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Abstract: In this paper, similar to the extension from intuitionistic fuzzy numbers (IFNs) to 

neutrosophic numbers (NNs), we propose the normal neutrosophic numbers (NNNs) based on the 

normal intuitionistic fuzzy numbers (NIFNs) to handle the incompleteness, indeterminacy and 

inconsistency of the evaluation information. In addition, because Heronian mean (HM) operators can 

consider capture the correlations of the aggregated arguments, we further extend the HM operator to 

deal with the NNNs, and propose some new HM operators and apply them to solve the multiple 

attribute group decision making (MAGDM) problems. Firstly, we briefly introduce the definition, the 

operational laws, the properties, the score function, and the accuracy function of the NNNs. Secondly, 

some Heronian mean (HM) operators are introduced, such as generalized Heronian mean (GHM) 

operator, generalized weighted Heronian mean (GWHM) operator, improved generalized weighted 

Heronian mean (IGWHM) operator, generalized geometric Heronian mean (GGHM) operator, 

improved generalized geometric Heronian mean (IGGHM) operator, and improved generalized 

geometric weighted Heronian mean (IGGWHM) operator. Moreover, we propose the normal 

neutrosophic number improved generalized weighted Heronian mean (NNNIGWHM) operator and 

normal neutrosophic number improved generalized geometric weighted Heronian mean 

(NNNIGGWHM) operator, and discuss their properties and some special cases. Furthermore, we 

propose two multiple attribute group decision making methods respectively based on the NNNIGWHM 

and NNNIGGWHM operators. Finally, we give an illustrative example to demonstrate the practicality 

and effectiveness of the two methods.  

Keywords: Multiple attribute decision making; Heronian mean; Normal fuzzy number; Normal 

neutrosophic numbers; Normal neutrosophic number Heronian mean operator. 

 

1. Introduction 

Multiple attribute decision making (MADM) or Multiple attribute group decision making 

(MAGDM) have the wide applications in many fields such as economy, politics, management, and so 

on. Because the evaluation information usually has the properties of incompleteness, indeterminacy 

and inconsistency in real decision making, it’s not suitable to express the evaluation values by the real 

numbers in same situations. Compared to the real numbers, fuzzy numbers can be more appropriate to 

express these evaluation values. Zadeh [1] firstly proposed the fuzzy set (FS) theory which only has a 

membership function to process the fuzzy information. Base on this, Atanassov [2] further proposed 

the intuitionistic fuzzy set (IFS) which has the non-membership function (or can be called 

falsity-membership) and the membership function (or can be called truth-membership). So the most 

obvious difference between IFS and FS is that whether it has the non-membership function. Obviously, 

IFS can process the incomplete information in multiple attribute decision making or the multiple 
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attribute group decision making (MAGDM), but it cannot process the indeterminate information and 

inconsistent information. The reason is that the hesitation degree (or can be called indeterminacy 

-membership) has been neglected. So, Smarandache [3] added an independent indeterminacy 

-membership function to IFS and further proposed the neutrosophic set (NS). In other words, the 

neutrosophic set (NS) is made up of truth-membership, falsity-membership and 

indeterminacy-membership. We can find IFS is the special case of NS in which the three parts are 

completely independent. NS has attracted more and more attention. Wang et al. [4, 5] proposed a single 

valued neutrosophic set (SVNS) and further proposed the interval neutrosophic set (INS) in which the 

truth-membership, indeterminacy-membership, and false-membership were expressed by interval 

numbers. In addition, the normal distribution, which widely existed in the natural phenomena or social 

phenomena, has been widely applied in many fields. To this day, the research about the normal 

distribution is limited. Yang and Ko [6] firstly proposed the normal fuzzy numbers (NFNs) which was 

used to describe the normal distribution phenomena. Wang and Li [7] further proposed the normal 

intuitionistic fuzzy numbers (NIFNs), and their corresponding operations, the score function, the 

comparative method and so on. But neither NS nor INS considers the normal distribution. So similar to 

the extension from IFS to NS, it is very necessary to combine the normal distribution with the NS and 

to define a new concept which can describe this type of information i.e., we can give the definition of 

the normal neutrosophic set (INS) and the relative theorems in this paper. 

The information aggregation operators have attracted more and more attention[8-21], and they 

have become a hot research topic. Heronian mean (HM) operator is an important aggregation operator 

which can be used to capture the correlations of the aggregated arguments. Beliakov [8] firstly proved 

that Heronian mean was an aggregation operator. It is a pity that Beliakov didn’t do further researches 

the HM operator. Based on this, Skora [9, 10] further proposed the generalized Heronian means(GHM) 

operator, and discussed the generalized arithmetic Heronian mean (GAHM)operator and generalized 

geometric Heronian mean(GGHM) operator. Yu and Wu [11] further proposed generalized 

interval-valued intuitionistic fuzzy Heronian mean (GIVIFHM) operator and generalized 

interval-valued intuitionistic fuzzy weighted Heronian mean (GIVIFWHM) operator, which is an 

extension from crisp numbers to interval intuitionistic fuzzy numbers. Yu [12] proposed some 

intuitionistic fuzzy aggregation operators based on HM, including the intuitionistic fuzzy geometric 

Heronian mean (IFGHM) operator and the intuitionistic fuzzy geometric weighed Heronian mean 

(IFGWHM) operator. At the same time, Yu [12] further discussed the relative theorems and found that 

IFGWHM operator has not reducibility and idempotency. Obviously, there is not the research on the 

HM operators for the normal neutrosophic numbers. Liu et al. [20] proposed some intuitionistic 

uncertain linguistic Heronian mean operators and applied them to multiple attribute group decision 

making, and developed the decision-making method based on these operators. Chen and Liu [21] 

proposed the intuitionistic trapezoidal fuzzy general Heronian OWA operator, and the multi-attribute 

decision-making approach based on this operator. 

Normal neutrosophic number (NNN) is produced by combining the normal fuzzy number and the 

neutrosophic number, so it is a generalization of FS, IFS, NS, NFN, and so on, and it not only can 

handle incompleteness, indeterminacy and inconsistency of evaluation information but also can handle 

the information of normal distribution. Obviously, it can provide an easier way to express the uncertain 

information. In addition, Heronian mean (HM) operator can capture the correlations of the aggregated 

arguments. However, the traditional HM operator can only process the crisp number and not NNNs, So, 

it is very necessary to extend HM operator to process the information with NNNs. In this paper, we 
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will propose some normal neutrosophic number Heronian mean (NNNHM) operators, including the 

normal neutrosophic number improved generalized weighted Heronian mean (NNNIGWHM) operator 

and the normal neutrosophic number improved generalized geometric weighted Heronian mean 

(NNNIGGWHM) operator, and then we will apply them to MAGDM problems.  

In order to achieve this goal, the remainder of this paper is shown as follows. In section 2, we 

briefly introduce the basic concepts, the operation rules and the relevant characteristics of NNNs and 

some Heronian mean operators and their properties, including generalized Heronian mean(GHM) 

operator, generalized geometric Heronian mean(GGHM) operator and generalized improved Heronian 

mean(GIHM) operator. In section 3, we propose the normal neutrosophic numbers improved 

generalized weighted Heronian mean (NNNIGWHM) operator, the normal neutrosophic numbers 

improved generalized weighted geometric Heronian mean (NNNIGGWHM) operator. In section 4, the 

multiple attribute group decision making methods based on NNNIGWHM operator and 

NNNIGGWHM operators were proposed. In section 5, we give an numerical example to prove the 

function of the proposed method. 

 

2. Preliminaries 

2.1 The normal intuitionistic fuzzy set and the neutrosophic set 

Definition 1[22]. Let X  be a real number set. A  denoted as ),( aA   is an normal fuzzy number 

(NFN) when its membership function is expressed as : 
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The set of all normal fuzzy numbers is denoted as N
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Definition 2[23, 24]. Let X be an ordinary finite non-empty set and Na
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and its non-membership function satisfies: 
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where 10,1)(0,1)(0  AAAA xx  . When 1A  and 0A , the NIFN will be 

a NFN. Compared to NFN, NIFN adds the non-membership function that expresses the degree of 

alternatives not belonging to ),( a . In addition, )()(1)( xxx AAA    expresses the degree of 

hesitance. 

Definition 3 [3]. Let X  be a universe of discourse, with a generic element in X  denoted by x. A 

neutrosophic set A in X  is  

               XxxFxIxTxA AAA  |))(),(),((,                             (4) 

where,  AT x is the truth-membership function,  AI x is the indeterminacy-membership function, 

and  AF x is the falsity-membership function.    ,A AT x I x and  AF x are real standard or 

nonstandard subsets of 0 ,1    .  
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There is no restriction on the sum of ( )AT x , ( )AI x and ( )AF x , so 0 ( ) ( ) ( ) 3A A AT x I x F x     . 

The neutrosophic set was difficult to apply to real life because it was proposed from philosophical 

point of view. So Wang et al. [4] further narrow it to the single valued neutrosophic set (SVNS) from 

scientific or engineering point of view. Obviously, SVNS is a generalization of classical set, fuzzy set, 

intuitionistic fuzzy set and paraconsistent sets etc., and it was defined as follows. 

 

Definition 4 [4]. Let X be a universe of discourse, with a generic element in X  denoted by x. A 

single valued neutrosophic set A in X  is  

                XxxFxIxTxA AAA  |))(),(),((,                                  (5) 

Where  AT x is the truth-membership function,  AI x is the indeterminacy-membership 

function, and  AF x is the falsity-membership function. For each point x in X , we 

have ( ), ( ), ( ) [0,1]A A AT x I x F x  , and 0 ( ) ( ) ( ) 3A A AT x I x F x    .  

2.2 The normal neutrosophic set 

Because the neutrosophic number can provide the independent indeterminacy-membership function, 

and it is a generalization of fuzzy set, intuitionistic fuzzy set and paraconsistent sets etc. Motived by the 

normal intuitionistic fuzzy number which is produced by combining the normal fuzzy number and 

intuitionistic fuzzy number, we will propose the normal neutrosophic number by combining the normal 

fuzzy number and neutrosophic number, which will be a generalization of the normal intuitionistic 

fuzzy number. We can give the definition of the neutrosophic number as follows. 

Definition 5. Let X be a universe of discourse, with a generic element in X denoted by x, 

and Na
~

),(  , A normal neutrosophic set A in X is  

  XxxFxIxTaxA AAA  |))(),(),((,,,                                        (6) 

where,  AT x ,  AI x and  AF x are the truth-membership function, the indeterminacy-membership 

function, and the falsity-membership function. For each point x in X, we 

have ( ), ( ), ( ) [0,1]A A AT x I x F x  , and 0 ( ) ( ) ( ) 3A A AT x I x F x    .  

Further, we can call the  , , ( ( ), ( ), ( ))A A Aa T x I x F x as a normal neutrosophic number (NNN).  

Definition 6. Let    1 1 1 1 1 1, , , ,a a T I F and    2 2 2 2 2 2, , , ,a a T I F be two NNNs, then the 

operational laws are defined as follows. 

(1)    1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , ,a a a a T T TT I I F F                                         (7)             

(2)  
2 2

1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 22 2

1 2

( , ) , , ,a a a a a a TT I I I I F F F F
a a

 
                              (8) 

(3)  1 1 1 1 1 1( , ) , 1 (1 ) , , 0a a T I F                                                (9) 



 

 5 

 (4)  1/2 1

1 1 1 1 1 1 1( , ), ,1 (1 ) ,1 (1 ) 0a a a T I F                                         (10) 

 In the following, we will discuss some properties about the operational laws shown as follows. 

Theorem 1. Let    1 1 1 1 1 1, , , ,a a T I F  and    2 2 2 2 2 2, , , ,a a T I F be two NNNs, and 1 2, , 0    , 

then we have 

(1) 1 2 2 1a a a a                                                               (11) 

(2) 1 2 2 1a a a a                                                               (12) 

(3) 1 2 1 2( )a a a a                                                            (13) 

(4) 1 1 2 1 1 2 1( )a a a                                                            (14) 

(5) 1 2 1 2( )a a a a                                                             (15) 

(6) 1 2 1 2

1 1 1a a a
   
                                                           (16) 

Proof.  

(1) The formula (11) is obviously right according to the operational rule (1) expressed by (7). 

(2) The formula (12) is obviously right according to the operational rule (2) expressed by (8). 

(3) For the left of formula (13), we have 

   21212121212121 ,,,,)~~( FFIITTTTaaaa    

        1 2 1 2 1 2 1 2 1 2 1 2( ( ), ( )), 1 (1 ( )) ,( ) ,( )a a T T TT I I F F             

        1 2 1 2 1 2 1 2 1 2( ( ), ( )), 1 ((1 )(1 )) ,( ) , ( )n na a T T I I F F          

and for the right of formula (13), we have 

    1 2 1 2 1 2 1 2 1 2 1 2( , ), (1 (1 ) ) (1 (1 ) ) (1 (1 ) )(1 (1 ) , ,a a T T T T I I F F                        

    1 2 1 2 1 2 1 2 1 2( ( ), ( )), 1 ((1 )(1 )) ,( ) , ( )a a T T I I F F            

So, we can get 1 2 1 2( )a a a a     ,which completes the proof of formula(13). 

(4) For the left of formula (14), we have 

       222111

111121211111111211 ,,)1(1,,,,)1(1,,~~   FITaFITaaa       

        1 2 1 2 1 2 1 2

1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1, , 1 (1 ) 1 (1 ) (1 (1 ) )(1 (1 ) ), ,a a T T T T I I F F
                          

          1 2 1 2 1 2

1 2 1 1 2 1 1 1 1( ) ,( ) , 1 (1 ) , ,a T I F
            

       

       121
~)( a   

So, we can get the formula (14) is right. 

(5)For the left of the formula (15), we have  
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So, we can get the formula (15) is right. 

(6) For the formula (16), we have 
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So, we can get the formula (16) is right. 

In the following, we will give the comparative method for two NNNs. 
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Definition 7. Suppose    1 1 1 1 1 1, , , ,a a T I F  and    2 2 2 2 2 2, , , ,a a T I F are two NNNs. If and only 

if 21 aa  , 21   , 21 TT  , 21 II  , 21 FF   for all x  in X , then 21
~~ aa  . 

  Generally speaking, for any two NNNs, it is difficult to meet the Definition 7, so we can give a new 

comparative method by extending the comparative method of INNs to NNNs.. 

Definition 8. Let    , , , ,k k k k k ka a T I F be a NNN, and then its score function is  

)2()~(1 kkkkk FITaas  , )2()~(2 kkkkk FITas                             (17) 

and its accuracy function is  

)2()~(1 kkkkk FITaah  , )2()~(2 kkkkk FITah                             (18) 

Definition 9. Let    1 1 1 1 1 1, , , ,a a T I F  and    2 2 2 2 2 2, , , ,a a T I F be two NNNs, the values of 

score functions of 1
~a  and 2

~a  are )~( 11 as , )~( 12 as  and )~( 21 as , )~( 22 as , and the values of accuracy 

functions of 1
~a  and 2

~a are )~( 11 ah , )~( 12 ah  and )~( 21 ah , )~( 22 ah , respectively. Then, we have 

(1) If )~()~( 2111 asas  ,then, 21
~~ aa  ; 

(2) If )~()~( 2111 asas  ,then 

If )~()~( 2111 ahah  ,then, 21
~~ aa  ; 

If )~()~( 2111 ahah  ,then  

 (i) If )~()~( 2212 asas  ,then, 21
~~ aa  ; 

 (ii)If )~()~( 2212 asas  ,then 

   (a) If )~()~( 2212 ahah  ,then, 21
~~ aa  ; 

   (b)If )~()~( 2212 ahah  ,then, 21
~~ aa  . 

2.3. Heronian mean (HM) operator 

Heronian mean (HM) operator can be regard as a useful tool which is used to catch the 

interrelations of the aggregated arguments [9, 25] and can be defined as follows. 

Definition 10[9].  A HM operator of dimension n is a mapping HM: ]1,0[,  III n . If 
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jin xx
nn

xxxHM

1

21
1

2
,,,                                                     (19) 

So the HM operator is called the Heronian mean (HM) operator. 

Definition11[9, 25]. A GHM operator of dimension n is a mapping GHM : ]1,0[,  III n . If  
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21
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  where 0, qp . So the 
qpGHM ,

 operator is called the generalized Heronian mean (GHM) 

operator. 

  It is easy to prove that the GHM operator has the following properties [9, 25]. 

 Theorem 2. (Idempotency) 

 Suppose xxi  ( ni ,,2,1  ), then 
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  xxxxGHM n
qp ,,, 21

,                                         (21) 

Theorem 3. (Monotonicity) 

  Let ),...,2,1( nixi  and ),...,2,1( niyi   be two sets of the nonnegative numbers satisfying ii yx  , 

for all nii ,,2,1,  , then  

                    n
qp

n
qp yyyGHMxxxGHM ,,,,,, 21

,
21

,                                 (22) 

Theorem 4. (Boundary) 

  The GHM operator satisfies: 

                    nn
qp

n xxxxxxGHMxxx ,,,max,,,,...,,min 2121
,

21           (23) 

Because the GHM operator didn’t consider the weight of inputs, in the following, we will give the 

generalized weighted  Heronian mean operator as follows. 

Definition 12[25]. Let 0, qp , and  nixi ,,2,1  be a set of nonnegative numbers. 

 Tnwwww ,,, 21   is the weight vector of  nixi ,,2,1  , which satisfying ]1,0[iw , 
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i

iw

1

1.If 
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,,,                              (24) 

then qpGWHM ,
 operator is called the generalized weighted  Heronian mean (GWHM) operator. 

However, the GWHM operator has not the idempotency, in order to overcome this deficiency, Liu 

[25] further proposed an improved generalized weighted Heronian mean (IGWHM) operator. 

Definition 13[25]. Let 0, qp , and  nixi ,,2,1  be a set of nonnegative numbers. 

 Tnwwww ,,, 21  is the weight vector of  nixi ,,2,1  , which satisfying ]1,0[iw , 




n

i

iw

1

1.If
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, ,,,             (25) 

The qpIGWHM ,  operator is called the improved generalized weighted Heronian mean (IGWHM) 

operator. 

It is easy to prove the qpIGWHM , operator has these properties [25]. 

Theorem 5 (Idempotency) 

Let xxi   for all ni ,,2,1  , then 

   xxxxIGWHM n
qp ,,, 21

,                                                       (26) 

Theorem 6 (Monotonicity) 

Let  nxxx ,,, 21  and  nyyy ,,, 21   be two sets of the nonnegative numbers, if
ii yx   for 
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all nii ,,2,1,  , then  

      n
qp

n
qp yyyIGWHMxxxIGWHM ,,,,,, 21

,
21

,   .                            (27) 

Theorem 7 (Boundary) 

Let  nxxx ,,, 21   be a set of the nonnegative numbers, if ),...,x,x(xx n21min min  and 

),...,x,x(xx n21max max , then  

                             max21
,

min ,,, xxxxIGWHMx n
qp                                           (28) 

In the following, we can analyze some special cases of the IGWHM operator 

(1) When 0q  , then 
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n
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n
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xww
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1
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Further, when 1p , there is 
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0,1 ,,,  .                             (30) 

(2) When 0p , then 
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Further, when 1q , there is 
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                                  (32) 

According to the above special cases, we can find that the parameters p and q don’t have the 

interchangeability. 

(3) When 1 qp , then 
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1,1 ,,,
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2.4. The geometric Heronian mean (GHM) operator 

 Based on the generalized Heronian mean (GHM) operator, Yu [12] further proposed the generalized 

geometric Heronian mean (GGHM) operator. 

Definition 14[12]. Let  nixi ,,2,1  be a set of nonnegative numbers and 0, qp ,the value of p  

and q  is not set to 0 at the same time. If 

     
 






n

i

n

ij

nnjin
qp qxpx

qp
xxxGGHM

1

1

2

21
, 1

,,,                                  (34) 

then qpGGHM , is called the generalized geometric Heronian mean (GGHM) operator. 

It is easy to prove the qpGGHM , operator has these properties [12]. 

Theorem 8 (Idempotency) 

Let xxi   for all nii ,,2,1,  , then 

   xxxxGGHM n
qp ,,, 21

,                                                       (35) 

Theorem 9 (Monotonicity) 

Let  nxxx ,,, 21  and  nyyy ,,, 21   be two sets of the nonnegative numbers, if ii yx  for 

all nii ,,2,1,  , then  

      n
qp

n
qp yyyGGHMxxxGGHM ,,,,,, 21

,
21

,   .                            (36) 

Theorem 10 (Boundary) 

Let  nxxx ,,, 21   be a set of the nonnegative numbers, if ),...,x,x(xx n21min min  and 

),...,x,x(xx n21max max , then  

                             max21
,

min ,,, xxxxGGHMx n
qp                                           (37) 

The GGHM operator brought more attentions on the correlations of the aggregated arguments so 

that it also neglected the weights, which is similar to GHM operator. So based on this, Yu [12] further 

proposed the generalized geometric weighted Heronian mean (GGWHM) operator. 

Definition 15[12]. Let  nixi ,,2,1  be a collection of nonnegative numbers and 0, qp , the value 

of p and q is not set to 0 at the same time.  Tnwwww ,,, 21  is the weight vector of 

 nixi ,,2,1  satisfying ]1,0[iw , 




n

i

iw

1

1.If 

     
 






n

i

n

ij

nnw

j
w

in
qp ji qxpx

qp
xxxGGWHM

1

1

2

21
, )()(

1
,,,             (38) 

 qpGGWHM ,
 operator is called the generalized geometric weighted Heronian mean (GGWHM) 

operator. 

In order to overcome the counterintuitive of the qpGGWHM , operator, Yu [12] further proposed an 

improved generalized geometric weighted Heronian mean (IGGWHM) operator. 

 

Definition 16[12]. Let  nixi ,,2,1  be a set of nonnegative numbers and 0, qp , the value 

of p and q is not set to 0 at the same time.  Tnwwww ,,, 21  is the weight vector of 
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 nixi ,,2,1  satisfying ]1,0[iw , 




n

i

iw

1

1.If  

   
 
 

 













n

i

n

ij
w

w

nn

in

jin
qp

n

ik

k

j

qxpx
qp
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then qpIGGWHM , is called the improved generalized geometric weighted Heronian mean 

(IGGWHM) operator. 

It is easy to prove the qpIGGWHM , operator has these properties [12]. 
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Theorem 12 (Idempotency) 
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From here we see that 0,pIGGWHM  does not have any relationship with p . 
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Similarly, qIGGWHM ,0  does not have any relationship with q . 
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3. Some Heronian mean operators based on the normal neutrosophic numbers 

  In this section, we combine the IGWHM and IGGWHM operators with the normal neutrosophic 

numbers, and propose the normal neutrosophic number improved generalized weighted Heronian mean 

(NNNIGWHM) operator and the normal neutrosophic number improved generalized geometric 

weighted Heronian mean (NNNIGGWHM) operator. 

3.1 The NNNIGWHM operator 
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qpNNNIGWHM , is called the normal neutrosophic number improved generalized weighted 

Heronian mean (NNNIGWHM) operator. 

Theorem 15. Let 0, qp , and    iiiiii FITaa ,,,,~   ni ,,2,1  be a set of normal neutrosophic 
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Which completes the proof of the theorem 15. 
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(3) when 1 qp , then 
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3.2 The NNNIGGWHM operator  

Definition 18. Let 0, qp , and ),F,I),(T,σ(aa iiiiii 
~  ni ,,2,1  be a collection of single normal 

neutrosophic numbers.  Tnwwww ,,, 21   is the weight vector of  niai ,,2,1~  , and satisfies 
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then p,q NNNIGGWHM  is called the normal neutrosophic number improved generalized geometric 

weighted Heronian mean (NNNIGGWHM) operator. 

Theorem 17. Let 0, qp , and    iiiiii FITaa ,,,,~    ni ,,2,1  be a collection of normal 

neutrosophic numbers.  Tnwwww ,,, 21  is the weight vector of  niai ,,2,1~  , and 

satisfies 0iw ,
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Moreover, the NNNIGGWHM operator has the following properties. 

Theorem 18. (Reducibility) . 
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Which complete the proof of the theorem 19. 

We will discuss some special cases of the NNNIGGWHM operator according to the parameters 

p and q . 

(1) when 0p , then 
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Obviously, when 0q , 0,pNNNIGGWHM does not have any relationship with w  

                              

(3)when 1 pq , then 
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4. The group decision-making methods based on the NNNIGWHM operator and 

NNNIGGWHM operator 

  In this part, we use the normal neutrosophic number improved generalized weighted Heronian 

mean operator and the normal neutrosophic number improved generalized geometric weighted 

Heronian mean operator to deal with the multiple attribute group decision making (MAGDM) 

problems in which the attribute values take the form of NNNs.  

For a multiple attribute decision making problem, suppose we have known 

that  1 2, , , mA A A A is the collection of alternatives,  1 2, , , nC C C C is the collection of 

attributes, and  1 2, , , de e e e is the collection of decision makers. Supposed the attributes are 

independent of each other, and the evaluation of the alternative iA with respect to the criterion jC  

given by the decision maker te  is ( , ), ( , , )t t t t t t

ij ij ij ij ij ijr a T I F which is represented by the form 

of NNN, where , , [0,1]t t t

ij ij ijT I F  and 3t t t

ij ij ijT I F   . The weight vector of the criteria is 
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1 2( , , , )nw w w w , which satisfying 
1

[0,1], 1
n

j j

j

w w


  . Let  1 2, ,..., d     be the vector of 

decision makers, and 
1

[0,1], 1
d

t t

t

 


   

Then, we give the steps of decision making method based on the NNNIGWHM operator and 

NNNIGGWHM operator. So, the procedures are shown as follows: 

 

Step 1. Utilize the NNNIGWHM operator 

     t
in

t
i

t
i

t
i

t
i

t
i

t
i

t
i

t
i rrrNNNIGWHMFITar ,...,,,,,, 21                                (58) 

or NNNIGGWHM operator 

     t
in

t
i

t
i

t
i

t
i

t
i

t
i

t
i

t
i rrrNNNIGGWHMFITar ,...,,,,,, 21                               (59) 

to get the comprehensive attribute values for each decision-maker of each alternative. 

Step 2. Utilize the NNNIGWHM operator 

     1 2, , , , , ,..., d

i i i i i i i i ir a T I F NNNIGWHM r r r                                  (60) 

or NNNIGGWHM operator 

     1 2, , , , , ,..., d

i i i i i i i i ir a T I F NNNIGGWHM r r r                                 (61) 

to get the collective values for each alternative. 

Step 3. Calculate the value )(),(),(),( 2121 iiii rhrhrsrs of ir .  

Step 4. Rank all the alternatives  1 2, ,..., mA A A  according to the theorem 1. 

 

5. A numerical example 

In this section, we provide an example to illustrate the application of NNNIGWHM and 

NNNIGGWHM operators. Suppose that an investment company wants to choose a company as the 

partner. There are four companies )4,3,2,1( iAi evaluated by three decision makers },,{ 321 DDD . 

The weight vector of the decision makers is  T331.0,355.0,314.0 , and the attributes include: 1C (the 

risk index) , 2C ( the growth index), and 3C  (the social-political impact index). Suppose the attribute 

weight vector is  Tw 40.0,20.0,4.0 . The three decision makers },,{ 321 DDD evaluate the four 

companies )4,3,2,1( iAi with respect to the attributes )3,2,1( jC j . The values of evaluation 

information can be expressed by NNNs. According to the evaluation from three decision makers, we 

construct three decision matrices  4 3[ ] 1,2,3t t

ijR r t   which are listed in Tables 1-3.  

Table 1. Decision matrix 
1R . 

 C1 C2 C3 

A1 <(3,0.4),(0.265,0.350,0.385)> <(7,0.6),(0.330,0.390,0.280)> <(7,0.6),(0.245,0.275,0.480)> 
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A2 <(4,0.2),(0.345,0.245,0.410)> <(8,0.4),(0.430,0.290,0.280)> <(5,0.3),(0.245,0.375,0.380)> 

A3 <(3,0.2),(0.365,0.300,0.335)> <(6,0.2),(0.480,0.315,0.205)> <(6,0.4),(0.340,0.370,0.290)> 

A4 <(5,0.5),(0.430,0.300,0.270)> <(7,0.5),(0.460,0.245,0.295)> <(7,0.2),(0.310,0.520,0.170)> 

   Table 2. Decision matrix 
2R . 

 C1 C2 C3 

A1 <(3,0.4),(0.125,0.470,0.405)> <(5,0.4),(0.220,0.420,0.360)> <(5,0.3),(0.345,0.490,0.165)> 

A2 <(4,0.3),(0.355,0.315,0.330)> <(6,0.7),(0.300,0.370,0.330)> <(7,0.6),(0.205,0.630,0.165)> 

A3 <(3,0.2),(0.315,0.380,0.305)> <(5,0.6),(0.330,0.565,0.105)> <(7,0.2),(0.280,0.520,0.200)> 

A4 <(5,0.5),(0.365,0.365,0.270)> <(4,0.5),(0.355,0.320,0.325)> <(6,0.4),(0.425,0.485,0.090)> 

    Table 3. Decision matrix 
3R . 

 C1 C2 C3 

A1 <(3,0.4),(0.260,0.425,0.315)> <(7,0.6),(0.220,0.450,0.330)> <(5,0.4),(0.255,0.500,0.245)> 

A2 <(4,0.2),(0.270,0.370,0.360)> <(8,0.4),(0.320,0.215,0.465)> <(6,0.7),(0.135,0.575,0.290)> 

A3 <(4,0.5),(0.245,0.465,0.290)> <(6,0.2),(0.250,0.570,0.180)> <(5,0.6),(0.175,0.660,0.165)> 

A4 <(5,0.6),(0.390,0.340,0.270)> <(7,0.5),(0.305,0.475,0.220)> <(7,0.5),(0.465,0.485,0.050)> 

 

5.1 The MAGDM method based on NNNIGWHM operator 

(1) Calculate the comprehensive evaluation values ( 1,2,3,4; 1,2,3)t

ir i t  of each decision maker by 

formula (58) of the NNNIGWHM operator (suppose 1 pq ),we can get 

   401.0,324.0,269.0,522.0,450.51
1 r ,    373.0,303.0,322.0,279.0,156.51

2 r , 

   376.0,291.0,330.0,289.0,826.41
3 r ,    388.0,229.0,369.0,387.0,198.61

4 r , 

   240.0,283.0,469.0,361.0,208.42
1 r ,    287.0,253.0,438.0,502.0,636.52

2 r , 

   303.0,218.0,466.0,281.0,093.52
3 r ,    389.0,188.0,403.0,461.0,247.52

4 r , 

   251.0,287.0,459.0,438.0,583.43
1 r ,    227.0,347.0,412.0,461.0,573.53

2 r , 

   218.0,214.0,558.0,501.0,777.43
3 r ,    408.0,144.0,420.0,543.0,198.63

4 r , 

(2) Calculate the collective overall values )4,3,2,1( iri by formula (60) of the NNNIGWHM operator 

(suppose 1 pq  ), we can get  

   323.0,422.0,250.0,433.0,678.41 r ,    323.0,389.0,276.0,419.0,416.52 r  
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   243.0,453.0,298.0,358.0,860.43 r ,    189.0,402.0,391.0,463.0,804.54 r  

(3)Calculate the score functions )(1 irs , )(2 irs  and the accuracy function )(1 irh , )(2 irh  for all i 

(i=1,2,3,4) by formulas (17-18), we can get  

041.7)( 11 rs , 470.8)( 21 rs , 787.7)( 31 rs , 451.10)( 41 rs  

652.0)( 12 rs , 656.0)( 22 rs , 573.0)( 32 rs , 833.0)( 42 rs  

062.10)( 11 rh , 968.11)( 21 rh , 145.10)( 31 rh , 639.12)( 41 rh  

932.0)( 12 rh , 927.0)( 22 rh , 746.0)( 32 rh , 008.1)( 42 rh  

(4) According to the score functions )4,3,2,1()(1 irs i , we can rank the alternatives 4321 ,,, AAAA  

show as follows  

1324 AAAA   

 So, we get the best alternatives is 4A .  

5.2 The MAGDM method based on NNNIGGWHM operator 

(1)Calculate the comprehensive evaluation values ( 1,2,3,4; 1,2,3)t

ir i t  of each decision maker by 

formula (59) of the NNNIGGWHM operator (suppose 1 pq ),we can get 

   394.0,333.0,274.0,540.0,342.51
1 r ,    365.0,308.0,326.0,286.0,325.51

2 r , 

   284.0,331.0,385.0,279.0,791.41
3 r ,    240.0,373.0,390.0,425.0,249.61

4 r , 

   307.0,464.0,221.0,389.0,222.42
1 r ,    270.0,459.0,279.0,512.0,576.52

2 r , 

   217.0,488.0,306.0,342.0,863.42
3 r ,    220.0,400.0,384.0,477.0,071.52

4 r , 

   293.0,461.0,247.0,466.0,667.43
1 r ,    364.0,413.0,225.0,452.0,700.53

2 r , 

   216.0,572.0,218.0,495.0,880.43
3 r ,    178.0,435.0,393.0,557.0,249.63

4 r , 

(2) Calculate the collective overall values )4,3,2,1( iri by formula (61) of the NNNIGGWHM 

operator (suppose 1 pq  ), we can get  

   332.0,422.0,247.0,462.0,723.41 r ,    333.0,397.0,275.0,422.0,533.52 r  

   239.0,470.0,298.0,378.0,845.43 r ,    213.0,403.0,389.0,490.0,829.54 r  

(3)Calculate the score functions )(1 irs , )(2 irs  and the accuracy function )(1 irh , )(2 irh  for all i 

(i=1,2,3,4) by formula (17-18), we can get  

047.7)( 11 rs , 549.8)( 21 rs , 696.7)( 31 rs , 333.10)( 41 rs  

689.0)( 12 rs , 652.0)( 22 rs , 600.0)( 32 rs , 869.0)( 42 rs  

186.10)( 11 rh , 238.12)( 21 rh , 015.10)( 31 rh , 820.12)( 41 rh  

997.0)( 12 rh , 934.0)( 22 rh , 781.0)( 32 rh , 078.1)( 42 rh  

(4) According to the score functions )4,3,2,1()(1 irs i , we can rank the alternatives 4321 ,,, AAAA  

show as follows  

1324 AAAA   

 So, we get the best alternatives is 4A .  
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5.3 Analysis on the effect of the parameters qp,  

Table 4 Ordering of the alternatives by the different parameters p and q in NNNIGWHM operator 

qp,  )(1 irs  ranking 

1,0  qp  635.8)(,376.7)( 2111  rsrs  

029.10)(,790.7)( 4131  rsrs  

1324 AAAA   

10,0  qp  626.11)(,917.9)( 2111  rsrs  

725.12)(,507.10)( 4131  rsrs  

1324 AAAA   

0,1  qp  047.8)(,210.6)( 2111  rsrs  

775.9)(,052.7)( 4131  rsrs  

1324 AAAA   

0,10  qp  534.11)(,745.9)( 2111  rsrs  

715.11)(,289.10)( 4131  rsrs  

1324 AAAA   

1,1  qp  470.8)(,041.7)( 2111  rsrs  

451.10)(,787.7)( 4131  rsrs  

1324 AAAA   

10,1  qp  380.11)(,635.9)( 2111  rsrs  

502.12)(,308.10)( 4131  rsrs  

1324 AAAA   

1,10  qp  394.11)(,758.9)( 2111  rsrs  

758.11)(,285.10)( 4131  rsrs  

1324 AAAA   

10,10  qp  126.12)(,430.10)( 2111  rsrs  

558.12)(,979.10)( 4131  rsrs  

1324 AAAA   

 

Table 5 Ordering of the alternatives by the different parameters p and q in NNNIGGWHM operator 
qp,  )(1 irs  ranking 

1,0  qp  362.8)(,334.7)( 2111  rsrs  

879.10)(,799.7)( 4131  rsrs  

     1324 AAAA   

10,0  qp  324.7)(,720.6)( 2111  rsrs  

977.9)(,127.7)( 4131  rsrs  

1324 AAAA   

0,1  qp  463.8)(,337.6)( 2111  rsrs  

813.9)(,111.7)( 4131  rsrs  

1324 AAAA   

0,10  qp  362.8)(,334.7)( 2111  rsrs  

161.9)(,406.6)( 4131  rsrs  

1324 AAAA   

1,1  qp  549.8)(,047.7)( 2111  rsrs  

333.10)(,696.7)( 4131  rsrs  

1324 AAAA   

10,1  qp  475.7)(,732.6)( 2111  rsrs  

937.9)(,167.7)( 4131  rsrs  

1324 AAAA   

1,10  qp  406.7)(,110.6)( 2111  rsrs  

288.9)(,550.6)( 4131  rsrs  

1324 AAAA   

10,10  qp  210.7)(,403.6)( 2111  rsrs  

471.9)(,793.6)( 4131  rsrs  

1324 AAAA   

 

Obviously, in this example, the ranking of the alternatives is unchanged regardless of the 

parameters p and q. In general, we can use the parameters 1,1  qp  in real applications because it is 

simple and it can also consider the correlations of inputs. 

 

6. Conclusions 
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The multiple attribute group decision making problems are an important research topic, and they 

have the wide applications in real world. However, the attribute values in MAGDM problems are often 

uncertain, and they are difficult to be expressed by crisp numbers. In this paper, we proposed the 

normal neutrosophic numbers (NNNs) which are the generalization of FS, IFS, NS, NFN, and so on, 

and it not only can handle incompleteness, indeterminacy and inconsistency of evaluation information 

but also can handle the information of normal distribution. Obviously, NNNs can provide an easier way 

to express the uncertain information. In addition, Heronian mean (HM) operator has the characteristic 

of capturing the correlations of the aggregated arguments, and the traditional HM operator cannot 

process the NNNs, So, we extend HM operator to process the information with NNNs, and propose 

some normal neutrosophic number Heronian mean (NNNHM) operators, including the normal 

neutrosophic number improved generalized weighted Heronian mean (NNNIGWHM) operator and the 

normal neutrosophic number improved generalized geometric weighted Heronian mean 

(NNNIGGWHM) operator. Furthermore, we propose two multiple attribute group decision making 

methods respectively based on the NNNIGWHM and NNNIGGWHM operators, which have the 

advantages that they can take the correlations of the aggregated attributes into consideration. Finally, we 

give an illustrative example to demonstrate the practicality and effectiveness of the two methods, and 

analyze the influence of the parameters p and q on the two orderings. In the further research, we will 

continue studying the applications of two new methods, or some new aggregation operators for NNNs, 

such as power operator and priority operator for NNNs, etc. 
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