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1. Introduction

Neutrosophy has been introduced by Smarandache [14, 15, 16] as a new branch of 

philosophy. Smarandache using this philosophy of neutrosophy to initiate neutrosophic sets 

and logics which is the generalization of fuzzy logic, intuitionistic fuzzy logic, 

paraconsistent logic etc. Fuzzy sets [42] and intuitionistic fuzzy sets [36] are characterized 

by membership functions, membership and non-membership functions, respectively. In 

some real life problems for proper description of an object in uncertain and ambiguous 

environment, we need to handle the indeterminate and incomplete information. Fuzzy sets 

and intuitionistic fuzzy sets are not able to handle the indeterminate and inconsistent 

information. Thus neutrosophic set (NS in short) is defined by Smarandache [15], as a new 

mathematical tool for dealing with problems involving incomplete, indeterminacy, 

inconsistent knowledge. In NS, the indeterminacy is quantified explicitly and truth-

membership, indeterminacy membership, and false-membership are completely 

independent. From scientific or engineering point of view, the neutrosophic set and set- 

theoretic view, operators need to be defined. Otherwise, it will be difficult to apply in the 
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real applications. Therefore, H. Wang et al [19] defined a single valued neutrosophic set 

(SVNS) and then provided the set theoretic operations and various properties of single 

valued neutrosophic sets. Recent research works on neutrosophic set theory and its 

applications in various fields are progressing rapidly. A lot of literature can be found in this 

regard in [3, 6, 7, 8, 9, 10, 11, 12, 13,  25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 61, 62,70, 

73, 76, 80, 83,84, 85, 86]. 

In other hand, Molodtsov [12] initiated the theory of  soft set as a general mathematical 

tool for dealing with uncertainty and vagueness and how soft set theory is free from the 

parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability 

theory. A soft set is a collection of approximate descriptions of an object. Later Maji et 

al.[58] defined several operations on soft set. Many authors [37, 41, 44, 47, 49, 50, 51, 52, 

53, 54, 55, 56, 57, 60] have combined soft sets with other sets to generate hybrid structures 

like fuzzy soft sets, generalized fuzzy soft sets, rough soft sets, intuitionistic fuzzy soft sets, 

possibility fuzzy soft sets, generalized intuitionistic fuzzy softs, possibility vague soft sets 

and so on. All these research aim to solve most of our real life problems in medical 

sciences, engineering, management, environment and social  sciences which involve data 

that are not crisp and precise. But most of these models deal with only one opinion (or) 

with only one expert. This causes a problem with the user when questionnaires are used for 

the data collection. Alkhazaleh and Salleh in 2011 [65] defined the concept of soft expert 

set  and created a model in which the user can know the opinion of the experts in the model 

without any operations and  give an application of this concept in decision making 

problem. Also, they introduced the concept of the fuzzy soft expert set [64] as a 

combination between the soft expert set and the fuzzy set. Based on [15], Maji [53] 

introduced  the concept of neutrosophic soft set a more generalized concept, which is a 

combination of neutrosophic set and soft set and studied its properties. Various kinds of 

extended neutrosophic soft sets such as intuitionistic neutrosophic soft set [68, 70, 79], 

generalized neutrosophic soft set [61, 62], interval valued neutrosophic soft set [23], 

neutrosophic parameterized fuzzy soft set [72], Generalized interval valued neutrosophic 

soft sets [75], neutrosophic soft relation [20, 21], neutrosophic soft multiset theory [24] and 

cyclic fuzzy neutrosophic soft group [61] were studied. The combination of neutrosophic 

soft sets and rough sets [77, 81, 82] is another interesting topic.  

Recently, Broumi and Smaranadache [88] introduced, a more generalized concept, the 

concept of the intuitionistic fuzzy soft expert set as a combination between the soft expert 

set and the intuitionistic fuzzy set. The same authors defined the concept of single valued 

neutrosophic soft expert set [87] and gave the application in decision making problem. The 

concept of single valued neutrosophic soft expert set deals with indeterminate and 

inconsistent data. Also, Sahin et al. [91] presented the concept of neutrosophic soft expert 

sets.  The soft expert models are richer than soft set models since the soft set models are 

created with the help of one expert where as the soft expert models are made with the 

opinions of all experts. Later on, many researchers have worked with the concept of soft 

expert sets and their hybrid structures [1, 2, 17, 18, 24, 38, 39, 46, 48, 87, 91, 92].  

The notion of mapping on soft classes are introduced by Kharal and Ahmad [4]. The same 

authors presented the concept of a mapping on classes of fuzzy soft sets [5] and studied the 

properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets, and 

supported them with examples and counter inconsistency in examples. In neutrosophic 

environment, Alkazaleh et al [67] studied the notion of mapping on neutrosophic soft 

classes. 
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Until now, there is no study on mapping on the classes of neutrosophic soft expert sets, so 

there is a need to develop a new mathematical tool called “Mapping on neutrosophic soft 

expert set”. 

 

In this paper, we introduce the notion of mapping on neutrosophic soft expert classes and 

study the properties of neutrosophic soft expert images and neutrosophic soft expert inverse 

images of neutrosophic soft expert sets. Finally, we give some illustrative examples of 

mapping on neutrosophic soft expert for intuition. 

 

 

2. Preliminaries 
 

In this section, we will briefly recall the basic concepts of neutrosophic sets, soft sets, 

neutrosophic soft sets, soft expert sets, fuzzy soft expert sets, intutionistic fuzzy soft expert 

sets and neutrosophic soft expert sets. 

 

Let U be an initial universe set of objects and E is the set of parameters in relation to 

objects in U. Parameters are often attributes, characteristics or properties of objects. Let  

P (U) denote the power set of U and A   E. 

 

 

2.1. Neutrosophic Set 

 

Definition 2.1 [15]  Let U be an universe of discourse, Then the neutrosophic set A is an 

object having the form A = {< x:      ,      ,      >, x ∈ U},where the functions      , 

     ,       : U→]
−
0,1

+
[ define respectively the degree of membership, the degree of 

indeterminacy, and the degree of non-membership of the element x ∈ X to the set A with 

the condition.  

 
−
0 ≤        +         +         ) ≤ 3

+
. 

 

From philosophical point of view, the neutrosophic set takes the value from real standard 

or non-standard subsets of ]
−
0,1

+
[. So instead of ]

−
0,1

+
[ we need to take the interval [0,1] 

for technical applications, because ]
−
0,1

+
[ will be difficult to apply in the real applications  

such as in scientific and engineering problems. 

For two NS, 

 

   = {<x,      ,             > |  ∈   } 

 

And 

 

   = {<x,      ,             > |  ∈   } 

 

We have,  

 

1.         if and only if 

 

                        ,             . 
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2.                          ,  
 

      =     ,       =     ,       =      for all   ∈  . 

 

3. The complement of     is denoted by    
  and is defined by 

 

   
 = {<x,                    |  ∈   } 

 

4. A B = {<x, min{           } max{           }, max{           }>: ∈   } 

 

5. A B = {<x, max{          } min{           }, min{           }>: ∈   } 

 

As an illustration, let us consider the following example. 

 

Example 2.2. Assume that the universe of discourse U={x1, x2, x3,   }. It may be further 

assumed that the values of x1, x2,   and    are in [0, 1], then  A is a neutrosophic set (NS) 

of U  such that, 

 

A= {< x1,0.4, 0.6, 0.5 >,< x2,0.3, 0.4, 0.7>, < x3,0.4, 0.4, 0.6>,<  ,0.5, 0.4, 0.8 >} 

 

 

2.2. Soft Set 

 

Definition 2.3  [12] Let U be an initial universe set and E be a set of parameters. Let P(U) 

denote the power set of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft 

set over U, where K is a mapping given by K : A → P(U).  

 

As an illustration, let us consider the following example. 

 

Example 2.4 Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., 

h5}. Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . 

. ., e8 stand for the attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, 

respectively.  

 

In this case, to define a soft set means to point out expensive houses, beautiful houses, and 

so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in 

the opinion of a buyer, say Thomas, may be defined like this:  

 

A={e1, e2, e3, e4, e5};  

 

K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}.  

 

 

2.3 Neutrosophic Soft  Sets 

 

Definition 2.5 [59] Let  be an initial universe set and   ⊂    be a set of parameters. Let 

NS(U) denotes the set of all neutrosophic subsets of  . The collection       is termed to 

be the neutrosophic soft set over  , where   is a mapping given by             . 

Example 2.6 Let U be the set of houses under consideration and E is the set of parameters. 
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Each parameter is a neutrosophic word or sentence involving neutrosophic words. Consider 

   {beautiful, wooden, costly, very costly, moderate, green surroundings, in good repair, in 

bad repair, cheap, expensive}. In this case, to define a neutrosophic soft set means to point 

out beautiful houses, wooden houses, houses in the green surroundings and so on. Suppose 

that, there are five houses in the universe  given by                  and the set of 

parameters 

 

                 ,where    stands for the parameter `beautiful',    stands for the parameter 

`wooden',    stands for the parameter `costly' and the parameter   stands for `moderate'. 

Then the neutrosophic set       is defined as follows: 
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Definition 2.7 [59] Let (H, A) and (G, B) be two NSs over the common universe U. Then 

the union of  (H, A) and (G, B), is denoted by ” (H, A) ̃(G, B)” and is defined by(H, 

A)  ̃ (G, B)= (K, C), where  C= A B  and the truth-membership, indeterminacy-

membership and falsity-membership of (K, C) are as follows: 

 

        ={

            ∈    

            ∈    

   (              )    ∈    

 

 

        =

{
 

 
            ∈    

            ∈    

(                 )

 
    ∈    

 

 

        ={

            ∈    

            ∈    

   (              )    ∈    

 

 

Definition 2.8 [59] Let (H, A) and (G, B) be two NSs over the common universe U. Then 

the intersectionof  (H, A) and (G, B), is denoted by ” (H, A) ̃(G, B)” and is defined by(H, 

A)  ̃ (G, B)= (K, C), where  C= A  B  and the truth-membership, indeterminacy-

membership and falsity-membership of (K, C) are as follows: 
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            ∈    

            ∈    

   (              )     ∈    

 

 

        =
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(                 )

 
   ∈    

 

 

        ={

            ∈    

            ∈    

   (              )     ∈    

 

 

 

2.4. Soft expert sets 

 

Definition 2.9 [65] Let U be  a  universe set, E be a set of parameters and X   be  a  set  of  

experts (agents). Let O={1=agree, 0=disagree} be a set of opinions. Let Z= E   X   O and 

A   Z. 

 

A pair (F, E) is called a soft expert set over U, where F is a mapping given by F: A → P(U) 

and P(U) denote the power set of U. 

 

Definition 2.10 [65] An agree-soft expert set          over U, is a soft expert subset of 

( ,A) defined as : 

 

        = {F( ): ∈ E   X  {1}}. 

 

Definition 2.11 [65] A disagree- soft expert set          over U, is a soft expert subset of 

( ,A) defined as : 

 

       = {F( ): ∈ E   X  {0}}. 

 

 

2.5. Fuzzy Soft expert sets 

 

Definition 2.12 [64] A pair (F, A) is called a fuzzy soft expert set over U, where F is a 

mapping given by  

 

F : A→   , and    denote the set of all fuzzy subsets of  U. 

 

 

2.6. Intuitionitistic Fuzzy Soft Expert sets 

 

Definition  2.13 [88] Let  U={ 1u , 2u , 3u ,…, nu } be  a  universal  set  of  elements,  E={ 1e ,

2e , 3e ,…, me } be  a universal  set  of  parameters,  X={ 1x , 2x , 3x ,…, ix } be  a  set  of  

experts  (agents)  and   O= {1=agree, 0 = disagree} be  a  set  of  opinions.  Let  Z= { E   
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X   Q }  and  A   Z. Then  the  pair (U, Z)  is  called  a  soft universe.  Let          

    where        denotes the collection of all intuitionistic fuzzy subsets of U.  Suppose   

            be a function defined as: 

 

)(zF = F(z)( iu ), for all iu U. 

 

Then )(zF  is called an intuitionistic fuzzy soft expert set  (IFSES  in short ) over the soft 

universe (U, Z)      

      

For  each iz  Z. )(zF = F( iz )( iu ) where F( iz ) represents  the  degree  of  

belongingnessand non-belongingness  of  the  elements  of  U  in F( iz ). Hence  )( izF   

can be written as: 

 

)( izF
=

{( 
))(( 11

1

uzF

u
),….,( 

))(( ii

i

uzF

u
)} ,for i=1,2,3,…n 

 

where  F( iz )( iu ) = < )iF(z ( iu ), )iF(z ( iu )>  with )iF(z ( iu ) and )iF(z ( iu )  representing  the  

membership function and non-membership function of each of the elements iu  U   

respectively. 

 

Sometimes we write   as ( , Z). If A   Z. we can also have  IFSES ( , A). 

 

 

2.7 Neutrosophic Soft Expert Sets 

 

Definition 2.14 [89] A pair (F, A) is called a neutrosophic soft expert set over U, where F 

is a mapping given by  

 

F : A→      

 

where P(U) denotes the power neutrosophic set of U. 

 

 

3. Mapping on Neutrosophic Soft Expert Set 
 

In this paper, we introduce the mapping on neutrosophic soft expert classes. Neutrosophic 

soft expert classes are collections of neutrosophic soft expert sets. We also define and study 

the properties of neutrosophic soft expert images and neutrosophic soft expert inverse 

images of neutrosophic soft expert sets, and support them with examples and theorems. 

 

Definition 3.1 Let      ̃            ̃   be neutrosophic soft expert classes. Let r: U Y and  

s: Z    be mappings.  

 

Then a mapping  f:     ̃        ̃  is defined as follows : 
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For a neutrosophic soft expert set (F, A) in      ̃ ,  f (F, A) is  a neutrosophic soft expert set 

in       ̃ , where 

 

f(F, A) (  ) (y) ={
⋁  ⋁                                  ∈      

                                                                                   
 

 

for  ∈ s(Z)    , y ∈ Y and   ∈         ,  f(F, A) is called a neutrosophic soft expert 

image of the neutrosophic soft expert  set (F, A). 

 

Definition 3.2 Let      ̃            ̃  be the neutrosophic soft expert classes. Let r: U Y 

and  s: Z    be mappings. Then a mapping      :      ̃       ̃   is defined as follows : 

For a neutrosophic soft expert set (G, B) in       ̃ ,     ( , B) is  a neutrosophic soft 

expert set in      ̃ , 

 

   ( , B)  (  ) (u) ={
 (    )(    )                                               ∈  

                                                                                   
 

 

For  ∈           and u ∈ U.    ( , B) is called a neutrosophic soft expert inverse 

image of the neutrosophic soft expert  set ( F, A). 

 

Example 3.3. Let U={  ,   ,   }, Y={  ,  ,  } and let A   Z = {(  , p, 1), (  , p, 0), 

(  , p,1)}, and       ={(  
 ,   ,1), (  

 ,   ,0), (  
 ,   ,1)}. 

 

Suppose that      ̃            ̃  are  neutrosophic soft expert classes. Define  r : U   Y and 

s: A     as follows : 

 

r(  ) =   ,  r(  ) =   , r(  ) =   , 

 

s (  , p, 1) = (  
 ,   ,0) , s (  , p, 0) = (  

 ,   ,1), s (  , p, 1) = (  
 ,   ,1), 

 

Let (F, A) and (G,   ) be two neutrosophic soft experts over U and Y respectively such 

that. 

 

(F, A) = 

{(         {
  

             
  

  

             
 

  

             
}),

(         {
  

             
  

  

             
 

  

             
}), 

(         {
  

             
  

  

             
 

  

             
})}, 

 

(G,   ) = 

{(   
        {

  

             
  

  

             
 

  

             
}),

(   
        {

  

             
  

  

             
 

  

             
 }), 

(   
        {

  

             
  

  

             
 

  

             
 })} 
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Then  we define the mapping from  f:     ̃        ̃  as follows : 

 

 For a neutrosophic soft expert set ( F, A) in ( U, Z), (f (F, A), K) is neutrosophic soft 

expert set in (Y,   ) where  

 

K= s(A)={(  
 ,   ,1), (  

 ,   ,0), (  
 ,   ,1)} and is obtained as follows: 

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈                    ) ∈     

                                    =                             
=(0.5, 0.45, 0.2)     

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈                    ) ∈     

                                    =                            

=(0.6, 0.4, 0.3)      

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈                    ) ∈     

                                    =                            

=(0.5, 0.35, 0.4) 

 

Then, 

 

f (F, A) (  
 ,   ,1) = {

  

              
  

  

             
 

  

              
} 

 

f (F, A) (  
 ,   ,0) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                    =               

 

f (F, A) (  
 ,   ,0) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =             ) 

 

f (F, A) (  
 ,   ,0) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =               

 

Next, 

 

f (F, A) ((  
 ,   ,0)= {

  

             
  

  

             
 

  

             
} 

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                    =               

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =               

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =               

 

Also. 
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f (F, A) ((  
 ,   ,1)= {

  

             
  

  

             
 

  

             
} 

 

Hence, 

 

           ={(   
        {

  

              
  

  

             
 

  

              
}),  

                         (   
        {

  

             
  

  

             
 

  

             
}), 

(   
        {

  

             
  

  

             
 

  

             
})} 

 

Next, for the neutrosophic soft expert set inverse images, we have the following: 

For a neutrosophic soft expert set ( G,   ) in ( Y,   ), (    (G,   ), D) is  a neutrosophic 

soft expert set in (U,  ), where  

 

D=    (  )= {(  , p, 1), (  , p, 0), (  , p,1)}, and is obtained as follows: 

 

    (G, B) (  , p, 1) (  ) =              (     ) =      
             =               

    (G, B) (  , p, 1) (  ) =              (     ) =      
             =              

    (G, B) (  , p, 1) (  ) =              (     ) =      
            =(0.1, 0.7, 0.5)    

 

Then      

  

    (G, B) (  , p, 1) = {
  

             
  

  

             
 

  

             
} 

    (G, B) (  , p, 0) (  ) =             (     ) =      
             =              

   G, B) (  , p, 0) (  ) =              (     ) =      
             =              

    (G, B) (  , p, 0) (  ) =              (     ) =      
            =(0.5, 0.6, 0.4)     

 

Then, 

 

    (G, B) (  , p, 0)= {
  

             
  

  

             
 

  

             
} 

    (G, B) (  , p,1) (  ) =  (         )(     ) =  (   
       )     =              

    (G, B) (  , p,1)  (  ) =             (     ) =      
             =              

    (G, B) (  , p,1) (  ) =             (     ) =      
            =(0.5, 0.2, 0.3)     

 

Then    

    

    (G, B) (  , p,1)= {
  

             
  

  

             
 

  

             
} 

 

Hence 

 

              ={(         {
  

             
  

  

             
 

  

             
}), 
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(         {
  

             
  

  

             
 

  

             
}),

(         {
  

             
  

  

             
 

  

             
})} 

 

Definition 3.4 Let  f:      ̃        ̃  be a mapping and (F, A) and  (G, B) a neutrosophic 

soft expert sets in      ̃. Then for  ∈   ,  ∈   the union and intersection of neutrosophic 

soft expert images (F, A) and (G, B) are defined as follows : 

 

(      ⋁̃      )( )(y) =      ( )(y)⋁̃      ( )(y). 

(       ̃      )( )(y) =      ( )(y) ̃      ( )(y). 

 

Definition 3.5 Let  f:      ̃        ̃  be a mapping and (F, A) and  (G, B) a neutrosophic 

soft expert sets in      ̃. Then for ∈  , ∈  , the union and intersection of neutrosophic 

soft  expert inverse images (F, A) and (G, B) are defined as follows : 

 

(        ⋁̃        )( )(u) =        ( )(u)⋁ ̃        ( )(u). 

(         ̃        )( )(u) =        ( )(u) ̃        ( )(u). 

 

Theorem 3.6 Let f:      ̃        ̃  be a mapping. Then for  neutrosophic soft expert sets 

(F, A)  and (G, B) in the neutrosophic soft expert class      ̃. 

 

1. f( )=  

2. f( )  . 

3.  (     ⋁̃     )=      ⋁̃       

4.  (      ̃      )=       ̃        

5. If            , then              . 

 

Proof: For (1) ,(2) and (5) the proof is trivial, so we just give the proof of (3) and (4). 

(3).  For ∈    and y ∈  , we want to prove that 

 

(      ⋁̃      )( )(y) =      ( )(y) ⋁̃      ( )(y) 

 

For left hand side, consider  (     ⋁̃     )( )(y) =         ( )(y). Then 

 

        ( )(y)={
⋁  ⋁                                          ∈      

                                                                                   
          (1,1) 

 

such that       =     ̃      where  ̃ denotes neutrosophic union. 

Considering only the non-trivial case, Then equation 1.1 becomes: 

 

        ( )(y) = ⋁  ⋁      ̃        ∈                                                                   (1,2) 

 

For right hand side and by using definition 3.4, we have 
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(      ⋁̃      )( )(y)=      ( )(y) ⋁      ( )(y) 

                              =(⋁ (⋁      ∈        ) ∈         )⋁(⋁ (⋁       ∈        ) ∈         ) 

                              =   ⋁ ∈      ⋁      ⋁      ∈             

      =⋁  ⋁      ̃        ∈                                                                   (1,3) 

 

From equation  (1.1) and (1.3) we get (3) 

 

(4). For  ∈    and y ∈  , and using definition 3.4, we have 

 

 (      ̃      )( )(y) 

=        ( )(y) 

=⋁ (⋁      ∈            ) ∈      (x) 

=⋁ (⋁      ̃      ∈            ) ∈      (x) 

=⋁ (⋁         ̃      ∈               )  ∈       

 ( ⋁ ( ⋁     

 ∈        

)

  ∈      

)  ⋁ ( ⋁     

 ∈        

)

  ∈      

 

=  (                       ) 

=(       ̃        )       

 

This gives (4). 

 

Theorem 3.7  Let     :      ̃        ̃  be a an inverse mapping. Then for  neutrosophic 

soft expert sets (F, A)  and (G, B) in the neutrosophic soft expert class      ̃. 

 

1.     ( )=  

2.     ( )  . 

3.    (     ⋁̃     )=        ⋁̃         

4.    (      ̃      )=         ̃          

5. If            , Then                  . 

 

Proof. The proof is straightforward. 

 

4. Conclusion 
 

In this paper, we studied mappings on neutrosophic soft expert classes and their basic  

properties. We also give some illustrative examples of mapping on neutrosophic soft expert 

set. We hope these fundamental results will help the researchers to enhance and promote 

the research on neutrosophic soft set theory. 
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