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Also, we develop a single-valued neutrosophic hesitant fuzzy weighted averaging (SVNHFWA) operator and 
a single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and investigate their 
properties. Furthermore, a multiple-attribute decision-making method is established on the basis of the 
SVNHFWA and SVNHFWG operators and the cosine measure under a single-valued neutrosophic hesitant 
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1  Introduction
The neutrosophic set [2] is a powerful general formal framework that generalizes the concept of the classic 
set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, para-
consistent set, dialetheist set, paradoxist set, and tautological set. In the neutrosophic set, indeterminacy is 
quantified explicitly, and truth membership, indeterminacy membership, and falsity membership are inde-
pendent. However, the neutrosophic set generalizes the above-mentioned sets from a philosophical point of 
view, and its functions TA(x), IA(x), and FA(x) are real standard or non-standard subsets of ]–0, 1+[, i.e., TA(x): X 
→]–0, 1+[, IA(x): X →]–0, 1+[, and FA(x): X →]–0, 1+[. Thus, it will be difficult to apply in real scientific and engi-
neering areas [5, 6]. Therefore, Wang et al. [5, 6] proposed the concepts of an interval neutrosophic set (INS) 
and a single-valued neutrosophic set (SVNS), which are the subclasses of a neutrosophic set, and provided 
the set-theoretic operators and various properties of SVNSs and INSs. SVNSs and INSs provide an additional 
possibility to represent uncertain, imprecise, incomplete, and inconsistent information that exists in the 
real world. They would be more suitable to handle indeterminate information and inconsistent information. 
Recently, Ye [13] presented the correlation coefficient of SVNSs based on the extension of the correlation of 
intuitionistic fuzzy sets and proved that the cosine similarity measure is a special case of the correlation 
coefficient of SVNSs, and then applied it to single-valued neutrosophic decision-making problems. Then, 
Ye [14] presented another form of correlation coefficient between SVNSs and applied it to multiple-attribute  
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decision making under a single-valued neutrosophic environment. Ye [15] proposed a single-valued neutro-
sophic cross-entropy measure and applied it to multicriteria decision-making problems with single-valued 
neutrosophic information. Ye [16] also introduced the Hamming and Euclidean distances between INSs and 
the similarity measures, and then applied them to decision-making problems in an interval neutrosophic 
setting. Furthermore, Ye [17] presented the concept of a simplified neutrosophic set (SNS), which is a sub-
class of the neutrosophic set and includes an SVNS and an INS, and defined some operations of SNSs. Then, 
he developed a simplified neutrosophic weighted averaging (SNWA) operator, a simplified neutrosophic 
weighted geometric (SNWG) operator, and a multicriteria decision-making method using the SNWA and 
SNWG operators and the cosine measure of SNSs under a simplified neutrosophic environment.

In fuzzy decision-making problems, however, decision makers sometimes find it difficult to determine 
the membership of an element to a set, and in some circumstances they cause this difficult problem of giving 
a few different values due to doubt. To deal with such cases, Torra and Narukawa [3] and Torra [4] presented 
the concept of a hesitant fuzzy set (HFS) as another extension of the fuzzy set. Xu and Xia [9, 10] defined some 
similarity measures, distance and correlation measures of HFSs, and applied them to multicriteria decision 
making. Then, Xia and Xu [8] developed a series of aggregation operators for hesitant fuzzy information 
and applied them in solving decision-making problems. Xu and Xia [11] introduced hesitant fuzzy entropy 
and cross-entropy and their use in multiple-attribute decision making. Zhu et al. [19] introduced hesitant 
fuzzy geometric Bonferroni means and applied the proposed aggregation operators to multicriteria decision 
making. Wei [7] also introduced hesitant fuzzy prioritized operators and their application to multiple-attrib-
ute decision making. Chen et al. [1] generalized the concept of HFS to that of interval-valued HFS (IVHFS) in 
which the membership degrees of an element to a given set are not exactly defined but denoted by several 
possible interval values, and gave systematic aggregation operators to aggregate interval-valued hesitant 
fuzzy information. They then developed an approach to group decision making based on interval-valued 
hesitant preference relations to consider the differences of opinions between individual decision makers. Xu 
et al. [12] investigated the aggregation of hesitancy fuzzy information, proposed several series of aggregation 
operators, and discussed their connections. Then, they applied the Choquet integral to obtain the weights of 
criteria and established a group decision-making method under a hesitant fuzzy environment.

However, in some situations, decision makers sometimes cause this difficult problem of assigning a few 
different values for satisfied and unsatisfied degrees. Thus, the HFS and the IVHFS are difficult to use for 
such a decision-making problem. To handle such cases, Zhu et  al. [20] originally introduced a dual HFS 
(DHFS) as a generalization of HFSs, which encompasses fuzzy sets, intuitionistic fuzzy sets, HFSs, and fuzzy 
multisets as special cases [20]. The DHFS consists of two parts – the membership hesitancy function and the 
non-membership hesitancy function – and can handle two kinds of hesitancy in this situation. Then, Ye [18] 
proposed a correlation coefficient of DHFSs and applied it to multiple-attribute decision-making problems 
under a dual hesitant fuzzy environment.

As mentioned above, hesitancy is the most common problem in decision making, for which HFS can 
be considered as a suitable means allowing several possible degrees for an element to a set. However, in an 
HFS, there is only one truth-membership hesitant function, and it cannot express this problem with a few 
different values assigned by truth-membership degrees, indeterminacy-membership degrees, and falsity-
membership degrees, due to doubts of decision makers. Thus, in this situation, it can represent only one kind 
of hesitancy information and cannot express three kinds of hesitancy information. An SVNS is an instance 
of a neutrosophic set that provides an additional possibility to represent uncertain, imprecise, incomplete, 
and inconsistent information that exists in the real world. It would be more suitable to handle indetermi-
nate information and inconsistent information. However, it can only express a truth-membership degree, an 
indeterminacy-membership degree, and a falsity-membership degree, and it cannot represent this problem 
with a few different values assigned by truth-membership degrees, indeterminacy-membership degrees, and 
falsity-membership degrees, respectively, due to doubts of decision makers. In such a situation, the afore-
mentioned algorithms based on neutrosophic sets or HFSs and their decision-making methods are difficult 
to use for such a decision-making problem with three kinds of hesitancy information that exists in the real 
world. To handle this case, we need to introduce a concept of a single-valued neutrosophic HFS (SVNHFS), 
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which is a combination of HFS and SVNS, and some algorithms for SVNHFSs. The SVNHFS consists of three 
parts – the truth-membership hesitancy function, indeterminacy-membership hesitancy function, and fal-
sity-membership hesitancy function – and can express three kinds of hesitancy information in this situation. 
Therefore, the purposes of this article are (i) to propose an SVNHFS based on the combination of SVNS and 
HFS, (ii) to introduce the basic operational relations and cosine measure function of SVNHFSs, (iii) to develop 
a single-valued neutrosophic hesitant fuzzy weighted averaging (SVNHFWA) operator and a single-valued 
neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and investigate their properties, and 
(iv) to establish a multiple-attribute decision making method based on the SVNHFWA and SVNHFWG opera-
tors and the cosine measure under a single-valued neutrosophic hesitant fuzzy environment.

The rest of the article is organized as follows. Section 2 briefly describes some concepts of neutrosophic 
sets, SVNSs, HFSs, and DHFSs. Section 3 proposes the concept of SVNHFSs and defines the corresponding 
basic operations and cosine measure for SVNHFSs. In Section 4, we develop the SVNHFWA and SVNHFWG 
operators and investigate their properties. Section 5 establishes a decision-making approach based on the 
SVNHFWA and SVNHFWG operators and the cosine measure. An illustrative example validating our approach 
is presented and discussed in Section 6. Section 7 contains the conclusion and future research direction.

2  Preliminaries

2.1  Some Concepts of Neutrosophic Sets and SVNSs

A neutrosophic set is a part of neutrosophy, which studies the origin, nature, and scope of neutralities, as 
well as their interactions with different ideational spectra [2], and is a powerful general formal framework 
that generalizes the above-mentioned sets from a philosophical point of view. Smarandache [2] originally 
gave the following definition of a neutrosophic set.

Definition 1 [2]. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic 
set A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership function 
IA(x), and a falsity-membership function FA(x). The functions TA(x), IA(x), and FA(x) are real standard or non-
standard subsets of ]–0, 1+[, i.e., TA(x): X →]–0, 1+[, IA(x): X →]–0, 1+[, and FA(x): X →]–0, 1+[.

There is no restriction on the sum of TA(x), IA(x), and FA(x); thus, –0   ≤   sup TA(x) + sup IA(x) + sup FA(x)   ≤   3+ [2].

Definition 2 [2]. The complement of a neutrosophic set A is denoted by Ac and is defined as {( ) 1 } ),(c
A AT x T x+= �  

{( ) 1 } ),(c
A AI x I x+= �  and ( ) 1{ } ( )c

A AF x F x+= �  for every x in X.

Definition 3 [2]. A neutrosophic set A is contained in the other neutrosophic set B, A ⊆ B, if and only if inf 
TA(x)   ≤   inf TB(x), sup TA(x)   ≤   sup TB(x), inf IA(x)   ≥   inf IB(x), sup IA(x)   ≥   sup IB(x), inf FA(x)   ≥   inf FB(x), and sup 
FA(x)   ≥   sup FB(x) for every x in X.

For application in real scientific and engineering areas, Wang et al. [6] proposed the concept of an SVNS, 
which is an instance of a neutrosophic set. In the following, we introduce the definition of SVNS [6].

Definition 4 [6]. Let X be a space of points (objects) with generic elements in X denoted by x. An SVNS A in X 
is characterized by truth-membership function TA(x), indeterminacy-membership function IA(x), and falsity-
membership function FA(x), where TA(x), IA(x), and FA(x) ∈ [0, 1] for each point x in X. Then, an SVNS A can 
be expressed as

{ , ( ), ( ), ( ) | }.A A AA x T x I x F x x X= 〈 〉 ∈

Thus, the SVNS satisfies the condition 0   ≤   TA(x) + IA(x) + FA(x)   ≤   3.
The following relations for SVNSs, A, B, are defined in Ref. [6]:
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1. A ⊆ B if and only if TA(x)   ≤   TB(x), IA(x)   ≥   IB(x), and FA(x)   ≥   FB(x) for any x in X.
2. A  =  B if and only if A ⊆ B and B ⊆ A.
3. Ac  =  {〈x, FA(x), 1 – IA (x), TA (x)〉 | x ∈ X}.

For convenience, an SVNS A is denoted by A  =  〈TA(x), IA(x), FA(x)〉 for any x in X. For two SVNSs A and B, the 
operational relations [6] are defined as follows:
1. A ∪ B  =  〈max(TA(x), TB(x)), min(IA(x), IB(x)), min(FA(x), FB(x))〉 for any x in X.
2. A ∩ B  =  〈min(TA(x), TB(x)), max(IA(x), IB(x)), max(FA(x), FB(x))〉 for any x in X.
3. A  ×  B  =  〈TA(x) + TB(x) – TA(x)TB(x), IA(x)IB(x), FA(x)FB(x)〉 for any x in X.

2.2  Hesitant Fuzzy Sets

As a generalization of fuzzy set, HFS [3, 4] is a very useful tool in some situations where there are some dif-
ficulties in determining the membership of an element to a set caused by a doubt between a few different 
values. As there are several possible values in determining the membership of an element to a set, Torra and 
Narukawa [3] and Torra [4] first proposed the concept of HFS, which is defined as follows.

Definition 5 [3, 4]. Let X be a fixed set; an HFS A on X is defined in terms of a function hA(x) that when 
applied to X returns a finite subset of [0, 1], which can be represented as the following mathematical 
symbol:

{ , ( ) | },AA x h x x X= 〈 〉 ∈

where hA(x) is a set of some different values in [0, 1], denoting the possible membership degrees of the element 
x ∈ X to A. For convenience, we call hA(x) a hesitant fuzzy element [9, 10].

Definition 6 [3, 4]. Given a hesitant fuzzy element h, its lower and upper bounds are defined as h–(x)  =  min 
h(x) and h+ (x)  =  max h(x), respectively.

Definition 7 [3, 4]. Given a hesitant fuzzy element h, Aenv(h) is called the envelope of h, which is represented 
by (h–, 1 – h+), with the lower bound h– and upper bound h+.

From this definition, Torra and Narukawa [3] and Torra [4] gave the relationship between an HFS and an 
intuitionistic fuzzy set, i.e., Aenv(h) is defined as { < x, μ(x), ν(x) > } with μ and ν defined by μ(x)  =  h–(x), ν(x)  =   
1 – h+(x), x ∈ X.

Given three hesitant fuzzy elements h, h1, and h2, Torra [4] defined some operations in them as follows: 
1. { 1 }.c

h
h

γ
γ

∈
= −∪

2. 
1 1 2 2

1 2 1 2, 
max{ , }.

h h
h h

γ γ
γ γ

∈ ∈
=∪ ∪

3. 
1 1 2 2

1 2 1 2, 
min{ , }.

h h
h h

γ γ
γ γ

∈ ∈
=∩ ∪

Definition 8 [8]. For a hesitant element h, 1
#( ) h h

s h
γ

γ
∈

= ∑  is called the score function of h, where #h is the 
number of the elements in h. For two hesitant elements h1 and h2, if s(h1)  >  s(h2), then h1  >  h2; if s(h1)  =  s(h2), 
then h1  =  h2.

According to the relationship between a hesitant fuzzy element and an intuitionistic fuzzy value, Xia and 
Xu [8] defined some operations on the hesitant fuzzy elements h, h1, and h2 and a positive scale λ:

1. { }.
h

h λ λ

γ
γ

∈
= ∪

2. { 1 ( 1 ) }.
h

h λ

γ
λ γ

∈
= − −∪

3. 
1 1 2 2

1 2 1 2 1 2, 
{ }.

h h
h h

γ γ
γ γ γ γ

∈ ∈
⊕ = + −∪

4. 
1 1 2 2

1 2 1 2, 
{ }.

h h
h h

γ γ
γ γ

∈ ∈
⊗ = ∪
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2.3  Dual Hesitant Fuzzy Sets

Zhu et al. [20] defined a DHFS as an extension of an HFS, in terms of two functions that return two sets of 
membership values and non-membership values, respectively, for each element in the domain as follows.

Definition 9 [20]. Let X be a fixed set; then, a DHFS D on X is defined as

{ , ( ), ( ) | },D x h x g x x X= 〈 〉 ∈

in which h(x) and g(x) are two sets of some values in [0, 1], denoting the possible membership degrees and 
non-membership degrees of the element x ∈ X to the set D, respectively, with the conditions 0   ≤   γ, η   ≤   1, and 
0   ≤   γ+ + η+   ≤   1, where γ ∈ h(x), η ∈ g(x), γ ∈ h+(x)  =  ∪γ ∈ h(x) max{γ}, and η+ ∈ g + (x)  =  ∪η ∈ g(x) max{η} for x ∈ X.

For convenience, the pair d(x)  =  {h(x), g(x)} is called a dual hesitant fuzzy element (DHFE) denoted by 
d  =  {h, g}.

Definition 10 [20]. Let d1 and d2 be two DHFEs in a fixed set X; then, their union and intersection are defined, 
respectively, by

1. 1 2 1 2 1 2 1 2 1 2{ ( ) | max( , ), ( ) | min( , )}.d d h h h h h h g g g g g g− − + += ∈ ≥ ∈ ≤∪ ∪ ∩

2. 1 2 1 2 1 2 1 2 1 2{ ( ) | min( , ), ( ) | max( , )}.d d h h h h h h g g g g g g+ + − −= ∈ ≤ ∈ ≥∩ ∩ ∪

Then, Zhu et al. [19] gave the following operations:

1. 
1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2, , , 
{ , } {{ }, { } }.

h g h g
d d h h g g

γ η γ η
γ γ γ γ η η

∈ ∈ ∈ ∈
⊕ = ⊕ ⊗ = + −∪

2. 
1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2, , , 
{ , } {{ }, { } }.

h g h g
d d h h g g

γ η γ η
γ γ η η η η

∈ ∈ ∈ ∈
⊗ = ⊗ ⊕ = + −∪

3. 
1 1 1 1

1 1 1, 
{{ 1 ( 1 ) }, { } }, 0.

h g
d λ λ

γ η
λ γ η λ

∈ ∈
= − − >∪

4. 
1 1 1 1

1 1 1̀, 
{{ }, { 1 ( 1 ) } }, 0.

h g
d λ λ λ

γ η
γ η λ

∈ ∈
= − − >∪

To compare the DHFEs, Zhu et al. [20] gave the following comparison laws.
Definition 11 [20]. Let d1  =  {h1, g1} and d2  =  {h2, g2} be any two DHFEs; then, the score function of di  

(i  =  1, 2) is ( ) ( 1/# ) ( 1/# )
i i i i

i i i i ih g
S d h g

γ η
γ η

∈ ∈
= −∑ ∑  (i  =  1, 2) and the accuracy function of di (i  =  1, 2) is 

( ) ( 1/# ) ( 1/# )
i i i i

i i i i ih g
P d h g

γ η
γ η

∈ ∈
= +∑ ∑  (i  =  1, 2), where #hi and #gi are the numbers of the elements in hi 

and gi, respectively; then
i. If S(d1)  >  S(d2), then d1 is superior to d2, denoted by d1fd2.
ii. If S(d1)  =  S(d2), then

1. If P(d1)  =  P(d2), then d1 is equivalent to d2, denoted by d1∼d2.
2. If P(d1)  >  P(d2), then d1 is superior to d2, denoted by d1fd2.

3  Single-Valued Neutrosophic Hesitant Fuzzy Set
HFSs can reflect the original information given by the decision makers as much as possible, and more values 
are obtained from the decision makers or experts, which belonging to [0, 1] may be assigned to easily express 
hesitant judgments. Therefore, in this section, the concept of an SVNHFS is presented on the basis of the com-
bination of SVNSs and HFSs as a further generalization of the concept of SVNSs and HFSs, which is defined 
as follows.
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Definition 12. Let X be a fixed set; an SVNHFS on X is defined as

{ , ( ), ( ), ( ) | },N x t x i x f x x X= 〈 〉 ∈���

in which ( ),t x�  ( ),i x�  and ( )f x�  are three sets of some values in [0, 1], denoting the possible truth-mem-
bership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-membership hesitant 
degrees of the element x ∈ X to the set N, respectively, with the conditions 0   ≤   δ, γ, η   ≤   1 and 0   ≤   γ+ + δ+ 
+ η+   ≤   3, where ( ),t xγ ∈�  ( ),i xδ∈�  ( ),f xη ∈ �  ( )( ) max{ },t xt x

γ
γ γ+ +

∈∈ = �
� ∪  ( )( ) max{ },i xi x

δ
δ δ+ +

∈∈ = �
� ∪  and 

( )( ) max{ }f xf x
η

η η+ +
∈∈ = �

� ∪  for x ∈ X.
For convenience, the three tuple ( ) { ( ), ( ), ( )}n x t x i x f x= ���  is called a single-valued neutrosophic hesi-

tant fuzzy element (SVNHFE) or a triple hesitant fuzzy element, which is denoted by the simplified symbol 
{ , , }.n t i f= ���

From Definition 12, we can see that the SVNHFS consists of three parts, i.e., the truth-membership hesi-
tancy function, the indeterminacy-membership hesitancy function, and the falsity-membership hesitancy 
function, supporting a more exemplary and flexible access to assign values for each element in the domain, 
and can handle three kinds of hesitancy in this situation. Thus, the existing sets, including fuzzy sets, intui-
tionistic fuzzy sets, SVNSs, HFSs, and DHFSs, can be regarded as special cases of SVNHFSs.

Then, we can define the union and intersection of SVNHFEs as follows.

Definition 13. Let n1 and n2 be two SVNHFEs in a fixed set X; then, their union and intersection are defined, 
respectively, by

1. 1 2 1 2 1 2 1 2 1 2

1 2 1 2

{ ( ) | max( , ), ( ) | min( , ),
   ( ) | min( , )}.

n n t t t t t t i i i i i i
f f f f f f

− − + +

+ +

= ∈ ≥ ∈ ≤
∈ ≤

� � � � � �� � � � � �∪ ∪ ∩
� � � � � �∩

2. 1 2 1 2 1 2 1 2 1 2

1 2 1 2

{ ( ) | min( , ), ( ) | max( , ),
  ( ) | max( , )}.

n n t t h t t t i i i i i i
f f f f f f

+ + − −

− −

= ∈ ≤ ∈ ≥
∈ ≥

� � � � � � �� � � � �∩ ∩ ∪
� � � � � �∪

Therefore, for two SVNHFEs n1 and n2, we can give the following basic operations:

1. 
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2, , , , , 

{ , , }
{{ }, { }, { } }.

t i f t i f

n n t t i i f f

γ δ η γ δ η
γ γ γ γ δ δ η η

∈ ∈ ∈ ∈ ∈ ∈

⊕ = ⊕ ⊗ ⊗
= + −

� �� �� �

� �� �� �

∪

2. 
1 1 1 1 1 1 2 2 2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2, , , , , 

{ , , }
{{ }, { }, { } }.

t i f t i f

n n t t i i f f

γ δ η γ δ η
γ γ δ δ δ δ η η η η

∈ ∈ ∈ ∈ ∈ ∈

⊗ = ⊗ ⊕ ⊕
= + − + −

� �� �� �

� �� �� �

∪

3. 
1 1 1 1 1 1

1 1 1 1, , 
{{ 1 ( 1 ) }, { }, { } }, 0.

t i f
n λ λ λ

γ δ η
λ γ δ η λ

∈ ∈ ∈
= − − >

���
∪

4. 
1 1 1 1 1 1

1 1 1 1, , 
{{ }, { 1 ( 1 ) }, { 1 ( 1 ) } }, 0.

t i f
nλ λ λ λ

γ δ η
γ δ η λ

∈ ∈ ∈
= − − − − >

���
∪

On the basis of the cosine measure of SVNSs [13, 17], we give the following cosine measure between SVNHFEs.

Definition 14. Let 1 1 1 1{ , , }n t i f= ���  and 2 2 2 2{ , , }n t i f= ���  be any two SVNHFEs; thus, the cosine measure between 
n1 and n2 is defined by

1 1 2 2 1 1 2 2 1 1 2 2

1 1 1 1 1 1 2 2

1 2 1 2 1 2
1 2 1 2 1 2

1 2 2 2 2

1 1 1 2
1 1 1 2

1 1 1 1 1 1

cos( , )
1 1 1 1

t t i i f f

t i f t

l l p p q q
n n

l p q l

γ γ δ δ η η

γ δ η γ

γ γ δ δ η η

γ δ η γ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

           
⋅ + ⋅ + ⋅                      

=
       

+ +            

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

� �� �� �

��� �
2 2 2 2

2 2 2

2 2
2 2

,
1 1

i fp qδ η
δ η

∈ ∈

   
+ +        ∑ ∑ ��

 (1)
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where li, pi, and qi for i  =  1, 2 are the numbers of the elements in , , i i it i f���  for i  =  1, 2, respectively, and cos(n1, 
n2) ∈ [0, 1].

To compare the SVNHFEs, we give the following comparative laws based on the cosine measure.
Let 1 1 1 1{ , , }n t i f= ���  and 2 2 2 2{ , , }n t i f= ���  be any two SVNHFEs; thus, the cosine measure between ni (i  =  1, 2) 

and the ideal element n*  =   < 1, 0, 0 >  is obtained by applying Eq. (1) as follows:

 

*

2 2 2

1

cos( , ) ,
1 1 1

i i

i i i i i i

it
i

i

i i it i f
i i i

l
n n

l p q

γ

γ δ η

γ

γ δ η

∈

∈ ∈ ∈

=
     

+ +          

∑

∑ ∑ ∑

�

���

 

(2)

where li, pi, and qi for i  =  1, 2 are the numbers of the elements in , , i i it i f���  for i  =  1, 2, respectively, and cos(ni, n*) 
∈ [0, 1] for i  =  1, 2. Then, there are the following comparative laws based on the cosine measure:
1. If cos(n1, n*)  >  cos(n2, n*), then n1 is superior to n2, denoted by n1fn2.
2. If cos(n1, n*)  =  cos(n2, n*), then n1 is equivalent to n2, denoted by n1∼n2.

4  Weighted Aggregation Operators for SVNHFEs
On the basis of the basic operations of SVNHFEs in Section 3, this section proposes the following two weighted 
aggregation operators for SVNHFEs as a further generalization of the weighted aggregation operators of HFSs 
and SNSs [8, 17], and investigates their properties as the weighted aggregation operators are more basic oper-
ators in information aggregation and decision making.

4.1  SVNHFWA Operator

Definition 15. Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs; then, we define the SVNHFWA operator as 
follows:

 
1 2

1
SVNHFWA( , , , ) ,

k

k j j
j

n n n w n
=

… = ∑
 

(3)

where w  =  (w1, w2, …, wk)T is the weight vector of nj (j  =  1, 2, …, k), and wj  >  0, 
1

1.k

jj
w

=
=∑

On the basis of the basic operations of SVNHFEs described in Section 3 and Definition 15, we can derive 
Theorem 1.

Theorem 1. Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs; then, the aggregated result of the SVNHFWA opera-
tor is also an SVNHFE, and

 
1 1 2 2 1 1 2 2 1 1 2 2

1 2
1

, , , , , , , ,, , , , 1 1 1

SVNHFWA( , , , )

1 ( 1 ) , , ,j j j

k k k k k k

k

k j j
j

k k k
w w w

j j jt t t i i i f f f j j j

n n n w n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ … ∈ ∈ ∈ … ∈ ∈ ∈ … ∈ = = =

… =

           = − −     
           

∑

∏ ∏ ∏� � �� � �� � �
∪

 

(4)

where w  =  (w1, w2, …, wk)T is the weight vector of nj (j  =  1, 2, …, k), and wj  >  0, 
1

1.k

jj
w

=
=∑

Proof. The proof of Eq. (4) can be done by means of mathematical induction.
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1. When k  =  2, then,

1 1 1

1 1 1 1 1 1

1 1 1 1 1
, , 

{{ 1 ( 1 ) }, { }, { } },w w w

t i f
w n

γ δ η

γ δ η
∈ ∈ ∈

= − −
���

∪

2 2 2

2 2 2 2 2 2

2 2 2 2 2
, , 

{{ 1 ( 1 ) }, { }, { } }.w w w

t i f
w n

γ δ η

γ δ η
∈ ∈ ∈

= − −
���

∪

Thus,

 

1 1 2 2 1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2
, , , , , , 

1 2 1 2 1 2 1 2

1
, , , , , , 

 {{ 1 ( 1 ) ( 1 ( 1 ) ) ( 1 ( 1 ) )( 1 ( 1 ) }, { }, { }}.
{ { 1 ( 1 )

t t i i f f
w w w w w w w w

w

t t i i f f

w n w n
γ γ δ δ η η

γ γ δ δ η η

γ γ γ γ δ δ η η

γ

∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈

⊕ =

− − + − − − − − − −
= − −

� �� ���� �

� �� ���� �

∪

∪ 1 2 1 2 1 2
2 1 2 1 2( 1 ) }, { }, { }}.w w w w wγ δ δ η η−

 

(5)

2. When k  =  m, by applying Eq. (4), we get

 

1 1 2 2 1 1 2 2 1 1 2 2
1 2 , , , , , , , , , , , 1

1 1 1

SVNHFWA{ , , , } .

1 ( 1 ) , , 

m m m m m m

j j j

m

m j j t t t i i i f f fj

m m m
w w w

j j j
j j j

n n n w n
γ γ γ δ δ δ η η η

γ δ η

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈=

= = =

… = =

           − −     
           

∑

∏ ∏ ∏

� � �� � �� � �… … …
∪

 

(6)

3. When k  =  m + 1, by applying Eqs. (5) and (6), we can get

  

( )
1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1

1 1

1

1 2 1 , , , , , , , , , , , 1

1 1
1 1

SVNHFWA( , , , )

1 ( 1 ) ( 1 ( 1 ) ) 1 ( 1 ) 1 ( 1 )

m m m m m m

m mj j

m

m j j t t t i i i f f fj

m mw ww w
j m j m

j j

n n n w n
γ γ γ δ δ δ η η η

γ γ γ γ

+ + + + + +

+ +

+

+
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈=

+ +
= =

… = =

  
− − + − − − − − − −   

∑

∏ ∏

� � �� � �� � �… … …
∪

1 1

1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1

1 1
1 1

1

, , , , , , , , , , , 1

,

, 

1 ( 1 ) , 

m mj j

j

m m m m m m

m mw ww w
j m j m

j j

m
w

j jt t t i i i f f f jγ γ γ δ δ δ η η η

δ δ η η

γ δ

+ +

+ + + + + +

+ +
= =

+

∈ ∈ ∈ ∈ ∈ … ∈ ∈ ∈ ∈ =

  
 
  

      
   
      

  = − − 
  

∏ ∏

∏� � �� � �� � �… …
∪

1 1

1 1
, .j j

m m
w w

j
j j

η
+ +

= =

        
    

        
∏ ∏

 

(7)

Therefore, considering the above results, we have Eq. (4) for any k. This completes the proof. □
It is obvious that the SVNHFWA operator has the following properties:

1. Idempotency: Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs. If ni (j  =  1, 2, …, k) is equal, i.e., nj  =  n for  
j  =  1, 2, …, k, then SVNHFWA (n1, n2, …, nk)  =  n.

2. Boundedness: Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs and let n–  =  {{r–}, {δ+}, {η+}} and n+  =  {{r+}, {δ–},  
{η–}}, where min{ },

j j
jjtγ

γ γ−

∈
=

�
∪  min{ },

j j
jjiδ

δ δ−

∈
=

�
∪  min{ },

j j
jjfη

η η−

∈
=

�
∪  max{ },

j j
jjtγ

γ γ+

∈
=

�
∪  max{ },

j j
jjiδ

δ δ+

∈
=

�
∪  

and max{ }
j j

jjfη
η η+

∈
=

�
∪  for j  =  1, 2, …, k; then, n–   ≤   SVNHFWA (n1, n2, …, nk)   ≤   n+.

3. Monotonity: Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs. If j jn n≤ ′  for j  =  1, 2, …, k, then 
1 2 1 2SVNHFWA( , , , ) SVNHFWA( , , , ).k kn n n n n n… ≤ …′ ′ ′

4.2  SVNHFWG Operator

Definition 16. Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs; then, we define the SVNHFWG operator as 
follows:
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1 2

1
SVNHFWG( , , , ) ,j

k
w

k j
j

n n n n
=

… = ∏
 

(8)

where w  =  (w1, w2, …, wk)T is the weight vector of nj (j  =  1, 2, …, k), and wj  >  0, 
1

1.k

jj
w

=
=∑

On the basis of the basic operations of SVNHFEs described in Section 3 and Definition 16, we can derive 
Theorem 2.

Theorem 2. Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs; then, the aggregated result of the SVNHFWG opera-
tor is also an SVNHFE, and

 
1 1 2 2 1 1 2 2 1 1 2 2

1 2
1

, , , , , , , , , , , 1 1 1

SVNHFWG( , , , )

, 1 ( 1 ) , 1 ( 1 ) ,

j

j j j

k k k k k k

k
w

k j
j

k k k
w w w
j j jt t t i i i f f f j j j

n n n n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

… =

           = − − − −     
           

∏

∏ ∏ ∏� � �� � �� � �… … …
∪

 (9)

where w  =  (w1, w2, …, wk)T is the weight vector of nj (j  =  1, 2, …, k), and wj  >  0, 
1

1.k

jj
w

=
=∑

Similar to the manner of the above proof, we can give the proof of Theorem 2 (omitted).
It is obvious that the SVNHFWG operator also has the following properties:

1. Idempotency: Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs. If ni (j  =  1, 2, …, k) is equal, i.e., nj  =  n for  
j  =  1, 2, …, k, then SVNHFWG (n1, n2, …, nk)  =  n.

2. Boundedness: Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs and let n–  =  {{r–}, {δ+}, {η+}} and n+  =  {{r+}, {δ–},  

{η–}}, where min{ },
j j

jjtγ
γ γ−

∈
=

�
∪  min{ },

j j
jjiδ

δ δ−

∈
=

�
∪  min{ },

j j
jjfη

η η−

∈
=

�
∪  max{ },

j j
jjtγ

γ γ+

∈
=

�
∪  max{ },

j j
jjiδ

δ δ+

∈
=

�
∪  

and max{ }
j j

jjfη
η η+

∈
=

�
∪  for j  =  1, 2, …, k; then, n–   ≤   SVNHFWG (n1, n2, …, nk)   ≤   n+.

3. Monotonity: Let nj (j  =  1, 2, …, k) be a collection of SVNHFEs. If j jn n≤ ′  for j  =  1, 2, …, k; then, 

1 2 1 2SVNHFWG( , , , ) SVNHFWG( , , , ).k kn n n n n n… ≤ …′ ′ ′

5   Decision-Making Method Based on the SVNHFWA and SVNHFWG 
Operators

In this section, we apply the SVNHFWA and SVNHFWG operators to multiple-attribute decision-making prob-
lems with single-valued neutrosophic hesitant fuzzy information.

For a multiple-attribute decision-making problem under a single-valued neutrosophic hesitant fuzzy 
environment, let A  =  {A1, A2, …, Am} be a discrete set of alternatives and C  =  {C1, C2, …, Ck} be a discrete set 
of attributes. When the decision makers are required to evaluate the alternative Ai (i  =  1, 2, …, m) under the 
attribute Cj (j  =  1, 2, …, k), they may assign a set of several possible values to each of truth-membership 
degrees, indeterminacy-membership degrees, and falsity-membership degrees to which an alternative Ai  
(i  =  1, 2, …, m) satisfies and/or dissatisfies an attribute Cj (j  =  1, 2,…, k), and then these evaluated values can 
be expressed as an SVNHFE , , ( )ij ji jj i in t i f= ���  (i  =  1, 2,…, m; j  =  1, 2,…, k). Thus, we can elicit a single-valued 
neutrosophic hesitant fuzzy decision matrix D  =  (nij)m × k, where nij (i  =  1, 2, …, m; j  =  1, 2, …, k) is in the form of 
SVNHFEs.

The weight vector of attributes for the different importance of each attribute is given as w  =  (w1, w2,…, 
wk)T, where wj   ≥   0, j  =  1, 2, …, k, and 

1
1.k

jj
w

=
=∑  Then, we use the SVNHFWA or SVNHFWG operator and the 

cosine measure to develop an approach for multiple-attribute decision-making problems with single-valued 
neutrosophic hesitant fuzzy information, which can be described as follows:
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Step 1. Aggregate all SVNHFEs of nij (i  =  1, 2, …, m; j  =  1, 2, …, k) by using the SVNHFWA operator to derive the 
collective SVNHFE ni (i  =  1, 2, …, m) for an alternative Ai (i  =  1, 2, …, m):

 
1 1 2 2 1 1 2 2 1 1 2 2

1 2
1

, , , , , , , , , , , 1 1 1
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j

k k k
w w w

ij ij ijt t t i i i f f f j j j

n n n n w n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

= … =

       = − −    
     

∑

∏ ∏ ∏� � �� � �� � �… … …
∪ ,

   
 

      

(10)

or by using the SVNHFWG operator:
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γ γ γ δ δ δ η η η
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= … =
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∏

∏ ∏� � �� � �� � �… … …
∪

1
.

k

=

    
  

    
∏

 (11)

Step 2. Calculate the measure values of the collective SVNHFE ni (i  =  1, 2, …, m) and the ideal element n*  =   < 1, 
0, 0 >  by Eq. (2).

Step 3. Rank the alternatives and select the best one(s) in accordance with the measure values.

Step 4. End.

6  Illustrative Example
An illustrative example about investment alternatives for a multiple-attribute decision-making problem 
adapted from Ye [13, 18] is used as the demonstration of the applications of the proposed decision-making 
method under a single-valued neutrosophic hesitant fuzzy environment. There is an investment company 
that wants to invest a sum of money in the best option available. There is a panel with four possible alterna-
tives in which to invest the money: (i) A1 is a car company; (ii) A2 is a food company; (iii) A3 is a computer 
company; and (iv) A4 is an arms company. The investment company must make a decision according to the 
following three attributes: (i) C1 is the risk; (ii) C2 is the growth; and (iii) C3 is the environmental impact. The 
attribute weight vector is given as w  =  (0.35, 0.25, 0.4)T. The four possible alternatives, Ai (i  =  1, 2, 3, 4), are to 
be evaluated using the single-valued neutrosophic hesitant fuzzy information by some decision makers or 
experts under three attributes, Cj (j  =  1, 2, 3).

For the evaluation of an alternative Ai (i  =  1, 2, 3, 4) with respect to an attribute Cj (j  =  1, 2, 3), it is obtained 
from the evaluation of some decision makers. For example, three decision makers discuss the degrees that 
an alternative A1 should satisfy a criterion C1 can be assigned with 0.5, 0.4, and 0.3; the degrees that an alter-
native A1 with respect to an attribute C1 may be unsure can be assigned with 0.1; and the degrees that an 
alternative dissatisfies an attribute C1 can be assigned with 0.4 by two of three decision makers and 0.3 by one 
of three decision makers. For the single-valued neutrosophic hesitant fuzzy notation, they can be expressed 
as {{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}}. Thus, when the four possible alternatives with respect to the above three 
attributes are evaluated by the three decision makers, we can obtain the single-valued neutrosophic hesitant 
fuzzy decision matrix D shown in Table 1.

Then, we use the developed approach to obtain the ranking order of the alternatives and the most desir-
able one(s), which can be described as follows:

Step 1. Aggregate all SVNHFEs of nij (i  =  1, 2, 3, 4; j  =  1, 2, 3) by using the SVNHFWA operator to derive the col-
lective SVNHFE ni (i  =  1, 2, 3, 4) for an alternative Ai (i  =  1, 2, 3, 4). Take an alternative A1; for example, we have

Authenticated | yehjun@aliyun.com author's copy
Download Date | 1/4/15 1:24 AM



J. Ye: Single-Valued Neutrosophic Hesitant Fuzzy Set      33

Table 1. Single-Valued Neutrosophic Hesitant Fuzzy Decision Matrix D.

  C1   C2   C3

A1   {{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}}   {{0.5, 0.6}, {0.2, 0.3}, {0.3,0.4}}   {{0.2, 0.3}, {0.1, 0.2}, {0.5, 0.6}}
A2   {{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}}   {{0.6, 0.7}, {0.1}, {0.3}}   {{0.6, 0.7}, {0.1, 0.2}, {0.1, 0.2}}
A3   {{0.5, 0.6}, {0.4}, {0.2, 0.3}}   {{0.6}, {0.3}, {0.4}}   {{0.5, 0.6}, {0.1}, {0.3}}
A4   {{0.7, 0.8}, {0.1}, {0.1, 0.2}}   {{0.6, 0.7}, {0.1}, {0.2}}   {{0.3, 0.5}, {0.2}, {0.1, 0.2, 0.3}}

11 11 12 12 13 13 11 11 12 12 13 13 11 11 12 12 13 13

3

1 11 12 13 1
1

3 3 3

1 1 1, , , , , , , , 1 1 1

SVNHFWA( , , )

1 ( 1 ) , , j j j

j j
j

w w w
j j jt t t i i i f f f j j j

n n n n w n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

= =

          = − −     
         

∑

∏ ∏ ∏� � �� � �� � �
∪

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35

{{ 1 ( 1 0.3) ( 1 0.5 ) ( 1 0.2 ) , 1 ( 1 0.4) ( 1 0.5 ) ( 1 0.2 ) ,
1 ( 1 0.5 ) ( 1 0.5 ) ( 1 0.2 ) , 1 ( 1 0.3) ( 1 0.6 ) ( 1 0.2 ) ,
1 ( 1 0.4) ( 1 0.6 ) ( 1 0.2 ) , 1 ( 1 0.5 )




 
= − − − − − − − −

− − − − − − − −
− − − − − − 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4

( 1 0.6 ) ( 1 0.2 ) ,
1 ( 1 0.3) ( 1 0.5 ) ( 1 0.3) , 1 ( 1 0.4) ( 1 0.5 ) ( 1 0.3) ,
1 ( 1 0.5 ) ( 1 0.5 ) ( 1 0.3) , 1 ( 1 0.3) ( 1 0.6 ) ( 1 0.3) ,
1 ( 1 0.4) ( 1 0.6 ) ( 1 0.3) , 

− −
− − − − − − − −
− − − − − − − −
− − − − 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35

1 ( 1 0.5 ) ( 1 0.6 ) ( 1 0.3) },
{ 0.1 0.2 0.1 , 0.1 0.2 0.2 , 0.1 0.3 0.1 , 0.1 0.3 0.2 },
{ 0.3 0.3 0.5 , 0.4 0.3 0.5 , 0.3 0.4 0.5 , 0.4 0

− − − −

0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

.4 0.5 ,
0.3 0.3 0.6 , 0.4 0.3 0.6 , 0.3 0.4 0.6 , 0.4 0.4 0.6 }

and obtain the following collective SVNHFE n1:

1 {{0.3212, 0.3565, 0.3568, 0.358, 0.3903, 0.3914, 0.3917, 0.3966, 0.4234, 0.428, 
0.4293, 0.459}, {0.1189, 0.1316, 0.1569, 0.1737}, {0.3680, 0.3955, 0.3959, 0.407, 0.4254, 
0.4373, 0.4378, 0.4704}}.

n =

Similar to the above calculation, we can derive the following collective SVNHFE ni (i  =  2, 3, 4):

2

3

4

{{0.6, 0.6278, 0.6383, 0.6435, 0.6634, 0.6682, 0.6776, 0.7}, {0.1, 0.1275, 0.132, 0.1682}, 
{0.1677, 0.1933, 0.2213, 0.2551}};

{{0.5233, 0.5578, 0.5629, 0.6}, {0.2138}, {0.2797, 0.3224}};
{{0.54

n

n
n

=

=
= 76, 0.579, 0.6045, 0.6074, 0.632, 0.6347, 0.6569, 0.6807}, {0.1320}, 

{0.1189, 0.1516, 0.1569, 0.1845, 0.2, 0.2352}}.

Step 2. Calculate the measure values of the collective SVNHFE ni (i  =  1, 2, 3, 4) and the ideal element n*  =   < 1, 
0, 0 >  by Eq. (2):

* * * *
1 2 3 4cos( , ) 0.6636, cos( , ) 0.9350, cos( , ) 0.8353, and cos( , ) 0.9426.n n n n n n n n= = = =

Step 3. Rank the alternatives in accordance with the measure values A4fA2fA3fA1. Therefore, we can see that 
the alternative A4 is the best choice.

If we utilize the SVNHFWG operator for the multiple-attribute decision-making problem, the decision-
making procedure can be described as follows:

Step 1′. Aggregate all SVNHFEs of nij (i  =  1, 2, 3, 4; j  =  1, 2, 3) by using the SVNHFWG operator to derive the col-
lective SVNHFE ni (i  =  1, 2, 3, 4) for the alternative Ai (i  =  1, 2, 3, 4). Take an alternative A1; for example, we have
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, 1 ( 1 ) , 1 ( 1 )
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j j j

w
ij

j

w w w
j j jt t t i i i f f f j j j

n n n n n

γ γ γ δ δ δ η η η
γ δ η

=

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ = = =

= =

          = − − − −     
        

∏

∏ ∏ ∏� � �� � �� � �
∪

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4 0.3

{{ 0.3 0.5 0.2 , 0.4 0.5 0.2 , 0.5 0.5 0.2 , 0.3 0.6 0.2 , 0.4 0.6 0.2 ,
    0.5 0.6 0.2 , 0.3 0.5 0.3 , 0.4 0.5 0.3 , 0.5

  
 

  
=

5 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.

0.5 0.3 , 0.3 0.6 0.3 ,
0.4 0.6 0.3 , 0.5 0.6 0.3 }, { 1 ( 1 0.1) ( 1 0.2 ) ( 1 0.1) ,
1 ( 1 0.1) ( 1 0.2 ) ( 1 0.2 ) , 1 ( 1 0.1) ( 1 0.3) ( 1 0.1) ,
1 ( 1 0.1)

− − − −
− − − − − − − −
− − 35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4 0.35 0.25

( 1 0.3) ( 1 0.2 ) }, { 1 ( 1 0.3) ( 1 0.3) ( 1 0.5 ) ,
1 ( 1 0.4) ( 1 0.3) ( 1 0.5 ) , 1 ( 1 0.3) ( 1 0.4) ( 1 0.5 ) ,
1 ( 1 0.4) ( 1 0.4) ( 1 0.5 ) , 1 ( 1 0.3) ( 1 0.3) ( 1 0.6 )

− − − − − −
− − − − − − − −
− − − − − − − − 0.4

0.35 0.25 0.4 0.35 0.25 0.4

0.35 0.25 0.4

,
1 ( 1 0.4) ( 1 0.3) ( 1 0.6 ) , 1 ( 1 0.3) ( 1 0.4) ( 1 0.6 ) ,
1 ( 1 0.4) ( 1 0.4) ( 1 0.6 ) }}

− − − − − − − −
− − − −

and obtain the following collective SVNHFE n1:

1 {{0.2898, 0.3033, 0.3205, 0.3355, 0.3409, 0.3466, 0.3568, 0.3627, 0.377, 0.3946, 0.4076, 
0.4266}, {0.1261, 0.1548, 0.1663, 0.1937}, {0.3881, 0.4113, 0.4203, 0.4404, 0.4422, 0.4615, 
0.4698, 0.4898}}

n =

.

Similar to the above calculation, we can derive the following collective SVNHFE ni (i  =  2, 3, 4):

2

3

4

{{0.6, 0.6236, 0.6333, 0.6382, 0.6581, 0.6632, 0.6735, 0.7}, {0.1, 0.1363, 0.1414, 0.1761}, 
{0.1889, 0.226, 0.2263, 0.2616}};

{{0.5233, 0.5578, 0.5629, 0.6}, {0.2666}, {0.2942, 0.3265}};
{{0.47

n

n
n

=

=
= 99, 0.4988, 0.5029, 0.5226, 0.5887, 0.6119, 0.6169, 0.6411}, {0.1414}, {0.1261, 

0.1614, 0.1663, 0.2, 0.2097, 0.2416}}.

Step 2′. Calculate the measure cos(ni, n*) (i  =  1, 2, 3, 4) of the collective SVNHFE ni (i  =  1, 2, 3, 4) for the alterna-
tive Ai (i  =  1, 2, 3, 4) and the ideal element n*  =   < 1, 0, 0 >  by Eq. (2):

* * *
1 2 3 4cos( , ) 0.604, cos( , ) 0.9259, cos( , *) 0.808, and cos( , ) 0.9232.n n n n n n n n= = = =

Step 3′. Rank the alternatives in accordance with the measure values A2fA4fA3fA1. Therefore, we can see that 
the alternative A2 is the best choice.

Obviously, the above two kinds of ranking orders are the same as the ones in Refs. [13, 18]. However, 
we can see that the different ranking orders are obtained from the SVNHFWA and SVNHFWG operators, as 
there are different focal points between the SVNHFWA operator and the SVNHFWG operator. The SVNHFWA 
operator emphasizes the group’s major points, whereas the SVNHFWG operator emphasizes individual major 
points.

In this section, we have proposed the approach to solve a single-valued neutrosophic hesitant fuzzy 
multiple-attribute decision-making problem. The above example clearly indicates that the proposed deci-
sion-making method is applicable and effective under a single-valued neutrosophic hesitant fuzzy environ-
ment. Comparing the SVNHFS with the HFS and the DHFS, the SVNHFS contains more information because 
it takes into account the information of its truth-membership hesitant degrees, indeterminacy-membership 
hesitant degrees, and falsity-membership hesitant degrees, whereas the HFS only contains the information 
of its membership hesitant degrees. Then, the DHFS is a further generalization of the HFS, which includes 
the information of its membership hesitant degrees and non-membership hesitant degrees. Therefore, the 
decision-making method proposed in this article can deal with not only single-valued neutrosophic hesitant 
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fuzzy decision-making problems but also indeterminate and inconsistent decision-making problems. To some 
extent, the decision-making method in single-valued neutrosophic hesitant fuzzy setting is more general and 
more practical than existing decision-making methods in fuzzy setting, intuitionistic fuzzy setting, hesitant 
fuzzy setting, dual hesitant fuzzy setting, and single-valued neutrosophic setting because SVNHFSs include 
the aforementioned fuzzy sets.

7  Conclusion
This article introduced the concept of SVNHFSs based on the combination of both HFSs and SVNSs as a 
further generalization of these fuzzy concepts, and defined some basic operations of SVNHFEs and the cosine 
measure of SVNHFEs. Then, we proposed the SVNHFWA and SVNHFWG operators and investigated their 
properties. Furthermore, the two aggregation operators were applied to multiple-attribute decision-making 
problems under a single-valued neutrosophic hesitant fuzzy environment, in which attribute values with 
respect to alternatives are evaluated by the form of SVNHFEs and the attribute weights are known informa-
tion. We used the SVNHFWA and SVNHFWG operators and the cosine measure to rank the alternatives and 
determine the best one(s) according to the measure values. Finally, an illustrative example was provided 
to illustrate the application of the developed approach. The proposed multiple-attribute decision-making 
method under a single-valued neutrosophic hesitant fuzzy environment is more suitable for real scientific 
and engineering applications because the proposed decision-making method include more much infor-
mation and can deal with indeterminate and inconsistent decision-making problems. Therefore, when we 
encounter some situations that are represented by indeterminate information and inconsistent information, 
the proposed decision-making method demonstrates great superiority in dealing with the single-valued neu-
trosophic hesitant fuzzy information. In the future, we shall further develop more aggregation operators 
for SVNHFEs and apply them to solve practical applications in these areas, such as group decision making, 
expert system, information fusion system, fault diagnoses, and medical diagnoses.
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