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1. Introduction 

Neutrosophy is a new branch of philosophy which concerns with the indeterminacy in real life actions and 

sciences. The Neutrosophic is a new view of Modeling , designed to effectively deal  underlying doubts in the 

real world, as it came to replace binary logic that recognized right and wrong by introducing a third neutral case 

which could be interpreted as non-specific or uncertain. Founded by Florentin Smarandache [6], he presented 

it in 1999 as a generalization of fuzzy logic. As an extension of this, A. A. Salama introduced the Neutrosophic 

crisp sets Theory as a generalization of crisp sets theory [53] and developed, inserted and formulated new 

concepts in the fields of mathematics, statistics, computer science and information systems through 

neutrosophics [53-56]. In the literature, neutrosophy has got many applications in pure mathematics areas such 

as space theory [1,2], module theory [4,5], matrix theory [31,32,42], and number theory [3,35]. Also, it plays 

an important role in applied mathematics such as equations [30], special elements [41], and topology [27,29]. 

n-cyclic refined neutrosophic sets were defined in [39], and used in the study of some related rings and modules. 

These sets are considered as a new kind of n-refined neutrosophic sets [12], with a similar structure and different 

operations. In this work, we define the concept of n-cyclic refined neutrosophic vector spaces and n-cyclic 

refined neutrosophic matrices. Also, we illustrate many examples to clarify the validity of these concepts, and 

we list some of related open questions. 
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2. n-Cyclic Refined neutrosophic vector space. 

Definition 2.1 [39]  

Let (𝑹, +,×) be a ring and𝑰𝒌; 𝟏 ≤ 𝒌 ≤ 𝒏 be 𝒏 indeterminacies. We define 𝑹𝒏(𝑰) = {𝒂𝟎 + 𝒂𝟏𝑰𝟏 + 𝒂𝟐𝑰𝟐 +

⋯ + 𝒂𝒏𝑰𝒏; 𝒂𝒊 ∈ 𝑹} to be n-cyclic refined neutrosophic ring. 

Operations on 𝑹𝒏(𝑰) are defined as: 

∑ 𝒙𝒊𝑰𝒊
𝒏
𝒊=𝟎 + ∑ 𝒚𝒊𝑰𝒊

𝒏
𝒊=𝟎 = ∑ (𝒙𝒊 + 𝒚𝒊)𝑰𝒊

𝒏
𝒊=𝟎 , ∑ 𝒙𝒊𝑰𝒊

𝒏
𝒊=𝟎 × ∑ 𝒚𝒊𝑰𝒊

𝒏
𝒊=𝟎 = ∑ (𝒙𝒊 × 𝒚𝒊)𝑰𝒊

𝒏
𝒊,𝒋=𝟎 𝑰𝒋 = ∑ (𝒙𝒊 ×𝒏

𝒊,𝒋=𝟎

𝒚𝒊)𝑰(𝒊+𝒋𝒎𝒐𝒅𝒏)  

Where × is the multiplication on the ring 𝑹, and 𝒙𝑰𝟎 = 𝒙, for all 𝒙 ∈ 𝑹. 

Definition 2.2 [39] 

Let (𝐾, +,×) be a field, we say that 𝐾𝑛(𝐼) = 𝐾 + 𝐾𝐼1 + ⋯ + 𝐾𝐼𝑛 = {𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + ⋯ + 𝑎𝑛𝐼𝑛; 𝑎𝑖 ∈ 𝐾} 

is a n-cyclic refined neutrosophic field. 

Definition 2.3 

 Let (𝑉, +,×)  be any vector space over a field 𝐾 . Then we say that 𝑉𝑛(𝐼) = 𝑉 + 𝑉𝐼1 + ⋯ + 𝑉𝐼𝑛 =

{𝑥0 + 𝑥1𝐼1 + ⋯ + 𝑥𝑛𝐼𝑛; 𝑥𝑖 ∈ 𝑉}is a weak n-cyclic refined neutrosophic vector space over the field 𝐾.Elements 

of 𝑉𝑛(𝐼)are called n-cyclic refined neutrosophic vectors, elements of 𝐾are called scalars. 

If we take scalars from the n-cyclic refined neutrosophic field 𝐾𝑛(𝐼), we say that 𝑉𝑛(𝐼) is a strong n-cyclic 

refined neutrosophic vector space over thea n-cyclic refined neutrosophic field 𝐾𝑛(𝐼). Elements of 𝐾𝑛(𝐼)n-

cyclic refined neutrosophic scalars. 

Remark 2.1. Multiplication by an n-cyclic refined neutrosophic scalar 𝑚 = ∑ 𝑚𝑖𝐼𝑖 ∈ 𝑘𝑛(𝐼)𝑛
𝑖=0 is defined as: 

(∑ 𝑚𝑖𝐼𝑖

𝑛

𝑖=0

) × (∑ 𝑎𝑖𝐼𝑖

𝑛

𝑖=0

) = ∑ (𝑚𝑖𝑎𝑗)𝐼𝑖𝐼𝑗

𝑛

𝑖,𝑗=0

 

Where 𝑎𝑖 ∈ 𝑉, 𝑚𝑖 ∈ 𝐾, 𝐼𝑖𝐼𝑗 = 𝑰(𝒊+𝒋𝒎𝒐𝒅𝒏). 

Definition 2.5 

Let 𝑉𝑛(𝐼)be a weak n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field 𝐾; 

a nonempty 𝑊𝑛(𝐼)  is called a weak n-cyclic refined neutrosophic vector subspaceof 𝑉𝑛(𝐼) if 𝑊𝑛(𝐼) is a 

subspace of 𝑉𝑛(𝐼) itself. 

Definition 2.6 

Let 𝑉𝑛(𝐼) be a strong n-cyclic refined neutrosophic vector space over then-cyclic refined neutrosophic 

field 𝐾𝑛(𝐼). A nonempty subset 𝑊𝑛(𝐼) is called a strong n-cyclic refined neutrosophic vector submodule of 

𝑉𝑛(𝐼) if 𝑊𝑛(𝐼) is a submodule of 𝑉𝑛(𝐼) itself. 

Theorem 2.1 

Let 𝑉𝑛(𝐼) be a weak n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field𝐾, 

𝑊𝑛(𝐼) be a nonempty  subset of 𝑉𝑛(𝐼). Then 𝑊𝑛(𝐼) is a weak n-cyclic refined neutrosophic subspace if only 

if: 

𝑥 + 𝑦 ∈ 𝑊𝑛(𝐼), 𝑚 × 𝑥 ∈ 𝑊𝑛(𝐼) for all 𝑥, 𝑦 ∈ 𝑊𝑛(𝐼), 𝑚 ∈ 𝐾. 

proof: 

it holds directly from the condition of subspace. 
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Definition 2.7 

Let 𝑽𝒏(𝑰) be a weak n-cyclic refined neutrosophic vector space over the field 𝑲, 𝒙 be an arbitrary element 

of 𝑽𝒏(𝑰), we say that 𝒙 is a linear combination of {𝒙𝟏, 𝒙𝟐 , … , 𝒙𝒎} ⊆ 𝑽𝒏(𝑰) if  𝒙 = (𝒂𝟏 × 𝒙𝟏) +
(𝒂𝟐 × 𝒙𝟐) + ⋯ + (𝒂𝒎 × 𝒙𝒎): 𝒂𝒊 ∈ 𝑲(𝑰), 𝒙𝒊 ∈ 𝑽𝒏(𝑰). 

Definition 2.8 

Let 𝑽𝒏(𝑰) be a strong n-cyclic refined neutrosophic vector space over the n-cyclic refined neutrosophic field 

𝑲𝒏(𝑰), 𝒙 be an arbitrary element of 𝑽𝒏(𝑰), we say that 𝒙 is a linear combination of {𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒎} ⊆

𝑽𝒏(𝑰)if 𝒙 = (𝒂𝟏 × 𝒙𝟏) + (𝒂𝟐 × 𝒙𝟐) + ⋯ + (𝒂𝒎 × 𝒙𝒎): 𝒂𝒊 ∈ 𝑲𝒏(𝑰), 𝒙𝒊 ∈ 𝑽𝒏(𝑰). 

Definition 2.9 

Let 𝑿 = {𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒎} be a subset of a weak  n-cyclic refined neutrosophic vector space 𝑽𝒏(𝑰) over the 

field 𝑲, 𝑿 is a weak linearly independent set if ∑ 𝒂𝒊 × 𝒙𝒊
𝒏
𝒊=𝟎 = 𝟎 implies 𝒂𝒊 = 𝟎; 𝒂𝒊 ∈ 𝑲. 

Definition 2.10 

Let 𝑿 = {𝒙𝟏 , 𝒙𝟐, … , 𝒙𝒎} be a subset of a strong  n-cyclic refined neutrosophic vector space 𝑽𝒏(𝑰) over the 

n-cyclic refined neutrosophic field 𝑲𝒏(𝑰), 𝑿 is a weak linearly independent set if ∑ 𝒂𝒊 × 𝒙𝒊
𝒏
𝒊=𝟎 = 𝟎 implies 

𝒂𝒊 = 𝟎; 𝒂𝒊 ∈ 𝑲𝒏(𝑰). 

Definition 2.11 

Let 𝑽𝒏(𝑰), 𝑾𝒏(𝑰) be two strong n-cyclic refined neutrosophic vector space over the n-cyclic refined 

neutrosophic field 𝑲𝒏(𝑰), let 𝒇: 𝑽𝒏(𝑰) → 𝑼𝒏(𝑰) be a well defined map. It is called a strong n-cyclic refined 

neutrosophic homomorphism if: 

𝒇((𝒂 × 𝒙) + (𝒃 × 𝒚)) = 𝒂 × 𝒇(𝒙) + 𝒃 × 𝒇(𝒚) for all 𝒙, 𝒚 ∈ 𝑽𝒏(𝑰), 𝒂, 𝒃 ∈ 𝑲𝒏(𝑰). 

A weak n-cyclic refined neutrosophic homomorphism can be defined as the same. 

Definition 2.12 

Let 𝒇: 𝑽𝒏(𝑰) → 𝑼𝒏(𝑰) be a weak/strong n-cyclic refined neutrosophic homomorphism, we define: 

(a) 𝑲𝒆𝒓(𝒇) = {𝒙 ∈ 𝑽𝒏(𝑰); 𝒇(𝒙) = 𝟎}. 

(b) 𝑰𝒎(𝒇) = {𝒚 ∈ 𝑼𝒏(𝑰);  ∃𝒙 ∈ 𝑽𝒏(𝑰)𝐚𝐧𝐝 𝒚 = 𝒇(𝒙)}. 

Theorem 2.2 

Let 𝒇: 𝑽𝒏(𝑰) → 𝑼𝒏(𝑰) be a weak n-cyclic refined neutrosophic homomorphism. Then 

(a) 𝑲𝒆𝒓(𝒇) is a weak n-cyclic refined neutrosophic subspace of 𝑽𝒏(I). 

(b) 𝑰𝒎(𝒇) is a weak nn-cyclic refined neutrosophic subspace of 𝑼𝒏(𝑰). 

Proof: 

(𝒂) 𝒇 is a vector space homomorphism since 𝑽𝒏(𝑰), 𝑼𝒏(𝑰) are vector spaces, hence 𝑲𝒆𝒓(𝒇) is a subspace of 

the vector space 𝑽𝒏(𝑰), thus 𝑲𝒆𝒓(𝒇) is a weak n- cyclic refined neutrosophic subspace of 𝑽𝒏(I). 
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(b) It hold by similar argument. 

Theorem 2.3 

Let 𝒇: 𝑽𝒏(𝑰) → 𝑼𝒏(𝑰) be a strong n-cyclic refined neutrosophic homomorphism. Then 

(a) 𝑲𝒆𝒓(𝒇) is a strong n- cyclic refined neutrosophic subspace of 𝑽𝒏(I). 

(b) 𝑰𝒎(𝒇) is a strong n- cyclic refined neutrosophic subspace of 𝑼𝒏(𝑰). 

Proof: 

(𝒂) 𝒇 is a module homomorphism since 𝑽𝒏(𝑰), 𝑼𝒏(𝑰) are modules over the n-cyclic refined neutrosophic 

field 𝑲𝒏(𝑰), hence 𝑲𝒆𝒓(𝒇) is a submodule of the module 𝑽𝒏(𝑰), thus 𝑲𝒆𝒓(𝒇)is a strong n- cyclic refined 

neutrosophic subspace of 𝑽𝒏(I). 

(b) Holds by similar argument. 

Definition 2.13 n-cyclic refined neutrosophic matrix 

Let 𝑨𝒎×𝒏 =  {( 𝒂𝒊𝒋) ∶  𝒂𝒊𝒋 ∈ 𝑲𝒏(𝑰)} , where 𝑲𝒏(𝑰) is a n-cyclic refined neutrosophic field. We call to be the 

n-cyclic refined neutrosophic matrix. 

Definition 2.14 n-cyclic refined neutrosophic square matrix 

Let 𝑨𝒎×𝒏 is a neutrosophic matrix. We call to be the n-cyclic refinedneutrosophic square matrix if 𝒎 = 𝒏. 

Example 2.1 

Let 𝒏 = 𝟑, then 

𝑨 = (
𝟏 + 𝑰𝟏 + 𝟐𝑰𝟐 − 𝑰𝟑 𝟐 − 𝑰𝟏 − 𝟐𝑰𝟑 −𝟏 + 𝑰𝟏 + 𝑰𝟐 + 𝑰𝟑

𝑰𝟐 + 𝑰𝟑 𝟑 + 𝑰𝟏 + 𝟐𝑰𝟐 𝑰𝟏 + 𝑰𝟐 + 𝑰𝟑

𝟏 − 𝑰𝟏 − 𝑰𝟑 𝟒 − 𝑰𝟏 + 𝑰𝟐 − 𝑰𝟑 −𝟐 − 𝑰𝟏 + 𝟑𝑰𝟐 − 𝑰𝟑

) 

𝑨 is a 3-cyclic refined neutrosophic square matrix. 

𝑨 can be written as: 

𝑨 = (
𝟏 𝟐 −𝟏
𝟎 𝟑 𝟎
𝟏 𝟒 −𝟐

) + (
𝟏 −𝟏 𝟏
𝟎 𝟏 𝟏

−𝟏 −𝟏 −𝟏
) 𝑰𝟏 + (

𝟐 𝟎 𝟏
𝟏 𝟐 𝟏
𝟎 𝟏 𝟑

) 𝑰𝟐 + (
−𝟏 −𝟐 𝟏
𝟏 𝟎 𝟏

−𝟏 −𝟏 −𝟏
) 𝑰𝟑 

Example 2.2 

Let 𝒏 = 𝟒, then 

𝑨 = (
−𝑰𝟏 + 𝑰𝟐 − 𝑰𝟒 𝟏 + 𝑰𝟏 − 𝑰𝟑 + 𝑰𝟒 𝟏 + 𝟐𝑰𝟏 + 𝑰𝟐 + 𝑰𝟑 − 𝑰𝟒

𝟑 − 𝑰𝟐 + 𝟐𝑰𝟑 − 𝟑𝑰𝟒 −𝟐 + 𝑰𝟏 + 𝑰𝟐 + 𝑰𝟒 𝟐 − 𝑰𝟏 − 𝑰𝟐 + 𝑰𝟑

𝟏 − 𝑰𝟏 − 𝑰𝟑 − 𝟐𝑰𝟒 𝟓 + 𝟑𝑰𝟏 − 𝑰𝟐 − 𝑰𝟑 + 𝟐𝑰𝟒 𝑰𝟏 − 𝟑𝑰𝟐 − 𝑰𝟑 + 𝑰𝟒

) 

𝑨 is a 4-cyclic refined neutrosophic square matrix. 

𝑨 can be written as 
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𝑨 = (
𝟎 𝟏 𝟏
𝟑 −𝟐 𝟐
𝟏 𝟒 −𝟐

) + (
−𝟏 −𝟏 𝟏
𝟎 𝟏 −𝟏

−𝟏 𝟑 𝟏
) 𝑰𝟏 + (

𝟏 𝟎 𝟏
−𝟏 𝟏 −𝟏
𝟎 −𝟏 −𝟑

) 𝑰𝟐 + (
𝟎 −𝟏 𝟏
𝟐 𝟎 𝟏

−𝟏 −𝟏 −𝟏
) 𝑰𝟑

+ (
−𝟏 𝟏 −𝟏
−𝟑 𝟏 𝟎
−𝟐 𝟐 𝟏

) 𝑰𝟒 

Example 2.3: Multiplication of n-cyclic refined  neutrosophic square matrix 

Let  𝑨 = 𝑨𝟎 + 𝑨𝟏𝑰𝟏 + 𝑨𝟐𝑰𝟐 + 𝑨𝟑𝑰𝟑 , 𝑩 = 𝑩𝟎 + 𝑩𝟏𝑰𝟏 + 𝑩𝟐𝑰𝟐 + 𝑩𝟑𝑰𝟑 are two 3-cyclic refined neutrosophic 

square matrixes, where 

𝑨 = (
𝟏 𝟎
𝟏 𝟏

) + (
−𝟐 𝟏
𝟑 𝟐

) 𝑰𝟏 + (
𝟏 𝟏

−𝟏 −𝟐
) 𝑰𝟐 + (

𝟎 𝟐
𝟑 𝟎

) 𝑰𝟑 , 𝑩 = (
𝟏 𝟏
𝟎 𝟏

) + (
−𝟏 −𝟐
𝟑 𝟎

) 𝑰𝟏 + (
𝟒 𝟐
𝟑 𝟎

) 𝑰𝟐 +

(
𝟐 −𝟐
𝟏 𝟏

) 𝑰𝟑 

Then we have. 

𝑨 × 𝑩 = 𝑨𝟎𝑩𝟎 + 𝑨𝟎𝑩𝟏𝑰𝟏 + 𝑨𝟎𝑩𝟐𝑰𝟐 + 𝑨𝟎𝑩𝟑𝑰𝟑 + 𝑨𝟏𝑩𝟎𝑰𝟏 + 𝑨𝟏𝑩𝟏𝑰𝟏 + 𝑨𝟏𝑩𝟐𝑰𝟏𝑰𝟐 + 𝑨𝟏𝑩𝟑𝑰𝟏𝑰𝟑 + 𝑨𝟐𝑩𝟎𝑰𝟐

+ 𝑨𝟐𝑩𝟏𝑰𝟐𝑰𝟏 + 𝑨𝟐𝑩𝟐𝑰𝟐𝑰𝟐 + 𝑨𝟐𝑩𝟑𝑰𝟐𝑰𝟑 + 𝑨𝟑𝑩𝟎𝑰𝟑 + 𝑨𝟑𝑩𝟏𝑰𝟑𝑰𝟏 + 𝑨𝟑𝑩𝟐𝑰𝟑𝑰𝟐 + 𝑨𝟑𝑩𝟑𝑰𝟑𝑰𝟑 

𝑨 × 𝑩 = (
𝟏 𝟎
𝟏 𝟏

) (
𝟏 𝟏
𝟎 𝟏

) + (
𝟏 𝟎
𝟏 𝟏

) (
−𝟏 −𝟐
𝟑 𝟎

) 𝑰𝟏 + (
𝟏 𝟎
𝟏 𝟏

) (
𝟒 𝟐
𝟑 𝟎

) 𝑰𝟐 + (
𝟏 𝟎
𝟏 𝟏

) (
𝟐 −𝟐
𝟏 𝟏

) 𝑰𝟑

+ (
−𝟐 𝟏
𝟑 𝟐

) (
𝟏 𝟏
𝟎 𝟏

) 𝑰𝟏 + (
−𝟐 𝟏
𝟑 𝟐

) (
−𝟏 −𝟐
𝟑 𝟎

) 𝑰𝟏𝑰𝟏 + (
−𝟐 𝟏
𝟑 𝟐

) (
𝟒 𝟐
𝟑 𝟎

) 𝑰𝟏𝑰𝟐

+ (
−𝟐 𝟏
𝟑 𝟐

) (
𝟐 −𝟐
𝟏 𝟏

) 𝑰𝟏𝑰𝟑 + (
𝟏 𝟏

−𝟏 −𝟐
) (

𝟏 𝟏
𝟎 𝟏

) 𝑰𝟐 + (
𝟏 𝟏

−𝟏 −𝟐
) (

−𝟏 −𝟐
𝟑 𝟎

) 𝑰𝟐𝑰𝟏

+ (
𝟏 𝟏

−𝟏 −𝟐
) (

𝟒 𝟐
𝟑 𝟎

) 𝑰𝟐𝑰𝟐 + (
𝟏 𝟏

−𝟏 −𝟐
) (

𝟐 −𝟐
𝟏 𝟏

) 𝑰𝟐𝑰𝟑 + (
𝟎 𝟐
𝟑 𝟎

) (
𝟏 𝟏
𝟎 𝟏

) 𝑰𝟑

+ (
𝟎 𝟐
𝟑 𝟎

) (
−𝟏 −𝟐
𝟑 𝟎

) 𝑰𝟑𝑰𝟏 + (
𝟎 𝟐
𝟑 𝟎

) (
𝟒 𝟐
𝟑 𝟎

) 𝑰𝟑𝑰𝟐 + (
𝟎 𝟐
𝟑 𝟎

) (
𝟐 −𝟐
𝟏 𝟏

) 𝑰𝟑𝑰𝟑 

Now, we have in 3-cyclic refined neutrosophic ring 

𝑰𝟏𝑰𝟏 = 𝑰𝟏, 𝑰𝟐𝑰𝟏 = 𝑰𝟏𝑰𝟐 = 𝑰𝟑, 𝑰𝟏𝑰𝟑 = 𝑰𝟑𝑰𝟏 = 𝑰𝟏 , 𝑰𝟐𝑰𝟐 = 𝑰𝟏, 𝑰𝟐𝑰𝟑 = 𝑰𝟑𝑰𝟐 = 𝑰𝟐, 𝑰𝟑𝑰𝟑 = 𝑰𝟑. 

Thus. 

𝑨 × 𝑩 = (
𝟏 𝟏
𝟏 𝟐

) + (
−𝟏 −𝟐
𝟐 −𝟐

) 𝑰𝟏 + (
𝟒 𝟐
𝟕 𝟐

) 𝑰𝟐 + (
𝟐 −𝟐
𝟑 −𝟏

) 𝑰𝟑 + (
−𝟐 −𝟏
𝟑 𝟓

) 𝑰𝟏 + (
𝟓 𝟒
𝟑 −𝟔

) 𝑰𝟏

+ (
𝟓 −𝟒

𝟏𝟖 𝟔
) 𝑰𝟑 + (

−𝟑 𝟓
𝟖 −𝟒

) 𝑰𝟏 + (
𝟏 𝟐

−𝟏 −𝟑
) 𝑰𝟐 + (

𝟐 −𝟐
−𝟓 𝟐

) 𝑰𝟑 + (
𝟕 𝟐

−𝟏𝟎 −𝟐
) 𝑰𝟏

+ (
𝟏 𝟐

−𝟒 𝟎
) 𝑰𝟐 + (

𝟎 𝟐
𝟔 −𝟔

) 𝑰𝟑 + (
𝟔 𝟎

−𝟑 −𝟔
) 𝑰𝟏 + (

𝟔 𝟎
𝟏𝟐 𝟔

) 𝑰𝟐 + (
𝟐 𝟐
𝟔 −𝟔

) 𝑰𝟑 

𝑨 × 𝑩 = (
𝟏 𝟏
𝟏 𝟐

) + (
𝟏𝟐 −𝟏
𝟑 −𝟏𝟓

) 𝑰𝟏 + (
𝟏𝟐 𝟔
𝟏𝟒 𝟓

) 𝑰𝟐 + (
𝟏𝟏 −𝟒
𝟐𝟖 −𝟓

) 𝑰𝟑 

Example 2.4: Addition on n-cyclic refined neutrosophic rings 

Let 𝑨 = (
𝟐𝑰𝟏 − 𝑰𝟐 + 𝟑𝑰𝟑 𝟏 + 𝑰𝟏 + 𝟐𝑰𝟐

−𝟑 − 𝟐𝑰𝟏 + 𝟒𝑰𝟐 + 𝑰𝟑 𝑰𝟏 + 𝑰𝟑
), 𝑩 = (

𝑰𝟐 − 𝟐𝑰𝟑 −𝟐 + 𝑰𝟏 + 𝑰𝟐 + 𝑰𝟑

𝟏 + 𝑰𝟏 − 𝑰𝟑 𝟏 − 𝑰𝟏 − 𝟒𝑰𝟐 + 𝑰𝟑
) 

Hence, 

𝑨 + 𝑩 = (
𝟐𝑰𝟏 − 𝑰𝟐 + 𝟑𝑰𝟑 𝟏 + 𝑰𝟏 + 𝟐𝑰𝟐

−𝟑 − 𝟐𝑰𝟏 + 𝟒𝑰𝟐 + 𝑰𝟑 𝑰𝟏 + 𝑰𝟑
) + (

𝑰𝟐 − 𝟐𝑰𝟑 −𝟐 + 𝑰𝟏 + 𝑰𝟐 + 𝑰𝟑

𝟏 + 𝑰𝟏 − 𝑰𝟑 𝟏 − 𝑰𝟏 − 𝟒𝑰𝟐 + 𝑰𝟑
) 

𝑨 + 𝑩 = (
𝟐𝑰𝟏 + 𝟑𝑰𝟑 −𝟏 + 𝟐𝑰𝟏 + 𝟑𝑰𝟐 + 𝑰𝟑

−𝟐 − 𝑰𝟏 + 𝟒𝑰𝟐 𝟏 − 𝟒𝑰𝟐 + 𝟐𝑰𝟑
). 
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5. Conclusions 

In this paper, we have defined for the first time the concept of n-cyclic refined neutrosophic vector 

space, and n-cyclic refined neutrosophic real matrices. Also, we have presented some of their 

elementary properties and illustrated many examples to clarify the validity of our work. 
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