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Abstract: Slope instability is a common geological hazard in open-pit mines, which may cause huge 

economic losses and casualties. Thus, it is important to cluster and evaluate the stability of slopes 

effectively. This article proposes a hyperbolic sine similarity measure of single-valued neutrosophic 

sets (SVNSs) for a netting clustering method and a slope stability evaluation method to cluster and 

assess the stability of open-pit mine slopes. This study contains the following main content. First, 

we present a hyperbolic sine similarity measure between SVNSs. Second, slope stability impact 

factors are fuzzified into SVNSs by the utilization of true, indeterminate, and false membership 

functions, and then a netting clustering method using the proposed similarity measure is proposed 

to cluster the stability of open-pit mine slopes. Third, we propose a slope stability evaluation method 

based on the proposed similarity measure, where we give the SVNS knowledge of risk 

grades/patterns based on the clustering results of slope stability and then present the similarity 

measure values between the risk grades/patterns and the slope samples to assess that each slope 

sample with the larger measure value belongs to the corresponding slope risk grade. Finally, the 

proposed netting clustering and evaluation methods are applied to the clustering analysis and 

assessment of 20 open-pit mine slope samples to verify the rationality and effectivity of the proposed 

approaches in the scenario of SVNSs. 

Keywords: single-valued neutrosophic set; netting clustering method; similarity measure; open-pit mine 

slope; slope stability assessment. 

 

 

1. Introduction 

Slope instability is a typical geological hazard in open-pit mines, so the disasters and losses 

caused by slope instability cannot be ignored. Thus, it is important to give some reasonable 

classification and evaluation methods for slope stability. Traditional qualitative classification 

methods for the slope stability grades include rock mass strength grading method, geological 

strength index method, slope failure probability grading method, and so on [1]. However, there are 

many factors that will affect the analysis of slope stability. Since the slope impact factors include a lot 

of uncertain and incomplete information, the traditional methods cannot effectively express the 

uncertain and incomplete information. Therefore, some indeterminate classification methods have 

been proposed, such as rainfall-induced landslides using ANN (artificial neural network) and fuzzy 
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clustering methods [2], K-means and fuzzy c-means clustering algorithms [3], and a neuro-fuzzy 

inference system-based clustering methods [4]. But the existing indeterminate clustering methods 

difficultly express the true, indeterminate, and false information in the evaluation problems of slope 

stability. 

In order to represent indeterminate and inconsistent information in the real world, Smarandache 

first proposed the concept of neutrosophic sets (NSs) [5] as a conceptual extension of fuzzy sets (FSs) 

[6] and (interval-valued) intuitionistic FSs (IFSs/IVFSs) [7, 8]. NS is characterized by a true 

membership function, an indeterminate membership function, and a false membership function 

independently. However, it is difficult to apply NSs in practical engineering fields because the values 

of their membership functions fall in the non-standard interval ]0, 1+[. As the subsets of NSs, Wang 

et al. [9, 10] introduced single-valued and interval-valued NSs (SVNSs and IVNSs) when the values 

of the three membership functions fall in the standard interval [0, 1] to describe indeterminate and 

inconsistent information in practical engineering issues. Recently, some researchers have applied 

SVNSs to the assessment of slope stability. Qin [11] proposed a SVNS adaptive neuro fuzzy inference 

system (SVNS-ANFIS) and applied it to the evaluation of open-pit mine slope stability. Then, Qin 

[12] further proposed a SVNS Gaussian process regression (SVNS-GPR) approach to predict the 

stability of open-pit mine slopes. However, SVNSs have not been applied to the clustering analysis 

of slope stability so far. 

As another subclass of neutrosophic theory, a neutrosophic number (N = a + bI for I  [inf I, sup 

I]) (NNs) [5, 13, 14] consists of a certain part a and an uncertain part bI, which is also called an 

uncertain number. Since similarity measures are one of the important research topics in neutrosophic 

theory, some similarity measures have been proposed and applied in slope stability evaluation 

problems in the environment of NNs [15]. Li et al. [15] proposed a slope stability evaluation approach 

based on the tangent and arctangent similarity measure of NNs. Li et al. [16] developed the vector 

similarity measures of NNs for the assessment of rock slope stability. However, these similarity 

measures lack the information of true, false, and indeterminate membership degrees. They cannot 

deal with indeterminate and inconsistent decision-making/evaluation problems in neutrosophic 

environments. Therefore, some researchers [17-19] presented various similarity measures of 

SVNSs/IVNSs to perform decision-making problems. 

Regarding the current studies, the similarity measures of NNs cannot handle the actual 

clustering and evaluation problems of slope stability with SVNS information because NN cannot 

contain the true, false, indeterminate membership degrees. Then, the SVNS-ANFIS and SVNS-GPR 

methods [11, 12] require large amounts of learning data to train them, leading to complex learning 

operations and difficult update problems. Therefore, they are difficultly applied to actual clustering 

and evaluation problems of slope stability. Ye [15] also proposed a clustering method by the 

similarity measure of SVNSs, but it was not applied to actual clustering analysis and evaluation 

problems of slope stability because it is difficult to obtain true, false, indeterminate membership 

degrees from the data of slope samples. However, similarity metrics for clustering analysis and 

evaluation problems of slope stability have shown obvious superiority over neural networks in terms 

of data requirements, algorithms, and updated applications. Unfortunately, to date, the similarity 

measures of SVNS have not been applied to the clustering analysis and evaluation problems of slope 

stability. How to solve the clustering analysis and evaluation problems of slope stability by the 

similarity measure of SVNSs is a challenging problem in practical applications. Therefore, this paper 

will resolve this issue. 

In this study, we present a hyperbolic sine similarity measure (HSSM) of SVNSs and its netting 

clustering analysis and evaluation methods of slope stability. Then, the proposed methods are 

applied to the clustering analysis and assessment of 20 open-pit mine slope samples. Through the 

comparative analysis with existing related methods, the proposed approaches reveal their rationality 

and effectivity in the clustering and evaluation application of the 20 open-pit mine slope samples in 

the scenario of SVNSs.  
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The remaining structure of this paper is arranged as follows. In section 2, some basic concepts 

of SVNSs are introduced. Section 3 proposes HSSM of SVNSs and netting clustering analysis and 

slope stability evaluation methods using the proposed HSSM. Section 4 applies the proposed 

clustering method to the slope stability clustering analysis of the 20 open-pit mine slope samples, and 

then the proposed evaluation method is applied to the stability evaluation of the 20 slope samples. 

Conclusions and further research are presented in Section 5. 

2. Some Basic Concepts of SVNS 

Smarandache first introduced NSs as the generalization of FSs, IVFSs, and IFSs. Then, Wang et 

al. [10] introduced SVNS as a subclass of NS to be applied in real scientific and engineering 

applications. The definition and operations of SVNSs are introduced below. 

Definition 1 [10]. Let X be a universal set. A SVNS D in X can be denoted as D = {<x, DT(x), DI(x), 

DF(x)>|x  X}, where DT(x), DI(x), DF(x) are the true, indeterminate, and false membership functions 

for any x  X, DT(x), DI(x), DF(x) [0, 1], and 0 ≤ DT(x) + DI(x) + DF(x) ≤ 3. 

Then, the basic element of SVNS d =<x, DT(x), DI(x), DF(x)> is simply denoted as the single-valued 

neutrosophic number (SVNN) d = <DT, DI, DF> for the convenient representation. 

Definition 2 [10]. Set two SVNSs as d1= <DT1, DI1, DF1> and d2 = <DT2, DI2, DF2>, then they follow the 

following operations. 

(1) d1  d2 if and only if DT1 ≤ DT2, DI1 ≥ DI2, DF1 ≥ DF2; 

(2) d1 = d2 if and only if d1  d2 and d2  d1; 

(3) d1c = <DF1, 1 − DI1, DT1> (Complement of d1); 

(4) d1d2 = <DT1DT2, DI1DI2, DF1DF2>; 

(5) d1  d2 = <DT1DT2, DI1DI2, DF1DF2>. 

Definition 3 [20]. Let D1 = {d11, d12, …, d1n} and D2 = {d21, d22, …, d2n} be two SVNSs, where d1i = <DT1i, 

DI1i, DF1i> and d2i = <DT2i, DI2i, DF2i> (i = 1, 2, …, n) are SVNNs. If the weight of d1i and d2i is specified by 

gi  [0, 1] with 
1

1
n

ii
g


 , the weighted generalized distance between D1 and D2 is defined as 
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Then, the above distance G(D1, D2) satisfies the following properties [20]: 

(A1) 0 ≤ G(D1, D2) ≤ 1; 

(A2) G(D1, D2) = 0 if and only if D1 = D2; 

(A3) G(D1, D2) = G(D2, D1); 

(A4) If D1  D2  D3 for the SVNS D3, then G(D1, D3) ≥ G(D1, D2) and G(D1, D3) ≥ G(D2, D3). 

In view of the complementary relationship between the similarity measure and the distance, the 

weighted generalized distance-based similarity measure of SVNSs is presented as bellows [20]: 
1/
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Then, the weighted generalized distance-based similarity measure of SVNSs also implies the 

following properties [20]: 

(B1) 0 ≤ S(D1, D2) ≤ 1; 

(B2) S(D1, D2) = 1 if and only if D1 = D2; 

(B3) S(D1, D2) = S(D2, D1); 

(B4) If D1  D2  D3 for the SVNS D3, then S(D1, D2) ≥ S(D1, D3) and S(D2, D3) ≥ S(D1, D3). 

3. Netting Clustering and Slope Stability Evaluation Methods Using HSSM of SVNSs 

3.1. Netting Clustering Method Using HSSM of SVNSs 

Considering the weighted generalized distance of SVNSs, this section further proposes HSSM 

between SVNSs and its netting clustering method for SVNSs. 
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First, we propose HSSM of SVNSs. 

Definition 4. Let D1 = {d11, d12, …, d1n} and D2 = {d21, d22, …, d2n} be two SVNSs, where d1i = <DT1i, DI1i, 

DF1i> and d2i = <DT2i, DI2i, DF2i> (i = 1, 2, …, n) are SVNNs. If the weight of d1i and d2i is specified by gi  

[0, 1] with 
1

1
n

ii
g


 , the weighted HSSM between D1 and D2 is defined by 

1 2 1 2
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Then, HSSM also contains the following properties: 

(C1) 0 ≤ H(D1, D2) ≤ 1; 

(C2) H(D1, D2) = 1 if and only if D1 = D2; 

(C3) H(D1, D2) = H(D2, D1); 

(C4) If D1  D2  D3 for the SVNS D3, then H(D1, D2) ≥ H(D1, D3) and H(D2, D3) ≥ H(D1, D3). 

Proof: The properties (C1)-(C3) are obviously true. Therefore, we only prove the property (C4). 

For D1  D2  D3, in view of the above properties of the distance measure G(D1, D2) for SVNSs, 

there are G(D1, D3) ≥ G(D1, D2) and G(D1, D3) ≥ G(D2, D3). Since the sinh(x) for x  [0, 1] is an 

increasing function, based on the compensatory relationship between the distance and the similarity 

measure, there are also H(D1, D2) ≥ H(D1, D3) and H(D2, D3) ≥ H(D1, D3). 

Hence, the proof is completed. 

In light of the proposed HSSM of SVNSs, we introduce a netting clustering method to cluster 

open-pit mine slopes in the environment of SVNSs. 

In a clustering problem of open-pit mine slops, D = {D1, D2, …, Dm} is a set of m slopes and Q = 

{q1, q2, …, qn} is a set of n impact factors (indices) of slope stability. The weight of each impact factor 

qi is gi subject to gi  [0, 1] and 
1

1
n

ii
g


 . 

Using the suitable true, indeterminate, and false membership functions (MFs) (see Table 2), the 

measurement values of the slope stability impact indices for each slope sample are fuzzed as the true, 

indeterminate, and false fuzzy values, which is constructed as the SVNS Dj = {dj1, dj2, … , djn}, where 

dji = <DTji, DIji, DFji> are SVNNs for DTji, DIji, DFji  [0, 1], j =1, 2, …, m, and i = 1, 2, …, n. 

In the clustering problem, the netting clustering method is used to cluster the open-pit mine 

slopes in the environment of SVNSs by the following steps: 

Step 1: Establish the hyperbolic sine similarity matrix H = (hji)m×m (i, j = 1, 2, …, m) through the 

similarity operations of Eq. (3) (usually taking   = 2 as a typical parameter value) subject to hji = 

H(Dj, Di), hjj = 1, and hji = hij. 

Step 2: Use the open-pit mine slope samples for replacing all the diagonal elements of the 

similarity matrix Y. 

Step 3: Construct the -cutting matrices H = (hji
)m×m corresponding to different confidence levels 

of  by the following formula: 

 
0,

   , 1,2,...,
1,

ji

ji

ji

h
h i j m

h







 


.                    (4) 

All “0” is deleted in the -cutting matrixes and “1” is replaced by “*”, and then draw the vertical 

and horizontal lines from “*” to the diagonal elements. The slope samples connected by the same “*” 

are constructed as a type corresponding to the confidence level . Update different confidence levels 

of  from big to small until the slope samples are clustered into the expected types. 

3.2. Slope Stability Evaluation Method 
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In terms of the above clustering results of slope samples with SVNS information, we don't know 

which type belongs to which risk grade/pattern. Therefore, we must give the stability evaluation of 

the slope samples to recognize the corresponding risk patterns/grades of the slope stability. To do so, 

this subsection needs to give a slope stability evaluation method in the setting of SVNSs. 

Based on the slope stability classification knowledge/experience, we can establish the expected 

slope stability patterns/risk grades expressed by their SVNSs Rk = {dk1, dk2, …, dkn} that are composed 

of the SVNNs dki = <DTki, DIki, DFki> for DTki, DIki, DFki  [0, 1] (k = 1, 2, …, p; i = 1, 2, …, n). Suppose that 

there is a set of m slope samples A = {A1, A2, …, Am} to require the risk evaluation of slope stability. 

Then, the slope samples can be represented by the SVNSs Dj = {dj1, dj2, …, djn} (j = 1, 2, …, m) that are 

composed of the SVNNs dji = <DTji, DIji, DFji> for DTji, DIji, DFji  [0, 1] (i = 1, 2, …, n).  

Regarding the risk evaluation issue of slope stability, the similarity measure between each slope 

sample Dj (j = 1, 2, …, m) and each slope stability pattern Rk (k = 1, 2, …, p) is given by the following 

formula: 
1/

1

ln(1 2)
( , ) 1 sinh

3

n

j k i Tji Tki Iji Iki Fji Fki

i

H D R g D D D D D D



  




                  
 for  > 0. (5) 

Based on the HSSM values of Eq. (5), we can utilize  *
1

( , ) Max ( , )j j kk k m
H D R H D R 

 
  to recognize 

that the stability grade of the slope sample Dj belongs to Rk*. 

4. Clustering Analysis and Stability Evaluation of Actual Open-Pit Mine Slopes 

4.1. Clustering Analysis of Actual Cases 

Table 1. Original data of 20 open-pit mine slope samples 

Dj q1 q2 q3 q4 q5 q6 

D1 62.0 47.0 32.0 0.115 43.6 29.1 

D2 40.0 55.0 31.0 0.0321 40.8 28.8 

D3 36.5 55.0 39.0 0.045 43.6 28.7 

D4 35.5 58.0 31.0 0.0273 39.2 28.9 

D5 66.0 57.0 40.0 0.0796 43.0 29.1 

D6 42.0 55.0 30.0 0.0157 37.6 29.1 

D7 43.5 54.0 33.0 0.0291 38.4 29.0 

D8 48.5 60.0 38.0 0.0522 40.5 29.2 

D9 46.5 57.0 40.0 0.0354 40.0 28.8 

D10 23.5 64.0 43.0 0.0285 39.8 29.0 

D11 59.5 71.0 37.0 0.0576 34.7 29.1 

D12 23.5 57.0 34.0 0.0125 31.4 28.9 

D13 25.0 65.0 48.0 0.0218 40.8 29.1 

D14 23.0 65.0 49.0 0.0141 43.7 28.9 

D15 18.0 70.0 41.0 0.0122 35.5 28.8 

D16 15.0 80.0 47.0 0.0074 37.8 29.2 

D17 16.5 70.0 60.0 0.0122 39.7 28.7 

D18 19.0 68.0 51.0 0.0103 37.1 28.9 

D19 17.0 70.0 60.0 0.0079 43.1 29.2 

D20 10.0 70.0 50.0 0.0044 34.7 29.1 
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In Zhejiang Province, China, many open-pit mines have slope instability problems, which will 

lead to a large number of economic losses and casualties. In order to reasonably classify and evaluate 

the slope stability, we collected 20 slope samples from field survey in Zhejiang Province. The slope 

height (q1), slope angle (q2), potential slip plane angle (q3), cohesion (q4), internal friction angle (q5), 

and rock density (q6) are considered as the 6 main impact factors of slope stability. The weight vector 

of the 6 impact factors is specified as g = (0.33, 0.22, 0.12, 0.1, 0.07, 0.16). In addition to the impact 

factors, we also collected the safety factor of each slope as the known knowledge/experience. The 

original data (six impact factors) of the 20 slope samples Dj (j = 1, 2, …, 20) is shown in Table 1. 

Table 2. True, indeterminate, and false MFs for impact factors 

Impact 

factor 

 MF  

DT DI DF 

q1 trapmf[0 0 15 80] trimf[15 30 80] trapmf[15 80 100 100] 

q2 trapmf[0 0 40 80] trimf[40 60 80] trapmf[40 80 100 100] 

q3 trapmf[0 0 20 60] trimf[20 40 60] trapmf[20 60 80 80] 

q4 
trapmf[0.01 0.045 0.060 

0.060] 
trimf[0.01 0.0265 0.045] trapmf[0 0 0.01 0.045] 

q5 trapmf[30 50 60 60] trimf[30 40 50] trapmf[0 0 30 50] 

q6 trimf[28.7 28.7 29.2] trimf[28.8 28.9 29] trapmf[28.7 29.2 29.5 29.5] 

Table 3. SVNSs of 20 open-pit mine slope samples 

Dj q1 q2 q3 q4 q5 q6 

D1 <0.28,0.4,0.723> (0.825,0.35,0.175) (0.7,0.6,0.3) (0,0,0) (0.68,0.64,0.32) (0.2,0,0.8) 

D2 (0.615,0.889,0.385) (0.625,0.75,0.375) (0.725,0.55,0.275) (0.631,0.697,0.369) (0.54,0.92,0.46) (0.8,0,0.2) 

D3 (0.669,0.967,0.331) (0.625,0.75,0.375) (0.525,0.95,0.475) (1,0,0) (0.68,0.64,0.32) (1,0,0) 

D4 (0.685,0.989,0.315) (0.55,0.9,0.45) (0.725,0.55,0.275) (0.494,0.957,0.506) (0.46,0.92,0.54) (0.6,1,0.4) 

D5 (0.215,0.311,0.785) (0.575,0.85,0.425) (0.5,1,0.5) (0,0,0) (0.65,0.7,0.35) (0.2,0,0.8) 

D6 (0.585,0.844,0.415) (0.625,0.75,0.375) (0.75,0.5,0.25) (0.163,0.345,0.837) (0.38,0.76,0.62) (0.2,0,0.8) 

D7 (0.562,0.811,0.438) (0.65,0.7,0.35) (0.675,0.65,0.325) (0.546,0.859,0.454) (0.42,0.84,0.58) (0.4,0,0.6) 

D8 (0.485,0.7,0.515) (0.5,1,0.5) (0.55,0.9,0.45) (1,0,0) (0.525,0.95,0.475) (0,0,1) 

D9 (0.515,0.744,0.485) (0.575,0.85,0.425) (0.5,1,0.5) (0.726,0.52,0.274) (0.5,1,0.5) (0.8,0,0.2) 

D10 (0.869,0.425,0.131) (0.4,0.8,0.6) (0.425,0.85,0.575) (0.529,0.892,0.471) (0.49,0.98,0.51) (0.4,0,0.6) 

D11 (0.315,0.456,0.685) (0.225,0.45,0.775) (0.575,0.85,0.425) (1,0,0) (0.235,0.47,0.765) (0.2,0,0.8) 

D12 (0.869,0.425,0.131) (0.575,0.85,0.425) (0.65,0.7,0.35) (0.071,0.152,0.929) (0.07,0.14,0.93) (0.6,1,0.4) 

D13 (0.846,0.5,0.154) (0.375,0.75,0.625) (0.3,0.6,0.7) (0.337,0.715,0.663) (0.54,0.92,0.46) (0.2,0,0.8) 

D14 (0.877,0.4,0.123) (0.375,0.75,0.625) (0.275,0.55,0.725) (0.117,0.248,0.883) (0.685,0.63,0.315) (0.6,1,0.4) 

D15 (0.954,0.15,0.046) (0.25,0.5,0.75) (0.475,0.95,0.525) (0.063,0.133,0.937) (0.275,0.55,0.725) (0.8,0,0.2) 

D16 (1,0,0) (0,0,1) (0.325,0.65,0.675) (0,0,1) (0.39,0.78,0.61) (0,0,1) 

D17 (0.977,0.075,0.023) (0.25,0.5,0.75) (0,0,1) (0.063,0.133,0.937) (0.485,0.97,0.515) (1,0,0) 

D18 (0.938,0.2,0.062) (0.3,0.6,0.7) (0.225,0.45,0.775) (0.009,0.018,0.991) (0.355,0.71,0.645) (0.6,1,0.4) 

D19 (0.969,0.1,0.031) (0.25,0.5,0.75) (0,0,1) (0,0,1) (0.655,0.69,0.345) (0,0,1) 

D20 (1,0,0) (0.25,0.5,0.75) (0.25,0.5,0.75) (0,0,1) (0.235,0.47,0.765) (0.2,0,0.8) 
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Figure 1. MFs of 6 impact factors 

First, we chose appropriate true, indeterminate, and false MFs to fuzzify each impact factor in 

Table 1 into the form of SVNN. The different MFs for impact factors are shown in Table 2, then Figure 

1 shows the curves of 18 MFs for six impact factors. Thus, the data (six impact factors) of the 20 slope 

samples Dk (k = 1, 2, …, 20) are fuzzified into SVNNs, which are given in Table 3. 

Then, we use the proposed netting clustering method to classify the 20 slope samples with SVNS 

information. By the clustering analysis based on Eqs. (3) and (4) for  = 2, the similarity matrix is 

obtained and shown in Figure 2, and then the slope samples are classified into 4 types when we 

specify the interval range 0.88899    1, which are shown in Figure 3. Obviously, the set of slope 

samples {D1, D5, D11} is classified into the same type; the set of slope samples {D2, D3, D4, D6, D7, D8, 

D9} is classified into the same type; the set of slope samples {D10, D12, D13, D14} is classified into the 

same type; the set of slope samples {D15, D16, D17, D18, D19, D20} is classified into the same type. 
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Figure 2. The 20×20 similarity matrix H 

 

 

Figure 3. Netting clustering analysis results based on the proposed HSSM 

Although the above 20 slope samples are clustered into the four types of slope stability, we don't 

know which type belongs to which risk grade/pattern. In this case, we must give the stability 

evaluation of the 20 slope samples to recognize the corresponding risk patterns/grades of the slope 

stability. 

4.2. Clustering Analysis of Actual Cases 

According to the above clustering results of the 20 slope samples, there are the four risk 

patterns/grades. Based on the risk knowledge/experience of the open-pit mine slope stability, we can 

establish the slope stability four risk patterns/grades: stability (R1), basic stability (R2), relative 

stability (R3), and instability (R4), which are expressed by SVNNs in Table 4. 

In view of SVNNs in Table 4, we can give the following SVNSs of the four risk patterns/grades: 
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R1 = {d11, d12, d13, d14, d15, d16} = {<0.25, 0.36, 0.75>, <0.81, 0.38, 0.19>, <0.88, 0.25, 0.13>, <0.78, 0.42, 

0.15>, <0.88, 0.25, 0.13>, <0.2, 0, 0.8>}; 

Table 4. Risk patterns of slope stability in the setting of SVNNs 

qi 
R1 R2 R3 R4 

DT1i DI1i DF1i DT2i DI2i DF2i DT3i DI3i DF3i DT4i DI4i DF4i 

q1 0.25 0.36 0.75 0.56 0.81 0.44 0.74 0.83 0.26 0.9 0.34 0.1 

q2 0.81 0.38 0.19 0.59 0.83 0.41 0.38 0.75 0.63 0.13 0.25 0.88 

q3 0.88 0.25 0.13 0.63 0.75 0.38 0.43 0.85 0.58 0.18 0.35 0.83 

q4 0.78 0.42 0.15 0.56 0.84 0.39 0.33 0.7 0.64 0.09 0.2 0.9 

q5 0.88 0.25 0.13 0.63 0.75 0.38 0.38 0.75 0.63 0.13 0.25 0.88 

q6 0.2 0 0.8 0.5 0.5 0.38 0.7 0.5 0.3 0.9 0 0.1 

 

R2 = {d21, d22, d23, d24, d25, d26} = {<0.56, 0.81, 0.44>, <0.59, 0.83, 0.41>, <0.63, 0.75, 0.38>, <0.56, 0.84, 

0.39>, <0.63, 0.75, 0.38>, <0.5, 0.5, 0.38>}; 

R3 = {d31, d32, d33, d34, d35, d36} = {<0.74, 0.83, 0.26>, <0.38, 0.75, 0.63>, <0.43, 0.85, 0.58>, <0.33, 0.7, 

0.64>, <0.38, 0.75, 0.63>, <0.7, 0.5, 0.3>}; 

R4 = { d41, d42, d43, d44, d45, d46} = {<0.9, 0.334, 0.1>, <0.13, 0.25, 0.88>, <0.18, 0.35, 0. 83>, <0.09, 0.2, 0.9>, 

<0.13, 0.25, 0.88>, <0.9, 0, 0.1>}. 

Table 5. Results of the proposed HSSM 

Dj H(Dj, R1) H(Dj, R2) H(Dj, R3) H(Dj, R4) Risk grade 

D1 0.896665 0.703826 0.608403 0.517216 R1 

D2 0.677753 0.891382 0.823401 0.640984 R2 

D3 0.607045 0.812724 0.788762 0.615625 R2 

D4 0.583422 0.869008 0.838668 0.550995 R2 

D5 0.796918 0.734908 0.657685 0.515831 R1 

D6 0.732703 0.851046 0.792102 0.617296 R2 

D7 0.732119 0.916111 0.813484 0.60338 R2 

D8 0.70132 0.793529 0.72165 0.513288 R2 

D9 0.670875 0.87848 0.816791 0.637876 R2 

D10 0.620938 0.787465 0.836347 0.7285 R3 

D11 0.775396 0.696152 0.676804 0.617519 R1 

D12 0.547174 0.758627 0.764204 0.734565 R3 

D13 0.644711 0.759293 0.834798 0.73285 R3 

D14 0.537107 0.731683 0.809379 0.775532 R3 

D15 0.508192 0.640297 0.742197 0.856468 R4 

D16 0.480595 0.496986 0.578814 0.734005 R4 

D17 0.446757 0.560614 0.655778 0.842855 R4 

D18 0.483972 0.646724 0.742483 0.794429 R4 

D19 0.530704 0.551393 0.606451 0.740304 R4 

D20 0.549504 0.570076 0.651012 0.786229 R4 
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Then, the slope stability of the 20 slope samples Dj (j = 1, 2, …, 20) is assessed by Eq. (5) for  = 2, 

and the HSSM values between the slope samples Dj and the slope stability risk patterns Rk (k = 1, 2, 3, 

4) are given in Table 5. The maximum measure value between Dj and Rk reflects the corresponding 

slope stability risk pattern/grade. From the evaluation results, it can be found that the four types of 

the 20 slope samples obtained by the proposed clustering method are consistent with the four risk 

patterns/levels: 

(i) The set of slope samples {D1, D5, D11} is the risk grade R1; 

(ii) The set of slope samples {D2, D3, D4, D6, D7, D8, D9} is the risk grade R2; 

(iii) The set of slope samples {D10, D12, D13, D14} is the risk grade R3; 

(iv) The set of slope samples {D15, D16, D17, D18, D19, D20} is the risk grade R4.  

The above results prove the accuracy and validity of the proposed netting clustering method 

and the proposed evaluation method for the 20 slope samples. 

4.3. Comparative Analysis 

Regarding comparative analysis, we use the weighted generalized distance-based similarity 

measure of Eq. (2) [20] to assess the stability risk grades of the 20 slope samples. All the evaluation 

results are given in Table 6. It is obvious that the risk grade of each slope sample assessed by Eq. (2) 

for  = 2 [20] is the same as that evaluated by the proposed HSSM of SVNSs. Therefore, the slope 

stability evaluation method using the proposed HSSM of SVNSs verifies its effectiveness and 

accuracy in the open-pit mine slope stability evaluation problems. 

Table 6. Evaluation results based on Eq. (2) 

Dj S(Dj, R1) S(Dj, R2) S(Dj, R3) S(Dj, R4) Risk grade 

D1 0.884997 0.671241 0.56761 0.471864 R1 

D2 0.641967 0.87775 0.801116 0.603543 R2 

D3 0.568019 0.792424 0.765862 0.578501 R2 

D4 0.54286 0.852145 0.818222 0.507299 R2 

D5 0.77512 0.706827 0.62318 0.470381 R1 

D6 0.703056 0.833838 0.76785 0.577951 R2 

D7 0.70058 0.905584 0.790263 0.561491 R2 

D8 0.667514 0.771982 0.694343 0.471249 R2 

D9 0.635115 0.863307 0.793656 0.60041 R2 

D10 0.581658 0.761448 0.816313 0.699008 R3 

D11 0.751333 0.662475 0.643164 0.581591 R1 

D12 0.505493 0.732561 0.735527 0.709053 R3 

D13 0.608234 0.730184 0.815707 0.704047 R3 

D14 0.493782 0.700375 0.785899 0.753015 R3 

D15 0.463014 0.602347 0.712527 0.838671 R4 

D16 0.440282 0.455418 0.539813 0.707829 R4 

D17 0.402051 0.519151 0.619739 0.823512 R4 

D18 0.439269 0.609585 0.712951 0.772755 R4 

D19 0.491309 0.510861 0.568517 0.715473 R4 

D20 0.511998 0.528949 0.614943 0.76203 R4 
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5. Conclusions 

The paper proposed HSSM of SVNSs and established its netting clustering analysis and risk 

evaluation methods for open-pit mine slopes in the scenario of SVNSs. Then, the proposed netting 

clustering analysis and risk evaluation methods were used for the clustering analysis and risk 

evaluation of open-pit mine slopes. In the applications of the clustering analysis and risk evaluation 

methods of slope samples, they contain the following techniques. First, appropriate true, 

indeterminate, and false membership functions for the impact factors of slope stability were fuzzified 

into the true, indeterminate, and false fuzzy values, which are constructed as the form of SVNNs. 

Then, the proposed netting clustering method based on the proposed HSSM was used to cluster the 

slope samples. Further, based on the clustering results and risk knowledge of slope stability, we gave 

the corresponding risk patterns/grades to evaluate the risk grades of slope stability by the HSSM 

values between the slope samples and the slope stability patterns in the scenario of SVNSs. Finally, 

the proposed netting clustering analysis and risk evaluation methods were applied to the clustering 

analysis and risk evaluation of 20 slope samples. The comparative results proved the accuracy, 

validity and rationality of the proposed netting clustering analysis and risk evaluation methods.  

The main advantage of this study is that the proposed clustering method and the slope stability 

assessment approach can simply and effectively process the clustering analysis and evaluation 

problems of open-pit mine slopes; while the existing evaluation methods using ANN, ANFIS, and 

SVNANFIS [2, 4, 9] imply the defects of both the complex learning algorithms and the requirement 

of larger-scale sample data. It is obvious that the proposed methods effectively overcome the defects 

of the existing evaluation methods [2, 4, 9] and are more convenient and more reasonable than the 

existing clustering analysis and evaluation methods [1-4]. 

Regarding future research, more slope samples and more impact factors will be considered to 

further verify the accuracy and efficiency of the proposed clustering and evaluation methods. Then, 

new similarity measures and clustering and evaluation methods will be further proposed to make 

their clustering and evaluation methods more effective and reasonable in the setting of SVNSs. 

 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

References 

1. Yang, Q. F.; Zhang, J. L. Summary of classification methods for slope rock mass stability. China Water 

Transport, 2014, 14(1), 335–338. 

2. Alimohammadlou, Y.; Najafi, A.; Gokceoglu, C. Estimation of rainfall-induced landslides using ANN and 

fuzzy clustering methods: a case study in Saeen Slope, Azerbaijan province, Iran. Catena, 2014, 120, 149–162. 

3. Jalali, Z. Development of slope mass rating system using K-means and fuzzy c-means clustering 

algorithms. International Journal of Mining Science and Technology, 2016, 26(6), 959–966. 

4. Fattahi, H. Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering 

methods. Journal of Mining and Environment, 2017, 8(2), 163–177. 

5. Smarandache, F. Neutrosophy: Neutrosophic probability, set, and logic. American Research Press, Rehoboth, 

1998. 

6. Zadeh, L. A. Fuzzy sets. Information and Control, 1965, 8, 338–353. 

7. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20, 87–96. 

8. Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1989, 31, 343–

349. 

9. Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Interval neutrosophic sets and logic: Theory and 

applications in computing, Hexis, Phoenix, AZ, 2005. 

10. Wang, H.; Smarandache, F.; Zhang, Y. Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace and 

Multistructure, 2010, 4, 410–413. 



Neutrosophic Sets and Systems, Vol. 55, 2023     497  

 

 

Yi Ding, Jun Ye, Hyperbolic Sine Similarity Measure of SVNSs for Open-Pit Mine Slope Stability Classification and 
Assessment 

11. Qin, J.; Du, S; Ye, J.; Yong, R. SVNN-ANFIS approach for stability evaluation of open-pit mine slopes. Expert 

Systems with Applications, 2022, 198, 116816. 

12. Qin, J.; Ye, J.; Sun, X.; Yong, R.; Du, S. A single-valued neutrosophic Gaussian process regression approach 

for stability prediction of open-pit mine slopes. Applied Intelligence, 2022. DOI: 10.1007/s10489-022-04089-9 

13. Smarandache, F. Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability. Sitech 

& Education Publisher, Craiova—Columbus, 2013. 

14. Smarandache, F. Introduction to neutrosophic statistics. Sitech & Education Publishing, Craiova, 2014. 

15. Li, C.; Ye, J.; Cui, W.; Du, S. Slope stability assessment method using the arctangent and tangent similarity 

measure of neutrosophic numbers. Neutrosophic Sets and Systems, 2019, 27, 98–103. 

16. Li, B.; Zhou, K.; Ye, J.; Sha, P. Application of a probabilistic method based on neutrosophic number in rock 

slope stability assessment. Applied Sciences, 2019, 9(11), 2309. 

17. Peng, X.; Dai, J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new 

similarity measure with score function. Neural Computing and Applications, 2018, 29, 939–954. 

18. Mishra, A. R.; Rani, P.; Saha, A. Single-valued neutrosophic similarity measure-based additive ratio 

assessment framework for optimal site selection of electric vehicle charging station. International journal of 

intelligent systems, 2021, 36(10), 5573–5604. 

19. Bui, Q. T.; Ngo, M. P.; Snasel, V.; Pedrycz, W.; Vo, B. Information measures based on similarity under 

neutrosophic fuzzy environment and multi-criteria decision problems. Engineering Applications of Artificial 

Intelligence, 2023, 122, 106026. 

20. Ye, J. A netting method for clustering simplified neutrosophic information. Soft Computing, 2017, 21(24), 

7571–7577. 

 

Received: August 09, 2022.  Accepted: January 12, 2023 


