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Abstract 

The main aim of this thesis is to provide a comprehensive overview of a neutrosophic 

approach for mathematical morphology. The new approach is considered to be an 

extension of the binary mathematical morphology and the fuzzy mathematical 

morphology, and proposed as a new tool for binary and gray images processing and 

analysis. We apply the concepts of the neutrosophic crisp sets and its operations as well 

as the neutrosophic fuzzy sets to the classical mathematical morphological operations; 

introducing what we call "Neutrosophic Crisp Mathematical Morphology" and 

"Neutrosophic Mathematical Morphology". Several operators are to be developed, 

including the neutrosophic (crisp) dilation, the neutrosophic (crisp) erosion, the 

neutrosophic (crisp) opening and the neutrosophic (crisp)  closing. Moreover, we extend 

the definition of some morphological filters using the neutrosophic (crisp) sets concept. 

For instance, we introduce the neutrosophic (crisp) boundary extraction, the 

neutrosophic (crisp)  Top-hat and the neutrosophic (crisp)  Bottom-hat filters. The idea 

behind the new introduced operators and filters is to act on the image in the 

neutrosophic (crisp)  domain instead of the spatial domain.  Moreover, we introduce an 

investigation for some algebraic properties of the introduced operations and we use 

some different combinations of these basic operations to produce some more advanced 

neutrosophic filters for boundary extraction. Explanation of the proposed operations is 

also provided through several examples and experimental results conducted over real 

life binary and grayscale images. Furthermore, we demonstrate the efficiency of the 

proposed operator in one of the most important image processing application. "Image 

threshold" the experimental results show a slight improvement when we used the new 

operators when comparing with the operators from both the classical and fuzzy 

mathematical morphology.    
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Chapter 1 

Introduction 

1. Introduction 

Mathematical Morphology (in short MM) has been formalized since the 1960’s by 

Georges Matheron [47] and Jean Serra at the Centre de Morphologie Mathematique on 

the campus of the Paris School of Mines at Fontainebleau, France, for studying  

geometric and milling properties. In 1967, Matheron and Serra introduced a set 

formalism for analyzing binary images, which led them to work on image analysis. 

Their work led to the development of the theory of MM. Later Petros Maragos 

contributed to enrich the theory by introducing theory of lattices. Firstly the theory is 

purely based on set theory and operators which are defined for binary cases only, later, 

the theory was extended to grayscale images as well. MM gained a wide recognition 

after the publication of the books "Image Analysis and Mathematical Morphology" by 

Serra [67] and "Image Analysis and Mathematical Morphology, Theoretical Advances" 

edited by Serra [69]. From the mid-1970’s to mid-1980’s [29], MM was generalized to 

grayscale images and functions, this generalization yielded new operators, such as 

morphological gradients and hat filters. In the 1980’s and 1990’s, MM started to be 

applied to a large number of imaging problems and applications. In 1986, Serra further 

generalized MM [68], this time to a theoretical framework based on set theory. This 

generalization brought flexibility to the theory, enabling its application to a much larger 

number of structures, including color images, video, graphs, etc. The 1990’s and 2000’s 

also saw further theoretical advancements, including the concepts of connections and 

leveling, where Heink J. Heijmans gave an algebraic basis for the theory and extended 

the theory to Signal Processing [30, 31]. More advances in the field was presented by: 

the International Symposium on Mathematical Morphology (ISMM); its first six venues 

https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Morphological_Gradient
https://en.wikipedia.org/wiki/Complete_lattice
https://en.wikipedia.org/wiki/Graph_%28discrete_mathematics%29
https://en.wikipedia.org/w/index.php?title=Connection_%28morphology%29&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Leveling_%28morphology%29&action=edit&redlink=1
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were held in Barcelona (1993), Fontainebleau (1994), Atlanta (1996), Amsterdam 

(1998), Palo Alto (2000) and Sydney (2002). MM is now part of the basic body of 

techniques taught to any students of image processing courses anywhere. Far from 

being an academic pursuit, morphology is used in industry and businesses at many 

levels, for instance: quality control in industrial production, medical imaging, document 

processing and much more. As morphology is the study of shapes, MM mostly deals 

with the mathematical theory of describing shapes using set theory. MM denotes a 

branch of biology that deals with the forms and structures of animals and plants. It 

analyzes the shapes and forms of objects. In computer vision, it is used as a tool to 

extract image components that are useful in the representation and description of object 

shape. MM is a non-linear theory of image processing. Its geometry- oriented nature 

provides an efficient method for analyzing object shape characteristics such as size and 

connectivity, which are not easily accessed by linear approaches. MM has taken 

concepts and tools from different branches of mathematics like algebra (lattice theory), 

topology, discrete geometry, integral geometry, geometrical probability, partial 

differential equations, etc.. Early work in this discipline includes the work of 

Minkowski [49], Kirsch [40] and Preston [58]. 

Smarandache [74] introduced another concept of imprecise data called 

"Neutrosophic Sets". Neutrosophic set is a part of neutrosophy which studies the origin, 

nature and scope of neutralities, as well as their interactions with different ideational 

spectra. Neutrosophic set is a powerful general formal framework which generalizes the 

concept of the classic set, fuzzy set [85]. The fundamental concepts of neutrosophic set 

introduced by Smarandache in [74], neutrosophic theories generalizing both their 

classical and fuzzy counterparts. A neutrosophic linguistic variable has neutrosophic 

linguistic values which defined by interval neutrosophic sets characterized by three 

membership degrees: truth-membership, falsity-membership and indeterminacy-
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membership. Each field has a neutrosophic part, i.e. that part that has indeterminacy. 

Thus, the neutrosophic logic was established as well as [75], neutrosophic set theory, 

neutrosophic probability, neutrosophic statistics, neutrosophic measure [76], 

neutrosophic calculus, etc. Maji, P. K. introduced the neutrosophic concept for soft sets 

defining "Neutrosophic Soft Set" (in short NSS) [46]. Salama, A. A [64, 65], introduced 

the basic properties of the concept of neutrosophic crisp set and investigated some new 

neutrosophic concepts. In this thesis, we are utilizing a neutrosophic approach for 

mathematical morphology and image processing that has become increasingly 

important. Neutrosophic category is the development of a crisp sets and fuzzy sets this 

category is more general and comprehensive. Here, we present an overview of the 

operations and properties of mathematical morphology, crisp sets, fuzzy sets and 

neutrosophic sets. In our thesis we demonstrate that neutrosophic morphological 

operations inherit properties and restrictions of fuzzy mathematical morphology and 

crisp mathematical morphology.  

1.3 The thesis structure: 

The remaining of this thesis consists of six chapters in addition to a list of references 

and structured as follows: 

Chapter 1: Introduction 

In this chapter we introduce a survey for both the mathematical morphology, fuzzy 

mathematical morphology disperse, as well as a review for the theory of neutrosophic 

sets.  

Chapter 2: Types of Sets 

The chapter was divided into three sections: the first section presents a survey of some 

definitions and operators from the crisp sets theory. The second section we introduces 

the definitions from the fuzzy sets theory. Finally, the third sections is devoted for 

intruding the concepts of "Neutrosophic Fuzzy Sets" and "Neutrosophic Crisp Sets". 
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Chapter 3: Mathematical Morphology   

I’s a revision for the basic definitions and properties of the binary mathematical 

morphology in the first section, the grayscale mathematical morphology in the second 

section and finally, fuzzy mathematical morphology in the third section.   

Chapter 4: Neutrosophic Crisp Mathematical Morphology 

The aim of this chapter is to apply the concepts of the neutrosophic crisp sets and its 

operations to the classical mathematical morphological operations; introducing what we 

call "Neutrosophic Crisp Mathematical Morphology". Several operators are to be 

developed, including the neutrosophic crisp dilation, the neutrosophic crisp erosion, the 

neutrosophic crisp opening and the neutrosophic crisp closing. Moreover, we extend the 

definition of some morphological filters using the neutrosophic crisp sets concept. For 

instance, we introduce the neutrosophic crisp boundary extraction, the neutrosophic crisp 

top-hat and the neutrosophic crisp bottom-hat filters.     

Chapter 5: Neutrosophic Fuzzy Mathematical Morphology 

In this chapter, we  propose a generalization for the fuzzy morphology, as a new tool for 

gray image processing and analysis, using the concepts of neutrosophy. The main 

operations of the proposed neutrosophic morphology are introduced; namely, the 

neutrosophic dilation, neutrosophic erosion, neutrosophic opening and neutrosophic 

closing. Some algebraic properties of the introduced operations are to be investigated. 

Furthermore, we use different combinations of these basic operation to produce some 

more advanced neutrosophic boundary filters.  

Chapter 6: Application  

In this chapter, we experiment our operator for thresholding images, proposing in 

section 6.4 an algorithm for thresholding images in the neutrosophic domain instead of 

the spatial domain. While section 6.5 is devoted for introducing the experimental 

results.   
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Chapter 7: Conclusions 

This chapter, gives conclusions and focuses on the advantage and shortcoming of our 

proposed techniques through this thesis. We also point out some promising directions 

for future research.      



Chapter 2                                                                                    Type of  Sets 

 

 

6 

Chapter 2 

  Type of Sets 

2.1 Introduction: 

In many complicated problems such as, engineering problems, social, economic, 

computer science, medical science…etc., the data associated are not necessarily crisp, 

precise and deterministic because of their vague nature. Most of these problem were 

solved by different theories. One of these theories was the fuzzy set theory discovered 

by Lotfi Zadeh in 1965 [85]. In many real applications to handle uncertainty, fuzzy set 

is very much useful and in this one real value 𝜇𝐴(𝑥) ∈ [0,1] is used to represent the 

grade of membership of a fuzzy set 𝐴 defined on the universe of 𝑋. Atanassov [3] 

introduced another type of fuzzy sets that is called "Intuitionistic Fuzzy Set" (in short 

IFS) which is more practical in real life situations. Intuitionistic fuzzy sets handle 

incomplete information i.e., the membership degree and non-membership degree, but 

not the indeterminacy and inconsistent data which exists obviously in real life systems. 

In 1991, Samarandache initiated the theory of neutrosophic set as new mathematical 

tool for handling problems involving imprecise indeterminacy and inconsistent data 

[74]; where he introduced the neutrosophic components (T, I, F) which represent the 

membership, indeterminacy and non-membership values respectively. Later on, several 

researchers such as Bhowmik and Pal [6], and Salama [63, 65], studied the concept of 

neutrosophic crisp set. Neutrosophy introduces a new concept which represents 

indeterminacy with respect to some event, which can solve certain problems that cannot 

be solved by fuzzy logic. 

The Remaining of This Chapter is Structured as Follows: 

Firstly, We present a breif revission for the concept of crisp sets with its operations and 

properties in §2.2.  
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Secondly, our goal in § 2.3, we give some definitions, for the fuzzy sets and its 

operations and properties.  

Thirdly, Definition of the intuitionistic fuzzy sets is to be introduced in §2.4. 

Finally, The purpose of § 2.5, is to explain the concepts of both neutrosophic sets and 

neutrosophic crisp sets.  

2.2 Crisp Sets: 

The concept of crisp sets is the core of most branches of mathematics, that is the 

concept of  the  group  of unknown preliminary concepts. A crisp set is an unordered 

collection of objects, called  elements or members, of  the set. We write a ∈ 𝐴 to denote 

that a is an element of the crisp set 𝐴. The notation  𝑎 ∉ 𝐴 denotes that  a  is not an 

element of the crisp set 𝐴. The crisp set 𝐴 is to be defined using the following 

characteristic function  𝜇𝐴 : 𝑋 → {0, 1}, 𝜇𝐴 (𝑥) =  {
1     ,    𝑥   ∈   𝐴 
 0    ,     𝑥  ∉   𝐴 

.                         (2.1) 

where 𝜇𝐴(𝑥) is the membership degree of any in the universal set 𝑋. 

2.2.1 Operations on Crisp Sets: 

In this section we review some basic operations which are defined on the crisp sets. To 

commence, we consider two crisp sets 𝐴 and 𝐵, to be defined on the universe set  𝑋. 

Hence, we have the following operations. 

The Union of Crisp Sets: 

The union of  two crisp sets 𝐴 and 𝐵 is denoted by 𝐴 ∪ 𝐵 [61]. It represents all the 

elements in the universe that reside in either the set 𝐴, the  set 𝐵 or both sets 𝐴  and  𝐵; 

and to be defined as the crisp set:   𝐴 ∪ 𝐵 = {𝑥|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}.                              (2.2) 

The Intersection of Crisp Sets: 

The intersection of two crisp sets 𝐴 and  𝐵 is denoted A⋂ B [61]. It represents all those  

elements in the universe 𝑋 that simultaneously reside in both sets 𝐴 and 𝐵; and to be 

defined as the crisp set:    A⋂ B = {𝑥|𝑥 ∈ A 𝑎𝑛𝑑 𝑥 ∈ B}.                                           (2.3) 
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The Complement of a Crisp Sets: 

The  complement of any crisp set 𝐴 denoted by (coA or A𝑐) [61], is defined as the 

collection  of  all elements in the universe  that do not reside in the crisp set 𝐴; and to be 

defined as the crisp set:    𝐴𝑐 = {𝑥|𝑥 ∉ 𝐴, 𝑥 ∈ 𝑋}.                                                     (2.4) 

The Difference between Crisp Sets: 

The difference of a crisp set 𝐴 with respect to 𝐵, denoted by 𝐴 − 𝐵, is defined as the 

collection  of  all elements in the universe set that reside in 𝐴 and that do not reside in 𝐵 

simultaneously; and to be defined as the crisp set:  𝐴 − B = {𝑥|𝑥 ∈ A 𝑎𝑛𝑑 𝑥 ∉ B}.  (2.5)                                                       

2.2.2  Properties of Crisp Sets’ Operations: 

For the operations defined in the previous section, the following properties are true    

[26, 37, 61]. 

The Commutativity:     A ∪ B = 𝐵 ∪ 𝐴,   A ⋂ B = 𝐵 ⋂ 𝐴.             

The Associativity of a Crisp Sets: 

        A ∪ (B ∪ C) = (𝐴 ∪ 𝐵) ∪ 𝐶, A ∩ (B ∩ C) = (𝐴 ∩ 𝐵) ∩ 𝐶.                       

The Distributivity: A ∪ (B⋂C) = (𝐴 ∪ 𝐵)⋂(𝐴 ∪ 𝐶),   A⋂(B ∪ C) = (𝐴⋂𝐵) ∪ (𝐴⋂𝐶).                        

The Idempotency: A ∪ 𝐴 = 𝐴,       A ⋂ 𝐴 = 𝐴. 

The Transitivity:  if  A ⊆ B ⊆ C,   then   A ⊆ C. 

The Involution:    (𝐴𝑐)𝑐 = A.                       

The Identity:        A ∪ ∅ = 𝐴,     A ⋂ 𝑋 = 𝐴,    A ∩ ∅ = ∅,     A ∪  𝑋 = 𝑋. 

Where the symbol ⊆ means contained in or equivalent to and ⊂ means contained in. 

2.2.3 Generalized Unions and Intersections on Crisp Sets [61]: 

The Union of a collection of crisp sets is the crisp set that contains those elements that 

are members of at least one set in the collection. 

𝐴1 ∪ 𝐴2 ∪ … ∪ 𝐴𝑛 = ∪𝑖=1
n A𝑖 = {𝑥: 𝑥 ∈ A𝑖 ∃ 𝑖 = 1,2 … , 𝑛}.                          (2.6)                                                                      
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The Intersection of  a collection of  sets is the set that contains those elements that are 

members of all the sets in the collection. 

𝐴1 ∩ 𝐴2 ∩ … ∩ 𝐴𝑛 =∩𝑖=1
n A𝑖 = {𝑥: 𝑥 ∈ A𝑖  ∀ 𝑖 = 1,2 … , 𝑛}.                           (2.7) 

More generally, when I is a set, the notations ∩𝑖∈I A𝑖 and ∪𝑖∈I A𝑖 are used to denote the 

intersection and union of the sets A𝑖 for 𝑖 ∈ I, respectively.  Note that we have: 

        ∩𝑖∈I A𝑖 = {𝑥;  𝑥 ∈ 𝐴𝑖, ∀ 𝑖 ∈ 𝐼}, 

 (2.8) 

        ∪𝑖∈I A𝑖 = {𝑥;  𝑥 ∈ 𝐴𝑖, ∃ 𝑖 ∈ 𝐼}.                    

2.3 Fuzzy Sets [85]: 

In 1965, Zadeh generalized the idea of a crisp set by extending a valuation set {0, 1} to 

the interval of real values [0,1]. The degree of membership of any particular element of 

a fuzzy set express the degree of compatibility of the element with a concept 

represented by fuzzy set. That is a fuzzy set 𝐴 contains an object x to some degree 𝐴(𝑥). 

Fuzzy sets tend to capture vagueness exclusively via membership functions that are 

mappings from a given universe of discourse into the unit interval. 

2.3.1 Definition [85]: 

Let 𝑋 be a fixed set, a fuzzy set 𝐴 of  𝑋 is an object having the form 𝐴 =  ⟨ 𝜇𝐴 ⟩, where 

the function  𝜇𝐴: 𝑋 → [0, 1] defines the degree of membership of the element 𝑥 ∈ 𝑋 to 

the set 𝐴. The set of all fuzzy subset of  𝑋 is denoted by ℱ(𝑋). The  fuzzy  empty  set in 

𝑋 is denoted by 0𝑓 = 〈0〉, 𝑤ℎ𝑒𝑟𝑒 0 ∶ 𝑋 ⟶ [0 ,1 ] and 0(𝑥) = 0,   ∀𝑥 ∈ 𝑋.  Moreover, 

the fuzzy universe set in 𝑋 is denoted by: 

1𝑓 = 〈1〉, where  1: 𝑋 ⟶ [0 ,1 ] 𝑎𝑛𝑑  1(𝑥) = 1, ∀𝑥 ∈ 𝑋. 

2.3.2 Operations on Fuzzy Sets:  

Consider three fuzzy sets 𝐴, 𝐵 and 𝐶 in the universe 𝑋. For a given element x in the 

universe 𝑋, the following are the membership degrees for 𝑥 under the basic fuzzy sets 

operations[42, 62, 85].   
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The Union of Fuzzy Sets:       

         (𝐴 ∪ 𝐵)(𝑥) = 𝑚𝑎𝑥 (𝜇𝐴(𝑥), 𝜇𝐵(𝑥))  𝑜𝑟  (𝜇𝐴⋃𝐵)(𝑥) =  𝜇𝐴(𝑥) ⋁ 𝜇𝐵(𝑥).  

The Intersection of Fuzzy Sets: 

         (𝐴 ∩ 𝐵)(𝑥) = 𝑚𝑖𝑛 (𝜇𝐴(𝑥) , 𝜇𝐵(𝑥))  𝑜𝑟 (𝜇𝐴⋂𝐵)(𝑥) =  𝜇𝐴(𝑥)  ∧  𝜇𝐵(𝑥).  

The Complement of Fuzzy Sets:        𝜇𝐴𝑐(𝑥) = 1 −  𝜇𝐴(𝑥).                  

The Difference of Fuzzy Sets:         (𝐴 − 𝐵)(𝑥) = 𝑚𝑖𝑛 (𝜇𝐴(𝑥) ,1 − 𝜇𝐵(𝑥)). 

The Containment of Fuzzy Sets:      𝐴 ≤ 𝐵  ⟺ 𝜇𝐴(𝑥)  ≤  𝜇𝐵(𝑥). 

2.3.3 Properties of Fuzzy Sets’ Operations: 

The properties of the classical set also suits for the properties of the fuzzy sets [86]. The 

important properties of fuzzy set include: 

The Commutativity:   A ∪ B = B ∪ A,      A ∩ B = B ∩ A. 

The Associativity:      A ∪ (B ∪ C) = (A ∪ B) ∪ C,    A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C. 

The Distributive:       A ∪ ( B⋂C ) = ( A ∪ B )⋂( A ∪ C ), 

                                    A ⋂ ( B ∪ C ) = ( A⋂B ) ∪ ( A⋂C ). 

The Idempotency:     A ∪ A = A.                           

The Transitivity:     if  A ⊆ B ⊆ C,   then   A ⊆ C.  

The Involution:      co (coA) = A   or     (Ac)c = A. 

The Identity:          A ∪ 0 = A,  A ⋂ 0 = 0,  A  ∪ 1 = 1 and  A  ∩ 1 = 1. 

The complement:   𝑐𝑜0 = 1  𝑎𝑛𝑑  𝑐𝑜1 = 0. 

The Containment: 

i. If    A ⊆ B  and  C ⊆ D   then   A ∪ C ⊆ B ∪ D. 

ii. If    A ⊆ B  𝑡ℎ𝑒𝑛 A ∩ B = A. 

iii. If    A ⊆ B  𝑡ℎ𝑒𝑛  A ∪ B = B. 
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2.3.4 Generalized Unions and Intersections on Fuzzy Sets [62]: 

The Union of a collection of fuzzy sets is the set that contains those elements that are 

members of at least one set in the collection. 

        ∪𝑖∈I A𝑖: 𝑋 → [0, 1], where x→ 𝑠𝑢𝑝𝑖∈IA𝑖(𝑥), ∀𝑥 ∈ X.                                           (2.9) 

The Intersection of a collection of Fuzzy Sets is the set that contains those elements 

that are members of all the sets in the collection. 

        ∩𝑖∈I A𝑖: 𝑋 → [0, 1], where x→ 𝑖𝑛𝑓𝑖∈IA𝑖(𝑥), ∀𝑥 ∈ X.                                          (2.10) 

2.3.4.1 Definition: 

 The set of all elements that having the degree of membership not equal zero in a 

fuzzy set A is said to be the support of A; and is defined as:  

𝑆𝑢𝑝𝑝(𝐴) = {𝑥: 𝑥 ∈ 𝑋  𝑎𝑛𝑑 A(𝑥) > 0},                                                         (2.11)    

where A ∈ ℱ(X)  𝑎𝑛𝑑  𝑆𝑢𝑝𝑝(A) ∈ P(X). 

 The all elements that having the degree of membership equal one  in a fuzzy set 

A is said to be the support of A; and is defined as: 

 Ker (A) = {𝑥: 𝑥 ∈ 𝑋  𝑎𝑛𝑑 A(𝑥) = 1},                                                          (2.12) 

where A ∈ ℱ(𝑋) 𝑎𝑛𝑑 𝐾𝑒𝑟(A) ∈ P(X).                                                                                            

2.3.4.2 Definition:   (the weak α cut (α  level) ) 

Let 𝐴 be a fuzzy set and α ∈ ]0, 1]  the weak α cut  Aα , is defined as: 

         Aα = {𝑥: 𝑥 ∈ X and A(x) ≥ α, α ∈ ]0, 1]}.                                                       (2.13) 

2.3.4.3 Definition:    (the strong α cut (α  level) ) 

Let A be a fuzzy set and α ∈ [0, 1[ the strong α cut Aα̅ , is defined as: 

        Aα̅ = {𝑥: 𝑥 ∈ X and A(x) > 𝛼, α ∈ [0, 1[}.                                                        (2.14) 

2.3.4.4 Definition: 

For any fuzzy set A ∈ ℱ(𝑋), we may define the following values for the fuzzy set's 

height and regression. 
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             ℎ𝑒𝑖𝑔ℎ𝑡 𝐴 = 𝑠𝑢𝑝𝑥∈𝑋 A(𝑥), 

                (2.15) 

             𝑝𝑙𝑖𝑛𝑡ℎ 𝐴 = 𝑖𝑛𝑓𝑥∈𝑋 A(𝑥).    

2.4 Intuitionistic Fuzzy Sets: 

In real life, the available information is vague, inexact or insufficient, the parameters of 

any problem are usually defined by the decision makers in an uncertain way. Therefore, 

it is desirable to consider the knowledge of experts about the parameters as fuzzy data. 

Out of several higher order fuzzy sets, "Intuitionistic Fuzzy Sets" (in short IFS) [3, 4] 

have been found to be highly useful to deal with vagueness. There are situations where, 

due to insufficiency in the available information, the evaluation of membership values is 

not possible up to our satisfaction. Nevertheless, the evaluation of non-membership 

values is not also always possible and consequently there remains a part in deterministic 

on which hesitation survives. Certainly, IFS theory is more suitable to deal with such 

problem.  

2.4.1 Definition [4]:  

An intuitionistic fuzzy set, 𝐴 in 𝑋, is defined to be a structure of the form:  

A = {〈𝑥, 𝜇𝐴(𝑥), 𝜗𝐴(𝑥)〉: 𝑥 ∈ X}, where the functions 𝜇𝐴: X ⟶ [0, 1] defines the degree 

of membership, and the functions 𝜗𝐴: X ⟶ [0, 1] defines the degree of non-membership 

of the element 𝑥 ∈ X. For every element 𝑥 ∈ X in A the two degrees of membership 〈𝜇𝐴〉 

and non-membership 〈𝜗𝐴〉 of  𝑥  satisfy: 0 ≤ 𝜇𝐴(𝑥) + 𝜗𝐴(𝑥) ≤ 1.                           (2.16)                                                                

When  𝜗𝐴(𝑥) = 1 − 𝜇𝐴(𝑥), the set A is happen to be a fuzzy set; while A is said to be 

intuitionistic fuzzy set if  𝜗𝐴(𝑥) < 1 − 𝜇𝐴(𝑥) ∀𝑥 ∈ X. 

Example 2.4.1: 

Consider an intuitionistic fuzzy set A, with a membership function 𝜇𝐴(𝑥) and non-

membership function 𝜗𝐴(𝑥). For some 𝑥0 ∈ X , if we have that 𝜇𝐴(𝑥0) = 0.7 and 

𝜗𝐴(𝑥0) = 0.1,  then we can interpreted that the element x belongs to the intuitionistic 
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fuzzy set  A by the degree 0.7; and that 𝑥0 does not belong to the intuitionistic fuzzy set 

A by the degree 0.1. 

2.4.2 Operations on Intuitionistic Fuzzy Set [5]: 

In this section we review some basic operations which are defined on the intuitionistic 

fuzzy sets. To commence, we consider A, 𝐵 and 𝐶 to be three intuitionistic fuzzy sets 

defined on the universe set  𝑋. Hence, we have the following operations. 

The Union of Intuitionistic Fuzzy Set: 

The union of two intuitionistic fuzzy sets A and B is defined by: 

            𝐴⋃𝐵 = 〈𝑚𝑎𝑥(𝜇𝐴(𝑥),  𝜇𝐵(𝑥)) , 𝑚𝑖𝑛 ( 𝜗𝐴(𝑥), 𝜗𝐵(𝑥))〉.              

The Intersection of Intuitionistic Fuzzy Set: 

The intersection of two intuitionistic fuzzy sets A and B is defined by: 

            𝐴 ∩ 𝐵 = 〈𝑚𝑖𝑛(𝜇𝐴(𝑥),  𝜇𝐵(𝑥)) , max( 𝜗𝐴(𝑥), 𝜗𝐵(𝑥))〉.             

Complement of Intuitionistic Fuzzy Set: 

The complement of intuitionistic fuzzy sets 𝐴 is given by 

          𝐴𝑐 = {〈𝑥, 𝜗𝐴(𝑥), 𝜇𝐴(𝑥)〉: 𝑥 ∈ 𝑋}.                                   

 𝐴 ≤ 𝐵 ⟺ 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) 𝑎𝑛𝑑  𝜗𝐴(𝑥) ≥ 𝜗𝐵(𝑥)  ∀𝑥 ∈ 𝑋,   

 𝐴 = 𝐵 ⟺ 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) 𝑎𝑛𝑑 𝜗𝐴(𝑥) = 𝜗𝐵(𝑥)   ∀𝑥 ∈ 𝑋. 

2.4.3 Properties of Intuitionistic Fuzzy Set [4]: 

The following are the important properties of intuitionistic fuzzy set:  

The Commutativity of Intuitionistic Fuzzy Set:  A ∪ B = B ∪ A,       A ⋂ B = B ⋂ A. 

Associativity of Intuitionistic Fuzzy Set:     

             A ∪ (B ∪ C) = (A ∪ B) ∪ C,  A ∪ (B ∪ C) = (A ∪ B) ∪ C.                                                                                                                               

Distributivity of Intuitionistic Fuzzy Set: 

             A ∪ (⋂𝑖B𝑖) = ⋂𝑖(A ∪ B𝑖),    A⋂(∪𝑖 B𝑖) = ∪𝑖 (A ∩ B𝑖). 
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Transitivity of Intuitionistic Fuzzy Set:  if  A ⊂ B and B ⊂ C ⇒   A ⊂ C. 

Atanassov himself and many other authors [11, 52] studied different properties in 

intuitionistic fuzzy set. 

2.5 Theory of Neutrosophic Set: 

Several definition for the concept of neutrosophic sets were introduced by authors in 

literature (see for instance [74, 75]). To follow up our work we choose the following 

definition, which define the concepts of two neutrosophic sets; namely, the neutrosophic 

fuzzy sets and the neutrosophic crisp sets [65]; the two concepts are given in the 

following two sections §2.5.1 and §2.5.2, respectively. 

2.5.1 Neutrosophic Sets:  

To commence, we consider a universe of discourse 𝑋, and two neutrosophic fuzzy sets 

𝐴 and 𝐵 of  𝑋.   

The set of all neutrosophic fuzzy sets of the universe 𝑋 is will be denoted by  𝒩(𝑋).    

2.5.1.1 Definition:  

A neutrosophic fuzzy set (simply, neutrosophic set); A neutrosophic set A on               

A ∈ 𝒩(𝑋). is defined as the triple structure: 

A =  〈𝑇𝐴, 𝐼𝐴 , 𝐹𝐴〉, where  𝑇𝐴 , 𝐼𝐴 , 𝐹𝐴 ∶ 𝑋 → [0,1 ].                                                     (2.17) 

Which are the three function that define respectively the degree of membership, the 

degree of indeterminacy, and the degree of non-membership of each element 𝑥 ∈ 𝑋 to 

the set A. From philosophical point of view [74, 75], the neutrosophic set take the 

values from either real standard subset [0, 1] or non-standard subset ]
−
0,1

+
[ i.e.; where 

"1, 0" are standard part and " " its non-standard part; " " be such infinitesimal 

number; In our experiments, we will use the interval [0,1] instead of  the non-standard 

interval ]
−
0,1

+
[; where the interval  ]

−
0,1

+
[ will be difficult to be applied in the real 

applications such as in scientific and engineering problems. 
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2.5.1.2 Definition: 

 The complement of a neutrosophic set A is denoted by Ac 𝑜𝑟 (𝑐𝑜 𝐴), [74] may 

be defined as one of the following two types: ∀𝑥 ∈ 𝑋, 

  Type I:    Ac =  〈𝑇𝐴𝑐 , 𝐼𝐴𝑐  , 𝐹𝐴𝑐〉, where  𝑇𝐴𝑐 , 𝐼𝐴𝑐 , 𝐹𝐴𝑐 ∶ 𝑋 → [0,1 ].    
(2.18)       

  Type II:   Ac =  〈𝐹𝐴,  𝐼𝐴𝑐  , 𝑇𝐴〉, where  𝐹𝐴 , 𝐼𝐴𝑐  , 𝑇𝐴 ∶ 𝑋 → [0,1 ].    

   𝑇𝐴𝑐(𝑥) =  1 −  𝑇𝐴(𝑥),𝐼𝐴𝑐(𝑥) =  1 − 𝐼𝐴(𝑥) and  𝐹𝐴𝑐 (𝑥) =  1 −  𝐹𝐴(𝑥). 

 The neutrosophic empty set of  𝑋, denoted by 0𝒩, may be defined as one of the 

following two types:   

 Type I:    0𝒩 = 〈0  , 0  , 1〉, where 1(𝑥) = 1 𝑎𝑛𝑑  0(𝑥) = 0, ∀𝑥 ∈ 𝑋.          

 (2.19) 

 Type II:   0𝒩 = 〈0  , 1  , 1〉, where 1(𝑥) = 1 𝑎𝑛𝑑  0(𝑥) = 0, ∀𝑥 ∈ 𝑋.           

 The neutrosophic universe set of 𝑋, denoted by 1𝒩, may be defined as one of 

the following two types:  

 Type I:   1𝒩 = 〈1  , 1  , 0〉, where   1(𝑥) = 1 𝑎𝑛𝑑  0(𝑥) = 0, ∀𝑥 ∈ 𝑋.      

 (2.20) 

 Type II:  1𝒩 = 〈1  , 0  , 0〉, where   1(𝑥) = 1 𝑎𝑛𝑑  0(𝑥) = 0, ∀𝑥 ∈ 𝑋.       

2.5.1.3 Definition[63]:  (Containment)  

A neutrosophic set 𝐴 is considered to be contained in another neutrosophic set 𝐵 

denoted by  𝐴 ⊆ 𝐵 according to one of the following two types.   

 Type I: 𝐴 ⊆ 𝐵  if and only if ; 

             𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≤ 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥), ∀ x ∈ 𝑋.               

          (2.21) 

 Type II: 𝐴 ⊆ 𝐵  if and only if ; 

            𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥ 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥), ∀ x ∈ 𝑋.   

2.5.1.4 Definition:  (Intersection) 

The intersection of two neutrosophic sets 𝐴 and 𝐵 is a neutrosophic set                      

C = 〈𝑇𝐶 , 𝐼𝐶  , 𝐹𝐶〉, whose truth membership, indeterminacy membership and falsity 

membership functions are related to those of 𝐴 and 𝐵 by one of the following two type: 
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 Type I:   𝑇𝐶(𝑥) = 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),   𝐼𝐶(𝑥) = 𝑚𝑖𝑛(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), 

                     𝐹𝐶(𝑥) = 𝑚𝑎𝑥(𝐹𝐴(𝑥), 𝐹𝐵(𝑥)).                                            
                                                    (2.22) 

 Type II:   𝑇𝐶(𝑥) = 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),   𝐼𝐶(𝑥) = 𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), 

                    𝐹𝐶(𝑥) = 𝑚𝑎𝑥(𝐹𝐴(𝑥), 𝐹𝐵(𝑥)).  

2.5.1.5 Definition:  (Union) 

Let 𝐴 and 𝐵 are neutrosophic sets, the union of 𝐴 and 𝐵 is a neutrosophic fuzzy sets, 

written as C = 𝑚𝑎𝑥(A, B), where C = 〈𝑇𝐶 , 𝐼𝐶  , 𝐹𝐶〉 , may be defined as two types: 

 Type I:   𝑇𝐶(𝑥) = 𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),   𝐼𝐶(𝑥) = 𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), 

                     𝐹𝐶(𝑥) = 𝑚𝑖𝑛(𝐹𝐴(𝑥), 𝐹𝐵(𝑥)).                                         

(2.23) 

 Type II:   𝑇𝐶(𝑥) = 𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),   𝐼𝐶(𝑥) = 𝑚𝑖𝑛(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), 

                   𝐹𝐶(𝑥) = 𝑚𝑖𝑛(𝐹𝐴(𝑥), 𝐹𝐵(𝑥)).                                                

2.5.1.6 Proposition [64]: 

Let {𝐴𝑖: 𝑖 ∈ 𝐼} be an arbitrary family of neutrosophic sets subsets in 𝑋, then: 

 Intersection  𝐴𝑖  may be defined as the following two types: 

Type I:   ∩𝑖 A𝑖 = 〈𝑚𝑖𝑛𝑖∈𝐼 𝑇𝑖 , 𝑚𝑖𝑛𝑖∈𝐼 𝑇𝑖 , 𝑚𝑎𝑥𝑖∈𝐼 𝑇𝑖〉,                 
     (2.24) 

Type II:   ∩𝑖 A𝑖 = 〈𝑚𝑖𝑛𝑖∈𝐼 𝑇𝑖 , 𝑚𝑎𝑥𝑖∈𝐼 𝑇𝑖 , 𝑚𝑎𝑥𝑖∈𝐼 𝑇𝑖〉.                 

 Union  A𝑖  may be defined as the following two types: 

Type I:   ∪𝑖 A𝑖 = 〈𝑚𝑎𝑥𝑖∈𝐼 𝑇𝑖 , 𝑚𝑎𝑥𝑖∈𝐼 𝑇𝑖 , 𝑚𝑖𝑛𝑖∈𝐼 𝑇𝑖〉,                  
(2.25) 

Type II:   ∪𝑖 A𝑖 = 〈𝑚𝑎𝑥𝑖∈𝐼 𝑇𝑖 , 𝑚𝑖𝑛𝑖∈𝐼 𝑇𝑖 , 𝑚𝑖𝑛𝑖∈𝐼 𝑇𝑖〉.                 

2.5.1.7 Definition: (Strong α cut) 

Let A =  〈𝑇𝐴(𝑥), 𝐼𝐴(𝑥) , 𝐹𝐴(𝑥)〉 be a neutrosophic set of the set 𝑋. For 𝛼 ∈ [0, 1], the α 

cut of  A is fuzzy set A𝛼 defined by as two types: 

         Type I:  A𝛼 = {𝑥: 𝑥 ∈ 𝑋, 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 1 −  𝛼},  

                                                                                                 (2.26) 

         Type II:  A𝛼 = {𝑥: 𝑥 ∈ 𝑋, 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≤ 𝛼, 𝐹𝐴(𝑥) ≤ 1 −  𝛼}. 
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Condition 𝑇𝐴(𝑥) ≥ 𝛼 ensures 𝐹𝐴(𝑥) ≤ 1 −  𝛼 but not conversely. So α cut can be define 

as:  𝐴𝛼 = {𝑥: 𝑥 ∈ 𝑋, 𝐹𝐴(𝑥) ≤ 1 −  𝛼}. 

2.5.1.8 Definition:  (Weak α-cut) 

For a neutrosophic set A =  〈𝑇𝐴(𝑥), 𝐼𝐴(𝑥) , 𝐹𝐴(𝑥)〉; For 𝛼 ∈ [0, 1], the weak α-cut can 

be defined by as two types: 

         Type I: A�̅� = {𝑥: 𝑥 ∈ 𝑋, 𝑇𝐴(𝑥) > 𝛼, 𝐼𝐴(𝑥) > 𝛼, 𝐹𝐴(𝑥) < 1 −  𝛼}, 

(2.27) 

         Type II: A�̅� = {𝑥: 𝑥 ∈ 𝑋, 𝑇𝐴(𝑥) > 𝛼, 𝐼𝐴(𝑥) < 𝛼 , 𝐹𝐴(𝑥) < 1 −  𝛼}. 

 

2.5.1.9 Properties of the Neutrosophic Sets [64, 75]: 

One can easily prove the following properties for any neutrosophic sets A, 𝐵, 𝐶 ∈ 𝒩(𝑋).   

 Idempotency:      A ∩ A = A, A ∪ A = A. 

 Commutativity:  A ∩ B = B ∩ A, A ∪ B = B ∪ A. 

 Associativity:    (A ∩ B) ∩ C  = A ∩ (B ∩ C),            (A ∪ B) ∪ C = A ∪ (B ∪ C). 

 Distributivity:   A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),  

                                        A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). 

 Absorption:      A ∩ (B ∪ A) = A,     A ∪ (B ∩ A) = A. 

 De Morgan's laws: (A ∪ B)c = Ac ∩ Bc,    (A ∩ B)c = Ac ∪ Bc. 

 Involution:     (Ac)𝑐 = A. 

 If A ⊆ B then   Bc ⊆ Ac. 

For instance we will prove the following property:  (A ∪ B)C = AC ∩ BC 

Let 𝐴, 𝐵 ∈ 𝒩(𝑋); A =  〈𝑇𝐴(𝑥), 𝐼𝐴(𝑥) , 𝐹𝐴(𝑥)〉 and 

                              B =  〈𝑇𝐵(𝑥), 𝐼𝐵(𝑥) , 𝐹𝐵(𝑥)〉.  

Type I: (A ∪ B)C(𝑥) = 1 − (A ∪ B)(𝑥)      

     = 1 − 〈 𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),  𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)),  𝑚𝑖𝑛 (𝐹𝐴(𝑥), 𝐹𝐵(𝑥))〉                                  

 = 〈𝑚𝑖𝑛 (𝑇𝐴𝑐(𝑥), 𝑇𝐵𝑐(𝑥)),  𝑚𝑖𝑛 (𝐼𝐴𝑐(𝑥), 𝐼𝐵𝑐(𝑥)),  𝑚𝑎𝑥 (𝐹𝐴𝑐(𝑥), 𝐹𝐵𝑐(𝑥))〉 

      = (Ac ∩ Bc)(𝑥). 
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Type II:  (A ∪ B)C(𝑥) = 1 − (A ∪ B)(𝑥) 

     = 1 − 〈 𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)),  𝑚𝑖𝑛(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)),  𝑚𝑖𝑛 (𝐹𝐴(𝑥), 𝐹𝐵(𝑥))〉  

     = 〈𝑚𝑖𝑛 (𝑇𝐴𝑐(𝑥), 𝑇𝐵𝑐(𝑥)),  𝑚𝑎𝑥 (𝐼𝐴𝑐(𝑥), 𝐼𝐵𝑐(𝑥)),  𝑚𝑎𝑥 (𝐹𝐴𝑐(𝑥), 𝐹𝐵𝑐(𝑥))〉 

      = (Ac ∩ Bc)(𝑥). 

2.5.2 Neutrosophic Crisp Sets: 

A neutrosophic crisp set A on the universe of discourse 𝑋, as defined in [65], is defined as 

a triple structure of the form:  A = 〈𝐴1, 𝐴2 , 𝐴3〉, where 𝐴1 is the set of all elements that 

belong in A, A3 contains the elements that not belong in A; while A2 contains those 

elements which do not belong to neither A1  nor A3. 

2.5.2.1 Definition [64, 65]:  

According to Salama [65], the neutrosophic crisp sets (in short NCSs) are to be 

categorized with respect to its components in to three different classes as follows:  

  (NCSs) class I:      𝐴1 ∩ 𝐴2 = 𝜑,  𝐴1 ∩ 𝐴3 = 𝜑, 𝐴3 ∩ 𝐴2 = 𝜑.  

  (NCSs) class II:    𝐴1 ∩ 𝐴2 = 𝜑,  𝐴1 ∩ 𝐴3 = 𝜑,  𝐴3 ∩ 𝐴2 = 𝜑 and                                    

                                          𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 𝑋.                                  

      (2.28) 

 (NCSs) class III:  𝐴1 ∩ 𝐴2 ∩ 𝐴3 = 𝜑,   𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 𝑋. 

2.5.2.2 Definition [65]: 

Consider a universe of discourse 𝑋, the neutrosophic crisp universal set 𝑋𝑁 and the 

neutrosophic crisp empty set ∅𝑁, are to be defined as follows: 

 ∅𝑁 may be defined as one of the following two types: 

Type I:  ∅𝑁 = 〈∅, ∅, 𝑋 〉, 
(2.29) 

Type II: ∅𝑁 = 〈∅, 𝑋, 𝑋 〉. 

 𝑋𝑁 may be defined as one of the following two types: 

Type I:  𝑋𝑁 = 〈 𝑋, 𝑋, ∅〉, 
(2.30) 

Type II:  𝑋𝑁 =  〈 𝑋, ∅, ∅〉. 
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2.5.2.3 Definition [65]: 

Let A =  〈𝐴1, 𝐴2 , 𝐴3〉 be a NCSs in 𝑋, then the complement of the set A (𝐴𝑐 𝑜𝑟 (𝑐𝑜A)) 

may be defined as one of the following two types: 

Type I:  𝑐𝑜A =  〈𝑐𝑜A1, 𝑐𝑜A2 , 𝑐𝑜A3〉, 
(2.31) 

Type II:  𝑐𝑜A =  〈A3, 𝑐𝑜A2 , A1〉. 

2.5.2.1 Example: consider a universe of discourse 𝑋 = {a, b, c, d, e, f}, and two 

neutrosophic crisp sets  A = 〈{𝑎, 𝑏, 𝑐, 𝑑}, {𝑒}, {𝑓}〉 and 𝐵 = 〈{𝑎, 𝑏, 𝑐}, ∅, {𝑑, 𝑒}〉 

We can deduce the following: 

 The complement of A: 

            Type I:    𝑐𝑜A = 〈{𝑒, 𝑓}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑓}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}〉, 

            Type II:    𝑐𝑜A = 〈{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑓}, {𝑒, 𝑓}〉. 

 The complement of 𝐵: 

     Type I:    𝑐𝑜𝐵 = 〈{𝑑, 𝑒, 𝑓}, X, {𝑎, 𝑏, 𝑐, 𝑓}〉, 

           Type II:  𝑐𝑜𝐵 = 〈{𝑎, 𝑏, 𝑐, 𝑓}, X, {𝑑, 𝑒, 𝑓}〉. 

2.5.2.4 Definition:  

For any non-empty set X, and any two  NCSs 𝐴, B; A = 〈𝐴1 , 𝐴2 , 𝐴3〉,𝐵 = 〈𝐵1 , 𝐵2 , 𝐵3〉, 

we may consider two possible types for containment 𝐴 ⊆ 𝐵.   

        Type I:    A ⊆ 𝐵 ⟺ 𝐴1 ⊆ 𝐵1, 𝐴2 ⊆ 𝐵2 𝑎𝑛𝑑 𝐴3 ⊇ 𝐵3, 

(2.32) 

 Type II:    A ⊆ 𝐵 ⟺ 𝐴1 ⊆ 𝐵1, 𝐴2 ⊇ 𝐵2 𝑎𝑛𝑑 𝐴3 ⊇ 𝐵3. 

2.5.2.5 Definition [65]:  

For any non-empty set X, and any two  NCSs 𝐴, B; A = 〈𝐴1 , 𝐴2 , 𝐴3〉,𝐵 = 〈𝐵1 , 𝐵2 , 𝐵3〉, 

we me define basic two set operations as following: 

 The Intersection A, 𝐵 may be defined as one of the following: 

Type I:    A ∩ 𝐵 = 〈𝐴1 ∩ 𝐵1, 𝐴2 ∩ 𝐵1 , 𝐴3 ∪ 𝐵1〉,  
(2.33) 

Type II:    A ∩ 𝐵 = 〈𝐴1 ∩ 𝐵1, 𝐴2 ∪ 𝐵1 , 𝐴3 ∪ 𝐵1〉. 
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 The Union A, 𝐵 may be defined as one of the following: 

Type I:    A ∪ 𝐵 = 〈𝐴1 ∪ 𝐵1, 𝐴2 ∪ 𝐵1 , 𝐴3 ∩ 𝐵1〉,  
(2.34) 

Type II:    A ∪ 𝐵 = 〈𝐴1 ∪ 𝐵1, 𝐴2 ∩ 𝐵1 , 𝐴3 ∩ 𝐵1〉. 

2.5.2.1 Proposition [65]: 

Let {𝐴𝑖: 𝑖 ∈ 𝐼} be an arbitrary family of Neutrosophic Crisp subsets in 𝑋, then: 

 ∩𝑖 A𝑖 may be defined as the following two types: 

Type I:    ∩𝑖 A𝑖 = 〈∩𝑖 𝐴1
𝑖
 ,∩𝑖 𝐴2

𝑖  ,∪𝑖 𝐴3
𝑖
〉,   

(2.35) 

Type II:    ∩𝑖 A𝑖 = 〈∩𝑖 𝐴1
𝑖
 ,∪𝑖 𝐴2

𝑖 ,∪𝑖 𝐴3
𝑖
〉.   

 ∪𝑖 A𝑖 may be defined as the following two types: 

Type I:    ∪𝑖 A𝑖 = 〈∪𝑖 𝐴1
𝑖
 ,∪𝑖 𝐴2

𝑖  ,∩𝑖 𝐴3
𝑖
〉, 

(2.36) 

Type II:    ∪𝑖 A𝑖 = 〈∪𝑖 𝐴1
𝑖
 ,∩𝑖 𝐴2

𝑖 ,∩𝑖 𝐴3
𝑖
〉. 

2.5.2.2 Example: consider a universe of discourse 𝑋 = {a, b, c, d, e, f} and two 

neutrosophic crisp sets A = 〈{𝑎, 𝑏, 𝑐, 𝑑}, {𝑒}, {𝑓}〉 and 

 𝐵 = 〈{𝑎, 𝑏, 𝑐}, ∅, {𝑑, 𝑒}〉. 

 The Union of A and 𝐵,                             

    Type I:     A ∪ 𝐵 = 〈{𝑎, 𝑏, 𝑐, 𝑑}, {𝑒}, ∅〉, 

          Type II:   A ∪ 𝐵 = 〈{𝑎, 𝑏, 𝑐, 𝑑}, ∅, ∅〉. 

 The Intersection of A and 𝐵                             

    Type I:    A ∩ 𝐵 = 〈{𝑎, 𝑏, 𝑐}, ∅, {𝑑, 𝑒, 𝑓}〉, 

    Type II:   A ∩ 𝐵 = 〈{𝑎, 𝑏, 𝑐}, {e}, {𝑑, 𝑒, 𝑓}〉. 

2.5.2.6 Properties of the Neutrosophic Crisp Sets [64, 75]: 

One can easily prove the following properties for any neutrosophic crisp sets  

A, 𝐵 and 𝐶 ∈ 𝒩𝐶(𝑋). 

 Idempotency:        A ∩ A = A, A ∪ A = A. 

 Commutativity:    A ∩ B = B ∩ A, A ∪ B = B ∪ A. 
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 Associativity:    (A ∩ B) ∩ C  = A ∩ (B ∩ C),   

                                 (A ∪ B) ∪ C = A ∪ (B ∪ C). 

 Distributivity:    A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),  

                                            A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). 

 Absorption:        A ∩ (B ∪ A) = A,     A ∪ (B ∩ A) = A. 

 De Morgan's laws:  (A ∪ B)c = Ac ∩ Bc,    (A ∩ B)c = Ac ∪ Bc. 

 Involution:          (Ac)𝑐 = A. 

 If A ⊆ B then  Bc ⊆ Ac. 

For instance we will prove the following property: 

Let A, B ∈ 𝒩(𝑋),   A = 〈𝐴1,  𝐴2, 𝐴3〉 and  𝐵 = 〈𝐵1,  𝐵2,  𝐵3〉. 

Type I:   (A ∩ B)(𝑥) = 〈𝑇𝐴(𝑥) ∩ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ∩ 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ∪ 𝐹𝐵(𝑥)〉  

                                  = 〈𝑇𝐵(𝑥) ∩ 𝑇𝐴(𝑥), 𝐼𝐵(𝑥) ∩ 𝐼𝐴(𝑥), 𝐹𝐵(𝑥) ∪ 𝐹𝐴(𝑥)〉 

                                  = (B ∩ A)(𝑥).        

Type II:   (A ∩ B)(𝑥) = 〈𝑇𝐴(𝑥) ∩ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ∪ 𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ∪ 𝐹𝐵(𝑥)〉  

                                    = 〈𝑇𝐵(𝑥) ∩ 𝑇𝐴(𝑥), 𝐼𝐵(𝑥) ∪ 𝐼𝐴(𝑥), 𝐹𝐵(𝑥) ∪ 𝐹𝐴(𝑥)〉 

                                    = (B ∩ A)(𝑥).     

2.5.2.1 Corollary [65]: 

Let A, B and C be are neutrosophic sets in 𝑋, then:  

 If A ⊆ B  and C ⊆ D  then A ∪ C ⊆ B ∪ D  and A ∩ C ⊆ B ∩ D.  

 If A ⊆ B  and A ⊆ C  then A ⊆ B ∩ C.  

 If A ⊆ C  and B ⊆ C  then A ∪ B ⊆ C.   

 If A ⊆ B  and  B ⊆ C  then A ⊆ C. 
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2.6 Image as a Mathematical Object: 

As a real life application for sets, we will consider the images. Mathematically, the 

image is considered as a set of pixels; The image as mathematical object in the 

Cartesian Domain, represented by an 𝑚 × 𝑛  matrix; 𝐼 = [𝑔(𝑖, 𝑗)]𝑚×𝑛, with entities 

𝑔(𝑖, 𝑗) corresponding to the intensity to the given pixel located at the node (𝑖, 𝑗). The 

original color image shown in Fig.2.1. 

   
                                               a)                                      b) 

Fig. 2.1: a) Original "duck" image   b)original "Lena" image  

   

2.6.1 Binary Image[66]:  

The value of a pixel of a binary image is either 1 or 0 depending on whether the pixel 

belongs to the foreground or to the background. In practice, images are defined over a 

rectangular frame called the definition domain of the image. The definition domain is 

often referred to as the image plane (it is actually a plane for 2-D images). Fig. 2.2, 

shows an example for a binary image with foreground pixels in white and background 

pixels in black; using the built in binary function in matlab.  

    
                                                     a)                                        b) 

Fig. 2.2: a) Binary "Duck" image   b) binary "Lena" image 
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2.6.2. Greyscale Image [80]: 

A grayscale image is to be considered as a function 𝑔(𝑖, 𝑗), where 𝑖 and 𝑗 define the 

spatial (plane) coordinates, and the value of 𝑔 at any pixel with coordinates (𝑖, 𝑗) is 

called the intensity of the image at that pixel. For the grayscale image, The range of the 

values of the function 𝑔(𝑖, 𝑗) is not restricted to the two values, 0 and 1; as in the case of 

the binary image, but it is extended to a wider finite set of non-negative integers, 

starting from 0 to 255. 

  
a)                                  b) 

Fig. 2.3: a) Grayscale "Duck" image  b) grayscale "Lena" image 

 

2.6.3 Fuzzy Image [48]: 

With the concept of fuzziness, a fuzzy image is a function that assigns to each pixel a 

value of membership denoting how much it belongs to the white set. Whereas, the 

values of the intensity of each pixel in the grayscale image ranges from 0 to 255, the 

membership degrees in the fuzzy image are to be expected in the interval [0, 1].one of 

the most used methods to compute the membership degrees is to normalize the values of 

the intensity of each pixel. Fig.2.4, we will use the fuzzy image show in Fig.2.4(b); 

which is deduced form the original color image shown in Fig.2.4(a). we used the matlab 

to get fuzzy image.    
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a)                                        b) 

Fig. 2.4: a) Fuzzy "Duck" image   b) fuzzy "Lena" image 

 

2.6.3.1 Implementation and Experimental Results: 

We use the following algorithm to transform the image into fuzzy image. 

1. Read the gray scale image . 

2. Compute the maximum intensity values for each pixel in image. 

3. Normalize the intensity of each pixel with respect to the maximum value 

𝑔(𝑖,𝑗)

𝑚𝑎𝑥 (𝑔(𝑖,𝑗))
 ; computed in the previous step. 

4. Construct to the matrix 𝜇(𝑥). 

2.6.4 Neutrosophic Image: 

The image in the neutrosophic domain each pixel of the image is represented by three 

values.  

2.6.4.1 The Image in the Neutrosophic Domain [17, 25]:  

Mathematically, a gray image is represented by an 𝑚 × 𝑛 array 𝐼𝑚 = [𝑔(𝑖, 𝑗)]𝑚×𝑛 with 

entities 𝑔(𝑖, 𝑗) corresponding to the intensity of the pixel located at (𝑖, 𝑗). In this section 

we are transforming the image 𝐼𝑚 into neutrosophic domain using three membership 

functions 𝑇, 𝐼 and 𝐹 [25]. A pixel 𝑝(𝑖, 𝑗) in the image is described by a triple 

(𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)). where 𝑇(𝑖, 𝑗) is the membership degree of the pixel in the white 

set, and 𝐹(𝑖, 𝑗) is its membership degree in the non-white (black) set; while 𝐼(𝑖, 𝑗) is 

how much it is neither white nor black the values of 𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗) and 𝐹(𝑖, 𝑗) are 

defined as follows:   
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  𝑇(𝑖, 𝑗) =
�̅�(𝑖,𝑗)−�̅�𝑚𝑖𝑛

�̅�𝑚𝑎𝑥 −�̅�𝑚𝑖𝑛
 ,                       

  𝐼(𝑖, 𝑗) =
𝛿(𝑖,𝑗)−𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥−𝛿𝑚𝑖𝑛
 ,                                                                                                    (2.1)    

  𝐹(𝑖, 𝑗) = 1 − T (i, j) =  
�̅�𝑚𝑎𝑥−�̅�(𝑖,𝑗) 

�̅�𝑚𝑎𝑥 −�̅�𝑚𝑖𝑛
 .                                                                          

Where �̅�(𝑖, 𝑗) =
1

𝜔×𝜔
∑ ∑ 𝑔(𝑚, 𝑛)

𝑛=𝑗+
𝜔

2

𝑛=𝑗−
𝜔

2

𝑚=𝑖+
𝜔

2

𝑚=𝑖−
𝜔

2

 is the mean intensity in some 

neighborhood 𝜔 of the pixel and 𝛿(𝑖, 𝑗) is the homogeneity value computed by the 

absolute value of difference between the intensity and its local mean value          

𝛿(𝑖, 𝑗) = 𝑎𝑏𝑠(𝑔(𝑖, 𝑗) − �̅�(𝑖, 𝑗)),  �̅�𝑚𝑎𝑥 =  𝑚𝑎𝑥 �̅�(𝑖, 𝑗),  �̅�𝑚𝑖𝑛 = 𝑚𝑖𝑛 �̅�(𝑖, 𝑗), 

𝛿𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝛿(𝑖, 𝑗) and  𝛿𝑚𝑖𝑛 = 𝑚𝑖𝑛 𝛿(𝑖, 𝑗). 

Hence, in the neutrosophic domain the image becomes a 3D matrix 𝐼𝑚𝑁𝐷 =

[𝑇𝑖𝑗    𝐼𝑖𝑗    𝐹𝑖𝑗], with dimensions 𝑚 × 𝑛 × 3.  

2.6.4.1.a Implementation and Experimental Results: 

We use the following algorithm to transform the image into neutrosophic domain. 

1. Read the gray scale image.  

2. Compute the local mean intensity for each pixel in image. 

3. Compute the maximum and minimum values of the local. mean 

intensites. 

4. Compute the divergence between the intensity of each. pixel and its 

local mean intensity. 

5.  Compute the maximum and minimum values of the divergence 

induced in the previous step. 

6. Construct the matrix T,the truth valu of each pixel. 

7. Construct the indeterminate matrix I. 

8. Construct the falssness matrix F. 
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Fig.2.5(i): Neutrosophic "Duck" image 〈𝑇𝐴, 𝐼𝐴 , 𝐹𝐴〉 respectively 

                 
Fig.2.5(ii): Neutrosophic "Lena" image 〈𝑇𝐴, 𝐼𝐴 , 𝐹𝐴〉 respectively 

2.6.4.2 Neutrosophic Crisp Image: 

Let  𝑋 be a non-empty fixed Set, a neutrosophic crisp set 𝐴, can be defined as a triple of 

the form 〈𝐴1, 𝐴2, 𝐴3〉,  where 𝐴1, 𝐴2𝑎𝑛𝑑 𝐴3 are crisp subsets of 𝑋. The three 

components represent a classification of the elements of the space 𝑋 according to some 

event A; the subset 𝐴1contains all the elements of 𝑋 that are supportive to A , 𝐴3 

contains all the elements of 𝑋 that are against A, and  𝐴2 contains all the elements of 𝑋 

that stand in a distance from being with or against A. Consequently, every crisp event A 

in 𝑋 can be considered as a NCS having the form:  𝐴 = 〈𝐴1 , 𝐴2 , 𝐴3〉. The set of all 

Neutrosophic Crisp Sets of  𝑋 will be denoted by 𝒩𝐶(𝑋). 

                
Fig.2.5(i): Neutrosophic crisp "Duck" image: 〈𝐴1, 𝐴2, 𝐴3〉 respectively 
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Fig.2.5(ii): Neutrosophic crisp "Lena" image: 〈𝐴1, 𝐴2, 𝐴3〉 respectively 

 

2.7 Conclusion:  

In this chapter, the theory on crisp sets, the basic ideas of the fuzzy sets, intuitionistic 

sets and neutrosophic sets were discussedin detail in this chapter. The laws and 

properties of  fuzzy sets are introduced along with that of the crisp sets. Neutrosophic 

operations inherit properties and restrictions of fuzzy sets. We review the definitions of 

the crisp sets with binary image, we will use the fuzzy image its depended on fuzzy set; 

where we introduce neutrosophic image and neutrosophic crisp image.  
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Chapter 3 

 Mathematical Morphology 

3.1 Introduction: 

In late 1960's, a relatively separate part of image analysis was developed; eventually 

known as "The Mathematical Morphology". Mostly, it deals with the mathematical 

theory of describing shapes using the concept of sets in order to extract meaningful 

information's from images; MM refers to a branch of nonlinear image processing and 

analysis developed initially by Georges Matheron and Jean Serra [47, 68], that 

concentrates on the geometric structure within an image. It has developed from binary 

morphology to grayscale morphology, in order to handle binary and grayscale images. 

Its basic idea is to measure corresponding shape in image using some structure element 

with certain shape to analyze image and recognize object. Dilating and eroding are two 

basic operations of MM. These two operations can make up of some compound 

operations, and bring some practical morphology algorithm. An image can be 

represented by a set of pixels. A morphological operation uses two sets of pixels, i.e., 

two images: the original data image to be analyzed and a structuring element which is a 

set of pixels constituting a specific shape.  

The Remaining of This Chapter is Structured as Follows: 

In § 3.2 we review the shape of the structure element introducing the basic concept of 

the binary morphological operators (binary dilation, binary erosion, binary opening and 

binary closing). The properties of several morphological filters; (different definition of 

boundary and hat filter) are defined in § 3.3. In § 3.4 we introduce the basic operations 

of grayscale morphology, namely the dilation, erosion, opening and closing. A revision 

of the concepts of fuzzy morphological operations, and a study of its algebraic 

properties, as well as some fuzzy morphological filters are to be presented in §3.5. 
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3.2 Structuring Element [31, 68]: 

Morphological techniques probe an image with a small shape or template called a 

structuring element (SE); is simply a binary image, i.e. a small matrix of pixels, each 

with a value of 0 or 1. The matrix dimensions specify the size of SE. The SE is 

positioned at all possible locations in the image and it is compared with the 

corresponding neighborhood of pixels. Some operations test whether the element "fits" 

within the neighborhood, while others test whether it "hits" or intersects the 

neighborhood. Examples of SE: shaded square denotes a member of the SE The origins 

of SEs are marked by a black dot. When working with images, SE should be 

rectangular: append the smallest number of background elements. 

 

Fig 3.1: shape of the structuring element 

3.3 Binary Morphology [72]:  

In this section, we review the definitions of the classical binary morphological operators 

as given by Heijmans [31]; which are consistent with the original definitions of the 

Minkowski addition and subtraction [26]. For the purpose of visualizing the effect of 

these operators, we will use the binary image show in Fig.2.2. 

3.3.1 Basic Binary Morphology Operations: 

In this section we briefly review the basic morphological operations, the dilation, the 

erosion, the opening and the closing. 
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3.3.1.1 Binary Dilation: (Minkowski addition) 

Dilation is one of the basic operations in mathematical morphology, which originally 

developed for binary images [49, 77]. The dilation operation uses a structuring element 

for exploring and expanding the shapes contained in the input image. In binary 

morphology, dilation is a shift-invariant (translation invariant) operator, strongly related 

to the Minkowski addition. For any Euclidean space E and a binary image A in E, the 

dilation of A by some structuring element B is defined by: A⨁B =  ∪b∈B Ab where Ab is 

the translate of the set A along the vector b, i.e., Ab= {a + b ∈ E|a ∈ A , b ∈ B}. The 

dilation is commutative and may also be given by:  

A⨁B = B⨁A =  ∪a∈A Ba.                                                                                           (3.1) 

                     
          a)                                        b)                                          c) 

Fig. 3.2: Dilation binary image:    a) Binary image    b) Dilation with SE(3)   

c) Dilation with SE(7) 
 

An interpretation of the dilation of A by B can be understood as, if we  put a copy of  𝐵 

at each pixel in A and union all of the copies, then we get A⨁B. The dilation can also be 

obtained by: A⨁B =  {b ∈ E |(−B) ∩ A ≠ ∅}, where (–B) denotes the reflection of  B, 

that is, −B = {x ∈ E|−x ∈ B}. the reflection satisfies the following property: 

−(A⨁B) = (−A)⨁(−B).                                                                                            (3.2)                                                                                      

 
     Fig. 3.3: Translation 

https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Binary_images
https://en.wikipedia.org/wiki/Structuring_element
https://en.wikipedia.org/wiki/Translational_invariance
https://en.wikipedia.org/wiki/Minkowski_addition
https://en.wikipedia.org/wiki/Dilation_%28morphology%29
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          Fig. 3.4: Reflection 

Example 3.1: This illustrates an instance of the dilation operation. The coordinate 

system we use for all the examples in the next few sections is (row, column).              

A= {(0, 1),  (1,1),  (2,1), (2,2), (3,0)},     B = {(0,0) , (0,1)} 

 

  

  

   

                      A                               B                                                           𝐴 ⊕ 𝐵 

𝐴 ⊕ 𝐵 ={(0, 1), (0,2),  (1,1),  (2,1), (3,1), (2,2), (3,0), (1,2), (2,3)}.     

In morphological dilation, the roles of the sets A and B are symmetric, that is, the 

dilation operation is commutative because addition is commutative [30]. 

3.3.1 Definition: Let A be a subset of  E
N
 and x e E

N
. The translation of  A  by  b  is 

denoted by  Ab and is defined by: Ab = {a + b ∈ E|a ∈ A , b ∈ B}.                           (3.3) 

Example 3.2: this illustrates of translation. 

A= {(0, 1),  (1,1),  (2,1), (2,2), (3,0)},      b = (0,1). 

 

  

  

   

                              A                                                                A{0,1}                                           

A𝑏 ={ (0,2), (1,2), (2,2), (2,3), (3,1)}.     

 

 

   ⟷ 

    
    

    

    

   ⟷ 

    

     

    

    

 ⟷ 

   ⟷ 

    
    

    

    

             ⟷ 
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3.3.1.2 Binary Erosion: (Minkowski subtraction) 

Strongly related to the Minkowski subtraction, the erosion of the binary image A by the 

SE B is defined by: A ⊖ B =  ⋂b∈B A−b.                                                                    (3.4)   

Unlike dilation, erosion is not commutative, much like how addition is commutative 

while subtraction is not [30, 47]. An interpretation for the erosion of 𝐴 by B can be 

understood as, if we again put a copy of B at each pixel in 𝐴, this time we count only 

those copies whose translated structuring elements lie entirely in 𝐴; hence A ⊖ B is all 

pixels in A that these copies were translated to. The erosion of A by some structuring 

element B is defined by: A ⊖ B =  {p ∈ E |Bp ⊆ A}, where Bp is the translation of B  

by the vector  p,  i.e., Bp =  {b + p ∈ E |b ∈ B}, ∀ p ∈ E.                                        (3.5) 

                                   
a)                                          b)                                         c) 

Fig. 3.5: Erosion binary image:    a) Binary image     b) Erosion with SE(3)   

c) Erosion with SE(7) 

3.3.2 Definition: The erosion of 𝐴 by 𝐵 is denoted by 𝐴 ⊖ 𝐵 and is defined by: 

𝐴 ⊖ 𝐵 = {𝑥 ∈ 𝐸𝑁|𝑥 + 𝑏 ∈ 𝐴 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑏 ∈ 𝐵}. 

Example 3.3: this illustrates an instance of erosion. 

A = {(1, 0),  (1, 1),  (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (3, 1), (4, 1), (5, 1)},     

B = {(0,0), (0,1)}.        𝐴 ⊖ 𝐵 ={(1, 0),  (1,1),  (1,2), (1,3), (1,4)}.  

 

  

  

   

                                                                           

              𝐴                                               𝐵                                               𝐴 ⊖ 𝐵         

     ⟷ 

        
      

      

      

      

     ⟷ 

      
      

      

      

      
 ⟷ 

https://en.wikipedia.org/wiki/Minkowski_addition
https://en.wikipedia.org/wiki/Erosion_%28morphology%29


Chapter 3                                                              Mathematical Morphology 

 

 

33 

Erosion does not possess the commutative property. Some erosion equivalent terms are 

"shrink" and "reduce".  Erosion of an image A by a SE B is the intersection of all 

translations of A by the points -b, where  b ∈ B. 

3.3.1.3 Binary Opening [49]:  

The opening of A by B is obtained by the erosion of A by B, followed by dilation of the 

resulting image by B: A ∘ B  =  (A ⊖ B) ⊕ B.               (3.6)   

The opening is also given by A ∘ B =  ∪B𝑥⊆A B𝑥, which means that, an opening can be 

consider to be the union of all translated copies of the SE element that can fit inside the 

object. Generally, openings can be used to remove small objects and connections 

between objects. 

                                          
                    a)                                            b)                                        c) 

Fig.3.6: Opening binary image:     a) Binary image    b) Opening image with SE(3)   

c) Opening image with SE(7) 

 

3.3.1.4 Binary Closing [28]: 

The closing of A by 𝐵 is obtained by the dilation of A by 𝐵, followed by erosion of the 

resulting structure by B: A •  B =   (A ⊕ B) ⊖ B.                                                     (3.7)   

 The closing can also be obtained by  A •  B = (Ac ∘ (−B))c, where Ac denotes the 

complement of A relative to E (that is, Ac = {a ∈ E |a ∉ A}). Whereas opening removes 

all pixels where the SE won't fit inside the image foreground, closing fills in all places 

where the SE will not fit in the image background, that is opening removes some 

objects. all objects, while closing removes small holes. 

https://en.wikipedia.org/wiki/Opening_%28morphology%29
https://en.wikipedia.org/wiki/Closing_%28morphology%29
https://en.wikipedia.org/wiki/Complement_%28set_theory%29
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        a)                                    b)                                        c) 

Fig. 3.7: Closing binary image:   a) Binary image    b) Closing image with SE(3)   

c) Closing image with SE(7) 

3.3.2 Properties of Binary Operations: 

Here are some properties of the basic binary morphological operations (dilation, 

erosion, opening and closing [47]). We define the power set of  𝑋, denoted by 𝑃(𝑋), to 

be the set of all crisp subset of 𝑋. For all  A, 𝐵 and 𝐶 ∈ P(X), the following properties 

hold: 

3.3.2.1 Properties of Binary Dilation: 

 Commutative:   A⨁B = B⨁A. 

 Associative:     (A⨁B)⨁C = A⨁(B⨁C). 

 Extensive:         A ⊆ (A ⊕ B)    if    0 ∈ B. 

 Increasing:       A ⊆ B ⟹ (A ⊕ C) ⊆ (B ⊕ C). 

 Commutes with union, not with intersection: 

                        (A ∪ C) ⊕ B = (A ⊕ B) ∪ (C ⊕ B). 

 Commutativity of dilation:   A ⊕ (C ∪ B) = (A ⊕ C) ∪ (A ⊕ B), 

                                                     (A⋂C) ⊕ B ⊆ (A ⊕ B)⋂(C ⊕ B), 

                                                     A ⊕ (C⋂B) ⊆ (A ⊕ C)⋂(A ⊕ B). 

 Iterativity property:           (A ⊕ B) ⊕ C  = A ⊕ (B ⊕ C). 

 

 

 



Chapter 3                                                              Mathematical Morphology 

 

 

35 

3.3.2.2 Properties of Binary Erosion [72]: if B contains the origin, that is; 

 Duality of erosion and dilation with respect to complementation: 

      A ⊕  B = (Ac ⊖ (−B))c,   and  A ⊖  B = (Ac ⊕ (−B))
c
. 

 Anti-extensive:   A ⊖ B ⊆ A,  if B contains the origin, that is, 0 ∈ b. 

 Increasing:         A ⊆ B ⟹ (C ⊖ A) ⊇ (C ⊖ B). 

 Commutes with intersection, not with union: 

                              (A⋂C) ⊖ B = (A ⊖ B)⋂(C ⊖ B), 

                              (A⋃C) ⊖ B ⊇ (A ⊖ B)⋂(C ⊖ B), 

                                A ⊖ (B ∩ C) ⊇ (A ⊖ B) ∪ (A ⊖ C), 

                          A ⊖ (B⋃C) = (A ⊖ B)⋂(A ⊖ C). 

 Iterativity property:   (A ⊖ B) ⊖ C  = A ⊖ (B ⊕ C). 

3.3.2.3 Properties of Binary Opening and Closing [20]: 

 A ⊕ B = (A ⊕ B) ∘ B = (A •  B) ⊕ B. 

 (A •  B) •  B = A •  B. 

 A ⊖ B = (A ∘ B) ⊖ B = (A ⊖  B) • B. 

 (A ∘  B) ∘  B = A ∘  B. 

 A ∘  B ⊆  A ⊆ A •  B. 

 Increasing:  if A ⊆  B then A ∘  C ⊆ B ∘  C. 

 Increasing:  if A ⊆  B then A •  C ⊆ B •  C. 

 Opening and closing satisfy the duality that is: 

     A •  B = (Ac ∘ (−B))c,  and   A ∘  B = (Ac • (−B))
c
. 

3.3.3 Algebraic Properties Crisp Mathematical Morphology [20, 21]: 

 In this section, we review some of the algebraic properties of the crisp erosion and crisp 

dilation, as well as the crisp opening and crisp closing operator. 
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3.3.3.1 Properties of the Crisp Dilation [29, 31]: 

Proposition 3.3.1:      A⨁B = B⨁A  

                                    A⨁B = {C|C = a + b for a ∈ A, b ∈ B} 

 = {C|C = b + a for a ∈ A, b ∈ B}   = B⨁A. 

Proposition 3.3.2:   A ⨁(B ⨁C) = (A ⨁B) ⨁C. 

Proof: X ∈ A⨁(B ⨁C) if and only if there exists a ∈ A, b ∈ B and c ∈ C such that  X =

a + (b + c), X ∈ A ⨁ (B ⨁C), if and only if there exists a ∈ A, b ∈ B  and c ∈ C such 

that; X = (a + b) + c but a + (b + c) = (a + b) + c, since addition is associative, 

Therefor,   A⨁(B⨁C) = (A⨁B)⨁C.                                                                           (3.8) 

Proposition 3.3.3: (Dilation is Increasing) 

A ⊆ B implies A ⊕ D ⊆ B ⊕ D. 

Proof: Suppose A ⊆ B. Let 𝑥 ∈ A ⊕ D. Then for some a ∈ A and d ∈ D, 

𝑥 = 𝑎 + 𝑑. Since a ∈ A and  A ⊆ B, a ∈ B; But a ∈ B and d ∈ D  implies 𝑥 ∈ B ⊕ D. 

Proposition 3.3.4: 

 (A ∩ B) ⊕ C ⊆ (A ⊕ C) ∩ (B ⊕ C).                                                          

                                                                                                                      

 A ⊕ (B ∩ C) ⊆ (A ⊕ B) ∩ (A ⊕ C).                                                             

Proof: Suppose b ∈ (A ∩ B) ⊕ C. Then for some y ∈ A ∩ B and c ∈ C, a = 𝑦 + 𝑐.  

Now  y ∈ A ∩ B  implies  y ∈ A and y ∈ B. But  y ∈ A, c ∈ C and a = 𝑦 + 𝑐 implies 

a ∈ A ⊕ B, y ∈ B, c ∈ C and a = 𝑦 + 𝑐 implies a ∈ B ⊕ A. Hence (A ⊕ C) ∩ (B ⊕ C),  

A ⊕ (B ∩ C) ⊆ (A ⊕ B) ∩ (A ⊕ C). 

3.3.3.2 Properties of the Crisp Erosion : 

Proposition 3.3.6: A ⊖ B =  ⋂b∈B A−b. 

Proof: Let 𝑥 ∈ A ⊖ B, Then for every b ∈ B, 𝑥 + b ∈ A, But 𝑥 + b ∈ A implies  

𝑥 ∈ A−b. Hence for every  b ∈ B, 𝑥 ∈ A−b. This implies 𝑥 ∈ ⋂b∈B A−b. 
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Let ⋂b∈B A−b; Then for every b ∈ B, 𝑥 ∈ A−b. Hence, for every b ∈ B, 𝑥 + b ∈ A. Now 

by definition of erosion 𝑥 ∈ A ⊖ B. 

Proposition 3.3.7:  (Erosion is increasing) 

 A ⊆ B  implies  A ⊖ K ⊆ B ⊖ K. 

Proof: Let 𝑥 ∈ A ⊖ K, Then 𝑥 + K ∈ A, every k ∈ K. but A ⊆ B. Hence, 𝑥 + k ∈ A  for 

every  k ∈ K.  By definition of erosion, 𝑥 ∈ B ⊖ K. creasing property of erosion [61, 

62]. On the other hand, if A and B are SE and B is contained in A, then the erosion of an 

image D by A is necessarily more severe than erosion by B, that is, D eroded by A will 

necessarily be contained in D eroded by B. 

Proposition 3.3.8: A ⊇ B implies D ⊖ A ⊆ D ⊖ B. 

Proof: Let 𝑥 ∈ D ⊖ A. Then 𝑥 + a ∈ D for every  a ∈ A  But  B ⊆ A. Hence, 𝑥 + a ∈ D  

for every a ∈ B. Now by definition of erosion, 𝑥 ∈ D ⊖ B. The dilation and erosion 

transformations bear a marked similarity, in that what one does to the image foreground 

the other does to the image background. Indeed, their similarity can be formalized as a 

duality relationship. Recall that two operators are dual when the negation of a 

formulation employing the first operator is equal to that formulation employing operator 

on the negated variables. An example is De Morgan's law, illustrating the duality of 

union and intersection (A ∪ B)c = Ac ∩ Bc.  

3.3.1 Definition:  Let B ∈ E
N
.  The reflection of B is denoted (–B) that is                 

−B = {𝑥 ∈ E|−𝑥 ∈ B}.                                                                                                (3.9)   

The reflection occurs about the origin. Matheron [47] refers to (-B) as "the symmetrical 

set of  B with respect to the origin".  Serra [69] refers to B as " B transpose". the duality 

of Dilation and Erosion employs both logical and geometric negation because of the 

different roles of the image and the SE in an expression employing these morphological 

operators.  
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Theorem 3.3.1: ( Erosion Dilation Duality) 

(A ⊖  B)c = Ac ⊕ (−B).                                                                                          (3.10) 

Proof:  𝑥 ∈ (A ⊖  B)c if and only if  𝑥 ∉ A ⊖  B. 𝑥 ∉ A ⊖  B if and only if there exists 

𝑏 ∈ B such that 𝑥 + b ∉ A.  There exists b ∈ 𝐵 such that 𝑥 + b ∈ Ac.  if and only if 

there exists 𝑏 ∈ B such that 𝑥 ∈ (Ac
)-b. There exists b ∈ Bsuch that 𝑥 ∈ (A𝑐)-b if and 

only if 𝑥 ∈ ⋃b∈B Ac
−b. Now, 𝑥 ∈ ⋃b∈B Ac

−b if and only if 𝑥 ∈ ⋃b∈(−B) Ac
b; and 

𝑥 ∈ ⋃b∈(−B) Ac
b if and only if  𝑥 ∈ Ac ⊕ (−B). 

3.3.4 Basic Binary Morphological Filters [79]: 

In image processing and analysis, it is important to extract features of objects, describe 

shapes, and recognize patterns. Such tasks often refer to geometric concepts, such as 

size, shape, and orientation. MM takes this concept from set theory, geometry, and 

topology and analyzes geometric structures in an image. Most essential image 

processing algorithms can be represented in the form of morphological operations. In 

this section we review several basic morphological filters, such as boundary extraction 

and hat filter.  

3.3.4.1 Some Types of Crisp Boundary Using Dilation and Erosion:  

In this section, we present some very useful words based on combinations of crisp 

erosions and crisp dilations and leading to the definition of morphological gradient 

operators [77]. 

3.3.4.1.a  The External Crisp Boundary Filter [14]:  

Boundary internal of a set A requires first the dilating of A by a SE B and then taking 

the set difference between its dilation and A. 𝐵𝑒𝑥𝑡(𝐴) = (𝐴 ⊕ 𝐵) − 𝐴.                  (4.11)                                                                    
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                              a)                                       b)                                           c) 

Fig. 3.8: External boundary image:  a) Binary image   

  b)External boundary filter with SE(3)  c)External boundary filter with SE(7) 

 

This would give us all background pixels that bordered the object. Or, if we wanted all 

foreground pixels that bordered the background, we could use:  

3.3.4.1.b  The Internal Crisp Boundary Filter [51]:  

Boundary internal of a set 𝐴 requires first the erosion of 𝐴 by a SE 𝐵 and then taking the 

set difference between 𝐴  and erosion image. That is, the boundary internal of a set A is 

obtained by: 𝐵𝑖𝑛𝑡(𝐴) = 𝐴 − (𝐴 ⊖ 𝐵).                                                                      (3.12)  

     
                                a)                                      b)                                     c) 

Fig. 3.9: Internal boundary image:  a) Binary image  

 b) Internal boundary filter with SE(3)  c) Internal boundary filter with SE(7) 

 

3.3.4.1.c  The Gradient Crisp Boundary Filter [44]: 

Determining the gradient of an image is a fundamental image processing operation that 

is often used as a precursor to other, more advanced operations such as feature 

extraction and segmentation. The morphological gradient operator provides a simple 

approach to find the gradient of an image by combining the dilation and erosion 

operators. The morphological image gradient operator is defined as: 

𝐵𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝐴) = (𝐴 ⊕ 𝐵) − (𝐴 ⊖ 𝐵).                                                                       (3.13) 
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The dilation thickens regions in an image and the erosion shrinks them. Therefore, their 

difference emphasizes the boundaries between regions. If the SE is relatively small, 

homogeneous areas will not be affected by dilation and erosion, so the subtraction tends 

to eliminate them. The net result is an image with the gradient-like effect. The effect of 

morphological gradient operation is shown in Fig. 3.11.  

     
                        a)                                b)                                     c) 

Fig. 3.10: Gradient boundary image: a) Binary image    

 b)Gradient boundary filter with SE(3)   c) Gradient boundary filter with SE(7) 

 

3.3.4.1.d  The Outline Crisp Boundary Filter: 

The outline of a binary image can be computed using erosion followed by a subtraction. 

𝐵𝑜𝑢𝑡𝑙𝑖𝑛𝑒(𝐴) = 𝑐𝑜(𝐴 ⊖ 𝐵) ∩ 𝐴.                                                                                 (3.14)                 

     
           a)                                      b)                                          c) 

Fig. 3.11: Outline boundary image:  a) Binary image 

b) Outline boundary filter with SE(3) c)Outline boundary filter with SE(7) 

 

3.3.4.2 Combination External and Internal Crisp Boundary [14, 28]: 

Dilation and erosion can be used in combination with image subtraction to obtain the 

morphological extraction A of an image as: 

1. 𝐵𝑔𝑟𝑎𝑑(𝐴) = 𝑚𝑎𝑥[𝐵𝑒𝑥𝑡(𝐴), 𝐵𝑖𝑛𝑡(𝐴)].                                                            (3.15)                 
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       a)                                      b)                                  c) 

Fig. 3.12: Grad boundary image:  a) Binary image  b)Grad boundary filter with SE(3)      

   c) Grad boundary filter with SE(7) 

 

2. 𝐵𝑑𝑖𝑣(𝐴) = [𝐵𝑒𝑥𝑡(𝐴) − 𝐵𝑖𝑛𝑡(𝐴)].                                                                   (3.16)                 

                 
       a)                                        b)                                            c) 

Fig. 3.13: Div. boundary image: a) Binary image b) Div. boundary filter with SE(3)    

  c)Div. boundary filter with SE(7) 

 

3.3.4.3  Hat Filter [60]: 

In MM and digital image processing, top-hat transform is an operation that extracts 

small elements and details from given images. There exist two types of hat filters: The 

Top-hat filter is defined as the difference between the input image and its opening by 

some structuring element; The Bottom-hat filter is defined dually as the difference 

between the closing and the input image. Top-hat filter are used for various image 

processing tasks, such as feature extraction, background equalization, image 

enhancement. If an opening removes small structures, then the difference of the original 

image and the opened image should bring them out. This is exactly what the white top-

hat filter does, which is defined as the residue of the original and opening: 

 Top-hat filter:    𝑇𝑜𝑝ℎ𝑎𝑡(𝐴) = 𝐴 − (𝐴 ∘ 𝐵).                                                     (3.17)                                                                        

The counter part of the Top-hat filter is the Bottom-hat filter which is defined as the 

residue of  closing and the original:   

https://en.wikipedia.org/wiki/Mathematical_morphology
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Opening_%28morphology%29
https://en.wikipedia.org/wiki/Structuring_element
https://en.wikipedia.org/wiki/Closing_%28morphology%29
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Image_enhancement
https://en.wikipedia.org/wiki/Image_enhancement
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Bottom-hat filter:   𝐵𝑜𝑡𝑡𝑜𝑚ℎ𝑎𝑡(𝐴)  = (𝐴 • 𝐵) − 𝐴.                                        (3.18) 

These filters preserve the information removed by the opening and closing operations, 

respectively. They are often cited as white top-hat and black top-hat. Fig. 3.16 show the 

results obtained when applying Top-hat and Bottom-hat filter.  

                    
                       a)                                      b)                                    c) 

Fig.3.14: Hat filter image: a) Binary image   b) Top-hat filter image    

c)Bottom-hat filter image 

 

3.4 Grayscale Mathematical Morphology [80]: 

Grayscale image depended on mathematics theory. It has developed from binary 

morphology to grayscale morphology, and it is a new method of image process. The 

binary morphological operations of dilation, erosion, opening and closing are all 

naturally extended to grayscale imagery by the use of a min or max operation. From this 

definition we will proceed to the representation which indicates that grayscale dilation 

can be computed in terms of a maximum operation and a set of addition operations. A 

similar plan is followed for erosion which can be evaluated in terms of a minimum 

operation and a set of subtraction operations. We extend the basic operations of dilation, 

erosion, opening, and closing to grayscale images. Assume that 𝑓(𝑖, 𝑗) is a greyscale 

image and 𝑏 is a SE and both functions are discrete. Similarly to binary morphology, the 

SE are used to examine a given image for specific properties. Dilating and eroding are 

two basic operations of MM. These two operations can make up of some compound 

operations and bring some practical morphology algorithm. 
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3.4.1 Grayscale Dilation and Erosion [80]: 

Since grayscale erosion with a flat SE computes the min intensity value of 𝑓 in every 

neighborhood, the eroded grayscale image should be darker (bright features are reduced, 

dark features are thickened, background is darker). The effects of dilation are opposite. 

3.4.1.1 Grayscale Dilation [77]: 

The dilation of 𝑓 by a flat SE 𝑏 at any location (𝑖, 𝑗) is defined as the maximum value of 

the image in the window outlined by −𝑏 when the origin of −𝑏 is at (𝑖, 𝑗), that is 

[𝑓 ⊕ 𝑏](𝑖, 𝑗) = 𝑚𝑎𝑥(𝑠,𝑡)∈𝑏{𝑓(𝑖 − 𝑠, 𝑗 − 𝑡)}; where we used that −𝑏 = 𝑏(−𝑖, −𝑗); The 

explanation is similar to one for erosion except for using maximum instead of minimum 

and that the SE is reflected about the origin. 

              
        a)                                    b)                                     c) 

Fig. 3.15: Dilation grayscale image:   a) Grayscale image    

 b)Dilation image with SE(3)   c)Dilation image with SE(7) 

 

3.4.1.2 Grayscale Erosion [80]:  

The erosion of 𝑓 by a flat SE 𝑏 at any location (𝑖, 𝑗) is defined as the minimum value of 

the image in the region coincident with 𝑏 when the origin of 𝑏 is at (𝑖, 𝑗). Therefore, the 

erosion at (𝑖, 𝑗) of an image 𝑓 by a SE 𝑏 is given by: 

[𝑓 ⊖ 𝑏](𝑖, 𝑗) = 𝑚𝑖𝑛(𝑠,𝑡)∈𝑏{𝑓(𝑖 + 𝑠, 𝑗 + 𝑡)}.                                                              (3.20) 

where, similarly to the correlation, 𝑖 and  𝑗 are incremented through all values required 

so that the origin of visits every pixel in 𝑓. That is, to find the erosion of 𝑓 by 𝑏, we 

place the origin of the SE at every pixel location in the image. The erosion is the 

minimum value of 𝑓 from all values of 𝑓 in the region of 𝑓 coincident with 𝑏. 
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        a)                                        b)                                            c) 

Fig. 3.16: Erosion grayscale image:   a) Grayscale image 

b) erosion image with SE(3)    c) erosion image with SE(7) 

 

3.4.2 Grayscale Opening and Closing [54]: 

Opening and closing of images have a simple geometrical interpretation. Assume that 

the image 𝑓(𝑖, 𝑗) is viewed as a surface intensity values are interpreted as heights over 

the 𝑥−𝑦 plane. Then the opening of 𝑓 by 𝑏 can be interpreted as "pushing" the SE 𝑏 up 

from below against the undersurface of 𝑓.  

3.4.2.1 Grayscale Opening: 

Grayscale opening operation is erosion followed by dilation, it can smooth the contour 

of image and remove small extrudes. 𝑓 ∘  b =   (𝑓 ⊖ 𝑏) ⊕ 𝑏.                                                                         

     
        a)                                     b)                                    c) 

Fig. 3.17: Opening grayscale image:  a) Grayscale image   

 b) Opening image with SE (3)    c) Opening image with SE (7) 

3.4.2.2 Grayscale Closing: 

Grayscale closing operation is dilation followed by erosion, it can smooth the image 

outline and recover the holes. 𝑓 •  b =   (𝑓 ⊕ 𝑏) ⊖ 𝑏.                                            (3.22) 
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        a)                                    b)                                     c) 

Fig. 3.18: Closing grayscale image:   a) Grayscale image  b) Closing image with SE(3)   

c)Closing image with SE(7) 

 

3.4.3 Some Type of Grayscale Boundary Filters Using Dilation and Erosion:  

The edge detection based on morphology is to do the dilation and erosion operations by 

using SE, 𝐺(𝑓) represents the function of the image boundary; there are some existing 

boundary filter based on the basic operation of morphology. there are many kinds of 

grayscale boundary filter (external, internal, gradient …); the dilation thickens regions 

in an image and the erosion shrinks them [54,71]. 

3.4.3.1 Grayscale External Boundary Filter: 

The dilation operator of boundary detection is 

𝐺𝑒𝑥𝑡(𝑓) =   (𝑓(𝑖, 𝑗) ⊕ 𝑏(𝑖, 𝑗)) − 𝑓(𝑖, 𝑗).                                                                   (3.23)                 

     
        a)                                        b)                                           c) 

Fig. 3.19: External boundary grayscale image: a) grayscale image    

b)External boundary filter with SE(3)    c)External boundary filter with SE(7) 

 

3.4.3.2 Grayscale Internal Boundary Filter [51]: 

The erosion operator of edge detection is 

𝐺𝑖𝑛𝑡(𝑓) =   𝑓(𝑖, 𝑗) − (𝑓(𝑖, 𝑗) ⊖ 𝑏(𝑖, 𝑗))                                                                    (3.24)                 
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               a)                                    b)                                     c) 

Fig. 3.20: Internal boundary grayscale image: a)Grayscale image    

 b)Internal boundary filter with SE(3)   c) Internal boundary filter with SE(7) 

 

3.4.3.3 Grayscale Gradient Boundary Filter [44]: 

Dilation and erosion can be used in combination with image subtraction to obtain the 

morphological gradient G of an image as: 

𝐺𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑓) =   𝑓(𝑖, 𝑗) − (𝑓(𝑖, 𝑗) ⊖ 𝑏(𝑖, 𝑗)).                                                           (3.25)                 

     
         a)                                          b)                                          c) 

Fig. 3.21: Gradient boundary grayscale image:   a) Grayscale image    

b) Gradient boundary filter with SE(3)    c) Gradient boundary filter with SE(7) 

 

The above three operators implement simply and run fast. 

3.4.4 Grayscale Hat Filter [31]: 

Combining image subtraction with openings and closings results in top-hat and bottom-

hat filter. 

3.4.4.1 Grayscale Top-hat Filter: 

The top-hat filter of a grayscale image 𝑓 is defines as f  difference its opening: 

𝑇𝑜𝑝ℎ𝑎𝑡(𝑓) = 𝑓(𝑖, 𝑗) − (𝑓(𝑖, 𝑗) ∘  b(𝑖, 𝑗)).                                                                  (3.26)                 
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         a)                                     b)                                           c) 

Fig. 3.22: Top-hat filter grayscale image:   a) Grayscale image   

 b) Top-hat filter with SE (7)    c) Top-hat filter with SE (9) 

 

3.4.4.2 Grayscale Bottom-hat Filter: 

Similarly, the bottom-hat filter of a grayscale image; 

𝐵𝑜𝑡𝑡𝑜𝑚ℎ𝑎𝑡(𝑓) = (𝑓(𝑖, 𝑗) •  b(𝑖, 𝑗)) − 𝑓(𝑖, 𝑗).                                                            (3.27)                 

     
         a)                                       b)                                          c) 

Fig. 3.23: Bottom-hat filter grayscale image:  a) Grayscale image    

b) Bottom -hat filter with SE(7)    c) Bottom-hat filter with SE(9) 

 

3.5 Fuzzy Mathematical Morphology: 

One approach to extend mathematical morphology to grayscale images was supported 

by ''Fuzzy Set Theory" [85], where the image is embedded into the fuzzy domain; such 

that each pixel value is interpreted as its membership degree to the original data set      

[8, 9, 12]. Hence, the fuzzy image is processed using fuzzy morphological operator, 

which were defined as an extension of the classical morphological operators. In this 

section, we review the definitions of the fuzzy morphological operators as given in     

[8, 9, 11]. For the purpose of visualizing the effect of these operators, we will use the 

fuzzy image show in Fig.2.4; which is deduced form the original color image shown in 

Fig.2.1. Attention will be paid here only to the four basic operations of mathematical 

morphology (erosion, dilation, opening and closing). Fuzzy mathematical morphology 
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[20, 39] has been developed to soften the classical binary morphology so as to make the 

operators less sensitive to image imprecision. It can also be viewed simply as an 

alternative grayscale morphological theory. The basic two operations of morphology are 

the dilation and erosion operators. The fuzzy version of the morphological dilation is 

used to smooth small dark regions. since all the values in the SE are positive, the output 

image tends to be brighter than the input. Dark elements are reduced or eliminated 

depending on how their shapes and sizes relate to the SE used. Whereas, the fuzzy 

morphological erosion. Is used to smooth small light regions. The formulae of the two 

basic morphological operations, as well as two different operations is ducted form them; 

are defined as follows:  

3.5.1 Fuzzy Morphological Operations: 

Mathematical morphology comprises an important toolset for analyzing spatial 

structures in images [39]. For binary images, the definitions of the fundamental 

morphological operations dilation and erosion can be related to the set theoretic 

Minkowski addition and subtraction. The extension of those operations to grayscale 

images is strongly related to ranking operations and, therefore, to the concept of ordered 

sets. It has been considered for a long time how to extend mathematical morphology to 

the case of fuzzy sets (as was done in other image processing disciplines, e.g., see [46]). 

Although there was a simple idea to consider grayscale images as fuzzy versions of 

binary images. 

3.5.1.1 Fuzzy Morphological Dilation [42]: 

For any grayscale image, A and any SE B (either grayscale or binary), the fuzzy  

dilation of A by B, (denoted by 𝐴 ⊕ 𝐵); defined as the membership function: 

𝜇𝐴⊕𝐵 ∶  𝑍2 ⟶ [0,1] and 𝜇𝐴⊕𝐵(𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛[ 𝜇𝐴(𝑣 + 𝑢),   𝜇𝐵(𝑢)].               (3.28)                 

Where  𝑢, 𝑣 ∈ 𝑍2 are the spatial co-ordinates of pixels in the image and SE respectively. 

While 𝜇𝐴 ,  𝜇𝐵 are the membership functions of the image and the SE, respectively. 
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                          a)                                        b)                                  c) 

Fig.3.24: Dilation fuzzy image: a) Fuzzy image   b) Fuzzy image dilated with SE(3)  

c) Fuzzy image dilated with SE(5)  

 

3.5.1.2 Fuzzy Morphological Erosion [42]:  

For any grayscale image, A and any SE B (either gray-scale or binary), the fuzzy  

erosion of A by B, (denoted by 𝐴 ⊖ 𝐵); defined as the membership function: 

𝜇𝐴⊖𝐵 ∶  𝑍2 ⟶ [0,1] and 𝜇𝐴⊖𝐵(𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[ 𝜇𝐴(𝑣 + 𝑢), 1 − 𝜇𝐵(𝑢)].          (3.29) 

Where u, v 𝑍2 are the spatial co-ordinates of pixels in the image and the SE, 

respectively. While 𝜇𝐴, 𝜇𝐵 are the membership functions of the image and the SE 

respectively. 

       
                        a)                                      b)                                        c) 

Fig.3.25: Erosion fuzzy image: a) Fuzzy image     

b) Fuzzy image eroted with SE(3)   c) Fuzzy image eroted  with SE(5) 

 

3.5.1.3 Fuzzy Morphological Opening [42, 47]:  

Several combinations of the two basic fuzzy morphological operations, the dilation and 

erosion, give new operations; for instance, the fuzzy morphological opening and fuzzy 

morphological closing. The interpretation of the operation of fuzzy morphological 

opening, is that it darken the bright regions in which the structure element does not fit, 

and is to be defined as the follows; For any grayscale image A, and any SE B (either 
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grayscale or binary), the fuzzy opening of A by B (𝐴 ∘ 𝐵); is defined as the membership 

function: 𝜇𝐴∘𝐵 ∶  𝑍2 ⟶ [0,1], 

𝜇𝐴∘𝐵(𝑣)  =  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛(𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝜇𝐴(𝑣 − 𝑢 + 𝑤), 1 −  𝜇𝐵(𝑢)), 𝜇𝐵(𝑢)).  (3.30)    

Where u, v, w 𝑍2 are the spatial co-ordinates of pixels in the image and 𝜇𝐴, 𝜇𝐵 are the 

membership functions of the image and the SE respectively. 

                   
                         a)                                        b)                                     c)  

Fig.3.26: Opening fuzzy image: a) Fuzzy image    b) Fuzzy image opening with SE(3)  

c) Fuzzy image opening with SE(5). 

3.5.1.4 Fuzzy Morphological Closing [70]: 

While the fuzzy opening acts on the bright regions, the fuzzy morphological closing 

brighten the dark regions in which the SE does not fit, the definition goes as follows; 

For any grayscale image 𝐴, and any SE 𝐵 (either grayscale or binary), the fuzzy closing 

of 𝐴 by 𝐵 (𝐴 ∘ 𝐵); is defined as the membership function: 𝜇𝐴•𝐵 ∶  𝑍2 ⟶ [0,1], 

𝜇𝐴•𝐵(𝑣) = inf𝑢∈𝑍2 𝑚𝑎𝑥(sup𝑤∈𝑍2 𝑚𝑖𝑛 (𝜇𝐴(𝑣 − 𝑢 + 𝑤), 𝜇𝐵(𝑢)), 1 − 𝜇𝐵(𝑢)).       (3.31) 

and  𝑢, 𝑣, 𝑤 ∈ 𝑍2 are the spatial co-ordinates of pixels in the image and 𝜇𝐴, 𝜇𝐵 are the 

membership functions of the image and the SE respectively. 

         
       a)                                      b)                                            c) 

Fig.3.27: Closing fuzzy image: a) Fuzzy image    b) Fuzzy image closing with SE(3)   

  c) Fuzzy image closing with SE(5) 
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3.5.2 Properties of Fuzzy Morphological Operations [71]: 

Here are some properties of the basic fuzzy morphological operations (dilation, erosion, 

opening and closing [22, 40]). We define the power set of 𝑋, denoted by ℱ(𝑍2), to be 

the set of all fuzzy subset of  𝑋, 

 For all 𝐴 , 𝐵, 𝐶 ∈ ℱ(𝑍2) the following properties hold: 

i. Monotonicity (increasing in both argument): 

 𝐴 ⊆ 𝐵 ⟹  𝐴 ⊕ 𝐶 ⊆ 𝐵 ⊕ 𝐶, 

 𝐴 ⊆ 𝐵 ⟹  𝐶 ⊕ 𝐴 ⊆ 𝐶 ⊕ 𝐵. 

ii. Monotonicity (increasing in the first and decreasing in the argument): 

𝐴 ⊆ 𝐵 ⟹ 𝐴 ⊖ 𝐶 ⊆ 𝐵 ⊖ 𝐶, 

              𝐴 ⊆ 𝐵 ⟹ 𝐶 ⊖ 𝐴 ⊇ 𝐶 ⊖ 𝐵. 

iii. Monotonicity (increasing in the first argument): 

𝐴 ⊆ 𝐵 ⟹ 𝐴 • 𝐶 ⊆ 𝐵 • 𝐶.     

iv. Monotonicity (increasing in the first argument): 

𝐴 ⊆ 𝐵 ⟹ 𝐴 ∘ 𝐶 ⊆ 𝐵 ∘ 𝐶.     

 for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 ℱ(Z2) 𝑎𝑛𝑑 𝐵 ∈ ℱ(Z2), 

i. ∩𝑖∈𝐼 A𝑖 ⊕ B ⊆ ∩
𝑖∈𝐼

(A𝑖 ⊕ B)   and  B ⊕ ∩
𝑖∈I

A𝑖 ⊆ ∩
𝑖∈𝐼

(B ⊕ A𝑖). 

ii. ∩𝑖∈𝐼 A𝑖 ⊖ B ⊆ ∩
𝑖∈𝐼

(A𝑖 ⊖ B)  and   B ⊖ ∩
𝑖∈I

A𝑖 ⊇ ∩
𝑖∈𝐼

(B ⊖ A𝑖). 

iii. ∩𝑖∈𝐼 A𝑖 • B ⊆ ∩
𝑖∈𝐼

(A𝑖 • B). 

iv. ∩𝑖∈𝐼 A𝑖 ∘ B ⊆ ∩
𝑖∈𝐼

(A𝑖 ∘ B). 

 for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛ℱ(Z2) 𝑎𝑛𝑑 𝐵 ∈ ℱ(Z2), 

i. ∪𝑖∈𝐼 A𝑖 ⊕ B ⊇ ∪
𝑖∈𝐼

(A𝑖 ⊕ B)   and  B ⊕ ∪
𝑖∈I

A𝑖 ⊇ ∪
𝑖∈𝐼

(B ⊕ A𝑖). 

ii. ∪𝑖∈𝐼 A𝑖 ⊖ B ⊇ ∩
𝑖∈𝐼

(A𝑖 ⊖ B)  and   B ⊖ ∩
𝑖∈I

A𝑖 ⊆ ∩
𝑖∈𝐼

(B ⊖ A𝑖). 

iii. ∪𝑖∈𝐼 A𝑖 • B ⊇ ∩
𝑖∈𝐼

(A𝑖 • B). 
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iv. ∪𝑖∈𝐼 A𝑖 ∘ B ⊇ ∩
𝑖∈𝐼

(A𝑖 ∘ B). 

3.5.3 Fuzzy Morphological Filters [81]: 

In this section, we present some fuzzy morphological filters deduced form combining 

two or more of the four operations defined in § 3.8.1. 

3.5.3.1 Some Type of Boundary Filters Using Fuzzy (Dilation and Erosion):  

Both fuzzy erosion and dilation, can be combined in various ways to form several 

powerful morphological filters in order to extract the boundaries form some grayscale 

image [67]. 

3.5.3.1.a. Fuzzy Gradient Boundary Filter[79]: 

One operation can be performed by applying the fuzzy difference over the dilation and 

the erosion of the two image 𝐴 and structure element 𝐴. this operation is to be called the 

fuzzy gradient filter and is defined as follows:  

𝜇𝜕𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝐴)(𝑣) = 𝑚𝑖𝑛[𝜇(𝐴⊕𝐵)(𝑣), 1 − 𝜇(𝐴⊖𝐵)(𝑣)].                                                (3.32)                 

As the dilation thickness regions in an image and the erosion shrinks them, the 

interpretation of the fuzzy gradient filter can be understood as emphasizing the 

boundaries between regions. If the SE is relatively small, the homogeneous areas will 

not be affected by fuzzy dilation and fuzzy erosion, then the subtraction tends to 

eliminate them. The effect of morphological gradient operation is shown in Fig. 3.30. 

     
                               a)                                        b)                                     c) 

Fig.3.28: Gradient boundary fuzzy image: a) Fuzzy image  

 b) Gradient boundary with SE(3)   c) Gradient boundary with SE(5) 
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Moreover there are two kinds of half gradient were deduced form the fuzzy gradient 

filter known as the internal gradient and the is external gradient filters. 

3.5.3.1.B. Fuzzy External Boundary Filter [72]: 

In this filter, a fuzzy dilation is firstly applied to the fuzzy image 𝐴 by a structure 

element 𝐵, then the output filtered image will be the difference between fuzzy dilated 

image and the original fuzzy image 𝐴; that is, the fuzzy external boundary of 𝐴 is 

defined by: 𝜇𝜕𝑒𝑥𝑡(𝐴)(𝑣) = 𝑚𝑖𝑛[𝜇(𝐴⊕𝐵)(𝑣), 1 − 𝜇𝐴(𝑣)].                                           (3.33)                 

       
                    a)                                       b)                                    c) 

Fig.3.29: External boundary fuzzy image: a) Fuzzy image   

 b) External boundary filter with SE(3)  c) External boundary filter with SE(5) 

 

3.5.3.1.C.  Fuzzy Internal Boundary Filter [51]: 

The first step of the fuzzy internal boundary filter, is to fuzzy erode the image, hence, 

the output filtered image will be the difference between the original fuzzy image and the 

fuzzy eroded image; that is, the fuzzy internal boundary of 𝐴 is defined by: 

𝜇𝜕𝑖𝑛𝑡(𝐴)(𝑣) = 𝑚𝑖𝑛[𝜇𝐴(𝑣), 1 − 𝜇(𝐴⊖𝐵)(𝑣)].   

     
            a)                                           b)                                    c) 

Fig.3.30: Internal boundary fuzzy image: a) Fuzzy image    

b)Internal boundary filter with SE(3)    b)Internal boundary filter with SE(5) 
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3.5.3.1.D.  Fuzzy Outline Boundary Filter: 

The first step of the fuzzy outline boundary filter, is the erode the image; then the 

complement of its erosion image hence, the output image will be the intersection 

between the original image and the output image that is the fuzzy outline boundary of 𝐴 

is defined by: 𝜇𝜕𝑜𝑢𝑡𝑙𝑖𝑛𝑒(𝐴)(𝑣) = 𝑚𝑖𝑛[1 − 𝜇𝐴⊖𝐵(𝑣), 𝐴].                                            (3.35)                 

     
                  a)                                    b)                                     c) 

Fig.3.31: Outline boundary fuzzy image: a) fuzzy image   

 b) Outline boundary filter with SE(3)    b) Outline boundary filter with SE(5) 

 

3.5.3.2 Combination Fuzzy External Boundary and Fuzzy Internal Boundary: 

1. 𝜇𝜕𝑠𝑢𝑝(𝐴)(𝑣) = 𝑚𝑎𝑥[𝜇𝜕𝑖𝑛𝑡(𝐴)(𝑣), 𝜇𝜕𝑒𝑥𝑡(𝐴)(𝑣)]                                                  (3.36)                 

                 
             a)                                    b)                                      c) 

Fig.3.32: Sup. boundary fuzzy image: a) Fuzzy image    

b) Sup. boundary filter with SE(3)     b) Sup. boundary filter with SE(5) 

 

2. 𝜇𝜕𝑖𝑛𝑓(𝐴)(𝑣) = 𝑚𝑖𝑛[𝜇𝜕𝑖𝑛𝑡(𝐴)(𝑣), 𝜇𝜕𝑒𝑥𝑡(𝐴)(𝑣)].                                                  (3.37)                 

                  
                 a)                                    b)                                       c) 

Fig.3.33: Inf. boundary fuzzy image: a) Fuzzy image   

 b) Inf. boundary filter with SE (3)    c) Inf. boundary filter with SE (5) 
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3. 𝜇𝜕𝐷𝑖𝑣(𝐴)(𝑣) = 𝑚𝑖𝑛[𝜇𝜕𝑒𝑥𝑡(𝐴)(𝑣)  −  𝜇𝜕𝑖𝑛𝑡(𝐴)(𝑣)].                       (3.38)                 

                  
                 a)                                 b)                                     c) 

Fig.3.34: Div. boundary fuzzy image: a) fuzzy image    

b) Div. boundary filter with SE (3)    c) Div. boundary filter with SE(5) 

 

3.5.3.3 Fuzzy Hat Filter [22, 40]: 

The hat filters represent an important class of morphological transforms used for 

extracting details  from signals or images. One principal application of these transforms 

is the removal of objects from an image.  

3.5.3.3.A.  Fuzzy Top-hat Filter [35]: 

In mathematical morphology, top-hat filter is an operation that extracts small elements 

and details from given images. The top-hat filter is defined as the difference between 

the input image and its opening by some SE. Top-hat filter are used for various image 

processing tasks, such as feature extraction, background equalization, image 

enhancement, and others. An important use of the top-hat filter is in correcting the 

effects of non-uniform illumination. The fuzzy top-hat filter of 𝐴 is given by:  

𝜇𝑡𝑜𝑝ℎ𝑎𝑡(𝐴)(𝑣) =  𝑚𝑖𝑛 [𝜇𝐴(𝑣), 1 − 𝜇(A ∘ B)(𝑣)].  

        
                a)                                        b)                                    c) 

Fig.3.35: Top-hat  filter fuzzy image: a) Fuzzy image   b) Top-hat image with SE(3)    

 c) Top-hat image with SE(7) 
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3.5.3.3.B.  Fuzzy Bottom-hat Filter [43]: 

The bottom-hat morphological operator subtracts an input image from the result of 

morphological closing on the input image. Applied to a binary image, this filter allows 

getting all the pixels that were added by the closing filter but were not removed 

afterwards due to formed connections. The fuzzy bottom-hat filter of 𝐴 is given by:  

𝜇𝐵𝑜𝑡𝑡𝑜𝑚ℎ𝑎𝑡(𝐴)(𝑣) = min [𝜇(A • B)(𝑣),1 − 𝜇𝐴(𝑣)]. 

                            
               a)                                   b)                                    c) 

Fig.3.36: Bottom-hat  filter fuzzy image: a) Fuzzy image    b) Bottom-hat image with SE(3) b) 

Bottom-hat image with SE(7) 

 

3.6 Conclusion: 

In this chapter, we reviewed the fundamental definitions from the mathematical 

morphology; for both grayscale and binary images. introducing a revision for the basic 

morphological operators, namely, the morphological dilation, erosion, opening and 

closing. Some algebraic properties of the operations have been investigated. Different 

combinations of the defined basic operations are to be made in order to construct more 

advanced morphological operators and filters. 
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 Chapter 4  

Neutrosophic Crisp Mathematical Morphology 

 

4.1 introduction: 

in this chapter, we aim to apply the concepts of the neutrosophic crisp sets and its 

operations to the classical mathematical morphological operations; introducing what we 

call "Neutrosophic Crisp Mathematical Morphology". Several operators are to be 

developed, including the neutrosophic crisp dilation, the neutrosophic crisp erosion, the 

neutrosophic crisp opening and the neutrosophic crisp closing  . Moreover, we extend the 

definition of some morphological filters using the neutrosophic crisp sets concept. For 

instance, we introduce the neutrosophic crisp boundary extraction, the neutrosophic 

crisp Top-hat and the neutrosophic crisp Bottom-hat filters. The idea behind the new 

introduced operators and filters is to act on the image in the neutrosophic crisp domain 

instead of the spatial domain.  

4.2 Neutrosophic Crisp Mathematical Morphology: 

As a generalization of the classical mathematical morphology, we present in this chapter 

the basic operations for the neutrosophic crisp mathematical morphology. To 

commence, we need to define the  reflection and the translation of a neutrosophic set.  

4.2.1 Definition: 

Consider the space X = 𝑅𝑛 𝑜𝑟 𝑍𝑛; With origin 0 = (0,...,0) given The reflection of  the 

SE B  mirrored in its  origin  is defined as: −B = 〈−B1 , −B2 , −B3〉.                        (4.1) 

4.2.2 Definition: 

For every the 𝑝 ∈ A, the translations by 𝑝 is the map 𝑝: 𝑋 → 𝑋, 𝑎 ↦ 𝑎 + 𝑝 it transforms 

any subset A of 𝑋 into its translate by p ∈ 𝑍2, A𝑝 = 〈A1
𝑝 , A2

𝑝 ,  A3
𝑝〉, where   

A1
𝑝(𝑢) = {𝑢 + 𝑝: 𝑢 ∈ A1, 𝑝 ∈ B1} , A2

𝑝(𝑢) = {𝑢 + 𝑝: 𝑢 ∈ A2, 𝑝 ∈ B2} and 
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 𝐴3
𝑝(𝑢) = {𝑢 + 𝑝: 𝑢 ∈ 𝐴3, 𝑝 ∈ 𝐵3} .    

4.3 Neutrosophic Crisp Morphological  Operations: 

we introduce and study the mathematical morphology via neutrosophic crisp sets; The 

operations of neutrosophic crisp morphology dilation, erosion, opening and closing of 

the neutrosophic image by neutrosophic crisp structuring element. 

4.3.1 Neutrosophic Crisp Dilation and Neutrosophic Crisp Erosion: 

Neutrosophic mathematical morphological transformations apply to neutrosophic sets of 

any dimensions, those like Euclidean N-space, The two basic operations of 

morphological operators are dilation and erosion. 

4.3.1.1 Neutrosophic Crisp Dilation Operation: 

dilation "grows" or "thickens" objects in a binary image The manner and extend of this 

growth is image. controlled by the SE. let 𝐴, 𝐵 ∈ 𝒩𝐶(𝑋), then we define two types of the 

neutrosophic crisp dilation as follows: 

4.3.1.1.A.  Neutrosophic Crisp Dilation of Type I: 

(A ⊕̃ B) = ⟨A1 ⊕ B1 , A2 ⊕ B2 , A3 ⊖ B3⟩, where for each u and v ∈ 𝑍2.  

A1 ⊕ B1 = ∪
𝑏∈𝐵1

𝐴1
𝑏  ,   A2 ⊕ B2 = ∪

𝑏∈𝐵2
𝐴2

𝑏  ,    A3 ⊖ B3 = ⋂
𝑏∈𝐵3

𝐴3
−𝑏  . 

         
                      a)                                                     b) 

Fig.4.1(I): Neutrosophic crisp dilation in type I: a) Original image    

b)Neutrosophic crisp dilation components ⟨A1 ⊕ B1 , A2 ⊕ B2, A3 ⊖ B3⟩  respectively 

4.3.1.1.B Neutrosophic Crisp Dilation of Type II: 

(A ⊕̃ B) = ⟨A1 ⊕ B1 , A2 ⊖ B2 , A3 ⊖ B3⟩, where for each u and v ∈ 𝑍2.  A1 ⊕ B1 =

∪𝑏∈𝐵1 𝐴1
𝑏 ,  A2 ⊖ B2 = ∩𝑏∈𝐵2 𝐴2

−𝑏 ,  A3 ⊖ B3 = ⋂𝑏∈𝐵3 𝐴3
−𝑏. 
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                       a)                                                   b) 

Fig.4.2(II): Neutrosophic crisp dilation in type II: a) Original image   

 b)Neutrosophic crisp dilation components   ⟨A1 ⊕ B1, A2 ⊖ B2, A3 ⊖ B3⟩ respectively. 

 

4.3.1.2 Neutrosophic Crisp Erosion Operation: 

Erosion is just opposite to dilation. It is defined as the minimum value in the window. 

The image after dilation will be darker than the original image. It shrinks or thins the 

image. let 𝐴, 𝐵 ∈ 𝒩𝐶(𝑋); then the neutrosophic dilation  is given as two type: 

4.3.1.2.A.  Neutrosophic Crisp Erosion of Type I: 

 (A ⊖̃ B) = ⟨A1 ⊖ B1 , A2 ⊖ B2 , A3 ⊕ B3⟩,   where for each u and v ∈ 𝑍2. 

A1 ⊖ B1 = ⋂𝑏∈𝐵1 𝐴1
−𝑏  , A2 ⊖ B2 = ⋂𝑏∈𝐵2 𝐴2

−𝑏  , A3 ⊕ B3 = ∪𝑏∈𝐵3 𝐴3
𝑏. 

             
a)                                                  b) 

Fig.4.3(I): Neutrosophic crisp erosion in type I: a) Original image   

b)Neutrosophic crisp erosion components ⟨A1 ⊖ B1 , A2 ⊖ B2 , A3 ⊕ B3⟩   respectively 

4.3.1.2.B. Neutrosophic Crisp Erosion of Type II: 

 (A ⊖̃ B) = ⟨A1 ⊖ B1 , A2 ⊕ B2 , A3 ⊕ B3⟩,   where for each u and v ∈ 𝑍2. 

 A1 ⊖ B1 = ⋂𝑏∈𝐵1 𝐴1
−𝑏  , A2 ⊕ B2 = ∪𝑏∈𝐵2 𝐴2

𝑏  , A3 ⊕ B3 = ∪𝑏∈𝐵3 𝐴3
𝑏. 

          

                  a)                                               b) 

Fig.4.4(II): Neutrosophic crisp erosion in type II: a) Original image   

b)Neutrosophic crisp erosion components ⟨A1 ⊖ B1 , A2 ⊕ B2 , A3 ⊕ B3⟩ respectively 
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4.3.2 Neutrosophic Crisp Opening and Neutrosophic Crisp Closing: 

In practice, dilations and erosions are usually employed in pairs, either dilation of an 

image followed by the erosion of the dilated result, or image erosion followed by 

dilation. In either case, the result of iteratively applied dilations and erosions is an 

elimination of specific image detail smaller than the structuring element without the 

global geometric distortion of unsuppressed features. 

4.3.2.1 Neutrosophic Crisp Opening Operation: 

The process of "opening" an image will likely smooth the edges, remove small holes 

from a reference image and break narrow block connectors. The opening of an image A 

by a SE B; let 𝐴, 𝐵 ∈ 𝒩𝐶(𝑋); then we define two types of the neutrosophic crisp 

dilation  operator as follows: 

4.3.2.1.A. Neutrosophic Crisp Opening of Type I: 

       𝐴 ∘̃ 𝐵 = 〈𝐴1 ∘ 𝐵1, 𝐴2 ∘ 𝐵2, 𝐴3 • 𝐵3〉, 

    𝐴1 ∘ 𝐵1 = (𝐴1 ⊖ 𝐵1) ⊕ 𝐵1, 𝐴2 ∘ 𝐵2 = (𝐴2 ⊖ 𝐵2) ⊕ 𝐵2, 

   A3 •  B3 = (𝐴3 ⊕ 𝐵3) ⊖ 𝐵3. 

             
                    a)                                            b) 

Fig.4.5(I): Neutrosophic crisp opening in type I: a) original image   

b)Neutrosophic crisp opening components 〈𝐴1 ∘ 𝐵1, 𝐴2 ∘ 𝐵2, 𝐴3 • 𝐵3〉 respectively 

 

4.3.2.1.B.  Neutrosophic Crisp Opening of Type II: 

     𝐴 ∘̃ 𝐵 = 〈𝐴1 ∘ 𝐵1, 𝐴2 • 𝐵2, 𝐴3 • 𝐵3〉, 

 𝐴1 ∘ 𝐵 1 = (𝐴1 ⊖ 𝐵1) ⊕ 𝐵1,    A2 •  B2 = (𝐴2 ⊕ 𝐵2) ⊖ 𝐵2,   

 A3 •  B3 = (𝐴3 ⊕ 𝐵3) ⊖ 𝐵3. 
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               a)                                                       b) 

Fig.4.6(II): Neutrosophic crisp opening in type II: a) Original image  

 b)Neutrosophic crisp opening components 〈𝐴1 ∘ 𝐵1, 𝐴2 • 𝐵2, 𝐴3 • 𝐵3〉 respectively 

4.3.2.2 Neutrosophic Crisp Closing Operation: 

Close operation can also be smoothed image of the contour. Compared with open 

operation, closed operation is generally used to fill the small hole and crack in the 

target. The main function of the connection is similar to the expansion effect, but it is 

also the same as the size of the target. let 𝐴, 𝐵 ∈ 𝒩𝐶(𝑋); then the neutrosophic dilation  

is given as two types: 

4.3.2.2.A.  Neutrosophic Crisp Closing of Type I: 

     𝐴 •̃ 𝐵 = 〈𝐴1 • 𝐵1, 𝐴2 • 𝐵2, 𝐴3 ∘ 𝐵3〉, 

  𝐴1 • 𝐵1 = (𝐴1 ⊖ 𝐵1) ⊕ 𝐵1,   𝐴2 • 𝐵2 =    (𝐴2 ⊖ 𝐵2) ⊕ 𝐵2,  

 A3 ∘  B3 = (𝐴3 ⊕ 𝐵3) ⊖ 𝐵3. 

           
               a)                                                  b) 

Fig.4.7(I): Neutrosophic crisp closing in type I: a) Original image   

b)Neutrosophic crisp closing components 〈𝐴1 • 𝐵1, 𝐴2 • 𝐵2, 𝐴3 ∘ 𝐵3〉 respectively 

 

4.3.2.2.B.  Neutrosophic Crisp Closing of Type II: 

     𝐴 •̃ 𝐵 = 〈𝐴1 • 𝐵1, 𝐴2 ∘ 𝐵2, 𝐴3 ∘ 𝐵3〉, 

𝐴1 • 𝐵 1  =    (𝐴1 ⊖ 𝐵1) ⊕ 𝐵1,   A2 ∘  B2   =    (𝐴2 ⊕ 𝐵2) ⊖ 𝐵2, 

A3 ∘  B3   =    (𝐴3 ⊕ 𝐵3) ⊖ 𝐵3. 
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             a)                                                b) 

Fig.4.8(II): Neutrosophic crisp closing in type II: a) Original image   

b)Neutrosophic crisp closing components 〈𝐴1 • 𝐵1, 𝐴2 ∘ 𝐵2, 𝐴3 ∘ 𝐵3〉 respectively   

      

Note: Opening and Closing remove from the image its elements (objects, noise) 

respectively lighter and darker then the background. 

4.4 Algebraic Neutrosophic Crisp Properties: 

 In this section, we investigate some of the algebraic properties of the neutrosophic crisp 

erosion and dilation, as well as the neutrosophic crisp opening and the neutrosophic 

crisp closing operator. 

4.4.1 Properties of the Neutrosophic Crisp Erosion: 

Proposition 4.1:  

The neutrosophic erosion satisfies the monotonicity for all A, B ∈ 𝒩C(Z2). We will 

prove the proposition for the two types of neutrosophic crisp erosion operation as 

follows:  

Type I: 

1. A ⊆ B ⟹ 〈A1 ⊖ C1 , A2 ⊖ C2 , A3 ⊖ C3〉 ⊆ 〈B1  ⊖ 𝐶1, B2  ⊖  𝐶2 , B3  ⊖ 𝐶3〉, 

A1 ⊖ C1 ⊆ B1  ⊖ 𝐶1, A2 ⊖ C2 ⊆ B2  ⊖ 𝐶2   𝑎𝑛𝑑  A3 ⊖ C3 ⊇ B3  ⊖ 𝐶3.   

2. A ⊆ B ⟹ 〈C1 ⊖ A1 , C2 ⊖ A2, C3 ⊖ A3〉 ⊆ 〈C1 ⊖ B1 , C2 ⊖ B2, C3 ⊖ B3〉, 

          C1 ⊖ A1 ⊆ C1 ⊖ B1,   C2 ⊖ A2 ⊆ C2 ⊖ B2  𝑎𝑛𝑑 C3 ⊖ A3 ⊇ C3 ⊖ B3. 

Type II: 

1. A ⊆ B ⟹ 〈A1 ⊖ C1 , A2 ⊖ C2 , A3 ⊖ C3〉 ⊆ 〈B1  ⊖ 𝐶1, B2  ⊖ 𝐶2 , B3  ⊖ 𝐶3〉, 

           A1 ⊖ C1 ⊆ B1  ⊖ 𝐶1, A2 ⊖ C2 ⊇ B2  ⊖ 𝐶2   𝑎𝑛𝑑  A3 ⊖ C3 ⊇ B3  ⊖ 𝐶3.  
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      2. A ⊆ B ⟹ 〈C1 ⊖ A1 , C2 ⊖ A2, C3 ⊖ A3〉 ⊆ 〈C1 ⊖ B1 , C2 ⊖ B2, C3 ⊖ B3〉, 

          C1 ⊖ A1 ⊆ C1 ⊖ B1,   C2 ⊖ A2 ⊇ C2 ⊖ B2  𝑎𝑛𝑑 C3 ⊖ A3 ⊇ C3 ⊖ B3. 

Note that: Dislike the neutrosophic crisp dilation operator, the neutrosophic crisp 

erosion does not satisfy commutativity and the associativity properties. 

Proposition 4.2:  For any family 𝐴𝑖 , 𝑖 ∈ 𝐼 𝑖𝑛 𝒩C(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩C(Z2);    

We will prove the proposition for the two types of neutrosophic crisp erosion operation 

as follows:  

Type I:   𝐚)   ∩𝑖∈I A𝑖 ⊖̃ B = ∩𝑖∈I(A𝑖 ⊖̃ B) 

                      〈∩𝑖∈I A1
𝑖 ⊖ B1, ∩𝑖∈I A2

𝑖 ⊖ B2, ∩𝑖∈I A3
𝑖 ⊕ B3〉 

                  = 〈 ∩
𝑖∈I

(A1
𝑖 ⊖ B1), ∩

𝑖∈I
(A2

𝑖 ⊖ B2), ∩
𝑖∈I

(A3
𝑖 ⊕ B3)〉. 

                𝐛)   B ⊖̃ ∩𝑖∈I A𝑖 = ∩𝑖∈I(B ⊖̃ A𝑖) 

                    〈B1 ⊖ ∩
𝑖∈I

A1
𝑖 , B2 ⊖ ∩

𝑖∈I
A2

𝑖 , B3 ⊕ ∩
𝑖∈I

A3
𝑖〉 

                = 〈 ∩
𝑖∈I

(B1 ⊖ A1
𝑖), ∩

𝑖∈I
(B2 ⊖ A2

𝑖), ∩
𝑖∈I

(B3 ⊕ A3
𝑖)〉.     

Type II:   𝐚)   ∩𝑖∈I A𝑖 ⊖̃ B = ∩𝑖∈I(A𝑖 ⊖̃ B) 

                       〈∩𝑖∈I A1
𝑖 ⊖ B1, ∩𝑖∈I A2

i ⊕ B2, ∩𝑖∈I A3
𝑖 ⊕ B3〉 

                = 〈 ∩
𝑖∈I

(A1
𝑖 ⊖ B1), ∩

𝑖∈I
(A2

𝑖 ⊕ B2), ∩
𝑖∈I

(A3
𝑖 ⊕ B3)〉.  

                   𝐛)   B ⊖̃ ∩𝑖∈I A𝑖 = ∩𝑖∈I(B ⊖̃ A𝑖) 

                        〈B1 ⊖ ∩
𝑖∈I

A1
𝑖 , B2 ⊕ ∩

𝑖∈I
A2

𝑖 , B3 ⊕ ∩
𝑖∈I

A3
𝑖〉 

                = 〈 ∩
𝑖∈I

(B1 ⊖ A1
𝑖), ∩

𝑖∈I
(B2 ⊕ A2

𝑖), ∩
𝑖∈I

(B3 ⊕ A3
𝑖)〉. 

Proof  a)   in two types:   

Type I:  

∩
𝑖∈I

A𝑖 ⊖̃ B = 〈 ∩
𝑏∈𝐵 

( ∩
𝑖∈𝐼

A1
𝑖(−𝑏)) , ∩

𝑏∈𝐵 
( ∩

𝑖∈𝐼
A2

𝑖(−𝑏)) , ∪
𝑏∈𝐵 

( ∩
𝑖∈𝐼

A3
𝑖𝑏)〉 

     = 〈 ∩
𝑖∈𝐼

( ∩
𝑏∈𝐵 

A1
𝑖(−𝑏)) , ∩

𝑖∈𝐼
( ∩

𝑏∈𝐵 
A2

𝑖(−𝑏)) , ∩
𝑖∈𝐼

( ∪
𝑏∈𝐵 

A3
𝑖𝑏)〉 = ∩𝑖∈I(A𝑖 ⊖ B).                            
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Type II: similarity, we can show that it is true in type II. 

b) The proof is similar to point  a). 

Proposition 4.3:  For any family  𝐴𝑖 , 𝑖 ∈ 𝐼  𝑖𝑛 𝒩C(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩𝐶(Z2).   

 We will prove the proposition for the two types of neutrosophic crisp erosion operation 

as follows:  

Type I:  𝒂)   ∪𝑖∈I A𝑖 ⊖̃ B = ∪𝑖∈I(A𝑖 ⊖̃ B) 

                    〈∪𝑖∈I A1
𝑖 ⊖ B1, ∪𝑖∈I A2

𝑖 ⊖ B2, ∪𝑖∈I A3
𝑖 ⊕ B3〉 

                = 〈 ∪
𝑖∈I

(A1
𝑖 ⊖ B1), ∪

𝑖∈I
(A2

𝑖 ⊖ B2), ∪
𝑖∈I

(A3
𝑖 ⊕ B3)〉.  

𝐛)   B ⊖̃ ∪𝑖∈I A𝑖 = ∪𝑖∈I(B ⊖̃ A𝑖) 

                  〈B1 ⊖ ∪
𝑖∈I

A1
𝑖 , B2 ⊖ ∪

𝑖∈I
A2

𝑖 , B3 ⊕ ∪
𝑖∈I

A3
𝑖〉 

               = 〈 ∪
𝑖∈I

(B1 ⊖ A1
𝑖), ∪

𝑖∈I
(B2 ⊖ A2

𝑖), ∪
𝑖∈I

(B3 ⊕ A3
𝑖)〉. 

Type II:  𝒂)   ∪𝑖∈I A𝑖 ⊖̃ B = ∪𝑖∈I(A𝑖 ⊖̃ B) 

                      〈∪i∈I A1
i ⊖ B1, ∪i∈I A2

i ⊕ B2, ∪i∈I A3
i ⊕ B3〉 

                 = 〈 ∪
𝑖∈I

(A1
𝑖 ⊖ B1), ∪

𝑖∈I
(A2

𝑖 ⊕ B2), ∪
𝑖∈I

(A3
𝑖 ⊕ B3)〉.  

𝐛)   B ⊖̃ ∪𝑖∈I A𝑖 = ∪𝑖∈I(B ⊖̃ A𝑖) 

                 〈B1 ⊖ ∪
𝑖∈I

A1
𝑖 , B2 ⊕ ∪

𝑖∈I
A2

𝑖 , B3 ⊕ ∪
𝑖∈I

A3
𝑖〉 

             = 〈 ∪
𝑖∈I

(B1 ⊖ A1
𝑖), ∪

𝑖∈I
(B2 ⊕ A2

𝑖), ∪
𝑖∈I

(B3 ⊕ A3
𝑖)〉. 

Proof:  a)   

Type I:  

 ∪i∈I A𝑖 ⊖̃ B = 〈 ∩
𝑏∈𝐵 

( ∪
𝑖∈𝐼

A1
𝑖(−𝑏)) , ∩

𝑏∈𝐵 
( ∪

𝑖∈𝐼
A2

𝑖(−𝑏)) , ∪
𝑏∈𝐵 

( ∪
𝑖∈𝐼

A3
𝑖𝑏)〉 

     = 〈 ∪
𝑖∈𝐼

( ∩
𝑏∈𝐵 

A1
𝑖(−𝑏)) , ∪

𝑖∈𝐼
( ∩

𝑏∈𝐵 
A2

𝑖(−𝑏)) , ∪
𝑖∈𝐼

( ∪
𝑏∈𝐵 

A3
𝑖𝑏)〉 = ∪𝑖∈I(A𝑖 ⊕ B). 

Type II: can be verified in a similar way as in type I. b) The proof is similar to point a). 
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4.4.2 Properties of the Neutrosophic Crisp Dilation: 

Proposition 4.4:  

The neutrosophic dilation satisfies the following properties: ∀A, B ∈ 𝒩C(Z2). 

i) Commutativity:              A⨁̃B = B⨁̃A. 

ii) Associativity:         (A⨁̃B)⨁̃C = A⨁̃(B⨁̃C). 

iii) Monotonicity:       (increasing in both arguments): 

We will prove the proposition for the two types of neutrosophic crisp dilation operation 

as follows:  

Type I: 

1. A ⊆ B ⟹ 〈A1⨁C1 , A2⨁C2 , A3⨁C3〉 ⊆ 〈B1 ⨁𝐶1, B2 ⨁𝐶2 , B3 ⨁𝐶3〉 

              A1⨁C1 ⊆ B1 ⨁𝐶1, A2⨁C2 ⊆ B2 ⨁𝐶2 𝑎𝑛𝑑  A3⨁C3 ⊇ B3 ⨁𝐶3.   

2. A ⊆ B ⟹ 〈C1⨁A1 , C2⨁A2, C3⨁A3〉 ⊆ 〈C1⨁B1 , C2⨁B2, C3⨁B3〉 

         C1⨁A1 ⊆ C1⨁B1,   C2⨁A2 ⊆ C2⨁B2  𝑎𝑛𝑑 C3⨁A3 ⊇ C3⨁B3. 

Type II: 

1. A ⊆ B ⟹ 〈A1⨁C1 , A2⨁C2 , A3⨁C3〉 ⊆ 〈B1 ⨁𝐶1, B2 ⨁𝐶2 , B3 ⨁𝐶3〉               

A1⨁C1 ⊆ B1 ⨁𝐶1, A2⨁C2 ⊇ B2 ⨁𝐶2   𝑎𝑛𝑑  A3⨁C3 ⊇ B3 ⨁𝐶3. 

2.  A ⊆ B ⟹ 〈C1⨁A1 , C2⨁A2, C3⨁A3〉 ⊆ 〈C1⨁B1 , C2⨁B2, C3⨁B3〉 

       C1⨁A1 ⊆ C1⨁B1,   C2⨁A2 ⊇ C2⨁B2  𝑎𝑛𝑑 C3⨁A3 ⊇ C3⨁B3. 

Proof:   i), ii), iii)  Obvious in two types. 

Proposition 4.5:   for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩C(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩C(Z2).   

We will prove the proposition for the two types of neutrosophic crisp dilation operation 

as follows:  

Type I:    𝒂)   ∩𝑖∈I A𝑖 ⊕̃ B = ∩𝑖∈I(A𝑖 ⊕̃ B) 

                       〈∩𝑖∈I A1
𝑖 ⊕ B1, ∩𝑖∈I A2

𝑖 ⊕ B2, ∩𝑖∈I A3
𝑖 ⊖ B3〉 

                  = 〈 ∩
𝑖∈I

(A1
𝑖 ⊕ B1), ∩

𝑖∈I
(A2

𝑖 ⊕ B2), ∩
𝑖∈I

(A3
𝑖 ⊖ B3)〉.  
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            𝐛)   B ⊕̃ ∩𝑖∈I Ai = ∩𝑖∈I(B ⊕̃ A𝑖) 

                     〈B1 ⊕ ∩
𝑖∈I

A1
𝑖 , B2 ⊕ ∩

𝑖∈I
A2

𝑖 , B3 ⊖ ∩
𝑖∈I

A3
𝑖〉 

                 = 〈 ∩
𝑖∈I

(B1 ⊕ A1
𝑖), ∩

𝑖∈I
(B2 ⊕ A2

𝑖), ∩
𝑖∈I

(B3 ⊖ A3
𝑖)〉.   

Type II:    𝒂)   ∩𝑖∈I Ai ⊕̃ B = ∩𝑖∈I(A𝑖 ⊕̃ B) 

                     〈∩𝑖∈I A1
𝑖 ⊕ B1, ∩𝑖∈I A2

i ⊖ B2, ∩𝑖∈I A3
𝑖 ⊖ B3〉 

                 = 〈 ∩
𝑖∈I

(A1
𝑖 ⊕ B1), ∩

𝑖∈I
(A2

𝑖 ⊖ B2), ∩
𝑖∈I

(A3
𝑖 ⊖ B3)〉.  

                         𝐛)   B ⊕̃ ∩𝑖∈I Ai = ∩𝑖∈I(B ⊕̃ A𝑖) 

                     〈B1 ⊕ ∩
𝑖∈I

A1
𝑖 , B2 ⊖ ∩

𝑖∈I
A2

𝑖 , B3 ⊖ ∩
𝑖∈I

A3
𝑖〉 

                 = 〈 ∩
𝑖∈I

(B1 ⊕ A1
𝑖), ∩

𝑖∈I
(B2 ⊖ A2

𝑖), ∩
𝑖∈I

(B3 ⊖ A3
𝑖)〉. 

Proof: we will prove this property for the two types of the neutrosophic crisp 

intersection operator:    

Type I:  ∩𝑖∈I A𝑖 ⊕̃ B = 〈 ∪
𝑏∈𝐵 

( ∩
𝑖∈𝐼

A1
𝑖𝑏) , ∪

𝑏∈𝐵 
( ∩

𝑖∈𝐼
A2

𝑖𝑏) , ∩
𝑏∈𝐵 

( ∩
𝑖∈𝐼

A3
𝑖(−𝑏))〉 

              =  〈 ∩
𝑖∈𝐼

( ∪
𝑏∈𝐵 

A1
𝑖𝑏) , ∩

𝑖∈𝐼
( ∪

𝑏∈𝐵 
A2

𝑖𝑏) , ∩
𝑖∈𝐼

( ∩
𝑏∈𝐵 

A3
𝑖(−𝑏))〉    = ∩𝑖∈I(A𝑖 ⊕ B).           

Type II:  

 ∩𝑖∈I A𝑖 ⊕̃ B = 〈 ∪
𝑏∈𝐵 

( ∩
𝑖∈𝐼

A1
𝑖𝑏) , ∩

𝑏∈𝐵 
( ∩

𝑖∈𝐼
A2

𝑖(−𝑏)) , ∩
𝑏∈𝐵 

( ∩
𝑖∈𝐼

A3
𝑖(−𝑏))〉 

              = 〈 ∩
𝑖∈𝐼

( ∪
𝑏∈𝐵 

A1
𝑖𝑏) , ∩

𝑖∈𝐼
( ∩

𝑏∈𝐵 
A2

𝑖(−𝑏)) , ∩
𝑖∈𝐼

( ∩
𝑏∈𝐵 

A3
𝑖(−𝑏))〉   = ∩𝑖∈I(A𝑖 ⊕ B).               

Proof:   b) The proof is similar a).    

Proposition 4.6: for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩C(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩C(Z2).   

We will prove the proposition for the two types of neutrosophic crisp dilation operation 

as follows:  

Type I:     𝒂)   ∪𝑖∈I A𝑖 ⊕̃ B = ∪𝑖∈I(A𝑖 ⊕̃ B) 

                        〈∪𝑖∈I A1
𝑖 ⊕ B1, ∪𝑖∈I A2

𝑖 ⊕ B2, ∪𝑖∈I A3
𝑖 ⊖ B3〉 

= 〈 ∪
𝑖∈I

(A1
𝑖 ⊕ B1), ∪

𝑖∈I
(A2

𝑖 ⊕ B2), ∪
𝑖∈I

(A3
𝑖 ⊖ B3)〉.  
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            𝐛)   B ⊕̃ ∪i∈I A𝑖 = ∪i∈I(B ⊕̃ A𝑖) 

                         〈B1 ⊕ ∪
𝑖∈I

A1
𝑖 , B2 ⊕ ∪

𝑖∈I
A2

𝑖 , B3 ⊖ ∪
𝑖∈I

A3
𝑖〉 

                    = 〈 ∪
𝑖∈I

(B1 ⊕ A1
𝑖), ∪

𝑖∈I
(B2 ⊕ A2

𝑖), ∪
𝑖∈I

(B3 ⊖ A3
𝑖)〉. 

Type II:     𝒂)   ∪𝑖∈I A𝑖 ⊕̃ B = ∪𝑖∈I(A𝑖 ⊕̃ B) 

                          〈∪𝑖∈I A1
𝑖 ⊕ B1, ∪𝑖∈I A2

𝑖 ⊖ B2, ∪𝑖∈I A3
𝑖 ⊖ B3〉 

                      = 〈 ∪
𝑖∈I

(A1
𝑖 ⊕ B1), ∪

𝑖∈I
(A2

𝑖 ⊖ B2), ∪
𝑖∈I

(A3
𝑖 ⊖ B3)〉.  

            𝐛)   B ⊕̃ ∪i∈I A𝑖 = ∪i∈I(B ⊕̃ A𝑖) 

                         〈B1 ⊕ ∪
𝑖∈I

A1
𝑖 , B2 ⊖ ∪

𝑖∈I
A2

𝑖 , B3 ⊖ ∪
𝑖∈I

A3
𝑖〉 

                     = 〈 ∪
𝑖∈I

(B1 ⊕ A1
𝑖), ∪

𝑖∈I
(B2 ⊖ A2

𝑖), ∪
𝑖∈I

(B3 ⊖ A3
𝑖)〉. 

Proof:  a) we will prove this property for the two types of the neutrosophic crisp union 

operator:    

Type I: 

  ∪𝑖∈I Ai ⊕̃ B = 〈 ∪
𝑏∈𝐵 

( ∪
𝑖∈𝐼

A1
𝑖𝑏) , ∪

𝑏∈𝐵 
( ∪

𝑖∈𝐼
A2

𝑖𝑏) , ∩
𝑏∈𝐵 

( ∪
𝑖∈𝐼

A3
𝑖(−𝑏))〉 

        = 〈 ∪
𝑖∈𝐼

( ∪
𝑏∈𝐵 

A1
𝑖𝑏) , ∪

𝑖∈𝐼
( ∪

𝑏∈𝐵 
A2

𝑖𝑏) , ∪
𝑖∈𝐼

( ∩
𝑏∈𝐵 

A3
𝑖(−𝑏))〉 = ∪𝑖∈I(A𝑖 ⊕ B). 

Type II: 

 ∪𝑖∈I A𝑖 ⊕̃ B = 〈 ∪
𝑏∈𝐵 

( ∪
𝑖∈𝐼

A1
𝑖𝑏) , ∩

𝑏∈𝐵 
( ∪

𝑖∈𝐼
A2

𝑖(−𝑏)) , ∩
𝑏∈𝐵 

( ∪
𝑖∈𝐼

A3
𝑖(−𝑏))〉 

      = 〈 ∪
𝑖∈𝐼

( ∪
𝑏∈𝐵 

A1
𝑖𝑏) , ∪

𝑖∈𝐼
( ∩

𝑏∈𝐵 
A2

𝑖(−𝑏)) , ∪
𝑖∈𝐼

( ∩
𝑏∈𝐵 

A3
𝑖(−𝑏))〉 = ∪i∈I(Ai ⊕ B). 

Proof:  b) The proof is similar to a).   

4.4.3 Properties of the Neutrosophic Crisp Opening: 

Proposition 4.7:  

The neutrosophic opening satisfies the monotonicity ∀ A, B ∈ 𝒩C(Z2). 

 We will prove the proposition for the two types of neutrosophic crisp opening 

operation as follows:  
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Type I:  

   A ⊆ B ⟹ 〈A1 ∘ C1 , A2 ∘ C2 , A3 ∘ C3〉 ⊆ 〈B1 ∘ 𝐶1, B2 ∘ 𝐶2 , B3 ∘ 𝐶3〉 

A1 ∘ C1 ⊆ B1 ∘ 𝐶1,  A2 ∘ C2 ⊆ B2  ∘ 𝐶2   𝑎𝑛𝑑  A3 ∘ C3 ⊇ B3  ∘ 𝐶3.   

Type II: 

    A ⊆ B ⟹ 〈A1 ∘ C1 , A2 ∘ C2 , A3 ∘ C3〉 ⊆ 〈B1 ∘ 𝐶1, B2 ∘ 𝐶2 , B3 ∘ 𝐶3〉 

A1 ∘ C1 ⊆ B1 ∘ 𝐶1,  A2 ∘ C2 ⊇ B2  ∘ 𝐶2   𝑎𝑛𝑑  A3 ∘ C3 ⊇ B3  ∘ 𝐶3.   

Proposition 4.8:  For any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩C(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩C(Z2). 

We will prove the proposition for the two types of neutrosophic crisp opening operation 

as follows:           

Type I:    ∩𝑖∈I A𝑖 ∘̃ B = ∩𝑖∈I(A𝑖 ∘̃ B) 

               〈∩𝑖∈I A1
𝑖 ∘ B1, ∩𝑖∈I A2

𝑖 ∘ B2, ∩𝑖∈I A3
𝑖 • B3〉 

           = 〈 ∩
𝑖∈I

(A1
𝑖 ∘ B1), ∩

𝑖∈I
(A2

𝑖 ∘ B2), ∩
𝑖∈I

(A3
𝑖 • B3)〉.            

Type II:  ∩𝑖∈I A𝑖 ∘̃ B = ∩𝑖∈I(A𝑖 ∘̃ B) 

               〈∩𝑖∈I A1
𝑖 ∘ B1, ∩𝑖∈I A2

𝑖 • B2, ∩𝑖∈I A3
𝑖 • B3〉 

          = 〈 ∩
𝑖∈I

(A1
𝑖 ∘ B1), ∩

𝑖∈I
(A2

𝑖 • B2), ∩
𝑖∈I

(A3
𝑖 • B3)〉.  

Proposition 4.9: for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩C(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩𝐶(Z2). 

We will prove the proposition for the two types of neutrosophic crisp opening operation 

as follows:    

Type I:  ∪𝑖∈I A𝑖 ∘̃ B = ∪𝑖∈I(A𝑖 ∘̃ B) 

              〈∪𝑖∈I A1
𝑖 ∘ B1, ∪𝑖∈I A2

𝑖 ∘ B2, ∪𝑖∈I A3
𝑖 • B3〉 

          = 〈 ∪
𝑖∈I

(A1
𝑖 ∘ B1), ∪

𝑖∈I
(A2

𝑖 ∘ B2), ∪
𝑖∈I

(A3
𝑖 • B3)〉.  

Type II:  ∪𝑖∈I A𝑖 ∘̃ B = ∪𝑖∈I(A𝑖 ∘̃ B) 

              〈∪𝑖∈I A1
𝑖 ∘ B1, ∪𝑖∈I A2

𝑖 • B2, ∪𝑖∈I A3
𝑖 • B3〉 

          = 〈 ∪
𝑖∈I

(A1
𝑖 ∘ B1), ∪

𝑖∈I
(A2

𝑖 • B2), ∪
𝑖∈I

(A3
𝑖 • B3)〉.  
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Proof: Is similar to the procedure used to prove the propositions given in proposition 

4.6.  

4.4.4 Properties of the Neutrosophic Crisp Closing: 

Proposition 4.10:  

The neutrosophic closing satisfies the monotonicity  ∀ A, B ∈ 𝒩(Z2). We will prove 

the proposition for the two types of neutrosophic crisp closing operation as follows:  

Type I: 

 A ⊆ B ⟹ 〈A1 • C1 , A2 • C2 , A3 • C3〉 ⊆ 〈B1  • 𝐶1, B2  • 𝐶2 , B3  • 𝐶3〉 

A1 • C1 ⊆ B1 • 𝐶1,  A2 • C2 ⊆ B2  • 𝐶2   𝑎𝑛𝑑  A3 • C3 ⊇ B3  • 𝐶3.   

Type II: 

  A ⊆ B ⟹ 〈A1 • C1 , A2 • C2 , A3 • C3〉 ⊆ 〈B1  • 𝐶1, B2  • 𝐶2 , B3  • 𝐶3〉 

A1 • C1 ⊆ B1 • 𝐶1,  A2 • C2 ⊇ B2  • 𝐶2   𝑎𝑛𝑑  A3 • C3 ⊇ B3  • 𝐶3.   

Proposition 4.11: for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2). We will prove 

the proposition for the two types of neutrosophic crisp closing operation as follows:    

Type I:     ∩𝑖∈I A𝑖 •̃ B = ∩𝑖∈I(A𝑖 •̃ B) 

                〈∩𝑖∈I A1
𝑖 • B1, ∩𝑖∈I A2

𝑖 • B2, ∩𝑖∈I A3
𝑖 ∘ B3〉 

            = 〈 ∩
𝑖∈I

(A1
𝑖 • B1), ∩

𝑖∈I
(A2

𝑖 • B2), ∩
𝑖∈I

(A3
𝑖 ∘ B3)〉.    

Type II:     ∩𝑖∈I Ai •̃ B = ∩𝑖∈I(A𝑖 •̃ B) 

                     〈∩𝑖∈I A1
𝑖 • B1, ∩𝑖∈I A2

𝑖 ∘ B2, ∩𝑖∈I A3
𝑖 ∘ B3〉 

                 = 〈 ∩
𝑖∈I

(A1
𝑖 • B1), ∩

𝑖∈I
(A2

𝑖 ∘ B2), ∩
𝑖∈I

(A3
𝑖 ∘ B3)〉. 

Proposition 4.12: for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩C(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩C(Z2).   

 Type I:   ∪𝑖∈I A𝑖 •̃ B = ∪𝑖∈I(A𝑖 •̃ B) 

               〈∪𝑖∈I A1
𝑖 • B1, ∪𝑖∈I A2

𝑖 • B2, ∪𝑖∈I A3
𝑖 ∘ B3〉 

           = 〈 ∪
𝑖∈I

(A1
𝑖 • B1), ∪

𝑖∈I
(A2

𝑖 • B2), ∪
𝑖∈I

(A3
𝑖 ∘ B3)〉.  
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Type II:   ∪𝑖∈I A𝑖 •̃ B = ∪𝑖∈I(A𝑖 •̃ B) 

               〈∪𝑖∈I A1
𝑖 • B1, ∪𝑖∈I A2

𝑖 ∘ B2, ∪𝑖∈I A3
𝑖 ∘ B3〉 

           = 〈 ∪
𝑖∈I

(A1
𝑖 • B1), ∪

𝑖∈I
(A2

𝑖 ∘ B2), ∪
𝑖∈I

(A3
𝑖 ∘ B3)〉. 

Proof: Is similar to the procedure used to prove the propositions given in proposition 

4.6. 

4.5 Duality of Theorem:  

Erosion and dilation are duals of each other with respect to set complementation and 

reflection: Indicating that erosion of A by B is the complement of the dilation of the 

complement of A by the reflection of B and vice versa. Duality is particularly useful 

when the structure element is symmetric with respect to its origin, so that. Then we can 

obtain the erosion of an image by B simply by dilating its background (complement of 

A) with the same structuring element and complementing the result. 

 4.5.1 Duality Theorem of Neutrosophic Crisp Dilation:  

let 𝐴, 𝐵 ∈ 𝒩𝐶(𝑋); Neutrosophic  Crisp Erosion and  Dilation are dual operations i.e. 

Type I:  

 𝑐𝑜(coA ⊕̃ B) = ⟨𝑐𝑜(coA1 ⊕ B1) , 𝑐𝑜(coA2 ⊕ B2) , 𝑐𝑜(coA3 ⊖ B3)⟩   

                        = 〈𝐴1 ⊖ 𝐵1, 𝐴2 ⊖ 𝐵2, 𝐴3 ⊕ 𝐵3〉 = 𝐴 ⊖̃ 𝐵. 

Type II:  

 𝑐𝑜(coA ⊕̃ B) = ⟨𝑐𝑜(coA1 ⊕ B1) , 𝑐𝑜(coA2 ⊖ B2) , 𝑐𝑜(coA3 ⊖ B3)⟩   

                         = 〈𝐴1 ⊖ 𝐵1, 𝐴2 ⊕ 𝐵2, 𝐴3 ⊕ 𝐵3〉 = 𝐴 ⊖̃ 𝐵. 

4.5.2 Duality Theorem of Neutrosophic Crisp Closing:  

let 𝐴, 𝐵 ∈ 𝒩𝐶(𝑋); Neutrosophic  erosion and  dilation are dual operations i.e. 

Type I:  𝑐𝑜(coA •̃ B) = ⟨𝑐𝑜(coA1 • B1) , 𝑐𝑜(coA2 • B2) , 𝑐𝑜(coA3 ∘ B3)⟩   

                                   = 〈𝐴1 ∘ 𝐵1, 𝐴2 ∘ 𝐵2, 𝐴3 • 𝐵3〉 = 𝐴 ∘ 𝐵. 
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Type II: 𝑐𝑜(coA •̃ B) = ⟨𝑐𝑜(coA1 • B1) , 𝑐𝑜(coA2 ∘ B2) , 𝑐𝑜(coA3 ∘ B3)⟩   

                                   = 〈𝐴1 ∘ 𝐵1, 𝐴2 • 𝐵2, 𝐴3 • 𝐵3〉 = 𝐴 ∘ 𝐵. 

4.6 Neutrosophic Crisp Mathematical Morphological Filters: 

When considering The differences of two or more of the basic neutrosophic 

morphological operators, given in § 4.3, yield some remarkable filters; in this section 

we will consider the boundary and Hat filters: 

4.6.1 Some Type of Boundary Extraction Filter Using Neutrosophic Crisp Dilation 

and Neutrosophic Crisp Erosion: 

Where 𝐴1 is the set of all pixels that belong to the foreground of the picture, 𝐴3 contains 

the pixels that belong to the background while 𝐴2 contains those pixel which do not 

belong to neither 𝐴1 nor 𝐴3; let 𝐴, 𝐵 ∈ 𝒩C(𝑋), 𝐴 = 〈𝐴1 , 𝐴2 , 𝐴3〉, and 𝐵 is some 

structure element of the form 𝐵 = 〈𝐵1, 𝐵2, 𝐵3〉, dilation and erosion can be used in 

combination with image subtraction to obtain the morphology extract boundary of an 

image; The dilation thickens regions in an image and the erosion shrinks them.    

4.6.1.1 Neutrosophic Crisp Internal Boundary Filter: 

let A and B be two neutrosophic crisp sets, 𝐴 = 〈𝐴1, 𝐴2, 𝐴3〉 and 𝐵 is some structure 

element of the form 𝐵 = 〈𝐵1, 𝐵2, 𝐵3〉; where 𝐴1 is the set of all pixels that belong to the 

foreground of the picture, 𝐴3 contains the pixels that belong to the background while 𝐴2 

contains those pixel which do not belong to neither 𝐴1 nor 𝐴3; then the neutrosophic 

crisp internal boundary is defined as: �̃�𝑖𝑛𝑡 (A) = 𝐵(𝐴) ∩ 𝐵∗(𝐴), where; 

𝐵∗(𝐴) = 𝐴2 − [(𝐴3 ⊕ 𝐵3) − (𝐴1 ⊖ 𝐵1)],   𝐵(𝐴)   = 𝐴2 − (𝐵1𝐴1 ∪ 𝐵3𝐴3)  

  𝐵1𝐴1 = 𝐴1 − (𝐴1 ⊖ 𝐵1),                                   𝐵3𝐴3 = (𝐴3 ⊕ 𝐵3) − 𝐴3. 

In the following figure (fig.4.9), we present the results obtained when applying 

neutrosophic crisp internal boundary filter on some grayscale image. 
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a)                                       b)                                     c)     

Fig. 4.9: Neutrosophic crisp internal boundary filter:  a) Original image    

   b) Neutrosophic crisp internal boundary filter with SE(3)    

c) Neutrosophic crisp internal boundary filter with SE(5) 

 

4.6.1.2 Neutrosophic Crisp External Boundary Filter: 

The simplest morphological edge detector, the dilation residue, is found by subtracting 

the original signal from its dilation by a small structuring element. The output is defined 

as:   �̃�𝑒𝑥𝑡(A) = 𝐵(𝐴) ∩ 𝐵∗(𝐴), where; 

𝐵(𝐴)   = 𝐴2 − (𝐵1𝐴1 ∪ 𝐵3𝐴3),  𝐵∗(𝐴) = 𝐴2 − [(𝐴1 ⊕ 𝐵1) − (𝐴3 ⊖ 𝐵3)]  

   𝐵1𝐴1 = (𝐴1 ⊕ 𝐵1) − 𝐴1,            𝐵3𝐴3 = 𝐴3 − (𝐴3 ⊖ 𝐵3).           

In the following figure (fig.4.10), we present the results obtained when applying 

neutrosophic crisp external boundary filter on some grayscale image. 

                            
a)                                        b)                                          c) 

Fig. 4.10: Neutrosophic crisp external boundary filter:   a) Original image 

 b) Neutrosophic crisp external boundary filter with SE(3)   

 c) Neutrosophic crisp external boundary filter with SE(5) 

 

4.6.1.3 Neutrosophic Crisp Gradient  Boundary Filter: 

Neutrosophic crisp gradient boundary filter is defined as:  

�̃�𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(A) = 𝐵1(𝐴) ∩ 𝐵2(𝐴), where; 

𝐵1(𝐴) = 𝐴2 − (𝐵1𝐴1 ∪ 𝐵3𝐴3),  𝐵2(𝐴) = 𝐴2 − ((𝐴3 ⊕ 𝐵3) − (𝐴1 ⊖ 𝐵1))                              

𝐵1(𝐴1) = (𝐴1 ⊖ 𝐵1) − (𝐴1 ⊕ 𝐵1),  𝐵3(𝐴3) = (𝐴3 ⊕ 𝐵3) − (𝐴3 ⊖ 𝐵3).   
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In the following figure (fig.4.11), we present the results obtained when applying 

neutrosophic crisp gradient boundary filter on some grayscale image. 

     
                             a)                                    b)                                        c) 

Fig.4.11: Neutrosophic crisp gradient boundary:   a) Original image 

     b) Neutrosophic crisp gradient boundary filter with SE(3)    

   c) Neutrosophic crisp gradient boundary filter with SE(5) 

 

4.6.1.4 Neutrosophic Crisp Outline Boundary Filter: 

Neutrosophic crisp outline boundary filter is defined as:  

�̃�𝑜𝑢𝑡𝑙𝑖𝑛𝑒(A) = 𝑐𝑜((𝐵1𝐴1 ∪ 𝐵3𝐴3) ∩ 𝐴2),where; 

𝐵1(𝐴1) = 𝑐𝑜(𝐴1 ⊖ 𝐵1) ∩ 𝐴1,     𝐵3(𝐴3) = 𝑐𝑜(𝐴3 ⊕ 𝐵3) ∪ 𝐴3. 

In the following figure (fig.4.12), we present the results obtained when applying 

neutrosophic crisp outline boundary filter on some grayscale image. 

      
a)                                  b)                                           c) 

Fig. 4.12: Neutrosophic crisp outline   a) Original image     

b) Neutrosophic crisp outline filtered image SE(3) 

 C) Neutrosophic crisp outline filtered image SE(7) 

 

4.6.2 Combinations of Neutrosophic Crisp External and Neutrosophic Crisp 

Internal Operators: 

Dilation and erosion can be used in combination with image subtraction to obtain the 

morphological extraction A of an image as: 

1. �̃�𝑔𝑟𝑎𝑑(𝐴) = min (𝐵1(𝐴1),  𝐴2), where; 

   𝐵1(𝐴1) = 𝑚𝑎𝑥[𝑚𝑎𝑥(𝐵𝑒𝑥𝑡(𝐴1), 𝐵𝑖𝑛𝑡(𝐴1)), 𝑚𝑖𝑛(𝐵𝑒𝑥𝑡(𝐴3), 𝐵𝑖𝑛𝑡(𝐴3))]. 
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In the following figure (fig.4.13), we present the results obtained when applying 

neutrosophic crisp grad boundary filter on some grayscale image. 

     
   a)                                           b)                                     c) 

Fig. 4.13: Neutrosophic crisp grad  boundary: a) Original image 

b) Neutrosophic Crisp grad Boundary filtered image with SE(3)   

c) Neutrosophic Crisp grad Boundary filtered image with SE(7) 

 

2. �̃�𝑚𝑖𝑛 = min (𝐵1(𝐴1), 𝐴2), where; 

  𝐵1(𝐴1) = 𝑚𝑎𝑥[𝑚𝑖𝑛(𝐵𝑒𝑥𝑡(𝐴1), 𝜕𝑖𝑛𝑡(𝐴1)), 𝑚𝑎𝑥(𝐵𝑒𝑥𝑡𝐴3, 𝐵𝑖𝑛𝑡(𝐴3))]. 

In the following figure (fig.4.14), we present the results obtained when applying 

neutrosophic crisp min. boundary filter on some grayscale image. 

     
a)                                            b)                                     c) 

Fig. 4.14: Neutrosophic crisp min. boundary: a) Original image    

        b) Neutrosophic Crisp min Boundary filter image with SE(3)  

       c) Neutrosophic Crisp min Boundary filter image with SE(7) 

 

3. �̃�𝑑𝑖𝑣 = 𝑚𝑖𝑛 (𝐵1(𝐴1), 𝐴2), where; 

      𝐵1(𝐴1) = 𝑚𝑎𝑥[(𝐵𝑒𝑥𝑡(𝐴1) − 𝐵𝑖𝑛𝑡(𝐴1)), (𝐵𝑒𝑥𝑡(𝐴3) − 𝐵𝑖𝑛𝑡(𝐴3))].    

In the following figure (fig.4.15), we present the results obtained when applying 

neutrosophic crisp Div. boundary filter on some grayscale image.    
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a)                                         b)                                    c) 

Fig. 4.15: Neutrosophic crisp div. boundary: a) Original image    

 b) Neutrosophic Crisp Div. Boundary filtered image with SE(3)  

  c) Neutrosophic Crisp Div. Boundary filtered image with SE(7) 

 

4.6.3 Neutrosophic Crisp Hat Filters: 

Filters described above remove image objects or noise of certain kind. Sometimes, 

however, instead of removing, one needs to detect objects of particular characteristics. 

The descriptions "white" and "black" indicates types of objects which are detected by a 

particular operator lighter or darker than the background. The mentioned above, main 

property of top-hat filter can be applied to contrast enhancement. Indeed, by combining 

the original image with images with detected objects, the contrast improves. This 

combination is performed by adding to the original image the result of white top-hat and 

by subtracting the result of a black top-hat: 

 Neutrosophic Crisp Top-hat Filter: 

𝑇𝑜�̃�ℎ𝑎𝑡(𝐴) = 𝐵(𝐴) ∩ 𝐵∗(𝐴), where; 

     𝐵1𝐴1   =  𝐴1 − (𝐴1 ∘ 𝐵1),        𝐵3𝐴3 =  (𝐴3 • 𝐵3) − 𝐴3) 

     𝐵(𝐴)   = 𝐴2 − (𝜕1𝐴1 ∪ 𝜕3𝐴3), 𝐵∗(𝐴) = 𝐴2 − [(𝐴1 ∘ 𝐵1) − (𝐴3 • 𝐵3)]. 

In the following figure (fig.4.16), we present the results obtained when applying 

neutrosophic crisp top-hat boundary filter on some grayscale image. 
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                          a)                                       b)                                         c) 

Fig. 4.16: Neutrosophic crisp top-hat filter:  a)Original image   

  b) Neutrosophic Crisp top-hat Boundary filtered with SE(3)     

c)Neutrosophic Crisp top-hat Boundary filtered with SE(7)  

 

 Neutrosophic Crisp Bottom-hat Filter: 

𝐵𝑜𝑡𝑡𝑜𝑚̃
ℎ𝑎𝑡(𝐴) = 𝐵(𝐴) ∩ 𝐵∗(𝐴), where; 

𝐵(𝐴)  = 𝐴2 − (𝜕1(𝐴1) ∪ 𝜕3(𝐴3)),  𝐵∗(𝐴) = 𝐴2 − [(𝐴1 • 𝐵1) − (𝐴3 ∘ 𝐵3)]    

𝐵1(𝐴1)   =  (𝐴1 • 𝐵1) − 𝐴1,            𝐵3(𝐴3) =  𝐴3 − (𝐴3 ∘ 𝐵3). 

In the following figure (fig.4.17), we present the results obtained when applying 

neutrosophic crisp bottom-hat boundary filter on some grayscale image.   

   
                     a)                                          b)                                      c) 

Fig. 4.17: Neutrosophic crisp bottom-hat filter:  a)Original image    

 b) Neutrosophic crisp bottom-hat Boundary filtered with SE(3)  

 c)neutrosophic crisp bottom-hat Boundary filtered  with SE(5) 

 

4.7 Conclusion: 

In this chapter we established a foundation for what we called "Neutrosophic Crisp 

Mathematical Morphology". Our aim was to generalize the concepts of the classical 

mathematical morphology. For this purpose, we developed serval neutrosophic crisp 

morphological operators; namely, the neutrosophic crisp dilation, the neutrosophic crisp 

erosion, the neutrosophic crisp opening and the neutrosophic crisp closing operators. 
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These operators were presented in two different types, each type is determined 

according to the behavior of the second component of the triple structure of the 

operator. Furthermore, we developed three neutrosophic crisp morphological filters; 

namely, the neutrosophic crisp boundary, the neutrosophic crisp Top-hat and the 

neutrosophic crisp Bottom-hat filters.  Some promising experimental results were 

presented to visualize the effect of the new introduced operators and filters on the image 

in the neutrosophic domain instead of  the spatial domain.  
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Chapter 5 

Neutrosophic Mathematical Morphology 

 

5.1 Neutrosophic Mathematical Morphology: 

The aim of this chapter is to introduce a new approach to mathematical morphology 

based on neutrosophic set theory. in order to propose "The Neutrosophic Mathematical 

Morphology", the concept of neutrosophic  morphology based on the fact that the basic 

morphological operators make use of fuzzy set operators. Hence, such expressions can 

easily be extended using the context of neutrosophic sets. Basic definitions for 

neutrosophic morphological operations are extracted and a study of its algebraic 

properties is presented. In our work we demonstrate that neutrosophic morphological 

operations inherit properties and restrictions of fuzzy mathematical morphology. The 

operations of neutrosophic dilation, neutrosophic erosion, neutrosophic opening and 

neutrosophic closing of the neutrosophic image by neutrosophic structuring element, are 

defined  in terms of their membership, in determent and non-membership functions; 

which is defined for the first time as far as we know.  

Definition 5.1: 

The reflection of  the  SE  𝐵  mirrored in its origin is defined as:  

 −𝐵 = 〈−𝑇𝐵 , −𝐼𝐵 , −𝐹𝐵〉,  where;   

−𝑇𝐵(𝑢) = 𝑇𝐵(−𝑢), −𝐼𝐵(𝑢) =  𝐼𝐵(−𝑢)    𝑎𝑛𝑑  − 𝐹𝐵(𝑢) = 𝐹𝐵(−𝑢).     

 For every 𝑝 in E, Translation of A by 𝑝 ∈ 𝑍2 is 

 𝐴𝑝 = 〈𝑇𝐴𝑝
, 𝐼𝐴𝑝

,  𝐹𝐴𝑝
〉, where; 

 𝑇𝐴𝑝
(𝑢) = 𝑇𝐴𝑝

(𝑢 + 𝑝),  𝐼𝐴𝑝
(𝑢) = 𝐼𝐴𝑝

(𝑢 + 𝑝) and  𝐹𝐴𝑝
(𝑢) = 𝐹𝐴𝑝

(𝑢 + 𝑝). 

most morphological operations on neutrosophic can be obtained by combining 

neutrosophic set theoretical operations with two basic operations, dilation and erosion.  
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5.2 Neutrosophic Morphological  Operations: 

The neutrosophy concept is introduced to morphology by a triple degree to which the 

structuring element fits into the image in the three levels of trueness, indeterminacy, and 

falseness. The operations of neutrosophic erosion, dilation, opening and closing of the 

neutrosophic image by neutrosophic SE, are defined  in terms of their membership,  

indeterminacy and non-membership functions; which is defined for the first time as far 

as we know. 

5.2.1 Neutrosophic Dilation and Neutrosophic Erosion:  

The two basic operations for the construction of morphological operators, namely, 

neutrosophic dilation and neutrosophic erosion. are based on the two Minkowski set 

operations, the Minkowski addition and subtraction of two neutrosophic sets; 

respectively. we may define the follows: 

5.2.1.1 Neutrosophic Dilation Operation: 

Let 𝐴 and 𝐵, be two neutrosophic sets, the neutrosophic dilation of a neutrosophic set 𝐵 

to a neutrosophic set 𝐴 is defined by:  

(A ⊕̃ B) = ⟨TA⊕̃B , IA⊕̃B , FA⊕̃B⟩, where for each 𝑢, 𝑣 ∈ 𝑍2. The three components, 

TA⊕̃B, IA⊕̃B and FA⊕̃B are to be defined in to different types as follows:  

5.2.1.1.A. Neutrosophic Dilation of Type I: 

𝑇𝐴⊕̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝑇𝐴(𝑣 + 𝑢), 𝑇𝐵(𝑢)),                 

 𝐼𝐴⊕̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝐼𝐴(𝑣 + 𝑢), 𝐼𝐵(𝑢)),                  

𝐹A⊕̃B(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(𝐹𝐴(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)).  
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          a)                                                                   b)              

Fig.5.1(I): Applying the neutrosophic dilation operator:   a)Original image   

     b) Neutrosophic component of the dilated image in type I ⟨TA⊕̃B , IA⊕̃B , FA⊕̃B⟩ respectively 

 

5.2.1.1.B. Neutrosophic Dilation of Type II: 

𝑇𝐴⊕̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝑇𝐴(𝑣 + 𝑢), 𝑇𝐵(𝑢)),                 

 𝐼𝐴⊕̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(𝐼𝐴(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)),         

                        𝐹A⊕̃B(𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥(𝐹𝐴(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)). 

            
                  a)                                                                 b)       

Fig.5.2(II): Applying the neutrosophic dilation operator:   a) Original image   

     b) Neutrosophic component of the dilated image in type II ⟨TA⊕̃B , IA⊕̃B , FA⊕̃B⟩  respectively 

5.2.1.2  Neutrosophic Erosion Operation: 

let A and B, be two neutrosophic sets, The neutrosophic erosion of a neutrosophic set B 

from a neutrosophic set A is defined as: (A ⊖̃ B) = ⟨TA⊖̃B , IA⊖̃B , F𝐴⊖̃𝐵⟩; where for 

each 𝑢, 𝑣 ∈ 𝑍2. The three components, TA⊖̃B, IA⊖̃B  and  F𝐴⊖̃𝐵 are to be defined in to 

different types as follows:  

5.2.1.2.A. Neutrosophic Erosion of Type I: 

𝑇𝐴⊖̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(𝑇𝐴(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)),   

 𝐼𝐴⊖̃𝐵(𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥(𝐼𝐴(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)),     

𝐹𝐴⊖̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝐹𝐴(𝑣 + 𝑢), 𝐹𝐵(𝑢)).          
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  a)                                                                b) 

Fig.5.3(I): Applying the neutrosophic erosion operator: a)original image b)neutrosophic 

components of the eroded in type I ⟨TA⊖̃B , IA⊖̃B , F𝐴⊖̃𝐵⟩ respectively 

 

5.2.1.2.B. Neutrosophic Erosion of Type II: 

𝑇𝐴⊖̃𝐵(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥(𝑇𝐴(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)), 

𝐼𝐴⊖̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝐼𝐴(𝑣 + 𝑢), 𝐼𝐵(𝑢)),             

𝐹𝐴⊖̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛(𝐹𝐴(𝑣 + 𝑢), 𝐹𝐵(𝑢)). 

                   
                  a)                                                              b) 

Fig.5.4(II): Applying the neutrosophic erosion operator: a)Original image b)neutrosophic 

components of the eroded in type II ⟨TA⊖̃B , IA⊖̃B , F𝐴⊖̃𝐵⟩ respectively  

5.2.2 Neutrosophic Opening and Neutrosophic Closing: 

The combination of the two main operations, neutrosophic dilation and neutrosophic 

erosion, can produce more complex sequences. Neutrosophic opening and neutrosophic 

closing are the most useful of these for morphological filtering. 

5.2.2.1 Neutrosophic Opening Operation: 

A neutrosophic opened image, is the result of eroding a neutrosophic image A by a 

neutrosophic SE B; followed by a neutrosophic dilation operation by the same element 

B, and to be defined as the triple structure: (A ∘̃ B) = ⟨TA∘̃B , IA∘̃B , FA∘̃B⟩, where 

𝑢, 𝑣, 𝑤 ∈ 𝑍2 The three components, TA∘̃B ,  IA∘̃B and FA∘̃B are to be defined in two 

different types as follows:  
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5.2.2.1.A. Neutrosophic Opening of Type I:  

𝑇𝐴∘̃𝐵(𝑣) =  𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑤∈𝑍2

𝑚𝑎𝑥(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] , 

𝐼𝐴∘̃𝐵(𝑣) =   𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑤∈𝑍2

𝑚𝑎𝑥(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)), 𝐼𝐵(𝑢)],   

𝐹𝐴∘̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [ 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝐹𝐴(𝑣 − 𝑢 + 𝑤), 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)] . 

       
   a)                                                                b) 

Fig.5.5(I): Applying the neutrosophic opening operator: a)Original image 

 b) neutrosophic opening components in type I ⟨TA∘̃B , IA∘̃B , FA∘̃B⟩  respectively 

 

5.2.2.1.B. Neutrosophic Opening of Type II: 

𝑇𝐴∘̃𝐵(𝑣) =  𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑤∈𝑍2

𝑚𝑎𝑥(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] , 

𝐼𝐴∘̃𝐵(𝑣) =   𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑤∈𝑍2

𝑚𝑎𝑥(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)], 

𝐹𝐴∘̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [ 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝐹𝐴(𝑣 − 𝑢 + 𝑤), 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)] . 

                 
 a)                                                                   b) 

Fig.5.6(II): Applying the neutrosophic opening operator: a)Original image  

b) Neutrosophic opening components in type II ⟨TA∘̃B , IA∘̃B , FA∘̃B⟩ respectively  

 

5.2.2.2 Neutrosophic Closing Operation: 

A neutrosophic closed image, is the result of dilation a neutrosophic image A by a 

neutrosophic structure element 𝐵; followed by a neutrosophic erosion operation by the 

same element 𝐵, and to be defined as the triple structure: (𝐴 •̃ 𝐵) = ⟨𝑇𝐴•̃𝐵 , 𝐼𝐴•̃𝐵 , 𝐹𝐴•̃𝐵⟩, 
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where The three components, 𝑇𝐴•̃𝐵, 𝐼𝐴•̃𝐵 and 𝐹𝐴•̃𝐵 are to be defined in two different types 

as follows: for each 𝑢, 𝑣, 𝑤 ∈ 𝑍2. 

5.2.2.2.A. Neutrosophic Closing Type I:  

TA•̃B(v) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 1 − 𝑇𝐵(𝑢)],                                             

 IA•̃B(v) =  𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)],       

𝐹𝐴•̃𝐵(𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐹𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)]. 

               
    a)                                                                 b) 

Fig.5.7(I): Applying the neutrosophic closing operator: a)Original image  b)Neutrosophic 

closing components in type I ⟨𝑇𝐴•̃𝐵 , 𝐼𝐴•̃𝐵 , 𝐹𝐴•̃𝐵⟩ respectively 

 

5.2.2.2.B. Neutrosophic Closing Type II: 

𝑇𝐴•̃𝐵(𝑣) =  𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [ 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 1 − 𝑇𝐵(𝑢)] , 

  𝐼𝐴•̃𝐵(𝑣) =  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)), 𝐼𝐵(𝑢)], 

      𝐹𝐴•̃𝐵(𝑣) =  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐹𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)]. 

             
 a)                                                                 b) 

Fig.5.8(II): Applying the neutrosophic closing operator: a)Original image  b)Neutrosophic 

closing components in type II ⟨𝑇𝐴•̃𝐵 , 𝐼𝐴•̃𝐵 , 𝐹𝐴•̃𝐵⟩  respectively 

5.3 Algebraic Properties of Neutrosophic Morphological Operations: 

In this section we investigate some of the algebraic properties of the neutrosophic 

morphological operation; neutrosophic dilation, neutrosophic erosion, neutrosophic 

opening and neutrosophic closing. The algebraic properties for neutrosophic 



Chapter 5                                        Neutrosophic Mathematical Morphology 

 

 

84 

mathematical morphology erosion and dilation, as well as for neutrosophic opening and 

closing operations are now considered. 

5.3.1 Properties of the Neutrosophic Erosion Operation: 

Proposition 5.1: for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2)𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2). 

〈𝑇 ∩
𝑖∈𝐼

𝐴𝑖⊖̃𝐵, 𝐼 ∩
𝑖∈𝐼

𝐴𝑖⊖̃𝐵 , 𝐹 ∩
𝑖∈𝐼

𝐴𝑖⊖̃𝐵〉 ⊆ 〈𝑇 ∩
𝑖∈𝐼

(𝐴𝑖⊖̃𝐵), 𝐼 ∩
𝑖∈𝐼

(𝐴𝑖⊖̃𝐵) , 𝐹 ∩
𝑖∈𝐼

(𝐴𝑖⊖̃𝐵)〉. 

We will prove the proposition for the two types of neutrosophic erosion operation as 

follows:  

Type I: 

𝑇 ∩
𝑖∈𝐼

𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑇∩
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)) 

                        = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (inf
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))     

                        ⊆ 𝑖𝑛𝑓
𝑢∈𝑍2

𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑎𝑥 𝑇 𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))                        ⊆ T∩

𝑖∈𝐼
(A𝑖⊖̃B)(𝑣). 

   𝐼∩𝑖∈𝐼 𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥(𝐼∩𝑖∈I 𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)) 

                    = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (inf
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))     

                    ⊆ 𝑖𝑛𝑓
𝑢∈𝑍2

𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑎𝑥 𝐼 𝐴𝑖
(𝑣 + 𝑢), 1 −  𝐼𝐵(𝑢))                      ⊆ I ∩

𝑖∈𝐼
(A𝑖⊖̃B)(𝑣). 

   𝐹∩𝑖∈𝐼 𝐴𝑖⊖̃𝐵(𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛(𝐹∩𝑖∈I 𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                  = 𝑠𝑢𝑝𝑢∈𝑍𝑛 𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢))      

                  = 𝑠𝑢𝑝𝑢∈𝑍2 𝑖𝑛𝑓 
𝑖∈𝐼

(𝑚𝑖𝑛 𝐹𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢))                       ⊆ F ∩

𝑖∈𝐼
(A𝑖⊖̃B)(𝑣).         

Type II: 

T∩
𝑖∈𝐼

𝐴𝑖⊖̃B (𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑇∩
i∈I

A𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢)) 

                       = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))   

                       ⊆ 𝑖𝑛𝑓
𝑢∈𝑍2

𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑎𝑥 𝑇 𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))                         ⊆ T∩

𝑖∈𝐼
(A𝑖⊖̃B)(𝑣). 
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I ∩
𝑖∈𝐼

𝐴𝑖⊖̃B (𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝐼 ∩
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢)) 

                = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢))     

              = 𝑠𝑢𝑝𝑢∈𝑍2 𝑖𝑛𝑓 
𝑖∈𝐼

(𝑚𝑖𝑛 𝐼𝐴𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢))                             ⊆ I ∩

𝑖∈𝐼
(A𝑖⊖̃B)(𝑣). 

𝐹 ∩
𝑖∈𝐼

𝐴𝑖⊖̃B(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝐹∩
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

               = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢))  

               = 𝑠𝑢𝑝𝑢∈𝑍2 𝑖𝑛𝑓 
𝑖∈𝐼

(𝑚𝑖𝑛 𝐹𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢))                          ⊆ F ∩

𝑖∈𝐼
(A𝑖⊖̃B)(𝑣). 

Proposition 5.2:   for any  family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2). 

〈𝑇 ∪
𝑖∈𝐼

A𝑖⊖̃B, 𝐼 ∪
𝑖∈𝐼

A𝑖⊖̃B , 𝐹 ∪
𝑖∈𝐼

A𝑖⊖̃B〉 ⊇ 〈𝑇 ∪
𝑖∈𝐼

(A𝑖⊖̃B), 𝐼 ∪
𝑖∈𝐼

(A𝑖⊖̃B) , 𝐹 ∪
𝑖∈𝐼

(A𝑖⊖̃B)〉. 

We will prove the proposition for the two types of neutrosophic erosion operation as 

follows:  

Type I: 

𝑇∪𝑖∈𝐼 𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝑇∪𝑖∈𝐼 𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))        

                          = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

𝑇𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))    

                          = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑠𝑢𝑝
𝑖∈𝐼

(𝑚𝑎𝑥𝑇𝐴𝑖
(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))                      ⊇ 𝑇 ∪

𝑖∈𝐼
(𝐴𝑖⊖̃𝐵)(𝑣).                        

   𝐼∪𝑖∈𝐼 𝐴𝑖⊖̃𝐵 (𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥(𝐼∪𝑖∈𝐼 𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))                                                                     

                             = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))   

                          = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑠𝑢𝑝
𝑖∈𝐼

(𝑚𝑎𝑥 𝐼𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))                       ⊇ 𝐼 ∪

𝑖∈𝐼
(𝐴𝑖⊖̃𝐵)(𝑣).      

 𝐹∪𝑖∈𝐼 𝐴𝑖⊖̃𝐵(𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛(𝐹∪𝑖∈𝐼 𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢)) 

                = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢))   
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                 ⊇ 𝑠𝑢𝑝𝑢∈𝑍2 𝑠𝑢𝑝
𝑖∈𝐼

(𝑚𝑖𝑛 𝐹𝐴𝑖
(𝑣 + 𝑢), 𝐹𝐵(𝑢))                     ⊇ F ∪

𝑖∈𝐼
(A𝑖⊖̃B)(𝑣). 

The proof  of type II  is similar to type I. 

5.3.2 Properties of the Neutrosophic Dilation Operation: 

Proposition 5.3:  for any family (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2). 

〈T∩
𝑖∈I

𝐴𝑖⊕̃B, I ∩
𝑖∈I

𝐴𝑖⊕̃B, F ∩
𝑖∈I

𝐴𝑖⊕̃B〉 ⊆ 〈T∩
𝑖∈I

(A𝑖⊕̃B), I ∩
𝑖∈I

(A𝑖⊕̃B), F ∩
𝑖∈I

(A𝑖⊕̃B)〉. 

We will prove the proposition for the two types of neutrosophic dilation operation as 

follows: We will prove the proposition for the two types of neutrosophic dilation 

operation as follows:  

Type I: 

T∩
𝑖∈I

A𝑖⊕̃B (𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝑇∩
𝑖∈I

A𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢)) 

                 = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝑖𝑛𝑓 
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))      = 𝑠𝑢𝑝

𝑢∈𝑍2
𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑖𝑛𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))          

                 ⊆ 𝑖𝑛𝑓
𝑖∈𝐼

𝑠𝑢𝑝
𝑢∈𝑍2

(𝑚𝑖𝑛𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))          ⊆ T∩

𝑖∈𝐼
(A𝑖⊕̃B)(𝑣).                  

 I∩i∈I Ai⊕̃B (𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛(𝐼∩𝑖∈I A𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢)) 

                 = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢))           ⊆ I ∩

𝑖∈𝐼
(A𝑖⊕̃B)(𝑣). 

𝐹 ∩
𝑖∈I

A𝑖⊕̃B(𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝐹∩
𝑖∈I

A𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 

                 = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))  

                 ⊆ 𝑖𝑛𝑓𝑢∈𝑍2 𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑎𝑥 𝐹A𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))    ⊆ F ∩

𝑖∈I
(A𝑖⊕̃B)(𝑣) 

Type II: 

T∩
𝑖∈𝐼

Ai⊕̃B (𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝑇∩
𝑖∈I

Ai
(𝑣 + 𝑢), 𝑇𝐵(𝑢))  

           = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝑖𝑛𝑓 
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))         = 𝑠𝑢𝑝

𝑢∈𝑍2
𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑖𝑛𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))               
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     ⊆ 𝑖𝑛𝑓
𝑖∈𝐼

𝑠𝑢𝑝
𝑢∈𝑍2

(𝑚𝑖𝑛𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))                                     ⊆ 𝑇 ∩

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣).                       

 I∩𝑖∈I Ai⊕̃B (𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥(𝐼∩𝑖∈𝐼 𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)) 

            = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢)) 

             ⊆ 𝑖𝑛𝑓𝑢∈𝑍2 𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑎𝑥 𝐼𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))                   ⊆ 𝐼 ∩

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣). 

 𝐹∩𝑖∈𝐼 𝐴𝑖⊕̃𝐵(𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝐹∩𝑖∈𝐼 𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))                      

                       = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢)) 

                       ⊆ 𝑖𝑛𝑓𝑢∈𝑍2 𝑖𝑛𝑓
𝑖∈𝐼

(𝑚𝑎𝑥 𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))        ⊆ 𝐹 ∩

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣). 

Proposition 5.4: for any family (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2)  𝑎𝑛𝑑   𝐵 ∈ 𝒩(Z2). 

〈𝑇 ∪
𝑖∈𝐼

A𝑖⊕̃B, 𝐼 ∪
𝑖∈𝐼

A𝑖⊕̃B, 𝐹 ∪
𝑖∈𝐼

A𝑖⊕̃B〉 ⊇ 〈𝑇 ∪
𝑖∈𝐼

(A𝑖⊕̃B), 𝐼 ∪
𝑖∈𝐼

(A𝑖⊕̃B), 𝐹 ∪
𝑖∈𝐼

(A𝑖⊕̃B)〉. 

We will prove the proposition for the two types of neutrosophic dilation operation as 

follows:  

Type I: 

T∪
𝑖∈𝐼

𝐴𝑖⊕̃𝐵 (𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 (𝑇∪
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))  

                      = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (sup
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))                 

                      ⊇ 𝑠𝑢𝑝
𝑢∈𝑍2

(𝑠𝑢𝑝 
𝑖∈𝐼

 𝑚𝑖𝑛𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))            ⊇ 𝑇 ∪

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣). 

𝐼𝐵⊕̃ ∪
𝑖∈𝐼

𝐴𝑖
 (𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 (𝐼 ∪

𝑖∈𝐼
𝐴𝑖

(𝑣 + 𝑢), 𝐼𝐵(𝑢))  

                     = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢))                 

                      ⊇ 𝑠𝑢𝑝
𝑢∈𝑍2

(𝑠𝑢𝑝 
𝑖∈𝐼

 𝑚𝑖𝑛 𝐼𝐴𝑖
(𝑣 + 𝑢), 𝐼𝐵(𝑢))               ⊇ 𝐼 ∪

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣).   
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𝐹∪𝑖∈𝐼 𝐴𝑖⊕̃𝐴𝑖
(𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝐹∪

𝑖∈𝐼
𝐴𝑖

(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))  

                        = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))           

                        = 𝑖𝑛𝑓
𝑢∈𝑍2

(𝑠𝑢𝑝 
𝑖∈𝐼

 𝑚𝑎𝑥 𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))  ⊇ 𝐹 ∪

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣). 

Type II: 

 𝑇 ∪
𝑖∈𝐼

𝐴𝑖⊕̃𝐵 (𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 (𝑇∪
𝑖∈𝐼

𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))  

                      = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 (𝑠𝑢𝑝
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))                 

                         ⊇ 𝑠𝑢𝑝
𝑢∈𝑍2

(𝑠𝑢𝑝 
𝑖∈𝐼

 𝑚𝑖𝑛𝑇𝐴𝑖
(𝑣 + 𝑢), 𝑇𝐵(𝑢))            ⊇ T∪

𝑖∈I
(𝐴𝑖⊕̃𝐵)(𝑣).   

𝐼𝐵⊕̃ ∪
𝑖∈𝐼

𝐴𝑖
 (𝑣)   = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝐼 ∪

𝑖∈𝐼
𝐴𝑖

(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))  

                      = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))                 

                       = 𝑖𝑛𝑓
𝑢∈𝑍2

(𝑠𝑢𝑝 
𝑖∈𝐼

 𝑚𝑎𝑥 𝐼𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))     ⊇ 𝐼 ∪

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣).                     

𝐹∪𝑖∈𝐼 𝐴𝑖⊕̃𝐴𝑖
(𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 (𝐹∪

𝑖∈𝐼
𝐴𝑖

(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))  

                        = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))                 

                        = 𝑖𝑛𝑓
𝑢∈𝑍2

(𝑠𝑢𝑝 
𝑖∈𝐼

 𝑚𝑎𝑥 𝐹𝐴𝑖
(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))  ⊇ 𝐹 ∪

𝑖∈𝐼
(𝐴𝑖⊕̃𝐵)(𝑣). 

5.3.3 Properties of the Neutrosophic Closing Operation: 

Proposition 5.5:   for any family (𝐴𝑖|𝑖 ∈ 𝐼)  𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑  𝐵 ∈ 𝒩(Z2). 

 〈𝑇∩𝑖∈𝐼 𝐴𝑖•̃𝐵 , 𝐼∩𝑖∈𝐼 𝐴𝑖•̃𝐵 , 𝐹∩𝑖∈𝐼 𝐴𝑖•̃𝐵〉 ⊆ 〈𝑇∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵), 𝐼 ∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵) , 𝐹∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵)〉. 

We will prove the proposition for the two types of neutrosophic closing operation as 

follows:  
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Type I: 

𝑇∩
𝑖∈𝐼

𝐴𝑖•̃𝐵 (𝑣) = 𝑖𝑛𝑓
𝑢∈𝑍2

𝑚𝑎𝑥 [ 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛 (𝑇∩
𝑖∈𝐼

𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)] 

                    = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]      

                    ⊆ 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑖𝑛𝑓
𝑖∈𝐼

 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]       

                   ⊆ 𝑖𝑛𝑓
𝑖∈𝐼

𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [ 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]                                           

                     ⊆ 𝑇∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣).  

𝐼∩𝑖∈𝐼 𝐴𝑖•̃𝐵 (𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝐼∩𝑖∈𝐼 𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 −   𝐼𝐵(𝑢)]      

                     = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)]                           

                       ⊆ 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑖𝑛𝑓
𝑖∈𝐼

 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)]            

                       ⊆ 𝑖𝑛𝑓
𝑖∈𝐼

𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [ 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)]       

                       ⊆ 𝐼 ∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣). 

𝐹∩
𝑖∈𝐼

𝐴𝑖•̃𝐵(𝑣) = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛 [ 𝑖𝑛𝑓
𝑤∈𝑍2

𝑚𝑎𝑥 (𝐹∩
𝑖∈𝐼

𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)] 

                   = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)] 

                   ⊆ 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓
𝑖∈𝐼

 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)] 

                    ⊆ 𝑖𝑛𝑓
𝑖∈𝐼

  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [ 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)] 

                   ⊆ 𝐹∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣). 
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Type II: 

𝑇∩𝑖∈𝐼 𝐴𝑖•̃𝐵 (𝑣) =  𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝑇∩𝑖∈𝐼 𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]        

                   = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝑖𝑛𝑓
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]         

                  ⊆ 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑖𝑛𝑓
𝑖∈𝐼

 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]                   

                    ⊆ 𝑖𝑛𝑓
𝑖∈𝐼

𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [ 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)] 

                    ⊆ 𝑇∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣).  

 𝐼∩𝑖∈𝐼 𝐴𝑖•̃𝐵 (𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝐼∩𝑖∈𝐼 𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)) , 𝐼𝐵(𝑢)]          

                  = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)) , 𝐼𝐵(𝑢)]             

                 ⊆ 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓
𝑖∈𝐼

 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)) , 𝐼𝐵(𝑢)]               

                 ⊆ 𝑖𝑛𝑓
𝑖∈𝐼

  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [ 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)) , 𝐼𝐵(𝑢)]                         

                 ⊆ 𝐼 ∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣). 

𝐹∩𝑖∈𝐼 𝐴𝑖•̃𝐵(𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝐹∩𝑖∈𝐼 𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)]             

= 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝑖𝑛𝑓
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)] 

⊆ 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓
𝑖∈𝐼

 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)]           

⊆ 𝑖𝑛𝑓
𝑖∈𝐼

  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [ 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)]        

⊆ 𝐹∩
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣). 

Proposition 5.6:  for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(𝑍2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(𝑍2). 

〈𝑇∪
𝑖∈𝐼

𝐴𝑖•̃𝐵, 𝐼 ∪
𝑖∈𝐼

𝐴𝑖•̃𝐵 , 𝐹∪
𝑖∈𝐼

𝐴𝑖•̃𝐵〉 ⊇ 〈𝑇∪
𝑖∈𝐼

(𝐴𝑖•̃𝐵), 𝐼 ∪
𝑖∈𝐼

(𝐴𝑖•̃𝐵) , 𝐹∪
𝑖∈𝐼

(𝐴𝑖•̃𝐵)〉. 
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We will prove the proposition for the two types of neutrosophic closing operation as 

follows: 

Type I: 

𝑇∪𝑖∈𝐼 𝐴𝑖•̃𝐵 (𝑣) =   𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝑇∪𝑖∈𝐼 𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]                      

                        = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝑠𝑢𝑝
𝑖∈𝐼

 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]                   

                       ⊇ 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝
𝑖∈𝐼

 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)]                   

                       ⊇ 𝑖𝑛𝑓
𝑖∈𝐼

𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [ 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝑇𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)) , 1 − 𝑇𝐵(𝑢)] 

                       ⊇ 𝑇∪
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣). 

𝐼∪𝑖∈𝐼 𝐴𝑖•̃𝐵 (𝑣) = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝐼∪𝑖∈𝐼 𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)]                    

                        = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)]             

                          ⊇ 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [𝑠𝑢𝑝
𝑖∈𝐼

 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)]                 

                        ⊇ 𝑖𝑛𝑓
𝑖∈𝐼

𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥 [ 𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛 ( 𝐼𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)) , 1 − 𝐼𝐵(𝑢)] 

                          ⊇ 𝐼 ∪
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣). 

𝐹∪𝑖∈𝐼 𝐴𝑖•̃𝐵(𝑣) = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝐹∪𝑖∈𝐼 𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)]                             

                       = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 (𝑠𝑢𝑝
𝑖∈𝐼

 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)]                    

                      ⊇ 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [𝑠𝑢𝑝
𝑖∈𝐼

 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)]                  

                      ⊇ 𝑠𝑢𝑝
𝑖∈𝐼

  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [ 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥 ( 𝐹𝐴𝑖
(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)) , 𝐹𝐵(𝑢)] 

                     ⊇ 𝐹∪
𝑖∈𝐼

(𝐴𝑖•̃𝐵)(𝑣). 

The proof type II  is similar to type I. 
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5.3.4 Properties of the Neutrosophic Opening Operation: 

The neutrosophic opening satisfies the following properties: 

Proposition 5.7:   for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2). 

      〈T∩𝑖∈I A𝑖 ο ̃B, I∩𝑖∈I A𝑖 ο̃ B , F∩𝑖∈I A𝑖 ο̃ B〉 ⊆ 〈T∩
𝑖∈I

(A𝑖 ο ̃B), I ∩
𝑖∈I

(A𝑖ο̃ B) , F ∩
𝑖∈I

(A𝑖 ο ̃B)〉. 

Proposition 5.8: for any family  (𝐴𝑖|𝑖 ∈ 𝐼) 𝑖𝑛 𝒩(Z2) 𝑎𝑛𝑑 𝐵 ∈ 𝒩(Z2). 

〈𝑇∪
𝑖∈𝐼

A𝑖 ο̃ B, 𝐼 ∪
𝑖∈𝐼

A𝑖 ο ̃B , 𝐹∪
𝑖∈𝐼

A𝑖 ο̃ B〉 ⊇ 〈𝑇∪
𝑖∈𝐼

(A𝑖ο̃ B), 𝐼 ∪
𝑖∈𝐼

(A𝑖 ο ̃B ) , 𝐹∪
𝑖∈𝐼

(A𝑖 ο̃B)〉. 

Proof: Is similar to the procedure used to prove the propositions given in    § 5.3.3.  

5.4 Duality Theorem: 

5.4.1 Duality Theorem of Neutrosophic Dilation:  

let A and B are two neutrosophic sets. Neutrosophic  erosion and  dilation are dual 

operations i.e. (A𝑐 ⊕̃ B)c = ⟨T(A𝑐 ⊕̃B)c  , I(A𝑐 ⊕̃B)c  , F(A𝑐 ⊕̃B)c⟩. 

where for each u, v ∈ 𝑍2. We will prove the proposition for the two types of 

neutrosophic dilation operation as follows:  

Type I:   

 𝑇(A𝑐⊕̃𝐵)𝑐(𝑣)  = 1 − 𝑇(A𝑐⊕̃𝐵)(𝑣) 

            = 1 − sup𝑢∈𝑍2 𝑚𝑖𝑛(TA𝑐(𝑣 + 𝑢), 𝑇𝐵(𝑢))   = 𝑖𝑛𝑓
𝑢∈𝑍2

[1 − 𝑚𝑖𝑛(TA𝑐(𝑣 + 𝑢), 𝑇𝐵(𝑢))]        

            = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(1 − TA𝑐(𝑣 + 𝑢), 1 −  𝑇𝐵(𝑢))]  

            = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(𝑇𝐴(𝑣 + 𝑢), 1 − 𝑇𝐵(𝑢))]          = 𝑇𝐴⊖𝐵(𝑣).   

𝐼(A𝑐⊕̃𝐵)𝑐(𝑣)  = 1 − 𝐼(A𝑐⊕̃𝐵)(𝑣)                                                                                   

  = 1 − sup𝑥∈𝑅𝑛 𝑚𝑖𝑛(A𝑐(𝑣 + 𝑢), 𝐼𝐵(𝑢))  = 𝑖𝑛𝑓
𝑢∈𝑍2

[1 − 𝑚𝑖𝑛(IA𝑐(𝑣 + 𝑢), 𝐼𝐵(𝑥))] 

         = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(1 − IA𝑐(𝑣 + 𝑢), 1 −  𝐼𝐵(𝑢))]   

         = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(𝐼𝐴(𝑣 + 𝑢), 1 −  𝐼𝐵(𝑢))]           = 𝐼𝐴⊖𝐵(𝑣). 
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 𝐹(A𝑐⊕̃𝐵)𝑐(𝑣) = 1 − 𝐹(A𝑐⊕̃𝐵)(𝑣)                       

            = 1 − [inf𝑥∈𝑅𝑛 𝑚𝑎𝑥(FA𝑐(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))] 

            = 𝑠𝑢𝑝
𝑢∈𝑍2

[1 − 𝑚𝑎𝑥(FA𝑐(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))]  

            = 𝑠𝑢𝑝
𝑢∈𝑍2

[𝑚𝑖𝑛(F𝐴(𝑣 + 𝑢), 𝐹𝐵(𝑢))]                     = 𝐹𝐴⊖𝐵(𝑣). 

⟨T(A𝑐 ⊕̃B)c  , I(A𝑐 ⊕̃B)c  , F(A𝑐 ⊕̃B)c⟩ = ⟨𝑇𝐴⊖̃𝐵,  𝐼𝐴⊖̃𝐵, 𝐹𝐴⊖̃𝐵⟩. 

Type II:   

 𝑇(A𝑐⊕̃𝐵)𝑐(𝑣)  = 1 − 𝑇(A𝑐⊕̃𝐵)(𝑣) 

         = 1 − sup𝑢∈𝑍2 𝑚𝑖𝑛(TA𝑐(𝑣 + 𝑢), 𝑇𝐵(𝑢))      

           = 𝑖𝑛𝑓
𝑢∈𝑍2

[1 − 𝑚𝑖𝑛(TA𝑐(𝑣 + 𝑢), 𝑇𝐵(𝑢))]  = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(1 − TA𝑐(𝑣 + 𝑢), 1 −  𝑇𝐵(𝑢))] 

           = 𝑖𝑛𝑓
𝑢∈𝑍2

[𝑚𝑎𝑥(𝑇𝐴(𝑣 + 𝑢), 1 −  𝑇𝐵(𝑢))]                  = 𝑇𝐴⊖𝐵(𝑣). 

   𝐼(A𝑐⊕̃𝐵)𝑐(𝑣)  = 1 − 𝐼(A𝑐⊕̃𝐵)(𝑣).                                                     

             = 1 − [inf𝑥∈𝑅𝑛 𝑚𝑎𝑥(IA𝑐(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))]   

           = 𝑠𝑢𝑝
𝑢∈𝑍2

[1 − 𝑚𝑎𝑥(IA𝑐(𝑣 + 𝑢), 1 − 𝐼𝐵(𝑢))] 

           = 𝑠𝑢𝑝
𝑢∈𝑍2

[𝑚𝑖𝑛(I𝐴(𝑣 + 𝑢), 𝐼𝐵(𝑢))]               = 𝐼𝐴⊖𝐵(𝑣). 

𝐹(A𝑐⊕̃𝐵)𝑐(𝑣) = 1 − 𝐹(A𝑐⊕̃𝐵)(𝑣)                       

            = 1 − [inf𝑢∈𝑍2 𝑚𝑎𝑥(FA𝑐(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))]  

            = 𝑠𝑢𝑝
𝑢∈𝑍2

[1 − 𝑚𝑎𝑥(FA𝑐(𝑣 + 𝑢), 1 − 𝐹𝐵(𝑢))]    

            = 𝑠𝑢𝑝
𝑢∈𝑍2

[𝑚𝑖𝑛(F𝐴(𝑣 + 𝑢), 𝐹𝐵(𝑢))]               = 𝐹𝐴⊖̃𝐵(𝑣). 

⟨T(A𝑐 ⊕̃B)c  , I(A𝑐 ⊕̃B)c  , F(A𝑐 ⊕̃B)c⟩ = ⟨𝑇𝐴⊖̃𝐵,  𝐼𝐴⊖̃𝐵, 𝐹𝐴⊖̃𝐵⟩. 

5.4.2 Duality Theorem of Neutrosophic Closing:  

let A and B are two neutrosophic sets, neutrosophic opening and neutrosophic closing 

are also dual operation i.e.  
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(A𝑐 •̃ B)c =  ⟨T(A𝑐 •̃ B)c  , I(A𝑐 •̃ B)c  , F(A𝑐 •̃ B)c⟩, where for all 𝑥 ∈ 𝑋. We will prove the 

proposition for the two neutrosophic types follows:  

Type I: 

 T(A𝑐  •̃ B)c(𝑣) = 1 − 𝑇A𝑐 •̃ 𝐵(𝑣) 

      = 1 −  𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑧∈𝑅𝑛 𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 1 − 𝑇𝐵(𝑢)] 

      =  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [1 − 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] 

     = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(1 − 𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] 

     = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)]           = T𝐴 ∘̃ 𝐵(𝑣). 

  I(A𝑐 •̃ B)c(𝑣) = 1 − 𝐼A𝑐 •̃𝐵(𝑣)      

           = 1 −  𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛(𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)] 

        = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [1 − 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝐵(𝑤)), 𝐼𝐵(𝑢)] 

        = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(1 − 𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝐵(𝑤)), 𝐼𝐵(𝑢)]               

           = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝐵(𝑤)), 𝐼𝐵(𝑢)]              = I𝐴 ∘̃ 𝐵(𝑣).    

F(Ac •̃ B)c(v) = 1 − FAc •̃ B 

         = 1 −  𝑠𝑢𝑝u∈Z2 𝑚𝑖𝑛[𝑖𝑛𝑓w∈Z2 𝑚𝑎𝑥(FAc(v − u + w), 1 − FB(w)), FB(u)]     

         = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[1 − 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐹𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)]      

         = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛(𝐹𝐴(𝑣 − 𝑢 + 𝑤), 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)]    =  F𝐴 ∘̃ 𝐵(𝑣). 

⟨T(A𝑐 •̃ B)c  , I(A𝑐 •̃ B)c  , F(A𝑐 •̃ B)c⟩ = ⟨T𝐴 ∘̃ 𝐵, I𝐴 ∘̃ 𝐵, 𝐹𝐴 ∘̃ 𝐵⟩. 

Type II: 

T(A𝑐  •̃ B)c(𝑣) = 1 − 𝑇A𝑐 •̃ 𝐵(𝑣)                     

     = 1 −  𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 1 − 𝑇𝐵(𝑢)] 
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    = 𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛 [1 − 𝑠𝑢𝑝
𝑤∈𝑍2

𝑚𝑖𝑛(𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] 

    = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(1 − 𝑇𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)] 

    = 𝑠𝑢𝑝
𝑢∈𝑍2

𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝑇𝐴(𝑣 − 𝑢 + 𝑤), 1 − 𝑇𝐵(𝑤)), 𝑇𝐵(𝑢)]          = T𝐴 ∘̃ 𝐵(𝑣).    

I(A𝑐 •̃ B)c(𝑣) = 1 − 𝐼A𝑐 •̃𝐵(𝑣) 

      = 1 −  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)), 𝐼𝐵(𝑢)]       

      = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[1 − 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐼𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝐼𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)] 

      = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛(𝐼𝐴(𝑣 − 𝑢 + 𝑤), 𝐼𝐵(𝑤)), 1 − 𝐼𝐵(𝑢)]     =  𝐼𝐴 ∘̃ 𝐵(𝑣).                 

𝐹(𝐴𝑐 •̃ 𝐵)𝑐(𝑣) = 1 − 𝐹𝐴𝑐 •̃ 𝐵         

      = 1 −  𝑠𝑢𝑝𝑢∈𝑍2 𝑚𝑖𝑛[𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐹𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 𝐹𝐵(𝑢)]     

      = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[1 − 𝑖𝑛𝑓𝑤∈𝑍2 𝑚𝑎𝑥(𝐹𝐴𝑐(𝑣 − 𝑢 + 𝑤), 1 − 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)] 

      = 𝑖𝑛𝑓𝑢∈𝑍2 𝑚𝑎𝑥[𝑠𝑢𝑝𝑤∈𝑍2 𝑚𝑖𝑛(𝐹𝐴(𝑣 − 𝑢 + 𝑤), 𝐹𝐵(𝑤)), 1 − 𝐹𝐵(𝑢)]     =  𝐹𝐴 ∘̃ 𝐵(𝑣). 

               ⟨𝑇(𝐴𝑐 •̃ 𝐵)𝑐  , 𝐼(𝐴𝑐 •̃ 𝐵)𝑐  , 𝐹(𝐴𝑐 •̃ 𝐵)𝑐⟩ = ⟨T𝐴 ∘̃ 𝐵, I𝐴 ∘̃ 𝐵, 𝐹𝐴 ∘̃ 𝐵⟩ 

5.5 Neutrosophic Mathematical Morphological Filters: 

When considering The differences of two or more of the basic neutrosophic 

morphological operators, given in § 5.2, yield some remarkable filters; in this section 

we will consider the boundary and Hat filters: 

5.5.1 Some Type of Boundary Extraction Filter Using Neutrosophic Dilation and 

Neutrosophic Erosion: 

As the neutrosophic dilation thickens regions in the true level of image, and the 

neutrosophic erosion shrinks them, the neutrosophic differences between the image and 

either its neutrosophic dilation or erosion may emphasize the boundaries between 

regions included in the image. Therefore, several boundary filters may be obtained as 

follows:  
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5.5.1.1 Neutrosophic Gradient Boundary:  

To commence, we will investigate the neutrosophic gradient filter which is the mean 

value of the three components of the neutrosophic difference between the neutrosophic 

dilation of some image and its neutrosophic erosion. We get the neutrosophic gradient 

of the image by applying the mean of these boundaries. If the structure element is 

relatively small, the homogeneous areas will not be affected by neutrosophic dilation 

and neutrosophic erosion, then the subtraction tends to eliminate them. The effect of 

neutrosophic morphological gradient operation is shown in Fig. 5.9 and to be defined in 

two different types as follows: 

Type I: 

𝜕𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = (
1

3
) ∗ [

𝑚𝑖𝑛 (𝑇𝐴⊕̃𝐵(𝑣), 1 − 𝑇𝐴⊖̃𝐵(𝑣)) , 𝑚𝑖𝑛 (𝐼𝐴⊕̃𝐵(𝑣), 1 − 𝐼𝐴⊖̃𝐵(𝑣)) ,

  𝑚𝑎𝑥 (𝐹𝐴⊕̃𝐵(𝑣), 1 − 𝐹𝐴⊖̃𝐵(𝑣))
]. 

In the following figure (fig.5.9 (I)), we present the results obtained when applying 

neutrosophic gradient boundary filter on some grayscale image. 

     
                                           a)                                  b)  

Fig. 5.9(I): Applying the neutrosophic gradient boundary: a) Original image   

b) Neutrosophic gradient boundary filtered  

Type II: 

𝜕𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 

(1/3) ∗ [
𝑚𝑖𝑛 (𝑇𝐴⊕̃𝐵(𝑣), 1 − 𝑇𝐴⊖̃𝐵(𝑣)) , 𝑚𝑎𝑥 (𝐼𝐴⊕̃𝐵(𝑣), 1 − 𝑇𝐴⊖̃𝐵(𝑣)) ,

𝑚𝑎𝑥 (𝐹𝐴⊕̃𝐵(𝑣), 1 − 𝑇𝐴⊖̃𝐵(𝑣))
]. 

In the following figure (fig.5.10 (II)), we present the results obtained when applying 

neutrosophic gradient boundary filter on some grayscale image. 
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                                        a)                                     b) 

Fig.5.10 (II): Applying the neutrosophic gradient boundary: a) original image   

                                 b) Neutrosophic gradient boundary filtered  

.   

5.5.1.2 Neutrosophic External Boundary: 

In this filter, a neutrosophic dilation is firstly applied to the neutrosophic image A by 

some neutrosophic structure element B; hence, the output filtered image will be the 

neutrosophic difference between neutrosophic dilated image and the neutrosophic image 

A. That is, the neutrosophic external boundary of A is to be defined in two different 

types as follows: 

Type I: 

𝜕𝑒𝑥𝑡 = (1/3) ∗ [
𝑚𝑖𝑛 (𝑇𝐴⊕̃𝐵(𝑣), 1 − 𝑇𝐴(𝑣)) , 𝑚𝑖𝑛 (𝐼𝐴⊕̃𝐵(𝑣), 1 − 𝐼𝐴(𝑣)) ,

𝑚𝑎𝑥 (𝐹𝐴⊕̃𝐵(𝑣)) , 1 − 𝐹𝐴(𝑣)
]. 

In the following figure (fig.5.11 (I)), we present the results obtained when applying 

neutrosophic external boundary filter on some grayscale image. 

        
                                            a)                                           b) 

Fig.5.11(I): Applying the neutrosophic external  boundary: a) original image  

b) Neutrosophic external boundary filtered image 

 

 

Type II: 

𝜕𝑒𝑥𝑡 = (1/3) ∗ [
𝑚𝑖𝑛 (𝑇𝐴⊕̃𝐵(𝑣), 1 − 𝑇𝐴(𝑣)) , 𝑚𝑎𝑥 (𝐼𝐴⊕̃𝐵(𝑣), 1 − 𝐼𝐴(𝑣)) ,

𝑚𝑎𝑥 (𝐹𝐴⊕̃𝐵(𝑣)) , 1 − 𝐹𝐴(𝑣)
]. 
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In the following figure (fig.5.12 (II)), we present the results obtained when applying 

neutrosophic external boundary filter on some grayscale image. 

     
                                    a)                                         b) 

Fig.5.12(II): Applying the neutrosophic external  boundary: a) Original image 

 b) Neutrosophic external boundary filtered image 

 

5.5.1.3 Neutrosophic Internal Boundary: 

The main step of the neutrosophic internal boundary filter, is to get the neutrosophic 

erosion of the neutrosophic image, hence, the output filtered image will be the 

neutrosophic difference between the original image in neutrosophic domain and the 

neutrosophic eroded image that is the neutrosophic internal boundary of the 

neutrosophic image A is to be defined in two different types as follows:  

Type I: 

𝜕𝑖𝑛𝑡 = (1/3) ∗ [
𝑚𝑖𝑛 (𝑇𝐴(𝑣), 1 − (𝑇𝐴⊖̃𝐵(𝑣))) , 𝑚𝑖𝑛 (𝐼𝐴(𝑣), 1 − 𝐼𝐴⊖̃𝐵(𝑣)) ,

𝑚𝑎𝑥 (𝐹𝐴(𝑣), 1 − 𝐹𝐴⊖̃𝐵(𝑣))
]. 

In the following figure (fig.5.13 (I)), we present the results obtained when applying 

neutrosophic internal boundary filter on some grayscale image. 

     
                                         a)                                        b)  

Fig. 5.13(I): Applying the neutrosophic internal boundary: a) Original image 

 b) Neutrosophic internal boundary filtered image 
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Type II: 

𝜕𝑖𝑛𝑡 = (1/3) ∗ [
𝑚𝑖𝑛 (𝑇𝐴(𝑣), 1 − (𝑇𝐴⊖̃𝐵(𝑣))) , 𝑚𝑖𝑛 (𝐼𝐴(𝑣), 1 − 𝐼𝐴⊖̃𝐵(𝑣)) ,

𝑚𝑎𝑥 (𝐹𝐴(𝑣), 1 − 𝐹𝐴⊖̃𝐵(𝑣))
]. 

    
a)                            b) 

Fig.5.14(II): Applying the neutrosophic internal boundary: a) original image 

 b) Neutrosophic internal boundary filtered image 

 

5.5.1.4 Neutrosophic Outline Boundary: 

The main step of the neutrosophic outline boundary filter, is to get the complement of 

the neutrosophic erosion of the neutrosophic image, hence, the output filtered image 

will be the neutrosophic difference between the original image in neutrosophic domain 

and the neutrosophic eroded image that is the neutrosophic outline boundary of the 

neutrosophic image 𝐴 is to be defined as follows: 𝜕𝑜𝑢𝑡𝑙𝑖𝑛𝑒(𝐴) = (𝜕1𝐴1 ∪ 𝜕3𝐴3) ∩ 𝐴2, 

where; 𝜕1(𝐴1) = 𝑐𝑜(𝐴1 ⊖ 𝐵1) ∩ 𝐴1,     𝜕3(𝐴3) = 𝑐𝑜(𝐴3 ⊕ 𝐵3) ∪ 𝐴3. In the following 

figure (fig.5.15), we present the results obtained when applying neutrosophic outline 

boundary filter on some grayscale image. 

    
                        a)                                     b)                                       c) 

Fig. 5.15: Neutrosophic outline boundary: a) Original image 

  b) Neutrosophic outline Boundary filtered image with SE(3)  

  c) Neutrosophic outline Boundary filtered image with  SE (7) 
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5.5.2 Some Combination Neutrosophic External and Internal Boundary   Filters: 

1. 𝜕𝑠𝑢𝑝 = (
1

3
) ∗ [𝑇𝑚𝑎𝑥 + 𝐼𝑚𝑎𝑥 + 𝐹𝑚𝑖𝑛], where; 

𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝜕𝑒𝑥𝑡(𝑇), 𝜕𝑖𝑛𝑡(𝑇)), 𝐼𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝜕𝑒𝑥𝑡(𝐼), 𝜕𝑖𝑛𝑡(𝐼)), 

                 𝐹𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝜕𝑒𝑥𝑡(𝐹), 𝜕𝑖𝑛𝑡(𝐹)). 

In the following figure (fig.5.16), we present the results obtained when applying 

neutrosophic sup. boundary filter on some grayscale image. 

              
                        a)                                       b)                                   c) 

Fig.5.16: Neutrosophic sup. boundary: a) original image   

          b) Neutrosophic sup. Boundary filtered image with SE(5)    

 c) Neutrosophic sup Boundary filtered image SE (7) 

 

2. 𝜕𝑔𝑟𝑎𝑑 = (1/3) ∗ [𝑇𝑠𝑢𝑚 + 𝐼𝑠𝑢𝑚 + 𝐹𝑠𝑢𝑚], where;  

                 𝑇𝑠𝑢𝑚 = 𝜕𝑒𝑥𝑡(𝑇) + 𝜕𝑖𝑛𝑡(𝑇), 𝐹𝑠𝑢𝑚 = 𝜕𝑒𝑥𝑡(𝐹) + 𝜕𝑖𝑛𝑡(𝐹), 

                  𝐼𝑠𝑢𝑚 = 𝜕𝑒𝑥𝑡(𝐼) + 𝜕𝑖𝑛𝑡(𝐼). 

In the following figure (fig.5.17), we present the results obtained when applying 

neutrosophic grad boundary filter on some grayscale image. 

 
                           a)                                         b)                                c) 

Fig. 5.17: Neutrosophic grad  boundary: a)Original image  

 b) Neutrosophic grad boundary filtered image with SE(5)   

c) Neutrosophic grad boundary filtered image with SE (7) 
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5.5.4 Neutrosophic Hat Filters: 

The main function of the hat filters is to extract small elements and details from given 

image. In this section we will introduce two forms of the neutrosophic hat filters; 

namely, the neutrosophic top-hat and the neutrosophic bottom-hat filters. In the classical 

mathematical morphology, the top-hat filters plays a very important rule in several tasks 

of processing disciplines; such as: feature extraction, back ground equalization, feature 

extraction, background equalization, image enhancement,…etc. 

5.5.4.1 Neutrosophic Top-hat Filter: 

In the classical mathematical morphology, the top-hat filters plays a very important rule 

in several tasks of processing disciplines; such as: feature extraction, back ground 

equalization, feature extraction, background equalization, image enhancement,…etc. In 

this section we will generalize the concept of the top-hat filter using the neutrosophy 

concepts; that is the neutrosophic top-hat filter is to be defined as the neutrosophic 

difference between the neutrosophic image and its neutrosophic opening image. The 

neutrosophic top-hat filter of the neutrosophic image 𝐴 is to be defined in two different 

types as follows: 

Type I: 

 𝑇𝑜�̃�ℎ𝑎𝑡 = (1/3) ∗ [
𝑚𝑖𝑛(𝑇𝐴(𝑣), 1 − 𝑇𝐴ο̃𝐵(𝑣)), 𝑚𝑖𝑛(𝐼𝐴(𝑣), 1 − 𝐼𝐴ο̃𝐵(𝑣)),

𝑚𝑎𝑥(𝐹𝐴(𝑣), 1 −   𝐹𝐴ο̃𝐵(𝑣))
]. 

In the following figure (fig.5.18 (I) (II)), we present the results obtained when applying 

neutrosophic top-hat filter boundary filter on some grayscale image. 

    
                                           a)                                           b) 

Fig.5.18(I): Applying the neutrosophic top-hat  filter: a)Original image  

                                  b) Neutrosophic top-hat boundary filtered in type I 
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Type II: 

𝑇𝑜�̃�ℎ𝑎𝑡 = (1/3) ∗ [
𝑚𝑖𝑛(𝑇𝐴(𝑣), 1 − 𝑇𝐴ο̃𝐵(𝑣)), 𝑚𝑎𝑥(𝐼𝐴(𝑣), 1 − 𝐼𝐴ο̃𝐵(𝑣)),

𝑚𝑎𝑥(𝐹𝐴(𝑣), 1 − 𝐹𝐴ο̃𝐵(𝑣))
]. 

    
                                        a)                                       b)  

Fig.5.19(II): Applying the neutrosophic top-hat  filter: a)Original image    

b) Neutrosophic top-hat boundary filtered in type II 

 

5.5.3.2 Neutrosophic Bottom-hat Filter: 

In the classical mathematical morphology, the bottom-hat filters plays a very important 

rule in several tasks of processing disciplines; such as: feature extraction, back ground 

equalization, feature extraction, background equalization, image enhancement,…etc. In 

this section we will generalize the concept of the bottom-hat filter using the neutrosophy 

concepts; that is the neutrosophic bottom-hat filter is to be defined as the neutrosophic 

difference between neutrosophic closing and image the neutrosophic image. The 

neutrosophic bottom-hat filter of the neutrosophic image 𝐴 is to be defined as follows: 

in two different types as follows: 

Type I: 

Bottom̃hat = (1/3) ∗ [
𝑚𝑖𝑛(𝑇𝐴•̃𝐵(𝑣), 1 − 𝑇𝐴(𝑣)), 𝑚𝑖𝑛(𝐼𝐴•̃𝐵(𝑣), 1 − 𝐼𝐴(𝑣)),

  𝑚𝑎𝑥(𝐹𝐴(𝑣), 1 − 𝐹𝐴•̃𝐵(𝑣))
]. 

In the following figure (fig.5.20 (I) (II)), we present the results obtained when applying 

neutrosophic bottom-hat filter Boundary filter on some grayscale image. 
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                                       a)                                       b) 

Fig.5.20(I): Applying the neutrosophic bottom-hat  filter: a) Original image 

 b) Neutrosophic bottom-hat boundary filtered in type II 

 

Type II: 

 Bottom̃hat = (1/3) ∗ [
𝑚𝑖𝑛(𝑇𝐴•̃𝐵(𝑣), 1 − 𝑇𝐴(𝑣)), 𝑚𝑖𝑛(𝐼𝐴•̃𝐵(𝑣), 1 − 𝐼𝐴(𝑣)),

  𝑚𝑎𝑥(𝐹𝐴(𝑣), 1 − 𝐹𝐴•̃𝐵(𝑣))
]. 

      
                                    a)                                             b)                    

Fig.5.21 (II): Applying the neutrosophic bottom-hat  filter: a) Original image 

 b) Neutrosophic bottom-hat boundary filtered in type II 

 

5.6 Conclusion: 

In this paper, we have proposed a new technique for analyzing and processing images; 

either grayscale or binary. The technique is a generalization for the fuzzy mathematical 

morphology; it handles the image in the neutrosophic domain.in such domain the image 

analyzed into three different layers; the first layer describes how much each pixel 

belongs to the white set, the third layer describes how much each pixel belongs to the 

non-white (black) set, while the second layer describes how much the pixel is neither 

white nor black. The properties of each layer were used to define the basic operations 

for what we called "Neutrosophic Mathematical Morphology". mainly, we introduced 

four basic operations; namely, the neutrosophic dilation, the neutrosophic erosion, the 

neutrosophic closing and the neutrosophic opening. The algebraic properties of the 

proposed operation were discussed. Furthermore, we introduced some advanced 
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neutrosophic filters using different combinations of the basic operators. Hence, we 

experimented the new introduced operators and filters using "Lena" image to investigate 

the effect of each over the image.         
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Chapter 6 

Neutrosophic Morphology Threshold 

 

6.1 Introduction: 

An important technique in image segmentation, the image thresholding is also an 

important step towards pattern detection and recognition, which determines the quality 

of many image analysis tasks. It is used to extract the meaningful objects from the 

image, Thresholding is one of the most simplest  and pre-processing step for image 

applications. Basically, the classical thresholding geminates some binary image in 

which the pixels with zero value belonging to the background while the pixels 

belonging to the foreground have the value 1. The process of partitioning the image into 

mutually exclusive regions (background and foreground) needs to choose an appropriate 

gray level in the original image to be used for classifying the pixels wither it is inside or 

outside some specific range; such process is not easy. A number of excellent 

investigations on various thresholding techniques have been reported in the literature; 

for instance, Kapur et al [38], Li and Lee [45] used the concept of entropy; while Brink 

and Pendcock [13] Abutaleb [1] used two-dimensional entropy to threshold an image. 

Otsu in [56], suggested the threshold detection by maximizing the class separability. 

Whatmough [82] used the exponential hull method, which is a variation of convex hull 

for concavity analysis. Kittler and Illingworth [41] minimized the classification error 

probability based on the condition that a mixture of Gaussian densities governs the 

histograms. Several researchers have investigated fuzzy based thresholding techniques. 

Pal and Rosenfeld [57] optimized the fuzzy compactness using the Zadeh S-function for 

the membership evaluation for image thresholding. Huang and Wang [32] used 

Shannon and Yagers measure for fuzzy thresholding. Ramar et al. [59] used the neural 

network for selecting the best threshold using various fuzzy measures. Fuzzy 
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homogeneity vectors and fuzzy co-occurrence matrix was reported by Cheng and Chen 

[16] for image thresholding. Cheng et al. [18] integrated neutrosophic set with a 

modified fuzzy c-means algorithm for segmentation. Some mean operation was utilized 

to eliminate the indeterminacy [41]. An improved clustering method IFCM was 

presented using the neutrosophic values after applying a-mean operation. Hanbay and 

Talu [27] proposed a thresholding algorithm for synthetic aperture radar image using 

neutrosophic sets. As a framework to deal with uncertain cases, neutrosophic sets can be 

used to describe the image having uncertain information and has been applied to image 

processing techniques, such as image thresholding, de noising and segmentation. 

In this chapter, a new image threshold technique based on neutrosophic sets is 

presented; the chapter is organized as follows: In §2 definitions of thresholding, in §2 

the theory of neutrosophy whereas, the concepts of fuzzy morphology are introduced in 

§3.. 

6.2 Image Thresholding  

The classical thresholding creates binary images from grey-level ones by turning all 

pixels below some threshold to "0" and all pixels about that threshold to "1". Binary 

images are popular, but images are normally acquired as grayscale images. Ideally, 

objects in the image should appear consistently brighter (or darker) than the 

background. Under such conditions, which transform an image into a binary image (first 

choosing a grey level (𝑇ℎ𝑟) in the original image) by transforming each pixel according 

to whether it is inside or outside a specified range. If 𝑔(𝑥, 𝑦) is a threshold version of 

𝑓(𝑥, 𝑦) at some global threshold (𝑇ℎ𝑟), it can be defined as [55], 

 𝑔(𝑥, 𝑦) = {
0      𝑖𝑓    𝑓(𝑥, 𝑦) < 𝑇ℎ𝑟

1      𝑖𝑓   𝑓(𝑥, 𝑦) ≥ 𝑇ℎ𝑟 
.                                                                           (6.1) 

Thresholding operation is defined as: 𝑇ℎ𝑟 = 𝑇ℎ𝑟[𝑥, 𝑦, 𝑝(𝑥, 𝑦), 𝑓(𝑥, 𝑦)]. In this equation, 

𝑇ℎ𝑟 stands for the threshold value; 𝑓(𝑥, 𝑦) is the gray level of point (𝑥, 𝑦) and 𝑝(𝑥, 𝑦) 
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denotes some local properties of this point, such as the average gray level of a 

neighborhood. Based on this, there are two types of image thresholding techniques 

available: global and local. 

Global thresholding: When 𝑇ℎ𝑟 depends only on 𝑓(𝑥, 𝑦) (in other words, only on 

gray-level values) and the value of 𝑇ℎ𝑟 solely relates to the character of pixels, this 

thresholding technique is called global thresholding. A histogram of the input image 

intensity should reveal two peaks, corresponding respectively to the signals from the 

background and the object. (Note: It is a core assumption of the current version of 

the 3DMA software that the input data set consists of 2 phases, a phase comprising the 

object of interest and a single other background phase). Global thresholding consists of 

setting an intensity value (threshold) such that all pixels having intensity value below 

the threshold belong to one phase, the remainer belong to the other. Global thresholding 

is as good as the degree of intensity separation between the two peaks in the image. It is 

an unsophisticated segmentation choice. The global thresholding option 

in 3DMA allows the user to pick a single global threshold for a 3D image or separate 

thresholds for each 2D slice in the image. Some experimental options has also been 

provided to provide automatic choice of threshold by performing a binormal fit to the 

two-peak histogram and setting a threshold at the inerpeak minimum as determined by 

the normal fits. The thresholding option outputs the segmented image slice wise, in a 

packed bit (0,1) format. All voxels having intensity below the threshold value are set to 

"0"; the rest are set to "1". 

Local thresholding: If threshold 𝑇ℎ𝑟 depends on 𝑓(𝑥, 𝑦) and 𝑝(𝑥, 𝑦), this thresholding 

is called local thresholding. This method divides an original image into several sub 

regions, and chooses various thresholds T for each sub region reasonably [83, 84]. 

Local thresholding method is superior to the global ones for poorly and unevenly 

illuminated images. Niblack proposes a local thresholding technique based on the local 
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mean and local standard deviation [55]. The drawback of this algorithm is to determine 

the size of the neighborhood that is set by the user and it depends on the information 

available in the images. The window size should be small enough to preserve the local 

details and at the same time, it should be large enough to suppress noise. One of the 

well-known local thresholding methods is to fit a plane or biquadratic function to match 

the background gray-level variations [34] for unevenly illuminated images. A more 

advanced way is to generate a threshold surface where the threshold level changes 

dynamically over the image pixel to pixel [19]. Milgram et al. use gradient or edge 

information to segment images and assumed that different objects may have different 

thresholds, but each object has a fixed threshold with respect to its background [50]. 

Otsu method [56]: it is one of the most successful methods for image thresholding 

because of its simple calculation. Otsu is an automatic threshold selection region based 

segmentation method. It is a type of global thresholding in which it depend only on 

some gray value of the image. Otsu method was proposed by Scholar Otsu in 1979, 

which is widely used because it is simple and effective [50]. The Otsu method requires 

computing a gray-level histogram before running. However, because of the one-

dimensional which only consider the gray-level information, it does not give better 

segmentation result. So, for that two dimensional Otsu algorithms was proposed which 

works on both gray-level threshold of each pixel as well as its Spatial correlation 

information within the neighborhood. So Otsu algorithm can obtain satisfactory 

segmentation results when it is applied to the noisy images [15]. 

6.3 Neutrosophic Image Entropy: 

For a gray image, the entropy is utilized to evaluate the distribution of the gray levels. If 

the entropy is maximum, the intensities have equal probability. If the entropy is small, 

the intensity distribution is non-uniform. Neutrosophic entropy of an image is defined as 
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the summation of the entropies of three subsets T, I and F which is employed to 

evaluate the distribution of the elements in neutrosophic domain  [25]: 

𝐸𝑛𝑁𝑆 = 𝐸𝑛𝑇 + 𝐸𝑛𝐼 + 𝐸𝑛𝐹 .                                                                                         (6.2) 

𝐸𝑛𝑇 = − ∑ 𝑃𝑇(𝑖, 𝑗)

𝑚𝑎𝑥(𝑇)

𝑖,𝑗=𝑚𝑖𝑛(𝑇)

 𝑙𝑛𝑃𝑇(𝑖, 𝑗), 

𝐸𝑛𝐼 = − ∑ 𝑃𝐼(𝑖, 𝑗)

𝑚𝑎𝑥(𝐼)

𝑖,𝑗=𝑚𝑖𝑛(𝐼)

 𝑙𝑛𝑃𝐼(𝑖, 𝑗), 

𝐸𝑛𝐹 = − ∑ 𝑃𝐹(𝑖, 𝑗)

𝑚𝑎𝑥(𝐹)

𝑖,𝑗=𝑚𝑖𝑛(𝐹)

 𝑙𝑛𝑃𝐹(𝑖, 𝑗). 

Where; 𝐸𝑛𝑇 , 𝐸𝑛𝐼 and 𝐸𝑛𝐹  are the entropies of sets T, I and F respectively. 𝑃𝑇(𝑖, 𝑗), 

𝑃𝐼(𝑖, 𝑗) and 𝑃𝐹(𝑖, 𝑗)are the probabilities of elements in T, I and F respectively, whose 

values equal to 𝑖. 

6.4 The Proposed Algorithm: 

In this section, we suggest some algorithm for image thresholding as follows: 

A. Transform input image into Neutrosophic Domain: 

A Neutrosophic image PNS is represented by three memberships sets T, I and F. A pixel 

P in the image is described as 𝑃(𝑡, 𝑖, 𝑓) and belongs to bright pixel set, W in the 

following way: it is 𝑡%  true, 𝑖% indeterminate, and 𝑓% false as bright pixel, where 𝑡 

varies in T, 𝑖 varies in I, and 𝑓  varies in F. 

B. Comparing Neutrosophic Image with Threshold: 

If we directly fed the input image to the neutrosophic domain, then the image obtained 

are not clear. There is an uncertainty in the assignment of pixels as a pixel may belong 

to more than one pixel. For each pixels, indeterminacy value is generally greater. 
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C. Neutrosophic Image Entropy: 

 The entropy is computed for the image in its three layers, the truthness, the 

indeterminacy, and falseness. It evaluates the distribution of the intensity of each pixel 

in each layer.   

D. Apply Mathematical Morphology on the Neutrosophic Image: 

After transforming the image into a neutrosophic image, we experimenting with the 

basic morphological operations (neutrosophic dilation, neutrosophic erosion, 

neutrosophic opening, neutrosophic closing); results showed that we get better 

thresholding when using the operation.  

E. Neutrosophic Morphologic Image Entropy: 

In this step we compute the entropy for each component of the image resulted after 

applying the neutrosophic morphological opening operation. 

F. The Neutrosophic Thresholding Value: 

Now, we use the entropy computed in the previous step to deduce a neutrosophic value 

for thresholding the neutrosophic image.   

G. The Neutrosophic Image Segmentation:  

Finally, we use the deduced neutrosophic threshold value in order to segment the image 

under consideration this proposed algorithm may be explained by the following steps:  

6.4.1 The Proposed Algorithm Steps: 

Step 1: Convert the image to Neutrosophic Domain using equation 2.1. 

Step 2: Compute the entropy on neutrosophic image using equation 6.2. 

Step 3: Apply morphology operation on the neutrosophic image. 

Step 4: Compute the neutrosophic entropy for the output of step 3, using equation 6.2. 

Step 5: Compute the threshold value;   𝑇ℎ𝑟 =
𝐸𝑛𝐼(𝑖+1)−𝐸𝑛𝐼(𝑖)

𝐸𝑛𝐼(𝑖)
. 
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Step 6: Segment the image according to the value induced in step 5 by OTSU's method 

[56]. The flowchart of the proposed algorithm is shown in Fig. 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

   

                                                  

 

                       Fig. 6.1: flowchart of the proposed algorithm  

6.5 Experiments: 

In this chapter, We use several images for our experimental work; the images "Lena, 

Camera man, Rice and Coin". The steps of our experiment is as follows: 

Input 

image 

Transform the image into NS 

domain 

 

Apply morphological 

operators  

 

Compute the entropy for the 

component resulted from the 

morphology step  

 

Segment the image  

according to the result 

using OTSU's method 

 

𝑇ℎ𝑟 =
𝐸𝑛𝑗(𝑖+1)−𝐸𝑛𝑗(𝑖)

𝐸𝑛𝑗(𝑖)
    

 

Compute the entropy for 

neutrosophic components   
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First step is to transform the image from the spatial domain into the neutrosophic 

domain. The results of this step for each image are showen in the following figure 

(fig.6.2): 

                

                

                

                 
                a)                                                               b) 

Fig.6.2: a) gray image    b)Neutrosophic image 〈𝑇𝐴, 𝐼𝐴 , 𝐹𝐴〉   respectively 

Second step is to apply the neutrosophic morphology operation for the neutrosophic 

components  

- Using neutrosophic opening operation the result are shown in the following 

figure (fig.6.3) 
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                 a)                                                              b) 

Fig.6.3: a) gray image  b) Neutrosophic opening image ⟨TA∘̃B , IA∘̃B , FA∘̃B⟩   respectively 

Third step: compute Threshold value by using the relation, 

                                 𝑇ℎ𝑟 =
𝐸𝑛𝑗(𝑖+1)−𝐸𝑛𝑗(𝑖)

𝐸𝑛𝑗(𝑖)
.     

The following table show the thresholding value for each image.  

Image 

  Thr Lenna Camera man Rice Coin 

Threshold Value 

(OTSU) 

0.0301 0.0332 0.0386 0.0338 

Threshold Value 

(NMM) 

0.033 0.0403 0.0330 0.0464 

Table 1: the thresholding values for the images under consideration 
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Forth step  apply  OTSU's  method [56], using  Thr value determined in the previous 

step. The following figure (fig.6.4) shows the results obtained.  

              

              

             

              
              a)                                      b)                                        c) 

Fig.6.4: a) gray image    b) OTSU's  method image threshold  

c)Neutrosophic morphological method image threshold  

 

6.6 Neutrosophic Morphological Method Image Threshold:    

To measure the accuracy of our algorithm, we compare between the misclassified pixels 

between the ideally segmented image and actually segmented image by in our 

experiments.  The quality of the resulting images can be described in terms of signal to  
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noise ratio (SNR): 

𝑆𝑁𝑅 = 10 log10 [
∑ ∑ 𝐼2(𝑟, 𝑐)𝑊−1

𝑐=0
𝐻−1
𝑟=0

∑ ∑ (𝐼(𝑟, 𝑐) − 𝐼𝑛(𝑟, 𝑐))2
𝑊−1
𝑐=0

𝐻−1
𝑟=0

]. 

Where; 𝐼(𝑟, 𝑐) and 𝐼𝑛(𝑟, 𝑐) represent the intensities of pixel (𝑟, 𝑐) in the ideally 

segmented and actually segmented images, respectively. The following table shows the 

SNR values computed for each image. 

Image 

  SNR Lenna Camera man Rice Coin 

SNR (OTSU) 45.1762 46.559 45.9378 46.3514 

SNR (NMM) 48.1308 48.1308 48.13 48.1307 

Table 6.2: the SNR values for the images under consideration 

Finally, we experimented our algorithm on several images in "tif" format. The images 

under consideration with their neutrosophic components were given in (fig.6.2). 

namely, the images are, "Lena, Camera man, Rice and Coin". In the fig.6.4, the results 

when applying the neutrosophic opening operation followed by calculating the entropy 

to produce the thresholding value were given. From the  resulting threshold images, it 

has been observed that results using the neutrosophic operations measures gives good 

results when compared to gray thresh (Otsu's method). 

6.7 Conclusion and Discussion: 

This chapter proposes an image segmentation method using neutrosophic mathematical 

morphology. An algorithm for image thresholding has been proposed. Finally, the 

image in neutrosophic domain is segmented. The experimental results show that the 

proposed method cannot only perform better on synthesis images. 
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Chapter 7 

Conclusion and Future Work 

 

This chapter concludes thesis activities and results presented through the thesis and 

presenting future work can be conducted. Thesis introduced the overview of a new 

technique for analyzing and processing images; either binary or grayscale. The 

technique is a generalization for the fuzzy mathematical morphology; it handles the 

image in the neutrosophic domain. in such domain the image analyzed into three 

different layers; the first layer describes how much each pixel belongs to the white set, 

the third layer describes how much each pixel belongs to the non-white (black) set, 

while the second layer describes how much the pixel is neither white nor black. The 

properties of each layer were used to define the basic operations for what we called 

"Neutrosophic Mathematical Morphology". mainly, we introduced four basic 

operations; namely, the neutrosophic dilation, the neutrosophic erosion, the 

neutrosophic closing and the neutrosophic opening. The algebraic properties of the 

proposed operation were discussed. Furthermore, we introduced some advanced 

neutrosophic filters using different combinations of the basic operators. Some promising 

experimental results were presented to visualize the effect of the new introduced 

operators and filters on the image in the neutrosophic domain instead of  the spatial 

domain. We used "Lena" and "duck" images to investigate the effect of each  of the new 

operators over the image. A literature review for the types of sets was presented in 

chapter 2, as well as a brief revision for the basic definitions and operations of crisp 

sets, fuzzy sets and neutrosophic sets and their properties. 

In chapter 3, we discussed the theory of both the classical and fuzzy mathematical 

morphology and their various operators for binary and grayscale images. Also some 

algebraic properties of the basic operators dilation and erosion were discussed. Besides 
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the two primary operations of erosion and dilation, there are two secondary operations 

that play key roles in morphological image processing, these being opening and its dual, 

closing. Which possesses more geometric formulation in terms of the structuring 

element.  

In chapter 4, we established a foundation for what we called, "Neutrosophic Crisp 

Mathematical Morphology". It is a new approach to mathematical morphology based on 

neutrosophic set theory. In addition, we were able to prove that neutrosophic 

morphological operations inherited some properties and restrictions from fuzzy 

mathematical morphology. Furthermore, we developed three neutrosophic crisp 

morphological filters; namely, the neutrosophic crisp external boundary, the 

neutrosophic crisp internal boundary, the neutrosophic crisp gradient boundary, the 

neutrosophic crisp Top-hat and the neutrosophic crisp Bottom-hat filters. 

Chapter 5 generalized the concepts of the classical mathematical morphology into the 

neutrosophic domain. For this purpose, we developed serval neutrosophic 

morphological operators inherit properties and restrictions of  fuzzy mathematical 

morphology; namely, the neutrosophic dilation, the neutrosophic erosion, the 

neutrosophic opening and the neutrosophic closing operators. These operators were 

presented in two different types, each type is determined according to the behavior of 

the second component of the triple structure of the operator. Furthermore, we developed 

three neutrosophic morphological filters; namely, the neutrosophic external boundary, 

the neutrosophic internal boundary, the neutrosophic gradient boundary, the 

neutrosophic Top-hat and the neutrosophic Bottom-hat filters. Some promising 

experimental results were presented to visualize the effect of the new introduced 

operators and filters on the image in the neutrosophic domain instead of  the spatial 

domain. 
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Finally, in chapter 6 we applied the neutrosophic mathematical morphological operators 

proposed  in this thesis to one of the most important image’s processing application, 

namely, the image thresholding. The chapter also gave a promising results showing an 

improvement comparing with the exciting thresholding techniques. 

In future, we plan to apply the introduced concepts to more image processing 

applications. For instance, Image Smoothing, Enhancement, Retrieval. We also plan to 

examine the neutrosophic morphological operators with medical imaging.   
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 الرسالة ملخص

 

 ملخص الرسالة

عام التشكل الرياضي(  -)توصيف الشكل علم المورفولوجي الرياضيالحقيقية ل ةالبداي ظهرت

، الصور وتحليلها ةفي مجال معالج خصب موضوعأصبح و(، Serra)علي يد العالم  1960

 الخامات عنو خواص المواد ةالمناجم بغرض معرفو في المواقع الهندسية هبدأ ظهورحيث 

 عتبار الصورة رياضيا  إيمكن . حيث تلك المواد صور خلال من طريق دراسة الشكل الخارجي

الفئات نظرية  ستخدام مبادئإعلي في الأساس عتمد هذا العلم فإ من النقاط في المستوي، ةكفئ

كما  ر.داخل الصو ةالموجود للأشكال الهندسي يقوم بدراسة البناءأنه حيث  ،يالتوبولوج معلو

ستشعار عن بعد والتعرف كالإ ،الحلول للكثير من التطبيقات في مجال معالجة الصورقدم ي

 جيوالمورفولن أورغم  الصور الطبية. ةمعالج الرادار وكذلك في مجالالضوئي على الحروف 

على بناءات  يضا  أستخدامه إنه يمكن ألا إالرياضي يطبق بشكل أساسي على الصور الرقمية، 

 .(Solid) جسماتالمو( Surface meshes) وشبكات السطوح (Graphs) خرى كالأشكالأ

صبح أوقد  .التوبولوجيو الهندسة منالرياضي  جيوالمورفولفي ساسية المفاهيم الأ تقديموقد تم 

مجموعة من العمليات التي  يعتمد عليمعالجة الصور و في ساسأالرياضي هو  جيوالمورفول

 erosion)هما التآكل )ن ان الأساسيتاعمليتالو ،لعملياتوا لهذه المفاهيم ير الصورة تبعا  يتقوم بتغ

الأول : ينمن البيانات كمدخل نيجزئعتبار في الإيؤخذ  ملتينكلا العفي (، dilationالتوسيع )و

وقد تم تعريف  .هيكليالعنصر ال اسميطلق عليه  والثاني تساعها،إلها أو المراد تآكالصورة يكون 

( closingغلاق )الإو opening)الفتح ) ىمثل عمليتالعملتين هاتين من  ةخري مشتقأ  عمليات 

 ستخدمأ  في البداية و في علم المورفولوجي الرياضي. ينهام ينن تعتبران مؤثرياللتو

ك لوذ (binary images) الثنائيةوتحليل الصور  يات معالجةلرفولوجي الرياضي في عمالمو

 ثمحدود الأشكال الموجودة في الصورة.  ستخراجلإستخدام عمليتي التآكل والتوسيع إمن خلال 

. (grayscale images)لجة وتحليل الصور الرمادية ي معاف ستخدامهإو هذا التطبيق تم تعميم

لتطور مفهوم  الفئات فقد بدأ في التطور تبعا   ةعتماد المورفولوجي الرياضي علي نظريلإ ونظرا  
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لطفي (علي يد العالم  (fuzzy sets) -الضبابية- ةالفئات الفازي مفهوم فمع ظهور .رياضيا   ةالفئ

درجة العشوائية  التقليل منسهم في أ وهاما   عطت معني جديدا  أ التي ،[85](1965عام ) )زاده

دخال المفهوم الجديد للفئات علي إتم ونتائج عالية الدقة.  ليإساعدنا في الوصول والبيانات  في

رياضي ال طلق عليه المورفولوجيأ  لرياضي مما يات الأساسية للمورفولوجي التعريف العم

  (Kerre)وذلك من خلال عمل العالم (fuzzy mathematical morphologyالفازي )

 عدالذي ي  و ةالنيتروسوفكي ةلفئل دم مفهوم جديدالاخير من القرن الماضي، ق  في العقد و. [39]

لوضع  وكان ذلك دافعا   ،[74](1999عام ) (Smarandacheعلى يد العالم ) ةالفازي ةلفئلتعميم 

كتعميم  (neutrosophic logicكي )النيتروسوفهو المنطق مبادئ لمنطق جديد غير كلاسيكي 

 ةينظرية الفئات النيتروسوفك A. A. Salama [62] مقدو .(fuzzy logic) للمنطق الفازي

ودراسة مفاهيم دخال وصياغه إكما ساهم في تطوير و .كتعميم لنظرية الفئات الكلاسيكية العادية

التوبولوجي والإحصاء وعلوم الحاسب ونظم المعلومات الكلاسيكية عن جديدة في مجالات 

فرع جديد يدرس أصل وطبيعة  المنطق النيتروسوفكييعتبر و النيتروسوفك.فئات طريق 

 الإنسان في قضية ضعهاالمختلفة التي يوالفروض  يافللاتحديد بالإضافة إلى تفاعل كل الأطا

تحديد،  مع اللا - نقيضها -كل فكرة مع مضادها  عتبارأخذ هذا المنطق بعين الإ، بحيث ي  ما

( T) الإنتماءهي  بعادمكانيه التمييز بين ثلاث اإ الرئيسية للمنطق النيتروسوفكي هي الفكرةو

 اعبر عنهي  والتي  ةعضويدرجة   منهمعطي لكلا  حيث ي  ( Iاللاتحديد )و( F)وعدم الإنتماء 

,𝑇〉بالشكل 𝐼, 𝐹〉 لوصول او طلوب دراستهادقة لبيانات الظاهرة الم أكثر ا  ذلك يعطي وصفن إف

ومن هنا جاء دور  .متخذي القرار يتخاذ القرارات المناسبة لدإإلي نتائج عالية الدقة تساهم في 

 فازيدم لنا نوعين من الفئات النيتروسوفكية التي تعمم المفهوم القكي الذي فالمنطق النيتروسو

ومن هذا المنطلق قدمنا في هذا العمل مقدمة لإدخال المفهوم الجديد  .والمفهوم الكلاسيكي للفئات

 mathematical)مورفولوجي الرياضي لعلم ال يةالأساسللفئات النيتروسوفكية علي العمليات 

morphology). فقدمنا المورفولوجي الرياضي العاديةدراستنا علي الفئات  توقد بدأ 
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تطبيقه ( وneutrosophic crisp mathematical morphologyالعادي ) النيتروسوفكي

طلقنا عليه أوهو ما  يةالفازي علي الفئات كمفهوم النيتروسوفالعلي الصور الثنائية. ثم قدمنا 

(. neutrosophic mathematical morphology) ينيتروسوفكال الرياضي المورفولوجي

العلاقات  بعضستنتاج إ تموي الصور الرمادية. لالجديدة ع النيتروسوفكيه قمنا بتطبيق المفاهيمو

 كأحدو الصور تحليلة ومعالج يات فمثل هذه العلاق ستخدمإة يكيفبولوجية ووالتالرياضية و

ختبار وذلك لإ (image threshold)ختارنا إفقد  ،الصور ةمعالجمجال  يالتطبيقات الهامه ف

 .المفاهيم الجديدة التي قدمناها عمليا

  :تشمل الرسالة سبعة فصول

 ةكيفيالرياضي و المورفولجيمقدمة لإعطاء فكرة عامة عن  هذا الفصل هوالفصل الاول: 

من فئات  كذلك تطور الفئاتالفازي و المورفولجي ىإل عاديورفولوجي رياضي متطوره من 

في هذا  ناستعرضإكما ثم الفئات النيتروسوفكية التي تعتبر أعم وأشمل،  ةفازيلى فئات إ ةعادي

 .بهدف الرسالةالرئيسية المتعلقة  لمفاهيملشرح البعض الدراسات السابقة والفصل 

أنواع  المتعلقة بتطور مفهوم بعض الدراسات والنظرياتهذا الفصل يستعرض  الفصل الثاني:

 لي جزئيين وهما:إنها تقسم أكما يعرض بالتفصيل الفئات النيتروسوفكية، حيث  ،الفئات

 النظريات.هم التعريفات وأو ةفازيفكية المعتمدة علي الفئات الالفئات النيتروسو -1

ك الفئات النيتروسوفكية المعتمدة علي الفئات العادية وكيفية توليدها من فئات النيتروسوف -2

 مثلة عليها.أعطاء إالنظريات وهم التعريفات وأعرض و ةفازيال

ور الى الص ةثنائيالصور الوكيفية تطورها من  للصورمختلفة النواع لأهذا الفصل افي  قدمناو

 . ةفازيالرمادية ثم الى الصور ال

 يعرض تغطية شاملة  للمفاهيم المستخدمة في الرسالة: الفصل الثالث: 
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عرض وافي لبعض كذلك وساسية الرياضي العادي وعرض العمليات الأ جيوالمورفول -1

 يضا صور توضيحية.أوتوضيحها بأمثله و المعرفة علي هذه العمليات العلاقات الرياضية

 .خواصهاهم العمليات وأ نعامة ععطاء فكرة إادي و الرياضي الرم جيوالمورفول -2

شرح وافي لجميع العمليات والعلاقات الرياضية  قدمناحيث  فازيالرياضي ال جيوالمورفول -3

 .تطبيقها في معالجة الصورو

للمورفولوجي الرياضي  والذي يعتبر تعميما   جديدا   بتقديم مفهوما  هتم هذا الفصل ي الفصل الرابع:

لمورفولوجي الرياضي ا طلقنا عليهأو العاديةالنيتروسوفكيه  ةلمفهوم الفئ متدادا  إالكلاسيكي و

التي ساسية والمؤثرات الهامة لعمليات الأا نا هذا الفصل لدراسةالنيتروسوفكي العادي وقد خصص

 ستنتاجإو بدراسةقمنا  كما قمنا بتقديمها لتكون نواه للمورفولوجي الرياضي النيتروسوفكي العادي،

المفاهيم. هذا بالإضافة لإجراء بعض فة علي هذه والمعر يهوجلفوالمورالخواص و تالعلاقا بعض

 . معالجة الصور الثنائيةتحليل و العملية في مجالتطبيقات ال

تعميمها و ةفازيال كيهالنيتروسوفستخدام مفهوم الفئات إقمنا بهذا الفصل  في: الفصل الخامس

ستخدامها في إجديده يمكن  ةالمورفولوجي الرياضي النيتروسوفكي. كوسيلطلقنا عليه أما  لتقديم 

ستخدامها إوالتي يمكن  ة. كما قدمنا لبعض العمليات الهامالرماديةالصور  ةمعالجمجال تحليل و

 .الصورة ستخراج حدودإفي مجال 

 العمليةجراء التجارب إنعرض في هذا الفصل النتائج التي حصلنا عليها عند  :الفصل السادس

     الرسالةالتي قدمت في هذه  الجديدةستخدام العمليات إعلي بعض نماذج من الصور وذلك عند 

مقارنه بين هذه النتائج مع  بإجراء، كما قمنا (Image Thresholding)و تطبيقها في مجال 

 نتائج سابقه.

 كما نقدم بعض ،التي حصلنا عليهاللنتائج  تحليلا  هذا الفصل في عرض ن :الفصل السابع

 .  قتراحات للعمل المستقبليالإ




