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Multi-objective optimization problem of
system reliability under intuitionistic fuzzy set
environment using Cuckoo Search algorithm

Harish. Garg*
School of Mathematics & Computer Applications, Thapar University Patiala, Punjab, India

Abstract. In designing phase of systems, design parameters such as component reliabilities and cost are normally under uncer-
tainties. Although there have been tremendous advances in the art and science of system evaluation, yet it is very difficult to
assess these parameters with a very high accuracy or precision. Therefore, to handle this issue, this paper presents an alternative
approach for solving the multi-objective reliability optimization problem by utilizing the uncertain, vague and imprecise data.
For this a conflicting nature between the objectives is resolved with the help of intuitionistic fuzzy programming technique by
considering the nonlinear degree of membership and non-membership functions. The resultant fuzzy multi-objective optimization
problem is converted into single-objective optimization problem using the satisfaction functions with exponential weights. The
optimal solution of the corresponding problem has been obtained with the cuckoo search algorithm. Finally, a numerical instance
is presented to show the performance of the proposed approach.

Keywords: Intuitionistic fuzzy optimization, cuckoo search, reliability optimization, membership functions

1. Introduction

Decision making involves the use of a rational
process for selecting the best of several alternatives.
In real life, decisions are often made on the basis
of multiple, conflicting and non-commensurable cri-
teria/objectives in uncertain/imprecise environments.
Bellman and Zadeh [6] first introduced the fuzzy set
theory in decision-making processes. Later; Zimmer-
mann [29] showed that the classical algorithms could
be used to solve a fuzzy linear programming problem.
After their work, a great number of articles dealing
with the fuzzy optimization problems have come out.
In most of the existing models, it is assumed that the
parameters, objective goals and constraints goals are

Corresponding author. H. Garg, School of Mathematics &
Computer Applications, Thapar University Patiala, Punjab, India.
Tel.: +918699031147; E-mail: harishg58iitr@gmail.com.

deterministic and fixed. However, in the real world
problems, the available (historical) data are often inac-
curate, imprecise, vague and collected under different
operating and environmental conditions. Thus, in this
environment, built-in uncertainties in the data are inad-
equate to handle the problem in probabilistic approach.
For this reason, the concept of fuzzy reliability has been
introduced and formulated either in the context of the
possibility measures or as a transition from a fuzzy
success state of fuzzy failure state. Other important con-
tributions to fuzzy programming with fuzzy parameters
have been made by the researchers [1, 2, 15-17, 19—
21, 24].

All of the above researchers have used the fuzzy opti-
mization technique for solving the resulting reliability
optimization problem. In fuzzy optimization, we search
for the best possible solution which can be achieved
in the presence of incomplete or imprecise or vague-
ness in information. But in fuzzy optimization only
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2 H. Garg / Multi-objective optimization problem of system reliability

the degree of acceptance of objectives and constraints
is considered. Nowadays, researchers are engaged on
its modifications and generalized forms and out of
that intuitionistic fuzzy set (IFS) theory, introduced by
Attanassov in 1986 [4, 5], is the most successful exten-
sion during the last decades. The concept of IFS can
be viewed as an alternative approach to define a fuzzy
set in the case where available information is not suf-
ficient for the definition of an imprecise concept by
means of a conventional fuzzy set. They consider not
only the degree of membership, as in fuzzy set theory
to a given set, but also the degree of rejection such that
the sum of both values is less than one so that there
is a degree of interminancy between the membership
functions. Applying this concept, it is possible to refor-
mulate the optimization problem by using degree of
rejection of the constraints and the value of the objective
which are non-admissible. Angelov [3] implemented
the optimization in an intuitionistic fuzzy environment.
Pramanik and Roy [22] solved a vector optimization
problem using an intuitionistic fuzzy goal program-
ming. Garg [12] proposed a technique for analyzing the
behavior of industrial systems in terms of various relia-
bility parameters using vague set theory. Chakrabortty
etal. [7] proposed a method to solve the multi-objective
EPQ inventory model with fuzzy inventory costs and
fuzzy demand rate and the problem is solved with I[FO
technique. Garg and Rani [13] presented an efficient
technique for computing the membership functions
of various reliability parameters using PSO and IFS
theory. Apart from that a lot of work has been done to
develop and enrich the IFS theory givenin [8, 9, 14] and
their corresponding references in terms of reliability
evaluation of series-parallel system.

In general, reliability optimization problem is solved
with the assumption that the coefficients or cost of
components is specified in a precise way. As in the
early stages, due to non-availability of the distribution
function of the product design, the reliability of a com-
ponent is taken as a precise number between zero and
one and hence it is difficult to determine the reliability
specifically. But, in today, most of the real-world
decision-making problems in economic, technical and
environmental ones are multidimensional and multi-
objective. So, it is significant to realize that multiple
objectives are often non-commensurable and conflict
with each other in the optimization problem. In the sin-
gle objective optimization, one attempts to obtain the
global solution/decision, but in multi-objective opti-
mization, there exists a set of solutions which are
superior to the rest of the solution in the search space

when all the objectives are considered, but are inferior
to other solutions in the space in one or more objec-
tives (not all). For handling such types of situations, one
usually tries to search for a solution which is as close
to the decision makers (DMs) expectations as possi-
ble. For this, the problem is solved interactive manner
in which DM is initially asked to specify his or her
preferences towards the objectives. Based on these pref-
erences, the problem is solved and the DM is provided
with a possible solution. If the DM is satisfied with this
solution the problem ends there, otherwise he or she is
asked to modify his or her preferences in the light of
the earlier obtained results. This iterative procedure is
continued till a satisfactory solution is achieved, which
is closed to DM’s expectations. So a multi-objective
model with fuzzy objectives is more realistic than the
one with deterministic [14]. However, it seems that so
far there has been little research on multi-objective opti-
mization using IFS, which is indeed one of the most
important areas in decision analysis as most real world
decision problems involve multi-objective optimization
problem. Also, there is very rare research carried out on
IFO in reliability optimization model. Therefore, the
most appropriate procedure is to cautiously find a set of
solutions that satisfy the decision makers’ expectations
to the highest possible degree. Clearly, this makes for an
interactive fuzzy multi-objective optimization approach
which incorporates the preferences and expectations
of the decision maker, allowing for human (expert)
judgment. Iteratively, it becomes possible to obtain the
most satisfactory solution in a fuzzy environment. In
view of the above issues, the purpose of this paper is
to address the problem of system reliability optimiza-
tion in an intuitionistic fuzzy environment characterized
with multiple conflicting objectives. Therefore, our spe-
cific objectives are as follows:

e To develop a fuzzy multiple-objective nonlinear
programming model for the reliability optimiza-
tion problem;

e To use an aggregation method to transform the
fuzzy model to a single-objective optimization
problem; and,

e To use a global meta-heuristic optimization
method to obtain a set of acceptable solutions.

Thus motivated by this idea and to handle the inac-
curate parameter specified to the reliability of each
component of the system, an efficient technique is pro-
posed in this study. The major extension of the present
work as compared to existing work is to express the
impreciseness of the objective goals by intuitionistic
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fuzzy non-linear membership functions in terms of
their degree of acceptance and rejection functions. For
this, an exponential membership and quadratic non-
membership functions has been used here. A variable
weight method, instead of constant weight, has been
used for converting the multi-objective optimization
problem into its equivalent single-objective optimiza-
tion problem and the resultant Pareto optimal solution is
obtained, for different values of weights corresponding
to different objective functions, by using Cuckoo search
algorithms and the results are compared with the PSO.
The proposed approach is explained through examples
of reliability-cost benchmark optimization problems.

The rest of the manuscript is described as follows:
Section 2 describe the basic concept of the intuitionistic
fuzzy set theory (IFS). A formulation of the multi-
objective reliability optimization problem has been
discussed in Section 3. The intuitionistic fuzzy opti-
mization (IFO) based methodology for solving the
multi-objective optimization problem has been pre-
sented in Section 4. An illustrative examples have been
taken in Section 6 and their corresponding results are
presented in Section 7. Finally, some concrete conclu-
sions have been presented in Section 8.

2. Basic concepts of Intuitionistic fuzzy set
theory

Let X = {X, X2, ..., Xn} be a finite universal set.
Then the IFS A in X [4, 5] is the set of ordered triplets
< X, pAJ(x), VN(X) > ie.

A={<npﬁgxwﬂm>|XGX} ¢))

where [ E(X) and VQ(X) are functions from X into [0,.1],
ie. Mpp Vo X — [0, 1]. For each x; € X, pm(xi) and
VA(Xi) represent respectively the degrees of member-
ship and non-membership functions of the element X;
to the subset A of X such that M (Xi) + Vg(xi) < 1.
The function 'I'I'E(Xi) =1- p‘&(xi) — vg(xi) is called
the degree of hesitation or uncertainty level of the ele-
ment x; in the set A. Especially, if ) =0 for all
x € X, then the IFS is reduced to a fuzzy set.

An IFS Alis said to be normalized [4, 5] if there exist
at least two points Xj, X2 € R such that p N(X‘) =1
and VAJ(XZ) = 1 otherwise it is said to subnormal IFS.
An IFS in universe X is said to convex if and only
if membership functions of y EO() and VE(X) of Al are
fuzzy - convex and fuzzy - concave respectively i.e.,

HaAXT 4+ (1 = Mx2) = min(H 5 (X1), W (X2))
VX1, % € X,0<A <1

and

Va(AX1 + (1 = Mx2) < max(V(X1), Va(X2))
VX, X e X,0<A<1

An Intuitionistic fuzzy number (IFN) of the set A
is a normal, convex membership function on the real
line R with bounded support ie. {x € X | VE(X¥) < 1}
is bounded and Y g, is upper semi-continuous and Vg is

lower semi-continuous. LetA be IFS denoted by Al =<
[(a b,c);u, V] >, where a,b, c € R then the set Al is
said to be intuitionistic fuzzy number if its membership
function and non-membership functions are defined as

fax) : a<x<b
M A0, = ! Pox=h and
l%&); b<x=<c
0 ;  otherwise
Fax) ; as<x<b
. X=Db
VAJ(X) =
IGMM ; b=<x=<c
1 ; otherwise

where the functions f A, ga, Fa, Ga : R — [0, 1] are
called the sides of fuzzy number. The function f 5, Ga
are nondecreasing continuous functions and the func-
tion ga, Fa are nonincreasing continuous functions.

3. Multi-objective reliability optimization
problem

Reliability is one of the vital attributes of perfor-
mance in arriving at the optimal design of a system
because it directly and significantly influences the sys-
tem’s performance. In practice, the problem of system
reliability may be formed as a typical nonlinear pro-
gramming problem with nonlinear cost functions. In
reliability optimization problem, it is often required to
minimize the system cost together with maximizing the
system reliability. Therefore, multi-objective functions
become an important aspect in the reliable design of
the engineering systems. Hence the suitable form of the
multi-objective reliability optimization problem by con-
sidering systems reliability and cost as an objective is
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4 H. Garg / Multi-objective optimization problem of system reliability

Maximize : Rg(ri,rp, -+ ,rm) =

ri for series system
i=1
m (@)
1— (1 —ry) for parallel system
i=1
or combination of series and parallel system

carm) = Gi(ri)
i=1

Minimize : Cg(ry, ra, -

subject to I min [J Ii L) i max,
Rsmin [0 Rs 0 1 fori=1,2,...,m

There are many factors which are involved during
the decision related to manufacturing system to the
reliability optimization problem. In most cases, the
objective and constraints of these problems are not
precisely known and hence in order to handle these
conditions, fuzzy logic optimization method has been
introduced. After successful application of their fuzzy
set theory, intuitionistic fuzzy set theory is one of the
successful extension of fuzzy set theory by considering
degree of hesitation between the membership functions.
Therefore, the reliability allocation model (2) can be
represented by fuzzy nonlinear programming to make
the model more flexible and adaptable to the human
decision process. Thus, in a fuzzy environment, the
corresponding optimization problem becomes

Minimize f{(r) = {Qs(r), Cs(r)} 3)
subject to : g(r) <0
Fimin < T <fimax ; i=12...,m
Rsmn <Rs<1 ; riel0,1]CR

where Qs=1-—Rg

where f' represents that the function f “in IFS
environment with membership function P and non-
membership function vf. Corresponding to each
objective function, the degree of satisfaction is given by
N = Mfj — Vi and hence the dissatisfaction of each
objective is defined as & ; = 1 —nf;. After obtaining
the satisfaction functions of each objective, the overall
satisfaction function of the objective n(f ) is expressed
as a function of b— sub-objectives as follows:

P
nf) =
j=1

W (nf; )Y

&;
[b
&

where Wy = is to represent the relative impor-

tance of the j 1 sub-objective with the requirement of

b
W >0 and wy = 1 while yj represents the expo-
j=1
nential weight which control the pace at which the j !
sub-objective changes between being satisfactory and
non-satisfactory.

4. Intuitionistic fuzzy programming technique
for solution

In order to solve the above formulated problem,
an intuitionistic fuzzy optimization has been used
in this paper by formulating membership and non-
membership functions corresponding to each objective
function. Let:Jf, and vf, be the degree of the member-
ship and non-membership function, to be decided on
the basis of interaction with DM, corresponding to the
objective function ft,t = 1,2, ..., b. Computations of
these membership functions are based on their ideal and
anti-ideal values which are formulated by solving each
of the objectives separately.

Step 1: Calculation of ideal and anti ideal values
of objective functions: Solve the multi-
objective optimization problem as a single
objective cost function using one objective at
a time and ignoring all the others. The solu-
tion of the problem so obtained is the ideal
solution X{ for each objective function, ft,
and the corresponding objective function at
the ideal solution may be given by

fr=f), t=1,2,...,b

Let the minimum and maximum of feasi-
ble values of each objective function f at
different ideal values as obtained by consid-
ering one objective at a time and ignoring the
others, be m; and My respectively i.e.

mt

min f¢(x}) and
12q<b t( q)

M = max ft(xs).
1=q<b
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Formulation of the membership functions
(Uf,) and non-membership function (vf,)
for each objective function:

A linear membership function does not pro-
vide biasness towards objectives, however
if the DM has some preference (i.e. bias-
ness) towards one or more objectives, a
nonlinear membership function may fulfill
the purpose. For this, we make use of the
exponential functions for the membership
functions while quadratic functions for the
non-membership functions and is defined as
follows.

lJ ()—m;
W) e

‘ 1, fj(x) <m
o o

I 1—ev
0, fJ(X)ZMj

,omp < fi(x) < M

(€]
and

‘0, fix)<m
ij(X)—miDz

M; —m
1, f,00 > M;

Vfi(X)zl ,om<fix) <M

%)
Equivalent crisp(non-fuzzy) optimization
problem: After determining the member-
ship and non-membership functions defined
in (4)-(5) for each of the objective functions,
the original fuzzy problem can be formulated
as an equivalent crisp (non-fuzzy) model in
the form:

P
Maximize n(F)= wy (N )i
=1
subject to pf; (X) = a (6)
Ve (x) < B

a=B 5 a+P<1 aPf=0

where o denotes the minimal degree of
acceptable and 3 denotes the maximal degree
of rejection of objective(s) and constraints

which can be written in the form

b
Maximize N(F) = wy (nf;)¥
j=1
subject to
B fj(x)—mj
o W=m ) _ gw
- >aqa @)
|—ew
O L
fj—m g
Mj —my

a=B i oa+B<1 ;

B>

a,B=>0 ; w>0

The obtained optimization problem is solved
by using one of the meta-heuristic technique
namely cuckoo search algorithm which is
described in the Section 5.

Step 4: Adjustment of the preference parame-
ters: If the DM is satisfied with the solution
obtained in Step 3, then the approach stops
successfully. Otherwise, the key preference
parameters, that is, decision maker’s desir-
ability functions (DF’s), in terms of their
ideal values, preferences of each objective
function can be altered to meet the DM’s
choice, and the method again goes back to
Step 3. The process is repeated until the DM
is satisfied. We are just showing one run
of the approach here as we assume that in
this problem DM is satisfied by the results
obtained in Step 3.

5. Cuckoo Search(CS)

CS is a meta-heuristic search algorithm which has
been proposed recently by Yang and Deb [28] getting
inspired from the reproduction strategy of cuckoos. At
the most basic level, cuckoos lay their eggs in the nests
of other host birds, which may be of different species.
The host bird may discover that the eggs are not its own
so it either destroys the eggs or abandons the nest all
together. This has resulted in the evolution of cuckoo
eggs which mimic the eggs of local host birds. CS is
based on three idealized rules:

(1) Each cuckoo lays one egg at a time, and dumps it
in a randomly chosen nest.
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(ii) The best nests with high quality of eggs (solu-
tions) will carry over to the next generations.

(iii) The number of available host nests is fixed, and a
host can discover an alien egg with a probability
Pa € [0, 1]. In this case, the host bird can either
throw the egg away or abandon the nest so as to
build a completely new nest in a new location.

To make the things even simpler, the last assumption
can be approximated by the fraction of p5 of n nests
that are replaced by new nests with new random solu-
tions. The fitness function of the solution is defined in
a similar way as in other evolutionary techniques. In
this technique, egg presented in the nest will represent
the solution while the cuckoo’s egg represents the new
solution. The aim is to use the new and potentially better
solutions (cuckoos) to replace worse solutions that are
in the nests. Based on these three rules, the basic steps
of the cuckoo search are described in Algorithm 1.

Algorithm 1 Pseudo code of Cuckoo Search (CS)
1: Objective function: f (x), x = (X1, X2, ..., XD);
2: Generate an initial population of n host nests
Xj; i=1,2,---,n;
3: While (t < MaxGeneration) or (stop criterion)
Get a cuckoo randomly (say, i)
Generate a new solution by performing Lévy
flights;

AN

6 Evaluate its fitness f
7: Choose a nest among n (say, j ) randomly;
8: if (f; > )
9: Replace j by new solution
10: end if
11: A fraction(pg) of the worse nests are abandoned
and new ones are built;
12: Keep the best solutions/nests;
13: Rank the solutions/nests and find the current
best;
14: Pass the current best solutions to the next
generation;

15: end while

This algorithm uses a balanced combination of a
local random walk and the global explorative random
walk, controlled by a switching parameter p. The local
random walk can be written as

X' =x+as®@Hpa— )@ —x) (¥

where x! and X}( are two different solutions selected
randomly by random permutation, H (u) is a Heavi-
side function, € is a random number drawn from a

uniform distribution, ® represents entry-wise multipli-
cations and Sis a step size. On the other hand, the global
random walk is carried out by using Lévy flights

XD =XV fal(s A ©9)

where

L ny= MRSV 1 o h 10
m s +A

Here a> 0 is the step size scaling factor, which
should be related to the scales of the problem of inter-
est. In most cases, we can use d'= O(L/10) where L
is the characteristic scale of the problem of interest, t is
the current iteration number.

The Lévy flight essentially provides a random walk
whose random step length drawn from a Lévy distri-
bution which has an infinite variance with an infinite
mean. Here the steps essentially form a random walk
process with a power-law step length distribution with
a heavy tail.

5.1. Special cases of Cuckoo search

Recent studies show that CS is potentially far more
efficient than PSO and GA [23, 27]. Moreover the num-
ber of parameters in CS to be tuned is less than GA and
PSO, and thus it is potentially more generic to adapt to
a wider class of optimization problems. In addition to
that, if we look on the Equation. (8) such that the factor
P = as® H (pa— €) is greater than zero and hence the
Equation. (8) becomes the major updating equation of
the differential equation (DE). On the other hand, if we
replace p} by the current best solution (gbest) andk = i
then we have X}H = X} + P(gbest — Xit) which is the
essential a variant of the particle swarm optimization
without individual historical best. Also, from Equa-
tion. (9), the simulated annealing (SA) with a stochastic
cooling scheduling controlled with a parameter pa.
Therefore, DE, PSO, SA etc., can be considered as a
special case of cuckoo search [27]. Therefore, Cuckoo
search is a good and efficient combination of DE, PSO
and SA in one algorithm. Hence, cuckoo search is very
efficient than the other meta-heuristic.

5.2. Why Cuckoo Search is so efficient

In addition to the analysis of the previous section, it
has also been analyzed by the various researchers that
PSO can converge quickly to the current best solution,
but not necessarily the global best solutions [10, 18, 26,
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27]. Moreover, some analyses suggest that PSO updat-
ing equations do not satisfy the global convergence
conditions, and thus there is no guarantee for global
convergence. On the other hand, it has proved that
cuckoo search satisfy the global convergence require-
ments and thus has guaranteed global convergence
properties [26, 27]. This implies that for multimodal
optimization, PSO may converge prematurely to a local
optimum, while cuckoo search can usually converge to
the global optimality. Furthermore, cuckoo search has
two search capabilities: local search and global search,
controlled by a switching/discovery probability. As the
local search is very intensive with about p 5 of the search
time, while global search takes about 1 — p4 of the total
search time. This allows that the search space can be
explored more efficiently on the global scale, and conse-
quently the global optimality can be found with a higher
probability. A further advantage of cuckoo search is that
its global search uses Lévy flights or process, rather
than standard random walks. As Lévy flights have infi-
nite mean and variance, CS can explore the search
space more efficiently than algorithms using stan-
dard Gaussian processes. This advantage, combined
with both local and search capabilities and guaran-
teed global convergence, makes cuckoo search very
efficient.

6. Illustrative example

To demonstrate the proposed approach, the following
four reliability optimization problem has been con-
sidered here. The first three problems are taken as
reliability-cost optimization in which aim is to optimize
the reliability and cost of the 5 unit series system, life
support system in a space capsule and complex bridge
system respectively. The last problem is of mixed series-
parallel system which aim is to maximize reliability and
minimize the cost and weight simultaneously under the
given set of constraints so as to find their component
reliability in each subsystem of the system. The detail
of these problems is explained as below.

6.1. Example 1: Series system

A series system having five components, shown in
Fig. 1(a) is considered [ 14, 17], each having component
reliability ri,i = 1,2, ..., 5. The system reliability Rs,
unreliability Qs and system cost Cg are given by

L

K}
Qs=(1—-Ry=1- fi

Rs= rj or
i i=1

0 O O O
Cs = aj log + bj
i=l

‘o

1
1—r;

The objective of this problem is to find the decision
variables rj which minimize both Qg and Cs, subject to
05<r<09%i=12,...,5.

In other words, the problem can be posed as a MOOP
given by

Minimize {Qsg, Cg}

subjectto 0.5<r <099 ; i=12,...,5

where vectors of the coefficients @ and bj are a=
{24, 8, 8.75,7.14, 3.33} and b = {120, 80, 70, 50, 30}
respectively [14, 17].

6.2. Example 2: Life support system in a space
capsule

This problem concerns the reliability design of a life-
support systemin a space capsule [ 14, 24] whose system
configuration is presented in Fig. 1(b). The system,
which requires a single path for its success, has two
redundant subsystems each comprising component 1
and 4. Each of the redundant subsystems is in series with
component 2 and the resultant pair of series-parallel
arrangement forms two equal paths. Component 3 is
inserted as a third path and backup for the pair. This
problem is a continuous nonlinear optimization prob-
lem and consists of four components, each having
component reliability ri, i = 1, 2, 3,4 such that their
system reliability Rg, unreliability Qg and system cost
Cs are given by
Maximize Rs = 1 — r3[(1 — ri)(1 — ra)?

—(1 =3[l =l = (1 =) =)
or
Minimize Qs = 1 — Rs
Minimize Cs = 2K r{" + 2Kors? + Ksrs® + 2Kyrg?
05<ri<10, i=1,2,3,4

subject to

In other words, the problem can be posed as a MOOP
given by

Minimize {Qs, Cs}

subjectto 0.5<r; <10 ; i=12,...,4
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(a) Series system

(c) Bridge system

(d) Series-parallel system

Fig. 1. Layout of the series, space capsule, bridge and series-parallel systems.

where vectors of the coefficients Kj and qj are K =
{100, 100, 200, 150} and a = {0.6,0.6,0.6,0.6}
respectively [14, 24].

6.3. Example 3: Complex system

The bridge network is considered as a system of
the five components [14, 24], each having component
reliability rj,i =1,2,...,5, to find out the system
reliability as shown in Fig. 1(c). The objective is to
minimize the cost and reliability of the system at the
same time. The algebraic expression for system relia-
bility Rg and the cost Cg of the bridge system are given
as follows:

s = Mr4 +r2rs5 + a3y + rr3rs + 2rrarargrs

—Ir2r3r4ls — Fr3ryrs — rirar3rs — rirararg

0 0
5 by

1—r

Cs = aj exp
i=1
The problem is to find the decision variables rj, i =
1,2,...,5 which minimize both Qg and Cg subject to
0 <rj < 1. Hence, mathematically, the MOOP for the
bridge network can be formulated as
Minimize {Qs, Cs}
subjectto 0<ri <1 ; i=12,...,4

where g = 1 and b; = 0.0003,Vi,i=1,2,...,5

6.4. Example 4: Mixed series-parallel system

This multi-objective reliability optimization problem
is taken from Garg et al. [14], Ravi et al. [24] and
Sakawa [25] whose block diagram is shown in Fig.
1(d). The aim of this problem is to allocate the opti-
mal reliabilities ri,i = 1,2, 3,4 of four components
whose redundancies are specified in order to achieve
the following three goals

Maximize Rs, Minimize Cs, Minimize Wy
or

Minimize Qg, Minimize Cg, Minimize Ws

subjectto Vs = Vini <65 ; Pg< 12000
i=1

05<ri<l1, i=1,23,4

In other words, the problem can be posed of three
objectives given in

Minimize {Qs, Cs, Ws}

subjectto Vs = Vini <65 ; Pg< 12000
i=1
05<ri<l1, i=1,273,4
where Rg, Qs, Cs, Ws, Vs are  the reliability,

unreliability, cost, weight and volume of the system
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respectively. Here rj represents the reliability of the ity
component of the system. In addition, we have

#
Ps=WsxVs ; GCs= Cin;

# U - ot
Rs = - —r)n Ws = Win;
i=1 i=1
0 O c LLvic
C I
Ci =aof logy =
0 0 v !_H—w
Vi=al log — - ;
00y Do
Wi = o logg 1 —Iri

af =80, o =6.0, af =2.0; Vi
ve =20, v' =05, vV =05 Vi
B = {2,10,3,18% B ={3,2,10,8},
BY =(2,2,6,8)

ni ={7,8,7,8}

7. Computational results

In this section, we have described and analyzed the
results as obtained by the above stated approach for
optimization. In order to eliminate stochastic discrep-
ancy, in each example, 25 independent runs are made
which involves 25 different initial trial solutions with a
randomly generated population of size 20 x D for the
optimization, where D is the dimension of the problem.
The termination criterion has been set either limited to-a
maximum number of generations (1000) or to the order
of relative error equal to 10~°, whichever is achieved
first. The other specific parameters of CS algorithms, pa
are set to be 0.25 represent the probability that host can
discover an alien egg. The parameter wis set to be 0.1
for defining the exponential membership function of the
objective function. On the other hand, the parameters
for the PSO algorithm, namely Cognitive and social
components which are constants that can be used to
change the weighting between personal and population
experience, respectively. In our experiments, both were
bothsetto 1.5. Inertia weight, which determines how the
previous velocity of the particle influences the veloc-
ity in the next iteration, is linearly decreased with the
iteration from the initial weight 0.9 to final weight 0.4.

7.1. Results & Discussion

In order to solve these four problems, firstly the fuzzy
multi-objective reliability optimization problem is for-
mulated for corresponding to individual problem as
given in equation (3). For this the desirability func-
tion’s priori preference parameters in the form of ideal
and anti-ideal values corresponding to each problem
are calculated and based on that degree of satisfac-
tion and dissatisfaction are computed from their degree
of membership and non-membership functions. Using
these constructed membership functions, an intuition-
istic fuzzy optimization model has been reformulated
into its equivalent crisp optimization model as given in
equation (7). For obtaining their corresponding Pareto
optimal solution, CS has been used and compared their
results with PSO.

7.1.1. Results corresponding to Example 1:

The ideal and anti-ideal values of the system reli-
ability are 0.9 and 1 while for the system cost these
values are 500 and 600 respectively. The main aim
of the problem is to determine the sub-systems’ reli-
abilities R= [R}, Ry, ..., Rs]" so to maximize the
system reliability Rs and minimize the system cost
Cs. Using these ideal values, the membership and
non-membership functions for the system reliability
objective are defined as

0, Rs(x) < 0.9
Rs\M) = ew > 09=<Rgx) =<1
1, Rs(¥) > 1
an
and

1, Rs(x) < 0.9
5

VR(X) = l IR = 09 <Ry <1 (12)
0, Rs(x) > 1

while for the system cost are defined as

1, Cs(x) < 500

_ e’m( Cs(T‘)M—,soo ) g 1 3

He, () l e = 500 < Cy(x) <600 (13)
0, Cs(x) > 600

548

549

550

552

553

554

565

556

557

558

559

560

561

562

563

564

565

566



567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

595

596

597

598

599

600

601

602

603

604

605

606

10 H. Garg / Multi-objective optimization problem of system reliability

and
[ 0, Cs(x) < 500
Ve, () = | (S50 500 < Cy(x) < 600 (14)
1, Cs(X) = 600

Using these membership functions, the overall satis-
factory function of the system is given by

nf (R, C)) = w(NR)'® + wn(nc,)¥® (15)
where

NRs = MRs — VRs
1 —nR,

Ncs = HCs — Ves

W= and w = &

2 —NRs — Ncs 2 —NRrs — Ncs
The exponential weights YR and yc corresponding
to reliability and cost of the system respectively can
be set at different values. The results obtained corre-
sponding to these different values are summarized in
Table 1. It is observed from the table that by increasing
the value of exponential weight yr then the systems’
reliability and cost become increasing while the overall
satisfaction function n(f ) will decrease. On the other
hand, when the exponential weight yc of the system
cost increases, the system reliability Rg and cost Cg
are decreasing. The last column of the Table 1 indi-
cates that the overall satisfaction level of the system
will decrease with smaller the weight yr. When yRr and
Yc are equal then the satisfaction level of the objective
will be the lowest and hence the unsatisfactory degree
in each objective is the highest and the comprehensive
ability of the decision maker is the weakest. Also it has
been seen that the satisfactory degree of each objec-
tive becomes larger with the gradual increase in their
difference of their exponential weights and hence the
total degree of dissatisfaction becomes smaller. It shows
that the comprehensive coordination ability of deci-
sion maker becomes stronger, until the single-objective
optimization is reached. Finally it has been observed
from the analysis that when the exponential weights are
greater than one then the overall degree of satisfaction of
the objective is very small and hence the ideal satisfac-
tory solution will probably not be obtained. Therefore

exponential weight is suggested to be less than one.

7.1.2. Results corresponding to Example 2:

The ideal and anti-ideal values of the systems’ reli-
ability corresponding to space capsule system problem
are 0.9 and 1 while for cost functions are 641 and 700
respectively. Based on these ideal values, a region of

satisfaction is constructed corresponding to each of
the objectives. Using these constructed membership
functions, an intuitionistic fuzzy optimization model
has been reformulated into its equivalent crisp opti-
mization model as given in equation (7). Initially, the
iterative process is started with the exponential weights
YR = Yc = 1 for a satisfaction region of the system
reliability and cost. The outcomes of this iteration are
given as Rg = 0.9278073 and Cs = 658.53122, given
in the Table 2. However, the solution reported by Ravi
et al. [24] is given as Rg = 0.94743 and Cs = 668.28.
Thus in terms of cost, the reported solution is better
than the solution reported in Ravi et al. [24], however,
its reliability is less. Keeping this in view, put a more
weighting on the system reliability objective as com-
pared to the cost. For this exponential weight y¢c are
decreasing from one and keeping reliability weight yr
as fixed, then the corresponding results shows that the
system reliability are increasing with the decrease of
their weight yc and correspondingly the overall satis-
faction function n(f ) will also increase. Other iterations
are also performed, by varying exponential weight yr
of the system reliability and fixing the exponential
weight yc to be 1, to achieve the other solutions. The
corresponding results for different values of exponen-
tial weights Yr and yc after solving by using the CS
algorithm are summarized in Table 2 along with their
PSO results. Decision maker (DM) may achieve more
trade-off solutions by changing the reservation value of
objectives according to desire.

7:1.3. Results corresponding to Example 3:

The third example taken is the complex (bridge)
system in which aim is to find the reliability of com-
ponents so as to maximize reliability and minimize
the cost simultaneously. For this, membership and
non-membership function corresponding to objective
functions are constructed based on its desirability func-
tions, 0.99 and 1 corresponding to reliability while 4.8
and 5.5 for cost. Based on these functions, the opti-
mization problem (7) is formulated for the considered
system and hence solved with a CS approach for dif-
ferent values of YR and yc. The results corresponding
to it are summarized in Table 3 and compared their
results with PSO results. It has been examined from the
table that the proposed results are better than the results
obtained by PSO. Moreover, it has been also observed
from the analysis that exponential weights should be
less than one in order to obtain their ideal satisfactory
solutions.



Table 1

Results corresponding to series system (Example 1)

Method YR Yo r n r ry rs Rs Cs (NRs)'R (nc,)¥e n)
PSO 0.0] 4 0.9598808 0.9805495 0.9754804 0.9874390 0.9936032 0.9008008 5.3922423 0.952317 0.441943 0.768623
cs : 0.9548417 0.9781811 0.9827367 0.9884755 0.9932975 0.9012247 5.3899495 0.956330 0.446054 0.773072
PSO o1 | 0.9561542 0.9845308 0.9800691 0.9889341 0.9950746 0.9078980 5.4251292 0.765566 0.381888 0.612459
cs : 0.9579439 0.9845810 0.9842047 0.9826722 0.9950926 0.9077143 5.4238425 0.763920 0.384276 0.612919
PSO 05 ) 0.9625607 0.9834595 0.9870238 0.9851548 0.9928630 0.9139156 5.4619041 0.337453 0.312299 0.326462
cs : 0.9586241 0.9849617 0.9838115 0.9898147 0.9941160 0.9140513 5.4594998 0.338827 0.316927 0.329288
PSO 08 . 0.9624038 0.9878738 0.9844165 0.9884538 0.9932577 0.9188742 5.4895542 0.213990 0.258286 0.234573
cs : 0.9614191 0.9854850, 0.9870623 0.9867380 0.9939359 0.9172076 5.4788830 0.201999 0.279304 0.237143
PSO . . 0.9642275 0.9836446 0.9822799 0.9879260 0.9922604 0.9132783 5.4585247 0.109465 0.318801 0.200192
CS 0.9597791 0.9848955 0.9852240 0.9861095 0.9941996 0.9130514 5.4522561 0.107876 0.330805 0.203425
PSO . 08 0.9605856 0.9887070 0.9874474 0.9869466 0.9916588 0.9178541 5.4869927 0.139410 0.343896 0.233720
cs : 0.9548512 0.9895269 0.9848852 0.9899517 0.9936496 0.9153690 5.4719308 0.123641 0.374414 0.235627
PSO | 05 0.9644641 0.9835188 0.9852261 0.9898850 0.9900836 0.9159279 5.4798021 0.127291 0.526784 0.308228
cs - 0.9656811 0.9863976 0.9848967 0.9838797 0.9950794 0.9184936 5.4916518 0.143278 0.504112 0311216
PSO . 01 0.9678786 0.9885362 0.9886324 0.9899154 0.9888517 0.9259288 5.5523382 0.182533 0.815598 0.508875
cs : 0.9686636 0.9910018 0.9872736 0.9864465 0.9929053 0.9282531 55617121 0.192647 0.802288 0.512227
PSO | o0p 09651833 0.9894481 0.9907855 0.9903399 0.9954922 0.9328347 55912297 0.209573 0.969922 0.625164
cs : 0.9689616 0.9860122 0.9880108 0.9921780 0.9969620 0.9337246 5.6014259 0.212398 0.963751 0.628032
PSO s ) 0.9564797 0.9860164 0.9847168 0.9866863 0.9910490 0.9081248 54251311 0.018905 0.381884 0.163922
[ : 0.9600336 0.9865125 0.9824746 0.9839299 0.9931475 0.9092606 5.4319491 0.022579 0369177 0.163553
PSO . s 0.9559413 0.9834325 0.9837203 0.9916965 0.9939694 0.9115895 5.4499493 0.097406 0.194071 0.138406
[ - 0.9599507 0.9875026 0.9791179 0.9877323 0.9939681 0.9112424 5.4457422 0.094861 0.201056 0.139516
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Table 2
Results corresponding to nonlinear space capsule system (Example 2)
Method YR Yc r r r r4 Rs Cs (NR'® (ncy*e n)
PSO 0.0l | 0.5463795 0.7936154 0.5197462 0.5073802 0.9033303 647.98995 0.965736 0.862202 0.952850
(&) ’ 0.5099959 0.8384279 0.5130517 0.5038219 0.9046501 646.29902 0.968832 0.897976 0.962011
PSO 01 [ 0.5087991 0.8560035 0.5064657 0.5400102 0.9179577 655.77969 0.821534 0.677280 0.782171
(&) ’ 0.5104167 0.8731123 0.5003880 0.5002821 0.9121247 647.96109 0.795344 0.862826 0.804281
PSO 05 1 0.5233016 0.9049671 0.5036342 0.5128216 0.9266019 657.45727 0.430776 0.633128 0.493619
CS ’ 0.5938911 0.8579064 0.5030364 0.5009450 0.9297234 659.31388 0.445549 0.582475 0.492448
PSO 08 | 0.5133542 0.9359586 0.5211990 0.5027874 0.9290755 660.13473 0.271499 0.559481 0.373433
(&) ' 0.5059642 0.9511007 0.5097616 0.5087910 0.9316251 660.46363 0.281992 0.550165 0.378938
PSO 1 1 0.5103233 0.9124469 0.5007069 0.5240649 0.9278073 658.53122 0.190787 0.604057 0.326563
CS 0.5266560 0.9387869 0.5095765 0.5058709 0.9334570 661.46819 0.211564 0.521344 0.328587
PSO | 08 0.5350007 0.9181756 0.5143666 0.5024137 0.9304100 660.14327 0.201113 0.628172 0.352955
(&) ' 0.5771052 0.8934357 0.5028270 0.5010461 0.9343215 661.30572 0.214208 0.598159 0.358663
PSO 1 05 0.5490615 0.9306721 0.5039249 0.5119007 0.9382973 664.44553 0.224537 0.657794 0.407584
CS ’ 0.5167162 0.9783334 0.5109278 0.5076252 0.9394002 665.37428 0.226870 0.635649 0.404809
PSO 1 01 0.5869689 0.9306811 0.5131157 0.5097173 0.9466040 671.08232 0.236421 0.858579 0.551272
(&) : 0.5293290 0.5027187 0.9934818 0.5202093 0.9469042 670.82739 0.236605 0.861952 0.551359
PSO | 0.01 0.6190601 0.8729139 0.5023595 0.5512285 0.9473234 676.50921 0.236833 0.963384 0.644567
(&) ' 0.5170686 0.9744657 0.5025875 0.5626034 0.9509467 676.35856 0.237413 0.965405 0.645062
PSO 5 1 0.5539270 0.8846019 0.5061649 0.5073954 0.9281703 658.73040 0.084330 0.598596 0.255059
CS : 0.5287961 0.9158787 0.5009568 0.5108942 0.9299024 658.79261 0.088906 0.596886 0.258996
PSO | 5 0.5323546 0.8745094 0.5038797 0.5184860 0.9228797 656.39778 0.167707 0.537639 0.274731
CS ' 0.5184258 0.9283047 0.5068567 0.5100979 0.9301131 659.46462 0.200000 0.439752 0.282758

!
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Table 3
Results corresponding to complex bridge system (Example 3)

YR Yc r rn r3 ry rs Rs Cs (NRy)YR (ngy)¥e n)
PSO 0.01 | 0.9455041 0.9515035 0.9033055 0.9588207 0.9502702 0.9949021 5.0281954 0.985723 0.556687 0.354786
cs : 0.9444638 0.9519407 0.9163091 0.9599051 0.9504936 0.9949962 5.0288579 0.985727 0.555106 0.354531
PSO o1 . 0.9434656 0.9634259 0.9041537 0.9484755 0.9507169 0.9949922 5.0286371 0.866097 0.555633 0.354638
cs : 0.9624824 0.9423956 0.9014956 0.9449147 0.9552632 0.9949452 5.0284894 0.866088 0.555985 0.354690
PSO 05 . 0.9384203 0.9529402 0.9073707 0.9530634 0.9605881 0.9948689 5.0285758 0.487180 0.555779 0.354552
cs : 0.9524374 0.9637767 0.9026942 0.9456245 0.9448926 0.9948808 5.0287228 0.487209 0.555428 0.354502
PSO 08 | 0.9509569 0.9409911 0.9228819 0.9550774 0.9563509 0.9948165 5.0287276 0.316284 0.555417 0.354367
cs : 0.9516132 0.9471844 0.9007612 0.9526228 0.9529726 0.9947931 5.0276951 0.316192 0.557879 0.354797
PSO ) . 0.9529831 0.9354290 0.9110737 0.9588891 0.9597933 0.9949494 5.0292506 0.237480 0.554168 0.354325
cs 0.9483112 0.9536796 0.9106658 0.9430209 0.9591303 0.9948984 5.0283287 0.237408 0.556369 0.354717
PSO . 08 0.9671780 0.9213701 0.9119818 0.9504851 0.9558933 0.9948125 5.0293210 0.237176 0.623459 0.354069
cs : 0.9585802 0.9367381 0.9112590 0.9417061 0.9647802 0.9949151 5.0291229 0.237437 0.623885 0.354356
PSO . 0.5 0.9505880 0.9545951 0.9275672 0.9433014 0.9572848 0.9950326 5.0292224 0.237491 0.744470 0.354346
cs - 0.9482660 0.9431433 0.9124931 0.9655812 0.9471308 0.9948724 5.0289850 0.237353 0.744850 0.354361
PSO | 01 0.9337506 0.9558072 0.9070479 0.9562047 0.9592173 0.9949007 5.0288396 0.237413 0.942846 0.354475
cs : 0.9513013 0.9556598 0.9020340 0.9272357 0.9647767 0.9948442 5.0287200 0.237278 0.942895 0.354434
PSO . 0.01 0.9579344 0.9474640 0.9044894 0.9624505 0.9335544 0.9948886 5.0285765 0.237389 0.994143 0.354584
cs : 0.9429274 0.9626901 0.9018209 0.9483415 0.9488921 0.9948053 5.0281152 0.237150 0.994163 0.354631
PSO s . 0.9383515 0.9613511 0.9086598 0.9355960 0.9642653 0.9949346 5.0290599 0.115717 0.554624 0.354406
cs : 0.9488194 0.9565861 0.9191431 0.9613535 0.9366029 0.9949716 5.0290663 0.115740 0.554608 0.354426
PSO . s 0.9425407 0.9608263 0.9029580 0.9358527 0.9662291 0.9951962 5.0296292 0.237128 0.411527 0.353884
cs - 0.9529616 0.9552172 0.9020054 0.9419079 0.9587698 0.9950994 5.0286660 0.237404 0.414096 0.354552
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7.1.4. Results corresponding to Example 4:

The fourth example is of RRAP in which aim
is to maximize the system reliability and minimizes
the systems cost and weight simultaneously sub-
ject to various resource constraints. The degree of
satisfaction corresponding to objective functions are
formulated and then IFO model has been reformu-
lated into its equivalent crisp optimization model.
The constraints are handled with the help of param-
eter free penalty method [11] in which constrained
optimization is converted into unconstrained optimiza-
tion problems. The resultant problem has been solved
with the help of CS for different values of exponen-
tial weight YR and yc and their corresponding results
are summarized in Table 4. The results correspond-
ing to YR = Yc = Yw = | show that (Rg, Cs, Ws) =
(0.9963176, 369.17902, 184.53879) with degree of
satisfaction are 0.8174, 0.7695 and 0.9556 respectively
for the system reliability, cost and weight. The over-
all satisfaction degree for it is 0.806699. Clearly this
solution dominates the solution (Rg=0. 99671, Cs=413.
664, Ws=193. 432) reported by Ravi et al. [24]. In order
to increase the reliability of the system, system analysts
may prefer more weighing on the reliability objective
by decreasing their preference value parameter yc and
yw from 1 to 0. Not satisfied with these outcomes, the
decision maker may have other preferences towards the
objective functions and their corresponding results are
summarized in Table 4. Finally it has been observed
from the analysis that when the exponential weights
are greater than one then the overall degree of satisfac-
tion of the objective is very small and hence the ideal
satisfactory solution will probably not be obtained.

7.2. Statistical analysis

In order to analyze whether the results as obtained in
the above tables are statistically significantly with each
other or not. For this we compute their corresponding
the best, the average, the worst and the standard devi-
ation of objective function values after 25 independent
runs and are reported in Table 5 to each example: From
this analysis it has been concluded that the proposed
approach is of superior searching quality and robustness
for these problems. Moreover, the standard deviation of
the results is very small. In addition to that we perform a
t-test on the pair of the algorithm for each problem. For
this, an analysis has been conducted with the assump-
tion that the populations have equal variances at the
significance level of a = 0.05 in the case of proposed
results with PSO results. The test has been performed

against the null hypothesis that there is no difference
in their population means. Under this null hypothe-
sis, the pooled ¢-test has been performed corresponding
to YR = Yc = Yw = | for each problem and hence #-
statistics values corresponding to example 1, example 2,
example 3, example 4 are 1.8184, 3.3205, 4.2636 and
1.7479 respectively. It is indicated from these values
that the values of #-stat are greater than the -critical val-
ues (1.6715). Also the p values obtained corresponding
to each case is less than the significance level a = 0.05.
Hence it is observed that it is highly significant and null
significant, i.e., the mean of the algorithms is identical
is rejected. Thus, the two types of means differ signif-
icantly. Similar observations have been computed for
different parameters of YR, Yc and yw. Further, since
mean of cost functions with proposed approach is better
than the mean of another algorithm, and hence we con-
clude that the proposed approach is better than others
and this difference is statistically significant.

8. Conclusion

The problem of optimizing the reliability of com-
plex systems has been modeled as an intuitionistic
fuzzy multi-objective optimization problem, where the
reliability, cost, weight and volume of the system are
considered as fuzzy objectives. Four optimization prob-
lems involving different kinds of complex systems
and multistage mixed systems have been successfully
solved using the model. In the formulation, the member-
ship and non-membership functions of their objective
functions are formulated by using exponential and
quadratic membership functions respectively. A vari-
able weight method has been used, instead of constant
ones, for reformulated the problem in a single objective
optimization model using exponential weights yr and
Yc corresponding for reliability and cost respectively.
Cuckoo search, a global metaheuristic optimization
technique has been used for solving the nonconvex
problems and compared their results with PSO algo-
rithm results. Finally it has been observed from the
analysis that when the exponential weights are greater
than one, then the overall degree of satisfaction of the
objective is very small and hence the ideal satisfac-
tory solution will probably not be obtained. Therefore
exponential weight is suggested to be less than one.
The results are encouraging and they indicate that pro-
posed intuitionistic fuzzy optimization techniques can
be employed as viable alternatives to the traditional
goal programming approaches to the kind of problems



Table 4

Results corresponding to mixed series-parallel system RRAP (Example 4)

YR yo o yw r rn rs ry Rs Cs Ws (NRy)YR (ncy)Ye (wy) W n)
PSO o4 0] 05915328 05331878 05984125 05184053 09912978 34099474  179.89441 0989746 0932435 0999851  0.984614
cs : : 0.6134969  0.5408969  0.5745892  0.5105508  0.9909525  340.29286  180.05045  0.988652  0.936103  0.999842  0.984465
PSO 1 01 06516017 05435637 06209380 05115890  0.9931462 34952978  182.02784 0941010 0886314 0997146 0933249
cs : y 06156442 05626669  0.6389091  0.5288322  0.9942053  354.50692  182.35206  0.956721  0.858133  0.996934  0.932609
PSO | 05 06218299 05801845  0.6035794 05758689  0.9953514  363.48416 18329485 0860690  0.804904 0981680  0.847459
cs - : 0.6688789 ~ 0.5492630  0.6561570  0.5357159  0.9951403  361.17740  183.88545  0.850466  0.818876  0.979729  0.849393
PSO o . 0g 06746666 05524090 06341508 05704046  0.9959718 36650702 18439336 0828674  0.786286  0.965096  0.821958
cs : : 0.6616704 £ 0.5622983 . 0.6706581  0.5701219  0.9965631  371.43226  185.10333  0.866446  0.755202  0.961338  0.816837
PSO . . 0.6417986  0.5581655.  0.6554089  0.5787711  0.9962280  368.36234  184.29183  0.810535  0.774686  0.957224  0.806595
cs 0.6337711  0.5747330 . 0.6675002  0.5648951  0.9963176  369.17902  184.53879  0.817400  0.769538  0.955611  0.806699
PSO 08 og 06732973 05583721  0.6510410° 05710502 09963841  360.61432  184.89961 0822456 0808609 0962420  0.829700
cs : : 0.6613086  0.5992464  0.6475747°  0.5557804  0.9966358  372.08873 18539456  0.841373  0.795256  0.959789  0.829220
PSO 05 o5 06837239 05685661  0.6764391  0.5668366 09968756 37524641  185.97663 0859030 0854688 0972698  0.869694
cs : : 0.6559008  0.5891153  0.6379764  0.5766484 09967734  372.68580  185.17522  0.851547  0.864374 0975416  0.872128
PSO 01 o 06922808 05959790  0.6732593  0.6101997 09980994  390.52283  187.95368 0943628 0954230 0993079 0958268
cs : : 0.6843544  0.6173414  0.6706265  0.5959016 0.9980978  390.07548  188.00464  0.943520  0.954715  0.993042  0.958661
PSO 001 o001 07363932 06251687 07028506  0.6001071 ~ 09986639 40495519  190.74881 0979546 0993461 0999098  0.993804
cs : : 07472045  0.6203673  0.6940327  0.6131087  0.9987501 ~ 407.39103  191.04791  0.984855  0.993094  0.999075  0.993763
PSO . . 06322412 0.6029990  0.6695628  0.5626320  0.9967078 37415362 18536230  0.779117  0.737629  0.950204  0.774034
cs - 0.6884177 05752611  0.6189404  0.5603138  0.9960975 368.26658 -184.93796  0.716152  0.775288  0.952996  0.767973
PSO 15 . 0.6444216  0.5639517  0.6514573  0.5667497  0.9961135  366.56357  184.18478  0.801693  0.696755  0.957922  0.766728
cs : 0.6350051  0.5743333  0.6206336  0.5758728  0.9958875  365.58922  183.79647  0.784009  0.704804  0.960448  0.763520
PSO s 15 06436523 05676392 06159764 05775735 09958101 36510297 18376916 [ 0.777871  0.708814  0.941524 0761335
cs : : 0.6367300  0.5968497  0.6158179  0.5696782  0.9960619  368.07825  184.29610° 0.797686  0.684208  0.936487  0.756238
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Table 5

Statistical Results corresponding to each case study

YR Yc yw Problem 1 Problem 2 Problem 3 Problem 4
PSO CS PSO CS PSO CS PSO CS
Mean 0.749834  0.762525  0.925206  0.939571 0.352927  0.353741 0.977864  0.973770
Best 0.01 1 0.01  0.768623  0.773072  0.952850  0.962011  0.354786  0.354531  0.984614  0.984465
Worst 0.729964  0.744149  0.882384 0911402  0.352289  0.353158  0.954262  0.962145
Std dev 0.009361  0.007338  0.017732  0.011964  0.000628  0.000366  0.007231 .0.006651
Mean 0314729  0.318658  0.461431 0473926  0.353438  0.353818  0.820029 = 0.833310
Best 0.5 1 0.5 0326462  0.329288  0.493619  0.492448  0.354542  0.354502  0.847459 = 0.849393
Worst 0306148  0.308425  0.424580  0.450261 0352629  0.352426  0.794657 0.817011
Std dev 0.005562  0.005123  0.017038  0.010013  0.000531 0.000460  0.014644  0.010450
Mean 0.192236  0.194653  0.301463  0.310362  0.353440  0.353985 = 0.780353  0.786353
Best 1 1 1 0200192  0.203425  0.326563  0.328587  0.354325  0.354717  0.806595  0.806699
worst 0.185130  0.183990  0.294715  0.293536  0.352298  0.353282  0.752611 0.755052
Std dev 0.004718  0.004488  0.010036  0.008465  0.000475  0.000408  0.013877  0.009499
Mean 0303157  0.305413  0.390879  0.395827  0.353638  0.354023.  0.843816  0.856798
Best 1 0.5 0.5 0308228  0.311216  0.407584  0.404809  0.354346  0.354361 0.869694  0.872128
worst 0.294052  0.297864  0.367065  0.375117  0.352503  0.353400  0.828781 0.842150
Std dev 0.004855  0.004229  0.009987  0.007870  0.000564 0.000378  0.012112  0.007864
Mean 0.613572  0.617163  0.641106  0.642511  0.353709 ~ 0.354003  0.992228  0.993090
Best 1 0.01 0.0 0.625164 0.628032  0.644567  0.645062  0.354584 = 0.354631  0.993804  0.993753
worst 0.600992  0.603245  0.637047  0.634662  0.352673 . 0.353216  0.989061 0.992036
Std dev 0.007302  0.006954  0.003138  0.002549  0.000517  0.000402  0.001150  0.000557
Mean 0.131018  0.133768  0.258088  0.266813  0.353730 . 0.353837  0.722791 0.734314
Best 1 1.5 1.5 0.138406  0.139516  0.274731 0.282758  0.353884.~ 0.354552  0.761335  0.756238
worst 0.127469  0.126203  0.229188  0.236391  0.351949  0.352709  0.690778  0.710830
Std dev 0.004198  0.003766  0.013146  0.011861  0.000640  0.000484  0.017865 0.014327

solved in this paper. The obtained result by CS algo-
rithm is shown to be statistically significant as compared
to PSO in terms of means of pooled 7-test. The opti-
mal design parameters help the decision-maker help
the decision maker basically in following two ways:

e Indeciding the related characteristics of each com-
ponent

e In formulating optimal design policies and repair
policies for the entire system to ensure highly reli-
able and efficient system.

References

[1] D.N.M. Abadi, M.H. Khooban, A. Alfi and M. Siahi, Design

of optimal self-regulation mamdani-type fuzzy inference con-

troller for type I diabetes mellitus, Arabian Journal for Science

and Engineering 39 (2014), 977-998.

A. Alfi and M.M. Fateh, Intelligent identification and control

using improved fuzzy particle swarm optimization, Expert Sys-

tems with Applications 38 (2011), 12312-12317.

P.P. Angelov, Optimization in an intuitionistic fuzzy environ-

ment, Fuzzy Sets and Systems 86(3) (1997), 299-306.

[4] K.T. Attanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Sys-
tems 20 (1986), 87-96.

[5] K.T. Attanassov, More on intuitionistic fuzzy sets, Fuzzy Sets
and Systems 33(1) (1989), 37-46.

2

3

[8

[6] R.Bellman and L. Zadeh, Decision making in a fuzzy environ-

ment, Management Science 17 (1970), 141-164.

[7] S. Chakrabortty, M. Pal and PK. Nayak, Intuitionistic fuzzy

optimization technique for Pareto optimal solution of manufac-
turing inventory models with shortages, European Journal of
Operational Research 228 (2013), 381-387.

J.R. Chang, K.H. Chang, S.H. Liao and C.H. Cheng, The reli-
ability of general vague fault tree analysis on weapon systems
fault diagnosis, Soft Computing 10 (2006), 531-542.

[9] S.M. Chen, Analyzing fuzzy system reliability using vague

set theory, International Journal of Applied Science and
Engineering 1(1) (2003), 82-88.

[10] M. Clerc and J.F. Kennedy, The particle swarm: explosion, sta-

bility, and convergence in a multi - dimensional complex space,
IEEE Transactions on Evolutionary Computation 6 (2002),
58-73.

[11] K. Deb, An efficient constraint handling method for genetic

algorithms, Computer Methods in Applied Mechanics and Engi-
neering 186 (2000), 311-338.

[12] H. Garg, Reliability analysis of repairable systems using Petri

nets and Vague Lambda-Tau methodology. ISA Transactions
52(1) (2013), 6-18.

[13] H. Garg and M. Rani, An approach for reliability analysis of

industrial systems using PSO and IFS technique, ISA Transac-
tions 52(6) (2013), 701-710.

[14] H. Garg, M. Rani, S.P. Sharma and Y. Vishwakarma, Intuition-

istic fuzzy optimization technique for solving multiobjective
reliability optimization problems in interval environment,
Expert Systems with Applications 41 (2014), 3157-3167.

[15] H.Garg and S.P. Sharma, Stochastic behavior analysis of indus-

trial systems utilizing uncertain data, ISA Transactions 51(6)
(2012), 752-762.



809
810
811
812
813
814
815
816
817
818
819
820

822
823
824
825
826

828
829
830
831
832

[16]

(171

[18]

[19]

[20]

[21]

[22]

H. Garg / Multi-objective optimization problem of system reliability 17

H. Garg and S.P. Sharma, Multi-objective reliability-
redundancy allocation problem using particle swarm opti-
mization, Computers & Industrial Engineering 64(1) (2013),
247-255.

H.Z. Huang, Fuzzy multi-objective optimization decisonmak-
ing of reliability of series system, Microelectronics Reliability
37(3) (1997), 447-449.

M. Jiang, Y.P. Luo and S.Y. Yang, Stochastic convergence anal-
ysis and parameter selection of the standard particle swarm
optimization algorithm, Informational Processing Letters 102
(2011), 8-16.

M.H. Khooban, D.N.M. Abadi, A. Alfi and M. Siahi, Swarm
optimization tuned Mamdani fuzzy controller for diabetes
delayed model, Turkish Journal of Electrical Engineering and
Computer Sciences 21 (2013), 2110-2126.

M.H. Khooban, A. Alfi and D.N.M. Abadi, Control of a class
of non-linear uncertain chaotic systems via an optimal Type-2
fuzzy proportional integral derivative controller IET Science,
Measurement & Technology 7 (2013), 50-58.

K.S. Park, Fuzzy apportionment of system reliability, /EEE
Transactions on Reliability R-36, 129-132

P. Pramanik and T.K. Roy, An intuitionistic fuzzy goal pro-
gramming approach to vector optimization problem, Notes on
Intutionistic Fuzzy Sets 11(1) (2005), 1-14.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Rajabioun, Cuckoo optimization algorithm, Applied Soft
Computing 11 (2011), 5508-5518.

V. Ravi, PJ. Reddy and H.J. Zimmermann, Fuzzy global opti-
mization of complex system reliability, IEEE Transactions on
Fuzzy Systems 8 (2000), 241-248.

M. Sakawa, Multi-objective optimization by a surrogate worth
trade-off method, IEEE Transactions on Reliability R-27
(1978), 311-314.

F. Wang, X.S. He, Y. Wang and S.M. Yang, Markov model
and convergence analysis based on cuckoo search algorithm,
Computational Engineering 38 (2012), 180-185.

X.-S. Yang, Cuckoo search and firefly algorithm: Overview and
analysis cuckoo search and firefly algorithm, Springer Interna-
tional Publishing 516 (2014), 1-26.

X.S. Yang and S. Deb, Cuckoo search via levy flights. In: Proc
of World Congress on Nature & Biologically Inspired Comput-
ing (NaBIC 2009), December, 2009, India. IEEE Publications,
USA, 2009, pp. 210-214.

H.J. Zimmermann, Description and optimization of fuzzy sys-
tems, International Journal of General Systems 2 (1976),
209-215.

833
834
835
836

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853



