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Abstract: This paper is devoted for presenting new neutrosophic similarity measures between 

neutrosophic graphs. We propose two ways to determine the neutrosophic distance between 

neutrosophic vertex graphs. The two neutrosophic distances are based on the Haussdorff distance, 

and a robust modified variant of the Haussdorff distance, moreover we show that they both satisfy 

the metric distance measure axioms. Furthermore, a similarity measure between neutrosophic edge 

graphs, that is based on a probabilistic variant of Haussdorff distance, is introduced. The aim is to 

use those measures for the purpose of matching neutrosophic graphs whose structure can be 

described in the neutrosophic domain. 

Keywords: Neutrosophic Graphs, Haussdorff Distance, Graph Matching. 

1. Introduction 

Graphs are essential for encoding information, which may serve in several fields ranging from 

computational biology to computer vision. The notion of graph theory was first introduced by Euler 

in 1736, given a graph where vertices and edges represent pairwise interactions between entities [2, 

5]. The past years have witnessed a high development in the areas of the applications of graphs of 

pattern recognition and computer vision, where graphs are the most powerful and handy tool used 

in representing both objects and concepts. The invariance properties, as well as the fact that graphs 

are well suited to model objects in terms of parts and their relations, make them very attractive for 

various applications. Hence, the theory of graph became an extremely useful tool for solving 

combinatorial problems in different areas such as geometry, algebra, number theory, topology, 

operations research, optimization and computer science [1]. In 1975, a fuzzy graph theory as a 

generalization of Euler’s graph theory was introduced by Rosenfeld [7], based on the concepts of  

fuzzy set theory  proposed by Zadeh in 1965 [19]. 

In a world full of indeterminacy, traditional crisp set with its boundaries of truth and false has 

not infused itself with the ability of reflecting the reality. Therefore, neutrosophic found its place into 

contemporary research as an alternative representation of the real world. Established by Florentin 

Smarandache [16], Neutrosophy was presented as the study of "the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra". The main idea was to 

consider an entity   ”A” in relation to its opposite ”Non-A”, and to that which is neither "A” nor” 

Non-A”, denoted by "Neut-A”. From then on, Neutrosophy became the basis of Neutrosophic Logic, 

Neutrosophic Probability, Neutrosophic Set Theory, and Neutrosophic Statistics. According to this 

theory every idea ”A”  tends to be neutralized and balanced by  ”neut-A” and ”non- A” ideas - as 
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a state of equilibrium. In a classical way ”A”,  ”neut-A”, ”anti-A” are disjoint two by two. But, since 

in many cases the borders between notions are vague, imprecise or sorties, it is possible that  ”A”, 

”neut-A” and ”anti-A” have common parts two by two, or even all three of them as well. In [16, 17], 

Smarandache introduced the fundamental concepts of neutrosophic set, that had led Salama and 

Smarandache [15], to provide a mathematical treatment for the neutrosophic phenomena which 

already existed in our real world. Moreover the work of Salama and Smarandache[15,16,17] formed 

a starting point to construct new branches of neutrosophic mathematics. Hence, Neutrosophic set 

theory turned out to be a generalization of both the classical and fuzzy counterparts.  

In [6,11,12,13], the authors gave a new dimension for the graph theory using the concept of 

neutrosophy, some study for different types of neutrosophic graphs were presented and some of their 

properties were investigated. The aim of this paper is to compute the dissimilarity between two 

graphs, our methodology is based on the Haussdorff distance, which is invariant to rotation. Whereas 

several neutrosophic distances where introduced in [4, 14], the authors constructed the neutrosophic 

distance between neutrosophic sets.  The remaining of the paper is structured as follows: definitions 

of neutrosophic sets and graphs are presented in §2 and §3. Whereas, §4 introduces the idea behind 

the Haussdorff distance between two crisp sets. In §5.2 and §5.3, we propose two new neutrosophic 

dissimilarity measures between neutrosophic vertex graphs based on the classical and the modified 

Haussdorff distances. Furthermore, we investigate the metric axioms for the obtained distances. A 

neutrosophic similarity measure between neutrosophic edge graphs, based on a probabilistic variant 

of Haussdorff distance, is introduced in §5.3. 

2. Neutrosophic Sets  

let X be a space of points (objects), with a generic element in X denoted by x, a neutrosophic set 

A in X is characterized by a truth-membership function T, a indeterminacy-membership function I 

and a falsity-membership function F [15, 18], That is:  T, I, F: x →] -0, 1+ [. 

Where T (x), I(x) and F (x) are real standard or non-standard subsets of  ] -0, 1+ [. 

In general if there is no restriction on the sum of T (x), I(x) and F (x), so 0− ≤  T(x) +  I (x) + F 

(x) ≤ 3+.   T, I, F are called neutrosophic components. In this paper we will restrict our work to use 

the standard unit interval [0, 1]. 

3. Neutrosophic Graphs 

In [6], the authors defined the neutrosophic graph, to be a graph G < V, E > combined with six 

mappings, written in the form 𝐺𝑁 = < 𝑉,𝐸, 𝑇𝑒 , 𝐼𝑒, 𝐹𝑒 , 𝑇𝑣 , 𝐼𝑣 , 𝐹𝑣 >, where 

𝑇𝑣 :V→ [0,1] , 𝐼𝑣 :V→ [0,1],  𝐹𝑣 :V→ [0,1] denoting the degree of membership ,degree of 

indeterminacy and non- membership of the element vi ∈V respectively and 0 ≤  𝑇𝑣 (vi) +  𝐼𝑣 (vi) +  

𝐹𝑣 (vi)  ≤ 3 for every vi ∈ V, (i = 1, 2, ….. , n) , and 

𝑇𝑒 :V ×  V →[0,1], 𝐼𝑒 : V ×  V → [0,1] and 𝐹𝑒 : V ×  V →[0,1] are such that 𝑇𝑒 ( 𝑣𝑖 , 𝑣𝑗 ) ≤  

min(𝑇𝑣(𝑣𝑖), 𝑇𝑣(𝑣𝑗) ),  𝐼𝑒 ( 𝑣𝑖 , 𝑣𝑗 )  ≤ min( 𝐼𝑣(𝑣𝑖), 𝐼𝑣(𝑣𝑗) ) and 𝐹𝑒 ( 𝑣𝑖 , 𝑣𝑗 )  ≤  min (𝐹𝑣(𝑣𝑖), 𝐹𝑣(𝑣𝑗)) and 0  ≤

𝑇𝑒(𝑣𝑖 , 𝑣𝑗)+ 𝐼𝑒(𝑣𝑖 , 𝑣𝑗)+ 𝐹𝑒(𝑣𝑖 , 𝑣𝑗) ≤ 3 for every  (𝑣𝑖 , 𝑣𝑗) ∈ E (i, j = 1, 2, 3, …., n). 

The concept of neutrosophic graph was used by several authors; nevertheless they took different 

points of view when describing the interpretation of graph neutrosophy. We constructed the 

following structure depending on the one given in [6, 12]. 

3.1. Neutrosophic Edge Graphs 

A neutrosophic graph is defined as a graph combined with three mappings, written as  𝐺 =

(𝑉   , 𝐸   , 𝑇𝑒 , 𝐼𝑒    , 𝐹𝑒   ), 𝑤ℎ𝑒𝑟𝑒   𝑇𝑒 :V× V →[0,1], 𝐼𝑒: V× V → [0,1] and 𝐹𝑒: V× V →[0,1] are such that 

𝑇𝑒(𝑣𝑖 , 𝑣𝑗)≤ min (𝑇𝑣(𝑣𝑖), 𝑇𝑣(𝑣𝑗)), 𝐼𝑒(𝑣𝑖 , 𝑣𝑗) ≤ min (𝐼𝑣(𝑣𝑖), 𝐼𝑣(𝑣𝑗)) and 𝐹𝑒(𝑣𝑖 , 𝑣𝑗) ≤ min (𝐹𝑣(𝑣𝑖), 𝐹𝑣(𝑣𝑗)) and 

0 ≤ 𝑇𝑒(𝑣𝑖 , 𝑣𝑗) + 𝐼𝑒(𝑣𝑖 , 𝑣𝑗) + 𝐹𝑒(𝑣𝑖 , 𝑣𝑗) ≤ 3 for every  (𝑣𝑖 , 𝑣𝑗) ∈ E (i , j= 1, 2, 3, …., n). 
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3.2. Neutrosophic Vertex Graphs 

The term neutrosophic vertex graph was used to define a graph of the form:  

 𝐺 = (𝑉   , 𝐸   , 𝑇𝑣 , 𝐼𝑣   , 𝐹𝑣  )  combined with three mappings, written as 𝑇𝑣:V→ [0,1], 𝐼𝑣:V→ [0,1], 

 𝐹𝑣:V→ [0,1] denoting the degree of membership, degree of indeterminacy and non- membership of 

the element vi ∈ V respectively and  0  ≤  𝑇𝑣 (vi) +  𝐼𝑣 (vi) +  𝐹𝑣 (vi)  ≤ 3  for every  vi ∈ V, (i 

= 1, 2, ….. , n). 

4.  Haussdorff distance 

Since first introduced by Haussdorff in 1914 [8], the Haussdorff distance has been used in several 

areas including matching and recognition problems. It provides a means of computing the distance 

between sets of unordered observations when the correspondences between the individual items are 

unknown. In its most general setting, the Haussdorff distance measures how far two subsets of a 

metric space are from each other. It turns the set of non-empty compact subsets of a metric space into 

a metric space in its own right. Given two such sets, the closest point in the second set for each point 

in the first set is considered. Hence, the Haussdorff distance is the maximum over all these values. 

More formally, the classical Haussdorff distance (H D) [4, 10], between two finite point sets A and B 

is given by: 

H(A,B)  = max(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))  

Where the directed Haussdorff distance from A to B is defined to be: 
ℎ(𝐴,𝐵) = 𝑚𝑎𝑥

𝑎∈𝐴
𝑚𝑖𝑛
𝑏∈𝐵

‖ 𝑎 − 𝑏‖ 

And ‖. ‖  is some underlying norm on the points of A and B (e.g., the 𝐿2  or Euclidean norm). 

Regardless of the norm, the Haussdorff metric captures the notion of the worst match between two 

objects. The computed value is the largest distance between a point in one set and a point in the other 

one. Several variants of the Haussdorff distance have been proposed as alternatives to the maximum 

of the minimum approach in the classical one, like Haussdorff fraction, Haussdorff quintile [10] and 

Spatially Coherent Matching [3]. 

A robust modified Haussdorff distance (MHD) based on the average distance value instead of 

the maximum value was proposed by Dubuisson and Jain [7], in this sense they defined the directed 

distance of the MHD as: 

𝑀𝐻(𝐴, 𝐵) =
1

𝑁𝐴
∑min

bєB
‖a − b‖

𝑎єA

 

5. Neutrosophic Graph Similarity Measures 

In this section, we introduce neutrosophic graph similarity measures, based on the concept of   

Haussdorff distance and some of its variants. 

Firstly, we propose two new neutrosophic dissimilarity measures based on the classical and the 

modified Haussdorff distances [4, 6, 14]. Basically the neutrosophic dissimilarity measure is a triple: 

the first part is a dissimilarity measure of the true value of the neutrosophic object, the second part is 

a dissimilarity measure of the indeterminate value of the neutrosophic object, and the third part is a 

dissimilarity measure of the false value of the neutrosophic object; that is the opposite of the 

neutrosophic object. Secondly, we propose a new neutrosophic similarity measure based on the 

probabilistic Haussdorff distance [9]. With a similar structure, the neutrosophic similarity measure is 

also a triple as the explained in the neutrosophic dissimilarity measure. Obviously, if the 

indeterminate part does not exist (its measure is zero) and if the measure of the opposite object is 

ignored the suggested neutrosophic dissimilarity measure is reduced to the concept of Haussdorff   

distance in the fuzzy sense. 
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5.1 Neutrosophic Haussdorff Distance 

To commence, we consider two neutrosophic vertex graphs 

𝐺1 = (𝑉1   , 𝐸1   , 𝑇𝑣1, 𝐼𝑣1   , 𝐹𝑣1  ) 𝑎𝑛𝑑 𝐺2 = (𝑉2   , 𝐸2   , 𝑇𝑣2 , 𝐼𝑣2   , 𝐹𝑣2  ), where 𝑉𝑖, i = 1, 2 are the sets 

of nodes, 𝐸𝑖, where i= 1, 2 are the sets of edges and 𝑇𝑣𝑖 , 𝐼𝑣𝑖 , 𝐹𝑣𝑖 , where i = 1, 2  are the matrices whose 

elements are the true, indeterminate and false values defined for each element of 𝑉𝑖 ,  i = 1, 2,  

respectively. We can now write the distances between the two neutrosophic vertex graphs𝐺1, 𝐺2  as 

follows: 

𝑁𝐺𝐷 (𝐺1  , 𝐺2) = (𝑇𝑁𝐺𝐷  (𝐺1 , 𝐺2), 𝐼𝑁𝐺𝐷  (𝐺1, 𝐺2), 𝐹𝑁𝐺𝐷(𝐺1, 𝐺2)) 

Where, 

𝑇𝑁𝐺𝐷  (𝐺1 , 𝐺2) = max(𝑇𝑁𝐺𝑑(𝐺1 , 𝐺2), 𝑇𝑁𝐺𝑑(𝐺2, 𝐺1)) 

𝐼𝑁𝐺𝐷  (𝐺1, 𝐺2) = max(𝐼𝑁𝐺𝑑(𝐺1, 𝐺2), 𝐼𝑁𝐺𝑑(𝐺2, 𝐺1)) 

𝐹NGD (G1, G2) = max(𝐹𝑁𝐺𝑑(G1, G2), FNGd(G2, G1)) 

And 

𝑇NGd(𝐺1, G2) =  max
iєV1

max
jєV1

min
IєV2

min
JєV2

‖T𝑣2(I, J) − T𝑣1(i, j)‖ 

𝐼NGd(G1, G2) = max
iєV1

max
jєV1

1

|V2 | × |V2|
 ∑∑‖I𝑣2(I, J) − I𝑣1(i, j)‖

JєV2IєV2

 

𝐹NGd(G1, G2) = min
iєV1

min
jєV1

max
IєV2

max
JєV2

‖F𝑣2(I, J) − F𝑣1(i, j)‖ 

𝑁𝐺𝑑(𝐺2, 𝐺1) can be computed in a similar way. 

Proposition 1: The Neutrosophic vertex graph distance NGD satisfies the metric distance measure 

axioms: 

A1) (Symmetry): NGD (𝐺1,, 𝐺2) = NGD (𝐺2 , 𝐺1), 

A2) (Non-negativity): NGD (𝐺1 , 𝐺2) ≥ 0, 

A3) (Coincidence): if NGD (𝐺1 , 𝐺2) =0    then   𝐺1 = 𝐺2 , 

A4) (Triangle Inequality): for any three neutrosophic vertex graphs 𝐺1, 𝐺2  and 𝐺3  

we have:    NGD (𝐺1 , 𝐺2)≤ : NGD (𝐺1, 𝐺2) + NGD (𝐺2 , 𝐺3). 

Poof: A1 and A2 can easily be proven. 

A3): When NGD(𝐺1 , 𝐺2 ) = (𝑇𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐼𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐹𝑁𝐺𝐷(𝐺1, 𝐺2) ) = (0,0,0), that is 

every component of the triple which is the maximum of two positive values is 

zero, the values of 𝑇𝑁𝐺𝑑(𝐺𝑖 , 𝐺𝑗),𝐼𝑁𝐺𝑑(𝐺𝑖 , 𝐺𝑗) and 𝐹𝑁𝐺𝑑(𝐺𝑖 , 𝐺𝑗) for i, j= 1, 2 are all 

zeros. Namely the maximum distance among the nearest nodes in both  𝐺1 , 𝐺2  

is zero. That means that the distance between each element of 𝑉1 and its nearest 

element in the set 𝑉2  is zero. That is each element in 𝑉1  coincides with an 

element in 𝑉2 and vice versa; hence   𝑉1 = 𝑉2 . 

A4): Consider any three neutrosophic graphs 𝐺1 = (𝑉1   , 𝐸1   , 𝑇1 , 𝐼1   , 𝐹1  ) , 

 𝐺2 = (𝑉2 , 𝐸2 , 𝑇2, 𝐼2 , 𝐹2  )𝑎𝑛𝑑 𝐺3 = (𝑉3   , 𝐸3   , 𝑇3, 𝐼3   , 𝐹3  ) . For any 

 𝑖𝑘 , 𝑗𝑘  ∈ 𝑉𝑘 , k = 1, 2, 3,   we can easily see that: 

‖ 𝑇3(𝑖3, 𝑗3) − 𝑇1(𝑖1, 𝑗3)‖ ≤ ‖𝑇3(𝑖3, 𝑗3) − 𝑇2(𝑖2, 𝑗2)‖ + ‖𝑇2(𝑖2, 𝑗2) − 𝑇1(𝑖1, 𝑗1)‖ 

where the values 𝑇𝐾(𝑖𝐾 , 𝑗𝐾), K=1, 2, 3,  lye in the interval [0, 1]. Consequently, 

one can show that: 
max
𝑖1є𝑉1

max
j1єV1

min
i3єV3

min
j3єV3

‖𝑇3(𝑖3, 𝑗3) − 𝑇1(𝑖1, 𝑗3)‖

≤ max
i2єV2

max
j2єV2

min
i3єV3

min
j3єV3

‖𝑇3(𝑖3, 𝑗3) − 𝑇2(𝑖2, 𝑗2)‖ 

+max
i1єV1

max
𝑗1є𝑉1

min
𝑖2є𝑉2

min
𝑗2є𝑉2

‖𝑇2(𝑖2, 𝑗2) − 𝑇1(𝑖1, 𝑗1)‖ 

That is: 𝑇𝑁𝐺𝑑(𝐺1, 𝐺3) ≤ 𝑇𝑁𝐺𝑑(𝐺2 , 𝐺3) + 𝑇𝑁𝐺𝑑(𝐺1, 𝐺2) and similarly 𝑇𝑁𝐺𝑑(𝐺3, 𝐺1) ≤

𝑇𝑁𝐺𝑑(𝐺3 , 𝐺2) + 𝑇𝑁𝐺𝑑(𝐺2, 𝐺1) 

Hence, max (𝑇𝑁𝐺𝑑(𝐺1, 𝐺3), 𝑇𝑁𝐺𝑑(𝐺3 , 𝐺1)) ≤  max (𝑇𝑁𝐺𝑑(𝐺2 , 𝐺3), 𝑇𝑁𝐺𝑑(𝐺3 , 𝐺2) ) + max 

(𝑇𝑁𝐺𝑑(𝐺1 , 𝐺2),𝑇𝑁𝐺𝑑(𝐺2 , 𝐺1)).  Then,  𝑇𝑁𝐺𝐷(𝐺1, 𝐺3) ≤ 𝑇𝑁𝐺𝐷(𝐺1 , 𝐺2) + 𝑇𝑁𝐺𝐷(𝐺2 , 𝐺3). 

The same procedure goes for both 𝐼𝑁𝐺𝐷 and𝐹𝑁𝐺𝐷. That leads to 

NGD (𝐺1 , 𝐺3)  ≤  NGD (𝐺1, 𝐺2) + NGD (𝐺2 , 𝐺3). 
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5.2 Modified Neutrosophic Haussdorff Distance 

Consider two neutrosophic vertex graphs  𝐺1 = (𝑉1   , 𝐸1   , 𝑇𝑣1 , 𝐼𝑣1   , 𝐹𝑣1)  and 𝐺2 =

 (𝑉2    , 𝐸2   , 𝑇𝑣2, 𝐼𝑣2   , 𝐹𝑣2  ), where 𝑉𝑖, i= 1, 2 are the sets of nodes, 𝐸𝑖, where i= 1, 2 are the sets of edges 

and 𝑇𝑣𝑖 , 𝐼𝑣𝑖 , 𝐹𝑣𝑖 , where i= 1, 2  are the matrices whose elements are the true, indeterminate and false 

values defined for each element of      𝑉𝑖, i = 1, 2,  respectively. We can now write the distances 

between the two neutrosophic vertex graphs 𝐺1 , 𝐺2  as follows: 

MNGD (𝐺1 ,𝐺2) = (𝑇𝑀𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐼𝑀𝑁𝐺𝐷(𝐺1, 𝐺2), 𝐹𝑀𝑁𝐺𝐷(𝐺1, 𝐺2)) 

Where, 

𝑇MNGD(𝐺1, 𝐺2) = max (𝑇𝑀𝑁𝐺𝑑(𝐺1 ,𝐺2),𝑇𝑀𝑁𝐺𝑑(𝐺2 ,𝐺1)   (  

𝐼𝑀𝑁𝐺𝐷(𝐺1, 𝐺2)  = max (𝐼𝑀𝑁𝐺𝑑(𝐺1,𝐺2),𝐼𝑀𝑁𝐺𝑑(𝐺2 ,𝐺1)) 

𝐹MNGD(𝐺1 ,𝐺2)     = max (𝐹𝑀𝑁𝐺𝑑(𝐺1 ,𝐺2),𝐹𝑀𝑁𝐺𝑑(𝐺2 ,𝐺1)) 

And, 

TMNGd(𝐺1, 𝐺2) =
1

|𝑉1| × |𝑉1|
∑ ∑min

𝑖∈𝑣2
min
𝑗∈𝑣2

‖𝑇2(𝐼, 𝐽) − 𝑇1(𝑖, 𝑗)‖

𝑗∈𝑣1𝑖∈𝑣1

 

IMNGd(𝐺1, 𝐺2)  =  
1

|𝑉1| × |𝑉1|
∑ ∑

1

⌈𝑉2⌉ × |𝑉2|
∑∑‖𝑇2(𝐼, 𝐽) − 𝑇1(𝑖, 𝑗)‖

𝐽∈𝑉2𝐼∈𝑉2

.
𝑗∈𝑣1𝑖∈𝑣1

 

FMNGd(G1, G2) =  
1

|V1| × |V1|
∑ ∑max

𝐼∈𝑉2
max
𝐽∈𝑉2

‖𝐹2(𝐼, 𝐽) − 𝐹1(𝑖, 𝑗)‖

𝑗∈𝑉1i∈V1

 

Similarly, we can find MNGd (𝐺2 , 𝐺1). 

Proposition 2: The Modified Neutrosophic vertex graph distance MNGD satisfies the metric distance 

measure axioms: 

AA1)  (symmetry): MNGD (𝐺1 , 𝐺2) = MNGD (𝐺2, 𝐺1), 

AA2)  (non-negativity): MNGD (𝐺1 , 𝐺2) ≥ 0, 

AA3)  (coincidence): if MNGD (𝐺1 , 𝐺2) = 0 then 𝐺1  = 𝐺2 , 

AA4)  (triangle inequality): for any three neutrosophic vertex graphs 𝐺1 ,𝐺2  and 𝐺3  

we have: 

MNGD (𝐺1 ,𝐺3) ≤ MNGD (𝐺1 ,𝐺2) + M NGD (𝐺2 ,𝐺3). 

Proof: Similar to the procedure used to prove Proposition 1. 

5.3 Probabilistic Neutrosophic Haussdorff Distance  

To overcome the robustness of both the classical and the modified Haussdorff distance, Hue and 

Hancock [9] have developed a probabilistic variant of the Haussdorff distance. This measure the 

similarity of the set of attributes rather than using defined set based distance measures. To commence, 

we recall two edge graphs 𝐺1 = (𝑉1   , 𝐸1   , 𝑇𝑒1 , 𝐼𝑒1    , 𝐹𝑒1  ), 𝐺2 = (𝑉2 , 𝐸2 , 𝑇𝑒2 , 𝐼𝑒2  , 𝐹𝑒2   ) as mentioned 

before, the set of all nodes connected to the node I ∈ 𝐺2  by an edge is defined as:  

𝐶𝐼
2 = {𝐽|(𝐼, 𝐽) ∈ 𝐸2}, and the corresponding set of nodes connected to the node 𝑖 ∈ 𝐺1   by 

an edge   𝐶𝑖
1 = {𝑗|(𝑖, 𝑗) ∈ 𝐸1}. A measure for the match of the graph 𝐺2  onto  𝐺1  is: 

𝑃𝑁𝐺𝐷 (𝐺1  , 𝐺2) = (𝑇𝑃𝑁𝐺𝐷  (𝐺1 , 𝐺2), 𝐼𝑃𝑁𝐺𝐷 (𝐺1 , 𝐺2), 𝐹𝑃𝑁𝐺𝐷(𝐺1 , 𝐺2)) 

where,𝑇𝑃𝑁𝐺𝐷  (𝐺1 , 𝐺2) = max(𝑇𝑃𝑁𝐺𝑑(𝐺1 , 𝐺2), 𝑇𝑃𝑁𝐺𝑑(𝐺2, 𝐺1)) 

𝐼𝑃𝑁𝐺𝐷  (𝐺1, 𝐺2) = max(𝐼𝑃𝑁𝐺𝑑(𝐺1, 𝐺2), 𝐼𝑃𝑁𝐺𝑑(𝐺2, 𝐺1)) 

𝐹PNGD (G1, G2) = max(𝐹𝑃𝑁𝐺𝑑(G1, G2), FPNGd(G2, G1)) 

and, 𝑇𝑃𝑁𝐺𝑑(𝐺1 , 𝐺2) =
1

|𝑉2|×|𝑉1|
∑ ∑ max

𝐼∈𝑉2
max
𝐽∈𝐶𝐼

2
𝑃((𝑖, 𝑗) → (𝐼, 𝐽𝑗∈𝐶𝑖

1 )𝑖𝜖𝑉1
|𝑇𝑒2(𝐼, 𝐽), 𝑇𝑒1(𝑖, 𝑗)) 

𝐼𝑃𝑁𝐺𝑑(𝐺1, 𝐺2) =
1

|𝑉2| × |𝑉1|
∑∑ max

𝐼∈𝑉2
max
𝐽∈𝐶𝐼

2
𝑃((𝑖, 𝑗) → (𝐼, 𝐽

𝑗∈𝐶𝑖
1

)
𝑖𝜖𝑉1

|𝐼𝑒2(𝐼, 𝐽), 𝐼𝑒1(𝑖, 𝑗)) 

𝐹𝑃𝑁𝐺𝑑(𝐺1, 𝐺2) =
1

|𝑉2| × |𝑉1|
∑ ∑ min

𝐼∈𝑉2
min
𝐽∈𝐶𝐼

2
𝑃((𝑖, 𝑗) → (𝐼, 𝐽

𝑗∈𝐶𝑖
1

)
𝑖𝜖𝑉1

|𝐹𝑒2(𝐼, 𝐽), 𝐹𝑒1(𝑖, 𝑗)) 

In this formula the posteriori probability 𝑃((𝑖, 𝑗) → (𝐼, 𝐽) → (𝐼, 𝐽)|𝑇𝑒2(𝐼, 𝐽), 𝑇𝑒1(𝑖, 𝑗)) represents the 

true value for the match of the 𝐺2  edge (I, J) onto the 𝐺1  edge (i, j) provided by the corresponding 
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pair of 𝑇𝑒2(𝐼, 𝐽) and 𝑇𝑒1(𝑖, 𝑗).  This similarity measure works as follows, it commence with finding 

the maximum probability over the nodes in 𝐶𝐼
2 then averaging the edge compatibilities over the 

nodes 𝐶𝑖
1. Similarly we consider the maximum probability over the nodes in the graph 𝐺2  followed 

by averaging over the nodes in 𝐺1 . It worth mentioned here that unlike Neutrosophic Haussdorff 

distance this similarity measure does not satisfy the distance axioms. Moreover, while the true 

components of the Neutrosophic Haussdorff distance measures the maximum distance between two 

sets of observations, our measures here returns the maximum similarity. Back to the rest formulae of 

the posteriori probability which represent the indeterminacy value and the false value for the match 

of the 𝐺2  edge (I, J) onto the 𝐺1  edge (i, j) using similar procedure to the true value. We still need to 

compute the probabilities 𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝑇𝑒2(𝐼, 𝐽), 𝑇𝑒1(𝑖, 𝑗)), 

 𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝐼𝑒2(𝐼, 𝐽), 𝐼𝑒1(𝑖, 𝑗)) and 𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝐹𝑒2(𝐼, 𝐽), 𝐹𝑒1(𝑖, 𝑗)). For that purpose we will 

use a robust weighting function: 

𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝑇𝑒2(𝐼, 𝐽), 𝑇𝑒1(𝑖, 𝑗)) =
Г𝜎(‖𝑇𝑒2(𝐼, 𝐽), 𝑇𝑒1(𝑖, 𝑗)‖)

∑ Г𝜎(‖𝑇𝑒2(𝐼, 𝐽), 𝑇𝑒1(𝑖, 𝑗)‖)(𝐼,𝐽)𝜖𝐸2

 

𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝐼𝑒2(𝐼, 𝐽), 𝐼𝑒1(𝑖, 𝑗)) =
Г𝜎(‖𝐼𝑒2(𝐼, 𝐽), 𝐼𝑒1(𝑖, 𝑗)‖)

∑ Г𝜎(‖𝐼𝑒2(𝐼, 𝐽), 𝐼𝑒1(𝑖, 𝑗)‖)(𝐼,𝐽)𝜖𝐸2

 

𝑃((𝑖, 𝑗) → (𝐼, 𝐽)|𝑇𝐹𝑒2(𝐼, 𝐽), 𝑇𝐹𝑒1(𝑖, 𝑗)) =
Г𝜎(‖𝐹𝑒2(𝐼, 𝐽), 𝐹𝑒1(𝑖, 𝑗)‖)

∑ Г𝜎(‖𝐹𝑒2(𝐼, 𝐽), 𝐹𝑒1(𝑖, 𝑗)‖)(𝐼,𝐽)𝜖𝐸2

 

Where Г𝜎(. ) is a distance weighting function. There are several alternative robust weighting 

functions. For instance, one may consider the Gaussian of the form   

Г𝜎(𝑝) = exp (
−𝜌2

2𝜎2
) where 𝜌2 = (𝑇𝑒2(𝐼, 𝐽) − 𝑇𝑒1(𝑖, 𝑗))

2

 according to the true part,  

𝜌2 = (𝐼𝑒2(𝐼, 𝐽) − 𝐼𝑒1(𝑖, 𝑗))
2

 according to the indeterminacy part and 𝜌2 = (𝐹𝑒2(𝐼, 𝐽) − 𝐹𝑒1(𝑖, 𝑗))
2

  

according to the false part, where 𝜎 is the standard deviation. The similarity measure can be viewed 

as an average pairwise attribute consistency measure. 

6.   Conclusion and Future Work 

 Graphs are the most powerful and handy tool used in representing objects and concepts. This 

paper is dedicated for presenting new neutrosophic similarity and dissimilarity measures between 

neutrosophic graphs. The proposed distance measures are based on the Haussdorff distance, a 

modified and a probabilistic variant of the Haussdorff distance, additionally we proved that the given 

Neutrosophic Haussdorff and the Neutrosophic Modified Haussdorff distances satisfy the metric 

distance measure axioms. The aim is to use those measures for the purpose of matching graphs whose 

structure is described in the neutrosophic domain. In our plan for the future we will consider using 

the deduced measurements in image processing applications, such as image clustering and 

segmentation. 
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