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Abstract
NeutroRings are alternatives to the classical rings and they are of different types. NeutroRings in some cases
exhibit different algebraic properties, and in some cases they exhibit algebraic properties similar to the clas-
sical rings. The objective of this paper is to revisit the concept of NeutroRings and study finite and infinite
NeutroRings of type-NR[8,9]. In NeutroRings of type-NR[8,9], the left and right distributive axioms are tak-
ing to be either partially true or partially false for some elements; while all other classical laws and axioms are
taking to be totally true for all the elements. Several examples and properties of NeutroRings of type-NR[8,9]
are presented. NeutroSubrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms of the
NeutroRings of type-NR[8,9] are studied with several interesting examples and their basic properties are pre-
sented. It is shown that in NeutroRings of type-NR[8,9], the fundamental theorem of homomorphisms of the
classical rings holds.
Keywords: NeutroRing, AntiRing, NeutroSubring, NeutroIdeal, NeutroQuotientRing, NeutroRingHomomor-
phism.

1 Introduction and Preliminaries
In the classical rings (R,+, .), addition and multiplication closure laws are 100% true for all the elements
of R. Also, associative and distributive axioms over R are 100% true for all the elements of R. There
are no provisions in the classical ring R to have addition and multiplication laws to be either partially true or
partially indeterminate or partially false for the elements ofR. Also, there are no provisions for associative and
distributive axioms overR to be either partially true or partially indeterminate or partially false for the elements
of R. Lack of these provisions in the classical rings posses problems because such rings cannot be used to
model the real life situations accurately. These problems were addressed by Smarandache in [10] by introducing
the concepts of NeutroAlgebraicStructures and AntiAlgebraicStructures. Smarandache further studied these
new concepts in [9] and [8] respectively. With these new concepts, a lot of research activities have begun with
some papers already published. For instance in [7], Rezaei and Smarandache studied Neutro-BE-algebras and
Anti-BE-algebras and they showed that any classical algebra S with n operations (laws and axioms) where n ≥
1 will have (2n−1) NeutroAlgebras and (3n−2n) AntiAlgebras. In [3], Agboola et al. studied NeutroAlgebras
and AntiAlgebras viz-a-viz the classical number systems, in [4], Agboola studied NeutroGroups and in [5], he
studied NeutroRings. Also in [2], Agboola revisited NeutroGroups and in [1], he studied AntiGroups. In the
present paper, the concept of NeutroRings introduced in [5] is revisited. It is shown that there are 511 types of
NeutroRings and 19171 types of AntiRings. In particular, finite and infinite NeutroRings of type-NR[8,9] are
studied. In NeutroRings of type-NR[8,9], the left and right distributive axioms are taking to be either partially
true or partially false for some elements; while all other classical laws and axioms are taking to be totally
true for all the elements. Several examples and properties of NeutroRings of type-NR[8,9] are presented.
NeutroSubrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms of the NeutroRings of
type-NR[8,9] are studied with several interesting examples and their basic properties are presented. It is shown
that in NeutroRings of type-NR[8,9], the fundamental theorem of homomorphisms of the classical rings holds.

Definition 1.1. [8]

(i) A classical operation is an operation well defined for all the set’s elements.
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(ii) A NeutroOperation is an operation partially well defined, partially indeterminate, and partially outer
defined on the given set.

(iii) An AntiOperation is an operation that is outer defined for all set’s elements.

(iv) A classical law/axiom defined on a nonempty set is a law/axiom that is totally true (i.e. true for all set’s
elements).

(v) A NeutroLaw/NeutroAxiom (or Neutrosophic Law/Neutrosophic Axiom) defined on a nonempty set is a
law/axiom that is true for some set’s elements [degree of truth (T)], indeterminate for other set’s elements
[degree of indeterminacy (I)], or false for the other set’s elements [degree of falsehood (F)], where
T, I, F ∈ [0, 1], with (T, I, F ) 6= (1, 0, 0) that represents the classical axiom, and (T, I, F ) 6= (0, 0, 1)
that represents the AntiAxiom.

(vi) An AntiLaw/AntiAxiom defined on a nonempty set is a law/axiom that is false for all set’s elements.

(vii) A NeutroAlgebra is an algebra that has at least one NeutroOperation or one NeutroAxiom (axiom that
is true for some elements, indeterminate for other elements, and false for other elements).

(viii) An AntiAlgebra is an algebra endowed with at least one AntiOperation or at least one AntiAxiom.

Theorem 1.2. [7] Let U be a nonempty finite or infinite universe of discourse and let S be a finite or infinite
subset of U. If n classical operations (laws and axioms) are defined on S where n ≥ 1, then there will be
(2n − 1) NeutroAlgebras and (3n − 2n) AntiAlgebras.

2 NeutroRings Revisited
Definition 2.1. [Classical ring][6]
LetR be a nonempty set and let +, . : R×R→ R be binary operations of the usual addition and multiplication
respectively defined on R. The triple (R,+, .) is called a classical ring if the following conditions (R1−R9)
hold:

(R1) x+ y ∈ R ∀x, y ∈ R [closure law of addition].

(R2) x+ (y + z) = (x+ y) + z ∀x, y, z ∈ R [axiom of associativity].

(R3) There exists e ∈ R such that x+ e = e+ x = x ∀x ∈ R [axiom of existence of neutral element].

(R4) There exists −x ∈ R such that x + (−x) = (−x) + x = e ∀x ∈ G [axiom of existence of inverse
element]

(R5) x+ y = y + x ∀x, y ∈ R [axiom of commutativity].

(R6) x.y ∈ R ∀x, y ∈ R [closure law of multiplication].

(R7) x.(y.z) = (x.y).z ∀x, y, z ∈ R [axiom of associativity].

(R8) x.(y + z) = (x.y) + (x.z) ∀x, y, z ∈ R [axiom of left distributivity].

(R9) (y + z).x = (y.x) + (z.x) ∀x, y, z ∈ R [axiom of right distributivity].

If in addition we have,

(R10) x.y = y.x ∀x, y ∈ R [axiom of commutativity],

then (R,+, .) is called a commutative ring.

Definition 2.2. [NeutroSophication of the laws and axioms of the classical ring]

(NR1) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x + y ∈ R (degree of truth T) and
[u+ v = outer-defined/indeterminate (degree of indeterminacy I) or p+ q 6∈ R] (degree of falsehood F)
[NeutroClosure law of addition].

(NR2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x + (y + z) = (x + y) + z
(degree of truth T) and [[p + (q + r)]or[(p + q) + r] = outer-defined/indeterminate (degree of inde-
terminacy I) or u + (v + w) 6= (u + v) + w] (degree of falsehood F) [NeutroAxiom of associativity
(NeutroAssociativity)].
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(NR3) There exists an element e ∈ R such that x+e = x+e = x and [[x+e]or[e+x] = outer-defined/indeterminate
or x + e 6= x 6= e + x] for at least one x ∈ R [NeutroAxiom of existence of neutral element (Neu-
troNeutralElement)].

(NR4) There exists−x ∈ R such that x+(−x) = (−x)+x = e and [[−x+x]or[x+(−x)] = outer-defined/indeterminate
or−x+x 6= e 6= x+(−x)] for at least one x ∈ R [NeutroAxiom of existence of inverse element (Neu-
troInverseElement)].

(NR5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+y = y+x and [[p+q]or[q+p] =
outer-defined/indeterminate (degree of indeterminacy I) or u + v 6= v + u] (degree of falsehood F)
[NeutroAxiom of commutativity (NeutroCommutativity)].

(NR6) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y ∈ R (degree of truth T) and
[u.v = outer-defined/indeterminate (degree of indeterminacy I) or p.q 6∈ R] (degree of falsehood F)
NeutroClosure law of multiplication].

(NR7) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y.z) = (x.y).z (de-
gree of truth T) and [[p.(q.r)]or[(p.q).r] = outer-defined/indeterminate (degree of indeterminacy I) or
u.(v.w) 6= (u.v).w] (degree of falsehood F) [NeutroAxiom of associativity (NeutroAssociativity)].

(NR8) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y + z) = (x.y) + (x.z)
(degree of truth T) and [[p.(q + r)]or[(p.q) + (p.r)] = outer-defined/indeterminate (degree of indeter-
minacy I) or u.(v + w) 6= (u.v) + (u.w)] (degree of falsehood F) [NeutroAxiom of left distributivity
(NeutroLeftDistributivity)].

(NR9) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that (y + z).x = (y.x) + (z.x)
(degree of truth T) and [[(v+w).u]or[(v.u) + (w.u)] = outer-defined/indeterminate (degree of indeter-
minacy I) or (v + w).u 6= (v.u) + (w.u)] (degree of falsehood F) [NeutroAxiom of right distributivity
(NeutroRightDistributivity)].

(NR10) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y = y.x (degree of truth T)
and [[p.q]or[q.p] = outer-defined/indeterminate (degree of indeterminacy I) or u.v 6= v.u] (degree of
falsehood F) [NeutroAxiom of commutativity (NeutroCommutativity)].

Definition 2.3. [AntiSophication of the law and axioms of the classical ring]

(AR1) For all the duplets (x, y) ∈ R, x+ y 6∈ R [AntiClosure law of addition].

(AR2) For all the triplets (x, y, z) ∈ R, x+ (y + z) 6= (x+ y) + z [AntiAxiom of associativity (AntiAssocia-
tivity)].

(AR3) There doest not exist an element e ∈ R such that x+ e = x+ e = x ∀x ∈ R [AntiAxiom of existence
of neutral element (AntiNeutralElement)].

(AR4) There does not exist −x ∈ R such that x+ (−x) = (−x) + x = e ∀x ∈ R [AntiAxiom of existence of
inverse element (AntiInverseElement)].

(AR5) For all the duplets (x, y) ∈ R, x+ y 6= y + x [AntiAxiom of commutativity (AntiCommutativity)].

(AR6) For all the duplets (x, y) ∈ R, x.y 6∈ R [AntiClosure law of multiplication].

(AR7) For all the triplets (x, y, z) ∈ R, x.(y.z) 6= (x.y).z [AntiAxiom of associativity (AntiAssociativity)].

(AR8) For all the triplets (x, y, z) ∈ R, x.(y + z) 6= (x.y) + (x.z) [AntiAxiom of left distributivity (AntiLeft-
Distributivity)].

(AR9) For all the triplets (x, y, z) ∈ R, (y + z).x 6= (y.x) + (z.x) [AntiAxiom of right distributivity (An-
tiRightDistributivity)].

(AR10) For all the duplets (x, y) ∈ R, x.y 6= y.x [AntiAxiom of commutativity (AntiCommutativity)].

Definition 2.4. [NeutroRing]
A NeutroRing NR is an alternative to the classical ring R that has at least one NeutroLaw or at least one of
{NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} with no AntiLaw or AntiAxiom.
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Definition 2.5. [AntiRing]
An AntiRing AR is an alternative to the classical ring R that has at least one AntiLaw or at least one of
{AR1, AR2, AR3, AR4, AR5, AR6, AR7, AR8, AR9}.

Definition 2.6. [NeutroCommutativeRing]
A NeutroNoncommutativeRing NR is an alternative to the classical noncommutative ring R that has at least
one NeutroLaw or at least one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} andNR10 with
no AntiLaw or AntiAxiom.

Definition 2.7. [AntiCommutativeRing]
An AntiCommutativeRing AR is an alternative to the classical commutative ring R that has at least one Anti-
Law or at least one of {AR1, AR2, AR3, AR4, AR5, AR6, AR7, AR8, AR9} and AR10.

Proposition 2.8. Let (R,+, .) be a finite or infinite classical ring. Then:

(i) There are 511 types of NeutroRings.

(ii) There are 19171 types of AntiRings.

Proof. Follows from Theorem 1.2.

Proposition 2.9. Let (R,+, .) be a finite or infinite classical commutative ring. Then:

(i) There are 1023 types of NeutroCommutativeRings.

(ii) There are 58025 types of AntiCommutativeRings.

Proof. Follows from Theorem 1.2.

Remark 2.10. It is evident from Proposition 2.8 and Proposition 2.9 that there are many types of NeutroRings
and NeutroCommutativeRings. The type of NeutroRings studied by Agboola in [5] are those for whichNR1−
NR10 are all true.

Example 2.11. (i) LetNR = Z and let⊕ be a binary operation of ordinary addition and for all x, y ∈ NR,
let � be a binary operation defined on NR as x� y =

√
xy. Then (NR,⊕,�) is a NeutroRing.

(ii) Let NR = Q and let ⊕ be a binary operation of ordinary addition and for all x, y ∈ NR, let � be a
binary operation defined on NR as x� y = x/y. Then (NR,⊕,�) is a NeutroRing.

(iii) Let AR = N and let 	 and ⊗ be two binary operations of ordinary subtraction and ordinary multiplica-
tion respectively defined on AR. Then (AR,	,⊗) is an AntiRing.

(iv) Let AR = N and let ⊕ and ⊗ be two binary operations of ordinary addition and ordinary multiplication
respectively defined on AR. Then (AR,⊕,⊗) is an AntiRing.

Definition 2.12. Let (NR,+, .) be a NeutroRing.

(i) NR is called a finite NeutroRing of order n if the cardinality ofNR is n that is o(NR) = n. Otherwise,
NR is called an infinite NeutroRing and we write o(NR) =∞.

(ii) NR is called a NeutroRing with unity if there exists a multiplicative unit element u ∈ NR such that
ux = xu = x for at least one x ∈ R.

(iii) If there exists a least positive integer n such that nx = e for at least one x ∈ NR, then NR is called
a NeutroRing of characteristic n. If no such n exists, then NR is called a NeutroRing of characteristic
zero.

(iv) An element x ∈ NR is called an idempotent element if x2 = x.

(v) An element x ∈ NR is called a nilpotent element if for the least positive integer n, we have xn = e.

(vi) An element e 6= x ∈ NR is called a zero divisor element if there exists an element e 6= y ∈ NR such
that xy = e or yx = e.

(vii) An element x ∈ NR is called a multiplicative inverse element if there exists at least one y ∈ NR such
that xy = yx = u where u is the multiplicative unity element in NR.
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Definition 2.13. Let (NR,+, .) be a NeutroCommutativeRing with unity. Then

(i) NR is called a NeutroIntegralDomain if NR has no at least one zero divisor element.

(ii) NR is called a NeutroField if NR has at least one multiplicative inverse element.

Example 2.14. Let NR = Z5 = {0, 1, 2, 3, 4} and let ⊕ and � be two binary operations defined on NR by

x⊕ y = x+ y − 1, x� y = x+ xy ∀ x, y ∈ NR.

It is clear that (NR,⊕) is an abelian group.

(1) NeutroAssociativity: Let x, y, z ∈ NR. Then

x� (y � z) = x+ xy + xyz,

(x� y)� z = x+ xy + xz + xyz,

∴ x+ xy + xyz = x+ xy + xz + xyz

⇒ xz = 0

∴ x = 0 or z = 0.

This shows that only the triplets (0, y, z), (x, y, 0), (0, y, 0) can verify associativity with 60% degree of
associativity.

(2) NeutroLeftDistributivity: Let x, y, z ∈ NR. Then

x� (y ⊕ z) = x+ xy + xz − x,
(x� y)⊕ (x� z) = x+ xy + x+ xz − 1,

∴ x+ xy + xz − x = x+ xy + x+ xz − 1

⇒ 2x = 1

∴ x = 3.

This shows that only the triplet (3, y, z) can verify left distributivity with 20% degree of left distributivity.

(3) NeutroRightDistributivity: Let x, y, z ∈ NR. Then

(y ⊕ z)� x = y + z − 1 + yx+ zx− x,
(y � x)⊕ (z � x) = y + yx+ z + zx− 1,

∴ y + z − 1 + yx+ zx− x = y + yx+ z + zx− 1

⇒ − x = 0

∴ x = 0.

This shows that only the triplet (0, y, z) can verify right distributivity with 20% degree of right distribu-
tivity.

(4) NeutroCommutativity: Let x, y ∈ NR. Then

x� y = x+ xy,

y � x = y + yx,

∴ x+ xy = y + yx

⇒ x = y

∴ x = y.

This shows that only the duplet (x, x) can verify commutativity with 20% degree of commutativity.

We have just shown according to Definition 2.6 that (NR,⊕,�) is a NeutroRing.

Example 2.15. Let NR = {a, b, c, d} and let ′′+′′ and ′′.′′ be binary operations defined on NR as shown in
the Cayley tables below:

+ a b c d
a a b c d
b b c d a
c c d a b
d d a b c

. a b c d
a a b c d
b a c b c
c c d c d
d d a d a

It is clear that (NR,+) is an abelian group. From the tables we have:
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(1) NeutroAssociativity:

a(bc) = (ab)c = b,

b(bb) = b but (bb)b = d 6= b.

This shows NeutroAssociativity of ′′+′′.

(2) NeutroLeftDistributivity:

a(b+ c) = ab+ ac = d,

b(c+ d) = c but bc+ bd = d 6= c.

This shows NeutroLeftDistributivity of ′′.′′ over ′′+′′.

(3) NeutroRightDistributivity:

(b+ c)c = bc+ cc = d,

(b+ c)a = d but ba+ ca = c 6= d.

This shows NeutroRightDistributivity of ′′.′′ over ′′+′′.

(4) NeutroCommutativity:

ac = ca = a,

bc = b but cb = d 6= b.

This shows NeutroCommutativity of ′′.′′.

We have just shown according to Definition 2.6 that (NR,+, .) is a NeutroRing.

Example 2.16. From Example 2.15, we note that e = a is the additive neutral element. We now have the
following:

(i) NR is a NeutroCommutativeRing with unity since aa = a, ac = ca = c, ad = da = d.

(ii) {a, c} are idempotent elements.

(iii) {d} is a nilpotent element.

(iv) {b, d} are zero divisor elements.

(v) {a, d} are invertible elements.

(vi) NR is not a NeutroIntegralDomain.

(vii) NR is a NeutroField.

(viii) NR is a NeutroCommutativeRing of characteristic 2.

Example 2.17. Let U = {e, a, b, c, d, f} be a universe of discourse and let NR = {e, a, b, c}. Suppose that ∗
and ◦ are two binary operations defined on NR as shown in the Cayley tables below:

◦ e a b c
e e a b c
a a b or e c b
b b c c or e a
c c b a f

∗ e a b c
e e b c a or b or e
a a c e d
b b e a c
c c a b e

It is clear that (NR, ◦) is a NeutroGroup. Now consider the following:
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(i) NeutroAssociativity of ∗: a∗(b∗b) = (a∗b)∗b = c, b∗(a∗b) = b but (b∗a)∗b = c 6= b, a∗(b∗c) = d
(outer-defined), (a ∗ b) ∗ c = e ∗ c = indeterminate.

(ii) NeutroLeftDistributivity of ∗ over ◦: e ∗ (e ◦ e) = (e ∗ e) ◦ (e ∗ e) = e, a ∗ (b ◦ e) = e but
(a ∗ b) ◦ (a ∗ e) = a 6= e, a ∗ (b ◦ c) = e but (a ∗ b) ◦ (a ∗ c) = e ◦ d =?.

(iii) NeutroRightDistributivity of ∗ over ◦: (e ◦ e) ∗ e) = (e ∗ e) ◦ (e ∗ e) = e, (b ◦ c) ∗ a = c but
(b ∗ a) ◦ (c ∗ a) = a 6= c, (e ◦ e) ∗ c = e ∗ e =? and (e ∗ c) ◦ (e ∗ c) =?.

(iv) NeutroCummutativity of ∗: e ∗ e = c ∗ c = e, b ∗ c = c but c ∗ b = b 6= c, e ∗ c = indeterminate but
c ∗ e = c.

Hence (NR, ◦, ∗) is a NeutroRing.

3 Finite and Infinite NeutroRings of Type-NR[8,9]
In this section, we are going to study a type of NeutroRings (NR, ◦, ∗) whereR1, R2, R3, R4, R5, R6, R7, R10
are totally true for all the elements of NR, and where R8 and R9 are either partially true or partially false for
some elements of NR. This type of NeutroRings will be called NeutroRings of type-NR[8,9].

Example 3.1. Let NR = Z6 = {0, 1, 2, 3, 4, 5} and let ◦ and ∗ be two binary operations defined on NR by

x ◦ y = x+ y, x ∗ y = x+ y + xy ∀x, y ∈ NR

where ′′+′′ is addition modulo 6. Then (NR, ◦, ∗) is a finite NeutroRing of type-NR[8,9]. To see this, consider
the Cayley tables below.

◦ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

∗ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 3 5 1 3 5
2 2 5 2 5 2 5
3 3 1 5 3 1 5
4 4 3 2 1 0 5
5 5 5 5 5 5 5

It is clear from the tables that (NR, ◦) is an abelian group with e = 0 as the identity element, and that (NR, ∗)
is a commutative semigroup. It remains to show that the two distributive axioms are NeutroAxioms.

(i) NeutroLeftDistributivity of ∗ over ◦: Let x, y, z ∈ NR. Then x ∗ (y ◦ z) = x+ y + z + xy + xz and
(x ∗ y) ◦ (x ∗ z) = 2x + y + z + xy + xz. For left distributivity to hold, we must have 2x = x from
which we obtain x = 0. Hence, only the triplets (0, y, z), (0, y, 0), (0, 0, z), (0, 0, 0) can verify the left
distributivity of ∗ over ◦ with 66.67% degree of distributivity. Hence, ∗ is NeutroLeftDistributive over ◦
in NR.

(ii) NeutroRightDistributivity of ∗ over ◦: It can similarly be shown that ∗ is NeutroRightDistributive
over ◦ with 66.67% degree of distributivity.

Hence, (NR, ◦, ∗) is a finite NeutroRing of type-NR[8,9].

Example 3.2. Let NR = Z or Q or R or C and let ◦ and ∗ be two binary operations defined on NR by

x ◦ y = x+ y, x ∗ y = x+ y + xy ∀x, y ∈ NR

where ′′+′′ is the ordinary addition of integers or rationals or reals or complex numbers. It is clear that
(NR, ◦) is an abelian group with e = 0 as the identity element, and that (NR, ∗) is a commutative semigroup.
It remains to show that the two distributive axioms are NeutroAxioms.

(i) NeutroLeftDistributivity of ∗ over ◦: Let x, y, z ∈ NR. Then x ∗ (y ◦ z) = x+ y + z + xy + xz and
(x ∗ y) ◦ (x ∗ z) = 2x + y + z + xy + xz. For left distributivity to hold, we must have 2x = x from
which we obtain x = 0. Hence, only the triplets (0, y, z), (0, y, 0), (0, 0, z), (0, 0, 0) can verify the left
distributivity of ∗ over ◦. Hence, ∗ is NeutroLeftDistributive over ◦ in NR.
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(ii) NeutroRightDistributivity of ∗ over ◦: It can similarly be shown that that ∗ is NeutroRightDistributive
over ◦.

Hence, (NR, ◦, ∗) is an infinite NeutroRing of type-NR[8,9].

Proposition 3.3. Let (NRi, ◦, ∗), i = 1, 2 be NeutroRings of type-NR[8,9]. In the Cartesian product NR1 ×
NR2 of NRi, let ⊕ and � be two binary operations defined ∀(w, x), (y, z) ∈ NR1 ×NR2 as follows:

(w, x)⊕ (y, z) = (w ◦ y, x ◦ z)
(w, x)� (y, z) = (w ∗ y, x ∗ z).

Then (NR1 ×NR2,⊕,�) is a NeutroRing of type-NR[8,9].

Proof. Follows from Definition 2.2.

Proposition 3.4. Let (NR,+, .) be a NeutroRing of type-NR[8,9] and let e be the identity element inNR with
respect to ′′+′′. Then for some x, y, z ∈ NR, we have:

(i) x.e 6= e.

(ii) x.(−y) 6= −(x.y) 6= (−x).y.

(iii) x.(y − z) 6= x.y − x.z.

(iv) (y − z).x 6= y.x− z.x.

Proof. Since ′′.′′ is NeutroDistributive over ′′+′′, the required results follow.

Proposition 3.5. Let (NR,+, .) be a NeutroRing of type-NR[8,9]. Then for some w, x, y, z ∈ NR, we have:

(i) (w + x).(y + z) 6= (w.y + w.z) + (x.y + x.z).

(ii) (w + x).(y − z) 6= (w.y + x.y)− (w.z + x.z).

(iii) (w − x).(y − z) 6= (w.y + x.z)− (w.z + x.y).

(iv) (w + x).(w − x) 6= (w.w − x.x) + (x.w − w.x).

Proof. Since ′′.′′ is NeutroDistributive over ′′+′′, the required results follow.

Proposition 3.6. Let (NR,+, .) be a NeutroRing of type-NR[8,9] and let m,n ∈ N. Then ∀x ∈ NR, we
have:

(i) xm.xn = xm+n.

(ii) (xm)
n
= (xn)

m
= xmn.

Proof. Since ′′.′′ is associative, the required results follow.

Definition 3.7. Let (NR, ◦, ∗) be a NeutroRing of type-NR[8,9] and let NS be nonempty subset of NR.

(i) NS is called a NeutroSubring of NR if (NS, ◦, ∗) is also a NeutroRing of type-NR[8,9].

(ii) NS is called a QuasiNeutroSubring of NR if (NS, ◦, ∗) is a NeutroRing of the type different from the
type of the parent NeutroRing NR.

The only trivial NeutroSubring of NR is NR.

Proposition 3.8. There exist NeutroRings of type-NR[8,9] with only trivial NeutroSubrings.

Proof. Consider the structure (NR, ◦, ∗) such that NR = Z6 and ∀ x, y ∈ NR, we have x ◦ y = x +
y + 1, x ∗ y = x + y + 3xy and consider the structure (NS, ◦, ∗) where NS = Z and ∀ x, y ∈ NS,
x ◦ y = x+ y − 7, x ∗ y = x+ y − 3xy. It can be shown that NR and NS are NeutroRings of type-NR[8,9]
with only trivial NeutroSubrings.
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Example 3.9. Let (NR, ◦, ∗) be the NeutroRing of Example 3.1 and letNS1 = {0, 3} andNS2 = {0, 2, 4} be
two subsets of NR. It can easily be shown that (NS1, ◦, ∗) and (NS2, ◦, ∗) are NeutroRings of type-NR[8,9]
and consequently they are NeutroSubrings of NR. It is observed that NS1 ∩NS2 = {0} and NS1 ∪NS2 =
{0, 2, 3, 4} are not NeutroSubrings of NR. Also, NS1 ×NS2 = {(0, 0), (0, 2), (0, 4), (3, 0), (3, 3), (3, 4)} is
a NeutroSubring of NR×NR.

Example 3.10. Let (NR, ◦, ∗) be the NeutroRing of Example 3.2 and let NS1 = 2Z, NS2 = 3Z and
NS3 = 4Z be three subsets of NR. It can easily be shown that NS1, NS2 and NS3 are NeutroSubrings of
NR. Generally for positive integers n ≥ 2, it can be shown that NS = nZ are NeutroSubrings of NR. It
is observed that NS1 ∩ NS2 = 6Z, NS1 ∩ NS3 = 4Z, NS2 ∩ NS3 = 12Z and NS1 ∪ NS3 = 2Z are
NeutroSubrings of NR. However, NS1 ∪NS2 and NS2 ∪NS3 are not NeutroSubrings of NR.

Proposition 3.11. Let (NR, ◦, ∗) be a NeutroRing of type-NR[8,9] and let {NSi}, i = 1, 2 be NeutroSubrings
of NR. Then

(i) NS = NS1 ∩NS2 is not necessarily a NeutroSubring of NR.

(ii) NS = NS1 ×NS2 is a NeutroSubring of NR×NR.

(iii) NS = NS1 ∪NS2 is not necessarily a NeutroSubring of NR.

Definition 3.12. Let (NR, ◦, ∗) be a NeutroRing of type-NR[8,9]. A nonempty subset NI of NR is called a
NeutroIdeal of NR if the following conditions hold:

(i) NI is a NeutroSubring of NR.

(ii) x ∈ NI and r ∈ NR imply that at least one r ∗ x or x ∗ r ∈ NI for all r ∈ NR.

Definition 3.13. Let (NR, ◦, ∗.) be a NeutroRing of type-NR[8,9]. A nonempty subset NI of NR is called a
QuasiNeutroIdeal of NR if the following conditions hold:

(i) NI is a QuasiNeutroSubring of NR.

(ii) x ∈ NI and r ∈ NR imply that at least one x ∗ r or r ∗ x ∈ NI for all r ∈ NR.

Example 3.14. Let NI1 = NS1 = {0, 3} and NI2 = NS2 = {0, 2, 4} be NeutroSubrings of Example
3.9. Then for NI1, we have 0 ∗ 0 = 0, 1 ∗ 0 = 1, 2 ∗ 0 = 2, 3 ∗ 0 = 3, 4 ∗ 0 = 4, 5 ∗ 0 = 5 and
0 ∗ 3 = 3, 1 ∗ 3 = 1, 2 ∗ 3 = 5, 3 ∗ 3 = 3, 4 ∗ 3 = 1, 5 ∗ 3 = 5. Accordingly, NI1 is a NeutroIdeal.

Also for NI2, we have 0 ∗ 0 = 0, 1 ∗ 0 = 1, 2 ∗ 0 = 2, 3 ∗ 0 = 3, 4 ∗ 0 = 4, 5 ∗ 0 = 5, 0 ∗ 2 = 2, 1 ∗ 2 =
5, 2 ∗ 2 = 2, 3 ∗ 2 = 5, 4 ∗ 2 = 2, 5 ∗ 2 = 5 and 0 ∗ 4 = 4, 1 ∗ 4 = 3, 2 ∗ 4 = 2, 3 ∗ 4 = 1, 4 ∗ 4 = 0, 5 ∗ 4 = 5.
Accordingly, NI2 is a NeutroIdeal.

Example 3.15. Let NI1 = NS1 = 2Z, NI2 = NS2 = 3Z and NI3 = NS3 = 4Z be NeutroSubrings of
Example 3.10. It can easily be shown that NI1, NI2 and NI3 are NeutroIdeals. Generally, NI = nZ are
NeutroIdeals for n ≥ 2.

Definition 3.16. Let (NR, ◦, ∗) be a NeutroRing of type-NR[8,9] and let NI be a NeutroIdeal of NR. The
set NR/NI is defined by

NR/NI = {x ◦NI : x ∈ NR}.

For x ◦ NI, y ◦ NI ∈ NR/NI with x, y ∈ NR, let ⊕ and � be binary operations on NR/NI defined as
follows:

(x ◦NI)⊕ (y ◦NI) = (x ◦ y) ◦NI,
(x ◦NI)� (y ◦NI) = (x ∗ y) ◦NI.

If the triple (NR/NI,⊕,�) is a NeutroRing of type-NR[8,9], it will be called a NeutroQuotientRing.

Example 3.17. Let NI1 = {0, 3} and NI2 = {0, 2, 4} be NeutroIdeals of Example 3.14. For NI1, we have

NR/NI1 = {NI1, 1 +NI1, 2 +NI1}
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and the compositions of elements of NR/NI1 according to Definition 3.16 are given in the Cayley tables:

⊕ NI1 1 +NI1 2 +NI1
NI1 NI1 1 +NI1 2 +NI1

1 +NI1 1 +NI1 2 +NI1 NI1
2 +NI1 2 +NI1 NI1 1 +NI1

� NI1 1 +NI1 2 +NI1
NI1 NI1 1 +NI1 2 +NI1

1 +NI1 1 +NI1 NI1 2 +NI1
2 +NI1 2 +NI1 2 +NI1 2 +NI1

It can easily be deduced from the Cayley tables that (NR/NI1,⊕,�) is a NeutroRing of type-NR[8,9] with
e = NI1 as the identity element.

For NI2, we have
NR/NI2 = {NI2, 1 +NI2}

and the compositions of elements of NR/NI2 according to Definition 3.16 are given in the Cayley tables:

⊕ NI2 1 +NI2
NI2 NI2 1 +NI2

1 +NI2 1 +NI2 NI2

� NI2 1 +NI2
NI2 NI2 1 +NI2

1 +NI2 1 +NI2 1 +NI2

It can easily be deduced from the Cayley tables that (NR/NI2,⊕,�) is a NeutroRing of type-NR[8,9] with
e = NI2 as the identity element.

Example 3.18. Let NI1 = 2Z, NI2 = 3Z and NI3 = 4Z be NeutroIdeals of Example 3.15. For NI1, we
have

NR/NI1 = {NI1, 1 +NI1}

and the compositions of elements of NR/NI1 according to Definition 3.16 are given in the Cayley tables:

⊕ NI1 1 +NI1
NI1 NI1 1 +NI1

1 +NI1 1 +NI1 NI1

� NI1 1 +NI1
NI1 NI1 1 +NI1

1 +NI1 1 +NI1 1 +NI1

It can easily be deduced from the Cayley tables that (NR/NI1,⊕,�) is a NeutroRing of type-NR[8,9] with
e = NI1 as the identity element.

For NI2, we have
NR/NI2 = {NI2, 1 +NI2, 2 +NI2}

and the compositions of elements of NR/NI2 according to Definition 3.16 are given in the Cayley tables:

⊕ NI2 1 +NI2 2 +NI2
NI2 NI2 1 +NI2 2 +NI2

1 +NI2 1 +NI2 2 +NI2 NI2
2 +NI2 2 +NI2 NI2 1 +NI2

� NI2 1 +NI2 2 +NI2
NI2 NI2 1 +NI2 2 +NI2

1 +NI2 1 +NI2 NI2 2 +NI2
2 +NI2 2 +NI2 2 +NI2 2 +NI2

It can easily be deduced from the Cayley tables that (NR/NI2,⊕,�) is a NeutroRing of type-NR[8,9] with
e = NI2 as the identity element.

For NI3, we have
NR/NI3 = {NI3, 1 +NI3, 2 +NI3, 3 +NI3}

and the compositions of elements of NR/NI3 according to Definition 3.16 are given in the Cayley tables:

⊕ NI3 1 +NI3 2 +NI3 3 +NI3
NI3 NI3 1 +NI3 2 +NI3 3 +NI3

1 +NI3 1 +NI3 3 +NI3 1 +NI3 3 +NI3
2 +NI3 2 +NI3 1 +NI3 NI3 3 +NI3
3 +NI3 3 +NI3 3 +NI3 3 +NI3 3 +NI3

� NI3 1 +NI3 2 +NI3 3 +NI3
NI3 NI3 1 +NI3 2 +NI3 3 +NI3

1 +NI3 1 +NI3 2 +NI3 3 +NI3 NI3
2 +NI3 2 +NI3 3 +NI3 NI3 1 +NI3
3 +NI3 3 +NI3 NI3 1 +NI3 2 +NI3

It can easily be deduced from the Cayley tables that (NR/NI3,⊕,�) is a NeutroRing of type-NR[8,9] with
e = NI3 as the identity element.
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Proposition 3.19. Let (NR,+, .) be a NeutroRing of type-NR[8,9] and let NI be a NeutroIdeal of NR. For
x+NI, y+NI ∈ NR/NI with x, y ∈ NR, let⊕ and� be binary operations onNR/NI defined as follows:

(x+NI)⊕ (y +NI) = (x+ y) +NI,

(x+NI)� (y +NI) = (xy) +NI.

Then the triple (NR/NI,⊕,�) is a NeutroRing of type-NR[8,9] with e = NI as the identity element.

Proof. Suppose that (NR,+, .) is a NeutroRing of type-NR[8,9] and suppose that NI is NeutroIdeal of NR.
That the binary operations ⊕ and � on NR/NI are well-defined are the same as for the classical rings. It is
clear that (NR/NI,⊕) is an abelian group with e = NI as the identity element and that (NR/NI,�) is a
commutative semigroup. Since NR is of type-NR[8,9], it follows that there exists at least a triplet (x, y, z) ∈
NR such that x(y + z) 6= xy + xz and (y + z)x 6= yx+ zx. Consequently,

(x+NI)� ((y +NI)⊕ (z +NI)) = x(y + z) +NI

6= (xy + xz) +NI

= [(x+NI)� (y +NI)]⊕ [(x+NI)� (z +NI)] and
((y +NI)⊕ (z +NI))� (x+NI) = (y + z)x+NI

6= (yx+ zx) +NI

= [(y +NI)� (x+NI)]⊕ [(z +NI)� (x+NI)].

Hence, (NR/NI,⊕,�) is a NeutroRing of type-NR[8,9] with e = NI as the identity element.

Definition 3.20. Let (NR,+, .) and (NS,+′, .′) be any two NeutroRings of type-NR[8,9]. The mapping
φ : NR → NS is called a NeutroRingHomomorphism if φ preserves the binary operations of NR and NS
that is if for at least a duplet (x, y) ∈ NR, we have:

φ(x+ y) = φ(x) +′ φ(y),

φ(x.y) = φ(x).′φ(y).

The kernel of φ denoted by Kerφ is defined as

Kerφ = {x : φ(x) = eNR}.

The image of φ denoted by Imφ is defined as

Imφ = {y ∈ NS : y = φ(x) for at least one y ∈ NS}.

If in addition φ is a NeutroBijection, then φ is called a NeutroRingIsomorphism and we write NR ∼= NS.
NeutroRingEpimorphism, NeutroRingMonomorphism, NeutroRingEndomorphism and NeutroRingAutomor-
phism are defined similarly.

Example 3.21. Let (NR,+, ∗) be the NeutroRing of Example 3.1.

(i) Let φ : NR→ NR be a mapping defined by

φ(x) = 2 ∗ x ∀x ∈ NR.

Then, φ is not a NeutroRingHomomorphism. Since ∗ is NeutroDistributive over ′′+′′, we have for
x, y ∈ NR,

φ(x+ y) = 2 ∗ (x+ y)

6= 2 ∗ x+ 2 ∗ y
= φ(x) + φ(y).

This shows that φ does not preserve ′′+′′. However since ∗ is associative and 2 ∗ 2 = 2, we have
∀x, y ∈ NR

φ(x ∗ y) = 2 ∗ (x ∗ y)
= (2 ∗ x) ∗ (2 ∗ y)
= φ(x) ∗ φ(y).

This shows that φ preserves ∗. Accordingly, φ is not a NeutroRingHomomorphism.
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(ii) Let φ : NR×NR→ NR be a projection defined by

φ(x, y) = x ∀x, y ∈ NR.

It can easily be shown that φ is a NeutroRingHomomorphism with

Kerφ = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)} and
Imφ = {0, 1, 2, 3, 4, 5} = NR.

It can be shown that Kerφ is a NeutroIdeal of NR×NR.

Example 3.22. Let NR/NI1 = {NI1, 1 +NI1, 2 +NI1} be the NeutroQuotientRing of Example 3.17 and
let φ : NR→ NR/NI1 be a mapping defined by φ(x) = x+NI1 ∀x ∈ NR. Then

φ(0) = φ(3) = NI1,

φ(1) = φ(4) = 1 +NI1,

φ(2) = φ(5) = 2 +NI1.

It can easily be shown that φ is a NeutroRingHomomorphism with Kerφ = {0, 3} = NI1.

Example 3.23. Let NR/NI3 = {NI3, 1 +NI3, 2 +NI3, 3 +NI3} be the NeutroQuotientRing of Example
3.18 and let φ : NR→ NR/NI3 be a mapping defined by φ(x) = x+NI3 ∀x ∈ NR. Then

φ(0) = NI3,

φ(1) = 1 +NI3,

φ(2) = 2 +NI3,

φ(3) = 3 +NI3.

It can easily be shown that φ is a NeutroRingHomomorphism with Kerφ = 4Z = NI3.

Proposition 3.24. Let NR and NS be two NeutroRings of type-NR[8,9] and suppose that φ : NR → NS is
a NeutroRingHomomorphism. Then:

(i) φ(eNR) = eNS .

(ii) Kerφ is a NeutroIdeal of NR.

(iii) Imφ is a NeutroSubring of NS.

(iv) φ is NeutroInjective if and only if Kerφ = {eNR}.

Proof. The proof is the same as for the classical rings and so omitted.

Proposition 3.25. Let NI be a NeutroIdeal of the NeutroRing NR of type-NR[8,9]. The mapping ψ : NR→
NR/NI defined by

ψ(x) = x+NI ∀x ∈ NR

is a NeutroRingEpimomorphism and the Kerψ = NI .

Proof. The proof is the same as for the classical rings and so omitted.

Proposition 3.26. [Fundamental Theorem of NeutroRingHomomorphisms]. Let NR and NS be Neu-
troRings of type-NR[8,9] and let φ : NR → NS be a NeutroRingHomomorpism with K = Kerφ. Then the
mapping ψ : NR/K → Imφ defined by

ψ(x+K) = φ(x) ∀x ∈ NR

is a NeutroRingIsomorphism.

Proof. The proof is the same as for the classical rings and so omitted.
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4 Conclusion
We have in this paper revisited the concept of NeutroRings introduced by Agboola in [5]. It was shown that
there are 511 types of NeutroRings and 19171 types of AntiRings. In particular, we have studied finite and in-
finite NeutroRings of type-NR[8,9]. In the class of NeutroRings of type-NR[8,9], the left and right distributive
axioms were taking to be either partially true or partially false for some elements; while all other classical laws
and axioms were taking to be totally true for all the elements. Several examples and properties of NeutroRings
of type-NR[8,9] were presented. NeutroSubrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomo-
morphisms of the NeutroRings of type-NR[8,9] were studied with several interesting examples and their basic
properties were presented. It was shown that in the class of NeutroRings of type-NR[8,9], the fundamental
theorem of homomorphisms of the classical rings holds.
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