dynamical system 

of the MOD Dual Number Relational Maps model. 

 

This will be represented by the following example. 

 

Example 2.30: Let G be the MOD Dual Number Relational 

Maps model given by the following figure with edge weights 

from 〈Z10 ∪ g〉. 
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Let C1, C2, ..., C5 and P1, P2, …, P6 be the concepts 

associated with the domain and range spaces respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 

 

Let M be the MOD dual number relational matrix of the 

graph G which is as follows; 

 

 

M = 

1 2 3 4 5 6

1

2

3

4

5

P P P P P P

C 0 5 g 0 0 0 0

C 1 0 0 0 0 0

C 0 0 2g 0 0 0

C 0 0 0 0 g 4

C 0 0 0 1 0 0

+ 
 
 
 
 
 
  

 

 

Let X = {(x1, x2, x3, x4, x5) / xi ∈ {0, 1, g}; 1 ≤ i ≤ 5} and  

 

XS = {(x1, x2, …, x5) / xi ∈ 〈Z10 ∪ g〉, 1 ≤ i ≤ 5} be the MOD 

domain space of initial and special state vectors respectively. 

 

P1 

P2 

P3 

P4 

P5 

P6 

C1 

C2 

C3 

C4 

C5 

5+g 1 

2g 

1 
g 

4 

G = 
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Let R = {(y1, y2, …, y6) / yi ∈ {0, 1, g}, 1 ≤ i ≤ 6} and  

 

RS = {(y1 y2 … y6) / yi ∈ 〈Z10 ∪ g〉; 1 ≤ i ≤ 6} be the MOD 

range space of initial and special state vectors respectively. 

 

Let x = (1, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 5 + g, 0, 0, 0, 0) = y1; 

y1M
t
 = (5, 0, 0, 0, 0) = x1; 

x1M = (0, 5g + 5, 0, 0, 0, 0) = y2; 

y2M
t
 = (5, 0, 0, 0, 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(5, 0, 0, 0, 0), (0, 5+5g, 0, 0, 0, 0)}. 

 

Let x = (0, 0, 1, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (0, 0, 2g, 0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 0) = x1; 

x1M = (0, 0, 0, 0, 0, 0).  

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)}. 

 

Let x = (0, 0, 0, 0, 1) ∈ X, to find the effect of x on M. 

 

xM = (0, 0, 0, 1, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 1, 0) = x1 (= x). 

 

Thus the MOD resultant is MOD special classical fixed point 

pair {(0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 0)}. 

 

Let y = (1, 0, 0, 0, 0, 0) ∈ Y; 

 

yM
t
 = (0, 1, 0, 0, 0) = x1; 

x1M = (1, 0, 0, 0, 0, 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 0)}. 
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Let y = (0, 0, 0, 1, 0, 0) ∈  Y, the effect of y on M. 

 

yM
t
 = (0, 0, 0, 0, 1) = x1; 

x1M = (0, 0, 0, 1, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 1) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0)}. 

 

Let y = (0, 0, 0, g, 0, 0) ∈ M. 

 

yM
t
 = (0, 0, 0, 0, g) = x1; 

x1M = (0, 0, 0, g, 0, 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(0, 0, 0, 0, g), (0, 0, 0, g, 0, 0)}. 

 

This is the way one can work with MOD Dual Number 

Relational Maps model.  

 

The reader is left with task of giving examples of this 

model. 

 

Next we proceed onto describe develop and define the 

notion of MOD Special Dual Like Number Relational Maps 

model (MOD SDLNRM). 

 

We give examples of the new notion of MOD special dual 

like number directed graph and matrices. 

 

Example 2.31: Let  G be the MOD directed bipartite graph with 

edge weights from 〈Z12 ∪ h〉 = {a + bh / a, b ∈ Z12, h
2
 = h} then 

we call G to be the MOD special dual like number directed 

bipartite graph given by the following figure. 
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Figure 2.17 

 

Example 2.32: Let H be the MOD special dual like number 

directed bipartite graph given by the following figure with edge 

weights from 〈Z4 ∪ h〉 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 
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We just give examples of MOD special dual like number 

relational matrices (rectangular matrices). [66]. 

 

Example 2.33: Let  

 

M = 

3h 0 4h 3

0 3 h 0

2 0 4h

0 1 h 0

4 h 0 3

0 4h 0

6h 0 2

+ 
 

+ 
 
 

+ 
 +

 
 
 
 

 

 

be the MOD special dual like number relational matrix with 

entries from 〈Z8 ∪ h〉. 
 

Example 2.34: Let  

 

P = 

0 4 h 2h 1 0 3h 6 9

3h 1 0 3 2h 0 1 h 3

0 4h 8 0 0 3h 1 0 0

+ + 
 

+ + 
 + + 

 

 

be the MOD special dual like number relational matrix with 

entries from 〈Z10 ∪ h〉.   
 

We now describe the MOD special dual like number 

Relational Maps model. 

 

Let P be the problem at hand. Suppose an expert feels that 

the nodes associated with P forms two disjoint classes and 

wishes to work with MOD special dual like number Relational 

Maps model with entries of the MOD dynamical system from 〈Zn 

∪ h〉.  
 

Let M be the associated MOD special dual like number 

matrix with entries from 〈Zn ∪ h〉.  
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Then this model function analogous to MOD Dual Number 

Relational Maps model or MOD Relational Maps model or MOD 

Complex Relational Maps model and so on. 

 

Such is illustrated by an example. 

 

Example 2.35:  Let P be a problem G be the MOD special dual 

like number bipartite directed graph G with entries from  

〈Z4 ∪ h〉 which is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 

 

Let M be the MOD special dual like number matrix 

associated with G; 

 

M = 

1 2 3

1

2

3

4

5

D D D

C h 0 0

C 0 1 h 0

C .0 1 0

C 0 0 2

C 0 0 3

 
 

+ 
 
 
 
  

 

 

C1 

C2 

C3 

C4 

C5 

D1 

D2 

D3 

h 

1+h 
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2 
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Let X = {(a1 a2 a3 a4 a5) / ai ∈ {0, 1, h}; 1 ≤ i ≤ 5} and  

Y = {(b1 b2 b3) / bi ∈ {0, 1, h}; 1 ≤ i ≤ 3} be the MOD initial 

state vectors of domain and range space respectively associated 

with M 

 

Xs = {(a1 a2 a3 a4 a5) / ai ∈ 〈Z4 ∪ h〉; 1 ≤ i ≤ 5} and  

 

YS = {(b1 b2 b3) / bi ∈ 〈Z4 ∪ h〉; 1 ≤ i ≤ 3} be the MOD 

special instantaneous state vectors of the domain and range 

space respectively associated with M. 

 

Let x = (1 0 0 0 0) ∈ X to find the effect of x on M. 

 

xM = (h 0 0) = y1; 

y1M
t
 = (h 0 0 0 0) = x1; 

x1M = (h 0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(h 0 0 0 0), (h 0 0)}. 

 

Let x = (0 0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 1 0) = y1; 

y1M
t
 = (0 1 + h 1 0 0) = x1; 

x1M = (0 2 + h 0) = y2; 

y2M
t
 = (0 2 2 + h 0 0) = x2; 

x2M = (0 3h 0) = y3; 

y3M
t
 = (0 2h 3h 0 0) = x3; 

x3M = (0 3h 0) = y4 (=y3). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 2h 3h 0 0), (0 3h 0)}. 

 

Let x = (0 0 0 0) ∈ X; 

 

xM = (0 0 3) = y1; 

y1M
t
 =  (0 0 0 2 1) = x1; 

x1M = (0 0 3) = y2 (= y1). 
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Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 2 1), (0 0 3)}. 

 

Let y = (0, 1, 0) ∈ Y, to find the effect y on M 

 

yM
t
 = (0, 1 + h, 1, 0, 0) = x1; 

x1M = (0, 2 + 3h, 0) = y1; 

x2M = (0, h, 0) = y2; 

y2M
t
 = (0, 2h, h, 0, 0) = x3; 

x3M = (0, h, 0) = y3 (=y2). 

 

Thus the MOD resultant can be MOD fixed point pair or a 

MOD limit cycle pair. 

 

We now consider 

 

x = (3 + h, 0, 0, 0, 0) ∈  XS
   
to find the effect of x on M. 

 

xM = (0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 0) = x1. 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 0, 0, 0, 0), (0, 0, 0)}. 

 

Let x = (0, 0, 0, 2 + 2h, 0) ∈ XS  to find the x on M. 

 

xM = (0, 0, 0) = y1; 

y1M
t
 = (9, 0, 0, 0, 0). 

 

 Thus the MOD resultant is a MOD fixed point pair  

{(0, 0, 0, 0, 0), (0, 0, 0)}. 

 

Let y1 = (0, 0, 2 + h) ∈ YS, the effect of y1 on M 

 

y1M
t
 = (0, 0, 0, 2h, 2 + 3h) = x1; 

x1M = (0, 0, 2 + h) = y2 (=y1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0, 0, 0, 2h, 2 + 3h), (0, 0, 2 + h)}. 
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Interested reader can work with MOD Special Dual like 

number Relational Maps models. 

 

Let us now describe the MOD special quasi dual number 

Relational Maps model built using  

〈Zn ∪ k〉 = {a + bk/b, ∈ Zn, k
2
 = (n – 1)k}. 

 

We just first give some examples of MOD special quasi dual 

number directed bipartite graphs. 

 

Example 2.36: Let G be the MOD bipartite directed graph with 

edge weights from 〈Z10 ∪ k〉 given in the following figure. 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20 

 

Example 2.37: Let H be a MOD special quasi dual number 

directed bipartite graph with entries from  

〈Z5 ∪ k〉 = {a+bk / a, b ∈ Z5, k
2
 = 4k} given by the following 

figure. 

v1 
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Figure 2.21 

 

 Next we proceed onto give examples of MOD special quasi 

dual number relational (rectangular) matrices [66]. 

 

Example 2.38: Let  

 

M = 

8 3k 0 4k 2k 9 3

0 5k 0 0 1 k

2 1 4k 2 k 5 0

0 0 1 5k 0 k 4

1 2 3 4 5

5k 0 0 k 2k

0 5k 7 1 k 0 10

4k 2 10k 1 0 3k 1 0

+ + 
 

+ 
 + +

 
+ + 

 
 
 
 

+ +
 

+ + +  

 

 

be the MOD special quasi dual number relational matrix with 

entries from 〈Z11 ∪ k〉. 

v1 

v2 

v3 

v4 

w1 

w2 

w3 

w4 

w5 

w6 

w7 

3+2k 

4+3k 

4 

2k 

1+k 

3 
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Example 2.39: Let  

 

P = 

3 2k 0 2 7k 11k 4 1 0

0 2k 0 1 k 0 0 5k 1

4 k 0 2k 1 0 2k 4 k 0

0 4 k 0 5 0 0 6

+ + 
 

+ + 
 + + +

 
+ 

 

 

be the MOD special quasi dual number rectangular matrix with 

entries from 〈Z12 ∪ k〉. 
 

These matrices serve as MOD relational operators [66]. 

These also are useful in  building the MOD special quasi dual 

number Relational Maps model.  

 

 We first just indicate how these MOD relational matrices are 

got from the MOD special quasi dual number directed bipartite 

graph with edge weights from MOD special quasi dual numbers 

〈Zn ∪ k〉. 
 

Example 2.40: Let G be the MOD special quasi dual number 

directed bipartite graph given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 
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The MOD special quasi dual number connection matrix or 

MOD relational special quasi dual number matrix associated with 

G is as follows. 

 

 

 

M = 

1 2 3 4 5 6

1

2

3

4

5

D D D D D D

C 0 0 k 0 0 0

C 0 2k 0 1 2k 0 0

C .5 0 0 0 0 0

C 0 0 1 k 0 0 0

C 0 0 0 0 3k 2 4

 
 

+ 
 
 

+ 
 + 

 

 

 

 

 

M the MOD special quasi dual number relational matrix will 

serve as the MOD special quasi dual number Relational Maps 

model dynamical system. 

 

 

Example 2.41: Let P be a problem in hand and the expert 

wishes to work with the  problem using MOD Relational Maps 

model.  

 

Infact the edge weight of the MOD directed bipartite graph is 

taken from  

 

〈Z6 ∪ k〉 = {a + bk / a, b ∈ Z6, k
2
 = 5k}.  
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Let G be MOD special quasi dual number bipartite directed 

graph given by the following figure with edge weights from  

〈Z6 ∪ k〉. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23 

 

 

The MOD special quasi dual number relational matrix M 

associated with the bipartite directed graph G is as follows. 

 

M = 

1 2 3 4

1

2

3

4

5

6

C C C C

4 0 0 0D

D 0 0 2k 0

D 0 3k 0 0

D 0 0 4 2k 0

D 3 0 0 0

D 0 0 0 3

 
 
 
 
 

+ 
 
 
  

 

 

Let X = {(a1 a2 a3 a4 a5 a6) / ai ∈ {0, 1, k}; 1 ≤ i ≤ 6} and  
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Y = {(a1 a2 a3 a4) / ai ∈ {0, 1, k}; 1 ≤ i ≤ 4} be the MOD 

initial state domain and range space of vectors associated with 

respectively. 

 

Let XS = {(a1, …, a6) / ai ∈ 〈Z6 ∪ k〉; 1 ≤ i ≤ 6} and  

 

YS = {(d1, d2, d3, d4) / di ∈ 〈Z6 ∪ k〉; 1 ≤ i ≤ 4} be the MOD 

special instantaneous state vectors of domain and range space 

respectively of M. 

 

Let x = (1, 0, 0, 0, 0, 0) ∈ X, to find the effect of x on M. 

 

xM = (4, 0, 0, 0) = y1; 

y1M
t
 = (4, 0, 0, 0, 0, 0) = x1; 

x1M = (4, 0, 0, 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(4, 0, 0, 0, 0, 0), (4, 0, 0, 0)}. 

 

 Let x = (0, 1, 0, 0, 0, 0)  ∈ X to find the effect of x on M. 

 

xM = (0, 0, 2k, 0) = y1; 

y1M
t
 = (0, 2k, 0, 4k, 0, 0) = x1; 

xM = (0, 0, 4k, 0) = y2;   

y2M
t
 = (0, 4k, 0, 2k, 0, 0) = x2; 

x2M = (0, 0, 2k, 0) = y3 (= y1). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0, 0, 2k, 0), (0, 2k, 0, 4k, 0, 0)} or {(0, 0, 4k, 0), (0, 4k, 0, 2k, 

0, 0)}. 

 

Let x = (0, 0, 1, 0, 0, 0) ∈ X to find the effect of x on M. 

 

xM = (0, 3k, 0, 0) = y1; 

y1M
t
 = (0, 0, 3k, 0, 0, 0) = x1 

x1M
t
 = (0, 3k, 0, 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 3k 0 0 0), (0 3k 0 0)}. 
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Let x = (0, 0, 0, 1, 0, 0) ∈ X to find the effect of x on M. 

 

xM = (0, 0, 4+2k, 0) = y1; 

y1M
t
 = (0,  0, 4+2k, 0) = x1; 

x1M = (0, 0, 4, 0) = y2; 

y2M
t
 = (0, 2k, 0, 4+2k, 0, 0) = x2; 

x2M = (0, 0, 4k+4, 0) = y3; 

y3M
t
 = (0, 0, 0, 4+4k, 0, 0) = x3; 

x3M = (0, 0, 4+4k, 0) = y4 (= y3). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 0, 0, 4 + 4k, 0, 0), (0, 0, 4 + 4k, 0)}. 

 

Let x = (0, 0, 0, 0, 1, 0) ∈ X to find the effect of x on M. 

 

xM = (3, 0, 0, 0) = y1; 

y1M
t
 = (0, 0, 0, 0, 3, 0) = x1; 

x1M = (3, 0, 0, 0) = y2 (= y1). 

 

Thus the MOD resultant in this case is also a MOD fixed 

point pair given by {(0, 0, 0, 0, 3, 0), (3, 0, 0, 0)}. 

 

Let x = (0, 0, 0, 0, 0, 1) ∈ X, to find the effect of x on M. 

 

xM = (0, 0, 0, 3) = y1; 

y1M
t
 = (0, 0, 0, 0, 0, 3) = x1; 

x1M = (0, 0, 0, 3) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(0, 0, 0, 0, 0, 3), (0, 0, 0, 3)}. 

 

Let y = (1, 0, 0, 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (4, 0, 0, 0, 3, 0) = x1 

x1M = (1, 0, 0, 0) = y (= y1). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given  by {(1, 0, 0, 0), (4, 0, 0, 0, 3, 0)}. 
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Let y = (0 1 0 0) ∈ Y to find the effect of y on M 

 

yM
t
 = (0 0 3k 0 0 0) = x1; 

x1M = (0 3k 0 0) = y1; 

y1M
t
 = (0 0 3k 0 0 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 3k 0 0 0 0), (0 3 k 0 0)}. 

 

Let y = (0, 0, 1, 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0, 2k, 0, 4+2k, 0, 0) = x1; 

x1M = (0, 0, 4+2k, 0) = y1; 

y1M
t
 = (0, 4k, 0, 4, 0, 0) = x2; 

x2M = (0, 0, 4, 0) = y2; 

y2M
t
 = (0, 2k, 0, 4+2k, 0, 0) = x3 (= x1). 

 

Thus the MOD resultant is a MOD limit cycle pair. 

 

Let x = (0, 2k, 0, 0, 0, k) ∈ XS to find the effect of x on M. 

 

xM = (0, 0, 4k, 3k) = y1; 

y1M
t
 = (0, 4k, 0, 0, 0, 3k) = x1; 

x1M = (0, 0, 4k, 3k) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0, 4k, 0, 0, 0, 3k), (0, 0, 4k, 3k)} 

 

Let y = (k, 0, 3k, 0) ∈ YS to find the effect of y on M 

 

yM
t
 = (4k, 0, 0, 0, 0, 0) = x1; 

x1M = (4k, 0, 0, 0) = y1; 

y1M
t
 = (4k, 0, 0, 0, 0, 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(4k, 0, 0, 0, 0, 0), (4k, 0, 0, 0)}. 
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Thus the interested reader can work with any other MOD 

initial state vectors from X or XS or Y or YS. 

 

Here we give this task as it is a matter of routine and leave it 

to the reader. We have seen we can have six such models each 

has a special feature of its own.  
 



 
 
 
 
 

 

 

 
Chapter Three 
 
 

 
 
MOD NATURAL NEUTROSOPHIC 

RELATIONAL MAPS MODEL AND THEIR 

PROPERTIES  
 
 
 

In this chapter  we for the first time introduce the new 

notion of MOD natural neutrosophic Relational Maps model. 

The concept of MOD natural neutrosophic numbers have been 

studied and analysed in [60].   

 

Several interesting features have been carried on them. The 

MOD natural neutrosophic Cognitive Maps model have been 

introduced in [68].   

 

Here we construct 6 distinct such MOD natural neutrosophic 

Relational Maps model using 
I

nZ , C
I
(Zn) or 〈Zn ∪ I〉I or 〈Zn ∪ 

g〉I (g
2
 = 0) or 〈Zn ∪ h〉I, (h

2
 = h) or 〈Zn ∪ k〉I, (k

2
 = (n – 1)k).   
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All of them are different and distinct in their own way. Such 

study will lead to lots of applications in medical, engineering 

and on field of social scientific problems. 

  

For the definition and properties of 
I

nZ refer [60].   

 

However we give examples of them. 

 

Example 3.1:  Let 
I

2Z  = {0, 1, 
2

0I , 1+ 
2

0I } be the MOD natural 

neutrosophic numbers. 

 

Example 3.2: Let 
I

3Z  = {0, 1, 2, 
3

0I , 1 + 
3

0I , 2 + 
3

0I } be the MOD 

natural neutrosophic numbers. 

 

Example 3.3: Let 
I

4Z  = {0, 1, 2, 3, 
4

0I , 
4

2I , 
4

0I + 1, 2 + 
4

0I , 3 + 
4

0I , 

1 + 
4

2I , 2 + 
4

2I , 3 + 
4

2I , 
4

0I  + 
4

2I , 1 + 
4

0I  + 
4

2I , 2 + 
4

0I  + 
4

2I , 3 + 
4

0I  

+ 
4

2I } be the MOD natural neutrosophic numbers. 

 

For more refer [60].   

 

It is important to keep on record that 
I

nZ has more natural 

neutrosophic numbers only when n is a composite number when 

n is a prome we have only one natural neutrosophic number 
n

0I , 

and other number generated with t ∈ Zn are t + 
n

0I . 

 

We have defined several properties associated with them in 

[60]. 

 

Now we will give example of the notion of MOD natural 

neutrosophic bipartite directed graphs with edge weights from 
I

nZ . 

 

Example 3.4: Let G be a bipartite directed graph with edge 

weights from 
I

6Z  given in the following figure. 
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Figure 3.1 

 

G will be known as the MOD natural neutrosophic directed 

bipartite graph. 

 

Example 3.5: Let G1 be the MOD natural neutrosophic directed 

bipartite graph with entries from 
I

12Z given by the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 

w1 

w2 

w3 

w4 

w5 

w6 

v1 

v2 

v3 

v4 

11+
12

6I  

3
12

0I +4 

4 

5 

6 

6+
12

3I +
12

4I  

6

3I  

v1 

v2 

v3 

v4 

v5 

v6 

v7 

v8 

w6 

w5 

w1 

w2 

w3 

w4 

3 

2 

6

4I  

4 

6 6

4 2I I+  

1 
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 Next we give examples of MOD natural neutrosophic 

relational matrix (or rectangular matrix) with entries from 
I

nZ . 

 

Example 3.6: Let  

 

M = 

8

4

8

6

8 8

2 4

8 8

0 2

8 8 8

4 2 2

8

2

3 0 2 I 2

0 I 0 1

I I 0 3 0

0 2 I 0 I

4 0 6 0

I I 1 0 4 I

0 6 I 0

 +

 
 
 +

 
+ 

 
 

+ + 
 
 

 

 

 

be the MOD natural neutrosophic relational matrix. 

 

 This matrix M can work like matrix operator yielding MOD 

fixed point pair or MOD limit cycle pair [ ]. 

 

Example 3.7: Let  

 

P = 

10 10 10 10

5 2 0 6

10 10

0 8

10 10 10

2 5 8

10 10 10 10

0 0 2 0

1 I 0 2 4 I 0 I I

0 I 0 0 1 I 0

5 6 8 I I 0 0 I 4

4 I 0 I 0 I 1 4 I 0

 + +

 
 
 + +

 
+ + +  

 

 

 

be the MOD natural neutrosophic relational matrix with entries 

from 
I

10Z . 

 

 Now we describe some special type of operations on them 

by examples. 

 

For this X = {(x1 x2 … xn) / xi ∈ {0, 1}; 1 ≤ i ≤ n} and  
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Y = {(y1 y2 … ym) / yi ∈ {0, 1}, 1 ≤ i ≤ n} be the MOD  

initial state vectors associated with M = (mij)n×m MOD natural 

neutrosophic relational matrix with entries from 
I

sZ . 

 

Example 3.8: Let  

 

B = 

6

0

6

2

6

4

6

0

0 4 I 0 2

1 0 I 0

0 4 0 I

3 0 1 0

0 0 0 I

1 0 0 0

0 0 2 0

 +

 
 
 
 
 
 
 
 
 
 

 

 

be the MOD natural neutrosophic Relational Maps model 

connection matrix (operator) with entries from 
I

6Z . 

 

 X = {(a1 a2 … a7) / ai ∈ {0, 1}; 1 ≤ i ≤ 7} and  

 

Y = {(b1 b2 b3 b4) / bi ∈ {0, 1}; 1 ≤ i ≤ 4} be the MOD 

natural neutrosophic initial state vectors. 

 

 Let x = (1 0 0 0 0 0 0) ∈ X, to find the effect of x on B. 

 

xB = (0 4 + 
6

0I  0 2) = y1; 

y1B
t
 = (2 + 

6

0I  0 4 + 
6

4I  0 
6

0I  0 0) = x1; 

x1B = (0 
6

4I  
+ 

6

0I  
0 

6

0I  +
6

4I + 4) = y2; 

y2B
t
 = (2 + 

6

0I  + 
6

4I  0 
6

0I  
+ 

6

4I  
0 

6

0I  
0 0) = x2; 

x2B = (0 2 + 
6

0I  + 
6

4I   0  4 + 
6

4I  + 
6

0I ) = y3; 

y3B
t
 = (4 + 

6

0I  + 
6

4I  0 2 + 
6

0I  + 
6

4I  0 
6

0I  0 0) = x3; 

x3B = (0 
6

0I  + 
6

4I  0 2 + 
6

0I  + 
6

4I ) and so on we are sure to 

arrive at a MOD fixed point pair or a MOD limit cycle pair. 

 

Let x = (0 0 1 0 0 0 0) ∈ X, to find the effect of x on B. 



104 MOD  Relational Maps Models and MOD Natural … 

 

 

xB = (0 4 0 
6

4I ) = y1; 

y1B
t
 = (4 + 

6

4I  + 
6

0I  0 4 + 
6

4I  0 
6

0I  0 0) = x1; 

x1B = (0 2 + 
6

4I  + 
6

0I  0 2 + 
6

4I  + 
6

2I ) = y2 ; 

y2B
t
 = (

6

0I  + 
6

4I  0 2 + 
6

4I  +
6

0I  0 
6

0I  
6

0I  + 
6

4I  0) 

 

and so on.   

 

After a finite number of iterations we are sure to arrive at a 

MOD fixed point pair or a MOD limit cycle pair. 

 

Let y = (1 0 0 0) ∈ Y, to find the effect of y on B. 

 

yB
t
 = (0 1 0 3 0 1 0) = x1; 

x1B = (5 0 3 + 
6

2I  0) = y1; 

y1B
t
 = (0 5 + 

6

4I  + 
6

2I   0 
6

2I  0 5 
6

2I ); 

x2B = (5 + 
6

4I  + 
6

2I  0 
6

4I  + 
6

2I   
6

4I  + 
6

2I  +
6

0I ) = y2; 

y2B
t
 = (

6

4I  + 
6

2I  + 
6

0I   5 + 
6

4I  + 
6

2I   
6

4I  + 
6

2I  +
6

0I  3 + 
6

4I  + 

 
6

2I  
6

0I  5 + 
6

4I  +
6

2I   
6

4I  + 
6

2I ) = x3; 

x3B = (1 + 
6

4I  + 
6

2I  
6

4I  + 
6

2I  + 
6

0I   3 +  
6

2I  + 
6

4I    
6

4I  + 
6

2I  + 

 
6

0I ) = y3; 

y3B
t
 = (

6

4I  + 
6

2I  + 
6

0I   1 + 
6

4I  + 
6

2I    
6

4I  + 
6

0I  + 
6

2I   
6

4I  + 
6

2I  
   

6

0I   1 + 
6

4I  + 
6

2I    
6

2I  + 
6

4I ) and so on. 

 

Certainly after a finite number of iterations we will arrive at 

a MOD resultant which may be a MOD limit cycle pair or a MOD 

fixed point pair. 

 

This is the way the MOD natural neutrosophic matrix 

operator functions yield a MOD limit cycle pair or a MOD fixed 

point pair. 

 

Now we proceed onto describe and develop the MOD natural  

neutrosophic number Relational Maps model (MOD NRMs 

model). 
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Let P be a problem in hand D1 D2 … Dt and R1, R2, …, Rs 

be the MOD domain and MOD range space of nodes associated 

with the problem P.  

 

Let G be the MOD directed bipartite graph given by an 

expert with edge weights from 
I

nZ .  

 

G will also be known as the MOD natural neutrosophic 

directed bipartite graph.  

 

This given in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 

 

where xi ∈ 
I

nZ ; 1 ≤ i ≤ p + 1.  

 

 Let M denote the MOD natural neutrosophic relational 

matrix associated with G . M = (mij) is a t × s MOD natural 

neutrosophic relational matrix of G with entries mij ∈ 
I

nZ . 

 

 Let X = {(a1 … at) / ai ∈ {0, 1}; 1 ≤ i ≤ t} and  

 

D1 

R2 D2 

R1 

D2 

Dt Rs-1 

Rs 

x1 

x2 

x3 

xp–1 

xp+xp 

xp+1 
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Y = {(b1 b2 … bs) / bj ∈ {0, 1}; 1 ≤ j ≤ p} be the MOD 

natural neutrosophic initial / instantaneous state vectors 

associated with M.  

 

M = (mij) will be defined as the MOD natural neutrosophic 

Relational Maps model dynamical system.  

 

All properties associated with this new model can be 

developed and defined as that of the MOD Relational Maps 

model defined in chapter II of this book. 

 

We will describe this MOD NRMs by some simple 

examples. 

 

Example 3.9: Let P be a problem. Let D1 … D6 and R1, R2, R3, 

R4 be the MOD domain and MOD range nodes respectively 

associated with the problem P. 

 

 Let G1 be the MOD natural neutrosophic number directed 

bipartite graph given by the expert using the above mentioned 

nodes of the problem P with edge weights from 
I

4Z .  

 

Let G1 be as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 

D1 

D2 

D3 

D4 

D5 

D6 

R1 

R2 

R3 

R4 
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4

2I  

2+ 4

0I  
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Let M be the MOD natural neutrosophic relational matrix 

associated with G1. 

 

M = 

 

1 2 3 4

1

2

3

4

4

5 2

4

6 0

R R R R

D 0 2 0 0

D 0 2 0 0

D 1 0 0 0
.

D 0 0 0 3

D 0 I 0 0

D 0 0 2 I 0

 
 
 
 
 
 
 
 

+  

 

 

Now we show how the MOD NRMs model function. 

 

Let x= (1 0 0 0 0 0) ∈ X, to find the effect of x on M 

 

xM = (0 2 0 0) = y1; 

y1M
t
 → (1 0 0 0 

4

2I  0) = x1; 

x1M = (0 2 + 
4

2I  0 
4

2I ) = y2; 

y2M
t
 = (

4

2I
4

2I  0 
4

2I  
4

2I  + 
4

0I  0) = x2; 

x2M = (0 
4

2I  + 
4

0I   0 
4

2I ) = y3; 

y3M
t
 = (

4

2I  + 
4

0I  
4

2I  + 
4

0I  0 
4

2I  
4

0I  0) = x3; 

x3M = (0 
4

2I +
4

0I  0 
4

2I ) = y4 (=y3). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(
4

2I  + 
4

0I  
4

2I  + 
4

0I  0 
4

2I  
4

0I  0), (0 
4

2I  + 
4

0I  0 
4

2I )}. 

 

Let x = (0 1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 2 0 0) = y1; 

y1M
t
 → (0 1 0 0 

4

2I 0) = x1; 

x1M = (0 2 + 
4

0I  0 0) = y2; 

y2M
t
 = (

4

0I
4

0I  0 0 
4

2I  + 
4

0I  0) = x2; 



108 MOD  Relational Maps Models and MOD Natural … 

 

x2M = (0 
4

0I  0 0 ) = y3; 

y3M
t
 = (

4

0I
4

0I  0 0 
4

0I  0) = x3; 

x3M = (0 
4

0I  0 0) = y4 (=y3). 

 

Thus the MOD resultant is MOD fixed point pair given by 

{(
4

0I  
4

0I  0 0 
4

0I  0), (0 
4

0I  0 0)}. 

 

Let x = (0 0 1 0  0 0) ∈ X, to find the effect of x on M. 

 

xM = (1 0 0 0) = y1; 

y1M
t
 = (0 0 1 0 0 0) = x1 (=x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by{(0 0 1 0 0 0), (1 0 0 0)}. 

 

Let x = (0 0 0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0 3) = y1; 

y1M
t
 = (0 0 0 1 0 0) = x1; 

x1M = (0 0 0 3) = y2; 

y2M
t
 = (0 0 0 1 0 0) = x2; 

x2M = (0 0 0 3) = y3 (=y2). 

  

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0 0 0 1 0 0), (0 0 0 3)}. 

 

Let x = (0 0 0 0 1 0) ∈ X. 

 

xM = (0 
4

2I  0 0) = y1; 

y1M
t
 = (

4

2I
4

2I  0 0 
4

2I  
0 ) = x1; 

x1M = (0 
4

2I +
4

0I  0 0) = y2; 

y2M
t
 = (

4

0I +
4

2I   
4

0I  + 
4

2I  0 0 
4

0I  0) = x2; 

x2M = (0 
4

0I  + 
4

2I  0 0) = y3 (=y2).  

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(
4

2I  + 
4

0I  
4

2I +
4

0I  
0  0  

4

0I  0), (0 
4

0I  + 
4

2I   0  0)}. 
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Let x = (0 0 0 0 0 1) ∈ X, to find the effect of x on M. 

 

xM = (0 0 2 + 
4

0I  0) = y1; 

y1M
t
 = (0 0 0 0 0 

4

0I ) = x1; 

x1M = (0 0 
4

0I  0) = y2; 

y2M
t
 = (0 0 0 0 0 

4

0I ) = x2 (=x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 0 
4

0I ), (0 0 
4

0I  0)}. 

 

Let y = (1 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 1 0 0 0) = x1; 

x1M = (1 0 0 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given  by {(0 0 1 0 0 0), (1 0 0 0)}. 

 

Let y = (0 1 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (2 2 0 0 

4

2I  0) = x1; 

x1M = (0 
4

0I  0 0) = y1; 

y1M
t
 = (

4

0I
4

0I  0 0 
4

0I  0) = x2; 

x2M = (0 
4

0I  0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(
4

0I  
4

0I  0 0 
4

0I  0), (0 
4

0I 0 0)}. 

 

Let y = (0 0 1 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 0 0 0 

4

0I  + 2) = x1; 

x1M = (0 0 
4

0I  0) = y1; 

y1M
t
 = (0 0 0 0 0 

4

0I ) = x2; 
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x2M = (0 0 
4

0I  0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 0 
4

0I ), (0 0 
4

0I  0)}. 

 

Let y = (0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 0 3 0 0) = x1; 

x1M = (0 0 0 1) = y1 (=y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0 0 0 3 0 0), (0 0 0 1)}. 

 

Let x = (0 1 0 0 1 0) ∈ X, to find the effect of x on M. 

 

xM = (0 2 + 
4

0I  0 0) = y1; 

y1M
t
 = (0 

4

2I  
4

2I  0 
4

2I  + 
4

0I  0) = x1; 

x1M = (0 
4

2I  + 
4

0I   0 0) = y2; 

y2M
t
 = (0 

4

2I  + 
4

0I  
4

2I  +
4

0I  0 
4

0I  0) = x2; 

x2M = (0 
4

2I +
4

0I  0 0) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 
4

2I  + 
4

0I  
4

0I  + 
4

2I  0 
4

0I  0), (0 
4

2I  + 
4

0I  0 0)}. 

 

This is the way operations are performed using M. 

 

Now we proceed onto find the effect of M on DS and RS. 

 

Suppose DS = {(a1 a2 a3 a4 a5 a6) / ai ∈ 
I

4Z ; 1 ≤ i ≤ 6} and  

 

RS = {(b1 b2 b3 b4) / bi ∈ 
I

4Z ; 1 ≤ i ≤ 4} be the MOD special 

initial state vectors. 

 

To find the effect of x in DS (or y ∈ RS) on M. 
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Let x = (2 + 
4

0I  0 0 0 0 0) ∈ DS, to find the effect of x on M. 

 

xM = (0 
4

0I  0 0) = y1; 

y1M
t
 = (

4

0I
4

0I  0 0 
4

0I  0) = x1; 

x1M = (0 
4

0I  0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(
4

0I  
4

0I  0 0 
4

0I  0), (0 
4

0I  0 0)}. 

 

Let x = (0 0 3 + 
4

2I  0 0 
4

0I ) ∈ DS, to find the effect of x on 

M. 

xM = (3 + 
4

2I  
0 

4

0I 0) = y1; 

y1M
t
 = (0 0 3 + 

4

2I  0 
4

2I  
4

0I ) = x1; 

x1M = (3 + 
4

2I
4

0I
4

0I  0) = y2; 

y2M
t
 = (

4

0I  
4

0I  3 + 
4

2I  0 
4

0I  
4

0I ) = x2; 

x2M = (3 + 
4

2I  
4

0I  
4

0I  0) = y3 (=y2). 

 

Thus the MOD resultant is a MOD fixed point pair givenby 

{(
4

0I  
4

0I  3 + 
4

2I  0 
4

0I  
4

0I ), (3 + 
4

2I  
4

0I  
4

0I  0)}. 

 

Thus the nodes are natural neutrosophic zero or natural 

neutrosophic zero divisor. 

 

So far we studied only MOD NRMs model we now proceed 

onto describe MOD natural neutrosophic Relational Maps model 

〈Zn ∪ I〉I, denotes the MOD natural neutrosophic- neutrosophic 

numbers. 

 

We describe the MOD directed bipartite graphs with edge 

weights from 〈Zn ∪ I〉I, which will also be known as the MOD 

natural neutrosophic-neutrosophic  bipartite directed graph. 

 

This will be represented by some examples. 
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Example 3.10:  Let  G be a MOD directed bipartite graph with 

edge weights from 〈Z6 ∪ I〉I given by the following figure. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.5 

 

Example 3.11:  Let H be the MOD directed bipartite natural 

neutrosophic-neutrosophic graph with edge weights from  

〈Z11 ∪ I〉I, given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 
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Let us now give examples of MOD rectangular natural 

neutrosophic-neutrosophic matrix or the MOD rectangular 

(relational) neutrosophic-neutrosophic matrix if its entries are 

from 〈Zn ∪ I〉I. 

 

Example 3.12: Let  

 

M = 

I I

3I 7I

I I I

4I 6 3

I

0

I I I

3 I 8I

I

2I

3 I 2 I 0 5 1

0 1 I 0 2 I 0 I

4 0 5 I 0 3I 0

I 3 I 0 I 0 7

0 0 3 0 1 2 I

 +

 
+ + 

 +

 
+ 

 
+ 

 

 

be the MOD rectangular natural neutrosophic-neutrosophic 

matrix with entries from 〈Z9 ∪ I〉I. 

 

Example 3.13: Let  

 

 

M = 

I

0

I

4I

I I

I 2I

I

3I

I

3

I

3

I

4

3 I 0 1

0 2 I 0

1 I 4 4 I

0 0 2 I

I 0 0

2 0 2 I

0 4 I 0

 +

 
+ 

 + +

 
+ 

 
 

+ 
 

+ 

 

 

 

be the MOD natural neutrosophic-neutrosophic relational 

(rectangular) matrix with entries from 〈Z6 ∪ I〉I.  

 

Now we show how the relation between the MOD directed 

bipartite natural neutrosophic-neutrosophic graphs and the MOD 

natural neutrosophic-neutrosophic relational matrix by 

examples. 
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Example 3.14: Let G be the MOD natural neutrosophic- 

neutrosophic bipartite graph with edge weights from  〈Z12 ∪ I〉I, 

given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 

 

 Let M be the MOD natural neutrosophic-neutrosophic 

connection matrix of the MOD bipartite directed graph G. 

 

 

M = 

1 2 3 4 5 6 7

I
1 4

2

I
3 3

I
4 0

I
5 6

I
6 8

R R R R R R R

D 2 0 I 0 0 0 0

D 0 0 0 3 0 0 0

D I 0 0 0 0 0 0
.

D 0 I 7 0 0 0 0 0

D 0 0 0 2 I 0 10 0

D 0 0 0 0 3 I 0 6I

 
 
 
 
 

+ 
 

+
 

+  

 

 

 

We see M is a 6 × 7 MOD natural neutrosophic- 

neutrosophic rectangular or relational matrix associated with the 

graph G. 

D1 

D2 

D3 

D4 

D5 

D6 

R2 

R3 

R4 

R5 

R6 

R7 

R1 
2 

I

3I

I

4I

3 
I

0I +7 

2+ I

6I  

3+ I

8I  

6I 

10

3 
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 Now we proceed onto describe the MOD natural 

neutrosophic-neutrosophic Relational Maps model in a line or 

two. Just before that show the special operations are carried out 

using these MOD natural neutrosophic-neutrosophic relational 

matrix operators [66] by some examples. 

 

Example 3.15: Let  

 

M = 

I

2I

I

0

I

3I

I

0

I 0 2

0 1 I 0

3I 0 I

0 1 0

2 0 I

0 3I 0

2 I 0 0

 
 

+ 
 
 
 
 
 
 
 

+ 

 

 

be the MOD natural neutrosophic-neutrosophic rectangular 

(relational) matrix operator with entries from 〈Z4 ∪ I〉I. 

 

 Let X ={(a1 a2 … a7) / ai ∈ {0, 1}, 1≤ i ≤ 7} be the MOD 

domain space of initial state vectors and  

 

Y = {(b1 b2 b3) / bi ∈ {0, 1}; 1 ≤ i ≤ 3} be the MOD range 

space of initial state vectors. 

 

Let XS = {(a1 … a7) / ai ∈ 〈Z4 ∪ I〉I; 1 ≤ i ≤ 7} and  

 

Ys = {(b1 b2 b3) / bi ∈ 〈Z4 ∪ I〉I; 1 ≤ i ≤ 3} be the MOD 

special initial state vectors of MOD domain space and MOD 

range space respectively. 

 

We find the MOD resultant of MOD state vectors from X or 

Y or XS or YS on M. 

 

Let x = (1 0 0 0 0 0 0) ∈ X, to find the effect of x on M. 
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xM = (
I

2II 0 2) = y1; 

y1M
t
 = (

I

0I  0 
I

2II + 
I

3II 0 
I

2II + 2I 0 
2

2II + 
I

0I ) = x1;  

x1M = (
I

0I  + 
2

2II  0 
I

0I  + 
2

2II  + 2I) = y2; 

y2M
t
 = (

I

0I  + 
2

2II 0 
I

0I  + 
2

2II  + 
2

3II  0 
I

0I  + 
2

2II + 2I 0  
I

0I + 
2

2II ) = x2; 

 

and so on.   

 

However we are sure that after a finite number of iterations 

we will arrive at a MOD resultant which will  be MOD fixed point 

pair or a MOD limit cycle pair. 

 

Let x = (0 1 0 0 0 0 0) ∈ X; 

 

To find the effect of x on M. 

 

xM = (0 1 +
I

0I  0) = y1; 

y1M
t
 = (0 1 + 

I

0I  01 + 
I

0I  0 3I + 
I

0I 0) = x1; 

x1M = (0 2 + 
I

0I  + I 0) = y2; 

y2M
t
 = (0 2 + 

I

0I + I 0 2 + I + 
I

0I  0 I + 
I

0I  0) = x2; 

x2M = (0 
I

0I  + I 0) = y3; 

y3M
t 
= (0 I + 

I

0I  0  I + 
I

0I  0 3I + 
I

0I  0) = x3; 

x3M = (0 3I + 
I

0I  0) = y4; 

y4M
t
 = (0 3I + 

I

0I  0  3I + 
I

0I  0 I + 
I

0I  0) = x4; 

x4M = (0 I + 
I

0I 0) = y5 (=y3). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0 I + 
I

0I  0 I + 
I

0I  0 3 + 
I

0I  0), (0 I + 
I

0I  0)}. 

 

Let x = (0 0 1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (3I  0 
I

3II ) = y1; 

y1M
t
 = (

I

2II +
I

3II   0 I + 
I

3II  0 2I + 
I

3II   0 2I + 
I

0I ) = x1; 
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x1M = (3I + 
I

2II  + 
I

3II + 
I

0I  0  
I

2II  + 
I

3II  + 2I) = y2; 

y2M
t
 = (

I

2II +
I

3II +
I

0I  0 I + 
I

2II  + 
I

3II + 
I

0I  0  
I

2II  + 
I

3II  + 

 
I

0I  0 2I + 
I

0I  + 
I

2II  + 
I

3II ) = x2; 

and so on. 

 

However we  are sure after on finite number of iterations 

will arrive at a MOD resultant which will be a MOD fixed point 

pair or a MOD limit cycle pair. 

 

So if we take y = (0 0 1) ∈ Y, we find the effect of y on M. 

 

yM
t
 = (2 0 

I

3II  0 I 0 0) = x1; 

x1M = (
I

2II  + 
I

3II + 2I 0 
I

3II  + I) = y1; 

y1M
t
 = (

I

0I  + 
I

2II  + 2I + 
I

3II  0 2I + 
I

2II + 
I

3II  0 
I

2II  + 
I

3II  +  

       I 0 
I

0I  + 
I

2II  + 
I

3II ) = x2; 

x2M = (
I

0I  + 
I

2II + 
I

3II  0 
I

0I  + 
I

2II  + 
I

3II  + I) = y2; 

y2M
t
 = (2I + 

I

0I  + 
I

2II  + 
I

3II  0  
I

0I  + 
I

2II  + 
I

3II  0 I + 
I

2II  + 

 
I

0I  + 
I

3II  0 
I

0I  + 
I

2II  + 
I

3II ) = x3; 

x3M = (
I

2II  + 
I

0I  + 
I

3II  + 2I 0  
I

0I  + 
I

2II  + 
I

3II  + I) = y3; 

y3M
t
 = (

I

0I +
I

2II  + 
I

3II  + 2I  0  2I + 
I

2II  + 
I

0I  + 
I

3II  0 
I

2II  + 

 I + 
I

3II  + 
I

0I  0 
I

0I  + 
I

2II +
I

3II ) = x4; 

x4M = (
I

0I  + 
I

3II  + 
I

2II  0 I + 
I

0I + 
I

3II  + 
I

2II ) = y4 (=y3) . 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(2I + 
I

0I  + 
I

2II + 
I

3II  0 2I + 
I

0I + 
I

2II  + 
I

3II  0 I + 
I

0I  + 
I

2II  + 
I

3II  0   
I

0I  + 
I

2II  + 
I

3II ), (
I

0I  + 
I

3II  + 
I

2II  0 I + 
I

0I  +
I

3II  + 
I

2II )}. 

 

This is the way this model functions.  

 

It is interesting and important to note that the MOD 

resultants need not be a pairs whose nodes are just 0 or 1 or I 

but it can be any value a sum of natural neutrosophic element or 

just real or 0 or just pure neutrosophic. 
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The main advantage being that we are sure to arrive at a 

MOD fixed point pair or a MOD limit cycle pair with entries from 

〈Zn ∪ I〉I. 

 

 At an instant the nodes can take any value from 〈Zn ∪ I〉I.  

 

 This it is not a biased result where one at each stage 

thresholds to get a 1 or 0 or I. 

 

So no personal bias is possible and the operation of 

thresholding has no role to play. 

 

Certainly this new innovative model will be a boon to 

scientists, socio scientists, technologists and engineers. 

 

Next we proceed onto describe and develop the new notion 

of MOD natural neutrosophic finite complex number Relational 

Maps model.  

 

We will first define and develop the essential tools needed 

for this yet a new model. 

 

C
I
(Zn) = {(C(Zn), 〈

C

0I , 
C

tI ; t in C(Zn) is a zero divisor, 

nilpotents or idempotents〉}. 

 

We will first describe by examples the notion of MOD 

natural neutrosophic finite complex number bipartite directed 

graph. 

 

Example 3.16:  Let G be the MOD natural neutrosophic finite 

complex bipartite directed graph given in the following with 

edge weights from C
I
(Z6). 
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Figure 3.8 

 

Example 3.17:  Let H be the MOD finite complex number 

natural neutrosophic bipartite directed graph with edge weights 

from C
I
(Z9) given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

  Figure 3.9 

D1 

R1 

D2 

D3 

6iF 

C

6I
R2 

F

C

3iI +4iF  

D4 

R3 

D5 

4 

2iF + 5 

R4 

D6 

C

0I +3 

H = 

2iF + 
F

C

4iI  

1 

C1 

C2 

D1 

D2 
3+ 

C

3I  

F

C

3iI +3 

iF C3 

C4 

D3 

D4 

C5 
2 

D5 

D6 
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 Thus G is a MOD finite complex number natural 

neutrosophic directed bipartite graph if edge weights are from 

C
I
(Zn); 2 ≤  n < ∞. 

 

 We have seen examples of them.  Now we proceed onto 

describe MOD finite complex number natural neutrosophic 

rectangular or relational matrices, these matrices also serve as 

operation [66]. 

 

We will give a few examples of them. 

 

Example 3.18:  Let M be the MOD complex number natural 

neutrosophic relational matrix with entries from C
I
(Z12) which is 

as follows. 

 

M=

F

F F

F

F

F

C C C

2 4i 2

F F F

F F

F F

C C C

3i 4i 0

C C

0 F 8i

C C

4i F 6

0 C

6i 7 F 0 F

I I 3 0 0 0 0 I

0 4 1 3i 1 i 3i 0

4 2i 0 6 0 1 1 2i

0 1 i 0 7i 0 0

11 0 I 2 0 I I

10 I 5i 0 I 0 0

0 0 I i 0 0 3 I

I 6 2i 0 I 1 2i 0
+

 + +

 
+ + 

 
+ +

 
+ 

 
+ 

 
+

 
 + +

 
+ +  

 . 

 

 

Example 3.19:  Let N be the MOD finite complex number 

natural neutrosophic rectangular matrix with entries from 

C
I
(Z16).  

 

N = 

F F

F

C C

2i 4i 6 F F

C C C

0 8 8i 4

C C

F 4 2

C C

4 F 2 F F

I I 0 6 2i 0 4 i 0

0 I I 0 I 0 0 1
.

0 0 3i 0 I 5 I

I 7 6i 4 I i 0 3 i 0 3

+

+

 + +

 
+ 

 
 
 + + + + 
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 Next we proceed onto describe only important operations 

that is need for us to use in the MOD finite complex number 

natural neutrosophic Relational Maps model. 

 

 Let D = {(a1 … an) / ai ∈ {0, 1} 1 ≤ i ≤ n} and  

 

R = {(b1 … bm) / bi ∈ {0, 1}; 1 ≤ i ≤ m} be the MOD initial 

state vectors associated with the n × m MOD finite complex 

number natural neutrosophic rectangular matrix M. 

 

 Let DS = {(a1 … an) /ai ∈ C
I
(Zt); 1 ≤ i ≤ n} (2 ≤ t < ∞) and 

RS = {(b1 b2 …, bm) / bj ∈ C
I
(Zt); 1 ≤ j ≤ m} be the MOD finite 

complex special initial state of vectors associated with the MOD 

finite complex numbers matrix M.  

 

Clearly  R ⊆ RS and D ⊆ DS.  

 

We will  now proceed onto describe how the operations are 

performed on M using elements from R or D or RS or DS. 

 

Example 3.20: Let  

 

M = 

F

F

F

C

0

C

0

C

2

C

2i

C C

2 2 2i

3 i 0 0

0 0 1 I

1 I 0 0

0 0 I 0

0 I 0 0

1 I 0 0 I
+

 
 
 
 
 
 
 
 

+  

 

 

be the MOD finite complex number natural neutrosophic 

rectangular (relational) operator with entries from C
I
(Z4).  

 

Let X = {(a1 a2 … a6) / ai ∈ {0, 1}; 1 ≤ i ≤ 6} and  

 

Y = {(b1 b2 b3 b4) / bi ∈ {0, 1}; 1 ≤ i ≤ 4},  

 

XS = {(a1 a2 … a6) / ai ∈ C
I
(Z4); 1 ≤ i ≤ 6} and  
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YS = {(b1 b2 b3 b4) / bi ∈ C
I
(Z4); 1 ≤ i ≤ 4} be the MOD 

initial state domain and range space of vectors and MOD special 

initial complete state of domain and range space of vectors 

respectively related with M. 

 

We now describe how operations are performed using 

elements of X or Y or XS or YS and M. 

 

Let x = (1 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

  xM = (3 iF 0 0) = y1; 

y1M
t
 = (0 0 3 + 

C

0I  0 
F

C

2iI  3 + 
C

2I ) = x1; 

x1M = (2 + 
C

0I + 
C

2I  
C

0I  0  
F

C

2 2iI
+

+ 
C

0I ) = y2; 

y2M
t
 = (2 + 

C

0I  + 
C

2I  
C

0I   2 + 
C

0I  +
C

2I  0 
C

0I  2 + 
C

2I  + 
C

0I   

          + 
F

C

2 2iI
+

) = x2; 

x2M = (
C

0I +
C

2I  + 
F

C

2 2iI
+

+ 2, 2iF + 
C

0I  +
C

2I  
C

0I  
C

0I  +  

F

C

2 2iI
+

) = y3; 

y3M
t
 = (

C

0I  + 
C

2I  + 
F

C

2 2iI
+

C

0I  
C

0I  + 2 + 
C

2I  + 
F

C

2 2iI
+

C

0I  
F

C

2iI
 

 + 
C

0I   2 + 
C

0I  + 
C

2I  + 
F

C

2 2iI
+

) = x3; 

 

and so on. 

 

Thus we see after a finite number of iterations we will 

arrive at a MOD resultant which may be a MOD fixed point pair 

or  a MOD limit cycle pair. 

 

Let x = (0 1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 1 
C

0I ) = y1; 

y1M
t
 = (0 1 + 

C

0I  0 
C

2I  0 
C

0I ) = x1; 

x1M = (
C

0I  + 
C

2I  0 1 + 
C

0I
C

0I ) = y2; 

y2M
t
 = (

C

0I  + 
C

2I  1 + 
C

0I  
C

0I  + 
C

2I  0 0 
C

0I  + 
C

2I ) = x2; 

x2M = (
C

0I  + 
C

2I  
C

0I  + 
C

2I  1 + 
C

0I  
C

0I ) = y3; 
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y3M
t
 = (

C

0I +
C

2I   
C

0I +
C

2I  + 
F

C

2iI  
C

0I +
C

2I  
C

0I +
C

2I   

C

0I +
F

C

2iI
C

0I +
C

2I ) = x3; 

x3M = (
C

0I +
C

2I   
C

0I +
C

2I   
C

0I +
C

2I +
F

C

2iI
C

0I ) = y4; 

 

and so on.   

 

We are sure after a finite number of iterations we will arrive 

at a MOD resultant which may  be a MOD fixed point pair or a 

MOD limit cycle pair. 

 

 Let x = (0 0 0 0 
C

0I 0) ∈ XS, to find the effect of x on M. 

  

xM = (0  
C

0I  0  0) = y1; 

  y1M
t
 = (

C

0I   0  
C

0I  0 
C

0I  0) = x1; 

x1M = (
C

0I
 

C

0I  0  0 ) = y2; 

y2M
t
 = (

C

0I   0  
C

0I
 
 0  

C

0I  
C

0I ) = x2; 

x2M = (
C

0I
 

C

0I   0  
C

0I ) = y3; 

y3M
t
 = (

C

0I
 

C

0I
 

C

0I
 

C

0I
  

C

0I
 

C

0I ) = x3; 

x3M = (
C

0I
 

C

0I
 

C

0I
 

C

0I ) = y4; 

y4M
t
 = (

C

0I
 

C

0I
 

C

0I
 

C

0I
 

C

0I
 

C

0I ) = x4 (=x3). 

 

MOD realized resultant is a MOD realized fixed point pair 

given by {(
C

0I  
C

0I  
C

0I  
C

0I  
C

0I
C

0I ), (
C

0I
C

0I
C

0I
C

0I )}. 

 

Let y = (0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 

C

0I 0 0 0 
F

C

2 2iI
+

) = x1; 

x1M = (
F

C

2 2iI
+

 + 
C

0I  0 
C

0I  
C

0I ) = y1; 

y1M
t
 = (

F

C

2 2iI
+

+ 
C

0I  
C

0I  
F

C

2 2iI
+

 + 
C

0I  
C

0I  0 
C

0I + 
F

C

2 2iI
+

) = x2; 

x2M = (
F

C

2 2iI
+

 + 
C

0I  
F

C

2 2iI
+

 + 
C

0I  
C

0I  
C

0I ) = y2; 

y2M
t
 = (

F

C

2 2iI
+

 + 
C

0I  
C

0I  
F

C

2 2iI
+

+ 
C

0I  
C

0I  
C

0I  
F

C

2 2iI
+

+
C

0I ) =x3 

 (= x2). 
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Thus the MOD realized resultant is a MOD realized fixed 

point pair given by  

{(
F

C

2 2iI
+

+ 
C

0I  
C

0I  
F

C

2 2iI
+

 + 
C

0I  
C

0I  
C

0I  
C

0I + 
F

C

2 2iI
+

),  

(
C

0I + 
F

C

2 2iI
+

 
F

C

2 2iI
+

 + 
C

0I  
C

0I  
C

0I )}. 

 

Now suppose we perform the same operation but at each 

stage do only the process of updating then we study the effect of 

y = (0 0 0 1) on M. 

 

yM
t
 = (0 

C

0I  0 0 0 
F

C

2 2iI
+

) = x1; 

x1M → (
F

C

2 2iI
+

 + 
C

0I  0 
C

0I  1) = y1; 

y1M
t
 = (

C

0I  + 
F

C

2 2iI
+

 
C

0I  
C

0I  + 
F

C

2 2iI
+

 
C

0I  0 
F

C

2 2iI
+

+ 
C

0I )  

= x2; 

x2M → (
C

0I  +
F

C

2 2iI
+

 
C

0I  + 
F

C

2 2iI
+

 
C

0I  1) = y2; 

y2M
t
 = (

C

0I  + 
F

C

2 2iI
+

 
C

0I   
C

0I  + 
F

C

2 2iI
+

 
C

0I   
C

0I  
C

0I  +
F

C

2 2iI
+

)  

= x3; 

x3M → (
C

0I  + 
F

C

2 2iI
+

  
C

0I  + 
F

C

2 2iI
+

 
C

0I  1) = y3 (=y2). 

 

Thus the MOD resultant is a MOD realized fixed point pair 

given by {(
C

0I  + 
F

C

2 2iI
+

 
C

0I  
C

0I  + 
F

C

2 2iI
+

 
C

0I  
C

0I  
C

0I  + 
F

C

2 2iI
+

), (
C

0I  +  

        
F

C

2 2iI
+

 
C

0I  + 
F

C

2 2iI
+

 
C

0I  1)}. 

 

Clearly the mode of updating gives a MOD realized resultant 

which is also a MOD realized fixed point pair but different from 

the one for which the resultants are not updated at each stage. 

 

Let x = (0 0 0 0 0 1) ∈ X to find the effect of x on M. 

 

xM = (1 + 
C

2I  0 0 
F

C

2 2iI
+

) = y1; 

y1M
t
 = (3 + 

C

2I  
C

0I  1 + 
C

2I  0 0 1 + 
C

2I  + 
C

2I ) = x1; 

x1M = (3 + 
C

2I  + 
C

0I   3iF + 
C

2I  + 
C

0I  
C

0I  
C

0I + 
F

C

2 2iI
+

) = y1; 
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y1M
t
 = (2 + 

C

2I + 
C

0I  
C

0I  3 + 
C

2I + 
C

0I  
C

0I
F

C

2iI  + 
C

0I   

    3 + 
C

0I  + 
C

2I ) = x2; 

x2M = (1 + 
C

0I  + 
C

2I   2iF + 
C

2I  + 
C

0I   
C

0I   
C

0I  +  

F

C

2 2iI
+

) = y2; 

y2M
t
 = (1 + 

C

0I  + 
C

2I   
C

0I 1 + 
C

0I  + 
C

2I  
C

0I  
C

0I  
C

0I  + 

 
F

C

2 2iI
+

+ 1) ; 

 

and so on.  

 

We will after a finite number of iterations arrive at a MOD 

realized fixed point pair or a MOD realized limit cycle pair. 

 

Example 3.21: Let  

 

S = 

F

C

F 3i

C

2

C

0

2 0 0 4 i I 0

0 0 1 I 0 0 1

3 I 0 1 0 0

 +

 
+ 

 
 

 

 

be the MOD finite complex number natural neutrosophic 

rectangular matrix operator with entries from C
I
(Z9). 

 

 Let X = {(a1 a2 a3) / ai ∈ {0, 1}; 1 ≤ i ≤ 3} and  

 

Y = {(a1 a2 … a6) / ai ∈ {0, 1}, 1 ≤ i ≤ 6} be the MOD finite 

complex domain and range space of initial state vectors 

respectively associated with  S. 

 

 Let x = (1 0 0) ∈ X to find the effect of x on S. 

 

  xS = (2 0 0 4 + iF 
F

C

3iI 0) = y1; 

y1S
t
 = (1 + 8iF + 

C

0I  0 1 + iF) = x1; 

x1S = (5 + iF + 
C

0I  
C

0I  0 3 + 
C

0I  
F

C

3iI + 
C

0I  0) = y2; 

y2M
t
 = (4 + 5iF + 

C

0I  3 + 
C

0I  + 
C

2I  
C

0I  + 3iF) = x2; 
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x2M = (8 + iF + 
C

0I  
C

0I  3 + 
C

2I +
C

0I  2 + 
C

0I  
F

C

3iI + 
C

0I  3 + 

 
C

0I  + 
C

2I ) = x3; 

x3M = (6 + 4iF + 
C

0I  + 
C

2I   6 + 
C

2I  + 
C

0I   7 + 
C

0I  +  

3iF) = y3; 

 

and so on.  

 

We are sure after a finite number of iterations we will arrive 

at a MOD realized resultant which can be a MOD realized fixed 

point pair or a MOD realized limit cycle pair. 

 

We propose the following theorem. 

 

THEOREM 3.1:  Let M = (mij) be a s × t MOD finite complex 

number natural neutrosophic rectangular matrix with entries 

from C
I
(Zn).  

 

Let X = {(a1 … as) / ai ∈ {0, 1}; 1 ≤ i ≤ s},  

 

Y = {(b1 b2 … bt) / bj ∈ {0, 1}; 1 ≤ j ≤ t},  

 

XS = {(a1 … as) / ai ∈ C
I
(Zn); 1 ≤ i ≤ s} and  

 

YS = {(b1 … bt) / bj ∈ C
I
(Zn); 1 ≤ j ≤ t} be the MOD initial 

state vectors of domain and range spaces and MOD special 

instantaneous state vectors of domain and range space 

respectively associated with M. 

 

 If x ∈ X (or Y or XS or YS) then the MOD realized resultant 

pair in general is different for x when the MOD realized 

resultant is updated at each stage of the iterations. 

 

 Proof is direct and hence left as an exercise to the reader. 

 

 Let G be the MOD finite complex natural neutrosophic 

number bipartite directed graph with edge weights from C
I
(Z10) 

given by the following figure. 
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Figure 3.10 

 

 The MOD relational or connection matrix M associated with 

G is as follows. 

 

 

M = 
F

F

F

1 2 3 4

C

51
C

6 4i2

C

5i3

4

C
5 2i

R R R R

5 I 0 0 0D

0 6 I 0 0D

I 0 0 0D .

D 0 2 0 4

D 0 0 3 I 0

+

 +

 
+ 

 
 
 
 

+  

 

 

Example 3.22:  Let H be the MOD finite natural neutrosophic 

number complex directed bipartite graph with entries from 

C
I
(Zn) given in the figure. 

 

 Let M1 be the MOD relational connection matrix associated 

with H. 

 

D1 

R1 D2 

D3 

D4 

D5 

R2 

R3 

R4 

5 + C

5
I  

6 + 
F

C

6 4i
I

+
 

F

C

5i
I

2 

4 
3 + 

F

C

2i
I  
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Figure 3.11 

 

 

 

M1 = 

F

F

F

1 2 3 4 5

C

6 2i1

2

C

F 23

F4

C

6i 85

C
6 10i

C
7

F 10

R R R R R

6 I 0 0 0 0D

0 3 0 0 0D

0 4 i I 0 0 0D

0 0 4 8i 0 0D .

0 0 0 2 I 0D

D 0 0 0 0 I

D 0 0 0 0 3 i I

+

+

 +

 
 
 

+ +
 

+ 
 

+ 
 
 
 + + 

 

 

Now if P is a problem in hand and the expert wishes to 

work MOD finite complex number natural neutrosophic 

Relational Maps model using edge weights from C
I
(Z6). 

D1 R1 

6 + 
F

C

6 2iI
+

 

D2 

D3 

R2 

3 

4+iF + C

2I  

D4 

R3 

4+8iF 

D5 

R4 

2+ 
F

C

6i 8I
+

 

D6 

D7 

R5 

F

C

10iI  

3+ iF + C

10I  
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Let G be the MOD directed bipartite graph associated with 

the problem P given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 

 

The MOD finite complex natural neutrosophic relational 

matrix associated with G is as follows:  

 

 

M =  

F

1 2 3 4

1

2

3

C

34

5

F6

c

2i7

R R R R

3 0 0 0D

0 4 0 0D

1 0 0 0D

0 0 I 0D .

0 3 0 0D

0 0 0 2iD

0 0 I 0D

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Let X = {(a1 a2 … a7) / ai ∈ {0, 1}; 1 ≤ i ≤ 7} and  

D1 

D2 

D3 

R1 

R2 

D4 

D5 

D6 

D7 

R3 

R4 

3 

4 

3 C

3I

 

F

C

2iI  

2iF 

1 



130 MOD  Relational Maps Models and MOD Natural … 

 

Y = {(b1 b2 b3 b4) / bi ∈ {0, 1}; 1 ≤ i ≤ 4} be the domain and 

range MOD initial state vector respectively associated with M. 

 

We will find the effect of x = (1 0 0 0 0 0 0) ∈ X on M is as 

follows. 

 

xM = (3 0 0 0) = y1; 

y1M
t
 = (3 0 3 0 0 0 0) = x1; 

x1M = (0 0 0 0) = y2; 

y2M
t
 = (0 0 0 0 0 0 0) = x2. 

 

Thus the MOD realized resultant is a MOD realized fixed 

point given by {(0 0 0 0 0 0 0), (0 0 0 0)}. 

 

Let x = (0 1 0 0 0 0 0) ∈ X; to find the effect of x on M. 

 

xM = (0 4 0 0) = y1; 

y1M
t
 = (0 4 0 0 0 0 0) = x1; 

x1M = (0 4 0 0) = y2 (=y1). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by {(0 4 0 0 0 0 0), (0 4 0 0)}. 

 

Let x = (0 0 1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (1 0 0 0) = y1; 

y1M
t
 = (3 0 1 0 0 0 0) = x1; 

x1M = (4 0 0 0) = y2; 

y2M
t
 = (0 0 4 0 0 0 0) = x2; 

x2M = (4 0 0 0) = y3 (= y2). 

 

Thus the MOD realized resultant is a MOD realized fixed pair 

given by {(0 0 4 0 0 0 0), (4 0 0 0)}. 

 

Let x = (0 0 0 1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 
C

3I  0) = y1; 

y1M
t 
= (0 0 0 

C

3I  0 0 
C

0I ) = x1; 
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x1M = (0 0 
C

3I +
C

0I  0) = y2; 

y2M
t
 = (0 0 0 

C

3I  + 
C

0I  0 0 
C

0I ) = x2; 

x2M = (0 0 
C

3I  + 
C

0I  0) = y3 (= y2). 

 

Thus the MOD realized resultant is MOD realized fixed point 

pair given by {(0 0 0 
C

3I  + 
C

0I  0 0 
C

0I ), (0 0 
C

3I +
C

0I  0)}. 

 

Let x = (0 0 0 0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 3 0 0) = y1; 

y1M
t
 = (0 0 0 0 3 0 0) = x1; 

x1M = (0 3 0 0) = y2; 

y2M
t
 = (0 0 0 0 3 0 0) = x2 (= x1). 

 

The MOD realized resultant is a MOD realized fixed point 

pair given by {(0 0 0 0 3 0 0), (0 3 0 0)}. 

 

Let x = (0 0 0 0 0 1 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0 2iF) = y1; 

y1M
t
 = (0 0 0 0 0 2 0) = x1; 

x1M = (0 0 0 4iF) = y2; 

y2M
t
 = (0 0 0 0 0 4 0) = x2; 

x2M = (0 0 0 4) = y3; 

y3M = (0 0 0 0 0 2iF 0) = x3; 

x3M = (0 0 0 2) = y4; 

y4M
t
 = (0 0 0 0 0 4iF 0) = x4; 

x4M = (0 0 0 4) = y5 (=y3). 

 

Thus the MOD realized resultant is a MOD realized limit 

cycle pair given by {(0 0 0 0 0 2iF 0), (0 0 0 4)}. 

 

Let x = (0 0 0 0 0 0 1) ∈ X, to find the effect of x on M. 

 

xM = (0 0 
F

C

2iI 0) = y1; 

y1M
t
 = (0 0 0 

C

0I  0 0 
C

2I ) = x1; 
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x1M = ( 0 0 
C

0I  + 
F

C

4iI  0) = y2; 

y2M
t
 = (0 0 0 

C

0I  0 0 
C

0I  + 
C

2I ) = x2; 

x2M = (0 0 
C

0I  +
F

C

4iI  0) = y3 (= y2). 

 

Thus the MOD realized resultant is a MOD realized fixed 

point pair given by {(0 0 0  
C

0I  0 0 
C

0I  + 
C

2I ), (0 0 
C

0I  + 
F

C

4iI 0)}. 

 

Let y = (1 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (3 0 1 0 0 0 0) = x1; 

x1M = (4 0 0 0) = y1; 

y1M
t
 = (0 0 4 0 0 0 0) = x2; 

x2M = (4 0 0 0) = y2 (= y1). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by {(0 0 4 0 0 0 0), (4 0 0 0)}. 

 

Y = (0 1 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 4 0 0 3 0 0) = x1; 

x1M = (0 1 0 0) = y1 (=y). 

 

Thus the MOD realized resultant is a MOD special classical 

fixed point pair given by {(0 4 0 0 3 0 0), (0 1 0 0)}. 

 

Let y = (0 0 1 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0 0 0 

C

3I  0 0 
F

C

2iI ) = x1; 

x1M = (0 0 
C

3I  + 
C

2I  0) = y1; 

y1M
t
 = (0 0 0  

C

3I + 
C

0I  0 0 
F

C

4iI + 
C

0I ) = x2; 

x2M = (0 0 
C

3I + 
C

0I + 
C

4I  0) = y2; 

y2M
t
 = (0 0 0 

C

3I + 
C

0I  0 0 
C

0I  + 
F

C

2iI ) = x3; 

x3M = (0 0 
C

3I  + 
C

0I +
C

2I  0) = y3; 

y3M
t
 = (0 0 0 

C

3I + 
C

0I  0 0 
C

0I + 
F

C

4iI ) = x4 (= x2). 
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Thus the MOD realized resultant is MOD limit cycle pair 

given by  

{(0 0 0 
C

3I + 
C

0I  0 0 
C

0I  + 
F

C

4iI ), (0 0 
C

3I  + 
C

2I  0) or  

(0 0 
C

3I  + 
C

0I  + 
C

4I  0) or (0 0 
C

3I  + 
C

0I + 
C

2I  0)}. 

 

Let y = (0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 0 0 0 2iF 0) = x1; 

x1M = (0 0 0 2) = y1; 

y1M
t
 = (0 0 0 0 0 4iF 0) = x2; 

x2M = (0 0 0 4) = y2; 

y2M
t
 = (0 0 0 0 0 2iF 0) = x3 (= x1). 

 

Thus the MOD resultant is a MOD limit cycle pair.  

 

We see we can get various types of MOD resultants and we 

are not in a position to predict anything related with it.  

 

However we leave this study for the reader as it is 

considered to be a matter of routine. 

 

Thus the new MOD finite complex number natural 

neutrosophic Relational Maps model built using C
I
(Zn) has 

several advantageous for in the first place it can give any state 

to the node from C
I
(Zn) depending only on the initial state 

vector. 

 

Secondly one need not use the method of thresholding at 

each stage for mod n takes the role of it.  

 

Certainly this not only saves time but also it has the power 

to stop difference of opinion while fixing the thresholding 

values for that job of thresholding never comes to play any role.  

 

So the nodes can be complex real or natural neutrosophic 

complex or real or zero. 
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Next we proceed onto briefly describe the MOD natural 

neutrosophic dual number bipartite directed graph by examples. 

 

Example 3.23: Let G be the MOD natural neutrosophic dual 

number bipartite directed graph with edge weights from  

〈Z10 ∪ g〉I G is the MOD natural neutrosophic dual number 

bipartite directed graph. 

 

The graph G is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 

 

 

Example 3.24:  Let G be a MOD natural neutrosophic dual 

number bipartite directed graph with edge weights from  

〈Z11 ∪ g〉I given by the following figure. 

 

 

 

 

R1 

D1 

D2 

g

2I

4 

D3 

D4 

R2 

R3 

g

3gI  

6 + g

5I  

g

9gI  

D5 R4 
3 +2g 
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Figure 3.14 

 

 Next we proceed onto describe the notion of MOD natural 

neutrosophic dual number rectangular or relational matrix 

operator [66] by some examples. 

 

 

Example 3.25:  Let  

 

M = 

g g

2g 3g

g

5g

g

0

g

g

2 g I I 4

0 1 0

5 2 g 6 I

I 0 0

1 4 5g

6g I 0 g

 + +

 
 
 + +

 
 
 
 

+  

 

 

D1 
R1 

R2 
D2 

R3 
D3 

 g

10gI  

 g 

 

R4 
D4 

 1+g 

D5 

R6 

R5 

R7 
D6 

g

2gI  

3 + g

5gI  

5 +4g 

g 
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be the MOD natural neutrosophic dual number relational matrix 

with entries from 〈Z7 ∪ I〉I. 

 

 

Example 3.26: Let  

 

 

S = 

g g g

4g g 5g

g g g

8 5 2 4g

g g

0 6g

g I 0 2g 4 0 I 2 0 I 2

I I I 1 0 5g 1 0

9 2g 0 0 1 4g I 0 I

+

 + + + +

 
+ 

 + + 

 

 

 

be the MOD natural neutrosophic dual number relational matrix 

with entries from 〈Z10 ∪ g〉I. 

 

 Now we proceed onto define special type of operations 

using these MOD natural neutrosophic dual number relation 

matrix operator.  

 

Further for some properties about 〈Zn ∪ g〉I please refer [60]. 

 

 X = {(a1 … an) / ai ∈ {0, 1}; 1 ≤ i ≤ n} will be known as the 

MOD initial state vectors of MOD domain space associated with 

the n × m MOD natural neutrosophic dual number relational 

matrix M. 

 

 Y = {(b1 b2 … bn) / bj ∈ {0, 1}; 1 ≤ j ≤ m} is the MOD initial 

state vectors of the MOD range space associated with  

n × m MOD natural  neutrosophic dual number n × n relational 

matrix M. 

 

We give a few of the related operations using X, Y and M 

by some examples. 
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Example 3.27: Let  

 

S = 

g

2g

g

g

3 g 0 I

0 1 0

g 0 0

1 2 I 0

0 0 2

 +

 
 
 
 

+ 
 
 

 

 

be the MOD natural neutrosophic dual number matrix operator 

with entries from 〈Z4 ∪ g〉I. 

 

 Let X = {(a1 a2 a3 a4 a5) / ai ∈ {0, 1}; 1 ≤ i ≤ 5} and  

 

Y = {(b1 b2 b3) / bj ∈ {0, 1}, 1 ≤ i ≤ 3} be the MOD domain and 

range space of initial state vectors associated with S. 

 

 Let x = (1 0 0 0 0) ∈ X, to find the effect of x on S. 

 

  xS = (3 + g 0 g

2gI ) = y1; 

  y1S
t
 = (1 + 2g + 

g

0I  0  3g  3 + g g

2gI ) = x1; 

x1S = (2 + 
g

0I  2 + 2g + g

gI  g

2gI ) = y2; 

y2S
t
 = (2 + 2g + 

g

0I  2 + 2g + g

gI  2g + 
g

0I  2 + g

gI  + 
g

0I  g

2gI )  

            = x2; 

x2S = ( g

gI +
g

0I   2 + 2g + g

gI  + 
g

0I  g

2gI  + 
g

0I ) = y3; 

y3S
t
 = ( g

gI  + 
g

0I  2 + 2g + g

gI  + 
g

0I  g

gI  + 
g

0I  g

gI  +  

g

0I  g

2gI  + 
g

0I ) = x3; 

and so on. 

 

This is the way the MOD realized resultant is obtained after a 

finite number of iterations. 

 

Let x = (0 0 0 1 0) ∈ X. To find the effect of x on S. 
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xS = (1 2 + g

gI  0) = y1; 

y1S
t
 = (3 + g  2 + g

gI   g  1 + 
g

0I  + g

gI   0) = x1; 

x1S = (2 + 2g + 
g

0I  + g

gI   g

gI  + 
g

0I  g

2gI ) = y2; 

y2S
t
 = (2 + 

g

0I  + g

gI   g

gI  + 
g

0I  2g + 
g

0I  + g

gI   2 + 2g + 
g

0I  + 

 g

gI  g

2gI ) = x2; 

x2S = (
g

0I  + g

gI   g

gI  + 
g

0I   g

2gI  + 
g

0I ) = y3; 

y3S
t
 = (

g

0I  + g

gI   
g

0I   + g

gI  
g

0I   + g

gI   
g

0I   + g

gI  g

2gI  + 
g

0I ) = 

y3; 

x3S = (
g

0I  + g

gI   
g

0I   + g

gI  g

2gI  + 
g

0I ) = y4 (=y3). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by {(
g

0I  + g

gI  
g

0I  + g

gI
g

gI  + 
g

0I  
g

0I  + g

gI   g

2gI  + 
g

0I ),  

(
g

0I + g

gI  
g

0I  + g

gI  g

2gI + 
g

0I )}. 

 

Let y = (1 0 0) ∈ Y, to find the effect of y on S. 

 

yS
t
 = (3 + g 0 g 1 0) = x1; 

x1S = (2 + 2g 2 + g

gI  g

2gI ) = y1; 

y1S
t
 = (2 + 2g + 

g

0I   2 + g

gI   2g  2g + g

gI  g

2gI ) = x2; 

x2S = (2 + 2g + 
g

0I  + g

gI   2 + g

gI  + 
g

0I   g

2gI + 
g

0I ) = y2; 

y2S
t
 = (2 + g

gI  + 
g

0I   2 + g

gI  + 
g

0I  2g + 
g

0I  + g

gI  2g + 
g

0I + 

 g

gI  
g

0I  + g

2gI ) = x3; 

 

and so on. 

 

Certainly after a finite number of iterations we arrive at a 

MOD realized resultant. 

 

Let y = (0 0 1) ∈ Y, to find the effect of y on  S. 

 

yS
t
 = ( g

2gI  0 0  0 2)  = x1; 
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x1S = ( g

2gI 0 
g

0I ) = y1; 

y1S
t
 = ( g

2gI  0 g

2gI  g

2gI  
g

0I ) = x2; 

x2S = ( g

2gI g

2gI  + 
g

0I  
g

0I ) = y2; 

y2S
t
 = ( g

2gI  + 
g

0I  g

2gI  + 
g

0I   g

2gI  g

2gI  + 
g

0I  
g

0I ) = x3; 

x3S = ( g

2gI  + 
g

0I   g

2gI  + 
g

0I  g

2gI + 
g

0I ) = y3; 

y3S
t
 = ( g

2gI  + 
g

0I  g

2gI  + 
g

0I  g

2gI  + 
g

0I   g

2gI +
g

0I   g

2gI + 
g

0I )  

= x4; 

x4S = ( g

2gI + 
g

0I  g

2gI  + 
g

0I  g

2gI  +
g

0I ) = y4 (= y3). 

 

Thus the MOD realized resultant is a MOD realized fixed 

point pair given by {(
g

0I  + g

2gI  
g

0I  + g

2gI  
g

0I  + g

2gI  
g

0I  + g

2gI  
g

0I  + 

 g

2gI ), (
g

0I  + g

2gI  
g

0I  + g

2gI  
g

0I  + g

2gI )}. 

 

Let x = (1 0 1 0 1) ∈ X to find the effect of x on M. 

 

xS = (3 + 2g 0 g

2gI + 2) = y1; 

y1S
t
 = (1 + g + g

2gI + 
g

0I   0  3g  3 + 2g g

2gI ) = x1; 

x1S = (
g

0I  + g

2gI + 2 + 2g  2 + g

gI   g

2gI  + 
g

0I ) = y2; 

y2S
t
 = (2 + 

g

0I  + g

2gI  2 + g

gI   2g + 
g

0I   2 + 2g + 
g

0I   

+ g

2gI
g

0I  + g

2gI ) = x2; 

x2S = (
g

0I  + g

2gI  2 + g

gI  +  
g

0I   
g

0I  + g

2gI ) = y3; 

y3S
t
 = (

g

0I  + g

2gI  2 + g

gI  +  
g

0I   
g

0I  + g

2gI  
g

0I  + g

2gI + g

2gI   

g

0I  + g

2gI ) = x3; 

x3S = (
g

0I  + g

2gI + g

gI   2 + g

gI  + 
g

0I   
g

0I  + g

2gI ) = y4; 

y4S
t
 = (

g

0I  + g

2gI + g

gI   
g

0I  + g

gI  + 2 
g

0I  + g

gI  + g

2gI
g

0I  +  

g

gI  + g

2gI  
g

0I  + g

2gI ) = x4; 

 

and so on. 
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We are sure after a finite number of iterations we will arrive 

at a MOD fixed point pair or MOD limit cycle pair. 

 

Next for the MOD initial state vector from the MOD range 

space Y. 

 

We take y = (0 0 1) but follow the operation which updates 

at each stage. 

 

yS
t
 = ( g

2gI 0 0 0 2) = x1; 

x1S → ( g

2gI  0 1) = y1; 

y1S
t
 = ( g

2gI  0 g

2gI  g

2gI  2) = x2; 

x2S → ( g

2gI g

2gI +
g

0I  1) = y2; 

y2S
t
 = ( g

2gI g

2gI  + 
g

0I  g

2gI  g

2gI  + 
g

0I  2) = x3; 

x3S = ( g

2gI  + 
g

0I   g

2gI  + 
g

0I  1) = y3; 

y3S
t
 = ( g

2gI  + 
g

0I   g

2gI  +
g

0I  g

2gI  +
g

0I  g

2gI  +
g

0I   2) = x4; 

x4S → ( g

2gI  +
g

0I  g

2gI  +
g

0I  1) = y4 (=y3). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

    {( g

2gI  +
g

0I  g

2gI  +
g

0I  g

2gI  +
g

0I  g

2gI  +
g

0I  2), ( g

2gI  +
g

0I  g

2gI  +
g

0I  1)}. 

 

Let us illustrate this by one more example. 

 

Example 3.28:  Let  

 

B = 

2 g

2g 4g

g g

g 0

g 2 0 1 I 0 2g I

0 2g 0 0 I 0 I

4 0 2 0 0 0 0

 +

 
 
 
 

 

 

be the MOD natural neutrosophic dual number relational matrix 

operator with entries from 〈Z5 ∪ g〉I. 
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 Let X = {(a1 a2 a3) / ai ∈ {0, 1}, 1 ≤ i ≤ 3} and  

 

Y = {(b1 b2 … b7) / bi ∈ {0,1}; 1 ≤ i ≤ 7} be the MOD 

special initial state vectors domain or range space respectively 

associated with B. 

 

Let XS = {(a1 a2 a3) / ai ∈ 〈Z5 ∪ g〉I; 1 ≤ i ≤ 3} and  

 

YS = {(b1 b2 … b7) / bi ∈ 〈Z5 ∪ g〉I; 1 ≤ i ≤ 7} be the MOD 

special initial state vectors of the domain and range space 

respectively associated with the MOD natural neutrosophic dual 

number matrix B. 

 

Let x = (1 0 0) ∈ X,  

xB = (g + 2  0  1  g

2gI
 
0  2g  g

4gI ) = y1; 

y1B
t
 = (

g

0I  + 4g 
g

0I  4g) = x1; 

x1B = (
g

0I  + 4g 
g

0I  
g

0I  + 2g 
g

0I  + g

2gI  
g

0I  
g

0I  
g

0I ) = y2; 

y2B
t
 = (

g

0I + g

2gI  + 3g 
g

0I  
g

0I ) = x2; 

x2B = (
g

0I  + g

2gI + g 
g

0I  
g

0I  + g

2gI  g

2gI + 
g

0I  
g

0I   

g + 
g

0I  + g

2gI  g

4gI + 
g

0I ) = y3. 

 

Let y = (1 0 0 0 0 0 0) ∈ Y, to find the effect of y on B. 

 

yB
t
 = (g + 2  0  4) = x1; 

x1B = (4g  0  g  g

2gI  0 4g g

4gI ) = y1; 

y1B
t
 = (4g +

g

0I   
g

0I  
 0) = x2; 

x2B = (3g + 
g

0I  
g

0I   4g + 
g

0I   g

2gI  + 
g

0I   
g

0I   
g

0I   
g

0I ) = y2; 

y2B
t
 = (

g

0I   
g

0I  
g

0I ) = x3; 

x3B = (
g

0I  
g

0I  
g

0I   
g

0I   
g

0I  
g

0I  
g

0I ) = y3; 

y3B
t
 = (

g

0I   
g

0I   
g

0I ) = x4 (= x3). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(
g

0I   
g

0I   
g

0I ), (
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I )}. 
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Let us now use the same y = (1 0 0 0 0 0) but use the 

updating procedure and find the MOD resultant on B. 

 

yB
t
 = (g + 2  0  4) = x1; 

x1B → (1 0 g  g

2gI
 
0  4g  g

4gI ) = y1; 

y1B
t
 = (

g

0I + 2g + 2 
g

0I   4 + 2g) = x2; 

x2B → (1 
g

0I  g + 
g

0I  
g

0I  + g

2gI  
g

0I  4g + 
g

0I  g

4gI + 
g

0I ) = y2; 

y2B
t
 = (2g + 2 + 

g

0I   
g

0I  + 
g

0I   4 + 2g + 
g

0I ) = x3; 

x3B → (1 
g

0I  + g

gI  
g

0I  + g g

2gI + 
g

0I  
g

0I  2g g

4gI + 
g

0I ) = y3 

and so on. 

 

We are sure after a finite number of iterations we will arrive 

at a MOD realized fixed point pair or a MOD realized limit cycle 

pair. 

 

Since this work is realized as a matter of routine we leave it 

as an exercise to the reader the task of finding MOD realized 

fixed points by usual method and the method of updating. 

 

Next we study the effect of y = (0 0 0 0 0 1 0) ∈ Y.  

 

yB
t
 = (2g  0  0) = x1; 

x1B → (4g  0  2g g

2gI  0 1 g

4gI ) = y1; 

y1B
t
 = (

g

0I  + 2g 
g

0I  0) = x2; 

x2B → (
g

0I  + 4g 
g

0I  
g

0I  + 2g g

2gI + 
g

0I  
g

0I  1 g

4gI + 
g

0I ) = y2; 

y2B
t
 = (

g

0I +2g  
g

0I  
 

g

0I ) = x3; 

x3B = (4g + 
g

0I  
g

0I  
g

0I  + 2g  
g

0I  + 
g

0I  
g

0I  1 g

4gI  + 
g

0I ) = y3; 

y3B
t
 = (

g

0I  + 2g  
g

0I   
g

0I ) = x4 (=x3). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

{(
g

0I  + 2g
g

0I  
g

0I ), (4g + 
g

0I  
g

0I  
g

0I  + 2g 
g

0I  + g

2gI  
g

0I  1 

 
g

0I  + g

4gI )}. 
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Let x = (
g

0I   0  0) ∈ XS, to find the effect of x on B, 

 

xB = (
g

0I  0 
g

0I
g

0I  0 
g

0I  
g

0I ) =y1; 

y1B
t
 = (

g

0I
g

0I
g

0I ) = x1; 

x1B = (
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I ) = y2; 

y2B
t
 = (

g

0I  
g

0I   
g

0I ) = x2 (=x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(
g

0I
g

0I  
g

0I  
g

0I  
g

0I
g

0I  
g

0I ), (
g

0I
g

0I
g

0I )}. 

 

We make the following observation even if x is updated we 

will get the same MOD resultant. 

 

Let y = (0 0 0 0 0 0 g

gI ) ∈ YS, to find the effect of y on B 

yB
t
 = (

g

0I  
g

0I  
0) = x1; 

x1B → (
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I ) = y1; 

y1B
t
 = (

g

0I  
g

0I  
g

0I ) = x2; 

x2B → (
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I ). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by {(
g

0I  
g

0I  
g

0I ), (
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I  
g

0I )}. 

 

We can work with any of the MOD initial state vectors from 

X or Y or XS or YS. 

 

This is realized as a matter of routine so left as an exercise 

to the reader. 

 

In view of all these the following observation is vital. 

 

THEOREM 3.2: Let S be the MOD natural  neutrosophic dual 

number relational matrix operator M with entries from  

〈Zn ∪ g〉I M is a s × t matrix. 
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Let  X = {(a1 … as) / ai ∈ {0, 1}; 1≤ i ≤ s} and  

 

Y = {(b1 b2 … bt) / bt ∈ {0, 1}, 1 ≤ i ≤ t}  be the MOD initial 

state vectors of the domain and range space respectively 

associated with M. 

 

Let XS = {(a1 … as) / ai ∈  〈Zn ∪ g〉I; 1 ≤ i ≤ s} and  

 

YS = {(b1 b2 … bt) / bj ∈ 〈Zn ∪ g〉I; 1 ≤ j ≤ t} be the MOD 

special initial domain and range space of vectors respectively 

associated with M. 

 

In general if x ∈ X (or Y or YS or XS) we see the MOD 

resultant got using M without updating in general is distinctly 

different from the MOD resultant got using M by updating at 

each stage. 

 

The proof is direct and hence left as an exercise to the 

reader. 

 

Now we make the formal definition of MOD  natural 

neutrosophic dual number Relational Maps model.  

 

Let M = (mij)s×t be the MOD natural neutrosophic dual 

number connection matrix associated MOD natural neutrosophic 

dual number directed bipartite graph. 

 

We see as in case of usual MOD Relational Maps model this 

M will serve as the MOD dynamical system associated with the 

MOD natural neutrosophic dual number Relational Maps model.  

 

This functions analogous to other MOD natural neutrosophic 

Relational Maps models. 

 

The reader is left with the task of constructing such models 

using 〈Zn ∪ g〉I and work with them. 
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Next we proceed onto describe and develop the notion of 

MOD natural neutrosophic special dual like number Relational 

Maps models.  

 

To this end we need first the notion of MOD natural 

neutrosophic special dual like number bipartite directed graphs. 

 

Let G be a MOD directed bipartite graph with entries from 

〈Zn ∪ h〉I. the MOD natural neutrosophic special dual like 

number set then the directed bipartite graph  G as defined as the 

MOD natural neutrosophic special dual like number bipartite 

directed graph. First we will supply some examples. 

 

Example 3.29: Let  G be the MOD natural neutrosophic bipartite 

directed graph with edge weights from 〈Z6 ∪ h〉I. G will known 

as the MOD natural neutrosophic special dual like number 

bipartite directed graph with edge weights from  

〈Z6 ∪ h〉I.  The figure of G is as follows. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.15 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

R8 

D2 

D7 

D6 

D5 

D4 

D3 

D1 

2 
h

2I  + h

2hI  

3h+ h

3I  
h

0I  

h

4I

5h+3 

h

5hI +3+2h 

4 
h

0I + h

3hI  
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Example 3.30:  Let H be the MOD natural neutrosophic bipartite 

graph with edge weights from  〈Z11 ∪ I〉I. Thus H is the MOD 

natural neutrosophic special dual like number directed graph 

given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 

 

 Now we proceed onto describe and develop notion of MOD 

natural neutrosophic special dual like number rectangular 

(relational) matrix by some examples. 

 

Example 3.31: Let  

 

M =

h h

2h h

h

8h

h h

8h 0

h

2

h

4h

h

8

3 h I I 4 0

0 0 4h I

4 I I 0

0 0 I

1 5 3

0 2 I 0

4h 3 9h 1 I

 + + +

 
+ 

 +

 
 
 
 

+ 
 

+ + 

 

 

D1 

3+4h 

D2 

2 

1+h 

5+ h

0I  

D3 

R1 

R2 

R3 

R4 

R5 

R6 

10+ h

0I  
D4 

10 
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be the MOD natural neutrosophic special dual like number 

relational (rectangular) matrix with entries from  〈Z10 ∪ h〉I. 

 

This will also act as the operator. 

 

Example 3.32: Let  

 

S = 

h

3h

h

h

h h h

0 6 0

4h 3 I 0 6 0 8h 7

0 0 2 I 0 5h 3 0 0

1 I 3h 5 0 I 0 I 2

0 0 7 6h 0 4h 0 0

 +

 
+ + 

 + +

 
+  

 

 

be the MOD natural neutrosophic special dual like number 

rectangular matrix operator. 

 

 Now we proceed onto describe special type of operations 

using these MOD natural neutrosophic special dual like number 

rectangular matrix operator.  

 

To this end we need the notion of MOD domain and MOD 

range initial state of vectors. 

 

 Thus if M = (mij) is a s × t (s ≠ t) MOD natural neutrosophic 

special dual like number rectangular matrix operator with 

entries from 〈Zn ∪ h〉I; then X = {(a1 a2 … as) / ai ∈ {0, 1}; 1 ≤ i 

≤ s} and Y = {(b1 b2 … bt) / bj ∈ {0, 1}, 1 ≤ j ≤ t} are the MOD 

natural neutrosophic special domain and range spaces initial 

state vectors respectively associated with M. 

 

 Let XS = {(a1 a2 … as) / ai ∈ 〈Zn ∪ h〉I; 1 ≤ i ≤ s} and  

 

YS = {(b1 b2 … bt) / bj ∈ 〈Zn∪ h〉I 1 ≤ j ≤ t} be the MOD 

domain and range space of special state vectors respectively 

associated with M. 

 

 We will show by examples how operations are carried out. 
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Example 3.33: Let  

 

M = 

h

2

h

4

3 0 0 2h

0 h 0 0

0 0 I 1

0 0 0 2 I

1 2 0 0

0 0 1 0

 
 
 
 
 

+ 
 
 
  

 

 

be the MOD natural neutrosophic special dual like number 

rectangular matrix operator with entries from 〈Z6∪ h〉I. 

 

 Let X = {(a1 a2 … a6) / ai ∈ {0, 1}; 1 ≤ i ≤ 6} and  

 

Y = {(b1 b2 b3 b4) / bj ∈ {0, 1}; 1 ≤ j ≤ 4} be the MOD 

natural neutrosophic dual  like number domain and range space 

respectively of initial state vectors associated with M. 

 

Let x= (1 0 0 0 0  0) ∈ X, the effect of x on M is as follows. 

 

xM = (3 0 0  2h) = y1; 

y1M
t
 = (3 + 4h  0  0  4h + 

h

4I  3 0) = x1; 

x1M = (0 0 0 4h + h

4I ) = y2; 

y2M
t
 = (2h + h

4I  0 4h + h

4I  2h + h

4I  0 0) = x2; 

x2M = ( h

4I 0 h

2I  h

4I ) = y3; 

y3M
t
 = ( h

4I  0 h

4I  h

4I  h

4I  h

2I ) = x4; 

x4M = ( h

4I  h

4I  h

2I h

4I ) = y4; 

y4M
t
 = ( h

4I h

4I h

4I h

4I h

4I  h

2I ) = x5; 

x5M = ( h

4I h

4I  h

2I  h

4I ) = y5 (=y4). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{( h

4I  h

4I  h

4I  h

4I  h

4I  h

2I ), ( h

4I h

4I h

4I h

2I )}. 

 

Let x = (0 1 0 0 0 0 0) ∈ X to find the effect of x on M. 
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xM = (0  h  0  0) = y1; 

y1M
t
 = (0  h  0  0  2h  0) = x1; 

x1M = (2h  3h  0  0) = y2; 

y2M
t
 = (0  3h  0  0  2h  0) = x2; 

x2M = (2h  h  0  0) = y3; 

y3M
t
 = (0  h  0  0  4h  0) = x3; 

x3M = (4h  3h  0  0) = y4; 

y4M
t
 = (0  3h  0  0  4h  0) = x4; 

x4M = (4h  5h  0  0) = y5; 

y5M
t
 = (0  5h  0  0  2h  0) = x5; 

x5M = (2h  3h  0  0) = y6; 

y6M
t
 = (0  3h  0  0  2h  0) = x6; 

x6M = (2h  h  0  0) = y7; 

y7M
t
 = (0  h  0  0  4h  0) = x7 (= x3). 

 

Thus the MOD realized resultant is a MOD limit cycle pair 

given by {(0 h 0 0 4 h 0), (4h 3h 0 0)}. 

 

Let x = (0 0 1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 h

2I  1) = y1; 

y1M
t
 = (0 0 h

4I + 1 2 + h

4I  0 h

2I ) = x1; 

x1M = (0 0 h

2I  h

4I  + 5) = y2; 

y2M
t
 = (4h + h

4I  0 h

4I  + 5 4 + h

4I  0 h

2I ) = y2; 

y2M
t
 = ( h

4I + 2h 0 h

2I + 4 + h

4I  2 + h

4I  4h + h

4I  h

4I + 5)  

= x2; 

x2M = ( h

4I + 4h 2h + h

4I  5 + h

4I  + h

2I  h

4I + 4 + h

2I ) = y3; 

and so on. 

 

We are sure that certainly after a finite number of iterations 

we will arrive at a MOD fixed point pair or a MOD limit cycle 

pair. 

 

Let x = (0 0 0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0 2 + h

4I ) = y1; 

y1M
t
 = (4h + h

4I  
0  2 + h

4I  4 + h

4I  0 0) = x1; 
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x1M = ( h

4I 0 h

2I  2 + 2h + h

4I ) = y2; 

y2M
t
 = ( h

4I + 2h 0 h

4I + 2 + 2h 4 + 4h + h

4I  h

4I  h

2I ) = x2; 

x2M = ( h

4I h

4I h

2I h

4I + 2 + 2h) = y3; 

y3M
t
 = ( h

4I  + 2h h

4I  h

4I + 2 + 2h  4 + 4h + h

4I  h

4I  h

2I ) 

 = x3; 

x3M = ( h

4I h

4I  h

2I  4 + 2h + h

4I ) = y4; 

y4M
t
 = ( h

4I h

4I h

4I  + 4 + 2h  2 + 4h + h

4I  h

4I h

2I ) = x4; 

x4M = ( h

4I h

4I  h

2I  h

4I  + 2 + 4h) = y5; 

y5M
t
 = ( h

4I h

4I h

4I + 2 + 4h h

4I + 4 + 2h h

4I  h

2I ) = x5 (=x4). 

 

Thus the MOD resultant is a MOD fixed point pair or a MOD 

limit cycle pair which we are sure to get after a finite number of 

iterations. 

 

Let y = (1  0  0  0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (3  0  0  0  1  0) = x1; 

x1M = (4  2  0  0) = y1; 

y1M
t
 = (0  2h  0  0  2  0) = x2; 

x2M = (2  2h + 4  0  0) = y2; 

y2M
t
 = (0  0  0  0  4 + 4h  0) = x3; 

x3M = (4 + 4h  2 + 2h  0  0) = y3; 

y3M
t
 = (0  4h  0  0  2 + 2h  0) = x4; 

x4M = (2 + 2h  4 + 2h  0  0) = y4; 

y4M
t
 = (0  0  0  0  4  0) = x5; 

x5M = (4  2  0  0) = y5; 

y5M
t
 = (0  2h  0  0  2  0) = x6; 

x6M = (2  0  0  0) = y6; 

y6M
t
 = (0  0  0  0  2  0) = x7; 

x7M = (2  4  0  0) = y7; 

y7M
t
 = (0  4h  0  0  4h  0) = x8; 

x8M = (4h  0  0  0) = y8; 

y8M
t
 = (0  0  0  0  4h  0) = x9; 

x9M = (4h  2h  0  0) = y9; 

y9M
t
 = (0  2h  0  0  2h  0) = x10; 

x10M = (2h  0  0  0) = y10; 

y10M
t
 = (0  0  0  0  2h  0) = x11; 
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x11M = (2h  4h  0  0) = y11; 

y11M
t
 = (0  4h  0  0  4h  0) = x9 (=x8). 

 

Thus the MOD resultant is a MOD limit cycle pair given by 

{(0  4h  0  0  4h  0), (4h  0  0  0)}. 

 

Let y = (0 1 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0  h  0  0  2  0) = x1; 

x1M = (2  4 + h  0  0) = y1; 

y1M
t
 = (0  5h  0  0  4 + 2h  0) = x2; 

x2M = (4 + 2h  2 + 3h  0  0) = y2; 

y2M
t
 = (0  5h  0  0  2  0) = x3; 

x3M = (2  5h + 4  0  0) = y3; 

y3M
t
 = (0  3h  0  0  4 + 4h  0) = x4; 

x4M = (4 + 4h  5h + 2  0  0) = y4; 

y4M
t
 = (0  h  0  0  2h + 2  0) = x5; 

x5M = (2h + 2  5h + 4  0  0) = y5; 

y5M
t
 = (0  3h  0  0  4  0) = x6; 

x6M = (4  3h + 2  0  0) = y6; 

y6M
t
 = (0  5h  0  0  2  0) = x7 (= x3). 

 

Thus the MOD resultant is a MOD limit cycle pair given by  

   {(0  5h  0  0  2  0), (2  5h + 4  0  0)}. 

 

Let y = (0 0 1 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0 0 h

2I 0 0 1) = x1; 

x1M = (0 0 h

4I  + 1 h

2I ) = y1; 

y1M
t
 = ( h

2I  0 h

2I  h

2I  0 1 + h

4I ) = x2; 

x2M = ( h

2I  0 h

4I  + 1 h

2I ) = y2; 

y2M
t
 = ( h

2I  0 h

2I  h

2I  h

2I  1 + h

4I ) = x3; 

x3M = ( h

2I h

2I  1 + h

4I  h

2I ) = y3; 

y3M
t
 = ( h

2I h

2I h

2I h

2I h

2I  1 + h

4I ) = x4; 

x4M = ( h

2I h

2I  1 + h

4I  + h

2I  h

2I ) = y4; 

y4M
t
 = ( h

2I  
h

2I  
h

2I  
h

2I  
h

2I  
h

2I  + h

4I + 1) = x5; 
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x5M = ( h

2I h

2I 1 + h

2I  + h

4I  h

2I ) = y5 (= y4). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{( h

2I h

2I  h

2I h

2I  h

2I  h

2I  + h

4I +1), ( h

2I h

2I  1 + h

2I  + h

4I  h

2I )}. 

 

Let y = (0 0 0 1) ∈ Y to find the effect of y on M. 

 

yM
t
 = (2h 0 1 2 + h

4I  0 0) = x1; 

x1M = (0 0 h

2I  5 + h

4I  + 4h) = y1; 

y1M
t
 = ( h

4I  0 h

2I  + 4h + 5 h

4I ) = x2; 

x2M = ( h

0I   0 h

2I + h

4I   h

4I  h

4I  
+ h

2I +4h+5) = y2 and so 

on. 

 

We are sure to arrive at a MOD fixed point pair or a MOD 

limit cycle pair after a finite number of iterations. 

 

Example 3.34: Let  

 

S = 

h h

2 5

h

0

0 3 I 0 6 I 1

h 0 0 4 0 0 0

0 0 0 0 0 0 I

 
 
 
 
 

 

 

be the MOD natural neutrosophic special dual like number 

relational matrix operator with entries from 〈Z10 ∪ h〉I. 

 

Let X = {(a  b  c) / a, b, c ∈ {0, 1}} and  

 

Y = ({a1
 
a2, … a7) / ai ∈ {0, 1}; 1 ≤ i ≤ 7} be the MOD 

domain and MOD range space of initial state vectors associated 

with S. 

 

Let x = (1  0  0) ∈ X to find the effect of x on  S. 

 

xS = (0 3 h

2I  0 6 h

5I  1) =  y1; 

y1S
t
 = (6 + h

4I  + h

5I  0 h

0I ) = x1; 
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x1S = (0 8 + h

4I  + h

5I   h

2I + h

0I + h

8I  
0  8 + h

4I  + h

5I  h

5I  +  
h

0I  6 + h

4I + h

5I ) = y1; 

y1S
t
 = (8 + h

4I  + h

5I  + h

0I  + h

6I  0 h

0I ) = x2; 

x2S = (0 4 + h

4I  + h

5I + h

0I  + h

6I  0 h

0I ) = x2; 

x2S = (0 4 + h

4I  + h

5I + h

6I + h

0I   h

2I + h

8I + h

0I 0 8 + h

4I + 

 h

5I + h

0I + h

6I  h

5I + h

0I  8 + h

4I + h

5I  + h

0I  + h

6I ) = y2; 

 

and so on.   

 

However we are sure after a finite number of iterations we 

are sure to arrive at a MOD fixed point pair or MOD limit cycle 

pair. 

 

Let x = (0 1 0) ∈ X to find the effect of x on S. 

 

xS = (1  0  0  4  0  0  0) = y1; 

y1S
t
 = (0  h + 6  0) = x1; 

x1S = (7h  0  0  4 + 4h  0  0  0) = y2; 

y2S
t
 = (0  6 + 3h  0) = x3; 

x3S = (5h  0  0  6 + 4h   0  0  0) = y3; 

y3S
t
 = (0  4 + h  0) = x4; 

x4S = (5h  0  0  6 + 5h  0  0  0) = y4 (= y3). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 4 + h 0), (5h  0  0  6 + 4h  0  0  0)}. 

 

Let x = (0 0 1) ∈ X, to find the effect of x on S. 

 

xS = (0 0 0 0 0 0 h

0I ) = y1; 

y1S
t
 = ( h

0I  0 h

0I ) = x1; 

x1S = (0 h

0I h

0I  
0 h

0I  h

0I  h

0I ) = y2; 

y2S
t
 = ( h

0I  0 h

0I ) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given   

by {( h

0I  0 h

0I ), (0 h

0I  h

0I  0 h

0I   h

0I   h

0I )}. 
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Let y = (0 0 0 0 0 1 0) ∈ Y to find the effect of y on S. 

 

yS
t
 = ( h

5I  0 0) = x1; 

x1S = (0 h

5I  h

0I  0 h

5I  h

5I  h

5I ) = y1; 

y1S
t
 = ( h

5I  + h

0I  0 h

0I ) = x2; 

x2S = (0 h

5I  + h

0I  h

0I  0 h

5I  + h

0I  h

5I  + h

0I  h

5I  + h

0I ) = y2; 

y2S
t
 = ( h

5I + h

5I  0 h

0I ) = x3 (=x2). 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{( h

0I  + h

5I  0 h

0I ), (0 h

5I  + h

0I  h

0I  0 h

5I  + h

0I   h

5I  + h

0I   
h

5I  + h

0I )}. 

 

Let y = (0 0 0 1 0 0 0) ∈ Y, to find the effect of y on S. 

 

yS
t
 = (0  4  0) = x1; 

x1S = (4h  0  0  6  0  0  0) = y1; 

y1S
t
 = (0  4 + 4h  0) = x2; 

x2S = (8h  0  0  6 + 6h  0  0  0) = y2; 

y2S
t
 = (0  4 + 2h  0) = x3; 

x3S = (6h  0  0  6 + 8h  0  0  0) = y3; 

y3S
t
 = (0  8h + 4  0) = x4; 

x4S = (2h  0  0  6 + 2h  0  0  0) = y4; 

y4S
t 
= (0  4  0) = x5 (x1). 

 

Thus the MOD realized resultant is a MOD limit cycle pair 

given  by {(0 4 0), (4h 0 0 6 0 0 0)}. 

 

Thus we may arrive at a MOD limit cycle pair or MOD fixed 

point pair, but we are sure to arrive at a MOD resultant after a 

finite number of iterations. 

 

Now we proceed onto briefly describe the MOD natural 

neutrosophic special dual like number Relational Maps model. 

 

Let P be a problem in hand and suppose the expert wishes to 

work using MOD relational map model. He / She has feeling that 

the problem is very vague so it is full of indeterminates of very 
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different types like zero indeterminate (or zero neutrosophic 

number), zero divisor indeterminate, idempotents indeterminate 

and nilpotent indeterminate. Here the term indeterminate is used 

analogous to neutrosophic so uses entries from  〈Zn ∪ h〉I. He / 

She gives the MOD natural  neutrosophic special quasi dual 

number directed bipartite graph  G with D1, D2, …, Dm as 

domain  nodes of the problem and nodes of the problem and R1, 

R2 …, Rs as the range nodes of the problem with edge weight 

from 〈Zn ∪ h〉I. 

 

Let M = (eij) be the m × s connection (relational) matrix 

associated with G. That is M is the MOD natural neutrosophic 

special dual like number relational matrix. M is defined as the 

MOD dynamical system of the MOD natural  neutrosophic special 

dual like number Relational Maps model. 

 

We will illustrate this by a simple example. 

 

Example 3.35: Let P be the problem at hand D1, D2, D3, D4, D5, 

D6 are the domain nodes associated with the problem and R1, 

R2, R3 and the range nodes of the  problem P. The expert wishes 

to work with the problem with edge weights from 〈Z4 ∪ h〉I. 

 

 Let G be the MOD natural neutrosophic special dual like 

number bipartite directed graph given in the following Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 

G = 

D1 

D2 

D3 

D4 

D5 

D6 

R1 

R2 

R2 

2 

h

0I  

2h 
1 

2h 

h

2I  

1 
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Let M be the MOD natural neutrosophic special dual like 

number relational matrix associated  with G. 

 

 

M = 

1 2 3

1

h

2 0

3

4

5

h

6 2

R R R

D 2 0 0

D 0 I 0

D 0 1 0
.

D 0 0 2h

D 0 2h 0

D 0 0 I

 
 
 
 
 
 
 
 
    

 

Let X = {(x1 x2 … x6) / xi ∈ {0, 1}; 1 ≤ i ≤ 6} and  

 

Y = {(y1 y2 y3) / yi ∈ {0, 1}; 1 ≤ i  ≤ 3)} be the MOD initial 

state vectors of the domain and range space respectively 

associated with M. 

 

Let x = (1 0 0 0 0 0) ∈ X. The effect of x on M; 

 

xM = (2 0 0) = y1; 

y1M
t 
= (0 0 0 0 0 0) = x1; 

x1M = (0  0  0). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 0 0), (0 0 0)} 

 

Let x = (0 1 0 0 0 0) ∈ X to find the effect of x on M. 

 

xM = (0 h

hI  0) = y1; 

y1M
t
 = (0 h

hI  h

hI  0 h

hI  0) = x1; 

x1M = (0 h

hI  0) = x2 (= x1). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by {(0 h

hI  0), (0 h

hI  h

hI  0 h

hI  0)}. 
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Let x = (0 0 1) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0 2h 0 3) = y1; 

y1M
t
 = (0 0 1) = x2 (=x1). 

 

Thus the MOD realized resultant is a MOD special classical 

fixed point pair given by {(0 0 1), (0 0 0 2h 0 3)}. 

 

Let y = (1 0 0 0 0 0) ∈ Y; to find the effect of y on M. 

 

yM
t
 = (2  0  0) = x1; 

x1M = (0  0  0  0  0  0) = y1; 

y1M
t
 = (0  0  0) = x2; 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0  0  0), (0  0  0  0  0  0)}. 

 

Let y = (0 1 0 0 0 0)  ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 h

hI  0) = x1; 

x1M = (0 h

hI  h

hI  0 h

hI 0) = y1; 

y1M
t
 = (0 h

hI  0) = x2 (=x1). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by {(0 h

hI  0), (0 h

hI  h

hI  0 h

hI  0)}. 

 

Let y = (0 0 1 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 1 0) = x1; 

x1M = (0 h

hI   1  0  2 h  0) = y1; 

y1M
t
 = (0 h

hI + 1 0) = x2; 

x2M = (0 h

hI  1 + h

hI  0 2h + h

hI  0) = y2; 

y2M
t
 = (0 h

hI + 1 0) = x3 (= x2). 
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Thus the MOD resultant is a MOD fixed point pair given by  

{(0 1 + h

hI  0), (0 h

hI  1 + h

hI  0 2h + h

hI  0)}. 

 

Let y = (0 0 0 1 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0 0 2h) = x1; 

x1M = (0 0 0 0 0 2h) = y1; 

y1M
t
 = (0 0 2h) = x2 (=x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 2h), (0 0 0 0 0 2h)}. 

 

Let y = (0 0 0 0 1 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 2 h 0) = x1; 

x1M = (0 h

hI  2h 0 0 0) = y1; 

y1M
t
 = (0 h

hI  0) = x2; 

x2M = (0 h

hI  h

hI 0 h

hI  0) = y2; 

y2M
t
 = (0 h

hI  0) = x3 (=x2). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

{(0 h

hI  0), (0 h

hI  h

hI 0 h

hI  0)}. 

 

Let y = (0 0 0 0 0 1) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0 0 3) = x1; 

x1M = (0 0 0 2h 0 1) = y1; 

y1M
t
 = (0  0  3) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0  0  3), (0  0  0  2h  0  1)}. 

 

From the MOD resultant we make the following 

observations. 
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i) This new model will give the MOD resultant after a 

finite number of iterations. 

 

ii) The MOD resultant can give values like reals from 

Zn or special dual like numbers of the form a + bh 

or natural neutrosophic numbers of the form h

tI ;  

t ∈ 〈Zn ∪ h〉 is an idempotent or a nilpotent or a 

zero divisor in 〈Zn ∪ h〉.   
 

So this sort of getting different values for the nodes 

depending on the MOD initial state vector from X or 

Y is very different from the usual FRMs and 

NRMs. 

 

 

Hence this is the special feature enjoyed by the MOD natural 

neutrosophic special dual like number Relational Maps model. 

 

Deriving other properties of these models is a matter of 

routine so is left as an exercise to the reader. 

 

Next we proceed onto describe the MOD natural 

neutrosophic special quasi dual number Relational Maps model 

using 〈Zn ∪ k〉I.   

 

For more about 〈Zn ∪ k〉I please refer [60].   

 

To this end one needs the notion of MOD natural 

neutrosophic special quasi dual number bipartite directed graphs 

and rectangular or relational matrices which will be described 

by examples. 

 

 

Example 3.36: Let G be a MOD directed bipartite graph with 

edge weights from 〈Z5 ∪ k〉I that is G is the MOD natural 
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neutrosophic special quasi dual number directed bipartite graph 

with edge weights from 〈Z5 ∪ h〉I given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 

 

 

 

Example 3.37:  Let H be the MOD natural neutrosophic special 

quasi dual number directed bipartite graph with edge weights 

from 〈Z10 ∪ k〉I given by the following figure. 

 

 

 

 

 

D1 
R1 

D2 
R2 

D3 

D4 

D5 

D6 

R3 

R4 

R5 

3 

h

3hI  

1 
5h+1 

h

0I  

2+3h+ h

4hI  
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Figure 3.19 

 

 Next we proceed onto describe the MOD natural 

neutrosophic special quasi dual number rectangular (relational) 

matrix.  

 

These will also be defined or called as MOD natural 

neutrosophic special quasi dual number relational (rectangular 

matrix operator) [66]. 

 

 

Example 3.38: Let  

 

 

M = 

k

2k

k

0

k

2 5k

3 0 4k 2 0 I 0 1

0 I 5 0 5 0 6k 2 0

1 0 0 I 1 0 0

0 1 6 0 2 0 4

+

 +

 
+ + 

 
 
  

 

 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

D4 

D3 

D2 

D1 

5 

k

0I  
4k+ k

2kI  

4+2k 
k

4I  

5k 

3 

3k 1 



162 MOD  Relational Maps Models and MOD Natural … 

 

be the MOD natural neutrosophic special quasi dual number 

relational (rectangular) matrix with entries from 〈Z8 ∪ k〉I. 

 

 

Example 3.39: Let  

 

P = 

k

3

k

0

k

k

k

3k

k

5k 1

0 4k I 0

5k 0 7k I

0 I 0

1 2 3

0 0 4k

I 2 0

0 0 I
+

 +

 
+ 

 
 
 
 
 
 
 
 

 

 

 

be the MOD natural neutrosophic special quasi dual number 

rectangular (or relational) matrix with entries from 〈Z9 ∪ k〉I. 

 

Hence if M = (mij)s×t be a MOD rectangular matrix (s ≠ t) 

with entries from 〈Zn ∪ k〉I that is mij ∈ 〈Zn ∪ k〉I then M will be 

known as the MOD natural  neutrosophic special quasi dual 

number relational (rectangular) matrix operator [66]. 

 

We will be defining only some special type of operations on 

M or using M. 

 

To this end let D = {(x1 … xs) / xi ∈ {0, 1}; 1 ≤ i ≤ s} and  

 

R = {(y1, y2 … yt) / yj ∈ {0, 1}; 1 ≤ i ≤ t} be the MOD 

natural neutrosophic special quasi dual number initial domain 

and range space of state vectors associated with M.  

 

So with each MOD natural neutrosophic quasi dual  number 

matrix rectangular operator. 

 

We will illustrate the special type of operations on these 

matrices by examples [66]. 
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Example 3.40: Let  

 

 

M = 

k

0

k

2

k

2

0 2 0

1 0 0

0 0 I

1 k 0 0

0 I 0

0 0 1 I

 
 
 
 
 

+ 
 
 

+  

 

 

 

be the MOD natural neutrosophic quasi dual number relational 

matrix with entries from 〈Z4 ∪ k〉I. 

 

 Let X = {(a1 a2 … a6) / ai ∈ {0, 1}, 1 ≤ i ≤ 6} and  

 

Y = {(a  b  c) / a, b, c ∈ {0, 1}} be the MOD domain and 

MOD range space of initial state vectors associated with M. 

 

 Let x = (1 0 0 0 0 0) ∈ X to find the effect of x on M. 

 

xM = (0  2  0) = y1; 

y1M
t
 = (0  0  0  0  k

2I  
0) = x1; 

x1M = (0  k

0I  
0) = y2; 

y2M
t
 = ( k

0I   0  0  0  k

0I  
0) = x2; 

x2M = (0  k

0I   0) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {( k

0I   0  0  0  k

0I   0), (0  k

0I   0)}. 

 

Let x = (0 1 0 0 0 0) ∈ X, to find the effect of x on M. 
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xM = (1  0  0) = y1; 

y1M
t
 = (0  1  0  1 + k  0  0) = x1; 

x1M = (2 + k  0  0) = y2; 

y2M
t
 = (0  2 + k  0  2 + 2k  0  0) = x2; 

x2M = (3k  0  0) = y3; 

y3M
t
 = (0  3k  0  0  0  0) = x3; 

x3M = (3k  0  0) = y4 (= y3). 

 

 

Thus the MOD resultant is a MOD realized fixed point pair 

give by {(0  3k  0  0  0  0), (3k  0  0)}. 

 

We see the on state of the 2
nd

 node leads to the value of the 

2
nd

 node to be 3k and that of first node in the range of nodes to 

be also 3k. 

 

The earlier resultant gives the nodes value as natural 

neutrosophic numbers. 

 

Let y = (1  0  0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0  1  0  1 + k  0  0) = x1; 

x1M = (2 +k  0  0) = y1; 

y1M
t
 = (0  2 + k  0  2 + 2k  0  0) = x2; 

x2M = (3k  0  0) = y2; 

y2M
t
 = (0  3k  0  0  0  0) = x3; 

x3M = (3k  0  0) = y3 (= y2). 

 

Thus the MOD resultant is a fixed point pair given by  

{(0 3k 0 0 0 0), (3k 0 0)}. 
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Let y = (0  1  0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (2  0  0  0  k

2I  
0) = x1; 

x1M = (0  k

0I  0) = y1; 

y1M
t
 = ( k

0I  
0  0  0  k

0I  0) = x2; 

x2M = (0  k

0I  
0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{( k

0I  0 0 0 k

0I  0), (0 k

0I  0)}. 

 

Let y = (0  0  1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 k

0I 0 0 1 + k

2I ) = x1; 

x1M = (0 0 k

0I + 1 + k

2I ) = y1; 

y1M
t
 = (0 0 k

0I  0 0 1 + k

0I  + k

2I ) = x2; 

x2M = (0 0 1 + k

0I + k

2I ) = y2 (=y1). 

 

Thus the MOD resultant  is a MOD fixed point pair given by  

{(0 0 k

0I 0 0 1 + k

0I  + k

2I ), (0 0 1 + k

0I  + k

2I )}. 

 

Let x = (0 0 0 0 1 0) ∈ X to find the effect of x on M. 

 

xM = (0  k

2I  
0) = y1; 

y1M
t
 = ( k

2I  0 0 0 k

0I  0) = x1; 

x1M = (0 k

2I  + k

0I  0) = y2; 

y2M
t
 = ( k

2I + k

0I  0 0 0 k

0I 0) = x2; 

x2M = (0 k

2I + k

0I  0) = y3 (= y2). 

 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{( k

2I  + k

0I  0 0 0 k

0I  0), (0 k

2I + k

0I  0)}. 
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Hence the interested reader can work with any of the initial 

state vectors and arrive at a MOD resultant. 

 

Based on this working we proceed onto describe and 

develop the MOD natural neutrosophic special quasi dual 

number Relational Maps model. 

 

Let P be a problem in hand. Let the expert work with the 

problem using MOD natural neutrosophic special quasi dual 

number Relational Maps model. 

 

Let G be the MOD natural neutrosophic special quasi dual 

number directed bipartite graph with edge weights from  

〈Z9 ∪ k〉I which is given in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 
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Let M be the MOD natural neutrosophic special quasi dual  

number relational matrix associated with G. 

 

 

M = 

1 2 3 4 5 6

1

2

3

4

5

k

6 6k

k

7 0

k

8 3

R R R R R R

D 3 0 0 0 0 0

D 0 3k 0 0 0 0

D 0 4 k 0 0 0 0

D 0 0 6 0 0 0
.

D 0 0 0 3 3k 0 0

D 0 0 0 1 I 0 0

D 0 0 0 0 I 0

D 0 0 0 0 0 I

 
 
 
 +

 
 
 +

 
+ 

 
 
  

 

 

 

Let X = {(a1 a2 … a8) / ai ∈ {0, 1}; 1 ≤ i ≤ 8} and  

 

Y = {(b1 b2 … b6) / bj ∈ {0, 1}; 1 ≤ i ≤ 6} be the MOD initial 

state vectors of the MOD domain space and MOD range space 

respectively.  

 

M serves as the MOD natural neutrosophic special quasi dual 

number Relational Maps models dynamical system. 

 

Let x = (1 0 0 0 0 0 0 0) ∈ X; to find the effect of x on M. 

 

xM = (3 0 0 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 0) = x1; 

x1M = (0 0 0 0 0 0). 

 

Thus the MOD resultant is MOD realized fixed point pair 

given by {(0 0 0 0 0 0 0 0), (0 0 0 0 0 0)}. 

 

Let us now define the operation of updating for the same x. 

The effect of x on M is 
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xM = (3 0 0 0 0 0) = y1; 

y1M
t
 = (1 0 0 0 0 0 0 0) = x1 (=x1). 

 

Thus the MOD resultant is MOD special classical fixed point 

pair given by {(1 0 0 0 0 0 0 0), (3 0 0 0 0 0)}. 

 

Let x = (0 1 0 0 0 0 0 0) ∈ X, to the effect of x on M. 

 

xM = (0 3k 0 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 0) = x1; 

x1M = (0 0 0 0 0 0). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 0 0 0 0), (0 0 0 0 0 0)}.  

 

If for the same x we perform the updating operation then we 

see  

 

xM = (0 3k 0 0 0 0) = y1; 

y1M
t
 → (0 1 0 0 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant in this case is also a MOD special 

classical fixed point pair given  by  

{(0 1 0 0 0 0 0 0), (0 3k 0 0 0 0)}. 

 

Let x = (0 0 1 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 4 + k 0 0 0 0) = y1; 

y1M
t
 = (0 0 7 + 7k 0 0 0 0 0) = x1; 

x1M = (0 1 + k 0 0 0 0) = y2; 

y2M
t
 = (0 0 4 + 4k 0 0 0 0 0) = x2; 

x2M = (0 7 + 7k 0 0 0 0) = y3; 

y3M
t
 = (0 0 1  + k 0 0 0 0 0) = x3; 

x3M = (0 4 + 4k 0 0 0 0) = y4; 

y4M
t
 = (0 0 7 + 7k 0 0 0 0 0) = x4 (= x1). 
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Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 7 + 7k 0 0 0 0 0), (0 4 + 4k 0 0 0 0 0)}. 

 

We study the effect of x = (0 0 0 1 0 0 0 0) ∈ X on M. 

 

xM = (0 0 6 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 0) = x1; 

x1M = (0 0 0 0 0 0) = y2. 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 0 0 0 0 0 0 0), (0 0 0 0 0 0)}. 

 

Let x = (0 0 0 0 1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 6 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 0) = x1; 

x1M = (0 0 0 0 0 0) = y2. 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 0 0 0 0 0 0 0), (0 0 0 0 0 0)} 

 

Let x = (0 0 0 0 1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0 3 + 3k 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 0) = x1; 

xM = (0 0 0 0 0 0) = y2. 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 0 0 0 0 0 0 0), (0 0 0 0 0 0)}. 

 

Now we study the effect of x = (0 0 0 0 1 0 0 0) ∈ X on the 

M using the operation of updating. 

 

xM = (0 0 0 3 + 3k 0 0) = y1; 

y1M
t
 → (0 0 0 0 1 0 0 0) = x1 (= x1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(0 0 0 0 1 0 0 0), (0 0 0 3 + 3k 0 0)}. 
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Let x = (0 0 0 0 0 1 0 0) ∈ X, the effect of x on M is 

xM = (0 0 0 1 + k

6kI 0 0) = y1; 

y1M
t
 = (0 0 0 0 3k + 3 + k

6kI , 1 + k

0I  + k

6kI  0 0) = x1; 

x1M = (0 0 0 k

6kI  + 1 + k

0I , 0 0) = y2; 

y2M
t
 = (0 0 0 0 3 + 3k + k

6kI  + k

0I , 1 + k

6kI  + k

0I  0 0)  

= x2; 

x2M = (0 0 0 k

6kI + k

0I  + 1 0 0) ; 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 3 + 3k + k

6kI  + k

0I  1 + k

6kI  + k

0I  0 0), (0 0 0 k

6kI  + k

0I  +  

           1 0 0)}. 

 

Even if updating is done at each stage we would arrive only 

at this MOD resultant which is not different from the other 

operations. 

 

Let x = (0 0 0 0 0 0 1 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0 0 k

0I  0) = y1; 

y1M
t
 = (0 0 0 0 0 0 k

0I  0)  = x1; 

x1M = (0 0 0 0 k

0I 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 0 0 0 0 0 k

0I 0), (0 0 0 0 k

0I 0)}. 

 

Even with updating operation we get the same MOD 

resultant. 

 

Let y = (1 0 0 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (3 0 0 0 0 0 0 0) = x1; 

x1M = (0 0 0 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 0) = x2; 

 

 



MOD Natural Neutrosophic Relational Maps …  171 

 

 

 

 

 

 

 

 

Thus the MOD resultant is a MOD fixed point pair given  by 

{(0 0 0 0 0 0 0 0), (0 0 0 0 0 0)}. 

 

Suppose for the same y = (1 0 0 0 0 0) ∈ Y we do get the 

resultant by performing the operation of updating. 

 

Let y = (1 0 0 0 0 0) ∈ Y the effect of y on M. 

 

yM
t
 = (3 0 0 0 0 0 0 0) = x1; 

x1M → (1 0 0 0 0 0) = y1 (= y1). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by {(3 0 0 0 0 0 0 0), (1 0 0 0 0 0)}. 

 

Let y = (0 1 0 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0 3k 4 + k 0 0 0 0 0) = x1; 

x1M = (0 7 + 7k 0 0 0 0) = y1; 

y2M
t
 = (0 0 1 + k 0 0 0 0 0) = x2; 

x2M = (0 4 + 4k 0 0 0 0) = y2; 

y2M
t
 = (0 0 7 + 7k 0 0 0 0 0) = x3; 

x3M = (0 1 + k 0 0 0 0) = y3; 

y3M
t
 = (0 0 4 + 4k 0 0 0 0 0) = x4; 

x4M = (0 7 + 7k 0 0 0 0) = y4 (= y1). 

 

Thus the MOD resultant is a MOD limit cycle pair given by  

  {(0 0 7 + 7k 0 0 0 0 0), (0 7 + 7k 0 0 0 0)}. 

 

Hence even with the updating operation at each stage we 

will arrive at the same MOD resultant. 

 

Let y = (0 0 1 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0 0 0 6 0 0 0 0) = x1; 

x1M = (0 0 0 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 0) = x2; 
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Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 0 0 0 0), (0 0 0 0 0 0)}. 

 

Let us now do the updating operation on the same  

y = (0 0 1 0 0 0) ∈ Y 

 

The effect of y on M is 

 

yM
t
 = (0 0 0 6 0 0 0 0) = x1; 

x1M = (0 0 1 0 0 0) = y1 (= y1). 

 

Thus the MOD resultant is MOD classical special fixed point 

pair given by {(0 0 0 6 0 0 0 0), (0 0 1 0 0 0)}. 

 

This is different from the other resultant. 

 

Let y = (0 0 0 1 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 0 0 3 + 3k 1 + k

6kI  0 0 ) = x1; 

x1M = (0 0 0 1 + k

6kI  + k

0I  0 0) = y1; 

y1M
t
 = (0 0 0 0 3 + 3k + k

6kI + k

0I  1+ k

6kI  + k

0I  0 0) = x2; 

x2M = (0 0 0 k

6kI  + k

0I  1 0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 0 0 3 + 3k + k

6kI + k

0I  k

6kI  + k

0I  + 1 0 0), (0 0 0 k

6kI  +  
k

0I + 1 0 0)}. 

 

 

Let y1 = (0 0 0 0 1 0) ∈ Y to found the effect of y1 on M. 

 

yM
t
 = (0 0 0 0 0 0 k

0I  0) = x1; 

x1M = (0 0 0 0 k

0I 0) = y1; 

y1M
t
 (0 0 0 0 0 0 k

0I 0) = x2 (= x1). 

 

 

The MOD resultant is a MOD fixed point pair given by  
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{(0 0 0 0 0 0 k

0I 0), (0 0 0 0 k

0I  0)}. 

 

The MOD resultant does not vary as it is not different from 

the updating operator. 

 

Let y = (0 0 0 0 0 1) ∈ Y the effect of y on M, 

 

yM
t
 = (0 0 0 0 0 0 0 k

3I ) = x1; 

x1M = (0 0 0 0 0 k

0I ) = y1; 

y1M
t
 = (0 0 0 0 0 0 0 k

0I ) = x2; 

x2M = (0 0 0 0 0 k

0I ) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 0 0 0 0 0 0 k

0I ), (0 0 0 0 0 k

0I )}. 

 

The same MOD resultant would be obtained even after 

applying or using the updating operator. 

 

Thus we see we can have such new models and the nodes of 

these new models can be real, mixed real and special quasi dual  

number or natural neutrosophic depending on the initial state 

vectors and so on . 

 

As this study is new the reader is expected to analyse the 

problem.  

 

The advantageous of using this new model is 

 

i) When edge weights are used from 〈Zn ∪ k〉I 

certainly after finite number of iterations we are 

sure to get a MOD fixed point pair or a MOD limit 

cycle pair. 

 

ii) The advantage of using the new model is we see the 

nodes can get any value in  〈Zn ∪ k〉I depending on 

the on state of the node at the time of working. 
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iii) Further this method or this new model does not 

need the thresholding of the state vectors at each of 

this stage. This is an advantage as we see the 

thresholding factor in general is not uniform but 

depends on the expert; this bias is not in this model.  

 

 



 
 
 
 
 
Chapter Four 
 
 

 
 
MOD INTERVAL RELATIONAL MAPS 
 
 
 
 In this chapter we proceed onto define the new models viz. 

MOD interval Relational Maps model built using the interval  

[0, n) and MOD natural neutrosophic interval Relational Maps 

model using the MOD natural neutrosophic interval I[0,n);  

2 ≤ n < ∞.  

 

We will illustrate this by examples. 

 

Thus we will give examples of MOD interval directed 

bipartite graphs. 

 

 

 

Example 4.1: Let G be the MOD interval bipartite directed graph 

with edge weights from [0, 8) given by the following example 

in the following figure. 
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Figure 4.1 

 

Example 4.2:  Let H be the MOD interval directed bipartite 

graph with edge weights from [0, 19) is given by the following 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 
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Thus if G is any MOD interval directed bipartite graph with 

edge weights from [0, n) (2 ≤ n  < ∞) is defined as the MOD 

interval directed bipartite graph.  

 

We have seen examples of them. 

 

We now proceed onto describe by examples the MOD 

interval rectangular (relational) matrix. 

 

Example 4.3: Let  

 

M =

3 1.231 0 4.21 0 1.75

0 0 4.52 0 3.72 0

4.32 3 0 9.32 0 4.3

8.01 0 3.2 0.7 1 0.311

 
 
 
 
 
 

 

 

be the MOD interval rectangular (relational) matrix. 

 

Example 4.4: Let  

 

A = 

0 3.35 2

1.77 0 0

0 1.02 4.01

1.5 0 0

2.7 0.115 0

0 0 1.117

0.33 7 0

6 0 0

 
 
 
 
 
 
 
 
 
 
 
  

 

 

be the MOD interval relational matrix with entries from MOD 

interval [0, 10). 

 

 In view of this we can define and describe the MOD interval 

relational matrix.  
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Let M = (mij) be a m × n matrix with entries from [0, t); that 

is mij ∈ [0, t). M = (mij) is defined as the MOD interval relational 

matrix with entries from the MOD interval [0, t). 

 

Now we describe two types of operations using these 

matrices as MOD operators [66].  

 

To this end we need the following MOD initial state vectors. 

 

X = {(a1 … am) / ai ∈ {0, 1}; 1 ≤ i ≤ m} and  

 

Y = {(b1 b2 … bn) / bi ∈ {0, 1}; 1 ≤ j ≤ n} be the MOD 

domain space of initial state vectors and MOD range space of 

initial state vectors respectively associated with the MOD 

interval rectangular matrix operator M. 

 

We will illustrate this situation by some examples. 

 

Example 4.5: Let  

 

M = 

0.3 0 1 0 0

1 2 0 0 1

0 0 0 4 0

0 0.2 0 0 0

 
 
 
 
 
 

 

 

be MOD interval rectangular matrix with entries from [0, 6). 

 

Let X= ({a1 a2 a3 a4) / ai ∈ {0, 1}; 1 ≤ i ≤ 4} and  

 

Y = {(b1 b2 b3 b4 b5) / bj ∈ {0, 1}; 1 ≤  j ≤ 5} be the MOD 

domain and MOD range spaces of initial state vectors 

respectively associated with M.  

 

x = (1 0 0 0) ∈ X, to find the effect of x on M 

 

xM = (0.3 0 1 0 0) = y1; 
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y1M
t
 = (1.09 0.3 0 0) = x1; 

x1M = (0.627  0.6  1.09  0 0.3) = y2; 

y2M
t
 = (1.5781  1.827  0  0.12) = x2; 

x2M = (2.40043  3.678  1.5781  0  1.827) ; 

 

and so on. 

 

Certainly we may not get the MOD resultant after a finite 

number of iterations so this type of operations will yield nothing 

to us. 

 

Hence we will use the thresholding technique to arrive at a 

resultant after a finite number of iterations. 

 

Let x = (1 0 0 0) ∈ X to find the effect using thresholding 

techniques. 

 

xM = (0.3 0 1 0 0) → (0 0 1 0 0) = y1; 

 

(Here if an entry in the resultant is greater than or equal to 1 

replace by 1 if less than 1 replace by 0) 

 

y1M
t
 = (1 0 0 0) = x1 (= x). 

 

This the MOD resultant is a MOD classical special fixed point 

pair given by {(1 0 0 0), (0 0 1 0 0)}. 

 

Let x = (0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM = (1 2 0 0 1) → (1 1 0 0 1) = y; 

yM
t
 = (0.3 4 0 0.2) → (0 1 0 0) = x1; 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by {(0 1 0 0), (1 1 0 0 1)}. 

 

Let x = (0 0 1 0) ∈ X, to find the effect of x on M. 
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xM = (0 0 0 4 0) → (0 0 0 1 0) =  y1; 

y1M
t
 = (0 0 4 0) → (0 0 1 0).   

 

The MOD interval resultant is a MOD special classical 

realized fixed point pair given by {(0 0 1 0), (0 0 0 1 0)}. 

 

Let x = (0 0 0 1) ∈ X, to find the effect of x on M. 

 

xM = (0 0 2 0 0 0) → (0 0 0 0 0) = y1; 

y1Mt = (0 0 0 0) → (0 0 0 1).  

 

The MOD resultant is a MOD classical fixed point pair given 

by  

{(0 0 0 1), (0 0 0 0 0)}. 

 

Let y = (1 0 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0.3 1 0 0) → (0 1 0 0) = x1; 

x1M = (1 2 0 0 1) → (1 1 0 0 1) = y1; 

y1M
t
 = (0.3  4  0 0.2) → (0 1 0 0) = x2 (= x1). 

 

The MOD interval resultant is a MOD fixed point pair given 

by {(0 1 0 0), (1 1 0 0 1)}. 

 

Let y = (0 1 0 0 0) ∈ Y. 

 

To find the effect of y on M. 

 

yM
t
 = (0 2 0 0 2) → (0 1 0 0) = x1; 

x1M = (1 2 0 0 1) → (1 1 0 0 1) = y1; 

y1M
t
 = (1.3 4 0 0.2) → (1 1 0 0)  = x2; 

x2M = (1.3 2 1 0 1) → (1 1 1 0 1) = y2; 

y2M
t
 = (1.3  4 0 0.2) → (1 1 0 0). 

 

Thus the MOD interval resultant is a MOD interval fixed 

point pair given by {(1 1 0 0), (1 1 1 0 1)}. 

Let y = (0 0 1 0 0) ∈ Y, to find the effect of y on M. 
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yM
t
 = (1 0 0 0) = x1; 

x1M = (0.3 0 1 0 0) → (0 0 1 0 0) = y1 (=y). 

 

Thus the MOD interval resultant is a MOD classical special 

fixed point pair given by  

{(1 0 0 0), (0 0 1 0 0)}. 

 

Let y = (0 0 0 1 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 0 4 0) → (0 0 1 0) = x1; 

x1M = (0 0 0 1 0) = y1 (= y1). 

 

Thus the MOD interval resultant is a MOD special classical 

fixed point pair given  

{(0 0 1 0), (0 0 0 1 0)}. 

 

Let y = (0 0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 1 0 0) = x1; 

x1M = (1 2 0 0 1) → (1 1 0 0 1) = y1; 

y1M
t
 = (1.3  4 0 0.2) → (1 1 0 0) = x2; 

x2M = (1.3 2 1 0 1) → (1 1 1 0 1) = y2; 

y2M
t
 = (1.3  4  0  0.2) → (1 1 0 0) = x3 (=x2). 

 

Thus the MOD interval resultant is a MOD interval fixed pair 

point given by  

{(1 1 0 0), (1 1 1 0 1)}. 

 

Only the operation of thresholding at each stage can give 

the MOD interval resultant after a finite number of iterations we 

give yet another example of this situation. 

 



182 MOD  Relational Maps Models and MOD Natural … 

 

 

 

 

 

Example 4.6: Let  

 

S = 

0 0.7 1.2 0

1 0 0 0

0 2.5 0 0

0 0 0 2.4

0.3 0 0.2 0

0 0 1 0

0 0.2 0 0

 
 
 
 
 
 
 
 
 
 
   

 

be the MOD interval relational matrix with entries from [0, 4). 

 

Let X = {(a1 a2, … a7) / ai ∈ {0, 1}, 1 ≤ i ≤ 7} and  

 

Y = {(b1 b2 b3 b4) where by ∈ {0, 1}; 1 ≤ j ≤ 4} be the MOD 

interval domain and range space of initial state vectors 

respectively associated with S. 

 

Let x = (1 0 0 0 0 0 0) ∈ X, to find the effect of x on S. 

 

xS = (0 0.7 1.2 0) → (0 0 1 0) = y1; 

y1S
t
 = (1.2 0 0 0 2 1 0) → (1 0 0 0 1 1 0) = x4; 

x1S = (0.3 0.7 2.4 0) → (0 0 1 0) = y2 (=y1). 

 

Thus the MOD interval resultant is a MOD fixed point pair 

given by {(1 0 0 0 1 1 0), (0 0 1 0)}. 

 

Let x = (0 1 0 0 0 0 0) ∈ X, to find the effect of x on S. 

 

xS = (1 0 0 0) = y1; 

y1S
t
 = (0 1 0 0 0.3 0 0) → (0 1 0 0 0 0 0) = x1 (=x). 

 

Thus the MOD interval resultant is a MOD interval resultant 

is a MOD special classical fixed point pair given by {(0 1 0 0 0 0 

0), (1 0 0 0)}. 
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Let x = (0 0 1 0 0 0 0) ∈ X to find the effect of x on S. 

 

xS = (0 2.5 0 0) → (0 1 0 0) = y1; 

y1S
t
 = (0.7 0 2.5 0 0 0 0) → (0 0 1 0 0 0 0) = x1 = (x). 

 

Thus in this case also the MOD interval resultant is a MOD 

special classical fixed point give by  

{(0 0 1 0 0 0 0), (0 1 0 0)}. 

 

Let x = (0 0 0 1 0 0 0) ∈ X to find the effect of x on s. 

 

xS = (0 0 0 2.4) → (0 0 0 1) = y1; 

y1S
t
 = (0 0 0 1 0 0 0) = x1 (= x). 

 

Thus the MOD interval resultant is MOD special classical 

fixed point pair given by  

{(0 0 0 1 0 0 0), (0 0 0 1)}. 

 

Let x = (0 0 0 0 1 0 0) ∈ X to find the effect of x on S. 

 

xS = (0.3 0 0 20) = y1; 

y1S → (0 0 0 0 1 0 0) = x1 (x). 

 

Thus in this case also the MOD interval resultant is a MOD 

special classical fixed point pair given by  

{(0 0 0 0 1 0 0), (0 0 0 0)} 

 

Let x = (0 0 0 0 0 1 0) ∈ X. 

 

xS = (0 0 1 0) = y1; 

y1S
t
 = (1 2 0 0 0 0.2 1 0) → (1 0 0 0 0 1 0) = x1; 

x1S = (0 0.7 2.2 0) → (0 0 1 0) = y2 (= y1). 

 

Thus the MOD interval resultant is a MOD fixed point pair 

given  by {(1 0 0 0 0 1 0), (0 0 1 0)}. 
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Let x = (0 0 0 0 0 0 1) ∈ X to find the effect of x on S. 

 

xS = ( 0 0 2 0 0) →  (0 0 0 0) = y1; 

y1S
t
 → (0 0 0 0 0 0 1) . 

 

Thus the MOD interval resultant is a MOD special classical 

fixed point pair given by {(0 0 0 0 0 0 1), (0 0 0 0)}. 

 

Let y = (1 0 0 0) ∈ Y, to find the effect of y on S. 

 

yS
t
 = (0 1 0 0 0 0.3 0 0) → (0 1 0 0 0 0 0) = x1; 

x1S = (1 0 0 0) = y1 (= y). 

 

Thus the MOD integral resultant is a MOD classical special 

fixed point pair given by {(0 1 0 0 0 0 0), (1 0 0 0)}. 

 

Let Y = (0 1 0 0) ∈ Y the effect of y on S is as follows. 

 

yS
t
 = (0.7 0 2.5 0 0 0 0) → (0 0 1 0 0 0 0) = x1; 

x1S = (0 2.5 0 0) → (0 1 0 0) = y1 (=y). 

 

Thus the MOD interval resultant is a MOD special classical 

fixed point pair given by  

{(0 0 1 0 0 0 0), (0 1 0 0)}. 

 

Let y = (0 0 1 0) ∈ Y, to find the effect of y on S is as 

follows. 

 

yS
t
 = (1.2 0 0 0 0.2 1 0) → (1 0 0 0 0 1 0) = x1; 

x1S = (0 0 7 2.2 0) → (0 0 1 0) = y1 (= y). 

 

Thus once again the MOD interval resultant is MOD classical 

special fixed point pair given by 

{(1 0 0 0 0 1 0), (0 0 1 0)}. 

 

Let y = (0 0 0 1) ∈ Y, to find the effect of y on S. 
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yS
t
 → (0 0 0 1) = y1 (= y). 

 

Hence the MOD resultant in this case is also a MOD classical 

special fixed point pair given  by  

{(0 0 0 1 0 0 0), (0 0 0 1)}. 

 

Thus we can built the MOD interval Relational Maps model 

using entries from [0, n); 2 ≤ n < ∞.  

 

Unless the operation of thresholding is done at each stage it 

is impossible to arrive at a MOD interval resultant by finite 

number of iterations.  

 

Hence updating and thresholding operations have become 

mandatory. 

 

We now proceed onto describe the MOD interval Relational 

Maps model in the following. 

 

Let P be the problem in hand. Suppose the expert uses the 

edge weights of the graph G for the model from the interval  

[0, n).  

 

Further the expert uses the Relational Maps model.  

 

The graph G will be known as the MOD interval bipartite 

directed graph with edge weights from [0, n); 2 ≤ n < ∞. 

 

Let M be the MOD interval connection matrix of the MOD 

interval directed graph G. M with the graph G will be known as 

the MOD interval Relational Maps model. 

 

We have already explains all the properties related with this 

new model.  

 

It is noted that only we use the operations of thresholding 

and updating at each stage. 
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Next we proceed onto describe the MOD interval finite 

complex number Relational Maps model or MOD finite complex 

number Relational Maps model.  

 

To this end we need to define MOD finite complex bipartite 

directed graph and the related connection matrices.  

 

All these concepts will be described by examples. 

 

Example 4.7: Let G be the MOD finite complex directed 

bipartite graph with edge weights from  

C([0, 6)) = {a + biF / a, b ∈ [0, 6), 2

Fi = 5} given by the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 

D1 

R1 

D2 

R2 

R3 

D3 

R4 

D4 

R5 

R6 

D5 

R7 

3+2.5iF 

2+3.072iF 

0.75 + 4.5iF 

2 

2iF 

3 

1+0.5iF 
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Example 4.8: Let H be the MOD complex interval directed 

bipartite graph with entries from  

C([0, 4)) = {a + biF / a, b ∈ [0, 4), 2

Fi = 3} given in the 

following; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 

 

D1 

R1 

D2 

R2 

R3 

D3 

R4 

D4 

R5 

R7 

R6 

D5 

R8 

1.31+0.384 

2 

2+2iF 

1.05 

3.78 

2 

2iF+0.31 

1+0.53iF 
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 Next we proceed onto describe the MOD complex relational 

(rectangular) matrix. 

 

Example 4.9: Let  

 

 

M = 

F

F

F

F

F F

F

3.03 2.9i 0 0 0

0 4.35i 0 5.2

0.115 0 1.34i 0

0 2 0 1 2.5i

1.95i 0 1.3i 7 0

0 3.72 0 1 2i

+ 
 
 
 
 

+ 
 +

 
+  

 

 

be the MOD complex relational (rectangular matrix) with entries 

from C([0, 5)). 

 

Example 4.10:  Let P =  

 

 

F

F F

F F

3 i 0 0.1353 0

0 1.332 0 1

1 0.35i 0 2.0017i 0

0 4.335i 0 2i 4

+


 +


+

  
F F

F

F F

F

3.2i 0 1.324 0.57i

0 0.4i 8.32 0

1.55i 4 0 6.325i

0 1.532 0.3i 0

+ 


+ 
+


+ 

 

 

 

be the MOD complex rectangular matrix with entries from  

C([0, 7)) = {a + biF / a, b ∈ [0, 7); 2

Fi = 6}. 
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Now we will proceed onto define operations on these types 

of matrices. 

 

To this end X = {(a1 a2 …, at) / ai ∈ {0, 1, iF}, 1 ≤ i ≤ t} will 

be known as the MOD domain space of initial state vectors.  

 

Y = {(b1 … bs) / bj ∈ {0, 1, iF}; 1 ≤ j ≤ s} is the known as 

the MOD range space of initial state vectors.  

 

These will be associated with a MOD complex rectangular  

t × s matrix. 

 

The operation is taken as thresholding and updating at each 

other for otherwise we will not in general be in a position to 

arrive at a MOD resultant after a finite number of iterations. 

 

We will illustrations by some examples. 

 

 

M = 

F F

F F

0 3 i 0 0.32 0 1.5i

0.4 0 0.2i 0 i 0

0 1 0 0 0 0

+ 
 
 
  

 

 

be the MOD complex 3 × 6 matrix with entries from  

 

C([0, 5) = {a + biF / a, b ∈ [0, 5), 2

Fi  = 4}. 

 

X = {(a1 a2 a3) / ai ∈ {0, 1, iF}; 1 ≤ i ≤ 3} and  

 

Y = {(b1 b2 b3 b4 b5 b6) bij ∈ {0, 1, iF}; 1 ≤ j ≤ 6} be the 

MOD domain space and MOD range space of initial state vector 

associated with A. 

 

x = (1  0  0) ∈ X, to find the effect of x on M. 

 

xM  = (0 3 + iF 0 0.32 0 1+ 5iF) → (0 1 0 0 0 iF) = y1; 

y1M
t
 = (4 + iF 0 1) → (1 0 1) = x1; 
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x1M = (0 4 + iF 0 0.32 0  1.5iF) → (0 1 0 0 0 iF) = y2  

            (= y1). 

 

The MOD resultant is a MOD fixed point pair given by  

{(1 0 1), (0 1 0 0 0 iF)}. 

 

We see the node is also complex. 

 

Let x = (0 1 0) ∈ X, to find the effect of x on M. 

 

xM = (0.4 0 0.2iF 0 iF 0) → (0 0 0 0 iF 0) = y1; 

y1M
t
 = (0  4  0) → (0  1  0) ; 

x1M = (0.4  0 0.2iF  0  iF 0) → (0 0 0 0 iF 0) = y2 (=y1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 1 0), (0 0 0 0 iF 0)}. 

 

Let x = (0 0 1) ∈ X to find the effect of x on M. 

 

xM = (0 1 0 0 0 0) = y1; 

y1M
t
 = (3 + iF 0 1) → (1 0 1) = x1; 

x1M = ( 0 4 + iF 0 0.32 0 1.5iF) → (0 1 0 0 0  iF) = y2; 

y2M
t
 = (1 0 1) = x2 (=x1). 

 

The MOD resultant is a MOD fixed point pair given by  

{(1 0 1), (0 1 0 0 0 iF)}. 

 

Let y = (1 0 0 0 0 0) ∈ Y, to find the effect of y on M 

 

yM
t
 = (0, 0.4 0) → (0 0 0) = x1; 

x1M → (1 0 0 0 0 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0), (1 0 0 0 0 0)}. 

 

Let y = (0 1 0 0 0 0) ∈ Y, to find the effect of y on M. 
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yM
t
 = (3 + iF 0 1) → (1 0 1) = x1; 

x1M = (0 4 + iF 0 0.32 0 1.5iF) → (0 1 0 0 0 iF) = y1; 

y1M
t
 = (4 + iF 0 1) → (1 0 1) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

    {(1 0 1), (0 1 0 0 iF)}. 

 

Let y = (0 0 1 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = ( 0 0.2iF 0) → (0 0 0) = x1; 

xM → (0 0 1 0 0 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical realized 

fixed point pair given by  

{(0 0 0), (0 0 1 0 0 0)}. 

 

Let y = (0 0 0 1 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0.32 0 0) → (0 0 0) = x1; 

x1M → (0 0 0 1 0 0) = y1 (= y). 

 

The MOD resultant is a MOD special classical fixed point 

pair given by  

{(0 0 0), (0 0 0 1 0 0)} 

 

Let y = (0 0 0 0 1 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 iF 0) = x1; 

x1M = (0.4iF 0 0.8 0 4 0) → (0 0 0 0 1 0) = y1 (y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given  by  

{(0 iF 0), (0 0 0 0 1 0)} . 

 

Let y = (0 0 0 0 0 1) ∈ Y, to find the effect of y on M, 

 

yM
t
 = (1.5iF 0 0) → (iF 0 0) = x1; 

x1M =(0.4iF  0 0.8  0.4  0) → (0 0 0 0 1 0) = y1 (y). 
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Thus the MOD resultant is a MOD special classical fixed 

point pair given  by  

{(0 iF 0), (0 0 0 0 1 0)}. 

 

Let y = (0 0 0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (1.5iF  0 0) → (iF 0 0) = x1; 

x1M = (0 3iF + 4 0  0.32iF 0 1) → (0 1 0 0 0 1) = y1; 

y1M
t
 = (3 + 2.5 iF 0 1) → (1 0 1) = x2; 

x2M = (0 4 + iF 0 0.32 0 1.5 iF) → (0 1 0 0 0 iF) = y2; 

y2M
t 
 = (4 + iF 0 1) → (1 0 1) = x3 (= x2). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

    {(1 0 1), (0 1 0 0 0 iF)}. 

 

We observe this is different from MOD relational matrix 

model for the nodes in [0, n) can take only values 0 or 1 but in 

case of MOD complex rectangular matrix with entries from C([0, 

n)) = {a + biF / a, b ∈ [(0, n) 2

Fi  = n – 1}; the nodes can take 

values 0  or 1 or iF. 

 

Now we proceed onto describe one more example. 

 

Example 4.11: Let  

 

M = 

F

F

F

F

0 0.3i 1 0 0.32

0 0 0 i 0

0.1 0 0 0 2

0 0.01 0.03 0.2 0

2.2 0 0 0 0

0 2i 0 0 0

0.03 0.i 0 0 0 0

0 0 0.02 0.3 0

 
 
 
 
 
 
 
 
 
 

+
 
  
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be the MOD complex rectangular matrix with entries from 

C([0.3)) = a + biF / a, b ∈ [0, 3); 2

Fi  = 2}. 

 

 Let X = {(a1 a2 … a8) / ai ∈ {0, 1, iF}; 1 ≤ i ≤ 8} and  

 

Y = {(b1 b2 b3 b4 b5) / bj ∈ {0, 1, iF}; 1 ≤ j ≤ 5}   

 

be the MOD domain and MOD range space of initial state vectors 

associated with M we perform only the operation of updating 

and thresholding for otherwise it is impossible to arrive at the 

MOD resultant after a finite number of iterations. 

 

 Let x = (1 0 0 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0  0.3iF 1 0 0.32) → (0 0 1 0 0) = y1; 

y1M
t
 = (1 0 0 0.03 0 0 0 0.02) → (1 0 0 0 0 0 0 0)  

= x1 (= x). 

 

Thus the MOD realized resultant of x is a MOD special 

classical fixed point pair given by {(1 0 0 0 0 0 0 0) (0 0 1 0 0)}. 

 

Let x = (0 1 0 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0 iF 0) = y1; 

y1Mt = (0 2 0 0.2iF 0 0 0 0.3iF) →(0 1 0 0 0 0 0 0)  

= x1 (=x). 

 

Thus the MOD realized resultant is once again a MOD special 

classical fixed point pair given by  

{(0 1 0 0 0 0 0 0), (0 0 0 iF 0)}. 

 

Let x = (0 0 1 0 0 0 0 0) ∈ X to find the effect of x on M. 

 

xM = (0.1 0 0 0 2) → (0 0 0 0 1) = y1; 

y1M
t
 = (0.32 0 2 0 0 0 0 0) = x1 → (0 0 1 0 0 0 0 0)  

= x1 (= x). 
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Thus once again the MOD realized resultant is a MOD 

classical special fixed point pair given by  

{(0 0 1 0 0 0 0 0), (0 0 0 0 1)}. 

 

Let x = (0 0 0 1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0.01 0.03 0.2 0) → (0 0 0 0 0) = y1; 

y1M
t
 = (0 0 0 1 0 0 0 0) = x1 (= x). 

 

Thus the MOD realized resultant is a MOD special classical 

fixed point pair given by  

{(0 0 0 1 0 0 0 0), (0 0 0 0 0)}. 

 

Let x = (0 0 0 0 1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (2.2 0 0 0 0) → (1 0 0 0 0) = y1; 

y1M
t
 = (0 0 0.1 0 2.2 0 0.03 + 0 iF 0) →  

      (0 0 0 0 1 0 0 0) = x1 (= x). 

 

Thus once again the MOD realized resultant is the MOD 

special classical fixed point pair given by  

{(0 0 0 0 1 0 0 0), (1 0 0 0 0)}. 

 

Let x = (0 0 0 0 0 1 0 0) ∈ X, to find the effect of x on M, 

 

xM = (0 2iF 0 0 0) → (0 iF 0 0 0) = y1 

y1M
t
 = (0 0.6 0 0 0.0 iF 4 0 0) → (0 0 0 0 0 1 0 0)  

= x1 (= x). 

 

 

Thus the MOD resultant once again is a  MOD special 

classical fixed point pair given by  

{(0 0 0 0 0 1 0 0), (0 iF 0 0 0)}.  

 

It is important and interesting to note that one of the nodes 

take the imaginary value iF, which is the marked difference 

between the MOD interval matrix operator. 

 

Let x = (0 0 0 0 0 0 1 0) ∈ X to find the effect of x on M. 
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xM = (0.03 + 0 iF 0 0 0 0) →  (0 0 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 1 0) = x1 (= x). 

 

Thus the MOD realized resultant is the MOD special classical 

fixed point pair given by  

{(0 0 0 0 0 0 1 0), (0 0 0 0 0)}. 

 

Let x = (0 0 0 0 0 0 0 1) ∈ X, to find the effect of x on M. 

 

xM = (0 0 0.2 0.3 0) → (0 0 0 0 0) = y1; 

y1M
t
 = (0 0 0 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 0 0 0 0 1), (0 0 0 0 0)}.   

 

Consider y = (1 0 0 0 0) ∈ X, to find the effect of y on M. 

 

yM
t 
= (0 0 0.1 0 2.2 0 0.03 + 0.iF 0) → (0 0 0 0 1 0 0 0) = x1;  

x1M → (1 0 0 0 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 0 1 0 0 0), (1 0 0 0 0)}. 

 

Let y = (0 1 0 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (0.3iF 0 0 0.01 0 2iF 0 0) → (0 0 0 0 0 iF 0 0) = x1; 

x1M = (0.2iF 0 0 0) → (0 iF 0 0 0) = y1; 

y1M
t
 = (0.6 0 0 0.0 iF 0 1  0 0) → (0 0 0 0 0 1 0 0) = x2;  

x2M = ( 0 2iF 0 0 0) → (0 iF 0 0 0) = y2 (=y1). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

{(0 0 0 0 0 1 0 0), (0 iF 0 0 0)}. 
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Let y = (0 0 1 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 = (1 0 0 0.03 0 0 0 0.02) → (1 0 0 0 0 0 0 0) = x1; 

x1M = (0 0.3iF 1 0 0.32) →  (0 0 1 0 0)= y1 (= y). 

 

Thus the MOD realized resultant is a MOD special classical 

fixed point pair given by  

{(1 0 0 0 0 0 0 0), (0 0 1 0 0)}. 

 

Let y = (0 0 0 1 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0 iF 0 0.2 0 0 0 0.3) → (0 iF 0 0 0 0 0 0) = x1; 

x1M = (0 0 0 2 0) → (0 0 0 1 0) = y1 (= y). 

 

Thus once again the MOD realized resultant is a MOD special 

classical fixed point pair given by  

{(0 iF 0 0 0 0 0 0), (0 0 0 1 0)}. 

 

 

Let y = (0 0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0.32 0 2 0 0 0 0 0) → (0 0 1 0 0 0 0 0) = x1; 

x1M = (0.1 0 0 0 2) → (0 0  0 0 1) = y1 (= y). 

 

Thus the MOD realized resultant is a MOD special classical 

fixed point pair given by  

{(0 0 1 0 0 0 0 0), (0 0 0 0 1)}. 

 

Now we proceed onto mention some of the special features 

about this matrix operator M. 
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i) We need the stage by state updating and 

thresholding of the resultant for us to arrive at a 

MOD resultant after a finite number of iterations. 

 

ii) This MOD resultant can give the node values for any 

initial state vector the value 0 or 1 or iF. 

 

 

This is yet another major difference between the usual 

FRMs or NRMs and MODRMs. 

 

Now we leave the task of building the MOD complex 

Relational Maps model using  

 

C([0, n)) = {a + biF / a, b ∈ [0, n), 2

Fi  = (n – 1)}; for it is 

considered as a matter of routine so left as an exercise to the 

reader. 

 

Next we proceed onto describe the MOD neutrosophic 

Relational Maps model using  

 

〈[0, n ∪ I〉 = {a + bI / a, b ∈ [0, n); I
2
 = I} where I is an 

indeterminate for more refer [6,7]. 

 

We first describe by examples the MOD neutrosophic 

bipartite directed graphs. 

 

Example 4.12:  Let G be the MOD bipartite directed graph with 

edge weights from 〈[0, 8) ∪ I〉. G is given in the following 

figure. 
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Figure 4.3 

 

 

 

 

 

Example 4.13: Let H be MOD directed bipartite graph with 

entries from 〈[0,90) n ∪ I〉 given by the following figure. 

 

 

 

D1 

R1 

R2 

2 

0.4 

D2 R3 
I 

D3 R4 

D4 R5 

1+0.6I 

0.8I 
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Figure 4.6 

 

Thus if we have a MOD bipartite directed graph with its edge 

weights from  〈[0,n)  ∪ I〉 = {a + bI / a, b ∈ [0, n); I
2
= I} then 

we define G to be a MOD neutrosophic directed  bipartite graph. 

 

This is well illustrated by examples 4.12 and 4.13. 

 

42+13.89 I D1 

D2 

D4 

D5 

D6 

D7 

D8 

R1 

R2 

R4 

R3 

R5 

89+49.02I 

69.02 I 

D3 

9 

48 

3 

0.04I 

89+0.2I 
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Next we proceed onto describe the MOD neutrosophic 

rectangular or relational matrices by some examples. 

 

Example 4.14: Let  

 

M = 

0 2.3I 0 1 I 0 5

0.35 0 1 0 1.5I 0

0 1 0.3I 0 6 0 0.3

I 0 0.7I 2 0 1 0

+ 
 
 
 +

 
+   

 

 

be the MOD neutrosophic rectangular or relational matrix with 

entries from 〈[0, 9) ∪ I〉 = {a + bI / a,b ∈ [0,9), I
2
 = I}. 

 

Example 4.15: Let  

 

 

S = 

0 3 0.2I 0 0 0.004 0

1 I 0 0.2I 0.3I 0 0.12

0 0 4 0 0.02 0

0 0 0 I 0 0

0 0.333 0 0.221 0 1

0 0 0 0 3I 0

0.31 0 0.04I 0 0 0.3

0 0.01 0 0.011 0.1 0

0.02 0 0 0 0 0.5I

0 0 0.101 0.21I 0.1 0

0 0 0 0 0 0.2I

+ 
 

+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

be the MOD  neutrosophic relational 11 × 6 matrix with entries 

〈[0, 5) ∪ I〉 = {a + bI / a, b ∈ [0,5); I
2
 = I. 

 

Now we will describe only one special type of operation 

using these matrices.  
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For we see all types of operations will certainly not yield a 

MOD fixed point pair or a MOD limit cycle pair after a finite 

number of iterations. 

 

This type of operation in particular and this study in general 

is important for it alone can give the applications and help in the 

construction of MOD neutrosophic Relational Maps model. 

 

To this end we define the MOD domain and MOD range of 

initial state vectors associated with a MOD neutrosophic 

relational or rectangular s × t matrix M with entries from  

〈[0, n) ∪ I〉 = {a + bI / a, b ∈ [0, n)’ I
2
 = I}. 

 

Example 4.16: Let  

 

M = 

0 0.1 0.01 1 0 0 0 2.4I 0

1 0 0 0 0.2 0.02I 0 0 0

0 0 0 0.4 0 0 0.06 0.07 0.08

2I 0 2 0 I 0.1 6 0 6.2I

 
 
 
 
 
 

 

 

be the MOD neutrosophic relational or rectangular matrix M 

with entries from 〈[0, 9) ∪ I〉 = {a + bI / a, b ∈ [0, 9); I
2
 = I}. 

 

Let X = {(a1 a2 a3 a4) / ai ∈ {0, I, I}, 1 ≤ i ≤ 4} and  

 

Y = {(b1 b2 … b9) / bj ∈ {0, 1, I}; 1 ≤ j ≤ 9} be the MOD 

domain space and MOD range space of initial state vectors 

respectively associated with M. 

 

Let x = (1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM = (0 0.1 0.01 1 0 0 0 2.4I 0) → (0 0 0 1 0 0 0 I 0)  

= y1 

y1M
t
 = (1 + 2.4I  0  0.4 + 0.07I  0) → (I 0 0 0) = x1 

x1M = (0 0.I 0.0I I 0 0 0 2.4I 0) → (0 0 0 I 0 0 0 I 0)  

= y2 

y2M
t
 = (34I 0 0.47I 0) → (I 0 0 0) = x2 (=x1). 
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Thus the MOD realized resultant is a MOD fixed point 

pair given  by  

{(I 0 0 0), (0 0 0 I 0 0 0 I 0)}.  

 

Thus the nodes in this case has become indeterminates. 

 

Let x = (0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM = (1 0 0 0 0.2 0.02I 0 0 0) → (1 0 0 0 0 0 0 0 0)  

= y1; 

y1M
t
 = (0 1 0 2I) → (0 1 0 I) = x2; 

x1M = (1 + 2I 0 2I 0 0.2 + I 0.02I + 0.I, 6I 0 6.2I) → 

(I 0 I 0 0 0 I 0 I) = y2; 

y2M
t
 = (I I 0 I) = x2; 

x2M → (I 0 I I I 0 I I I) = y3; 

y3M
t
 → (I I 0 I) = x3 (=x2). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

{(I I 0 I), (I 0 I I I 0 I I I)}.  

 

Let x = (0 0 1 0) ∈ X to find the effect of x on M. 

 

xM = (0 0 0 0.4 0 0 0.6 0.07 0.08) → (0 0 0 0 0 0 0 0 0) = y1 

y1M
t
 → (0 0 1 0) = x1 (= x). 

 

Thus MOD realized resultant is a MOD special classical fixed 

point pair  

{(0 0 1 0), (0 0 0 0 0 0 0 0 0)}. 

 

Let x = (0 0 0 1) ∈ X, to find the effect of x on M. 

 

xM = (2I 0 2 0 I 0.1 6 0 6.2I) → (I 0 1 0 I 0 1 0 I) = y1; 

y1M
t
 → (0 I 0 I) = x1; 

x1M → (I 0 I 0 I 0 I 0 I) = y2; 

y2M
t
 → (0 I 0 I) = x3 (=x1). 
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Thus the MOD realized resultant is the MOD fixed point  

    {(0 I 0 I), (I 0 I 0 I 0 I 0 I)}. 

 

Let y = (1 0 0 0 0 0 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 = (0.01 1 0 2I) → (0 1 0 I) = x1; 

x1M = (1 + 2I 0 2I 0 I 0.12 I 6I 0 6.2I) →  

(I 0 I 0 I 0 I 0 I) = y1; 

y1M
t
 → (0 I 0 I) = x2; 

x2M → (I 0 I 0 I 0 I 0 I) = y2 (= y1). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

{(0 I 0 I), (I 0 I 0 I 0 I 0I)}.  

 

Thus all the nodes in both the spaces for this particular state 

of vector are indeterminates or zero only. 

 

Let y = (0 1 0 0 0 0 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 → (0 0 0 0) = x1; 

xM → (0 1 0 0 0 0 0 0 0) = y1 (=y). 

 

Thus the MOD resultant is the MOD classical special fixed 

point pair given by  

{(0 0 0 0), (0 1 0 0 0 0 0 0 0)}. 

 

Let y = (0 0 1 0 0 0 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 → (0 0 0 1) = x1; 

x1M → (I 0 1 0 I 0 1 0 I) = y1; 

y1M
t
 → (0 I 0 I) = x2; 

x2M
t
 → (I 0 I 0 I 0 I 0 I) = y2; 

y2M → (0 I 0 I) = x3 (= x2). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

{(0 I 0 I), (I 0 I 0 I 0 I 0 I)}. 
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Let y = (0 0 0 1 0 0 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (1 0 0 0) = x1; 

x1M → (0 0 0 1 0 0 0 I 0) = y; 

y1M
t
 → (I 0 0 0) = x2; 

x2M → (0 0 0 I 0 0 0 I 0) = y2; 

y2M
t
 → (I 0 0 0) = x3 (=x2). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

{(I 0 0 0), (0 0 0 I 0 0 0 I 0)}. 

 

Let y = (0 0 0 0 0 0 1 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 0 0 1) = x1; 

x1M → (I 0 1 0 I 0 1 0 I) = y1; 

y1M
t
 → (0 I 0 I) = x2; 

x2M → (I 0 I 0 I 0 I 0 I) = y2; 

y2M
t
  = (0 I 0 I) = x3 (=x2). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by  

{(0 I 0 I), (I 0 I 0 I 0 I 0 I)}.   

 

All nodes which  have become on are indeterminates. 

 

Let y = (0 0 0 0 0 0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 0 0 I) = x1; 

x1M → (I 0 I 0 I 0 I 0 I) = y1; 

y1M
t
 → (0 I 0 I) = x2; 

x2M
t
 = (I 0 I 0 I 0 I 0 I) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 I 0 I), (I 0 I 0 I 0 I 0 I)}. 

 

This is the way MOD realized resultant are obtained. 
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We will give one more example. 

 

Example 4.17: Let  

 

S = 

0 3I 0 0.1

1 0 0 0.2I

0 0 1 0

0 0 0 0.1

0.1 0.2 0.3 0

0 0 0 3

 
 
 
 
 
 
 
 
  

 

 

be the MOD neutrosophic relational matrix with entries from 〈[0, 

4) ∪ I〉 = {a +bI / a, b ∈ [0,4), I
2
 = I}. 

 

Let X = {(a1 a2 … a6) / ai ∈ {0, 1, I}; 1 ≤ i ≤ 6} and  

 

Y = {(b1 b2 b3  b4) / bj ∈ {0, 1, I}; 1 ≤ j ≤ 4} be the MOD 

domain and MOD range space respectively associated with S. 

 

Let x = (1 0 0 0 0 0) ∈ X, to find the effect of x on S. 

 

xS = (0 3I 0 0 1) → (0 I 0 0) = y1; 

y1S
t
 = (3I 0 0 0 0 2I 0) → (I 0 0 0 0 0) = x1; 

x1S → (0 I 0 0) = y2 (= y1). 

 

Thus the MOD resultant is MOD fixed point pair given by  

    {(I 0 0 0 0 0), (0 I 0 0)}. 

 

Let x = (0 1 0 0 0 0) ∈ X, to find the effect of x on S. 

 

xS → (1 0 0 0) = y1; 

y1S
t
 → (0 1 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by  

{(0 1 0 0 0 0), (1 0 0 0)}. 
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Let x = (0 0 1 0 0 0) ∈ X, to find the effect of x on S. 

 

xS → (0 0 1 0 ) = y1; 

y1S
t 
→ (0 0 1 0 0 0) = x1 (= x). 

 

Once again the MOD realized resultant is a MOD classical 

special fixed point pair given by {(0 0 1 0 0 0), (0 0 1 0)} 

 

Let x = (0 0 0 1 0 0) ∈ X, to find the effect of x on S. 

 

xS → (0 0 0 0) = y1; 

y1S
t
 → (0 0 0 1 0 0) = x1 (= x). 

 

Thus the MOD realized resultant is a MOD classical special 

fixed point pair given by  

{(0 0 0 1 0 0), (0 0 0 0)}. 

 

Let x = (0 0 0 0 0 1) ∈ X to find the effect of x on S. 

 

xS → (0 0 0 1) = y1 

y1S
t
 → (0 0 0 0 0 1) = x1 (= x). 

 

Thus once again the MOD resultant is the MOD special 

classical fixed point pair given by  

{(0 0 0 0 0 1), (0 0 0 1)}. 

 

Let y = (1 0 0 0) ∈ Y, to find the effect of y on S. 

 

yS
t
 → (0 1 0 0 0) = x1; 

x1S → (1 0 0 0) = y1 (= y). 

 

This MOD realized resultant is also a MOD special classical 

fixed point pair given by  

{(0 1 0 0 0 0), (1 0 0 0)}. 

 

Let y = (0 1 0 0) ∈ Y, to find the effect of y on S. 
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yS
t
 → (I 0 0 0 0 0) = x1; 

x1S → (0 I 0 0) = y1; 

y1S
t
 → (I 0 0 0 0 0) = x2 (= x1). 

 

Thus the MOD realized resultant is a MOD fixed point pair 

given by {(I 0 0 0 0 0), (0 I 0 0)}, both the nodes which are on 

are indeterminates. 

 

Let y = (0 0 1 0) ∈ Y, to find the effect of y on S, 

 

yS
t
 → (0 0 1 0 0 0) = x1; 

x1S → (0 0 1 0) = y1 (= y1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 1 0 0 0), (0 0 1 0)}. 

 

Let y = (0 0 0 1) ∈ Y to find the effect of y on S. 

 

yS
t
 → (0 0 0 0 0 1) = x1; 

x1S → (0 0 0 1) = y1 (= y). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by  

{(0 0 0 0 0 1), (0 0 0 1)}. 

 

Interested reader can construct any such number of MOD 

neutrosophic matrices and work for the MOD resultants [66]. 

 

Now we just describe briefly the MOD neutrosophic 

Relational Maps model built using  

〈[0, n) ∪ I〉 = {a + bI / a, b ∈ [0, n), I
2
 = I}.   

 

Suppose there is a problem in hand and the expert wishes to 

work with MOD Interval Relational Maps model with 

indeterminates involved then this model which has its entries 

from 〈[0, n) ∪ I〉 will be known as the MOD neutrosophic 

interval Relational Maps model or just MOD neutrosophic 

Relational Maps model. 
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The functioning of this model and their associated 

properties are left as an exercise to the reader as it is considered 

as a matter of routine. 

 

Next we proceed on to describe MOD dual number 

Relational Maps model. 

 

We first describe MOD dual number bipartite directed graph 

G with entries from  

〈[0, n) ∪ g〉 = {a + bg / g
2
 = 0, a, b ∈ [0, n)} by some 

examples. 

 

Example 4.18: Let G be a MOD directed bipartite graph with 

edge weights from 〈[0, n) ∪ g〉 = {a + bg / g
2
 = 0, a, b  ∈ [0, 9)} 

given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 

D1 R1 

D2 R2 

D3 

D4 

D5 

D6 

D7 

R3 

R4 

R5 

D8 

3+0.69g 

4g 

1 

6g+3 

5+2g 

0.8g 

0.25 

5g+0.33 
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This MOD dual number directed bipartite graph. 

 

Example 4.19: Let G be the MOD dual number  directed 

bipartite graph with edge weights from   

〈[0, 1) ∪ g〉 = {a  + bg / a, b ∈ [0, 11), g
2
 = 0} given  by the 

following figure. 

 

 We now describe the MOD dual number relational matrix 

operator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 

5g+0.608 

5g+0.608 
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D2 

R3 

3 

0.506 g 

D3 
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5+0.33g 
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Example 4.20: Let  

 

M = 

0 0.3g 0 0.2 0 g

1 0 0.03 0 0.01 0

0.2g 0.4 0 2g 0 0.1

0.6 0 0.2g 1 0 0

0 2 0 0 0.2g 0

0.32g 0 2g 0.42 0 1

0 0.21 0 0.01 1 0

 
 
 
 
 
 
 
 
 
 
 

 

 

be the MOD dual number rectangular or relational matrix with 

entries from  

〈[0, 14) ∪ g〉 = {a + bg / a, b ∈ [0, 4), g
2
 = 0}. 

 

Example 4.21: Let  

 

S = 

0 3.2g 0.01 0 0.02g 0 0.g 0.3

0.2 0 0 1 0 0.2g 0 0

0 0 2g 0 0.3 0 0.1 0

1.2 0 0 0 0 0 1.02 0.4g

0 0.32 0 0.52g 0 0 0 g

 
 
 
 
 
 
  

 

 

be the MOD dual number relational matrix operator with entries 

from   

〈[0, 4) ∪ g〉 = {a + bg/a, b ∈ [0, 4); g
2
 = 0}.   

 

 In this case also we cannot perform usual operations we can 

opt only for the thresholding and updating operations.  

 

Thus if G be a MOD dual number directed bipartite graph 

with edge weights from  

〈[0, n) ∪ g〉  = {a + bg / a, b ∈ [0, n) g
2
 = 0}.  

 

 Let M = (aij)t×s be the MOD dual number relational matrix of 

the graph G. 
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Clearly aij ∈ 〈[0, n) ∪ g〉; 1 ≤ i ≤ t, and 1 ≤ j ≤ s. 

 

Let X = {(a1 a2 … at) / ai ∈ {0, 1, g}; 1 ≤ i ≤ t} and  

 

Y = {(b1 b2 … bs) / bj ∈ {0, 1, g}; 1 ≤ j ≤ s} be the MOD 

domain space and MOD range space of initial state vectors 

respectively associated with M = (aij)t × s. 

 

We will M the dynamical system of the MOD dual number 

Relational Maps model. 

 

We will find for any x ∈ X (or y ∈ Y) MOD resultants using 

M by the method of updating and thresholding at each stage for 

otherwise we will not be in a position to arrive the MOD 

resultant after a finite number of iterations. 

 

We will illustrate by an example or two. 

 

Example 4.22: Let M be the MOD dual number relational matrix 

which is the MOD dual number dynamical system given in the 

following with entries from  

〈[0, 9) ∪ g〉 = {a + bg / a, b ∈ [0, 9), g
2
 = 0}. 

 

 

M =  

0 2.1g 0 0 0.2g 0 0 0.12

0.g 0 0.2 1 0 0.21 0.12g 0

0 0 0 0.2g 0 1 0 0

0.14g 0 0 0 4 0 0 0.2g

0 0.4g 6 0 0 0 0.25 0

 
 
 
 
 
 
  

 

 

 

Let X = {(a1 a2 a3 a4 a5) / ai ∈ {0, 1, g}; 1 ≤ i ≤ 5} and  

 

Y = {(b1 b2 … b8) / bj ∈ {0, 1, g}; 1 ≤ j ≤ 8} be the MOD 

domain and MOD range space of initial state vectors respectively 

associated with the MOD dynamical system M. 
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Let x = (1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 g 0 0 0 0 0 0) = y1; 

y1M
t
 → (1 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by  

{(1 0 0 0 0 0), (0 g 0 0 0 0 0 0)}. 

 

Let x = (0 1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 0 0 1 0 0 0 0) = y1; 

y1M
t
 → (0 1 0 0 0) = x1 (= x). 

 

Thus once again the MOD resultant is a MOD special 

classical fixed point pair given by  

{(0 1 0 0 0), (0 0 0 1 0 0 0 0)}. 

 

Let x = (0 0 1 0 0 ) ∈ X, to find the effect of x on M. 

 

xM → (0 0 0 0 0 1 0 0) = y1; 

y1M
t
 → (0 0 1 0 0) = x1 (= x); 

x1M → (0 0 0 0 0 1 0 0) . 

 

Thus the MOD resultant again is a MOD classical special 

fixed point pair given by  

{(0 0 1 0 0), (0 0 0 0 0 1 0 0)} 

 

Let x = (0 0 0 1 0) ∈ X, to find the effect of x on M. 

 

xM → (0 0 0 0 1 0 0 0) = y1; 

y1M
t
 → (0 0 0 1 0) = x1 (= x). 

 

Thus in this case also the MOD resultant is a MOD classical 

special fixed point pair given by  

{(0 0 0 1 0), (0 0 0 0 1 0 0 0)}. 

 

Let x = (0 0 0 0 1) ∈ X, to find the effect of x on M. 
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xM → (0 0 1 0 0 0 0 0) = y1; 

y1M
t
 → (0 0 0 0 1) = x1 (= x). 

 

Thus in this case also the MOD resultant is a MOD special 

classical fixed point pair given  by  

{(0 0 0 0 1), (0 0 1 0 0 0 0 0)}. 

 

Let y = (1 0 0 0 0 0 0 0) ∈ Y, to find the effect of y on M . 

 

yM
t
 → (0 0 0 0 0) = x1; 

x1M → (1 0 0 0 0 0 0 0) = y` (= y1). 

 

Thus the MOD resultant in this case is also a MOD classical 

special fixed point pair given by  

{(0 0 0 0 0), (0 1 0 0 0 0 0 0)}. 

 

Let y = (0 0 1 0 0 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 0 0 0 1) = x1; 

x1M → (0 0 1 0 0 0 0 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 0 1), (0 0 1 0 0 0 0 0)}. 

 

Let y = (0 0 0 0 1 0 0 0) ∈ Y to find the effect of y on M. 

 

yM
t
 → (0 0 0 1 0) = x1; 

x1M → (0 0 0 0 1 0 0 0) = y1 (= y). 

 

Thus in this case also the MOD resultant is a MOD special 

classical fixed point pair given  by  

{(0 0 0 1 0), (0 0 0 0 1 0 0 0)}. 

 

Let y = (0 0 0 0 0 0 1 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 0 0 0 0) = x1; 
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x1M → (0 0 0 0 0 0 1 0) = y1 (= y). 

 

Thus the MOD resultant is the MOD classical special fixed 

point pair, given by  

{(0 0 0 0 0), (0 0 0 0 0 0 1 0)}. 

 

Thus we can find MOD resultants. 

 

We will give yet another example of this MOD dual number 

plane Relational Maps model. 

 

Example 4.23: Let M be the MOD dual number relational matrix 

with entries from 〈[0, 12) ∪ g〉 = {a + bg / a, b ∈ [0, 12) g
2
 = 0} 

which is given in the following. 

 

M = 

0 3.2 0 0.2g 0.1 0

1 0 0 0 0.01

0 0.1 0.04 0.2 0

0 0 0 0 2

0.32g 0 0 0.5g 0

0 0 3 0 0

0.17g 0.21g 0 4.1 0

+ 
 
 
 
 
 
 
 
 
 
 

. 

 

 

   Let  X = {(a1  a2   a3 a4 a5 a6 a7) / ai ∈ {0, 1, g}; 1 ≤ i ≤ 7} and  

 

Y = ({b1 b2 b3  b4  b5) / bi ∈ {0, 1, g}; 1 ≤ i ≤ 5} be the MOD 

domain and range space of initial state vectors respectively 

associated with M. 

 

Let x = (1 0 0 0 0 0 0) ∈ X to find the effect of x on M. 

 

xM → (0 1 0 0 0) = y1; 

y1M
t
 → (1 0 0 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by {(1 0 0 0 0 0 0), (0 1 0 0 0)}. 
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Let x = (0 1 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (1 0 0 0 0) = y1; 

y1M
t
 → (0 1 0 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant in this case is also a MOD special 

classical fixed point pair given by  

{(0 1 0 0 0 0 0), (1 0 0 0 0)}. 

 

Let x = (0 0 0 0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 0 0 0 0) = y1; 

y1M
t
 → (0 0 0 0 1 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 0 1 0 0), (0 0 0 0 0)}. 

 

Let y = (0 1 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (1 0 0 0 0 0 0) = x1; 

x1M → (0 1 0 0 0) = y1 (= y). 

 

Thus the MOD realized resultant is a MOD classical special 

fixed point pair given by  

{(1 0 0 0 0 0 0), (0 1 0 0 0)}.   

 

Let y = (0 0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 0 0 1 0 0 0) = x1; 

x1M → (0 0 0 0 1) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 1 0 0 0), (0 0 0 0 1)}. 
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Let x = (0 0 0 0 0 0 g) ∈ X, to find the effect of x on M. 

 

xM → (0 0 0 g 0) = y1; 

y1M → (0 0 0 0 0 0 g) = x1 (= x1). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 0 0 0 g), (0 0 0 g 0)}. 

 

Thus the nodes state are the dual element g. 

 

Interested reader can work with any of the MOD dual 

number plane Relational Maps model.  

 

This is considered as a matter of routine exercise so left for 

the reader. 

 

Next we proceed onto describe the MOD special dual like 

number plane Relational Maps model.  

 

To this end we first describe the basic tools needed for the 

construction for this model by some examples. 

 

 

Example 4.24: Let G be a MOD directed bipartite graph with 

edge weights from  

〈[0, 3) ∪ h〉 = {a + bh / a, b ∈ [0, 3), h
2
 = h}.  

 

 Then G will be known as the MOD special dual like number 

directed bipartite graph.  

 

G is given by the following figure. 
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Figure 4.9 

 

Interested reader can have more such MOD special dual like 

number plane directed bipartite graph. 

 

Next we give one example of the MOD special dual like 

number relational or rectangular matrices. 

 

 

D1 

D1 

R1 

D3 

R2 

D4 R3 

D6 

R4 
D5 

R5 

D7 

D8 

0.2h + 0.5 

0.325 

0.42h 

2h+1 

1+h 

0.3h 

2 

2h+1 
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Example 4.25: Let  

 

 

M = 

0 0.35h 0 h

1 0 0.3 0.5h 0

0.2h 0 0 0.2

0 2h 1 0

0.3 0 0.4 0

0.1 0.2h 0 0 1 h

0 1 h 0

 
 

+ 
 
 
 
 
 

+ + 
 
 

 

 

special dual like number relational or rectangular matrix with 

entries from 〈[0,4) ∪ h〉 = {a + bh / a, b ∈ [0,4); h
2
 = h}. 

 

 It is left as an exercise for the reader the task of giving 

examples and getting the MOD special dual like number 

connection matrices given the MOD special dual like number 

directed bipartite graphs. 

 

Now we proceed onto describe how the MOD resultants can 

be obtained using MOD special dual like number relational 

matrix operator.  

 

At first it is important to mention that only special type of 

operations which involves both updating and thresholding at 

each stage alone can give the MOD resultant after finite number 

of iterations, otherwise finding a resultant is a NP hard 

problems.  

 

To this end we first describe the tools needed for this 

operator to function.  

 

Let M = (mij)s×t (s≠t) be a MOD special dual like number 

rectangular or relational matrix with entries from 〈[0,n) ∪ h〉 = 

{a + bh / a, b ∈ [0,n); h
2
 = h}. 

 

Let X = {(a1 … as) / ai ∈ {0, 1, h}; 1 ≤ i ≤ s} and  
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Y = {(b1 … b) / bj ∈ {0, 1, h}; 1 ≤ j ≤ t} be the MOD special 

dual like number MOD domain and MOD range space of initial 

state of vector respectively associated with M. 

 

We will describe this situation by some examples. 

 

Example 4.26: Let  

 

M = 

3 0 0 0 h

0.2 0 1 0 0

0 0.3h 0 0.2 0

0 h 0 0 0.32

0.5 0 0 1 2h 0

0 0.1 0.3 0 0

h 0 0 0 2

 
 
 
 
 
 
 +

 
 
 
 

 

 

be the MOD special dual like number relational matrix operator 

with entries from  

〈[0,4) ∪ h〉 = {a + bh / a, b ∈ [0,4); h
2
 = h}. 

 

Let X = {(a1 a2 … a7) / ai ∈ {0, 1, h}; 1 ≤ i ≤ 7} and  

 

Y = {(b1 b2 b3 b4 b5) / bj ∈ {0, 1, h}, 1 ≤ j ≤ 5} be the MOD 

domain and MOD range of initial state vectors respectively 

associated with the MOD relational matrix M. 

 

Let x = (1 0 0 0 0 0) ∈ X to find the effect of x on M. 

 

xM → (1 0 0 0 h) = y1`; 

y1M
t
 → (1 0 0 0 0 0 h) = x1; 

x1M → (1 0 0 0 h) = y2 (= y1) 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(1 0 0 0 0 0 h), (1 0 0 0 h)}. 
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Let x = (0 1 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 0 1 0 0) = y1; 

y1M
t
 → (0 1 0 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 1 0 0 0 0 0), (0 0 1 0 0)}. 

 

Let x = (0 0 1 0 0 0 0) ∈ ×, to find the effect of x on M. 

 

xM → (0 0 0 0 0) = y1; 

y1M → (0 0 1 0 0 0 0) = x1 (=x). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by  

{(0 0 1 0 0 0 0), (0 0 0 0 0)}. 

 

Let x = (0 0 0 1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 h 0 0 0) = y1; 

y1M
t
 → (0 0 0 h 0 0 0) = x1; 

x1M → (0 h 0 0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

    {(0 0 0 h 0 0 0), (0 h 0 0 0)} 

 

Let x = (0 0 0 0 0 1 0) ∈ X to find the effect of x on M. 

 

xM → (0 0 0 0 0) = y1; 

y1M
t
 → (0 0 0 0 0 1 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 0 0 1 0),  (0 0 0 0 0)}. 

 

Let x = (0 0 0 0 0 0 1) ∈ X, to find the effect of x on M. 

 



MOD Interval Relational Maps  221 

 

 

 

 

 

 

 

xM → (h 0 0 0 1) = y1; 

y1M
t
 → (h 0 0 0 0 0 h); 

x1M → (h 0 0 0 h) = y1; 

y1M
t
 → (h 0 0 0 0 0 h). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(h 0 0 0 0 0 h), (h 0 0 0 h}. 

 

Let y = (0 0 0 0 1) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (h 0 0 0 0 0 1) = x1; 

x1M → (h 0 0 0 1) = y1; 

y1M
t
 → (h 0 0 0 0 0 1) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(h 0 0 0 0 0 1), (h 0 0 0 1)}. 

 

Let y = (0 0 h 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 h 0 0 0 0 0) = x1; 

x1M →  (0 0h 0 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD classical special fixed 

point pair given by  

{(0 h 0 0 0 0 0), (0 0 h 0 0)}. 

 

Hence the study of MOD special dual like number plane 

Relational Maps model is left as an exercise to the reader. 

 

Now we proceed onto describe the MOD special quasi dual 

number model maps  using from  

〈[0,n) ∪ h〉 = {a + bk / a, b ∈ [0,n); k
2
 = h}. 

 

We first describe the MOD special dual number directed 

bipartite graphs by example. 
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Example 4.27: Let G be the MOD special quasi dual number 

plane directed bipartite graph G with edge weights from from 

〈[0,6) ∪ k〉 = {a + bk / k
2
 = 5k where a, b ∈ [0, 6)}.  

 

G is given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 

 

The interested reader is expected to give more examples of 

MOD special quasi dual number directed  bipartite graph with 

edge weights from 〈[0,n) ∪ k〉 = {a + bk / a, b ∈ [0,n); k
2
 = k}; 

2 ≤ n < ∞. 

 

Next we proceed on to give one example of a MOD special 

quasi dual number rectangular matrix with entries from  

〈[0,n) ∪ k〉 = {a + bk / a, b ∈ [0,n); k
2
 = (n – 1)k}. 

 

D1 

R1 

D2 

R2 

D3 

R3 

R4 

D4 

R5 

R6 

D5 R6 

3+0.2k 

0.4k 

1+k 

2k+0.004 

0.4 

3+0.25 k 

0.2+0.75k 
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Example 4.28: Let  

 

M = 

0.3k 0 1 0.4 0 0 0.2 0.5k

0 2 0 0 0 0.2k 0

0 0 0 0 1 0 0.62k

0.1 0 0.5k 0 0 0.25 0

2 0 0 0 0 0 0.125

0 0 0 2k 0 0 0

0 0.2k 0 0 0 4 2k 0

k 0 0.3k 4 0.2k 0 2 5k

+ 
 
 
 
 
 
 
 
 
 

+
 

+    
 

be the MOD special quasi dual number relational matrix with 

entries from  

〈[0,5) ∪ k〉 = {a + bk / a, b ∈ [0,5); k
2
 = 4k}. 

 

The reader is expected to give more examples of them. 

 

Now we proceed onto work with special operations using 

MOD special quasi dual  number relational or t × s rectangular 

matrices M = (mij) with entries from  

 

〈[0,n) ∪ k〉 = {a + bk / a, b ∈ [0,n); k
2
 = (n – 1) k}; that is  

 

mij ∈ 〈[0,n) ∪ k〉; 1 ≤ i ≤ 5, 1 ≤ j ≤ s. 

 

Let X = {(a1 a2 … at) / ai ∈ {0, 1, k}; 1 ≤ i ≤ t} and  

 

Y = {(b1 b2 … bs) / bj ∈ {0, 1, k}; 1 ≤ j ≤ t} be the MOD 

domain and range space of initial state vectors associated with 

M.  

 

We can do special type of operation only on M to get the 

final resultant after a finite number of iterations.  

 

This will be described by an example. 
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Example 4.29: Let  

 

M = 

0 3.2k 0 0.12 0 0 1 0 0

1 0 0.1 0 0 0.2k 0 0 0

2 0.2k 0 0 1.2k 0 0 0.01 0

0 0 0 0.1 0 0 0 k 2

 
 
 
 
 
 

 

 

be the MOD special quasi dual number relational matrix operator 

with entries from 〈[0,4) ∪ k〉. 
 

 Let X = {(a1 a2 a3 a4) / ai ∈ {0, 1, k}; 1 ≤ i ≤  4} and  

 

Y = {(b1 b2 … b9) / bj ∈ {0, 1, k} 1 ≤ j ≤ 9} be the MOD 

domain and MOD range of special state vectors respectively 

associated with M. 

 

Let x = (0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM → (1 0 0 0 0 0 0 0 0) = y1; 

y1M
t
 → (0 k 0 0 0 0 1 0 0) = x1; 

y1M
t
 → (0 1 1 0) = x1 

x1M → (1 0 0 0 0 0 0 0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 1 1 0), (1 0 0 0 0 0 0 0 0)}. 

 

Let x = (0 0 0 1) ∈ X, to find the effect of x on M. 

 

xM → (0 0 0 0 0 0 0 k 1) = y1; 

y1M
t
 → (0 0 0 k) = x1; 

x1M → (0 0 0 0 0 0 0 k k) = y2; 

y2M
t
 → (0 0 0 k) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

    {(0 0 0 k), (0 0 0 0 0 0 0 k k)}. 

 

Let y = (1 0 0 0 0 0 0 0 0) ∈ Y to find the effect of y on M. 
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yM
t
 → (0 1 1 0) = x1; 

x1M → (1 0 0 0 0 0 0 0 0) = y1 (= y). 

 

Thus the MOD resultant in this case is a MOD special 

classical fixed point pair given by  

{(0 1 1 0), (1 0 0 0 0 0 0 0 0)}. 

 

Let y = (0 0 1 0 0 0 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 0 0 0) = x1; 

x1M → (0 0 1 0 0 0 0 0 0) = y1 (= y). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 0 0), (0 0 1 0 0 0 0 0 0)}. 

 

Let y = (0 0 0 0 0 k 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (0 0 0 0) = x1; 

x1M → (0 0 0 0 0 k 0 0 0) = y1 (= y). 

 

Thus the MOD resultant in this case is also a MOD special 

classical fixed point pair  

{(0 0 0 0), (0 0 0 0 0 k 0 0 0)}. 

 

Let y = (0 0 0 0 0 0 0 1 0) ∈ Y to find the effect of y on M. 

 

yM
t
 → (0 0 0 k) = x1; 

x1M → (0 0 0 0 0 0 0 k k) = y1; 

y1M
t
 → (0 0 0 k) = x2 (= x). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

  {(0 0 0 k), (0 0 0 0 0 0 0 k k)}. 

 

Thus the interested reader can construct such models and 

study the special features enjoyed by them. 

 

Hence these on new models only one type of operation can 

be made and also they can give node values as 0 or 1 or I or iF 
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or g or h or k depending of the plane used for that relational 

maps model. 

 

Next we proceed onto describe and develop the MOD natural 

neutrosophic interval Relational Maps model built using 
I
[0,n), 

C
I
([0,n)) 〈[0, n) ∪ I〉I, 〈[0, n) ∪ g〉I 〈[0, n) ∪ h〉I and  

〈[0, n) ∪ k〉I. 

 

We will be sparing in our description and give only an 

example or so for each case. 

 

Let 
I
[0,n) = {[0, n), n

tI where t is zero divisor or an 

idempotent or a pseudo zero divisor or pseudo unit or pseudo 

idempotent [60]. 

 

The notions of MOD natural neutrosophic numbers was 

introduced in [60]. 

 

Here we give examples of MOD natural neutrosophic 

interval directed bipartite graph built using 
I
[0, n). 

 

Example 4.30: Let 
I
[0 3)= {[0, 3), 3

0I , 3

1.5I , 3

2I and so on}. 

 

However these compatibility with respect to product is not 

always guaranteed. 

 

Further 3

2I  × 3

2I  = 3

1I  but 3

1I  is not in the set as it is an 

impossibility 1 can create a natural neutrosophic zero divisor in 

this set up.  

 

For more refer [60]. 

 

Example 4.31: Let G be a MOD bipartite directed graph with 

edge weights from 
I
[0,6).  

 

We define G to be a MOD natural neutrosophic interval 

directed bipartite graph which is given by the following figure. 
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Figure 4.11 

 

Interested reader can get more examples of MOD natural 

neutrosophic interval bipartite directed graphs with edge 

weights from 
I
[0, n); 2 ≤ n < ∞. 

 

Next we give an example of MOD natural neutrosophic 

interval relational (or rectangular) matrix operator with entries 

from 
I
[0, n). 

 

Example 4.32: Let  

 

 

M = 

5 5

0 2.5

5 5

2 1.25

5

0.625

I 0 2 3.0011 0 1 I

0 I 3 0 0 1 I 0 0

0 0 I 1 0 0

2 0.25 0 1.001 0 1.521

 +

 
+ + 

 
 
    

 6

3I  
D1 

D2 

D5 

D6 

R1 

R2 

R4 

D3 

1+ 6

2I  

6

1.5I  + 6

4I  

2 

D4 
5+ 6

1.2I   R3 
3 
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be the MOD real natural neutrosophic interval relational or 

rectangular matrix with entries from 
I
[0,5). 

 

We can perform only one type of operation using the MOD 

natural neutrosophic real interval relational matrix operators. 

 

Let 
I
[0,  n); 2 ≤ n < ∞ be the natural neutrosophic real 

interval. Let G be the MOD directed bipartite graph with edge 

weighs from 
I
[0, n).  

 

Then we define G to be the MOD natural neutrosophic real 

interval directed bipartite graph. 

 

Likewise if M = (mij)t×s is a t × s MOD relational or 

rectangular matrix with entries eij ∈ 
I
[0, n); 2 ≤ n < ∞ then we 

define M to be a MOD natural neutrosophic real interval 

relational or rectangular matrix operator [66].  

 

We have given an example of it. 

 

Interested reader can construct more such examples. 

 

We now proceed onto describe some special types of 

operations using them for which we need the notion of MOD 

domain and MOD range initial state of vectors. 

 

Let M be as given above.  

 

Let X = {(a1, a2, a3, …, at) / ai ∈ {0, 1, n

0I , I n

tI / t runs over 

only finite such selected MOD natural neutrosophic elements as 

per need}; 1 ≤ i ≤ t} be the MOD natural neutrosophic domain 

space of special initial state vectors associated with this M. 

 

Let Y = {(b1, b2, … bs) / bj ∈ {0, 1, n

0I , I, n

tI  / t runs only 

over finite MOD such natural neutrosophic elements as given in 

×}; 1 ≤ j ≤ s} be the MOD interval  natural neutrosophic special 

initial state vectors of range space associated with M. 

 



MOD Interval Relational Maps  229 

 

 

 

 

 

 

 

Thus for us to do operations on M we need elements of both 

X and Y further the operation at each stage is updated and 

thresholded. 

 

We will describe this situation by an example. 

 

Example 4.33: Let  

 

M = 

6

0

6

1.5

6

4

0 I 0.21 0.32 0 0 0

1 0 0 0 0 I 0

0 0 1 0 4.5 0 0

0 0 0 I 0 0 2

 
 
 
 
 
  

 

 

be the MOD natural neutrosophic interval relational matrix. 

 

X =  {(a1 a2 a3 a4) / ai ∈ {0, 1, I 6

1.5I , 6

4I , 6

2I , 6

3I  6

0I };  

1 ≤ i ≤ 4} and  

 

Y = {(b1 b2 … b7) / bj ∈ {0, 1, 6

1.5I , 6

0I , 6

4I , 6

2I , 6

3I }; 

1 ≤ j ≤ 7}  

 

be the MOD natural neutrosophic initial state vectors of MOD 

domain and MOD range space respectively. 

 

Let x = (1 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 6

0I  0 0 0 0 0) ; 

y1M
t
 → ( 6

0I  0 0 0) = x1; 

xM → (0 6

0I  0 0 0 0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

{( 6

0I  0 0 0), (0 6

0I  0 0 0 0 0)} both the nodes which has 

come to on state  has become natural neutrosophic zero for the 

initial state vector x = (1 0 0 0) ∈ X. 

 

Thus this property is unique and related only to this model. 
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Let x = (0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM → (1 0 0 0 0 6

1.5I  0) = y1; 

y1M
t
 → (0 6

1.5I +1 0 0) = x1; 

x1M → ( 6

1.5I  + 1 0 0 0 0 6

2.25I  0) = y2; 

y2M
t
 → (0 1 + 6

1.9I + 6

3.975I  0 … 0). 

 

This example is mainly provided to the reader to show that 

an expert or a researcher cannot select any form of natural 

neutrosophic numbers from 
I
[0,6) he/she should judicially select 

a natural neutrosophic element so that product among 

themselves can we well define here in this case products are not 

defined so the matrix M is not a properly constructed MOD 

natural neutrosophic real interval relational matrix operator. 

 

So we have illustrated by an example how the MOD natural 

neutrosophic values should be taken from 
I
[0,6) in particular 

and 
I
[0, n) in general. 

 

We will give an example which works out well. 

 

Example 4.34: Let  

 

M = 

8

2

8

0

0 3.2 I 0

1.2 0 0 1

0 0 0.31 0

0.01 0 0 0

0 0 0 2

0 I 0 0

 
 
 
 
 
 
 
 
  

 

 

be the MOD natural neutrosophic real interval relational matrix 

with entries from 
I
[0, 8). 

 

Let X = {(a1 a2 … a6) / ai ∈ {0, 1, I 8

2I , 8

4I , 8

0I }; 1 ≤ i ≤ 6} 

and  
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Y = {(b1 b2 b3 b4) / bij ∈ {0, 1, 8

0I , 8

4I  8

2I }; 1 ≤ j ≤ 4} be the 

MOD natural neutrosophic domain and range space of initial 

state of vectors. 

 

Let x = (1 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 1 8

2I 0) = y1; 

y1M
t
 → (1 + 8

4I  0 0 0 0 8

0I ) = x1; 

x1M → (0 1 + 8

4I  + 8

0I   8

2I  + 8

0I  0) = y2; 

y2M
t
  → (1 + 8

0I  + 8

4I  + 8

2I  0 0 0 0 8

0I ) = x2; 

x2M → (0, 1 + 8

0I  + 8

4I  + 8

2I  8

0I  + 8

4I  + 8

2I  0) = y3; 

y3M
t
 → (1 + 8

0I  + 8

4I  + 8

2I   0 0 0 0 8

0I ) = x3 (= x2). 

 

Thus the MOD natural neutrosophic models resultant is a 

MOD fixed point pair given by  

{(0 1 + 8

0I  + 8

4I  + 8

2I   8

0I  + 8

4I  + 8

2I  0),  

(1 + 8

0I + 8

4I  + 8

2I  0 0 0 0 8

0I )} 

 

It is clearly observed that the nodes take sum of the MOD 

natural neutrosophic values. 

 

The reader is expected to work with more such initial state 

vectors using M. 

 

Next we proceed onto describe and develop MOD natural 

neutrosophic-neutrosophic interval Relational Maps model 

using 〈[0, n) ∪ I〉I = {[0, n), I

0I , I

tI , t is a zero divisor or 

idempotent or nilpotent or pseudo zero divisor and so on t ∈  

[0, n)}.   

 

To this first we need the notion of MOD natural 

neutrosophic-neutrosophic interval directed bipartite graph G, 

which we described by an example. 
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Example 4.35: Let G be a MOD interval directed bipartite graph 

with edge weights from 〈[0, 12) ∪ I〉I.  

 

G will be known as the MOD natural neutrosophic-

neutrosophic interval directed bipartite graph. G is given by the 

following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 

 

 Interested reader can construct any number of such MOD 

natural neutrosophic-neutrosophic interval bipartite directed 

graphs using 〈[0, n) ∪ I〉I. 

 

 We give one example of the MOD natural neutrosophic- 

neutrosophic interval relational (rectangular) matrix operator 

[66]. 

 

 

D1 

D3 

D2 

D5 

D4 

10 +
I

6I   

R2 

R4 

R5 

R3 

R1 

R6 

R7 

I 

I

0I  
I

9II

 

2I 

I

5II

 

0.02I+
I

6II  

0.32I+
I

8II  

0.4I + 0.3 
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Example 4.36: Let  

 

M =

I I

2I 0

I

4I

I

4

0 0.31 I 0 I 0.2 0.72I

0.21 0 0 I 0 0

0.112I I 0 0 1 0

0 2 1 I 1 2I 1.32

1 0 0 0 0 0.14I

 +

 
 
 
 

+ 
 
 

 

 

be the MOD natural neutrosophic-neutrosophic interval 

rectangular or relational matrix with entries from  〈[0, 5) ∪ I〉I. 

 

 One can obtain all special features associated with these 

matrices as it is realized as a matter of routine. 

 

We will describe by one example how the MOD natural 

neutrosophic-neutrosophic interval matrix operations. 

 

Example  4.37: Let  

 

M = 

I

3I

I I

0 2

I 0 0 0.2

0 I 0 0

0 0 2 0

0.1 0.4I 0 0.7I

0 0 I I

0 0.2 0 4

 
 
 
 
 
 
 
 
  

 

 

be the MOD natural neutrosophic-neutrosophic interval relational 

matrix operator with entries from 〈[0, 5) ∪ I〉I. 

 

Let X = {(a1 a2 a3 a4 a5 a6) / ai ∈ {0, 1, I

0I  I, I

2II  I

II , I

3II  I

4II } 

 1 ≤ i ≤ 6} and  

 

Y = {(b1 b2 b3 b4) / bj ∈ {0, 1 I

0I , I I

II  I

2II I

3II I

4II }, 1 ≤ j ≤ 4} 

be the MOD domain range space of initial state vectors 

associated with M. 
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Let x = (1 0 0 0 0 0) ∈ X to find the effect of x on M.  

 

xM → ( I

3II  0 0 0) = y1; 

y1M
t
 → ( I

4II  0 0 0 0 0) = x1; 

x1M → ( I

2II 0 0 0) = y2; 

y2M
t
 → ( I

II  0 0 0 0 0) = x2; 

x2M → ( I

3II 0 0 0) = y3 (= y1). 

 

 

Thus the MOD resultant is a MOD realized limit cycle pair 

given by {( I

4II  0 0 0 0 0), ( I

3II 0 0 0)} that is both the on nodes 

which are in the on state are MOD natural neutrosophic- 

neutrosophic elements. 

 

 

Let x = (0 1 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 I 0 0) = y1; 

y1M
t
 → (0 I 0 0 0 0) = x1; 

x1M → (0 I 0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

    {(0 I 0 0 0 0), (0 I 0 0)}. 

 

Clearly both the nodes are just indeterminate I. 

 

Let x = (0 0 1 0 0 0) ∈ X, to find the effect of x on M, 

 

xM → (0 0 1 0) = y1; 

y1M
t
 → (0 0 1 0 I

0I  0) = x1; 

x1M → (0 0 1 + I

0I  I

0I ) = y2; 

y2M
t
 →  (0 0 1 + I

0I  0 I

0I  I

0I ) = x2; 

x2M → (0 0 I

0I  + 1 I

0I ) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point pair given  by  
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{(0 0 1 + I

0I  0 I

0I  I

0I ), (0 0 1 + I

0I  I

0I )}. 

 

Let x = (0 0 0 1 0 0) ∈ X to find the effect of x on M. 

 

xM → (0 0 0 0) = y1; 

y1M
t
 → (0 0 0 1 0 0) = x1 (= x). 

 

The MOD resultant is a MOD special classical fixed point 

pair given by  

{(0 0 0 1 0 0), (0 0 0 0)}. 

 

Let x = (0 0 0 0 1 0) ∈ X, to find the effect of x on M. 

 

xM → (0 0 I

0I  I

2I ) = y1; 

y1M
t
 → (0 0 I

0I  0 I

0I  + I

4I  I

2I ) = x1; 

x1M  → (0 0 I

0I  I

2I  + I

0I  + 4

3I ) = y2; 

y2M
t
 → (0 0 I

0I  0 I

0I  + I

1I ). 

 

Thus we  see even though we have taken X and Y properly 

still the MOD resultant does not exist. 

 

The main reason attributed to it is that even one has to 

properly take entries of the MOD natural neutrosophic- 

neutrosophic interval matrix.  

 

Whenever the MOD natural neutrosophic-neutrosophic 

values are taken those elements should generate a finite 

semigroup under product otherwise we will face a problem as in 

case o the present example for I

2I  × I

2I  = I

4I  and I

4I  × I

4I = I

1I  

which is never a MOD natural neutrosophic neutrosophic number 

so the entry I

2I  is not correct entry of M according to our 

analysis. 

 

Thus we make one more stipulation in this direction the 

MOD natural neutrosophic neutrosophic directed bigraph should 

have edge weights if are from natural neutrosophic neutrosophic 
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numbers then those  numbers must be closed with respect to 

product. 

 

Thus we can briefly describe the MOD natural neutrosophic 

neutrosophic relational maps model. 

 

Let 〈[0, n) ∪ I〉I be the MOD natural neutrosophic 

neutrosophic interval collection. 

 

Let G be a MOD directed graph with entries from  

〈[0, n) ∪ I〉I. 

 

For if I

tI  are edge weights of G then for the resultant to exist 

in the MOD natural neutrosophic neutrosophic interval 

Relational Maps model, we must have the collection of I

tI ,s are 

such that they generate a finite semigroup under ×. 

 

Consequent of this we will get the entries of the MOD 

natural neutrosophic neutrosophic relational matrix M to have 

the I

tI ’s to be such that they generate a semigroup under ×; and 

M forms the MOD dynamical system of the model.  

 

Unless this is achieved it is impossible to work with the 

model as finding resultants would be a NP hard problem. 

 

The construction of this new model and related studies is a 

matter or routine hence left as an exercise to the reader. 

 

Next we proceed onto develop the MOD natural 

neutrosophic dual  number interval Relational Maps model with 

entries from 〈[0, n) ∪ g〉I = {[0, n), g

tI ; t is a zero divisor or an 

idempotent or a pseudo zero divisor and so on in [0, n)} 

 

We will first describe the notion of MOD natural 

neutrosophic dual number interval directed bipartite graph G 

with edge weights from 〈[0, n) ∪ g〉I. g
2
 = 0; 2 ≤ n < ∞ by an 

example. 
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Example 4.38: Let G be a MOD natural neutrosophic dual  

number interval directed bigraph with edge weights from  

〈[0, 7) ∪ g〉I given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 

 

Interested reader can get more number of such graph.  

 

Thus if G a MOD natural neutrosophic interval dual number 

directed bipartite graph then the edge weights are essential from 

〈[0, n) ∪ g〉I; g
2
 = 0, 2 ≤ n < ∞. 

 

Next we give one example of a MOD natural neutrosophic 

interval dual number relational or rectangular matrix. 

 

 

 

v1 
R1 

v2 R2 

v3 

v4 

R3 

v5 

R4 

g

3gI  

5g

2 

5+ g

4gI  

3g+1+ g

6gI  
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Example 4.39: Let  

 

M = 

g g

4g 2

g

5g

0 1 I I 0 0 0 5

0.72g 0 0 0.15g 1 0 0.331

0 0 1 I 0 0 2 0

 +

 
 
 + 

 

 

be the MOD natural neutrosophic interval dual number relational 

or rectangular matrix with entries from 〈[0, 6) ∪ I〉I 

 

Thus M = (mij)t×s is a t × s MOD natural neutrosophic 

interval dual number relational matrix if mij ∈ {〈[0, n) ∪ g〉I,  

g
2
 = 0; 1 ≤ i ≤ t and 1 ≤ j ≤ s}.   

 

We as in case of MOD natural neutrosophic neutrosophic 

interval numbers demand the set of g

tI in M must generate a 

finite semigroup under product.  

 

Then only the MOD natural neutrosophic interval dual 

number Relational Maps model will exist. 

 

X = {(x1 x2 … xt) / xi ∈ {0, 1, g g

tI / g

tI  for all t such that t 

running only over a finite index must generate a finite 

semigroup under x}; 1 ≤ i ≤ t} and  

 

Y = {(y1 y2 … ys) / yi ∈ {0, 1, g, g

tI ; t as said in ×} 1 ≤ i ≤ 

s} are the MOD domain and MOD range spaces of initial vectors, 

respectively associated with M. 

 

We give an example to show how this new model or the 

MOD natural neutrosophic dual number relational matrix 

operator functions. 
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Example 4.40: Let  

 

P = 

g

2

g

0

0 3 I 0 1 0 0 0.2g 0

I 0 0 0.3g 0 0 g 0 0

0 0 0 2 0.3g 0 0 0 0 3g

0 0.22g 0.01 0 0.2g 3 0 1 0

 
 
 
 +

 
  

 

 

be the MOD natural neutrosophic dual number interval relational 

matrix operator with entries from 〈[0, 4) ∪ I〉I; g
2
 = 0. 

 

 Let X = {(a1 a2 a3 a4) / ai ∈ {0, 1, g

2I  g

2I  g

gI  g

3gI g

2 2gI
+

 g

0I };  

1 ≤ i ≤ 4} and  

 

Y = {(b1 b2 b3 … b9) / bj ∈ {1, 0, g, g

2I , g

2gI g

0I
g

gI g

3gI g

2 2gI
+

}; 

1 ≤ j ≤ 9} be the MOD domain and MOD range of special initial 

state vectors respectively associated with P. 

 

Let x = (1 0 0 0) ∈ X, to find the effect of x on P. 

 

xP → (0 1 g

2I  0 1 0 0 0 0) = y1; 

y1P
t
 → (1 + g

0I  0 0 0) = x1; 

x1P → (0 g

0I  + 1 g

2I  0 1 + g

2I  0 0 0 0) = y2; 

y2P
t
 → (1 + g

0I  + g

2I  0 0 0) = x2; 

x2P → (0 g

0I  + g

2I +1  g

2I  0 1 + g

0I  + g

2I  0 0 0 0) = y3; 

y3P
t
 → (1 + g

0I  + g

2I , 0 0 0 0) = x3 (= x2) . 

 

Thus the MOD resultant is a MOD fixed point pair given by 

 {(1 + g

0I  + g

2I  0 0 0), (0 1 + g

0I  g

2I  0 1 + g

2I   0 0 0 0)}. 

 

Thus the on nodes are natural neutrosophic elements 

combination with real value. 

 

Let y = (0 0 0 1 0 0 0 0 0) ∈ Y, to find the effect of y on P. 
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yP
t
 → (0 0 1 0) = x1; 

x1P → (0 0 0 1 0 0 0 0 g) = y1; 

y1P
t
 → (0 0 1 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 1 0), (0 0 0 1 0 0 0  0 g)}. 

 

The on state nodes are 1 or g only.  

 

Interested reader can work with any number of such initial 

vectors as it is considered as a matter of routine. 

 

Now at this juncture we wish to mention the MOD natural 

neutrosophic interval special quasi dual number bipartite 

directed 〈[0, n) ∪ k〉I; k
2
 = (n – 1) k graph and MOD natural  

neutrosophic interval special dual like number directed bipartite 

graph using edge weights 〈[0, n) ∪ h〉I, h
2
 = h and 2 ≤ n < ∞ can 

be defined and developed analogous to MOD natural  

neutrosophic interval dual number bipartite directed graph using 

edge weights from 〈[0, n) ∪ g〉I; g
2
 = 0.   

 

This work is considered as a matter of routine and left as an 

exercise to the reader. 

 

Likewise we can define the MOD natural neutrosophic 

special dual like number interval rectangular or Relational Maps 

model matrix with entries from  

〈[0, n) ∪ h〉I; h
2
 = h, 2 ≤ n < ∞ is considered as a matter of 

routine so is left as an exercise to the reader. 

 

Further the MOD natural neutrosophic special quasi dual 

number interval rectangular or matrix and its related Relational 

Maps models with entries from  

〈[0, n) ∪ k〉I, k
2

 = (n – 1)k, 2 ≤ n < ∞ is also left as an 

exercise to the reader. 

 

However all these three models function in a similar way 

with making appropriate changes while product operation is 

done on them.  
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We will illustrate by some examples. 

 

Example 4.41: Let M be the MOD special dual like  number 

Relational Maps models dynamical system with entries from 

〈[0, 9) ∪ h〉I; h
2
 = h. M is as follows. 

 

 

M = 
h

3

h

6h

0 8 0.32h 0 0 0.14h 0.5

0.2 0 1 0 0

0 0 0 3h 0

0 0 0 0 I

I 0.32 0 0 0

0.3h 0 0.2h 1 0

+ + 
 
 
 
 
 
 
 
  

 

 

 

X = {(x1 x2 … x6) / xi ∈ {0, 1, h, h

3I , h

6hI , h

0I , h

3hI },  

1 ≤ i ≤ 6} and  

 

Y = {(y1 y2 … y5) / yj ∈ {0, 1, h, h

3I , h

6hI , h

0I , h

3hI ; 1 ≤ j ≤ 5} 

be the MOD natural neutrosophic special dual like number 

Relational Maps models, dynamical systems associated MOD 

domain and MOD range spaces respectively. 

 

Let x = (1 0 0 0 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 1 0 0 0) = y1; 

y1M
t
 → (1 0 0 0 0 0) = x1 (= x). 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(1 0 0 0 0 0), (0 1 0 0 0)}. 

 

Let x = (0 1 0 0 0 0) ∈ X to find the effect of x on M. 

 

xM → (1 0 0 0 0) = y1; 
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y1M
t
 → (0 1 0 0 h

6hI 0) = x1; 

x1M → ( h

0I 0 1 0 0) = y2; 

y2M
t
 → (0 1 0 0 h

0I  0) = x2; 

x2M → ( h

0I  0 1 0 0) = y3 (= y2). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

 {( h

0I  0 1 0 0), (0 1 0 0 h

0I 0)}. 

 

Let x = (0 0 0 1 0 0) ∈ X, to find the effect of x on M. 

 

xM → (0 0 0 0 h

3I ) = y1; 

y1M
t
 → (0 0 0 h

3I 0 0) = x1; 

x1M → (0 0 0 0 h

3I ) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

   {(0 0 0 h

3I  0 0), (0 0 0 0 h

3I )}. 

 

Let y = (0 1 0 0 0) ∈ Y, to find the effect of y on M. 

 

yM
t
 → (1 0 0 0 0 0) = x1; 

x1M → (0 1 0 0 0) = y1 (= y). 

 

Thus the MOD resultant is the MOD classical special fixed 

point pair given by  

{(1 0 0 0 0 0), (0 1 0 0 0)}. 

 

The reader is expected to work with other initial state 

vectors. 

 
Example 4.42: Let  

 

S = 
k

2k

0 2k 0.33 0 0 0 0

1 0 0.3k 0 0.2 0

0 0.335 0 I 0 0

0 0 0 0 2k 3

+ 
 
 
 
 
 
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be the MOD special quasi dual number relational matrix operator 

with entries from 〈[0, 4) ∪ k〉I; k
2
 = 3k. 

 

 

Let X = {(x1 x2 x3 x4) / xi ∈ {0, 1 k k

2kI  I

0I k

2kI }; 1 ≤ i ≤ 4} 

and  

 

Y = {(y1 y2 … y6) / yj ∈ {0, 1, k, k

2kI , I

0I k

2I }; 1 ≤ j ≤ 6}  

 

 

be the MOD domain and MOD range space of special initial state 

vectors associated with S. 

 

Let x = (1 0 0 0) ∈ X, to find the effect of x on S. 

 

xS → (0 k 0 0 0 0) = y1; 

y1S
t
 → (k 0 0 0) = x2; 

x2S → (0 k 0 0 0 0) = y2 (= y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

    {(k 0 0 0), (0 k 0 0 0 0)}. 

 

Let y = (0 0 1 0 0 0) ∈ Y, to find the effect of y on S. 

 

yS
t
 → (0 0 0 0) = x1; 

x1S → (0 0 1 0 0 0) = y1 (= y). 

 

 

Thus the MOD resultant is a MOD special classical fixed 

point pair given by  

{(0 0 1 0 0 0), (0 0 0 0)} 

 

Let x = (0 0 k 0) ∈ X, to find the effect of x on S. 
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xS → (0 0 0 *

2kI 0 0) = y1; 

y1S
t
 → (0 0 *

2kI  0) = x1; 

x1S → (0 0 0 k

0I 0 0) = y2; 

y2S
t
 → (0 0 k

0I 0) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given  by  

{(0 0 k

0I  0), (0 0 0 k

0I  0 0)}. 

 

Let y = (0 0 0 0 0 1) ∈  Y to find the effect of y on S. 

 

yS
t
 → (0 0 0 1) = x1; 

x1S → (0 0 0 0 k 1) = y1; 

y1S
t
 → (0 0 0 1) = x2 (= x1). 

 

Thus the MOD resultant is a MOD fixed point pair given by  

    {(0 0 0 1), (0 0 0 0 k 1)}. 

 

Let y = (0 0 0 1 0 k) ∈ Y, to find the effect of y on S.0 

 

yS
t
 → (0 0 k

2kI  k) = x1 ; 

x1S → (0 0 0 k

0I k k) = y1; 

y1S
t
 → (0 0 k

0I k) = x2; 

x2S → (0 0 0 k

0I  k k) = y2 (=y1). 

 

Thus the MOD resultant is a MOD fixed point pair given by 

{(0 0 k

0I  k), (0 0 0 k

0I  k k)}. 

 

Thus the on state of the nodes are special quasi dual number 

k or the MOD natural neutrosophic zero.  

 

Thus one can work with any initial state vector from X or Y 

and find the MOD resultants. 
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The MOD natural neutrosophic number Relational Maps 

model with entries from  
 

I
[0, n) or C

I
([0, n)) or 〈[0, n) ∪ I〉I or  〈[0, n) ∪ g〉I, g

2
 = 0 or 

〈[0, n) ∪ h〉I h
2
 = h or 〈[0, n) ∪ k〉I, k

2
 = (n – 1)k  

 

can be functional that they can have MOD resultants after a finite 

number of iterations if and only if the MOD natural neutrosophic 

numbers in the MOD dynamical system associated with the 

model has the collection of  MOD natural neutrosophic elements 

is such that it generates a finite semigroup under X; for 

otherwise the problem of finding the MOD resultant would be a 

NP hard problem. 

 

This can be equivalently stated as follows. 

 

Let G be the MOD natural neutrosophic number interval 

directed bipartite graph with edge weights from 

 

 
I
[0, n) or C

I
 ([0, n)) or 〈[0, n) ∪ I〉I or 〈[0, 5) ∪ g〉I, g

2
 = 0 or 

〈[0, 5) ∪ h〉I, h
2
 = h or 〈[0, n) ∪ k〉I; k

2
 = (n – 1) k; 2 ≤ n < ∞  

 

then the collection of all edge weights of the n

tI or g

tI  or h

tI or I

tI  

or c

tI  or k

tI  for 0 < t < ∞ should generate only a finite 

semigroup under product else the MOD resultant cannot be got in 

general after a finite number of iterations.  

 

Secondly it is mandatory that the MOD operation using the 

dynamical system is done by updating and thresholding at each 

stage of the operation else we will not be in a position to arrive 

at a MOD resultant after a finite number of iterations it would 

once again become a NP hard problem. 
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Finally by this method we are able to get as nodes in the 

MOD resultant which are MOD natural neutrosophic numbers or I 

or iF or g or h or k or 1. 

 

Interested reader can obtain all other special features 

associated with them.   

 

This task is left as an exercise to the reader.  
 

 



 
 
 
 
 
Chapter Five 
 
 

 
 
SUGGESTED PROBLEMS 
 
 
 

 

 

In this chapter we suggest some problems some of which 

can also be realized as open conjectures. 

 

1. Characterize the special features associated with MOD 

directed bipartite graphs with entries from Zn. 

 

2. Bring out the difference between MOD directed bipartite 

graphs and the usual bipartite graphs. 

 

3. Show by illustrations that MOD bipartite directed graphs has 

applications in MOD Relational Maps models. 

 

4. Enumerate all the special features enjoyed by the MOD 

rectangular matrices. 

 

5. Let G be the MOD directed bipartite graph G given by the 

following figure with edge weights from Z10  
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G = 

 

 

 

 

 

 

 

 

 

Figure 5.1 

 

i) Find the MOD relational matrix M associated with G. 

 

ii) If x = (1 0 0 0 0) ∈ X = {(a1 a2 a3 a4 a5) / ai ∈ {0, 1}, 1 ≤ i 

≤ 5} be the initial state vectors associated with M.  

 

(a) Find the MOD resultant using usual operation. 

(b) Find the MOD resultant when updating is carried  out 

at each stage. 

 

iii) Find all x in X for which MOD resultant is the same for  

both the types of operations. 

 

iv) Let Y = {(b1 b2 …. b6)/bi ∈ {0, 1}; 1 ≤ i ≤ 6} be the 

MOD range initial state vector associated with M. 

 

a) If y = (0 0 0 0 1 0) ∈ Y find the MOD results under 

usual operations and MOD resultant using updating 

operations. 

 

v) Find all y ∈ Y which has different MOD resultants under 

usual operations and updating operations.  

 

R1 D1 

D2 

2 

3 

R2 

R3 

D3 

5 

R4 

D4 

7 

R5 

D5 

9 

R6 

6 
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6. Enumerate all the special features associated with MOD 

Relational Maps models. 

 

 

 

7. Let                 M = 

1 2 3 4

1

2

3

4

5

6

R R R R

D 3 2 0 0

D 0 0 1 0

D 0 0 0 5

D 0 1 0 0

D 0 0 2 0

D 4 0 0 1

 
 
 
 
 
 
 
 
  

 

 

 

be the MOD dynamical system of the MOD Relational Maps 

model with entries from Z6. 

 

i) Find all the MOD classical special fixed point pairs of 

M. 

ii) Find all MOD limit cycle pairs of M which are obtained 

after 5 iterations. 

iii) What is maximum number of iterations needed for any 

MOD domain state vector or a MOD range state vector to 

reach a MOD fixed  point pair? 

iv) What is the maximum number of iterations needed for 

any MOD domain state vector or MOD range state vector 

to arrive at a MOD limit cycle pair?  

v) In case of questions (iii) and (iv) obtain the result if 

maximum is replaced by minimum. 

vi) How many MOD resultants are arrived exactly after 6 

iterations? 

vii) Obtain any other special feature enjoyed by this M. 

 

 

 



250 MOD  Relational Maps Models and MOD Natural … 

 

 

 

 

 

 

 

 

8. Let S = 

3 0 10 0 2 0 11

0 14 0 0 0 5 0

1 0 2 16 0 0 0

0 0 0 15 2 1 13

 
 
 
 
 
 

  

 

be the MOD relational maps model associated MOD 

dynamical system built using Z17.  

 

Study questions (i) to (vii) of problem (7) for this S. 

 

 

9. Let           P = 

2 I 0 2 1

0 6I 0 0

2I 0 I 0

1 I 0 0 2 5I

0 3 0 0

4 0 2I 6

0 1 0 0

+ 
 
 
 
 

+ + 
 
 
 
 
 

  

 

be the MOD neutrosophic relational matrix with entries from 

〈Z7 ∪ I〉.   
 

P is the dynamical system of a MOD neutrosophic relational 

maps model.  

 

Study questions (i) to (vii) of problem (7) for this P. 

 

10. Obtain all special features associated with MOD 

neutrosophic relational maps model built using 〈Zn7 ∪ I〉.  
Compare this model with MOD relational maps model built 

using Zn. 
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11. Let  

 

W = 

F F

F F

F F

F

F

3 i 0 2i 1 0 0 2

0 7 5i 0 0 2 i 1 0

0 0 2 4i 9 0 0 3 5i

2 0 0 0 5 6i 0

7 9 i 0 0 1 0 9

+ 
 

+ + 
 + +

 
 
 + 

  

 

be the MOD finite complex number relational matrix of the 

MOD finite complex number Relational Maps model 

dynamical system with entries from C(Z10). 

 

i) Study questions (i) to (vii) of problem 7 for this W. 

ii) Enumerate all special features enjoyed by this W. 

iii) Compare this model with any MOD Relational Maps 

model built using Z10. 

iv) Compare this model with any MOD Relational Maps 

model built using 〈Z10 ∪ I〉. 
 

 

12. Let V = 

0 2g 0 5 4g 1

2 0 1 4g 0 0

0 1 0 2 0

0 4 g 1 0 3g 9

10 0 11 g 2g 0

11g 1 0 4 9g 1

0 0 0 0 2 11g

+ 
 

+ 
 
 

+ + 
 +

 
+ 

 
+ 

  

 

 

be the MOD dual number Relational Maps model with 

entries from 〈Z12 ∪ I〉 = {a + bg / a, b ∈ Z12; g
2
 = 0}. 

 

i) Study questions (i) to (vii) of problem 7 for this V. 

ii) Enumerate all the special features enjoy by this model. 
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iii) Compare this model with other models with entries 

from C(Z12), 〈Z12∪I〉 and Z12. 

 

 

13. Let B = 

0 2h 0 5 0 4h 2

4 0 2 0 h 0

0 4h 0 1 4h 0 0

0 0 4 5h 0 1 2

1 0 0 2 0 4h

0 1 h 0 h 0 0

4 3h 0 3 0 5 0

1 5h 0 0 0 5 5h 1

0 2 0 h 0 0

+ 
 
 
 +

 
+ 

 
 

+ 
 

+
 

+ + 
 
 

  

 

 

 be the MOD special dual like number relational matrix of the 

MOD special dual like number Relational Maps model with 

entries from 〈Z6 ∪ h〉 = {a + bh / a, b ∈ Z6, h
2
 = h}. 

 

i) Study questions (i) to (vii) of problem 7 for this B. 

ii) Derive all the special features associated with B. 

iii) Compare B with MOD relational models built using Z6 

〈Z6∪g〉, 〈Z6∪I〉 and C(Z6). 

 

 

14. Let M = 

0 2 k 0 1 2k

k 0 1 k 0 2

1 k k 0 2k 0

0 0 1 0 1

+ 
 

+ 
 +

 
 

  

 

 

be the MOD special quasi dual number Relational Maps 

model matrix with entries from 〈Z3 ∪ I〉.  
 

Study questions (i) to (vii) of problem 7 for this M. 
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15. Enumerate all special features enjoyed by MOD special 

quasi dual number Relational Maps model built using 

〈Zn∪k〉; k2
 = (n – 1)k. 

 

 

16. Let G be a MOD natural neutrosophic modulo integer 

bipartite directed graph with edge weights from 〈Z9∪I〉O 

given by the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 

 

i) Find the MOD relational matrix M associated with the 

graph G. 

 

ii) Using M find all MOD resultants which are MOD 

classical special fixed point pairs. 

 

iii) Study questions (i) to (vii) of problem (7) for this M. 

 

 

D1 

D2 

D3 

D4 

D5 

D6 

D7 

R1 

R2 

R5 

R4 

R3 

I3 

4+5I 

2+3I 

I

0I  

I

3I

I

6 II

3+I 
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17. Obtain all special features associated with the MOD natural 

neutrosophic integer bipartite directed graph G with edge 

weights. 

 

 

18. Let S = 

8

2

8

4

8

6

8

0

8 8

6 0

3 I 0 0 1

0 I 2 0

0 0 1 I 0

I 6 0 3

0 I 0 I

 +

 
 
 +

 
 
 
 

  

 

be the MOD natural neutrosophic relational matrix with 

entries from 
I

8Z . 

 

i) Study questions (i) to (vii) of problem (7) for this S. 

ii) Obtain any other special feature enjoyed by S. 

 

 

19. Let V = 

I I

8 10I

I

6I

I

2I

I

0

I I

0 2

0 2 4I I I

10 I 0 0 5 6I

0 4 I 1 7

5 0 2 I

0 I I 0 0

 +

 
+ + 

 +

 
 
 

+ 

  

 

 

be the MOD natural neutrosophic neutrosophic relational 

matrix with entries from 〈Z12 ∪ I〉I. 

 

i) Study questions (i) to (vii) of problem 7 for this V. 

ii) Obtain all special features enjoy by this V. 

iii) Hence or otherwise study MOD natural neutrosophic 

neutrosophic relational matrix  

M = (mij)t×s with mij ∈ 〈Zn∪ I〉I. 
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20. Let M = (mij)t×s; mij ∈ 
I

nZ be the MOD natural neutrosophic 

relational matrix operator.  

 

Study questions (i) to (vii) of problem 7 for this M. 

 

 

21. Let W = 

g g

2g g

g

0

g

5g

2 I 0 1 I

0 I 0 0

4 2 5 I

3g 0 g 0

0 1 0 0

 +

 
 
 
 
 
 
 

  

 

 

be the MOD natural neutrosophic dual number relational 

maps model.  

 

Study questions (i) to (vii) of problem 7 for this W. 

 

22. Let M = (mij)s×t MOD natural neutrosophic dual number 

matrix model with entries from neutrosophic dual number 

matrix model with entries 〈Zn∪ g〉I ; 2 ≤ n < ∞. 

 

i) Find all special features enjoyed by this MOD operator. 

ii) Compare this model with other models. 

23. Let T = 

h

3h

h

0

h h

6h 0

h

6h 3

0 I 0 1 2h 0

1 0 2h 0 I

0 3 5h 0 6 6h 0

I 0 I 1 0 3h

0 1 0 2 0

8 7h 0 I 0 7
+

 +

 
 
 + +

 
+ 

 
 

+  

  

 

be the MOD natural neutrosophic special dual like number 

relational matrix operator.  
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Study questions (i) to (vii) of problem 7 for this T. 

 

24. Let M = (mij)s×t be the MOD natural neutrosophic special 

dual like number matrix operator with  

mij ∈ 〈Zn ∪ h〉I; 1 ≤ i ≤ s and 1 ≤  j ≤ t, h
2
 = h. 

 

i) Find all special features enjoyed by M. 

ii) How for this model is different from other models built 

using 〈Zn ∪ g〉I, 〈Zn ∪ I〉I and C
I
(Zn)? 

 

25. Let M be a MOD natural neutrosophic special quasi dual like 

number rectangular matrix M operator with entries from 〈Zn 

∪ k〉I.  
 

Study all special features enjoyed by this new model. 

 

 

26. Let M = 

k k

2 0

k

4

k

4k

k

6k

k

6k 4

0 2 I 0 5 I

I 0 2 0 2k

0 k 0 I 0

1 0 4k 2 0 7

I 1 0 2 0

0 0 I 0 1
+

 +

 
 
 
 

+ 
 
 
  

  

 

be the MOD natural neutrosophic special quasi dual number 

matrix operator.  

 

Study questions (i) to (vii) of problem 7 for this M. 

 

27. Compare all the six models on fixed problem P. 

 

i) Which MOD integers is best suited for the problem 
I

nZ or 

C
I
(Zn) or 〈Zn ∪ g〉I or 〈Zn ∪ I〉I, or 〈Zn ∪ h〉I or  

〈Zn ∪ k〉I? 
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ii) Does the MOD model relates to the problem P? 

iii) Compare MOD cognitive maps model for P with FCMs 

and NCMs for the same P by bringing out the 

advantages and disadvantages. 

 

28. Let G be any directed graph with edge weights from [0,5).  

 

Enumerate all the special properties enjoyed by G. 

 

29. Let M be any square matrix with entries from [0, 12).  

 

Study all the special features enjoyed by M. 

 

 

30. Using M = 

0 0.312 3.2 0 1

0 0 0 2.5 0

4.5 0.0801 0 0 0

0.001 0.005 0.02 0 0.01

0.005 0 0 0.015 0

 
 
 
 
 
 
  

  

 

 

be the MOD interval matrix which is the dynamical system 

of a MOD interval cognitive map model with entries from [0, 

6). 

 

i) Find all MOD special classical fixed points of M. 

 

ii) What is the maximum number of iterations needed to 

arrive at a MOD resultant? 

 

iii) Give the minimum  number iterations that is used on M 

to get the MOD resultant. 

 

iv) How many MOD resultants given by M are MOD fixed 

points? 

 

v) How many MOD resultants given by M are MOD limit 

cycle? 
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vi) Show if x and y are MOD initial state vectors them in 

general the sum of the MOD resultants of x and y on M 

is not the same as the MOD resultant of x + y on M. 

 

vii) Obtain any other special feature enjoyed by this MOD 

interval cognitive maps model. 

 

viii)Show this model can give face values of nodes in the 

resultant provided {0, 1} is replaced by Zn in the MOD 

initial state vectors. 

 

31. Let P = 

0 0.32 1.5 0

2.3 0 0 0.002

0 2 0 2.4

0.001 0 0.001 0

 
 
 
 
 
 

  

 

 

be the MOD interval cognitive maps model dynamical 

system using  [0, 3). 

 

Let X = {(a1, a2, a3, a4) / ai ∈ {0, 1, 2}; 1 ≤ i ≤ 4} be the 

MOD initial state vector.  

 

Study questions (i) to (viii) of problem 30 for this P. 

 

 

32. Let M = 

0 2I 0.001 0

0.001 0 4 2I

3 0.001 0

+ 
 

+ 
  

  

 

 

be MOD interval neutrosophic cognitive maps model with 

entries from 〈[0,5) ∪ I〉. 
 

i) Study questions (i) to (viii) of problem 30 for this M. 



Suggested Problems 259 
 

 

 

 

 

 

 

 

ii) If XS = {(x1 x2 x3) / xi ∈ 〈Z5 ∪ I〉; 1 ≤ i ≤ 3} as the MOD 

initial state vector.  

 

Study questions (i) to (viii) of problem 30 for M. 

 

33. Give a real world model for which MOD interval 

neutrosophic cognitive maps model is appropriate. 

 

 

34. Let W = 

0 2g 0.001 0 0.21

0 0 3 0.12g 6g

0.002 0.001 0 0.02g

9.02 0 0 0

+ 
 

+ 
 
 
 

  

 

 

be the MOD interval dual number cognitive maps model.  

 

Study questions (i) to (viii) of problem 30 for this W. 

 

35. Give a real world problem model for which MOD interval 

dual n umber cognitive maps model is appropriate.  

 

Compare it with MOD interval cognitive maps model and 

MOD interval neutrosophic cognitive maps model. 

 

 

36. Let V = 

F F

F

F

F

0 2i 0.002 0.05i 0

4 i 0 0 0 0.023

0.111 0 0 6.2i 0

0 0.11 0.2i 0.3 0 3.2

0 0 2.38 0 0

 
 

+ 
 
 

+ 
  

  

 

 

be the MOD interval complex cognitive maps model 

dynamical system with entries from C([0, 7)).  
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Study questions (i) to (viii) of problem 30 for this V. 

 

37. Compare for the same problem P the four models MOD 

interval cognitive maps model, MOD interval neutrosophic 

cognitive maps model, MOD interval complex number 

cognitive maps model and MOD interval dual number 

cognitive maps model for same set of modes C1, C2, …,Ct 

using [0,n), 〈[0,n) ∪ I〉, C([0, n)) and 〈[0, n) ∪ g〉 
respectively. 

 

 

38. Let S = 

0 0.2 5k 0.1113 0

0.13k 0 6.2 0.3k 0.011

5.3 0.2k 0.12 0 6k

0.302 0 0.225k 0

+ 
 

+ 
 +

 
 

 

 

 

be the MOD interval special quasi dual number Cognitive 

Maps model with entries from 〈[0,9) ∪ k〉.  
 

Study questions (i) to (viii) of problem 30 for this S. 

 

39. Show by an appropriate example that use of MOD interval 

special quasi dual number cognitive maps model is more 

suited to some problems than the other MOD interval 

Cognitive Maps models. 

 

 

40. Let B = 

0 0.231 0 0.22h 0

6.2h 0 0.331 0 0.102

0 9.32 0 0.112 0

0.335 0 4.72 0 6.3h

0 0.112 0.32 0.5h 8h 0

 
 
 
 
 
 
 + 
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be the MOD interval special dual like number cognitive 

maps model.  

 

 

 

Study questions (i) to (viii) of problem 30 for this B. 

 

 

41. Show by an illustrative example MOD interval special dual 

MOD interval special dual like number cognitive maps 

model is more suited than other model. 

 

42. For the same problem for the same set of nodes compare the 

six MOD interval cognitive maps models. 

 

 

43. Let M = 

6 6

0 3

6

2

6 6

3 4

6

4

0 I I 0 0

0.32 0 2 I 0 0.335

0.5 I 0 0 0.2 I 0

0 0.335 0 0 2 I

0 0 0 1 0

 
 

+ 
 + +

 
+ 

 
 

 

 

 

be the MOD interval natural neutrosophic cognitive maps 

model with entries from 
I
[0,6). 

 

i) Prove if T = {
6

tI  / t ∈ [0,6)} ⊆ 
I
[0,6) entries in M does 

not generate a semigroup under X then M will not have 

a MOD resultant. 

 

ii) Study questions (i) to (viii) of problem 30 for this M. 

 

iii) List out all the special features enjoyed by this MOD 

interval natural neutrosophic cognitive maps model. 

 

iv) If 
6

1.5I  is taken as an entry in M instead of 
6

3I  can we say 

the collection T will generate a semigroup under x. 
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44. Let V = 

5

2.5

5

1.25

5

0.625

0 I 0 0

1.27 0 I 0.31

0 0.352 0 I

0.315 0 1.1115 0

 
 
 
 
 
  

  

 

be the MOD interval natural  neutrosophic cognitive maps 

model. 

 

i) Will V have MOD resultants if x = {(a1, a2, a3, a4) / ai ∈ 

{0, 1, 2, 3, 4, 
5

2.5I , 
5

1.25I , 
5

0.625I }; 1 ≤ i ≤ 4}? 

 

ii) Does T = 〈 5

2.5I , 
5

1.25I , 
5

0.625I 〉 generate a finite semigroup 

under x? 

 

iii) Can we say finding MOD resultant is a NP hard 

problem? 

 

45. Let                P = 

g

2g

g

g

0 I g 2

2g 0 I

0 0.331 0

 +

 
 
 
 

  

 

be the MOD interval natural neutrosophic dual number 

cognitive maps model. 

 

i) Study questions (i) to (viii) of problem 30 for this P. 

ii) Prove 〈 5 g

2g gI , I 〉 generates a finite order MOD natural 

neutrosophic number semigroup under +. 

iii) If g

2gI + g is replaced by 
g

1.5I  in P can this have MOD 

resultants for all initial state vectors. 

 

46. Let W be the MOD dynamical system of the MOD interval 

natural neutrosophic complex number Cognitive Maps 

model with related matrix entries in C
I
 ([0,12)). 
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W = 

F

F

0

F 4

C

F F 2 6i

F F F

F F

C

4i F

0 8 0.3i 0 I 0.25

0.7i 0 0.1 5i 0 I

0 0.332i 0 0.25i 0.9 3i

0.2 0.3i 0 0.7 0.2i 0 0

I 0.12 0.113 0 4 0.2i 0

+

 +

 
+ 

 
+

 
+ + 

 
+ +   

 

i) Study questions (i) to (viii) of problem 30 for this W. 

ii) Prove {
C

4I , 
F

C

4iI , 
F

C

2 6iI
+

} will generate a finite semigroup 

under product. 

iii) If 
C

4I is replaced by 
C

1.2I  then {
C

1.2I  
F

C

4iI , 
F

C

2 6iI
+

} will not 

generate a finite semigroup under ×. 

 

47. Prove the criteria of generating a finite semigroup under 
C

tI  

is essential for one to have MOD resultants in C
I
([0, n));  

2 ≤ n < ∞. 

 

48. Let S = 

I

4

I

2I

I

0

0 3 I 0 0.332I

0.42 0 2.5 I 0

0 0.352I 0 I

0.53I 0 0.72I 0

 +

 
+ 

 
 
  

  

 

 

be the MOD interval natural neutrosophic-neutrosophic 

cognitive maps model dynamical system with entries from 

〈[0,6) ∪ I〉. 
 

i) Study questions (i) to (viii) of problem 30 for this S. 

ii) If 
0

0I  is replaced by 
I

1.5II  prove the MOD resultant will 

not exist. 

iii) Find the largest semigroup under product by element 
I

tI  

in 〈[0,6) ∪ I〉I. 
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49. Let B = 

h

6h

h h

3 0

h

3 3h

h

6h

0 I 0.32 0 0.33h 0

I 0 1 I 0 0.225

0 0.333h 0 I 0

0.21 0 0.801 0 I

0.45 0.112 0.32h 0 0.405 0

+

 +

 
+ 

 
 
 
 

+ 

  

 

 

be the MOD interval natural neutrosophic special dual like 

number cognitive maps model dynamical system with 

entries from 〈[0,9) ∪ h〉I. 

 

i) Study questions (i) to (viii) of problem 30 for this B. 

ii) Prove {I6h,
h

6hI , 
h

0I , 
h

3 3hI
+

, 
h

3I } generates a finite 

semigroup under product. 

iii) If 
h

3I is replaced by 
h

4.5I  in the matrix B prove MOD 

resultant in general will not exist. 

 

 

50. Let W = 

k

2k 3

k

3k

k

4k

k

2 4k

0 I 0.331 0

0.53 0 I 0.21

0 0.73 0.4k 0 I

4 I 0 0.221 0

+

+

 
 
 
 +

 
+  

  

 

be the MOD interval natural neutrosophic special quasi dual 

number cognitive maps model connection matrix with 

entries from 〈[0,6) ∪ k〉I. 

 

i) Study questions (i) to (viii) of problem 30 for this W. 

ii) If 
k

2k 3I
+

 is replaced by 
l

1.5 0.75kI
+

 then in general we will 

not be in a position to find the MOD resultants. 

iii) Find the largest MOD natural neutrosophic semigroup of 

〈[0,6) ∪ k〉I. 

iv) Can we say 〈[0,6) ∪ k〉I is a semigroup under ×? 

v) Obtain any other special feature associated with W.  
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