TOPSIS with a Neutrosophic Approach for a Study of Strategies to Confront the Crime of Feminicide in Ecuador

Ignacio Fernando Barcos Arias¹, Jorge Manuel Macías Bermúdez², and Federico Miguel Estrella Gómez³

1 Universidad Regional Autónoma de los Andes (UNIANDES), Avenida Jorge Villegas Final, Babahoyo CP 120105, Los Ríos, Ecuador. Email: ub.ignaciobarcos@uniandes.edu.ec
2 Universidad Regional Autónoma de los Andes (UNIANDES), Avenida Jorge Villegas Final, Babahoyo CP 120105, Los Ríos, Ecuador. Email: ub.jorgemacias@uniandes.edu.ec
3 Universidad Regional Autónoma de los Andes (UNIANDES), Avenida Jorge Villegas Final, Babahoyo CP 120105, Los Ríos, Ecuador. Email: ub.federicoestrella@uniandes.edu.ec

Abstract. In this investigation, we make use of the neutrosophic TOPSIS technique for the evaluation of four strategies in order to achieve the decrease of feminicide crimes in Ecuador, which constitute a problem that continues to increase, mainly in the canton of Babahoyo. Four alternatives were evaluated, based on the criteria of fifteen specialists on the subject. This technique, based on Neutrosophy, made it possible to capture the specialists’ evaluation criteria in a way that was more in line with the truth. As a result, we found that the decision alternative, or the most important strategy, is to establish a more preventive criminal legislation for the protection of victims of domestic and gender violence.

Keywords: Feminicide, Neutrosophy, TOPSIS, single valued neutrosophic set.

1 Introduction

According to author Diana Russell [1], feminicide is the act in which a female is killed by someone of the opposite sex driven by pleasure, contempt, hate or a sense of possession towards women. A shorter interpretation of this definition is the murder of a woman by a man, because the simple fact of being a woman.

Feminicide occurs because humanity has produced behaviors that admit attacks against the integrity, health, and the main right to life of women. Feminicide is made up of discrimination and machismo, of violence against women, of legal voids coming from the government, from which an unsafe coexistence for women is produced, because it benefits the set of crimes that we ask to clarify and eradicate[2]. As for its legal treatment, the author expresses[3]:

“The Law is a non-neutral legal body. In this regard, too much has been written to prove that, as a social element, it is impregnated by gender relations. For this reason, feminist legal theory has projected that it is a product of patriarchal societies and has been built mainly from the experience of men. It is a "naturalized" model of the human being, which therefore reflects and protects values, needs and interests that correspond mostly only to that half of humanity”.

With the acceptance of laws that condemn feminicide in the country, it is proposed to develop a criminal policy with a gender perspective that strengthens, on one hand, the tactics of persecution and punishment of those who practice violence against women and, on the other hand, that certifies the settlement and compensation of the victims. The objective is to diminish impunity so that the criminal justice system can carry out its task of special and general prevention of crime[4, 5].

Gender violence has always been a problem in Ecuador. Among the results derived by the Ministry of the Interior with the support of Ecuador's National Institute of Statistics and Censuses, the following elements are highlighted from a survey applied to a total of 1,800 women in 2014 (Figure 1)[6].
This study also shows that 6 out of 10 women have experienced some type of gender-based violence, with a higher percentage among indigenous people (67%) and Afro-descendants (66.7%). It was also observed that 1 out of 4 women have experienced sexual violence at some point in their lives. 64% of feminicides are perpetrated by the lover or ex-boyfriend at the house of the victim or the aggressor.

The investigations recognize that the individuals who have committed these crimes are often people close to the home. The higher percentages of feminicide have been caused by ex-boyfriends, husbands, ex-spouses and boyfriends. Parents, friends, stepparents, lovers and sons-in-law are also among those involved.

According to the national media, in 2011 Ecuador begin to debate the possibility of incorporating into Ecuadorian legislation a criminal law that is adapted to gender situations. Thus, on August 14, 2014, the Integral Organic Penal Code introduced two articles referred to the criminal type of feminicide and its aggravating factors, which describes the crime and the situations that aggravate it, and also establishes the respective penalties[7].

In the canton of Babahoyo, there are few trials, if any, for the crime of feminicide, despite the fact that all of the requirements that could be included in this type of crime are usually met. The death of women is usually typified as murder and not as feminicide; and the elements of conviction are not enough to show that they are carried out according to the conditions and with elements established by the law.

For this reason, this research makes a study of possible strategies to follow so that this problem does not continue to advance in the country and that it is given the legal treatment that corresponds to such crime.

2 Materials and methods

In order to study the best strategies to reduce the occurrence of feminicide crimes and to achieve an adequate legal treatment of these cases, the TOPSIS technique (Technique for Order Preference by Similarity to Ideal Solution) was used. This method is characterized by its effectiveness and the simplicity of its principle in the solution of multi-criteria decision problems. To enrich this technique, the neutrosophic TOPSIS is applied, see [8-10].

Neutrosophy is a mathematical theory developed by Florentin Smarandache to deal with indetermination [9, 11, 12]. It has been the base for the development of new methods to handle indeterminate and inconsistent information, such as the neutrosophic sets and the neutrosophic logic and, especially, in the decision-making problems [9, 13, 14]. The truth value in the neutrosophic set is defined as follows [15-17]:

Let X be a universe of discourse, a SVNS A over X has the following form [18, 19]:

\[A = \{(x, u_a(x), r_a(x), v_a(x)): x \in X \} \]

Where

\[u_a(x): X \to [0,1], r_a(x): X \to [0,1], v_a(x): X \to [0,1] \]

Con

\[0 \leq u_a(x), r_a(x), v_a(x) \leq 3, \quad \forall x \in X \]

The intervals \(u_a(x), r_a(x)\) and \(v_a(x)\) denote the memberships to true, indeterminate and false of \(x\) in \(A\), respectively.

For convenience a Single Valued Neutrosophic Number (SVNS) will be expressed as \(A = (a, b, c)\), where \(a, b, c \in [0,1]\) and satisfies \(0 \leq a + b + c \leq 3\).

The SVNS arose with the idea of applying the neutrosophic sets for practical purposes. Some operations between SVNS are expressed below:

1. Let \(A_1 = (a_1, b_1, c_1)\) and \(A_2 = (a_2, b_2, c_2)\) \(\in\) SVNS, the sum between \(A_1\) and \(A_2\) is defined by:

\[A_1 \oplus A_2 = (a_1 + a_2 - a_1 a_2, b_1 b_2, c_1 c_2) \]

2. Let \(A_1 = (a_1, b_1, c_1)\) and \(A_2 = (a_2, b_2, c_2)\) \(\in\) SVNS the multiplication between \(A_1\) and \(A_2\) is defined

\[A_1 \odot A_2 = (a_1 a_2, b_1 b_2, c_1 c_2) \]
by:
\[A_1 \otimes A_2 = a_1a_2 + b_1b_2 - b_1b_2, c_1 + c_2 - c_1 + c_2 \]
(3)
3. The multiplication by a positive scalar \(\lambda \in \mathbb{R} \) with SVNS, \(A = (a, b, c) \) is defined by:
\[\lambda A = (1 - (1 - a)^{\lambda}, b^\lambda, c^\lambda) \]
(4)
4. Let \(\{ A_1, A_2, ..., A_n \} \in \text{SVNS}(x) \), where \(A_j = (a_j, b_j, c_j) \) \((j = 1, 2, ..., n) \), then, the Single Valued Neutrosophic Weighted Average Operator is defined by[20]:
\[P_w(A_1, A_2, ..., A_n) = (1 - \prod_{j=1}^{n} (1 - T_{A_j}(x))^{w_j}, \prod_{j=1}^{n} (I_{A_j}(x))^{w_j}, \prod_{j=1}^{n} (F_{A_j}(x))^{w_j}) \]
(5)
Where:
\[w = (w_1, w_2, ..., w_n) \] is vector of \(A_j (j = 1, 2, ..., n) \) such that \(w_n \in [0, 1] \) and \(\sum w_j = 1 \).
5. Let \(A = (a, b, c) \) be a single neutrosophic number, a score function \(S \) of a single valued neutrosophic value, based on the truth-membership degree, indeterminacy-membership degree and falsehood membership degree is defined by[21, 22]:
\[S(A) = \frac{1 + a - 2b - c}{2} \]
(6)
Where \(S(A) \in [-1, 1] \)
6. Let \(A' = (A'_1, A'_2, ..., A'_n) \) a vector SVNS such that \(A'_j = (a'_j, b'_j, c'_j) \) \((j = 1, 2, ..., n) \) and \(B_i = (B_{i1}, B_{i2}, ..., B_{im}) \) \((i = 1, 2, ..., m) \) are \(m \) vectors such that \(B_{ij} = (a_{ij}, b_{ij}, c_{ij}) \) \((i = 1, 2, ..., m) \) \((j = 1, 2, ..., n) \), then the distance measure between \(B_i \) and \(A' \) is as follows:
\[s_i = \left(\frac{1}{m} \sum_{j=1}^{m} \left[(a_{ij} - a'_j)^2 + (b_{ij} - b'_j)^2 + (c_{ij} - c'_j)^2 \right] \right)^{1/2} \]
(7)
This article will associate linguistic terms with SVNS, so that experts can carry out their evaluations in linguistic terms, which is more natural. Therefore, the scales shown in table 1 will be taken into account.

<table>
<thead>
<tr>
<th>LINGUISTIC TERM</th>
<th>EVALUATION</th>
<th>SVNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Important</td>
<td>(VI)</td>
<td>(0.9, 0.1, 0.1)</td>
</tr>
<tr>
<td>Important</td>
<td>(I)</td>
<td>(0.75, 0.25, 0.2)</td>
</tr>
<tr>
<td>Medium</td>
<td>(M)</td>
<td>(0.5, 0.5, 0.5)</td>
</tr>
<tr>
<td>Low-Important</td>
<td>(LI)</td>
<td>(0.35, 0.75, 0.8)</td>
</tr>
<tr>
<td>Not Very Important</td>
<td>(NVI)</td>
<td>(0.1, 0.9, 0.9)</td>
</tr>
</tbody>
</table>

Table 1. Linguistic terms and its SVNS

The TOPSIS method for SVNS assumes that, having a set of alternatives and a set of criteria, the following steps will be carried out [23, 24]:

Step 1: Determine the weight of the experts
The experts are evaluated according to the linguistic scale shown in table 2, and the calculations are made with their associated SVNS.

<table>
<thead>
<tr>
<th>LINGUISTIC TERM</th>
<th>EVALUATION</th>
<th>SVN NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely High</td>
<td>EH</td>
<td>(1; 0; 0)</td>
</tr>
<tr>
<td>Very Very High</td>
<td>VVH</td>
<td>(0.9; 0.1; 0.1)</td>
</tr>
<tr>
<td>Very High</td>
<td>VH</td>
<td>(0.8; 0.15; 0.20)</td>
</tr>
<tr>
<td>High</td>
<td>H</td>
<td>(0.70, 0.25, 0.30)</td>
</tr>
<tr>
<td>Medium High</td>
<td>MH</td>
<td>(0.60; 0.35; 0.40)</td>
</tr>
<tr>
<td>Medium</td>
<td>M</td>
<td>(0.50; 0.50; 0.50)</td>
</tr>
<tr>
<td>Medium Low</td>
<td>ML</td>
<td>(0.40; 0.65; 0.60)</td>
</tr>
<tr>
<td>Low</td>
<td>L</td>
<td>(0.30, 0.75, 0.70)</td>
</tr>
<tr>
<td>Very Low</td>
<td>VL</td>
<td>(0.20; 0.85; 0.80)</td>
</tr>
<tr>
<td>Very Very Low</td>
<td>VVL</td>
<td>(0.10, 0.90, 0.90)</td>
</tr>
<tr>
<td>Extremely Low</td>
<td>EL</td>
<td>(0; 1; 1)</td>
</tr>
</tbody>
</table>

Table 2. Linguistic terms used for expert’s evaluation
Let us call $A_t = (a_t, b_t, c_t)$ the SVNS corresponding to the t-th decision maker (t = 1, 2, ..., k). The weight is calculated by the following formula:

$$\lambda_t = \frac{a_t + b_t \left(\frac{a_t}{a_t + c_t} \right)}{\sum_{t=1}^{k} a_t + b_t \left(\frac{a_t}{a_t + c_t} \right)}$$

(8)

Where:

$$\lambda_t \geq 0 \quad \text{and} \quad \sum_{t=1}^{k} \lambda_t = 1$$

Step 2: Construction of the single valued neutrosophic aggregated decision matrix

This matrix is defined by $D = \sum_{t=1}^{k} \lambda_t d_{ij}$, where $d_{ij} = (u_{ij}, r_{ij}, v_{ij})$ is used to aggregate all individual assessments.

d_{ij} is calculated as the aggregation of the evaluations given by each expert (u_{ij}, r_{ij}, v_{ij}), using the weights of each one with the help of Equation 5.

In this way a matrix $D = (d_{ij})_{ij}$, where each d_{ij} is a SVNS $(i = 1, 2, ..., m; j = 1, 2, ..., n)$.

Step 3: Determination of the Weight of the Criteria (17).

Suppose that the weight of each criterion is given by $W = (w_1, w_2, ..., w_n)$, where w_j denotes the relative importance of the criterion β_j. If $w_j^f = a_j^f, b_j^f, c_j^f$ it is the evaluation of the criterion β_j by the t-th expert. Then, Equation 5 is used, to add the with w_j^f the weights λ_t.

Step 4: Construction of the single valued neutrosophic decision matrix of the weighted mean with respect to the criteria.

$$D^* = D \otimes W, \text{where } d_{ij}^* = W_t \otimes d_{ij} = (a_{ij}, b_{ij}, c_{ij})$$

(9)

Step 5: Calculation of the positive and negative SVNS ideal solutions

The criteria can be classified as either cost-type or benefit-type. Be G_1 the set of benefit-type criteria and G_2 the cost-type criteria. The ideal alternatives will be defined as follows[25]:

$$\rho^+ = (a_{p^+w}(\beta_j), b_{p^+w}(\beta_j), c_{p^+w}(\beta_j))$$

(10)

Denotes the positive ideal solution, corresponding to G_1.

$$\rho^- = (a_{p^-w}(\beta_j), b_{p^-w}(\beta_j), c_{p^-w}(\beta_j))$$

(11)

Denotes the negative ideal solution, corresponding to G_2.

Where

$$a_{p^+w}(\beta_j) = \begin{cases} \max a_{p^+w}(\beta_j), & \text{if } j \in G_1 \\ \min a_{p^+w}(\beta_j), & \text{if } j \in G_2 \end{cases}$$

$$b_{p^+w}(\beta_j) = \begin{cases} \max b_{p^+w}(\beta_j), & \text{if } j \in G_1 \\ \min b_{p^+w}(\beta_j), & \text{if } j \in G_2 \end{cases}$$

$$c_{p^+w}(\beta_j) = \begin{cases} \min c_{p^+w}(\beta_j), & \text{if } j \in G_1 \\ \max c_{p^+w}(\beta_j), & \text{if } j \in G_2 \end{cases}$$

And

$$a_{p^-w}(\beta_j) = \begin{cases} \min a_{p^-w}(\beta_j), & \text{if } j \in G_1 \\ \max a_{p^-w}(\beta_j), & \text{if } j \in G_2 \end{cases}$$

$$b_{p^-w}(\beta_j) = \begin{cases} \max b_{p^-w}(\beta_j), & \text{if } j \in G_1 \\ \min b_{p^-w}(\beta_j), & \text{if } j \in G_2 \end{cases}$$

$$c_{p^-w}(\beta_j) = \begin{cases} \min c_{p^-w}(\beta_j), & \text{if } j \in G_1 \\ \max c_{p^-w}(\beta_j), & \text{if } j \in G_2 \end{cases}$$

Step 6: Calculation of the distances to the ideal positive and negative SVNS solutions

With the help of Equation 7, the following equations are calculated[21]:

$$s^+_i = \left(\frac{1}{n} \sum_{j=1}^{n} \left((a_{ij} - a^+_j)^2 + (b_{ij} - b^+_j)^2 + (c_{ij} - c^+_j)^2 \right) \right)^{\frac{1}{2}}$$

$$s^-_i = \left(\frac{1}{n} \sum_{j=1}^{n} \left((a_{ij} - a^-_j)^2 + (b_{ij} - b^-_j)^2 + (c_{ij} - c^-_j)^2 \right) \right)^{\frac{1}{2}}$$
Step 7: Calculation of the Proximity Coefficient (PC).
The PC of each alternative is calculated with respect to the positive and negative ideal solutions.

\[
\tilde{\rho}_j = \frac{x^+ - x^-}{x^+ + x^-}
\]

Where

\(0 \leq \tilde{\rho}_j \leq 1\)

Step 8: Sorting the alternatives.

3 Results

A group of fifteen experts in the field of study were selected for the application of the Neutrosophic TOPSIS technique. They are free practice lawyers and public defenders from the Public Defender's Office in the Criminal Area of the Babahoyo canton, registered with the Los Ríos Bar Association. 40% of these are women. All of them have had vast experience and theoretical preparation in dealing with the crimes of feminicide and gender violence inside and outside the country. Their evaluations and corresponding weights (step 1) are shown in table 3.

<table>
<thead>
<tr>
<th>EXPERT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALUATION</td>
<td>MH</td>
<td>MH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>VH</td>
<td>VH</td>
<td>VH</td>
<td>VH</td>
<td>VVH</td>
<td>VVH</td>
<td>VVH</td>
<td>VVH</td>
<td>VVH</td>
<td>VVH</td>
</tr>
<tr>
<td>(\lambda_i)</td>
<td>0.049</td>
<td>0.049</td>
<td>0.053</td>
<td>0.053</td>
<td>0.053</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Table 3. Results of the experts’ weight determination

The experts agreed that the strategies to be considered would be the following:

2. Training of public agents acting in the legal norms on violence against women.
4. Establishment of rules to ensure that the principle of the need for proof is considered in crimes of feminicide.

After a debate on the criteria to be analyzed, they decided that it would be appropriate to analyze the strategies to be followed according to two criteria:

1. Social impact on the reduction of feminicide crimes
2. Adequate legal treatment as a feminicide crime

The single valued neutrosophic aggregated decision matrix (step 2) was obtained from the results of the expert assessment of the strategies according to the two criteria, as shown in tables 4 and 5.

<table>
<thead>
<tr>
<th>ESTRATEGY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERT</td>
<td>VI</td>
<td>VI</td>
<td>I</td>
<td>VI</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>M</td>
<td>M</td>
<td>VI</td>
<td>I</td>
<td>VI</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>I</td>
<td>I</td>
<td>VI</td>
<td>I</td>
<td>VI</td>
</tr>
<tr>
<td>4</td>
<td>VI</td>
<td>VI</td>
<td>I</td>
<td>VI</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>I</td>
<td>M</td>
<td>VI</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>VI</td>
</tr>
</tbody>
</table>

Table 4. Experts’ assessment of strategies in terms of the criterion Social impact on the reduction of feminicide crimes

<table>
<thead>
<tr>
<th>ESTRATEGY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERT</td>
<td>VI</td>
<td>VI</td>
<td>M</td>
<td>M</td>
<td>VI</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>VI</td>
<td>I</td>
<td>VI</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>VI</td>
<td>VI</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>VI</td>
<td>I</td>
<td>VI</td>
<td>M</td>
<td>M</td>
<td>VI</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>I</td>
<td>VI</td>
<td>VI</td>
<td>VI</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>VI</td>
<td>VI</td>
<td>VI</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>VI</td>
<td>VI</td>
<td>M</td>
<td>VI</td>
<td>M</td>
<td>VI</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>VI</td>
<td>I</td>
<td>VI</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 5. Expert assessment of strategies in terms of the criterion “Adequate legal treatment as a feminicide crime”

Taking into account the SVNS associated to the linguistic variables used, the aggregations of the experts’ assessments for each strategy were made according to each criterion. Results are shown in table 6.
The weights that each experts assigned to each criterion (step 3) are shown in table 7.

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>EXPERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.-Social impact on the reduction of feminicide crimes</td>
<td>MI M I M MI MI I I I MI MI MI</td>
</tr>
<tr>
<td>2.-Adequate legal treatment as a feminicide crime</td>
<td>I M M M MI MI MI M M MI</td>
</tr>
</tbody>
</table>

Table 7. Evaluation of the weight of each criterion according to the experts

With these ratings, the weight of the criteria expressed in SVNS was calculated (table 8).

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>WEIGHT (SVNS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.-Social impact for the reduction of feminicide crimes</td>
<td>(0,739 ; 0,261 ; 0,242)</td>
</tr>
<tr>
<td>2.-Adequate legal treatment as a feminicide crime</td>
<td>(0,693 ; 0,307 ; 0,3)</td>
</tr>
</tbody>
</table>

Table 8. Weights of criteria

Then, the single valued neutrosophic decision matrix of the weighted mean with respect to the criteria (step 4) is shown in table 9.

<table>
<thead>
<tr>
<th>ESTRATEGY</th>
<th>CRITERION 1</th>
<th>CRITERION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0,522 ; 0,478 ; 0,448)</td>
<td>(0,476 ; 0,524 ; 0,508)</td>
</tr>
<tr>
<td>2</td>
<td>(0,503 ; 0,497 ; 0,476)</td>
<td>(0,496 ; 0,504 ; 0,49)</td>
</tr>
<tr>
<td>3</td>
<td>(0,526 ; 0,474 ; 0,44)</td>
<td>(0,505 ; 0,495 ; 0,479)</td>
</tr>
<tr>
<td>4</td>
<td>(0,522 ; 0,478 ; 0,448)</td>
<td>(0,476 ; 0,524 ; 0,508)</td>
</tr>
</tbody>
</table>

Table 9. Weighted aggregate decision matrix.

The ideal positive and negative SVNS solutions calculated in step 5 are shown in table 10.

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>POSITIVE IDEAL VALUE</th>
<th>NEGATIVE IDEAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0,526 ; 0,474 ; 0,44)</td>
<td>(0,503 ; 0,497 ; 0,476)</td>
</tr>
<tr>
<td>2</td>
<td>(0,505 ; 0,495 ; 0,479)</td>
<td>(0,476 ; 0,524 ; 0,508)</td>
</tr>
</tbody>
</table>

Table 10. SVNS positive and negative ideal solutions by criteria.

The ideal positive and negative SVNS solutions calculated in step 5 are shown in table 10.

The distances to the positive and negative SVNS ideal solutions (step 6), as well as the Proximity Coefficient (PC) and the resulting order of the alternatives (steps 7 and 8), are shown in table 11.

<table>
<thead>
<tr>
<th>ALTERNATIVES</th>
<th>d+</th>
<th>d-</th>
<th>PC</th>
<th>ORDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,028848946</td>
<td>0,01934405</td>
<td>0,59861284</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0,029253255</td>
<td>0,018873979</td>
<td>0,60783163</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0,039605326</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0,028848946</td>
<td>0,022455394</td>
<td>0,56231005</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 11. Distances to ideal solutions: proximity coefficient and order of alternatives
This result shows that the most important strategy in order to decrease the number of femicides in the country and that these cases have the appropriate legal treatment, is to establish a more preventive criminal legislation for the protection of victims of domestic and gender violence. Secondly, a rule must be established to ensure that the principle of the need for proof is observed in crimes of femicide.

Conclusions

The criminal legislation in Ecuador, and in several countries, has been insufficient to reduce violence against women, and it is even perceived that the levels of violence continue to increase. Given this reality, the majority of Ecuadorian women live in concern, particularly in the city of Babahoyo.

National and international studies by different authors, which have addressed the issue of violence against women, are largely oriented only towards the crime of femicide, without proposing legal reforms to reduce it.

With the application of the neutrosophic TOPSIS technique, four alternatives were evaluated to achieve the reduction of femicide in Ecuador, as well as a more adequate legal treatment in these cases, based on the criteria of fifteen experts on the subject. This technique, based on Neutrosophy, made it possible to capture the specialists' evaluation criteria in a more accurate way.

As a result, we found that the best alternative, or the most important strategy, is to establish a more preventive criminal legislation for the protection of victims of domestic and gender violence and to punish those who, knowing the state of vulnerability of a woman, of the violence under which she lives, do not inform the competent authorities.

References

in/Estadisticas_Sociales/Violencia_de_genero_2019/Principales%20resultados%20ENVIGMU%202019.pdf.

Received: April 18, 2020. Accepted: August 20, 2020