
1 INTRODUCTION

Neutrosophic set (NS), the generalization of classic set, fuzzy set, intutionis-
tic fuzzy set, was first introduced by Smarandache. Smarandache [1] defined the
degree of indeterminacy/neutrality as independent component in 1995 (published
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in 1998). NS can express uncertain, imprecise, incomplete and inconsistent infor-
mation more precisely. How to aggregate information is an important problem
in real management and decision process. Due to the complexity of management
environments and decision problems, decision makers may provide their ratings
or judgments to some certain degree, but it is possible that they are not so sure
about their judgments. Namely, there may exist some uncertain, imprecise, in-
complete, and inconsistent information, which are very important factors to be
taken into account when trying to construct really adequate models and solutions
of decision problems. Such kind of information is suitably expressed with neutro-
sophic fuzzy sets rather than exact numerical values, fuzzy or intuitionistic fuzzy.
Thus, how to aggregate neutrosophic fuzzy information becomes an important
part of multi-attribute decision-making with neutrosophic fuzzy sets.

In [17] Zhang-peng Tian et al. solved green product design selection problems
using neutrosophic linguistic information. Xiao-hui Wu et al. [13] established
ranking methods for simplified neutrosophic sets based on prioritized aggrega-
tion operators and cross-entropy measures to solve multi criteria decision making
(MCDM) problem. Interval neutrosophic linguistic aggregation operators were
developed and applied to the medical treatment selection process [16] by Yin-
xiang Ma et al. In [20] Hong-yu Zhang, Jian-qiang Wang and Xiao-hong Chen
defined some reliable operations for interval-valued neotrosophic sets. Based on
those operators they also developed two aggregation operators which were applied
to solve a MCDM problem. Jun Ye introduced in [4] single-valued neutrosophic
hesitant fuzzy weighted averaging (SVNHFWA) operator and a single-valued
neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and us-
ing those operator a multiple-attribute decision-making method was established.
Peide Liu, Yanchang Chu, Yanwei Li, and Yubao Chen [7] presented some oper-
ational laws for neutrosophic numbers (NNs) based on Hamacher operations and
proposed several averaging operators and applied them to group decision mak-
ing. Broumi, Smarandache defined operations based on the arithmetic mean,
geometrical mean and harmonic mean on interval-valued neutrosophic sets in [8].

In this paper we introduce an improved aggregating operator named improved
weighted averaging geometric mean (IWAGM) for real numbers which produces
more meaningful results and extend it for single valued neutrosophic set (SVNS)
as improved single valued weighted averaging geometric (ISVWAG) operator.
We further generalize the IWAGM operator and introduce generalized improved
weighted averaging geometric mean (GIWAGM) which includes a wide range of
weighted average geometric operators. Also we extend the GIWAGM for single
valued neutrosophic numbers. We introduce a new score function and certainty
function which are illustrated using simple examples and applied to numerical
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example. A comparative study highlighting the benefit of this new approach of
ranking in NS has been discussed. An algorithm has been given to find optimum
solution of multi-criteria decision making problem and a numerical illustration
for a network problem has been presented.

The operators developed in this paper are original and have been developed
for SVNS for the first time. Very few works have been done on averaging op-
erator in SVNS. The score function and certainty function newly introduced in
this paper have some benefits compared to the existing ones. The score function
and certainty function defined earlier give same score function value for differ-
ent neutrosophic numbers easily. But the newly proposed ones can remove this
difficulty.

The rest of the paper is structured as follows: Section 2 introduces some con-
cepts of neutrosophic sets and simplified neutrosophic sets. Section 3 describes
weighted average mean (WAM) and weighted geometric mean (WGM) for real
numbers and their limitations. In section 4, we define a new IWAGM for real
numbers and compare the results with the existing ones highlighting the improve-
ment over the WAM and WGM. IWAGM has been extended in neutrosophic
environment in section 5. In section 6, we generalize the IWAGM introduced
in section 4 and extend the generalization for neutrosophic numbers. Section
7 introduces a new approach defining a new score function and certainty func-
tion to compare the neutrosophic numbers. Why the approach is more realistic
and meaningful is discussed in this section. Section 8 presents the algorithm for
finding optimum alternative among alternatives in a decision making problem
in neutrosophic environment using the introduced operator IWAG in subsection
5.2 and the comparison approach defined in section 7. In section 9, a numerical
example demonstrates the application and effectiveness of the proposed aggrega-
tion operator and comparison rules in decision-making problems. We conclude
the paper in section 10.

2 NEUTROSOPHIC SETS

2.1 Definition

Let U be an universe of discourse then the neutrosophic set A is defined
as A = {〈x : TA(x), IA(x), FA(x)〉 , x ∈ U}, where the functions T, I, F: U →
]−0, 1+[ define respectively the degree of membership (or Truth), the degree of
indeterminacy and the degree of non-membership (or falsehood) of the element
x ∈ U to the set A with the condition −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.
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To apply neutrosophic set to science and technology, we consider the neutro-
sophic set which takes the value from the subset of [0, 1] instead of ]−0, 1+[; i.e.,
we consider SNS as defined by Ye in [3].

2.2 Simplified Neutrosophic Set

Let X be a space of points (objects) with generic elements in X denoted by x.
A neutrosophic set A in X is characterized by a truth-membership function TA(x),
an indeterminacy membership function IA(x), and a falsity-membership function
FA(x), if the functions TA(x), IA(x), FA(x) are singleton subintervals/subsets in
the real standard [0, 1], i.e., TA(x) : X → [0, 1], IA(x) : X → [0, 1] and FA(x) :
X → [0, 1]. Then a simplification of the neutrosophic set A is denoted by A =
{〈x, TA(x), IA(x), FA(x)〉 , x ∈ X}.

2.3 Simplified neutrosophic set(SVNS)

Let X be a space of points (objects) with generic elements in X denoted by x.
A SVNS A in X is characterized by a truth-membership function TA(x), an inde-
terminacy membership function IA(x) and a falsity-membership function FA(x),
for each point x ∈ X, TA(x), IA(x), FA(x) ∈ [0, 1]. Therefore, a SVNS A can be
written as ASV NS = {〈x, TA(x), IA(x), FA(x)〉 , x ∈ X}. For two SVNS, ASV NS =
{〈x, TA(x), IA(x), FA(x)〉 , x ∈ X} andBSV NS = {〈x, TB(x), IB(x), FB(x)〉 , x ∈ X},
the following expressions are defined in [12] as follows:
ANS ⊆ BNS if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x).
ANS = BNS if and only if TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x).
Ac = 〈x, FA(x), 1− IA(x), TA(x)〉.

For convenience, a SVNS A is denoted by A = 〈TA(x), IA(x), FA(x)〉 for any x
in X. For two SVNSs A and B, the operational relations (1), (2), (3) are defined
by [3] and (4) by [2]
(1) A+B = 〈 TA(x) + TB(x)− TA(x)TB(x), IA(x) + IB(x)− IA(x)IB(x),FA(x) +
FB(x)− FA(x)FB(x) 〉.
(2) A.B = 〈TA(x).TB(x), IA(x).IB(x), FA(x).FB(x)〉
(3) Aλ =

〈
T λA(x), IλA(x), F λ

A(x)
〉
.

(4) For any scalar λ > 0, λA = 〈min(λTA(x), 1),min(λIA(x), 1),min(λFA(x), 1)〉.

3 AGGREGATION OPERATORS

Aggregation operators are mathematical functions that are used to combine
information. That is, they are used to combine N data (for example, N numerical

144 

Florentin Smarandache, Surapati Pramanik (Editors) 



values) in a single datum. In classical algebra WAM and WGM are very useful
to combine n real numbers a1, a2, . . . , an.
The WAM of n real numbers a1, a2, . . . , an with associated weights w1, w2, . . . , wn
respectively, wi ∈ [0, 1] and

∑
wi = 1, is defined by

∑n
i=1 aiwi.

The WGM of n real numbers a1, a2, . . . , an with associated weights w1, w2, . . . , wn
respectively, wi ∈ [0, 1] and

∑
wi = 1, is defined by

∏n
i=1 a

wi
i .

3.1 Some limitations of WAM and WGM

The result of an aggregation operator is meaningful if its value tends to one or
some number(s) (among those to be combined) whose weight(s) is on the higher
side. They do not correctly aggregate the information, if the aggregated value
does not tend towards maximum arguments or does not lie between the maximum
and minimum arguments. Let us consider some cases.
Example. Case 1: Take two real numbers 0.0001 and 1 with their weights
w1 = 0.9, w2 = 0.1 respectively. Then WAM = 0.10009, WGM = 0.000251.
Case 2: Again take 0.0001 and 1 with their weights w1 = 0.1, w2 = 0.9 respec-
tively. Then WAM = 0.90001, WGM = 0.398107.
From these results we observe that from the first case the value of WGM is more
close to the number whose weight is maximum than WAM . So in this case,
WGM aggregates the numbers more close to the highest weighted number. On
the other side in the second case the value of WAM is nearest to the maximum
weighted number whereas WGM is close to 0.0001, the minimum weighted num-
ber. Here WAM value is more meaningful. The examples show that WAM and
WGM operators may not simultaneously give meaningful result while aggregat-
ing the information. Now we propose a new aggregation operator that always
gives a moderate value close to the maximum weighted number.

4 THE NEWLY PROPOSED WEIGHTED MEAN

Let a1, a2, . . . , an are n real numbers with associated weights w1, w2, . . . , wn
respectively, wi ∈ [0, 1] and

∑
wi = 1. Then we define improved weighted average

geometric mean (IWAGM) as

IWAGM(a1, a2, . . . , an) =
n∑
i=1

a
1
2
i wi

n∏
i=1

a
wi
2
i (1)

New Trends in Neutrosophic Theory and Applications 

145 



4.1 Properties

Let a1, a2, . . . , an are n real numbers. Then the aggregated result of the
IWAGM operator clearly satisfies desired properties of an aggregation operator :

(1). Idempotency: let ai (i = 1, 2, . . . , n) be a collection of real numbers. If all
ai (i = 1, 2, . . . , n) are equal, that is, ai = a, for all(i = 1, 2, . . . , n), then

IWAGM(a1, a2, . . . , an) = a
1
2

∑n
i=1wi

∏n
i=1 a

wi
2 = a

(2). Boundedness: If a− = mini ai and a+ = maxi ai,
∑n

i=1(a
−)

1
2wi

∏n
i=1(a

−)
wi
2 ≤∑n

i=1 a
1
2
i wi

∏n
i=1 a

wi
2
i ≤

∑n
i=1(a

+)
1
2wi

∏n
i=1(a

+)
wi
2 ,

i.e. a− ≤ IWAGM(a1, a2, . . . , an) ≤ a+.

(3). Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator
satisfies IWAGM(aσ(1), aσ(2), . . . , aσ(n)) = IWAGM(a1, a2, . . . , an)

(4). Monotonicity : If ai ≤ a∗i for all (i = 1, 2, . . . , n),∑n
i=1 a

1
2
i wi

∏n
i=1 a

wi
2
i ≤

∑n
i=1(a

∗
i )

1
2wi

∏n
i=1(a

∗
i )

wi
2 .

So IWAGM(a1, a2, . . . , an) ≤ IWAGM(a∗1, a
∗
2, . . . , a

∗
n).

4.2 Theorem

For n real numbers a1, a2, . . . , an,
WGM(a1, a2, . . . , an) ≤ IWAGM(a1, a2, . . . , an) ≤ WAM(a1, a2, . . . , an).

Proof: We know WAM of some real numbers always greater than or equal to
WGM of those real numbers.
So if we consider n numbers a

1
2
1 , a

1
2
2 , . . . , a

1
2
n with their weights w1, w2, . . . , wn re-

spectively, then∑n
i=1 a

1
2
i wi ≥

∏n
i=1 a

wi
2
i .

Now,
∑n

i=1 a
1
2
i wi

∏n
i=1 a

wi
2

i∏n
i=1 a

wi
i

=
∑n

i=1 a
1
2
i wi∏n

i=1 a
wi
2

i

≥ 1.

i.e.,
WGM(a1, a2, . . . , an) ≤ IWAGM(a1, a2, . . . , an) (2)

Again we know if a1, a2, . . . , an be positive real numbers, not all equal,
w1, w2, . . . , wn be positive real numbers such that

∑n
i=1wi = 1 and m is rational,
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lies between 0 and 1,
∑n

i=1wia
m
i ≤ (

∑n
i=1wiai)

m.
Taking m = 1

2
,

n∑
i=1

wia
1
2
i ≤ (

n∑
i=1

wiai)
1
2 (3)

Also,
∏n

i=1 a
wi
i ≤

∑n
i=1 aiwi

Taking square root in both side,

n∏
i=1

a
wi
2
i ≤ (

n∑
i=1

aiwi)
1
2 (4)

Multiplying (3) and (4), we get

IWAGM(a1, a2, . . . , an) ≤ WAM(a1, a2, . . . , an) (5)

So combining (2) and (5), we get our proposed result.

4.3 Meaningful advantage of the proposed operator

Using the newly introduced operator, the aggregated results of the num-
bers with their weightage given in subsection 3.1, are given below: For case 1,
IWAGM(0.0001, 1) = 0.001728 , and for case 2, IWAGM(0.0001, 1) = 0.5684.
So in both the cases the newly introduced operator gives a moderate value close
to the maximum weighted number. WAM and WGM may not simultaneously
give meaningful result for all the numbers; but result from the proposed operator
is meaningful since it holds the relation (2) and (5). In fact the new operator
improves both the WAM and WGM and gives a moderate, meaningful value.

5 WEIGHTED AGGREGATION OPERATORS

IN NEUTROSOPHIC ENVIRONMENT

5.1 Extension of WAM and WGM of classical algebra in
neutrosophic set

In neutrosophic environment SV NWA and SV NWG, the most well known
aggregation operators, are the extension of WAM and WGM of classical algebra.
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5.1.1 Definition I

Let Ai = (TAi
(x), IAi

(x), FAi
(x)) (i = 1, 2, . . . , n) be a collection of SVNSs. A

mapping Fw : SV NSn → SV NS is called single valued neutrosophic weighted
averaging operator of dimension n if it satisfies Fw(A1, A2, . . . , An) =

∑n
i=1wiAi,

where w = (w1, w2, . . . , wn)T is the weight vector of Ai (i = 1, 2, . . . , n), wi ∈ [0, 1]
and

∑
wi = 1.

5.1.2 Definition II

Let Ai = (TAi
(x), IAi

(x), FAi
(x)) (i = 1, 2, . . . , n) be a collection of SVNSs. A

mapping Fw : SV NSn → SV NS is called SVNG operator of dimension n if it
satisfies Fw(A1, A2, . . . , An) =

∏n
i=1A

wi
i .

5.2 Extension of proposed aggregation operator in neu-
trosophic set

Let Ai = (TA(i), IA(i), FA(i)) (i = 1, 2, . . . , n) be a collection of SVNSs. Then
we define improved single valued weighted averaging geometric (ISVWAG) op-
erator as

ISVWAG(A1, A2, . . . , An) =
n∑
i=1

A
1
2
i wi

n∏
i=1

A
wi
2
i (6)

5.2.1 Properties

Let Ai = (TAi
(x), IAi

(x), FAi
(x)) (i = 1, 2, . . . , n) be a collection of SVNSs.

Then the aggregated result of the ISV NWAG operator is also a single valued
neutrosophic number (SVNN) and satisfies the desired properties of an aggrega-
tion operator.
To prove the properties we first prove a lemma.

5.2.2 Lemma 1

Let A1 = (TA1(x), IA1(x), FA1(x)), A2 = (TA2(x), IA2(x), FA2(x)),
B1 = (TB1(x), IB1(x), FB1(x)), B2 = (TB2(x), IB2(x), FB2(x)) are SVNNs such
that A1 ⊇ B1, A2 ⊇ B2. Then (A1 + A2) ⊇ (B1 + B2). i.e., (TA1 + TA2 −
TA1TA2) ≥ (TB1 + TB2 − TB1TB2), (IA1 + IA2 − IA1IA2) ≤ (IB1 + IB2 − IB1IB2),
(FA1 + FA2 − FA1FA2) ≤ (FB1 + FB2 − FB1FB2).
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Proof: Let X be the universe. For each point x ∈ X, TA(x), IA(x), FA(x) ∈ [0, 1].
Now it is given that A1 ⊇ B1, A2 ⊇ B2, i.e., for each value of x ∈ X, TA1(x) ≥
TB1(x) and TA2(x) ≥ TB2(x). Let x1 be an arbitrary point in X. So TA1(x1) ≥
TB1(x1) and TA2(x1) ≥ TB2(x1). Also TA1(x1), TA2(x1), TB1(x1), TB2(x1) ∈ [0, 1].
cosx for x ∈ [0, π

2
] is a continuous function. i.e., cos x assumes every value in

[0, 1]. So we can consider TA1(x1) = cosφ1, TA2(x1) = cosφ2, TB1(x1) = cos θ1,
TB2(x1) = cos θ2, for some φ1, φ2, θ1, θ2 ∈ [0, π

2
].

Now TA1(x1)+TA2(x1)−TA1(x1)TA2(x1) = cosφ1+cosφ2−cosφ1 cosφ2 = cosφ1+
(1 − cosφ1) cosφ2 = 1 − 2 sin2 φ1

2
+ 2 sin2 φ1

2
cosφ2 = 1 − 2 sin2 φ1

2
(1 − cosφ2) =

1− 2 sin2 φ1
2
.2 sin2 φ2

2
= 1− 4 sin2 φ1

2
sin2 φ2

2
.

Similarly, TB1(x1) + TB2(x1)− TB1(x1)TB2(x1) = 1− 4 sin2 θ1
2

sin2 θ2
2

.
Since TA1(x1) ≥ TB1(x1), TA2(x1) ≥ TB2(x1),
cosφ1 ≥ cos θ1. i.e., − cosφ1 ≤ − cos θ1, 1 − cosφ1 ≤ 1 − cos θ1, i.e., 2 sin2 φ1

2
≤

2 sin2 θ1
2

.

Similarly, 2 sin2 φ2
2
≤ 2 sin2 θ2

2
.

i.e., 4 sin2 φ1
2

sin2 φ2
2
≤ 4 sin2 θ1

2
sin2 θ2

2
.

i.e., 1− 4 sin2 φ1
2

sin2 φ2
2
≥ 1− 4 sin2 θ1

2
sin2 θ2

2
.

i.e.,

TA1(x1) + TA2(x1)− TA1(x1)TA2(x1) ≥ TB1(x1) + TB2(x1)− TB1(x1)TB2(x1) (7)

Since (7) is true for any x1 ∈ X, TA1(x) + TA2(x) − TA1(x)TA2(x) ≥ TB1(x) +
TB2(x)− TB1(x)TB2(x).
So it has been shown that TA1 ≥ TB1 and TA2 ≥ TB2 imply [TA1 +TA2−TA1TA2 ] ≥
[TB1 + TB2 − TB1TB2 ]. In the same way,
IA1 ≤ IB1 and IA2 ≤ IB2 imply (IA1 + IA2 − IA1IA2) ≤ (IB1 + IB2 − IB1IB2)
also FA1 ≤ FB1 and FA2 ≤ FB2 imply (FA1 + FA2 − FA1FA2) ≤ (FB1 + FB2 −
FB1FB2). The proof is generic as it is true for each and every value of the truth,
indeterminacy and falsity membership functions and does not depend on the
types of the functions (triangular, trapezoidal, piecewise linear or Gaussian).

On the basis of the basic operations of SVNSs described in subsection 2.3, the
value of the truth, indeterminacy and falsity membership function in aggregated
result belongs to [0, 1]. So the aggregated operator is also a SVNN. We will prove
that the ISV NWAG operator has the following desired properties:

(1) Idempotency: let Ai (i = 1, 2, . . . , n) be a collection of SVNNs. If all
Ai (i = 1, 2, . . . , n) are equal, that is, Ai = A, for all(i = 1, 2, . . . , n), then
ISVWAG(A1, A2, . . . , An) = A
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(2) Boundedness: Let A− = (TA−(x), IA−(x), FA−(x)), and
A+ = (TA+(x), IA+(x), FA+(x)), where TA−(x) = mini TAi

(x), IA−(x) = maxi IAi
(x),

FA−(x) = maxi FAi
(x) and TA+(x) = maxi TAi

(x), IA+(x) = mini IAi
(x), FA+(x) =

mini FAi
(x). So A− ⊆ Ai ⊆ A+ for all (i = 1, 2, . . . , n). Also (TA−(x))0.5wi ≤

(TAi
(x))0.5wi ≤ (TA+(x))0.5wi, (IA−(x))0.5wi ≥ (IAi

(x))0.5wi ≥ (IA+(x))0.5wi and
(FA−(x))0.5wi ≥ (FAi

(x))0.5wi ≥ (FA+(x))0.5wi. So (A−)0.5wi ⊆ (Ai)
0.5wi ⊆

(A+)0.5wi. By using lemma 1,
∑n

i=1(A
−)0.5wi ⊆

∑n
i=1A

1
2
i wi ⊆

∑n
i=1(A

+)0.5wi,
i.e.,

(A−)
1
2 ⊆

n∑
i=1

A
1
2
i wi ⊆ (A+)

1
2 (8)

Again similarly, (A−)
wi
2 ⊆ A

wi
2
i ⊆ (A+)

wi
2 , i.e.,

(A−)
1
2 ⊆

n∏
i=1

A
wi
2
i ⊆ (A+)

1
2 (9)

From (8)
T
(A−)

1
2
≤ T∑n

i=1 A
1
2
i wi

≤ T
(A+)

1
2

(10)

From (9)
T
(A−)

1
2
≤ T∏n

i=1 A
wi
2

i

≤ T
(A+)

1
2

(11)

Multiplying (10) and (11) we get, TA− ≤ TISVWAG(A1,A2,...,An) ≤ TA+ .
similarly, IA− ≥ IISVWAG(A1,A2,...,An) ≥ IA+ and FA− ≥ FISVWAG(A1,A2,...,An) ≥
FA+ .
Thus A− ⊆ ISVWAG(A1, A2, . . . , An) ⊆ A+.

(3) Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator satisfies
ISVWAG(Aσ(1), Aσ(2), . . . , Aσ(n)) = ISVWAG(A1, A2, . . . , An)

(4) Monotonicity :Let Ai ⊆ A∗i for all (i = 1, 2, . . . , n), then TAi
(x) ≤ TA∗

i
(x),

IAi
(x) ≥ IA∗

i
(x) and FAi

(x) ≥ FA∗
i
(x). i.e., (TAi

(x))0.5wi ≤ (TA∗
i
(x))0.5wi,

(IAi
(x))0.5wi ≥ (IA∗

i
(x))0.5wi and (FAi

(x))0.5wi ≥ (FA∗
i
(x))0.5wi. So (Ai)

0.5wi ⊆
(A∗i )

0.5wi. Therefore from the lemma 1
∑n

i=1A
0.5
i wi ⊆

∑n
i=1(A

∗
i )

0.5wi and also

since
∏n

i=1A
wi
2
i ⊆

∏n
i=1A

∗
i

wi
2 , ISVWAG(A1, A2, . . . , An)

⊆ ISVWAG(A∗1, A
∗
2, . . . , A

∗
n).
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6 GENERALIZATION OF IWAGM AND ITS

EXTENSION IN NEUTROSOPHIC ENVI-

RONMENT

We formulate a general operator in case of real numbers and extend it to
neutrosophic set also.
Let a1, a2, . . . , an are n real numbers with associated weights w1, w2, . . . , wn re-
spectively, wi ∈ [0, 1] and

∑
wi = 1. Then we define generalized improved

weighted averaging geometric mean (GIWAGM) as

GIWAGM(a1, a2, . . . , an) = (
n∑
i=1

a
1
k
i wi

n∏
i=1

a
wi
k
i )k/2 (12)

where k is any real number. The equation (12) satisfy the desired properties of
aggregation operator:

(1) Idempotency: let ai (i = 1, 2, . . . , n) be a collection of real numbers. If
all ai (i = 1, 2, . . . , n) are equal, that is, ai = a, for all(i = 1, 2, . . . , n), then

GIWAGM(a1, a2, . . . , an) = (a
1
k

∑n
i=1wi

∏n
i=1 a

wi
k )k/2 = a

(2) Boundedness: If a− = mini ai and a+ = maxi ai,

(
∑n

i=1(a
−)

1
kwi

∏n
i=1(a

−)
wi
k )k/2 ≤ (

∑n
i=1 a

1
k
i wi

∏n
i=1 a

wi
k
i )k/2 ≤ (

∑n
i=1(a

+)
1
k

wi
∏n

i=1(a
+)

wi
k )k/2, i.e. a− ≤ GIWAGM(a1, a2, . . . , an) ≤ a+.

(3) Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator satisfies
GIWAGM(aσ(1), aσ(2), . . . , aσ(n)) = GIWAGM(a1, a2, . . . , an)

(4) Monotonicity :If ai ≤ a∗i for all (i = 1, 2, . . . , n),

(
∑n

i=1 a
1
k
i wi

∏n
i=1 a

wi
k
i )k/2 ≤ (

∑n
i=1(a

∗
i )

1
kwi

∏n
i=1(a

∗
i )

wi
k )k/2.

So GIWAGM(a1, a2, . . . , an) ≤ GIWAGM(a∗1, a
∗
2, . . . , a

∗
n).

And for neutrosophic sets let Ai = (TA(i), IA(i), FA(i)) (i = 1, 2, . . . , n) be a
collection of SVNSs with associated weights w1, w2, . . . , wn respectively, wi ∈ [0, 1]
and

∑
wi = 1.. Then we define generalized improved single valued weighted

averaging geometric (GISVWAG) operator as

GISVWAG(A1, A2, . . . , An) = (
n∑
i=1

A
1
k
i wi

n∏
i=1

A
wi
k
i )k/2 (13)
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where k is any real number. The equation (13) satisfy the desired properties of
aggregation operator:

(1) Idempotency: let Ai (i = 1, 2, . . . , n) be a collection of SVNNs. If all
Ai (i = 1, 2, . . . , n) are equal, that is, Ai = A, for all(i = 1, 2, . . . , n), then
ISVWAG(A1, A2, . . . , An) = A

(2) Boundedness: Let A− = (TA−(x), IA−(x), FA−(x)), and
A+ = (TA+(x), IA+(x), FA+(x)), where TA−(x) = mini TAi

(x), IA−(x) = maxi IAi
(x),

FA−(x) = maxi FAi
(x) and TA+(x) = maxi TAi

(x), IA+(x) = mini IAi
(x), FA+(x) =

mini FAi
(x). So A− ⊆ Ai ⊆ A+ for all (i = 1, 2, . . . , n). Also (TA−(x))1/kwi ≤

(TAi
(x))1/kwi ≤ (TA+(x))1/kwi, (IA−(x))1/kwi ≥ (IAi

(x))1/kwi ≥ (IA+(x))1/kwi
and (FA−(x))1/kwi ≥ (FAi

(x))1/kwi ≥ (FA+(x))1/kwi. So (A−)1/kwi ⊆ (Ai)
1/kwi ⊆

(A+)1/kwi. By using lemma 1,
∑n

i=1(A
−)1/kwi ⊆

∑n
i=1A

1/k
i wi ⊆

∑n
i=1(A

+)1/kwi,
i.e.,

(A−)1/k ⊆
n∑
i=1

A
1/k
i wi ⊆ (A+)1/k (14)

Again similarly, (A−)
wi
k ⊆ A

wi
k
i ⊆ (A+)

wi
k , i.e.,

(A−)
1
k ⊆

n∏
i=1

A
wi
k
i ⊆ (A+)

1
k (15)

From (14)
T
(A−)

1
k
≤ T∑n

i=1 A
1
k
i wi

≤ T
(A+)

1
k

(16)

From (15)
T
(A−)

1
k
≤ T∏n

i=1 A
wi
k

i

≤ T
(A+)

1
k

(17)

Multiplying (16) and (17) we get, T
(A−)

2
k
≤ T∑n

i=1 A
1
k
i wi

T∏n
i=1 A

wi
k

i

≤ T
(A+)

2
k
.

i.e., TA− ≤ TGISVWAG(A1,A2,...,An) ≤ TA+ .
similarly, IA− ≥ IGISVWAG(A1,A2,...,An) ≥ IA+ and FA− ≥ FGISVWAG(A1,A2,...,An) ≥
FA+ . So A− ⊆ GISVWAG(A1, A2, . . . , An) ⊆ A+.

(3) Symmetry or commutativity: The order of the arguments has no influ-
ence on the result. For every permutation σ of 1, 2, . . . , n the operator satisfies
GISVWAG(Aσ(1), Aσ(2), . . . , Aσ(n)) = GISVWAG(A1, A2, . . . , An)
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(4) Monotonicity :Let Ai ⊆ A∗i for all (i = 1, 2, . . . , n), then TAi
(x) ≤ TA∗

i
(x),

IAi
(x) ≥ IA∗

i
(x) and FAi

(x) ≥ FA∗
i
(x). i.e., (TAi

(x))1/kwi ≤ (TA∗
i
(x))1/kwi,

(IAi
(x))1/kwi ≥ (IA∗

i
(x))1/kwi and (FAi

(x))1/kwi ≥ (FA∗
i
(x))1/kwi. So (Ai)

1/kwi ⊆
(A∗i )

1/kwi. Therefore from the lemma 1,
∑n

i=1A
1/k
i wi ⊆

∑n
i=1(A

∗
i )

1/kwi and also

since
∏n

i=1A
wi
k
i ⊆

∏n
i=1A

∗
i

wi
k , GISVWAG(A1, A2, . . . , An) ⊆

GISVWAG(A∗1, A
∗
2, . . . , A

∗
n).

Now if we put k = 2, (12) and (13) reduce to (1) and (6) respectively, i.e.,
the newly proposed operator for real numbers given in (1) is one of the particular
cases of generalized operator (12) and similar for the case (6) and (13) also. For
different values of k it is possible to study these families individually.

7 COMPARISON APPROACH

7.1 Definition [20], [7]

Let A and B are two SVNN. Then the comparison approach based on score
function (s), accuracy function (a) and certainty function (c) is given as follows:
(1) If s(A) > s(B), then A > B.
(2) If s(A) = s(B) and a(A) > a(B), then A > B.
(3) If s(A) = s(B) also a(A) = a(B), but c(A) > c(B), then A > B.
(4) If s(A) = s(B), a(A) = a(B) and c(A) = c(B), then A = B.

7.2 Proposed score and certainty function

We introduce a new score function, accuracy function and certainty func-
tion to compare neutrosophic fuzzy numbers. According to the definition of
score function as defined in [20], the larger the TA is, the greater the neu-
trosophic number is; the smaller the IA is, the greater the neutrosophic num-
ber is and the same holds for FA also. Based on the definition we give a
new score function. Let A = (TA(x), IA(x), FA(x)) be a neutrosophic num-
ber. The score function of A is given by s(A) = TA(x)(1 + sin(TA(x)π

2
)) +

1
2(1+IA(x))

(cos(IA(x)π
2
)) + 1

1+FA(x)
(cos(FA(x)π

2
)). The accuracy function as defined

in [7] is a(A) = TA(x)− FA(x).

We define a new certainty function c(A) = |cosTA(x)π|+|cosIA(x)π|+|cosFA(x)π|
3

. In
[7] Liu et al. gave the formula of score, accuracy function for a SVNN, A, as
follows: Score function s1(A) = 2 + TA(x) − IA(x) − FA(x), accuracy function
a1(A) = TA(x)− FA(x). With these formulas in [20] Hong-yu Zhang, Jian-qiang
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Wang, and Xiao-hong Chen added certainty function as c1(A) = TA(x). The
score function in [7] gives same value when IA(x) and FA(x) of a neutrosophic
number is interchanged, i.e., different neutrosophic numbers can exist easily for
which the given score function gives same value. For example (0.2, 0.9, 0.1) and
(0.2, 0.1, 0.9) have same score function according [7] and [20]. But the newly
introduced score function based on trigonometric function does not give same
value for these neutrosophic sets. From another point of view as discussed in [5]
the uncertainty is maximum (=1) at (0.5, 0.5, 0.5), i.e., the certainty should be
minimum (=0) at (0.5, 0.5, 0.5) and the value of certainty increases if we increase
or decrease any of truth, indeterminacy and falsity membership grade. But this
property is not satisfied by the certainty function given in [20], whereas the newly
proposed certainty function in sec 7 gives realistic result.

7.3 Comparison analysis using different examples

Table 1: Comparison analysis using different examples
Neutrosophic Method Score Accuracy Certainty Ranking
numbers value value V alue order
A = (0.4, 0.3, 0.2) Existing s1(A) = 1.9 A > B
B = (0.4, 0.5, 0.6) s1(B) = 1.3

Proposed s(A) = 1.77 A > B
s(B) = 1.23

A = (1, 0, 1) Existing s1(A) = 2 A > B
B = (1, 1, 0.473) s1(B) = 1.527

Proposed s(A) = 2.5 − A < B
s(B) = 2.5 a(B) = 0.527

A = (0.0867, 0.2867, 0.0867) Existing s1(A) = 1.7133 A > B
B = (0.3096, 0.5096, 0.0.3096) s1(B) = 1.4904

Proposed s(A) = 1.3599 − c(A) = 0.8491 A > B
s(B) = 1.3599 − c(B) = 0.38548

8 ALGORITHM FOR FINDING OPTIMUM

ALTERNATIVE IN A MULTI-CRITERIA DE-

CISION MAKING PROBLEM

Let Ai, (i = 1, 2, . . . ,m) be m alternatives and Cj, (j = 1, 2, . . . , n) are n
criteria. Assume that the weight of the criteria Cj(j = 1, 2, . . . , n), given by the
decision-maker, is wj, wj ∈ [0, 1] and

∑n
j=1wj = 1. The m options according to

the n criterion are given below:
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C1 C2 C3 . . . Cn
A1 C1

1 C1
2 C1

3 . . . C1
n

A2 C2
1 C2

2 C2
3 . . . C2

n

A3 C3
1 C3

2 C3
3 . . . C3

n
...

...
...

...
...

...
Am Cm

1 Cm
2 Cm

3 . . . Cm
n

where each Ci
j, (i = 1, 2, . . . ,m) and (j = 1, 2, . . . , n) are in neutrosophic form

and Ci
j =

{
T iCj

, I iCj
, F i

Cj

}
We propose a method to derive optimum alternative

among the given alternatives through the algorithm given below:
Step 1: use the ISVWAG operator given in (6) to combine n criteria for

each alternative.
Step 2: calculate the score, accuracy and certainty function to compare the

neutrosophic number as defined in section 7.
Step 3: Rank the alternatives.

9 NUMERICAL EXAMPLE

In a certain network, there are four options to go from one node to the other.
Which path to be followed will be impacted by two benefit criteria C1, C2 and one
cost criteria C3 and the weight vectors are 0.35, 0.25 and 0.40 respectively. A de-
cision maker evaluates the four options according to the three criteria mentioned
above. We compare the proposed method with the existing methods in table 3
using the newly introduced approach to obtain the most desirable alternative
from the decision matrix given in table 2.

Table 2: Decision matrix (information given by DM)
c1 c2 c3

A1 (0.4,0.2,0.3) (0.4,0.2,0.3) (0.2,0.2,0.5)
A2 (0.6,0.1,0.2) (0.6,0.1,0.2) (0.5,0.2,0.2)
A3 (0.3,0.2,0.3) (0.5,0.2,0.3) (0.5,0.3,0.2)
A4 (0.7,0,0.1) (0.6,0.1,0.2) (0.4,0.3,0.2)

9.1 Comparison of aggregation operators using cosine sim-
ilarity measure

To measure the similarity between two neutrosophic numbers we consider the
cosine similarity measure as discussed by Jun Ye in [9] as follows:
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Table 3: Result Comparison: the proposed method with the existing methods
Aggregation Aggregated Score using Score Ranking order
Operator Result existing using proposed in both

method formula approach

SVWA(C
(1)
1 , C

(1)
2 , C

(1)
3 ) s1(A1) = 1.76 s(A1) = 1.46

= (0.287, 0.187, 0.337)

Single valued SVWA(C
(2)
1 , C

(2)
2 , C

(2)
3 ) s1(A2) = 2.14 s(A2) = 2.007 A4 > A2

weighted = (0.462, 0.134, 0.187) > A3 > A1

average SVWA(C
(3)
1 , C

(3)
2 , C

(3)
3 ) s1(A3) = 1.912 s(A3) = 1.716

= (0.373, 0.222, 0.238)

SVWA(C
(4)
1 , C

(4)
2 , C

(4)
3 ) s1(A4) = 2.16 s(A4) = 2.03

= (0.460, 0.142, 0.156)

SVWG(C
(1)
1 , C

(1)
2 , C

(1)
3 ) s1(A1) = 1.735 s(A1) = 1.450532

= (0.303143, 0.2, 0.368011)

Single valued SVWG(C
(2)
1 , C

(2)
2 , C

(2)
3 ) s1(A2) = 2.22 s(A2) = 2.211256 A4 > A2

weighted = (0.5578, 0.131951, 0.2) > A3 > A1

geometric SVWG(C
(3)
1 , C

(3)
2 , C

(3)
3 ) s1(A3) = 1.92 s(A3) = 1.7845

= (0.418141, 0.235216, 0.255085)

SVWG(C
(4)
1 , C

(4)
2 , C

(4)
3 ) s1(A4) = 2.38 s(A4) = 2.2798

= (0.538451, 0, 0.156917)

ISVWAG(C
(1)
1 , C

(1)
2 , C

(1)
3 ) s(A1) = 1.77 s(A1) = 1.44

Improved = (0.254226, 0.172108, 0.303)

single valued ISVWAG(C
(2)
1 , C

(2)
2 , C

(2)
3 ) s1(A2) = 2.14 s(A2) = 1.96 A4 > A2

weighted = (0.432056, 0.118963, 0.17) > A3 > A1

average ISVWAG(C
(3)
1 , C

(3)
2 , C

(3)
3 ) s1(A3) = 1.92 s(A3) = 1.68

geometric = (0.338061, 0.201253, 0.21)

ISVWAG(C
(4)
1 , C

(4)
2 , C

(4)
3 ) s1(A4) = 2.28 s(A4) = 2.03

= (0.421219, 0, 0.13)

Let X be the universe and A = {〈xi, TA(xi), IA(xi), FA(xi)〉 /xi ∈ X} and B =
{〈xi, TB(xi), IB(xi), FB(xi)〉 /xi ∈ X} are two SVNSs, then cosine similarity mea-
sure between A and B is
C(A,B) = 1

n

∑n
i=1

TA(xi)TB(xi)+IA(xi)IB(xi)+FA(xi)FB(xi)√
(TA(xi))2+IA(xi))2+FA(xi))2

√
(TB(xi))2+IB(xi))2+FB(xi))2

Using the similarity measure formula comparison of aggregation operators are
given in table 4:

9.2 Result discussion

The results given in table 4 show that all the aggregated results are more or less
close to the corresponding maximum weighted neutrosophic number as similarity
measure values are nearer to 1. Also it is observed that the proposed method gives
almost same similarity measure value as the other existing methods as discussed
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Table 4: Comparison of aggregation operators using similarity measure
Alternative Aggregation Aggregated Corresponding maximum Similarity

operator result weighted number measure value

SVWA (0.287, 0.187, 0.337) 0.978
A1 SVWG (0.303143, 0.2, 0.368011) (0.4, 0.2, 0.3) 0.975

ISVWAG (0.254226, 0.172108, 0.303) 0.977

SVWA (0.46, 0.13, 0.18) 0.993
A2 SVWG (0.55, 0.13, 0.2) (0.6, 0.1, 0.2) 0.997

ISVWAG (0.43, 0.11, 0.17) 0.995

SVWA (0.373, 0.222, 0.238) 0.9806
A3 SVWG (0.418, 0.23, 0.25) (0.3, 0.2, 0.3) 0.974

ISVWAG (0.33, 0.2, 0.21) 0.9803

SVWA (0.46, 0.14, 0.15) 0.946
A2 SVWG (0.54, 0, 0.16) (0.7, 0, 0.1) 0.989

ISVWAG (0.42, 0, 0.13) 0.987

in table 4. In other words, the newly introduced operator gives moderate and
meaningful value similar to existing methods and close to the maximum weighted
neutrosophic number.

10 CONCLUSION

At first we introduced a new aggregation operator (IWAGM) to combine n
real numbers. We proved that the result using this operator always lies between
WAM and WGM operator and the result will be meaningful in all the cases.
Then we extended the operator in neutrosophic environment and it has also
been shown that the extended operator (ISVWAG) gives meaningful result in
neutrosophy. Next we introduced a trigonometric function based score function.
Further we proposed a certainty function as well which gives realistic results
comparison to the existing ones. A numerical problem has been solved using the
proposed operator and the newly defined score function.
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