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Abstract 

The use of artificial intelligence (AI) in educational settings has attracted increasing scholarly attention, although 

applicable empirical findings are scarce and contradictory. This study seeks to resolve the ambiguities surrounding 

AI in education through a methodological contribution, merging neutrosophic stance detection and Fuzzy Set 

Qualitative Comparative Analysis (fsQCA). Neutrosophic analysis enables explicit modeling of truth, uncertain-

ty/indeterminacy, and falsity, while merging these findings through fsQCA creates a relative explanation of 

existing research findings. After evaluating four causal hypotheses related to AI-based learning opportunities 

through a Consensus Meter, a research survey with 24 university participants explored the necessary conditions 

regarding the experience of improvements in learning outcomes. The findings indicate that the digital divide is a 

necessary and sufficient condition for an effective educational experience with AI. Furthermore, necessary con-

ditions for AI feedback and the use of AI-based platforms emerge; however, the effectiveness of these platforms 

generates significant uncertainty. Ultimately, the neutrosophic-fsQCA framework provides a viable technique for 

synthesizing ambiguous findings through a systematic approach. Empirically, the results reveal that all actors 

involved in potential AI-based learning must ensure digital equity and high-quality design for interactive expe-

riences to benefit from the successful integration of AI in education. 

Keywords: Neutrosophic Logic, Artificial Intelligence In Education, Digital Divide, AI Feedback, Necessary 

Condition Analysis, Educational Technology, fsQCA 
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El uso de la inteligencia artificial (IA) en entornos educativos ha atraído una creciente atención académica, aunque 

los hallazgos empíricos aplicables son escasos y contradictorios. Este estudio busca resolver las ambigüedades que 

rodean a la IA en la educación a través de una contribución metodológica, fusionando la detección de posturas 

neutrosóficas y el Análisis Comparativo Cualitativo de Conjuntos Difusos (fsQCA). El análisis neutrosófico 

permite el modelado explícito de la verdad, la incertidumbre/indeterminación y la falsedad, mientras que la fusión 

de estos hallazgos a través de fsQCA crea una explicación relativa de los hallazgos de investigación existentes. 

Después de evaluar cuatro hipótesis causales relacionadas con las oportunidades de aprendizaje basadas en IA a 

través de un Medidor de Consenso, una encuesta de investigación con 24 participantes universitarios exploró las 

condiciones necesarias con respecto a la experiencia de mejoras en los resultados de aprendizaje. Los hallazgos 

indican que la brecha digital es una condición necesaria y suficiente para una experiencia educativa efectiva con 

IA. Además, surgen condiciones necesarias para la retroalimentación de IA y el uso de plataformas basadas en IA; 

sin embargo, la efectividad de estas plataformas genera una alta incertidumbre. En definitiva, el marco neutrosó-

fico-fsQCA proporciona una técnica viable para sintetizar hallazgos ambiguos mediante un enfoque sistemático. 

Empíricamente, los resultados revelan que todos los actores involucrados en el potencial aprendizaje basado en IA 

deben garantizar la equidad digital y un diseño de alta calidad para que las experiencias interactivas se beneficien 

de la integración exitosa de la IA en la educación. 

Palabras clave: Lógica neutrosófica, Inteligencia artificial en la educación, Brecha digital, Retroalimentación de 

IA, Análisis de condiciones necesarias, Tecnología educativa, fsQCA 

1. Introduction 

The rapid proliferation of artificial intelligence (AI) technologies in educational settings has fundamentally 

transformed the teaching and learning landscape, generating unprecedented opportunities for personalized in-

struction, adaptive assessment, and intelligent tutoring systems [1]. However, despite the growing body of research 

examining AI's educational impact, the evidence base remains characterized by significant heterogeneity, meth-

odological diversity, and often contradictory findings [2]. This fragmentation poses substantial challenges for 

educators, policymakers, and researchers seeking to make evidence-based decisions regarding AI implementation 

in educational contexts. 

Traditional approaches to evidence synthesis in educational technology research have predominantly relied on 

binary classification schemes that categorize studies as either supporting or opposing particular interventions [3]. 

Although such approaches provide clarity and simplicity, they fail to capture the nuanced reality of educational 

research, where findings often exhibit varying degrees of support, contextual dependencies, and inherent uncer-

tainties. The complexity of educational phenomena, combined with the multifaceted nature of AI technologies, 

necessitates more sophisticated methodological frameworks capable of modeling ambiguity, partial support, and 

contradictory evidence simultaneously [4]. Recent advances in neutrosophic logic, introduced by Smarandache [5] 

and subsequently developed for text analysis applications [6,7,8], offer a promising avenue to address these 

methodological limitations. Unlike classical binary or fuzzy logic systems, neutrosophic logic explicitly incor-

porates three independent components, truth (T), indeterminacy (I), and falsity (F), allowing for the simultaneous 

representation of supporting evidence, uncertainty, and contradictory findings [9]. This tripartite structure aligns 

particularly well with the nature of educational research, where interventions may be effective under certain 

conditions, ineffective under others, or uncertain in many contexts. 

The application of neutrosophic principles to stance detection—the task of determining whether a text expresses 

support, opposition, or neutrality toward a specific target—has emerged as a powerful tool for automated literature 

analysis [10]. Recent developments in AI-powered research synthesis tools, such as the Consensus Meter [11], 

have demonstrated the potential for automated stance classification in scientific literature, enabling researchers to 
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systematically map the distribution of evidence across large corpora. However, the integration of neutrosophic 

principles with stance detection in educational research synthesis remains largely unexplored. 

Complementing the challenges of evidence synthesis, identifying the necessary conditions for educational out-

comes has gained increasing attention in the research community. In this regard, fuzzy-set Qualitative Compara-

tive Analysis (fsQCA) provides a systematic methodology to assess whether specific conditions must be present 

for a desired outcome to occur, offering insights that complement traditional sufficiency-focused approaches [12]. 

In the context of AI-enhanced learning, understanding the necessary conditions is particularly crucial, as it can 

inform the minimum requirements for successful implementation and help prioritize resource allocation in edu-

cational settings. 

The configurational perspective of the fsQCA has demonstrated significant value in educational research by 

recognizing that outcomes often result from complex combinations of conditions rather than isolated factors. This 

approach aligns with the multifaceted nature of AI implementation in education, where technological, pedagogi-

cal, social, and institutional factors interact in complex ways to influence learning outcomes [13]. The integration 

of configurational methods with neutrosophic stance detection offers the potential for a more comprehensive 

understanding of the conditions under which AI can enhance educational outcomes. 

Despite growing interest in AI applications in education, several critical gaps remain in our understanding of the 

causal mechanisms underlying AI's educational impact of AI. First, the majority of existing studies focus on 

sufficiency relationships, examining whether AI interventions can produce positive outcomes while neglecting the 

identification of necessary conditions that must be present for success [14]. Second, the synthesis of evidence 

across studies has been hampered by the inability to account for uncertainty and contradictory findings [15] 

systematically. Third, the role of contextual factors, particularly digital equity and access barriers, in moderating 

AI's educational effectiveness of AI remains underexplored systematic [16]. 

This study addresses these gaps by introducing a novel methodological framework that combines neutrosophic 

stance detection with Necessary Condition Analysis to evaluate causal hypotheses related to AI-enhanced learn-

ing. Our approach leverages the Consensus Meter tool to systematically classify research findings into neutro-

sophic triplets, capturing not only the degree of support and opposition, but also the extent of indeterminacy in the 

evidence base. Subsequently, we applied the necessary condition in FSQCA to identify the necessary conditions 

for perceived learning improvement with AI using primary data collected from university students. 

This study makes several important contributions to the field of educational technology research. Methodologi-

cally, we introduced the first application of neutrosophic stance detection to educational research synthesis, 

providing a framework for handling ambiguous and contradictory evidence. Theoretically, we advanced our 

understanding of the necessary conditions for AI-enhanced learning, with particular attention to the role of digital 

equity and interaction design. Practically, our findings offer evidence-based guidance to educators and policy-

makers regarding the prerequisites for successful AI implementation in educational settings. 

The remainder of this paper is organized as follows. Section 2 presents our methodological approach, detailing the 

neutrosophic stance detection framework, the construction of neutrosophic causal graphs, and the application of 

fsQCA, including an analysis of necessary conditions. Section 3 reports our findings, including the neutrosophic 

representation of the causal hypotheses and the results of the necessary condition analysis within the fsQCA 

framework. Section 4 discusses the implications of our findings in the context of existing literature and explores 

directions for future research. Finally, Section 5 presents the conclusions and implications for educational prac-

tices and policies. 

2. Materials and Methods 

2.1 Neutrosophic Stance Detection  
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A precise definition of stance detection is required to motivate a neutrosophic framework. In the literature, stance 

detection is treated as a target-dependent text classification problem [17], and given a text and a target statement 

(hypothesis), the task is to infer whether the author supports, opposes, or expresses no opinion of the target. This 

approach fundamentally differs from generic sentiment analysis by incorporating target-specific contextual in-

formation [18]. Formally, let X denote the space of textual units (e.g., sentences, tweets, abstracts), let Θ be a set of 

targets (topics, propositions, or hypotheses), and let the label set L={Favor, Against, None} represent possible 

stances. 

Stance detection seeks a mapping 

                      (1) 

such that for each pair       the classifier   returns the label     indicating whether the text   expresses 

support, opposition, or absence of a stance towards the target  .  

Alternative formulations encode the stance labels as signed integers          -or probability distributions over 

  [19]. Unlike generic sentiment analysis, which determines the overall polarity of a text, stance detection is 

target-specific: a text with a positive sentiment may still be “against” a given target.  

This formal view underpins subsequent neutrosophic generalizations, where mapping is extended to assign de-

grees of support, indeterminacy, and opposition. 

In the neutrosophic framework, the stance detection function is generalized as 

         [   ]          (2) 

where, for each pair       

                                     (3) 

with: 

       : degree to which   supports target   

       : Degree of indeterminacy or neutrality in relation to  , 

 F(x,θ): the degree to which x opposes the target  . 

These values satisfy the neutrosophic condition 

                                (4) 

These values satisfy the neutrosophic condition                        [20]. This formulation allows 

partial, uncertain, and even contradictory stances to be explicitly represented, thereby extending classical stance 

detection to a more flexible and realistic paradigm. 

We applied stance detection with a neutrosophic representation using a Consensus Meter [11]. This approach 

classifies research findings into supportive, contradictory, and ambiguous stances regarding a given causal claim. 

The Consensus Meter has been recognized as an effective AI-powered literature review tool that helps visualize 

how studies answer "Yes/No" research questions by grouping them according to whether they support or contra-

dict the questions asked. Each causal hypothesis is then encoded as a triplet (T,I,F) that captures the distribution of 

stances across evidence. 

 T represents the percentage of sources supporting position toward the causal hypothesis. 
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 I represents the percentage of sources that express indeterminacy or ambiguity, and 

 F represents the percentage of sources that take an oppositional stance. 

These triplets were derived from stance labels produced by the Consensus Meter. The Consensus Meter classi-

fies results from yes/no research questions into “Yes,” “No,” “Possibly,” or “Mixed” categories, showing how 

many papers fall into each stance. We map “Yes” (supportive papers) to the truth component T; “No” (contra-

dictory papers) to the falsity component F; and both “Possibly” and the “Mixed” category—introduced to cap-

ture nuanced or subgroup-dependent findings—to the indeterminacy component I. Thus, mixed or possible evi-

dence contributes to substantive uncertainty rather than being counted as evidence against the hypothesis. 

For example: 

 Does using an AI platform improve perceived learning with                            

In this representation, most sources support the hypothesis (T=0.60), a significant portion remains indeterminate 

(I=0.4), and none contradicts it (F=0.00). This formulation makes explicit not only agreement and disagreement 

but also the degree of uncertainty in the available evidence. 

Let X be an independent variable (condition), and Y be a dependent variable (outcome). The causal hypothesis 

[22] is denoted by 

                    (5) 

where   expresses a causal relation. In the neutrosophic framework, such a hypothesis is characterized by a truth–

indeterminacy–falsity triplet: 

                              [   ]       (6) 

where    represents the degree of truth/support,    the degree of indeterminacy, and    the degree of falsi-

ty/rejection. Hence, a neutrosophic causal hypothesis may be true, indeterminate, or false to varying extents. 

 

A neutrosophic causal graph is a triple G defined by the following elements [23]: 

           ,                               ,       [   ]  

such that  

                                [   ]        (7) 

Where: V are nodes (variables), E are the directed edges X→Y, and ω labels each edge with support T, inde-

terminacy I, and rejection F 

Interpretation: 

  = degree of truth/support;    = indetermination;    = falsity/rejection of the hypothesis “    ”.  

 There is no restriction required             . This allows evidence to be represented simultaneously in favor 

and against and to distinguish uncertainty (I) from falsification (F). 
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Fuzzy-Set QCA and Necessary Condition Analysis 

We conducted a survey of 24 university students to analyze the necessity of specific conditions related to the use of 

artificial intelligence (AI) tools in learning contexts. The questionnaire comprised five items on a seven-point 

Likert scale (1 = Strongly Disagree, 7 = Strongly Agree): (1) perceived learning improvement through AI, (2) use 

of AI platforms in academic tasks, (3) receipt of immediate and useful feedback from AI, (4) barriers to access or 

connectivity (including free-version restrictions), and (5) overreliance on AI to complete tasks. 

For the fsQCA, the outcome was defined as perceived learning improvement through AI. Responses were cali-

brated into fuzzy set membership scores using Ragin's three-value calibration [24]: 1.0 for full membership (score 

7), 0.5 for crossover (score 4), and 0.0 for full non-membership (score 1), with linear interpolation for intermediate 

values. This calibration approach has been extensively validated in configurational research and provides a robust 

foundation for set-theory analysis. 

The analysis of necessary conditions was then conducted within the fsQCA framework, where condition X is 

considered necessary for an outcome Y if, in all cases, the membership score in Y does not exceed the membership 

score in X [25]. This procedure is specifically designed to identify the conditions that must be present for the 

outcome to occur, even though they may not be sufficient on their own. Two key indicators were computed: 

consistency, which measures the degree to which the condition is always present when the outcome occurs, and 

coverage, which assesses the empirical relevance of the condition [26], 

                     
∑            

∑   
       (8) 

and coverage, 

                  
∑            

∑  
        (9) 

The calibrated dataset was exported to. csv format for fsQCA 3.0 (Windows), where each row corresponds to one 

student and each column to a calibrated condition or outcome, with membership values in the range [0,1]. This 

setup allows for the direct computation of the necessary conditions and their consistency/coverage within the 

fsQCA software, following established best practices for configurational analysis [27]. 

3. Results 

Neutrosophic Stance Detection of Causal Hypotheses 

Using the Consensus Meter tool, we applied stance detection with a neutrosophic representation to assess the 

four causal hypotheses related to AI and learning outcomes. Each hypothesis is encoded as a triplet (T, I, F), 

where T represents the proportion of supportive stances, I is the proportion of indeterminate or ambiguous 

stances, and F is the proportion of oppositional stances. The results are as follows. 

Table 1. Neutrosophic representation of causal hypotheses 

Hypothesis Neutrosophic Triplet (T, I, F) Interpretation 

Does using an AI 

platform improve 

perceived learning 

with AI? 

(0.60, 0.40, 0.00) Moderate support, with a 

substantial level of inde-

terminacy and no opposi-

tion. 
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Hypothesis Neutrosophic Triplet (T, I, F) Interpretation 

Does immediate AI 

feedback improve 

perceived learning 

with AI? 

(0.67, 0.17, 0.17) Strong support, some inde-

terminacy, and a minority 

of contradictory evidence. 

Does the digital 

divide impact 

learning outcomes 

with AI? 

(1.00, 0.00, 0.00) Full support, with no am-

biguity or opposition. 

Does reliance on AI 

affect learning out-

comes? 

(0.73, 0.24, 0.00) High support, some inde-

terminacy, and no opposi-

tion. 

These results highlight that the digital divide is unanimously recognized as a causal factor affecting AI-driven 

learning outcomes. Meanwhile, reliance on AI and immediate feedback are also strongly supported but show 

traces of uncertainty or contradiction. 

 

Causal Graph Representation 

The following figure represents the hypothesized causal relationships as a directed graph, where edges denote 

causal links, and their strength is proportional to the truth value (T) of the neutrosophic triplets: 

 

Figure 1. Neutrosophic Causal Graph of AI-related Hypotheses 
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The graph indicates that all the proposed conditions positively influence the outcomes, but with varying degrees 

of support and indeterminacy. 

 

Necessary Condition Analysis  

 

Psychometric analysis of the questionnaire revealed acceptable reliability. Cronbach’s alpha was 0.644, and 

McDonald’s omega coefficient was 0.817. These results suggest that the items show internal coherence, and that 

the instrument is suitable for exploratory studies in the context of perceptions of learning with artificial intelli-

gence. 

Using a calibrated dataset of 24 students, a Necessary Condition Analysis was conducted. The outcome was 

defined as Perceived Learning Improvement through AI. The tested conditions included AI platform use, AI 

feedback, access barriers (digital divide), and AI reliance. Consistency and coverage metrics were calculated 

according to the fsQCA standards. 

Table 2. Necessary condition analysis results 

Condition Consistency (X ≤ Y) Coverage (X ≤ Y) Interpretation 

AI Platform 

Use 

0.88 0.79 Necessary but not suffi-

cient. 

AI Feedback 0.90 0.75 Necessary but not suffi-

cient. 

Access Barriers 

(Digital Divide) 

1.00 0.68 Perfectly necessary, 

moderate coverage. 

AI Reliance 0.85 0.70 Necessary but not suffi-

cient. 

 

The analysis confirmed that the absence of digital barriers (digital divide) is a perfectly necessary condition for 

improved learning with AI (consistency = 1.00). However, its coverage (0.68) suggests that, although necessary, 

it does not explain the majority of the variation in the outcome. Similarly, AI feedback and AI platform use show 

high necessity, but remain insufficient as standalone explanations. This aligns with the causal graph in which 

multiple supportive conditions converge to explain improvements in learning outcomes. 

4. Discussion 

This study aimed to evaluate the applicability of a neutrosophic stance detection framework complemented by a 

necessary condition analysis within the fsQCA approach to interpret causal hypotheses in the context of 

AI-assisted learning. The results not only validate the utility of this hybrid framework, but also provide a nuanced 

perspective on the factors influencing perceptions of learning in the digital age. The following sections discuss the 

main findings, interpret them based on previous studies, and explore their broader implications. 

The most compelling finding of our study was the identification of the digital divide as a unanimously supported 

causal factor (T = 1.00) and a perfectly necessary condition (consistency = 1.00) for perceived learning with AI. 

This result resonates with the vast body of literature emphasizing equitable access to technology as a fundamental 

prerequisite for educational success in the 21st century. Recent reports, such as those from the U.S. Department of 
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Education and Microsoft [16], have warned that disparities in access may exacerbate existing inequalities. Our 

analysis goes a step further by quantifying this relationship in terms of logical necessity, providing robust em-

pirical evidence that without guaranteed access and removal of barriers, any AI-based intervention is destined to 

have limited reach. A coverage of 0.68 suggests that, while indispensable, the absence of barriers is not, by itself, 

sufficient to ensure the outcome, aligning with a configurational perspective in which multiple factors must con-

verge. 

The application of neutrosophic logic to represent the stance of scientific evidence has proved particularly in-

sightful. Unlike traditional binary approaches (support/opposed), our triplet model (T, I, F) explicitly captures 

uncertainty and ambiguity. For example, the hypothesis regarding the use of an AI platform to enhance learning 

received moderate support (T = 0.60), but substantial indeterminacy (I = 0.40). This suggests that the scientific 

literature is inconclusive and that effects likely depend on unspecified contextual factors, such as platform quality, 

pedagogical design, or student characteristics. This finding is consistent with scholarship advocating a more 

critical and nuanced view of educational technology. The ability of our framework to model indeterminacy is a key 

methodological contribution that enables researchers to identify areas where evidence is weak or contradictory and 

requires further investigation. This approach aligns with recent work that integrated neutrosophic and advanced AI 

models to manage uncertainty in text classification. 

The results of the fsQCA necessary condition analysis, which position AI feedback (consistency = 0.90) and 

platform use (consistency = 0.88) as highly necessary conditions, reinforce the idea that the mere availability of AI 

tools is insufficient. Effective interaction and scaffolding provided by immediate feedback are crucial. This finding 

connects with research on causal inference in educational data mining, which seeks to move beyond correlation to 

uncover the mechanisms that drive learning outcomes. Our study complements these efforts by employing fsQCA 

to formalize these dependencies in terms of necessity. The combination of neutrosophic logic with the configura-

tional perspective of fsQCA appears to be a promising path for unraveling the complex interdependencies within a 

digital learning ecosystem[28 29],. 

The implications of this study are twofold. First, at the practical level, it underscores the need for educational 

policies and AI implementation to prioritize closing the digital divide as a non-negotiable first step. Moreover, this 

highlights that the design of AI tools must focus on interaction quality and feedback rather than solely on content 

delivery. Second, at the methodological level, our study introduces a hybrid framework that can be highly valuable 

for evidence synthesis in complex and emerging domains. The ability of neutrosophic stance detection to quantify 

not only support and opposition, but also indeterminacy provides a powerful tool to map the state of scientific 

knowledge and guide future research. 

Nevertheless, this study has limitations, primarily the small sample size (N = 24) of the fsQCA analysis. While this 

methodology can be applied to small-N studies, future research should replicate these findings with larger and 

more diverse cohorts to increase generalizability. Additionally, the nature of indeterminacy (I) deserves further 

exploration. Is this due to mixed results, poor methodology in primary studies, or unmeasured contextual factors? 

Qualitative research or more detailed meta-analyses could help disentangle this component. 

Thus, the future research agenda is clear. We propose applying this framework to other areas of educational 

research, where evidence is often ambiguous and multifactorial. A longitudinal analysis would be particularly 

interesting to observe how necessity configurations evolve as students and educators gain experience in AI. Fi-

nally, integrating directed acyclic graphs (DAGs), as described by Tennant et al. [30] and Digitale et al.[31], with 

our neutrosophic approach, could provide an even more rigorous and visually intuitive model for representing and 

testing complex causal theories in the social sciences. 

5. Conclusions 

This study demonstrates the applicability and added value of combining neutrosophic stance detection with 

fsQCA-based necessary condition analysis to evaluate causal hypotheses in AI-assisted learning. The findings 

https://creativecommons.org/licenses/by/4.0/


Esta obra está bajo una licencia: https://creativecommons.org/licenses/by/4.0/ 

Neutrosophic Computing and Machine Learning , Vol. 40, 2025 285  
 

 

confirm that the digital divide is not only a critical determinant, but also a logically necessary condition for the 

effectiveness of AI-enhanced education, reinforcing calls for policies that ensure equitable access. Beyond access, 

the results highlight the central role of interaction quality with AI feedback and platform use emerging as essential 

requirements for meaningful learning outcomes. 

Methodologically, the integration of neutrosophic logic proved instrumental in capturing the ambiguity and un-

certainty present in the current research, offering a more refined synthesis than traditional binary approaches. By 

explicitly modeling truth, falsity, and indeterminacy, the framework provides researchers with a robust tool for 

identifying areas where evidence remains inconclusive and where further inquiry is required. 

Despite its contributions, the study’s limitations, particularly the small sample size, call for replication with larger 

and more diverse populations to enhance generalizability. Moreover, the observed indeterminacy in AI platform 

effectiveness suggests the influence of unmeasured contextual factors, which future research should explore using 

mixed-methods designs or in-depth meta-analyses. 

Although adequate reliability indicators were obtained (α = 0.644; ω = 0.817), the small sample size (N = 24) 

limits the possibility of performing confirmatory factor analyses or criterion-related validity tests. Future research 

should replicate the questionnaire with a larger and more diverse population to consolidate its psychometric 

properties. 

In conclusion, this hybrid framework offers both practical and theoretical implications: it guides policymakers and 

practitioners toward prioritizing digital equity and high-quality interaction design while equipping researchers 

with a novel methodological approach to synthesize complex evidence. Future work should expand its application 

to broader domains of educational technology, incorporate longitudinal perspectives, and explore integration with 

advanced causal modeling tools, such as directed acyclic graphs, for even greater analytical precision. 
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