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Abstract: Neutrosophy is a branch of philosophy introduced by Florentin Smarandache. 

Neutrosophic set (NS) is the derivative of neutrosophy; it is a powerful tool to handle uncertainty. 

Here we applied neutrosophic set to gray scale image domain for image analysis. Several authors 

contributed in neutrosophic image analysis and image processing. We propose a novel approach 

on representation of grayscale images in bipolar neutrosophic domain (BNS). The reduction of 

noise in images is one of the challenging task in every field. While we transform a grayscale image 

into bipolar neutrosophic domain, the indeterminacy degree of both positive and negative 

memberships are reduced significantly. Indeed, we extract some useful information from 

indeterminacy domain; it leads to perform image analysis and processing in noisy images in a 

better manner. We discuss the representation of medical images in bipolar neutrosophic domain 

with examples. 

Keywords: Bipolar neutrosophic set, Image analysis, Neutrosophy, Digital image processing. 

 

 

1. Introduction 

Neutrosophy is one of the useful tool to handle uncertainty in real world problems. It is the 

extension of fuzzy theory. Neutrosophy is a branch of philosophy which was introduced by 

Florentin Smarandache [1-3]. Neutrosophy deals with origin, nature and scope of neutralities, as 

well as their interactions with different ideational spectra. Neutrosophy is the basis of neutrosophic 

sets (derivative of neutrosophy).  

Neutrosophic set contains three parameters as true-membership degree, 

indeterminacy-membership degree and falsity-membership degree. These three membership 

degrees are independent and has range, a non-standard interval   1,0  . But for real life problems, 

non-standard interval is not applicable. Wang et al. [5] introduced single valued neutrosophic sets 

which is a neutrosophic set defined in the range [0, 1]. Later, Pinaki Majumdar et al. and Ali 

Aydogdu [6, 4] proposed some similarity and entropy measurements of single valued neutrosophic 

sets. In 2015, Deli et al. [7] introduced the concepts of bipolar neutrosophic sets (BNS) as an extension 

of neutrosophic sets. In 2016, Uluçay et al. [8] proposed some measures of similarities of bipolar 

neutrosophic sets.  

Nowadays reduction of noise in images is difficult task in every field. Cheng and Guo [10] 

introduced the representation of image in neutrosophic domain and proposed image thresholding 

technique using neutrosophic domain. Guo and Cheng [11] proposed some concepts about image 

denoising through neutrosophic domain. Yanhui Guo and H.D. Cheng [9] introduced a new 
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neutrosophic approach on image segmentation. A. A. Salama et al. [12, 14] proposed some image 

processing techniques using neutrosophic sets. G. Xu et al.[18] proposed image segmentation using 

TOPSIS method. Mohammed Abdel Basset et al. proposed some concepts of TOPSIS method for 

decision making problems in medical field [15, 19, 20, 22]. In 2017, Mumtaz Ali et al. introduced the 

concepts of bipolar neutrosophic soft sets which is a combined version of bipolar neutrosophic set 

and neutrosophic soft set. Arulpandy et al. [17] proposed some similarity and entropy 

measurements of bipolar neutrosophic soft sets. Several authors contributed to decision making and 

performance analysis using neutrosophic field [21, 23, 24].  

In this paper, we proposed a novel approach on representation of any gray scale image in 

bipolar neutrosophic domain. In section 4, we applied our approach to MRI (Magnetic Resonance 

Image) medical images and discuss their nature with histogram representation. We analyze 

transformed images with some of the popular metrics Peak Signal-to-Noise Ratio (PSNR) and Mean 

Squared Error (MSE). In this transformation, the indeterminacy of both positive and negative 

membership degree is reduced significantly. This is the main advantage of this bipolar neutrosophic 

domain. Indeed, we extract useful information from original image through BNS domain; it is not 

available in neutrosophic domain. 

 

2. Preliminaries  

Definition 1. [1, 2, 3] Let X be the universe of discourse contains x . A Neutrosophic set       

 is defined by . Where  

represents truth-membership degree, indeterminacy-membership degree and falsity-membership 

degree respectively. Here   along with the following condition  

 
Example. Let  be the universal set. Here,  represents capacity, 

trustworthiness and price of a machine, respectively. Then  gives the degree of 

’good service’, degree of indeterminacy, degree of ’poor service’ respectively. The neutrosophic set is 

defined 

by where

.  

Definition 2. [4,5,6] Single valued neutrosophic set(SVNS) is the immediate result of neutrosophic 

set if it is defined over standard unit interval [0,1] instead of the non-standard unit interval 

. A single valued neutrosophic set SVNS (A) is defined by 

where  such 

that .  

Definition 3. [7, 8] Let  be the universal set which contains arbitrary points x. A bipolar 

neutrosophic set (BNS)  is defined by  

  
Where  

 (Positive membership-degrees)   

 (Negative membership-degrees)  

    Such that  

 , .  

Example. Let  be the universal set. A bipolar neutrosophic set (BNS) is defined by   
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     Where  and . Also 

 and .  

3. Grayscale image in bipolar neutrosophic domain 

Neutrosophy has wide range of applications in science and engineering. In particular, it is very 

useful in fields such as Data analytics, financial market, Social network analysis, Quantum theory, 

robotics in terms of decision making problems. In this section, we discuss about the applications of 

neutrosophic sets in image analysis. In 2008, H.D Cheng and Yanhui guo[10] introduced the 

representation of grayscale image in neutrosophic domain. After that, so many papers have been 

published about neutrosophic image such as image denoising, image thresholding, image 

segmentation etc.  

3. 1. Image in neutrosophic domain 

Let X be a universe of discourse, W be the set contained in X, which is composed by bright pixels. A 

neutrosophic image  is characterized by three subset T, I and F. A pixel P in an image is 

described as P(T, I, F) and belongs to W in the following way: it is t% true , i % indeterminate and f % 

false in the bright pixel set, where t varies in T, i varies in I and f varies in F. Each component has a 

value in [0, 1].  

Pixel P(i,j) in the image domain is transformed into neutrosophic domain 

, where  represents probabilities 

belonging to white set, indeterminate set and non-white set, respectively, which are defined as:  

, ,  

Where  represents mean intensity of pixel in some neighborhoods in W. Here,  

 

 

 

Example 1. We consider the original Lena image and represent it in neutrosophic domain as follows:  

 

Figure 1. Original Lena image. 
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      (a)                       (b)                              (c)      

Figure 2. Neutrosophic domain images of Original Lena image.  

(a) T domain (b) I domain (c) F domain 

Above images represents truth-membership domain, indeterminacy domain and 

false-membership domain of original Lena image respectively. We mainly focus on 

truth-membership domain for image analysis along with indeterminacy domain. Truth-membership 

domain is correlated with indeterminacy domain. 

 
3. 2. Image in bipolar neutrosophic domain  

 
Now we introduce grayscale image representation in bipolar neutrosophic domain. Main 

advantage of this representation is, when we transform image into bipolar neutrosophic domain, the 

indeterminacy degree get reduced. Indeed, we extract some useful information from indeterminacy 

degree in bipolar neutrosophic domain which is not available in neutrosophic domain. We used 

MATLAB 2010 version for this transformation. The following steps are involved in this representation:  

 

1. Load the original image. Convert this into grayscale if it is RGB color image.  

2. Represent image in pixel domain.  

3. Find the median pixel value of entire image.  

4. Consider pixels above the median value as foreground image and below the median value as 

background image.  

5. Set the window size (size of neighborhood) to find local mean value. In our case, we take 

3x3-neighborhood.  

6. Transform image into bipolar neutrosophic domain by taking positive memberships for 

foreground pixels and negative memberships for background pixels.  

We use the following membership values to transform any grayscale image to bipolar 

neutrosophic domain. Since the elements are pixels of an image, we use only unsigned integer to 

represent the membership functions. A pixel in bipolar neutrosophic domain is represented by   

 

Here  
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Where  represents mean intensity of foreground pixel in some neighborhood W and 

 represents the mean intensity of background pixel in some neighborhood in .   

Here  

 

 
 
 

 
 
Example 2. Consider the original Lena image in the previous example. The following image shows the 

image in bipolar neutrosophic domain. 

              
(a)                              (b)                                 (c) 

            
       (d)                               (e)                             (f) 

Figure 3. Bipolar neutrosophic representation of lena image (fig 1.) 

 (a) T+ domain, (b) I+ domain, (c) F+ domain, (d) T- domain, (e) I- domain, (f) F- domain 

 

Note that in the above images, I- domain and I+ domain images looks identical and black in color. 

It means both images contained only black pixels (pixels which has value zero). So from this we 

eliminate the indeterminacy of both positive and negative membership domains. The following 

histogram images shows that the gray level distribution of each images in BNS domain.   
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           (a)                       (b)                                 (c)  

 

         
(d)                              (e)                            (f) 

Figure 4. Histogram of transformed images (Fig 3.) 

(a) Histogram of T+ , (b) Histogram of I+ , (c) Histogram of F+ , (d) Histogram of T- , (e) Histogram of I- , (f) 

Histogram of F- . 

  

 
3. 3. Entropy of image in bipolar neutrosophic domain 

Bipolar neutrosophic image entropy is defined as sum of entropies of all subsets 

, which is used to evaluate the distribution of pixels in bipolar neutrosophic 

domain. .  

Here  

 

 

 

 

 

 

4.  Bipolar neutrosophic representation of medical image 

Nowadays image denoising is the challenging task in every field. Especially, in medical field, it is 

very useful for X-ray images, MRI images, CT images, Ultra sound images etc. In this section, we 

take MRI scan brain image and transform it to BNS domain and analyze various parameters.   
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Consider the following brain MRI image. 

 

Figure 5. MRI Brain image 

The following image shows the brain image in bipolar neutrosophic domain.  

        

              (a)                             (b)                                  (c) 

        

            (d)                                 (e)                               (f) 

Figure 6. Bipolar neutrosophic representation of MRI brain images as   

(a) T+ domain, (b) I+ domain, (c) F+ domain, (d) T- domain, (e) I- domain, (f) F- domain 

From the above images, we can clearly see that the variations between each images. Every image has 

some useful information. We may neglect indeterminate images I+ and I-, since it has only black 

pixels. Peak Signal-to-noise Ratio (PSNR) values mostly used to find the noise level in the 

transformed image and we can check similarity level between original image and transformed 

image. PSNR value is calculated using the following formula:  
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Here, the local mean average determines the variations in the transformed image. Local mean 

average of an image is depend on the window size (neighborhood size) which is used in the local 

mean average. Here, we analyze the PSNR value of the original image and images in the 

transformed domain for different neighborhood sizes.  

Window Size T+ domain I+ domain F+ domain T- domain I- domain F- domain 

1x1 71.393 59.544 50.173 54.816 59.544 51.039 

2x2 68.115 59.545 51.579 54.868 59.545 51.121 

3x3 69.987 59.545 51.275 54.924 59.545 51.160 

4x4 66.502 59.545 51.758 54.950 59.545 51.199 

5x5 66.755 59.545 51.632 54.990 59.545 51.228 

6x6 65.509 59.545 51.877 55.018 59.545 51.261 

7x7 66.151 59.545 51.744 55.055 59.545 51.287 

8x8 65.323 59.545 51.916 55.077 59.545 51.320 

9x9 65.752 59.545 51.819 55.107 59.545 51.346 

10x10 65.128 59.545 51.955 55.127 59.545 51.377 

Table 1. PSNR values of brain image in BNS domain associated with different neighborhood windows. 

Following plots shows the variations in PSNR values when we increase the size of the window in 

local mean average.  

 

             (a)                                  (b)                              (c)        
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              (d)                                 (e)                                   (f) 

Figure 7. Comparison of PSNR values and neighborhood window size in (a) T+ domain, (b) I+ domain, (c) F+ 

domain, (d) T- domain, (e) I- domain, (f) F- domain 

Mean Square Error (MSE) is another parameter to check the quality of transformed image. MSE is 

calculated using the following formula:  

 

Following table shows that the mean square error between original image and transformed images 

with different window size.  

Window 

Size 
T+ domain I+ domain F+ domain T- domain I- domain F- domain 

1x1 0.00472 0.07221 0.62480 0.21449 0.07221 0.51189 

2x2 0.01003 0.07220 0.45200 0.21194 0.07220 0.50223 

3x3 0.00652 0.07220 0.48482 0.20922 0.07220 0.49778 

4x4 0.01455 0.07220 0.43370 0.20797 0.07219 0.49336 

5x5 0.01373 0.07220 0.44652 0.20609 0.07220 0.49000 

6x6 0.01829 0.07220 0.42206 0.20475 0.07220 0.48633 

7x7 0.01577 0.07220 0.43519 0.20300 0.07220 0.48337 

8x8 0.01909 0.07220 0.41824 0.20198 0.07219 0.47981 

9x9 0.01729 0.07220 0.42767 0.20059 0.07220 0.47688 

10x10 0.01996 0.07219 0.41447 0.19968 0.07219 0.47353 
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Table 2. MSE values of brain image in BNS domain associated with different neighborhood windows. 

Following plots shows the variations in MSE when we increase the window size.   

 

 

Figure 8. Comparison of PSNR values and neighborhood window size in (a) T+ domain, (b) I+ domain, (c) F+ 

domain, (d) T- domain, (e) I- domain, (f) F- domain. 

The following table shows the entropies of each images in bipolar neutrosophic domain. It 

represents the uncertainty level of a gray-scale image. Particularly, higher entropy value means, it 

gives more detailed information about the image; likewise, lower entropy value means, it gives less 

information. Roughly speaking, higher entropy represents distribution level high intensity pixels 

and lower entropy represents distribution level of low intensity pixels.  

 T+ domain I+ domain F+ domain T- domain I- domain F- domain 

Entropy 

Value 
4.5872 0.0258 4.5872 3.9005 0.0361 3.9005 

Table 3. Entropy values of brain image in BNS domain 

 T domain I domain F domain 

Entropy Value 6.0492 3.9579 6.0492 

Table 4. Entropy values of brain image in NS domain 

From the above Table 3 and Table 4. we can clearly see that the variations of entropy values between 

neutrosophic domain and bipolar neutrosophic domain. Entropy values of indeterminacy domain in 

bipolar neutrosophic domain is significantly reduced when compared to neutrosophic domain. So 

we conclude that our bipolar neutrosophic domain of gray scale image performed well. 
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5. Conclusions 

A new technique to represent gray scale image in bipolar neutrosophic domain is proposed. While 

the image is transformed into bipolar neutrosophic domain, the indeterminacy degree of both 

positive and negative membership domain is reduced significantly. So this transformation gives 

more useful information compared to neutrosophic domain. Further, we discussed about the gray 

level distribution of images in bipolar neutrosophic domain through histogram. Selection of 

neighborhood window is important in this transformation. Large window gives best transformation, 

but we lose essential information of original image. We compared most popular metrics PSNR and 

MSE for our transformed images associated with different neighborhood sizes. PSNR and MSE both 

are useful parameters to determine the quality of gray-scale images by analyzing distribution of gray 

levels. Our future work will include image analysis and image processing through bipolar 

neutrosophic domain. 
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Abstract: Neutrosophic set was introduced by Smarandache in 1998. Due to some real time situation, 

decision makers deal with uncertainty and inconsistency to identify the best result. Neutrosophic 

concept helps to investigate the vague or indeterminacy values. Graph structures used to reduce the 

complications in solving the system of equations for finding the decision of some real-life problems. 

In this research study, we introduced the single-valued neutrosophic coloring concept. We introduce 

various notions, single valued neutrosophic vertex coloring, single valued neutrosophic edge 

coloring, and single valued neutrosophic total coloring and support those definitions with some 

examples. 

 

Keywords: single-valued neutrosophic graphs; single-valued neutrosophic vertex coloring; 

single-valued neutrosophic edge coloring; single-valued neutrosophic total coloring. 

 

1. Introduction 

Graph theory plays a vital role in real time problems Graph represents the connection among the 

points by lines and is the useful tool to solve the network problems. It is applicable in many fields such 

as computer science, physical science, electrical communication engineering, economics and 

Operation Research etc. In 1852, Francis Guthrie’s four-color conjecture gave the sparkle for the new 

branch, graph coloring in graph theory. Graph coloring is assigning the color to the vertices or edges 

or both vertices and edges of the graph based on some conditions. After three decades got the solution 

to Guthrie’s conjecture. Graph coloring technique used in many areas like telecommunication, 

scheduling, computer networks etc. Sometime in real-life have to deal with imprecise data and 

uncertain relation between points, in that case fuzzy technique where came. In 1965, Fuzzy set theory 

was introduced by Zadeh [39] and further work on fuzzy graph theory developed by A. Rosenfeld 

[33] in 1975. The fuzzy chromatic number was introduced by Munoz et al. [36] in 2004 and extended 

by C.Eslahchi and B.N.Onagh [23] in 2006. In 2009, S.Lavanya and R.Sattanathan [30] introduced the 

concept fuzzy total coloring. In 2014, Anjaly Kishore, M.S.Sunitha [7] discussed the strong chromatic 

number of fuzzy graphs in their research paper. 
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    Intuitionistic fuzzy sets are dealing membership and non-membership data. Kassimir 

T.Atanassov [13] introduced the concept of intuitionistic fuzzy sets in 1986 and intuitionistic fuzzy 

graph in 1999. Ismail and Rifayathali [28] discussed the coloring of intuitionaistic fuzzy graphs using 

(α, β) cuts in 2015, Rifayathali et al. [32] discussed intuitionistic fuzzy coloring and strong 

intuitionistic fuzzy coloring in 2017 and 2018. 

Vague set concept introduced by Gau and Buehrer [26] in 1993 and in 2014, Akram et al. [11] 

discussed vague graphs and further work extended by Borzooei et al. [14, 15], Vertex and Edge 

coloring of Vague graphs were introduced by Arindam Dey et al [12] in 2018. 

In all real-time cases, the membership and non-membership values are not enough to find the 

result. Sometimes the vague or indeterminacy qualities need to be considered for the decision 

making, in that case intuitionistic fuzzy logic insufficient to give the solution. This situation reasoned 

for to move the new concept, F.Smarandache came with a solution”Neutrosophic logic”. 

Neutrosophic logic play a vital role in several of the real valued problems like law, medicine, 

industry, finance, engineering, IT, etc. 

Neutrosophic set was introduced by F.Smarandache [35] in 1998, Neutrosophic set a 

generalisation of the intuitionistic fuzzy set. It consists truth value, indeterminacy value and false 

values.Wang et al. [38] worked on Single valued neutrosophic sets in 2010. Strong Neutrosophic 

graph and its properties were introduced and discussed by Dhavaseelan et al. [25] in 2015 and Single 

valued neutrosophic concept introduced in 2016 by Akram and Shahzadi [8, 9, 10]. Broumi et al. [16, 

17, 18, 19, 20, 21, 22] extended their works in Single valued neutrosophic graphs, Isolated single 

valued graphs, Uniform single valued graphs, Interval valued neutrosophic graphs (IVNG) and 

Bipolar neutrosophic graphs. Dhavaseelan et al. [24] in 2018, discussed Single valued co-neutrosophic 

graphs in their paper. Sinha et al. [34] extended the single valued work for signed digraphs in 2018 

and Vasile [37] proposed five penta-valued refined neutrosophic indexes representation in his work. 

In 2019, jan et al. in their paper [29] have reviewed the following definitions: Interval-Valued Fuzzy 

Graphs (IVFG), Interval-Valued Intuitionistic Fuzzy Graphs (IVIFG), Complement of IVFG, SVNG, 

IVNG and the complement of SVNG and IVNG. They have modified those definitions, supported 

with some examples. Neutrosophic graphs happen to play a vital role in the building of neutrosophic 

models. Also, these graphs can be used in networking, Computer technology, Communication, 

Genetics, Economics, Sociology, Linguistics, etc., when the concept of indeterminacy is present. 

Abdel-Basset et al. used Neutrosophic concept in their papers [1, 2, 3, 4, 5, 6, 31] to find the 

decisions for some real-life operation research and IoT-based enterprises in 2019. The above papers 

given the idea to interlink the graph coloring concept in SVNG when deal with vague or 

indeterminacy qualities.  

In this research paper, we introduced the concept of single valued neutrosophic vertex coloring, 

single valued neutrosophic edge coloring and single valued neutrosophic total coloring of single 

valued neutrosophic graph and also Strong and Complete Single valued neutrosophic graph coloring 

are discussed with examples. 

Definition 1.1. [35] 

Let X be a space of points(objects). A neutrosophic set A in X is characterized by truth-

membership function 𝑡𝐴(𝑥) , an indeterminacy-membership function 𝑖𝐴(𝑥)  and a falsity-

membership function 𝑓𝐴(𝑥). The functions 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), and 𝑓𝐴(𝑥), are real standard or non-standard 
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subsets of ]0−, 1+[. That is, 𝑡𝐴(𝑥): 𝑋 → ]0−, 1+[ , 𝑖𝐴(𝑥): 𝑋 → ]0−, 1+[ and 𝑓𝐴(𝑥): 𝑋 → ]0−, 1+[ and 0− ≤

𝑡𝐴(𝑥) + 𝑖𝐴(𝑥) + 𝑓𝐴(𝑥)  ≤ 3
+. 

Definition 1.2. [9] 

    A single-valued neutrosophic graphs (SVNG) G = (X, Y) is a pair where X: N → [0,1] is a single-

valued neutrosophic set on N and Y: N × N → [0,1] is a single-valued neutrosophic relation on N 

such that 

𝑡𝑌(𝑥𝑦) ≤ min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) ≤ min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) ≤ max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x,y ∈ N. X and Y are called the single-valued neutrosophic vertex set of G and the single-valued 

neutrosophic edge set of G, respectively. A single-valued neutrosophic relation Y is said to be 

symmetric if t𝑌(xy)  = t𝑌(yx),  i𝑌(xy)  =  i𝑌(yx) and f𝑌(xy)  =  f𝑌(yx), for all x,y ∈ N. Single-valued 

neutrosophic be abbreviated here as SVN. 

Definition 1.3. [10] 

The complement of a SVNG G = (X, Y) is a SVNG 𝐺̅ = (𝑋̅, 𝑌̅), where 

1. 𝑋̅ = 𝑋 

2. 𝑡𝑋̅(𝑥) = 𝑡𝑋(𝑥), 𝑖𝑋̅(𝑥) = 𝑖𝑋(𝑥), 𝑓𝑋̅(𝑥) = 𝑓𝑋(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 

3. 𝑡𝑋̅(𝑥𝑦) = {
min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}  𝑖𝑓  𝑡𝑌(𝑥𝑦) = 0

min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)} − 𝑡𝑌(𝑥𝑦)  𝑖𝑓  𝑡𝑌(𝑥𝑦) > 0
 

    𝑖𝑋̅(𝑥𝑦) = {
min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}  𝑖𝑓  𝑖𝑌(𝑥𝑦) = 0

min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)} − 𝑖𝑌(𝑥𝑦)  𝑖𝑓  𝑖𝑌(𝑥𝑦) > 0
 

    𝑓𝑋̅(𝑥𝑦) = {
max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}  𝑖𝑓  𝑓𝑌(𝑥𝑦) = 0

max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)} − 𝑓𝑌(𝑥𝑦)  𝑖𝑓  𝑓𝑌(𝑥𝑦) > 0
 

for all 𝑥, 𝑦 ∈ 𝑋. 

2. Single-Valued Neutrosophic Vertex Coloring (SVNVC) 

In this section, we have developed SVNVC and this coloring has verified through some examples of 

SVNG, CSVNG and SSVNG. Also discussed some theorems. 

Definition 2.1. 

   A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy set is called a k-SVNVC of a SVNG G = (X, Y) if 

1. ∨ 𝛾𝑖(𝑥) = 𝑋, ∀𝑥 ∈ 𝑋 

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0 

3. For every incident vertices of edge xy of G, min{𝛾𝑖(𝑚1(𝑥)), 𝛾𝑖(𝑚1(𝑦))} =  0,

min{𝛾𝑖(𝑖1(𝑥)), 𝛾𝑖(𝑖1(𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛1(𝑥)), 𝛾𝑖(𝑛1(𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).   

This k-SVNVC of G is denoted by 𝜒𝑣(𝐺), is called the SVN chromatic number of the SVNG G. 

Example 2.2. 
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Consider the SVNG G = (X,E) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝐸 =

{𝑋𝑖𝑋𝑗|𝑖𝑗 = 12,14,15,23,24,25,34,35,45} the membership functions defined as,  

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{
 

 
(0.3,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 1,2

(0.7,0.1,0.2) 𝑓𝑜𝑟 𝑖 = 3

(0.2,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 4

(0.5,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 5

 

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) =

{
 

 
(0.3,0.2,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 12

(0.2,0.1,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 14,24,34,45

(0.3,0.1,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 15,23,25

(0.5,0.1,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 35

 

Let Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4} be a family of SVN fuzzy sets defined on X as follows: 

𝛾1(𝑥𝑖) = {
(0.3,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 1,3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾2(𝑥𝑖) = {
(0.7,0.1,0.2) 𝑓𝑜𝑟 𝑖 = 2

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾3(𝑥𝑖) = {
(0.5,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾4(𝑥𝑖) = {
(0.2,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 5

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4}  fulfilled the conditions of SVNVC of the graph G. Any families 

below four points could not satisfy our definition. Hence the SVN chromatic number 𝜒𝑣(𝐺) of the 

above example is 4. 

Definition 2.3. 

A SVNG G = (X, Y) is called complete single-valued neutrosophic graph (CSVNG) if the following 

conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x,y ∈ X. 

Definition 2.4. 

A SVNG G = (X, Y) is called strong single-valued neutrosophic graph (SSVNG) if the following 

conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 
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𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all (x,y) ∈ Y . 

Example 2.5. 

Consider the SSVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,15,23,34,45} the membership functions defined as, 

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{
 
 

 
 
(0.1,0.2,0.9) 𝑓𝑜𝑟 𝑖 = 1

(0.6,0.7,0.4) 𝑓𝑜𝑟 𝑖 = 2

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0.7,0.8,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0.5,0.5,0.6) 𝑓𝑜𝑟 𝑖 = 5

 

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) = {

(0.1,0.2,0.9) 𝑓𝑜𝑟 𝑖𝑗 = 12,15

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 23,34

(0.5,0.5,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 45

 

Let Γ = {𝛾1, 𝛾2, 𝛾3} be a family of SVN fuzzy sets defined on X as follows: 

𝛾1(𝑥𝑖) = {

(0.1,0.2,0.9) 𝑓𝑜𝑟 𝑖 = 1

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾2(𝑥𝑖) = {

(0.6,0.7,0.4) 𝑓𝑜𝑟 𝑖 = 2

(0.7,0.8,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾3(𝑥𝑖) = {
(0.5,0.5,0.6) 𝑓𝑜𝑟 𝑖 = 5

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3}  fulfilled the conditions of Strong SVNVC of the graph G. Any 

families below three points could not satisfy our definition. Hence the SSVN chromatic number 

𝜒𝑣(𝐺) of the above example is 3. 

Example 2.6. 

Consider the CSVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,13,14,23,24,34} the membership functions defined as,  

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{
 

 
(0.7,0.7,0.1) 𝑓𝑜𝑟 𝑖 = 1

(0.6,0.7,0.3) 𝑓𝑜𝑟 𝑖 = 2

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0.1,0.1,0.8) 𝑓𝑜𝑟 𝑖 = 4

 

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) = {

(0.6,0.7,0.3) 𝑓𝑜𝑟 𝑖𝑗 = 12

(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 13,23

(0.1,0.1,0.8) 𝑓𝑜𝑟 𝑖𝑗 = 14,24,34

 

Let Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4} be a family of SVN fuzzy sets defined on X as follows: 
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𝛾1(𝑥𝑖) = {
(0.7,0.7,0.1) 𝑓𝑜𝑟 𝑖 = 1

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾2(𝑥𝑖) = {
(0.6,0.7,0.3) 𝑓𝑜𝑟 𝑖 = 2

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾3(𝑥𝑖) = {
(0.3,0.3,0.7) 𝑓𝑜𝑟 𝑖 = 3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾4(𝑥𝑖) = {
(0.1,0.1,0.8) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4}  fulfilled the conditions of complete SVNVC of the graph G. Any 

families below four points could not satisfy our definition. Hence the SVN chromatic number 𝜒𝑣(𝐺) 

of the above example is 4. 

Theorem 2.7. 

For any graph CSVNG with n vertices, 𝜒𝑣(𝐺) = 𝑛. 

Proof: 

By the definition of CSVNG, all the vertices are adjacent to each other. Each color class contains 

exactly one vertex with the value (𝑡𝑋(x), 𝑡𝑋(x),𝑡𝑋(x))> 0, thus remaining vertices are with the value 

(𝑡𝑋(x), 𝑡𝑋(x),𝑡𝑋(x)) = 0. Hence 𝜒𝑣(𝐺) = 𝑛. 

Theorem 2.8. 

For any SSVNG G, then 𝜒𝑣̿̿ ̿(𝐺) = 𝜒𝑣(𝐺). 

Proof. It is obvious. 

3. Single-Valued Neutrosophic Edge Coloring (SVNEC) 

In this section, we introduced and discussed SVNEC with an example and theorems. 

Definition 3.1. 

A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy set is called a k-SVNEC of a SVNG G = (X,Y) if 

1. ∨ 𝛾𝑖(𝑥𝑦) = 𝑌, ∀𝑥𝑦 ∈ 𝑌 

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0 

3. For every strong edge xy of G, min{𝛾𝑖(𝑚2(𝑥𝑦))} =  0, min{𝛾𝑖(𝑖2(𝑥𝑦))} =

0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛2(𝑥𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘). 

This k-SVNEC of G is denoted by𝜒𝑒(𝐺), is called the SVN chromatic number of the SVNG G. 

Example 3.2. 

Consider the SVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,13,14,23,24,34} the membership functions defined as, 
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(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{
 

 
(0.3,0.1,0.6) 𝑓𝑜𝑟 𝑖 = 1

(0.2,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 2

(0.5,0.2,0.4) 𝑓𝑜𝑟 𝑖 = 3

(0.4,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 4

 

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) = {

(0.2,0.1,0.4) 𝑓𝑜𝑟 𝑖𝑗 = 12,23,24

(0.3,0.1,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 13,14

(0.4,0.1,0.4) 𝑓𝑜𝑟 𝑖𝑗 = 24

 

Let Γ = {𝛾1, 𝛾2, 𝛾3} be a family of SVN fuzzy sets defined on Y as follows: 

𝛾1(𝑥𝑖𝑥𝑗) = {
(0.2,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 12,34

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾2(𝑥𝑖𝑥𝑗) = {
((0.3,0.1,0.6)) 𝑓𝑜𝑟 𝑖 = 14,23

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾3(𝑥𝑖𝑥𝑗) = {
(0.4,0.1,0.4) 𝑓𝑜𝑟 𝑖 = 13,24

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3} fulfills the conditions of SVNEC of SVNG. Any families below three 

members could not satisfy our definition. Hence, the SVN chromatic number 𝜒𝑒(𝐺) of the above 

example is 3. 

4. Single-Valued Neutrosophic Total Coloring (SVNTC) 

In this section, we defined SVNTC supported by an example. 

Definition 4.1. 

A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy sets on the SVN vertex set X is called a k-SVNTC of 

SVNG G = (X, Y) if 

1. ∨ 𝛾𝑖(𝑥) = 𝑋, ∀𝑥 ∈ 𝑋 and ∨ 𝛾𝑖(𝑥𝑦) = 𝑌, ∀𝑥𝑦 ∈ 𝑌 

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0 

3. For every incident vertices of edge xy of G, min{𝛾𝑖(𝑚1(𝑥)), 𝛾𝑖(𝑚1(𝑦))} =  0,

min{𝛾𝑖(𝑖1(𝑥)), 𝛾𝑖(𝑖1(𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛1(𝑥)), 𝛾𝑖(𝑛1(𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).   For every strong 

edge xy of G, min{𝛾𝑖(𝑚2(𝑥𝑦))} =  0, min{𝛾𝑖(𝑖2(𝑥𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛2(𝑥𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘). 

This k-SVNTC of G is denoted by𝜒𝑡(𝐺), is called the SVN chromatic number of the SVNG G.  

Example 4.2. 

Consider the SVNG G = (X,Y) with SVN vertex set 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and SVN edge set 𝑌 =

{𝑥𝑖𝑥𝑗|𝑖𝑗 = 12,13,14,15,23,24,25,34,35,45} the membership functions defined as, 

(𝑚1(𝑥𝑖), 𝑖1(𝑥𝑖), 𝑛1(𝑥𝑖)) =

{
 
 

 
 
(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 1

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 2

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 3

(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0.7,0.5,0.3) 𝑓𝑜𝑟 𝑖 = 5

 

(𝑚2(𝑥𝑖𝑥𝑗), 𝑖2(𝑥𝑖𝑥𝑗), 𝑛2(𝑥𝑖𝑥𝑗)) =

{
 

 
(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖𝑗 = 12,13,14,15

(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖𝑗 = 45

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖𝑗 = 23,24,25

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖𝑗 = 34,35

 

Let Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5} be a family of SVN fuzzy sets defined on Y as follows: 
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𝛾1(𝑥𝑖) = {
(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 1

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾2(𝑥𝑖) = {
(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 2

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾3(𝑥𝑖) = {
(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 3

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾4(𝑥𝑖) = {
(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖 = 4

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾5(𝑥𝑖) = {
(0.7,0.5,0.3) 𝑓𝑜𝑟 𝑖 = 5

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾1(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 12

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 35

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾2(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 13

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 24

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾3(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 14

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 25

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾4(𝑥𝑖𝑥𝑗) = {

(0.8,0.6,0.2) 𝑓𝑜𝑟 𝑖 = 45

(0.4,0.2,0.6) 𝑓𝑜𝑟 𝑖 = 23

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

𝛾5(𝑥𝑖𝑥𝑗) = {

(0.3,0.1,0.7) 𝑓𝑜𝑟 𝑖 = 15

(0.5,0.3,0.5) 𝑓𝑜𝑟 𝑖 = 34

(0,0,1) 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠

 

Hence the family Γ = {𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5} fulfills the conditions of SVNTC of SVNG. Any families below 

five members could not satisfy our definition. Hence the SVN chromatic number 𝜒𝑡(𝐺) of the above 

example is 5. 

5. Conclusions  

Single Valued Neutrosophic Coloring concept introduced in this paper. Single valued neutrosophic 

vertex coloring, single valued neutrosophic edge coloring and single valued neutrosophic total 

coloring are defined. All thus definitions are developed and supported by some of the examples. In 

future, it will be extended to examine the theory of SVNC with the irregular colorings of graphs. 
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Abstract: The selection of suitable machine tools for a manufacturing company is one of the 

significant points to achieving high competitiveness in the market. Besides, an appropriate choice 

of machine tools is very significant as it helps to realize full production quickly. Today's market 

offers many more choices for machine tool alternatives. There are also many factors one should 

consider as part of the appropriate machine tool selection process, including productivity, 

flexibility, compatibility, safety, cost, etc. Consequently, evaluation procedures involve several 

objectives, and it is often necessary to compromise among possibly conflicting tangible and 

intangible factors. For these reasons, multiple criteria decision making (MCDM) is a useful approach 

to solve this kind of problem. Most of the MCDM models are mathematical and ignore qualitative 

and often subjective considerations. The use of neutrosophic set theory allows incorporating 

qualitative and partially known information into the decision model. This paper describes a 

neutrosophic Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) based 

methodology for evaluation and selection of vertical CNC machining centers for a manufacturing 

company in Tenth of Ramadan, Egypt. 

Keywords: Machine Tool; Neutrosophic MOORA; MCDM 

 

 

1. Introduction 

Selecting an appropriate machine tool is one of the most complicated and time-consuming 

problems for manufacturing companies due to many feasible alternatives and conflicting objectives. 

The determination and evaluation of positive and negative characteristics of one alternative relative 

to others is a difficult task. The selection process of suitable machine tools has to begin with a critical 

evaluation of the procedures on the shop floor by considering an array of quantitative, qualitative, 

and economic concerns. Hence the decision-maker (engineer or manager) needs a lot of criteria to be 

found and a large amount of data to be analyzed for a proper and sufficient evaluation. Consequently 

using proper machine tools in a manufacturing facility can improve the production process, provide 

effective utilization of resources, increase productivity, and enhance system flexibility, repeatability, 

and reliability. Many potential criteria, such as flexibility, compatibility, safety, maintainability, cost, 

etc. must be considered in the selection procedure of a machine tool. Therefore machine tool selection 

can be viewed as a multiple criteria decision making (MCDM) problem in the presence of many 

quantitative and qualitative criteria. The MCDM methods deal with the process of making decisions 

in the presence of multiple criteria or objectives. A decision-maker (DM) is required to choose among 

quantifiable or non-quantifiable and various criteria. The DM’s evaluations on qualitative criteria are 

always subjective and thus imprecise. The objectives are usually conflicting, and therefore, the 

solution is highly dependent on the preferences of the DM. Besides, it is complicated to develop a 
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selection criterion that can precisely describe the choice of one alternative over another. The 

evaluation data of machine tool alternatives suitability for various subjective criteria and the weights 

of the criteria are usually expressed in linguistic terms. This makes neutrosophic logic a more natural 

approach to this kind of problems.  

Many researchers have attempted to use fuzzy MCDM methods for selection problems. The 
purpose of this paper is to present a hybrid method between MOORA and Neutrosophic in the framework of 
neutrosophic for the selection of machine tool with a focus on multi-criteria and multi-group environment. 
These days, Companies, organizations, factories seek to provide a fast and a good service to meet the 
requirements of peoples or customers. The selecting of the best supplier increasing the efficiency of any 
organization whether company, factory according to [1]. Hence, for selecting the best supplier selection there 
are much of methodologies we presented some of them such as fuzzy sets (FS), Analytic network process 
(ANP), Analytic hierarchy process(AHP), (TOPSIS) technique for order of preference by similarity to ideal 
solution, (DSS) Decision support system, (MOORA)multi-objective optimization by ratio analysis. 
 
1.1 Supplier selection  

A Supplier choice is viewed as one of the most significant parts of creation and indecency the 

board for some, association’s administration. The primary objective of provider choice is to recognize 

providers with the most outstanding ability for gathering an association needs reliably and with the 

base expense. They are utilizing a lot of standard criteria and measures for abroad examination of 

providers. Be that as it may, the degree of detail used for inspecting potential providers may differ 

contingent upon an association's needs.  

The fundamental reason and target objective of determination are to recognize high‐potential 

providers. To pick providers, the present association judge of every provider as per the capacity of 

gathering the association reliably and financially savvy its needs utilizing choice criteria and proper 

measure. Criteria and standards are created to be material to every one of the providers being 

considered and to mirror the company's needs and its supply and innovation technique. We show 
supplier evaluation and selection process in Fig.1 and in Fig.2. 

 
Figure 1. Supplier evaluation and selection process. 
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Figure 2. Supplier evaluation and selection process. 

 

 
Figure 3. MOORA method belongs to MADM 

1.2 MOORA 

Multi-Objective Optimization based on Ratio Analysis (MOORA), otherwise called multi-criteria 

or multi-property advancement. MOORA the technique looks to rank or chooses the best elective 

from accessible choice was presented by Brauers and Zavadskas in 2006. The MOORA technique has 

a considerable scope of utilizations to settle on choices in the clashing and troublesome region of 

production network condition.  

MOORA can be connected in the task determination, process structure choice, area choice, item 

choice and so on the way toward characterizing the choice objectives, gathering essential data and 
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choosing the best ideal option is known as necessary leadership process. The fundamental thought 

of the MOORA technique is to ascertain the general execution of every opportunity as the contrast 

between the wholes of its standardized exhibitions, which has a place with expense and advantage 

criteria. This strategy connected in different fields effectively, for example, venture the executives. 

Fig.3 shows to which category belongs the method of MOORA. 

 

1.3 Neutrosophic 

There are numerous vulnerabilities in everyday life. The rationale of old-style science regularly lacks 

to clarify these vulnerabilities. Since it isn't always conceivable to call a circumstance or occasion right 

or wrong, for instance, we can't generally call the climate cold or hot. It very well may be heated for 

a few, frozen for a few and cool for other people.  

Comparable circumstances in which we stay ambivalent may show up in the expert capability 

appraisal. It is frequently hard to decide if work is done or an item delivered is consistently definite 

great or unmistakable awful. Such a circumstance lessens the unwavering quality of assessing 

proficient proficiencies. To adapt to these vulnerabilities, Smarandache characterized the idea of the 

neutrosophic rationale and neutrosophic set [2] in 1998. In the concept of the neutrosophic 

explanation and neutrosophic bunches, there is a T level of participation, and I level of indeterminacy 

and F level of non-enrollment. These degrees are characterized autonomously of one another. It has 

a neutrosophic esteem (T, I, F) structure. A condition is dealt with as indicated by the two its precision 

and its error and its vulnerability. In this way, neutrosophic rationale and neutrosophic set assistance 

us to clarify numerous vulnerabilities in our lives. Furthermore, various scientists have made 

examinations on this hypothesis [3 - 7].  

We present some of the methodologies that are used in the multi-criteria decision making and 

presenting the illustration between supplier selection, MOORA, and Neutrosophic. Hence the goal 

of this paper to present the hybrid of the MOORA method with neutrosophic as a methodology for 

MCDM.  

This is ordered as follows: Section 2 gives an insight into some basic definitions on neutrosophic 

sets and MOORA. Section 3 explains the proposed methodology of neutrosophic MOORA model. In 

Section 4 a numerical example is presented in order to explain the proposed methodology. Finally, 

the conclusions 

2. Preliminaries  

In this Section, the fundamental definitions including neutrosophic set, single-esteemed 

neutrosophic sets, trapezoidal neutrosophic numbers and tasks on trapezoidal neutrosophic numbers 

are characterized. 

Definition 2.1 Let 𝑋 be a space of points and 𝑥∈𝑋. A neutrosophic set 𝐴 in 𝑋 is definite by a truth-

membership function  𝑇𝐴 (𝑥), an indeterminacy-membership function 𝐼𝐴 (𝑥) and a falsity-membership 

function 𝐹𝐴 (𝑥), 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥) are real standard or real nonstandard subsets of ]-0, 1+[. That 

is 𝑇𝐴 (𝑥):𝑋→]-0, 1+ [,𝐼𝐴 (𝑥):𝑋→]-0, 1+[ and 𝐹𝐴 (𝑥):𝑋→]-0, 1+[. There is no restriction on the sum of 𝑇𝐴 (𝑥), 

𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥), so 0− ≤ sup (𝑥) + sup 𝑥 + sup 𝑥 ≤3+. 

Definition 2.2: Let 𝑋 be a universe of discourse. A single valued neutrosophic set 𝐴 over 𝑋 is an object 

taking the form 𝐴= {〈𝑥, 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥), 𝐹𝐴 (𝑥), 〉:𝑥∈𝑋}, where 𝑇𝐴 (𝑥):𝑋→ [0,1], 𝐼𝐴 (𝑥):𝑋→ [0,1] and 

𝐹𝐴 (𝑥):𝑋→[0,1] with 0≤ 𝑇𝐴 (𝑥) + 𝐼𝐴 (𝑥) + 𝐹𝐴 (𝑥) ≤3 for all 𝑥∈𝑋. The intervals 𝑇𝐴 (𝑥), 𝐼𝐴 (𝑥) and 𝐹𝐴 (𝑥) 

represent the truth-membership degree, the indeterminacy-membership degree and the falsity 

membership degree of 𝑥 to 𝐴, respectively. For convenience, a SVN number is represented by 𝐴= (𝑎, 

b, c), where 𝑎, 𝑏, 𝑐∈ [0, 1] and 𝑎+𝑏+𝑐≤3. 

Definition 2.3: Suppose that  𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃ ϵ [0,1] and 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 𝜖 R where 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 

𝑎4  . Then a single valued trapezoidal neutrosophic number, 𝑎 ̃=〈(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4); 𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃〉 is 
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a special neutrosophic set on the real line set R whose truth-membership, indeterminacy-membership 

and falsity-membership functions are defined as: 

𝑇𝑎̃  (𝑥) = 

{
 
 

 
 

     

𝛼𝑎̃  (
𝑥−𝑎1

𝑎2−𝑎1
)         (𝑎1 ≤ 𝑥 ≤  𝑎2) 

     𝛼𝑎̃                     (𝑎2 ≤ 𝑥 ≤  𝑎3)

𝛼𝑎̃  (
𝑎4−𝑥

𝑎4−𝑎3
)         (𝑎3 ≤ 𝑥 ≤  𝑎4)

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                              (1) 

𝐼𝑎̃  (𝑥) = 

{
 
 

 
 

(𝑎2−𝑥+𝜃𝑎̃(𝑥−𝑎1))

(𝑎2−𝑎1)
         (𝑎1 ≤ 𝑥 ≤  𝑎2) 

     𝛼𝑎̃                         (𝑎2 ≤ 𝑥 ≤  𝑎3)
(𝑥−𝑎3+𝜃𝑎̃(𝑎4−𝑥))

(𝑎4−𝑎3)
        (𝑎3 ≤ 𝑥 ≤  𝑎4)

      1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            ,

                                            (2) 

𝐹𝑎̃  (𝑥) = 

{
 
 

 
 

(𝑎2−𝑥+𝛽𝑎̃(𝑥−𝑎1))

(𝑎2−𝑎1)
         (𝑎1 ≤ 𝑥 ≤  𝑎2) 

     𝛼𝑎̃                         (𝑎2 ≤ 𝑥 ≤  𝑎3)
(𝑥−𝑎3+𝛽𝑎̃(𝑎4−𝑥))

(𝑎4−𝑎3)
        (𝑎3 ≤ 𝑥 ≤  𝑎4)

      1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            ,

                                           (3) 

Where  𝛼𝑎̃  , 𝜃𝑎̃  and 𝛽𝑎̃ and represent the maximum truth-membership degree, minimum 

indeterminacy-membership degree and minimum falsity-membership degree respectively. A single 

valued trapezoidal neutrosophic number 𝑎 ̃=〈(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4); 𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃〉 may express an ill-

defined quantity of the range, which is approximately equal to the interval [𝑎2 , 𝑎3] . 

Definition 2.4: Let 𝑎̃=〈(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4); 𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃〉 and 𝑏̃=〈(𝑏1 , 𝑏2 , 𝑏3 , 𝑏4); 𝛼𝑏̃ , 𝜃𝑏̃ , 𝛽𝑏̃〉 be 

two single valued trapezoidal neutrosophic numbers and ϒ≠ 0  be any real number. Then, 

1. Addition of two trapezoidal neutrosophic numbers  

𝑎̃ + 𝑏̃ =〈(𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 +𝑏3, 𝑎4 +𝑏4); 𝛼𝑎̃ ᴧ 𝛼𝑏̃, 𝜃𝑎̃ ᴠ 𝜃𝑏̃, 𝛽𝑎̃ ᴠ 𝛽𝑏̃〉 

2. Subtraction of two trapezoidal neutrosophic numbers  

    𝑎 ̃ - 𝑏̃ =〈(𝑎1 - 𝑏4, 𝑎2 - 𝑏3, 𝑎3 - 𝑏2, 𝑎4 - 𝑏1); 𝛼𝑎̃ ᴧ 𝛼𝑏̃, 𝜃𝑎̃ ᴠ 𝜃𝑏̃, 𝛽𝑎̃ ᴠ 𝛽𝑏̃〉 

3. Inverse of trapezoidal neutrosophic number  

ã−1 =〈( 
1

𝑎4
  , 

1

𝑎3
 ,  

1

𝑎2
 , 

1

𝑎1
 ) ; 𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃〉                 where (𝑎 ̃ ≠ 0) 

4. Multiplication of trapezoidal neutrosophic number by constant value  

ϒ𝑎 ̃ = {
〈(ϒ𝑎1 ,ϒ𝑎2 ,ϒ𝑎3 ,ϒ𝑎4);  𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃〉      if  (ϒ > 0)

〈(ϒ𝑎4 ,ϒ𝑎3 ,ϒ𝑎2 ,ϒ𝑎1);  𝛼𝑎̃ , 𝜃𝑎̃ , 𝛽𝑎̃〉      if  (ϒ < 0)
 

5. Division of two trapezoidal neutrosophic numbers  

ã

𝑏̃
 = 

{
 
 

 
 〈(  

𝑎1

𝑏4
  ,
𝑎2

𝑏3
 ,

𝑎3

𝑏2
 ,
𝑎4

𝑏1
 );  𝛼𝑎̃ ᴧ 𝛼𝑏̃ , 𝜃𝑎̃ ᴠ 𝜃𝑏̃ , 𝛽𝑎̃  ᴠ 𝛽𝑏̃〉       if  (𝑎4 > 0 ,  𝑏4 > 0)

〈(  
𝑎4

𝑏4
  ,
𝑎3

𝑏3
 ,

𝑎2

𝑏2
 ,
𝑎1

𝑏1
 );  𝛼𝑎̃ ᴧ 𝛼𝑏̃ , 𝜃𝑎̃ ᴠ 𝜃𝑏̃ , 𝛽𝑎̃  ᴠ 𝛽𝑏̃〉       if  (𝑎4 < 0 ,  𝑏4 > 0)

〈(  
𝑎4

𝑏1
  ,
𝑎3

𝑏2
 ,

𝑎2

𝑏3
 ,
𝑎1

𝑏4
 );  𝛼𝑎̃ ᴧ 𝛼𝑏̃ , 𝜃𝑎̃ ᴠ 𝜃𝑏̃ , 𝛽𝑎̃  ᴠ 𝛽𝑏̃〉       if  (𝑎4 < 0 ,  𝑏4 < 0)

 

6. Multiplication of trapezoidal neutrosophic numbers  

𝑎̃𝑏̃ = {

〈(𝑎1𝑏1 , 𝑎2𝑏2 , 𝑎3𝑏3 , 𝑎4𝑏4); 𝛼𝑎̃ ᴧ 𝛼𝑏̃ , 𝜃𝑎̃ ᴠ 𝜃𝑏̃ , 𝛽𝑎̃ ᴠ 𝛽𝑏̃〉      if  (𝑎4 > 0 ,  𝑏4 > 0)

〈(𝑎1𝑏4 , 𝑎2𝑏3 , 𝑎3𝑏2 , 𝑎4𝑏1); 𝛼𝑎̃ ᴧ 𝛼𝑏̃ , 𝜃𝑎̃ ᴠ 𝜃𝑏̃ , 𝛽𝑎̃ ᴠ 𝛽𝑏̃〉      if  (𝑎4 < 0 ,  𝑏4 > 0)

〈(𝑎4𝑏4 , 𝑎3𝑏3 , 𝑎2𝑏2 , 𝑎1𝑏1); 𝛼𝑎̃ ᴧ 𝛼𝑏̃ , 𝜃𝑎̃ ᴠ 𝜃𝑏̃ , 𝛽𝑎̃ ᴠ 𝛽𝑏̃〉      if  (𝑎4 < 0 ,  𝑏4 < 0)

 

3. Methodology  
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The functionality of linguistic variables, words have more extent to describe the semantic and 

sentimental expressions compared with numbers. This research chooses trapezoidal neutrosophic 

numbers, which includes nine parameters to model linguistic variables. The trapezoidal neutrosophic 

scales used in this proposed research exhibited in Table 1. 

Table 1. Semantic expressions for the significance weights of criteria 

Linguistic expressions 
Trapezoidal neutrosophic numbers (T, I, I, 

F; αã, θã, βã) 

Just Equal (JE) 
(0.1, 0.2, 0.3, 0.4; 0.5, 0.1, 0.3) 

(0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) 

Equal importance (EI) (0.3, 0.4, 0.4, 0.5; 1.0, 0.1, 0.1) 

Weak importance of one over another (WIO) (0.4, 0.5, 0.5, 0.6; 0.7, 0.3, 0.2) 

Essential or strong importance (VRS) (0.5, 0.6, 0.6, 0.7; 0.9, 0.2, 0.1) 

Very Strong Importance (AS) 

(0.6, 0.7, 0.7, 0.8; 0.8, 0.3, 0.5) 

(0.7, 0.8, 0.8, 0.9; 0.8, 0.3, 0.5) 

(0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) 

 

In this section, the steps of the suggested neutrosophic MOORA framework are presented with 

detail. The suggested framework consists of such steps as follows: 

Step 1. Constructing model and problem structuring. 

a. Constitute a group of decision-makers. 

b. Formulate the problem based on the opinions of decision-makers 

Step 2. Making the pairwise comparisons matrix and determining the weight based on opinions of 

(DMs). 

a. Identify the criteria and sub criteria C = {C1, C2, C3…Cm}. 

b. Making matrix among criteria n × m based on opinions of decision-makers. 

                C1                    C2             …            Cm 

W = 

C1
C2
C3
Cn

  [

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢, 𝑢11)

(𝑙21, 𝑚21𝑙 , 𝑚21𝑢, 𝑢21)
…

(𝑙𝑛1, 𝑚𝑛1𝑙 , 𝑚𝑛1𝑢, 𝑢𝑛1)

         

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢, 𝑢11)

(𝑙22, 𝑚22𝑙 , 𝑚22𝑢, 𝑢22)
…

(𝑙𝑛2, 𝑚𝑛2𝑙 , 𝑚𝑛2𝑢, 𝑢𝑛2)

             

…
…
…
…

            

(𝑙1𝑛 , 𝑚1𝑛𝑙 , 𝑚1𝑛𝑢, 𝑢1𝑛)

(𝑙2𝑛, 𝑚2𝑛𝑙 , 𝑚2𝑛𝑢, 𝑢2𝑛)
…

(𝑙𝑛𝑛 , 𝑚𝑛𝑛𝑙 , 𝑚𝑛𝑛𝑢, 𝑢𝑛𝑛)

]  

                                                                              (4)      

c. Decision-makers make pairwise comparisons matrix between criteria compared to each 

criterion. 

d. According to, the opinion of decision-makers should be among from 0 to 1 not negative. 

Then, we transform neutrosophic matrix to pairwise comparisons deterministic matrix by 

adding (α, θ, β) and using the following equation to calculate the accuracy and score.  

i.   S (ã𝑖𝑗) = 
1

16
 [𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã -βã )                (5) 

ii.   A (ã𝑖𝑗) = 
1

16
 [𝑎1 + 𝑏1 + 𝑐1 + 𝑑1] × (2 + αã - θã +βã )                (6) 

e. We obtain the deterministic matrix by using S (ã𝑖𝑗). 
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f. From the deterministic matrix we obtain the weighting matrix by dividing each entry on the 

sum of the column. 

Step 3. Determine the decision-making matrix (DMM). The method begin with define the available 

alternatives and criteria.  

                 C1                  C2              …            Cm 

R = 

A1
A2
A3
An

  [

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢, 𝑢11)

(𝑙21, 𝑚21𝑙 , 𝑚21𝑢, 𝑢21)
…

(𝑙𝑛1, 𝑚𝑛1𝑙 , 𝑚𝑛1𝑢, 𝑢𝑛1)

         

(𝑙11, 𝑚11𝑙 , 𝑚11𝑢, 𝑢11)

(𝑙22, 𝑚22𝑙 , 𝑚22𝑢, 𝑢22)
…

(𝑙𝑛2, 𝑚𝑛2𝑙 , 𝑚𝑛2𝑢, 𝑢𝑛2)

             

…
…
…
…

            

(𝑙1𝑛 , 𝑚1𝑛𝑙 ,𝑚1𝑛𝑢, 𝑢1𝑛)

(𝑙2𝑛, 𝑚2𝑛𝑙 ,𝑚2𝑛𝑢, 𝑢2𝑛)
…

(𝑙𝑛𝑛 , 𝑚𝑛𝑛𝑙 ,𝑚𝑛𝑛𝑢, 𝑢𝑛𝑛)

]             

                     (7) 

Where Ai represents the available alternatives where i = 1… n and the Cj represents criteria  

a. Decision makers (DMs) make pairwise comparisons matrix between criteria compared to 

each criterion. Using the Eqs. (5, 6) to calculate the accuracy and score.  

b. We obtain the deterministic matrix by using S (ã𝑖𝑗). 

Step 4. Calculate the normalized decision-making matrix from previous matrix (DMM). 

a. Thereby, normalization is carried out, where the Euclidean norm is obtained according to 

Eq. (8) to the criterion𝐸𝑗. 

i.  |𝐸𝑦𝑗|  = √∑ 𝐸𝑖
2𝑛

1                                                     (8) 

The normalization of each entry is undertaken according to Eq. (9) 

ii. 𝑁𝐸𝑖𝑗  = 
𝐸𝑖𝑗

|𝐸𝑗|  
                                                          (9) 

Step 5. Compute the aggregated weighted neutrosophic decision matrix (AWNDM) as the          

following:  

i. 𝑋́  =     X   ×   W                                               (10) 

Step 6. Compute the contribution of each alternative 𝑁𝑦𝑖  the contribution of each alternative 

i. 𝑁𝑦𝑖  = ∑ 𝑁𝑦𝑖    
𝑔
𝑖=1 -   ∑ 𝑁𝑥𝑗  

𝑚
𝑗=𝑔+1                                         (11) 

Step 7. Rank the alternatives. 

 

4. Practical example  

4.1 Case study 

A real-world case issue is chosen to represent the utilization of the proposed methodology. The 

picked organization is a medium-sized assembling endeavor, which utilizes around 75 individuals 

and situated in the Tenth of Ramadan, Egypt. It makes a wide assortment of extra parts for the car 

business. In particular, the organization concentrated on sizeable measured gathering and 

assembling organizations working for the car business. Its creation fan is full including motor 

mountings, encasings, front suspension arms, fan sharp edges, indoor regulator lodgings, numerous 

sorts of riggings, entryway rollers, entryway handles, and so forth. The organization likewise delivers 

molds which are utilized to fabricate the elastic, metal, and aluminum parts. While different kinds of 

CNC and manual machine devices are utilized for normal generation, once in a while manual 

machine apparatuses are for the most part utilized as reinforcements. The organization is a metal 

machining activity venture demonstrating qualities of both occupation shop and clump creation. 

Thus client request sizes go in a wide edge. Truly, the organization has gotten an abnormal state of 

benefits, which began to decay as a result of a decrease in the interest level because of an innovative 

change and economic situations.  
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For instance, once in a while an essential client's requests require the expansion of the new CNC 

machining focuses. In addition, in some cases existing client requests require improved machining 

abilities including the buy of the specific CNC machining focuses. Therefore, the organization the 

board chose to pull in new clients by offering new aptitudes which incorporate growing machining 

limit and ability, lessening creation costs, expanding item quality, and shortening conveyance time. 

This is a basic inspiration for the first venture. First, a project team, including three engineers and 

two managers working for the company, was constructed. Then a detailed interview was conducted 

to determine the most suitable type of equipment for the company’s competitiveness. At this point, 

new vertical CNC machining centers for the company’ immediate needs were decided to purchase. 

The company considered four different alternative models of the three different manufacturers, 

which are denoted as A1, A2, A3, and A4, respectively. Furthermore, a detailed questionnaire related 

to the data regarding the qualitative and quantitative criteria for the machine tool selection model 

was prepared. Then a lot of face-to-face interviews were held to develop reliable information on the 

selected criteria and alternatives. After a set of interviews, four criteria were determined to perform 

the analysis. The four criteria are cost, operative flexibility, installation easiness, maintainability, and 

serviceability, which are denoted as C1, C2, C3, and C4, respectively. Cost is the purchasing cost of 

the machine tool. Operative flexibility means the possibility of using the machine tool as desired. It 

must be utilized when needed. Installation easiness means having the positive effects of the 

convenience of installation. Simple installation is practical and fast, along with installation time 

savings without requiring any particular technical ability.  

Maintainability imparts to a machine tool an inherent ability to be maintained with reduced 

person-hours and skill levels, and fewer tools and support equipment. It is also the probability that 

a machine can be kept in an operational condition. Serviceability is defined as the ease with which all 

maintenance activities can be performed on a system. It is also defined as the ease with which all 

services, including implementation services, post-implementation professional services, and 

managed services can be performed. 

 

4.2 Results 

The aim of using Neutrosophic MOORA is to determine the importance weight of the criteria, 

then used to the ranking of the alternatives. 

Step 1. Constitute a group of decision-makers. 
Step 2. We determine the importance of each criteria based on opinion of all decision-makers as in Table 2, 
using the Eq.4. 

Table 2. The comparison matrix between criteria for calculating weights 

weights 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 W 

𝐂𝟏 (0.5, 0.5,0.5,0.5) (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) (0.5, 0.6, 0.6, 0.7; 0.9, 0.2, 0.1) (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) 0.17 

𝐂𝟐 (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) (0.5, 0.5,0.5,0.5) (0.7, 0.8, 0.8, 0.9; 0.8, 0.3, 0.5) (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) 0.23 

𝐂𝟑 (0.7, 0.8, 0.8, 0.9; 0.8, 0.3, 0.5) (0.4, 0.5, 0.5, 0.6; 0.7, 0.3, 0.2) (0.5, 0.5,0.5,0.5) (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) 0.33 

𝐂𝟒 (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) (0.5, 0.6, 0.6, 0.7; 0.9, 0.2, 0.1) (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) (0.5, 0.5,0.5,0.5) 0.27 

 We show the weights of criteria in Fig.4.                     
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Figure 4. Weights of criteria. 

Step 3. Construct the matrix that representing the ratings given by every DM between the criteria and 

alternatives, by using the Eq.7. 

Every decision maker makes the evaluation matrix via comparing the four alternatives relative 

to each criteria by using the trapezoidal neutrosophic numbers scale in Table 1 as shown in Table 3. 

Table 3. The comparison matrix between criteria for calculating weights 

 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 

𝐀𝟏 (0.4, 0.5, 0.5, 0.6; 0.7, 0.3, 0.2) (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) (0.5, 0.6, 0.6, 0.7; 0.9, 0.2, 0.1) (0.5, 0.6, 0.6, 0.7; 0.9, 0.2, 0.1) 

𝐀𝟐 (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) (0.5, 0.6, 0.6, 0.7; 0.9, 0.2, 0.1) (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) 

𝐀𝟑 (0.7, 0.8, 0.8, 0.9; 0.8, 0.3, 0.5) (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) (0.9, 1.0, 1.0,1.0; 0.1, 0.2, 0.2) 

𝐀𝟒 (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) (0.5, 0.6, 0.6, 0.7; 0.9, 0.2, 0.1) (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) (0.2, 0.3, 0.3, 0.4; 0.8, 0.2, 0.3) 

  

From previous Table 3 we can determine the weight of each criteria by using Eq.5 or Eq.6 in the 

similarity case. 

Step 4. Calculate the normalized decision-making matrix from Table 3, by using Eq. (8, 9).then 

calculating the weights using Eq.9. 

a. Sum of squares and their square roots in Table 4. 

Table 4. Sum of squares and their square roots 

 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 

𝐀𝟏 0.11 0.20 0.32 0.27 

𝐀𝟐 0.11 0.23 0.26 0.20 

𝐀𝟑 0.10 0.16 0.08 0.18 

𝐀𝟒 0.25 0.19 0.11 0.07 

SS 0.17 0.14 0.20 0.14 

SR 0.35 0.39 0.44 0.38 

b. Objectives divided by their square roots in Table 5. 
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Table 5. Objectives divided by their square roots 

 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 

𝐀𝟏 0.28 0.55 0.65 0.47 

𝐀𝟐 0.32 0.38 0.50 0.55 

𝐀𝟑 0.25 0.44 0.12 0.16 

𝐀𝟒 0.64 0.21 0.25 0.17 

Step 5. Compute the contribution of each alternative by using Eq.11 as presented in Table 6 

Table 6. Ranking of the alternatives. 

 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐘𝐢 Rank 

𝐀𝟏 0.43 0.19 0.47 0.46 0.65 2 

𝐀𝟐 0.45 0.56 0.24 0.33 0.85 1 

𝐀𝟑 0.23 0.43 0.35 0.32 0.60 3 

𝐀𝟒 0.65 0.32 0.33 0.28 0.45 4 

Step 6. Rank the alternatives. 

The higher the closeness means the better the rank, so the relative closeness to the ideal solution of 

the alternatives can be substituted as follows: A2 > A1 > A3 > A4 as shown in Fig.5. A2 is defined as 

the best alternative for this company. The obtained result is discussed in the company just as to 

investigate the meaningfulness of the selected alternative. 

 
Figure 5. Ranking of the alternatives. 

 

5. Conclusions   

In this paper, a methodology based on neutrosophic and MOORA for selecting the most suitable 

machine tools is suggested. Also, the ranking scores are the outcomes of the methodology, and by 

using ranking scores, DM can obtain not only a ranking of the alternatives but also the degree of 

superiority among the alternatives. For dealing uncertainty and improving lack of precision in 

evaluating criteria and machine tool alternatives, neutrosophic methods are used. Our approach 

applies trapezoidal numbers into traditional MOORA method. By applying for neutrosophic 

numbers, DM enables to get better results in the overall importance of criteria and real alternatives. 
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As a result of the study, we find that the proposed method is practical for ranking machine tool 

alternatives concerning multiple conflicting criteria.  
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Abstract: In this paper, initially a matrix representation of Plithogenic Hypersoft Set (PHSS) is 

introduced and then with the help of this matrix some local operators for Plithogenic Fuzzy 

Hypersoft set (PFHSS) are developed. These local operators are used to generalize PFHSS to 

Plithogenic Fuzzy Whole Hypersoft set (PFWHSS). The generalized PFWHSS set is hybridization of 

Fuzzy Hypersoft set (which represent multiattributes and their subattributes as a combined whole 

membership i.e. case of having an exterior view of the event) and the Plithogenic Fuzzy Hypersoft 

set (in which multi attributes and their subattributes are represented with individual memberships 

case of having interior view). Thus, the speciality of PFWHSS is its presentation of an exterior and 

interior view of a situation simultaneously. Later, the PFWHSS is employed in development of  

multi attributes decision making scheme named as Frequency Matrix Multi Attributes Decision 

making scheme (FMMADMS). This innovative technique is not only simpler than any of the former 

MADM techniques, but also has a unique capability of dealing mathematically a variety of human 

mind psychologies at every level that are working in different environments (fuzzy, intuitionistic, 

neutrosophic, plithogenic). Besides, FMMADMS also provides the percentage authenticity of the 

final ranking which in itself is a new idea providing a transparent and unbiased ranking. Moreover, 

the new introduced idea of frequency matrix handles the ranking ties in the best possible way and 

has an ability to provide the authenticity comparative analysis of previously developed schemes. 

Lastly, application of this FMMADMS is described as a numerical example for a case of ranking and 

selecting the best alternative.  

Keywords: Plithogenic Hypersoft set, Exterior view, Plithogenic Whole Hypersoft set, Interior view, 

Frequency Matrix, Multi Attribute Decision making Scheme, Percentage authenticity. 
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1. Introduction 

The theory of uncertainty in mathematics was initially introduced by Zadeh [26] in 1965 

named as fuzzy set theory (FST). A fuzzy set is a set where each element of the universe of 

discourse  has some degree of belongingness in unit closed interval  in given set , where  

is subset of universal set  with respect to some attribute say  with imposing condition that the 

sum of membership and non membership is one unlike crisp set where element from the universe 

either belong to given set  or does not belong to . In Fuzzy set theory, elements of set are 

expressed with one quantity i.e. degree of membership. To represent this degree of membership a 

notation  was used and to represent the degree of nonmembership a notation 

 was used. The members of fuzzy set are represented by using one quantity i.e. 

the degree of membership  . 

Due to the condition  imposed by Zadeh the degree of non 

membership  to  will be , where  . 

Further generalization of fuzzy set was made by Atanassov [1] in 1986 which are known as 

Intuitionistic fuzzy set (IFS). In IFS the natural concept of hesitation in human mind was used in 

assigning a degree of membership in unit closed interval such that sum of degree of membership, 

degree of non membership and degree of hesitation should be one. The degree of hesitation or 

indeterminacy was represented by the notation now the improved condition is 

. The members of IFS are represented by using two quantities 

and . Later, IFS were further generalized by Smarandache [15]. He 

considered membership , nonmembership  and indeterminacy  as independent 

quantities or functions in the unit cube, representing three axis of the unit cube in non standard unit 

interval . Smarandache represented the elements of Neutrosophic set (NS) by using three 

independent quantities and introduced "Neutrosophy"[16-17] as a new branch of philosophy which 

studies the origin nature,by considering neutrality and opposite and their interactions with 

different ideational spectra. Mathematically, a NS is represented by  with 

condition . The new defined approach of dealing with human mind 

consciousness in form of Neutrosophic Set is utilized in MCDM and MADM techniques ([2-7],[9], 

,[12], [18] ,[25]). 

Furthermore, Smarandache[13] has generalized the Soft set to Hypersoft set by 

transforming the function  of one attribute into a multi attribute function where  for 

 be  distinct attributes, whose corresponding attributes values are respectively the set 

 with  for  and  and assigning a combine 

membership  non membership  and Indeterminacy  

  with condition and introduced a hybrids of Crisp/ Fuzzy/ Intuitonistic Fuzzy and 

Neutrosophic Hypersoft set and then generalized Hypersoft set to Plithogenic Hypersoft set (PHSS) 

by assigning a separate degree of membership, nonmembership and indeterminacy 
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 respectively to each attribute value . Thus a Plithogenic Set, as the 

generalization of Crisp, Fuzzy, Intuitionistic Fuzzy, Picture Fuzzy and Neutrosophic Set was 

introduced by F.Smarandache in 2017 [14]. 

In this paper, we have firstly presented to our reader an entirely new concept of looking at 

a Plithogenic Hypersoft set in a form of a matrix. This matrix representation is further utilized in the 

emergence of some new local operators such as disjunction, conjunction and averaging operators 

for Plithogenic Fuzzy Hyper soft sets (PFHSS). In the second stage, we have utilized these local 

operators to the define a new idea of a Plithogenic Fuzzy Whole Hypersoft Set (PFWHSS). This new 

PWHSS not only present a deep insight into a Plithogenic decision making environment but also a 

broader outlook of a situation which clearly is more generalized and precise approach of modelling 

human mind capabilities. Moreover, the new PWHSS are employed in development of a multi 

attribute decision making scheme named as Frequency Matrix Multi Attributes Decision Making 

Scheme (FMMADMS). 

In most MADM techniques, ranking is achieved by generating a comparison of alternatives 

with ideal and non ideal solution ([8], [19], [20]) etc. Mostly, comparison are made on the basis of 

distance, inclusion, and similarity measurements etc. These scheme when studied analytically are 

actually representing fuzzy behavior of human mind. The ideal solution represents membership 

and the non ideal solution represents nonmembership behavior of fuzzy environment. Besides, the 

selection of any input information taken from any background (fuzzy, intuitionistic fuzzy, 

neutrosophic or any other) the use of ideal and non ideal solution in modelling of different MADM 

schemes actually drives the entire scheme to a fuzzy environment. So the ranking is based on 

optimist and pessimist human behavior. In this new FMMADMS, the ranking includes the three 

behavior of human mind, optimist behavior (represented mathematically by using Max operator 

employed in construction of local operators which are involved in ranking procedure), pessimist 

behavior (represented mathematically by using Min operator used in designing local disjunction 

also used in ranking process) and the neutral behavior (represented mathematically by using 

averaging operator). The final decision is made by combining the three human mind behaviors in a 

matrix called Frequency Matrix which gives the ultimate ranking of alternatives. The major 

advantage of the new scheme is its capacity of indulging many human mind behaviors by 

introducing variety of operators between Min, Max and averaging operators. Thus, generalizing the 

scheme from neutrosophic to plithogenic modelling environment [14]. Also, in our scheme at its 

final stage a ratios authenticity of the ranking operators is provided to guarantee the rightfulness of 

the final decision. 

With a brief introduction of our work in Section 1, we have organized the rest of the paper 

in following sections: Section 2, is a collection of all the necessary preliminaries required for 

understanding of this work while in Section 3, we have presented the new concept of representing a 
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Plithogenic Fuzzy Hyper Soft Set in form of a matrix. Moreover, have introduced some new local 

operators on this set and constructed a whole membership using these local operators. This whole 

membership over a PFHSS set gives a birds eye view of the entire situation thus driving to new idea 

of Plithogenic Fuzzy Whole Hyper Soft Set. Furthermore, the newly defined PFWHSS is used in 

constructing a new MADM technique called Frequency Matrix Multi Attributes Decision making 

scheme (FMMADMS). In Section 4, a numerical example is presented to elaborate the new scheme 

while in Section 5 we give the final Conclusion of this work along with some open problems related 

to this field. 

2. Preliminaries 

In this section, we will present some basic definitions of soft set, fuzzy soft set, hypersoft 

set, crisp hypersoft set, fuzzy hypersoft set, plithogenic hypersoft set, plithogenic crisp hypersoft set 

and plithogenic fuzzy hypersoft set which are useful in development of our literature. 

Definition 2.1 [21] ( Soft Set) 

Let  be the initial universe of discourse, and  is a set of parameters or attributes with respect to  

Let  denote the power set of  and  is a set of attributes. Then pair  where  

 is called Soft Set over . In other words, a soft set  over  is parameterized family of 

subset of  For   may be considered as set of  elements or  approximate elements 

   

Definition 2.2 [24] (Soft subset) 

For two soft set  and  over a universe  we say that  is a soft subset of  if 

(i)      , and 

(ii)        

The set of all soft set over  will be denoted by  

Definition 2.3 [26] (Fuzzy set)  

Let  be the universe . A fuzzy set  over  is a set defined by a membership function 

representing a mapping   

The vale of  for the fuzzy set  is called the membership value of the grade of membership of 

The membership value represent the degree of belonging to fuzzy set . Then a fuzzy set  on 

 can be represented as follows. 

  

Definition 2.4 [9] (Fuzzy soft set) 



Neutrosophic Sets and Systems, Vol. 28, 2019 38  

 

 

Shazia Rana et al. Fuzzy Whole Hypersoft Set, Construction of Operators and their Application in Frequency Matrix Multi 
Attribute Decision Making Technique.     

 

Let  be the initial universe of discourse,  be all fuzzy set over .  be the set of all parameters 

or attributes with respect to  and  is a set of attributes. A fuzzy soft set  on the universe  is 

defined by the set of ordered pairs as follows,    

where   such that  if  

    

Definition 2.5 [13] (Hypersoft set) 

Let  be the initial universe of discourse  the power set of  and  for  be  

distinct attributes, whose corresponding attributes values are respectively the set  with 

 for  and  

Then the pair  where,   

is called a Hypersoft set over  

Definition 2.6 [13] (Crisp Universe of Discourse) 

A Universe of Discourse  is called Crisp if ,  to  or membership of   

with respect to  in  is  denoted as  

Definition 2.7 [13] (Fuzzy Universe of Discourse) 

A Universe of Discourse  is called Fuzzy if   partially belongs to  or membership of  

  where  may be subset , an interval, a hesitant set, a single value set, etc. denoted as 

 

Definition 2.8 [13] (Plithogenic Universe of Discourse ) 

A Universe of Discourse  over a set  of attributes values, where ,  is 

called Plithogenic if   belongs to  in the degree  with respect to the attribute value 

, for all . Since the degree of membership may be Crisp, Fuzzy, Intuitionistic Fuzzy, 

or Neutrosophic, the Plithogenic Universe of discourse may can be Crisp, fuzzy, Intuitionistic 

fuzzy, or Neutrosophic. 

Definition 2.9 [13] (Crisp Hypersoft set) 

Let  be the initial universe of discourse  the power set of  

Let  for  be  distinct attributes, whose corresponding attributes values are 

respectively the set  with  for  and  Then the pair 

 where  is called Crisp Hypersoft set over  

Definition 2.10 [13] (Fuzzy Hypersoft set) 

Let  be the initial universe of discourse  the power set of  

 for  be  distinct attributes whose corresponding attributes values are respectively 

the set  with  for  and  Then the pair 
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 where   is called Fuzzy Hypersoft set over  

Definition 2.11 [13] (Plithogenic Hypersoft set) 

Now instead of assigning combined membership    for Hyper 

Soft set if each attribute  is assigned an individual membership , non membership  

and Indeterminacy   in Crisp/Fuzzy/Intuitionistic Fuzzy and Neutrosophic 

Hypersoft set then these generalized Crisp/Fuzzy/Intuitionistic Fuzzy and neutrosophic Hypersoft 

set are called Plithogenic Crisp/ Fuzzy/Intuitionistic Fuzzy and Neutrosophic Hypersoft set. 

3. Plithogenic Fuzzy Hyper Soft set, their representation in a Matrix form and generalization to 

Plithogenic Fuzzy Whole Hypersoft set  

In this section, we define initially Crisp Whole Hypersoft set, Fuzzy Whole Hypersoft set, 

Intuitionistic Fuzzy Whole Hypersoft set, Neutrosophic Whole Hypersoft set. 

Definition 3.1 (Plithogenic Crisp/ Fuzzy/ Intuitionistic Fuzzy and neutrosophic Whole Hypersoft 

set) 

Let  be the plithogenic universe of discourse and  where 

 represent Numeric values of attributes  for each , : and represent sub 

attributes of the given attributes, can attain different numeric values. Now if in Plithogenic 

Crisp/Fuzzy/Intuitionistic Fuzzy/Neutrosophic Hypersoft set all attributes  have both an 

individual membership , non membership and indeterminacy  where 

 and a whole combined membership  denoted by , non membership 

 denoted by  and Indeterminacy  denoted by  then these 

generalized Plithogenic Crisp/Fuzzy/Intuitionistic Fuzzy /Neutrosophic Hypersoft set are called 

Plithogenic Crisp/ Fuzzy/Intuitionistic Fuzzy / Neutrosophic Whole Hypersoft set. 

The Plithogenic Whole Hypersoft set is hybridization of Plithogenic Hypersoft set and Hypersoft 

set. If we are representing our set only with fuzzy memberships say  for individual attributes 

and Fuzzy whole memberships  say  for combined attributes then the set under 

consideration are Plithogenic Fuzzy Whole Hypersoft set. Initially the literature is developed only for 

Plithogenic Fuzzy Hypersoft set and Plithogenic Fuzzy Whole Hypersoft set. 

3.1 Plithogenic Fuzzy Whole Hypersoft set and Frequency Matrix Multi Attributes Decision Making Scheme 

(FMMADMS) 
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For convenience in dealing with plithogenic hypersoft set the data or informations i.e. memberships 

will be represented in the form of matrix denoted by  for some combination of numeric values of 

attributes where  represent the given combination of attributes,  represent rows of matrix with 

respect to objects ,  represents columns of matrix with respect to numeric values of attributes . 

These matrices will be helpful in construction of local Disjunction, Conjunction and Averaging 

operators. Furthermore, local constructed operators are used for the development of whole 

memberships denoted by  and then these memberships are used to generalize the Plithogenic 

Hypersoft Set to Plithogenic Whole Hypersoft Set and in development of a multi attributes decision 

making scheme named as Frequency Matrix Multi Attributes Decision Making Scheme 

(FMMADMS). The speciality of these local operators is that they deal within the matrix constructed 

by using informations or one can say within one combination of attributes which gives interior view 

of the event. In this section, we shall be dealing with PFHSS only. Later the idea can be generalized 

to other environments (intuitionistic, neutrosophic, plithogenic) etc. Let us now formally introduce 

the steps of FMMADMS. In this scheme, the first four steps are related to the matrix construction of 

PFHSS and their local operators while in the next three steps PFWHSS are developed using these 

operators and are utilized in defining the local ranking. Moreover, a final ranking is obtained using 

a frequency matrix. Also, a percentage authenticity is calculated to guarantee the transparency of 

the process. 

Step 1. Decision of universe: Consider universe of discourse    and then 

 where  could be chosen between  to  Here  represent the objects under 

consideration. 

Step 2. Defining attributes and mapping: Let  be the attributes. Choose some 

attributes represented by   and then assign some numeric values can be 

presented by  where  and  can take values , . The data of the numerical values is based 

on the decision maker’s opinion by using the linguistic scales [[10],[11],[23]]. Define 

 is a mappings from combination of attributes to some 

subset of power set of . 

Step 3. Matrix representation: Write the data or information (Memberships) in the form of a matrix. 

Let ;  and  : be the matrix and let  represent the given combination 

of attributes  for some  and . 
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                                                                                  (3.1) 

Step 4. Construction of Local operators and Global whole memberships: Now by using individual 

memberships  for  and varying  from  to  one can develop a combined whole 

membership, say  to  in  with respect to given combination of attributes by using different 

operators on rows of matrices of representation  for Construction of local operators. These 

operators can be represented by taking different integer values of  i.e.  represent local 

disjunction operator ,  represent local conjunction operator and  represent local averaging 

operator. The following local operators are constructed. Here, we define some local operators for 

Plithogenic Fuzzy Hypersoft Set. It is observed that the same operators are applicable for 

Plithogenic Crisp Hypersoft set but as the results are trivial so we will consider here only the case of 

Plithogenic Fuzzy Hypersoft set 

Local Disjunction Operator for Plithogenic Fuzzy Hypersoft Set : 

  (3.2) 

(Choose maximum  membership from  row ) 

Here  are representations for local disjunctions operators for ,  is the membership for 

attribute with respect to  object. 

Local Conjunction Operators for Plithogenic Fuzzy Hypersoft Set : 

  (3.3)  

(Choose minimum  membership from  row amongst  columns) and the result will be a column 

matrix representation three entities. Here are representations for local conjunctions operators for 

,  is the membership for attribute with respect to  object. 

Local Averaging Operator for Plithogenic Fuzzy Hypersoft Set :  

  (3.4)           
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Here  represent averaging operator for mapping  for  combination of attributes applied on the 

given matrix of representation  by taking average of memberships for  row. 

Local Compliment for Plithogenic Fuzzy Hypersoft Set : 

  (3.5) 

Here  represent the local compliment for  mapping for  combination of attributes applied over 

matrix of representation  by taking compliment of memberships for  row and then choosing 

either maximum or minimum or taking average of them. By applying Local disjunction, Local 

conjunction and Local averaging operators (3.2, 3.3, 3.4) to (3.1) one can develop a combined whole 

membership, denoted by . 

Note: Here we have not used the compliment operator to develop the whole membership. But the 

choice is open for reader to work with this operator or any other operator of their choice. 

Here  is representation for whole combined membership for  object withe respect to  

combination of attributes in subset of   

  (3.6) 

 represent the combined (whole) membership for  object obtained by using disjunction 

operator ( ) developed in (3.2).  

  (3.7)        

 represent the combined (whole) membership for  object obtained by using conjunction 

operator ( ) developed in (3.3).  

  (3.8) 

 represent the combined (whole) membership for  object obtained by using averaging 

operator  ( ) developed in (3.4). 
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We shall use   and  for three different whole memberships of Plithogenic Fuzzy 

Whole hypersoft set. 

Step 5. Matrix representation of Plithogenic Fuzzy Whole Hypersoft set and initial ranking: 

 Write the data or information (local individual membership and global whole memberships) in the 

form of an other matrix denoted by   and   and  represents the 

given combination of attributes and  represent the local operators used to get the whole 

combined memberships where  is the matrix representation for Plithogenic Fuzzy whole 

Hypersoft set. 

     …….        .  

   

Where in ,  takes values with respect to given some  combination and in  and in while  

represent rows of matrix and  represent its columns and  Plithogenic Fuzzy Whole Hypersoft 

Matrix (PFWHSM). For  we shall get three PFWHSM’s. 

In particular, for a fixed  and for some  combination of attributes   we will get an 

initial ranking for alternatives  under consideration in  from the last column of  

which is the column of whole membership value  . The first position is assigned to an alternative 

having highest whole membership  [which is the highest numeric value in last column] and 

the second position to one having second largest membership and so on. If a tie occurs for the 

position of alternatives in this initial ranking, it will be removed in final ranking. In this step, by 

varying  we shall obtain the three types of initial ranking of our alternatives based on three 

operators see (3.6,3.7 and 3.8). All of these ranking will be utilized in next stage to get the final 

ranking of alternatives. 

It is worth mentioning here the fact that these initial rankings presents three human mind behaviors 

for three different choices of operators. To be more specific for  the use of Max operator will 

provide the choice of optimist behavior of human mind. Similarly for  which represent the use 

of Min operator one can represent the pessimist behavior of human mind. Furthermore, the choice 



Neutrosophic Sets and Systems, Vol. 28, 2019 44  

 

 

Shazia Rana et al. Fuzzy Whole Hypersoft Set, Construction of Operators and their Application in Frequency Matrix Multi 
Attribute Decision Making Technique.     

 

of  i.e., the use of averaging operator will represent the neutral behavior of human mind. 

Finally in the next step by using the frequency matrix we will combine the three human mind 

behaviors to provide the final results of the ranking procedure. 

Step 6. Construction of frequency matrix  for final ranking:  

Finally, we have constructed the frequency matrix of positions  from initial ranking where 

 is used to represent rows (alternatives) of frequency matrix  and  is 

used to represent columns (positions attained by these alternatives) of frequency matrix . 

                                                                        

 

The final frequency matrix  of alternatives and positions is a square matrix of order  i.e. 

number of ordering positions will be equal to the number of alternatives, The selection of first 

position to any alternative will be made by looking into the first column corresponding to the 

position 1 i.e. . The alternative having the largest frequency value in this column will be assigned 

first position. Once first position is decided, the entire row corresponding to this alternative and the 

first column will be excluded from the process of selection. Next, we shall look into the second 

column to select the candidate having the largest frequency value to be assigned the second 

position of ordering. Once done he shall be excluded from the process by excluding his row and the 

second column from the process. This procedure of selection will continue until all the positions are 

assigned to the rightful alternative. 

In final frequency matrix if two alternatives have the same frequency of position 1 which is a very 

rare case, then we check their frequency of position 2, the one having higher frequency value in 

position 2 will be assigned the first position. After this selection the particular alternative and the 

position 1 will be excluded from selection procedure. Then other competitor will be assigned the 

second position. In this way all the ties can be fairly handled in this process. 

Step 7. Percentage measure of authenticity of ranking: Finally the percentage measure of 

authenticity can be obtained by using the ratios formula: 
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Percentage authenticity of position for alternative  , where  is the obtained 

frequency of the  position for  alternative and  is the total frequency of  position. 

4. Numerical Example 

Step 1. Decision of universe: let  set of five members of Engineering 

department and  set of three members who have applied for the post of Assistant 

professor. 

Step 2. Defining Attributes and mapping: 

Let the attributes be   and  may have any value from  to  

 Subject skill area with numeric values,  

 Mathematics,  Physics,  Computer science 

 Qualification with numeric values,  

 Higher qualification like Ph.D. or equivalent,  lower qualification like MS or 

equivalent  Teaching experience  with numeric values,  

 Three years or less,  More than three years 

 Age , with numeric values  

  Age is less than thirty years,  Age is between thirty to forty years  Age 

is greater than forty years 

We need to select faculty members. 

Let the Function  be given by, 

 for  respectively. 

We are interested in ranking of these three candidates for the Engineering department with the 

following criteria. 

1.   Subject skill area:  Mathematics:  

2.   Qualification:  Higher qualification like Ph.D or Equivalent  

3.   Teaching experience:  Three years or less   

4.   Age:  Age required is between thirty  to forty years  

 let we name  combination as  

With respect to  ={  have memberships in PFHSS. Consider the memberships of ,  

as  for  and  to  in  with respect to   combination of attributes. 
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Step 3. Matrix representation: Let  represented in 3.1 is the matrix of representation for the 

combination of attributes in PFHSS. Here rows are representing  and columns are 

representing  

               

  

Step 4. Construction of  Local operators and Global whole memberships for PFHSS: By using 

individual memberships  for   now with respect to  combination of attributes by 

fixing  and  and varying   from  to   in 3.6, 3.7 and 3.8 one can assign a combined (whole) 

membership,  to  in  with respect to  combination of attributes by using operators  

developed  in 3.6, 3.7 and 3.8 on rows of matrix of representation  Using (3.1) 

  

 

  

This membership is used in Generalization of PFHSS to Plithogenic Fuzzy Whole Hyper Soft set. 

    for  and varying  from  to  

   for  and varying  from  to  

   for  and varying  from  to  

   for  and varying  from  to  

   for  and varying  from  to  

   for  and varying  from  to  
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  for and varying  from  to  

   for  and varying  from  to  

   for  and varying  from  to   

Step 5 Matrix representation of Plithogenic Fuzzy Whole Hypersoft set and initial ranking: 

                               

  

For choosing the best one will select the largest value from last column i.e.  The initial 

ranking for  is Position 1: for Position 2: for  and Position 3: for  

                            

  

For choosing the best one will select the largest value from last column i.e.  The initial 

ranking for  is Position 1: could be assigned to both the candidates  and    This tie will be 

removed in final step of ranking. 

                           

  

For choosing the best one will select the largest value from last column i.e.  The initial 

ranking for  is Position 1: for Position 2: for  and Position 3: for  

Step 6. Construction of frequency matrix  for final ranking: Next we construct a frequency 

matrix to get the final ranking using the data of step 5. 
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This frequency matrix shows the frequency of getting first position for is , for is  and for  is 

 the frequency of getting second position for is , for is  and for  is and the frequency of 

getting third position for is , for is  and for  is . We can see here the initial ranking for 

 is , for  is  and ranking for  is  and the final 

ranking from the frequency matrix  is same i.e.,  which shows use of frequency 

matrix increases the authenticity of the ranking and selection of right candidate for the post. 

Step 7. Percentage measure of authenticity of ranking:  

 Percentage authenticity of first position for    

Percentage authenticity of second position for    

Percentage authenticity of third position for     

5. Conclusion 

A novice idea of matrix representation of Plithogenic Fuzzy Hypersoft Set (PFHSS) is introduced 

along with construction of their local operators such as conjunction, disjunction and averaging 

operators. These local operators are utilized in defining a new concept of Plithogenic Fuzzy Whole 

Hyper Fuzzy Soft Set (PFWHSS). The PFWHSS deals fuzziness of the data or information as a 

combined vision (external view) in case of combined membership of a combination of attributes and 

individually (internal view) as a in case of considering individual memberships. Furthermore, an 

innovative yet simple MADM technique called Frequency Matrix Multi Attributes Decision Making 

Scheme (FMMADMS) is developed. In this technique, at first stage, we have employed three 

different PFWHSS to get three initial rankings of alternatives representing decisions made by three 

different human mind behaviors of being optimist (the case in which whole membership is 

obtained by using conjunction (Max) operator), pessimist (the case in which whole membership is 

obtained using disjunction (Min) operator) and the neutral behavior (the case in which whole 

membership is obtained using averaging operator). In the next stage, we have introduced a new 

concept of frequency matrix that combines all the three possibilities of human mind behavior to 
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provide with a final ranking decision of alternatives. In many decision making schemes, there are 

possibilities of ties between ranking alternatives. The use frequency matrix in FMMADMS provides 

a unique way of handling these ties. It results into a final ranking free of ties. Lastly, the scheme 

works with a percentage measure to guarantee the authenticity and accuracy of the final ranking. 

This itself, is entirely a new idea to get to get an authenticity of different ranking schemes which 

shows that the final decision is transparent and unbiased. 

Moreover, this technique is more generalized since it use PFWHSS which deals with not only 

attributes but also sub attributes at the same time. One of the beauty of this scheme is its simplicity 

as the user need not to handle with complicated long calculations based operators. Also this new 

technique have a flexible approach of using wide range of operators that can absorb changes 

according to the requirement of the provided environment. To be more specific, the selection of 

three operators represent a neutrosophic behavior which clearly is a special case of plithogenic 

attitude as mentioned in [14]. Now introducing more operators among these three neutrosophic 

elemental behaviors (membership, nonmembership, neutrality) we can generalize the model of this 

scheme in plithogenic environment which may handle more of human mind complexities. 

Some of the open problems that could be addressed: This work have vast extensions by 

developments of some new literature on operators, their properties and applications in different 

environments like Crisp, Fuzzy, Intuitionistic Fuzzy and Neutrosophic etc. and development of 

multi attributes decision making techniques in different environments. Moreover, the matrix 

representation of plithogenic whole hypersoft set opens new dimensions towards development of 

many operators and MADM techniques. 
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Abstract. The objective of the study is to find out the relationship between the disease and the symp-

toms seen with the patient and diagnose the disease that impacted the patient using rough neutrosoph-

ic set. Neoteric method [PI-distance] is devised in rough neutrosophic set. Utilization of medical diag-

nosis is commenced with using prescribed procedures to identify a person suffering from the disease 

for a considerable period. The result showed that the proposed method is free from shortcomings that 

affect the existing methods and found to be more accurate in diagnosing the diseases. 
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1. Introduction 

Mathematical principles play a vital role in solving the real life problems in engineering, medical 

sciences, social sciences, economics and so on. These problems are having no definite data and they 

are mostly imprecise in character. We are therefore employing probability theory, fuzzy set theory, 

rough set theory etc., in Mathematics to find solutions to these problems. In the same way, fuzzy logic 

techniques have been integrated with conventional clinical decision in healthcare industry. As clini-

cians find it hard to have a fool proof diagnosis, they are initiating certain steps without any guidance 

from the experts. Neutrosophic set which is a generalized set possesses all attributes necessary to en-

code medical knowledge base and capture medical inputs. 

The law of average has been applied in Medical diagnosis combining the information of which 

most of them are quantifiable derived through various sources and the inconsistent data derived 

through intuitive thought and the whole process offers low intra and inter personal consistency. So 

contradictions, inconsistency, indeterminacy and fuzziness should be accepted as unavoidable as they 

are integrated in the behavior of biological systems as well as in their characterization. To model an 

expert doctor it is imperative that it should not disallow uncertainty as it would be then inapt to 

capture fuzzy or incomplete knowledge that might lead to the danger of fallacies due to misplaced 

precision.  

As medical diagnosis contains lots of uncertainties and increased volume of information available 

to physicians from new medical technologies, the process of classifying different sets of symptoms 

under a single name of disease becomes difficult. The main advantage of rough set theory is that it 

does not need any preliminary or additional information about data(like the probability in statistics, 

the value of possibility in fuzzy set theory etc.,).So, rough neutrosophic  sets  play a vital role in 

medical diagnosis. 

In 1965, Fuzzy set theory was firstly given by Zadeh[1] which is applied in many real applications 

to handle uncertainty. Sometimes membership function itself is uncertain and hard to be defined by a 

crisp value. So the concept of interval valued fuzzy sets was proposed to capture the uncertainty of 

grade of membership. In 1986, Atanassov[3] introduced the intuitionistic fuzzy sets which consider 
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both truth-membership and falsity-membership. Edward Samuel and Narmadhagnanam[4] proposed 

the tangent inverse distance and sine similarity measure of intuitionistic fuzzy sets and apply them in 

medical diagnosis. 

Later on, intuitionistic fuzzy sets were extended to the interval valued intuitionistic fuzzy sets. 

Intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets can only handle incomplete 

information not the indeterminate information and inconsistent information which exists commonly 

in belief systems. So, Neutrosophic set (generalization of fuzzy sets, intuitionistic fuzzy sets and so on) 

defined by FlorentinSmarandache[5] has capability to deal with uncertainty, imprecise, incomplete 

and inconsistent information which exists in real world from philosophical point of view. 

In 1982, Pawlak[2] introduced the concept of rough set (RS), as a formal tool for modeling and 

processing incomplete information in information systems. There are two basic elements in rough set 

theory, crisp set and equivalence relation, which constitute the mathematical basis of rough sets. The 

basic idea of rough set is based upon the approximation of sets by a pair of sets known as the lower 

approximation and the upper approximation of a set. Here, the lower and upper approximation 

operators are based on equivalence relation. Nanda and Majumdar [6] examined fuzzy rough sets. 

Broumi et al [7] introduced rough neutrosophic sets.  

SurapatiPramanik and KalyanMondal [8,9] introduced cosine and cotangent similarity measures 

of rough neutrosophic sets. Pramanik et al [10] introduced correlation coefficient of rough 

neutrosophic sets. Edward Samuel and Narmadhagnanam [11] proposed order function among 

roughneutrosophic sets. Pramanik et al [12] introduced several trigonometric Hamming similarity 

measures under interval rough neutrosophic environment. Pramanik et al [13] introduced  Multi 

attribute decision making strategy on projection and bidirectional projection measures of interval 

rough neutrosophic sets. Mondal et al [14] examined TOPSIS in rough neutrosophic environment.  

Mondal et al [15] proposed variational coefficient similarity measure under rough neutrosophic 

environment. Mondal et al [16] proposed several trigonometric Hamming similarity measures of 

rough neutrosophic sets. Mondal and Pramanik [17] proposed grey relational analysis among rough 

neutrosophic sets. Pramanik and Mondal [18] proposed some similarity measures among rough 

neutrosophic sets. Mondal et al [19]  proposed aggregation operators among rough neutrosophic sets. 

Pramanik et al [20] introduced Multi criteria  decision making based on projection and bidirectional 

projection measures of  rough neutrosophic sets. Neutrosophic set is applied to different areas 

including decision making by many researchers[21-27]. Mohana and  Mohanasundari [28] proposed 

similarity measures of single valued neutrosophic rough sets. Tuhin Bera and Nirmal 

KumarMahapatra[29] applied generalised single valued neutrosophic number in neutrosophic linear 

programming. Ulucay et al [30] proposed a new approach for multi-attribute decision-making  

problems in bipolar neutrosophic sets.Broumi et al [31] proposed single valued (2N+1) sided 

polygonal neutrosophic  numbers and single valued (2N)  sided polygonal  neutrosophic numbers. Li 

et al [32] proposed  slope stability assessment method using the arctangent and tangent similarity 

measure of neutrosophic numbers. 

Rest of the article is structured as follows. In Section 2, we briefly present the basic 

definitions.Section 3 deals with proposed definition (PI distance) and some of its properties. Sections 4, 

5 and 6 deal with methodology,algorithm and case study related to medical diagnosis 

respectively.Conclusion is given in Section 7. 
 

2. Preliminaries 

2.1 Definition [33] 

Let be a Universe of discourse, with a generic element in denoted by  the neutrosophic 

set(NS) is an  object having the form       XxxFxIxTxA AAA  ,,,: where the functions define 

  1,0:,, XFIT  respectively the degree of membership (or Truth), the degree of indeterminacy 

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=vLGVDYgAAAAJ&sortby=pubdate&citation_for_view=vLGVDYgAAAAJ:ZysSsiWj_g4C
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and the degree of non-membership(or Falsehood) of  the element Xx  to the set A with the condi-

tio  0  )()()( xFxIxT AAA   
 3  

2.2 Definition [7] 

Let U be a non-null set and R  be an equivalence relation onU . Let P  be neutrosophic set in 

U with the    membership functionT P , indeterminacy function I P and non-membership function FP . 

The lower and the upper    approximations of P  in the approximation  RU ,  denoted by    PNPN & are 

respectively defined as follows: 

            

           UxxyxFxIxTxPN

UxxyxFxIxTxPN

RPNPNPN

RPNPNPN





,/,,,)(

,/,,,
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  

 yF
x

xF P
y

PN
R][

)()(

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x

   

     
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x

   

    yFxF P
R

y
PN x][

  

So,            0 3N P N P N Px x xT I F    and          ,30  xFxIxT PNPNPN where  and  mean 

“max” and “min” operators respectively,      ,P P Py y and yT I F are the membership, indeterminacy 

and non-membership of with respect to P . It is easy to see that    PNPN &  are two neutrosophic 

sets in U , thus  the NS mappings    UNUNNN :, are respectively, referred to as the lower and upper 

rough neutrosophic set approximation operators, and the pair     PNPN ,  is called the rough 

neutrosophic set in  RU , . 

3 Proposed definitions 

3.1. Pi-distance 

Let    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxTA  and    )(),(),(,)(),(),( iBiBiBiBiBiB xFxIxTxFxIxTB 
 

be two rough neutrosophic sets, then the Pi-distance is defined as 

 
                        

                        







n

i
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BAPI
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  

 

3.1.1. Boundedness 

Let Ai    )(),(),(,)(),(),( iAiAiAiAiAiA xFxIxTxFxIxT  ni ,...,2,1 be a collection of rough neutrosophic sets and  

             

             )(max,)(max,)(max,)(max,)(min,)(min

&)(max,)(max,)(max,)(max,)(min,)(min

_

_

iA
iiAiiA

iiAiiA
iiAi

iA
iiAiiA

iiAiiA
iiAi

xFxFxIxIxTxTA

xFxFxIxIxTxTA



























 

             )(min,)(min,)(min,)(min,)(max,)(max iA
iiAiiA

iiAiiA
iiAi

xFxFxIxIxTxTA













  

then 
_
A  PI RNS  AAA n,...,, 21 



A  

 

 

 



Neutrosophic Sets and Systems, Vol. 28, 2019  
 

A.Edward Samuel and R.Narmadhagnanam. Pi-distance of rough neutrosophic sets for medical diagnosis 
 

54 

 

3.1.2. Proposition 1 

(i)   0, BAPIRNS  

(ii)   0, BAPIRNS if and only if BA   

(iii)    ABPIBAPI RNSRNS ,,   

(iv)  If CBA  then    BAPICAPI RNSRNS ,,   &    CBPICAPI RNSRNS ,,   
Proof 

(i) We know that, the truth-membership function, indeterminacy –membership function and falsity–

membership function in rough neutrosophic sets are within  .1,0 Hence   0, BAPI RNS  
(ii) If BA  ,then                        iBiAiBiAiBiAiBiAiBiAiBiA xFxFxIxIxTxTxFxFxIxIxTxT  &,,,, for 

.&,,2,1 Xxni i    
Therefore,   .0, BAPI RNS If   ,0, BAIHDRNS this implies 

       

       
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T T I I
F F T T
I I F F
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   
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Since its denominator is not equal to zero. Then,
 

)()(&)()(),()(),()(),()(),()( iBiAiBiAiBiAiBiAiBiAiBiA xFxFxIxIxTxTxFxFxIxIxTxT  for

.&,,2,1 Xxni i   Hence .BA  

 

(iii) We know that, 

       iAiBiBiA xTxTxTxT 
;  

       iAiBiBiA xIxIxIxI 
; 

       iAiBiBiA xFxFxFxF   

       iAiBiBiA xTxTxTxT 
; 

       iAiBiBiA xIxIxIxI 
; 

       iAiBiBiA xFxFxFxF 
 

Hence    .,, ABPIBAPI RNSRNS   

 

(iv) We know that, 

     iCiBiA xTxTxT 
; 

     iCiBiA xTxTxT 
 

     iCiBiA xIxIxI 
; 

     iCiBiA xIxIxI 
 

     iCiBiA xFxFxF 
; 

     iCiBiA xFxFxF 
 

 CBA   
 

Hence, 

       iCiAiBiA xTxTxTxT 
; 

       iCiAiBiA xTxTxTxT 
 

       iCiAiBiA xIxIxIxI 
; 

       iCiAiBiA xIxIxIxI 
 

       iCiAiBiA xFxFxFxF 
; 

       iCiAiBiA xFxFxFxF 
 

       iCiAiCiB xTxTxTxT 
; 

       iCiAiCiB xTxTxTxT 
 

       iCiAiCiB xIxIxIxI 
; 

       iCiAiCiB xIxIxIxI 
 

       iCiAiCiB xFxFxFxF 
; 

       iCiAiCiB xFxFxFxF 
 

 

Here, the PI- distance is an increasing function 

     BAPICAPI RNSRNS ,,  &    CBPICAPI RNSRNS ,,   
 

4. Methodology 

In this section, we present an application of rough neutrosophic set  in medical diagnosis. In a 

given pathology, Suppose S is a set of symptoms, D  is a set of diseases and P is a set of patients and 
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let Q be a rough neutrosophic relation from the set of patients to the symptoms.i.e., )( SPQ    and R  

be a rough neutrosophic relation from the set of symptoms to the diseases i.e., )( DSR  and  then the 

methodology involves three main jobs: 

1. Determination of symptoms. 

2. Formulation of medical knowledge based on rough neutrosophic sets. 

3. Determination of diagnosis on the basis of new computation technique of rough neutrosophic sets. 

5. Algorithm 

Step 1 : The symptoms of the patients are given to obtain the patient symptom relation Q and are 
noted in Table 1. 

Step 2 : The medical knowledge relating the symptoms with the set of diseases under consideration 
are given to obtain the symptom-disease relation R and are noted in Table 2. 

Step 3 : The Computation T (relation between patients and diseases) is found using (3.1) between 
Table 1 & Table 2 and are noted in Table 3 

Step 4:  Finally, we select the minimum value from Table 3 of each row for possibility of the patient 
affected with the respective disease and then we conclude that the patient Pk is suffering from 
the disease Dr. 

 

6. Case study [8] 

In this section, an example adapted from Surapati Pramanik and Kalyan Mondal (Cosine Similar-

ity Measure of Rough Neutrosophic Sets and its application in medical diagnosis) is used. Let there be 

three patients  321 ,, PPPP   and the set of symptoms S={Temperature, Headache, Stomach pain,Cough, 

Chest pain}.The Rough Neutrosophic Relation )( SPQ  is given as in Table 1. Let the set of diseas-

es D  = {Viral fever, Malaria, Stomach problem, Chest problem}.The Rough Neutrosophic Relation 

)( DSR   is given as in Table 2. 

Table 1: Patient-symptom relation (using step 1) 
 

Q  Temperature Headache Stomach pain Cough Chest pain 

P1

 

 
 1.0,2.0,8.0

,3.0,4.0,6.0

 

 
 2.0,2.0,6.0

,4.0,4.0,4.0
 

 
 2.0,1.0,7.0

,2.0,3.0,5.0
 

 
 2.0,0.0,8.0

,4.0,2.0,6.0
 

 
 2.0,2.0,6.0

,4.0,4.0,4.0
 

P2

 

 
 2.0,3.0,7.0

,4.0,3.0,5.0
 

 
 3.0,3.0,7.0

,3.0,5.0,5.0
 

 
 4.0,1.0,7.0

,4.0,3.0,5.0
 

 
 3.0,1.0,9.0

,3.0,3.0,5.0
 

 
 3.0,1.0,7.0

,3.0,3.0,5.0
 

P3

 

 
 2.0,2.0,8.0

,4.0,4.0,6.0
 

 
 1.0,0.0,7.0

,3.0,2.0,5.0
 

 
 2.0,1.0,8.0

,4.0,3.0,4.0
 

 
 2.0,1.0,8.0

,4.0,1.0,6.0
 

 
 1.0,1.0,7.0

,3.0,3.0,5.0
 

Table 2: Symptom-Disease relation (Using step 2) 

 

R  Viral fever Malaria Stomach problem Chestproblem 

Temperature 
 
 2.0,3.0,8.0

,4.0,5.0,6.0
 

 
 2.0,2.0,5.0

,4.0,4.0,1.0
 

 
 2.0,2.0,5.0

,4.0,4.0,3.0
 

 
 4.0,4.0,4.0

,6.0,4.0,2.0
 

Headache 
 
 2.0,3.0,7.0

,4.0,3.0,5.0
 

 
 2.0,3.0,6.0

,4.0,3.0,2.0
 

 
 1.0,1.0,4.0

,3.0,3.0,2.0
 

 
 3.0,3.0,5.0

,5.0,5.0,1.0
 

Stomach pain 
 
 2.0,3.0,4.0

,4.0,3.0,2.0
 

 
 2.0,2.0,3.0

,4.0,4.0,1.0
 

 
 2.0,1.0,6.0

,4.0,3.0,4.0
 

 
 4.0,2.0,3.0

,6.0,4.0,1.0
 

Cough 
 
 1.0,1.0,6.0

,3.0,3.0,4.0
 

 
 3.0,1.0,5.0

,3.0,3.0,3.0
 

 
 4.0,4.0,3.0

,6.0,6.0,1.0
 

 
 2.0,1.0,7.0

,4.0,3.0,5.0
 

Chest pain 
 
 2.0,2.0,4.0

,4.0,4.0,2.0
 

 
 1.0,1.0,3.0

,3.0,3.0,1.0
 

 
 2.0,2.0,3.0

,4.0,4.0,1.0
 

 
 2.0,2.0,6.0

,4.0,4.0,4.0
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Table 3: Pi-distance

 

T Viral fever Malaria Stomach problem Chest problem 

P1  0.4115 
0.9147 1.2435 1.0821 

P2  0.4963 
0.7953 1.3853 0.7419 

P3  0.5233 
0.8466 1.3912 1.3189 

 

7. Conclusion 

This study discovers the relationship between the symptoms found with the patients and the set 

of diseases. This study will help the researcher to find out the diseases accurately that impacted the 

patients. This method is apt for handling the medical diagnosis problems and its efficiency and 

rationality have been proved without any doubt. The method employed is free from the limitations 

that are commonly found in other studies. Without such limitations, a new theory on image 

processing, cluster analysis etc., has been developed. In the same way it will grow and extend itself to 

other types of neutrosophic sets. 
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Abstract: Veracity in big data analytics is recognized as a complex issue in data preparation process, 

involving imperfection, imprecision and inconsistency. Single-valued Neutrosophic numbers 

(SVNs), have prodded a strong capacity to model such complex information. Many Data mining 

and big data techniques have been proposed to deal with these kind of dirty data in preprocessing 

stage. However, only few studies treat the imprecise and inconsistent information inherent in the 

modeling stage. However, this paper summarizes all works done about mapping machine learning 

algorithms from crisp number space to Neutrosophic environment. We discuss also contributions 

and hybridization of machine learning algorithms with Single-valued Neutrosophic numbers 

(SVNs) in modeling imperfect information, and then their impacts on resolving reel world prob-

lems. In addition, we identify new trends for future research, then we introduce, for the first time, 

a taxonomy of Neutrosophic learning algorithms, clarifying what algorithms are already processed 

or not, which makes it easier for domain researchers. 

Keywords: Neutrosophic; Machine Learning; Single-valued Neutrosophic numbers; Neutrosophic 

simple linear regression; Neutrosophic-k-NN; Neutrosophic-SVM; Neutrosophic C-means; Neutro-

sophic Hierarchical Clustering. 

 

 

1. Introduction 

Although Machine learning algorithms have caught extensive attention in last decade, seen their 

abilities to solve a wide problems remained obscure for years. Most of these techniques work under 

the some hypotheses that data should be pure, perfect and complete information. As a result, for-

mally if the learning problems are formulated under a set of indeterminate or inconsistent infor-

mation, the machine learning system becomes unable to work and the data must treated in prepara-

tion phase, which is make data science process very long, and impracticable. 

However, real learning problems are often involves imperfect information such as uncertainty, 

inconsistency, inaccuracy and incompleteness. If we can modeling the learning problem as it in real 

form, exploiting the information’s imperfections, we can reduce the data science process which is in 

many times come back from modeling that is the last step to preparation step that is the first step in 

the process of data science. 

Single-valued neutrosophic set (SVNs) aims to provide a framework to model imperfect infor-

mation. In contrast to classical machine learning methods, single-valued neutrosophic learning algo-

rithm manipulate information with imperfections to deal with learning problems modeling complex 

information. To improve the performance of existing learning algorithms and handle the imperfect 

information in real-world, many machine learning techniques has recently been mapped into Neu-

trosophic Sets (NSs) environment. 
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Hence, the main notions and concepts of Neutrosophic are defined, also some achievements and 

its extensions on the NSs are undertaken. Thus, to manipulate indeterminacy, uncertainty, or incon-

sistency in information, that often characterizes real situations, Smarandache [1 - 3], introduced Neu-

trosophic set (NS), which consists of three elements, truth-membership, an indeterminacy member-

ship, and a falsity-membership degrees independently.   

 

Every element of the NS's features has not only a certain degree of truth(𝑇), but also a falsity 

degree (𝐹) and indeterminacy degree(𝐼). This concept is generated from many others such as crisp 

set, intuitionistic fuzzy set, fuzzy set, interval-valued fuzzy set, interval-valued intuitionistic fuzzy 

set, etc.  

Nonetheless, the NS as a philosophical concept is hard to apply in real applications. In order to 

overcome this situation, Smarandache and al. [4] concretize this concept introducing single-valued 

neutrosophic set (SVNS). SVNS can be applied quite well in real scientific and engineering fields to 

handle the uncertainty, imprecise, incomplete, and inconsistent information.  Broumi and 

Smarandache [5, 6] studied basic properties of similarity and distances applied in Neutrosophic en-

vironment using single valued neutrosophic set (SVN).  

Hybridization between Neutrosophic and machine learning algorithms, have also been studied, 

several papers [7- 11] on Neutrosophic Machine Learning (NML) have been published in the last few 

years. 

However, there is no survey papers summarize those new learning techniques and approaches, 

removing the barrier for researchers currently working in the area of Neutrosophic Machine Learn-

ing. This has the twofold advantage of making such techniques more readily reachable by researchers 

and, conversely, avoid wasting time for to have idea which Machine learning approaches to be 

mapped to Neutrosophic. 

The rest of this paper is organized as follows. We discuss the origins of the connection between 

Neutrosophic and machine learning in Section 2. Next, in Section 3, we summarize a wide variety of 

hybrid Neutrosophic Machine Learning techniques. Research trends and outstanding issues are dis-

cussed in Section 4.1. Then, in section 4.2, we introduce, for the first time, a taxonomy of Neutrosophic 

learning algorithms, clarifying what algorithms are already processed or not, which makes it easier 

for domain researchers. 

2. Origins of connection between Neutrosophic and Machine learning  

We cannot understand this connection without understanding how the Neutrosophic commu-

nity works. In recent years there has been an augmenting passion from this community of neutro-

sophic in working, in different directions, the use of Neutrosophic to treat imperfections information 

in many methods and domaines. This has led to the development of a new mathematic domaine 

called Neutrosophic, then the connections with many others areas, such as machine learning and 

artificial intelligence. In the early 1999s, the pioneer of the field Florentin Smarandache generalized 

the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS), 

and he underlined the distinctions between NS and IFS by reel examples. With his biggest passion 

and faith, Florentin Smarandache, in a quiet small town in south U.S. called Gallup, start defend his 

theory of Neutrality and why the three elements truth-membership (𝑇), indeterminacy (𝐼), and false-

hood-nonmembership (𝐹) are over 1, reproducing the history of science by story as many concepts 

and theory that considered primitives, and then changed by new ones. 

In addition to several papers of the Neutrosophic science international association (NSIA) mem-

bers, gathered in Encyclopedia Neutrosophic Researchers [12], much advances has been done. Today 

there are several fields of Neutrosophic to tackle a variety of problems, including Neutrosophic Com-

puting and Machine Learning. These efforts are valued by launching a science international journal 

of Neutrosophic Computing and Machine Learning [13], which issued its 7th volume in 2019. In 

which, all published papers have wrote by NSIA’s researchers. 
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The international journal of Neutrosophic Computing and Machine Learning with its all vol-

umes can be seen as broad overview of the field of machine learning in Neutrosophic provided by 

NSIA’s researchers. 

The main contributions of this paper: (1) summarizes research achievements on Neutrosophic 

Computing and Machine Learning from the point of view of non NSIA’s researchers. In a different 

way, try to collect the different articles on Neutrosophic machine learning papers published on sev-

eral journals around the world other than those published in Neutrosophic Computing and Machine 

Learning journal, among it, each volume is can be considered a state of art. In order to present to 

researchers, the global state of art of advances research on Neutrosophic Machine Learning ap-

proaches. (2) Try to taxonomy, cluster and identify differences Neutrosophic Machines learning ap-

proaches. 

3. Literature review 

There are several Machine learning in Neutrosophic algorithms and approaches surveyed in this 

article. Then, a natural questions arise: how we can categorize all hybrid methods? 

Our view of the general relationship between the fields of machine learning and Neutrosophic 

is the re-searchers try to map the basic operations from crisp number to Neutrosophic environment, 

however they rewrite machine learning algorithm instead of using simple mathematical formulas, 

and they use Neutrosophic formulas. But the main question should the researchers in this hybrid 

field (Machine learning and Neutrosophic) respond is, does this hybridization make sense to tackle 

the real world issues or just a theoretical formulation? 

Before trying to respond this question, we synthesis all hybrid methods according to commonly 

used categories, summary all surveyed papers in a table 1. There are four categories of machine learn-

ing algorithms, supervised learning with two subcategories classification and prediction, semi-su-

pervised learning, unsupervised learning and reinforcement learning. 

3.1. Neutrosophic supervised learning 

3.1.1. Neutrosophic Classification 

Neutrosophic-k-NN Classifier [14]: K-Nearest Neighbor (K-NN) method isn’t a learning method, 

but based on saving the training examples (all training examples), at prediction time, it find the k 

training examples (𝑥1, 𝑦1),⋯ , (𝑥𝑘 , 𝑦𝑘) that are closest to the test example 𝑥, and then affect to the 

most frequent class among those 𝑦𝑖’s. This initial version of K-NN suffers from slowness because to 

classify  𝑥, one need to loop over all training examples. Actually, some tricks to speed are intro-

duced such as classes represented by medoid (Representative point), or centroid (central value), etc. 

The Neutrosophic K-NN method we present here is the mapping of method based on Centroid, in 

which we consider 𝑐𝑗 the center of cluster or class 𝑗, a constant 𝑚, regularization parameter 𝛿, and 

(𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗), where 𝑇𝑖𝑗  denote truth, 𝐼𝑖𝑗  indeterminacy and 𝑁𝑖𝑗 falsity membership values of point 𝑖 

for class 𝑗. 

𝑇𝑖𝑗 =
(𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (1) 

𝐹𝑖𝑗 =
𝛿
−(

2
𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (2) 
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𝐼𝑖𝑗 =
(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)

−(
2

𝑚−1

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (3) 

 

At the time of prediction, the membership value of unknown point 𝑥𝑢 to class 𝑗 is defined by as 

follow: 

𝑥𝑢𝑗 =
∑ 𝑑𝑖
𝑘
𝑖=1 (𝑇𝑖𝑗+𝐹𝑖𝑗−𝐼𝑖𝑗)

∑ 𝑑𝑖
𝑘
𝑖=1

, (4) 

With 𝑑𝑖 =
1

(𝑥𝑢−𝑥𝑖)
2

𝑞−1

 

Then unknown point 𝑥𝑢 get the label of class maximizing 𝑚𝑎𝑥{𝑥𝑢𝑗 ; 𝑗 = 1,2⋯ , 𝐶}.  

The authors didn’t show the usefulness of the proposed method but they proposed an interesting 

idea to apply it on imbalanced data-set problems. 

 

Neutrosophic SVM (N-SVM) [15] : Let’s assume that (𝑥𝑖, 𝑦𝑖) a set of training data, in which eve 

with  

𝑡𝑖 = 1 −
∥∥(𝑥𝑗−𝐶+)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑃∥
∥(𝑥𝑗−𝐶+)∥∥

, (5) 

ry 𝑥𝑖 belonging to class 𝑦𝑖  with a triple 𝑡𝑖, 𝑓𝑖, and 𝑖𝑖  as its Neutrosophic components. 

𝑖𝑖 = 1 −
∥∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑃∥
∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

, (6) 

𝑓𝑖 = 1 −
∥∥(𝑥𝑗−𝐶−)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑃∥
∥(𝑥𝑗−𝐶−)∥∥

, (7) 

Where 𝑃 and 𝑁 represent the positive and negative samples subsets respectively, 𝑦𝑖 = +1 for all 

𝑥𝑖 ∈ 𝑃 and 𝑦𝑖 = −1 for 𝑥𝑖 ∈ 𝑁. 

𝑡𝑖 = 1 −
∥∥(𝑥𝑗−𝐶−)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑁∥
∥(𝑥𝑗−𝐶−)∥∥

,       

(8) 

𝑖𝑖 = 1 −
∥∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑁∥
∥(𝑥𝑗−𝐶𝑎𝑙𝑙)∥∥

, (9) 

𝑓𝑖 = 1 −
∥∥(𝑥𝑗−𝐶+)∥∥

𝑚𝑎𝑥𝑥𝑘∈𝑁∥
∥(𝑥𝑗−𝐶+)∥∥

, (10) 

with 𝐶+ =
1

𝑛+
∑ 𝑥𝑘
𝑛+
𝑘=1 ,  𝐶− =

1

𝑛−
∑ 𝑥𝑘
𝑛−
𝑘=1 , and 𝐶𝑎𝑙𝑙 =

1

2
(𝐶+ + 𝐶−)  

We define 𝑔𝑗 as weighting function:  

𝑔𝑗 = 𝑡𝑖 + 𝑖𝑖 − 𝑓𝑖, (11) 
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The optimal hyper-plane problem in the reformulated SVM is the solution to: 

minimize 𝑔𝑗 =
1

2
𝜔 ⋅ 𝜔∑ 𝑔𝑗

𝑘
𝑗=1 𝜁𝑗, (12) 

Subject to  

𝒚𝒋(𝝎𝒋 + 𝒃) > 𝟏 − 𝜻𝒋   𝒊 = 𝟏, 𝟐⋯ , 𝒏 (13) 

N-SVM (Neutrosophic-Support Vector Machine) improves performance over standard SVM 

and reduces the effects of outliers in learning samples. 

3.1.2. Neutrosophic Regression 

Neutrosophic simple linear Regression:  Salama and al. [16] studied and introduced Neutrosophic 

simple linear regression model with its possible utility to predict value of a dependent variable 𝑦 

according to predictor variable 𝑥. Below a pseudo code of Neutrosophic Linear Regression algo-

rithm. 

Algorithm 1 Neutrosophic Simple Linear Regression 
 

Require: Training data (𝑥𝑖, 𝑦𝑗), 𝑖, 𝑗 = 1,2,⋯ ,𝑁 
  

A model define the relationship between input x and y, y = ax + b, where (a and b) represent esti-
mated Neutrosophic (intercept and slope) coefficients, y estimated Neutrosophic output 

 
Define degree of membership, non-membership, and indeterminacy :  
((𝜇𝐴(𝑥1), 𝜆𝐴(𝑥1), 𝜈𝐴(𝑥1)), (𝜇𝐵(𝑥1), 𝜆𝐵(𝑥1), 𝜈𝐵(𝑥1)), 𝑖, 𝑗 = 1,2⋯ , 𝑁 

Define cost function 𝐽(𝑎, 𝑏) = ∑(𝑎𝑥𝑖 + 𝑏 − 𝑦𝑖)
2 

Repeat  

 Calculate the gradients of J 
 

 Update the weights a 
 

Repeat until the cost 𝐽(𝑎, 𝑏) stops reducing, or some other predefined termination criteria is 

met  
 

3.2. Neutrosophic unsupervised learning 

3.2.1. Neutrosophic Clustering 

Neutrosophic C-means: In this method, authors [10] have given a meaning to the three basic Neu-

trosophic components 𝑇𝑖𝑗 as membership values belonging to the determinate clusters 𝐼𝑖 as bound-

ary regions, and 𝑁𝑖  noisy data set. 

𝑐𝑖𝑚𝑎𝑥 =
𝑐𝑝𝑖+𝑐𝑞𝑖

2
, (14) 

We define 𝑝𝑖  and 𝑞𝑖 are the cluster numbers with the biggest and second biggest value of T re-

spectively, and 𝑚 is a constant. 

𝑝𝑖 = 𝜆 ⋅ 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1,2⋯,𝐶(𝑇𝑖𝑗), (15) 
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𝑞𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗≠𝑝𝑖∩1,2⋯,𝐶(𝑇𝑖𝑗), (16) 

Membership Neutrosophic values are defined by follow formulas: 

𝑇𝑖𝑗 =
𝜛2𝜛3(𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (17) 

𝐹𝑖𝑗 =
𝜛1𝜛3𝛿

−(
2

𝑚−1)

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (18) 

𝐼𝑖𝑗 =
𝜛1𝜛2(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)

−(
2

𝑚−1

∑ (𝐶
𝑗=1 𝑥𝑖−𝑐𝑗)

−(
2

𝑚−1)+(𝑥𝑖−𝑐𝑖𝑚𝑎𝑥)
−(

2
𝑚−1)+𝛿

−(
2

𝑚−1)
, (19) 

with 𝒊 = 𝟏, 𝟐⋯ ,𝑵 

𝑐𝑗 =
∑ (𝑁
𝑖=1 𝜛1𝑇𝑖𝑗)

𝑚𝑥𝑖

∑ (𝑁
𝑖=1 𝜛1𝑇𝑖𝑗)

𝑚 , (20) 

𝐽𝑁𝐶𝑀(𝑇, 𝐹, 𝐼, 𝑐) = ∑
𝑖=1

𝑁

(𝜛1𝑇𝑖𝑗)
𝑚(𝑥𝑖 − 𝑐𝑗)

2 + ∑
𝑖=1

𝑁

(𝜛2𝐹𝑖)
𝑚(𝑥𝑖 − 𝑐𝑖𝑚𝑎𝑥)

2 +

𝛿2 ∑
𝑖=1

𝑁

(𝜛3𝐼𝑖)
𝑚, 

(21) 

The separation between classes is performed by iteration optimizing objective function, that is 

based on updating the Neutrosophic membership values (𝑇𝑖𝑗 ,𝐹𝑖, 𝐼𝑖), the centers 𝑐𝑗 , and 𝑐𝑖𝑚𝑎𝑥 accord-

ing to the equations defined above. The loop stop when ∥ 𝑇𝑖𝑗
(𝑘+1)

− 𝑇𝑖𝑗
(𝑘)

∥< 𝜖 with 𝜖 is condition check 

and 𝑘 is step.  

For nonlinear clustering problem an extended Method have been proposed called Kernel NCMA 

in which we use a function kernel 𝐾, 𝐾(𝑥𝑖 , 𝑧𝑗) instead of(𝑥𝑖 − 𝑧𝑗), such as 𝐾(𝑥𝑖 , 𝑐𝑖𝑚𝑎𝑥) in place of 𝑥𝑖 −

𝑐𝑖𝑚𝑎𝑥. The NCMA can be summarized as follow : 

 

Algorithm 2 KNCM algorithm 
 

 
Assign each data into the class with the largest TM 
 
Choose kernel function and its parameters 

Initialize 𝑇(0) , 𝐹(0), 𝐼(0), 𝐶, 𝑚, 𝛿, 𝜖, 𝜛1, 𝜛2, 𝜛3 parameters 

While  ∥ 𝑇𝑖𝑗
(𝑘+1)

− 𝑇𝑖𝑗
(𝑘)

∥< 𝜖 do  

 Calculate the centers vectors 𝑐(𝑘) at 𝑘 ste 

 Compute the 𝑐𝑖𝑚𝑎𝑥  using the clusters centers with the largest and second largest value of 

𝑇𝑖𝑗 

 Update 𝑇𝑖𝑗(𝑘) to 𝑇𝑖𝑗(𝑘 + 1), 𝐹𝑖𝑗(𝑘) to 𝑇𝑖𝑗(𝑘 + 1) , and 𝐼𝑖𝑗(𝑘) to 𝐼𝑖𝑗(𝑘 + 1) 

End while 
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NCM and KNCM as mentioned by authors may handle veracity in data such as outliers and 

noise using their new objective function. And then possibility to deal with raw data in modeling 

phase instead while data cleaning phase. 

3.2.2. Neutrosophic Hierarchical Clustering 

Agglomerative Hierarchical Clustering Algorithm [17]: First, every SVNSs 𝐴𝑘 with (𝑘 = 1,⋯ , 𝑛) con-

sidered as single cluster. In a loop, until we get a single cluster of size 𝑛, the SVNSs 𝐴𝑘 the SVNS 

are then compared to each other and are merged into a single group based on the closest pair of 

groups (with the smallest distance), based on a weighted distance (Hamming distance or Euclidean 

distance). At each stage, only two clusters can be merged and they cannot be separated once 

merged. The center of each cluster is recalculated using the arithmetic mean of the SVNS offered to 

the cluster. The distance between the centers of each group is considered as the distance between 

two groups. 

Algorithm 3 Agglomerative Hierarchical Clustering algorithm  
Let us consider a collection of 𝑛 SVNSs 𝐴𝑘(𝑘 = 1,⋯ , 𝑛) 

Assign each of the n SVNSs 𝐴𝑘(𝑘 = 1,⋯ , 𝑛) to a single cluster  

While All 𝐴𝑘 clustered into a single cluster of size 𝑛 do 

            SVNSs 𝐴𝑘(𝑘 = 1,⋯ , 𝑛) are then compared among themselves and are merged them into a 

single        

            Cluster according to the closest (with smaller distance) pair of clusters, based on a weighted 

distance 

            (Hamming distance or Euclidean distance) 

End while  

Table 1. List of major contributions on machine learning algorithms in Neutrosophic environment. 

Authors Title Reference Publisher  

Salama, A. A., Eisa, M., ELhafeez, 
S. A., Lotfy, M. M. (2015) 

Review of recommender systems algorithms utilized in 
social networks based e-Learning systems neutro-
sophic system [18] Neutrosophic Sets and Sys-

tems 8 : 32-40  

Ansari, A. Q., Biswas, R., 
Aggarwal, S. (2013) Neutrosophic classifier: An extension of fuzzy classifer [19] Applied Soft Computing, 

13(1), 563-573  
Zhang, M., Zhang, L., Cheng, H. D. 
(2010) A neutrosophic approach to image segmentation based 

on watershed method [20] Signal Processing, 90(5), 
1510-1517  

Zhang, X., Bo, C., Smarandache, 
F., Dai, J. (2018) New inclusion relation of neutrosophic sets with appli-

cations and related lattice structure [21] International Journal of Ma-
chine Learning and 
Cybernetics, 9, 1753-1763  

Mondal, K. A. L. Y. A. N., Pramanik, 
S. U. R. A. P. A. T. I., Giri, B. C. 
(2016) 

Role of neutrosophic logic in data mining. New Trends 
in Neutrosophic Theory and Application [22] Pons Editions, Brussels, 15-

23.  

Sengur, A., Guo, Y. (2011) Color texture image segmentation based on neutro-
sophic set and wavelet transformation [23] Computer Vision and Image 

Understanding,115(8), 1134-
1144  

Akbulut, Y., engr, A., Guo, Y., 
Smarandache, F. (2017) A novel neutrosophic weighted extreme learning ma-

chine for imbalanced data set [24] Symmetry, 9(8), 142  

Kraipeerapun, P., Fung, C. C., 
Wong, K. W. (2007 August) Ensemble neural networks using interval neutrosophic 

sets and bagging [25] 
In Third International Confer-
ence on Natural 
Computation (ICNC 2007) 
(Vol.  1, pp.  386-390). IEEE 

 

Kavitha, B., Karthikeyan, S., 
Maybell, P. S(2012) 

An ensemble design of intrusion detection system for 
handling uncertainty using Neutrosophic Logic Classi-
fier [26] Knowledge-Based Systems, 

28, 88-96  



Neutrosophic Sets and Systems, Vol. 28, 2019   65  

 
A. Elhassouny, S. Idbrahim, F. Smarandache, Machine learning in Neutrosophic Environment: A Survey 

Ye, J. (2014). Single-valued neutrosophic minimum spanning tree 
and its clustering method [27] Journal of intelligent Sys-

tems, 23(3), 311-324  

Thanh, N. D., Ali, M. (2017, July) Neutrosophic recommender system for medical diagno-
sis based on algebraic similarity measure and cluster-
ing [28] 

In 2017  IEEE  International  
Conference  on Fuzzy 
Systems (FUZZ-IEEE) (pp. 
1-6). IEEE 

 

Akbulut, Y., engr, A., Guo, Y., 
Polat, K. (2017) KNCM: Kernel neutrosophic c-means clustering [10] Applied Soft Computing, 52, 

714-724  

Kraipeerapun, P., Fung, C. C., 
Wong, K. W. (2006) Multiclass classification using neural networks and in-

terval neutrosophic sets [29] World Scientific and 
Engineering Academy and 
Society (WSEAS)  

Ali, M., Khan, M., Tung, N. T. 
(2018) Segmentation of dental X-ray images in medical imag-

ing using neutrosophic orthogonal matrices [30] Expert Systems with Appli-
cations, 91, 434-441  

Long, H. V., Ali, M., Khan, M., Tu, 
D. N. (2019) A novel approach for fuzzy clustering based on neutro-

sophic association matrix [31] Computers and Industrial 
Engineering,  127, 687-697  

Kraipeerapun, P., Fung, C. C. 
(2008, February) 

Comparing performance of interval neutrosophic sets 
and neural networks with support vector machines for 
binary classification problems [32] 

In 2008 2nd IEEE Interna-
tional Conference on Digital 
Ecosystems and Technolo-
gies (pp. 34-37). IEEE 

 

Thanh, N. D., Ali, M. (2017) A novel clustering algorithm in a neutrosophic recom-
mender system for medical diagnosis [33] Cognitive Computation, 9(4), 

526-544  

Gaber, T., Ismail, G., Anter, A., 
Soliman, M., Ali, M., Semary, N., 
Snasel, V. (2015, August) 

Thermogram breast cancer prediction approach based 
on Neutrosophic sets and fuzzy c-means algorithm [34] 

In 2015 37th Annual Interna-
tional Conference of the 
IEEE Engineering in Medi-
cine and Biology Society 
(EMBC) (pp. 4254-4257). 
IEEE 

 

Ye, J. (2017) Single-valued neutrosophic clustering algorithms based 
on similarity measures [35] Journal of Classification, 

34(1), 148-162  
Tuan, T. M., Chuan, P. M., Ali, M., 
Ngan, T. T., Mittal, M. (2018) Fuzzy and neutrosophic modeling for link prediction in 

social networks [36] Evolving Systems, 1-6  

Ju, W., Cheng, H. D. (2008, De-
cember) 

Discrimination of outer membrane proteins using refor-
mulated support vector machine based on neutrosophic 
set [37] In 11th Joint International 

Conference on Information 
Sciences. Atlantis Press  

Shan, J., Cheng, H. D., Wang, Y. 
(2012) A novel segmentation method for breast ultrasound im-

ages based on neutrosophic lmeans clustering [38] Medical physics, 39(9), 
5669-5682  

Basha, S. H., Abdalla, A. S., Has-
sanien, A. E. (2016, December) GNRCS: hybrid classification system based on neutro-

sophic logic and genetic algorithm [39] 
In 2016 12th International 
Computer Engineering 
Conference (ICENCO) (pp. 
53-58). IEEE 

 

Kraipeerapun, P., Fung, C. C., 
Wong, K. W. (2007) 

Uncertainty assessment using neural networks and in-
terval neutrosophic sets for multiclass classification 
problems [40] WSEAS Transactions on 

Computers, 6(3)  

Dhingra, G., Kumar, V., Joshi, H. D. 
(2019) A novel computer vision based neutrosophic approach 

for leaf disease identification and classification [41] Measurement, 135, 782-794  
Rashno, E., Akbari, A., Nasersharif, 
B. (2019) A Convolutional Neural Network model based on Neu-

trosophy for Noisy Speech Recognition [42] arXiv preprint 
arXiv:1901.10629  

4. Discussions 

4.1. Research trends and open issues 

Hybridization between Neutrosophic and machine learning algorithms, have also been studied. 

In supervision learning, Akbulut and al. [14] introduced intuitive supervised learning method called 

Neutrosophic-k-NN Classifier K-Nearest Neighbor (K-NN). Due to its results as a powerful machine 

learning methods, several tries to map SVM in Neutrosophic, Ju and al. [15] proposed Neutrosophic-

support vector machines (N-SVM). In [32], authors Compared performance of interval neutrosophic 

sets and neural networks with support vector machines for binary classification problems. Ju and al 

[37] reformulated SVM, based on neutrosophic set, to discriminate outer membrane proteins using 

reformulated support vector machine based on neutrosophic set. In recent years, Artificial neural 

networks (ANN) has recognized huge advances, which explain many attempts of hybridization be-

tween ANN and Neutrosophic, Kraipeerapun and al. [40] demonstrated how to assess uncertainty 

using neural networks and interval neutrosophic sets for multi-class classification problems, then its 
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application on multi-class classification problems [29], afterward, for more robustness ensemble neu-

ral networks using interval neutrosophic sets and bagging [25]. 

Likewise, in unsupervised learning, Alsmadi and al. [7] introduced a hybrid Fuzzy C-Means 

and Neutrosophic for jaw lesions segmentation. Inspired from fuzzy c-means and the neutrosophic 

set framework, Guo and al. [9] proposed a new clustering algorithm, neutrosophic c-means (NCM), 

for uncertain data cluster-ing. Akbulu and al. [10] developed KNCM: Kernel Neutrosophic c-Means 

Clustering, neutrosophic c-means (NCM), in order to alleviate the limitations of the popular fuzzy c-

means (FCM) clustering algorithm by introducing a new objective function which contains two types 

of rejection. To deal with indeterminacy, Qureshi and al. [11] improved the Method for Image Seg-

mentation Using K-Means Clustering with Neutrosophic Logic. Ye and al. [35] proposed Single-val-

ued neutrosophic clustering algorithms based on similarity measures. Akhtar and al. [8] applied K-

mean algorithm in Neutrosophics environment for Image Segmentation, Gaber and al. [34] to predict 

thermogram breast cancer, and Shan and al. [38] use neutrosophic l-means clustering to breast ultra-

sound images based. 

Conversely, in reinforcement learning, we haven’t find any resources about mixture between 

the both approaches, because this type of algorithms of reinforcement is under development, to be 

subject of hybridization. 

4.2. Taxonomy of Neutrosophic Machine learning 

The trends also involve the question of where machine learning areas to apply Neutrosophic, 

whether to it is more appropriate to employ instead of crisp number the SVN numbers. Hence, we 

have classified different Neutrosophic machine learning algorithms. Below a summarizing of all 

Neutrosophic Learning Methods and algorithms, according to standard taxonomy of machine learn-

ing. 

 Supervised (inductive) learning (training data includes desired outputs) 

o Prediction : (Regression) to predict continuous values 

▪ Neutrosophic simple linear regression 

o Classification (discrete labels) : predict categorical values 

▪ Neutrosophic-k-NN [14] 

▪ Neutrosophic-Support Vector Machines (N-SVM)[15], [32],[37]  

▪ Neutrosophy-Artificial neural networks (N-ANN)[40], [29] 

▪ Neutrosophy-Ensemble neural networks, Bagging [25] 

 Unsupervised learning (training data does not include desired outputs) 

o Clustering 

▪ Neutrosophic C-Means (NCM) [7], [9], [11], [35], [8], [38], [34]  

▪ Kernel Neutrosophic c-Means(KNCM) [10] 

o Neutrosophic Hierarchical Clustering 

▪ Neutrosophic Agglomerative Hierarchical Clustering [17] 

▪ Neutrosophic Divisive Hierarchical Clustering 

o Finding association (in features) 

o Dimension reduction 

 Neutrosophic semi-supervised learning : Neutrosophic Semi-supervised learning (training data 

includes a few desired outputs 

 Neutrosophic Reinforcement learning : Learning from sequential data 

o Q-Learning 

o State-Action-Reward-State-Action (SARSA) 

o Deep Q Network (DQN) 

o Deep Deterministic Policy Gradient (DDPG) 



Neutrosophic Sets and Systems, Vol. 28, 2019   67  

 
A. Elhassouny, S. Idbrahim, F. Smarandache, Machine learning in Neutrosophic Environment: A Survey 

5. Conclusions  

In this paper, we have explored how Neutrosophic contributes to enhance machine learning 

algorithms generally and how to modeling and exploit information’s imperfection such as uncer-

tainty as a source of information, not a kind of noises. We tried to cover hybrid approaches. However, 

it is still several machine learning algorithms to map to Neutrosophic environment, demonstrate the 

utility of Neutrosophic with machine learning to tackle real world challenges.  
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Abstract: A bipolar model is a significant model wherein positive data revels the liked object, while 

negative data speaks the disliked object. The principle reason for analysing the vague graphs is to 

demonstrate the stability of few properties in a graph, characterized or to be characterized in using 

vagueness. In this present research article, the new concept of neutrosophic bipolar vague sets are 

initiated. Further, its application to neutrosophic bipolar vague graphs are introduced. Moreover, 

some remarkable properties of strong neutrosophic bipolar vague graphs, complete neutrosophic 

bipolar vague graphs and complement neutrosophic bipolar vague graphs are explored and the 

proposed ideas are outlined with an appropriate example 

Keywords: Neutrosophic bipolar vague set, Neutrosophic bipolar vague graphs, Complete 

neutrosophic bipolar vague graph, Strong neutrosophic bipolar vague graph. 

 

 

1. Introduction 

Fuzzy set theory richly contains progressive frameworks comprising of data with various degrees of 

accuracy. Vague sets are first investigated by Gau and Buehrer [30] which is an extension of fuzzy 

set theory. Various issues in real-life problems have fluctuations, one has to handle these 

vulnerabilities, vague set is introduced. Vague sets are regarded as a special case of context 

dependent fuzzy sets and it is applicable in real-time systems consisting of information with 

multiple levels of precision. So as to deal with the uncertain and conflicting data, the neutrosophic 

set is presented by the creator Smarandache and studied widely about it [13, 21, 28, 31, 41, 42, 4, 5, 43, 

44, 22, 23, 45]. Neutrosophic sets are the more generalized sets, one can manage with uncertain 

informations in a more successful way with a progressive manner when appeared differently in 

relation to fuzzy sets. It have the greater adaptability, accuracy and similarity to the framework 

when contrasted with past existing fuzzy models. The neutrosophic set has three completely 

independent parts, which are truth-membership degree, indeterminacy-membership degree and 

falsity-membership degree with the sum of these values lies between 𝟎 and 𝟑; therefore, it is 

applied to many different areas, such as algebra [32, 33] and decision-making problems (see [46] and 

references therein). 
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Bipolar fuzzy sets are extension of fuzzy sets whose membership degree ranges from [−𝟏, 𝟏]. 

Themembership degree (𝟎, 𝟏] represents that an object satisfies a certain property whereas the 

membership degree [−𝟏, 𝟎) represents that the element satisfies the implicit counter-property. The 

positive information indicates that the consideration to be possible and negative information 

indicates that the consideration is granted to be impossible. Notable that bipolar fuzzy sets and 

vague sets appear to be comparative, but they are completely different sets. Even though both sets 

handle with incomplete data, they will not adapt the indeterminate or inconsistent information 

which appears in many domains like decision support systems. Many researchers pay attention to 

the development of neutrosophic and bipolar neutrosophic graphs [39, 40]. For example, in [17], the 

authors studied neutrosophic soft topological K-algebras. In [48], complex neutrosophic graphs are 

developed. Bipolar single valued neutrosophic graphs are established in [25]. Bipolar neutrosophic 

sets and its application to incidence graphs are discussed in [15]. In [16], bipolar neutrosophic graphs 

are established. 

Recently, a variety of decision making problems are based on two-sided bipolar judgements 

on a positive side and a negative side. Nowadays bipolar fuzzy sets are playing a substantial role in 

chemistry, economics, computer science, engineering, medicine and decision making problems (for 

more details see [27, 28, 31, 34, 38, 46] and references therein). Akram [ 8] introduced bipolar fuzzy 

graphs and discuss its various properties and several new concepts on bipolar neutrosophic graphs 

and bipolar neutrosophic hypergraphs have been studied in [7] and references therein. In [4], he 

established the certain notions including strong neutrosophic soft graphs and complete 

neutrosophic soft graphs. The author Shawkat Alkhazaleh introduces the concept of neutrosophic 

vague set theory [6]. The authors [3]  introduces the concept of neutrosophic vague soft expert set 

which is a combination of neutrosophic vague set and soft expert set to improve the reasonability of 

decision making in reality. It is remarkable that the Definition 2.6 in [37] has a flaw and it not defined 

in a proper manner. We focussed on to redefine that definition in a proper way and explained with 

an example and also we applied to neutrosophic bipolar vague graphs. Motivation of the mentioned 

works as earlier [10], we mainly contribute the definition of neutrosophic bipolar vague set is 

redefined. In addition, it is applied to neutrosophic bipolar vague graphs and strong neutrosophic 

bipolar vague graphs. The developed results will find an application in NBVGs and also in decision 

making. The objectives in this work as follows:   

    • Newly defined the neutrosophic bipolar vague set  

    • Introduce the operations like union and intersection with example in section 2.  

    • In section 3, neutrosophic bipolar vague graphs are developed with an example. 

Further, the concepts of neutrosophic bipolar vague subgraph, adjacency, path, connectedness and 

degree of neutrosophic bipolar vague graph are evolved.  

    • Further we presented some remarkable properties of strong neutrosophic bipolar 

vague graphs in section 5, followed by a remark by comparing other types of bipolar graphs. The 

obtained results will improve the existing result [37].  

2. Preliminaries 

Definition 2.1 [18] A vague set 𝐴 on a non empty set 𝑋 is a pair (𝑇𝐴 , 𝐹𝐴), where 𝑇𝐴: 𝑋 → [0,1] and 𝐹𝐴: 𝑋 →

[0,1]are true membership and false membership functions, respectively, such that  
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0 ≤ 𝑇𝐴(𝑥) + 𝐹𝐴(𝑦) ≤ 1 for any 𝑥 ∈ 𝑋. 

Let 𝑋 and 𝑌 be two non-empty sets. A vague relation 𝑅 of 𝑋 to 𝑌 is a vague set 𝑅 on 𝑋 × 𝑌 that 

is 𝑅 = (𝑇𝑅 , 𝐹𝑅), where 𝑇𝑅: 𝑋 × 𝑌 → [0,1], 𝐹𝑅: 𝑋 × 𝑌 → [0,1] which satisfies the condition:  

0 ≤ 𝑇𝑅(𝑥, 𝑦) + 𝐹𝑅(𝑥, 𝑦) ≤ 1 for any 𝑥 ∈ 𝑋. 

Let 𝐺 = (𝑉, 𝐸) be a graph. A pair 𝐺 = (𝐽, 𝐾) is called a vague graph on 𝐺∗ or a vague graph where 

𝐽 = (𝑇𝐽, 𝐹𝐽) is a vague set on 𝑉 and 𝐾 = (𝑇𝐾 , 𝐹𝐾) is a vague set on 𝐸 ⊆ 𝑉 × 𝑉 such that for each 

𝑥𝑦 ∈ 𝐸, 

𝑇𝐾(𝑥𝑦) ≤ (𝑇𝐽(𝑥) ∧ 𝑇𝐽(𝑦)) and 𝐹𝐾(𝑥𝑦) ≥ (𝑇𝐽(𝑥) ∨ 𝐹𝐽(𝑦)).  

Definition 2.2 [4]  A Neutrosophic set 𝐴 is contained in another neutrosophic set 𝐵, (i.e) 𝐴 ⊆ 𝐵 if ∀𝑥 ∈

𝑋, 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥ 𝐼𝐵(𝑥)and 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥).  

Definition 2.3 [27, 30] Let 𝑋 be a space of points (objects), with a generic elements in 𝑋 denoted by 𝑥. A 

single valued neutrosophic set (SVNS) 𝐴  in 𝑋  is characterized by truth-membership function 𝑇𝐴(𝑥) , 

indeterminacy-membership function 𝐼𝐴(𝑥) and falsity-membership-function 𝐹𝐴(𝑥). 

For each point 𝑥  in 𝑋 , 𝑇𝐴(𝑥), 𝐹𝐴(𝑥), 𝐼𝐴(𝑥) ∈ [0,1], 𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥), 𝐼𝐴(𝑥)〉}  and 0 ≤ 𝑇𝐴(𝑥) +

𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. 

Definition 2.4 [9] A neutrosophic graph is defined as a pair 𝐺∗ = (𝑉, 𝐸) where  

(i) 𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑛}  such that 𝑇1 = 𝑉 → [0,1] , 𝐼1 = 𝑉 → [0,1]  and 𝐹1 = 𝑉 → [0,1]  denote 

the degree of truth-membership function, indeterminacy function and falsity-membership function, 

respectively and  

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 

 (ii) 𝐸 ⊆ 𝑉 × 𝑉 where 𝑇2 = 𝐸 → [0,1], 𝐼2 = 𝐸 → [0,1] and 𝐹2 = 𝐸 → [0,1] are such that  

𝑇2(𝑢𝑣) ≤ {𝑇1(𝑢) ∧ 𝑇1(𝑣)}, 

𝐼2(𝑢𝑣) ≤ {𝐼1(𝑢) ∧ 𝐼1(𝑣)}, 

𝐹2(𝑢𝑣) ≤ {𝐹1(𝑢) ∨ 𝐹1(𝑣)}, 

and 0 ≤ 𝑇2(𝑢𝑣) + 𝐼2(𝑢𝑣) + 𝐹2(𝑢𝑣) ≤ 3, ∀𝑢𝑣 ∈ 𝐸.  

Definition 2.5 [46] A bipolar neutrosophic set 𝐴 in 𝑋 is defined as an object of the form 

𝐴 = {< 𝑥, 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥), 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) >: 𝑥 ∈ 𝑋} , where 𝑇𝑃 , 𝐼𝑃 , 𝐹𝑃: 𝑋 → [0,1]  and 

𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁: 𝑋 → [−1,0]  The Positive membership degree 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥)  denotes the truth 

membership, indeterminate membership and false membership of an element 𝑥 ∈ 𝑋 corresponding 

to a bipolar neutrosophic set 𝐴 and the negative membership degree 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) denotes 

the truth membership, indeterminate membership and false membership of an element 𝑥 ∈ 𝑋 to 

some implicit counter-property corresponding to a bipolar neutrosophic set 𝐴.  

Definition 2.6 [46] Let 𝑋  be a non-empty set. Then we call 𝐴 =

{〈𝑥, 𝑇𝑃(𝑥), 𝐼𝑃(𝑥), 𝐹𝑃(𝑥), 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥)〉, 𝑥 ∈ 𝑋}a bipolar single valued neutrosophic relation on 

𝑋  such that 𝑇𝐴
𝑃(𝑥, 𝑦) ∈ [0,1], 𝐼𝐴

𝑃(𝑥, 𝑦) ∈ [0,1], 𝐹𝐴
𝑃(𝑥, 𝑦) ∈ [0,1]  and 𝑇𝐴

𝑁(𝑥, 𝑦) ∈ [−1,0], 𝐼𝐴
𝑁(𝑥, 𝑦) ∈

[−1,0], 𝐹𝐴
𝑁(𝑥, 𝑦) ∈ [−1,0].  

Definition 2.7 [46] Let 𝐴 = (𝑇𝑃
𝐴, 𝐼𝑃

𝐴, 𝐹𝑃
𝐴, 𝑇𝑁

𝐴, 𝐼𝑁
𝐴, 𝐹𝑁

𝐴)  and 𝐵 = (𝑇𝑃
𝐵, 𝐼𝑃

𝐵 , 𝐹𝑃
𝐵 , 𝑇𝑁

𝐵, 𝐼𝑁
𝐵 , 𝐹𝑁

𝐵)  be bipolar single 

valued neutrosophic set on 𝑋. If 𝐵 = (𝑇𝑃
𝐵 , 𝐼𝑃

𝐵, 𝐹𝑃
𝐵 , 𝑇𝑁

𝐵 , 𝐼𝑁
𝐵 , 𝐹𝑁

𝐵) is a bipolar single valued neutrosophic relation 

on 𝐴 = (𝑇𝑃
𝐴, 𝐼𝑃

𝐴 , 𝐹𝑃
𝐴, 𝑇𝑁

𝐴, 𝐼𝑁
𝐴, 𝐹𝑁

𝐴) then  

 𝑇𝐵
𝑃(𝑥𝑦) ≤ (𝑇𝐴

𝑃(𝑥) ∧ 𝑇𝐴
𝑃(𝑦)), 𝑇𝐵

𝑁(𝑥𝑦) ≥ (𝑇𝐴
𝑁(𝑥) ∨ 𝑇𝐴

𝑁(𝑦)) 
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 𝐼𝐵
𝑃(𝑥𝑦) ≥ (𝐼𝐴

𝑃(𝑥) ∨ 𝐼𝐴
𝑃(𝑦)), 𝐼𝐵

𝑁(𝑥𝑦) ≤ (𝐼𝐴
𝑁(𝑥) ∧ 𝐼𝐴

𝑁(𝑦)) 

 𝐹𝐵
𝑃(𝑥𝑦) ≥ (𝐹𝐴

𝑃(𝑥) ∨ 𝐹𝐴
𝑃(𝑦)), 𝐹𝐵

𝑁(𝑥𝑦) ≤ (𝐹𝐴
𝑁(𝑥) ∧ 𝐹𝐴

𝑁(𝑦)) 

 A bipolar single valued neutrosophic relation 𝐵  on 𝑋  is called symmetric if 𝑇𝐵
𝑃(𝑥𝑦) =

𝑇𝐵
𝑃(𝑦𝑥), 𝐼𝐵

𝑃(𝑥𝑦) = 𝐼𝐵
𝑃(𝑦𝑥), 𝐹𝐵

𝑃(𝑥𝑦) = 𝐹𝐵
𝑃(𝑦𝑥)  and 𝑇𝐵

𝑁(𝑥𝑦) = 𝑇𝐵
𝑁(𝑦𝑥), 𝐼𝐵

𝑁(𝑥𝑦) = 𝐼𝐵
𝑁(𝑦𝑥), 𝐹𝐵

𝑁(𝑥𝑦) =

𝐹𝐵
𝑁(𝑦𝑥) for all 𝑥𝑦 ∈ 𝑋. 

Definition 2.8 [6] A neutrosophic vague set 𝐴𝑁𝑉 (NVS in short) on the universe of discourse 𝑋 written as  

𝐴𝑁𝑉 = {〈𝑥, 𝑇̂𝐴𝑁𝑉
(𝑥), 𝐼𝐴𝑁𝑉

(𝑥), 𝐹̂𝐴𝑁𝑉
(𝑥)〉, 𝑥 ∈ 𝑋} whose truth-membership, indeterminacy membership 

and falsity-membership function is defined as 𝑇̂𝐴𝑁𝑉
(𝑥) =

[𝑇̂−(𝑥), 𝑇̂+(𝑥)], [𝐼−(𝑥), 𝐼+(𝑥)], [𝐹̂−(𝑥), 𝐹̂+(𝑥)],where 𝑇+(𝑥) = 1 − 𝐹−(𝑥), 𝐹+(𝑥) = 1 − 𝑇−(𝑥) , and 0 ≤

𝑇−(𝑥) + 𝐼−(𝑥) + 𝐹−(𝑥) ≤ 2. 

Definition 2.9 [20] The complement of NVS 𝐴𝑁𝑉 is denoted by 𝐴𝑁𝑉
𝑐  and it is defined by  

𝑇̂𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝑇+(𝑥),1 − 𝑇−(𝑥)], 

𝐼𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝐼+(𝑥),1 − 𝐼−(𝑥)], 

𝐹̂𝐴𝑁𝑉
𝑐 (𝑥) = [1 − 𝐹+(𝑥),1 − 𝐹−(𝑥)], 

Definition 2.10 [6] Let 𝐴𝑁𝑉  and 𝐵𝑁𝑉  be two NVSs of the universe 𝑈 . If for all 𝑢𝑖 ∈ 𝑈, 𝑇̂𝐴𝑁𝑉
(𝑢𝑖) =

𝑇̂𝐵𝑁𝑉
(𝑢𝑖), 𝐼𝐴𝑁𝑉

(𝑢𝑖) = 𝐼𝐵𝑁𝑉
(𝑢𝑖), 𝐹̂𝐴𝑁𝑉

(𝑢𝑖) = 𝐹̂𝐵𝑁𝑉
(𝑢𝑖) then the NVS 𝐴𝑁𝑉 are included by 𝐵𝑁𝑉, denoted 

by 𝐴𝑁𝑉 ⊆ 𝐵𝑁𝑉  where 1 ≤ 𝑖 ≤ 𝑛. 

Definition 2.11 [6] The union of two NVSs 𝐴𝑁𝑉 and 𝐵𝑁𝑉  is a NVSs, 𝐶𝑁𝑉, written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∪ 𝐵𝑁𝑉, 

whose truth membership function, indeterminacy-membership function and false-membership function are 

related to those of 𝐴𝑁𝑉 and 𝐵𝑁𝑉 by  

𝑇̂𝐶𝑁𝑉
(𝑥) = [(𝑇̂𝐴𝑁𝑉

− (𝑥) ∨ 𝑇̂𝐵𝑁𝑉
− (𝑥)), (𝑇̂𝐴𝑁𝑉

+ (𝑥) ∨ 𝑇̂𝐵𝑁𝑉
+ (𝑥))] 

𝐼𝐶𝑁𝑉
(𝑥) = [(𝐼𝐴𝑁𝑉

− (𝑥) ∧ 𝐼𝐵𝑁𝑉
− (𝑥)), (𝐼𝐴𝑁𝑉

+ (𝑥) ∧ 𝐼𝐵𝑁𝑉
+ (𝑥))] 

𝐹̂𝐶𝑁𝑉
(𝑥) = [(𝐹̂𝐴𝑁𝑉

− (𝑥) ∧ 𝐹̂𝐵𝑁𝑉
− (𝑥)), (𝐹̂𝐴𝑁𝑉

+ (𝑥) ∧ 𝐹̂𝐵𝑁𝑉
+ (𝑥))] 

Definition 2.12 [6] The intersection of two NVSs 𝐴𝑁𝑉 and 𝐵𝑁𝑉 is a NVSs 𝐶𝑁𝑉, written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∩

𝐵𝑁𝑉, whose truth membership function, indeterminacy-membership function and false-membership function 

are related to those of 𝐴𝑁𝑉 and 𝐵𝑁𝑉 by  

𝑇̂𝐶𝑁𝑉
(𝑥) = [(𝑇̂𝐴𝑁𝑉

− (𝑥) ∧ 𝑇̂𝐵𝑁𝑉
− (𝑥)), (𝑇̂𝐴𝑁𝑉

+ (𝑥) ∧ 𝑇̂𝐵𝑁𝑉
+ (𝑥))] 

𝐼𝐶𝑁𝑉
(𝑥) = [(𝐼𝐴𝑁𝑉

− (𝑥) ∨ 𝐼𝐵𝑁𝑉
− (𝑥)), (𝐼𝐴𝑁𝑉

+ (𝑥) ∨ 𝐼𝐵𝑁𝑉
+ (𝑥))] 

𝐹̂𝐶𝑁𝑉
(𝑥) = [(𝐹̂𝐴𝑁𝑉

− (𝑥) ∨ 𝐹̂𝐵𝑁𝑉
− (𝑥)), (𝐹̂𝐴𝑁𝑉

+ (𝑥) ∨ 𝐹̂𝐵𝑁𝑉
+ (𝑥))] 

Definition 2.13 [39] Let 𝐺∗ = (𝑉, 𝐸) be a graph. A pair 𝐺 = (𝐽, 𝐾) is called a neutrosophic vague graph 

(NVG) on 𝐺∗  or a neutrosophic graph where 𝐽 = (𝑇̂𝐽, 𝐼𝐽, 𝐹̂𝐽) is a neutrosophic vague set on 𝑉  and 𝐾 =

(𝑇̂𝐾 , 𝐼𝐾 , 𝐹̂𝐾) is a neutrosophic vague set 𝐸 ⊆ 𝑉 × 𝑉 where  

(1)𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} such that 𝑇𝐽
−: 𝑉 → [0,1], 𝐼𝐽

−: 𝑉 → [0,1], 𝐹𝐽
−: 𝑉 → [0,1] which satisfies the 

condition 𝐹𝐽
− = [1 − 𝑇𝐽

+] 

𝑇𝐽
+: 𝑉 → [0,1], 𝐼𝐽

+: 𝑉 → [0,1], 𝐹𝐽
+: 𝑉 → [0,1] which satisfies the condition 𝐹𝐽

+ = [1 − 𝑇1
−] 

 denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 ∈ 𝑉, and  

0 ≤ 𝑇𝐽
−(𝑣𝑖) + 𝐼𝐽

−(𝑣𝑖) + 𝐹𝐽
−(𝑣𝑖) ≤ 2. 

0 ≤ 𝑇𝐽
+(𝑣𝑖) + 𝐼𝐽

+(𝑣𝑖) + 𝐹𝐽
+(𝑣𝑖) ≤ 2. 

 (2) 𝐸 ⊆ 𝑉 × 𝑉 where  
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 𝑇𝐾
−: 𝑉 × 𝑉 → [0,1], 𝐼𝐾

−: 𝑉 × 𝑉 → [0,1], 𝐹𝐾
−: 𝑉 × 𝑉 → [0,1] 

 𝑇𝐾
+: 𝑉 × 𝑉 → [0,1], 𝐼𝐾

+: 𝑉 × 𝑉 → [0,1], 𝐹𝐾
+: 𝑉 × 𝑉 → [0,1] 

 denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 respectively and such that  

0 ≤ 𝑇𝐾
−(𝑣𝑖) + 𝐼𝐾

−(𝑣𝑖) + 𝐹𝐾
−(𝑣𝑖) ≤ 2. 

0 ≤ 𝑇𝐾
+(𝑣𝑖) + 𝐼𝐾

+(𝑣𝑖) + 𝐹𝐾
+(𝑣𝑖) ≤ 2. 

such that 

𝑇𝐾
−(𝑥𝑦) ≤ {𝑇𝐽

−(𝑥) ∧ 𝑇𝐽
−(𝑦)} 

𝐼𝐾
−(𝑥𝑦) ≤ {𝐼𝐽

−(𝑥) ∧ 𝐼𝐽
−(𝑦)} 

𝐹𝐾
−(𝑥𝑦) ≤ {𝐹𝐽

−(𝑥) ∨ 𝐹𝐽
−(𝑦)}, 

similarly 

𝑇𝐾
+(𝑥𝑦) ≤ {𝑇𝐽

+(𝑥) ∧ 𝑇𝐽
+(𝑦)} 

𝐼𝐾
+(𝑥𝑦) ≤ {𝐼𝐽

+(𝑥) ∧ 𝐼𝐽
+(𝑦)} 

𝐹𝐾
+(𝑥𝑦) ≤ {𝐹𝐽

+(𝑥) ∨ 𝐹𝐽
+(𝑦)}. 

Example 2.14 Consider a neutrosophic vague graph 𝐺 = (𝐽, 𝐾) such that 𝐽 = {𝑎, 𝑏, 𝑐} and 𝐾 = {𝑎𝑏, 𝑏𝑐, 𝑐𝑎} 

defined by 

𝑎̂ = 𝑇[0.5,0.6], 𝐼[0.4,0.3], 𝐹[0.4,0.5], 𝑏̂ = 𝑇[0.4,0.6], 𝐼[0.7,0.3], 𝐹[0.4,0.6], 

𝑐̂ = 𝑇[0.4,0.4], 𝐼[0.5,0.3], 𝐹[0.6,0.6] 

𝑎− = (0.5,0.4,0.4), 𝑏− = (0.4,0.7,0.4), 𝑐− = (0.4,0.5,0.6) 

𝑎+ = (0.6,0.3,0.5), 𝑏+ = (0.6,0.3,0.6), 𝑐+ = (0.4,0.3,0.6) 

 

 

 

 

 

 

 

 

 

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1neutrosophic vague graph  

 

3.  Neutrosophic Bipolar Vague Set 

In this section, the definition of NBVS, complement of NBVS, operations like union, 

intersection are elaborated with an example.  

Definition 3.1 In a universe of discourse 𝑋, the neutrosophic bipolar vague set (NBVS), denoted as 𝐴𝑁𝐵𝑉𝑆 

represented as,  

𝐴𝑁𝐵𝑉 = {〈𝑥, 𝑇̂𝐴𝑁𝐵𝑉
𝑃 (𝑥), 𝐼𝐴𝑁𝐵𝑉

𝑃 (𝑥), 𝐹̂𝐴𝑁𝐵𝑉
𝑃 (𝑥), 𝑇̂𝐴𝑁𝐵𝑉

𝑁 (𝑥), 𝐼𝐴𝑁𝐵𝑉
𝑁 (𝑥), 𝐹̂𝐴𝑁𝐵𝑉

𝑁 (𝑥)〉, 𝑥 ∈ 𝑋} 
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 whose truth-membership, indeterminacy membership and falssity-membership function is 

expanded as  

 

𝑇̂𝐴𝑁𝐵𝑉
𝑃 (𝑥) = [(𝑇−)𝑃(𝑥), (𝑇+)𝑃(𝑥)], 𝐼𝐴𝑁𝐵𝑉

𝑃 (𝑥) = [(𝐼−)𝑃(𝑥), (𝐼+)𝑃(𝑥)], 𝐹̂𝐴𝑁𝐵𝑉
𝑃 (𝑥) = [(𝐹−)𝑃(𝑥), (𝐹+)𝑃(𝑥)], 

where (𝑇+)𝑃(𝑥) = 1 − (𝐹−)𝑃(𝑥), (𝐹+)𝑃(𝑥) = 1 − (𝑇−)𝑃(𝑥), and provided that,  

 0 ≤ (𝑇−)𝑃(𝑥) + (𝐼−)𝑃(𝑥) + (𝐹−)𝑃(𝑥) ≤ 2. 

Also  

𝑇̂𝐴𝑁𝐵𝑉
𝑁 (𝑥) = [(𝑇−)𝑁(𝑥), (𝑇+)𝑁(𝑥)], 𝐼𝐴𝑁𝐵𝑉

𝑁 (𝑥) = [(𝐼−)𝑁(𝑥), (𝐼+)𝑁(𝑥)], 𝐹̂𝐴𝑁𝐵𝑉
𝑁 (𝑥) = [(𝐹−)𝑁(𝑥), (𝐹+)𝑁(𝑥)], 

where (𝑇+)𝑁(𝑥) = −1 − (𝐹−)𝑁(𝑥), (𝐹+)𝑁(𝑥) = −1 − (𝑇−)𝑁(𝑥), 

and provided that,  

 0 ≥ (𝑇−)𝑁(𝑥) + (𝐼−)𝑁(𝑥) + (𝐹−)𝑁(𝑥) ≥ −2. 

 
Example 3.2 Let 𝑈 = {𝑥1, 𝑥2, 𝑥3} be a set of universe we define the NBV set 𝐴𝑁𝐵𝑉 as follows 

𝐴𝑁𝐵𝑉 = {
𝑥1

[0.3,0.6]𝑃, [0.5,0.5]𝑃 , [0.4,0.7]𝑃 , [−0.3, −0.5]𝑁 , [−0.4, −0.4]𝑁 , [−0.5, −0.7]𝑁
, 

𝑥2

[0.4,0.6]𝑃 , [0.4,0.6]𝑃 , [0.4,0.6]𝑃, [−0.4, −0.4]𝑁 , [−0.5, −0.5]𝑁 , [−0.6, −0.6]𝑁
, 

𝑥3

[0.3,0.7]𝑃, [0.6,0.4]𝑃 , [0.3,0.7]𝑃 , [−0.4, −0.6]𝑁 , [−0.5, −0.6]𝑁 , [−0.4, −0.6]𝑁
} 

Definition 3.3 IN NBVS, the complement of 𝐴𝑁𝐵𝑉
𝑐  be expanded as,  

(𝑇̂𝐴𝑁𝐵𝑉
𝑐 (𝑥))𝑃 = {(1 − 𝑇+(𝑥))𝑃 , (1 − 𝑇−(𝑥))𝑃}, (𝑇̂𝐴𝑁𝐵𝑉

𝑐 (𝑥))𝑁 = {(−1 − 𝑇+(𝑥))𝑁 , (−1 − 𝑇−(𝑥))𝑁} 

(𝐼𝐴𝑁𝐵𝑉
𝑐 (𝑥))𝑃 = {(1 − 𝐼+(𝑥))𝑃 , (1 − 𝐼−(𝑥))𝑃}, (𝐼𝐴𝑁𝐵𝑉

𝑐 (𝑥))𝑁 = {(−1 − 𝐼+(𝑥))𝑁 , (−1 − 𝐼−(𝑥))𝑁} 

(𝐹̂𝐴𝑁𝐵𝑉
𝑐 (𝑥))𝑃 = {(1 − 𝐹+(𝑥))𝑃 , (1 − 𝐹−(𝑥))𝑃}, (𝐹̂𝐴𝑁𝐵𝑉

𝑐 (𝑥))𝑁 = {(−1 − 𝐹+(𝑥))𝑁, (−1 − 𝐹−(𝑥))𝑁} 

Example 3.4 Considering above example we have  

𝐴𝑁𝐵𝑉 = {
𝑥1

[0.7,0.4]𝑃, [0.5,0.5]𝑃 , [0.6,0.3]𝑃 , [−0.7, −0.5]𝑁 , [−0.6, −0.6]𝑁 , [−0.5, −0.3]𝑁
, 

𝑥2

[0.6,0.4]𝑃 , [0.6,0.4]𝑃 , [0.6,0.4]𝑃, [−0.6, −0.6]𝑁 , [−0.5, −0.5]𝑁 , [−0.4, −0.4]𝑁
, 

𝑥3

[0.7,0.3]𝑃, [0.4,0.6]𝑃 , [0.7,0.3]𝑃 , [−0.6, −0.4]𝑁 , [−0.5, −0.4]𝑁 , [−0.6, −0.4]𝑁
} 

Definition 3.5 Two NBVSs 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  of the universe 𝑈 are said to be equal, if for all 𝑢𝑖 ∈ 𝑈, 

(𝑇̂𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) = (𝑇̂𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) = (𝐼𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (𝐹̂𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) = (𝐹̂𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖) 

and  

(𝑇̂𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) = (𝑇̂𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) = (𝐼𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (𝐹̂𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) = (𝐹̂𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖). 

Definition 3.6 In the Universe 𝑈, two NBVSs, 𝐴𝑁𝐵𝑉, 𝐵𝑁𝐵𝑉  be given as, 

(𝑇̂𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) ≤ (𝑇̂𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) ≥ (𝐼𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖), (𝐹̂𝐴𝑁𝐵𝑉
)𝑃(𝑢𝑖) ≥ (𝐹̂𝐵𝑁𝐵𝑉

)𝑃(𝑢𝑖) 

and  

(𝑇̂𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) ≥ (𝑇̂𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (𝐼𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) ≤ (𝐼𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖), (𝐹̂𝐴𝑁𝐵𝑉
)𝑁(𝑢𝑖) ≤ (𝐹̂𝐵𝑁𝐵𝑉

)𝑁(𝑢𝑖) 

then the NBVS (𝐴𝑁𝐵𝑉)𝑃 are included by (𝐵𝑁𝐵𝑉)𝑃, denoted by (𝐴𝑁𝐵𝑉)𝑃 ⊆ (𝐵𝑁𝐵𝑉)𝑃 where 1 ≤ 𝑖 ≤ 𝑛 

and (𝐴𝑁𝐵𝑉)𝑁 are included by (𝐵𝑁𝐵𝑉)𝑁, denoted by (𝐴𝑁𝐵𝑉)𝑁 ⊆ (𝐵𝑁𝐵𝑉)𝑁 where 1 ≤ 𝑖 ≤ 𝑛. 
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Definition 3.7 The union of two NVSs 𝐴𝑁𝐵𝑉  and 𝐵𝑁𝐵𝑉  is a NBVSs, 𝐶𝑁𝐵𝑉 , written as 𝐶𝑁𝐵𝑉 = 𝐴𝑁𝐵𝑉 ∪

𝐵𝑁𝐵𝑉 , whose truth membership function, indeterminacy-membership function and false-membership function 

are related to those of 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  by  

(𝑇̂𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

(𝐼𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

(𝐹̂𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))], and 

(𝑇̂𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

(𝐼𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

(𝐹̂𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

Definition 3.8 The intersection of two NVSs 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  is a NBVSs 𝐶𝑁𝐵𝑉, written as 𝐶𝑁𝐵𝑉 = 𝐴𝑁𝐵𝑉 ∩

𝐵𝑁𝐵𝑉 , whose truth membership function, indeterminacy-membership function and false-membership function 

are related to those of 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  by  

 (𝑇̂𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∧ (𝑇𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

 (𝐼𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∨ (𝐼𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))] 

(𝐹̂𝐶𝑁𝐵𝑉
)𝑃(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑃(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
− )𝑃(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑃(𝑥) ∨ (𝐹𝐵𝑁𝐵𝑉
+ )𝑃(𝑥))], and 

 (𝑇̂𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝑇𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝑇𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∨ (𝑇𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

 (𝐼𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐼𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐼𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∧ (𝐼𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

 (𝐹̂𝐶𝑁𝐵𝑉
)𝑁(𝑥) = [((𝐹𝐴𝑁𝐵𝑉

− )𝑁(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
− )𝑁(𝑥)), ((𝐹𝐴𝑁𝐵𝑉

+ )𝑁(𝑥) ∧ (𝐹𝐵𝑁𝐵𝑉
+ )𝑁(𝑥))] 

Definition 3.9 Let 𝑈 be a set of universe and let 𝐴𝑁𝐵𝑉 and 𝐵𝑁𝐵𝑉  be NBVSs, then the union 𝐴𝑁𝐵𝑉 ∩ 𝐵𝑁𝐵𝑉 is 

defined as follows:  

𝐴𝑁𝐵𝑉 = {
𝑥1

[0.3,0.6]𝑃, [0.6,0.6]𝑃 , [0.4,0.7]𝑃 , [−0.4, −0.7]𝑁 , [−0.6, −0.6]𝑁 , [−0.3, −0.6]𝑁
, 

𝑥2

[0.4,0.6]𝑃 , [0.6,0.4]𝑃 , [0.4,0.6]𝑃, [−0.5, −0.5]𝑁 , [−0.7, −0.3]𝑁 , [−0.5, −0.5]𝑁
, 

𝑥3

[0.7,0.8]𝑃, [0.6,0.6]𝑃 , [0.2,0.3]𝑃 , [−0.5, −0.4]𝑁 , [−0.5, −0.5]𝑁 , [−0.6, −0.5]𝑁
} 

 

𝐵𝑁𝐵𝑉 = {
𝑥1

[0.2,0.8]𝑃, [0.5,0.4]𝑃 , [0.2,0.8]𝑃 , [−0.5, −0.7]𝑁 , [−0.7, −0.7]𝑁 , [−0.3, −0.5]𝑁
, 

𝑥2

[0.3,0.8]𝑃 , [0.6,0.5]𝑃 , [0.2,0.7]𝑃, [−0.5, −0.6]𝑁 , [−0.4, −0.3]𝑁 , [−0.4, −0.5]𝑁
, 

𝑥3

[0.2,0.5]𝑃, [0.5,0.2]𝑃 , [0.5,0.8]𝑃 , [−0.5, −0.5]𝑁 , [−0.4, −0.3]𝑁 , [−0.5, −0.5]𝑁
} 

 

𝐴𝑁𝐵𝑉 ∩ 𝐵𝑁𝐵𝑉 = 𝐻𝑁𝐵𝑉  

= {
𝑥1

[0.2,0.6]𝑃 , [0.6,0.6]𝑃, [0.4,0.8]𝑃, [−0.4, −0.7]𝑁 , [−0.7, −0.7]𝑁 , [−0.3, −0.6]𝑁
, 

𝑥2

[0.3,0.6]𝑃 , [0.6,0.5]𝑃 , [0.4,0.7]𝑃, [−0.5, −0.5]𝑁 , [−0.7, −0.3]𝑁 , [−0.5, −0.5]𝑁
, 
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𝑥3

[0.2,0.5]𝑃, [0.6,0.6]𝑃 , [0.5,0.8]𝑃 , [−0.5, −0.4]𝑁 , [−0.5, −0.5]𝑁 , [−0.6, −0.5]𝑁
} 

4 Neutrosophic Bipolar Vague graphs 

 In this section, neutrosophic bipolar vague graphs are defined. The concepts of 

neutrosophic bipolar vague subgraph, adjacency, path, connectedness and degree of neutrosophic 

bipolar vague graph are discussed. 

Definition 4.1 In a crisp graph 𝐺∗ = (𝑉, 𝐸). A pair 𝐺 = (𝐽, 𝐾) is called a neutrosophic bipolar vague graph 

(NBVG) on 𝐺∗ or a neutrosophic bipolar vague graph where 𝐽 is a neutrosophic bipolar vague set and 𝐾 is a 

neutrosophic bipolar vague relation in 𝐺∗ such that 𝐽𝑃 = ((𝑇̂𝐽)𝑃, (𝐼𝐽)𝑃 , (𝐹̂𝐽)𝑃), 𝐽𝑁 = ((𝑇̂𝐽)𝑁 , (𝐼𝐽)𝑁 , (𝐹̂𝐽)𝑁) is a 

neutrosophic bipolar vague set on 𝑉  and 𝐾𝑃 = ((𝑇̂𝐾)𝑃, (𝐼𝐾)𝑃 , (𝐹̂𝐾)𝑃), 𝐾𝑁 = ((𝑇̂𝐾)𝑁 , (𝐼𝐾)𝑁 , (𝐹̂𝐾
𝑁))  is a 

neutrosophic Bipolar vague set 𝐸 ⊆ 𝑉 × 𝑉 where 

(1)    𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} such that  

 (𝑇𝐽
−)𝑃: 𝑉 → [0,1], (𝐼𝐽

−)𝑃: 𝑉 → [0,1], (𝐹𝐽
−)𝑃: 𝑉 → [0,1] 

which satisfies the condition (𝐹𝐽
−)𝑃 = [1 − (𝑇𝐽

+)𝑃] 

 (𝑇𝐽
+)𝑃: 𝑉 → [0,1], (𝐼𝐽

+)𝑃: 𝑉 → [0,1], (𝐹𝐽
+)𝑃: 𝑉 → [0,1] 

which satisfies the condition (𝐹𝐽
+)𝑃 = [1 − (𝑇𝐽

−)𝑃], and  

 (𝑇𝐽
−)𝑁: 𝑉 → [−1,0], (𝐼𝐽

−)𝑁: 𝑉 → [−1,0], (𝐹𝐽
−)𝑁: 𝑉 → [−1,0] 

which satisfies the condition (𝐹𝐽
−)𝑁 = [−1 − (𝑇𝐽

+)𝑁] 

(𝑇𝐽
+)𝑁: 𝑉 → [−1,0], (𝐼𝐽

+)𝑁: 𝑉 → [−1,0], (𝐹𝐽
+)𝑁: 𝑉 → [−1,0]  which satisfies the condition 

(𝐹𝐽
+)𝑁 = [−1 − (𝑇𝐽

−)𝑁]  denotes the degree of truth membership function, indeterminacy 

membership and falsity membership of the element 𝑣𝑖 ∈ 𝑉, and  

0 ≤ (𝑇𝐽
−)𝑃(𝑣𝑖) + (𝐼𝐽

−)𝑃(𝑣𝑖) + (𝐹𝐽
−)𝑃(𝑣𝑖) ≤ 2 

0 ≤ (𝑇𝐽
+)𝑃(𝑣𝑖) + (𝐼𝐽

+)𝑃(𝑣𝑖) + (𝐹𝐽
+)𝑃(𝑣𝑖) ≤ 2 

0 ≥ (𝑇𝐽
−)𝑁(𝑣𝑖) + (𝐼𝐽

−)𝑁(𝑣𝑖) + (𝐹𝐽
−)𝑁(𝑣𝑖) ≥ −2 

0 ≤ (𝑇𝐽
+)𝑁(𝑣𝑖) + (𝐼𝐽

+)𝑁(𝑣𝑖) + (𝐹𝐽
+)𝑁(𝑣𝑖) ≥ −2. 

(2) 𝐸 ⊆ 𝑉 × 𝑉 where  

 (𝑇𝐾
−)𝑃: 𝑉 × 𝑉 → [0,1], (𝐼𝐾

−)𝑃: 𝑉 × 𝑉 → [0,1], (𝐹𝐾
−)𝑃: 𝑉 × 𝑉 → [0,1] 

 (𝑇𝐾
+)𝑃: 𝑉 × 𝑉 → [0,1], (𝐼𝐾

+)𝑃: 𝑉 × 𝑉 → [0,1], (𝐹𝐾
+)𝑃: 𝑉 × 𝑉 → [0,1]and 

 (𝑇𝐾
−)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐼𝐾

−)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐹𝐾
−)𝑁: 𝑉 × 𝑉 → [−1,0] 

 (𝑇𝐾
+)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐼𝐾

+)𝑁: 𝑉 × 𝑉 → [−1,0], (𝐹𝐾
+)𝑁: 𝑉 × 𝑉 → [−1,0] 

denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 respectively and such that  

 0 ≤ (𝑇𝐾
−)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

−)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
−)𝑃(𝑣𝑖 , 𝑣𝑗) ≤ 2 

 0 ≤ (𝑇𝐾
+)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

+)𝑃(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
+)𝑃(𝑣𝑖 , 𝑣𝑗) ≤ 2 

 0 ≥ (𝑇𝐾
−)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

−)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
−)𝑁(𝑣𝑖 , 𝑣𝑗) ≥ −2 

 0 ≥ (𝑇𝐾
+)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐼𝐾

+)𝑁(𝑣𝑖 , 𝑣𝑗) + (𝐹𝐾
+)𝑁(𝑣𝑖 , 𝑣𝑗) ≥ −2, 

 such that  

 (𝑇𝐾
−)𝑃(𝑥𝑦) ≤ {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)} 

 (𝐼𝐾
−)𝑃(𝑥𝑦) ≤ {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)} 
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 (𝐹𝐾
−)𝑃(𝑥𝑦) ≤ {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)} 

 (𝑇𝐾
+)𝑃(𝑥𝑦) ≤ {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)} 

 (𝐼𝐾
+)𝑃(𝑥𝑦) ≤ {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)} 

 (𝐹𝐾
+)𝑃(𝑥𝑦) ≤ {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)}, 

 and  

 (𝑇𝐾
−)𝑁(𝑥𝑦) ≥ {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)} 

 (𝐼𝐾
−)𝑁(𝑥𝑦) ≥ {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)} 

 (𝐹𝐾
−)𝑁(𝑥𝑦) ≥ {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)}, 

 (𝑇𝐾
+)𝑁(𝑥𝑦) ≥ {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)} 

 (𝐼𝐾
+)𝑁(𝑥𝑦) ≥ {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)} 

 (𝐹𝐾
+)𝑁(𝑥𝑦) ≥ {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}. 

Example 4.2 Consider a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾)  such that 𝐽 = {𝑎, 𝑏, 𝑐}  and 𝐾 =

{𝑎𝑏, 𝑏𝑐, 𝑐𝑎} defined by  

 (𝑎̂)𝑃 = 𝑇[0.5,0.6], 𝐼[0.4,0.3], 𝐹[0.4,0.5], 

 (𝑏̂)𝑃 = 𝑇[0.4,0.6], 𝐼[0.7,0.3], 𝐹[0.4,0.6], 

 (𝑐̂)𝑃 = 𝑇[0.4,0.4], 𝐼[0.5,0.3], 𝐹[0.6,0.6] 

 (𝑎−)𝑃 = (0.5,0.4,0.4), (𝑏−)𝑃 = (0.4,0.7,0.4), (𝑐−)𝑃 = (0.4,0.5,0.6) 

 

 (𝑎+)𝑃 = (0.6,0.3,0.5), (𝑏+)𝑃 = (0.6,0.3,0.6), (𝑐+)𝑃 = (0.4,0.3,0.6) 

 (𝑎̂)𝑁 = 𝑇[−0.6, −0.5], 𝐼[−0.3, −0.4], 𝐹[−0.5, −0.4], 

 (𝑏̂)𝑁 = 𝑇[−0.6, −0.4], 𝐼[−0.7, −0.3], 𝐹[−0.6, −0.4], 

 (𝑐̂)𝑁 = 𝑇[−0.4, −0.4], 𝐼[−0.3, −0.5], 𝐹[−0.6, −0.6] 

 (𝑎−)𝑁 = (−0.6, −0.3, −0.5), (𝑏−)𝑁 = (−0.6, −0.7, −0.6), (𝑐−)𝑁 = (−0.4, −0.3, −0.6) 

 (𝑎+)𝑁 = (−0.5, −0.4, −0.4), (𝑏+)𝑃 = (−0.4, −0.3, −0.4), (𝑐+)𝑃 = (−0.4, −0.5, −0.6) 
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𝐹𝑖𝑔𝑢𝑟𝑒 2 NEUTROSOPHIC BIPOLAR VAGUE GRAPH  

Definition 4.3 A neutrosophic bipolar vague graph 𝐻 = (𝐽′(𝑥), 𝐾′(𝑥)) is said to be a neutrosophic bipolar 

vague subgraph of the NVG 𝐺 = (𝐽, 𝐾) if 𝐽′(𝑥) ⊆ 𝐽(𝑥) and 𝐾′(𝑥𝑦) ⊆ 𝐾′(𝑥𝑦), in other words, if  

(𝑇̂𝐽
′)𝑃(𝑥) ≤ (𝑇̂𝐽)𝑃(𝑥) 

(𝐼𝐽
′)𝑃(𝑥) ≤ (𝐼𝐽)𝑃(𝑥) 

(𝐹̂𝐽
′)𝑃(𝑥) ≤ (𝐹̂𝐽)𝑃(𝑥) ∀𝑥 ∈ 𝑉 

(𝑇̂𝐾
′ )𝑃(𝑥𝑦) ≤ (𝑇̂𝐾)𝑃(𝑥𝑦) 

(𝐼𝐾
′ )𝑃(𝑥𝑦) ≤ (𝐼𝐾)𝑃(𝑥𝑦) 

(𝐹̂𝐾
′ )𝑃(𝑥𝑦) ≤ (𝐹̂𝐾)𝑃(𝑥𝑦), ∀𝑥𝑦 ∈ 𝐸. 

Also, 

(𝑇̂𝐽
′)𝑁(𝑥) ≥ (𝑇̂𝐽)𝑁(𝑥) 

(𝐼𝐽
′)𝑁(𝑥) ≥ (𝐼𝐽)𝑁(𝑥) 

(𝐹̂𝐽
′)𝑁(𝑥) ≥ (𝐹̂𝐽)𝑁(𝑥), ∀𝑥 ∈ 𝑉 

and 

(𝑇̂𝐾
′ )𝑁(𝑥𝑦) ≥ (𝑇̂𝐾)𝑁(𝑥𝑦) 

(𝐼𝐾
′ )𝑁(𝑥𝑦) ≥ (𝐼𝐾)𝑁(𝑥𝑦) 

(𝐹̂𝐾
′ )𝑁(𝑥𝑦) ≥ (𝐹̂𝐾)𝑁(𝑥𝑦), ∀𝑥𝑦 ∈ 𝐸. 

Definition 4.4 The two vertices are said to be adjacent in a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) if  

(𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)} 

(𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)} 

(𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)}, 

(𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)} 

(𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)} 

(𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)}, 

(𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)} 

(𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)} 

(𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)}, 

(𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)} 

(𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)} 

(𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}, 

 Here, 𝑥 is the neighbour of 𝑦 and vice versa, also (𝑥𝑦) is incident at 𝑥 and 𝑦.  

Definition 4.5 In a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾), a path 𝜌 is meant to be a sequence of 

different points 𝑥0, 𝑥1, . . . , 𝑥𝑛 such an extent that  

(𝑇𝐾
−)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐼𝐾

−)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐹𝐾
−)𝑃(𝑥𝑖−1, 𝑥1) > 0, 

(𝑇𝐾
+)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐼𝐾

+)𝑃(𝑥𝑖−1, 𝑥1) > 0, (𝐹𝐾
+)𝑃(𝑥𝑖−1, 𝑥1) > 0, 

and 

(𝑇𝐾
−)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐼𝐾

−)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐹𝐾
−)𝑁(𝑥𝑖−1, 𝑥1) < 0, 

(𝑇𝐾
+)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐼𝐾

+)𝑁(𝑥𝑖−1, 𝑥1) < 0, (𝐹𝐾
+)𝑁(𝑥𝑖−1, 𝑥1) < 0, 

for every 𝑖  lies between 0 and 1. 𝑛 ≤ 1 is known as the path length.. A single vertex 𝑥𝑖  can 

represent as a path.  
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Definition 4.6 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾), if every pair of vertices has at least one 

neutrosophic bipolar vague path between them is known as connected, otherwise it is disconnected.  

Definition 4.7 A vertex 𝑥𝑖 ∈ 𝑉 of neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) is said to be isolatedvertex if 

there is no effective edge incident at 𝑥𝑖.  

Definition 4.8 A vertex in a neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) having exactly one neighbours is 

called a pendent vertex. Otherwise, it is called non-pendent vertex. An edge in a neutrosophic bipolar vague 

graph incident with a pendent vertex is called a pendent edge other words it is called non-pendent edge. A 

vertex in a neutrosophic bipolar vague graph adjacent to the pendent vertex is called an support of the pendent 

edge.  

Definition 4.9 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) that has neither self loops nor parallel edge is 

called simple neutrosophic bipolar vague graph.  

Definition 4.10 Let 𝐺 = (𝐽, 𝐾) be a neutrosophic bipolar vague graph. Then the degree of a vertex 𝑥 ∈ 𝐺 is a 

sum of degree truth membership, sum of indeterminacy membership and sum of falsity membership of all those 

edges which are incident on vertex 𝑥 denoted by  

 (𝑑(𝑥))𝑃 = ([(𝑑𝑇𝐽
− )𝑃(𝑥), (𝑑𝑇𝐽

+ )𝑃(𝑥)], [(𝑑𝐼𝐽
− )𝑃(𝑥), (𝑑𝐼𝐽

+ )𝑃(𝑥)], [(𝑑𝐹𝐽
− )𝑃(𝑥), (𝑑𝐹𝐽

+ )𝑃(𝑥)]) 

 (𝑑(𝑥))𝑁 = ([(𝑑𝑇𝐽
− )𝑁(𝑥), (𝑑𝑇𝐽

+ )𝑁(𝑥)], [(𝑑𝐼𝐽
− )𝑁(𝑥), (𝑑𝐼𝐽

+ )𝑁(𝑥)], [(𝑑𝐹𝐽
− )𝑁(𝑥), (𝑑𝐹𝐽

+ )𝑁(𝑥)]) 

where (𝑑𝑇𝐽
− )𝑃(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

−)𝑃(𝑥𝑦) , (𝑑𝑇𝐽
+ )𝑃(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

+)𝑃(𝑥𝑦)  denotes the positive degree of 

truth membership vertex, (𝑑𝐼𝐽
− )𝑃(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

−)𝑃(𝑥𝑦) , (𝑑𝐼𝐽
+ )𝑃(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

+)𝑃(𝑥𝑦)  denotes the 

positive degree of indeterminacy membership vertex, (𝑑𝐹𝐽
− )𝑃(𝑥) = ∑𝑥≠𝑦 (𝐹𝐾

−)𝑃(𝑥𝑦) , (𝑑𝐹𝐽
+ )𝑃(𝑥) =

∑𝑥≠𝑦 (𝐹𝐾
+)𝑃(𝑥𝑦) denotes the positive degree of falsity membership vertex for all 𝑥, 𝑦 ∈ 𝐽. 

Similarly, (𝑑𝑇𝐽
− )𝑁(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

−)𝑁(𝑥𝑦) ,(𝑑𝑇𝐽
+ )𝑁(𝑥) = ∑𝑥≠𝑦 (𝑇𝐾

+)𝑁(𝑥𝑦)  denotes the negative 

degree of truth membership vertex, (𝑑𝐼𝐽
− )𝑁(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

−)𝑁(𝑥𝑦) , (𝑑𝐼𝐽
+ )𝑁(𝑥) = ∑𝑥≠𝑦 (𝐼𝐾

+)𝑁(𝑥𝑦) 

denotes the negative degree of indeterminacy membership vertex, (𝑑𝐹𝐽
− )𝑁(𝑥) =

∑𝑥≠𝑦 (𝐹𝐾
−)𝑁(𝑥𝑦),(𝑑𝐹𝐽

+ )𝑁(𝑥) = ∑𝑥≠𝑦 (𝐹𝐾
+)𝑁(𝑥𝑦) denotes the negative degree of falsity membership 

vertex for all 𝑥, 𝑦 ∈ 𝐽. 

Definition 4.11 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) is called constant if degree of each vertex is 

𝐴 = (𝐴1, 𝐴2, 𝐴3) that is 𝑑(𝑥) = (𝐴1, 𝐴2, 𝐴3) for all 𝑥 ∈ 𝑉. 

5  Strong Neutrosophic Bipolar Vague Graphs 

 In this section, we presented some remarkable properties of strong neutrosophic bipolar 

vague graphs and a remark is provided by comparing other types of bipolar graphs. Finally 

conclusion is given.  

Definition 5.1 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) of 𝐺∗ = (𝑉, 𝐸) is called strong neutrosophic 

bipolar vague graph if  

(𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)} 

(𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)} 

(𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)}, 

(𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)} 

(𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)} 

(𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)}, 
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(𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)} 

(𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)} 

(𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)}, 

(𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)} 

(𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)} 

(𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}, ∀((𝑥𝑦) ∈ 𝐾) 

Definition 5.2 The complement of neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) on 𝐺∗ is a neutrosophic 

bipolar vague graph 𝐺𝑐 where   

• (𝐽𝑐)𝑃(𝑥) = (𝐽)𝑃(𝑥) 

 • (𝑇𝐽
−𝑐

)𝑃(𝑥) = (𝑇𝐽
−)𝑃(𝑥), (𝐼𝐽

−𝑐
)𝑃(𝑥) = (𝐼𝐽

−)𝑃(𝑥), (𝐹𝐽
−𝑐

)𝑃(𝑥) = (𝐹𝐽
−)𝑃(𝑥) for all 𝑥 ∈ 𝑉. 

 • (𝑇𝐽
+𝑐

)𝑃(𝑥) = (𝑇𝐽
+)𝑃(𝑥), (𝐼𝐽

+𝑐
)𝑃(𝑥) = (𝐼𝐽

+)𝑃(𝑥), (𝐹𝐽
+𝑐

)𝑃(𝑥) = (𝐹𝐽
+)𝑃(𝑥) for all 𝑥 ∈ 𝑉. 

 • (𝑇𝐾
−𝑐

)𝑃(𝑥𝑦) = {(𝑇𝐽
−)𝑃(𝑥) ∧ (𝑇𝐽

−)𝑃(𝑦)} − (𝑇𝐾
−)𝑃(𝑥𝑦) , (𝐼𝐾

−𝑐
)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)} −

(𝐼𝐾
−)𝑃(𝑥𝑦) 

(𝐹𝐾
−𝑐

)𝑃(𝑥𝑦) = {(𝐹𝐽
−)𝑃(𝑥) ∨ (𝐹𝐽

−)𝑃(𝑦)} − (𝐹𝐾
−)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸 

 • (𝑇𝐾
+𝑐

)𝑃(𝑥𝑦) = {(𝑇𝐽
+)𝑃(𝑥) ∧ (𝑇𝐽

+)𝑃(𝑦)} − (𝑇𝐾
+)𝑃(𝑥𝑦)  , (𝐼𝐾

+𝑐
)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)} −

(𝐼𝐾
+)𝑃(𝑥𝑦) 

(𝐹𝐾
+𝑐

)𝑃(𝑥𝑦) = {(𝐹𝐽
+)𝑃(𝑥) ∨ (𝐹𝐽

+)𝑃(𝑦)} − (𝐹𝐾
+)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸 

• (𝐽𝑐)𝑁(𝑥) = (𝐽)𝑁(𝑥) 

• (𝑇𝐽
−𝑐

)𝑁(𝑥) = (𝑇𝐽
−)𝑁(𝑥), (𝐼𝐽

−𝑐
)𝑁(𝑥) = (𝐼𝐽

−)𝑁(𝑥), (𝐹𝐽
−𝑐

)𝑁(𝑥) = (𝐹𝐽
−)𝑁(𝑥) for all 𝑥 ∈ 𝑉. 

• (𝑇𝐽
+𝑐

)𝑁(𝑥) = (𝑇𝐽
+)𝑁(𝑥), (𝐼𝐽

+𝑐
)𝑁(𝑥) = (𝐼𝐽

+)𝑁(𝑥), (𝐹𝐽
+𝑐

)𝑁(𝑥) = (𝐹𝐽
+)𝑁(𝑥) for all 𝑥 ∈ 𝑉. 

 • (𝑇𝐾
−𝑐

)𝑁(𝑥𝑦) = {(𝑇𝐽
−)𝑁(𝑥) ∨ (𝑇𝐽

−)𝑁(𝑦)} − (𝑇𝐾
−)𝑁(𝑥𝑦) 

(𝐼𝐾
−𝑐

)𝑁(𝑥𝑦) = {(𝐼𝐽
−)𝑁(𝑥) ∨ (𝐼𝐽

−)𝑁(𝑦)} − (𝐼𝐾
−)𝑁(𝑥𝑦) 

                                 (𝐹𝐾
−𝑐

)𝑁(𝑥𝑦) = {(𝐹𝐽
−)𝑁(𝑥) ∧ (𝐹𝐽

−)𝑁(𝑦)} − (𝐹𝐾
−)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸 

 • (𝑇𝐾
+𝑐

)𝑁(𝑥𝑦) = {(𝑇𝐽
+)𝑁(𝑥) ∨ (𝑇𝐽

+)𝑁(𝑦)} − (𝑇𝐾
+)𝑁(𝑥𝑦) 

(𝐼𝐾
+𝑐

)𝑁(𝑥𝑦) = {(𝐼𝐽
+)𝑁(𝑥) ∨ (𝐼𝐽

+)𝑁(𝑦)} − (𝐼𝐾
+)𝑁(𝑥𝑦) 

                                   (𝐹𝐾
+𝑐

)𝑁(𝑥𝑦) = {(𝐹𝐽
+)𝑁(𝑥) ∧ (𝐹𝐽

+)𝑁(𝑦)} − (𝐹𝐾
+)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸 

Remark 5.3 If 𝐺 = (𝐽, 𝐾) is a neutrosophic bipolar vague graph on 𝐺∗ then from above definition, it follows 

that 𝐺𝑐𝑐
 is given by the neutrosophic bipolar vague graph 𝐺𝑐𝑐

= (𝐽𝑐𝑐
, 𝐾𝑐𝑐

) on 𝐺∗ where   

    • ((𝐽𝑐)𝑐)𝑃(𝑥) = (𝐽(𝑥))𝑃 

    • ((𝑇𝐽
−𝑐

)𝑐)𝑃(𝑥) = (𝑇𝐽
−)𝑃(𝑥), ((𝐼𝐽

−𝑐
)𝑐)𝑃(𝑥) = (𝐼𝐽

−)𝑃(𝑥), ((𝐹𝐽
−𝑐

)𝑐)𝑃(𝑥) = (𝐹𝐽
−)𝑃(𝑥) for all 𝑥 ∈

𝑉. 

    • ((𝑇𝐽
+𝑐

)𝑐)𝑃(𝑥) = (𝑇𝐽
+)𝑃(𝑥), ((𝐼𝐽

+𝑐
)𝑐)𝑃(𝑥) = (𝐼𝐽

+)𝑃(𝑥), ((𝐹𝐽
+𝑐

)𝑐)𝑃(𝑥) = (𝐹𝐽
+)𝑃(𝑥) for all 𝑥 ∈

𝑉. 

    • ((𝑇𝐾
−𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝑇𝐽
−)𝑃(𝑥) ∧ (𝑇𝐽

−)𝑃(𝑦)} − (𝑇𝐾
−)𝑃(𝑥𝑦) 

((𝐼𝐾
−𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐼𝐽
−)𝑃(𝑥) ∧ (𝐼𝐽

−)𝑃(𝑦)} − (𝐼𝐾
−)𝑃(𝑥𝑦) 

((𝐹𝐾
−𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐹𝐽
−)𝑃(𝑥) ∨ (𝐹𝐽

−)𝑃(𝑦)} − (𝐹𝐾
−)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸 

    • ((𝑇𝐾
+𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝑇𝐽
+)𝑃(𝑥) ∧ (𝑇𝐽

+)𝑃(𝑦)} − (𝑇𝐾
+)𝑃(𝑥𝑦) 

((𝐼𝐾
+𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐼𝐽
+)𝑃(𝑥) ∧ (𝐼𝐽

+)𝑃(𝑦)} − (𝐼𝐾
+)𝑃(𝑥𝑦) 

((𝐹𝐾
+𝑐

)𝑐)𝑃(𝑥𝑦) = {(𝐹𝐽
+)𝑃(𝑥) ∨ (𝐹𝐽

+)𝑃(𝑦)} − (𝐹𝐾
+)𝑃(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸 

    • ((𝐽𝑐)𝑐)𝑁(𝑥) = (𝐽(𝑥))𝑁 
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    • ((𝑇𝐽
−𝑐

)𝑐)𝑁(𝑥) = (𝑇𝐽
−)𝑁(𝑥), ((𝐼𝐽

−𝑐
)𝑐)𝑁(𝑥) = (𝐼𝐽

−)𝑁(𝑥), ((𝐹𝐽
−𝑐

)𝑐)𝑁(𝑥) = (𝐹𝐽
−)𝑁(𝑥)  for all 

𝑥 ∈ 𝑉. 

    • ((𝑇𝐽
+𝑐

)𝑐)𝑁(𝑥) = (𝑇𝐽
+)𝑁(𝑥), ((𝐼𝐽

+𝑐
)𝑐)𝑁(𝑥) = (𝐼𝐽

+)𝑁(𝑥), ((𝐹𝐽
+𝑐

)𝑐)𝑁(𝑥) = (𝐹𝐽
+)𝑁(𝑥)  for all 

𝑥 ∈ 𝑉. 

    • ((𝑇𝐾
−𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝑇𝐽
−)𝑁(𝑥) ∨ (𝑇𝐽

−)𝑁(𝑦)} − (𝑇𝐾
−)𝑁(𝑥𝑦) 

((𝐼𝐾
−𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝐼𝐽
−)𝑁(𝑥) ∨ (𝐼𝐽

−)𝑁(𝑦)} − (𝐼𝐾
−)𝑁(𝑥𝑦) 

((𝐹𝐾
−𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝐹𝐽
−)𝑁(𝑥) ∧ (𝐹𝐽

−)𝑁(𝑦)} − (𝐹𝐾
−)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸 

    • ((𝑇𝐾
+𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝑇𝐽
+)𝑁(𝑥) ∨ (𝑇𝐽

+)𝑁(𝑦)} − (𝑇𝐾
+)𝑁(𝑥𝑦) 

((𝐼𝐾
+𝑐

)𝑁)𝑁(𝑥𝑦) = {(𝐼𝐽
+)𝑁(𝑥) ∨ (𝐼𝐽

+)𝑁(𝑦)} − (𝐼𝐾
+)𝑁(𝑥𝑦) 

((𝐹𝐾
+𝑐

)𝑐)𝑁(𝑥𝑦) = {(𝐹𝐽
+)𝑁(𝑥) ∧ (𝐹𝐽

+)𝑁(𝑦)} − (𝐹𝐾
+)𝑁(𝑥𝑦) for all (𝑥𝑦) ∈ 𝐸. 

for any neutrosophic bipolar vague graph 𝐺,𝐺𝑐 is strong neutrosophic bipolar vague graph and 

𝐺 ⊆ 𝐺𝑐. 

Definition 5.4 Suppose 𝐺𝑐  is the complement of neutrosophic bipolar vague graph 𝐺 . In a strong 

neutrosophic bipolar vague graph 𝐺, 𝐺 ≅ 𝐺𝑐 then it is called self-complementary.  

Proposition 5.5 Let 𝐺 = (𝐽, 𝐾) be a strong neutrosophic bipolar vague graph if  

(𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)} 

(𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)} 

(𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)}, 

(𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)} 

(𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)} 

(𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)}, 

(𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)} 

(𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)} 

(𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)}, 

(𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)} 

(𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)} 

(𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}, ∀((𝑥𝑦) ∈ 𝐾) 

 Then 𝐺 is self complementary.  

Proof. Let 𝐺 = (𝐽, 𝐾) be a strong neutrosophic bipolar vague graph such that  

(𝑇̂𝐾)𝑃(𝑥𝑦) =
1

2
[(𝑇̂𝐽)𝑃(𝑥) ∧ (𝑇̂𝐽)𝑃(𝑦)] 

(𝐼𝐾)𝑃(𝑥𝑦) =
1

2
[(𝐼𝐽)𝑃(𝑥) ∧ (𝐼𝐽)𝑃(𝑦)] 

(𝐹̂𝐾)𝑃(𝑥𝑦) =
1

2
[(𝐹̂𝐽)𝑃(𝑥) ∨ (𝐹̂𝐽)𝑃(𝑦)],  

 and  

(𝑇̂𝐾)𝑁(𝑥𝑦) =
1

2
[(𝑇̂𝐽)𝑁(𝑥) ∨ (𝑇̂𝐽)𝑁(𝑦)] 

(𝐼𝐾)𝑁(𝑥𝑦) =
1

2
[(𝐼𝐽)𝑁(𝑥) ∨ (𝐼𝐽)𝑁(𝑦)] 
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(𝐹̂𝐾)𝑁(𝑥𝑦) =
1

2
[(𝐹̂𝐽)𝑁(𝑥) ∧ (𝐹̂𝐽)𝑁(𝑦)] 

for all 𝑥𝑦 ∈ 𝐽 then 𝐺 ≈ 𝐺𝑐𝑐
, implies 𝐺 is self complementary. Hence proved  

Proposition 5.6 Assume that, 𝐺 is a self complementary neutrosophic bipolar vague graph then 

∑

𝑥≠𝑦

(𝑇̂𝐾)𝑃(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝑇̂𝐽)𝑃(𝑥) ∧ (𝑇̂𝐽)𝑃(𝑦)} 

∑

𝑥≠𝑦

(𝐼𝐾)𝑃(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝐼𝐽)𝑃(𝑥) ∧ (𝐼𝐽)𝑃(𝑦)} 

∑

𝑥≠𝑦

(𝐹̂𝐾)𝑃(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝐹̂𝐽)𝑃(𝑥) ∨ (𝐹̂𝐽)𝑃(𝑦)} 

∑

𝑥≠𝑦

(𝑇̂𝐾)𝑁(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝑇̂𝐽)𝑁(𝑥) ∨ (𝑇̂𝐽)𝑁(𝑦)} 

∑

𝑥≠𝑦

(𝐼𝐾)𝑁(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝐼𝐽)𝑁(𝑥) ∨ (𝐼𝐽)𝑁(𝑦)} 

∑

𝑥≠𝑦

(𝐹̂𝐾)𝑁(𝑥𝑦) =
1

2
∑

𝑥≠𝑦

{(𝐹̂𝐽)𝑁(𝑥) ∧ (𝐹̂𝐽)𝑁(𝑦)} 

Proof. Suppose that 𝐺 be an self complementary neutrosophic bipolar vague graph, by its 

definition, we have isomorphism 𝑓: 𝐽1 → 𝐽2 satisfy  

 (𝑇̂𝐽1
𝑐 )𝑃(𝑓(𝑥)) = (𝑇̂𝐽1

)𝑃(𝑓(𝑥)) = (𝑇̂𝐽1
)𝑃(𝑥) 

 (𝐼𝐽1
𝑐 )𝑃(𝑓(𝑥)) = (𝐼𝐽1

)𝑃(𝑓(𝑥)) = (𝐼𝐽1
)𝑃(𝑥) 

 (𝐹̂𝐽1
𝑐 )𝑃(𝑓(𝑥)) = (𝐹̂𝐽1

)𝑃(𝑓(𝑥)) = (𝐹̂𝐽1
)𝑃(𝑥) 

 and  

 (𝑇̂𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝑇̂𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝑇̂𝐾1
)𝑃(𝑥𝑦) 

 (𝐼𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝐼𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝐼𝐾1
)𝑃(𝑥𝑦) 

 (𝐹̂𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝐹̂𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)) = (𝐹̂𝐾1
)𝑃(𝑥𝑦) 

 we have (𝑇̂𝐾1
𝑐 )𝑃(𝑓(𝑥), 𝑓(𝑦)) = ((𝑇̂𝐽1

𝑐 )𝑃(𝑥) ∧ (𝑇̂𝐽1
𝑐 )𝑃(𝑦)) − (𝑇̂𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)). 

i.e,(𝑇̂𝐾1
)𝑃(𝑥𝑦) = ((𝑇̂𝐽1

𝑐 )𝑃(𝑥) ∧ (𝑇̂𝐽1
𝑐 )𝑃(𝑦)) − (𝑇̂𝐾1

)𝑃(𝑓(𝑥), 𝑓(𝑦)).  

(𝑇̂𝐾1
)𝑃(𝑥𝑦) = ((𝑇̂𝐽1

𝑐 )𝑃(𝑥) ∧ (𝑇̂𝐽1
𝑐 )𝑃(𝑦)) − (𝑇̂𝐾1

)𝑃(𝑥𝑦), hence  

 ∑𝑥≠𝑦 (𝑇̂𝐾1
)𝑃(𝑥𝑦) + ∑𝑥≠𝑦 (𝑇̂𝐾1

)𝑃(𝑥𝑦) = ∑𝑥≠𝑦 ((𝑇̂𝐽1
)𝑃(𝑥) ∧ (𝑇̂𝐽1

)𝑃(𝑦)). 

Similarly, ∑𝑥≠𝑦 (𝐼𝐾1
)𝑃(𝑥𝑦) + ∑𝑥≠𝑦 (𝐼𝐾1

)𝑃(𝑥𝑦) = ∑𝑥≠𝑦 ((𝐼𝐽1
)𝑃(𝑥) ∧ (𝐼𝐽1

)𝑃(𝑦)) 

∑

𝑥≠𝑦

(𝐹̂𝐾1
)𝑃(𝑥𝑦) + ∑

𝑥≠𝑦

(𝐹̂𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((𝐹̂𝐽1
)𝑃(𝑥) ∨ (𝐹̂𝐽1

)𝑃(𝑦)) 

2 ∑

𝑥≠𝑦

(𝑇̂𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((𝑇̂𝐽1
)𝑃(𝑥) ∧ (𝑇̂𝐽1

)𝑃(𝑦)) 

2 ∑

𝑥≠𝑦

(𝐼𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((𝐼𝐽1
)𝑃(𝑥) ∧ (𝐼𝐽1

)𝑃(𝑦)) 

2 ∑

𝑥≠𝑦

(𝐹̂𝐾1
)𝑃(𝑥𝑦) = ∑

𝑥≠𝑦

((𝐹̂𝐽1
)𝑃(𝑥) ∨ (𝐹̂𝐽1

)𝑃(𝑦)) 

Similarly one can prove for the negative condition, from the equation of the proposition (5.5) holds. 
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Proposition 5.7 Suppose 𝐺1  and 𝐺2  is neutrosophic bipolar vague graph which is strong, 𝐺1 ≈

𝐺2(isomorphism)  

Proof. Assume that 𝐺1  and 𝐺2  are isomorphic there exist a bijective map 𝑓: 𝐽1 → 𝐽2 

satisfying,  

 (𝑇̂𝐽1
)𝑃(𝑥) = (𝑇̂𝐽2

)𝑃(𝑓(𝑥)), 

 (𝐼𝐽1
)𝑃(𝑥) = (𝐼𝐽2

)𝑃(𝑓(𝑥)), 

 (𝐹̂𝐽1
)𝑃(𝑥) = (𝐹̂𝐽2

)𝑃(𝑓(𝑥)), for all𝑥 ∈ 𝐽1 

 (𝑇̂𝐽1
)𝑁(𝑥) = (𝑇̂𝐽2

)𝑁(𝑓(𝑥)), 

 (𝐼𝐽1
)𝑁(𝑥) = (𝐼𝐽2

)𝑁(𝑓(𝑥)), 

 (𝐹̂𝐽1
)𝑁(𝑥) = (𝐹̂𝐽2

)𝑁(𝑓(𝑥)), for all𝑥 ∈ 𝐽1 

 and  

 (𝑇̂𝐾1
)𝑃(𝑥𝑦) = (𝑇̂𝐾2

)𝑃(𝑓(𝑥), 𝑓(𝑦)) 

 (𝐼𝐾1
)𝑃(𝑥𝑦) = (𝐼𝐾2

)𝑃(𝑓(𝑥), 𝑓(𝑦)) 

(𝐹̂𝐾1
)𝑃(𝑥𝑦) = (𝐹̂𝐾2

)𝑃(𝑓(𝑥), 𝑓(𝑦))∀𝑥𝑦 ∈ 𝐾1 

 (𝑇̂𝐾1
)𝑁(𝑥𝑦) = (𝑇̂𝐾2

)𝑁(𝑓(𝑥), 𝑓(𝑦)) 

 (𝐼𝐾1
)𝑁(𝑥𝑦) = (𝐼𝐾2

)𝑁(𝑓(𝑥), 𝑓(𝑦)) 

 (𝐹̂𝐾1
)𝑁(𝑥𝑦) = (𝐹̂𝐾2

)𝑁(𝑓(𝑥), 𝑓(𝑦))∀𝑥𝑦 ∈ 𝐾1 

 by definition (5.2) we have  

 (𝑇𝐾1
𝑐 )𝑃(𝑥𝑦) = ((𝑇𝐽1

)𝑃(𝑥) ∧ (𝑇𝐽1
)𝑃(𝑦)) − (𝑇𝐾1

)𝑃(𝑥𝑦) 

 = ((𝑇𝐽2
)𝑃𝑓(𝑥) ∧ (𝑇𝐽2

)𝑃𝑓(𝑦)) − (𝑇𝐾2
)𝑃(𝑓(𝑥)𝑓(𝑦)) 

 = (𝑇𝐾2
𝑐 )𝑃(𝑓(𝑥)𝑓(𝑦)) 

 (𝐼𝐾1
𝑐 )𝑃(𝑥𝑦) = ((𝐼𝐽1

)𝑃(𝑥) ∧ (𝐼𝐽1
)𝑃(𝑦)) − (𝐼𝐾1

)𝑃(𝑥𝑦) 

 = ((𝐼𝐽2
)𝑃𝑓(𝑥) ∧ (𝐼𝐽2

)𝑃𝑓(𝑦)) − (𝐼𝐾2
)𝑃(𝑓(𝑥)𝑓(𝑦)) 

 = (𝐼𝐾2
𝑐 )𝑃(𝑓(𝑥)𝑓(𝑦)) 

 (𝐹𝐾1
𝑐 )𝑃(𝑥𝑦) = ((𝐹𝐽1

)𝑃(𝑥) ∨ (𝐹𝐽1
)𝑃(𝑦)) − (𝐹𝐾1

)𝑃(𝑥𝑦) 

 = ((𝐹𝐽2
)𝑃𝑓(𝑥) ∨ (𝐹𝐽2

)𝑃𝑓(𝑦)) − (𝐹𝐾2
)𝑃(𝑓(𝑥)𝑓(𝑦)) 

 = (𝐹𝐾2
𝑐 )𝑃(𝑓(𝑥)𝑓(𝑦)) 

 Hence 𝐺1
𝑐 ≈ 𝐺2

𝑐 for all (𝑥𝑦) ∈ 𝐾1 

Definition 5.8 A neutrosophic bipolar vague graph 𝐺 = (𝐽, 𝐾) is complete if  

 (𝑇𝐾
−)𝑃(𝑥𝑦) = {(𝑇𝐽

−)𝑃(𝑥) ∧ (𝑇𝐽
−)𝑃(𝑦)} 

 (𝐼𝐾
−)𝑃(𝑥𝑦) = {(𝐼𝐽

−)𝑃(𝑥) ∧ (𝐼𝐽
−)𝑃(𝑦)} 

 (𝐹𝐾
−)𝑃(𝑥𝑦) = {(𝐹𝐽

−)𝑃(𝑥) ∨ (𝐹𝐽
−)𝑃(𝑦)}, 

 (𝑇𝐾
+)𝑃(𝑥𝑦) = {(𝑇𝐽

+)𝑃(𝑥) ∧ (𝑇𝐽
+)𝑃(𝑦)} 

 (𝐼𝐾
+)𝑃(𝑥𝑦) = {(𝐼𝐽

+)𝑃(𝑥) ∧ (𝐼𝐽
+)𝑃(𝑦)} 

 (𝐹𝐾
+)𝑃(𝑥𝑦) = {(𝐹𝐽

+)𝑃(𝑥) ∨ (𝐹𝐽
+)𝑃(𝑦)}, 

 (𝑇𝐾
−)𝑁(𝑥𝑦) = {(𝑇𝐽

−)𝑁(𝑥) ∨ (𝑇𝐽
−)𝑁(𝑦)} 

 (𝐼𝐾
−)𝑁(𝑥𝑦) = {(𝐼𝐽

−)𝑁(𝑥) ∨ (𝐼𝐾
−)𝑁(𝑦)} 

 (𝐹𝐾
−)𝑁(𝑥𝑦) = {(𝐹𝐽

−)𝑁(𝑥) ∧ (𝐹𝐽
−)𝑁(𝑦)}, 

 (𝑇𝐾
+)𝑁(𝑥𝑦) = {(𝑇𝐽

+)𝑁(𝑥) ∨ (𝑇𝐽
+)𝑁(𝑦)} 

 (𝐼𝐾
+)𝑁(𝑥𝑦) = {(𝐼𝐽

+)𝑁(𝑥) ∨ (𝐼𝐽
+)𝑁(𝑦)} 
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 (𝐹𝐾
+)𝑁(𝑥𝑦) = {(𝐹𝐽

+)𝑁(𝑥) ∧ (𝐹𝐽
+)𝑁(𝑦)}, ∀((𝑥𝑦) ∈ 𝐽) 

Remark 5.9 The complement of NBVGs are NBVGs provided the graph is strong. According to [9], 

the complement of Single-Valued Neutrosophic Graph (SVNG) is not a SVNG. By the same idea, we 

implement the definition for NBVGs to obtain the proposed concepts. For other type of bipolar 

graphs, the complement of Bipolar Fuzzy Graph (BFG) is BFG [6]. The complement of Bipolar Fuzzy 

Soft Graph (BFSG) and Bipolar Neutrosophic Graph (BNG) are BFSG and BNG, [14, 16] respectively, 

provided if the graph is strong. The complement of complete bipolar SVNG is bipolar SVFG [25].  

Conclusion 

 This present work characterised the new concept of neutrosophic bipolar vague sets and its 

application to NBVGs are introduced. Moreover, some remarkable properties of strong NBVGs, 

complete NBVGs and complement NBVGs have been investigated and the proposed concepts are 

illustrated with the examples. The obtained results are extended to interval neutrosophic bipolar 

vague sets. Further we can extend to investigate the domination number, regular and isomorphic 

properties of the proposed graph. 
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Abstract: The notions of (special) neutrosophic N-UP-subalgebras, (special) neutrosophic N-near 

UP-filters, (special) neutrosophic N-UP-filters, (special) neutrosophic N-UP-ideals, and (special) 

neutrosophic N-strongly UP-ideals of UP-algebras are introduced, and several properties are 

investigated. Conditions for neutrosophic N-structures to be (special) neutrosophic 

N-UP-subalgebras, (special) neutrosophic N-near UP-filters, (special) neutrosophic N-UP-filters, 

(special) neutrosophic N-UP-ideals, and (special) neutrosophic N-strongly UP-ideals of 

UP-algebras are provided. Relations between (special) neutrosophic N-UP-subalgebras (resp., 

(special) neutrosophic N-near UP-filters, (special) neutrosophic N-UP-filters, (special) neutrosophic 

N-UP-ideals, (special) neutrosophic N-strongly UP-ideals) and their level subsets are considered. 

Keywords: UP-algebra; (special) neutrosophic N-UP-subalgebra; (special) neutrosophic N-near 

UP-filter; (special) neutrosophic N-UP-filter; (special) neutrosophic N-UP-ideal; (special) 

neutrosophic N-strongly UP-ideal 

 

 

1. Introduction 

 

Among many algebraic structures, algebras of logic form important class of algebras. Examples 

of these are BCK-algebras [14], BCI-algebras [15], BCH-algebras [11], KU-algebras [28], SU-algebras 

[21] and others. They are strongly connected with logic. For example, BCI-algebras were introduced 

by Iséki [15] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic 

which has application in the language of functional programming. BCK and BCI-algebras are two 

classes of logical algebras. They were introduced by Imai and Iséki [14, 15] in 1966 and have been 

extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper 

subclass of the class of BCI-algebras. 

The branch of the logical algebra, UP-algebras was introduced by Iampan [12] in 2017, and it is 

known that the class of KU-algebras [28] is a proper subclass of the class of UP-algebras. It have been 

examined by several researchers, for example, Somjanta et al. [32] introduced the notion of fuzzy 

sets in UP-algebras, the notion of intuitionistic fuzzy sets in UP-algebras was introduced by Kesorn 

et al. [22], Kaijae et al. [20] introduced the notions of anti-fuzzy UP-ideals and anti-fuzzy 

UP-subalgebras of UP-algebras, the notion of -fuzzy sets in UP-algebras was introduced by 

Tanamoon et al. [37], etc. 

Neutrosophy provides a foundation for a whole family of new mathematical theories with the 

generalization of both classical and fuzzy counterparts. In a neutrosophic set, an element has three 

associated defining functions such as truth membership function (T), indeterminate membership 

Q
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function (I) and false membership function (F) defined on a universe of discourse . These three 

functions are independent completely. The concept of neutrosophic logics was first introduced by 

Smarandache [31] in 1999. Jun et al. [16] introduced a new function, called a negative-valued 

function, and constructed N-structures in 2009. Khan et al. [23] discussed neutrosophic N-structures 

and their applications in semigroups in 2017. Jun et al. [17, 33] considered neutrosophic N-structures 

applied to BCK/BCI-algebras and neutrosophic commutative N-ideals in BCK-algebras in 2017. Jun 

et al. [19] studied neutrosophic positive implicative N-ideals in BCK-algebras in 2018. Abdel-Baset 

and his colleagues applied the notion of neutrosophic set theory in the new fields (see [1, 2, 3, 4, 5, 6, 

27]). Jun and his colleagues applied the notion of neutrosophic set theory in BCK/BCI-algebras (see 

[8, 18, 24, 26, 35, 36]). 

The remaining part of the paper is structured as follows: Section 2 gives some definitions and 

properties of UP-algebras. Section 3 introduces the notions of neutrosophic N-UP-subalgebras, 

neutrosophic N-near UP-filters, neutrosophic N-UP-filters, neutrosophic N-UP-ideals, and 

neutrosophic N-strongly UP-ideals of UP-algebras, and a level subset of a neutrosophic N-structure 

is proved in Section 4. Section 5 introduces the notions of special neutrosophic N-UP-subalgebras, 

special neutrosophic N-near UP-filters, special neutrosophic N-UP-filters, special neutrosophic 

N-UP-ideals, and special neutrosophic N-strongly UP-ideals of UP-algebras, and a level subset of a 

neutrosophic N-structure of special type is proved in Section 6. This paper has been finalized with 

that result. 

 

2. Basic results on UP-algebras 

 

Before we begin our study, we will give the definition of a UP-algebra. 

 

Definition 2.1 [12] An algebra  of type  is called a UP-algebra where  is a 

nonempty set,  is a binary operation on , and  is a fixed element of  (i.e., a nullary 

operation) if it satisfies the following axioms: 

(UP-1) ,  

(UP-2) , 

(UP-3) , and  

(UP-4) . 

 

From [12], we know that the notion of UP-algebras is a generalization of KU-algebras (see [28]). 

 

Example 2.2 [30] Let  be a universal set and let  where  means the power set of 

. Let . Define a binary operation  on  by putting 

 for all  where  means the complement of a subset . Then 

 is a UP-algebra and we shall call it the generalized power UP-algebra of type 1 with 

respect to . Let . Define a binary operation  on  by putting 

 for all . Then  is a UP-algebra and we shall call it 

the generalized power UP-algebra of type 2 with respect to . In particular,  is a 

UP-algebra and we shall call it the power UP-algebra of type 1, and  is a UP-algebra 

and we shall call it the power UP-algebra of type 2.  

 

Example 2.3 [9] Let N  be the set of all natural numbers with two binary operations  and  

defined by  

if  < ,
( , ) =

0 otherwise
y x y

x y x y
 

   
 

N  and  

X

= ( , ,0)X X  (2,0) X

 X 0 X

( , , )(( ) (( ) ( )) = 0)x y z X y z x y x z      

( )(0 = )x X x x  

( )( 0 = 0)x X x  

( , )( = 0, 0 )x y X x y y x x y      

X ( )XP ( )XP
X ( ) = { ( ) | }X A X A  P P  ( )XP

= ( )CA B B A   , ( )A B XP CA A
( ( ), , )X  P

 ( ) = { ( ) | }X A X A   P P  ( )XP

= ( )CA B B A   , ( )A B XP ( ( ), , )X  P
 ( ( ), , )X  P

( ( ), , )X XP



if  >  or = 0,
( , ) = .

0 otherwise
y x y x

x y x y
 

   
 

N
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Then  and  are UP-algebras.  

 

Example 2.4 [25] Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra.  

For more examples of UP-algebras, see [7, 13, 29, 30]. 

The following proposition is very important for the study of UP-algebras. 

Proposition 2.5 [12, 13] In a UP-algebra , the following properties hold: 

1.   ,  

2.   ,  

3.   ,  

4.   ,  

5.   ,  

6.   ,  

7.   ,  

8.   ,  

9.   ,  

10.   ,  

11.   ,  

12.   , and  

13.   .  

  

On a UP-algebra , we define a binary relation  on  [12] as follows:  

 

Definition 2.6  [10, 12, 32] A nonempty subset  of a UP-algebra  is called 

1.   a UP-subalgebra of  if .  

2.   a near UP-filter of  if 

     (a)  the constant  of  is in , and  

     (b)  .  

3.   a UP-filter of  if 

     (a)  the constant  of  is in , and  

     (b)  .  

4.   a UP-ideal of  if 

     (a)  the constant  of  is in , and  

     (b)  .  

5.   a strongly UP-ideal of  if 

( , ,0)N ( , ,0)N

= {0,1,2,3,4,5}X 

0 1 2 3 4 5
0 0 1 2 3 4 5
1 0 0 2 3 2 5
2 0 1 0 3 1 5
3 0 1 2 0 4 5
4 0 0 0 3 0 5
5 0 0 2 0 2 0



( , ,0)X 

= ( , ,0)X X 

( )( = 0)x X x x  

( , , )( = 0, = 0 = 0)x y z X x y y z x z     

( , , )( = 0 ( ) ( ) = 0)x y z X x y z x z y      

( , , )( = 0 ( ) ( ) = 0)x y z X x y y z x z      

( , )( ( ) = 0)x y X x y x   

( , )(( ) = 0 = )x y X y x x x y x     

( , )( ( ) = 0)x y X x y y   

( , , , )(( ( )) ( (( ) ( ))) = 0)a x y z X x y z x a y a z        

( , , , )(((( ) ( )) ) (( ) ) = 0)a x y z X a x a y z x y z        

( , , )((( ) ) ( ) = 0)x y z X x y z y z     

( , , )( = 0 ( ) = 0)x y z X x y x z y     

( , , )((( ) ) ( ( )) = 0)x y z X x y z x y z      

( , , , )((( ) ) ( ( )) = 0)a x y z X x y z y a z      

= ( , ,0)X X   X

( , )( = 0).x y X x y x y    

S ( , ,0)X 

X ( , )( )x y S x y S   

X

0 X S
( , )( )x y X y S x y S     

X

0 X S
( , )( , )x y X x y S x S y S      

X

0 X S
( , , )( ( ) , )x y z X x y z S y S x z S        

X
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     (a)  the constant  of  is in , and  

     (b)  .  

 

 Guntasow et al. [10] proved that the notion of UP-subalgebras is a generalization of near 

UP-filters, near UP-filters is a generalization of UP-filters, UP-filters is a generalization of UP-ideals, 

and UP-ideals is a generalization of strongly UP-ideals. Moreover, they also proved that a 

UP-algebra X  is the only one strongly UP-ideal of itself. 

 

Theorem 2.7  Let N be a nonempty family of near UP-filters of a UP-algebra = ( , ,0)X X  . Then N and 

N are near UP-filters of X . 

Proof. Clearly, 0 N  for all NN . Then 0N. Let x X  and yN. Then y N  for all 

NN. Since N  is a near UP-filter of X , we have x y N   for all NN and so x y N. Hence, 

N is a near UP-filter of X . Since N N, we have 0N. Let x X  and yN. Then y N  

for some NN. Since N  is a near UP-filter of X , we have x y N  N,. Hence, N is a near 

UP-filter of X .  

 

3. Neutrosophic N-structures  

 

We denote the family of all functions from a nonempty set  to the closed interval  of 

the real line by . An element of  is called a negative-valued function from 

 to  (briefly, N-function on ). An ordered pair  of  and an N-function  on 

 is called an N-structure. 

A neutrosophic N-structure over a nonempty universe of discourse  [23] is defined to be the 

structure  

  

where  and  are N-functions on  which are called the negative truth membership 

function, the negative indeterminacy membership function and the negative falsity membership function on 

, respectively. 

For the sake of simplicity, we will use the notation  or  instead of the 

neutrosophic N-structure [16]. 

 

Definition 3.1  Let  be a neutrosophic N-structure over a nonempty set . The neutrosophic 

N-structure  defined by  

  (3.1) 

is called the complement of  in .  

Remark 3.2  For all neutrosophic N-structure  over a nonempty set , we have .  

Lemma 3.3 [33] Let  be an N-function on a nonempty set . Then the following statements hold: 

1.  , and  

0 X S
( , , )(( ) ( ) , )x y z X z y z x S y S x S        

X [ 1,0]

( ,[ 1,0])X F ( ,[ 1,0])X F
X [ 1,0] X ( , )X f X f
X

X

= {( , ( ), ( ), ( )) | }N N N NX x T x I x F x x X

,N NT I NF X

X

NX = ( , , , )N N N NX X T I F

NX X

= ( , , , )N N N NX X T I F

 

( ) = 1 ( )

( ) = 1 ( )

( ) = 1 ( )

N N

N N

N N

T x T x

x X I x I x

F x F x

  
 

    
 
  
 

NX X

NX X = NNX X

f X

( , )( 1 max{ ( ), ( )} = min{ 1 ( ), 1 ( )})x y X f x f y f x f y       
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2.  .  

 The following lemmas are easily proved 

 

Lemma 3.4  Let  be an N-function on a nonempty set . Then the following statements hold: 

1.  ,  

2.  ,  

3.  , and  

4.  .  

 

In what follows, let  denote a UP-algebra  unless otherwise specified. 
 
Now, we introduce the notions of neutrosophic N-UP-subalgebras, neutrosophic N-near 

UP-filters, neutrosophic N-UP-filters, neutrosophic N-UP-ideals, and neutrosophic N-strongly 

UP-ideals of UP-algebras, provide the necessary examples, investigate their properties, and prove 

their generalizations. 

 

Definition 3.5  A neutrosophic N-structure  over  is called a neutrosophic N-UP-subalgebra 

of  if it satisfies the following conditions:  

  (3.2) 

  (3.3) 

  (3.4) 

 

Example 3.6  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

 

 

Hence,  is a neutrosophic N-UP-subalgebra of .  

 

( , )( 1 min{ ( ), ( )} = max{ 1 ( ), 1 ( )})x y X f x f y f x f y       

f X

( , , )( ( ) min{ ( ), ( )} ( ) max{ ( ), ( )})x y z X f x f y f z f x f y f z    

( , , )( ( ) min{ ( ), ( )} ( ) max{ ( ), ( )})x y z X f x f y f z f x f y f z    

( , , )( ( ) max{ ( ), ( )} ( ) min{ ( ), ( )})x y z X f x f y f z f x f y f z    

( , , )( ( ) max{ ( ), ( )} ( ) min{ ( ), ( )})x y z X f x f y f z f x f y f z    

X ( , ,0)X 

NX X

X
( , )( ( ) max{ ( ), ( )}),N N Nx y X T x y T x T y   

( , )( ( ) min{ ( ), ( )}),N N Nx y X I x y I x I y   

( , )( ( ) max{ ( ), ( )}).N N Nx y X F x y F x F y   

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 4
3 0 0 2 0 4
4 0 0 0 0 0



( , ,0)X  NX X

(0) = 0.8, (0) = 0.3, (0) = 0.8,N N NT I F  

(1) = 0.6, (1) = 0.7, (1) = 0.8,N N NT I F  

(2) = 0.4, (2) = 0.8, (2) = 0.7,N N NT I F  

(3) = 0.1, (3) = 0.5, (3) = 0.5,N N NT I F  

(4) = 0.2, (4) = 0.9, (4) = 0.3.N N NT I F  

NX X
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Definition 3.7  A neutrosophic N-structure  over  is called a neutrosophic N-near UP-filter of 

 if it satisfies the following conditions:  

  (3.5) 

  (3.6) 

  (3.7) 

  (3.8) 

  (3.9) 

  (3.10) 

Example 3.8  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

 

 

Hence,  is a neutrosophic N-near UP-filter of .  

 

Definition 3.9  A neutrosophic N-structure  over  is called a neutrosophic N-UP-filter of  

if it satisfies the following conditions: (3.5), (3.6), (3.7), and  

  (3.11) 

  (3.12) 

  (3.13) 

  

Example 3.10  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

 

NX X

X
( )( (0) ( )),N Nx X T T x  

( )( (0) ( )),N Nx X I I x  

( )( (0) ( )),N Nx X F F x  

( , )( ( ) ( )),N Nx y X T x y T y   

( , )( ( ) ( )),N Nx y X I x y I y   

( , )( ( ) ( )).N Nx y X F x y F y   

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 2
2 0 1 0 3 1
3 0 1 2 0 4
4 0 0 0 3 0



( , ,0)X  NX X

(0) = 0.8, (0) = 0.3, (0) = 0.8,N N NT I F  

(1) = 0.6, (1) = 0.7, (1) = 0.6,N N NT I F  

(2) = 0.8, (2) = 0.8, (2) = 0.7,N N NT I F  

(3) = 0.1, (3) = 0.5, (3) = 0.5,N N NT I F  

(4) = 0.3, (4) = 0.8, (4) = 0.3.N N NT I F  

NX X

NX X X

( , )( ( ) max{ ( ), ( )}),N N Nx y X T y T x y T x   

( , )( ( ) min{ ( ), ( )}),N N Nx y X I y I x y I x   

( , )( ( ) max{ ( ), ( )}).N N Nx y X F y F x y F x   

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 0 0
2 0 1 0 0 4
3 0 1 2 0 4
4 0 1 2 3 0



( , ,0)X  NX X

(0) = 0.9, (0) = 0.2, (0) = 0.8,N N NT I F  

(1) = 0.5, (1) = 0.8, (1) = 0.6,N N NT I F  

(2) = 0.2, (2) = 0.6, (2) = 0.3,N N NT I F  

(3) = 0.6, (3) = 0.3, (3) = 0.7,N N NT I F  
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Hence,  is a neutrosophic N-UP-filter of .  

Definition 3.11  A neutrosophic N –structure  over  is called a neutrosophic N-UP-ideal of 

 if it satisfies the following conditions: (3.5), (3.6), (3.7), and  

  (3.14) 

  (3.15) 

  (3.16) 

Example 3.12  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

 

 

Hence,  is a neutrosophic N-UP-ideal of .  

Definition 3.13  A neutrosophic N-structure  over  is called a neutrosophic N-strongly 

UP-ideal of  if it satisfies the following conditions: (3.5), (3.6), (3.7), and  

  (3.17) 

  (3.18) 

  (3.19) 

  

Example 3.14  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

Hence,  is neutrosophic N-strongly UP-ideal of .  

 

(4) = 0.7, (4) = 0.3, (4) = 0.8.N N NT I F  

NX X

NX X

X
( , , )( ( ) max{ ( ( )), ( )}),N N Nx y z X T x z T x y z T y     

( , , )( ( ) min{ ( ( )), ( )}),N N Nx y z X I x z I x y z I y     

( , , )( ( ) max{ ( ( )), ( )}).N N Nx y z X F x z F x y z F y     

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 1 0 3 4
3 0 0 2 0 4
4 0 1 2 3 0



( , ,0)X  NX X

(0) = 0.8, (0) = 0.3, (0) = 0.8,N N NT I F  

(1) = 0.5, (1) = 0.6, (1) = 0.8,N N NT I F  

(2) = 0.4, (2) = 0.8, (2) = 0.7,N N NT I F  

(3) = 0.1, (3) = 0.7, (3) = 0.5,N N NT I F  

(4) = 0.2, (4) = 0.8, (4) = 0.3.N N NT I F  

NX X

NX X

X
( , , )( ( ) max{ (( ) ( )), ( )}),N N Nx y z X T x T z y z x T y     

( , , )( ( ) min{ (( ) ( )), ( )}),N N Nx y z X I x I z y z x I y     

( , , )( ( ) max{ (( ) ( )), ( )}).N N Nx y z X F x F z y z x F y     

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 0 3 2
2 0 1 0 3 1
3 0 1 2 0 4
4 0 0 0 3 0



( , ,0)X  NX X

 

( ) = 1
( ) = 0.3 .
( ) = 0.7

N

N

N

T x
x X I x

F x

 
 

   
  

NX X
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Definition 3.15  A neutrosophic N-structure  over  is said to be constant if  is a 

constant function from  to . That is, , and  are constant functions from  to 

.  

 

Theorem 3.16  Every neutrosophic N-UP-subalgebra of  satisfies the conditions (3.5), (3.6), and 

(3.7).  

Proof. Assume that  is a neutrosophic N-UP-subalgebra of . Then for all , by 

Proposition 2.5 (1), (3.2), (3.3), and (3.4), we have 

 

 

 

Hence,  satisfies the conditions (3.5), (3.6), and (3.7). 

 

Theorem 3.17  A neutrosophic N-structure  over  is constant if and only if it is a 

neutrosophic N-strongly UP-ideal of .  

Proof. Assume that  is constant. Then for all , , and 

 and so , and . Next, for all , 

 

 

 

Hence,  is a neutrosophic N-strongly UP-ideal of . 

Conversely, assume that  is a neutrosophic N-strongly UP-ideal of . For any , by 

Proposition 2.5 (1), (UP-2), (UP-3), (3.17), (3.18), and (3.19), we have  

 

 

 

Thus , and  for all . Hence,  is constant.  

 

Theorem 3.18  Every neutrosophic N-strongly UP-ideal of  is a neutrosophic N-UP-ideal.  

Proof. Assume that  is a neutrosophic N-strong UP-ideal of . Then  satisfies the 

conditions (3.5), (3.6), and (3.7). By Theorem 3.17, we have  is constant. Then for all , 

, and . By Proposition 2.5 (5), (UP-3), (3.5), (3.6), (3.7), 

(3.17), (3.18), and (3.19), we have 

 

 

 

NX X NX

X 3[ 1,0] ,N NT I NF X

[ 1,0]

X

NX X x X

(0) = ( ) max{ ( ), ( )} = ( ),N N N N NT T x x T x T x T x 

(0) = ( ) min{ ( ), ( )} = ( ),N N N N NI I x x I x I x I x 

(0) = ( ) max{ ( ), ( )} = ( ).N N N N NF F x x F x F x F x 

NX

NX X

X

NX x X ( ) = (0), ( ) = (0)N N N NT x T I x I
( ) = (0)N NF x F (0) ( ), (0) ( )N N N NT T x I I x  (0) ( )N NF F x , ,x y z X

( ) = (0) = max{ (0), (0)} = max{ (( ) ( )), ( )},N N N N N NT x T T T T z y z x T y  

( ) = (0) = min{ (0), (0)} = min{ (( ) ( )), ( )},N N N N N NI x I I I I z y z x I y  

( ) = (0) = max{ (0), (0)} = max{ (( ) ( )), ( )}.N N N N N NF x F F F F z y z x F y  

NX X

NX X x X

( ) max{ (( 0) ( )), (0)}N N NT x T x x x T    = max{ (0 ( )), (0)}N NT x x T  = max{ ( ), (0)}N NT x x T

= max{ (0), (0)}N NT T = (0),NT
( ) min{ (( 0) ( )), (0)}N N NI x I x x x I    = min{ (0 ( )), (0)}N NI x x I  = min{ ( ), (0)}N NI x x I

= min{ (0), (0)}N NI I = (0),NI
( ) max{ (( 0) ( )), (0)}N N NF x F x x x F    = max{ (0 ( )), (0)}N NF x x F  = max{ ( ), (0)}N NF x x F

= max{ (0), (0)}N NF F = (0).NF
( ) = (0), ( ) = (0)N N N NT x T I x I ( ) = (0)N NF x F x X NX

X

NX X NX

NX x X

( ) = (0), ( ) = (0)N N N NT x T I x I ( ) = (0)N NF x F

( ) = max{ (( ) ( ( ))), ( )}N N NT x z T z y z x z T y     = max{ (( ) 0), ( )}N NT z y T y  = max{ (0), ( )}N NT T y = ( )NT y
max{ ( ( )), ( )},N NT x y z T y  

( ) = min{ (( ) ( ( ))), ( )}N N NI x z I z y z x z I y     = min{ (( ) 0), ( )}N NI z y I y  = min{ (0), ( )}N NI I y = ( )NI y
min{ ( ( )), ( )},N NI x y z I y  

( ) = max{ (( ) ( ( ))), ( )}N N NF x z F z y z x z F y     = max{ (( ) 0), ( )}N NF z y F y  = max{ (0), ( )}N NF F y = ( )NF y
max ( ( )), ( ).N NF x y z F y  
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Hence,  is a neutrosophic N-UP-ideal of .  

 The following example show that the converse of Theorem 3.18 is not true. 

 

Example 3.19  Let  be a set with a binary operation  defined by the following 

Cayley table:  

0 1 2 3
0 0 1 2 3
1 0 0 2 3
2 0 1 0 3
3 0 1 2 0



 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

 

Hence,  is a neutrosophic N-UP-ideal of . Since  is not constant, it follows from Theorem 

3.17 that it is not a neutrosophic N-strongly UP-ideal of .  

 

Theorem 3.20  Every neutrosophic N-UP-ideal of  is a neutrosophic N-UP-filter.  

Proof. Assume that  is a neutrosophic N-UP-ideal of . Then  satisfies the conditions 

(3.5), (3.6), and (3.7). Next, let . By (UP-2), (3.14), (3.15), and (3.16), we have 

 

 

 

Hence,  is a neutrosophic N-UP-filter of .  

The following example show that the converse of Theorem 3.20 is not true. 

 

Example 3.21  Let  be a set with a binary operation  defined by the following 

Cayley table:  

0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 1 0 2
3 0 1 0 0



 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

 

Hence,  is a neutrosophic N-UP-filter of . Since (2 3) = 0.3 > 0.8NF   

= max{ (2 (1 3)), (1)}N NF F  , we have  is not a neutrosophic N-UP-ideal of .  

 

Theorem 3.22  Every neutrosophic N-UP-filter of  is a neutrosophic N-near UP-filter.  

NX X

= {0,1,2,3}X 

( , ,0)X  NX X

(0) = 0.6, (0) = 0.1, (0) = 0.7,N N NT I F  

(1) = 0.4, (1) = 0.5, (1) = 0.5,N N NT I F  

(2) = 0.3, (2) = 0.4, (2) = 0.4,N N NT I F  

(3) = 0.2, (3) = 0.4, (3) = 0.3.N N NT I F  

NX X NX
X

X

NX X NX
,x y X

( ) = (0 )N NT y T y max{ (0 ( )), ( )}N NT x y T x   = max{ ( ), ( )},N NT x y T x

( ) = (0 )N NI y I y min{ (0 ( )), ( )}N NI x y I x   = min{ ( ), ( )},N NI x y I x

( ) = (0 )N NF y F y max{ (0 ( )), ( )}N NF x y F x   = max{ ( ), ( )}.N NF x y F x

NX X

= {0,1,2,3}X 

( , ,0)X  NX X

(0) = 0.7, (0) = 0.1, (0) = 0.9,N N NT I F  

(1) = 0.6, (1) = 0.5, (1) = 0.8,N N NT I F  

(2) = 0.3, (2) = 0.4, (2) = 0.5,N N NT I F  

(3) = 0.3, (3) = 0.4, (3) = 0.5.N N NT I F  

NX X

NX X

X
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Proof. Assume that  is a neutrosophic N-UP-filter. Then  satisfies the conditions (3.5), (3.6), 

and (3.7). Next, let . By Proposition 2.5 (5), (3.5), (3.6), (3.7), (3.11), (3.12), and (3.13), we have  

 

 

 

Hence,  is a neutrosophic N-near UP-filter of .  

The following example show that the converse of Theorem 3.22 is not true. 

 

Example 3.23  Let  be a set with a binary operation  defined by the following 

Cayley table:  

0 1 2 3
0 0 1 2 3
1 0 0 1 3
2 0 0 0 3
3 0 1 1 0



 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

 

Hence,  is a neutrosophic N-near UP-filter of . Since (2) = 0.8 < 0.7NI   = min{ (1 2), (1)}N NI I

, we have  is not a neutrosophic N-UP-filter of .  

 

Theorem 3.24  Every neutrosophic N-near UP-filter of  is a neutrosophic N-UP-subalgebra.  

Proof. Assume that  is a neutrosophic N-near UP-filter of . Then for all , by (3.8), 

(3.9), and (3.10), we have  

 

 

 

Hence,  is a neutrosophic N-UP-subalgebra of .  

The following example show that the converse of Theorem 3.24 is not true. 

 

Example 3.25  Let  be a set with a binary operation  defined by the following 

Cayley table:  

0 1 2 3
0 0 1 2 3
1 0 0 1 2
2 0 0 0 2
3 0 0 0 0



 

Then  is a UP-algebra. We define a neutrosophic N-structure  over  as follows:  

 

 

 

NX NX
,x y X

( ) max{ ( ( )), ( )}N N NT x y T y x y T y    = max{ (0), ( )}N NT T y = ( ),NT y
( ) min{ ( ( )), ( )}N N NI x y I y x y I y    = min{ (0), ( )}N NI I y = ( ),NI y

( ) max{ ( ( )), ( )}N N NF x y F y x y F y    = max{ (0), ( )}N NF F y = ( ).NF y

NX X

= {0,1,2,3}X 

( , ,0)X  NX X

(0) = 0.9, (0) = 0.3, (0) = 0.8,N N NT I F  

(1) = 0.5, (1) = 0.7, (1) = 0.7,N N NT I F  

(2) = 0.2, (2) = 0.8, (2) = 0.6,N N NT I F  

(3) = 0.1, (3) = 0.5, (3) = 0.3.N N NT I F  

NX X

NX X

X

NX X ,x y X

( ) ( ) max{ ( ), ( )},N N N NT x y T y T x T y  

( ) ( ) min{ ( ), ( )},N N N NI x y I y I x I y  

( ) ( ) max{ ( ), ( )}.N N N NF x y F y F x F y  

NX X

= {0,1,2,3}X 

( , ,0)X  NX X

(0) = 0.8, (0) = 0.3, (0) = 0.8,N N NT I F  

(1) = 0.6, (1) = 0.6, (1) = 0.8,N N NT I F  

(2) = 0.4, (2) = 0.5, (2) = 0.7,N N NT I F  
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Hence,  is a neutrosophic N-UP-subalgebra of . Since , we have 

 is not a neutrosophic N-near UP-filter of .  

 

By Theorems 3.18, 3.20, 3.22, and 3.24 and Examples 3.19, 3.21, 3.23, and 3.25, we have that the 

notion of neutrosophic N-UP-subalgebras is a generalization of neutrosophic N-near UP-filters, 

neutrosophic N-near UP-filters is a generalization of neutrosophic N-UP-filters, neutrosophic 

N-UP-filters is a generalization of neutrosophic N-UP-ideals, and neutrosophic N-UP-ideals is a 

generalization of neutrosophic N-strongly UP-ideals. Moreover, by Theorem 3.17, we obtain that 

neutrosophic N-strongly UP-ideals and constant neutrosophic N-structures coincide. 

 

Theorem 3.26  If  is a neutrosophic N-UP-subalgebra of  satisfying the following condition:  

 

 (3.20) 

then  is a neutrosophic N-near UP-filter of .  

Proof. Assume that  is a neutrosophic N-UP-subalgebra of  satisfying the condition (3.20). 

By Theorem 3.16, we have  satisfies the conditions (3.5), (3.6), and (3.7). Next, let . 

Case 1: . Then, by (3.5), (3.6), and (3.7), we have  

 

Case 2: . Then, by (3.2), (3.3), (3.4), and (3.20), we have 

 

Hence,  is a neutrosophic N-near UP-filter of . 

 

Theorem 3.27  If  is a neutrosophic N-near UP-filter of  satisfying the following condition:  

  (3.21) 

then  is a neutrosophic N-UP-filter of .  

Proof. Assume that  is a neutrosophic N-near UP-filter of  satisfying the condition (3.21). 

Then  satisfies the conditions (3.5), (3.6), and (3.7). Next, let . Then, by (3.8), (3.9), and 

(3.21), we have 

 

 

 

Hence,  is a neutrosophic N-UP-filter of .  

 

Theorem 3.28  If  is a neutrosophic N-UP-filter of  satisfying the following condition:  

  (3.22) 

then  is a neutrosophic N-UP-ideal of .  

(3) = 0.1, (3) = 0.7, (3) = 0.5.N N NT I F  

NX X (1 2) = 0.6 < 0.5 = (2)N NI I  

NX X

NX X

 

( ) ( )
, 0 ( ) ( ) ,

( ) ( )

N N

N N

N N

T x T y
x y X x y I x I y

F x F y

  
 

      
  

NX X

NX X

NX ,x y X

= 0x y
( ) = (0) ( ),N N NT x y T T y  ( ) = (0) ( ),N N NI x y I I y  ( ) = (0) ( ).N N NF x y F F y 

0x y 

( ) max{ ( ), ( )} = ( ),N N N NT x y T x T y T y  ( ) min{ ( ), ( )} = ( ),N N N NI x y I x I y I y 

( ) max{ ( ), ( )} = ( ).N N N NF x y F x F y F y 

NX X

NX X

= = ,N N NT I F

NX X

NX X

NX ,x y X

max{ ( ), ( )} = max{ ( ), ( )}N N N NT x y T x I x y T x  max{ ( ), ( )}N NI y T x = max{ ( ), ( )}N NT y T x ( ),NT y

min{ ( ), ( )} = min{ ( ), ( )}N N N NI x y I x T x y I x  min{ ( ), ( )}N NT y I x = min{ ( ), ( )}N NI y I x ( ),NI y

max{ ( ), ( )} = max{ ( ), ( )}N N N NF x y F x I x y F x  max{ ( ), ( )}N NI y F x = max{ ( ), ( )}N NF y F x ( ).NF y

NX X

NX X

 

( ( )) = ( ( ))
, , ( ( )) = ( ( )) ,

( ( )) = ( ( ))

N N

N N

N N

T y x z T x y z
x y z X I y x z I x y z

F y x z F x y z

    
 

      
     

NX X
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Proof. Assume that  is a neutrosophic N-UP-filter of  satisfying the condition (3.22). Then 

 satisfies the conditions (3.5), (3.6), and (3.7). Next, let . Then, by (3.11), (3.12), (3.13), 

and (3.22), we have  

 

 

 

Hence,  is a neutrosophic N-UP-ideal of .  

 

Theorem 3.29  If  is a neutrosophic N-structure over  satisfying the following condition:  

  (3.23) 

then  is a neutrosophic N-UP-subalgebra of .  

Proof. Assume that  is a neutrosophic N-structure over  satisfying the condition (3.23). Let 

. By Proposition 2.5 (1), we have , that is, . It follows from (3.23) 

that  

 

Hence,  is a neutrosophic N-UP-subalgebra of .  

 

Theorem 3.30  If  is a neutrosophic N-structure over  satisfying the following condition:  

  (3.24) 

then  is a neutrosophic N-near UP-filter of .  

Proof. Assume that  is a neutrosophic N-structure over  satisfying the condition (3.24). Let 

. By (UP-2) and Proposition 2.5 (1), we have , that is, . It follows from 

(3.24) that , and . Next, let . By Proposition 2.5 (1), 

we have , that is, . It follows from (3.24) that 

, and . Hence,  is a neutrosophic N-near 

UP-filter of . 

 

Theorem 3.31  If  is a neutrosophic N-structure over  satisfying the following condition:  

  (3.25) 

then  is a neutrosophic N-UP-filter of .  

Proof. Assume that  is a neutrosophic N-structure over  satisfying the condition (3.25). Let 

. By (UP-3), we have , that is, . It follows from (3.25) that  

 

NX X

NX , ,x y z X

( ) max{ ( ( )), ( )}N N NT x z T y x z T y    = max{ ( ( )), ( )},N N NT x y z T y T 

( ) min{ ( ( )), ( )}N N NI x z I y x z I y    = min{ ( ( )), ( )},N N NI x y z I y I 

( ) max{ ( ( )), ( )}N N NF x z F y x z F y    = max{ ( ( )), ( )}.N N NF x y z F y F 

NX X

NX X

 

( ) max{ ( ), ( )}
, , ( ) min{ ( ), ( )} ,

( ) max{ ( ), ( )}

N N N

N N N

N N N

T z T x T y
x y z X z x y I z I x I y

F z F x F y

  
 

      
  

NX X

NX X

,x y X ( ) ( ) = 0x y x y   x y x y  

( ) max{ ( ), ( )},N N NT x y T x T y  ( ) min{ ( ), ( )},N N NI x y I x I y  ( ) max{ ( ), ( )}.N N NF x y F x F y 

NX X

NX X

 

( ) ( )
, , ( ) ( ) ,

( ) ( )

N N

N N

N N

T z T y
x y z X z x y I z I y

F z F y

  
 

      
  

NX X

NX X

x X 0 ( ) = 0x x  0 x x 

(0) ( ), (0) ( )N N N NT T x I I x  (0) ( )N NF F x ,x y X

( ) ( ) = 0x y x y   x y x y  

( ) ( ), ( ) ( )N N N NT x y T y I x y I y    ( ) ( )N NF x y F y  NX
X

NX X

 

( ) max{ ( ), ( )}
, , ( ) min{ ( ), ( )} ,

( ) max{ ( ), ( )}

N N N

N N N

N N N

T y T z T x
x y z X z x y I y I z I x

F y F z F x

  
 

      
  

NX X

NX X

x X ( 0) = 0x x  0x x 

(0) max{ ( ), ( )} = ( ),N N N NT T x T x T x (0) min{ ( ), ( )} = ( ),N N N NI I x I x I x

(0) max{ ( ), ( )} = ( ).N N N NF F x F x F x
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Next, let . By Proposition 2.5 (1), we have , that is, . It follows 

from (3.25) that  

 

Hence,  is a neutrosophic N-UP-filter of .  

 

Theorem 3.32  If  is a neutrosophic N-structure over  satisfying the following condition:  

  (3.26) 

then  is a neutrosophic N-UP-ideal of .  

Proof. Assume that  is a neutrosophic N-structure over  satisfying the condition (3.26). Let 

. By (UP-3), we have , that is, . It follows from (3.26) and (UP-2) that  

 

Next, let . By Proposition 2.5 (1), we have , that is, 

. It follows from (3.26) that  

 

Hence,  is a neutrosophic N-UP-ideal of . 

 

For any fixed numbers  such that  and a 

nonempty subset  of , a neutrosophic N-structure  

over  where , and  are N-functions on  which are given as follows:  

if ,
[ ]( ) =

otherwise,
G

N
x G

T x










 

 



if ,
[ ]( ) =

otherwise,
G
N

x G
I x










 

 



if ,
[ ]( ) =

otherwise.
G

N
x G

F x










 

 



 

 

Lemma 3.33  If the constant  of  is in a nonempty subset  of , then a neutrosophic 

N-structure  over  satisfies the conditions (3.5), (3.6), and (3.7).  

Proof. If , then . Thus  

 

Hence,  satisfies the conditions (3.5), (3.6), and (3.7).  

 

,x y X ( ) ( ) = 0x y x y   x y x y  

( ) max{ ( ), ( )},N N NT y T x y T x  ( ) min{ ( ), ( )},N N NI y I x y I x  ( ) max{ ( ), ( )}.N N NF y F x y F x 

NX X

NX X

 

( ) max{ ( ), ( )}
, , , ( ) ( ) min{ ( ), ( )} ,

( ) max{ ( ), ( )}

N N N

N N N

N N N

T x z T a T y
a x y z X a x y z I x z I a I y

F x z F a F y

   
 

        
   

NX X

NX X

x X (0 ( 0) = 0x x   0 ( 0)x x  

(0) = (0 0) max{ ( ), ( )} = ( ),N N N N NT T T x T x T x  (0) = (0 0) min{ ( ), ( )} = ( ),N N N N NI I I x I x I x 

(0) = (0 0) max{ ( ), ( )} = ( ).N N N N NF F F x F x F x 

, ,x y z X ( ( )) ( ( )) = 0x y z x y z    

( ) ( )x y z x y z    

( ) max{ ( ( )), ( )},N N NT x z T x y z T y    ( ) min{ ( ( )), ( )},N N NI x z I x y z I y   

( ) max{ ( ( )), ( )}.N N NF x z F x y z F y   

NX X

, , , , , [ 1,0]             < , < , <          

G X , ,

, ,
[ ] = ( , [ ], [ ], [ ])G G G G

N N N NX X T I F     

     

     

     

X [ ], [ ]G G
N NT I 

 

 

  [ ]G
NF 






X

0 X G X

, ,

, ,
[ ]G

NX   

  

  

  
X

0 G [ ](0) = , [ ](0) = , [ ](0) =G G G
N N NT I F  

  
  

    

  

 

[ ](0) = [ ]( )

[ ](0) = [ ]( ) .

[ ](0) = [ ]( )

G G
N N

G G
N N

G G
N N

T T x

x X I I x

F F x

 

 

 

 

 

 







 

 

 

 

 

 

 
 
 

   
 
 
 

, ,

, ,
[ ]G

NX   

  

  

  
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Lemma 3.34  If a neutrosophic N-structure  over  satisfies the condition (3.5) (resp., 

(3.6), (3.7)), then the constant  of  is in a nonempty subset  of .  

Proof. Assume that the neutrosophic N-structure  over  satisfies the condition (3.5). 

Then  for all . Since  is nonempty, there exists . Thus 

, so , that is, . Hence, .  

Theorem 3.35  A neutrosophic N-structure  over  is a neutrosophic 

N-UP-subalgebra of  if and only if a nonempty subset  of  is a UP-subalgebra of .  

Proof. Assume that  is a neutrosophic N-UP-subalgebra of . Let . Then 

. Thus, by (3.2), we have  
 

 

and so . Thus . Hence,  is a UP-subalgebra of . 

Conversely, assume that  is a UP-subalgebra of . Let . 

Case 1: . Then  

 

Thus  

 

Since  is a UP-subalgebra of , we have  and so , 

and . Hence,  

 

Case 2:  or . Then  

 

Thus  

 

 Therefore,  

, ,

, ,
[ ]G

NX   

  

  

  
X

0 X G X

, ,

, ,
[ ]G

NX   

  

  

   X

[ ](0) [ ]( )G G
N NT T x 

 

 

  x X G g G

[ ]( ) =G
NT g




 

 [ ](0) [ ]( ) = [ ](0)G G G
N N NT T g T  

  


  

    [ ](0) =G
NT 




 

 0 G

, ,

, ,
[ ]G

NX   

  

  

   X

X G X X

, ,

, ,
[ ]G

NX   

  

  

  
X ,x y G

[ ]( ) = = [ ]( )G G
N NT x T y 

 


 

 

[ ]( ) max{ [ ]( ), [ ]( )} = [ ]( )G G G G
N N N NT x y T x T y T x y   

   


   

      

[ ]( ) =G
NT x y




 

  x y G  G X

G X ,x y X

,x y G

[ ]( ) = = [ ]( ),G G
N NT x T y 

 


 

 
[ ]( ) = = [ ]( ),G G

N NI x I y 

 


 

  [ ]( ) = = [ ]( ).G G
N NF x F y 

 


 

 

max{ [ ]( ), [ ]( )} = ,G G
N NT x T y 

 


  

 
min{ [ ]( ), [ ]( )} = ,G G

N NI x I y 

 


  

  max{ [ ]( ), [ ]( )} = .G G
N NF x F y 

 


  

 

G X x y G  [ ]( ) = , [ ]( ) =G G
N NT x y I x y 

 
 

  

  

[ ]( ) =G
NF x y




 

 

[ ]( ) = = max{ [ ]( ), [ ]( )},G G G
N N NT x y T x T y  

  
 

   

    [ ]( ) = = min{ [ ]( ), [ ]( )},G G G
N N NI x y I x I y  

  
 

   

   

[ ]( ) = = max{ [ ]( ), [ ]( )}.G G G
N N NF x y F x F y  

  
 

   

   

x G y G

[ ]( ) =  or [ ]( ) = ,G G
N NT x T y 

 
 

  

 
[ ]( ) =  or [ ]( ) = ,G G

N NI x I y 

 
 

  

  [ ]( ) =  or [ ]( ) = .G G
N NF x F y 

 
 

  

 

max{ [ ]( ), [ ]( )} = ,G G
N NT x T y 

 


  

 
min{ [ ]( ), [ ]( )} = ,G G

N NI x I y 

 


  

  max{ [ ]( ), [ ]( )} = .G G
N NF x F y 

 


  

 
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Hence,  is a neutrosophic N-UP-subalgebra of .  

Theorem 3.36  A neutrosophic N-structure  over  is a neutrosophic N-near 

UP-filter of  if and only if a nonempty subset  of  is a near UP-filter of .  

Proof. Assume that  is neutrosophic N-near UP-filter of . Since  

satisfies the condition (3.5), it follows from Lemma 3.34 that . Next, let  and . 

Then . Thus, by (3.8), we have 
 

and so . Thus  Hence,  is a near UP-filter of . 

Conversely, assume that  is a near UP-filter of . Since , it follows from Lemma 3.33 

that  satisfies the conditions (3.5), (3.6), and (3.7). Next, let . 

Case 1: . Then , and . Since  is a near 

UP-filter of , we have  and so , and . 

Thus  

 

Case 2: . Then , and . Thus  

 

Hence,  is a neutrosophic N-near UP-filter of .  

 

Theorem 3.37  A neutrosophic N-structure  over  is a neutrosophic N-UP-filter of 

 if and only if a nonempty subset  of  is a UP-filter of .  

Proof. Assume that  is a neutrosophic N-UP-filter of . Since  satisfies 

the condition (3.5), it follows from Lemma 3.34 that . Next, let  be such that  

and . Then . Thus, by (3.11), we have  

[ ]( ) = max{ [ ]( ), [ ]( )},G G G
N N NT x y T x T y  

  


  

    [ ]( ) = min{ [ ]( ), [ ]( )},G G G
N N NI x y I x I y  

  


  

   

[ ]( ) = max{ [ ]( ), [ ]( )}.G G G
N N NF x y F x F y  

  


  

   

, ,

, ,
[ ]G

NX   

  

  

  
X

, ,

, ,
[ ]G

NX   

  

  

  
X

X G X X

, ,

, ,
[ ]G

NX   

  

  

   X , ,

, ,
[ ]G

NX   

  

  

  

0 G x X y G

[ ]( ) =G
NT y




 

 [ ]( ) [ ]( ) = [ ]( )G G G
N N NT x y T y T x y  

  


  

     

[ ]( ) =G
NT x y




 

  .x y G  G X

G X 0 G

, ,

, ,
[ ]G

NX   

  

  

   ,x y X

y G [ ]( ) = , [ ]( ) =G G
N NT y I y 

 
 

  

  [ ]( ) =G
NF y




 

 G

X x y G  [ ]( ) = , [ ]( ) =G G
N NT x y I x y 

 
 

  

   [ ]( ) =G
NF x y




 

 

[ ]( ) = = [ ]( ),G G
N NT x y T y 

 
 

  

   [ ]( ) = = [ ]( ),G G
N NI x y I y 

 
 

  

  

[ ]( ) = = [ ]( ).G G
N NF x y F y 

 
 

  

  

y G [ ]( ) = , [ ]( ) =G G
N NT y I y 

 
 

  

  [ ]( ) =G
NF y




 



[ ]( ) = [ ]( ),G G
N NT x y T y 

 


 

   [ ]( ) = [ ]( ),G G
N NI x y I y 

 


 

   [ ]( ) = [ ]( ).G G
N NF x y F y 

 


 

  

, ,

, ,
[ ]G

NX   

  

  

  
X

, ,

, ,
[ ]G

NX   

  

  

  
X

X G X X

, ,

, ,
[ ]G

NX   

  

  

  
X , ,

, ,
[ ]G

NX   

  

  

  

0 G ,x y X x y G 

x G [ ]( ) = = [ ]( )G G
N NT x y T x 

 


 

 
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[ ]( ) max{ [ ]( ), [ ]( )}G G G
N N NT y T x y T x  

  

  

    = [ ]( )G
NT y






  

and so . Thus . Hence,  is a UP-filter of . 

Conversely, assume that  is a UP-filter of . Since , it follows from Lemma 3.33 that 

 satisfies the conditions (3.5), (3.6), and (3.7). Next, let . 

Case 1:  and . Then  

 

Since  is a UP-filter of , we have  and so , and 

. Thus  

 

Case 2:  or . Then  

 

Thus  

 

Therefore,  

 

Hence,  is a neutrosophic N-UP-filter of .  

 

Theorem 3.38  A neutrosophic N-structure  over  is a neutrosophic N-UP-ideal of 

 if and only if a nonempty subset  of  is a UP-ideal of .  

Proof. Assume that  is a neutrosophic N-UP-ideal of . Since  satisfies 

the condition (3.5), it follows from Lemma 3.34 that . Next, let  be such that 

 and . Then . Thus, by (3.17), we have  

[ ]( ) =G
NT y




 


y G G X

G X 0 G

, ,

, ,
[ ]G

NX   

  

  

   ,x y X

x y G  x G

[ ]( ) = = [ ]( ),G G
N NT x y T x 

 


 

  [ ]( ) = = [ ]( ),G G
N NI x y I x 

 


 

  [ ]( ) = = [ ]( ).G G
N NF x y F x 

 


 

 

G X y G [ ]( ) = , [ ]( ) =G G
N NT y I y 

 
 

  

 

[ ]( ) =G
NF y




 



[ ]( ) = = max{ [ ]( ), [ ]( )},G G G
N N NT y T x y T x  

  
 

   

    [ ]( ) = = min{ [ ]( ), [ ]( )},G G G
N N NI y I x y I x  

  
 

   

   

[ ]( ) = = max{ [ ]( ), [ ]( )}.G G G
N N NF y F x y F x  

  
 

   

   

x y G  x G

[ ]( ) =  or [ ]( ) = ,G G
N NT x y T x 

 
 

  

  [ ]( ) =  or [ ]( ) = ,G G
N NI x y I x 

 
 

  

 

[ ]( ) =  or [ ]( ) = .G G
N NF x y F x 

 
 

  

 

max{ [ ]( ), [ ]( )} = ,G G
N NT x y T x 

 


  

  min{ [ ]( ), [ ]( )} = ,G G
N NI x y I x 

 


  

  max{ [ ]( ), [ ]( )} = .G G
N NF x y F x 

 


  

 

[ ]( ) = max{ [ ]( ), [ ]( )},G G G
N N NT y T x y T x  

  


  

    [ ]( ) = min{ [ ]( ), [ ]( )},G G G
N N NI y I x y I x  

  


  

   

[ ]( ) = max{ [ ]( ), [ ]( )}.G G G
N N NF y F x y F x  

  


  

   

, ,

, ,
[ ]G

NX   

  

  

  
X

, ,

, ,
[ ]G

NX   

  

  

  
X

X G X X

, ,

, ,
[ ]G

NX   

  

  

  
X , ,

, ,
[ ]G

NX   

  

  

  

0 G , ,x y z X

( )x y z G   y G [ ]( ( )) = = [ ]( )G G
N NT x y z T y 

 


 

  
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and so . Thus . Hence,  is a UP-ideal of . 

Conversely, assume that  is a UP-ideal of . Since , it follows from Lemma 3.33 that 

 satisfies the conditions (3.5), (3.6), and (3.7). Next, let . 

Case 1:  and . Then  

 

Thus  

 

Since  is a UP-ideal of , we have  and so , and 

. Thus  

 

 

 

 

Case 2:  or . Then  

[ ]( ( )) =  or [ ]( ) = ,G G
N NT x y z T y 

 
 

  

   [ ]( ( )) =  or [ ]( ) = ,G G
N NI x y z I y 

 
 

  

  

[ ]( ( )) =  or [ ]( ) = .G G
N NF x y z F y 

 
 

  

    

Thus  

 

Therefore,  

 

 

 

[ ]( ) max{ [ ]( ( )), [ ]( )} = [ ]( )G G G G
N N N NT x z T x y z T y T x z   

   


   

        

[ ]( ) =G
NT x z




 

  x z G  G X

G X 0 G

, ,

, ,
[ ]G

NX   

  

  

   , ,x y z X

( )x y z G   y G

[ ]( ( )) = = [ ]( ),G G
N NT x y z T y 

 


 

   [ ]( ( )) = = [ ]( ),G G
N NI x y z I y 

 


 

   [ ]( ( )) = = [ ]( ).G G
N NF x y z F y 

 


 

  

max{ [ ]( ( )), [ ]( )} = ,G G
N NT x y z T y 

 


  

   min{ [ ]( ( )), [ ]( )} = ,G G
N NI x y z I y 

 


  

  

max{ [ ]( ( )), [ ]( )} = .G G
N NF x y z F y 

 


  

  

G X x z G  [ ]( ) = , [ ]( ) =G G
N NT x z I x z 

 
 

  

  

[ ]( ) =G
NF x z




 

 

[ ]( ) = = max{ [ ]( ( )), [ ]( )},G G G
N N NT x z T x y z T y  

  
 

   

     

[ ]( ) = = min{ [ ]( ( )), [ ]( )},G G G
N N NI x z I x y z I y  

  
 

   

     

[ ]( ) = = max{ [ ]( ( )), [ ]( )}.G G G
N N NF x z F x y z F y  

  
 

   

     

( )x y z G   y G

max{ [ ]( ( )), [ ]( )} = ,G G
N NT x y z T y 

 


  

   min{ [ ]( ( )), [ ]( )} = ,G G
N NI x y z I y 

 


  

  

max{ [ ]( ( )), [ ]( )} = .G G
N NF x y z F y 

 


  

  

[ ]( ) = max{ [ ]( ( )), [ ]( )},G G G
N N NT x z T x y z T y  

  


  

     

[ ]( ) = min{ [ ]( ( )), [ ]( )},G G G
N N NI x z I x y z I y  

  


  

     

[ ]( ) = max{ [ ]( ( )), [ ]( )}.G G G
N N NF x z F x y z F y  

  


  

     



Neutrosophic Sets and Systems, Vol. 28, 2019     104  
 

 
P. Rangsuk, P. Huana, A. Iampan, Neutrosophic N-structures over UP-algebras 

Hence,  is a neutrosophic N-UP-ideal of .  

Theorem 3.39  A neutrosophic N-structure  over  is a neutrosophic N-strongly 

UP-ideal of  if and only if a nonempty subset  of  is a strongly UP-ideal of .  

Proof. Assume that  is a neutrosophic N-strongly UP-ideal of . By Theorem 3.17, we 

have  is constant, that is,  is constant. Since  is nonempty, we have 

 for all . Thus . Hence,  is a strongly UP-ideal of . 

Conversely, assume that  is a strongly UP-ideal of . Then , so  

 

Thus , and  are constant, that is,  is constant. By Theorem 3.17, 

we have  is a neutrosophic N-strongly UP-ideal of . 

 

4. Level subsets of a neutrosophic N-structure 

 

In this section, we discuss the relationships among neutrosophic N-UP-subalgebras (resp., 

neutrosophic N-near UP-filters, neutrosophic N-UP-filters, neutrosophic N-UP-ideals, neutrosophic 

N-strongly UP-ideals) of UP-algebras and their level subsets. 

 

Definition 4.1  [34] Let  be an N-function on a nonempty set . For any , the sets  

 

are called an upper -level subset, a lower -level subset, and an equal -level subset of , 

respectively. 

 

Theorem 4.2  A neutrosophic N-structure  over  is a neutrosophic N-UP-subalgebra of  

if and only if for all , the sets , and  are UP-subalgebras of 

 if , and  are nonempty.  

Proof. Assume that  is a neutrosophic N-UP-subalgebra of . Let  be such that 

, and  are nonempty. 

Let . Then  and , so  is an upper bound of 

. By (3.2), we have . Thus . 

Let . Then  and , so  is a lower bound of . 

By (3.3), we have . Thus . 

Let . Then  and , so  is an upper bound of 

. By (3.4), we have . Thus . 

Hence, , and  are UP-subalgebras of . 

, ,

, ,
[ ]G

NX   

  

  

  
X

, ,

, ,
[ ]G

NX   

  

  

   X

X G X X

, ,

, ,
[ ]G

NX   

  

  

  
X

, ,

, ,
[ ]G

NX   

  

  

   [ ]G
NT 





 G

[ ]( ) =G
NT x




 

 x X =G X G X

G X =G X

 

[ ]( ) =

[ ]( ) = .

[ ]( ) =

G
N

G
N

G
N

T x

x X I x

F x



















 



 



 



 
 
 

   
 
 
 

[ ], [ ]G G
N NT I 

 

 

  [ ]G
NF 







, ,

, ,
[ ]G

NX   

  

  

  

, ,

, ,
[ ]G

NX   

  

  

  
X

f X [ 1,0]t 

( ; ) = { | ( ) },U f t x X f x t  ( ; ) = { | ( ) },L f t x X f x t  ( ; ) = { | ( ) = }E f t x X f x t

t t t f

NX X X

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F 

X ( ; ), ( ; )N NL T U I  ( ; )NL F 

NX X , , [ 1,0]    

( ; ), ( ; )N NL T U I  ( ; )NL F 

, ( ; )Nx y L T  ( )NT x  ( )NT y   { ( ), ( )}N NT x T y
( ) max{ ( ), ( )}N N NT x y T x T y    ( ; )Nx y L T  

, ( ; )Nx y U I  ( )NI x  ( )NI y   { ( ), ( )}N NI x I y
( ) min{ ( ), ( )}N N NI x y I x I y    ( ; )Nx y U I  

, ( ; )Nx y L F  ( )NF x  ( )NF y   { ( ), ( )}N NF x F y
( ) max{ ( ), ( )}N N NF x y F x F y    ( ; )Nx y L F  

( ; ), ( ; )N NL T U I  ( ; )NL F  X
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Conversely, assume that for all , the sets , and  are 

UP-subalgebras of  if , and  are nonempty. 

Let . Then . Choose . Thus  and 

, so . By assumption, we have  is a UP-subalgebra of  and 

so . Thus . 

Let . Then . Choose . Thus  and 

, so . By assumption, we have  is a UP-subalgebra of  and 

so . Thus . 

Let . Then . Choose . Thus  and 

, so . By assumption, we have  is a UP-subalgebra of  and 

so . Thus . 

Therefore,  is a neutrosophic N-UP-subalgebra of .  

  

Theorem 4.3  A neutrosophic N-structure  over  is a neutrosophic N-near UP-filter of  if 

and only if for all , the sets , and  are near UP-filters of  

if , and  are nonempty.  

Proof. Assume that  is a neutrosophic N-near UP-filter of . Let  be such that 

, and  are nonempty. 

Let . Then . By (3.5), we have . Thus . Next, 

let  and . Then . By (3.8), we have . Thus 

. 

Let . Then . By (3.6), we have . Thus . 

Next, let  and . Then . By (3.9), we have . Thus 

. 

Let . Then . By (3.7), we have . Thus . Next, 

let  and . Then . By (3.10), we have . Thus 

. 

Hence, , and  are near UP-filters of . 

Conversely, assume that for all , the sets , and  are 

near UP-filters of  if , and  are nonempty. 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a near UP-filter of  and so . Thus 

. Next, let . Then . Choose . Thus , so 

. By assumption, we have  is a near UP-filter of  and so . 

Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a near UP-filter of  and so . Thus 

. Next, let . Then . Choose . Thus , so 

. By assumption, we have  is a near UP-filter of  and so 

. Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a near UP-filter of  and so . Thus 

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F 

X ( ; ), ( ; )N NL T U I  ( ; )NL F 

,x y X ( ), ( ) [ 1,0]N NT x T y   = max{ ( ), ( )}N NT x T y ( )NT x 

( )NT y  , ( ; )Nx y L T   ( ; )NL T  X

( ; )Nx y L T   ( ) = max{ ( ), ( )}N N NT x y T x T y 

,x y X ( ), ( ) [ 1,0]N NI x I y   = min{ ( ), ( )}N NI x I y ( )NI x 

( )NI y  , ( ; )Nx y U I   ( ; )NU I  X

( ; )Nx y U I   ( ) = min{ ( ), ( )}N N NI x y I x I y 

,x y X ( ), ( ) [ 1,0]N NF x F y   = max{ ( ), ( )}N NF x F y ( )NF x 

( )NF y  , ( ; )Nx y L F   ( ; )NL F  X

( ; )Nx y L F   ( ) = max{ ( ), ( )}N N NF x y F x F y 

NX X

NX X X

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F  X

( ; ), ( ; )N NL T U I  ( ; )NL F 

NX X , , [ 1,0]    

( ; ), ( ; )N NL T U I  ( ; )NL F 

( ; )Nx L T  ( )NT x  (0) ( )N NT T x   0 ( ; )NL T 

x X ( ; )Ny L T  ( )NT y  ( ) ( )N NT x y T y   

( ; )Nx y L T  

( ; )Nx U I  ( )NI x  (0) ( )N NI I x   0 ( ; )NU I 

x X ( ; )Ny U I  ( )NI y  ( ) ( )N NI x y I y   

( ; )Nx y U I  

( ; )Nx L F  ( )NF x  (0) ( )N NF F x   0 ( ; )NL F 

x X ( ; )Ny L F  ( )NF y  ( ) ( )N NF x y F y   

( ; )Nx y L F  

( ; ), ( ; )N NL T U I  ( ; )NL F  X

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F 

X ( ; ), ( ; )N NL T U I  ( ; )NL F 

x X ( ) [ 1,0]NT x   = ( )NT x ( )NT x  ( ; )Nx L T  

( ; )NL T  X 0 ( ; )NL T 

(0) = ( )N NT T x ,x y X ( ) [ 1,0]NT y   = ( )NT y ( )NT y 

( ; )Ny L T   ( ; )NL T  X ( ; )Nx y L T  

( ) = ( )N NT x y T y 

x X ( ) [ 1,0]NI x   = ( )NI x ( )NI x  ( ; )Nx U I  

( ; )NU I  X 0 ( ; )NU I 

(0) = ( )N NI I x ,x y X ( ) [ 1,0]NI y   = ( )NI y ( )NI y 

( ; )Ny U I   ( ; )NU I  X

( ; )Nx y U I   ( ) = ( )N NI x y I y 

x X ( ) [ 1,0]NF x   = ( )NF x ( )NF x  ( ; )Nx L F  

( ; )NL F  X 0 ( ; )NL F 
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. Next, let . Then . Choose . Thus , so 

. By assumption, we have  is a near UP-filter of  and so . 

Thus . 

Therefore,  is a neutrosophic N-near UP-filter of . 

 

Theorem 4.4  A neutrosophic N-structure  over  is a neutrosophic N-UP-filter of  if and 

only if for all , the sets , and  are UP-filters of  if 

, and  are nonempty. 

Proof. Assume that  is a neutrosophic N-UP-filter of . Let  be such that 

, and  are nonempty. 

Let . Then . By (3.5), we have . Thus . Next, 

let  be such that  and . Then  and , so 

 is an upper bound of . By (3.11), we have . Thus 

. 

Let . Then . By (3.5), we have . Thus . 

Next, let  be such that  and . Then  and 

, so  is a lower bound of . By (3.12), we have 

 Thus . 

Let . Then . By (3.5), we have . Thus . Next, 

let  be such that  and . Next, let  and 

. Then  and , so  is an upper bound of . By 

(3.13), we have . Thus . 

Hence, , and  are UP-filters of . 

Conversely, assume that for all , the sets , and  are 

UP-filters of  if , and  are nonempty. 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-filter of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-filter of  and so . Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-filter of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-filter of  and so . Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-filter of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-filter of  and so . Thus . 

Therefore,  is a neutrosophic N-UP-filter of .  

 

(0) = ( )N NF F x ,x y X ( ) [ 1,0]NF y   = ( )NF y ( )NF y 

( ; )Ny L F   ( ; )NL F  X ( ; )Nx y L F  

( ) = ( )N NF x y F y 

NX X

NX X X

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F  X

( ; ), ( ; )N NL T U I  ( ; )NL F 

NX X , , [ 1,0]    

( ; ), ( ; )N NL T U I  ( ; )NL F 

( ; )Nx L T  ( )NT x  (0) ( )N NT T x   0 ( ; )NL T 

,x y X ( ; )Nx y L T   ( ; )Nx L T  ( )NT x y   ( )NT x 

 { ( ), ( )}N NT x y T x ( ) max{ ( ), ( )}N N NT y T x y T x   

( ; )Ny L T 

( ; )Nx U I  ( )NI x  (0) ( )N NI I x   0 ( ; )NU I 

,x y X ( ; )Nx y U I   ( ; )Nx U I  ( )NI x y  

( )NI x   { ( ), ( )}N NI x y I x

( ) min{ ( ), ( )}N N NI y I x y I x    ( ; )Ny U I 

( ; )Nx L F  ( )NF x  (0) ( )N NF F x   0 ( ; )NL F 

,x y X ( ; )Nx y L F   ( ; )Nx L F  , ( ; )Nx y L F 

( ; )Nx L F  ( )NF x y   ( )NF x   { ( ), ( )}N NF x y F x

( ) max{ ( ), ( )}N N NF y F x y F x    ( ; )Ny L F 

( ; ), ( ; )N NL T U I  ( ; )NL F  X

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F 

X ( ; ), ( ; )N NL T U I  ( ; )NL F 

x X ( ) [ 1,0]NT x   = ( )NT x ( )NT x  ( ; )Nx L T  

( ; )NL T  X 0 ( ; )NL T  (0) = ( )N NT T x

,x y X ( ), ( ) [ 1,0]N NT x y T x   = max{ ( ), ( )}N NT x y T x 

( )NT x y   ( )NT x  , ( ; )Nx y x L T    ( ; )NL T 

X ( ; )Ny L T  ( ) = max{ ( ), ( )}N N NT y T x y T x 

x X ( ) [ 1,0]NI x   = ( )NI x ( )NI x  ( ; )Nx U I  

( ; )NU I  X 0 ( ; )NU I  (0) = ( )N NI I x

,x y X ( ), ( ) [ 1,0]N NI x y I x   = min{ ( ), ( )}N NI x y I x 

( )NI x y   ( )NI x  , ( ; )Nx y x U I    ( ; )NU I 

X ( ; )Ny U I  ( ) = min{ ( ), ( )}N N NI y I x y I x 

x X ( ) [ 1,0]NF x   = ( )NF x ( )NF x  ( ; )Nx L F  

( ; )NL F  X 0 ( ; )NL F  (0) = ( )N NF F x

,x y X ( ), ( ) [ 1,0]N NF x y F x   = max{ ( ), ( )}N NF x y F x 

( )NF x y   ( )NF x  , ( ; )Nx y x L F    ( ; )NL F 

X ( ; )Ny L F  ( ) = max{ ( ), ( )}N N NF y F x y F x 

NX X
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Theorem 4.5  A neutrosophic N-structure  over  is a neutrosophic N-UP-ideal of  if and 

only if for all , the sets , and  are UP-ideals of  if 

, and  are nonempty.  

Proof. Assume that  is a neutrosophic N-UP-ideal of . Let  be such that 

, and  are nonempty. 

Let . Then . By (3.5), we have . Thus . Next, 

let  be such that  and . Then  and 

, so  is an upper bound of . By (3.14), we have 

. Thus . 

Let . Then . By (3.5), we have . Thus . Next, 

let  be such that  and . Then  and 

, so  is a lower bound of . By (3.15), we have 

. Thus . 

Let . Then . By (3.5), we have . Thus . Next, 

let  be such that  and . Then  and 

, so  is an upper bound of . By (3.16), we have 

. Thus . 

Hence, , and  are UP-ideals of . 

Conversely, assume that for all , the sets , and  are 

UP-ideals of  if , and  are nonempty. 

Let x X . Then . Choose . Thus , so . By 

assumption, we have  is a UP-ideal of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-ideal of  and so . Thus . 

Let x X . Then . Choose . Thus , so . By 

assumption, we have  is a UP-ideal of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-ideal of  and so . Thus . 

Let x X . Then . Choose . Thus , so . By 

assumption, we have  is a UP-ideal of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-ideal of  and so . Thus . 

Therefore,  is a neutrosophic N-UP-ideal of .  

  

Theorem 4.6  A neutrosophic N-structure NX  over X  is a neutrosophic N-strongly UP-ideal of 

X  if and only if the sets ( ; (0)), ( ; (0))N N N NE T T E I I , and ( ; (0))N NE F F  are strongly UP-ideals of X .  

Proof. Assume that  is a neutrosophic N-strongly UP-ideal of X . By Theorem 3.17, we have  

is constant, that is, , and  are constant. Thus  

NX X X

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F  X

( ; ), ( ; )N NL T U I  ( ; )NL F 

NX X , , [ 1,0]    

( ; ), ( ; )N NL T U I  ( ; )NL F 

( ; )Nx L T  ( )NT x  (0) ( )N NT T x   0 ( ; )NL T 

, ,x y z X ( ) ( ; )Nx y z L T    ( ; )Ny L T  ( ( ))NT x y z   

( )NT y   { ( ( )), ( )}N NT x y z T y 

( ) max{ ( ( )), ( )}N N NT x z T x y z T y      ( ; )Nx z L T  

( ; )Nx U I  ( )NI x  (0) ( )N NI I x   0 ( ; )NU I 

, ,x y z X ( ) ( ; )Nx y z U I    ( ; )Ny U I  ( ( ))NI x y z   

( )NI y   { ( ( )), ( )}N NI x y z I y 

( ) min{ ( ( )), ( )}N N NI x z I x y z I y      ( ; )Nx z U I  

( ; )Nx L F  ( )NF x  (0) ( )N NF F x   0 ( ; )NL F 

, ,x y z X ( ) ( ; )Nx y z L F    ( ; )Ny L F  ( ( ))NF x y z   

( )NF y   { ( ( )), ( )}N NF x y z F y 

( ) max{ ( ( )), ( )}N N NF x z F x y z F y      ( ; )Nx z L F  

( ; ), ( ; )N NL T U I  ( ; )NL F  X

, , [ 1,0]     ( ; ), ( ; )N NL T U I  ( ; )NL F 

X ( ; ), ( ; )N NL T U I  ( ; )NL F 

( ) [ 1,0]NT x   = ( )NT x ( )NT x  ( ; )Nx L T  

( ; )NL T  X 0 ( ; )NL T  (0) = ( )N NT T x

, ,x y z X ( ( )), ( ) [ 1,0]N NT x y z T y    = max{ ( ( )), ( )}N NT x y z T y  

( ( ))NT x y z    ( )NT y  ( ), ( ; )Nx y z y L T     ( ; )NL T 

X ( ; )Nx z L T   ( ) = max{ ( ( )), ( )}N N NT x z T x y z T y   

( ) [ 1,0]NI x   = ( )NI x ( )NI x  ( ; )Nx U I  

( ; )NU I  X 0 ( ; )NU I  (0) = ( )N NI I x

, ,x y z X ( ( )), ( ) [ 1,0]N NI x y z I y    = min{ ( ( )), ( )}N NI x y z I y  

( ( ))NI x y z    ( )NI y  ( ), ( ; )Nx y z y U I     ( ; )NU I 

X ( ; )Nx z U I   ( ) = min{ ( ( )), ( )}N N NI x z I x y z I y   

( ) [ 1,0]NF x   = ( )NF x ( )NF x  ( ; )Nx L F  

( ; )NL F  X 0 ( ; )NL F  (0) = ( )N NF F x

, ,x y z X ( ( )), ( ) [ 1,0]N NF x y z F y    = max{ ( ( )), ( )}N NF x y z F y  

( ( ))NF x y z    ( )NF y  ( ), ( ; )Nx y z y L F     ( ; )NL F 

X ( ; )Nx z L F   ( ) = max{ ( ( )), ( )}N N NF x z F x y z F y   

NX X

NX NX

,N NT I NF
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 

( ) = (0)
( ) = (0) .
( ) = (0)

N N

N N

N N

T x T
x X I x I

F x F

 
 

   
 
 

 

Hence, , and  and so , 

and  are strongly UP-ideals of X . 

Conversely, assume that , and  are strongly UP-ideals of 

X . Then ,  and so  

 

Thus , and  are constant, that is  is constant. By Theorem 3.17, we have  is a 

neutrosophic N-strongly UP-ideal of X . 

 

5. Neutrosophic N-structures of special type 

 
In this section, we introduce the notions of special neutrosophic N-UP-subalgebras, special 

neutrosophic N-near UP-filters, special neutrosophic N-UP-filters, special neutrosophic N-UP-ideals, 

and special neutrosophic N-strongly UP-ideals of UP-algebras, provide the necessary examples, 

investigate their properties, and prove their generalizations. 

 

Definition 5.1  A neutrosophic N-structure  over X  is called a special neutrosophic 

N-UP-subalgebra of X  if it satisfies the following conditions:  

  (5.1) 

  (5.2) 

 
 (5.3) 

  

Example 5.2  Let  be a set with a binary operation  defined by the following 

Cayley table:  

  

Then  is a UP-algebra. We define a neutrosophic N-structure  over X  as follows:  

 

 

 

 

 

Hence,  is a special neutrosophic N-UP-subalgebra of X .  

 

( ; (0)) = , ( ; (0)) =N N N NE T T X E I I X ( ; (0)) =N NE F F X ( ; (0)), ( ; (0))N N N NE T T E I I

( ; (0))N NE F F

( ; (0)), ( ; (0))N N N NE T T E I I ( ; (0))N NE F F

( ; (0)) = , ( ; (0)) =N N N NE T T X E I I X ( ; (0)) =N NE F F X

 

( ) = (0)
( ) = (0) .
( ) = (0)

N N

N N

N N

T x T
x X I x I

F x F

 
 

   
 
 

,N NT I NF NX NX

NX

( , )( ( ) min{ ( ), ( )}),N N Nx y X T x y T x T y   

( , )( ( ) max{ ( ), ( )}),N N Nx y X I x y I x I y   

( , )( ( ) min{ ( ), ( )}).N N Nx y X F x y F x F y   

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 0
2 0 1 0 0 0
3 0 1 2 0 0
4 0 1 2 3 0



( , ,0)X  NX

(0) = 0.2, (0) = 0.9, (0) = 0.2,N N NT I F  

(1) = 0.4, (1) = 0.8, (1) = 0.4,N N NT I F  

(2) = 0.8, (2) = 0.7, (2) = 0.6,N N NT I F  

(3) = 0.3, (3) = 0.5, (3) = 0.7,N N NT I F  

(4) = 0.8, (4) = 0.3, (4) = 0.8.N N NT I F  

NX
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Definition 5.3  A neutrosophic N-structure  over X  is called a special neutrosophic N-near 

UP-filter of X  if it satisfies the following conditions:  

  (5.4) 

  (5.5) 

  (5.6) 

  (5.7) 

  (5.8) 

  (5.9) 

  

Example 5.4  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over X  as follows:  

 

 

 

 

 

Hence,  is a special neutrosophic N-near UP-filter of X .  

 

Definition 5.5  A neutrosophic N-structure  over X  is called a special neutrosophic N-UP-filter 

of X  if it satisfies the following conditions: (5.4), (5.5), (5.6), and  

  (5.10) 

  (5.11) 

  (5.12) 

Example 5.6  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over X  as follows:  

 

 

 

 

NX

( )( (0) ( )),N Nx X T T x  

( )( (0) ( )),N Nx X I I x  

( )( (0) ( )),N Nx X F F x  

( , )( ( ) ( )),N Nx y X T x y T y   

( , )( ( ) ( )),N Nx y X I x y I y   

( , )( ( ) ( )).N Nx y X F x y F y   

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 0 3 0
2 0 2 0 3 0
3 0 2 2 0 0
4 0 2 2 3 0



( , ,0)X  NX

(0) = 0.2, (0) = 0.8, (0) = 0.3,N N NT I F  

(1) = 0.5, (1) = 0.5, (1) = 0.7,N N NT I F  

(2) = 0.4, (2) = 0.7, (2) = 0.4,N N NT I F  

(3) = 0.3, (3) = 0.4, (3) = 0.6,N N NT I F  

(4) = 0.8, (4) = 0.2, (4) = 0.8.N N NT I F  

NX

NX

( , )( ( ) min{ ( ), ( )}),N N Nx y X T y T x y T x   

( , )( ( ) max{ ( ), ( )}),N N Nx y X I y I x y I x   

( , )( ( ) min{ ( ), ( )}).N N Nx y X F y F x y F x   

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 0
2 0 1 0 3 0
3 0 1 2 0 0
4 0 1 2 3 0



( , ,0)X  NX

(0) = 0.2, (0) = 0.8, (0) = 0.2,N N NT I F  

(1) = 0.8, (1) = 0.5, (1) = 0.8,N N NT I F  

(2) = 0.6, (2) = 0.4, (2) = 0.5,N N NT I F  

(3) = 0.7, (3) = 0.6, (3) = 0.7,N N NT I F  



Neutrosophic Sets and Systems, Vol. 28, 2019     110  
 

 
P. Rangsuk, P. Huana, A. Iampan, Neutrosophic N-structures over UP-algebras 

 

Hence,  is a special neutrosophic N-UP-filter of X . 

Definition 5.7  A neutrosophic N-structure  over X  is called a special neutrosophic N-UP-ideal 

of X  if it satisfies the following conditions: (5.4), (5.5), (5.6), and  

  (5.13) 

  (5.14) 

  (5.15) 

Example 5.8  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over X  as follows:  

 

 

 

 

 

Hence,  is a special neutrosophic N-UP-ideal of X .  

 

Definition 5.9  A neutrosophic N-structure  over X  is called a special neutrosophic N-strongly 

UP-ideal of X  if it satisfies the following conditions: (5.4), (5.5), (5.6), and  

  (5.16) 

  (5.17) 

  (5.18) 

Example 5.10  Let  be a set with a binary operation  defined by the following 

Cayley table:  

 

Then  is a UP-algebra. We define a neutrosophic N-structure  over X  as follows:  

 

Hence,  is a special neutrosophic N-strongly UP-ideal X .  

 

(4) = 0.5, (4) = 0.7, (4) = 0.4.N N NT I F  

NX

NX

( , , )( ( ) min{ ( ( )), ( )}),N N Nx y z X T x z T x y z T y     

( , , )( ( ) max{ ( ( )), ( )}),N N Nx y z X I x z I x y z I y     

( , , )( ( ) min{ ( ( )), ( )}).N N Nx y z X F x z F x y z F y     

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 0 4
2 0 0 0 0 0
3 0 3 2 0 4
4 0 3 2 0 0



( , ,0)X  NX

(0) = 0.3, (0) = 0.8, (0) = 0.2,N N NT I F  

(1) = 0.6, (1) = 0.6, (1) = 0.3,N N NT I F  

(2) = 0.8, (2) = 0.4, (2) = 0.8,N N NT I F  

(3) = 0.6, (3) = 0.6, (3) = 0.3,N N NT I F  

(4) = 0.7, (4) = 0.5, (4) = 0.7.N N NT I F  

NX

NX

( , , )( ( ) min{ (( ) ( )), ( )}),N N Nx y z X T x T z y z x T y     

( , , )( ( ) max{ (( ) ( )), ( )}),N N Nx y z X I x I z y z x I y     

( , , )( ( ) min{ (( ) ( )), ( )}).N N Nx y z X F x F z y z x F y     

= {0,1,2,3,4}X 

0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 0
2 0 1 0 0 4
3 0 1 2 0 4
4 0 4 2 3 0



( , ,0)X  NX

 

( ) = 0.5
( ) = 1 .
( ) = 0.3

N

N

N

T x
x X I x

F x

 
 

   
  

NX
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Theorem 5.11  Every special neutrosophic N-UP-subalgebra of X  satisfies the conditions (5.4), 

(5.5), and (5.6).  

Proof. Assume that  is a special neutrosophic N-UP-subalgebra of X . Then for all x X , by 

Proposition 2.5 (1), (5.1), (5.2), and (5.3), we have  

 

Hence,  satisfies the conditions (5.4), (5.5), and (5.6).  

 

By Lemma 3.4 (1) and (4), we have the following five theorems. 

Theorem 5.12  A neutrosophic N-structure NX  over X  is a neutrosophic N-UP-subalgebra of X  

if and only if NX  is a special neutrosophic N-UP-subalgebra of X .  

Theorem 5.13  A neutrosophic N-structure NX  over X  is a neutrosophic N-near UP-filter of X  

if and only if NX  is a special neutrosophic N-near UP-filter of X .  

Theorem 5.14  A neutrosophic N-structure NX  over X  is a neutrosophic N-UP-filter of X  if 

and only if NX  is a special neutrosophic N-UP-filter of X .  

Theorem 5.15  A neutrosophic N-structure NX  over X  is a neutrosophic N-UP-ideal of X  if 

and only if NX  is a special neutrosophic N-UP-ideal of X .  

Theorem 5.16  A neutrosophic N-structure NX  over X  is a neutrosophic N-strongly UP-ideal of 

X  if and only if NX  is a special neutrosophic N-strongly UP-ideal of X .  

Theorem 5.17  A neutrosophic N-structure NX  over X  is constant if and only if it is a special 

neutrosophic N-strongly UP-ideal of X .  

Proof. It is straightforward by Remark 3.2 and Theorems 3.17 and 5.16.  

 

By Remark Remark 3.2 and Theorems 5.12, 5.13, 5.14, 5.15, and 5.16, we have that the notion of 

special neutrosophic N-UP-subalgebras is a generalization of special neutrosophic N-near UP-filters, 

special neutrosophic N-near UP-filters is a generalization of special neutrosophic N-UP-filters, 

special neutrosophic N-UP-filters is a generalization of special neutrosophic N-UP-ideals, and 

special neutrosophic N-UP-ideals is a generalization of special neutrosophic N-strongly UP-ideals. 

Moreover, by Theorem 5.17, we obtain that special neutrosophic N-strongly UP-ideals and constant 

neutrosophic N-structures coincide. 

 

Theorem 5.18  If  is a special neutrosophic N-UP-subalgebra of X  satisfying the following 

condition:  

 

 (5.19) 

then  is a special neutrosophic N-near UP-filter of X .  

Proof. Assume that  is a special neutrosophic N-UP-subalgebra of X  satisfying the condition 

(5.19). By Theorem 5.11, we have  satisfies the conditions (5.4), (5.5), and (5.6). Next, let . 

Case 1: . Then, by (5.4), (5.5), and (5.6), we have 

 

Case 2: . Then, by (5.1), (5.2), (5.3), and (5.19), we have 

NX

(0) = ( ) min{ ( ), ( )} = ( ),N N N N NT T x x T x T x T x  (0) = ( ) max{ ( ), ( )} = ( ),N N N N NI I x x I x I x I x 

(0) = ( ) min{ ( ), ( )} = ( ).N N N N NF F x x F x F x F x 

NX

NX

 

( ) ( )
, 0 ( ) ( ) ,

( ) ( )

N N

N N

N N

T x T y
x y X x y I x I y

F x F y

  
 

      
  

NX

NX

NX ,x y X

= 0x y
( ) = (0) ( ),N N NT x y T T y  ( ) = (0) ( ),N N NI x y I I y  ( ) = (0) ( ).N N NF x y F F y 

0x y 
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Hence,  is a special neutrosophic N-near UP-filter of X .  

 

Theorem 5.19  If  is a special neutrosophic N-near UP-filter of X  satisfying the condition 

(3.21), then  is a special neutrosophic N-UP-filter of X .  

Proof. Assume that  is a special neutrosophic N-near UP-filter of X  satisfying the condition 

(3.21). Then  satisfies the conditions (5.4), (5.5), and (5.6). Next, let . By (5.7), (5.8), and 

(3.21), we have 

 

 

 

Hence,  is a special neutrosophic N-UP-filter of X .  

 

Theorem 5.20  If NX  is a special neutrosophic N-UP-filter of X  satisfying the condition (3.22), 

then NX  is a special neutrosophic N-UP-ideal of X .  

Proof. Assume that NX  is a special neutrosophic N-UP-filter of X  satisfying the condition (3.22). 

Then NX  satisfies the conditions (5.4), (5.5), and (5.6). Next, let , ,x y z X . By (5.10), (5.11), (5.12), 

and (3.22), we have 

( ) min{ ( ( )), ( )}N N NT x z T y x z T y    = min{ ( ( )), ( )},N NT x y z T y   

( ) max{ ( ( )), ( )}N N NI x z I y x z I y    = max{ ( ( )), ( )},N NI x y z I y   

( ) min{ ( ( )), ( )}N N NF x z F y x z F y    = min{ ( ( )), ( )}.N NF x y z F y   

Hence, NX  is a special neutrosophic N-UP-ideal of X .  

 

Theorem 5.21  If  is a neutrosophic N-structure over X  satisfying the following condition:  

 

 (5.20) 

then  is a special neutrosophic N-UP-subalgebra of X .  

Proof. Assume that  is a neutrosophic N-structure over X  satisfying the condition (5.20). Let 

. By Proposition 2.5 (1), we have , that is, . It follows from (5.20) 

that  

 

Hence,  is a special neutrosophic N-UP-subalgebra of X .  

 

Theorem 5.22  If  is a neutrosophic N-structure over  satisfying the following condition:  

  (5.21) 

then  is a special neutrosophic N-near UP-filter of .  

( ) min{ ( ), ( )} = ( ),N N N NT x y T x T y T y  ( ) max{ ( ), ( )} = ( ),N N N NI x y I x I y I y 

( ) min{ ( ), ( )} = ( ).N N N NF x y F x F y F y 

NX

NX

NX

NX

NX , ,x y z X

min{ ( ), ( )} = min{ ( ), ( )}N N N NT x y T x I x y T x  min{ ( ), ( )}N NI y T x = min{ ( ), ( )}N NT y T x ( ),NT y

max{ ( ), ( )} = max{ ( ), ( )}N N N NI x y I x T x y I x  max{ ( ), ( )}N NT y I x = max{ ( ), ( )}N NI y I x ( ),NI y

min{ ( ), ( )} = min{ ( ), ( )}N N N NF x y F x I x y F x  min{ ( ), ( )}N NI y F x = min{ ( ), ( )}N NF y F x ( ).NF y

NX

NX

 

( ) min{ ( ), ( )}
, , ( ) max{ ( ), ( )} ,

( ) min{ ( ), ( )}

N N N

N N N

N N N

T z T x T y
x y z X z x y I z I x I y

F z F x F y

  
 

      
  

NX

NX

,x y X ( ) ( ) = 0x y x y   x y x y  

( ) min{ ( ), ( )},N N NT x y T x T y  ( ) max{ ( ), ( )},N N NI x y I x I y  ( ) min{ ( ), ( )}.N N NF x y F x F y 

NX

NX X

 

( ) ( )
, , ( ) ( ) ,

( ) ( )

N N

N N

N N

T z T y
x y z X z x y I z I y

F z F y

  
 

      
  

NX X
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Proof. Assume that  is a neutrosophic N-structure over  satisfying the condition (5.21). Let 

. By (UP-2) and Proposition 2.5 (1), we have , that is, . It follows from 

(5.21) that , and . Next, let . By Proposition 2.5 (1), 

we have , that is, . It follows from (5.21) that 

, and . Hence,  is a special neutrosophic 

N-near UP-filter of .  

 

Theorem 5.23  If  is a neutrosophic N-structure over  satisfying the following condition:  

  (5.22) 

then  is a special neutrosophic N-UP-filter of .  

Proof. Assume that  is a neutrosophic N-structure over  satisfying the condition (5.22). Let 

. By (UP-3), we have , that is, . It follows from (5.22) that  

 

 Next, let . By Proposition 2.5 (1), we have , that is, . It 

follows from (5.22) that  

 

 Hence,  is a special neutrosophic N-UP-filter of .  

 

Theorem 5.24  If  is a neutrosophic N-structure over  satisfying the following condition:  

  (5.23) 

then  is a special neutrosophic N-UP-ideal of .  

Proof. Assume that  is a neutrosophic -structure over  satisfying the condition (5.23). Let 

. By (UP-3), we have , that is, . It follows from (5.23) and (UP-2) that  

 

Next, let . By Proposition 2.5 (1), we have , that is, 

. It follows from (5.23) that  

 

Hence,  is a special neutrosophic N-UP-ideal of .  

 

For any fixed numbers , , , , , [ 1,0]              such that < , < , <            

and a nonempty subset G  of X , a neutrosophic N-structure 

, ,

, ,
[ ] = ( , [ ], [ ], [ ])G G G G

N N N NX X T I F     

     

     

       over X  where [ ], [ ]G G
N NT I 

 

 

  , and [ ]G
NF 





  are 

N-functions on X  which are given as follows:  

NX X

x X 0 ( ) = 0x x  0 x x 

(0) ( ), (0) ( )N N N NT T x I I x  (0) ( )N NF F x ,x y X

( ) ( ) = 0x y x y   x y x y  

( ) ( ), ( ) ( )N N N NT x y T y I x y I y    ( ) ( )N NF x y F y  NX

X

NX X

 

( ) min{ ( ), ( )}
, , ( ) max{ ( ), ( )} ,

( ) min{ ( ), ( )}

N N N

N N N

N N N

T y T z T x
x y z X z x y I y I z I x

F y F z F x

  
 

      
  

NX X

NX X

x X ( 0) = 0x x  0x x 

(0) min{ ( ), ( )} = ( ),N N N NT T x T x T x (0) max{ ( ), ( )} = ( ),N N N NI I x I x I x (0) min{ ( ), ( )} = ( ).N N N NF F x F x F x

,x y X ( ) ( ) = 0x y x y   x y x y  

( ) min{ ( ), ( )},N N NT y T x y T x  ( ) max{ ( ), ( )},N N NI y I x y I x  ( ) min{ ( ), ( )}.N N NF y F x y F x 

NX X

NX X

 

( ) min{ ( ), ( )}
, , , ( ) ( ) max{ ( ), ( )} ,

( ) min{ ( ), ( )}

N N N

N N N

N N N

T x z T a T y
a x y z X a x y z I x z I a I y

F x z F a F y

   
 

        
   

NX X

NX N X

x X (0 ( 0) = 0x x   0 ( 0)x x  

(0) = (0 0) min{ ( ), ( )} = ( ),N N N N NT T T x T x T x  (0) = (0 0) max{ ( ), ( )} = ( ),N N N N NI I I x I x I x 

(0) = (0 0) min{ ( ), ( )} = ( ).N N N N NF F F x F x F x 

, ,x y z X ( ( )) ( ( )) = 0x y z x y z    

( ) ( )x y z x y z    

( ) min{ ( ( )), ( )},N N NT x z T x y z T y    ( ) max{ ( ( )), ( )},N N NI x z I x y z I y   

( ) min{ ( ( )), ( )}.N N NF x z F x y z F y   

NX X
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if ,
[ ]( ) =

otherwise,
G

N
x G

T x










 

 



if ,
[ ]( ) =

otherwise,
G

N
x G

I x










 

 



if ,
[ ]( ) =

otherwise.
G

N
x G

F x










 

 



 

Lemma 5.25  Let , , , , , [ 1,0]             . Then the following statements hold: 

1.   , , 1 , 1 , 1

, , 1 , 1 , 1
[ ] = [ ]G G

N NX X     

     

          

          
, and  

2.   , , 1 , 1 , 1

, , 1 , 1 , 1
[ ] = [ ]G G

N NX X     

     

          

          
.  

Proof. 1. Let , ,

, ,
[ ]G

NX   

  

  

  
 be a neutrosophic N-structure over X . Then 

, ,

, ,
[ ] = ( , [ ], [ ], [ ])G G G G

N N N NX X T I F     

     

     

     
. Since  

if ,
[ ]( ) =

otherwise,
G

N
x G

T x










 

 



if ,
[ ]( ) =

otherwise,
G
N

x G
I x










 

 



if ,
[ ]( ) =

otherwise
G

N
x G

F x










 

 



,  

we have  

1

1

1 if ,
[ ]( ) = = [ ]( ),

1 otherwise
G G

N N
x G

T x T x 

 






  

   

  

 

1

1

1 if ,
[ ]( ) = = [ ]( ),

1 otherwise
G G
N N

x G
I x I x 

 






  

   

  

 

1

1

1 if ,
[ ]( ) = = [ ]( ).

1 otherwise
G G

N N
x G

F x F x 

 






  

   

  

 

 

Hence, 1 1 1 1 , 1 , 1

1 1 1 1 , 1 , 1
( , [ ], [ ], [ ]) = [ ]G G G G

N N N NX T I F X     

     

                

                
. 

2. Let , ,

, ,
[ ]G

NX   

  

  

  
 be a neutrosophic N-structure over X . Then 

, ,

, ,
[ ] = ( , [ ], [ ], [ ])G G G G

N N N NX X T I F     

     

     

     
. Since  

if ,
[ ]( ) =

otherwise,
G

N
x G

T x










 

 



if ,
[ ]( ) =

otherwise,
G

N
x G

I x










 

 



if ,
[ ]( ) =

otherwise
G

N
x G

F x










 

 



, 

we have 

1

1

1 if ,
[ ]( ) = = [ ]( ),

1 otherwise
G G

N N
x G

T x T x 

 






  

   

  

 

1

1

1 if ,
[ ]( ) = = [ ]( ),

1 otherwise
G G

N N
x G

I x I x 

 






  

   

  

 

1

1

1 if ,
[ ]( ) = = [ ]( ).

1 otherwise
G G

N N
x G

F x F x 

 






  

   

  

 

 

Hence, 1 1 1 1 , 1 , 1

1 1 1 1 , 1 , 1
( , [ ], [ ], [ ]) = [ ]G G G G

N N N NX T I F X     

     

                

                
. 
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Lemma 5.26  If the constant  of  is in a nonempty subset  of , then a neutrosophic 

N-structure  over  satisfies the conditions (5.4), (5.5), and (5.6).  

Proof. If , then , and . Thus  

 

Hence,  satisfies the conditions (5.4), (5.5), and (5.6).  

 

Lemma 5.27  If a neutrosophic N-structure  over  satisfies the condition (5.4) 

(resp., (5.5), (5.6)), then the constant  of  is in a nonempty subset  of   

Proof. Assume that a neutrosophic N-structure  over  satisfies the condition (5.4). 

Then  for all . Since  is nonempty, there exists . Thus 

, so , that is, . Hence, .  

Theorem 5.28  A neutrosophic N-structure  over  is a special neutrosophic 

N-UP-subalgebra of  if and only if a nonempty subset  of  is a UP-subalgebra of .  

Proof. Assume that  is a special neutrosophic N-UP-subalgebra of . Let . 

Then . Thus 

 

and so . Thus . Hence,  is a UP-subalgebra of . 

Conversely, assume that  is a UP-subalgebra of . Let . 

Case 1: . Then  

 

Thus  

 

0 X G X

, ,

, ,
[ ]G

NX   

  

  

   X

0 G [ ](0) = , [ ](0) =G G
N NT I 

 
 

  

  [ ](0) =G
NF 




 



 

[ ](0) = [ ]( )

[ ](0) = [ ]( ) .

[ ](0) = [ ]( )

G G
N N

G G
N N

G G
N N

T T x

x X I I x

F F x

 

 

 

 

 

 







 

 

 

 

 

 

 
 
 

   
 
 
 

, ,

, ,
[ ]G

NX   

  

  

  

, ,

, ,
[ ]G

NX   

  

  

   X

0 X G X

, ,

, ,
[ ]G

NX   

  

  

   X

[ ](0) [ ]( )G G
N NT T x 

 

 

  x X G g G

[ ]( ) =G
NT g




 

 [ ](0) [ ]( ) =G G
N NT T g 

 


  

  [ ](0) =G
NT 




 

 0 G

, ,

, ,
[ ]G

NX   

  

  

   X

X G X X

, ,

, ,
[ ]G

NX   

  

  

   X ,x y G

[ ]( ) = = [ ]( )G G
N NT x T y 

 


 

 

[ ]( ) min{ [ ]( ), [ ]( )} = [ ]( )G G G G
N N N NT x y T x T y T x y   

   


   

      

[ ]( ) =G
NT x y




 

  x y G  G X

G X ,x y X

,x y G

[ ]( ) = = [ ]( ),G G
N NT x T y 

 


 

 
[ ]( ) = = [ ]( ),G G

N NI x I y 

 


 

  [ ]( ) = = [ ]( ).G G
N NF x F y 

 


 

 

min{ [ ]( ), [ ]( )} = ,G G
N NT x T y 

 


  

 
max{ [ ]( ), [ ]( )} = ,G G

N NI x I y 

 


  

  min{ [ ]( ), [ ]( )} = .G G
N NF x F y 

 


  

 
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Since  is a UP-subalgebra of , we have  and so , 

and  Hence,  

 

 

[ ]( ) = = min{ [ ]( ), [ ]( )}.G G G
N N NF x y F x F y  

  
 

   

     

Case 2:  or . Then  

 

Thus  

 

Therefore,  

 

 

 

Hence,  is a special neutrosophic N-UP-subalgebra of .  

 

Theorem 5.29  A neutrosophic N-structure  over  is a special neutrosophic N-near 

UP-filter of  if and only if a nonempty subset  of  is a near UP-filter of .  

Proof. Assume that  is a special neutrosophic N-near UP-filter of . Since 

 satisfies the condition (5.4), it follows from Lemma 5.27 that . Next, let  

and . Then . Thus, by (5.7), we have  

 

and so . Thus . Hence,  is a near UP-filter of . 

G X x y G  [ ]( ) = , [ ]( ) =G G
N NT x y I x y 

 
 

  

  

[ ]( ) = .G
NF x y




 

 

[ ]( ) = = min{ [ ]( ), [ ]( )},G G G
N N NT x y T x T y  

  
 

   

   

[ ]( ) = = max{ [ ]( ), [ ]( )},G G G
N N NI x y I x I y  

  
 

   

   

x G y G

[ ]( ) =  or [ ]( ) = ,G G
N NT x T y 

 
 

  

 
[ ]( ) =  or [ ]( ) = ,G G

N NI x I y 

 
 

  

 

[ ]( ) =  or [ ]( ) = .G G
N NF x F y 

 
 

  

 

min{ [ ]( ), [ ]( )} = ,G G
N NT x T y 

 


  

 
max{ [ ]( ), [ ]( )} = ,G G

N NI x I y 

 


  

  min{ [ ]( ), [ ]( )} = .G G
N NF x F y 

 


  

 

[ ]( ) = min{ [ ]( ), [ ]( )},G G G
N N NT x y T x T y  

  


  

   

[ ]( ) = max{ [ ]( ), [ ]( )},G G G
N N NI x y I x I y  

  


  

   

[ ]( ) = min{ [ ]( ), [ ]( )}.G G G
N N NF x y F x F y  

  


  

   

, ,

, ,
[ ]G

NX   

  

  

   X

, ,

, ,
[ ]G

NX   

  

  

   X

X G X X

, ,

, ,
[ ]G

NX   

  

  

   X

, ,

, ,
[ ]G

NX   

  

  

   0 G x X

y G [ ]( ) =G
NT y




 



[ ]( ) [ ]( ) = [ ]( )G G G
N N NT x y T y T x y  

  


  

     

[ ]( ) =G
NT x y




 

  x y G  G X
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Conversely, assume that  is a near UP-filter of . Since , it follows from Lemma 5.26 

that  satisfies the conditions (5.4), (5.5), and (5.6). Next, let . 

Case 1: . Then , and . Since  is a near 

UP-filter of , we have  and so , and 

. Thus  

 

Case 2: . Then , and . Thus  

 

 Hence,  is a special neutrosophic N-near UP-filter of .  

 

Theorem 5.30  A neutrosophic N-structure  over  is a special neutrosophic 

N-UP-filter of  if and only if a nonempty subset  of  is a UP-filter of .  

Proof. Assume that  is a special neutrosophic N-UP-filter of . Since  

satisfies the condition (5.4), it follows from Lemma 5.27 that . Next, let  be such that 

 and . Then . Thus, by (5.10), we have  

 

and so . Thus . Hence,  is a UP-filter of . 

Conversely, assume that  is a UP-filter of . Since , it follows from Lemma 5.26 that 

 satisfies the conditions (5.4), (5.5), and (5.6). Next, let . 

Case 1:  and . Then  

[ ]( ) = = [ ]( ),G G
N NT x y T x 

 


 

  [ ]( ) = = [ ]( ),G G
N NI x y I x 

 


 

  [ ]( ) = = [ ]( ).G G
N NF x y F x 

 


 

   

 Since  is a UP-filter of , we have  and so , and 

. Thus  

G X 0 G

, ,

, ,
[ ]G

NX   

  

  

   ,x y X

y G [ ]( ) = , [ ]( ) =G G
N NT y I y 

 
 

  

  [ ]( ) =G
NF y




 

 G

X x y G  [ ]( ) = , [ ]( ) =G G
N NT x y I x y 

 
 

  

  

[ ]( ) =G
NF x y




 

 

[ ]( ) = = [ ]( ),G G
N NT x y T y 

 
 

  

   [ ]( ) = = [ ]( ),G G
N NI x y I y 

 
 

  

  

[ ]( ) = = [ ]( ).G G
N NF x y F y 

 
 

  

  

y G [ ]( ) = , [ ]( ) =G G
N NT y I y 

 
 

  

  [ ]( ) =G
NF y




 



[ ]( ) = [ ]( ),G G
N NT x y T y 

 


 

   [ ]( ) = [ ]( ),G G
N NI x y I y 

 


 

   [ ]( ) = [ ( ).G G
N NF x y F y 

 


 

  

, ,

, ,
[ ]G

NX   

  

  

   X

, ,

, ,
[ ]G

NX   

  

  

   X

X G X X

, ,

, ,
[ ]G

NX   

  

  

   X , ,

, ,
[ ]G

NX   

  

  

  

0 G ,x y X

x y G  x G [ ]( ) = = [ ]( )G G
N NT x y T x 

 


 

 

[ ]( ) min{ [ ]( ), [ ]( )} = [ ]( )G G G G
N N N NT y T x y T x T y   

   


   

     

[ ]( ) =G
NT y




 


y G G X

G X 0 G

, ,

, ,
[ ]G

NX   

  

  

   ,x y X

x y G  x G

G X y G [ ]( ) = , [ ]( ) =G G
N NT y I y 

 
 

  

 

[ ]( ) =G
NF y




 


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Case 2:  or . Then  

 

Thus  

 

Therefore,  

 

 

 

Hence,  is a special neutrosophic N-UP-filter of .  

 

Theorem 5.31  A neutrosophic N-structure  over  is a special neutrosophic 

N-UP-ideal of  if and only if a nonempty subset  of  is a UP-ideal of .  

Proof. Assume that  is a special neutrosophic N-UP-ideal of . Since  

satisfies the condition (5.4), it follows from Lemma 5.27, that . Next, let  be such 

that  and . Then . Thus, by (5.13), we have  

 

and so . Thus . Hence,  is a UP-ideal of . 

Conversely, assume that  is a UP-ideal of . Since , it follows from Lemma 5.26 that 

 satisfies the conditions (5.4), (5.5), and (5.6). Next, let . 

Case 1:  and . Then  

[ ]( ) = = min{ [ ]( ), [ ]( )},G G G
N N NT y T x y T x  

  
 

   

   

[ ]( ) = = max{ [ ]( ), [ ]( )},G G G
N N NI y I x y I x  

  
 

   

   

[ ]( ) = = min{ [ ]( ), [ ]( )}.G G G
N N NF y F x y F x  

  
 

   

   

x y G  x G

[ ]( ) =  or [ ]( ) = ,G G
N NT x y T x 

 
 

  

  [ ]( ) =  or [ ]( ) = ,G G
N NI x y I x 

 
 

  

 

[ ]( ) =  or [ ]( ) = .G G
N NF x y F x 

 
 

  

 

min{ [ ]( ), [ ]( )} = ,G G
N NT x y T x 

 


  

  max{ [ ]( ), [ ]( )} = ,G G
N NI x y I x 

 


  

 

min{ [ ]( ), [ ]( )} = .G G
N NF x y F x 

 


  

 

[ ]( ) = min{ [ ]( ), [ ]( )},G G G
N N NT x T x y T x  

  


  

   

[ ]( ) = max{ [ ]( ), [ ]( )},G G G
N N NI x I x y I x  

  


  

   

[ ]( ) = min{ [ ]( ), [ ]( )}.G G G
N N NF x F x y F x  

  


  

   

, ,

, ,
[ ]G

NX   

  

  

   X

, ,

, ,
[ ]G

NX   

  

  

   X

X G X X

, ,

, ,
[ ]G

NX   

  

  

   X , ,

, ,
[ ]G

NX   

  

  

  

0 G , ,x y z X

( )x y z G   y G [ ]( ( )) = = [ ]( )G G
N NT x y z T y 

 


 

  

[ ]( ) min{ [ ]( ( )), [ ]( )} = [ ]( )G G G G
N N N NT x z T x y z T y T x z   

   


   

        

[ ]( ) =G
NT x z




 

  x z G  G X

G X 0 G

, ,

, ,
[ ]G

NX   

  

  

   , ,x y z X

( )x y z G   y G



Neutrosophic Sets and Systems, Vol. 28, 2019     119  
 

 
P. Rangsuk, P. Huana, A. Iampan, Neutrosophic N-structures over UP-algebras 

 

Thus  

 

Since  is a UP-ideal of , we have  and so , and 

. Thus 

 

 

 

 

Case 2:  or . Then  

 

Thus  

 

Therefore,  

 

 

 

Hence,  is a special neutrosophic N-UP-ideal of .  

 

Theorem 5.32  A neutrosophic N-structure  over  is a special neutrosophic 

N-strongly UP-ideal of  if and only if a nonempty subset  of  is a strongly UP-ideal of .  

[ ]( ( )) = = [ ]( ),G G
N NT x y z T y 

 


 

   [ ]( ( )) = = [ ]( ),G G
N NI x y z I y 

 


 

  

[ ]( ( )) = = [ ]( ).G G
N NF x y z F y 

 


 

   

min{ [ ]( ( )), [ ]( )} = ,G G
N NT x y z T y 

 


  

   max{ [ ]( ( )), [ ]( )} = ,G G
N NI x y z I y 

 


  

  

min{ [ ]( ( )), [ ]( )} = .G G
N NF x y z F y 

 


  

  

G X x z G  [ ]( ) = , [ ]( ) =G G
N NT x z I x z 

 
 

  

  

[ ]( ) =G
NF x z




 

 

[ ]( ) = = min{ [ ]( ( )), [ ]( )},G G G
N N NT x z T x y z T y  

  
 

   

     

[ ]( ) = = max{ [ ]( ( )), [ ]( )},G G G
N N NI x z I x y z I y  

  
 

   

     

[ ]( ) = = min{ [ ]( ( )), [ ]( )}.G G G
N N NF x z F x y z F y  

  
 

   

     

( )x y z G   y G

[ ]( ( )) =  or [ ]( ) = ,G G
N NT x y z T y 

 
 

  

   [ ]( ( )) =  or [ ]( ) = ,G G
N NI x y z I y 

 
 

  

  

[ ]( ( )) =  or [ ]( ) = .G G
N NF x y z F y 

 
 

  

  

min{ [ ]( ( )), [ ]( )} = ,G G
N NT x y z T y 

 


  

   max{ [ ]( ( )), [ ]( )} = ,G G
N NI x y z I y 

 


  

  

min{ [ ]( ( )), [ ]( )} = .G G
N NF x y z F y 

 


  

  

[ ]( ) = min{ [ ]( ( )), [ ]( )},G G G
N N NT x z T x y z T y  

  


  

     

[ ]( ) = max{ [ ]( ( )), [ ]( )},G G G
N N NI x z I x y z I y  

  


  

     

[ ]( ) = min{ [ ]( ( )), [ ]( )}.G G G
N N NF x z F x y z F y  

  


  

     

, ,

, ,
[ ]G

NX   

  

  

   X

, ,

, ,
[ ]G

NX   

  

  

   X

X G X X
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Proof. Assume that  is a special neutrosophic N-strongly UP-ideal of . By Theorem 

5.17, we have  is constant, that is,  is constant. Since  is nonempty, we have 

 for all . Thus . Hence,  is a strongly UP-ideal of . 

Conversely, assume that  is a strongly UP-ideal of . Then , so  

 

Thus , and  are constant, that is,  is constant. By Theorem 

5.17, we have  is a special neutrosophic N-strongly UP-ideal of . 

 

6. Level subset of a neutrosophic N-structure of special type 

 

In the last section of this paper, we discuss the relationships among special neutrosophic 

N-UP-subalgebras (resp., special neutrosophic N-near UP-filters, special neutrosophic N-UP-filters, 

special neutrosophic N-UP-ideals, special neutrosophic N-strongly UP-ideals) of UP-algebras and 

their level subsets. 

 

Theorem 6.1  A neutrosophic N-structure  over  is a special neutrosophic N-UP-subalgebra 

of  if and only if for all , the sets , and  are 

UP-subalgebras of  if , and  are nonempty.  

Proof. Assume that  is a special neutrosophic N-UP-subalgebra of . Let  be 

such that , and  are nonempty. 

Let . Then  and , so  is a lower bound of . 

By (5.1), we have . Thus . 

Let . Then  and , so  is an upper bound of 

. By (5.2), we have . Thus . 

Let . Then  and , so  is a lower bound of . 

By (5.3), we have . Thus . 

Hence, , and  are UP-subalgebras of . 

Conversely, assume that for all , the set , and  are 

UP-subalgebras if , and  are nonempty. 

Let . Then  Choose . Thus  and 

, so . By assumption, we have  is a UP-subalgebra of  and 

so . Thus . 

, ,

, ,
[ ]G

NX   

  

  

   X

[ ]G
NT 





 [ ]G
NT 





 G

[ ]( ) =G
NT x




 

 x X =G X G X

G X =G X

 

[ ]( ) =

[ ]( ) = .

[ ]( ) =

G
N

G
N

G
N

T x

x X I x

F x



















 



 



 



 
 
 

   
 
 
 

[ ], [ ]G G
N NT I 

 

 

  [ ]G
NF 







, ,

, ,
[ ]G

NX   

  

  

  

, ,

, ,
[ ]G

NX   

  

  

   X

NX X

X , , [ 1,0]     ( ; ), ( ; )N NU T L I  ( ; )NU F 

X ( ; ), ( ; )N NU T L I  ( ; )NU F 

NX X , , [ 1,0]    

( ; ), ( ; )N NU T L I  ( ; )NU F 

, ( ; )Nx y U T  ( )NT x  ( )NT y   { ( ), ( )}N NT x T y
( ) min{ ( ), ( )}N N NT x y T x T y    ( ; )Nx y U T  

, ( ; )Nx y L I  ( )NI x  ( )NI y   { ( ), ( )}N NI x I y
( ) max{ ( ), ( )}N N NI x y I x I y    ( ; )Nx y L I  

, ( ; )Nx y U F  ( )NF x  ( )NF y   { ( ), ( )}N NF x F y
( ) min{ ( ), ( )}N N NF x y F x F y    ( ; )Nx y U F  

( ; ), ( ; )N NU T L I  ( ; )NU F  X

, , [ 1,0]     ( ; ), ( ; )N NU T L I  ( ; )NU F 

( ; ), ( ; )N NU T L I  ( ; )NU F 

,x y X ( ), ( ) [ 1,0]N NT x T y   = min{ ( ), ( )}N NT x T y ( )NT x 

( )NT y  , ( ; )Nx y U T   ( ; )NU T  X

, ( ; )Nx y U T  ( ) = min{ ( ), ( )}N N NT x y T x T y 
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Let . Then  Choose . Thus  and 

, so . By assumption, we have  is a UP-subalgebra of  and 

so . Thus . 

Let . Then . Choose . Thus  and 

, so . By assumption, we have  is a UP-subalgebra of  and 

so . Thus . 

Therefore,  is a special neutrosophic N-UP-subalgebra of .  

 

Theorem 6.2  A neutrosophic N-structure NX  over X  is a special neutrosophic N-near UP-filter 

of X  if and only if for all , , [ 1,0]     , the sets ( ; ), ( ; )N NU T L I  , and ( ; )NU F   are near 

UP-filters of X  if ( ; ), ( ; )N NU T L I  , and ( ; )NU F   are nonempty.  

Proof. Assume that  is a special neutrosophic N-near UP-filter of . Let  be 

such that , and  are nonempty. 

Let . Then . By (5.4), we have . Thus . 

Next, let . Then . By (5.7), we have . Thus 

. 

Let . Then . By (5.5), we have . Thus . 

Next, let . Then . By (5.8), we have . Thus 

. 

Let . Then . By (5.6), we have . Thus . 

Next, . Then . By (5.9), we have . Thus . 

Hence, , , and  are near UP-filters of . 

Conversely, assume that for all , the set , and  are 

near UP-filters if , and  are nonempty. 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a near UP-filter of  and so . Thus 

. Next, let . Then . Choose . Thus , so 

. By assumption, we have  is a near UP-filter of , and so 

. Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a near UP-filter of  and so . Thus 

. Next, let . Then . Choose . Thus , so 

. By assumption, we have  is a near UP-filter of , and so . 

Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a near UP-filter of  and so . Thus 

. Next, let . Then . Choose . Thus , so 

. By assumption, we have  is a near UP-filter of , and so 

. Thus . 

Therefore,  is a special neutrosophic N-near UP-filter of .  

 

,x y X ( ), ( ) [ 1,0]N NI x I y   = max{ ( ), ( )}N NI x I y ( )NI x 

( )NI y  , ( ; )Nx y L I   ( ; )NL I  X

, ( ; )Nx y L I  ( ) = max{ ( ), ( )}N N NI x y I x I y 

,x y X ( ), ( ) [ 1,0]N NF x F y   = min{ ( ), ( )}N NF x F y ( )NF x 

( )NF y  , ( ; )Nx y U F   ( ; )NU F  X

, ( ; )Nx y U F  ( ) = min{ ( ), ( )}N N NF x y F x F y 

NX X

NX X , , [ 1,0]    

( ; ), ( ; )N NU T L I  ( ; )NU F 

( ; )Nx U T  ( )NT x  (0) ( )N NT T x   0 ( ; )NU T 

( ; )Ny U T  ( )NT y  ( ) ( )N NT x y T y   

( ; )Nx y U T  

( ; )Nx L I  ( )NI x  (0) ( )N NI I x   0 ( ; )NL I 

( ; )Ny L I  ( )NI y  ( ) ( )N NI x y I y    ( ; )Nx y L I  

( ; )Nx U F  ( )NF x  (0) ( )N NF F x   0 ( ; )NU F 

( ; )Ny U F  ( )NF y  ( ) ( )N NF x y F y    ( ; )Nx y U F  

( ; )NU T  ( ; )NL I  ( ; )NU F  X

, , [ 1,0]     ( ; ), ( ; )N NU T L I  ( ; )NU F 

( ; ), ( ; )N NU T L I  ( ; )NU F 

x X (0) [ 1,0]NT   = ( )NT x ( )NT x  ( ; )Nx L T  

( ; )NU T  X 0 ( ; )NU T 

(0) = ( )N NT T x y X ( ) [ 1,0]NT y   = ( )NT y ( )NT y 

( ; )Ny U T   ( ; )NU T  X

( ; )Nx y U T   ( ) = ( )N NT x y T y 

x X (0) [ 1,0]NI   = ( )NI x ( )NI x  ( ; )Nx L I  

( ; )NL I  X 0 ( ; )NL I 

(0) = ( )N NI I x y X ( ) [ 1,0]NI y   = ( )NI y ( )NI y 

( ; )Ny L I   ( ; )NL I  X ( ; )Nx y L I  

( ) = ( )N NI x y I y 

x X (0) [ 1,0]NF   = ( )NF x ( )NF x  ( ; )Nx U F  

( ; )NU F  X 0 ( ; )NU F 

(0) = ( )N NF F x y X ( ) [ 1,0]NF y   = ( )NF y ( )NF y 

( ; )Ny U F    ( ; )NU F  X

( ; )Nx y U F   ( ) = ( )N NF x y F y 

NX X
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Theorem 6.3  A neutrosophic N-structure  over  is a special neutrosophic N-UP-filter of  

if and only if for all , the sets , and  are UP-filters of  if 

, and  are nonempty.  

Proof. Assume that  is a special neutrosophic N-UP-filter of . Let  be such 

that , and  are nonempty. 

Let . Then . By (5.4), we have . Thus . 

Next, let  and . Then  and , so  is a lower 

bound of . By (5.10), we have . Thus . 

Let . Then . By (5.5), we have . Thus . 

Next, let  and . Then  and , so  is an upper 

bound of . By (5.11), we have . Thus . 

Let . Then . By (5.6), we have . Thus . 

Next, let  and . Then  and , so  is a lower 

bound of . By (5.12), we have . Thus . 

Hence, , and  are UP-filters of . 

Conversely, assume that for all , the set , and  are 

UP-filters if , and  are nonempty. 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-filter of  and so . Thus . 

Next, let . Then . Choose . Thus  

and , so . By assumption, we have  is a UP-filter of  and 

so . Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-filter of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-filter of  and so . Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-filter of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is a 

UP-filter of  and so . Thus . 

Therefore,  is a special neutrosophic N-UP-filter of .  

 

Theorem 6.4  A neutrosophic N-structure  over  is a special neutrosophic N-UP-ideals of 

 if and only if for all , the sets , and  are UP-ideals of 

 if , and  are nonempty. 

Proof. Assume that  is a special neutrosophic N-UP-ideal of . Let  be such 

that , and  are nonempty. 

Let . Then . By (5.4), we have . Thus . 

Next, let  and . Then  and , so  is a 

NX X X

, , [ 1,0]     ( ; ), ( ; )N NU T L I  ( ; )NU F  X

( ; ), ( ; )N NU T L I  ( ; )NU F 

NX X , , [ 1,0]    

( ; ), ( ; )N NU T L I  ( ; )NU F 

( ; )Nx U T  ( )NT x  (0) ( )N NT T x   0 ( ; )NU T 

( ; )Nx y U T   ( ; )Nx U T  ( )NT x y   ( )NT x  

{ ( ), ( )}N NT x y T x ( ) min{ ( ), ( )}N N NT y T x y T x    ( ; )Ny U T 

( ; )Nx L I  ( )NI x  (0) ( )N NI I x   0 ( ; )NL I 

( ; )Nx y L I   ( ; )Nx L I  ( )NI x y   ( )NI x  

{ ( ), ( )}N NI x y I x ( ) max{ ( ), ( )}N N NI y I x y I x    ( ; )Ny L I 

( ; )Nx U F  ( )NF x  (0) ( )N NF F x   0 ( ; )NU F 

( ; )Nx y U F   ( ; )Nx U F  ( )NF x y   ( )NF x  

{ ( ), ( )}N NF x y F x ( ) min{ ( ), ( )}N N NF y F x y F x    ( ; )Ny U F 

( ; ), ( ; )N NU T L I  ( ; )NU F  X

, , [ 1,0]     ( ; ), ( ; )N NU T L I  ( ; )NU F 

( ; ), ( ; )N NU T L I  ( ; )NU F 

x X ( ) [ 1,0]NT x   = ( )NT x ( )NT x  ( ; )Nx U T  

( ; )NU T  X 0 ( ; )NU T  (0) = ( )N NT T x

,x y X ( ), ( ) [ 1,0]N NT x y T x   = min{ ( ), ( )}N NT x y T x  ( )NT x y  

( )NT x  , ( ; )Nx y x U T    ( ; )NU T  X

( ; )Ny U T  ( ) = min{ ( ), ( )}N N NT y T x y T x 

x X ( ) [ 1,0]NI x   = ( )NI x ( )NI x  ( ; )Nx L I  

( ; )NL I  X 0 ( ; )NL I  (0) = ( )N NI I x

,x y X ( ), ( ) [ 1,0]N NI x y I x   = max{ ( ), ( )}N NI x y I x 

( )NI x y   ( )NI x  , ( ; )Nx y x L I    ( ; )NL I 

X ( ; )Ny L I  ( ) = max{ ( ), ( )}N N NI y I x y I x 

x X ( ) [ 1,0]NF x   = ( )NF x ( )NF x  ( ; )Nx U F  

( ; )NU F  X 0 ( ; )NU F  (0) = ( )N NF F x

,x y X ( ), ( ) [ 1,0]N NF x y F x   = min{ ( ), ( )}N NF x y F x 

( )NF x y   ( )NF x  , ( ; )Nx y x U F    ( ; )NU F 

X ( ; )Ny U F  ( ) = min{ ( ), ( )}N N NF y F x y F x 

NX X

NX X

X , , [ 1,0]     ( ; ), ( ; )N NU T L I  ( ; )NU F 

X ( ; ), ( ; )N NU T L I  ( ; )NU F 

NX X , , [ 1,0]    

( ; ), ( ; )N NU T L I  ( ; )NU F 

( ; )Nx U T  ( )NT x  (0) ( )N NT T x   0 ( ; )NU T 

( ) ( ; )Nx y z U T    ( ; )Ny U T  ( ( ))NT x y z    ( )NT y  
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lower bound of . By (5.13), we have . Thus 

. 

Let . Then . By (5.5), we have . Thus . 

Next, let  and . Then  and , so  is an 

upper bound of . By (5.14), we have . 

Thus . 

Let . Then . By (5.6), we have . Thus . 

Next, let  and . Then  and , so  is a 

lower bound of . By (5.15), we have . 

Thus . 

Hence, , and  are UP-ideals of . 

Conversely, assume that for all , the set , and  are 

UP-ideals if , and  are nonempty. 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-ideal of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is 

a UP-ideal of  and so . Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-ideal of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is 

a UP-ideal of  and so . Thus . 

Let . Then . Choose . Thus , so . By 

assumption, we have  is a UP-ideal of  and so . Thus . 

Next, let . Then . Choose . Thus 

 and , so . By assumption, we have  is 

a UP-ideal of  and so . Thus . 

Therefore,  is a special neutrosophic N-UP-ideal of .  

 

Definition 6.5  Let  be a neutrosophic N-structure over . For , the sets  

 

 

 

are called a - -level subset, an - -level subset, and an - -level subset 

of , respectively. Then we see that  

 

 

{ ( ( )), ( )}N NT x y z T y  ( ) min{ ( ( )), ( )}N N NT x z T x y z T y     

( ; )Nx z U T  

( ; )Nx L I  ( )NI x  (0) ( )N NI I x   0 ( ; )NL I 

( ) ( ; )Nx y z L I    ( ; )Ny L I  ( ( ))NI x y z    ( )NI y  

{ ( ( )), ( )}N NI x y z I y  ( ) max{ ( ( )), ( )}N N NI x z I x y z I y     

( ; )Nx z L I  

( ; )Nx U F  ( )NF x  (0) ( )N NF F x   0 ( ; )NU F 

( ) ( ; )Nx y z U F    ( ; )Ny U F  ( ( ))NF x y z    ( )NF y  

{ ( ( )), ( )}N NF x y z F y  ( ) min{ ( ( )), ( )}N N NF x z F x y z F y     

( ; )Nx z U F  

( ; ), ( ; )N NU T L I  ( ; )NU F  X

, , [ 1,0]     ( ; ), ( ; )N NU T L I  ( ; )NU F 

( ; ), ( ; )N NU T L I  ( ; )NU F 

x X ( ) [ 1,0]NT x   = ( )NT x ( )NT x  ( ; )Nx U T  

( ; )NU T  X 0 ( ; )NU T  (0) = ( )N NT T x

, ,x y z X ( ( )), ( ) [ 1,0]N NT x y z T y    = min{ ( ( )), ( )}N NT x y z T y  

( ( ))NT x y z    ( )NT y  ( ), ( ; )Nx y z y U T     ( ; )NU T 

X ( ; )Nx z U T   ( ) = min{ ( ( )), ( )}N N NT x z T x y z T y   

x X ( ) [ 1,0]NI x   = ( )NI x ( )NI x  ( ; )Nx L I  

( ; )NL I  X 0 ( ; )NL I  (0) = ( )N NI I x

, ,x y z X ( ( )), ( ) [ 1,0]N NI x y z I y    = max{ ( ( )), ( )}N NI x y z I y  

( ( ))NI x y z    ( )NI y  ( ), ( ; )Nx y z y L I     ( ; )NL I 

X ( ; )Nx z L I   ( ) = max{ ( ( )), ( )}N N NI x z I x y z I y   

x X ( ) [ 1,0]NF x   = ( )NF x ( )NF x  ( ; )Nx U F  

( ; )NU F  X 0 ( ; )NU F  (0) = ( )N NF F x

, ,x y z X ( ( )), ( ) [ 1,0]N NF x y z F y    = min{ ( ( )), ( )}N NF x y z F y  

( ( ))NF x y z    ( )NF y  ( ), ( ; )Nx y z y U F     ( ; )NU F 

X ( ; )Nx z U F   ( ) = min{ ( ( )), ( )}N N NF x z F x y z F y   

NX X

NX X , , [ 1,0]    

( , , ) = { | , , },X N N NN
ULU x X T I F        

( , , ) = { | , , },X N N NN
LUL x X T I F        

( , , ) = { | = , = , = }X N N NN
E x X T I F     

ULU ( , , )   LUL ( , , )   E ( , , )  

NX

( , , ) = ( ; ) ( ; ) ( ; ),X N N NN
ULU U T L I U F      

( , , ) = ( ; ) ( ; ) ( ; ),X N N NN
LUL L T U I L F      
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Corollary 6.6  A neutrosophic N-structure  over  is a neutrosophic N-UP-subalgebra of  

if and only if for all ,  is a UP-subalgebra of  where 

 is nonempty.  

Proof. It is straightforward by Theorem 4.2.  

 

Corollary 6.7  A neutrosophic N-structure  over  is a neutrosophic N-near UP-filter of  

if and only if for all ,  is a near UP-filter of  where  

is nonempty.  

Proof. It is straightforward by Theorem 4.3.  

 

Corollary 6.8  A neutrosophic N-structure  over  is a neutrosophic N-UP-filter of  if and 

only if for all ,  is a UP-filter of  where  is 

nonempty.  

Proof. It is straightforward by Theorem 4.4.  

 

Corollary 6.9  A neutrosophic N-structure  over  is a neutrosophic N-UP-ideal of  if and 

only if for all ,  is a UP-ideal of  where  is 

nonempty.  

Proof. It is straightforward by Theorem 4.5.  

 

Corollary 6.10  A neutrosophic N-structure  over  is a neutrosophic N-strongly UP-ideal of 

 if and only if , and .  

Proof. It is straightforward by Theorem 4.6.  

 

Corollary 6.11  A neutrosophic N-structure  over  is a special neutrosophic 

N-UP-subalgebra of  if and only if for all ,  is a UP-subalgebra of 

 where  is nonempty.  

Proof. It is straightforward by Theorem 6.1.  

 

Corollary 6.12  A neutrosophic N-structure  over  is a special neutrosophic N-near UP-filter 

of  if and only if for all ,  is a near UP-filter of  where 

 is nonempty.  

( , , ) = ( ; ) ( ; ) ( ; ).X N N NN
E E T E I E F      

NX X X

, , [ 1,0]     ( , , )X N
LUL    X

( , , )X N
LUL   

NX X X

, , [ 1,0]     ( , , )X N
LUL    X ( , , )X N

LUL   

NX X X

, , [ 1,0]     ( , , )X N
LUL    X ( , , )X N

LUL   

NX X X

, , [ 1,0]     ( , , )X N
LUL    X ( , , )X N

LUL   

NX X

X ( , (0)) = , ( , (0)) =N N N NE T T X E I I X ( , (0)) =N NE F F X

NX X

X , , [ 1,0]     ( , , )X N
ULU   

X ( , , )X N
ULU   

NX X

X , , [ 1,0]     ( , , )X N
ULU    X

( , , )X N
ULU   
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Proof. It is straightforward by Theorem 6.2.  

 

 

Corollary 6.13  A neutrosophic N-structure  over  is a special neutrosophic N-UP-filter of 

 if and only if for all ,  is a UP-filter of  where  

is nonempty.  

Proof. It is straightforward by Theorem 6.3.  

 

Corollary 6.14  A neutrosophic N-structure  over  is a special neutrosophic N-UP-ideal of 

 if and only if for all ,  is a UP-ideal of  where  

is nonempty.  

Proof. It is straightforward by Theorem 6.4. 

 

7. Conclusions 

In this paper, we have introduced the notions of (special) neutrosophic N -UP-subalgebras, 

(special) neutrosophic N -near UP-filters, (special) neutrosophic N -UP-filters, (special) 

neutrosophic N -UP-ideals, and (special) neutrosophic N -strongly UP-ideals of UP-algebras and 

investigated some of their important properties. Then we have that the notion of (special) 

neutrosophic N -UP-subalgebras is a generalization of (special) neutrosophic N -near UP-filters, 

(special) neutrosophic N -near UP-filters is a generalization of (special) neutrosophic N

-UP-filters, (special) neutrosophic N -UP-filters is a generalization of (special) neutrosophic N

-UP-ideals, and (special) neutrosophic N -UP-ideals is a generalization of (special) neutrosophic 

N -strongly UP-ideals. Moreover, we obtain that (special) neutrosophic N -strongly UP-ideals and 

constant neutrosophic N -structures coincide. 

In our future study, we will apply these notion/results to other type of neutrosophic N

-structures in UP-algebras. Also, we will study the soft set theory/cubic set theory of such 

neutrosophic N -structures. 
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Abstract. As a generalization of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been de-

veloped by F. Smarandache to represent imprecise, incomplete and inconsistent information existing in 

the real world. A neutrosophic set is characterized by a truth-membership function, an indeterminacy-

membership function, and a falsity-membership function. An interval neutrosophic set is an instance of 

a neutrosophic set, which can be used in real scientific and engineering applications. In this paper we 

have defined some new operators on interval valued neutrosophic sets and studied their properties. In 

addition, we give numerical examples to illustrate the defined operations. 
 
     Keywords: Neutrosophic set, new operators on interval valued neutrosophic sets. 

 
 

 
1 Introduction  

         In 1999, a Russian scientist Molodstov [1] initiated the concept of soft set theory as a fundamental 

mathematical tool for modelling uncertainty, vague concepts and not clearly defined objects. 

Although various traditional tools, including but not limited to rough set theory [2], fuzzy set theory 

[3], intuitionistic fuzzy set theory [4] etc. have been used by many researchers to extract useful 

information hidden in the uncertain data, but there are inherent complications connected with each of 

these theories. Additionally, all these approachess lack in parameterizations of the tools and hence 

they couldn’t be applied effectively in real life problems, especially in areas like environmental, 

economic and social problems. Soft set theory is standing uniquely in the sense that it is free from the 

above mentioned impediments and obliges approximate illustration of an object from the beginning, 

which makes this theory a natural mathematical formalism for approximate reasoning. 

        The notion of intuitionistic fuzzy set (IFS) was initiated by Atanassov as a significant 

generalization of fuzzy set. Intuitionistic fuzzy sets are very useful in situations when description of a 

problem by a linguistic variable, given in terms of a membership function only, seems too complicated. 

Recently intuitionistic fuzzy sets have been applied to many fields such as logic programming, 

medical diagnosis, decision making problems etc. The intuitionistic fuzzy sets can only handle the 

incomplete information considering  both the truth membership (or simply membership) and falsity 

membership (or non-membership) values. But it doesn’t handle the indeterminate and inconsistent 

information which exists in belief system. In 1995, F. Smarandache [05, 06] introduced the concept of 

neutrosphic set which is a mathematical tool for handling problems involving imprecise, 

indeterminacy and inconsistent data. This concept has been successfully applied to many fields such 

as databases [7, 8], medical diagnosis problem [9], decision making problem [10], topology [11], 

control theory [12] etc. 
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       Presently works on the neutrosophic set theory is progressing rapidly. Bhowmik and Pal [13, 14] 

defined intuitionistic neutrosophic set. Later on Salam and Alblowi [15] introduced another concept 

called Generalized neutrosophic set. Wang et al. [16] proposed another extension of neutrosophic set 

which is single valued neutrosophic. Also Wang et al. [17] introduced the notion of interval valued 

neutrosophic set which is an instance of neutrosophic set. It is characterized by an interval 

membership degree, interval indeterminacy degree and interval non-membership degree. Ye [18, 19] 

defined similarity measures between interval neutrosophic sets and their multicriteria decision-

making method. Majumdar and Samanta [20] proposed some types of similarity and entropy of 

neutrosophic sets. Broumi and Smarandache [21, 22, 23] proposed several similarity measures of 

neutrosophic sets. S. Broumi and F. Smarandache defined four new operations on interval-valued 

intuitionistic hesitant fuzzy sets and studied their important properties. F.G. Lupianez [24] defined the 

notion of neutrosophic topology on the non-standard interval. Majumder [25] discussed the distance 

and similarity between two neutrosophic sets . He also introduced the notion of entropy to measure 

the amount of uncertainty expressed by a neutrosophic set. H. Zhang et al. [26] defined operations for 

interval neutrosophic sets and a comparison approach was put forward based on the related research 

of interval valued intuitionistic fuzzy sets. He also developed two interval neutrosophic number 

aggregation operators and using these, a multi-criteria decision making problem was explored. 

H.Wang et al. [27] presented various properties of interval neutrosophic sets based on set theoretic 

operators. In 2017, Bera and Mahapatra [28] initiated the concept of neutrosophic soft matrix and they 

successfully applied it to solve decision making problems. Song et al. [29]  applied neutrosophic sets 

to ideals in BCK/BCI algebras. Shahzadi et al [30] applied single valued neutrosophic sets in medical 

diagnosis. Recently, Thao and Smaran [31]  proposed the concept of  divergence measure on 

neutrosophic sets with an application to medical problem. Some recent applications of neutrosophic 

sets can be found in [32-39]. 
        This paper is an attempt to define some new operators on interval valued neutrosophic sets and 
to study their properties. In addition to that, we have given numerical examples to illustrate the 
defined operations. The organization of this paper is as follow: In section 2, we briefly present some 
basic definitions which will be used in the rest of the paper. In section 3, we define some new 
operations on interval valued neutrosophic sets and discuss their properties. In section 5, conclusion is 
given. Lastly all the related references are given. 

2 Preliminaries  

2.1 Definition [3]:  

       Let U  be a non empty set. Then a fuzzy set  τ  on U  is a set having the form 

   ττ x, μ x :x U   

where the function τμ :U [0, 1]
 
is called the membership function and  τμ x

 
represents the 

degree of    membership of each element x U .  

2.2 Definition [4]:  

       Let U  be a non empty set. Then an intuitionistic fuzzy set (IFS for short) τ  is an object having the form 

    τ ττ x, μ x , γ x : x U  where  the  functions τ τμ :U [0, 1]  and  γ :U [0, 1]   are called 

membership function and non-membership function respectively.    τ τμ x  and  γ x  represent the  degree of 

membership and the degree of non-membership respectively of each element x U  and 
   τ τ0 μ x + γ x 1 for each  x U.    

       We denote the class of  all intuitionistic fuzzy sets on U by IFSU.  
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2.3 Definition [5, 6]:  

       Let U  be a non empty set. Then a neutrosophic set (NS for short)   is an object having the form 

      x, μ x , γ x , x : x U     where the  functions μ ,γ , :U ] 0, 1 [  

   
 
and  

     0 μ x + γ x x 3 . 

      From philosophical point of view, the neutrosophic set takes the 

value from real standard or non-standard subsets of  ] 0, 1 [ 
.  But in real life applications in scientific 

and engineering problems it is difficult to use neutrosophic sets with value from real standard or non-

standard subsets of  ] 0, 1 [ 
.  Hence we consider  the neutrophic set which takes the value from the 

subset of [0, 1] i.e;       0 μ x + γ x x 3      where μ , γ and     are called truth 

membership function, indeterminacy membership function and falsity function respectively.  

       We denote the class of  all neutrosophic sets on U by NSU.  

2.4 Definition [17]: 

       Let U  be a non empty set. Then an interval valued neutrosophic set (IVNS for short)   is an 

object having the form 

                             x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U                    

where the  functions μ , γ , :U ([0, 1])Int   
 
and       0 supμ x +sup γ x sup x 3.       

       We denote the class of  all interval valued neutrosophic sets on U by IVNSU.  

2.5 Definition [17]:  

       Let ,   be two interval neutrosophic sets on U . Then  

 (a)   is called a subset of  , denoted by     if 

               

       

infμ x infμ x , supμ x supμ x ,infγ x inf γ x ,sup γ x sup γ x ,

inf x inf x ,sup x sup x x U.   

       

   

   

   
 

(b) The intersection of   and   is denoted by  
 and is defined by 

         
         

          

min infμ x ,infμ x , min supμ x ,supμ x ,

max infγ x ,inf γ x ,max sup γ x ,sup γ x ,

max inf x ,inf x ,max sup x ,sup x : x U .   

   

   

   

    

 
 

   

 

(c) The union of   and   is denoted by 
 and is defined by 

         
         

          

max infμ x ,infμ x , max supμ x ,supμ x ,

min infγ x ,inf γ x ,min sup γ x ,sup γ x ,

min inf x ,inf x ,min sup x ,sup x : x U .   

   

   

   

    

 
 

   

 

(d) The complement of   is denoted by 
c  and is defined by  

            x, inf x ,sup x , 1-supγ x ,1 inf γ x , inf x ,sup x : x Uc                      

 

 

 



Neutrosophic Sets and Systems, Vol. 28, 2019     131 

Abhijit Saha and Said Broumi. New Operators On Interval Valued Neutrosophic Sets 
 

 

3.  New Operators on Interval Valued Neutrosophic Sets 

  In this section we have proposed two new operators defined on interval valued neutrosophic sets. 
We also present their basic properties. 

3.1 Definition: 

       The operator : U UIVNS IVNS is defined by   

      

               x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,1 sup x : x U ,

for .UIVNS

 
     

 



 
 

3.2 Example:  

      Let us consider an interval valued neutrosophic set  on U given by 

                             
            a, 0.2,0.4 , 0.6,0.3 , 0.3,0.5 , b, 0.6,0.8 , 0.5,0.6 , 0.1,0.4 .   

Then we have             a, 0.2,0.4 , 0.6,0.3 , 0.3,0.5 , b, 0.6,0.8 , 0.5,0.6 , 0.1,0.6 . 
 

3.3 Definition:  

     The operator : U UIVNS IVNS is defined by   

      

               x, infμ x ,1 sup x , infγ x ,sup γ x , inf x ,sup x : x U ,

for .UIVNS

  
     

  


 

 3.4 Example:  

       Let us consider an interval valued neutrosophic set  on U given by 

            a, 0.2,0.4 , 0.6,0.3 , 0.3,0.5 , b, 0.3,0.8 , 0.5,0.6 , 0.1,0.4 .   

Then we have             a, 0.2,0.5 , 0.6,0.3 , 0.3,0.5 , b, 0.3,0.6 , 0.5,0.6 , 0.1,0.4 .   

3.5 Theorem: 

       For ,UIVNS we have the followings 

(a)   
cc    

(b)  
cc    

(c)    

(d)      

(e)       

(f)      

(g)       

Proof: 

(a)                x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U 
     

    

               x, inf x ,sup x , 1-supγ x ,1 inf γ x , inf x ,sup x : x Uc
   
     

     
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               

 

               

x, inf x ,sup x , 1-supγ x ,1 inf γ x , inf x ,1 sup x : x U .

Hence

x, inf x ,1 sup x ,   inf γ x ,supγ x , inf x ,sup x : x U .

c

cc

   

   

     

     

     



      

(b)                x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U 
     

    

               x, inf x ,sup x , 1-supγ x ,1 inf γ x , inf x ,sup x : x Uc
   
     

     

               x, inf x ,1 sup x , 1-supγ x ,1 inf γ x , inf x ,sup x : x U .c
   
     

    
 

 

               

Hence

x, inf x ,sup x ,   inf γ x ,supγ x , inf x ,1 sup x : x U .

cc

   
     



    

 

(c) Proof is straight forward. 

(d)                x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U 
     

    

               

                 

x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,1 sup x : x U

x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,1 sup x : x U

.

 

 

     

     

    

    

 
 

(e) Proof is similar to (d). 

(f)                x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U 
     

    

               

                 

x, infμ x ,1 sup x , infγ x ,sup γ x , inf x ,sup x : x U

x, infμ x ,1 sup x , infγ x ,sup γ x , inf x ,sup x : x U

.

  

  

     

     

    

    

 
 

(g) Proof is similar to (f).  

3.6 Theorem: 

      For , ,UIVNS  we have the followings 

(a)        

(b)       

(c)       

(d)       

Proof: 

We have, 

             x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U                    and 

            x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U                   . 

(a)   
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         
         

          
 

max infμ x ,infμ x , max supμ x ,supμ x ,

min infγ x ,inf γ x ,min sup γ x ,sup γ x ,

min inf x ,inf x ,min sup x ,sup x : x U .

Hence

   

   

   

   

   

 
 

   



 

         
         

           
         
         

max infμ x ,infμ x , max supμ x ,supμ x ,

min infγ x , inf γ x , min sup γ x ,sup γ x ,

min inf x , inf x ,1 sup max sup μ x ,supμ x : x U

max infμ x ,infμ x , max supμ x ,supμ x ,

min infγ x , inf γ x , min sup γ x ,sup γ x ,

 

   

   

   

   

   

   

 
 

  
 

   

 
 

          min inf x , inf x , min 1 sup μ x ,1 supμ x : x U .    
    

 

Again 

            x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,1 sup x : x U                     

and 

            x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,1 sup x : x U                   

. 

Hence    

         
         

          

max infμ x ,infμ x , max supμ x ,supμ x ,

min infγ x ,inf γ x ,min sup γ x ,sup γ x ,

min inf x ,inf x ,min 1 supμ x ,1 supμ x : x U . 

   

   

   

   

 
 

    

 

Consequently,       . 

(b) Proof is similar to (a). 

(c)   

         
         

          
 

          
      

max infμ x ,infμ x , max supμ x ,supμ x ,

min infγ x , inf γ x , min sup γ x ,sup γ x ,

min inf x , inf x , min sup x ,sup x : x U .

Hence

max infμ x ,infμ x , 1 sup min sup x ,sup x ,

min infγ x , inf γ x , min sup γ x ,s

   

 

   

   

   

   

  

   

 
 

   

 

  
 

  

          

up γ x ,

min inf x , inf x , min sup x ,sup x : x U   



   

 
 

   
 



Neutrosophic Sets and Systems, Vol.28 , 2019 
 

Abhijit Saha and Said Broumi. New Operators On Interval Valued Neutrosophic Sets 
 

         
         

          

max infμ x ,infμ x , max 1 supμ x ,1 supμ x ,

min infγ x ,inf γ x ,min sup γ x ,sup γ x ,

min inf x ,inf x ,min sup x ,sup x : x U .   

   

   

   

    

 
 

   

 

Again 

            x, infμ x ,1 sup x , infγ x ,sup γ x , inf x ,sup x : x U                       

and 

            x, infμ x ,1 sup x , infγ x ,sup γ x , inf x ,sup x : x U                    
 

Hence    

         
         

          

max infμ x ,infμ x , max 1 sup x ,1 sup x ,

min infγ x ,inf γ x ,min sup γ x ,sup γ x ,

min inf x ,inf x ,min sup x ,sup x : x U .

 

   

   

   

   

    

 
 

   

 

Consequently,       . 

(d) Proof is similar to (c). 

3.7 Definition:  

     The operator : U UIVNS IFS is defined by  

      x, infμ x , infγ x , inf x : x U , .UIVNS       

3.8 Example:  

      Let us consider an interval valued neutrosophic set  on U given by 

            a, 0.2,0.4 , 0.6,0.3 , 0.3,0.5 , b, 0.6,0.8 , 0.5,0.6 , 0.1,0.4 .   

Then we have  a, 0.2, 0.6,0.3 , b, 0.6, 0.5,0.1 .   

3.9 Theorem:  

      For ,UIVNS we have 

(a)      

(b)      

Proof: 

We have, 

             x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U .                    

Then 

(a)             x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,1 sup x : x U                     

 and    so         x, infμ x , infγ x , inf x : x U .        

(b) Proof is similar to (a). 
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3.10 Theorem:  

         For , ,UIVNS  we have the followings 

(a)        

(b)       

Proof: 

We have, 

             x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U                    and 

            x, infμ x ,supμ x , infγ x ,sup γ x , inf x ,sup x : x U                   . 

(a)   

         
         

, max infμ x ,infμ x , max supμ x ,supμ x ,

min infγ x ,inf γ x ,min sup γ x ,sup γ x ,

x    

   

   

 
 

 

          
 

min inf x ,inf x ,min sup x ,sup x : x U .      
   

 
 

               , max infμ x ,infμ x , min infγ x , inf γ x , min inf x , inf x : x U .x          

Again we have,    

             x, infμ x , infγ x , inf x : x U x, infμ x , infγ x , inf x : x U           

               , max infμ x ,infμ x , min infγ x , inf γ x , min inf x , inf x : x U .x          

Consequently      . 

(b) Proof is similar to (a). 

 

4. Conclusions  

    Neutrosophic set is a part of neutrosophy which studies the origin, nature, and scope of neutralities, 

as well as their interactions with different ideational spectra. In this paper we have defined the set-

theoretic operators on interval valued neutrosophic sets and studied some properties. We hope that 

this paper will promote the future study on interval valued neutrosophic sets to carry out a general 

framework for their application in practical life. Moreover, with the motivations of  ideas presented in 

the paper, one can think of similar operations on interval valued neutrosophic sets of type-2,  hesitant 

interval valued neutrosophic sets, interval valued neutrosophic soft sets and interval valued hesitant 

neutrosophic soft sets. 
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Abstract: Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each 

bipolar neutrosophic number represents an element of the matrix. The matrices are representable 

multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations, 

especially the composition is a challenging algorithm in terms of coding because there are so many 

nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The 

advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar 

fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued 

neutrosophic matrices. 
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1. Introduction  

Smarandache [1] gave the concept of neutrosophic set (NS) by considering the triplets 

independent components whose values belong to real standard or nonstandard unit interval] - 0, 1+[. 

Later on, Smarandache [1] gave single valued neutrosophic set (SVNS) to apply into the various 

engineering applications. The various properties of SVNS is being studied by Wang et al. [2]. Further, 

Zhang et al. [3] presented a concept of interval-valued NS (IVNS) where the different membership 

degrees are represented by interval. In [4] Deli et al. introduced the concept of bipolar neutrosophic 

sets and their applications based on multicriteria decision making problems. The same author [5] 

proposed the bipolar neutrosophic refined sets and their applications in medical diagnosis for more 

details about the applications and its sets, we refer to [6]. Since the existence of NS, various scholars 

have presented the approaches related to SVNS and bipolar neutrosophic sets into the different fields. 

For instance, Mumtaz et al. [7] developed the concept of bipolar neutrosophic soft sets that combines 

soft sets and bipolar neutrosophic sets. In [8, 9] Broumi et al. introduced the notion of bipolar single 

valued neutrosophic graph theory and its shortest path problem. Dey et al. [10] considered TOPSIS 

method for solving the decision making problem under bipolar neutrosophic environment. Akram 

et al. [11] described bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I 
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method. Akram and Sarwar [12] studied the novel multiple criteria decision making methods based 

on bipolar neutrosophic sets and bipolar neutrosophic graphs. Akram and Sitara [13] introduced the 

concept of bipolar single-valued neutrosophic graph structures and discussed certain notions of 

bipolar single-valued neutrosophic graph structures with examples. Singh [14] introduced bipolar 

neutrosophic graph representation of concept lattice and it’s processing using granular computing. 

Mullai and Broumi [15] presented shortest path problem by minimal spanning tree algorithm using 

bipolar neutrosophic numbers. Uluçay et al. [16] defined similarity measures of bipolar neutrosophic 

sets and their application to multiple criteria decision making. Based on literal neutrosophic numbers, 

Mamouni et al. [17] defined the addition and multiplication of two neutrosophic fuzzy matrices. in 

the light of Fuzzy Neutrosophic soft sets, Arockiarani [18] present a new technique for handling 

decision making problems and proposed some new notions on matrix representation. Karaaslan and 

Hayat [19] introduced some novel operations on neutrosophic matrices. Uma et al. [20] introduced 

two types of fuzzy neutrosophic soft Matrices. The same authors in [21] decomposed fuzzy 

neutrosophic soft matrix by means of its section of fuzzy neutrosophic soft matrix of Type-I. Hassan 

et al. [22] defined some special types of bipolar single valued neutrosophic graphs. Akram and 

Siddique [23] discussed certain types of edge irregular bipolar neutrosophic graphs. Pramanik [24] 

developed cross entropy measures of bipolar neutrosophic sets and interval bipolar neutrosophic 

sets. Wang et al. [25] defined Frank operations of bipolar neutrosophic numbers (BNNs) and 

proposed Frank bipolar neutrosophic Choquet Bonferroni mean operators by combining Choquet 

integral operators and Bonferroni mean operators based on Frank operations of BNNs. In the same 

study, Akram and Nasir [26] introduced the concept of p-competition bipolar neutrosophic graphs. 

then they defined generalization of bipolar neutrosophic competition graphs called m-step bipolar 

neutrosophic competition graphs. AKRAM and SHUM [27] defined Bipolar Neutrosophic Planar 

Graphs. Hashim et al. [28] provide an application of neutrosophic bipolar fuzzy sets in daily life’s 

problem related with HOPE foundation that is planning to build a children hospital. Akram, and 

Luqman [29] generalized the concept of bipolar neutrosophic sets to hypergraphs. Das et al. [30] 

proposes an algorithmic approach for group decision making (GDM) problems using neutrosophic 

soft matrix (NSM) and relative weights of experts. 

Broumi et al. [31-34] applied the concept of IVNS on graph theory and studied some interesting 

results. Broumi et al. [35] developed a Matlab toolbox for computing operational matrices under the 

SVNS environments. Pramanik et al [36] developed a hybrid structure termed “rough bipolar 

neutrosophic set”. In [37] Pramanik et al. presented Bipolar neutrosophic projection based models for 

solving multi-attribute decision making problems.  Broumi et al [38] developed the concept of 

bipolar complex neutrosophic sets and its application in decision making problem. Akram, et al.[39] 

applied the concept of  bipolar neutrosophic sets to incidence graphs and studied some properties. 

For more details on the application of neutrosophic set theory, we refer the readers to [46-52]. 

Among all the above, matrices play a vital job in the expansion region of science and engineering. 

However, the classical matrix theory neglects the role of uncertainties during the analysis. Therefore, 

the decision process may contain a lot of uncertainties. Thus, the role of the fuzzy matrices and their 

extension including triangular fuzzy matrices, type-2 triangular fuzzy matrices, interval valued fuzzy 

matrices, intuitionistic fuzzy matrices, interval valued intuitionistic fuzzy matrices are studied deeply 

by several scholars. In [40] Zahariev, developed a Matlab software package to the fuzzy algebras. In 

http://fs.unm.edu/NSS/ApplicationofBipolarNeutrosophicsetstoIncidence.pdf
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[41], authors solved intuitionistic fuzzy relational rational calculus problems using a fuzzy toolbox. 

Later on, in [42] Karunambigai and Kalaivani proposed some computing procedures in Matlab for 

intuitionistic fuzzy operational matrices with suitable examples. Uma et al. [43] studied determinant 

theory for fuzzy neutrosophic soft square matrices. Also, in [44] Uma et al. introduced the 

determinant and adjoint of a square Fuzzy Neutrosophic Soft Matrices (FNSMs) a defined the circular 

FNSM and study some relations on square FNSM such as reflexivity, transitivity and circularity.  

 Recently few researchers [45] developed a Python programs for computing operations on 

neutrosophic numbers, but all these programs cannot deal with neutrosophic matrices, to do best of 

our knowledge, there is no work conducted on developing python codes to compute the operations 

on single valued neutrosophic matrices and bipolar neutrosophic matrices. Thus, there is a need to 

develop the work in that direction. For it, the presented paper discusses various operations of bipolar 

neutrosophic sets and their corresponding Python code for different metrics. To achieve it, rest of the 

manuscript is summarized as. In section 2, some concepts related to SVNS, BNS are presented. 

Section 3 deals with the generations of Python programs for bipolar neutrosophic matrices with a 

numerical example and lastly, conclusion is summarized in section 4.  

2.BACKGROUND AND BIPOLAR NEUTROSOPHIC SETS 

In this section, some basic concepts on SVNS, BNS are briefly presented over the universal set 𝜉 [1, 

2, 4]. 

Definition 2.1 [1] A set A is said to be A neutrosophic set ‘A’ consists of three components namely 

truth, indeterminate and falsity denoted by 𝑇𝐴 , 𝐼𝐴(x) and 𝐹𝐴(x) such that 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈] −0, 1+[  and  −0 ≤  sup 𝑇𝐴(𝑥)+ sup 𝐼𝐴(𝑥)  + sup FA (x) ≤  3+  (1) 

Definition 2.2 [2] A SVNS ‘A’ on X is given as  

A = {< 𝑥: TA(x),IA(𝑥), FA(𝑥) > 𝑥 ∈ 𝜉}                    (2) 

where the functions TA(x), IA(x), FA(x) ∈  [0. 1] are named “degree of truth, indeterminacy and 

falsity membership of x in A”, such that 

0  ≤ 𝑇𝐴  (x) +𝐼𝐴 (x) +𝐹𝐴 (x)≤ 3                         (3) 

Definition 2.3[4]. A bipolar neutrosophic set A in 𝜉 is defined as an object of the form 

A={<x, (𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥),𝑇𝐴

𝑁(𝑥),𝐼𝐴
𝑁(𝑥),𝐹𝐴

𝑁(𝑥))>: x  𝜉 }, where 𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥): 𝜉   [1, 0] and 

𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥): 𝜉   [-1, 0]. The positive membership degree 𝑇𝐴

𝑃(𝑥),𝐼𝐴
𝑃(𝑥),𝐹𝐴

𝑃(𝑥)enotes the truth 

membership, indeterminate membership and false membership of an element  𝜉 corresponding to 

a bipolar neutrosophic set whereas the negative membership degree 𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥)denotes the 

truth membership, indeterminate membership and false membership of an element 𝑥 𝜉 to some 

implicit counter-property corresponding to a bipolar neutrosophic set A. For convenience a bipolar 

neutrosophic number is represented by  

A= <(𝑇𝐴
𝑃,𝐼𝐴

𝑃,𝐹𝐴
𝑃,𝑇𝐴

𝑁,𝐼𝐴
−,𝐹𝐴

−>                            (4)  

Definition 2.4 [4]. In order to make a comparison between two BNN. The score function is applied 

to compare the grades of BNS. This function shows that greater is the value, the greater is the bipolar 

neutrosophic sets and by using this concept paths can be ranked. Suppose  
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, I ,F , , I ,FP P P N N NA T T   be a bipolar neutrosophic number. Then, the score function ( )s A , 

accuracy function ( )a A and certainty function ( )c A of a BNN are defined as follows: 

(i) 
1( ) 1 1 1
6

P P P N N Ns A T I F T I F                
                                 (5) 

(ii) ( ) P P N Na A T F T F                        (6)                                                          

(iii) ( ) P Nc A T F                        (7)                                                                         

Comparison of bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I ,F , , I ,Fp p p n n nA T T   and 2 2 2 22 2 2, I ,F , , I ,Fp p p n n nA T T  be two bipolar neutrosophic 

numbers then 

i. If 1 2( ) ( )s A s A , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A . 

ii. If 1 2( ) ( )s A s A , and  1 2( ) ( )a A a A then 1A  is greater than 2A , that is, 1A is superior to 2A , 

denoted by 1 2A A . 

iii. If 1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A  then 1A  is greater than 2A , that is, 1A

is superior to 2A , denoted by 1 2A A . 

iv. If  1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A  then 1A  is equal to 2A , that is, 1A is 

indifferent to 2A , denoted by 1 2A A . 

Definition 2.5 [4]: A bipolar neutrosophic matrix (BNM) of order m× n is defined as  

𝐴BNM=[< 𝑎𝑖𝑗 , 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

 where  

𝑎𝑖𝑗𝑇

𝑃  is the positive membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑃  is the positive indeterminate-membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative indeterminate-membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑃  is the positive non- membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative non-membership value of element 𝑎𝑖𝑗  in A.  

 

For simplicity, we write A as 𝐴BNM= [< 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

. 
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3.COMPUTING THE BIPOLAR NEUTROSOPHIC MATRIX OPERATIONS USING PYTHON LANGUAGE 

To generate the Python program for inputting the single valued neutrosophic matrices. The 

procedure is described as follows: 

3.1 Checking the matrix is BNM or not  

To generate the Python program for deciding for a given the matrix is bipolar neutrosophic matrix 

or, simple call of the function BNMChecking ( ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

BNM Checking 

#A1.shape and A2.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element 

(Bipolar Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 3 columns 

# A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual 

#One can use any matrices having arbitrary dimension 

import numpy as np 

#A1 is a BNM 

A1= np.array([   [[0.000, 0.001, 0.002, -0.003, -0.004, -0.005],  [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]  ], 

[[0.100,0.101,0.102,-0.103,-0.104, -0.105], [0.110,0.111,0.112,-0.113,-0.114,-0.115], [0.120,0.121,0.122,-

0.123,-0.124,-0.125]   ], 

 [[0.200,0.201,0.202,-0.203,-0.204,-0.205], [0.210, 0.211,0.212,-0.213,-0.214,-0.215], [0.220,0.221,0.222,-

0.223,-0.224,-0.225]   ] ]) 

#A2 is not BNM 

A2= np.array([   [[0.000, 0.001, 0.002, -0.003, -0.004, -0.005],  [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]  ], 

[[0.100,0.101,0.102,-0.103,-0.104, -0.105],    [0.110,0.111,0.112,-0.113,-0.114,-0.115],  

[0.120,0.121,0.122,-0.123,-0.124,-0.125]   ],  

[[0.200,0.201,0.202,-0.203, 0.204,-0.205],     [0.210, 0.211,0.212,-0.213,-0.214,-0.215],  

[0.220,0.221,0.222,-0.223,-0.224,-0.225]   ] ]) 

def BNMChecking (A): 

    dimA=A.shape 

    control=0 

    counter = 0 

    for i in range (0,dimA[0]):           

        if counter == 1: 

            break                                 

        for j in range (0,dimA[0]): 

            if counter == 1: 

                break                              

            for  d in range (0, dimA[2]):                

                if  counter ==0:                 
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                    if (d==0 or d==1 or d==2) : 

                        if  not (0 <=  A[i][j][d] <= 1):                          

                            counter=1 

                            print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix 

is not a BNM') 

                            control=1 

                            break 

                    if  (d==3 or d==4 or d==5) : 

                        if not (-1 <=  A[i][j][d] <= 0) : 

                            counter=1 

                            print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix 

is not a BNM') 

                            control=1 

                            break 

                else: 

                    print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix is not a 

BNM') 

                    break 

    if control==0: 

        print ('The matrix is a BNM') 

Example 1. In this example we evaluate the checking the matrix C is BNM or not of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python environment like this: 

3.2. Determining complement of bipolar neutrosophic matrix  

For a given BNM A= [< 𝑇𝑖𝑗
𝑃, 𝐼𝑖𝑗

𝑃 , 𝐹𝑖𝑗
𝑃, 𝑇𝑖𝑗

𝑁, 𝐼𝑖𝑗
𝑁 , 𝐹𝑖𝑗

𝑁 >]
m× n

, the complement of A is defined as follow: 

𝐴𝑐= [< {1} − 𝑇𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , {−1} − 𝐹𝑖𝑗
𝑃, {1} − 𝑇𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , {−1} − 𝐹𝑖𝑗

𝑁 >]
m× n

                (8) 

𝐴𝑐= [< 𝐹𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , 𝑇𝑖𝑗
𝑃, 𝐹𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , 𝑇𝑖𝑗

𝑁 >]
m× n

    (9)                                                        

To generate the Python program for finding complement of bipolar neutrosophic matrix, simple call 

of the function BNMCompelementOf() is defined as follow: 
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# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(8) 

import numpy as np 

A= np.array([  [ [0.3,0.6,1,-0.2,-0.54,-0.4],  [0.1,0.2,0.8,-0.5,-0.34,-0.7]], 

             [ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

             [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ] 

             ]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual           

def BNMCompelementOf( A ): 

    global Ac 

    dimA=A.shape                              # Dimension of the matrix 

    Ac= []    # Empty matrix with dimension of A to create complement of A 

        for i in range (0,dimA[0]):      # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):  # for columns, here 2 

            H.extend([ [ 1-A[i][j][0], 1-A[i][j][1], 1-A[i][j][2], -1-(-A[i][j][3]), -1-(-A[i][j][4]), -1-(-

A[i][j][5]) ] ]) 

            Ac.append(H) 

    print  ('A= ', A) 

    print ('*********************************************************************') 

    print('Ac= ', np.array(Ac)) 

The function BNMCompelementOf (A) the below returns the complement matrix of a given bipolar 

neutrosophic matrix A for (9). 

# BNM is representable by 3D Numpy Array ====> row, column and bipolar neutrosophic 

numbers having 6 tuples for (9) 

import numpy as np 

A= np.array([  [ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

             [ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

             [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = Each bipolar neutrosophic number with 6 tuple as usual 

def BNMCompelementOf( A ): 

    global Ac 

    dimA=A.shape                              # Dimension of the matrix 

    Ac= []    
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    for i in range (0,dimA[0]):      # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):  # for columns, here 2 

            H.extend([[ A[i][j][2], 1-A[i][j][1], A[i][j][0], A[i][j][5], -1-(-A[i][j][4]), A[i][j][3] ] ]) 

        Ac.append(H) 

   print  ('A= ', A) 

   print ('*********************************************************************') 

   print ('*********************************************************************') 

   print('Ac= ', np.array(Ac)) 

The bipolar neutrosophic matrix A is a simple example, one can create his/her BNM and try it into 

the function BNMCompelementOf ( ): 

 

3.3. Determining the score, accuracy and certainty matrices of bipolar neutrosophic matrix  

To generate the python program for obtaining the score matrix, accuracy of bipolar neutrosophic 

matrix, simple call of the functions ScoreMatrix( ), AccuracyMatrix( ) and CertaintyMatrix( ) are 

defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for (5, 

6 and 7) 

import numpy as np 

A= np.array([    [      [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]              ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]       ], 

               [       [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ]]) 

def ScoreMatrix( A ): 

    score=[] 

    dimA=A.shape                          # Dimension of the matrix  

    for i in range (0,dimA[0]):           # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):       # for columns, here 2 

            H.extend([ [ ( A[i][j][0] + 1 - A[i][j][1] + 1 - A[i][j][2] + 1 + A[i][j][3] - A[i][j][4] - 

A[i][j][5] )/6 ] ]) 

        score.append(H) 

    print('Score Matrix= ', np.array(score)) 

def AccuracyMatrix ( A ): 

    accuracy=[] 

    dimA=A.shape                          # Dimension of the matrix  

    for i in range (0,dimA[0]):           # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):       # for columns, here 2 

            H.extend([ [  A[i][j][0] - A[i][j][2] + A[i][j][3] - A[i][j][5]  ] ]) 

        accuracy.append(H) 

    print('Accuracy Matrix= ', np.array(accuracy)) 
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def CertaintyMatrix ( A ): 

    certainty = [] 

    dimA=A.shape                          # Dimension of the matrix  

    for i in range (0,dimA[0]):           # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):       # for columns, here 2 

            H.extend([ [  A[i][j][0] - A[i][j][5]  ] ]) 

        certainty.append(H) 

    print('Certainty Matrix= ', np.array(certainty)) 

 

3.4. Computing union of two bipolar neutrosophic matrices  

The union of two bipolar neutrosophic matrices A and B is defined as follow: 

 𝐴 ∪ 𝐵 = 𝐶 = [< 𝑐𝑖𝑗𝑇

𝑃 , 𝑐𝑖𝑗𝐼

𝑃 , 𝑐𝑖𝑗𝐹

𝑃 , 𝑐𝑖𝑗𝑇

𝑁 , 𝑐𝑖𝑗𝐼

𝑁 , 𝑐𝑖𝑗𝐹

𝑁 >]
m× n

                                                                                                       (10) 

where 

𝑐𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∨ 𝑏𝑖𝑗𝑇

𝑃 ,  𝑐𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∧ 𝑏𝑖𝑗𝑇

𝑁  

𝑐𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∧ 𝑏𝑖𝑗𝐼

𝑃 ,  𝑐𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∨ 𝑏𝑖𝑗𝐼

𝑁  

𝑐𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∧ 𝑏𝑖𝑗𝐹

𝑃 ,  𝑐𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∨ 𝑏𝑖𝑗𝐹

𝑁  

To generate the python program for finding the union of two bipolar neutrosophic matrices, 

simple call of the following function Union( A, B ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(10) 

import numpy as np 

A= np.array([  [    [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

               [  [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]] ]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]   ], 

               [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22] ], 

               [ [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52] ] 

               ]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

union=[]               

def Union( A, B ): 

    if A.shape == B.shape: 

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 
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                H.extend([[ max(A[i][j][0],B[i][j][0]) , min(A[i][j][1], B[i][j][1]), min(A[i][j][2], 

B[i][j][2]), max(A[i][j][3],B[i][j][3]), min(A[i][j][4], B[i][j][4]), min(A[i][j][5], B[i][j][5]) ] ])  

               union.append(H) 

    print('union= ', np.array(union) 

Example 2. In this example we Evaluate the union of the two bipolar neutrosophic matrices C and 

D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D= 

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the union matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ∪ 𝐷𝐵𝑁𝑆

= (

< .5, .4, .2, −.7, − .3, −.2 > < .4, .2, .5, −.7, − .2, −.3 > < .7, .2, .5, −.8, − .7, −.6 > < .2, .1, .3, −.5, − .2, −.4 >
< .9, .2, .5, −.7, − .3, −.1 > < .7, .5, .6, −.7, − .5, −.1 > < .9, .4, .4, −.3, − .6, −.5 > < .5, .2, .4, −.5, − .1, −.3 >
< .9, .3, .1, −.6, − .2, −.4 > < .5, .2, .2, −.4, − .7, −.2 > < .9, .5, .5, −.6, − .2, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .1, .2, −.8, − .4, −.1 > < .4, .5, .2, −.5, − .2, −.2 > < .5, .4, .3, −.5, − .5, −.2 > < .4, .4, .4, −.5, − .5, −.4 >

) 

The result of union matrix of two bipolar neutrosophic matrices C and D can be obtained by the call 

of the command Union (C, D): 

>>> Union(C, D) 

Union =   

 [[[ 0.5  0.4  0.2 -0.7 -0.3 -0.2]  [ 0.4  0.2  0.5 -0.7 -0.2 -0.3] [ 0.7  0.2  0.5 -0.8 -0.7 -0.6]   [ 0.2  0.1  0.3 -0.5 -0.2 -0.4]] 

 [[ 0.9  0.2  0.5 -0.7 -0.3 -0.1]  [ 0.7  0.5  0.6 -0.7 -0.5 -0.1]   [ 0.9  0.4  0.4 -0.3 -0.6 -0.5]   [ 0.5  0.2  0.4 -0.5 -0.1 -0.3]] 

 [[ 0.9  0.3  0.1 -0.6 -0.2 -0.4]   [ 0.5  0.2  0.2 -0.4 -0.7 -0.2]   [ 0.9  0.5  0.5 -0.6 -0.2 -0.2]   [ 0.7  0.5  0.3 -0.4 -0.2 -0.2]] 

 [[ 0.9  0.1  0.2 -0.8 -0.4 -0.1]   [ 0.4  0.5  0.2 -0.5 -0.2 -0.2]   [ 0.5  0.4  0.3 -0.5 -0.5 -0.2]   [ 0.4  0.4  0.4 -0.5 -0.5 -0.4]]] 

 

3.5. Computing intersection of two bipolar neutrosophic matrices 
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The union of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴 ∩ 𝐵 = 𝐷 = [< 𝑑𝑖𝑗𝑇

𝑃 , 𝑑𝑖𝑗𝐼

𝑃 , 𝑑𝑖𝑗𝐹

𝑃 , 𝑑𝑖𝑗𝑇

𝑁 , 𝑑𝑖𝑗𝐼

𝑁 , 𝑑𝑖𝑗𝐹

𝑁 >]
m× n

                                              (11)    

Where 

𝑑𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∧ 𝑏𝑖𝑗𝑇

𝑃 ,  𝑑𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∨ 𝑏𝑖𝑗𝑇

𝑁  

𝑑𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∨ 𝑏𝑖𝑗𝐼

𝑃 ,  𝑑𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∧ 𝑏𝑖𝑗𝐼

𝑁  

𝑑𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∨ 𝑏𝑖𝑗𝐹

𝑃 ,  𝑑𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∧ 𝑏𝑖𝑗𝐹

𝑁  

To generate the python program for finding the intersection of two bipolar neutrosophic matrices, 

simple call of the function Intersection ( A, B ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(11) 

import numpy as np 

A= np.array([  [      [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]              ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]       ], 

               [       [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ] 

               ]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]       ], 

               [      [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]   ], 

               [       [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

intersection=[]             

def Intersection( A, B ): 

    if A.shape == B.shape: 

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 

                H.extend([[ min(A[i][j][0],B[i][j][0]) , max(A[i][j][1], B[i][j][1]), max(A[i][j][2], 

B[i][j][2]), min(A[i][j][3],B[i][j][3]), max(A[i][j][4], B[i][j][4]), max(A[i][j][5], B[i][j][5]) ] ])  

                intersection.append(H) 

    print('Intersection= ', np.array(intersection)) 

Example 3. In this example we evaluate the intersection of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 
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C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6] ])  

D= 

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3, 0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the intersection matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ∩ 𝐷𝐵𝑁𝑆

= (

< .3, .7, .3, −.5, − .4, −.6 > < .1, .4, .7, −.5, − .8, −.4 > < .3, .7, .6, −.4, − .8, −.7 > < .1, .5, .7, −.2, − .4, −.8 >
< .2, .7, .7, −.3, − .7, −.5 > < .3, .6, .8, −.6, − .7, −.4 > < .6, .5, .6, −.1, − .7, −.8 > < .3, .4, .7, −.3, − .5, −.9 >
< .5, .4, .2, −.4, − .3, −.7 > < .2, .4, .3, −.3, − .7, −.4 > < .5, .8, .6, −.2, − .5, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .7, .7, −.7, − .6, −.8 > < .3, .6, .4, −.4, − .5, −.5 > < .4, .9, .5, −.1, − .7, −.3 > < .2, .5, .8, −.3, − .7, −.6 >

) 

The result of intersection matrix of two bipolar neutrosophic matrices C and D can be obtained by 

the call of the command Intersection (C, D): 

>>> Intersection (C, D) 

Intersection =  

[[[ 0.3  0.7  0.3 -0.5 -0.4 -0.6]   [ 0.1  0.4  0.7 -0.5 -0.8 -0.4]   [ 0.3  0.7  0.6 -0.4 -0.8 -0.7]   [ 0.1  0.5  0.7 -0.2 -0.4 -0.8]] 

 [[ 0.2  0.7  0.7 -0.3 -0.7 -0.5]   [ 0.3  0.6  0.8 -0.6 -0.7 -0.4]   [ 0.6  0.5  0.6 -0.1 -0.7 -0.8]   [ 0.3  0.4  0.7 -0.3 -0.5 -0.9]] 

 [[ 0.5  0.4  0.2 -0.4 -0.3 -0.7]   [ 0.2  0.4  0.3 -0.3 -0.8 -0.4]   [ 0.5  0.8  0.6 -0.2 -0.5 -0.4]   [ 0.4  0.6  0.5 -0.1 -0.6 -0.5]] 

 [[ 0.6  0.7  0.7 -0.7 -0.6 -0.8]   [ 0.3  0.6  0.4 -0.4 -0.5 -0.5]   [ 0.4  0.9  0.5 -0.1 -0.7 -0.3]   [ 0.2  0.5  0.8 -0.3 -0.7 -0.6]]] 

 

3.6. Computing addition operation of two bipolar neutrosophic matrices.  

The addition of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴 ⊕ 𝐵 = 𝑆 = [< 𝑠𝑖𝑗𝑇

𝑃 , 𝑠𝑖𝑗𝐼

𝑃 , 𝑠𝑖𝑗𝐹

𝑃 , 𝑠𝑖𝑗𝑇

𝑁 , 𝑠𝑖𝑗𝐼

𝑁 , 𝑠𝑖𝑗𝐹

𝑁 >]
m× n

                            (12)    

Where 

𝑠𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 + 𝑏𝑖𝑗𝑇

𝑃 − 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 ,         𝑠𝑖𝑗𝑇

𝑁 = −(𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁 ) 

𝑠𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 ,                     𝑠𝑖𝑗𝐼

𝑁 = −(−𝑎𝑖𝑗𝐼

𝑁 − 𝑏𝑖𝑗𝐼

𝑁 − 𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁 ) 

𝑠𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 ,                    𝑠𝑖𝑗𝐹

𝑁 = −(−𝑎𝑖𝑗𝐹

𝑁 − 𝑏𝑖𝑗𝐹

𝑁 − 𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁 ) 

To generate the python program for obtaining the addition of two bipolar neutrosophic matrices, 

simple call of the function Addition (A, B) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(12) 
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import numpy as np 

A= np.array([  [[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7] ], 

               [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

               [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ]]) 

B= np.array([  [[0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72] ], 

               [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22] ], 

               [[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuples as usual 

addition=[]      

def Addition( A, B ): 

    if A.shape == B.shape:    

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 

                H.extend([[A[i][j][0]+B[i][j][0]-A[i][j][0]*B[i][j][0],   A[i][j][1]* B[i][j][1],   

A[i][j][2]* B[i][j][2] -(-A[i][j][3]*B[i][j][3]), -(-A[i][j][4]-B[i][j][4] -A[i][j][4]*B[i][j][4] ), -(-A[i][j][5]-

B[i][j][5]-A[i][j][5]*B[i][j][5]) ]]) 

             addition.append(H) 

    print('Addition= ', np.array(addition)) 

Example 4. In this example we evaluate the addition of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]])  

D=

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 



Neutrosophic Sets and Systems, Vol. 28, 2019     151 
 

 
S. Broumi, S. Topal, A. Bakali, M. Talea And  F. Smarandache, A Python Tool for Implementations on Bipolar 
Neutrosophic Matrices 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the addition matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ⊕ 𝐷𝐵𝑁𝑆 = 

(

< .65, .28, .06, −.35, − .58, −.68 > < .46, .08, .35, −.35, − .84, −.58 > < .79, .14, .30, −.32, − .94, −.88 > < .28, .05, .21, −.10, − .52, −.88 >
< .92, .14, .35, −.21, − .79, −.55 > < .79, .30, .48, −.42, − .85, −.46 > < .96, .20, .24, −.03, − .88, −.90 > < .65, .08, .28, −.15, − .55, −.93 >
< .65, .12, .02, −.24, − .44, −.82 > < .60, .08, .06, −.12, − .94, −.52 > < .95, .40, .30, −.12, − .60, −.52 > < .82, .30, .15, −.04, − .68, −.60 >
< .96, .07, .14, −.56, − .76, −.82 > < .58, .30, .08, −.20, − .60, −.60 > < .70, .36, .15, −.05, − .85, −.44 > < .52, .20, .32, −.15, − .85, −.76 >

) 

The result of addition matrix of two bipolar neutrosophic matrices C and D can be obtained by the 

call of the command addition (C, D): 

>>> Addition(C, D) 

Addition=   

[[[ 0.65  0.28  0.06  0.35 -0.58 -0.68] [ 0.46  0.08  0.35  0.35 -0.84 -0.58] [ 0.79  0.14  0.3   0.32 -0.94 -0.88] [ 

0.28  0.05  0.21  0.1  -0.52 -0.88]] 

[[ 0.92  0.14  0.35  0.21 -0.79 -0.55]   [ 0.79  0.3   0.48  0.42 -0.85 -0.46]   [ 0.96  0.2   0.24  0.03 -0.88 -

0.9 ]   [ 0.65  0.08  0.28  0.15 -0.55 -0.93]] 

 [[ 0.95  0.12  0.02  0.24 -0.44 -0.82]   [ 0.6   0.08  0.06  0.12 -0.94 -0.52]   [ 0.95  0.4   0.3   0.12 -0.6  -

0.52]   [ 0.82  0.3  0.15  0.04 -0.68 -0.6 ]] 

 [[ 0.96  0.07  0.14  0.56 -0.76 -0.82]   [ 0.58  0.3   0.08  0.2  -0.6  -0.6 ]   [ 0.7   0.36  0.15  0.05 -0.85 -

0.44]   [ 0.52  0.2   0.32  0.15 -0.85 -0.76]]] 

3.7. Computing product of two bipolar neutrosophic matrices  

The product of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴⨀𝐵 = 𝑅 = [< 𝑟𝑖𝑗𝑇

𝑃 , 𝑟𝑖𝑗𝐼

𝑃 , 𝑟𝑖𝑗𝐹

𝑃 , 𝑟𝑖𝑗𝑇

𝑁 , 𝑟𝑖𝑗𝐼

𝑁 , 𝑟𝑖𝑗𝐹

𝑁 >]
m× n

                                       (13)    

Where  

𝑟𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 ,  𝑟𝑖𝑗𝑇

𝑁 = −(−𝑎𝑖𝑗𝑇

𝑁 − 𝑏𝑖𝑗𝑇

𝑁 − 𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁 ) 

𝑟𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 + 𝑏𝑖𝑗𝐼

𝑃 − 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 ,  𝑟𝑖𝑗𝐼

𝑁 = −(𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁 ) 

𝑟𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 + 𝑏𝑖𝑗𝐹

𝑃 − 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 ,  𝑟𝑖𝑗𝐹

𝑁 = −(𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁 ) 

 

To generate the python program for finding the product operation of two bipolar neutrosophic 

matrices, simple call of the function Product (A, B) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(13) 

import numpy as np 

A= np.array([  [      [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]              ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]       ], 

               [       [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ]]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]              ], 
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               [      [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]       ], 

               [       [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

product=[]          

def Product( A, B ): 

    if A.shape == B.shape:   

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 

                H.extend([[ A[i][j][0]*B[i][j][0]) , A[i][j][1]+ B[i][j][1]- (A[i][j][1]*B[i][j][1]), 

A[i][j][2]+ B[i][j][2]- (A[i][j][2]*B[i][j][2]), -(-A[i][j][3]-B[i][j][3]-A[i][j][3]*B[i][j][3]), -(A[i][j][4]* 

B[i][j][4]), -(A[i][j][5]* B[i][j][5]) ] ]) 

            product.append(H) 

    print(' Product = ', np.array(product)) 

 

Example 5. In this example we evaluate the product of the two bipolar neutrosophic matrices C and 

D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D=(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 
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So, the product matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆= 

(

< .15, .82, .44, −.85, − .12, −.12 > < .04, .52, .85, −.85, − 1.16, −.12 > < .21, .76, .80, −.88, − .56, −.42 > < .02, .55, .79, −.60, − .008, − .32 >
< .18, .76, .85, −.79, − .21, −.05 > < .21, .80, .92, −.88, − .35, −.04 > < .54, .70, .76, −.37, − .42, −0.40 > < .15, .52, .82, −.65, − .05, − .27 >
< .45, .58, .28, −.76, − .06, −.28 > < .10, .52, .44, −.58, − .56, −.08 > < .45, .90, .80, −.68, − .10, −.08 > < .28, .80, .65, −.46, − .12, −.10 >

< .54, .73, .76, −.94, − .24, −.08 > < .12, .80, .52, −.70, − .10, −.10 > < .20, .94, .65, −.55, − .35, −.06 > < .08, .70, .88, −.65, −  .35, − .24 >

) 

The result of product matrix of two bipolar neutrosophic matrices C and D can be obtained by the 

call of the command Product (C, D): 

>>> Product(C, D) 

Product=   

[[[ 0.15  0.82  0.44 -0.85 -0.12 -0.12]   [ 0.04  0.52  0.85 -0.85 -0.16 -0.12]   [ 0.21  0.76  0.8  -0.88 -

0.56 -0.42] [ 0.02  0.55  0.79 -0.6  -0.08 -0.32]] 

 [[ 0.18  0.76  0.85 -0.79 -0.21 -0.05]   [ 0.21  0.8   0.92 -0.88 -0.35 -0.04]   [ 0.54  0.7   0.76 -0.37 -

0.42 -0.4 ]   [ 0.15  0.52  0.82 -0.65 -0.05 -0.27]]  

 [[ 0.45  0.58  0.28 -0.76 -0.06 -0.28]   [ 0.1   0.52  0.44 -0.58 -0.56 -0.08]   [ 0.45  0.9   0.8  -0.68 -

0.1  -0.08]   [ 0.28  0.8   0.65 -0.46 -0.12 -0.1 ]] 

 [[ 0.54  0.73  0.76 -0.94 -0.24 -0.08] [ 0.12  0.8   0.52 -0.7  -0.1  -0.1 ] [ 0.2   0.94  0.65 -0.55 -0.35 -

0.06] [ 0.08  0.7   0.88 -0.65 -0.35 -0.24]]] 

 

3.8. Computing transpose of bipolar neutrosophic matrix  

To generate the python program for finding the transpose of bipolar neutrosophic matrix, simple 

call of the function Transpose (A) is defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

transpose 

import numpy as np 

A=np.array([[ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

            [ [0.1,0.12,0,-0.27,-0.44,-0.92],[0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

           [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]] ])                                

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual               

def Transpose( A ): 

    DimA= A. shape 

    print (' the matrix ', DimA[0],' x ', DimA[1], ' dimension') 

    trA = A.transpose() 

    DimtrA= trA. shape 

    print ('\n')  

    print (' its transpose ', DimtrA[1],' x ', DimtrA[2], ' dimension') 

    print ('\n' ) 

    print(' Transpose = ', trA) 
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Example 6. In this example we evaluate the transpose of the bipolar neutrosophic matrix C of order 

4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

So, the transpose matrix of bipolar neutrosophic matrices is portrayed as follow 

<0.50, 0.70, 0.20,-0.70, -0.30, -0.60>   <0.90, 0.70, 0.50,-0.70, -0.70, -0.10>  <0.30, 0.40, 0.20,-0.60, -0.30, -0.70>  <0.90, 0.70, 0.20,-0.80, -0.60, -0.10> 

<0.40, 0.40, 0.50,-0.70, -0.80, -0.40>  <0.70, 0.60, 0.80,-0.70, -0.50, -0.10>  <0.20, 0.20, 0.20,-0.40, -0.70, -0.40>  <0.30, 0.50, 0.20,-0.50, -0.50, -0.20> 

<0.70, 0.70, 0.50,-0.80, -0.70, -0.60>  <0.90, 0.40, 0.60,-0.10, -0.70, -0.50>  <0.90, 0.50, 0.50,-0.60, -0.50, -0.20>  <0.50, 0.40, 0.50,-0.10, -0.70, -0.20> 

<0.10, 0.50, 0.70,-0.50, -0.20, -0.80>  <0.50, 0.20, 0.70,-0.50, -0.10, -0.90>  <0.70, 0.50, 0.30,-0.40, -0.20, -0.20>  <0.20, 0.40, 0.80,-0.50, -0.50, -0.60> 

>>> Transpose(C) 

 The matrix 4 x4 dimension 

 Its transpose 4 x 4 dimension 

Transpose =   

[[[ 0.5  0.9  0.9  0.9] [ 0.4  0.7  0.2  0.3]  [ 0.7  0.9  0.9  0.5] [ 0.1  0.5  0.7  0.2]] 

[[ 0.7  0.7  0.4  0.7] [ 0.4  0.6  0.2  0.5] [ 0.7  0.4  0.5  0.4] [ 0.5  0.2  0.5  0.4]] 

[[ 0.2  0.5  0.2  0.2] [ 0.5  0.8  0.2  0.2] [ 0.5  0.6  0.5  0.5] [ 0.7  0.7  0.3  0.8]] 

[[-0.7 -0.7 -0.6 -0.8]   [-0.7 -0.7 -0.4 -0.5]    [-0.8 -0.1 -0.6 -0.1]    [-0.5 -0.5 -0.4 -0.5]]  

[[-0.3 -0.7 -0.3 -0.6]    [-0.8 -0.5 -0.7 -0.5]    [-0.7 -0.7 -0.5 -0.7]    [-0.2 -0.1 -0.2 -0.5]]  

[[-0.6 -0.1 -0.7 -0.1]   [-0.4 -0.1 -0.4 -0.2]   [-0.6 -0.5 -0.2 -0.2]   [-0.8 -0.9 -0.2 -0.6]]]  

 

3.9 Computing composition of two bipolar neutrosophic matrices  

To generate the python program for finding the composition of two bipolar neutrosophic 

matrices, simple call of the function Composition () is defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

Composition  

#A.shape and B.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element 

(Bipolar Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 3 columns 

# A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual 

#One can use matrices with any dimensions but dimensions of two matrices must be the same and 

nxn  
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import math 

import numpy as np 

A= np.array( [ [ [0.3, 0.6, 1, -0.2, -0.54, -0.4], [0.1, 0.2, 0.8, -0.5, -0.34, -0.7], [0.020,0.021,0.022,-0.023,-

0.024,-0.025]  ], 

[ [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22], [0.120,0.121,0.122,-0.123,-0.124,-

0.125]  ], 

[ [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52], [0.220,0.221,0.222,-0.223,-0.224,-

0.225]  ]  ] ) 

B=np.array([ [0.11,0.22,0.6,-0.29,-0.24,-0.52], [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-

0.72] ], 

[ [0.100,0.101,0.102,-0.103,-0.104,-0.105], [1,0.111,0.112,-0.113,-0.114,-0.115], [0.720,0.821,0.152,-

0.143,-0.194,-0.1]  ], 

[ [0,0.73,0.202,-0.203,-0.204,-0.205],  [0.22,0.63,0.88,-0.28,-0.54,-0.32], [0.3,0,0.47,-0.223,-0.254,-0.295]   

] ] ) 

def Composition( A, B ): 

    global composition 

    composition=[] 

    dimA = A.shape 

    H=[ ] 

    if A.shape == B.shape and dimA[0] == dimA[1]: 

        for i in range (0,dimA[0]):   

            for j in range (0,dimA[0]):            

                counter0=0          

                for d in range (0, dimA[0]): 

                    if counter0 ==0:                    

                        maxtt  =    [ A[i][d][0],B[d][j][0] ] 

                        maxT = min(maxtt) 

                        minii =  [A[i][d][1],B[d][j][1] ] 

                        minI =  max(minii)    

                        minff = [ A[i][d][2],B[d][j][2]] 

                        minF = max( minff) 

                        minntt= [   A[i][d][3],B[d][j][3] ] 

                        minNT = max (minntt) 

                        maxnii = [ A[i][d][4],B[d][j][4]  ] 

                        maxNI =  min( maxnii  )         

                        maxnff= [   A[i][d][5],B[d][j][5]  ] 

                        maxNF = min (maxnff) 

                        counter0  = 1                

                    else: 

                        maxT1        = [  A[i][d][0],B[d][j][0]  ]        

                        maxT11      = min(maxT1)                           

                        maxT112    = [  maxT11 ,  maxT  ]            
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                        maxT          =  max(maxT112)         

                        minI1      =  [ A[i][d][1],B[d][j][1]  ] 

                        minI11    =  max(minI1) 

                        minI112  = [ minI11, minI    ] 

                        minI        = min(  minI112) 

                        minF1        =    [ A[i][d][2],B[d][j][2]  ] 

                        minF11      =  max(minF1) 

                        minF112    = [ minF11, minF] 

                        minF          = min(minF112 )                        

                        minNT1      =   [  A[i][d][3],B[d][j][3]      ] 

                        minNT11    =  max( minNT1   ) 

                        minNT112  =   [ minNT11, minNT ] 

                        minNT        =  min( minNT112  ) 

                        maxNI1       = [ A[i][d][4],B[d][j][4] ] 

                        maxNI11     = min(  maxNI1   ) 

                        maxNI112   = [  maxNI11, maxNI  ] 

                        maxNI         = max(maxNI112) 

                        maxNF1     =  [ A[i][d][5],B[d][j][5]  ] 

                        maxNF11   =  min ( maxNF1 ) 

                        maxNF112 =  [ maxNF11, maxNF ] 

                        maxNF       =  max (  maxNF112  )                                              

                H.append( [maxT,  minI, minF, minNT, maxNI, maxNF] ) 

        composition.extend(H) 

    global nested 

    nested = [  ] 

    for k in range( int(math.sqrt(len(composition))) ): 

                   nested.append(composition[k:k+int(math.sqrt(len(composition))) ] )                                 

    print('Composition= ', np.array(nested)) 

 

Example 7. In this example we evaluate the composition of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D= 
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(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the composition matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆= 

(

< .5, .4, .3, −.5, − .4, −.5 > < .5, .5, .5, −.6, − .2, −.4 > < .5, .5, .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 >
< .5, .5, .5, −.6, − .2, −.4 > < .5, .5 .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 >
< .5 .5, .5, −.5, − .5, −.6 > < .4, .4, .4, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 > < .5, .4, .6, −.6, − .2, −.3 >

< .4, .4, .3, −.3, − .4, −.1 > < .5, .2, .5, −.5, − .4 − .2 > < .5, .4, .6, −.6, − .2, −.3 > < .6, .6, .6, −.5, − .5, −.5 >

) 

The result of composition t matrix of two bipolar neutrosophic matrices C and D can be obtained by the call of 

the command Composition (C, D): 

>>> Composition(C, D) 

Composition=   

[[[ 0.5  0.4  0.3 -0.5 -0.4 -0.5] [ 0.5  0.5  0.5 -0.6 -0.2 -0.4] [ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4]] 

[[ 0.5  0.5  0.5 -0.6 -0.2 -0.4] [ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2]]  

[[ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2] [ 0.5  0.4  0.6 -0.6 -0.2 -0.3]] 

[[ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2] [ 0.5  0.4  0.6 -0.6 -0.2 -0.3] [ 0.6  0.6  0.6 -0.5 -0.5 -0.5]]]  

4. Conclusion 

In this paper, we have presented a useful Python tool for the calculations of matrices obtained 

by bipolar neutrosophic sets. The matrices have nested list data type, in other words, multi-

dimensional arrays in the Python Programming Language. The importance of this work, is that the 

proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy 

matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices. This work 

will be extending with the implementation of Bipolar Complex Neutrosophic Matrices in the future. 

We have used Python Numpy module in order to provide convenience for possible users. We hope 

that the tool might be useful in data science, physics, scientific computing, decision making, 

engineering studies and other fields. 
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1. Introduction 

Neutrosophic set theory  concepts first  initiated  by F.Smarandache[11] which is Based on  K. 

Atanassov’s intuitionistic[6]fuzzy sets & L.A.Zadeh’s [20]fuzzy sets. Also it defined by three parameters 

truth(T), indeterminacy (I),and falsity(F)-membership function. Smarandache’s neutrosophic concept 

have wide range of real time applications for the fields of [1,2,3,4&5] Information Systems, Computer 

Science, Artificial Intelligence, Applied Mathematics, decision making. Mechanics, Electrical & 

Electronic, Medicine and Management Science etc,. 

A.A.Salama[16] introduced Neutrosophic topological spaces by using Smarandache’s Neutrosophic 

sets. I.Arokiarani.[7] et.al., introduced Neutrosophic  α-closed sets.P. Ishwarya, [13]et.al., introduced 

and studied Neutrosophic semi-open sets in Neutrosophic topological spaces. Neutrosophic continuity 

functions introduced by A.A.Salama[15]. Neutrosophic αgs-closed set[8] introduced by V.Banu 

priya&S.Chandrasekar. Aim of this present paper is, we introduce and investigate new kind  of 

Neutrosophic continuity  is called Neutrosophic αgs Continuity  maps in Neutrosophic topological 

spaces and also we discussed about properties and characterization  Neutrosophic  αgs Irresolute Maps 
 
2. Preliminaries  

In this section, we introduce the basic definition for Neutrosophic sets and its operations.  

Definition 2.1 [11]   

Let E be a non-empty fixed set. A Neutrosophic set λ  writing the format is 

λ = {<e, ηλ(e), σλ(e) ,γλ(e) >:e∈E} 

Where ηλ(e), σλ(e) and γλ(e) which represents Neutrosophic topological spaces the degree of member-

ship function, indeterminacy and non-membership function respectively of each element e ∈ E to the 

set  λ.  

Remark 2.2 [11]   

A Neutrosophic set λ={<e, ηλ(e), σλ(e), γλ(e) >: e∈E} can be identified to an ordered triple <ηλ, σλ, γλ> in 

⦌-0,1+⦋  on E. 

Remark 2.3[11]   
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Neutrosophic  set  λ={<e, ηλ(e),σλ(e),γλ(e) >:e∈E}our convenient we can write λ=<e, ηλ, σλ, γλ>.  

Example 2.4 [11]   

we must introduce the Neutrosophic set 0N and 1N in E as follows:  

0N may be defined as: 

(01) 0N={<e, 0, 0, 1>: e∈E}  

(02) 0N={<e, 0, 1, 1>: e∈E}  

(03) 0N ={<e, 0, 1, 0 >:e∈E}  

(04) 0N={<e, 0, 0, 0>: e∈E}  

1N may be defined as: 

(11) 1N = {<e, 1, 0, 0>: e∈E}  

(12) 1N = {<e, 1, 0, 1 >: e∈E}  

(13) 1N ={<e, 1, 1, 0 >: e∈E}  

(14) 1N ={<e, 1, 1, 1 >: e∈E}  

Definition 2.5 [11]   

Let λ=<ηλ, σλ,γλ> be a Neutrosophic  set on E, then λC  defined as λC={<e , γλ(e) ,1- σλ(e), ηλ(e) >: e ∈E}  

Definition 2.6 [11]   

Let E be a non-empty set, and Neutrosophic sets λ and μ in the form  

  λ ={<e, ηλ(e), σλ(e), γλ(e)>:e∈E} and 

  μ ={<e, ημ(e), σμ(e), γμ(e)>: e∈E}. 

 Then we consider definition for subsets (λ⊆μ).  

λ⊆μ defined as: λ⊆μ ⟺ηλ(e) ≤ ημ(e), σλ(e) ≤ σμ(e) and γλ(e) ≥ γμ(e) for all  e∈E 

Proposition 2.7 [11]   

For any Neutrosophic set λ, then the following condition are holds: 

(i) 0N⊆λ, 0N⊆ 0N 

(ii) λ⊆1N, 1N⊆ 1N 

Definition 2.8 [11]   

Let E be a non-empty set, and  λ=<e, ημ(e),σλ(e), γλ(e)> , μ =<e, ημ(e), σμ(e), γμ(e)> be two  

Neutrosophic sets. Then  

(i) λ∩μ defined as :λ∩μ =<e, ηλ(e)⋀ημ(e), σλ(e)⋀σμ(e),γλ(e)⋁γμ(e)> 

(ii) λ∪μ defined as :λ∪μ =<e, ηλ(e)⋁ημ(e), σλ(e)⋁σμ(e), γλ(e)⋀γμ(e)> 

Proposition 2.9 [11] 

 For all λ and μ are two Neutrosophic sets then the following condition are true: 

(i) (λ∩μ)C=λC∪μC 

(ii) (λ∪μ)C=λC∩μC.  

Definition 2.10 [16]   

A Neutrosophic topology is a non-empty set E is a family τN of  Neutrosophic subsets in E satisfying 

the following axioms:  

(i) 0N, 1N ∈τN , 

(ii) G1∩G2∈τN for any G1, G2∈τN, 

(iii) ∪Gi∈τN for any family {Gi ⎸i∈J}⊆τN. 

 the pair (E, τN) is called a Neutrosophic topological space.  

The element Neutrosophic topological spaces of τN are called Neutrosophic open sets. 

A Neutrosophic set λ is closed if and only if λC is Neutrosophic open.  

Example 2.11[16]   

Let E={e} and  

A1= {<e, .6, .6, .5>:e∈E}    

A2= {<e, .5, .7, .9>:e∈E}  

A3= {<e, .6, .7, .5>:e∈E}  

A4= {<e, .5, .6, .9>:e∈E}  

Then the family τN={0N, 1N,A1, A2, A3, A4}is called a Neutrosophic  topological space on E.  

Definition 2.12[16]   
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Let (E, τN) be Neutrosophic topological spaces  and λ={<e, ηλ(e), σλ(e), γλ(e)>:e∈E} be a Neutrosophic set 

in E. Then the Neutrosophic closure and Neutrosophic interior of λ are defined by  

Neu-cl(λ)=∩{D:D is a Neutrosophic closed set  in E and λ⊆D}  

Neu-int(λ)=∪{C:C is a Neutrosophic open set  in E and C⊆λ}.  

Definition 2.13  

Let (E, τN) be a Neutrosophic topological space. Then λ is called 

 (i) Neutrosophic regular Closed set [7] (Neu-RCS in short) if λ=Neu-Cl(Neu-Int(λ)), 

(ii) Neutrosophic α-Closed set[7] (Neu-αCS in short) if Neu-Cl(Neu-Int(Neu-Cl(λ)))⊆λ, 

(iii) Neutrosophic semi Closed set [13] (Neu-SCS in short) if Neu-Int(Neu-Cl(λ))⊆λ , 

(iv) Neutrosophic pre Closed set [18] (Neu-PCS in short) if Neu-Cl(Neu-Int(λ))⊆λ, 

Definition 2.14  

Let (E, τN) be a Neutrosophic topological space. Then λ is called 

 (i). Neutrosophic regular open set [7](Neu-ROS in short) if λ=Neu-Int(Neu-Cl(λ)), 

(ii). Neutrosophic α-open set [7](Neu-αOS in short) if λ⊆Neu-Int(Neu-Cl(Neu-Int(λ))), 

(iii). Neutrosophic semi open set [13](Neu-SOS in short) if λ⊆Neu-Cl(Neu-Int(λ)), 

(iv).Neutrosophic pre open set [18] (Neu-POS in short) if λ⊆Neu-Int(Neu-Cl(λ)), 

Definition 2.15 

Let (E, τN) be a Neutrosophic topological space. Then λ is called 

 (i).Neutrosophic generalized closed set[9](Neu-GCS in short) if Neu-cl(λ)⊆U whenever λ⊆U and U is 

a Neu-       

      OS in E , 

(ii).Neutrosophic generalized semi closed set[17] (Neu-GSCS in short) if Neu-scl(λ)⊆U    Whenever λ⊆U 

and U  

      is a Neu-OS in E, 

(iii).Neutrosophic α generalized closed set [14](Neu-αGCS in short) if Neu-αcl(λ)⊆U whenever λ⊆U 

and U is a  

        Neu-OS in E , 

 (iv).Neutrosophic generalized alpha closed set [10] (Neu-GαCS in short) if Neu-αcl(λ)⊆U whenever 

λ⊆U and U   

       is a Neu-αOS in E . 

The complements of the above mentioned Neutrosophic closed sets are called their respective 

Neutrosophic open sets. 

Definition 2.16 [8] 

 Let (E, τN) be a Neutrosophic topological space.Then λ is called Neutrosophic α generalized Semi closed 

set (Neu-αGSCS in short) if Neu-αcl(λ)⊆U whenever λ⊆U and U is a Neu-SOS in E  

The complements of Neutrosophic αGS closed sets is called Neutrosophic αGS open sets. 

3. Neutrosophic  αgs-Continuity  maps 

In this section we Introduce Neutrosophic   α-generalized semi continuity  maps  and study some of its 

properties. 

Definition 3.1.  

A maps f:(E1, τN)→( E2, σN) is called a Neutrosophic α-generalized semi continuity(Neu-αGS continuity 

in short)  f-1(μ) is a Neu-αGSCS in (E1, τN)  for every Neu-CS μ of  (E2, σN)  

Example 3.2.  

Let E1={a1,a2}, E2={b1,b2}, U=<e1,(.7,.5,.8),(.5,.5,.4)> andV=<e2,(1,.5,.9),(.2,.5,.3)>.Then τN={0N,U,1N}  and 

σN={0N,V,1N} are Neutrosophic Topologies on E1and E2 respectively.  

Define a maps f:(E1, τN)→( E2, σN)by f(a1)=b1 and f(a2)=b2. Then f is a Neu-αGS continuity  maps. 

Theorem 3.3.  

Every Neu-continuity  maps is a Neu-αGS continuity  maps. 
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Proof.  

Let f:(E1, τN)→( E2, σN) be a Neu-continuity  maps. Let λ be a Neu-CS in E2. Since f is a Neu-continuity  

maps, f-1(λ) is a Neu-CS in E1. Since every Neu-CS is a Neu-αGSCS,f-1(λ) is a Neu-αGSCS in E1. Hence f 

is a Neu-αGS continuity  maps. 

Example 3.4. 

 Neu-αGS continuity  maps is not  Neu-continuity  maps   

Let E1={a1, a2}, E2={b1, b2},U=< e1, (.5,.5,.3), (.7,.5, .8)> and V=< e2,(.4,.5,.3), (.8,.5, .9)>. Then τN={0N,U,1N} and 

σN={0N,V,1N} are Neutrosophic   sets on E1 and E2 respectively. Define a maps f:(E1, τN)→( E2, σN) by 

f(a1)=b1 and f(a2)=b2 . Since the Neutrosophic set λ=<y ,(.3,.5, .4),(.9,.5, .8)> is Neu-CS in E2, f-1(λ) is a Neu-

αGSCS but not Neu-CS in E1. Therefore f is a Neu-αGS continuity  maps but not a Neu-continuity  maps. 

Theorem 3.5.  

Every Neu-α continuity  maps is a Neu-αGS continuity  maps.  

Proof.  

Let f:(E1, τN)→( E2, σN)be a Neu- α continuity  maps. Let λ be a Neu-CS in E2. Then by hypothesis  

f-1(λ) is a Neu-αCS in E1. Since every Neu-αCS is a Neu-αGSCS,f-1(λ)is a Neu-αGSCS in E1. Hence f is a 

Neu-αGS continuity  maps. 

Example 3.6. 

 Neu-αGS continuity  maps is not  Neu-α continuity  maps 

Let E1={a1,a2}, E2={b1,b2},U=< e1,(.5,.5, .6), (.7,.5,.6)> and V=< e2 ,(.3,.5,.9), (.5,.5, .7)>. Then τN={0N,U,1N} and 

σN={0N, V, 1N} are Neutrosophic Topologies on E1 and E2 respectively. Define a maps f:(E1, τN)→( E2, σN) 

by f(a1)=b1 and f(a2)=b2. Since the Neutrosophic set  λ=< e2 , (.9,.5, .3), (.7,.5, .5)> is Neu-CS in E2, f-1(λ) is a 

Neu-αGSCS continuity  maps. 

Remark 3.7. 

 Neu-G continuity  maps and Neu-αGS continuity  maps are independent of each other. 

Example 3.8. 

 Neu-αGS continuity  maps is not  Neu-G continuity  maps. 

Let E1={a1, a2}, E2={b1, b2}, U=< e1,(.5,.5, .6), (.8,.5,.4)> and V=< e2 ,(.7,.5,.4), (.9,.5, .3)>. Then τN={0N,U,1N} 

and σN={0N,V,1N} are Neutrosophic  Topologies on E1 and E2 respectively. Define a maps  f:(E1, τN)→( E2, 

σN) by f(a1)=b1 and f(a2)=b2 .Then f is Neu-αGS continuity  maps but not Neu-G continuity  maps. 

 Since λ=< e1,(.4,.5, .7), (.3,.5, .9)> is Neu-CS in E2, f-1(λ)=< e2, (.4,.5, .7), (.7,.5, .3)> is not Neu-GCS in E1. 

Example 3.9. 

 Neu-G continuity  maps is not  Neu-αGS continuity  maps. 

Let E1={a1, a2}, E2={b1,b2}, U=<e1,(.6,.5,.4), (.8,.5,.2)> and V=<e2,(.3,.5,.7), (.1,.5, .9)>. Then τN={0N,U,1N} and 

σN={0N,V,1N} are Neutrosophic   Topologies on E1 and E2 respectively. Define a maps f:( E1, τN) →( E2, 

σN) by f(a1)=b1 and f(a2)=b2 . Then f is Neu-G continuity  maps but not a Neu-αGS continuity  maps.  

Since λ=< e2 ,(.7,.5, .3), (.9,.5, .1)> is Neu-CS in E2, f-1(λ)=< e1, (.7,.5, .3), (.9,.5,.1)> is not Neu-αGSCS in E1. 

Theorem  3.10.  

Every Neu-αGS continuity  maps is a Neu-GS continuity  maps. 

Proof.  

Let f f:(E1, τN)→( E2, σN) be a Neu-αGS continuity  maps. Let λ be a Neu-CS in E2.Then by hypothesis  

f-1(λ) Neu-αGSCS in E1. Since every Neu-αGSCS is a Neu-GSCS, f-1(λ) is a Neu-GSCS in E1. Hence f is a 

Neu-GS continuity  maps. 

Example 3.11.  

Neu-GS continuity  maps is not  Neu-αGS continuity  maps.   

Let E1={a1, a2}, E2={b1, b2}, U=< e1,(.8,.5,.4), (.9,.5,.2)> and V=< e2,(.3,.5,.9), (0.1,.5, .9)>. Then τN={0N,U,1N} 

and σN={0N,V,1N} are Neutrosophic Topologies on E1 and E2 respectively. Define a maps f:(E1, τN)→( E2, 

σN)by f(a1)=b1 and f(a2)=b2.Since the Neutrosophic   set λ=< e2,(.9,.5,.3),(.9, .5,.1)> is Neu-CS in E2, f-1(λ) is 

Neu-GSCS in E1 but not Neu-αGSCS in E1. Therefore f is a Neu-GS continuity  maps but not a Neu-αGS 

continuity  maps. 

Remark 3.12.  

Neu-P continuity  maps and Neu-αGS continuity  maps are independent of each other. 
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Example  3.13. 

 Neu-P continuity  maps is not  Neu-αGS continuity  maps Let E1={a1, a2}, E2={b1, b2},U= < e1, 

(.3,.5,.7),(.4,.5,.6)> and V=< e2,(.8,.5,.3), (.9,.5, .2)>. Then τN={0N,U,1N} and σN={0N, V, 1N } are Neutrosophic   

Topologies on E1 and E2 respectively. Define a maps f:(E1, τN)→( E2, σN)by f(a1)=b1 and f(a2)=b2.Since the 

Neutrosophic set λ=< e2,(.3,.5, .8), (.2,.5, .9)> is Neu-CS in E2, f-1(λ) is Neu-PCS in E1 but not Neu-αGSCS 

in E1. Therefore f is a Neu-P continuity  maps but not Neu-αGS continuity  maps. 

Example 3.14.  

Neu-αGS continuity  maps is not Neu-P continuity  maps 

Let E1={a1, a2}, E2={b1, b2}, U=< e1,(.4,.5,.8),(.5,.5,.7)> and V=< e1,(.5,.5,.7), (.6,.5, .6)> and W=< e2,(.8,.5,.4), 

(.5,.5,.7)>. Then τN={0N,U,V,1N} and σN={0N,W,1N} are Neutrosophic   Topologies on E1 and E2 respectively. 

Define a maps f:(E1, τN)→( E2, σN)by f(a1) = b1 and f(a2)=b2. Since the Neutrosophic   set λ=<y ,(.4,.5, .8), 

(.7,.5, .5)> is Neu-αGSCS but not Neu-PCS in E2, f-1(λ)is Neu-αGSCS in E1 but not Neu-PCS in E1. 

Therefore f is a Neu-αGS continuity  maps but not Neu-P continuity  maps. 

Theorem 3.15. 

 Every Neu-αGS continuity  maps is a Neu-αG continuity  maps. 

Proof.  

Let f:(E1, τN)→( E2, σN)be a Neu-αGS continuity  maps. Let λ be a Neu-CS in E2. Since f is Neu-αGS 

continuity  maps, f-1(λ) is a Neu-αGSCS in E1. Since every Neu-αGSCS is a Neu- αGCS, f-1(λ) is a Neu- 

αGCS in E1. Hence f is a Neu- αG continuity  maps. 

Example 3.16.  

Neu- αG continuity  maps is not Neu-αGS continuity  maps 

Let E1={a1, a2}, E2={b1, b2}, U=< e1,(.1,.5,.7),(.3,.5, .6)> and V=< e2,(.7,.5,.4), (.6,.5, .5)>.Then τN={0N,U,1N} and 

σN={0N,V,1N} are Neutrosophic   Topologies on E1 and E2 respectively. Define a maps  f:(E1, τN)→( E2, 

σN)by f(a1)=b1 and f(a2)=b2.Since the Neutrosophic  set λ=< e2,(.4,.5,.7),(.5,.5, .6)> is Neu-CS in E2, f-1(λ) is 

Neu-αGCS in E1 but not Neu-αGSCS in E1. Therefore f is a Neu-αG continuity  maps but not a Neu-αGS 

continuity  maps. 

Theorem 3.17.  

Every Neu-αGS continuity  maps is a Neu-Gα continuity  maps. 

Proof.  

Let f:(E1, τN)→( E2, σN)be a Neu-αGS continuity  maps. Let λ be a Neu-CS in E2. Since f is Neu-αGS 

continuity  maps, f-1(λ)is a Neu-αGSCS in E1. Since every Neu-αGSCS is a Neu-GαCS, f-1(λ) is a Neu-

GαCS in E1. Hence f is a Neu-Gα continuity  maps. 

Example 3.18. 

 Neu-Gα continuity  maps is not Neu-αGS continuity  maps Let E1={a1, a2}, E2={b1, b2}, U=< e1, (.5,.5,.7), 

(.3,.5, .9)> and V=< e2 ,(.6,.5,.6), (.5,.5,.7)>.Then τN={0N,U,1N } and σN={0N,V,1N} are Neutrosophic   

Topologies on E1 and E2 respectively. Define a maps f:(E1, τN)→( E2, σN)by f(a1)=b1 and f(a2)=b2. Since the 

Neutrosophic set λ=<y,(.6,.5,.6), (.7,.5, .5)> is Neu-CS in E2, f-1(λ)is Neu-Gα CS in E1 but not Neu-αGSCS 

in E1. Therefore f is a Neu-Gα  continuity  maps but not a Neu-αGS continuity  maps. 

Remark 3.19. 

 We obtain the following diagram from the results we discussed above. 
 

 
Theorem 3.20.  

A maps f:(E1,τN)→( E2,σN)is Neu-αGS continuity if and only if the inverse image of each Neutrosophic   

set in E2 is a Neu-αGSOS in E1. 
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Proof. 

first part Let λ be a Neutrosophic   set in E2. This implies λC is Neu-CS in E2. Since f is Neu-αGS continuity, 

f-1(λC) is Neu-αGSCS in E1. Since f-1(λC)=(f-1(λ))C, f-1(λ) is a Neu-αGSOS in E1. 

 Converse part Let λ be a Neu-CS in E2. Then λC is a Neutrosophic   set in E2. By hypothesis f-1(λC) is 

Neu-αGSOS in E1. Since f-1(λC)=(f-1(λ))C, (f-1(λ))C is a Neu-αGSOS in E1. Therefore f-1(λ) is a Neu-αGSCS 

in E1. Hence f is Neu-αGS continuity. 

Theorem 3.21. 

 Let f:(E1, τN)→( E2, σN)be a maps and f-1(λ) be a Neu-RCS in E1for every Neu-CS λ in E2. Then f is a Neu-

αGS continuity  maps. 

Proof. 

 Let λ be a Neu-CS in E2 and f-1(λ) be a Neu-RCS in E1. Since every Neu-RCS  is a Neu-αGSCS, f-1(λ) is a 

Neu-αGSCS in E1. Hence f is a Neu-αGS continuity  maps. 

Definition 3.22. 

 A Neutrosophic   Topology (E, τN) is said to be an 

(i)Neu-αgaU1/2(in short Neu- αgaU1/2) space ,if every Neu-αGSCS in E is a Neu-CS in E, 

(ii)Neu-αgbU1/2(in short Neu- αgbU1/2) space ,if every Neu-αGSCS in E is a Neu-GCS in E, 

(iii)Neu-αgcU1/2(in short Neu- αgcU1/2) space, if every Neu-αGSCS in E is a Neu-GSCS in E. 

Theorem 3.23. 

 Let f:(E1, τN)→( E2, σN)be a Neu-αGS continuity  maps, then f is a Neu-continuity  maps if E1 is a Neu-

αgaU1/2 space. 

Proof.  

Let λ be a Neu-CS in E2. Then f-1(λ)is a Neu-αGSCS in E1, by hypothesis.Since E1 is a Neu-αgaU1/2,f-1(λ) is 

a Neu-CS in E1. Hence f is a Neu-continuity  maps. 

Theorem  3.24.  

Let f:(E1, τN)→( E2, σN)be a Neu-αGS continuity  maps, then f is a Neu-G continuity  maps if  E1 is a Neu-

αgbU1/2 space. 

Proof.  

Let λ be a Neu-CS in E2. Then f-1(λ) is a Neu-αGSCS in E1, by hypothesis. Since E1 is a Neu- αgbU1/2,f-1(λ) 

is a Neu-GCS in E1. Hence f is a Neu-G continuity  maps. 

Theorem  3.25.  

Let f:(E1, τN)→( E2, σN)be a Neu-αGS continuity  maps, then f is a Neu-GS continuity  maps  if  E1 is a 

Neu-αgcU1/2 space. 

Proof.  

Let λ be a Neu-CS in E2. Then f-1(λ) is a Neu-αGSCS in E1, by hypothesis. Since E1 is a Neu- αgcU1/2,f-1(λ) 

is a Neu-GSCS in E1. Hence f is a Neu-GS continuity  maps. 

Theorem  3.26. 

 Let f:(E1, τN)→( E2, σN)be a Neu-αGS continuity  maps and g:( E2, σN)→( E3, ρN) be an  Neutrosophic 

continuity, then g∘f :( E1, τN)→( E3, ρN) is a Neu-αGS continuity. 

Proof.  

Let λ be a Neu-CS in E3. Then g-1(λ)is a Neu-CS in E2, by hypothesis. Since f is a Neu-αGS continuity  

maps, f-1(g-1(λ)) is a Neu-αGSCS in E1. Hence g∘f  is a Neu-αGS continuity  maps. 

Theorem  3.27.  

Let f:(E1, τN)→( E2, σN)be a maps from Neutrosophic Topology in E1 in to  a Neutrosophic  Topology E2. 

Then the following conditions set are equivalent if E1  is a Neu-αgaU 1/2 space. 

(i) f is a Neu-αGS continuity  maps. 

(ii) if μ is a Neutrosophic   set in E2 then f-1(μ) is a Neu-αGSOS in E1. 

(iii) f-1(Neu-int(μ))⊆Neu-int(Neu-Cl(Neu-int(f-1(μ)))) for every Neutrosophic   set μ in E2. 

Proof.  

(i)→ (ii): is obviously true. 
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(ii)→ (iii): Let μ be any Neutrosophic set in E2. Then Neu-int(μ) is a Neutrosophic   set in E2. Then f-

1(Neu-int(μ)) is a Neu-αGSOS in E1. Since E1 is a Neu-αgaU1/2 space, f-1(Neu-int(μ))is a Neutrosophic  set 

in E1.Therefore f-1(Neu-int(μ))=Neu-int(f-1(Neu-int(μ)))⊆Neu-int(Neu-Cl(Neu-int(f-1(μ)))). 

(iii)→(i) Let μ be a Neu-CS in E2. Then its complement μC is a Neutrosophic   set in E2. By Hypothesis  f-

1(Neu-int(μC))⊆Neu-int(Neu-Cl(Neu-int(f-1(Neu-int(μC))))).This implies that f-1(μC)⊆Neu-int(Neu-

Cl(Neu-int(f-1(Neu-int(μC))))).Hence f-1(μC) is a Neu-αOS in E1. Since every Neu-αOS is a Neu-αGSOS, f-

1(μC)is a Neu-αGSOS in E1. Therefore f-1(μ) is a Neu-αGSCS in E1. Hence f is a Neu-αGS continuity  maps. 

Theorem 3.28. 

 Let f:(E1, τN)→( E2, σN)be a maps. Then the following conditions set are equivalent if E1 is a Neu- αgaU1/2 

space. 

(i) f is a Neu-αGS continuity  maps. 

(ii) f-1(λ) is a Neu-αGSCS in E1 for every Neu-CS λ in E2. 

(iii) Neu-Cl(Neu-int(Neu-Cl(f-1(λ))))⊆f-1(Neu-Cl(λ)) for every Neutrosophic   set λ in E2. 

Proof. 

 (i)→ (ii): is obviously true. 

(ii)→ (iii): Let λ be a Neutrosophic   set in E2.Then Neu-Cl(λ) is a Neu-CS in E2. By hypothesis,f-1(Neu-

Cl(λ))is a Neu-αGSCS in E1. Since E1 is a Neu-αgaU1/2 space, f-1(Neu- Cl(λ)) is a Neu-CS in E1. Therefore 

Neu-Cl(f-1(Neu-Cl(λ)))=f-1(Neu-Cl(λ)).NowNeu-Cl(Neu-int(Neu-Cl(f-1(λ))))⊆Neu-Cl(Neu-int(Neu-Cl(f-

1(Neu-Cl(λ))))) ⊆f-1(Neu-Cl(λ)). 

(iii)→(i): Let λ be a Neu-CS in E2. By hypothesis Neu-Cl(Neu-int(Neu-Cl(f-1(λ))))⊆f-1(Neu-Cl(λ))=f-

1(λ).This implies f-1(λ) is a Neu-αCS in E1 and hence it is a Neu-αGSCS in E1. Therefore f is a Neu-αGS 

continuity  maps. 

Definition 3.29.  

Let (E, τN) be a Neutrospohic topology.The Neutrospohic alpha generalized semi closure (Neu-

αGSCl(λ)in short) for any Neutrosophic set λ is Defined as follows. Neu-αGSCl(λ)=∩{ K|𝐾is a Neu-

αGSCS in E1and λ ⊆K}. If λ is Neu-αGSCS, then Neu-αGSCl(λ)=λ. 

Theorem 3.30. 

Let f:(E1, τN)→( E2, σN)be a Neu-αGS continuity  maps. Then the following conditions set are hold. 

(i) f(Neu-αGSCl(λ))⊆Neu-Cl(f(λ)), for every Neutrosophic   set λ in E1. 

(ii) Neu-αGSCl(f-1(μ))⊆f-1(Neu-Cl(μ)),for every Neutrosophic   set μ in E2. 

Proof. 

 (i) Since Neu-Cl(f(λ))is a Neu-CS in E2 and f is a Neu-αGS continuity  maps, f-1(Neu-Cl(f(λ)))is Neu-

αGSCS in     

     E1. That is Neu-αGSCl(λ)⊆f-1(Neu-Cl(f(λ))). Therefore f(Neu-αGSCl(λ)) ⊆Neu-Cl(f(λ)),for every     

      Neutrosophic   set λ in E1. 

(ii) Replacing λ by f-1(μ) in (i) we get f(Neu-αGSCl(f-1(μ)))⊆Neu-Cl(f(f-1(μ)))⊆Neu-Cl(μ).Hence Neu-

αGSCl( 

      f-1(μ))⊆f-1(Neu-Cl(μ)), for every Neutrosophic   set μ in E2. 

4. Neutrosophic  α-Generalized Semi  Irresolute Maps 

In this section we Introduce Neutrosophic α-generalized semi irresolute maps and study some of its 

characterizations. 

Definition  4.1. 

A maps f:(E1, τN)→( E2, σN)is called a Neutrosophic   alpha-generalized semi irresolute (Neu-αGS 

irresolute) maps if f-1(λ) is a Neu-αGSCSin (E1, τN) for every Neu-αGSCS λ of (E2, σN)  

Theorem  4.2.  

Let f:(E1, τN)→( E2, σN)be a Neu-αGS irresolute, then f is a Neu-αGS continuity  maps. 

Proof.  

Let f be a Neu-αGS irresolute maps. Let λ be any Neu-CS in E2. Since every Neu-CS is a Neu-αGSCS, λ 

is a Neu-αGSCS in E2. By hypothesis f-1(λ) is a Neu-αGSCS in E2. Hence f is a Neu-αGS continuity  maps. 

Example 4.3. 

Neu-αGS continuity  maps is not Neu-αGS irresolute maps. 
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Let E1={a1, a2}, E2={b1, b2}, U=< e1,(.4,.5, .7), (.5,.5,.6)> and V=< e2 ,(.8,.5,.3), (.4,.6, .7)>. Then τN={0N,U,1N} 

and σN = {0N,V,1N} are Neutrosophic Topologies on E1 and E2 respectively. Define a maps f:(E1, τN)→( E2, 

σN)by f(a1)=b1 and f(a2)=b2. Then f is a Neu-αGS continuity. We have μ=< e2,(.2,.5, .9), (.6,.5, .5)> is a Neu-

αGSCS in E2 but f-1(μ) is not a Neu-αGSCS in E1. Therefore f is not a Neu-αGS irresolute maps. 

Theorem   4.4.  

Let f:(E1, τN)→( E2, σN)be a Neu-αGS irresolute, then f is a Neutrosophic  irresolute maps if E1 is a Neu- 

αgaU1/2 space. 

Proof. 

Let λ be a Neu-CS in E2. Then λ is a Neu-αGSCS in E2. Therefore f-1(λ) is a Neu-αGSCS in E1, by 

hypothesis. Since E1 is a Neu-αgaU1/2 space, f-1(λ) is a Neu-CS in E1. Hence f is a Neutrosophic   irresolute 

maps. 

Theorem 4.5. 

Let f:(E1, τN)→( E2, σN)and g:( E2, σN)→( E3, ρN) be Neu-αGS irresolute maps, then g∘f:( E1, τN)→( E3, ρN)is 

a Neu-αGS irresolute maps. 

Proof.  

Let λ be a Neu-αGSCS in E3. Then g-1(λ) is a Neu-αGSCS in E2. Since f is a Neu-αGS irresolute maps. f-

1((g-1(λ))) is a Neu-αGSCS in E1. Hence g∘f is a Neu-αGS irresolute maps. 

Theorem 4.6.  

Let f:(E1, τN)→( E2, σN)be a Neu-αGS irresolute and g:( E2, σN) →( E3, ρN) be Neu-αGS continuity  maps, 

then g∘f:(E1, τN)→( E3, ρN) is a Neu-αGS  continuity  maps. 

Proof.  

Let λ be a Neu-CS in E3. Then g-1(λ) is a Neu-αGSCS in E2. Since f is a Neu-αGS irresolute, 

 f-1((g-1(λ)) is a Neu-αGSCS in E1. Hence g∘f  is a Neu-αGS continuity  maps. 

Theorem 4.7. 

 Let f:(E1, τN)→( E2, σN)be a Neu-αGS irresolute, then f is a Neu-G irresolute maps if E1 is a Neu-αgbU1/2 

space. 

Proof. 

 Let λ be a Neu-αGSCS in E2. By hypothesis, f-1(λ) is a Neu-αGSCS in E1. Since E1 is a Neu- αgbU1/2 space, 

f-1(λ) is a Neu-GCS in E1. Hence f is a Neu-G irresolute maps. 

Theorem 4.8.  

Let f:(E1, τN)→( E2, σN)be a maps from a Neutrosophic Topology E1 Into  a Neutrosophic   Topology E2 

. Then the following conditions set are equivalent if E1 and E2 are Neu- αgaU1/2 spaces. 

(i) f is a Neu-αGS irresolute maps. 

(ii) f-1(μ) is a Neu-αGSOS in E1 for each Neu-αGSOS μ in E2. 

(iii) Neu-Cl(f-1(μ))⊆f-1(Neu-Cl(μ)) for each Neutrosophic   set μ of E2. 

Proof.  

(i) →(ii) : Let μ be any Neu-αGSOS in E2. Then μC is a Neu-αGSCS in E2.Since f is Neu-αGS irresolute, f-

1(μC) is a Neu-αGSCS in E1. But f-1(μC)=(f-1(μ))C.Therefore f-1(μ) is a Neu-αGSOS in E1. 

(ii)→(iii) : Let μ be any Neutrosophic set in E2and μ⊆Neu-Cl(μ). Then f-1(μ)⊆f-1(Neu-Cl(μ)). Since Neu-

Cl(μ) is a Neu-CS in E2, Neu-Cl(μ) is a Neu-αGSCS in E2. Therefore (Neu-Cl(μ))C is a Neu-αGSOS in E2. 

By hypothesis, f-1((Neu-Cl(μ))C) is a Neu-αGSOS in E1. Since f-1((Neu-Cl(μ))C)=(f-1(Neu-Cl(μ)))C,f-1(Neu-

Cl(μ)) is a Neu-αGSCS in E1. Since E1 is Neu- αgaU1/2 space,f-1(Neu-Cl(μ)) is a Neu-CS in E1. Hence Neu-

Cl(f-1(μ))⊆Neu-Cl(f-1(Neu-Cl(μ)))=f-1(Neu-Cl(μ)). That is Neu-Cl(f-1(μ))⊆f-1(Neu-Cl(μ)). 

(iii)→(i) : Let μ be any Neu-αGSCS in E2. Since E2 is Neu-αgaU1/2 space, μ is a Neu-CS in E2 and Neu-

Cl(μ)=μ.Hence f-1(μ)=f-1(Neu-Cl(μ)⊇Neu-Cl(f-1(μ)). But clearly f-1(μ)⊆Neu-Cl(f-1(μ)). Therefore Neu-Cl(f-

1(μ))=f-1(μ). This implies f-1(μ) is a Neu-CS and hence it is a Neu-αGSCS in E1. Thus f is a Neu-αGS 

irresolute maps.  

Conclusion 

In this research paper using Neu-αGSCS(Neutrosophic αgs-closed sets ) we are defined Neu-αGS 

continuity  maps and analyzed its properties.after that we were compared already existing 

Neutrosophic continuity  maps to Neu-αGSCS continuity  maps. Furthermore we were extended to this 
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maps to  Neu-αGS irresolute maps , Finally This concepts can be extended to future Research for some 

mathematical applications. 
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Abstract: The intention of this paper is to introduce the concept of GSR-closed sets in terms of 

neutrosophic topological spaces. Some of the properties of NGSR-closed sets are obtained. In 

addition, we inspect NGSR-continuity and NGSR-contra continuity in neutrosophic topological 

spaces. 
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1. Introduction 

In 1965, fuzzy concept was proposed by Zadeh [43] and he studied membership function. 

Chang [14] developed the theory of fuzzy topology in 1967. The notions of inclusion, union, 

intersection, complement, relation, convexity, and so forth, are expanded to such sets and several 

properties of these notions are established by various authors. 

Atanassov [10, 11, 12] generalized the idea of fuzzy set to intuitionistic fuzzy set by adding 

the degree of non-membership. The intuitionistic fuzzy topology was advanced by Coker [16] using 

the notion of intuitionistic fuzzy sets. Intuitionistic fuzzy point was given by Coker et.al [15]. These 

approaches gave a wide field for exploration in the area of intuitionistic fuzzy topology and its 

application. Burillo et al.[13]studied the intuitionistic fuzzy relation and their properties. Thakur et.al 

[44] introduced generalized closed set in intuitionistic fuzzy topology. Various researchers [8, 24, 26, 

33, 37, 38] extended the results of generalization of various Intuitionistic fuzzy closed sets in many 

directions. 

The concepts of neutrosophy was introduced by Florentin Smarandache [18, 19, 20] in which 

he developed the degree of indeterminacy. In comparing with more uncertain ideology, the 

neutrosophic set can accord with indeterminacy situation. Salama et.al [34,35,36] transformed the 

idea of neutrosophic crisp set into neutrosophic topological spaces and introduced generalized 

neutrosophic set and generalized neutrosophic topological Spaces. Ishwarya et.al [22] studied 

Neutrosophic semi open sets in Neutrosophic topological spaces. Abdel-Basset et.al [ 1,2,3,4,5,6] gave 

a novel  neutrosophic approach. Many researchers [28, 30, 31, 41, 42] added and studied semi open 
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sets, α open sets, pre-open sets, semi alpha open sets etc., and developed several interesting 

properties and applications in Neutrosophic Topology. Several authors [7, 25, 27, 32, 39, 44] have 

contributed in topological spaces. 

Mohana K et.al [29] introduced gsr -closed sets in soft topology in 2017. In this article we tend 

to provide the idea of NGSR-closed sets and NGSR-open sets. Also, we presented NGSR continuous 

and NGSR-contra continuous mappings. 

 

2 Preliminaries 

Definition 2.1. [20] Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the 

form A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} where μA(x), σA(x) andνA(x)represent the degree of 

membership, degree of indeterminacy and the degree of nonmembership respectively of each 

element x ∈ X to the set A. 

A Neutrosophic set A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} can be identified as an ordered triple 

〈μA(x), σA(x), νA(x)〉 in ]−0, 1+[ on X. 

Definition 2.2. [20] Let A =〈μA(x), σA(x), νA(x)〉  be a NS on X, then the complement C(A) may be 

defined as 

1. C(A) = {〈x, 1 − μA(x), 1 − νA(x)〉: x ∈ X} 

2. C(A) = {〈x, νA(x), σA(x), μA(x)〉: x ∈ X} 

3. C(A) = {〈x, νA(x), 1 − σA(x), μA(x)〉: x ∈ X} 

Note that for any two neutrosophic sets A and B, 

4.  C(A ∪ B) = C(A)  ∩ C(B) 

5. C(A ∩ B) = C(A) ∪  C(B).  

Definition 2.3. [20] For any two neutrosophic sets A = {〈x, μA(x), σA(x), νA(x)〉: x ∈ X} and B = 

{〈x, μB(x), σB(x), νB(x)〉: x ∈ X}  we may have  

1. A ⊆ B ⇔ μA(x) ≤ μB(x), σA(x) ≤ σB(x) and νA(x) ≥ νB(x)∀ x ∈ X 

2. A ⊆ B ⇔ μA(x) ≤ μB(x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x)∀ x ∈ X 

3. A ∩ B =  〈x, μA(x) ⋀ μB(x), σA(x) ⋀  σB(x) and νA(x) ⋁  νB(x)〉 

4. A ∩ B =  〈x, μA(x) ⋀ μB(x), σA(x) ⋁  σB(x) and νA(x) ⋁  νB(x)〉 

5. A ∪ B =  〈x, μA(x)  ∨ μB(x), σA(x) ⋁  σB(x) and νA(x) ∧ νB(x)〉 

6. A ∪ B =  〈x, μA(x)  ∨  μB(x), σA(x) ∧ σB(x) and νA(x) ∧ νB(x)〉 

Definition 2.4. [34] A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic 

subsets in X satisfies the following axioms: 

(NT1) 0N, 1N ∈ τ 
(NT1) G1 ∩ G2 ∈ τ for any G1, G2 ∈ τ  

(NT1)  ∪ Gi ∈ τ ∀{Gi: i ∈ J} ⊆ τ 

 

Definition 2.5. [34] Let A be an NS in NTS X. Then 

Nint(A) = ∪ {G ∶  G is an NOS in X and G ⊆ A} is called a neutrosophic interior of A 

Ncl(A) = ∩ {K ∶  K is an NCS in X and A ⊆ K} is called a neutrosophic closure of A 

Definition 2.6. [18] A NS A of a NTS X is said to be 

(1) a neutrosophic pre-open set (NPOS) if A ⊆  NInt(NCl(A)) and a neutrosophic pre-closed(NPCS) if 

NCl(NInt(A))  ⊆  A. 



Neutrosophic Sets and Systems, Vol. 28, 2019     173  

 

 
Anitha S, Mohana K and Florentin Smarandache On NGSR Closed Sets in Neutrosophic Topological Spaces 
 

(2) a neutrosophic semi-open set (NSOS) if A ⊆ NCl(NInt(A)) and a neutrosophic semi-closed set 

(NSCS) if NInt(NCl(A))  ⊆  A. 

(3) a neutrosophic α-open set (NαOS) if A ⊆  NInt(NCl(NInt(A))) and a neutrosophic α-closed set 

(NαCS) if NCl(NInt(NCl(A)))  ⊆  A. 

(4) a neutrosophic regular open set (NROS) if A =  Nint(Ncl(A)) and a neutrosophic regular closed 

set (NRCS) if Ncl(Nint(A))  =  A. 

Definition 2.7. [22] Consider a NS A in a NTS (X, τ).Then the neutrosophic semi interior and the 

neutrosophic 

semi closure are defined as 

Nsint(A) = ∪{G: G is a N Semi open set in X and G ⊆ A}  

Nscl(A) = ∩ {K: K is a N Semi closed set in X and A ⊆ K }  

Definition 2.8. [38] A subset A of a neutrosophic topological space (X, τ) is called a neutrosophic α 

generalized closed (Nαg-closed) set if Nαcl(A) ⊆ U whenever A ⊆ U and U is neutrosophic α-open 

in (X, τ). 

3. NGSR closed sets 

Definition 3.1. A NS A in a NTS X is stated to be a neutrosophic gsr closed set (NGSR-Closed set) if 

Nscl (A) ⊆ U for every A ⊆ U and U is a NROS (Neutrosophic Regular Open set) in X. 

The complement C(A) of a NGSR-closed set A is a NGSR-open set in X. 

Example 3.2. Let X = {a, b} and τ = {01, G, 1N} be NT in which G1 〈x, (0.4, 0.1), (0.3,0.2), (0.5, 0.5)〉 and 

G2  = 〈x, (0.4,0,4), (0.4, 0.3), (0.5,0.4)〉. Here A =  〈x, (0.4,0.4), (0.3,0.2), (0.4,0.5)〉  is an NGSR-closed 

set.  
Theorem 3.3. Each NCS is a NGSR-closed set in X. 

Proof. Let A ⊆  U wherein U is a NROS in X. Let A be an NCS in X. 

We got Nscl(A) ⊆  Ncl(A)  ⊆ U. Consequently A is a NGSR-closed set in X. 

Example 3.4. Let X = {a, b} and τ = {01, G, 1N} be an NT having G1 = 〈x, (0.4, 0.1), (0.3, 0.2), (0.5, 0.5)〉   

and G2  = 〈x, (0.4, 0.4), (0.4;  0.3), (0.5, 0.4〉) .Here A = 〈x, (0.4,0.4), (0.3,0.2), (0.4,0.5)〉  is an NGSR-

closed set, however not NCS. 

Theorem 3.5. Each Nα − closed set is a NGSR-closed set in X. 

Proof. Let A ⊆ U inwhich U is a NROS in X. Let A be an Nα − closed set in X. 

Now Nscl(A) ⊆  N ⊆ cl(A)  ⊆ U . Consequently A is a NGSR-closed set in X. 

Example 3.6. Let X ={a, b} and τ = {01, G, 1N} be an NT in which 

G1 =  〈x, (0.6,0.2), (0.1,0.5), (0.5, 0.4)〉  and G2 = 〈 x, (0.5, 03), (0.3, 0.2), (0.6,0.4) 〉 

Here A = 〈x, (0.6,0.3), (0.1,0.6), (0.5,0.4)  〉 is an NGSR-closed set, but not Nα-closed set as 

Ncl(Nint(Ncl(A)))  =  C(A) ⊈ A. 

Theorem 3.7. Each Nsemi-closed set is a NGSR-closed set in X. 

Proof. Suppose A is an Nsemi-closed set and 𝐴 ⊆  𝑈 wherein U is a NROS in X. Now (𝐴) =  𝐴 ∪

𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴)) ⊆ 𝐴 ∪ 𝐴 = 𝐴 . Therefore A is a NGSR-closed set in X. 

Example 3.8. Let X = {a, b} and τ = {01, G, 1N} be an NT in which 

G1 =  〈𝑥, (0.4,0.5), (0.3,0.2), (0.5,0.5)〉 and G2 =  〈𝑥, (0.4, 0.4), (0.4,0.3), (0.5, 0.4)〉  

Then 𝐴 =  〈𝑥, (0.4,0.4), (0.3,0.2), (0.4,0.5)〉  is an NGSR-closed set, however not Nsemi-closed set as 

𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝐴))  = G1  ⊈  𝐴. 
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Theorem 3.9. Each 𝑁α𝐺 − 𝑐𝑙𝑜𝑠𝑒𝑑 set is a NGSR-closed set in X. 

Proof. Let 𝐴 ⊆  𝑈 where U is a NROS in X. Let A be an 𝑁α𝐺 − 𝑐𝑙𝑜𝑠𝑒𝑑 set in X. Now 𝑁𝑠𝑐𝑙(𝐴) ⊆

𝑁α𝑐𝑙(𝐴)  ⊆ 𝑈 . Therefore A is a NGSR-closed set in X. 

Example 3.10. Let X = {a, b} and τ = {01, G, 1N} be an NT where 

G1  = 〈𝑥, (0.6, 0.2), (0.1,0.5), (0.5, 0.4)  〉 and G2 =  〈x, (0.5, 0.3), (0.3,0.2), (0.6,0.4) 〉  

Then 𝐴 = 〈𝑥, (0.6,0.3), (0.1,0.6), (0.5,0.4)〉  is an NGSR-closed set but not NαG-closed set. 

Remark 3.11. The counter examples shows that NGSR-closed set is independent of NPCS. 

 

Example 3.12. Let X = {a, b} and τ = {01, G, 1N} be an NT where 

G1 = 〈x, (0.6, 0.2), (01, 0.5), (0.5,0.4)〉 and G2  = 〈𝑥, (0.5,03. ), (0.3, 0.2), (0.6,0.4) 〉  

Here 𝐴 = 〈𝑥, (0.6,0.3), (0.1,0.6), (0.5,0.4)〉 be an NGSR-closed set, but not NPCS as Ncl(Nint(A)) = C(B) 

⊈ A . 

 

Example 3.13. Let X ={a, b} and τ = {01, G, 1N} be an NT where 

G1  =  〈𝑥, (0: 5;  0: 4), (0: 3;  0: 2), (0: 5;  0: 6)〉 ,G2 = 〈𝑥, (0: 8;  0: 7), (0: 4;  0: 3), (0: 2;  0: 3)〉 and 

G3  =  〈𝑥, (0: 2;  0: 1), (0: 3;  0: 2), (0: 8;  0: 9)〉  

Then 𝐴 =  〈𝑥, (0.5,0.3), (0.3,0.2), (0.5,0.7) 〉 is an NPCS, but not NGSR-closed set. 

 

Theorem 3.14. Consider a NTS (X, τ). Then for each A ∈ NGSR-closed set and for each B ∈ NS in X, 

𝐴 ⊆  𝐵 ⊆  𝑁𝑠𝑐𝑙(𝐴) implies B ∈ NGSR-closed in (X, τ ) . 

Proof. Assume that 𝐵 ⊆  𝑈 and U is a NROS in (X, τ ) which shows that 𝐴 ⊆  𝐵, 𝐴 ⊆ 𝑈. Via 

speculation, B ⊆ Nscl(A). Consequently 𝑁𝑠𝑐𝑙(𝐵) ⊆ 𝑁𝑠𝑐𝑙(𝑁𝑠𝑐𝑙(𝐴))  =  𝑁𝑠𝑐𝑙(𝐴) ⊆  𝑈, given that A is an 

NGSR-closed set in (X, τ ). As a result B ∈ NGSR-closed in (X, τ ). 

 

Theorem 3.15. Consider a NROS A and a NGSR-closed set in (X, τ ), then A is a NSemi-closed set in 

(X, τ ). 

Proof. Due to the fact A ⊆ A and A is a NROS in (X, τ ),Via speculation, Nscl(A) ⊆ A. 

However A ⊆ Nscl(A). Therefore Nscl(A) = A. Consequently A is a Nsemi-closed set in (X, τ). 

 

Theorem 3.16. Let (X, τ) be a NTS. Then for each A ∈ NGSR-open X and for every B ∈ NS(X), Nsint 

(A) ⊆B⊆A implies B ∈ NGSR-open set in X. 

Proof. Let A be any NGSR-open set of X and B be any NS of X. By means of speculation Nsint ⊆ B 

⊆A. Then C(A) is a NGSR-closed in X and C(A) ⊆ C(B) ⊆Nscl(C(A)). By using Theorem 3.5, C(B) is a 

NGSRclosed in (X, τ ). Thus B is a NGSR-Open in (X, τ ). Hence B ∈ NGSR-open in X. 

 

Theorem 3.17. A NS A is a NGSR-open in (X, τ ) if and only if F _ Nsint(A) everytime F is a NRCS in 

(X, τ ) and F ⊆ A. 

Proof. Necessity: Assume that A is a NGSR-open in (X, τ) and F is a NRCS in (X, τ ) such that F ⊆ A. 

Then C(F) is a NROS and C(A) ⊆ C(F). Via speculation C(A) is a NGSR-closed set in (X, τ), we’ve 

Nscl(C(A)) ⊆ C(F). Therefore F ⊆ Nsint(A). 
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Sufficiency: Let U be a NROS in (X, τ) such that C(A) ⊆ U. By hypothesis, C(U) ⊆ Nsint(A). 

Consequently Nscl(C(A)) ⊆ U and C(A) is an NGSR-closed set in (X, τ ). Thus A is a NGSR-open set 

in (X, τ). 

 

Theorem 3.18. A is Nsemi-closed if it is both Nsemi-open and NGSR-closed. 

Proof. Considering A is each Nsemi-open and NGSR-closed set in X, then Nscl(A) ⊆ A. We 

additionally have A ⊆Nscl(A). Accordingly, Nscl(A) = A. Therefore, A is an Nsemi-closed set in X. 

 

4 On NGSR-Continuity and NGSR-Contra Continuity 

Definition 4.1. Let f be a mapping from a neutrosophic topological space (X, τ ) to a neutrosophic 

topological space (Y, 𝜎). Then f is referred to as a neutrosophic gsr-continuous(NGSR-continuous) 

mapping if 𝑓−1(𝐵) is a NGSR-open set in X, for each neutrosophic-open set B in Y . 

 

Theorem 4.2. Consider a mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎). Then (1) and (2) are equal. 

(1) f is NGSR-continuous 

(2) The inverse image of each N-closed set B in Y is NGSR-closed set in X. 

Proof. This can be proved with the aid of using the complement and Definition 4.1. 

 

Theorem 4.3. Consider an NGSR-continuous mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎) then the subsequent 

assertions hold: 

(1) for all neutrosophic sets A in X, 𝑓(𝑁𝐺𝑆𝑅𝑁𝑐𝑙(𝐴))  ⊆  𝑁𝑐𝑙(𝑓(𝐴)) 

(2) for all neutrosophic sets B in Y, 𝑁𝐺𝑆𝑅𝑁𝑐𝑙 (𝑓−1(𝐵))  ⊆  𝑓−1(𝑁𝑐𝑙(𝐵)). 

Proof. (1) Let Ncl(f(A)) be a neutrosophic closed set in Y and f be NGSR-continuous, then it follows 

that 𝑓−1 (Ncl(f(A))) is NGSR-closed in X. In view that 𝐴 ⊆  𝑓−1 (𝑁𝑐𝑙(𝑓(𝐴))), 𝑁𝐺𝑆𝑅𝑐𝑙(𝐴)  ⊆

 𝑓−1 (𝑁𝑐𝑙(𝑓(𝐴))). Hence, 𝑓(𝑁𝐺𝑆𝑅𝑁𝑐𝑙(𝐴))  ⊆  𝑁𝑐𝑙(𝑓(𝐴)). 

(2) We get 𝑓(𝑁𝐺𝑆𝑅𝑐𝑙(𝑓−1 (𝐵)))  ⊆  𝑁𝑐𝑙𝑓(𝑓−1 (𝐵)))  ⊆  𝑁𝑐𝑙(𝐵). 

Hence, 𝑁𝐺𝑆𝑅𝑐𝑙(𝑓−1 (𝐵))  ⊆  𝑓−1 (𝑁𝑐𝑙(𝐵)) by way of changing A with B in (1). 

 

Definition 4.4. Let f be a mapping from a neutrosophic topological space (X, τ) to a neutrosophic 

topological space (Y, 𝜎). Then f is known as neutrosophic gsr-contra continuous(NGSR-contra 

continuous) mapping if 𝑓−1 (B) is a NGSR-closed set in X for each neutrosophic-open set B in Y . 

 

Theorem 4.5. Consider a mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎). Then the subsequent assertions are 

equivalent: 

(1) f is a NGSR-contra continuous mapping 

(2) 𝑓−1 (B) is an NGSR-closed set in X, for each NOS B in Y. 

Proof. (1)  ⟹ (2) Assume that f is NGSR-contra continuous mapping and B is NOS in Y. Then Bc is 

an NCS in Y. It follows that, 𝑓−1(𝐵𝑐) is an NGSR-open set in X. For this reason, 𝑓−1 (B) is an NGSR-

closed set in X. 

(2)  ⟹  (1) The converse is similar. 

 

Theorem 4.6. Consider a bijective mapping 𝑓 ∶  (𝑋, 𝜏 )  →  (𝑌, 𝜎). from an 
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NTS(X, 𝜏 )into an NTS(Y, 𝜎).If 𝑁𝑐𝑙(𝑓(𝐴))  ⊆  𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝐴)), for each NS B in X, then the mapping f 

is NGSR-contra continuous. 

Proof. Consider a NCS B in Y. Then 𝑁𝑐𝑙(𝐵) = 𝐵 and f is onto, by way of assumption, 

𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵)))  ⊆ 𝑁𝑐𝑙(𝑓(𝑓−1 (𝐵)))  =  𝑁𝑐𝑙(𝐵) = 𝐵. Consequently, 

𝑓−1 (𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵))))  ⊆ 𝑓−1 (𝐵). Additionally due to the fact that f is an into mapping, we have 

𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵))  =  𝑓−1 (𝑓(𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵))))  ⊆  𝑓−1 (𝐵).Consequently, 𝑁𝐺𝑆𝑅𝑖𝑛𝑡(𝑓−1 (𝐵))  =

 𝑓−1 (𝐵), so f�1(B) is an NGSR-open set in X. Hence, f is a NGSR-contra continuous mapping. 

 

5. Conclusion and Future work 

Neutrosophic topological space concept is used to deal with vagueness. This paper 

introduced NGSR closed set and some of its properties were discussed and derived some 

contradicting examples. This idea can be developed and extended in the real life applications such as 

in medical field and so on. 
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Abstract: The term topology was introduced by Johann Beredict Listing in the 19th century. Closed 

sets are fundamental objects in a topological space. In this paper, we use neutrosophic vague sets and 

topological spaces and we construct and develop a new concept namely “neutrosophic vague 

topological spaces”. By using the fundamental definition and necessary example we have defined the 

neutrosophic vague topological spaces and have also discussed some of its properties. Also we have 

defined the neutrosophic vague continuity and neutrosophic vague compact space in neutrosophic 

vague topological spaces and their properties are deliberated. 

 

Keywords: Neutrosophic vague set, neutrosophic vague topology, neutrosophic vague topological 

spaces, neutrosophic vague continuity. 

 

 

1. Introduction: 

Zadeh [19] in 1965 introduced and defined the fuzzy set which deals with the degree of 

membership/truth. Topology has become a powerful instrument of mathematical research. Topology 

is the modern version of geometry. It is commonly defined as the study of shapes and topological 

spaces. The topology is an area of mathematics, which is concerned with the properties of space that 

are preserved under continuous deformation including stretching and bending, but not tearing and 

gluing which include properties such as connectedness, continuity and boundary. The term topology 

was introduced by Johann Beredict Listing in the 19th century. Closed sets are fundamental objects in 

a topological space. In 1970, Levine [11] initiated the study of generalized closed sets.  

The theory of fuzzy topology was introduced by Chang [8] in 1967; several researches were 

conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. Atanassov [7] 

in1986 introduced the degree of non-membership/falsehood (F) and defined the intuitionistic fuzzy 

set as a generalization of fuzzy sets. Coker [9] in 1997 introduced the intuitionistic fuzzy topological 

spaces. As an extension of fuzzy set theory in 1993, the theory of vague sets was first proposed by 

Gau and Buehre[10]. Then, Smarandache [15] introduced the degree of indeterminacy/neutrality (I) 

as independent component in 1998 and defined the neutrosophic set. Various methods were 

proposed by Smarandache.et.al [13, 16, 17, 18] and Abdel-Basset.et.al [1, 2, 3] for neutrosophic sets. 
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Salama and Alblowi [12] in 2012 used this neutrosophic set and introduced neutrosophic topological 

spaces. Shawkat Alkhazaleh [14] in 2015 introduced the concept of neutrosophic vague set as a 

combination of neutrosophic set and vague set. Neutrosophic vague theory is an effective tool to 

process incomplete, indeterminate and inconsistent information. Al-Quran and Hassan [4, 5, 6] in 

2017 introduced and gave more application on neutrosophic vague soft. 

In this paper we define the notion of neutrosophic vague topological spaces and their 

properties are obtained. The purpose of this paper is to extend the classical topological spaces to 

neutrosophic vague topological spaces. Also we have defined the neutrosophic vague continuity and 

neutrosophic vague compact spaces which give the added advantage in neutrosophic vague 

topological spaces. 

2. Preliminaries 

Definition 2.1:[14] A neutrosophic vague set NVA (NVS in short) on the universe of discourse X  

written as        XxxFxIxTxA
NVNVNV AAANV  ;ˆ;ˆ;ˆ; , whose truth membership, 

indeterminacy membership and false membership functions is defined as:  

             FFxFIIxITTxT
NVNVNV AAA ,ˆ,,ˆ,,ˆ  

Where, 

1)   FT 1  

2)   TF 1  and 

3)   20 FIT . 

 

Definition 2.2:[14] Let NVA  and NVB  be two NVSs of the universe U . If 

   ;ˆˆ, iBiAi uTuTUu
NVNV

        ,ˆˆ;ˆˆ
iBiAiBiA uFuFuIuI

NVNVNVNV
 then the NVS NVA  is 

included by NVB , denoted by ,NVNV BA   where .1 ni   

Definition 2.3:[14] The complement of NVS NVA  is denoted by 
c

NVA  and is defined by  

           .1,1ˆ,1,1ˆ,1,1ˆ   FFxFIIxITTxT c
A

c
A

c
A NVNVNV

 

Definition 2.4:[14] Let NVA  be NVS of the universe U where Uui  ,    ;1,1ˆ xT
NVA  

   ;0,0ˆ xI
NVA  

   .0,0ˆ xF
NVA  Then NVA  is called unit NVS ( NV1 in short), where .1 ni   

Definition 2.5:[14] Let NVA  be NVS of the universe U where Uui  ,    ;0,0ˆ xT
NVA  

   ;1,1ˆ xI
NVA  

   .1,1ˆ xF
NVA  Then NVA  is called zero NVS ( NV0 in short), where .1 ni   
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Definition 2.6:[14] The union of two NVSs NVA  and NVB  is NVS NVC , written as 

NVNVNV BAC  , whose truth-membership, indeterminacy-membership and false-membership 

functions are related to those of NVA  and NVB  given by, 

   )],max(),,[max(ˆ 
xNVxNVxNVxNVNV BABAC TTTTxT  

   )],min(),,[min(ˆ 
xNVxNVxNVxNVNV BABAC IIIIxI  

   )],min(),,[min(ˆ 
xNVxNVxNVxNVNV BABAC FFFFxF . 

Definition 2.7:[14] The intersection of two NVSs NVA  and NVB  is NVS NVC , written as 

NVNVNV BAC  , whose truth-membership, indeterminacy-membership and false-membership 

functions are related to those of NVA  and NVB  given by, 

   )],min(),,[min(ˆ 
xNVxNVxNVxNVNV BABAC TTTTxT  

   )],max(),,[max(ˆ 
xNVxNVxNVxNVNV BABAC IIIIxI  

   )],max(),,[max(ˆ 
xNVxNVxNVxNVNV BABAC FFFFxF . 

Definition 2.8:[14] Let NVA  and NVB  be two NVSs of the universe U . If ,Uui 

           ,ˆˆ;ˆˆ;ˆˆ
iBiAiBiAiBiA uFuFuIuIuTuT

NVNVNVNVNVNV
 then the NVS NVA  and NVB , are 

called equal, where .1 ni   

Definition 2.9: Let  JiA
NVi :  be an arbitrary family of NVSs. Then  

           































 






















XxFFIITTxA

NViNViNViNViNViNViNV AJiAJiAJiAJiAJiAJii ;min,min,min,min,max,max;

 

           






























 






















XxFFIITTxA

NViNViNViNViNViNViNV AJiAJiAJiAJiAJiAJii ;max,max,max,max,min,min;

Corollary 2.10: Let NVNVNV CBA and,  be NVSs. Then 

a) NVNVNVNVNVNVNVNVNVNVNVNV DBCADBCADCBA  andand
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b) NVNVNVNVNVNVNV CBACABA  and  

c) NVNVNVNVNVNVNV CBACBCA  and  

d) NVNVNVNVNVNV CACBBA  and  

e)   NVNVNVNV BABA   

f)   NVNVNVNV BABA   

g) NVNVNVNV ABBA   

h)   NVNV AA   

i) NVNV 01   

j) NVNV 10   

Corollary 2.11: Let  JiACBA
NViNVNVNV and,,  be NVSs. Then 

a) NViNVi BAJiBA
NVNV
 eachfor  

b) 
NVNV iNViNV ABJiAB  eachfor  

c) 
NVNVNVNV iiii AAAA  and  

 

3. Neutrosophic Vague Topological Space: 

Definition 3.1: A neutrosophic vague topology (NVT) on NVX  is a family NV  of neutrosophic 

vague sets (NVS) in NVX  satisfying the following axioms: 

 NVNVNV 1,0  

 NVGG  21  for any NVGG 21,  

   NViNVi JiGG   :,  

In this case the pair  NVNVX ,  is called neutrosophic vague topological space (NVTS) and any 

NVS in NV  is known as neutrosophic vague open set (NVOS) in NVX . 
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The complement 
c
NVA  of NVOS in NVTS  NVNVX ,  is called neutrosophic vague closed set 

(NVCS) in NVX . 

Example 3.2: Let  gfeX NV ,,  and  

                 
,

8.0,4.0;9.0,7.0;6.0,2.0
,

8.0,7.0;5.0,4.0;3.0,2.0
,

9.0,5.0;8.0,6.0;5.0,1.0
,














gfexANV

                 
,

9.0,7.0;7.0,1.0;3.0,1.0
,

5.0,2.0;6.0,2.0;8.0,5.0
,

8.0,6.0;7.0,3.0;4.0,2.0
,














gfexBNV

                 
,

8.0,4.0;7.0,1.0;6.0,2.0
,

5.0,2.0;5.0,2.0;8.0,5.0
,

8.0,5.0;7.0,3.0;5.0,2.0
,














gfexCNV

                 
.

9.0,7.0;9.0,7.0;3.0,1.0
,

8.0,7.0;6.0,4.0;3.0,2.0
,

9.0,6.0;8.0,6.0;4.0,1.0
,














gfexDNV

Then the family  NVNVNVNVNVNVNV DCBA 1,,,,,0 of NVSs in  NVX   is NVT on  NVX . 

Definition 3.3: Let  NVNVX ,  be NVTS and   AAANV FITxA ˆ,ˆ,ˆ,  be NVS in NVX . Then the 

neutrosophic vague interior and neutrosophic vague closure are defined by 

    ,andinNVOSais/int NVNVNVNVNVNV AGXGGANV   

    .andinNVCSais/ NVNVNVNVNVNV KAXKKANVcl   

Note that for any NVS NVA  in  NVNVX , , we have      andint c
NV

c
NV ANVANVcl 

     .int c
NV

c
NV ANVclANV    

It can be also shown that  NVANVcl  is NVCS and  NVANV int  is NVOS in NVX . 

a) NVA  is NVCS in NVX  if and only if   NVNV AANVcl  . 

b) NVA  is NVOS in NVX  if and only if   NVNV AANV int . 

Example 3.4: Let  feX NV ,  and let  NVNVNV GG 1,,,0 21  be NVT on X , where  

           
and

7.0,5.0;8.0,6.0;5.0,3.0
,

8.0,6.0;9.0,7.0;4.0,2.0
,1














fexG
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           
.

5.0,3.0;6.0,2.0;7.0,5.0
,

4.0,1.0;3.0,1.0;9.0,4.0
,2














fexG  

If
            












6.0,4.0;8.0,5.0;6.0,4.0

,
7.0,5.0;7.0,4.0;5.0,3.0

, fexANV
 then   

 
            












7.0,5.0;8.0,6.0;5.0,3.0

,
8.0,6.0;9.0,7.0;4.0,2.0

,int 1
fexGANV NV and  

 
            












5.0,3.0;4.0,2.0;7.0,5.0

,
4.0,2.0;3.0,1.0;6.0,8.0

,1
fexGANVcl c

NV . 

Proposition 3.5: Let NVA  be any NVS in NVX . Then 

i)     NVNVNVNV ANVclANV  11int  and 

ii)     NVNVNVNV ANVANVcl int11   

Proof: (i) By definition    .andinNVCSais/ NVNVNVNVNVNV KAXKKANVcl   

  

    
 
 

 NVNV

NVNVNVNVNVNV

NVNVNVNVNVNV

NVNVNVNVNVNVNVNV

ANV
AGXGG
KAXKK

KAXKKANVcl









1int
1andinNVOSanis/

andinNVCSais/1
andinNVCSais/11

 

(ii) The proof is similar to (i). 

Proposition 3.6: Let  NVNVX ,  be a NVTS and NVNV BA ,  be NVSs in NVX . Then the following 

properties hold: 

a)   NVNV AANV int ,              

 NVNV ANVclA   )a  

b)    NVNVNVNV BNVANVBA intint  ,             

   NVNVNVNV BNVclANVclBA )b     

c)     NVNV ANVANVNV intintint  ,                 

    NVNV ANVclANVclNVcl )c  

d)      NVNVNVNV BNVANVBANV intintint  ,    

     NVNVNVNV BNVclANVclBANVcl )d   
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e)   NVNVNV 11int  ,                 

  NVNVNVcl 00)e   

Proof: (a), (b) and (e) are obvious, (c) follows from (a) 

d) From    NVNVNV ANVBANV intint   and    NVNVNV BNVBANV intint  we 

obtain      NVNVNVNV BNVANVBANV intintint  . 

 On the other hand, from the facts   NVNV AANV int  and   NVNV BBNV int  

    NVNVNVNV BABNVANV  intint  and     NVNVNV BNVANV  intint  we see 

that      NVNVNVNV BANVBNVANV  intintint , for which we obtain the required 

result. 

    ea   They can be easily deduced from    ea  . 

Definition 3.7: A NVS   AAANV FITxA ˆ,ˆ,ˆ,  in NVTS  NVNVX ,  is said to be  

i) Neutrosophic Vague semi closed set (NVSCS) if    ,int NVNV AANVclNV   

ii) Neutrosophic Vague semi open set (NVSOS) if   ,int NVNV ANVNVclA    

iii) Neutrosophic Vague pre- closed set (NVPCS) if    ,int NVNV AANVNVcl   

iv) Neutrosophic Vague pre-open set (NVPOS) if   ,int NVNV ANVclNVA   

v) Neutrosophic Vague  -closed set (NV CS) if     ,int NVNV AANVclNVNVcl   

vi) Neutrosophic Vague  -open set (NV OS) if    ,intint NVNV ANVNVclNVA   

vii) Neutrosophic Vague semi pre- closed set (NVSPCS) if     ,intint NVNV AANVNVclNV   

viii) Neutrosophic Vague semi pre-open set (NVSPOS) if    ,int NVNV ANVclNVNVclA   

ix) Neutrosophic Vague regular open set (NVROS) if   ,int NVNV ANVclNVA   

x) Neutrosophic Vague regular closed set (NVRCS) if   .int NVNV ANVNVclA   

4. Neutrosophic Vague continuity: 
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Definition 4.1: We define the image and preimage of NVSs. Let NVX  and NVY   be two nonempty 

sets and NVNV YXf :  be a function, then the following statements hold: 

a) If       XxxFxIxTxB BBBNV  ;ˆ;ˆ;ˆ;
 
is a NVS in NVY , then the preimage of  NVB  

under  f, denoted by  NVBf 1
, is the NVS in NVX  defined by  

                 
           NVBBBNV XxxFfxIfxTfxBf   ;ˆ;ˆ;ˆ; 1111 . 

b) If       NVAAANV XxxFxIxTxA  ;ˆ;ˆ;ˆ;
 
is a NVS in NVX , then the image of NVA  

under  f, denoted by  NVAf , is the NVS in NVY  defined by 

                     
           NVAAANV YyyFfyIfyTfyAf  ;ˆ;ˆ;ˆ; infinfsup

 

where, 

    

   






 




 

otherwise0,      

if,ˆsupˆ
1

sup
1

yfxT
yTf A

yfxA  

    
   





 





 

otherwise1,      

if,ˆinfˆ
1

inf
1

yfxI
yIf A

yfxA  

    
   





 





 

otherwise1,      

if,ˆinfˆ
1

inf
1

yfxF
yFf A

yfxA  

for each NVYy . 

Corollary 4.2: Let  JiAA
NViNV ,  be NVSs in NVX ,  KjBB

NVjNV ,  be NVSs in NVY  and 

NVNV YXf :  a function. Then  

a)        
NVNVNVNVNVNVNVNV

BfBfBBAfAfAA 2
1

1
1

212121 ,   , 

b)   NVNV AffA 1  (If  f   is injective, then   NVNV AffA 1 ), 

c)    NVNV BBff 1
 (If  f   is surjective, then    NVNV BBff 1

), 

d)    
NVNV jj BfBf 11   , 

e)    
NVNV jj BfBf 11   , 
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f)    
NVNV ii AfAf  , 

g)    
NVNV ii AfAf   (If  f  is injective, then    

NVNV ii AfAf  ), 

h)   NVNVf 111 
, 

i)   NVNVf 001 
, 

j)   NVNVf 11  , if  f  is surjective, 

k)   NVNVf 00  , 

l)    NVNV AfAf  , if  f  is surjective, 

m)    NVNV BfBf 11   . 

Definition 4.3: Let  NVNVX ,  and  NVNVY ,  be two NVTSs and let 

   NVNVNVNV YXf  ,,:   be a function. Then f  is said to be neutrosophic vague continuous 

mapping iff the preimage of each neutrosophic vague closed set is in NVY   is neutrosophic vague 

closed set in NVX . 

Definition 4.4: Let  NVNVX ,  and  NVNVY ,  be two NVTSs and let 

   NVNVNVNV YXf  ,,:   be a function. Then f  is said to be neutrosophic vague open 

mapping iff the image of each neutrosophic vague open set is in NVX   is neutrosophic vague open 

set in NVY . 

5. Neutrosophic Vague Compact Space: 

 

Definition 5.1: Let  NVNVX ,  be NVTS. 

i) If a family  JiFITx
iii AAA :,,,  of NVOSs in X satisfies the condition 

  NVAAA JiFITx
iii

1:,,,  , then it is called neutrosophic vague open cover of X. A 

finite subfamily of neutrosophic vague open cover  JiFITx
iii AAA :,,,  of X, which 
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is also a neutrosophic vague cover of X, is called a neutrosophic vague finite subcover of 

 JiFITx
iii AAA :,,, . 

ii) A family  JiFITx
iii BBB :,,,  of NVCSs in X satisfies the finite intersection 

property iff every finite subfamily  niFITx
iii BBB ,....,2,1:,,,   of the family satisfies 

the condition   NV

n

i
BBB iii

FITx 0,,,
1




 . 

Definition 5.2: A NVTS  NVNVX ,  is called neutrosophic vague compact iff every neutrosophic 

vague open cover of X has a neutrosophic vague finite subcover. 

 

Corollary 5.3: A NVTS  NVNVX ,  is neutrosophic vague compact iff every family 

 JiFITx
iii BBB :,,,  of NVCSs in X having the FIP has a nonempty intersection. 

 

Corollary 5.4: Let  NVNVX , ,  NVNVY ,  be NVTSs and    NVNVNVNV YXf  ,,:   a 

neutrosophic vague continuous surjection. If  NVNVX ,  is neutrosophic vague compact, then so 

is  NVNVY , . 

Definition 5.5: Let  NVNVX ,  be NVTS and NVA  a NVS in X. 

i) If a family  JiFITx
iii AAA :,,,  of NVOSs in X satisfies the condition 

  JiFITxA
iii AAANV  :,,, , then it is called neutrosophic vague open cover of 

NVA . A finite subfamily of neutrosophic vague open cover  JiFITx
iii AAA :,,,  of 

NVA , which is also a neutrosophic vague cover of NVA , is called a neutrosophic vague 

finite subcover of  JiFITx
iii AAA :,,, . 

ii) A NVS in a NVTS  NVNVX ,  is called neutrosophic vague compact iff every 

neutrosophic vague cover NVA  of has a neutrosophic vague finite subcover.  
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Corollary 5.6: Let  NVNVX , ,  NVNVY ,  be NVTSs and    NVNVNVNV YXf  ,,:   a 

neutrosophic vague continuous function. If NVA  is neutrosophic vague compact in  NVNVX , , 

then so if  NVAf  in  NVNVY , . 

Conclusion:  Thus we have given the definition for neutrosophic vague topological spaces and 

suitable examples are also given. Along with those definition neutrosophic vague continuity and 

neutrosophic vague compact spaces where also discussed. Further, we can compare with all the 

neutrosophic vague sets and neutrosophic vague continuous functions in neutrosophic vague 

topological spaces. 
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Abstract: Many problems in life are filled with ambiguity, uncertainty, impreciseness …etc., 

therefore we need to interpret these phenomena. In this paper, we will focus on  studying  

neutrosophic Weibull  distribution and its family,  through  explaining its special cases , and  the 

functions' relationship with   neutrosophic Weibull such as Neutrosophic Inverse Weibull, 

Neutrosophic Rayleigh, Neutrosophic three parameter Weibull, Neutrosophic Beta Weibull, 

Neutrosophic five Weibull, Neutrosophic six Weibull distributions (various parameters).This study 

will enable us to deal with indeterminate or inaccurate  problems in a flexible manner. These 

problems will follow   this family of distributions. In addition, these distributions are applied   in 

various domains, such as reliability, electrical engineering, Quality Control ….. etc. Some properties 

and examples for these distributions are discussed. 

Keywords: Weibull distribution, Neutrosophic logic, Neutrosophic number, Neutrosophic Weibull, 

Neutrosophic inverse Weibull, Neutrosophic Rayleigh, Neutrosophic Weibull with (three, four, 

five, six) parameters. 

 

1. Introduction 

The real world is overstuffed with vague, unclear, fuzzy (problems, situations, ideas). The classical 

probability ignores extreme, aberrant, unclear values, and therefore a new adequate tool had to 

emerge. Neutrosophic logic was introduced by Smarandache in 1995, as a generalization for the fuzzy 

logic and intuitionistic fuzzy logic [5, 6]. Smarandache [3, 7, 8]   and Salamaa.et.al [3, 4] were 

presented the fundamental concepts of neutrosophic set.  Smarandache extended the fuzzy set to the 

neutrosophic set [1, 3], introducing the neutrosophic components T, I, F which represent the 

membership, indeterminacy, and non-membership values respectively, where]-0, 1+[ is the non-

standard unit interval. Smarandache presented the neutrosophic statistics, which the data can be 

enigmatic, vague, imprecise, incomplete, even unknown. 

The extension of classical distributions according to the neutrosophic logic means that the parameters 

of classical distribution take undetermined values[1,2,3,10], which allows dealing with all the 

situations that one may encounter while working with statistical data and especially when working 

with vague and inaccurate statistical data, such as the sample size may not be exactly known. The 

sample size could be between 50 and 70;  the statistician is not sure about 20 sample persons if they 

belong or not to the population of interest; or because the 20 sample persons only partially belong to 

the population of interest, while partially they don’t belong. This mean, in classical statistics all data 
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are determined, while in neutrosophic statistic the data or a part of it are indeterminate in some 

degree. The neutrosophic researchers presented   studies in objects different in neutrosophic statistic, 

such as Salama, Rafief [29], Abdel-Basset and others, see [20-28].  For more than a decade, Weibull 

distribution has been applied extensively in many areas and particularly used in the analysis of 

lifetime data for reliability engineering or biology (Rinne, 2008). However, the Weibull distribution 

has a weakness for modeling phenomenon with non-monotone failure rate. In this paper, we will 

define  and  study the Neutrosophic Weibull distribution, Neutrosophic family Weibull distribution 

for varies cases as Neutrosophic Weibull, Neutrosophic beta Weibull, Neutrosophic inverse Weibull, 

Neutrosophic Rayleigh, Neutrosophic with (three, four, five, six) parameters, and discuss some 

properties of these distributions, illustrated through examples and graphs. 

 

2. Terminologies   

In this section, we present some basic axioms of neutrosophic logic, and in particular, the work of 

Smarandache in [3, 7, 8] and Salama et al. [3, 4]. Smarandache introduced the neutrosophic 

components T, I, F which represent the membership, indeterminacy, and non-membership values 

respectively, where ] 0-,1+[  is nonstandard unit interval. 

 

2.1 Some definitions  

Definition 1 [1, 2, 3] "Neutrosophy is a new branch of philosophy which studies the origin, nature, 

and scope of neutralities, as well as their". 

Definition 2 [1, 2, 3] Let T, I,F be real standard or nonstandard subsets of ] 0-,1+[, with 

Sup_T=t_sup, inf_T=t_inf 

Sup_I=i_sup, inf_I=i_inf 

Sup_F=f_sup, inf_F=f_inf 

n-sup=t_sup+i_sup+f_sup 

n-inf=t_inf+i_inf+f_inf, 

T, I, F are called neutrosophic components. 

Definition 3 [4, 5] Let X be a non-empty fixed set. A neutrosophic set ( NS for short) A is an object 

having the form {x, (𝜇𝐴(𝑥), 𝛿𝐴(𝑥), 𝛾𝐴(𝑥)): 𝑥 ∈ 𝑋}  , where 𝜇𝐴(𝑥), 𝛿𝐴(𝑥)  𝑎𝑛𝑑  𝛾𝐴(𝑥)  which represent 

the degree of member ship function , the degree of indeterminacy , and the degree of non-member 

ship , respectively of each element x ∈ X to the set A . 

Definition 4 [4, 5]  The NSS  0N  and  1N in X as follows: 

0𝑁 may be defined as: 

01 = {𝑥  0,0,1: 𝑥 ∈ 𝑋} 

02 = {𝑥  0,1,1: 𝑥 ∈ 𝑋} 

03 = {𝑥  0,1,0: 𝑥 ∈ 𝑋} 

04 = {𝑥  0,0,0: 𝑥 ∈ 𝑋} 

 1𝑁 may be defined as: 

11 = {𝑥  1,0,0: 𝑥 ∈ 𝑋} 

12 = {𝑥  1,0,1: 𝑥 ∈ 𝑋} 

13 = {𝑥  1,0,0: 𝑥 ∈ 𝑋} 

14 = {𝑥  1,1,1: 𝑥 ∈ 𝑋} 

2.2 Neutrosophic probability  
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Neutrosophic probability is a generalization of the classical probability in which the chance that event  

𝐴 = { 𝑋, 𝐴1, 𝐴2, 𝐴3} occurs is P(A1 ) true, P(A2 ) indeterminate , P(A3 ) false on a space X, then  

𝑁𝑃(𝐴) = { 𝑋, 𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3)}  . 

Definition 5 [3,4] 

Let A and B be a neutrosophic events on a space X, then 𝑁𝑃(𝐴) = { 𝑋, 𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3)}   

And  𝑁𝑃(𝐵) = { 𝑋, 𝑃(𝐵1), 𝑃(𝐵2), 𝑃(𝐵3)} their neutrosophic probabilities. 

Definition 6 [3,4] 

Let A and B be a neutrosophic events on a space X, and𝑁𝑃(𝐴) = { 𝑋, 𝑃(𝐴1), 𝑃(𝐴2), 𝑃(𝐴3)}, and  

𝑁𝑃(𝐵) = { 𝑋, 𝑃(𝐵1), 𝑃(𝐵2), 𝑃(𝐵3)}  are neutrosophic probabilities. Then we define 

𝑁𝑃(𝐴 ∩ 𝐵) = { 𝑋, 𝑃(𝐴1 ∩ 𝐵1), 𝑃(𝐴2 ∩ 𝐵2), 𝑃(𝐴3 ∩ 𝐵3)}   

𝑁𝑃(𝐴 ∪ 𝐵) = { 𝑋, 𝑃(𝐴1 ∪ 𝐵1), 𝑃(𝐴2 ∪ 𝐵2), 𝑃(𝐴3 ∪ 𝐵3)}   

 NP(Ac) = { X, P(A1
c), P(A2

c) , P(A3
c)}   

3 Weibull Distribution 

Weibull distribution is one of most important distributions because it is widely used in reliability 

analysis, industrial and electrical engineering, in distribution of life time, in extreme value theory, … 

etc.; this distribution has various cases dependent on number of parameters such as two or three or 

five parameters α is the scale parameter, β is the shape parameter and γ is the location parameter. 

Also, it can be used to model a state where the failure function increases, decreases or remains 

constant with time. 

4 Neutrosophic Weibull Distribution 

A neutrosophic Weibull distribution (Neut-Weibull) of a continuous variable X is a classical Weibull 

distribution of x, but such that its mean α or β or γ are unclear or imprecise. 

For example, α or β or γ can be an interval (open or closed or half open or half close) or can be set(s) 

with two or more elements. Then, the probability density function (p.d.f.) is: 

𝑓𝑁(𝑋) =
𝛽𝑁

𝛼𝑁
𝛽𝑁 

𝑋𝛽𝑁−1𝑒−(𝑋 𝛼𝑁⁄ )𝛽𝑁  , 𝑋 > 0, Where 𝛽𝑁: is the shape parameter of distribution Net-Weibull, 

𝛼𝑁: is the scale parameter of distribution Net- Weibull, such that N is a neutrosophic number. 

4.1 Properties of Neutrosophic Weibull Distribution 

 The distribution function (c.d.f.) is: 

     𝐹𝑁(𝑋) = 1 − 𝑒−(𝑋 𝛼𝑁⁄ )𝛽𝑁 ,         

     𝐸𝑁(𝑋) = 𝛼𝑁Γ (
𝛽𝑁+1

𝛽𝑁
),         

     𝑉𝑁(𝑋) = 𝛼2
𝑁 [Γ (

𝛽𝑁+2

𝛽𝑁
)] − [Γ (

𝛽𝑁+1

𝛽𝑁
)]

2

.       

 The hazard function is: 

   ℎ𝑁 = 𝛽𝑁𝑋𝛽𝑁−1𝑋(𝛽𝑁−1 𝛼𝑁⁄ )𝛽𝑁 .        

 The moment rth about mean is: 

              𝛼𝑁
𝑟Γ (𝛽𝑁 +

𝑟

𝛽𝑁
)       

 So, the reliability or survival function is: 
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              𝐹𝑁
̅̅ ̅(𝑋) = 𝑒−(𝑋 𝛼𝑁⁄ )𝛽𝑁 .         

Now, we put 𝛽𝑁=1 in the formula (1), and we get the neutrosophic exponential distribution [13]. 

4.2 Example of Neutrosophic Weibull distribution 

Let the product be an electric generator produced with high capacity of trademark that has a Weibull 

distribution with parameter α=1, β=[1.5,2]. Compute  the probability of electric generator fails before 

the expiration of a five years warranty. 

Solution : 

 In this example, we note that the shape parameter is indeterminate. 

The electric generator can work through  to one  year:  

             𝑓𝑁(𝑋) =
[1.5,2]

𝛼𝑁
[1.5,2] 𝑋[1.5,2]−1𝑒−(𝑋 𝛼𝑁⁄ )[1.5,2]

 

If  we take 𝛽 = 1.5  , and   𝛼 = 1 

             𝑓𝑁(𝑋 = 1) = 0.5518 

the probability of electric generator fails before the expiration of a five years warranty: 

            𝑃(𝑋 ≤ 5) = 1 − 𝑒−(5 1⁄ )1.5
, = 0. 999986 

If we take 𝛽 = 2  , and   𝛼 = 1 

            𝑓𝑁(𝑋 = 1) = 0.7357 

           𝑃(𝑋 ≤ 5) = 1 − 𝑒−(5 1⁄ )5
, = 0. 999999 

Thus, the probability that the electric machine fails has the  range between [0.5518, 0.7357]. 

Now, suppose  𝛽 = 2  and = [1,2] , i.e  the scale  parameter 𝛼 is indeterminate. 

We take  𝛼 = 1 and  𝛽 = 2  

           𝑓𝑁(𝑋 = 1) =
2

𝑒1 = 0.7357 

We take  𝛼 = 2     and   𝛽 = 2    

       𝑓𝑁(𝑋 = 1) =
1

2𝑒1/4 = 0.3894 

   In this case, the probability that the electric machine fails has the range between [0.7357, 0.3894]. 

Also, we can  take more values of X, showed in Figure (1). 

     Now, we  can compute  

𝐹𝑁(𝑋) = 1 − 1/𝑒 = 0.6321 ,    𝑖𝑓 𝛼 = 1  

𝐹𝑁(𝑋) = 1 − 𝑒
1

1.2840⁄ = 0.2212 ,       𝑖𝑓 𝛼 = 2. 
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        Figure 1: Neutrosophic Weibull distribution. 

4.3 Comparison between Neutrosophic Weibull distribution and Weibull distribution  

1- In classical Weibull, we noted that if the  𝛽 = 3.6  𝑜𝑟 𝑚𝑜𝑟𝑒 , the probability distribution 

function (p.d.f) takes value error because it is greater than one, and this contradicts with law 

of probability,consedered Extreme values, while in neutrosophic Weibull this is applicable. 

See Figure (2). 

2- In classical Weibull distribution, when X is increasing, the p.d.f. is decreasing, while in 

Neutrosophic Weibull distribution the p.d.f is unpredictable because of the aberrant values. 

3- Many values that are larger than one are neglected in Weibull distribution, meanwhile in 

Neutrosophic Weibull these values are considered. 

4- When 𝛼 = 𝛽 = 1, the p.d.f. will equal zero when X=701,while in neutrosophic Weibull X can 

be of other values such as X={701,100} or [701,100] in this case p.d.f can be of different values. 

 

     Figure 2: p.d.f of neutrosophic Weibull more than one. 
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5 The Family of Neutrosophic Weibull 

In this section, we study the various types of Net-Weibull, such as  neutrosophic Rayleigh 

distribution, neutrosophic inverse Weibull distribution, neutrosophic Beta-Weibull distribution and 

(three, four, five, six)-parameters Weibull distributions. 

5.1  Neutrosophy Rayleigh Distribution 

A Rayleigh distribution is often observed when the total size of a vector is linked to its 

directional components. Considering this distribution is important in the error analysis of various 

systems or individuals. It is also considered as a model for testing life failure/expiration. Rayleigh 

distribution is used in the study of the event of sea wave rise in the oceans and the study of wind 

speed, as well as in the information of the strength of signals and radiation at peak time of 

communications. The distribution is widely applied: 

 In communications theory, to model multiple paths of dense scattered signals getting to a 
receiver; 

 In the physics, to model wind speed, wave heights and sound/light radiation; 

 In engineering, to measure the lifetime of an object, since the lifetime depends on the object’s age 
(resistors, transformers, and capacitors in aircraft radar sets); 

 In medical imaging examination, to study noise variance in magnetic resonance imaging. 

Now, we define the  probability density function of neutrosophic Rayleigh  distribution as follows:  

 𝑅𝑁(𝑋) =
𝑋

𝛿𝑁
2 𝑒−𝑋2    2𝛿𝑁

2⁄    ,   𝑋 > 0, 𝛿𝑁  is the scale parameter.  

this parameter  𝛿𝑁 can take the values of an interval or a set: 

cumulative distribution is  𝐹𝑁(𝑋) = 1 − 𝑒−𝑋2    2𝛿𝑁
2⁄ , 

the mean of Neutrosophic Rayleigh distribution is 

      E(X) = 𝛿𝑁 √
𝜋

2
, 

the variance:  var(x) = 2-π/2 𝛿𝑁
2. 

5.2 Neutrosophic Weibull with 3 Parameters 

We can obtain the  neutrosophic Weibull with 3-parameters by relaying  on  Weibull with 2-

parameters and adding the third parameter, namely the location parameter (𝛾), this is in classical 

probability . Now, we define the neutrosophic Weibull with three parameters  (an indeterminacy 

may exist in one parameter or in all parameters). Neutrosophic Weibull with 3-parameters is defined 

as follows: 

     𝑓𝑁(𝑋) = [𝛽𝑁
(𝑋−𝛾𝑁)𝛽𝑁−1

𝛼𝑁
𝛽𝑁 

]𝑒−((𝑋−𝛾𝑁) 𝛼𝑁⁄ )𝛽𝑁      , 𝛾𝑁 ≤  𝑋 

 The distribution function is: 

     𝐹𝑁(𝑋) = 1 − 𝑒−((𝑋−𝛾𝑁) 𝛼𝑁⁄ )𝛽𝑁       , 𝛾𝑁 ≤  𝑋 

 The hazard function is: 

     ℎ𝑁(𝑋) = 𝛽𝑁    (𝑋 − 𝛾𝑁)𝛽𝑁(1  𝛼𝑁⁄ )𝛽𝑁  ,      𝛾𝑁 ≤  𝑋 

 The survival function is 

        𝐹𝑁
̅̅ ̅(𝑋) = 𝑒−((𝑋−𝛾𝑁) 𝛼𝑁⁄ )𝛽𝑁        

 The variance  

https://en.wikipedia.org/wiki/Euclidean_vector#Vector_components
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𝑉𝑁(𝑋) = 𝛼2
𝑁 [Γ (

𝛽𝑁+2

𝛽𝑁
)] − [Γ (

𝛽𝑁+1

𝛽𝑁
)]

2

, 

 The expected value  𝐸𝑁(𝑋) = 𝛾𝑁 + 𝛼𝑁Γ (
𝛽𝑁+1

𝛽𝑁
). 

5.3 Four-Parameter Neutrosophic-Beta-Weibull 

The Beta-Weibull was first proposed by Famoye et al. (2005) [11,12, 15]. We now define the new 

density function of neutrosophic-Beta-Weibull distribution (NBW) in neutrosophic logic with 

indeterminacy points for random variable or parameters as follows: 

      𝑓(𝑋) =
 Γ (𝑐𝑁+𝛾𝑁)

Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁
(

 𝑋

𝛽𝑁
)

𝛼𝑁−1

[1 − 𝑒−(𝑋 𝛽𝑁⁄ )𝛼𝑁  ]𝑐𝑁−1𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁       

                                𝑋 > 0, 𝛾𝑁 , 𝛽𝑁 , 𝛼𝑁 > 0 

where these parameters  𝛾𝑁 , 𝛽𝑁 , 𝛼𝑁 can be set(s) or interval (closed or open or half): 

Because lim
𝑥→0

𝑓(𝑋) = lim
𝑥→0

 
 Γ (𝑐𝑁+𝛾𝑁)

Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁
(

 𝑋

𝛽𝑁
)

𝛼𝑁−1

[1 − 𝑒−(𝑋 𝛽𝑁⁄ )𝛼𝑁  ]
𝑐𝑁−1

𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁   

=
 Γ (𝑐𝑁 + 𝛾𝑁)

   Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁

(
 𝑋

𝛽𝑁

)
𝛼𝑁−1

𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁  [1 − 𝑒−(𝑋 𝛽𝑁⁄ )𝛼𝑁  ]
𝑐𝑁−1

  

=
 Γ (𝑐𝑁 + 𝛾𝑁)

   Γ (𝑐𝑁)Γ(𝛾𝑁)

 𝛼𝑁

𝛽𝑁

(
 𝑋

𝛽𝑁

)
𝛼𝑁−1

𝑒−𝛾𝑁(𝑋 𝛽𝑁⁄ )𝛼𝑁  [1 −
1

2!
(

 𝑋

𝛽𝑁

)
𝛼𝑁

  +
1

3!
(

 𝑋

𝛽𝑁

)
2𝛼𝑁

−
1

4!
(

 𝑋

𝛽𝑁

)
3𝛼𝑁

+ ⋯ ]

𝑐𝑁−1

 

Then the probability of density function is equal to  

= lim
𝑥→0

 𝛼𝑁

𝛽𝑁

 Γ (𝑐𝑁+𝛾𝑁)

   Γ (𝑐𝑁)Γ(𝛾𝑁)
(

 𝑋

𝛽𝑁
)

𝛼𝑁−1

={

∞
 𝛼𝑁

𝛽𝑁

 Γ (𝑐𝑁+𝛾𝑁)

  Γ (𝑐𝑁)Γ(𝛾𝑁)

0

𝛼𝑁 𝑐𝑁 < 1
𝛼𝑁 𝑐𝑁 = 1
𝛼𝑁 𝑐𝑁 > 1

} 

where 𝛽𝑁 , 𝑐𝑁 , 𝛾𝑁 , 𝛼𝑁, are  Neutrosophy numbers.  

 When 𝑐𝑁 = 𝛾𝑁 = 1, then the (NBW) is reduced to neutrosophic Weibull distribution. 

 When  𝛽𝑁 = 𝛼𝑁 = 1, 𝑐𝑁 = 2, 𝛾𝑁  = 𝛿√2, the NBW is reduced to neutrosophy Rayleigh. 

 In (1958)  Kies defined the survival function to Weibull with four parameters in classical 

distribution. 

Here we define Neutrosophic survival function in Neutrosophic distribution as follows: 

 𝐹𝑁
̅̅ ̅(𝑋) = 𝑒

{−𝛾𝑁(
 𝑥−𝛼𝑁
𝛽𝑁−𝑥

)
𝑘𝑁

}
, 𝛾𝑁 > 0, 𝑘𝑁 > 0, 0 < 𝛼𝑁 < 𝑋 < 𝛽𝑁 < ∞. 

5.4 Neutrosophic Weibull Distribution with 5 Parameters 

Phani in (1987) [14] suggested model with survival function has five parameters. We define the 

neutrosophic Weibull with 5-parameters: 

𝐹𝑁
̅̅ ̅(𝑋) = 𝑒

−𝛾𝑁 [𝑋−𝛼𝑁]𝑏1  

[𝛽𝑁− 𝑋]𝑏2
  ,    𝛾𝑁 , 𝑏1 , 𝑏2 > 0,      0 < 𝛼𝑁 < 𝑋 < 𝛽𝑁 < ∞. 

5.5 Neutrosophic Weibull Distribution with 6 Parameters 

T, W, and Uraiwan in (2014) [15] proposed a mixed distribution is Beta exponential Weibull Poisson 

distribution. We define the neutrosophic Beta exponential Weibull Poisson distribution as follows: 

Let x be the neutrosophic random variable with parameters 𝛾𝑁 , 𝑘𝑁, 𝛼𝑁, 𝛽𝑁 , 𝑏1, 𝑏2;    
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𝑓(𝑥)  =

𝛽𝑁𝛼𝑁 𝛾𝑁
  𝑘𝑁

𝛽
𝑁    𝑋𝛽𝑁−1 𝑢(1−𝑢)𝛼𝑁−1𝑒𝛾𝑁(1−𝑢)𝛼𝑁 

   B(𝑏1,𝑏2)(𝑒  𝛾𝑁 −1)
 . [

𝑒𝛾𝑁(1−𝑢)𝛼𝑁 −1

(𝑒  𝛾𝑁 −1)
]

𝛼𝑁−1

[1 −
𝑒𝛾𝑁(1−𝑢)𝛼𝑁 −1

(𝑒  𝛾𝑁 −1)
]

𝑏1𝑁−1

 

where  𝑢 = 𝑒−(𝑋𝑘𝑁)𝛽𝑁 . 

5.6 Neutrosophic Inverse Weibull Distribution 

Keller et al. (1985) used the inverse Weibull distribution for reliability analysis of commercial vehicle 

engines. Here, we define Neutrosophic inverse Weibull distribution as follows: 

 𝑓𝑁(𝑡) = 𝛽𝑁𝛼𝑁
𝛽𝑁 𝑡−𝛽𝑁−1𝑒−(𝛼𝑁 𝑡⁄ )𝛽𝑁 ,   𝑡 > 0, So the Hazard function is ℎ𝑁(𝑡) =

𝛽𝑁𝛼𝑁

𝛽𝑁 𝑡−𝛽𝑁−1𝑒−(𝛼𝑁 𝑡⁄ )
𝛽𝑁

 

1−𝑒−(𝛼𝑁 𝑡⁄ )
𝛽𝑁

. 

6 Applications 

Many  applications of Weibull families distributions are suitable for modeling and analysis of  

floods, rainfall, sea, electronic, manufacturing products, navigation and transportation control. The 

theories and tools of reliability engineering are applied into widespread fields, such as electronic and 

manufacturing products, aerospace equipment, earthquake and volcano forecasting, communication, 

navigation and transportation control, medical processor to the survival analysis of human being or 

biological species, and so on [14]. So the neutrosophic has the multi-applied in Decision-making, 

introduced by Abdel-Basset and others. 

7 Conclusions 

The study of neutrosophic probability distributions gives us a more comprehensive space in the 

applied field, as it takes into account more than the value of the distribution parameters and not only 

one value as in the classical distributions, and thus we will be able to solve and explain many of the 

issues that have been hindering us or we tended to ignore in classical logic. In this paper, we defined 

th new neutrosophic clasical distribution,  the neutrosophic Weibull distribution and neutrosophic 

family Weibull (neutrosophic inverse Weibull, Neutrosophic Rayleigh  distribution, Neutrosophic 

Weibull distribution with (3, 4, 5, 6)-parameters, and give clear  examples. Because the weibull 

distribution has many applications in different fields.such as control system, relability and others. 

We also  study some properties of these distributions (mean, variance, failure function and reliability 

function). In the future, we will apply these distributions to  many problems and we will examine 

other distributions in neutrosophic logic. 
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Abstract: In this research article we actually deals with the conception of pentagonal Neutrosophic 

number from a different frame of reference. Recently, neutrosophic set theory and its extensive 

properties have given different dimensions for researchers. This paper focuses on pentagonal 

neutrosophic numbers and its distinct properties. At the same time, we defined the disjunctive cases of 

this number whenever the truthiness, falsity and hesitation portion are dependent and independent to 

each other. Some basic properties of pentagonal neutrosophic numbers with its logical score and 

accuracy function is introduced in this paper with its application in real life operation research problem 

which is more reliable than the other methods. 

Keywords: Neutrosophic set, neutrosophic number, Pentagonal Neutrosophic number; Score and Ac-

curacy function. 

 

1. Introduction 

Recently, handling the uncertainty and vagueness is considered as one of the prominent research topic 

around the world. In this regard, mathematical algebra of Fuzzy set theory [1] has provided a well-

established tool to deal with the same. Vagueness theory plays a key role to solve problems related with 

engineering and statistical computation. It is widely used in social science, networking, decision making 

problem or any kind of real life problem. Motivating from fuzzy sets the Atanassov [2] proposed the 

legerdemain idea of an intuitionistic fuzzy set in the field of Mathematics in which he considers the 

concept of membership function as well as non-membership function in case of intuitionistic fuzzy set. 

Afterwards, the invention of Liu F, Yuan XH in 2007 [3], ignited the concept of triangular intuitionistic 

fuzzy set, which in reality is the congenial mixture of triangular fuzzy set and intuitionistic fuzzy set. 

Later, Ye [4] introduced the elementary idea of trapezoidal intuitionistic fuzzy set where both truth 

function and falsity function are both trapezoidal number in nature instead of triangular. The uncer-

tainty theory plays an influential role to create some interesting model in various fields of science and 

technological problem.  

Smarandache in 1995 (published in 1998) [5] manifested the idea of neutrosophic set where there are 

three different components namely i) truthiness, ii) indeterminacies, iii) falseness. All the aspect of neu-

trosophic set is very much pertinent with our real-life system. Neutrosophic concept is a very effective 

& an exuberant idea in real life. Further, R. Helen [7] introduced the pentagonal fuzzy number and A. 
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Vigin [8] applied it in neural network. T.Pathinathan [9] gives the concept of reverse order triangular, 

trapezoidal, pentagonal fuzzy number. Later, Wang et al. [10] invented the perception of single typed 

neutrosophic set which so much useful to solve any complex problem. Later, Ye [11] presented the con-

cept of trapezoidal neutrosophic fuzzy number and its application. A.Chakraborty [12] developed the 

conception of triangular neutrosophic number and its different form when the membership functions 

are dependent or independent. Recently, A.Chakraborty [13] also developed the perception of pentag-

onal fuzzy number and its different representation in research domain. Christi [14] applied the concep-

tion of pentagonal intuitionistic number for solving a transportation problem. Later, Chen [15, 16] 

solved MCDM problem with the help of FN-IOWA operator and using trapezoidal fuzzy number 

analyse fuzzy risk ranking problem respectively. Recently, S. Broumi [17-19] developed some important 

articles related with neutrosophic number in different branch of mathematics in various real life prob-

lems. Moreover, Prem [20-25] invented some useful results in neutrosophic arena, mainly associated 

with computer science engineering problem and networking field. Chakraborty A. [26, 27] applied the 

idea of vagueness in mathematical model for diabetes and inventory problem respectively. Recently, 

Abdel-Basset [28-34] introduced some interesting articles co-related with neutrosophic domain in 

disjunctive fields like MCDM problem; IoT based problem, Supply chain management problem, cloud 

computing problem etc. K . Mondal [35,36] apply the concept of neutrosophic number in teacher 

recruitment MCDM problem in education sector. Later, different types of developments in decision 

making problems, medical diagnoses problem and others in neutrosophic environment [37-49] are al-

ready published in this impreciseness arena. Recently, the conception of plithogenic set is being 

developed by Smarandache and it has a great impact in unceairty field in various domain of research.   

1.1 Motivation 

The perception of vagueness plays a crucial role in construction of mathematical modeling, engi-

neering problem and medical diagnoses problem etc. Now there will be an important issue that if some-

one considers pentagonal neutrosophic number then what will be the linear form and what is the geo-

metrical figure? How should we categorize the type-1, 2, 3 pentagonal neutrosophic numbers when the 

membership functions are related to each other? From this aspect we actually try to develop this re-

search article. Later we invented some more interesting results on score and accuracy function and other 

application. 

1.2 Contribution 

         In this paper, researchers mainly deal with the conception of pentagonal neutrosophic number in 

different aspect. We introduced the linear form of single typed pentagonal neutrosophic fuzzy number 

for distinctive categories. Basically, there are three categories of number will comes out when the three 

membership functions are dependent or independent among each other, namely Category-1, 2, 3 pen-

tagonal neutrosophic numbers. All the disjunctive categories and their membership functions are ad-

dressed here simultaneously.  

Researchers from all around the globe are very much interested to know that how a neutrosophic num-

ber is converted into a crisp number. Day by day, as research goes on they developed lots of techniques 

to solve the problem. We developed score and accuracy function and built up the conception of conver-

sion of pentagonal neutrosophic fuzzy number in to a crisp number. In this current era, researchers are 

very much interested in doing transportation problem in neutrosophic domain. In this phenomenon, 

we consider a transportation problem in pentagonal neutrosophic domain where we utilize the idea of 

our developed score and accuracy function for solving the problem. 

1.3 Novelties 

There are a large number of works already published in this neutrosophic fuzzy set arena. Re-

searchers already developed several formulations and application in various fields. However there will 
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be many interesting results are still unknown. Our work is to try to develop the idea in the unknown 

points.   

 Introduced the distinctive form of pentagonal neutrosophic fuzzy number and its definition 

for different cases.  

 The graphical representation of pentagonal neutrosophic fuzzy number. 

 Development of score and accuracy function.  

 Application in transportation problem.  

1.4 Verbal Phrase on Neutrosophic Arena 

In case of daily life, an interesting question often arises: How can we connect the conception of vague-

ness and neutrosophic theory in real life domain and what are the verbal phrases in case of it? 

Example:  Let us consider a problem of vote casting. Suppose in an election we need to select some 

number of candidates among a finite number of candidates. People have different kind of emotions, 

feelings, demand, ethics, dream etc. So according to their viewpoint it can be any kind of fuzzy number 

like interval number, triangular fuzzy, intuitionistic, neutrosophic fuzzy number. Let us check the ver-

bal phrases in each different case for the given problem. 
 

Table 1.3.1: Verbal Phrases 

Distinct parameter Verbal Phrase Information 

Interval Number [Low, High] 

Voter will select according to their first prior-

ity within a certain range like [2nd, 3rd] candi-

date. 

Triangular Fuzzy 

Number 
[Low, Median, High] 

Voter will select according to their first prior-

ity containing an intermediate candidate like 

[1st,2nd,3rd] 

Intuitionistic 

(Triangular) 

[Standard,Median,High; 

Very Low,Poor,Low] 

Voters will select some candidate directly and 

reject others immediately according to their 

view. 

Neutrosophic 

(Pentagonal) 

[VeryLow,Low,Me-

dian,High, 

Very High; 

VeryLow,Low,Me-

dian,High, 

Very High; 

VeryLow,Low,Me-

dian,High, 

Very High] 

Some Voters will select directly some candi-

dates, some of them are in hesitation in cast-

ing vote and some of them directly reject vot-

ing according to their own viewpoints. 

It can be observed that,in 1st coloum of the above table which contains distinct parameters like interval 

number, triangular fuzzy number, triangular intuitionistic fuzzy number and neutrosophic number, 

obviously neutrosophic concept gives us a more reliable and logical result since it will contain truth,false 

as well as the hesitation information absent in the other parameters. Also it is a key question why we 

take pentagonal neutrosophic instead of triangular or trapezoidal? Now, if we observe the verbal phrase 

section we can observe that, in case of triangular it will contain only three phrase like low,median,high 

and trapezoidal contains four like low, semi median, quasi median,high. Suppose some voters choose 

truth part very strongly and reject the other two sections because these are very low or someone chooses 

truth part in an average way since he/she thought that rest of the portions are very low. That means we 

need to develop the verbal phrase such that it will contain much more distict categories. Pentagonal 
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shapes give us atleast five disjunctive verbal categories like very low, low, median, high, very high 

which is much more logical, strong and it also contains more sensitive cases than the rest sections.   

1.5 Need of Pentagonal Neutrosophic Fuzzy Number 

The pentagonal neutrosophic fuzzy number stretches us superfluous opportunity to characterize flawed 

knowledge which leads to construct logical models in several realistic problems in a new way. Pentag-

onal neutrosophic represents the data and information in a complete way and the truth, hesitation and 

falsity can be characterized in more accurate and normal technique. The info is reserved throughout the 

operation and the full material can be utilized by the decision maker for further investigation. It can be 

finding its applications in different optimization complications, decision making problems and eco-

nomic difficulties etc. which need fifteen components. In case of transportation problem, if the numbers 

of variable are five for each of the three components then it is problematic to signify by using Triangular 

or Trapezoidal neutrosophic Fuzzy numbers. Therefore, pentagonal neutrosophic fuzzy number can 

invention its dynamic applications in resolving the problem.  

1.6 Structure of the paper  

The article is developed as follows:  

              
2. Mathematical Preliminaries 

Definition 2.1: Fuzzy Set: [1] A setB̃, defined asB̃ = {(x, μB̃(x)): x ∈ X, μB̃(X) ∈ [0,1]} and generally de-

noted by the pair(x, μB̃(x)), 𝑥 belongs to the crisp set 𝑋 and μB̃(X) belongs to the interval[0, 1], then set 

B̃ is called a fuzzy set. 

Definition 2.2: Intuitionistic Fuzzy Set (IFS):  An Intuitionistic fuzzy set [2] 𝑆̃ in the universal discourse 

𝑋  which is denoted generically by 𝑥  is said to be a Intuitionistic set if 𝑆̃ = {〈𝑥; [𝜏(𝑥), 𝜑(𝑥)]〉 ⋮ 𝑥 ∈ 𝑋}, 

where 𝜏(𝑥): 𝑋 → [0,1] is named as the truth membership function which indicate the degree of assur-

ance, 𝜑(𝑥): 𝑋 → [0,1] is named the indeterminacy membership function which shows the degree of 

vagueness. 

𝜏(𝑥), 𝜑(𝑥) parades the following the relation 0 ≤ 𝜏(𝑥) + 𝜑(𝑥) ≤ 1. 

2.3 Definition: Neutrosophic Set: Smarandache[5] A set 𝑁𝑒𝐴̃ in the universal discourse 𝑋, symbolically 

denoted by 𝑥, it is called a neutrosophic set if 𝑁𝑒𝐴̃ = {〈𝑥; [𝛼𝑁𝑒𝐴̃(𝑥), 𝛽𝑁𝑒𝐴̃(𝑥), γ𝑁𝑒𝐴̃(𝑥)]〉 ⋮ 𝑥 ∈ 𝑋}, where 

𝛼𝑁𝑒𝐴̃(𝑥): 𝑋 → [0,1] is said to be the truth membership function, which represents the degree of assur-

ance, 𝛽𝑁𝑒𝐴̃(𝑥): 𝑋 → [0,1]  is said to be the indeterminacy membership, which denotes the degree of 

vagueness, and 𝛾𝑁𝑒𝐴̃(𝑥): 𝑋 → [0,1] is said to be the falsity membership, which indicates the degree of 

skepticism on the decision taken by the decision maker. 
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𝛼𝑁𝑒𝐴̃(𝑥), 𝛽𝑁𝑒𝐴̃(𝑥)&𝛾𝑁𝑒𝐴̃(𝑥)exhibits the following relation: −0 ≤ 𝛼𝑁𝑒𝐴̃(𝑥) + 𝛽𝑁𝑒𝐴̃(𝑥) + 𝛾𝑁𝑒𝐴̃(𝑥) ≤ 3 +. 

2.4 Definition: Single-Valued Neutrosophic Set: A Neutrosophic set 𝑁𝑒𝐴̃ in the definition 2.1 is said 

to be a single-Valued Neutrosophic Set (𝑆𝑁𝑒𝐴̃) if 𝑥 is a single-valued independent variable. 𝑆𝑁𝑒𝐴̃ =

{〈𝑥; [𝛼𝑆𝑁𝑒𝐴̃(𝑥), 𝛽𝑆𝑁𝑒𝐴̃(𝑥), γ𝑆𝑁𝑒𝐴̃(𝑥)]〉 ⋮ 𝑥 ∈ 𝑋}, where 𝛼𝑆𝑁𝑒𝐴̃(𝑥), 𝛽𝑆𝑁𝑒𝐴̃(𝑥)&γ𝑆𝑁𝑒𝐴̃(𝑥) denoted the concept of 

accuracy, indeterminacy and falsity memberships function respectively. 

If there exist three points  𝑎0, 𝑏0&𝑐0 , for which𝛼𝑆𝑁𝑒𝐴̃(𝑎0) = 1, 𝛽𝑆𝑁𝑒𝐴̃(𝑏0) = 1 &γ𝑆𝑁𝑒𝐴̃(𝑐0) = 1 , then the  

𝑆𝑁𝑒𝐴̃ is called neut-normal.  

𝑆𝑛𝑆̃is called neut-convex, which implies that 𝑆𝑛𝑆̃ is a subset of a real line by satisfying the following 

conditions:  

i. 𝛼𝑆𝑁𝑒𝐴̃〈𝛿𝑎1 + (1 − 𝛿)𝑎2〉 ≥ 𝑚𝑖𝑛〈𝛼𝑆𝑁𝑒𝐴̃(𝑎1), 𝛼𝑆𝑁𝑒𝐴̃(𝑎2)〉 

ii. 𝛽𝑆𝑁𝑒𝐴̃〈𝛿𝑎1 + (1 − 𝛿)𝑎2〉 ≤ 𝑚𝑎𝑥〈𝛽𝑆𝑁𝑒𝐴̃(𝑎1), 𝛽𝑆𝑁𝑒𝐴̃(𝑎2)〉 

iii. 𝛾𝑆𝑁𝑒𝐴̃〈𝛿𝑎1 + (1 − 𝛿)𝑎2〉 ≤ 𝑚𝑎𝑥〈𝛾𝑆𝑁𝑒𝐴̃(𝑎1), 𝛾𝑆𝑁𝑒𝐴̃(𝑎2)〉 

Where𝑎1&𝑎2 ∈ ℝ 𝑎𝑛d 𝛿 ∈ [0,1] 

2.5 Definition: Single-Valued Pentagonal Neutrosophic Number: A Single-Valued Pentagonal Neu-

trosophic Number (𝑆̃)  is defined as 𝑠̃ =

〈[(𝑚1, 𝑛1, 𝑜1, 𝑝1, 𝑞1); 𝜋], [(𝑚2, 𝑛2, 𝑜2, 𝑝2, 𝑞2); 𝜌], [(𝑚3, 𝑛3, 𝑜3, 𝑝3, 𝑞3); 𝜎]〉, where 𝜋, 𝜌, 𝜎 ∈ [0,1]. The accuracy 

membership function(𝜏𝑆̃): ℝ → [0, 𝜋], the indeterminacy membership function (𝜄𝑆̃):ℝ → [𝜌, 1] and the 

falsity membership function (𝜀𝑆̃): ℝ → [𝜎, 1] are given as: 

𝜏𝑆̃(𝑥) =

{
 
 

 
 
𝜏𝑆𝑙1̃(𝑥)

𝜏𝑆𝑙2̃(𝑥)
𝜇

𝜏𝑆𝑟2̃(𝑥)

𝑚1 ≤ 𝑥 < 𝑛1

𝑛1 ≤ 𝑥 < 𝑜1

𝑥 = 𝑜1

𝑜1 ≤ 𝑥 < 𝑝1

𝜏𝑆𝑟1̃(𝑥)𝑝
1 ≤ 𝑥 < 𝑞1

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

,   𝜄𝑆̃(𝑥) =

{
 
 

 
 
𝑙𝑆𝑙1̃(𝑥)

𝑙𝑆𝑙2̃(𝑥)

𝜗
𝑙𝑆𝑟2̃(𝑥)

𝑚2 ≤ 𝑥 < 𝑛2

𝑛2 ≤ 𝑥 < 𝑜2

𝑥 = 𝑜2

𝑜2 ≤ 𝑥 < 𝑝2

𝑙𝑆𝑟1̃(𝑥)𝑝
2 ≤ 𝑥 < 𝑞2

1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝜀𝑆̃(𝑥) =

{
 
 

 
 
𝜀𝑆𝑙1̃(𝑥)

𝜀𝑆𝑙2̃(𝑥)

𝜗
𝜀𝑆𝑟2̃(𝑥)

𝑚3 ≤ 𝑥 < 𝑛3

𝑛3 ≤ 𝑥 < 𝑜3

𝑥 = 𝑜3

𝑜3 ≤ 𝑥 < 𝑝3

𝜀𝑆𝑟1̃(𝑥)𝑝
3 ≤ 𝑥 < 𝑞3

1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

3. Linear Generalized Pentagonal Neutrosophic number: 

In this section, we introduce the linear and generalized neutrosophic number.  

3.1 Pentagonal Single Typed Neutrosophic Number of Specification 1: When the quantity of the 

truth, hesitation and falsity are independent to each other. 

A Pentagonal Single typed Neutrosophic Number (PTGNEU) of specification 1 is described as𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 =

(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5; 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5; 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5; 𝜏), whose truth membership; hesitation membership and 

falsity membership are specified as follows: 
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𝑇𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) =

{
 
 
 
 

 
 
 
 𝜏

𝑥 − 𝑝1
𝑝2 − 𝑝1

𝑖𝑓𝑝1 ≤ 𝑥 ≤ 𝑝2

1 − (1 − 𝜏)
𝑥 − 𝑝2
𝑝3 − 𝑝2

𝑖𝑓𝑝2 ≤ 𝑥 ≤ 𝑝3

1      𝑖𝑓𝑥 = 𝑝3

1 − (1 − 𝜏)
𝑝4 − 𝑥

𝑝4 − 𝑝3

𝑖𝑓𝑝3 ≤ 𝑥 ≤ 𝑝4

𝜏
𝑝5 − 𝑥

𝑝5 − 𝑝4
𝑖𝑓𝑝4 ≤ 𝑥 ≤ 𝑝5

0          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐼𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) =

{
 
 
 
 

 
 
 
 𝜏

𝑞2 − 𝑥

𝑞2 − 𝑞1
𝑖𝑓𝑞1 ≤ 𝑥 < 𝑞2

1 − (1 − 𝜏)
𝑞3 − x

𝑞3 − 𝑞2
𝑖𝑓𝑞2 ≤ 𝑥 ≤ 𝑞3

0     𝑖𝑓𝑥 = 𝑞3

1 − (1 − 𝜏)
𝑥 − 𝑞3
𝑞4 − 𝑞3

  𝑖𝑓𝑞3 ≤ 𝑥 ≤ 𝑞4

𝜏
𝑥 − 𝑞4
𝑞5 − 𝑞4

  𝑖𝑓𝑞4 ≤ 𝑥 ≤ 𝑞5

1         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐹𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) =

{
 
 
 
 

 
 
 
 𝜏

𝑟2 − 𝑥

𝑟2 − 𝑟1
𝑖𝑓𝑟1 ≤ 𝑥 < 𝑟2

1 − (1 − 𝜏)
𝑟3 − x

𝑟3 − 𝑟2
𝑖𝑓𝑟2 ≤ 𝑥 ≤ 𝑟3

0     𝑖𝑓𝑥 = 𝑟3

1 − (1 − 𝜏)
𝑥 − 𝑟3
𝑟4 − 𝑟3

  𝑖𝑓𝑟3 ≤ 𝑥 ≤ 𝑟4

𝜏
𝑥 − 𝑟4
𝑟5 − 𝑟4

  𝑖𝑓𝑟4 ≤ 𝑥 ≤ 𝑟5

1         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where −0 ≤ 𝑇𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) + 𝐼𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) + 𝐹𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) ≤ 3 +, 𝑥 ∈ 𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 

The parametric form of the above type number is 

(𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢)𝜇,𝜗,𝜑
= [

𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜇), 𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜇), 𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜇), 𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜇);

𝐼𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜗), 𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜗), 𝐼𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜗), 𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜗);

𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑), 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑), 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑), 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑)

] 

where, 𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜇) = 𝑝1 +
𝜇

𝜏
(𝑝2 − 𝑝1)  for 𝜇 ∈ [0, 𝜏], 𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜇) = 𝑝2 +

1−𝜇

1−𝜏
(𝑝3 − 𝑝2)for𝜇 ∈ [𝜏, 1] 

𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜇) = 𝑝4 −
1−𝜇

1−𝜏
(𝑝4 − 𝑝3)for𝜇 ∈ [𝜏, 1],    𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜇) = 𝑝5 −

𝜇

𝜏
(𝑝5 − 𝑝4)for𝜇 ∈ [0, 𝜏] 

𝐼𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜗) = 𝑞2 −
𝜗

𝜏
(𝑞2 − 𝑞1)for𝜗 ∈ [𝜏, 1],     𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜗) = 𝑞3 −

1−𝜗

1−𝜏
(𝑞3 − 𝑞2)for𝜗 ∈ [0, 𝜏] 

𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜗) = 𝑞3 +
1−𝜗

1−𝜏
(𝑞4 − 𝑞3)for𝜗 ∈ [0, 𝜏],      𝐼𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜗) = 𝑞4 +

𝜗

𝜏
(𝑞5 − 𝑞4)for𝜗 ∈ [𝜏, 1] 

𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑) = 𝑟2 −
𝜑

𝜏
(𝑟2 − 𝑟1)for𝜑 ∈ [𝜏, 1],    𝐹𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜑) = 𝑟3 −

1−𝜑

1−𝜏
(𝑟3 − 𝑟2)for𝜑 ∈ [0, 𝜏] 

𝐹𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜑) = 𝑟3 +
1−𝜑

1−𝜏
(𝑟4 − 𝑟3)for𝜑 ∈ [0, 𝜏],    𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜑) = 𝑟4 +

𝜑

𝜏
(𝑟5 − 𝑟4)for𝜑 ∈ [𝜏, 1] 

Here,0 < 𝜇 ≤ 1, 0 < 𝜗 ≤ 1, 0 < 𝜑 ≤ 1 and −0 < 𝜇 + 𝜗 + 𝜑 ≤ 3 + 
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Figure 3.1: Graphical figure of Linear Pentagonal Neutrosophic Number. 

Note 3.1 - Description of above figure: In this above figure we shall try to address the graphical repre-

sentation of linear pentagonal neutrosophic number. The pentagonal shaped black marked line actually 

indicate the truthiness membership function, pentagonal shaped red marked line denotes the falseness 

membership function and pentagonal shaped blue marked line pointed the indeterminacy membership 

function of this corresponding number. Here, 𝜏 is a variable which follows the relation 0 ≤ 𝜏 ≤ 1. If 𝜏 =

0 𝑜𝑟 1 then the pentagonal number will be converted into triangular neutrosophic number. 

3.2 Pentagonal Single Typed Neutrosophic Number of Specification 2: If the sections of Hesitation 

and Falsity functions are dependent to each other 

A Pentagonal Single Typed Neutrosophic Number (PTGNEU) of specification 2 is described as 

𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5; 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5; 𝜃𝑃𝑡𝑔𝑁𝑒𝑢 , 𝛿𝑃𝑡𝑔𝑁𝑒𝑢) whose truth membership; hesitation mem-

bership and falsity membership are specified as follows: 

 

𝑇𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) =

{
 
 
 
 

 
 
 
 𝜏

𝑥 − 𝑝1
𝑝2 − 𝑝1

𝑖𝑓𝑝1 ≤ 𝑥 ≤ 𝑝2

1 − (1 − 𝜏)
𝑥 − 𝑝2
𝑝3 − 𝑝2

𝑖𝑓𝑝2 ≤ 𝑥 ≤ 𝑝3

1      𝑖𝑓𝑥 = 𝑝3

1 − (1 − 𝜏)
𝑝4 − 𝑥

𝑝4 − 𝑝3

𝑖𝑓𝑝3 ≤ 𝑥 ≤ 𝑝4

𝜏
𝑝5 − 𝑥

𝑝5 − 𝑝4
𝑖𝑓𝑝4 ≤ 𝑥 ≤ 𝑝5

0          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝐼𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) =

{
 
 
 
 
 

 
 
 
 
 
𝑞2 − 𝑥 + 𝜃𝑃𝑡𝑔𝑁𝑒𝑢(𝑥 − 𝑞1)

𝑞2 − 𝑞1
  𝑖𝑓 𝑞1 ≤ 𝑥 < 𝑞2

𝑞3 − 𝑥 + 𝜃𝑃𝑡𝑔𝑁𝑒𝑢(𝑥 − 𝑞2)

𝑞3 − 𝑞2
  𝑖𝑓𝑞2 ≤ 𝑥 < 𝑞3

𝜃𝑃𝑡𝑔𝑁𝑒𝑢𝑖𝑓𝑥 = 𝑞3
𝑥 − 𝑞3 + 𝜃𝑃𝑡𝑔𝑁𝑒𝑢(𝑞4 − 𝑥)

𝑞4 − 𝑞3

𝑖𝑓𝑞3 ≤ 𝑥 < 𝑞4

𝑥 − 𝑞4 + 𝜃𝑃𝑡𝑔𝑁𝑒𝑢(𝑞5 − 𝑥)

𝑞5 − 𝑞4
      𝑖𝑓𝑞4 ≤ 𝑥 < 𝑞5

1               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

𝐹𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) =

{
 
 
 
 
 

 
 
 
 
 
𝑞2 − 𝑥 + 𝛿𝑃𝑡𝑔𝑁𝑒𝑢(𝑥 − 𝑞1)

𝑞2 − 𝑞1
  𝑖𝑓 𝑞1 ≤ 𝑥 < 𝑞2

𝑞3 − 𝑥 + 𝛿𝑃𝑡𝑔𝑁𝑒𝑢(𝑥 − 𝑞2)

𝑞3 − 𝑞2
  𝑖𝑓𝑞2 ≤ 𝑥 < 𝑞3

𝛿𝑃𝑡𝑔𝑁𝑒𝑢𝑖𝑓𝑥 = 𝑞3
𝑥 − 𝑞3 + 𝛿𝑃𝑡𝑔𝑁𝑒𝑢(𝑞4 − 𝑥)

𝑞4 − 𝑞3

𝑖𝑓𝑞3 ≤ 𝑥 < 𝑞4

𝑥 − 𝑞4 + 𝛿𝑃𝑡𝑔𝑁𝑒𝑢(𝑞5 − 𝑥)

𝑞5 − 𝑞4
      𝑖𝑓𝑞4 ≤ 𝑥 < 𝑞5

1               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where,0 ≤  𝑇𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) + 𝐼𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) + 𝐹𝐴𝑃𝑡𝑔𝑁𝑒𝑢(𝑥) ≤ 2 +, 𝑥 ∈ 𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 

The parametric form of the above type number is 

(𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢)𝜇,𝜗,𝜑
= [

𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜇), 𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜇), 𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜇), 𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜇);

𝐼𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜗), 𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜗), 𝐼𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜗), 𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜗);

𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑), 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑), 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑), 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑)

] 

𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜇) = 𝑝1 +
𝜇

𝜏
(𝑝2 − 𝑝1)for𝜇 ∈ [0, 𝜏], 𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜇) = 𝑝2 +

1−𝜇

1−𝜏
(𝑝3 − 𝑝2)for𝜇 ∈ [𝜏, 1] 

𝑇𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜇) = 𝑝4 −
1−𝜇

1−𝜏
(𝑝4 − 𝑝3)for𝜇 ∈ [𝜏, 1],𝑇𝑃𝑡𝑔𝑁𝑒𝑢1𝑅(𝜇) = 𝑝5 −

𝜇

𝜏
(𝑝5 − 𝑝4)for𝜇 ∈ [0, 𝜏] 

𝐼𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜗) =
𝑞2−𝜃𝑃𝑡𝑔𝑁𝑒𝑢𝑞1−𝜗(𝑞2−𝑞1)

1−𝜃𝑃𝑡𝑔𝑁𝑒𝑢
for𝜗 ∈ [𝜏, 1],𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜗) =

𝑞3−𝜃𝑃𝑡𝑔𝑁𝑒𝑢𝑞2−𝜗(𝑞3−𝑞2)

1−𝜃𝑃𝑡𝑔𝑁𝑒𝑢
for𝜗 ∈ [0, 𝜏] 

𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜗) =
𝑞3−𝜃𝑃𝑡𝑔𝑁𝑒𝑢𝑞4+𝜗(𝑞4−𝑞3)

1−𝜃𝑃𝑡𝑔𝑁𝑒𝑢
for𝜗 ∈ [0, 𝜏], 𝐼𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜗) =

𝑞4−𝜃𝑃𝑡𝑔𝑁𝑒𝑢𝑞5+𝜗(𝑞5−𝑞4)

1−𝜃𝑃𝑡𝑔𝑁𝑒𝑢
for𝜗 ∈ [𝜏, 1] 

 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1𝐿(𝜑) =
𝑞2−𝛿𝑃𝑡𝑔𝑁𝑒𝑢𝑞1−𝜑(𝑞2−𝑞1)

1−𝛿𝑃𝑡𝑔𝑁𝑒𝑢
for𝜑 ∈ [𝜏, 1],𝐹𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜑) =

𝑞3−𝛿𝑃𝑡𝑔𝑁𝑒𝑢𝑞2−𝜑(𝑞3−𝑞2)

1−𝛿𝑃𝑡𝑔𝑁𝑒𝑢
for𝜑 ∈ [0, 𝜏] 

𝐹𝑃𝑡𝑔𝑁𝑒𝑢2𝑅(𝜑) =
𝑞3−𝛿𝑃𝑡𝑔𝑁𝑒𝑢𝑞4+𝜑(𝑞4−𝑞3)

1−𝛿𝑃𝑡𝑔𝑁𝑒𝑢
for𝜑 ∈ [0, 𝜏], 𝐹𝑃𝑡𝑔𝑁𝑒𝑢2𝐿(𝜑) =

𝑞4−𝛿𝑃𝑡𝑔𝑁𝑒𝑢𝑞5+𝜑(𝑞5−𝑞4)

1−𝛿𝑃𝑡𝑔𝑁𝑒𝑢
for𝜑 ∈ [𝜏, 1] 

Here, 0 < 𝜇 ≤ 1, 𝜃𝑃𝑡𝑔𝑁𝑒𝑢 < 𝜗 ≤ 1, 𝛿𝑃𝑡𝑔𝑁𝑒𝑢 < 𝜑 ≤ 1 and −0 < 𝜗 + 𝜑 ≤ 1 + and  −0 < 𝜇 + 𝜗 + 𝜑 ≤ 2 + 

 

 

 

4. Arithmetic Operations: 
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Suppose we consider two pentagonal neutrosophic fuzzy number as 𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 =

(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5; 𝜇𝑎, 𝜗𝑎, 𝜃𝑎) and 𝐵̃𝑃𝑡𝑔𝑁𝑒𝑢 = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5; 𝜇𝑏 , 𝜗𝑏 , 𝜃𝑏) then, 

i) 𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 + 𝐵̃𝑃𝑡𝑔𝑁𝑒𝑢 = [𝑝1 + 𝑞1, 𝑝2 + 𝑞2, 𝑝3 + 𝑞3, 𝑝4 + 𝑞4, 𝑝5 + 𝑞5; max{𝜇𝑎, 𝜇𝑏} ,min{𝜗𝑎, 𝜗𝑏} ,min{𝜃𝑎 , 𝜃𝑏}] 

ii) 𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 − 𝐵̃𝑃𝑡𝑔𝑁𝑒𝑢 = [𝑝1 − 𝑞5, 𝑝2 − 𝑞4, 𝑝3 − 𝑞3, 𝑝4 − 𝑞2, 𝑝5 − 𝑞1; max{𝜇𝑎, 𝜇𝑏} ,min{𝜗𝑎, 𝜗𝑏} ,min{𝜃𝑎 , 𝜃𝑏}] 

iii)    𝑘𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 = [𝑘𝑝1, 𝑘𝑝2, 𝑘𝑝3, 𝑘𝑝4, 𝑘𝑝5; 𝜇𝑎, 𝜗𝑎, 𝜃𝑎] 𝑖𝑓 𝑘 > 0,  = [𝑘𝑝5, 𝑘𝑝4, 𝑘𝑝3, 𝑘𝑝2, 𝑘𝑝1; 𝜇𝑎, 𝜗𝑎, 𝜃𝑎] 𝑖𝑓 𝑘 < 0 

iv)𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢
−1
= (1/𝑝5, 1/𝑝4, 1/𝑝3, 1/𝑝2, 1/𝑝1; 𝜇𝑎, 𝜗𝑎, 𝜃𝑎) 

5. Proposed Score and Accuracy Function: 

Score function and accuracy function of a pentagonal neutrosophic number is fully depend on the value 

of truth membership indicator degree, falsity membership indicator degree and hesitation membership 

indicator degree. The need of score and accuracy function is to compare or convert a pentagonal neu-

trosophic fuzzy number into a crisp number. In this section we will proposed a score function as follows. 

For any Pentagonal Single typed Neutrosophic Number (PTGNEU)  

𝐴̃𝑃𝑡𝑔𝑁𝑒𝑢 = (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5; 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5; 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5) 

We consider the beneficiary degree of truth indicator part as = 
𝑝1+𝑝2+𝑝3+𝑝4+𝑝5

5
 

Non- beneficiary degree of falsity indicator part as =
𝑟1+𝑟2+𝑟3+𝑟4+𝑟5

5
. 

And the hesitation degree of indeterminacy indicator as = 
𝑞1+𝑞2+𝑞3+𝑞4+𝑞5

5
 

Thus, we defined the score function as 𝑆𝐶𝑃𝑡𝑔𝑁𝑒𝑢 =
1

3
(2 +

𝑝1+𝑝2+𝑝3+𝑝4+𝑝5

5
−

𝑞1+𝑞2+𝑞3+𝑞4+𝑞5

5
−

𝑟1+𝑟2+𝑟3+𝑟4+𝑟5

5
),  

Where,  𝑆𝐶𝑃𝑡𝑔𝑁𝑒𝑢 ∈ [0,1]  and the Accuracy function is defined as 𝐴𝐶𝑃𝑡𝑔𝑁𝑒𝑢 = (
𝑝1+𝑝2+𝑝3+𝑝4+𝑝5

5
−

𝑟1+𝑟2+𝑟3+𝑟4+𝑟5

5
), 

Where, 𝐴𝐶𝑃𝑡𝑔𝑁𝑒𝑢 ∈ [−1,1], Now we conclude that 

If 𝐴𝑃𝑡𝑔𝑁𝑒𝑢 =< (1,1,1,1,1; 0,0,0,0,0; 0,0,0,0,0) > then, 𝑆𝐶𝑃𝑡𝑔𝑁𝑒𝑢 = 1 and 𝐴𝐶𝑃𝑡𝑔𝑁𝑒𝑢 = 1 

If 𝐴𝑃𝑡𝑔𝑁𝑒𝑢 =< (0,0,0,0,0; 1,1,1,1,1; 1,1,1,1,1) >  then, 𝑆𝐶𝑃𝑡𝑔𝑁𝑒𝑢 = 0and 𝐴𝐶𝑆𝑝𝑛𝑒𝑢 = −1 

5.1 Relationship between any two pentagonal neutrosophic fuzzy numbers: 

Let us consider any two pentagonal neutrosophic fuzzy number defined as follows 

𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 = (𝑇𝑃𝑡𝑔𝑁𝑒𝑢1, 𝐼𝑃𝑡𝑔𝑁𝑒𝑢1, 𝐹𝑃𝑡𝑔𝑁𝑒𝑢1) and 𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 = (𝑇𝑃𝑡𝑔𝑁𝑒𝑢2, 𝐼𝑃𝑡𝑔𝑁𝑒𝑢2, 𝐹𝑃𝑡𝑔𝑁𝑒𝑢2) if, 

                                              1) 𝑆𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 > 𝑆𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 , 𝑡ℎ𝑒𝑛 𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 > 𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 

2) 𝑆𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 < 𝑆𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 , 𝑡ℎ𝑒𝑛 𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 < 𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 

                                              3) 𝑆𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 = 𝑆𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 , 𝑡ℎ𝑒𝑛  

                                              i)𝐴𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 > 𝐴𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢2  , 𝑡ℎ𝑒𝑛 𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 > 𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 

𝑖𝑖) 𝐴𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 < 𝐴𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢2  , 𝑡ℎ𝑒𝑛 𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 < 𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 

𝑖𝑖𝑖) 𝐴𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢1 = 𝐴𝐶𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 , 𝑡ℎ𝑒𝑛 𝐴𝑃𝑡𝑔𝑁𝑒𝑢1~𝐴𝑃𝑡𝑔𝑁𝑒𝑢2 

6. Application in Neutrosophic Transportation Environment: 

6.1 Mathematical Formulation of Model-I 



Neutrosophic Sets and Systems, Vol. 28, 2019     209 

Avishek Chakraborty, Said Broumi and Prem Kumar Singh, Some properties of Pentagonal Neutrosophic Numbers and It’s 
Applications in Transportation Problem Environment 
 

 

In this section we consider a transportation problem in pentagonal neutrosophic environment where 

there are “p” sources and “q” destinations in which the decision makers need to choose a logical allot-

ment such that it can start from “m”th source and it will went to “n”th section in such a way where the 

cost become the minimum once in presence of uncertainty, hesitation in transportation matrix. We also 

consider the available resources and required values are real number in nature. 

Assumptions; 

‘m’ is the source part for all m=1,2,3……p 

‘n’ is destination part for all n=1,2,3…….q 

𝑥𝑚𝑛is amount of portion product which can be transferred from m-th source to n-th destination. 

𝑁𝑚𝑛̌is the unit cost portion in neutrosophic nature which can be transferred from m-th source to n-th 

destination. 

𝑢𝑚is the total availability of the product at the source m. 

𝑣𝑛is the total requirement of the product at the source n. 

Here, supply constraints ∑ 𝑥𝑚𝑛
𝑞
𝑛=0 = 𝑢𝑚 for all m. 

Demand constraints ∑ 𝑥𝑚𝑛
𝑝
𝑚=0 = 𝜗𝑛 for all n. 

Also, ∑ 𝜗𝑛
𝑞
𝑛=0 = ∑ 𝑢𝑚

𝑝
𝑚=0   ,𝑥𝑚𝑛 ≥ 0 

So, the mathematical formulation is, 𝑀𝑖𝑛 𝑍 = ∑ ∑ 𝑥𝑚𝑛
𝑝
𝑚=0

𝑞
𝑛=0 . 𝑁𝑚𝑛̌, Subject to the constrain, ∑ 𝑥𝑚𝑛

𝑞
𝑛=0 =

𝑢𝑚, ∑ 𝑥𝑚𝑛
𝑝
𝑚=0 = 𝜗𝑛, Where,  𝑥𝑚𝑛 ≥ 0  for all 𝑚, 𝑛. 

Proposed Algorithm to find out the optimal solution of Model-I: 

Step-1: Conversion of each pentagonal neutrosophic numbers into crisp using our proposed score func-

tions and creates the transportation matrix into crisp system. 

Step-2: Calculate the non-negative difference for each row and column between the smallest and next 

smallest elements row and column wise respectively. 

Step-3: Take the highest difference and placed the availability or demand into the minimum allocated 

cell of the matrix. In case of tie in highest difference take any one arbitrarily. 

Step-4: The process is going on unless and until the final optimal matrix is created. Lastly, check the 

number of allocated cells in the final matrix; it should be equal to row+column-1. 

Step-5: Now, calculate the minimum total cost using the allocated cells. 

Illustrative Example: 

A company has three factories A, B, C which supplies some materials at D, E and F on monthly basis 

with pentagonal neutrosophic unit transportation cost whose capacities are 12,14,4 units respectively 

and the transportation matrix is defined as below and the requirements are 9, 10, 11 respectively. The 

problem is to find out the optimal solution and the minimum transportation cost.  

 A B C Available 

 

D 

<(10,15,20,25,30; 

0,3,5,7,10; 

0,1,2,3,4)> 

<(1,1,1,1,1; 

0,0,0,0,0; 

0,0,0,0,0)> 

<(10,20,30,40,50; 

1,4,7,8,10; 

0,1,1.5,2,2.5,3)> 

 

12 

 

E 

<(2,3,4,7,9; 

0,0.5,1,1.5,2; 

0,0,0,0,0)> 

<(5,10,15,20,25; 

1,2,3,4,5; 

1,1.5,2,2.5,3)> 

<(0,0.5,1,1.5,2.5; 

0,0.5,1,1.5,2; 

0,0,0,0,0)> 

 

14 

 

F 

<(5,9,11,12,13; 

0,1,2,2.5,4.5; 

<(10,15,20,25,30; 

0,2,4,6,8; 

<(15,20,25,30,50; 

0,3,7,10,15; 

 

4 
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0,0.5,1,1.5,2)> 0,0,0,0,0)> 1,2,4,5,8)>  

Required 9 10 11  

Step-1 

Table-1: We convert this pentagonal neutrosophic transportation problem in to a crisp model using the 

concept of score and accuracy function. 

 A B C 𝒖𝒎 

D 5 1 8 12 

E 2 4 0 14 

F 3 6 7 4 

𝒗𝒏 9 10 11  

 

 

Step-2 

Table-2: 

 A B C 𝒖𝒎(Penalty) 

D 5 1 8 12(4) 

E 2 4 0 14(2) 

F 3 6 7 4(3) 
 

𝒗𝒏 
(Pen-
alty) 

9 
(1) 

10 
(3) 

11 
(7) 

 

 

 

Step-3  

Table-3: After processing the same operations finite number of times finally we get the final optimal 

solution matrix as, here 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑤 + 𝑐𝑜𝑙𝑢𝑚𝑛 − 1 = 5 

 A B C 𝒖𝒊 

D 5 1 8 12 

E 2 4 0 14 

F 3 6 7 4 

𝒗𝒋 

 

9 
 

10 
 

11  

Thus, the total cost of this transportation problem is 𝑀𝑖𝑛 𝑍 = ∑ ∑ 𝑥𝑚𝑛
3
𝑚=0

3
𝑛=0 . 𝑁𝑚𝑛̌  

=2*(10,15,20,25,30;0,3,5,7,10;0,1,2,3,4)+3*(1,2,3,6,8;0,0.5,1,1.5,2;-3,-2,1,0,1)+ 

4*(1,3,5,7,9;-5,-4,0,1,3;-5,-3,0,1,2)+10*(1,1,1,1,1;0,0,0,0,0;0,0,0,0,0)+11*(1,0,1,2,3; 

0, 0.5, 1, 1.5, 2; 0, 0, 0, 0, 0) 

2   10 

3   11 

4 
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= < (26,58,90,128,163;−20,−3,24,39,60;−20,−16,1,10,19) > 

                                     = 25.4 Units. 

6.2 Mathematical Formulation of Model-II 

Mathematical formulation is, 𝑀𝑖𝑛 𝑍̌ = ∑ ∑ 𝑥𝑚𝑛̌
𝑝
𝑚=0

𝑞
𝑛=0 . 𝑁𝑚𝑛̌ 

                                           Subject to the constrain, ∑ 𝑥𝑚𝑛̌
𝑞
𝑛=0 = 𝑢𝑚̌ 

∑ 𝑥𝑚𝑛̌

𝑝

𝑚=0

= 𝜗𝑛̌ 

Also, ∑ 𝜗𝑛̌
𝑞
𝑛=0 = ∑ 𝑢𝑚̌

𝑝
𝑚=0 , Where, 𝑥𝑚𝑛̌ ≥ 0  for all 𝑚, 𝑛. 

Here 𝑁𝑚𝑛̌ , 𝑢𝑚̌, 𝜗𝑛̌ are all pentagonal neutrosophic numbers. 

In formulation of Model-II with the help of pentagonal neutrosophic number cost, demand and supply 

formulated in the following table 1,First, we calculate the score value of individual neutrosophic cost to 

get crisp cost and consider the rest terms that is demand and supply as it is in neutrosophic nature. 

Now, for the allocation we first consider the score values of availability and demand and take the min-

imum value for the allocation. Then, we use the arithmetic operations in pentagonal neutrosophic do-

main to run the iteration process. Following the same above algorithm finally we get the optimal solu-

tion table where number of allocation=row+column-1 and finally we need to compute the final cost. 

Table-1: 

 A B C Available 

 

D 

<(10,15,20,25,30; 

0,3,5,7,10; 

0,1,2,3,4)> 

<(1,1,1,1,1; 

0,0,0,0,0; 

0,0,0,0,0)> 

<(10,20,30,40,50; 

1,4,7,8,10; 

0,1,1.5,2,2.5,3)> 

<(20,30,40,50,60; 

3,5,6,10,12; 

5,10,15,20,25)> 

 

E 

<(2,3,4,7,9; 

0,0.5,1,1.5,2; 

0,0,0,0,0)> 

<(5,10,15,20,25; 

1,2,3,4,5; 

1,1.5,2,2.5,3)> 

<(0,0.5,1,1.5,2.5; 

0,0.5,1,1.5,2; 

0,0,0,0,0)> 

<(15,20,25,30,35; 

5,10,15,20,30; 

2,4,6,8,10)> 

 

F 

<(5,9,11,12,13; 

0,1,2,2.5,4.5; 

0,0.5,1,1.5,2)> 

<(10,15,20,25,30; 

0,2,4,6,8; 

0,0,0,0,0)> 

<(15,20,25,30,50; 

0,3,7,10,15; 

1,2,4,5,8)> 

<(10,20,30,40,50; 

4,6,8,10,12; 

1,4,7,10,13)> 

Required <(30,40,50,60,70; 

4,8,11,17,26; 

4,8,12,16,20)> 

<(10,20,30,40,50; 

4,6,8,10,12; 

3,6,9,12,15)> 

<(5,10,15,20,25; 

4,7,10,13,16; 

1,4,7,10,13)> 

 

 

 

Step-1 

Table-2: 

 A B C 𝒖𝒎 

 

D 

 

5 

 

1 

 

8 

<(20,30,40,50,60; 

3,5,6,10,12; 

5,10,15,20,25)> 

 

E 

 

2 

 

4 

 

0 

<(15,20,25,30,35; 

5,10,15,20,30; 
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2,4,6,8,10)> 

 

F 

 

3 

 

6 

 

7 

<(10,20,30,40,50; 

4,6,8,10,12; 

1,4,7,10,13)> 

𝒗𝒏 <(30,40,50,60,70; 

4,8,11,17,26; 

4,8,12,16,20)> 

<(10,20,30,40,50; 

4,6,8,10,12; 

3,6,9,12,15)> 

<(5,10,15,20,25; 

4,7,10,13,16; 

1,4,7,10,13)> 

 

After the iteration process according to the proposed algorithm finally we get the allocations in the 

allocated cell as, 

𝑎11 =< (−30,−10,10,30,40; −9, −5,−2,4,8; −10,−2,6,14,22) > 

𝑎21 =< (−10,0,10,20,30; −11, −3,5,13,26; −11,−6,−1,4,9) > 

𝑎12 =< (10,20,30,40,50; 4,6,8,10,12; 3,6,9,12,15) > 

𝑎23 =< (5,10,15,20,25; 4,7,10,13,16; 1,4,7,10,13) > 

𝑎31 =< (−40,−10,30,70,110;−30,−9,8,25,46; −27, −10,7,24,41) > 

Thus, the optimal solution of this model-II system is, 𝑀𝑖𝑛 𝑍̌ = ∑ ∑ 𝑥𝑚𝑛̌
3
𝑚=0

3
𝑛=0 . 𝑁𝑚𝑛̌ 

= < (−30,−10,10,30,40; −9, −5,−2,4,8; −10,−2,6,14,22) >×< (10,15,20,25,30; 0,3,5,7,10; 0,1,2,3,4) > + 

<(-10,0,10,20,30; -11,-3,5,13,26;-11,-6,-1,4,9)>×<(2,3,4,7,9;0,0.5,1,1.5,2;0,0,0,0,0)> + 

< (10,20,30,40,50; 4,6,8,10,12; 3,6,9,12,15) >×<(1,1,1,1,1;0,0,0,0,0;0,0,0,0,0)> + 

< (5,10,15,20,25; 4,7,10,13,16; 1,4,7,10,13) >×<(0,0.5,1,1.5,2.5;0,0.5,1,1.5,2;0,0,0,0,0)> + 

<(-40,-10,30,70,110;-30,-9,8,25,46; -27,-10,7,24,41)>×<(5,9,11,12,13;0,1,2,2.5,4.5;0,0.5,1,1.5,2)> 

= < (−510, −215, 615,1800,3012.5;  0, −22,21,129.5,371;  0, −7,19,78,170) > 

                         =263.53 units. 

6.3 Discussion: In section 6.1, in model -I we observe that if we take pentagonal neutrosophic fuzzy 

number as a member of feasible solution then we get the 𝑀𝑖𝑛 𝑍 = 25.4 units, whereas, if we take crisp 

number in this computation procedure then we get from table 3, Min Z= (2×5) + (3×2) + (4× 3) +

(10 × 1) = (11 × 0) = 38 𝑢𝑛𝑖𝑡𝑠. Thus we can observe that pentagonal neutrosophic number give us bet-

ter results. So, we follow the same technique in section 6.2 where we consider both availability and the 

demand as a pentagonal neutrosophic number.  

The conception of pentagonal neutrosophic number is totally a new idea and till now, in this domain 

anyone doesn’t considered the transportation problem so fur. Thus in future study, we can compare our 

work with the other established methods. Also, we can do comparative analysis in pentagonal neutro-

sophic arena whenever researchers from different section could develop some interesting and useful 

algorithm in this transportation domain.   

7. Conclusion 

In this current era, the conception of neutrosophic number plays a paramount role in different fields of 

research domain.There is a proliferating popularity for the conundrum concept of neutrosophic number 

presenting before the world a vibrant spice of logic and innovation to reach the zenith of excellence. The 

world is driven into a paradigm of brilliance as well as expertise with the formation of the corresponding 

number which assists the researcher dealing with uncertainty and also with the transportation problem. 
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Neutrosophic set conception is a generalization of intuitionistic fuzzy set which actually contains truth-

iness, falseness and indeterminacy concept. In this article, we developed a new concept of pentagonal 

neutrosophic fuzzy number, introduced its graphical representation and its properties. We also in-

vented logical score and accuracy function which has a strong impact in conversion and ranking in this 

domain of research. Transportation problem is a very important application in operation research do-

main and we build up two different models in this article within neutrosophic environment. We also 

employed the arithmetic operations to find the solution which gives us better result than the general 

conception. Thus, it can be concluded that the approach for taking the pentagonal neutrosophic single-

valued number is very helpful for the researchers who are involved in dealing the mathematical 

modelling with impreciseness in various fields of sciences and engineering.  It reveals very realistic 

results in both mathematical points of view. There is still a massive amount of work in this field; hence 

much spectacular study can be explored with pentagonal neutrosophic parameters. Further, we can 

compare our research work with other established methods in pentagonal neutrosophic domain related 

with transportation problem. 

In future, this article can be extended into multi criteria decision making problem. Also, researchers can 

apply this conception in various fields like engineering problem, pattern recognition problem, mathe-

matical modeling etc.   
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1 Introduction  

Zadeh [35, 36] introduced the fuzzy set to discuss uncertainty in many real requitals and as a 

generalization, the intuitionistic fuzzy set on an universe X was brought by Atanassov [8, 9].  The 

concept of Neutrosophic set is given by Smarandache [28, 29] with truth, indeterminate and false 

membership function and is explored to various dimensions by the authors of [10,16,17,18,32].  M. A. 

Basset et.al [1, 2, 3, 4, 5, 6] studies various topics in Neutrosophic set and its applications. As an extension 

the idea of MBJ – Neutrosophic structures was introduced in [34] where the BCK/BCI – algebra deals 

about a single binary operation (*).   

 The fuzzy sets have been connected in algebraic structure begins from Rosenfeld [27]. BCK – 

algebra is introduced by Iseki and Tanaka [8] and it has been analysed with several branches of fuzzy 

settings.  As a generalization of BCK – algebra, Huang [11] and Iseki [14] discussed the notion of BCI – 

algebra.  The structure of β – algebra was introduced by Neggers and Kim [25].  Also Jun and Kim [19] 

dealt some related topics on β – subalgebra.  Later many researchers [7, 12, 33] developed to study β – 

algebra by relating with different fuzzy concepts.  And as generalization of that, this paper applies the 

MBJ – Neutrosophic set in β–algebra and some results are given. The major difference of this work is 

handling an algebra with binary two operations (+ and −) whereas the existing other works involved 

single operation. This paper also provides a homomorphic image and pre-image of MBJ – Neutrosophic 

β – subalgebra and the cartesian product of MBJ – Neutrosophic β – subalgebra are also disputed. 

 

2 Preliminaries 

This part provides the essential definition and examples of 𝛽 – algebra and some definitions of fuzzy 

sets. 

2.1 Definition [7] A β – algebra is a non-empty set 𝑋 with a constant 0 and binary operations + and – 

satisfying the following axioms: 

i)    𝑥 − 0 = 𝑥  

ii) (0 − 𝑥) + 𝑥 = 0 

iii) (𝑥 − 𝑦) − 𝑧 = 𝑥 − (𝑦 + 𝑧), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

2.2 Example Let 𝑋 = {0, 1, 2, 3} be a set with constant 0 and two binary operations + and – are defined on 

𝑋 with the Cayley’s table, then ( 𝑋, +,-, 0) is a β – algebra.  
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2.3 Definition [7] A non – empty subset S of a β – algebra (𝑋, +, -, 0) is called a β – subalgebra of  𝑋, if  

i)  𝑥 + 𝑦 ∈ 𝑆 

ii) 𝑥 − 𝑦 ∈ 𝑆, ∀ 𝑥, 𝑦 ∈ 𝑆. 

 

2.4 Example [33] Let 𝑋 = {(0, 1, 2, 3),+,-,0} be a β – algebra with Cayley’s table given above. Consider I1 

= {0, 2} and I2 = {0, 1}.  Then I1 is a β – subalgebra of  𝑋, whereas I2 does not satisfy the conditions to be an 

a β – subalgebra of 𝑋. 

 

2.5 Definition [33] Let (𝑋 , +, -, 0x) and ( 𝑌, +, -, 0y ) are β – algebras.  A mapping 𝑓 ∶ 𝑋 → 𝑌 is said to be 

a β – homomorphism if 

i) 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)  

ii) 𝑓(𝑥 − 𝑦) = 𝑓(𝑥) − 𝑓(𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋. 

 

2.6 Definition A fuzzy set in a universal set 𝑋 is defined as 𝜇 ∶ 𝑋 → [0,1].  For each 𝑥 ∈ 𝑋, 𝜇(𝑥) is called 

the membership value of 𝑥. 

2.7 Definition [9] An Intuitionistic fuzzy set in a non – empty set X is defined by  

𝐴 = { < 𝑥, 𝜇(𝑥), 𝜈(𝑥) >∕  𝑥 ∈ 𝑋}  where 𝜇𝐴 ∶ 𝑋 → [0,1] is a membership function of 𝐴 and  

𝜈𝐴 ∶ 𝑋 → [0,1] is a non – membership function of 𝐴 satisfying 0 ≤  𝜇𝐴(𝑥) +  𝜈𝐴(𝑥) ≤ 1,  
∀𝑥 ∈ 𝑋.  

 

2.8 Definition [12] An Interval valued fuzzy set on X is defined by 𝐴 = { (𝑥, 𝜇̅𝐴(𝑥))}, ∀𝑥 ∈ 𝑋 where  

𝜇̅𝐴 ∶ 𝑋 → 𝐷[0,1] and 𝐷[0,1] denotes the family of all closed subintervals of [0,1].  Here 𝜇̅𝐴(𝑥) =

[ 𝜇𝐴
𝐿(𝑥), 𝜇𝐴

𝑈(𝑥)], ∀𝑥 ∈ 𝑋 and  𝜇𝐴
𝐿, 𝜇𝐴

𝑈 are fuzzy sets. 

 

Remark: Let us define refined minimum (briefly, 𝑟𝑚𝑖𝑛) and refined maximum (briefly, 𝑟𝑚𝑎𝑥) of two 

elements in 𝐷[ 0,1].  We also define the symbols ≥, ≤, = in case of two elements in 𝐷[ 0,1]. Consider 𝐷1 =

[𝑎1, 𝑏1] and 𝐷2 = [𝑎2, 𝑏2] ∈ 𝐷[0,1] then 𝑟𝑚𝑖𝑛 (𝐷1 , 𝐷2) = [min(𝑎1, 𝑎2) , min (𝑏1, 𝑏2)], 𝑟𝑚𝑎𝑥 (𝐷1, 𝐷2) =

[max(𝑎1, 𝑎2) , max(𝑏1, 𝑏2)] 𝐷1 ≥ 𝐷2  if and only if 𝑎1 ≥ 𝑎2, 𝑏1 ≥ 𝑏2.  Likewise, 𝐷1 ≤ 𝐷2 and 𝐷1 = 𝐷2. For 

𝐷𝑖 = [𝑎𝑖 , 𝑏𝑖] ∈  𝐷[ 0,1], for i = 1,2,3…  

We define 𝑟𝑠𝑢𝑝𝑖(𝐷𝑖) = [𝑠𝑢𝑝𝑖(𝑎𝑖) , 𝑠𝑢𝑝𝑖(𝑏𝑖)] and 𝑟𝑖𝑛𝑓𝑖(𝐷𝑖) = [𝑖𝑛𝑓𝑖(𝑎𝑖) , 𝑖𝑛𝑓𝑖(𝑏𝑖)]. 

Now,  𝐷1 ≥ 𝐷2  if and only if 𝑎1 ≥ 𝑎2, 𝑏1 ≥ 𝑏2.  Similarly, 𝐷1 ≤ 𝐷2 and 𝐷1 = 𝐷2. 

 

2.9 Definition [8] An Interval valued Intuitionistic fuzzy set 𝐴 on 𝑋 is defined by 𝐴 = { < 𝑥, 𝜇̅(𝑥), 𝜈̅(𝑥) >

∕  𝑥 ∈ 𝑋}. Here 𝜇̅𝐴 ∶ 𝑋 → 𝐷[0,1] and 𝜈̅𝐴 ∶ 𝑋 → 𝐷[0,1] and 𝐷[0,1] is denoted as the set of all subintervals 

of [0,1]. 

Here 𝜇̅𝐴(𝑥) = [ 𝜇𝐴
𝐿(𝑥), 𝜇𝐴

𝑈(𝑥)],  𝜈̅𝐴(𝑥) = [ 𝜈𝐴
𝐿(𝑥), 𝜈𝐴

𝑈(𝑥)] with the condition 

0 ≤  𝜇𝐴
𝐿(𝑥) +  𝜈𝐴

𝐿(𝑥) ≤ 1 and 0 ≤  𝜇𝐴
𝑈(𝑥) +  𝜈𝐴

𝑈(𝑥) ≤ 1. 

 

2.10 Definition [28, 29] An Neutrosophic fuzzy set 𝐴 on 𝑋 is defined by 

𝐴 = { < 𝑥, 𝐴𝑇(𝑥), 𝐴𝐼(𝑥), 𝐴𝐹(𝑥) >∕ 𝑥 ∈ 𝑋} , where 𝐴𝑇 ∶ 𝑋 → [ 0,1] is a truth membership function, 𝐴𝐼 ∶

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

- 0 1 2 3 

0 0 3 2 1 

1 1 0 3 2 

2 2 1 0 3 

3 3 2 1 0 
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𝑋 → [ 0,1] is an indeterminate membership function and 𝐴𝐹 ∶ 𝑋 → [ 0,1] is a false membership function.  

 

2.11 Definition [34] Let Χ be a non – empty set.  MBJ – Neutrosophic set in X, is a structure of the form  

𝐴 = { < 𝑥, 𝑀𝐴(𝑥), 𝐵̃𝐴(𝑥), 𝐽𝐴(𝑥) >∕ 𝑥 ∈ 𝑋} where 𝑀𝐴 and  𝐽𝐴 are fuzzy sets in 𝑋 and 𝑀𝐴 is a truth 

membership function, 𝐽𝐴 is a false membership function and 𝐵̃𝐴 is an interval valued fuzzy set in 𝑋 and 

is an Indeterminate Interval Valued membership function. 

 

2.12 Definition [12] the supremum property of the fuzzy set 𝜇 for the subset 𝑇 in 𝑋 is defined as  𝜇(𝑥0) =

𝑠𝑢𝑝
𝑥 ∈𝑇

𝜇(𝑥) , if there exists 𝑥, 𝑥0  ∈ 𝑇. 

2.13 Definition [33] An Intuitionistic fuzzy set 𝐴 with the degree membership 𝜇𝐴 : 𝑋 → [0,1] and the 

degree of non – membership function 𝜈𝐴 ∶ 𝑋 → [0,1] is said to have 𝑠𝑢𝑝 − 𝑖𝑛𝑓 property if for any subset 

𝑇 of 𝑋 there exists 𝑥0 ∈ 𝑇 such that  𝜇𝐴(𝑥0) = 𝑠𝑢𝑝
𝑥 ∈𝑇

𝜇𝐴(𝑥) and 𝜈𝐴(𝑥0) = 𝑖𝑛𝑓
𝑥 ∈𝑇

𝜈𝐴(𝑥) 

2.14 Definition  

 An Interval valued intuitionistic fuzzy set 𝐴 in any set 𝑋 is said to have the 𝑟𝑠𝑢𝑝 − 𝑟𝑖𝑛𝑓 property 

if for subset 𝑇 of 𝑋 there exists 𝑥0 ∈ 𝑇 such that 𝜇̅𝐴(𝑥0) =  𝑟𝑠𝑢𝑝
𝑥 ∈𝑇

𝜇̅𝐴(𝑥) and 𝜈̅𝐴(𝑥0) =  𝑟𝑖𝑛𝑓
𝑥 ∈𝑇

𝜈̅𝐴(𝑥) 

respectively. 

In fuzzy theory, subsets are assumed to satisfy 𝑠𝑢𝑝 property, in intuitionistic fuzzy theory 

subsets are assumed to satisfy 𝑠𝑢𝑝 − 𝑖𝑛𝑓 property and in interval valued intuitionistic fuzzy subsets are 

assumed to satisfy 𝑟𝑠𝑢𝑝 − 𝑟𝑖𝑛𝑓 property.  Analogously, in the following we define the notion of 𝑠𝑢𝑝 −

𝑟𝑠𝑢𝑝 − 𝑖𝑛𝑓 for an MBJ – Neutrosophic set. 

2.15 Definition  

 An MBJ – Neutrosophic fuzzy set 𝐴 in any set 𝑋 is said to have the 𝑠𝑢𝑝 − 𝑟𝑠𝑢𝑝 − 𝑖𝑛𝑓 property 

if for subset 𝑇 of 𝑋 there exists 𝑥0 ∈ 𝑇 such that  𝑀𝐴(𝑥0) = 𝑠𝑢𝑝
𝑥 ∈𝑇

𝑀𝐴(𝑥) ,  𝐵̃𝐴(𝑥0) = 𝑟𝑠𝑢𝑝
𝑥 ∈𝑇

𝐵̅𝐴(𝑥) and  𝐽𝐴(𝑥0) =

 𝑖𝑛𝑓
𝑥 ∈𝑇

𝐽𝐴(𝑥) respectively. 

 
3 MBJ – Neutrosophic Structures in 𝛽 – Subalgebra  

This division frames the structure of MBJ – Neutrosophic β – subalgebra of β – algebra and some 

relevant results are discussed.  

3.1 Definition  

 Let Χ be a β – algebra. An MBJ – Neutrosophic set 𝐴 = (𝑀𝐴, 𝐵̃𝐴, 𝐽𝐴)  in Χ is called an MBJ – 

Neutrosophic β – subalgebra of  Χ if it satisfies:  

i) 𝑀𝐴(𝑥 + 𝑦) ≥ min( 𝑀𝐴 (𝑥), 𝑀𝐴(𝑦));   and ii) 𝑀𝐴(𝑥 − 𝑦)  ≥ min( 𝑀𝐴 (𝑥), 𝑀𝐴(𝑦));      

  𝐵̃𝐴(𝑥 + 𝑦) ≥ rmin( 𝐵̃𝐴 (𝑥), 𝐵̃𝐴(𝑦));      𝐵̃𝐴(𝑥 − 𝑦)  ≥ rmin( 𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦));   
  𝐽𝐴(𝑥 + 𝑦) ≤ max ( 𝐽𝐴 (𝑥), 𝐽𝐴(𝑦))       𝐽𝐴(𝑥 − 𝑦)  ≤ max ( 𝐽𝐴 (𝑥), 𝐽𝐴(𝑦))   

3.2 Example  

1) Consider a β – algebra 𝑋 = ( { 0,1,2}, +, − ) by the following cayley’s table  

 

 

 

 

and the MBJ – Neutrosophic set on 𝑋 is defined by  

𝑀𝐴(𝑥) = {
0.4    , 𝑥 = 0
0.3    ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝐵̃𝐴(𝑥) = {
[0.3,0.8]    , 𝑥 = 0

[0.1,0.5]    ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

+ 0 1 2 

 0 0 1 2 

1 1 2 0 

2 2 0 1 

- 0 1 2 

0 0 2 1 

1 1 0 2 

2 2 1 0 
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𝐽𝐴(𝑥) = {
0.1    , 𝑥 = 0
0.3    ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Thus, 𝐴 satisfy the terms to be an MBJ - Neutrosophic β - subalgebra of  𝑋. 

 2) Let 𝑋 = { (0, 𝑎, 𝑏, 𝑐), +, −} be a β -algebra with the following cayley’s table.  

 

 

 

 

 

 

Here, the MBJ – Neutrosophic set 𝐴 = { < 𝑥, 𝑀𝐴(𝑥), 𝐵̃𝐴(𝑥), 𝐽𝐴(𝑥))>∕ 𝑥 ∈ 𝑋} on 𝑋 is defined by  

𝑀𝐴(𝑥) = {
0.8,             𝑥 = 0
0.5,             𝑥 = 𝑏
0.3,          𝑥 = 𝑎, 𝑐

    𝐵̃𝐴(𝑥) = {

[0.4,0.7],        𝑥 = 0
[0.3,0.5],        𝑥 = 𝑏

    [0.1,0.2],         𝑥 = 𝑎, 𝑐

  

𝐽𝐴(𝑥) = {
0.2,        𝑥 = 0
0.5,        𝑥 = 𝑏

    0.7, 𝑥 = 𝑎, 𝑐
       is an MBJ Neutrosophic β - subalgebra of  𝑋.  

3.3 Theorem 

If 𝐴1 and 𝐴2  are two MBJ Neutrosophic β - subalgebras of 𝑋, then  

𝐴1  ∩  𝐴2  is an MBJ – Neutrosophic β - subalgebra of  𝑋. 

Proof: 

Let 𝐴1 and 𝐴2 be two MBJ – Neutrosophic β - subalgebra of  𝑋. 

Now, 𝑀𝐴1∩𝐴2
(𝑥 + 𝑦) = min { 𝑀𝐴1

(𝑥 + 𝑦), 𝑀𝐴2
(𝑥 + 𝑦)}   

   ≥ min{{𝑀𝐴1
(𝑥), 𝑀𝐴1

(𝑦)} , min {𝑀𝐴2
(𝑥), 𝑀𝐴2

(𝑦)}}  

   = min{{𝑀𝐴1
(𝑥), 𝑀𝐴2

(𝑥)} , {𝑀𝐴1
(𝑦), 𝑀𝐴2

(𝑦)}} 

   ≥ min {𝑀𝐴1∩𝐴2
(𝑥), 𝑀𝐴1∩𝐴2

(𝑦)} 

𝑀𝐴1∩𝐴2
(𝑥 + 𝑦) ≥ min {𝑀𝐴1∩𝐴2

(𝑥), 𝑀𝐴1∩𝐴2
(𝑦)}. 

Similarly, 𝑀𝐴1∩𝐴2
(𝑥 − 𝑦) ≥ min {𝑀𝐴1∩𝐴2

(𝑥), 𝑀𝐴1∩𝐴2
(𝑦)}. 

𝐵̃𝐴1∩𝐴2
(𝑥 + 𝑦) = [𝐵𝐴1∩𝐴2

𝐿 (𝑥 + 𝑦), 𝐵𝐴1∩𝐴2

𝑈 (𝑥 + 𝑦)]  

  = [min (𝐵𝐴1
𝐿 (𝑥 + 𝑦), 𝐵𝐴2

𝐿 (𝑥 + 𝑦)) , min (𝐵𝐴1
𝑈 (𝑥 + 𝑦), 𝐵𝐴2

𝑈 (𝑥 + 𝑦))] 

  ≥ [min (𝐵𝐴1∩𝐴2

𝐿  (𝑥), 𝐵𝐴1∩𝐴2

𝐿 (𝑦)),min ( 𝐵𝐴1∩𝐴2

𝑈 (𝑥), 𝐵𝐴1∩𝐴2

𝑈 (𝑦))] 

  = 𝑟𝑚𝑖𝑛{𝐵̃𝐴1∩𝐴2
(𝑥), 𝐵̃𝐴1∩𝐴2

(𝑦)} 

𝐵̃𝐴1∩𝐴2
(𝑥 + 𝑦) ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴1∩𝐴2

(𝑥), 𝐵̃𝐴1∩𝐴2
(𝑦)}  

Similarly, 𝐵̃𝐴1∩𝐴2
(𝑥 − 𝑦)  ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴1∩𝐴2

(𝑥), 𝐵̃𝐴1∩𝐴2
(𝑦)}  

𝐽𝐴1∩𝐴2
(𝑥 + 𝑦) = max { 𝐽𝐴1

(𝑥 + 𝑦), 𝐽𝐴2
(𝑥 + 𝑦)}   

  ≤ max{{𝐽𝐴1
(𝑥), 𝐽𝐴1

(𝑦)} , max {𝐽𝐴2
(𝑥), 𝐽𝐴2

(𝑦)}}  

  = max{{𝐽𝐴1
(𝑥), 𝐽𝐴2

(𝑥)} , {𝐽𝐴1
(𝑦), 𝐽𝐴2

(𝑦)}} 

  ≤ max {𝐽𝐴1∩𝐴2
(𝑥), 𝐽𝐴1∩𝐴2

(𝑦)} 

𝐽𝐴1∩𝐴2
(𝑥 + 𝑦)  ≤ max {𝐽𝐴1∩𝐴2

(𝑥), 𝐽𝐴1∩𝐴2
(𝑦)}. 

Similarly, 𝐽𝐴1∩𝐴2
(𝑥 − 𝑦) ≤ max {𝐽𝐴1∩𝐴2

(𝑥), 𝐽𝐴1∩𝐴2
(𝑦)}. 

Thus, 𝐴1  ∩  𝐴2  is an MBJ – Neutrosophic β - subalgebra of  𝑋. 

3.4 Lemma 

Let 𝐴 be an MBJ – Neutrosophic β - subalgebra of  𝑋, then  

 𝑖) 𝑀𝐴(0) ≥  𝑀𝐴(𝑥), 𝐵̃𝐴(0) ≥  𝐵̃𝐴(𝑥) 𝑎𝑛𝑑 𝐽𝐴(0) ≤ 𝐽𝐴(𝑥), 

𝑖𝑖)𝑀𝐴(0) ≥ 𝑀𝐴(𝑥∗) ≥  𝑀𝐴(𝑥), 𝐵̃𝐴(0) ≥ 𝐵̃𝐴(𝑥∗) ≥ 𝐵̃𝐴(𝑥) 𝑎𝑛𝑑 𝐽𝐴(0) ≤ 𝐽𝐴(𝑥∗) ≤ 𝐽𝐴(𝑥), where 𝑥∗ = 0 − 𝑥,
∀𝑥 ∈ 𝑋. 

 

- 0 a b c 

0 0 c b a 

a a 0 c b 

b b a 0 c 

c c b a 0 

+ 0 a b c 

0 0 a b c 

a a b c 0 

b b c 0 a 

c c 0 a b 
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Proof: 

i) For any 𝑥 ∈ 𝑋.  

𝑀𝐴(0) =  𝑀𝐴(𝑥 − 𝑥)  ≥ min(𝑀𝐴(𝑥), 𝑀𝐴(𝑥))  

 =  𝑀𝐴(𝑥) 

Therefore, 𝑀𝐴(0)  ≥  𝑀𝐴(𝑥) . 

𝐵̃𝐴(0) = [ 𝐵𝐴
𝐿(0), 𝐵𝐴

𝑈(0)]  
           ≥ [ 𝐵𝐴

𝐿(𝑥), 𝐵𝐴
𝑈(𝑥)] 

           = 𝐵̃𝐴(𝑥) 
𝐽𝐴(0)  =  𝐽𝐴(𝑥 − 𝑥)  ≤ max(𝐽𝐴(𝑥), 𝐽𝐴(𝑥)) =  𝐽𝐴(𝑥)  

Thus, 𝐽𝐴(0)  ≤  𝐽𝐴(𝑥).  

ii) Also for 𝑥 ∈ 𝑋, 

𝑀𝐴(𝑥∗) =  𝑀𝐴(0 − 𝑥) ≥ min(𝑀𝐴(0), 𝑀𝐴(𝑥))  

   =  𝑀𝐴(𝑥) 

 𝐻𝑒𝑛𝑐𝑒, 𝑀𝐴(𝑥∗) ≥  𝑀𝐴(𝑥) . 

𝐵̃𝐴(𝑥∗) = [ 𝐵𝐴
𝐿(𝑥∗), 𝐵𝐴

𝑈(𝑥∗)]  
              = [𝐵𝐴

𝐿(0 − 𝑥), 𝐵𝐴
𝑈(0 − 𝑥)]  

              = [min(𝐵𝐴
𝐿(0), 𝐵𝐴

𝑈(𝑥)), min (𝐵𝐴
𝐿(0), 𝐵𝐴

𝑈(𝑥))]  

              ≥ [ 𝐵𝐴
𝐿(𝑥), 𝐵𝐴

𝑈(𝑥)]  
= 𝐵̃𝐴(𝑥)  

∴ 𝐵̃𝐴(0) ≥ 𝐵̃𝐴(𝑥∗) ≥  𝐵̃𝐴(𝑥)  
𝐽𝐴(𝑥∗) =  𝐽𝐴(0 − 𝑥)  ≤ max(𝐽𝐴(0), 𝐽𝐴(𝑥)) =  𝐽𝐴(𝑥)  

Thus, 𝐽𝐴(0)  ≤  𝐽𝐴(𝑥∗)  ≤  𝐽𝐴(𝑥).  

3.5 Theorem 

 If there exists a sequence {𝑥𝑛} in  𝑋 such that lim
𝑛→∞

𝑀𝐴(𝑥𝑛) = 1,  lim
𝑛→∞

𝐵̃𝐴(𝑥𝑛) = [1,1], lim
𝑛→∞

𝐽𝐴(𝑥𝑛) = 0.  And 

𝐴 be an MBJ – Neutrosophic β - subalgebra of 𝑋.  Then  

𝑀𝐴(0) = 1, 𝐵̃𝐴(0) = [1,1], 𝑎𝑛𝑑 𝐽𝐴(0) = 0.  

Proof: 

Since, 𝑀𝐴(0)  ≥  𝑀𝐴(𝑥), ∀𝑥 ∈ 𝑋, 

𝑀𝐴(0)  ≥  𝑀𝐴(𝑥𝑛). 

Similarly,  𝐵̃𝐴(0) ≥  𝐵̃𝐴(𝑥𝑛) and 𝐽𝐴(0)  ≤  𝐽𝐴(𝑥𝑛) for every positive integer n. 

Note that, 1 ≥  𝑀𝐴(0)  ≥  lim
𝑛→∞

𝑀𝐴(𝑥𝑛) = 1,. 

Hence 𝑀𝐴(0) = 1. 
[1,1] ≥ 𝐵̃𝐴(0) ≥ lim

𝑛→∞
𝐵̃𝐴(𝑥𝑛) = [1,1]  

Implies 𝐵̃𝐴(0) = [1,1] 

Also 0 ≤  𝐽𝐴(0)  ≤  lim
𝑛→∞

𝐽𝐴(𝑥𝑛) = 0. 

Therefore, 𝐽𝐴(0) = 0. 

3.6 Theorem 

Given 𝐴 = (𝑀𝐴, 𝐵̃𝐴, 𝐽𝐴) in X such that (𝑀𝐴, 𝐽𝐴) is an intuitionistic fuzzy subalgebra of  𝑋 and 𝐵𝐴 
𝐿 , 𝐵𝐴 

𝑈 are 

fuzzy subalgebra of 𝑋,  then  𝐴 = (𝑀𝐴, 𝐵̃𝐴, 𝐽𝐴) is an MBJ – Neutrosophic β - subalgebra of 𝑋. 

Proof:  

To prove this it’s enough to verify that 𝐵̃𝐴 satisfies the conditions: 
∀ 𝑥, 𝑦 ∈ 𝑋.  
𝐵̃𝐴(𝑥 + 𝑦) ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦)}  
𝐵̃𝐴(𝑥 − 𝑦) ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦)}  

For any 𝑥, 𝑦 ∈ 𝑋, we get 

𝐵̃𝐴(𝑥 + 𝑦) = [ 𝐵𝐴
𝐿(𝑥 + 𝑦), 𝐵𝐴

𝑈(𝑥 + 𝑦)]  
                    ≥ [min{ 𝐵𝐴

𝐿(𝑥), 𝐵𝐴
𝐿  (𝑦)} , min{ 𝐵𝐴

𝑈(𝑥), 𝐵𝐴
𝑈(𝑦)}]  

                    = 𝑟𝑚𝑖𝑛{[ 𝐵𝐴
𝐿(𝑥), 𝐵𝐴

𝑈(𝑥)], [ 𝐵𝐴
𝐿(𝑦), 𝐵𝐴

𝑈(𝑦)]}  
                    = 𝑟𝑚𝑖𝑛{ 𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦)}  
𝐵̃𝐴(𝑥 + 𝑦) ≥ 𝑟𝑚𝑖𝑛{ 𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦)}  

Similarly, 𝐵̃𝐴(𝑥 − 𝑦) ≥ 𝑟𝑚𝑖𝑛{ 𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦)} 
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𝐵̃𝐴 satisfies the condition  

∴  𝐴 = (𝑀𝐴, 𝐵̃𝐴, 𝐽𝐴) is an MBJ – Neutrosophic β - subalgebra of 𝑋. 

 

3.7 Theorem 

If 𝐴 = (𝑀𝐴, 𝐵̃𝐴, 𝐽𝐴) is an MBJ - Neutrosophic β - subalgebra of 𝑋.  Then the sets  

𝑋𝑀𝐴
= { 𝑥 ∈ 𝑋 𝑀𝐴(𝑥)⁄ =  𝑀𝐴(0)} ; 𝑋𝐵̃𝐴

= { 𝑥 ∈ 𝑋 𝐵̃𝐴(𝑥)⁄ =  𝐵̃𝐴(0)} and 𝑋𝐽𝐴
= { 𝑥 ∈ 𝑋 𝐽𝐴(𝑥)⁄ =  𝐽𝐴(0)} are 

subalgebra of 𝑋. 

Proof: 

For any 𝑥, 𝑦 ∈  𝑋𝑀𝐴
. 

Then 𝑀𝐴(𝑥) =  𝑀𝐴(0) =  𝑀𝐴(𝑦) 
𝑀𝐴(𝑥 + 𝑦)  ≥ min (𝑀𝐴(𝑥), 𝑀𝐴(𝑦))  
        = min(𝑀𝐴(0), 𝑀𝐴(0)) =  𝑀𝐴(0) 

And 𝑀𝐴(𝑥 − 𝑦) ≥ min (𝑀𝐴(𝑥), 𝑀𝐴(𝑦))  

    = min(𝑀𝐴(0), 𝑀𝐴(0)) =  𝑀𝐴(0)  

𝑥 + 𝑦 𝑎𝑛𝑑 𝑥 − 𝑦 ∈  𝑋𝑀𝐴
 

Therefore, 𝑋𝑀𝐴
 is a subalgebra of X. 

Let 𝑥, 𝑦 ∈  𝑋𝐵̃𝐴
, then 𝐵̃𝐴(𝑥) =  𝐵̃𝐴(0) =  𝐵̃𝐴(𝑦). 

Now, 𝐵̃𝐴(𝑥 + 𝑦) ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦)} 

                               = 𝑟𝑚𝑖𝑛{𝐵̃𝐴(0), 𝐵̃𝐴(0)} =  𝐵̃𝐴(0)  
∴ 𝐵̃𝐴(𝑥 + 𝑦) ≥  𝐵̃𝐴(0)  

Similarly, 𝐵̃𝐴(𝑥 − 𝑦) ≥  𝐵̃𝐴(0)  

∴ 𝑋𝐵̃𝐴
 is a subalgebra of X. 

Let 𝑥, 𝑦 ∈  𝑋𝐽𝐴
 

𝐽𝐴(𝑥) =  𝐽𝐴(0) =  𝐽𝐴(𝑦)  

Now, 𝐽𝐴(𝑥 + 𝑦)  ≤ max (𝐽𝐴(𝑥), 𝐽𝐴(𝑦)) 

     = max(𝐽𝐴(0), 𝐽𝐴(0)) 

     =  𝐽𝐴(0) 
𝐽𝐴(𝑥 − 𝑦)  ≤ max (𝐽𝐴(𝑥), 𝐽𝐴(𝑦))  
       = max(𝐽𝐴(0), 𝐽𝐴(0)) 

                    =  𝐽𝐴(0)  
∴  𝑥 + 𝑦 𝑎𝑛𝑑 𝑥 − 𝑦 ∈  𝑋𝐽𝐴

 

𝑋𝐽𝐴
 is a subalgebra of X. 

 

3.8 Definition  

 𝐴 = { < 𝑥, 𝑀𝐴(𝑥), 𝐵̃𝐴(𝑥), 𝐽𝐴(𝑥) >∕ 𝑥 ∈ 𝑋} be an MBJ – Neutrosophic set in 𝑋 and 𝑓 be mapping 

from 𝑋 into 𝑌 then the image of 𝐴 under 𝑓, 𝑓(𝐴) is defined as,  

𝑓(𝐴) = { < 𝑥, 𝑓𝑠𝑢𝑝(𝑀𝐴), 𝑓𝑟𝑠𝑢𝑝(𝐵̃𝐴), 𝑓𝑖𝑛𝑓(𝐽𝐴) >∕ 𝑥 ∈ 𝑌 }   where  

𝑓𝑠𝑢𝑝(𝑀𝐴)(𝑦) =  {
sup

𝑥∈𝑓−1(𝑦)
𝑀𝐴(𝑥), 𝑖𝑓 𝑓−1(𝑦) ≠  ∅ 

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

𝑓𝑟𝑠𝑢𝑝(𝐵̃𝐴)(𝑦) =  {
rsup

𝑥∈𝑓−1(𝑦)
𝐵̃𝐴(𝑥), 𝑖𝑓 𝑓−1(𝑦) ≠  ∅ 

[1,1]                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

𝑓𝑖𝑛𝑓(𝐽𝐴)(𝑦) =  {
inf

𝑥∈𝑓−1(𝑦)
𝐽𝐴(𝑥), 𝑖𝑓 𝑓−1(𝑦) ≠  ∅ 

1                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

3.9 Definition [34] 

Let 𝑓 ∶ 𝑋 → 𝑌 be a function. Let  𝐴 and  𝐵 be the two MBJ – Neutrosophic β- subalgebra in 𝑋 

and 𝑌 respectively. Then inverse image of 𝐵 under 𝑓 is defined by  

𝑓−1(𝐵) = {𝑥, 𝑓−1(𝑀𝐵(𝑥)), 𝑓−1 (𝐵̃𝐵(𝑥)) , 𝑓−1(𝐽𝐵(𝑥))  ∕ 𝑥 ∈ 𝑋}  such that  

𝑓−1(𝑀𝐵(𝑥)) =  𝑀𝐵(𝑓(𝑥)) ; 𝑓−1 (𝐵̃𝐵(𝑥)) =  𝐵̃𝐵(𝑓(𝑥)) and 𝑓−1(𝐽𝐵(𝑥)) =  𝐽𝐵(𝑓(𝑥)). 
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3.10 Theorem 

Let (𝑋, +, −,0) 𝑎𝑛𝑑 (𝑌, +, −,0) be two β – algebras and 𝑓: 𝑋 → 𝑌 be an homomorphism. If 𝐴 

is an MBJ – Neutrosophic β – subalgebra of 𝑋, define  

𝑓(𝐴) = { < 𝑥, 𝑀𝑓(𝑥) = 𝑀(𝑓(𝑥)), 𝐵̃𝑓(𝑥) =  𝐵̃(𝑓(𝑥)), 𝐽𝑓(𝑥) = 𝐽(𝑓(𝑥)) >∕ 𝑥 ∈ 𝑋}. Then  𝑓(𝐴) is an MBJ – 

Neutrosophic β – subalgebra of 𝑌. 

Proof: 

Let 𝑥, 𝑦 ∈ 𝑋. 

Now, 𝑀𝑓(𝑥 + 𝑦) = 𝑀(𝑓(𝑥 + 𝑦)) 

                             =  𝑀(𝑓(𝑥) + 𝑓(𝑦))  

                            ≥ min{𝑀(𝑓(𝑥)), 𝑀(𝑓(𝑦))} 

                            = min{𝑀𝑓(𝑥), 𝑀𝑓(𝑦)} 

𝑀𝑓(𝑥 + 𝑦)  ≥  min{𝑀𝑓(𝑥), 𝑀𝑓(𝑦)}  

Similarly, 𝑀𝑓(𝑥 − 𝑦)  ≥  min{𝑀𝑓(𝑥), 𝑀𝑓(𝑦)}  

𝐵̃𝑓(𝑥 + 𝑦) = 𝐵̃(𝑓(𝑥 + 𝑦))   

                  =  𝐵̃(𝑓(𝑥) + 𝑓(𝑦))  
                     ≥ rmin{𝐵̃(𝑓(𝑥)), 𝐵̃(𝑓(𝑦))}  

                     = rmin{𝐵̃𝑓(𝑥), 𝐵̃𝑓(𝑦)}  

𝐵̃𝑓(𝑥 + 𝑦)  ≥  rmin{𝐵̃𝑓(𝑥), 𝐵̃𝑓(𝑦)}  

Similarly, 𝐵̃𝑓(𝑥 − 𝑦)  ≥  rmin{𝐵̃𝑓(𝑥), 𝐵̃𝑓(𝑦)} 

 𝐽𝑓(𝑥 + 𝑦) = 𝐽(𝑓(𝑥 + 𝑦)) = 𝐽(𝑓(𝑥) + 𝑓(𝑦)) 

                       ≤ 𝑚𝑎𝑥{𝐽(𝑓(𝑥)), 𝐽(𝑓(𝑦))} 

                       = 𝑚𝑎𝑥{𝐽(𝑓(𝑥)), 𝐽(𝑓(𝑦))} 

𝐽𝑓(𝑥 + 𝑦)  ≤  max{𝐽𝑓(𝑥), 𝐽𝑓(𝑦)}  

Similarly, 𝐽𝑓(𝑥 − 𝑦)  ≤  max{𝐽𝑓(𝑥), 𝐽𝑓(𝑦)}  

Hence 𝑓(𝐴) is an MBJ – Neutrosophic β – subalgebra of 𝑌. 

3.11 Theorem 

Let 𝑓 ∶ 𝑋 → 𝑌 be a homomorphism of β – algebra 𝑋 into a β – algebra  𝑌. If  

𝐴 = { < 𝑥, 𝑀𝐴(𝑥), 𝐵𝐴(𝑥), 𝐽𝐴(𝑥) >∕ 𝑥 ∈ 𝑋} is an MBJ – Neutrosophic β – subalgebra of 𝑋, then the image  

𝑓(𝐴) = { < 𝑥, 𝑓𝑠𝑢𝑝(𝑀𝐴), 𝑓𝑟𝑠𝑢𝑝(𝐵̃𝐴), 𝑓𝑖𝑛𝑓(𝐽𝐴) >∕ 𝑥 ∈ 𝑋 } of 𝐴 under 𝑓 is an MBJ –  

Neutrosophic β – subalgebra of  𝑌. 

Proof:  

𝐴 = { < 𝑥, 𝑀𝐴(𝑥),𝐵𝐴(𝑥), 𝐽𝐴(𝑥) >∕ 𝑥 ∈ 𝑋} be an MBJ – Neutrosophic β – subalgebra of 𝑋. 

Let 𝑦1, 𝑦2 ∈ 𝑌 

∴ {𝑥1 + 𝑥2: 𝑥1 ∈  𝑓−1 (𝑦1), 𝑥2 ∈ 𝑓−1 (𝑦2), } ⊆ {𝑥 ∈ 𝑋: 𝑥 ∈ 𝑓−1(𝑦1 + 𝑦2)} 

Now, 
𝑓𝑠𝑢𝑝{𝑀𝐴(𝑦1 + 𝑦2)} = sup {𝑀𝐴(𝑥) ∕ 𝑥 ∈ 𝑓−1(𝑦1 + 𝑦2)}  

          ≥ sup{𝑀𝐴(𝑥1 + 𝑥2) 𝑥1⁄ ∈ 𝑓−1 (𝑦1), 𝑥2 ∈ 𝑓−1 (𝑦2)} 
                     ≥ sup{min{𝑀𝐴(𝑥1), 𝑀𝐴(𝑥2)} 𝑥1⁄ ∈ 𝑓−1 (𝑦1), 𝑥2 ∈ 𝑓−1 (𝑦2)} 

          = min {sup {𝑀𝐴(𝑥1) 𝑥1⁄ ∈ 𝑓−1 (𝑦1)},sup { 𝑀𝐴(𝑥2) 𝑥2⁄ ∈ 𝑓−1 (𝑦2)}} 
          = min{𝑓𝑠𝑢𝑝(𝑀𝐴(𝑦1)), 𝑓𝑠𝑢𝑝(𝑀𝐴(𝑦2))} 

Similarly 𝑓𝑠𝑢𝑝{𝑀𝐴(𝑦1 − 𝑦2)} ≥ min {𝑓𝑠𝑢𝑝(𝑀𝐴(𝑦1)), 𝑓𝑠𝑢𝑝(𝑀𝐴(𝑦2))} 

𝑓𝑟𝑠𝑢𝑝{𝐵̃𝐴(𝑦1 + 𝑦2)} = 𝑟𝑠𝑢𝑝{𝐵̃𝐴(𝑥) 𝑥⁄ ∈ 𝑓−1(𝑦1 + 𝑦2)}  

≥ rsup{𝐵̃𝐴(𝑥1 + 𝑥2) 𝑥1⁄ ∈ 𝑓−1 (𝑦1), 𝑥2 ∈ 𝑓−1 (𝑦2)} 
                 ≥ rsup{rmin{𝐵̃𝐴(𝑥1), 𝐵̃𝐴(𝑥2)} 𝑥1⁄ ∈ 𝑓−1 (𝑦1), 𝑥2 ∈ 𝑓−1 (𝑦2)} 

                                 = 𝑟min{𝑟sup {𝐵̃𝐴(𝑥1) 𝑥1⁄ ∈ 𝑓−1 (𝑦1)},𝑟 sup { 𝐵̃𝐴(𝑥2) 𝑥2⁄ ∈ 𝑓−1 (𝑦2)}} 

                                     ≥ rmin{𝑓𝑟𝑠𝑢𝑝(𝐵̃𝐴 (𝑦1)), 𝑓𝑠𝑢𝑝(𝐵̃𝐴(𝑦2))}  

𝑓𝑟𝑠𝑢𝑝{𝐵̃𝐴(𝑦1 + 𝑦2)} ≥ rmin{𝑓𝑟𝑠𝑢𝑝(𝐵̃𝐴 (𝑦1)), 𝑓𝑠𝑢𝑝(𝐵̃𝐴(𝑦2))}  

Similarly, 𝑓𝑟𝑠𝑢𝑝{𝐵̃𝐴(𝑦1 + 𝑦2)} ≥ rmin{𝑓𝑟𝑠𝑢𝑝(𝐵̃𝐴 (𝑦1)), 𝑓𝑠𝑢𝑝(𝐵̃𝐴(𝑦2))} 

 𝑓𝑖𝑛𝑓{𝐽𝐴(𝑦1 + 𝑦2)} = 𝑖𝑛𝑓{𝐽𝐴(𝑥) ∕ 𝑥 ∈ 𝑓−1(𝑦1 + 𝑦2)} 

                               ≤ inf{𝐽𝐴(𝑥1 + 𝑥2) 𝑥1⁄ ∈ 𝑓−1 (𝑦1), 𝑥2 ∈ 𝑓−1 (𝑦2)} 
      ≤ inf{max{𝐽𝐴(𝑥1), 𝐽𝐴(𝑥2)} 𝑥1⁄ ∈ 𝑓−1 (𝑦1), 𝑥2 ∈ 𝑓−1 (𝑦2)} 
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                                   = max{inf {𝐽𝐴(𝑥1) 𝑥1⁄ ∈ 𝑓−1 (𝑦1)},inf { 𝐽𝐴(𝑥2) 𝑥2⁄ ∈ 𝑓−1 (𝑦2)}} 

                               = max{𝑓𝑖𝑛𝑓(𝐽𝐴(𝑦1)) , 𝑓𝑖𝑛𝑓(𝐽𝐴(𝑦2))} 

Similarly, 𝑓𝑖𝑛𝑓{𝐽𝐴(𝑦1 + 𝑦2)}  ≤   max{𝑓𝑖𝑛𝑓(𝐽𝐴(𝑦1)) , 𝑓𝑖𝑛𝑓(𝐽𝐴(𝑦2))}. 

3.12 Theorem 

Let 𝑓 ∶ 𝑋 → 𝑌 be a homomorphism of β – algebra. If 𝐵 = (𝑀𝐵 , 𝐵̃𝐵,𝐽𝐵) is an                          MBJ-Neutrosophic 

β – subalgebra of  𝑌. Then  𝑓−1(𝐵) = < (𝑓−1(𝑀𝐵), 𝑓−1(𝐵𝐵), 𝑓−1(𝐽𝐵)) > is an MBJ – Neutrosophic β – 

subalgebra of 𝑋, where 𝑓−1(𝑀𝐵(𝑥)) =  𝑀𝐵(𝑓(𝑥)) ; 𝑓−1 (𝐵̃𝐵(𝑥)) =  𝐵̃𝐵(𝑓(𝑥)) and 𝑓−1(𝐽𝐵(𝑥)) =  𝐽𝐵(𝑓(𝑥)),  

for all 𝑥 ∈ 𝑋. 

Proof: 

Let 𝐵 be an MBJ – Neutrosophic β – subalgebra of  𝑌 and let 𝑥, 𝑦 ∈ 𝑋 

Then 𝑓−1(𝑀𝐵)(𝑥 + 𝑦) =  𝑀𝐵(𝑓(𝑥 + 𝑦)) 

                                      =  𝑀𝐵(𝑓(𝑥) + 𝑓(𝑦)) 

                                       ≥ min {𝑀𝐵𝑓(𝑥)) + 𝑀𝐵𝑓(𝑦)} 

                                       = min {𝑓−1(𝑀𝐵(𝑥)) + 𝑓−1(𝑀𝐵(𝑦))} 

𝑓−1(𝑀𝐵)(𝑥 + 𝑦) ≥ min{𝑓−1(𝑀𝐵(𝑥)) +  𝑓−1(𝑀𝐵(𝑦))}.   

Similarly, 𝑓−1(𝑀𝐵)(𝑥 − 𝑦) ≥ min{𝑓−1(𝑀𝐵(𝑥)) +  𝑓−1(𝑀𝐵(𝑦))} 

𝑓−1(𝐵̃𝐵)(𝑥 + 𝑦) =  𝐵̃𝐵(𝑓(𝑥 + 𝑦))  

                                =  𝐵̃𝐵(𝑓(𝑥) + 𝑓(𝑦))  

                                ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐵(𝑓(𝑥)),𝐵̃𝐵(𝑓(𝑦))} 

                                = 𝑟min {𝑓−1 ( 𝐵̃𝐵(𝑥)) , 𝑓−1 ( 𝐵̃𝐵(𝑦))}  

𝑓−1(𝐵̃𝐵)(𝑥 + 𝑦)  ≥ 𝑟min {𝑓−1 ( 𝐵̃𝐵(𝑥)) , 𝑓−1 ( 𝐵̃𝐵(𝑦))}  

Similarly, 𝑓−1(𝐵̃𝐵)(𝑥 − 𝑦)  ≥ 𝑟min {𝑓−1 ( 𝐵̃𝐵(𝑥)) , 𝑓−1 ( 𝐵̃𝐵(𝑦))}  

𝑓−1(𝐽𝐵)(𝑥 + 𝑦) =  𝐽𝐵(𝑓(𝑥 + 𝑦))  

                           =  𝐽𝐵(𝑓(𝑥) + 𝑓(𝑦)) 

                          ≤ max {𝐽𝐵𝑓(𝑥) + 𝐽𝐵𝑓(𝑦)} 

                           = max{𝑓−1(𝐽𝐵(𝑥)) + 𝑓−1(𝐽𝐵(𝑦))} 

𝑓−1(𝐽𝐵)(𝑥 + 𝑦) ≤ min{𝑓−1(𝐽𝐵(𝑥)) +  𝑓−1(𝐽𝐵(𝑦))}.   

Similarly, 𝑓−1(𝐽𝐵)(𝑥 − 𝑦) ≤ min{𝑓−1(𝐽𝐵(𝑥)) + 𝑓−1(𝐽𝐵(𝑦))}.   

Hence 𝑓−1(𝐵) = (𝑓−1(𝑀𝐵), 𝑓−1(𝐵̃𝐵), 𝑓−1(𝐽𝐵)) is an MBJ – Neutrosophic  

β – subalgebra of 𝑋.  

 

4 Product of MBJ – Neutrosophic Subalgebra 

In this section the Cartesian product of the two MBJ – Neutrosophic β - subalgebra 𝐴 and 𝐵 of 𝑋 and 𝑌 

respectively is given. 

4.1 Definition [12,33] 

Let 𝐴 = { < 𝑥, 𝑀𝐴(𝑥), 𝐵̃𝐴(𝑥), 𝐽𝐴(𝑥) >∕ 𝑥 ∈ 𝑋} and 𝐵 = { < 𝑦, 𝑀𝐴(𝑦), 𝐵̃𝐴(𝑦), 𝐽𝐴(𝑦))>∕ 𝑦 ∈ 𝑌} be two MBJ – 

Neutrosophic sets of X and Y respectively.  The Cartesian product of 𝐴 and 𝐵 is denoted by 𝐴 × 𝐵 is 

defined as 𝐴 × 𝐵 =  { < (𝑥, 𝑦), 𝑀𝐴×𝐵(𝑥, 𝑦), 𝐵̃𝐴×𝐵(𝑥, 𝑦), 𝐽𝐴×𝐵(𝑥, 𝑦) >∕ (𝑥, 𝑦) ∈ 𝑋 × 𝑌 }  where 

𝑀𝐴×𝐵 ∶  𝑋 × 𝑌 → [0,1],  𝐵̃𝐴×𝐵  : 𝑋 × 𝑌 → 𝐷[0,1], 𝐽𝐴×𝐵 ∶   𝑋 × 𝑌 → [0,1]. 

𝑀𝐴×𝐵(𝑥, 𝑦) = min { 𝑀𝐴(𝑥), 𝑀𝐴(𝑦)}, 𝐵̃𝐴×𝐵(𝑥, 𝑦) = 𝑟min { 𝐵̃𝐴(𝑥), 𝐵̃𝐴(𝑦)} and  

𝐽𝐴×𝐵(𝑥, 𝑦) = max { 𝐽𝐴(𝑥), 𝐽𝐴(𝑦)}.  

4.2 Theorem 

Let 𝐴 𝑎𝑛𝑑 𝐵 be two MBJ – Neutrosophic β - subalgebra of X and Y respectively.  Then 𝐴 × 𝐵 is also an 
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MBJ – Neutrosophic β - subalgebra of 𝑋 × 𝑌. 

Proof: Let 𝐴 𝑎𝑛𝑑 𝐵 be an MBJ – Neutrosophic β - subalgebra of X and Y respectively. 

Take 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2)  ∈ 𝑋 × 𝑌. 

Now, 𝑀𝐴×𝐵(𝑥 + 𝑦) =  𝑀𝐴×𝐵((𝑥1, 𝑥2) + (𝑦1, 𝑦2))  

                       =  𝑀𝐴×𝐵((𝑥1 + 𝑦1), (𝑦1 +  𝑦2))           

                        = min {𝑀𝐴((𝑥1 + 𝑦1)), 𝑀𝐵((𝑦1 +  𝑦2))} 

                           ≥ min {min(𝑀𝐴(𝑥1), 𝑀𝐵(𝑦1)) , min(𝑀𝐴(𝑥2), 𝑀𝐵(𝑦2))}   

                           = min {min(𝑀𝐴(𝑥1), 𝑀𝐵(𝑥2)) , min(𝑀𝐴(𝑦1), 𝑀𝐵(𝑦2))}  

                           = min {(𝑀𝐴×𝐵 )(𝑥1, 𝑥2), (𝑀𝐴×𝐵  )(𝑦1, 𝑦2)}   

                        = min(𝑀𝐴×𝐵) (𝑥), (𝑀𝐴×𝐵)(𝑦)}  

𝑀𝐴×𝐵(𝑥 + 𝑦)  ≥  min{(𝑀𝐴 × 𝑀𝐵) (𝑥), (𝑀𝐴 × 𝑀𝐵)(𝑦)} . 

Similarly, 𝑀𝐴×𝐵(𝑥 − 𝑦)  ≥  min{(𝑀𝐴 × 𝑀𝐵) (𝑥), (𝑀𝐴 × 𝑀𝐵)(𝑦)}  

𝐵̃𝐴×𝐵(𝑥 + 𝑦) =  𝐵̃𝐴×𝐵((𝑥1, 𝑥2) + (𝑦1, 𝑦2))  

                         =  𝐵̃𝐴×𝐵((𝑥1 + 𝑦1), (𝑦1 + 𝑦2))  

                       = 𝑟𝑚𝑖𝑛{ 𝐵̃𝐴(𝑥1 + 𝑦1), 𝐵̃𝐴(𝑥2 + 𝑦2)} 

                         = 𝑟𝑚𝑖𝑛{ 𝑟𝑚𝑖𝑛(𝐵̃𝐴(𝑥1), 𝐵̃𝐵(𝑥2)}, 𝑟𝑚𝑖𝑛 (𝐵̃𝐴(𝑦1), 𝐵̃𝐵(𝑦2)}  

                         = 𝑟𝑚𝑖𝑛{𝐵̃𝐴×𝐵(𝑥1, 𝑥2), 𝐵̃𝐴×𝐵(𝑦1, 𝑦2)}  

                      ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴×𝐵(𝑥), 𝐵̃𝐴×𝐵(𝑦)}  

𝐵̃𝐴×𝐵(𝑥 + 𝑦) ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴×𝐵(𝑥), 𝐵̃𝐴×𝐵(𝑦)}  

Similarly, 𝐵̃𝐴×𝐵(𝑥 − 𝑦)   ≥ 𝑟𝑚𝑖𝑛{𝐵̃𝐴×𝐵(𝑥), 𝐵̃𝐴×𝐵(𝑦)} 

 𝐽𝐴×𝐵(𝑥 + 𝑦) =  𝐽𝐴×𝐵((𝑥1, 𝑥2) + (𝑦1, 𝑦2))  

                         =  𝐽𝐴×𝐵((𝑥1 + 𝑦1), (𝑦1 + 𝑦2))  

                         = max{𝐽((𝑥1 + 𝑦1)), 𝐽𝐵((𝑦1 + 𝑦2))}  

                         ≥ max{max(𝐽(𝑥1), 𝐽(𝑦1)) , max(𝐽𝐴(𝑥2), 𝐽(𝑦2))}  

                      = max{max(𝐽𝐴(𝑥1), 𝐽𝐵(𝑥2)) , max(𝐽𝐴(𝑦1), 𝐽𝐵(𝑦2))}  

                         = max {(𝐽𝐴  ×  𝐽𝐵)(𝑥1, 𝑥2), (𝐽𝐴  ×  𝐽𝐵)(𝑦1 , 𝑦2)}  

                         = max(𝐽𝐴 × 𝐽𝐵) (𝑥), (𝐽𝐴 × 𝐽𝐵)(𝑦)}  

 𝐽𝐴×𝐵(𝑥 + 𝑦) ≤ max(𝐽𝐴 × 𝐽𝐵) (𝑥), (𝐽𝐴 × 𝐽𝐵)(𝑦)} 

Similarly,        𝐽𝐴×𝐵(𝑥 − 𝑦) ≤ max(𝐽𝐴 × 𝐽𝐵) (𝑥), (𝐽𝐴 × 𝐽𝐵)(𝑦)}. 

Thus, 𝐴 × 𝐵 is also an MBJ – Neutrosophic β -  subalgebra of 𝑋 × 𝑌. 

4.3 Theorem 

Let  𝐴𝑖 = { 𝑥 ∈  𝑋𝑖: 𝑀𝐴𝑖
(𝑥), 𝐵̃𝐴𝑖

(𝑥), 𝐽𝐴𝑖
(𝑥)} be an MBJ – Neutrosophic β -  subalgebra of 𝑋𝑖,  

i=1,2,…n.  Then ∏ 𝐴𝑖
𝑛
𝑖=1  is called direct product of finite MBJ – Neutrosophic β -  subalgebra of  ∏ 𝑋𝑖

𝑛
𝑖=1  

if 

𝑖)  ∏ 𝑀𝐴𝑖
(𝑥𝑖 + 𝑦𝑖) ≥ min {∏ 𝑀𝐴𝑖

(𝑥𝑖), ∏ 𝑀𝐴𝑖
(𝑦𝑖)}𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1   
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     ∏ 𝐵̃𝐴𝑖
(𝑥𝑖 + 𝑦𝑖) ≥ 𝑟min {∏ 𝐵̃𝐴𝑖

(𝑥𝑖), ∏ 𝐵̃𝐴𝑖
(𝑦𝑖)}𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1  

      ∏ 𝐽𝐴𝑖
(𝑥𝑖 + 𝑦𝑖) ≤ max {∏ 𝐽𝐴𝑖

(𝑥𝑖), ∏ 𝐽𝐴𝑖
(𝑦𝑖)}𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1   

𝑖𝑖)  ∏ 𝑀𝐴𝑖
(𝑥𝑖 − 𝑦𝑖) ≥ min {∏ 𝑀𝐴𝑖

(𝑥𝑖), ∏ 𝑀𝐴𝑖
(𝑦𝑖)}𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1   

      ∏ 𝐵̃𝐴𝑖
(𝑥𝑖 − 𝑦𝑖) ≥ 𝑟𝑚𝑖𝑛{∏ 𝐵̃𝐴𝑖

(𝑥𝑖), ∏ 𝐵̃𝐴𝑖
(𝑦𝑖)}𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1  

      ∏  𝑛
𝑖=1  𝐽𝐴𝑖

(𝑥𝑖 − 𝑦𝑖) ≤ max {∏ 𝐽𝐴𝑖
(𝑥𝑖), ∏ 𝐽𝐴𝑖

(𝑦𝑖)}𝑛
𝑖=1

𝑛
𝑖=1 . 

Proof: The prove is clear by induction and using Theorem 4.2.  

4.4 Theorem 

Let  𝐴𝑖 = { 𝑥 ∈  𝑋𝑖: 𝑀𝐴𝑖
(𝑥), 𝐵̃𝐴𝑖

(𝑥), 𝐽𝐴𝑖
(𝑥)} be an MBJ – Neutrosophic β - subalgebra of 𝑋𝑖, respectively for 

i=1,2,…n.  Then ∏ 𝐴𝑖
𝑛
𝑖=1  is an MBJ – Neutrosophic β - subalgebra of ∏ 𝑋𝑖 .

𝑛
𝑖=1  

Proof: Let 𝐴 be an MBJ – Neutrosophic β - subalgebra of 𝑋𝑖 

Let (𝑥1, 𝑥2, … 𝑥𝑛) and (𝑦1, 𝑦2, … 𝑦𝑛)  ∈  ∏ 𝑋𝑖
𝑛
𝑖=1   

Take 𝑎 = (𝑥1, 𝑥2, … 𝑥𝑛) and 𝑏 =  (𝑦1 , 𝑦2, … 𝑦𝑛) 

Then  

∏ 𝑀𝐴𝑖
(𝑎 + 𝑏) ≥ min{𝑀𝐴1

(𝑎 + 𝑏), … … . 𝑀𝐴𝑛
(𝑎 + 𝑏)}𝑛

𝑖=1    

                             = min {min{𝑀𝐴1
(𝑎), 𝑀𝐴1

(𝑏𝑛)} , … … … . min{𝑀𝐴𝑛
(𝑎), 𝑀𝐴𝑛

(𝑏)}} 

       = min {min{𝑀𝐴1
(𝑎), … … 𝑀𝐴𝑛

(𝑎)} , min{𝑀𝐴1
(𝑏), … … 𝑀𝐴𝑛

(𝑏)} } 

                                 = min {∏ 𝑀𝐴𝑖
(𝑎), ∏ 𝑀𝐴𝑖

(𝑏)}𝑛
𝑖=1

𝑛
𝑖=1   

∏ 𝑀𝐴𝑖
(𝑎 + 𝑏) ≥ min{∏ 𝑀𝐴𝑖

(𝑎), ∏ 𝑀𝐴𝑖
(𝑏)}𝑛

𝑖=1
𝑛
𝑖=1  }𝑛

𝑖=1   

Similarly, ∏ 𝑀𝐴𝑖
(𝑎 − 𝑏) ≥ min{∏ 𝑀𝐴𝑖

(𝑎), ∏ 𝑀𝐴𝑖
(𝑏)}𝑛

𝑖=1
𝑛
𝑖=1  }𝑛

𝑖=1  

∏ 𝐵̃𝐴𝑖
(𝑎 + 𝑏) ≥ min{𝐵̃𝐴1

(𝑎 + 𝑏), … … . 𝐵̃𝐴𝑛
(𝑎 + 𝑏)}𝑛

𝑖=1   

      = 𝑟min {𝑟 min{𝐵̃𝐴1
(𝑎), 𝐵̃𝐴1

(𝑏)} , … … … . min{𝐵̃𝐴𝑛
(𝑎), 𝐵̃𝐴𝑛

(𝑏)}} 

        = 𝑟min {rmin{𝐵̃𝐴1
(𝑎), … … 𝐵̃𝐴𝑛

(𝑎)} , min{𝐵̃𝐴1
(𝑏), … … 𝐵̃𝐴𝑛

(𝑏)} } 

                              = 𝑟min {∏ 𝐵̃𝐴𝑖
(𝑎), ∏ 𝐵̃𝐴𝑖

(𝑏)}𝑛
𝑖=1

𝑛
𝑖=1   

∏ 𝐵̃𝐴𝑖
(𝑎 + 𝑏) ≥ rmin{∏ 𝐵̃𝐴𝑖

(𝑎), ∏ 𝐵̃𝐴𝑖
(𝑏)}𝑛

𝑖=1
𝑛
𝑖=1  }𝑛

𝑖=1   

Similarly, ∏ 𝐵̃𝐴𝑖
(𝑎 − 𝑏) ≥ rmin{∏ 𝐵̃𝐴𝑖

(𝑎), ∏ 𝐵̃𝐴𝑖
(𝑏)}𝑛

𝑖=1
𝑛
𝑖=1  }𝑛

𝑖=1  

∏ 𝐽𝐴𝑖
(𝑎 + 𝑏) ≤ max{𝐽𝐴1

(𝑎 + 𝑏), … … . 𝐽𝐴𝑛
(𝑎 + 𝑏)}𝑛

𝑖=1   

                              = max {max{𝐽𝐴1
(𝑎), 𝐽𝐴1

(𝑏)} , … … … . max{𝐽𝐴𝑛
(𝑎), 𝐽𝐴𝑛

(𝑏)}}  

= max {max{𝐽𝐴1
(𝑎), … … 𝐽𝐴𝑛

(𝑎)} , max{𝐽𝐴1
(𝑏), … … 𝐽𝐴𝑛

(𝑏)}} 

                              = max {∏ 𝐽𝐴𝑖
(𝑎), ∏ 𝐽𝐴𝑖

(𝑏)}𝑛
𝑖=1

𝑛
𝑖=1   

∏ 𝐽𝐴𝑖
(𝑎 + 𝑏) ≤ max{∏ 𝐽𝐴𝑖

(𝑎), ∏ 𝐽𝐴𝑖
(𝑏)}𝑛

𝑖=1
𝑛
𝑖=1  }𝑛

𝑖=1   

Similarly, ∏ 𝐽𝐴𝑖
(𝑎 − 𝑏) ≤ max{∏ 𝐽𝐴𝑖

(𝑎), ∏ 𝐽𝐴𝑖
(𝑏)}𝑛

𝑖=1
𝑛
𝑖=1  }𝑛

𝑖=1   

Thus, ∏ 𝐴𝑖
𝑛
𝑖=1  is an MBJ – Neutrosophic β - subalgebra of ∏ 𝑋𝑖 .

𝑛
𝑖=1  

 
Conclusion 

Here, the MBJ – Neutrosophic substructure on β – algebra was introduced in double 
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operations+ 𝑎𝑛𝑑 −. Further, the study analysed the MBJ – Neutrosophic β – subalgebra using 

Homomorphic image, inverse image and Cartesian product. The same ideas can be extended to some 

other substructures like ideal, 𝐻- ideal and filters of a β – algebra for a future scope. 
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Abstract:  The soft set theory is a mathematical tool to represent uncertainty, imprecise, and 

vagueness is often employed in solving decision making problem. It has been widely used to identify 

irrelevant parameters and make reduction set of parameters for decision making in order to bring 

out the optimal choices. This manuscript is designed with the concept of neutrosophic soft graph 

structures. We introduce the domination number of neutrosophic soft graphs and elaborate them 

with suitable examples by using strength of path and strength of connectedness. Moreover, some 

remarkable properties of independent domination number, strong neighborhood domination, 

weights of a dominated graph and strong perfect domination of neutrosophic soft graph is 

investigated and the proposed concepts are described with suitable examples.  

 

Keywords: Domination Number, Neutrosophic graphs, Strong neighborhood domination, Strong 

perfect domination, Soft graph.  

  

 

1  Introduction 

  Fuzzy graph theory was introduced by Azriel Rosenfied in 1975. Still it is very young, it 

has been growing very fast and has crucial applications in various domain. Fuzzy set was introduced 

by Zadeh [8] whose basic components is only a membership function. The generalization of Zadeh’s 

fuzzy set, called intuitionistic fuzzy set was introduced by atanassov [16] which is characterized by a 

membership function and a non membership function. According to Atanassov, the sum of 

membership degree and a non membership degree does not exceed one. A. Somasundaram and S. 

Somasundaram [33] presented more concept of independent domination, connected domination in 

fuzzy graphs, R. Parvathi and G. Thamilzhendhi [23] introduced domination in intuitionistic fuzzy 

graphs and discussed some of its properties. 

 The soft graphs represents need any addition information about the data such as the 

probability in statistic or possibility value in fuzzy graphs and give the accurate value. The theory 

use parameterization as its main vehicle in developing theory and its applications. The crucial model 

of parameter reduction and decision making is developing fascinating in dealing with uncertainties 

that making problems in soft set theory are interesting field. Molodtsov [25] introduced the concept 

of soft set theory as a new mathematical tool for dealing with uncertainties. Molodtsov’s soft sets give 

us new technique for dealing with uncertainty from the view point of parameters. It has been revealed 
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that soft sets have potential applications in several fields. In [7],  author studied the fuzzy soft 

graphs. Operations of fuzzy soft graphs are studied in [8].  Recently, Akram M [9] introduced  an 

idea about neutrosophic soft graphs and its application. Recently, the author Smarandache [29, 30, 

13, 14, 31, 32, 17, 18, 19, 20, 35] introduced and studied extensively about neutrosophic set and it 

receives applications in many domains. The neutrosophic set has three completely independent parts, 

which are truth-membership degree, indeterminacy-membership degree and falsity-membership 

degree with the sum of these values lies between 0 and 3. Akram [9] established the certain notions 

including neutrosophic soft graphs, strong neutrosophic soft graphs, complete neutrosophic soft 

graphs. Motivation of the above, we introduced the concept of domination number in neutrosophic 

fuzzy soft graphs, strong neighborhood domination and strong perfect domination in neutrosophic 

fuzzy soft graphs. The major contribution of this work as follows:   

    • The domination set of neutrosophic soft graphs is established by using the concept of 

strength of a path, strength of connectedness and strong arc.  

    • The necessary and sufficient condition for the minimum domination set of 

neutrosophic soft graph is investigated.  

    • Some properties of independent domination number of neutrosophic soft graph are 

obtained and the proposed concepts are described with suitable examples.  

    • Further we presented a remarkable properties of independent domination number, 

strong neighborhood domination and strong perfect domination of neutrosophic soft graph. 

2  Preliminaries 

Definition 2.1 [30]  A Neutrosophic set A is contained in another neutrosophic set B, (i.e) A ⊆ C if 

∀x ∈ X, TA(x) ≤ TB(x), IA(x) ≤ IB(x)and FA(x) ≥ FB(x).  

Definition 2.2 [35] Let X be a space of points (objects), with a generic elements in X denoted by x. 

A single valued neutrosophic set (SVNS) A in X is characterized by truth-membership function 

TA(x), indeterminacy-membership function IA(x) and falsity-membership-function FA(x). 

For each point x in X, TA(x), FA(x), IA(x) ∈ [0,1]. 

A = {x, TA(x), FA(x), IA(x)} and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 

Definition 2.3 [17, 18] A neutrosophic graph is defined as a pair G∗ = (V, E) where  

(i) V = {v1, v2, . . , vn} such that T1 = V → [0,1], I1 = V → [0,1] and F1 = V → [0,1] denote the degree 

of truth-membership function, indeterminacy function and falsity-membership function,respectively 

and  

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3 

(ii) E ⊂ V × V where T2 = E → [0,1],I2 = E → [0,1] and F2 = E → [0,1] are such that  

T2(uv) ≤ min{T1(u), T1(v)}, 

I2(uv) ≤ min{I1(u), I1(v)}, 

F2(uv) ≤ max{F1(u), F1(v)}, 

and 0 ≤ T2(uv) + I2(uv) + F2(uv) ≤ 3, ∀uv ∈ E 

Definition 2.4 Let (H, A) and (G, B) be two neutrosophic soft sets over the common universe U. 

(J, A) is said to be neutrosophic soft subset of (G, B) if A ⊂ B, if TJ(e)(x) ≤ TG(e)(x), IJ(e)(x) ≤ IG(e)(x) 

and FJ(e)(x) ≥ FG(e)(x) for all e ∈ M, x ∈ U. 
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Definition 2.5 Let (H, A) and (G, B) be two neutrosophic soft sets over the common universe U. The 

union of two neutrosophic soft sets (H, A) and (G, B) is neutrosophic soft set (K, C) = (H, A) ∪ (G, B), 

where C = A ∪ B and the truth-membership, indeterminacy-membership and falsity-membership of 

(K, C)  are defined by TK(e)(x) = TH(e)(x), ife ∈ A − B, TG(e)(x), ife ∈ B − A, max(TH(e)(x), TG(e)(x)ife ∈

A ∩ B. 

Definition 2.6 Let U be an initial universe and P be the set of all parameters. ρ(U) denotes the set 

of all neutrosophic sets of U. Let A be a subset of P. A pair (J, A) is called a neutrosophic soft set 

over U . Let ρ(V)  denotes the set of all neutrosophic sets of V  and ρ(E)  denotes the set of all 

neutrosophic sets of E.  

Definition 2.7 [9] A neutrosophic soft graph G = (G∗, J, K, A) is an ordered four tuple, if it satisfies the 

following conditions: 

(i)G∗ = (V, E) is a simple graph, 

(ii)A is a non-empty set of parameters , 

(iii)(J, A) is a neutrosophic soft set over V, 

(iv)(K, A) is a neutrosophic soft set over E, 

(v)(J(e), K(e)) is a neutrosophic graph of G∗, then  

TK(e)(xy) ≤ {TJ(e)(x) ∧ TJ(e)(y)}, 

IK(e)(xy) ≤ {IJ(e)(x) ∧ IJ(e)(y)}, 

FK(e)(xy) ≤ {FJ(e)(x) ∨ FJ(e)(y)}, 

such that 

0 ≤ TK(e)(xy) + IK(e)(xy) + FK(e)(xy) ≤ 3 for all e ∈ A and x, y ∈ V. 

The neutrosophic graph (Je, Ke) is denoted by H(e) for convenience. A neutrosophic soft graph is a 

parametrized family of neutrosophic graphs. The class of all neutrosophic soft graphs is denoted by 

NS(G∗). Note that TK(e)(xy) = IK(e)(xy) = 0 and FK(e)(xy) = 1∀xy ∈ V × V − E, e ∉ A. 

Definition 2.8 [9] Let G1 = (F1, K1, A) and G2 = (F2, K2, B) be two neutrosophic soft graphs of G∗. 

Then G1 is a neutrosophic subgraph of G2 if 

(i)A ⊆ B. 

(ii)H1(e) is a partial subgraph of H2(e) for all e ∈ A. 

3  MAIN RESULT 

Definition 3.1 Let G = (G∗, J, K, A) be a neutrosophic soft graph. Then the degree of a vertex u ∈ G is 

a sum of degree truth membership, sum of indeterminacy membership and sum of falsity 

membership of all those edges which are incident on vertex u  denoted by d(u) =

(dTJ(e)(u), dIJ(e)(u), dFJ(e)(u)) where  

dTJ(e)(u) = ∑e∈A (∑u∉v∈V TK(e)(u, v)) called the degree of truth membership vertex 

dIJ(e)(u) = ∑e∈A (∑u∉v∈V IK(e)(u, v)) called the degree of indeterminacy membership vertex 

dFJ(e)(u) = ∑e∈A (∑u∉v∈V FK(e)(u, v)) called the degree of falsity membership vertex for all         

e ∈ A, u, v ∈ V. 

Definition 3.2 Let G = (G∗, J, K, A) be a neutrosophic soft graph. Then the total degree of a vertex u ∈

G is defined by td(u) = (tdTJ(e)(u), tdIJ(e)(u), tdFJ(e)(u)) where 

tdTJ(e)(u) = ∑e∈A (∑u∉v∈V TK(e)(u, v) + TJ(e)(u, v) called the degree of truth membership vertex 
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tdIJ(e)(u) = ∑e∈A (∑u∉v∈V IK(e)(u, v) + IJ(e)(u, v))  called the degree of indeterminacy membership 

vertex 

tdFJ(e)(u) = ∑e∈A (∑u∉v∈V FK(e)(u, v) + FJ(e)(u, v)) called the degree of falsity membership vertex for 

all e ∈ A, u, v ∈ V. 

 

 

Figure 1 

Example 3.3 Consider a simple graph G∗ = (V, E)  such that V = {a, b, c, d}  and E =

{(ab), (bc), (cd), (ad)}. Let A = (J, A) be a neutrosophic soft over V with the approximation function 

J: A → ρ(V) defined by 

J(e1) = a(0.5,0.6,0.4), b(0.7,0.6,0.5), c(0.6,0.5,0.7), d(0.6,0.5,0.7) 

J(e2) = a(0.6,0.7,0.8), b(0.5,0.6,0.7), c(0.7,0.6,0.5), d(0.8,0.9,0.4) 

Let (K, A)  be a neutrosophic soft over E  with neutrosophic approximation function K: A → ρ(E) 

defined by 

K(e1) = ab(0.5,0.5,0.4), bc(0.6,0.5,0.7), cd(0.5,0.5,0.6), ad(0.5,0.4,0.6) 

K(e2) = ab(0.5,0.6,0.8), bc(0.5,0.5,0.5), cd(0.7,0.6,0.4), ad(0.5,0.6,0.7) 

Clearly, H(e1) = (J(e1), K(e1)) and H(e2) = (J(e2), K(e2)) are neutrosophic graphs corresponding to 

the parameters e1 and e2 respectively as shown in Figure 1. 

For the graph H(e1)  degree of vertices as follows, deg(a) = (1,0.9,1.0), deg(b) =

(1.1,1.0,1.1), deg(c) = (1.1,1.0,1.3), deg(d) = (1.0,0.9,1.2) 

For the graph H(e2)  degree of vertices as follows, deg(a) = (1.0,1.2,1.5) , deg(b) =

(1.0,1.1,1.3), deg(c) = (1.2,1.1,0.9), deg(d) = (1.2,1.2,1.1) 

Definition 3.4 A simple graph G is said to be a regular if each vertices has a same degree for all e ∈

A, x, y ∈ V. Let G∗ = (V, E) be a neutrosophic graph then G is said to be a regular neutrosophic 

graph if H(e) is a regular graph for all e ∈ A, if H(e) is a regularr neutrosophic graph of degree r 

for all e ∈ A, then G is a r − regular fuzzy graph. Let G∗ = (V, E) be a neutrosophic graph then G is 

said to be a totally regular neutrosophic graph if H(e) is a totally regular graph for all e ∈ A, if H(e) 

is a totally regular neutrosophic graph of degree r for all e ∈ A , then G  is a r −totally regular 

neutrosophic fuzzy graph. 

a(0.5,0.6,0.4) (0.5,0.5,0.4) b(0.7,0.6,0.5) a(0.6,0.7,0.8) (0.5,0.6,0.8) b(0.5,0.6,0.7)

(0.5,0.4,0.6) (0.6,0.5,0.7) (0.5,0.6,0.7) (0.5,0.5,0.5)

d(0.6,0.5,0.7) (0.5,0.5,0.6) c(0.6,0.5,0.7) d(0.8,0.9,0.4) (0.7,0.6,0.4) c(0.7,0.6,05)

H (e1) H (e2)
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Example 3.5 Consider a simple graph G∗ = (V, E) such that V = {a, b, c, d} and 

E = {(ab), (bc), (cd), (ad)}. Let A = {e1, e2}. Let (J, A) be a neutrosophic soft over V with its 

approximation function J = A → ρ(V) defined by 

J(e1) = a(0.4,0.3,0.3), b(0.3,0.3,0.4), c(0.4,0.4,0.4), d(0.5,0.5,0.5) 

           J(e2) = a(0.5,0.4,0.4), b(0.4,0.4,0.5), c(0.5,0.5,0.5), d(0.6,0.6,0.6). 

Let (K, A) be a neutrosophic soft over E with neutrosophic approximation function K: A →

ρ(E) defined by  

 K(e1) = ab(0.2,0.2,0.2), bc(0.1,0.1,0.1), cd(0.2,0.2,0.2), ad(0.1,0.1,0.1) 

                     K(e2) = ab(0.2,0.2,0.2), bc(0.3,0.3,0.3), cd(0.2,0.2,0.2), ad(0.3,0.3,0.3). 

Obviously, H(e1) = (F(e1), K(e1))  and H(e2) = (F(e2), K(e2))  are neutrosophic graphs 

corresponding to the parameters e1 and e2 respectively as shown in Figure 2 

For the graph H(e1)  degree of vertices as follows, deg(a) = (0.3,0.3,0.3) , deg(b) =

(0.3,0.3,0.3), deg(c) = (0.3,0.3,0.3), deg(d) = (0.3,0.3,0.3) 

For the graph H(e2)  degree of vertices as follows, deg(a) = (0.5,0.5,0.5) , deg(b) =

(0.5,0.5,0.5), deg(c) = (0.5,0.5,0.5), deg(d) = (0.5,0.5,0.5) 

Here, H(e1) and H(e2) all the vertices degree are same so neutrosophic soft graph G is regular 

neutrosophic graph.  

 

 

 

                                              Figure 2 

Definition 3.6 A graph G∗ = (V, E) is said to be a totally regular neutrosophic graph if each vertex 

has a same total degree for all e ∈ A, u, v ∈ V.  

Example 3.7 Consider a simple graph G∗ = (V, E) such that V = {a, b, c, d, i, j, k} and 

E = {(ab), (bc), (cd), (ad), (ij), (jk), (kj)}. Let A = {e1, e2} parameter set. Let (J, A) be a neutrosophic 

soft over V with its approximation function J = A → ρ(V) defined by  

J(e1) = {a(0.5,0.6,0.4), b(0.4,0.7,0.6), c(0.4,0.6,0.7), d(0.5,0.5,0.5)} 

J(e2) = {i(0.6,0.7,0.5), j(0.5,0.7,0.9), k(0.6,0.6,0.7)} 

Let (K, A)  be a neutrosophic soft over E  with neutrosophic approximation function K: A → ρ(E) 

defined by 

a(0.4,0.3,0.3) (0.2,0.2,0.2) b(0.3,0.3,0.4) a(0.5,0.4,0.4) (0.2,0.2,0.2) b(0.4,0.4,0.5)

(0.1,0.1,0.1) (0.1,0.1,0.1) (0.3,0.3,0.3) (0.3,0.3,0.3)

d(0.5,0.5,0.5) (0.2,0.2,0.2) c(0.4,0.4,0.4) d(0.6,0.6,0.6) (0.2,0.2,0.2) c(0.5,0.5,05)

H (e1) H (e2)
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K(e1) = ab(0.4,0.3,0.5), bc(0.4,0.3,0.3), cd(0.5,0.4,0.3), ad(0.3,0.4,0.5) 

K(e2) = ij(0.5,0.5,0.4), jk(0.6,0.5,0.4), ik(0.4,0.5,0.6), 

clearly, H(e1) = (J(e1), K(e1)) and H(e2) = (J(e2), K(e2)) are neutrosophic graphs corresponding to 

the parameters e1 and e2 respectively as shown in Figure 3. For the graph H(e1) total degree of 

vertices as follows, 

tdeg(a) = (1.2,1.3,1.4), tdeg(b) = (1.2,1.3,1.4), tdeg(c) = (1.2,1.3,1.4), tdeg(d) = (1.2,1.3,1.4) 

For the graph H(e2)  degree of vertices as follow, tdeg(i) = (1.5,1.6,1.5) , tdeg(j) = (1.5,1.6,1.5) , 

tdeg(k) = (1.5,1.6,1.5) 

Here H(e1) and H(e2) all the vertices total degrees are same so neutrosophic soft graph G is totally 

regular neutrosophic soft graph.  

 

 

 

 

 

Figure 3 

Definition 3.8 The order of a neutrosophic soft graph G is  

 Ord(G) = ∑ei∈A (∑x∈V TJ(ei)(ei)(x), ∑x∈V IF(ei)(ei)(x), ∑x∈V FJ(ei)(ei)(x)). 

Definition 3.9 The size of a neutrosophic soft graph G is  

 S(G) = ∑ ( ∑ TKei
 (ei)(xy),xy∈Vei∈A

 ∑ IKei
 (ei)(xy),xy∈V  ∑ FKei

(ei) (xy),xy∈V  

Example 3.10 In example Figure 1, we consider the order of neutrosophic soft graph is  

Ord(G) = ∑

ei∈A

(∑

x∈V

TJ(ei)(ei)(x), ∑

x∈V

IF(ei)(ei)(x), ∑

x∈V

FJ(ei)(ei)(x)). 

              Ord(G) = (5.0,5.0,4.7). Similarly S(G) = (4.3,4.2,4.7) 

Definition 3.11 Let G = (G∗, J, K, A) be an neutrosophic soft graph. then cardinality of G is defined 

to be  

|𝐆| = ∑ | ∑
𝟏 + 𝐓𝐉(𝐞)(𝐱) + 𝐈𝐉(𝐞)(𝐱) − 𝐅𝐉(𝐞)(𝐱)

𝟐
+ | ∑

𝟏 + 𝐓𝐉(𝐞)(𝐱𝐲) + 𝐈𝐉(𝐞)(𝐱𝐲) − 𝐅𝐉(𝐞)(𝐱𝐲)

𝟐
𝐯𝐢,𝐯𝐣∈𝐕𝐯𝐢∈𝐕𝐞∈𝐀

| 

Example 3.12 Consider the above Figure 3, here H(e1) and H(e2) are neutrosophic soft graph of G 

corresponding to the parameter e1, the cardinality is G = 5.60 and corresponding to the parameter 

e2, the cardinality is G = 4.60 

a(0.5,0.6,0.4) (0.4,0.3,0.5) b(0.4,0.7,0.6) i(0.6,0.7,0.5) 

(0.3,0.4,0.5) (0.4,0.3,0.3) (0.4,0.5,0.6) (0.5,0.4,0.4)

d(0.5,0.5,0.5) (0.4,0.4,0.4) c(0.4,0.6,0.7) k(0.6,0.6,0.7) (0.5,0.5,0.2) j (0.5,0.7,0.9) 

H (e1) H (e2)
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Definition 3.13 Let GG = (G∗, J, K, A) be an neutrosophic soft graph, then vertex cardinality of G is 

defined to be  

 |V| = ∑ | ∑
1+TJ(e)(x)+IJ(e)(x)−FJ(e)(x)

2vi∈Ve∈A |  

Example 3.14 For the above Figure 3, H(e1)  and H(e2)  are neutrosophic soft graph of G 

corresponding to the parameter e1  cardinality is V = 0.85 + 0.75 + 0.65 + 0.75 = 3.0 

corresponding to the parameter e2, the cardinality is V = 2.30. Then G(V) = 5.30 

Definition 3.15 Let G = (G∗, J, K, A) be an neutrosophic soft graph, Edge cardinality of E is defined 

to be  

|E| = ∑

e∈A

| ∑

xy∈E

1 + TK(e)(xy) + IK(e)(xy) − FK(e)(xy)

2
| 

Example 3.16 For the above Figure 3, H(e1)  and H(e2)  are neutrosophic soft graph of G 

corresponding to the parameter e1  cardinality is E = 2.6 corresponding to the parameter e2, the 

cardinality is E = 2.30 then G(E) = 4.90. 

Definition 3.17 The sum of weight of the strong edges incident at v  is means to be dG(v).  in 

neutrosophic soft graph. The minimum deg(G) is δ(G) = min{dg(v)/v ∈ V, e ∈ A. } 

The maximum deg(G) is Δ(G) = max{dg(v)/v ∈ V, e ∈ A. } 

Definition 3.18 Two vertices x and y are said to be neighbors in neutrosophic soft graph if either 

one of the following conditions hold. 

(1)TK(e)(xy) > 0, IK(e)(xy) > 0, FK(e)(xy) > 0, 

(2)TK(e)(xy) > 0, IK(e)(xy) = 0, FK(e)(xy) > 0, 

(3)TK(e)(xy) > 0, IK(e)(xy) > 0, FK(e)(xy) = 0, 

                    (4)TK(e)(xy) = 0, IK(e)(xy) > 0, FK(e)(xy) > 0, for all x, y ∈ V, e ∈ A. 

Definition 3.19 A path in an neutrosophic is a sequence of distinct vertices v1, v2, . . . , vn, such that 

either one of the following conditions are satisfied. 

(1)TK(e)(xy) > 0, IK(e)(xy) > 0, FK(e)(xy) > 0, 

(2)TK(e)(xy) > 0, IK(e)(xy) = 0, FK(e)(xy) > 0, 

(3)TK(e)(xy) > 0, IK(e)(xy) > 0, FK(e)(xy) = 0, 

                    (4)TK(e)(xy) = 0, IK(e)(xy) > 0, FK(e)(xy) > 0, for all x, y ∈ V, e ∈ A. 

Definition 3.20 The length of a path P = v1, v2, . . . , vn+1(n > 0) in Neutrosophic soft graph is n.  

Definition 3.21 If vi, vj are vertices in G and if they are connected means of a path then the strength 

of that path is defined as (mini,jTK(e)(vi, vj), mini,jIK(e)(vi, vj), maxi,jFK(e)(vi, vj)) where  

mini,jTK(e)(vi, vj) is the TK(e)- strength of weakest arc and mini,jIK(e)(vi, vj) is the IK(e)- strength of 

weakest arc and maxi,jFK(e)(vi, vj)) is the FK(e)- strength of strong arc.  

Definition 3.22 If vi, vj ∈ V ⊆ G,  the TK(e) -strength of connectedness between vi  and vj  is 

TK(e)
∞ (vi, vj) = sup{TK(e)

K (vi, vj)/k = 1,2, . . . n, e ∈ A} and IK(e) − strength of connectedness between vi 

and vj  is IK(e)
∞ (vi, vj) = sup{IK(e)

k (vi, vj)/k = 1,2, . . . n, e ∈ A}  and FK(e)
∞ (vi, vj) = inf{FK(e)

k (vi, vj)/k =

1,2, . . . n, e ∈ A}. 

 If u, v are connected by means of path of length k then TK(e)
k (vi, vj) is defined as 

sup{TK(e)(u, v1) ∧ TK(e)(v1, v2) ∧ TK(e)(v1, v3). . . , TK(e)(vk−1, vk)/u, v, v1, . . . vk−1, v ∈ V}, 
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Ik(e)
k (vi, vj) is defined as  

sup{IK(e)(u, v1) ∧ IK(e)(v1, v2) ∧ IK(e)(v1, v3). . . , IK(e)(vk−1, vk)/u, v, v1, . . . vk−1, v ∈ V} and 

FK(e)
k (vi, vj) is defined as  

inf{FK(e)(u, v1) ∨ FK(e)(v1, v2) ∨ FK(e)(v1, v3). . . , FK(e)(vk−1, vk)/u, v, v1, . . . vk−1, v ∈ V}, e ∈ A. 

Definition 3.23 Two vertices that are joined by a path is called connected neutrosophic soft graph.  

Definition 3.24 Let u be a vertex in an neutrosophic soft graph G∗ = (V, E), then N(u) = {v: v ∈ V} 

and (u, v) is a strong arc is called neighborhood of u.  

Definition 3.25 A vertex u ∈ V of an neutrosophic soft graph G = (V, E) is said to be an isolated 

vertex if TK(e)(u, v) = 0, IK(e)(u, v) and FK(e)(u, v) = 0, thus an isolated vertex does not dominated 

any other vertex in G.  

Definition 3.26 An arc (u, v)  is said to be strong arc, if TK(e)(u, v) ≥ TK(e)
∞ (u, v)  and IK(e)(u, v) ≥

IK(e)
∞ (u, v) and FK(e)(u, v) ≥ FK(e)

∞ (u, v).  

Definition 3.27 Let G = (V, E)  be an neutrosophic soft graph on V . Let u, v ∈ V,  we say that u 

dominates v in G if there exists an strong arc between them. 

Note:  

1) For any u, v ∈ V, if u dominates v then v dominates u and hence domination is a      

   symmetric relation on V. 

2) For any v ∈ V, N(v) is precisely the set of all vertices in V which are dominated by v. 

3) If TK(e)(u, v) < TK(e)
∞ (u, v) and IK(e)(u, v) < IK(e)

∞ (u, v) and FK(e)(u, v) < FK(e)
∞ (u, v), for all 

  u, v ∈ V and e ∈ A, then the only dominating set of G is V. 

Definition 3.28 Given S ⊂ V is called a dominating set in G if for every vertex v ∈ V − S there exists 

a vertex u ∈ S such that u dominates v. for all e ∈ A, u, v ∈ V. 

Definition 3.29 A dominating set S of an Neutrosophic soft graph is said to be minimal domiating 

set if no proper subset of S is a dominating set. for all e ∈ A, u, v ∈ V. 

Definition 3.30 Minimum cardinality among all minimal dominating set is called lower domination 

number of G, and is denoted by ∑e∈A (dNS(G))∀e ∈ A, u, v ∈ V. 

Maximum cardinality among all minimal dominating set is called upper domination number of G, 

and is denoted by ∑e∈A (DNS(G))∀e ∈ A, u, v ∈ V. 

Example 3.31 Consider an neutrosophic soft graph G = (V, E) , such that V = {a, b, c, d}  and E =

{(ab), (bc), (cd), (da), (ac)}. Let A = {e1, e2} be a set of parameters and let neutrosophic soft over V 

with neutrosophic approximation function J: A → ρ(v) defined by  

J(e1) = a(0.5,0.5,0.6), b(0.5,0.6,0.7), c(0.4,0.3,0.6), d(0.4,0.5,0.7) 

J(e2) = a(0.6,0.6,0.7), b(0.6,0.7,0.8), c(0.5,0.4,0.7), d(0.5,0.6,0.7) 

Let (K, A) be a neutrosophic approximation function K: A → ρ(E) is defined by  

K(e1) = ab(0.4,0.5,0.6), bc(0.4,0.3,0.6), cd(0.4,0.3,0.6), ad(0.4,0.5,0.6), bd(0.4,0.5,07) 

K(e2) = ab(0.5,0.6,0.7), bc(0.5,0.4,0.7), cd(0.5,0.4,0.7), ad(0.5,0.6,0.7), ac(0.5,04,06) 
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Figure 4 

Here, corresponding to the parameter H(e1),  the dominating set is 

{(a, b), (b, c), (c, d), (d, a), (a, b, c), (d, c, a), (b, d, a), (d)} 

Corresponding to the parameter e1, the minimum dominating set {d}. 

Corresponding to the parameter e1, the maximum dominating set {a, b}. 

Corresponding to the parameter e1, the minimum dominating number 0.6. 

Corresponding to the parameter e1, the maximum dominating number 1.4. 

Here, corresponding to the  parameter H(e2), the dominating set is 

{(a, b), (b, c), (c, d), (a, b, c), (d, c, a)} 

Corresponding to the parameter e2, the minimum dominating set {c, d}. 

Corresponding to the parameter e2, the maximum dominating set {a, b}. 

Corresponding to the parameter e2, the minimum dominating number 1.3. 

Corresponding to the parameter e2, the maximum dominating number 1.5.  

For Figure 4, domination number is  

∑

e∈A

(dNS(G)) = 0.6 + 1.3 = 1.9 

∑

e∈A

(DNS(G)) = 1.4 + 1.5 = 2.9 

Definition 3.32 Two vertices in an neutrosophic soft graph, G = (V, E) are said to be independent if 

there is no strong arc between them.  

Definition 3.33 Given S ⊂ V  is said to be independent set of G  if TK(e)(u, v) < TK(e)
∞ (u, v)  and 

IK(e)(u, v) < IK(e)
∞ (u, v) and FK(e)(u, v) < FK(e)

∞ (u, v)∀e ∈ A, u, v ∈ S. 

Definition 3.34 An indepentent set S of G in an neutrosophic soft graph is said to be maximal 

independent, if for every vertex v ∈ V − S, the set S ∪ {v} is not independent.  

Definition 3.35 The minimum cardinality among all maximal independent set is called lower 

independence number of G, and it is denoted by ∑e∈A (iNS(G)). The maximum cardinality among all 

maximal independent set is called lower independence number of G , and it is denoted by 

∑e∈A (INS(G)).  

Example 3.36 Consider an above example for an neutrosophic soft graph G = (V, E), such that V =

{a, b, c, d}  and E = {(a, b), (bc), (cd), (da), (ac)} . Let A = {e1, e2}  be a set of parameters and let 

neutrosophic soft over V with neutrosophic approximation function J: A → ρ(v) defined as follows: 

a(0.5,0.5,0.6) (0.4,0.5,0.6) b(0.5,0.6,0.7) a(0.6,0.6,0.7) (0.5,0.6,0.7) b(0.6,0.7,0.8)

(0.4,0.5,0.6) (0.4,0.3,0.6) (0.5,0.6,0.7) (0.5,0.4,0.7)

(0.4,0.5,0.7) (0.5,0.4,0.6)

d(0.4,0.5,0.7) (0.4,0.3,0.6) c(0.4,0.3,0.6) d(0.5,0.6,0.7) (0.5,0.4,0.7) c(0.5,0.4,0.7)

H (e1) H (e2)
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we have corresponding to the parameter e2 arc (ac) is weakest arc us does not dominated by {c} 

and {a}. 

J(e1) = a(0.5,0.5,0.6), b(0.5,0.6,0.7), c(0.4,0.3,0.6), d(0.4,0.5,0.7) 

J(e2) = a(0.6,0.6,0.7), b(0.6,0.7,0.8), c(0.5,0.4,0.7), d(0.5,0.6,0.7) 

Let (K, A) be a neutrosophic approximation function K: A → ρ(E) is defined by  

K(e1) = ab(0.4,0.5,0.6), bc(0.4,0.3,0.6), cd(0.4,0.3,0.6), ad(0.4,0.5,0.6), bd(0.4,0.5,07) 

K(e2) = ab(0.5,0.6,0.7), bc(0.5,0.4,0.7), cd(0.5,0.4,0.7), ad(0.5,0.6,0.7), ac(0.5,04,06). 

For the Corresponding to the parameter e1, the minimum Independent Dominating Det (IDS) is 

{a, c}. 

For the Corresponding to the parameter e1, the maximum (IDS) is {a, c}. 

For the Corresponding to the parameter e1, the minimum independent dominating number is 1.25. 

For the Corresponding to the parameter e1, the maximum independent dominating number is 1.25. 

For the Corresponding to the parameter e2, the minimum (IDS)is {c, a}. 

For the Corresponding to the parameter e2, the maximum (IDS)is {d, b}. 

For the Corresponding to the parameter e2, the minimum independent dominating number is 1.35. 

For the Corresponding to the parameter e2, the maximum independent dominating number is 1.45. 

Independent domination number is ∑e∈A (iNS(G)) = 2.60 and ∑e∈A (INS(G)) = 2.70 

Theorem 3.37 A dominating set S of an NSG, G = (G∗, J, K, A) is a minimal dominating set if and only 

if for each d ∈ D one of the following conditions holds. 

(i) d is not a strong neighbor of any vertex in D. 

(ii) There is a vertex v ∈ V − {D} such that N(u) ∩ D = d. 

Proof. Assume that D is a minimal dominating set of G = (G∗, J, K, A). Then for every vertex d ∈ D, 

D − {d} is not a dominating set and hence there exists v ∈ V − (D − {d}) which is not dominated by 

any vertex in D − {d}. If v = d, we get, v is not a strong neighbor of any vertex in D. If v ≠ d,v is 

not dominated by D − {v}, but is dominated by D, then the vertex v is strong neighbor only to d in 

D. That is, N(v) ∩ D = d. Conversely, assume that D is a dominating set and for each vertex d ∈ D, 

one of the two conditions holds, suppose D is not a minimal dominating set, then there exists a vertex 

d ∈ D, D − {d} is a dominating set. Hence d is a strong neighbor to at least one vertex in D − {d}, the 

condition one does not hold. If D − {d} is a dominating set then every vertex in V − D is a strong 

neighbor at least one vertex in D − {d}, the second condition does not hold which contradicts our 

assumption that at least one of thse conditions holds. So D is a minimal dominating set.  

Theorem 3.38 Let G be an NSG without isolated vertices and D is a minimal dominating set. Then 

V − D is a dominating set of G = (G∗, J, K, A). 

Proof.D be a minimal dominating set. Let v be a any vertex of D. Since G = (G∗, F, K, A) has no 

isolated vertices, there is a vertex d ∈ N(v). v must be dominated by at least one vertex in D − v, that 

is D − v is a dominating set. By above theorem, it follows that d ∈ V − D. Thus every vertex in D is 

dominated by at least one vertex in V − D, and V − D is a dominating set.  

Theorem 3.39 An independent set is a maximal independent set of NSG, G = (G∗, J, K, A) if and only 

if it is independent and dominating set. 
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Proof. Let D be a maximal independent set in an NSG, and hence for every vertex v ∈ V − D, the set 

D ∪ v is not in dependent. For every vertex v ∈ V − D ,there is a vertex u ∈ D such that u is a strong 

neighbor to v . Thus D  is a dominating set. Hence D  is both dominating and independent set. 

Conversely, assume D  is both independent and dominating. Suppose D  is not maximal 

independent, then there exists a vertex v ∈ V − D , the set D ∪ v  is independent. If D ∪ v  is 

independent then no vertex in D is strong neighbor to v. Hence D cannot be a dominating set, which 

is contradiction, Hence D is a maximal independent set.  

Theorem 3.40 Every maximal independent set in an NSG, G = (G∗, J, K, A) is a minimal dominating 

set. 

Proof.  Let S be a maximal independent set in a NSG, by previous theorem, S is a dominating set. 

Suppose S is not a minimal dominating set, then there exists at least one vertex v ∈ S for which S −

v is a dominating set, But if S − v dominates V − S − (v), then at least one vertex in S − v must be 

strong neighbor to v. This contradicts the fact that S is an independent st of G. Therefore, must be a 

minimal dominating set.  

4  STRONG NEIGHBORHOOD DOMINATION 

Definition 4.1 Let G = (V, E) be a neutrosophic soft graph and u ∈ V. Then u ∈ V is called a strong 

neighbour of u if uv is a strong arc. the set of strong neighbor of u is called the strong neighborhood 

of u and is denoted by Ns(u). The closed strong neighborhood of u is defined as Ns[u] = Ns(u) ∪

u.for all u ∈ V, e ∈ A. 

Definition 4.2 Let G. = (V, E) be a strong neutrosophic soft graph and v ∈ V. 

(i) The strong degree and the strong neighborhood degree of v are defined, respectively  

 

ds(v) = ∑

e∈A

( ∑

u∈N(s)(v)

TK(e)(uv), ∑

u∈N(s)(v)

IK(e)(uv) ∑

u∈N(s)(v)

FK(e)(uv)) 

 

dsN(v) = ∑

e∈A

( ∑

u∈N(s)(v)

TJ(e)(u), ∑

u∈N(s)(v)

IJ(e)(u) ∑

u∈N(s)(v)

FJ(e)(u)) 

Definition 4.3 The strong degree cardinality and the strong neighborhood degree cardinality of v 

are defined by  

 |ds(v)| = ∑e∈A (∑u∈Ns(v)

1+TK(e)(u,v)+IK(e)(u,v)−FK(e)(u,v)

2
) 

 

 |dsN(v)| = ∑e∈A (∑u∈Ns(v)

1+TJ(e)(u)+IJ(e)(u)−FJ(e)(u)

2
) 

The minimum and maximum strong degree of G are defined, respectively as  

δs(G) =∧ |ds(v)| ∀v ∈ V and  

Δs(G) =∨ |ds(v)| ∀u, v ∈ V, e ∈ A. 

The minimum and maximum strong neighborhood degree of G are defined by  

δsN(G) =∧ |dsN(v)|∀v ∈ V and  

ΔsN(G) =∨ |dsN(v)|∀u, v ∈ V, e ∈ A. 
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Example 4.4 Consider a neutrosophic soft graph G = (V, E) in figure we see that  

 

 

 

𝐅𝐢𝐠𝐮𝐫𝐞 𝟓 

Corresponding to the parameter H(e1) = (ab), (bc), (cd), (de) are strong arc also for corresponding 

to the parameter H(e2) all arcs are strong. 

Here for corresponding parameter H(e1) , ds(a) = (0.5,0.6,0.8), ds(b) = (1.0,1.0,1.6) , ds(c) =

(0.8,0.8,1.4), ds(d) = (0.6,0.9,1.2), ds(e) = (0.3,0.5,0.6) 

|ds(a)| = (0.65), |ds(b)| = (1.2), |ds(c)| = (1.1), |ds(d)| = (1.15), |ds(e)| = (0.6) 

Here δs(G) = 0.6 and Δs(G) = 1.2 and also corresponding to the parameter H(e2) we get, ds(a) =

(0.9,1.0,1.7), ds(b) = (1.0,1.0,1.8), ds(c) = (0.7,1.0,1.6), ds(d) = (0.6,1.0,1.5) 

|ds(a)| = (1.1), |ds(b)| = (1.1), |ds(c)| = (1.05), |ds(d)| = (1.05) 

Here δs(G) = 1.05 and Δs(G) = 1.1 and also corresponding to the parameter H(e1) we get, 

dsN(a) = (0.5,0.6,0.8), dsN(b) = (1.0,1.0,1.0), dsN(c) = (0.8,1.1,1.4), dsN(d) = (1.0,1.0,0.7), dsN(e)

= (0.3,0.5,0.6) 

|dsN(a)| = (0.65), |dsN(b)| = (1.5), |dsN(c)| = (1.25), |dsN(d)| = (1.50), |dsN(e)| = (0.6) 

Here δsN(G) = 0.6 and ΔsN(G) = 1.50 and also corresponding to the parameter H(e2), we get 

dsN(a) = (0.9,1.0,1.5), dsN(b) = (1.0,1.2,1.5), dsN(c) = (0.9,1.0,1.5), dsN(d) = (1.0,1.2,1.5) 

|dsN(a)| = (1.2), |dsN(b)| = (1.35), |dsN(c)| = (1.2), |dsN(d)| = (1.35), 

Here δsN(G) = 1.2and ΔsN(G) = 1.35.  

Definition 4.5 The strong size and the strong order of neutrosophic soft graph of G are defined by  

         SNS(G) = {∑e∈A ∑uv∈E

1+TK(e)(uv)+IK(e)(uv)−FK(e)(uv)

2
/ uv is a strongarc} and 

ONS(G) = {∑

e∈A

∑

u∈V

1 + TJ(e)(u) + IJ(e)(u) − FJ(e)(u)

2
 uv is a strongarc} 

Example 4.6 Consider above Figure 5 neutrosophic soft graph G for a strong arc H(e1) is 

(ab), (bc), (cd), (de) in H(e1) we get for corresponding parameter e1SNS(e1) =
1.3+1.1+1.1+1.2

2
= 2.35. 

Corresponding parameter e2 all arcs are strong we get  

SNS(e2) =
1.2 + 1.0 + 1.1 + 1.0

2
= 2.15 

SNS(G) = 4.5. 

a(0.5,0.6,0.7) (0.5,0.6,0.8) b(0.5,0.6,0.8) a(0.6,0.7,0.8) (0.6,0.5,0.9) b(0.6,0.5,0.9)

(0.5,0.4,0.8)

(0.5,0.6,0.6) (0.2,0.4,0.7) (0.3,0.5,0.8) (0.4,0.5,0.9)

c(0.5,0.4,0.3)

(0.3,0.4,0.6)

e(0.5,0.6,0.4) (0.3,0.5,0.6) d(0.3,0.5,0.6) d(0.3,0.5,0.6) (0.3,0.5,0.7) c(0.4,0.5,0.7)

H (e1) H (e2)
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Corresponding parameter e1ONS(e1) =
1.4+1.3+1.6+1.2+1.7

2
= 3.6. 

Corresponding parameter e2 all arcs are strong we get ONS(e2) =
1.5+1.2+1.2+1.2

2
= 2.55.  

ONS(G) = 6.15.  

Definition 4.7 Let D be a dominating set in a neutrosophic soft graph. The arc weight and the node 

weight of D are defined as follows, respectively, 

We(D) = {∑

e∈A

∑

u∈D,v∈NS(u)

1 +∧ TK(e)(uv) +∧ IK(e)(uv) −∨ FK(e)(uv)

2
} 

Wv(D) = ∑

e∈A

∑

u∈D,v∈NS(u)

1 +∧ TJ(e)(u) +∧ IJ(e)(u) −∨ FJ(e)(u)

2
 

The strong domination number and the strong neighborhood domination number of G are 

defined as the minimum arc weight and the minimum node weight of dominating sets in G are 

denoted by NδS(G) and NδSN(G) respectively.  

Example 4.8 Consider the neutrosophic soft graph G  in Figure 5. The dominating set in G  are, 

corresponding to the parameter e1 sets are  

D1 = {a, d}, D2 = {b, d}, D3 = {b, e}, D4 = {a, b, d}, D5 = {b, d, e} 

We(D1) = 1.20, We(D2) = 1.1, We(D3) = 1.15, We(D4) = 1.75, We(D5) = 1.70 

Here corresponding to the parameter e1 minimum dominating set NδS(e1) = {b, d} and domination 

number NδS(e1) = 1.1 

Similarly, for corresponding to the parameter e2, the domination sets are 

D1 = {a, b}, D2 = {b, c}, D3 = {c, d}, D4 = {a, c}, D5 = {a, d}, D6 = {b, d}, D7 = {a, b, c}, D8 = {b, d, c}, D9

= {c, d, a} 

We(D1) = 0.95, We(D2) = 0.95, We(D3) = 0.95, We(D4) = 0.9, We(D5) = 0.95, We(D6) = 1.0, We(D7)

= 1.45, We(D8) = 1.45, We(D9) = 1.4 

Here corresponding to the parameter e2,  the minimum dominating set NδS(e2) = {b, d}  and 

domination number NδS(e1) = 0.95 

In addition ,we have Corresponding to the parameter e1, the dominating set  

D1 = {a, d}, D2 = {b, d}, D3 = {b, e}, D4 = {a, b, d}, D5 = {b, d, e} 

Wv(D1) = 1.40, Wv(D2) = 1.35, Wv(D3) = 1.2, Wv(D4) = 1.95, Wv(D9) = 1.95 

Here corresponding to the parameter e1  minimum dominating set NδSN(e1) = {b, e}  and 

domination number NδSN(e1) = 1.2 

similarly, corresponding to the parameter e2 domination sets are 

D1 = {a, b}, D2 = {b, c}, D3 = {c, d}, D4 = {a, c}, D5 = {a, d}, D6 = {b, d}, D7 = {a, b, c}, D8 = {b, d, c}, D9

= {c, d, a} 

Wv(D1) = 1.15, Wv(D2) = 1.0, Wv(D3) = 1.0, Wv(D4) = 1.05, Wv(D5) = 1.15, Wv(D6) = 1.1, Wv(D7)

= 1.60, Wv(D8) = 1.55, Wv(D9) = 1.60 

Here corresponding to the parameter e2  minimum dominating set NδSN(e2) = D2, D3  and 

domination number NδSN(e2) = 1.0. 

5  STRONG PERFECT DOMINATION 



Neutrosophic Sets and Systems, Vol. 28, 2019 241  

 

 
S. Satham Hussain, R. Jahir Hussain and Florentin Smarandache Domination Number in Neutrosophic Soft Graphs. 

 

In this section, we have define the perfect dominating set and strong perfect domination number of 

a neutrosophic soft graph using proper condition.  

Definition 5.1 Let G = (G∗, J, K, A)  be a neutrosophic soft graph. A subset D  of V  is a perfect 

dominating set (or Dp) in G, if for every node v ∈ V − D, there exists a only one node u ∈ D such 

that u dominates v. A set Dp is said to be minimal perfect dominating set if for each v ∈ Dp,Dp − v 

is not a perfect dominating set in G.  

Example 5.2 Consider the neutrosophic soft graph G = (V, E) figure we see that all arcs are strong 

arc.  

 

 

Figure 6 

Here corresponding to the parameter e1, the perfect dominating sets are  

D1
P = {a, b}, D2

P = {b, c}, D3
P = {c, d}, D4

P = {a, d} 

Then corresponding to the parameter e2, the perfect dominating sets are  

D1
P = {a, b}, D2

P = {d, c}, D3
P = {a, d, e} 

Proposition 5.3  Any perfect dominating set in neutrosophic soft graph G is a dominating set.  

Remark 5.4 The converse of proposition in not correct in general cases. for this consider the 

neutrosophic soft graph G in figure 6, we see that in D = {a, c} is a domination set in G, but it is not 

a a perfect domination set. Because b and d has two strong neighbors in D.  

Definition 5.5 The strong perfect domination number of a neutrosophic soft graph G is defined as 

the minimum arc weights of perfect dominating sets of G which is denoted by NδSP(G). 

Example 5.6 Consider the neutrosophic soft graph G = (G∗, J, K, A) in Figure 6  

Corresponding to the parameter e1, the perfect domination sets are, 

D1
P = {a, b}, D2

P = {b, c}, D3
P = {c, d}, D4

P = {a, d} in H(e1) we get 

We(D1
P) = 1.1, We(D2

P) = 1.1, We(D3
P) = 1.0, We(D4

P) = 1.0 

Then NδSP(e1) = 1.0 

Corresponding to the parameter e2, the perfect domination sets are, 

D1
P = {a, b}, D2

P = {d, c}, D3
P = {a, d, e} in H(e2) we get 

We(D1
P) = 1.15, We(D2

P) = 1.05, We(D3
P) = 1.50 

Then NSP(e2) = 1.05, NδSP(G) = 1.05.  

a(0.5,0.6,0.7) a(0.6,0.5,0.7) (0.5,0.4,0.6) b(0.6,0.5,0.5)

(0.4,0.3,0.7) (0.4,0.5,0.7)

(0.6,0.5,0.7) (0.4,0.3,0.6) (0.5,0.5,0.5)

d(0.4,0.3,0.7) b(0.4,0.6,0.8) 

(0.4,0.3,0.7) (0.4,0.5,0.7)

e(0.6,0.5,0.7) (0.4,0.3,0.7) d(0.4,0.3,0.4) (0.4,0.3,0.6) c(0.5,0.6,0.7)

c(0.6,0.7,0.4)

H (e2)

H (e1)
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Theorem 5.7 A perfect dominating set DP  of an NSG, G = (G∗, J, K, A)  is a minimal perfect 

dominating set if and only if for each d ∈ DP one of the following conditions holds. 

(i) Ns(v) ∩ DP = {∅} or 

(ii) There is a vertex u ∈ V − {D} such that Ns(u) ∩ DP = {v}. 

Proof. Let DP be a minimal perfect dominating set and v ∈ DP. Suppose that (i) and (ii) are not 

established. Then there exists a node u ∈ DP such that uv is strong and v has no strong neighbors 

in V − DP . Therefore DP − {v}  is a perfect dominating set in G , which is contradiction by the 

minimality of DP. 

Conversely, suppose that (i)  or (ii)  is established and DP  is not a minimal perfect 

dominating set in G. Then there exists v ∈ V − DP such that DP − {v} is a perfect dominating set. 

Hence v has a strong neighbor in DP and so (i)is not established. Then there exists is a node u ∈

V − DP such that u isa strong neighbor of v and since DP − {v} is a dominating set, then u has a 

strong neighbor in DP − {v}. Therefore u ∈ V − DP has two strong neighbors in DP and so DP is not 

a perfect dominating set, that is a contradiction. Then DP is a minimal perfect dominating set in G. 

Corollary 5.8 A dominating set D in a neutrosophic soft graph G = (V, E) is a minimal dominating 

set if and only if for each node v ∈ D,either 

(i) Ns(v) ∩ DP = {∅} or. 

(ii) There is a vertex u ∈ V − {D} such that Ns(u) ∩ DP = {v}. 

Theorem 5.9 Let G  be a neutrosophic soft graph which every its node has at least one strong 

neighbor. If DP is a minimal perfect dominating set in G, then V − DP is a dominating set.  

Proof. Suppose that DP be a minimal perfect dominating set in G and v ∈ V − (V − DP). If there is 

no u ∈ V − DP  such that NS(u) ∩ DP = {v}.  Then by above theorem, NS(v) ∩ DP = {∅}.  Therefore 

there exists a node in G which has no strong neighbors that is contradiction. This implies that V −

DP is a dominating set.  

Corollary 5.10 Let G be a neutrosophic soft graph every node of which has at least one strong 

neighbor. If D is a minimal dominating set in G, then V − D is a dominating set in G.  

Theorem 5.11 Let G  be a neutrosophic soft graph every node of which has exactly one strong 

neighbor. If DP is a minimal perfect dominating set in G, then V − DP is a perfect dominating set in 

G.  

Proof. Suppose that DP is a minimal perfect dominating set in the neutrosophic soft graph G. Then 

by above theorem V − DP is a dominating set and since every node in G has exactly one strong 

neighbor, V − DP is a perfect dominating set in G. 

6  Conclusion 

 In this work, we derived the domination number of neutrosophic soft graphs and elaborate them 

with suitable examples by using strength of path and strength of connectedness. Further, we 

investigate some remarkable properties of independent domination number, strong neighborhood 

domination and strong perfect domination of neutrosophic soft graph and the proposed concepts are 

described with suitable examples. Further we can extend to investigate the isomorphic properties of 

the proposed graph 
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Abstract: In this work, the new concept of neutrosophic vague graphs are introduced form the ideas 

of neutrosophic vague sets. Moreover, some remarkable properties of strong neutrosophic vague 

graphs, complete neutrosophic vague graphs and self-complementary neutrosophic vague graphs 

are investigated and the proposed concepts are described with suitable examples.  

Keywords: Neutrosophic vague graphs, Complete neutrosophic vague graph, Strong neutrosophic 

vague graph. 

  

1. Introduction 

  Initially, vague set theory was first investigated by Gau and Buehrer [30] which is an 

extension of fuzzy set theory. Vague sets are regarded as a special case of context-dependent fuzzy 

sets. In order to handle the indeterminate and inconsistent information, the neutrosophic set is 

introduced by the author Smarandache and studied extensively about neutrosophic set [14] - [37] and 

it receives applications in many fields. In neutrosophic set, the indeterminacy value is quantified 

explicitly and truth-membership, indeterminacy membership, and false-membership are defined 

completely independent, if the sum of these values lies between 0 and 3.  The new developments 

of neutrosophic theory are extensively studied in [1] - [6]. Molodtsov [28] firstly introduced the soft 

set theory as a general mathematical tool to with uncertainty and vagueness. Akram [9] established 

the certain notions including strong neutrosophic soft graphs and complete neutrosophic soft graphs. 

The authors [7] first introduce the concept of neutrosophic vague soft expert set which is a 

combination of neutrosophic vague set and soft expert set to improve the reasonability of decision 

making in reality.  Neutrosophic vague set theory are introduced in [8]. The operations on single 

valued neutrosophic graphs are studied in [11].  Further, intuitionistic neutrosophic soft set and 

graphs are developed in [13].  Now, the domination in vague graphs and its is application are 

discussed in [16]. Intuitionistic neutrosophic soft set are studied in [18].  Interval valued 

neutrosophic graphs are developed by the author Broumi [22,23,25]. Interval neutrosophic vague sets 

are intiated in [31]. Motivation of the aforementioned works, we introduced the concept of 

neutrosophic vague graphs and strong neutrosophic vague graphs. This is a new developed theory 

which is the combination of neutrsophic graphs and vague graphs. Here the sum of Truth, 

Intermediate and False membership value lies between 0 and 2 since the truth and false membership 

are dependent variables. Here the complement of neutrosophic vague graphs is again neutrosophic 
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vague graphs. This development theory will be applied in Operation Research, Social network 

problems. Particularly, fake profile is one of the big problems of social networks. Now, it has become 

easier to create a fake profile. People often use fake profile to insult, harass someone, involve in 

unsocial activities, etc. This model can be reformulated in the abstract form to be applied in 

neutrosophic vague graphs. The major contribution of this work as follows:   

    • Newly introduced neutrosophic vague graphs, neutrosophic vague subgraphs, 

constant neutrosophic vague graphs with examples.  

    • Further we presented some remarkable properties of strong neutrosophic vague 

graphs with suitable examples. 

 

2  Preliminaries 

Definition 2.1 [10] A vague set A on a non empty set X is a pair (TA, FA), where TA: X → [0,1] and 

FA: X → [0,1]are true membership and false membership functions, respectively, such that  

0 ≤ TA(r) + FA(r) ≤ 1 for any r ∈ X. 

Let X and Y be two non-empty sets. A vague relation R of X to Y is a vague set R on X × Y that 

is R = (TR, FR), where TR: X × Y → [0,1], FR: X × Y → [0,1] which satisfies the condition:  

0 ≤ TR(r, s) + FR(r, s) ≤ 1 for any r ∈ X. 

Let G = (R, S) be a graph. A pair G = (J, K) is named as a vague graph on G∗ or a vague graph where 

J = (TJ, FJ) is a vague set on R and K = (TK, FK) is a vague set on S ⊆ R × R such that for each rs ∈

S, 

TK(rs) ≤ (TJ(r) ∧ TJ(s))&FK(rs) ≥ (TJ(r) ∨ FJ(s)).  

Definition 2.2 [9]  A Neutrosophic set A ⊂ B, (i.e) A ⊆ C if ∀r ∈ X, TA(r) ≤ TB(r), IA(r) ≥ IB(r)and 

FA(r) ≥ FB(r).  

Definition 2.3 [12, 26, 30] Let X be a space of points (objects), with a generic elements in X known 

by r.  A single valued neutrosophic set (SVNS) A  in X  is characterized by truth-membership 

function TA(r), indeterminacy-membership function IA(r) and falsity-membership-function FA(r). 

For each point r in X, TA(r), FA(r), IA(r) ∈ [0,1]. 

A = {r, TA(r), FA(r), IA(r)} and 0 ≤ TA(r) + IA(r) + FA(r) ≤ 3 

Definition 2.4 [19, 20] A neutrosophic graph is represented as a pair G∗ = (V, E) where  

(i) R = {r1, r2, . . , rn} such that T1 = R → [0,1], I1 = R → [0,1] and F1 = R → [0,1] denote the 

degree of truth-membership function, indeterminacy function and falsity-membership function, 

respectively and  

0 ≤ TA(r) + IA(r) + FA(r) ≤ 3 

 (ii) S ⊆ R × R where T2 = S → [0,1], I2 = S → [0,1] and F2 = S → [0,1] are such that  

T2(rs) ≤ {T1(r) ∧ T1(s)}, 

I2(rs) ≥ {I1(r) ∨ I1(s)}, 

F2(rs) ≥ {F1(r) ∨ F1(s)}, 

and 0 ≤ T2(rs) + I2(rs) + F2(rs) ≤ 3, ∀rs ∈ R 

Definition 2.5 [8] A neutrosophic vague set ANV  (NVS in short) on the universe of discourse X 

written as  
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ANV = {〈r, T̂ANV
(r), ÎANV

(r), F̂ANV
(r)〉, r ∈ X} 

whose truth-membership, indeterminacy membership and falsity-membership function is defined as  

T̂ANV
(r) = [T̂−(r), T̂+(r)], [Î−(r), Î+(r)], [F̂−(r), F̂+(r)], 

where T+(r) = 1 − F−(r), F+(r) = 1 − T−(r), and 0 ≤ T−(r) + I−(r) + F−(r) ≤ 2. 

Definition 2.6 [8] The complement of NVS ANV is denoted by ANV
c  and it is represented by  

 T̂ANV

c (r) = [1 − T+(r),1 − T−(r)], 

 ÎANV

c (r) = [1 − I+(r),1 − I−(r)], 

 F̂ANV

c (r) = [1 − F+(r),1 − F−(r)], 

Definition 2.7 [8] Let ANV and BNV be two NVSs of the universe U. If for all ri ∈ U, 

T̂ANV
(ri) = T̂BNV

(ri), ÎANV
(ri) = ÎBNV

(ri), F̂ANV
(ri) = F̂BNV

(ri) 

 then the NVS ANV are included by BNV, denoted by ANV ⊆ BNV where 1 ≤ i ≤ n. 

Definition 2.8 [7] The union of two NVSs ANV and BNV is a NVSs, CNV, written as CNV = ANV ∪ BNV, 

whose truth membership function, indeterminacy-membership function and false-membership 

function are related to those of ANV and BNV by  

 T̂CNV
(x) = [max(T̂ANV

− (r)T̂BNV

− (r)), max(T̂ANV

+ (r)T̂BNV

+ (r))] 

 ÎCNV
(x) = [min(ÎANV

− (r)ÎBNV

− (r)), min(ÎANV

+ (r)ÎBNV

+ (r))] 

 F̂CNV
(x) = [min(F̂ANV

− (r)F̂BNV

− (r)), min(F̂ANV

+ (r)F̂BNV

+ (r))] 

Definition 2.9 [7] The intersection of two NVSs ANV and BNV is a NVSs CNV, written as CNV = ANV ∩

BNV, whose truth membership function, indeterminacy-membership function and false-membership 

function are related to those of ANV and BNV by  

 T̂CNV
(x) = [min(T̂ANV

− (r)T̂BNV

− (r)), min(T̂ANV

+ (r)T̂BNV

+ (r))] 

 ÎCNV
(x) = [max(ÎANV

− (r)ÎBNV

− (r)), max(ÎANV

+ (r)ÎBNV

+ (r))] 

 F̂CNV
(x) = [max(F̂ANV

− (r)F̂BNV

− (r)), max(F̂ANV

+ (r)F̂BNV

+ (r))] 

3  NEUTROSOPHIC VAGUE GRAPH 

Definition 3.1 Let G∗ = (R, S) be a graph. A pair G = (J, K) is named as a neutrosophic vague graph 

(NVG) on G∗ or a neutrosophic graph where J = (T̂J, ÎJ, F̂J) is a neutrosophic vague set on R and 

K = (T̂K, ÎK, F̂K) is a neutrosophic vague set S ⊆ R × R where 

(1) R = {r1, r2, . . . , rn} such that 

 TJ
−: R → [0,1], IJ

−: R → [0,1], FJ
−: R → [0,1] 

which satisfies the condition FJ
− = [1 − TJ

+] 

 TJ
+: R → [0,1], IJ

+: R → [0,1], FJ
+: R → [0,1] 

which satisfies the condition FJ
+ = [1 − T1

−] indicates the degree of truth membership 

function, indeterminacy membership and falsity membership of the element ri ∈ R., and  

 0 ≤ TJ
−(ri) + IJ

−(ri) + FJ
−(ri) ≤ 2. 

 0 ≤ TJ
+(ri) + IJ

+(ri) + FJ
+(ri) ≤ 2. 

 (2) S ⊆ R × R where  

 TK
−: R × R → [0,1], IK

−: R × R → [0,1], FK
−: R × R → [0,1] 

 TK
+: R × R → [0,1], IK

+: R × R → [0,1], FK
+: R × R → [0,1] 

 indicates the degree of truth membership function, indeterminacy membership and falsity 

membership of the element ri, rj ∈ S. respectively and such that  



Neutrosophic Sets and Systems, Vol. 28, 2019 248  

 

 
S. Satham Hussain, R. Jahir Hussain and Florentin On Neutrosophic Vague Graphs. 

 0 ≤ TK
−(ri) + IK

−(ri) + FK
−(ri) ≤ 2. 

 0 ≤ TK
+(ri) + IK

+(ri) + FK
+(ri) ≤ 2. 

 such that   

 TK
−(rs) ≤ {TJ

−(r) ∧ TJ
−(s)} 

 IK
−(rs) ≤ {IJ

−(r) ∧ IJ
−(s)} 

 FK
−(rs) ≤ {FJ

−(r) ∨ FJ
−(s)}, 

 similarly  

 TK
+(rs) ≤ {TJ

+(r) ∧ TJ
+(s)} 

 IK
+(rs) ≤ {IJ

+(r) ∧ IJ
+(s)} 

 FK
+(rs) ≤ {FJ

+(r) ∨ FJ
+(s)}. 

Example 3.2 A neutrosophic vague graph G = (J, K)  such that J = {a, b, c}  and K = {ab, bc, ca} 

indicated by 

â = T[0.5,0.6], I[0.4,0.3], F[0.4,0.5], b̂ = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], 

ĉ = T[0.4,0.4], I[0.5,0.3], F[0.6,0.6] 

a− = (0.5,0.4,0.4), b− = (0.4,0.7,0.4), c− = (0.4,0.5,0.6) 

a+ = (0.6,0.3,0.5), b+ = (0.6,0.3,0.6), c+ = (0.4,0.3,0.6) 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

NEUTROSOPHIC VAGUE GRAPH  

 

 

Definition 3.3 A neutrosophic vague graph H = (J′(r), K′(r)) is meant to be a neutrosophic vague 

subgraph of the NVG G = (J, K) if J′(r) ⊆ J(r) and K′(rs) ⊆ K′(rs) in other words, if  

 T̂J
′−(r) ≤ T̂J

−(r) 

 ÎJ
′−(r) ≤ ÎJ

−(r) 
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 F̂J
′−(r) ≥ F̂J

−(r)∀r ∈ R 

 and  

 T̂K
′+(rs) ≤ T̂K

−(rs) 

 ÎK
′+(rs) ≤ ÎK

−(rs) 

 F̂K
′+(rs) ≥ F̂K

−(rs)∀(rs) ∈ S. 

Example 3.4 A neutrosophic vague graph G = (J, K) in Figure (1)  

 

 

 

 

 

 

 

 

 

 

 

 

H1Figure 2 

H1 is a neutrosophic vague subgraph of G 

Definition 3.5 The two vertices are said to be adjacent in a neutrosophic vague graph G = (J, K) if  

TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)} 

IK
−(rs) = {IJ

−(r) ∧ IJ
−(s)} 

FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)}  and 

TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)} 

IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)} 

FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)} 

 In this case, r and s are known to be neighbours and (rs) is incident at r and s also.  

Definition 3.6 A path ρ in a NVG G = (J, K) is a sequence of distinct vertices r0, r1, . . . , rn such that 

TK
−(ri−1, r1) > 0 , IK

−(ri−1, r1) > 0 , FK
−(ri−1, r1) > 0 , TK

+(ri−1, r1) > 0 , IK
+(ri−1, r1) > 0 , FK

+(ri−1, r1) > 0 , 

for 0 ≤ i ≤ 1, here n ≤ 1 is called the length of the path ρ. A single node or single vertex ri may all 

consider as a path.  

Definition 3.7 A neutrosophic vague graph G = (J, K) is said to be connected if every pair of vertices 

has at least on neutrosophic vague path between them otherwise it is disconnected.  

Definition 3.8 A vertex ri ∈ R of neutrosophic vague graph G = (J, K) called as a pendent vertex if 

there is no effective edge incident at xi.  
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Definition 3.9 A vertex in a neutrosophic vague graph G = (J, K) having exactly one neighbours is 

called a isolated vertex. otherwise,it is called non-isolated vertex. An edge in a neutrosophic vague 

graph incident with a isolated vertex is called a isolated edge other words it is called non-isolated 

edge. A vertex in a neutrosophic vague graph adjacent to the isolated vertex is called an support of 

the pendent edge.  

 

Example 3.10 A neutrosophic vague graph G = (J, K) in figure (3)  

 

 

 

 

 

 

 

 

 

H1Figure 3 

NEUTROSOPHIC VAGUE GRAPH  

 In figure (3), the neutrosophic vague vertex b is an pendent vertex.   

Definition 3.11 Let G = (J, K) be a neutrosophic vague graph. Then the degree of a vertex r ∈ G is a 

sum of degree truth membership, sum of indeterminacy membership and sum of falsity membership 

of all those edges which are incident on vertex r  represented by d(r) =

([dTJ

− (r), dTJ

+ (r)], [dIJ

−(r), dIJ

+(r)], [dFJ

− (r), dFJ

+ (r)]) where  

dTJ

− (r) = ∑r≠s TK
−(rs),dTJ

+ (r) = ∑r≠s TK
+(rs) indicates the degree of truth membership vertex 

dIJ

−(r) = ∑r≠s IK
−(rs),dIJ

+(r) = ∑r≠s IK
+(rs) indicates the degree of indeterminacy membership 

vertex 

dFJ

− (r) = ∑r≠s FK
−(rs),dFJ

+ (r) = ∑r≠s FK
+(rs) indicates the degree of falsity membership vertex 

for all r, s ∈ J. 

Example 3.12 A neutrosophic vague graph G = (J, K) in figure (1), we have the degree of 

each vertex as follows  

dT
−(a) = (0.6,0.7,0.9), dF

−(b) = (0.7,0.8,1.3), dF
−(c) = (0.7,0.7,1.0), 

dT
+(a) = (0.9,0.6,1.0), dF

+(b) = (0.9,0.6,1.0), dF
+(c) = (0.8,0.6,1.0) 

Definition 3.13 A neutrosophic vague graph G = (J, K) is called constant if degree of each vertex is 

A = (A1, A2, A3) that is d(x) = (A1, A2, A3) for all x ∈ V. 

Example 3.14 Consider a neutrosophic vague graph G = (J, K) in figure (4)defined by 
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â = T[0.5,0.6], I[0.6,0.4], F[0.4,0.5], b̂ = T[0.4,0.4], I[0.4,0.6], F[0.6,0.6], 

ĉ = T[0.4,0.6], I[0.7,0.3], F[0.4,0.6], d̂ = T[0.6,0.4], I[0.3,0.7], F[0.6,0.4] 

a− = (0.5,0.6,0.4), b− = (0.4,0.4,0.6), c− = (0.4,0.7,0.4), d− = (0.6,0.3,0.6) 

a+ = (0.6,0.4,0.5), b+ = (0.4,0.6,0.6), c+ = (0.6,0.3,0.6), d+ = (0.4,0.7,0.4).  

 

 

 

 

 

 

 

 

Figure 4 

CONSTANT NEUTROSOPHIC VAGUE GRAPH  

 Clearly as it is seen in figure(4) G is constant neutrosophic vague graph since the degree of (â, b̂, ĉ, d̂) 

and d̂ = (0.6,0.6,1.2).  

Definition 3.15 The complement of neutrosophic vague graph G = (J, K) on G∗ is a neutrosophic 

vague graph Gc on G∗ where   

    • Jc(r) = J(r) 

    • TJ
−c

(r) = TJ
−(r), IJ

−c
(r) = IJ

−(r), FJ
−c

(r) = FJ
−(r) for all r ∈ R. 

    • TJ
+c

(r) = TJ
+(r), IJ

+c
(r) = IJ

+(r), FJ
+c

(r) = FJ
+(r) for all r ∈ R. 

    • TK
−c

(rs) = {TJ
−(r) ∧ TJ

−(s)} − TK
−(rs) 

IK
−c

(rs) = {IJ
−(r) ∧ IJ

−(s)} − IK
−(rs) 

                         FK
−c

(rs) = {FJ
−(r) ∨ FJ

−(s)} − FK
−(rs) for all (rs) ∈ S 

    • TK
+c

(rs) = {TJ
+(r) ∧ TJ

+(s)} − TK
+(rs) 

IK
+c

(rs) = {IJ
+(r) ∧ IJ

+(s)} − IK
+(rs) 

                        FK
+c

(rs) = {FJ
+(r) ∨ FJ

+(s)} − FK
+(rs) for all (rs) ∈ S 

4  Strong Neutrosophic Vague Graphs 

Definition 4.1 A neutrosophic vague graph G = (J, K)  of G∗ = (R, S)  is named as a strong 

neutrosophic vague graph if  

TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)} 

IK
−(rs) = {IJ

−(r) ∧ IJ
−(s)} 

FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)}    and 

TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)} 

IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)} 

FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)} for all (rs ∈ S) 
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Example 4.2 A neutrosophic vague graph G = (J, K)  such that J = {a, b, c}  and K = {ab, bc, ca} 

defined by â = T[0.3,0.4], I[0.4,0.6], F[0.6,0.7], b̂ = T[0.6,0.4], I[0.6,0.7], F[0.6,0.4], 

ĉ = T[0.7,0.7], I[0.5,0.6], F[0.3,0.3] 

 

 

 

 

 

 

 

 

 

 

Figure 5 

STRONG NEUTROSOPHIC VAGUE GRAPH 

Remark 4.3 If G = (J, K) is a neutrosophic vague graph on G∗ then from above definition, it follow 

that Gcc
 is given by the neutrosophic vague graph Gcc

= Jcc
, Kcc

 on G∗ where   

    • (Jc)c(r) = J(r) 

    • (TJ
−c

)c(r) = TJ
−(r), IJ

−c
(r) = IJ

−(r), FJ
−c

(r) = FJ
−(r) for all r ∈ R. 

    • (TJ
+c

)c(r) = TJ
+(r), IJ

+c
(r) = IJ

+(r), FJ
+c

(r) = FJ
+(r) for all r ∈ R. 

    • (TK
−c

)c(rs) = {TJ
−(r) ∧ TJ

−(s)} − TK
−(rs) 

(IK
−c

)c(rs) = {IJ
−(r) ∧ IJ

−(s)} − IK
−(rs) 

                       (FK
−c

)c(rs) = {FJ
−(r) ∨ FJ

−(s)} − FK
−(rs) for all (rs) ∈ S 

    • (TK
+c

)c(rs) = {TJ
+(r) ∧ TJ

+(s)} − TK
+(rs) 

(IK
+c

)c(rs) = {IJ
+(r) ∧ IJ

+(s)} − IK
+(rs) 

                       (FK
+c

)c(rs) = {FJ
+(r) ∨ FJ

+(s)} − FK
+(rs) for all (rs) ∈ S 

 for any neutrosophic vague graph G,Gc is strong neutrosophic graph and G ⊆ Gc 

Definition 4.4 A strong neutrosophic graph G is called self-complementary if G ≅ Gcwhere Gc is 

the complement of neutrosophic vague graph G. 

Example 4.5 A neutrosophic vague graph G = (J, K) such that J = {a, b, c, d} and K = {ab, bc, cd, da} 

defined as follows: consider a neutrosophic vague graph G as in figure(6) 
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          𝐆 STRONG NVG                                𝐆𝐜 STRONG NVG 

 

 

 

 

 

 

 

 

 

 

Gcc
 STRONG NVG 

Clearly, as it is seen in figure (6) G ≅ Gcc
.  

Hence G is self complementary.  

Proposition 4.6 Let G = (J, K) be a strong neutrosophic vague graph if  

TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)} 

IK
−(rs) = {IJ

−(r) ∧ IJ
−(s)} 

FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)} 

TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)} 

IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)} 

FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)} for all rs ∈ K 

 Then G is self complementary.  

Proof. Let G = (J, K) be a strong neutrosophic vague graph such that  

T̂K(rs) =
1

2
min[T̂J(r), T̂J(s)] 

ÎK(rs) =
1

2
min[ÎJ(r), ÎJ(s)] 

F̂K(rs) =
1

2
maxF̂J(r), F̂J(s) 
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 for all rs ∈ J then G ≈ Gcc
 under the identity map I: J → J. Hence G is self complementary  

Proposition 4.7 Let G be a self complementary neutrosophic vague graph then 

∑

r≠s

T̂K(rs) =
1

2
∑

r≠s

min{T̂J(r), T̂J(s)} 

∑

r≠s

ÎK(rs) =
1

2
∑

r≠s

min{ÎJ(r), ÎJ(s)} 

∑

r≠s

F̂K(rs) =
1

2
∑

r≠s

max{F̂J(r), F̂J(s)} 

 

Proof. If G be an self complementary neutrosophic vague graph then there exist an isomorphism 

f: J1 → J2 satisfy  

 T̂J1

c (f(r)) = T̂J1
(f(r)) = T̂J1

(r) 

 ÎJ1

c (f(r)) = ÎJ1
(f(r)) = ÎJ1

(r) 

 F̂J1

c (f(r)) = F̂J1
(f(r)) = F̂J1

(r) 

 and  

 T̂K1

c (f(r), f(s)) = T̂K1
(f(r), f(s)) = T̂K1

(rs) 

 ÎK1

c (f(r), f(s)) = ÎK1
(f(r), f(s)) = ÎK1

(rs) 

 F̂K1

c (f(r), f(s)) = F̂K1
(f(r), f(s)) = F̂K1

(rs) 

 we have T̂K1

c (f(r), f(s)) = min(T̂J1

c (r), T̂J1

c (s)) − T̂K1
(f(r), f(s)) . i.e, T̂K1

(rs) = min(T̂J1

c (r), T̂J1

c (s)) −

T̂K1
(f(r), f(s)). T̂K1

(rs) = min(T̂J1

c (r), T̂J1

c (s)) − T̂K1
(rs). that is  

 ∑r≠s T̂K1
(rs) + ∑r≠s T̂K1

(rs) = ∑r≠s min(T̂J1
(r), T̂J1

(s)). 

Similarly, ∑r≠s ÎK1
(rs) + ∑r≠s ÎK1

(rs) = ∑r≠s min(ÎJ1
(r), ÎJ1

(s)) 

∑

r≠s

F̂K1
(rs) + ∑

r≠s

F̂K1
(rs) = ∑

r≠s

max(F̂J1
(r), F̂J1

(s)) 

2 ∑

r≠s

T̂K1
(rs) = ∑

r≠s

min(T̂J1
(r), T̂J1

(s)) 

2 ∑

r≠s

ÎK1
(rs) = ∑

r≠s

min(ÎJ1
(r), ÎJ1

(s)) 

2 ∑

r≠s

F̂K1
(rs) = ∑

r≠s

max(F̂J1
(r), F̂J1

(s)) 

from the equation of the proposition (4.8) holds.  

Proposition 4.8 Let G1 and G2 be strong neutrosophic vague graph G1 ≈ G2(isomorphism)  

Proof. Assume that G1  and G2  are isomorphic there exist a bijective map f: J1 → J2 

satisfying,  

 T̂J1
(r) = T̂J2

(f(r)), ÎJ1
(r) = ÎJ2

(f(r)), F̂J1
(r) = F̂J2

(f(r)), forallr ∈ J1 

and  

 T̂K1
(rs) = T̂K2

(f(r), f(s)) 

 ÎK1
(rs) = ÎK2

(f(r), f(s)) 

 F̂K1
(r) = F̂K2

(f(r), f(s))∀rs ∈ K1 

 by definition (4.3) we have  
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 TK1

c (rs) = min(TJ1
(r), TJ1

(s)) − TK1
(rs) 

 = min(TJ2
f(r), TJ2

f(s)) − TK2
(f(r)f(s)) 

 = TK2

c (f(r)f(s)) 

 IK1

c (rs) = min(IJ1
(r), IJ1

(s)) − IK1
(rs) 

 = min(IJ2
f(r), IJ2

f(s)) − IK2
(f(r)f(s)) 

 = IK2

c (f(r)f(s)) 

 FK1

c (rs) = max(FJ1
(r), FJ1

(s)) − FK1
(rs) 

 = max(FJ2
f(r), FJ2

f(s)) − FK2
(f(r)f(s)) 

 = FK2

c (f(r)f(s)) 

 Hence G1
c ≈ G2

c  for all (rs) ∈ K1 

Definition 4.9 A neutrosophic vague graph G = (J, K) is complete if 

 

 TK
−(rs) = {TJ

−(r) ∧ TJ
−(s)} 

 

 IK
−(rs) = {IJ

−(r), IJ
−(s)} 

 

 FK
−(rs) = {FJ

−(r) ∨ FJ
−(s)}, 

similarly,  

 TK
+(rs) = {TJ

+(r) ∧ TJ
+(s)} 

 

 IK
+(rs) = {IJ

+(r) ∧ IJ
+(s)} 

 

 FK
+(rs) = {FJ

+(r) ∨ FJ
+(s)}forr, s ∈ J. 

Example 4.10 Consider a neutrosophic vague graph G = (J, K)  such that J = {a, b, c, d}  and K =

{ab, bc, cd, da} defined by  

 

 

 

 

 

 

 

 

Figure 7 

COMPLETE NEUTROSOPHIC VAGUE GRAPH  
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Definition 4.11 The complement of neutrosophic vague graph G = (J, K)  of G∗ = (V, E)  is a 

neutrosophic vague complete graph G = (Jc, Kc) on G∗ = (R, Sc) where 

(1) Jc(ri) = J(ri) 

(2) T̂J
c(ri) = T̂J(ri), ÎJ

c(ri) = ÎJ(ri), F̂J
c(ri) = F̂J(ri) for all ri ∈ J 

(3)T̂K
c(risj) = (T̂J(ri) ∧ T̂J(sj)) − T̂K(risj) 

ÎK
c (risj) = (ÎJ(ri) ∧ ÎJ(sj)) − ÎK(ri, sj) 

                       F̂K
c (risj) = (F̂J(ri) ∨ F̂J(sj)) − F̂K(risj)   for all (risj) ∈ K 

Proposition 4.12 The complement of complete neutrosophic vague graph with no edge. or if G is 

complete then Gc the edge is empty.  

Proof. Let G = (J, K) be a complete neutrosophic vague graph so  

 T̂K(risj) = (T̂J(ri) ∧ T̂J(sj)) 

 

 ÎK(risj) = (ÎJ(ri) ∧ T̂J(sj)) 

 

 F̂K(risj) = (F̂J(ri) ∨ F̂J(sj))∀(ri, sj) ∈ J 

Hence in 𝐆𝐜. Now, 

T̂K
c(risj) = (T̂J(ri) ∧ T̂J(sj)) − T̂K(risj) 

 = (T̂J(ri) ∧ T̂J(sj)) − (T̂J(ri) ∧ T̂J(sj)) ∀ i, j, . . . , n 

 = 0 ∀, i, j, . . . , n. 

 and  

 ÎK
c (risj) = (ÎJ(ri) ∧ ÎJ(sj)) − ÎK(risj) 

 = (ÎJ(ri) ∧ ÎJ(sj)) − (ÎJ(ri) ∧ ÎJ(sj))∀ i, j, . . . , n 

 = 0∀ i, j, . . . , n. 

 Similarly F̂K
c (ri, sj) = 0. Thus,(T̂K(ri, sj), ÎK(ri, sj), F̂K(ri, sj)) = (0,0,0) 

Hence, the edge set of Gc is empty if G is a complete neutrosophic vague graph.  

 

Conclusion and futute directions: 

 This work dealt with the new concept of neutrosophic vague graphs. Moreover, some 

remarkable properties of strong neutrosophic vague graphs, complete neutrosophic vague graphs 

and self-complementary neutrosophic vague graphs have been investigated and the proposed 

concepts were described with suitable examples. Further we can extend to investigate the regular 

and isomorphic properties of the proposed graph. This can be applied to social network model and 

operations research. 
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1   Introduction 

Zadeh was the introducer of the fuzzy set and interval-valued fuzzy theory [2] in 1965. Many 

researchers afterward followed the notions of Zadeh. The cubic set was defined by Jun et al. [9, 10] 

They used the notion of cubic sets in group and initiated the idea of cubic subgroups. The algebraic 

structures like 𝐵𝐶𝐾/𝐵𝐶𝐼-algebra was introduced by Imai et al. [1] in 1966. This algebra was a field of 

propositional calculus. Many algebraic structures like 𝐺 -algebra, 𝐵𝐺 -algebra, etc. [19, 4] are 

structured as an extension of 𝑄-algebra. Quadratic 𝐵-algebra was investigated by Park et al. [22]. 

Molodstov gave the concept of soft sets [14] in 1999. Cubic soft set with application and subalgebra 

in BCK/BCI-algebra were studied by Muhiuddin et al. [15,16]. Senapati et al. [13] generalized the 

concept of cubic set to 𝐵-subalgebra with cubic subalgebra and cubic closed ideals. Subalgebra, ideal 

are studied with the help of cubic set by Jun et al. [12]. The intuitionistic fuzzy 𝐺-subalgebra is 

studied by Jana et al. [18]. 𝐿-fuzzy 𝐺-subalgebra was studied by Senapati et al. [7]. As an extension 

of 𝐵-algebra, lots of work on 𝐵𝐺-algebra have been done by the Senapati et al. [8]. The idea of a 

neutrosophic  set which was the extension of intuitionistic fuzzy set theory and neutrosophic 

probability were introduced by Smarandache [20,21]. The notion of neutrosophic cubic set introduced 

truth-internal and truth-external were extended by Jun et al. [11] and related properties were also 

investigated by him. Rosenfeld’s fuzzy subgroup with an interval-valued membership function was 

studied by Biswas [3]. The characteristics of the neutrosophic cubic soft set were studied by Pramanik 

et al. [5]. Cubic G-subalgebra with significent results were investigated by jana et al. [17]. The bipolar 

fuzzy structure of 𝐵𝐺-algebra was interrogated by Senapati [6]. Neutrosophic cubic soft expert sets 

were studied for its applications in games by Gulistan M et al. [23]. Neutrosophic cubic graphs and 

mailto:rakibiqbal2012@gmail.com
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find out the applications of neutrosophic cubic graphs in the industry by defining the model which 

are based on the present time and future predictions was studied by Gulistan M et al. [24]. Complex 

neutrosophic subsemigroups with the Cartesian product, complex neutrosophic (left, right, interior, 

ideal, characteristic function and direct product was observed by Gulistan M et al. [25]. Results 

showed the most preferred and the lowest preferred metrics in order to evaluate the sustainability of 

the supply chain strategy are studied by Abdel-Basset et al. [26]. Hybrid combination between 

analytical hierarchical process (AHP) as an MCDM method and neutrosophic theory to successfully 

detect and handle the uncertainty and inconsistency challenges proposed by Abdel-Basset et al. [27].  

In this paper, the notion of neutrosophic soft cubic subalgebras (NSCSU) of G-algebras is introduced. 

And some relevant properties are studied. This study also discussed the homomorphism of 

neutrosophic soft cubic subalgebras and several related properties. 

  
2 Preliminaries  

Definition 2.1 [13]  A nonempty set Y with a constant 0 and a binary operation ∗ is said to be G-

algebra if it fulfills these axioms. 

G1: t1 ∗ t1 = 0. 

G2: t1 ∗ (t1 ∗ t2) = t2, for all t1, t2 ∈ Y. 

 A G-algebra is denoted by (Y,∗ ,0). 

Definition 2.2 [3] A nonempty subset S of G-algebra Y is called a subalgebra of Y if t1 ∗ t2 ∈ S ∀ 

t1, t2 ∈ S. 

Definition 2.3 [3] Mapping τ|Y → X of G-algebras is called homomorphism if τ(t1 ∗ t2) = τ(t1) ∗

τ(t2) ∀ t1, t2 ∈ Y.  

Note that if τ|Y → X is a g-homomorphism, then τ(0) = 0. 

Definition 2.4 [11] A nonempty set A in Y of the A = {< t1, ϑA(t1) >  |t1 ∈ Y}, is called fuzzy set, 

where ϑA(t1) is called the existence value of t1 in A and ϑA(t1) ∈ [0,1].  

   For a family Ai = {< t1, ϑAi
(t1) > |t1 ∈ Y} of fuzzy sets in Y, where i ∈ h and h is index set, we 

define the join (∨) meet (∧) operations like this:  
 ∨

i∈h
Ai = ( ∨

i∈h
ϑAi

)(t1) = sup{ϑAi
|i ∈ h}, 

 and  

 ∧
i∈h

Ai = ( ∧
i∈h

ϑAi
)(t1) = inf{ϑAi

|i ∈ h} respectively, ∀ t1 ∈ Y.  

  

Definition 2.5 [11] A nonempty set A over Y of the form A = {< t1, ϑ̃A(t1) >  | t1 ∈ Y}, is called 

IVFS where ϑ̃A|Y → D[0,1], here D[0,1] is the collection of all subintervals of [0,1].  

      The intervals ϑ̃At1 = [ϑA
−(t1), ϑA

+(t1)] ∀ t1 ∈ Y denote the degree of existence of the element 

t1 to the set A. Also ϑ̃A
c = [1 − ϑA

−(t1),1 − ϑA
+(t1)] represents the complement of ϑ̃A. 

    For a family {Ai|i ∈ k} of IVFSs in Y where h is an index set, the union G = ⋃
i∈h

ϑ̃Ai
(t1) and the 

intersection F = ⋂
i∈h

ϑ̃Ai
(t1) are defined below:  

 G(t1) = (⋃i∈h ϑ̃Ai
)(t1) = rsup{ϑ̃Ai

(t1)|i ∈ h} 

and  

 F(t1) = (⋂i∈h ϑ̃Ai
)(t1) = rinf{ϑ̃Ai

(t1)|i ∈ k}, respectively, ∀ t1 ∈ Y. 

  

Definition 2.6 [12] Consider two elements K1, K2 ∈ D[0,1]. If K1 = [f1
−, f1

+] and K2 = [f2
−, f2

+], then 

rmax(K1, K2) = [max(f1
−, f2

−), max(f1
+, f2

+)] which is denoted by K1 ∨r K2 and rmin(K1, K2) =

[min(f1
−, f2

−), min(f1
+, f2

+)] which is denoted by K1 ∧r K2. Thus, if Ki = [fi
−, fi

+] ∈ K[0,1] for i =

1,2,3, …, then we define rsupi(Ki) = [supi(fi
−), supi(fi

+)], i. e., ∨i
r Ki = [∨i (fi

−), ∨i (fi
+)]. Similarly we 

define rinfi(Ki) = [infi(fi
−), infi(fi

+)], i. e., ∧i
r Ki = [∧i (fi

−),  ∧i (fi
+)]. Now K1 ≥ K2 ⇐ f1

− ≥ f2
− and 

f1
+ ≥ f2

+. Similarly the relations K1 ≤ K2 and K1 = K2 are defined.  
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Definition 2.7 [13] A fuzzy set A = {< t1, ϑA(t1) > |t1 ∈ Y} is called a fuzzy subalgebra of Y if 

ϑA(t1 ∗ t2) ≥ min{ϑA(t1), ϑA(t2)} ∀ t1, t2 ∈ Y. 

  

Definition 2.8 [22]  A pair 𝒫̃k = (𝐀, Λ) is called NCS where 𝐀 = {〈t1; AT(t1), AI(t1), AF(t1)〉 |t1 ∈ Y} is an  INS  in 

Y and Λ = {〈t1; λT(t1), λI(t1), λF(t1)〉| t1 ∈ Y } is a neutrosophic set in Y.  

  

Definition 2.9 [3] Let C = {〈t1, A(t1), λ(t1)〉} be a cubic set, where A(t1) is an IVFS in Y, λ(t1) is a 

fuzzy set in Y and Y is subalgebra. Then A is cubic subalgebra under binary operation * if it 

fulfills these axioms: 

C1: A(t1 ∗ t2) ≥ rmin{A(t1), A(t2)}, 

C2: λ(t1 ∗ t2) ≤ max{λ(t1), λ(t2)} ∀ t1, t2 ∈ Y.  

  

Definition 3.0 [14] Let U be an universe set. Let NC(U) represents the set of all neutrosophic cubic 

sets and E be the collection of parameters. Let K ⊂ E then P̃K = {〈t1, Aei
(t1), λei

(t1)〉|t1 ∈ U, ei ∈ K}, 

where Aei
(t1) = {〈Aei

T (t1), (A)ei
I (t1), (A)ei

F (t1)〉|t1 ∈ U}, is an interval neutrosophic soft set, λei
(t1) =

{〈λei
T (t1), (A)ei

I (t1)(t1), (λ)ei
F (t1)〉|t1 ∈ U} is a neutrosophic soft set. P̃k is named as the neutrosophic 

soft cubic set over U where P̃ is a mapping given by P̃|K → NC(U). The sets of all neutrosophic soft 

cubic sets over U will be denoted by CU
N.  

 
3 Neutrosophic Soft Cubic Subalgebras of 𝐆-Algebra  

                                                             

Definition 3.1 Let 𝒫̃k = (𝐀𝐞𝐢
,  Λei

) be a neutrosophic soft cubic set, where Y is subalgebra. Then 𝒫̃k 

is NSCSU under binary operation ∗ if it holds the following conditions: 

N1: 

 Aei
T (t1 ∗ t2) ≥ rmin{Aei

T (t1), Aei
T (t2)} 

              Aei
I (t1 ∗ t2) ≥ rmin{Aei

I (t1), Aei
I (t2)} 

 Aei
F (t1 ∗ t2) ≥ rmin{Aei

F (t1), Aei
F (t2)}, 

N2: 

 Λei
T (t1 ∗ t2) ≤ max{Λei

T (t1), Λei
T (t2)} 

 Λei
I (t1 ∗ t2) ≤ max{Λei

I (t1), Λei
I (t2)} 

 Λei
F (t1 ∗ t2) ≤ max{Λei

F (t1), Λei
F (t2)}. 

For simplicity we introduced new notation for neutrosophic soft cubic set as  

𝒫̃k = (Aei

T,I,F, λei

T,I,F) = (Aei

ϱ
, λei

ϱ
) = {〈t1, Aei

ϱ
(t1), λei

ϱ
(t1)〉} 

and for conditions N1, N2 as  

 N1: Aei

ϱ
(t1 ∗ t2) ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}, 

 N2: λei

ϱ
(t1 ∗ t2) ≤ max{λei

ϱ
(t1), λei

ϱ
(t2)}.  

Example 3.2  Let Y = {0, c1, c2, c3, c4, c5} be a G-algebra with the following Cayley table.  

  
⋇ 0 c1 c2 c3 c4 c5 

0 0 c5 c4 c3 c2 c1 

c1 c1 0 c5 c4 c3 c2 

c2 c2 c1 0 c5 c4 c3 

c3 c3 c2 c1 0 c5 c4 

c4 c4 c3 c2 c1 0 c5 

c5 c5 c4 c3 c2 c1 0 
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A NSCS 𝒫̃𝑘 = (𝐴𝑒𝑖

𝜚
, 𝜆𝑒𝑖

𝜚
) of 𝑌 is defined by 

∗ 0 c1 c2 c3 c4 c5 

Aei
T  [0.6,0.8] [0.5,0.7] [0.6,0.8] [0.5,0.7] [0.6,0.8] [0.5,0.7] 

Aei
I  [0.5,0.4] [0.4,0.3] [0.5,0.4] [0.4,0.3] [0.5,0.4] [0.4,0.3] 

Aei
F  [0.5,0.7] [0.3,0.6] [0.5,0.7] [0.3,0.6] [0.5,0.7] [0.3,0.6], 

and 

* 0 c1 c2 c3 c4 c5 

λei
T  0.3 0.5 0.3 0.5 0.3 0.5 

Λei
I  0.5 0.7 0.5 0.7 0.5 0.7 

Λei
F  0.7 0.8 0.7 0.8 0.7 0.8. 

  
Definition 3.1 is satisfied by the set 𝒫̃k. Thus 𝒫̃k = (Aei

ϱ
, λei

ϱ
) is a NSCSU of Y.     

Proposition 3.3 Let 𝒫̃k = {〈t1, Aei

ϱ
(t1), λei

ϱ
(t1)〉} is a NSCSU of Y, then ∀ t1 ∈ Y, Aei

ϱ
(t1) ≥ Aei

ϱ
(0) 

and λei

ϱ
(0) ≤ λei

ϱ
(t1). Thus, Aei

ϱ
(0) and λei

ϱ
(0) are the upper bounds and lower bounds of Aei

ϱ
(t1) 

and λei

ϱ
(t1) respectively.  

 

Proof. For all t1 ∈ Y , we have Aei

ϱ
(0) = Aei

ϱ
(t1 ∗ t1) ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(t1)} = Aei

ϱ
(t1)  ⇒  Aei

ϱ
(0) ≥

Aei

ϱ
(t1) and λei

ϱ
(0) = λei

ϱ
(t1 ∗ t1) ≤ max{λei

ϱ
(t1), λei

ϱ
(t1)} = λei

ϱ
(t1) ⇒ λei

ϱ
(0) ≤ λei

ϱ
(t1).  

 

Theorem 3.4 Let 𝒫̃k = {〈t1, Aei

ϱ
(t1), λei

ϱ
(t1)〉} be a NSCSU of Y. If there exists a sequence {(t1)n} of Y 

such that limn→∞Aei

ϱ
((t1)n) = [1,1] and limn→∞λei

ϱ
((t1)n) = 0. Then Aei

ϱ
(0) = [1,1] and λei

ϱ
(0) = 0.  

Proof. Using Proposition 3.3, Aei

ϱ
(0) ≥ Aei

ϱ
(t1) ∀ t1 ∈ Y, ∴ Aei

ϱ
(0) ≥ Aei

ϱ
((t1)n) for n ∈ Z+. Consider, 

[1,1] ≥ Aei

ϱ
(0) ≥ limn→∞Aei

ϱ
((t1)n) = [1,1]. Hence, Aei

ϱ
(0) = [1,1].      Again, using Proposition 3.3, 

λei

ϱ
(0) ≤ λei

ϱ
(t1)  ∀  t1 ∈ Y,  ∴  λei

ϱ
(0) ≤ λei

ϱ
((t1)n)  for n ∈ Z+ . Consider, 0 ≤ λei

ϱ
(0)  ≤

limn→∞λei

ϱ
((t1)n) = 0. Hence, λei

ϱ
(0) = 0. 

Theorem 3.5 The R-intersection of any set of NSCSU of Y is also a NSCSU of Y.  

Proof. Let 𝒫̃k = {〈t1, Aei

ϱ
, λei

ϱ
〉|t1 ∈ Y} where i ∈ k, be set of NSCSU of Y and t1, t2 ∈ Y. Then  

 (⋂Aei

ϱ
)(t1 ∗ t2) = rinfAei

ϱ
(t1 ∗ t2) 

 ≥ rinf{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} 

 = rmin{rinfAei

ϱ
(t1), rinfAei

ϱ
(t2)} 

 = rmin{(⋂ Aei

ϱ
)(t1), (⋂ Aei

ϱ
)(t2)} 

 ⇒ (⋂ Aei

ϱ
)(t1 ∗ t2) ≥ rmin{(⋂ Aei

ϱ
)(t1), (⋂ Aei

ϱ
)(t2)} 

 and  

 (⋁λei

ϱ
)(t1 ∗ t2) = supλei

ϱ
(t1 ∗ t2) 

 ≤ sup{max{λei

ϱ
(t1), λei

ϱ
(t2)}} 

 = max{supλei

ϱ
(t1), supλei

ϱ
(t2)} 

 = max{(⋁λei

ϱ
)(t1), (⋁λei

ϱ
)(t2)} 

 ⇒ (⋁λei

ϱ
)(t1 ∗ t2) ≤ max{(⋁λei

ϱ
)(t1), (⋁λei

ϱ
)(t2)}, 
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 which show that R-intersection of 𝒫̃k is a NSCSU of Y.  

Remark 3.6 This is not compulsary that R-union, P-intersection and P-union of NSCSU are also 

the NSCSU. 

Example 3.7 Let Y = {0, c1, c2, c3, c4, c5} be a G-algebra with the following Cayley table.  

  
⋇ 0 c1 c2 c3 c4 c5 

0 0 c2 c1 c3 c4 c5 

c1 c1 0 c2 c5 c3 c4 

c2 c2 c1 0 c4 c5 c3 

c3 c3 c4 c5 0 c1 c2 

c4 c4 c5 c3 c2 0 c1 

c5 c5 c3 c4 c1 c2 0. 

Let 𝒜𝑒1
= (𝐴𝑒1

𝜚
, 𝜆𝑒1

𝜚
) and 𝒜𝑒2

= (𝐴𝑒2

𝜚
, 𝜆𝑒2

𝜚
) are neutrosophic soft cubic sets of 𝑌 defined by 

 0 c1 c2 c3 c4 c5 

Ae1
T [0.5,0.4] [0.1,0.2] [0.1,0.2] [0.5,0.4] [0.1,0.2] [0.1,0.2] 

Ae1
I [0.6,0.7] [0.2,0.3] [0.2,0.3] [0.6,0.7] [0.2,0.3] [0.2,0.3] 

Ae1
F [0.7,0.8] [0.3,0.4] [0.3,0.4] [0.7,0.8] [0.3,0.4] [0.3,0.4] 

Ae2
T [0.6,0.7] [0.2,0.3] [0.2,0.3] [0.6,0.7] [0.2,0.3] [0.2,0.3] 

Ae2
I [0.5,0.4] [0.1,0.2] [0.1,0.2] [0.1,0.2] [0.5,0.4] [0.1,0.2] 

Ae2
F [0.4,0.3] [0.2,0.4] [0.2,0.4] [0.2,0.4] [0.4,0.5] [0.2,0.4] 

and 

 0 c1 c2 c3 c4 c5 

λe1
T 0.2 0.8 0.8 0.3 0.8 0.8 

λe1
I 0.3 0.7 0.7 0.4 0.7 0.7 

λe1
F 0.5 0.6 0.6 0.5 0.6 0.6 

λe2
T 0.3 0.5 0.5 0.5 0.4 0.5 

λe2
I 0.4 0.7 0.7 0.7 0.5 0.7 

λe2
F 0.5 0.9 0.9 0.9 0.6 0.9 

  
Then 𝒜e1

 and 𝒜e2
 are neutrosophic soft cubic subalgebras of Y  but R-union, P-union and P-

intersection of 𝒜e1
 and 𝒜e2

 are not neutrosophic soft cubic subalgebras of Y. (⋃ Aei

ϱ
)(c3 ∗ c4) =

([0.2,0.5], [0.2,0.3], [0.3,0.4])ϱ =  rmin{(⋃ Aei

ϱ
)(c3), (⋃ Aei

ϱ
)(c4)} 𝑎𝑛𝑑 (⋀λei

ϱ
)(c3 ∗ c4) = (0.7,0.6,0.8)ϱ ≰

(0.1,0.2,0,3)ϱ = max{(⋀λei

ϱ
)(c3), (⋀λei

ϱ
)(c4)}.  
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We give the conditions that R-union, P-union and P-intersection of NSCSU are also NSCSU. Which 

are at Theorem 3.8, 3.9, 3.10.  

  

Theorem 3.8 Let 𝒫̃k = {〈t1, Aei

ϱ
, λei

ϱ
〉|t1 ∈ Y}  where i ∈ k  be set of NSCSU of Y,  where i ∈ k . If 

inf{max{λei

ϱ
(t1), λei

ϱ
(t2)}} = max{infλei

ϱ
(t1), infλei

ϱ
(t2)} ∀ t1 ∈ Y. Then the P-intersection of 𝒫̃k is also 

a NSCSU of Y.  

 

Proof. Suppose that 𝒫̃k = {〈t1, Aei

ϱ
, λei

ϱ
〉|t1 ∈ Y}  where i ∈ k  be set of NSCSU of Y  such that 

inf{max{λei

ϱ
(t1), λei

ϱ
(t2)}}  = max{infλei

ϱ
(t1), infλei

ϱ
(t2)}  ∀  t1, t2 ∈ Y.  Then for t1, t2 ∈ Y.  Then 

(⋂ Aei

ϱ
)(t1 ∗ t2) = rinfAei

ϱ
(t1 ∗ t2) ≥ rinf{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} = rmin{rinfAei

ϱ
(t1), rinfAei

ϱ
(t2)} =

rmin{(⋂ Aei

ϱ
)(t1), (⋂ Aei

ϱ
)(t2)} ⇒ (⋂ Aei

ϱ
)(t1 ∗ t2) ≥ rmin{(⋂ Aei

ϱ
)(t1), (⋂ Aei

ϱ
)(t2)           and 

(⋀λei

ϱ
)(t1 ∗ t2) = infλei

ϱ
(t1 ∗ t2) ≤ inf{max{λei

ϱ
(t1), λei

ϱ
(t2)}} = max{infλei

ϱ
(t1), infλei

ϱ
(t2)} =

max{(⋀λei

ϱ
)(t1), (⋀λei

ϱ
)(t2)} ⇒ (⋀λei

ϱ
)(t1 ∗ t2) ≤ max{(⋀λei

ϱ
)(t1), (⋀λei

ϱ
)(t2)},  which show that P -

intersection of 𝒫̃k is a NSCSU of Y. 

  

Theorem 3.9 Let 𝒫̃k = {〈t1, Aei

ϱ
, λei

ϱ
〉|t1 ∈ Y}  where i ∈ k  be set of NSCSU of Y . If 

sup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} = rmin{supAei

ϱ
(t1), supAei

ϱ
(t2)}  ∀  t1, t2 ∈ Y.  Then the P -union of 𝒫̃k  is 

also a NSCSU of Y.  

 

Proof. Let 𝒫̃k = {〈t1, Aei

ϱ
, λei

ϱ
〉|t1 ∈ Y}  where i ∈ k  be set of NSCSU of Y  such that 

sup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} = rmin{supAei

ϱ
(t1), supAei

ϱ
(t2)}  ∀  t1 ∈ Y.  Then for t1, t2 ∈ Y, (⋃ Aei

ϱ
)(t1 ∗

t2) = rsupAei

ϱ
(t1 ∗ t2) ≥ rsup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} = rmin{rsupAei

ϱ
(t1), rsupAei

ϱ
(t2)} =

rmin{(⋃ Aei

ϱ
)(t1), (⋃ Aei

ϱ
)(t2)} ⇒ (⋃ Aei

ϱ
)(t1 ∗ t2) ≥ rmin{(⋃ Aei

ϱ
)(t1), (⋃ Aei

ϱ
)(t2)}  

an (⋁λei

ϱ
)(t1 ∗ t2) = supλei

ϱ (t1 ∗ t2) ≤ sup {max{λei

ϱ (t1), λei

ϱ (t2)}} = max{supλei

ϱ (t1), supλei

ϱ (t2)} =

max{(⋁λei

ϱ
)(t1), (⋁λei

ϱ
)(t2)} ⇒ (⋁λei

ϱ
)(t1 ∗ t2) ≤ max{(⋁λei

ϱ
)(t1), (⋁λei

ϱ
)(t2)},  which show that P-union 

of 𝒫̃k is a NSCSU of Y.  

  

Theorem 3.10  Let 𝒫̃k = {〈t1, Aei

ϱ
, λei

ϱ
〉|t1 ∈ Y} where i ∈ k be set of NSCSU of Y. If 

inf{max{λei

ϱ
(t1), λei

ϱ
(t2)}} = max{infλei

ϱ
(t1), infλei

ϱ
(t1)} and sup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} =

rmin{supAei

ϱ
(t1), supAei

ϱ
(t2)} ∀ t1, t2 ∈ Y. Then the R-union of 𝒫̃k is also a NSCSU of Y.  

Proof. Let 𝒫̃k = {〈t1, Aei

ϱ
, λei

ϱ
〉|t1 ∈ Y}  where i ∈ k  be set of NSCSU of Y  such that 

inf{max{λei

ϱ
(t1), λei

ϱ
(t2)}} =  max{infλei

ϱ
(t1), infλei

ϱ
(t1)}  and sup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}}  =

rmin{supλei

ϱ
(t1), supλei

ϱ
(t1)}  ∀  t1 ∈ Y.  Then for t1, t2 ∈ Y,  (⋃ Aei

ϱ
)(t1 ∗ t2) = rsupAei

ϱ
(t1 ∗ t2) ≥

rsup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} = rmin{rsupAei

ϱ
(t1), rsupAei

ϱ
(t2)} = rmin{(⋃ Aei

ϱ
)(t1), (⋃ Aei

ϱ
)(t2)} ⇒

(⋃ Aei

ϱ
)(t1 ∗ t2) ≥ rmin{(⋃ Aei

ϱ
)(t1), (⋃ Aei

ϱ
)(t2)}  and             (⋀λei

ϱ
)(t1 ∗ t2) = infλei

ϱ
(t1 ∗ t2) ≤

inf{max{λei

ϱ
(t1), λei

ϱ
(t2)}} = max{infλei

ϱ
(t1), infλei

ϱ
(t2)} = max{(⋀λei

ϱ
)(t1), (⋀λei

ϱ
)(t2)} ⇒ (⋀λei

ϱ
)(t1 ∗ t2) ≤

max{(⋀λei

ϱ
)(t1), (⋀λei

ϱ
)(t2)}, which show that R-union of 𝒫̃k is a NSCSU of Y.  

  

Proposition 3.11 If a neutrosophic soft cubic set 𝒫̃k = (Aei

ϱ
, λei

ϱ
) of Y is a subalgebra. Then ∀ t1 ∈ Y, 

Aei

ϱ
(0 ∗ t1) ≥ Aei

ϱ
(t1) and λei

ϱ
(0 ∗ t1) ≤ λei

ϱ
(t1).  
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Proof. For all t1 ∈ Y , Aei

ϱ
(0 ∗ t1)  ≥ rmin{Aei

ϱ
(0), Aei

ϱ
(t1)}  = rmin{Aei

ϱ
(t1 ∗ t1), Aei

ϱ
(t1)}  ≥

rmin{rmin{Aei

ϱ
(t1), Aei

ϱ
(t1)}, Aei

ϱ
(t1)} = Aei

ϱ
(t1)  and similarly λei

ϱ
(0 ∗ t1)  ≤ max{λei

ϱ
(0), λei

ϱ
(t1)} =

λei

ϱ
(t1).  

  

Lemma 3.12 If a netrosophic soft cubic set 𝒫̃k = (Aei

ϱ
, λei

ϱ
) of Y is a subalgebra. Then 𝒫̃k(t1 ∗ t2) =

𝒫̃k(t1 ∗ (0 ∗ (0 ∗ t2))) ∀ t1, t2 ∈ Y.  

 

Proof. Let Y be a G-algebra and t1, t2 ∈ Y. Then t2 = 0 ∗ (0 ∗ t2) by ([9], Lemma 3.1). Hence Aei

ϱ
(t1 ∗

t2) = Aei

ϱ
(t1 ∗ (0 ∗ (0 ∗ t2)))  and λei

ϱ
(t1 ∗ t2) = λei

ϱ
(t1 ∗ (0 ∗ (0 ∗ t2))).  Therefore, 𝒫̃k(t1 ∗ t2) = 𝒫̃k(t1 ∗

(0 ∗ (0 ∗ t2)))  

  

Proposition 3.13 If a NSCS 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  of Y  is NSCSU. Then ∀ t1, t2 ∈ Y, Aei

ϱ
(t1 ∗ (0 ∗ t2)) ≥

rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} and λei

ϱ
(t1 ∗ (0 ∗ t2)) ≤ max{λei

ϱ
(t1), λei

ϱ
(t2)}.  

 

Proof. Let t1, t2 ∈ Y.  Then we have Aei

ϱ
(t1 ∗ (0 ∗ t2)) ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(0 ∗ t2)} ≥

rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}  and λei

ϱ
(t1 ∗ (0 ∗ t2)) ≤ max{λei

ϱ
(t1), λei

ϱ
(0 ∗ t2)} ≤ max  {λei

ϱ
(t1), λei

ϱ
(t2)}  by 

Definition 3.1 and Proposition 3.11. Hence proof is completed.  

  

Theorem 3.14 If a NSCS 𝒫̃k = (Aei

ϱ
, λei

ϱ
) of Y satisfies the following conditions. Then 𝒫̃k refers to a 

NSCSU of Y.                                                                    

 

1.  Aei

ϱ
(0 ∗ t1) ≥ Aei

ϱ
(t1) and λei

ϱ
(0 ∗ t1) ≤ λei

ϱ
(x) ∀ t1 ∈ Y.                                

2.  Aei

ϱ
(t1 ∗ (0 ∗ t2)) ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} and λei

ϱ
(t1 ∗ (0 ∗ t2)) ≤ max{λei

ϱ
(t1), λei

ϱ
      (t2)} ∀ 

t1, t2 ∈ Y.  

  

Proof. Assume that the neutrosophic soft cubic set 𝒫̃k = (Aei

ϱ
, λei

ϱ
) of Y satisfies the above conditions. Then by 

Lemma 3.12, Aei

ϱ
(t1 ∗ t2) = Aei

ϱ
(t1 ∗ (0 ∗ (0 ∗ t2))) ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(0 ∗ t2)} ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} 

and λei

ϱ
(t1 ∗ t2)  = λei

ϱ
(t1 ∗ (0 ∗ (0 ∗ t2))) ≤ max{λei

ϱ
(t1), λei

ϱ
(0 ∗ t2)} ≤ max{λei

ϱ
(t1), λei

ϱ
(t2)} ∀ t1, t2 ∈ Y. 

Hence 𝒫̃k is NSCSU of Y.  

  

Theorem 3.15 A neutrosophic soft cubic set 𝒫̃k = (Aei

ϱ
, λei

ϱ
) of Y is NSCSU of Y iff (Aei

ϱ
)−, (Aei

ϱ
)+ 

and λei

ϱ
 are fuzzy subalgebras of Y.  

  

Proof. Let (Aei

ϱ
)−, (Aei

ϱ
)+  and λei

ϱ
 are fuzzy subalgebra of Y  and t1, t2 ∈ Y  then (Aei

ϱ
)−(t1 ∗ t2) ≥

min{(Aei

ϱ
)−(t1), (Aei

ϱ
)−(t2)} , (Aei

ϱ
)+(t1 ∗ t2) ≥ min{(Aei

ϱ
)+(t1), (Aei

ϱ
)+(t2)}  and λei

ϱ
(t1 ∗ t2) ≤

max{λei

ϱ
(t1), λei

ϱ
(t2)} . Now, Aei

ϱ
(t1 ∗ t2) = [(Aei

ϱ
)−(t1 ∗ t2), (Aei

ϱ
)+(t1 ∗ t2)]  ≥

[min{(Aei

ϱ
)−(t1), (Aei

ϱ
)−(t2)}, min{(Aei

ϱ
)+(t1), (Aei

ϱ
)+(t2)}] ≥ rmin{[(Aei

ϱ
)−(t1), (Aei

ϱ
)+  (t1)] 

, [(Aei

ϱ
)−(t2), (Aei

ϱ
)+(t2)]} = rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}. Therefore, 𝒫̃k is NSCSU of Y. 

Conversely, assume that 𝒫̃k is a NSCSU of Y. For any t1, t2 ∈ Y, [(Aei

ϱ
)−(t1 ∗ t2), (Aei

ϱ
)+(t1 ∗ t2)] = Aei

ϱ
(t1 ∗

t2) ≥  rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}  = rmin{[(Aei

ϱ
)−(t1), (Aei

ϱ
)+(t1)], 

[(Aei

ϱ
)−(t2), (Aei

ϱ
)+(t2)]} =  [min{(Aei

ϱ
)−(t1), (Aei

ϱ
)−(t2)}, min{(Aei

ϱ
)+(t1), (Aei

ϱ
)+(t2)}].  Thus, (Aei

ϱ
)−(t1 ∗
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t2) ≥ min{(Aei

ϱ
)−(t1), (Aei

ϱ
)−(t2)} , (Aei

ϱ
)+(t1 ∗ t2) ≥  min{(Aei

ϱ
)+(t1), (Aei

ϱ
)+(t2)}  and λei

ϱ
(t1 ∗ t2) ≤

max{λei

ϱ
(t1), λei

ϱ
(t2)}. Hence (Aei

ϱ
)−, (Aei

ϱ
)+ and λei

ϱ
 are fuzzy subalgebras of Y.  

  

Theorem 3.16 Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
) be a NSCSU of Y and let n ∈ ℤ+. Then 

i) Aei

ϱ
(∐n t1 ∗ t1) ≥ Aei

ϱ
(t1) for n ∈ 𝕆. 

ii) λei

ϱ
(∐ n t1 ∗ t1) ≤ Aei

ϱ
(t1) for n ∈ 𝕆. 

iii) Aei

ϱ
(∐ n t1 ∗ t1) = Aei

ϱ
(t1) for n ∈ 𝔼. 

iv) λei

ϱ
(∐ n t1 ∗ t1) = Aei

ϱ
(t1) for n ∈ 𝔼.  

Proof. Let t1 ∈ Y  and suppose that n  is odd. Then n = 2p − 1  for some p ∈ Z+ . We prove the 

theorem by induction. 

Now Aei

ϱ
(t1 ∗ t1) = Aei

ϱ
(0) ≥ Aei

ϱ
(t1)  and λei

ϱ
(t1 ∗ t1) = λei

ϱ
(0) ≤ λei

ϱ
(t1) . Suppose that 

Aei

ϱ
((∐ )2p−1 (t1 ∗ t1))  ≥ Aei

ϱ
(t1)  and λei

ϱ
((∐ )2p−1 (t1 ∗ t1)) ≤ λei

ϱ
(t1) . Then by assumption, 

Aei

ϱ
((∐ (2(p+1)−1 t1 ∗ t1))  = Aei

ϱ
((∐ )2p+1 (t1 ∗ t1))  = Aei

ϱ
(∐2p−1 t1 ∗ (t1 ∗ (t1 ∗ t1)))  = Aei

ϱ
((∐ )2p−1 (t1 ∗

t1)) ≥ Aei

ϱ
(t1)  and λei

ϱ
((∐2(p+1)−1 (t1 ∗ t1))  = λei

ϱ
((∐2p+1 (t1 ∗ t1))  = λei

ϱ
(∐2p−1 t1 ∗ (t1 ∗ (t1 ∗ t1)))  = 

λei

ϱ
(∐2p−1 t1 ∗ t1) ≤ λei

ϱ
(t1), which proves (1) and (2). Similarly, cases (3) and (4) has the same proofs.  

These sets denoted by IAei

ϱ  and Iλei

ϱ  are subalgebras of Y. Which were defined as 

IAei

ϱ ={t1 ∈ Y|Aei

ϱ
(t1) = Aei

ϱ
(0)}, Iλei

ϱ ={t1 ∈ Y|λei

ϱ
(t1) = λei

ϱ
(0)}. 

Theorem 3.17 Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
) be a NSCSU of Y. Then the sets IAei

ϱ  and Iλei

ϱ  are subalgebras of Y.  

Proof. Let t1, t2 ∈ IAei

ϱ . Then Aei

ϱ
(t1) = Aei

ϱ
(0) = Aei

ϱ
(t2) and so, Aei

ϱ
(t1 ∗ t2) ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} 

= Aei

ϱ
(0). By using Proposition 3.3, we know that Aei

ϱ
(t1 ∗ t2) = Aei

ϱ
(0) or equivalently t1 ∗ t2 ∈ IAei

ϱ . 

Again suppose t1, t2  ∈  IAei

ϱ .  Then λei

ϱ
(t1) = λei

ϱ
(0) = λei

ϱ
(t2)  and so, λei

ϱ
(t1 ∗ t2) ≤ 

max{λei

ϱ
(t1), λei

ϱ
(t2)} =λei

ϱ
(0). Again by using Proposition 3.3, we know that λei

ϱ
(t1 ∗ t2) = λei

ϱ
(0) or 

equivalently t1 ∗ t2 ∈ IAei

ϱ . Hence  the sets IAei

ϱ  and λAei

ϱ  are subalgebras of Y.  

  

Theorem 3.18 Assume B is a nonempty subset of Y and 𝒫̃k = (Aei

ϱ
, λei

ϱ
) be a neutrosophic soft cubic 

set of Y defined by  Aei

ϱ
(t1) = {

[ξT,I,F1
, ξT,I,F2

], if t1 ∈ B

[βT,I,F1
, βT,I,F2

], otherwise,
Λei

T (t1) = {
γϱ, if t1 ∈ B

δϱ, otherwise,
 

 ∀ [ξT,I,F1
, ξT,I,F2

],[βT,I,F1
, βT,I,F2

] ∈ D[0,1] and γϱ, δϱ ∈ [0,1] with [ξT,I,F1
, ξT,I,F2

] ≥ [βT,I,F1
, βT,I,F2

] and 

γϱ ≤ δϱ. Then 𝒫̃k is a nuetrosophic soft cubic subalgebra of Y ⇐ B is a subalgebra of Y. Moreover, 

IAei

ϱ = B= Iλei

ϱ .   

Proof. Let 𝒫̃k  be a NSCSU of Y . Let t1, t2  ∈  Y  such that t1, t2  ∈  B . Then Aei

ϱ
(t1 ∗ t2) ≥ 

rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}  = rmin{[ξT,I,F1

, ξT,I,F2
], [ξT,I,F1

, ξT,I,F2
]}  = [ξT,I,F1

, ξT,I,F2
]  and λei

ϱ
(t1 ∗ t2)  ≤ 

max{λei

ϱ
(t1), λei

ϱ
(t2)} = max{γϱ, γϱ}= γϱ. Therefore t1 ∗ t2 ∈ B. Hence, B is a subalgebra of Y. 

    Conversely, assume that B is a subalgebra of Y. Let t1, t2 ∈ Y. Now take two cases. 
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Case 1: If t1, t2 ∈ B, then t1 ∗ t2 ∈ B, thus Aei

ϱ
(t1 ∗ t2) = [ξT,I,F1

, ξT,I,F2
] = rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} and 

λei

ϱ
(t1 ∗ t2) = γϱ = max{λei

ϱ
(t1), λei

ϱ
(t2)}. 

 

Case 2: If t1  ∉ B or t2  ∉ B, then Aei

ϱ
(t1 ∗ t2) ≥ [βT,I,F1

, βT,I,F2
] = rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} and λei

ϱ
(t1 ∗

t2) ≤ δϱ = max{λei

ϱ
(t1), λei

ϱ
(t2)}. Hence 𝒫̃k is a NSCSU of Y.  

Now, IAei

ϱ ={t1 ∈ Y, Aei

ϱ
(t1) = Aei

ϱ
(0)}= {t1 ∈ Y, Aei

ϱ
(t1) = [ξT,I,F1

, ξT,I,F2
]} = B and Iλei

ϱ ={t1 ∈ Y, λei

ϱ
(t1) =

λei

ϱ
(0)}={t1 ∈ Y, λei

ϱ
(t1) = γϱ}=B.  

  

Definition 3.19 Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  be a neutrosophic soft cubic set of Y . For 

[wT1
, wT2

], [wI1
, wI2

], [wF1
, wF2

]  ∈  D[0,1]  and tT1
, tI1

, tF1
 ∈  [0,1] , the set 

U(Aei

ϱ
|([wT1

, wT2
], [wI1

, wI2
], [wF1

, wF2
]))  = {t1 ∈ Y|Aei

T (t1) ≥ [wT1
, wT2

], Aei
I (t1) ≥ [wI1

, wI2
], Aei

F (t1) ≥

[wF1
, wF2

]}  is called upper ([wT1
, wT2

], [wI1
, wI2

], [wF1
, wF2

]) -level of 𝒫̃k  and L(λei

ϱ
|(tT1

, tI1
, tF1

)) 

={t1 ∈ Y|Λei
T (t1) ≤ tT1

, Λei
I (t1) ≤ tI1

, Λei
F (t1) ≤ tF1

} is called lower (tT1
, tI1

, tF1
)-level of 𝒫̃k. 

For convenience, we introduced the new notions for upper level and lower level of 𝒫̃k as, 

U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]={t1 ∈ Y|Aei

ϱ
(t1) ≥ [wT,I,F1

, wT,I,F2
]} is called upper ([wT,I,F1

, wT,I,F2
])-level of 𝒫̃k 

and L(λei

ϱ
|tT,I,F1

)={t1 ∈ Y|λei

ϱ
(t1) ≤ tT,I,F1

} is called lower tT,I,F1
-level of 𝒫̃k.  

  

Theorem 3.20 If 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  is neutrosophic soft cubic subalgebra of Y , then the upper 

[wT,I,F1
, wT,I,F2

]-level and lower tT,I,F1
-level of 𝒫̃k are subalgebras of Y.  

  

Proof. Let t1, t2  ∈  U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]) . Then Aei

ϱ
(t1) ≥ [wT,I,F1

, wT,I,F2
]  and Aei

ϱ
(t2) ≥

[wT,I,F1
, wT,I,F2

] . It follows that Aei

ϱ
(t1 ∗ t2) ≥  rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} ≥  [wT,I,F1

, wT,I,F2
]  ⇒  t1 ∗ t2  ∈ 

U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]). Hence, U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
] is a subalgebra of Y. 

Let t1, t2  ∈  L(λei

ϱ
|tT,I,F1

) . Then λei

ϱ
(t1) ≤ tT,I,F1

 and λei

ϱ
(t2) ≤ tT,I,F1

. It follows that λei

ϱ
(t1 ∗ t2) ≤ 

max{λei

ϱ
(t1), λei

ϱ
(t2)} ≤ tT,I,F1

 ⇒ t1 ∗ t2 ∈ L(λei

ϱ
|tT,I,F1

). Hence L(λei

ϱ
|tT,I,F1

) is a subalgebra of Y.  

  

Corollary 3.21 Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  is NSCSU of Y . Then A([wT,I,F1

, wT,I,F2
], tT,I,F1

) = 

U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]) ⋂ L(λei

ϱ
|tT,I,F1

)={t1 ∈ Y|Aei

ϱ
(t1) ≥ [wT,I,F1

, wT,I,F2
], λei

ϱ
(t1) ≤ tT,I,F1

} is a subalgebra 

of Y.  

 

Proof. We can prove it by using Theorem 3.20.  

This example shows that the converse of Corollary 3.21 is not true 

Example 3.22 Let Y = {0, c1, c2, c3, c4, c5} be a G-algebra in Remark 3.6 and 𝒫̃k = (Aei

ϱ
, λei

ϱ
) is a 

neutrosophic soft cubic set defined by 

  
 0 c1 c2 c3 c4 c5 

Aei
T  [0.3,0.5] [0.3,0.4] [0.3,0.4] [0.3,0.4] [0.1,0.2] [0.1,0.2] 

Aei
I  [0.5,0.7] [0.2,0.3] [0.2,0.3] [0.5,0.7] [0.1,0.1] [0.1,0.1] 

Aei
F  [0.4,0.6] [0.2,0.5] [0.2,0.5] [0.2,0.5] [0.1,0.2] [0.1,0.2], 
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and 

 0 c1 c2 c3 c4 c5 

Λei
T  0.1 0.4 0.4 0.6 0.4 0.6 

Λei
I  0.2 0.5 0.5 0.7 0.5 0.7 

Λei
F  0.3 0.6 0.6 0.8 0.6 0.8 

   
We take [wT,I,F1

, wT,I,F2
] = ([0.41,0.48], [0.30,0.36], [0.13,0.17])  and tT,I,F1

= (0.3,0.4,0.5).  Then 

A([wT,I,F1
, wT,I,F2

], tT,I,F1
) = U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
])⋂L(λei

ϱ
|tT,I,F1

) = {t1 ∈ Y|Aei

ϱ
(t1) ≥

[wT,I,F1
, wT,I,F2

], λei

ϱ
(t1) ≤ tT,I,F1

}  = {0, c1, c2, c3}⋂{0, c1, c2, c4} = {0, c1, c2}  is a subalgebra of Y,  but 𝒫̃k =

(Aei

ϱ
, λei

ϱ
)  is not a NSCSU, since Aei

T (c1 ∗ c3) = [0.2,0.3] ≱ [0.4,0.5] = rmin{Aei
T (c1), Aei

T (c3)}  and Λei
T (c2 ∗

c4) = 0.4 ≰ 0.3 = max{Λei
T (c2), Λei

T (c4)}.  

  

Theorem 3.23 Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
) be a neutrosophic soft cubic set of Y, such that the sets 

U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]) and L(λei

ϱ
|tT,I,F1

) are subalgebras of Y for every [wT,I,F1
, wT,I,F2

] ∈ D[0,1] and 

tT,I,F1
∈ [0,1]. Then 𝒫̃k = (Aei

ϱ
, λei

ϱ
) is NSCSU of Y.  

  

Proof. Let U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]) and L(λei

ϱ
|tT,I,F1

) are subalgebras of Y for every [wT,I,F1
, wT,I,F2

] ∈ D[0,1] and 

tT,I,F1
∈ [0,1] . On the contrary, let (t1)0, (t2)0 ∈ Y  be such that Aei

ϱ
((t1)0 ∗ (t2)0) <

rmin{Aei

ϱ
((t1)0), Aei

ϱ
((t2)0)}.  Let Aei

ϱ
((t1)0) = [ϕ1, ϕ2],  Aei

ϱ
((t2)0) = [ϕ3, ϕ4]  and Aei

ϱ
((t1))0 ∗ (t2)0) =

[wT,I,F1
, wT,I,F2

].  Then [wT,I,F1
, wT,I,F2

] < rmin{[ϕ1, ϕ2], [ϕ3, ϕ4]}  = [min{ϕ1, ϕ3}, min{ϕ2, ϕ4}].  So, 

wT,I,F1
< rmin{ϕ1, ϕ3}  and wT,I,F2

< min{ϕ2, ϕ4. Let us consider, [ρ1, ρ2] =
1

2
[Aei

ϱ
((t1)0 ∗ (t2)0) +

rmin{Aei

ϱ
((t1)0), Aei

ϱ
((t2)0)}]  =

1

2
[[wT,I,F1

, wT,I,F2
] + [min{ϕ1, ϕ3}, min{ϕ2, ϕ4}]]  = [

1

2
(wT,I,F1

+

min{ϕ1, ϕ3}),
1

2
(wT,I,F2

+ min{ϕ2, ϕ3})]. Therefore, min{ϕ1, ϕ3} > ρ1 =
1

2
(wT,I,F1

+ min{ϕ1, ϕ3}) > wT,I,F1
 

and min{ϕ2, ϕ4} > ρ2 =
1

2
(wT,I,F2

+ min{ϕ2, ϕ4})  > wT,I,F2
.  Hence, [min{ϕ1, ϕ3}, min{ϕ2, ϕ4}] >

[ρ1, ρ2] > [wT,I,F1
, wT,I,F2

]  so that (t1)0 ∗ (t2)0 ∉ U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
])  which is a contradiction since 

Aei

ϱ
((t1)0) = [ϕ1, ϕ2] ≥ [min{ϕ1, ϕ3}, min{ϕ2, ϕ4}]  > [ρ1, ρ2]  and Aei

ϱ
((t2)0) = [ϕ3, ϕ4] ≥

[min{ϕ1, ϕ3}, min{ϕ2, ϕ4}]  > [ρ1, ρ2].  This implies (t1)0 ∗ (t2)0 ∈ U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]).  Thus Aei

ϱ
(t1 ∗

t2) ≥ rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} ∀ t1, t2 ∈ Y. 

 Again, let (t1)0, (t2)0 ∈ Y be such that λei

ϱ
((t1)0 ∗ (t2)0) > max{λei

ϱ
((t1)0), λei

ϱ
(0)}. Let λei

ϱ
((t1)0) =

ηT,I,F1
,  λei

ϱ
((t2)0) = ηT,I,F2

 and λei

ϱ
((t1)0 ∗ (t2)0) = tT,I,F1

.  Then tT,I,F1
> max{ζT,I,F1

. ζT,I,F2
}.  Let us consider 

tT,I,F2
=

1

2
[λei

ϱ
((t1)0 ∗ ν̂0) + max{λei

ϱ
((t1)0), λei

ϱ
(0)}].  We get that tT,I,F2

=
1

2
(tT,I,F1

+ max{ζT,I,F1
, ζT,I,F2

}). 

Therefore, ζT,I,F1
< tT,I,F2

=
1

2
(tT,I,F1

+ max{ζT,I,F1
, ζT,I,F2

}) < tT,I,F1
 and ζT,I,F2

< tT,I,F2
=

1

2
(tT,I,F1

+

max{ζT,I,F1
, ζT,I,F2

}) < tT,I,F1
.  Hence, max{ζT,I,F1

, ζT,I,F2
} < tT,I,F2

< tT,I,F1
= λei

ϱ
((t1)0, (t2)0),  so that (t1)0 ∗

(t2)0 ∉ L(λei

ϱ
|tT,I,F1

)  which is a contradiction since λei

ϱ
((t1)0) = ζT,I,F1

≤ max{ζT,I,F1
, ζT,I,F2

} < tT,I,F2
 and 

λei

ϱ
((t2)0) = ζT,I,F2

≤ max{ζT,I,F1
, ζT,I,F2

} < tT,I,F2
.  This implies (t1)0, (t2)0 ∈ L(λei

ϱ
|tT,I,F1

).  Thus λei

ϱ
(t1 ∗
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t2) ≤ max{λei

ϱ
(t1), λei

ϱ
(t2)} ∀ t1, t2 ∈ Y. Therefore, U(Aei

ϱ
|[wT,I,F1

, wT,I,F2
]) and L(λei

ϱ
|tT,I,F1

) are subalgebras of 

Y. Hence, 𝒫̃k = (Aei

ϱ
, λei

ϱ
) is NSCSU of Y.  

  

Theorem 3.24  Any subalgebra of Y can be consider as both the upper [wT,I,F1
, wT,I,F2

]- level and 

lower tT,I,F1
-level of some NSCSU of Y.  

  

Proof. Let 𝒩̃k be a NSCSU of Y, and 𝒫̃k be a neutrosophic soft cubic set on Y defined by  

 Aei

ϱ
= {

[ξT,I,F1
, ξT,I,F2

]  if   t1 ∈ 𝒩̃k

        [0,0]  otherwise .
, λei

ϱ
= {

βT,I,F1
 if   t1 ∈ 𝒩̃k

   0  otherwise .
 

 ∀ [ξT,I,F1
, ξT,I,F2

] ∈ D[0,1] and βT,I,F1
∈ [0,1]. We consider the following cases.  

 

𝐂𝐚𝐬𝐞𝟏 : If ∀  t1, t2 ∈ 𝒩̃k  then Aei

ϱ
(t1) = [ξT,I,F1

, ξT,I,F2
] , λei

ϱ
(t1) = βT,I,F1

 and Aei

ϱ
(t2) = [ξT,I,F1

, ξT,I,F2
] , 

λei

ϱ
(t2) = βT,I,F1

.  Thus Aei

ϱ
(t1 ∗ t2) = [ξT,I,F1

, ξT,I,F2
] = rmin{[ξT,I,F1

, ξT,I,F2
],   [ξT,I,F1

, ξT,I,F2
]} =

rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} and λei

ϱ
(t1 ∗ t2) = βT,I,F1

= max{βT,I,F1
, βT,I,F1

} = max{λei

ϱ
(t1), λei

ϱ
(t2)}.                                                                  

 

𝐂𝐚𝐬𝐞𝟐 : If t1 ∈ 𝒩̃k  and t2 ∉ 𝒩̃k,  then Aei

ϱ
(t1) = [ξT,I,F1

, ξT,I,F2
] , λei

ϱ
(t1) = βT,I,F1

 and Aei

ϱ
(t2) = [0,0] , 

λei

ϱ
(t2) = 1. Thus Aei

ϱ
(t1 ∗ t2) ≥ [0,0] = rmin{[ξT,I,F1

, ξT,I,F2
], [0,0]} = rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)} and λei

ϱ
(t1 ∗

t2) ≤ 1 = max{βT,I,F1
, 1} = max{λei

ϱ
(t1), λei

ϱ
(t2)}. 

 

𝐂𝐚𝐬𝐞𝟑 : If t1 ∉ 𝒩̃k  and t2 ∈ 𝒩̃k,  then Aei

ϱ
(t1) = [0,0] , λei

ϱ
(t1) = 1  and Aei

ϱ
(t2) = [ξT,I,F1

, ξT,I,F2
] , 

λei

ϱ
(t2) = βT,I,F1

. Thus Aei

ϱ
(t1 ∗ t2) ≥ [0,0] = rmin{[0,0] , [ξT,I,F1

, ξT,I,F2
]}  = rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}  and 

λei

ϱ
(t1 ∗ t2) ≤ 1 = max{1, βT,I,F1

} = max{λei

ϱ
(t1), λei

ϱ
(t2)}. 

 

𝐂𝐚𝐬𝐞𝟒 : If t1 ∉ 𝒩̃k  and t2 ∉ 𝒩̃k,  then Aei

ϱ
(t1) = [0,0] , λei

ϱ
(t1) = 1  and Aei

ϱ
(t2) = [0,0] , λei

ϱ
(t2) = 1 . 

Thus Aei

ϱ
(t1 ∗ t2) ≥ [0,0] = rmin{[0,0], [0,0]}  = rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}  and λei

ϱ
(t1 ∗ t2) ≤ 1 =

max{1,1} = max{λei

ϱ
(t1), λei

ϱ
(t2)}. Therefore, 𝒫̃k is a NSCSU of Y.  

  

Theorem 3.25 Let 𝒩̃k be a subset of Y and 𝒫̃k be a neutrosophic soft cubic set on Y which is given 

in the proof of Theorem 3.24. If 𝒫̃k is realized as lower level subalgebra and upper level subalgebra 

of some NSCSU of Y, then 𝒩̃k is a neutrosophic soft cubic one of Y.  

  

Proof. Let 𝒫̃k  be a NSCSU of Y,  and t1, t2 ∈ 𝒩̃k.  Then Aei

ϱ
(t1) = Aei

ϱ
(t2) =  [ξT,I,F1

 , ξT,I,F2
]   and 

λei

ϱ
(t1) = λei

ϱ
(t2) = βT,I,F1

.  Thus Aei

ϱ (t1 ∗ t2) ≥ rmin{Aei

ϱ (t1), Aei

ϱ (t2)} =

rmin{[ξT,I,F1
, ξT,I,F2

], [ξT,I,F1
, ξT,I,F2

]} = [ξT,I,F1
, ξT,I,F2

] and λei

ϱ
(t1 ∗ t2) ≤ max{λei

ϱ (t1), λei

ϱ
(𝑡2) =

max{βT,I,F1
, βT,I,F1

} = βT,I,F1
⇒ t1 ∗ t2 ∈ 𝒩̃k. Hence 𝒩̃k is a neutrosophic soft cubic one of Y.  

  
4  Homomorphism of Neutrosophic Soft Cubic Subalgebras 

Suppose τ be a mapping from a set Y into a set Y and 𝒫̃k= (Aei

ϱ
, λei

ϱ
) be a neurosophic soft cubic set in Y. 

Then the inverse-image of 𝒫̃k  is defined as τ−1(𝒫̃k) =  {〈t1, τ−1(Aei

ϱ
), τ−1(λei

ϱ
)〉|t1 ∈ Y}  and τ−1(Aei

ϱ
)(t1) =

Aei

ϱ
(τ(t1)) and τ−1(λei

ϱ
)(t1)=λei

ϱ
(τ(t1)). It is clear that τ−1(𝒫̃k) is a neutrosophic soft cubic set.  

Theorem 4.1 Let τ | Y → X is a homomorphic mapping of G-algebra. If 𝒫̃k = (Aei

ϱ
, λei

ϱ
) is a NSCSU 

of X. Then the pre-image τ−1(𝒫̃k)={〈t1, τ−1(Aei

ϱ
), τ−1(λei

ϱ
)〉|t1 ∈ X} of 𝒫̃k under τ is a NSCSU of Y.  
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Proof. Assume that 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  is a NSCSU of Y  and t1, t2 ∈ Y . Then τ−1(Aei

ϱ
)(t1 ∗ t2) =

Aei

ϱ
(τ(t1 ∗ t2)) = Aei

ϱ
(τ(t1) ∗ τ(t2)) ≥ rmin{Aei

ϱ
(τ(t1)), Aei

ϱ
(τ(t2))} = rmin{τ−1(Aei

ϱ
)(t1), τ−1(Aei

ϱ
)(t2)} 

and τ−1(λei

ϱ
)(t1 ∗ t2) = λei

ϱ
(τ(t1 ∗ t2)) = λei

ϱ
(τ(t1) ∗ τ(t2))  ≤ max{λei

ϱ
(τ(t1)), λei

ϱ
(τ(t2))} =

max{τ−1(λei

ϱ
)(t1), τ−1(λei

ϱ
)(t2)}. Hence τ−1(𝒫̃k) = {〈t1, τ−1(Aei

ϱ
), τ−1(λei

ϱ
)〉|t1 ∈ Y} is NSCSU of Y.  

  

Theorem 4.2 Let τ | Y → X is a homomorphic mapping of G-algebra and 𝒫̃k = (Aej

ϱ
, λej

ϱ
) is a NSCSU 

of X  where j ∈ k . If inf{max{λej

ϱ
(t2), λej

ϱ
(t2)}} = max{inf λej

ϱ (t2), inf λej

ϱ (t2)}  ∀  t2 ∈ Y . Then 

τ−1(⋂R
j∈k

𝒫̃k) is a NSCSU of Y.  

Proof. Let 𝒫̃k = (Aej

ϱ
, λej

ϱ
)  be a NSCSU of Y  where j ∈ k  satisfying 

inf {max {λej

ϱ (t2), λej

ϱ (t2)}} =  max{inf λej

ϱ (t2), inf λej

ϱ (t2)}  ∀  t2 ∈ Y . Then by Theorem 3.8, ⋂R
j∈k

𝒫̃k  is a 

NSCSU of Y.  Hence τ−1(⋂R
j∈k

𝒫̃k) is also a NSCSU of Y.  

Definition 4.3 A neutrosophic soft cubic set 𝒫̃k = (Aei

ϱ
, λei

ϱ
) in Y is said to have sup-property and inf-

property if for any subset S of Y, ∃ s0 ∈ T such that Aei

ϱ (s0) = rsup
s0∈S

Aei

ϱ
(s0) and λei

ϱ (s0) = inf
t0∈T

λei

ϱ
(t0) 

respectively.   

Definition 4.4 Let τ be the mapping from the set Y to the set X. If 𝒫̃k = (Aei

ϱ
, λei

ϱ
) is neutrosphic 

cubic set of Y , then the image of 𝒫̃k  under τ  denoted by τ(𝒫̃k)  and is defined as 

τ(𝒫̃k)={〈t1, τrsup(Aei

ϱ
), τinf(λei

ϱ
)〉|t1 ∈ Y}, where  

 τrsup(Aei

ϱ
)(t2) = {

Aei

ϱ

     t1∈τ−1(t2)

(t1),  if   τ−1(t2) ≠ ϕ

        [0,0],  otherwise ,
 

 and  

 τinf(λei

ϱ
)(t2) = {

λei

ϱ

t1∈τ−1(t2)

(t1),  if   τ−1(t2) ≠ ϕ

           1,  otherwise .
 

  

Theorem 4.5 Assume τ | Y → X  is a homomorphic mapping of G − algebra and 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  is a 

NSCSU of Y , where i ∈ k . If inf {max{λei

ϱ
(t1), λei

ϱ
(t1)}} =  max{inf λei

ϱ
(t1), inf λei

ϱ
(t1)}  ∀   t1 ∈ Y . 

Then τ(⋂P
i∈k

𝒫̃k) is a NSCSU of Y.   

Proof. Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  be NSCSU of Y  where i ∈ k  satisfying inf{max{λei

ϱ
(t1), λei

ϱ
(t1)}} = 

max{inf λei

ϱ (t1), inf λei

ϱ (t1)}  ∀  t1 ∈ Y . Then by Theorem 3.8, ⋂P
i∈k

𝒫̃k  is a NSCSU of Y . Hence τ(⋂P
i∈k

𝒫̃ki)  is a 

NSCSU of Y.  

  

Theorem 4.6  Suppose τ | Y → X  is a homomorphic mapping of G -algebra. Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  be 

NSCSU of Y  where i ∈ k . If rsup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}} = rmin{rsupAei

ϱ
(t1), rsupAei

ϱ
(t2)}  ∀  t1, t2 ∈ X . 

Then τ(⋃P
i∈k

𝒫̃k) is a NSCSU of X.  
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Proof. Let 𝒫̃k = (Aei

ϱ
, λei

ϱ
)  be NSCSU of Y  where i ∈ k  satisfying 

rsup{rmin{Aei

ϱ
(t1), Aei

ϱ
(t2)}}=rmin{rsupAei

ϱ
(t1), rsupAei

ϱ
(t2)} ∀    t1, t2 ∈ Y. Then by Theorem 3.8, ⋃P

i∈k
𝒫̃k 

is a NSCSU of Y. Hence τ(⋃P
i∈k

𝒫̃k) is a NSCSU of X.  

  

Corollary 4.7  For a homomorphism τ | Y → X of G-algebras, these results hold:         

1.  If ∀    i ∈ k, 𝒫̃k are NSCSU of Y, then τ(⋂R
i∈k

(𝒫̃k)) is NSCSU of X                        

2.  If ∀    i ∈ k, 𝒩̃k are NSCSU of X, then τ−1(⋂R
i∈k

(𝒩̃k)) is NSCSU of Y.   

Proof. Straigtforward.  

  

Theorem 4.8  Let τ be an isomorphic mapping from a G-algebra Y to a G-algebra X. If 𝒫̃k is a 

NSCSU of Y. Then τ−1(τ(𝒫̃k)) = 𝒫̃k.  

  

Proof. For any t1 ∈ Y, let τ(t1) = t2. Since τ is an isomorphism, τ−1(t2) = {t1}. Thus τ(𝒫̃k)(τ(t1)) =

τ(𝒫̃k)(t2) = ⋃
t1∈τ−1(t2)

𝒫̃k(t1) = 𝒫̃k(t1). For any t2 ∈ Y, since τ is an isomorphism, τ−1(t2) = {t1} so 

that τ(t1) = t2. Thus τ−1(𝒫̃k)(t1) = 𝒫̃k(τ(t1)) = 𝒫̃k(t2). Hence, τ−1(τ(𝒫̃k)) = τ−1(𝒫̃k) = 𝒫̃k.  

 
5. Conclusions  

In this paper, the concept of neutrosophic soft cubic subalgebra of G-algebra was investigated 

through several useful results. Homomorhic properties of NSCSU were also investigated. For future 

work this study will provide base for t-soft cubic subalgebra, t-neutrosophic soft cubic subalgebra.   
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Abstract: The aim of this paper is to introduce the notion of neutrosophic ℵ −ideals in semigroups 

and investigate their properties. Conditions for neutrosophic ℵ −structure to be a neutrosophic 

ℵ −ideal are provided. We also discuss the concept of characteristic neutrosophic ℵ −structure of 

semigroups and its related properties.  
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1. Introduction 

Throughout this paper, S denotes a semigroup and for any subsets A and B of S, the 

multiplication of A and B is defined as 𝐴𝐵 =  {𝑎𝑏|𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵}. A nonempty subset A of S is 

called a subsemigroup of S if 𝐴2 ⊆ 𝐴. A subsemigroup A of S is called a left (resp., right) ideal of S 

if 𝐴𝑋 ⊆ 𝐴 (resp., 𝑋𝐴 ⊆ 𝐴). A subset A of S is called two-sided ideal or ideal of S if it is both a left and 

right ideal of S. 

L.A. Zadeh introduced the concept of fuzzy subsets of a well-defined set in his paper [17] for 

modeling the vague concepts in the real world. K. T. Atanassov [1] introduced the notion of an 

Intuitionistic fuzzy set as a generalization of a fuzzy set. In fact from his point of view for each element 

of the universe there are two degrees, one a degree of membership to a vague subset and the other is 

a degree of non-membership to that given subset. Many researchers have been working on the theory 

of this subject and developed it in interesting different branches. 

 As a more general platform which extends the notions of the classic set and fuzzy set, 

intuitionistic fuzzy set and interval valued (intuitionistic) fuzzy set, Smarandache introduced the 

notion of neutrosophic sets (see [15, 16]), which is useful mathematical tool for dealing with 

incomplete, inconsistent and indeterminate information. This concept has been extensively studied 

and investigated by several authors in different fields (see [2 – 8] and [10 – 14] ).  

For further particulars on neutrosophic set theory, we refer the readers to the site 

http://fs.gallup.unm.edu/FlorentinSmarandache.htm 

In [9], M. Khan et al. introduced the notion of neutrosophic ℵ −subsemigroup in semigroup and 

investigated several properties. It motivates us to define the notion of neutrosophic ℵ −ideal in 

semigroup. In this paper, the notion of neutrosophic ℵ −ideals in semigroups is introduced and 

several properties are investigated. Conditions for neutrosophic ℵ −structure to be neutrosophic 

ℵ −ideal are provided. We also discuss the concept of characteristic neutrosophic ℵ −structure of 

semigroups and its related properties. 

mailto:belavarasan@gmail.com
mailto:elavarasan@karunya.edu
mailto:fsmarandache@gmail.com
mailto:smarand@unm.edu
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2. Neutrosophic ℵ - structures 

This section explains some basic definitions of neutrosophic ℵ − structures of a semigroup S 

that have been used in the sequel and introduce the notion of neutrosophic ℵ − ideals in semigroups.  

The collection of function from a set S to [−𝟏, 𝟎] is denoted by 𝕴(𝑺, [−𝟏, 𝟎]).  An element of 

𝕴(𝑺, [−𝟏, 𝟎]) is called a negative-valued function from S to [−𝟏, 𝟎] (briefly, ℵ − function on S). By a 

ℵ −structure, we mean an ordered pair (𝑺, 𝒈) of S and a ℵ −function g on S.  

For any family {xi | i ∈ Λ} of real numbers, we define: 

⋁{𝒙𝒊 |𝒊 ∈  𝜦} ≔ {
 𝒎𝒂𝒙 {𝒙𝒊 | 𝒊 ∈  𝜦}   𝒊𝒇 𝜦 𝒊𝒔 𝒇𝒊𝒏𝒊𝒕𝒆 

𝒔𝒖𝒑{𝒙𝒊| 𝒊 ∈  𝜦}  𝒊𝒇 𝜦 𝒊𝒔 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒆
 

and  

⋀{𝒙𝒊 |𝒊 ∈  𝜦} ≔ {
 𝒎𝒊𝒏 {𝒙𝒊 |𝒊 ∈  𝜦}   𝒊𝒇 𝜦 𝒊𝒔 𝒇𝒊𝒏𝒊𝒕𝒆 

𝒊𝒏𝒇 {𝒙𝒊| 𝒊 ∈  𝜦} 𝒊𝒇 𝜦 𝒊𝒔 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒆
 

For any real numbers x and y, we also use x ∨ y and x ∧ y instead of  ⋁{𝒙, 𝒚}  𝐚𝐧𝐝 ⋀{𝒙, 𝒚} 

respectively.  

 

Definition 2.1. [9] A neutrosophic ℵ − structure over S defined to be the structure: 

𝑺𝑵: =  
𝑺

(𝑻𝑵,  𝑰𝑵,   𝑭𝑵) 
=  {

𝒙

𝑻𝑵(𝒙),  𝑰𝑵(𝒙),   𝑭𝑵(𝒙) 
 | 𝒙 ∈ 𝑺}, 

where 𝑻𝑵, 𝑰𝑵  and 𝑭𝑵  are ℵ − functions on S which are called the negative truth membership 

function, the negative indeterminacy membership function and the negative falsity membership 

function, respectively, on S. It is clear that for any neutrosophic ℵ − structure 𝑺𝑵 over S, we have 

−𝟑 ≤  𝑻𝑵(𝒚) + 𝑰𝑵(𝒚) + 𝑭𝑵(𝒚) ≤ 𝟎 for all y ∈ 𝑺. 

Definition 2.2. [9] Let 𝑺𝑵: =  
𝑺

(𝑻𝑵,  𝑰𝑵,   𝑭𝑵) 
 and 𝑺𝑴: =  

𝑺

(𝑻𝑴,  𝑰𝑴,   𝑭𝑴) 
 be neutrosophic ℵ −structures over 

S. Then 

 (i) 𝑺𝑵 is called a neutrosophic ℵ − substructure of 𝑺𝑴 over S, denote by 𝑺𝑵 ⊆ 𝑺𝑴, if 𝑻𝑵(𝒔) ≥

 𝑻𝑴(𝒔),  𝑰𝑵(𝒔) ≤  𝑰𝑴(𝒔), 𝑭𝑵(𝒔) ≥  𝑭𝑴(𝒔) for all s ∈ 𝑺.  

If 𝑺𝑵 ⊆ 𝑺𝑴 and 𝑺𝑴 ⊆ 𝑺𝑵, then we say that 𝑺𝑵 = 𝑺𝑴. 

(ii) The neutrosophic ℵ − product of 𝑺𝑵 and 𝑺𝑴 is defined to be a neutrosophic ℵ −structure 

over S 

𝑺𝑵 ʘ 𝑺𝑴 ∶=  
𝑺

(𝑻𝑵∘𝑴,  𝑰𝑵∘𝑴,   𝑭𝑵∘𝑴) 
=  {

𝒔

𝑻𝑵∘𝑴(𝒔),  𝑰𝑵∘𝑴(𝒔),   𝑭𝑵∘𝑴(𝒔) 
 | 𝒔 ∈ 𝑺}, 

where  

𝑻𝑵∘𝑴(𝒔) = {
⋀ {𝑻𝑵(𝒖) ˅ 𝑻𝑴(𝒗)}

𝒔=𝒖𝒗

  𝒊𝒇 ∃ 𝒖, 𝒗 ∈ 𝑺 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒔 = 𝒖𝒗

𝟎                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

 

 

𝑰𝑵∘𝑴(𝒔) = {
⋁ {𝑰𝑵(𝒖) ˄ 𝑰𝑴(𝒗)}

𝒔=𝒖𝒗

  𝒊𝒇 ∃ 𝒖, 𝒗 ∈ 𝑺 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒔 = 𝒖𝒗

𝟎                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

 

 

𝑭𝑵∘𝑴(𝒔) = {
⋀ {𝑭𝑵(𝒖) ˅ 𝑭𝑴(𝒗)}

𝒔=𝒖𝒗

  𝒊𝒇 ∃ 𝒖, 𝒗 ∈ 𝑺 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒔 = 𝒖𝒗

𝟎                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

 

For s ∈ 𝐒,  the element 
𝐬

(𝐓𝐍∘𝐌,  𝐈𝐍∘𝐌,   𝐅𝐍∘𝐌) 
 is simply denoted by (𝐒𝐍 ʘ 𝐒𝐌)(𝐬) =

 (𝐓𝐍∘𝐌(𝐬),   𝐈𝐍∘𝐌(𝐬),   𝐅𝐍∘𝐌(𝐬)) for the sake of convenience.  

(iii) The union of 𝑺𝑵 and 𝑺𝑴 is defined to be a neutrosophic ℵ −structure over S 

𝑺𝑵∪𝑴 = (𝑺; 𝑻𝑵∪𝑴,   𝑰𝑵∪𝑴,    𝑭𝑵∪𝑴), 

where   

𝑻𝑵∪𝑴(𝒂) =  𝑻𝑵(𝒂) ˄ 𝑻𝑴(𝒂), 
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𝑰𝑵∪𝑴(𝒂) =  𝑰𝑵(𝒂) ˅ 𝑰𝑴(𝒂), 

                          𝑭𝑵∪𝑴(𝒂) =  𝑭𝑵(𝒂) ˄ 𝑭𝑴(𝒂) for all a ∈ 𝑺. 

(iv) The intersection of 𝑺𝑵 and 𝑺𝑴 is defined to be a neutrosophic ℵ −structure over S 

𝑺𝑵∩𝑴 = (𝑺; 𝑻𝑵∩𝑴,   𝑰𝑵∩𝑴,    𝑭𝑵∩𝑴), 

where   

𝑻𝑵∩𝑴(𝒂) =  𝑻𝑵(𝒂) ˅ 𝑻𝑴(𝒂), 

𝑰𝑵∩𝑴(𝒂) =  𝑰𝑵(𝒂) ˄ 𝑰𝑴(𝒂), 

                           𝑭𝑵∩𝑴(𝒂) =  𝑭𝑵(𝒂) ˅ 𝑭𝑴(𝒂) for all 𝒂 ∈ 𝑺. 

Definition 2.3. [9] A neutrosophic ℵ − structure 𝑺𝑵  over S is called a neutrosophic 

ℵ −subsemigroup of S if it satisfies: 

(∀ 𝒂, 𝒃 ∈ 𝑺) (

𝑻𝑵(𝒂𝒃) ≤ 𝑻𝑵(𝒂)˅ 𝑻𝑵(𝒃)

𝑰𝑵(𝒂𝒃) ≥ 𝑰𝑵(𝒂)˅𝑰𝑵(𝒃)

𝑭𝑵(𝒂𝒃) ≤ 𝑭𝑵(𝒂)˅ 𝑭𝑵(𝒃)
). 

Definition 2.4. A neutrosophic ℵ −structure 𝑺𝑵 over S is called a neutrosophic ℵ −left (resp., right) 

ideal of S if it satisfies: 

(∀ 𝒂, 𝒃 ∈ 𝑺) (

𝑻𝑵(𝒂𝒃) ≤ 𝑻𝑵(𝒂) (𝒓𝒆𝒔𝒑. , 𝑻𝑵(𝒂𝒃) ≤ 𝑻𝑵(𝒃)) 

𝑰𝑵(𝒂𝒃) ≥ 𝑰𝑵(𝒂) (𝒓𝒆𝒔𝒑., 𝑰𝑵(𝒂𝒃) ≥ 𝑰𝑵(𝒃))

𝑭𝑵(𝒂𝒃) ≤ 𝑭𝑵(𝒂) (𝒓𝒆𝒔𝒑., 𝑭𝑵(𝒂𝒃) ≤ 𝑭𝑵(𝒃))  

). 

If 𝑺𝑵  is both a neutrosophic ℵ − left and neutrosophic ℵ −right ideal of S, then it called a 

neutrosophic ℵ −ideal of S.   

It is clear that every neutrosophic ℵ −left and neutrosophic ℵ −right ideal of S is a neutrosophic 

ℵ − subsemigroup of S, but neutrosophic ℵ − subsemigroup of S is need not to be either a 

neutrosophic ℵ −left or a neutrosophic ℵ −right ideal of S as can be seen by the following example. 

Example 2.5. Let S= {𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓 } be a semigroup with the following multiplication table: 

 

 

 

 

 

 

Then 𝑺𝑵 = {
𝟎

(−𝟎.𝟗,−𝟎.𝟏,−𝟎.𝟖)
,

𝟏

(−𝟎.𝟓,−𝟎.𝟐,−𝟎.𝟔)
,

𝟐

(−𝟎.𝟏,−𝟎.𝟖,−𝟎.𝟏)
,

𝟑

(−𝟎.𝟑,−𝟎.𝟔,−𝟎.𝟒)
,

𝟒

(−𝟎.𝟏,−𝟎.𝟖,−𝟎.𝟏)
,

𝟓

(−𝟎.𝟒,−𝟎.𝟑,−𝟎.𝟓)
}  is a 

neutrosophic ℵ − subsemigroup of S, but not a neutrosophic ℵ − left ideal of S as 𝑻𝑵(𝟑. 𝟓) ≰

𝑻𝑵(𝟓), 𝑰𝑵(𝟑. 𝟓) ≱  𝑰𝑵(𝟓) and 𝑭𝑵(𝟑. 𝟓) ≰  𝑭𝑵(𝟓).               

□ 

Example 2.6. Let 𝑺 =  {𝒂, 𝒃, 𝒄, 𝒅} be a semigroup with the following multiplication table: 

. a b c d

a a a a a

b a a a a

c a a b a

d a a b b  

Then 𝑺𝑵 =  {
𝒂

(−𝟎.𝟗,   −𝟎.𝟏,   −𝟎.𝟖)
,   

𝒃

(−𝟎.𝟓,   −𝟎.𝟐,   −𝟎.𝟔)
,

𝒄

(−𝟎.𝟑,   −𝟎.𝟑,   −𝟎.𝟒)
,

𝒅

(−𝟎.𝟒,   −𝟎.𝟐,   −𝟎.𝟓)
}  is a neutrosophic 

ℵ −ideal of S.                     □ 

. 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 1 1 1

2 0 1 2 3 1 1

3 0 1 1 1 2 3

4 0 1 4 5 1 1

5 0 1 1 1 4 5
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Definition 2.7. For a subset A of S, consider the neutrosophic ℵ −structure  

𝝌𝑨(𝑺𝑵) =   
𝑺

(𝝌𝑨(𝑻)𝑵,  𝝌𝑨( 𝑰)𝑵, 𝝌𝑨( 𝑭)𝑵)
 

where 

𝝌𝑨(𝑻)𝑵 : S→ [−𝟏, 𝟎], 𝒔 → {
−𝟏 𝒊𝒇 𝒔 ∈ 𝑨  

𝟎   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

𝝌𝑨(𝑰)𝑵 : S→ [−𝟏, 𝟎], 𝒔 → {
𝟎 𝒊𝒇 𝒔 ∈ 𝑨  

−𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

𝝌𝑨(𝑭)𝑵 : S→ [−𝟏, 𝟎], 𝒔 → {
−𝟏  𝒊𝒇 𝒔 ∈ 𝑨  
𝟎  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

which is called the characteristic neutrosophic ℵ −structure of S.  

 

Definition 2.8. [9] Let 𝑺𝑵 be a neutrosophic ℵ − structure over S and let 𝜶, 𝜷, 𝜸 ∈ [−𝟏, 𝟎] be such 

that −𝟑 ≤  𝜶 +  𝜷 +  𝜸 ≤ 𝟎. Consider the following sets: 

𝑻𝑵
𝜶 = {𝒔 ∈ 𝑺: 𝑻𝑵(𝒔) ≤  𝜶}, 

𝑰𝑵
𝜷

 = {𝒔 ∈ 𝑺: 𝑰𝑵(𝒔) ≥  𝜷}, 

𝑭𝑵
𝜸

= {𝒔 ∈ 𝑺: 𝑭𝑵(𝒔) ≤ 𝜸}. 

The set 𝑺𝑵(𝜶, 𝜷, 𝜸) ≔ {𝒔 ∈ 𝑺 | 𝑻𝑵(𝒔) ≤  𝜶, 𝑰𝑵(𝒔) ≥  𝜷, 𝑭𝑵(𝒔) ≤ 𝜸} is called a (α, β, γ)-level set of SN. 

Note that 𝑺𝑵(𝜶, 𝜷, 𝜸) = 𝑻𝑵
𝜶  ∩  𝑰𝑵

𝜷
 ∩  𝑭𝑵

𝜸
. 

3.  Neutrosophic ℵ − ideals  

Theorem 3.1 Let 𝑺𝑵 be a neutrosophic ℵ − structure over S and let 𝜶, 𝜷, 𝜸 ∈ [−𝟏, 𝟎] be such that 

−𝟑 ≤  𝜶 +  𝜷 +  𝜸 ≤ 𝟎. If 𝑺𝑵 is a neutrosophic ℵ − left (resp., right) ideal of S, then (𝜶, 𝜷, 𝜸) − level 

set of 𝑺𝑵 is a neutrosophic left (resp., right) ideal of S whenever it is non-empty. 

Proof: Assume that  𝑺𝑵(𝜶, 𝜷, 𝜸) ≠  ∅ for 𝜶, 𝜷, 𝜸 ∈ [−𝟏, 𝟎] with −𝟑 ≤  𝜶 +  𝜷 +  𝜸 ≤ 𝟎. Let 𝑺𝑵 

be a neutrosophic ℵ − left ideal of S and let 𝒙, 𝒚 ∈ 𝑺𝑵(𝜶, 𝜷, 𝜸). Then 𝑻𝑵(𝒙𝒚) ≤ 𝑻𝑵(𝒙) ≤ 𝜶; 𝑰𝑵(𝒙𝒚) ≥

𝑰𝑵(𝒙) ≥ 𝜷  and 𝑭𝑵(𝒙𝒚) ≤ 𝑭𝑵(𝒙) ≤ 𝜸  which imply 𝒙𝒚 ∈ 𝑺𝑵 ( 𝜶, 𝜷, 𝜸) . Therefore 𝑺𝑵 ( 𝜶, 𝜷, 𝜸)  is a 

neutrosophic ℵ − left ideal of S.                 □ 

Theorem 3.2. Let 𝑺𝑵 be a neutrosophic ℵ − structure over S and let 𝜶, 𝜷, 𝜸 ∈ [−𝟏, 𝟎] be such that 

−𝟑 ≤  𝜶 +  𝜷 +  𝜸 ≤ 𝟎. If 𝑻𝑵
𝜶 ; 𝑰𝑵

𝜷
 and 𝑭𝑵

𝜸  are left (resp., right) ideals of S, then 𝑺𝑵 is a neutrosophic 

ℵ −left (resp., right) ideal of S whenever it is non-empty. 

 Proof: If there are 𝒂, 𝒃 ∈ 𝑺 such that 𝑻𝑵(𝒂𝒃) > 𝑻𝑵(𝒂). Then 𝑻𝑵(𝒂𝒃) > 𝒕𝜶 ≥ 𝑻𝑵(𝒂) for some 

𝒕𝜶 ∈ [−𝟏, 𝟎). Thus 𝒂 ∈ 𝑻𝑵
𝒕𝜶(𝒂), but 𝒂𝒃 ∉ 𝑻𝑵

𝒕𝜶(𝒂), a contradiction. So 𝑻𝑵(𝒂𝒃) ≤ 𝑻𝑵(𝒂). Similar way 

we can get 𝑻𝑵(𝒂𝒃) ≤ 𝑻𝑵(𝒃). 

 If there are 𝒂, 𝒃 ∈ 𝑺 such that 𝑰𝑵(𝒂𝒃)  <  𝑰𝑵(𝒂). Then 𝑰𝑵(𝒂𝒃)  <  𝒕𝜷  ≤  𝑰𝑵(𝒂) for some  𝒕𝜷 ∈

(−𝟏, 𝟎]. Thus 𝒂 ∈ 𝑰𝑵

𝒕𝜷(𝒂), but 𝒂𝒃 ∉ 𝑰𝑵

𝒕𝜷(𝒂), a contradiction. So 𝑰𝑵(𝒂𝒃) ≥ 𝑰𝑵(𝒂). Similar way we can 

get 𝑰𝑵(𝒂𝒃) ≥ 𝑰𝑵(𝒃). 

 If there are 𝒂, 𝒃 ∈ 𝑺  such that 𝑭𝑵(𝒂𝒃) > 𝑭𝑵(𝒂).  Then 𝑭𝑵(𝒂𝒃) > 𝒕𝜸 ≥ 𝑭𝑵(𝒂)  for some 𝒕𝜸 ∈

[−𝟏, 𝟎).  Thus 𝒂 ∈ 𝑭
𝑵

𝒕𝜸(𝒂),  but 𝒂𝒃 ∉ 𝑭
𝑵

𝒕𝜸(𝒂),  a contradiction. So 𝑭𝑵(𝒂𝒃) ≤ 𝑭𝑵(𝒂).  Similar way we 

can get 𝑭𝑵(𝒂𝒃) ≤ 𝑭𝑵(𝒃). 

 Hence 𝑺𝑵 is a neutrosophic ℵ −left ideal of S.                □ 

Theorem 3.3. Let S be a semigroup. Then the intersection of two neutrosophic ℵ −left (resp., right) 

ideals of S is also a neutrosophic ℵ −left (resp., right) ideal of S. 

Proof: Let 𝑺𝑵: =  
𝑺

(𝑻𝑵,  𝑰𝑵,   𝑭𝑵) 
 and 𝑺𝑴: =  

𝑺

(𝑻𝑴,  𝑰𝑴,   𝑭𝑴) 
 be neutrosophic ℵ −left ideals of S. Then for 

any 𝒙, 𝒚 ∈ 𝑺, we have  
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𝑻𝑵∩𝑴(𝒙𝒚) =  𝑻𝑵(𝒙𝒚) ˅ 𝑻𝑴(𝒙𝒚) ≤ 𝑻𝑵(𝒚) ˅ 𝑻𝑴(𝒚) = 𝑻𝑵∩𝑴(𝒚), 

𝑰𝑵∩𝑴(𝒙𝒚) =  𝑰𝑵(𝒙𝒚) ˄ 𝑰𝑴(𝒙𝒚) ≥ 𝑰𝑵(𝒚) ˄ 𝑰𝑴(𝒚) = 𝑰𝑵∩𝑴(𝒚), 

𝑭𝑵∩𝑴(𝒙𝒚) =  𝑭𝑵(𝒙𝒚) ˅ 𝑭𝑴(𝒙𝒚) ≤ 𝑭𝑵(𝒚) ˅ 𝑭𝑴(𝒚) = 𝑭𝑵∩𝑴(𝒚).  

Therefore 𝑿𝑵∩𝑴 is a neutrosophic ℵ −left ideal of S.                

□ 

Corollary 3.4. Let S be a semigroup. Then {𝑿𝑵𝒊
|𝒊 ∈ ℕ} is a family of neutrosophic ℵ −left (resp., 

right) ideals of S, then so is 𝑿⋂ 𝑵𝒊
. 

Theorem 3.5. For any non-empty subset A of S, the following conditions are equivalent: 

 (i) A is a neutrosophic ℵ −left (resp., right) ideal of S, 

 (ii) The characteristic neutrosophic ℵ −structure 𝝌𝑨(𝑿𝑵) over S is a neutrosophic ℵ −left (resp., 

right) ideal of S. 

 Proof: Assume that A is a neutrosophic ℵ −left ideal of S. For any 𝒙, 𝒚 ∈ 𝑨.   

If 𝒚 ∉ 𝑨,  then 𝝌𝑨(𝑻)𝑵(𝒙𝒚) ≤ 𝟎 = 𝝌𝑨(𝑻)𝑵(𝒚); 𝝌𝑨(𝑰)𝑵(𝒙𝒚) ≥ −𝟏 = 𝝌𝑨(𝑰)𝑵(𝒚) and 

𝝌𝑨(𝑭)𝑵(𝒙𝒚) ≤ 𝟎 = 𝝌𝑨(𝑭)𝑵(𝒚). Otherwise 𝒚 ∈ 𝑨.  Then 𝒙𝒚 ∈ 𝑨,  so 𝝌𝑨(𝑻)𝑵(𝒙𝒚) = −𝟏 =

𝝌𝑨(𝑻)𝑵(𝒚); 𝝌𝑨(𝑰)𝑵(𝒙𝒚) = 𝟎 = 𝝌𝑨(𝑰)𝑵(𝒚) and 𝝌𝑨(𝑭)𝑵(𝒙𝒚) = −𝟏 = 𝝌𝑨(𝑭)𝑵(𝒚). Therefore 𝝌𝑨(𝑺𝑵) is a 

neutrosophic ℵ −left ideal of S. 

Conversely, assume that 𝝌𝑨(𝑺𝑵) is a neutrosophic ℵ −left ideal of S. Let 𝒂 ∈ 𝑨 and 𝒙 ∈ 𝑺. Then 

𝝌𝑨(𝑻)𝑵(𝒙𝒂) ≤ 𝝌𝑨(𝑻)𝑵(𝒂) = −𝟏,  𝝌𝑨(𝑰)𝑵(𝒙𝒂) ≥ 𝝌𝑨(𝑰)𝑵(𝒂) = 𝟎  and 𝝌𝑨(𝑭)𝑵(𝒙𝒂) ≤ 𝝌𝑨(𝑭)𝑵(𝒂) = −𝟏. 

Thus 𝝌𝑨(𝑻)𝑵(𝒙𝒂) = −𝟏, 𝝌𝑨(𝑰)𝑵(𝒙𝒂) = 𝟎 and 𝝌𝑨(𝑭)𝑵(𝒙𝒂) = −𝟏 and hence 𝒙𝒂 ∈ 𝑨. Therefore A is a 

neutrosophic ℵ −left ideal of S.                      □ 

Theorem 3.6. Let 𝝌𝑨(𝑺𝑵) and 𝝌𝑩(𝑺𝑵) be characteristic neutrosophic ℵ −structure over S for subsets 

A and B of S. Then 

(i) 𝝌𝑨(𝑺𝑵) ∩  𝝌𝑩(𝑺𝑵) = 𝝌𝑨∩𝑩(𝑺𝑵). 

(ii) 𝝌𝑨(𝑺𝑵) ʘ 𝝌𝑩(𝑺𝑵) = 𝝌𝑨𝑩(𝑺𝑵). 

Proof: (i) Let s ∈ 𝑺.  

If s ∈ 𝑨 ∩ 𝑩, then  
 (𝝌𝑨(𝑻)𝑵 ∩ 𝝌𝑩(𝑻)𝑵)(𝒔) = 𝝌𝑨(𝑻)𝑵(𝒔) ˅ 𝝌𝑩(𝑻)𝑵(𝒔) = −𝟏 = 𝝌𝑨∩𝑩(𝑻)𝑵(𝒔), 

   (𝝌𝑨(𝑰)𝑵 ∩ 𝝌𝑩(𝑰)𝑵)(𝒔) = 𝝌𝑨(𝑰)𝑵(𝒔) ˄ 𝝌𝑩(𝑰)𝑵(𝒔) = 𝟎 = 𝝌𝑨∩𝑩(𝑰)𝑵(𝒔), 

 (𝝌𝑨(𝑭)𝑵 ∩ 𝝌𝑩(𝑭)𝑵)(𝒔) = 𝝌𝑨(𝑭)𝑵(𝒔) ˅ 𝝌𝑩(𝑭)𝑵(𝒔) = −𝟏 = 𝝌𝑨∩𝑩(𝑭)𝑵(𝒔). 

Hence 𝝌𝑨(𝑺𝑵) ∩  𝝌𝑩(𝑺𝑵) = 𝝌𝑨∩𝑩(𝑺𝑵). 

If s ∉ 𝑨 ∩ 𝑩, then s ∉ 𝑨 or s ∉ 𝑩. Thus  

  (𝝌𝑨(𝑻)𝑵 ∩ 𝝌𝑩(𝑻)𝑵)(𝒔) = 𝝌𝑨(𝑻)𝑵(𝒔) ˅ 𝝌𝑩(𝑻)𝑵(𝒔) = 𝟎 = 𝝌𝑨∩𝑩(𝑻)𝑵((𝒔)), 
(𝝌𝑨(𝑰)𝑵 ∩ 𝝌𝑩(𝑰)𝑵)(𝒔) = 𝝌𝑨(𝑰)𝑵(𝒔) ˄ 𝝌𝑩(𝑰)𝑵(𝒔) = −𝟏 = 𝝌𝑨∩𝑩(𝑰)𝑵(𝒔), 
(𝝌𝑨(𝑭)𝑵 ∩ 𝝌𝑩(𝑭)𝑵)(𝒔) = 𝝌𝑨(𝑭)𝑵(𝒔) ˅ 𝝌𝑩(𝑭)𝑵(𝒔) = 𝟎 = 𝝌𝑨∩𝑩(𝑭)𝑵(𝒔). 

Hence 𝝌𝑨(𝑺𝑵) ∩  𝝌𝑩(𝑺𝑵) = 𝝌𝑨∩𝑩(𝑺𝑵). 

 

(ii) Let 𝒙 ∈ 𝑺.  If 𝒙 ∈ 𝑨𝑩, then 𝒙 = 𝒂𝒃 for some 𝒂 ∈ 𝑨 and 𝒃 ∈ 𝑩.  

Now       
     ( 𝝌𝑨(𝑻)𝑵 ∘ 𝝌𝑩(𝑻)𝑵)(𝒙) =  ⋀ {𝝌𝑨(𝑻)𝑵(𝒔) ˅  𝝌𝑩(𝑻)𝑵(𝒕)} 𝒙=𝒔𝒕  

               ≤ 𝝌𝑨(𝑻)𝑵(𝒂) ˅ ( 𝝌𝑩(𝑻)𝑵 (𝒃) 

              =  −𝟏 = 𝝌𝑨𝑩(𝑻)𝑵(𝒙), 

(𝝌𝑨(𝑰)𝑵 ∘ 𝝌𝑩(𝑰)𝑵)(𝒙) =  ⋁{𝝌𝑨(𝑰)𝑵(𝒔) ˅ 𝝌𝑩(𝑰)𝑵(𝒕)}

𝒙=𝒔𝒕

  

                                ≥ 𝝌𝑨(𝑰)𝑵(𝒂) ˅ 𝝌𝑩(𝑰)𝑵(𝒃) 

                                                                                  =  𝟎 = 𝝌𝑨𝑩(𝑰)𝑵(𝒙), 

( 𝝌𝑨(𝑭)𝑵 ∘ 𝝌𝑩(𝑭)𝑵)(𝒙) =  ⋀{𝝌𝑨(𝑭)𝑵(𝒔) ˅  𝝌𝑩(𝑭)𝑵(𝒕)} 

𝒙=𝒔𝒕
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            ≤ 𝝌𝑨(𝑭)𝑵(𝒂) ˅ ( 𝝌𝑩(𝑭)𝑵 (𝒃)      

            =  −𝟏 = 𝝌𝑨𝑩(𝑭)𝑵(𝒙). 

Therefore 𝝌𝑨(𝑺𝑵) ʘ 𝝌𝑩(𝑺𝑵) = 𝝌𝑨𝑩(𝑺𝑵).              □ 

 

Note 3.7. Let 𝑺𝑵: =  
𝑺

(𝑻𝑵,  𝑰𝑵,   𝑭𝑵) 
 and 𝑺𝑴: =  

𝑺

(𝑻𝑴,  𝑰𝑴,   𝑭𝑴) 
 be neutrosophic ℵ −structures over S. Then for 

any subsets A and B of S, we have  

 (i) 𝝌𝑨∩𝑩(𝑺𝑵 ∩  𝑺𝑴) = (𝑺: 𝝌𝑨∩𝑩(𝑻)𝑵∩𝑴,  𝝌𝑨∩𝑩(𝑰)𝑵∩𝑴,  𝝌𝑨∩𝑩(𝑭)𝑵∩𝑴),  

where 

𝝌𝑨∩𝑩(𝑻)𝑵∩𝑴(𝒔) =  𝝌𝑨∩𝑩(𝑻)𝑵(𝒔) ˅ 𝝌𝑨∩𝑩(𝑻)𝑴(𝒔),  

𝝌𝑨∩𝑩(𝑰)𝑵∩𝑴(𝒔) =  𝝌𝑨∩𝑩(𝑰)𝑵(𝒔) ˄ 𝝌𝑨∩𝑩(𝑰)𝑴(𝒔),  

                𝝌𝑨∩𝑩(𝑭)𝑵∩𝑴(𝒔) =  𝝌𝑨∩𝑩(𝑭)𝑵(𝒔) ˅ 𝝌𝑨∩𝑩(𝑭)𝑴(𝒔) 𝒇𝒐𝒓 𝒔 𝜺 𝑺. 

(ii) 𝝌𝑨∪𝑩(𝑺𝑵 ∩  𝑺𝑴) = (𝑺: 𝝌𝑨∪𝑩(𝑻)𝑵∪𝑴, 𝝌𝑨∪𝑩(𝑰)𝑵∪𝑴, 𝝌𝑨∪𝑩(𝑭)𝑵∪𝑴),  

where 

𝝌𝑨∪𝑩(𝑻)𝑵∪𝑴(𝒔) =  𝝌𝑨∪𝑩(𝑻)𝑵(𝒔) ˄ 𝝌𝑨∪𝑩(𝑻)𝑴(𝒔),  

𝝌𝑨∪𝑩(𝑰)𝑵∪𝑴(𝒔) =  𝝌𝑨∪𝑩(𝑰)𝑵(𝒔) ˅  𝝌𝑨∪𝑩(𝑰)𝑴(𝒔),  

              𝝌𝑨∪𝑩(𝑭)𝑵∪𝑴(𝒔) =  𝝌𝑨∪𝑩(𝑭)𝑵(𝒔) ˄ 𝝌𝑨∪𝑩(𝑭)𝑴(𝒔) 𝒇𝒐𝒓 𝒔 𝜺 𝑺. 

Theorem 3.8. Let 𝑺𝑴 be a neutrosophic ℵ − structure over S. Then 𝑺𝑴 is a neutrosophic ℵ − left 

ideal of S if and only if 𝑺𝑵 ʘ 𝑺𝑴 ⊆  𝑺𝑴 for any neutrosophic ℵ − structure 𝑺𝑵 over S. 

Proof: Assume that  𝑺𝑴 is a neutrosophic ℵ − left ideal of S and let s, 𝒕, 𝒖 ∈ 𝑺. If s= 𝒕𝒖, then 

𝑻𝑴(𝒔) = 𝑻𝑴(𝒕𝒖) ≤ 𝑻𝑴(𝒖) ≤ 𝑻𝑴(𝒕) ˅ 𝑻𝑴(𝒖)  which implies𝑻𝑴(𝒔) ≤ 𝑻𝑵∘𝑴(𝒔). Otherwise s≠ 𝒕𝒖. 

Then 𝑻𝑴(𝒔) ≤ 𝟎 = 𝑻𝑵∘𝑴(𝒔). 

𝑰𝑴(𝒔) = 𝑰𝑴(𝒕𝒖) ≥ 𝑰𝑴(𝒖) ≥ 𝑰𝑴(𝒕) ˄ 𝑰𝑴(𝒕)  which implies  𝑰𝑴(𝒔) ≥ 𝑰𝑵∘𝑴(𝒔) . Otherwise s  ≠ 𝒕𝒖 . 

Then 𝑰𝑴(𝒔) ≥ −𝟏 = 𝑰𝑵∘𝑴(𝒔). 

𝑭𝑴(𝒔) = 𝑭𝑴(𝒕𝒖) ≤ 𝑭𝑴(𝒖) ≤ 𝑭𝑴(𝒕) ˅ 𝑭𝑴(𝒖)  which implies 𝑭𝑴(𝒔) ≤ 𝑭𝑵∘𝑴(𝒔). Otherwise s≠ 𝒕𝒖. 

Then 𝑭𝑴(𝒔) ≤ 𝟎 = 𝑭𝑵∘𝑴(𝒔). 

Conversely, assume that 𝑺𝑴 is a neutrosophic ℵ − structure over S such that  𝑺𝑵 ʘ 𝑺𝑴 ⊆  𝑺𝑴 

for any neutrosophic ℵ − structure 𝑺𝑵 over S. Let 𝒙, 𝒚 ∈ 𝑺. If 𝒂 = 𝒙𝒚, then 

 

𝑻𝑴(𝒙𝒚) = 𝑻𝑴(𝒂) ≤ (𝝌𝑿(𝑻)𝑵  ∘  𝑻𝑴)(𝒂) = ⋀{𝝌𝑿(𝑻)𝑵

𝒂=𝒔𝒕

(𝒔) ˅ 𝑻𝑴(𝒕)} ≤ 𝝌𝑿(𝑻)𝑵(𝒙) ˅ 𝑻𝑴(𝒚) = 𝑻𝑴(𝒚), 

 

𝑰𝑴(𝒙𝒚) = 𝑰𝑴(𝒂) ≥ (𝝌𝑿(𝑰)𝑵  ∘  𝑰𝑴)(𝒂) = ⋁{𝝌𝑿(𝑰)𝑵 (𝒔) ˄ 𝑰𝑴(𝒕)

𝒂=𝒔𝒕

} ≥ 𝝌𝑿(𝑰)𝑵(𝒙)˅ 𝑰𝑴(𝒚) = 𝑰𝑴(𝒚), 

 

𝑭𝑴(𝒙𝒚) = 𝑭𝑴(𝒂) ≤ (𝝌𝑿(𝑭)𝑵  ∘  𝑭𝑴)(𝒂) = ⋀{𝝌𝑿(𝑭)𝑵

𝒂=𝒔𝒕

(𝒔) ˅ 𝑭𝑴(𝒕)} ≤ 𝝌𝑿(𝑭)𝑵(𝒙) ˅ 𝑭𝑴(𝒚) = 𝑭𝑴(𝒚). 

Therefore  𝑺𝑴  is a neutrosophic ℵ − left ideal of S.           □ 

Similarly, we have the following.  

Theorem 3.9. Let 𝑺𝑴 be a neutrosophic ℵ − structure over S. Then 𝑺𝑴 is a neutrosophic ℵ − left 

ideal of S if and only if 𝑺𝑴 ʘ 𝑺𝑵 ⊆  𝑺𝑴 for any neutrosophic ℵ − structure 𝑺𝑵 over S. 

 

Theorem 3.10. Let 𝑺𝑴  and 𝑺𝑵 be neutrosophic ℵ − structures over S. If  𝑺𝑴 is a neutrosophic ℵ − 

left ideal of S, then so is the 𝑺𝑴 ʘ 𝑺𝑵.  

Proof: Assume that  𝑺𝑴 is a neutrosophic ℵ − left ideal of S and let 𝒙, 𝒚 ∈ 𝑺. If there exist 

𝒂, 𝒃 ∈ 𝑺 such that 𝒚 = 𝒂𝒃, then 𝒙𝒚 = 𝒙(𝒂𝒃) = (𝒙𝒂)𝒃.  

Now,  

                                  (𝑻𝑵 ∘ 𝑻𝑴 )(𝒚) = ⋀ {𝑻𝑵

𝒚=𝒂𝒃

(𝒂) ˅ 𝑻𝑴(𝒃)} 
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                                                                      ≤ ⋀ {𝑻𝑵

𝒙𝒚=(𝒙𝒂)𝒃

(𝒙𝒂) ˅ 𝑻𝑴(𝒃) 

                   = ⋀ {𝑻𝑵

𝒙𝒚=𝒄𝒃

(𝒄) ˅ 𝑻𝑴(𝒃)} = (𝑻𝑵 ∘ 𝑻𝑴 )(𝒙𝒚), 

                                            (𝑰𝑵 ∘ 𝑰𝑴 )(𝒚) = ⋁ {𝑰𝑴(𝒃) ˄  𝑰𝑴(𝒃)}

𝒚=𝒂𝒃

 

                                                                     ≥ ⋁ {𝑰𝑴(𝒙𝒂) ˄ 𝑰𝑴(𝒃)}

𝒙𝒚=(𝒙𝒂)𝒃

 

                                                                     = ⋁ {𝑰𝑴(𝒄)˄ 𝑰𝑴(𝒃)} = (𝑰𝑵 ∘ 𝑰𝑴 )(𝒙𝒚)

𝒙𝒚=𝒄𝒃

 , 

                                            (𝑭𝑵 ∘ 𝑭𝑴 )(𝒚) = ⋀ {𝑭𝑵

𝒚=𝒂𝒃

(𝒂)˅ 𝑭𝑴(𝒃)} 

                             

≤ ⋀ {𝑭𝑵

𝒙𝒚=(𝒙𝒂)𝒃

(𝒙𝒂) ˅ 𝑭𝑴(𝒃) 

 

                                                                         = ⋀ {𝑭𝑵

𝒙𝒚=𝒄𝒃

(𝒄) ˅ 𝑭𝑴(𝒃)} = (𝑭𝑵 ∘ 𝑭𝑴 )(𝒙𝒚). 

Therefore 𝑺𝑴 ʘ  𝑺𝑵 is a neutrosophic ℵ − left ideal of S.           □ 

Similarly, we have the following. 

Theorem 3.11. Let 𝑺𝑴 and 𝑺𝑵 be neutrosophic ℵ − structures over S. If  𝑺𝑴 is a neutrosophic ℵ − 

right ideal of S, then so is the 𝑺𝑴 ʘ 𝑺𝑵. 

 

Conclusions 

In this paper, we have introduced the notion of neutrosophic ℵ −ideals in semigroups and 

investigated their properties, and discussed characterizations of neutrosophic ℵ −ideals by using the 

notion of neutrosophic ℵ − product, also provided conditions for neutrosophic ℵ −structure to be a 

neutrosophic ℵ − ideal in semigroup. We have also discussed the concept of characteristic 

neutrosophic ℵ −structure of semigroups and its related properties. Using this notions and results in 

this paper, we will define the concept of neutrosophic ℵ −bi-ideals in semigroups and study their 

properties in future.  

Acknowledgments: The authors express their sincere thanks to the referees for valuable comments 

and suggestions which improve the paper a lot. 
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Abstract. In this paper, we have developed a multi-objective inventory model with constant demand rate, 

under the limitation on storage of space. Production cost is considered in demand dependent and the deteri-

oration cost is considered in average inventory level dependent. Also inventory holding cost is dependent on 

time. Due to uncertainty, all cost parameters are taken as generalized trapezoidal fuzzy number. Our proposed 

model is solved by both neutrosophic hesitant fuzzy programing approach and fuzzy non-linear program-

ming technique. Numerical example has been given to illustrate the model. Finally sensitivity analysis has 

been presented graphically. 
 

Keywords: Inventory, Deterioration, Multi-item, Generalized trapezoidal fuzzy number, Neutrosophic Hesi-

tant fuzzy programming approach. 
 
 
 

1. Introduction  

An inventory model deal with decision that minimum the total average cost or maximum the total av-

erage profit. In that way to construct a real life mathematical inventory model on base on various as-

sumptions and notations and approximation. 

        In ordinary inventory system inventory cost i.e set-up cost, holding cost, deterioration cost, etc. are 

taken fixed amount but in real life inventory system these cost not always fixed. So consideration of 

fuzzy variable is more realistic and interesting. 

         Inventory problem for deteriorating items have been widely studied, deterioration is defined as 

the spoilage, damage, dryness, vaporization etc., this result in decrease of usefulness of the commodity. 

Economic order quantity model was first introduced in February 1913 by Harris [1], afterwards many 

researchers developed EOQ model in inventory systems like as Singh, T., Mishra, P.J. and Pattanayak, 

H. [4], Jong Wuu Wu & Wen Chuan Lee [5] etc.   

          Deterioration of an item is the most important factor in the inventory systems. Ghare and Schrader 

[15], developed the inventory model by considering the constant demand rate and constant deteriora-

tion rate. Jong-Wuu Wu, Chinho Lin, Bertram Tan & Wen-Chuan Lee [6] developed an EOQ inventory 

model with time-varying demand and Weibull deterioration with shortages. Mishra, U. [13] presented 

a paper on an inventory model for Weibull deterioration with stock and price dependent demand. Jong 

Wuu Wu & Wen Chuan Lee [5] discussed an EOQ inventory model for items with Weibull deterioration, 
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shortages and time varying demand. Singh, T., Mishra, P.J. and Pattanayak, H. [4] studied an EOQ in-

ventory model for deteriorating items with time-dependent deterioration rate, ramp-type demand rate 

and shortages.  Roy, T. K. & Maity, M, N. K. Mondal [14] discussedc inventory model of deteriorating 

items with a constraint: A geometric programming approach. 

         The concept of fuzzy set theory was first introduced by Zadeh, L.A. [16]. Afterward Zimmermann, 

H.J [17], [18] applied the fuzzy set theory concept with some useful membership functions to solve the 

linear programming problem with some objective functions. Then the various ordinary inventory model 

transformed to fuzzy versions model by various authors such as Roy, T. K. & Maity, M [2] presented on 

a fuzzy inventory model with constraints.  

           Also Smarandache, F. introduced the nutrosophic set. Smarandache, F  [19] presented 

Neutrosophic Set, a generalization of the intuitionistic fuzzy set also discussed a geometric 

interpretation of the NS set a generalization of the intuitionistic fuzzy set. Multi-item and limitations of 

spaces is the important in the business world. Ye, J. [7] studied on multiple-attribute decision-making 

method under a single-valued neutrosophic hesitant fuzzy environment. Firoz Ahmad, Ahmad Yusuf 

Adhami, F. Smarandache [12] established single valued Neutrosophic Hesitant Fuzzy Computational 

Algorithm for multi objective nonlinear optimization problem. Islam, S. and Mandal, W. A. [10] 

considered a fuzzy inventory model with unit production cost, time depended holding cost, with-out 

shortages under a space constraint: a parametric geometric programming approach. B. Mondal, C. Kar, 

A. Garai, T. Kr. Roy [8, 25] studied on optimization of EOQ Model with Limited Storage Capacity by 

neutrosophic geometric programming. Mullai, M. and Surya, R. [22] developed neutrosophic EOQ 

model with price break. Mohana, K., Christy, V. and Smarandache, F. [24] discussed on multi-criteria 

decision making problem via bipolar single-valued neutrosophic. Nabeeh, N. A.; Abdel-Basset, M.; El-

Ghareeb, H. A.; Aboelfetouh, A. Discussed neutrosophic multi-criteria decision making approach for 

iot-based enterprises. Biswas, P., Pramanik, S., Giri, B. C. [11] presented multi-attribute group decision 

making based on expected value of  neutrosophic trapezoidal numbers. Pramanik, S., Mallick, R., Das-

gupta, [9] discussed a Contributions of selected Indian researchers to multi attribute decision making 

in neutrosophic environment: an over view. 

        In this paper, we have considered the constant demand rate, under the restriction on storage area. 

Production cost is considered in demand dependent and the deterioration cost is considered in average 

inventory and also holding cost is time dependent. Due to uncertainty, all the required parameters are 

considered generalized trapezoidal fuzzy number. The formulated inventory problem has been solved 

by using FNLP and crisp and neutrosophic hesitant fuzzy programing approach. Finally numerical ex-

ample has been given to illustrate the model. 

2. Preliminaries 

2.1 Definition of Fuzzy Set 

Let 𝑋 be a collection of objects called the universe of discourse. A fuzzy set is a subset of 𝑋 denoted by 

𝐴̃ and is defined by a set of ordered pairs 𝐴̃ = {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}. Here 𝜇𝐴: 𝑋 → [0,1] is a function which  

is called the membership function of the fuzzy set 𝐴̃ and 𝜇𝐴(𝑥) is called the grade of membership of  

𝑥 ∈ 𝑋 in the fuzzy set 𝐴̃. 

2.2 Union of two fuzzy sets 

The union of 𝐴̃ and 𝐵̃ is fuzzy set in X, denoted by 𝐴̃ ∪ 𝐵̃, and defined by the membership function 

𝜇𝐴∪𝐵̃(𝑥) = 𝜇𝐴(𝑥) ∨ 𝜇𝐵̃(𝑥) = max {𝜇𝐴(𝑥), 𝜇𝐵̃(𝑥)} for each x ∈ X. 

2.3 Intersection of two fuzzy sets 

The intersection of two fuzzy sets 𝐴̃ and 𝐵̃ in X, denoted by 𝐴̃ ∩ 𝐵̃, and defined by the membership 
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 function 𝜇𝐴∩𝐵̃(𝑥) = 𝜇𝐴(𝑥)˄ 𝜇𝐵̃(𝑥) = min {𝜇𝐴(𝑥),  𝜇𝐵̃(𝑥)} for each x ∈ X. 

2.4 Generalized Trapezoidal Fuzzy Number (GTrFN) 

A generalized trapezoidal fuzzy number (GTrFN) 𝐴̃ ≡(a,b,c,d; w) is a fuzzy set of the real line R whose 

membership function 𝜇𝐴 (x) : R → [0,w] is defined as 

𝜇𝐴 (x)  = 

{
 
 

 
 μLÃ

w (x) =  w(
x−a

b−a
)    for  a ≤ x ≤ b

w                               for b ≤ x ≤ c

μRÃ
w (x) =    w(

d−x

d−c
) for c ≤ x ≤ d

0                                 for otherwise 

 

where a < b < c < d and w ∈ (0, 1]. If w = 1, the generalized fuzzy number 𝐴̃ is called a trapezoidal fuzzy 

number (TrFN) denoted 𝐴̃ ≡(a, b, c, d). 

2.5 Definition of Neutrosophic Set (NS) 

Let 𝑋 be a collection of objects called the universe of discourse. A neutrosophic set A in X is defined by  

                                        𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥))|𝑥 ∈ 𝑋} 

Here 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) 𝑎𝑛𝑑 𝐹𝐴(𝑥)  are called truth, indeterminacy and falsity membership function 

respectively. This membership functions are defined by  

                           𝑇𝐴(𝑥): 𝑋 → ]0−, 1+[ ,  𝐼𝐴(𝑥): 𝑋 → ]0−, 1+[, 𝐹𝐴(𝑥): 𝑋 → ]0−, 1+[  so we have  
                                        0− ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3

+ 

2.6 Definition of Single valued Neutrosophic Set (SVNS) 

Let 𝑋 be a collection of objects called the universe of discourse. A single valued neutrosophic set A in X 

is defined by  𝐴 = {(𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥))|𝑥 ∈ 𝑋}  . Here  𝑇𝐴(𝑥): 𝑋 → [0,1]  ,  𝐼𝐴(𝑥): 𝑋 → [0,1],   𝐹𝐴(𝑥): 𝑋 →

[0,1] and 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋. 

2.7 Hesitant Fuzzy Set (HFS) 

Let X be a non-empty reference set, a hesitant fuzzy set A on X is defined in terms of a function ℎ𝐴(𝑥) 

which is applied to X returns a finite subset of [0,1]. It’s mathematical representation is 

𝐴 = {〈𝑥, ℎ𝐴(𝑥)〉|𝑥 ∈ 𝑋} 

Where ℎ𝐴(𝑥) is a set of some different values in [0,1], representing the possible membership degree of 

the element 𝑥 ∈ 𝑋 to A. the set ℎ𝐴(𝑥) is called the hesitant fuzzy element (HFE). 

Example 1: Let 𝑋 = {𝑥1, 𝑥2, 𝑥3} be a reference set, ℎ𝐴(𝑥1) = {0.4,0.7,0.8}, ℎ𝐴(𝑥2) = {0.7,0.5,0.6}, ℎ𝐴(𝑥3) =

{0.3,0.8,0.9,0.7} be hesitant fuzzy element of 𝑥1, 𝑥2, 𝑥3 respectively to a set 𝐴. Then hesitant fuzzy set A is 

𝐴 = {〈𝑥1, {0.4,0.7,0.8}〉, 〈𝑥2, {0.7,0.5,0.6}〉, 〈𝑥3, {0.3,0.8,0.9,0.7}〉}. 

2.8 Definition of Single valued Neutrosophic Hesitant Fuzzy Set (SVNHFS) 

 It is based on the combination of SVNS and HFS. Concept of SVNHFS is proposed by Ye [7]. 

 Let X be a non-empty reference set, an single valued neutrosophic hesitant fuzzy set A on X is defined 

as 

𝐴 = {〈𝑥, 𝑇𝐴̃(𝑥), 𝐼𝐴̃(𝑥), 𝐹𝐴̃(𝑥)〉|𝑥 ∈ 𝑋} 

Where 𝑇𝐴̃(𝑥) = {𝛼|𝛼 ∈ 𝑇𝐴̃(𝑥)} , 𝐼𝐴̃(𝑥) = {𝛽|𝛽 ∈ 𝐼𝐴̃(𝑥)}  and 𝐹𝐴̃(𝑥) = {𝛾|𝛾 ∈ 𝐹𝐴̃(𝑥)}  are three sets of some 

different values in [0,1], denoting the possible truth membership hesitant, indeterminacy membership 

hesitant and falsity membership hesitant degree of 𝑥 ∈ 𝑋 to the set 𝐴 respectively. This are satisfied the 

following conditions  

                          𝛼, 𝛽, 𝛾 ⊆ [0,1] and 0 ≤ 𝑠𝑢𝑝 𝛼+ + 𝑠𝑢𝑝𝛽+ + 𝑠𝑢𝑝𝛾+ ≤ 3 

Where 𝛼+ =∪𝛼∈𝑇𝐴̃(𝑥) 𝑚𝑎𝑥{𝛼}, 𝛽
+ =∪𝛽∈𝑇𝐴̃(𝑥) 𝑚𝑎𝑥{𝛽} and 𝛼+ =∪𝛾∈𝑇𝐴̃(𝑥) 𝑚𝑎𝑥{𝛾} for 𝑥 ∈ 𝑋. 

2.9 Union of two SVNS sets 
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Let 𝑋 be a collection of objects called the universe of discourse and A and B are any two subsets of X. 

Here   𝑇𝐴(𝑥): 𝑋 → [0,1]  ,  𝐼𝐴(𝑥): 𝑋 → [0,1],  𝐹𝐴(𝑥): 𝑋 → [0,1]  are called truth, indeterminacy and falsity 

membership function of A respectively. The union of A and B denoted by 𝐴 ∪ 𝐵 and define by  

𝐴 ∪ 𝐵 = {(𝑥,𝑚𝑎𝑥( 𝑇𝐴(𝑥),  𝑇𝐵(𝑥)),𝑚𝑎𝑥( 𝐼𝐴(𝑥),  𝐼𝐵(𝑥)),𝑚𝑖𝑛( 𝐹𝐴(𝑥),  𝐹𝐵(𝑥)))| 𝑥 ∈ 𝑋} 

2.10 Intersection of two SVNS sets 

Let 𝑋 be a collection of objects called the universe of discourse and A and B are any two subsets of X. 

Here   𝑇𝐴(𝑥): 𝑋 → [0,1]  ,  𝐼𝐴(𝑥): 𝑋 → [0,1],  𝐹𝐴(𝑥): 𝑋 → [0,1]  are called truth, indeterminacy and falsity 

membership function of A respectively. The intersection of A and B denoted by 𝐴 ∩ 𝐵 and define by  

𝐴 ∩ 𝐵 = {(𝑥,𝑚𝑖𝑛( 𝑇𝐴(𝑥),  𝑇𝐵(𝑥)),𝑚𝑖𝑛( 𝐼𝐴(𝑥),  𝐼𝐵(𝑥)),𝑚𝑎𝑥( 𝐹𝐴(𝑥),  𝐹𝐵(𝑥)))| 𝑥 ∈ 𝑋} 

3. Mathematical model formulation for ith item 

3.1 Notations 

𝑐𝑖: Ordering cost per order for ith item. 

𝐻𝑖(= ℎ𝑖𝑡): Holding cost per unit per unit time for ith item. 

𝜃𝑖: Constant deterioration rate for the ith item. 

𝜃𝑐: Deterioration cost depend average inventory level. 

𝑇𝑖 :  The length of cycle time for 𝑖thitem, 𝑇𝑖 > 0. 

𝐷𝑖 ∶ Demand rate per unit time for the ith item. 

𝐼𝑖(𝑡): Inventory level of the ith item at time t. 

𝑄𝑖 : The order quantity for the duration of a cycle of length 𝑇𝑖  for ith item. 

𝑇𝐴𝐶𝑖(𝑇𝑖 , 𝐷𝑖): Total average profit per unit for the ith item. 

𝑤𝑖 : Storage space per unit time for the ith item. 

𝑊: Total area of space. 

𝑐𝑖̃: Fuzzy ordering cost per order for the ith item. 

𝜃𝑖̃: Fuzzy deterioration rate for the ith item. 

𝑤𝑖̃: Fuzzy storage space per unit time for the ith item. 

𝐻𝑖̃(= ℎ𝑖̃𝑡): Fuzzy holding cost per unit per unit time for the ith item. 

𝑇𝐴𝐶𝑖̃(𝑇𝑖,𝐷𝑖): Fuzzy total average cost per unit for the ith item. 

𝑐𝑖̂: Defuzzyfication of the fuzzy ordering cost per order for the ith item. 

𝜃𝑖̂: Defuzzyfication of the fuzzy deterioration rate for the ith item. 

𝑤𝑖̂: Defuzzyfication of the fuzzy storage space per unit time for the ith item. 

𝐻𝑖̂(= ℎ𝑖̂𝑡): Defuzzyfication of the fuzzy holding cost per unit per unit time for the ith item. 

𝑇𝐴𝐶𝑖̂ (𝑇𝑖,𝐷𝑖): Defuzzyfication of the fuzzy total average cost per unit for the ith item. 

3.2 Assumptions 

1. The inventory system involves multi-item. 

2. The replenishment occurs instantaneously at infinite rate. 

3. The lead time is negligible. 

4. Shortages are not allowed. 

5. The unit production cost 𝐶𝑝
𝑖  of ith item is inversely related to the demand rate 𝐷𝑖. So we take the    

     following form  𝐶𝑝
𝑖 ( 𝐷𝑖) = 𝛼𝑖𝐷𝑖

−𝛽𝑖, where 𝛼𝑖 > 0 and 𝛽𝑖 > 1 are constant real number. 

6. The deterioration cost is proportionality related to the average inventory level. So we take the form     
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     𝜃𝑐
𝑖(𝑄) = 𝛾𝑖 (

𝑄𝑖

2
)
𝛿𝑖

 where 0 < 𝛾𝑖  and 0 < 𝛿𝑖 ≪ 1 are constant real number. 

3.3  Model formation in scrip model 

        The inventory level for ith item is illustrated in Figure-1. During the period [0, 𝑇𝑖] the inventory level 
reduces due to demand rate and deterioration rate for ith item. In this time period, the inventory level is 
described by the differential equation- 

𝑑𝐼𝑖(𝑡)

𝑑𝑡
+ 𝜃𝑖𝐼𝑖(𝑡) = −𝐷,0 ≤ 𝑡 ≤ 𝑇𝑖                                                                          (1)  

With boundary condition,𝐼𝑖(0) = 𝑄𝑖 , 𝐼𝑖(𝑇𝑖) = 0. 

Solving (1) we have, 

𝐼𝑖(𝑡) =
𝐷𝑖

𝜃𝑖
[𝑒𝜃𝑖(𝑇𝑖−𝑡) − 1]                                                                                     (2) 

𝑄𝑖 =
𝐷𝑖

𝜃𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1)                                                                                              (3)                                                      

                                 Inventory Level 
 
 
 
 
 
                                                 𝑄𝑖  
 
 
 
 
                                               
                                                O                                 𝑇𝑖                                      time 
                                                        Figure-1 (Inventory level for the ith item.) 

 

Now calculating various cost for ith item  

i) Production cost (𝑃𝐶𝑖) =
𝑄𝑖𝐶𝑝

𝑖 ( 𝐷𝑖)

𝑇𝑖
 

                                     =
𝐷𝑖
(1−𝛽𝑖)𝛼𝑖

𝜃𝑖𝑇𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1) 

ii) Inventory holding cost (𝐻𝐶𝑖) =
1

𝑇𝑖
∫ ℎ𝑖𝑡𝐼𝑖(𝑡)𝑑𝑡
𝑇𝑖
0

 

                                                  =
𝐷𝑖ℎ𝑖

𝜃𝑖𝑇𝑖
{−

𝑇𝑖

𝜃𝑖
+

1

𝜃𝑖
2 (𝑒

𝜃𝑖𝑇𝑖 − 1) −
𝑇𝑖
2

2
} 

iv) Deterioration cost (𝐷𝐶𝑖) =  𝜃𝑖𝛾𝑖 (
𝑄𝑖

2
)
𝛿𝑖

 

                                              = 𝜃𝑖𝛾𝑖 (
𝐷𝑖

2𝜃𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1))

𝛿𝑖

 

v) Ordering cost (𝑂𝐶𝑖) =  
𝑐𝑖

𝑇𝑖
 

Total average cost per unit time for ith item 

    𝑇𝐴𝐶𝑖(𝑇𝑖 , 𝐷𝑖) = (𝑃𝐶𝑖 + 𝐻𝐶𝑖 + 𝐷𝐶𝑖 + 𝑂𝐶𝑖) 
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                  =
𝐷𝑖
(1−𝛽𝑖)𝛼𝑖

𝜃𝑖𝑇𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1) +

𝐷𝑖ℎ𝑖

𝜃𝑖𝑇𝑖
{−

𝑇𝑖

𝜃𝑖
+

1

𝜃𝑖
2 (𝑒

𝜃𝑖𝑇𝑖 − 1) −
𝑇𝑖
2

2
} + 𝜃𝑖𝛾𝑖 (

𝐷𝑖

2𝜃𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1))

𝛿𝑖

+
𝑐𝑖

𝑇𝑖
     (4) 

A multi-item inventory model (MIIM) can be written as: 

Min  

𝑇𝐴𝐶𝑖(𝑇𝑖 , 𝐷𝑖) =
𝐷𝑖
(1−𝛽𝑖)𝛼𝑖
𝜃𝑖𝑇𝑖

(𝑒𝜃𝑖𝑇𝑖 − 1) +
𝐷𝑖ℎ𝑖
𝜃𝑖𝑇𝑖

{−
𝑇𝑖
𝜃𝑖
+
1

𝜃𝑖
2 (𝑒

𝜃𝑖𝑇𝑖 − 1) −
𝑇𝑖
2

2
} + 𝜃𝑖𝛾𝑖 (

𝐷𝑖
2𝜃𝑖

(𝑒𝜃𝑖𝑇𝑖 − 1))

𝛿𝑖

+
𝑐𝑖
𝑇𝑖

 

Subject to, ∑ 𝑤𝑖
𝐷𝑖

𝜃𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1) ≤𝑛

𝑖=1  𝑊, for 𝑖 = 1,2, ……… . . 𝑛.                                                                   (5) 

4. Fuzzy Model 

          Generally the parameters for holding cost, unit production cost, and storage spaces, deterioration 

are not particularly known to us. Due to uncertainty, we assume all the parameters (𝛼𝑖 , 𝛽𝑖 , 𝜃𝑖 , ℎ𝑖 , 𝛾𝑖 , 𝛿𝑖, 𝑐𝑖) 

and storage space 𝑤𝑖  as generalized trapezoidal fuzzy number (GTrFN)(𝛼𝑖̃, 𝛽𝑖̃, 𝜃𝑖̃, ℎ𝑖̃, 𝛾𝑖̃, 𝛿𝑖̃, 𝑐𝑖̃𝑤𝑖̃). Let us 

assume, 

𝛼𝑖̃ = (𝛼𝑖
1, 𝛼𝑖

2, 𝛼𝑖
3, 𝛼𝑖

4; 𝜔𝛼𝑖), 0 < 𝜔𝛼𝑖 ≤ 1; 𝜃𝑖̃ = (𝜃𝑖
1, 𝜃𝑖

2, 𝜃𝑖
3, 𝜃𝑖

4; 𝜔𝜃𝑖), 0 < 𝜔𝜃𝑖 ≤ 1;   

𝛽𝑖̃ = (𝛽𝑖
1, 𝛽𝑖

2, 𝛽𝑖
3, 𝛽𝑖

4; 𝜔𝛽𝑖), 0 < 𝜔𝛽𝑖 ≤ 1; ℎ𝑖̃ = (ℎ𝑖
1, ℎ𝑖

2, ℎ𝑖
3, ℎ𝑖

4; 𝜔ℎ𝑖), 0 < 𝜔ℎ𝑖 ≤ 1;  

𝛾𝑖̃ = (𝛾𝑖
1, 𝛾𝑖

2, 𝛾𝑖
3, 𝛾𝑖

4; 𝜔𝛾𝑖), 0 < 𝜔𝛾𝑖 ≤ 1; 𝑤𝑖̃ = (𝑤𝑖
1, 𝑤𝑖

2, 𝑤𝑖
3, 𝑤𝑖

4; 𝜔𝑤𝑖), 0 < 𝜔𝑤𝑖 ≤ 1;  

𝛿𝑖̃ = (𝛿𝑖
1, 𝛿𝑖

2, 𝛿𝑖
3, 𝛿𝑖

4; 𝜔𝛿𝑖), 0 < 𝜔𝛿𝑖 ≤ 1; 𝑐𝑖̃ = (𝑐𝑖
1, 𝑐𝑖

2, 𝑐𝑖
3, 𝑐𝑖

4; 𝜔𝑐𝑖), 0 < 𝜔𝑐𝑖 ≤ 1; (𝑖 = 1,2, ……… , 𝑛). 

Then the above crisp inventory model (5) becomes the fuzzy model as 

Min 𝑇𝐴𝐶𝑖̃(𝑇𝑖 , 𝐷𝑖) =
𝐷𝑖
(1−𝛽𝑖̃)𝛼𝑖̃

𝜃𝑖̃𝑇𝑖
(𝑒𝜃𝑖̌𝑇𝑖 − 1) +

𝐷𝑖ℎ𝑖̃

𝜃𝑖̃𝑇𝑖
{−

𝑇𝑖

𝜃𝑖̃
+

1

𝜃𝑖̃
2 (𝑒

𝜃𝑖̃𝑇𝑖 − 1) −
𝑇𝑖
2

2
} + 𝜃𝑖̃𝛾𝑖̃ (

𝐷𝑖

2𝜃𝑖̃
(𝑒𝜃𝑖̃𝑇𝑖 − 1))

𝛿𝑖̃

+
𝐶𝑖̃

𝑇𝑖
 

Subject to, ∑ 𝑤𝑖̃
𝐷𝑖

𝜃𝑖̃
(𝑒𝜃𝑖̃𝑇𝑖 − 1) ≤𝑛

𝑖=1  𝑊, for 𝑖 = 1,2, ……… . . 𝑛.                                                               (6) 

In defuzzification of fuzzy number technique, if we consider a GTrFN 𝐴̃ = (𝑎, 𝑏, 𝑐, 𝑑; 𝜔), then the total 

𝜆- integer value of 𝐴̃ = (𝑎, 𝑏, 𝑐, 𝑑; 𝜔) is  

                        𝐼𝜆
𝑤(𝐴̃) = 𝜆𝜔

𝑐+𝑑

2
+ (1 − 𝜆)𝜔

𝑎+𝑏

2
 

Taking = 0.5 , therefore we get approximated value of a GTrFN 𝐴̃ = (𝑎, 𝑏, 𝑐, 𝑑; 𝜔) is 𝜔 (
𝑎+𝑏+𝑐+𝑑

4
). 

So using approximated value of GTrFN, we have the approximated values (𝛼𝑖̂, 𝛽𝑖̂, 𝜃𝑖̂, ℎ𝑖̂, 𝛾𝑖̂, 𝛿𝑖̂, 𝑐𝑖̂, 𝑤𝑖̂) of 

the GTrFN parameters (𝛼𝑖̃, 𝛽𝑖̃, 𝜃𝑖̃, ℎ𝑖̃, 𝛾𝑖̃, 𝛿𝑖̃, 𝑐𝑖̃, 𝑤𝑖̃). So the above model (6) reduces to  

Min 𝑇𝐴𝐶𝑖̂(𝑇𝑖 , 𝐷𝑖) =
𝐷𝑖
(1−𝛽𝑖̂)𝛼𝑖̂

𝜃𝑖̂𝑇𝑖
(𝑒𝜃𝑖̂𝑇𝑖 − 1) +

𝐷𝑖ℎ𝑖̂

𝜃𝑖̂𝑇𝑖
{−

𝑇𝑖

𝜃𝑖̂
+

1

𝜃𝑖̂
2 (𝑒

𝜃𝑖̂𝑇𝑖 − 1) −
𝑇𝑖
2

2
} + 𝜃𝑖̂𝛾𝑖̂ (

𝐷𝑖

2𝜃𝑖̂
(𝑒𝜃𝑖̂𝑇𝑖 − 1))

𝛿𝑖̂

+
𝐶𝑖̂

𝑇𝑖
 

Subject to, ∑ 𝑤𝑖̂
𝐷𝑖

𝜃𝑖̂
(𝑒𝜃𝑖̂𝑇𝑖 − 1) ≤𝑛

𝑖=1  𝑊, for 𝑖 = 1,2, ……… . . 𝑛.                                                            (7) 

5. Neutrosophic hesitant fuzzy programming technique to solve multi item inventory model 

    (MIIM). (That is NHFNP method) 

Solve the MIIM (7) as a single objective NLP using only one objective at a time and we ignoring the 

others. So we get the ideal solutions. 

From the above results, we find out the corresponding values of every objective function at each 
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solution obtained. With these values the pay-off matrix can be prepared as follows:  

                                                            𝑇𝐴𝐶1(𝑇1, 𝐷1)       𝑇𝐴𝐶2(𝑇2, 𝐷2)   …. ………….…….𝑇𝐴𝐶𝑛(𝑇𝑛 , 𝐷𝑛)  

                                (𝑇1
1, 𝐷1

1)      𝑇𝐴𝐶1
∗(𝑇1

1, 𝐷1
1)     𝑇𝐴𝐶2(𝑇1

1, 𝐷1
1)…………………..….𝑇𝐴𝐶𝑛(𝑇11, 𝐷11)  

                             (𝑇22, 𝐷22)      𝑇𝐴𝐶1(𝑇22, 𝐷22)        𝑇𝐴𝐶2
∗(𝑇2

2, 𝐷2
2)………………… ..  𝑇𝐴𝐶𝑛(𝑇2

2, 𝐷2
2) 

                                                ……         ….. …..             ………….         …………..       ……….. 

                                                  ……    ….. …..             ………….         …………..       ……….. 

                                 (𝑇𝑛
𝑛, 𝐷𝑛

𝑛)    𝑇𝐴𝐶1(𝑇𝑛
𝑛 , 𝐷𝑛

𝑛)       𝑇𝐴𝐶2(𝑇𝑛
𝑛, 𝐷𝑛

𝑛) ………………….   𝑇𝐴𝐶𝑛
∗(𝑇𝑛

𝑛 , 𝐷𝑛
𝑛)  

Let 𝑈𝑘 = max {𝑇𝐴𝐶𝑘(𝑇𝑖
𝑖, 𝐷𝑖

𝑖), 𝑖 = 1,2, … . , 𝑛} for 𝑘 = 1,2, … . , 𝑛  

and   𝐿𝑘 = 𝑇𝐴𝐶𝑘
∗(𝑇𝑘

𝑘, 𝐷𝑘
𝑘), 𝑘 = 1,2,… . , 𝑛. 

There  𝐿𝑘 ≤ 𝑇𝐴𝑃𝑘(𝑇𝑖
𝑖 , 𝐷𝑖

𝑖) ≤ 𝑈𝑘 , for 𝑖 = 1,2, … . , 𝑛 ; 𝑘 = 1,2, … . , 𝑛.                                                       (8) 

Now we define the different hesitant membership function more elaborately under neutrosophic  
hesitant fuzzy environment as follows 

The truth hesitant- membership function: 

𝑇ℎ−
𝐸1(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
 1                                             𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿

𝑘  

𝜎1
(𝑈𝑘)𝑡 − (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡

(𝑈𝑘)𝑡 − (𝐿𝑘)𝑡
    𝑖𝑓 𝐿𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈

𝑘

0                                           𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

 

𝑇ℎ−
𝐸2(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
 1                                             𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿

𝑘  

𝜎2
(𝑈𝑘)𝑡 − (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡

(𝑈𝑘)𝑡 − (𝐿𝑘)𝑡
    𝑖𝑓 𝐿𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈

𝑘

0                                           𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

 

--------------------------  

 

𝑇ℎ−
𝐸𝑛(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
 1                                             𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿

𝑘  

𝜎𝑛
(𝑈𝑘)𝑡 − (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡

(𝑈𝑘)𝑡 − (𝐿𝑘)𝑡
    𝑖𝑓 𝐿𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈𝑘

0                                           𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

 
The indeterminacy hesitant- membership function: 
 

𝐼ℎ−
𝐸1(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
          1                                      𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿𝑘 − 𝑠𝑘

𝜌1
(𝑈𝑘)𝑡 − (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡

(𝑠𝑘)𝑡
          𝑖𝑓 𝑈𝑘 − 𝑠𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈

𝑘

0                                        𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

 

𝐼ℎ−
𝐸2(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
          1                                      𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿𝑘 − 𝑠𝑘

𝜌2
(𝑈𝑘)𝑡 − (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡

(𝑠𝑘)𝑡
          𝑖𝑓 𝑈𝑘 − 𝑠𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈

𝑘

0                                        𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)
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                --------------------------- 

 

𝐼ℎ−
𝐸𝑛(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
          1                                      𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿𝑘 − 𝑠𝑘

𝜌𝑛
(𝑈𝑘)𝑡 − (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡

(𝑠𝑘)𝑡
          𝑖𝑓 𝑈𝑘 − 𝑠𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈𝑘

0                                        𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

 

The falsity hesitant- membership function: 

 

𝐹ℎ−
𝐸1(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
          0                                                     𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿𝑘 + 𝑣𝑘

𝜏1
(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡
− (𝐿𝑘)𝑡 − (𝑣𝑘)𝑡

(𝑈𝑘)𝑡 − (𝐿𝑘)𝑡 − (𝑣𝑘)𝑡
         𝑖𝑓 𝐿𝑘 + 𝑣𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈

𝑘

1                                                       𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

 

𝐹ℎ−
𝐸2(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
          0                                                     𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿𝑘 + 𝑣𝑘

𝜏2
(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡
− (𝐿𝑘)𝑡 − (𝑣𝑘)𝑡

(𝑈𝑘)𝑡 − (𝐿𝑘)𝑡 − (𝑣𝑘)𝑡
         𝑖𝑓 𝐿𝑘 + 𝑣𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈

𝑘

1                                                       𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

           

                             --------------------------- 

 

 

𝐹ℎ−
𝐸𝑛(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
          0                                                     𝑖𝑓 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿

𝑘 + 𝑣𝑘

𝜏1
(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))

𝑡
− (𝐿𝑘)𝑡 − (𝑣𝑘)𝑡

(𝑈𝑘)𝑡 − (𝐿𝑘)𝑡 − (𝑣𝑘)𝑡
         𝑖𝑓 𝐿𝑘 + 𝑣𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈𝑘

1                                                       𝑖𝑓 𝑈𝑘 < 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)

 

 

Where parameter 𝑡 > 0 and 𝑠𝑘 , 𝑣𝑘𝜖(0,1) ∀  𝑘 = 1,2,3, …… . , 𝑛 are indeterminacy and falsity tolerance 

values, which are assigned by decision making and ℎ− represent the minimization type hesitant objec-

tive function. 

𝑇ℎ−
𝐸1(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)), 𝐼ℎ−

𝐸1(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)), 𝐹ℎ−
𝐸1(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) are truth, indeterminacy and falsity hesi-

tant membership degrees assigned by 1st expert. 

𝑇ℎ−
𝐸2(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)), 𝐼ℎ−

𝐸2(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)), 𝐹ℎ−
𝐸2(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) are truth, indeterminacy and falsity hesi-

tant membership degrees assigned by 2nd expert. 

                --------------------------- 

 

𝑇ℎ−
𝐸𝑛(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)), 𝐼ℎ−

𝐸𝑛(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)), 𝐹ℎ−
𝐸𝑛(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) are truth, indeterminacy and falsity hesi-

tant membership degrees assigned by nth expert. 
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Using the above membership function, the multi-item nonlinear inventory problem formulated as 

follows 

Max 
∑ 𝜎𝑖
𝑛
1

𝑛
 

Max 
∑ 𝜌𝑖
𝑛
1

𝑛
 

Min 
∑ 𝜏𝑖
𝑛
1

𝑛
 

Subject to  

𝑇ℎ−
𝐸𝑖(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) ≥ 𝜎𝑖 , 𝐼ℎ−

𝐸𝑖 (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) ≥ 𝜌𝑖 , 𝐹ℎ−
𝐸𝑖(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) ≤ 𝜏𝑖  

 ∑ 𝑤𝑖
𝐷𝑖

𝜃𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1) ≤𝑛

𝑖=1  𝑊, 𝜎𝑖 + 𝜌𝑖 + 𝜏𝑖 ≤ 3, 𝜎𝑖 ≥ 𝜌𝑖 , 𝜎𝑖 ≥ 𝜏𝑖 , ∀ 𝑖 = 1,2,3, … . , 𝑛          (9) 

Using above linear membership function, we can written as  

Max 
𝜎1+𝜎2+ ……+𝜎𝑛 

𝑛
+

𝜌1+𝜌2+ ………..+𝜌𝑛

𝑛
−

𝜏1+𝜏2+ ………+𝜏𝑛

𝑛
 

Subject to  

𝑇ℎ−
𝐸𝑖(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) ≥ 𝜎𝑖 , 𝐼ℎ−

𝐸𝑖 (𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) ≥ 𝜌𝑖 , 𝐹ℎ−
𝐸𝑖(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) ≤ 𝜏𝑖 

 ∑ 𝑤𝑖
𝐷𝑖

𝜃𝑖
(𝑒𝜃𝑖𝑇𝑖 − 1) ≤𝑛

𝑖=1  𝑊, 𝜎𝑖 + 𝜌𝑖 + 𝜏𝑖 ≤ 3, 𝜎𝑖 ≥ 𝜌𝑖 , 𝜎𝑖 ≥ 𝜏𝑖 , ∀ 𝑖 = 1,2,3, … . , 𝑛 , 

0≤ 𝜎1, 𝜎2, …… , 𝜎𝑛 ≤ 1, 0≤ 𝜌1, 𝜌2, ……… . . , 𝜌𝑛 ≤ 1, 0≤ 𝜏1, 𝜏2, ……… , 𝜏𝑛 ≤ 1, 𝑇𝑘 ≥ 0, 𝐷𝑘 ≥ 0        (10) 

Above gives the solution 𝐷𝑖
∗ , 𝑇𝑖

∗ and then 𝑇𝐴𝐶𝑖
∗ for 𝑖 = 1,2,3, … . , 𝑛 .   

6. Algorithm to solve MIIM in Neutrosophic hesitant fuzzy programming technique  

Following steps have been used to solve MIIM  in neutrosophic hesitant fuzzy programming  

Technique.  

Step-1: Solve only one objective at time and ignoring the others and using the all restrictions. These  

              solutions are known as ideal solution. 

Step-2: Form pay-off matrix using the step-1. 

Step-3: Determine 𝑈𝑘 and 𝐿𝑘. (𝑈𝑘 and 𝐿𝑘 are the upper and lower bounds of the k-th item respectively) 

Step-4: Using 𝑈𝑘 and 𝐿𝑘 define all hesitant membership function, i.e truth hesitant membership  

              function 𝑇ℎ−
𝐸𝑖(𝑇𝐴𝐶𝑘), Indeterminacy hesitant membership function  𝐼ℎ−

𝐸𝑖 (𝑇𝐴𝐶𝑘), Falsity hesitant                      

              membership function  𝐹ℎ−
𝐸𝑖(𝑇𝐴𝐶𝑘), 𝑖 = 1,2,3, … . , 𝑛  , 𝑘 = 1,2,3, … . , 𝑛   

Step-5: Ask for the truth hesitant, Indeterminacy hesitant and falsity hesitant membership degrees  

              from different experts  𝐸𝑖, 𝑖 = 1,2,3, … . , 𝑛 . 

Step-6: Formulate multi-objective non-linear programming problem under neutrosophic hesitant  

              fuzzy system. 

Step-7: Solve multi-objective non-linear programming problem using suitable technique or  

              optimization software package. 

7. Fuzzy programming technique (Multi-Objective on max-min operators) to solve MIIM. ( That is  

FNLP method) 

Firstly derive (8) and then we use following way for solving the problem (7) 
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    Now objective functions of the problem (7) are considered as fuzzy constraints. Therefore fuzzy 

linear membership function 𝜇𝑇𝐴𝐶𝑘(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘))  for the kth objective function 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) is defined 

as follows:  

𝜇𝑇𝐴𝐶𝑘(𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘)) =

{
 
 

 
 1                            𝑓𝑜𝑟 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) < 𝐿

𝑘

𝑈𝑘 − 𝑇𝐴𝐶𝑘(𝑇𝑘,𝐷𝑘)

𝑈𝑘 − 𝐿𝑘
      𝑓𝑜𝑟 𝐿𝑘 ≤ 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈𝑘

0                             𝑓𝑜𝑟  𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) > 𝑈
𝑘

 

                                                                                               for 𝑘 = 1,2, … . , 𝑛.                                                                                    
Using the above membership function, fuzzy non-linear programming problem is formulated as  

follows: 

𝑀𝑎𝑥 𝛼   
   Subject to 

𝛼 (𝑈𝑘 − 𝐿𝑘) + 𝑇𝐴𝐶𝑘(𝑇𝑘 , 𝐷𝑘) ≤ 𝑈
𝑘              

0 ≤ 𝛼 ≤ 1,  𝑇𝑘 ≥ 0, 𝐷𝑘 ≥ 0   for 𝑘 = 1,2, … . , 𝑛                                                             (11) 

And same constraints and restrictions of the problem (7).   
This problem (11) can be solved easily and we shall get the optimal solution of (7).  

8. Numerical Example 

Let us consider an inventory model which consist two items with following parameter values in proper 
units. Total storage area 𝑊 = 900𝑚2.  

Table-1 

Input imprecise data for shape parameters 

 

Parameters 

Item 

I II 

𝛼𝑖̃ (10000,12000,11000,13000; 0.7) ( 20000,22000,25000,30000; 0.8) 

𝜃𝑖̃ (0.02,0.05,0.09,0.07; 0.9) (0.02,0.05,0.09,0.07; 0.9) 

𝛽𝑖̃ (30,40,60,70; 0.8) (50,70,80,90; 0.9) 

ℎ𝑖̃ (0.6,0.8,0.9,0.5; 0.9) (0.4,0.6,0.9,0.7; 0.7) 

𝛾𝑖̃ (8000,10000,12000,15000; 0.9) (10000,13000,15000,18000; 0.9) 

𝛿𝑖̃ (0.04,0.06,0.08,0.07; 0.8) ((0.04,0.06,0.08,0.07; 0.8)) 

𝑐𝑖̃ (100,150,200,210; 0.7) (150,180,190,200; 0.9) 

𝑤𝑖̃ (10,11,12,13; 0.9) (20,21,24,23; 0.8) 

 

The problem (7) reduces to the following: 

Min 𝑇𝐴𝐶1(𝑇1, 𝐷1) =
𝐷1

−398050

0.05.𝑇1
(𝑒0.05.𝑇1 − 1) +

𝐷1.0.63

0.05.𝑇1
{−

𝑇1

0.05
+

1

0.052
(𝑒0.05.𝑇1 − 1) −

𝑇1
2

2
} +

393.75 (
𝐷1

0.1
(𝑒0.05.𝑇1 − 1))

0.05

+
115.50

𝑇1
 

Min 𝑇𝐴𝐶2(𝑇2, 𝐷2) =
𝐷2

−64.2519400

0.05.𝑇2
(𝑒0.05.𝑇2 − 1) +

𝐷20.46

0.05.𝑇2
{−

𝑇2

0.05
+

1

0.052
(𝑒0.05.𝑇2 − 1) −

𝑇2
2

2
} +

630 (
𝐷2

0.1
(𝑒0.05.𝑇2 − 1))

0.05

+
162

𝑇2
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Subject to, 210(𝑒0.05.𝑇1 − 1)𝐷1 + 352(𝑒
0.05.𝑇2 − 1)𝐷2 ≤ 900, 𝑇1, 𝐷1, 𝑇2, 𝐷2 are positive.                   (12) 

Table –2 

Optimal solutions of MIIM (12) using different methods 

Methods 𝐷1
∗ 𝑇1

∗ 𝑇𝐴𝐶1
∗ 𝐷2

∗ 𝑇2
∗ 𝑇𝐴𝐶2

∗ 

CRISP 1.28 4.12 446.51 1.18 4.07 703.52 
FNLP 1.28 4.07 446.52 1.18 4.07 703.52 

NHFNP 1.28 4.06 446.52 1.18 4.07 703.52 
 

                               

                                   Figure 2.  Minimizing cost of 1st and 2nd item using different methods 

From the above Figure 2 shows that CRISP, FNLP and NHFNP method gives the almost same result  

of MIIM. 

9. Sensitivity Analysis 

The optimal solutions of the MIIM (7) by CRISP, FNLP and NHFNP techniques for different values of 

𝜃, ℎ are given in Tables-3 and 4 respectively.   

Table – 3 

Optimal solutions of MIIM (7) by CRISP, FNLP and NHFNP for different values of 𝜽 

Methods 𝜃 𝐷1
∗ 𝑇1

∗ 𝑇𝐴𝐶1
∗ 𝐷2

∗ 𝑇2
∗ 𝑇𝐴𝐶2

∗ 

 
 

CRISP 
 

0.05 1.28 4.12 446.51 1.18 4.07 703.52 

0.10 1.26 2.43 858.92 1.17 2.23 1358.15 
0.15 1.25 1.69 1262.44 1.16 1.52 1997.44 
0.20 1.24 1.29 1659.65 1.16 1.16 2626.53 

 
 
      FNLP 

0.05 1.28 4.07 446.52 1.18 4.07 703.52 

0.10 1.26 2.42 858.92 1.18 2.19 1358.34 
0.15 1.25 1.69 1262.44 1.16 1.52 1997.44 
0.20 1.24 1.31 1659.45 1.16 1.15 2626.50 

   
 
    NHFNP 

0.05 1.28 4.06 446.52 1.18 4.07 703.52 

0.10 1.26 2.43 858.92 1.18 2.21 1358.34 

0.15 1.25 1.68 1262.42 1.16 1.53 1997.45 

0.20 1.24 1.29 1659.65 1.17 1.16 2626.52 

 

CRISP

FNLP
NHFNP

0

200

400

600

800

TAC1
TAC2

CRISP
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      Figure 3. total average cost (𝑇𝐴𝐶1) of 1st item using             Figure 4. total average cost (𝑇𝐴𝐶2) of 2nd item using 

            different methods for different values of 𝜃.                             different methods for different values of 𝜃. 
 
From the above Figure 3 and Figure 4 shows that for all different methods when 𝜃 is increased then  

minimum cost of both items are increased  

Table – 4 

Optimal solution of MIIM (7) by CRISP, FNLP and NHFNP for different values of 𝒉𝟏 and 𝒉𝟐. 

Methods ℎ1 ℎ2 𝐷1
∗ 𝑇1

∗ 𝑇𝐴𝐶1
∗ 𝐷2

∗ 𝑇2
∗ 𝑇𝐴𝐶2

∗ 
 
 

CRISP 
 

0.63 0.46 1.28 4.12 446.51 1.18 4.07 703.52 
1.13 0.96 1.28 3.81 448.26 1.18 3.83 705.13 
1.63 1.46 1.28 3.59 449.79 1.18 3.66 706.57 
2.13 1.96 1.28 3.42 451.15 1.18 3.52 707.89 

 
 
      FNLP 

0.63 0.46 1.28 4.07 446.52 1.18 4.07 703.52 
1.13 0.96 1.28 3.81 448.26 1.18 3.80 705.13 
1.63 1.46 1.28 3.65 449.80 1.18 3.67 706.57 
2.13 1.96 1.28 3.43 451.17 1.18 3.50 707.92 

   
 
    NHFNP 

0.63 0.46 1.28 4.06 446.52 1.18 4.07 703.52 
1.13 0.96 1.27 3.80 448.30 1.18 3.78 705.33 
1.63 1.46 1.28 3.65 449.80 1.18 3.67 706.57 
2.13 1.96 1.28 3.42 451.19 1.18 3.49 707.91 

  

   Figure 5. total average cost (𝑇𝐴𝐶1) of 1st item using            Figure-6. total average cost (𝑇𝐴𝐶2) of 2nd item using 
   different methods for different values of ℎ1 and ℎ2             different methods for different values of ℎ1 and ℎ2 
 

From the above Figure 5 and Figure 6 shows that all different methods, when  ℎ1  and ℎ2   are 
continuously increasing then minimum cost of both items are continuously increasing.  
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10. Conclusions  

       Here we have considered the constant demand rate, under the restriction on storage area. 
Production cost is considered in demand dependent and the deterioration cost is considered in average 
inventory also holding cost is time dependent. The model have been formulated using multi-items. Due 
to uncertainty all the required parameters are taken as generalized trapezoidal fuzzy number. Multi-
objective inventory model is solved by using neutrosophic hesitant fuzzy programing approach and 
fuzzy non-linear programming technique.  

         In the future study, it is hoped to further incorporate the proposed model into more realistic 
assumptions, such as probabilistic demand, ramp type demand, power demand, shortages, under two-
level credit period strategy etc. Also inflation can be used to develope the model. Other type of fuzzy 
numbers like as triangular fuzzy number, Parabolic Flat Fuzzy Number (PfFN), Pentagonal Fuzzy 
Number etc. may be used for all cost parameters of the model to form the fuzzy model. Generalised 
single valued neutrosophic Number and its application can be used in this model. 
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