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PREFACE 

 

 
 

 

In this book authors for the first time elaborately study the 

notion of MOD vector spaces and MOD pseudo linear algebras. 

This study is new, innovative and leaves several open 

conjectures. In the first place as distributive law is not true we 

can define only MOD pseudo linear algebras. 

Secondly most of the classical theorems true in case of 

linear algebras are not true in case of MOD pseudo linear 

algebras. Finding even eigen values and eigen vectors happens 

to be a challenging problem. Further the notion of 

multidimensional MOD pseudo linear algebras are defined using 

the notion of MOD mixed matrices.  

These function only under the natural product ×n as the 

usual product × cannot be even defined on these mixed MOD 

matrices.  
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Several innovative and interesting results are given in this 

book. Many open problems are proposed.  

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  

 

  

W.B.VASANTHA KANDASAMY 

ILANTHENRAL K 

FLORENTIN SMARANDACHE 

 



 
 
 
 
Chapter One 
 

 
 
INTRODUCTION 
 
 

In this chapter we introduce the notion of MOD interval, 

MOD plane and MOD transformation. For more about these 

notions [26-30]. 

 

 Throughout this book (–∞, ∞) is the real line, Zm the ring of 

modulo integers m and R the real plane.  C the complex plane.  

(–∞i, ∞i)  the imaginary line, R(g) (g
2
 = 0) the dual number 

plane, R(h) (h
2
 = h) the special dual like number plane. R(k); (k

2
 

= –k) the special quasi dual number plane, C(Zm) the finite 

complex modulo integer 2

Fi  = m – 1.  

 

(–∞g, ∞g), (g
2
 = 0) the dual number line. (–∞h, ∞h) (h

2
 = 

h); the special dual like number line. (–∞k, ∞k) the special quasi 

dual number line. k
2
 = –k. 〈R ∪ I〉 is the real neutrosophic plane. 

(–∞I, ∞I) is the neutrosophic number line.  

 

 

〈R ∪ I〉 = {a + bI | a, b ∈ R, I
2
 = I},  

 

R(g) = {a + bg | g
2
 = 0, a, b ∈ R}, 

 

R(h) = {a + bh | h
2
 = h, a, b ∈ R}, 
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C = {a + bi | a, b ∈ R, i

2
 = –1} and  

 

R(k) = {a + bk | a, b ∈ R, k
2
 = –k}  

 

denotes the neutrosophic plane, dual number plane, special dual 

like number plane, complex plane and special quasi dual 

number plane respectively.  

 

(–∞, ∞) is the real line, 

 

(–∞g, ∞g) = {mg | m ∈ R, g
2
 = 0}, 

 

(–∞I, ∞I) = {mI | m ∈ R, I
2
 = 0}, 

 

(–∞i, ∞i) = {mi | m ∈ R, i
2
 = –1}, 

 

(–∞h, ∞h) = {mh | m ∈ R, h
2
 = h} and 

 

(–∞k, ∞k) = {mk | m ∈ R, k
2
 = –k

2
}  

 

are the real line, dual line, neutrosophic line, complex number 

line, special dual like number line and special quasi dual 

number line respectively.  

 

We can now proceed onto define the new notion of MOD 

transformation. For this to occur we recall the definition of MOD 

intervals of 6 types and the MOD planes of 6 types [26-30]. 

 

Let [0, m); 2 ≤ m < ∞ be the interval. We define this 

interval as MOD real interval.  

 

[0, 7), [0, 12), [0, 148), [0, 19) and so on [0, m); 2 ≤ m < ∞ 

are defined as MOD real intervals.  

 

[0, 1) is defined as the fuzzy MOD interval or MOD fuzzy 

interval [26-30].  

 

We have infinite number of real MOD intervals but only one 

MOD fuzzy interval.  



Introduction 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

[0, 43) is the MOD real interval.  

 

[0, m) = {a | a ∈ [0, m), that is a cannot take the value m}.  

 

[0, 5) = {a | 0 ≤ a < 5; that is a cannot take the value 5}.  

 

[0, 24) = {a | 0 ≤ a < 24; that is a can take 23.99…9 but 

cannot take a = 24}.  

 

The advantage of using MOD real intervals is there exists 

infinitely many MOD real intervals but however one and only 

one real interval (–∞, ∞). 

 

Next we define the complex interval (–∞i, ∞i). We see we 

have one and only one complex interval (–∞i, ∞i).  

 

However [0, m)iF; 2 ≤ m < ∞ is the MOD complex interval 

where 2

Fi  
= m – 1.  

 

We have infinite number of MOD complex intervals for each 

of this 2

Fi  = m – 1, 2 ≤ m < ∞.  

 

[0, 3)iF is the MOD complex interval; 2

Fi  = 2 and so on.  

 

[0, 42)iF is the MOD complex interval; 2

Fi = 41 and so  on.  

 

[0, 14)iF = {aiF | 
2

Fi  = 13; 0 ≤ aiF < 14iF}.  

 

[0, 215)iF = {aiF | 0 ≤ aiF < 215iF, 
2

Fi = 24}  

 

are the MOD complex interval. 

 

Next we proceed onto describe MOD neutrosophic intervals 

(–∞I, ∞I); I
2
 = I is defined as the neutrosophic interval.  
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[0, m)I = {aI | 0 ≤ aI < mI} is defined as the neutrosophic 

interval. Clearly as 2 ≤ m < ∞ we have infinitely many 

neutrosophic intervals. 

  

[0, 5)I = {aI | 0 ≤ aI < 5I}, 

 

[0, 24)I = {aI | 0 ≤ aI < 24I} and so on? 

 

We now proceed onto describe and recall the MOD dual 

number intervals.  

 

The dual number interval is (–∞g, ∞g); g
2
 = 0. The MOD 

dual number intervals are [0, m)g; 2 ≤ m < ∞, g
2
 = 0. 

 

[0, 12)g = {ag | 0 ≤ ag < 12g} 

 

[0, 19)g = {ag | 0 ≤ ag < 19g} 

 

[0, 48)g = {ag | 0 ≤ ag < 48g} and so on. 

 

We have infinite number of MOD dual number intervals 

however we have only one infinite dual number interval  

(–∞g, ∞g).  

 

Next the notion of special dual like number interval  

 

(–∞h, ∞h); h
2
 = h is described,  

(–∞h, ∞h) = {ah | –∞h ≤ ah ≤ ∞h}.  

 

The corresponding MOD special dual like number interval is 

[0, m)h = {ah; h
2
 = h, 0 ≤ ah < mh}; 2 ≤ m < ∞. In fact we have 

infinite number of MOD special dual like number intervals. 

 

[0, 9)h = {ah | h
2
 = h;  0 ≤ ah < 9h}, 

 

[0, 16)h = {ah | h
2
 = h; 0 ≤ ah < 16h}  

 

[0, 19)h = {ah | h
2
 = h; 0 ≤ ah < 19h} 
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and so on are all MOD special dual like number intervals.  

 

The MOD special quasi dual number interval is [0, mk) 

where k
2
 = (m – 1)k. This is got from the real special quasi dual 

number interval (–∞k, ∞k), k
2
 = –k.  

 

[0, 12)k = {ak | k
2
 = 11k, a ∈ [0, 12)} is the MOD special 

quasi dual number interval.  

 

[0, 43)k = {bk | b ∈ [0, 43), k
2
 = 42k} is also a MOD special 

quasi dual number interval. 

 

[0, 27)k = {ak | k
2
 = 26k, a ∈ [0, 27)} is also a MOD special 

quasi dual number interval. 

 

 In fact we have only one real special quasi dual number 

interval viz (–∞k, ∞k) but however we have infinite number of 

MOD special quasi dual number intervals got as [0, m)k where k
2
 

= (m – 1)k; m ∈ Z
+
 \ {0, 1}.  

 

This is the main advantage in using these MOD intervals. 

Such multichoice of values that too using small (MOD) intervals 

happens to be an interesting research. 

 

 Thus there are also MOD dual number interval sets generated 

by  

 

{〈[0, m) ∪ g〉} = {a + bg | a, b ∈ [0, m); g
2
 = 0}.  

 

As m ∈ Z
+
 \ {1} we have infinitely many such MOD dual 

number interval sets which are also MOD dual number planes. 

 

For instance 

 

P1 = {〈[0, 20) ∪ g〉 | g
2
 = 0, a + bg, a, b ∈ [0, 20)}, 

 

P2 = {〈[0, 29) ∪ g〉 | g
2
 = 0, a + bg, a, b ∈ [0, 29)}, 

 

P3 = {〈[0, 5) ∪ g〉 | g
2
 = 0, a, b ∈ [0, 5); a + bg}  
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and so on are all MOD dual number interval sets.  

Clearly [0, m)g ⊆ {〈[0, m) ∪ g〉} is a proper subset of  

{〈[0, m) ∪ g〉 | a + bg, a, b ∈ [0, m); g
2
 = 0}.  

 

We see 〈R ∪ g〉 = {a + bg | a, b ∈ R; g
2
 = 0, R-reals} is the 

infinite real dual number plane.  

 

Likewise 〈R ∪ i〉 = {a + bi | a, b ∈ R; i
2
 = –1, R reals} = C; 

is the complex plane.  

 

Thus with default of notations we represent 〈(–∞, ∞) ∪ g〉 = 

〈R ∪ g〉, 〈(–∞, ∞) ∪ i〉 = 〈R ∪ i〉 = C and 〈(–∞, ∞) ∪ I〉 =  

〈R ∪ I〉 = R(I) the real dual number plane or interval, the infinite 

complex plane or interval and the infinite neutrosophic interval 

or plane.  

Further 〈(–∞, ∞) ∪ h〉 = 〈R ∪ h〉 = R(h) where h
2
 = h is the 

real special dual like number plane or interval and 〈(–∞, ∞) ∪ k〉 

= R(k) (k
2
 = –k) is the real special quasi dual number plane. So 

we may call it as plane or interval by default of notions.  

 

The same is true in case of MOD real neutrosophic interval 

or plane 〈[0, m) ∪ I〉 = I

nR (m), the MOD real dual number plane 

or interval. 〈[0, m) ∪ g〉 = g

nR (m) g
2
 = 0, 〈[0, m) ∪ iF〉 = Cn(m) 

( 2

Fi  = m – 1) the infinite complex modulo integer interval or 

plane. 

 

〈[0, m) ∪ h〉 = h

nR (m); h
2
 = h be the infinite special dual 

like number interval or plane. 

 

〈[0, m) ∪ k〉 = k

nR (m); k
2
 = (m – 1)k be the infinite special 

quasi dual number interval or plane or space. 

 

We will represent this by some examples. 

 

Example 1.1: Let S = {〈[0, 12) ∪ g〉; g
2
 = 0} = g

nR (12) =  

{a + bg | a, b ∈ [0, 12); g
2
 = 0} be the MOD dual number plane.  
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We can define + and × on S. (S, +) is an infinite abelian 

group and (S, ×) is an infinite abelian semigroup. However  

a × (b + c) ≠ a × b + a × c in general for a, b, c ∈ S. {S, +,  ×} is 

defined [30] as the MOD infinite dual number pseudo ring. 

 

Example 1.2: Let N = {〈[0, 11) ∪ I〉} = { I

nR (11) = a + bI, a, b 

∈ [0, 11); I
2
 = I} be the MOD infinite neutrosophic set. {N, ×} is 

the MOD infinite neutrosophic semigroup.  

 

Clearly {N, ×} a commutative infinite semigroup. [0, 11)I is 

an ideal of infinite order. {N, +} is the MOD infinite 

neutrosophic group. {N, +, ×} be the MOD neutrosophic interval 

pseudo ring. 

 

Example 1.3: Let S = {〈[0, 24) ∪ I〉; I
2
 = I, +, ×} be the pseudo 

MOD neutrosophic interval ring. This ring has zero divisors, 

units and idempotents. 

 

Next examples of MOD special dual like number groups, 

semigroups and pseudo rings are defined. 

 

Example 1.4: Let S = {〈[0, 16) ∪ h〉, h
2
 = h, +} be the MOD 

special dual like number group of infinite order. This has 

subgroups of finite and infinite order. 

 

Example 1.5: Let M = {〈[0, 23) ∪ h〉 h
2
 = h, ×} be the MOD 

special dual like number semigroup. M is of infinite order. M 

has ideals and subsemigroups. Finite order subsemigroups of M 

are not ideals of M. M has idempotents, zero divisors and units. 

M is a S-semigroup as B = {Z23 \ {0}, ×} ⊆ M is a subgroup.  

 

D = {Z23h, ×} ⊆ M is a subsemigroup of finite order.  

 

E = {0, 0.5, 1, 1.5, 2, …, 21, 21.5, 22, 22.5} ⊆ M is only a 

subset and is not a subsemigroup under ×.  

 

However E generates under product an infinite 

subsemigroup of M which is not an ideal of M.  
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 Thus P = {〈0.1〉, ×} can generate a subsemigroup of infinite 

order which is not an ideal of M.  

 

In fact M has several such infinite order subsemigroups.  

 

Finding ideals in M is a difficult task.  

 

However L = {[0, 23)h, ×} is an ideal of infinite order in L.  

 

Finding other ideals is a challenging task.  

 

Now we can build MOD special dual like number pseudo 

rings.  

 

This is illustrated by the following example. 

 

Example 1.6: Let M = {〈[0, 48) ∪ h〉, +, ×; h
2
 = h} be the MOD 

special dual like number pseudo ring.  

 

Clearly M has units, zero divisors, pseudo zero divisors and 

idempotents. In fact M has finite subrings which are not pseudo.  

 

For {Z48, +, ×} = P1 is a subring of order 48.  

 

P2 = {2Z48, +, ×} ⊆ M is a subring of order 24.  

 

P3 = {3Z48, +, ×} is a subring of order 16.  

 

P4 = {24, 0, +, ×} is a subring of order two.  

 

P5 = {Z48h, +, ×} is a subring of order 48 and so on.  

 

P6 = {[0, 48), +, ×} is a MOD pseudo special dual like 

number subring of infinite order which is not an ideal.  

 

P7 = {[0, 48)h, +, ×} is a pseudo subring of special dual like 

numbers of infinite order which is an ideal of M. 
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 In fact M has all ideals to be of infinite order. Finding ideals 

other than P7 happens to be a very difficult task.  

 

P8 = {〈Z48 ∪ h〉, +, ×} is again a subring of finite order 

which is not pseudo. 

 

Example 1.7: Let S = {〈[0, 13) ∪ h〉, h
2
 = h, +, ×} be the MOD 

special dual like number pseudo ring. S has a few subrings of 

finite order. S has pseudo zero divisors as well as some zero 

divisors. S has units and idempotents.  

 

Working with these MOD special dual like pseudo rings 

when n used in the interval [0, n) is a prime number is yet a 

difficult task for finding finite order subrings other than  

 

P1 = {Z13, +, ×},  

 

P2 =  {Z13h, +, ×} and  

 

P3 = {〈Z13 ∪ h〉, +, ×}  

 

happens to be a very difficult task. 

 

Next we proceed onto describe MOD special quasi dual 

number set and the algebraic structures on them using +, × and 

both + and ×. 

 

Example 1.8: Let M = {〈[0, 8) ∪ k〉, k
2
 = 7k} be the MOD 

special quasi dual number set.  

 

This is also the MOD special quasi dual number plane for  

M = {a + bk | k
2
 = 7k, a, b ∈ [0, 8)}. 

 

Here N = {[0, 8)k; k
2
 = 7k} is only a MOD special quasi dual 

number interval.  

 

Example 1.9: Let M = {〈[0, 19) ∪ k〉 k
2
 = 18k} be the MOD 

special quasi dual number interval plane.  
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P1 = {[0, 19)} and  

 

P2 = {[0, 19)k}  

 

are MOD special quasi dual number interval subsets. Both are 

intervals. In fact P1 is only a MOD real interval. 

 

Example 1.10: Let M = {〈[0, 12) ∪ k〉, k
2
 = 11k, +} be the MOD 

special quasi dual number group under +. M has subgroups of 

both finite and infinite order.  

 

G1 = {Z12, +} ⊆ M is a subgroup of finite order.  

 

G2 = {Z12k, +} ⊆ M is also a subgroup of finite order.  

 

G3 = {〈Z12 ∪ k〉, k
2
 = 11k, +} ⊆ M is also a subgroup of 

finite order.  

 

G4 = {[0, 12); +} ⊆ M is a subgroup of infinite order.  

 

G5 = {[0, 12)k, k
2
 = 11k, +} is also a subgroup of infinite 

order. 

 

Example 1.11: Let M = {〈[0, 187) ∪ k〉, k
2
 = 186k, +} be the 

MOD special quasi dual number group. This has subgroups of 

both finite and infinite order.  

 

 Next a few examples of MOD special quasi dual number 

semigroup. 

 

Example 1.12: Let N = {〈[0, 24) ∪ k〉, k
2
 = 23k, ×} be the MOD 

special quasi dual number semigroup of infinite order.  

 

This has the subsemigroups of finite and infinite order. This 

also has zero divisors, units and idempotents. 

 

Example 1.13: Let S = {〈[0, 17) ∪ k〉, k
2
 = 16k, ×} be the 

special quasi dual number semigroup under product. S has finite 

and infinite order subsemigroups.  
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S has pseudo zero divisors and units. However all ideals of  

S are of infinite order.  

 

K = {[0, 17)k, k
2
 = 16k, ×} is an ideal of infinite order.  

 

P = {[0, 17), ×} ⊆ S is again a subsemigroup of infinite 

order which is not an ideal of S. 

 

T = {Z17, ×} is a subsemigroup of finite order.  

 

W = {Z17k, ×} is a subsemigroup of finite order.  

 

V = {〈Z17 ∪ k〉, ×} is also a subsemigroup of finite order.  

 

Example 1.14: Let M = {〈[0, 45) ∪ k〉, k
2
 = 44k, ×} be a MOD 

special quasi dual number semigroup of infinite order.  

 

P = {[0, 45)k, k
2
 = 44k, ×} be the subsemigroup which is 

also an ideal of M. P is of infinite order. 

 

Example 1.15: Let Q = {〈[0, 143) ∪ k〉, k
2
 = 142k, ×} be the 

MOD special quasi dual number semigroup. Q has 

subsemigroups of finite and infinite order.  

 

Q has ideals of infinite order. Q has finite order 

subsemigroups as well as infinite order subsemigroups. Q has 

ideals of infinite order. 

 

Example 1.16: Let S = {〈〈[0, 10) ∪ k〉, +〉, ×; k
2
 = 9k} be the 

MOD special quasi dual number semigroup. S is of infinite order. 

S has subsemigroups of infinite and finite order.  

 

P1 = {Z10, ×},  

 

P2 = {Z10k, ×},  

 

P3 = {〈Z10 ∪ k〉, ×} are finite order subsemigroups.  
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P4 = {[0, 10)k | k

2
 = 9k, ×}  

 

is a subsemigroup which is also an ideal of S.  

 

P5 = {[0, 10), ×}  

 

is an infinite order subsemigroup which is not an ideal of S.  

 

Example 1.17: Let S = {〈〈[0, 3) ∪ k〉, +〉, k
2
 = 2k, ×} be the 

MOD special quasi dual number semigroup. S is of infinite order. 

S has ideals and subsemigroups of infinite order. S has pseudo 

zero divisors, units and idempotents. S has finite order 

subsemigroups. 

 

 Next we proceed onto describe pseudo special MOD quasi 

dual number rings. 

 

Example 1.18: Let V = {〈[0, 12) ∪ k〉, k
2
 = 11k, +, ×} be the 

MOD special quasi dual number pseudo ring. V has pseudo 

ideals and pseudo subrings of infinite order.  

 

T1 = {[0, 12)k | k
2
 = 11k} ⊆ V is pseudo subring of V which 

is a pseudo ideal.  

 

T2 = {[0, 12)} ⊆ V is only a pseudo subring and is not an 

ideal.   

 

{Z12} = T3 is a subring of order 12.  

 

T4 = {Z12k | k
2

 = 11k} is a subring of order 12.  

 

T5 = {〈Z12 ∪ k〉, k
2
 = 11k} is again a subring of finite order. 

 

 Thus all finite order subrings of V are not pseudo that is 

distributive law is true.  

 

Finally there is only one unique MOD fuzzy interval given 

by F = {[0, 1)}.  
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We can define all the 3 operations on F also. 

 

Example 1.19: Let F = {[0, 1), +} be the MOD fuzzy interval 

group under +. If x = 0.3389 ∈ F then y = 0.6611 ∈ F is such 

that x + y = 0 = y + x. F is an infinite group.  

 

This has subgroups of finite order. P1 = {0, 0.1, 0.2, …, 0.9} 

⊆ F is a subgroups of F of finite order. 

 

Example 1.20: Let F = {[0, 1), ×} be the MOD fuzzy semigroup. 

Finding subsemigroups of finite order is a very difficult task.  

 

In the opinion of authors there does not exist a finite 

subsemigroup for the MOD fuzzy semigroup.  

 

Study in this direction is interesting. 

 

 Next the MOD fuzzy ring of infinite order. Finding 

substructures is an open problem.  

 

We can also take subsets of these intervals MOD interval  

[0, m). S = ([0, m)) = {subsets of [0, m)}.  

 

First we will illustrate this situation by an example. 

 

Example 1.21: Let S([0, 4)) = {Collection of all subsets from 

[0, 4)} = {{0}, {0, 0.31}, {0.521}, {2.72405} … {0.3035, 

2.57063}, {0.1, 2.75, 3.16, 2, 1} and so on} be the real interval 

on [0, 4). 

 

Example 1.22: Let M = S([0, 7)) = {Collection of all subsets 

from the MOD interval [0, 7)} = {{5, 2, 1}, {6, 0.312, 2.15}, 

{5.5, 3, 4.7521}, {0.0021, 0.73, 1.1103} and so on} be the real 

interval using [0, 7). 

 

 Clearly S([0, m)) is all infinite collection.  

 

We will also denote S([0, m)) by P([0, m)) that is power set 

of the set [0, m).  
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On P([0, m)) or equivalently on S([0, m)) we can build 

algebraic structures like min, max or both min and max or ∪ or 

∩ or both ∪ and ∩ or + or × or both + and ×.  

 

This same type of subsets can be carried out on all the seven 

MOD planes Rn([0, m)), I

nR ([0, m)), Cn([0, m)), g

nR ([0, m)), 
h

nR ([0, m)), k

nR ([0, m)) and F

nR ([0, 1)). 

 

 Such study is interesting.  

 

We can call them as power sets of the planes or MOD power 

set planes of various types.  

 

For instance Rn([0, 9)) = {Collection of all subsets of the 

form {(0, 7), (0.332, 1), (0, 0), (0, 0.1107)} and so on.  

 

P( I

nR ([0, 11))) = {Collection of all subsets from the plane 
I

nR ([0, 11))} = {{9 + 2I, 0.33I, 6.702 + 4.02I}, {0, 0.72I + 6.1, 

0.77702 + 5.2I, 6.112I + 0.73}, {0}, {1 + I}, {I}, {9} and so 

on}. 

 

Note {9} = {9 + 0I} and {I} = {0 + I}, it is by default of 

notations.  

 

P( g

nR ([0, 12))) = {Collection of all subsets from the MOD 

dual number plane} = {{5g + 3.21}, {0}, {0.8g + 0.115},  

{0.7 + 8.73g, 0 + 2g, 0.3g + 4} and so on} is the power set of 

MOD plane of dual numbers. 

 

 Let A = {6.8 + 2g, 0.7 + 4.2g, 10.5 + 5.2g} and  

 

B = {5 + 5g, 2 + 2g, 10 + 10g} ∈ P( g

nR ([0, 12))).  

 

A ∩ B = {φ},  

A ∪ B = {6.8 + 2g, 0.7 + 4.2g, 10.5 + 5.2g, 5 + 5g,  

10 + 10g, 2 + 2g},  
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A + B = {11.8 + 7g, 5.7 + 9.2g, 3.5 + 10.2g,  8.8 + 4g, 2.7 + 

6.2g, 0.5 + 7.2g, 4.8 + 0g, 10.7 + 2.2g, 8.5 + 3.2g},  

 

A × B = {8 + 4g, 7 + g, 9 + g, 10 + 8g, 2 + 2g, 6 + 2g, 1.6 + 

5.6g, 1.4 + 9.8g, 9 + 8g} 

 

 This is the way operations are performed on subsets of MOD 

dual number plane. 

 

 Next we see the structure of the MOD special dual like 

number interval subsets by some examples. 

 

Example 1.23: Let P([0, 10)) = {Collection of all subsets from 

the interval [0, 10)h} = {{0, 5h, 6.332h}, {4h, 0.5h, 0.678h}, 

{9.28h, 0.73h}, {0.0432h, 6.0013h} and so on}.  

 

We can perform the ∪ operation, ∩ operation, + operation, 

× operation and {+, ×} and {∪, ∩} operation on P([0, 10)h).  

 

This is realized as a matter of routine so left as an exercise 

to the reader. 

 

A = {0.8h, 5h, 4h} and  

 

B = {6h, 4h, 0.5h, 0.01h} ∈ P([0, 10h)) 

 

A ∩ B = 4h, 

 

A ∪ B = {0.8h, 5h, 4h, 6h, 0.5h, 0.01h} 

 

A + B = {6.8h, h, 0, 4.8h, 9h, 8h, 1.3h, 5.5h,  

4.5h, 0.81h, 5.01h, 4.01h},  

 

A × B = {4.8h, 0, 4h, 3.2h, 6h, 0.4h, 2.5h, 2h,  

0.008h, 0.05h, 0.04h} 

 

P([0, 10)h) has zero divisors. 

 

x = {6h}, y = {5h} ∈ P([0, 10)h); x × y = {0},  
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x1 = {2.5h} and y1 = {4h} ∈ P([0, 10)h) x1 × y1 = {0},  

 

x2 = {5h} and y2 = {8h} ∈ P([0, 10)h); x2 × y2 = {0}. 

 

 Thus P([0, 10)h) has several zero divisors. 

 

Example 1.24: Let S = P([0, 7)g); g
2
 = 0. S be the collection of 

all subsets of the interval [0, 7)g. 

 

Let A, B ∈ S; A × B = {0}, A × A = {0}, B × B = {0}.  

 

P([0, 9)h) is the collection of all MOD subsets special quasi 

dual numbers of the interval [0, 9)k. k
2
 = 8k.  

 

S = P([0, 9)k) = {{0}, {2k + 3}, {7 + 0.5k}, {1 + k, 2 + 

0.5k, 0.332 + 4k, 0.0006k, 6.332001k, 0.01115} and so on}.  

 

On S we can define ∪, ∩, + and × and they are only 

semigroups. Even under ‘+’;  S is only a semigroup.  

 

For if A ∈ S we cannot find a B in general such that  

A + B = {0}.  

 

Let A = {0.3k} then there exist a unique B = {8.7k} such 

that A + B = {0}. However if the number of elements in A is 

greater than one we cannot find a B such that A + B = {0}.  

 

Thus P([0, m)k) can only be a MOD semigroup under + and 

never a group. Likewise P([0, m)k) can only be a MOD 

semigroup under × and never a group.  

 

But R = {P([0, m)k), +, ×} be a MOD pseudo semiring as + 

and × do not satisfy distributive law. However R is an infinite 

commutative MOD pseudo semiring.  

 

This semiring has subsemirings may or may not contain 

finite order ideals. P has Zmk to be a finite ring.  
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So R is a SS-semiring. If m is a prime number or Zm is a  

S-ring then R is a SSS-semiring. There may be MOD special 

quasi dual number subset interval pseudo semirings R which are 

not SSS-semirings however all semirings R are SS-semirings. 

 

 Let x = {8.037k} ∈ R (m = 20) = {P([0, 20)k | k
2
 = 19k};  

 

x × x  = 8.037k × 8.037k  

 

= {7.274011k}.  

 

Let y  = {19k} ∈ R;  

 

y × y  = {19k} × {19k} = {19 × 19k
2
}  

 

=  {19 × 19 × 19k} (as k
2
 = 19k) 

 

= 19k = y is the idempotent.  

 

The only open conjecture is;  

 

Can P([0, m)k); k
2
 = (m – 1)k have idempotent sets other 

than {0}, {(m – 1)k} and {0, (m – 1)k} in R? 

 

Next we consider the notion of MOD real planes, MOD 

complex modulo integer planes or intervals  

 

Cn(m) = {C([0, m))} = {a + biF | a, b ∈ [0, m);  
2

Fi  = (m – 1)}.  

 

{〈[0, m) ∪ I〉} = I

nR (m) = {a + bI | a, b ∈ [0, m); I
2
 = I} is 

the MOD neutrosophic interval or plane.  

 
g

nR (m) = {a + bg | a, b ∈ [0, m), g
2
 = 0} = {〈[0, m) ∪ g〉 | g

2
 

= 0} is the MOD dual number interval or plane.  

 
h

nR (m) = {a + bh | a, b ∈ [0, m), h
2
 = h} = {〈[0, m) ∪ h〉} be 

the MOD special dual like number plane or interval.  
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k

nR (m) = {a + bk | a, b ∈ [0, m), k
2
 = (m – 1)k} = {〈[0, m) 

∪ k〉} be the MOD special quasi dual number plane or interval. 

Thus we have given six new types of MOD planes.  

 

Now we can include the MOD fuzzy plane  

Rn(1) = {(a, b) | a, b ∈ [0, 1)}. 

 

Let x = (0.31, 0.002), y = (0.71, 0.5) and z = (0.003, 0.71) ∈ 

Rn(1) = [0, 1) × [0, 1).  

 

Consider (x × y) × z 

 

= [(0.31, 0.002) × (0.71, 0.5)] × [(0.003, 0.71)] 

 

= (0.2201, 0.001) × (0.003, 0.71) 

 

= (0.0006603, 0.00071)      … I 

 

x × (y × z)  = x × [(0.71, 0.5) × (0.003, 0.71)] 

 

        = x × [(0.00213, 0.355)] 

 

         = (0.31, 0.002) × (0.00213, 0.355) 

 

         = (0.0006603, 0.00071)      … II 

 

I and II are identical.  

 

It is observed R = [0, 1) × [0, 1) is a ring as distributive law 

is true in the fuzzy MOD plane. R is a group of infinite order 

under +. R is a group under ×  which is commutative and is of 

infinite order. 

 

 Let I

nR (m) = {a + bI | a, b∈ [0, m), I
2
 = I} be the MOD 

neutrosophic plane  

 

{ I

nR (m), +} is a group under addition modulo m.  
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{ I

nR (m), ×} is a semigroup under product.  

 

Clearly a × (b + c) ≠ a × b + a × c and  

(b + c) × a ≠ b × a + c × a in general a, b, c ∈ I

nR (m).  

 

Hence { I

nR (m), +, ×} is only a MOD neutrosophic pseudo 

ring. For more refer [30].  

 

We authors choose to recall these structures mainly to make 

this study popular.  

 

Likewise we can find the pseudo ring of MOD dual number 

plane.  

 
g

nR (m) = {a + bg | a, b ∈ [0, m), g
2
 = 0} is the MOD dual 

number plane.  

 

Clearly g

nR (m) is a MOD dual number pseudo ring. For  

[0, m) ⊆ g

nR (m) is only a MOD dual number pseudo subring.  

 

However [0, m)g ⊆ g

nR (m) is a MOD dual number subring 

which is not pseudo as [0, m)g is a zero square subring.  

 

It is difficult to find subrings otherwise which are not 

pseudo. 

 

 Next we consider the MOD special dual like number plane  

   h

nR (m) = {a + bh | a, b ∈ [0, m), h
2
 = h}.  

 

Clearly { h

nR (m), +} is group of infinite order and { h

nR  (m), 

×} is only a commutative semigroup of infinite order.  

 

In spite of this { h

nR (m), +, ×} is a MOD special dual like 

number pseudo ring only as a × (b + c) ≠ a × b + a × c for all a, 

b, c in h

nR (m). 
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Example 1.25: Let h

nR (27) = {a + bh | h
2
 = h, +, ×} be the MOD 

special dual like number pseudo ring.  

 

x = 0.32 + 0.4h,  

 

y = 0.8 + 0.05h,  

 

z = 1.2 + 2.5h ∈ 
h
nR (27).  

 

Consider x × (y + z) 

 

= (0.32 + 0.4h) × [0.8 + 0.05h + 1.2 + 2.5h] 

 

= (0.32 + 0.4h) × (2 + 2.55h) 

 

= 0.64 + 0.8h + 0.816h + 1.02h 

 

= 0.64 + 2.636h       …  I 

 

x × y + x × z =  0.32 + 0.4h × 0.8 + 0.05h + 0.32 +  

0.4h × 1.2 + 2.5h 

 

=  0.256 + 0.32h + 0.0160h + 0.02h +  

    0.384 + 0.48h + 0.8h + h 

 

=  0.64 + 2.556h     … II 

 

Clearly I and II are different. Hence distributive law is not 

true in general. For more refer [30].  

 

Next we proceed onto define the notion of MOD special 

quasi dual number planes.  

 
k

nR (m) = {a + bk | k
2
 = (m – 1)k, a, b ∈ [0, m)} is the MOD 

special quasi dual number plane. In fact we have infinite 

number of such planes; m = 2, …, ∞. { k

nR (m), +} is a MOD 

special quasi dual number plane group of infinite order which is 

commutative. This has also subgroups of finite order.  
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S = { k

nR (m), ×} is a (MOD special quasi dual number) 

semigroup of infinite order. Clearly S has zero divisors, units 

and idempotents; the latter two depends on the m. S is a  

S-semigroup if Zm is a S-semigroup.  

 

But working with S and finding ideals happens to be a very 

difficult task. 

 

Further S has subsemigroups of finite order also.  

 

If W = { k

nR (m), +, ×; k
2
 = (m – 1)k} be the MOD special 

quasi dual number plane pseudo ring. W has units, zero 

divisors, idempotents and nilpotents mostly depending on m.  

 

We see W has ideals which are only of infinite order, but 

has subrings of finite order which are not ideals. In fact these 

finite order subrings satisfy the distributive law.  

 

Hence study in the direction of finding subrings of infinite 

order which are not ideals is interesting.  

 

Clearly P = {[0, m), +, ×} is a subring of W of infinite order 

which is pseudo and P is not an ideal only a subring of W.  

 

Now we supply one or two examples of this situation. 

 

Example 1.26: Let S = { k

nR (24), +, ×, k
2
 = 23k} be the MOD 

special quasi dual number pseudo ring which is of infinite order 

and is non commutative. Z24 is a subring of order 24. Z24k is a 

subring of order 24.  

 

P = {[0, 24), +, ×} be the pseudo subring of infinite order.  

 

M = {[0, 24)k, +, ×, k
2
 = 23k} is also a pseudo subring of 

infinite order which is an ideal. P is not an ideal only pseudo 

subring.  
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This has several zero divisors x = 12 + 8k, y = 6 + 12k ∈ S 

is such that x × y = 0 + 0k. 

 

Example 1.27: Let M = { k

nR (13); k
2
 = 12k, +, ×} be the MOD 

special quasi dual number pseudo ring. 

 

  Let x = 6.5 + 6.5k and y = 4 + 2k ∈ M,  

 

we see x × y = 0 + 0k.  

 

Thus even if m is a prime we have M to have zero divisors.  

 

B = {[0, 13)k | k
2
 = 12k, +, ×} is a pseudo subring.  

 

D = {[0, 13); k
2
 = 12k, +, ×} is also a pseudo subring.  

 

Both B and D are not ideals of M. Z13 is a subring which is 

a field. Thus M is a S–pseudo ring. 

 

Example 1.28: Let D = { k

nR (64), k
2
 = 63k, +, ×} be the MOD 

special quasi dual number pseudo ring.  

 

M = Z64 is a subring of order 64. N = Z64k is also a subring 

of order 64.  

 

Both M and N are ideals of D.  

 

P1 = {[0, 64); +, ×} is a pseudo subring of infinite  order 

which is not an ideal.  

 

P2 = {[0, 64)k, +, ×} be the pseudo subring which is also an 

ideal of D.  

 

This pseudo ring D has several zero divisors. 

 

We suggest the following problems. 
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Problems 

 

1. Obtain any special feature about the MOD real plane Rn(m). 

 

2. What are the advantages associated with the planes real 

MOD planes Rn(m); 1 < m < ∞? 

 

3. Obtain the important properties associated with  

η : R → [0, m). 

 

4. Find all important features enjoyed by  

ηr: [0, m) → R; 1 < m < ∞. 

 

5. Compare η and ηr in problems (3) and (4). 

 

6. Study the MOD neutrosophic intervals  

[0, m)I; I
2
 = I, 1 < m < ∞. 

 

7. Can R = {[0, m)I, +, ×} be a ring or a pseudo ring? 

 

8. Find the special features enjoyed by [0, m)g, the MOD dual 

numbers g
2
 = 0; 1 < m < ∞. 

 

9. Find the special properties associated with [0, m)h, MOD 

special dual like number interval h
2
 = h; 1 < m < ∞. 

 

10. Study all the special properties enjoyed by the MOD special 

quasi dual number interval [0, m)k, k
2
 = (m – 1)k; 

1 < m < ∞. 

 

11. Let Rn(m) = {(a, b) | a, b ∈ [0, m); 1 < m < ∞} be the MOD 

real plane. 

 

Let ηr: Rn(m) → R × R be the map. 

 

i. Find the special features enjoyed by ηr. 
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12. Can {Rn(m), +, ×} the pseudo ring have subrings which are 

not pseudo? 

 

13. Can {Rn(m), +, ×} have pseudo ideals of finite order? 

 

14. What are the advantages of using the pseudo ring  

{Rn(m), +, ×}? 

 

15. Can there be an infinite order S-subring of {Rn(m), +, ×} 

which is not pseudo? 

 

16. Prove only finite order subrings are not pseudo using MOD 

planes. 

 

17. Let η: R × R → Rn(m); 1 < m < ∞ be the map. 

 

i. Is η a function? 

ii. Is η well defined? 

iii. Is η periodic? 

iv. Can η be a special type of function? 

v. Can we have any special property associated with η? 

 

18. Let S = {Rn(16), +, ×} be the MOD real plane pseudo ring.  

 

Study questions (12) to (16) for this S. 

 

19. Let W = {Rn(23), +, ×} be the MOD real plane pseudo ring.  

 

Study questions (12) to (16) for this W. 

 

20. Let {
I
nR (m)} be the MOD neutrosophic plane. 

 

i. What are special features enjoyed by {
I
nR (m)}? 

ii. Can { I

nR (m)} have distinct properties from Rn(m)? 

iii. Prove { I

nR (m), +} is an infinite group under +. 
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iv. Show { I

nR (m), ×} is a semigroup. 

v. Prove { I

nR (m), ×} has pseudo ideals. 

vi. Prove { I

nR (m), ×} is always a semigroup for any m  

 having pseudo ideals. 

vii. Prove { I

nR (m), ×} is a S-semigroup if Zm is a  

S-semigroup. 

viii.  Can { I

nR (m), ×} be a MOD neutrosophic plane  

 S-semigroup even if Zm is not a S-semigroup? 

 

21. Let S = { I

nR (47), ×} be the MOD neutrosophic plane 

semigroup. 

 

Study questions (i) to (viii) of problem (20) for this S. 

 

22. Let M = { I

nR (56), ×} be the MOD neutrosophic plane 

semigroup. 

 

Study questions (i) to (viii) of problem (20) for this M. 

 

23. Let P = { I

nR (24), ×} be the MOD plane neutrosophic 

semigroup. 

 

Study questions (i) to (viii) of problem (20) for this P. 

 

24. Let S = { I

nR (m), +, ×} be the MOD neutrosophic plane 

pseudo ring. 

 

i. Prove S is a commutative pseudo ring. 

ii. Prove all ideals are pseudo and are of infinite order. 

iii. Show there exists subrings of finite order which are not  

 pseudo ideals. 

iv. Prove there exists infinite order subrings which are not  

 pseudo ideals. 

v. Prove S has infinite number of zero divisors. 

vi. Can S have idempotents? 

vii. Is it possible for S to have nilpotents? 
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viii. When is S a S-ring? 

ix. Obtain any other special feature enjoyed by this MOD 

neutrosophic plane pseudo ring.  

 

25. Let S = { I

nR (40), +, ×} be the MOD neutrosophic plane 

pseudo ring. 

 

Study questions (i) to (ix) of problem (24) for this S. 

 

26. Let S1 = { I

nR (53), +, ×} be the MOD neutrosophic plane 

pseudo ring. 

 

Study questions (i) to (ix) of problem (24) for this S1. 

 

27. Let R = { I

nR (64), +, ×} be the MOD neutrosophic plane 

pseudo ring. 

 

Study questions (i) to (ix) of problem (24) for this R. 

 

28. Let M = { g

nR (m) | g
2
 = 0} be the MOD dual number plane. 

 

i. Obtain all the special features associated with M. 

ii. Prove {M, +} is a group. 

iii. Can {M, +} have subgroups of finite order? 

iv. Prove {M, +} can have subgroups of infinite order. 

v. Prove {M, ×} is a MOD dual number plane semigroup. 

vi. Find ideals in {M, ×}. 

vii.  Can ideals in {M, ×} be of finite order? 

viii. Can {M, ×} have subsemigroups none of which are  

  ideals? 

ix. Prove {M, ×} can have subsemigroups which are  
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 infinite order which are not ideals. 

x.   Prove {M, ×} have infinite number of zero divisors. 

xi.  Can {M, ×} have idempotents? 

xii. Prove {M, ×} can have zero square subsemigroups of  

      both finite and infinite order. 

xiii. Obtain any other special feature enjoyed by {M, ×} the      

       MOD dual number plane semigroup. 

xiv.  Study L = {M, +, ×} is only a pseudo ring of MOD  

  dual number plane. 

xv.  Prove L has both finite and infinite order subrings  

which are not ideals. 

xvi. Is every ideal in L is of infinite order? 

xvii. Prove L has zero square subrings of both finite and  

  infinite order. 

xviii. Can L be a S-ring? 

xix. Does there exist MOD dual number plane pseudo rings  

 which are not S-ring? 

xx.  Obtain any other special property associated with MOD  

 dual number plane pseudo rings. 

29. Let { g

nR (48), g
2
 = 0} be the MOD dual number plane. 

 

Study questions (i) to (xx) of problem (28) for this 

{
g
nR (48), g

2
 = 0}. 

 

30. Let { g

nR (151), g
2
 = 0} be the MOD dual number plane. 

 

Study questions (i) to (xx) of problem (28) for this 

{
g
nR (151), g

2
 = 0}. 
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31. Let { g

nR (729), g
2
 = 0} be the MOD dual number plane. 

 

Study questions (i) to (xx) of problem (28) for this 

{ g

nR (729), g
2
 = 0}. 

 

32. Let { h

nR (m), h
2
 = h} be the MOD special dual like number 

plane. 

i. Study all properties associated with { h

nR (m), h
2
 = h}. 

ii. S = {
h
nR (m), h

2
 = h, +} is an infinite abelian group 

which has both subgroups of finite order as well as 

subgroups of infinite order. 

iii. Prove W = {
h
nR (m), h

2
 = h, ×} is a commutative 

semigroup of MOD special dual like number plane. 

iv. Can W have zero divisors? 

v. Can W have units? 

vi.  Can W have idempotents? 

vii. When will W have nilpotents? 

viii. Can W have ideals of finite order? 

ix. Prove W can have subsemigroups of both finite and 

infinite order. 

x. Is W a S-semigroup? 

xi.  Is V = { h

nR (m), h
2
 = h, +, ×} be the MOD special dual  

like number plane pseudo ring commutative? 

xii. Can V have subrings of finite order which are pseudo? 

xiii. Is all pseudo subrings of V are of infinite order? 

xiv. Can V have pseudo ideals of finite order? 
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xv.  Prove all infinite order subrings are not pseudo ideals. 

xvi. Can V have zero divisors? 

xvii. Obtain all idempotents of V. 

xviii. Is V a S-ring? 

xix.  Can V have S-zero divisors? 

xx.   Can V have S-nilpotents? 

xxi. Can V have S-units? 

xxii. Obtain any other special features associated with MOD  

    special dual like number pseudo rings. 

 

33. Let Z = { h

nR (36), h
2
 = h} be the MOD special dual like 

number plane. 

 

Study questions (i) to (xxii) of problem (32) for this Z. 

 

34. Let B = { h

nR (59), h
2
 = h} be the MOD special dual like 

number plane. 

 

Study questions (i) to (xxii) of problem (32) for this B. 

 

35. Let S = { h

nR (3125), h
2
 = h} be the MOD special dual like 

number plane. 

 

Study questions (i) to (xxii) of problem (32) for this S. 

 

36. Let X = { h

nR (m), k
2
 = (m – 1)k} be the MOD special quasi 

dual number plane. 

 

i. Obtain all the special features associated with X. 

ii.  Study the important properties associated with the  

 group  (×, +). 

iii. Prove (X, +) has MOD special quasi dual number  
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 subgroups of both finite and infinite order. 

iv. Is P = {X, ×} a special quasi dual number plane  

S-semigroup? 

v. Prove P has both subsemigroups of finite and infinite  

 order. 

vi. Can P have ideals of finite order? 

vii. Is P a S-semigroup even if Zm is not a S-semigroup  

 under product? 

viii. Can P have S-zero divisors? 

ix.  Can P have S-units? 

x. Can P have S-idempotents? 

xi.  Can Y = {X, +, ×} be the MOD special quasi dual  

 number plane pseudo ring be a S-pseudo ring? 

xii. What are the advantages of studying MOD special quasi  

 dual number plane pseudo rings? 

xiii. Can Y have zero divisors? 

xiv. Can Y have S-units? 

xv. Can Y have S-idempotents? 

xvi. Can Y have S-ideals? 

xvii. Can Y have pseudo ideals of infinite order? 

xviii. Prove there exists finite order subrings of Y. 

xix. Prove Y has subrings of infinite order which are not  

  ideals.  

xx. Obtain any other special feature enjoyed by MOD  

       special quasi dual number plane pseudo rings. 

37. Let E = {
k
nR (24), k

2
 = 23k} be the MOD special quasi dual 

number plane. 
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Study questions (i) to (xx) of problem (36) for this E. 

 

38. Let F = { k

nR (61), k
2
 = 60k} be the MOD special quasi dual 

number plane. 

Study questions (i) to (xx) of problem (36) for this F. 

 

39. Let D = { k

nR (7
9
), k

2
 = 7

9
 – 1} be the MOD special quasi dual 

number plane. 

Study questions (i) to (xx) of problem (36) for this D. 

 

40. Let G = {Cn(m), 2

Fi  = m – 1} be the MOD complex modulo 

finite number plane. 

 

i. Obtain all the special features enjoyed by G. 

ii.  Distinguish G from all the other 5 MOD planes. 

iii. Can {G, +} the MOD complex finite number plane  

      group have subgroups of finite order? 

iv.  Obtain all infinite order MOD complex finite number  

  subgroups of G. 

v. If {G, ×} be the MOD complex number plane semigroup.  

Find all finite order MOD complex plane subsemigroups. 

 

vi.  Is {G, ×} a S-MOD complex number plane semigroup? 

 

vii. Find all zero divisors of {G, ×}. 

 

viii. Can {G, ×} have S-units? 

 

ix.  Find all S-idempotents of {G, ×}. 

 

x.   Can {G, ×} have ideals of finite order? 

 

xi.  Can {G, +, ×} have infinite order subrings which satisfy  

 distributive laws? 

 



38 MOD Pseudo Linear Algebras 

 

 
xii. Show {G, +, ×} has finite order subrings which are not  

 pseudo. 

 

xiii. Is every ideal of {G, +, ×} infinite order? 

 

xiv. Can {G, +, ×} have infinite order subrings which are  

 not ideals? 

 

xv.  Find S-zero divisors of {G, +, ×}. 

 

xvi.  Show all units in {G, +, ×} in general are not S-units. 

 

xvii. Find any other special feature enjoyed by {G, +, ×}. 

 

 

41. Let S = {Cn(19); 2

Fi = 18} be the MOD complex finite 

number plane. 

 

Study questions (i) to (xvii) of problem (40) for this S. 

 

 

42. Let M = {Cn(48); 2

Fi = 47} be the MOD finite complex 

number plane. 

 

Study questions (i) to (xvii) of problem (40) for this M. 

 

43. Let P = {Cn(128); 2

Fi  = 127} be the MOD finite complex 

number plane. 

 

Study questions (i) to (xvii) of problem (40) for this P. 



 
 
 
  
Chapter Two 
 
 

 
 
REAL MOD MATRICES AND THEIR 

PROPERTIES  
 

In this chapter we introduce the notion of real MOD matrices 

and develop some of their properties. Throughout this chapter 

by a real MOD matrix we mean only a matrix which takes its 

entries from [0, m); 1 < m < ∞.  

 

We first define the real MOD matrix in the following. 

 

DEFINITION 2.1: Let A = {(aij)p × n; 1 ≤ i ≤ p, 1 ≤ j ≤ b. aij ∈ [0, 

m)} be a p × n matrix with entries from the MOD interval [0, m). 

We define A as the MOD p × n matrix defined on the interval [0, 

m). If p = 1 we call A the MOD row matrix.  

 

If n = 1 then A is defined as the MOD column matrix.  

 

If p = n then A is called as the MOD square matrix.  

 

We will illustrate first these situations by some examples. 

 

Example 2.1: Let M = {(a1, a2, a3, a4) where ai ∈ [0, 5);  

1 ≤ i ≤ 4} be the real MOD row matrices built on the MOD 

interval [0, 5). 
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 Example 2.2: Let  

 

P = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ [0, 425); 1 ≤ i ≤ 9} 

 

be the MOD real square matrices built using the MOD interval  

[0, 425). 

 

Example 2.3: Let  

 

S = 

1

2

8

a

a

a

 
 
    

�
 where ai ∈ [0, 142); 1 ≤ i ≤ 8} 

 

be the MOD real column matrix built using the MOD interval  

[0, 142). 

 

Example 2.4: Let  

 

T = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 where ai ∈ [0, 49); 1 ≤ i ≤ 12} 

 

be the MOD real 3 × 4 matrices with entries from [0, 49). 

 

Example 2.5: Let  

V = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 where ai ∈ [0, 143); 1 ≤ i ≤ 10} 
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be the MOD real 5 × 2 matrices with entries from [0, 143).  

 

Now having seen examples of MOD real matrices we define 

operations on them. 

 

Example 2.6: Let  

 

P = {(a1, a2, a3, a4, a5, a6) | ai ∈ [0, 7); 1 ≤ i ≤ 7, +} 

 

be the collection of all MOD real row matrix.  

 

Let x = (0.8, 3.1, 4.5, 1.3, 0, 6.8, 4.1),  

 

y = (4.2, 4.8, 4.7, 0.8, 6, 0.1, 0) ∈ P.  

 

x + y = (5, 0.9, 2.2, 2.1, 6, 6.9, 4.1) ∈ P.  

 

Thus {P, +} is an abelian group of infinite order known as 

the MOD group of row matrices. 

 

 

Example 2.7: Let 

 

 

x = 

0.8

1.5

8.3

1.5

6.9

 
 
 
 
 
 
  

 and y = 

6

3.2

4.5

6.3

0.7

 
 
 
 
 
 
  

 

 

 

be two MOD column matrices with elements from  
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M = 

1

2

3

4

5

a

a

a

a

a

 
 
  
 
 
  

 ai ∈ [0, 12); 1 ≤ i ≤ 5, +}. 

 

 

x + y = 

0.8

1.5

8.3

1.5

6.9

 
 
 
 
 
 
  

 + 

6

3.2

4.5

6.3

0.7

 
 
 
 
 
 
  

 = 

6.8

4.7

0.8

7.8

7.6

 
 
 
 
 
 
  

 ∈ M. 

 

 

This is the way operation is performed in M. 

 

Example 2.8: Let  

 

M = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ [0, 15); 1 ≤ i ≤ 9, +} 

 

be the MOD real square matrix. 

 

 

 

Let A = 

3.5 2.7 8.5

6.8 10.3 12.1

7.8 6.6 7.1

 
 
 
  

 and B = 

6.9 9.8 7.8

9.2 12.6 4.9

6.9 7.8 11.4

 
 
 
  

 

 

 

be in M. 
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A + B = 

10.4 12.5 1.3

1 14.9 2

14.7 14.4 3.5

 
 
 
  

 ∈ M. 

 

 

A – B = 

11.6 7.9 0.7

13.6 13.7 7.2

0.9 13.8 10.7

 
 
 
  

 ∈ M. 

 

 

Consider  B – A = 

3.4 7.1 5.7

2.4 2.3 7.8

11.1 1.2 4.3

 
 
 
  

 ∈ M. 

 

 

Clearly A – B ≠ B – A. 

 

 

Now (0) = 

0 0 0

0 0 0

0 0 0

 
 
 
  

 ∈ M acts as the additive identity. 

 

For A ∈ M; –A = 

11.5 12.3 6.5

8.2 4.7 2.9

7.2 8.4 7.9

 
 
 
  

. 

 

Now this group of 3 × 3 matrix will be known as the MOD 

real square matrix. Clearly |M| = ∞.  

 

Likewise we can get MOD real plane matrices using the 

MOD real plane Rn(m) = {(a, b); a, b ∈ [0, m)}.  

 

We give a simple illustration of matrix MOD real plane. 
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 Example 2.9: Let  

 

P = 

1

2

3

4

a

a

a

a

 
 
    

 where ai ∈ Rn(20); 1 ≤ i ≤ 4, +} 

 

be a MOD real plane matrix group.  

 

  

Let x = 

(0, 0.7)

(2.1, 0.6)

(0, 0)

(1, 0.1)

 
 
 
 
 
 

 and y = 

(6.32, 2)

(0, 4.2)

(9.06, 6.08)

(19.2, 10)

 
 
 
 
 
 

 ∈ P. 

 

 

x + y = 

(6.32, 2.7)

(2.1, 4.8)

(9.06, 6.08)

(0.2, 16.1)

 
 
 
 
 
 

 ∈ P. 

 

 

This is the way sum operation is performed on P.  

 

Clearly P is an abelian group.  

 

P has both finite order subgroups as well as P has infinite 

order subgroups.  

 

M = 

1 1

2 2

3 3

4 4

(a , b )

(a , b )

(a , b )

(a , b )

 
 
    

 ai, bi ∈ Z20; 1 ≤ i ≤ 4, +} ⊆ P 
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is a subgroup of finite order.  

 

W = 

1

2

3

4

(a , 0)

(a , 0)

(a , 0)

(a , 0)

 
 
    

 ai ∈ [0, 20); 1 ≤ i ≤ 4, +} ⊆ P 

 

 

is a subgroup of P of infinite order.  

 

 

 

 
Example 2.10: Let  

 

 

V = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 where ai = (xi, yi) ∈ Rn(201); 

1 ≤ i ≤ 12, +}  

 

 

be a MOD real matrix plane group under +.  

 

This V has subgroups of  finite order as well as infinite 

order. 

 

 Next we introduce the notion of MOD complex modulo 

integer matrix group under + through examples. 
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 Example 2.11: Let  

 

Z = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 ai ∈ Cn(23); 1 ≤ i ≤ 10, +} 

 

be the MOD complex modulo integer matrix group of infinite 

order under +.  

 

This Z has subgroups of both finite and infinite order. 

 

Example 2.12: Let  

 

S = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ Cn(12); 1 ≤ i ≤ 9, +} 

 

be the MOD complex modulo integer matrix group. 

 

 

P1 = 

1a 0 0

0 0 0

0 0 0

 
 
 
  

 a1 ∈ Z12, +} ⊆ S, 

 

 

P2 = 

2 30 a a

0 0 0

0 0 0

 
 
 
  

 a2, a3 ∈ Z12, +} ⊆ S and 
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P3 = 

1 2 3

0 0 0

0 0 0

a a a

 
 
 
  

 a1, a2, a3 ∈ Z12, +} ⊆ S 

 

are subgroup of finite order in S. 

 

 

Example 2.13: Let  

 

R = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 ai ∈ Cn(5); 1 ≤ i ≤ 15, +} 

 

be a MOD matrix complex modulo integer matrix group of 

infinite order. 

 

Example 2.14: Let M = {(a1, a2, a3) | ai ∈ Cn(14); 1 ≤ i ≤ 3, +} 

be the MOD complex modulo integer matrix group. 

 

 Let x = (9.3 + 4.5iF, 8.7 + 6.3iF, 12.8 + 10.3iF) and  

 

y = (0.8 + 7.2iF, 9.2 + 2.6iF, 2.2 + 1.4iF) ∈ M.  

 

 

x  + y  =  (9.3 + 4.5iF, 8.7 + 6.3iF, 12.8 + 10.3iF)   

+  (0.8 + 7.2iF, 9.2 + 2.6iF, 2.2 + 1.4iF) 

 

            =  (10.1 + 11.7iF, 3.9 + 8.9iF, 1 + 11.7iF) ∈ M. 

 

 Thus we see M is a group. M has subgroups of both finite 

order and subgroups of infinite order.  

 

These concepts are used in chapter III of this book in the 

construction of MOD vector spaces.  
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 Next just matrices constructed using the MOD neutrosophic 

plane 
I

nR (m) is described and developed by examples. 

 

Example 2.15: Let  

 

P = 

1

2

3

4

a

a

a

a

 
 
    

 ai ∈ 
I

nR (10); 1 ≤ i ≤ 4} 

 

be the MOD neutrosophic 1 × 4 column matrices.  

 

{P, ×n} is a MOD neutrosophic semigroup.  

 

 

M1 = 































4

3

2

1

a

a

a

a

 ai ∈ Z10 × Z10, 1 ≤ i ≤ 4, ×n} ⊆ P 

 

is a finite order MOD neutrosophic subsemigroup of P.  

 

 

 

M2 = 

1a

0

0

0

 
 
    

 a1 ∈ 
I

nR (10), ×n} ⊆ P 

 

is an infinite order MOD neutrosophic subsemigroup of P which 

is also an ideal of P.  
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M3 = 

1 1a b I

a bI

0

0

 + 
 

+    

 a1 + b1I ∈ 
I

nR (10), 

a + bI ∈ 〈Z10 ∪ I〉, ×n} ⊆ P  

 

is a subsemigroup of P which is not an ideal of P. 

 

In fact we can define on P the notion of group under 

addition modulo 10. Thus {P, +} is an abelian MOD 

neutrosophic matrix group of infinite order.  

 

{P, +} has both subgroups of finite and infinite order.  

 

Clearly {P, +, ×n} is known or defined as the MOD 

neutrosophic matrix pseudo ring of infinite order.  

 

This ring has both finite order subrings as well as infinite 

order subrings.  

 

However all ideals of {P, +, ×n} are only of infinite order.  

 

Example 2.16: Let  

 

W = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ 
I

nR (43); 1 ≤ i ≤ 9} 

 

be the MOD neutrosophic square matrix.  

 

{W, +} is a MOD neutrosophic matrix group of infinite order 

which is abelian.  

 

{W, ×n} is a MOD neutrosophic matrix semigroup of infinite 

order which is commutative.  
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 {W, ×n} has subsemigroups of both finite and infinite order.  

 

All ideals of {W, ×n} are of infinite order. In fact {W, ×n} 

has many ideals.  

 

 Now {W, +, ×n} is the MOD neutrosophic matrix pseudo 

ring only as the distributive law is not true in general.  

 

W has subrings of both finite and infinite order.  

 

However all ideals of W are of infinite order.  

 

Now {W, ×} is also a MOD neutrosophic semigroup where × 

is the usual product of matrices and not the natural product ×n. 

{W, ×} is only a non commutative semigroup.  

 

This has ideals all of which are of infinite order {W, ×} has 

both right and left ideals.  

 

Now {W, +, ×} is only a pseudo MOD neutrosophic matrix 

ring which is non commutative and is of infinite order.  

 

We see {W, +, ×} has subrings of finite order as well as 

subrings of infinite order.  

 

All ideals of W are only of infinite order. 

 

Example 2.17: Let  

 

S = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 ai ∈ 
g

nR (20); 1 ≤ i ≤ 8} 

 

be the MOD dual number plane of matrices. S is of infinite order. 

{S, ×n} is a semigroup of infinite order and {S, +} is an abelian 

group of infinite order.  
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{S, +} has both finite and infinite order subgroups. {S, ×n} 

has both finite and infinite order subsemigroups.  

 

However all ideals of {S, ×n} is only a infinite order. 

Further {S, ×n} has subsemigroups which are zero square 

subsemigroups. 

 

 Clearly {S, +, ×n} is only a pseudo ring. This has ideals all 

of them are of infinite order.  

 

{S, +, ×n} has subrings which are zero square subrings 

which are both of finite and infinite order.  

 

For more about these concepts refer [21]. 

 

Example 2.18: Let  

 

V = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 ai ∈ 
g

nR (31); 1 ≤ i ≤ 15} 

 

be the MOD dual number matrix collection. Any ai ∈ 
g

nR (31) is 

of the form a + bg where a, b ∈ [0, 31).  

 

{V, +} is defined as the MOD dual number matrix group and 

this is an infinite order group which is commutative.  

 

{V, ×n} is the MOD dual number matrix semigroup of 

infinite order which is commutative. {V, ×n} has subsemigroups 

of both finite and infinite order.  

 

But all ideals of {V, ×n} is of infinite order.  
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 {V, ×n} has infinite number zero divisors and in fact has 

subsemigroups which are zero square subsemigroups. 

 

 Now {V, +, ×n} is the MOD dual number pseudo matrix ring. 

This ring too has subrings of both finite and infinite order.  

 

 Further this ring has zero square subrings which are not 

pseudo of infinite as well as finite order.  

 

However all ideals of {V, +, ×n} are only of infinite order.  

 

Next we proceed onto describe MOD special dual like 

number matrices by some examples.  

 

For more about these concepts refer [18, 21]. 

 

Example 2.19: Let  

 

T = 

1

2

3

4

5

6

a

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 ai ∈ 
h

nR (24); h
2
 = h, 1 ≤ i ≤ 6} 

 

be the MOD special dual like number matrix collection.  

 

{T, +} is an abelian group of infinite order. {T, +} has 

subgroups of both finite and infinite order.  

 

{T, ×n} is a commutative semigroup of infinite order under 

the natural product ×n. {T, ×n} has zero divisors which are 

infinite in number.  

 

{T, ×n} has idempotents and units and both of them are only 

finite in number.  

 



Real MOD Matrices and their Properties 53 

 

 

 

 
 

 

 

{T, ×n} has subsemigroups of both finite and infinite order.  

 

All ideals are of infinite order in{T, ×n}.  

 

{T, +, ×n} is only a MOD special dual like number matrix 

pseudo ring, as the distributive laws are not true in general in 

{T, +, ×n}.  

 

{T, +, ×n} has subrings of both finite and infinite order; but 

all ideals of {T, +, ×n} are of infinite order. 

 

 

Example 2.20: Let  

 

X = {(a1, a2, a3, a4, a5, a6, a7) | ai ∈ 
h

nR (43); h
2
 = h; 1 ≤ i ≤ 7} 

 

be the MOD special dual like number matrices.  

 

{X, +} is an infinite abelian group.  

 

{X, ×n} is an infinite semigroup and {X, +, ×n} is an infinite 

MOD special dual like number pseudo ring of infinite order.  

 

All properties associated with these structures can be 

studied as it is considered as a matter of routine so left as an 

exercise to the reader.  

 

 Next we proceed onto study MOD special quasi dual number 

matrices by some examples. 
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 Example 2.21: Let  

 

M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
 
 
 

 ai ∈ 
k

nR (25); k
2
 = 24k; 1 ≤ i ≤ 21} 

 

be the MOD special quasi dual number 7 × 3 matrix collection.  

 

 {M, +} is a special quasi dual number matrix abelian group 

of infinite order. 

 

 

P1 = 

a bk 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 + 
 
 
 
 
 
 
 
 
 
 

 a + bk ∈ Z25(k); k
2
 = 24k, +} ⊆ M 

 

 

is a subgroup of finite order.  

 

Thus M has several subgroups of finite order.  

 

M has also subgroups of infinite order.  
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R1 = 

1 1

0 0 0

a b k 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 

+ 
 
 
 
 
 
 
 
 

 a1 + b1k ∈ 
k

nR (25); +} ⊆ M 

 

 

is an infinite order subgroup of M.  

 

Further {M, ×n} is an abelian MOD special quasi dual 

number semigroup of matrices under natural product.  

 

{M, ×n} is a commutative semigroup.  

 

L1 = 

1 1 2 2a b k a b k 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 + + 
 
 
 
 
 
 
 
 
 
 

 a1 + b1k, a2 + 

 

 

b2k ∈ Z25(k); k
2
 = 24k, ×n} ⊆ M  

 

 

is a subsemigroup of finite order which is not an ideal of M.  

 

 Thus M has several such finite order subsemigroups.  
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L2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 a bk c dk

 
 
 
 
 
 
 
 
 
 + + 

 a + bk, c + dk ∈ 
k

nR (25), 

 

×n} ⊆ M  

 

is a subsemigroup of infinite order which is also an ideal of M.  

 

 All infinite order subsemigroups in general are not ideals, 

however all ideals of M are of infinite order.  

 

 

N1 = 

a bk 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 c dk

 + 
 
 
 
 
 
 
 
 
 + 

 a + bk ∈ 
k

nR (25), 

 

c + dk ∈ Z25(k), k
2
 = 24k, ×n} ⊆ M  

 

is a subsemigroup of infinite order.  

 

But N1 is not an ideal of M.  

 

Next we define MOD special quasi dual number pseudo ring.  

 

{M, +, ×n} is the MOD special quasi dual number pseudo 

ring.  
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This pseudo ring is of infinite order and is commutative. M 

has subrings of both finite and infinite order which are not 

ideals. 

 

Let  

 

B1 = 

1 2 3a a a

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
 
 

 a1, a2, a3 ∈ Z251, +, ×n} 

 

be a subring of M which is not pseudo and is of finite order.  

 

 

Clearly B1 is not an ideal of  M.  

 

B2 = 

1 2 3

0 0 0

0 0 0

d d d

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
 
 

 di ∈ Z25(k), 1 ≤ i ≤ 3, 

 

k
2
 = 24k, +, ×n} ⊆ M  

 

 

is a subring which is a special quasi dual number subring which 

is not pseudo and is of finite order.  
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B3 = 

1

2

3

a 0 0

a 0 0

a 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
 
 

 ai ∈ [0, 25); 1 ≤ i ≤ 3, +, ×n} ⊆ M 

 

 

is a subring of infinite order which is pseudo.  

 

 

Clearly B3 is not an ideal of M.  

 

 

B4 = 

1 2 3

4 5 6

a a a

a a a

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
 
 
 

 ai ∈ [0, 25)k, 1 ≤ i ≤ 6, +, ×n} 

 

 

is a MOD special quasi dual number pseudo subring of M which 

is also an ideal of M.  

 

Clearly B4 is of infinite order.  
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Let  

 

B5 = 

1 2 3

4 5 6

a a a

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

a a a

 
 
 
 
 
 
 
 
 
 
 

 a1, a2, a3 ∈ Z25, a4, a5, 

 

a6 ∈ 
k

nR (25), k
2
 = 24k, +, ×n} ⊆ M  

 

be a MOD special quasi dual number pseudo subring of M of 

infinite order which is not an ideal of M.  

 

Likewise the interested reader can study the MOD special 

quasi dual number matrices given in the following example. 

 

Example 2.22: Let  

 

P = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

a a a a a

a a a a a

a a a a a

a a a a a

 
 
    

 ai ∈ 
k

nR (43); 

 

k
2
 = 42k; 1 ≤ i ≤ 20, +, ×n}  

 

be the MOD special quasi dual number pseudo ring. 

 

 As in case of example 2.21 study all properties of this P.  

 

For more about these concepts refer [19, 21, 30].  

 

However the notion of algebraic structures on subsets of the 

MOD real plane, MOD neutrosophic plane, MOD complex finite 
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 modulo integer plane, MOD dual number plane, MOD special 

dual like number plane and MOD special quasi dual number 

plane is not within the purview of this book.  

 

But a new type of matrices called mixed matrices and 

strongly mixed matrices will be illustrated by examples; for 

these concepts find their place in chapter IV of this book. 

 

Example 2.23: Let V = {(a1, a2, a3, a4, a5, a6) | a1 ∈ Rn(10), a2,  

a3 ∈ Rn(5), a4, a5 ∈ Rn(23) and a6 ∈ Rn(12)}; V is defined as the 

mixed MOD row real matrices.  

 

We see V under + defined component wise is a group.  

 

{V, ×}, × defined component wise is a semigroup of infinite 

order.  

 

{V, +, ×} is in fact an infinite pseudo ring. 

 
Example 2.24: Let  

 

W = 

1

2

3

a

a

a

 
 
 
  

 a1 ∈ Rn(9), a2 ∈ Rn(11) and a3 ∈ Rn(4)} 

 

be the mixed MOD real column matrix collection.  

 

{W, +} is a group and {W, ×n} is a semigroup.  

 

 

 

Let A = 

















)1.2,3.3(

)10,5.0(

)7,3(

 and B = 

(8.2, 3.5)

(10.8, 3.3)

(2.3, 1.5)

 
 
 
  

 ∈ W; 
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A + B = 

(3, 7)

(0.5, 10)

(3.3, 2.1)

 
 
 
  

 + 

(8.2, 3.5)

(10.8, 3.3)

(2.3, 1.5)

 
 
 
  

 

 

 

= 

(3, 7) (8.2, 3.5)

(0.5, 10) (10.8, 3.3)

(3.3, 2.1) (2.3, 1.5)

+ 
 

+ 
 + 

 
 

 

= 

(3 8.2, 7 3.5) (mod 9)

(0.5 10.8, 10 3.3) (mod 11)

(3.3 2.3, 2.1 1.5) (mod 4)

+ + 
 

+ + 
 + + 

 
 

 

= 

(2.2, 1.5)

(10.5, 3.1)

(1.4, 3.8)

 
 
 
  

 ∈ W. 

 

This is the way + operation is performed on W.  

 

 

Clearly 

(0, 0)

(0, 0)

(0, 0)

 
 
 
  

 acts as the additive identity of W. 

 

 

For A = 

(3, 7)

(0.5, 10)

(3.3, 2.1)

 
 
 
  

 in W we have a unique 
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–A = 

(6, 2)

(10.5, 1)

(0.7, 1.9)

 
 
 
  

 ∈ W  

such that  

A + (–A) = 

(0, 0)

(0, 0)

(0, 0)

 
 
 
  

. 

 

–A is called the inverse of A and vice versa.  

 

Thus {W, +} is the MOD real mixed matrix group of infinite 

order.   

 

Now on W we can define ×n the natural product operation 

{W, ×n} is the MOD real mixed matrix semigroup or in fact a 

monoid.  

 

Just we show how the natural product operation ×n is 

performed in W. 

 

A ×n B = 

(3, 7)

(0.5, 10)

(3.3, 2.1)

 
 
 
  

 ×n 

(8.2, 3.5)

(10.8, 3.3)

(2.3, 1.5)

 
 
 
  

 
 

 

= 

(3, 7) (8.2, 3.5) (mod 9)

(0.5, 10) (10.8, 3.3) (mod 11)

(3.3, 2.1) (2.3, 1.5) (mod 4)

× 
 

× 
 × 

 
 

 

= 

(24.6, 24.5) (mod 9)

(54, 33) (mod 11)

(7.59, 3.15) (mod 4)
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= 

(6.6, 6.5)

(10, 0)

(3.59, 3.15)

 
 
 
  

 ∈ W. 

 

This is the way ×n operation is performed on W.  

 

Now  

 

I = 

(1, 1)

(1, 1)

(1, 1)

 
 
 
  

 ∈ W is such that I × A = A × I = A for all A ∈ W. 

 

{W, +, ×n} can be easily realized as the MOD real mixed 

matrix pseudo ring.  

 

Study of ideals, zero divisors, units, subrings and 

idempotents are realized as a matter of routine so left as an 

exercise to the reader. 

 

Example 2.25: Let  

 

Z = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 a1, a4 ∈ Rn(40), a2, a3 ∈ Rn(19),  

 

a5 ∈ Rn(10), a6, a12 ∈ Rn(90), a7, a11 ∈ Rn(24),  

a8, a10 ∈ Rn(12), a9 ∈ Rn(120)}  

 

be the MOD mixed real matrix collection.  

 

{Z, +} is a MOD real mixed matrix under component 

addition.  

 

{Z, ×n} is the MOD real mixed semigroup under natural 

product ×n.  
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{Z, +, ×n} be the MOD real mixed matrix pseudo ring of 

infinite order.  

 

Example 2.26: Let  

 

M = 

1 2

3 4

5 6

7 8

9 10

11 12

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
  

 a1, a10 ∈ Rn(43), a2, a4 ∈ Rn(2), 

 

a5, a3, a11 ∈ Rn(12), a6, a7 ∈ Rn(3), a8, a9, a12 ∈ Rn(5)} 

 

be the MOD real mixed matrix collection.  

 

{M, +, ×n} is a MOD real mixed matrix pseudo ring of 

infinite order which has subrings of finite order. 

 

Example 2.27: Let  

 

V = {(a1, a2, a3, a4, a5, a6, a7) | a1 ∈ 
I

nR (10), 

a2, a3 ∈ 
I

nR (40), a4, a7 ∈ 
I

nR (23), a5, a6 ∈ 
I

nR (41)}  

 

be the MOD neutrosophic mixed matrix collection.  

 

{V, +} is a group under component wise addition. 

 

Let  

 

x  =  (0.3 + 7I, 9.3 + 2I, 25 + 36I, 22, 12.5I,  

40.5, 35 + 28.5I) and  

 

y  =  (0, 10 + 5.8I, 15 + 14I, 3.8I, 10 + 7I,  

31 + 40I, 0) ∈ V. 
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x + y  =  (0.3 + 7I, 19.3 + 7.8I, 10I, 22 + 38I, 10 + 19.5I,  

   30.5 + 40I, 35 + 28.5I) ∈ V. 

 

{V, ×n} is the semigroup of MOD neutrosophic mixed matrix 

semigroup.  

 

 Thus {V, +, ×n} be the MOD neutrosophic mixed matrix 

pseudo ring. 

 

Example 2.28: Let  

 

 

P = 

1 2

3 4

5 6

a a

a a

a a

 
 
 
  

a1 ∈ 
I

nR (2), a2 ∈ 
I

nR (4), a3 ∈ 
I

nR (3), 

 

a4 ∈ 
I

nR (5), a5 ∈ 
I

nR (6) and a6 ∈ 
I

nR (7)}  

 

be the MOD neutrosophic mixed matrix.  

 

We see {P, +} is the MOD neutrosophic mixed matrix group. 

 

 

 

Let x = 

0.1 2 3I

0.2I 0.3 4I

4I 2 3.2I

+ 
 

+ 
 + 

  and 

 

 

 

y = 

0.2I 1 2I

0.4 0.7I 2I

3I 4 2I

+ 
 

+ 
 + 

 ∈ P 
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x + y = 

0.1 2 3I

0.2I 0.3 4I

4I 2 3.2I

+ 
 

+ 
 + 

 + 

0.2I 1 2I

0.4 0.7I 2I

3I 4 2I

+ 
 

+ 
 + 

 
 

 

= 

1 0.2I 3 I

0.4 0.9I 0.3 I

I 2 4 5.2I

+ + 
 

+ + 
 + + 

 ∈ P. 

 

 

This is the way ‘+’ operation is performed.  

 

{P, +} is the MOD neutrosophic mixed matrix group.  

 

Now {P, ×n} is the MOD neutrosophic mixed matrix 

semigroup. 

 

For the same x and y in P 

 

 

x ×n y = 

0.1 2 3I

0.2I 0.3 4I

4I 2 3.2I

+ 
 

+ 
 + 

 ×n 

0.2I 1 2I

0.4 0.7I 2I

3I 4 2I

+ 
 

+ 
 + 

 
 

 

= 

0.02I 2 I

0.22I 3.6I

6I 5.2I

+ 
 
 
  

 ∈ P. 

 

 

Clearly {P, ×n} has zero divisors and ideals.  

 

Further {P, +, ×n} is the MOD neutrosophic mixed matrix 

pseudo ring of infinite order. 
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 Next we proceed onto describe MOD complex Modulo 

integer mixed matrix collection. 

 

Example 2.29: Let  

 

M = 

1

2

9

a

a

a

 
 
    

�
 a1, a2 ∈ Cn(8), a3, a4 ∈ Cn(24), 

 

a5, a6 ∈ Cn(3), a7, a8 ∈ Cn(43) and a9 ∈ Cn(14)}  

 

be the MOD complex modulo integer mixed matrix collection. 

{M, +} is defined as the MOD complex modulo integer mixed 

group.  

 

{M, +} is of infinite order and has subgroups of both finite 

and infinite order.  

 

{M, ×n} is the MOD complex modulo integer mixed matrix 

semigroup.  

 

This semigroup {M, ×n} has subsemigroups of both finite 

and infinite order.  

 

However all ideals of {M, ×n} are of infinite order.  

 

M has zero divisors, units and idempotents  



68 MOD Pseudo Linear Algebras 

 

 

  

I = 

1

1

1

1

1

1

1

1

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ∈ M 

 

is the identity elements of M with respect to the natural product 

×n.  

 

Further {M, +, ×n} is the MOD complex modulo integer 

mixed matrix pseudo ring. M has ideals of infinite order only 

but has subrings of both finite and infinite order.  

 

{M, +, ×n} has units, zero divisors and idempotents. 

 

Example 2.30: Let  

 

B = 
1 2 3

4 5 6

a a a

a a a

 
 
 

 a1 ∈ Cn(3), a2 ∈ Cn(7), 

 

a3 ∈ Cn(5), a4, a5 ∈ Cn(6) and a6 ∈ Cn(10)}  

 

be the MOD complex modulo integer mixed matrices collection.  

 

 {B, +} is a MOD mixed matrix complex modulo integer 

group of infinite order. 

 

Let x = 
F F F

F F

0.2 i 4 2.1i 0.7 0.6i

4 2i 0.3i 7.1

+ + + 
 

+ 
 and 
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y = 
F F F

F F F

0.4i 0.3i 2 i

0.5 0.2i 1 4i 2i

+ 
 

+ + 
 belong to B. 

 

 

x + y     = 
F F F

F F

0.2 i 4 2.1i 0.7 0.6i

4 2i 0.3i 7.1

+ + + 
 

+ 
 +  

 

F F F

F F F

0.4i 0.3i 2 i

0.5 0.2i 1 4i 2i

+ 
 

+ +   
 

 

= 
F F F

F F F

0.2 1.4i 4 2.4i 2.7 1.6i

4.5 2.2i 1 4.3i 7.1 2i

+ + + 
 

+ + + 
 ∈ B. 

 

 

This is the way + operation is performed on B. 

 

 Next {B, ×n} is the MOD mixed matrix complex modulo 

integer semigroup of infinite order. 

 

 

x ×n y  =  
F F F

F F

0.2 i 4 2.1i 0.7 0.6i

4 2i 0.3i 7.1

+ + + 
 

+ 
 ×n  

 

F F F

F F F

0.4i 0.3i 2 i

0.5 0.2i 1 4i 2i

+ 
 

+ + 
 

  

 

=  
F F F

F F F

0.08i 1.2 1.2i 3.78 0 1.9i

4 1.8i 0.3i 4.2i

+ + + 
 

+ 
 ∈ B.  
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 Thus {B, ×n} is a semigroup of infinite order. B has zero 

divisors, units and idempotents. 

 

 Now {B, +, ×n} is the MOD mixed matrix complex modulo 

integer pseudo ring. This has zero divisors, units and 

idempotents.  

 

This pseudo ring has subrings of finite order and subrings of 

infinite order. All ideals of B are of infinite order. 

 

Example 2.31: Let 

 

 A = 
1 2 3 4

5 6 7 8

a a a a

a a a a

 
 
 

 a4, a1 ∈ 
g

nR (3),  

 

a2, a3 ∈ 
g

nR (10), a5, a6, a7 ∈ 
g

nR (8), a8 ∈ 
g

nR (5)}  

 

be the MOD dual number mixed matrix collection. {A, +} is the 

MOD dual number mixed matrix group. A is of infinite order.  

 

{A, +} has subgroups of finite order as well as of infinite 

order. {A, ×n} be the MOD dual number mixed matrix 

semigroup.  

 

{A, ×n} has subsemigroups of infinite order as well as finite 

order. {A, ×n} is an ideal and is of infinite order.  

 

{A, +, ×n} is the MOD dual number mixed matrix pseudo 

ring. {A, +, ×n} has subrings of finite order and {A, +, ×n} has 

subrings of infinite order which are not ideals.  

 

However {A, +, ×n} has ideals all of which are of infinite 

order. 
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Example 2.32: Let  

 

C = {(a1, a2, a3, a4) | a1 ∈ 
g

nR (3), a2 ∈ 
g

nR  (10),  

a3 ∈ 
g

nR (5), a4 ∈ 
g

nR (6)}  

 

be the MOD dual number mixed matrix collection. {C, +} is the 

MOD dual number mixed matrix group.  

 

Clearly {C, +} is a group of infinite order.  

 

 Let  

x = (2 + 1.1g, 4 + 5g, 3 + 2g, 4 + 5g) 

and  

y = (0.5 + 0.6g, 4g, 0.5g + 2, g + 2) ∈ C. 

 

x + y =  (2 + 1.1g, 4 + 5g, 3 + 2g, 4 + 5g) + (0.5 + 0.6g,  

4g, 0.5g + 2, g + 2) 

 

   =  (2.5 + 1.7g, 4 + 9g, 2.6g, 0) ∈ C. 

 

 

This is the way operation of + is performed on C. 

 

x × y = (2 + 1.1g, 4 + 5g, 3 + 2g, 4 + 5g) × (0.5 + 0.6g,  

   4g, 0.5g + 2, g + 2) 

 

=  (1 + 1.75g, 6g, 1 + 0.5g, 2 + 2g). 

 

 

Thus {C, ×} is the MOD dual number mixed matrix 

semigroup.  

 

{C, +, ×} is the MOD dual number mixed matrix pseudo ring 

of infinite order. 
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 Example 2.33: Let  

 

W = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 a1, a2 ∈ 
h

nR (10), a3, a4 ∈ 
h

nR (8),  

 

a5, a6, a7 ∈ 
h

nR (5), a8 ∈ 
h

nR (2), h
2
 = h}  

 

be the MOD special dual like number mixed matrix collection.  

 

 {W, +} is the MOD special dual like number mixed matrix 

group of infinite order.  

 

{W, +} has subgroups of both finite and infinite order.  

 

{W, ×n} is the MOD special dual like number mixed matrix 

semigroup of infinite order. {W, ×n} has subsemigroups of finite 

order as well as subsemigroups of infinite order.  

 

{W, ×n} has zero divisors, units and idempotents.  

 

{W, +, ×n} be the MOD special dual like number mixed 

matrix pseudo ring. This has subrings of both finite and infinite 

order. 

 

Example 2.34: Let  

 

M = 































4

3

2

1

a

a

a

a

 a1 ∈ 
h

nR (10), a2 ∈ 
h

nR (5),  

 

a3 ∈ 
h

nR (2), a4 ∈ 
h

nR (3), h
2
 = h}  
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be the MOD special dual like number mixed matrix collection.  

 

 {M, +} is the MOD special dual like number mixed matrix 

group of infinite order. 

 

 

Let A = 

5 0.3h

4.2 4h

0.7 h

2 0.4h

+ 
 

+ 
 +
 

+ 

 and B = 

8 4h

3 0.5h

1 0.2h

1.4h

+ 
 

+ 
 +
 
 

 ∈ M. 

 

 

A + B = 

5 0.3h

4.2 4h

0.7 h

2 0.4h

+ 
 

+ 
 +
 

+ 

 + 

8 4h

3 0.5h

1 0.2h

1.4h

+ 
 

+ 
 +
 
 

 
 

= 

3 4.3h

2.2 4.5h

1.7 1.2h

2 1.8h

+ 
 

+ 
 +
 

+ 

 ∈ M. 

 

This is the way + operation is performed on M. 

 

Let {M, ×n} be the MOD special dual like number mixed 

matrix semigroup.  

 

For A, B ∈ M we define  

 

 

A ×n B = 

5 0.3h

4.2 4h

0.7 h

2 0.4h

+ 
 

+ 
 +
 

+ 

 ×n 

8 4h

3 0.5h

1 0.2h

1.4h

+ 
 

+ 
 +
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= 

40 2.4h 20h 1.2h

12.6 12h 2.1h 2h

0.7 h 0.14h 0.2h

2.8h 0.56h

+ + + 
 

+ + + 
 + + +
 

+ 
 

 

 

 = 

3.6h

2.6 6.1h

0.7 1.34h

0.36h

 
 

+ 
 +
 
 

 ∈ M. 

 

 Thus {M, ×n} is the semigroup of infinite order. {M, +, ×n} 

be the MOD special dual like number mixed matrix pseudo ring.  

 

 {M, +, ×n} has both finite and infinite order MOD special 

dual like number mixed matrix pseudo subrings.  

 

{M, +, ×n} has zero divisors, units and idempotents.  

 

All ideals of {M, +, ×n} is of infinite order.  

 

 Next we describe the MOD special quasi dual number mixed 

matrix collection by the following example. 

 

Example 2.35: Let  

 

P = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 a3, a4 ∈ 
k

nR (5), k
2
 = 4k, 

 

a5, a6 ∈ 
k

nR (12), k
2
 = 11k, a7, a8 ∈ 

k

nR (4), k
2
 = 3k}.  



Real MOD Matrices and their Properties 75 

 

 

 

 
{P, +} is the MOD special quasi dual number mixed matrix 

group. {P, +} is a group of infinite order known as the MOD 

special quasi dual number mixed matrix group.  

 

{P, ×n} is the MOD special quasi dual number mixed matrix 

semigroup. This has subsemigroups of both finite and infinite 

order. {P, ×n} has zero divisors, units and idempotents.  

 

{P, +, ×n} be the MOD special quasi dual number mixed 

matrix pseudo ring.  

 

{P, +, ×n} has subrings of both finite and infinite order.  

 

All ideals of {P, +, ×n} are of infinite order. As in case of 

{P, ×n}, {P, +, ×n} has zero divisors, units and idempotents. 

 

Example 2.36: Let  

 

N = {(a1, a2, a3, a4) | a1 ∈ 
k

nR (5), k
2
 = 4k, a2 ∈ 

k

nR (6),  

k
2
 = 5k, a3 ∈ 

k

nR (10), k
2
 = 9k and a4 ∈ 

k

nR (8), k
2
 = 7k}  

 

be the MOD special quasi dual number mixed matrix collection.  

 

 {N, +} is the MOD special quasi dual number mixed matrix 

group of infinite order which is commutative.  

 

 Let x = (3 + 2.5k, 4.5 + 2k, 6 + 5k, 7 + 5k) and  

 

y = (2.5 + 2k, 3k + 2.5, 0.4 + 2.5k, 0.8 + k) ∈ N.  

 

x + y  =  (3 + 2.5k, 4.5 + 2k, 6 + 5k, 7 + 5k) +  

(2.5 + 2k, 3k + 2.5, 0.4 + 2.5k, 0.8 + k) 

 

= (0.5 + 4.5k, 1 + 5k, 6.4 + 7.5k, 7.8 + 6k) ∈ N.  

 

 

This is the way the operation of addition is performed on N.  
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 Now (N, ×) is a MOD special quasi dual number mixed 

matrix semigroup. 

 

x × y  =  (3 + 2.5k, 4.5 + 2k, 6 + 5k, 7 + 5k) × (2.5 + 2k,  

   3k + 2.5, 0.4 + 2.5k, 0.8 + k) 

 

=  (7.5 + 6.25k + 6k + 5 × 4k (mod 5), 13.5k + 

30k + 5k + 11.25 (mod 6), 2.4 + 2k + 15k + 

112.5k (mod 10), 5.6 + 7k + 4k + 5 × 7k (mod 

8)) 

 

=  (2.5 + 2.25k, 5.25 + 0.5k, 2.4 + 9.5k, 5.6 + 6k)  

           ∈ N.  

 

This is the way × operation is performed on N. 

 

(N, ×) has zero divisors, units and ideals.  

 

All ideals of {N, ×} are of infinite order.  

 

However {N, ×} has subsemigroups of finite order which 

are not pseudo.  

 

{N, ×} has subsemigroups of infinite order which are 

subsemigroups which are not ideals of {N, ×}.  

 

{N, ×, +} is the MOD special quasi dual number mixed 

matrix pseudo ring.  

 

Clearly {N, +, ×} is commutative and is of infinite order. 

This has subrings of finite order which are not pseudo.  

 

{N, +, ×} has subrings of infinite order which are pseudo 

and are not ideals. All ideals of {N, +, ×} are pseudo subrings 

and are of infinite order.  
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 Next we proceed onto describe and develop the notion of 

MOD special multi mixed matrices using Rn(m), Cn(m), 
I

nR (m), 
g

nR (m), 
h

nR (m) and 
k

nR (m) by appropriate examples. 

 

Example 2.37: Let  

 

M = 
1 2 3

4 5 6

a a a

a a a

 
 
 

 a1 ∈ Rn(12), a2 ∈ 
I

nR (12),  

a3, a4 ∈ 
g

nR (12), a5, a6 ∈ Cn(12)}.  

 

M is defined as the special multi MOD mixed matrices 

collection. 

 

Example 2.38: Let  

 

W = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

 where a1 ∈ Rn(3), a2, a3 ∈ Cn(7),  

 

a4, a5 ∈ 
I

nR (14), a6, a7, a8 ∈ 
g

nR (17), a9, a10, a11 ∈ 
k

nR (19),  

a12 ∈ Cn(12), a13, a14 ∈ 
I

nR (27), a15, a16, a17 ∈ 
h

nR (2) and  

a18 ∈ Rn(48)}  

 

be the MOD special multi mixed matrix collection we see the 

matrix collection given in examples 2.37 and 2.38 are different.  

 

 For in 2.37 all the MOD planes are built using the MOD 

interval [0, 12) whereas in example 2.38 the MOD planes are 

built using very may distinct/different MOD intervals like [0, 3), 

[0, 14), [0, 7), [0, 19) and so on. So we call those special multi 
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 mixed matrix collection which uses the same base interval  

[0, m) as the same base interval special multi mixed collection.  

 

 However both types of special multi mixed matrix 

collections are well defined, however for us to define the notion 

of MOD vector spaces or pseudo MOD linear algebras we can use 

only the MOD same base interval special multi mixed matrix 

collection. 

 

Example 2.39: Let  

 

P = 

1

2

10

a

a

a

 
 
    

�
 a1 ∈ Rn(4), a2, a3, a4 ∈ Cn(5),  

 

a5, a6, a7 ∈ 
I

nR (10) and a8, a9 ∈ 
g

nR (6) and a10 ∈ 
I

nR (2)}  

 

be the MOD special multi mixed matrices.  

 

We can define + operation component wise on P. 

 

 Thus {P, +} will be an abelian group of infinite order.  

 

{P, ×n} will be a defined as the MOD multi special mixed 

matrix semigroup of infinite order.  

 

{P, ×n} is a monoid which is commutative.  

 

In fact {P, +, ×n} is defined as the MOD special multi mixed 

matrix pseudo ring of infinite order.  

 

We will see how operations are performed on these newly 

defined structures by an example. 
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Example 2.40: Let  

 

M = 

1 2

3 4

5 6

a a

a a

a a

 
 
 
  

a1 ∈ Rn(5), a2 ∈ 
I

nR (3), a3 ∈ Cn(6), 

 

a4 ∈ 
g

nR (2), a5, a6 ∈ 
k

nR (7); k
2
 = 6k, g

2
 = g, I

2
 = I, 

2

Fi  = 5}  

 

be the MOD special multi mixed matrix collection. 

 

 Let {M, +} be the MOD special multi mixed matrix group of 

infinite order.  

 

Let A = F

(3, 2.6) 1 2.1I

0.3 0.6i 0.9 1.2g

5 0.6k 0.7 4k

+ 
 

+ + 
 + + 

 and 

 

 

B = F

(0.7, 0.5) 0.2 0.5I

1 0.5i 1 0.5g

2.3 5k 4.5 3.7k

+ 
 

+ + 
 + + 

 ∈ M. 

 

 

A + B = F

(3, 2.6) 1 2.1I

0.3 0.6i 0.9 1.2g

5 0.6k 0.7 4k

+ 
 

+ + 
 + + 

 +  

 

F

(0.7, 0.5) 0.2 0.5I

1 0.5i 1 0.5g

2.3 5k 4.5 3.7k

+ 
 

+ + 
 + + 
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       =  F

(3.7, 3.1) 1.2 2.6I

1.3 1.1i 9.9 1.7g

0.3 5.6k 5.2 0.7k

+ 
 

+ + 
 + + 

 ∈ M 

 

 This is the way + operation is performed on M. Clearly {M, 

+} is abelian; for it is easily verified A + B = B + A for all A, B 

∈ M.  

 

Further 0 = 

(0, 0) 0

0 0

0 0

 
 
 
  

 acts as the additive identity of M.  

 

For A = F

(3, 2.6) 1 2.1I

0.3 0.6i 0.9 1.2g

5 0.6k 0.7 4k

+ 
 

+ + 
 + + 

 the inverse  

 

 

– A = F

(2, 3.4) 2 0.9I

5.7 5.4i 1.1 0.8g

2 6.4k 6.3 3k

+ 
 

+ + 
 + + 

 ∈ M is such that  

 

 

A + (–A) = 

(0, 0) 0

0 0

0 0

 
 
 
  

 and –A is unique for the given A.  

 

We see {M, ×n} is the MOD special multi mixed matrix 

semigroup. We show how the natural product operation ×n is 

performed on M. 

 

A ×n B = F

(3, 2.6) 1 2.1I

0.3 0.6i 0.9 1.2g

5 0.6k 0.7 4k

+ 
 

+ + 
 + + 

 ×n F

(0.7, 0.5) 0.2 0.5I

1 0.5i 1 0.5g

2.3 5k 4.5 3.7k

+ 
 

+ + 
 + + 
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= F F

(3, 2.6) (0.7, 0.5) (1 2.1I) (0.2 0.5I)

(0.3 0.6i ) (1 0.5i ) (0.9 1.2g) (1 0.5g)

(5 0.6k) (2.3 5k) (0.7 4k) (4.5 3.7k)

× + × + 
 

+ × + + × + 
 + × + + × + 

 

 

 

= F

(2.1, 3) 0.2 1.97I

1.8 0.75i 0.9 1.65g

4.5 0.8k 3.5 2.7k

+ 
 

+ + 
 + + 

 ∈ M. 

 

This is the way ×n operation is performed on M.  

 

Clearly A ×n B = B ×n A. We see {M, +, ×n} is the MOD 

special multi mixed matrix pseudo ring. This pseudo ring has 

ideals all of which are of infinite order subrings of both finite 

and infinite order.  

 

As it is a matter of routine this work is left as an exercise to 

the reader. {M, +, ×n} has idempotents, units and zero divisors.  

 

The only difference is the sum and product are carried out 

component wise. If M is a square matrix certainly the usual 

product × is not defined for lack of component wise 

compatibility. 

 

Example 2.41: Let  

 

S = 
1 2

3 4

a a

a a

 
 
 

 a1 ∈ Rn(5), a2 ∈ Cn(5), a3 ∈ 
I

nR (5) and 

a4 ∈ 
g

nR (5), 
2

Fi  = 4, I
2
 = I and g

2
 = 0}  

 

be the MOD special same base multi mixed matrix collection. 

We show how the operations + and ×n is defined.  

 

We also show how the usual matrix product × is not defined 

on S. 
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 Let {S, +} be the abelian group where (0) = 
(0, 0) (0, 0)

(0, 0) (0, 0)

 
 
 

 

is the identity of S with respect to +.  

 

 

For every A = 
F(4.3, 0.7) 4 0.2i

4.2 0.2I 0.4 3g

+ 
 

+ + 
 ∈ S we have  

 

 

A + (0) = (0) + A = A. Now for every A ∈ M there is 

unique –A ∈ M such that  

 

A + (–A) = 
(0, 0) (0, 0)

(0, 0) (0, 0)

 
 
 

.  

 

For this A; –A = 
F(0.7, 4.3) 1 4.8i

0.8 4.8I 4.6 2g

+ 
 

+ + 
 ∈ M.  

 

 

We see  

 

A ×n A  =  
F(4.3, 0.7) 4 0.2i

4.2 0.2I 0.4 3g

+ 
 

+ + 
 ×n 

 

      
F(4.3, 0.7) 4 0.2i

4.2 0.2I 0.4 3g

+ 
 

+ +   
  

 

= 
F(3.49, 0.49) 1 1.76i

2.64 1.72I 0.16 2.4g

+ 
 

+ + 
 ∈ M.  

 

 

We show the usual matrix product is not defined.  
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For  

 

A × A  =  
F(4.3, 0.7) 4 0.2i

4.2 0.2I 0.4 3g

+ 
 

+ + 
 ×  

 

     
F(4.3, 0.7) 4 0.2i

4.2 0.2I 0.4 3g

+ 
 

+ + 
  

 

is not defined as 4 + 0.2iF × 4.2 + 0.2I is not defined.  

 

Hence A × A is not defined in case of both MOD special 

same base mixed multi square matrices as well as in case of 

MOD special mixed multi dimensional square matrices. 

 

We suggest some problems some of which are open 

conjectures.  

 

 

Problems 

 

1. Let M = {all p × q matrices with entries from Rn(m) the real 

MOD planes}. 

 

i.  What is the highest algebraic structure enjoyed by M? 

ii. Prove {M, +} is an abelian group of infinite order. 

iii. Prove {M, +} has subgroups of both finite and infinite 

 order. 

iv. Show {M, ×n} is a commutative semigroup of infinite 

 order. 

v. Can {M, ×n} have ideals of finite order? Justify your 

 claim. 

vi. Show {M, ×n} has both finite and infinite order 

 subsemigroups. 

vii. Can {M, ×n} have zero divisors which are not S-zero 

 divisors? 
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viii. Is {M, ×n} a S-semigroup? 

ix. Can {M, ×n} have units? 

x. Can {M, ×} have S-idempotents? 

xi. Prove {M, +, ×n} is only a pseudo ring of MOD p × q 

 real matrices. 

xii. Can {M, +, ×n} have pseudo ideals of finite order? 

xiii. Prove {M, +, ×n} can have subrings which satisfy the 

 distributive laws. 

xiv. Prove {M, +, ×n} has subrings of infinite order which 

 are pseudo. 

xv. Characterize all S-zero divisors and zero divisors of 

 {M, +, ×n}. 

xvi. Can we say all units of {M, +, ×n} is the same set of 

 units of {M, ×n}? 

xvii. Characterize the S-idempotents and idempotents of  

 {M, +, ×n}. 

xviii. Obtain any other special feature enjoyed by {M, +, ×n}. 

 

 

 

2. Let M = 

1 2 3 7

8 9 10 14

15 16 17 21

a a a a

a a a a

a a a a

 
 
 
  

…

…

…

 ai ∈ Rn(24);  

 

1 ≤ i ≤ 21} be the MOD 3 × 14 real matrices.  

 

 

Study questions (i) to (xviii) of problem (1) for this M.  
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3. Let M = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 ai ∈ Rn(19), 1 ≤ i ≤ 10} be the MOD  

 

5 × 2 real matrices. 

 

Study questions (i) to (xviii) or problem (1) for this M. 

 

 

4. Let P = 

1

2

10

a

a

a

 
 
    

�
 ai ∈ Cn(29), 1 ≤ i ≤ 10} be the collection  

 

 of all 10 × 1 MOD complex matrices. 

 

Study questions (i) to (xviii) or problem (1) for this P. 

 

 

5. Let M = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ Cn(12), 1 ≤ i ≤ 9} be the  

 

 collection of 3 × 3 square MOD complex Modulo integer 

matrices. 

 

Study questions (i) to (xviii) or problem (1) for this M. 

 

6. Let S = {(a1, a2, …., a9) | ai ∈ 
I

nR (48); 1 ≤ i ≤ 9} be the 

collection of all 1 × 9 MOD neutrosophic row matrices. 

 

Study questions (i) to (xviii) or problem (1) for this S. 
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7. Let P = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 ai ∈ 
I

nR (53),  

 

1 ≤ i ≤ 12} be the collection of all 3 × 4 MOD neutrosophic 

matrices. 

 

Study questions (i) to (xviii) or problem (1) for this P. 

 

8. Compare the real MOD 1 × 5 row matrix collection with the 

MOD complex modulo 1 × 5 row matrix collection and 1 × 5 

MOD neutrosophic row matrix collection. 

 

 

9. Let B = 
1 2 3 4 5 6 7

8 9 10 11 12 13 14

a a a a a a a

a a a a a a a

 
 
 

 ai ∈  

 

 
g

nR (14), g
2
 = 0, 1 ≤ i ≤ 14} be the collection of all MOD 

special dual number 2 × 7 matrices. 

 

i. Study questions (i) to (xviii) of problem (1) for this B. 

ii. Prove this B has zero square subsemigroups of finite  

 order. 

iii. Show B has subrings which are zero square rings of  

both finite and infinite order.  

 

10. Let S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
    

 ai ∈ 
g

nR (23); g
2
 = 0,  

 

1 ≤ i ≤ 16} be the collection of all MOD special dual number 

square matrix. 
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i. Study questions (i) to (xviii) of problem (1) for this S. 

ii. Prove if on S ‘×’ the usual product is defined instead of 

the natural product ×n then {S, ×} is a non commutative 

semigroup and derive the special features enjoyed by 

them. 

iii. Compare {S, ×} and {S, ×n} as MOD matrix semigroups. 

iv. Study the MOD matrix pseudo ring. {S, +, ×} and 

develop the special features associated with it. 

v. Compare {S, +, ×} and {S, +, ×n} as MOD matrix 

pseudo rings. 

 

 

11. Let Z = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

 ai ∈ 
h

nR (12), 1 ≤ i ≤ 18,  

 

h
2
 = h} be the 6 × 3 matrix collection of MOD special dual 

like number matrices. 

 

i. Study question (i) to (xviii) of problem (1) for this Z. 

ii. Enumerate all the special features enjoyed by Z. 

 

12. Let F = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

 
 
  
 
 
  

 ai ∈ 
h

nR (43);  

 

 

h
2
 = h, 1 ≤ i ≤ 25} be the MOD special dual like number 

square matrix collection. 
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 i. Study questions (i) to (xviii) of problem (1) for this F. 

ii. Study questions (ii) to (v) of problem (10) for this F. 

iii. If 
h

nR (43) is replaced by 
h

nR (48).  

What are the differences enjoyed by that collection? 

 

13. Let R = 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 
 
    

 ai ∈ 
k

nR (31); 

 

k
2
 = 30k, 1 ≤ i ≤ 24} be the collection of all MOD special 

quasi dual number 4 × 6 matrix collection. 

 

i. Study questions (i) to (xviii) of problem (1) for this R. 

ii. If 
k

nR (31) is replaced by 
k

nR (24).  

 

Compare the properties enjoyed by them. 

 

 

14. Let S = 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 
 
 
 
 
 
 
 
  

 ai ∈ 
k

nR (20); 

 

1 ≤ i ≤ 36, k
2
 = 19k} be the MOD special quasi dual number 

square matrix collection. 

 

i. Study questions (i) to (xviii) of problem (1) for this S. 

ii. Study questions (ii) to (v) of problem (10) for this S. 

 

15. Let W = {(a1, a2, a3, a4, a5) | a1 ∈ Rn(7), a2 ∈ 
I

nR (9), a3 ∈ 
g

nR (12), a4 ∈ 
h

nR (15), a5 ∈ Cn(13); I
2
 = I, g

2
 = 0, h

2
 = h and 
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2

Fi  = 12} be the collection of all MOD special multi mixed 

row matrix collection. 

 

i. Prove {W, +} is a group of infinite order. 

ii. {W, +} has subgroups of finite order prove. 

iii. Can {W, +} have subgroups of infinite order? 

iv. Prove {W, ×} is a commutative semigroup. 

v. Find ideals of {W, ×}. 

vi.  Can ideals of {W, ×} be of finite order? 

vii.  Find all subsemigroups of finite order. 

viii.  Prove {W, ×} has subsemigroups of infinite order  

 which are not ideals. 

ix. Can {W, ×} have zero divisors which are not S-zero 

 divisors? 

x. Can {W, ×} have S-idempotents? 

xi. Find all special features enjoyed by {W, ×}. 

xii.  Prove {W, +, ×} is only a pseudo ring. 

xiii.  Can {W, +, ×} have ideals of finite order? 

xiv.  Can {W, +, ×} be a S-ring? 

xv.  Can {W, +, ×} have S-ideals? 

xvi.  Can {W, +, ×} have S-subrings which are not 

 pseudo? 

xvii.  Prove or disprove all zero divisors of {W, +, ×} is 

 the same as zero divisors of {W, ×}. 

xviii. Prove ideals of {W, ×} are not ideals of {W, +, ×}. 

xix. Can {W, +, ×} have S-units? 

xx.  Discuss any other special feature enjoyed by  

 {W, +, ×}. 

 

16. Let M = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

a a a a a

a a a a a

a a a a a

a a a a a

 
 
    

 a11, a1 ∈ Rn(5), 

 

 a2, a4 ∈ 
I

nR (4), a3 ∈ Cn(7), a5, a6, a19 ∈ Rn(12), a7, a8, a20 ∈ 
g

nR (20), a9, a10 ∈ Cn(53), a12, a18 ∈ 
k

nR (2), a13, a16 ∈  
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I

nR (43), a14, a15 ∈ 
k

nR (4), a16 ∈ 
g

nR (13)} be the MOD 

special multi mixed matrix collection. 

 

Study questions (i) to (xx) of problem (15) for this M. Here 

× is replaced by ×n. 

 

 

17. Let S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
    

 a1, a16, a7 ∈ Cn(20), a2, a3,  

 

 a12 ∈ Rn(14), a4, a15 ∈ 
g

nR (5), a6, a9 ∈ 
I

nR (4), a5, a8 a10 ∈ 
k

nR (8), a11, a13 ∈ Cn(5), a14 ∈ 
I

nR (7)} be the MOD special 

multi mixed 4 × 4 square matrix collection. 

 

i. Study questions (i) to (xx) of problem (15) for this S. 

ii. Prove on S only the natural product ×n can be defined. 

iii. Prove on S one cannot define the usual product ×. 

 

 

18. Let R = 

1

2

3

4

5

6

a

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 a1 ∈ Cn(4), a4, a2 ∈ Rn(4), a3 ∈ 
I

nR  (4),  

 

a5 ∈ 
g

nR (4), a6 ∈ 
h

nR (4); I
2
 = I, 

2

Fi  = 3, g
2
 = 0, h

2
 = h} be 

the MOD special multi mixed same base matrix. 

 

 

Study questions (i) to (xx) of problem (15) for this R. 
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Compare R with MOD special multi mixed 6 × 1 column 

matrix collection which does not enjoy the same base. 

 

19. Let B =  

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 
 
    

 a1, a4,  

 

a24 ∈ 
I

nR (17), a2, a9, a10 ∈ Cn(17), a3, a23, a22, a16 ∈ Rn(17), 

a5, a14, a20 ∈ 
k

nR (17), a6, a7, a8, a21, a19, a17, a15, a18 ∈ 
g

nR (17), a11, a12, a13 ∈ 
h

nR (17), h
2
 = h, k

2
 = 16k, I

2
 = I,  

g
2
 = 0, 

2

Fi  = 16} be the MOD special multi mixed same base 

matrix collection. 

 

i. Study questions (i) to (xx) of problem (15) for this B. 

ii. Can B have infinite number zero divisors? 

iii. Can B have infinite number of idempotents? 

iv. Is it possible for B to have infinite number of 

subsemigroups of finite order? Justify. 

 

20. What are the advantages of using same base MOD special 

multi mixed matrices? 

 

21. Why even for square matrices in case of MOD special  multi 

mixed matrices we cannot define usual product ×? 

 

22. Explain the situation in problem 21 by a 3 × 3 square 

 MOD special multi mixed matrices. 

 

23. Prove problem 21 is not true even if the MOD special multi 

mixed square matrix collection is replaced by MOD special 

same base multi mixed square matrix collection. 

 

24. What are the striking properties associated with this new 

structure? 
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 25. What will be the probable applications of this new 

structure? 

 

26. Do you think using these MOD matrices is advantageous 

over using real or complex or dual number planes of infinite 

order? 

 

27. Compare MOD special multi mixed matrix collection with 

MOD multi matrix collection. 

 

28. Prove algebraically as group, semigroup or as pseudo ring 

all these three MOD multi mixed collections behave in the 

same way.     

 



 
 
 
 
 
 

  

 
Chapter Three 
 
 
 
 

ALGEBRAIC STRUCTURES ON MOD 

SUBSETS OF MOD PLANES 
 
 
 

 

In this chapter authors for the first time introduce the notion 

of MOD vector spaces using real MOD intervals [0, m), MOD real 

planes Rn(m), MOD complex intervals, MOD complex planes 

Cn(m), MOD neutrosophic intervals and MOD neutrosophic 

planes I

nR (m), MOD dual number intervals and MOD dual 

number planes and so on.  

 

We will define, develop and describe them. 

 

Example 3.1: Let V = {[0, 5), +} be the MOD real interval group 

under +. [0, 5) is a vector space over Z5. In fact V is a vector 

space of infinite order. We define V as a MOD interval vector 

space. This has MOD subspace of finite as well as infinite 

dimension; Z5 ⊆ V is a MOD subspace of V of one dimension. 

 

W = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5} ⊆ V is again a 

MOD subspace of finite dimension. 
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Example 3.2: Let V = {[0, 13), +} be a vector space over the 

field Z13. V is the MOD interval vector space over Z13.  

 

We proceed to define the new notion of MOD interval vector 

space. 

 

DEFINITION 3.1: Let V = {[0, n), +; where n is a prime} be the 

MOD interval abelian group. Clearly V is a vector space over 

the field F = Zn. We define V as the MOD interval vector space 

over F = Zn. Clearly V is infinite dimensional MOD interval 

vector space over F = Zn.  

 

V has subspaces of finite dimension over F. Finding a basis 

for V is a very difficult problem in fact it is left as an open 

conjecture at this stage. 

 

We will provide more examples before we proceed on to 

develop the associated properties of these MOD interval vector 

spaces. 

 

Example 3.3: Let V = {[0, 43), +} be the MOD interval vector 

space over the field F = Z43. 

 

Z43 is a vector subspace over Z43 of dimension 1.  

 

Clearly P1 = {0, 0.5, 1, 1.5, 2, …, 41.5, 42, 42.5} ⊆ V is a 

vector subspace of finite dimension over Z43.  

 

Similarly P2 = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, …, 

41, 41.25, 41.5, 41.75, 42, 42.25, 42.5, 42.75} ⊆ V is also a 

vector subspace of finite dimension over Z43.  

 

In fact V has many subspaces of finite dimension over  

F = Z43. 

 

Example 3.4: Let V = {[0, 53), +} be the MOD interval vector 

space over the field Z53. V has several vector subspaces of finite 

order. 
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W = {0, 0.1, 0.2, …, 0.9, 1, 1.1, 1.2, …, 43, 43.1, 43.2, …, 

44, 52, 52.1, 52.2, …, 52.9} ⊆ V is a subspace of V over Z53. 

Like this V has several subspaces. 

 

In this book we for the first time we propose several open 

problems (conjectures). 

 

Next we give examples of MOD vector space using MOD 

intervals [0, n). 

 

Example 3.5: V = {([0, 7) × [0, 7) × [0, 7)), +} be the MOD 

interval matrix vector space over the field Z7. 

 

Clearly this has subspaces of both finite and infinite 

dimension. Further the dimension of V over Z7 is infinite. 

 

W1 = {([0, 7) × {0} × {0})} ⊆ V,  

 

W2 = {({0} × [0, 7) × {0})} ⊆ V and  

 

W3 = {({0} × {0} × [0, 7))} ⊆ V are all subspaces of V over 

Z7.  

 

We see V = W1 ⊕ W2 ⊕ W3 is the direct sum as Wi ∩ Wj = 

{{0}, {0}, {0}}. i ≠ j; 1 ≤ i, j ≤ 3. 

 

Each subspace Wi is of infinite dimension over Z7.  

 

Consider Pi = {(Z7 × Z7 × {0})} and  

Pj = {({0} × {0} × Z7)} subspace of V of finite dimension 

over Z7.  

 

Pi ∩ Pj = {({0}, {0}, {0})}.  

 

But Pi + Pj ≠ V so cannot be a direct sum and in fact cannot 

be completed to get the direct sum. 

 

There are several finite dimensional subspaces which 

cannot be completed for direct sum.  
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Now M1 = {Z7 × [0, 7) × {0}} and  

 

M2 = {{0} × {0} × Z7} are subspaces of V.  

 

M1 is of infinite dimensional subspace of V and M2 is a 

finite dimensional subspace of V such that  

 

M1 ∩ M2 = ({0} × {0} × {0}) but M1 + M2 ≠ V. 

 

 
Example 3.6:  Let  

 

 

S = 

[0, 23)

[0, 23)

[0, 23)

[0, 23)

[0, 23)

[0, 23)

 
 
 
 
 
 
 
 
  

, +} 

 

 

be the MOD interval vector space over the field Z23.  

 

 

 

V1 = 

23

23

[0, 23)

Z

{0}

{0}

{0}

Z

  
  
  
   
  
  
  
  
    

, V2 = 

{0}

{0}

{0}

{0}

{0}

[0, 23)

  
  
  
   
  
  
  
  
    

, V3 = 

23Z

[0, 23)

[0, 23)

{0}

{0}

{0}

  
  
  
   
  
  
  
  
    

, 
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V4 = 

{0}

{0}

{0}

{0}

[0, 23)

{0}

  
  
  
   
  
  
  
  
    

 and V5 = 

{0}

{0}

{0}

[0, 23)

{0}

{0}

  
  
  
   
  
  
  
  
    

 

 

 

be five MOD vector subspaces of S of infinite dimension over 

the field Z23. 

 

Clearly S = V1 ⊕ V2 ⊕ … ⊕ V5 and  

 

 

Vi ∩ Vj ≠ 

{0}

{0}

{0}

{0}

{0}

{0}

  
  
  
   
  
  
  
  
    

 in general for all i and j. i ≠ j. 

However if  

 

W1 = 

[0, 23)

{0}

{0}

  
  
   
  
    

�
,  W2 = 

{0}

[0, 23)

{0}

{0}

  
  
   
  
  
  
    

�

, W3 = 

{0}

{0}

[0, 23)

{0}

{0}

  
  
  
   
  
  
  
  
    

�

,  

 



98 MOD Pseudo Linear Algebras 

 

 

 

 

W4 = 

{0}

{0}

{0}

[0, 23)

{0}

{0}

  
  
  
   
  
  
  
  
    

,  

 

W5 = 

{0}

{0}

{0}

{0}

[0, 23)

{0}

{0}

  
  
  
  
  
  
  
  
  
  
  

 
 

and W6 = 

{0}

{0}

[0, 23)

{0}

  
  
   
  
  
  
    

�

 

 

are six MOD interval subspaces of S such that  

 

Wi ∩ Wj = 

{0}

{0}

{0}

  
  
   
  
    

�
. i ≠ j; 1 ≤ i, j ≤ 6 and 

 

S = W1 ⊕ W2 ⊕ … ⊕ W6.  

 

Thus S is the direct sum of these MOD interval vector 

subspaces of S over Z23. 
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L1 = 

23

[0, 23)

{0}

{0}

{0}

Z

{0}

  
  
  
   
  
  
  
  
    

, L2 = 

23

{0}

Z

{0}

{0}

{0}

[0, 23)

  
  
  
   
  
  
  
  
    

, 

 

 

L3 = 
23

{0}

{0}

Z

[0, 23)

{0}

{0}

  
  
  
   
  
  
  
  
    

 and  L4 = 

23

{0}

{0}

{0}

{0}

[0, 23)

Z

  
  
  
   
  
  
  
  
    

 

 

 

are MOD interval vector subspaces of S and we see  

L1 + L2 + L3 + L4 is not a direct sum.  

 

In fact all the subspaces Li are infinite dimensional over S. 

 

 

Example 3.7: Let  

 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
    

 ai ∈ [0, 11); 1 ≤ i  ≤12, +} 

 

be the MOD interval matrix vector space over the field Z11. S has 

MOD interval subspaces of infinite dimension over Z11.  

 

S has also finite dimensional subspaces over Z11. 
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P1 = 

1 2a a 0

0 0 0

0 0 0

0 0 0

 
 
 
 
  

 a1, a2 ∈ [0, 11), +} ⊆ S, 

 

 

P2 = 

0 0 a

b d 0

0 0 0

0 0 0

 
 
 
 
  

 a, b, d ∈ [0, 11), +} ⊆ S, 

 

 

P3 = 

0 0 0

0 0 x

y z 0

0 0 0

 
 
 
 
  

 x, y, z ∈ [0, 11), +} ⊆ S and 

 

 

P4 = 

0 0 0

0 0 0

0 0 t

s v u

 
 
 
 
  

 t, s, u, v ∈ [0, 11), +} ⊆ S 

 

are all infinite dimensional MOD vector subspaces of S such that 

P1 + P2 + P3 + P4 = S and  

 

 

Pi ∩ Pj = 

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
    

; if i ≠ j; 1 ≤ i, j ≤ 4 
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is a direct sum. We can write S as a direct sum in many different 

ways.  

 

 

For T1 = 

1 2

3 4

5 6

7 8

a a 0

a a 0

a a 0

a a 0

 
 
    

 ai ∈ [0, 11); 1 ≤ i ≤ 8, +} ⊆ S 

 

 

and T2 = 

1

2

3

4

0 0 a

0 0 a

0 0 a

0 0 a

 
 
    

 ai ∈ [0, 11), +} ⊆ S 

 

are both MOD interval subspaces of S infinite dimension over 

Z11.  

 

Clearly S = T1 + T2 and  

 

 

Ti ∩ Tj = 

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
    

; i ≠ j; 1 ≤ i, j ≤ 2. 

 

 

Let B1 = 

1 2 3

4 5 6

a a a

0 0 0

a a a

0 0 0

 
 
 
 
  

 ai ∈ [0, 11), 1 ≤ i ≤ 6, +} ⊆ S 

 



102 MOD Pseudo Linear Algebras 

 

 

 

 

 

and B2 = 
1 2 3

4 5 6

0 0 0

b b b

0 0 0

b b b

 
 
    

 bj ∈ [0, 11), 1 ≤ j ≤ 6, +} ⊆ S 

 

 

be two MOD interval vector subspaces of S over Z11.  

 

We see B1 + B2 = S and  

 

 

B1 ∩ B2 = 

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
    

. 

 

 

Thus S is a direct sum of B1 and B2. 

 

Consider the subspaces 

 

 

D1 = 

1 2 3a a a

0 0 0

0 0 0

0 0 0

 
 
 
 
  

 ai ∈ Z11; 1 ≤ i ≤ 3} ⊆ S, 

 

 

D2 = 1 2 3

4 5 6

0 0 0

a a a

a a a

0 0 0

 
 
 
 
  

 ai ∈ Z11; 1 ≤ i ≤ 6} and 
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D3 = 

1 2 3

0 0 0

0 0 0

0 0 0

c c c

 
 
    

 ci ∈ Z11; 1 ≤ i ≤ 3} ⊆ S 

 

be three vector subspaces of S over Z11. Clearly all the 3 

subspaces are of finite dimension over Z11.  

 

But D1 + D2 + D3 = W ⊆ S is only a subspace of finite 

dimension over Z11 and hence sum is not a direct sum. 

 

Example 3.8: Let  

 

B = 
1 2 3 4 5 6

7 8 9 10 11 12

a a a a a a

a a a a a a

 
 
 

 where ai ∈ [0, 29); 

 

1 ≤ i ≤ 12, +}  

 

be the MOD interval matrix vector space over the field Z29.  

 

Clearly B is infinite dimensional MOD space over Z29.  

 

B has both finite and infinite dimensional vector subspaces.  

 

Only infinite dimensional subspaces under special 

conditions contribute to direct sums. 

 

Let  

 

C1 = 
1 2 6

1 2 6

a a a

b b b

 
 
 

…

…
 ai ∈ [0, 29) and bi ∈ Z9, 

 

1 ≤ i ≤ 6; +} ⊆ B  
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is an infinite dimensional subspace of B but C1 cannot 

contribute to any direct sum of B.  

 

In fact C1 cannot be completed to get the direct sum of 

subspaces  

 

W1 =  
1a 0 0

0 0 0

 
 
 

…

…
 a1 ∈ Z29} ⊆ B 

 

is a one dimensional subspace of B. 

 

W2 = 
1

2

a 0 0

a 0 0

 
 
 

…

…
a1, a2 ∈ Z29} ⊆ B 

 

is a two dimensional vector subspace of B and so on. 

 

Example 3.9: Let  

 

Z = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  

 ai ∈ [0, 61); 1 ≤ i ≤ 15, +} 

 

be the MOD interval matrix vector space over the field Z61. 

Clearly Z is of infinite dimension over Z61.  

 

Z has both subspaces of finite and infinite dimension over 

Z61. Z has one dimensional, two dimensional etc., finite 

dimensional vector subspaces over Z61. 

 

Next we proceed onto develop the notion of MOD linear 

transformation and MOD linear operator of MOD interval vector 

spaces defined over the field Zp. 
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In fact the definition is a matter of routine so we proceed 

onto describe this situation by some examples. 

 

Example 3.10: Let  

 

V = {(a1, a2, a3) | ai ∈ [0, 13); 1 ≤ i ≤ 3; +} 

 

and  

 

W = 

1 2

3 4

5 6

a a

a a

a a

 
 
 
  

 ai ∈ [0, 13), 1 ≤ i ≤ 6; +} 

 

be any two MOD interval matrix vector spaces over the field Z13. 

 

Define  η: V → W by  

 

η{(a1, a2, a3)} = 

1

2

3

a 0

a 0

a 0

  
  
  
    

 for every (a1, a2, a3) ∈ V. 

 

Clearly it is verified η is a MOD interval linear 

transformation of V to W. 

 

Can we have ker η to be different from the zero space? 

 

 

Let η : W → V be defined as  

 

 

η

1 2

3 4

5 6

a a

a a

a a

  
  
  
    

 = (a1, a3, a5) 
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 for every 

1 2

3 4

5 6

a a

a a

a a

 
 
 
  

 ∈ W. 

 

Clearly ker η ≠ 

0 0

0 0

0 0

 
 
 
  

. 

 

 

Thus we have η: W → V with ker η ≠ 

0 0

0 0

0 0

  
  
  
    

. 

 

 

Let  µ : V → W defined by  

 

µ((a1, a2, a3)) = 

1 2a a

0 0

0 0

 
 
 
  

 

 

be a MOD linear transformation of V to W. Clearly ker µ ≠ {(0, 

0, 0)}.  

 

We give one or two examples before we proceed onto 

describe MOD linear operations. 

 

Example 3.11: Let  

 

V = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 where ai ∈ [0, 23); 1 ≤ i ≤ 9, +} 

 

and  
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W = {(a1, a2, a3, a4, a5) | ai ∈ [0, 23); 1 ≤ i ≤ 5, +} 

 

be two MOD interval matrix vector spaces over the field Z23. 

 

Define η: V → W by  

 

 

η

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

  
  
  
    

 = (a1, a2, a3, a4, a5) 

 

be the MOD interval matrix linear transformation from V to W. 

 

Clearly ker η ≠ 

0 0 0

0 0 0

0 0 0

  
  
  
    

 for 

 

η
6

7 8 9

0 0 0

0 0 a

a a a

  
  
  
    

 = (0 0 0 0 0), 

 

 

η

1 2

0 0 0

0 0 0

a a 0

  
  
  
    

 = (0 0 0 0 0), 

 

 

η

1

0 0 0

0 0 0

0 0 a

  
  
  
    

 = (0 0 0 0 0), 

 



108 MOD Pseudo Linear Algebras 

 

 

 

 η

1 2 3
a a a

0 0 0

0 0 0

  
  
  
    

 = (a1, a2, a3, 0, 0) 

 

and so on hence the claim. 

 

Define δ : W → V by  

 

δ{(a1, a2, a3, a4, a5)} = 

1 2 3a a a

0 0 0

0 0 0

 
 
 
  

 

 

 

for all (a1, a2, a3, a4, a5) ∈ W. 

 

 

ker δ ≠ {(0 0 0 0 0)} for  

 

δ{(0 0 0 a4 a5)} = 

0 0 0

0 0 0

0 0 0

 
 
 
  

, 

 

δ{(0 0 0 0 a5)} = 

0 0 0

0 0 0

0 0 0

  
  
  
    

, 

 

δ{(0 0 0 a4 0)} = 

0 0 0

0 0 0

0 0 0

  
  
  
    

. 

 

Hence ker δ = {(0 0 0 a4, a5) | a4, a5 ∈ [0, 23)} ⊆ W is a 

subspace of W which is certainly different from the zero space 

of W. 
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Define φ: V ⊆ W by  

 

φ

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

  
  
  
    

 = (a1 a2 a0 a2 a1) 

 

for all 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ∈ V. 

 

ker φ ≠ 

0 0 0

0 0 0

0 0 0

  
  
  
    

 

 

in fact  

 

ker φ = 

3

4 5 6

7 8 9

0 0 a

a a a

a a a

 
 
 
  

 ai ∈ [0, 23); 3 ≤ i ≤ 9} ⊆ V 

 

is a subspace of V of infinite dimension over Z23. 

 

Example 3.12: Let  

 

V = 

1

2

3

4

5

a

a

a

a

a

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 5, +} 

 

and  

 

W = {(a1, a2, a3, a4, a5) | ai ∈ [0, 43); 1 ≤ i ≤ 5, +} 
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be two MOD interval vector spaces over the field Z43. 

 

 

Define η: V → W by  

 

η

1

2

3

4

5

a

a

a

a

a

  
  
  
  
  
  
    

 = (a1, a2, a3, a4, a5) 

 

for every 

1

2

5

a

a

a

 
 
 
 
 
 

�
 ∈ V. 

 

It is easily verified η is a one to one MOD linear 

transformation for  

 

ker η ≠ 

0

0

0

0

0

  
  
   
  
  
  
    

. 

 

Example 3.13: Let  

 

V = 

1

2

3

4

a

a

a

a

 
 
 
 
  

 ai ∈ [0, 5); 1 ≤ i ≤ 4, +} 
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and  

 

W = {(a1, a2, a3, a4, a5, a6) | ai ∈ [0, 5); 1 ≤ i ≤ 6, +} 

 

be two MOD interval matrix vector spaces over the field Z5. 

 

Define η: V → W by  

 

η

1

2

3

4

a

a

a

a

  
  
  
  
   
  

 = (a1, a2, a3, a4, 0, 0) 

 

for every 

1

2

3

4

a

a

a

a

 
 
 
 
 
 

 ∈ V. 

 

Clearly ker η = 

0

0

0

0

 
 
 
 
 
 

. 

 

Next we proceed onto describe MOD linear operators on 

MOD interval matrix vector spaces by the following examples. 

 

Example 3.14: Let  

 

V = 
1 2

3 4

a a

a a

 
 
 

 where ai ∈ [0, 17); 1 ≤ i ≤ 4, +} 

 

be the MOD interval matrix vector space over the field Z17. 
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Let φ : V → V be a MOD linear operator defined by  

 

φ
1 2

3 4

a a

a a

  
  
  

 = 
1

2

a 0

0 a

 
 
 

 

 

for every 
1 2

3 4

a a

a a

 
 
 

 ∈ V. 

 

ker φ = 
2

3

0 a

a 0

 
 
 

 a3, a2 ∈ [0, 17)}. 

 

Clearly ker φ is also a MOD interval vector subspace of V. 

 

Let η : V → V defined by  

 

η
1 2

3 4

a a

a a

  
  
  

 = 
4 3

2 1

a a

a a

 
 
 

 

 

for every 
1 2

3 4

a a

a a

 
 
 

 ∈ V. 

 

ker η = 
0 0

0 0

   
  
   

 is a null subspace of V. 

Define δ: V → V by  

 

δ
1 2

3 4

a a

a a

  
  
  

 = 
1a 0

0 0

 
 
 

 

 

for every 
1 2

3 4

a a

a a

 
 
 

 ∈ V. 
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ker δ = 

2

3 4

0 a

a a

 
 
 

 ai ∈ [0, 17); 2 ≤ i ≤ 4} ⊆ V 

 

is a MOD interval subspace of V over Z17 of infinite dimension.  

 

 Let Hom(V, W) denote the collection of all MOD linear 

transformations from V to W of two  MOD interval vector spaces 

over the field Zp.  

 

The following questions are suggested as problems. 

 

i. Will Hom(V, W) be a MOD vector space of infinite 

dimension over the field Zp? 

 

ii. Will Hom (V, W) ≅ Hom(W, V)? 

 

iii. Show these MOD interval vector spaces built using [0, p) 

over the field Zp cannot satisfy any of the properties of 

finite dimensional vector space. 

 

iv. Show a MOD vector space cannot be in any way related to 

usual vector space of infinite dimension. 

 

v. Find the dimension of Hom(V, V) where V is a MOD 

interval vector space built on [0, n) over the field Zn. 

 

vi. Can there be any vector space which is isomorphic to the 

MOD interval vector space over the field Zn? 

 

Next we see the notion of linear functional is not an easy 

work.  

 

For all MOD interval vector spaces are built always on a 

finite field Zn and all these MOD interval vector spaces are of 

infinite dimension over Zn. 

 

Next we proceed onto define the notion of S-MOD interval 

vector space or MOD interval S-vector spaces over S-rings. 
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DEFINITION 3.2: Let V = {[0, n), +} be the MOD interval group. 

Clearly V is a MOD vector space over Zn where Zn is S-ring then 

we define V to be the S-MOD interval vector space over Zn or 

MOD interval S-vector space over Zn. 

 

We will illustrate this situation by some examples. 

 

Example 3.15: Let V = {[0, 12), +} be the MOD interval S-

vector space over the S-ring Z12. This has S-vector subspaces as 

well V can also be realized as a MOD interval vector space over 

the field. {0, 4, 8} ≅ Z3. 

 

Example 3.16: Let V = {[0, 14), +} be a MOD interval vector 

space over the field F = {0, 2, 4, 6, 8, 10, 12} where 8 is the 

multiplicative identity. V is also a S-MOD interval vector space 

over the S-ring Z14. 

 

Thus in case of MOD interval [0, n) we can define two types 

of MOD interval vector spaces one usual MOD interval vector 

space over the field P ⊆ Zn another S-MOD interval vector space 

over the S-ring Zn.  

 

We will illustrate a few more examples. 

 

Example 3.17: Let V = {[0, 15), +} be a MOD interval vector 

space over the field F1 = {0, 5, 10} ≅ Z3 (or F2 = {0, 3, 6, 9, 12} 

≅ Z5). V is also a MOD interval S-vector space over the S-ring 

Z15. 

 

Example 3.18: Let V = {[0, 24), +} be the MOD interval vector 

space over the field F = {0, 8, 16}. V is also a S-MOD interval 

vector space over Z24 the S-ring. 

 

In view of all this we have the following theorem. 

 

THEOREM 3.1: Let V = {[0, n), +} be the group under + (n a 

composite number). V is a MOD interval vector space over a 
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field F ⊆ Zn if and only if V is a S-MOD interval vector space 

over the S-ring Zn. 

 

Proof: Let V be a MOD interval vector space over the field F ⊆ 

Zn. Then this implies Zn is a S-ring; hence V is a MOD interval 

S-vector space over the S-ring Zn. 

 

Conversely if V is a S-MOD interval vector space over the S-

ring Zn; then from the fact Zn is a S-ring; Zn contains a non 

empty subset F such that F under the operations of Zn is a field. 

Thus V is a MOD interval vector space over the field F. Hence 

the claim of the theorem.  

 

We have also seen several such examples to this effect.  

 

Now we can have MOD linear transformations related to the 

S-MOD interval vector spaces as well as MOD interval vector 

spaces.  

 

All these will be illustrated by the following examples. 

 

Example 3.19: Let  

 

V = {(a1, a2, a3, a4) | ai ∈ [0, 14), 1 ≤ i ≤ 4, +}  

 

and  

 

W = 
1 2

3 4

a a

a a

 
 
 

 ai ∈ [0, 14); 1 ≤ i ≤ 4, +} 

 

be any two S-MOD interval vector space over the field;  

 

F = {0, 7} ⊆ Z14. 

 

η1: V → W is a S-MOD linear transformation from V to W 

defined by  
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η1(a1, a2, a3, a4) = 

1 2a a

0 0

 
 
 

 

 

for every (a1, a2, a3, a4) ∈ V. 

 

Clearly  

 

ker η1 = {(0, 0, a1, a2) | a1, a2 ∈ [0, 14), +} ⊆ V 

 

is subspace of V of infinite dimension over F. 

 

Define η : V → W by  

 

η2{(a1, a2, a3, a4)} = 
2

4

0 a

0 a

 
 
 

. 

 

η2 is also a S-MOD linear transformation from V to W.  

 

ker η2 = {(a1 0 a3 0) | a1, a3 ∈ [0, 14), +} ⊆ V is a S-MOD 

interval vector subspace of V of infinite dimension. 

 

Let  

η3{(a1, a2, a3, a4)} = 
1 2

3 4

a a

a a

 
 
 

 

 

for every (a1, a2, a3, a4) ∈ V. ker η3 = {(0, 0, 0, 0)}. 

 

Thus S-MOD interval linear transformations on S-MOD 

interval vector spaces V remain the same and become just MOD 

interval linear transformation of V if V is considered as the MOD 

interval vector space over a field F ⊆ Z14. 

 

This is true universally.  

 

In the view of this we have the following theorem. 
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THEOREM 3.2: Let V and W be any two MOD interval vector 

spaces over the field F 
≠
⊂  Zn. If η: V → W is the MOD interval 

linear transformation of V to W then η is also the S-MOD 

interval linear transformation of the same MOD interval S-

vector spaces over the S-ring Zn. 

 

Part of the proof follows from the earlier result. The later 

part can be derived from the definition so can be easily proved 

by the reader, hence left as an exercise to the reader. 

 

Example 3.20: Let  

 

V = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
 
 
 
 
  

 ai ∈ [0, 20); 1 ≤ i ≤ 10, +} 

 

be the MOD interval vector space over the field F = {0, 4, 8, 12, 

16} ⊆ Z20.  

 

Let η: V → V be the MOD real interval vector space 

operator defined by  

 

 

η

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

  
  
  
  
  
  
    

 = 

1

2

3

4

5

a 0

a 0

a 0

a 0

a 0

 
 
 
 
 
 
  

. 

 

 

η is also the MOD real interval S-linear operator of V to V; 

where V can also be realized as a S-MOD interval vector space 

over Z20. 
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Example 3.21: Let  

 

 

 

V = 

1

2

15

a

a

a

 
 
    

�
 ai ∈ [0, 35); 1≤ i ≤ 15, +} 

 

 

be the MOD interval vector space over the field  

F = {0, 7, 14, 21, 28} where 21 serves as the multiplicative 

identity of F. 

 

Define η : V → V by  

 

η

1

2

3

15

a

a

a

a

  
  
  
  
  
  
    

�

 = 

1

3

5

7

15

a

0

a

0

a

0

a

0

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

�

; 

 

η is a MOD interval linear operator on V.  

 

The same η is also a S-MOD interval linear operator or MOD 

interval linear S-operator on V where V is realized as the S MOD 

interval vector space over Z35. 
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In view of this we have the following theorem. 

 

THEOREM 3.3: Let V be a MOD interval vector space over the 

field F ⊆ Zn. If η: V → V is a MOD interval linear operator on V 

then the same map η is also a S-MOD linear operator on V 

realized as a S-MOD interval vector space over the S-ring Zn. 

 

 Proof follows from the definitions. 

 

Next we proceed onto discuss about pseudo linear algebras.  

 

In the first place none of these MOD interval vector spaces 

can be made into a MOD interval linear algebra.  

 

Of course we can define product in all cases but never it is 

possible to see that + and × are distributive over each other.  

 

The lack of distributivity forces us to discover only pseudo 

MOD linear algebras structure using the MOD intervals [0, n). 

 

We will describe them by the following examples. 

 

Example 3.22: Let V = {[0, 7), +, ×} be the MOD interval 

pseudo linear algebra over the field Z7. Since [0, 7) under + and 

× does not form a ring only a pseudo ring as + and × do not 

distribute over each other. 

 

For if x = 3.5, y = 2.5 and z = 4.5 ∈ [0, 7);  

 

now x × (y + z) = 3.5 × (2.5 + 4.5)  

=  3.5 × 0 (mod 7) 

=  0    …  I 

 

Consider x × y + x × z = 3.5 × 2.5 + 3.5 × 4.5 

=  3.5     …  II 

 



120 MOD Pseudo Linear Algebras 

 

 

 

 

As I and II are distinct we see x × (y + z) ≠ x × y + x × z. 

Thus V is only a MOD interval pseudo linear algebra over the 

field Z7.  

 

Thus no MOD interval vector space can be a MOD interval 

linear algebra.  

 

Maximum it can be only a MOD pseudo linear algebra of 

infinite dimension over the field Zp. 

 

We will illustrate this situation by an example or two. 

 

Example 3.23: Let V = {[0, 23), +, ×} be the MOD interval 

pseudo linear algebra over the field Z23. 

 

Example 3.24: Let  

M = {([0, 11) × [0, 11) × [0, 11) × [0, 11)), +, ×} be the MOD 

interval pseudo linear algebra over the field Z11. 

 

 
Example 3.25: Let  

 

M = 

1

2

9

a

a

a

 
 
 
 
  

�
ai ∈ [0, 43); 1 ≤ i ≤ 9, +, ×} 

 

be the MOD interval pseudo linear algebra over the field Z43. 

 

P1 = 

1a

0

0

 
 
 
 
  

�
 a1 ∈ [0, 43), +, ×} 

 

is a MOD interval pseudo linear subalgebra of dimension over 

Z43.  
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P2 = 

2

0

a

0

0

 
 
 
 
 
 
  

�

a2 ∈ [0, 43), +, ×} 

 

be the MOD interval pseudo linear subalgebra of M and so on 

has pseudo MOD interval linear algebras as of infinite order. 

 

Let  

 

T1 = 

1a

0

0

 
 
 
 
  

�
 a1 ∈ Z43, +, ×} ⊆ M 

 

be a MOD interval linear subalgebra which is not pseudo but T1 

is finite dimensional linear subalgebra. 

 

Can one say all finite dimensional MOD interval linear 

subalgebras would be non pseudo? The answer is no in general. 

 

For consider  

 

V1 = 

1a

0

0

 
 
 
 
  

�
 a1 ∈ {0, 0.5, 1, 1.5, 2, 2.5, …, 42, 42.5}, 

+, ×} ⊆ M  

 

is the MOD interval sublinear algebra which is finite dimensional 

but is pseudo. 
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For x = 

0.5

0

0

 
 
 
 
 
 

�
, y = 

40.5

0

0

 
 
 
 
 
 

�
 and z = 

2.5

0

0

 
 
 
 
 
 

�
 

 

are in V1.  

 

x × (y + z) = 

0.5

0

0

 
 
 
 
 
 

�
 × 

40.5 2.5

0 0

0 0

    
    
    +
    
     
    

� �

 

 

=  

0.5

0

0

 
 
 
 
 
 

�
 × 

0

0

1

0

 
 
 
 
 
 
  

�

 

 

= 

0

0

0

 
 
 
 
 
 

�
       …  I 

 

Consider  

 

 

x × y + x × z  = 

0.5

0

0

 
 
 
 
 
 

�
 × 

40.5

0

0

 
 
 
 
 
 

�
 + 

0.5

0

0

 
 
 
 
 
 

�
 × 

2.5

0

0

 
 
 
 
 
 

�
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=  

20.25

0

0

 
 
 
 
 
 

�
 + 

1.25

0

0

 
 
 
 
 
 

�

 
 

=  

21.5

0

0

 
 
 
 
 
 

�
       … II 

 

As I and II are different we see though V1 is finite 

dimensional hence V1 is only a MOD pseudo linear subalgebra of 

finite dimension over Z43. 

 

Thus M has several finite dimensional MOD interval linear 

subalgebras which are pseudo. 

 

In view of all these we have the following theorem. 

 

THEOREM 3.4: Let V be a MOD interval pseudo linear algebra 

over the field Zp. 

 

i. V has finite dimensional MOD interval linear subalgebra 

which is not pseudo. 

 

ii. V has finite dimensional MOD interval linear subalgebra 

which are also pseudo. 

 

Proof is direct hence left as an exercise to the reader. 

 

Next we proceed onto give example of MOD pseudo interval 

linear algebras. 
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Example 3.26: Let  

 

V = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
 
 
  

 ai ∈ [0, 19), 1 ≤ i ≤ 16, +, ×} 

 

be the MOD interval pseudo linear algebra over the field Z19. 

 

Clearly V is a non commutative MOD interval pseudo linear 

algebra. 

 

P1 = 

1 2 4

3

a a a 0

a 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
  

 ai ∈ Z19, 1 ≤ i ≤ 4, +, ×} ⊆ V 

 

is a MOD interval linear algebra of finite dimension over Z19 

which is not pseudo. 

 

However  

 

P2 = 

1a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
  

 a1 ∈ {0, 0.5, 1, 1.5, 2, …, 

 

17.5, 18, 18.5}, +, ×} ⊆ V 

 

is MOD interval pseudo linear subalgebra of finite dimension 

over Z19.  

 

Clearly the distributive law is not true.  
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 P3 = 

1a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
  

 a1 ∈ [0, 19); +, ×} ⊆ V 

 

is a MOD interval pseudo linear subalgebra of infinite dimension 

over Z19. 

 

Example 3.27: Let  

 

W = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a a

a a a a a

 
 
 
 
 

 ai ∈ [0, 23),  

1 ≤ i ≤ 15, +, ×n}  

 

be the MOD interval pseudo linear algebra over the field Z23.  

 

W has MOD interval pseudo linear subalgebra of finite 

dimension as well as infinite dimension.  

 

However W has also MOD interval linear subalgebras of 

finite dimension which are not pseudo linear subalgebras. 

 

Let P1 = 

1 2 3 4 5a a a a a

0 0 0 0 0

0 0 0 0 0

 
 
 
 
 

 ai ∈ Z23, 1 ≤ i ≤ 5, +, ×n} 

 

 be the MOD interval linear subalgebra over Z23 of finite 

dimension over Z23 which is not pseudo. 
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Let  

 

P2 = 

1 4

2 5

3 6

a a 0 0 0

a a 0 0 0

a a 0 0 0

 
 
 
 
 

 ai ∈ {0, 0.1, 0.2, …, 0.9, 1, 1.1,  

 

…, 21.1, 21.2, …, 22, 22.1, …, 22.9}, 1 ≤ i ≤ 6; +, ×n} ⊆ W  

 

is a finite dimensional MOD interval pseudo linear subalgebra 

over Z23; this is pseudo only. 

 

 

Example 3.28: Let  

 

M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 15, +, ×n} 

 

be the MOD interval pseudo linear algebra of infinite dimension 

over the field Z43. 

 

M has both finite and infinite dimensional MOD interval 

pseudo linear subalgebra over Z43.  

 

M has also finite dimensional MOD interval linear 

subalgebra which is not pseudo. 

 

Next we see we can define MOD interval pseudo linear 

transformation as in case of vector spaces. 
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Example 3.29: Let  

 

M = 

1

2

3

10

a

a

a

a

 
 
 
 
 
 
  

�

ai ∈ [0, 13); 1 ≤ i ≤ 10, +, ×n} 

 

be the MOD interval pseudo linear algebra over Z13.  

 

N = 
1 2 5

6 7 10

a a a

a a a

 
 
 

…

…
 ai ∈ [0, 13); 1 ≤ i ≤ 10, +, ×n} 

 

be the MOD interval pseudo linear algebra over Z13. 

 

Define η: M → N by  

 

 

η

1

2

10

a

a

a

  
  
  
  
   
  

�
 = 

1 2 3 4 5a a a a a

0 0 0 0 0

 
 
   

 

 

be the MOD interval pseudo linear transformation.  

 

 

ker η ≠ 

0

0

0

  
  
   
  
    

�
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in fact  

 

ker η = 

6

7

10

0

0

0

0

0

a

a

a

 
 
 
 
 
 
 
 
 
 
 
 
  

�

 ai ∈ [0, 13); 6 ≤ i ≤ 10} ⊆ M 

 

is a subspace of M.  

 

It is left as an open conjecture to find the algebraic structure 

enjoyed by 
nZHom (V, W) where V and W are MOD interval 

pseudo linear algebras built using [0, n) over the field Zn. 

  

Next we proceed onto describe the notion of MOD interval 

pseudo linear operator on the MOD interval pseudo linear 

algebra over field Zn, n a prime. 

 

We will describe this by the following example. 

 

Example 3.30: Let  

 

M = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
 
 
 
 
  

 ai ∈ [0, 5); 1 ≤ i ≤ 10, +, ×n} 

 

be the MOD interval pseudo linear algebra over the field Z5. 

 



Algebraic Structures on MOD Subsets … 129 

 

 

 

 

 

Define η: M → M be the MOD interval pseudo linear operator 

defined by  

 

η

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

  
  
  
  
  
  
    

 = 

1 2

5 6

9 10

a a

0 0

a a

0 0

a a

 
 
 
 
 
 
  

. 

 

 

Clearly ker η ≠ 

0 0

0 0

0 0

0 0

0 0

  
  
   
  
  
  
    

. 

 

ker η = 

1 2

4 5

0 0

a a

0 0

a a

0 0

 
 
 
 
 
 
  

 ai ∈ [0, 5); i = 1, 2, 4, 5; +, ×n} 

 

 

is the MOD interval linear operator where kernel η is different 

from  

 

0 0

0 0

0 0

0 0

0 0

  
  
   
  
  
  
    

. 
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Example 3.31: Let  

 

V = {(a1, a2, a3, a4, a5, a6, a7) | ai ∈ [0, 11); 1 ≤ i ≤ 7, +, ×} 

 

be the MOD interval pseudo linear algebra over the field Z11. 

 

Let η: V → V be defined by  

 

η(a1, a2, …, a7) = (0, a2, 0, 0, 0, 0, 0) 

 

for every (a1, a2, …, a7) ∈ V. 

 

η is the MOD interval pseudo linear operator of V with  

 

ker η = {(a1 0 a3 … a7) | a1, a3, a4, …, a7 ∈ [0, 7), +, ×} 

 

is a pseudo sublinear algebra of V. 

 

Next we proceed onto describe and develop the notion of 

MOD interval pseudo S-linear algebra over the S-ring. 

 

Example 3.32: Let  

 

P = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
 
 
  

 ai ∈ [0, 21); 1 ≤ i ≤ 12, +, ×n} 

 

be the MOD interval pseudo S-linear algebra over the S-ring. 

 

Example 3.33: Let  

 

M = 
1 2 3 4

5 6 7 8

a a a a

a a a a

 
 
 

 ai ∈ [0, 24); 1 ≤ i ≤ 8, +, ×n} 

 

be the MOD interval pseudo S-linear algebra over the S-ring. 
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Example 3.34: Let  

 

M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
 
 
 
  

 ai ∈ [0, 18); 1 ≤ i ≤ 24, +, ×n} 

 

be the MOD interval pseudo S-linear algebra over the S-ring Z18. 

 

We see M has S-pseudo MOD interval sublinear algebras of 

both infinite and finite dimension.  

 

However S-MOD interval linear algebras which are non 

pseudo are of finite dimension  

 

P1 = 

1a 0 0

0 0 0

0 0 0

 
 
 
 
  

� � �
 a1 ∈ Z18; +, ×n} ⊆ M 

 

is a MOD interval S-linear algebra which is not pseudo but P1 is 

of finite dimension.  

 

 

P2 = 

1a 0 0

0 0 0

0 0 0

 
 
 
 
  

� � �
 a1 ∈ [0, 18), +, ×n} ⊆ M 
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is a MOD interval pseudo S-linear subalgebra of infinite order.  

 

P3 = 

1a 0 0

0 0 0

0 0 0

 
 
 
 
  

� � �
 a1 ∈ {0, 0.5, 1, 1.5, 2, …, 

17, 17.5} ⊆ [0, 18), +, ×n} ⊆ M  

 

is a MOD interval pseudo S-linear subalgebra of finite dimension 

over S-ring Z18. 

 

Next we consider the MOD interval pseudo linear algebra 

built using [0, n) over a subset which is a field ⊆ Zn by some 

examples. 

 

Example 3.35: Let  

 

W = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
 
 
 
 
  

 ai ∈ [0, 46); 1 ≤ i ≤ 10, +, ×n} 

 

be the MOD interval pseudo linear algebra over the field  

F = {0, 23} ⊆ [0, 46).  

 

W has MOD interval pseudo linear subalgebras of both finite 

and infinite dimension.  

 

Further W has all its MOD interval linear subalgebra which 

is not pseudo is finite dimensional. 

 

However we cannot say by this all finite dimension pseudo 

linear subalgebras are not pseudo for there exists MOD interval 

pseudo linear subalgebras of finite dimension over F. 

 



Algebraic Structures on MOD Subsets … 133 

 

 

 

 

 

 

 

 

For V = 

a 0

0 0

0 0

0 0

0 0

 
 
 
 
 
 
  

 a ∈ {0, 0.5, 1, 1.5, 2, 2.5, …, 

 

 

44, 44.5, 45, 45.5} ⊆ [0, 46), +, ×n} ⊆ W  

 

 

is a MOD interval pseudo linear subalgebra of finite dimension 

over F = {0, 23}.  

 

Hence the claim. 

 

 

 

T = 

a 0

0 b

0 0

0 0

0 0

 
 
 
 
 
 
  

 a, b ∈ Z46, +, ×n} 

 

 

is a MOD interval linear subalgebra of finite dimension over  

F = {0, 23} which is not a pseudo linear subalgebra of W.  

 

Thus MOD interval pseudo linear algebras can have MOD 

interval linear algebras which are not pseudo. 

 

Further these MOD interval pseudo linear algebras can have 

MOD interval vector subspaces which are not linear subalgebras. 
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For  

 

S = 

1 2

3 4

a a

0 0

0 0

0 0

a a

 
 
 
 
 
 
  

 ai ∈ {0, 0.5, 1, 1.5, 2, 2.5, …, 44, 44.5, 

 

45, 45.5} ⊆ [0, 46); 1 ≤ i ≤ 4} ⊆ W  

 

is only a MOD interval pseudo vector subspace of W and is not a 

pseudo linear subalgebra for if  

 

 

x = 

0.5 0

0 0

0 0

0 0

0 0.5

 
 
 
 
 
 
  

 and y = 

0.5 0

0 0

0 0

0 0

0.5 0

 
 
 
 
 
 
  

 ∈ S 

 

then  

 

x ×n y = 

0.25 0

0 0

0 0

0 0

0 0

 
 
 
 
 
 
  

  ∉ S. 

 

Thus W has proper subsets which are MOD interval vector 

subspaces but they are not MOD interval linear subalgebras as 

product operation ×n is not closed on S. 

 

Thus W has MOD interval vector subspaces which are not 

MOD interval pseudo linear subalgebras. 
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However all MOD interval pseudo linear subalgebras are 

MOD interval vector subspaces.  

 

Finally the following result is true in case of MOD interval 

pseudo linear algebras. 

 

THEOREM 3.5: Let S be a MOD interval pseudo linear algebra 

related to the interval [0, n) over the field Zn.  

 

S is a MOD interval vector space over Zn. 

 

 Proof is direct and follows from definitions. 

 

We have MOD interval vector subspaces of S(mentioned in 

the above theorem) which are not MOD interval pseudo linear 

algebras. 

 

This situation will be represented by examples. 

 

Example 3.36: Let S = {([0, 7) × [0, 7) × [0, 7) × [0, 7)) | +, ×} 

= {(a1, a2, a3, a4) | ai ∈ [0, 7), 1 ≤ i ≤ 4, +, ×} be the MOD interval 

pseudo linear algebra over the field Z7.  

 

Consider  

M1 = {(a1, a2, a3, a4) | ai ∈ {0, 0.5, 1, 1.5, 2, 2.5, …, 6, 6.5};  

1 ≤ i ≤ 4, +} ⊆ S is a MOD interval vector subspace of S but is 

not a linear subalgebra of S.  

 

Hence the claim. 

 

Let  

M2 = {(a1, a2, 0, 0) | a1, a2 ∈ {0, 0.1, 0.2, …, 6, 6.1, …, 6.9}, +} 

is a MOD interval vector subspace of S and M2 is not a MOD 

interval pseudo linear subalgebra of S.  

 

Several interesting properties can be derived. 
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Example 3.37: Let  

 

V = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
 
 
  

 ai ∈ [0, 5); 1 ≤ i ≤ 12, +, ×n} 

 

be the MOD interval pseudo linear algebra over the field Z5.  

 

 

 

P1 =  

1 2a a 0

0 0 0

0 0 0

0 0 0

 
 
 
 
  

 a1, a2 ∈ {0, 0.5, 1.0, 1.5, …, 

 

4, 4.5} ⊆ [0, 5), +}  

 

is a MOD interval vector subspace of V and is not a MOD interval 

pseudo linear subalgebra of V for if  

 

 

x = 

0.5 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 and y = 

1.5 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 ∈ P1. 

 

 

x ×n y = 

0.5 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 ×n 

1.5 0 0

0 0 0

0 0 0

0 0 0
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= 

0.75 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 ∉ P1. 

 

So P1 is not a MOD interval pseudo linear subalgebra of V. 

 

Let  

 

P2 = 

1

2

a 0 0

a 0 0

0 0 0

0 0 0

 
 
 
 
  

 a1, a2 ∈ {0, 0.1, 0.2, …, 4, 4.1, 

 

4.2, …, 4.9} ⊆ [0, 5); +} ⊆ V  

 

be the MOD interval vector subspace of V. 

 

Clearly P2 is not a MOD interval pseudo linear subalgebra of V. 

For if  

 

x = 

0.1 0 0

0.7 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 

and  

 

y = 

0.9 0 0

0.5 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 are in P2, 
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then x ×n y = 

0.1 0 0

0.7 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 ×n 

0.9 0 0

0.5 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 

 

   = 

0.09 0 0

0.35 0 0

0 0 0

0 0 0

 
 
 
 
 
 

 ∉ P2. 

 

So P2 is not closed under ×n hence P2 is not a MOD interval 

pseudo linear subalgebra of V. 

 

Next we proceed onto describe S-MOD interval pseudo 

linear algebras or MOD interval pseudo S-linear algebras over 

the S-ring Zn. 

 

Example 3.38: Let V = {(a1, a2) | a1, a2 ∈ [0, 12); +, ×} be the 

MOD interval pseudo linear algebra over the S-ring Z12.  

 

P1 = {(a1, 0) | a1 ∈ [0, 12), +, ×} ⊆ V is a MOD interval 

pseudo S-linear subalgebra of V over Z12. 

 

P2 = {(0, a2) | a2 ∈ [0, 12), +, ×} is a S-MOD interval pseudo 

linear subalgebra of V over Z12.  

 

P1 ∩ P2 = {(0, 0)} and V = P1 ∪ P2. Thus V is a direct sum 

of P1 and P2.  

 

Further M = {(a1, a2) | a1, a2 ∈ Z12, +, ×} is a MOD interval 

S-linear subalgebra of V which is not pseudo.  

 

L = {(a1, a2) | a1 a2 ∈ {0, 0.1, 0.2, …, 1, 1.1, …, 10, 10.1, 

…, 10.9, 11, …, 11.9} ⊆ [0, 12), +} is only a MOD interval  

S-vector subspace of V over Z12.  
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Clearly L is not a S-MOD interval pseudo linear subalgebra 

of V as if  

 

 

x = (0.1, 0.7) and y = (0.2, 0.4) are in L then  

 

x × y = (0.1, 0.7) × (0.2, 0.4) = (0.02, 0.28) ∉ L hence L is 

not a S-MOD pseudo interval linear subalgebra of V over Z12. 

 

Example 3.39: Let  

 

W = 

1

2

3

4

5

6

a

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 ai ∈ [0, 55); 1 ≤ i ≤ 6, +, ×n} 

 

be the S-MOD interval pseudo linear algebra over the S-ring Z55.  

 

 W has both S-MOD interval vector spaces which are not  

S-MOD interval linear subalgebras as well as S-MOD interval 

vector subspaces which are S-MOD interval linear subalgebras. 

 

 

Take  

 

V1 = 

1a

0

0

 
 
 
 
  

�
 a1 ∈ [0, 55), +, ×n} ⊆ W 

 

 

to be a S-MOD interval vector subspace of W which is also a  

S-MOD interval linear subalgebra of W.  

 



140 MOD Pseudo Linear Algebras 

 

 

 

 

Consider  

 

V2 = 

1a

0

0

 
 
 
 
  

�
 a1 ∈ {0, 0.5, 1, 1.5, …, 53, 53.5, 

 

54, 54.5}, +} ⊆ W  

 

is only a S-MOD interval subvector space of W and is not a MOD 

interval S-linear subalgebra of V.  

 

That is if x = 

1.5

0

0

 
 
 
 
 
 

�
 ∈ V2 then 

 

x ×n x = 

1.5

0

0

 
 
 
 
 
 

�
 × 

1.5

0

0

 
 
 
 
 
 

�
 = 

2.25

0

0

 
 
 
 
 
 

�
 ∉ V2. 

 

Hence the claim. 

 

Finding MOD linear transformations of MOD interval linear 

algebras over a field Zp or a field F ⊆ Zn are considered as a 

matter of routine and hence left as an exercise to the reader. 

 

Similarly finding S-MOD linear transformation of S-MOD 

interval linear algebras over S-ring is also left for the reader as 

exercise. Clearly we face with the problem when we have to 

define MOD interval linear functional.  

 

To overcome this we develop and define a special type of 

MOD interval linear algebras and vector spaces. 
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Example 3.40: Let V = {(x1, x2, x3) | xi ∈ [0, 17); 1 ≤ i ≤ 3, +} 

be a special strong MOD interval S-vector space (SS-MOD 

interval S-vector space) over the pseudo S-ring [0, 17).  

 

We see V is a SS-MOD interval S-vector space over the 

pseudo S-ring [0, 17) is a finite dimensional.  

 

Dimension of V over the S-ring [0, 17) is three. 

 

 

Example 3.41: Let  

 

 

M = 

1

2

8

a

a

a

 
 
 
 
  

�
 where ai ∈ [0, 5); 1 ≤ i ≤ 8, +} 

 

 

be the SS-MOD interval S-vector space over the pseudo S-ring 

[0, 5).  

 

Clearly the dimension of M over the pseudo S-ring [0, 5) is 

eight. 

 

We see  

 

P1 = 

1a

0

0

 
 
 
 
  

�
 a1 ∈ [0, 5), +} 
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be the SS-MOD interval S-vector subspace of M over the pseudo 

S-ring [0, 5).  

 

Clearly dimension of P1 is one. 

 

Let  

 

P2 = 

2

3

0

a

a

0

0

 
 
 
 
 
 
 
 
  

�

 a2, a3 ∈ [0, 5), +} ⊆ M 

 

be a SS-MOD interval S-vector subspace over the pseudo S-ring 

[0, 5).  

 

Clearly dimension of P2 is two over the pseudo S-ring  

[0, 5).  

 

We can write M as a direct sum of SS-MOD interval  

S- vector subspaces of M over the pseudo S-ring. 

 

Let  

P3 = 1

2

0

0

0

a

a

0

0

 
 
 
 
 
 
 
 
 
 
 
  

�

 a1, a2 ∈ [0, 5), +} 

 

be the SS-MOD interval S-vector subspace over the S-pseudo 

ring [0, 5). 
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Let  

 

P4 = 

1

2

3

0

0

0

a

a

a

 
 
 
 
 
 
 
 
 
 
 

�

 a1, a2, a3 ∈ [0, 5), +} ⊆ M 

 

be the SS-MOD interval S-vector subspace over the S-pseudo 

ring [0, 5).  

 

Clearly M = P1 + P2 + P3 + P4 such that  

 

 

Pi ∩ Pj = 

0

0

0

  
  
   
  
    

�
; i ≠ j; 1 ≤ i, j ≤ 4 

 

 

is the direct sum of SS-MOD interval S-vector space M over the 

pseudo S-ring [0, 5). 

 

Example 3.42: Let  

 

B = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 15, +} 
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be the SS-MOD interval S-vector space over the pseudo S-ring 

[0, 43).  

 

Clearly B is a finite dimensional SS-MOD interval S-vector 

space over the pseudo S-ring T = [0, 43).  

 

Dimension of B over T is 15. 

 

In fact we can write B as a direct sum of two SS-MOD 

interval S-subspaces in many ways. For take  

 

M1 = 

1 2 3

4 5 6

a a a

a a a

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 6, +} ⊆ B 

 

is a SS-MOD interval S-vector subspace of B over T.  

 

M2 = 1 2 3

4 5 6

7 8 9

0 0 0

0 0 0

a a a

a a a

a a a

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 9, +} ⊆ B 

 

is a SS-MOD interval S-vector subspace of B over T is such that  

 

 

M1 + M2 = B. M1 ∩ M2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

. 
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Let  

 

N1 = 

1

2

3

4

5

a 0 0

a 0 0

a 0 0

a 0 0

a 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 5, +} ⊆ B 

 

and  

 

 

 

N2 = 

1 6

2 7

3 8

4 9

5 10

0 a a

0 a a

0 a a

0 a a

0 a a

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 10, +} ⊆ B 

 

are SS-MOD interval S-vector subspace of B over T.  

 

 

N1 ∩ N2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

 

 

 

and  B = N1 ⊕ N2 is a direct sum.  
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Let  

 

 

L1 = 

1 2 3

4 5 6

a a a

0 0 0

0 0 0

0 0 0

a a a

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 6, +} ⊆ B 

 

 

and  

 

L2 = 

1 2 3

4 5 6

7 8 9

0 0 0

a a a

a a a

a a a

0 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 9, +} ⊆ B 

 

be two SS-MOD interval S-vector subspace of B over the pseudo 

S-ring [0, 43). 

 

 

 Clearly  

 

 

 

L1 ∩ L2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

 and B = L1 ⊕ L2 is a direct sum. 
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Let  

 

T1 = 

1
a 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 a1 ∈ [0, 43), +} ⊆ B 

 

and  

 

 

 

T2 = 

1 2

3 4 5

6 7 8

9 10 11

12 13 14

0 a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 14, +} ⊆ B 

 

be two SS-MOD interval S-vector subspace of B over the pseudo 

S-ring [0, 43).  

 

 

 

 

T1 ∩ T2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

, B = T1 ⊕ T2 

 

 

is a direct sum.  
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Let  

 

 

S1 = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14

a a a

a a a

a a a

a a a

a a 0

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 14, +} ⊆ B 

 

and  

 

 

S2 = 

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 a

 
 
 
 
 
 
  

 a1 ∈ [0, 43), +} ⊆ B 

 

be two SS-MOD interval S-vector subspaces of B over the 

pseudo S-ring [0, 43). 

 

We see  

 

 

S1 ∩ S2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

 

 

 

and B = S1 ⊕ S2 so B is a direct sum. 
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Let  

 

D1 = 

1 3

2 4

a a 0

a a 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 4, +} ⊆ B 

 

and  

 

D2 = 

1

2

3 4 5

6 7 8

9 10 11

0 0 a

0 0 a

a a a

a a a

a a a

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 11, +} ⊆ B 

 

are SS-MOD interval S-vector subspaces of B over T; such that  

 

D1 ∩ D2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

 and B = D1 ⊕ D2 

 

is the direct sum of subspaces. Consider  

 

E1 = 

1

2

3

4

5

0 a 0

0 a 0

0 a 0

0 a 0

0 a 0

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 5, +} ⊆ B 
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and  

 

E2 = 

1 6

2 7

3 8

4 9

5 10

a 0 a

a 0 a

a 0 a

a 0 a

a 0 a

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 10, +} ⊆ B 

 

be two SS-MOD interval S-vector subspaces of B.  

 

 

 

E1 ∩ E2 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

 

 

 

 

and B = E1 ⊕ E2 is a direct sum.  

 

We can also represent B as a direct sum of three subspaces 

in many ways. 

 

Let  

 

 

 

A1 = 

1

2

3

4

5

a 0 0

a 0 0

a 0 0

a 0 0

a 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 5, +}, 
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A2 = 

1 2

3 4

0 a a

0 a a

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 4, +} and 

 

 

A3 = 1 2

3 4

5 6

0 0 0

0 0 0

0 a a

0 a a

0 a a

 
 
 
 
 
 
  

 

ai ∈ [0, 43), 1 ≤ i ≤ 6, +}. 

 

 

Ai ∩ Aj = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

,  i ≠ j; 1 ≤ i, j ≤ 3 

 

and B = A1 ⊕ A2 ⊕ A3 be the direct sum of SS-MOD interval S-

vector subspaces of B. 

 

Let  

 

 

F1 = 

1

2 3 4

5 6 7

8 9 10

11 12 13

0 0 a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
  

  ai ∈ [0, 43), 1 ≤ i ≤ 13, +} ⊆ B, 
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F2 = 

1
a 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 a1 ∈ [0, 43), +} ⊆ B and 

 

 

F3 = 

1
0 a 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 a1 ∈ [0, 43), +} ⊆ B 

 

 

are three SS-MOD interval vector S-subspaces of B such that  

 

Fi ∩ Fj = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

; 1 ≤ i, j ≤ 3, i ≠ j; 

 

F1 ⊕ F2 ⊕ F3 = B is the direct sum.  

 

Let  

 

 

R1 = 

1 2 3
a a a

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 ai  ∈ [0, 43), 1 ≤ i ≤ 3, +} ⊆ B, 
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R2 = 

1 5

2 6

3

4

0 0 0

a a 0

a a 0

a 0 0

a 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 6, +} and 

 

 

R3 = 

1

2

3 4

5 6

0 0 0

0 0 a

0 0 a

0 a a

0 a a

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 6, +} 

 

be there SS-MOD interval S-vector subspaces of B over the 

pseudo S-ring T.  

 

We see Ri ∩ Rj = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

, i ≠ j, 1 ≤ i, j ≤ 3. 

 

B = R1 ⊕ R2 ⊕ R3 is a direct sum of SS-MOD interval S-vector 

subspaces of B over T.  

 

Let  

 

Q1 = 

1 2 3
a a a

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 3, +} ⊆ B, 
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Q2 = 

1

2

3

4

0 0 0

a 0 0

a 0 0

a 0 0

a 0 0

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 4, +} ⊆ B, 

 

Q3 = 

1

2

3

4

0 0 0

0 a 0

0 a 0

0 a 0

0 a 0

 
 
 
 
 
 
  

 ai ∈ [0, 43), 1 ≤ i ≤ 4} ⊆ B and 

 

Q4 = 

1

2

3

4

0 0 0

0 0 a

0 0 a

0 0 a

0 0 a

 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 4} ⊆ B 

 

be four SS-MOD interval S-vector subspaces of B.  

 

Qi ∩ Qj = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
  
  
    

; i ≠ j, 1 ≤ i, j ≤ 4}. 

 

B = Q1 ⊕ Q2 ⊕ Q3 ⊕ Q4 is a direct sum of SS-MOD interval S-

vector subspaces of B.  

 

Likewise the reader can write B as a direct sum.  
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The maximum number of subspace a direct sum can have is 

only 15 and it cannot exceed 15. 

 

Example 3.43: Let  

 

V = 

1

2

12

a

a

a

 
 
 
 
  

�
 ai ∈ [0, 53), +} 

 

be a SS-MOD interval S-vector space over the pseudo S-ring  

[0, 53). 

 

 

 

 

Let W1 = 

1

2

a

a

0

0

 
 
 
 
 
 
  

�

 ai ∈ [0, 53), +, 1 ≤ i ≤ 2} ⊆ V, 

 

 

 

W2 = 

3

4

0

0

a

a

0

0

 
 
 
 
 
 
 
 
 
 
 

�

 a3, a4 ∈ [0, 53); +} ⊆ V, 
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W3 = 
5

6

0

0

0

0

a

a

0

0

 
 
 
 
 
 
 
 
 
 
 
 
  

�

 a5, a6 ∈ [0, 53), +} ⊆ V, 

 

 

 

 

W4 = 
7

8

0

0

0

0

0

0

a

a

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 a7, a8 ∈ [0, 53); +} ⊆ V, 
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W5 = 
9

10

0

0

0

a

a

0

0

 
 
 
 
 
 
 
 
 
 
 
  

�

 a9, a10 ∈ [0, 53), +} ⊆ V  

and 

 

W6 = 

11

12

0

0

0

a

a

 
 
 
 
 
 
 
 
  

�
 a11, a12 ∈ [0, 53), +} ⊆ V 

 

be six SS-MOD interval S-vector subspaces over the pseudo S-

ring [0, 53).  

 

Clearly Wi ∩ Wj = 

0

0

0

0

  
  
   
  
  
  
    

�  i ≠ j; 1 ≤ i, j ≤ 6. 

 

Thus V = W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5 ⊕ W6 is a direct 

sum.  

 

In fact we can write V as a direct sum using any number of 

SS-MOD interval S-vector subspaces of V over the pseudo  

S-ring [0, 53). 
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Example 3.44: Let  

 

T = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
 
 
  

 where ai ∈ [0, 3); 1 ≤ i ≤ 16, +} 

 

be the SS-MOD interval S-vector space over the pseudo S-ring  

S = [0, 3).  

We can write T as a direct sum of subspaces in many ways. 

 

In fact T has several SS-MOD interval S-vector subspaces 

each of finite dimension over S.  

 

Further as T is finite dimensional SS-MOD interval vector S-

space over S every SS-MOD interval S-subspace of T will be 

finite dimensional. 

 

Example 3.45: Let  

 

W = 

1 2

3 4

5 6

7 8

9 10

11 12

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
  

 where ai ∈ [0, 29); 1 ≤ i ≤ 12; +} 

 

be the SS-MOD interval S-vector space over the pseudo S-ring  

X = [0, 29).  

 

W has several SS-MOD interval S-vector subspaces. All SS-

MOD interval S-vector subspaces are finite dimension over  X as 

W itself is a finite dimensional SS-MOD interval S-vector 

subspaces.  
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Next we proceed onto describe SS-MOD transformation of 

the S-vector spaces over X. 

 

Example 3.46: Let  

 

V = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ [0, 11); 1 ≤ i ≤ 9, +} 

 

and  

 

W = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
 
 

 ai ∈ [0, 11); 1 ≤ i ≤ 12, +} 

 

 

be two SS-MOD interval S-vector spaces over the pseudo S-ring. 

 

Define η : V → W by  

 

 

η1

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

  
  
  
  
  

 = 

1 2 3

4 5 6

7 8 9

a a a 0

a a a 0

a a a 0

 
 
 
 
 

. 

 

 

η1 is a SS-MOD interval linear transformation from V to W.  

 

Clearly  

 

ker η1 = 

0 0 0

0 0 0

0 0 0

  
  
  
  
  

. 
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Next η2: V → W;  

 

η2

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

  
  
  
  
  

 = 

1 2 3 4a a a a

0 0 0 0

0 0 0 0

 
 
 
 
 

. 

 

η2 is also a SS-MOD interval linear transformation of V and W.  

 

ker η2 = 1 2

3 4 5

0 0 0

0 a a

a a a

 
 
 
 
 

 ai ∈ [0, 11); 1 ≤ i ≤ 5} ⊆ V 

 

is a nontrivial SS-MOD interval S-vector subspace of V of 

dimension 5.  

 

Thus the SS-MOD interval linear transformation can given 

non empty kernel as well as only null space. 

 

 

Example 3.47: Let  

 

 

V = 

1 2

3 4

5 6

7 8

9 10

11 12

13 14

a a

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
 
 
 

 ai ∈ [0, 41); 1 ≤ i ≤ 14, +} 

 

be the SS-MOD interval pseudo S-vector space over the pseudo 

S-ring P = [0, 41). 
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Let  

 

W = 
1 2 3 4 5 6 7

8 9 10 11 12 13 14

a a a a a a a

a a a a a a a

 
 
 

 ai ∈ [0, 41); 

 

1 ≤ i ≤ 14, +}  

 

be the SS-MOD interval pseudo S-vector space over the pseudo 

S-ring P. 

Let η1: V → W be defined by  

 

η1

1 2

3 4

13 14

a a

a a

a a

  
  
  
  
   
  

� �
 = 

1 2 7

8 9 14

a a a

a a a

 
 
 

…

…
 

 

 

for all 

1 2

3 4

13 14

a a

a a

a a

 
 
 
 
 
 

� �
 ∈ V. ker η1 = 

0 0

0 0

0 0

  
  
   
  
    

� �
. 

 

 

Define η2 : V → W by  

 

 

η2

1 2

3 4

13 14

a a

a a

a a

  
  
  
  
   
  

� �
 = 

1 2 3 7a a a a

0 0 0 0

 
 
 

…

…
 

 

 

be the SS-MOD interval linear transformation of V to W.  
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Clearly  

 

ker η2 = 8

9 10

11 12

13 14

0 0

0 0

0 0

0 a

a a

a a

a a

 
 
 
 
 
 
 
 
 
 
 

 ai ∈ [0, 41); 8 ≤ i ≤ 14} ⊆ V 

 

is a SS-MOD interval pseudo S-vector subspace of V. 

 

Define η3: V → W by  

 

 

η3

1 2

3 4

13 14

a a

a a

a a

  
  
  
  
   
  

� �
 = 

1 2

3 4

5 6

7 8

a a

0 0

a a

0 0

a a

0 0

a a

 
 
 
 
 
 
 
 
 
 
 

 
 

 

for all 

1 2

3 4

13 14

a a

a a

a a

 
 
 
 
 
 

� �
 ∈ V. 

 

Clearly η3 is a SS-MOD interval linear transformation of the  

S-pseudo vector space.  
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ker η3 = 

1 2

3 4

5 6

0 0

a a

0 0

a a

0 0

a a

 
 
 
 
 
 
 
 
  

 ai ∈ [0, 41); 1 ≤ i ≤ 6, +} ⊆ V 

 

is a SS-MOD interval pseudo S-vector subspace of V.  

 

There are several such SS-MOD interval linear 

transformation.  

 

Study of the structure of H[0, 41)(V, W) happens to be a very 

challenging problem. 

 

Next we can describe MOD interval linear operator of  

S-vector spaces V over the pseudo S-ring. 

 

Example 3.48: Let  

 

V = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
 
 
  

 ai ∈ [0, 17); 1 ≤ i ≤ 12, +} 

 

 

be the SS-MOD interval S-vector space over the pseudo S-ring 

[0, 17). 

 

Let η1: V → V defined by  
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η1

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

  
  
  
  
   
  

 = 

1 2 3

4 5 6

a a a

0 0 0

0 0 0

a a a

 
 
 
 
 
 

 

 

be the SS-MOD interval linear operator on V.  

 

 

Clearly ker η1 ≠ 

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
    

 

 

for ker η1 = 1 2 3

4 5 6

0 0 0

a a a

a a a

0 0 0

 
 
 
 
  

 ai ∈ [0, 17); 1 ≤ i ≤ 6, +} 

 

is a SS-MOD interval linear operator on V. 

 

 

η2 : V → V be defined as follows: 

 

 

Let η2 = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

  
  
  
  
   
  

 = 

1 2

3

4 5

6

a 0 a

0 a 0

a 0 a

0 a 0

 
 
 
 
 
 

 

 

 

be the SS-MOD interval linear operator on V.  
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 ker η2 = 

1

2 3

4

5 6

0 a 0

a 0 a

0 a 0

a 0 a

 
 
 
 
  

 ai ∈ [0, 17); 1 ≤ i ≤ 6, +} ⊆ V 

 

is a SS-MOD interval S-vector subspace of V.  

 

Let η3 : V  → V 

 

η3

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

  
  
  
  
   
  

 = 

4 5 6

7 8 9

10 11 12

1 2 3

a a a

a a a

a a a

a a a

 
 
 
 
 
 

 
 

be a SS-MOD interval pseudo linear operator so that 

 

ker η3 = 

0 0 0

0 0 0

0 0 0

0 0 0

  
  
   
  
    

. 

 

Example 3.49: Let  

 

V = 
1 2 3

4 5 6

a a a

a a a

 
 
 

 ai ∈ [0, 29); 1 ≤ i ≤ 6, +} 

 

be a SS-MOD interval S-vector space.  

 

η1: V → V; Let  

 

η1
1 2 3

4 5 6

a a a

a a a

   
  
   

 = 
1

2

a 0 0

0 0 a
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be the SS-MOD interval operator on S-vector space with  

 

ker η1 = 
1 2

3 4

0 a a

a a 0

 
 
 

 ai ∈ [0, 29); 1 ≤ i ≤ 4; +} ⊆ V; 

 

is a SS-MOD interval S-vector subspace of V. 

 

Let η2 : V → V be defined by  

 

 

η2
1 2 3

4 5 6

a a a

a a a

   
  
   

 = 
1 2 3a a a

0 0 0

 
 
 

 

 

 

be the SS-MOD interval operator on S-vector space V. 

 

ker η2 = 
1 2 3

0 0 0

a a a

 
 
 

 ai ∈ [0, 29); 1 ≤ i ≤ 3, +} ⊆ V 

 

is a SS-MOD interval S-vector subspace of V.  

 

Finding the algebraic structure enjoyed by  

P = Hon[0, n)(V, V)  is a different task. 

 

Is P ≅ V? 

 

Next we proceed onto give one or two examples of SS-MOD 

interval pseudo S-linear algebras. 

 

Example 3.50: Let  

 

W = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 9; +, ×n} 
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be the SS-MOD interval pseudo S-linear algebras over the 

pseudo S-interval ring [0, 43).  

 

W cannot have subspaces of finite order.  

 

Every subspace of W is finite dimensional as W is a  

SS-MOD interval pseudo S-linear algebra over [0, 43) the pseudo 

S-interval ring. 

 

Example 3.51: Let  

 

M = 

1 2

3 4

17 18

a a

a a

a a

 
 
 
 
  

� �
 ai ∈ [0, 15); 1 ≤ i ≤ 18, +, ×n} 

be the SS-MOD interval pseudo S-linear algebra over the pseudo 

S-interval ring P = [0, 15). M is a finite dimensional SS-MOD 

interval pseudo S-linear algebra over P.  

 

Clearly dim M = 15. Hence all SS-MOD interval pseudo S-

linear subalgebras of M are finite dimensional. 

 

 

P1 = 

1 2a a

0 0

0 0

 
 
 
 
  

� �
 a1, a2 ∈ [0, 15), +, ×n} ⊆ M, 

 

 

P2 = 

3 4

0 0

a a

0 0

0 0

 
 
 
 
 
 
  

� �

 a3, a4 ∈ [0, 15), +, ×n} ⊆ M and 
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P3 = 1 2

13 14

0 0

0 0

a a

a a

 
 
 
 
 
 
  

� �

 ai ∈ [0, 15), 1 ≤ i ≤ 14; +, ×n} ⊆ M 

 

are SS-MOD interval pseudo S-linear subalgebras of M over P. 

 

Further M = P1 ⊕ P2 ⊕ P3 is a direct sum and as  

 

 

Pi ∩ Pj = 

0 0

0 0

0 0

  
  
   
  
    

� �
 i ≠ j and 1 ≤ i, j ≤ 3. 

We can write M as a direct sum and of SS-MOD interval  

S-pseudo linear subalgebras in many ways. 

 

Example 3.52: Let  

 

V = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ [0, 33); 1 ≤ i ≤ 9, +, ×} 

 

 

be the SS-MOD interval S-pseudo linear algebra over the  

S-interval pseudo ring P = [0,33).  

 

Clearly V is non commutative as × is a non commutative 

operation on V. 

 

Clearly dimension of V over P is 9 and all SS-MOD interval 

pseudo S-linear subalgebras of V are also finite dimensional.  
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V can be written as a direct sum of SS-MOD interval  

S-linear subalgebras. 

 

 

Example 3.53: Let  

 

S = 

1

2

10

a

a

a

 
 
 
 
  

�
 ai ∈ [0, 10); 1 ≤ i ≤ 10, +, ×n} 

 

be the SS-MOD interval pseudo S-linear algebra over the pseudo 

S-ring R = [0, 10). 

 

Dimension of S over R is 10.  

 

All S-sublinear subalgebras of S over R is also finite and is 

of dimension less than 10. 

Now we proceed onto define the notion of SS-MOD interval 

transformation, SS-MOD interval linear operator and SS-MOD 

interval linear functional.  

 

Only in case SS-MOD interval S-pseudo vector spaces as 

well as SS-MOD interval S-pseudo interval linear algebras we 

can define the notion of SS-MOD interval linear functional. 

 

All these we only illustrate by examples. 

 

 

Example 3.54: Let  

 

 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 12, +} 
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and  

 

R = 
1 2 3 4 5 6 7

8 9 10 11 12 13 14

a a a a a a a

a a a a a a a

 
 
 

 ai ∈ [0, 43); 

 

1 ≤ i ≤ 14, +}  

 

be any two SS-MOD interval S-pseudo vector space over the  

S-pseudo ring X = [0, 43). 

 

η1 : S → R be the SS-MOD interval linear transformation 

defined by  

 

 

η1

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

  
  
  
  
  

 = 
1 2 3 4 5 6

7 8 9 10 11 12

0 a a a a a a

a a a a a a 0

 
 
 

. 

 

ker η1 = 

0 0 0 0

0 0 0 0

0 0 0 0

  
  
  
  
  

. 

 

 

Define η2 : S → R by   

 

 

η2

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

  
  
  
  
  

 = 
1 3 5

2 4 6

a a a 0 0 0 0

a a a 0 0 0 0

 
 
 

 

 

 

be the SS-MOD interval linear transformation with  
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ker η2 = 1 2

3 4 5 6

0 0 0 0

0 0 a a

a a a a

 
 
 
 
 

 ai ∈ [0, 43); 1 ≤ i ≤ 6; +} 

 

 

is a SS-MOD interval linear transformation with nontrivial 

kernel. 

 

Example 3.55: Let  

 

 

V = 

1 2

3 4

15 16

a a

a a

a a

 
 
 
 
  

� �
 where ai ∈ [0, 24); 1 ≤ i ≤ 16, +} 

 

be the SS-MOD interval S-pseudo vector space over the  

S-pseudo ring B = [0, 24). 

 

 

Let η1 : V → V defined by  

 

 

η1

1 2

3 4

15 16

a a

a a

a a

  
  
          

� �
 = 

1

3

15

a 0

a 0

a 0

 
 
 
 
 
 

� �
 

 

 

be the SS-MOD interval linear operator of the S-pseudo vector 

space.  
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Clearly  

 

ker η1 = 

1

2

8

0 a

0 a

0 a

 
 
 
 
  

� �
 ai ∈ [0, 24); +} ⊆ V 

 

 

is a SS-MOD interval S-pseudo vector subspace of V over the 

pseudo S-ring [0, 24). 

 

Define  

 

η2 : V → V; η2

1 2

3 4

15 16

a a

a a

a a

  
  
  
  
   
  

� �
 = 

1 2

3 4

5 6

a a

a a

0 0

0 0

a a

 
 
 
 
 
 
 
 
  

� �
. 

 

η2 is a SS-MOD interval linear operator of the S-pseudo vector 

space V to V.  

 

 

ker η2 = 

1 2

3 4

5 6

7 8

9 10

0 0

0 0

a a

a a

a a

a a

a a

0 0

 
 
 
 
 
 
 
 
 
 
 
  

 ai ∈ [0, 24); 1 ≤ i ≤ 10, +} ⊆ V 
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is a SS-MOD interval S-vector subspace of V over the pseudo  

S-ring [0, 24). 

 

 

Example 3.56: Let  

 

 

V = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 where ai ∈ [0, 48); 1 ≤ i ≤ 9, +} 

 

 

be the SS-MOD interval S-pseudo vector space over the pseudo 

S-ring [0, 48).  

 

Find T = Hom[0, 48)(V, V).  

 

Prove all ker ηi; ηi ∈ T are SS-MOD interval S-pseudo 

vector subspaces of V over the S-pseudo ring [0, 48).  

 

This simple task is left as an exercise to the reader. 

 

Next we proceed onto describe the notion of SS-MOD 

interval S-pseudo linear algebra over the S-pseudo ring [0, n). 

 

Example 3.57: Let  

 

 

V = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
 
 
  

 where ai ∈ [0, 29); 1 ≤ i ≤ 12, +, ×n} 

 

 

be the SS-MOD interval S-pseudo linear algebra over the S-

pseudo ring P = [0, 29).  
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V has SS-MOD interval S-pseudo linear subalgebras over the 

S-pseudo ring [0, 29).  

 

This V has SS-MOD interval S-pseudo linear subalgebras.  

 

Since V is of finite order over P every S-pseudo linear 

subalgebra is also finite dimensional over P.  

 

V can also be written as a direct sum of SS-MOD interval  

S-pseudo linear subalgebra over the S-pseudo ring [0, 29). 

 

Example 3.58: Let  

 

W = 

1 2 9

10 11 18

19 20 27

a a a

a a a

a a a

 
 
 
  

…

…

…

 where ai ∈ [0, 65); 

 

1 ≤ i ≤ 27, +, ×n}  

 

be the SS-MOD interval S-pseudo linear algebra over the  

S-pseudo ring R = [0, 65). W is of dimension 27 over R.  

 

W has sublinear algebras all of which are finite dimensional 

over R. 

 

W can be written as a direct sum of SS-MOD interval pseudo 

S-linear subalgebras. 

 

 

Let  

 

V1 = 

1 2 9a a a

0 0 0

0 0 0

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 1 ≤ i ≤ 9, +, ×n} ⊆ W. 
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 V2 = 1 2 9

0 0 0

a a a

0 0 0

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 1 ≤ i ≤ 9, +, ×n} ⊆ W 

 

and  

 

 

V3 = 

1 2 9

0 0 0

0 0 0

a a a

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 1 ≤ i ≤ 9, +, ×n} ⊆ W 

 

be SS-MOD interval S-pseudo linear subalgebras of W.  

 

 

Clearly W = V1 ⊕ V2 ⊕ V3 and  

 

 

Vi ∩ Vj = 

0 0 0

0 0 0

0 0 0

  
  
  
  
  

…

…

…

 i ≠ j; 1 ≤ i, j ≤ 3. 

 

Hence W is a direct sum of SS MOD interval S-pseudo linear 

subalgebra each of Vi is of dimension 9 over R;  

i = 1, 2, 3.  

 

 

We can also have  

 

 

P1 = 

1

2

3

a 0 0

a 0 0

a 0 0

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 1 ≤ i ≤ 3; +, ×n} ⊆ W, 

 

 



176 MOD Pseudo Linear Algebras 

 

 

 

 P2 =

1

2

3

0 a 0 0

0 a 0 0

0 a 0 0

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 1 ≤ i ≤ 3, +, ×n} ⊆ W, 

 

 

P3 =

1

2

3

0 0 a 0 0

0 0 a 0 0

0 0 a 0 0

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 

 

1 ≤ i ≤ 3, +, ×n} ⊆ W,  

 

 

P4 = 

1

2

3

0 0 0 a 0 0

0 0 0 a 0 0

0 0 0 a 0 0

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 

 

1 ≤ i ≤ 3, +, ×n} ⊆ W,  

 

 

P5 = 

1

2

3

0 0 0 0 a 0 0

0 0 0 0 a 0 0

0 0 0 0 a 0 0

 
 
 
 
 

…

…

…

 ai ∈ [0, 65); 

 

1 ≤ i ≤ 3, +, ×n} ⊆ W,  

 

P6 = 

1

2

3

0 0 0 0 0 a 0 0 0

0 0 0 0 0 a 0 0 0

0 0 0 0 0 a 0 0 0

 
 
 
 
 

 ai ∈ [0, 65); 

 

1 ≤ i ≤ 3, +, ×n} ⊆ W,  
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 P7 = 

1

2

3

0 0 0 0 0 0 a 0 0

0 0 0 0 0 0 a 0 0

0 0 0 0 0 0 a 0 0

 
 
 
 
 

 ai ∈ [0, 65); 

 

1 ≤ i ≤ 3, +, ×n} ⊆ W,  

 

P8 = 

1

2

3

0 0 0 0 0 0 0 a 0

0 0 0 0 0 0 0 a 0

0 0 0 0 0 0 0 a 0

 
 
 
 
 

 ai ∈ [0, 65); 

 

1 ≤ i ≤ 3, +, ×n} ⊆ W and  

 

P9 = 

1

2

3

0 0 0 a

0 0 0 a

0 0 0 a

 
 
 
 
 

…

…

…

  ai ∈ [0, 65); +, ×n} ⊆ W 

 

 

be nine SS-MOD interval S-pseudo linear algebras of W of each 

dimension three over R.  

 

Clearly W = P1 + P2 + … + P9,  

 

 

Pi ∩ Pj = 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

  
  
  
  
  

 i ≠ j; 1 ≤ i, j ≤ 9 

 

is a direct sum of W. One can also define SS-MOD interval 

projection of W to Pi say p1: W → P1 is a projection defined by  

 

p1

1 4 25

2 5 26

3 6 27

a a a

a a a

a a a

  
  
  
  
  

…

…

…

 = 

1

2

3

a 0 0 0 0

a 0 0 0 0

a 0 0 0 0

 
 
 
 
 

…

…

…

. 



178 MOD Pseudo Linear Algebras 

 

 

 

 

 

It is easily verified p1 is a projection of V on to P1. 

 

Likewise p2: V → V can also be defined as the SS-MOD real 

linear operator of the pseudo S-linear algebras defined by  

 

p2

1 2 9

10 11 18

19 20 27

a a a

a a a

a a a

  
  
  
  
  

…

…

…

 = 

2

11

20

0 a 0 0 0

0 a 0 0 0

0 a 0 0 0

 
 
 
 
 

…

…

…

. 

 

Clearly p2 is a SS-MOD interval projection of V onto P2. 

 

Likewise p3 : V → V defined by  

 

p3

1 2 3 9

10 11 12 18

19 20 21 27

a a a a

a a a a

a a a a

  
  
  
  
  

…

…

…

 = 

3 9

12 18

21 27

0 0 a 0 a

0 0 a 0 a

0 0 a 0 a

 
 
 
 
 

…

…

…

.  

 

 

Thus p3 is the SS-MOD interval linear operator of the pseudo 

S-linear algebra. p3 is a SS-MOD interval linear projection of V 

to P3.  

 

Likewise p4, p5, …, p9 can be defined as SS-MOD interval 

linear operator of the pseudo S-linear algebras which can also 

be realized as projections of the spaces P4, P5, …, P9 

respectively. 

 

Now having seen projections, it is left as an exercise to the 

reader to prove the primary decomposition theorem for finite 

dimensional SS-MOD interval pseudo S-linear algebra (or  

S-vector space)V over the S-pseudo ring [0, n). 

 

But the most relevant question at this stage is that the very 

MOD interval rings are pseudo so MOD interval polynomials 

more so are pseudo as the distributive law is not true in case of 

polynomial rings.  
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So we mention at this stage it is difficult to get the primary 

decomposition theorem for SS-MOD interval S-vector spaces. 

 

However projections exist by getting the primary 

decomposition is little difficult. One step backward to this 

situation is the SS-MOD characteristic values of the linear 

operator of these SS-MOD interval S-pseudo vector spaces.  

 

So we proceed onto discuss and describe essential 

properties need for all these from the SS-MOD interval S-pseudo 

vector space over the S-pseudo ring; [0, n). 

 

To this end we start defining the MOD characteristic values 

of a MOD interval linear operator of the finite dimensional 

vector space V over the S-pseudo ring [0, n). 

 

Let us define the n × n MOD interval matrix A over the  

S-pseudo ring F = [0, n), a MOD characteristic value of A in F is 

a scalar c in F such that (A – cI) is singular (not invertible). 

 

Since c is a MOD interval characteristic value of A if and 

only if det(A – cI) = 0, where I is the  n × n identity matrix; or 

equivalently if and only if det(cI – A) = 0 we form the matrix 

(xI – A) with MOD polynomial entries and MOD polynomial f = 

det(xI – A).  

 

Clearly MOD characteristics value of A in F cannot be just 

the elements c of [0, n) such that f(c) = 0 for one side and  

f(c) ≠ 0 as the distributive law is not true. 

 

We will first show this problem by the following example. 

 

Example 3.59: Let  

 

A = 

0.3 0 0

1 0.7 0

0 0 2.3
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be the MOD interval matrix we find the MOD characteristic value 

of A if and only if det(xI – A)  

 

= det 

x 2.7 0 0

0 x 2.3 0

0 0 x 0.7

+ 
 

+ 
 + 

 
 

 

=  (x + 2.7) × (x + 2.3) × (x + 0.7) 

 

=  (x
2
 + 2.7x + 2.3x + 2.7 × 2.3) × (x + 0.7) 

 

=  (x
2
 + 2x + 0.21) × (x + 0.7) 

 

=  x
3
 + 2x

2
 + 0.21x + 0.7x

2
 + 1.4x + 0.147 

 

=  x
3
 + 2.7x

2
 + 1.61x + 0.147. 

 

Let us denote by  

 

p(x) = (x + 2.7) × (x + 2.3) × (x + 0.7) and  

 

q(x) = x
3
 + 2.7x

2
 + 1.61x + 0.147. 

 

 

Put x = 0.3 then p(0.3) = 0 but  

 

q(0.3)  =  0.081 + 0.243 + 0.483 + 0.147 

 

=  0.954 ≠ 0. 

 

So p(x) ≠ q(x) for x = 0.3.  

 

We now find p(0.7) = 0 but  

 

q(0.7)  =  (0.7)
3
 + 2.7(0 )

2
 + 1.61 × 0.7 + 0.147 

 

=  0.343 + 1.323 + 1.127 + 0.147 
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=  2.94 ≠ 0. 

 

So p(0.7) ≠ q(0.7) so we are in trouble. 

 

Let p(2.3) = 0 but  

 

q(2.3)  =  (2.3)
3
 + 2.7 × (2.3)

2
 + 1.61 × 2.3 + 0.147 

 

=  0.167 + 2.283 + 0.703 + 0.147 

 

= 0.3 ≠ 0. 

 

So p(2.3) = 0 and q(2.3) ≠ 0.  

 

Thus all zeros of p(x) are not equal to zero q(x). 

 

Thus it is left as an open conjecture to find means and 

methods to over this problem. 

 

For in general if p(x) = | det(xI – A)| for any m × m MOD 

interval matrix with entries from [0, m) then as the distributive 

laws are not true in pseudo polynomial rings we see  

p(x) = | det(xI – A)| and q(x) is the expanded form of p(x).  

 

Then p(x) ≠ q(x) on the roots.  

 

Thus we face a very odd situation which has been explained 

by the example. 

 

Example 3.60: Let  

 

A = 

2.5 0 0 0

0 4.2 0 0

0 0 3.5 0

1 0 0 1

 
 
 
 
 
 

 

 

be the MOD interval matrix with entries from [0, 5).  



182 MOD Pseudo Linear Algebras 

 

 

 

 

 

det|xI - A| = 

2.5 x 0 0 0

0 x 0.8 0 0

0 0 x 1.5 0

4 0 0 x 4

+ 
 

+ 
 +
 

+ 

 = p(x) 

 

=  (x + 2.5) (x + 0.8) (x + 1.5) × (x + 4) 

 

=  (x
2
 + 2.5x + 0.8x + 2.5 × 0.8) × (x

2
 + 1.5x +  

4x + 1.5 × 4) 

 

=  (x
2
 + 3.3x + 2) × (x

2
 + 0.5x + 1) 

 

=  x
4
 + 3.3x

3
 + 2x

2
 + 0.5x

3
 + 3.3× 0.5x

2
 + x  

+ x
2
 + 3.3x + 2 

 

=  x
4
 + 3.8x

3
 + 4.65x

2
 + 4.3x + 2 

 

=  q(x). 

 

We see p(x) ≠ q(x) for when x = 2.5 then p(x) = p(2.5) = 0 

but  

 

q(2.5)  = (2.5)
4
 + 3.8 × (2.5)

3
 + 4.65(2.5)

2
 + 4.3 × 2.5 + 2 

 

=  4.0625 + 4.375 + 4.0625 + 0.75 + 2 

 

=  0.25 ≠ 0. 

 

Thus p(2.5) ≠ q(2.5) 

 

p(4.2) = 0 but  

 

q(4.2)  =  (4.2)
4
 + 3.8 × (4.2)

3
 + 4.65 × (4.2)

2
 +  

4.3 × 4.2 + 2 

 

 

=  1.1696 + 1.5344 + 2.026 + 3.06 + 2 
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=  4.7900 ≠ 0. 

 

So p(4.2) ≠ q(4.2) but 4.2 is a root of p(x) and is not a root 

of q(x).  

 

This is because the distributive law is not true.  

 

Likewise the roots of p(x) = 3.5 and 1 are not roots of q(x). 

This is left as an exercise for the reader. 

 

So for the introduction of the notion of MOD characteristic 

values and MOD characteristic vectors we will have several 

values and one has to choose the approximately close one for 

even the simple function y = x
3
 + 1 has several zeros depending 

on the MOD interval [0, n). [26-30]. 

 

So the problem of diagonalization of SS-MOD interval linear 

operator on a SS-MOD interval finite dimensional S-pseudo 

vector space is a open conjecture.  

 

So the concept of spectral theorem, minimal polynomial, 

characteristic polynomial or for that matter MOD roots of the 

MOD polynomials is left as a open conjecture for the following 

two reasons: 

 

i. The fundamental theorems of algebra is not true in case of 

MOD polynomials for a n
th
 degree polynomial can have 

more than n roots or less than n roots. 

 

ii. If p(x) = (x –  α1) … (x – αn) is a MOD polynomial then p(x) 

≠ x
n
 – (α1 + … + αn)x

n – 1
 + i j

i j≠

α α∑  x
n – 2

 – … ± α1 … αn. 

 

iii. We face the above problem as distributive laws are not true 

in general. 

 

Further we see SS-MOD interval S-pseudo vector spaces are 

finite dimensional spaces over the S-pseudo ring [0, n). 
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Next we proceed onto describe the notion of SS-MOD 

interval linear functional on of S-pseudo finite dimensional 

vector spaces over the S-pseudo ring [0, 1). 

 

Example 3.61: Let V = {(a1, a2, a3) | ai ∈ [0, 7); 1 ≤ i ≤ 3, +} be 

the SS-MOD interval pseudo S-vector space S-linear algebra 

over the S-pseudo ring S = [0, 7).  

 

Clearly V is finite dimensional over S = [0, 7).  

 

Clearly [0, 7) is a SS-MOD interval pseudo S-vector space 

(S-linear algebra) over S = [0, 7) of dimension one. 

 

Define a function fn : V → S 

 

fn(a1, a2, a3) = a1t1 + a2t2 + a3t3 where ti ∈ S; 1 ≤ i ≤ 3.  

 

fn is defined as the SS-MOD interval linear functional from 

V to S. 

 

 

fn(3.03, 6.1117, 4.052)  = 3.03 + 6.1117 + 4.052 

 

= 6.1937 (mod 7)  

 

is a MOD interval linear functional of V to S. 

 

Can the collection of all MOD interval linear functional of V 

to S. L[0, n)(V, S) be the dual MOD space of V? 

 

This is also left as an open conjecture for the reader.  

 

Equivalently we propose the conjecture as follows: 

 

Is V
*
 ≅ L[0, n)(V, S)? 

 

Is V
*
 finite dimensional over [0, n)? 
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We give some more MOD interval linear functional of V in 

the following examples. 

 

Example 3.62: Let  

 

 

V = 

1 6

2 7

3 8

4 9

5 10

a a

a a

a a

a a

a a

 
 
 
 
 
 
  

 ai ∈ [0, 12); 1 ≤ i ≤ 10, +} 

 

 

be the MOD interval pseudo vector space over the pseudo MOD 

interval S-ring, S = [0, 12). 

 

 

Define fn: V → S be the MOD interval linear functional given by  

 

 

fn

1 6

2 7

3 8

4 9

5 10

a a

a a

a a

a a

a a

  
  
  
  
  
  
    

 = a1 + a6 + a5 + a10 (mod 12) 

 

that is fn 

3.12 6.76

1.006 7.8801

5.0613 2.11731

0.1138 10.1107

5.00087 11.60012

  
  
  
  
  
  
    

 
 

=  3.12 + 6.76 + 5.00087 + 11.60012 
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=  2.48099 (mod 12). 

 

This is the way the MOD interval linear functional functions 

behave is  

 

kerfn ≠ 

0 0

0 0

0 0

0 0

0 0

 
 
 
 
 
 
  

; for if A = 

0 0

3.115 8.872

1.168 2.881

9.201 11.211

0 0

 
 
 
 
 
 
  

 

 

 

then  fn(A)  =  fn

0 0

3.115 8.872

1.168 2.881

9.201 11.211

0 0

  
  
  
  
  
  
    

  

 

=  a1 + a6 + a5 + a10 

 

= 0? 

 

Can kerfn be again a MOD interval pseudo vector subspace 

of dimension 6 over the S-pseudo interval MOD ring,  

S = [0,12)? 

 

We can have several such MOD interval linear functionals ηI 

from V → S such that the kerηI is a proper MOD interval pseudo 

vector subspace of V. 

 

The following problem is also left as an open conjecture. 

 

Can we define the concept of MOD interval dual basis in 

case of the MOD interval pseudo vector space W, provided  

V ≅ W = L[0, n)(V, S)? 
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Of course we have the notion of MOD interval pseudo 

subspace of V provided dimV = rank fn + nullity fn! 

 

Clearly [0, n) = S the pseudo MOD interval vector space of 

dimension 1 over the pseudo MOD interval ring S = [0, n).  

 

So all these notions can be settled provided for any  

fn: V → S rank fn + nullity fn = dim V where V is finite 

dimensional over the pseudo MOD interval S-ring S = [0, n). 

 

Hence we encounter at each stage with several problems 

when we try to do small (MOD) interval pseudo vector spaces 

more so with all MOD interval vector spaces (or pseudo linear 

algebras). 

 

So the notion of MOD interval pseudo hyperspace of a MOD 

interval finite dimensional pseudo vector space V will have 

meaning provided only proves dim V = rank fn + nullity fn. 

 

fn: V → S = [0, n). 

 

All relation results are at stake and several of them can be 

considered as open conjecture.  

 

Next we can study the concept of MOD interval pseudo 

vector space of MOD polynomials. 

 

Let us recall 

 

 

[0, n)[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, n)}; clearly [0, n)[x] 

 

is only a MOD interval pseudo-ring of polynomials as the 

distributive law is not true in general.  
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Now we can realize S[x] = [0, n)[x] (where S = [0, n) as the 

MOD interval pseudo vector space of MOD polynomials over the 

MOD interval pseudo S-ring S = [0, n).  

 

We will illustrate this by the following examples. 

 

Example 3.63: Let  

 

S[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 7); +} 

 

be the MOD interval pseudo vector space of MOD interval 

polynomials over the pseudo MOD interval S-ring S = [0, 7).  

 

 Clearly {1, x, x
2
, x

3
, …, x

n
, …} = B form the basis of S[x] 

or equivalently the set B spans S[x].  

 

Thus S[x] is an infinite dimensional MOD interval pseudo 

vector space over the pseudo MOD ring S = [0, 7). 

 

In fact by varying S = [0, n) for all finite n ∈ Z
+
 \ {1} we 

get infinite number of MOD interval pseudo vector space of 

polynomials over each S = [0, n); n ∈ Z
+
 \ {1}. In case of reals 

or rationals we get only one vector space of polynomials over 

reals or rationals.  

 

It is important to keep on record that solving polynomial 

equations over R[x] or Q[x] happens to be a difficult task no 

solving equations of polynomials in spaces S[x]; S = [0, n);  

n ∈ Z
+ 

\ {1} happens to be a very difficult one for even the 

simple equation x
3
 = 1 has many zeros [Books 1 and 2]. 

 

So at this stage one cannot blindly say  all properties of 

polynomial vector spaces can be derived in case of MOD interval 

pseudo vector space of polynomials S[x] over S = [0, n).  

 

In fact the fundamental theorem of algebra about roots of a 

n
th
 degree MOD polynomials in S[x] is not in general true.  
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If p(x) ∈ S[x] and deg p(x) = n; p(x) may have n roots or 

more than n roots or less than n roots in S.  

 

Further if α1 ,…, αn are roots of p(x). 

 

p(x) = (x – α1) (x – α2) … (x – αn) then p(x) ≠ x
n
 – (α1 + … 

+ αn)x
n – 1 

+ … ± α1 … αn = q(x) then p(x) ≠ q(x), which is 

clearly attributed to the simple fact in S = [0, n) or in S[x] in 

general the distributive laws are not true.  

 

That is why S and S[x] are only pseudo MOD interval rings. 

 

Further if p(x) and q(x) ∈ S[x] and p(x) is of degree m and 

q(x) is of degree t then  

 

i. p(x) q(x) need not in general be a non zero polynomial and  

 

ii. deg p(x) + deg q(x) ≠ deg (p(x)q(x)). 

 

So the study of MOD interval polynomials S[x] as pseudo 

vector spaces over S in general be have in a very chaotic way. 

 

Secondly we can as a matter of routine define the  notion of 

MOD interval pseudo linear algebra of polynomials over the  

S-MOD interval pseudo ring S = [0, n).  

 

We leave this to the reader but provide examples of them. 

 

Example 3.64: Let  

 

S[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 15) = S, +, ×} 

 

be the MOD interval pseudo linear algebra of polynomials over 

the S-MOD interval pseudo ring S = [0, 15).  

 

Dimension of S[x] over S is two. A basis of S[x] is {1, x}. 
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Now there are R[x] and Q[x] linear algebras over R in case 

of R[x] and over Q in case of R[x] and Q[x]. But in case S[x] 

we have infinite number such S as S = [0, n) and n ∈ Z
+
 \ {1}.  

 

So we have infinite number of MOD interval pseudo linear 

algebras of polynomials S[x] over the S-MOD pseudo ring  

S = [0, n); n ∈ Z
+
 \ {1}. 

 

All the spaces are of dimension two over S = [0, n); n ∈  

Z
+
 \ {1}. 

 

Now we can have infinite dimensional MOD interval pseudo 

linear algebras (or vector spaces) over the S-ring Zn.  

 

We will give one or two example of them. 

 

Example 3.65: Let  

 

S[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 43), +, ×} 

 

be a MOD interval pseudo linear algebra of infinite dimension 

over the field Z43.  

 

Clearly S[x] is infinite dimensional. 

 

 

Example 3.66: Let  

 

S[x] = 
i

i

i 0

a x
∞

=




∑ ai ∈ [0, 17), +} 

 

be a MOD interval vector space of polynomials over the field 

Z17.  

 

S[x] is of infinite dimension over Z17. 
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Example 3.67: Let  

 

V = S[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 12), +} 

 

be the MOD interval S-vector space of polynomials over the S-

ring Z12.  

 

V is an infinite dimensional S-vector space over Z12. 

 

Example 3.68: Let  

 

W = S[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 15); +, ×} 

 

be the MOD interval S-pseudo linear algebra of MOD 

polynomials over the S-ring Z15. 

 

Example 3.69: Let  

 

M = S[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 33); +} 

 

be the MOD interval vector space of polynomials of infinite 

dimension over the field F = {0, 11, 22} ⊆ Z33. 

 

Example 3.70: Let  

 

 

V = S[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 12); +, ×} 

 

 

be the MOD interval pseudo linear algebra of MOD polynomials 

over the field F = {0, 4, 8}. 
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Now working with these spaces of MOD polynomials 

happens to be a difficult task for many of the results true in 

general are not true in case of small (MOD) spaces.  

 

 

So all these study is both innovative and interesting hence 

left as open problems for the reader. 

 

 

Finally now one can easily follow why we encountered with 

so much of problems while trying to solve MOD characteristic 

equations and in finding MOD characteristic values in case of 

MOD interval linear operators. 

 

 

Thus while trying to study small mathematics or small 

(MOD) vector spaces we face with lots and lots of interesting 

and new things.  

 

 

This has left any mathematician with lots of open problems 

as a new opening for the study of small or MOD mathematics in 

particular. 

 

We propose the following problems. 

 

 

Problems 

 

1. Let M = {[0, 23), +} be the MOD real interval group under + 

be the vector space over Z23. 

 

i. Prove M is an infinite dimensional vector space over 

Z23. 

 

ii. Can M have finite dimensional subspaces? 

 

iii. Find all finite dimensional vector subspaces of M. 
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iv. Find 
23ZHom (M M) = N. 

 

v. Is N ≅ M? 

 

 

2. Let W = {[0, 43), +} be the MOD real interval vector space 

over Z43.  

 

Study questions (i) to (v) of problem 1 for this W. 

 

3. Let V = {[0, 7), +} be the MOD real interval vector space 

over Z7.  

 

Study questions (i) to (v) of problem 1 for this V. 

 

4. Let S = 
1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

 
 
 

 ai ∈ [0, 11); 1 ≤ i ≤ 10,  

 

 +} be the MOD real interval vector space over Z11.  

 

Study questions (i) to (v) of problem 1 for this S. 

 

5. Let M = 

1 2

3 4

15 16

a a

a a

a a

 
 
    

� �
 ai ∈ [0, 47); +} be the MOD interval  

 

 vector space over Z47.  
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Study questions (i) to (v) of problem 1 for this M. 

 

6. Let N = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 ai ∈ [0, 29); 1 ≤ i ≤ 12, +} 

 

be the MOD interval vector space over Z29.  

 

Study questions (i) to (v) of problem 1 for this N. 

 

7. Let T = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
    

 ai ∈ [0, 48); 1 ≤ i ≤ 12, +}  

 

 be the S-MOD interval vector space over a S-ring Z48. 

 

i. What is the dimension of T over Z48? 

ii. Can T have subspaces of finite dimension? 

iii. Final  
48ZHom (T,T) = M. 

iv. Find η1 and η2 in M so that ker η1 and kerη2 are 

subspaces different from the zero space. 

v. Is M ≅ T? 

vi. In how many ways can T be written as a direct sum of 

subspaces? 

vii. Can we define MOD projection from T to a subspace of 

T? 

viii. Is it possible to define projection from T to  
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 W = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
    

 ai ∈ Z48, 1 ≤ i ≤ 12, + } ⊆ T  

 

 as a subspace of T? 

 

 

8. Let S = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a a

a a a a a

 
 
 
  

 ai ∈ [0, 12);  

 

1 ≤ i ≤ 15, +} be the MOD interval S-vector space over Z12. 

 

 

 Study questions (i) to (viii) of problem 7 for this S. 

 

9. Let W = 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 
 
    

 ai ∈ [0, 14);  

 

1 ≤ i ≤ 24, +} be the MOD interval S-vector space over Z14. 

 

Study questions (i) to (viii) of problem 7 for this W. 
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10. Let V = 

1

2

20

a

a

a

 
 
 
 
  

�
 ai ∈ [0, 7); 1 ≤ i ≤ 20, ×n, +} be the MOD  

 

 interval pseudo linear algebra over the field Z7. 

 

i. Find dim V over Z7. 

ii. Find a basis of V over Z7. 

iii. Can V have several basis or only one basis? 

iv. Write V as a direct sum. 

 

 

11. Find the algebraic structure enjoyed by 
nZHom (V, V) 

where V is the MOD interval vector space over the field Zn. 

 

 

12. Let V = 

1

2

10

a

a

a

 
 
 
 
  

�
 ai ∈ [0, 43); 1 ≤ i ≤ 10; +} be the MOD  

 

 interval vector space over the field Z43. 

 

 

i. Find S = 
43ZHom (V, V). 

ii. Is S a MOD interval vector space over Z43? 

iii. What is dimension of S over Z43? 

iv. Is V ≅ S? 
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13. Let M = 

1 2 10

11 12 20

21 22 30

a a a

a a a

a a a

 
 
 
  

…

…

…

 ai ∈ [0, 17); 1 ≤ i ≤ 30,  

 

 +} be the MOD interval vector space over Z17. 

 

 Study questions (i) to (iv) of problem 12 for this M. 

 

 

14. Let R = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ [0, 29); 1 ≤ i ≤ 9, +, ×n} be  

 

 the MOD interval pseudo linear algebra over Z29. 

 

 Study questions (i) to (iv) of problem 12 for this R. 

 

 

15. Will 
29ZHom (R, R) be a MOD interval pseudo linear algebra 

over Z29? 

 

 

16. Let W = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
 
 
 
 
  

 ai ∈ [0, 13); 1 ≤ i ≤ 10, +, ×n} be the  

 

 MOD interval pseudo linear algebra over the field Z13.  

 

 Study questions (i) to (iv) of problem 12 for this W. 
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 Can 
13ZHom (W, W) be defined as the dual MOD interval 

pseudo linear algebra of W? 

 

 

17. Let V = 
1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

 
 
 

 ai ∈ [0, 42);  

1 ≤ i ≤ 10,  +}. S-MOD interval vector space over the S-ring 

Z42. 

 

i. Prove V is infinite dimensional over Z42. 

ii. How many S-MOD vector subspaces of V are finite 

dimensional over the S-ring Z42? 

iii. Can V have infinite dimensional S-MOD vector 

subspaces? 

iv. Find 
42ZHom (V, V) = S. 

v. Is S ≅ V? 

vi. Find in S at least two S-MOD linear transformation 

which have kernel to be the zero vector. 

vii. Find at least two S-MOD linear transformations of V 

which has nontrivial kernel. 

 

 

18. Let W = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

 
 
 
 
 
 
 
 
  

 ai ∈ [0, 24);  

 

1 ≤ i ≤ 10, +} be the S-MOD interval vector space over the 

S-ring Z24. 

  

 

Study questions (i) to (vii) of problem 17 for this W. 
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19. Let W = 
1 2 10

11 12 20

a a a

a a a

 
 
 

…

…
 ai ∈ [0, 19); 1 ≤ i ≤ 20, +,  

 

 ×n} be the MOD interval pseudo linear algebra over the field  

 

 

 Z19 and  

 

 

P = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 ai ∈ [0, 19); 1 ≤ i ≤ 10, +, ×n} be a  

 

 MOD interval pseudo linear algebra over the same field Z19. 

 

i. Find S = 
19ZHom (P, W) and R = 

19ZHom (W, P). 

ii. Is R and S in (i) related? 

iii. Find those MOD linear transformation in S such that  

ker η = {zero space}, η ∈ 
19ZHom (P, W). 

iv. What is the special algebraic structure enjoyed by R and 

S? 

 

 

20. Let V = {(a1, a2, …, a8) | ai ∈ [0, 29); 1 ≤ i ≤ 8, +, ×n} and  

 

W = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai ∈ [0, 29); 1 ≤ i ≤ 9, +, ×n} be any  

 

two MOD interval pseudo linear algebras over the field Z29. 
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 Study questions (i) to (iv) of problem 19 for this V and W. 

 

 

 

21. Let X = 

1

2

3

4

5

6

a

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 ai ∈ [0, 43); 1 ≤ i ≤ 6, +, ×n} and  

 

 

Y = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 ai ∈ [0, 43), 1 ≤ i ≤ 8, +, ×n} be any two  

 

MOD interval pseudo linear algebras defined over the field  

F = Z43. 

 

Study questions (i) to (iv) of problem 19 for this X and Y. 

 

 

22. What are the other special features associated with this 

pZHom (V,W), p a prime V and W MOD interval pseudo 

linear algebras built over Zp? 

 

 

23. What is the algebraic structure enjoyed by 
pZHom (V,V) 

where V is a MOD interval pseudo linear algebra over Zp? 

 

 

24. Can these infinite structures be useful in applications where 

distributive laws in general are not true? 
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25. Let X = {(a1, a2, …, a7) | ai ∈ [0, 42); 1 ≤ i ≤ 7, +} be the 

MOD interval S-vector space over the S-ring Z42=S. 

 

 i. What is the dim of X over s-ring Z42? 

 ii. Find a basis of  X over S. 

 iii. Can X have more number of basis? 

 iv. Can we write X as a direct sum? 

 v. Find 
pZHom (X, X) = P. 

 vi. What is dim P? 

 

 

26. Let Y = 

1 2 10

11 12 20

21 22 30

31 32 40

41 42 50

51 52 60

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

…

…

…

�

…

…

 where ai ∈ [0, 15), +, ×n}  

 

 be the MOD interval S-linear algebra over the S-ring  

B = Z15.  

 

Study questions (i) to (vi) of problem 25 for this Y. 

 

 

27. Let  

 

M = 

1 2 7

5 9 14

15 16 21

a a a

a a a

a a a

 
 
 
 
 

…

…

…

 ai ∈ [0, 15); 1 ≤ i ≤ 21;  

 

+, ×n} be the MOD interval S-vector space over the S-ring  

S = Z15.   

 

 

Study questions (i) to (vi) of problem 25 for this M. 
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28. Let T = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 ai ∈[0, 55); 1 ≤ i ≤ 8, +, ×n}  

 

be the MOD interval S-linear algebra over the S-ring Z55.  

 

Study questions (i) to (vi) of problem 25 for this T. 

 

 

29. Let V be a SS-MOD interval S-vector space over the MOD 

interval [0, n). 

  

i. Find the algebraic structure enjoyed by  

Hom[0,n) (V,V) = P. 

 ii. Find whether V ≅ P? 

iii. Is P a SS-MOD interval S-vector space of infinite 

dimensions over [0, n). 

 

 

30. Let V = 

1 2 3 10

11 12 13 20

21 22 23 30

a a a a

a a a a

a a a a

 
 
 
  

…

…

…

 ai ∈ [0, 47),  

 

1 ≤ i ≤ 30, +} be a SS-MOD interval S-vector space over the 

S-pseudo ring S = [0,47). 

  

i. Find SS-MOD interval S-vector subspaces of V. 

ii. Can V have SS-MOD interval S-vector subspace of finite 

dimension? 

iii. Find P = 
[0,47)Hom (V,V). 

iv. Find at least two SS-MOD interval linear operators in P 

such that kernel of them is the zero subspace. 

v. Find η1, η2 ∈ P so that kerη1 and kerη2 are non zero 

subspaces. 
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31. Let W = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a a

a a a a

a a a a

a a a a

 
 
  
 
 
  

 ai ∈ [0, 53); 1 ≤ i ≤ 20, +}  

 

 be the SS-MOD interval S-vector space over the pseudo S-

ring.  

 

Study questions (i) to (v) of problem 30 for this W. 

 

 

 

32. Let B = 

1 2 8

9 10 16

17 18 24

a a a

a a a

a a a

 
 
 
  

…

�

…

  ai ∈ [0,13); 1 ≤ i ≤ 24, +}  

 

 be the SS-MOD interval S-vector space over the pseudo  

S-ring.  

 

Study questions (i) to (v) 30 of problem for this B. 

 

 

 

33. Let D = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 ai  ∈ [0, 2) 1 ≤ i  ≤ 9, +} be the  

 

SS-MOD interval S-vector space over the S-pseudo ring 

[0,2).  

 

 

Study questions (i) to (v) of problem 30 for this D. 
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34. Let N = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 ai ∈m[0, 47), 1 ≤ i ≤ 15, +}  

 

be the SS-MOD interval S-vector space over the S-pseudo 

ring.  

 

 Study questions (i) to (v) of problem 30 for this N. 

 

 

35. Let  

 

M = 
1 2 9

10 11 18

a a a

a a a

 
 
 

…

…
 ai ∈ [0,53); 1 ≤ i ≤ 18, +, ×n}  

 

be the SS-MOD interval S-pseudo linear algebra over the S 

pseudo ring [0, 53). 

 

 Study questions (i) to (v) of problem 30 for this M. 

 

 

36. Let P = [0, 23)[x] = 
i

i

i 0

a x
∞

=




∑ ai ∈ [0, 23), +} be the MOD  

 

 interval polynomial vector space over the field F = Z23. 

 

 i. What is dimension of P over F? 

 ii. Can P have more than one basis? 

 iii. Can P be written as a direct sum? 

 iv. Find all subspaces of P. 

 v. Can P have finite dimensional vector subspaces? 

 vi. Find any other special feature enjoyed by P. 
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37. Let W = [0, 29)[x] = 

i

i

i 0

a x
∞

=




∑  ai ∈ [0, 29), +} be the MOD  

 

interval S-pseudo vector space over the pseudo S-ring  

S = [0, 29). 

 

 i. Find dim of W over S. 

 ii. Find a basis of W over S. 

 iii. Can W have more than one basis set? 

 iv. Can W be written as direct sum of subspaces? 

 v. Is it possible to have a subspace of finite dimension  

  over S? 

 

38. Let R = [0, 42)[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 42), +} be the MOD  

 

interval S-vector space of polynomial over the pseudo  

S-ring. 

 

 Study questions (i) to (v) of problem 37 for this R. 

 

39. Let T = [0, 19)[x] = 
i

i

i 0

a x
∞

=




∑  ai ∈ [0, 19), ×, +} be the  

 

 MOD interval S-pseudo linear algebra over the S-pseudo 

interval ring [0, 19) = S. 

 

 i. Find dimension of T over the S-pseudo interval ring S. 

 ii. Find a basis of T over S. 

 iii. Can T have more than one basis over S? 

 iv. Can T have a finite S-pseudo MOD interval linear  

  subalgebra over S? 

 v. Obtain any other interesting and special features  

  enjoyed by T over S. 
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40. Let V = [0, 22)[x] = 

i

i

i 0

a x
∞

=




∑  ai ∈ [0, 22), +, ×} be the  

 

S-MOD interval pseudo linear algebra over the S-pseudo 

interval MOD ring S = [0, 22). 

 

 i. Find Hom[0, 22)(V, V) = P. 

iii. What is dimension of P over [0, 22)? 

 iii. For T: V → V a MOD S-linear operator find 

1. Characteristic MOD equation. 

2. Characteristic MOD values. 

3. Characteristic MOD vectors. 

iv. Define fn: V → S = [0, 22). 

v. Can Homs(V, S) ≅ V? 

vi. Can the concept of hyper space possible in V? 

 

41. Can V = {(a1 a2 a3 a4 a5) | ai ∈ [0, 13); 1 ≤ i ≤ 5, +} be the 

MOD interval finite dimensional vector space over the MOD 

pseudo interval S-ring; S = [0, 13) satisfy the primary 

decomposition theorem? 

 

42. Obtain any MOD interval finite dimensional vector space 

over a S-pseudo MOD ring [0, n) which satisfies primary 

decomposition theorem for vector spaces. 

 

43. Can the notion of diagonalization ever possible in finite 

dimension MOD vector spaces over S = [0, n), a MOD 

interval pseudo S-ring? 

 

44. Can any of the special classical theorems be true in case of 

MOD interval vector spaces over the S-MOD pseudo interval 

ring [0, n)? 

 

45. Will for any linear operator T : V → V where V is a MOD 

interval finite dimensional vector space over the S-MOD 

interval pseudo ring S = [0, n) satisfy  

nullity T + rank T = dim V? Justify your claim. 
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46. Study problem 45 if V is a S-MOD pseudo linear algebra 

over S = [0, n). 

 

47. Give an example of a MOD polynomial of degree p(x) ∈  

[0, 29)[x] which has only 9 real MOD roots. 

 

48. Give a MOD polynomial of degree 5 which has more than 25 

roots in [0, 625)[x]. 

 

49. Obtain any special or interesting features enjoyed by S-MOD 

interval finite dimensional polynomial pseudo linear 

algebras over S = [0, n) a S-pseudo interval MOD ring. 

 

50. Is there a MOD interval polynomial of degree greater than or 

equal to five which has only five roots in the interval  

[0, 10)? 

 

51. Can we ever have the concept of MOD interval dual space? 

 

52. What are the advantages of using small interval 

polynomials? 

 

53. Find some nice applications of MOD interval linear 

operators of MOD interval finite dimensional S-vector 

spaces over the MOD S-pseudo ring [0, n). 

 

54. Prove all MOD interval vector spaces / pseudo linear 

algebras defined over Zn (n a prime) are always of infinite 

dimension hence all properties associated with finite 

dimension can never be true in these cases. 

 

55. Let V = {(a1 a2 … a9) | ai ∈ [0, 29); 1 ≤ i ≤ 9, +, ×} be a  

SS-MOD interval S-pseudo linear algebra over the pseudo  

S-ring; S = [0, 29). 

 

 i. What is dimension of V over S? 

 ii. How many basis exists for V over S? 

 iii. Can rank T + nullity T = dim V true for any T: V → V? 
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 iv. Can hyperspace be defined for fn: V → S? 

v. Is spectral theorem true in case of V? 

 vi. Does there exist a T: V → V so that diagonalization is  

  possible? 

vii. Can we have any subspace of V so that V cannot be 

completed as a direct sum of subspaces? 

viii. Can primary decomposition theorem be true in case of 

V? 

ix. Find the algebraic structure enjoyed by Hom[0, 29)(V, V). 

x. Find the algebraic structure enjoyed by L(V, S) = P. 

xi. Is P ≅ V? 

xii. Obtain any other special property enjoyed by V. 

 

 

56. Study questions (i) to (xii) when V in problem 55 is 

replaced by W = {[0, 43) [x]
12

 = 
12

i

i

i 0

a x
=

∑ , +, ×} over the 

pseudo MOD interval S-ring S = [0, 43). 

 

 (W contains all polynomials of degree less than or equal 12 

so that x
13

 = 1 and x
14

 = x and so on). 

 

57. Study questions (i) to (xii) when V in problem 55 is 

replaced by R = 
1 2 3 4 8 9

10 11 12 13 17 18

a a a a a a

a a a a a a

 
 
 

…

…
  

ai ∈ [0, 24); 1 ≤ i ≤ 18, +, ×n} over the S-pseudo MOD 

interval ring S = [0, 24). 

 

 



 
 
 
  
Chapter Four 
 
 

 
 
MULTIDIMENSIONAL MOD PSEUDO LINEAR 
ALGEBRAS  
 

In this chapter for the first time authors define the new 

notion of multidimensional MOD vector spaces and MOD pseudo 

linear algebras defined over finite fields or finite S-rings Zm.  

 

The basic concept of MOD multidimensional group and 

pseudo rings are recalled in chapter II of this book.  

 

First we give some examples before we make a formal 

definition of it. 

 

Example 4.1: Let V = {(Rn(7) × 
I

nR (7) × [0, 7)k × Cn(7)) = (a, 

b, c, d) | a ∈ Rn(7), b ∈ 
I

nR  (7), c ∈ [0, 7) and d ∈ Cn(7); I
2
 = I, 

k
2
 = 6k, 

2

Fi  = 6, +} be a mod multi dimensional vector space 

over the field Z7 = F. 

 

Clearly if x = ((3, 2.5), 6 + 2.1I, 6k, 0.5 + 1.5iF) and  

y = ((6, 5), 3 + 1.05I, 3k, 1 + 3iF) ∈ V then x and y are linearly 

independent.  

 

Further V has MOD subspaces of both finite and infinite 

dimension. 
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For V1 = {(Z7 × Z7 × Z7k × Z7) | k
2
 = 6k} ⊆ V is a MOD 

subspace of finite dimension over F = Z7.  

 

V2 = {(Z7 × {0} × {0} × {0})} ⊆ V; is a subspace of 

dimension one over Z7.  

 

V3 = {(Z7 × Z7 × {0} × {0})} ⊆ V is a subspace of 

dimension tow over Z7.  

 

V4 = {([0, 7) × {0} × {0} × {0})} ⊆ V is a subspace of 

infinite dimension over Z7.  

 

We see none of these subspaces can be completed with 

other subspace of V to get the direct sum of V.  

 

 Consider  

 

P1 = {(Rn(7) × {0} × {0} × {0})} ⊆ V is a subspace of V of 

infinite dimension over F = Z7.  

 

P2 = {({0} × 
I

nR (7) × {0} × {0})} ⊆ V is a subspace of V 

of infinite dimension over F = Z7.  

 

P3 = {({0} × {0} × [0, 7)k × {0})} ⊆ V is a subspace of V 

of infinite dimension over the field F = Z7.  

 

P4 = {({0} × {0} × {0} × Cn(7))} ⊆ V is a subspace of V of 

infinite dimension over Z7.  

 

Clearly Pi ∩ Pj = ({0} × {0} × {0} × {0}); i ≠ j,  

1 ≤ i, j ≤ 4.  

 

Further V = P1 ⊕  P2 ⊕ P3 ⊕ P4. Hence the sum is a direct 

sum of subspaces. 

 

 We have V to be a direct sum in other ways also having 

different set of subspaces.  
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Working with this is a matter of routine and left as an 

exercise to the reader. 

 

Example 4.2: Let  

 

W = 

1 5

2 6

3 7

4 8

a a

a a

a a

a a

 
 
    

 where a1, a2 ∈ Cn(13), a3, a4 ∈ Rn(13), 

 

a5, a6 ∈ 
I

nR (13) and a7, a8 ∈ 
g

nR (13); g
2
 = 0, I

2
 = I,   

2

Fi  = 12, +}  

 

be a MOD multi dimensional vector space over the field Z13.  

 

Clearly W is an infinite dimensional MOD multi dimensional 

vector space over the field Z13.  

 

Finding a basis is a challenging problem. 

 

M1 = 

1a 0

0 0

0 0

0 0

 
 
    

 a1 ∈ Cn(13)} ⊆ W, 

 

 

M2 = 

20 a

0 0

0 0

0 0

 
 
    

 a2 ∈ 
I

nR (13)} ⊆ W, 
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 M3 = 1 2

0 0

a a

0 0

0 0

 
 
    

 a1 ∈ Cn(13), a2 ∈ 
I

nR (13)} ⊆ W, 

 

 

M4 = 
3

4

0 0

0 0

a 0

a 0

 
 
    

 a3, a4 ∈ Rn(13)} ⊆ W and 

 

M5 = 
1

2

0 0

0 0

0 a

0 a

 
 
    

 a1, a2 ∈ 
g

nR (13)} ⊆ W 

 

 

are all subspaces of W of infinite dimension over F = Z13.  

 

 

 Clearly Mi ∩ Mj = 

0 0

0 0

0 0

0 0

 
 
 
 
 
 

; i ≠ j; 1 ≤ i, j ≤ 4.  

 

Further it is easily verified. W = M1 ⊕ M2 ⊕ M3 ⊕ M4. 

There are several subspaces of finite dimension over Z13. It is at 

this juncture left as an open conjecture to find how many basis 

can W have over the field F = Z13. Even finding the basis of the 

subspaces of Mi; i = 1, 2, 3, 4 happens to be a challenging open 

conjecture. 
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Example 4.3: Let  

 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
    

 where a1, a2, a3 ∈ Cn(43), 

 

2

Fi  = 42, a4, a5, a6 ∈ Rn(43), a7, a8, a9 ∈ 
I

nR (43) 

and a10, a11, a12 ∈ 
g

nR (43); I
2
 = I, g

2
 = 0, +} 

 

be the MOD multi dimensional matrix vector space over the field 

Z43. This S has subspaces of finite dimension over Z43.  

 

S has also subspaces of infinite dimension over Z43. Since 

all these MOD spaces are of infinite dimension over Z43 the 

properties pertaining to finite dimensional spaces has no 

relevance. 

 

 Next we study the properties of MOD transformation and 

MOD linear operator of a MOD vector space.  

 

At the outset one will be in a position to define MOD linear 

transformation of vector space only if both the spaces are 

defined over the same field.  

 

 We will illustrate this situation by some examples. 

 

Example 4.4: Let  

 

M = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 a1, a2, a3 ∈ Rn(23), a4, 

 

a5, a6 ∈ Cn(23), a7, a8, a9 ∈ 
g

nR (23); 
2

Fi  = 22 and g
2
 = 0, +}  
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be the MOD multi matrix vector space defined over the field  

F = Z23.  

 

 Let  

 

W = 

1 2

3 4

5 6

a a

a a

a a

 
 
 
  

 a1, a2 ∈ 
g

nR (23), a3, a4 ∈ Rn(23) 

 

and a5, a6 ∈ Cn(23), g
2
 = 0, 

2

Fi  = 22, +}  

 

 

be the MOD interval multi matrix vector space over the field  

F = Z23.  

 

Define η : V → W by  

 

η

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

  
  
  
    

 = 

7 8

1 2

4 5

a a

a a

a a

 
 
 
  

. 

 

It is easily verified η is a MOD multi linear transformation of V 

to W.  

 

Clearly ker η ≠ 

0 0 0

0 0 0

0 0 0

  
  
  
    

. 

 

We can define several such MOD multi linear transformations. It 

is left as an open conjecture. 

 

i) What the algebraic structure enjoyed by 
23ZHom (V, W) ? 

ii) Is 
23ZHom (V, W)  an infinite dimensional space over Z23? 
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If the entries of one MOD multi matrix has its entries from 

MOD fields say 
g

nR (m), 
I

nR (m), Cn(m) and 
k

nR (m) and another 

from 
h

nR (m), Rn(m) and Cn(m); m a prime number and they are 

MOD multi matrix vector spaces over Zm.  

 

Then certainly one cannot define MOD multi linear 

transformation as the first space has elements from different 

MOD planes and another from other planes has its entries from 

different MOD planes.  

 

If still one wants to define we can map the elements to zero 

if they are not the same MOD planes.  

 

If there is no MOD plane common in between the two MOD 

multi matrix spaces V and W then the MOD multi matrix 

transformation is only a zero transformation. So under special 

conditions only we can define MOD multi matrix 

transformations. 

 

Next we proceed onto explain MOD multi matrix operator 

from V to V where V is the MOD multi matrix operator by some 

examples. 

 

Example 4.5: Let  

 

V = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 a1, a2 ∈ Rn(19), a3, a4, 

 

a5, a6 ∈ 
I

nR (19), a7, a8 ∈ 
g

nR (19), a9, a10, a11, a12 ∈ Cn(19), +}  

 

 

be the MOD multi matrix vector space over the field F = Z19.  

 

 

Define π : V → V the MOD linear operator in the following 

way.  
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π

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

  
  
  
    

 = 

1 3

5 7

9 11

a 0 a 0

a 0 a 0

a 0 a 0

 
 
 
  

. 

 

 

Clearly π is a linear operator and ker π ≠ 

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
  

. 

 

 

There exists several such MOD multi linear operators. 

 

Example 4.6: Let  

 

M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

 a1, a2, a3 ∈ Rn(29), a4, a7, a10, 

 

a13, a16 ∈ 
I

nR (29), a5, a6, a8, a9 ∈ Cn(29), a11, a12, a14, a15,  

a17, a18 ∈ 
g

nR (29), +}  

 

be the multi dimension matrix vector space over the field Z29. 

We have several MOD linear operators.  

 

Further V has several MOD multi matrix vector subspaces of 

finite dimension over Z29. V also has infinite dimensional MOD 

multi matrix vector subspaces over Z29. 
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 Next we proceed onto discuss about S-MOD multi matrix 

dimensional vector spaces over the S-ring Zm. We will describe 

this by some examples. 

 

Example 4.7: Let  

 

V = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 a1, a2 ∈ Rn(14), a3, a6, a9 ∈ Cn(14),  

 

a4, a7, a8 ∈ 
I

nR (14), a5 ∈ 
g

nR (14), 
2

Fi  = 13, I
2
 = I, g

2
 = 0, +}  

 

be the S-MOD multi matrix vector space over the S-ring Z14.  

 

Clearly V has MOD multi matrix vector subspaces over the 

S-ring Z14. Further V has S-MOD multi matrix vector subspaces 

over the S-ring Z14.  

 

M1 = 

1 2 3a a a

0 0 0

0 0 0

 
 
 
  

  a1, a2 ∈ Rn(14), a3 ∈ Cn(14), +} ⊆ V 

 

is a S-MOD vector subspace of V of infinite dimension over Z14.  

 

P1 = 

1 4

2 5

3 6

a 0 a

a 0 a

a 0 a

 
 
 
  

 a1, a2, a3, a4, a5, a6 ∈ Z14, +} ⊆ V 

 

be the S-MOD multi matrix finite dimensional vector subspace 

over the S-ring Z14.  

 

R1 = 

1 2

3

a a 0

0 0 0

0 0 a

 
 
 
  

 a1, a2 ∈ Rn(14), a3 ∈ Cn(14), +} ⊆ V 
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is a S-MOD multi matrix infinite dimensional vector subspace 

defined over Z14.  

 

We see V has both S-MOD finite and infinite dimensional 

vector subspace over the S-ring Z14. 

 

Example 4.8: Let  

 

P = 

1 6

2 7

3 8

4 9

5 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 a1, a6 ∈ Cn(15), a2, a7 ∈ Rn(15), 

 

a3, a8 ∈ 
I

nR (15), a4, a9 ∈ 
g

nR (15), a5, a10 ∈ 
k

nR (15),  

k
2
 = 14k, 

2

Fi  = 14, I
2
 = I, g

2
 = 0, +}  

 

be the S-MOD multi dimensional matrix vector space over the S-

ring Z15.  

 

We see  

 

B1 = 

1 6
a a

0 0

0 0

0 0

0 0

 
 
  
 
 
  

 a1, a6 ∈ Cn(15)} ⊆ P 

 

is a S-MOD multi dimensional matrix vector subspace over the 

S-ring Z15 of infinite dimension.  
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 B2 = 

2 7

0 0

a a

0 0

0 0

0 0

 
 
  
 
 
  

 a2, a7 ∈ Z15, +} ⊆ P 

 

is a S-MOD multi dimensional matrix vector subspace of finite 

dimension over the S-ring Z15.  

 

 

 

B3 = 
3 8

0 0

0 0

a a

0 0

0 0

 
 
  
 
 
  

 a3, a8 ∈ 〈Z15 ∪ I〉, I2
 = I} ⊆ P 

 

be the S-MOD multi dimensional matrix vector subspace of 

finite dimension over Z15 the S-ring.  

 

 

 

B4 = 
3 8

0 0

0 0

a a

0 0

0 0

 
 
  
 
 
  

 a3, a8 ∈ [0, 15)I, I
2
 = I} ⊆ P 

 

is again a S-MOD multi dimensional matrix vector subspace of 

infinite dimension over Z15 the S-ring.  
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 We see B4 ∩ B3 ≠ 

0 0

0 0

0 0

0 0

0 0

 
 
 
 
 
 
  

. 

 

We proceed to define given V the S-MOD multi dimension 

matrix vector space or a S-MOD multi dimension matrix vector 

space over a S-ring or a field respectively the notion of 

orthogonality.  

 

At the outset we acknowledge that the notion of 

orthogonality is impossible in MOD vector space as product 

cannot be defined. So if we have a product to be defined on V 

we need V to be a MOD multi dimensional matrix linear algebra.  

 

But we see {Rn(m), +, ×} is only a pseudo ring so any MOD 

vector space comprises of 
I

nR (m), Cn(m), 
g

nR (m) and so on 

which means it should be only a pseudo ring so only a pseudo 

linear algebra or S-pseudo linear algebra. 

 

Now we proceed onto describe MOD multi dimensional 

matrix pseudo linear algebra by some examples. 

 

Example 4.9: Let  

 

V = 
1 2 3

4 5 6

a a a

a a a

 
 
 

 a1, a4 ∈ Rn(7), a2, a5 ∈ Cn(7) and 

a3, a6 ∈ 
g

nR (7), g
2
 = 0, 

2

Fi  = 6, +, ×n}  

 

be the MOD multi dimensional matrix pseudo linear algebra over 

the field Z7.  

 

 V has MOD multi dimensional matrix pseudo sublinear 

algebras of both finite and infinite dimension over Z7.  
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However all finite dimensional linear subalgebras are not 

pseudo. But all infinite dimensional linear subalgebras are 

pseudo.  

 

V1 = 
1 2 3

4 5 6

a a a

a a a

 
 
 

 ai ∈ Z7; 1 ≤ i ≤ 6} ⊆ V 

 

is a finite dimensional linear subalgebra of V which is not 

pseudo.  

 

However  

 

V2 = 
1

2

a 0 0

a 0 0

 
 
 

 a2, a1 ∈ Rn(7), +, ×n} 

 

is a MOD multi dimensional matrix pseudo linear algebra of 

infinite dimension over Z7.  

 

Clearly in V the distributive law is not true. 

 

Example 4.10: Let  

 

S = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

a a a a a

a a a a a

a a a a a

a a a a a

 
 
    

 where a1, a2, a3, a4, 

 

a5 ∈ Cn(17), a6, a7, a8, a9, a10 ∈ Rn(17), a11, a12, a13,  

a14, a15 ∈ 
I

nR (17) and a16, a17, a18, a19, a20 ∈ 
g

nR (17),  

I
2
 = I, g

2
 = 0, 

2

Fi  = 16, +, ×n}  

 

be a MOD multi dimensional matrix pseudo linear algebra over 

the field Z17.  

 

 Clearly dimension of S over Z17 is infinite.  



222 MOD Pseudo Linear Algebras 

 

 

 

 

 

 

S has both finite and infinite dimensional sublinear algebras 

over Z17 which are not pseudo and pseudo respectively. 

 

 

W1 = 

1

2

3

4

a 0 0 0 0

a 0 0 0 0

a 0 0 0 0

a 0 0 0 0

 
 
    

 a1 ∈ Cn(17), a2 ∈ Rn(17), 

 

a3 ∈ 
I

nR (17) and a4 ∈ 
g

nR (17), g
2
 = 0,  

I
2
 = I, 

2

Fi  = 16, +, ×n} ⊆ S  

 

is a MOD multi dimensional matrix pseudo linear subalgebra of 

infinite dimension over Z17.  

 

 

W2 = 
1 2 3 4 5

6 7 8 9 10

0 0 0 0 0

a a a a a

0 0 0 0 0

a a a a a

 
 
    

 ai ∈ Z17; 

 

1 ≤ i ≤ 10, +, ×n} ⊆ S  

 

 

is a finite dimensional linear subalgebra of S which is not 

pseudo over Z17.  

 

We can as in case of MOD multi dimensional matrix vector 

spaces define the notion of linear transformation of MOD multi 

dimensional matrix linear algebras provided they are defined 

over the same field Zm.  

 

We will describe this by some examples. 
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Example 4.11: Let  

 

V = 

1

2

3

4

5

a

a

a

a

a

 
 
  
 
 
  

 a1, a2 ∈ Rn(29), a3, a4 ∈ Cn(29), 

a5 ∈ 
g

nR (29); 
2

Fi  = 28, g
2
 = 0, +, ×n}  

 

be the MOD multi dimensional matrix pseudo linear algebra over 

the field Z29. 

 

Let W = 
1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

 
 
 

 a1, a6, a2, 

 

a7 ∈ Rn(29), a3, a8 ∈ Cn(29), a4, a9, a5, a10 ∈ 
g

nR (29),  
2

Fi  = 28, g
2
 = 0, +, ×n}  

 

be the MOD multi dimensional matrix pseudo linear algebra over 

the field Z29.  

 

T : V → W is defined as  

 

 

T

1

2

3

4

5

a

a

a

a

a

  
  
     
  
  
    

 = 
1 2 3 4 5a a a a a

0 0 0 0 0

 
 
 

 

 

 

is a MOD linear multi dimensional transformation of the two 

MOD pseudo linear algebra.  
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It is in fact a difficult problem to find the structure of 

29ZHom (V, W) . 

 

Example 4.12: Let  

 

 

W = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 where a1, a2 ∈ Rn(46), a3, a4 ∈ Cn(46), 

 

a5, a6 ∈ 
I

nR (46), a7, a8 ∈ 
g

nR (46) and a9, a10 ∈ 
h

nR (46); g
2
 = 0,  

I
2
 = I, h

2
 = h and 

2

Fi  = 45, +, ×n}  

 

be the S-MOD multi mixed dimensional pseudo linear algebra 

over the S-ring Z46.  

 

 

S = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
 
 

 a1, a2 ∈ Rn(46), a5, a6 ∈ 
I

nR (46), 

 

a10, a9 ∈ 
h

nR (46), a8, a7 ∈ 
g

nR (46), a3, a4 ∈ Cn(46), +, ×n}  

 

 

be S-MOD mixed multi dimensional pseudo linear algebra over 

the S-ring Z46.  
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Define T : W → S by  

 

T

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

  
  
     
  
  
    

  = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
 
 

 

 

is a S-MOD pseudo linear transformation of the S-MOD linear 

algebras.  

 

 

Clearly kernel T ≠ 

0 0

0 0

0 0

0 0

0 0

 
 
 
 
 
 
  

 in fact kernel 

 

 

 

T = 

0 0

0 0

0 0

0 0

0 0

 
 
  
 
 
  

 a ∈ 
h

nR (46)} 

 

 

is a S-MOD multi dimensional matrix pseudo linear subalgebra 

of W. 

 

 Thus we can have S-linear MOD transformations of  

S-pseudo linear algebras which have non zero kernel. 
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Example 4.13: Let  

 

M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 a1, a2 ∈ Rn(10), a3, a4 ∈ Cn(10), 

 

a5, a6, a7, a8, a9, a10 ∈ 
I

nR (10), a11, a12, a13, a14, a15 ∈ 
g

nR (10);  

g
2
 = 0, I

2
 = I, 

2

Fi  = 9, +, ×n}  

 

be the S-MOD multi mixed dimensional matrix pseudo linear 

algebra over the S-ring Z10.  

 

M has S-linear subalgebras which are not pseudo or mixed 

dimensional.  

 

For take  

 

 

P = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 ai ∈ Z10, 1 ≤ i ≤ 15, +, ×n} ⊆ M 

 

 

is a S-linear subalgebra of M which is not pseudo.  

 

In fact M has several such S-linear subalgebras of finite 

dimension over the S-ring Z10 which are not pseudo or multi 

mixed dimensional.  
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Consider  

 

R = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 a1, a2 ∈ Z10, a3, a4 ∈ C(Ζ10), a5, a6, 

 

a7, a8, a9, a10 ∈ 〈Z10 ∪ I〉, a11, a12, a13,  

 

a14, a15 ∈ 〈Z10 ∪ g〉, +, ×n} ⊆ M  

 

is a S-MOD linear subalgebra of M which is not pseudo but is 

multi dimensional and mixed.  

 

We can also say when are two elements in M orthogonal.  

 

 

Let A = 

1

2

a 0 0

0 0 0

0 0 0

0 0 0

a 0 0

 
 
 
 
 
 
  

 and B = 

1 2

3

0 b b

0 0 0

0 0 0

0 0 0

0 0 b

 
 
 
 
 
 
  

 ∈ M. 

 

 

 

A ×n B = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 

 

so in the language of linear algebra we call this as orthogonal 

elements. (We can call A as the dual of B and vice versa.)  
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We can develop entirely the existing classical theorems in 

case of dual elements or orthogonal complements.  

 

We see if  

 

 

A = 

1

2

a 0 0

0 0 0

0 0 0

0 0 0

a 0 0

 
 
  
 
 
  

 a1 ∈ Rn(10), a2 ∈ 
g
nR (10)} 

 

 

be the S-pseudo linear subalgebra of M then  

 

 

A
⊥
 =  

1 2

3 4 5

6 7 8

9 10 11

12 13

0 a a

a a a

a a a

a a a

0 a a

 
 
  
 
 
  

 a1 ∈ Rn(10), a2, a3 ∈ Cn(10), 

 

 
2

Fi  = 9, a4, a5, a6, a7, a8, a9 ∈ 
I

nR (10), I
2
 = I, a10, a11,  

 

a12, a13 ∈ 
g

nR (10), g
2
 = 0, +, ×n} ⊆ M  

 

 

is a S-pseudo linear subalgebra and A ⊕ A
⊥
 = M so A

⊥
 is the 

orthogonal complement of A.  
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Suppose  

 

 

S = 

1 2 3

4 5 6

7 8 9

a a a

a a a

0 0 0

0 0 0

a a a

 
 
  
 
 
  

 a1, a2 ∈ Rn(10), a3, a4 ∈ Cn(10),  

 

a5, a6 ∈ 
I

nR (10), a13, a14, a15 ∈ 
g

nR (10), g
2
 = 0, I

2
 = I;  

2

Fi  = 9, +, ×n} ⊆ M  

 

is a S-pseudo sublinear algebra of M.  

 

 

S
⊥
 = 

1 2 3

4 5 6

0 0 0

0 0 0

a a a

a a a

0 0 0

 
 
  
 
 
  

 a1, a2, a3, a4 ∈ 
I

nR (10), I
2
 = I, 

 

a5, a6 ∈ 
g

nR (10), g
2
 = 0, +, ×n} ⊆ M  

 

is a S-pseudo linear subalgebra of M over the S-ring Z10.  

 

 

We see S ∩ S
⊥
 = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
  

 and S ⊕ S
⊥
 = M is the direct sum.  
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 Let X = 

F(3, 0.5) 2 0.9i 0

0 0.7 4.2I 0

0 0 0

0 5 0.2g 0.7 6.5g

0.7 0.7g 0 4 5.2g

+ 
 

+ 
 
 

+ + 
 + + 

 ∈ M. 

 

 

We find X
⊥
 is also a S-pseudo linear subalgebra of M.  

 

 

Now X
⊥
 = 

1

2 3

4 5 6

7

8

0 0 a

a 0 a

a a a

a 0 0

0 a 0

 
 
  
 
 
  

 a2, a1 ∈ Cn(10), a3, a4, a5, 

 

a6, a7 ∈ 
I

nR (10), a8 ∈ 
g

nR (10), 
2

Fi  = 9, I
2
 = I,  

g
2
 = 0, +, ×n} ⊆ M  

 

 

is the S-sublinear algebra of M which is also pseudo.  

 

Clearly as X is only one element its complement is a  

S-pseudo linear subalgebra of M.  

 

However X + X
⊥
 ≠ M.  

In view of all these we have all the classical theorems of 

linear algebra is true in case of S-MOD multi dimensional matrix 

pseudo linear algebras in terms of orthogonality.  

 

However we cannot have the notion of norm or inner 

product in the usual manner. But we can built or define these 

notions with appropriate changes. 
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Example 4.14: Let  

 

 

S = 

1

2

3

4

5

6

a

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 a1 ∈ Rn(19), a2 ∈ Cn(19), a3 ∈ 
I
nR (19), 

 

a4 ∈ 
g

nR (19), a5 ∈ 
k

nR (19) and a6 ∈ 
h

nR (19);  

 

k
2
 = 18k, h

2
 = h, I

2
 = I, g

2
 = 0, 

2

Fi  = 18, +, ×n}  

 

 

be the MOD multi dimensional matrix pseudo linear algebra 

defined over the field Z19. 

 

 

 

P1 = 

1a

0

0

0

0

0

 
 
 
 
 
 
 
 
  

 a1 ∈ Rn(19), +, ×n} ⊆ S 

 

is a MOD multi dimensional matrix pseudo linear subalgebra of 

S.  
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We see  

 

P2 = 

2

0

a

0

0

0

0

 
 
 
 
 
 
 
 
  

 a2 ∈ Cn(19), +, ×n} ⊆ S 

 

is also MOD multi dimensional matrix pseudo linear subalgebra 

of S.  

 

We see P1 ∩ P2 = 

0

0

0

0

0

0

  
  
  
   
  
  
  
  
    

 and P1 is orthogonal P2 as MOD  

 

pseudo linear subalgebras however P1 ⊕ P2 ≠ S, so P2 cannot be 

the MOD orthogonal pseudo linear subalgebra which is 

complement of P1 or vice versa.  

 

In fact  

 

P3 = 3

0

0

a

0

0

0

 
 
 
 
 
 
 
 
  

 a3 ∈ 
I

nR (19), I
2
 = I, +, ×n} ⊆ S 

 

is also a MOD pseudo linear subalgebra of S.  
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We see P1 and P3 are perpendicular to each other however 

P3 is not the orthogonal complement of P1 as P1 + P3 ≠ S and  

 

P1 ∩ P3 = 

0

0

0

0

0

0

  
  
  
   
  
  
  
  
    

. 

Consider  

 

P4 = 
4

0

0

0

a

0

0

 
 
 
 
 
 
 
 
  

 a4 ∈ 
g

nR (19), g
2
 = 0, +, ×n} ⊆ S 

 

is also a pseudo sublinear algebra orthogonal with P1 however it 

is not the orthogonal complement of P1 as P1 + P4 ≠ S but we 

have  

 

P1 ∩ P4 = 

0

0

0

0

0

0

  
  
  
   
  
  
  
  
    

. 

 

We can have several such orthogonal pseudo sublinear 

algebras but they are not orthogonal complements of P1.  

 

There is only one MOD pseudo linear algebra.  
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W = 

1

2

3

4

5

0

a

a

a

a

a

 
 
 
 
 
 
 
 
  

 a1 ∈ Cn(19), a2 ∈ 
I

nR (19), a3 ∈ 
g

nR (19),  

 

a4 ∈ 
k

nR (19) and a5 ∈ 
h

nR (19) with I
2
 = I, 

g
2
 = 0, k

2
 = 18k, h

2
 = h and 

2

Fi  = 18, +, ×n} ⊆ S  

 

is a MOD multi dimensional matrix pseudo linear algebra which 

is the orthogonal complement of P1 and  

 

P1 ∩ W = 

0

0

0

0

0

0

  
  
  
   
  
  
  
  
    

and P1 ⊕ W = S. 

 

So the orthogonal complement of any pseudo linear 

subalgebra is unique but one can have several pseudo linear 

subalgebras as well as subsets which can be orthogonal to P1 but 

not the orthogonal complement of P1. 

 

Example 4.15: Let  

 

B = 
1 2

3 4

a a

a a

 
 
 

 a1 ∈ Cn(15), a2 ∈ 
I

nR (15), 

 

a3 ∈ 
g

nR (15) and a4 ∈ 
k

nR (15), 
2

Fi  = 14, I
2
 = I,  

g
2
 = 0, k

2
 = 14k, +, ×n}  
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be the S-MOD multi dimensional matrix pseudo linear algebra 

over the S-ring Z15.  

 

Clearly under the usual product the product is not defined 

though the collection is 2 × 2 square matrix collection. 

 

Let L1 = 
1

0 0

a 0

 
 
 

 a1 ∈ 
g

nR (15), +, ×n} 

 

be the S-MOD matrix pseudo linear subalgebra of B.  

 

We have several S-MOD matrix pseudo linear subalgebras 

which are orthogonal to L1 but there is only one S-MOD matrix 

pseudo linear subalgebra which is the orthogonal complement 

of L1 given by  

 

M1 = 
2 1

3

a a

0 a

 
 
 

 a2 ∈ Cn(15), a1 ∈ 
I

nR (15), 

 

a3 ∈ 
k

nR (15), I
2
 = I, k

2
 = 14k, 

2

Fi  = 14, +, ×n} ⊆ B  

 

is a S-MOD multi dimensional matrix pseudo linear subalgebra 

of B over Z15 which is such that  

 

M1 ∩ L1 = 
0 0

0 0

   
  
   

 and M1 ⊕ L1 = B. 

So M1 is the unique complement S-MOD pseudo linear 

subalgebra of L1.  

 

Now consider P1 = 
1a 0

0 0

 
 
 

 a1 ∈ Z15, +, ×n} ⊆ B  

 

is a S-linear subalgebra of B over Z15 which is such that it is 

orthogonal to L1 and  
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L1 ∩ P1 = 
0 0

0 0

   
  
   

 but L1 + P1 ≠ B 

 

hence P1 cannot serve as the orthogonal complement of L1 

further M1 is of dimension one over the S-ring Z15.  

 

Thus it is important to note that we can have S-linear 

subalgebras which are orthogonal to L1 can be of any finite 

dimension over Z15.  

 

 Further even single elements like  

 

M2 = 
F4.3 6.75i 0

0 0

+ 
 
 

 ∈ B can be orthogonal to L1. 

 

M2 = 
F3 0.7i 0

0 7.25 10.35k

+ 
 

+ 
 ∈ B 

 

is such that L1 is orthogonal to M3.  

 

It is very important to note that in general we may not be in 

a position to define inner product on these MOD multi 

dimensional matrix vector spaces or pseudo linear algebras; for 

we can have the inner product to be zero without the vector 

being zero.  

 

This will be first illustrated by some examples. 

 

Example 4.16: Let V = {Rn(17), +} be a MOD vector space over 

the field Z17. In fact V is a MOD pseudo linear algebra over the 

field Z17.  

 

We see the notion of inner product is not possible on V.  

 

For if α = (1, 4) ∈ V then (α, α) = ((1, 4), (1, 4))  
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= 1 + 16  

 

= 0 (mod 17). 

 

 

 Thus α ≠ (0, 0) but (α, α) = 0.  

 

So only we can define only pseudo inner product on V.  

 

Further as the distributive laws are not true in case of MOD 

pseudo linear algebras even the famous classical Cauchy-

Schwarz inequality in general is not true for α, β ∈ V.  

 

For if α = (1, 4) and β = (4, 1) then  

 

α + β = (5, 5)  

 

and 〈(α + β), (α + β)〉  = 25 + 25 

 

= 16    … I 

 

(||α||
2
 + ||β||

2
) = 0 so 16 < 0.  

 

Two things are to be recalled in this situation  

 

i) No ordering is possible in [0, n); n < ∞. 

 

ii) Thus there sort of classical inequalities are 

impossible in these MOD intervals more so on MOD 

vector spaces and MOD pseudo linear algebras. 

 

Keeping all this in mind we claim that as the very notion of 

inner product does not exist even if we say 〈α, α〉 ≠ 0 if α ≠ 0 

still over coming this by pseudo is not proving to be effective.  

 

Finally the Gram-Schmidt orthogonalization process 

becomes meaningless in case of MOD vector spaces and pseudo 

linear algebras.  
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So the other concepts based on inner product become 

meaningless.  

 

Further as all these MOD spaces are infinite dimensional all 

concepts related to finite dimensional spaces become 

inappropriate. Thus the limitations of these spaces at present 

ends with orthogonality.  

 

Even the notion of orthonormality is meaningless for here 

we define orthogonality of two MOD vectors by saying their 

product is a zero vector and nothing more.  

 

Only this raw or crude definition of orthogonality is taken 

as the only definition in the case MOD vector spaces.  

 

Still more problem is that as we are using only natural 

product ×n the notion of determinants even in case of square 

matrices is not possible.  

 

More so in case of multi dimensional matrices the natural 

product alone is defined even in case of square matrices the 

usual product is not defined.  

We give a simple illustration. 

 

Let  

A = 
F3 2i 7g 4

0.8I 2 2k 1

+ + 
 

+ + 
  

and 

B = 
F4 0.7i 2 3.2g

0.7I 4 0.5k

+ + 
 

+ 
  

where  

3 + 2iF, 4 + 0.7iF ∈ Cn(5); 

 
2

Fi  = 4, 7g + 4, 2 + 3.2g ∈ 
g

nR (5), g
2
 = 0,  

  

0.8I + 2, 0.7I ∈ 
I

nR (5); 
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I
2
 = I and 2k + 1 and 4 + 0.5k ∈ 

k

nR (5); k
2
 = 4k. 

 

A ×n B = 
F3 2i 7g 4

0.8I 2 2k 1

+ + 
 

+ + 
 ×n 

F4 0.7i 2 3.2g

0.7I 4 0.5k

+ + 
 

+   
 

=
F3.4 0i 3 1.8g

1.96I 4 2.5k

+ + 
 

+ 
 .

  
 

But A × B is not defined for we cannot product 7g + 4 with 

0.7I and so on.  

 

Thus the notion of determinant has no sense in case of MOD 

multi dimensional matrices more so on in MOD matrices as 

distributive laws are not true in Rn(m).  

 

So all results related to these concepts cannot be extended in 

case of these MOD spaces. 

 

 Further we are trying to find the feasibility of getting finite 

dimensional MOD multi dimensional vector spaces and MOD 

multi dimensional pseudo linear algebras or their Smarandache 

analogue in the following.  

 

We will define and describe them. 

 

DEFINITION 4.1: Let V = {p × q matrices with entries from 

Rn(m), 
I

n
R (m), Cn(m), 

g

n
R (m), 

h

n
R (m), 

k

n
R (m), k

2
 = (m – 1)k,  

g
2
 = 0, h

2
 = h, I

2
 = I, 

2

F
i  = m – 1 and m a prime, +}.  

 

V is a Smarandache MOD interval MOD multi dimensional 

matrix vector space over the MOD interval S-ring [0, m).  

 

We will give examples of them in the following. 
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Example 4.17: Let  

 

 

V = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
    

 a1, a2 ∈ Rn(7), a3, a4 ∈ Cn(7), 

 

a5, a6 ∈ 
I

nR (7), a7, a8 ∈ 
g

nR (7), a9, a10 ∈ 
k

nR (7),  

a11, a12 ∈ 
h

nR (7); 
2

Fi  = 6, I
2
 = I, g

2
 = 0, k

2
 = 6k, h

2
 = h, +}  

 

be the Smarandache MOD interval multi dimensional matrix 

vector space over the MOD interval S-ring R = [0, 7). 

 

 Clearly V is a finite dimensional space over the S-ring  

R = [0, 7).  

 

Now in this case all the finite dimensional properties 

barring inner product can be derived with simple appropriate 

modifications. 

 

Example 4.18: Let  

 

M = 

1

2

3

4

5

6

7

a

a

a

a

a

a

a

 
 
 
 
 
 
 
 
 
 
 

 a1 ∈ Rn(11), a2, a3 ∈ Cn(11), a4 ∈ 
I
nR (11), 

 

a5 ∈ 
g

nR (11), a6 ∈ 
h

nR (11)  and a7 ∈ 
k

nR (11); 
2

Fi  = 10,  

I
2
 = I, g

2
 = 0, h

2
 = h, k

2
 = 10k, +}  
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be the Smarandache MOD interval multi dimensional matrix 

vector space of finite dimension over the MOD interval S-ring  

R = [0, 11).  

 

This has subvector spaces. The possible basis as follows: 

 

 

B = 

(0, 1)

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 

,  

(1, 0)

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 

, 

F

0

1 0i

0

0

0

0

0

 
 

+ 
 
 
 
 
 
 
 
 

, 

F

0

0 i

0

0

0

0

0

 
 

+ 
 
 
 
 
 
 
 
 

, 

F

0

0

1 0i

0

0

0

0

 
 
 
 +
 
 
 
 
 
 
 

,  

 

 

F

0

0

0 i

0

0

0

0

 
 
 
 +
 
 
 
 
 
 
 

, 

0

0

0

1 0I

0

0

0

 
 
 
 
 

+ 
 
 
 
 
 

, 

0

0

0

0 I

0

0

0

 
 
 
 
 

+ 
 
 
 
 
 

,  

0

0

0

0

1 0g

0

0

 
 
 
 
 
 
 +
 
 
 
 

, 

 

 

0

0

0

0

0 1g

0

0

 
 
 
 
 
 
 +
 
 
 
 

, 

0

0

0

0

0

1 0h

0

 
 
 
 
 
 
 
 

+ 
 
 

,

0

0

0

0

0

0 h

0

 
 
 
 
 
 
 
 

+ 
 
 

,

0

0

0

0

0

0

1 0k

 
 
 
 
 
 
 
 
 
 + 

,

0

0

0

0

0

0

0 k

 
 
 
 
 
 
 
 
 
 + 

. 
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 This MOD interval multi dimension of M over R = (0, 11) is 

14. 

 

 This is the way basis are calculated. One can find several 

sets of basis but all of them will have the same cardinality. 

However finding the basis is not a very easy job. 

 

Example 4.19: Let  

 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a a

a a a a

a a a a

a a a a

 
 
  
 
 
  

 where a1, a2, a3, a4 ∈ Rn(23), 

 

a5, a6, a7, a8 ∈ 
I

nR (23), a9, a10, a11, a12 ∈ Cn(23), a13, a14,  

a15, a16 ∈ 
g

nR (23) and R17, a18, R19, R20 ∈ R
k
(23),  

I
2
 = I, g

2
 = 0; k

2
 = 22k, 

2

Fi  = 22; +}  

 

be the Smarandache MOD interval MOD multi dimensional 

matrix vector space over the S-MOD interval ring [0, 23). 

 

 Find the basis of S. S has subspaces all of them are finite 

dimension over the S-MOD interval ring.  

 

P1 = 

1a 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
  
 
 
  

 a1 ∈ Rn(23), +} ⊆ S 

 

is a S-MOD interval subspace of dimension two where the basis  
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 B1 = 

(1, 0) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
  
 
 
  

, 

(0, 1) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
  

 
 
  

 

 

of P1 over the S-MOD interval ring [0, 23).  

 

 

Let P2 = 

1
0 a 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 a bk

 
 
  
 
 
 + 

 a1 ∈ Rn(23), a + bk ∈ 

 
k

nR (23), k
2
 = 22k} ⊆ S  

 

 

be the S-MOD interval multi dimensional vector space over the 

S-MOD interval ring [0,23).  

 

 

The basis B2 of P2 is as follows:  

 

 

 

B2 = 

0 (1, 0) 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
  
 
 
  

, 

0 (0, 1) 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 
  

, 
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0k

 
 
 
 
 
 
 + 

,  

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 k

 
 
  

 
 
 +  

. 

 

Thus dimension of P2 is four.  

 

Let P3 =  

1

2

3

0 0 0 0

a 0 0 0

0 a 0 0

0 0 0 a

0 0 0 0

 
 
  
 
 
  

 a1 ∈ 
I

nR (23), a2 ∈ Cn(23), 

a3 ∈ 
g

nR (23)} ⊆ S  

 

be the S-MOD interval MOD multi dimensional matrix vector 

subspace over the S-MOD interval ring [0, 23).  

 

The basis B3 of P3 is as follows:  

 

B3 = 

0 0 0 0

1 0I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 

+  
 
 
  

, 

0 0 0 0

0 I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 
 

+ 
 
 
 
  

, 

 

 

0 0 0 0

0 0 0 0

0 1 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 +
 
 
  

, 
F

0 0 0 0

0 0 0 0

0 0 i 0 0

0 0 0 0

0 0 0 0

 
 
 
 +
 
 
  

, 
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0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0g

0 0 0 0

 
 
 
 
 

+ 
  

, 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 g

0 0 0 0

 
 
  

 + 
  

. 

 

 

Clearly dimension of B3 is 6 over the S-MOD interval ring.  

 

Can we say the dimension of S is 40 over S-MOD interval 

ring? 

 

Example 4.20: Let  

 

D = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
  

 a1, a2, a3 ∈ Rn(19), a4, a5, 

 

a6 ∈ Cn(19), a7, a8, a9 ∈ 
g

nR (19), a10, a11, a12 ∈ 
I

nR (19), a13, a14,  

 

a15 ∈ 
h

nR (19), a16, a17, a18 ∈ 
k

nR (19); 
2

Fi  = 18, g
2
 = 0,  

 

I
2
 = I, h

2
 = h, k

2
 = 18k, +}  

 

 

be the S-MOD interval MOD multi dimension matrix vector space 

over the S-MOD interval ring [0, 19).  

 

We have several subspaces of dimension 1, dimension 2 and 

so on. The maximum dimension of D is 36. 
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 Let  

P1 = 

(a, 0) 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
  

 a ∈ Rn(19), +} ⊆ D 

 

is a S-MOD interval multi mixed matrix vector subspace of 

dimension one over the S-MOD interval ring [0,19).  

 

 

P2 = 

(0, a) b 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 
 
 
  

 a ∈ [0, 19), b ∈ Rn(19)} ⊆ D 

 

 

is a S-MOD interval multi dimensional matrix vector subspace of 

D over the S-MOD interval ring [0, 19).  

 

Dimension of P2 over [0, 19) is three.  

 

 Next we proceed onto describe some properties of these 

finite dimensional S-MOD interval multi dimensional matrix 

vector space over the S-MOD interval ring R = [0, m); m a 

prime. 

 

Example 4.21: Let S = {(a1, a2, a3) | a1 ∈ Rn(3), a2 ∈ Cn(3), a3 ∈ 
I

nR (3), +} be the S-MOD interval multi dimensional matrix 

vector space over the S-interval ring [0, 3).  

 

Dimension of S over [0, 3) is two.  
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So S is finite dimensional vector space over the S-MOD 

interval ring. 

 

 Now we can describe the S-MOD interval linear 

transformation in case of these S-MOD interval multi 

dimensional matrix vector spaces over the S-MOD interval ring 

[0, m) by the following examples. 

 

Example 4.22: Let  

 

V = 

1

2

3

4

a

a

a

a

 
 
    

 a1, a2 ∈ Rn(7) and a3, a4 ∈ 
I

nR (7), +} 

 

and  

 

W = {(a1, a2, a3, a4, a5, a6) | a1, a2, a3 ∈ Rn(7) and a4, a5,  

a6 ∈ 
I

nR (7), +} 

 

be two S-MOD interval multi dimensional matrix vector space 

over the S-MOD interval ring [0, 7).  

 

 Let T : V → W defined by  

 

T

1

2

3

4

a

a

a

a

  
  
  
  
     

 = (a1, 0, a2, 0, a3, 0). 

 

ker T = 

4

0

0

0

a

 
 
    

 a4 ∈ 
I

nR (7)} 
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is a subvector space of S-MOD dimension two. Clearly the S 

MOD interval dimension of V is 8 and that of W is 12.  

 

Clearly rank T is 6. Hence rank T + nullity T = dim V. Thus 

6 + 2 = 8. Hence the result. 

 

 Interested reader can derive all results about these finite 

dimensional S-MOD interval multi dimensional matrix vector 

spaces; as it is considered as a matter of routine.  

 

All results can be obtained with simple and appropriate 

modifications.  

 

Next we proceed onto define the notion of S-MOD interval 

multi dimensional matrix pseudo linear algebras over the S-MOD 

interval pseudo ring [0, m).  

 

At this juncture we are forced to observe the following. In 

the MOD interval [0, m); m need not be always a prime for  

[0, m) to be a S-MOD interval ring. [0, m) the MOD interval is a 

S-ring provided Zm is a S-ring and m need not be prime for that 

situation. 

 

Example 4.23: Let  

 

M = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 a1, a2 ∈ 
I

nR (15), a3, a4 ∈ Rn(15), 

 

a5, a6, a7 ∈ Cn(15), a8, a9 ∈ 
g

nR (15), +}  

 

be the S-MOD interval multi dimensional matrix vector space of 

dimension 18 one the S-MOD interval ring [0, 15).  

 

This does not make any changes when Zm is a S-ring or Zm 

is a field.  
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However we will give examples of S-MOD interval multi 

dimensional pseudo linear algebras. 

 

Example 4.24: Let  

 

V = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 a1, a2 ∈ Rn(13), a3, a4 ∈ Cn(13), 

 

a5, a6 ∈ 
I

nR (13) and a7, a8 ∈ 
g

nR (13),  

g
2
 = 0, I

2
 = I, 

2

Fi  = 12, +, ×n}  

 

be the S-MOD interval multi dimensional matrix pseudo linear 

algebra over the S-MOD interval ring S = [0, 13).  

 

Clearly V is finite dimensional over S = [0, 13). All linear 

subalgebras of V over S = [0, 13) are pseudo and are only finite 

dimensional. In fact this gives an infinite collection of S-MOD 

interval pseudo linear algebras of finite dimension. 

 

 However still we cannot define inner product on them. That 

direction is left open for any serious researcher.  

 

Further study of Hom[0, m)(V, W) and Hom[0, m)(V, V) are S-

MOD vector spaces of finite dimension V and W are left as an 

exercise for the reader.  

 

 The only things important to mention at this juncture is that 

by using these S-MOD interval multi dimensional matrix vector 

spaces alone we are in a position to define linear functional not 

treating them as inner product spaces.  

 

We realize [0, m) as a S-MOD interval vector space of 

dimension one over the S-MOD interval ring [0, m). So here 

linear functionals, S-MOD are linear transformations from  
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V → [0, m) where V is a S-MOD interval matrix linear pseudo 

algebra or vector space over the S-MOD interval ring [0, m).  

 

So if V is a S-MOD interval vector space of dimension t then 

the map f : V → [0, m) makes kernel f to be a (t – 1) 

dimensional S-MOD interval vector subspace of V over [0, m). 

Thus these subspaces are defined as S-MOD interval 

hyperspaces.  

 

 We can as in case of MOD multi dimensional matrix vector 

spaces define the notion of orthogonality. Two matrices A, B as 

V are orthogonal if A ×n B = (0) is the zero matrix.  

 

All related results of orthogonality can be derived with 

appropriate modifications in case of these special spaces.  

 

 Once again finding eigen values of eigen vector in case of 

these spaces happens to be an impossibility as the operation + 

and × does not satisfy the distributive laws in the MOD interval 

[0, m) or in all the six MOD planes Rn(m), Cn(m), 
2

Fi  = m – 1, 
I

nR (m), I
2
 = I, 

g

nR (m), g
2
 = 0, 

k

nR (m); k
2
 = (m – 1)k and 

h

nR (m), h
2
 = h.  

 

Hence we are not in a position to overcome this problem. So 

all properties classical or otherwise related with inner product 

cannot be studied in case of MOD vector spaces and MOD pseudo 

linear algebras of finite or infinite dimension as we cannot give 

any form of proper ordering in them.  

 

So the classical spectral theorem cannot be even imagined 

in case of these pseudo linear algebras.  

 

However it is left as an exercise to the reader to find the 

algebraic structure enjoyed by Hom[0, m)(V, [0, m)).  

 

 Will  Hom[0, m)(V, [0, m)) have same dimension as a pseudo 

linear algebra V over the S-MOD interval ring [0, m)?  
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That is will Hom[0, m)(V, [0, m)) ≅ V?  

 

Such problems are left open for the reader.  

 

 Next a brief information regarding the impossibility of 

using polynomials as pseudo linear algebras as distributive law 

is not true.  

 

Further we can have MOD vector spaces as polynomials. 

Here we illustrate them by some examples. 

 

Example 4.25:  Let {
11

nR [x], +} = V be the MOD polynomial 

real vector space over the field Z11.  

 

Example 4.26: Let W = {
I

nR (23)[x], +} be the MOD polynomial 

neutrosophic vector space over the field Z23. 

 

Example 4.27: Let M = {
g

nR (15)[x], +} be the S-polynomial 

MOD vector space over the S-pseudo ring Z15. 

 

 Finding basis and working with them is a matter of routine. 

All the three spaces given above are of infinite dimension.  

 

We can have also finite dimensional MOD polynomial 

vector spaces using the MOD interval pseudo S-ring [0, m).  

 

This is illustrated by some examples. 

 

Example 4.28: Let M = {
h

nR (17)[x], h
2
 = h, +} be the S-MOD 

interval polynomial MOD vector space over the S-MOD interval 

pseudo ring S = [0, 17).  

 

Clearly M is of infinite dimension over S = [0, 17). 

 

Example 4.29: Let P = {
k

nR (23)[x], k
2
 = k, +} be the S-MOD 

interval polynomial MOD vector space over the S-MOD interval 

pseudo ring [0, 23).  
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This has subspaces. All subspaces is only of infinite 

dimension over [0, 23). 

 

Example 4.30: Let W = {Cn(7)[x], 
2

Fi  = 6, +} be the S-MOD 

interval polynomial S-vector space over the S-MOD interval 

pseudo ring [0, 7). 

 

Example 4.31: Let M = {
h

nR (14)[x], h
2
 = h, +} be the S-MOD 

interval polynomial S-vector space over the S-MOD interval 

pseudo ring [0, 14). 

 

Finding basis is an interesting feature.  

All spaces are of infinite dimension over [0, 14).  

 

 Next we proceed to get the finite dimensional S-MOD 

interval polynomial vector spaces over the S-MOD interval 

pseudo ring. 

 

Example 4.32: Let V = {Rn(13)[x]9 | All polynomial of degree 

less than or equal to 9 alone is taken with coefficients from (a, 

b) ∈ Rn(13), +} be the S-MOD interval polynomial S-vector 

space over the S-MOD interval pseudo ring [0, 13). 

 

 The basis for V is {(0, 1), (1, 0),  (1, 0)x, (1, 0)x
2
, (1, 0)x

3
, 

(1, 0)x
4
, …, (1, 0)x

9
, (0, 1)x, (0, 1)x

2
, …, (0, 1)x

9
}. That is MOD 

dimension of V over the S-MOD interval pseudo ring [0, 13) is 

20. 

 

 Likewise we can get finite dimensional S-MOD interval 

polynomial S-vector spaces over the S-MOD interval pseudo ring 

S = [0, m).  

 

Example 4.33: Let M = {Cn(10)[x]6 = {Collection of all 

polynomials of degree less than or equal to six with coefficients 

from Cn(10), 
2

Fi  = 9} be the S-MOD interval polynomial S- 

vector space over the S-MOD interval ring [0, 10).  
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The basis of M is B = {1 + 0iF, 0 + 1iF, x, iFx, x
2
, iFx

2
, x

3
, 

iFx
3
, x

4
, iFx

4
, x

5
, iFx

5
, x

6
, iFx

6
}. Clearly cardinality of B is 14 and 

dimension of M over S is 14. 

 

 Interested reader can find more sets of basis and prove all 

basis is of same cardinality.  

 

Clearly though product is defined for polynomials yet the 

distributive law is not true we have problems working with 

them as (x + 2) × (x + 3) × (x + 4) ≠ x
3
 + 9x

2
 + 26x + 24 we face 

lots of problems.  

 

Thus we cannot define the notion of MOD pseudo linear 

algebras using MOD polynomials over S-MOD interval ring  

[0, m). 

 

Example 4.34: Let W = {
I

nR (28)[x]5 all polynomials of degree 

less than or equal to 5 with coefficients from 
I

nR (27), +, I
2
 = I} 

be the S-MOD interval polynomial MOD S-vector space over the 

S-MOD interval pseudo ring S = [0, 28).  

 

This space is finite dimensional over [0, 28).  

 

A basis for W over S is  

B = {1, I, x, Ix, x
2
, Ix

2
, x

3
, Ix

3
, x

4
, Ix

4
, x

5
, Ix

5
}. Thus W is a S-

vector space of dimension 12 over S = [0, 28).  

 

Any polynomial p(x) ∈ W is of the form p(x) = (3.7 + 

2.5I)x
5
 + (0.72 + 4.9I)x

4
 + (27 + 14I)x

3
 + 6.732Ix

2
 + 10.7354x + 

(20.331 + 1.7234I).  

 

So in general product operation is not well defined as the 

distributive laws is not true.  

 

It is matter of routine to find subspaces, basis direct sum, 

linear transformation, linear operator on any of the S-MOD 

interval polynomial MOD S-vector spaces over the S-MOD 

interval ring S = [0, m); m can be prime or Zm should be a  
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S-ring which is the main criteria for [0, m) to be a S-pseudo 

ring. 

 

 We suggest the following problems for the reader. 

 

 

Problems 

 

 

1. Let V = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a a

a a a a a

 
 
 
  

 a1, a2, a6, a11 ∈  

 

Cn(3), a7, a12, a3 ∈ Rn(3), a8, a13, a4, a9 ∈ 
I

nR (3), a14, a5, a10, 

a15 ∈ 
g

nR (3), +} be the MOD multi matrix vector space over 

the field Z3. 

 

i) Find the number of vector subspaces of finite dimension  

over Z3. 

ii) How many MOD vector subspaces of infinite dimension  

over Z3? 

iii) Write V as the direct sum of subspaces. 

iv) Find at least 3 distinct basis of V over Z3. 

v) Can V have more than one basis? 

 

 

 

2. Obtain all the special features enjoyed by the MOD multi 

matrix dimensional vector space  

 

V = 

1 2 12

13 14 24

25 26 36

a a a

a a a

a a a

 
 
 
  

…

…

…

 a1, a2, a3, …, a12 ∈ Rn(m),  

 

a13, a14, …, a24 ∈ Cn(m) and a25, a26, …, a36 ∈ 
I

nR (m); m a 

prime, +} over the field Zm. 
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3. Let V and W be any two MOD multi matrix vector spaces 

over the field Zm (m a prime). 

 

i) Find 
mZHom (V, W)  = S. 

ii) What is the algebraic structure enjoyed by S? 

iii) Is S a MOD multi matrix vector space of infinite 

dimension over Zm? 

iv) Find R = 
mZHom (W, V) . 

v) What is the algebraic structure enjoyed by R? 

vi) Will S ≅ R? 

 

 

4. Let V = 

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a a

a a a a a

 
 
 
  

 a1, a2, a3 ∈ 

 

Rn(41), a4, a5, a6 ∈ 
I

nR (41), a7, a8, a9 ∈ 
g

nR (41),  a10, a11, a12 

∈ 
h

nR (41), a13, a14, a15 ∈ Cn(41); 
2

Fi  = 40, h
2
 = h, g

2
 = 0, 

 I
2
 = I, +} be the MOD multi dimensional matrix vector 

space  

 

over the field Z41 and B = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 a1, a2 ∈ Rn(41), a3,  

 

a4 ∈ 
I

nR (41), a5, a6 ∈ 
g

nR (41), a7, a8 ∈ 
h

nR (41), a9, a10 ∈ 

Cn(41), I
2
 = I, g

2
 = 0, h

2
 = h, 

2

Fi  = 40, +} be the MOD multi 

dimensional matrix vector space over the field Z41.  

 

Study questions (i) to (vi) of problem (3) for this V and W. 
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5. Let V = {(a1, a2, a3, a4, a5, a6) | a1, a2 ∈ Rn(26), a3 ∈ 
I

nR (26), 

a4, a5 ∈ 
g

nR (26), a6 ∈ Cn(26), +} be the S-MOD multi 

dimensional vector space over the S-ring Z26. 

 

Study questions (i) to (v) of problem (1) for this V.   

 

 

 

6. Let S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 a1, a2, a3, a4, a5, a6 ∈ Rn(17),  

 

a8, a7, a9 ∈ Cn(17), a10, a11, a12 ∈ 
g

nR (17), a13, a14, a15 ∈ 
k

nR (17), 
2

Fi  = 16, g
2
 = 0, k

2
 = 16k, +, ×n} be the MOD 

pseudo multi dimension pseudo linear algebra over the field 

Z17. 

 

i) Study questions (i) to (v) of problem (1) for this S. 

ii) Does S enjoy any other special feature as a pseudo 

linear algebra? 

iii) Can S have subspaces which are not linear subalgebras? 

iv) Obtain a basis of S over Z17. 

 

 

7. Let V and W be any two multi dimensional matrix pseudo 

linear algebras over the field Zp (p a prime). 

 

i) Study the structure of S = 
pZHom (V, W) . 

ii) Find 
pZHom (W, V)  = R. 

iii) Does there exist any relation between S and R? 

iv) Find 
pZHom (V, V)  = P. 
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v) Find 
pZHom (W, W)  = Q. 

vi) Does there exist any relation between P and V? 

vii) Does there exist any relation between Q and W? 

viii) Compare Q, W, V, P, S and R as pseudo linear 

algebras. 

 

 

 

8. Let V = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 a1, a2, a3 ∈ Rn(31), a4,  

 

a5, a6 ∈ Cn(31), a7, a8, a9 ∈ 
I

nR (31), a10, a11, a12 ∈ 
g

nR (31),  

 

 

 

+, ×n} and  

W = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a a

a a a a

a a a a

a a a a

 
 
  
 
 
  

 a5, a1, a2, a3, a4 

 

∈ Rn(31), a6, a7, a8, a9, a10 ∈ 
I

nR (31), a11, a12, a13, a14, a15 ∈  

 

Cn(31), a16, a17, a18, a19, a20 ∈ 
g

nR (31), +, ×n} be the multi  

 

dimensional matrix pseudo linear algebras over Z31. 

 

 

Study questions (i) to (viii) for this V and W. 
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9. Let V = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 a2, a1 ∈ Rn(10), a3, a4,  

 

 

 a5, a6 ∈ 
I

nR (10), a7, a8, a9, a10 ∈ 
g

nR (10) and a11, a12 ∈ 
k

nR (10), I
2
 = I, g

2
 = 0, k

2
 = 9k, +, ×n} and  

 

W = 

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
  
 
 
  

 a1, a2 ∈ Rn(10), a3, a4, a5 ∈ 
I

nR (10), a6  

 

a7, a8 ∈ 
g

nR (10) and a9, a10 ∈ 
k

nR (10), g
2
 = 0, I

2
 = I,  

k
2
 = 9k, +, ×n} be two S-MOD multi dimensional matrix 

pseudo linear algebras over the S-ring Z10. 

 

 

Study questions (i) to (viii) of problem (7) for this V and W. 

 

 

 

10. Let W = 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

a a a a a a

a a a a a a

a a a a a a

a a a a a a

 
 
    

 a1 to a6 ∈  

 

 

Rn(39), a7 to a12 ∈ Cn(39), a13 to a18 ∈ 
I

nR (39), a19 to a24 ∈ 
g

nR (39); g
2
 = 0, I

2
 = I, 

2

Fi  = 38, +, ×n} and  
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V = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  a1 to a9 ∈ Rn(39), a10 to a15 ∈  

 

Cn(39), a16 to a24 ∈ 
I

nR (39) and a25 to a30 ∈ 
g

nR (39); g
2
 = 0, 

I
2
 = I, 

2

Fi  = 39, +, ×n} be two MOD multi mixed dimensional 

matrix pseudo S-linear algebras over the S-ring Z39. 

 

Study questions (i) to (viii) of problem (7) for this V and W. 

 

 

11. Let V = 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

a a a a a a

a a a a a a

a a a a a a

 
 
 
  

 a1, a2, a3,  

 

 

 

 a4 ∈ Cn(14), a5 to a12 ∈ 
I

nR (14), a13 to a16 ∈ 
g

nR (14) and  

a17,  

 

 a18 ∈ 
k

nR (14); g
2
 = 0, I

2
 = I, k

2
 = 13k and 

2

Fi  = 13, +, ×n}  

 

be the S-MOD interval multi dimensional matrix pseudo 

linear algebra over the S-MOD interval pseudo ring [0, 14). 
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 W = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

 
 
    

 a1 to a4 ∈ Cn(14), a5 to  

 

 

a8 ∈ 
I

nR (14), a9 to a12 ∈ 
g

nR (14) and a13 to a16 ∈ 
k

nR (14);  

g
2
 = 0, I

2
 = I, 

2

Fi  = 13 and k
2
 = 13k, +, ×n} be the S-MOD 

interval multi dimensional matrix S-pseudo linear algebra 

over the S-pseudo interval MOD ring [0, 14). 

 

i) Study questions (i) to (viii) of problem (7) for this V 

and W. 

ii) If ×n is replaced by × the usual matrix product in W 

prove the product is not defined. 

 

iii) Obtain any other special features enjoyed by V and W. 

 

 

12. Can there be a square multi dimensional matrix collection 

M so that under usual matrix product ×, {M, ×} is a 

semigroup? 

 

That is for A, B ∈ M; A × B ∈ M. Justify your claim. 
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