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Abstract
The NeutroGroups as alternatives to the classical groups are of different types with different algebraic prop-
erties. In this paper, we are going to study a class of NeutroGroups of type-NG[1,2,4]. In this class of Neu-
troGroups, the closure law, the axiom of associativity and existence of inverse are taking to be either partially
true or partially false for some elements; while the existence of identity element and axiom of commutativity
are taking to be totally true for all the elements. Several examples of NeutroGroups of type-NG[1,2,4] are
presented along with their basic properties. It is shown that Lagrange’s theorem holds for some NeutroSub-
groups of a NeutroGroup and failed to hold for some NeutroSubgroups of the same NeutroGroup. It is also
shown that the union of two NeutroSubgroups of a NeutroGroup can be a NeutroSubgroup even if one is not
contained in the other; and that the intersection of two NeutroSubgroups may not be a NeutroSubgroup. The
concepts of NeutroQuotientGroups and NeutroGroupHomomorphisms are presented and studied. It is shown
that the fundamental homomorphism theorem of the classical groups is holding in the class of NeutroGroups
of type-NG[1,2,4].
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1 Introduction and Preliminaries
In any classical algebraic structure (X, ∗), the law of composition of the elements of X otherwise called a
binary operation ∗ is well defined for all the elements of X that is, x ∗ y ∈ X ∀x, y ∈ X; and axioms like as-
sociativity, commutativity, distributivity, etc. defined onX with respect to ∗ are totally true for all the elements
of X . The compositions of elements of X this way are restrictive and do not reflect the reality. It does not give
room for compositions that are either partially defined, partially undefined (indeterminate), and partially outer-
defined or totally outerdefined with respect to ∗. However in the domain of knowledge, science and reality, the
law of composition and axioms defined on X may either be only partially defined (partially true), or partially
undefined (partially false), or totally undefined (totally false) with respect to ∗. In an attempt to model the real-
ity by allowing the law of composition on X to be either partially defined, partially undefined (indeterminate),
and partially outerdefined or totally outerdefined, Smarandache [8] in 2019 introduced the notions of NetroDe-
fined and AntiDefined laws, as well as the notions of NeutroAxiom and AntiAxiom inspired by his work in [9],
which has given birth to new fields of research called NeutroStructures and AntiStructures. For any classical
algebraic law or axiom defined on X , there correspond neutrosophic triplets < Law, NeutroLaw, AntiLaw >
and < Axiom, NeutroAxiom, AntiAxiom > respectively. Smarandache in [7] studied NeutroAlgebras and
AntiAlgebras and in [6], he studied Partial Algebras, Universal Algebras, Effect Algebras and Boole’s Partial
Algebras and he showed that NeutroAlgebras are generalization of Partial Algebras. Rezaei and Smarandache
[5] studied Neutro-BE-algebras and Anti-BE-algebras and fundamentally they showed that any classical alge-
bra S with n operations (laws and axioms) where n ≥ 1 will have (2n − 1) NeutroAlgebras and (3n − 2n)
AntiAlgebras. Agboola et al. in [1] studied NeutroAlgebras and AntiAlgebras viz-a-viz the classical number
systems N, Z, Q, R and C and in [2], he studied NeutroGroups by considering three NeutroAxioms (Neu-
troAssociativity, existence of NeutroNeutral element and existence of NeutroInverse element). In addition, he
studied NeutroSubgroups, NeutroCyclicGroups, NeutroQuotientGroups and NeutroGroupHomomorphisms.
He showed that generally, Lagrange’s theorem and 1st isomorphism theorem of the classical groups do not
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hold in the class of NeutroGroups. In [3], Agboola studied NeutroRings by considering three NeutroAxioms
(NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication
over addition)). He presented Several results and examples on NeutroRings, NeutroSubgrings, NeutroIdeals,
NeutroQuotientRings and NeutroRingHomomorphisms. He showed that the 1st isomorphism theorem of the
classical rings holds in the class of NeutroRings. Motivated and inspired by the work of Rezaei and Smaran-
dache in [5], the work on NeutroGroups presented in [2] is revisited and the present work is devoted to the
study of a class of NeutroGroups of type-NG[1,2,4]. In this class of NeutroGroups, the closure law, the ax-
iom of associativity and existence of inverse are taking to be either partially true or partially false for some
elements; while the existence of identity element and axiom of commutativity are taking to be totally true for
all the elements. Several examples of NeutroGroups of type-NG[1,2,4] are presented along with their basic
properties. It is shown that Lagrange’s theorem holds for some NeutroSubgroups of a NeutroGroup and failed
to hold for some NeutroSubgroups of the same NeutroGroup. It is also shown that the union of two Neutro-
Subgroups of a NeutroGroup can be a NeutroSubgroup even if one is not contained in the other; and that the
intersection of two NeutroSubgroups may not be a NeutroSubgroup. The concepts of NeutroQuotientGroups
and NeutroGroupHomomorphisms are presented and studied. It is shown that the fundamental homomorphism
theorem of the classical groups is holding in the class of NeutroGroups of type-NG[1,2,4].

Definition 1.1. [6]

(i) A classical operation is an operation well defined for all the set’s elements.

(ii) A NeutroOperation is an operation partially well defined, partially indeterminate, and partially outer
defined on the given set.

(iii) An AntiOperation is an operation that is outer defined for all set’s elements.

(iv) A classical law/axiom defined on a nonempty set is a law/axiom that is totally true (i.e. true for all set’s
elements).

(v) A NeutroLaw/NeutroAxiom (or Neutrosophic Law/Neutrosophic Axiom) defined on a nonempty set is a
law/axiom that is true for some set’s elements [degree of truth (T)], indeterminate for other set’s elements
[degree of indeterminacy (I)], or false for the other set’s elements [degree of falsehood (F)], where
T, I, F ∈ [0, 1], with (T, I, F ) 6= (1, 0, 0) that represents the classical axiom, and (T, I, F ) 6= (0, 0, 1)
that represents the AntiAxiom.

(vi) An AntiLaw/AntiAxiom defined on a nonempty set is a law/axiom that is false for all set’s elements.

(vii) A NeutroAlgebra is an algebra that has at least one NeutroOperation or one NeutroAxiom (axiom that
is true for some elements, indeterminate for other elements, and false for other elements), and no Anti-
Operation or AntiAxiom.

(viii) An AntiAlgebra is an algebra endowed with at least one AntiOperation or at least one AntiAxiom.

Theorem 1.2. [5] Let U be a nonempty finite or infinite universe of discourse and let S be a finite or infinite
subset of U. If n classical operations (laws and axioms) are defined on S where n ≥ 1, then there will be
(2n − 1) NeutroAlgebras and (3n − 2n) AntiAlgebras.

2 Main Results
Definition 2.1. [Classical group][4]
Let G be a nonempty set and let ∗ : G × G → G be a binary operation on G. The couple (G, ∗) is called a
classical group if the following conditions hold:

(G1) x ∗ y ∈ G ∀x, y ∈ G [closure law].

(G2) x ∗ (y ∗ z) = (x ∗ y) ∗ z ∀x, y, z ∈ G [axiom of associativity].

(G3) There exists e ∈ G such that x ∗ e = e ∗ x = x ∀x ∈ G [axiom of existence of neutral element].

(G4) There exists y ∈ G such that x ∗ y = y ∗ x = e ∀x ∈ G [axiom of existence of inverse element] where
e is the neutral element of G.

If in addition ∀x, y ∈ G, we have

Doi :10.5281/zenodo.4006602 85



International Journal of Neutrosophic Science (IJNS) Vol. 10, No. 2, PP. 84-95, 2020

(G5) x ∗ y = y ∗ x, then (G, ∗) is called an abelian group.

Definition 2.2. [NeutroSophication of the law and axioms of the classical group]

(NG1) There exist at least three duplets (x, y), (u, v), (p, q),∈ G such that x ∗ y ∈ G (degree of truth T) and
[u ∗ v = outer-defined/indeterminate (degree of indeterminacy I) or p ∗ q 6∈ G] (degree of falsehood F)
[NeutroClosureLaw].

(NG2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ G such that x∗(y∗z) = (x∗y)∗z (degree
of truth T) and [[p ∗ (q ∗ r)]or [(p ∗ q) ∗ r] = outer-defined/indeterminate (degree of indeterminacy I) or
u∗(v∗w) 6= (u∗v)∗w] (degree of, falsehood F) [NeutroAxiom of associativity (NeutroAssociativity)].

(NG3) There exists an element e ∈ G such that x ∗ e = e ∗ x = x (degree of truth T) and [[x ∗ e]or[e ∗ x] =
outer-defined/indeterminate (degree of indeterminacy I) or x ∗ e 6= x 6= e ∗ x] (degree of falsehood F)
for at least one x ∈ G [NeutroAxiom of existence of neutral element (NeutroNeutralElement)].

(NG4) There exists an element u ∈ G such that x ∗ u = u ∗ x = e (degree of truth T) and [[x ∗ u]or[u ∗ x)] =
outer-defined/indeterminate (degree of indeterminacy I) or x ∗ u 6= e 6= u ∗ x] for at least one x ∈ G
(degree of falsehood F) [NeutroAxiom of existence of inverse element (NeutroInverseElement)] where
e is a NeutroNeutralElement in G.

(NG5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ G such that x ∗ y = y ∗ x (degree of truth T) and
[[u ∗ v]or[v ∗ u] = outer-defined/indeterminate (degree of indeterminacy I) or p ∗ q 6= q ∗ p] (degree of
falsehood F) [NeutroAxiom of commutativity (NeutroCommutativity)].

Definition 2.3. [AntiSophication of the law and axioms of the classical group]

(AG1) For all the duplets (x, y) ∈ G, x ∗ y 6∈ G [AntiClosureLaw].

(AG2) For all the triplets (x, y, z) ∈ G, x∗(y∗z) 6= (x∗y)∗z [AntiAxiom of associativity (AntiAssociativity)].

(AG3) There does not exist an element e ∈ G such that x ∗ e = e ∗ x = x ∀x ∈ G [AntiAxiom of existence of
neutral element (AntiNeutralElement)].

(AG4) There does not exist u ∈ G such that x ∗ u = u ∗ x = e ∀x ∈ G [AntiAxiom of existence of inverse
element (AntiInverseElement)] where e is an AntiNeutralElement in G.

(AG5) For all the duplets (x, y) ∈ G, x ∗ y 6= y ∗ x [AntiAxiom of commutativity (AntiCommutativity)].

Definition 2.4. [NeutroGroup]
A NeutroGroup NG is an alternative to the classical group G that has at least one NeutroLaw or at least one
of {NG1, NG2, NG3, NG4} with no AntiLaw or AntiAxiom.

Definition 2.5. [AntiGroup]
An AntiGroup AG is an alternative to the classical group G that has at least one AntiLaw or at least one of
{AG1, AG2, AG3, AG4}.

Definition 2.6. [NeutroAbelianGroup]
A NeutroAbelianGroup NG is an alternative to the classical abelian group G that has at least one NeutroLaw
or at least one of {NG1, NG2, NG3, NG4} and NG5 with no AntiLaw or AntiAxiom.

Definition 2.7. [AntiAbelianGroup]
An AntiAbelianGroup AG is an alternative to the classical abelian group G that has at least one AntiLaw or at
least one of {AG1, AG2, AG3, AG4} and AG5.

Proposition 2.8. Let (G, ∗) be a finite or infinite classical non abelian group. Then:

(i) there are 15 types of NeutroNonAbelianGroups,

(ii) there are 65 types of AntiNonAbelianGroups.

Proof. It follows from Theorem 1.2.

Proposition 2.9. Let (G, ∗) be a finite or infinite classical abelian group. Then:

(i) there are 31 types of NeutroAbelianGroups,
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(ii) there are 211 types of AntiAbelianGroups.

Proof. It follows from Theorem 1.2.

Remark 2.10. It is evident from Theorem 2.8 and Theorem 2.9 that there are many types of NeutroGroups and
NeutroAbelianGroups. The type of NeutroGroups studied by Agboola in [2] is that for which G1, G2, G3, G4
and G5 are either partially true or partially false.

Definition 2.11. Let (NG, ∗) be a NeutroGroup. NG is said to be finite of order n if the cardinality of NG is
n that is o(NG) = n. Otherwise, NG is called an infinite NeutroGroup and we write o(NG) =∞.

Definition 2.12. Let (AG, ∗) be an AntiGroup. AG is said to be finite of order n if the cardinality of AG is n
that is o(AG) = n. Otherwise, AG is called an infinite AntiGroup and we write o(AG) =∞.

Example 2.13. Let NG = N = {1, 2, 3, 4 · · · , }. Then (NG, .) is a finite NeutroGroup where ′′.′′ is the
binary operation of ordinary multiplication.

Example 2.14. Let AG = Q∗+ be the set of all irrational positive numbers and consider algebraic structure
(AG, ∗) where ∗ is ordinary multiplication of numbers. It is clear that ∗ is a total AntiLaw defined on AG.
The binary operation ∗ is totally associative for all the triplets (x, y, z) with x, y, z ∈ AG. There is no neutral
element(s) for all the elements AG and hence no element of AG has an inverse. Finally, the operation ∗
is commutative for all the duplets (x, y) with x, y ∈ AG. Hence by Definition 2.5, (AG, ∗) is an infinite
AntiGroup.

Example 2.15. Let U = {a, b, c, d, e, f} be a universe of discourse and let AG = {a, b, c, } be a subset of U.
Let ∗ be a binary operation defined on AG as shown in the Cayley table below:

∗ a b c
a d c b
b c e a
c b a f

.

It is clear from the table that except for the compositions a ∗ a = d, b ∗ b = e, c ∗ c = f that are outer-defined
with the degree of falsity 33%, the rest compositions are inner-defined with 66.7% degree of truth. This shows
that G1 is partially true and partially false so that ∗ is a NeutroLaw. Also, G2 is partial true and partially
false. There are 33 = 27 possible triplets out of which only 6 can verify associativity of ∗. Hence degree
of associativity of ∗ is 22.2% while the degree of non-associativity is 77.8% so that ∗ is NeutroAssociative.
However,G3 andG4 are totally false for all the elements ofAG which shows thatAG3 andAG4 are satisfied.
Lastly, G5 is partially true with the degree of truth 50% and partially false with 50% degree of falsity which
shows that ∗ is NeutroCommutative. Hence by Definition 2.5, (AG, ∗) is a finite AntiGroup.

3 Certain Types of NeutroGroups
In this section, we are going to study certain types of NeutroGroups (NG, ∗). The NeutroGroups will be named
according to which of NG1−NG5 is(are) satisfied. In the sequel, x ∗ y will be written as xy ∀x, y ∈ NG.

Example 3.1. Let U = {a, b, c, d, e, f} be a universe of discourse and let NG = {e, a, b, c} be a subset of U.
Let ∗ be a binary operation defined on NG as shown in the Cayley table below:

∗ e a b c
e e a b c
a a b a b
b b c f c
c c d c e

.

It is clear from the table that G1, G2, G3, G4 and G5 are partially true and partially false with respect to ∗ as
shown below:

(i) NeutroClosureLaw (NG1): Except for the compositions b ∗ b = f, c ∗ a = d which are false with
12.5% degree of falsity, all other compositions are true with 87.5% degree of truth.
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(ii) NeutroAssociativity (NG2):

a ∗ (b ∗ c) = (a ∗ b) ∗ c = b.

a ∗ (a ∗ a) = a, but, (a ∗ a) ∗ a = c 6= a.

(iii) NeutroNeutralElement (NG3):

Ne = Na = Nb = e but
Nc = e or b.

(iv) NeutroInverseElement (NG4):

Ie = e,

Ia does not exist,
Ib does not exist,
Ic = e.

(v) NeutroCommutativity (NG5):

b ∗ c = c ∗ b = c.

a ∗ b = a but b ∗ a = c 6= a.

We have just shown that (NG, ∗) is a finite NeutroAbelianGroup. This is an example of the class of Neu-
troGroups studied by Agboola in [2]. This class of NeutroGroups are referred to as of type-NG[1,2,3,4,5].

Example 3.2. Let U = {a, b, c, d, e, f} be a universe of discourse and let NG = {a, b, c, e} be a subset of U.
Let ∗ be a binary operation defined on NG as shown in the Cayley table below:

∗ a b c e
a e c f a
b c e d b
c d a e c
e a b c e

.

It is clear from the table that G3 and G4 are totally true for all the elements of NG. However, G1, G2 and G5
are partially true and partially false with respect to ∗ as shown below:

(i) NeutroClosureLaw (NG1): Except for the compositions a∗ c = f, b∗ c = d, c∗a = d which are outer-
defined with 18.75% degree of falsity, all other compositions are inner-defined with 81.25% degree of
truth.

(ii) NeutroAssociativity (NG2):

c ∗ (b ∗ b) = (c ∗ b) ∗ b = c.

a ∗ (b ∗ c) = a ∗ d = outer-defined, (a ∗ b) ∗ c = e.

(iii) NeutroCommutativity (NG5):

a ∗ b = b ∗ a = c.

a ∗ c = f but c ∗ a = d 6= f.

We have just shown that (NG, ∗) is a finite NeutroAbelianGroup of type-NG[1,2,5].

Example 3.3. Let NG = Z and let ∗ be a binary operation defined on NG by

x ∗ y = x+ xy x, y ∈ Z.

It is clear that only G1 is totally true for all x, y ∈ NG but G2, G3, G4 and G5 are partially true and partially
false with respect to ∗ as shown below:
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(i) NeutroAssociativity (NG2):

x ∗ (y ∗ z) = x+ xy + xyz

(x ∗ y) ∗ z = x+ xy + xz + xyz by equating, we have
x+ xy + xyz = x+ xy + xz + xyz

⇒ xz = 0 from which we obtain
x = 0 or z = 0.

This shows that only the triplets (0, y, 0), (0, y, z), (x, y, 0) can verify associativity of ∗.

(ii) NeutroNeutralElement (NG3):
It is clear that only the element 0 ∈ NG has 0 as its neutral element and no neutral(s) for other elements
of NG.

(iii) NeutroInverseElement (NG4):
Again, only the element 0 ∈ NG has 0 as the inverse element and no inverse(s) for other elements of
NG.

(iv) NeutroCommutativity (NG5):
Only the duplet (0, 0) can verify the commutativity of ∗ and not any other duplet(s) (x, y). Hence,
(NG, ∗) is an infinite NeutroAbelianGroup of type-NG[2,3,4,5].

Definition 3.4. Let (NG, ∗) be a NeutroGroup. A nonempty subset NH of NG is called a NeutroSubgroup
of NG if (NH, ∗) is also a NeutroGroup of the same type as NG. If (NH, ∗) is a NeutroGroup of a type
different from that of NG, then NH will be called a QuasiNeutroSubgroup of NG.

Example 3.5. Let (NG, ∗) be the NeutroGroup of Example 3.2 and letNH1 = {a, c, e} andNH2 = {b, c, e}
be two subsets of NG. Let ∗ be defined on NH1 and NH2 as shown in the Cayley tables below:

NH1 :

∗ a c e
a e f a
c d e c
e a c e

NH2 :

∗ b c e
b e d b
c a e c
e b c e

It can easily be shown that (NH1, ∗) and (NH2, ∗) are NeutroGroups of type-NG[1,2,5] and therefore
NH1 and NH2 are NeutroSubgroups of NG. We note that o(NG) = 4, o(NH1) = 3 = o(NH2). Since 3
does not divide 4, it follows that Lagranges’ theorem does not hold. Now consider the following:

NH1 ∪NH2 = {a, b, c, e} = NG.

NH1 ∩NH2 = {c, e}.

These show that NH1 ∪NH2 is a NeutroSubgroup of NG but NH1 ∩NH2 is not a Neutrosubgroup of NG.
It is however observed that NH1 ∩NH2 is a group as can be seen in the Cayley table below:

NH1 ∩NH2 :

∗ c e
c e c
e c e

.

Definition 3.6. Let (NG, ∗) be a NeutroGroup and let a ∈ NG be a fixed element.

(i) The center of NG denoted by Z(NG) is a set defined by

Z(NG) = {x ∈ NG : xg = gx for at least one g ∈ NG}.

(ii) The centralizer of a ∈ G denoted by NCa is a set defined by

NCa = {g ∈ NG : ga = ag}.

Example 3.7. Let (NG, ∗) be the NeutroGroup of Example 3.2. Then:

(i) Z(NG) = {a, b, c, e} = NG. This shows that Z(NG) is a NeutroSubgroup of NG.

(ii) NCa = {a, b, e}, NCb = {a, b, e}, NCc = {c, e} and NCe = {a, b, c, e}. We have that NCa and
NCb are not NeutroSubgroups of NG, NCe is a group and NCc is a NeutroSubgroup of NG.
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4 Characterization of Finite NeutroGroups of type-NG[1,2,4]
In this section, we are going to study finite NeutroGroups of type-NG[1,2,4] that is NeutroGroups (NG, ∗)
where G3 and G5 are totally true for all the elements of NG and where G1, G2 and G4 are either partially
true or partially false for some elements of NG.

Example 4.1. Let NG = {1, 2, 3, 4} ⊆ Z5 and let ∗ be a binary operation on NG defined as

x ∗ y = x+ y + 4 ∀x, y ∈ NG.

Then (NG, ∗) is a finite NeutroGroup of type-NG[1,2,4] as can be seen in the Cayley table

∗ 1 2 3 4
1 1 2 3 4
2 2 3 4 0
3 3 4 0 1
4 4 0 1 2

.

Example 4.2. Let NG = {1, 2, 3} ⊆ Z4 and let • be a binary operation defined on NG as shown in the
Cayley table

? 1 2 3
1 1 2 3
2 2 0 2
3 3 2 1

.

Then (NG, •) is a finite NeutroGroup of type-NG[1,2,4].

Example 4.3. LetNK = {1, 3, 5} ⊆ Z8 and let ◦ be a binary operation define onNK as shown in the Cayley
table

◦ 1 3 5
1 1 3 5
3 3 1 7
5 5 7 1

.

Then (NK, ◦) is a finite NeutroGroup of type-NG[1,2,4].

Example 4.4. Let NG = {1, 2, 3, 4, 5} ⊆ Z10 and let ∗ be a binary operation define on NG as shown in the
Cayley table

∗ 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 0
3 3 6 9 2 5
4 4 8 2 6 0
5 5 0 5 0 5

.

Then (NG, ∗) is a finite NeutroGroup of type-NG[1,2,4].

Example 4.5. Let (NG, •) and (NK, ◦) be NeutroGroups of Examples 4.2 and 4.3 respectively. Then

NG×NG = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)},
NK ×NK = {(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (3, 5), (5, 1), (5, 3), (5, 5)},
NG×NK = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5), (3, 1), (3, 3), (3, 5)}.

It can easily be shown that (NG×NG, •), (NK ×NK, ◦) and (NG×NK,2) are NeutroGroups of type-
NG[1,2,4].

Proposition 4.6. Let (NG, •) and (NK, ◦) be any two NeutroGroups of the same type-NG[1,2,4]. Then
(NG×NG, •), (NK ×NK, ◦) and (NG×NK,2) are NeutroGroups of type-NG[1,2,4].

Proof. The proof is easy and so omitted.
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Proposition 4.7. Let (NG, ∗) be a finite NeutroGroup of type-NG[1,2,4]. The classical laws of indices do not
hold.

Proof. Since ∗ is a NeutroLaw and ∗ is NeutroAssociative over NG, the result follows.

Corollary 4.8. No NeutroGroup (NG, ∗) of type-NG[1,2,4] can be cyclic that is, generated by an element
x ∈ NG.

Proposition 4.9. Let (NG, ∗) be a finite NeutroGroup of type-NG[1,2,4]. If x and y are invertible elements
of NG, then

(i)
(
x−1

)−1
= x.

(ii) (xy)−1 = x−1y−1.

Proof. Obvious.

Example 4.10. Let (NG, ∗) be the NeutroGroup of Example 4.1 and consider the following subsets of NG.

NH1 = {1, 2}, NH2 = {1, 3}, NH3 = {1, 4}, NH4 = {1, 2, 3}, NH5 = {1, 2, 4}, NH6 = {1, 3, 4}.

It can be shown that (NHi, ∗) , i = 1, 2, 3, 4, 5, 6 are NeutroSubgroups of NG. Next consider the following:

NH1 ∪NH2 = NH1 ∪NH4 = {1, 2, 3} [NeutroSubgroups of NG].

NH1 ∪NH3 = NH1 ∪NH5 = NH3 ∪NH5 = {1, 2, 4} [NeutroSubgroups of NG].

NH2 ∪NH3 = NH2 ∪NH6 = {1, 3, 4} [NeutroSubgroups of NG].

NH3 ∪NH4 = NH5 ∪NH6 = {1, 2, 3, 4} [trivial NeutroSubgroups of NG].

NH1 ∩NH4 = NH1 ∩NH5 = NH4 ∩NH5 = {1, 2} [NeutroSubgroups of NG].

NH2 ∩NH4 = NH2 ∩NH6 = NH4 ∩NH6 = {1, 3} NeutroSubgroups of NG].

NH3 ∩NH5 = NH3 ∩NH6 = {1, 4} [NeutroSubgroups of NG].

NH1 ∩NH2 = NH2 ∩NH3 = {1} [not NeutroSubgroups of NG].

Example 4.11. Let (NG, ∗) be the NeutroGroup of Example 4.4 and consider the following subsets of NG.

NH1 = {1, 2, 4, 5}, NH2 = {1, 2, 3, 5}.

It can be shown that (NHi, ∗) , i = 1, 2 are NeutroSubgroups of NG. Next consider the following:

NH1 ∪NH2 = = {1, 2, 5} [a NeutroSubgroup of NG].

NH1 ∩NH2 = {1, 2, 3, 4, 5} [a trivial NeutroSubgroup of NG].

Remark 4.12. Examples 4.10 and 4.11 have shown that in the NeutroGroups of type-NG[1,2,4], we can have
the following:

(i) Lagrange’s theorem may hold for some NeutroSubgroups of the NeutroGroups and fail to hold for some
NeutroSubgroups.

(ii) The union of two NeutroSubgroups of the NeutroGroups can be NeutroSubgroups even if one is not
contained in the other.

(iii) The intersection of two NeutroSubgroups of the NeutroGroups can be NeutroSubgroups.

Definition 4.13. Let NH be a NeutroSubgroup of the NeutroGroup (NG, ∗) and let x ∈ NG.

(i) xNH the left coset of NH in NG is defined by

xNH = {xh : h ∈ NH}.

(ii) The number of distinct left cosets of NH in NG is called the index of NH in NG denoted by [NG :
NH].
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(iii) The set of all distinct left cosets of NH in NG denoted by NG/NH is defined by

NG/NH = {xNH : x ∈ NG}.

Example 4.14. Let (NG, ∗) be the NeutroGroup of Example 4.1 and let (NHi, ∗) , i = 1, 2, 3, 4, 5, 6 be the
NeutroSubgroups of Example 4.10. The left cosets of NHi are computed as follows.

1NH1 = {1, 2}, 2NH1 = {2, 3}, 3NH1 = {3, 4}, 4NH1 = {0, 4}.
1NH2 = {1, 3}, 2NH2 = {2, 4}, 3NH2 = {0, 3}, 4NH2 = {1, 4}.
1NH3 = {1, 4}, 2NH3 = {0, 2}, 3NH3 = {1, 3}, 4NH3 = {2, 4}.
1NH4 = {1, 2, 3}, 2NH4 = {2, 3, 4}, 3NH4 = {0, 3, 4}, 4NH4 = {0, 1, 4}.
1NH5 = {1, 2, 4}, 2NH5 = {0, 2, 3}, 3NH5 = {1, 3, 4}, 4NH5 = {0, 2, 4}.
1NH6 = {1, 3, 4}, 2NH6 = {0, 2, 4}, 3NH6 = {0, 1, 3}, 4NH6 = {1, 2, 4}.

∴ NG/NHi = {1NHi, 2NHi, 3NHi, 4NHi}, i = 1, 2, 3, 4, 5, 6.

Example 4.15. Let (NG, ∗) be the NeutroGroup of Example 4.4 and let (NHi, ∗) , i = 1, 2 be the Neutro-
Subgroups of Example 4.11. The left cosets of NHi are computed as follows.

1NH1 = {1, 2, 4, 5}, 2NH1 = {0, 2, 4, 8}, 3NH1 = {2, 3, 5, 6}, 4NH1 = {0, 4, 6, 8}, 5NH1 = {0, 5}.
1NH2 = {1, 2, 3, 5}, 2NH2 = {0, 2, 4, 6}, 3NH2 = {3, 5, 6, 9}, 4NH2 = {0, 2, 4, 8}, 5NH1 = {0, 5}.

∴ NG/NHi = {1NHi, 2NHi, 3NHi, 4NHi, 5NHi}, i = 1, 2.

Lemma 4.16. LetNH be a NeutroSubgroup of the NeutroGroup (NG, ∗) of type-NG[1,2,4] and let x ∈ NG.
Then, xNH = NH if and only if x = e where e is the identity element in NG.

Proof. Obvious.

Remark 4.17. Examples 4.14 and 4.15 have shown that in the NeutroGroups of type-NG[1,2,4] distinct left
cosets of NeutroSubgroups in the NeutroGroups do not necessarily partition the NeutroGroups.

LetNH be a NeutroSubgroup of a NeutroGroup (NG, ∗) of type-NG[1,2,4] and letNG/NH be the set of
distinct left cosets of NH in NG. For xNH, yNH ∈ NG/NH with x, y ∈ NG, let � be a binary operation
defined on NG/NH by

xNH � yNH = xyNH ∀ x, y ∈ NG.

We want to investigate if the couple (NG/NH,�) is a NeutroGroup of type-NG[1,2,4] using the following
examples.

Example 4.18. Let NG/NHi = {1NHi, 2NHi, 3NHi, 4NHi}, i = 1, 2, 3, 4, 5, 6 be as given in Example
4.14. For i = 1, we have

� 1NH1 2NH1 3NH1 4NH1

1NH1 1NH1 2NH1 3NH1 4NH1

2NH1 2NH1 3NH1 4NH1 0NH1

3NH1 3NH1 4NH1 0NH1 1NH1

4NH1 4NH1 0NH1 1NH1 2NH1

.

It is clear from the Cayley table that (NG/NH1,�) is a NeutroGroup of type-NG[1,2,4] with 1NH1 as the
identity element. This is also true for i = 2, 3, 4, 5, 6.

Example 4.19. Let NG/NHi = {1NHi, 2NHi, 3NHi, 4NHi, 5NHi}, i = 1, 2 be as given in Example
4.15. For i = 1, we have

� 1NH1 2NH1 3NH1 4NH1 5NH1

1NH1 1NH1 2NH1 3NH1 4NH1 5NH1

2NH1 2NH1 4NH1 6NH1 8NH1 0NH1

3NH1 3NH1 6NH1 9NH1 2NH1 5NH1

4NH1 4NH1 8NH1 2NH1 6NH1 0NH1

5NH1 5NH1 0NH1 5NH1 0NH1 5NH1

.

It is evident from the Cayley table that (NG/NH1,�) is a NeutroGroup of type-NG[1,2,4] with 1NH1 as the
identity element.. This is also true for i = 2.
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Remark 4.20. It is evident from Examples 4.18 and 4.19 that ifNH is a NeutroSubgroup of the NeutroGroup
of type-NG[1,2,4], then NG/NH the set of distinct left cosets can be made a NeutroGroup of type-NG[1,2,4]
by defining appropriate binary operation � on NG/NH . The NeutroGroup NG/NH is called the Quotient-
NeutroGroup of NG factored by NH .

Definition 4.21. Let (NG, ∗) and (NH, ◦) be any two NeutroGroups of type-NG[1,2,4]. The mapping φ :
NG→ NH is called a NeutroGroupHomomorphism if φ preserves the binary operations ∗ and ◦ that is if for
at least a duplet (x, y) ∈ G, we have

φ(x ∗ y) = φ(x) ◦ φ(y).

The Kernel of φ denoted by Kerφ is defined by

Kerφ = {x : φ(x) = eNH}

where eNH is the identity element in NH .
The Image of φ denoted by Imφ is defined by

Imφ = {y ∈ H : y = φ(x) for some h ∈ NH}.

If in addition φ is a NeutroBijection, then φ is called a NeutroGroupIsomorphism and we write NG ∼= NH .
NeutroGroupEpimorphism, NeutroGroupMonomorphism, NeutroGroupEndomorphism, and NeutroGroupAu-
tomorphism are similarly defined.

Example 4.22. Let (NG, •) be the NeutroGroup of Example 4.2 and let φ : NG×NG→ NG be a projection
given by

ψ(x, y) = y ∀x, y ∈ NG.

Then

φ(1, 1) = φ(2, 1) = φ(3, 1) = 1, φ(1, 2) = φ(2, 2) = φ(3, 2) = 2, φ(1, 3) = φ(2, 3) = φ(3, 3) = 3.

Since φ((2, 1)(3, 3)) = φ(2, 3) = 3 and φ(2, 1)φ(3, 3) = 1 • 3 = 3 but φ((2, 2)(2, 3)) = φ(0, 2) =? and
φ(2, 2)φ(2, 3) = 2 • 3 = 2, it follows that φ is a NeutroGroupHomomorphism. Imφ = {1, 2, 3} = NG and
Kerφ = {(1, 1), (2, 1), (3, 1)}. The Kerφ is a NeutroSubgroup of NG×NG as can be seen in the following
Cayley table

• (1, 1) (2, 1) (3, 1)
(1, 1) (1, 1) (2, 1) (3, 1)
(2, 1) (2, 1) (0, 1) (2, 1)
(3, 1) (3, 1) (2, 1) (1, 1)

.

It is evident from the table that (Kerφ, •) is a NeutroGroup of type-NG[1,2,4] and since Kerφ ⊆ NG×NG,
it follows that kerφ is a NeuroSubgroup.

Example 4.23. Let (NK, ◦) be the NeutroGroup of Example 4.3 and let ψ : NK × NK → NK be a
projection given by

ψ(x, y) = x ∀x, y ∈ NK.

Then

ψ(1, 1) = ψ(1, 3) = ψ(1, 5) = 1, ψ(3, 1) = ψ(3, 3) = ψ(3, 5) = 3, ψ(5, 1) = ψ(5, 3) = ψ(5, 5) = 5.

Since ψ((1, 1)(1, 3)) = ψ(1, 3) = 1 and ψ(1, 1)ψ(1, 3) = 1 ◦ 1 = 1 but ψ((1, 5)(5, 3)) = ψ(5, 7) =? and
ψ(1, 5)ψ(5, 3) = 1 ◦ 5 = 5, it follows that ψ is a NeutroGroupHomomorphism. Imψ = {1, 3, 5} = NK
and Kerψ = {(1, 1), (1, 3), (1, 5)}. The Kerψ is a NeutroSubgroup of NK × NK as can be seen in the
following Cayley table

◦ (1, 1) (1, 3) (1, 5)
(1, 1) (1, 1) (1, 3) (1, 5)
(1, 3) (1, 3) (1, 1) (1, 7)
(1, 5) (1, 5) (1, 7) (1, 1)

.

It is evident from the table that (Kerψ, ◦) is a NeutroGroup of type-NG[1,2,4] and sinceKerψ ⊆ NK×NK,
it follows that kerψ is a NeuroSubgroup.

Doi :10.5281/zenodo.4006602 93



International Journal of Neutrosophic Science (IJNS) Vol. 10, No. 2, PP. 84-95, 2020

Example 4.24. Let NG/NHi = {1NHi, 2NHi, 3NHi, 4NHi}, i = 1, 2, 3, 4, 5, 6 be the NeutroQuotient-
Group of Example 4.18. For i = 1, let ψ : NG→ NG/NH1 be a mapping defined by

ψ(x) = xNH1 ∀x ∈ NG.

From Example 4.14 we have

ψ(1) = 1NH1 = {1, 2}, ψ(2) = 2NH1 = {2, 3}, ψ(3) = 3NH1 = {3, 4}, ψ(4) = 4NH1 = {0, 4}.

Next,

ψ(2 ∗ 3) = ψ(4) = 4NH1 = {0, 4},
ψ(2)� ψ(3) = 2NH1 � 3NH1 = 2 ∗ 3NH1 = 4NH1 = {0, 4} but then,

ψ(2 ∗ 4) = ψ(0) =?

ψ(2)� ψ(4) = 2NH1 � 4NH1 = 2 ∗ 4NH1 = 0NH1 =?.

This shows that ψ is a NeutroGroupHomomorphism. The Kerψ = 1NH1 = {1, 2} the identity element of
NG/NH1.

Example 4.25. Let NG/NHi = {1NHi, 2NHi, 3NHi, 4NHi, 5NHi}, i = 1, 2 be the NeutroQuotient-
Group of Example 4.19. For i = 1, let φ : NG→ NG/NH1 be a mapping defined by

φ(x) = xNH1 ∀x ∈ NG.

From Example 4.15 we have

ψ(1) = 1NH1 = {1, 2, 4, 5}, φ(2) = 2NH1 = {0, 2, 4, 8}, φ(3) = 3NH1 = {2, 3, 5, 6},
φ(4) = 4NH1 = {0, 4, 6, 8}, φ(5) = 5NH1 = {0, 5}.

Next,

φ(3 ∗ 5) = φ(5) = 5NH1 = {0, 5},
φ(3)� φ(5) = 3NH1 � 5NH1 = 3 ∗ 5NH1 = 5NH1 = {0, 5} but then,

φ(3 ∗ 2) = φ(6) =?

φ(3)� φ(2) = 3NH1 � 2NH1 = 3 ∗ 2NH1 = 6NH1 =?.

This shows that ψ is a NeutroGroupHomomorphism. The Kerψ = 1NH1 = {1, 2, 4, 5} the identity element
of NG/NH1.

Proposition 4.26. Let (NG, ∗) and (NH, ◦) be NeutroGroups of type-NG[1,2,4] and let eNG and eNH be
identity elements in NG and NH respectively. Suppose that φ : NG → NH is a NeutroGroupHomomor-
phism. Then:

(i) φ(eNG) = eNH .

(ii) φ
(
x−1

)
= (φ(x))

−1 for every invertible element x ∈ NG.

(iii) Kerφ is a NeutroSubgroup of NG.

(iv) Imφ is a NeutroSubgroup of NH .

(v) φ is NeutroInjective if and only if Kerφ = {eNG}.
Proof. The same as for the classical groups and so omitted.

Proposition 4.27. Let NH be a NeutroSubgroup of a NeutroGroup (NG, ∗) of type-NG[1,2,4]. The mapping
ψ : NG→ NG/NH defined by

ψ(x) = xNH ∀ x ∈ NG
is a NeutroGroupHomomorphism and the Kerψ = NH .

Proof. The same as for the classical groups and so omitted.

Proposition 4.28. Let φ : NG → NH be a NeutroGroupHomomorpism and let NK = Kerφ. Then the
mapping ψ : NG/NK → Imφ defined by

ψ(xNK) = φ(x) ∀ x ∈ NG

is a NeutroGroupIsomorphism.

Proof. The same as for the classical groups and so omitted.
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5 Conclusion
We have in this work studied a class of NeutroGroups (NG, ∗) of type-NG[1,2,4]. In this class of Neu-
troGroups, the closure law, the axiom of associativity and existence of inverse were taking to be either par-
tially true or partially false for some elements of NG; while the existence of identity element and axiom of
commutativity were taking to be totally true for all the elements of NG. Several examples of NeutroGroups
of type-NG[1,2,4] were presented along with their basic properties. It was shown that Lagrange’s theorem
holds for some NeutroSubgroups of a NeutroGroup and failed to hold for some NeutroSubgroups of the same
NeutroGroup. It was also shown that the union of two NeutroSubgroups of a NeutroGroup can be a Neu-
troSubgroup even if one is not contained in the other; and that the intersection of two NeutroSubgroups may
not be a NeutroSubgroup. The concepts of NeutroQuotientGroups and NeutroGroupHomomorphisms were
presented and studied. It was shown that the fundamental homomorphism theorem of the classical groups is
holding in the class of NeutroGroups of type-NG[1,2,4]. We hope to study AntiGroups, revisit NeutroRings,
study AntiRings,NeutroVectorSpaces, AntiVectorSpaces, NeutroModules, AntiModules, NeutroHypergroups,
AntiHypergroups, NeutroHyperrings, AntiHyperrings, NeutroHypervectorSpaces and AntiHypervectorSpaces
in our future papers.
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