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Abstract

The use of artificial intelligence (Al) in educational settings has attracted increasing scholarly attention, although
applicable empirical findings are scarce and contradictory. This study seeks to resolve the ambiguities surrounding
Al in education through a methodological contribution, merging neutrosophic stance detection and Fuzzy Set
Qualitative Comparative Analysis (fsQCA). Neutrosophic analysis enables explicit modeling of truth, uncertain-
ty/indeterminacy, and falsity, while merging these findings through fsQCA creates a relative explanation of
existing research findings. After evaluating four causal hypotheses related to Al-based learning opportunities
through a Consensus Meter, a research survey with 24 university participants explored the necessary conditions
regarding the experience of improvements in learning outcomes. The findings indicate that the digital divide is a
necessary and sufficient condition for an effective educational experience with Al. Furthermore, necessary con-
ditions for Al feedback and the use of Al-based platforms emerge; however, the effectiveness of these platforms
generates significant uncertainty. Ultimately, the neutrosophic-fsSQCA framework provides a viable technique for
synthesizing ambiguous findings through a systematic approach. Empirically, the results reveal that all actors
involved in potential Al-based learning must ensure digital equity and high-quality design for interactive expe-
riences to benefit from the successful integration of Al in education.

Keywords: Neutrosophic Logic, Artificial Intelligence In Education, Digital Divide, Al Feedback, Necessary
Condition Analysis, Educational Technology, fSQCA
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El uso de la inteligencia artificial (1A) en entornos educativos ha atraido una creciente atencion académica, aunque
los hallazgos empiricos aplicables son escasos y contradictorios. Este estudio busca resolver las ambigliedades que
rodean a la IA en la educacion a través de una contribucién metodoldgica, fusionando la deteccion de posturas
neutrosoficas y el Analisis Comparativo Cualitativo de Conjuntos Difusos (fSQCA). El andlisis neutroséfico
permite el modelado explicito de la verdad, la incertidumbre/indeterminacion y la falsedad, mientras que la fusion
de estos hallazgos a través de fSQCA crea una explicacion relativa de los hallazgos de investigacidn existentes.
Después de evaluar cuatro hipGtesis causales relacionadas con las oportunidades de aprendizaje basadas en IA a
través de un Medidor de Consenso, una encuesta de investigacion con 24 participantes universitarios exploré las
condiciones necesarias con respecto a la experiencia de mejoras en los resultados de aprendizaje. Los hallazgos
indican que la brecha digital es una condicion necesaria y suficiente para una experiencia educativa efectiva con
IA. Ademas, surgen condiciones necesarias para la retroalimentacion de IA 'y el uso de plataformas basadas en IA;
sin embargo, la efectividad de estas plataformas genera una alta incertidumbre. En definitiva, el marco neutroso-
fico-fsSQCA proporciona una técnica viable para sintetizar hallazgos ambiguos mediante un enfoque sistematico.
Empiricamente, los resultados revelan que todos los actores involucrados en el potencial aprendizaje basado en IA
deben garantizar la equidad digital y un disefio de alta calidad para que las experiencias interactivas se beneficien
de la integracion exitosa de la A en la educacion.

Palabras clave: Légica neutroséfica, Inteligencia artificial en la educacion, Brecha digital, Retroalimentacion de
IA, Analisis de condiciones necesarias, Tecnologia educativa, fSQCA

1. Introduction

The rapid proliferation of artificial intelligence (Al) technologies in educational settings has fundamentally
transformed the teaching and learning landscape, generating unprecedented opportunities for personalized in-
struction, adaptive assessment, and intelligent tutoring systems [1]. However, despite the growing body of research
examining Al's educational impact, the evidence base remains characterized by significant heterogeneity, meth-
odological diversity, and often contradictory findings [2]. This fragmentation poses substantial challenges for
educators, policymakers, and researchers seeking to make evidence-based decisions regarding Al implementation
in educational contexts.

Traditional approaches to evidence synthesis in educational technology research have predominantly relied on
binary classification schemes that categorize studies as either supporting or opposing particular interventions [3].
Although such approaches provide clarity and simplicity, they fail to capture the nuanced reality of educational
research, where findings often exhibit varying degrees of support, contextual dependencies, and inherent uncer-
tainties. The complexity of educational phenomena, combined with the multifaceted nature of Al technologies,
necessitates more sophisticated methodological frameworks capable of modeling ambiguity, partial support, and
contradictory evidence simultaneously [4]. Recent advances in neutrosophic logic, introduced by Smarandache [5]
and subsequently developed for text analysis applications [6,7,8], offer a promising avenue to address these
methodological limitations. Unlike classical binary or fuzzy logic systems, neutrosophic logic explicitly incor-
porates three independent components, truth (T), indeterminacy (1), and falsity (F), allowing for the simultaneous
representation of supporting evidence, uncertainty, and contradictory findings [9]. This tripartite structure aligns
particularly well with the nature of educational research, where interventions may be effective under certain
conditions, ineffective under others, or uncertain in many contexts.

The application of neutrosophic principles to stance detection—the task of determining whether a text expresses
support, opposition, or neutrality toward a specific target—has emerged as a powerful tool for automated literature
analysis [10]. Recent developments in Al-powered research synthesis tools, such as the Consensus Meter [11],
have demonstrated the potential for automated stance classification in scientific literature, enabling researchers to
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systematically map the distribution of evidence across large corpora. However, the integration of neutrosophic
principles with stance detection in educational research synthesis remains largely unexplored.

Complementing the challenges of evidence synthesis, identifying the necessary conditions for educational out-
comes has gained increasing attention in the research community. In this regard, fuzzy-set Qualitative Compara-
tive Analysis (fsSQCA) provides a systematic methodology to assess whether specific conditions must be present
for a desired outcome to occur, offering insights that complement traditional sufficiency-focused approaches [12].
In the context of Al-enhanced learning, understanding the necessary conditions is particularly crucial, as it can
inform the minimum requirements for successful implementation and help prioritize resource allocation in edu-
cational settings.

The configurational perspective of the fSQCA has demonstrated significant value in educational research by
recognizing that outcomes often result from complex combinations of conditions rather than isolated factors. This
approach aligns with the multifaceted nature of Al implementation in education, where technological, pedagogi-
cal, social, and institutional factors interact in complex ways to influence learning outcomes [13]. The integration
of configurational methods with neutrosophic stance detection offers the potential for a more comprehensive
understanding of the conditions under which Al can enhance educational outcomes.

Despite growing interest in Al applications in education, several critical gaps remain in our understanding of the
causal mechanisms underlying Al's educational impact of Al. First, the majority of existing studies focus on
sufficiency relationships, examining whether Al interventions can produce positive outcomes while neglecting the
identification of necessary conditions that must be present for success [14]. Second, the synthesis of evidence
across studies has been hampered by the inability to account for uncertainty and contradictory findings [15]
systematically. Third, the role of contextual factors, particularly digital equity and access barriers, in moderating
Al's educational effectiveness of Al remains underexplored systematic [16].

This study addresses these gaps by introducing a novel methodological framework that combines neutrosophic
stance detection with Necessary Condition Analysis to evaluate causal hypotheses related to Al-enhanced learn-
ing. Our approach leverages the Consensus Meter tool to systematically classify research findings into neutro-
sophic triplets, capturing not only the degree of support and opposition, but also the extent of indeterminacy in the
evidence base. Subsequently, we applied the necessary condition in FSQCA to identify the necessary conditions
for perceived learning improvement with Al using primary data collected from university students.

This study makes several important contributions to the field of educational technology research. Methodologi-
cally, we introduced the first application of neutrosophic stance detection to educational research synthesis,
providing a framework for handling ambiguous and contradictory evidence. Theoretically, we advanced our
understanding of the necessary conditions for Al-enhanced learning, with particular attention to the role of digital
equity and interaction design. Practically, our findings offer evidence-based guidance to educators and policy-
makers regarding the prerequisites for successful Al implementation in educational settings.

The remainder of this paper is organized as follows. Section 2 presents our methodological approach, detailing the
neutrosophic stance detection framework, the construction of neutrosophic causal graphs, and the application of
fsQCA, including an analysis of necessary conditions. Section 3 reports our findings, including the neutrosophic
representation of the causal hypotheses and the results of the necessary condition analysis within the fsQCA
framework. Section 4 discusses the implications of our findings in the context of existing literature and explores
directions for future research. Finally, Section 5 presents the conclusions and implications for educational prac-
tices and policies.

2. Materials and Methods

2.1 Neutrosophic Stance Detection
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A precise definition of stance detection is required to motivate a neutrosophic framework. In the literature, stance
detection is treated as a target-dependent text classification problem [17], and given a text and a target statement
(hypothesis), the task is to infer whether the author supports, opposes, or expresses no opinion of the target. This
approach fundamentally differs from generic sentiment analysis by incorporating target-specific contextual in-
formation [18]. Formally, let X denote the space of textual units (e.g., sentences, tweets, abstracts), let ® be a set of
targets (topics, propositions, or hypotheses), and let the label set L={Favor, Against, None} represent possible
stances.

Stance detection seeks a mapping

g Xx0 —IL, (1)

such that for each pair (x, 8) the classifier g returns the label ¢ € L indicating whether the text x expresses
support, opposition, or absence of a stance towards the target 6.

Alternative formulations encode the stance labels as signed integers {—1,0, +1}-or probability distributions over
L [19]. Unlike generic sentiment analysis, which determines the overall polarity of a text, stance detection is

target-specific: a text with a positive sentiment may still be “against” a given target.

This formal view underpins subsequent neutrosophic generalizations, where mapping is extended to assign de-
grees of support, indeterminacy, and opposition.

In the neutrosophic framework, the stance detection function is generalized as

gN: X x6 — [0,1]3 )
where, for each pair (x, 6)

gN(x,0) = (T (x,6), (x,0), F(x,0)) ®)

with:

. T(x,0): degree to which x supports target 6

. I(x, 6): Degree of indeterminacy or neutrality in relation to 6,

) F(x,0): the degree to which x opposes the target 6.

These values satisfy the neutrosophic condition

T(x,0)+1(x,0) +F(x,0) < 3. (4)

These values satisfy the neutrosophic condition T (x, 8) + I(x, 8) + F(x,8) < 3 [20]. This formulation allows
partial, uncertain, and even contradictory stances to be explicitly represented, thereby extending classical stance
detection to a more flexible and realistic paradigm.

We applied stance detection with a neutrosophic representation using a Consensus Meter [11]. This approach
classifies research findings into supportive, contradictory, and ambiguous stances regarding a given causal claim.
The Consensus Meter has been recognized as an effective Al-powered literature review tool that helps visualize
how studies answer "Yes/No" research questions by grouping them according to whether they support or contra-
dict the questions asked. Each causal hypothesis is then encoded as a triplet (T,I,F) that captures the distribution of
stances across evidence.

. T represents the percentage of sources supporting position toward the causal hypothesis.

Esta obra esta bajo una licencia: https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/

Neutrosophic Computing and Machine Learning , Vol. 40, 2025 280

. I represents the percentage of sources that express indeterminacy or ambiguity, and
. F represents the percentage of sources that take an oppositional stance.

These triplets were derived from stance labels produced by the Consensus Meter. The Consensus Meter classi-
fies results from yes/no research questions into “Yes,” “No,” “Possibly,” or “Mixed” categories, showing how
many papers fall into each stance. We map “Yes” (supportive papers) to the truth component T; “No” (contra-
dictory papers) to the falsity component F; and both “Possibly” and the “Mixed” category—introduced to cap-
ture nuanced or subgroup-dependent findings—to the indeterminacy component 1. Thus, mixed or possible evi-
dence contributes to substantive uncertainty rather than being counted as evidence against the hypothesis.

For example:

. Does using an Al platform improve perceived learning with AI? — (0.60, 0.40, 0.00)

In this representation, most sources support the hypothesis (T=0.60), a significant portion remains indeterminate
(1=0.4), and none contradicts it (F=0.00). This formulation makes explicit not only agreement and disagreement
but also the degree of uncertainty in the available evidence.

Let X be an independent variable (condition), and Y be a dependent variable (outcome). The causal hypothesis
[22] is denoted by

H:X =Y (5)

where = expresses a causal relation. In the neutrosophic framework, such a hypothesis is characterized by a truth—
indeterminacy—falsity triplet:

(,L)(H) = (THlIHlFH)I TH11H'FH € [011] (6)

where Ty represents the degree of truth/support, I; the degree of indeterminacy, and F the degree of falsi-
ty/rejection. Hence, a neutrosophic causal hypothesis may be true, indeterminate, or false to varying extents.

A neutrosophic causal graph is a triple G defined by the following elements [23]:

G = (V,E,w), E €V XV (directed edges X »Y), w: E - [0,1]3

such that

Ve €E, w(e)= (T,1,F,), T, 1,,F, €[0,1]. @)

Where: V are nodes (variables), E are the directed edges X—Y, and o labels each edge with support T, inde-
terminacy |, and rejection F

Interpretation:
T.= degree of truth/support; I, = indetermination; F, = falsity/rejection of the hypothesis “X — Y.

There is no restriction requiredT, + I, + F, = 1. This allows evidence to be represented simultaneously in favor
and against and to distinguish uncertainty (1) from falsification (F).
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Fuzzy-Set QCA and Necessary Condition Analysis

We conducted a survey of 24 university students to analyze the necessity of specific conditions related to the use of
artificial intelligence (Al) tools in learning contexts. The questionnaire comprised five items on a seven-point
Likert scale (1 = Strongly Disagree, 7 = Strongly Agree): (1) perceived learning improvement through Al, (2) use
of Al platforms in academic tasks, (3) receipt of immediate and useful feedback from Al, (4) barriers to access or
connectivity (including free-version restrictions), and (5) overreliance on Al to complete tasks.

For the fsQCA, the outcome was defined as perceived learning improvement through Al. Responses were cali-
brated into fuzzy set membership scores using Ragin's three-value calibration [24]: 1.0 for full membership (score
7), 0.5 for crossover (score 4), and 0.0 for full non-membership (score 1), with linear interpolation for intermediate
values. This calibration approach has been extensively validated in configurational research and provides a robust
foundation for set-theory analysis.

The analysis of necessary conditions was then conducted within the fSQCA framework, where condition X is
considered necessary for an outcome Y if, in all cases, the membership score in Y does not exceed the membership
score in X [25]. This procedure is specifically designed to identify the conditions that must be present for the
outcome to occur, even though they may not be sufficient on their own. Two key indicators were computed:
consistency, which measures the degree to which the condition is always present when the outcome occurs, and
coverage, which assesses the empirical relevance of the condition [26],

Consistency (Y; < X;) = % ®
and coverage,
Coverage (Y; < X;) = % ©

The calibrated dataset was exported to. csv format for fsSQCA 3.0 (Windows), where each row corresponds to one
student and each column to a calibrated condition or outcome, with membership values in the range [0,1]. This
setup allows for the direct computation of the necessary conditions and their consistency/coverage within the
fsQCA software, following established best practices for configurational analysis [27].

3. Results

Neutrosophic Stance Detection of Causal Hypotheses

Using the Consensus Meter tool, we applied stance detection with a neutrosophic representation to assess the
four causal hypotheses related to Al and learning outcomes. Each hypothesis is encoded as a triplet (T, I, F),
where T represents the proportion of supportive stances, | is the proportion of indeterminate or ambiguous
stances, and F is the proportion of oppositional stances. The results are as follows.

Table 1. Neutrosophic representation of causal hypotheses

Hypothesis Neutrosophic Triplet (T, I, F) Interpretation

Does using an Al (0.60, 0.40, 0.00) Moderate support, with a
platform  improve substantial level of inde-
perceived learning terminacy and no opposi-
with AI? tion.

Esta obra esta bajo una licencia: https://creativecommons.org/licenses/by/4.0/

BY


https://creativecommons.org/licenses/by/4.0/

Neutrosophic Computing and Machine Learning , Vol. 40, 2025

282

Hypothesis Neutrosophic Triplet (T, I, F)

Interpretation

Does immediate Al (0.67,0.17, 0.17)
feedback improve

perceived learning

with Al?

Does the digital (1.00, 0.00, 0.00)
divide impact

learning outcomes

with Al?

Does reliance on Al (0.73, 0.24, 0.00)

affect learning out-
comes?

Strong support, some inde-
terminacy, and a minority
of contradictory evidence.

Full support, with no am-
biguity or opposition.

High support, some inde-
terminacy, and no opposi-
tion.

These results highlight that the digital divide is unanimously recognized as a causal factor affecting Al-driven

learning outcomes. Meanwhile, reliance on Al and immediate feedback are also strongly supported but show

traces of uncertainty or contradiction.

Causal Graph Representation

The following figure represents the hypothesized causal relationships as a directed graph, where edges denote

causal links, and their strength is proportional to the truth value (T) of the neutrosophic triplets:

Al Platform
Use

Al Feedback
{Immediate}

Digital Divide
[{Access Gap)

Al Reliance

Perceived Learning
Improvement
{Subjective)

[{Dependency)

Figure 1. Neutrosophic Causal Graph of Al-related Hypotheses

Learning Cutcomes
(Dbjective)

Esta obra esta bajo una licencia: https://creativecommons.org/licenses/by/4.0/

BY


https://creativecommons.org/licenses/by/4.0/

Neutrosophic Computing and Machine Learning , Vol. 40, 2025 283

The graph indicates that all the proposed conditions positively influence the outcomes, but with varying degrees
of support and indeterminacy.

Necessary Condition Analysis

Psychometric analysis of the questionnaire revealed acceptable reliability. Cronbach’s alpha was 0.644, and
McDonald’s omega coefficient was 0.817. These results suggest that the items show internal coherence, and that
the instrument is suitable for exploratory studies in the context of perceptions of learning with artificial intelli-
gence.

Using a calibrated dataset of 24 students, a Necessary Condition Analysis was conducted. The outcome was
defined as Perceived Learning Improvement through Al. The tested conditions included Al platform use, Al
feedback, access barriers (digital divide), and Al reliance. Consistency and coverage metrics were calculated
according to the fsSQCA standards.

Table 2. Necessary condition analysis results

Condition Consistency (X <Y) Coverage (X <Y) Interpretation

Al Platform 0.88 0.79 Necessary but not suffi-

Use cient.

Al Feedback 0.90 0.75 Necessary but not suffi-
cient.

Access Barriers  1.00 0.68 Perfectly necessary,

(Digital Divide) moderate coverage.

Al Reliance 0.85 0.70 Necessary but not suffi-
cient.

The analysis confirmed that the absence of digital barriers (digital divide) is a perfectly necessary condition for
improved learning with Al (consistency = 1.00). However, its coverage (0.68) suggests that, although necessary,
it does not explain the majority of the variation in the outcome. Similarly, Al feedback and Al platform use show
high necessity, but remain insufficient as standalone explanations. This aligns with the causal graph in which
multiple supportive conditions converge to explain improvements in learning outcomes.

4. Discussion

This study aimed to evaluate the applicability of a neutrosophic stance detection framework complemented by a
necessary condition analysis within the fSQCA approach to interpret causal hypotheses in the context of
Al-assisted learning. The results not only validate the utility of this hybrid framework, but also provide a nuanced
perspective on the factors influencing perceptions of learning in the digital age. The following sections discuss the
main findings, interpret them based on previous studies, and explore their broader implications.

The most compelling finding of our study was the identification of the digital divide as a unanimously supported
causal factor (T = 1.00) and a perfectly necessary condition (consistency = 1.00) for perceived learning with Al.
This result resonates with the vast body of literature emphasizing equitable access to technology as a fundamental
prerequisite for educational success in the 21st century. Recent reports, such as those from the U.S. Department of
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Education and Microsoft [16], have warned that disparities in access may exacerbate existing inequalities. Our
analysis goes a step further by quantifying this relationship in terms of logical necessity, providing robust em-
pirical evidence that without guaranteed access and removal of barriers, any Al-based intervention is destined to
have limited reach. A coverage of 0.68 suggests that, while indispensable, the absence of barriers is not, by itself,
sufficient to ensure the outcome, aligning with a configurational perspective in which multiple factors must con-
verge.

The application of neutrosophic logic to represent the stance of scientific evidence has proved particularly in-
sightful. Unlike traditional binary approaches (support/opposed), our triplet model (T, I, F) explicitly captures
uncertainty and ambiguity. For example, the hypothesis regarding the use of an Al platform to enhance learning
received moderate support (T = 0.60), but substantial indeterminacy (I = 0.40). This suggests that the scientific
literature is inconclusive and that effects likely depend on unspecified contextual factors, such as platform quality,
pedagogical design, or student characteristics. This finding is consistent with scholarship advocating a more
critical and nuanced view of educational technology. The ability of our framework to model indeterminacy is a key
methodological contribution that enables researchers to identify areas where evidence is weak or contradictory and
requires further investigation. This approach aligns with recent work that integrated neutrosophic and advanced Al
models to manage uncertainty in text classification.

The results of the fSQCA necessary condition analysis, which position Al feedback (consistency = 0.90) and
platform use (consistency = 0.88) as highly necessary conditions, reinforce the idea that the mere availability of Al
tools is insufficient. Effective interaction and scaffolding provided by immediate feedback are crucial. This finding
connects with research on causal inference in educational data mining, which seeks to move beyond correlation to
uncover the mechanisms that drive learning outcomes. Our study complements these efforts by employing fSQCA
to formalize these dependencies in terms of necessity. The combination of neutrosophic logic with the configura-
tional perspective of fSQCA appears to be a promising path for unraveling the complex interdependencies within a
digital learning ecosystem[28 29],.

The implications of this study are twofold. First, at the practical level, it underscores the need for educational
policies and Al implementation to prioritize closing the digital divide as a non-negotiable first step. Moreover, this
highlights that the design of Al tools must focus on interaction quality and feedback rather than solely on content
delivery. Second, at the methodological level, our study introduces a hybrid framework that can be highly valuable
for evidence synthesis in complex and emerging domains. The ability of neutrosophic stance detection to quantify
not only support and opposition, but also indeterminacy provides a powerful tool to map the state of scientific
knowledge and guide future research.

Nevertheless, this study has limitations, primarily the small sample size (N = 24) of the fSQCA analysis. While this
methodology can be applied to small-N studies, future research should replicate these findings with larger and
more diverse cohorts to increase generalizability. Additionally, the nature of indeterminacy (1) deserves further
exploration. Is this due to mixed results, poor methodology in primary studies, or unmeasured contextual factors?
Qualitative research or more detailed meta-analyses could help disentangle this component.

Thus, the future research agenda is clear. We propose applying this framework to other areas of educational
research, where evidence is often ambiguous and multifactorial. A longitudinal analysis would be particularly
interesting to observe how necessity configurations evolve as students and educators gain experience in Al. Fi-
nally, integrating directed acyclic graphs (DAGS), as described by Tennant et al. [30] and Digitale et al.[31], with
our neutrosophic approach, could provide an even more rigorous and visually intuitive model for representing and
testing complex causal theories in the social sciences.

5. Conclusions

This study demonstrates the applicability and added value of combining neutrosophic stance detection with
fsQCA-based necessary condition analysis to evaluate causal hypotheses in Al-assisted learning. The findings
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confirm that the digital divide is not only a critical determinant, but also a logically necessary condition for the
effectiveness of Al-enhanced education, reinforcing calls for policies that ensure equitable access. Beyond access,
the results highlight the central role of interaction quality with Al feedback and platform use emerging as essential
requirements for meaningful learning outcomes.

Methodologically, the integration of neutrosophic logic proved instrumental in capturing the ambiguity and un-
certainty present in the current research, offering a more refined synthesis than traditional binary approaches. By
explicitly modeling truth, falsity, and indeterminacy, the framework provides researchers with a robust tool for
identifying areas where evidence remains inconclusive and where further inquiry is required.

Despite its contributions, the study’s limitations, particularly the small sample size, call for replication with larger
and more diverse populations to enhance generalizability. Moreover, the observed indeterminacy in Al platform
effectiveness suggests the influence of unmeasured contextual factors, which future research should explore using
mixed-methods designs or in-depth meta-analyses.

Although adequate reliability indicators were obtained (o = 0.644; ® = 0.817), the small sample size (N = 24)
limits the possibility of performing confirmatory factor analyses or criterion-related validity tests. Future research
should replicate the questionnaire with a larger and more diverse population to consolidate its psychometric
properties.

In conclusion, this hybrid framework offers both practical and theoretical implications: it guides policymakers and
practitioners toward prioritizing digital equity and high-quality interaction design while equipping researchers
with a novel methodological approach to synthesize complex evidence. Future work should expand its application
to broader domains of educational technology, incorporate longitudinal perspectives, and explore integration with
advanced causal modeling tools, such as directed acyclic graphs, for even greater analytical precision.

6. References

[1] K. Bailey and C. Williams, “Artificial intelligence and higher education,” STEM, vol. 10, pp. 95-100, Apr.
2025, doi: 10.32674/wqp55k81.

[2] W. Holmes, M. Bialik, and C. Fadel, “Artificial intelligence in education,” Globethics Publications, 2023, pp.
621-653. doi: 10.58863/20.500.12424/4276068.

[3] T. R. Guskey and K. S. Yoon, “What Works in Professional Development?,” Phi Delta Kappan, vol. 90, no. 7,
pp. 495-500, Mar. 2009, doi: 10.1177/003172170909000709.

[4] G. Biesta, “Educational Research and the Distortion of Educational Practice,” Springer Berlin Heidelberg,
2024, pp. 29-43. doi: 10.1007/978-3-662-66923-5_3.

[5] F. Smarandache, "Indeterminacién en las Teorias Neutroséficas y sus Aplicaciones," Neutrosophic Compu-
ting and Machine Learning, vol. 39, pp. 1-7, 2025, ISSN: 2574-1101.

[6] I. Awajan, M. Mohamad, and A. Al-Quran, "Sentiment analysis technique and neutrosophic set theory for
mining and ranking big data from online reviews,” IEEE Access, vol. 9, pp. 47338-47353, 2021.

[7] M. Y. L. Vazquez and F. Smarandache, "Bridging Ancient Wisdom and Modern Logic: Neutrosophic Per-
spectives on Body, Mind, Soul and Spirit," Neutrosophic Sets and Systems, vol. 82, no. 1, p. 7, 2025.

[8] D. Arora, D. K. Tayal, and S. K. Yadav, "Solving sentiment uncertainty using newly proposed sentiment
similarity measure for single-valued neutrosophic sets," International Journal of System Assurance Engineering
and Management, pp. 1-26, 2025.

Esta obra esta bajo una licencia: https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/

Neutrosophic Computing and Machine Learning , Vol. 40, 2025 286

[9] S. Mallik, S. Mohanty, and B. S. Mishra, "Neutrosophic logic and its scientific applications,” in Biologically
Inspired Techniques in Many Criteria Decision Making: Proceedings of BITMDM 2021, Singapore: Springer
Nature Singapore, 2022, pp. 415-432.

[10] D. Kuguk and F. Can, "Stance detection: A survey," ACM Computing Surveys (CSUR), vol. 53, no. 1, pp.
1-37, 2020.

[11] Consensus, Consensus: Al search engine for research. Aug. 15, 2025. [Online]. Available:
https://consensus.app/

[12] B. Rihoux and C. C. Ragin, Eds., Configurational Comparative Methods: Qualitative Comparative Analysis
(QCA) and Related Techniques, vol. 51. Thousand Oaks, CA, USA: Sage, 2009.

[13] S. Cilesiz and T. Greckhamer, "Qualitative comparative analysis in education research: Its current status and
future potential,”" Review of Research in Education, vol. 44, no. 1, pp. 332-369, 2020.

[14] A. F. Botelho, A. H. Closser, A. C. Sales, and N. T. Heffernan, "Causal inference in educational data min-
ing," in Proc. 17th Int. Conf. Educational Data Mining, 2024.

[15] A. Forney and S. Mueller, "Causal inference in Al education: A primer,” Journal of Causal Inference, vol.
10, no. 1, pp. 141-173, 2022.

[16] Office of Educational Technology, Artificial Intelligence and the Future of Teaching and Learning: Insights
and Recommendations. Washington, DC, USA: U.S. Department of Education, 2023.

[17] M. Burnham, "Stance detection: a practical guide to classifying political beliefs in text," Political Science
Research and Methods, vol. 13, no. 3, pp. 611-628, 2025.

[18] J. Du, R. Xu, Y. He, and L. Gui, "Stance classification with target-specific neural attention networks," in
Proc. 26th Int. Joint Conf. Artificial Intelligence (IJCAI), Aug. 2017, pp. 3988-3994.

[19] P. Sobhani, D. Inkpen, and X. Zhu, "A dataset for multi-target stance detection," in Proc. 15th Conf. Euro-
pean Chapter of the Association for Computational Linguistics (EACL), Vol. 2: Short Papers, Apr. 2017, pp.
551-557.

[20] X. Peng and J. Dai, “A bibliometric analysis of neutrosophic set: two decades review from 1998 to 2017,”
Artificial Intelligence Review, vol. 53, pp. 199-255, 2018, doi: 10.1007/s10462-018-9652-0.

[21] F. Smarandache, “Note on partial falsifiability of fuzzy and fuzzy-extension hypotheses,” Plithogenic Logic
and Computation, vol. 1, p. 93, 2024.

[22] K. H. Cohrs, E. Diaz, V. Sitokonstantinou, G. Varando, and G. Camps-Valls, "Large language models for
causal hypothesis generation in science," Machine Learning: Science and Technology, vol. 6, no. 1, p. 013001,
2025.

[23] R. P. Barbosa, F. Smarandache, M. Y. L. Vazquez, and J. B. Monge, "Neutrosophy, Causal Al, and Web3:
combo for complex decision-making," Neutrosophic Sets and Systems, vol. 84, pp. 224-238, 2025.

[24] C. C. Ragin, From Fuzzy Sets to Crisp Truth Tables. Tucson, AZ, USA: Department of Sociology, Uni-
versity of Arizona, 2005.

[25] J. Dul, "Identifying single necessary conditions with NCA and fsQCA," Journal of Business Research, vol.
69, no. 4, pp. 1516-1523, 2016.

[26] E. Gonzalez Caballero, M. Y. Leyva Vazquez, N. Batista-Hernandez, and F. Smarandache, "New measures
of consistency and coverage for social research based on neutrosophic logic," Neutrosophic Sets and Systems,
vol. 84, no. 1, p. 17, 2025

[27] C. C. Ragin and S. Davey, Fuzzy-Set/Qualitative Comparative Analysis 4.0. Irvine, CA, USA: Department
of Sociology, University of California, 2022.

[28] M. Gémez Marcos, M. Ruiz Toledo, and C. Ruff Escobar, "Towards inclusive higher education: A multi-
variate analysis of social and gender inequalities,” Societies, vol. 12, no. 6, p. 184, 2022.

Esta obra esta bajo una licencia: https://creativecommons.org/licenses/by/4.0/



https://creativecommons.org/licenses/by/4.0/

Neutrosophic Computing and Machine Learning , Vol. 40, 2025 287

[29] L. T. Nguyen and K. Tuamsuk, "Digital learning ecosystem at educational institutions: A content analysis of
scholarly discourse,” Cogent Education, vol. 9, no. 1, p. 2111033, 2022.

[30] P. W. Tennant, E. J. Murray, K. F. Arnold et al., "Tutorial on directed acyclic graphs,” Journal of Clinical
Epidemiology, vol. 142, pp. 264-267, 2021.

[31] J. C. Digitale, J. N. Martin, and M. M. Glymour, "Causal directed acyclic graphs,” JAMA, vol. 327, pp.
780-781, 2022.

Esta obra esta bajo una licencia: https://creativecommons.org/licenses/by/4.0/

BY


https://creativecommons.org/licenses/by/4.0/

