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PREFACE 
 

 
 

 

In this book the notion of MOD functions are defined on 

MOD planes. This new concept of MOD functions behaves in a 

very different way. Even very simple functions like y = nx has 

several zeros in MOD planes where as they are nice single line 

graphs with only (0, 0) as the only zero.  

 

Further polynomials in MOD planes do not in general 

follows the usual or classical laws of differentiation or 

integration.  

 

Even finding roots of MOD polynomials happens to be very 

difficult as they do not follow the fundamental theorem of 

algebra, viz a n
th
 degree polynomial p(x) in MOD plane or MOD 

intervals do not have n roots for + and × are defined on them, do 

not satisfy the distributive laws.  



 6

These drawbacks becomes a challenging issue. So study in 

this direction is open. In fact several open conjectures are 

proposed in this book. However this paradigm of shift will give 

new dimension to mathematics.   

      

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 

  

W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 

FLORENTIN SMARANDACHE 

 



 
 
 
 
Chapter One 
 

 
 
SPECIAL TYPE OF DECIMAL 

POLYNOMIALS 
 
 
 
In this chapter we define several special types of decimal 

polynomials. The motivation for constructing decimal 

polynomials is that while doing integration or differentiation the 

power of x in the polynomial p(x) is either increased by 1 or 

decreased by 1 respectively. 

 

 We want to increase or decrease to any value inbetween 0 

and 1.  For this we have built decimal polynomial rings.   

 

 Further  using these decimal polynomial rings we will be in 

a position to define, describe and develop the notion of MOD 

calculus. 

 

DEFINITION 1.1:  Let R[x
0.1

] be the decimal polynomial ring 

generated by the decimal power of x
0.1

. 

 

R[x
0.1

] = 
0.1

∞

=




∑ i

i

i

a x  ai are reals}. 

 

 Clearly R[x
0.1

] is a ring for we see for any p(x
0.1

) and q(x
0.1

)  

in R[x
0.1

]; p(x
0.1

) + q(x
0.1

) ∈ R[x
0.1

]. 
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 For instance if  

p(x
0.1

) = 3x
0.3

 + 4.7x
0.6

 + 8.3x
0.9

 – 13.7x
8
 + 3 

and  

q(x
0.1

) = 7x
0.1

 – 9x
0.6

 + 14.7x
0.9

 – 3x
8
 – 10 ∈ R[x

0.1
] 

then  

 

p(x
0.1

) + q(x
0.1

) = –7 + 7x
0.1

 + 3x
0.3

 

– 4.3x
0.6

 + 23x
0.9

 – 16.7x
8
 ∈ R[x

0.1
]. 

 

 This is the way addition operation is performed on R[x
0.1

]. 

 

We see if  

p(x
0.1

) = 3 – 2x
0.3

 + 7x
6.3

 

and 

q(x
0.1

) = 2 + 4x
0.5

 + 10x
0.7

 ∈ R[x
0.1

] 

then  

 

p(x
0.1

) × q(x
0.1

) = (3 – 2x
0.3

 + 7x
6.3

) (2 + 4x
0.5

 + 10x
0.7

) 

 

= 6 – 4x
0.3

 + 14x
6.3

 + 12x
0.5

 – 8x
0.8

  

+ 28x
6.8

 + 30x
0.7

 – 20x + 70x
7
 ∈ R[x

0.1
]. 

 

This is the way + and × operation are performed.  It can be 

easily verified R[x
0.1

] is a commutative ring of infinite order. 

 

Now a natural question would be how to solve equations in 

R[x
0.1

]. 

 

The easiest way is R[x
0.1

] can be mapped isomorphically on 

to R[x] by the map η : R[x
0.1

] → R[x] 

 

(or η : R[x] → R[x
0.1

]) 

 

by η (r) = r if r ∈ R 

 

η(x
0.1

) = x (or η(r) = r for all r ∈ R and η(x) = x
0.1

) 

 

η(x
42

) = x
4.2

 and η(x
3
) = x

0.3
. 
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So if p(x) = x
2
 – 4x + 4 ∈ R[x], then 

 

p(x
0.1

) = x
0.2

 – 4x
0.1

 + 4. 

 

So solving p(x) is easy and from which we conclude the 

roots of p(x
0.1

) are x
0.1

 = 2, 2. 

 

On similar lines we can further lessen the power of x and 

define R[x
0.01

]; this will also be a ring. 

 

Clearly R[x] ⊆ R[x
0.1

] ⊆ R[x
0.01

]. 

 

R[x
0.01

] is also a decimal polynomial ring generated by x
0.01

.  

 

We call these decimal polynomial rings as MOD 

polynomials or very small polynomials with real coefficients [5-

10].  

 

However we want to keep the power of x as x
0.1

 or x
0.01

 or 

x
0.001

 or x
0.0001

 and so on.  This is the condition we impose for 

some easy working. 

 

For η : R[x
0.001

] → R[x] is obtained by dividing/multiplying 

the power of x by thousand. 

 

Likewise η : R[x] → R[x
0.001

] is got by dividing the power 

of x by 1000. 

 

So η can also be realized as the homomorphism of a special 

type.   

 

We make one special condition for the sake of 

complatability; we by no means take powers of x
0.1

 as decimal 

powers; that is ( )
n

0.1x , where n is always assumed to be a 

positive integer greater than or equal to 1. 
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So we have to take ( )
0.7

0.1x  or any such sort.  As far as 

possible we in this book define only; ( )
m

0.1x  = x
0.m

 (m < 10) 

where m is an integer  

( )
8

0.1x  = x
0.8

, 

( )
21

0.1x  = x
2.1

, 

( )
125

0.1x  = x
12.5

 

and so on. 

 

Likewise for x
0.01

 also we do not raise to a fractional power 

of x
0.01

. ( )
n

0.1x  is defined if and only if n ∈ N.   

 

Under these conditions and constraints only we work, that is 

why we call it as MOD polynomial real rings. 

 

Study of MOD polynomial real rings can be done as a matter 

of routine. 

 

Now we define MOD polynomial complex rings C[x
0.1

],  

C[x
0.01

] and C[x
0.001

] and so on.   

 

We as in case of reals work with complex MOD  

polynomials.   

 

Next we proceed onto describe MOD modulo integer 

polynomials Zn[x
0.1

], Zn[x
0.01

], Zn[x
0.001

] and so on.   

 

We can also have MOD interval modulo integer 

polynomials. 

 

[0, m)[x
0.1

], [0, m)[x
0.01

], [0, m)[x
0.001

] and so on.   

 

We will be using these MOD polynomial rings to build the 

MOD calculus.   



 
 
 
  
Chapter Two 
 
 

 
 
MOD POLYNOMIAL FUNCTIONS 
 
 

The concept of MOD planes was introduced in [24]. Here we 

discuss about the MOD polynomial functions. Let [0, m) be the 

MOD interval (m ≥ 2).  

p (x) ∈ [0, m)[x] = i

i

i 0

a x
∞

=




∑  ai ∈ [0, m)} is defined as the 

MOD polynomials.  

 

y = f (x) is called the MOD polynomial function in the 

independent variable x and y = f (x) is defined in the MOD real 

plane Rn (m). 

 

The following facts are innovative and important. 

 

(i) A polynomial defined over the MOD plane is 

continuous or otherwise depending on m of Rn (m). 

(ii) For the same p (x) we have various types of 

associated graphs depending on Rn (m). 

(iii) p (x) has infinite number of properties in contrast to 

p (x) ∈ R[x] which is unique.  This flexibility is 

enjoyed by MOD polynomial function which makes 

it not only interesting but useful in appropriate 

applications. 

 

We will illustrate this situation by some examples. 
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Example 2.1: Let p (x) = x + 4 ∈ R[x]  (R reals). The graph of x 

+ 4 is as follows: 
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x

y

 
Figure 2.1 

 

 Clearly the function y = x + 4 is a continuous curve.  

 

Now y = x + 4 is transformed into the MOD plane Rn(2) as  

y = x. The graph of y = x in the MOD plane Rn(2) is given in 

Figure 2.2. 

 

Clearly the graph of y = x + 4 where the function is 

transformed as y = x is again a continuous curve.  

 

 Now let us find the curve of y = 4 + x in the MOD plane 

Rn(3). The function y = x + 4 is transformed to y = x+1 in the 

MOD plane Rn(3). The graph of y = x + 1 is given in Figure 2.3. 

 

Clearly the function y = x + 1 is not a continuous function 

in the MOD plane Rn(3).  

 



MOD Polynomial Functions 13 

 

 

 

 

 

0 0.5 1 1.5 2

0.5

1

1.5

2

X

Y

 
Figure 2.2 
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Figure 2.3 
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In fact two pieces of continues curves in the intervals [0, 2) 

and [2, 3).  

Thus the function y = x + 1 is continuous in the interval  

[0, 2) then it is again continuous in the interval [2, 3).  

 

At x = 2, y = 0. Thus the function increases from 1 to 1.999 

in the interval [0, 2) and drops to 0 at x = 2 and again increases 

from 0 to 0.9999 …, in the interval [2, 3).  

 

Next we consider the function y = x + 4 in the MOD plane 

Rn(4). The graph of y = x in Rn(4) is given in Figure 2.4.  

 

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

 
Figure 2.4 

 

We see in case of the MOD plane Rn(4); y = x + 4 that is  

y = x is a straight line similar to the function in the MOD plane 

Rn(2). The function is continuous in Rn(4).  
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Now we study the function y = x + 4 in the MOD plane 

Rn(5). The associated graph is given in Figure 2.5.  
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x

y

 
Figure 2.5 

 

 We see again the function y = x + 4 is not a continuous 

curve in Rn(5). The function is continuous in [0, 1) and at 1 it 

drops to 0 and again y = x + 4 is continuous from [1, 5).  

 

Thus the function is an increasing function in [0, 1) at  

1 drops to 0 and again increasing in the interval [1, 5).  

 

Now we define the function y = x + 4 in the MOD plane 

Rn(6). 

 

The graph of the function in the MOD plane Rn(6) is given in 

Figure 2.6.  

 

The function y = x + 4 is increasing in the interval [0, 2) and 

is continuous.  

 

Further the function y = x + 4 is continuous in the interval 

[2, 6) and drops to 0 at x = 2. 
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Figure 2.6 

 

 Consider the function y = x + 4 in the MOD plane Rn(7). The 

graph of the function y = x + 4 is given in Figure 2.7. 
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Figure 2.7 
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Here also the function is not continuous. At x = 3 it drops to 

zero. The function is increasing in the interval [0, 3) and drops 

to zero at 3 and increasing in the interval [3, 7). 

 

 The range values are [4, 7) and [0, 4). 

 

 Now we see the graph of the function y = x + 4 in the MOD 

plane Rn(8).  

 

The graph of the function y = x + 4 in the MOD plane Rn(8) 

is as given as Figure 2.8. 
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Figure 2.8 

 

 The function increases from 4 to 7.999 and drops to zero at 

x = 4 and again increases from 0 to 3.999. 

 

 Thus we see the function y = x + 4 in the MOD plane Rn (m) 

(m ≥ 4) is as follows: 
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 y = x + 4 increases in the interval [0, m–4) and drops at  

m – 4 to zero and again increases from [m–4, m).  

 

The graph of y = x + 4 in the MOD plane Rn (m) is as 

follows:  

 

 
Figure 2.9 

 

Example 2.2: Next we study the function y = x
2
 + 1 in the real 

plane and then the graph of the function y = x
2
 + 1 in the MOD 

plane Rn (m). The graph of y = x
2
 + 1 in the real plane R is 

given in Figure 2.10.  

The function is a continuous curve.  

 

 Now we study the function yn = x
2
 + 1 in the MOD plane 

Rn(2). At x1 = 1 yn = 0, at x2 = 1.7320508076 y = 0. The 

associated graph is given in Figure 2.11. 
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Figure 2.10 
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Figure 2.11 
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 The function is not a continuous graph. 

 

 The function is continuous in the interval [0, 1),  

[1, 1.7320508074) and [1.7320508076, 2) and at x1 and x2 drops 

to zero.  

 

Next we study the function y = x
2
 + 1 in the MOD plane 

Rn(3). 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

 
Figure 2.12 

  

   At x1 = 1.4142135625,  y = 0 in Rn(3). 
 

At x2 = 2.2360679776,  y = 0  
 

At x3 = 2.8284271248,  y = 0  

 

 Thus yn = x
2
 + 1 in Rn(3) has three zeros given by x1, x2 and 

x3 we see yn = x
2
 + 1 in Rn(2) also has only three zeros. 

 

The function is continuous at [0.1, 1.4142135625…) and  

[1.4142135625, 3) drops to zero at, 1.4142135625. 
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At x = 2.2360679776, y = 0. 

 

At x = 2.8284271248, y = 0. 

  

 Next we study the MOD function y = x
2
 + 1 on the MOD 

plane Rn(4). The graph of the function is as follows: 

 

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

 
Figure 2.13 

 

   At x = 1.7320508076, y = 0. 

 

   At x = 2.645751311, y = 0. 

 

   At x = 3.31662479, y = 0. 

 

 Thus when y = x
2
 + 1 is the function defined on Rn (m)  

m ≥ 2.  

 

The graph of the function in the plane Rn (m). 
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Figure 2.14 

 

 

where for some t = s.9…. The function drops to zero.  

 

The graph is not continuous has several branches and each 

branch is continuous in the interval [0, t…).  

 

It is left as an open conjecture to find the zeros of y = x
2
 + 1 

in Rn (m). 

      (i) m prime. 

      (ii) m odd. 

      (iii) m even. 

 

Example 2.3: Let us consider the function y = x
3
 + 1 in the real 

plane and the MOD real planes Rn (m); m ≥ 2. The associated 

graph is given in Figure 2.15. 

 

 Now we consider the same function y = x
3
 + 1 in the MOD 

plane Rn(2) which is given in Figure 2.16. 
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Figure 2.15 

0 0.5 1 1.5 2

0.5

1

1.5

2

X

Y

 
Figure 2.16 
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 y = x
3
 + 1 representation in the MOD plane Rn(2). 

 

The graph is not continuous, it is continuous and increasing 

in the interval [0, 1) and drops to zero at x = 1 and steady 

increases up to y = 1 in the interval [1, 2). 

 

Next we study the function y = x
3
 + 1 in Rn(3). 

 

For x1 = 1.2599210498 the y value is zero.  

 

There is a zero lying between 1.7 and 1.71. 

 

At x2 = 1.7099759467, y = 0. 

  

At x3 = 2, y = 0 

 

Now at  

x4 = 2.2239800909, y = 0. 

When  

x5 = 2.410142264 we get y = 0. 

When  

x6 = 2.5712815908; y = 0. 

 

At x7 = 2.7144176164 we get y = 0. 

 

At x8 = 2.84386698 we get y = 0. 

 

At x9 = 2.9624960684; y = 0. 

 

 Thus yn = x
3
 + 1 is not continuous and it has 9 zeros and 

there are 10 discontinuous curves.  

 

Given by the Figure 2.17.  

 

    (x1)
3
 + 1 = 3 (mod 3) = 0, 

    (x2)
3
 + 1 = 6  (mod 3) = 0, 

    (x3)
3
 + 1 = 9 (mod 3) = 0, 

    (x4)
3
 + 1 = 12 (mod 3) = 0, 

    (x5)
3
 + 1 = 15 (mod 3) = 0, 
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Figure 2.17 

 

 (x6)
3
 + 1 = 18 (mod 3) = 0, 

    (x7)
3
 + 1 = 21 (mod 3) = 0, 

    (x8)
3
 + 1 = 24 (mod 3) = 0 and 

    (x9)
3
 + 1 = 27 (mod 3) = 0. 

 

 Thus it is conjectured if yn = x
p
 + 1 in the MOD plane Rn (p); 

p a prime; will yn = x
p
 + 1 have p

2
 number of zeros says x1, …, 

2p
x  with (x1)

p
 + 1 = p (mod p) = 0 and so on. 

 

y = 0 occurs when x ∈ (1.2, 1.3) and the function is 

increasing upto x = 1.7, y = 2.913. 

 

When x = 2.8, y = 2.952 when x = 2.9, y = 1.38.  

 

The pattern of the function y = x
3
 + 1 in the MOD plane 

Rn(3) needs more investigation, thus the above figure gives 

most of the branches of the curve in the MOD plane Rn(3).  

 Now we consider the function y = x
3
 + 1 in the MOD plane 

Rn(4). 
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Figure 2.18 

  

 when x = 1.4   y = 3.744 

 when x = 1.42   y = 3.862 

when x = 1.44   y = 3.985 

when x = 1.49   y = 0.3079 

when x = 1.48   y = 0.241792 

when x = 1.46   y = 0.112136 

when x = 1.45   y = 0.048625 

 

So y = 0 for a point in the interval x = 1.44 and x = 1.45 

 

When x = 1.448   y = 0.0360 

When x = 1.445   y = 0.017196 

When x = 1.446   y = 0.0234 

When x = 1.444   y = 0.0109 

When x = 1.443   y = 0.004685307 

 x = 1.4425    y = 0.0015 

 x = 1.4422    y = 3.9995 
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when x = 1.4423    y = 0.000315 

when x = 1.44225   y = 0.0000027 

when x = 1.442249   y = 3.9999964 

when x = 1.4422499  y = 0.00000206 

when x = 1.4422496  y = 0.000000185 

when x = 1.44224958  y = 0.00000006 

when x = 1.442249575  y = 0.000000029. 

 

Thus y = 0 for a value of x in the interval  

  (1.442249575, 1.44224958) 

The graph of the curve needs study for the graph is 

discontinuous.  

 

Finding the number of branches of y = x
3
 + 1 in Rn(4) is left 

as an exercise to the reader. 

Finally we study the graph of y = x
3
 + 1 in the MOD plane 

Rn(5). 
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Figure 2.19 

 

y = 0 at a point between 2.41 and 2.42. 



28 MOD Functions 

 

 

 

 

 

 

 

 

 

Thus we get some four bits of the curve for the MOD 

equation y = x
3
 + 1 in the MOD plane Rn(5) [x].  

 

However finding all the braches of the MOD equation  

y = x
3
 + 1 in Rn(5) is left as an exercise to the reader. 

Now we study the same function y = x
3
 + 1 in the MOD 

plane Rn(6). 
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Figure 2.20 

 

y = 0 for some x = (2.5, 2.6). For x = 3.05 we get y = 5.37 y 

= 0 for some x ∈ (3.07, 3.08). 

 

For y = 0 for some x ∈ (4.02, 4.03). 

 

This happens to be a open conjecture to study the number of 

zeros of x
3
 + 1 ∈ Rn (m); m = 2, 3, 4, …, m (m < ∞). 

 

 Thus when y = x
3
 + 1 is the function defined on Rn (m),  

m ≥ 2. The graph of the function in the plane Rn (m). 
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Figure 2.21 

 

 

where for some t = s.9… The function drops to zero. The graph 

is not continuous one has to find all the branches are continuous 

in the interval [0, t…) and at t.9 drops to zero and again the 

function is a continuous increasing function in [t…m). 

 

Even a simple function x
3
 + 1 = y which remains as it is in 

every MOD plane after transformation has very many different 

forms and none of them are continuous in the MOD plane. 

 

Further it is another open conjecture to study how many bits 

of curves the function y = x
3
 + 1 will be represented in the MOD 

plane Rn (m). 

 

We mean by bits the number of continuous branches of the 

graph. Thus it is again dependent on the number of zeros a 

function y = x
3
 + 1 has in Rn (m)[x]. 
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This function y = x
3
 + 1 is defined as the unchangable 

universal function as y = x
3
 + 1 ∈ R[x] remains the same on 

every MOD plane Rn (m)[x]. 

 

DEFINITION 2.1: A function y = f (x) ∈ R[x] which remains the 

same over Rn (m)[x] for every 2 ≤ m < ∞ is defined as the 

unchangeable universal MOD function.  

 

 We will give examples of them. 

 

Example 2.4: Let y = x
2
 + 1, x

3
 + 1, x

5
 + 1, x

4
 + 1, …, x

t + 1 
+ 1,  

(2 ≤ t < ∞), x
2
 + x + 1, x

3
 + x + 1, x

3
 + x

2
 + 1 and so on.  

 

 x
t
 + x

t–1
 + … + 1, x

t
 + 1t rx − + … + 1, 0 < r1 < t are all 

unchangeable universal MOD functions.  

 

DEFINITION 2.2: Let y = f (x) ∈ R[x]. If y = f (x) changes 

depending on Rn (m)[x] then we define y = f (x) as a changeable 

universal MOD functions.  

 

 We will give examples of them. 

 

Example 2.5: Let y = x
7
 + 9x + 1 ∈ R[x] be the function. This is 

a changeable universal function in the MOD polynomial Rn 

(m)[x]. However for m ≥ 10 this function f (x) = x
7
 + 9x + 1 

remains unchangeable. But for all 2 ≤ m ≤ 9 the function is a 

changeable function. y = x
7
 + 9x + 1 = x

7
 + x + 1 in Rn(2). 

 

  y = x
7
 + 9x + 1 = x

7
 + 1 in Rn(3),  

 

  x
7
 + 9x + 1 = x

7
 + x + 1 in Rn(4), 

 

  x
7
 + 9x + 1 = x

7
 + 4x + 1 in Rn(5), 

 

  x
7
 + 9x + 1 = x

7
 + 3x + 1 in Rn(6), 

 

  x
7
 + 9x + 1 = x

7
 + 2x + 1 in Rn(7), 
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  x
7
 + 9x + 1 = x

7
 + x + 1 in Rn(8) and 

 

  x
7
 + 9x + 1 = x

7
 + 1 in Rn(9). 

 

 Thus this function is a changeable one for m ≤ 9.  

 

Next we give an example with graphs. 

 

Example 2.6: Let y = x
2
 + 9x + 1 ∈ R[x]. Now  

y = x
2
 + 9x + 1 = x

2
 + x + 1 ∈ Rn(2)[x]. 

 

 We just describe the graph of them. The graph of y = x
2
 + x 

+ 1 in the plane Rn(2). 
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Figure 2.22 

 

 

y = 0 for x ∈ (0.6, 0.7) 

 

   y = 0 for x ∈ (1.3, 1.4) 
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For  

x = 1.79 y = 1.99; y = 0 for x ∈ (1.79, 1.799) 

For  

x = 1.98 y = 0.9004. 

 

So four bits of curves and the function attain zero in three 

points mentioned above. 

 

 Let y = x
2
 + 9x + 1 ∈ R[x] this function in Rn(3) is  

y = x
2
 + 1.  

 

The graph of x
2
 + 1 in the MOD plane Rn(3) is as follows: 
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Figure 2.23 

 

 y = 2.9881 for x = 1.41 for x = 1.415 y = 0.002225 so for 

some x ∈ (1.41, 1.415); y = 0. 

 

   For x = 2.23   y = 2.9729 
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   For x = 2.24  y = 0.0176 

 

   For x = 2.25  y = 0.0625. 

 

 Thus for some x ∈ (2.23, 2.24) y = 0.  

 

For x = 2.9 y = 0.41. For x = 2.99; y = 0.9401.  

 

Thus we get the above graph which has only two zero. 

 

 Next we consider the function y = x
2
 + 9x + 1 ∈ R[x] in the 

MOD plane Rn(4).  

 

The graph y = x
2
 + x + 1 in the MOD plane Rn(4) is as 

follows: 
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Figure 2.24 

 

 



34 MOD Functions 

 

 

 

 

 

 

 

 

 

When x= 1.3,   y = 3.99. 

 

When x = 1.5,  y = 0.75 

 

  x = 1.4,    y = 0.36 

 

  x = 1.35,   y = 0.1725 

 

  x = 1.31,   y = 0.026  

 

For some x ∈ (1.3, 1.31) there a y such that y = 0. 

 

    For x = 2.1,  y = 3.51 

    

    For some x ∈ (2.18, 2.2), y = 0. 

    

    For x = 3.4  y = 3.96 

 

    For x = 3.402  y = 3.97 

 

    For x = 3.405  y = 3.999 

 

    For x = 3.45  y = 0.3525 

 

 Thus for some x ∈ (3.405, 3.41), y = 0. 

 

    For x = 3.9; y = 0.11 

  

    For x = 3.99, y = 0.9101. 

  

 Thus x
2
 + x + 1 has three zeros in the MOD plane Rn(4). 

 

 Now the function y = x
2
 + 9x + 1 in the MOD plane Rn(5) is 

y = x
2
 + 4x + 1. 

 

 The graph of y = x
2
 + 4x + 1 in Rn(5) is as follows: 
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Figure 2.25 

 

 

 For some x ∈ (0.83, 0.84) y = 0. 

  

For x = 1.6 we get y = 4.96 for x = 1.7, y = 0.69. 

 

 So for some x ∈ (1.6, 1.7) we have y = 0 

  

For x = 2 we get y = 2. 

 

 For some x ∈ (2.2, 2.3) we have y = 0. 

 

 For some x ∈ (3.2, 3.3) we have y = 0. 

 

 For x = 4.1 y = 4.21 and for x = 4.2 y = 0.44 

 

 So for some x ∈ (4.1, 4.2) we have y = 0. 

 Thus the function y = x
2
 + 4x + 1 has 5 zeros in the MOD 

plane Rn(5). 

 

 The zeros lie in the intervals (0.83, 0.84), (1.6, 1.7), (2.2, 

2.3), (2.75, 2.8), (3.2, 3.3), (4.1, 4.2), (3.7, 3.8), (4.5, 4.6) and 

(4.9, 4.95). 
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 This MOD function y = x
2
 + 4x + 1 ∈ Rn(5) has 9 zeros and 

there are 10 bits of curves of which form the parts of the 

function.  

 

 Next we study the function y = x
2
 + 9x + 1 in the MOD plane 

Rn(6).  

 

In Rn(6) the function y = x
2
 + 3x + 1. 

 

 Now we give the graph of y = x
2
 + 3x + 1 in Rn(6). 
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Figure 2.26 

 

For some x ∈ (1.1, 1.2) we have y = 0. 

 

    For x = 1.3,   y = 0.59 

    For x = 1.9,   y = 4.31 

    For x = 2,    y = 5 

    For x = 2.1,   y = 5.71 

    For x = 2.14   y = 5.9996 

    For x = 2.2,   y = 0.44. 

 For x = 2.15; y = 0.725 so for some x ∈ (2.14, 2.15) we get 

y = 0. 
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    For x = 2.6   y = 3.56 

    For x = 2.8   y = 5.24 

    For x = 2.9   y = 0.11 

 

 So for some x ∈ (2.8, 2.9) we have y = 0. 

 

    For x = 3.5    y = 5.75 

    For x = 3    y = 1 

    For x = 3.6    y = 0.76 

 So for some x ∈ (3.5, 3.6), we have y = 0. 

 

    For x = 4    y = 5 

    For x = 4.05   y = 5.55 

    For x = 4.06   y = 5.66 

    For x = 4.08   y = 5.88 

    For x = 4.09   y = 5.99 

    For x = 4.1   y = 0.11 

 

so for some x ∈ (4.09, 4.1) we have y = 0. For some x ∈ (4.6, 

4.65) we have y = 0. 

 

    For x = 5,    y = 5 

    For x = 5.1    y = 0.31 

    So for x = 5.02   y = 5.26 

    For x = 5.03   y = 5.39 

    For x = 5.09   y = 0.178 

    For x = 5.08  y = 0.04 

    For x = 5.07;   y = 5.9149 

 

 so for some x ∈ (5.07, 5.08) we have y = 0. 

 

    For x = 5.5   y = 5.75 

    For x = 5.6   y = 1.16 

    For x = 5.55  y = 0.4525 

    For x = 5.54  y = 0.3116 

    For x = 5.52  y = 0.0304 

    For x = 5.51  y = 5.89 

 

 so for some x ∈ (5.51, 5.52)  we have y = 0. 
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 For x = 5.9, y = 5.51 and for some x ∈ (5.9, 5.96) we have a 

y = 0. 

 

 We see x
2
 + 3x + 1 in the MOD plane Rn(6) has several 

zeros. 

 

 We have only given 8 disjoint bits of continuous curves. 

 

 Next we study y = x
2
 + 9x + 1 ∈ R[x] in the MOD plane 

Rn(7). 

  

We see in the MOD plane x
2
 + 9x + 1 is x

2
 + 2x + 1.  

 

We now analyse the graph y = x
2
 + 2x + 1 in the MOD plane 

Rn(7) in the following. 
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Figure 2.27 

 

 For x ∈ (1.6, 1.7) we have y = 0. 
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 For x = 2.8 y = 0.44 so for some x ∈ (2.7, 2.8) we have  

y = 0. 

 

   For x = 3.5,  y = 6.25 

   For x = 3.6;  y = 0.16. 

 

 So for some x ∈ (3.5, 3.6) we have y = 0. 

 

   For x = 4;   y = 4 

   For x = 4.1   y = 5.01 

   For x = 4.2   y = 6.04 

   For x = 4.3   y = 0.09. 

 

 Thus for some x ∈ (4.25, 4.3) we have y = 0. 

   For x = 4.8,  y = 5.64 

   For x = 4.9  y = 6.81 

   For x = 4.95  y = 0.4025 

   For x = 4.92  y = 0.0464. 

 

 So for some x ∈ (4.91, 4.92) we have y = 0. 

 

   For x = 5.4  y = 5.96 

 Further at x = 6 y = 0. 

 

 For x ∈ (6.4, 6.5) we have y = 0.  

 

 For some x ∈ (6.93, 6.94) we have y = 0. 

 

 Thus the curve has several bits of continuous curves. 

 

 We have the MOD function y = x
2
 + 2x + 1 has several zeros 

in Rn(7). 

 

 Next we study the function y = x
2
 + 9x + 1 in the MOD plane 

Rn(8).  

 

The transformed MOD function is x
2
 + x + 1. 

 

 The graph of x
2
 + x + 1 in Rn(8) is as follows: 
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Figure 2.28 

 

   For x = 2.2  y = 0.04 

   For x = 2.1   y = 7.51 

   For x = 2.08  y = 7.4064 

   For x = 2.09  y = 7.4064 

    x = 2.15  y = 7.7725 

    x = 2.19  y = 7.9861 

   For x = 2.195  y = 0.013025 

 

 Thus for some x ∈ (2.19, 2.195) we have y = 0. 

 

   For x = 3.5  y = 0.75 

   For x = 3.4  y = 7.96 

 

 Thus for some x ∈ (3.4, 3.5), we have y = 0 

 

   For x = 4  y = 5 

   For x = 4.3  y = 7.79 

   For x = 4.4  y = 0.76 
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 Thus for some x ∈ (4.3, 4.4) we have y = 0. 

 

   For x = 5  y = 7 

   For x = 5.1  y = 0.11 

   

 So for some x ∈ (5, 5.1), y = 0 

 

   For x = 5.7  y = 7.19 

   For x = 5.8  y = 0.44 

   For x = 5.9  y = 1.71 

 

 Thus for some x ∈ (5.7, 5.8) we have y = 0. 

 

   For x = 6  y = 3 

   For x = 6.2  y = 5.64 

   For x = 6.3  y = 6.99 

   For x = 6.4  y = 0.36 

   For x = 6.35 y = 7.6725 

 

 Thus for some x ∈ (6.35, 6.4) we have y = 0. 

 

   For x = 6.6  y = 3.16 

   For x = 6.7  y = 4.59 

   For x = 6.8  y = 0.04 

   For x = 6.85 y = 0.7725 

   For x = 6.84 y = 0.6256   

   For x = 6.82 y = 0.3324 

   For x = 6.81 y = 0.1861 

 

 Thus for some x ∈ (6.75, 6.8) we have a y = 0  

 

For x = 7  y = 1 

For x = 7.5  y = 0.75 

For x = 7.4  y = 7.16 

 

Thus for some x ∈ (7.4, 7.5), y = 0 

 

For x = 7.8  y = 5.64 

For x = 7.9  y = 7.31,  
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for some x ∈ (7.94, 7.95) we have a y = 0. 

 

We have x
2
 + x + 1 has several zeros in the MOD plane 

Rn(8) only some of them are represented. 

 

Next consider the function y = x
2
 + 9x + 1 in the MOD plane 

Rn(9) then y = x
2
 + 1 we now give the graph of y = x

2
 + 1 in the 

MOD plane Rn(9). 
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Figure 2.29 

 

When x = 0, y = 1. 

 

When x = 1, y = 2. 

 

When x = 2, y = 5. 

  

When x = 2.8, y = 8.84. 

 

When x = 2.9; y = 0.41. 
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When x = 2.85 y = 0.12. 

 

When x = 2.83 y = 0.0089.  

So for some x ∈ (2.82, 2.83) we have y = 0. 

 

For x = 4  y = 8 

For x = 4.2  y = 0.64 

For x = 4.1  y = 8.81 

For x = 4.15 y = 0.225 

For x = 4.14 y = 0.1396 

For x = 4.13  y = 0.0569 

For x = 4.12 y = 8.9744 

 

Thus for some x ∈ (4.12, 4.13) we have y = 0. 

 

For x = 4.3  y = 1.49 

For x = 4.5  y = 3.25 

x = 4.7  y = 5.09 

x = 4.8  y = 6.04 

For x = 5  y = 8. 

 

For x = 5.1   y = 0.01 

For x = 5.05 y = 8.5025 

For x = 5.06 y = 8.6036 

For x = 5.07 y = 8.7049 

For x = 5.08 y = 8.8064 

For x = 5.09 y = 8.9081 

 

So some x ∈ (5.09, 5.10) we have y = 0. 

 

x = 5.5   y = 4.25 

x = 5.9   y = 8.81 

x = 5.91  y = 8.9281 

x = 5.915  y = 8.9872 

x = 5.92  y = 0.0464 

x = 5.95  y = 0.4025 

 

Thus for some x ∈ (5.915, 5.92) we have a y = 0. 
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For x = 6  y = 1 

For x = 6.4  y = 5.96 

For x = 6.5  y = 7.25 

For x = 6.6  y = 8.56 

For x = 6.7  y = 0.89 

For x = 6.65 y = 0.2225 

For x = 6.62 y = 8.82 

For x = 6.64 y = 0.0896 

For x = 6.63 y = 8.9569 

 

Thus for x = (6.63, 6.64) we have y such that y = 0. 

 

For x = 7  y = 5 

For x = 7.2  y = 7.84 

For x = 7.3  y = 0.29 

 

So for x ∈ (7.25, 7.3), y = 0. 

 

For x = 7.7  y = 4.29 

For x = 7.8  y = 7.84 

x = 7.9  y = 0.41 

x = 7.85 y = 8.6225 

 

So for x ∈ (7.85, 7.88) we have a y = 0. 

 

For x = 8.2  y = 5.24 

For x = 8.3  y = 6.89 

For x = 8.4  y = 8.44 

For x = 8.5  y = 1.25 

 

Thus for x ∈ (8.4, 8.45) we have a y = 0. 

 

For x ∈ (8.94, 8.95) there is y = 0. 

 

We set x
2
 + 1 (x

2
 + 9x + 1 ∈ R[x]) in Rn(9)[x] has several 

zeros only some of them are given. 
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Finally we see the graph x
2
 + 9x + 1 ∈ R[x] is the same in 

Rn(10).  

 

The graph of x
2
 + 9x + 1 is as follows: 

  

     y = x
2
 + 9x + 1 
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Figure 2.30 

 

 

For x ∈ (0.9, 0.91) we have a y = 0.  

 

For x = 1,    y = 1 

For x = 1.5   y = 6.75 

For x = 1.8   y = 0.44 

For x = 1.7   y = 9.19 

For x = 1.75  y = 9.8125 

For x = 1.76  y = 9.9376 

For x = 1.77  y = 0.0629 
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Thus for x ∈ (1.76, 1.77) we a y such that y = 0. 

 

For x = 2   y = 3 

For x = 2.5   y = 9.75 

For x = 2.52  y = 0.0304 

For x = 2.51  y = 9.8901 

 

Thus for some x ∈ (2.51, 2.52) we have y = 0. 

 

  For x = 3  y = 7 

For x = 3.1  y = 8.51 

For x = 3.18 y = 9.7324 

For x = 3.19 y = 9.8861 

For x = 3.2  y = 0.04 

 

Thus for some x ∈ (3.19, 3.2) we have a y = 0. 

 

Let x = 3.5  y = 4.75 

Let x = 3.8  y = 9.64 

For x = 3.82 y = 9.97 

For x = 3.83 y = 0.4725 

 

Thus for some x ∈ (3.82, 3.85) we have a y = 0. 

 

Let x = 4  y = 3 

Let x = 4.2  y = 6.44 

For x = 4.4  y = 9.96 

For x = 4.5  y = 1.75 

 

Thus for x = 4.45 y = 0.8525 

 

For x = 4.42 y = 0.3164 

For x = 4.41 y = 0.1381 

 

Thus for some x ∈ (4.4, 4.41) we have y = 0. 

 

For x = 4.9  y = 9.11 

For x = 4.98 y = 0.6204 

For x = 4.95 we get y = 0.525 
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For x = 4.94  y = 9.8636 

 

So for some x ∈ (4.94, 4.95) we have a y such that y = 0. 

 

For x = 5  y = 1 

For x = 5.45 y = 9.7525 

For x = 5.4  y = 8.76 

For x = 5.5  y = 0.75 

For x = 5.48  y = 0.35 

For x = 5.46 y = 9.9516 

For x = 5.47 y = 0.1509 

 

For some x ∈ (5.46, 5.47) we have y = 0. 

 

For x = 5.8  y = 6.84 

For x = 5.9  y = 8.91 

For x = 5.95 y = 9.95 

 

For some x ∈ (5.95, 5.956) we get y = 0. 

 

For x = 6  y = 1 

For x = 6.4  y = 9.56 

For x = 6.5  y = 1.75 

For x = 6.45 y = 0.6525 

For x = 6.44 y = 0.4336 

For x = 6.42 y = 9.9964 

For x = 6.43 y = 0.2149 

 

Thus for some x ∈ (6.42, 6.43) we have a y = 0. 

 

For x = 6.8  y = 8.44 

For x = 6.85 y = 9.5725 

For x = 6.87 y = 0.0269 

 

Thus for x ∈ (6.86, 6.87) we have a y = 0. 

 

   x = 7  y = 3 

For x = 7.1  y = 5.31 

For x = 7.3  y = 9.99 
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For x = 7.35 y = 1.1725 

For x = 7.33 y = 0.6989 

 

Thus for some x ∈ (7.3, 7.33) we have a y = 0. 

 

For x = 7.5  y = 4.75 

For x = 7.6  y = 7.16 

For x = 7.7  y = 9.59 

For x = 7.71 y = 9.8341 

For x = 7.75 y = 0.8125 

For x = 7.73 y = 0.3229 

if x = 7.72   y = 0.0784 

 

Thus for x ∈ (7.71, 7.72) we see there exist a y = 0. 

 

For x = 8  y = 7 

For x = 7.9  y = 4.51 

For x = 7.98 y = 6.5 

For x = 8.5  y = 9.75 

For x = 8.6  y = 2.36 

For x = 8.55 y = 1.0525 

For x = 8.54 y = 0.7916 

For x = 8.52 y = 0.2704 

For x = 8.51 y = 0.0101 

For x = 8.505 y = 9.88 

 

Thus for some x ∈ (8.505, 8.51) we have a y =0. 

 

For x = 8.9  y = 0.31 

For x = 8.8  y = 7.64 

For x= 8.85  y = 8.9725 

For x = 8.88 y = 9.77 

 

So for some x ∈ (8.88, 8.9) we have a y = 0. 

 

For x = 9  y = 3 

For x = 9.1  y = 5.71 

For x = 9.3  y = 1.19 

For x = 9.5  y = 6.75 
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For x = 9.2  y = 8.44 

For x = 9.25 y = 9.8125 

For x = 9.27 y = 0.3629 

For x = 9.26 y = 0.0876 

 

Thus for some x ∈ (9.25, 9.26) y = 0. 

 

For x = 9.5   y = 6.75 

For x = 9.6   y = 9.56 

For x = 9.61  y = 9.84 

For x = 9.62  y = 0.1244 

For x = 9.65  y = 0.9725 

For x = 9.7   y = 2.39 

For x = 9.8   y = 5.24 

For x = 9.615  y = 9.832 

 

For some x ∈ (9.615, 9.62), we have y = 0. For some x ∈ 

(9.96, 9.97) we have a y = 0. 

 

Thus for function y = x2 + 9x + 1 in Rn(10)[x] has atleast 18 

zero.  

 

So a second degree MOD equation in Rn(10)[x] has over 18 

roots or 18 zeros. 

 

Now we see the function y = x
2
 + 9x + 1 ∈ R[x] remains the 

same in all MOD planes Rn (m); m ≥ 10.  

 

Now let y = x
2
 + 9x + 1 be the function in the MOD plane  

Rn(11)[x] to find the graph and zeros of x
2
 + 9x + 1 in Rn(11). 

The associated graph is given in Figure 2.31. 

 

When  

x = 0     y = 1 

x = 0.5    y = 5.75 

x = 0.7    y = 7.79 

x = 0.9    y = 9.91 
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Figure 2.31 

 

x = 1    y = 0 

For x = 1.2   y = 3.24 

For x = 1.1   y = 1.11 

For x = 1.4   y = 4.56 

 

Thus for x = 1.8, y = 0.44. 

 

So a zero lies between 1.7 and 1.8. 

 

For x = 1.7   y = 8.19 

For x = 1.8   y = 9.44 

For x = 1.9   y = 10.71 

For x = 1.95  y = 0.3525 

For x = 2   y = 1 

For x = 2.2   y = 3.64 

 

So a zero lies between (1.9, 1.95).  

 

x = 2.5   y = 7.75 
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x = 2.6   y = 9.16 

 

For x = 2.7    we get y = 10.59 

  For x = 2.8   wet get y = 1.04 

 

So a zero lies roughly between 2.7 and 2.8. 

 

For x = 2.75  we get y = 0.3125 

For x = 2.73  we get y = 0.0229 

For x = 2.72  we get y = 10.8784 

 

So for some x ∈ (2.72, 2.73) there is a y = 0. 

 

   For x = 3   y = 4 

   For x = 3.5   y = 0.75 

   For x = 3.4   y = 10.16 

   For x = 3.48  y = 0.4304 

 

 For some x ∈ (3.45, 3.48) we have a y = 0.  

 

   For x = 3.8   y = 5.64 

   For x = 3.9   y = 6.31 

   

   For x = 4   y = 9 

   For x = 4.3   y = 3.19 

   For x = 4.6   y = 8.56 

   For x = 4.7   y = 10.39 

   For x = 4.2   y = 1.44 

   For x = 4.1   y = 10.71 

  For x = 4.15  y = 0.5725 

   For x = 4.13  y = 0.2269 

For x = 4.11  y = 10.8821 

For x = 4.12  y = 0.0544 

 

Thus for some x ∈ (4.11, 4.12) there is a y = 0. 

 

For x = 4.9   y = 3.11 

For x = 4.8   y = 1.24 

For x = 4.75  y = 0.3125 
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For x = 4.72  y = 10.7584 

For x = 4.73  y = 10.9429 

For x = 4.755  y = 0.35225 

 

So for some x ∈ (4.73, 4.735) there exist a y = 0. 

 

For x = 4.9   y = 3.11 

For x = 5   y = 5 

For x = 5.3   y = 10.29 

For x = 5.4   y = 1.76 

For x = 5.35  y = 0.7725 

For x = 5.33  y = 0.3789 

For x = 5.32  y = 0.1824 

For x = 5.31  y = 10.9861 

 

For some x ∈ (5.31, 5.32) we have a y = 0. 

 

For x = 5.5  y = 3.75 

For x = 5.6  y = 5.76 

For x = 6  y = 3 

For x = 5.8  y = 9.84 

For x = 5.9  y = 0.91 

For x = 5.83 y = 10.4585 

For x = 5.84 y = 10.6656 

For x = 5.85 y = 10.8725 

For x = 5.86 y = 0.0796 

 

Thus for some x ∈ (5.85, 5.86) we have a y = 0. 

 

For x = 6.3  y = 9.39 

For x = 6.4  y = 0.56 

For x = 6.5  y = 10.472 

For x = 6.36 y = 10.6896 

For x = 6.37 y = 10.9069 

For x = 6.38 y = 0.1244 

 

Thus for some x ∈ (6.37, 6.38) we have a y = 0. 

 

For x = 6.6  y = 4.96 
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For x = 6.8  y = 9.44 

For x = 6.9  y = 0.71 

For x = 6.85 y = 10.5725 

For x = 6.87 y = 0.0269 

For x = 6.86 y = 10.7996 

 

Thus for some x ∈ (6.86, 6.87) we have a y = 0. 

 

For x = 7  y = 3 

For x = 7.3  y = 9.99 

For x = 7.35 y = 0.1725 

For x = 7.34 y = 10.9356 

 

For x ∈ (7.34, 7.35) we have a y = 0. 

 

For x = 7.5   y = 3.75 

For x = 7.6   y = 6.16 

For x = 7.7   y = 8.59 

For x = 7.8   y = 0.04 

For x = 7.75  y = 9.8125 

For x = 7.77  y = 10.3029 

For x = 7.78  y = 10.5484 

For x = 7.79  y = 10.7941 

For x = 7.795  y = 10.91702 

 

So for some x ∈ (7.795, 7.8) we have a y = 0. 

 

For x = 8   y = 5 

For x = 7.9   y = 2.51 

For x = 8.2   y = 10.04 

For x = 8.23  y = 10.8029 

For x = 8.24  y = 0.0576 

For x = 8.3   y = 1.59 

 

So for some x ∈ (8.23, 8.24) we have a y = 0. 

 

For x = 8.5   y = 6.75 

For x = 8.6   y = 9.36 

For x = 8.7   y = 0.99 
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For x = 8.65  y = 10.6725 

For x = 8.68  y = 0.4624 

For x = 8.66  y = 10.9356 

For x = 8.67  y = 0.1989 

 

So for some x ∈ (8.66, 8.67) we have a y = 0. 

 

For x = 9   y = 9 

For x = 8.8   y = 3.64 

For x = 8.9   y = 6.31 

For x = 9.1   y = 0.71 

For x = 9.05  y = 10.35 

For x = 9.09  y = 0.4381 

For x = 9.08  y = 0.1664 

For x = 9.07  y = 10.8949 

 

Thus for some x ∈ (9.07, 9.08) we have a y = 0. 

 

For x = 9.3   y = 6.19 

For x = 9.4   y = 8.96 

For x = 9.5   y = 0.75 

For x = 9.45  y = 10.3525 

For x = 9.47  y = 10.9109 

For x = 9.48  y = 0.1904 

 

Thus for some x ∈ (9.47, 9.48) we have a y = 0. 

 

For x = 9.7   y = 6.39 

For x = 9.6   y = 3.56 

For x = 9.8   y = 9.24 

For x = 9.85  y = 10.67 

For x = 9.855  y = 10.81 

For x = 9.859  y = 10.93 

For x = 9.88  y = 0.5344 

For x = 9.86  y = 10.95 

For x = 9.87  y = 0.2469 

 

Thus for some x ∈ (9.86, 9.87) we have a y = 0. 
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For x = 10   y = 4 

For x = 10.2  y = 9.84 

For x = 10.25  y = 0.3125 

For x = 10.22  y = 10.4284 

For x = 10.24  y = 0.0176 

For x = 10.23  y = 10.7229. 

 

For some x ∈ (10.23, 10.24) we have a y = 0. 

 

For x = 10.5  y = 7.75 

For x = 10.3  y = 1.79 

For x = 10.7  y = 2.79 

For x = 10.4  y = 4.76 

For x = 10.6  y = 10.76 

For x = 10.65  y = 1.2725 

For x = 10.63  y = 0.6669 

For x = 10.62  y = 0.3644 

For x = 10.61  y = 0.0621 

 

For x = 10.605  y = 10.911 

For x = 10.609  y = 0.031. 

 

Thus for some x ∈ (10.605, 10.609) we have a y = 0. 

 

For x = 10.8  y = 5.84 

For x = 10.9  y = 8.99 

For x = 10.99  y = 0.6901 

For x = 10.95  y = 10.4525 

For x = 10.97  y = 0.0709 

For x = 10.96  y = 10.7616 

For x = 10.966  y = 10.94 

For x = 10.968  y = 0.09024. 

 

 

For some x ∈ (10.966, 10.668) we have a y = 0. 

 

Now for x = 10.999 y = 0.969 for x = 10.9999 y = 0.9969. 
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We have shown x
2
 + 9x + 1 ∈ Rn(11)[x] has atleast 20 

zeros. 

 

Finally we study the function y = x
2
 + 9x + 1 in the MOD 

plane Rn(12). 

 

y = x
2
 + 9x + 1 in Rn(12)[x] is as follows: 
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Figure 2.32 

 

x = 0.5   y = 5.75 

x = 0.9   y = 9.91 

x = 1   y = 11 

x = 1.1   y = 0.11 

x = 1.05  y = 11.5525 

 

For x ∈ (1.05, 1.1) we have a y = 0. 

 

For x = 1.4  y = 3.56 

x = 1.7   y = 9.19 
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x = 1.6   y = 4.75   

x = 1.9   y = 9.71 

x = 2   y = 11  

x = 2.1   y = 0.31 

x = 2.6   y = 7.16 

x = 2.06  y = 11.7836 

x = 2.08  y = 0.0464 

x = 2.07  y = 11.9149 

 

Thus for x ∈ (2.07, 2.08) we have a y = 0. 

 

Now for x = 2.5  y = 5.75 

For x = 3   y = 1. 

 

So we have a zero before x = 3. 

 

 Consider x = 2.9  y = 11.51 

   For x = 2.92  y = 11.80 

   For x = 2.94  y = 0.1036 

   For x = 2.93  y = 11.95 

 

So for some x ∈ (2.93, 2.94) we have a y = 0. 

 

   For x = 3.3   y = 5.54 

   For x = 3.6   y = 10.36 

   For x = 3.7   y = 11.99 

   For x = 3.75  y = 0.8125 

   For x = 3.74  y = 0.6476 

   For x = 3.72  y = 0.3184 

   For x = 3.71  y = 0.1541 

 

Thus for some x ∈ (3.7, 3.71) we have a y = 0. 

 

For x = 3.9   y = 3.31 

   For x = 4   y = 5 

   For x = 4.4   y = 11.96 

   For x = 4.45  y = 0.8525 

   For x = 4.43  y = 0.4949 

   For x = 4.41  y = 0.1381 
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  For x = 4.405  y = 0.049025 

For x = 4.403  y = 0.013409 

  For x = 4.401  y = 11.977801 

  

Thus for some x ∈ (4.401, 4.403) we have a y = 0. 

 

For x = 4.8   y = 7.24 

For x = 4.9   y = 9.11 

For x = 5   y = 11 

For x = 5.1   y = 0.91 

For x = 5.65  y = 11.9525 

For x = 5.06  y = 0.1436 

 

Thus for some x ∈ (5.05, 5.06) we have a y = 0. 

 

For x = 5.5   y = 8.75 

For x = 5.8   y = 2.84 

For x = 5.6   y = 10.76 

For x = 5.7   y = 0.79 

For x = 5.68  y = 0.3824 

For x = 5.65  y = 11.7725 

For x = 5.67  y = 0.1789 

 

Thus for some x ∈ (5.66, 5.67) we have a y = 0. 

 

For x = 6.2   y = 11.24 

For x = 6.25  y = 0.3125 

For x = 6.23  y = 11.8829 

For x = 6.24  y = 0.0976 

 

Thus for some x ∈ (6.23, 6.24) we have a y = 0. 

 

For x = 6.5   y = 5.75 

For x = 6.7   y = 10.18 

For x = 6.8   y = 0.44 

 

Thus for some x ∈ (6.7, 6.8) we have a y = 0. 

 

For x = 6.9   y = 2.71 
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For x = 7   y = 5 

For x = 7.3   y = 11.99 

For x = 7.32  y = 0.4624 

For x = 7.31  y = 0.2261 

For x = 7.305  y = 0.1080 

For x = 7.301  y = 0.013601 

 

Thus for some x ∈ (7.3, 7.301) we have a y = 0. 

 

For x = 7.6   y = 7.16 

For x = 8   y = 5 

For x = 7.9   y = 2.51 

For x = 7.7   y = 9.59 

For x = 7.8   y = 0.04 

For x = 7.75  y = 10.8125 

For x = 7.79  y = 11.7941 

For x = 7.795  y = 11.9170 

For x = 7.719  y = 0.015401 

 

Thus for some x ∈ (7.795, 7.799) we have a y = 0. 

 

For x = 8.2   y = 10.04 

For x = 8.3   y = 0.59 

For x = 8.27  y = 11.3125 

For x = 8.29  y = 0.3341 

For x = 8.28  y = 0.0784 

For x = 8.275  y = 11.9506 

 

Thus for some x ∈ (8.275, 8.28) we have a y = 0. 

 

For x = 8.5   y = 5.75 

For x = 8.6   y = 3.16 

For x = 8.4   y = 10.99 

For x = 8.8   y = 1.64 

For x = 8.75  y = 0.3125 

For x = 8.72  y = 11.5184 

For x = 8.73  y = 11.7829 

For x = 8.74  y = 0.0476 

For x = 8.735  y = 11.9152 
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Thus for some x ∈ (8.735, 8.74) we have a y = 0. 

 

For x = 9   y = 7 

For x = 8.9   y = 4.31 

For x = 9.1   y = 9.71 

For x = 9.2   y = 0.44 

For x = 9.18  y = 11.8924 

For x = 9.185  y = 0.29225 

 

Thus for some x ∈ (9.18, 9.185) we have a y = 0. 

 

For x = 9.3   y = 3.19 

For x = 9.5   y = 8.75 

For x = 9.6   y = 11.56 

For x = 9.62  y = 0.1244 

For x = 9.615  y = 11.98322 

 

Thus for some x ∈ (9.615, 9.62) we have a y = 0. 

 

For x = 9.8   y = 5.24 

For x = 10   y = 11 

For x = 10.09  y = 1.6181 

For x = 10.1  y = 1.91 

For x = 10.04  y = 0.1616 

For x = 10.05  y = 0.4525 

For x = 10.2  y = 4.84 

For x = 10.15  y = 3.3725 

For x = 10.03  y = 11.8709 

 

Thus for some x ∈ (10.03, 10.04) we have a y = 0. 

 

For x = 10.3  y = 7.79 

For x = 10.4  y = 10.76 

For x = 10.5  y = 1.75 

For x = 10.45  y = 0.2525 

For x = 10.42  y = 11.3564 

 

Thus for some x ∈ (10.4, 10.45) we have a y = 0. 
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For x = 10.8  y = 10.84 

For x = 10.85  y = 0.3725 

For x = 10.9  y = 1.91 

For x = 10.83  y = 11.7589 

For x = 10.84  y = 0.0656 

 

Thus for some x ∈ (10.83, 10.84) we have a y = 0. 

 

For x = 11   y = 5 

For x = 11.2  y = 11.24 

For x = 11.21  y = 11.5541 

For x = 11.3  y = 4.36 

For x = 11.4  y = 1.56 

For x = 11.23  y = 0.1829 

 

Thus for some x ∈ (11.21, 11.23) we have a y = 0. 

 

For x = 11.6  y = 11.96 

For x = 11.7  y = 3.19 

For x = 11.9  y = 9.71 

For x = 11.65  y = 1.5925 

For x = 11.62  y = 0.6044 

For x = 11.61  y = 0.2821 

 

Thus for some x ∈ (11.6, 11.61) we have a y = 0. For some 

x ∈ (11.95, 11.96) there is a y which takes the value 0. 

 

There is atleast 21 zeros given by the function  

y = x
2
 + 9x + 1 

in the MOD plane Rn(12). 

 

After x takes the value 5 there are more zeros. Zeros 

becomes dense as x moves closer and closer to 12.  

 

Thus in (10, 11) there are three zeros lying in the intervals 

(10.03, 10.04), (10.44, 10.45) and (10.83, 10.84). 
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This property infact is unique and is enjoyed solely by the 

functions in the MOD planes.  

 

So instead of getting two zeros a second degree equation 

can have 21 zeros so seeking solutions in the MOD plane can be 

interesting and this will find appropriate applications.  

 

However the function y = x
2
 + 9x + 1 has no solution in the 

ring of integers. 

 

Infact x
2
 + 9x + 1 has no solution in the rational field. 

 

However this has solution over the real field as 

 

x = 
29 9 4

2

− ± −
 

 

= 
9 77

2

− ±
 = 

9 8.775

2

− ±
 

 

The real roots are 

 

9 8.775

2

− + 
 
 

 and 
9 8.775

2

− −
 that is –0.1125 and  

 

–8.8875 both the roots are negative. 

 

However if one has to find solution which is non 

negative can go to MOD planes and solve them. 

 

Further as this has more than two roots a feasible root 

can be obtained or a cluster of roots can be taken as a 

solution.  
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Now this equation  

 

y = x
2
 + 9x + 1 will be changed in the MOD planes only for 

the coefficient of x the other two will remain the same. 

 

Further the change takes place in the MOD plane Rn (m),  

m ≤ 9. For all m ≥ 10 the equation y = x
2
 + 9x + 1 remains the 

same. 

 

Now generalize this equation as follows:  

 

If y = x
2
 + m1x + 1 then this equation can maximum have 

one change and that two for the coefficient of the x term and in 

Rn (m), m ≤ m1 will have change and for all m > m1 no change 

takes places.  

 

Consider the equation y = x
2
 + x + 6.  

 

We study this equation in the MOD planes.  

 

The roots of this equation is  

 

 

x = 

 
1 1 4 6

2

− ± − ×
 

 

= 
1 i 23

2

− ±
. 

 

So the solution does not exist in R the reals as they are 

imaginary. 

 

Now y = x
2
 + x + 6 in Rn(2) is as follows, x

2
 + x = y.  

 

The roots of this equation are given by the following graphs 

in the MOD plane Rn(2). 
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Figure 2.33 

 

For x = 0.2   y = 0.24 

For x = 1   y = 0 

For x = 1.58  y = 0.0764 

For x = 1.57  y = 0.0349 

For x = 1.55  y = 1.9525 

For x = 1.56  y = 1.9936 

 

Thus for some x ∈ (1.56, 1.57) we have a y = 0. 

 

For x = 1.6   y = 0.16 

For x = 1.8   y = 1.04 

For x = 1.9   y = 1.51 

For x = 1.99  y = 1.9501. 

 

Thus for the equation x
2
 + x = 0. The three roots are x = 0,  

x = 1 and x some x ∈ (1.56, 1.57); y = 0. 

 

For x = 1.562  y = 0.001844 

For x = 1.5617  y = 000602 
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For x = 1.5616  y = 0.0001945 

For x = 1.56159  y = 0.00015338 

For x = 1.56158  y = 0.0000112096 

For x = 1.56156  y = 0.000029634 

For x = 1.561559 y = 0.00002551 

For x = 1.561557 y = 0.000017264 

For x = 1.561556 y = 0.000013141 

For x = 1.561555 y = 0.000009018 

For x = 1.561553 y = 0.000000772 

 

Thus for some x ∈ (1.561552, 1.561553) we have a y = 0. 

 

Thus the MOD equation y = x
2
 + x in Rn(2) has atleast three 

zeros. 

 

Next we find y = x
2
 + x+ 6 in Rn(3) to be x

2
 + x.  

 

The graph of y = x
2
 + x in Rn(3) is as follows: 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

 
Figure 2.34 
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For x = 0   y = 0 

For x = 1   y = 2 

For x = 0.5   y = 0.75 

For x = 1.3   y = 2.99 

For x = 1.4   y = 0.36 

For x = 1.35  y = 0.1725 

 

So for some x ∈ (1.3, 1.31) we have y = 0. 

 

For x = 1.38   y = 0.2844 

For x = 1.34   y = 0.1356 

For x = 1.4    y = 0.36 

For x = 1.7    y = 1.59 

For x = 2    y = 0 

 

For x = 1.99   y = 2.9501 

For x = 2.1    y = 0.51 

For x = 2.5    y = 2.75 

For x = 2.6    y = 0.36 

For x = 2.56   y = 0.1136 

For x = 2.52   y = 2.8704 

For x = 2.53   y = 2.9309 

For x = 2.54   y = 2.9916 

 

For some x ∈ (2.54, 2.55) we have y = 0. 

 

For x = 2.55  y = 0.0525 

For x = 2.7   y = 0.99 

For x = 2.8   y = 1.64 

For x = 2.9   y = 2.31  

For x = 2.98   y = 2.8604 

 

We see x
2
 + x in Rn(3)[x] has atleast 3 zeros. 

 

Consider y = x
2
 + x + 6 in Rn(4). The equation changes to  

y = x
2
 + x + 2 in Rn(4).  

 

The graph of y = x
2
 + x + 2 is  
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Figure 2.35 

 

For x = 1    y = 0 

For x = 1.3    y = 0.99 

For x = 1.2    y = 0.64 

For x = 1.1    y = 0.31 

For x = 1.5    y = 0.75 

For x = 1.7    y = 2.59 

For x = 1.8    y = 3.04 

For x = 2    y = 0 

For x = 2.2    y = 1.04 

For x = 2.4    y = 2.16 

For x = 2.7    y = 3.99 

For x = 2.75   y = 0.3125 

For x = 2.74   y = 0.2476 

For x = 2.71   y = 0.0541 

 

For some x ∈ (2.7, 2.71) we have a y = 0. 

 

For x = 2.8    y = 0.64 
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For x = 2.9    y = 1.31 

For x = 3    y = 2 

For x = 3.2    y = 3.44 

For x = 3.3    y = 0.19 

For x = 3.22   y = 3.5884 

For x = 3.23   y = 3.6629 

For x = 3.25   y = 3.8125 

For x = 3.27   y = 3.9629 

For x = 3.28   y = 0.0384 

 

For some x ∈ (3.27, 3.28) we have a y = 0. 

 

For x = 3.9    y = 1.11 

For x = 3.95   y = 1.5525. 

 

Clearly y = x
2
 + x + 2 has more than three zeros in Rn(4).  

 

Now the equation y = x
2
 + x + 6 in R[x] takes the form  

y = x
2
 + x + 1 in Rn(5). The graph of y in the Rn(5) plane is as 

follows: 

 

0 1 2 3 4 5

1

2

3

4

5

x

y

 
Figure 2.36 
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For x = 0.8    y = 1.512 

For x = 0.9    y = 2.71 

For x = 1    y = 3 

For x = 1.2    y = 3.64 

For x = 1.4    y = 4.36 

For x = 1.5    y = 4.75 

For x = 1.54   y = 4.9116 

For x = 1.55   y = 4.9525 

For x = 1.59   y = 0.1181 

For x = 1.56   y = 4.9936 

For x = 1.57   y = 0.0349 

 

For some x ∈ (1.56, 1.57) we have y = 0. 

 

For x = 3    y = 3 

For x = 3.4    y = 0.96 

For x = 3.3    y = 0.19 

For x = 3.2    y = 4.44 

For x = 3.25   y = 4.8125 

 

For some x ∈ (3.25, 3.3) we have y = 0. 

 

For x = 3.7    y = 3.39 

For x = 3.9    y = 0.11 

For x = 3.8    y = 4.24 

 

For some x ∈ (3.85, 3.9) we have y = 0. 

 

For x = 4    y = 1 

For x = 4.5    y = 0.75 

For x = 4.3    y = 3.79 

For x = 4.4    y = 4.76 

For x = 4.45   y = 0.2525 

For x = 4.44   y = 0.1536 

For x = 4.43   y = 0.0549 

For x = 4.42   y = 4.9564 

 

Thus for some x ∈ (4.42, 4.43) we have y = 0. 

This equation x
2
 + x + 1 = y in Rn(5) has atleast 5 zeros.  
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 Now we consider the MOD equation of y = x
2
 + x + 6 in the 

MOD plane Rn(6). y = x
2
 + x  
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Figure 2.37 

 

 This MOD equation x
2
 + x = y has atleast seven zeros. 

 

 Next we study the equation y = x
2
 + x + 6 ∈ R[x].  

This remains the same in the MOD plane Rn(7).  

 

 The graph of y = x
2
 + x + 6 in Rn(7) is given Figure 2.38.  

For x ∈ (0.6, 0.7) we have y = 0. 

 

For x = 1    y = 1 

For x = 1.5    y = 2.75 

For x = 1.8    y = 4.04 
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Figure 2.38 

 

For x = 1.9    y = 4.51 

For x = 2    y = 5 

For x = 2.3    y = 6.59 

 

For x = (2.3, 2.4) there is a y = 0. 

 

For x = 2.5    y = 0.75 

For x = 2.4    y = 0.16 

For x = 2.8    y = 2.64 

For x = 3    y = 4 

For x = 2.7    y = 1.99 

For x = 2.9    y = 3.31 

For x = 3.2    y = 5.44 

For x = 3.4    y = 6.96 

 

For x = (3.4, 3.5) there is a y = 0. 

For x = 3.5    y = 0.75 

For x = 3.9    y = 4.11 

For x = 4    y = 5 
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For x = 4.2    y = 6.84 

For x = 4.3    y = 0.79 

For x = 4.6    y = 3.76 

For x = 5    y = 1 

For x = 4.47   y = 4.79 

For x = 4.8    y = 5.84 

For x = 4.9    y = 6.91 

 

For x = (4.2, 4.3) there is a y = 0. 

For x = 4.92   y = 0.1264 

For x = 4.91   y = 0.0184 

 

Thus for some x ∈ (4.9, 4.91) we have y = 0. 

For x = 5    y = 1 

For x = 5.3    y = 4.39 

For x = 5.5    y = 6.75 

For x = 5.7    y = 2.19 

For x = 5.6    y = 0.96 

 

Thus for some x ∈ (5.5, 5.6) we have y = 0. 

For x = 6    y = 0 

For x = 6.1    y = 0.31 

For x = 6.2    y = 1.64 

 

For x ∈ (6.55, 6.6) we have a y = 0. 

 

 Thus x
2
 + x + 6 has atleast seven zeros in Rn(7).  

 

Consider the MOD function y = x
2
 + x + 6 in the MOD plane 

Rn(8).  

 

The associated graph is given in Figure 2.39.  

 

 Let x = 0   y = 6 

 Let x = 0.5   y = 6.75 

 Let x = 0.7   y = 7.19 

 Let x = 0.8   y = 7.44 

 Let x = 0.9   y = 7.71 
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Figure 2.39 

 

 At x = 1   y = 0 

 

 For x = 1.3   y = 0.99 

 For x = 1.5   y = 1.75 

 For x = 2   y = 4 

 For x = 2.4   y = 6.16 

 For x = 2.7   y = 7.99 

 For x = 2.5   y = 6.75 

 For x = 2.6   y = 7.36 

 For x = 2.8   y = 0.64 

 

Thus for some x ∈ (2.7, 2.8) we have we y = 0 

 For x = 3   y = 2 

 For x = 3.5   y = 5.75 

 For x = 3.4   y = 2.96 

 For x = 3.6   y = 6.56 

 For x = 3.7   y = 7.39 

 For x = 3.8   y = 0.24 
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 For x = 3.75  y = 7.8125 

 

 For some x ∈ (3.75, 3.8) we have a y = 0. 

 

 For x = 3.9   y = 1.11 

 For x = 4   y = 2 

 For x = 4.3   y = 4.79 

For x = 4.6   y = 7.76 

For x = 4.65  y = 0.2725 

For x = 4.61  y = 7.8621 

For x = 4.62  y = 7.9644 

For x = 4.63  y = 0.0669 

 

Thus for some x ∈ (4.62, 4.63) we have a y = 0. 

 

For x = 5   y = 4 

For x = 5.6   y = 2.96 

For x = 5.3   y = 7.39 

For x = 5.4   y = 0.56 

 

For some x ∈ (5.3, 5.4) there exists a y = 0. 

 

For x = 5.8   y = 5.44 

For x = 5.6   y = 2.96 

For x = 6   y = 0 

For x = 6.3   y = 3.99 

For x = 6.5   y = 6.75 

For x = 6.6   y = 0.16 

 

For some x ∈ (6.5, 6.6) we have a y = 0 

 

For some x = 6.7 y = 1.59 

For some x = 6.8 y = 3.04 

For some x = 7  y = 6 

For some x = 7.2 y = 1.04 

For some x = 7.1 y = 8.51 

 

Thus for some x ∈ (7.1, 7.2) we have a y = 0. 
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Let x = 7.3  y = 2.59 

Let x = 7.5  y = 5.75 

For x = 7.6  y = 9.36 

For x = 7.7  y = 0.99 

For x = 7.65 y = 0.1725 

 

For some x ∈ (7.6, 7.65) we have a y = 0. 

 

For x = 7.7  y = 0.99 

For x = 7.8  y = 2.64 

For x = 7.9  y = 4.31 

For x = 7.95 y = 5.1525 

 

Thus the maximum y in that interval in 0.59999. 

 

Thus the function x
2
 + x + 6 has atleast 9 zero divisors. 

Consider y = x
2
 + x + 6 in the MOD plane Rn(9). The graph 

of y = x
2
 + x + 6 is as follows: 
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Figure 2.40 
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For x = 0   y = 6 

For x = 1   y = 8 

For x = 1.2   y = 8.6 

For x = 1.3   y = 8.99 

For x = 1.35  y = 0.1725 

 

Thus for some x ∈ (1.3, 1.35) we have a y = 0. 

 

Let x = 1.5   y = 0.75 

Let x = 2   y = 3 

Let x = 2.5   y = 5.75 

Let x = 3   y = 0 

Let x = 3.4   y = 2.96 

Let x = 3.7   y = 5.39 

Let x = 4   y = 8 

Let x = 4.2   y = 0.84 

Let x = 4.1   y = 8.91 

 

So for some x ∈ (4.1, 4.2) we have a y = 0. 

 

Let x = 4.4   y = 2.76 

Let x = 4.8   y = 5.84 

Let x = 5   y = 0 

Let x = 5.2   y = 2.24 

Let x = 5.4   y = 4.56 

Let x = 5.6   y = 6.96 

Let x = 6   y = 3 

Let x = 5.8   y = 0.44 

Let x = 5.75   y = 8.8125 

 

Thus for some x ∈ (5.75, 5.8) we have a y = 0. 

 

Let x = 5.9   y = 1.71 

Let x = 6   y = 3 

Let x = 6.3   y = 6.99 

Let x = 6.5   y = 0.75 

Let x = 6.4   y = 8.36 

Let x = 6.45   y = 0.0525 
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For some x ∈ (6.4, 6.45) we have a y = 0. 

 

Let x = 6.6   y = 2.16 

Let x = 6.8   y = 5.04 

Let x = 7   y = 8 

Let x = 7.1   y = 0.51 

 

For some x ∈ (7, 7.1) we have a y = 0. 

 

Let x = 7.3   y = 3.59 

Let x = 7.6   y = 8.36 

 

For some x ∈ (7.6, 7.65) there a y = 0. 

 

Let x = 7.65   y = 0.1725 

Let x = 7.8   y = 2.64 

Let x = 8   y = 6 

Let x = 8.4   y = 3.96 

Let x = 8.2   y = 0.44 

Let x = 8.15   y = 8.5725 

 

For some x ∈ (8.15, 8.2) we have a y = 0. 

 

For some x = 8.6, we have y = 7.56 

For some x = 8.7   y = 0.39 

For some x ∈ (8.6, 8.7), we have a y = 0. 

For some x = 8.9  y = 4.11 

 

The maximum value y can take for x = 8.99…9 is 5.9999. 

 

We have at least 10 zeros for this second degree MOD 

function y = x
2
 + x + 6 in Rn(9) [x]. 

 

Now consider the function y = x
2
 + 7x + 4 ∈ R[x] we will 

study the structure of y = f (x) in all the MOD planes. 

 

The function y = x
2
 + 7x + 4 in the MOD plane Rn(2) is  

y = x
2
 + x. 
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The graph of y = x
2
 + x in Rn(2) is as follows: 
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Figure 2.41 

 

For x = 0.2   y = 0.24 

For x = 0.5   y = 0.75 

For x = 0.7   y = 1.19 

For x = 1   y = 0 

For x = 1.8   y = 1.04 

For x = 0.8   y = 1.44 

For x = 0.9   y = 1.71 

For x = 1.9   y = 1.51 

For x = 1.5   y = 1.75 

For x = 1.6   y = 0.16 

For x = 1.55  y = 1.9525 

 

For some x ∈ (1.55, 1.6) we have a y = 0. 

For x = 1.95   y = 1.7525 

For x = 1.99   y = 1.95 

Thus x
2
 + 2 has 3 zeros in the Rn(2) MOD plane. But for x

2
 + 

7x + 4 ∈ R[x] the roots are 
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7 49 4 4

2

− ± − ×
 

 

= 
7 33

2

− ±
 = 

7 5.7445

2

− ±
. 

The roots are  

12.7445 1.2555
,

2 2

− −
. 

 

Both the roots are negative in R. However the function  

y = x
2
 + 7x + 4 in the MOD plane Rn(2) has at least 3 real roots 

in (0, 2).  

 

Consider y = x
2
 + 7x + 4 in the MOD plane Rn(3). In Rn(3), y 

= x
2
 + x + 1. The graph of y = x

2
 + x + 1 in the MOD plane Rn(3) 

is as follows: 
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Figure 2.42 
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For x = 0.5  y = 1.75 

For x = 0.99 y = 2.9701 

 

When x = 1, y = 0. 

For x = 1.2  y = 0.64 

For x = 1.6  y = 2.16 

For x = 1.8  y = 0.04 

For x = 1.7  y = 2.59 

 

So for some x ∈ (1.7, 1.8) we have a x = 0. 

For x = 2  y = 1 

For x = 2.3  y = 2.59 

For x = 2.4  y = 0.16 

 

Thus for some x ∈ (2.3, 2.4) we have y = 0. 

For x = 2.5  y = 0.75 

For x = 2.7  y = 1.99 

For x = 2.8  y = 2.64 

For x = 2.85 y = 2.9725 

For x = 2.88 y = 0.1744 

For x = 2.86 y = 0.0396 

 

Thus for some x ∈ (2.85, 2.86) we have a y = 0. 

For x = 2.999  y = 0.9999 

For x = 2.9   y = 0.31 

 

Thus in the MOD plane Rn(3) x
2
 + x + 1 has at least four 

zeros. 

 

Consider y = x
2
 + 7x + 4 in the MOD plane Rn(4). The 

equation or the function is y = x
2
 + 3x.  

 

The graph of the function of the function y = x
2
 + 3x in 

Rn(4) is given in Figure 2.43. 

 

x = 0    y = 0  

x = 0.3    y = 0.99 

x = 0.5    y = 1.75 

x = 0.9    y = 3.51 



MOD Polynomial Functions 81 

 

 

 

 

 

0 1 2 3 4

1

2

3

4

x

y

 
Figure 2.43 

 

x = 1    y = 0  

x = 1.2    y = 1.04 

For x = 1.4   y = 2.16 

 For x = 1.35  y = 1.8725 

 For x = 1.5   y = 2.75 

 For x = 1.6   y = 3.36 

 For x = 1.7   y = 3.99 

For some x ∈ (1.7, 1.75) we have y = 0. 

 

 For x = 2   y = 2 

 For x = 2.4  y = 0.96 

 For x = 2.35 y = 0.572 

 For x = 2.3  y = 0.19 

 For x = 2.2  y = 3.44 

 For x = 3  y = 2 

For some x ∈ (2.2, 2.3) we have y = 0 

 

 For x = 2.4  y = 0.96 

 For x = 2.7  y = 3.39 

 For x = 2.8  y = 0.24 

For some x ∈ (2.7, 2.8) we have a y = 0 
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 For x = 3  y = 2 

 For x = 3.2  y = 3.84 

 For x = 3.3  y = 0.79 

Thus for some x ∈ (3.2, 3.3) y = 0 

 

 For x = 3.5  y = 2.75 

 For x = 3.6  y = 3.76 

 For x = 3.7  y = 0.79 

 For x = 3.65 y = 0.2725 

For some x ∈ (3.6, 3.65) we have y = 0 

 

 Thus x
2
 + 3x in the MOD plane Rn(4) has atleast seven zeros. 

 

 Next we study y = x
2
 + 7x + 4 in the MOD plane Rn(5). The 

function changes to y = x
2
 + 2x + 4 we now give the graph of  

y = x
2 
+ 2x + 4 in the MOD plane Rn(5) in Figure 2.44. 
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Figure 2.44 

 

 x = 0.2  y = 4.44 
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 x = 0.3  y = 4.69 

 x = 0.4  y = 4.96 

For some x ∈ (0.4, 0.5) there is a y = 0. 

  

x = 0.5  y = 0.25 

 x = 0.8  y = 1.24 

 x = 1  y = 2 

x = 1.3  y = 3.29 

 x = 1.5  y = 4.25 

 x = 1.6  y = 4.76 

 x = 1.7  y = 0.29 

 x = 1.65 y = 0.0225 

So for some x ∈ (1.6, 1.65) we have a y = 0. 

 

x = 2  y = 2 

for  x = 2.4  y = 4.56 

for  x = 2.5  y = 0.25 

so for x ∈ (2.4, 2.5) we have y = 0 

 

Let x = 2.7  y = 1.69 

 Let x = 2.6  y = 0.96 

 Let x = 2.9  y = 3.21 

 Let x = 3  y = 4 

 For x = 3.2  y = 0.64 

 For x = 3.1  y = 4.81 

 For x = 3.15 y = 0.2225 

Thus for some x ∈ (3.1, 3.15) we have y = 0 

 

 For x = 3.4  y = 2.36 

 For x = 3.3  y = 1.49 

 For x = 3.6  y = 4.16 

 For x = 3.65 y = 4.6225 

 For x = 3.7, y = 0.9 

So for x ∈ (3.65, 3.7) we have y = 0. 

 

 For x = 3.8  y = 1.04 

 For x = 4  y = 3 

 For x = 4.2  y = 0.4 

Thus for x = 4.1  y = 4.01 
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So for some x ∈ (4.1, 4.2) we have y = 0. 

 

 For x = 4.4  y = 2.16 

 For x = 4.6  y = 4.36 

 For x = 4.65 y = 4.9225 

 For x = 4.66 y = 0.0356 

Thus for some x in (4.65, 4.66) is 3.9999. 

 

 Thus y = x
2
 + 2x + 4 has atleast seven zeros in the MOD 

plane Rn(5).  

 

 Now we study y = x
2
 + 7x + 4 in the MOD plane Rn(6).  

 

 The MOD function in Rn(6) is y = x
2
 + x + 4.  

 

We give the graph of the MOD function y = x
2
 + x + 4 in the 

MOD plane Rn(6)[x]. 

      y = x
2
 + x + 4 ∈ Rn(6)[x] 
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Figure 2.45 
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For x = 1.5   y = 1.75 

 For x = 1.8   y = 3.04 

 For x = 2   y = 4 

 For x = 2.3   y = 5.59 

 For x = 2.4   y = 0.16 

 For x = 2.35  y = 5.8725 

So for some x ∈ (2.35, 2.4) we have a y = 0. 

 

 For x = 2.7   y = 1.99 

 For x = 2.5   y = 0.75 

 For x = 2.6   y = 1.36 

 For x = 2.8   y = 2.64 

 For x = 3   y = 4 

 For x = 3.2   y = 5.44 

 For x = 3.3   y = 0.19 

 For x = 3.25  y = 5.8125 

Thus for some x ∈ (3.25, 3.3) we have y = 0. 

 

 For x = 3.5   y = 1.75 

 For x = 3.4   y = 0.96 

 For x = 3.8   y = 4.24 

 For x = 4   y = 0 

 For x = 4.3   y = 2.79 

 For x = 4.5   y = 4.75 

 For x = 4.6   y = 5.16 

 For x = 4.7   y = 0.79 

 For x = 4.65  y = 0.2725 

For some x ∈ (4.6, 4.65) we have a y = 0. 

 

 Now for x = 4.8  y = 1.84 

 For x = 5   y = 4 

 For x = 5.2    y = 0.24 

 For x = 5.1   y = 5.11 

Thus for some x ∈ (5.15, 5.2) we have a y = 0. 

 

 For x = 5.3   y = 1.39 

 For x = 5.5   y = 3.75 

 For x = 5.7   y = 0.19 

 For x = 5.6   y = 4.96 
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 For x = 5.65  y = 5.5725 

For some x ∈ (5.65, 5.7) we have a y = 0 

 

 For x = 5.9   y = 2.71 

 For x = 5.99  y = 3.8701 

 

 Thus for this interval x ∈ (5.7, 6) the maximum value y can 

take in 3.9999. We see x
2
 + x + 4 has atleast seven zeros in the 

MOD plane Rn(6). 

 

 Next we study the function y = x
2
 + 7x + 4 ∈ R[x] in the 

MOD plane Rn(7). 

 

 y = x
2
 + 4 in the MOD plane Rn(7). The graph of y = x

2
 + 4 

in the MOD plane Rn(7) is as follows: 

  

y = x
2
 + 4 ∈ Rn(7)[x] 
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Figure 2.46 
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  When x = 0   y = 4 

  When x = 1   y = 5 

  When x = 1.5  y = 6.25 

  For x = 1.2   y = 5.44 

  For x = 1.6   y = 6.56 

  For x = 1.7   y = 6.89 

  For x = 1.8   y = 0.24 

  For x = 1.75  y = 0.0625 

For some x ∈ (1.7, 1.75) we have a y = 0 

 

  For x = 2    y = 1 

  For x = 2.5   y = 3.25 

  For x = 3   y = 6 

  For x = 3.2   y = 0.24 

  For x = 3.1   y = 6.61 

For some x ∈ (3.1, 3.2) we have y = 0. 

 

  For x = 3.8   y = 4.44 

  For x = 4   y = 6 

  For x = 4.1   y = 6.81 

  For x = 4.2   y = 0.64 

  For x = 4.15  y = 0.2225 

  For x = 4.13  y = 0.0569 

For x ∈ (4.1, 4.13) we have a y = 0. 

 

  For x = 4.4   y = 2.36 

  For x = 4.5   y = 3.25 

  For x = 4.7   y = 5.09 

  For x = 4.8   y = 6.04 

  For x = 4.9   y = 0.01 

  For x = 4.85  y = 6.5225 

For some x ∈ (4.85, 4.9) there exist a y = 0. 

 

  For x = 5   y = 1 

  For x = 5.5   y = 6.25 

  For x = 5.6    y = 0.36 

  For x = 5.55   y = 6.8025 

Thus for some x ∈ (5.55, 5.6) we have a y = 0. 
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 For x = 6    y = 5 

 For x = 6.2    y = 0.44 

 For x = 6.1    y = 6.21 

 For x = 6.15   y = 6.8225 

For some x ∈ (6.15, 6.2) we must have y = 0. 

 

 For x = 6.5    y = 4.25 

 For x = 6.7    y = 6.89 

 For x = 6.75   y = 0.5625 

Thus for some x ∈ (6.7, 6.75) we have y = 0 

 

 For x = 6.99   y = 3.86 

 Thus in the interval (6.7, 7) y attains the maximum value of 

3.9999 only.  

 

Hence the MOD function y = x
2
 + 4 has atleast 7 zeros.  

 

 Now in all other MOD planes Rn(m), y = x
2
 + 7x + 4 is the 

same for all m ≥ 8. 

 

 We study the function y = x
2
 + 7x + 4 in the MOD plane 

Rn(8)[x].  

 

The graph in the MOD plane is given in Figure 2.47.  

 

 For x = 0    y = 4 

 For x = 0.5   y = 7.75 

 For x = 0.6   y = 0.56 

 For x = 0.55  y = 0.1525 

So for some x ∈ (0.50, 0.55) we have a y = 0 

 

 For x = 1.3   y = 6.79 

 For x = 1.4   y = 7.76 

 For x = 1.45  y = 0.2525 

For some x ∈ (1.4, 1.45) we have a y = 0. 

 

 For x = 1.6   y = 1.76 

 For x = 1.7   y = 2.79 

 For x = 1.8   y = 3.84 
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Figure 2.47 

 

For x = 2   y = 6 

 For x = 2.3   y = 1.39 

 For x = 2.2   y = 0.24 

 For x = 2.15  y = 8.6725 

Thus for some x ∈ (2.15, 2.2) we have a y = 0 

 

 For x = 2.4    y = 2.56 

 For x = 2.7    y = 6.19 

 For x = 2.5    y = 3.75 

 For x = 2.8    y = 7.44 

 For x = 2.85   y = 0.0725 

Thus for some x ∈ (2.8, 2.85) we have a y = 0 

 

 For x = 3    y = 2 

 For x = 3.5    y = 0.75 

 For x = 3.4    y = 7.36 

 For x = 3.45   y = 8.0525 

For some x ∈ (3.4, 3.45) we have a y = 0 
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 For x = 3.8    y = 5.04 

 For x = 4    y = 0 

 For x = 3.95   y = 7.2525 

 For x = 4.3    y = 4.59 

 For x = 4.5    y = 7.75 

 For x = 4.55   y = 0.5526 

For some x ∈ (4.5, 4.55) we have a y = 0. 

 

 For x = 5,     y = 0 

 For x = 5.2    y = 3.44 

 For x = 5.4    y = 6.96 

 For x = 5.5   y = 0.75 

 For x = 5.45    y = 7.8525 

Thus for some x ∈ (5.45, 5.5) we have a y = 0 

 

 For x = 5.7    y = 4.39 

 For x = 5.8    y = 6.24 

 For x = 5.9    y = 0.11 

 For x = 5.85  y = 7.1725 

Thus for some x ∈ (5.85, 5.9) we have a y = 0. 

 

 At x = 6   y = 2 

 For x = 6.3   y = 7.79 

 

 For x = 6.35  y = 0.77 

 For x = 6.33  y = 0.3789 

 For x = 6.32  y = 0.1824 

 For x = 6.310  y = 7.9861 

Thus for some x ∈ (6.31, 6.32) we have a y = 0. 

 

 For x = 6.5   y = 3.75 

 For x = 6.6   y = 5.76 

 For x = 6.7   y = 7.79 

Thus for x = 6.75 y = 0.8125 

 

 For x = 6.73  y = 0.4029 

 For x = 6.71  y = 8.9941 

 For x = 6.72  y = 0.1984 
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Thus for some x ∈ (6.71, 6.72) we have a y = 0 

 

 For x = 7   y = 6 

 For x = 7.3   y = 4.39 

 For x = 7.1   y = 0.11 

 For x = 7.05  y = 7.0525 

Thus for some x ∈ (7.05, 7.1) we have a y = 0. 

 

 For x = 7.4   y = 6.56 

 For x = 7.5   y = 0.75 

 For x = 7.45  y = 7.6525 

Thus for some x ∈ (7.45, 7.5) we have a y = 0. 

 

 For x = 7.6,  y = 2.96 

 For x = 7.8  y = 7.44 

 For x = 7.85 y = 0.5725 

Thus for some x ∈ (7.8, 7.85) y = 0. 

 

 For x = 7.9  y = 1.71 

 For x = 7.99 y = 3.77 

Thus for all x ∈ (7.8, 7.85) y = 0 

 

 For x = 7.9  y = 1.71 

 For x = 7.99 y = 3.77 

 

 Thus for all x ∈ (7.8, 8) we see the maximum value y can 

get is 3.999. 

 

 Further this equation y = x
2
 + 7x + 4 in the plane Rn(8) has 

fifteen zeros where as x
2
 + 7x + 4 ∈ R[x] has two negative 

value only. 

 

 Now we study functions of the form y = 8x
2
 + 5x + 7 ∈ 

R[x] the roots of the equation are 

 

   x = 
25 5 4 7 8

16

− ± − × ×
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 The roots are imaginary in R[x].  

 

Now we study this function in Rn (m). 

 

 In Rn(2) the function y = 8x
2
 + 5x + 7 changes to x + 1. 

 

 Now the roots of x + 1 in Rn(2)[x] and the graph of x + 1 in 

Rn(2) is as follows: 
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Figure 2.48 

  

   For x = 0.5   y = 1.5 

   For x = 1   y = 0 

   For x = 0.5   y = 1.5 

   For x = 1.2   y = 0.2 

   For x = 1.5   y = 0.5 

   For x = 1.9   y = 0.9. 

 

 

 The maximum value y can get in (1, 2) is 0.9999. 
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 Thus in the MOD plane Rn(2) the equation has one zero. 

 

Next we study y = 8x
2
 + 5x + 7 in Rn(3)[x]. 

 

In Rn(3)[x]; y = 2x
2
 + 2x + 1. 

 

The graph of y = 2x
2
 + 2x + 1 is as follows: 
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Figure 2.49 

 

For x = 0.5   y = 2.5 

 For x = 0.6   y = 2.92 

 For x = 0.7   y = 0.38 

Thus for some x ∈ [0.6, 0.7) we have a y = 0. 

 

 For x = 1   y = 2 

 For x = 1.2   y = 0.28 

 For x = 1.1   y = 2.62 

 For x = 1.4   y = 1.72 

 For x = 1.3   y = 0.98 
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 For x = 1.5   y = 2.5 

 For x = 1.55  y = 2.905 

 For x = 1.6   y = 0.32 

Thus the some x ∈ (1.55, 1.6) we have a y = 0 

For some x ∈ (1.1, 1.2) we have a y = 0. 

 

 For x = 1.7   y = 1.18 

 For x = 1.8   y = 2.08 

 For x = 1.9   y = 0.02 

So for some x = (1.85, 1.9) we have a y = 0. 

 

 For x = 2   y = 1 

 For x = 2.1   y = 2.02 

 For x = 2.2   y = 0.08 

 For x = 2.15  y = 2.545 

For some x ∈ (2.15, 2.2) we have a y = 0. 

 

 For some x = 2.3  y = 1.18 

 For some x = 2.4  y = 2.32 

 For some x = 2.45  y = 2.905 

 x = 2.5     y = 0.5 

thus for some x ∈ (2.45, 2.5) we have a y = 0. 

 

 For x = 2.6   y = 1.72 

 For x = 2.7   y = 2.98 

 For x = 2.75  y = 0.625 

For some x ∈ (2.7, 2.75) we have a y = 0. 

 

 For x = 2.8   y = 1.28 

 For x = 2.9   y = 2.62 

 For x = 2.99  y = 0.86 

 For x = 2.95  y = 0.5 

 For x = 2.92  y = 2.89 

For some x ∈ (2.92, 2.93) there a y = 0. 

 

 For x = 2.93  y = 0.298 

For x = 2.999   y = 0.986002 

 Thus for every x ∈ (2.92, 3) we have y to take the 

maximum of 0.986002. 
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 We have atleast eight 8 zeros for y = 2x
2
 + 2x + 1 in Rn(3).  

Consider y = 8x
2
 + 5x + 7 in Rn(4). It takes the form x + 3. 

The graph of x + 3 in Rn(4) is as follows: 

     y = x + 3 ∈ Rn(3) 
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Figure 2.50 

 

 For x = 0   y = 3 

 For x = 0.5   y = 3.5 

 For x = 0.99  y = 3.99 

 For x = 1   y = 0 

 For x = 1.2   y = 0.2 

 For x = 1.9   y = 0.9 

 

So for x = 2    y = 1 

 For x = 3   y = 2 

 For x = 3.5   y = 2.5 

 For x = 3.99  y = 2.99 

 

 The equation y = x + 3 has atleast one zero, given by x = 1. 

 

 Consider y = 8x
2
 + 5x + 7, y takes the form 3x

2
 + 2 in 

Rn(5)[x]. 
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 The graph of y = 3x
2
 + 2 in Rn(5) is as follows. 

      y = 3x
2
 + 2 ∈ Rn(5) 
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Figure 2.51 

 

 For x = 0   y = 2 

 For x = 1   y = 0 

 For x = 0.9   y = 4.43 

 For x = 0.99  y = 4.9403 

 For x = 1.2   y = 1.32 

 For x = 1.4   y = 2.88 

 For x = 1.5   y = 3.75 

 For x = 1.6   y = 0.68 

 For x = 1.55  y = 4.2075 

 

 For x ∈ (1.55, 1.6) we have y = 0 

 

 For x = 1.8   y = 1.72 

 For x = 2   y = 4 

 For x = 2.2   y = 1.52 
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 For x = 2.1   y = 0.23 

 

 For some x ∈ (2, 2.1) we have a y = 0. 

 

 For x = 2.3   y = 2.87 

 For x = 2.4   y = 4.28 

 For x = 2.5   y = 0.75 

 For x = 2.45  y = 0.0075 

 

 Thus for some x ∈ (2.45, 2.5) we have a y = 0. 

 

 For x = 2.6   y = 2.28 

 For x = 2.7   y = 3.87 

 For x = 2.8   y = 0.52 

 For x = 2.75  y = 4.6875 

 

 For some x ∈ (2.75, 2.8) we have a y = 0 

 

 For x = 3   y = 4 

 For x = 3.1   y = 0.83 

 For x = 3.05  y = 4.9075 

 

Thus for some x ∈ (3.05, 3.1) we have a y = 0. 

 

 For x = 3.3   y = 4.67 

 For x = 3.35  y = 0.6675 

 For x = 3.32  y = 0.0672 

 

Thus for some x ∈ (3.30, 332) we have y = 0. 

 

 For x = 3.7   y = 3.07 

 For x = 3.8   y = 0.32 

 For x = 3.75  y = 4.1875 

 For x = 3.78  y = 4.8652 

 For x = 3.79  y = 0.0923 

 

 Thus for some x ∈ (3.78, 3.79) we have a y = 0. 

 

 For x = 3.9   y = 2.63 
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 For x = 4   y = 0 

 For x = 4.2   y = 4.92 

 For x = 4.1   y = 4.53 

 For x = 4.22  y = 0.4252 

 For x = 4.21  y = 0.1723 

 

 For x ∈ (4.2, 4.21) we have a y = 0. 

 

 For x = 4.4   y = 0.08 

 For x = 4.35  y = 3.7675 

 For x = 4.39  y = 4.8163 

 For x ∈ (4.39, 4.4) we have a y = 0. 

 

 For x = 4.6   y = 0.48 

 For x = 4.55  y = 4.1075 

 For x = 4.58  y = 4.9292 

 

For some x ∈ (4.58, 4.6) we have a y = 0. 

 

 For x = 4.7   y = 3.27 

 For x = 4.8   y = 1.12 

 For x = 4.75  y = 4.6875 

 

 We see for x = 4.78   y = 0.54 

 

 Thus for some x ∈ (4.75, 4.78) we have a y = 0. 

 

 For x = 4.9   y = 4.03 

 For x = 4.99  y = 1.7003 

 For x = 4.92  y = 4.6192 

 For x = 4.93  y = 4.9147 

 For x = 4.94  y = 0.2108 

 For x = 4.935  y = 0.062675 

 

 For some x ∈ (4.93, 4.935) we have y = 0 

 

For x = 4.999  y = 1.97 
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 W see the equation y = 3x
2
 + 2 has atleast 14 zeros in the 

MOD plane Rn(5).  

 

 Next we consider the equation y = 8x
2
 + 5x + 7 in the MOD 

plane Rn(6)[x]. 

 

 In Rn(6)[x] the equation y = 8x
2
 + 5x + 7 assumes the form 

y = 2x
2
 + 5x + 1. The graph of y = 2x

2
 + 5x + 1 in the MOD 

plane Rn(6)[x] is as follows: 

 

    y = 2x
2
 + 5x + 1 ∈ Rn(6)[x] 
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Figure 2.52 

 

For x = 0  y = 1 

For x = 0.5  y = 4 

For x = 1  y = 2 

For x = 0.8  y = 0.28 

For x = 0.7  y = 5.48 

For x = 0.75 y = 5.875. 
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For some x1 ∈ (0.75, 0.8) we have y = 0. 

 

   x = 1.3    y = 4.88 

For x = 1.4   y = 5.92 

For x = 1.42  y = 0.1328. 

So for some x2 ∈ (1.4, 1.42) we have y = 0. 

 

For x = 1.6   y = 2.12 

For x = 1.8   y = 4.48 

For x = 1.9   y = 5.72 

For x = 2   y = 1. 

For x = 1.95,   y = 0.335. 

So for some x3 ∈ (1.9, 1.95) we have y = 0. 

 

For x = 2.4   y = 0.52 

For x = 2.38  y = 0.2288 

For x = 2.35  y = 5.795. 

For some x4 ∈ (2.35, 2.38) we have y = 0. 

 

  For x = 2.6   y = 3.52 

  For x = 2.7   y = 5.08 

  For x = 2.75  y = 5.875 

  For x = 2.8   y = 0.68. 

Thus for some x5 ∈  (2.75, 2.8) we have a y = 0. 

 

  For x = 3   y = 4 

For x = 3.2   y = 1.48 

For x = 3.1   y = 5.72 

For x = 3.15  y = 0.595 

For x = 3.14   y = 0.4192 

For x = 3.12  y = 5.0688. 

Thus for some x6 ∈ (3.12, 1.14) we have y = 0. 

 

For x = 3.3   y = 3.28 

For x = 3.5   y = 1.00 

For x = 3.4   y = 5.12 

For x = 3.45  y = 0.055. 

For some x7 ∈ (3.4, 3.45) we have y = 0. 

 



MOD Polynomial Functions 101 

 

 

 

 

 

 For x = 3.6  y = 2.92 

 For x = 3.8  y = 0.88 

 For x = 3.7  y = 4.88 

 For x = 3.78 y = 0.4768 

 For x = 3.75 y = 5.875. 

Thus for some x8 ∈ (3.75, 3.78) we have y = 0 

 

 For x = 3.9  y = 2.92 

 For x = 4  y = 5. 

For some x9 ∈ (4, 4.06) there is a zero. 

 

 For x = 4.2  y = 3.28 

 For x = 4.3  y = 5.48 

 For x = 4.5  y = 4 

For some x10 ∈ (4.3, 4.35) we have a y = 0. 

 

 For x = 4.7  y = 2.68 

 For x = 4.6  y = 0.32 

 For x = 4.58 y = 5.8528 

So for some x11 ∈ (4.58, 4.6) we have y = 0. 

For some x12 ∈ (4.8, 4.85) we have a y = 0. 

 

 For x = 5  y = 4 

 For x = 5.06, y = 5.5072 

For some x13 ∈ (5.06, 5.08) we have a y = 0. 

 

 For x = 5.2  y = 3 

 For x = 5.4  y = 2.32 

 For x = 5.3  y = 5.68 

So for some x14 ∈ (5.3, 5.35) we have y = 0. 

 

 For some x = 5.4  y = 2.32 

 For x = 5.5    y = 5 

 For x = 5.55   y = 0.105 

For some x15 ∈ (5.5, 5.55), y = 0. 

 

 For x = 5.6    y = 1.72 

 For x = 5.8    y = 1.28 

So for some x16 ∈ (5.6, 5.76), y = 0. 
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 For x = 5.75   y = 5.875 

 For x = 5.9    y = 4.12 

 

y = 2x
2
 + 5x + 1 has atleast 16 zeros in the MOD plane 

Rn(6). 

 

Next consider the function y = 8x
2
 + 5x + 7 in the MOD 

plane Rn(7). The graph of the function in the MOD plane is as 

follows.  

 

The function takes the form y = x
2
 + 5x in Rn(7). 

 

    y = x
2
 + 5x ∈ Rn(7)[x] 
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Figure 2.53 
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For x = 1.1  y = 6.71 

For x = 1.2  y = 7.44 

For x = 1.15 y = 7.0975 

For some x1 ∈ (1.1, 1.15) we have y = 0. 

  

 For x2 = 2  y = 0. 

For x = 2.7   y = 6.79 

For x = 2.8   y = 0.84 

For x = 2.75  y = 0.3125 

For x = 2.72  y = 6.9984 

For some x3 ∈ (2.72, 2.73) we have y = 0 

 

For x = 2.73  y = 0.1029 

For x = 2.9   y = 1.91 

For x = 3   y = 3 

For x = 3.5   y = 1.75 

For x = 3.4   y = 0.56 

For x = 3.3   y = 6.39 

For some x4 ∈ (3.3, 3.4) we have y = 0. 

 

For x = 3.5   y = 2.75 

For x = 3.7   y = 5.19 

For x = 3.9   y = 6.71 

For x = 3.95  y = 0.3525 

For x = 3.92  y = 6.9664 

For x = 3.93  y = 0.949 

For some x5 ∈ (3.92, 3.93) we have y = 0 

 

For x = 4.2   y = 3.64 

For x = 4.4   y = 6.36 

For x = 4.5   y = 0.75 

For x = 4.45  y = 0.0525 

For x = 4.44  y = 6.7136 

Thus for some x6 ∈ (4.44, 4.45) we have y = 0 

 

For x = 4.8   y = 5.04 

For x = 4.9   y = 6.51 

For x = 5   y = 1 

For x = 4.95  y = 0.2525 



104 MOD Functions 

 

 

 

 

 

 

 

 

For x = 4.94  y = 0.1036 

For x = 4.93  y = 6.9549. 

Thus for some x7 ∈ (4.93, 4.94) we have a y = 0.  

 

For x = 5.2 we have y = 4.04 for x = 5.5 y = 1.75. 

  For x = 5.4   y = 0.16 

  For x = 5.3   y = 5.59 

  For x = 5.35  y = 6.3725. 

Thus for some x8 ∈ (5.35, 5.4) we have a y = 0. 

 

  For x = 5.6   y = 3.36 

  For x = 5.8   y = 6.64 

  For x = 5.83  y = 0.1389 

  For x = 5.82  y = 6.9724. 

Thus for some x9 ∈ (5.82, 5.83) we have y = 0. 

 

  For x = 6   we have y = 3 

  For x = 6.3   we have y = 1.19 

  For x = 6.2   y = 6.44 

  For x = 6.25  y = 0.3125. 

Thus for some x10 ∈ (6.21, 6.25) w have y = 0. 

 

x = 6.21,   y = 6.6141. 

 

For x = 6.4   y = 2.96 

For x = 6.6   y = 6.56 

For x = 6.65  y = 0.4725 

For x = 6.63  y = 0.1069 

Thus for some x11 ∈ (6.60, 6.63) we have a y = 0. 

 

  For x = 6.8;   y = 3.24. 

  For x = 6.9   y = 5.11 

  For x = 6.99  y = 6.8101 

Thus x
2
 + 5x = y in Rn(7)[x] has atleast 11 zeros. 

 

 Let y = 8x
2
 + 5x + 7 be in Rn(8) then the transformed MOD 

equation is y = 5x + 7. The graph of y = 5x + 7 in the MOD 

plane Rn(8) is as follows. 
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Figure 2.54 

 

When  x = 0     y = 7 

  For x1 = 0.2   y = 0 

 

  For x = 0.3   y = 0.5 

  For x = 0.4   y = 1 

  For x = 0.8   y = 3 

  For x = 1   y = 4 

  For x = 1.5   y = 6.5 

  For x = 1.7   y = 7.5 

 

  For x2 = 1.8   y = 0 

  For x = 2.4   y = 3 

  For x = 2.9   y = 5.5 

  For x = 3   y = 6 

  For x = 3.2   y = 7 

  For x = 3.3   y = 7.5 

  For x = 3.5   y = 0.5 
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  For x3 = 3.4   y = 0 

  For x = 3.8   y = 2 

  For x = 4   y = 3 

  For x = 4.6   y = 6 

  For x = 4.8   y = 7 

  For x = 4.9   y = 7.5 

 

  For x4 = 5   y = 0 

  For x = 5.5   y = 2.5 

  For x = 6   y = 5 

  For x = 6.5   y = 7.5 

  For x = 6.7   y = 0.5 

 

 For x5 = 6.6   y = 0 

  For x = 7   y = 2 

  For x = 6.8   y = 1 

  For x = 7.5   y = 4.5 

  For x = 7.9   y = 6.5 

 

 

 In this MOD plane 5x + 7 has atleast 5 zeros. 

 

 Consider the equation y = 8x
2
 + 5x + 7 in the MOD plane 

Rn(9). The graph is given in Figure 2.55.  

 

When x = 0, y = 7. 

 

 For x = 0.1   y = 7.58 

 For x = 0.2   y = 8.32 

 For x = 0.3   y = 0.22 

 For x = 0.4   y = 1.28 

 

For x = 0.36  y = 4.6368 

For x = 0.22  y = 8.4872 

For x = 0.25  y = 8.75 

For x = 0.27  y = 8.9332 

 

Thus for some x1 ∈ (0.27, 0.28), y = 0. 
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Figure 2.55 

 

For x = 0.5   y = 2.5 

For x = 0.6   y = 3.88 

For x = 0.8   y = 7.12 

For x = 0.9   y = 8.98 

For x = 1   y = 2 

For x = 0.95  y = 0.97 

For some x2 ∈ (0.9, 0.97) we have y = 0. 

 

For x = 1.2   y = 6.52 

For x = 1.3   y = 0.02 

For x = 1.29  y = 9.7625 

Thus for x3 ∈ (1.2, 1.29) we have a y = 0. 

 

For x = 1.33  y = 0.8012 

For x = 1.4   y = 2.68 

For x = 1.45  y = 4.07 

For x = 1.5   y = 5.5 

For x = 1.7   y = 2.62 
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For x = 1.6   y = 9.48 

For x = 1.64  y = 0.7168 

For x = 1.62  y = 0.0952 

For x = 1.61  y = 9.7868 

Thus for some x4 ∈ (1.61, 1.62) we have a y = 0. 

 

For x = 1.9   y = 2.62 

For x = 1.9   y = 0.38 

For x = 2   y = 4 

For x = 1.85  y = 7.63 

For x = 1.89  y = 0.0268 

For x = 1.88   y = 9.6752. 

Thus for some x5 ∈ (1.87, 1.88) we have y = 0 

 

For x = 2   y = 4 

For x = 2.3   y = 6.82 

For x = 2.35  y = 8.93 

x6 ∈ (2.35, 2.36) we have y = 0. 

For x = 2.4   y = 2.08 

For x = 2.37  y = 0.7852 

For x = 2.38  y = 1.2152 

For x = 2.39  y = 1.6468 

For x = 3   y = 4 

For x = 3.2   y = 5.92 

For x = 3.4   y = 8.48 

For x = 3.42  y = 0.6712 

So for 3.41 = 0.0748 

 

Thus for x7 ∈ (3.4, 3.41) we have a y = 0. 

 

For x = 3.6   y = 2.68 

For x = 3.54  y = 7.9528 

For x = 3.57  y = 0.8092 

For x = 3.56  y = 0.1888 

For x = 3.55  y = 8.57 

Thus for some x8 ∈ (3.55, 3.56) we have a y = 0 

 

For x = 2.43  y = 3.88 

For x = 2.5   y = 6.5 
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For x = 2.55  y = 8.77 

For x = 2.56  y = 0.2288 

For some x9 ∈ (2.5, 2.56) we have y = 0. 

 

For x = 2.6   y = 2.08 

For x = 2.65  y = 4.43 

For x = 2.7   y = 6.82 

For x = 2.75  y = 8.25 

For x = 2.76  y = 0.7404 

Thus for some x10 ∈ (2.75, 2.76) we have a y = 0. 

 

For x = 2.8   y = 2.71 

For x = 2.9   y = 7.98 

For x = 2.93  y = 0.3292 

Thus for some x11 ∈ (2.9, 2.93) y = 0 

 

For x = 3.5   y = 5.5 

For x = 3.56  y = 0.1888 

For some x12 ∈ (3.5, 3.56) we have y = 0 

 

Consider x = 3.6  y = 2.68 

For x = 3.7   y = 0.2  

For x = 3.67  y = 6.1012 

For x = 3.68  y = 7.7392 

For x = 3.69  y = 8.3788 

For some x13 ∈ (3.69, 3.7) we have y = 0. 

 

For x = 3.8   y = 6.52 

For x = 3.85  y = 0.83 

For x = 3.83  y = 8.5012 

For some x14 ∈ (3.83, 3.85) we have y = 0. 

 

For x = 3.9   y = 4.18 

For x = 4   y = 2 

For x = 3.95  y = 5.57 

For x = 3.97  y = 8.9375 

For some x15 ∈ (3.97, 4) we have y = 0. 
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For x = 4.5   y = 3.5 

For x = 4.3   y = 5.42 

For x = 4.4   y = 3.88 

For x = 4.35  y = 0.13 

For x = 4.34  y = 8.3848 

For x16 ∈ (4.34, 4.35) we have y = 0. 

 

For x = 4.5   y = 3.5 

For x = 4.45   y = 7.67 

For x = 4.46  y = 8.4328 

For x = 4.47  y = 0.1972 

So for some x17 ∈ (4.46, 4.47) we have y = 0 

 

For x = 4.52  y = 4.0432 

For x = 4.55  y = 6.37 

For x = 4.56  y =7.1488 

For x = 4.57  y = 7.9292 

For x = 4.58  y = 8.7112 

For x = 4.59  y = 0.4948 

So for some x18 ∈ (4.58, 4.59) we have y = 0. 

 

For x = 4.6   y = 1.28 

For x = 4.65  y = 5.23 

For x = 4.7   y = 0.22 

For x = 4.69  y = 8.4188 

Thus for some x19 ∈ (4.69, 4.7) we have a y = 0. 

 

For x = 4.73  y = 2.6335 

For x = 4.8   y = 8.32 

For x = 4.9   y = 7.58 

For x = 4.85  y = 3.43 

For x = 4.83  y = 1.7812 

For x = 4.81  y = 0.1388 

Thus for some x20 ∈ (4.8, 4.81) we have a y = 0. 

 

For x = 5, y = 4 and so on. This has many zeros.  

 

Zeros becomes dense as x → 4 and so on. 
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 We see by studying an equation in a MOD plane we get 

several solutions.  

 

We leave open the following problems / conjectures. 

 

Conjecture 2.1: Can a second degree equation y = ax
2
 + bx + c 

have only two roots in all MOD planes? 

 

Conjecture 2.2: Characterize those second degree equations 

which satisfies conjecture 2.1 in at least one MOD plane. 

 

Conjecture 2.3: Characterize those second degree equation and 

the MOD planes which has only less than 10 roots. 

 

Conjecture 2.4: Can a second degree equation in a MOD plane 

have infinite number of roots? 

 

Conjecture 2.5: Study conjectures 2.1 to 2.4 for any third 

degree equation. 

 

Conjecture 2.6: Study the conjectures 2.1 to 2.4 for any nth 

degree equation (n ≥ 4). 

 

Conjecture 2.7: Show in MOD planes the polynomials behave 

in a very different way. 

 

Conjecture 2.8: Obtain those polynomials and MOD planes in 

which the fundamental theorem of algebra is true for any nth 

degree polynomial. 

 

In this book only study of polynomials of second degree 

alone is done.  

 

However with appropriate modifications the results are true 

for all polynomials of different degrees. 

 

Finally it is important to mention all MOD polynomials in 

MOD planes have roots further the same polynomial in different 

MOD planes have different sets of roots unlike the real plane 
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R[x] in which a polynomial of degree n only n roots which is 

unique in R.  

 

Here in Rn(m) as m is varied for p(x) roots also vary. 

 

Certainly these special properties enjoyed by these MOD 

planes (small planes) will enable a variety of applications in 

case of MOD polynomials defined on them.  

 

All polynomials defined on MOD planes (small planes) in 

this book will be termed as MOD polynomials. 



 
 
 
 
 

 

 

 
Chapter Three 
 
 

 
 
MOD COMPLEX FUNCTIONS  
IN THE MOD COMPLEX PLANE Cn(m) 
 
 
 

 

In this chapter a study of polynomial functions are made in 

small or MOD complex planes, Cn(m).  Let p(x) ∈ Cn(m)[x];  

p(x) has the coefficients from the MOD complex plane Cn(m). 

 

 Any polynomial p(x) ∈ C[x] where  

C = {a + bi | a, b ∈ R, i
2
 = –1} can be made into MOD complex 

polynomial in Cn(m)[x].   

 

We will first illustrate this situation by some examples. 

 

Example 3.1:  Let  

p(x) = (8 + 5i)x
3
 + (–7 + 4i)x

2
 + (6 – 6i)x + (9 – 10i) ∈ C[x]. 

 

The representation of p(x) in the MOD complex plane Cn(2) 

is  iFx
3
 + x

2
 + 1 where 2

Fi  = 1. 



112 MOD Functions 

 

 

 

 

 

 

 

 

 

 

 The representation of p(x) in the complex MOD plane Cn(3) 

is (2 + 2iF)x
3
 + (2 + iF)x

2
 + 2iF; 

2

Fi  = 2. 

 

 The representation of p(x) in the complex MOD plane Cn(4) 

is  

 

 iFx
3
 + x

2
 + (2 + 2iF)x + (1 + 2iF);  

2

Fi  = 3. 

 

 The representation of p(x) in the complex MOD plane Cn(5). 

 

 3x
3
 + (3 + 4iF)x

2
 + (1 + 4iF)x + 4 where 2

Fi  = 4. 

 

 The representation of p(x) in complex MOD plane Cn(6) is as 

follows: 

 

 p(x) = (2 + 5iF)x
3
 + (5 + 4iF)x

2
 + (3 + 2iF) where 

2

Fi  = 5. 

 

 Now the representation of p(x) in the complex MOD (small) 

plane Cn(7) is as follows: 

 

 p(x) = (1 + 5iF)x
3
 + 4iFx

2
 + (6 + iF)x + (2 + 4iF) ∈ Cn(7);  

2

Fi  = 6. 

 

 The representation of p(x) in the MOD complex plane Cn(8) 

is as follows: 

 

 5iFx
3
 + (1 + 4iF)x

2
 + (6 + 2iF)x + (1 + 6iF); 

2

Fi  = 7. 

 

 The representation of p(x) in the complex MOD plane Cn(9) 

is (8 + 5iF)x
3
 + (2 + 4iF)x

2
 + (6 + 3iF)x + 8iF; 

2

Fi  = 8. 

 

 We see all the eight equations are different from  

p(x) ∈ C[x].   

 

Now p(x) will not be p(x) in general in any MOD complex 

plane Cn(m) for any value of m.  
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 Now the graphs using which zeros of the MOD complex 

functions are studied by examples. 

 

Example 3.2:   Let f(x) = (3 + 7i)x + (5 – 2i) ∈ C[x]. 

 

 Now f(x) takes the following form in the complex MOD 

plane Cn(2).  

 

 (1 + iF)x + 1 ∈ Cn(2)[x] ( 2

Fi  = 1). 

 

 Now value of f(x) in C[x] is (3 + 7i) x + 5 – 2i = 0; 

 

 (3 + 7i)x = –5 + 2i that is x = 
5 2i

3 7i

− +

+
 

 

x = 
( 5 2i)(3 7i)

(3 7i)(3 7i)

− + −

+ −
 

 

= 
15 6i 35i 14

9 49

− + + +

+
 

 

x = 
41i 1

58

−
 ∈ C. 

 

 Now we find the value of x in Cn(2). 

 

 (1 + iF) x + 1 = 0 so that  

 

   x = 
F

1

1 i+
 hence x = F

2

F

1 i

(1 i )

+

+
 

 

 = F1 i

0

+
, an indeterminate so x has no value in Cn(2). 

 

 Thus a linear equation in the MOD plane may or may not be 

solvable or the solution may not exist. 
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 Now f(x) = (3 + 7i)x + 5 – 2i takes the form 

 

 f(x) = iFx + 2 + iF in the complex MOD plane Cn(3); 2

Fi  = 2. 

 

 Let iFx + 2 + iF = 0. 

 

 Thus x = F

F

1 2i

i

+
 = F F

F F

(1 2i )2i

i 2i

+

×
 = F2i 2

1

+
. 

 

 So x takes the value 2 + 2iF in the complex MOD plane 

Cn(3).   

 

Next we study the same f(x) in the MOD complex plane 

Cn(4). 

 

 f(x) = (3 + 7i) x + 5 – 2i takes the value (3 + 3iF)x + 1 + 2iF 

in Cn(4)[x] where 2

Fi  = 3. 

 

 Thus (3 + 3iF)x + 1 + 2iF = 0 gives x = F

F

3 2i

3 3i

+

+
 

 

 =  F F

F F

(3 2i )(3 i )

(3 3i )(3 i )

+ +

+ +
 = F F

F F

9 6i 3i 2 3

9 9i 3i 3 3

+ + + ×

+ + + ×
 = F3 i

2

+
 in Cn(4).  

But 
1

2
 does not exist as it is not defined in Z4 more so in Cn(4). 

 

 Thus x is undefined in Cn(4) and Cn(2). 

 

 Next consider f(x) = (3 + 7i)x + 5 – 2i in Cn(5)[x]; 

 

 f(x) = (3 + 2iF)x + 3iF; 
2

Fi  = 4. 

 

   (3 + 2iF)x + 3iF = 0. 

   

   So x =   F

F

2i

3 2i+
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 = F F

F F

2i 3 3i

(3 2i )(3 3i )

× +

+ +
 = F

F F

i 24

9 6i 9i 6 4

+

+ + + ×
 

 

 = F4 i

3

+
 = 3 + 2iF. 

 

 x = 3 + 2iF is the root of f(x) in the MOD complex plane 

Cn(5). 

 

 Now consider f(x) = (3 + 7i)x + 5–2i in the MOD complex 

plane Cn(6). 

 

   f(x) = (3 + iF)x + 5 + 4iF  

 

   2

Fi  = 5.  (3 + iF)x + 5 + 4iF = 0 

 

   x = F

F

(5 4i )

3 i

− +

+
 = F

F

1 2i

3 i

+

+
 

 

   = F F

F F

(1 2i )(3 5i )

(3 i )(3 5i )

+ +

+ +
= F

F F

3 6i 5 10 5

9 3i 15i 25

+ + + ×

+ + +
 

 

   = 
4

4
 is an indeterminate in Cn(6). 

 

 Hence has no root. 

 

 Consider f(x) = (3 + 7iF)x + 5 – 2iF in Cn(7); 

 

   f(x) = 3x + 5 + 5iF ∈ Cn(7)[x]; 

 

   f(x) = 0 implies x = F(5 5i )

3

+
 

 

    = F2 2i 5

3 5

+ + ×

×
. 
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 x = 3 + 3iF is the root. 

 

 Again if we consider f(x) in the MOD plane Cn(8) we get 

f(x) = (3 + 7iF) x + 5 + 6iF. 

 Thus f(x) = 0 gives  

x = F

F

3 2i

3 7i

+

+
 

 

= F F

F F

(3 2i )(3 i )

(3 7i )(3 i )

+ +

+ +
  

 

= F F

F F

9 6i 3i 2 7

9 21i 3i 7 7

+ + + ×

+ + + ×
 = Fi 7

2

+
 

is an indeterminate as 
1

2
 is not defined in Cn(8). 

 Let us consider f(x) as the transformed function. 

 

(3 + 7i)x + (5–2i) in Cn(9). 

 

   f(x) = (3 + 7iF)x + 5 + 7iF; 
2

Fi  = 8. 

If f(x) = 0 then  

x = F

F

4 2i

3 7i

+

+
 

 

= F F

F F

(4 2i )(3 2i )

(3 7i )(3 2i )

+ +

+ +
 

 

= F F

F F

12 6i 8i 4 8

9 21i 6i 14 8

+ + + ×

+ + + ×
 

 

= F

F

44 14i

27i 121

+

+
 

 

= F8 5i

4

+
 = F8 5i 7

4 7

+ ×

×
 = 2 + 8iF. 
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 Thus the function is solvable. 

 

 Consider f(x) = (3 + 7i)x + (5–2i) in Cn(10) which is as 

follows: 

 

   f(x) = (3 + 7iF)x + 5 + 8iF; 
2

Fi  = 9 

   (3 + 7iF)x + 5 + 8iF = 0. 

 

 (3 + 7iF)x + 5 + 8iF = 0 multiply by (3 + 3iF) the conjugate 

of 3 + 7iF. 

 

 (3 + 7iF) (3 + 3iF)x + (5 + 8iF) (3 + 3iF) = 0 

 

 (9 + 21iF + 9iF + 21 × 9)x + 15 + 24iF + 15iF + 24 × 9 = 0 

 

 8x + 9iF + 1 = 0. 

 

 As coefficient of x is a zero divisor in Z10 this equation is 

not solvable for x. 

 

 Thus in the MOD complex plane even linear equations in the 

variable x may not be solvable for x. 

 

 Thus in view of all these examples we can have the 

following theorem. 

 

THEOREM 3.1:  Let Cn(m)[x] be the MOD complex plane.  p(x)  

= ax + b, a, b ∈ Cn(m) is solvable if and only if a is not a zero 

divisor but a unit in Cn(m). 

 

 Proof follows from simple calculations. 

 

Corollary 3.1:  Let p(x) ∈ Cn(m)[x] be a MOD complex 

polynomial of degree s (s ≥ 1), p(x) has solution only if 

coefficient of the highest degree of x is a unit in Cn(m). 

 

 Proof is left as an exercise to the reader.  
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 Next we study other types of properties on the complex 

MOD plane. 

 

 The concept of derivatives, limits happens to very different 

in case of functions in the complex MOD plane Cn(m). 

 

Example 3.3:  Let f(z) = u(x, y) + iFν(x, y); z ∈ Cn(3) be a MOD 

complex function defined in some neighbourhood of  

z0 = x0 + iFy0. 

 

   To find  
F

2

z 1 i
lim (z z 1)
→ +

+ +  

 

 Let f(z) = z
2
 + z + 1 = (x + iFy)

2
 + x + iFy + 1  

 

= u(x, y) + iFv(x, y)  

 

    = x
2
 + 2y

2
 + 2iFxy + iFy + x + 1 

   

    = x
2
 + 2y

2
 + x + 1 + iF (2xy + y) 

 

   
(x,y) (1,1)

lim
→

= 1 + 2 + 1 + 1  = 2 

 

   
(x,y) (1,1)

lim v(x, y)
→

 = 2 + 1 = 0. 

 

 Thus 
Fz (1 i )

limf (z)
→ +

 = 2. 

 

Example 3.4:  Let f(z) = u (x, y) + iF v (x, y); z ∈ Cn(5) be the 

function in the MOD complex plane Cn(5).   

 

To find 
Fz 1 i

lim
→ +

(f(x)) = (z
2
 + 3z + 1).  

 

   Let f(z) = z
2
 + 3z + 1  

 

     = x
2
 + 4y

2
 + 3x + 1 + iF (3y + 2xy).  
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 Calculating the limits for u and v we obtain  

 

   
(x,y) (1,1)

lim u(x, y)
→

  = 1 + 4 + 3 + 1 = 4. 

 

   
(x,y) (1,1)

lim v(x, y)
→

 = 3 + 2 ≡ 0 (mod 5). 

 

 

   Thus 
z 1 i

limf (z)
→ +

= 4 

 

   Now let f(z) = z
2
 + 1 ∈ Cn(2);  

   z
2
 + 1 = x

2
 + y

2
 + 1 + 0.iF. 

 

   
z (1,1)

limf (z)
→

 = 1 + i.  

 

(x,y) (1,1)

lim u(x, y)
→

 = 1 + 1 + 1 = 1.  

 

(x,y) (1,1)

lim v(x, y)
→

 = 0. 

 

   Thus 
Fz 1 i

limf (z)
→ +

= 1.  

 

Let f(z) = z
2
 + 4z + 1 ∈ Cn(6). 

 

 u(x, y) + iFv(x, y) = x
2
 + 5y

2
 + 1 + 4x + iF (2xy + 4y) 

 

   
z 1 i

limf (z)
→ +

, find 

 

   
(x,y) (1,1)

lim u(x, y)
→

 = 1 + 5 + 1 + 4 = 5. 

 

   
(x,y) (1,1)

lim v(x, y)
→

 = 2 + 4 = 0. 
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   Thus 
z 1 i

limf (z)
→ +

 = 5. 

 

 The main observation from these examples the same 

function has different values in the complex MOD planes Cn(m) 

as –1 is different for each C(Zm). 

 

 Next we consider a different function f(z) = 
2

2

z 2i

z 2z 2

−

− +
 

 

lim as z → 1+ i in f(z). 

 

Now f(z) in the complex MOD plane Cn(2) is as follows: 

 

   f(z) = 
2

2

z

z
    

 

F

2

2z 1 i

z
lim

z→ +
 = 

2

F F

2

F F

(1 i ) 1 2i 1 0

(1 i ) 1 2i 1 0

+ + +
= =

+ + +
. 

 

 It is difficult to solve this at this stage. 

 

 Suppose the function is in Cn(3). 

 

 Then f(z) = 
2

2

z 2i

z 2z 2

−

− +
 in C will be transformed into a 

MOD function in MOD plane Cn(3) as follows: 

 

     f(z) = 
2

F

2

z i

z z 2

+

+ +
 ; 

 

     z → 1 + iF  

 

    
F

2
F

2z 1 i

z i 0
lim

0z z 2→ +

+
=

+ +
. 
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But this can be factored as follows: 

 

F

2
F

2z 1 i

z i
lim

z z 2→ +

+
=

+ +
= 

F

F F

z 1 i
F F

(z 2 2i )(z 1 i )
lim

(z 2 2i )(z 2 i )→ +

 + + + +
 

= + + + 
 

 

as  

 

z
2 
+ iF  =  (z + 2 + 2iF) (z + 1 + iF) 

  

   =  z
2
 + 2z + 2ziF + z + 2 + 2iF + ziF + 2iF + 4 

   =  z
2
 + iF. 

 

 Further  

z
2
 + z + 2  =  (z + 2 + 2iF) (z + 2 + iF) 

 

    =  z
2
 + 2z + 2ziF + ziF + 2iF + 4 + 2z + 4 + 4iF 

  

=  z
2
 + z + 2. 

           

Fz 1 i
lim
→ +

 =  F F F

F F F

z 1 i 1 i 1 i

z 2 i 1 i 2 i

+ + + + +
=

+ + + + +
 

 

=  F F

F F

2 i 1 i

2i i

+ +
=  

 

=  Fi 2

2

+
 = 2iF + 1. 

 

So the f(z) in the MOD complex plane Cn(3) has a limit  

1 + 2iF. 

 

Consider f(z) in the MOD complex plane Cn(4), 

 

z 1 i
lim
→ +

 
2

2

z 2i

z 2z 2

 −
 

− + 
 in the MOD plane Cn(4) is 
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Fz 1 i
lim
→ +

2

F

2

z 2i P(z) 0

z 2z 2 Q(z) 0

 +
= = 

+ + 
. 

 

Now factorize P(z) and Q(z) as  

 

P(z) = (z + 3 + 3iF) (z + 1 + iF) 

and  

Q(z) = (z + 3 + 3iF) (z + 3 + iF) 

 

Fz 1 i
lim
→ +

2

F

2

z 2i

z 2z 2

 +
 

+ + 
 

 

= 
Fz 1 i

lim
→ +

 F F

F F

(z 3 3i )(z 1 i )

(z 3 3i )(z 3 i )

 + + + +
 

+ + + + 
 

 

= 
Fz 1 i

lim
→ +

F

F

(z 1 i )

(z 3 i )

 + +
 

+ + 
 

 

 

= F F

F F

1 i 1 i

1 i 3 i

+ + +

+ + +
 = F

F

2 2i

2i

+
as 2

2
 ≡ 0 (mod 4); 

 

The solution does not exist. 

 

 So in the MOD complex plane Cn(4) the limit does not exist 

for the function f(z) = 
2

F

2

z 2i

z 2z 2

+

+ +
. 

 

 Consider the function f(z) = 
2

2

z 2i

z 2z 2

−

− +
 in the MOD complex 

plane Cn(5). 

 

   f(z) = 
2

F

2

z 3i

z 3z 2

+

+ +
 = 

P(z)

Q(z)
 as  



MOD Complex Functions 123 

 

 

 

 

 

 

z → 1 + iF, 

 

f(z) = F F

F F

1 2i 4 3i 0

1 2i 4 3 3i 2 0

+ + +
=

+ + + + +
. 

 

 Let us factorize P(z) and Q(z) in Cn(5). 

 

P(z) = (z + 4 + 4iF) (z + 1 + iF) 

and  

Q(z) = (z + 4 + 4iF) (z + 4 + iF) 

 

Fz 1 i
lim
→ +

P(z)

Q(z)

 
 
 

 = 
Fz 1 i

lim
→ +

F F

F F

(z 4 4i )(z 1 i )

(z 4 4i )(z 4 i )

 + + + +
 

+ + + + 
 

 

=
Fz 1 i

lim
→ +

  F

F

z 1 i

(z 4 i )

 + +
 

+ + 
 

 

= F

F

2 2i

2i

+
 = F

F

1 i

i

+
 = Fi 4

4

+
= 4iF + 1. 

 

Thus in Cn(5) the limit of the function exist. 

 

Let us consider the function  

 

f(z) = 
2

2

z 2i

z 2 2z

−

+ −
 

 

in the MOD complex plane Cn(6). 

 

f(z) = 
2

F

2

z 4i

z 2 4z

+

+ +
 = 

P(z)

Q(z)
 

 

P(z)

Q(z)
 = F F

F F

1 2i 5 4i 0

1 2i 5 2 4 4i 0

+ + +
=

+ + + + +
. 
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P(z) = (z + 5 + 5iF) (z + 1 + iF) 

and  

Q(z) = (z + 5 + 5iF) (z + 5 + iF). 

 

Fz 1 i
lim
→ +

P(z)

Q(z)
 = 

Fz 1 i
lim
→ +

F F

F F

(z 5 5i )(z 1 i )

(z 5 5i )(z 5 i )

 + + + +
 

+ + + + 
 

 

=
Fz 1 i

lim
→ +

 F F F

F F F

z 1 i 1 i 1 i

(z 5 i ) 1 i 5 i

 + + + + +
= 

+ + + + + 
 

 

= F

F

2 2i

2i

+
 

 

as 2 is a zero divisor in 6 this value is not defined for  

 

F

F

2 2i

2i

+
 = F2i 4

4

+
. 

 

As 4 is a zero divisor in Z6 the value F2i 4

4

+
 is not defined.  

Thus  

f(z) = 
2

2

z 2i

z 2z 2

−

− +
 

 

as z → 1+ i has no limit to exist in Cn(2m), 2 ≤ m < ∞. 

Consider  

f(z) = 
2

2

z 2i

z 2z 2

−

− +
 

in the MOD plane Cn(9). 

 

f(z) = 
2

F

2

z 7i

z 7z 2

+

+ +
= 

P(z)

Q(z)
 

 

= F F

F F

1 2i 8 7i 0

1 2i 8 7 7 i 2 0

+ + +
=

+ + + + + +
. 
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Factorize P(z) and Q(z) in Cn(9)  

 

P(z) = (z + 8 + 8iF) (z + 1 + iF) 

and  

Q(z) = (z + 8 + 8iF) (z + 8 + iF) 

 

Fz 1 i
lim
→ +

 
P(z)

Q(z)
 = 

Fz 1 i
lim
→ +

F F

F F

(z 8 8i )(z 1 i )

(z 8 8i )(z 8 i )

 + + + +
 

+ + + + 
 

 

=
Fz 1 i

lim
→ +

F

F

(z 1 i )

(z 8 i )

 + +
 

+ + 
 

 

= F F

F F

1 i 1 i

1 i 8 i

 + + +
 

+ + + 
 

 

= F

F

2 2i

2i

+
 

 

= F F

F

1 i i 8

i 8

+ +
= = 1 + 8iF. 

 

Thus limit of f(z) exists as z → 1 + iF in the MOD complex 

plane Cn(9).  

 

In all other MOD complex planes Cn(m); m a odd integer the 

limit of the function, f(z) exists as z → 1+ iF. 

 

For instance consider Cn(15) 

 

f(z) = 
2

2

z 2i

z 2z 2

−

− +
 where z → 1+ i 

 

z 1 i
lim
→ +

  
2

2

z 2i

z 2z 2

 −
 

− + 
= 1 – i 

in the complex plane C. 
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f(z) in the MOD complex plane Cn(15) is  

 

f(z) = 
2

F

2

z 13i

z 13z 2

+

+ +
 = 

P(z)

Q(z)
 as z → 1 + iF 

 

f(z) = 
0

0
 as 

 

Fz 1 i
lim
→ +

 
2

F F

2

F F

(1 i ) 13i

(1 i ) 13(1 i ) 2

 + +
 

+ + + + 
 

 

= F F

F F

1 2i 14 13i

1 2i 14 13 13i 2

+ + +

+ + + + +
 =

0

0
. 

 

Factorize P(z) and Q(z) 

 

P(z) = (z + 14 + 14iF) (z + 1 + iF) 

 

  =  z
2
 + 14z + 14iFz + z + 14 + 14iF + ziF + 14iF   

            + 14 × 14 

  =  z
2
 + 13iF. 

 

Thus P(z) can be factored. 

 

Consider 

 

Q(z)  = (z + 14 + 14iF) (z + 14 + iF) 

 

  = z
2
 + 14z + 14ziF + 14z + 196 + 196iF + ziF  

+ 14iF + 196  

  =  z
2
 + 13z + 2. 

 

Hence Q(z) can also be factored. 

 

Fz 1 i
lim
→ +

  
2

F

2

z 13i

z 13z 2

 +
 

+ + 
 =

Fz 1 i
lim
→ +

  F F

F F

(z 14i 14)(z i 1)

(z 14i 14)(z 14 i )

 + + + +
 

+ + + + 
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=
Fz 1 i

lim
→ +

  F

F

z i 1

z 14 i

 + +
 

+ + 
 

 

= F F F

F F F

1 i 1 i 2 2i

1 i 14 i 2i

+ + + +
=

+ + +
 

 

= F F

F F

2 2i i

2i i

+
×  

 

= F2i 2 14

2 14

+ ×

×
 

 

= F2i 13

13

+
 

 

= 
3

F

3

13 (2i 13)

13 13

+

×
 

 

= 2 × 13
3
iF + 1 

 

= 14iF + 1. 

 

Thus the limit exists for f(z) in case of the MOD complex 

plane Cn(15).   

 

However the limit of f(z) does not exist in the complex MOD 

plane Cn(24). 

 

So from this analysis it is easily said if f(x) is the complex 

MOD function in the MOD complex plane Cn(2m+1) then 

 

Fz i 1

limf (z)
→ +

= 1 + 2miF. 

If f(x) is in Cn(2m) the limit z → iF + 1 of f(z) does not 

exist. 
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However the function plays in a very different way for each 

of the MOD complex planes Cn(m). 

 

Further throughout this book any f(z) = f(x, y) as z = x + yiF 

so working with this function is realized as a matter of 

convenience. 

 

For instance if f(z) = z
3
 where z ∈ Cn([0, 3)) then does the 

differential of f(z) exist in the MOD complex plane Cn([0, 3))? 

 

If f(z) a continuous function?  

 

Such study is carried out in the following 

 

f(z) = f(x, y) = z
3
 

 

   = (x + yiF)
3
 

 

   = x
3
 + 2y

3
iF in Cn([0,3)) 

 

f(0) = f(0,0) = 0. 

 

f(1, 1) = f(z = 1 + iF)) = 1 + 2iF. 

 

f(0.5, 0.5) = f(z = 0.5 + 0.5iF) = 0.125 + 0.25iF. 

 

f(2, 0) = 2 (mod 3). 

 

Several results in this direction can be done. 



 
 
 
 
 
Chapter Four 
 
 

 
 
TRIGONOMETRIC, LOGARITHMIC AND 
EXPONENTIAL MOD FUNCTIONS 
 
 
 

 

In this chapter for the first time the notion of MOD trigonometric 

functions, MOD exponential functions and MOD logarithmic 

functions are introduced and defined. 

 

 Clearly in a MOD plane Rn(m) if P(x1, y1) and Q(x2, y2) are 

two points then PQ
2
 = (x1 – x2)

2
 + (y1 – y2)

2
 is defined; as the 

MOD distance and the maximum bound for the distance between 

two points in the MOD plane Rn(m) is less than or equal to 

2m 2 . 

 

 Such is the distance and certainly distance between two 

points exist while measuring distance in reals as only positive 

value is taken so also in case of distance in MOD planes Rn(m) 

the distance can be m when m occurs and we do not mark it as 

zero however the distance is naturally bound by ≤ 2m 2 .  

However PQ
����

 and QP
����

 are different.   

 

We can thus define this as MOD distance. 
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 We will first illustrate it by some examples. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

 
Figure 4.1 

 

Let P = (3, 0) and Q = (0, 3) ∈ Rn(4).  

 

To find  

( )
2

PQ
����

  = (3 – 0)
2
 + (0 – 3)

2
 

     = 9 + 1 = 2. 

 

   ( )
2

QP
����

  = (0 – 3) + (3 – 0) = 2. 

 

 Here PQ
����

 and QP
����

; but in general this equality may not be 

true in case of MOD distance as well as modulo distance. 

 

 For take A = (3.2, 1.5) and B = (2.8, 2.5) ∈ Rn(4); 
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  ( )
2

AB
����

  =  (3.2 – 2.8)
2
 + (1.5 – 2.5)

2
 

    = (3.2 + 1.2)
2
 + (1.5 + 1.5)

2
 

    =  0.16 + 1 

    =  1.16    …  I 

 

( )
2

BA
����

  =  (2.8 – 3.2)
2
 + (2.5 – 1.5)

2
 

=  (2.8 + 1.8)
2
 + (2.5 + 2.5)

2
 

    =  0.36 + 1 

    =  1.36     …  II 

 

Clearly I and II are different.  So for MOD distance as well as the 

modulo distance one has to keep in mind the direction in which 

measurement is to be taken. 

 

 Further in case of MOD distance ( )
2

nPQ
�����

 is never zero.  The 

maximum value it can take is 2m 2  where P, Q ∈ Rn(m) and 

the MOD distance ( )
2

nPQ
�����

 and ( )
2

nQP
�����

 is never zero.   

 

However modulo distance is zero. 

 

 Thus by defining the MOD distance we have solved the 

conjecture proposed in [24]. 

 

DEFINITION 4.1: Let Rn(m) be the real MOD plane. Let P, Q ∈ 

Rn(m); ( )
2�����

n
PQ  and ( )

2

n
QP
�����

 is defined as the MOD distance and 

is bounded by the maximum value 2m 2 . 

 

 Note m ≠ 0.  In case of modulo distance in the MOD plane  

m = 0 so 2m 2  = 0 (mod m). 

 

 Further it is important to observe ( )
2

nPQ
�����

 ≠ ( )
2

nQP
�����

 in 

general so always in case of both MOD distance as well as 

modulo distance the length depends on the direction. 
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 We will give some more examples of them. 

 

Example 4.1:  Let Rn(5) be the MOD plane on the interval [0, 5). 

 Let P (0.5, 3.2) and Q (3.5,m 2) ∈ Rn(5). 

 

  ( )
2

nPQ
�����

=  (0.5, 3.5)
2
 + (3.2 – 2)

2
 

 

=  22 + (6.2)
2
  

 

=  4 + 38.44 = 42.44. 

 

The MOD distance is ( )
2

nPQ
�����

 = 42.44 . 

 

nPQ
�����

 = 6.5145 < 14.14. 

 

 The modulo distance is 

 

 ( )
2

PQ
����

  =  (0.5 – 3.5)
2
 + (3.2 – 2)

2
 

 

   =  (0.5 + 1.5)
2
 + (3.2 + 3) 

 

   =  22 + (1.2)
2
 

 

   =  4 + 1.44 = 0.44 

 

  PQ =  0.663. 

 

Thus the modulo distance is not the same as MOD distance. 

Further  

( )
2

nQP
�����

  =  (3.5 – 0.5)
2
 + (2 – 3.2)

2
 

  

   =  (3.5 + 4.5)
2
 + (2 + 1.8)

2
 

 

   =  64 + 14.44 
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     =  78.44. 

 

nQP
�����

  =  78.44 (mod m) 

 

    =  8.8566 < 14.14. 

 

It is very important to note that we find the value of 

( )
2

nQP
�����

and find its root.  In no place modulo m is used while 

calculating the MOD distance, for MOD distance is always less 

than 2m 2 .  

 

While calculating the modulo distance, ( )
2

PQ
����

(mod m) is 

taken and its root is the modulo distance.  

 

Example 4.2:  let Rn(6) be the MOD plane. 

 

 Let P (3, 2.9) and Q(5, 0.3) ∈ Rn(6). 

 

 Let us find the MOD distance nPQ
�����

 and the modulo distance;  

 
2

nPQ
�����

  =  (3 – 5)
2
 + (2.9 – 0.3)

2
 

  

     =  (3 + 1)
2
 + (2.9 + 5.7)

2
 

   

     =  16 + 73.96 

 

     =  89.96. 

  

2

nPQ
�����

=  9.485. 

 
2

nPQ
�����

  =  (3 + 1)
2
 + (2.9 + 5.7)

2
 

 

     =  4
2
 + (2.6)

2
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    = 16 + 6.76   =  4.76. 

 

2

PQ
����

 = 2.1817. 

 

   Clearly 
2

PQ
����

 ≠ 
2

nPQ
�����

. 

 

   Now 
2

nQP
�����

  =  (5–3)
2
 + (0.3 – 2.9)

2
 

 

      =  8
2
 + 3.4

2
 

 

      =  64 + 11.56 = 75.56. 

 

nQP
�����

 =  8.6925. 

 

   Clearly nQP
�����

 ≠ nPQ
�����

. 

 

   Now 
2

QP
����

  =  (5–3)
2
 + (0.3 – 2.9)

2
 

  

      =  2
2
 + 3.4

2
 

 

      =  4 + 11.56 

 

      =  3.56. 

 

  
2

QP
����

  =  1.8868. 

 

 For modulo distance QP
����

 ≠ PQ
����

.   

 

Now we give one more example of MOD distance and 

modulo distance. 

 

Example 4.3:  Let Rn(10) be the MOD plane.   

 

Let P (8, 2) and Q (1, 9) ∈ Rn(10) 

 



Trigonometric , Logarithmic and … 135 

 

 

 

 

 

 

 

   
2

nPQ
�����

  =  (8–1)
2
 + (2 + 1)

2
 

  

     =  (8 + 9)
2
 + (2 + 1)

2
 

  

     =  172 + 9 

 

     =  289 + 9 = 298. 

 
2

nPQ
�����

  =  17.26. 

 

   
2

nQP
�����

 =  (1–8)
2
 + (9–2)

2
 

 

     =  (1 + 2)
2
 + (9 + 8)

2
 

 

     =  9 + 172 = 298. 

 
2

nPQ
�����

  =  17.26. 

 
2

nQP
�����

  =  (1–8)
2
 + (9–2)

2
 

 

    =  (1+2)
2
 + (9 + 8)

2
 

 

    =  9 + 172 = 298. 

 

( )nQP
�����

  =  17.26 < 28.2843. 

 

Now 
2

PQ
����

  =  (8–1)
2
 + (2–9)

2
 

  

     =  7
2
 + 3

2   
= 49 + 9 = 58 

 

2

PQ
����

 =  7.6158. 

 

   Here nPQ
�����

 = nQP
�����
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 Consider P = (8.3, 4.5) and Q = (7.5, 6.5) ∈ Rn(10) 

 

The MOD distance nPQ
�����

 and nQP
�����

 is as follows; 

  
2

nPQ
�����

  =  (8.3 – 7.5)
2
 + (4.5 – 6.5)

2
 

  

    =  (8.3 + 2.5)
2
 + (4.5 + 3.5)

2
 

 

    =  10.8
2
 + 8

2
 

 

    =  116.64 + 64 

 

    =  180.64. 

 
2

nPQ
�����

  =  13.44 = nPQ
�����

 

 
2

nQP
�����

  =  (7.5 – 8.3)
2
 + (6.5 – 4.5)

2
 

 

    =  (7.5 + 1.7)
2
 + (6.5 + 5.5)

2
 

 

    =  9.2
2
 + 12

2
 

 

    =  84.64 + 144 

 

    =  228.64 

 

    =  15.1208  = nQP
�����

. 

 
2

PQ
����

 =  (8.3 – 7.5)
2
 + (6.5 – 4.5)

2
 

 

    =  (9.2)
2
 – 2

2
 

 

    =  84.64 + 4 

 

    =  8.64 + 4 = 2.64. 
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QP
����

  =  1.62. 

 

 Both are different. 

 

This will pave way to find methods to define MOD 

trigonometric functions.   

 

The way MOD distance was defined according to the authors 

needed some change for nPQ
�����

 ≠ nQP
�����

 in general.   

 

We over come this possibility by the following methods. 

 

 While calculating the MOD distance in no place the modulo 

property was used so why should one use the modulo property 

in finding (x1 – x2)
2
 + (y1 – y2)

2
 so here also if the difference 

was taken and not taking –x2 = m – x2 in Rn(m) we could get 

nPQ
�����

 = nQP
�����

 so the direction need not exist.   

 

Thus by this technique which is a natural extension of the 

distance concept with no difficulty MOD distance by also means 

behave as the usual distance.  

 

 So from now on ward by MOD distance we mean only this 

and the MOD distance which exploits modulo property from now 

on wards will be know as the pseudo MOD distance.   

 

 Clearly in case of pseudo MOD distance nPQ
�����

 ≠ nQP
�����

but in 

MOD distance PQn = QPn. 

 

 We will first illustrate this situation by an example or two. 

 

Example 4.4:  Let Rn(9) be the real MOD plane.   

 

Let P = (7.5, 8) and Q = (0.5, 3) ∈ Rn(9).   
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 The MOD distance 

 

PQn = 2 2(7.5 0.5) (8 3)− + −  

 

     = 49 25+  

 

     = 74  = 8.6. 

 

The pseudo MOD distance  

 

nPQ
�����

 = 2 2(7.5 0.5) (8 3)− + −  

 

    = 2 2(7.5 8.5) (8 6)+ + +  

 

    = 2 216 14+  = 256 196+   

 

= 452  = 21.26 < 25.46. 

 

 Clearly the pseudo MOD distance is different from the MOD 

distance.   

 

Consider the modulo distance  

 

 

PQ
����

= 2 2(7.5 0.5) (8 3)− + −  

 

= 2 2(7.5 8.5) (8 6)+ + +  

 

    = 2 27 5+   = 49 25+  

 

    = 74  = 2 . 
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nQP
�����

 =  2 2(0.5 7.5) (3 8)− + −  

 

    =  2 22 4+  

  

    =  20  = 4.47.  

 

nQP
�����

 =  2 2(0.5 7.5) (3 8)− + −  

 

    =  2 27 5+  

 

    =  49 25+  

 

    =  74  = 8.6. 

 

 Thus PQn = QPn when the distance is the MOD distance.  It 

is easily verified for in case of pseudo MOD distance and 

modulo distance both the distances are not equal. 

 

 Now let P (5, –3) and Q = (7, 8) ∈ R × R.  The distance  

 

PQ  =  2 2(5 7) ( 3 8)− + − −  

 

    =  2 22 11+  

 

    =  125  = 11.1803. 

 

 Consider P, Q in the MOD plane Rn(8).  P(5, –3) is 

transformed to P1(5, 5) in the MOD plane Rn(8); Q(7, 8) is 

transformed to (7, 0) in the MOD plane Rn(8)  

 

 The MOD distance is 2 2(5 7) 5− +  
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   =  22 25+   

=  29   

=   5.385. 

  

 

So for any value of P, Q in R × R one can find the Pn, Qn in 

any of the MOD planes Rn(m) by executing the MOD real 

transformation [24].  

 

 We can also find the MOD distance of Pn and Qn in Rn(m).  

Now having defined MOD distance we can define the 

trigonometric functions. 

 

 In the real plane for Q any real number.  Construct the angle 

whose measure in θ radians, with vertex at the origin of a 

rectangular coordinate system P(x, y) by any point on the side P 

of the angle θ. 

 

 The possible position in the real plane R as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.2 

 

x 

P 
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Figure 4.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 
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Figure 4.5 
 

 

Let OA = r. 
 

(i) 
y

r
 is called the sine of θ and is written as sinθ. 

 

(ii) 
x

r
 is called the cosine of θ and is written as cosθ. 

 

(iii) 
y

x
 is called the tangent of θ and is written as tanθ provided 

θ is not an odd multiple of π/2. 

 

(iv) 
x

y
 is called the cos tangent of θ and is written as cotθ 

provided θ is not an even multiple of π/2. 

 

(v) 
r

x
 is called the secant of θ and is written as secθ provided θ 

is not an odd multiple of π/2. 

x 

P 

C D 

B(x′1,y′) 

A(x, y) 

θ 

y 
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(vi) 
r

x
 is called the cosecant of θ and is written as cosecθ 

provided θ is not an odd multiple of π/2. 

 

 The functions sinθ, cosθ, secθ,  cosecθ, cotθ and tanθ are 

called trigonometric function.  It is important to note that these 

trigonometric functions are well defined and their values 

depends only on the value of θ and not on the position of point 

P on the terminal side.   

 

The MOD trigonometric functions are defined on the MOD 

plane which has only first quadrant.  However with the notion 

of MOD distance certainly all the six trigonometric MOD 

functions are well defined.  The MOD representation of the 

trigonometric functions in the MOD real plane Rn(m), 2 ≤ m < ∞ 

is as follows: 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 
 

Yn 

Xn θ 

P 

0 

B(
n nx , y′ ′ ) 

1 m-1 m 

1

m -1

m

A(xn, yn) 

�
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Here OA = rn 

 

 

n

n

y

r
  is called the MOD sine of θ written as nsinθ. 

 

n

n

x

r
  is called the MOD sine of θ written as ncosθ. 

 

n

n

y

x
  is called the MOD tangent of θ written as ntanθ. 

 

n

n

x

y
  is called the MOD cotangent of θ written as ncotθ. 

 

n

n

y

x
  is called the MOD secant of θ written as nsecθ. 

 

and n

n

r

y
  is called the MOD cosecant of θ written as ncosecθ. 

 

 

B be any other point on OA then n n

n n

y y

r r

′
=

′
. 

 

 

 If OP along Xn axis then n

n n

y 0

r r
=   = 0 for even A (xn, yn) on 

OP where OA = rn. 

 

 If OP along Yn  axis then n n

n n

y r

r r
=  = 1 for every A(xn, yn) 

where OA = rn. 
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 The ratio n

n

y

r
 is only dependent on the value of θ and not on 

the position of A. 

 

 The definition of nsinθ is well defined. 

 

 All the basis trigonometric identities are true as we use only 

MOD distance in case of MOD trigonometric functions also.   

 

 Here the concept of signs of MOD trigonometric functions 

has no meaning unlike usual trigonometric function.  

 

 We have one MOD plane for a given integer m that is also 

restricted to the first quadrant. 

 

 Now the domain and range of the MOD trigonometric 

functions are  

 

 for OA = rn,  

 

nsinθ = n

n

y

r
,  0 ≤ yn ≤ rn and 0 ≤ sinθ ≤ 1. 

 

 Domain of nsinθ =  0 ≤ y ≤ 2 2 m  

 

Range of nsinθ is [0, 1].   

  

For ncosθ domain is 0 ≤ y ≤ 2 2 m  and  

 

range of ncosθ is [0, 1].  

 

For ntanθ range is [0, m). 

 

 Domain of ntanθ is [0, m) – (2p+1) π/2; p ∈ Z 

 

 Domain of ncot is [0, m) – (nπ / n ∈ Z).  
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Range of ncotθ is [0, m). 

 

 Domain of nsecθ is [0, m) – (2n + 1) π/2, n ∈ Z. 

 

 Range of nsecθ is [0, m) \ (0, 1). 

 

 Domain  of ncosecθ [0, m) – nπ; n ∈ Z. 

 

 Range of ncosecθ [0, m) – (0, 1). 

 

 Almost all other properties can be derived for MOD 

trigonometric functions with appropriate modifications.  

 

 The value of MOD ratios for θ  = 0, π/6, π/4, π/3 and π/2. 

 

 θ = 0° π/6 = 

30° 

π/4 = 

45° 

π/3 = 

60° 

π/2 = 

90° 

nsinθ 0 1/2 1 2  3 2  1 

ncosθ 1 3 2  1 2  1/2 0 

ntanθ 0 1 3  1 3  ∞ = m 

ncotθ ∞ = m 3  1 1 3  0 

nsecθ 1 2 3  2  2 ∞ = m 

ncosecθ ∞ = m 2 2  2 3  1 

 

 

MOD trigonometric functions are defined only in the first 

quadrant as MOD planes Rn(m) have only one quadrant.   

 

Further as it is a semiopen square ∞ is m. 

 

 Further we try to obtain the graph of trigonometric function 

in the MOD planes Rn(15).  
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Figure 4.7: yn = nsinx 
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Figure 4.8: yn = ncosx 
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Figure 4.9: yn = ntanx 
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Figure 4.10: yn = ncotx 
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Figure 4.11: yn = ncosec x 
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Figure 4.12: y = nsecx 
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However the relation between angles and derivation of the 

identities can be done with simple appropriate modifications.   

 

On similar lines MOD inverse trigonometric functions are 

defined and related results can be obtained as a matter of 

routine.  

 

 Of course nsin
2
θ + 2 cos

2
θ = 1 is true even in case of MOD 

functions. 

 

However for all practicalities n trigonometric functions are 

defined only for [0, π/2] however for higher values it repeats 

appropriately.   

 

Keeping only this in mind the graphs of the MOD 

trigonometric functions where drawn.   

 

For in the MOD plane negative values have no meaning for 

all the three other quadrants are mapped by the MOD 

transformation function into the MOD plane which occupies the 

first quadrant and is bounded by the product of the intervals  

[0, m) × [0, m).  So n sin (–θ) = n sin θ.  The main demand is  

0 ≤ θ ≤ π/2.   

 

 Only based on the MOD transformation one is forced to 

work with 0 ≤ θ ≤ π/2 for all other values are by MOD 

transformations mapped appropriately.  

 

 However a few examples of them will be provided.   

 

Having defined the MOD distance clearly the following table 

is given for guidance and working in case of inverse MOD 

trigonometric functions. 
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MOD 

trigonometric 

inverse function 

Domain Range 

nsine [0,m) [0,1] 

ncosine [0,m) [0,1] 

ntangent [0,m) –  

{(2n+1)π/2,n ∈Zm} 

[0,m) 

ncotangent [0,m) = {nπ, n ∈ Zm} [0,m) 

nsecant [0,m)={(2n+1)π/2,n ∈ Zm} [0,m) – (0,1) 

ncosecant [0,m) – {nπ, n ∈ Zm} [0,m) – (0,1) 

 

The MOD graph of the MOD inverse trigonometric function 

inverse MOD sine function.  

 

yn = nsinx.  Domain = [0,n) 

 Range = [0,1], yn = nsin
-1

x. In the following figures the MOD 

plane is taken as Rn(6).  
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Figure 4.13: yn = nsin

-1
x 
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Figure 4.14: yn = ncos

-1
x 
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Figure 4.15: yn = ntan

–1
 x 
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Similarly other MOD trigonometric function graphs are 

obtained in the MOD plane. 

 Now having seen how MOD trigonometric functions are 

defined we make the following observations. 

 

 In the first place in a MOD plane we have only one quadrant.  

Of course all quadrants of the real plane using the MOD 

transformation can be mapped onto the MOD plane. 

 

 Secondly several types of distance are defined between 

elements in a MOD plane. Only MOD distance acts like the usual 

distance.  MOD distance alone can help in the defining of the 

MOD trigonometric functions as other distance pseudo MOD 

distance cannot be used for in general; nPQ
�����

≠ nQP
�����

.  

 

The very question of defining modulo distance in a MOD 

plane is ruled out as the distance between two distinct points in 

a MOD plane can be zero.   

 

Thus this study is innovative and the MOD trigonometric 

functions can take only positive values.  Further depending on 

the MOD plane over which the MOD trigonometric function is 

defined the graph also changes.  

 

 Several open conjectures are suggested. 

 

(1) Enumerate all those trigonometric identities which are 

true in case of MOD trigonometric functions.  

 

(2) Enumerate all those trigonometric identities which are 

not true in case of MOD trigonometric functions.  

 

(3) Study of conjectures (1) and (2) in case of MOD 

trigonometric inverse functions. 

 

It is important to note if ncos
2
θ + nsin

2
θ = 1 in the MOD 

planes Rn(m), then ncos
2
θ = 1 + (m–1) nsin

2
θ and nsin

2
θ = 1 + 

(m–1) ncos
2
θ. 
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Keeping this in mind while working with representation in 

the MOD complex plane Cn(m). 

We see z = x + yiF = n cosθ + iF nsinθ, however working 

with them should be carefully and appropriately done using the 

above identities.  Further 2

Fi  = (m–1). 

 

Thus using these notions properties can be derived.   

 

Next the notion of MOD exponential functions is defined as 

follows: 

 

DEFINITION 4.2:  Let Rn(m) (m ≥ 3) be the MOD plane. ne
x
 

denotes the MOD exponential function where x ∈ [0, t).  Clearly 

the notion of e
–x

 has no meaning for ne
–x

 = ne
(m–1)

x. 

 

 Thus the MOD graph of the MOD exponential function ne
x 

in 

the MOD plane Rn(m) is as follows: 

 

 Let us consider the MOD exponential function ne
x
 in the 

MOD exponential plane Rn(7).   

 

The graph of this ne
x
 is given in Figure 4.16.  

 

 In the first plane we have to determine that t.   

Always if m = 7, t < m, clearly t < 2 for when x = 2, e
2
 = 7.389.   

 

Thus for ne
x
, x ∈ [0, 2] then we have the smallest plane in 

which this MOD exponential plane can be accommodated.  
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Figure 4.16 
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Figure 4.17 
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 So for the MOD exponential function e

x
; x = 2 we have the 

smallest MOD plane to be Rn(8) and the all MOD planes in which 

x = 2 and 0 ≤ x < 3 accommodated is Rn(20). 

 

 So ne
x
; 0 ≤ x ≤ 3 can fit in the MOD plane Rn(21).  The MOD 

exponential graph of the function ne
x
; 0 ≤ x ≤ 3 is as follows.  
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Figure 4.18 

 

So the smallest MOD plane which can accommodate the 

MOD exponential function ne
x
; 0 ≤ x ≤ 3 in Rn(21).  

 

All MOD planes Rn(m), 3 ≤ m ≤ 54 can accommodate only 

MOD exponential function ne
x
; 0 ≤ x ≤ 3 where x = 4 that is for 

MOD exponential functions ne
x
; 0 ≤ x ≤ 4 the smallest MOD 

plane which can accommodate is Rn(55). 

 

 All MOD planes Rn(m) 3 ≤ m ≤ 148 can accommodate only 

MOD exponential functions ne
x
; 0 ≤ x ≤ 4.   
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 It is pertinent to keep on record that for a very small or 

considerably small x of the MOD exponential function ne
x
 one 

needs a very large MOD plane for it to be defined. 

 

 For instance for x = 9, that is 0 ≤ x ≤ 9 of the MOD 

exponential function ne
x
; one needs the smallest MOD plane to 

be Rn(8104).   

 

 For 0 ≤ x ≤ 8 of the MOD exponential function ne
x
 one needs 

the smallest MOD plane to be Rn(2981).  

 

 One can see for a very small variation of 1 in the value of x 

nearly there is an increase of 5000 in m in the MOD plane Rn(m).   

 

 For x = 10 the smallest MOD plane in which ne
x
 is defined is 

Rn(22027).   

 

So for the change of 1 from 9 to 10 of x in ne
x
 the change in 

m is 22027 – 8104 = 13,923.  

 

 Thus the way ne
x
 grows or to be more precise e

x
 grows is 

seen from the study of finding the smallest MOD planes. 

 

 Having seen the definition of MOD exponential function 

now we proceed onto define the notion of MOD hyperbolic 

function.   

 

The MOD hyperbolic trigonometric function in the MOD 

plane Rn(m); 3 ≤ m < ∞ is in  

 

sinhx = 
x (m 1)xe (m 1)e

2

−+ −
 

 

ncoshx = 
x (m 1)xe e

2

−+
 

 

ntanhx = 
x (m 1)x

x (m 1)x

e (m 1)e

e e

−

−

+ −

+
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ncothx = 
x (m 1)x

x (m 1)x

e e

e (m 1)e

−

−

+

+ −
 

 

nsechx = 
x (m 1)x

2

e e −+
 

and  

ncosechx = 
x (m 1)x

2

e (m 1)e −+ −
. 

 

 It is important at this juncture to keep on record it is not an 

easy task to trance these MOD hyperbolic trigonometric 

functions.   

 

In fact research in this direction left open.  

 

 Next here we just introduce the notion of MOD logarithmic 

functions. 

 

 Since for every x ∈ R\{0} log x is defined.  Here we define 

mainly for the base 10 the MOD logarithmic function.   

 

In the first place if Rn(m) is the MOD plane and R a real 

plane we have a MOD transformation from R to Rn(m).   

 

Now the graph of usual log10 base function has the 

following graph in reals is given in Figure 4.19.   

 

However in the MOD plane Rn(60) the MOD log10x denoted 

by nlogx is given in Figure 4.20. 
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Figure 4.19 
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Figure 4.20 
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So the MOD logarithmic graph is not an infinite curve 

depending on m of the Rn(m) it will be long or short however 

certainly there is no change in the curve so the first quadrant of 

real plane can be sliced depending on m and the same curve will 

serve the purpose as t ∈ [0, m) for any MOD real plane Rn(m).  

 

 Authors leave open the problems related with MOD 

logarithmic functions.  Here only study or definition is made 

with respect to base 10.   

 

However it is not difficult to obtain new logarithmic 

functions for any suitable base.   

 

This work is left as an exercise to the reader.  

 



 
 
 
 

 
Chapter Five 
 

 
 
NEUTROSOPHIC MOD FUNCTIONS  
AND OTHER MOD FUNCTIONS 
 
 

In this chapter we define neutrosophic MOD functions (or 

small neutrosophic functions) using neutrosophic MOD planes, 

neutrosophic MOD complex modulo integer functions, MOD dual 

number functions, MOD special dual like number functions and 

MOD quasi dual like number functions using the MOD 

neutrosophic complex modulo integer plane I

nC (m) , MOD dual 

number plane Rn(m)(g) with g
2
 = 0, MOD special dual like 

number plane Rn(m)h, h
2
 = h and MOD special quasi dual 

number plane Rn(m)k; k
2
 = (m – 1) k respectively.   

 

These situations will be described by examples as the 

definitions can be easily done analogous to functions in chapter 

II and III. 

 

Example 5.1:  Let I

nR (9)  = {a + bI | a, b ∈ [0, 9); I
2
 = I} be the 

MOD neutrosophic plane.   

 

Let  

I

nR (9)[x]  = i

i

i 0

a x
∞

=




∑  ai ∈ I

nR (9) } 
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 be the MOD neutrosophic polynomial.  Every polynomial p(x) ∈ 
I

nR (9)[x]  is a MOD neutrosophic function or small neutrosophic 

function. 

 p(x) = 3.5Ix
3
 + (4 + 2.5I)x + (7 + 3I) is a MOD neutrosophic 

polynomial function.  

p(x) can be differentiated as well as integrated.   

 

Some polynomial functions may not be integrable or 

derivable. 

 

  
dp(x)

dx
  =   3 (3.5)Ix

2
 + (4 + 2.5I) 

    =   1.5Ix
2
 + (4 + 2.5I). 

 
2

2

d p(x)

dx
= 3Ix + 0 

 
3

3

d p(x)

dx
 = 3I. 

 

 Thus as in case of usual polynomials over reals this MOD 

neutrosophic polynomial has all the derivatives. 

 

Example 5.2:  Let I

nR (6)[x]  be the set of all MOD neutrosophic 

polynomials. Every p(x) ∈ I

nR (6)[x]  is a MOD polynomial 

neutrosophic functions.  

 

 Let  

p(x) = 3x
4
 + (4 + 2I)x

3
 + (2.3 + 0.75I) ∈ I

nR (6) . 

 

p′(x) = 
dp(x)

dx
 = 0 (mod 6). 

 

 So natural form of differentiation is true for this function.  

 

 Another importance about these functions is the roots of the 

MOD neutrosophic polynomials. 
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Consider  

p(x) = (x + 2 + 4I) × (x + 3.5I) × (x + 0.8) ∈ I

nR (6)[x] . 

 

Clearly if x = 4 + 2I then p(4 + 2I) = 0.    

If x = 2.5I  then also consider p(2.5I) = 0. 

 If x = 5.2 then p(x) = p(5.2) = 0. 

 

Now consider 

 

 (x + 2 + 4I) (x + 3.5I) (x + 0.8) 

 

 =  [x
2
 + (2 + 4I)x + 3.5Ix + (2 + 4I) (3.5I)] (x + 0.8) 

 

 =  (x
2
 + (2 + 1.5I)x + 3I) (x + 0.8) 

 

 =  x
3 
+ (2 + 1.5I)x

2
 + 3Ix + 0.8x

2
 + (1.6 + 1.2I)x + 2.4I 

 

 =  x
3
 + (2.8 + 1.5I)x

2
 + (1.6 + 4.2I)x + 2.4I = q(x). 

 

q(4 + 2I)  

=  (4 + 2I)
3
 + (2.8 + 1.5I) (4 + 2I)

2
 + (1.6 + 4.2I) + 2.4I 

 

=  (16 + 4I + 16I) (4 + 2I) + (2.8 + 1.5I) (2I + 4) +  

     (6.4 + 4.8I + 3.2I + 2.4I) + 2.4I 

 

=  4 + 2I + (5.2 + 3I + 5.6I) + 0.4 + 0.8I 

=  3.6 + 5.4I  

≠  0. 

 

In the first place   

p(x) ≠ q(x). 

 

When the polynomial is expanded 4 + 2I fails to be a root of 

q(x). 

 

Now  

q(2.5I) =  (2.5I)
3
 + (2.8 + 1.5I) 2.5I + (1.6 + 4.2I) (2.5I) + 2.4I 

 

 =  0.625I + I + 3.75I + 4.00I + 10.50I + 2.4I ≠ 0. 
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 So 2.5I is not a root of q(x). 

Finally consider  

 

q(5.2)  = (5.2)
3
 + (2.8 + 1.5I) (5.2)

2
 +  (1.6 + 4.2I) 5.2 + 2.4I 

 

 =  2.608 + 2.512 + 4.56I + 2.32 + 3.84I + 2.4I ≠ 0. 

 

Hence 5.2 is also not a root of q(x). 

 

Thus we see all the 3 roots of p(x) are not roots of q(x) 

though q(x) is got only by multiplying the three linear 

polynomials. 

 

Thus it remains as a open conjecture finding the roots of the 

MOD neutrosophic functions.   

 

The problem is doubled as the MOD neutrosophic 

polynomials is only a pseudo ring. 

 

Example 5.3:  Let I

nR (5)[x]  be the MOD neutrosophic 

polynomial pseudo ring. 

 

  p(x)  =  (x + 2I + 3) (x + 4I) ∈ I

nR (5)[x] . 

 

  p(x)  =  (x + 2I + 3) (x + 4I) 

 

  so the roots of p(x) are 3I + 2 and I. 

 

p(3I + 2) = 0 and p(I) = 0. 

 

  Let  

q(x)  =  (x + 2I + 3) (x + 4I)  

 

     =  x
2
 + 2Ix + 3x + 4Ix + 8I + 12I  

  

     =  x
2
 + (I + 3)x. 

 

q(I) = I
2
 + I + 3I = 0. 
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  So I is a root of q(x).  

 

q(3I + 2)  =  (3I + 2)
2
 + (I + 3) (3I + 2) 

 

   =  9I + 6I + 6I + 4 + 3I + 9I + 2I + 6 

 

   =  0. 

 

 So 3I + 2 is also a root and p(x) = q(x). 

 

 The main reason for this is p(x) ∈ 〈Z5 ∪ I 〉[x] so is 

neutrosophic ring. 

 

 Consider p(x) = (x + 0.3 + 0.7I) (x + 0.8) × (x + 0.3I + 2).  

 

 Clearly x = 4.7 + 4.3I, x = 5.2 and x = 3 + 4.7I are roots of 

p(x). 

 

 For p(4.7 + 4.3I) = 0, 

 

 p(5.2) = 0 and p(3 + 4.7I) = 0 

 

But  

(x + 0.3 + 0.7I) (x + 0.8) (x + 2 + 0.3I) 

 

 =  (x
2
 + 0.3x + 0.7Ix +0.8x + 0.24 + 0.56I) (x + 2 + 0.3I) 

 

= x
3
 + 0.3x

2
 + 0.7Ix

2
 + 0.8x

2
 + 0.24x + 0.56I + 2x

2
 + 0.6x 

+ 1.4Ix + 1.6x + 0.48 + 1.12I + 0.3Ix
2
 + 0.09Ix + 0.21Ix 

+ 0.24Ix + 0.072I + 0.168I 

 

= x
3
 + (0.3 + 0.7I + 0.8 + 2 + 0.3I)x

2
 + (0.24 + 0.6 + 1.4I 

+ 1.6 + 0.09I + 0.21I + 0.24I)x + 0.56I + 0.48 + 1.12I + 

0.168I + 0.072I 

 

=  x
3
 + (3.1 + I)x

2
 + (1.9 + 1.94I)x + (0.48 + 1.92I) = q(x). 

 

q(4.7 + 4.3I)  =  (4.7 + 4.3I)
3
 + (3.1 + I) (4.7 + 4.3I)

2
 +  

     (1.9 + 1.94I) (4.7 + 4.3I) + (0.48 + 1.92I) 
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=  (2.09 + 3.49I +0.42I) (4.7 + 4.3I) + (2.09 + 3.49I + 

0.42I)  (I + 3.1) + (3.93 + 4.118I + 3.17I + 3.342I) + 

0.48 + 1.92I 

 

=  (4.823 + 3.987I + 3.377I + 1.813I) + (2.09I + 3.91I + 

1.479 + 2.121I) + 4.41 + 2.550I 

 

 =  0.742 + 4.848I ≠ 0. 

 

So 4.7 + 4.3I is not a root of q(x). 

 

q(5.2)  =  (5.2)
3
 + (3.1 + I) (5.2)

2
 + (1.9 + 1.94I) (5.2) +  

(0.48 + 1.92I) 

 

 =  0.608 + 2.04I + 1.324 + 4.88 + 0.88I + 0.48 + 1.92I 

 

 =  2.292 + 4.84I ≠ 0. 

 

So x = 5.2 is not a root of q(x). 

 

q(3 + 4.7I)  = (3 + 4.7I)
3
 + (3.1 + I) (3 + 4.7I)

2
 + 

    (1.9 + 1.94I) (3 + 4.7I) + (0.48 + 1.92I) 

 

=  2 + (4.7I)
3
 + 2 × 4.7I + 4 × (4.7I)

2
 + 3.1 × 4 + 4I + 3.1 × 

(4.7)
2
I + (4.7)

2
I + 4.7I + 3.1 × 4.7I + 0.7 + 0.82I + 1.9 × 

4.7I + 1.94 × 4.7I + 0.48 + 1.92I 

 

=  (2 + 2.4 + 0.7 + 0.48) + (4.7I + 3.823I + 4.4I + 3.36I + 

4I + 3.479I + 2.09I + 4.57I + 0.82I + 3.93I + 4.118I + 

1.92I) 

 

 =  0.58 + 1.21I ≠ 0. 

 

 Thus 3 + 4.7I is also not a root of q(x).   

 

None of the roots of p(x) is a root of q(x) as the distributive 

law is not true in I

nR (5)[x] . 
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Thus solving for roots happens to be a very difficult task in 

this case. 

 

 So in case of MOD neutrosophic functions the problem of 

solving equations is as difficult as that of solving MOD real 

functions.  

 

 Next we  proceed on to work with functions on MOD 

complex neutrosophic modulo integers; I

nC (m)[x] . 

 

 I

nC (m)  = {a0 + a1I + a2iF + a3iFI | a0, a1, a2, a3 ∈ [0, m)} 

( 2

Fi = m–1, I
2
 = I).  

 

I

nC (m)[x] = i

i

i 0

x
∞

=


α


∑  αi ∈ I

nC (m) } 

is the MOD neutrosophic complex modulo integer pseudo 

polynomial ring [24]. 

 

Example 5.4:  Let x
2
 + 3iF + 4.3I ∈ I

nC (10)[x] .  Solve for x. 

 

 x
2
 = 7iF + 5.7I,   x = F7i 5.7I+ .   

 

Finding roots of these values happen to be a open 

conjecture.   

 

However as I
2
 = I one can say I  = I. 

 

 Apart from this finding root of F7i 5.7I+  remains a 

challenging problem. 

 

 Let p(x) = (3 + 0.7iF + 5iFI)x
3
 + (7.2I + 4iF + 2)x +  

4 + 5IiF + 8.9iF + 4I be a function in I

nC (10)[x] . 

 

  
dp(x)

dx
 = (3 (3 + 0.7iF + 5iFI)x

2
 + (7.2 + 4iF + 2)  
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2

2

d p(x)

dx
 = 2 (9 + 2.1iF + 5iFI)x + 0 

 

= (8 + 4.2iF)x. 

 
3

3

d p(x)

dx
 = 8 + 4.2iF. 

 

Now for the integral 

 

∫p(x) dx = 
4

F F(3 0.7i 5i I)x

4

+ +
 + 

2

F(7.2I 4i 2)x

2

+ +
+  

(4 + 5IiF + 8.9iF + 4I) x + C 

 

However the first two terms are not defined as 4 and 2 are 

zero divisors in I

nC (10).   So one cannot say given a function in 
I

nC (10)[x]  its integral will exist.   

 

It may exist or at times may not be defined.  

 

Example 5.5:  Let  

p(x) = x
7
 + 0.3x

2
 + 1.4Ix + (2.5 + 0.7iF) ∈ I

nC (7)[x]  

be a MOD polynomial function in I

nC (7)[x] . 

 

 Finding roots of p(x) is a challenging problem. 

 

dp(x)

dx
 = 0.6x + 1.4I. 

 

So a seventh degree MOD polynomial in I

nC (7)[x] has its first 

derivative to be a polynomial in x. 

 

 Thus the usual laws of derivatives are not in general true for 

the MOD polynomials.  
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   Let p(x) = 3.5Ix
2
 + (1.7I + 2.3iF) ∈ I

nC (7)[x] . 

 

   The derivative 
dp(x)

dx
= 0.   

 

So its derivative is zero however p(x) is not a constant MOD 

polynomial. 

 

 Now ∫ p(x) dx  = 
33.5Ix

3
 + (1.7I + 2.3iF)x + C 

 

     = 3.5Ix
3
 + (1.7I + 2.3iF)x + C. 

 

 Thus the integral of this MOD polynomial function is well 

defined and the integral exist.  

 

 Let a(x) = (3.5 + 4.2iF + 3I + 2.1iFI)x
6
 ∈ I

nC (7)[x] . 

 

 Clearly ∫a(x) dx = 
7

F F(3.5 4.2i 3I 2.1Ii )x

7

+ + +
 + C. 

 

 Thus the integral is not defined as 
1

7
 is undefined in 

I

nC (7)[x] . 

 

 However 
da(x)

dx
 = 6(3.5 + 4.2iF + 3I + 2.1iFI)x

5
  

 

 = (4.2iF + 4I + 5.6IiF)x
5
 exist and is well defined.  

 
2

2

d a(x)

dx
 = 5(4.2iF + 4I + 5.6iFI)x

4
  

 

    = 6I x
4
. 
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3

3

d a(x)

dx
  =  6I × 4x

3
  

 

      =  3x
3
. 

 
4

4

d a(x)

dx
  =  2x

2
 

 
5

5

d a(x)

dx
  =  4x 

 

and 
6

5

d a(x)

dx
  =  4 a constant. 

 

 However we started with a coefficient from I

nC (7)  and it 

has all the 4 terms real complex modulo factor iF, neutrosophic 

factor I and the combination of both. 

 

 However the 6
th
 derivative gave only a constant which is a 

real integer 4. 

 

Example 5.6:  Let s(x) = 3iFx
4
 + (4 + 0.5I + 2iF)x

3
 +  

(4.2 + 3iFI)x + (2.3 + 4.8iF + 0.3iFI + 5.12I) ∈ I

nC (6)[x]  be a 

MOD polynomial function with neutrosophic modulo complex 

number coefficients. 

 

  

ds(x)

dx
  = 4 × 3iFx

3
 + 3 (4 + 0.5I + 2iF)x

2
 + (4.2 + 3iFI) 

 

    = (1.5I)x
2
 + (4.2 + 3iF) I.  

 
2

2

d s(x)

dx
 = 3Ix + 0 
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3

3

d s(x)

dx
 = 3I and 

4

4

d s(x)

dx
 = 0. 

 

 However this MOD function is a forth degree polynomial so 

the forth derivative must be a constant under natural or usual 

condition. 

 Now  

∫s(x) dx = 
5 4 2

F F F3i x (4 0.5I 2i )x (4.2 3i )x

5 4 2

+ + +
+ +  

  + (2.3 + 4.8iF + 0.3iFI + 5.12I)x + C. 

 

 But ∫s(x) dx is not defined as 
1

4
 and 

1

2
 are not defined in 

I

nC (6)[x] . 

 

 Thus the integral does not exist. 

 

 So MOD polynomial neutrosophic complex modulo integer 

functions behave in a very different way from the usual 

polynomial functions.  

 

It is left as an open conjecture to solve equations in the MOD 

complex neutrosophic functions.  

 

The problem occurs mainly because the collection 
I

nC (m)[x]  is only a pseudo polynomial ring. 

 

So (x + a0 + a1I + a2iF + a3IiF) × (x + b0 + b1I + b2iF + b3IiF) × 

(x + c0 + c1I + c2iF + c3IiF) ≠ x
3
 + (α1 + α2 +  α3)x

2
 + … +  

α1 α2 α3; 

where  

α1 = a0 + a1I + a2iF + a3IiF 

α2 = b0 + b1I + b2iF + b3IiF 

and        α3 = c0 + c1I + c2iF + c3IiF. 

 

 Let p(x) = (x + 0.3 + 4iF + 5.1iFI) × (x + 7 + 0.8I + 4.2iF) ∈ 
I

nC (8)[x] . 
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 p(x) =  x

2
 + [(0.3 + 4iF + 5.1iFI) + (7 + 0.8I + 4.2iF)] +  

(0.3 + 4iF + 5.1iFI) (7 + 0.8I + 4.2iF) 

 

  =  x
2
 + (7.3 + 0.2iF + 0.8I + 5.1iFI)x + (2.1 + 4iF +  

   3.7iFI + 0.24I + 0.32IiF + 4.08iFI + 5.94I + 4.6iF  

+ 5.6) 

 

  =  x
2
 + (7.3 + 0.2iF + 0.8I + 5.1iFI)x + (7.7 + 0.6iF +  

6.18I + 0.10iFI) 

 

  =  q(x). 

 

The roots of p(x) are  

x = 7.7 + 4iF + 2.9iFI 

and  

x = 1 + 7.2I + 3.8iF. 

 

p(7.7 + 4iF + 2.9iFI) = 0 

and 

q(7.7 + 4iF + 2.9iFI) 

 

 = (7.7 + 4iF + 2.9iFI)
2
 + (7.3 + 0.2iF + 0.8I + 5.1IiF) × 

(7.7 + 4iF + 2.9iFI) + (7.7 + 0.6iF + 6.18I + 0.1iFI) 

 

 =  (5.9 + 2.87I + 4.66IiF) + (0.21 + 1.54iF + 6.16I +  

7.27IiF + 5.2iF + 5.6 + 3.2IiF + 4.4I + 5.17iFI +  

2.32I + 2.32iFI + 7.53I) + (7.7 + 0.6iF + 6.18I +  

0.1iFI)  

 

  =  (3.41 + 5.46I + 7.34iF + 6.72IiF) 

  ≠  0. 

 

So p(x) ≠ q(x) and the root of p(x) is not the same as that of q(x) 

and vice versa. 

 Next we proceed onto define the notion of MOD real dual 

number functions. 
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 Rn(m)(g) = {a + bg | g

2
 = 0, a, b ∈ [0, m)} is defined as the 

MOD real dual number plane.   

 

We will just for the sake of completeness describe the 

plane. 

 

 Let Rn(5)g be the MOD real dual number plane.   

 

The point 3 + 2.5g = (3, 2.5). 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

X

g

(3,2.5)

 
Figure 5.1 

 

 

 Clearly Rn(m)(g) is only a MOD real dual number pseudo 

ring. 

 Consider  

Rn(m)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(m)g, g

2
 = 0}. 
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 Rn(m)g[x] is defined  as the collection of MOD dual number 

coefficient polynomials Rn(m)g[x] is only a pseudo ring. 

 

 Any p(x) ∈ Rn(m)g[x] is a MOD polynomial function in the 

variable x. 

 

 One can differentiate and integrate these MOD functions 

only whenever they exist and are defined. 

 

 We will illustrate  these situations by some examples. 

 

Example 5.7: Let  

Rn(10)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(10)g = {a + bg | a, b ∈ [0, 10),  

g
2
 = 0}} be the MOD dual number polynomial pseudo ring. 

 

 Let f(x) = (2.3 + 0.7g)x
3
 + (3.2 + 5.1g)x

2
 + (2.17 + 3.89g) ∈ 

Cn(10)g[x]. 

 

df (x)

dx
  =  (3 (2.3 + 0.7g)x

2
 + 2(3.2 + 5.1g)x 

 

=  (6.9 + 2.1g)x
2
 + (6.4 + 0.2g)x. 

 
2

2

d f (x)

dx
 =  2 (6.9 + 2.1g)x + (6.4 + 0.2g) 

 

   = (3.8 + 4.2g)x + (6.4 + 0.2g). 

 

 Thus the derivative of f(x) exists. 

∫f(x) dx = 
4 3(2.3 0.7g)x (3.2 5.1g)x

4 3

+ +
+  + (2.17 + 3.89g)x + C 

 

 Clearly ∫f(x) dx does not exist as 
1

4
 is not defined in [0, 10). 
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 Thus it is important to keep on record that the derivative 

may exist but the integral may not exist. 

 

 Similarly there may be MOD polynomials in which integrals 

may exist but the derivatives may not exist. 

 

 Study of these MOD functions is an interesting task. 

 

 Now we will proceed onto study the roots of these MOD 

functions. 

 

Example 5.8: Let  

Rn(7) g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(7)g = {a + bg | a, b ∈ [0, 7), g

2
 = 

0}} be the MOD dual number pseudo polynomial function ring. 

 

 Let p(x) = x + 3.25 + 6.08g ∈ Rn(7)g[x] only root of p(x) is 

x = 3.75 + 0.92g. 

 

Now let p(x) = (x + 6.5) (x + 2 + 4.5g) ∈ Rn(7)g[x].  

 

 The roots of p(x) are x = 0.5 and x = 5 + 2.5g  

 

p(0.5) = 0 and p(5 + 2.5g) = 0. 

Consider  

q(x)  =  (x + 6.5) (x + 2 + 4.5g) 

   =  x
2
 + 6.5x + 2x + 4.5gx + 6 + 1.25g 

   =  x
2
 + (1.5 + 4.5g)x + 0.25g. 

 

 q(0.5)  =  (0.5)
2
 + (1.5 + 4.5g) 0.5 + 0.25g 

   =  0.25 + 0.75 + 2.25g + 0.25g 

   =  1 + 2.5g ≠ 0. 

 

 So 0.5 is not a root of q(x).  

 

 q(5 + 2.5g)  = (5 + 2.5g)
2
 + (1.5 = 4.5g) (5 + 2.5g) + 0.25g 

 

    = 4 + 4g + 0.5 + 1.5g + 3.75g + 0.25g 
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    = 4.5 + 2.5g ≠ 0. 

 

 Thus 5 + 2.5g is not a root of q(x). 

 

 Hence the problem of finding roots for these MOD 

polynomial functions happens to be a challenging work. 

 

 Next we proceed onto define the notion of MOD special dual 

like number functions built using the MOD special dual like 

number plane Rn(m)g; g
2
 = g. 

 

 
Figure 5.2 
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Define  

Rn(m)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(m)g; g

2
 = g 

where  Rn(m)g = {a + bg | a, b ∈ [0, m)}} to be the collection of 

all MOD special dual like number functions. 

 

 Clearly Rn(m)g[x] is a pseudo ring.   

 

Here through examples we show how these MOD special 

dual like functions behave. 

 

Example 5.9:  Let  

Rn(12)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(12)g; = {a + bg | g

2
 = g,  a, b ∈ 

[0, 12)}} be the collection of all MOD functions. 

 

 Solving equations are difficult as  

 

p(x)  =  (x + α1) (x + α2) (x + α3) (x + α4)  

 

≠  x
4
 + (α1 + α2 + α3 + α4)x

3
 + (α1α2 +α1α3 + α1α4 + α3α2 + 

α2α4 + α4α3 )x
2
 – (α1α2α3 +α1α2α4 + α1α3α4 + α2α3α4)x 

+ α1α2α3α4 = q(x). 

 

 So roots of p(x) are not roots of q(x).  It is difficult to find 

roots; for the situation in case of MOD polynomials happens to 

be a challenging one. 

 

 Next integrating or differentiating these functions is also a 

difficult task. 

 

For let  

 

f(x)   = (3.4 + 4.5g)x
4
 + (4 + 8g)x

3
 + (2.5 + 3.5g)x

2
  

+ (7.1 + 10.3g) ∈ Rn(12) g[x]. 
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 f ′(x)  =  4(3.4 + 4.5g)x
3
 + 3(4 + 8g)x

2
 + 2 (2.5 + 3.5g)x  

  =  (1.6 + 6g)x
3
 + (5 + 7g)x 

 

f ′ (x)  =  3 (1.6 + 6g)x
2
 + 5 + 7g  

 =  (4.8 + 6g)x
2
 + 5 + 7g 

 

f ″′ (x) =  2(4.8 + 6g)x 

 =  9.6x. 

 

f
4
(x)  =  9.6. 

 

Thus the fifth derivative is zero. 

 

Now  

 

∫f(x) dx = 
5 4 3(3.4 4.5g)x (4 8g)x (2.5 3.5g)x

5 4 3

+ + +
+ +  

 

+ (7.1 + 10.3)gx + C. 

 

Clearly 
1

4
 or 

1

3
 is not defined in [0, 12) so the integral does 

not exist. 

 

Consider s(x) = 5.2x
12

 + (6g + 4)x
6
 + (4.5 + 2.3g)x

3
 + 5g 

 

s′(x)  =  12 × 5.2x
11

+ 6(6g + 4)x
5
 + 3(4.5 + 2.3g)x

2
 + 0 

 

 =  2.4x
11

 + (1.5 + 6.9g)x
2
 . 

 

s″(x)  =  2.4 × 11x
10

 + 2(1.5 + 6.9g)x 

 

= 2.4x
10

 + (3 + 1.8g)x. 

 

We can find the 3
rd

 derivative  

 
3

3

d s(x)

dx
 =  10 × 2.4x

9
 + (3 + 1.8g) 
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    =  3 + 1.8g. 

 

 The forth derivative is zero. 

 

 However this MOD function is a polynomial of degree 12 

and the forth derivative zero is not in keeping with the usual 

form of differentiation.  

  

Next we find the integral of s(x). 

 

∫s(x) dx = 
13 7 45.12x (6g 4)x (4.5 2.3g)x

5gx C
13 7 4

+ +
+ + + +  

 

Clearly this integral is also not defined as 
1

4
 is not defined in 

the MOD interval [0, 12). 

 

Example 5.10:  Let Rn(10)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(10)g =  

{a + bg | a, b ∈ [0, 10), g
2
 = g}} be the collection of MOD dual 

like number polynomial functions.  

 

 Let p(x) = (6.2 + 4.3g)x
6
 + 0.2x

5
 + (5 + 2g)x

2
 + (7 + 3g) ∈ 

Rn(10)g[x]. 

 

  p′(x)  =  6(6.2 + 4.3g)x
5
 + x

4
 + 2(5 + 2g)x  

 

    =  (7.2 + 5.8g)x
5
 + x

4
 + 4gx. 

 

If the integration and differentiation are the inverse process of 

each other.  

 

 We find ∫p′(x) dx 

 

   
6 5 2(7.2 5.8g)x x 4gx

6 5 2

+
+ + . 
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 Clearly ∫p′(x) dx is not defined. 

 

 However we find  

 

∫p(x) dx = 
7(6.2 4.3g)x

7

+
 + 

6 30.2x (5 2g)x

6 3

+
+ + 

 

(7 + 3g)x + C. 

 

Clearly ∫p(x) dx is also not defined. 

 

 

Thus 
d( p(x)dx) dp(x).dx.

dx dx

∫
≠ ∫   

in general for any MOD polynomial function in Rn(10)g[x]. 

 

Example 5.11: Let Rn(7)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(7)g = {a + bg | 

a, b ∈ [0,7), g
2
 = g}} be the MOD special dual like number 

functions. 

 

 Let p(x)  =  (6.3 + 2g)x
5
 + (3 + 6.5g)x

3
 + (4 + 2g) ∈  

             Rn(7)g[x]. 

 

  p′(x)  =  5(6.3 + 2g)x
4
 + 3(3 + 6.5g)x

2
  

 

    =  (3.5 + 3g)x
4
 + (2 + 5.5g)x

2
 . 

 

∫p′(x) dx  =  
5 3(3.5 3g)x (2 5.5g)x

C
5 3

+ +
+ +  

 

    =  (3.5 + 2g)x
5
 + (3 + 6.5g)x

3
 + C 

 

    ≠  p(x). 
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 ∫p (x) dx  =  
6 4(6.3 2g)x (3 6.5g)x

6 4

+ +
+ + (4 + 2g)x + C 

 

    =  (2.8  + 5g)x
6
 + (6 + 6g)x

4
 + (4 + 2g)x + C. 

 

 

d( p(x)dx)

dx

∫
 =  6 (2.8 + 5g)x

5
 + 4(6 + 6g)x

3
 + (4 + 2g) 

 

    =  (2.8 + 2g)x
5
 + (3 + 3g)x

3
 + 4 + 2g 

 

    ≠ p(x). 

 

Hence  

d( p(x)dx)

dx

∫
≠ p(x) 

 

∫p′(x) dx ≠ p(x). 

 

 Thus in no way one can relate the MOD functions 

derivatives and integrals.  

 

 Next the concept of special quasi dual number functions is 

described by some examples. 

 

 Let Rn(m)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(m)g = {a + bg | a, b ∈ 

[0,m) and  g
2
 = (m–1)g}} be the collection of all MOD special 

quasi dual number polynomial functions.  

 

   Clearly ∫p′(x) dx ≠ p(x). 

 

   
d

p(x)dx
dx ∫ ≠ p(x) in general.   

 

Further the roots of these MOD polynomial with special 

quasi dual number coefficients behave in a chaotic way. 
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  These situations are described by an example or two. 

 

Example 5.12: Let  

 

Rn(9)g[x] = i

i

i 0

a x
∞

=




∑  ai ∈ Rn(9)g = {a + bg | a, b ∈ [0,9) and 

 

g
2
 = 8g}} be the collection of all MOD polynomials functions 

with coefficients from the special quasi dual number Rn(9)g. 

 

 Let  

p(x) = x + (3.7 + 2.5g) ∈ Rn(9)g[x]. 

The root of p(x) is  

x = 5.3 + 6.5g. 

Consider  

q(x) = x
2
 + 7.2 + 4.3g ∈ Rn(9)g[x] 

 

find the roots of q(x) is a difficult task. 

 Let  

p(x) = (x + 3 + 6.5g) (x + 2.1 + 3g) ∈ Rn(9)g[x]. 

 

 The roots of p(x) are x = 6 + 2.5g and x = 6.9 + 6g 

 

 Consider  

(x + 3 + 6.5g) (x + 2.1 + 3g) 

 

 =  x
2
 + 3x + 6.5gx + 2.1x + 6.3 + 4.65 + 3gx + 0 

  + 1.5x × 8g 

 

 =  x
2
 + (5.1 + 0.5g)x + 4.95  

 

 =  q(x). 

 

is x = 6 + 2.5g and x = 6.9 + 6g roots of q(x). 

 

q(6 + 2.5g)  =  (6 + 2.5g)
2
 + (5.1 + 0.5g) (6 + 2.5g) + 4.95 

 

   =  6.25 × 4g + 7.5g + 3.6 + 3g + 3.75g + g + 4.95 
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   =  4.25 + 8.55 ≠ 0. 

 

 So 6 + 2.5g is not a root. 

 

 Let us consider  

 

 q(6.9 + 6g)   

=  (6.9 + 6g)
2
 + (5.2 + 0.5g) × (6.9 + 6g) + 4.95 

=  2.61 + 1.8g + 8.19 + 3.6g + 6g + 7.5g + 4.95 

   =  7.75 + 0.9g ≠ 0. 

 

 So 6.9 + 6g is also not a root of q(x). 

 

 Let us consider the MOD polynomial function. 

 

p(x)  =  (3.6 + 4.2g)x
6
 + (2.1 + 0.6g)x

4
 + (4.5 + 2.5g)x

2
  

    + (5 + 7g) ∈ Rn(9)[x]. 

 

p′(x)  =  6(3.6 + 4.2g)x
5
 + 4(2.1 + 0.6g)x

3
 + 2(4.5 + 2.5g)x  

 

   =  (3.6 + 7.2g)x
5
 + (8.4+ 2.4g)x

3
 + 5gx. 

 

∫p′(x) dx = 
6 4 2(3.6 7.2g)x (8.4 2.4g)x 5gx

6 4 2

+ +
+ +  + C 

 

≠ p(x). 

 

∫p′(x) dx is not defined as 
1

6
 is not defined in [0, 9).  

 

 

∫p(x) dx = 
7 5 3(3.6 4.2g)x (2.1 0.6g)x (4.5 2.5g)x

7 5 3

+ + +
+ +  

 

+ (5 + 7g)x + C. 
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  This is not defined as 
1

3
 is not defined in [0, 9). 

 

 Thus the natural laws of derivative and integral are not in 

general true in case of MOD function.   

 

Now we proceed onto define some new types of MOD 

functions.  

 

 Let f be a MOD function defined on the MOD real plane or 

MOD neutrosophic plane or MOD complex modulo integer plane 

or MOD neutrosophic complex modulo integer plane or MOD 

dual number plane or MOD special dual like number plane or 

MOD special quasi dual number plane.  

 

 We say f is a special dual MOD function if f o f = 0. 

 

 We call f a special dual like MOD function if f o f = f. 

 

 We call f to be a special quasi dual function if  

 

f o f = (m – 1)f 

 

where f is defined over the MOD plane relative to the interval  

[0, m).  

 

 It is left as an exercise for the reader to construct examples 

of these new type of MOD functions.  



 
 
 
 
 
Chapter Six 
 
 

 
 
SUGGESTED PROBLEMS 
 
 
In this chapter we suggest a few problems for the reader. Some 

of them are difficult and some of them are simple and some are 

open problems. 

 

1. Obtain some interesting properties enjoyed by decimal 

polynomial rings in the MOD plane. 

 

2. Why the MOD differentiation is different from that of 

usual differentiation in case of functions in the MOD 

plane? 

 

3. Prove by an example a function which is continuous in 

R is not continuous in the MOD plane Rn(m). 

 

4. What are the special and interesting features enjoyed by 

functions in the MOD plane? 

 

5. Study the function y = 5x + 3 ∈ R[x] in the MOD plane 

Rn(7) and Rn(4). 

 

(i) Are they continuous in these planes? 

(ii) What are the zeros in these MOD functions? 

(iii) When is the function differentiable? 
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(iv) Does there exist a MOD function f(x) whose 

derivative f ′(x) exists? 

(v) Can this function have infinite number of zero 

divisors in any MOD plane? 

(vi) Does there exists a MOD plane in which the function 

y = 5x + 3 has only 5 zero divisors? 

 

6. Let y = 7x
2
 + 3x + 1 ∈ R[x] be the function in the real 

plane.  

 

Study questions (i) to (vi) of problem 5 for y in the MOD 

planes Rn(7), Rn(3), Rn(5) and Rn(10). 

 

7. Let y = 3x
3
 – 7 ∈ R[x] be the function in the real plane. 

 

Study questions (i) to (vi) of problem 5 in the MOD 

planes Rn(7), Rn(2)  and Rn(6). 

 

8. Let y = 3x
3
 + 2x

2
 – 5x + 8 ∈ R[x] be the function. 

 

Study questions (i) to (vi) of problem 5 in the MOD 

planes Rn(6), Rn(8),  Rn(5), Rn(10) and Rn(4). 

 

9. Let y = x
2
 + 4 ∈ R[x] be the function. 

 

Study questions (i) to (vi) of problem 5 in the MOD 

planes Rn(3), Rn(7) and Rn(4). 

 

10. Let y = 9x
5
 – 3x

2
 + 7 ∈ R[x] be the real function. 

 

Study questions (i) to (vi) of problem 5 in the MOD 

planes Rn(7), Rn(3), Rn(2) and Rn(10). 

 

11. What is the difference in any function in the MOD 

planes Rn(p) and Rn(m); p a prime and m is a non 

prime?  

 

12. Study question (11) for the function y = 7x
3
 – 5x + 1 in 

Rn(11) and Rn(12). 
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13. Can all functions in the MOD plane Rn(m)[x] be 

integrable? 

 

14. How can we adopt integration and differentiation in 

case of the functions in MOD plane Rn(m)[x]? 

 

15. List out the difficulties in adopting integration to 

functions in Rn(m)[x]. 

 

16. Prove derivatives of functions in Rn(m)[x] do not satisfy 

the basic properties of derivatives. 

 

17. Let f(x) = 5x
7
 + 5x

3
 + 1.7x + 3 ∈ Rn(7)[x]. 

 

(i) Find f ′(x). 

(ii) What is 
7

7

d f (x)

dx
 ? 

(iii) Find ∫ f(x) dx. 

(iv) Is f(x) continuous in Rn(7)[x]? 

(v) Can f(x) be continuous on Rn(6)[x]? 

 

18. Does this MOD function f(x) = 6x
3
 + 7x

2
 + 1 ∈ Rn(8)[x] 

continuous in the MOD plane Rn(8). 

 

19. Is f(x) ∈ Rn(8)[x] in problem 18 differentiable? 

 

20. Is f(x) ∈ Rn(8)[x] in problem 18 integrable? 

 

21. Give a function f(x) ∈ Rn(12)[x] which is both 

differentiable and integrable. 

 

22. Give a function f(x) ∈ Rn(10)[x] which is neither 

integrable nor follow any properties of derivation? 

 

23. Finding roots of a MOD polynomials in Rn(m)[x] is a 

open problem. 
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24. Prove MOD polynomials do not satisfy the fundamental 

theorem of algebra; 

 

“A nth degree polynomial has n and only n roots” 

 

25.  Give an example of a MOD polynomial of degree n 

which has less than n roots. 

 

26. Give an example of a MOD polynomial of degree n 

which has more than n-roots. 

 

27. Let p(x) = 8x
8
 + 5x

4
 + 2 ∈ Rn(10)[x] be the MOD 

polynomial.  

 

Find all the roots of p(x). 

 

28. Let p(x) = 5x
3
 + 3x + 1 ∈ Rn(7)[x] be the MOD 

polynomial. 

 

Find all the roots of p(x). 

 

29. Is it possible to find all the roots of q(x) = x
4
 + 2 ∈ 

Rn(3)[x]? 

 

(i) Can q(x) have more than 4 roots? 

(ii) Does q(x) have less than four roots? 

(iii) Find ∫ q(x) dx. 

(iv) Find 
dq(x)

dx
 . 

 

30. Let p(x) ∈ Rn(6)[x] where p(x) = x
6
 + 1.  

 

Study questions (i) to (iv) of problem 29 for this p(x). 

 

31. Find a polynomial in Rn(5)[x] of degree 3 which has 

only three roots.  

 

32. Find p(x) ∈ Rn(4)[x] be a polynomial of degree four 

which has more than four roots.  
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33. Find a fifth degree polynomial in Rn(5)[x] which has 

less than five roots. 

 

34. Does there exist a MOD plane Rn(m) such that every 

polynomial p(x) ∈ Rn(m)[x] follows the classical 

properties of polynomials? 

 

35. Let f(x) = 3x
3
 + 5x

2
 + 1 ∈ Rn(10)[x].   

 

Is f(x) a continuous function in the MOD plane Rn(10)? 

 

36. Give an example of a function f(x) which is continuous 

in R[x] but f(x) is not continuous in Rn(7)[x]. 

 

37. Let f(x) = x
3
 + 1 ∈ Rn(6)[x] be a MOD function.  

 

(i) Is f(x) a continuous function?  

(ii) Draw the graph of f(x) in the MOD plane Rn(6)? 

(iii) Can f(x) = x
3
 + 1 be continuous in any other MOD 

plane? 

(iv) Can all the MOD planes in which the function  

f(x) = x
3
 + 1 is continuous be characterized? 

 

38. Let f(x) = 3x
2
 + 1 ∈ Rn(5)[x] be the MOD function. 

 

Study questions (i) to (iv) of problem 37 for this f(x). 

 

39. Obtain some special features enjoyed by MOD complex 

plane Cn(m). 

 

40. Prove every function in the complex plane C can be 

transformed into a function in the MOD complex plane 

Cn(m). 

 

41. Let 
z i
limf (z)

→
 where f(z) = 

4z 1

z i

−

−
 ∈ C.   

 



188 MOD Functions 

 

 

 

 

Find the corresponding MOD function of f(z) in Cn(10), 

Cn(7), Cn(16), Cn(11) and Cn(15). 

 

42. Let f(z) = 
2

2

z 8i

z 8z 8

−

− +
 ∈ C; limit z → 2 + 2i 

 

(i)  Find all the complex MOD planes Cn(m) in which   

 f(z) has a limit. 

(ii)  Find all these complex MOD planes Cn(m) in which  

       f(z) has no limit. 

 

43. Does there exist a function in the complex plane which 

has limit points for all values of z → z′ such that the 

f(z) has limit for all z ∈ Cn(m)? 

Justify your claim. 

 

44. Let f(z) =  
2

2

z z 2 i

z 2z 1

+ − +

− +
 ∈ C, let z → 1 + i be the 

function in the complex plane. 

 

Transform f(z) to the MOD planes (i) Cn(20), (ii) Cn(5), 

(iii) Cn(7), (iv) Cn(4t) (v) Cn(16), (vi) Cn(29), (vii) 

Cn(15) and (viii) Cn(21) 

In which of these planes the limit exists? 

 

45. Let f(z) = z
2
 + 1 be a MOD complex function in Cn(7). 

 

(i) Is f(z) continuous in Cn(7)? 

(ii) Is f(z) differential? 

(iii) Find zeros of f(z). 

 

46. Does there exist a function f(z) in Cn(5) which is 

continuous in Cn(5)? 

 

47. Obtain more properties related with MOD complex 

functions. 
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48. When will a complex MOD function be continuous at all 

points?  Give one example of it. 

 

49. f(x) = 3.75x
3
 + 0.4x + 3.28 ∈ Rn(4)[x] be a MOD 

polynomial in Rn(4)[x]. 

 

(i) Find all roots of f(x). 

(ii) Is f(x) a continuous function? 

(iii) Does f(x) contain more than 3 roots? 

(iv) Find all roots of f(x). 

(v) Find a method by which these MOD equations can be  

      solved. 

 

50. Solve p(x) = x
3
 + 1 ∈ Rn(5) [x]. 

 

51. Find roots of p(x) = x
3
 + 1 ∈ Rn(4)[x]. 

 

52. Find roots of p(x) in problems 50 and 52; which has 

more zeros? 

 

53. Let f(x) = x
2
 + 3 ∈ Rn(m), m = 4, 5, 6, 7, 8, 9, 10 and 11 

be the MOD function. 

 

(i)  Find the plane Rn(m) in which f(x) has least number  

      of zeros; 4 ≤ m ≤ 11. 

(ii)  Find the plane Rn(m) in which f(x) has greatest  

       number of zeros; 4 ≤ m ≤ 11. 

(iii) Is f(x) a continuous function? 

(iv) Is f(x) an integrable function in Rn(m); 4 ≤ m ≤ 11? 

(v)  Is f(x) differential in Rn(m); 4 ≤ m ≤ 11? 

(vi) Trace the function f(x) in all the MOD planes Rn(m);  

       4 ≤ m ≤ 11.  

 

54. Let f(x) = x
3
 + 0.8 ∈ Rn(m); 2 ≤ m ≤ 15 be the MOD 

function. 

 

Study questions (i) to (vi) of problem 53 for this f(x). 
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55. Let p(x) = 0.7x
5.2

 + 0.9x
0.2

 + 3 ∈ Rn(m); 4 ≤ m ≤ 10 be 

the MOD function.  

 

Study questions (i) to (vi) of problem 53 for this f(x). 

 

56. Let f(z) = z
2
 + 0.3z + 1 ∈ Cn(m); 2 ≤ m ≤ 5 be the 

complex MOD function.  

 

(i) Is f(z) continuous in all planes? 

(ii) Is f(z) differentiable? 

(iii) Find lim f(z); z ∈ Cn(m), z → 1 + iF; 2 ≤ m ≤ 5. 

 

57. Let f(z) = 3z
2
 + z + 1 ∈ Cn(m); 4 ≤ m ≤ 8 be the 

complex MOD function.  

 

Study questions (i) to (iii) of problem 56. 

 

58. Obtain any special and interesting feature enjoyed by 

complex MOD planes Cn(m), 2 ≤ m < ∞. 

 

59. Derive the special identities related with MOD 

trigonometric functions. 

  

60. Obtain all the special features related with MOD 

trigonometric functions. 

 

61. What are the advantages of using MOD trigonometric 

functions?  

 

62. Draw the MOD graph of the MOD trigonometric function 

yn = n tan x in the MOD plane Rn(10). 

 

63. Draw the MOD graph of the MOD trigonometric function 

yn = n tan 2x in the MOD plane Rn(10). 

 

Compare the graphs in problems 62 and 63. 

 

64.  Draw the MOD trigonometric graph of the function  

yn = n sin 3x in the MOD plane Rn(9).  
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65. Let yn = n cos 3x be the MOD trigonometric function.  

Find the MOD graph of yn = n cos 3x in the MOD plane 

Rn(19). 

 

Compare yn = n cos 3x with yn = n sin 3x. 

 

66. Prove or disprove nsin
–1

x + ncos
–1

 x = π / 2 if x ∈ [0, 1]. 

 

67. Prove or disprove ntan
–1

x + ncot
–1

x = π / 2 if x ∈ [0, 1]. 

 

68. Prove or disprove nsec
–1

x + ncos
–1

x = π / 2 if x ∈  

[0, 1]. 

 

69. Prove or disprove nsin
–1

x + n sin
–1

x =  

n sin
–1

 (x 21 y− + y 21 x− ). 

 

70. Find ntan
–1

 (n tan 3π /4). 

 

71. Find n cos (n tan
–1

 ¾). 

 

72. Find ncos
–1

 (n cos 7π /6) ∈ Rn(m), m ≥ 9. 

 

73. Find nsin (n cot
–1

x). 

 

74. Find nsin 2A. 

 

75. Find n cos2A. 

 

76. Is nsin
2
A = 

1 n cos2A

2

−
? 

 

77. Obtain any interesting result about logarithmic MOD 

functions. 

 

78. Obtain the special features enjoyed by exponential MOD 

functions. 

 

79. Give examples of MOD neutrosophic real functions.  



192 MOD Functions 

 

 

 

 

80. Let f(x) ∈ I

nR (12)[x]  = S a MOD neutrosophic 

polynomial of degree t. 

 

(i)  When will the derivatives of f(x) exist? 

(ii)  Does there exist a p(x) ∈ I

nR (12)[x]  which 

satisfies both the laws of differentiation and 

integration? 

(iii) Give an example of a MOD neutrosophic 

polynomial functions in S which does not satisfy 

both the laws of differentiation and integration. 

(iv)  Give an example of a MOD neutrosophic function 

in S which satisfies the properties of derivatives 

but not the properties of integrals. 

(v)  Give an example of a MOD neutrosophic function 

in S which satisfies the properties of integration 

but does not satisfy the properties of 

differentiation. 

(vi)  Does there exist a polynomial function p(x) of 

degree 5 in S which has only 5 roots? 

(vii)  If α1, α2, α3, …, α8 are roots of p(x) = (x + α1) … 

(x + α8) in S will q(x) = x
8
 – (α1 + … + α8)x

7
 + 

… ± α1 … α8 have α1, α2, …,  α8 to be its root? 

 

81. Let M= I

nR (13)[x]  be the collection of MOD 

neutrosophic polynomial functions. 

 

Study questions (i) to (vii) of problem 80 for this M. 

 

82. Let P = I

nC (15)[x] be the MOD neutrosophic complex 

modulo integer functions. 

 

Study questions (i) to (vii) of problem 80 for this P. 

 

83. Let W = Rn(20)g[x] be the collection of all MOD dual 

number functions.  

 

Study questions (i) to (vii) of problem 80 for this W. 
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84. Let S = Rn(m)h[x] be the collection of special dual like 

number MOD functions.  

 

Study questions (i) to (vii) of problem 80 for this S. 

 

85. Let V = Rn(24)k[x] be the special quasi dual number 

MOD functions.  

 

Study questions (i) to (vii) of problem 80 for this V. 

 

86. Let B = Rn(13)g[x] (g
2
 = 0) be the MOD dual number 

functions.  

 

Study questions (i) to (vii) of problem 80 for this B. 

 

87. Give examples of dual MOD functions f such that  

f o f = 0, f defined over any of the MOD planes 

described in chapter III. 

 

88. Define a dual MOD function of I

nR (27) . 

 

89. Can dual MOD functions in general behave like usual 

functions or behave like MOD functions?  Justify. 

 

90. Give examples of MOD special dual like functions g so 

that g o g = g. 

 

91. Can MOD transformations over MOD planes lead to such 

g’s in problem 90? 

 

92. Obtain any special or unique property associated with 

MOD dual functions in general. 

 

93. Describe and develop some interesting properties 

associated with MOD special dual like functions g;  

g o g = 0. 

 

94. Can the collection of MOD dual functions related with 

Cn(20) have any nice algebraic structure? 
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95. Give examples of special quasi dual MOD functions f 

associated with Rn(19); f o f = 18f. 

 

96. Develop special features enjoyed by special quasi dual 

MOD functions associated with I

nR (18) . 

 

97. Prove or disprove dual MOD functions on Rn(18) has no 

relation with MOD dual number polynomial functions 

Rn(18)g[x]; g
2
 = 0. 

 

98. Prove or disprove that special dual like functions f on 

Rn(17),  f o f = f has no relation with MOD special dual 

like number functions Rn(17) g[x], g
2
 = g. 

 

99. Prove there exist no relation between special quasi dual 

MOD function f defined on Rn(9) where f o f = 8f and 

the MOD special quasi dual number polynomial 

functions in Rn(9)g[x]; g
2
 = 8g. 
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