Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB

Said Broumi1, Mohamed Talea2, Assia Bakali3, Prem Kumar Singh4, Florentin Smarandache5

1,2Laboratory of Information Processing, University Hassan II, Casablanca, Morocco.
E-mail: broumisaid78@gmail.com, taleamohamed@yahoo.fr
3Ecole Royale Navale-Boulverad Sour Fjid, B.P 16303 Casablanca, Morocco.
E-mail: assiabakali@yahoo.fr
4Amity Institute of Information Technology and Engineering, Amity University, Noida 201313-Uttar Pradesh-India.
E-mail: premsingh.csjm@gmail.com
5Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301, USA.
E-mail: fsmarandache@gmail.com

Abstract. In recent time graphical analytics of uncertainty and indeterminacy has become major concern for data analytics researchers. In this direction, the mathematical algebra of neutrosophic graph is extended to interval-valued neutrosophic graph. However, building the interval-valued neutrosophic graphs, its spectrum and energy computation is addressed as another issue by research community of neutrosophic environment. To resolve this issue the current paper proposed some related mathematical notations to compute the spectrum and energy of interval-valued neutrosophic graph using the MATAB.

Keywords: Interval valued neutrosophic graphs. Adjacency matrix. Spectrum of IVNG. Energy of IVNG. Complete-IVNG.

1 Introduction

The handling uncertainty in the given data set is considered as one of the major issues for the research communities. To deal with this issue the mathematical algebra of neutrosophic set is introduced [1]. The calculus of neutrosophic sets (NSs)[1, 2] given a way to represent the uncertainty based on acception, rejection and uncertain part, independently. It is nothing but just an extension of fuzzy set [3], intuitionstic fuzzy set [4-6], and interval valued fuzzy sets [7] beyond the unipolar fuzzy space. It characterizes the uncertainty based on a truth-membership function (T), an indeterminate-membership function (I) and a falsity-membership function (F) independently of a defined neutrosophic set via real a standard or non-standard unit interval]0, 1[. One of the best suitable example is for the neutrosophic logic is win/loss and draw of a match, opinion of people towards an event is based on its acceptance, rejection and uncertain values. These properties of neutrosophic set differentiate it from any of the available approaches in fuzzy set theory while measuring the indeterminacy. Due to which mathematics of single valued neutrosophic sets (abbr. SVNS) [8] as well as interval valued neutrosophic sets (abbr. IVNS) [9-10] is introduced for precise analysis of indeterminacy in the given interval. The IVNS represents the acceptance, rejection and uncertain membership functions in the unit interval [0, 1] which helped a lot for knowledge processing tasks using different classifier [11], similarity method [12-14] as well as multi-decision making process [15-17] at user defined weighted method [18-24]. In this process a problem is addressed while drawing the interval-valued neutrosophic graph, its spectrum and energy analysis. To achieve this goal, the current paper tried to focus on introducing these related properties and its analysis using MATLAB.

2 Literature Review

There are several applications of graph theory which is a mathematical tool provides a way to visualize the given data sets for its precise analysis. It is utilized for solving several mathematical problems. In this process, a problem is addressed while representing the uncertainty and vagueness exists in any given attributes (i.e., vertices) and their corresponding relationship i.e edges. To deal with this problem, the properties of fuzzy graph [25-26] theory is extended to intuitionstic fuzzy graph [28-30], interval valued fuzzy graphs [31] is studied with applications [32—33]. In this case a problem is addressed while measuring with indeterminacy and its situation. Hence, the neutrosophic graphs and its properties is introduced by Smaranadache [34-37] to characterizes them using their truth, falsity, and indeterminacy membership-values (T, I, F) with its applications [38-40]. Broumi et al. [41] introduced neutrosophic graph theory considering (T, I, F) for vertices and edges in the graph specially termed as “Single valued neutrosophic graph theory (abbr. SVNG)” with its other properties [42-44]. Afterwards several researchers studied the neutrosophic graphs and its applications [65, 68]. Broumi et al. [50] utilized the
SVNGs to find the shortest path in the given network subsequently other researchers used it in different fields [51-53, 59-60, 65]. To measure the partial ignorance, Broumi et al. [45] introduced interval valued-neutrosophic graphs and its related operations [46-48] with its application in decision making process in various extensions [49, 54, 57 61, 62, 64, 73-84].

Some other researchers introduced antipodal single valued neutrosophic graphs [63, 65], single valued neutrosophic digraph [68] for solving multi-criteria decision making. Naz et al.[69] discussed the concept of energy and laplacian energy of SVNGs. This given a major thrust to introduce it into interval-valued neutrosophic graph and its matrix. The matrix is a very useful tool in representing the graphs to computers, matrix representation of SVNG, some researchers study adjacency matrix and incident matrix of SVNG. Varol et al. [70] introduced single valued neutrosophic matrix as a generalization of fuzzy matrix, intuitionistic fuzzy matrix and investigated some of its algebraic operations including subtraction, addition, product, transposition. Uma et al. [66] proposed a determinant theory for fuzzy neutrosophic soft matrices. Hamidiand Saeid [72] proposed the concept of accessible single-valued neutrosophic graphs.

It is observed that, few literature have shown the study on energy of IVNG. Hence this paper, introduces some basic concept related to the interval valued neutrosophic graphs are developed with an interesting properties and its illustration for its various applications in several research field.

3 Preliminaries

This section consists some of the elementary concepts related to the neutrosophic sets, single valued neutrosophic sets,interval-valued neutrosophic sets, single valued neutrosophic graphs and adjacency matrix for establishing the new mathematical properties of interval-valued neutrosophic graphs. Readers can refer to following references for more detail about basics of these sets and their mathematical representations [1, 8, 41].

Definition 3.1:[1] Suppose ξ be a nonempty set. A neutrosophic set (abbr.NS) N_{ξ} is an object taking the form $N_{\xi} = \{x: [T_N(k), I_N(k), F_N(k)], k \in \xi \}$ (1)

Where $T_N(k): \xi \rightarrow [0, 1], I_N(k): \xi \rightarrow [0, 1], F_N(k): \xi \rightarrow [0, 1]$ are known as truth-membership function, indeterminate –membership function and false–membership function, respectively. The neutrosophic sets is subject to the following condition:

$$0 \leq T_N(k) + I_N(k) + F_N(k) \leq 3$$ (2)

Definition 3.2:[8] Suppose ξ be a nonempty set. A single valued neutrosophic sets N (abbr. SVNs) in ξ is an object taking the form:

$N_{SVNs} = \{k: T_N(k), I_N(k), F_N(k), k \in \xi \}$ (3)

where $T_N(k), I_N(k), F_N(k) \in [0, 1]$ are mappings. $T_N(k)$ denote the truth-membership function of an element $x \in \xi$, $I_N(k)$ denote the indeterminate –membership function of an element $k \in \xi$. $F_N(k)$ denote the false–membership function of an element $k \in \xi$. The SVNs subject to condition

$$0 \leq T_N(k) + I_N(k) + F_N(k) \leq 3$$ (4)

Example 3.3: Let us consider following example to understand the indeterminacy and neutrosophic logic:

In a given mobile phone suppose 100 calls came at end of the day.

1. 60 calls were received truly among them 50 numbers are saved and 10 were unsaved in mobile. In this case these 60 calls will be considered as truth membership i.e. 0.6.

2. 30 calls were not-received by mobile holder. Among them 20 calls which are saved in mobile contacts were not received due to driving, meeting, or phone left in home, car or bag and 10 were not received due to uncertain numbers. In this case all 30 not received numbers by any cause (i.e. driving, meeting or phone left at home) will be considered as Indeterminacy membership i.e. 0.3.

3. 10 calls were those number which was rejected calls intentionally by mobile holder due to behavior of those saved numbers, not useful calls, marketing numbers or other cases for that he/she do not want to pick or may be blocked numbers. In all cases these calls can be considered as false i.e. 0.1 membership value.

The above situation can be represented as (0.6, 0.3, 0.1) as neutrosophic set.

S.Broumi, M.Talea, A.Bakali, P. K. Singh, F.Smarandache,Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB
Definition 3.4: [10] Suppose \(\xi \) be a nonempty set. An interval valued neutrosophic sets \(N \) (abbr.IVNs) in \(\xi \) is an object taking the form:

\[
N_{IVNs} = \{ < k : \bar{T}_N(k), \bar{I}_N(k), \bar{F}_N(k) > , k \in \xi > \}
\]

(5)

Where \(\bar{T}_N(k), \bar{I}_N(k), \bar{F}_N(k) \subseteq \text{int}[0,1] \) are mappings. \(\bar{T}_N(k) = [T_N^R(k), T_N^L(k)] \) denote the interval truth-membership function of an element \(k \in \xi \). \(\bar{I}_N(k) = [I_N^R(x), I_N^L(x)] \) denote the interval indeterminate-membership function of an element \(k \in \xi \). \(\bar{F}_N(k) = [F_N^R(k), F_N^L(k)] \) denote the false-membership function of an element \(k \in \xi \).

Definition 3.4: [10] For every two interval valued-neutrosophic sets \(A \) and \(B \) in \(\xi \), we define

\[
(N \cup M)(k) = [T^R_{AB}(k), T^L_{AB}(k)], [I^R_{AB}(k), I^L_{AB}(k)], [F^R_{AB}(k), F^L_{AB}(k)]
\]

for all \(k \in \xi \)

(6)

Where

\[
\begin{align*}
T^R_{AB}(k) &= T^R_A(k) \lor T^R_B(k), \\
T^L_{AB}(k) &= T^L_A(k) \lor T^L_B(k), \\
I^R_{AB}(k) &= I^R_A(k) \land I^R_B(k), \\
I^L_{AB}(k) &= I^L_A(k) \land I^L_B(k), \\
F^R_{AB}(k) &= F^R_A(k) \land F^R_B(k), \\
F^L_{AB}(k) &= F^L_A(k) \land F^L_B(k)
\end{align*}
\]

Definition 3.5: [41] A pair \(G=(V,E) \) is known as single valued neutrosophic graph (abbr.SVNG) if the following holds:

1. \(V= \{ k_i : i=1,...,n \} \) such as \(T_1 : V \rightarrow [0,1] \) is the truth-membership degree, \(I_1 : V \rightarrow [0,1] \) is the indeterminate – membership degree and \(F_1 : V \rightarrow [0,1] \) is the false membership degree of \(k_i \in V \) subject to condition

\[
0 \leq T_1(k_i) + I_1(k_i) + F_1(k_i) \leq 3
\]

(7)

2. \(E=\{(k,i,j) : (k,i,j) \in V \times V \} \) such as \(T_2 : V \times V \rightarrow [0,1] \) is the truth-membership degree, \(I_2 : V \times V \rightarrow [0,1] \) is the indeterminate –membership degree and \(F_2 : V \times V \rightarrow [0,1] \) is the false-membership degree of \((k,i,j) \in E \) defined as

\[
\begin{align*}
T_2(k_i,k_j) &\leq T_1(k_i) \land T_1(k_j) \\
I_2(k_i,k_j) &\geq I_1(k_i) \lor I_1(k_j) \\
F_2(k_i,k_j) &\geq F_1(k_i) \lor F_1(k_j)
\end{align*}
\]

(8)

Subject to condition

\[
0 \leq T_2(k_i,k_j) + I_2(k_i,k_j) + F_2(k_i,k_j) \leq 3 \forall (k_i,k_j) \in E.
\]

(11)

The Fig. 1 shows an illustration of SVNG.
Definition 3.6[41]. A single valued neutrosophic graph \(G= (N, M) \) of \(G^* = (V, E) \) is termed strong single valued neutrosophic graph if the following holds:

\[
\begin{align*}
T_M(k, k_j) &= T_N(k_i) \land T_N(k_j) \\
I_M(k, k_j) &= I_N(k_i) \lor I_N(k_j) \\
F_M(k, k_j) &= F_N(k_i) \lor F_N(k_j)
\end{align*}
\]

\(\forall (k_i, k_j) \in E \).

Where the operator \(\land \) denote minimum and the operator \(\lor \) denote the maximum.

Definition 3.8[41]. A single valued neutrosophic graph \(G= (N, M) \) of \(G^* = (V, E) \) is termed complete single valued neutrosophic graph if the following holds:

\[
\begin{align*}
T_M(k, k_j) &= T_N(k_i) \land T_N(k_j) \\
I_M(k, k_j) &= I_N(k_i) \lor I_N(k_j) \\
F_M(k, k_j) &= F_N(k_i) \lor F_N(k_j)
\end{align*}
\]

\(\forall (k_i, k_j) \in V. \)

Definition 3.9[70] The Eigen value of a graph \(G \) are the Eigen values of its adjacency matrix.

Definition 3.10:[70] The spectrum of a graph is the set of all Eigen values of its adjacency matrix

\[
\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n
\]

Definition 3.11:[70] The energy of the graph \(G \) is defined as the sum of the absolute values of its eigenvalues and denoted it by \(E(G) \):

\[
E(G) = \sum_{i=1}^{n} |\lambda_i|
\]

4. Some Basic Concepts of Interval Valued Neutrosophic Graphs

Throughout this paper, we abbreviate \(G^* = (V, E) \) as a crisp graph, and \(G= (N, M) \) an interval valued neutrosophic graph. In this section we have defined some basic concepts of interval valued neutrosophic graphs and discuss some of their properties.

Definition 4.1[45] A pair \(G= (V, E) \) is called an interval valued neutrosophic graph (abbr. IVNG) if the following holds:

1. \(V = \{k_i; i=1,..,n\} \) such as \(T^{U}_{k_i}:V \rightarrow [0,1] \) is the lower truth-membership degree, \(T^{L}_{k_i}:V \rightarrow [0,1] \) is the upper truth-membership degree, \(I^{U}_{k_i}:V \rightarrow [0,1] \) is the lower indeterminate-membership degree, \(I^{L}_{k_i}:V \rightarrow [0,1] \) is the upper indeterminate-membership degree, \(F^{U}_{k_i}:V \rightarrow [0,1] \) is the lower false-membership degree and \(F^{L}_{k_i}:V \rightarrow [0,1] \) is the upper false-membership degree of \(k_i \in V \) subject to condition

\[
0 \leq T^{U}_{k_i}(k_i) + I^{U}_{k_i}(k_i) + F^{U}_{k_i}(k_i) \leq 3
\]

2. \(E=\{(k_i, k_j); (k_i, k_j) \in V \times V\} \) such as \(T^{U}_{k_i,k_j}:V \times V \rightarrow [0,1] \) is the lower truth-membership degree, as \(T^{L}_{k_i,k_j}:V \times V \rightarrow [0,1] \) is the upper truth-membership degree, \(I^{U}_{k_i,k_j}:V \times V \rightarrow [0,1] \) is the lower indeterminate-membership degree, \(I^{L}_{k_i,k_j}:V \times V \rightarrow [0,1] \) is the upper indeterminate-membership degree and \(F^{U}_{k_i,k_j}:V \times V \rightarrow [0,1] \) is the lower false-membership degree, \(F^{L}_{k_i,k_j}:V \times V \rightarrow [0,1] \) is the upper false-membership degree of \((k_i, k_j) \in E \) defined as

\[
\begin{align*}
T^{U}_{k_i,k_j} &\leq T^{L}_{k_i,k_j} \land T^{L}_{k_i,k_j} T^{U}_{k_i,k_j} &\leq T^{L}_{k_i,k_j} \land T^{U}_{k_i,k_j} \\
I^{U}_{k_i,k_j} &\geq I^{L}_{k_i,k_j} \lor I^{L}_{k_i,k_j} I^{U}_{k_i,k_j} &\geq I^{L}_{k_i,k_j} \lor I^{U}_{k_i,k_j} \\
F^{U}_{k_i,k_j} &\geq F^{L}_{k_i,k_j} \lor F^{L}_{k_i,k_j} F^{U}_{k_i,k_j} &\geq F^{L}_{k_i,k_j} \lor F^{U}_{k_i,k_j}
\end{align*}
\]

Subject to condition \(0 \leq T^{U}_{k_i,k_j} + I^{U}_{k_i,k_j} + F^{U}_{k_i,k_j} \leq 3 \ \forall (k_i, k_j) \in E. \)
Example 4.2. Consider a crisp graph G^* such that V= \{k_1, k_2, k_3\}, E=\{k_1k_2, k_2k_3, k_3k_4\}. Suppose N be an interval valued neutrosophic subset of V and suppose M an interval valued neutrosophic subset of E denoted by:

<table>
<thead>
<tr>
<th></th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^L_N</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>T^U_N</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>I^L_N</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>I^U_N</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>F^L_N</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>F^U_N</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>k_1k_2</th>
<th>k_2k_3</th>
<th>k_3k_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^L_M</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>T^U_M</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>I^L_M</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>I^U_M</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>F^L_M</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>F^U_M</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Fig. 2. Example of an interval valued neutrosophic graph

Definition 4.3 A graph $G=(N,M)$ is termed simple interval valued neutrosophic graph if it has neither self loops nor parallel edges in an interval valued neutrosophic graph.

Definition 4.4 The degree $d(k)$ of any vertex k of an interval valued neutrosophic graph $G=(N,M)$ is defined as follow:

$$d(v) = [d^L_L(k), d^L_U(k), d^M_L(k), d^M_U(k), d^U_L(k), d^U_U(k)]$$ (25)

Where

- $d^L_L(k) = \sum_{i \neq k} T^L_M(i,k)$ known as the degree of lower truth-membership vertex
- $d^L_U(k) = \sum_{i \neq k} T^U_M(i,k)$ known as the degree of upper truth-membership vertex
- $d^M_L(k) = \sum_{i \neq k} I^L_M(i,k)$ known as the degree of lower indeterminate-membership vertex
- $d^M_U(k) = \sum_{i \neq k} I^U_M(i,k)$ known as the degree of upper indeterminate-membership vertex
- $d^U_L(k) = \sum_{i \neq k} F^L_M(i,k)$ known as the degree of lower false-membership vertex
- $d^U_U(k) = \sum_{i \neq k} F^U_M(i,k)$ known as the degree of upper false-membership vertex

Example 4.5 Consider an IVNG $G=(N,M)$ presented in Fig. 4 with vertices set $V=\{k_i; i = 1, \ldots, 4\}$ and edges set $E=\{k_1k_4, k_4k_3, k_3k_2, k_2k_1\}$.

S.Broumi, M.Talea, A.Bakali, P.K. Singh, F.Smarandache, Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB
The degree of each vertex k_i is given as follows:

- $d(k_1) = ([0.3, 0.6], [0.5, 0.9], [0.5, 0.9]),$
- $d(k_2) = ([0.4, 0.6], [0.5, 1.0], [0.4, 0.8]),$
- $d(k_3) = ([0.4, 0.6], [0.6, 0.9], [0.4, 0.8]),$
- $d(k_4) = ([0.3, 0.6], [0.6, 0.8], [0.5, 0.9]).$

Definition 4.6. A graph $G=(N, M)$ is termed regular interval valued neutrosophic graph if $d(k)=r=([r_1], [r_2], [r_3]), \forall k \in V.$

(i.e.) if each vertex has same degree r, then G is said to be a regular interval valued neutrosophic graph of degree r.

Definition 4.7. A graph $G=(N, M)$ is termed irregular interval valued neutrosophic graph if the degree of some vertices are different than other.

Example 4.8 Let us Suppose, G is a regular interval-valued neutrosophic graph as portrayed in Fig. 5 having vertex set $V=\{k_1, k_2, k_3, k_4\}$ and edge sets $E=\{k_1k_2, k_2k_3, k_3k_4, k_4k_1\}$ as follows.

![Fig. 4. Illustration of an interval valued neutrosophic graph](image)
In the Fig. 5. All adjacent vertices \(k_1k_4, k_4k_3, k_3k_2, k_2k_1\) have the same degree equal \(<[0.4,0.6],[0.4,1],[0.4,0.8]>\). Hence, the graph G is a regular interval valued neutrosophic graph.

Definition 4.9 A graph G= (N, M) on \(G^*\) is termed strong interval valued neutrosophic graph if the following holds:

\[
T^j_N(k_i, k_j) = T^j_N(k_i) \land T^j_N(k_j),
\]

\[
T^u_N(k_i, k_j) = T^u_N(k_i) \land T^u_N(k_j),
\]

\[
I^l_N(k_i, k_j) = I^l_N(k_i) \lor I^l_N(k_j),
\]

\[
I^u_N(k_i, k_j) = I^u_N(k_i) \lor I^u_N(k_j),
\]

\[
F^l_N(k_i, k_j) = F^l_N(k_i) \lor F^l_N(k_j),
\]

\[
F^u_N(k_i, k_j) = F^u_N(k_i) \lor F^u_N(k_j).
\]

(26)

Example 4.10. Consider the strong interval valued neutrosophic graph G=(N, M) in Fig. 6 with vertex set \(N = \{k_1, k_2, k_3, k_4\}\) and edge set \(M = \{k_1k_2, k_2k_3, k_3k_4, k_4k_1\}\) as follows:

<table>
<thead>
<tr>
<th></th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(k_3)</th>
<th>(k_2k_3)</th>
<th>(k_3k_4)</th>
<th>(k_4k_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T^l_N)</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(T^u_N)</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(I^l_N)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>(I^u_N)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(F^l_N)</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(F^u_N)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\(<[0.3, 0.5],[0.2, 0.3],[0.3, 0.4]>\)

\(<[0.2, 0.3],[0.2, 0.3],[0.1, 0.4]>\)

\(<[0.1, 0.3],[0.2, 0.4],[0.3, 0.5]>\)

\(<[0.1, 0.3],[0.2, 0.4],[0.3, 0.4]>\)

Fig. 6. Illustration of strong IVNG

Proposition 4.11 For every \(k_i, k_j \in V\), we have

\[
T^l_M(k_i, k_j) = T^l_M(k_j, k_i) \land T^u_M(k_i, k_j) = T^u_M(k_j, k_i),
\]

\[
I^l_M(k_i, k_j) = I^l_M(k_j, k_i),
\]

\[
I^u_M(k_i, k_j) = I^u_M(k_j, k_i),
\]

\[
F^l_M(k_i, k_j) = F^l_M(k_j, k_i),
\]

\[
F^u_M(k_i, k_j) = F^u_M(k_j, k_i).
\]

(27)
Definition 4.12: The graph \(G = (N, M) \) is termed an interval valued neutrosophic graph if the following holds

\[
T^u_M(k_i, k_j) = \min \{ T^u_N(k_i), T^l_N(k_j) \} \quad \text{and} \quad T^l_M(k_i, k_j) = \min \{ T^u_N(k_i), T^l_N(k_j) \}
\]

\[
I^u_M(k_i, k_j) = \max \{ I^u_N(k_i), I^l_N(k_j) \} \quad \text{and} \quad I^l_M(k_i, k_j) = \max \{ I^u_N(k_i), I^l_N(k_j) \}
\]

\[
F^u_M(k_i, k_j) = \max \{ F^u_N(k_i), F^l_N(k_j) \} \quad \text{and} \quad F^l_M(k_i, k_j) = \max \{ F^u_N(k_i), F^l_N(k_j) \}
\]

Thus

\[
T^u_M(k_i, k_j) = T^u_N(k_i), T^l_N(k_j) \quad \text{and} \quad T^l_M(k_i, k_j) = T^l_N(k_i), T^u_N(k_j)
\]

\[
I^u_M(k_i, k_j) = I^u_N(k_i), I^l_N(k_j) \quad \text{and} \quad I^l_M(k_i, k_j) = I^l_N(k_i), I^u_N(k_j)
\]

\[
F^u_M(k_i, k_j) = F^u_N(k_i), F^l_N(k_j) \quad \text{and} \quad F^l_M(k_i, k_j) = F^l_N(k_i), F^u_N(k_j)
\]

Definition 4.13: Consider the interval valued neutrosophic graph \(G = (N, M) \) portrayed in Fig. 7 with vertex set \(A = \{ k_1, k_2, k_3, k_4 \} \) and edge set \(E = \{ k_1, k_2, k_3, k_4, k_1, k_2, k_3, k_2, k_4, k_3, k_4, k_1, k_4 \} \) as follows:

\[
<[0.4, 0.5], [0.1, 0.3][0.1, 0.4] > \quad <[0.4, 0.5], [0.1, 0.3][0.2, 0.4] > \quad <[0.4, 0.6], [0.1, 0.2][0.2, 0.3] >
\]

Fig. 7. Illustration of complete IVN-graph

S. Broumi, M. Talea, A. Bakali, P. K. Singh, F. Smarandache, Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB
In the following based on the extension of the adjacency matrix of SVNG [69], we defined the concept of adjacency matrix of IVNG as follow:

Definition 4.14: The adjacency matrix $M(G)$ of IVNG $G=(N, M)$ is defined as a square matrix $M(G)=\begin{pmatrix} a_{ij} \end{pmatrix}$, with $a_{ij}=T_M(k_i,k_j), F_M(k_i,k_j), T_U(k_i,k_j), F_U(k_i,k_j)$, where $T_M(k_i,k_j)=\begin{pmatrix} T(k_i,k_j) \end{pmatrix}$ denote the strength of relationship $T_U(k_i,k_j)=\begin{pmatrix} U(k_i,k_j) \end{pmatrix}$ denote the strength of undecided relationship $F_M(k_i,k_j)=\begin{pmatrix} F(k_i,k_j) \end{pmatrix}$ denote the strength of non-relationship between k_i and k_j (29)

The adjacency matrix of an IVNG can be expressed as sixth matrices, first matrix contain the entries as lower truth-membership values, second contain upper truth-membership values, third contain lower indeterminacy-membership values, forth contain upper indeterminacy-membership, fifth contains lower non-membership values and the sixth contain the upper non-membership values, i.e.,

$$M(G)=[T_M(k_i,k_j), T_U(k_i,k_j), U(k_i,k_j), F_M(k_i,k_j), F_U(k_i,k_j)]$$

From the Fig. 1, the adjacency matrix of IVNG is defined as:

$$M_G = \begin{pmatrix} 0 & <[0.1, 0.2], [0.3, 0.4], [0.4, 0.5]> & <[0.1, 0.2], [0.3, 0.5], [0.4, 0.6]> \\ <[0.1, 0.2], [0.3, 0.4], [0.4, 0.5]> & 0 & <[0.1, 0.3], [0.4, 0.5], [0.4, 0.5]> \\ <[0.1, 0.2], [0.3, 0.5], [0.4, 0.6]> & <[0.1, 0.3], [0.4, 0.5], [0.4, 0.5]> & 0 \end{pmatrix}$$

In the literature, there is no Matlab toolbox deals with neutrosophic matrix such as adjacency matrix and so on. Recently Broumi et al [58] developed a Matlab toolbox for computing operations on interval valued neutrosophic matrices. So, we can inputted the adjacency matrix of IVNG in the workspace Matlab as portrayed in Fig. 8.
Definition 4.15: The spectrum of adjacency matrix of an IVNG \(M(G) \) is defined as
\[
<\hat{R}, \hat{S}, \hat{Q}>=<\hat{R}^L, \hat{R}^U, \hat{S}^L, \hat{S}^U, \hat{Q}^L, \hat{Q}^U>
\]
(31)

Where \(\hat{R}^L \) is the set of eigenvalues of \(M(T^L_M(k_i, k_j)) \), \(\hat{R}^U \) is the set of eigenvalues of \(M(T^U_M(k_i, k_j)) \), \(\hat{S}^L \) is the set of eigenvalues of \(M(I^L_M(k_i, k_j)) \), \(\hat{S}^U \) is the set of eigenvalues of \(M(I^U_M(k_i, k_j)) \), \(\hat{Q}^L \) is the set of eigenvalues of \(M(F^L_M(k_i, k_j)) \) and \(\hat{Q}^U \) is the set of eigenvalue of \(M(F^U_M(k_i, k_j)) \) respectively.

Definition 4.16: The energy of an IVNG \(G= (N,M) \) is defined as
\[
E(G)=<E(\hat{T}_M(k_i, k_j)), E(\hat{I}_M(k_i, k_j)), E(\hat{F}_M(k_i, k_j))>
\]
(32)

Where
\[
E(\bar{T}_M(k_i, k_j)) = [E(T^L_M(k_i, k_j)), E(T^U_M(k_i, k_j))]=\sum_{i=1}^{n} |\lambda_i^L|, \sum_{i=1}^{n} |\lambda_i^U|
\]
\[
E(\bar{I}_M(k_i, k_j)) = [E(I^L_M(k_i, k_j)), E(I^U_M(k_i, k_j))]=\sum_{i=1}^{n} |\delta_i^L|, \sum_{i=1}^{n} |\delta_i^U|
\]
\[
E(\bar{F}_M(k_i, k_j)) = [E(F^L_M(k_i, k_j)), E(F^U_M(k_i, k_j))]=\sum_{i=1}^{n} |\zeta_i^L|, \sum_{i=1}^{n} |\zeta_i^U|
\]

Definition 4.17: Two interval valued neutrosophic graphs \(G_1 \) and \(G_2 \) are termed equienergetic, if they have the same number of vertices and the same energy.

Proposition 4.18: If an interval valued neutrosophic G is both regular and totally regular, then the eigen values are balanced on the energy.
\[
\sum_{i=1}^{n} \pm \lambda_i^L = 0, \sum_{i=1}^{n} \pm \lambda_i^U = 0, \sum_{i=1}^{n} \pm \delta_i^L = 0, \sum_{i=1}^{n} \pm \delta_i^U = 0, \sum_{i=1}^{n} \pm \zeta_i^L = 0, \sum_{i=1}^{n} \pm \zeta_i^U = 0.
\]
(33)

4.19. MATLAB program for finding spectrum of an interval valued neutrosophic graph

To generate the MATLAB program for finding the spectrum of interval valued neutrosophic graph. The program termed “Spec.m” is written as follow:

```matlab
Function SG=Spec(A);
% Spectrum of an interval valued neutrosophic matrix A
% "A" have to be an interval valued neutrosophic matrix - "ivnm" object:
a.ml=eig(A.ml);  % eigenvalues of lower membership of ivnm%
a.mu=eig(A.mu);  % eigenvalues of upper membership of ivnm%
a.il=eig(A.il);  % eigenvalues of lower indeterminate-membership of ivnm%
a.iu=eig(A.iu);  % eigenvalues of upper indeterminate-membership of ivnm%
a.nl=eig(A.nl);  % eigenvalues of lower false-membership of ivnm%
a.nu=eig(A.nu);  % eigenvalues of upper false-membership of ivnm%
SG=ivnm(a.ml,a.mu,a.il,a.iu,a.nl,a.nu);
```

4.20. MATLAB program for finding energy of an interval valued neutrosophic graph

To generate the MATLAB program for finding the energy of interval valued neutrosophic graph. The program termed “ENG.m” is written as follow:
Example 4.21: The spectrum and the energy of an IVNG, illustrated in Fig. 6, are given below:

\[
\text{Spec}(a^+) = \{-0.10, -0.10, 0.20\}, \quad \text{Spec}(!a^+) = \{-0.30, -0.17, 0.47\}
\]
\[
\text{Spec}(a^-) = \{-0.40, -0.27, 0.67\}, \quad \text{Spec}(!a^-) = \{-0.53, -0.40, 0.93\}
\]

Hence,
\[
\text{Spec}(G) = \{(\{-0.10, -0.30\}, \{-0.40, -0.53\}, \{-0.40, -0.60\}\), \{(\{-0.10, -0.17\}, \{-0.27, -0.40\}, \{-0.40, -0.47\}\), \{(\{0.20, 0.47\}, \{0.67, 0.93\}, \{0.80, 1.07\}\)
\]

Now,
\[
\text{E}(a^+) = 0.40, \quad \text{E}(!a^+) = 0.94
\]
\[
\text{E}(a^-) = 1.34, \quad \text{E}(!a^-) = 1.87
\]
\[
\text{E}(a^+) = 1.60, \quad \text{E}(!a^+) = 2.14
\]

Therefore
\[
\text{E}(G) = \{[0.40, 0.94], [1.34, 1.87], [1.60, 2.14]\}
\]

Based on toolbox MATLAB developed in [58], the readers can run the program termed “Spec.m”, for computing the spectrum of graph, by writing in command window “Spec(A)” as described below:

```
function EG=ENG(A)
% energy of an interval valued neutrosophic matrix
% "A" have to be an interval valued neutrosophic matrix - "ivm" object:
    a.ml=sum(abs(eig(A.ml)));
    a.mu=sum(abs(eig(A.mu)));
    a.ii=sum(abs(eig(A.ii)));
    a.iu=sum(abs(eig(A.iu)));
    a.nl=sum(abs(eig(A.nl)));
    a.nu=sum(abs(eig(A.nu)));
    EG=ivm(a.ml,a.mu,a.ii,a.iu,a.nl,a.nu);
```

Similarly, the readers can also run the program termed “ENG.m”, for computing the energy of graph, by writing in command window “ENG(A) as described below:

```
>> Spec(A) * this command return the spectrum of IVN-matrix*
Warning! The created new object is NOT an interval valued neutrosophic matrix
ans =
\([\{-0.10, -0.30\}, \{-0.40, -0.53\}, \{-0.40, -0.60\}\)
\([\{-0.10, -0.17\}, \{-0.27, -0.40\}, \{-0.40, -0.47\}\)
\([\{0.20, 0.47\}, \{0.67, 0.93\}, \{0.80, 1.07\}\]

>> ENG(A) * this command return the Energy of IVN-matrix*
Warning! The created new object is NOT an interval valued neutrosophic matrix
ans =
\([0.40, 0.94\}, \{1.34, 1.87\}, \{1.60, 2.14\}\]
```
In term of the number of vertices and the sum of interval truth-membership, interval indeterminate-membership and interval false-membership, we define the upper and lower bounds on energy of an IVNG.

Proposition 4.22. Suppose \(G = (N, M) \) be an IVNG on \(n \) vertices and the adjacency matrix \(A \) of \(G \). then
\[
\sqrt{2 \sum_{i<j} (T_{ij}^T(k_i,k_j))^2 + n(n-1)|T|^2/N} \leq E(T_{ij}^T(k_i,k_j)) \leq \sqrt{2n \sum_{i<j} (T_{ij}^T(k_i,k_j))^2}
\]
\[
\sqrt{2 \sum_{i<j} (T_{ij}^U(k_i,k_j))^2 + n(n-1)|T|^2/N} \leq E(T_{ij}^U(k_i,k_j)) \leq \sqrt{2n \sum_{i<j} (T_{ij}^U(k_i,k_j))^2}
\]
\[
\sqrt{2 \sum_{i<j} (I_{ij}^T(k_i,k_j))^2 + n(n-1)|I|^2/N} \leq E(I_{ij}^T(k_i,k_j)) \leq \sqrt{2n \sum_{i<j} (I_{ij}^T(k_i,k_j))^2}
\]
\[
\sqrt{2 \sum_{i<j} (I_{ij}^U(k_i,k_j))^2 + n(n-1)|I|^2/N} \leq E(I_{ij}^U(k_i,k_j)) \leq \sqrt{2n \sum_{i<j} (I_{ij}^U(k_i,k_j))^2}
\]
\[
\sqrt{2 \sum_{i<j} (F_{ij}^T(k_i,k_j))^2 + n(n-1)|F|^2/N} \leq E(F_{ij}^T(k_i,k_j)) \leq \sqrt{2n \sum_{i<j} (F_{ij}^T(k_i,k_j))^2}
\]
\[
\sqrt{2 \sum_{i<j} (F_{ij}^U(k_i,k_j))^2 + n(n-1)|F|^2/N} \leq E(F_{ij}^U(k_i,k_j)) \leq \sqrt{2n \sum_{i<j} (F_{ij}^U(k_i,k_j))^2}
\]

Where \(|T|, |T^U|, |I|, |I^U|, |F^T| \) and \(|F^U| \) are the determinant of \(M(T_{ij}^T(k_i,k_j)), M(T_{ij}^U(k_i,k_j)), M(I_{ij}^T(k_i,k_j)), M(I_{ij}^U(k_i,k_j)), M(F_{ij}^T(k_i,k_j)) \) \(M(F_{ij}^U(k_i,k_j)) \), respectively.

Proof: proof is similar as in Theorem 3.2 [69]

Conclusion

This paper introduces some basic operations on interval-valued neutrosophic set to increase its utility in various fields for multi-decision process. To achieve this goal, a new mathematical algebra of interval-valued neutrosophic graphs, its energy as well as spectral computation is discussed with mathematical proof using MATLAB. In the near future, we plan to extend our research to interval valued neutrosophic digraphs and developed the concept of domination in interval valued-neutrosophic graphs. Same time the author will focus on handling its necessity for knowledge representation and processing tasks [85-87].

Acknowledgements:

Authors thank the anonymous reviewers and the editor for providing useful comments and suggestions to improve the quality of this paper.

References

Neutrosophic Graph using MATLAB
S. Broumi, M. Talea, A. Bakali, P. K. Singh, F. Smarandache, Energy and Spectrum Analysis of Interval Valued Neutrosophic Graph using MATLAB

 DOI: 10.5958/2320-3226.2014.00006.X.

Received: November 30, 2018, Accepted: February 28, 2019.