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A Hybrid Approach of Neutrosophic with MULTIMOORA in 
Application of Personnel Selection 

               Nada A. Nabeeh1, Ahmed Abdel-Monem2 and Ahmed Abdelmouty2 
             1 Faculty of Computers and Informatics, Zagazig University, Egypt 

               2 Information Systems Department, Faculty of Computers and Information Sciences, 

Mansoura University, Egypt 

         * Corresponding author: Nada A. Nabeeh (nada.nabeeh@gmail.com). 

 

Abstract: Personnel selection is an important key for the success of human resource management in 

organizations. The main challenge faces organization is to determine the most proper candidates. To 

match organization requirements, the decision-makers do their best to achieve the most appropriate 

solutions. The process of choosing between candidates is a very complex and confused task. The 

environment of decision making is a multi-criteria decision making (MCDM) of various and 

conflicting criteria and alternatives in addition to the environmental conditions of uncertainty and 

incomplete information. Hence, this paper contributes to support the personnel selection process 

with non-classical methods by the integration of neutrosophic theory with MULTIMOORA. .A case 

study is applied on Telecommunication Company in smart village Cairo Egypt. The case study 

applies the hybrid approach to attain to most appropriate solutions in the problem of personnel 

selection.   

Keywords: Personnel selection, Multi-criteria decision making (MCDM), Neutrosophic Sets, 

MULTIMOORA.  

 

 

1. Introduction 

The competitiveness of organizations can be achieved by the ability of efficient employment [1]. 

For organization, the most effective part of Human Resource Management is the personnel selection 

process [2]. The classical methods are used in organizations to select candidates were not sufficient 

enough and need to be enhanced, to continue proceeding with globalization and rivalry [3]. The 

numerous and conflict personal criteria make the decision maker confused [4]. The fuzzy set theory 

appears as an important tool to provide a decision framework that incorporates imprecise judgments 

inherent in the personnel selection process [5, 6] The Analytical Hierarchy Process (AHP) is used to 

format the complex problems into a hierarchical form of criterions, alternatives, and goals to 

support decision makers in the selection process [7]. Classical AHP method has been stretched to 

numerous fuzzy versions, because of partial information and ambiguity. Although the theories of 

fuzzy have been developed and generalized but cannot deal with all kinds of uncertainties in real 

problems. Indeed, sure kinds of uncertainties, such as indeterminate and inconsistent information, 
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cannot be managed. Therefore, some new theories are required to present the truth membership, 

indeterminacy membership and falsity membership simultaneously this called neutrosophic sets. 

Unlike fuzzy, the neutrosophic sets deal with uncertain, inconsistent, and incomplete information in 

many researches [32-40]. The personnel selection is a multi-criteria decision-making (MCDM) 

problem that contains multiple criterions, alternatives, and decision makers to obtain the best 

candidate to be hire in organization [8]. The use of neutrosophic in personnel selection aids decision 

makers in the case of uncertainty and inconsistent information to achieve organizations objectives 

[9]. Sometimes neither of candidates satisfies the vision and objectives of organizations. Therefore, 

in this study we extend the neutrosophic personnel selection with MULTIMOORA method to 

encompass the measurement value the method reference level.    

The Multi-Objective Optimization by Ratio Analysis (MOORA) method has been introduced by 

[10]. The MOORA is composed of ratio system, reference point [11-13]. The method MOORA 

enhanced to MULTIMOORA by adding full Multiplicative Form and employing Dominance Theory 

to obtain a final rank [2]. The ordinary MULTIMOORA method has been proposed for usage with 

crisp numbers. MUTIMOORA can solve larger numbers of complex decision-making problems by 

adding several extensions to solve wide range of problems. The hybrid approach handles the current 

obstacles and challenges by recommending the most appropriate candidates in the environment of 

uncertainty and incomplete information.  
The structure of this paper ordered as follows: section 2 illustrates some related studies of 

personnel selection. Section 3 represents the hybrid methodology of neutrosophic with 

MUTIMOORA method to aid decision makers to choose most appropriate candidate to achieve the 

goal of organization. Section 4 represents an empirical case study for the proposed hybrid approach. 

Section 5 summarizes the research key pints and the future trends.   

2. Related Studies 

The processes of personnel selection in organizations can be affected by many conditions e.g. change 

the nature of work, governmental regulations, client's behavior, development of new technology, and 

others [14-16]. The traditional methods are not appropriate enough to keep on globalization. Hence 

organizations needs to make enhancement on personnel selection problem especially in the field  of 

the judgments of decision makers by integrating advanced tools to decision support system [17,18].  

In [19-22] describe the method of AHP with a fuzzy multi-criteria decision making algorithms for 

solving the personnel selection problems. In [23-25] describe the fuzzy MCDM with TOPSIS method 

to solve personnel selection problem using linguistic and numerical scales with different data sources 

to permit decision makers to evaluate candidate's information. In [19] illustrate the AHP method 

combined with fuzzy to solve personnel selection problem for information systems. 

The MULTIMOORA method is extended by researchers to handle several MCDM problems [26, 

27]. In [2,] the use of MULTMOORA with a fuzzy MCDM were not the most appropriate 

methodology. Due to the situations of uncertainty and incomplete information, researches 

recommend to integrate neutrosophic sets in personnel selection problem [28, 29]. We propose to be 

the first to applying the neutrosophic sets with MULTIMOORA method to aid decision makers to 

achieve to the most appropriate candidates.  
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3. Methodology 

     A hybrid MULTIMOORA method with neutrosophic is applied in personnel selection 

problem to select the best candidate to hire in organization. The MULTIMOORA method is used to 

solve personnel selection problem. In Fig. 1 represents conceptual flow of personnel selection to 

obtain ideal solution. In Fig. 2 represents the structure of methodology phase to apply 

MULTIMOORA method with neutrosophic. The phases for the hybrid approach are mentioned as 

follows: 

 

Figure 1. conceptual flow of personnel selection problem. 

Phase1: Acquire expert information in neutrosophic environment. 

 Determine the study goal, criteria, and alternative. 

 Use neutrosophic scale mentioned in Table 1 [30]. 

 Create pairwise matrix of decision making judgments using the following form:  

𝐶𝑀 = [
𝐵11

𝑀  ⋯ 𝐵1𝑧
𝑀  

⋮ ⋱ ⋮
𝐵𝑦1

𝑀  ⋯ 𝐵𝑦𝑧
𝑀  

]                                                                                                        (1) 

 Aggregate pairwise matrix by: 

 𝐵𝑢𝑣  =  
∑ <(𝑙𝑢𝑣

𝑀 ,𝑚𝑢𝑣
𝑀  ,𝑢𝑢𝑣

𝑀 ); 𝑇𝑢𝑣
𝑀 ,𝐼𝑢𝑣

𝑀 ,𝐹𝑢𝑣
𝑀 >𝑀

𝑀=1

𝑀
                                                          (2) 

Where, M represents number of decision makers, 𝑙𝑢𝑣
𝑀 , 𝑚𝑢𝑣

𝑀  , 𝑢𝑢𝑣
𝑀  are lower, middle and 

upper bound of neutrosophic number, 𝑇𝑢𝑣
𝑀 , 𝐼𝑢𝑣

𝑀 , 𝐹𝑢𝑣
𝑀 are truth, indeterminacy and falsity. 

 Construct the initial pairwise comparison matrix as mentioned: 

𝐶 = [

𝐵11 ⋯ 𝐵1𝑧

⋮ ⋱ ⋮
𝐵𝑦1 ⋯ 𝐵𝑦𝑧

]                                                                                                           (3) 

 Convert neutrosophic scales to crisp values by using score function of 𝐵𝑢𝑣  [31]: 

              s( 𝐵𝑢𝑣) = |( 𝑙𝑢𝑣 ∗  𝑚𝑢𝑣 ∗  𝑢𝑢𝑣)
𝑇𝑢𝑣+𝐼𝑢𝑣+𝐹𝑢𝑣

9 |                                                                     (4) 

where l, m, u represents lower, middle and upper of the scale neutrosophic numbers. 

 Phase2: Calculate weights of criteria. 
 Compute the average of row  

𝑤𝑢 =
∑ (𝐵𝑢𝑣)𝑧

𝑣=1

z
; 𝑢 = 1,2,3, … … . 𝑦; 𝑣 = 1,2,3, … … . 𝑧;                                                 (5) 
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 The normalization of crisp value is calculated using the following equation 

𝑤𝑢
𝑦

=
𝑤𝑢

∑ 𝑤𝑢
𝑦
𝑢=1

;𝑢 = 1,2,3, … … . 𝑦                                                                                        (6) 

Phase3: Evaluate expert judgement using consistency rate 

Check the conistency of matrix using table 2 and for detailed information in [31] 

 Compute weighted columns by multiplying the weight of priority by each value in the 

pairwise comparison matrix [31].  

 The weighted sum values are divided with the corresponding priority. 

 Compute the mean of the previous step denoted as 𝜆𝑚𝑎𝑥 . 

 Compute consistency index 𝐶𝐼 =
 𝜆𝑚𝑎𝑥−n

𝑛−1
 ,where n the number of criteria. 

 Calculate consistency ratio by the use for the mentioned equation  

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                                                                   (7) 

Where, CR is the consistency rate, CI is consistency Index. RI is the random index for consistency matrix as 
mentioned in Table 3. 

Phase4: MULTIMOORA Method 

The decision judgments between criterions and alternatives will be collected and obtained by the use 

of form (1). Then, apply Equation (2) to make a general vision of aggregation of experts. Finally, apply 

Equation (4) to change neutrosophic scale values to crisp values. The MULTIMOORA method 

consists of: ratio system, reference point and full multiplicative form.   

Phase4.1: Ratio System 

 The first step of ratio system is to calculate the normalize of the decision matrix as 

mentioned: 

 𝐵𝑢𝑣
∗  =

 𝐵𝑢𝑣

√∑ 𝐵𝑢𝑣
2𝑦

𝑢=1
2

 𝑢 = 1,2,3, … … , 𝑦 𝑎𝑛𝑑 𝑣 = 1,2,3 … … , 𝑧.                                    (8) 

 Compute the beneficial criteria ( 𝑌+ ) is the summation of beneficial criteria of weight 

normalized elements of matrix.  Then non-beneficial criteria denoted as ( 𝑌− ). Finally 

subtract sum of beneficial criteria from sum of non-beneficial criteria. (NB. In this study all 

criterions are beneficial) 

  𝑌+ = ∑ 𝑤𝑣𝐵𝑢𝑣
∗𝑔

𝑣=1                                                                                                                    (9) 

   𝑌− = ∑ 𝑤𝑣𝐵𝑈𝑉
∗                                                                                              

𝑧

𝑣=1
                   (10) 

 The next formula represents number of criteria to be maximized and (z-g) represents number 

of criteria to be minimized. 

𝑌∗ =  ∑ 𝑤𝑣𝐵𝑢𝑣
∗𝑔

𝑣=1   − ∑ 𝑤𝑣𝐵𝑢𝑣
∗                                                                        𝑧

𝑣=𝑔+1                 (11) 

,where 𝑤𝑣 is the weight of criteria  

 Finally, Rank the alternatives 

Phase4.2: Reference point 

The second step of neutrosophic MULTIMOORA is reference point 
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 Compute reference point to be maximized 

𝑟𝑣 =  max
𝑢

(𝑤𝑣(𝐵𝑧
∗)𝑢𝑣).                                                                                                            (12) 

 Compute reference point to be minimized 

𝑟𝑣 =  min
𝑢

(𝑤𝑣(𝐵𝑧
∗)𝑢𝑣).                                                                                                            (13) 

 Compute deviation of reference point  

min
𝑣

(max
𝑢

|(𝑟𝑢 − 𝑤𝑣(𝑥𝑧
∗)𝑢𝑣)|).                                                                                              (14) 

Phase4.3: Full multiplicative form 

The third step of neutrosophic MULTIMOORA is full multiplicative form 

 Compute utility of the alternative 

𝑈𝑢 =  
𝐸𝑢

𝐹𝑢
                                                                                                                                     (15) 

 𝐸𝑢 = ∏ 𝑤𝑣(𝐵𝑍
∗)𝑢𝑣

𝑔
𝑣=1                                                                                                            (16) 

𝐹𝑢 = ∏ 𝑤𝑣(𝐵𝑍
∗)𝑢𝑣

𝑔
𝑣=𝑔+1                                                                                                         (17) 

The first component 𝐸𝑢  represents the product of criteria of 𝑢 th alternative to be 

maximized.  The second component 𝐹𝑢 represents the product criteria of 𝑢th alternative to 

be minimized. 

 Finally apply the dominance theory to obtain final rank 

Table1. Neutrosophic triangular scale (linguistic terms) 

Saaty scale Caption Neutrosophic triangular scale 

1 Evenly significant 1̃ = < <1 ,1, 1>;0.50, 0.50, 0.50> 

3 A little significant 3̃ = < <2 ,3, 4>;0.30, 0.75, 0.70> 

5 Powerfully significant 5̃ = < <4 ,5, 6>;0.80, 0.15, 0.20> 

7 Completely Powerfully significant 7̃ = < <6 ,7 ,8>;0.90, 0.10, 0.10> 

9 Absolutely significant 9̃ = < <9 ,9 ,0>;1.00, 0.00, 0.00> 

2  

Sporadic values between two close 

scales 

2̃ = < <1 ,2, 3>;0.40, 0.60, 0.65> 

4 4̃ = < <3 ,4, 5>;0.35, 0.60, 0.40> 

6 6̃ = < <5 ,6, 7>;0.70, 0.25, 0.30> 

8 8̃ = < <7 ,8 ,9>;0.85, 0.10, 0.15> 

 

Table 2. The consistency rate for pair-wise comparison matrix 

      N 4 × 4 5 × 5  N > 4 

𝐶𝑅 ≤ 0.58 0.90 1.12 

 

Table 3. Random Consistency index for various criterions 

Size of matrix 1 2 3 4 5 6 7 8 9 10 

Random 

Consistency  

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 
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Figure 2. Personnel selection and MULTIMOORA method 

4. An Empirical Case Study 

In this section, the case study is about personnel selection in a telecommunication company in 

smart village in Egypt. The case study applies the hybrid methodology of neutrosophic with 

MULTIMOORA method. In order to make a general image for the telecommunication company, we 
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adopt eight criterions, seven alternatives, and four decision makers. Figure 3 shows the relations 

between criterions and alternatives. The telecommunication goal is to hire best candidate to achieve 

competitive organization goals. 

 

 
Figure 3. The AHP Structure for criteria and alternatives 

 

Phase 1: Represent expert judgments in neutrosophic environment 

 Create neutrosophic triangular scale (linguistic term) in Table 1. 

 Create the general vision pairwise comparison matrix of criteria in Table 4 in form (1).  

 Aggregate pairwise comparison matrix of criteria using Equations (2) and form in (3). 
 Convert aggregate pairwise comparison matrix of criteria to crisp value in Table 5 using 

Equation (4). 

Table 4.The pairwise comparison matrix of criteria of decision maker judgments 

  C1 C2 C3 C4 C5 C6 C7 C8 

 

 

 

 

 

 

 

 

 

 

 

C1 < <1, 1, 1 

>;0.50, 

0.50, 0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

C2 1/< <4 ,5, 

6>;0.80, 

0.15, 0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C3 1/< <1, 1, 1 

>;0.50, 

0.50, 0.50> 

1/< <1, 1, 

1 >;0.50, 

< <1, 1, 1 

>;0.50, 

< <5 ,6, 

7>;0.70, 

< <4 ,5, 

6>;0.80, 

< <1 ,2, 

3>;0.40, 

< <4 ,5, 

6>;0.80, 

< <7 ,8 

,9>;0.85, 

Criteria

creativity and 
innovation

Character

Culture

Commuications 
skills

Alternative Postulant 1:7

Team 
management

Commitment

Educational 
background

Professional 
experience
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DM1 

0.50, 

0.50> 

0.50, 

0.50> 

0.25, 

0.30> 

0.15, 

0.20> 

0.60, 

0.65> 

0.15, 

0.20> 

0.10, 

0.15> 

C4 1/< <1, 1, 1 

>;0.50, 

0.50, 0.50> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

C5 1/< <4 ,5, 

6>;0.80, 

0.15, 0.20> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C6 1/< <3 ,4, 

5>;0.35, 

0.60, 0.40> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C7 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C8 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM2 

C1 < <1, 1, 1 

>;0.50, 

0.50, 0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C2 1/< <4 ,5, 

6>;0.80, 

0.15, 0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

C3 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

C4 1/< <1, 1, 1 

>;0.50, 

0.50, 0.50> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 
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C5 1/< <5 ,6, 

7>;0.70, 

0.25, 0.30> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

C6 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

C7 1/< <3 ,4, 

5>;0.35, 

0.60, 0.40> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

C8 1/< <1, 1, 1 

>;0.50, 

0.50, 0.50> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

          

 

 

 

 

 

 

 

 

 

DM3 

C1 < <1, 1, 1 

>;0.50, 

0.50, 0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

C2 1/< <1, 1, 1 

>;0.50, 

0.50, 0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

C3 1/< <4 ,5, 

6>;0.80, 

0.15, 0.20> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C4 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

C5 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

C6 1/< <4 ,5, 

6>;0.80, 

0.15, 0.20> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 
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C7 1/< <3 ,4, 

5>;0.35, 

0.60, 0.40> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

C8 1/< <3 ,4, 

5>;0.35, 

0.60, 0.40> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DM4 

C1 < <1, 1, 1 

>;0.50, 

0.50, 0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C2 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

C3 1/< <4 ,5, 

6>;0.80, 

0.15, 0.20> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

C4 1/< <5 ,6, 

7>;0.70, 

0.25, 0.30> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

C5 1/< <3 ,4, 

5>;0.35, 

0.60, 0.40> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

C6 1/< <7 ,8 

,9>;0.85, 

0.10, 0.15> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

C7 1/< <5 ,6, 

7>;0.70, 

0.25, 0.30> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

C8 1/< <1, 1, 1 

>;0.50, 

0.50, 0.50> 

1/< <1, 1, 

1 >;0.50, 

0.50, 

0.50> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

1/< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

1/< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

1/< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1, 1, 1 

>;0.50, 

0.50, 

0.50> 
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Table 5. Crisp value of aggregated pairwise comparison matrix of criteria. 

Criteria C1 C2 C3 C4 C5 C6 C7 C8 

C1 1 1.88288 1.88288 1.85098 2.01946 2.04291 2.03948 1.76092 

C2 0.53110 1 1.77829 1.82446 1.94923 1.93354 1.53537 1.66246 

C3 0.53110 0.56233 1 2.05393 1.79510 2.02662 1.89927 1.95726 

C4 0.54025 0.54810 0.48687 1 2.01743 1.85375 1.82446 1.97178 

C5 0.48949 0.51302 0.55707 0.49568 1 1.88588 1.58172 2.01743 

C6 0.48949 0.51718 0.49343 0.53944 0.53025 1 1.71033 1.81143 

C7 0.49032 0.65130 0.52651 0.54810 0.63222 0.58468 1 1.89927 

C8 0.56788 0.60151 0.51091 0.50715 0.45991 0.55205 0.52651 1 

 

Phase 2: Calculate weight of criteria as mentioned in Fig. (4). 

 Compute the average of row.  

𝑤1 = 14.47951 w2 = 12.21445 w3 =  11.82561 w4 =  10.24264 w5 =  8.54029 w6

=  7.09155 w7 =  6.3324 w8 =  4.72592  

 The normalization of crisp value is calculated.  

𝑤1 = 0.1919026 𝑤2 = 0.1618829 𝑤3 = 0.1567294 𝑤4 = 0.1357497 𝑤5 = 0.1131878 𝑤6

= 0.0939871 𝑤7 = 0.0839257 𝑤8 = 0.0626344  

∑ 𝑤𝑖 = 1 . 

 

Figure 4. Pie chart weights of criteria 

Phase 3: Check consistency rate  

 Compute weighted sum 

Weights of criteria

creativity and innovation Character Culture

Commuications skills Team management Commitment

Educational background Professional experience
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𝑤1 = 1.74501 𝑤2 = 1.4254 𝑤3 = 1.30403 𝑤4 = 1.08356 𝑤5 = 0.88104 𝑤6 = 0.73916 𝑤7

= 0.68578 𝑤8 = 0.56598  

 Divide weighted sum by weight of criteria  

𝑤1 = 9.09320 𝑤2 = 8.80513 𝑤3 = 8.32026 𝑤4 = 7.98204 𝑤5 = 7.78387 𝑤6 = 7.86448 𝑤7

= 8.17127 𝑤8 = 9.03624 

 Divide summation of Weighted sum by the number of criteria 8 

 Compute  𝜆𝑚𝑎𝑥 = 8.38206 

 Compute 𝐶𝐼 =
  𝜆𝑚𝑎𝑥 −n

𝑛−1
=

 8.38206 −8

8−1
= 0.05458 

 Compute 𝐶𝑅 =
CI

𝑅𝐼
=

0.05458

1.41
= 0.03870. 

Hence, the pair-wise comparison matrix is consistent and fellow the next phase of 

MULTIMOORA Method 

Phase 4: MULTIMOORA Method Calculations  

 A session is performed with four decision makers and the collected judgments presented in 

table 6. 

 Aggregate judgments of decision matrix of four decision makers using Equation (2). 

 Compute crisp value of aggregated decision matrix using Equation (4) and mentioned in 

Table 7.  

Table 6. The judgments for multiple decision makers 

 Criteria/ 

Alternatives 

 

C1 C2 C3 C4 C5 C6 C7 C8 

 

 

 

 

 

 

 

DM1 

A1 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

A2 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

A3 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

A4 < <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50 

A5 < <7 ,8 

,9>;0.85, 

< <1 ,1, 

1>;0.50, 

< <1 ,1, 

1>;0.50, 

< <4 ,5, 

6>;0.80, 

< <4 ,5, 

6>;0.80, 

< <7 ,8 

,9>;0.85, 

< <7 ,8 

,9>;0.85, 

< <4 ,5, 

6>;0.80, 



Neutrosophic Sets and Systems, Vol. 30, 2019     13  

 

 
Nada A. Nabeeh, Ahmed Abdel-Monem and Ahmed Abdelmouty, A Hybrid Approach of Neutrosophic with MULTIMOORA 
in Application of Personnel Selection 

0.10, 

0.15> 

0.50, 

0.50> 

0.50, 

0.50> 

0.15, 

0.20> 

0.15, 

0.20> 

0.10, 

0.15> 

0.10, 

0.15> 

0.15, 

0.20> 

A6 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

A7 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

          

 

 

 

 

 

 

 

DM2 

A1 < <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

A2 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

A3 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

A4 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

A5 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

A6 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

A7 < <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 
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DM3 

A1 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

A2 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

A3 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

A4 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

A5 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

A6 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

A7 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

          

 

 

 

 

 

 

 

DM4 

 

A1 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

A2 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

A3 < <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <5 ,6, 

7>;0.70, 

0.25, 

0.30> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 
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A4 < <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

< <1 ,2, 

3>;0.40, 

0.60, 

0.65> 

A5 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <3 ,4, 

5>;0.35, 

0.60, 

0.40> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

A6 < <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

A7 < <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <1 ,1, 

1>;0.50, 

0.50, 

0.50> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <7 ,8 

,9>;0.85, 

0.10, 

0.15> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

< <4 ,5, 

6>;0.80, 

0.15, 

0.20> 

 

 

Table 7. The aggregated pairwise matrix for multiple decision maker's judgments 

Criteria/ 

Alternatives 

C1 C2 C3 C4 C5 C6 C7 C8 

A1 1.88288 1.96309 2.01160 1.93540 1.88606 1.99504 1.99504 2.03414 

A2 1.38248 2.00514 1.97958 2.073329 1.98669 2.25679 2.073329 2.12321 

A3 1.88288 2.06542 1.985350 1.95726 1.99504 2.03414 1.382488 2.063838 

A4 1.98669 1.96418 1.77208 1.55075 1.99504 1.73960 1.21198 1.11336 

A5 1.77829 1.75314 1.382488 1.77829 1.617809 1.915488 2.042910 1.88288 

A6 1.61780 1.98669 1.88288 1.38248 1.38248 1.93354 1.986697 1.996661 

A7 1.88288 1.88288 1.93354 1 1.762838 1.93354 1.97178 1.617809 

 

 

Phase 4.1: The ratio system 

 Calculate normalization of decision matrix in using Equation (8), and mentioned in Table 8. 

 Calculate 𝑌+ (weight normalized) using Equation (9) in Table 9. 

 𝑌− = 0 because all criteria are beneficial. 

 The ranks of ratio system ranking are mentioned in Table 10. 
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Table 8. The normalization matrix 

Criteria/ 

Alternatives 

C1 C2 C3 C4 C5 C6 C7 C8 

A1 0.39896 0.38088 0.40856 0.42899 0.39142 0.38124 0.41009 0.41269 

A2 0.29293 0.38904 0.40205 0.45956 0.41335 0.43126 0.42618 0.43076 

A3 0.39896 0.40074 0.40322 0.43383 0.41508 0.38872 0.24817 0.41872 

A4 0.42095 0.38109 0.35991 0.34373 0.41508 0.33243 0.24912 0.22588 

A5 0.37680 0.34015 0.28078 0.39416 0.33659 0.36604 0.41993 0.38200 

A6 0.34279 0.38546 0.38241 0.30643 0.28763 0.36949 0.40837 0.40509 

A7 0.39896 0.36532 0.39270 0.22165 0.36677 0.36949 0.40530 0.32822 

 

Table 9. The Y+ (Weighted normalized) 

Criteria/ 

Alternat

ives 

C1 C2 C3 C4 C5 C6 C7 C8 

A1 0.076561 0.061657 0.064033 0.058235 0.044416 0.035831 0.034417 0.025848 

A2 0.056214 0.062978 0.063013 0.062385 0.046786 0.040532 0.035767 0.026980 

A3 0.076561 0.064872 0.063196 0.058892 0.046981 0.036534 0.020827 0.026226 

A4 0.080781 0.061691 0.056408 0.046661 0.046981 0.031244 0.020907 0.014147 

A5 0.072308 0.055064 0.044006 0.053507 0.038097 0.034403 0.035242 0.023926 

A6 0.065782 0.062399 0.059934 0.041597 0.032556 0.034727 0.034272 0.025372 

A7 0.076561

461 

0.059139

061 

0.061547

635 

0.030088

921 

0.041513

889 

0.034727

294 

0.034015

086 

0.020557

863 

 

Table 10. The ranks of Ratio system 

Alternatives Y*  Ranking  

A1 0.401001 1 

A2 0.394658 2 

A3 0.394094 3 

A4 0.358825 4 

A5 0.356557 7 

A6 0.356643 6 

A7 0.358151 5 

 

Phase 4.2: The reference point  

 Calculate Reference point 𝑟𝑣using Eq. (12) in table 11 

 Calculate deviations from reference point using Eq. (14) in table 12 

 The Reference point ranking mentioned in table 13. 
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Table 11. Reference point 

Crite

ria  

C1 C2 C3 C4 C5 C6 C7 C8 

Rj  0.080781

399 

0.064872

953 

0.064033

364 

0.062385

132 

0.046981

992 

0.040532

877 

0.035767

455 

0.026980

394 

 

Table 13. Deviations from reference point. 

Criteria/Alte

rnative 

C1 C2 C3 C4 C5 C6 C7 C8 

A1 0.00421

9938 

0.00321

4994 

0.00000

000 

0.00414

9868 

0.00256

5967 

0.00470

1235 

0.00135

0365 

0.00113

1803 

A2 0.02456

737 

0.00189

403 

0.00102

0309 

0.00000

000 

0.00019

5815 

0.00000

000 

0.00000

000 

0.00000

000 

A3 0.00421

9938 

0.00000

000 

0.00083

6935 

0.00349

284 

0.00000

000 

0.00399

8211 

0.01493

9614 

0.00075

4118 

A4 0.00000

000 

0.00318

0999 

0.00762

4886 

0.01572

3888 

0.00000

000 

0.00928

8745 

0.01485

9885 

0.01283

2536 

A5 0.00847

2499 

0.00980

8485 

0.02002

6883 

0.00887

803 

0.00888

411 

0.00612

9839 

0.00052

4536 

0.00305

4053 

A6 0.01499

9107 

0.00247

357 

0.00409

8474 

0.02078

7351 

0.01442

5785 

0.00580

5583 

0.00149

4717 

0.00160

7825 

A7 0.00421

9938 

0.00573

3892 

0.00248

5729 

0.03229

6211 

0.00546

8103 

0.00580

5583 

0.00175

2369 

0.00642

2531 

 

Table13. Rank reference point 

Alternative Max value (Deviations from reference point) Rank reference point 

A1 0.004701235 7 

A2 0.02456737 2 

A3 0.014939614 6 

A4 0.015723888 5 

A5 0.020026883 4 

A6 0.020787351 3 

A7 0.032296211 1 

 

Phase 4.3: Full multiplicative form 

 Compute utility of the alternative using Equation (15), (16) and (17) in Table 14. 

 The full Multiplicative form ranking in Table 15. 

According to Table 16 and Fig. 5, the final rank recommends alternative one as the best alternative, 

while alternative four as the worst alternative.  
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Table 14. Utility and Rank of full multiplicative form. 

Alternatives Utility (𝑼𝒖) Rank Multiplicative 

form 

A1 2.49235E-11 2 

A2 2.54691E-11 1 

A3 1.73317E-11 3 

A4 5.69554E-12 7 

A5 1.03618E-11 4 

A6 1.00614E-11 5 

A7 8.45311E-12 6 

 

Table15. The final rank according to the proposed hybrid methodology 

Alternatives Ratio system Reference point  Full multiplicative  (Final Rank) 

A1 1 7 2 1 

A2 2 2 1 2 

A3 3 6 3 3 

A4 4 5 7 7 

A5 7 4 4 4 

A6 6 3 5 6 

A7 5 1 6 5 

 

Figure 5. The final rank recommendation  

5. Conclusions 

Personnel selection is an important issue that effect on the competitive advantages for 

organizations. Decision makers take decisions for complex problems with various criterions and 
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alternatives with surrounded environment of uncertain and incomplete information. The traditional 

methods cannot achieve to the proper solutions. In addition fuzzy cannot handle the conditions of 

uncertainty and inconsistency. The study proposes to use neutrosophic sets to handle the 

environmental conditions of uncertainty and inconsistent information, in addition extend study with 

MULTIMOORA method to choose the most appropriate candidate. A case study is applied on smart 

village Cairo, Egypt, on Telecommunication Company shows the effectiveness for the proposed 

method and provides final decision to hire the most appropriate candidate for attaining success of 

enterprises. The future work includes evolutionary algorithms for selecting the most effective 

criterions. In addition, applies other methodologies e.g. DEMTAL to improve the selection process. 
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Abstract: In this study, we re-define some operations on bipolar neutrosophic soft sets differently 

from the studies [2]. On this operations are given interesting examples and them basic properties. 

In the direction of these newly defined operations, we construct the bipolar neutrosophic soft 

topological spaces. Finally, we introduce basic definitions and theorems on bipolar neutrosophic 

soft topological spaces 

Keywords: Bipolar neutrosophic soft set; bipolar neutrosophic soft operations; bipolar 

neutrosophic soft topological space; bipolar neutrosophic soft interior; bipolar neutrosophic soft 

closure.  

 

 

1. Introduction 

Set theory which is inducted by Cantor is one of the main topic in mathematics and is 

frequently used while solving the problems with the mathematical methods. However the real life 

problems which we meet in several areas as medicine, economics, engineering and etc. include 

vagueness and this leads to break the precise of data and makes the mathematical solutions 

unusable. To overpass this lack alternative theories are developed as theory of fuzzy sets [25], theory 

of intuitionistic fuzzy sets[4], theory of soft sets [15] and etc. But all these approaches have their 

implicit crisis in solving the problems involving indeterminate and inconsistent data due to 

inadequacy of parameterization tools. Smarandache [20] studied the idea of neutrosophic set as an 

approach for solving issues that cover unreliable, indeterminacy and persistent data. Smarandache 

introduced the neutrosophic set theory as a generalization of many theories such as fuzzy set, 

intuitionistic fuzzy set etc. Neutrosophic set theory is still popular today. Researchers are working 

intensively on this set theory [1, 3, 14, 19]. 
 Molodtsov [15] claimed that the theory of soft sets is free from the difficulties seen in the fuzzy 

set theory. Recently this new theory is used extensively both in mathmetics and in different areas. [6, 

10, 21, 23, 24]. As it is known, in Boolean logic a property is either present or absent, i.e. it takes 

values in the set {0,1} and also the theories developed for vagueness focus only on the existence of a 

property and so in these approaches coexistence of a property is ignored. Hence, it is impossible to 

model the coexistence of a property with these approaches. Coexistence is associated with bipolarity 

of an information. For this reason, bipolarity is also an important characteristic of the data which 

should be considered. In 2013, Shabir and Naz [22] defined bipolar soft sets and basic operations of 

union, intersection and complementation for bipolar soft sets. They gave examples of bipolar soft 

sets and an application of bipolar soft sets in a decision making problem. Many different studies 

have been conducted on bipolar soft set theory [11, 17]. The bipolar neutrosophic soft set theory was 
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first presented by M. Ali at al.[2]. In their study, the structure of theory and the operations on this set 

structure are defined. However, when the study is examined carefully, one can see that some 

definitions need to be corrected and re-defined.  

In our study, bipolar neutrosophic soft subset, empty bipolar neutrosophic soft set, absolute 

bipolar neutrosophic soft set, bipolar neutrosophic soft union and bipolar neutrosophic soft 

intersection are re-defined different from the paper written by M.Ali et al. [2] and also new algebraic 

operations are presented. Then the topology on the bipolar neutrosophic soft set is built. Closure and 

interior concepts of the obtained topological spaces are defined and basic theorems are presented. 

All of these presented notions are constructed with supporting examples. 

2. Preliminary 

In this section, we will give some preliminary information for the present study. 
Definition 2.1 [20] A neutrosophic set 𝐴 on the universe of discourse 𝑋 is defined as: 

 
𝐴 = {⟨𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)⟩: 𝑥 ∈ 𝑋}, where𝑇, 𝐼, 𝐹:𝑋 →]−0, 1+[ and  −0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3+. 
 
Definition 2.2 [15] Let 𝑋 be an initial universe, 𝐸 be a set of all parameters and 𝑃(𝑋) denotes the power set 

of 𝑋. A pair (𝐹, 𝐸) is called a soft set over 𝑋, where 𝐹 is a mapping given by 𝐹: 𝐸 → 𝑃(𝑋). 
In other words, the soft set is a parameterized family of subsets of the set 𝑋. For 𝑒 ∈ 𝐸, 𝐹(𝑒) may be 

considered as the set of 𝑒 −elements of the soft set (𝐹, 𝐸), or as the set of 𝑒 −approximate elements 

of the soft set, i.e., 
(𝐹, 𝐸) = {(𝑒, 𝐹(𝑒)): 𝑒 ∈ 𝐸, 𝐹: 𝐸 → 𝑃(𝑋)}. 

  
Firstly, neutrosophic soft set defined by Maji [12] and later this concept has been modified by Deli 

and Bromi [9] as given below: 
 
Definition 2.3 Let 𝑋 be an initial universe set and 𝐸 be a set of parameters. Let 𝑃(𝑋) denote the set of all 

neutrosophic sets of 𝑋. Then, a neutrosophic soft set (�̃�, 𝐸) over 𝑋 is a set defined by a set valued function �̃� 

representing a mapping �̃�: 𝐸 → 𝑃(𝑋) where �̃� is called approximate function of the neutrosophic soft  set 

(�̃�, 𝐸). In other words, the neutrosophic soft set is a parameterized family of some elements of the set 𝑃(𝑋) and 

therefore it can be written as a set of ordered pairs, 
 

(�̃�, 𝐸) = {(𝑒, ⟨𝑥, 𝑇�̃�(𝑒)(𝑥), 𝐼�̃�(𝑒)(𝑥), 𝐹�̃�(𝑒)(𝑥)⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸} 
 
where 𝑇�̃�(𝑒)(𝑥),  𝐼�̃�(𝑒)(𝑥),  𝐹�̃�(𝑒)(𝑥) ∈ 0,1] , respectively called the truth-membership, 

indeterminacy-membership, falsity-membership function of �̃�(𝑒). Since supremum of each 𝑇, 𝐼, 𝐹 

is 1 so the inequality 0 ≤ 𝑇�̃�(𝑒)(𝑥) + 𝐼�̃�(𝑒)(𝑥) + 𝐹�̃�(𝑒)(𝑥) ≤ 3 is obvious.  
 
Definition 2.4 [16] Let 𝑁𝑆𝑆(𝑋, 𝐸) be the family of all neutrosophic soft sets over the universe set 𝑋 and 

𝜏
𝑁𝑆𝑆

⊂ 𝑁𝑆𝑆(𝑋, 𝐸). Then 𝜏
𝑁𝑆𝑆

 is said to be a neutrosophic soft topology on 𝑋 if 
  
    1. 0(𝑋,𝐸) and 1(𝑋,𝐸) belongs to 𝜏

𝑁𝑆𝑆
 

 
    2. The union of any number of neutrosophic soft sets in 𝜏

𝑁𝑆𝑆
 belongs to 𝜏

𝑁𝑆𝑆
 

 
    3. The intersection of finite number of neutrosophic soft sets in 𝜏

𝑁𝑆𝑆
 belongs to 𝜏

𝑁𝑆𝑆
.  

 
Then (𝑋, 𝜏

𝑁𝑆𝑆
, 𝐸) is said to be a neutrosophic soft topological space over 𝑋.  
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Definition 2.5 [2] Let 𝑋 be a universe and 𝐸 be a set of parameters that are describing the elements of 𝑋. A 

bipolar neutrosophic soft set (�̃�, 𝐸) in 𝑋 is defined as;  
 

(�̃�, 𝐸) = {(𝑒, ⟨𝑥, (𝑇𝐵(𝑒)
+ (𝑥), 𝐼𝐵(𝑒)

+ (𝑥), 𝐹𝐵(𝑒)
+ (𝑥), 𝑇𝐵(𝑒)

− (𝑥), 𝐼𝐵(𝑒)
− (𝑥), 𝐹𝐵(𝑒)

− (𝑥))⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸} 
 

where 𝑇𝐵
+,  𝐼𝐵

+,  𝐹𝐵
+ → 0,1]  and 𝑇𝐵

−,  𝐼𝐵
−,  𝐹𝐵

− → −1,0] . The positive membership degree 𝑇𝐵(𝑒)
+ (𝑥), 

𝐼𝐵(𝑒)
+ (𝑥), 𝐹𝐵(𝑒)

+ (𝑥) denotes the truth membership, indeterminate membership and false membership 

of an element corresponding to a bipolar neutrosophic soft set (�̃�, 𝐸) and the negative membership 

degree 𝑇𝐵(𝑒)
− (𝑥), 𝐼𝐵(𝑒)

− (𝑥), 𝐹𝐵(𝑒)
− (𝑥) denotes the truth membership, indeterminate membership and 

false membership of an element 𝑥 ∈ 𝑋 to some implicit counter-property corresponding to a bipolar 

neutrosophic soft set (�̃�, 𝐸).  
 
Definition 2.6 [2] Let (�̃�, 𝐸) be a bipolar neutrosophic soft set over 𝑋. Then, the complement of a bipolar 

neutrosophic soft set (�̃�, 𝐸), is denoted by (�̃�, 𝐸)
𝑐
, is defined as; 

 

(�̃�, 𝐸)
𝑐
= {(𝑒, ⟨𝑥, (

𝐹𝐵(𝑒)
+ (𝑥),1 − 𝐼𝐵(𝑒)

+ (𝑥), 𝑇𝐵(𝑒)
+ (𝑥),

𝐹𝐵(𝑒)
− (𝑥), −1 − 𝐼𝐵(𝑒)

− (𝑥), 𝑇𝐵(𝑒)
− (𝑥)

)⟩ : 𝑥 ∈ 𝑋) : 𝑒 ∈ 𝐸}. 

3. A New Approach to Operations on Bipolar Neutrosophic Soft Sets  

In this section, we re-defined some concepts as absolute bipolar neutrosophic soft set, empty bipolar 

neutrosophic soft set, bipolar neutrosophic soft subset, bipolar neutrosophic soft union and 

intersection . In addition, basic properties of these operations was presented. 
 
Definition 3.1  An empty bipolar neutrosophic soft set (�̃�∅, 𝐸) over 𝑋 is defined by; 

 
(�̃�∅, 𝐸) = {(𝑒, ⟨𝑥, (0,0,1, −1,−1,0)⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸}. 

 
An absolute bipolar neutrosophic soft set (�̃�𝑋, 𝐸) over 𝑋 is defined by; 

 
(�̃�𝑋, 𝐸) = {(𝑒, ⟨𝑥, (1,1,0,0,0, −1)⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸}. 

 
Clearly, (�̃�∅, 𝐸)

𝑐
= (�̃�𝑋, 𝐸) and (�̃�𝑋, 𝐸)

𝑐
= (�̃�∅, 𝐸).  

 
Definition 3.2 Let (�̃�1, 𝐸) and (�̃�2, 𝐸) be two bipolar neutrosophic soft sets over 𝑋. (�̃�1, 𝐸) is said to be 

bipolar neutrosophic soft subset of (�̃�2, 𝐸)  if 𝑇�̃�1(𝑒)
+ (𝑥) ≤ 𝑇�̃�2(𝑒)

+ (𝑥) , 𝐼�̃�1(𝑒)
+ (𝑥) ≤ 𝐼�̃�2(𝑒)

+ (𝑥) , 𝐹�̃�1(𝑒)
+ (𝑥) ≥

𝐹�̃�2(𝑒)
+ (𝑥), 𝑇�̃�1(𝑒)

− (𝑥) ≤ 𝑇�̃�2(𝑒)
− (𝑥), 𝐼�̃�1(𝑒)

− (𝑥) ≤ 𝐼�̃�2(𝑒)
− (𝑥) and 𝐹�̃�1(𝑒)

− (𝑥) ≥ 𝐹�̃�2(𝑒)
− (𝑥) for all (𝑒, 𝑥) ∈ 𝐸 × 𝑋. It 

is denoted by (�̃�1, 𝐸) ⊑ (�̃�2, 𝐸). 
(�̃�1, 𝐸) is said to be bipolar neutrosophic soft equal to (�̃�2, 𝐸) if (�̃�1, 𝐸) is bipolar neutrosophic soft 

subset of (�̃�2, 𝐸)  and (�̃�2, 𝐸)  is bipolar neutrosophic soft subset of (�̃�1, 𝐸).  It is denoted by 

(�̃�1, 𝐸) = (�̃�2, 𝐸).  
 
Example 3.3 Let 𝑋 = {𝑥1, 𝑥2} and 𝐸 = {𝑒1, 𝑒2}. If  

(�̃�1, 𝐸) = {
(𝑒1, ⟨𝑥1, (0.6,0.5,0.3, −0.4, −0.8, −0.4)⟩, ⟨𝑥2, (0.5,0.4,0.6, −0.4, −0.6, −0.3)⟩),
(𝑒2, ⟨𝑥1, (0.5,0.7,0.4, −0.3, −0.6, −0.5)⟩, ⟨𝑥2, (0.3,0.5,0.8, −0.3, −0.4, −0.2)⟩)

} 

 and  

(�̃�2, 𝐸) = {
(𝑒1, ⟨𝑥1, (0.7,0.8,0.1, −0.2, −0.5, −0.6)⟩, ⟨𝑥2, (0.6,0.6,0.3, −0.3, −0.5, −0.7)⟩),
(𝑒2, ⟨𝑥1, (0.6,0.9,0.2, −0.1, −0.4, −0.7)⟩, ⟨𝑥2, (0.4,0.7,0.6, −0.2, −0.3, −0.6)⟩)

} 

 then, (�̃�1, 𝐸) ⊑ (�̃�2, 𝐸).  
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Definition 3.4 Let  (�̃�𝑖, 𝐸) = {(𝑒, ⟨𝑥, (𝑇𝐵𝑖(𝑒)
+

(𝑥), 𝐼𝐵𝑖(𝑒)
+

(𝑥), 𝐹𝐵𝑖(𝑒)
+

(𝑥), 𝑇𝐵𝑖(𝑒)
−

(𝑥), 𝐼𝐵𝑖(𝑒)
−

(𝑥), 𝐹𝐵𝑖(𝑒)
−

(𝑥))⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸}  for 𝑖 = 1,2 be 

two bipolar neutrosophic soft sets over 𝑋. Then their union is denoted by (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) and is defined as;  
 

⊔
2

i=1
(B̃i, E) = {(e, ⟨x, (

max{TBi(e)
+ (x)},max{IBi(e)

+ (x)},min{FBi(e)
+ (x)},

max{TBi(e)
− (x)},max{IBi(e)

− (x)},min{FBi(e)
− (x)}

)⟩ : x ∈ X) : e ∈ E}. 

   
Definition 3.5 Let  (�̃�𝑖, 𝐸) = {(𝑒, ⟨𝑥, (𝑇𝐵𝑖(𝑒)

+
(𝑥), 𝐼𝐵𝑖(𝑒)

+
(𝑥), 𝐹𝐵𝑖(𝑒)

+
(𝑥), 𝑇𝐵𝑖(𝑒)

−
(𝑥), 𝐼𝐵𝑖(𝑒)

−
(𝑥), 𝐹𝐵𝑖(𝑒)

−
(𝑥))⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸}  for 𝑖 = 1,2 be 

two bipolar neutrosophic soft sets over 𝑋. Then their intersection is denoted by (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸) and is 

defined as;  

⊓
2

𝑖=1
(�̃�𝑖, 𝐸) = {(𝑒, ⟨𝑥, (

min{𝑇𝐵𝑖(𝑒)
+ (𝑥)},min{𝐼𝐵𝑖(𝑒)

+ (𝑥)},max{𝐹𝐵𝑖(𝑒)
+ (𝑥)},

min{𝑇𝐵𝑖(𝑒)
− (𝑥)},min{𝐼𝐵𝑖(𝑒)

− (𝑥)},max{𝐹𝐵𝑖(𝑒)
− (𝑥)}

)⟩ : 𝑥 ∈ 𝑋) : 𝑒 ∈ 𝐸}. 

   
Definition 3.6 Let  (�̃�𝑖, 𝐸) = {(𝑒, ⟨𝑥, (𝑇𝐵𝑖(𝑒)

+
(𝑥), 𝐼𝐵𝑖(𝑒)

+
(𝑥), 𝐹𝐵𝑖(𝑒)

+
(𝑥), 𝑇𝐵𝑖(𝑒)

−
(𝑥), 𝐼𝐵𝑖(𝑒)

−
(𝑥), 𝐹𝐵𝑖(𝑒)

−
(𝑥))⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸}  for 𝑖 ∈ 𝐼 be a 

family of bipolar neutrosophic soft sets over 𝑋. Then,   
 

⊔
𝑖∈𝐼
(�̃�𝑖, 𝐸) = {(𝑒, ⟨𝑥, (

sup{𝑇𝐵𝑖(𝑒)
+ (𝑥)}, sup{𝐼𝐵𝑖(𝑒)

+ (𝑥)}, inf{𝐹𝐵𝑖(𝑒)
+ (𝑥)},

sup{𝑇𝐵𝑖(𝑒)
− (𝑥)}, sup{𝐼𝐵𝑖(𝑒)

− (𝑥)}, inf{𝐹𝐵𝑖(𝑒)
− (𝑥)}

)⟩ : 𝑥 ∈ 𝑋) : 𝑒 ∈ 𝐸}, 

 

⊓
𝑖∈𝐼
(�̃�𝑖, 𝐸) = {(𝑒, ⟨𝑥, (

inf{𝑇𝐵𝑖(𝑒)
+ (𝑥)}, inf{𝐼𝐵𝑖(𝑒)

+ (𝑥)}, sup{𝐹𝐵𝑖(𝑒)
+ (𝑥)},

inf{𝑇𝐵𝑖(𝑒)
− (𝑥)}, inf{𝐼𝐵𝑖(𝑒)

− (𝑥)}, sup{𝐹𝐵𝑖(𝑒)
− (𝑥)}

)⟩ : 𝑥 ∈ 𝑋) : 𝑒 ∈ 𝐸}. 

   
Proposition 3.7 Let (�̃�∅, 𝐸) and (�̃�𝑋, 𝐸) be the empty bipolar neutrosophic soft set and absolute bipolar 

neutrosophic soft set over 𝑋, respectively. Then, 
  
    1.  (�̃�∅, 𝐸) ⊑ (�̃�𝑋, 𝐸), 
    2.  (�̃�∅, 𝐸) ⊔ (�̃�𝑋, 𝐸) = (�̃�𝑋, 𝐸), 
    3.  (�̃�∅, 𝐸) ⊓ (�̃�𝑋, 𝐸) = (�̃�∅, 𝐸).  
  
Proof. Straightforward.  
Remark 3.8 When we consider the definitions of absolute bipolar neutrosophic soft set, empty bipolar 

neutrosophic soft set, bipolar neutrosophic soft subset, bipolar neutrosophic soft union and intersection 

presented by M.Ali et al. in [1] then Proposition 3.7 does not hold.  
 
Definition 3.9 Let (�̃�1, 𝐸)  and (�̃�2, 𝐸)  be two bipolar neutrosophic soft sets over 𝑋 . Then "(�̃�1, 𝐸) 

difference (�̃�2, 𝐸)" operation on them is denoted by (�̃�1, 𝐸)\(�̃�2, 𝐸) = (�̃�3, 𝐸) and is defined by (�̃�3, 𝐸) =

(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)
𝑐
 as follows:  

(�̃�3, 𝐸) = {(𝑒, ⟨𝑥, (
𝑇𝐵3(𝑒)
+ (𝑥), 𝐼𝐵3(𝑒)

+ (𝑥), 𝐹𝐵3(𝑒)
+ (𝑥),

𝑇𝐵3(𝑒)
− (𝑥), 𝐼𝐵3(𝑒)

− (𝑥), 𝐹𝐵3(𝑒)
− (𝑥)

)⟩ : 𝑥 ∈ 𝑋) : 𝑒 ∈ 𝐸} 

where 
 𝑇𝐵3(𝑒)

+ (𝑥) = min{𝑇𝐵1(𝑒)
+ (𝑥), 𝐹𝐵2(𝑒)

+ (𝑥)}, 𝑇𝐵3(𝑒)
− (𝑥) = min{𝑇𝐵1(𝑒)

− (𝑥), 𝐹𝐵2(𝑒)
− (𝑥)}, 

    𝐼𝐵3(𝑒)
+ (𝑥) = min{𝐼𝐵1(𝑒)

+ (𝑥),1 − 𝐼𝐵2(𝑒)
+ (𝑥)}, 𝐼𝐵3(𝑒)

− (𝑥) = min{𝐼𝐵1(𝑒)
− (𝑥), −1 − 𝐼𝐵2(𝑒)

− (𝑥)}, 
 𝐹𝐵3(𝑒)

+ (𝑥) = max{𝐹𝐵1(𝑒)
+ (𝑥), 𝑇𝐵2(𝑒)

+ (𝑥)}, 𝐹𝐵3(𝑒)
− (𝑥) = max{𝐹𝐵1(𝑒)

− (𝑥), 𝑇𝐵2(𝑒)
− (𝑥)}. 

  
Definition 3.10 Let (�̃�1, 𝐸)  and (�̃�2, 𝐸)  be two bipolar neutrosophic soft sets over 𝑋 . Then "AND" 

operation on them is denoted by (�̃�1, 𝐸) ∧ (�̃�2, 𝐸) = (�̃�3, 𝐸 × 𝐸) and is defined by:  
 

(�̃�3, 𝐸 × 𝐸) = {((𝑒1, 𝑒2), ⟨𝑥, (
𝑇𝐵3(𝑒1,𝑒2)
+ (𝑥), 𝐼𝐵3(𝑒1,𝑒2)

+ (𝑥), 𝐹𝐵3(𝑒1,𝑒2)
+ (𝑥),

𝑇𝐵3(𝑒1,𝑒2)
− (𝑥), 𝐼𝐵3(𝑒1,𝑒2)

− (𝑥), 𝐹𝐵3(𝑒1,𝑒2)
− (𝑥)

)⟩ : 𝑥 ∈ 𝑋) : (𝑒1, 𝑒2) ∈ 𝐸 × 𝐸} 
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 where 
𝑇𝐵3(𝑒1,𝑒2)
+ (𝑥) = min{𝑇𝐵1(𝑒1)

+ (𝑥), 𝑇𝐵2(𝑒2)
+ (𝑥)}, 𝑇𝐵3(𝑒1,𝑒2)

− (𝑥) = min{𝑇𝐵1(𝑒1)
− (𝑥), 𝑇𝐵2(𝑒2)

− (𝑥)}, 
𝐼𝐵3(𝑒1,𝑒2)
+ (𝑥) = min{𝐼𝐵1(𝑒1)

+ (𝑥), 𝐼𝐵2(𝑒2)
+ (𝑥)}, 𝐼𝐵3(𝑒1,𝑒2)

− (𝑥) = min{𝐼𝐵1(𝑒1)
− (𝑥), 𝐼𝐵2(𝑒2)

− (𝑥)}, 
𝐹𝐵3(𝑒1,𝑒2)
+ (𝑥) = max{𝐹𝐵1(𝑒1)

+ (𝑥), 𝐹𝐵2(𝑒2)
+ (𝑥)}, 𝐹𝐵3(𝑒1,𝑒2)

− (𝑥) = max{𝐹𝐵1(𝑒1)
− (𝑥), 𝐹𝐵2(𝑒2)

− (𝑥)}. 
  
Definition 3.11 Let (�̃�1, 𝐸) and (�̃�2, 𝐸) be two bipolar neutrosophic soft sets over 𝑋. Then "OR" operation 

on them is denoted by (�̃�1, 𝐸) ∨ (�̃�2, 𝐸) = (�̃�3, 𝐸 × 𝐸) and is defined by:  
 

 (�̃�3, 𝐸 × 𝐸) = {((𝑒1, 𝑒2), ⟨𝑥, (
𝑇𝐵3(𝑒1,𝑒2)
+ (𝑥), 𝐼𝐵3(𝑒1,𝑒2)

+ (𝑥), 𝐹𝐵3(𝑒1,𝑒2)
+ (𝑥),

𝑇𝐵3(𝑒1,𝑒2)
− (𝑥), 𝐼𝐵3(𝑒1,𝑒2)

− (𝑥), 𝐹𝐵3(𝑒1,𝑒2)
− (𝑥)

)⟩ : 𝑥 ∈ 𝑋) : (𝑒1, 𝑒2) ∈ 𝐸 × 𝐸} 

 where 
𝑇𝐵3(𝑒1,𝑒2)
+ (𝑥) = max{𝑇𝐵1(𝑒1)

+ (𝑥), 𝑇𝐵2(𝑒2)
+ (𝑥)}, 𝑇𝐵3(𝑒1,𝑒2)

− (𝑥) = max{𝑇𝐵1(𝑒1)
− (𝑥), 𝑇𝐵2(𝑒2)

− (𝑥)}, 
𝐼𝐵3(𝑒1,𝑒2)
+ (𝑥) = max{𝐼𝐵1(𝑒1)

+ (𝑥), 𝐼𝐵2(𝑒2)
+ (𝑥)}, 𝐼𝐵3(𝑒1,𝑒2)

− (𝑥) = max{𝐼𝐵1(𝑒1)
− (𝑥), 𝐼𝐵2(𝑒2)

− (𝑥)}, 
𝐹𝐵3(𝑒1,𝑒2)
+ (𝑥) = min{𝐹𝐵1(𝑒1)

+ (𝑥), 𝐹𝐵2(𝑒2)
+ (𝑥)}, 𝐹𝐵3(𝑒1,𝑒2)

− (𝑥) = min{𝐹𝐵1(𝑒1)
− (𝑥), 𝐹𝐵2(𝑒2)

− (𝑥)}. 
 
Example 3.12 Let 𝑋 = {𝑥1, 𝑥2} and 𝐸 = {𝑒1, 𝑒2}. If 

 

(�̃�1, 𝐸) = {
(𝑒1, ⟨𝑥1, (0.3,0.5,0.7, −0.6, −0.5, −0.7)⟩, ⟨𝑥2, (0.3,0.5,0.4, −0.2, −0.5, −0.8)⟩),
(𝑒2, ⟨𝑥1, (0.4,0.4,0.3, −0.7, −0.4, −0.3)⟩, ⟨𝑥2, (0.5,0.8,0.9, −0.1, −0.9, −0.7)⟩)

} 

 
and 

(�̃�2, 𝐸) = {
(𝑒1, ⟨𝑥1, (0.4,0.6,0.8, −0.5, −0.3, −0.9)⟩, ⟨𝑥2, (0.4,0.6,0.2, −0.3, −0.2, −0.3)⟩),
(𝑒2, ⟨𝑥1, (0.3,0.3,0.5, −0.3, −0.6, −0.8)⟩, ⟨𝑥2, (0.4,0.5,0.3, −0.6, −0.1, −0.3)⟩)

} 

then  

(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) = {
(𝑒1, ⟨𝑥1, (0.4,0.6,0.7, −0.5, −0.3, −0.9)⟩, ⟨𝑥2, (0.4,0.6,0.2, −0.2, −0.2, −0.8)⟩),
(𝑒2, ⟨𝑥1, (0.4,0.4,0.3, −0.3, −0.4, −0.8)⟩, ⟨𝑥2, (0.5,0.8,0.3, −0.1, −0.1, −0.7)⟩)

}, 

 

(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸) = {
(𝑒1, ⟨𝑥1, (0.3,0.5,0.8, −0.6, −0.5, −0.7)⟩, ⟨𝑥2, (0.3,0.5,0.4, −0.3, −0.5, −0.3)⟩),
(𝑒2, ⟨𝑥1, (0.3,0.3,0.5, −0.7, −0.6, −0.3)⟩, ⟨𝑥2, (0.4,0.5,0.9, −0.6, −0.9, −0.3)⟩)

}, 

 

(�̃�1, 𝐸)\(�̃�2, 𝐸) = {
(𝑒1, ⟨𝑥1, (0.3,0.4,0.7, −0.9, −0.7, −0.5)⟩, ⟨𝑥2, (0.2,0.4,0.4, −0.3, −0.8, −0.3)⟩),
(𝑒2, ⟨𝑥1, (0.4,0.4,0.3, −0.8, −0.4, −0.3)⟩, ⟨𝑥2, (0.3,0.5,0.9, −0.3, −0.9, −0.6)⟩)

}, 

 

 (�̃�1, 𝐸) ∧ (�̃�2, 𝐸) =

{
 
 

 
 
((𝑒1, 𝑒1), ⟨𝑥1, (0.3,0.5,0.8,−0.6,−0.5,−0.7)⟩, ⟨𝑥2, (0.3,0.5,0.4,−0.3, −0.5,−0.3)⟩),

((𝑒1, 𝑒2), ⟨𝑥1, (0.3,0.3,0.7,−0.6, −0.6,−0.7)⟩, ⟨𝑥2, (0.3,0.5,0.4,−0.6,−0.5,−0.3)⟩),

((𝑒2, 𝑒1), ⟨𝑥1, (0.4,0.4,0.8,−0.7, −0.4,−0.3)⟩, ⟨𝑥2, (0.4,0.6,0.9,−0.3,−0.9,−0.3)⟩),

((𝑒2, 𝑒2), ⟨𝑥1, (0.3,0.3,0.5,−0.7, −0.6,−0.3)⟩, ⟨𝑥2, (0.4,0.5,0.9,−0.6,−0.9, −0.3)⟩) }
 
 

 
 

, 

 

 (�̃�1, 𝐸) ∨ (�̃�2, 𝐸) =

{
 
 

 
 
((𝑒1, 𝑒1), ⟨𝑥1, (0.4,0.6,0.7,−0.5,−0.3,−0.9)⟩, ⟨𝑥2, (0.4,0.6,0.2,−0.2, −0.2,−0.8)⟩),

((𝑒1, 𝑒2), ⟨𝑥1, (0.3,0.5,0.5,−0.3, −0.5,−0.8)⟩, ⟨𝑥2, (0.4,0.5,0.3,−0.2,−0.1,−0.8)⟩),

((𝑒2, 𝑒1), ⟨𝑥1, (0.4,0.6,0.3,−0.5, −0.3,−0.9)⟩, ⟨𝑥2, (0.5,0.8,0.2,−0.1,−0.2,−0.7)⟩),

((𝑒2, 𝑒2), ⟨𝑥1, (0.4,0.4,0.3,−0.3, −0.4,−0.8)⟩, ⟨𝑥2, (0.5,0.8,0.3,−0.1,−0.1, −0.7)⟩) }
 
 

 
 

. 

 
Proposition 3.13 Let (�̃�1, 𝐸), (�̃�2, 𝐸) and (�̃�3, 𝐸) be bipolar neutrosophic soft sets over 𝑋. Then, 
  

1.  (�̃�1, 𝐸) ⊔ [(�̃�2, 𝐸) ⊔ (�̃�3, 𝐸)] = [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)] ⊔ (�̃�3, 𝐸) and  
(�̃�1, 𝐸) ⊓ [(�̃�2, 𝐸) ⊓ (�̃�3, 𝐸)] = [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)] ⊓ (�̃�3, 𝐸); 

 
    2.  (�̃�1, 𝐸) ⊔ [(�̃�2, 𝐸) ⊓ (�̃�3, 𝐸)] = [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)] ⊓ [(�̃�1, 𝐸) ⊔ (�̃�3, 𝐸)] and 

(�̃�1, 𝐸) ⊓ [(�̃�2, 𝐸) ⊔ (�̃�3, 𝐸)] = [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)] ⊔ [(�̃�1, 𝐸) ⊓ (�̃�3, 𝐸)]; 
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    3.  (�̃�1, 𝐸) ⊔ (�̃�

∅, 𝐸) = (�̃�1, 𝐸) and (�̃�1, 𝐸) ⊓ (�̃�
∅, 𝐸) = (�̃�∅, 𝐸); 

 
    4.  (�̃�1, 𝐸) ⊔ (�̃�

𝑋, 𝐸) = (�̃�𝑋, 𝐸) and (�̃�1, 𝐸) ⊓ (�̃�
𝑋, 𝐸) = (�̃�1, 𝐸); 

 
    5.  (�̃�∅, 𝐸)\(�̃�𝑋, 𝐸) = (�̃�∅, 𝐸) and (�̃�𝑋, 𝐸)\(�̃�∅, 𝐸) = (�̃�𝑋, 𝐸)  
  
Proof. Straightforward.  
Proposition 3.14 Let (�̃�1, 𝐸) and (�̃�2, 𝐸) be two bipolar neutrosophic soft sets over 𝑋. Then, 
  
    1.  [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)]

𝑐
= (�̃�1, 𝐸)

𝑐
⊓ (�̃�2, 𝐸)

𝑐
; 

    2.  [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]
𝑐
= (�̃�1, 𝐸)

𝑐
⊔ (�̃�2, 𝐸)

𝑐
.  

  
Proof. 1. For all 𝑒 ∈ 𝐸 and 𝑥 ∈ 𝑋,  

 ⊔
2

𝑖=1
(�̃�𝑖, 𝐸) = {𝑒, ⟨𝑥, (

max{𝑇𝐵1(𝑒)
+ (𝑥), 𝑇𝐵2(𝑒)

+ (𝑥)},max{𝐼𝐵1(𝑒)
+ (𝑥), 𝐼𝐵2(𝑒)

+ (𝑥)},min{𝐹𝐵1(𝑒)
+ (𝑥), 𝐹𝐵2(𝑒)

+ (𝑥)},

max{𝑇𝐵1(𝑒)
− (𝑥), 𝑇𝐵2(𝑒)

− (𝑥)},max{𝐼𝐵1(𝑒)
− (𝑥), 𝐼𝐵2(𝑒)

− (𝑥)},min{𝐹𝐵1(𝑒)
− (𝑥), 𝐹𝐵2(𝑒)

− (𝑥)}
)⟩} 

 [ ⊔
2

𝑖=1
(�̃�𝑖, 𝐸)]

𝑐

= {𝑒, ⟨𝑥, (
min{𝐹𝐵1(𝑒)

+ (𝑥), 𝐹𝐵2(𝑒)
+ (𝑥)}, 1 −max{𝐼𝐵1(𝑒)

+ (𝑥), 𝐼𝐵2(𝑒)
+ (𝑥)},max{𝑇𝐵1(𝑒)

+ (𝑥), 𝑇𝐵2(𝑒)
+ (𝑥)},

min{𝐹𝐵1(𝑒)
− (𝑥), 𝐹𝐵2(𝑒)

− (𝑥)}, −1 −max{𝐼𝐵1(𝑒)
− (𝑥), 𝐼𝐵2(𝑒)

− (𝑥)},max{𝑇𝐵1(𝑒)
− (𝑥), 𝑇𝐵2(𝑒)

− (𝑥)}
)⟩}. 

Now, 
 (�̃�1, 𝐸)

𝑐
= {𝑒, ⟨𝑥, (𝐹𝐵1(𝑒)

+ (𝑥),1 − 𝐼𝐵1(𝑒)
+ (𝑥), 𝑇𝐵1(𝑒)

+ (𝑥), 𝐹𝐵1(𝑒)
− (𝑥), −1 − 𝐼𝐵1(𝑒)

− (𝑥), 𝑇𝐵1(𝑒)
− (𝑥))⟩}, 

 (�̃�2, 𝐸)
𝑐
= {𝑒, ⟨𝑥, (𝐹𝐵2(𝑒)

+ (𝑥),1 − 𝐼𝐵2(𝑒)
+ (𝑥), 𝑇𝐵2(𝑒)

+ (𝑥), 𝐹𝐵2(𝑒)
− (𝑥), −1 − 𝐼𝐵2(𝑒)

− (𝑥), 𝑇𝐵2(𝑒)
− (𝑥))⟩}. 

 
Then,  

 ⊓
2

𝑖=1
(�̃�𝑖, 𝐸)

𝑐
= {𝑒, ⟨𝑥, (

min{𝐹𝐵1(𝑒)
+ (𝑥), 𝐹𝐵2(𝑒)

+ (𝑥)},min{(1 − 𝐼𝐵1(𝑒)
+ (𝑥)), (1 − 𝐼𝐵2(𝑒)

+ (𝑥))},max{𝑇𝐵1(𝑒)
+ (𝑥), 𝑇𝐵2(𝑒)

+ (𝑥)}

min{𝐹𝐵1(𝑒)
− (𝑥), 𝐹𝐵2(𝑒)

− (𝑥)},min{(−1 − 𝐼𝐵1(𝑒)
− (𝑥)), (−1 − 𝐼𝐵2(𝑒)

− (𝑥))},max{𝑇𝐵1(𝑒)
− (𝑥), 𝑇𝐵2(𝑒)

− (𝑥)}
)⟩} 

           = {𝑒, ⟨𝑥, (
min{𝐹𝐵1(𝑒)

+ (𝑥), 𝐹𝐵2(𝑒)
+ (𝑥)}, 1 −max{𝐼𝐵1(𝑒)

+ (𝑥), 𝐼𝐵2(𝑒)
+ (𝑥)},max{𝑇𝐵1(𝑒)

+ (𝑥), 𝑇𝐵2(𝑒)
+ (𝑥)},

min{𝐹𝐵1(𝑒)
− (𝑥), 𝐹𝐵2(𝑒)

− (𝑥)},−1 −max{𝐼𝐵1(𝑒)
− (𝑥), 𝐼𝐵2(𝑒)

− (𝑥)},max{𝑇𝐵1(𝑒)
− (𝑥), 𝑇𝐵2(𝑒)

− (𝑥)}
)⟩}. 

 Thus, [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)]
𝑐
= (�̃�1, 𝐸)

𝑐
⊓ (�̃�2, 𝐸)

𝑐
. 

2. It is obtained in a similar way.  
 
Proposition 3.15 Let (�̃�1, 𝐸) and (�̃�2, 𝐸) be two bipolar neutrosophic soft sets over 𝑋. Then, 
  
    1.  [(�̃�1, 𝐸) ∨ (�̃�2, 𝐸)]

𝑐
= (�̃�1, 𝐸)

𝑐
∧ (�̃�2, 𝐸)

𝑐
; 

    2.  [(�̃�1, 𝐸) ∧ (�̃�2, 𝐸)]
𝑐
= (�̃�1, 𝐸)

𝑐
∨ (�̃�2, 𝐸)

𝑐
.  

 
Proof. 1. For all (𝑒1, 𝑒2) ∈ 𝐸 × 𝐸 and 𝑥 ∈ 𝑋,  

 ∨
2

𝑖=1
(�̃�𝑖, 𝐸) = {(𝑒1, 𝑒2), ⟨𝑥, (

max{𝑇𝐵1(𝑒1)
+ (𝑥), 𝑇𝐵2(𝑒2)

+ (𝑥)},max{𝐼𝐵1(𝑒1)
+ (𝑥), 𝐼𝐵2(𝑒2)

+ (𝑥)},min{𝐹𝐵1(𝑒1)
+ (𝑥), 𝐹𝐵2(𝑒2)

+ (𝑥)},

max{𝑇𝐵1(𝑒1)
− (𝑥), 𝑇𝐵2(𝑒2)

− (𝑥)},max{𝐼𝐵1(𝑒1)
− (𝑥), 𝐼𝐵2(𝑒2)

− (𝑥)},min{𝐹𝐵1(𝑒1)
− (𝑥), 𝐹𝐵2(𝑒2)

− (𝑥)}
)⟩}, 

[ ∨
2

𝑖=1
(�̃�𝑖, 𝐸)]

𝑐

= {(𝑒1, 𝑒2), ⟨𝑥,
min{𝐹𝐵1(𝑒1)

+ (𝑥), 𝐹𝐵2(𝑒2)
+ (𝑥)}, 1 − max{𝐼𝐵1(𝑒1)

+ (𝑥), 𝐼𝐵2(𝑒2)
+ (𝑥)},max{𝑇𝐵1(𝑒1)

+ (𝑥), 𝑇𝐵2(𝑒2)
+ (𝑥)},

min{𝐹𝐵1(𝑒1)
− (𝑥), 𝐹𝐵2(𝑒2)

− (𝑥)}, −1 − max{𝐼𝐵1(𝑒1)
− (𝑥), 𝐼𝐵2(𝑒2)

− (𝑥)},max{𝑇𝐵1(𝑒1)
− (𝑥), 𝑇𝐵2(𝑒2)

− (𝑥)}
⟩}. 

On the other hand,  
 (�̃�1, 𝐸)

𝑐
= {𝑒1, ⟨𝑥, 𝐹𝐵1(𝑒1)

+ (𝑥),1 − 𝐼𝐵1(𝑒1)
+ (𝑥), 𝑇𝐵1(𝑒1)

+ (𝑥), 𝐹𝐵1(𝑒1)
− (𝑥), −1 − 𝐼𝐵1(𝑒1)

− (𝑥), 𝑇𝐵1(𝑒1)
− (𝑥)⟩: 𝑒1 ∈ 𝐸}, 

 (�̃�2, 𝐸)
𝑐
= {𝑒2, ⟨𝑥, 𝐹𝐵2(𝑒2)

+ (𝑥),1 − 𝐼𝐵2(𝑒2)
+ (𝑥), 𝑇𝐵2(𝑒2)

+ (𝑥), 𝐹𝐵2(𝑒2)
− (𝑥), −1 − 𝐼𝐵2(𝑒2)

− (𝑥), 𝑇𝐵2(𝑒2)
− (𝑥)⟩: 𝑒2 ∈ 𝐸}. 

Then,  

∧
2

𝑖=1
(�̃�𝑖, 𝐸)

𝑐
= {(𝑒1, 𝑒2), ⟨

𝑥,min{𝐹𝐵1(𝑒1)
+ (𝑥), 𝐹𝐵2(𝑒2)

+ (𝑥)},min{(1 − 𝐼𝐵1(𝑒1)
+ (𝑥)), (1 − 𝐼𝐵2(𝑒2)

+ (𝑥))},max{𝑇𝐵1(𝑒1)
+ (𝑥), 𝑇𝐵2(𝑒2)

+ (𝑥)}

min{𝐹𝐵1(𝑒1)
− (𝑥), 𝐹𝐵2(𝑒2)

− (𝑥)},min{(−1− 𝐼𝐵1(𝑒1)
− (𝑥)), (−1 − 𝐼𝐵2(𝑒2)

− (𝑥))},max{𝑇𝐵1(𝑒1)
− (𝑥), 𝑇𝐵2(𝑒2)

− (𝑥)}
⟩} 

          = {(𝑒1, 𝑒2), ⟨𝑥,
min{𝐹𝐵1(𝑒1)

+ (𝑥), 𝐹𝐵2(𝑒2)
+ (𝑥)}, 1 − max{𝐼𝐵1(𝑒1)

+ (𝑥), 𝐼𝐵2(𝑒2)
+ (𝑥)},max{𝑇𝐵1(𝑒1)

+ (𝑥), 𝑇𝐵2(𝑒2)
+ (𝑥)},

min{𝐹𝐵1(𝑒1)
− (𝑥), 𝐹𝐵2(𝑒2)

− (𝑥)}, −1 − max{𝐼𝐵1(𝑒1)
− (𝑥), 𝐼𝐵2(𝑒2)

− (𝑥)},max{𝑇𝐵1(𝑒1)
− (𝑥), 𝑇𝐵2(𝑒2)

− (𝑥)}
⟩}. 

Hence, [(�̃�1, 𝐸) ∨ (�̃�2, 𝐸)]
𝑐
= (�̃�1, 𝐸)

𝑐
∧ (�̃�2, 𝐸)

𝑐
. 
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2. It is obtained in a similar way.  

4. Bipolar Neutrosophic Soft Topological Spaces 

In this section we defined neutrosophic soft topology by the revised form of neutrosophic soft sets 

and also we gave the basic structures of the bipolar neutrosophic soft topological spaces. 
 
Definition 4.1 Let 𝐵𝑁𝑆𝑆(𝑋, 𝐸)  be the family of all bipolar neutrosophic soft sets over 𝑋  and 𝜏𝐵𝑁 ⊂

𝐵𝑁𝑆𝑆(𝑋, 𝐸). Then 𝜏𝐵𝑁 is said to be a bipolar neutrosophic soft topology on 𝑋 if 
  
    1.  (�̃�∅, 𝐸) and (�̃�𝑋, 𝐸) belongs to 𝜏𝐵𝑁 
    2.  the union of any number of bipolar neutrosophic soft sets in 𝜏𝐵𝑁 belongs to 𝜏𝐵𝑁 
    3.  the intersection of finite number of bipolar neutrosophic soft sets in 𝜏𝐵𝑁 belongs to 𝜏𝐵𝑁.  
 
Then (𝑋, 𝜏𝐵𝑁, 𝐸) is said to be a bipolar neutrosophic soft topological space over 𝑋. Each members of 

𝜏𝐵𝑁 is said to be bipolar neutrosophic soft open set.  
 
Definition 4.2 Let (𝑋, 𝜏𝐵𝑁, 𝐸) be a bipolar neutrosophic soft topological space over 𝑋  and (�̃�, 𝐸) be a 

bipolar neutrosophic soft set over 𝑋. Then (�̃�, 𝐸) is said to be bipolar neutrosophic soft closed set iff its 

complement is a bipolar neutrosophic soft open set.  
 
Proposition 4.3 Let (𝑋, 𝜏𝐵𝑁, 𝐸) be a bipolar neutrosophic soft topological space over 𝑋. Then 
    1.  (�̃�∅, 𝐸) and (�̃�𝑋, 𝐸) are bipolar neutrosophic soft closed sets over 𝑋 
    2.  the intersection of any number of bipolar neutrosophic soft closed sets is a bipolar 

neutrosophic soft closed set over 𝑋 
    3.  the union of finite number of bipolar neutrosophic soft closed sets is a bipolar neutrosophic 

soft closed set over 𝑋.  
  
Proof. It is easily obtained from the definition bipolar neutrosophic soft topological space and 

Proposition 2.  
 
Definition 4.4 Let 𝐵𝑁𝑆𝑆(𝑋, 𝐸) be the family of all bipolar neutrosophic soft sets over the universe set 𝑋. 
  
    1.  If 𝜏𝐵𝑁 = {(�̃�∅, 𝐸), (�̃�𝑋, 𝐸)}, then 𝜏𝐵𝑁 is said to be the bipolar neutrosophic soft indiscrete 

topology and (𝑋, 𝜏𝐵𝑁, 𝐸) is said to be a bipolar neutrosophic soft indiscrete topological space over 

𝑋. 
    2.  If 𝜏𝐵𝑁 = 𝐵𝑁𝑆𝑆(𝑋, 𝐸), then 𝜏𝐵𝑁 is said to be the bipolar neutrosophic soft discrete topology 

and (𝑋, 𝜏𝐵𝑁, 𝐸) is said to be a bipolar neutrosophic soft discrete topological space over 𝑋.  
  
Proposition 4.5 Let (𝑋, 𝜏1

𝐵𝑁, 𝐸) and (𝑋, 𝜏2
𝐵𝑁, 𝐸) be two bipolar neutrosophic soft topological spaces over the 

same universe set 𝑋. Then (𝑋, 𝜏1
𝐵𝑁 ∩ 𝜏2

𝐵𝑁, 𝐸) is bipolar neutrosophic soft topological space over 𝑋.  
 
Proof. 1. Since (�̃�∅, 𝐸), (�̃�𝑋, 𝐸) ∈ 𝜏1

𝐵𝑁 and (�̃�∅, 𝐸), (�̃�𝑋, 𝐸) ∈ 𝜏2
𝐵𝑁, then (�̃�∅, 𝐸), (�̃�𝑋, 𝐸) ∈ 𝜏1

𝐵𝑁 ∩ 𝜏2
𝐵𝑁. 

2. Suppose that {(�̃�𝑖, 𝐸)|𝑖 ∈ 𝐼} be a family of bipolar neutrosophic soft sets in 𝜏1
𝐵𝑁 ∩ 𝜏2

𝐵𝑁 . Then 

(�̃�𝑖, 𝐸) ∈ 𝜏1
𝐵𝑁  and (�̃�𝑖, 𝐸) ∈ 𝜏2

𝐵𝑁  for all 𝑖 ∈ 𝐼,  so ⊔
𝑖∈𝐼
(�̃�𝑖, 𝐸) ∈ 𝜏1

𝐵𝑁  and ⊔
𝑖∈𝐼
(�̃�𝑖, 𝐸) ∈ 𝜏2

𝐵𝑁 . Thus 

⊔
𝑖∈𝐼
(�̃�𝑖, 𝐸) ∈ 𝜏1

𝐵𝑁 ∩ 𝜏2
𝐵𝑁. 

3. Let {(�̃�𝑖, 𝐸)|𝑖 = 1, 𝑛} be a family of the finite number of bipolar neutrosophic soft sets in 𝜏1
𝐵𝑁 ∩

𝜏2
𝐵𝑁 . Then (�̃�𝑖, 𝐸) ∈ 𝜏1

𝐵𝑁  and (�̃�𝑖, 𝐸) ∈ 𝜏2
𝐵𝑁  for 𝑖 = 1, 𝑛,  so ⊓

𝑛

𝑖=1
(�̃�𝑖, 𝐸) ∈ 𝜏1

𝐵𝑁  and ⊓
𝑛

𝑖=1
(�̃�𝑖, 𝐸) ∈ 𝜏2

𝐵𝑁 . 

Thus ⊓
𝑛

𝑖=1
(�̃�𝑖, 𝐸) ∈ 𝜏1

𝐵𝑁 ∩ 𝜏2
𝐵𝑁.  
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Remark 4.6 The union of two bipolar neutrosophic soft topologies over 𝑋 may not be a bipolar neutrosophic 

soft topology on 𝑋.  
 
Example 4.7 Let 𝑋 = {𝑥1, 𝑥2} be an initial universe set, 𝐸 = {𝑒1, 𝑒2} be a set of parameters and 𝜏1

𝐵𝑁 =

{(�̃�∅, 𝐸), (�̃�𝑈, 𝐸), (�̃�1, 𝐸), (�̃�2, 𝐸), (�̃�3, 𝐸)}  and 𝜏2
𝐵𝑁 = {(�̃�∅, 𝐸), (�̃�𝑈, 𝐸), (�̃�2, 𝐸), (�̃�4, 𝐸)}  be two bipolar 

neutrosophic soft topologies over 𝑋. Here, the bipolar neutrosophic soft sets (�̃�1, 𝐸), (�̃�2, 𝐸), (�̃�3, 𝐸) and 

(�̃�4, 𝐸) over 𝑋 are defined as following: 
 

 (�̃�1, 𝐸) = {
𝑒1, ⟨𝑥1, (0.9,0.4,0.3, −0.2, −0.3, −0.7)⟩, ⟨𝑥2, (0.5,0.6,0.5, −0.1, −0.2, −0.8)⟩

𝑒2, ⟨𝑥1, (0.7,0.3,0.4, −0.4, −0.5, −0,4)⟩, ⟨𝑥2, (0.6,0.6,0.2, −0.6, −0.7, −0.5)⟩
}, 

 (�̃�2, 𝐸) = {
𝑒1, ⟨𝑥1, (0.7,0.4,0.5, −0.3, −0.4, −0.6)⟩, ⟨𝑥2, (0.4,0.5,0.5, −0.2, −0.3, −0.7)⟩

𝑒2, ⟨𝑥1, (0.6,0.2,0.4, −0.5, −0.6, −0.3)⟩, ⟨𝑥2, (0.5,0.4,0.3, −0.7, −0.8, −0.4)⟩
}, 

 (�̃�3, 𝐸) = {
𝑒1, ⟨𝑥1, (0.5,0.3,0.6, −0.4, −0.5, −0.5)⟩, ⟨𝑥2, (0.3,0.4,0.7, −0.3, −0.4, −0.6)⟩

𝑒2, ⟨𝑥1, (0.4,0.1,0.5, −0.6, −0.7, −0.2)⟩, ⟨𝑥2, (0.4,0.3,0.4, −0.8, −0.9, −0.3)⟩
}, 

 (�̃�4, 𝐸) = {
𝑒1, ⟨𝑥1, (0.8,0.5,0.4, −0.1, −0.2, −0.8)⟩, ⟨𝑥2, (0.5,0.6,0.3, −0.1, −0.1, −0.9)⟩

𝑒2, ⟨𝑥1, (0.7,0.3,0.3, −0.3, −0.4, −0.5)⟩, ⟨𝑥2, (0.6,0.5,0.1,−0.5, −0.6, −0.6)⟩
}. 

 
Since (�̃�1, 𝐸) ∪ (�̃�4, 𝐸) ∉ 𝜏1

𝐵𝑁 ⊔ 𝜏2
𝐵𝑁 , then 𝜏1

𝐵𝑁 ⊔ 𝜏2
𝐵𝑁  is not a bipolar neutrosophic soft topology 

over 𝑋.  
 
Proposition 4.8 Let (𝑋, 𝜏𝐵𝑁, 𝐸)  be a bipolar neutrosophic soft topological space over 𝑋  and 𝜏𝐵𝑁 =

{(�̃�𝑖, 𝐸): (�̃�𝑖, 𝐸) ∈ 𝐵𝑁𝑆𝑆(𝑋, 𝐸)} where 
  (�̃�𝑖, 𝐸) = {(𝑒, ⟨𝑥, (𝑇𝐵𝑖(𝑒)

+ (𝑥), 𝐼𝐵𝑖(𝑒)
+ (𝑥), 𝐹𝐵𝑖(𝑒)

+ (𝑥), 𝑇𝐵𝑖(𝑒)
− (𝑥), 𝐼𝐵𝑖(𝑒)

− (𝑥), 𝐹𝐵𝑖(𝑒)
− (𝑥))⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸}  for 𝑖 ∈ 𝐼 . 

Then  
 𝜏

𝑁𝑆𝑆
= {(�̃�𝑖

+, 𝐸) = {(𝑒, ⟨𝑥, (𝑇𝐵𝑖(𝑒)
+ (𝑥), 𝐼𝐵𝑖(𝑒)

+ (𝑥), 𝐹𝐵𝑖(𝑒)
+ (𝑥))⟩: 𝑥 ∈ 𝑋): 𝑒 ∈ 𝐸}: (�̃�𝑖

+, 𝐸) ∈ 𝑁𝑆𝑆(𝑋, 𝐸)} 
 define neutrosophic soft topology on 𝑋.  
 
Proof. Straightforward.  
 
Definition 4.9 Let (𝑋, 𝜏𝐵𝑁, 𝐸)  be a bipolar neutrosophic soft topological space over 𝑋  and (�̃�, 𝐸) ∈

𝐵𝑁𝑆𝑆(𝑋, 𝐸) be a bipolar neutrosophic soft set. Then, bipolar neutrosophic soft interior of (�̃�, 𝐸), denoted 

(�̃�, 𝐸)
∘
, is defined as the bipolar neutrosophic soft union of all bipolar neutrosophic soft open subsets of (�̃�, 𝐸). 

Clearly, (�̃�, 𝐸)
∘
 is the biggest bipolar neutrosophic soft open set contained by (�̃�, 𝐸).  

 
Example 4.10 Let us consider the bipolar neutrosophic soft topology 𝜏1

𝐵𝑁 given in Example 4.7. Suppose that 

an any (�̃�, 𝐸) ∈ 𝐵𝑁𝑆𝑆(𝑋, 𝐸) is defined as following: 
 

(�̃�, 𝐸) = {
𝑒1, ⟨𝑥1, (0.8,0.4,0.2, −0.1, −0.2, −0.6)⟩, ⟨𝑥2, (0.4,0.7,0.3, −0.2, −0.1, −0.9)⟩

𝑒2, ⟨𝑥1, (0.9,0.2,0.3, −0.3, −0.6, −0.5)⟩, ⟨𝑥2, (0.7,0.5,0.1, −0.4, −0.6, −0.6)⟩
}. 

 
Then (�̃�∅, 𝐸), (�̃�2, 𝐸), (�̃�3, 𝐸) ⊑ (�̃�, 𝐸). Therefore, (�̃�, 𝐸)

∘
= (�̃�∅, 𝐸) ⊔ (�̃�2, 𝐸) ⊔ (�̃�3, 𝐸) = (�̃�2, 𝐸).  

 
Theorem 4.11 Let (𝑋, 𝜏𝐵𝑁, 𝐸)  be a bipolar neutrosophic soft topological space over 𝑋  and (�̃�, 𝐸) ∈

𝐵𝑁𝑆𝑆(𝑋, 𝐸). (�̃�, 𝐸) is a bipolar neutrosophic soft open set iff (�̃�, 𝐸) = (�̃�, 𝐸)
∘
.  

 
Proof. Let (�̃�, 𝐸) be a bipolar neutrosophic soft open set. Then the biggest bipolar neutrosophic soft 

open set that is contained by (�̃�, 𝐸) is equal to (�̃�, 𝐸). Hence, (�̃�, 𝐸) = (�̃�, 𝐸)
∘
. 

Conversely, it is known that (�̃�, 𝐸)
∘
 is a bipolar neutrosophic soft open set and if (�̃�, 𝐸) = (�̃�, 𝐸)

∘
, 

then (�̃�, 𝐸) is a bipolar neutrosophic soft open set.  
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Theorem 4.12 Let (𝑋, 𝜏𝐵𝑁, 𝐸) be a bipolar neutrosophic soft topological space over 𝑋 and (�̃�1, 𝐸), (�̃�2, 𝐸) ∈

𝐵𝑁𝑆𝑆(𝑋, 𝐸). Then, 
  
    1.  [(�̃�1, 𝐸)

∘
]
∘
= (�̃�1, 𝐸)

∘
, 

    2.  (�̃�∅, 𝐸)
∘
= (�̃�∅, 𝐸) and (�̃�𝑋, 𝐸)

∘
= (�̃�𝑋, 𝐸), 

    3.  (�̃�1, 𝐸) ⊑ (�̃�2, 𝐸) ⇒ (�̃�1, 𝐸)
∘
⊑ (�̃�2, 𝐸)

∘
, 

    4.  [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]
∘
= (�̃�1, 𝐸)

∘
⊓ (�̃�2, 𝐸)

∘
, 

    5.  (�̃�1, 𝐸)
∘
⊔ (�̃�2, 𝐸)

∘
⊑ [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)]

∘
.  

  
Proof. 1. Let (�̃�1, 𝐸)

∘
= (�̃�2, 𝐸). Then (�̃�2, 𝐸) ∈ 𝜏

𝐵𝑁 iff (�̃�2, 𝐸) = (�̃�2, 𝐸)
∘
. So, [(�̃�1, 𝐸)

∘
]
∘
= (�̃�1, 𝐸)

∘
. 

2. Straighforward. 
3. It is known that (�̃�1, 𝐸)

∘
⊑ (�̃�1, 𝐸) ⊑ (�̃�2, 𝐸) and (�̃�2, 𝐸)

∘
⊑ (�̃�2, 𝐸). Since (�̃�2, 𝐸)

∘
 is the biggest 

bipolar neutrosophic soft open set contained in (�̃�2, 𝐸) and so, (�̃�1, 𝐸)
∘
⊑ (�̃�2, 𝐸)

∘
. 

4. Since (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸) ⊑ (�̃�1, 𝐸)  and (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸) ⊑ (�̃�2, 𝐸) , then [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]
∘
⊑

(�̃�1, 𝐸)
∘
 and [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]

∘
⊑ (�̃�2, 𝐸)

∘
 and so, [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]

∘
⊑ (�̃�1, 𝐸)

∘
⊓ (�̃�2, 𝐸)

∘
. 

On the other hand, since (�̃�1, 𝐸)
∘
⊑ (�̃�1, 𝐸)  and (�̃�2, 𝐸)

∘
⊑ (�̃�2, 𝐸) , then (�̃�1, 𝐸)

∘
⊓ (�̃�2, 𝐸)

∘
⊑

(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸) . Besides, [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]
∘
⊑ (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)  and it is the biggest bipolar 

neutrosophic soft open set. Therefore, (�̃�1, 𝐸)
∘
⊓ (�̃�2, 𝐸)

∘
⊑ [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]

∘
.  

Thus, [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]
∘
= (�̃�1, 𝐸)

∘
⊓ (�̃�2, 𝐸)

∘
. 

5. Since (�̃�1, 𝐸) ⊑ (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)  and (�̃�2, 𝐸) ⊑ (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) , then (�̃�1, 𝐸)
∘
⊑ [(�̃�1, 𝐸) ⊔

(�̃�2, 𝐸)]
∘
 and (�̃�2, 𝐸)

∘
⊑ [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)]

∘
. Therefore, (�̃�1, 𝐸)

∘
⊔ (�̃�2, 𝐸)

∘
⊑ [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)]

∘
.  

 
Definition 4.13 Let (𝑋, 𝜏𝐵𝑁, 𝐸)  be a bipolar neutrosophic soft topological space over 𝑋  and (�̃�, 𝐸) ∈

𝐵𝑁𝑆𝑆(𝑋, 𝐸) be a bipolar neutrosophic soft set. Then, bipolar neutrosophic soft closure of (�̃�, 𝐸), denoted 

(�̃�, 𝐸), is defined as the bipolar neutrosophic soft intersection of all bipolar neutrosophic soft closed supersets of 

(�̃�, 𝐸). 

Clearly, (�̃�, 𝐸) is the smallest bipolar neutrosophic soft closed set that containing (�̃�, 𝐸).  
 
Example 4.14 Let us consider the bipolar neutrosophic soft topology 𝜏1

𝐵𝑁 given in Example 4.7. Suppose that 

an any (�̃�, 𝐸) ∈ 𝐵𝑁𝑆𝑆(𝑋, 𝐸) is defined as following: 
 

(�̃�, 𝐸) = {
𝑒1, ⟨𝑥1, (0.1,0.4,0.9, −0.8, −0.9, −0.1)⟩, ⟨𝑥2, (0.4,0.2,0.7, −0.9, −0.8, −0.1)⟩

𝑒2, ⟨𝑥1, (0.2,0.3,0.8, −0.6, −0.7, −0,2)⟩, ⟨𝑥2, (0.1,0.2,0.8, −0.6, −0.7, −0.4)⟩
}. 

 
Obviously, (�̃�∅, 𝐸), (�̃�𝑈, 𝐸), (�̃�1, 𝐸)

𝑐
, (�̃�2, 𝐸)

𝑐
 and (�̃�3, 𝐸)

𝑐
 are all bipolar neutrosophic soft closed 

sets over (𝑋, 𝜏1
𝐵𝑁, 𝐸). They are given as following: 

 

 (�̃�∅, 𝐸)
𝑐
= (�̃�𝑈, 𝐸), (�̃�𝑈, 𝐸)

𝑐
= (�̃�∅, 𝐸) 

 (�̃�1, 𝐸)
𝑐
= {

𝑒1, ⟨𝑥1, (0.3,0.6,0.9, −0.7, −0.7, −0.2)⟩, ⟨𝑥2, (0.5,0.4,0.5, −0.8, −0.8, −0.1)⟩

𝑒2, ⟨𝑥1, (0.4,0.7,0.7, −0.4, −0.5, −0,4)⟩, ⟨𝑥2, (0.2,0.4,0.6, −0.5, −0.3, −0.6)⟩
}, 

 (�̃�2, 𝐸)
𝑐
= {

𝑒1, ⟨𝑥1, (0.5,0.6,0.7, −0.6, −0.6, −0.3)⟩, ⟨𝑥2, (0.5,0.5,0.4, −0.7, −0.7, −0.2)⟩

𝑒2, ⟨𝑥1, (0.4,0.8,0.6, −0.3, −0.4, −0,5)⟩, ⟨𝑥2, (0.3,0.6,0.5, −0.4, −0.2, −0.7)⟩
}, 

 (�̃�3, 𝐸)
𝑐
= {

𝑒1, ⟨𝑥1, (0.6,0.7,0.5, −0.5, −0.5, −0.4)⟩, ⟨𝑥2, (0.7,0.6,0.3, −0.6, −0.6, −0.3)⟩

𝑒2, ⟨𝑥1, (0.5,0.9,0.4, −0.2, −0.3, −0,6)⟩, ⟨𝑥2, (0.4,0.7,0.4, −0.3, −0.1, −0.8)⟩
}. 

 
Then (�̃�𝑈, 𝐸)

𝑐
,  (�̃�1, 𝐸)

𝑐
,  (�̃�2, 𝐸)

𝑐
, (�̃�3, 𝐸)

𝑐
⊒ (�̃�, 𝐸) . Therefore, (�̃�, 𝐸) = (�̃�𝑈, 𝐸)

𝑐
⊓ (�̃�1, 𝐸)

𝑐
⊓

(�̃�2, 𝐸)
𝑐
⊓ (�̃�3, 𝐸)

𝑐
= (�̃�1, 𝐸)

𝑐
.  
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Theorem 4.15 Let (𝑋, 𝜏𝐵𝑁, 𝐸)  be a bipolar neutrosophic soft topological space over 𝑋  and (�̃�, 𝐸) ∈

𝐵𝑁𝑆𝑆(𝑋, 𝐸). (�̃�, 𝐸) is bipolar neutrosophic soft closed set iff (�̃�, 𝐸) = (�̃�, 𝐸).  
 
Proof. Straightforward.  
Theorem 4.16 Let (𝑋, 𝜏𝐵𝑁, 𝐸) be a bipolar neutrosophic soft topological space over 𝑋 and (�̃�1, 𝐸), (�̃�2, 𝐸) ∈

𝐵𝑁𝑆𝑆(𝑋, 𝐸). Then, 
  

    1.  [(�̃�1, 𝐸)] = (�̃�1, 𝐸), 

    2.  (�̃�∅, 𝐸) = (�̃�∅, 𝐸) and (�̃�𝑋, 𝐸) = (�̃�𝑋, 𝐸) 

    3.  (�̃�1, 𝐸) ⊑ (�̃�2, 𝐸) ⇒ (�̃�1, 𝐸) ⊑ (�̃�2, 𝐸), 

    4.  [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)] = (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸), 

    5.  [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)] ⊑ (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸).  
  
Proof. 1. Let (�̃�1, 𝐸) = (�̃�2, 𝐸). Then, (�̃�2, 𝐸) is a bipolar neutrosophic soft closed set. Hence, (�̃�2, 𝐸) 

and (�̃�2, 𝐸) are equal. Therefore, [(�̃�1, 𝐸)] = (�̃�1, 𝐸). 
2. Straightforward. 
3. It is known that (�̃�1, 𝐸) ⊑ (�̃�1, 𝐸) and (�̃�2, 𝐸) ⊑ (�̃�2, 𝐸) and so, (�̃�1, 𝐸) ⊑ (�̃�2, 𝐸) ⊑ (�̃�2, 𝐸). Since 

(�̃�1, 𝐸)  is the smallest bipolar neutrosophic soft closed set containing (�̃�1, 𝐸),  then (�̃�1, 𝐸) ⊑

(�̃�2, 𝐸). 

4. Since (�̃�1, 𝐸) ⊑ (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) and (�̃�2, 𝐸) ⊑ (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸), then (�̃�1, 𝐸) ⊑ [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)] 

and (�̃�2, 𝐸) ⊑ [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)] and so, (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) ⊑ [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)]. 

Conversely, since (�̃�1, 𝐸) ⊑ (�̃�1, 𝐸) and (�̃�2, 𝐸) ⊑ (�̃�2, 𝐸), then (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) ⊑ (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸). 

Besides, [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)]  is the smallest bipolar neutrosophic soft closed set that containing 

(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) . Therefore, [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)] ⊑ (�̃�1, 𝐸) ⊔ (�̃�2, 𝐸) . Thus, [(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸)] =

(�̃�1, 𝐸) ⊔ (�̃�2, 𝐸). 

5. Since (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸) ⊑ (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)  and [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)]  is the smallest bipolar 

neutrosophic soft closed set that containing (�̃�1, 𝐸) ⊓ (�̃�2, 𝐸), then [(�̃�1, 𝐸) ⊓ (�̃�2, 𝐸)] ⊑ (�̃�1, 𝐸) ⊓

(�̃�2, 𝐸).  
 
Theorem 4.17 Let (𝑋, 𝜏𝐵𝑁, 𝐸)  be a bipolar neutrosophic soft topological space over 𝑋  and (�̃�, 𝐸) ∈

𝐵𝑁𝑆𝑆(𝑋, 𝐸). Then, 
  

    1.  [(�̃�, 𝐸)]
𝑐

= [(�̃�, 𝐸)
𝑐
]
∘
, 

    2.  [(�̃�, 𝐸)
∘
]
𝑐
= [(�̃�, 𝐸)

𝑐
].  

  
Proof. 1. (�̃�, 𝐸) =⊓

𝑖∈𝐼
{(�̃�𝑖, 𝐸) ∈ (𝜏

𝐵𝑁)𝑐: (�̃�𝑖, 𝐸) ⊒ (�̃�, 𝐸)} 

              ⟹ [(�̃�, 𝐸)]
𝑐

= [⊓
𝑖∈𝐼
{(�̃�𝑖, 𝐸) ∈ (𝜏

𝐵𝑁)𝑐: (�̃�𝑖, 𝐸) ⊒ (�̃�, 𝐸), ∀𝑖 ∈ 𝐼}]
𝑐

 

              =⊔
𝑖∈𝐼
{(�̃�𝑖, 𝐸)

𝑐 ∈ 𝜏
𝑁𝑆𝑆
: (�̃�𝑖, 𝐸)

𝑐 ⊑ (�̃�, 𝐸)
𝑐
} = [(�̃�, 𝐸)

𝑐
]
∘
. 

2. (�̃�, 𝐸)
∘
=⊔
𝑖∈𝐼
{(�̃�𝑖, 𝐸) ∈ 𝜏

𝐵𝑁: (�̃�𝑖, 𝐸) ⊑ (�̃�, 𝐸)} 

         ⟹ [(�̃�, 𝐸)
∘
]
𝑐
= [⊔

𝑖∈𝐼
{(�̃�𝑖, 𝐸) ∈ 𝜏

𝑁𝑆𝑆
: (�̃�𝑖 , 𝐸) ⊑ (�̃�, 𝐸)}]

𝑐

 

         =⊓
𝑖∈𝐼
{(�̃�𝑖, 𝐸)

𝑐 ∈ (𝜏𝐵𝑁)𝑐: (�̃�𝑖, 𝐸)
𝑐 ⊒ (�̃�, 𝐸)

𝑐
} = [(�̃�, 𝐸)

𝑐
].  
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5. Conclusions 

Re-defined operations in this study are placed on a suitable system to present topological structure 

on bipolar neutrosophic soft sets. Later, bipolar neutrosophic soft topological spaces are defined and 

their structural properties are presented. Since this study is the basic characteristic of bipolar 

neutrosophic soft set theory, it will be able to lead the study of bipolar neutrosophic soft set structure 

in all sub-branches of mathematics. It can be also considered as a preliminary study of the theory 

mentioned in topology. 
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Abstract: Sustained growth and progress towards more equitable societies with better opportunities 

for all depends on how competitive a country could be, which in turn depends on the productivity 

of its economic sectors. The study aims to analyze the influence of technological innovation to 

Ecuador's gross domestic product, using a neutrosophic cognitive map that defines the factors that 

directly affect technological innovation. The PESTEL framework is used to identify the political, 

economic, social, technological, ecological, and legal factors that contribute to technological 

innovation in Ecuador's gross domestic product. For this purpose, a quantitative analysis was 

carried out based on the static analysis and neutrosophic numbers, which facilitated the 

applicability of the proposal. The main contribution present work is the analysis of interrelations 

and uncertainty/indeterminacy for analysis of technological innovation. The results show the 

importance of political and legal factors related to technological innovation projects to gross 

domestic products growth in Ecuador. The work ends with the conclusion and recommendations 

for future work.  

Keywords: Technological innovation; PESTEL; neutrosophic numbers, neutrosophic cognitive 

maps; static analysis  

 

 

1. Introduction 

Latin America has made significant progress in stabilizing macroeconomic policies that have 

kept its economies growing, even in an adverse international context. However, sustained growth 

and progress towards more equitable societies with better opportunities for all depend on how 

competitive the region can be, which in turn depends on the productivity of its economic sectors. It 

is a fact that Latin America has significant lags in productivity and competitiveness compared to 

other developing regions [1].  

Ecuador is not an exception, macroeconomic stability has improved, and gross domestic product 

(GDP) grew more than 5% according to [2]. However, behind this past growth, there is a little 

diversified economy that concentrates on products and exports that are not very intensive in 

specialized knowledge and added value. This entails a risk for the country's growth in the long term, 

which is as imminent as it is worthy. 
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The issue of innovation must be analyzed with a systemic approach, which addresses not only 

the individual performance of the parties but also their interactions. Investment in innovation, 

acquisition, absorption, modification, and creation of technological and non-technological 

knowledge are indispensable activities for the development of any economy [3]. When dealing with 

activities that demand sophisticated inputs, which involve risks and face market failures, their 

success depends on the systemic and systematic interaction of the public sector, the private sector 

and the entities capable of generating knowledge. 

These coordination needs require a national strategy with short, medium and long term 

objectives. It is also for this reason that the theme of innovation must be analyzed with a systemic 

approach, which addresses not only the individual performance of the parties but also their 

interactions. 

The National Innovation System of Ecuador is characterized by unprecedented public 

investment in innovation activities and the creation of a highly qualified human talent base. This 

analysis benefits from unprecedented quantitative information on the subject of entrepreneurship 

and highlights the presence of a critical mass of entrepreneurs who innovate and generate growth 

opportunities for the country, especially in the services sector. 

It should be noted that Ecuador has shown a relatively good economic performance in recent 

years, but its low starting point means that it still has a way to go before reaching the average level 

of per capita income in the region. Even high levels of poverty and inequality pose the imperative of 

growth. 

One of the weakest points for Ecuador's growth is the low level of total factor productivity (TFP), 

which explains more than 70% of the income gap with the United States are is where the role of 

innovation as an engine of economic growth and productivity takes relevance. 

The existence of a causal link between innovation (especially I+D) and growth is reflected in the 

positive social returns of innovation activities. In the case of Ecuador, the social return rate of 

investment in I+D would be around 47% and that of investment in physical capital around 12%. This 

would imply that investing in I+D is almost four times more profitable than an investment in capital, 

which shows the vast space that exists to invest in I+D and generate value. 

Despite the above, innovation does not occur at optimum levels automatically, since there is a 

set of problems or failures that make the investment in innovation by agents less than the social 

optimum. These problems can be grouped into four categories: 

1. Insufficient appropriation of benefits 

2. Information asymmetries 

3. High uncertainty 

4. Coordination problems 

From the analysis of existing indicators and the processing of quantitative information, it is 

observed that Ecuador has a long way to go. Concerning the regulatory framework and the business 

climate, in Ecuador, people need a lot of days, procedures and money to open a company. 

As for the protection of intellectual property, it is inferior to that of all the reference countries in 

the region. The levels of use of standards remain low compared to the rest of the region 

Tax schemes and benefits need higher specificity: they are incentives that favor the retention of 

profits, which affects the investment in working capital, but they do not point to invest in innovation 

in a particular way. On the positive side, levels of broadband penetration have increased steadily in 

recent years and are expected to continue to do so; even Ecuador has been the country in Latin 

America where the use of the Internet has grown fastest in recent years. 

Respectively, different inputs for innovation are analyzed, both empirically and conceptually 

for the Ecuadorian case, where countries of the region and developed economies are used as a point 

of comparison. Specifically, investment in I+D and its composition, human talent, and access to credit 

through the financial market are studied. 
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The indicator traditionally used to measure the intensity of innovation activities in an economy 

is the expenditure made in I+D. Human talent is another indicator that is used to measure innovation 

concerning the Gross Domestic Product, in this sense, Ecuador has achieved significant 

improvements in the enrolment of students in educational institutions and adequate access to higher 

education of the students lower quintiles. 

Concerning the quality of children's education, Ecuador has participated in some international 

comparative learning tests, in which it has been documented that the quality of a year in school for 

the average child in this country is well below international standards and, in the Latin American 

context, it is among the lowest. On the other hand, both the quality and relevance of the education of 

higher education also present deficiencies. 

It should be noted that Ecuador is one of the Latin American countries with the lowest number 

of professionals trained in the fields of engineering and sciences. However, in recent years, the public 

sector has committed a significant amount of resources to reverse this situation. Along with the efforts 

aimed at raising the coverage and quality of education that is taught in the country, those aimed at 

promoting the advanced training of professionals, particularly abroad, stand out. 

Economic growth, productivity, and innovation have unique importance concerning access to 

financing; specific data are not available for innovation activities for Ecuador. However, there is a 

history of access to credit by companies in general that have a direct impact on the Gross Domestic 

Product. 

The main variables that allow us to estimate how successful the results of the inputs are in the 

contribution of technological innovation to the gross domestic product in Ecuador are those related 

to patents, publications, and the export of technology. With regard to the evolution of the number of 

applications entered and the registration of intellectual property in the Ecuadorian Institute of 

Intellectual Property (IEPI in Spanish), the country has not experienced a substantial change, but only 

minimal variations are recorded. 

Regarding high technology exports, Ecuador has a very low share compared to the rest of the 

region. These pieces of evidence allow us to see in a general way the current panorama of the National 

System of Innovation (SNI in Spanish) of Ecuador, an economy that has made great efforts to 

strengthen its innovation activities, but with significant challenges still to be solved. 

Consequently, the level of investment in innovation of an economy is determined by a series of 

factors, both on the side of inputs and environmental conditions, as well as the results that these 

inputs and the characteristics that the economy generate. On the side of the environmental factors 

that facilitate innovation, it is worth mentioning: 

The regulatory framework  

Protection of intellectual property 

Quality control, standardization, and metrology  

Tax incentives  

Information and communication technologies (TIC) 

Productivity is essential for economic growth and the competitiveness of an economy since it 

reflects the efficiency level of that economy in the generation of its product. Productivity is not 

everything, but in the long term, it is almost everything. A country's ability to improve its standard 

of living over time depends almost exclusively on its ability to increase its output per worker [4]. 

Total factor productivity represents economic growth that is not explained by productive 

factors, capital, and labor. The technology produces improvements in efficiency, as well as positive 

externalities that contribute to an increase in production. Therefore, if the productive factors were 

increased, production would grow more than proportionally, since technological improvement 

affects the final result.  

Current approaches lack analysis of interrelations and uncertainty/indeterminacy for analysis of 

technological innovation contribution to gross domestic. The use of neutrosophy in cognitive maps 

is useful because it contributes to the treatment of indetermination and inconsistent information [5].  
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Neutrosophic cognitive maps (NCM) are an extension of fuzzy cognitive maps, including 

indetermination in causal relations [6, 7]. Fuzzy cognitive maps do not include an indeterminate 

relationship [8], making it less suitable for real-world applications. 

In the present study, an analysis of the proposal is made where the possibility of dealing with 

the interdependencies, the feedback, and indetermination of the technological innovation, and its 

contribution to the Gross Domestic Product through the use of neutrosophic cognitive maps are 

presented.  

Fuzzy cognitive maps (FCM)  are a tool for modeling causal relations interrelations [9]. 

Connections in FCMs are just numeric, and the relationship between two events should be linear [10].  

On the other hand, neutrosophy operates with indeterminate and inconsistent information, while 

fuzzy sets and intuitionistic fuzzy do not [5]. Neutrosophic cognitive maps (NCM) are an extension 

of FCM where was included the concept indeterminacy [6, 7], whereas of fuzzy cognitive maps fails 

to deal with this kind of relation [8].  Neutrosophics decision support is an area of active research 

with new development in areas of application [11, 12, 13] and group decision making for example 

[14,15]. 

In this paper, a model for the analysis of Technological Innovation projects contribution to Gross 

Domestic Product based on neutrosophic cognitive maps and PESTEL analysis is presented, 

providing methodological support and making possible dealing with real-world facts like 

interdependence, indeterminacy and feedback, indeterminacy. This paper continues as follows: 

Section 2 reviews some essential concepts about NCM. In Section 3, a framework for the show a static 

analysis based on NCM. Section 4, displays a case study of the proposed model. The paper finishes 

with conclusions and additional work recommendations. 

2. Neutrosophic cognitive maps  

Neutrosophic Logic (NL) is a generalization of the fuzzy logic that was introduced in 1995 [16]. 

According to this theory, a logical proposition P is characterized by three neutrosophic components: 

NL (P) = (T, I, F)                                               (1) 

Where the neutrosophic component the degree of true is T, the degree of falsehood is F, and I is 

the degree of indeterminacy [9]. Neutrosophic set (NS) was introduced by F. Smarandache, who 

introduced the degree of indeterminacy (i) as an independent component [11]. 

Additionally, a neutrosophic matrix is a matrix where the elements are a =  (aij)  have been 

replaced by elements in 〈R ∪ I〉. A neutrosophic graph is a graph with at least one neutrosophic edge 

[7]. If a cognitive map includes indetermination, it is called the neutrosophic cognitive map (NCM) 

[9].  NCM is based on neutrosophic logic to represent uncertainty and indeterminacy in cognitive 

maps to deal with real-world problems  [17]. An NCM is a directed graph in which at least one edge 

is an indeterminate border and is indicated by dashed lines [7] (Figure 2). 

 
Figure 1. Neutrosophic Cognitive Maps example. 
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In [9] a static analysis of an NCM is presented. The result of the static analysis is in the form of 

neutrosophic numbers (a+bI, where I = indeterminacy). A neutrosophic number is a number as 

follows [14] : 

𝑁 = 𝑑 + 𝐼                                                                  (2) 

Where d is the determinacy part, and i is the indeterminate part. For example s: a=5 +I si 𝑖 ∈

[5, 5.4] is equivalent to  𝑎 ∈ [5, 5.4]. 

Let 𝑁1 = 𝑎1 + 𝑏1𝐼  and  𝑁2 = 𝑎2 + 𝑏2𝐼  be two neutrosophic numbers then the following 

operational relation of neutrosophic numbers  are defined as follows [17]:  

 𝑁1 +  𝑁2 = 𝑎1 + 𝑎1 + (𝑏1 + 𝑏2)𝐼 ; 

𝑁1 −  𝑁2 = 𝑎1 − 𝑎1 + (𝑏1 − 𝑏2)𝐼   

A de-neutrosophication process as proposed by Salmeron and Smarandache could be applied 

giving final ranking values [13]. In the de-neutrosophication process, a neutrosophic value is 

converted in an interval with two values, the maximum and the minimum value for I. The 

neutrosophic centrality measure will be an area where the upper limit has I =1 and the lower limit 

has I = 0. 

3. Proposed Framework 

The aim was to develop and further detail a framework based on PESTEL and NCM [15] to 

analyze the contribution of technology to  Gross national product (GNP). The model was made in 

five steps (graphically, figure 3).  

  
Figure. 2. The proposed framework for PESTEL analysis [15] 

.3.1 Factors and sub-factors identification in the PESTEL method 

In this step, the significant PESTEL factors and sub-factors were recognized. Identify factors and 
subfactors to form a hierarchical structure of the PESTEL model. Sub-factors are categorized according to the 
literature [18].   

3.2 Modelling interdependencies 

In this step, causal interdependencies between PESTEL sub-factors are modeled, consists of the 

construction of NCM of subfactors following the point views of an expert or a group of experts. 

If a group of experts (k) participates, the adjacency matrix of the collective NCM is calculated as 

follows:  

E = μ(E1, E2, … , Ek)                                                         (3) 

The μ operator is usually the arithmetic mean [20]. 

 3.3 Calculate centrality measures 

Centrality measures are calculated [21] with absolute values of the adjacency matrix from the 

NCM  [19]: 

 Outdegree od (𝑣𝑖) is the summation of the row of absolute values of a variable in the 

neutrosophic adjacency matrix and shows the aggregated strengths of connections (𝑐𝑖j) 

leaving the node. 

𝑜𝑑(𝑣𝑖) = ∑ 𝑐𝑖𝑗
𝑁
𝑖=1                                                     (4) 
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 Indegree 𝑖𝑑(𝑣𝑖)  is the summation of the column of absolute values of a variable, and 

it shows the total strength of variables entering into the node. 

        𝑖𝑑(𝑣𝑖) = ∑ 𝑐𝑗𝑖
𝑁
𝑖=1                                                        (5) 

 The centrality degree (total degree 𝑡𝑑(𝑣𝑖)), of a variable is the total sum of its indegree 

and outdegree  

       𝑡𝑑(𝑣𝑖) = 𝑜𝑑(𝑣𝑖) + 𝑖𝑑(𝑣𝑖)                                                   (6) 

3.4 Factors classification and ranking 

The factors were categorized according to the next rules: 

 The variables are a Transmitter (T) when having a positive or indeterminacy 

outdegree, 𝑜𝑑(𝑣𝑖) and zero indegree, 𝑖𝑑(𝑣𝑖). 

 The variables give a Receiver (R) when having a positive indegree or 

indeterminacy, 𝑖𝑑(𝑣𝑖)., and zero outdegree, 𝑜𝑑(𝑣𝑖). 

 Variables receive the Ordinary (O) name when they have a non-zero degree, and these 

Ordinary variables can be considered more or less as receiving variables or transmitting 

variables, depending on the relation of their indegrees and outdegrees. 

The de-neutrosophication process provides a range of numbers for centrality using as a ground 

the maximum & minimum values of I. A neutrosophic value is changed to a value an interval from 

I=0 to I=1. 

The importance of a variable in an NCM can be known by calculating its degree of centrality, 

which shows how the node is connected to other nodes and what is the total force of these 

connections. The median of the extreme values as proposed by Merigo [23] is used  to give a real 

number as a centrality value : 

𝜆([𝑎1, 𝑎2]) =
𝑎1+ 𝑎2

2
                                                                (7) 

Then  

𝐴 > 𝐵 ⇔
𝑎1+ 𝑎2

2
>

𝑏1+ 𝑏2

2
                                                            (8) 

Finally, a ranking of variables is given.  

3.3 Factor prioritization  

The numerical value obtained in the previous step is used for sub-factor ranking and/or 

reduction [21,22]. Threshold values may be set for subfactor reduction. Additionally, sub-factor could 

be grouped to extend the analysis to ecological, economic, legal, political, social and technological 

general factors.  

4. Case Study 

Figure 4 shows the factors from the PESTEL model that are obtained for the analysis of the 

factors that have the greatest impact on technological innovation and that have an impact on 

Ecuador's gross domestic product.  

 
Figure 4. Factors identified through the PESTEL technique. 
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Obtained the characteristics corresponding to the factors of the PESTEL model, later are 

analyzed taking into account that the PESTEL model is a strategic analysis technique to define the 

context of a determined area through the analysis of a series of external factors [18, 19].  The PESTEL 

analysis incorporates in PEST analysis the ecological and legal factors into the so that in the present 

investigation, a PEST analysis was previously carried out and extended to include those factors. 

In the present study, neutrosophic cognitive maps, for better interpretability is used as a tool for 

modeling the characteristics that are related the factors that affect technological innovation and that 

have an impact on Ecuador's gross domestic product. 

For the evaluation of the PESTEL factors are modeling with a neutrosophic cognitive map.  The 

factors found with the PESTEL technique and the causal connection to each factor that was 

represented in figure 4 are taken into account.  NCM is used as a tool for modeling the characteristics 

that are related to the factors that affect technological innovation and that have an impact on 

Ecuador's gross domestic product. The neutrosophic cognitive map in the present study is developed 

through experts’ knowledge. The neutrosophic adjacency matrix obtained is shown in Table 1. 

 

Table 1. Neutrosophic adjacency matrix. 

 P1 E1 S1 T1 C1 L1 

P1 0 0 0 0 0 0 

E1 0 0 0 0 0 0 

S1 0.4 0 0 0 0 0 

T1 0 0 0 0 0 0 

C1 0 0 0 0 0.25 0 

L1 0 0 0 0 0.25 0 

 

Based on the neutrosophic adjacency matric centralities measures are calculates (Table 2) 

 

Table 2. Measures of centrality, outdegree, indegree 

Node Id Od 

P1 0.4 0 

E1 0 0 

S1 0 0.4 

T1 0 0 

C1 0.25 0.25 

L1 0 0.25 

 

When the centrality measures are calculated, the nodes of the neutrosophic cognitive map are 

classified according to rules presented in section 3.4. 

 

Table 3. Classification of the nodes. 
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The total centrality (total degree 𝑡𝑑 (𝑣𝑖)), is calculated through equation 6. Finally, we work with 

the mean of the extreme values, which is calculated through equation 7, which is useful to obtain a 

real number value [24]. A value that contributes to the identification of the characteristics to be 

prioritized according to the factors obtained with the PESTEL framework. The results are the same 

as those shown in Table 4. 

Table 4. Total centrality. 

 td 

P1 0.4 

E1 0 

S1 0.4 

T1 0 

C1 0.50 

L1 0.25 

 

From these numerical values, the following ranking is obtained: 

 

𝐂𝟏 ≻ 𝐏𝟏 ≈ 𝐒𝟏 ≻ 𝐋𝟏 ≻ 𝐄𝟏 ≈ 𝐓1 

Factors to address in terms of technological innovation, which have an impact on Ecuador's 

gross domestic product, are mainly ecological, political, social and legal. The measures of the central 

position of the factors obtained through the PESTEL technique and analyzed according to the use of 

the static analysis in NCMS are shown in Figure 5. Each sub-factor were grouped to obtain the results.  

 

 
 

Figure 5. Central position values grouped by factors. 

 

The results show the importance of political and legal factors related to technological innovation 

projects to gross domestic products growth in Ecuador. Furthermore, economical and technology 

factor have least importance but further work need to be developed. Handling the problem as a 

multiobjetive / multicriteria one [28,29], the use of SVN numbers and another neutrosophic tool for 

better interpretability are among future improvements in the method proposed in this paper [30, 31]. 

5. Conclusions   

In the present study, a characterization of the factors to be attended in terms of technological 

innovation is carried out, according to its impact on Ecuador's gross domestic product. The PESTEL 
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technique was used, which contributed to the analysis of the environment, identifying the 

fundamental factors that have a significant impact on technological innovation factors impacting 

Ecuador’s gross domestic product. The characteristics were modeled using neutrosophic cognitive 

maps, taking into account the indeterminacy and interdependencies between the characteristics and 

the factors identified with the PESTEL technique. A quantitative analysis based on the static analysis 

provided by the use was made of neutrosophic cognitive maps and centrality measures. It is shown 

that technological innovation, which has an impact on Ecuador's gross domestic product, must be 

addressed in terms of ecological, political, social and legal factors mainly. The case study shows the 

importance of political and legal factors related to technological innovation projects to gross domestic 

products growth in Ecuador  

 Future work will concentrate on extending the model to express importance and interrelation 

using Fuzzy/Neutrosophic Decisions Maps. Another are of future work is development of a software 

tool to support the process.  
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1. Introduction

Galois is well known as the first researcher associating group theory and field theory, along the 

theory particularly called Galois theory. The concept of groupoid gives a more flexible and powerful 

approach to the concept of symmetry (see [1]). Symmetry groups come out in the review of 

combinatorics outline and algebraic number theory, along with physics and chemistry. For instance, 

Burnside’s lemma can be utilized to compute combinatorial objects related along symmetry groups. 

A group action is a precise method of solving the technique wither the elements of a group meet 

transformations of any space in a method such protects the structure of a certain space. Just as there 

is a natural similarity among the set of a group elements and the set of space transformations, a 

group can be explained as acting on the space in a canonical way. A familiar method of defining 

no-canonical groups is to express a homomorphism f from  a group G  to the group of

symmetries ( an object is invariant to some of different transformations; including reflection, 

rotation) of a set .X The action of an element g G  on a point x X  is supposed to be similar to

the action of its image ( ) ( )f g Sym X  on the point .x  The stabilizers of the action are the vertex

groups, and the orbits of the action are the elements, of the action groupoid. Some other facts about 

group theory can be revealed in [2-5].  

Neutrosophy is a new branch of philosophy, presented by Florentic Smarandache [6] in 1980, 

which studies the interactions with different ideational spectra in our everyday life. A NET is an 

object of the structure (x,eneut(x) ,eanti(x) ), for x N , was firstly presented by Florentin 
Smarandache [7-9] in 2016. In this theory, the extended neutral and the extended opposites can 

similar or non-identical from the classical unitary element and inverse element respectively. The 

NETs are depend on real triads: (friend, neutral, enemy), (pro, neutral, against), (accept, pending, 

reject), and in general (x,neut(x),anti(x)) as in neutrosophy is a conclusion of Hegel’s dialectics that 

is depend on x and anti x( ) . This theory acknowledges every concept or idea x together
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along its opposite  and along their spectrum of neutralities ( )neut x  among them. 

Neutrosophy is the foundation of neutrosophic logic, neutrosophic set, neutrosophic probability, 

and neutrosophic statistics that are utilized or applied in engineering (like software and information 

fusion), medicine, military, airspace, cybernetics, and physics. Kandasamy and Smarandache [10] 

introduced many new neutrosophic notions in graphs and applied it to the case of neutrosophic 

cognitive and relational maps. The same researchers [11] were introduced the concept of 

neutrosophic algebraic structures for groups, loops, semi groups and groupoids and also their N 
algebraic structures in 2006. Smarandache and Mumtaz Ali [12] proposed neutrosophic triplets and 

by utilizing these they defined NTG and the application areas of NTGs. They also define NT field 

[13] and NT in physics [14]. Smarandache investigated physical structures of hybrid NT ring [15]. 

Zhang et al [16] examined the Notion of cancellable NTG and group coincide in 2017. Şahın and 

Kargın [17], [18] firstly introduced new structures called NT normed space and NT inner product 

respectively. Smarandache et al [19] studied new algebraic structure called NT G-module which is 

constructed on NTGs and NT vector spaces. The above set theories have been applied to many 

different areas including real decision making problems [20-44]. Furthermore, Abdel Basset et al 

applied this theory to decision making approach for selecting supply chain sustainability metrics 

[48], an approach of TOPSIS technique [49, 51], iot-based enterprises [50, 52], calculation of the green 

supply chain management [53] and neutrosophic ANP and VIKOR method for achieving sustainable 

supplier selection [54]. 

   The paper deals with action of a NET set on NETGs and Burnside’s lemma. We provide basic 

definitions, notations, facts, and examples about NETs which play a significant role to define and 

build new algebraic structures. Then, the concept of NET orbits, stabilizers, fixed points and 

conjugates are given and their difference between the classical structures are briefly discussed. 

Finally, some results related to NET group actions and Burnside’s lemma are obtained. 

2. Preliminaries  

Since some properties of NETs are used in this work, it is important to have a keen knowledge 

of NETs. We will point out some few NETs and concepts of NET group, NT normal subgroup, and 

NT cosets according to what needed in this work. 

Definition 2.1 [12, 14] A NT has a form     ,  ,  ,a neu at nti aa for     , ,a a Na neut anti  , 
accordingly  neut a  and  anti a N  are neutral and opposite of ,a  that is different from the 
unitary element, thus: ( ) ( )a neut a neut a a a     and ( ) ( ) ( )a anti a anti a a neut a     
respectively. In general, a  may have one or more than one neut's and one or more than one anti's. 

Definition 2.2 [8, 14] A NET is a NT, defined as definition 1, but where the neutral of a  
(symbolized by 

( )neut ae  and called "extended neutral") is equal to the classical unitary element. As a 
consequence, the "extended opposite" of a , symbolized by 

( )anti ae  is also same to the classical 
inverse element. Thus, a NET has a form 

( ) ( )( , , )neut a anti aa e e , for ,a N where 
( )neut ae  and 

( )anti ae   in N  are the extended neutral and negation of a  respectively, thus : 
( ) ( ) ,neut a neut aa e e a a     

which can be the same or non-identical from the classical unitary element if any and  
( ) ( ) ( ).anti a anti a neut aa e e a e     

Generally, for each a ∊ N there are one or more 
( )neut ae 's and 

( )anti ae 's. 

Definition 2.3 [12, 14] Suppose ( , )N   is a NT set. Subsequently ( , )N   is called a NTG, if the 

axioms given below are holds. 

(1) ( , )N  is well-defined, i.e. for and  ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N  

one    has ( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b N   

(2)  ( , )N   is associative, i.e. for any  



Neutrosophic Sets and Systems, Vol. 30, 2019     46  

 

 

 
Moges Mekonnen Shalla and Necati Olgun, Neutrosophic Extended Triplet Group Action and Burnside’s Lemma 

one has ( , ( ), ( )) ( , ( ), ( ) ( , ( ), ( )) .a neut a anti a b neut b anti b c neut c anti c N    

Theorem 2.4 [46] Let ( , )N   be a commutative NET relating to   and

( , ( ), ( )), ( , ( ), ( ))a neut a anti a b neut b anti b N ; 
 (i)    ( ) ( ) ( );neut a neut b neut a b    
 (ii)  ( ) ( ) ( );anti a anti b anti a b    

 

Definition 2.5 [8, 14] Assume ( , )N   is a NET strong set. Subsequently ( , )N   is called a NETG, if 
the axioms given below are holds. 

(1)  ( , )N   is well-defined, i.e. for any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N  
     one has ( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b N    
(2)  ( , )N   is associative,  
     i.e. for any ( , ( ), ( )), ( , ( ), ( )), ( , ( ), ( )) ,a neut a anti a b neut b anti b c neut c anti c N one has 

 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).

a neut a anti a b neut b anti b c neut c anti c

a neut a anti a b neut b anti b c neut c anti c

 

  

 

Definition 2.6 [47] Assume that 
1

( , )N   and 
2

( , )N  are two NETG’s. A mapping 

1 2
:f N N  is called a neutro-homomorphism if: 

(1)  For any 
1

( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b N we have 

 

   

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

f a neut a anti a b neut b anti b

f a neut a anti a f b neut b anti b



 

 

 (2)  If ( , ( ), ( ))a neut a anti a is a NET from 
1
,N Then 

   ( ) ( )f neut a neut f a and    ( ) ( ) .f anti a anti f a  
 
Definition 2.7 [45] Assume that 

1
( , )N  is  a NETG and H is a subset of 

1
.N  H is called a NET 

subgroup of N  if itself forms a NETG under .  On other hand it means : 
  (1)  

( )neut ae lies in .H  
  (2)  For any ( , ( ), ( )), ( , ( ), ( ) ,a neut a anti a b neut b anti b H  

( , ( ), ( )) ( , ( ), ( ) .a neut a anti a b neut b anti b H   
       (3)  If ( , ( ), ( )) ,a neut a anti a H  then 

( ) .anti ae H  
Definition 2.8 [45] A NET subgroup H  of a NETG N  is called a NT normal subgroup of N  if 
( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))a neut a anti a H H a neut a anti a a neut a anti a N   and we represent it 
as .H N(  

3. NET Group Action 

    A NETG action is a representation of the elements of a NETG as a symmetries of a NET set. It is a 
precise method of solving the technique in which the elements of a NETG meet transformations of 
any space in a method that maintains the structure of that space. Just as a group action plays an 
important role in the classical group theory, NETG action enacts identical role in the theory of NETG 
theory. 

Definition 3.1 An action of N on X (left NETG action) is a map N X X  denoted  

 ( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

as shown          1( , ( ), ( )) ( , ( ), ( ))x neut x anti x x neut x anti x  

and             
 

 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n h neut h anti h x neut x anti x

n neut n anti n h neut h anti h x neut x anti x
 

for all in X and ( , ( ), ( )), ( , ( ), ( ))n neut n anti n h neut h anti h in .N Given a 
NET action of N on ,X we call X a N  set. A N map between N  sets X and Y is a map 

:f X Y of NET sets that respects the N action, meaning that,  
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   ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))f n neut n anti n x neut x anti x n neut n anti n f x neut x anti x for 
all in X and ( , ( ), ( ))n neut n anti n in .N To give a NET action of N on X
is equivalent to giving a NETG neutro-homomorphism from N to the NETG of bijections of .X  
Note that a NETG action is not the same thing as a binary structure, we combine two elements of X
to get a third element of X (we combine two apples and get an apple). In a NETG action, we 
combine an element of N with an element of X to get an element of X (we combine an apple and 
an orange and get another orange). 
It is critical to note that  ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n h neut h anti h x neut x anti x  has two 
actions of N on elements of .X under other conditions 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))n neut n anti n h neut h anti h x neut x anti x  
has one multiplication in the NETG  ( , ( ), ( ))( , ( ), ( ))n neut n anti n h neut h anti h and then one 
action of an element of N on .X  

Example 3.2 For a NET subgroup ,H N  consider the left NT coset space 
 ( , ( ), ( )) : ( , ( ), ( )) .N a neut a anti a H a neut a anti a NH    (We do not care wether or not 
,H N  as we are just thinking about N

H as a set.) Let N act on N
H  by left multiplication. 

That is for ( , ( ), ( ))n neut n anti n N and a left NT coset ( , ( ), ( ))a neut a anti a H (
( , ( ), ( ))a neut a anti a N ), set  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))
( , ( ), ( ))( , ( ), ( )) :

.
( , ( ), ( )) ( , ( ), ( ))

n neut n anti n a neut a anti a H n neut n anti n a neut a anti a H
n neut n anti n y neut y anti y
y neut y anti y a neut a anti a H

 

 
  

 

 

This is an action of N on ,N
H  since ( , ( ), ( )) ( , ( ), ( ))1 a neut a anti a H a neut a anti a HN  and  

 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut anti a neut a anti a Hn n n n n n
neut anti neut anti a neut a anti a Hn n n n n n

 

 
 

 

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2
( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2

neut anti neut anti a neut a anti a Hn n n n n n
neut anti neut anti a neut a anti a Hn n n n n n




 

Note: NET Groups Acting Independently by Multiplication 

All NETG acts independently like so, NET set N N and .X N Then for 
( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) ,n neut n anti n X N   we define 

 ( , ( ), ( )) ( , ( ), ( ))n neut n anti n n neut n anti n
 ( , ( ), ( )) ( , ( ), ( )) .n neut n anti n n neut n anti n X N    

Example 3.3 Each NETG N  acts independently  X N by left multiplication functions. In other 

words, we set :( , ( ), ( )) N Nn neut n anti n  by 

 ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) h neut h anti h n neut n anti n h neut h anti hn neut n anti n   

for all ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .h neut h anti h H  Subsequently,  the axioms for 

being a NETG action are ( , ( ), ( )) ( , ( ), ( ))1 h neut h anti h h neut h anti hN   for all 

( , ( ), ( ))h neut h anti h N and  

 ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )1 1 1 2 2 2neut anti neut anti h neut h anti hn n n n n n  

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti h neut h anti hn n n n n n  
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for all ( , ( ), ( )),( , ( ), ( )),( , ( ), ( )) ,1 1 1 2 2 2neut anti neut anti h neut h anti h Nn n n n n n  which are both 

true whereby 1N  is a neutrality and multiplication in N is associative. 

The notation for the NET effect of N is ( , ( ), ( ))n neut n anti n  or  

 ( , ( ), ( ))( , ( ), ( )) x neut x anti xn neut n anti n  

simply as ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x or  

( , ( ), ( ))( , ( ), ( )).n neut n anti n x neut x anti x  

In this explanation, the conditions for the left NETG action take the succeeding shape: 

i. for all ( , ( ), ( )) , ( , ( ), ( )) ( , ( ), ( )).1x neut x anti x X x neut x anti x x neut x anti xN   
ii. for every ( , ( ), ( )),( , ( ), ( ))1 1 1 2 2 2neut anti neut anti Nn n n n n n  an

( , ( ), ( )) ,x neut x anti x X  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )).1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

Theorem 3.4 Let a NETG action N act on the NET set .X  If 
( , ( ), ( )) , ( , ( ), ( )) ,x neut x anti x X n neut n anti n N  and  

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )),y neut y anti y n neut n anti n x neut x anti x  
then 

1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).x neut x anti x n neut n anti n y neut y anti y    
If ( , ( ), ( )) ( ', ( '), ( '))x neut x anti x x neut x anti x then  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( ')).n neut n anti n x neut x anti x n neut n anti n x neut x anti x    
Proof : From ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))y neut y anti y n neut n anti n x neut x anti x   we get 

 

1

1

( , ( ), ( )) ( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

n neut n anti n y neut y anti y
n neut n anti n n neut n anti n x neut x anti x








 

 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n n neut n anti n x neut x anti x  
( , ( ), ( ))1 x neut x anti xN ( , ( ), ( )).x neut x anti x  

To show ( , ( ), ( )) ( ', ( '), ( '))x neut x anti x x neut x anti x   

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( ', ( '), ( ')),n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

we show the contrapositive : if  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( ', ( '), ( '))n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

then applying 
1( , ( ), ( ))n neut n anti n 

to both sides gives  

 

 

1

1

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n n neut n anti n x neut x anti x





 

  
 

so  

 

 

1

1

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( '))

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n n neut n anti n x neut x anti x







 
 

so 
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( , ( ), ( )) ( ', ( '), ( ')).x neut x anti x x neut x anti x  

On the other hand to imagine action of a NETG on a NET set is such it’s a definite 
neutro-homomorphism. On hand are the facts. 

Theorem 3.5 Actions of the NETG N on the NET set X are identical NETG 
neutro-homeomorphisms from ( ),N Sym X  the NETG of permutations of .X  

Proof: Assume we’ve an action of N on the NET set .X  We observe 

( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x as a function of (with 

( , ( ), ( ))n neut n anti n fixed). That is, for each ( , ( ), ( ))n neut n anti n N we have a function 

:( , ( ), ( )) X Xn neut n anti n  by 

 ( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).

n neut n anti n
x neut x anti x n neut n anti n x neut x anti x    

The axiom ( , ( ), ( )) ( , ( ), ( ))1 x neut x anti x x neut x anti xN  says 1 is the neutrality function on .X  

The axiom 

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut anti x neut x anti xn n n n n n   

says 

( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2
,( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

neut anti neut antin n n n n n

neut anti neut antin n n n n n

 


 

so structure of functions on X match multiplication in .N Additionally, ( , ( ), ( ))n neut n anti n is 

an invertible function whereby 1( , ( ), ( ))1 1 1neut antin n n  is an anti-neutral: the composite of 

( , ( ), ( ))1 1 1neut antin n n and 1( , ( ), ( ))1 1 1neut antin n n  is ,1 which is the neutral function on 

.X Therefore, 
1 1 1

( , ( ), ( ))
( )neut anti Sym Xn n n  and 

1 1 1
( , ( ), ( ))

( , ( ), ( )) neut antin neut n anti n n n n is a 

neutro-homomorphism ( ).N Sym X  

    Contrariwise, assume we’ve a homomorphism : ( ).f N Sym X  For every 

( , ( ), ( )),n neut n anti n  we have a permutation  ( , ( ), ( ))f n neut n anti n  on ,X  and  

 ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2f neut anti neut antin n n n n n  

   ( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2f neut anti f neut antin n n n n n  

Setting ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x  

  ( , ( ), ( )) ( , ( ), ( ))f n neut n anti n x neut x anti x  
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introduces a NETG action of  N on ,X whereby the neutro-homomorphism properties of f
submits the defining properties of a NETG action. From this view point, the NET set of 
( , ( ), ( ))n neut n anti n N  that act trivially  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x   

for all ( , ( ), ( ))x neut x anti x X is straightforwardly the neutrosophic kernel of the 

neutro-homomorphism ( )N Sym X related to the action. Consequently the above mentioned 

( , ( ), ( ))n neut n anti n such act trivially on X are assumed to lie in the neutrosophic kernel of the 

action. 

Example 3.6 To build N act independently by conjugation, take X N  and let 

( , ( ), ( )) ( , ( ), ( ))
1( , ( ), ( ))( , ( ), ( )) .( , ( ), ( ))

n neut n anti n x neut x anti x

n neut n anti n x neut x anti x n neut n anti n




 

Here, ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .x neut x anti x N  Since 

1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1x neut x anti x x neut x anti x x neut x anti xN N N    

and  

 ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2
( , ( ), ( ))1 1 1

neut anti neut anti x neut x anti xn n n n n n
neut antin n n

 

 
 

 

 

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 2 2 2

( , ( ), ( ))1 1 1
1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 2 2 2

1( , ( ), ( ))1 1 1
( , ( ), (1 1 1

neut anti x neut x anti x neut antin n n n n n

neut antin n n

neut anti x neut x anti x neut antin n n n n n

neut antin n n
neut antin n n









 

 

 

))( , ( ), ( )) ( , ( ), ( ))2 2 2
1( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),1 1 1 2 2 2

neut anti x neut x anti xn n n

neut anti neut antin n n n n n
neut anti neut anti x neut x anti xn n n n n n



 

 

neutrosophic conjugation is a NET action. 

Definition 3.7 Assume such N is a NETG and X is a NET set. A right NETG action of N on X is 
a rule for merging elements ( , ( ), ( ))n neut n anti n N and elements ( , ( ), ( )) ,x neut x anti x X
symbolized by ( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x  

 ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x X  for all ( , ( ), ( ))x neut x anti x X and  

( , ( ), ( )) .n neut n anti n N We also need the succeeding conditions. 

I. ( , ( ), ( )) ( , ( ), ( ))1x neut x anti x x neut x anti xN for all ( , ( ), ( )) .x neut x anti x X  



Neutrosophic Sets and Systems, Vol. 30, 2019     51  

 

 

 
Moges Mekonnen Shalla and Necati Olgun, Neutrosophic Extended Triplet Group Action and Burnside’s Lemma 

II. 
 

 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

x neut x anti x neut anti neut antin n n n n n
x neut x anti x neut anti neut antin n n n n n

 


 

for all ( , ( ), ( ))x neut x anti x X and ( , ( ), ( )),( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   

Remark 3.8 Left NETG actions are not very distinct from right NETG actions. The only distinction 
exists in condition (ii). 

 For left NETG actions, implementing ( , ( ), ( ))2 2 2neut antin n n to an element and then applying 

( , ( ), ( ))1 1 1neut antin n n to the result is the same as applying  

( , ( ), ( ))( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   

 For right NETG actions applying ( , ( ), ( ))2 2 2neut antin n n and then ( , ( ), ( ))1 1 1neut antin n n is 

the same as applying ( , ( ), ( ))( , ( ), ( )) .2 2 2 1 1 1neut anti neut anti Nn n n n n n   

Let us see the example of a right NETG action (beyond the Rubik’s cube example, which as we wrote 
things is a right NETG action). Also it is easy to do matrices multiplying vectors from the right. 

Example 3.9 (A NETG acting on a NET set of NT cosets). Assume such N is a NETG and H is a 
NET subgroup. Examine the NET set  / ( , ( ), ( ))X Ha a neut a anti a N  of right NT cosets of 

.H subsequently N acts on X by right multiplication, That is, we describe 

 

 

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

H a neut a anti a n neut n anti n

H a neut a anti a n neut n anti n




 

for ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .H a neut a anti a X First let’s chect that this is well 

defined, hence assume such ( , ( ), ( )) ( ', ( '), ( ')),H a neut a anti a H a neut a anti a then 

1( ', ( '), ( '))( , ( ), ( )) .a neut a anti a a neut a anti a H  Now, we have to prove that  

for any ( , ( ), ( )) .n neut n anti n N But 
1( ', ( '), ( '))( , ( ), ( ))a neut a anti a a neut a anti a H  so that  

 

 

1

( ', ( '), ( '))( , ( ), ( ))
( , ( ),

( ', ( '), ( '))( , ( ), ( ))
( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

a neut a anti a n neut n anti n
a neut a

a neut a anti a a neut a anti a
anti a n neut n anti n

H a neut a anti a n neut n anti n

  
  

 



 

so that  

( , ( ), ( ))( , ( ),
( ', ( '), ( '))( , ( ), ( )) .

( ))
a neut a anti a n neut n

a neut a anti a n neut n anti n H
anti n
 

  
 

 

But certainly  ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n also contains  

   ( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n H a neut a anti a n neut n anti n
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 ( ', ( '), ( '))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( )).1 a neut a anti a n neut n anti n a neut a anti a n neut n anti nN   

Thus the two cosets  ( , ( ), ( ))( , ( ), ( ))H a neut a anti a n neut n anti n and 

 ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n  have the elements 

( ', ( '), ( '))( , ( ), ( ))a neut a anti a n neut n anti n in common. This proves that  

   ( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))H a neut a anti a n neut n anti n H a neut a anti a n neut n anti n  

since NT cosets are either same or separate.  

Now we’ve proved that this is well defined, we have to show it is also an action. Definitely axiom (i) 

is holds since  

   ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).1 1H a neut a anti a H a neut a anti a H a neut a anti aN N   

Lastly, we have to show axiom (ii). Assume such  

( , ( ), ( )),( , ( ), ( )) .1 1 1 2 2 2neut anti neut anti Nn n n n n n   Then 

  

  

  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1
( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1
( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1

(

H a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n

H

 

 



   

   

, ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))2 2 2 1 1 1

a neut a anti a neut anti neut antin n n n n n

H a neut a anti a neut anti neut antin n n n n n 

 

which proves (ii) and ends the proof. Of course, N also acts on the set of left NT cosets of H by 

multiplication on the left.  

Definition 3.10 A NETG action of N on X is called NET faithful if distinct elements of N act on 
X in dis-similar methods: when ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2neut anti neut antin n n n n n  in ,N  there 

is an ( , ( ), ( ))x neut x anti x X such that  

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )).1 1 1 2 2 2neut anti x neut x anti x neut anti x neut x anti xn n n n n n    

Note that when we say 
1 1 1

( , ( ), ( ))neut antin n n and 2 2 2
( , ( ), ( ))neut antin n n act distinctly, we 

signify they act distinctly somewhere, not all place. This is consistent with what it signifies to say 

two functions are disjoint. They take distinct values somewhere, not all place. 

Example 3.11 The action of N independently by left multiplication is faithful: distinct elements 

send 1N  to distinct places. 
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Example 3.12 When H is a NET subgroup of N and N acts on /N H left multiplication 

( , ( ), ( ))1 1 1neut antin n n  and ( , ( ), ( ))2 2 2neut antin n n  in N act in the similar method on /N H

exactly when  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2neut anti n neut n anti n H neut anti n neut n anti n Hn n n n n n  

for all ( , ( ), ( )) ,n neut n anti n N which means  

1

1( , ( ), ( )) ( , ( ), ( ))2 2 2 1 1 1 ( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( )) .

neut anti neut antin n n n n n n neut n anti n
N n neut n anti n H n neut n anti n 

 



 

So the left multiplication action of N on /N H is NET faithful in the case that the NET subgroups 

1( , ( ), ( )) ( , ( ), ( ))n neut n anti n H n neut n anti n 
 (as ( , ( ), ( ))n neut n anti n  varies) have trivial 

intersection. 

Viewing NETG actions as neutro-homeomorphisms, a NET faithful action of N on X is an 
injective neutro-homomorphism ( ).N Sym X Non faithful actions are not injective as NETG 
neutro-homeomorphisms, and many important homeomorphisms are not injective. 

Remark 3.13 What we’ve been calling a NETG action could be a left and right NETG action. The 

difference among left and right actions is how a product ( , ( ), ( ))( ', ( '), ( '))n neut n anti n n neut n anti n  

acts: in a left action ( ', ( '), ( '))n neut n anti n acts first and ( , ( ), ( ))n neut n anti n acts second, while in 

a right action ( , ( ), ( ))n neut n anti n acts first and ( ', ( '), ( '))n neut n anti n acts second. 

We can introduce the NET conjugate of ( , ( ), ( ))h neut h anti h  by ( , ( ), ( ))n neut n anti n as 

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))n neut n anti n h neut h anti h n neut n anti n  

Instead          
1( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ,n neut n anti n h neut h anti h n neut n anti n 

 

and this convention fits well with the right NET conjugation action but not left action : setting 

( , ( ), ( )) 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))n neut n anti nh neut h anti h n neut n anti n h neut h anti h n neut n anti n

we have 1( , ( ), ( )) ( , ( ), ( ))Nh neut h anti h h neut h anti h and  

 
( , ( ), ( ))2 2 2

1 1 1

1 1 1 2 2 2

( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) .

neut antin n n
neut anti

neut anti neut anti

n n nh neut h anti h

n n n n n nh neut h anti h

 

The distinction among left and right actions of a NETG is mostly unreal, whereby subsetituting 
( , ( ), ( ))n neut n anti n with 

1( , ( ), ( ))n neut n anti n 
in the NETG changes left actions into right 
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actions and contrarily since inversion backwards the order of multiplication in .N So for us “NETG 
action” means “left NETG action”. 

Definition 3.14 Let a NETG N act on NET set .X  For each ( , ( ), ( )) ,x neut x anti x X its orbit is  

 ( , ( ), ( ))( , ( ), ( )):( , ( ), ( ))( , ( ), ( )) n neut n anti n x neut x anti x n neut n anti n N XOrb x neut x anti x     

and its stabilizer is  

 ( , ( ), ( )) :( , ( ), ( ))( , ( ), ( )) .( , ( ), ( )) n neut n anti n N n neut n anti n x neut x anti x NStab x neut x anti x   

(The stabilizer of NET is symbolized by ( , ( ), ( ))N x neut x anti x , where N is 

NETG.) We call  a NET fixed point for the action when 

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x   

for every ( , ( ), ( )) ,n neut n anti n N that is, when  

 ( , ( ), ( ))( , ( ), ( )) x neut x anti xOrb x neut x anti x   

(or equivalently, when ).( , ( ), ( )) NStab x neut x anti x   The orbit of NETs of a point is a geometric 

notion: it is the NET set of places where the points can be moved by the NETG action. Under other 

conditions, the stabilizer of a NET of a point is an algebraic notion: it is the NET set of NETG 

elements that fix the point. Mostly we’ll denote the elements of X as points and we’ll denote the 

size of a NET orbit as its length. 

Definition 3.15 Let N be a NETG, ( , ( ), ( )) ,n neut n anti n N and let H be a NET subgroup of 

.N   

1

1

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) :
( , ( ), ( ))

a neut a anti a H a neut a anti a

a neut a anti a h neut h anti h a neut a anti a
h neut h anti h H



 
  

 

 

is called a NET conjugate of H and the NET center of N is 

( , ( ), ( )) :( , ( ), ( ))( , ( ), ( ))
.

( , ( ), ( ))( , ( ), ( )): ( , ( ), ( ))
a neut a anti a N a neut a anti a n neut n anti n

Z N n neut n anti n a neut a anti a n neut n anti n N
 

 
   

 

Remark 3.16 When we imagine about a NET set as a geometric object, it is useful to describe to its 
elements as points. For instance, when we imagine about /N H as a NET set on which N acts, it is 
helpful to imagine about the NT cosets of ,H which are the elements / ,N H as the points in 

/ .N H  simultaneously, though, a NT coset is a NET subset of .N  
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All of our applications of NETG actions to group theory will flow from the similarities among NET 
orbits, stabilizers, and fixed points, which we now build explicit in our the following fundamental 
examples of NETG actions. 

Example 3.17 When a NETG N acts independently by conjugation, 

a) the NET orbit of ( , ( ), ( ))a neut a anti a is 

        
( , ( ), ( ))( , ( ), ( ))

,( , ( ), ( )) 1( , ( ), ( )) :( , ( ), ( ))

n neut n anti n a neut a anti a
Orb a neut a anti a

n neut n anti n n neut n anti n N

  
     

 

which is the conjugacy class of ( , ( ), ( )),a neut a anti a  

b) 

( , ( ), ( )):( , ( ), ( ))
1( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

n neut n anti n n neut n anti n

a neut a anti a n neut n anti nStab a neut a anti a
a neut a anti a

 
    
 
  

 

c) 



( , ( ), ( ))
( , ( ), ( )) :( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

n neut n anti n
Z a neut a anti a n neut n anti n a neut a anti a

a neut a anti a n neut n anti n


 




 

is the NET centralizer of ( , ( ), ( )).a neut a anti a  

d) ( , ( ), ( ))a neut a anti a is a NET fixed point when it commutes with all elements of ,N and 
thus the NET fixed points of conjugation form the NET center of ,N  and thus the NET 
fixed points of NET conjugation form the center of .N  

Example 3.18 When H acts on N by conjugation, 

i. the orbit of ( , ( ), ( ))a neut a anti a is  

( , ( ), ( ))( , ( ), ( ))
,( , ( ), ( )) 1( , ( ), ( )) :( , ( ), ( ))

h neut h anti h a neut a anti a
Orb a neut a anti a

h neut h anti h h neut h anti h H

  
     

 

which has no special name (elements of N that are H  conjugate to ( , ( ), ( ))a neut a anti a ), 

ii. 







1

( , ( ), ( )) :( , ( ), ( ))
( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) : ( , ( ), ( ))( , ( ), ( ))

( , ( ), (

h neut h anti hStab a neut a anti a
h neut h anti h a neut a anti a h neut h anti h

h neut h anti h

h neut h anti h h neut h anti h a neut a anti a

a neut a anti a









 ))( , ( ), ( ))h neut h anti h
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is the elements of H commuting with ( , ( ), ( ))a neut a anti a (this is  ( , ( ), ( ))H Z a neut a anti a is 

the NET centralizer of ( , ( ), ( ))a neut a anti a in N ). 

iii. ( , ( ), ( ))a neut a anti a  is a NET fixed point when it commutes with all elements of ,H so 

the NET fixed points of H  conjugation on N shape the NET centralizer of H in .N  

Theorem 3.19 the Fundamental Theorem about NETG Action 

 Let a NETG N act on a NET set .X  

a. Different NET orbits of the action are disjoint and form a portion of .X  

b. For each ( , ( ), ( )) , ( , ( ), ( ))x neut x anti x X Stab x neut x anti x is a NET subgroup of N and  

1

( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))
( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti nStab n neut n anti n x neut x anti x
n neut n anti nStab Stabx neut x anti x n neut n anti n




 

for all ( , ( ), ( )) .n neut n anti n N   

c. For each ( , ( ), ( )) ,x neut x anti x X there is a bijections  

/( , ( ), ( )) ( , ( ), ( ))NOrb Stabx neut x anti x x neut x anti x by  

( , ( ), ( ))( , ( ), ( ))
( , ( ), ( )) .( , ( ), ( ))

n neut n anti n x neut x anti x
n neut n anti n Stab x neut x anti x

 

More concretely, 
( , ( ), ( ))( , ( ), ( ))

( ', ( '), ( '))( , ( ), ( ))
n neut n anti n x neut x anti x

n neut n anti n x neut x anti x
 

in the case that ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n lie in the similar NET coset of 

,( , ( ), ( ))Stab x neut x anti x and different NT left cosets of ( , ( ), ( ))Stab x neut x anti x correspond to 

different points in .( , ( ), ( ))Orb x neut x anti x  In particular, if and 

( , ( ), ( ))y neut y anti y are in the same NET orbit then  

( , ( ), ( )) : ( , ( ), ( ))( , ( ), ( ))
( , ( ), ( ))

n neut n anti n N n neut n anti n x neut x anti x
y neut y anti y

 
 
 

 

is a NT left coset of ,( , ( ), ( ))Stab x neut x anti x  and  
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: .( , ( ), ( )) ( , ( ), ( ))NOrb Stabx neut x anti x x neut x anti x 
 

 

Parts b and c Show the role of conjugate NET subgroups and neutrosophic triplet cosets of a NET 
subgroup when working with NETG actions. The formula in part c that relates the length of a NET 
orbit to the index in N of a NET stabilizer for a point in the NET orbit, is named the NET 
orbit-stabilizer formula. 

Proof:  

a)  We show distinct NET orbits in a NETG action are not equal by showing that two NET orbits 

that overlap must coexist. Assume ( , ( ), ( ))Orb x neut x anti x and ( , ( ), ( ))Orb y neut y anti y have a 

common element ( , ( ), ( )).z neut z anti z  

1 1 1

2 2 2

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).

z neut z anti z neut anti x neut x anti x

z neut z anti z neut anti y neut y anti y
n n n
n n n




 

We want to show ( , ( ), ( ))Orb x neut x anti x and .( , ( ), ( ))Orb y neut y anti y  It suffices to show 

,( , ( ), ( )) ( , ( ), ( ))Orb Orbx neut x anti x y neut y anti y  since then we can switch the roles of 

and ( , ( ), ( ))y neut y anti y to obtain the converse insertion. For each point 

( , ( ), ( )) ,( , ( ), ( ))u neut u anti u Orb x neut x anti x write 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))u neut u anti u n neut n anti n x neut x anti x  

for some ( , ( ), ( )) .n neut n anti n N Since  

( , ( ), ( ))
1( , ( ), ( )) ( , ( ), ( )), ( , ( ), ( ))1 1 1

x neut x anti x

neut anti z neut z anti z u neut u anti un n n 
 

 1( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))1 1 1u neut u anti u neut anti z neut z anti zn n n   

 

 

1( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1

( , ( ), ( ))2 2 21( , ( ), ( ))( , ( ), ( ))1 1 1 ( , ( ), ( ))

1( , ( ), ( ))( , ( ), ( )) (1 1 1 2

n neut n anti n neut anti z neut z anti zn n n

neut antin n nn neut n anti n neut antin n n
y neut y anti y

n neut n anti n neut antin n n



   
 

 , ( ), ( ))2 2

( , ( ), ( )),

neut antin n n

y neut y anti y
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which shows us that ( , ( ), ( )) .( , ( ), ( ))u neut u anti u Orb y neut y anti y Therefore 

.( , ( ), ( )) ( , ( ), ( ))Orb Orbx neut x anti x y neut y anti y  Every element of X is in some NET orbit 

(its own NET orbits), so the NET orbits partition X into disjoint NET subsets. 

b)  To see that ( , ( ), ( ))Stab x neut x anti x is a NET subgroup of ,N we’ve 

1 ( , ( ), ( ))StabN x neut x anti x since ( , ( ), ( )) ( , ( ), ( )),1 x neut x anti x x neut x anti xN   and if 

( , ( ), ( )),( , ( ), ( )) ,1 1 1 2 2 2 ( , ( ), ( ))neut anti neut antin n n n n n Stab x neut x anti x  then  

 

 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))1 1 1 2 2 2
( , ( ), ( ))( , ( ), ( ))1 1 1
( , ( ), ( )),

neut anti neut anti x neut x anti xn n n n n n
neut anti neut anti x neut x anti xn n n n n n
neut anti x neut x anti xn n n

x neut x anti x







 

so ( , ( ), ( ))( , ( ), ( )) .1 1 1 2 2 2 ( , ( ), ( ))neut anti neut antin n n n n n Stab x neut x anti x  Thus 

( , ( ), ( ))Stab x neut x anti x is closed under multiplication. Lastly,  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))1 1 1neut anti x neut x anti x x neut x anti xn n n   

 1

1

1

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )),

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n x neut x anti x
x neut x anti x n neut n anti n x neut x anti x











 

 

so ( , ( ), ( ))Stab x neut x anti x is closed under inversion. To prove  

1

( , ( ), ( ))( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))

Stab n neut n anti n x neut x anti x
n neut n anti n n neut n anti nStab x neut x anti x


 

for all 
( , ( ), ( ))x neut x anti x X

and 
( , ( ), ( )) ,n neut n anti n N

 observe that 

 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))

h neut h anti h Stab n neut n anti n x neut x anti x
h neut h anti h n neut n anti n x neut x anti x

n neut n anti n x neut x anti x



 



 

 ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))
( , ( ), ( ))( , ( ), ( ))

h neut h anti h n neut n anti n x neut x anti x
n neut n anti n x neut x anti x




 



Neutrosophic Sets and Systems, Vol. 30, 2019     59  

 

 

 
Moges Mekonnen Shalla and Necati Olgun, Neutrosophic Extended Triplet Group Action and Burnside’s Lemma 

 

 

1

1

1

( , ( ), ( ))( , ( ), ( ))
( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))( , ( ),

h neut h anti h n neut n anti n
n neut n anti n

x neut x anti x

n neut n anti n n neut n anti n x neut x anti x

n neut n anti n h neut h anti h n neut n ant







 
  

 



  ( ))

( , ( ), ( )) ( , ( ), ( ))
1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( ))

( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( , (

i n

x neut x anti x x neut x anti x

n neut n anti n h neut h anti h n neut n anti n
Stab x neut x anti x

h neut h anti h n neut n anti n Stab x neut x anti x

n neut n







 

1), ( )) ,anti n 

 

so 

1

( , ( ), ( ))( , ( ), ( ))
( , ( ), ( )) ( , ( ), ( )) .( , ( ), ( ))

x neut x anti xStab x neut x anti x
n neut n anti n n neut n anti nStab x neut x anti x


 

C)  The condition  

( , ( ), ( ))( , ( ), ( )) ( ', ( '), ( '))( , ( ), ( ))n neut n anti n x neut x anti x n neut n anti n x neut x anti x  

is equivalent to  

 1( , ( ), ( )) ( , ( ), ( )) ( ', ( '), ( ')) ( , ( ), ( )),x neut x anti x n neut n anti n n neut n anti n x neut x anti x  

which means 
1( , ( ), ( )) ( ', ( '), ( ')) ,( , ( ), ( ))n neut n anti n n neut n anti n Stab x neut x anti x
  or  

( ', ( '), ( ')) ( , ( ), ( )) .( , ( ), ( ))n neut n anti n n neut n anti n Stab x neut x anti x  

Therefore ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n have the same effect on 

 in the case that ( , ( ), ( ))n neut n anti n and ( ', ( '), ( '))n neut n anti n lie in the 

similar NT coset of .( , ( ), ( ))Stab x neut x anti x  (Recall that for all NET subgroups H and 

, ( ', ( '), ( ')) ( , ( ), ( ))N n neut n anti n n neut n anti n H  

( ', ( '), ( ')) ( , ( ), ( )) .n neut n anti n H n neut n anti n H  

Whereby ( , ( ), ( ))Orb x neut x anti x consists of the points 

( , ( ), ( ))( , ( ), ( ))n neut n anti n x neut x anti x for varying ( , ( ), ( )),n neut n anti n and we showed 

elements of N have the similar effect on if and only if they lie in the similar 
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NT left coset of ,( , ( ), ( ))Stab x neut x anti x we get a bijections between the points in the NET orbit of 

and the NT left cosets of ( , ( ), ( ))Stab x neut x anti x by 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) .( , ( ), ( ))n neut n anti n x neut x anti x n neut n anti n Stab x neut x anti x  

Therefore the cardinality of the NET orbit of ( , ( ), ( )),x neut x anti x which is 

( , ( ), ( ))Orb x neut x anti x  equals the cardinality of the NT left cosets of ( , ( ), ( ))Stab x neut x anti x

in .N   

Remark 3.20 that the NET orbits of a NETG action are a partition results in a NETG theory: 
conjugacy classes are a partitioning of a NETG and the NT left cosets of a NET subgroup partition 
the NETG. The first result utilizes the action of a NETG independently by NET conjugation, having 
NET conjugacy classes as its NET orbits. The second result utilizes the right inverse multiplication 
action of the NET subgroup on the NETG. 

Corollary 3.21 Let a finite NETG act on a NET set. 

a)  The length of every NET orbit divides the size of .N  
    b)  Points in a common NET orbit have conjugate stabilizers, and in particular the size of the 
NET stabilizer is the similar for all points in a NET orbit. 

Proof:  a) The length of NET orbit is an index of a NET subgroup, so it divides .N  

         b)  If and ( , ( ), ( ))y neut y anti y are in the same NET orbit, write 

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).y neut y anti y n neut n anti n x neut x anti x  

Then,  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))
1( , ( ), ( )) ( , ( ), ( )) ,( , ( ), ( ))

x neut x anti xStab Staby neut y anti y n neut n anti n

n neut n anti n n neut n anti nStab x neut x anti x




 

so the NET stabilizers of and ( , ( ), ( ))y neut y anti y are conjugate NET 

subgroups. 

A converse of part b is not generally true: points with NET conjugate stabilizers need not be in the 
same NET orbit. Even points with the same NET stabilizer need nor be in the same NET orbit. For 
example, if N  acts on itself trivially then all points have NET stabilizer N and all orbits have size 
1. 

Corollary 3.22 Let a NETG N acts on a NET set ,X where X is finite. Let the distinct NET orbits 

of X be symbolized by ( , ( ), ( )),...,( , ( ), ( )).1 1 1neut anti neut antix x x x x xt t t Then 

1 1

( , ( ), ( )) : ( , ( ), ( )) .
t t

i i i i i i
i i

X Orb neut anti N Stab neut antix x x x x x
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Proof: The NET set X can be written as the union of its NET orbits, which are mutually disjoint. 
The NET orbit-stabilizer formula tells us how large each NET orbit is. 

Example 3.23 As an application of the NET orbit-stabilizer formula we describe why 

H KHK H K


 for NET subgroups H and K of a finite NETG .N  At this point 

( , ( ), ( )), ( , ( ), ( )) : ( , ( ), ( )) ,
( , ( ), ( ))
h neut h anti h k neut k anti k h neut h anti h H

HK
K neut K anti K K

 
  

 
 

is the NET set of products, which usually is just a subset of .N  To count the size of ,HK  let the 
direct product of NETG H K act on the NET set HK like this : 

 
1

( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ,

h neut h anti h k neut k anti k x neut x anti x

h neut h anti h x neut x anti x h neut h anti h 




 

which gives us a NETG action (the NETG is H K and the NET set is HK ). There is only 1 NET 

orbit where by 1 1 1 HKN N N   and  

 1( , ( ), ( )), ( , ( ), ( )) ( , ( ), ( )),( , ( ), ( )) .1h neut h anti h k neut k anti k h neut h anti h k neut k anti k N
   

So that the NET orbit-stabilizer formula shows us  

1
H K

HK
Stab N


  

 
.

( , ( ), ( )),( , ( ), ( )) :( , ( ), ( )),( , ( ), ( )) 1
1

H K
h neut h anti h k neut k anti k h neut h anti h k neut k anti k N
N


   
 
  

 

The condition  ( , ( ), ( )),( , ( ), ( )) 1 1h neut h anti h k neut k anti k N N   means 

1( , ( ), ( ))( , ( ), ( )) ,1h neut h anti h k neut k anti k N
  so  

  ( , ( ), ( ))( , ( ), ( )) :( , ( ), ( )) .1Stab h neut h anti h h neut h anti h h neut h anti h H KN    

So that 1Stab H KN    and .H KHK H K


 

Theorem 3.24 Burnside’s Lemma 

Let a finite NETG N act on a finite NET set X in relation to r NET orbits. Subsequently r is the 
average number of NET fixed points of the elements of the NETG. 

 
1 ,( , ( ), ( ))

( , ( ), ( ))
r Fix Xn neut n anti nN n neut n anti n N
 



 



Neutrosophic Sets and Systems, Vol. 30, 2019     62  

 

 

 
Moges Mekonnen Shalla and Necati Olgun, Neutrosophic Extended Triplet Group Action and Burnside’s Lemma 

where  

 
( , ( ), ( )) :( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))
x neut x anti x X n neut n anti n

Fix Xn neut n anti n x neut x anti x x neut x anti x
 

  
 

 

is the NET set of elements of X fixed by ( , ( ), ( )).n neut n anti n  

Don’t confuse the NET set  ( , ( ), ( ))n neut n anti nFix X in relation to the NET fixed points of the action: 

 ( , ( ), ( ))n neut n anti nFix X is only the points fixed by the elements ( , ( ), ( )).n neut n anti n  The NET set of 

NET fixed points for the action of N is the intersection of the NET sets  ( , ( ), ( ))n neut n anti nFix X as 

( , ( ), ( ))n neut n anti n runs over the NETG. 

Proof: we will count 

 ( , ( ), ( )), ( , ( ), ( )) :
( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N X
n neut n anti n x neut x anti x x neut x anti x

   
 

  

 

in two ways. By counting over ( , ( ), ( ))n neut n anti n ’s first we have to add up the number of 

( , ( ), ( )) 'x neut x anti x s with  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x x neut x anti x  so 

 ( , ( ), ( )), ( , ( ), ( )) :
( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N X
n neut n anti n x neut x anti x x neut x anti x

   
 

  
 

( ) .( , ( ), ( ))
( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

 


 

Next we count over the ’s and have to add up the number of 

( , ( ), ( ))n neut n anti n ’s with ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )),n neut n anti n x neut x anti x x neut x anti x  

i.e., with ( , ( ), ( ))( , ( ), ( )) :x neut x anti xn neut n anti n Stab  

 ( , ( ), ( )), ( , ( ), ( )) :
( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))

n neut n anti n x neut x anti x N Y
n neut n anti n x neut x anti x x neut x anti x

   
 

  
 

.( , ( ), ( ))
( , ( ), ( ))

Stab x neut x anti x
X neut X anti X X

 



 

Equating these two counts gives  
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( )( , ( ), ( ))
( , ( ), ( ))

.( , ( ), ( ))
( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

Stab x neut x anti x
X neut X anti X X

 


 



 

By the NET orbit-stabilizer formula, 
( , ( ), ( )) ( , ( ), ( )) ,x neut x anti x x neut x anti x

N
Stab Orb

so 

( )( , ( ), ( ))
( , ( ), ( ))

.
( , ( ), ( ))( , ( ), ( ))

Fix Xn neut n anti n
n neut n anti n N

N

Orb x neut x anti xX neut X anti X X




 



 

Divide by :N  

1 ( )( , ( ), ( ))
( , ( ), ( ))

1 .
( , ( ), ( )) ( , ( ), ( ))

Fix Xn neut n anti nN n neut n anti n N

Orbx neut x anti x X x neut x anti x




 


 

Let’s examine the benefaction to the right side from points in a single NET orbit. If a NET orbit has 
n points in it, subsequently the sum over the points in that NET orbit is a sum of 

1
n

for n terms, and 
in other words equal to 1. Consequently the part of the sum over points in a NET orbit is 1, which 
makes the sum on the right side equal to the number of NET orbits, which is .r  

Definition 3.25 Two actions of NETG N on a NET sets X  and Y are called NET equivalent if 

there is a bijection :f X Y as shown 

   ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))f n neut n anti n x neut x anti x n neut n anti n f x neut x anti x  

for all ( , ( ), ( ))n neut n anti n N and ( , ( ), ( )) .x neut x anti x X  

Actions of N on two NET sets are equivalent when N permutes elements in the similar method on 

the two NET sets following matching up the NET sets properly. When :f X Y is a NET 

equivalence of NETG actions on X  and ,Y  

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))n neut n anti n x neut x anti x x neut x anti x  

if and only if  

    ( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( )) ,n neut n anti n f x neut x anti x f x neut x anti x  
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so the NET stabilizer subgroups of ( , ( ), ( ))x neut x anti x X and ( , ( ), ( ))f x neut x anti x Y are 

the same. 

Example 3.26 Let H and K be NET subgroup of .N  The NETG N acts by left multiplication on 

N
H  and .N

K  If H and K  are NET conjugate subgroups then these actions are equivalent: fix 

a representation 
1( , ( ), ( )) ( , ( ), ( ))0 0 0 0 0 0K neut anti H neut antin n n n n n  for some 

( , ( ), ( ))0 0 0neut anti Nn n n  and let : N Nf H K  by  

  1
0 0 0

( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .f n neut n anti n H n neut n anti n neut anti Kn n n   

This is well-defined (independent of the NT coset representatives for ( , ( ), ( ))n neut n anti n H ) since, 

for ( , ( ), ( )) ,h neut h anti h H  

 ( , ( ), ( )) , ( ), ( ))
1( , ( ), ( ))( , ( ), ( ))( , ( ), ( ))0 0 0
1 1( , ( ), ( ))( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))0 0 0 0 0 0

( , (

f n neut n anti n h neut h anti h H

n neut n anti n h neut h anti h neut anti Kn n n

n neut n anti n h neut h anti h neut anti H neut antin n n n n n

n neut



 

 1 1), ( )) ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .0 0 0 0 0 0n anti n H neut anti n neut n anti n neut anti Kn n n n n n 

There can be multiple equivalences between two equivalent NETG actions, just as there can be 

multiple neutro-isomorphisms between two isomorphic NETGs. If H and K  are not NET 

conjugate then the actions have the same NET stabilizer subgroup, but the NET stabilizer subgroups 

of left NT cosets in N
H are NET conjugate to ,K  and none of the former and the latter are equal. 

Theorem 3.27 An action of N that has one NET orbit is equivalent to the left multiplication action of 

N on some left NT coset space of .N  

 

Proof : Assume that N acts on the NET set X in relation to one NET orbit. 

0 0 0
( , ( ), ( ))neut antiFix Xx x x  and let 

0 0 0
( , ( ), ( )).neut antiH Stab x x x  We will Show the action of N on 

X is equivalent to the left multiplication action of N on .N
H  Every ( , ( ), ( ))x neut x anti x X

has the form ( , ( ), ( ))( , ( ), ( ))0 0 0n neut n anti n neut antix x x for some ( , ( ), ( )) ,n neut n anti n N
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and all elements in a left NT coset ( , ( ), ( ))n neut n anti n H have the same effect on 

( , ( ), ( )):0 0 0neut antix x x for all ( , ( ), ( )) ,h neut h anti h H  

  

 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))0 0 0
( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) .0 0 0

n neut n anti n h neut h anti h neut antix x x
n neut n anti n h neut h anti h neut antix x x

 

Let : Nf XH  by  ( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )).0 0 0f n neut n anti n H n neut n anti n neut antix x x  

This is well defined, as we just saw. Moreover, 

   ( , ( ), ( )) ( ', ( '), ( ')) ( , ( ), ( )) ( ', ( '), ( '))n neut n anti n n neut n anti n H n neut n anti n f n neut n anti n H 

since both sides equal 

 ( , ( ), ( ))( ', ( '), ( ')) ( , ( ), ( )) ( , ( ), ( )) .0 0 0n neut n anti n n neut n anti n n neut n anti n neut antix x x  

We will show f is a bijection. Since X has one NET orbit, 

 

  

( , ( ), ( ))( , ( ), ( )):( , ( ), ( ))0 0 0
( , ( ), ( )) : ( , ( ), ( )) ,

X n neut n anti n neut anti n neut n anti n Nx x x

f n neut n anti n H n neut n anti n N

 

 
 

so f is onto. If    ( , ( ), ( )) ( , ( ), ( ))1 1 1 2 2 2f neut anti H f neut anti Hn n n n n n then 

( , ( ), ( ))( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )),1 1 1 0 0 0 2 2 2 0 0 0neut anti neut anti neut anti neut antin n n x x x n n n x x x

so

1( , ( ), ( )) ( , ( ), ( ))( , ( ), ( )) ( , ( ), ( )).2 2 2 1 1 1 0 0 0 0 0 0neut anti neut anti neut anti neut antin n n n n n x x x x x x 

Since ( , ( ), ( ))0 0 0neut antix x x has NET stabilizer ,H   

1( , ( ), ( )) ( , ( ), ( )) ,2 2 2 1 1 1neut anti neut anti Hn n n n n n  so 

( , ( ), ( )) ( , ( ), ( )) .1 1 1 2 2 2neut anti H neut anti Hn n n n n n  

Consequently f is one – to –one. 
A special condition of this theorem tells that an action of N is equivalent to the left multiplication 
action of N independently in the case that the action has one NET orbit and the NET stabilizer 
subgroup are trivial.  
 
 

5. Conclusion 

   The most important point of this research is first to define the NETs and subsequently use these 
NETs in order to describe the NETG action, NET orbits, stabilizers, and fixed point. We further 
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introduced the Burnside’s Lemma. Finally, we allow rise to a new field called NET Structures 
(namely, the neutrosophic extended triplet group action and Burnside’s Lemma. Another 
researchers can work on the application of NETG action to NT vector spaces (representation of the 
NETG), number theory, analysis, geometry, and topological spaces. 
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Abstract: This paper aims to design a new kind of questionnaire to be applied in the Knowledge 

Management audit. For illustration purpose, we analyse the knowledge management audit in a 

grain storage and conservation company. This proposal is based on 18 well-known questionnaires 

to audit knowledge management. We recommend using neutrosophic Iadov to process the 

obtained answers. Neutrosophy is combined with Iadov technique to model uncertainty and 

indeterminacy which characterize the possible answers given by the interviewed persons, as well 

as to evaluate according to a linguistic scale. Our contribution is that we propose a more generic 

questionnaire on knowledge management audit which can process indeterminate information and 

knowledge, and additionally we confirm it with one case study. 

Keywords: knowledge management audit, questionnaire, processes, neutrosophic Iadov 

technique. 

 

 

1. Introduction 

The progress of humanity and its organizations has been associated with the development of 

knowledge, and has made it possible to obtain the means to survive [1]. That is why, organizations 

give more and more attention to the solution of problems that arise associated with knowledge 

management (KM) and its use in processes [2]. The KM contributes to raise the knowledge of the 

organization through the increase of the capabilities of the employees and the learning that is 

obtained in the solution of the problems associated with the fulfillment of its strategic objectives [3]. 

In this sense, authors such as GONZÁLEZ GUITIÁN and PONJUÁN DANTE [4] propose to carry 

out knowledge audit processes in organizations, given that the information and knowledge 

resources in the different departments may be duplicated or in deficit and there is not always an 

awareness about its value [5]. The importance of the knowledge management audit (KMA) is 

attested by the numerous methodologies that exist in the literature [6] and corroborated by 

GONZÁLEZ GUITIÁN et al. [7] when it relates to applications in the areas of information science, 

social sciences, business, computing, and finance. Likewise, the absence of a single procedure is 

recognized as an international reference and a useful tool for the development of KM strategies that 

identify and describe the organizational knowledge, its use, and also the gaps and duplicities within 
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the organization. Among the most common methods used to capture data in the KM is the 

questionnaire. This technique, which obeys different needs and the research problem that originates 

it, has been used in a large part of the studies on KMA, and this is confirmed by the results obtained 

in MEDINA NOGUEIRA, YULY ESTHER et al. [8], where its use is seen in 43% of the proposals, both 

in the diagnosis [9] and in the different stages that make up the methodologies analysed [10; 11]. 

Likewise, it can be affirmed that the questionnaires constitute the main tool for the data collection 

[12] as a key factor for the development of the KMA [13]. 

Additionally, from the study of 18 questionnaires for the KMA, MEDINA NOGUEIRA, YULY 

ESTHER et al. [14] identifies little flexibility in the designs analysed, since they are focused on 

specific purposes in the organization. On the other hand, it denotes some limitations in how the 

processes are evaluated of the KM (acquire, organize, distribute, use and measure), and that are an 

indispensable basis for the creation of the knowledge value chain. In this sense, the present research 

aims to propose and apply a questionnaire for the development of the KMA, based on previous 

research, which guarantees its use in any organization, and that allows to evaluate the development 

of the KM processes from of the significant variables for the development of the KMA.  

2. Development of the questionnaire 

The organization selected as a case study is a national company whose mission is the storage, 

refrigeration and conservation of grains for animal and human consumption.  

Step 1. Sample design 

The sample selected was made up of 19 management workers who represent 100% of the members 

of the board of directors and the leaders of the processes. They are classified into nine (9) Directors: 

Chief Executive Officer (CEO), Deputy Manager (DM), Chief Technical Officer (CTO), Chief 

Industrial Officer (CIO), Chief Operating Officer (COO), Control and Analysis Manager  (CAM), 

Chief Financial Officer (CFO), Chief Human Resources Officer (CHRO),  Chief of Logistics and 

Transportation Business Unit  (CLT); eleven (11) Process Leaders and two (2) employees who 

participate in the board of directors and are considered experts within the company. The sampling 

method to be applied is non-probabilistic. It is based on the researcher's judgment for the selection of 

an element of the population to be part of the sample. Subsequently, the error of the sample 

committed is calculated and it is verified that it is in the corresponding limits. 

Step 2. Design of the questionnaire  

From the previous studies carried out on 47 definitions of KMA and 28 methodologies, the 

questionnaire developed by LONDOÑO GALEANO and GARCÍA OSPINA [15] based on the 

following elements is selected as a basis for its subsequent modification: it is relatively short; the 

questions are closed type, formulated in a clear, simple and understandable way; the terms used on 

KM are simple and concise, which facilitates their interpretation and, finally, evaluates the processes 

of the KM from the components established by Probst (1998). The questionnaire has totally closed 

questions and 47 items: eight items (8) associated to the process of use, eight (8) to culture, eight (8) 

to identification, eight (8) to retention, seven (7) to transfer and eight (8) to sources. The questions are 

formulated on a 4-level Likert scale, with the following assessment:  
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1 = Never, 2 = Sometimes, 3 = Often, 4 = Always 

The modifications that were made were aimed at: simplifying the number of elements of the 

questionnaire and the magnitude of some questions; achieve its applicability in any organization; 

evaluate the processes of the KM defined by MEDINA NOGUEIRA, DAYLIN et al. [16], as well as 

the significant variables for the development of the KMA. 

The preliminary instrument was submitted to the evaluation of eight researchers on the subject of 

the KM and according to their suggestions, some questions were eliminated and others added or 

modified. Likewise, aspects related to the ability to diagnose KM processes based on the criteria of 

MEDINA NOGUEIRA, DAYLIN et al. [16] were specified, hence, the proposed version consists of 38 

items: seven items (7) associated to the process of acquiring, eight (8) to organizing, eight (8) to 

distributing, five (5) to use, nine (9) to measuring and one question that integrates all the processes. 

According to the type of response, the questionnaire can be classified as mixed; according to the 

moment of coding: pre-coded and, according to the form of administration: self-administered. Next, 

in Table 1, the version of the questionnaire used is shown. Next, we proceed to check the presence of 

the variables evaluated in the questionnaire and check its relevance. 

Table 1. Questionnaire used for the Knowledge Management Audit. 

Questions 

 

Never Hardly 

ever 

Sometimes Usually Always 

1. Do you consider 

that the company has 

sufficient human, 

material, 

technological and 

infrastructure 

resources for 

activities related to: 

The acquisition of new 

knowledge 

     

The organization of new 

knowledge 

     

Knowledge distribution        

Knowledge use      

Knowledge measurement       

2. The company, for 

the improvement of 

its processes, is an 

organization that 

learns from: 

The interaction with the 

environment (customers, 

suppliers, regulations and 

regulations) 

     

Other organizations      

Their own procedure and 

experience 

     

3. Mark the ways in which you acquire the necessary knowledge for the performance of your job:  

__Postgraduate courses __Search engines on the Internet __ Specialized web publications __Exchange of 

experiences (live) __Exchange of information (e-mail) __Work meetings __ Use of phone  

__ Participation in scientific events __ Other. Which? 

4. Does the company verify the effectiveness of the 

training received by its workers? 

     

5. Did the training received at the company allow me      
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to improve my job performance? 

6. Does the company have established mechanisms to 

detect the training needs of workers? 

     

7. Does the company have the knowledge that is 

required to adequately perform my job? 

     

8. Does the company have identified the difference 

between the knowledge I have and the knowledge I 

should have in order to perform my work optimally? 

     

9. Mark the routes through which you have identified the knowledge required to adequately perform my job:  

__ Regulations and manuals __ Tutorial videos __ Knowledge maps __ Web portal __ Data base  

__ None __ Other what? 

10. Does the company evaluate the future knowledge 

needs of workers? 

     

11. Does the company develop plans to meet the future 

knowledge needs of workers? 

     

12. All that I know how to do is transferred to other 

workers within the company? 

     

13. The company uses 

the knowledge of 

workers to: 

Design Training programs for 

other workers 

     

The development of new 

projects 

     

The improvement in the 

processes 

     

14. Is the information of my process accessible to all 

interested parties? 

     

15. Is the knowledge generated in the different 

processes of the company made available to the entire 

company? 

     

16. Mark the ways in which the knowledge generated in the different processes of the company is made 

available to the entire company:  

__Scientific sessions in the center __ Specialized web publications __Exchange of experiences (live) __Exchange 

of information (e-mail) __ Work meetings __Thesis applied in the company  

__Use of the landline phone __In scientific events developed by the center __Other. Which?  

17. Does my process learn from other processes within 

the organization? 

     

18. Is the existing knowledge in the company 

inventoried? 

     

19. Are the experts in the various subjects clearly 

identified in the company to consult them when 

necessary? 
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20. If I have questions to perform the activities in my process I ask to: (Name / Responsibility) 

(1) _____________________ (2) _____________________ (3) ____________________ 

21. Does the company have identified external persons 

or entities that can contribute to the development of 

knowledge of it? 

     

22. Does the company use specialized software to share 

information? Which software?  

     

23. The evaluation of 

workers takes into 

account: 

Their contributions to the 

development of 

organizational knowledge 

     

Training programs      

Participation in scientific 

events 

     

Scientific publications       

24. Does my immediate boss attend to my training 

needs? 

     

25. Does the company motivate the process of sharing 

knowledge? 

     

26. Does the management formally recognize the 

achievements of its workers for making improvements 

in their process? 

     

27. Do you consider that the company manages the 

necessary knowledge for the development and 

improvement of the activities related to its process? 

     

Table 2 verifies the correspondence between the questions and the processes that evaluates the 

KM; as well as, the presence of the variables of the KMA. 

 

Table 2. List of questionnaire questions, KM processes and variables present in the definitions 

of KMA. 

Questions KM process KMA variables 

1. Do you consider that 

the company has 

sufficient human, 

material, technological 

and infrastructure 

resources for activities 

related to: 

The acquisition of new 

knowledge 

To acquire -Firm strategy  

The organization of new 

knowledge 

To organize -Firm strategy  

Knowledge distribution   To distribute -Firm strategy  

Knowledge use To use -Firm strategy   

-Use of knowledge  

Knowledge measurement  To measure - Firm strategy  

2. The company, for the 

improvement of its 

The interaction with the 

environment (customers, 

To acquire -Process approach  

-Organizational culture  
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processes, is an 

organization that learns 

from: 

suppliers, regulations and 

regulations) 

-Sources of knowledge  

Other organizations To acquire -Process approach  

-Organizational culture  

-Sources of knowledge 

Their own procedure and 

experience 

To acquire -Process approach  

-Organizational culture  

-Sources of knowledge 

3. Mark the ways in which you acquire the necessary 

knowledge for the performance of your job:  

__ Postgraduate courses __ Search engines on the Internet __ 

Specialized web publications __ Exchange of experiences 

(live) __ Exchange of information (e-mail) __ Work meetings 

__ Use of landline phone __ Participation in scientific events 

__ Other. Which?  

To acquire -Identification of 

information  

-Process approach  

 

 

4. Does the company verify the effectiveness of the training 

received by its workers? 

To measure -Firm strategy  

-KM strategy  

-Existing knowledge  

5. Did the training received at the company allow me to 

improve my job performance? 

To use -Existing knowledge  

-Use of knowledge  

6. Does the company have established mechanisms to detect 

the training needs of workers? 

To measure -Knowledge required  

-Analysis of gaps  

7. Does the company have the knowledge that is required to 

adequately perform my job? 

To organize -Knowledge required 

8. Does the company have identified the difference between 

the knowledge I have and the knowledge I should have in 

order to perform my work optimally? 

To measure - Analysis of gaps 

9. Mark the routes through which you have identified the 

knowledge required to adequately perform my job:  

__ Regulations and manuals __ Tutorial videos __ Knowledge 

maps __ Web portal __ Data base __ None __ Other what?  

To organize -Identification of 

information  

-Sources of knowledge  

-Techniques used in the 

KMA  

10. Does the company evaluate the future knowledge needs 

of workers? 

To measure - Analysis of gaps  

-Continuous auditing  

11. Does the company develop plans to meet the future 

knowledge needs of workers? 

To organize -Firm strategy   

- Analysis of gaps  

12. All that I know how to do is transferred to other workers 

within the company? 

To distribute -Social networks 

13. The company uses 

the knowledge of 

Design Training programs for 

other workers 

To use -Use of knowledge  

-KM strategy  
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workers to: The development of new projects To use - KM strategy  

- Use of knowledge 

The improvement in the 

processes 

To use -KM strategy  

-Process approach  

-Use of knowledge  

14. Is the information of my process accessible to all 

interested parties? 

To distribute -Identification of 

information 

15. Is the knowledge generated in the different processes of 

the company made available to the entire company? 

To distribute -Process approach  

-KM strategy  

-Social networks  

16. Mark the ways in which the knowledge generated in the 

different processes of the company is made available to the 

entire company:  

__Scientific sessions in the center __ Specialized web 

publications __Exchange of experiences (live) __Exchange of 

information (e-mail) __ Work meetings __Thesis applied in 

the company __Use of the landline phone __In scientific 

events developed by the center __Other. Which?  

To distribute -Identification of 

information 

17. Does my process learn from other processes within the 

organization? 

To acquire -Process approach  

-Organizational culture  

-Sources of knowledge  

18. Is the existing knowledge in the company inventoried? To organize -Existing knowledge  

-Techniques used in the 

KMA  

19. Are the experts in the various subjects clearly identified in 

the company to consult them when necessary? 

To organize -Firm strategy   

-Sources of knowledge  

-Decision making  

20. If I have questions to perform the activities in my process I 

ask (Name / Responsibility): (1) _____________________ (2) 

_____________________ (3) ____________________ 

To acquire -Sources of knowledge 

21. Does the company have identified external persons or 

entities that can contribute to the development of knowledge 

of it? 

To organize -Firm strategy   

-Sources of knowledge  

22. Does the company use specialized software to share 

information? Which software? 

To distribute -Identification of 

information 

23. The evaluation of 

workers takes into 

account: 

Their contributions to the 

development of organizational 

knowledge 

To measure -Firm strategy   

-Existing knowledge  

Training courses To measure -Firm strategy   

-Existing knowledge  
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Participation in scientific events To measure -Firm strategy   

-Existing knowledge  

Scientific publications  To measure -Firm strategy   

-Existing knowledge  

24. Does my immediate boss attend to my training needs? To organize -Organizational culture  

- Analysis of gaps  

25. Does the company motivate the process of sharing 

knowledge? 

To distribute -Firm strategy   

-KM strategy  

-Social networks  

26. Does the management formally recognize the 

achievements of its workers for making improvements in 

their process? 

To distribute -Firm strategy   

-Organizational culture  

27. Does the management formally recognize the 

achievements of its workers for making improvements in 

their process? 

Includes the 

value chain of 

the KM  

-Firm strategy   

-KM strategy  

 

Step 3. Fieldwork development 

The survey, applied in May 2018, was accompanied by an introductory conference on the work to be 

carried out and all the pertinent information was provided about the instrument to be applied and 

the guarantee of the confidentiality of the answers. Throughout the process, a member of the audit 

team was present to directly address the doubts and concerns of the workers involved. The 

participation was 100% and, at the time of delivery of the questionnaire, it was checked that all the 

questions were answered; however, some participants left questions unanswered. 

Step 4. Database creation and information analysis 

Of the 38 questions, 34 are closed and are formulated on a five-level Likert scale (1 = Never, 2 = 

Almost never, 3 = Sometimes, 4 = Almost always and 5 = Always). The remaining four are: three 

semi-closed and one open, and were designed to obtain the means by which knowledge is acquired, 

organized and distributed in the organization; as well as, the people that can be considered as assets 

of knowledge within it. 

Once the 19 surveys were applied, the information was reviewed and entered into the electronic 

sheet and codified for the creation of the database that was analysed statistically through the SPSS® 

software. 

For the analysis of reliability and validity of the survey, the Cronbach's Alpha test is used, with a 

value of   α= 0.928 that indicates consistency, homogeneity and reliability of the results and the 

Correlation Coefficient (R2) with a value of 1 indicates a high correlation between the variables, 

which confirms the validity of the instrument used. 

Step 5. Validation of the survey by the Iadov Neutrosophic Technique 

Neutrosophy is a new branch that studies the origin, nature and scope of neutralities [17]. 

Etymologically neutrosophy [French neutre <Latin neuter, neutral, and Greek Sophia, knowledge] 
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means knowledge of neutral thoughts [18]. The basic definitions of Neutrosophy, which are those of 

neutrosophic sets and single-valued neutrosophic sets are formally defined in the following: 

Definition 1. Let X be a universe of discourse, a space of points (objects) and x denotes a generic 

element of X. A neutrosophic set A in X is characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-membership function FA(x). Where, TA(x), 

IA(x), FA(x)]-0, 1+[, i.e., they are real standard or nonstandard subsets of the interval ]-0, 1+[. These 

functions do not satisfy any restriction, that is to say, the following inequalities hold: 

-0inf TA(x)+ inf IA(x)+inf FA(x)  sup TA(x)+sup IA(x)+sup FA(x) 3+. 

Definition 2. Let X be a universe of discourse, a space of points (objects) and x denotes a generic 

element of X. A Single Valued Neutrosophic Set (SVNS) A in X is characterized by a truth-membership 

function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function 

falseness membership function FA(x). Where, TA(x), IA(x), FA(x): X[0, 1] such that: 0TA(x)+IA(x)+ 

FA(x) 3. A single valued neutrosophic number (SVNN) is symbolized by <T,I,F> for convenience, where 

T, I, F [0, 1] and 0 T+ I+ F3. 

Therefore, 𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑋} or more straightforwardl𝐴 = 〈 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉, 

for every xX. 

Given A and B two SVNSs, they satisfy the following relationships: 

1. AB if and only if TA(x)  TB(x), IA(x)  IB(x) and FA(x)  FB(x). Particularly, A = B if and only if 

AB and BA. 

2. 𝐴 ∪ 𝐵 =  〈max(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) , min(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), min(𝐹𝐴(𝑥), 𝐹𝐵(𝑥))〉, for every xX. 

3. 𝐴 ∩ 𝐵 =  〈min(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)) , max(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), max(𝐹𝐴(𝑥), 𝐹𝐵(𝑥))〉, for every xX. 

Definition 3. The Neutrosophic Logic (NL) is the generalization of the fuzzy logic, where a logical 

proposition P is characterized by three components: 

NL(P) = (T,I,F)                                                                             (1) 

Where the neutrosophic component T is the degree of truthfulness, F is the degree of falsehood, 

and I is the degree of indeterminacy. 

Definition 4. Let ( T1, I1, F1) and (T2, I2, F2 ) be elements of NL where the sum of the elements of the 

triplet is 1. The logical connectives of { ¬, ,  } can be defined in the following way: 

1. ¬(T1,I1,F1) = (F1,I1,T1), 

2. (T1,I1,F1)  (T2,I2,F2) = ( T = min{T1,T2}, I = 1 – (T+F), F= max{F1,F2}), 

3. (T1,I1,F1)  (T2,I2,F2) = ( T = max {T1,T2}, I =1- (T + F), F = min {F1,F2}). 

This Neutrosophic Logic is denoted by NL1. 

To analyse the result, a scoring function is established to order alternatives: 

    S(V) = T − F − I                                              (2) 

Where V is the valuation of proposition P in the NL1. 

The use of questionnaires as a tool for validation or obtaining information always has the 

characteristic that the information obtained is permeated or affected by the mental models and 

internal representations of the external reality of each participating individual. It means this, before 
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the same external reality, each individual could have varied internal representations. These 

representations are modelled preferably by means of causal representations in the presence of 

uncertainty [17], make it easy to understand them and explain why a conclusion is reached? [19]. 

The Iadov Neutrosophic Technique, as it raises the original technique, the related criteria of answers 

to intercalated questions whose relation the subject does not know, at the same time the unrelated or 

complementary questions serve as introduction and sustenance of objectivity to the respondent who 

uses them to locate and contrast the answers [20]. The inclusion of the Neutrosophy allows to deal 

with the non-determination in the answers [19]. 

The introduction of Neutrosophic estimation seeks to solve the problems of indeterminacy that 

appear universally in the evaluations of surveys and other instruments, taking advantage of not only 

the opposing and opposing positions, but also the neutral or ambiguous ones. Part of that every idea 

<A> tends to be neutralized, diminished, balanced by the ideas, in clear rupture with the binary 

doctrines in the explanation and understanding of the phenomena [17]. To measure satisfaction and 

assess satisfaction with the instrument created, a questionnaire is used that includes open and closed 

questions. The closed ones are related by the Iadov procedure. The scale used is represented by the 

form, where a valuation as programming techniques to structure propositional formulas to, and 

consider each proposition P. The usual fuzzy operators utilized to solve Group Decision problems are the 
aggregation operators. This notion can be extended to the neutrosophic framework. Neutrosophic Aggregation 
Operators are formally defined in Definition 5. 

Definition 5. Let X be a universe of discourse, a space of points (objects) and x denotes a generic element of X. 
A is a Single Valued Neutrosophic Aggregation Operator (SVNAO) if it is a mapping 
𝑨: ∪n∈ℕ  ([0, 1]3)n[0, 1]3. One example of SVNAO is the Weighted Average operator (WA), which is 
shown in Equation 3. 

WA(a1, a2, ⋯ , an) =  ∑ wiai
n
i=1                                                                      (3) 

Where, ai = (Ti, Ii, Fi) are SVNNs and wi[0, 1] for every i = 1, 2, …, n; which satisfy the condition 
∑ wi = 1n

i=1 . The ais are the values obtained for the ith alternative assessment, and wi denote the weight which 
represents the importance given to the alternative ai. 

Where wi represents the importance / relevance of the data source ai. In order to achieve the 

verification of the necessary elements in decision-making, the single-valued neutrosophic numbers 

were presented; to increase the quantitative analysis in the comprehension models of suggestions to 

clearly assess the indeterminacy (Table 3). In the case of the undefined result, the 

de-neutrosophication process is used, as it was proposed by SALMERON and SMARANDACHE 

[21]. In this case, I є [-1,1], is replaced by its maximum and minimum values. Finally, we work with 

the average of the extreme values to obtain a single value, see Equation (4). 
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Table 3. Iadov Scale 

Semantic indicator SVN Number Score 

Satisfied (1 , 0, 0) 1 

More satisfied that dissatisfied (1, 0.25, 0.25) 0.5 

Neutral I 0 

More dissatisfied that satisfied (0.25, 0,25, 1) -0.5 

Total satisfied (0,0,1) -1 

Opposites (1,0,1) 0 

Source: SALMERON and SMARANDACHE [21]. 

λ([a1, a2]) =
a1+a2

2
                                                                   (4) 

We can rank the variables by the using Equation 5. 

Then 𝐴 ≻ 𝐵 ⇔ 
a1+a2

2
>

b1+b2

2
                                                         (5) 

The application of the questionnaire is done to the 19 people to whom the instrument was applied 

and three academics with research experience in the subject are added for a total of 22. The survey 

was developed with seven (7) questions, three closed questions interspersed in four open questions; 

of which one (1) fulfilled the introductory function and three functioned as reaffirmation and 

support of objectivity to the respondent. Table 4 shows the logical process of Iadov. 

Table 4. Iadov Logical Process. 

5- Does the 

design of the 

designed 

questionnaire 

meet your 

expectations 

and do you 

consider that 

it responds to 

the processes 

of knowledge 

management? 

6- Would it be feasible to dispense with the development of knowledge management in the 

organization as a way to achieve strategic objectives? 

Not (N) I don’t know (IDK) Yes (Y) 

7- Do you consider that the development of knowledge management audit processes and the 

use of surveys in them would favor the determination of existing knowledge, the necessary 

knowledge and, therefore, the gaps to be overcome? 

Y IDK  N Y IDK N Y IDK N 

Very satisfied 1(14) 2(3) 6 2 2 6 6 6 6 

Partially 

satisfied 
2 (12) 2(2) 3 

2 

(1) 
3 3 6 3 6 

Does not 

matter to me. 
3 3 3 3 3 3 3 3 3 

More in 3 3 6 3 4 4 3 4 4 
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satisfied than 

satisfied 

Not satisfied at 

all. 
6 6 6 6 4 4 6 4 5 

I do not know 

what to say. 
2 3 6 3 3 3 6 3 4 

In this case, the following results are obtained (Table 5). 

Table 5. Results using the Iadov scale. 

Semantic Indicator Total Percentage 

Satisfied 14 64 

Very satisfied that dissatisfied 8 36 

Neutral 0 0 

Very dissatisfied that satisfied 0 0 

Total satisfied 0 0 

Opposites 0 0 

Source: (Mesa Mariscal and Ordoñez Lago, 2010). 

The calculation of the score is made and the calculation of Iadov is determined in this case each one 

is assigned a value in the weight vector equal to: w1 = w2 = ⋯ = w22 = 0.055. The final result 

that shows a high level of satisfaction yields the value of: ISG =0.818 (Figure 1). 

 

 

Figure 1. Iadov Scale. 

Step 6. Interpretation of the results and final report 

The average total result by items is recommended to be determined by the sum of the scores 

obtained in it and its division by the total of respondents. To obtain the average total result by 

category (KM processes), the sum of the average scores obtained in the items that comprise it and its 

division among the total of questions by category is performed. The scale of valuation of the 

instrument is established in the 1 in approximation to the processing carried out by LONDOÑO 

GALEANO and GARCÍA OSPINA [15] (Table 6). 

 

Table 6. Scale of the values considered low, acceptable and good. 

Assessment 

         

               Low  Acceptable         Good 

  Scale 1               1,8               2,6           3,4              4,2                        5                         
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To obtain the valuation scale, the major and minor values of the scale (5) and (1) are subtracted and 

the result (4) is divided by the number of divisions in which the scale is to be fragmented. In this 

case, it is divided by 5 to obtain higher valuation ranges, for a result of 0.8. This value is added to the 

lowest value of the scale (1) until reaching the highest value of the scale (5). As a result, a rating scale 

of Low (from 1 to 2.6), Acceptable (from 2.6 to 4.2) and Good (from 4.2 to 5) is obtained. As a result of 

the application of the questionnaire, table 3 shows the value obtained and the scale in which each 

process of the KM is located, as well as the percentage of questions in each of the scales. Figure 1 

summarizes these results and compares them with good standards and reflects values of: 4.31 and 

4.35 with evaluation of good to acquire and use; 4.07, 4.17 and 4.01 evaluation of acceptable to 

organize, disclose and measure respectively. In turn, the company's knowledge management has an 

average of 4.18; so its assessment is acceptable. Question 27 that evaluates all the processes of the 

KM has an average of 4.21; when compared with the general average obtained (4.18), it can be seen 

that they do not differ, so the veracity of the answers obtained is evident. Next, an analysis is shown 

in each of the processes by the respective questions that evaluate it. 

Figure 2 shows the evaluation obtained in the process of acquiring according to the behavior of the 

measured variables of the KMA. (Green: Minimal value for a good evaluation of each KM process). 

 

 

Figure 2. Summary of the results of the questionnaire for each KM process. 
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Figure 3. Scales obtained in the five KM processes. 

 

Table 7. Improvement actions for each knowledge management process. 

KM 

processes 

Improvement actions 

To Acquire Recognize the sources of knowledge external to the organization and allow the 

improvement of processes. 

Apply knowledge management tools in at least one of the productive 

organizations for later generalization to the rest of the country. Among the tools 

to apply are: questionnaire, social network analysis, knowledge maps. 

To organize 

 

Make individual improvement plans to meet the needs detected. 

Formalize (document and standardize) the knowledge inventory in the 

organization. This inventory is the basis for the field work to be performed. It 

allows to establish the knowledge-competence relationship and its insertion in 

the manual of functions through the occupational description method (DACUM). 
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To 

distribute 

 

To expose all the investigations carried out in the company, both in the national 

office and in the UEB, silos and mills of the country and through a repository or 

digital library. 

To use Take actions so that process leaders rely on the sources of knowledge detected to 

implement the organization's strategies. 

To measure Evaluate in the company future knowledge needs to eliminate the gaps between 

existing and required knowledge. 

Develop continuous auditing to acquire, organize, disseminate, use and measure 

(through AGC techniques) the required and existing knowledge for continuous 

improvement in the company's processes. 

 

The improvement actions to be carried out are outlined below: (1) to carry out knowledge 

inventories in a systematic way, to determine the existing knowledge, the required knowledge and 

the gaps between them; (2) perfect the bank of problems detected by the company and propose 

solutions based on investigations carried out through consultancies or continue the link with the 

university. In addition, Table 3 shows other actions to be taken that are more specific and directed to 

each process of knowledge management. Likewise, improvement actions for each of the KM 

processes are established and an analysis of the values obtained for each variable of the KMA is 

made. Table 4 shows the 16 variables evaluated and the percentage of questions in each of the scales: 

nine variables presented good, six acceptable and the variable identification of the information 

presented a low value. 

 

3. Considerations about KMA results 

The firm needs to apply knowledge identification tools to locate the existing and requiring 

knowledge for the development of their processes. Developing the KMA process continuously for 

each of the KM processes: acquire, organize, distribute, use and measure and the continuous 

improvement of the processes of the company. 

The main forms in which knowledge is acquired were determined: postgraduate courses, meetings 

and exchange of experiences live and via e-mail. The means by which the knowledge generated by 

the processes is distributed to all workers are mainly: the exchange of experiences, work meetings, 

the exchange of information using e-mail and the investigations (thesis) applied in the company. 

The knowledge acquisition is achieved in work meetings (mainly), live exchange and the use of the 

telephone. However, it is recognized what the regulations, manuals and databases provide, which is 

where the knowledge required to adequately perform the work is identified. The people who are 

most consulted in the company and can be considered valuable assets of knowledge are: the CEO, 

the CTO and the CFO. 
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Table 4. Variables evaluated and the percentage of questions in each of the scales. 

KMA Variables Value Scale 

Firm strategy 4.26 GOOD     

KM key factors 4.18   ACCEPTABLE   

KM strategy 4.37 GOOD     

KM value chain 4.18   ACCEPTABLE   

Process approach 4.36 GOOD     

Organizational culture 4.50 GOOD     

Knowledge required 4.08   ACCEPTABLE   

Existing knowledge 4.02   ACCEPTABLE   

Use of knowledge 4.39 GOOD     

Identification of information  2.46     LOW 

Sources of knowledge 4.37 GOOD     

Social networks 4.35 GOOD     

Analysis of gaps  4.42 GOOD     

Techniques used in the KMA 3.21   ACCEPTABLE   

Decision making 4.74 GOOD     

Continuous auditing 3.63   ACCEPTABLE   

 

4. Conclusions 

The KMA is a useful tool for the development of KM strategies and identifies and describes 

organizational knowledge, its use, gaps and duplication within the organization. The existing 

methodologies for the KMA are characterized by the use of questionnaires as a common method of 

acquiring data in the KM. In this paper we designed a questionnaire and applied it to assess the 

knowledge management audit in a grain storage and conservation company. Usually, the possible 

answers to the questionnaire can contain uncertainty and indeterminacy, thus, we applied the 

neutrosophic Iadov technique for processing the survey, where the undefined or contradictory 

information are also included. Moreover, neutrosophic Iadov contains linguistic terms for 

evaluating, which facilitates to answering the questions. The proposed questionnaire is composed of 

38 items and the correspondence between the proposed questions is achieved with all the processes 

and the significant variables of knowledge management. It was successfully applied to 100% of 

people to be surveyed, its reliability and validity are demonstrated; where it is concluded that: the 

company presents an acceptable KM performance with a value of 4.18; the use and purchase 

categories obtained better scores and are considered to be in good condition; while the categories to 

show, organize and measure obtained results considered acceptable. 
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Abstract:  In this study, bitopological structure which is a more general structure than topological 

spaces is built on neutrosophic sets. The necessary arguments which are pairwise neutrosophic open 

set, pairwise neutrosophic closed set, pairwise neutrosophic closure, pairwise neutrosophic interior 

are defined and their basic properties are presented. The relations of these concepts with their 

counterparts in neutrosophic topological spaces are given and many examples are presented.  

Keywords: Neutrosophic set; neutrosophic bitopological space; pairwise neutrosophic open (closed) 

set; pairwise neutrosophic interior; pairwise neutrosophic closure; pairwise neutrosophic 

neighbourhood. 

 

 

1. Introduction 

In recent years, the major factor in the progress of natural sciences and its sub-branches is the 

construction of new set structures in mathematics. It is the fuzzy set theory defined by Zadeh [19] 

that leads to these set structures. This set structure is followed by intuitionistic set theory [7], 

intuitionistic fuzzy set theory [1] and soft set theory [15]. Later, as a generalization of fuzzy set and 

intuitionistic fuzzy set, Samarandache [17] introduced neutrosophic set. Neutrosophic set N consist 

of three independent object called truth-membership TN(x), interminancy-membership IN(x) and 

falsity-memebership FN(x) whose values are real standard or non-standard subset of unit interval 

]−0, 1+[. Scientists continue to intensively study in different fields with this set structure [3, 4, 8, 14, 

15, 17, 18, 19, 20, 21, 22]. These set structures have been studied by some authors in topology [2, 5, 6, 

16, 18]. 

The concept of bitopological spaces was introduced by Kelly [13] as an extension of topological 

spaces in 1963. This concept has been studied with interest in other set structures [10, 12]. Therefore, 

we find it necessary and important to construct a bitopological spaces on the neutrosophic set 

structure. 

In this study, we presented bitopological spaces on neutrosophic set structure and some basic 

notions of this spaces, open (closed) set, closure, interior, neighbourhood systems are defined. In 

addition, the theorems required for this structure are proved and their relations with neutrosophic 

topological spaces are investigated. 

2. Preliminary  

In this section, we will give some preliminary information for the present study. 

Definition 2.1 [23] Let X  be a non empty set, then N = {⟨x, TN(x), IN(x), FN(x)⟩: x ∈ X}  is called a 

neutrosophic set on X , where  −0 ≤ TN(x) + IN(x) + FN(x) ≤ 3+  for all x ∈ X , TN(x),  IN(x)  and 

FN(x) ∈]−0, 1+[ are the degree of membership (namely TN(x)), the degree of indeterminacy (namely 
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IN(x)) and the degree of non membership (namely FN(x)) of each x ∈ X to the set N respectively. For 

X, ℵ(X) denotes the collection of all neutrosophic sets of X.  

 

Definition 2.2 [23] The following statements are true for neutrosophic sets N and M on X: 

i) TN(x) ≤ TM(x), IN(x) ≤ IM(x) and FN(x) ≥ FM(x) for all x ∈ X iff N ⊆ M. 

ii) N ⊆ M and M ⊆ N iff N = M. 

iii) N ∩ M = {⟨x, min{TN(x), TM(x)}, min{IN(x), IM(x)}, max{FN(x), FM(x)}⟩: x ∈ X}. 

iv) N ∪ M = {⟨x, max{TN(x), TM(x)}, max{IN(x), IM(x)}, min{FN(x), FM(x)}⟩: x ∈ X}. 

More generally, the intersection and the union of a collection of neutrosophic sets {Ni}i∈I, are defined 

by: 

∩
i∈I

Ni = {⟨x, inf{TNi
(x)}, inf{INi

(x)}, sup{FNi
(x)}⟩: x ∈ X}, 

∪
i∈I

Ni = {⟨x, sup{TNi
(x)}, sup{INi

(x)}, inf{FNi
(x)}⟩: x ∈ X}. 

   v) N is called neutrosophic universal set, denoted by 1X, if TN(x) = 1, IN(x) = 1 and FN(x) = 0 

for all x ∈ X. 

   vi) N is called neutrosophic empty set, denoted by 0X, if TN(x) = 0, IN(x) = 0 and FN(x) = 1 for 

all x ∈ X. 

   vii) N\M = {⟨x, |TN(x) − TM(x)|, |IN(x) − IM(x)|, 1 − |FN(x) − FM(x)|⟩: x ∈ X}.  Clearly, the 

neutrosophic complements of 1X and 0X are defined: 

(1X)c = 1X\1X = ⟨x, 0,0,1⟩ = 0X, 
(0X)c = 1X\0X = ⟨x, 1,1,0⟩ = 1X. 

  

Proposition 2.1 [23] Let N1, N2, N3 and N4 ∈ ℵ(X). Then followings hold: 

i) N1 ∩ N3 ⊆ N2 ∩ N4 and N1 ∪ N3 ⊆ N2 ∪ N4, if N1 ⊆ N2 and N3 ⊆ N4, 

ii) (N1
c)c = N1 and N1 ⊆ N2, if N2

c ⊆ N1
c, 

iii) (N1 ∩ N2)c = N1
c ∪ N2

c and (N1 ∪ N2)c = N1
c ∩ N2

c.  

 

Definition 2.3 [22] Let X be a non empty set. A neutrosophic topology on X is a subfamily τN of 

ℵ(X) such that 1X and 0X belong to τn, τn is closed under arbitrary union and τn is closed finite 

intersection. Then (X, τn) is called neutrosophic topological space, members of τn  are known as 

neutrosophic open sets and their complements are neutrosophic closed sets. For a neutrosophic set 

N over X, the neutrosophic interior and the neutrosophic closure of N are defined as: intn(N) =∪

{G: G ⊆ N, G ∈ τn} and cln(N) =∩ {F: N ⊆ F, Fc ∈ τn}.  

 

Definition 2.4 [9] Let X be a non empty set. If α, β, γ be real standard or non standard subsets of 

]−0, 1+[, then the neutrosophic set xα,β,γ is called a neutrosophic point in given by  

xα,β,γ(y) = {
(α, β, γ),       if x = y

(0,0,1),        if x ≠ y
 

for y ∈ X is called the support of xα,β,γ. 

It is clear that every neutrosophic set is the union of its neutrosophic points.  

 

Definition 2.5 [9] Let N ∈ ℵ(X). We say that xα,β,γ ∈ N read as belonging to the neutrosophic set N 

whenever α ≤ TN(x), β ≤ IN(x) and γ ≥ FN(x).  

 

Definition 2.6 [11] A subcollection τn
∗  of neutrosophic sets on a non empty set X is said to be a 

neutrosophic supra topology on X  if the sets 1X,  0X ∈ τn
∗  and ∪

∞

i=1
Ni ∈ τn

∗  for {Ni}i=1
∞ ∈ τn

∗ . Then 

(X, τn
∗ ) is called neutrosophic supra topological space on X. 

3. Neutrosophic Bitopological Spaces  
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Definition 3.1 Let (X, τ1
n)  and (X, τ2

n)  be the two different neutrosophic topologies on X . Then 

(X, τ1
n, τ2

n) is called a neutrosophic bitopological space.  

 

Definition 3.2 Let (X, τ1
n, τ2

n)  be a neutrosophic bitopological space. A neutrosophic set N =

{⟨x, TN(x), IN(x), FN(x)⟩: x ∈ X} over X is said to be a pairwise neutrosophic open set in (X, τ1
n, τ2

n) if 

there exist a neutrosophic open set N1 = {⟨x, TN1
(x), IN1

(x), FN1
(x)⟩: x ∈ X} in τ1

n and a neutrosophic 

open set N2 = {⟨x, TN2
(x), IN2

(x), FN2
(x)⟩: x ∈ X}  in τ2

n  such that N = N1 ∪ N2 =

{⟨x, max{TN1
(x), TN2

(x)}, max{IN1
(x), IN2

(x)}, min{FN1
(x), FN2

(x)}⟩: x ∈ X}. 

 

Definition 3.3 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. A neutrosophic set N over X is 

said to be a pairwise neutrosophic closed set in (X, τ1
n, τ2

n)  if its neutrosophic complement is a 

pairwise neutrosophic open set in (X, τ1
n, τ2

n) . Obviously, a neutrosophic set C =

{⟨x, TC(x), IC(x), FC(x)⟩: x ∈ X} over X is a pairwise neutrosophic closed set in (X, τ1
n, τ2

n) if there exist 

a neutrosophic closed set C1 = {⟨x, TC1
(x), IC1

(x), FC1
(x)⟩: x ∈ X} in (τ1

n)c and a neutrosophic closed 

set C2 = {⟨x, TC2
(x), IC2

(x), FC2
(x)⟩: x ∈ X}  in (τ2

n)c  such that C = C1 ∩ C2 =

{⟨x, min{TC1
(x), TC2

(x)}, min{IC1
(x), IC2

(x)}, max{FC1
(x), FC2

(x)}⟩: x ∈ X}, where 

(τi
n)c = {Nc ∈ ℵ(X): N ∈ τi

n}, i = 1,2. 

The family of all pairwise neutrosophic open (closed) sets in (X, τ1
n, τ2

n) is denoted by PNO(X, τ1
n, τ2

n) 

[PNC(X, τ1
n, τ2

n)], respectively.  

Example 3.1 Let X = {a, b, c}. We think that following neutrosophic set over X. 

N1 = {⟨a, 0.3,0.2,0.5⟩, ⟨b, 0.6,0.5,0.3⟩, ⟨c, 0.7,0.1,0.9⟩}, 

N2 = {⟨a, 0.4,0.1,0.3⟩, ⟨b, 0.2,0.6,0.7⟩, ⟨c, 0.1,0.3,0.4⟩}, 

N3 = {⟨a, 0.3,0.1,0.5⟩, ⟨b, 0.2,0.5,0.7⟩, ⟨c, 0.1,0.1,0.9⟩}, 

N4 = {⟨a, 0.4,0.2,0.3⟩, ⟨b, 0.6,0.6,0.3⟩, ⟨c, 0.7,0.3,0.4⟩} 

and 

M1 = {⟨a, 0.1,0.2,0.3⟩, ⟨b, 0.2,0.1,0.4⟩, ⟨c, 0.5,0.2,0.4⟩}, 

M2 = {⟨a, 0.7,0.3,0.1⟩, ⟨b, 0.7,0.8,0.2⟩, ⟨c, 0.9,0.8,0.3⟩}. 

Then (X, τ1
n, τ2

n) is a neutrosophic bitopological space, where  

τ1
n = {0X, 1X, N1, N2, N3, N4}, 

τ2
n = {0X, 1X, M1, M2}. 

Obviously, 

τ12
n = τ1

n ∪ τ2
n ∪ {N1 ∪ M1, N2 ∪ M1, N3 ∪ M1} 

because the neutrosophic sets N1 ∪ M1, N2 ∪ M1 and N3 ∪ M1 not belong to either τ1
n nor τ2

n.  

 

Theorem 3.1 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, 

  

   1. 0X and 1X are pairwise neutrosophic open sets and pairwise neutrosophic closed sets. 

   2. An arbitrary neutrosophic union of pairwise neutrosophic open sets is a pairwise neutrosophic 

open set. 

   3. An arbitrary neutrosophic intersection of pairwise neutrosophic closed sets is a pairwise 

neutrosophic closed set.  

Proof. 1. Since 0X ∈ τ1
n, τ2

n and 0X ∪ 0X = 0X, then 0X is a pairwise neutrosophic open set. Similarly, 

1X is a pairwise neutrosophic open set. 

2. Let {(Ni): i ∈ I} ⊆ PNO(X, τ1
n, τ2

n). Then Ni is a pairwise neutrosophic open set for all i ∈ I, therefore 

there exist Ni
1 ∈ τ1

n and Ni
2 ∈ τ2

n such that Ni = Ni
1 ∪ Ni

2 for all i ∈ I which implies that 

 ∪
i∈I

Ni = ∪
i∈I

[Ni
1 ∪ Ni

2] = [ ∪
i∈I

Ni
1] ∪ [ ∪

i∈I
Ni

2]. 

Now, since τ1
n and τ2

n are neutrosophic topologies, then [ ∪
i∈I

Ni
1] ∈ τ1

n and [ ∪
i∈I

Ni
2] ∈ τ2

n. Therefore, 

∪
i∈I

Ni is a pairwise neutrosophic open set. 

3. It is immediate from the Definition 9, Proposition 1.  
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Corollary 3.1 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, the family of all pairwise 

neutrosophic open sets is a supra neutrosophic topology on X. This supra neutrosophic topology we 

denoted by τ12
n .  

 

Remark 3.1 The Example 1 show that: 

1. τ12
n  is not neutrosophic topology in general. 

2. The finite neutrosophic intersection of pairwise neutrosophic open sets need not be a pairwise 

neutrosophic open set. 

3. The arbitrary neutrosophic union of pairwise neutrosophic closed sets need not be a pairwise 

neutrosophic closed set.  

Theorem 3.2 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, 

  

 1. Every τi
n −open neutrosophic set is a pairwise neutrosophic open set i = 1,2, i.e., τ1

n ∪ τ2
n ⊆ τ12

n . 

 2. Every τi
n −closed neutrosophic set is a pairwise neutrosophic closed set i = 1,2, i.e., (τ1

n)c ∪

(τ2
n)c ⊆ (τ12

n )c. 

 3. If τ1
n ⊆ τ2

n, then τ12
n = τ2

n and (τ12
n )c = (τ2

n)c.  

Proof. Straightforward.  

 

Definition 3.4 Let (X, τ1
n, τ2

n)  be a neutrosophic bitopological space and N ∈ ℵ(X) . The pairwise 

neutrosophic closure of N , denoted by clp
n(N) , is the neutrosophic intersection of all pairwise 

neutrosophic closed super sets of N, i.e., 
 clp

n(N) =∩ {C ∈ (τ12
n )c: N ⊆ C}. 

It is clear that clp
n(N) is the smallest pairwise neutrosophic closed set containing N.  

 

Example 3.2 Let (X, τ1
n, τ2

n) be the same as in Example 1 and  

G = {⟨a, 0.7,0.8,0.7⟩, ⟨b, 0.5,0.4,0.6⟩, ⟨c, 0.8,0.7,0.5⟩} be a neutrosophic set over X. 

Now, we need to determine pairwise neutrosophic closed sets in (X, τ1
n, τ2

n) to find clp
n(G). Then, 

N1
c = {⟨a, 0.7,0.8,0.5⟩, ⟨b, 0.4,0.5,0.7⟩, ⟨c, 0.3,0.9,0.1⟩}, 

N2
c = {⟨a, 0.6,0.9,0.7⟩, ⟨b, 0.8,0.4,0.3⟩, ⟨c, 0.9,0.7,0.6⟩}, 

N3
c = {⟨a, 0.7,0.9,0.5⟩, ⟨b, 0.8,0.5,0.3⟩, ⟨c, 0.9,0.9,0.1⟩}, 

N4
c = {⟨a, 0.6,0.8,0.7⟩, ⟨b, 0.4,0.4,0.7⟩, ⟨c, 0.3,0.7,0.6⟩}, 

 

M1
c = {⟨a, 0.9,0.8,0.7⟩, ⟨b, 0.8,0.9,0.6⟩, ⟨c, 0.5,0.8,0.6⟩}, 

M2
c = {⟨a, 0.3,0.7,0.9⟩, ⟨b, 0.3,0.2,0.8⟩, ⟨c, 0.1,0.2,0.7⟩}. 

and 

(N1 ∪ M1)c = {⟨a, 0.7,0.8,0.7⟩, ⟨b, 0.4,0.5,0.7⟩, ⟨c, 0.3,0.8,0.6⟩} 
(N2 ∪ M1)c = {⟨a, 0.6,0.8,0.7⟩, ⟨b, 0.8,0.4,0.6⟩, ⟨c, 0.5,0.7,0.6⟩} 
(N3 ∪ M1)c = {⟨a, 0.7,0.8,0.7⟩, ⟨b, 0.8,0.5,0.6⟩, ⟨c, 0.5,0.8,0.6⟩} 

 

In here, the pairwise neutrosophic closed sets which contains G  are N3
c  and 1X  it follows that 

clp
n(G) = N3

c ∩ 1X. Therefore, clp
n(G) = N3

c.  

 

Theorem 3.3 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space and N, M ∈ ℵ(X). Then, 

   1. clp
n(0X) = 0X and clp

n(1X) = 1X. 

   2. N ⊆ clp
n(N). 

   3. N is a pairwise neutrosophic closed set iff clp
n(N) = N. 

   4. N ⊆ M ⇒ clp
n(N) ⊆ clp

n(M). 

   5. clp
n(N) ∪ clp

n(M) ⊆ clp
n(N ∪ M). 

   6. clp
n[clp

n(N)] = clp
n(N), i.e., clp

n(N) is a pairwise neutrosophic closed set.  

 

Proof. Straightforward.  
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Theorem 3.4 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space and N ∈ ℵ(X). Then, 

  

xα,β,γ ∈ clp
n(N) ⇔ Uxα,β,γ

∩ N ≠ 0X, ∀Uxα,β,γ
∈ τ12

n (xα,β,γ), 

where Uxα,β,γ
 is any pairwise neutrosophic open set contains xα,β,γ and τ12

n (xα,β,γ) is the family of 

all pairwise neutrosophic open sets contains xα,β,γ.  

 

Proof. Let xα,β,γ ∈ clp
n(N) and suppose that there exists Uxα,β,γ

∈ τ12
n (xα,β,γ) such that Uxα,β,γ

∩ N = 0X. 

Then N ⊆ (Uxα,β,γ
)

c

, thus clp
n(N) ⊆ clp

n (Uxα,β,γ
)

c

= (Uxα,β,γ
)

c

 which implies clp
n(N) ∩ Uxα,β,γ

= 0X , a 

contradiction. 

Conversely, assume that xα,β,γ ∉ clp
n(N), then xα,β,γ ∈ [clp

n(N)]
c
. Thus, [clp

n(N)]
c

∈ τ12
n (xα,β,γ), so, by 

hypothesis, [clp
n(N)]

c
∩ N ≠ 0X, a contradiction.  

 

Theorem 3.5 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. A neutrosophic set N over X is a 

pairwise neutrosophic closed set iff N = clτ1
n (N) ∩ clτ2

n (N).  

 

Proof. Suppose that N is a pairwise neutrosophic closed set and xα,β,γ ∉ N. Then, xα,β,γ ∉ clp
n(N). 

Thus, [by Theorem 4], there exists Uxα,β,γ
∈ τ12

n (xα,β,γ)  such that Uxα,β,γ
∩ N = 0X . Since Uxα,β,γ

∈

τ12
n (xα,β,γ), then there exists M1 ∈ τ1

n and M2 ∈ τ2
n such that Uxα,β,γ

= M1 ∪ M2. Hence, (M1 ∪ M2) ∩

N = 0X  it follows that M1 ∩ N = 0X  and M2 ∩ N = 0X . Since xα,β,γ ∈ Uxα,β,γ
, then xα,β,γ ∈ M1  or 

xα,β,γ ∈ M2  implies, xα,β,γ ∉ clτ1
n (N)  or xα,β,γ ∉ clτ2

n (N) . Therefore, xα,β,γ ∉ clτ1
n (N)  ∩ clτ2

n (N) . Thus, 

clτ1
n (N)  ∩ clτ2

n (N) ⊆ N . On the other hand, we have N ⊆ clτ1
n (N)  ∩ clτ2

n (N) . Hence, N = clτ1
n (N) ∩

clτ2
n (N). 

Conversely, suppose that N = clτ1
n (N) ∩ clτ2

n (N). Since, clτ1
n (N) is a neutrosophic closed set in (X, τ1

n) 

and clτ2
n (N) is a neutrosophic closed set in (X, τ2

n) , then, [by Definition 9], clτ1
n (N) ∩ clτ2

n (N)  is a 

pairwise neutrosophic closed set in (X, τ1
n, τ2

n), so N is a pairwise neutrosophic closed set.  

 

Corollary 3.2 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, 

  
clp

n(N) = clτ1
n (N) ∩ clτ2

n (N), ∀N ∈ ℵ(X). 

 

Definition 3.5 An operator Ψ: ℵ(X) → ℵ(X)  is called a neutrosophic supra closure operator if it 

satisfies the following conditions for all N, M ∈ ℵ(X).  

   1. Ψ(0X) = 0X, 

   2. N ⊆ Ψ(N), 

   3. Ψ(N) ∪ Ψ(M) ⊆ Ψ(N ∪ M) 

   4. Ψ(Ψ(N)) = Ψ(N).  

 

Theorem 3.6 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, the operator clp
n: ℵ(X) →

ℵ(X) which defined by 
clp

n(N) = clτ1
n (N) ∩ clτ2

n (N) 

is neutrosophic supra closure operator and it is induced, a unique neutrosophic supra topology given 

by {N ∈ ℵ(X): clp
n(Nc) = Nc} which is precisely τ12

n .  

 

Proof. Straightforward.  
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Definition 3.6 Let (X, τ1
n, τ2

n)  be a neutrosophic bitopological space and N ∈ ℵ(X) . The pairwise 

neutrosophic interior of N,  denoted by intp
n(N) , is the neutrosophic union of all pairwise 

neutrosophic open subsets of N, i.e., 
intp

n(N) =∪ {M ∈ τ12
n : M ⊆ N}. 

Obviously, intp
n(N) is the biggest pairwise neutrosophic open set contained in N.  

 

Example 3.3 Let (X, τ1
n, τ2

n) be the same as in Example 1 and  

M = {⟨a, 0.3,0.4,0.2⟩, ⟨b, 0.5,0.7,0.1⟩, ⟨c, 0.8,0.7,0.3⟩}  be a neutrosophic set over X. Then the pairwise 

neutrosophic open sets which containing in M are N3, M1, N3 ∪ M1 and 0X. Therefore, 

 
intp

n(M) = N3 ∪ M1 ∪ (N3 ∪ M1) ∪ 0X 

                                = N3 ∪ M1 

                                = {⟨a, 0.3,0.2,0.3⟩, ⟨b, 0.2,0.5,0.4⟩, ⟨c, 0.5,0.2,0.4⟩}. 

Theorem 3.7 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space and N, M ∈ ℵ(X). Then, 

   1. intp
n(0X) = 0X and intp

n(1X) = 1X, 

   2. intp
n(N) ⊆ N, 

   3. N is a pairwise neutrosophic open set iff intp
n(N) = N, 

   4. N ⊆ M ⇒ intp
n(N) ⊆ intp

n(M), 

   5. intp
n(N ∩ M) ⊆ intp

n(N) ∩ intp
n(M), 

   6. intp
n[intp

n(N)] = intp
n(N).  

Proof. Starightforward.  

 

Theorem 3.8 Let (X, τ1
n, τ2

n)  be a neutrosophic bitopological space and N ∈ ℵ(X) . Then, xα,β,γ ∈

intp
n(N) ⇔ ∃Uxα,β,γ

∈ τ12
n (xα,β,γ) such that Uxα,β,γ

⊆ N. 

  

Proof. Starightforward.  

 

Theorem 3.9 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. A neutrosophic set N over X is a 

pairwise neutrosophic open set iff N = intτ1
n (N) ∪ intτ2

n (N).  

 

Proof. Let N  be a pairwise neutrosophic open set. Since, intτi
n (N) ⊆ N , i = 1,2 , then intτ1

n (N) ∪

intτ2
n (N) ⊆ N. Now, let xα,β,γ ∈ N. Then, there exists Uxα,β,γ

1 ∈ τ1
n such that Uxα,β,γ

1 ⊆ N or there exists 

Uxα,β,γ
2 ∈ τ2

n such that Uxα,β,γ
2 ⊆ N, thus xα,β,γ ∈ intτ1

n (N) or xα,β,γ ∈ intτ2
n (N). Hence, xα,β,γ ∈ intτ1

n (N) ∪

intτ2
n (N). Therefore, N = intτ1

n (N) ∪ intτ2
n (N). 

Coversely, since intτ1
n (N) is a neutrosophic open set in (X, τ1

n) and intτ2
n (N) is a neutrosophic open 

set in (X, τ2
n) , then, [by Definition 8], intτ1

n (N) ∪ intτ2
n (N)  is a pairwise neutrosophic open set in 

(X, τ1
n, τ2

n). Thus, N is a pairwise neutrosophic open set.  

 

Corollary 3.3 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, 

  
intp

n(N) = intτ1
n (N) ∪ intτ2

n (N). 

  

Definition 3.7 An operator I: ℵ(X) → ℵ(X)  is called a neutrosophic supra interior operator if it 

satisfies the following conditions for all N, M ∈ ℵ(X).  

 

   1. I(0X) = 0X, 

   2. I(N) ⊆ N, 

   3. I(N ∩ M) ⊆ I(N) ∩ I(M) 

   4. I(I(N)) = I(N).  
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Theorem 3.10 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, the operator intp
n: ℵ(X) →

ℵ(X) which defined by 
intp

n(N) = intτ1
n (N) ∪ intτ2

n (N) 

is neutrosophic supra interior operator and it is induced, a unique neutrosophic supra topology given 

by {N ∈ ℵ(X): intp
n(N) = N} which is precisely τ12

n .  

 

Proof. Straightforward.  

 

Theorem 3.11 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space and N ∈ ℵ(X). Then, 

   1. intp
n(N) = (clp

n(Nc))
c
. 

   2. clp
n(N) = (intp

n(Nc))
c
.  

 

Proof. Starightforward.  

 

Definition 3.8 Let (X, τ1
n, τ2

n)  be a neutrosophic bitopological space, N ∈ ℵ(X)  and xα,β,γ ∈ ℵ(X) . 

Then N  is said to be a pairwise neutrosophic neighborhood of xα,β,γ , if there exists a pairwise 

neutrosophic open set U  such that xα,β,γ ∈ U ⊆ N . The family of pairwise neutrosophic 

neighborhood of neutrosophic point xα,β,γ denoted by Nτ12
n (xα,β,γ).  

 

Theorem 3.12 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space and N ∈ ℵ(X). Then N is pairwise 

neutrosophic open set iff N is a pairwise neutrosophic neighborhood of its neutrosophic points.  

 

Proof. Let N be a pairwise neutrosophic open set and xα,β,γ ∈ N. Then xα,β,γ ∈ N ⊆ N. Therefore N is 

a pairwise neutrosophic neighborhood of xα,β,γ for each xα,β,γ ∈ N. 

Conversely, suppose that N is a pairwise neutrosophic neighborhood of its neutrosophic points and 

xα,β,γ ∈ N. Then there exists a pairwise neutrosophic open set U such that xα,β,γ ∈ U ⊆ N. Since  

 
N = ∪

xα,β,γ∈N
{xα,β,γ} ⊆ ∪

xα,β,γ∈N
U ∪

xα,β,γ∈N
N = N 

 

it follows that N is an union of pairwise neutrosophic open sets. Hence, N is a pairwise neutrosophic 

open set.  

 

Proposition 3.2 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space and  

{Nτ12
n (xα,β,γ): xα,β,γ ∈ ℵ(X)} be a system of pairwise neutrosophic neighborhoods. Then, 

   1. For every N ∈ Nτ12
n (xα,β,γ), xα,β,γ ∈ N; 

   2. N ∈ Nτ12
n (xα,β,γ) and N ⊆ M ⇒ M ∈ Nτ12

n (xα,β,γ); 

   3. N ∈ Nτ12
n (xα,β,γ) ⇒ ∃M ∈ Nτ12

n (xα,β,γ)  such that M ⊆ N  and M ∈ Nτ12
n (y

α ′,β ′,γ ′ ) , for every 

y
α ′,β ′,γ ′ ∈ M.  

 

Proof. Proofs of 1 and 2 are straightforward. 

3. Let N be a pairwise neutrosophic neighborhood of xα,β,γ, then there exists a pairwise neutrosophic 

open set M ∈ τ12
n  such that xα,β,γ ∈ M ⊆ N.  Since xα,β,γ ∈ M ⊆ M  can be written, then M ∈

Nτ12
n (xα,β,γ). From the Theorem 12, if M is pairwise neutrosophic open set then N is a pairwise 

neutrosophic neighborhood of its neutrosophic points, i.e., M ∈ Nτ12
n (y

α ′,β ′,γ ′ ), for every y
α ′,β ′,γ ′ ∈

M.  

 

Remark 3.2 Generally, N, M ∈ Nτ12
n (xα,β,γ) ⇒ N ∩ M ∉ Nτ12

n (xα,β,γ) . Actually, if N, M ∈ Nτ12
n (xα,β,γ) , 

there exist U1, U2 ∈ τ12
n  such that xα,β,γ ∈ U1 ⊆ N and xα,β,γ ∈ U2 ⊆ M . But U1 ∩ U2  need not be a 
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pairwise neutrosophic open set .  Therefore, N ∩ M  need not be a pairwise neutrosophic 

neighborhood of xα,β,γ.  

 

Theorem 3.13 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then 

 

Nτ12
n (xα,β,γ) = Nτ1

n(xα,β,γ) ∪ Nτ2
n(xα,β,γ) 

for each xα,β,γ ∈ ℵ(X).  

 

Proof. Let xα,β,γ ∈ ℵ(X) be any neutrosophic point and N ∈ Nτ12
n (xα,β,γ). Then there exists a pairwise 

neutrosophic open set M ∈ τ12
n  such that xα,β,γ ∈ M ⊆ N. If M ∈ τ12

n , there exist M1 ∈ τ1
n and M2 ∈ τ2

n 

such that M = M1 ∪ M2. Since xα,β,γ ∈ M = M1 ∪ M2, then xα,β,γ ∈ M1 or xα,β,γ ∈ M2. So, xα,β,γ ∈ M1 ⊆

M ⊆ N or xα,β,γ ∈ M2 ⊆ M ⊆ N. In this case, N ∈ Nτ1
n(xα,β,γ) or N ∈ Nτ2

n(xα,β,γ), i.e., N ∈ Nτ1
n(xα,β,γ) ∪

Nτ2
n(xα,β,γ). 

Conversely, suppose that N ∈ Nτ1
n(xα,β,γ) ∪ Nτ2

n(xα,β,γ) . Then N ∈ Nτ1
n(xα,β,γ)  or N ∈ Nτ2

n(xα,β,γ) . 

Hence, there exists xα,β,γ ∈ M1 ∈ τ1
n or xα,β,γ ∈ M2 ∈ τ2

n such that xα,β,γ ∈ M1 ⊆ N and xα,β,γ ∈ M2 ⊆

N. As a result, xα,β,γ ∈ M1 ∪ M2 = M ⊆ N such that M ∈ τ12
n  i.e., N ∈ Nτ12

n (xα,β,γ).  

 

Definition 3.9 An operator ν: ℵ(X) → ℵ(X) is called a neutrosophic supra neighborhood operator if 

it satisfies the following conditions for all N, M ∈ ℵ(X).  

 

   1. ∀N ∈ ν(xα,β,γ), xα,β,γ ∈ N; 

   2. N ∈ ν(xα,β,γ) and N ⊆ M ⇒ M ∈ ν(xα,β,γ); 

   3. N ∈ ν(xα,β,γ) ⇒ ∃M ∈ ν(xα,β,γ) such that N ⊆ M and M ∈ ν (y
α ′,β ′,γ ′ ), y

α ′,β ′,γ ′ ∈ M.  

 

Theorem 3.14 Let (X, τ1
n, τ2

n) be a neutrosophic bitopological space. Then, the operator Nτ12
n : ℵ(X) →

ℵ(X) which defined by 

 

Nτ12
n (xα,β,γ) = Nτ1

n(xα,β,γ) ∪ Nτ2
n(xα,β,γ) 

 

is neutrosophic supra neighboorhod operator and it is induced, a unique neutrosophic supra 

topology given by {N ∈ ℵ(X): ∀xα,β,γ ∈ NforN ∈ Nτ12
n (xα,β,γ)} which is precisely τ12

n .  

4. Conclusions 

In this paper, neutrosophic bitopological spaces are presented. By defining open (closed) sets, 

interior, closure and neighbourhood systems, fundamentals theorems for neutrosophic bitopological 

spaces are proved and some examples on the subject are given. This paper is just a beginning of a 

new structure and we have studied a few ideas only, it will be necessary to carry out more theoretical 

research to establish a general framework for the practical application. In the future, using these 

notions, various classes of mappings on neutrosophic bitopological space, separation axioms on the 

neutrosophic bitopological spaces and many researchers can be studied 
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Abstract: In this study, we have proposed a supplier selection problem with the goals of minimizing 

the net cost, minimizing the net rejections, minimizing the net late deliveries, and minimizing the 

net green house gas emission subject to realistic constraints like suppliers’ capacity, buyer’s demand 

etc. Due to uncertainty, the buyer’s demand is fuzzy in nature and can be represented as a triangular 

neutrosophic number. We have also considered that quantity discounts are provided by the 

suppliers. The weights for different criteria are calculated using neutrosophic analytical hierarchy 

process. The neutrosophic goal programming approach has been applied in this article for solving 

the proposed supplier selection problem. An illustration has been given with comparison between 

fuzzy goal programming approach to demonstrate the effectiveness of the proposed model.  

Keywords: Supplier selection; Quantity discounts; Green house gas; Neutrosophic goal 

programming; Triangular neutrosophic number; Neutrosophic analytical hierarchy process 

 

 

1. Introduction 

The supplier selection problem (SSP) is the problem of determining the right suppliers and their 

quota allocations. In designing a supply chain, a decision maker needs to consider decisions 

regarding the selection of the right suppliers and their quota allocation (Kumar, Vrat, & Shankar, 

2004). Dickson(Dickson, 1966) was the first to identify 23 different criteria for various supplier 

selection problems. According to him quality was the most important criterion while delivery, price, 

geographical location and capacity were also very important factors in the supplier selection process. 

Weber and Current(Weber & Current, 1993) took a multi-objective approach to solve a supplier 

selection problem where net price, net late deliveries, net rejected unit delivered were minimized 

subject to a constant demand and capacity constraint. Kumar et al.(Kumar et al., 2004) applied fuzzy 

goal programming to solve a similar problem as Weber and Current(Weber & Current, 1993) with 

some additional constrains such as budget restriction for each retailer, supplier’s quota flexibility etc. 

Wang 

and Yang(Wang & Yang, 2009) considered quantity discount in supplier selection problem and 

applied fuzzy goal programming to find out a compromise solution. They also used analytical 

hierarchy process (AHP) to find out weights of different goals. Shaw et al.(Shaw, Shankar, Yadav, & 

Thakur, 2012) developed a supplier selection model with the amount of carbon emission by the 

suppliers as an objective function. They used fuzzy AHP to figure out weights for different objective 

functions. They also considered the aggregate demand as a fuzzy triangular number. To solve the 

problem, they also used fuzzy goal programming approach. Abdel-Basset et al.(Abdel-Basset, 
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Manogaran, Gamal, & Smarandache, 2018) used neutrosophic set for decision making and evaluation 

method to analyze and determine the factors influencing the selection of supply chain management 

suppliers. Gamal et al.(Gamal, Ismail, & Smarandache, 2018) used Multi-Objective Optimization on 

the basis of Ratio Analysis with the help of neutrosophic trapezoidal number to a supplier selection 

problem. 

Zadeh(Zadeh, 1965) was the first to introduce the concept of fuzzy set. Bellman and 

Zadeh(Bellman & Zadeh, 1970) demonstrated decision making in fuzzy systems. 

Zimmermann(Zimmermann, 1978) applied the fuzzy set theory concept with some suitable 

membership functions to solve linear programming problem with several objective functions. 

Atanassov(Atanassov, 1986) developed the idea of intuitionistic fuzzy set, which is characterized by 

the membership degree as well as non-membership degree such that the sum of these two values is 

less than equal to one. Angelov(Angelov, 1997) gave the idea of optimization in intuitionistic fuzzy 

environment. In this article, he maximized the degree of acceptance of intuitionistic fuzzy objective(s) 

and minimized the degree of rejection of intuitionistic fuzzy objectives subject to the constraints of 

the problem. 

Intuitionistic fuzzy sets cannot handle when indeterminate information is present in the 

concerned problem. In decision making theory, sometimes decision makers find it hard to decide due 

to presence of indeterminate information in the problem. So generalization of the concept of 

intuitionistic fuzzy sets was needed. So, Smarandache(Smarandache, 1999) incorporated the concept 

of indeterminacy by adding another independent membership function called as indeterminacy 

membership along with truth and falsity membership functions. Hezam et al.(Hezam, Abdel-Baset, 

& Smarandache, 2015) used neutrosophic theory in multi-objective linear programming problem. M. 

Hezam et al.(M. Hezam, Smarandache, & Abdel-Baset, 2016) introduced goal programming to 

neutrosophic fuzzy environment. In that paper, they established two models to solve an optimization 

problem. Here, they maximized truth and indeterminacy membership function and minimized the 

falsity membership function. Pramanik(Pramanik, 2016) also presented a neutrosophic linear goal 

programming problem. But instead of maximizing the indeterminacy membership function, he 

minimized it along with maximizing truth membership function and minimizing the falsity 

membership function. He also pointed out that minimizing the indeterminacy membership function 

is decision maker’s best option. Islam and Kundu(Islam & Kundu, 2018) developed the geometric 

goal programming in neutrosophic environment and applied it to a Bridge Network Reliability 

Model. Islam and Ray(Islam & Ray, 2018) applied neutrosophic goal programming in multi-objective 

portfolio selection model. Rizk-Allah et al.(Rizk-Allah, Hassanien, & Elhoseny, 2018) used 

neutrosophic goal programming in a multi-objective transportation problem. (Abdel-Basset, Saleh, 

Gamal, & Smarandache, 2019) used type 2 neutrosophic number in supplier selection model. 

Plithogenic decision-making approach has been applied in selecting supply chain sustainability 

metrics in (Abdel-Basset, Mohamed, Zaied, & Smarandache, 2019). 

Neutrosophic theory has been applied to internet of things (IoT) in (Abdel-Basset, Nabeeh, El-

Ghareeb, & Aboelfetouh, 2019; Nabeeh, Abdel-Basset, El-Ghareeb, & Aboelfetouh, 2019). In (Abdel-

Basset, El-hoseny, Gamal, & Smarandache, 2019; Abdel-Basset, Manogaran, Gamal, & Chang, 2019) 

neutrosophic theory has been applied in medical sciences. 

As much as we know, neutrosophic goal programming has never been used before in a supplier 

selection problem. Also, there have not been many studies, in which quantity discounts offered by 

the suppliers. Our objective in this study is to give a computational algorithm for solving multi-

objective supplier selection problem with quantity discount with the help of neutrosophic goal 

programming and neutrosophic analytical hierarchy process. The rest of the article is organized as 

follows: Section 2 presents some assumptions, notations and model description. Section 3 discusses 

some preliminaries and the neutrosophic analytical hierarchy process. Section 4 presents the fuzzified 

version of our model. Section 5 presents the computational algorithm. Section 6 provides a numerical 

example with comparison between neutrosophic goal programming approach and fuzzy goal 
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programming approach. Finally, Section 7 gives some conclusions regarding the effectiveness of our 

proposed model. 

2. Supplier Selection Model               

 A Supplier Selection Problem (SSP) is a very important problem for most of the manufacturing 

firms. The main goal of an SSP is to identify the supplier who has the most potential to meet the 

firm’s demands with minimizing different costs for the firm in the process. An SSP is typically a 

multi-objective problem. Also, mostly it has conflicting goals. The assumptions and notations for 

our model are as follow: 

2.1. Assumptions 

 Single type of item is considered. 

 Quantity discounts are offered by the suppliers. 

 No shortage of the item is permitted for any supplier. 

 

2.2. Notations 

2.2.1. Index 

 i: index for suppliers, ∀ i = 1,2, . . . , n  

 m(i): number of quantity ranges in supplier-i’s price level  

 j: index for price level for the suppliers, ∀ 1,2,...,m(i) 

 k: index for objective functions,  

2.2.2. Decision Variables 

 𝑥𝑖𝑗 :ordered quantity for the supplier-i at the price level j  

 𝑦𝑖𝑗: (
1 {if supplier − i is selected at price level j}
0 otherwise

 

2.2.3. Parameters 

D: aggregate demand of the item over a fixed planning period  

𝑎𝑖𝑗 : 𝑗
𝑡ℎ price level for supplier-i  

𝑝𝑖𝑗 : the unit price of the supplier-i at price level j  

𝜂𝑖: percentage of units delivered late by the supplier-i  

𝜗𝑖 : percentage of rejected units delivered by supplier-i  

𝑔𝑖: green house gas emission (GHGE) for product supplied by supplier i.  

n: number of suppliers  

𝐶𝑖: maximum capacity of supplier-i  

𝐵𝑖 : budget allocated to supplier-i  

2.3. Model Description and Formulation:             

 In this article, we study the case in which a single firm buys raw materials or semi-products 

from n-suppliers. Suppliers sell the products at different prices and emit different amount of 

greenhouse gases. The suppliers may deliver some rejected items and also they may fail to deliver 

in time as agreed before by the both parties. The firm requires to minimize the above mentioned 

costs and shortcomings. Hence a multi-objective linear programming problem has been formed to 

find out the optimal purchasing quantity from each supplier for the firm.  

A multi-objective linear programming problem(MOLP) is of the form, 

Maximize 𝑍𝑘(𝑥𝑖) = [𝑍1(𝑥𝑖), 𝑍2(𝑥𝑖), . . . . . , 𝑍𝐾(𝑥𝑖)],  k=1,2,3,...,K 
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Minimize 𝑌𝑙(𝑥𝑖) = [𝑌1(𝑥𝑖), 𝑌2(𝑥𝑖), . . . . . , 𝑌𝐿(𝑥𝑖)],  l=1,2,...,L 

subject to, 

𝑓𝑚(𝑥𝑖) ≤ 𝑎𝑚,  m=1,2,...,M 

𝑔𝑡(𝑥𝑖) = 𝑏𝑡,  t=1,2,...,T 

ℎ𝑜(𝑥𝑖) ≥ 𝑐𝑜,  o=1,2,...,O 

𝑥𝑖 ∈ 𝑋, X is the solution space. Now, the multi-objective linear programming problem for this 

supplier selection problem (MOLP-SSP) is,   

    Minimize  𝑍1(𝑥𝑖𝑗) =

Σ𝑖=1
𝑛 Σ𝑗=1

𝑚(𝑖)
𝑝𝑖𝑗 . 𝑥𝑖𝑗mizeZ_1(x_ij)=?Σ_i=1^n?Σ_j=1^m(i)p_ij.x_ij (2.1) 

 Minimize  𝑍2(𝑥𝑖𝑗) =

Σ𝑖=1
𝑛 𝜂𝑖. Σ𝑗=1

𝑚(𝑖)
𝑥𝑖𝑗mizeZ_2(x_ij)=?Σ_i=1^nη_i.?Σ_j=1^m(i)x_ij (2.2) 

 Minimize  𝑍3(𝑥𝑖𝑗) =

Σ𝑖=1
𝑛 𝜗𝑖. Σ𝑗=1

𝑚(𝑖)
𝑥𝑖𝑗mizeZ_3(x_ij)=?Σ_i=1^nϑ_i.?Σ_j=1^m(i)x_ij (2.3) 

 Minimize  𝑍4(𝑥𝑖𝑗) =

Σ𝑖=1
𝑛 𝑔𝑖. Σ𝑗=1

𝑚(𝑖)
𝑥𝑖𝑗mizeZ_4(x_ij)=?Σ_i=1^ng_i.?Σ_j=1^m(i)x_ij (2.4) 

 Σ𝑖=1
𝑛 Σ𝑗=1

𝑚(𝑖)
𝑥𝑖𝑗 = 𝐷, (2.5) 

 Σ𝑗=1
𝑚(𝑖)

𝑥𝑖𝑗 ≤ 𝐶𝑖,    for  i = 1,2, . . . , n, (2.6) 

 𝑦𝑖𝑗 = (
1  𝑖𝑓  𝑥𝑖𝑗 > 0

0  𝑖𝑓  𝑥𝑖𝑗 = 0
,    for  i = 1,2, . . . , n  and  j = 1,2, . . . , m(i), (2.7) 

 𝑎𝑖𝑗−1𝑦𝑖𝑗−1 ≤ 𝑥𝑖𝑗 < 𝑎𝑖𝑗𝑦𝑖𝑗 ,    for  i = 1,2, . . . , n  and  j = 1,2, . . . , m(i), (2.8) 

 Σ𝑗=1
𝑚(𝑖)

𝑦𝑖𝑗 ≤ 1,    fori = 1,2, . . . , n, (2.9) 

 Σ𝑗=1
𝑚(𝑖)

𝑝𝑖𝑗 . 𝑥𝑖𝑗 ≤ 𝐵𝑖,    fori = 1,2, . . . , n, (2.10) 

        𝑥𝑖𝑗 ≥ 0,    i = 1,2, . . . , n  and  j = 1,2, . . . , m(i).                             (2.11) 

• Objective function (2.1) minimizes the total cost for the purchased items. 

• Objective function (2.2) minimizes the net number of late delivered items from the suppliers.  

• Objective function (2.3) minimizes the total number of rejected items from the suppliers.  

• Objective function (2.4) minimizes the total amount of green house gas emission by the suppliers.  

• The constraint (2.5) ensures that the overall demand is met for the firm.  

• The constraint (2.6) puts restrictions on the capacities of the suppliers.  

• The constraint (2.7) ensures the binary nature of the supplier selection decision.  

• The constraint (2.8) is a quantity range constraint to meet the number of quantity ranges in a 

supplier’s price level.  

• The constraint (2.9) guarantees that at most one price level per supplier can be chosen.  

• The constraint (2.10) prevents negative orders.  

• The constraint (2.11) puts restrictions on the budget amount allocated to the suppliers.  

 In a real life problem of supplier selection, there are many elements, which can not be known 

properly and they create vagueness in the decision environment. This vagueness cannot be 

translated perfectly by a deterministic model. Therefore, the deterministic models are not suited for 

real life problems ((Kumar et al., 2004; Shaw et al., 2012)). For example, the predicted aggregate 

demand may not be accurate. So, the aggregate demand can be taken as a triangular neutrosophic 

number. Also, the objective functions for the firm are conflicting in nature because e.g. one supplier 
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may charge less for the items but it may also deliver a lot of rejected/unusable items. So, the firm 

will want to find a compromise solution. Hence neutrosophic goal programming has been used in 

this study to find out the optimal trade-off for the firm. 

3. Preliminaries 

3.1. Some Definitions 

Definition 3.1.1 (Fuzzy sets): As in (Zadeh, 1965) , a fuzzy set �̃� in a universe of discourse X is defined as 

the ordered pairs �̃� = {(𝑥,𝑀𝐴(𝑥)): 𝑥 ∈ 𝑋}  where 𝑀𝐴: 𝑋 → [0,1]  is a function known as the membership 

function of the set �̃�. 𝑀𝐴(𝑥) is the degree of membership of x ∈ 𝑋 in the fuzzy set �̃�. Higher value of 𝑀𝐴(𝑥) 

indicates a higher degree of membership in �̃�.  

 

Definition 3.1.2. (Neutrosophic sets): As in (Smarandache, 1999), let X be a universe of discourse and let 

𝑥 ∈ 𝑋. A neutrosophic set A in X is characterized by a truth-membership function 𝑇𝐴(𝑥), an indeterminacy-

membership function 𝐼𝐴(𝑥) , and a falsity- membership function 𝐹𝐴(𝑥) , where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈

(0,1), ∀𝑥 ∈ 𝑋 and 0+ ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3
−.  

  

Definition 3.1.3. (Single valued neutrosophic sets): According to (Haibin, Smarandache, Zhang, & 

Sunderraman, 2010), if X is a universe of discourse and if 𝑥 ∈ 𝑋, a single valued neutrosophic set A is 

characterized by a truth-membership function 𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and a 

falsity- membership function 𝐹𝐴(𝑥) , where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0,1], ∀𝑥 ∈ 𝑋  and 0 ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) +

𝑠𝑢𝑝𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3pT_A(x)+supI_A(x)+supF_A(x)≤3.  

  

Definition 3.1.4. (Intersection of two Single valued neutrosophic number): As in (Salama & 

Alblowi, 2012) , the intersection of two single valued neutrosophic sets A and B is a single valued neutrosophic 

set C, written as 𝐶 = 𝐴 ∩ 𝐵B its truth, indeterminacy and falsity membership functions are given by,  

 𝑇𝐶(𝑥) = 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)), (3.1) 

 𝐼𝐶(𝑥) = 𝑚𝑎𝑥(𝐼𝐴(𝑥), 𝐼𝐵(𝑥)), (3.2) 

 𝐹𝐶(𝑥) = 𝑚𝑎𝑥(𝐹𝐴(𝑥), 𝐹𝐵(𝑥)) (3.3) 

 for all x in X.   

Definition 3.1.5. (Triangular neutrosophic numbers) As in (Abdel-Basset, Mohamed, Zhou, & M. 

Hezam, 2017), a triangular neutrosophic number is a special kind of neutrosophic set on the real number set 

ℝ denoted as �̃� =< (𝑎1, 𝑏1, 𝑐1); 𝛿�̃�, 𝜃�̃�, 𝜆�̃� >,where 𝛿�̃�, 𝜃�̃�, 𝜆�̃� ∈ [0,1]. The truth-membership, indeterminacy-

membership and falsity-membership functions are defined as follows:  

 𝑇�̃�(𝑥) =

(

 
 
 

(𝑥−𝑎1)𝛿�̃�

𝑏1−𝑎1
, 𝑖𝑓  𝑎1 ≤ 𝑥 ≤ 𝑏1

𝛿�̃�, 𝑖𝑓  𝑥 = 𝑏1
(𝑐1−𝑥)𝛿�̃�

(𝑐1−𝑏1)
, 𝑖𝑓  𝑏1 < 𝑥 ≤ 𝑐1

0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.4) 
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 𝐼�̃�(𝑥) =

(

 
 
 
 

𝑏1−𝑥+𝜃�̃�(𝑥−𝑎1)

𝑏1−𝑎1
  , 𝑖𝑓  𝑎1 ≤ 𝑥 ≤ 𝑏1

𝜃�̃�  , 𝑖𝑓  𝑥 = 𝑏1
𝑥−𝑏1+�̃�𝑎(𝑐1−𝑥)

𝑐1−𝑏1
  , 𝑖𝑓  𝑏1 < 𝑥 ≤ 𝑐1

1  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5) 

 𝐹�̃�(𝑥) =

(

 
 
 

𝑏1−𝑥+𝜆�̃�(𝑥−𝑎1)

𝑏1−𝑎1
  , 𝑖𝑓  𝑎1 ≤ 𝑥 ≤ 𝑏1

𝜆�̃�  , 𝑖𝑓  𝑥 = 𝑏1
𝑥−𝑏1+𝜆𝑎(𝑐1−𝑥)

𝑐1−𝑏1
  , 𝑖𝑓  𝑏1 < 𝑥 ≤ 𝑐1

1  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.6) 

    where 𝛿𝑎, 𝜃𝑎, 𝜆𝑎  are the maximum truth-membership degree, minimum indeterminacy-

membership degree and minimum falsity-membership degree respectively. 

3.2. Neutrosophic Goal Programming Technique 

A minimizing type multi-objective linear programming is of the form, 

                 
𝑚𝑖𝑛 [𝑍1(𝑥), 𝑍2(𝑥), . . . , 𝑍𝐾(𝑥)]

𝑔𝑡(𝑥) ≤ 𝑏𝑡, t = 1,2, . . . , T
 (3.7) 

 Let, the fuzzy goal for each objective function be denoted as 𝐺𝑘  for all k=1,2,...,K and the fuzzy 

constraints be denoted as 𝐶𝑡 for all t=1,2,...,T. Then, the neutrosophic decision set 𝐷𝑁, which is a 

conjunction of neutrosophic objectives and constraints, is defined by,  

 𝐷𝑁 = (⋂𝐾1 𝐺𝐾)(⋂
𝑇
1 𝐶𝑇) = (𝑥, 𝑇𝐷𝑛, 𝐼𝐷𝑛, 𝐹𝐷𝑛) (3.8) 

 𝑇𝐷𝑛 = 𝑚𝑖𝑛(𝑇𝐺1(𝑥), 𝑇𝐺2(𝑥), . . . , 𝑇𝐶𝑘(𝑥); 𝑇𝐶1(𝑥), 𝑇𝐶2(𝑥), . . . , 𝑇𝐶𝑘(𝑥)), ∀𝑥 ∈ 𝑋 (3.9) 

 𝐼𝐷𝑛 = 𝑚𝑎𝑥(𝐼𝐺1(𝑥), 𝐼𝐺2(𝑥), . . . , 𝐼𝐶𝑘(𝑥); 𝐼𝐶1(𝑥), 𝐼𝐶2(𝑥), . . . , 𝐼𝐶𝑘(𝑥)), ∀𝑥 ∈ 𝑋 (3.10) 

 𝐹𝐷𝑛 = 𝑚𝑎𝑥(𝐹𝐺1(𝑥), 𝐹𝐺2(𝑥), . . . , 𝐹𝐶𝑘(𝑥); 𝐹𝐶1(𝑥), 𝐹𝐶2(𝑥), . . . , 𝐹𝐶𝑘(𝑥)), ∀𝑥 ∈ 𝑋 (3.11) 

 , where 𝑇𝐷𝑛, 𝐼𝐷𝑛, 𝐹𝐷𝑛 are truth, indeterminacy and falsity membership function of the neutrosophic 

decision set 𝐷𝑁 respectively. Now the transformed linear programming problem of the problem in 

eq. (3.7) can be written as the following crisp programming problem,  

min  (1 − 𝛼) + 𝛾 + 𝛽

subject to,

       𝑇𝐷𝑛(𝑋) ≥ 𝛼
        𝐼𝐷𝑛(𝑥) ≤ 𝛾

        𝐹𝐷𝑛(𝑋) ≤ 𝛽
       0 ≤ 𝛼 + 𝛽 + 𝛾 ≤ 3
             𝛼 ≥ 𝛽
             𝛼 ≥ 𝛾
         𝛼, 𝛽, 𝛾 ∈ [0,1]

                           (3.12) 

3.3. Neutrosophic Analytical Hierarchy Process 

The analytical hierarchy process was first introduced by Saaty(Saaty, 1980). The process has been 

applied to a wide variety of decision making problems. It also gives a structured method for 

determining the weights of criteria. The Neutrosophic Analytical Hierarchy Process(NAHP) was 

introduced by Abdel-Basset et al.(Abdel-Basset et al., 2017) The process of calculating weight criteria 

by means of NAHP is described below briefly:   

• A pairwise comparison matrix based on relative importance of each criterion is formed. If 

A=(𝑎𝑖�̃�) represents the matrix then, �̃�𝑖𝑗 is a neutrosophic triangular number.  
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• We take 𝑎𝑖�̃� = 1̃ if i and j are equally important, 𝑎𝑖�̃� = 3̃ if i is moderately important than j, 

𝑎𝑖�̃� = 5̃ if i is strongly important than j, 𝑎𝑖�̃� = 7̃ if i is very strongly important than j, 𝑎𝑖�̃� = 9̃ if i is 

extremely important than j. We may also take �̃� = 2̃, 4̃, 6̃ 𝑜𝑟 8̃ for different importance.  

• Next, the neutrosophic pair-wise comparison matrix is transformed into a deterministic pair-

wise comparison matrix, using the following equations: if �̃� =< (𝑎1, 𝑏1, 𝑐1); 𝛿�̃�, 𝜃�̃�, 𝜆�̃� > be a single 

valued triangular neutrosophic number then  

 

𝑠𝑖𝑗 =
(𝑎1+𝑏1+𝑐1)(2+𝛿�̃�−𝜃�̃�−𝜆�̃�)

16

𝑎𝑖�̃� = 𝑠𝑖𝑗

𝑎𝑗�̃� =
1

𝑠𝑖𝑗

 (3.13) 

    •After forming the deterministic matrix, each column entries are normalized by dividing each 

entry by column sum. 

    • Then, we average each row to get the required weights(𝑤𝑙).  

    • Finally, we check the consistency of the comparison matrix with the help of consistency index 

(CI) and consistency ratio (CR) ((Abdel-Basset et al., 2017; Saaty, 1980)):  

 
𝐶𝐼 =

𝜆𝑚𝑎𝑥−𝑛

𝑛−1

𝐶𝑅 =
𝐶𝐼

𝑅𝐼

 (3.14) 

where n is the number of items being compared, and RI is the consistency index of a randomly 

generated pair-wise comparison matrix of similar size (Saaty, 1980). If CR<0.1, the comparison 

matrix is consistent. 

4. Fuzzy Supplier Selection Model 

In this model, the decision maker/ firm tries to achieve a certain goal for each objective function. 

The goals are a fuzzy in nature. As well as, we assumed in this study demand cannot be known 

precisely. So, the aggregate demand is also fuzzy in nature. After fuzzification, the eqs. (2.1) to (2.11) 

can be represented as follows: 

Find 𝑥𝑖𝑗  to satisfy, 

   

    𝑍𝑘(𝑥𝑖𝑗) =̃ 𝑍�̃�     for  k = 1,2,3,4

Σ𝑖=1
𝑛 Σ𝑗=1

𝑚(𝑖)
𝑥𝑖𝑗 =̃ �̃�,

    Σ𝑗=1
𝑚(𝑖)

𝑥𝑖𝑗 ≤ 𝐶𝑖,     for  i = 1,2, . . . , n,

        𝑦𝑖𝑗 = (
1  𝑖𝑓  𝑥𝑖𝑗 > 0

0  𝑖𝑓  𝑥𝑖𝑗 = 0
,     for  i = 1,2, . . . , n  and  j = 1,2, . . . , m(i),

  𝑎𝑖𝑗−1𝑦𝑖𝑗−1 ≤ 𝑥𝑖𝑗 < 𝑎𝑖𝑗𝑦𝑖𝑗 ,     for  i = 1,2, . . . , n  and  j = 1,2, . . . , m(i),

    Σ𝑗=1
𝑚(𝑖)

𝑦𝑖𝑗 ≤ 1,     fori = 1,2, . . . , n,

 Σ𝑗=1
𝑚(𝑖)

𝑝𝑖𝑗 . 𝑥𝑖𝑗 ≤ 𝐵𝑖.

        𝑥𝑖𝑗 ≥ 0,     i = 1,2, . . . , n  and  j = 1,2, . . . , m(i).

 (4.1) 

where 𝑍�̃� is the aspiration level for each objective and �̃� is the fuzzified demand. Hence, the 

aggregate demand can be taken as fuzzy triangular number or triangular neutrosophic number.  

5. Computational Algorithm 

In this study, NAHP and neutrosophic goal programming approach has been used to solve the 

problem. The solution steps to solve this model are as follows:  
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Step 1: Firstly, identification of supplier selection criteria with multi-supplier quantity discounts 

is done.  

Step 2: A panel of experts in the fields of supply chain and operations is formed. To get the 

weights(𝑤𝑙) for different criteria they are asked to fill a nine-point-scale questionnaire to form the 

pairwise comparison matrix using eq. (3.13). Then, consistency property of each expert’s comparison 

results must be checked using eq. (3.14). If it is not consistent they are ask to fill the questionnaire 

again. They are also asked to approximate the market demand and how much it may fluctuate.  

Step 3: Objective functions for the Supplier selection model are formed. These objective 

functions are purchasing cost, total amount of rejected items, total amount of late deliveries and the 

total amount of green- house gas emitted by the suppliers.  

Step 4: Each objective is solved dismissing the other objective functions subject to the constrains 

and using the approximate demand as predicted by the experts in step 2. Using the values of all 

objective function at each ideal solution, pay-off matrix can be formulated as follows: 

(

 
 

𝑍1(𝑥𝑖𝑗
1 ) 𝑍2(𝑥𝑖𝑗

1 ) 𝑍3(𝑥𝑖𝑗
1 ) 𝑍4(𝑥𝑖𝑗

1 )

𝑍1(𝑥𝑖𝑗
2 ) 𝑍2(𝑥𝑖𝑗

2 ) 𝑍3(𝑥𝑖𝑗
2 ) 𝑍4(𝑥𝑖𝑗

2 )

𝑍1(𝑥𝑖𝑗
3 ) 𝑍2(𝑥𝑖𝑗

3 ) 𝑍3(𝑥𝑖𝑗
3 ) 𝑍4(𝑥𝑖𝑗

3 )

𝑍1(𝑥𝑖𝑗
4 ) 𝑍2(𝑥𝑖𝑗

4 ) 𝑍3(𝑥𝑖𝑗
4 ) 𝑍4(𝑥𝑖𝑗

4 ))

 
 
,where  𝑥𝑖𝑗

𝑘   for k = 1,2,3,4 is the ideal solution for 𝑍𝑘 

 

Step 5: For each objective function 𝑍𝑘 the lower bound 𝐿𝑘, which is the aspiration level (𝑍�̃�) and 

the upper bound 𝑈𝑘 are formed as: 𝐿𝑘 = 𝑍�̃� = 𝑚𝑖𝑛𝑘(𝑍𝑘(𝑥𝑖𝑗
𝑘 )) and 𝑈𝑘 = 𝑚𝑎𝑥𝑘(𝑍𝑘(𝑥𝑖𝑗

𝑘 )) for k=1,2,3,4.  

Step 6: The bounds for the neutrosophic environment can be calculated as follows:  

 𝑈𝑘
𝑇 = 𝑈𝑘, 𝐿𝑘

𝑇 = 𝐿𝑘, for truth membership function (5.1) 

 𝑈𝑘
𝐼 = 𝑈𝑘, 𝐿𝑘

𝐼 = 𝐿𝑘 + 𝑠𝑘(𝑈𝑘 − 𝐿𝑘), for indeterminacy membership function (5.2) 

 𝑈𝑘
𝐹 = 𝑈𝑘, 𝐿𝑘

𝐹 = 𝐿𝑘 + 𝑡𝑘(𝑈𝑘 − 𝐿𝑘), for falsity membership function (5.3) 

, where 𝑠𝑘, 𝑡𝑘 ∈ (0,1).  

Step 7: For the objective functions the truth, indeterminacy and falsity membership functions 

are formed as follow:  

 𝑇𝑘(𝑍𝑘(𝑥𝑖𝑗)) =

(

 
 

1    , if 𝑍𝑘(𝑥𝑖𝑗) ≤ 𝐿𝑘
𝑇

𝑈𝑘
𝑇−𝑍𝑘(𝑥𝑖𝑗)

𝑈𝑘
𝑇−𝐿𝑘

𝑇     , if 𝐿𝑘
𝑇 ≤ 𝑍𝑘(𝑥𝑖𝑗) ≤ 𝑈𝑘

𝑇

0    , if 𝑍𝑘(𝑥𝑖𝑗) ≥ 𝑈𝑘
𝑇

 (5.4) 

 𝐼𝑘(𝑍𝑘(𝑥𝑖𝑗)) =

(

 
 

0    , if 𝑍𝑘(𝑥𝑖𝑗) ≤ 𝐿𝑘
𝐼

𝑍𝑘(𝑥𝑖𝑗)−𝐿𝑘
𝐼

𝑈𝑘
𝐼−𝐿𝑘

𝐼     , if 𝐿𝑘
𝐼 ≤ 𝑍𝑘(𝑥𝑖𝑗) ≤ 𝑈𝑘

𝐼

1    , if 𝑍𝑘(𝑥𝑖𝑗) ≥ 𝑈𝑘
𝐼

 (5.5) 

 𝐹𝑘(𝑍𝑘(𝑥𝑖𝑗)) =

(

 
 

0    , if 𝑍𝑘(𝑥𝑖𝑗) ≤ 𝐿𝑘
𝐹

𝑍𝑘(𝑥𝑖𝑗)−𝐿𝑘
𝐹

𝑈𝑘
𝐹−𝐿𝑘

𝐹     , if 𝐿𝑘
𝐹 ≤ 𝑍𝑘(𝑥𝑖𝑗) ≤ 𝑈𝑘

𝐹

1    , if 𝑍𝑘(𝑥𝑖𝑗) ≥ 𝑈𝑘
𝐹

 (5.6) 

Step 8: Using the information in Step 2, a neutrosophic triangular number is formed for the 

aggregate demand as: �̃� =< (𝐷1, 𝐷2, 𝐷3); 𝛿�̃�, 𝜃�̃�, 𝜆�̃� >, 𝑤ℎ𝑒𝑟𝑒  𝛿�̃�, 𝜃�̃�, 𝜆�̃� ∈ [0,1]  and the values of 

𝐷1, 𝐷2, 𝐷3 are given by the experts. The truth, indeterminacy and falsity membership functions are 

denoted by 𝑇�̃�(𝐷), 𝐼�̃�(𝐷) and 𝐹�̃�(𝐷) respectively and can be calculated using equations (3.4)-(3.6).  

Step 9: Now modifying the neutrosophic goal programming technique which was described in 

section 3.2, the problem in eq. (4.1) can be written as the following crisp programming problem, 

 𝑚𝑖𝑛  Σ𝑙=1
5 𝑤𝑙((1 − 𝛼𝑙) + (𝛾𝑙) + 𝛽𝑙) ?Σ_l=1^5w_l((1-α_l)+(γ_l)+β_l) 

 subject to,  
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𝑇𝑘(𝑍𝑘(𝑥𝑖𝑗)) ≥ 𝛼𝑘,     Σ𝑗=1
𝑚(𝑖)

𝑥𝑖𝑗 ≤ 𝐶𝑖,

𝐼𝑘(𝑍𝑘(𝑥𝑖𝑗)) ≤ 𝛾𝑘,               𝑦𝑖𝑗 = (
1  𝑖𝑓  𝑥𝑖𝑗 > 0

0  𝑖𝑓  𝑥𝑖𝑗 = 0
,

𝐹𝑘(𝑍𝑘(𝑥𝑖𝑗)) ≤ 𝛽𝑘,     𝑎𝑖𝑗−1𝑦𝑖𝑗−1 ≤ 𝑥𝑖𝑗 < 𝑎𝑖𝑗𝑦𝑖𝑗 ,

𝑇�̃�(𝐷) ≥ 𝛼5,     Σ𝑗=1
𝑚(𝑖)

𝑦𝑖𝑗 ≤ 1,

𝐼�̃�(𝐷) ≤ 𝛾5,     𝑥𝑖𝑗 ≥ 0,

𝐹�̃�(𝐷) ≤ 𝛽5,     Σ𝑗=1
𝑚(𝑖)

𝑝𝑖𝑗 . 𝑥𝑖𝑗 ≤ 𝐵𝑖,

  0 ≤ 𝛼𝑙 + 𝛽𝑙 + 𝛾𝑙 ≤ 3,     𝛼𝑙 ≥ 𝛾𝑙,
        𝛼𝑙 ≥ 𝛽𝑙,     𝛼𝑙, 𝛽𝑙, 𝛾𝑙 ∈ [0,1]

 (5.7) 

  

 ,for all i=1,2,...,n, j=1,2,...,m(i), k=1,2,3,4,l=1,2,3,4,5.  

 

Step 10: Finally, use LINGO software to get the results. 

 

 

6. Numerical Example 

 

The following example shows the usefulness of the proposed model. Here, considering the same 

weights for the objectives, we have done a comparative study between Fuzzy Goal 

Programming(FGP) approach and Neutrosophic Goal Programming (NGP) approach for our model. 

The weights have been calculated by using NAHP. Here Six suppliers have been considered in the 

evaluation process. Most of the data used in this example have been derived from the articles (Wang 

& Yang, 2009; Weber & Desai, 1996). A panel of experts (as in Step 2 of section5) will predict the 

aggregate demand and how much it will fluctuate as oppose to in those above studies where the 

aggregate demand has been taken as a fixed number. The data which is given by those experts will 

be used to calculate the triangular neutrosophic number and fuzzy triangular number for the 

aggregate demand. Moreover, there is no consideration of greenhouse gas emission for the suppliers 

in those studies. We assumed the amount of greenhouse gas emission for the suppliers for the 

example. 

 

Table 1: supplier quantity discounts. 

Supplier-i 𝒂𝒊𝟎 𝒑𝒊𝟏 𝒂𝒊𝟏(K) 𝒑𝒊𝟐 𝒂𝒊𝟐(K) 𝒑𝒊𝟑 𝒂𝒊𝟑(M) 𝒑𝒊𝟒 

1 0 0.2020 50 0.1990 100 0.1980 1 0.1958 

2 0 0.1900 10 0.1890 200 0.1881 - - 

3 0 0.2350 10 0.2300 100 0.2250 1 0.2204 

4 0 0.2200 20 0.2150 500 0.2100 2 0.2081 

5 0 0.2250 50 0.2200 500 0.2150 1 0.2118 

6 0 0.2200 10 0.2170 500 0.2140 1 0.2096 
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Table 2: supplier source data. 

 suppliers 

 1 2 3 4 5 6 

Rejection 

rate(%) 

1.2 0.8 0.0 2.1 2.3 1.2 

Late delivery 

rate(%) 

5.0 7.0 0.0 0.0 3.0 4.0 

GHGE(kg) 0.1 0.2 0.25 0.15 0.3 0.1 

Capacity(𝐂𝒊) 2.4 M 360 K 2.783 M 3.0 M 2.966 M 2.5 M 

Budget 

constraint(𝐁𝒊)($) 

600000 100000 650000 500000 500000 300000 

  

Table 3: Comparison matrix 

 Cost Lead time Quality GHGE Demand 

Cost 1̃ 2̃ 3̃
−1

 6̃
−1

 5̃
−1

 

Lead time 2̃
−1

 1̃ 5̃
−1

 8̃
−1

 1̃ 

Quality 3̃ 5̃ 1̃ 3̃
−1

 2̃
−1

 

GHGE 6̃ 8̃ 3̃ 1̃ 3̃
−1

 

Demand 5̃ 1̃ 2̃ 3̃ 1̃ 

 

The suppliers provide quantity discounts with the anticipation that the firm will increase order 

quantity in each order, thereby reducing the supplier’s order processing cost. The data for quantity 

discounts are given in table 1. The data for other parameters are given in table 2. The comparison 

matrix for the criteria given in table 3. 

 

 

The objective functions are, 

𝑍1 = 0.202𝑥11 + 0.199𝑥12 + 0.198𝑥13 + 0.1958𝑥14 + 0.19𝑥21 + 0.189𝑥22 + 0.1881𝑥23 + 0.235𝑥31 +

0.23𝑥32 + 0.225𝑥33 + 0.2204𝑥34 + 0.22𝑥41 + 0.215𝑥42 + 0.21𝑥43 + 0.2081𝑥44 + 0.225𝑥51 +

0.22𝑥52 + 0.215𝑥53 + 0.2118𝑥54 + 0.22𝑥61 + 0.217𝑥62 + 0.214𝑥63 + 0.2096𝑥64
𝑍2 = 0.05(𝑥11 + 𝑥12 + 𝑥13 + 𝑥14) + 0.07(𝑥21 + 𝑥22 + 𝑥23) +

0.03(𝑥51 + 𝑥52 + 𝑥53 + 𝑥54) + 0.04(𝑥61 + 𝑥62 + 𝑥63 + 𝑥64)

𝑍3 = 0.012(𝑥11 + 𝑥12 + 𝑥13 + 𝑥14) + 0.008(𝑥21 + 𝑥22 + 𝑥23) + 0.021(𝑥41 + 𝑥42 + 𝑥43 + 𝑥44) +

0.023(𝑥51 + 𝑥52 + 𝑥53 + 𝑥54) + 0.012(𝑥61 + 𝑥62 + 𝑥63 + 𝑥64)

𝑍4 = 0.1(𝑥11 + 𝑥12 + 𝑥13 + 𝑥14) + 0.2(𝑥21 + 𝑥22 + 𝑥23) + 0.25(𝑥31 + 𝑥32 + 𝑥33 + 𝑥34) +

0.15(𝑥41 + 𝑥42 + 𝑥43 + 𝑥44) + 0.3(𝑥51 + 𝑥52 + 𝑥53 + 𝑥54) + 0.1(𝑥61 + 𝑥62 + 𝑥63 + 𝑥64)

(6.1) 

Subject to the constraints, 
𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ 2400𝐾, 𝑥21 + 𝑥22 + 𝑥23 ≤ 360𝐾 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≤ 2783𝐾
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 ≤ 3000𝐾, 𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 ≤ 2966𝐾, 𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 ≤ 2500𝐾

(6.2) 
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𝑦𝑖𝑗 = (
1  𝑖𝑓  𝑥𝑖𝑗 > 0

0  𝑖𝑓  𝑥𝑖𝑗 = 0
,         Σ𝑗=1

𝑚(𝑖)
𝑦𝑖𝑗 ≤ 1,         0 ≤ 𝑥11 < 50000𝑦11,

      50000𝑦11 ≤ 𝑥12 < 100000𝑦12 100000𝑦12 ≤ 𝑥13 < 1000000𝑦13,             𝑥14 ≥ 1000000𝑦14,
             0 ≤ 𝑥21 < 10000𝑦21, 10000𝑦21 ≤ 𝑥22 < 200000𝑦22,             𝑥23 ≥ 200000𝑦23,
             0 ≤ 𝑥31 < 10000𝑦31,  10000𝑦31 ≤ 𝑥32 < 100000𝑦32, 100000𝑦32 ≤ 𝑥33 < 1000000𝑦33,
                 𝑥34 ≥ 1000000𝑦34,         0 ≤ 𝑥41 < 20000𝑦41, 20000𝑦41 ≤ 𝑥42 < 500000𝑦42,
     500000𝑦42 ≤ 𝑥43 < 2000000𝑦43,             𝑥44 ≥ 2000000𝑦44,         0 ≤ 𝑥51 < 50000𝑦51,
      50000𝑦51 ≤ 𝑥52 < 500000𝑦52, 500000𝑦52 ≤ 𝑥53 < 1000000𝑦53,             𝑥54 ≥ 1000000𝑦54,
             0 ≤ 𝑥61 < 10000𝑦61, 10000𝑦61 ≤ 𝑥62 < 500000𝑦62, 500000𝑦62 ≤ 𝑥63 < 1000000𝑦63,

                 𝑥64 ≥ 1000000𝑦64,            𝑥𝑖𝑗 ≥ 0.

 (

6.3) 

 

0.202𝑥11 + 0.199𝑥12 + 0.198𝑥13 + 0.1958𝑥14 ≤ 600000
          0.19𝑥21 + 0.189𝑥22 + 0.1881𝑥23 ≤ 100000
0.235𝑥31 + 0.23𝑥32 + 0.225𝑥33 + 0.2204𝑥34 ≤ 650000
 0.22𝑥41 + 0.215𝑥42 + 0.21𝑥43 + 0.2081𝑥44 ≤ 500000
0.225𝑥51 + 0.22𝑥52 + 0.215𝑥53 + 0.2118𝑥54 ≤ 500000
0.22𝑥61 + 0.217𝑥62 + 0.214𝑥63 + 0.2096𝑥64 ≤ 300000

 (6.4) 

𝐷 = 𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥21 + 𝑥22 + 𝑥23 + 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 +

𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥61 + 𝑥62 + 𝑥63 + 𝑥64.
 (6.5) 

To find the weights for different objective functions we have taken 1 ̃=<(0.6,1,5);(0.9,0.2,0.3)>, 

2 ̃=<(1,2,6);(0.8,0.4,0.2)>, 3 ̃=<(0,3,9)(0.6,0.3,0.2)>, 5 ̃=<(2,5,10);(0.6,0.3,0.2)>,6 ̃=<(2,6,9);(0.7,0.5,0.1)>, 

8 ̃=<(3,8,11);(0.7,0.5,0.1)>. From the discussions in section 3.3, we have the following weights: 𝑤1 =

0.126469, 𝑤2 = 0.131538, 𝑤3 = 0.207651, 𝑤4 = 0.272911, 𝑤5 = 0.26143. For these set of weights we 

get CI=0.0540024. RI equal to 1.12 for five criteria, which is derived from (Saaty, Vargas, & others, 

2006). So, we have CR=.0482164<0.1 and hence the consistency property holds. We calculate the 

aspiration levels for each objective function, dismissing other objective functions. From eqs. (5.1) to 

(5.3) for 𝑠𝑘 = .3, 𝑡𝑘 = .2, ∀𝑘 = 1,2,3,4, we can calculate the bounds for truth, indeterminacy and falsity 

membership functions. The results are given in table 4. Here, the aggregate demand is taken as fuzzy 

triangular number for the FGP approach and triangular neutrosophic number for the NGP approach. 

We are Using LINGO to get the results which are given in table 5 and table 6.   

Table 4: Bounds of each objective function, dismissing other objectives. 

 𝐙𝟏 𝐙𝟐 𝐙𝟑 𝐙𝟒 

L 𝒌=L 𝒌
𝑻 2221790 170620 119367 1644500 

U 𝒌=U 𝒌
𝑻 2293665.6 321100 182870 2239650 

L 𝒌
𝑰  2243352.68 215764 138417.9 1823045 

U 𝒌
𝑰  2293665.6 321100 182870 2239650 

L 𝒌
𝑭 2236165.12 200716 132067.6 1763530 

U 𝒌
𝑭 2293665.6 321100 182870 2239650 

 

For the FGP approach the demand is predicted to be 10900000 and assumed to vary between 

10500000 and 12000000. The FGP approach can be written as (Similarly as (Shaw et al., 2012; Wang & 

Yang, 2009)), 
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max  Σ𝑙=1
5 𝑤𝑙𝜆𝑙

subject to,
2293665.6−𝑍1

2293665.6−2221790
≥ 𝜆1,

321100−𝑍2

321100−170620
≥ 𝜆2,

182870−𝑍3

182870−119367
≥ 𝜆3,

2239650−𝑍4

2239650−1644500
≥ 𝜆4,

12000000−𝐷

1100000
≥ 𝜆5,

𝐷−10500000

400000
≥ 𝜆5,

      (6.6) 

where 𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝐷 are given in eqs. (6.1) and (6.5), along with the constraints in eqs. (6.2) to (6.4).  

For the NGP approach, we take 𝐷1 = 10500000, 𝐷2 = 10900000, 𝐷3 = 12000000, 𝛿𝐷 = .99, 𝜃𝐷 =

.3, 𝜆𝐷 = .01. One can calculate easily the truth, indeterminacy, falsity membership functions for �̃� 

and the objective functions using eqs. (3.4), (3.5), (3.6) and (5.1), (5.2), (5.3) and table 4 respectively. 

The NGP approach is given as follow (5.7): 

 

min  Σ𝑙=1
5 𝑤𝑙((1 − 𝛼𝑙) + (𝛾𝑙) + 𝛽𝑙)

subject to the constrains,

                    
2293665.6−𝑍1

71875.6
≥ 𝛼1

𝑍1−2243352.68

50312.9
≤ 𝛾1

𝑍1−2236165.12

57500.5
≤ 𝛽1

                      
321100−𝑍2

150480
≥ 𝛼2

𝑍2−215764

105336.
≤ 𝛾2

𝑍2−200716

120384
≤ 𝛽2

                      
182870−𝑍3

63503
≥ 𝛼3

𝑍3−138417.9

44452.1
≤ 𝛾3

𝑍3−132067.6

50802.4
≤ 𝛽3

                     
2239650−𝑍4

595150
≥ 𝛼4

𝑍4−1823045

416605
≤ 𝛾4

𝑍4−1763530

476120
≤ 𝛽4

                  
(𝐷−10500000).99

400000
≥ 𝛼5

(12000000−𝐷).99

1100000
≥ 𝛼5

7750000−0.7𝐷

400000
≤ 𝛾5

                    
0.7𝐷−7300000

1100000
≤ 𝛾5

9850000−0.9𝐷

400000
≤ 𝛽5

0.9𝐷−9700000

1100000
≤ 𝛽5

 (6.7) 

 

where 𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝐷 are given in eqs. (6.1) and (6.5), along with the constraints in eqs. (6.2) to (6.4). 

Table 5: 

 Z1 Z2 Z3 Z4 

FGP approach (6.6) 2273582.988 248142.2467 134341.3432 1968186.806 

NGP approach(with 

weights(6.7)) 

2243352.680 243860.3333 131058.5429 1925367.672 

NGP approach(without 

weights (3.12) 

2258260.159 245971.8743 132677.3910 1946483.082 
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Table 6: 

 x1 x2 x3 x4 x5 x6 

FGP approach (6.6) 2400000 360000 2783000 2402691 1523011 1431297 

NGP approach(with 

weights(6.7)) 

2400000 360000 2783000 2402691 1380280 1431297 

NGP approach(without 

weights (3.12) 

2400000 360000 2783000 2402691 1450665 1431297 

Table 7: 

Weights 𝐙𝟏 𝐙𝟐 𝐙𝟑 𝐙𝟒 

𝑤1 = 0.1, 𝑤2 = 0.3, 𝑤3 = 0.2, 𝑤4 = 0.2, 𝑤5 = 0.2 2236165.120 227233.7668 134751.5086 1939102.007 

𝑤1 = 0.15, 𝑤2 = 0.25, 𝑤3 = 0.1, 𝑤4 = 0.2, 𝑤5 = 0.3 2243352.680 243860.3333 131058.5429 1925367.672 

𝑤1 = 0.1, 𝑤2 = 0.1, 𝑤3 = 0.1, 𝑤4 = 0.3, 𝑤5 = 0.4 2273582.988 248142.2467 134341.3432 1968186.806 

As it can be seen in table 5, the NGP approach (with weights) yields the best result among 

other methods for each objective function for the chosen weights. Finally, we provide the results of 

the proposed NGP approach for different weights. The results are given in table 7. 

 

7. Conclusion 

On its own, a supplier selection problem in a quantity discount environment is a very 

complicated task. Also, there may exist vagueness and imprecision in the goals of the decision maker 

and market demand. To approximate the imprecise aggregate demand, we have used the triangular 

neutrosophic numbers and to deal with the vagueness we have used neutrosophic goal 

programming. The proposed generalized models can deal with imprecise market demand as well as 

the vagueness present in the goals of the decision maker. As oppose to the studies that already exist, 

our study also includes the case where the decision maker cannot decide about the goals with 

certainty, by including indeterminacy membership function. As shown in the numerical example, 

neutrosophic goal programming method yield better value for the objective functions than the fuzzy 

goal programming method for the given weights. 

This study has been done assuming that no shortages are allowed. We also assumed that a single 

type of item is being supplied. 

The proposed model can be expanded if we assume shortages are allowed as well as multi-item 

are consided . The proposed model can be solved using particle swarm optimization. 
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Abstract: A wireless ad-hoc network is a decentralized ad-hoc network which has no access point 

earlier time. In this network, data from every node is transferred to another node dynamically 

based on network connectivity and existing routing algorithm. Many authors introduced various 

routing techniques to handle the issues in wireless ad-hoc networks. The main concept of this 

paper is to develop a new network design to improve the service of wireless ad-hoc network by 

equipping the routes energy efficient using neutrosophic technique. Multi-criteria decision making 

method under neutrosophic environment is used for making the routes of the network efficiently 

here. Since neutrosophic set is the generalization of fuzzy and intuitionistic fuzzy sets, the 

parameters involved in this method like hop-count, data packets, distance and energy are taken 

from neutrosophic sets. Mathematical analysis for the proposed network design is carried out and 

results are also discussed here.  

Keywords: Neutrosophic set; WANET; Multi-criteria; Neutrosophic energy function; Neutrosophic 

distance function. 

 

 

1. Introduction 

      Ad-hoc is a communication setting that allows computers to communicate with each other 

directly without a route. Ad-hoc networks play an important role in emergency situations like 

military conflicts, natural disasters etc., because of its minimal configuration and quick deployment. 

Ad-hoc networks are analyzed by various features like uncertain connectivity changes; erratic 

wireless medium etc., According to these features, ad-hoc networks creates numerous types of 

failures including failure of nodes and links, data transmission errors, congestions and route 

breakages.      

     WANET is a self-configured network which can be shared to various devices like sensors, 

laptops, personal communication systems for weather conditions, airlines schedules etc.[20]WANET 

has no established infrastructure in advance. Nodes in wanet are dynamic and easily movable. Since 

wanet is a decentralized one, it helps to improve the network system more efficient than wireless 

controlled networks [5, 7, 8, 9].Due to lack of energy and physical damages, some nodes of this 

network will not be able to use and the total system will be affected. In such situations, the lifetime of 
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wanet is reduced. So many authors in [10, 12] established different types of protocols for improving 

the lifetime of wanet by considering data packets, hop count, energy and distance parameters. The 

present network design focused on introducing neutrosophic logic for analyzing intelligent energy 

efficient routing for wanet based on multicriteria decision making and the analysis of the proposed 

method is compared with one of the existing methods to validate the results. 

Neutrosophic set was introduced by Florentin Smarandache [22] which is the generalization of 

fuzzy set, intuitionistic set fuzzy set, classical set and paraconsistent set etc., In intuitionistic fuzzy 

sets, the uncertainty is dependent on the degree of belongingness and degree of non-belongingness. 

In case of neutrosophy theory, the indeterminacy factor is independent of truth and falsity 

membership-values. Also neutrosophic sets are more general than IFS, because there are no 

conditions between the degree of truth, degree of indeterminacy and degree of falsity. Multi-criteria 

decision making in neutrosophic sets are developed in the book [23] edited by Florentin 

Smarandache and Surapati Pramanik in 2016 and Faruk Karaaslan introduced Gaussian 

single-valued neutrosophic numbers and its application in multi-attribute decision making in[11]. 

Also many authors discussed about multi-criteria decision making in neutrosophic sets and its 

applications in [14,15,16,17,18,19,24].Decision analysis and expert system was developed in[5,13] 

and various types of shortest route algorithms in neutrosophic environment are established in 

[1,2,3,4]. 

The main concept of this paper is to develop a new network design to improve the lifetime of 

wireless ad-hoc network by equipping the routes energy efficient using neutrosophic technique. 

Multicriteria decision making method under neutrosophic environment is used for making the 

routes of the network efficiently here. The parameters involved in this method like hop-count, data 

packets, distance and energy are taken from neutrosophic sets. Using this method, we can reduce the 

energy consumption and route breakages due to high level data packet transmission and maximum 

hop count. The neutrosophic technique is implemented here will give better energy efficient routes 

for WANET. The rest of the paper is organized as follows: Section 2 provides preliminaries about 

each of the set theories. Section 3 describes proposed network design with neutrosophic rule matrix 

and section 4 gives conclusions and future research. 

2. Preliminaries

This section includes some basic definitions that are very useful to the proposed network model. 

Definition 2.1[22]: 

Let E be a universe. Then a fuzzy set X over E is a function defined as follows: X = (μx(x)/x): x ∈ E, 

where μx: E → [0.1]. Here, μx is called membership function of X, and the value μx(x) is called the 

grade of membership om x ∈ E. The value represents the degree of x belonging to the fuzzy set X. 

Several authors [1, 2, 9-12] used fuzzy set theory in ad-hoc network and wireless sensor network to 

solve routing problems. The logic in fuzzy set theory is vastly used in all fields of mathematics like 

networks, graphs, topological space etc.  

Definition 2.2[20]: 

Intuitionistic Fuzzy Sets are the extension of usual fuzzy sets. All outcomes which are applicable for 

fuzzy sets can be derived here also. Almost all the research works for fuzzy sets can be used to draw 
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information of IFSs. Further, there have been defined over IFSs not only operations similar to those 

of ordinary fuzzy sets, but also operators that cannot be defined in the case of ordinary fuzzy sets. 

Definition 2.3[20]: 

Adroit system [3,4] is a computer program that efforts to act like a human effect in a particular 

subject area to give the solution to the particular unpredictable problem. Sometimes, adroit systems 

are used instead of human minds. Its main parts are knowledge based system and inference engine. 

In that the software is the knowledge based system which can be solved by artificial intelligence 

technique to find efficient route. The second part is inference engine which processes data by using 

rule based knowledge. 

Definition 2.4[20]: 

Let E be a universe. A neutrosophic sets A in E is characterized by a truth-membership function TA, a 

indeterminacy-membership function IA  and a falsity-membership function FA . TA(x); IA(x) and 

FA(x) are real standard elements of [0,1]. It can be written as 

A = {< 𝑥, (TA(x), IA(x), FA(x)) >: 𝑥 ∈ 𝐸, TA(x), IA(x), FA(x) ∈]−0, 1+[} 

There is no restriction on the sum of TA(x) , IA(x) and  FA(x), so  0− ≤ TA(x) + IA(x) + FA(x) ≤ 3+.  

Definition 2.5[20]: 

Let E be a universe. A single valued neutrosophic sets A, which can be used in real scientific and 

engineering applications, in E is characterized by a truth-membership function TA , a 

indeterminacy-membership function IA  and a falsity-membership function FA . TA(x); IA(x) and 

FA(x) are real standard elements of [0,1]. It can be written as 

A = {< 𝑥, (TA(x), IA(x), FA(x)) >: 𝑥 ∈ 𝐸, TA(x), IA(x), FA(x) ∈ [−0, 1+]} 

There is no restriction on the sum of TA(x)  , IA(x)  and  FA(x), so  0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.  

Definition 2.6[20]: 

Let ã =< (a1, b1, c1); wã, uã, yã >, and b̃ =< (a2, b2, c2); wb̃, ub̃, yb̃ > be two single valued triangular 

neutrosophic numbers and γ ≠ 0 be any real number. Then, 

1. ã + b̃ =< (a1 + a2, b1 + b2, c1 + c2); wãâˆ§wb̃, uãâˆ¨ub̃, yãâˆ¨yb̃ > 

2. ã − b̃ =< (a1 − c2, b1 − b2, c1 − a2); wãâˆ§wb̃, uãâˆ¨ub̃, yãâˆ¨yb̃ > 

Definition 2.7[20]: 

Let A1̃ =< T1, I1, F1 > be a single valued neutrosophic number. Then, the score function s(A1̃), 

accuracy functiona(A1̃), and certainty function c(A1̃) of an single valued neutrosophic numbers are 

defind 

1. s(A1̃) = (T1 + 1 − I1 + 1 − F1)/3 

2. a(A1̃) = T1 − F1 

3. 𝑐(𝐴1̃) = 𝑇1 

3. Proposed Network Protocol  

The proposed system is neutrosophic intelligent energy efficient routing for WANET based on 

multicriteria decision making, which divides the entire system into three stages. These three 

stages are assessed by intelligent system through multicriteria rule based system. The above 

three stages are as follows: 

(i). Neutrosophic multicriteria intelligent 

(ii). Construction of neutrosophic intelligent route 
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(iii). Selection of neutrosophic energy efficient route 

 

Stage (i) describes the neutrosophic membership functions of hop counts, data packets, distance 

and energy for the proposed system briefly. 

 

In stage (ii), rating of each and every neutrosophic route is established with the help of skilled 

system using rating formula. 

 

Stage (iii) handles the selection process of neutrosophic energy efficient route using rule matrix 

after rating of neutrosophic routes. 

3.1. Stage(i): Neutrosophic multicriteria intelligence 

In this stage, neutrosophic membership functions of hop count, data packets, distance and energy 

are given as the input variables and the rating scale of neutrosophic routes as output variable. These 

input and output variables are categorized as the linguistic variables( low, medium and high). In this 

network model, the input variables hop count, data packet, distance and energy are considered as 30 

(Nos.), 600(Mbps), 260(Meters) and 80(Joules).The membership functions of input variables are 

given in Table1, Table 2, Table 3, and Table 4 and output variable inTable 5. 

     Table:1 Neutrosophic membership function of hop count(Nos.) 

Linguistic Values Notation Neutrosophic Range Neutro. Base value 

Low HLN [HL1N, HL2N] (0,0,15)(0,0,30)(0,0,45) 

Medium HMN [HM1N, HM2N] (0,15,30)(0,15,45)(0,15,60) 

High HHN [HH1N, HH2N] (15,30,30)(10,30,45)(9,30,60) 

Table:2 Neutrosophic membership function of Data packet(Mbps) 

Linguistic 

Values 
Notation Neutrosophic 

Range 

Neutro. Base value 

Low DPLN [DPL1N, DPL2N] (0,0,300)(0,0,600)(0,0,900) 

Medium DPLN [DPM1N, DPM2N] (0,300,600)(150,300,750)(270,300,900) 

High DPLN [DPH1N, DPH2N] (300,600,600)(500,600,800)(700,600,850) 

Table:3 Neutrosophic membership function of Distance(Meters) 

Linguistic 

Values 
Notation Neutrosophic 

Range 

Neutro. Base value 

Low DLN [DL1N, DL2N] (0,0,100)(0,0,200)(0,0,250) 

Medium DLN [DM1N, DM2N] (40,100,220)(70,100,250)(90,100,270) 

High DLN [DH1N, DH2N] (140,260,260)(170,260,290)(190,260,300) 

Table4: Neutrosophic membership function of Energy(Joules) 

Linguistic Values Notation Neutrosophic Range Neutro. Base value 

Low ELN [EL1N, EL2N] (0,0,32)(0,0,64)(0,0,96) 

Medium EMN [EM1N, EM2N] (8,40,72)(16,40,82)(24,40,92) 

High EHN [EH1N, EH2N] (48,80,80)(68,80,90)(78,80,100) 
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The rating scale of different neutrosophic routes are classified in the following table. 

Table5: Neutrosophic membership function of Energy(Joules) 

Linguistic 

Variable  

Very 

Bad 

Bad Satisfactory Medium Less 

Good 

Good Very 

Good 

Excellent Very 

Excellent 

Notation RNVB RNB RNS RNM RNLG RNG RNVG RNE RNVE 

3.2. Stage(ii): Construction of neutrosophic intelligent  

In stage(ii), the rules and formulas for construction of neutrosophic intelligent routes are established. 

Usually, in ad-hoc networks while sending and receiving data packets energy consumption is 

occurred.Also the total network system is affected and lifetime of network is reduced at the time of 

power failure. The amount of input variables should be reduced in order to give the energy efficient 

routes for improving lifetime and performance of network system in such situations. Since energy 

plays an important role in network performance, the other input variables(hop count, data packet, 

distance) are combined with energy and the rules are framed for construction of intelligent route as 

follows: 

Table 6: Rules for construction of neutrosophic route) 

Rule Energy and Hop Count level Rating of 

Neutrosophic 

Route 

R1 

R2 

R3 

R4  

R5  

R6 

R7 

R8  

R9  

Low energy and high hop count 

Low energy and medium hop count 

Low energy and low hop count 

Medium energy and high hop count 

Medium energy and medium hop count 

Medium energy and low hop count 

High energy and high hop count 

High energy and medium hop count 

High energy and low hop count 

Very Bad 

Bad 

Satisfactory 

Medium 

Less Good 

Good 

Very Good 

Excellent 

Very Excellent 

 Energy and Data Packet level  

R10  

R11 

R12  

R13  

R14 

R15  

R16  

R17  

R18  

Low energy and high data packet 

R11 Low energy and medium data packet 

Low energy and low data packet 

Medium energy and high data packet 

R14 Medium energy and medium data packet 

Medium energy and low data packet 

High energy and high data packet 

High energy and medium data packet 

High energy and low data packet 

Very Bad 

Bad 

Satisfactory 

Medium 

Less Good 

Good 

Very Good 

Excellent 

Very Excellent 

 Energy and Distance level  

R19 

R20 

R21 

R22  

R23  

R24 

R25  

R26 

R27  

Low energy and high distance 

Low energy and medium distance 

Low energy and low distance 

Medium energy and high distance 

Medium energy and medium distance 

Medium energy and low distance 

High energy and high distance 

High energy and medium distance 

High energy and low distance 

Very Bad 

Bad 

Satisfactory 

Medium 

Less Good 

Good 

Very Good 

Excellent 

Very Excellent 
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In Table 7, different types of neutrosophic states are established by using the formula 

 NRpq = mean value of neutrosophic energy / mean value of other parameters 

Rating of neutrosophic routes(Table.8) is calculated by using neutrosophic states in Table 7 and by 

using Table.8, the ascending order of rating of neutrosophic routes and linguistic nature of different 

neutrosophic rating of routes are calculated and given in Table.9 and Table.10. 

Table 7: Different types of neutrosophic states 

Neutro. Energy and Hop 

count 

Neutro. Energy and Data 

packet 
Neutro. Energy and Distance 

Neutro.State Neutro.Value Neutro. State Neutro.Value 
Neutro. 

State 
Neutro.Value 

NS11 2.133 NS21 0.10665 NS31 0.349 

NS12 1.0665 NS22 0.0537 NS32 0.1548 

NS13 0.7412 NS23 0.03458 NS33 0.09013 

NS14 5.4 NS24 0.27 NS34 0.8836 

NS15 2.7 NS25 0.1361 NS35 0.39192 

NS16 1.8765 NS26 0.0875 NS36 0.2281 

NS17 7.822 NS27 0.3911 NS37 1.2799 

NS18 3.911 NS28 0.19719 NS38 0.5677 

NS19 2.7182 NS29 0.1268 NS39 0.3305 

Table 8: Different types of neutrosophic rating of routes 

Neutro. Energy and Hop 

count 

Neutro. Energy and Data 

packet 

Neutro. Energy and Distance 

Neutro.Route   Neutro. 

Rating 

Neutro.Route Neutro. 

Rating 

Neutro. 

Route 

Neutro.Rating 

NS11 3.911 NS21 0.19555 NS31 0.63995 

NS12 1.955 NS22 0.097775 NS32 0.25598 

NS13 1.3036 NS23 0.06518 NS33 0.159987 

NS14 0.9777 NS24 0.04888 NS34 1.59987 

NS15 0.48885 NS25 0.02444 NS35 0.6399 

NS16 0.3259 NS26 0.01629 NS36 3.99968 

NS17 0.6518 NS27 0.03258 NS37 2.5598 

NS18 0.16295 NS28 0.00814 NS38 1.02392 

NS19 0.1086 NS29 0.00543 NS39 0.63995 

 

Table 9: Ascending order of rating of neutrosophic routes 

Based on hop count rating 

NR11 > NR12 > NR13 > NR14 > NR17 > NR15 > NR16 > NR18 > NR19 

Based on data packets rating 

NR21 > NR22 > NR23 > NR24 > NR27 > NR25 > NR26 > NR28 > NR29 

Based on distance rating 

NR36 > NR37 > NR34 > NR38 > NR35 > NR31;NR39 > NR32 > NR33 
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                    Table 10: Linguistic nature of di_erent neutrosophic rating of routes 

S.No. Linguistic nature Neutrosophic Rating 

1 NRV E NR11, NR21, NR36 

2 NRE NR12, NR22, NR37 

3 NRV G NR13, NR23, NR34 

4 NRG NR14, NR24, NR38 

5 NRLG NR17, NR27, NR35 

6 NRM NR15, NR25, NR31, NR39 

7 NRS NR16, NR26, NR32 

8 NRB NR18, NR28, NR33 

9 NRV B NR19, NR29 

3.3. Stage(iii): Selection of neutrosophic energy efficient route 

Neutrosophic energy efficient route is evaluated using neutrosophic rule matrix in Table.11, 

Table.12 and Table.13. These three matirices are framed by combining energy with other parameters 

hop count, data packet and distance. Each route selected by these matrices have a particular value in 

the proposed ad-hoc network. After evaluated the routes using rule matrices, it is analysed that if the 

source node is in the positions NR19 or NR29 having lowest neutrosophic energy with high 

neutrosophic hop count or high neutrosophic data packets or long distance from destination, then it 

will receice the lowest neutrosophic rating value NRVB and if the source node is in the positions 

NR11, NR21 or NR36 having high neutrosophic energy with low neutrosophic hop count or low 

neutrosophic data packets or shortest distance from the destination, then it will receive highest 

neutrosophic rating value NRVE. 

 

                Table 11: Neutrosophic rule matrix based on energy and hop count 

Neutro. energy / Hop count HLN HLN HLN 

ELN NRS NRB NRVB 

EMN NRG NRLG NRM 

EHN NRVE NRE NRVG 

 

                 Table 12: Neutrosophic rule matrix based on data packet and energy 

Neutro. energy / Hop 
count 

DPLN DPLN DpLN 

ELN NRS NRB NRVB 

EMN NRG NRLG NRM 

EHN NRVE NRE NRVG 

 

                 Table 13: Neutrosophic rule matrix based on distance and energy 

Neutro. energy / Hop count DLN DLN DLN 

ELN NRS NRB NRVB 

EMN NRG NRLG NRM 

EHN NRVE NRE NRVG 

Finally, by analysing the the different types of neurtrosophic energy efficient rating of routes as 

given in figure.1, the process of wanet is improved in this stage by identifying the neutrosophic 

intelligent energy efficient route. 
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Figure 1: Analysis of neutrosophic intelligent energy efficient rating of routes. 

4. Conclusions  

In this paper, a new network design is developed to improve the service of wireless ad-hoc network 

by equipping the routes energy efficient using neutrosophic technique. Multi-criteria decision 

making method under neutrosophic environment is used for making the routes of the network 

efficiently here. From the mathematical analysis of the proposed network design, we conclude that 

the neutrosophic route is very efficient when source node is in the position NR11, NR21 or NR36, 

since the node with low energy, high hopcout, high transmitted data packets and long distance from 

the destination causes breakage of route and data packet retransmission. This neutrosophic energy 

efficient routing for wanet under multi-criteria decision making is better than other existing methods 

in uncertain environment. Various protocols for the efficiency of ad-hoc network system using 

neutrosophic sets will be established in future. 
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Abstract: Smarandache introduced neutrosophic quadruple sets and neutrosophic quadruple numbers 

[45] in 2015. These sets and numbers are real or complex number valued. In this study, we firstly intro-

duce set valued neutrosophic quadruple sets and numbers. We give some known and special opera-

tions for set valued neutrosophic quadruple numbers. Furthermore, Smarandache and Ali obtained 

neutrosophic triplet groups [30] in 2016. In this study, we firstly give neutrosophic triplet groups based 

on set valued neutrosophic quadruple number thanks to operations for set valued neutrosophic quad-

ruple numbers. In this way, we define new structures using the together set valued neutrosophic quad-

ruple number and neutrosophic triplet group. Thus, we obtain new results for set valued neutrosophic 

quadruple numbers and neutrosophic triplet groups based on set valued neutrosophic quadruple 

number. 

 

Keywords: Neutrosophic triplet set, neutrosophic triplet group, neutrosophic triplet quadruple set, 

neutrosophic triplet quadruple number, set valued neutrosophic triplet quadruple set, set valued neu-

trosophic triplet quadruple number 

1 Introduction   

Smarandache defined neutrosophic logic and neutrosophic set [1] in 1998. In neutrosophic logic and        

neutrosophic sets, there is T degree of membership, I degree of indeterminacy and F degree of non-

membership. These degrees are defined independently of each other. It has a neutrosophic value (T, I, 

F) form. In other words, a condition is handled according to both its accuracy and its inaccuracy and 

its uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncertain-

ties in our lives. In addition, many researchers have made studies on this theory [2 - 27] and [52-57]. 

In fact, fuzzy logic and fuzzy set [28] were obtained by Zadeh in 1965. In the concept of fuzzy logic 

and fuzzy sets, there is only a degree of membership. In addition, intuitionistic fuzzy logic and intui-

tionistic fuzzy set [29] were obtained by Atanassov in 1986. The concept of intuitionistic fuzzy logic 

and intuitionistic fuzzy set    includes membership degree, degree of indeterminacy and degree of 

non-membership. But these degrees are   defined dependently of each other. Therefore, neutrosophic 

set is a generalized state of fuzzy and intuitionistic fuzzy set. 

Furthermore, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet 

groups (NTG) [30].  For every element “x” in NTS A, there exist a neutral of “x” and an opposite of 

“x”. Also, neutral of “x” must different from the classical neutral element. Therefore, the NTS is differ-

ent from the classical set. Furthermore, a neutrosophic triplet (NT) “x” is showed by   <x, neut(x), an-

ti(x)>. Also, many researchers have introduced NT structures [31-44] 

Also, Smarandache introduced neutrosophic quadruple sets (NQS) and neutrosophic quadruple 

number (NQN) [45]. The NQSs are generalized state of neutrosophic set. A NQS is shown by {(x, yT, 

zI, tF): x, y, z, t ∈ ℝ or ℂ}. Where, x is called the known part and (yT, zI, tF) is called the unknown part 
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and T, I, F have their usual neutrosophic logic means. Recently, researchers studied NQS and NQN. 

Akinleye, Smarandache, Agboola studied NQ algebraic structures [46]; Jun, Song, Smarandache ob-

tained NQ BCK/BCI-algebras [47]; Muhiuddin, Al-Kenani, Roh, Jun introduced implicative NQ BCK-

algebras and ideals [48]; Li, Ma, Zhang, Zhang studied neutrosophic extended triplet group based on 

NQNs [49]; Ma, Zhang, and Smarandache studied neutrosophic quadruple rings [50]; Kandasamy, 

Kandasamy and Smarandache obtained neutrosophic quadruple vector spaces and their properties 

[51]. 

In this study, we firstly introduce set valued neutrosophic quadruple set (SVNQS) and set valued neu-

trosophic quadruple number (SVNQN). In the neutrosophic quadruples, real or complex numbers 

were taken as variables, while in this study we took sets as variables. So, we will expand the applica-

tions of neutrosophic quadruples. Because things or variables in any application will be more useful 

than real numbers or complex numbers.  Also we give NT group (NTG) based on SVNQN. In Section 

2, we give definitions and properties for NQS, NQN [45] and NTS, NTG [30]. In Section 3, we define 

SVNQS and SVNQN. Also, we give operations for these structures. In Section 4, we obtain some NTG 

based on SVNQN thanks to operations for SVNQN. In this way, we define new structures using the 

together SVNQN and NTG. 

 
2 Preliminaries  
 

Definition 2.1: [45] A NQN is a number of the form (x, yT, zI, tF), where T, I, F have their usual neu-

trosophic logic means and x, y, z, t ∈ ℝ or ℂ. The NQS defined by NQ = {(x, yT, zI, tF): x, y, z, t ∈ ℝ or 

ℂ}. 

For a NQN (x, yT, zI, tF), representing any entity which may be a number, an idea, an object, etc., x is 

called the known part and (yT, zI, tF) is called the unknown part. 

Definition 2.2: [45] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) and b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ be NQNs. We define the        

following: 

a + b = (𝑎1 +𝑏1, (𝑎2+𝑏2)T, (𝑎3+𝑏3)I, (𝑎4+𝑏4)F) 

a - b = (𝑎1 - 𝑏1, (𝑎2 - 𝑏2)T, (𝑎3 - 𝑏3)I, (𝑎4 - 𝑏4)F) 

Definition 2.3: [45] Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence 

order T>I>F. Then we have: 

TI = IT = max{T, I} = T, 

TF = FT = max{T, F} = T, 

FI = IF = max{F, I} = I, 

TT = 𝑇2 = T, 

II = 𝐼2 = I, 

FF = 𝐹2 = F. 

Analogously, suppose in a pessimistic way we consider the prevalence order T < I < F. Then we have: 

TI = IT = max{T, I} = I, 

TF = FT = max{T, F} = F, 

FI = IF = max{F, I} = F, 
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TT = 𝑇2 = T, 

II = 𝐼2 = I, 

FF = 𝐹2 = F. 

Definition 2.4: [45] Let 

a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), 

b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ; 

T < I < F. 

Then a*b = ( 𝑎1 , 𝑎2 T, 𝑎3 I, 𝑎4 F)* ( 𝑏1 , 𝑏2 T, 𝑏3 I, 𝑏4 F) = ( 𝑎1𝑏1 , ( 𝑎1𝑏2  + 𝑎2𝑏1  + 𝑎2𝑏2 )T,                                            

(𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1 + 𝑎3𝑏2 + 𝑎3𝑏3)I, (𝑎1𝑏4 + 𝑎2𝑏4 + 𝑎3𝑏4 + 𝑎4𝑏1 + 𝑎4𝑏2 + 𝑎4𝑏3 + 𝑎4𝑏4)F) 

Definition 2.5: [45] Let 

a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), 

b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ, 

T > I > F 

Then a#b = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) # (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) = (𝑎1𝑏1, (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏2 + 𝑎4𝑏2 + 𝑎2𝑏3 + 

𝑎2𝑏4)T, (𝑎1𝑏3 + 𝑎3𝑏3 + 𝑎3𝑏4 + 𝑎4𝑏3)I, (𝑎1𝑏4 +  𝑎4𝑏1 + 𝑎4𝑏4)F) 

Definition 2.6: [30]:  Let # be a binary operation. A NTS (X, #) is a set such that for x ∈ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x, 

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x). 

Also, a neutrosophic triplet “x” is showed with (x, neut(x), anti(x)). 

Definition 2.7: [30] Let (X, #) be a NT set. Then, X is called a NTG such that 

a) for all a, b ∈ X, a*b ∈ X. 

b) for all a, b, c ∈ X, (a*b)*c = a*(b*c) 

 

3 Set Valued Neutrosophic Quadruple Numbers 
 

Definition 3.1: Let N be a non – empty set and P(N) be power set of N. A SVNQN shown by the form 

(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F). Where, T, I and F are degree of membership, degree of undeterminacy, degree of 

non-membership in neutrosophic theory, respectively. Also, 𝐴1, 𝐴2 , 𝐴3, 𝐴4  ∈ P(N). Then, a SVNQS 

shown by  𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}. 

Where, similar to NQS, 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) is called the unknown part. 

 

Definition 3.2: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. We define the fol-

lowing operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩ 𝐵1, (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F) 
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A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 

𝐴′ = (𝐴′
1, 𝐴′

2T, 𝐴′
3I, 𝐴′

4F)  

Now, we define specific operations for SVNQN. 

Definition 3.3: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T < I < F. We define 

the following operations  

A*1B = (𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) = (𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2 ) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2))T, 

((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2) ∪ (𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩

𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F)  and 

A*2B = (𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) = (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2))T, 

((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩ (𝐴3 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ ( 𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪

𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵3) ∩ (𝐴4 ∪ 𝐵4))F). 

 

Definition 3.4: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T > I > F. We define 

the following operations  

A #1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #1 (𝐵1 , 𝐵2T, 𝐵3I, 𝐵4F) = (𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2)  ∪ 

(𝐴3 ∩ 𝐵2)  ∪  (𝐴4 ∩ 𝐵2)  ∪  (𝐴2 ∩ 𝐵3)  ∪  (𝐴2 ∩ 𝐵4) )T, ((𝐴1 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵4)  ∪  (𝐴4 ∩ 𝐵3) )I, 

((𝐴1 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵4))F)  and 

A#2B = (𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F) #2 (𝐵1 , 𝐵2 T, 𝐵3 I, 𝐵4 F) = (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩  (𝐴2 ∪ 𝐵1)  ∩  (𝐴2 ∪ 𝐵2) ∩          

(𝐴3 ∪ 𝐵2)  ∩  (𝐴4 ∪ 𝐵2)  ∩  (𝐴2 ∪ 𝐵3)  ∩  (𝐴2 ∪ 𝐵4) )T, ((𝐴1 ∪ 𝐵3)  ∩  (𝐴3 ∪ 𝐵3)  ∩  (𝐴3 ∪ 𝐵4)  ∩  (𝐴4 ∪ 𝐵3) )I, 

((𝐴1 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵4))F). 

 

Definition 3.5: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. If 𝐴1⊂ 𝐵1, 𝐴2⊂ 𝐵2, 𝐴3⊂ 

𝐵3, 𝐴4⊂ 𝐵4, then it is called that A is subset of B. It is shown by A⊂ B. 

 

Definition 3.6: Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs If A⊂ B and 𝐵⊂ 𝐴., then it 

is called that A is equal to B. It is shown by A = B. 

Example 3.7: Let X = {x, y, z} be a set. Thus, we have P(X) ={∅ , {x}, {y}, {z}, {y, z}, {x, z}, {x, y} ,{x, y, z}}. 

Also, 𝑋𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(X)} is a SVNQS. For example,  

𝐴1 = ({y, z}, {x, y, z}T, {x, y}I, {z}F) and 𝐴2 = ({ z}, {x, z}T, {x, y}I, ∅F) are two SVNQNs in 𝑋𝑞 .           

Furthermore, 

𝐴1 ∪ 𝐴2 = ({y, z}, {x, y, z}T, {x, y}I, {z}F) = 𝐴1.  

𝐴1 ∩ 𝐴2 = ({ z}, {x, z}T, {x, y}I, ∅F) = 𝐴2.  

Thus, we have 𝐴2 ⊂ 𝐴1. Also, 

𝐴1
′ = ({x}, ∅T, {z}I, {x, y}F) 
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𝐴1\ 𝐴2 = ({y}, { y}T, ∅I, {z}F) 

4 Neutrosophic Triplet Group Based on Set Valued Neutrosophic Quadruple Numbers 

 

Theorem 4.1: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then, 

a) (𝑁𝑞, ∪) is a NTS.  

b) (𝑁𝑞, ∩) is a NTS. 

Proof: 

a) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in 𝑁𝑞. From Definition 3.2, it is clear that 

A ∪ A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) ∪ (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) =  (𝐴1 ∪ 𝐴1, (𝐴2 ∪ 𝐴2)T, (𝐴3 ∪ 𝐴)I, (𝐴4 ∪ 𝐴4)F) = (𝐴1, 𝐴2T, 

𝐴3I, 𝐴4F) = A.  

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, ∪) is a neu-

trosophic triplet set with neut(A) = A and anti(A) = A. 

b) a) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in  𝑁𝑞. From Definition 3.2, it is clear that 

A ∩ A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) ∩ (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) = (𝐴1 ∩ 𝐴1, (𝐴2 ∩ 𝐴2)T, (𝐴3 ∩ 𝐴)I, (𝐴4 ∩ 𝐴4)F) = (𝐴1, 𝐴2T, 

𝐴3I, 𝐴4F) = A.  

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, ∩) is a neu-

trosophic triplet set with neut(A) = A and anti(A) = A. 

 

Theorem 4.2: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then, 

a) (𝑁𝑞, ∪) is a NTG.  

b) (𝑁𝑞, ∩) is a NTG. 

Proof: 

a) From Theorem 4.1, (𝑁𝑞, ∪) is a NTS with neut(A) = A and anti(A) = A. Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F),             

B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) and C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) ∈  𝑁𝑞. 

i) We have that A ∪ B ∈ 𝑁𝑞 since P(N) is power set of N and A, B ∈ P(N). Because, if A, B ∈ P(X), then         

A ∪ B ∈ P(N). 

ii) (A ∪ B) ∪ C = [(𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F)] ∪ (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) = 

[(𝐴1 ∪ 𝐵1) ∪ 𝐶1, ((𝐴2 ∪ 𝐵2) ∪ 𝐶2)T, ((𝐴3 ∪ 𝐵3) ∪ 𝐶3)I, ((𝐴4 ∪ 𝐵4) ∪ 𝐶4))F)] =  

[𝐴1 ∪ (𝐵1 ∪ 𝐶1), (𝐴2 ∪ (𝐵2 ∪ 𝐶2))T, (𝐴3 ∪ (𝐵3 ∪ 𝐶3))I, (𝐴4 ∪ (𝐵4 ∪ 𝐶4))F)] = A ∪ (B ∪ C). 

Thus, (𝑁𝑞, ∪) is a NTG. 

b) From Theorem 4.1, (𝑁𝑞, ∩) is a NTS with neut(A) = A and anti(A) = A. Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F),            

B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) and C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) ∈ 𝑁𝑞. 

i) We have that A ∩ B ∈ 𝑁𝑞 since P(N) is power set of N and A, B ∈ P(N). Because, if A, B ∈ P(N), then          

A ∩ B ∈ P(N). 

iii) (A ∩ B) ∩ C = [(𝐴1 ∩ 𝐵1 , (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F)] ∩ (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) =[(𝐴1 ∩ 𝐵1) ∩ 𝐶1 , 

((𝐴2 ∩ 𝐵2) ∩ 𝐶2)T, ((𝐴3 ∩ 𝐵3) ∩ 𝐶3)I, ((𝐴4 ∩ 𝐵4) ∩ 𝐶4))F)] = [𝐴1 ∩ (𝐵1 ∩ 𝐶1), (𝐴2 ∩ (𝐵2 ∩ 𝐶2))T, (𝐴3 ∩ (𝐵3 ∩

𝐶3))I, (𝐴4 ∩ (𝐵4 ∩ 𝐶4))F)] = A ∩ (B ∩ C). 

Thus, (𝑁𝑞, ∩) is a NTG. 

 

Theorem 4.3: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTS with binary operation *1 in Definition 3.3. 

b) (𝑁𝑞, *2) is a NTS with binary operation *2 in Definition 3.3. 

Proof: 

a) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in 𝑁𝑞. From Definition 3.3, we obtain 

A *1 A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) =  
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(𝐴1 ∩ 𝐴1, ((𝐴1 ∩ 𝐴2) ∪ (𝐴2 ∩ 𝐴1) ∪ (𝐴2 ∩ 𝐴2))T, ((𝐴1 ∩ 𝐴3) ∪ (𝐴2 ∩ 𝐴3) ∪ (𝐴3 ∩ 𝐴1) ∪ (𝐴3 ∩ 𝐴2) ∪ (𝐴3 ∩

𝐴3))I, ((𝐴1 ∩ 𝐴4) ∪ (𝐴2 ∩ 𝐴4) ∪ ( 𝐴3 ∩ 𝐴4) ∪ (𝐴4 ∩ 𝐴1) ∪ (𝐴4 ∩ 𝐴2) ∪ (𝐴4 ∩ 𝐴3) ∪ (𝐴4 ∩ 𝐴4))F) =  (𝐴1, 𝐴2T, 

𝐴3I, 𝐴4F) = A 

since 

 𝐴2 ∩ 𝐴2 = 𝐴2 and (𝐴1 ∩ 𝐴2), (𝐴2 ∩ 𝐴2) ⊂ 𝐴2; 

𝐴3 ∩ 𝐴3 = 𝐴3 and (𝐴1 ∩ 𝐴3), (𝐴2 ∩ 𝐴3), (𝐴3 ∩ 𝐴3) ⊂ 𝐴3; 

𝐴4 ∩ 𝐴4 = 𝐴4 and (𝐴1 ∩ 𝐴4), (𝐴2 ∩ 𝐴4), (𝐴3 ∩ 𝐴4), (𝐴4 ∩ 𝐴4) ⊂ 𝐴4. 

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, *1) is a NTS 

with neut(A) = A and anti(A) = A. 

b) Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) be a SVNQN in 𝑁𝑞. From Definition 3.3, we obtain 

A *2 A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) = (𝐴1 ∪ 𝐴1, ((𝐴1 ∪ 𝐴2) ∩ (𝐴2 ∪ 𝐴1) ∩ (𝐴2 ∪ 𝐴2))T, ((𝐴1 ∪

𝐴3) ∩ (𝐴2 ∪ 𝐴3) ∩ (𝐴3 ∪ 𝐴1) ∩ (𝐴3 ∪ 𝐴2) ∩           (𝐴3 ∪ 𝐴3))I, ((𝐴1 ∪ 𝐴4) ∩ (𝐴2 ∪ 𝐴4) ∩ ( 𝐴3 ∪ 𝐴4) ∩ (𝐴4 ∪

𝐴1) ∩ (𝐴4 ∪ 𝐴2) ∩ (𝐴4 ∪ 𝐴3) ∩ (𝐴4 ∪ 𝐴4))F) =  (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) = A 

since 

 𝐴2 ∪ 𝐴2 = 𝐴2 and (𝐴1 ∪ 𝐴2), (𝐴2 ∪ 𝐴2) ⊃ 𝐴2; 

𝐴3 ∪ 𝐴3 = 𝐴3 and (𝐴1 ∪ 𝐴3), (𝐴2 ∪ 𝐴3), (𝐴3 ∪ 𝐴3) ⊃ 𝐴3; 

𝐴4 ∪ 𝐴4 = 𝐴4 and (𝐴1 ∪ 𝐴4), (𝐴2 ∪ 𝐴4), (𝐴3 ∪ 𝐴4), (𝐴4 ∪ 𝐴4) ⊃ 𝐴4. 

Hence, we can take neut(A) = A. Also, if neut(A) = A, then we have anti(A) = A. Thus, (𝑁𝑞, *2) is a NTS 

with neut(A) = A and anti(A) = A. 

Theorem 4.4: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTG with binary operation *1 in Definition 3.3. 

b) (𝑁𝑞, *2) is a NTG with binary operation *2 in Definition 3.3. 

Proof: 

a) From Theorem 4.3, (𝑁𝑞, *1) is a neutrosophic triplet set. Let  

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) and C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F) ∈ 𝑁𝑞, 

i) We obtain A *1 B ∈ 𝑁𝑞since P(N) is power set of N and A, B ∈ P(N).  

ii)  

(A *1 B) *1 C =   

 (𝐴1 ∩ 𝐵1 , ( (𝐴1 ∩ 𝐵2 ) ∪  (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2) )T, ( (𝐴1 ∩ 𝐵3)  ∪  ( 𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪          

(𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F) *1       (𝐶1, 

𝐶2T, 𝐶3I, 𝐶4F) = 

 ([𝐴1 ∩ 𝐵1] ∩ 𝐶1, 

 ( ([𝐴1 ∩ 𝐵1] ∩ 𝐶2 ) ∪  ( [(𝐴1 ∩ 𝐵2)  ∪  (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2)] ∩ 𝐶1)  ∪  ([(𝐴1 ∩ 𝐵2)  ∪    (𝐴2 ∩ 𝐵1)  ∪     (𝐴2 ∩

𝐵2)] ∩ 𝐶2))T, 

 ([ 𝐴1 ∩ 𝐵1] ∩ 𝐶3)  ∪  ( [(𝐴1 ∩ 𝐵2)  ∪    (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2)] ∩ 𝐶3)  ∪  ([𝐴1 ∩ 𝐵3)  ∪     (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩

𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩ 𝐶1) ∪  ([𝐴1 ∩ 𝐵3)  ∪  (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩

𝐶2) ∪ ([𝐴1 ∩ 𝐵3)  ∪  (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩ 𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩ 𝐶3))I, 

 ( ([𝐴1 ∩ 𝐵1] ∩ 𝐶4)  ∪  ([(𝐴1 ∩ 𝐵2)  ∪  (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2)] ∩ 𝐶4 ) ∪  ( [𝐴1 ∩ 𝐵3)  ∪     (𝐴2 ∩ 𝐵3)  ∪  (𝐴3 ∩

𝐵1)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵3)] ∩ 𝐶4) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪   ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2 ) ∪ 

(𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4)] ∩ 𝐶1) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ 

(𝐴4 ∩ 𝐵4)]∩ 𝐶2) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4)]∩

𝐶3) ∪ ([(𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4)]∩ 𝐶4))F) =  

(𝐴1 ∩ [𝐵1 ∩ 𝐶1], 

((𝐴1 ∩[(𝐵1 ∩ 𝐶2) ∪ (𝐵2 ∩ 𝐶1) ∪ (𝐵2 ∩ 𝐶2)])∪ (𝐴2 ∩ [𝐵1 ∩ 𝐶1]) ∪ (𝐴2 ∩  [(𝐵1 ∩ 𝐶2) ∪ (𝐵2 ∩ 𝐶1) ∪ (𝐵2 ∩ 𝐶2)]))T, 

 ((𝐴1 ∩[(𝐵1 ∩ 𝐶3) ∪ (𝐵2 ∩ 𝐶3) ∪ (𝐵3 ∩ 𝐶1) ∪ (𝐵3 ∩ 𝐶2) ∪ (𝐵3 ∩ 𝐶3)])  ∪    (𝐴2 ∩ [(𝐵1 ∩ 𝐶3)  ∪  (𝐵2 ∩ 𝐶3)  ∪

 (𝐵3 ∩ 𝐶1)  ∪  (𝐵3 ∩ 𝐶2)  ∪  (𝐵3 ∩ 𝐶3)])  ∪   (𝐴3 ∩  [ 𝐵1 ∩ 𝐶1 ])  ∪  (𝐴3 ∩ [(𝐵1 ∩ 𝐶2)  ∪  (𝐵2 ∩ 𝐶1)  ∪  (𝐵2 ∩

𝐶2)])  ∪  (𝐴3 ∩[(𝐵1 ∩ 𝐶3) ∪ (𝐵2 ∩ 𝐶3) ∪ (𝐵3 ∩ 𝐶1) ∪ (𝐵3 ∩ 𝐶2) ∪ (𝐵3 ∩ 𝐶3)])) I, 

 ( (𝐴1 ∩ [(𝐵1 ∩ 𝐶4)  ∪  (𝐵2 ∩ 𝐶4)  ∪  ( 𝐵3 ∩ 𝐶4)  ∪  (𝐵4 ∩ 𝐶1)  ∪  (𝐵4 ∩ 𝐶2)  ∪  (𝐵4 ∩ 𝐶3)  ∪  (𝐵4 ∩ 𝐶4)] ∪  (𝐴2 ∩

[(𝐵1 ∩ 𝐶4)  ∪  (𝐵2 ∩ 𝐶4)  ∪  ( 𝐵3 ∩ 𝐶4)  ∪  (𝐵4 ∩ 𝐶1)  ∪  (𝐵4 ∩ 𝐶2)  ∪  (𝐵4 ∩ 𝐶3)  ∪  (𝐵4 ∩ 𝐶4)])  ∪    ( 𝐴3 ∩
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[(𝐵1 ∩ 𝐶4)  ∪  (𝐵2 ∩ 𝐶4)  ∪  ( 𝐵3 ∩ 𝐶4)  ∪  (𝐵4 ∩ 𝐶1)  ∪  (𝐵4 ∩ 𝐶2)  ∪  (𝐵4 ∩ 𝐶3)  ∪  (𝐵4 ∩ 𝐶4)])  ∪  ( 𝐴4 ∩ [𝐵1 ∩

𝐶1]) ∪ (𝐴4 ∩[(𝐵1 ∩ 𝐶2) ∪ (𝐵2 ∩ 𝐶1) ∪ (𝐵2 ∩ 𝐶2)]) ∪ (𝐴4 ∩[(𝐵1 ∩ 𝐶3) ∪ (𝐵2 ∩ 𝐶3) ∪ (𝐵3 ∩ 𝐶1) ∪ (𝐵3 ∩ 𝐶2) ∪ 

(𝐵3 ∩ 𝐶3)]) ∪ (𝐴4 ∩[(𝐵1 ∩ 𝐶4) ∪ (𝐵2 ∩ 𝐶4) ∪ ( 𝐵3 ∩ 𝐶4) ∪ (𝐵4 ∩ 𝐶1) ∪ (𝐵4 ∩ 𝐶2) ∪ (𝐵4 ∩ 𝐶3) ∪ (𝐵4 ∩ 𝐶4)]  ))F) 

=  A *1 (B *1 C). 

Thus, (𝑁𝑞, *1) is a NTG with binary operation *1 in Definition 3.3. 

b) This proof can be made similar to a. 

 

Theorem 4.5: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTS with binary operation #1 in Definition 3.4. 

b) (𝑁𝑞, *2) is a NTS with binary operation #2 in Definition 3.4. 

Proof: These proofs can be made similar to Theorem 4.3. 

 

Theorem 4.6: Let N be a non – empty set and 𝑁𝑞= {(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1 , 𝐴2, 𝐴3 , 𝐴4  ∈ P(N)}be a 

SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTG with binary operation #1 in Definition 3.4. 

b) (𝑁𝑞, *2) is a NTG with binary operation #2 in Definition 3.4. 

Proof: These proofs can be made similar to Theorem 4.4. 
                                                                                     

Conclusion  

In this study, we firstly obtain set valued neutrosophic quadruple sets and numbers. Also, we intro-

duce some known and special operations for set valued neutrosophic quadruple numbers. In the neu-

trosophic quadruples, real or complex numbers were taken as variables, while in this study we took 

sets as variables. So, we will expand the applications of neutrosophic quadruples. Because things or 

variables in any application will be more useful than real numbers or complex numbers. Furthermore, 

we give some neutrosophic triplet groups based on set valued neutrosophic quadruple number thanks 

to operations for set valued neutrosophic quadruple numbers. Thus, we have added a new structure 

to neutrosophic triplet structures and neutrosophic quadruple structures. Thanks to set valued neu-

trosophic quadruple sets and numbers other neutrosophic triplet structures can be defined similar to 

this study. For example, neutrosophic triplet metric space based on set valued neutrosophic quadruple 

numbers; neutrosophic triplet vector space based on set valued neutrosophic quadruple numbers;     

neutrosophic triplet normed space based on set valued neutrosophic quadruple numbers. Also, set 

valued neutrosophic quadruple sets can be used decision making applications due to the its set valued 

structure. For example, in a medical application in which more than one drug is used, this structure 

may be used. 

 

Abbreviations 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTG: Neutrosophic triplet group 

NQ: Neutrosophic quadruple 

NQS: Neutrosophic quadruple set 

NQN: Neutrosophic quadruple number 

SVNQS: Set valued neutrosophic quadruple set 

SVNQN: Set valued neutrosophic quadruple number 
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Abstract: In this paper, we introduce the concept of Neutrosophic Semi Baire spaces in Neutrosophic 

Topological Spaces. Also we define Neutrosophic Semi-nowhere dense, Neutrosophic Semi-first 

category and Neutrosophic Semi-second category sets. Some of its characterizations of Neutrosophic 

Semi-Baire spaces are also studied. Several examples are given to illustrate the concepts  

Keywords: Neutrosophic semi-open set, Neutrosophic semi-nowhere dense set, Neutrosophic 

semi-first category, Neutrosophic semi-second category and Neutrosophic semi-Baire spaces 

 

 

1. Introduction and Preliminaries 

The fuzzy idea has invaded all branches of science as far back as the presentation of fuzzy sets by L. 

A. Zadeh [29]. The important concept of fuzzy topological space was offered by C. L. Chang [9] and 

from that point forward different ideas in topology have been reached out to fuzzy topological 

space. The concept of ”intuitionistic fuzzy set” was first presented by Atanassov [5]. He and his 

associates studied this useful concept [6 - 8]. Afterward, this idea was generalized to ”intuitionistic L 

– fuzzy sets” by Atanassov and Stoeva [6]. The idea of somewhat fuzzy continuous functions and 

somewhat fuzzy open hereditarily irresolvable were introduced and investigated by by G. 

Thangaraj and G. Balasubramanian in [25]. The idea of intuitionistic fuzzy nowhere dense set in 

intuitionistic fuzzy topological space presented and studied by Dhavaseelan and et al. in [16]. The 

concepts of neutrosophy and Neutrosophic set were introduced by F. Smarandache [[22], [23]]. 

Afterwards, the works of Smarandache inspired A. A. Salama and S. A. Alblowi[21] to introduce and 

study the concepts of Neutrosophic crisp set and Neutrosophic crisp topological spaces. The Basic 

definitions and Proposition related to Neutrosophic topological spaces was introduced and 

discussed by Dhavaseelan et al. [17]. The concepts of Neutrosophic Baire spaces are introduced by R. 

Dhavaseelan, S. Jafari ,R. Narmada Devi, Md. Hanif Page [16] 

 

Definition 1.1. [22, 23] Let T,I,F be real standard or non standard subsets of  ]0−, 1+[  , with 

𝑠𝑢𝑝𝑇 = 𝑡𝑠𝑢𝑝 T ; infT = tinf 

SupI = isup; infI = iinf 

SupF = fsup; infF = finf 

n - sup = tsup + isup + fsup 

n-inf = tinf+iinf+finf .    T, I, F are Neutrosophic components. 
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Definition 1.2. [22, 23] Let X is a nonempty fixed set. A Neutrosophic set [briefly Ne.S] K is an object 

having the form 𝐾 = {〈𝑥, 𝜇𝐾(𝑥), 𝜎𝐾(𝑥), 𝛾𝐾(𝑥)〉: 𝑥 ∈ 𝑋}   where 𝜇𝐾(𝑥), 𝜎𝐾(𝑥)𝑎𝑛𝑑 𝛾𝐾(𝑥)  which 

represents the degree of membership function (namely  𝜇𝐾(𝑥) ), the degree of indeterminacy 

(namely  𝜎𝑘(𝑥)) and the degree of non-membership (namely 𝛾𝐾(𝑥) ) respectively of each element 

𝑥 ∈ 𝑋 to the set K. 

Remark 1.2. [22, 23] 

(1) A Ne.S 𝐾 = {〈𝑥, 𝜇𝐾(𝑥), 𝜎𝐾(𝑥), 𝛾𝐾(𝑥)〉: 𝑥 ∈ 𝑋}  can be identified to an ordered triple 

〈𝜇𝐾, 𝜎𝐾, 𝛾𝐾〉 in ]0−, 1+[  on X. 

(2)  For the sake of simplicity, we shall use the symbol 

K = 〈𝜇𝐾, 𝜎𝐾, 𝛾𝐾〉 for the Ne.S 𝐾 = {〈𝑥, 𝜇𝐾(𝑥), 𝜎𝐾(𝑥), 𝛾𝐾(𝑥)〉: 𝑥 ∈ 𝑋} 

Definition 1.3. [22, 23] Let X be a nonempty set and the Ne.Sets  K and L in the form 

 𝐾 = {〈𝑥, 𝜇𝐾(𝑥), 𝜎𝐾(𝑥), 𝛾𝐾(𝑥)〉: 𝑥 ∈ 𝑋}, L= {〈𝑥, 𝜇𝐿(𝑥), 𝜎𝐿(𝑥), 𝛾𝐿(𝑥)〉 ∶ 𝑥 ∈ 𝑋}. Then 

(a) LK   iff  𝜇𝐾(𝑥) ≤ 𝜇𝐿(𝑥), 𝜎𝐾(𝑥) ≤ 𝜎𝐿(𝑥) , 𝛾𝐾(𝑥) ≥ 𝛾𝐿(𝑥) for all 𝑥 ∈ 𝑋; 

(b)  LK  iff LK   and KL ; 

(c) 𝐾 = {〈𝑥, 𝛾𝐿(𝑥), 𝜎𝐾(𝑥), 𝜇𝐿(𝑥)〉: 𝑥 ∈ 𝑋}; [Complement of K]  

(d) K  L=  {〈𝑥, 𝜇𝐾(𝑥) ⋀  𝜇𝐿(𝑥) , 𝜎𝐾(𝑥) ⋀  𝜎𝐿(𝑥) , 𝛾𝐾(𝑥) ⋁  𝛾𝐿(𝑥)〉 ∶ 𝑥 ∈ 𝑋}; 

(e) K  L=  {〈𝑥, 𝜇𝐾(𝑥) ⋁   𝜇𝐿(𝑥), 𝜎𝐾(𝑥) ⋁  𝜎𝐿(𝑥) , 𝛾𝐾(𝑥) ⋀  𝛾𝐿(𝑥)〉 ∶ 𝑥 ∈ 𝑋}; 

(f) [ ]K = {〈𝑥, 𝜇𝐾(𝑥), 𝜎𝐾(𝑥), 1 − 𝜇𝐾(𝑥)〉 ∶ 𝑥 ∈ 𝑋}; 

(g) 〈 〉 𝐾 = {〈𝑥, 1 − 𝛾𝐾(𝑥), 𝜎𝐾(𝑥), 𝛾𝐾(𝑥)〉: 𝑥 ∈ 𝑋}  

 

Definition 1.4. [22, 23] Let {𝐾𝑖 ∶ 𝑖 ∈ 𝐽} be an arbitrary family of Ne.Sets in X. Then 

(a) ⋂ 𝐾𝑖 = {〈𝑥,  𝜇𝐾𝑖(𝑥),  𝜎𝐾𝑖(𝑥),  𝛾𝐾𝑖(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, 

(b) ⋃ 𝐾𝑖 = {〈𝑥,  𝜇𝐾𝑖(𝑥),  𝜎𝐾𝑖(𝑥),  𝛾𝐾𝑖(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, 

Since our main purpose is to construct the tools for developing Ne.T.Spaces, we introduce the 

Ne.Sets 0N and 1N in X as follows: 

 

Definition 1.5. [22, 23]  

 0𝑁 =  {〈𝑥, 0,0,1〉 ∶ 𝑥 ∈ 𝑋} 𝑎𝑛𝑑  1𝑁 =  {〈𝑥, 1,1,0〉 ∶ 𝑥 ∈ 𝑋} 

Definition 1.6. [21] 

A Neutrosophic topology (Ne.T) on a nonempty set X is a family NT of Ne.Sets in X satisfying the 

following axioms: 

(i) 0𝑁 , 1𝑁  ∈ NT, 

(ii) 𝐺1 ∩ 𝐺2 ∈ NT for any 𝐺1, 𝐺2  ∈ NT. 

(iii)⋃ 𝐺𝑖 for arbitrary family {𝐺𝑖| 𝑖 ∈ ⋀  } . 

 In this case the ordered pair (X, NT) or simply X is called a Neutrosophic Topological Space 

(briefly Ne.T.S) and each Ne.S in NT  is called a Neutrosophic open set (briefly Ne.O.S). The 

complement K of a Ne.O.S K in X is called a Neutrosophic closed set (briefly Ne.C.S) in X. 

Definition 1.7. [9]  

Let K be a Ne.S in a Ne.T.S  X. Then  

   Ne.int(K) = ∪ {𝐺 | 𝐺 𝑖𝑠 𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐺 K }  
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    is called the Neutrosophic interior of K; 

   Ne.cl(K) = ∩ {𝐺 | 𝐺 𝑖𝑠 𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐺   K }   

    is called the Neutrosophic closure of K. 

Definition 1.8: [13] A Ne.S K in a Ne.T.S X is said to a Neutrosophic Semi Open set (Ne.S.O.S) if 

))int(.(. KNeclNeK  and Neutrosophic Semi Closed set (Ne.S.C.S) if KKclNeNe ))(.int(. . 

Definition 1.9:[13]  Let K be a Ne.S in a Ne.T.S  X. Then  

   Ne.S.int(K) = ∪ {𝐺 | 𝐺 𝑖𝑠 𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑠𝑒𝑚𝑖 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐺   K }  

   is called the Neutrosophic semi interior of  K; 

   Ne.S.cl(K) = ∩ {𝐺 | 𝐺 𝑖𝑠 𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑠𝑒𝑚𝑖 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐺   K } 

  is called the Neutrosophic semi closure of  K; 

Result: 1.9 Let K be a Ne.S in a Ne.T.S  X. Then  

Ne.S.cl(K) = ))(.int(. KclNeNeK   

Ne.S.int(K) = ))int(.(. KNeclNeK 
 

 

2. Neutrosophic Semi-nowhere dense sets 

Definition 2.1 A Ne.S K in Ne.T.S (X, NT) is called Neutrosophic semi nowhere dense (briefly 

Ne.S.N.D) if there exists no non-zero Ne.S.O.S  L in (X; NT) such that ).(.. KclSNeL   That is 

))(..int(.. KclSNeSNe = 0N 

Example 2.1 Let X = {k, l}.  Define the Ne.S K, L and M  on X as follows:  
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Then the families  LKLKLKNN  ,,,,1,0NT  is Ne.T on X. Thus (X, NT) is a Ne.T.S. Now the sets 

LKLK ,, are Ne.S.N.D  set 

Proposition 2.1. If K is a Ne.S.N.D  set in (X; NT), then K  is a Ne.S.D set in (X, T)  

Proposition 2.2. Let K be a set. If K is a Ne.S.C.S in (X, NT) with Ne.S.int(K) = 0N, then K is a Ne.S.N.D 

set in  (X; NT). 

Definition 2.2. Let K be a Neutrosophic semi first category set (Ne.S.F.C.) in (X, NT). Then K  is 

called a Neutrosophic residual set in (X; NT).  

Proposition 2.3. The complement of a Ne.S.N.D. set in a Ne.T.S (X, NT) need not be Ne.S.N.D. set.  

Proof: For, in example 2.1, K  is a Ne.S.N.D. set in (X, NT) whereas K is not a Ne.S.N.D. set in 

(X, NT).  

Proposition 2.4. If K & L are Ne.S.N.D. sets in a Ne.T.S (X, NT), then K∪ 𝐿 need not be Ne.S.N.D. set 

in 

 (X, NT).  
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Proof: For, in example 2.1, LK &  is Ne.S.N.D. sets in (X, NT ). But LK    implies that 

Ne.S.int(Ne.S.cl( LK  ) ≠ 0N. Therefore union of Ne.S.N.D. sets need not be Ne.S.N.D. set in  (X, 

NT).  

Proposition 2.5: If the Ne.Sets K and L are Ne.S.N.D. sets in a Ne.T.S (X, NT) then K∩ 𝐿 is a 

Ne.S.N.D. set in (X, NT).  

Proof: Let the fuzzy sets K and L be Ne.S.N.D. sets in (X, NT). Now Ne.S.int (Ne.S.cl (𝐾 ∩ 𝐿))   

Ne.S.int (Ne.S.cl (K))  Ne.S.int (Ne.S.cl (L)) = 0N  0N (since Ne.S.int (Ne.S.cl (K)) = 0N and 

Ne.S.int( Ne.S.cl(B)) = 0N). That is, Ne.S.int( Ne.S.cl (K∩ 𝐿) = 0N. Hence (K∩ 𝐿) is a Ne.S.N.D. set in 

(X, NT ). 

Proposition 2.6:  If K is a Ne.S.N.D. set in a Ne.T.S (X, NT) then Ne. S.int (K) = 0N.  

Proof: Let K be a Ne.S.N.D. set in (X, NT). Then, we have Ne.S.int (Ne.S.cl (K)) = 0N. Now K   

Ne.S.cl (K) we have Ne.S.int (K)   Ne.S.int (Ne.S.cl (K) )= 0N. Hence Ne.S.int (K) = 0N  

 Proposition 2.7:  

If K is a Ne.S.N.D. set in a Ne.T.S. (X, NT) then Ne.int (Ne.S.cl (K)) = 0.  

Proof: Let K be a Ne.S.N.D. sets in (X, NT). Then, we have Ne.int( Ne.cl (K)) = 0N and Ne.int (K) = 0N. 

Now Ne.S.cl (K) = K, since K is fuzzy semi-closed set in (X, NT) implies that Ne.int (Ne.S.cl(K) ) 

=Ne.int (K) = 0N. Hence Ne.int (Ne.S.cl (K)) = 0N.  

Proposition 2.8: If K is a Ne.S.N.D. set and L is any Ne.Set in a Ne.T.S. (X, NT), then (K∩ 𝐿) is a 

Ne.S.N.D. set in (X, NT). 

 Proof:  Let K be a Ne.S.N.D. set in (X, NT). Then, Ne.S.int (Ne.S.cl (K)) = 0. Now Ne.S.int (Ne.S.cl 

(K∩ 𝐿))   Ne.S.int (Ne.S.cl (K))  Ne.S.int (Ne.S.cl (L))   0N  Ne.S.int (Ne.S.cl (L)) = 0N. That is, 

Ne.S.int (Ne.S.cl (K∩ 𝐿) = 0N. Hence (K∩ 𝐿) is a Ne.S.N.D. set in (X, NT).  

Definition 2.3   A Ne.S. K in Ne.T.S. (X; NT) is called Neutrosophic semi dense(Ne.S.D.) if there 

exists no Ne.S.C.set L in (X; NT) such that NLK 1 .That is NKclSNe 1)(..   

Proposition2.9  If K is a Ne.S.D. and Ne.S.O. set in a Ne.T.S. (X, NT) and if L   1 - K then L is a 

Ne.S.N.D.  set in (X, NT).  

Proof: Let K be a Ne.S.D. set in (X, NT). Then we have Ne.S.cl (K) = 1N  and Ne.S.int (K) = K. Now L 

 1-K implies that Ne.S.cl (L)   Ne.S.cl (1 - K). Then Ne.S.cl (L)    1- Ne.S.int (K) = 1 - K. Hence 

 Ne.S.cl (L)   (1 - K), which implies that Ne.S.int (Ne.S.cl (L))   Ne.S.int(1- K) = 1-Ne.S.cl (K) = 1 

– 1 = 0N. That is, Ne.S.int( Ne.S.cl (L) )= 0N. Hence L is a Ne.S.N.D. set in (X, NT).  

Proposition 2.10:  If K is a Ne.S.N.D. set in a Ne.T.S. (X, NT), then 1 - K is a Ne.S.D. set in (X, NT).  

Proof: Let K b e a Ne.S.N.D. set in (X, NT). Then, Ne.S.int (Ne.S.cl(K) = 0N. Now K   Ne.S.cl (K) 

implies that Ne.S.int(K)   Ne.S.int (Ne.S.cl(K) = 0N. Then Ne.S.int (K) = 0N  and Ne.S.cl(1 - K) = 1 – 

Ne.S.int(K) = 1 – 0N = 1N and hence 1 - K is a fuzzy semi-dense set in (X, NT).  

Proposition 2.11:  If K is a Ne.S.N.D. set in a Ne.T.S. (X, NT), then Ne.S.cl (K) is also a Ne.S.N.D.  

set in (X, NT).  
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Proof: Let K be a Ne.S.N.D. set in (X, NT). Then, Ne.S.int (Ne.S.cl (K) = 0N. Now Ne.S.cl (Ne.S.cl (K)) = 

Ne.S.cl (K). Hence Ne.S.int( Ne.S.cl (Ne.S.cl (K))) = Ne.S.int (Ne.S.cl (K)) = 0N. Therefore Ne.S.cl (K) is 

also a Ne.S.N.D. set in (X, NT).  

Proposition 2.12: If K is a Ne.S.N.D.  set in a Ne.T.S. (X, NT), then 1 – Ne.S.cl (K) is a Ne.S.D. set in 

(X, NT).  

Proof: Let K be a Ne.S.N.D.  set in (X, NT). Then, by proposition 2.11, Ne.S.cl (K) is a Ne.S.N.D.  set 

in (X, T). Also by proposition 2.10, 1 – Ne.S.cl (K) is a Ne.S.D. set in (X, NT).  

Proposition 2.13: Let K be a Ne.S.D. set in a Ne.T.S. (X, NT). If L is any Ne. set in (X, NT), then L is a 

Ne.S.N.D.  set in (X, NT) if and only if K∩ 𝐿 is a  Ne.S.N.D.  set in (X, NT). 

Proof: Let L be a Ne.S.N.D.  set in (X, NT). Then, Ne.S.int (Ne.S.cl (L) = 0N. Now Ne.S.int (Ne.S.cl 

(K∩ 𝐿))   Ne.S.int (Ne.S.cl (K)  Ne.S.int (Ne.S.cl (L))   Ne.S.int (Ne.S.cl (K))  0N = 0N. That is,  

Ne.S.int( Ne.S.cl (K∩ 𝐿)) = 0N. Hence (K∩ 𝐿) is a Ne.S.N.D. set in (X, NT). Conversely, let (K∩ 𝐿) be a 

Ne.S.N.D. set in (X, NT). Then Ne.S.int Ne.S.cl (K∩ 𝐿) = 0N. Then, Ne.S.int ( Ne.S.cl (K)) ∩ Ne.S.int( 

Ne.S.cl(L)) = 0N. Since K is a Ne.S.D. set in (X, NT), Ne.S.cl (K) = 1N. Then, Ne.S.int (1N)  Ne.S.int 

(Ne.S.cl (L) )= 0N. That is, (1N)  Ne.S.int (Ne.S.cl (L)) = 0N. Hence Ne.S.int (Ne.S.cl (L)) = 0N, which 

means that L is a Ne.S.N.D. set in (X, NT).  

 

3. Neutrosophic Semi Baire Spaces 

Definition 3.1. Let (X, NT) be a Ne.T.S.  A Ne. Set K in (X, NT) is called Neutrosophic semi first 

category(Ne.S.F.C.) if A = 


1i
iA  where Ai’s are Ne.S.N.D. sets in  (X, NT). Any other Ne. set in (X, 

NT) is said to be of Neutrosophic semi second category(Ne.S.S.C.). 

 

Example 3.1: Let X = {k, l}.  Define the Ne. set K, L ,M and N  on X as follows:  
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Then the families  LKN NNT ,,1,0
 
is Ne.T. on X. Thus (X, NT ) is a Ne.T.S.. Now the sets

NMLK ,,, are Ne.S.N.D. set and  NMLK  = L is Ne.S.F.C. set in (X, NT) 

Definition 3.2: Let K be a Ne.S.F.C. set in a Ne..S. (X, NT). Then 1 - K is called a Neutrosophic 

semi-residual (Ne.S.R.) set in (X, NT).  

Proposition 3.1: If K is a Ne.S.F.C. set in a Ne.T.S. (X, NT), then 1–K =


1i
iK  , where Ne.S.cl(Li) = 1N.  
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Proof: Let K be a Ne.S.F.C. set in (X, NT). Then we have K = 


1i
iK ), where iK  's are Ne.S.N.D. in 

(X, NT). Now 1– K = 


1i
iK  . Let iL = 1 – iK . Then 1-K = 



1i
iL . Since iK 's are Ne.S.N.D. sets in 

(X, NT), by proposition 2.10, we have 1-K ‘s are Ne.S.D. sets in (X, NT). Hence Ne.S.cl ( iL ) = Ne.S.cl 

(1- iK ) =1N. Therefore we have 1-K = 


1i
iL  where Ne.S.cl ( iL ) = 1N. 

Definition 3.3: A  Ne.T.S. (X, NT) is called a Ne.S.F.C. space if the Ne. set 1N is a Ne.S.F.C. set in (X, 

NT). That is, 1N = 


1i
iK  where Ki's are Ne.S.N.D. sets in (X, NT). Otherwise (X, NT) will be called a 

Ne.S.S.C. space.  

Proposition 3.2: If K is a Ne.S.C. set in a Ne.T.S. (X, NT) and if Ne.S.int (K) = 0N, then K is a NeS.N.D. 

set in (X, NT). 

 Proof: Let K be a Ne.S.C. set in (X, NT). Then we have Ne.S.cl (K) = K. Now Ne.S.int (Ne.S.cl (K) = 

Ne.S.int (K) and Ne.S.int(K) = 0N, implies that Ne.S.int(Ne.S.cl(K))= 0N. Hence K is a Ne.S.N.D. set in 

(X, NT).  

Definition 3.4: Let (X, NT ) be a Ne.T.S.. Then (X, NT ) is called a Neutrosophic semi-Baire 

space(Ne.S.B.) if Ne.S.int [


1i
iK ] = 0N, where iK 's are Ne.S.N.D.  sets in (X, NT). 

Example 3.2: Let  X = {k, l}.  Define the Ne. set k, L ,M and N  on X as follows: 
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Then the families  LKN NNT ,,1,0 is Ne.T. on X. Thus (X, NT ) is a Ne.T.S.. Now the sets 

NMLK ,,, are Ne.S.N.D. set and  NMLK  =Ne.S.int ( L ) = 0N is Ne.S.B. space.

Example 3.3:  Let X = {k, l}.  Define the Ne.Sets  K, L and M  on X as follows: 
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Then the families  LKLKLKNN  ,,,,1,0NT  is Ne.T on X. Thus (X, NT) is a Ne.T.S. Now the sets 

LKLK ,, are Ne.S.N.D  set and Ne.S.int NLKSNeLKLK 0)int(..))((  . Hence the 

Ne.T.S. (X, NT) is not Ne.S.B. space.  

Proposition 3.3:` If Ne.S.int (


1i
iK ), = 0N, where Ne.S.int (Ki) = 0N and Ki 's are Ne.S.C. sets in a 

Ne.T.S. (X, NT), then (X, NT) is a Ne.S.B. space.  

Proof: Let Ki 's be Ne.S.C. sets in (X, NT). Since Ne.S.int (Ki) = 0N, by proposition 3.2, the Ki 's are 

Ne.S.N.D. sets in (X,  NT ). Therefore we have Ne.S.int (


1

)(
i

iK ) = 0N, where Ki 's are fuzzy 

semi-nowhere dense sets in (X, NT). Hence (X, NT) is a Ne.S.B. space.  

Proposition 3.4: 

If Ne.S.cl(


1

(
i

iK )) = 1N, where Ki's are Ne.S.D. and Ne.S.O. sets in a Ne.T.S. (X, NT), then (X, NT) is a 

Ne.S.B. space.  

 Proof:  

Now Ne.S.cl ( )(
1



i
iK ) = 1N  implies that 1-Ne.S.cl (



1

)(
i

iK ) = 0N. Then we have  

Ne.S.int (1-


1i
iK ) = 0N,which implies that Ne.S.int ( )1

1






i

iK = 0N. Since Ki's are Ne.S.D. sets in (X, NT ), 

Ne.S.cl (Ki) = 1N and  Ne.S.int(1- Ki) = 1-Ne.S.cl (Ki) = 1-1N = 0N. Hence we have Ne.S.int ( )1(
1






i

iK ) = 

0N, where Ne.S.int (1- Ki) = 0 and (1- Ki)'s are Ne.S.C. sets in (X, NT). Then, by proposition 3.3, (X, NT) 

is a Ne.S.B. space.  

 

Proposition 3.5: Let (X, NT) be a Ne.T.S. The


1i
iK n the following are equivalent:  

(1). (X, NT) is a Ne.S.B. space.  

(2). Ne.S.int (K) = 0N for everyone.S.F.C. set K in (X, NT).  

(3). Ne.S.cl (L) = 1N for every Ne.S.R. set in (X, NT).  

Proof: (1) → (2). Let K be a Ne.S.F.C. set in (X, NT). Then K =


1i
iK , where Ki's are Ne.S.N.D.  sets in  

 (X, NT). Now Ne.S.int (K) = Ne.S.int (


1i
iK ) = 0N (since (X, NT) is a Ne.S.B. space). Therefore  

Ne.S.int (K) = 0N.  

(2) → (3). Let L be a Ne.S.R. set in (X, NT). Then 1-L is a Ne.S.F.C set in (X, NT). By hypothesis, 

Ne.S.int (1-L) = 0N which implies that 1- Ne.S.cl (L) = 0N.  

Hence we have Ne.S.cl (L) = 1N.  

(3)→ (1). Let K be a Ne.S.F.C.set in (X, NT). Then K = 


1i
iK  where Ki's are Ne.S.N.D.sets in (X, NT). 1- 

K is a Ne.S.R. set in (X, NT). Since K is a Ne.S.F.C. set in (X, NT), By hypothesis, we have Ne.S.cl (1- 
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K) = 1N. Then 1-Ne.S.int (K) = 1N, which implies that Ne.S.int (K) = 0N. Hence Ne.S.int (


1i
iK ) = 0N 

where Ki's are Ne.S.N.D. sets in (X, NT). Hence (X, NT) is a Ne.S.B. space.  

Proposition 3.6: If a fuzzy topological space (X, NT ) is a Ne.S.B. space, then (X, NT ) is a 

Ne.S.S.C.space.  

Proof: Let (X, NT) be a Ne.S.B. space. Then Ne.S.int (


1i
iK ) = 0N where Ki's are Ne.S.N.D. sets in (X, 

NT). Then 


1i
iK  ≠ 1N. (Suppose, 



1i
iK  = 1N implies that Ne.S.int (



1i
iK ) = Ne.S.int(1N) which implies 

that 0N = 1N, a contradiction). Hence (X, NT) is a Ne.S.S.C. space.  

Remarks 3.6: The converse of the above proposition need not be true. A Ne.S.S.C. space need not be 

Ne.S.B. space.  

Example 3.4:  Let X = {k, l}.  Define the Ne.Sets  K and L  on X as follows:  
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Then the families  LKLKLKNN  ,,,,1,0NT  is Ne.T on X. Thus (X, NT) is a Ne.T.S. Now the sets 

LKLK ,, are Ne.S.N.D  set and NN LKSNeLKLKLK 0)int(..&1)())((  . 

Hence the Ne.S.S.C. space need not be Ne.S.B.space.  

 

Proposition 3.7: If a Ne.T.S. (X, NT) is a Ne.S.B. space, then no non-zero Ne.S.O. set in (X, NT) is a 

fuzzy semi-first category set in (X, NT). 

Proof: Suppose that K is a non-zero Ne.S.O. set in (X, NT) such that K = 


1i
iK , where Ki 's are 

Ne.S.N.D. sets in (X, NT). Then we have Ne.S.int (K) = Ne.S.int (


1i
iK ). Since K is a non-zero Ne.S.O. 

set in (X, NT) Ne.S.int(K) = K. Then Ne.S.int (


1i
iK ) = K ≠ 0.  But this is a contradiction to (X, NT) 

being a Ne.S.B. space, in which Ne.S.int (


1i
iK ) = 0, where Ki 's are Ne.S.N.D. sets in (X, NT). Hence 

we must have A ≠ (


1i
iK ).  

Therefore no non-zero Ne.S.O. set in (X, NT) is a Ne.S.F.C. set in (X, NT).  

Proposition 3.8: A Ne.S.B. space is a Ne.B. space. For consider the following example:  

 

Example 3.5: Let X = {k, l}.  Define the Ne. set K, L ,M and N  on X as follows:  
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Then the families  LKN NNT ,,1,0
 
is Ne.T. on X. Thus (X, NT ) is a Ne.T.S. Now the sets 

NMLK ,,, are Ne.S.N.D. set and Ne.S.int  NMLK  = Ne.S.int( L )= 0N  Hence the Ne.T.S. 

(X, NT) is Ne.S.B. space. 

Here the sets NMLK ,,, are Ne.N.D. set and Ne.int  NMLK  = Ne.int( L )= 0N .Hence 

Ne.S.B. space is a Ne.B. space 

 

Conclusions 

Many different forms of closed sets have been introduced over the years. Various interesting 

problems arise when one considers openness. Its importance is significant in various areas of 

mathematics and related sciences, : In this paper, we introduced the concept of Neutrosophic Semi 

Baire spaces in Neutrosophic Topological Spaces. Also we define Neutrosophic Semi-nowhere 

dense, Neutrosophic Semi-first category and Neutrosophic Semi-second category sets. Some of its 

characterizations of Neutrosophic Semi-Baire spaces are also studied. This shall be extended in the 

future Research with some applications 
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Abstract: Matrices help for the effective representation of systems of linear equations and analyzing 

any sort of data. The decomposition of any matrix allows for the efficient implementation of 

matrix-based algorithms. Spectral decomposition is one of the approaches commonly used for 

square symmetric matrices in order to spell out variation for each of the involved components. The 

Neutrosophic environment is based on square symmetric matrices and likely to call Spectral 

decomposition.   Neutrosophic is the branch of philosophy that deals with nature, the scope of 

neutralities and their associations with changed ideational spectra. It is the generalization of the 

classical set, classical fuzzy set, and intuitionistic fuzzy set. These set theories often limited to handle 

the problem of uncertainty. Neutrosophic basically based on three possibilities; like Degree of Truth 

(T), Degree of Falsehood (F) and Degree of Indeterminacy (I).In real-life uncertainties commonly 

happened and so neutrosophic plays an important role to measure those uncertainties such as 

inexplicit statements, specious or inadequate information. In order to measure the indeterminacy, a 

neutrosophic matrix approach is purposed and matrix named “Square-Symmetric Neutrosophic 

(SSN) matrix”. The SSN matrix is computed using the spectral decomposition of matrices; which do 

factorization of a matrix into canonical form. The increasing level of indeterminacy restrains from 

reaching to exact decision. If indeterminacy in (any two) SSN matrices increases, then this leads to 

reduce variation in data. The process is checked through the Eigenvectors which suggests that 

through spectral decomposition the variation of the indeterminacy in SSN matrices can be 

minimized. 

Keywords: Neutrosophic set, Square Neutrosophic matrices, and Spectral decomposition. 

 

1. Introduction 

Neutrosophic philosophy was presented by Florentin Smarandache (Smarandache, 1999) which 

based on three components namely Degree of Truth(T), Degree of Falsehood(F) and Degree of 

Indeterminacy(I) defined on the sample space X, where these three components are fully 

independent. This theory has many applications in different fields such as (Ansari, Biswas, & 

Aggarwal, 2011; Broumi & Smarandache, 2013; Cheng & Guo, 2008; Kharal, 2014) where inconsistent, 

and indeterminate problems occurred. Two types of  measure  for bipolar and interval-valued 

bipolar neutrosophic sets proposed by (Abdel-Basset, Mohamed, Elhoseny, Chiclana, & Zaied, 2019). 

A robust ranking method with the neutrosophic set theory proposed by (Abdel-Baset, Chang, & 

Gamal, 2019) study the environmental performance of green supply chain management. The 

uncertainty mostly handle with the support of set theories but neutrosophic theory generalize these 
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set theories (Azizzadeh, Zadeh, Zahed, & Zadeh, 1965). In decision-making problems the 

neutrosophic approach is used that deal and overcome the ambiguity (Abdel-Basset, Atef, & 

Smarandache, 2019). A neutrosophic method for assessment of Hospital medical care systems which 

based on plithogenic data sets presented by(Abdel-Basset, El-hoseny, Gamal, & Smarandache, 2019). 

For Supply Chain Sustainability a neutrosophic method is presented by (Abdel-Basset, Mohamed, 

Zaied, & Smarandache, 2019). Matrices play a big role in science and technology. When uncertainty 

involved in classical matrix different fuzzy matrices are developed using the fuzzy relation system. 

For this purpose different square neutrosophic matrices were proposed by (Dhar, Broumi, & 

Smarandache, 2014). The descriptive neutrosophic statistics using the neutrosophic logic Proposed by 

(Smarandache, 2014) and Neutrosophic Probability, Set, and Logic also proposed by (Smarandache, 

1998). Later on, (Aslam, 2018), (Aslam, Bantan, & Khan) and (Aslam, 2019) introduced the inferential 

neutrosophic statistics and neutrosophic statistical quality control. (Alhabib, Ranna, Farah, & Salama, 

2018) presented Some continuous Neutrosophic Probability models  including the Poisson model, 

Exponential model and Uniform model that are applicable when uncertainty involved in data. The 

neutrosophic matrix operations first time introduced by (Ye, 2017) and solution methods including 

addition method, substitution  method and inverse method also developed. (Basu & Mondal, 2015) 
proposed different types of Neutrosophic Soft matrix along with various mathematical operations. 

In medical science this application is applicable.(Uma, Murugadas, & Sriram) developed the 

methods of determinant and adjoint of Fuzzy Neutrosophic Matrices. (Varol & Aygün, 2019) 

proposed a neutrosophic matrix, whose elements are based on single-valued neutrosophic sets. In 

this paper, they proposed various theorems on neutrosophic matrix with basic operations. (Sumathi 

& Arockiarani, 2014) discussed some operations on fuzzy neutrosophic matrix and developed a 

decision method scheme that deal uncertainty. (Kavitha, Murugadas, & Sriram, 2018) studied the powers 
of a fuzzy neutrosophic soft square matrix under the function of max and min. Our aim in this paper to 

propose a neutrosophic matrix called “Square-Symmetric Neutrosophic (SSN) matrix, whose entries 

based on indeterminate part. The SSN matrix is computed using the spectral decomposition of 

matrices. 

 

1.1 Fundamental and basic concepts 

Definition 1.1.1  (Broumi, Bakali, Talea, Smarandache, & Selvachandran, 2017)(Neutrosophic Set)  

Suppose Y be a sample space and let y ε Y. A neutrosophic set  in Y based on three components 

such as truth part , an in determinant part  and falsehood part that is . All these three 

components are independent to each other and based on standard or on standard subsets such as ] 0- 

,1+[.  In real-life applications such as engineering and scientific problems, it is recommended to use 

the interval [0, 1] instead of ]0- ,1+[ as it reduces the complicity of system. The Neutrosophic set can be 

defined as 

 

=                                           (1) 
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Where the sum of these three neutrosophic components are  

                                         (2) 

Definition 1.1.2   (Dhar et al., 2014) (Square Neutrosophic Matrix)  

Let  be two square Neutrosophic matrices where indeterminacy involved in the 
matrices 

=  and  =  

2. Methodology  

Spectral Decomposition  

The spectral theorem states that any symmetric mx m or nx n matrix which has real entries have 

exactly m or n real but possibly not different Eigenvalues and analogous to those Eigenvalues there 

are mutually independent Eigenvectors. Where Eigenvector based on a linear transformation whose 

direction does not change when a scalar is multiplied and Eigenvalue is a scalar that is used to 

transform an Eigenvector. Both are used to reduce variation in data. They can also help to improve 

the model efficiency (LI, 2016). 

Consider two square neutrosophic matrices of the same dimension and let λ be an Eigenvalue of 

these two matrices.  

If x any y be two nonzero vectors (x ) and (y ) such that Ax = λx and By = λy          (3) 

then x is said to be an Eigenvector of the matrix A linked with Eigenvalue λ and y is said to be an 

Eigenvector of matrix B linked with the Eigen value λ. An equivalent condition for λ to be a solution 

of the Eigenvalue- Eigenvector equation is  and . 

Let and  be two symmetric matrices. Then these two matrices can be expressed in 

terms of its m and n Eigen value-Eigen vector pairs ( ) as 

=  and  =                                               (4) 

3. Results  

The results using the proposed methodology for various values of K and I are given in Table 1. 

 

4 Comparison   

In this section, we compare the performance of the proposed method with the method under 

classical statistics. It is important to note that the proposed methodology of neutrosophic statistics 

reduces under classical statistics when K=1 and I=0. From Table 1, we note that in matrix  where 

indeterminacy involved in the first variable, so as I is increased, the variation is reduced in the first 

variable checked through the Eigenvectors. The same two indeterminate variables situation is 

presented in the matrix  where variation in the first two variables also reduces checked through 

the Eigenvectors as I increase. Therefore, it is concluded that through spectral decomposition the 

indeterminacy in SSN matrices can be minimized. By this comparison, it is concluded that the 

proposed methodology under neutrosophic statistics is useful to reduce the variation as compared 

to classical statistics.   
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Table 1: Neutrosophic matrices based on different indeterminacy (I) values. 

5 Conclusions  

Sometime the simple matrix theory often limited to handle the problem of uncertainty. The 

neutrosophic matrix deals the uncertainty, which based on three components including truth 

component, an indeterminate component and falsehood component. This paper focused on SSN 

 

 

 

 

 
Eigen values Eigen vectors Eigen values Eigen vectors 

K=1 and I=0 =2.856 

=-0.056 

=[0.139,0.99] 

=[-0.99,0.139] 

 

=3.79 

=0.564 

=-0.052 

=[-0.03,-0.83,-0.55] 

=[-0.28,0.53,-0.79] 

=[-0.96,0.132,-0.25 

K=2 and I=1 =3 

=2 

 

=[0.45,0.89] 

=[-0.8,0.44] 

 

=3.9 

 

=0.5 

=[-0.25,-0.81,-0.53] 

=[0.97,-0.19,-0.17] 

=[0.03,-0.55,0.83] 

K=3 and I=2 =4.5 

=2.7 

 

=[-.097,-0.23] 

=[0.23,-0.97] 

 

=4.9 

 

=0.5 

=[0.83,0.49,0.26] 

=[0.55,-0.66,-0.50] 

=[0.07,-0.56,0.82 

K=4 and I=3 =6.6 

=2.8 

 

=[-099,-0.10] 

=[0.10,-0.99] 

 

=7.02  

 

=0.47 

=[0.94,0.31,0.12] 

=[0.32,-0.76,-0.56] 

=[0.09,-0.57,0.82] 

K=5 and I=5 =11.02 

=2.78 

 

=[-0.99,-0.05] 

=[0.05,-0.99] 

 

=11.49 

3.38 

=0.43 

=[0.971,0.232,0.054] 

=[0.219,-0.775,-0.593] 

=[0.096,-0.588,0.830] 

K=6 and I=10 =22.01 

=2.79 

 

=[-0.99,-0.021] 

=[0.021,-0.99] 

 

=22.8 

3.19 

=0.29 

=[0.980,0.198,0.023] 

=[0.166,-0.748,-0.642] 

=[0.109,-0.633,0.767] 

K=7 and I=20 =44 

=2.79 

 

=[-0.999,-0.009] 

=[0.009,-0.999)] 

 

=45.5 

2.83 

=-0.04 

=[0.98,0.18,0.01] 

=[0.134,-0.669,-0.730] 

=[0.128,-0.719,0.683] 

K=8 and I=50 =110 

=2.79 

 

=[-0.999,-0.004] 

=[0.004,-0.99] 

 

=113.6 

2.2 

=-1.5 

=[0.984,0.178,0.004] 

=[-0.081,0.425,0.901] 

=[0.158,-0.887,0.433] 

 

K=9 and I=100 =220 

=2.79 

 

=[-0.999,-0.002] 

=[0.002,-0.999] 

 

=227.13 

1.84 

=-4.67 

=[0.984,0.176,0.002] 

=[-0.042,0.224,0.974] 

=[0.17,-0.96,0.23] 

K=10 and I=200 =440 

=2.79 

 

=[-0.99,-0.0009] 

=[0.0009,-0.99] 

 

=454.18 

1.66 

=-11.54 

=[0.984,0.175,0.001] 

=[-0.020,0.108,0.994] 

=[0.173,-0.979,0.109] 
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matrices where indeterminacy involved in its variables. So the spectral decomposition analysis is 

performed that requires a square and symmetric matrix. The proposed method is quite effective to be 

applied in indeterminacy. The increasing level of indeterminacy restrains from reaching to exact 

decision. If indeterminacy in two SSN matrices increases, then this leads to reduce variation in data. 

The process is checked through the Eigenvectors, which suggests that through spectral 

decomposition the variation of the indeterminacy in SSN matrices can be minimized. 
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Abstract: Neutrosophic set is a powerful general formal framework. A lot of studies on 

neutrosophic had been proposed and recently, in multi-valued interval values. However, 

sometimes there is problem involving elements of ambiguity and uncertainties in which the 

function of membership is difficult to be set in a particular case. Clearly, these problems can be 

solved by soft set since it is able to solve the lack of parameterization tool of theory. Thus, this 

paper introduces a concept of multi-valued interval neutrosophic soft set which amalgamates 

multi-valued interval neutrosophic set and soft set. The proposed set extends the notions of fuzzy 

set, intuitionistic fuzzy set, neutrosophic set, interval-valued neutrosophic set, multi-valued 

neutrosophic set, soft set and neutrosophic soft set. Further, we study some basic operations such 

as complement, equality, inclusion, union, intersection, “AND” and “OR” for multi-valued interval 

neutrosophic soft elements and discuss its associated properties. Moreover, the derivation of its 

properties, related examples and some proofs on the propositions are included.  

Keywords: multi-valued interval neutrosophic set; multi-valued interval neutrosophic soft set; 

neutrosophic set, soft set 

1. Introduction 

Fuzzy set (FS) was firstly initiated by Zadeh [1] in order to solve the decision-making problems 

with fuzzy information. However, FS only considers single membership function to represent vague 

data. Moreover, the membership degree alone is unable to describe the information in some cases of 

decision-making problems. Thus, Atanassov [2] introduced intuitionistic fuzzy set (IFS) in order to 

measure both membership degree and non-membership degree of elements in universal set. Then, 

the IFSs have been extended by many researchers and have been applied in some real applications. 

However, the membership and non-membership degrees values in IFSs are independent with the 

sum of degrees of membership and non-membership is less than unity. Moreover, it is unable to 

cope with the indefinite and inconsistent information which exist in belief system. Both FSs and IFSs 
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may not deal with indeterminacy in real decision-making problem. Indeterminacy is an important 

part in decision-making process. For example, in a survey form, there are three choices ‘YES / NO/ 

N. A.’, while for gender, Male/ Female/ Others. So, different types of uncertainty and ambiguity with 

indeterminacy cannot be explained by the fuzzy concept or intuitionistic fuzzy concept. Thus, 

Smarandache [3] proposed the theory of neutrosophic set (NS) in 1995. The concept of NS which 

introduced by Smarandache [4] is a mathematical tool that handles the problems with inconsistent 

and imprecise data. It also has been proved that the NS is a continuation of the intuitionistic fuzzy 

sets [5]. An NS is represented by the truth-membership function, indeterminacy-membership 

function, and falsity-membership function respectively, where ] 0,1 [   is the non-standard interval. 

Basically, it is the generalization to the standard interval in the intuitionistic fuzzy sets [2] which is 

[0,1].  The uncertainty that represented by the indeterminacy factor is independent of truth and 

falsity values, while the integrated ambiguity is dependent of the degree of belongingness and the 

degree of non-belongingness in IFS. Nowadays, the studies on the NS theory have been developed 

actively [6]–[13]. However, since operators necessary to be specified, there is difficulty to apply NS 

in some real situations. Thus, Wang et al. [14] proposed single-valued neutrosophic set (SVNS) and 

since then, there are many researches related to SVNS have been conducted [9–18]. 

 Despite its success, the truth-membership, indeterminacy-membership and falsity-membership 

in SVNS may not be written in one specific number for some cases. Thus, interval-valued 

neutrosophic set (IVNS) was introduced by Wang et al. [25], so that the values of truth-membership, 

indeterminacy-membership and falsity-membership are determined in intervals rather than real 

numbers. Also, IVNS may represent the indefinite, inaccurate, inadequate and inconsistent 

information which is always exist in real world. Numerous real world applications of IVNS have 

been studied by number of researchers [20–25]. In another perspective, the value of neutrosophic 

elements also not always be a single real number. Thus, Wang and Li [32] generalized SVNS into 

multi-valued neutrosophic set (MVNS), where the values of truth-membership, 

indeterminacy-membership and falsity-membership are represented in several real numbers rather 

than one single real number [27–30]. Nevertheless, in some complicated decision problems, several 

decision makers can refuse to give any evaluation values if they are unfamiliar with the 

characteristics of decision-making. Consequently, Broumi et al. [37] proposed multi-valued interval 

neutrosophic set (MVINS) in order to cope with complex decision problems which involving 

multiple decision makers and the evaluation values of decision makers are given in form of 

multi-valued interval neutrosophic values. Then, it has been discussed by other scholars such as Fan 

and Ye [38], Yang and Pang [39] and Samuel and Narmadhagnanam [40]. 

 Apart from NS based sets, the soft set is just another set that can be used to deal with uncertain 

and vague information. Molodtsov [41] who is a Russian mathematician, had solved the difficult 

problem involving uncertainty by proposing a new mathematical tool called “soft set theory”. This 

theory is free from the difficulties on how to set the function of membership in a particular case and 

inadequacy of parameterization tool of theory. After Molodtsov’s work, the soft set (SS) theory has 

been studied widely in numerous applications, like lattices [36–38], topology [39–41], algebraic 

structures [42–46], game theory [47,48], medical diagnosis [55], perron integration [56], data analysis 

and operations research [51–54], optimization [61] and decision-making under uncertainty [56–59].  

In recent years, SS theory has been extended by embedding the ideas of other sets. For example, Maji 
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et al. [66] firstly integrated the beneficial properties of SS and FS. Theory of fuzzy soft set (FSS) has 

been studied by many scholars. For instance, Cagman et al. [67] defined the theory of fuzzy soft set 

(FSS) and studied the related properties. Roy and Maji [68] discussed some results on the 

implementation of FSS in solving the problem of object recognition. Kong et al. [69] gave a comment 

on Roy and Maji’s paper [68], by providing a counter-example to show the problem. Then, Maji [70] 

studied the theory of NS which proposed by Smarandache [4] and combined it with soft set to 

become a novel mathematical model, which is called neutrosophic soft set (NSS). After the 

introduction of the NSS, Karaaslan [71] redefined the NSS notion and its operations to make it 

become more useful. The NSS has been applied to solve decision-making problem. Mukherjee and 

Sarkar [72] also discussed about NSSs. They solved a medical diagnosis decision-making problem 

based on the NSS. Şahin and Küçük [73] introduced a novel style of NSS notion and studied some 

algebraic properties. Sumathi and Arockiarani [74] also studied the NSSs. Cuong et al. [75] 

reanalyzed the notion of NSS and discussed the basic properties of NSS, neutrosophic soft relations 

and neutrosophic soft compositions. Hussain and Shabir [76] investigated the algebraic operations 

of NSS and the properties related to the operations. Mukherjee and Sarkar [77] defined new 

similarity measure and weighted similarity measure between two NSSs. Maji [78] verified some 

operations of weighted NSSs. Chatterjee et al. [79] studied the single-valued NSSs and some 

uncertainty based measures. Marei [80] proposed single valued neutrosophic soft approach to rough 

sets based on neutrosophic right minimal structure. Then, some scholars generalized the NSS into 

interval form by combining the IVNS with SS. This combination is known as interval-valued 

neutrosophic soft set (IVNSS) and it can deal with the problem in interval form with uncertainty. 

Deli [81] firstly introduced the definitions and operations of IVNSS and developed decision-making 

approach based on level soft sets of IVNSS. Mukherjee and Sarkar [82] defined Hamming and 

Euclidean distance for two IVNSSs. They also studied the similarity measure based on set theoretic 

approach. Broumi et al. [83] introduced the relations on IVNSS and presented the several properties 

such as symmetry, reflexivity and transitivity of the proposed relations. Another extension of NSS 

set has been done by some researchers to solve the problem in several real numbers with 

uncertainty. The multi-valued neutrosophic soft set (MVNSS) was proposed by Alkhazaleh [84]. A 

theoretical study on MVNSS properties and operations have been made and an MCDM approach 

based on the proposed set has been provided. Alkhazaleh and Hazaymeh [85] also discussed about 

the MVNSS and introduced an MCDM approach based on the set. It can be seen that there are a lot 

of researches that integrate the NS theory with SS theory. However, the NSS need to be specified 

from a point of view and since very little information of MVINS combines with NS is available in 

literatures, thus, we fill this gap by presenting a new set which integrate two existing concepts of 

MVINS introduced by Broumi et al. [37] and SS introduced by Molodtsov [41]. To accompaniment 

the concept of MVINSS, some basic operations for MVINSS which namely complement, union, 

intersection, equality, inclusion, “AND” and “OR” operations the proposed. The structure of this 

paper is listed as follows. In section 2, the related definitions and concepts for developing MVINSS 

are presented. Some proving on the propositions are included. Section 3 proposes the MVINSS and 

its associated properties together with example. Finally, we conclude the paper in section 4. 

2. Preliminaries  
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In this section, we present some definitions and properties which are related to neutrosophic set, 

single-valued neutrosophic set, interval-valued neutrosophic set, multi-valued neutrosophic set, soft 

set and neutrosophic soft set. 

2.1. Neutrosophic Set 

Definition 2.1 [3] Let U  be a universe of discourse, then NS A  can be defined as 

{ ( ), ( ), ( ) / , }A A AA y y y y y U       

where , , : ] 0, 1 [U  
 

  define the degree of truth-membership ( ),A y  degree of indeterminacy 

( )A y  and degree of falsity ( )A y  respectively and there is no restriction on the sum of ( ), ( )A Ay y   

and ( ),A y  so 0 ( ) ( ) ( ) 3 .A A Ay y y  
 

     

From philosophical point of view, the NS takes the value from real standard or non-standard subsets 

of ] 0, 1 [  . Thus for technical applications, we need to take the interval [0, 1]   instead of ] 0, 1 [   

because it is hard to apply in the real applications such as problems in scientific and engineering. 

2.2. Single-Valued Neutrosophic Set 

Definition 2.2 [14] Let U  be a universal set, with generic element of U  denoted by .y  An SVNS 

A  over U  is defined as { ( ), ( ), ( ) / , }A A AA y y y y y U       It is characterized by a 

truth-membership function ( ),A y  indeterminacy-membership function ( )A y  and 

falsity-membership function ( ),A y  with for each , ( ), ( ), ( ) [0,1]A A Ay U y y y     and 

0 ( ) ( ) ( ) 3.A A Ay y y       

2.3. Interval-Valued Neutrosophic Set 

Definition 2.3 [25] Let U  be a space of points with generic elements in U  denoted by .y  An IVNS 

Â  over U  is characterized by truth-membership interval ˆˆ ( ),A y  indeterminacy-membership 

interval ˆ
ˆ ( )A y  and falsity-membership interval ˆ

ˆ ( ).A y  It can be defined as  

ˆ ˆ ˆ
ˆ ˆ ˆˆ{ ( ), ( ), ( ) / , }A A AA y y y y y U       

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) [ ( ), ( ) ], ( ) [ ( ), ( ) ], ( ) [ ( ), ( ) ] [0, 1]A A A A A A A A Ay y y y y y y y y        

     
     and ˆ ˆ ˆ

ˆ ˆˆ0 [ ( ) ( ) ( ) ] 3, .A A Ay y y y U  
  

      It 

only considers the subunitary interval of [0,1].  

2.4. Multi-Valued Neutrosophic Set 

Definition 2.4 [32] Let U  be a space of points (objects), with a generic element in U  denoted by .y  

An MVNS A  over U  is characterized by { ( ), ( ), ( ) / , }l m n
A A AA y y y y y U        

where 1 2( ) ( ), ( ), , ( ),l q

A A A A
y y y y   

1 2( ) ( ), ( ), , ( )m r
A A A Ay y y y     and 1 2( ) ( ), ( ), , ( )n s

A A A Ay y y y     are three sets 

in the form of subset of [0, 1],  denoting the truth-membership sequence 

( ),l
A y indeterminacy-membership sequence ( )m

A y  and falsity-membership sequence ( )n
A y  

respectively, satisfying 0 ( ), ( ), ( ) 1l m n
A A Ay y y     and 0 ( ), ( ), ( ) 3l m n

A A Ay y y     for 

1, 2, , ,l q 1, 2, , ,m r 1, 2, ,n s  for all .y U  Also, , ,l m n  are called as the dimension of 

MVNS. 

If U  has only one element, then A  is called a multi-valued neutrosophic number (MVNN), 

denoted by ( ), ( ), ( ) .l m n
A A AA y y y    For convenience, an MVNN can be denoted by , , .l m n

A A AA     

The set of all MVNNs is represented as MVNS. 
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2.5. Multi-Valued Interval Neutrosophic Set 

Definition 2.5 [37] Let U  be a space of points (objects), with a generic element in U  denoted by .y  

An MVINS A  over U  can be defined as  

{ ( ), ( ), ( ) / , }l m n
A A AA y y y y y U        

where 
1 1 2 2 1 1 2 2( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )], ( ) [ ( ), ( )], [ ( ), ( )], , [ ( ),l q q m r r

A A A A A A A A A A A A Ay y y y y y y y y y y y y             
          

  ( )],A y

1 1 2 2( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )] }n s s
A A A A A A Ay y y y y y y U      

     
   such that 0 ( ), ( ), ( ) 3,l m n

A A Ay y y  
  

  for all 

1, 2, , ,l q 1, 2, , ,m r 1, 2, , .n s  

In this research, dimension of the interval truth-membership sequence ( ) ,l
A y  interval 

indeterminacy-membership sequence ( )m
A y and interval falsity-membership sequence ( )n

A y  of the 

element y  are considered as equal that is ,q r s   respectively. Also, , ,l m n  are called the 

dimension of MVINS .A  Obviously, when the values of upper and lower of ( ) , ( ) , ( )l m n
A A Ay y y    are 

equal, then the MVINS is reduced to MVNS. 

2.6. Soft Set 

Definition 2.6 [41] Let U  be an initial universe set and E  be a set of parameters. Consider .A E  

Let ( )P U  denotes the power SS of .U  A pair ( , )L A  is called a SS over U  and the function L  is a 

mapping defined by : ( )L A P U  such that ( )( )L y   if .y U  

Here, ( )L  is called approximate function of the soft set ( , ),L A and the value ( )( )L y  is a set called 

x-element of the soft set for all .y U  The sets may be arbitrary, empty, or have non-empty 

intersection. 

2.7. Neutrosophic Soft Set 

Definition 2.7 [70] 

Let U  be an initial universe set and E  be a set of parameters. Consider .A E  Let ( )P U  denotes 

the set of all NSS of .U  The collection ( , )L A  is called an NSS over U  and the function ( )L   is a 

mapping defined by : ( )L A P U  such that ( )( )L y   if .y U  

( , )L A  is characterized by 
( ) ( )

( ), ( )
L L

y y
 

   and 
( )

( ).y


  in the form of subset of [0,1]  and here, ( )L   is 

called approximate function of the NSS ( , ),L A  such that 

( ) ( ) ( )( , ) { ( ), ( ), ( ) / ; , }L L LL A y y y y A y U            

where 
( ) ( )

( ), ( )
L L

y y
 

   and 
( )

( )
L

y


  are the truth-membership, indeterminacy-membership and 

falsity-membership values of object y  respectively that object y  holds on parameter .  

2.8. Interval-Valued Neutrosophic Soft Set 

Definition 2.8 [81] 

Let U  be an initial universe set and E  be a set of parameters. Consider .A E  Let ( )P U  denotes 

the set of all IVNSS of .U  The collection ˆ( , )L A  is called an IVNSS over U  and the function ˆ( )L   is 

a mapping defined by ˆ : ( )L A P U  such that ˆ ( )( )L y   if .y U  

ˆ( , )L A  is characterized by  ˆ ˆ( ) ( )
ˆˆ ( ), ( )

L L
y y

 
   and ˆ ( )

ˆ ( )
L

y


  in the interval form of subset of ]1,0[  and here, 

ˆ ( )L   is called approximate function of the IVNSS ˆ( , ),L A  such that  

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆˆ ˆ( , ) { ( ), ( ), ( ) / ; , }L L LL A y y y y A y U
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where ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆˆ ˆ ˆ( ) [ ( ), ( )], ( ) [ ( ), ( )]

L L L L L L
y y y y y y

     
     

      and ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ( ) [ ( ), ( )]

L L L
y y y

  
  

   are the interval 

truth-membership, interval indeterminacy-membership and interval falsity-membership 

respectively that object y  holds on parameter . s 

2.9. Multi-Valued Neutrosophic Soft Sets 

Definition 2.9 [86] Let U  be an initial universe set and E  be a set of parameters. Consider .A E  

Let ( )P U  denotes the set of all MVNSS of .U  The collection ( , )L A  is called an MVNSS over U  

and the function ( )L   is a mapping defined by : ( )L A P U  such that ( )( )L y   if .y U  

( , )L A  is characterized by 
( ) ( )

( ), ( )
L L

y y
 

   and 
( )

( )
L

y


  in the form of subset of [0,1]  and here, ( )L   is 

called approximate function of the MVNSS ( , ),L A  such that  

( ) ( ) ( )( , ) { ( ), ( ), ( ) / ; , }l m n
L L LL A y y y y A y U
  

          

where 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ), ( ), , ( ), ( ) ( ), ( ), , ( )l q m r

L L L L L L L L
y y y y y y y y

       
          and 1 2

( ) ( ) ( ) ( )
( ) ( ), ( ), , ( )n s

L L L L
y y y y

   
     are 

the truth-membership sequence, indeterminacy-membership sequence and falsity-membership 

sequence respectively that object y  holds on parameter .  

3. Proposed Multi-Valued Interval Neutrosophic Soft Set  

In this section, we propose the definition of a multi-valued interval neutrosophic soft set (MVINSS) 

and its basic operations such as complement, inclusion, equality, union, intersection, “AND” and 

“OR” are defined as follows. 

Definition 3.1  

The pair ( , )L A  is called an MVINSS over ( ),P U  where L  is a mapping given by : ( ).L A P U  

( )P U  denotes the set of all MVINSS of  U  with parameters from A  and the function ( )L   is a 

mapping defined by 

: ( )L A P U  such that ( )( )L y   if .y U  

( , )L A  is characterized by 
L( ) L( )

( ), ( )y y
 

   and 
L( )

( )y


  in the form of subset of [0,1]  and can be defined 

as follows: 

 ( ) ( ) ( )
( , ) ( ) , ( ) , ( ) / ; ,l m n

L L L
L A y y y y A y U

  
         

where 
1 1 2 2 1 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )], ( ) [ ( ), ( )], [ ( ),l q q m

L L L L L L L L L L L
y y y y y y y y y y y

          
           

        

 
2

( )
( )],

L
y





( ) ( )
, [ ( ), ( )]r r

L L
y y

 
 

   and 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ( ), ( )], [ ( ), ( )], , [ ( ), ( )]n s s

L L L L L L L
y y y y y y y

      
      

     

  are the interval 

truth-membership sequence, interval indeterminacy-membership sequence and interval 

falsity-membership sequence respectively that object  y  holds on parameter .   

An example of an MVINSS is given as follows. 

Example 3.1 Let  1 2 3, ,U y y y  be the set of laptops under consideration and A  is a set of 

parameters which describes the attractiveness of the laptop. Consider 

1 2 3 4{ , , , }.A thin light cheap large         Define a mapping : ( )L A P U  as 
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1
1

2

([0.2,0.6],[0.1,0.3]), ([0.3,0.5],[0.1,0.4]), ([0.2,0.6],[0.4,0.8])
( ) ,

([0.1,0.3],[0.2,0.4]), ([0.3,0.6],[0.4,0.8]), ([0.3,0.5],[0.2,0.7])
,

([0.1,0.6],[0.2,0.7]), ([0.2,0.5],[0.3,0.5]), ([0.5,0.

L
y

y







3

2
1

2

8],[0.3,0.8])
,

([0.4,0.6],[0.2,0.5]), ([0.2,0.6],[0.4,0.7]), ([0.6,0.9],[0.5,0.8])
( ) ,

([0.3,0.6],[0.3,0.5]), ([0.5,0.8],[0.5,0.7]), ([0.4,0.8], [0.6,0.9])
,

([0.6,0.9],[0.3,0.6]), ([0.1,0.4],

y

L
y

y








 


3

[0.4,0.8]), ([0.2,0.5],[0.7,0.9])
,

y




 

3
1

2

([0.5,0.9],[0.1,0.4]), ([0.2,0.4],[0.6,0.7]), ([0.3,0.7],[0.2,0.5])
( ) ,

([0.6,0.9],[0.1,0.5]), ([0.3,0.8],[0.5,0.8]), ([0.2,0.6], [0.1,0.5])
,

([0.1,0.4],[0.1,0.5]), ([0.6,0.8],[0.2,0.5]), ([0.6,0.

L
y

y




 


3

9],[0.6,0.8])
,

y




 

4
1

2

([0.1,0.5],[0.2,0.5]), ([0.2,0.5],[0.7,0.9]), ([0.3,0.5], [0.1,0.5])
( ) ,

([0.2,0.6],[0.3,0.7]), ([0.7,0.8],[0.2,0.5]), ([0.1,0.6],[0.4,0.7])
,

([0.6,0.8],[0.6,0.7]), ([0.3,0.6],[0.4,0.5]), ([0.6,0.

L
y

y







3

9],[0.2,0.4])
.

y




 

Then, the multi-valued interval neutrosophic soft set ( , )L A  can be written as the following 

collection of approximations: 
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1
1

2

([0.2,0.6],[0.1,0.3]), ([0.3,0.5],[0.1,0.4]), ([0.2,0.6],[0.4,0.8])
(L, ) , ,

([0.1,0.3],[0.2,0.4]), ([0.3,0.6],[0.4,0.8]), ([0.3,0.5],[0.2,0.7])
,

([0.1,0.6],[0.2,0.7]), ([0.2,0.5],[0.3,0.

A
y

y


 

  


3

5]), ([0.5,0.8],[0.3,0.8])
,

y





2
1

2

([0.4,0.6],[0.2,0.5]), ([0.2,0.6],[0.4,0.7]), ([0.6,0.9],[0.5,0.8])
, ,

([0.3,0.6],[0.3,0.5]), ([0.5,0.8],[0.5,0.7]), ([0.4,0.8],[0.6,0.9])
,

([0.6,0.9],[0.3,0.6]), ([0.1,0.4],[0.4,0.8]), ([0.2,0.5]

y

y


 
 



3

,[0.7,0.9])
,

y





3
1

2

([0.5,0.9],[0.1,0.4]), ([0.2,0.4],[0.6,0.7]), ([0.3,0.7],[0.2,0.5])
, ,

([0.6,0.9],[0.1,0.5]), ([0.3,0.8],[0.5,0.8]), ([0.2,0.6],[0.1,0.5])
,

([0.1,0.4],[0.1,0.5]), ([0.6,0.8],[0.2,0.5]), ([0.6,0.9]

y

y


 
 



3

4
1

2

,[0.6,0.8])
,

([0.1,0.5],[0.2,0.5]), ([0.2,0.5],[0.7,0.9]), ([0.3,0.5],[0.1,0.5])
, ,

([0.2,0.6],[0.3,0.7]), ([0.7,0.8],[0.2,0.5]), ([0.1,0.6],[0.4,0.7])
,

([0.6,0.8],[0.6,0.7]), ([0.3,0.6],

y

y

y








 
 



3

[0.4,0.5]), ([0.6,0.9],[0.2,0.4])
.

y

 
 

 

 

The MVINSS can be represented in tabular form. The entries are 
ij

c  corresponding to the laptop 
i

y  

and the parameter 
j

 where 
ij

c  refers to interval truth-membership sequence of 
i

y  interval The 

MVINSS can be represented in tabular form. The entries are indeterminacy-membership sequence of 

,iy  and interval falsity-membership sequence of ,iy  in ( ).
j

L   

The tabular representation of multi-valued interval neutrosophic soft set ( , )L A  is as follow: 

Table 1. The tabular representation of ( , )L A  

 

U  1 thin   2 light   

1y  ([0.2, 0.6],[0.1, 0.3]), ([0.3, 0.5],[0.1, 0.4]), ([0.2, 0.6],[0.4, 0.8])  ([0.4, 0.6],[0.2, 0.5]), ([0.2, 0.6],[0.4, 0.7]), ([0.6, 0.9],[0.5, 0.8])  

2y  ([0.1, 0.3],[0.2, 0.4]), ([0.3, 0.6],[0.4, 0.8]), ([0.3, 0.5],[0.2, 0.7])   ([0.3, 0.6],[0.3, 0.5]), ([0.5, 0.8],[0.5, 0.7]), ([0.4, 0.8],[0.6, 0.9])  

3y  ([0.1, 0.6],[0.2, 0.7]), ([0.2, 0.5],[0.3, 0.5]), ([0.5, 0.8],[0.3, 0.8])   ([0.6, 0.9],[0.3, 0.6]), ([0.1, 0.4],[0.4, 0.8]), ([0.2, 0.5],[0.7, 0.9])  

U  3 cheap   4 large   

1y  ([0.5, 0.9],[0.1, 0.4]), ([0.2, 0.4],[0.6, 0.7]), ([0.3, 0.7],[0.2, 0.5])       ([0.6, 0.9],[0.1, 0.5]), ([0.3, 0.8],[0.5, 0.8]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  ([0.2, 0.6],[0.3, 0.7]), ([0.7, 0.8],[0.2, 0.5]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.4],[0.1, 0.5]), ([0.6, 0.8],[0.2, 0.5]), ([0.6, 0.9],[0.6, 0.8])  ([0.6, 0.8],[0.6, 0.7]), ([0.3, 0.6],[0.4, 0.5]), ([0.6, 0.9],[0.2, 0.4])  
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Suppose ( , )L A  is a multi-valued interval neutrosophic soft set in ( )MVINSS U  where 

 1 2 3, , .U y y y  The basic operations on MVINSS are given as follows: 

We also define the complement operation for MVINSS and give an illustrative example. 

Definition 3.2 The complement of a multi-valued interval neutrosophic soft set ( , )L A  is denoted by 

( , )CL A  and is defined as ( , ) ( , )C CL A L A  where : ( )CL A MVINSS U  is a mapping given by 

( ) ( ( )),CL c L   so that 
( ) ( )

( , ) { ( ), 1 ( ) , ( ) / ; ; }.C

L L
L A y y y y A y U

 
            

Example 3.2 Consider Example 3.1, then ( , )CL A  is given by  

1
1

2

([0.2,0.6],[0.4,0.8]), ([0.5,0.7],[0.6,0.9]), ([0.2,0.6],[0.1,0.3])
(L, ) , ,

([0.3,0.5],[0.2,0.7]), ([0.4,0.7],[0.2,0.6]), ([0.1,0.3],[0.2,0.4])
,

([0.5,0.8],[0.3,0.8]), ([0.5,0.8],[0.5,0

CA
y

y


 

  


3

2
1

2

.7]), ([0.1,0.6],[0.2,0.7])
,

([0.6,0.9],[0.5,0.8]), ([0.4,0.8],[0.3,0.6]), ([0.4,0.6],[0.2,0.5])
, ,

([0.4,0.8],[0.6,0.9]), ([0.2,0.5],[0.3,0.5]), ([0.3,0.6],[0.3,0.5])
,

([0.2,0.5],[0.7,0.

y

y

y








 
 



3

9]), ([0.6,0.9],[0.2,0.6]), ([0.6,0.9],[0.3,0.6])
,

y





 

3
1

2

([0.3,0.7],[0.2,0.5]), ([0.6,0.8],[0.3,0.4]), ([0.5,0.9],[0.1,0.4])
, ,

([0.2,0.6],[0.1,0.5]), ([0.2,0.7],[0.2,0.5]), ([0.6,0.9],[0.1,0.5])
,

([0.6,0.9],[0.6,0.8]), ([0.2,0.4],[0.5,0.8]), ([0.1,0.4]

y

y


 
 



3

,[0.1,0.5])
,

y





 

4
1

2

([0.3,0.5],[0.1,0.5]), ([0.5,0.8],[0.1,0.3]), ([0.1,0.5],[0.2,0.5])
, ,

([0.1,0.6],[0.4,0.7]), ([0.2,0.3],[0.5,0.8]), ([0.2,0.6],[0.3,0.7])
,

([0.6,0.9],[0.2,0.4]), ([0.4,0.7],[0.5,0.6]), ([0.6,0.8]

y

y


 
 



3

,[0.6,0.7])
.

y

 
 

 

 

We will next define the subset hood of two MVINSS and give an illustrative example. 

Definition 3.3 Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the 

common universe .U  ( , )L A  is a multi-valued interval neutrosophic soft subset of ( , )M B  denoted 

by ( , ) ( , )L A M B  if and only if A B  and ,A   ( )L   is a multi-valued interval neutrosophic 

soft subset of ( ).M   

Example 3.3 Consider Table 1 and ( , )M B  is another MVINSS over the common universe .U  Let B  

be a set of parameters which describes the size of the laptops. Consider 4 5{ , }B large small     and 

given ( , )M B  is represented in tabular form as follows. 
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Table 2. The tabular representation of (M, )B  

It is clear that ( , ) ( , ).M B L A  

Definition 3.4 Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the 

common universe .U  ( , )L A  is equal to ( , )M B  denoted by ( , ) ( , )L A M B  if and only if 

( , ) ( , )L A M B  and ( , ) ( , ).M B L A   

In the following, we define the union of two NVSSs and give an illustrative example. 

Definition 3.5 Let ( , )L A  and ( , )M B be two multi-valued neutrosophic soft sets over the common 

universe .U  Then the union of ( , )L A  and ( , )M B  is denoted by '( , ) ( , ) 'L A M B  and is defined by 

( , ) ( , ) ( , )L A M B N C   where C A B  and 
( ) ( ) ( )

( , ) { ( ), ( ), ( ) / ; }l m n

N N N
N C y y y y y U

  
      such that 

( )
( )l

N
y




 
= 11 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

q q

L L L L L L
y y y y y y

     
     

     

 
if ;A B     

 = 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

q q

M M M M M M
y y y y y y

     
     

     

 
if ;B A    

 = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , , [ ( ) ( ), ( ) ( )];

q q q q

L M L M L M L M
y y y y y y y y

       
       

       

   
 

if ;A B    

( )
( )m

N
y




 
= 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

r r

L L L L L L
y y y y y y

     
     

         
 

if ;A B    

 = 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

r r

M M M M M M
y y y y y y

     
     

     

 
if ;B A    

 = 
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )]

, ,, , ;
2 2 2 2

r r r r

L M L M L M L M
y y y y y y y y

       
       

       

   

 
if ;A B  

 

( )
( )n

N
y




 
= 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

s s

L L L L L L
y y y y y y

     
     

     

 
if ;A B  

 
 = 1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
[ ( ), ( )], [ ( ), ( )], , [ ( ), ( )];

s s

M M M M M M
y y y y y y

     
     

     

 
if ;B A    

 = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , , [ ( ) ( ), ( ) ( )];

s s s s

L M L M L M L M
y y y y y y y y

       
       

       

   
 

if ;A B    

It can be simplified as: 

( ) ( )
( ) ( ) ( ) ( )

( )

( )( , )( )

( ) ( )
max( (y), ), , min( (y), )

2

if ;
if ;

if .L M
L M L M

M

L

N C

y y

A B
B A

A B 

   





 
   









  


  

  


 

Refer to Example 3.3, the union of ( , )L A  and ( , )M B  can be represented as follows. 

Table 3. The union of ( , )L A  and ( , )M B  

 

U  4 large   5 small   

1y  ([0.3, 0.6],[0.3, 0.5]), ([0.5, 0.8],[0.5, 0.7]), ([0.4, 0.8],[0.6, 0.9])  ([0.6, 0.9],[0.1, 0.5]), ([0.3, 0.8],[0.5, 0.8]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.3, 0.5],[0.1, 0.4]), ([0.2, 0.6],[0.4, 0.8])  ([0.2, 0.6],[0.3, 0.7]), ([0.7, 0.8],[0.2, 0.5]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.5, 0.9],[0.1, 0.4]), ([0.2, 0.4],[0.6, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  

U  1 thin   2 light   

1y  ([0.2, 0.6],[0.1, 0.3]), ([0.3, 0.5],[0.1, 0.4]), ([0.2, 0.6],[0.4, 0.8])  ([0.4, 0.6],[0.2, 0.5]), ([0.2, 0.6],[0.4, 0.7]), ([0.6, 0.9],[0.5, 0.8])  

2y  ([0.1, 0.3],[0.2, 0.4]), ([0.3, 0.6],[0.4, 0.8]), ([0.3, 0.5],[0.2, 0.7])  ([0.3, 0.6],[0.3, 0.5]), ([0.5, 0.8],[0.5, 0.7]), ([0.4, 0.8],[0.6, 0.9])  

3y  ([0.1, 0.6],[0.2, 0.7]), ([0.2, 0.5],[0.3, 0.5]), ([0.5, 0.8],[0.3, 0.8])  ([0.6, 0.9],[0.3, 0.6]), ([0.1, 0.4],[0.4, 0.8]), ([0.2, 0.5],[0.7, 0.9])  



Neutrosophic Sets and Systems, Vol. 30, 2019    159  

 
Nor Liyana Amalini Mohd Kamal, Lazim Abdullah, Ilyani Abdullah, Shawkat Alkhazaleh and Faruk Karaaslan, 
Multi-Valued Interval Neutrosophic Soft Set: Formulation and Theory 

 

 

 

Then, we present the definition of intersection operation and give an illustrative example. 

Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the common 

universe .U  Then the intersection of ( , )L A  and ( , )M B  is denoted by '( , ) ( , ) 'L A M B  and is 

defined by ( , ) ( , ) ( , )L A M B N C   where C A B  and 
( ) ( ) ( )

( , ) { ( ), ( ), ( ) / ; }l m n

N N N
N C y y y y y U

  
      such 

that for every ,C   

 

Refer to Example 3.3, the intersection of ( , )L A  and ( , )M B  can be represented as follows. 

Table 4. The intersection of ( , )L A  and ( , )M B  

 

 

 

 

Some properties of union and intersection are derived as follows. 

Proposition 3.1 

Idempotency Laws: 

(1) ( , ) ( , ) ( , )L A L A L A   

(2) ( , ) ( , ) ( , ).F A F A F A   

Commutative Laws: 

(3) ( , ) ( , ) ( , ) ( , )L A M B M B L A    

(4) ( , ) ( , ) ( , ) ( , )L A M B M B L A    

Proof 1 

Let   be an arbitrary element of ( , ) ( , )L A L A . Then, ( , )L A   or ( , )L A  . Hence ( , )L A  . Thus, 

( , ) ( , ) ( , )L A L A L A  . Conversely, if   is an arbitrary element of ( , )L A , then ( , ) ( , )L A L A    since 

it is in ( , ).L A  Therefore ( , ) ( , ) ( , ).L A L A L A   

( , ) ( , ) ( , )L A L A L A       

U  3 cheap   4 large   

1y  ([0.5, 0.9],[0.1, 0.4]), ([0.2, 0.4],[0.6, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.6, 0.9],[0.3, 0.5]), ([0.4, 0.8],[0.5, 0.75]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  ([0.2, 0.6],[0.3, 0.7]), ([0.5, 0.65],[0.15, 0.45]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.4],[0.1, 0.5]), ([0.6, 0.8],[0.2, 0.5]), ([0.6, 0.9],[0.6, 0.8])  ([0.6, 0.9],[0.6, 0.7]), ([0.25, 0.5],[0.5, 0.6]), ([0.3, 0.7],[0.2, 0.4])  

U  5 small   

1y  ([0.6, 0.9],[0.1, 0.5]), ([0.3, 0.8],[0.5, 0.8]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.2, 0.6],[0.3, 0.7]), ([0.7, 0.8],[0.2, 0.5]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.5],[0.2, 0.5]), ([0.2, 0.5],[0.7, 0.9]), ([0.3, 0.5],[0.1, 0.5])  

( )
( )l

N
y


  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

q q q q

L M L M L M L M
y y y y y y y y

       
       

       

     

( )
( )m

N
y


   = 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )]

, ,, , ;
2 2 2 2

r r r r

L M L M L M L M
y y y y y y y y

       
       

       

   
 

( )
( )l

N
y


  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

s s s s

L M L M L M L M
y y y y y y y y

       
       

       

     

U  4 large   

1y  ([0.3, 0.6],[0.1, 0.5]), ([0.4, 0.8],[0.5, 0.75]), ([0.4, 0.8],[0.6, 0.9])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.5, 0.65],[0.15, 0.45]), ([0.2, 0.6],[0.4, 0.8])  

3y  ([0.5, 0.8],[0.1, 0.4]), ([0.25, 0.5],[0.5, 0.6]), ([0.6, 0.9],[0.2, 0.5])  
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Proof 2 

Let   be an arbitrary element of ( , ) ( , ).L A L A  Then, ( , )L A   and ( , ).L A   Hence 

( , ).L A  Thus, ( , ) ( , ) ( , ).L A L A L A   Conversely, if ( , )L A   is arbitrary, then ( , )L A   and 

( , )L A  . Therefore ( , ) ( , ) ( , ).L A L A L A  .  

( , ) ( , ) ( , )L A L A L A       

Proof 3 

Let   is any element in ( , ) ( , ).L A M B  Then, by definition of union, ( , )L A   or ( , ).M B   But, if 

  is in ( , )L A  or ( , ),M B then it is in ( , ),M B  or ( , )L A  and by definition of union, this means 

( , ) ( , ).L A M B    Therefore, ( , ) ( , ) ( , ) ( , ).L A M B M B L A    

The other inclusion is identical. If    is any element of ( , ) ( , ).M B L A  Then, ( , )M B   or ( , ).L A   

But, ( , )M B   or ( , ).L A   implies that   is in ( , )L A  or ( , ).M B  Hence, ( ,B) ( , ).M L B    
Therefore ( , ) ( , ) ( , ) ( , ).M B L A L A M B    

( , ) ( , ) ( , ) ( , )L A M B M B L A     
Proof 4 

Let   is any element in ( , ) ( , ).L A M B  Then, by definition of intersection, ( , )L A   and ( , ).M B   

Hence, ( , ).M B   and ( , ).L A   So, ( , ) ( , ).M B L A    Therefore, ( , ) ( , ) ( , ) ( , ).L A M B M B L A    

The reverse inclusion is again identical. If   is any element of ( , ) ( , ).M B L A  Then, ( , ).M B   and 

( , ).L A   Hence, ( , ).L A   and ( , ).M B   This implies ( , ) ( , ).L A M B    Therefore 

( , ) ( , ) ( , ) ( , ).M B L A L A M B    

( , ) ( , ) ( , ) ( , )L A M B M B L A     

For three multi-valued neutrosophic soft sets ( , ), ( , )L A M B  and ( , )N C  over the common universe 

,U  we have the following propositions: 

Proposition 3.2 

Associative Laws: 

1. ( , ) [( , ) ( , )] [( , ) ( , )] ( , ).L A M B N C L A M B N C      

2. ( , ) [( , ) ( , )] [( , ) ( , )] ( , ).L A M B N C L A M B N C      

Distributive Laws: 

3. ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C       

4. ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C       

Proof 1 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is either in ( , )L A  or in [( , )M B  or ( , )].N C  

( , )L A   or [( , )M B   or ( , )]N C   

( , )L A   or { ( , )M B   or ( , )}N C   
{ ( , )L A   or ( , )}M B   or { ( , )L A   or ( , )}N C   

[( , )L A   or ( , )]M B  or [( , )L A   or ( , )]N C  

[( , ) ( , )]L A M B    [( , ) ( , )]L A N C    
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[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  or ( , )]M B  or   is in [( , )L A  or ( , )].N C   

( , )L A  or ( , )]M B  or ( , )L A   or ( , )]N C  
{ ( , )L A   or ( , )}M B   or { ( , )L A   or ( , )}N C     

( , )L A   or { ( , )M B   or ( , )}N C      

( , )L A   or { [( , )M B   or ( , )]}N C   

( , ) { [( , ) ( , )]}L A M B N C       

( , ) [( , ) ( , )]L A M B N C     

Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      such that ( , ) [( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) [( , ) ( , )].L A M B L A N C L A M B N C                            

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )]L A M B N C L A M B L A N C        

Proof 2 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is either in ( , )L A  and in [( , )M B  and ( , )].N C  

( , )L A   and [( , )M B   and ( , )]N C   

( , )L A   and { ( , )M B   and ( , )}N C   
{ ( , )L A   and ( , )}M B   and { ( , )L A   and ( , )}N C   

[( , )L A   and ( , )]M B  and [( , )L A   and ( , )]N C  

[( , ) ( , )]L A M B    [( , ) ( , )]L A N C    
[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  and ( , )]M B  and   is in [( , )L A  and ( , )].N C   

( , )L A   and ( , )]M B  and ( , )L A   and ( , )]N C  
{ ( , )L A   and ( , )}M B   and { ( , )L A   and ( , )}N C     

( , )L A   and { ( , )M B   and ( , )}N C      

( , )L A   and { [( , )M B   and ( , )]}N C   

( , ) { [( , ) ( , )]}L A M B N C       

( , ) [( , ) ( , )]L A M B N C     

Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      such that ( , ) [( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) [( , ) ( , )].L A M B L A N C L A M B N C                            

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )]L A M B N C L A M B L A N C        
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Proof 3 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is either in ( , )L A  or in [( , )M B  and ( , )].N C  

( , )L A   or [( , )M B   and ( , )]N C   

( , )L A   or { ( , )M B   and ( , )}N C   
{ ( , )L A   or ( , )}M B   and { ( , )L A   or ( , )}N C   

[( , )L A  or ( , )]M B  and [( , )L A   or ( , )]N C  

[( , ) ( , )] [( , ) ( , )]L A M B L A N C        
[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  or ( , )]M B  and   is in [( , )L A  or ( , )].N C   

[( , )L A  or ( , )]M B  and [( , )L A   or ( , )]N C  
{ ( , )L A   or ( , )}M B   and { ( , )L A   or ( , )}N C     

[( , )L A   or { ( , )M B   and ( , )}N C      

[( , )L A   or { [( , )M B   and ( , )]}N C  

( , ) { [( , ) ( , )]}L A M B N C       

( , ) ( , ) ( , )]L A M B N C     
Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      such that ( , ) ( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) ( , ) ( , )].L A M B L A N C L A M B N C                            

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Proof 4 

Let ( , ) [( , ) ( , )].L A M B N C     If ( , ) [( , ) ( , )],L A M B N C     
then   is in ( , )L A  and [( , )M B  or ( , )].N C  

( , )L A   and [( , )M B   or ( , )]N C   

( , )L A   and { ( , )M B   or ( , )}N C   
{ ( , )L A   and ( , )}M B   or { ( , )L A   and ( , )}N C   

[( , )L A   and ( , )]M B  or [( , )L A   and ( , )]N C  

[( , ) ( , )] [( , ) ( , )]L A M B L A N C        
[( , ) ( , )] [( , ) ( , )]L A M B L A N C      

( , ) [( , ) ( , )]L A M B N C     

[( , ) ( , )] [( , ) ( , )]L A M B L A N C      
Since ( , ) [( , ) ( , )]L A M B N C     such that [( , ) ( , )] [( , ) ( , )],L A M B L A N C      

therefore ( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )].L A M B N C L A M B L A N C        

Let [( , ) ( , )] [( , ) ( , )].L A M B L A N C      If [( , ) ( , )] [( , ) ( , )],L A M B L A N C       

then   is in [( , )L A  and ( , )]M B  or   is in [( , )L A  and ( , )].N C   

[( , )L A  and ( , )]M B  or [( , )L A   and ( , )]N C  
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{ ( , )L A   
and ( , )}M B   or { ( , )L A   and ( , )}N C     

[( , )L A   and { ( , )M B   or ( , )}N C      

[( , )L A   and { [( , )M B   or ( , )]}N C  

( , ) { [( , ) ( , )]}L A M B N C       

( , ) ( , ) ( , )]L A M B N C     
Since [( , ) ( , )] [( , ) ( , )]L A M B L A N C      such that ( , ) ( , ) ( , )],L A M B N C     

therefore [( , ) ( , )] [( , ) ( , )] ( , ) ( , ) ( , )].L A M B L A N C L A M B N C                              

( , ) [( , ) ( , )] [( , ) ( , )] [( , ) ( , )]L A M B N C L A M B L A N C        

Then, we introduce the definition of ‘AND’ and ‘OR’ operations and give the illustrative example. 

Definition 3.6  

Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the common 

universe .U  Then the ‘AND’ operation between ( , )L A  and ( , )M B  is denoted by '( , ) ( , ) 'L A M B  

and is defined by '( , ) ( , ) ' ( , )L A M B N A B    where 
( , ) ( , ) ( , )

( , ) { ( ), ( ), ( ) / ; }l m n

N N N
N A B y y y y y U

     
        such 

that for every , , .A B y U     

Refer to Example 3.3, the ‘AND’ operation of ( , )L A  and ( , )M B  can be represented as follows. 

Table 5. The ‘AND’ operation of ( , )L A  and ( , )M B  

 

 

 

 

( , )
( )l

N
y

 
  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

q q q q

L M L M L M L M
y y y y y y y y

       
       

       

     

( , )
( )m

N
y

 
   = 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )]

, ,, , ;
2 2 2 2

r r r r

L M L M L M L M
y y y y y y y y

       
       

       

   
 

( , )
( )n

N
y

 
  = 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];

s s s s

L M L M L M L M
y y y y y y y y

       
       

       

     

U  ( , )thin large  ( , )thin small  

1y  ([0.3, 0.6],[0.1, 0.5]), ([0.4, 0.73],[0.4, 0.65]), ([0.4, 0.8],[0.6, 0.9])  ([0.6, 0.9], [0.1, 0.5]), ([0.3, 0.7], [0.4, 0.7]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.4, 0.6],[0.2, 0.53]), ([0.2, 0.6],[0.4, 0.8])  ([0.2, 0.6],[0.3, 0.7]), ([0.6, 0.75],[0.25, 0.58]), ([0.1, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.6],[0.1, 0.4]), ([0.2, 0.45],[0.55, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.1, 0.5], [0.2, 0.5]), ([0.2, 0.5], [0.6, 0.8]), ([0.3, 0.5], [0.1, 0.5])  

U  ( , )light large  ( , )light small  

1y  ([0.3, 0.6],[0.2, 0.5]), ([0.35, 0.7],[0.45, 0.7]), ([0.6, 0.9],[0.6, 0.9])  ([0.4, 0.6],[0.1, 0.5]), ([0.25, 0.7],[0.45, 0.75]), ([0.6, 0.9],[0.5, 0.8])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.4, 0.65],[0.3, 0.55]), ([0.4, 0.8],[0.6, 0.9])  ([0.2, 0.6], [0.3, 0.5]), ([0.6, 0.8], [0.35, 0.6]), ([0.4, 0.8], [0.6, 0.9])  

3y  ([0.5, 0.9],[0.1, 0.4]), ([0.15, 0.4],[0.5, 0.75]), ([0.3, 0.7],[0.7, 0.9])  ([0.1, 0.5],[0.2, 0.5]), ([0.15, 0.45],[0.55, 0.85]), ([0.3, 0.5],[0.7, 0.9])  

U  ( , )cheap large  ( , )cheap small  

1y  ([0.3, 0.6],[0.1, 0.4]), ([0.35, 0.6],[0.55, 0.7]), ([0.4, 0.8],[0.6, 0.9])  ([0.5, 0.9],[0.1, 0.4]), ([0.25, 0.6],[0.55, 0.75]), ([0.3, 0.7],[0.2, 0.5])  

2y  ([0.1, 0.5],[0.1, 0.3]), ([0.25, 0.5],[0.4, 0.65]), ([0.3, 0.6],[0.4, 0.8])  ([0.1, 0.5],[0.2, 0.5]), ([0.45, 0.65],[0.45, 0.7]), ([0.3, 0.6],[0.4, 0.7])  

3y  ([0.1, 0.4], [0.1, 0.4]), ([0.4, 0.6], [0.4, 0.6]), ([0.6, 0.9], [0.6, 0.8])  ([0.1, 0.4],[0.1, 0.5]), ([0.4, 0.65], [0.45, 0.7]), ([0.6, 0.9],[0.6, 0.8])  
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Definition 3.7 Let ( , )L A  and ( , )M B  be two multi-valued interval neutrosophic soft sets over the 

common universe .U  Then, the ‘OR’ operation between ( , )L A  and ( , )M B  is denoted by 

'( , ) ( , ) 'L A M B  and is defined by ( , ) ( , ) ( , )L A M B N A B    

where
( , ) ( , ) ( , )

( , ) { ( ), ( ), ( ) / ; }l m n

N N N
N A B y y y y y U

     
        such that for every , , ,A B y Y     

Refer to Example 3.3, the ‘OR’ operation of ( , )L A  and ( , )M B  can be represented as follows. 

Table 6. The ‘OR’ operation of ( , )L A  and ( , )M B  

 

 

 

For three multi-valued interval neutrosophic soft sets ( , ),L A ( , )M B  and ( , )N C  over the common 

universe, then De Morgan’s Law are given as follows. 

U  ( , )large large  ( , )large small  

1y  ([0.3, 0.6], [0.1, 0.5]), ([0.4, 0.8], [0.5, 0.75]), ([0.4, 0.8], [0.6, 0.9])  ([0.6, 0.9], [0.6, 0.5]), ([0.3, 0.8], [0.5, 0.8]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.1, 0.3]), ([0.5, 0.65],[0.15, 0.45]), ([0.2, 0.6],[0.4, 0.8])  ([0.2, 0.6], [0.3, 0.7]), ([0.7, 0.8], [0.2, 0.5]), ([0.1, 0.6], [0.4, 0.7])  

3y  ([0.5, 0.8], [0.1, 0.4]), ([0.25, 0.5], [0.5, 0.6]), ([0.6, 0.9], [0.2, 0.5])  ([0.1, 0.5],[0.2, 0.5]), ([0.25, 0.55],[0.55, 0.7]), ([0.6, 0.9],[0.2, 0.5])  

( , ) ( )l
N y

 


 

=  1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];q q q q

L M L M L M L My y y y y y y y
       

       
       

     

( , ) ( )m
N y

 
   =  

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( ) ( )]

, ,, , ;
2 2 2 2

r r r r
L M L M L M L My y y y y y y y
       

       
       

   
 

( , ) ( )n
N y

 
  =  1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ), ( ) ( )], , [ ( ) ( ), ( ) ( )];s s s s
L M L M L M L My y y y y y y y

       
       

       

     

U  ( , )thin large  ( , )thin small  

1y  ([0.3, 0.6],[0.3, 0.5]), ([0.4, 0.73],[0.4, 0.65]), ([0.2, 0.6],[0.4, 0.8])  ([0.6, 0.9], [0.1, 0.5]), ([0.3, 0.7], [0.4, 0.7]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.2, 0.4]), ([0.4, 0.6],[0.2, 0.53]), ([0.2, 0.5],[0.2, 0.7])  ([0.2, 0.6],[0.3, 0.7]), ([0.6, 0.75],[0.25, 0.58]), ([0.1, 0.5],[0.2, 0.7])  

3y  ([0.5, 0.9],[0.2, 0.7]), ([0.2, 0.45],[0.55, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.1, 0.6], [0.2, 0.7]), ([0.2, 0.5], [0.6, 0.8]), ([0.3, 0.5], [0.1, 0.5])  

U  ( , )light large  ( , )light small  

1y  ([0.4, 0.6],[0.3, 0.5]), ([0.35, 0.7],[0.45, 0.7]), ([0.4, 0.8],[0.5, 0.8])  ([0.6, 0.9],[0.2, 0.5]), ([0.25, 0.7], [0.45, 0.75]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.3, 0.6],[0.3, 0.5]), ([0.4, 0.65],[0.3, 0.55]), ([0.2, 0.6],[0.4, 0.8])  ([0.3, 0.6], [0.3, 0.7]), ([0.6, 0.8], [0.35, 0.6]), ([0.1, 0.6], [0.4, 0.7])  

3y  ([0.6, 0.9],[0.3, 0.6]), ([0.15, 0.4],[0.5, 0.75]), ([0.2, 0.5],[0.2, 0.5])  ([0.6, 0.9],[0.3, 0.6]), ([0.15, 0.45],[0.55, 0.85]), ([0.2, 0.5],[0.1, 0.5])  

U  ( , )cheap large  ( , )cheap small  

1y  ([0.5, 0.9],[0.3, 0.5]), ([0.35, 0.6],[0.55, 0.7]), ([0.3, 0.7],[0.2, 0.5])  ([0.6, 0.9],[0.1, 0.5]), ([0.25, 0.6],[0.55, 0.75]), ([0.2, 0.6],[0.1, 0.5])  

2y  ([0.2, 0.6],[0.2, 0.5]), ([0.25, 0.5],[0.4, 0.65]), ([0.2, 0.5],[0.1, 0.5])  ([0.2, 0.6],[0.3, 0.7]), ([0.45, 0.65],[0.45, 0.7]), ([0.1, 0.5],[0.1, 0.5])  

3y  ([0.5, 0.9], [0.1, 0.5]), ([0.4, 0.6], [0.4, 0.6]), ([0.3, 0.7], [0.2, 0.5])  ([0.1, 0.5],[0.2, 0.5]), ([0.4, 0.65], [0.45, 0.7]), ([0.3, 0.5],[0.1, 0.5])  

U  ( , )large large  ( , )large small  

1y  ([0.6, 0.9], [0.3, 0.5]), ([0.4, 0.8], [0.5, 0.75]), ([0.2, 0.6], [0.1, 0.5])  ([0.6, 0.9], [0.1, 0.5]), ([0.3, 0.8], [0.5, 0.8]), ([0.2, 0.6], [0.1, 0.5])  

2y  ([0.2, 0.6],[0.3, 0.7]), ([0.5, 0.65],[0.15, 0.45]), ([0.1, 0.6],[0.4, 0.7])  ([0.2, 0.6], [0.3, 0.7]), ([0.7, 0.8], [0.2, 0.5]), ([0.1, 0.6], [0.4, 0.7])  

3y  ([0.6, 0.9], [0.6, 0.7]), ([0.25, 0.5], [0.5, 0.6]), ([0.3, 0.7], [0.2, 0.4])  ([0.6, 0.8],[0.6, 0.7]), ([0.25, 0.55],[0.55, 0.7]), ([0.3, 0.5],[0.1, 0.4])  
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Preposition 3 

(1)   ( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B    

(2)   ( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B    

(3)   ( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C      

(4)   ( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C      

Proof 1 

Let ( , ) ( , )C CL A M B     

( , )CL A   or ( , )CM B   

( , )L A   or ( , )M B   

( , ) ( , )L A M B    

[( , ) ( , )]CL A M B    

Since ( , ) ( , )C CL A M B    such that [( , ) ( , )] ,CL A M B    

Therefore ( , ) ( , ) [( , ) ( , )] .C C CL A M B L A M B    

Then consider [( , ) ( , )]CL A M B      

( , ) ( , )L A M B    

( , )L A   or ( , )M B   

( , )CL A   or ( , )CM B   

( , ) ( , )C CL A M B    

Since [( , ) ( , )]CL A M B    such that ( , ) ( , ) ,C CL A M B    

Therefore [( , ) ( , )] ( , ) ( , ) .C C CL A M B L A M B    

( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B     

Proof 2 

Let ( , ) ( , )C CL A M B     

( , )CL A   and ( , )CM B   

( , )L A   and ( , )M B   

( , ) ( , )L A M B    

[( , ) ( , )]CL A M B    

Since ( , ) ( , )C CL A M B    such that [( , ) ( , )] ,CL A M B    

Therefore ( , ) ( , ) [( , ) ( , )] .C C CL A M B L A M B    

Then consider [( , ) ( , )]CL A M B      

( , ) ( , )L A M B    

( , )L A   and ( , )M B   

( , )CL A   and ( , )CM B   

( , ) ( , )C CL A M B    

Since [( , ) ( , )]CL A M B    such that ( , ) ( , ) ,C CL A M B    

Therefore [( , ) ( , )] ( , ) ( , ) .C C CL A M B L A M B    

( , ) ( , ) [( , ) ( , )]C C CL A M B L A M B     

Proof 3 

Let ( , ) ( , ) ( , )C C CL A M B N C     
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( , )CL A   or ( , )CM B   or ( , )CN C   

( , )L A   or ( , )M B   or ( , )N C   

[( , ) ( , )]L A M A    or ( , )N C   

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , ) ( , )]CL A M A N C     

Since ( , ) ( , ) ( , )C C CL A M B N C     such that [( , ) ( , ) ( , )] ,CL A M A N C     

Therefore ( , ) ( , ) ( , ) [( , ) ( , ) ( , )] .C C C CL A M B N C L A M B N C      

Then consider [( , ) ( , ) ( , )]CL A M A N C     

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , )]L A M A    or ( , )N C   

( , )L A   or ( , )M B   or ( , )N C   

( , )CL A   or ( , )CM B   or ( , )CN C   

( , ) ( , ) ( , )C C CL A M B N C     

Since [( , ) ( , ) ( , )]CL A M A N C     such that ( , ) ( , ) ( , ) ,C C CL A M B N C     

Therefore [( , ) ( , ) ( , )] ( , ) ( , ) ( , ) .C C C CL A M B N C L A M B N C      

( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C         

Proof 4 

Let ( , ) ( , ) ( , )C C CL A M B N C     

( , )CL A   and ( , )CM B   and ( , )CN C   

( , )L A   and ( , )M B   and ( , )N C   

[( , ) ( , )]L A M A    and ( , )N C   

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , ) ( , )]CL A M A N C     

Since ( , ) ( , ) ( , )C C CL A M B N C     such that [( , ) ( , ) ( , )] ,CL A M A N C     

Therefore ( , ) ( , ) ( , ) [( , ) ( , ) ( , )] .C C C CL A M B N C L A M B N C      

Then consider [( , ) ( , ) ( , )]CL A M A N C     

[( , ) ( , ) ( , )]L A M A N C     

[( , ) ( , )]L A M A    and ( , )N C   

( , )L A   and ( , )M B   and ( , )N C   

( , )CL A   and ( , )CM B   and ( , )CN C   

( , ) ( , ) ( , )C C CL A M B N C     

Since [( , ) ( , ) ( , )]CL A M A N C     such that ( , ) ( , ) ( , ) ,C C CL A M B N C     

Therefore [( , ) ( , ) ( , )] ( , ) ( , ) ( , ) .C C C CL A M B N C L A M B N C      

( , ) ( , ) ( , ) [( , ) ( , ) ( , )]C C C CL A M B N C L A M B N C         

The definition of MVINSS, its arithmetic operations and properties would provide a good insight in 

mining a new knowledge of NS.  

4. Conclusions  
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In this paper, the concept of multi-valued interval neutrosophic soft set (MVINSS) has been 

successfully proposed by integrating the multi-valued interval neutrosophic set and soft set. It is 

already known that neutrosophic soft set considers the indeterminate and inconsistent information. 

But the proposed set was introduced to improve the result in decision-making problem with 

multi-valued interval neutrosophic soft elements. The proposed set has several significant features. 

Firstly, it emphasized the hesitant, indeterminate and uncertainty and can be used more practical to 

solve decision-making problem. Secondly, some basic properties of MVINSS such as complement, 

equality, inclusion, union, intersection, “AND” and “OR” were well defined. The propositions 

related to the proposed properties were mathematically proven and some examples were provided. 

For future work, this novel proposed set can be applied and utilized in solving supply chain, time 

series forecasting and decision-making problem such as partner selection, wastewater treatment 

selection and renewable energy selection. 
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Abstract: As a generalization of fuzzy sets and intuitionistic fuzzy sets, Neutrosophic sets have 

been developed by Smarandache to represent imprecise, incomplete and inconsistent information 

existing in the real world. A neutrosophic set is characterized by a truth value, an indeterminacy 

value and a falsity value. In this paper, we introduce and study a new class of Neutrosophic 

generalized closed set, namely Neutrosophic generalized pre regular closed sets and Neutrosophic 

generalized pre regular open sets in Neutrosophic topological spaces. Also we study the separation 

axioms of Neutrosophic generalized pre regular closed sets, namely Neutrosophic pre regular T1/2 

space and Neutrosophic pre regular T*1/2 space and their properties are discussed. 

Keywords: Neutrosophic generalized pre regular closed sets, Neutrosophic generalized pre 

regular open sets, NprT1/2 space and NprT*1/2 space. 

1. Introduction

In 1970, Levine [12] introduced the concept of g-closed sets in general topology. Generalized 

closed sets play a very important role in general topology and they are now the research topics of 

many researchers worldwide. In 1965, Zadeh [19] introduced the notion of fuzzy sets [FS]. Later, 

fuzzy topological space was introduced by Chang [6] in 1968 using fuzzy sets. In 1986, Atanassov [5] 

introduced the notion of intuitionistic fuzzy sets [IFS], where the degree of membership and degree 

of non-membership of an element in a set X are discussed. In 1997, Intuitionistic fuzzy topological 

spaces were introduced by Coker [7] using intuitionistic fuzzy sets.  

Neutrality the degree of indeterminacy as an independent concept was introduced by Florentin 

Smarandache [8]. He also defined the Neutrosophic set on three components, namely Truth 

(membership), Indeterminacy, Falsehood (non-membership) from the fuzzy sets and intuitionistic 

fuzzy sets. Smarandache’s Neutrosophic concepts have wide range of real time applications for the 

fields of [1, 2, 3&4] Information systems, Computer science, Artificial Intelligence, Applied 

Mathematics and Decision making. 

 In 2012, Salama A. A and Alblowi [14] introduced the concept of Neutrosophic topological 

spaces by using Neutrosophic sets. Salama A. A. [15] introduced Neutrosophic closed set and 

Neutrosophic continuous functions in Neutrosophic topological spaces. Further the basic sets like 

Neutrosophic regular-open sets, Neutrosophic semi-open sets, Neutrosophic pre-open sets, 

Neutrosophic α-open sets and Neutrosophic generalized closed sets are introduced in Neutrosophic 

topological space and their properties are studied by various authors [10], [15], [17], [13]. In this 

direction, we introduce and analyze a new class of Neutrosophic generalized closed set called 

Neutrosophic generalized pre regular closed sets and Neutrosophic generalized pre regular open 

sets in Neutrosophic topological spaces. Also we study the separation axioms of Neutrosophic 

generalized pre regular closed sets, namely Neutrosophic pre regular T1/2 space and Neutrosophic 
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pre regular T*1/2 space in Neutrosophic topological spaces. Many examples are given to justify the 

results.  

2. Preliminaries  

We recall some basic definitions that are used in the sequel. 

Definition 2.1: [14] Let X be a non-empty fixed set. A Neutrosophic set (NS for short) A in X is an 

object having the form A = {〈x, µA(x), σA(x), νA(x) 〉: x ∈ X} where the functions µA(x), σA(x) and νA(x) 

represent the degree of membership, degree of indeterminacy and the degree of non-membership 

respectively of each element x ∈ X to the set A. 

 

Remark 2.2: [14] A Neutrosophic set A = {〈x, µA(x), σA(x), νA(x) 〉: x ∈ X} can be identified to an 

ordered triple A = 〈x, µA(x), σA(x), νA(x) 〉 in non-standard unit interval 0, [on X. 

 

Remark 2.3: [14] For the sake of simplicity, we shall use the symbol A = 〈µA, σA, νA〉 for the 

neutrosophic set A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X}. 

 

Example 2.4: [14] Every IFS A is a non-empty set in X is obviously on NS having the form                                  

A = {〈x, µA(x), 1 – (µA(x) + νA(x)), νA(x)〉: x ∈ X}. Since our main purpose is to construct the tools for 

developing Neutrosophic set and Neutrosophic topology, we must introduce the NS 0N and 1N in X 

as follows:    

0N may be defined as: 

(01) 0N = {〈x, 0, 0, 1〉: x ∈ X} 

(02) 0N = {〈x, 0, 1, 1〉: x ∈ X} 

(03) 0N = {〈x, 0, 1, 0〉: x ∈ X} 

(04) 0N = {〈x, 0, 0, 0〉: x ∈ X} 

1N may be defined as: 

(11) 1N = {〈x, 1, 0, 0〉: x ∈ X} 

(12) 1N = {〈x, 1, 0, 1〉: x ∈ X} 

(13) 1N = {〈x, 1, 1, 0〉: x ∈ X} 

(14) 1N = {〈x, 1, 1, 1〉: x ∈ X} 

 

Definition 2.5: [14] Let A = 〈µA, σA, νA〉 be a NS on X, then the complement of the set A [C(A) for 

short] may be defined as three kind of complements: 

(C1) C(A) = {〈x, 1-µA(x), 1-σA(x), 1-νA(x)〉: x ∈ X } 

(C2) C(A) = {〈x, νA(x), σA(x), µA(x)〉: x ∈ X} 

(C3) C(A) = {〈x, νA(x), 1-σA(x), µA(x)〉: x ∈ X} 

 

Definition 2.6: [14] Let X be a non-empty set and Neutrosophic sets A and B in the form A = {〈x, 

µA(x), σA(x), νA(x)〉: x ∈ X} and B = {〈x, µB(x), σB(x), νB(x)〉: x ∈ X}. Then we may consider two possible 

definitions for subsets (A B). 

(1) A B  µA(x) ≤ µB(x), σA(x) ≤ σ B(x) and µA(x) ≥ µB(x)  x ∈ X 

(2) A B  µA(x) ≤ µB(x), σA(x) ≥ σ B(x) and µA(x) ≥ µB(x)  x ∈ X 

 

Proposition 2.7: [14] For any Neutrosophic set A, the following conditions hold: 

0N  A, 0N 0N 

A  1N, 1N 1N 

 

Definition2.8: [14] Let X be a non-empty set and A = { x, µA(x), σA(x), νA(x)〉: x ∈ X}, B = { x, µB(x), 

σB(x), νB(x)〉: x ∈ X} are NSs. Then A B may be defined as: 

(I1) A B = 〈x, µA(x) µB(x), σA(x) σ B(x) and νA(x) νB(x)〉 

(I2) A B = 〈x, µA(x) µB(x), σA(x) σ B(x) and νA(x) νB(x)〉 
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A B may be defined as: 

(U1) A B = 〈x, µA(x) µB(x), σA(x) σ B(x) and νA(x) νB(x)〉 

(U2) A B = 〈x, µA(x) µB(x), σA(x) σ B(x) and νA(x) νB(x)〉 

 

We can easily generalize the operations of intersection and union in Definition 2.8., to arbitrary 

family of NSs as follows: 

 

Definition 2.9: [14] Let {Aj: j ∈ J} be an arbitrary family of NSs in X, then 

Aj may be defined as: 

(i) Aj = 〈x, j∈J µAj(x), j∈J σAj(x), j∈J νAj(x)〉 

(ii) Aj = 〈x, j∈J µAj(x), j∈J σAj(x), j∈J νAj(x)〉 

Aj may be defined as: 

(i) Aj = 〈x, j∈ J µAj(x), j∈ J σAj(x), j∈ J νAj(x)〉 

(ii) Aj = 〈x, j∈ J µAj(x), j∈ J σAj(x), j∈ J νAj(x)〉 

 

Proposition 2.10: [14] For all A and B are two Neutrosophic sets then the following conditions are 

true: 

C(A B) = C(A) C(B); C(A B) = C(A) C(B). 

 

Definition 2.11: [14] A Neutrosophic topology [NT for short] is a non-empty set X is a family  of 

Neutrosophic subsets in X satisfying the following axioms: 

(NT1)   0N, 1N ∈ , 

(NT2)   G1 G2 ∈  for any G1, G2 ∈ , 

(NT3)    Gi ∈ for every {Gi : i ∈ J}  . 

Throughout this paper, the pair (X, τ) is called a Neutrosophic topological space (NTS for short).  

The elements of  are called Neutrosophic open sets [NOS for short]. A complement C(A) of a NOS 

A in NTS (X, τ) is called a Neutrosophic closed set [NCS for short] in X. 

 

Example 2.12: [14] Any fuzzy topological space (X, ) in the sense of Chang is obviously a NTS in the 

form  = {A: µA∈ } wherever we identify a fuzzy set in X whose membership function is µA with its 

counterpart. 

 

 The following is an example of Neutrosophic topological space. 

 

Example 2.13: [14] Let X = {x} and A = {〈x, 0.5, 0.5, 0.4〉: x ∈ X}, B = {〈x, 0.4, 0.6, 0.8〉: x ∈ X}, C = {〈x, 0.5, 

0.6, 0.4〉: x ∈ X}, D = {〈x, 0.4, 0.5, 0.8〉: x ∈ X}. Then the family  = {0N, A, B, C, D, 1N} of NSs in X is 

Neutrosophic topological space on X. 

 

Now, we define the Neutrosophic closure and Neutrosophic interior operations in Neutrosophic 

topological spaces: 

Definition 2.14: [14] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the 

Neutrosophic closure and Neutrosophic interior of A are defined by 

NCl(A) = {K : K is a NCS in X and A  K} 

NInt(A) = {G : G is a NOS in X and G  A} 

It can be also shown that NCl(A) is NCS and NInt(A) is a NOS in X. 

a) A is NOS if and only if A = NInt(A), 

b) A is NCS if and only if A = NCl(A). 

 

Proposition 2.15: [14] For any Neutrosophic set A is (X, τ) we have 

a) NCl(C(A)) = C(NInt(A)), 

b) NInt(C(A)) = C(NCl(A)). 
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Proposition 2.16: [14] Let (X, τ) be NTS and A, B be two Neutrosophic sets in X. Then the following 

properties are holds: 

a) NInt(A)  A, 

b) A  NCl(A), 

c) A  B  NInt(A)  NInt(B), 

d) A  B  NCl(A)  NCl(B), 

e) NInt(NInt(A)) = NInt(A), 

f) NCl(NCl(A)) = NCl(A), 

g) NInt(A  B) = NInt(A)  NInt(B), 

h) NCl(A  B) = NCl(A)  NCl(B), 

i) NInt(0N) = 0N, 

j) NInt(1N) = 1N, 

k) NCl(0N) = 0N, 

l) NCl(1N) = 1N, 

m) A  B  C(A)  C(B), 

n) NCl(A  B)  NCl(A)  NCl(B), 

o) NInt(A  B)  NInt(A)  NInt(B). 

 

Definition 2.17: [9] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be 

(i) Neutrosophic regular closed set (NRCS for short) if A = NCl(NInt(A)), 

(ii) Neutrosophic regular open set (NROS for short) if A = NInt(NCl(A)), 

(iii) Neutrosophic semi closed set (NSCS for short) if NInt(NCl(A)) ⊆ A, 

(iv) Neutrosophic semi open set (NSOS for short) if A ⊆ NCl(NInt(A)), 

(v) Neutrosophic pre closed set (NPCS for short) if NCl(NInt(A)) ⊆ A, 

(vi) Neutrosophic pre open set (NPOS for short) if A ⊆ NInt(NCl(A)), 

(vii) Neutrosophic α- closed set (NSCS for short) if NCl(NInt(NCl(A))) ⊆ A, 

(viii) Neutrosophic α- open set (NSOS for short) if A ⊆ NInt(NCl(NInt(A))). 

 

Definition 2.18: [18] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the 

Neutrosophic pre closure and Neutrosophic pre interior of A are defined by 

NPCl(A) = {K : K is a NPCS in X and A  K}, 

NPInt(A) = {G : G is a NPOS in X and G  A}. 

 

Definition 2.18: [13] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized closed set (NGCS for short) if NCl(A)  U whenever A  U and U is a 

NOS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic generalized open set (NGOS for short) 

if C(A) is a NGCS in (X, τ). 

 

Definition 2.20: [11] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic    α- generalized closed set (NαGCS for short) if NαCl(A)  U whenever A  U 

and U is a NOS in  (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic α- generalized open set 

(NαGOS for short) if C(A) is a NαGCS in (X, τ). 

 

Definition 2.21: [16] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic  closed set (N CS for short) if NCl(A)  U whenever A  U and U is a NSOS in 

(X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic  open set (N OS for short) if C(A) is a 

N CS in (X, τ). 

 

Definition 2.22: [9] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic regular generalized closed set (NRGCS for short) if NCl(A)  U whenever A  U 

and U is a NROS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic regular generalized open 

set (NRGOS for short) if C(A) is a NRGCS in (X, τ). 



Neutrosophic Sets and Systems, Vol. 30, 2019     175  

 

 
I. Mohammed Ali Jaffer and K. Ramesh, Neutrosophic Generalized Pre Regular Closed Sets 

 

Definition 2.23: [18] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized pre closed set (NGPCS for short) if NPCl(A)  U whenever A  U and 

U is a NOS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic generalized pre open set 

(NGPOS for short) if C(A) is a NGPCS in  (X, τ). 

 

Definition 2.24: [9] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic regular α generalized closed set (NRαGCS for short) if NαCl(A)  U whenever A  

U and U is a NROS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic regular α generalized 

open set (NRαGOS for short) if C(A) is a NRGCS in  (X, τ). 

3. Neutrosophic Generalized Pre Regular Closed Sets  

In this section we introduce Neutrosophic generalized pre regular closed sets in the 

Neutrosophic topological space and study some of their properties. 

 

Definition 3.1: A NS A in a NTS (X, τ) is said to be a Neutrosophic generalized pre regular closed set 

(NGPRCS for short) if NPCl(A)  U whenever A  U and U is a NROS in (X, τ). The family of all 

NGPRCSs of a NTS(X, τ) is denoted by NGPRC(X). 

 

Example 3.2: Let X= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.5, 0.3, 0.6), (0.4, 0.4,  0.7)〉 and                     

V = 〈(0.7, 0.5, 0.3), (0.7, 0.5, 0.2)〉. Then (X, τ) is a Neutrosophic topological space. Here the NS  A= 

〈(0.2, 0.1, 0.7), (0.4, 0.4, 0.7)〉 is a NGPRCS in (X, τ). Since A  U and U is a NROS, we have NPCl(A) 

= A  U. 

Theorem 3.3: Every NCS in (X, τ) is a NGPRCS in (X, τ) but not conversely. 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NCS in (X, τ), we have NCl (A) = A. 

Therefore NPCl(A)  NCl (A) = A  U, by hypothesis.  Hence A is a NGPRCS in (X, τ). 

 

Example 3.4: In Example 3.2., the NS A= A= 〈(0.2, 0.1, 0.7), (0.4, 0.4, 0.7)〉 is a NGPRCS but not NCS in    

(X, τ). 

 

Theorem 3.5: Every NαCS in (X, τ) is an NGPRCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U. Since A is NαCS in (X, τ), we have 

NCl(NInt(NCl(A)))  A, now A  NCl(A), NCl(NInt(A))  NCl(NInt(NCl(A)))  A.  Therefore 

NPCl(A) = A  NCl(NInt(A))  A A = A  U. Hence A is a NGPRCS in (X, τ). 

 

Example 3.6: In Example 3.2., the NS A= A= 〈(0.2, 0.1, 0.7), (0.4, 0.4, 0.7)〉 is a NGPRCS but not NαCS 

in  (X, τ). 

 

Theorem 3.7: Every N CS in (X, τ) is a NGPRCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is N CS in (X, τ), we have NCl (A)  U 

because every NROS is NSOS in (X, τ). Therefore NPCl(A)  NCl (A)  U, by hypothesis.  Hence 

A is a NGPRCS in (X, τ). 

 

Example 3.8: Let X= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.6, 0.5, 0.2), (0.7, 0.5, 0.1)〉 and V = 〈(0.5, 

0.4, 0.7), (0.4, 0.5, 0.6)〉. Then (X, τ) is a Neutrosophic topological space. Here the NS A= 〈(0.4, 0.3, 0.7), 

(0.3, 0.2, 0.6)〉 is a NGPRCS in (X, τ). Since A  V and V is a NROS, we have NPCl(A) = A  V. But 

A is not N CS in (X, τ). Since A  V and V is a NSOS, we have NCl(A) = C(V)  V. 

 

Theorem 3.9: Every NPCS in (X, τ) is an NGPRCS in (X, τ) but not conversely. 
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Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NPCS in (X, τ), we have NCl(NInt(A)) 

 A.  Therefore NPCl(A) = A  NCl(NInt(A))  A A = A  U. Hence A is a NGPRCS in (X, τ). 

 

Example 3.10: Let X= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.3, 0.2, 0.6), (0.1, 0.2,  0.7)〉 and                   

V = 〈(0.8, 0.2, 0.1), (0.8, 0.2, 0.1)〉. Then (X, τ) is a Neutrosophic topological space. Here the NS A= 

〈(0.8, 0.2, 0.1), (0.8, 0.2, 0.1)〉 is a NGPRCS in (X, τ). Since A  1N, we have NPCl(A) = 1N  1N. But A 

is not NPCS in (X, τ). Since NCl(NInt(A)) = 1N  A. 

 

Theorem 3.11: Every NGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U. Since A is NGCS in (X, τ) and every NROS in (X, 

τ) is a NOS in (X, τ).  Therefore NPCl(A)  NCl (A)  U, by hypothesis.  Hence A is a NGPRCS in 

(X, τ). 

 

Example 3.12: Let X= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.3, 0.5, 0.7), (0.4, 0.5, 0.6)〉 and V = 〈(0.8, 

0.5, 0.2), (0.7, 0.5, 0.3)〉. Then (X, τ) is a Neutrosophic topological space. Here the NS A= 〈(0.3, 0.5, 0.7), 

(0.3, 0.5, 0.7)〉 is a NGPRCS in (X, τ). Since A  U and U is a NROS, we have NPCl(A) = A  U. But 

A is not NGCS in (X, τ). Since A  U and U is a NOS, we have NCl(A) = C(U)  U. 

 

Theorem 3.13: Every NαGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NαGCS in (X, τ) and every NROS in 

(X, τ) is a NOS in (X, τ).  Therefore NPCl(A)  NαCl (A)  U, by hypothesis.  Hence A is a 

NGPRCS in (X, τ). 

 

Example 3.14: Let X= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)〉 and V = 〈(0.7, 

0.5, 0.3), (0.7, 0.5, 0.2)〉. Then (X, τ) is a Neutrosophic topological space. Here the NS A= 〈(0.4, 0.3, 0.6), 

(0.3, 0.4, 0.7)〉 is a NGPRCS in (X, τ). Since A  U and U is a NROS, we have NPCl(A) = A  U. But 

A is not NαGCS in (X, τ). Since A  U and U is a NOS, we have NαCl(A) = C(U)  U. 

 

Theorem 3.15: Every NRαGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NRαGCS in (X, τ). Therefore NPCl(A) 

 NαCl (A)  U, by hypothesis.  Hence A is a NGPRCS in (X, τ). 

 

Example 3.16: In Example 3.14., the NS A= 〈(0.4, 0.3, 0.6), (0.3, 0.4, 0.7)〉 is a NGPRCS but not 

NRαGCS in (X, τ). 

 

Theorem 3.17: Every NGPCS in (X, τ) is a NGPRCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NGPCS in (X, τ) and every NROS in 

(X, τ) is a NOS in (X, τ).  Therefore NPCl(A)   U, by hypothesis.  Hence A is a NGPRCS in (X, τ). 

 

Example 3.18: In Example 3.10., the NS A= 〈(0.8, 0.2, 0.1), (0.8, 0.2, 0.1)〉 is a NGPRCS in (X, τ). Since        

A  1N, we have NPCl(A) = 1N  1N. But A is not NGPCS in (X, τ). Since A  V and V is a NOS, we 

have NPCl(A) = 1N  V. 

 

Theorem 3.19: Every NRGCS in (X, τ) is a NGPRCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NRGCS in (X, τ).  Therefore NPCl(A) 

 NCl (A)  U, by hypothesis.  Hence A is a NGPRCS in (X, τ). 
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Example 3.20: In Example 3.8., the NS A= 〈(0.4, 0.3, 0.7), (0.3, 0.2, 0.6)〉 is a NGPRCS but not NRGCS 

in (X, τ). 

 

Theorem 3.21: Every NαGCS in (X, τ) is a NRαGCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NαGCS in (X, τ) and every NROS in 

(X, τ) is a NOS in (X, τ).  Therefore NαCl (A)  U, by hypothesis.  Hence A is a NRαGCS in (X, τ). 

 

Example 3.22: In Example 3.10., the NS A= 〈(0.7, 0.2, 0.3), (0.8, 0.2, 0.2)〉 is a NRαGCS but not NαGCS 

in (X, τ). 

 

Theorem 3.23: Every NGCS in (X, τ) is a NαGCS in (X, τ) but not conversely. 

 

Proof: Let U be a NOS in (X, τ) such that A  U.  Since A is NGCS in (X, τ).  Therefore NαCl(A)  

NCl (A)  U, by hypothesis.  Hence A is a NαGCS in (X, τ). 

 

Example 3.24: Let X= {a} and τ = {0N, U, V, 1N} where U= 〈0.5, 0.4, 0.7〉 and V = 〈0.8, 0.5, 0.2)〉. Then (X, 

τ) is a Neutrosophic topological space. Here the NS A= 〈0.2, 0.2, 0.8〉 is a NαGCS in (X, τ). Since A  

U and U is a NOS, we have NαCl(A) = A  U. But A is not NGCS in (X, τ). Since A  U, we have 

NCl(A) = C(V)  U. 

 

Theorem 3.25: Every NGCS in (X, τ) is a NRGCS in (X, τ) but not conversely. 

 

Proof: Let U be a NROS in (X, τ) such that A  U.  Since A is NGCS in (X, τ) and every NROS in (X, 

τ) is a NOS in (X, τ).  Therefore NCl (A)  U, by hypothesis.  Hence A is a NRGCS in (X, τ). 

 

Example 3.26: Let X= {a, b, c} and τ = {0N, U, 1N} where U= 〈(0.6, 0.4, 0.3), (0.8, 0.5, 0.2), (0.7, 0.4, 0.8)〉. 

Then (X, τ) is a Neutrosophic topological space. Here the NS A= 〈(0.5, 0.6, 0.6), (0.3, 0.5, 0.3), (0.5, 0.4, 

0.3)〉 is a NRGCS in (X, τ). Since A  1N, we have NCl(A) = 1N  1N. but A is not NGCS in (X, τ). 

Since A  U and U is a NOS, we have NCl(A) = 1N  U. 

 

The following diagram, we have provided the relation between NGPRCS and the other existed NSs. 

 

NαCS           NPCS           NGPCS     

 

 

   NRCS        NCS         NαGCS         NRαGCS        NGPRCS 

 
 

N CS         NGCS           NRGCSNC    

 

In this diagram by A           B means A implies B but not conversely and A         B means A & 

B are independent. 

Remark 3.27: The union of any two NGPRCSs in (X, τ) is not an NGPRCS in (X, τ) in general as seen 

from the following example. 

 

Example 3.28: Let X = {a, b} and τ = {0N, U, V, 1N} where U = 〈(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)〉 and                  

V = 〈(0.7, 0.5, 0.3), (0.7, 0.5, 0.2)〉. Then the NSs A = 〈(0.2, 0.1, 0.7), (0.4, 0.4, 0.7)〉 and B=〈(0.5, 0.3, 0.6), 
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(0.2, 0.2, 0.8)〉 are NGPRCSs in (X, τ) but A B=〈(0.5,0.3,0.6), (0.4,0.4,0.7)〉 is not a NGPRCS in (X, τ). 

Since A B U but NPCl(A B) = C(U)  U. 

 

Remark 3.29: The intersection of any two NGPRCSs in (X, τ) is not an NGPRCS in (X, τ) in general as 

seen from the following example. 

 

Example 3.30: Let X = {a, b} and τ = {0N, U, V, 1N} where U = 〈(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)〉 and                  

V = 〈(0.7, 0.5, 0.3), (0.7, 0.5, 0.2)〉.  Then the NSs A = 〈(0.5, 0.5, 0.4), (0.7, 0.6, 0.7)〉 and B = 〈(0.6, 0.3, 0.6), 

(0.4, 0.4, 0.3)〉 are NGPRCSs in (X, τ) but A∩B = 〈(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)〉 is not a NGPRCS in (X, τ).  

Since A∩B U but NPCl(A∩B) = C(U)  U. 

 

Theorem 3.31: Let (X, τ) be a NTS.  Then for every A  NGPRC(X) and for every NS B  NS(X), A 

 B  NPCl(A) implies B  NGPRC(X). 

 

Proof:  Let B  U and U is a NROS in (X, τ). Since A  B, then A  U.  Given A is a NGPRCS, it 

follows that NPCl(A)  U. Now B  NPCl(A) implies NPCl(B)  NPCl(NPCl(A)) = NPCl(A).  

Thus, NPCl(B)  U. This proves that B  NGPRC(X). 

 

Theorem 3.32: If A is a NROS and a NGPRCS in (X, τ), then A is a NPCS in (X, τ). 

 

Proof: Since A  A and A is a NROS in (X, τ), by hypothesis, NPCl(A)  A. But since A  

NPCl(A). Therefore NPCl(A)= A. Hence A is a NPCS in (X, τ). 

 

Theorem 3.33: Let (X, τ) be a NTS and NPC(X) (resp. NRO(X)) be the family of all NPCSs (resp. 

NROSs) of X. If NPC(X) = IRO(X) then every Neutrosophic subset of X is NGPRCS in (X, τ). 

 

Proof: If NPC(X) = IRO(X) and A is any Neutrosophic subset of X such that A  U where U is NROS 

in X. Then by hypothesis, U is NPCS in X which implies that NPCl(U) = U. Then NPCl(U)  

NPCl(U) = U. Therefore A is NGPRCS in (X, τ). 

 

Definition 3.34: Let (X, τ) be a NTS and A = {〈x, µA(x), σ A(x), νA(x)〉: x ∈ X} be the subset of X. Then 

NGPRCl(A) = {K : K is a NGPRCS in X and A  K} and 

NGPRInt(A) = {G : G is a NGPROS in X and G  A}. 

 

Lemma 3.35: Let A and B be subsets of (X, τ). Then the following results are obvious. 

a) NGPRCl(0N) = 0N. 

b) NGPRCl(1N) = 1N. 

c) A  NGPRCl(A). 

d) A  B  NGPRCl(A)  NGPRCl(B). 

4. Neutrosophic Generalized Pre Regular Open Sets 

In this section we introduce Neutrosophic generalized pre regular open sets in Neutrosophic 

topological space. 

Definition 4.1: A NS A in a NTS (X, τ) is said to be a Neutrosophic generalized pre regular open set 

(NGPROS for short) if NPInt(A)  U whenever A  U and U is a NRCS in (X, τ). Alternatively, A 

NS A is said to be a Neutrosophic generalized pre regular open set (NGPROS for short) if the 

complement of C(A) is a NGPRCS in (X, τ). 

The family of all NGPROSs of a NTS(X, τ) is denoted by NGPRO(X). 
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Example 4.2: Let X= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.5, 0.3, 0.6), (0.4, 0.4, 0.7)〉 and V = 〈(0.7, 

0.5, 0.3), (0.7, 0.5, 0.2)〉. Then (X, τ) is a Neutrosophic topological space. Here the NS A= 〈(0.8, 0.9, 0.2), 

(0.9, 0.6, 0.1)〉 is a NGPROS in (X, τ). Since A  C(U) and C(U) is a NRCS, we have NPInt(A) = A  

C(U). 

 

Theorem 4.3: Every NOS is a NGPROS in (X, τ) but the converses may not be true in general. 

 

Proof: Let U be a NRCS in (X, τ) such that A  U. Since A is NOS, NInt(A) = A. By hypothesis,          

NPInt(A) = A ∩ NInt(NCl(A)) = A ∩ NCl(A)   A ∩ A = A  U. Therefore A is a NGPROS in (X, τ). 

 

Example 4.4: In Example 4.2., the NS A= 〈(0.8, 0.9, 0.2), (0.9, 0.6, 0.1)〉 is an NGPROS in (X, τ) but not a 

NOS in (X, τ). 

 

Theorem 4.5: Every NαOS, NWOS, NPOS, NGOS, NαGOS, NGPOS, NRGOS, NRαGOS is a 

NGPROS in (X, τ) but the converses are not true in general. 

 

Example 4.6: Let X= {a, b} and τ = {0N, U, 1N} where U = 〈(0.4, 0.2, 0.3), (0.8, 0.6, 0.7)〉. Then (X, τ) is a 

Neutrosophic topological space. Here the NS A = 〈(0.2, 0.8, 0.6), (0.6, 0.4, 0.9)〉 is a NGPROS in (X, τ). 

Since A  0N, we have NPInt(A) = 0N  0N. but A is not a NαOS, NWOS, NPOS in (X, τ). 

 

Example 4.7: Let X= {a, b} and τ = {0N, U, 1N} where U = 〈(0.4, 0.2, 0.3), (0.8, 0.6, 0.7)〉. Then (X, τ) is a 

Neutrosophic topological space. Here the NS A = 〈(0.3, 0.8, 0.4), (0.7, 0.4, 0.8)〉 is a NGPROS in (X, τ). 

Since A  0N, we have NPInt(A) = 0N  0N. but A is not a NGOS, NαGOS, NGPOS in (X, τ). 

 

Example 4.8: Let X= {a, b} and τ = {0N, U, V, 1N} where U= 〈(0.6, 0.5, 0.2), (0.7, 0.5, 0.1)〉 and V = 〈(0.5, 

0.4, 0.7), (0.4, 0.5, 0.6)〉. Then (X, τ) is a Neutrosophic topological space. Here the NS A= 〈(0.8, 0.8, 0.2), 

(0.7, 0.9, 0.3)〉 is a NGPROS in (X, τ). Since A  C(V) and C(V) is a NRCS, we have  NPInt(A) = A  

C(V). but A is not NRGOS, NRαGOS in (X, τ). 

 

Theorem 4.9: Let (X, τ) be a NTS. Then for every A ∈ NGPRO(X) and for every B ∈ NP(X),                

NPInt(A)   B  A implies B ∈ NGPRO(X).  

 

Proof: Let A be any NGPROS of (X, τ) and B be any NS of X.  By hypothesis NPInt(A)   B  A.  

Then C(A) is an NGPRCS in (X, τ) and C(A)   C(B)   NPCl(C(A)).  By Theorem 3.31., C(B) is an 

NGPRCS in (X, τ).  Therefore B is an NGPROS in (X, τ).  Hence B ∈ NGPRO(X). 

 

Theorem 4.10: A NS A of a NTS (X, τ) is a NGPROS in (X, τ) if and only if F  Npint(A) whenever F 

is a NRCS in (X, τ) and F  A. 

 

Proof: Necessity: Suppose A is a NGPROS in (X, τ).  Let F be a NRCS in (X, τ) such that F  A.  

Then C(F) is a NROS and C(A)   C(F). By hypothesis C(A) is a NGPRCS in (X, τ), we have 

NPCl(C(A))  C(F). Therefore F  Npint(A). 

 

Sufficiency: Let U be a NROS in (X, τ) such that C(A)  U. By hypothesis, C(U)  Npint(A). 

Therefore NPCl(C(A))  U and C(A) is a NGPRCS in (X, τ).  Hence A is a NGPROS in (X, τ). 

 

Theorem 4.11: Let (X, τ) be a NTS and NPO(X) (resp. NGPRO(X)) be the family of all NPOSs                 

(resp. NGPROSs) of X. Then NPO(X) ⊆ NGPRO(X). 

 

Proof: Let A ∈ NPO(X). Then C(A) is NPCS and so NGPRCS in (X, τ). This implies that A is NGPROS 

in   (X, τ). Hence A ∈ NGPRO(X). Therefore NPO(X) ⊆ NGPRO(X). 
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5. Separation Axioms of Neutrosophic Generalized Pre Regular Closed Sets 

In this section we have provide some applications of Neutrosophic generalized pre regular 

closed sets in Neutrosophic topological spaces. 

 

Definition 5.1: If every NGPRCS in (X, τ) is a NPCS in (X, τ), then the space (X, τ) can be called a 

Neutrosophic pre regular T1/2 (NPRT1/2 for short) space. 

 

Theorem 5.2: An NTS (X, τ) is a NPRT1/2 space if and only if NPOS(X) = NGPRO(X). 

Proof: Necessity: Let (X, τ) be a NPRT1/2 space.  Let A be a NGPROS in (X, τ).  By hypothesis, C(A) 

is a NGPRCS in (X, τ) and therefore A is a NPOS in (X, τ).  Hence NPO(X) = NGPRO(X). 

Sufficiency: Let NPO(X, τ) = NGPRO(X, τ).  Let A be a NGPRCS in (X, τ).  Then C(A) is a NGPROS 

in (X, τ).  By hypothesis, C(A) is a NPOS in (X, τ) and therefore A is a NPCS in  (X, τ).  Hence (X, τ) 

is a NPRT1/2 space. 

 

Definition 5.3: A NTS (X, τ) is said to be a Neutrosophic pre regular T*1/2 space (NPRT*1/2 space for 

short) if every NGPRCS is a NCS in (X, τ). 

 

Remark 5.4: Every NPRT*1/2 space is a NPRT1/2 space but not conversely. 

 

Proof:  Assume be a NPRT*1/2 space.  Let A be a NGPRCS in (X, τ).  By hypothesis, A is an NCS.  

Since every NCS is a NPCS, A is a NPCS in (X, τ).  Hence (X, τ) is a NPRT1/2 space. 

 

Example 5.8: Let X= {a, b} and let τ = {0N, U, 1N} where U= 〈(0.5, 0.4, 0.7), (0.4, 0.5, 0.6)〉. Then (X, τ) is 

a NPRT1/2 space, but it is not NPRT*1/2 space.  Here the NS A= 〈(0.2, 0.3, 0.8), (0.3, 0.4, 0.8)〉 is a 

NGPRCS but not a NCS in (X, τ). 

 

Theorem 5.9: Let (X, τ) be a NPRT*1/2 space then, 

(i) the union of NGPRCSs is NGPRCS in (X, τ) 

(ii) the intersection of NGPROSs is NGPROS in (X, τ) 

Proof: (i) Let {Ai}i∈J be a collection of NGPRCSs in a NPRT*1/2 space (X, τ). Thus, every NGPRCSs is a 

NCS. However, the union of NCSs is a NCS in (X, τ). Therefore the union of NGPRCSs is NGPRCS in 

(X, τ). (ii) Proved by taking the complement in (i). 

6. Conclusion  

 In this paper, we have defined new class of Neutrosophic generalized closed sets called 

Neutrosophic generalized pre regular closed sets; Neutrosophic generalized pre regular open sets 

and studied some of their properties in Neutrosophic topological spaces. Furthermore, the work was 

extended as the separation axioms of Neutrosophic generalized pre regular closed sets, namely 

Neutrosophic pre regular T1/2 space and Neutrosophic pre regular T*1/2 space and discussed their 

properties. Further, the relation between Neutrosophic generalized pre regular closed set and 

existing Neutrosophic closed sets in Neutrosophic topological spaces were established. Many 

examples are given to justify the results.  
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1. Introduction

Theory of probability, fuzzy sets, rough sets, vague sets etc. are the some established theories in the 

world to solve the problems related to uncertainty. Molodtstov introduced the Soft Set theory [32] 

as a parametric tool to deal the uncertain data of many mathematical problems. Later Maji, Roy and 

Biswas [24, 25] have further studied the theory of soft sets. Gradually research in soft set theory 

(SST) are grown up in many areas like algebra, entropy calculation, solving decision making 

problems etc. [27 - 30], for example). Prof. Florentin Smarandache [34] introduced the neutrosophic 

logic and sets. In this logic, every statement consists a degree of truth (T), a degree of indeterminacy 

(I) and a degree of falsity (F) and all of these degrees lie between, the non-standard unit intervals. 

Works on soft sets and neutrosophic sets are progressing very rapidly [10, 11, 19, 21, 28, 29, 30, 31, 

32, 33]. In 2013, P.K. Maji introduced the theory of Neutrosophic Soft (NS) sets [26]. Similarity 

measure technique is a well-known process to compare two sets. Similarity measure on Fuzzy sets, 

Soft sets, Neutrosophic sets etc. are done by several authors in their papers [14, 15, 16, 17, 18, 19, 22]. 

In this paper we have tried to build up the theory of similarity measures between two NS sets.  We 

organized the paper in the following manner. In Section 2, we have given some preliminary 

definitions and results. We have given a similarity measure of NS in Section 3. In Section 4 and 

Section 5 are devoted on weighted similarity measure of NS sets and measuring distances of NS sets 

respectively. We have discussed Distanced Based Similarity Measure of NS sets in Section 6. A real 

life application of similarity measure of two NS sets are shown in Section 8. Section 9 is the 

conclusion of our paper. 

2. Preliminaries

Neutrosophic sets has several applications in different areas of physical systems, biological systems 

etc. and even in daily life problems. Most of the preliminary ideas can be easily found in any 

mailto:kalyansinha90@gmail.com
mailto:pmajumdar2@rediffmail.com
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standard reference say [1—11, 31, 34, 35] .However we will discuss some definitions and 

terminologies regarding neutrosophic sets which will be used in the rest of the paper. 

Definition 1 [34] Let 𝑋  be a universal set. A neutrosophic set 𝐴 on 𝑋  is characterized by a truth 

membership function 𝑡𝐴, an indeterminacy function  𝑖𝐴 and a falsity function  𝑓𝐴, where  𝑡𝐴, 𝑖𝐴 , 𝑓𝐴: →

 [0, 1], are functions and ∀ 𝑥 ∈  𝑋, 𝑥 =  𝑥(𝑡A(𝑥), 𝑖A(𝑥), 𝑓A(𝑥))  ∈  𝐴 is a single valued neutrosophic 

element of 𝐴. 

Definition 2 [25] Suppose 𝑈 be an initial universal set and let 𝐸 be a set of parameters. Let 𝑃 (𝑈 ) denote 

the power set of 𝑈 and   𝐴 ⊆  𝐸. A pair (F, A) is called a soft set over 𝑈 if and only if 𝐹 is a mapping given by 

𝐹 ∶  𝐴 →  𝑃 (𝑈 ). 

Example 3 As an illustration, consider the following example. Suppose a soft set (𝐹, 𝐸) describes choice of 

places which the authors are going to visit with his family. Consider U = the set of places under consideration 

= {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}. 𝐸 = {desert, forest, mountain, sea beach} = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. Let 𝐹 (𝑒1)  =  {𝑥1, 𝑥2}, F(e2) = 

{x1, x2, x3}, F (e3) = {x4}, F (e4) = {x2, x5}. So, the soft set (F, E) is a family {F (ei); i = 1, . . ., 4} of U .In 

2012, P.K. Maji gives the idea of Neutrosophic Soft Set in his paper [26] as follows: 

 

Definition 4 [26] Let 𝑈 be an initial universe set and E be a set of parameters. Consider 𝐴 ⊆  𝐸. Let 𝑁 (𝑈 ) 

denotes the set of all neutrosophic sets of 𝑈 . The collection (𝐹, 𝐴) is termed to be the soft neutrosophic set 

over 𝑈, where F is a mapping given by 𝐹: 𝐴 →  𝑁 (𝑈). 

 

Example 5 Let X and E be the set of buses and condition of buses i.e. the set of parameters 

respectively. Each parameter is either a neutrosophic word or sentence involving neutrosophic 

words. Consider E = {beautiful, eco-friendly, costly, good seating arrangement}. Now, to define a 

NS set means to sort out beautiful buses, eco-friendly buses etc. Suppose, there are four buses in 

the universe X given by 𝑈 =  {ℎ i ;  𝑖 =  1, 2, 3, 4 } and the set of parameters 𝐸 =  {𝑒 i ;  𝑖 =

 1, 2, 3, 4} ,  where 𝑒1 stands for the parameter beautiful, 𝑒 2  stands for the parameter eco-

friendly,  𝑒 3  stands for the parameter costly and the parameter 𝑒 4   stands for good seating 

arrangement. Let 

  F (beautiful) = {(h1, 0.4, 0.7, 0.3), (h2, 0.3, 0.6, 0.2), (h3, 0.4, 0.4, 0.2), (h4, 0.6, 

0.5, 0.4)}, 

F (eco - friendly) = {(h1, 0.6, 0.7, 0.8), (h2, 0.5, 0.5, 0.1), (h3, 0.2, 0.3, 0.6)}, 

F (costly) = {(h2, 0.3, 0.3, 0.4), (h3, 0.5, 0.4, 0.8), (h4, 0.8, 0.7, 0.8)}, 

   F (good - seating arrangement) = {(h1, 0.4, 0.1, 0.4), (h2, 0.3, 0.7, 0.4), (h4, 

0.9, 0.6, 0.8)}. 

Then (𝐹, 𝐸) is a neutrosophic soft set (NSS) over X. 

The most of the terminologies regarding Neutrosophic soft set can be found in [26]. Thus it is our 

request to follow the paper [26] thoroughly for terminologies, operations etc of NS set. Several 

authors have defined Similarity measure between two fuzzy sets. Prof. Chen have given the 

following definition of Similarity measure based on a matching function S. 

Definition 6 [12] Suppose 𝐴 and 𝐵 are two fuzzy sets with membership functions µ𝐴 and µ𝐵 respectively. 

Then the similarity measure between A and B is denoted by 𝑆(𝐴, 𝐵) and 
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𝑆(𝐴, 𝐵) =
𝐴.⃗⃗  ⃗  �⃗� 

𝐴2 ⃗⃗⃗⃗  ⃗  ∨ 𝐵2⃗⃗ ⃗⃗  
 

where 
→−
𝐴 =  (µ𝐴(𝑥1), µ𝐴(𝑥2), , . . . , µ𝐴(𝑥𝑛) ) and 

→−
B = (µ𝐵(𝑥1), µ𝐵(𝑥2), . . , µ𝐵(𝑥𝑛) ). 

Prof P. Majumdar have defined similarity measure for two soft sets in his paper [27]. For details on 

similarity measures on two Soft sets, one can follow [27]. 

3. Similarity measure of two NS sets  

Consider the NS set (𝐹, 𝐸) over the set. Now we will express the NS set (𝐹, 𝐸) as a NS soft matrix 

𝑀 as follows: 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )
(0.4,0.7,0.3) (0.6,0.7,0.8) (0,0,0) (0.4,0.1,0.4)
(0.2,0.3,0.6) (0.5,0.5,0.1) (0.3,0.3,0.4) (0.3,0.7,0.4)
(0.4,0.4,0.2) (0.2,0.3,0.6) (0.5,0.4,0.8) (0,0,0)
(0.6,0.5,0.4) (0,0,0) (0.8,

F e F e F e F e
h
hM
h
h



0.7,0.8) (0.9,0.6,0.8)

 
 
 
 
 
 
 
 

 

Then with the above interpretation the NS set (𝐹, 𝐸) is represented by the matrix 𝑀 and we write 

(𝐹, 𝐸) = M. Clearly, the complement of (𝐹, 𝐸), i.e. (𝐹, 𝐸)C will be represented by another matrix M C 

where 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )
(0.3,0.7,0.4) (0.8,0.7,0.6) (0,0,0) (0.4,0.1,0.4)
(0.6,0.3,0.2) (0.1,0.5,0.5) (0.4,0.3,0.3) (0.4,0.7,0.3)
(0.2,0.4,0.4) (0.6,0.3,0.2) (0.8,0.4,0.5) (0,0,0)
(0.4,0.5,0.6) (0,0,0) (0.8

C

F e F e F e F e
h
hM
h
h



,0.7,0.8) (0.8,0.6,0.9)

 
 
 
 
 
 
 
 

 

Hence for any given matrix representation M, we can retrieve the NS set (F, E) and also vice versa in 

an obvious way. Henceforth, we will denote each column of membership matrix by the vector 𝐹(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

or simply by 𝐹(𝑒𝑖)  

i.e. here  𝐹(𝑒1) = {(0.3, 0.7, 0.4), (0.6, 0.3, 0.2), (0.2, 0.4, 0.4), (0.4, 0.5, 0.6)} in 𝑀. Now we will define a  

similarity measure between two NS sets (𝐹1, 𝐸1) and (𝐹2, 𝐸2) over U.  We try to formulate with the 

help of a matching function S. 

 

Definition 7 The similarity between NS sets (𝐹1, 𝐸1) and (𝐹2, 𝐸2) is defined by 

𝑆(𝐹1, 𝐹2) =
∑ 𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖

∑ [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 ]

 

provided, 

(i) 𝐸1 = 𝐸2 

(ii) ∑ 𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖 = ∑ (𝑡𝐹1(𝑒𝑖)

. 𝑡𝐹2(𝑒𝑖)
+ 𝑖𝐹1(𝑒𝑖)

. 𝑖𝐹2(𝑒𝑖)
+ 𝑓𝐹1(𝑒𝑖)

. 𝑓𝐹2(𝑒𝑖) 
)𝑖  

(iii) ∑ [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 ] = ∑ (𝒕𝐹1(𝑒𝑖) 

2 ∨ 𝑡𝐹2(𝑒𝑖) + 𝑖𝐹1(𝑒𝑖) 
2 ∨ 𝑖𝐹2(𝑒𝑖) 

2 + 𝑓𝐹1(𝑒𝑖) 
2 ∨𝑖

𝑓𝐹2(𝑒𝑖) 
2  ) 

If 𝐸1 ≠ 𝐸2, 𝐸 = 𝐸1 ∩ 𝐸2 ≠ ∅, then we will consider −𝐹1(𝑒1) = (0, 0, 0) for 𝑒1∈ 𝐸1\E and 𝐹2(𝑒2) = (0, 
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0, 0) for 𝑒2∈ 𝐸2\E.  Then the similarity measure 𝑆(𝐹1, 𝐹2) is obtained from Definition 7. 

Remark 8 If 𝐸1 ∩ 𝐸2=∅, then we have 𝑆(𝐹1, 𝐹2) = 0. 

The following lemmas are quite obvious: 

Lemma 9 Suppose (𝐹1, 𝐸1) and (𝐹2, 𝐸2) be two NS sets over the same finite universe. Then we have the 

following: 

(𝑖) 𝑆 (𝐹1, 𝐹2)  =  𝑆 (𝐹2, 𝐹1)  (𝑖𝑖) 0 ≤  𝑆 (𝐹1, 𝐹2)  ≤  1  (𝑖𝑖𝑖) 𝑆 (𝐹1, 𝐹1)  =  1 

Lemma 10 Suppose (𝐹1, 𝐸), (𝐹2, 𝐸), (𝐹3, 𝐸) be three NS sets such that (𝐹1, 𝐸)  ⊆ (𝐹2, 𝐸)  ⊆ (𝐹3, 𝐸) then,  

𝑆(𝐹1, 𝐹3)  ≤  𝑆(𝐹2, 𝐹3). 

Example 11 Consider another NS set (𝐺, 𝐸) over the same universe 𝑈, where 𝐸 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} whose NS 

matrix representation 𝑁 is as following: 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )
(0.3,0.7,0.3) (0.6,0.1,0.8) (0.5,0.1,0.5) (0.4,0.5,0.4)
(0.4,0.4,0.9) (0,0,0) (0.3,0.3,0.4) (0.3,0.7,0.4)
(0.2,0.6,0.2) (0.2,0.6,0.6) (0,0,0) (0.4,0.2,0.8)
(0.6,0.5,0.4) (0.3,0.9,0.5

F e F e F e F e
h
hN
h
h



) (0.8,0.7,0.8) (0.3,0.7,0.4)

 
 
 
 
 
 
 
 

 

Then we have 𝑆(𝐹, 𝐺)  =  0.22147. 

4. Weighted Similarity measure between two NS sets  

Definition 12 Suppose 𝑈 =  {𝑢1, 𝑢2, . . . , 𝑢𝑛} be the universe and 𝑤𝑖  be the weight of 𝑢𝑖 and 𝑤𝑖  ∈  [0, 1], 

but not all zero, 1 ≤  𝑖 ≤  𝑛. Suppose (𝐹1, 𝐸) and (𝐹2, 𝐸)be two NS sets over 𝑈. We define their weighted 

similarity as follows 

𝑊(𝐹1, 𝐹2) =
∑  𝑤𝑖   𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖

∑  𝑤𝑖  [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖

 

provided,  

(i) 𝐸1 = 𝐸2 

(ii) ∑ 𝐹1(𝑒𝑖).⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝐹2(𝑒𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 = ∑ (𝑡𝐹1(𝑒𝑖). 𝑡𝐹2(𝑒𝑖) + 𝑖𝐹1(𝑒𝑖). 𝑖𝐹2(𝑒𝑖) + 𝑓𝐹1(𝑒𝑖). 𝑓𝐹2(𝑒𝑖) )𝑖  

(iii) ∑ [𝐹1(𝑒𝑖) 
2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ∨ 𝐹2(𝑒𝑖)

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑖 ] = ∑ (𝒕𝐹1(𝑒𝑖) 

2 ∨ 𝑡𝐹2(𝑒𝑖) + 𝑖𝐹1(𝑒𝑖) 
2 ∨ 𝑖𝐹2(𝑒𝑖) 

2 + 𝑓𝐹1(𝑒𝑖) 
2 ∨𝑖

𝑓𝐹2(𝑒𝑖) 
2  ) 

Example 13 Consider the two NS sets (𝐹, 𝐸) and (𝐺, 𝐸) in Example 11. We assign weights to the 

elements {𝑢i, 𝑖 =  1, . . ., 4} of 𝑋 i.e.  

𝑤(𝑢1)  =  0.3, 𝑤(𝑢2)  =  0.1, 𝑤(𝑢3)  =  0.4, 𝑤(𝑢4)  =  0.7. 

Then we have 𝑊 (𝐹, 𝐺)  =  0.13864. 

 

Definition 14 Consider the set of all NS sets 𝑁1(𝑈 ) over the set 𝑈. Suppose (𝐹1, 𝐸), (𝐹2, 𝐸)  ∈  𝑁1(𝑈 ). If  

𝑆(𝐹1, 𝐹2)  ≥  𝛼, 𝛼 ∈  (0, 1), then the two NS sets (𝐹1, 𝐸) and (𝐹2, 𝐸) are said to be 𝛼-similar and we 

denote the similarity relation between two aforesaid sets as (𝐹1, 𝐸)  ≅∝
 
(𝐹2, 𝐸). 
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It can be easily seen that similarity is an equivalence relation. 

Lemma 15 ≅∝ is a reflexive as well as symmetric relation but not an equivalence relation. 

From Lemma 9, we can easily see that ≅∝ is a reflexive as well as symmetric relation. To see 

that ≅∝ is not a transitive relation, we consider the following example: 

1 2 3 4

1

2

3

4

* ( ) ( ) ( ) ( )
(0.3,0.7,0.4) (0.8,0.7,0.8) (0.1,0.1,0.2) (0.6,0.2,0.8)

(0,0,0) (0,0,0) (0.5,0.6,0.1) (0,0,0)
(0.4,0.5,0.2) (0.4,0.1,0.2) (0,0,0) (0.4,0.2,0.8)
(0.8,0.4,0.8) (0.6,0.3,0.1) (0.5,0.6,0.

F e F e F e F e
h
hN
h
h



5) (0.1,0.8,0.8)

 
 
 
 
 
 
 
 

 

Example 16 Consider a NS set (𝐻, 𝐸) over the same universe, where 𝐸 =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} who’s NS matrix 

representation N is as above. Then 𝑆(𝐺, 𝐹 )  =  0.22147, 𝑆(𝐹, 𝐻)  =  0.88609, 𝑆(𝐺, 𝐻)  =  0.54576. 

Definition 17 Suppose (𝐹1, 𝐸1) and (𝐹2, 𝐸2) be two NS sets over the set  . Then the two NS sets (𝐹1, 𝐸1)  

and (𝐹2, 𝐸2) are said to be significantly similar if 

𝑆(𝐹1, 𝐹2) > 1
2⁄  

Example 18 𝑆(𝐹, 𝐻) is significantly similar whereas 𝑆(𝐹, 𝐺) is not similar. 

 

5. Two sets and their measuring distances. 

Throughout this section, we will consider 𝑼  to be finite, namely 𝑼 =  {𝒉 1 , 𝒉 2 , . . . , 𝒉n}  and 

universal parameter set 𝑬 =  {𝒆1, 𝒆2, . . . , 𝒆m}. Now for any NS set (𝑭, 𝑨)є𝑵(𝑼), 𝑨 is a subset of 

𝑬. Consider an extension of the NS set (𝑭, 𝑨) to the NS set (�̂� , 𝑬) where 𝑭 ̂(ei) {𝒉j }= φ where 

𝒆i ∉ 𝑨. Now onwards we will take the parameter subset of any NS set over 𝑵 (𝑼 ) to be the 

same as the parameter set 𝑬 without loss of generality. 

Definition 19: For two NS sets (�̂�, 𝐸) and (�̂�, 𝐸), 

(i) The mean Hamming distance DS (F, G)  between two NS sets is defined as follows 

𝐷𝑆 
(𝐹, 𝐺) =

1

𝑚
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

𝑛
𝑗=1

𝑚
𝑖=1 } 

=
1

𝑚
{∑∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑖𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑓𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)
|

𝑛

𝑗=1

𝑚

𝑖=1

} 

(ii) The normalized Hamming distance LS(F, G) is defined as follows: 

       𝐿𝑆
 
(𝐹, 𝐺) =

1

𝑚𝑛
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

𝑛
𝑗=1

𝑚
𝑖=1 } 

=
1

𝑚𝑛
{∑∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑖𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)
| + |𝑓𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)
|

𝑛

𝑗=1

𝑚

𝑖=1

} 

(iii) The Euclidean distance ES (F, G) is defined as follows: 

𝐸𝑆 
(𝐹, 𝐺) =√

1

𝑚
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

2𝑛
𝑗=1

𝑚
𝑖=1 } 

= √
1

𝑚
{∑ ∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
|
2

+ |𝑖𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)

|
2

+ |𝑓𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)

|
2

𝑛
𝑗=1

𝑚
𝑖=1 }. 
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(iv) The normalized Euclidean distance QS (F, G) is defined as follows: 

𝑄𝑆 
(𝐹, 𝐺) =√

1

𝑚𝑛
{∑ ∑ |𝐹(𝑒𝑖)(𝑥𝑗) − 𝐺(𝑒𝑖)(𝑥𝑗)|

2𝑛
𝑗=1

𝑚
𝑖=1 } 

= √
1

𝑚𝑛
{∑∑ |𝑡𝐹(𝑒𝑖)(𝑥𝑗)

− 𝑡𝐺(𝑒𝑖)(𝑥𝑗)
|
2

+ |𝑖𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑖𝐺(𝑒𝑖)(𝑥𝑗)

|
2

+ |𝑓𝐹(𝑒𝑖)(𝑥𝑗)
− 𝑓𝐺(𝑒𝑖)(𝑥𝑗)

|
2𝑛

𝑗=1

𝑚

𝑖=1

} 

Example 20 Consider the two NS sets (F, E) and (G, E) in Example 11. Then we have the following: 

(i) DS (G, H) = 2.8. 

(ii) LS (F, G) = 1.67. 

(iii) ES (F, G) = 1.09. 

(iii) QS (F, G) = 0.544. 

 

The following result is quite obvious. 

Lemma 21 For any two NS sets (F, E) and (G, E) of N (U), the following inequalities hold. 

(i) DS (F, G) ≤ n. 

(ii) LS (F, G) ≤ 1. 

(iii) ES (F, G) ≤√n. 

(iv) QS (F, G) ≤ 1. 

The following theorem can also be easily proved. 

Theorem 22 The functions DS, LS, ES, QS: N (U)           𝑅+ given by Definition 19 respectively 
are metrics, where R+ is the set of all nonnegative numbers. 

6. Distance based similarity measure of NS sets 

We have defined several types of distances between a pair of NS sets (F, E) and (G, E) over the set N (U) 

in the previous section. Now using these distances we can also define similarity measures for NS sets. In the 
following, we now define a similarity measure based on Hamming Distance. 

𝑆′(𝐹, 𝐺) =
1

1 + 𝐷𝑆(𝐹, 𝐺)
 

Also we can define another similarity measure as: 𝑆′(𝐹, 𝐺) = 𝑒−𝛼𝐷𝑆(𝐹,𝐺), where α is a positive real 

number (parameter) called the steepness measure. Similarly using Euclidian distance, similarity 

measure can be defined as follows: 

𝑆′′(𝐹, 𝐺) =
1

1 + 𝐸𝑆(𝐹, 𝐺)
 

Also we can define another similarity measure as: 𝑆′′(𝐹, 𝐺) = 𝑒−𝛼𝐸𝑆(𝐹,𝐺), where α is a positive real 

number (parameter) called the steepness measure. 
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Lemma 23 For a pair of NS sets (𝐹, 𝐸) and (𝐺, 𝐸) over the set 𝑁 (𝑈 ), the following holds: 

(𝑖)   0 ≤  𝑆’ (𝐹, 𝐺)  ≤  1. 

(ii) 𝑆’ (𝐹, 𝐺)  =  𝑆’ (𝐺, 𝐹). 

(iii) 𝑆’(𝐹, 𝐺)  =  1 ⇐⇒ (𝐹,𝐺)  =  (𝐺, 𝐹 ). 

The proof of the above lemma easily follows from definition. 

7. Comparison between 𝑺 (𝑭, 𝑮) and 𝑺’ (𝑭, 𝑮): 

Suppose 𝑆𝑀,𝑁  denote the similarity measure between two NS sets (𝐹, 𝐸)  and (𝐺, 𝐸)  whose 

membership matrices are 𝑀  and  𝑁 .  Now we compare the properties of the two measures of 

similarity of NS sets discussed here. Although most of the properties are common between them 

but some of these are different. Here we have the following: 

(i) 𝐶𝑜𝑚𝑚𝑜𝑛 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠: 𝑆𝑀,𝑁 = 𝑆𝑁,𝑀, 0 ≤  𝑆𝑀,𝑁 ≤  1, 𝑆𝑀,𝑁 =  1 𝑖𝑓 𝑀 =  𝑁. 

(ii) 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝑆𝑀,𝑁 =  1 =⇒  𝑀 =  𝑁. 

8. A real life application 

The process of measuring similarity between two Neutrosophic soft sets can be applied to solve real 

life situations. A particular disease occurs to a patient or not can be easily determined by us using 

similarity measure. To see, consider the following problem: India is a polio-effected country in the 

last century. After taking several measurement by Govt of India, WHO declares India as a Polio-Free 

Nation from 2015. It is seen in the past that several situations like high population, literacy factor, 

socio-economic background, Govt initiative etc. are quite responsible for polio disease. Suppose 𝑈 

be the set of only three elements h1, h2, h3 where h1, h2, h3 denotes symptoms of the high growth of 

polio disease, average growth of polio disease, and low growth of polio disease. 

We have tried to formulate the problem in terms of NS sets. .  Here we list the set of parameters E 

is the factors which are responsible for polio disease. Suppose 𝐸= {𝑒1, 𝑒2, 𝑒3, 𝑒4 } where 𝑒1, 𝑒2, 𝑒3, 𝑒4  

denotes high population, literacy factor, socio-economic background, Govt initiative of a 

Murshidabad District, West Bengal, India. Now consider a NS matrix 𝑃 of a neutrosophic set (𝐹, 𝐸) 

of a polio effected patient 𝑋1based on the data available from a Govt. report [33] as follows: 

1 2 3 4

1

2

3

* ( ) ( ) ( ) ( )
(0.7,0.2,0.3) (0.6,0.1,0.3) (0.8,0.3,0.5) (0.7,0.2,0.4)
(0.6,0.3,0.2) (0.1,0.5,0.5) (0.4,0.3,0.3) (0.4,0.7,0.3)
(0.2,0.6,0.7) (0.2,0.4,0.4) (0,1,0) (0.3,0.2,0.7)

F e F e F e F e
h

P
h
h

 
 
 
 
 
 

 

Here the entry 𝐹 (e1)(h1) in the matrix 𝑃 denotes the positive impact, the uncertainties impact, and 

negative impact of high population to positive growth of polio symptoms respectively. Consider two 

persons Rajibul and Rupam, both live in Bhagabangola village of Murshidabad District but belongs 

to different category. Both of them have polio disease symptoms with some positive, average, low 

growth rate. Let we denote both Rajibul and Rupam’s health condition with two NS set (𝐺, 𝐸) and 

(𝐻, 𝐸) over U whose NS matrices 𝑄, 𝑆 respectively are given below: 
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1 2 3 4

1

2

3

* ( ) ( ) ( ) ( )
(0.8,0.3,0.5) (0.7,0.4,0.3) (0.8,0.6,0.7) (1,0,0)
(0.2,0.5,0.6) (0.1,0.1,0.8) (0.4,0.1,0.5) (0.3,0.3,0.4)

(0,0,0) (0.1,0.3,0.3) (1,1,0) (0,0,0)

F e F e F e F e
h

Q
h
h

 
 
 
 
 
 

 

 

1 2 3 4

1

2

3

* ( ) ( ) ( ) ( )
(0.8,0.4,0.8) (0.6,0.3,0.1) (0.5,0.6,0.5) (0.7,0.2,0.4)

(0,0,0) (0,1,1) (0.3,0.1,0.1) (0.2,0.5,0.4)
(0.2,0.6,0.2) (0.2,0.6,0.6) (0,0,0) (0.4,0.2,0.8)

F e F e F e F e
h

S
h
h

 
 
 
 
 
 

 

After calculating similarity measure, we have 𝑆(𝐹, 𝐺)  =  0.64, 𝑆(𝐹, 𝐻)  =  0.69. From this result we 

can conclude that Rajibul and Rupam both have the chances to be effected by polio disease. Both of 

their symptoms are significantly similar to a natural polio effected person. Beside this, Rupam’s 

condition is more significantly similar than Rajibul condition since𝑆(𝐹, 𝐺)  =  0.64 <  𝑆(𝐹, 𝐻)  =

 0.69. 

9. Conclusion 

To deal with uncertain real life situations, Molodtstov gave the concept of soft set theory in his paper 

[32]. Later on Prof P.K. Maji introduced NSS theory and have shown the properties and application 

of NSS ([26]). In this paper we have defined similarity measure properties of two NS sets and studied 

some of its important properties and applied it in a decision making problem. In future, we will 

study some another applications of similarity measures of two NS sets and will try to solve the 

uncertainty using NS similarity measure technique. One may try to solve many realistic health 

diagnosis problem using the similarity measure technique between NS sets. 
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Abstract: Let ( , )N R I be a Neutrosopic ring corresponding to the classical ring R and 

indeterminate I . In this paper, we introduced the Neutrosophic zero 

rings 0( , )N R I and 0( , )N R I corresponding to the ring R  and the zero ring 0R respectively, and also 

studied structural properties of these Neutrosophic zero rings. Among many properties, it is 

shown that ( , )N R I 
0( , )N R I  and ( , )N R I 

0( , )N R I . Particularly, we prove that 0( , )N R I is 

not a Boolean ring and the characteristics of ( , )N R I and 0( , )N R I are equal. For every classical 

ring R , the Neutrosophic zero ring 0( , )N R I is isomorphic to Neutrosophic zero ring 0
2 ( , )M R I  of 

all 2 2 matrices of the form
( )
(a )

a bI a bI
a bI bI
   

 
   

with entries from ( , )N R I . We also find a necessary 

and sufficient condition for the classical zero rings 0R and Neutrosophic zero ring 0( , )N R I to be 

isomorphic under the following actions r 
r r
r r

 
 

 
 and r sI 

( )
( )

r sI r sI
r sI r sI
   

 
   

. 

Keywords: Neutrosophic rings; Neutrosophic zero rings; Neutrosophic square zero matrices; 

Neutrosophic Boolean rings 

 

 

1. Introduction 

Abstract algebra is largely concerned with the study of abstract sets endowed with one, or, more 

binary operations along with few axioms. In this paper, we consider one of the basic algebraic 

structures known as a ring, called a classical ring. A ring R  ( , , )R   is a non-empty set with two 

binary operations, namely addition (+) and multiplication (  ) defined on R satisfying some natural 

axioms, see [1]. A ring (0)R  is called a trivial ring, otherwise R is called nontrivial. A ring R is 

called commutative if ab ba for all a and b in R . An element u in R is called a unit if there 

exists v in R such that uv  1  vu , where u and v are both multiplicative inverses in R . The set of 

units of R is denoted by ( )U R . However, the set ( )R U R is denoted by Z( )R and called zero-divisors 

of R . For any commutative ring R with unity, we have every non zero elements of R is either unit or, 

zero divisors. Clearly, R  ( )U R  ( )Z R . The Characteristic of R  denoted ( )Char R is the smallest 

nonnegative n such that 1 0n   . If no such n  exists then we define the ( ) 0Char R  . Next, a 

ring R is called cyclic ring if ( , )R  is a cyclic group. Every cyclic ring is commutative and these rings 

have been investigated in [2]. The theory of finite rings occupies a central position in modern 

mathematics and engineering science. Recently, finite rings play a central role in many research 
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areas such as digital image processing, algebraic coding theory, encryption systems, QUAM signals 

and linear coding theory; see [4-7]. 

 The notion of zero rings was considered by Buck [2] in 2004. A zero ring 0R is a 

triplet 0( , , )R   where 0( , )R  is an abelian group and 0a b  for all 0,a b R . Every zero is a 

commutative cyclic ring but a cyclic ring need not be a zero ring. For instance, 6(Z , , ) is a cyclic 

ring but not a zero ring under addition and multiplication modulo 6 . 

 Neutrosophy is a part of philosophical reasoning, introduced by Smarandache in 1980, which 

concentrates the origin, nature and extent of neutralities, comparable to their cooperation with 

particular ideational spectra. Neutrosophy is the premise of Neutrosophic Logic, Neutrosophic 

likelihood, Neutrosophic set and Neutrosophic realities in [8]. Handling of indeterminacy present in 

real-world data is introduced in [9, 10] as Neutrosophy. Neutralities and indeterminacies spoken to 

Neutrosophic Logic have been utilized in the analysis of genuine world and engineering problems. 

In 2004, the creators Vasantha Kanda Swami and Smarandache presented the ideas of Neutrosophic 

arithmetical hypothesis and they were utilized in Neutrosophic mathematical structures and build 

up numerous structures such as Neutrosophic semigroups, groups, rings, fields which are different 

from classical algebraic structures and are presented and analyzed their application to fuzzy and 

Neutrosophic models are developed in [11]. 

  Now we begin our attention to the Neutrosophic ring ( , )N R I , we are considering in this paper.  

The basic study on Neutrosophic rings was given by Vasantha Kandasamy and Smarandache [11], 

and there are many interesting properties of Neutrosophic rings available in the literature, see [12- 

16]. Let I be the indeterminate of the real-world problem with two fundamental properties such 

as 2I  I and 1I  does not exists.  Then generally we define the Neutrosophic 

set ( , )N R I ={a bI : ,a b R , 2 }I I which is a nonempty set of Neutrosophic elements a bI and it is 

generated by a ring R and indeterminate I  under the following Neutrosophic operations.  

(1) ( )a bI  ( )c dI  ( )a c  ( )b d I  and 

(2) ( )a bI ( )c dI  ac  ( )ad bc bd I   

for all a bI , c dI in ( , )N R I . More specifically, the indeterminate I satisfies the following algebraic 

properties. (1) 2I I , (2) 0 0I  and 1I I but 0,1I  , (3) 1I  does not exist with respect to 

Neutrosophic multiplication but I ( 1) I  exists with respect to Neutrosophic addition such 

that I ( I) 0   and I I  , and (4) 2I I I  and I I I  . Recently, Agboola, Akinola and Oyebola 

studied further properties of Neutrosophic rings in [13, 14]. In [15-17], Chalapathi and Kiran 

established relations between units and Neutrosophic units of rings, fields, Neutrosophic rings and 

Neutrosophic fields. However, we have ( , ) 4N R I  for any finite ring R with 1R  . This clears 

that
24 ( , )N R I R  . 

In numerous certifiable circumstances, it is regularly seen that the level of indeterminacy assumes a 

significant job alongside the fulfillment and disappointment levels of the decision-makers in any 

decision making process and Internet clients. Because of some uncertainty or dithering, it might 

important for chiefs to take suppositions from specialists which lead towards a lot of clashing 

qualities with respect to fulfillment, indeterminacy and dis-fulfillment level of choice makers. So as 

to feature the previously mentioned understanding, the authors Abdel-Basset et al. [18-20] built up a 

successful structure which mirrors the truth engaged with any basic decision-making process. In this 
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investigation, a multi-objective nonlinear programming issue has been planned in the assembling 

framework. Another calculation, Neutrosophic reluctant fluffy programming approach, dependent 

on single esteemed Neutrosophic reluctant fuzzy decision set has been proposed which contains the 

idea of indeterminacy reluctant degree alongside truth and lie reluctant degrees of various 

objectives. 

Web of Things associates billions of items and gadgets to outfit a genuine viable open door for 

the enterprises. Fourth industrial and mechanical upset must guarantee proficient correspondence 

and work by thinking about the components of expenses and execution. Transition to the fourth 

industrial and mechanical transformation creates and generates challenges for enterprises. In [21, 

22], the authors recognize the fundamental difficulties influencing the change procedure utilizing 

non-conventional techniques and proposed a hybrid combination between the systematic various 

leveled process as a Neutrosophic criteria decision-making approach for IoT-based ventures and 

furthermore Neutrosophic hypothesis to effectively distinguish and deal with the uncertainty and 

irregularity challenges. 

2. Neutrosophic zero rings of rings  

In this section, we studied Neutrosophic zero rings of various classical rings and presented their 

basic properties with many suitable illustrations and examples. First, the language of Neutrosophic 

element makes it possible to work with indeterminate I  and it relationships much as we work with 

equalities and powers only. Prior to the consideration of Neutrosophic element a bI , the 

notation 1( )a bI   used for reciprocity relationships but it is not applicable for every element 

a and b in the classical ring R . So the introduction of a convenient Neutrosophic multiplication 

notation helped accelerate the development of Neutrosophic theory. For this reason, the 

Neutrosophic mathematical concepts establish solutions to many problems with indeterminacy. 

 In working with Neutrosophic multiplications, we will sometimes need to translate them into 

further Neutrosophic algebraic structures. The following definition is one. 

 

Definition 2.1. Let R be a ring. Then ( , )N R I is called a Neutrosophic zero ring if the product of any 

two Neutrosophic elements of ( , )N R I is 0 , where 0 0 0I  is the Neutrosophic additive identity.  

 For any ring R , there is a Neutrosophic zero ring and is denoted by 0( , )N R I . This statement 

connects the relation ( , )N R I 
0( , )N R I  for every R  (0) . In particular, if R  (0)  

then ( , )N R I (0) and 0( , )N R I  (0)
 . For any ring (0)R  , the actual construction of Neutrosophic 

zero rings 0( , )N R I appear below. If R is not a zero ring, then ( , )N R I  is never a Neutrosophic zero 

ring. This means that, the only Neutrosophic ring ( , )N R I that cannot be described as a 

Neutrosophic zero ring when R  is either finite or infinite. For this reason, the construction of 

Neutrosophic zero rings depends on the collection Neutrosophic matrices and which are up to 

Neutrosophic isomorphism. The next definition deals with these constructions. 

 

Definition 2.2. Let 0
2M ( , )R I be the non-empty subset of 2 2 Neutrosophic matrices 

 2M ( , ) : , , , ( , )
a bI c dI

R I a bI c dI e fI g hI N R I
e fI g hI

    
       

    
. 

Then we define 0
2M ( , )R I as follows 
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 0
2

( )
M ( , ) : ( , )

( )
a bI a bI

R I a bI N R I
a bI a bI

     
    

     
 

and this collection is called Neutrosophic square zero matrices. 

 

Example 2.3. For the ring 2 {0, 1}Z  under addition and multiplication modulo 2 , the Neutrosophic 

ring and corresponding Neutrosophic square matrices are 

2,( ) {0, 1, , 1 }N Z I I I  and 0
2 2

0 0 1 1 1 (1 )
M (Z , ) , , ,

0 0 1 1 1 (1 )
I I I I

I
I I I I

             
         

             
,respectively. 

 To determine the structure of Neutrosophic zero ring 0( , )N R I , we must derive a result for 

determining when an element of 0( , )N R I is a Neutrosophic unit, or, Neutrosophic zero divisor. 

Recall that in a commutative Neutrosophic ring ( , )N R I a non zero Neutrosophic element a bI is 

called a Neutrosophic zero divisor provided there is a non zero Neutrosophic 

element c dI in ( , )N R I such that ( )( ) 0a bI c dI   . No Neutrosophic element of ( , )N R I  can be 

both a Neutrosophic unit and Neutrosophic zero divisor, but there are Neutrosophic rings such as 

(Z, )N I , (Q, )N I , (R, )N I , (C, )N I and (Z[i], )N I ,, with non zero Neutrosophic elements that are 

neither Neutrosophic units nor Neutrosophic zero divisors, , where Z , Q , R , C  and [ ]Z i are ring of 

integers, rationals, real numbers, complex numbers, and Gaussian integers, respectively. However, 

when ( , )N R I is finite, every non zero Neutrosophic elements of ( , )N R I is either Neutrosophic unit, 

or, Neutrosophic zero divisor. In particular, this result is true for (Z , )nN I , (Z Z , )n nN I , 

(Z [x] / (x ), )n
nN I , and (Z [i], )nN I , where Zn , Z Zn n , Z [ ] / ( )n

n x x and Z [ ]n i are finite commutative 

rings with usual notions under modulo n . We develop this fact in Theorem [2.4]. 

Since 0( , )N R I ( , )N R I  and ( , )N R I 
0( , )N R I , it is not surprising that there is a connection 

between the Neutrosophic units in the Neutrosophic zero rings. 

 

Theorem 2.4. For any ring R with unity, we have 0( ( , ) )U N R I is empty. 

Proof. Assume that 0( ( , ) )U N R I is nonempty. Suppose that 0( ( , ) )a bI U N R I  . Then there exists 

some u vI in 0( ( , ) )U N R I  such that ( )( ) 1u vI a bI   . This implies that 2 2 2( ) ( ) 1u vI a bI   , or, it 

is equivalent to 0 1 because 2( ) 0u vI  and 2( ) 0a bI  , a contradiction. So our assumption is not 

true, and hence 0( ( , ) )U N R I  .  

 In general, it is not easy to classify Neutrosophic rings and their corresponding Neutrosophic 

zero rings by determining their orders. For this reason, we must follow a better approach which is 

shown below. 

 

Theorem 2.5. For any Neutrosophic ring ( , )N R I , we have 
0 0

2( , ) ( , )N R I M R I . 

Proof.  Let R be any ring. Then there exists ( , )N R I and 0( , )N R I . Now we want to show 

that 0 0
2( , ) ( , )N R I M R I . For this, we define a map 0 0

2: ( , ) ( , )f N R I M R I by the following relation 

   
( )

( )
(a )

a bI a bI
f a bI

a bI bI
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for every 0( , )a bI N R I  . If 0( , )a bI N R I  , then 2( )a bI  ( )a bI ( )a bI 0 . That is, there 

exists a Neutrosophic matrix
( )
(a )

a bI a bI
a bI bI
   

 
   

in 0
2 ( , )M R I such that 

( )
( )

a bI a bI
a bI a bI
   

 
   

( ) ( )
(a ) (a )

a bI a bI a bI a bI
a bI bI a bI bI
       

   
       

0 0
0 0
 

  
 

, 

 implying that f makes sense. Therefore f is well defined. Because 

0 0
(0)

0 0
f

 
  
 

and ( )
I I

f I
I I

 
  

 
, one can easily verify that f is a Neutrosophic ring 

homomorphism. 

 Now, we show that f is one-one and onto. For every two Neutrosophic 

elements a bI and c dI in 0( , )N R I , we have 

( ) ( )f a bI f c dI  
( ) (c )
(a ) (c )

a bI a bI c dI dI
a bI bI c dI dI
        

    
        

a bI c dI    .  

Consequently, f is one-one, and also the unique part shows f is surjective. Therefore, f is a 

Neutrosophic isomorphism from 0( , )N R I onto 0
2 ( , )M R I . Hence, 0 0

2( , ) ( , )N R I M R I . 

 Recall that ( , )N R I is not equal to 0( , )N R I but the following theorem shows that ( , )N R I is 

equivalent to 0( , )N R I , that is we shall show that there is a one-one correspondence between 

( , )N R I and 0( , )N R I . 

Theorem 2.6. For any ring R , we have ( , )N R I =
0( , )N R I . 

Proof. By the Theorem [2.5], we know that 0 0
2( , ) ( , )N R I M R I . We shall show 

that ( , )N R I =
0( , )N R I . For this, we must show that 0

2 ( , )M R I ( , )N R I . Define a 

map 0
2: ( , ) ( , )M R I N R I   by the connection 

         
( )
(a )

a bI a bI
a bI

a bI bI

    

        
 

for every element
( )
(a )

a bI a bI
a bI bI
   

 
   

in 0
2 ( , )M R I . Every element a bI in N( , )R I has the following 

form
( )
(a )

a bI a bI
a bI

a bI bI

    

         
for some

( )
(a )

a bI a bI
a bI bI
   

 
   

in 0
2 ( , )M R I . Then the map  is 

clearly onto; it is one-one because for every 

0A 
( )
(a )

a bI a bI
a bI bI
   

 
     

, 0B 
( )
( )

c dI c dI
c dI c dI
   

 
   

in 0
2 ( , )M R I , we have

 

   0 0 ( ) ( )
(a ) (a )

a bI a bI a bI a bI
A B

a bI bI a bI bI
   

           
                      

 

          a bI c dI     

          
( ) ( )
(a ) ( )

a bI a bI c dI c dI
a bI bI c dI c dI
        

    
        

 

          0 0A B  . 
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Therefore, the correspondence
( )
(a )

a bI a bI
a bI

a bI bI
   

   
   

 pairs every element in each of two sets 

N( , )R I and 0
2 ( , )M R I with exactly one element of the other set. Hence, N( , )R I  

and 0
2 ( , )M R I contains the same number of elements, and we write this as N( , )R I  = 0

2 ( , )M R I . 

Now because of the Theorem [2.5], we conclude that 0N( , )R I  = N( , )R I . 

This is all somewhat vague; of course, let us look at a concrete example. 

 

Example 2.7. For the ring 2 {0, 1}Z  , the correspondence from 2N(Z , )I onto 0
2 2(Z , )M I with actions 

given by the following arrow diagrams: 

 
0 0

0
0 0
 

  
 

, 
1 1

1
1 1

 
  

 
, 

I I
I

I I
 

  
 

and
1 (1 )

1
1 (1 )

I I
I

I I
   

   
   

. 

These actions illustrate that 2N(Z , ) 4I  , 0
2 2(Z , ) 4M I  , and hence 0

2N(Z , ) 4I  . This shows 

that 0
2 2N(Z , ) N(Z , )I I but 0

2 2N(Z , ) N(Z , )I I . 

We now change focus somewhat take up the study of Neutrosophic isomorphism 

between N( , )R I and 0N( , )R I . Particularly we observe that nothing is known of Neutrosophic 

isomorphism between N( , )R I and 0N( , )R I . For instance, the Neutrosophic ring 2N(Z , )I  and 

Neutrosophic zero ring 0
2N(Z , )I are not isomorphic with respect to Neutrosophic isomorphism 

because 2I I in 2N(Z , )I but 

2 0 0
0 0

I I
I I

   
   

   
in 0

2N(Z , )I . This observation takes place according 

to Theorem [2.8]. 

 

Theorem 2.8. Let R be any non-trivial ring. Then, N( , )R I is not isomorphic to 0N( , )R I . 

Proof.  Assume that the element 0A 
( )
(a )

a bI a bI
a bI bI
   

 
   

 0 in 0
2 ( , )M R I satisfies the 

condition 0 2( )A  0 , where a bI  0  . Suppose that the Neutrosophic 

mapping g : 0
2 ( , )M R I  ( , )N R I is a Neutrosophic isomorphism. If 0(A )a bI g  , then 
2 0 2( ) ( )a bI g A    2 0 2( ) (( ) )a bI g A   

     2( ) (0)a bI g   , since 0 2( )A  0  

     2( ) 0, (0) 0a bI g    . 

But 2( ) 0a bI  in ( , )N R I implies that 0a bI  , giving 0 ( )
0

(a )
a bI a bI

A
a bI bI
   

  
   

 because g is 

one-one. This is a contradiction to the fact that 0 0A  , so no such isomorphism g can exist 

between 0
2 ( , )M R I and ( , )N R I . But 0 0

2( , ) ( , )N R I M R I , and hence N( , )R I is not isomorphic 

to 0N( , )R I . 

 

Theorem 2.9. Let R  be a finite ring with unity. Then, 0( ( , ) )Char N R I  ( )Char R . 
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Proof. Suppose R is finite and1 R . Then, by the definition of the characteristic of a ring, 

( )Char R n  (1)o n in the additive group ( , )R   

                      1 0n    in the additive group ( , )R   

                  1 0n   , ( 1) 0n    in the additive group ( , )R   

  
1 1 1 ( 1) 0 0
1 1 1 ( 1) 0 0

n n
n

n n
        

       
        

  

                      0
2(M ( , ) )Char R I n  

                      0(N( , ) )Char R I n . 

A ring R is called Boolean ring if 2a a for all a in R . Every finite Boolean ring with unity is 

isomorphic to the ring 2
nZ , where 2

nZ is the Cartesian product of n copies of the ring 2 {0, 1}Z  with 

respect to addition and multiplication modulo 2 . Therefore, 2( , )nN Z I is a Neutrosophic Boolean 

ring with the property that 4
2( , ) 2n nN Z I  . Now we move on to verify that the structure 

of 0
2( , )nN Z I is Neutrosophic Boolean ring, or, not. 

 

Theorem 2.10. Every Neutrosophic zero ring of a Boolean ring is not a Neutrosophic Boolean ring. 

Proof. Suppose 1n  is a positive integer. By the Theorem [2.5], we know that 0
2( , )nN Z I is 

isomorphic to the Neutrosophic zero ring 0
2 2M ( , )nZ I . In anticipation of a contradiction, let us 

assume that 0
2 2M ( , )nZ I is a Neutrosophic Boolean ring, then for any 0a bI    in 0

2( , )nN Z I such 

that
 

 

 
 

 
is in 0

2 2M ( , )nZ I . Under the condition of Neutrosophic Boolean ring, we have 

 

2
   

   

    
   

    

     

     

      
     

      
 

             
0 0
0 0

 

 

   
    

   
 

             0a bI    . 

This is not true. Hence, we conclude that every Neutrosophic zero ring of a Boolean ring is not a 

Neutrosophic Boolean ring.  

3. Neutrosophic zero rings of zero rings 

This section introduces Neutrosophic Zero rings associated with zero rings. First, we recall 

that 0R is a zero ring if the product any two elements in 0R is zero. If 0 (0)R  then clearly 0 2R   

and 0R is never a field structure. By the Buck’s [2] research in 2004, for any ring R with 0R R , the 

zero rings 0R  isomorphic to the zero rings of all 2 2 matrices of the form 

 0
2 ( ) :

r r
M R r R

r r
   

   
   

 

with the same cardinality of R , that is,

 

0
2M ( )R R . For example, the zero ring 
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0
2 3

0 0 1 1 2 2
(Z ) , ,

0 0 1 1 2 2
M

        
       

        
 

with an order 3 under usual matrix addition and multiplication of modulo 3 . This observation 

concludes that, if R is not a zero ring then ( , )N R I is never a zero ring. However, the following 

definition gives a concise way of referring to the definition of Neutrosophic zero rings associated 

with zero rings. 

Definition 3.1. If 0R is a zero ring, then 0 0( , ) {a bI : , }N R I a b R   is called Neutrosophic zero ring 

corresponding to the zero ring 0R . 

Example 3.2. Suppose that 0 {0, 3, 6}R  is a zero ring under addition and multiplication modulo 9 . 

Then    

 0( , ) {0,3, 6,3 , 6 , 3 3 , 3 6 , 6 3 , 6 6 }N R I I I I I I I      and  

0 0( , )N R I 
0 0 3 3

,
0 0 3 3

    
   

   
,

6 6 3 3
, ,

6 6 3 3
I I
I I

    
   

    

6 6 3 3 (3 3 )
,

6 6 3 3 (3 3 )
I I I I
I I I I

      
   

      
, 

3 6 (3 6 )
3 3 (3 6 )

I I
I I

   
 

   
,

6 3 (6 3 )
,

6 3 (6 3 )
I I
I I

   
 

   

6 6 (6 6 )
6 6 (6 6 )

I I
I I

   
 

    
 

Properties of 0( , )N R I . 

(1) 0( , )N R I is generated by 0R and I . 

(2) 0( , )N R I is a Neutrosophic square zero ring. 

(3) 
20 0( , )N R I R . 

(4) 0 0( , ) ( , )N R I N R I . 

(5) 0 0 0( , ) ( , )N R I N R I . 

Theorem 3.3. For any finite zero ring 0R , the following equality holds good 

20 0( , )N R I R . 

Proof.  The Cartesian product of 0R is defined by 0 0R R  0{( , ) : , }a b a b R . Now define the 

map 0 0 0: ( , )R R N R I   by the relation (( , ))a b a bI   for every 0 0( , )a b R R  .   

For any two elements ( , )a b and (c, )d  in the zero ring 0 0R R , we have 

(( , )) ((c, ))a b d  a bI c dI     

       , ca b d   , since 0I  . 

           ( , ) (c, )a b d  .   

Thus the mapping  is a well-defined one-one function. Also  is onto function, because for 

any 0 0( )R R   , there exists 0 0R R   such that ( )   . Therefore, the map 
0 0 0: ( , )R R N R I   is one-one correspondence from 0 0R R

 

onto 0( , )N R I ,  and clear that 

 0( , )N R I  0 0R R 
20R . 

 Recall that ( )U R and ( ( , ))U N R I denotes the set of all units and Neutrosophic units 

of R and N( , )R I , respectively, see [17]. Note that, if at least one of ( )U R  and ( ( , ))U N R I is non- 

empty, then there is nothing to the existence of Neutrosophic zero ring. The next hurdle that stands 
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in our way is to establish that a relation between ( ( , ))U N R I and its corresponding Neutrosophic 

zero ring. 

  

Theorem 3.4. If the set ( ( , ))U N R I  , then there is a Neutrosophic zero ring with at least four 

elements. 

Proof. There is no harm in assuming that 1R  , and automatically N( , ) 4R I  is true. 

Suppose ( ( , ))U N R I  . Then there are at least two elements in ( ( , ))U N R I . If u vI and u v I   are 

the two distinct elements in ( ( , ))U N R I , then, bearing in mind that u , u  , v , v  are elements 

in ( )U R . As a result, the Neutrosophic product ( )u vI ( )u v I  is given by 

( )u vI ( )u v I  ( )uu uv vu vv I       . 

It is never zero because ( )uu U R . This contraposition proves our result. 

 Theorem [3.4] indicates that every commutative Neutrosophic zero ring is without unity. For 

this fact, the following theorem is essential in our paper. 

 

Theorem 3.5. The Neutrosophic ring ( , )N R I is a Neutrosophic zero ring if and only if R is 

isomorphic to zero ring. In particular, 
0 0( , ) ( , )R R N R I N R I   . 

Proof.  Suppose R is isomorphic to a zero ring 0R . Then there exists a Neutrosophic 

ring 0( , )N R I which is also Neutrosophic zero ring because 

 0 0 0 0
2 2( ) ( , ) ( ( ) , )R M R N R I N M R I    

under the following actions 

( )
( )

r r r sI r sI
r r sI

r r r sI r sI
      

      
        

 

4. Conclusions 

In this work, another Neutrosophic Algebraic structure, for the Neutrosophic speculation, in 

view of the traditional Ring Theory was proposed. This study understands the new structure basis 

in Neutrosophic hypothesis which builds up another idea for the comparison of two ring structures 

dependent on the use of the indeterminacy idea and the structural information. The Neutrosophic 

zero ring structure was characterized utilizing the identical classes of traditional zero rings, to be 

equipped for choosing any Neutrosophic element of the class. Additionally, we built up a 

connection between the various zero rings and matrix zero 

rings 0R , 0
2 ( )M R ,, 0

2 ( , )M R I , 0( , )N R I , 0( , )N R I and 0
2( ( ) , )N M R I such as 0( , )N R I 

0
2 ( , )M R I  and 

0 0
2 ( )R M R 

0( , )N R I 
0

2( ( ) , )N M R I . The future work will recommend a Neutrosophic square 

zero elements and Neutrosophic square zero matrices to speak to all Neutrosophic mathematical 

frameworks, and apply the properties of these frameworks for identifying the total number of 

Neutrosophic zero subrings and Neutrosophic zero ideals. 
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𝐴( 𝐴(

Abstract: In this paper, we study the new concept of Pythagorean neutrosophic set with T and F as
dependent neutrosophic components [PNS]. Pythagorean neutrosophic set with T and F as dependent

neutrosophic components [PNS] is introduced as a generalization of neutrosophic set (In neutrosophic 

sets, there are three special cases, here we take one of the special cases. That is, membership and 

non-membership degrees are dependent components and indeterminacy is independent) and 

Pythagorean fuzzy set. In PNS sets, membership, non-membership and indeterminacy degrees are 

gratifying the condition    0 ≤  (𝑢𝐴(𝑥))
2 

+ (𝜁 𝑥))
2 

+ (𝑣𝐴(𝑥))
2 

≤ 2 instead of 𝑢𝐴(𝑥) + 𝜁 𝑥) + 𝑣𝐴(𝑥) 
> 2  as in neutrosophic sets. We investigate the basic operations of PNS sets. Also, the correlation 

measure of PNS set is proposed and proves some of their basic properties. The concept of this correlation 

measures of PNS set is the extension of correlation measures of Pythagorean fuzzy set and neutrosoph-

ic set. Then, using correlation of PNS set measure, the application of medical diagnosis is given. 

Keywords: Pythagorean fuzzy set, Pythagorean Neutrosophic set with T and F as dependent

neutrosophic components [PNS], Correlation measure and Medical diagnosis. 

Introduction 

Fuzzy sets were firstly initiated by L.A.Zadeh [36] in 1965. Zadeh’s idea of fuzzy set evolved as a new 

tool having the ability to deal with uncertainties in real-life problems and discussed only membership 

function. After the extensions of fuzzy set theory Atanassov [7] generalized this concept and introduced a 

new set called intuitionistic fuzzy set (IFS) in 1986, which can be describe the non-membership grade of 

an imprecise event along with its membership grade under a restriction that the sum of both membership 

and non-membership grades does not exceed 1. IFS has its greatest use in practical multiple attribute 

decision making problems.In some practical problems.In some practical problems, the sum of 

membership and non-membership degree to which an alternative satisfying attribute provided by 

decision maker(DM) may be bigger than 1.  

      Yager [30] was decided to introduce the new concept known as Pythagorean fuzzy sets. 

Pythagorean fuzzy sets has limitation that their square sum is less than or equal to 1. IFS was failed to 

deal with indeterminate and inconsistent information which exist in beliefs system, therefore, 

Smarandache [22] in 1995 introduced new concept known as neutrosophic set(NS)  which generalizes 
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fuzzy sets and intuitionistic fuzzy sets and so on. A neutrosophic set includes truth membership, falsity 

membership and indeterminacy membership. 

    In 2006, F.Smarandache introduced, for the first time, the degree of dependence (and 

consequently the degree of independence) between the components of the fuzzy set, and also between the 

components of the neutrosophic set. In 2016, the refined neutrosophic set was generalized to the degree 

of dependence or independence of subcomponents [22]. In neutrosophic set [22], if truth membership and 

falsity membership are 100% dependent and indeterminacy is 100% independent, that is   0 ≤ 𝑢𝐴(𝑥) +

𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 2 .  Sometimes in real life, we face many problems which cannot be handled by using 

neutrosophic for example when   𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) > 2. In such condition, a neutrosophic set has no 

ability to obtain any satisfactory result. To state this condition, we give an example: the truth 

membership, falsity membership and indeterminacy values are 
8

10
,

5

10
 𝑎𝑛𝑑 

9

10
 respectively. This satisfies 

the condition that their sums exceeds 2 and are not presented to neutrosophic set. So, In Pythagorean 

neutrosophic set with T and F are dependent neutrosophic components [PNS]   of condition is as their 

square sum does not exceeds 2. Here, T and F are dependent neutrosophic components and we make 

𝑢𝐴(𝑥), 𝑣𝐴(𝑥)𝑎𝑠 Pythagorean, then (𝑢𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))
2

≤ 1 with 𝑢𝐴(𝑥), 𝑣𝐴(𝑥) 𝑖𝑛 [0,1].  If 𝜁𝐴(𝑥)  is an

Independent from them, then 0 ≤ 𝜁𝐴(𝑥) ≤ 1. Then    0 ≤   (𝑢𝐴(𝑥))
2

+ (𝜁𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))
2

≤ 2,   with

𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) 𝑖𝑛 [0,1].   We consider in general the degree of dependence 

between  𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) 𝑖𝑠 1 , hence 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) ≤ 3 − 1 = 2.     

      Correlation coefficients are beneficial tools used to determine the degree of similarity 

between objects. The importance of correlation coefficients in fuzzy environments lies in the fact that 

these types of tools can feasibly be applied to problems of pattern recognition, MADM, medical diagnosis 

and clustering, etc.                       In other research, Ye[33] proposed three vector similarity measure for 

SNSs, an instance of SVNS and INS, includingthe Jaccard, Dice, and cosine similarity measures for SVNS 

and INSs, and applied them to multi-criteria decision-making problems with simplified neutrosophic 

information. Hanafy et al. [16] proposed the correlation coefficients of neutrosophic sets and studied 

some of their basic properties. Based on centroid method, Hanafy et al. [17], introduced and studied the 

concepts of correlation and correlation coefficient of neutrosophic sets and studied some of their 

properties.  

      Recently Bromi and Smarandache defined the Haudroff distance between neutrosophic sets and 

some similarity measures based on the distance such as; set theoretic approach and matching function to 

calculate the similarity degree between neutrosophic sets. In the same year, Broumi and Smarandache 

[11] also proposed the correlation coefficient between interval neutrosphic sets.  

      In this paper, we have to study the concept of Pythagorean neutrosophic set with T and F are 

neutrosophic components and also define the correlation measure of Pythagorean neutrosophic set with 

T and F are dependent neutrosophic components [PNS] and prove some of its properties. Then, using 

correlation of Pythagorean neutrosophic fuzzy set with T and F are dependent neutrosophic components 

[PNS] measure, the application of medical diagnosis is given. 

Preliminaries 

Definition 2.1 [1] Let E be a universe. An intuitionistic fuzzy set A on E can be defined as follows: 

𝐴 = {< 𝑥, 𝑢𝐴(𝑥), 𝑣𝐴(𝑥) >: 𝑥 ∈ 𝐸} 

Where 𝑢𝐴: 𝐸 → [0,1] 𝑎𝑛𝑑 𝑣𝐴: 𝐸 → [0,1]  such that 0 ≤ 𝑢𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1  for any 𝑥 ∈ 𝐸.  Where, 𝑢𝐴(𝑥)  and 

𝑣𝐴(𝑥) is the degree of membership and degree of non-membership of the element x, respectively. 
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Definition 2.2 [18, 24] 

Let X be a non-empty set and I the unit interval [0, 1]. A Pythagorean fuzzy set S is an object having the 

form 𝐴 = {(𝑥, 𝑢𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋} where the functions 𝑢𝐴: 𝑋 → [0,1] 𝑎𝑛𝑑 𝑣 𝐴: 𝑋 → [0,1]  denote respectively 

the degree of membership and degree of non-membership of each element 𝑥 ∈ 𝑋 to the set P, and 0 ≤

(𝑢𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))2 ≤ 1 for each 𝑥 ∈ 𝑋.

Definition 2.3[15] Let X be a non-empty set (universe). A neutrosophic set A on X is an object of the form:

𝐴 = {(𝑥, 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋}, 

Where 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)  ∈ [0,1], 0 ≤ 𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑋.  𝑢𝐴(𝑥) is the degree of 

membership, 𝜁𝐴(𝑥)  is the degree of inderminancy and 𝑣𝐴(𝑥) is the degree of non-membership. Here 

𝑢𝐴(𝑥) 𝑎𝑛𝑑 𝑣𝐴(𝑥) are dependent components and 𝜁𝐴(𝑥) is an independent components. 

Definition 2.4  Let X be a nonempty set and I the unit interval [0,1]. A neutrosophic set A and B of the 

form                    𝐴 = {(𝑥, 𝑢𝐴 (𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥)): 𝑥 ∈ 𝑋} and   B = {(𝑥, 𝑢𝐵 (𝑥), 𝜁𝐵(𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}.     Then 

1) 𝐴𝐶 = {(𝑥, 𝑣𝐴(𝑥), 𝜁𝐴(𝑥), 𝑢𝐴(𝑥)): 𝑥 ∈ 𝑋}

2) 𝐴 ∪ 𝐵 = {(𝑥, max(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , min(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , min (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥))): 𝑥 ∈ 𝑋}

3) 𝐴 ∩ 𝐵 = {(𝑥, min(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , max(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , max (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}

3. Pythagorean Neutrosophic set with T and F are dependent neutrosophic components [PNS]:

Definition 3.1 Let X be a non-empty set (universe). A  Pythagorean neutrosophic set with T and F are 

dependent neutrosophic components [PNS] A on X is an object of the form 𝐴 =

{(𝑥, 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋}, 

Where 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)  ∈ [0,1], 0 ≤ (𝑢𝐴(𝑥))
2

+ (𝜁𝐴(𝑥))
2

+ (𝑣𝐴(𝑥))
2

≤ 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑋.  𝑢𝐴(𝑥)  is the

degree of membership, 𝜁𝐴(𝑥) is the degree of inderminancy and 𝑣𝐴(𝑥) is the degree of non-membership 

.Here 𝑢𝐴(𝑥) 𝑎𝑛𝑑 𝑣𝐴(𝑥) are dependent components and 𝜁𝐴(𝑥) is an independent components. 

Definition 3.2 Let X be a nonempty set and I the unit interval [0, 1]. A Pythagorean neutrosophic set with 

T and F are dependent neutrosophic components [PNS] A and B of the form 

 𝐴 = {(𝑥, 𝑢𝐴 (𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥)): 𝑥 ∈ 𝑋} and  B = {(𝑥, 𝑢𝐵 (𝑥), 𝜁𝐵(𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}.  Then 

1) 𝐴𝐶 = {(𝑥, 𝑣𝐴(𝑥), 𝜁𝐴(𝑥), 𝑢𝐴(𝑥)): 𝑥 ∈ 𝑋}

2) 𝐴 ∪ 𝐵 = {(𝑥, max(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , max(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , min (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥))): 𝑥 ∈ 𝑋}

3) 𝐴 ∩ 𝐵 = {(𝑥, max(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) , max(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) , min (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}

Definition 3.3 Let X be a nonempty set and I the unit interval [0, 1]. A Pythagorean neutrosophic set with 

T and F are dependent neutrosophic components [PNS] A and B of the form 

 𝐴 = {(𝑥, 𝑢𝐴 (𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥)): 𝑥 ∈ 𝑋} and   B = {(𝑥, 𝑢𝐵 (𝑥), 𝜁𝐵(𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋}.   

Then the correlation coefficient of A and B 

𝜌(𝐴, 𝐵) =
𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)
   (1) 
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𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶(𝐴, 𝐴) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶(𝐵, 𝐵) = ∑ ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

Preposition 3.4 The defined correlation measure between PNS A and PNS B satisfies the following 

properties 

(i) 0 ≤  𝜌(𝐴, 𝐵) ≤ 1 

(ii) 𝜌(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵 

(iii) 𝜌(𝐴, 𝐵) =  𝜌(𝐵, 𝐴). 

Proof: 

(i) 0 ≤  𝜌(𝐴, 𝐵) ≤ 1 

As the membership, inderminate and non-membership functions of the PNS lies between 0 and 1,  𝜌(𝐴, 𝐵) 

also lies between 0 and 1. 

We will prove   𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

= ((𝑢𝐴 (𝑥1))
2

. (𝑢𝐵(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐵(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐵(𝑥1))
2

) +

((𝑢𝐴 (𝑥2))
2

. (𝑢𝐵(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐵(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐵(𝑥2))
2

) + ⋯ +

((𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐵(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐵(𝑥𝑛))
2

)

By Cauchy-Schwarz inequality,  (𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛)2 ≤ (𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2). (𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2),

where (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛) ∈ 𝑅𝑛  𝑎𝑛𝑑  (𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛) ∈ 𝑅𝑛, we get

(𝐶(𝐴, 𝐵))
2

  =   ((𝑢𝐴 (𝑥1))
4

+ (𝜁𝐴 (𝑥1))
4

+ (𝑣𝐴 (𝑥1))
4

) +  ((𝑢𝐴 (𝑥2))
4

+ (𝜁𝐴 (𝑥2))
4

+   (𝑣𝐴 (𝑥2))
4

) +

… + ((𝑢𝐴 (𝑥𝑛))
4

+ (𝜁𝐴 (𝑥𝑛))
4

+ (𝑣𝐴 (𝑥𝑛))
4

)

× ((𝑢𝐵(𝑥1))
4

+ (𝜁𝐵(𝑥1))
4

+ (𝑣𝐵(𝑥1))
4

) +  ((𝑢𝐵(𝑥2))
4

+  (𝜁𝐵(𝑥2))
4

+

(𝑣𝐵(𝑥2))
4

) + ⋯ +  ((𝑢𝐵(𝑥𝑛))
4

+  (𝜁𝐵(𝑥𝑛))
4

+ (𝑣𝐵(𝑥𝑛))
4

)

= ((𝑢𝐴 (𝑥1))
2

. (𝑢𝐴(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐴(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐴(𝑥1))
2

)

+ ((𝑢𝐴 (𝑥2))
2

. (𝑢𝐴(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐴(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐴(𝑥2))
2

) + ⋯ +
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((𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐴(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐴(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐴(𝑥𝑛))
2

) ×

((𝑢𝐵(𝑥1))
2

(𝑢𝐵(𝑥1))
2

+  (𝜁𝐵(𝑥1))
2

(𝜁𝐵(𝑥1))
2

+ (𝑣𝐵(𝑥1))
2

(𝑣𝐵(𝑥1))
2

) +

((𝑢𝐵(𝑥2))
2

(𝑢𝐵(𝑥2))
2

+ (𝜁𝐵(𝑥2))
2

(𝜁𝐵(𝑥2))
2

+  (𝑣𝐵(𝑥2))
2

 (𝑣𝐵(𝑥2))
2

) + ⋯ +

((𝑢𝐵(𝑥𝑛))
2

(𝑢𝐵(𝑥𝑛))
2

+ (𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐵(𝑥𝑛))
2

(𝑣𝐵(𝑥𝑛))
2

)

    = 𝐶(𝐴, 𝐴) × 𝐶(𝐵, 𝐵). 

Therefore, (𝐶(𝐴, 𝐵))
2

≤ 𝐶(𝐴, 𝐴) × 𝐶(𝐵, 𝐵) and thus 𝜌(𝐴, 𝐵) ≤ 1.

Hence we obtain the following propertity 0 ≤  𝜌(𝐴, 𝐵) ≤ 1 

(ii) 𝜌(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵 

 Let the two PNS A and B be equal (i.e A = B). Hence for any 

   𝑢𝐴(𝑥𝑖) = 𝑢𝐵(𝑥𝑖), 𝜁𝐴(𝑥𝑖) = 𝜁𝐵(𝑥𝑖) and  𝑣𝐴(𝑥𝑖) = 𝑣𝐵(𝑥𝑖), 

Then   𝐶(𝐴, 𝐴) = 𝐶(𝐵, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)𝑛
𝑖=1

And     𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

= ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

= 𝐶(𝐴, 𝐴) 

Hence 

   𝜌(𝐴, 𝐵) =
𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)

 =
𝐶(𝐴, 𝐴)

√𝐶(𝐴, 𝐴). 𝐶(𝐴, 𝐴)
= 1 

Let the 𝜌(𝐴, 𝐵) = 1.Then, the unite measure is possible only if 

𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)
= 1 

This refer that 𝑢𝐴(𝑥𝑖) = 𝑢𝐵(𝑥𝑖), 𝜁𝐴(𝑥𝑖) = 𝜁𝐵(𝑥𝑖) and 𝑣𝐴(𝑥𝑖) = 𝑣𝐵(𝑥𝑖), 

for all i. Hence A = B. 

(iii) If 𝜌(𝐴, 𝐵) = 𝜌(𝐵, 𝐴), it obvious that 

𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶𝑁𝑃𝐹𝑆(𝐵, 𝐵)
=

𝐶(𝐴, 𝐵)

√𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)
= 𝜌(𝐵, 𝐴) 

as 
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𝐶(𝐴, 𝐵) = ∑ ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

= ∑ ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

      𝐶(𝐵, 𝐴) 

Hence the proof. 

Definition 3.5 

Let A and B be two PNSs, then the correlation coefficient is defined as 

𝜌′(𝐴, 𝐵) =
𝐶(𝐴, 𝐵)

𝑚𝑎𝑥{𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵)}
 (2)

Theorem 3.6 

The defined correlation measure between PNS A and PNS B satisfies the following properties 

(i) 0 ≤  𝜌′(𝐴, 𝐵) ≤ 1 

(ii) 𝜌′(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵 

(iii) 𝜌′(𝐴, 𝐵) =  𝜌′(𝐵, 𝐴). 

Proof: The property (i) and (ii) is straight forward, so omit here. Also 𝜌′(𝐴, 𝐵) ≥ 0 is evident. We now 

prove only 𝜌′(𝐴, 𝐵) ≤ 1. 

 Since Theorem 3.4, we have (𝐶(𝐴, 𝐵))2 ≤ 𝐶(𝐴, 𝐴). 𝐶(𝐵, 𝐵). Therefore, 𝐶(𝐴, 𝐵) ≤ 𝑚𝑎𝑥{𝐶(𝐴, 𝐴), 𝐶(𝐵, 𝐵)} and 

thus 𝜌′(𝐴, 𝐵) ≤ 1. 

However, in many practical situations, the different set may have taken different weights, and thus, 

weight 𝜔𝑖 of the element 𝑥𝑖 ∈ 𝑋 (𝑖 = 1,2, … , 𝑛) should be taken into account. In the following, we develop 

a weighted correlation coefficient between PNSs. Let 𝜔 = {𝜔1, 𝜔2, … , 𝜔𝑛} be the weight vector of the 

elements 𝑥𝑖(𝑖 = 1,2, … . , 𝑛)  with 𝜔𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝜔𝑖 = 1,𝑛
𝑖=1  then we have extended the above correlation 

coefficient 𝜌(𝐴, 𝐵) 𝑎𝑛𝑑 𝜌′(𝐴, 𝐵) to weighted correlation coefficient as follows: 

𝜌′′ =
𝐶𝜔(𝐴, 𝐵)

√𝐶𝜔(𝐴, 𝐴). 𝐶𝜔(𝐵, 𝐵)
   (3)

𝐶𝜔(𝐴, 𝐵) = ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶𝜔(𝐴, 𝐴) = ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

)

𝑛

𝑖=1

𝐶𝜔(𝐵, 𝐵) = ∑ 𝜔𝑖 ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1
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And 

𝜌′′′ =
𝐶𝜔(𝐴, 𝐵)

𝑚𝑎𝑥{𝐶𝜔(𝐴, 𝐴). 𝐶𝜔(𝐵, 𝐵)}
  (4)

 =
∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))

2
. (𝑢𝐵(𝑥𝑖))

2
+ (𝜁𝐴 (𝑥𝑖))

2
. (𝜁𝐵(𝑥𝑖))

2
+ (𝑣𝐴 (𝑥𝑖))

2
. (𝑣𝐵(𝑥𝑖))

2
)𝑛

𝑖=1

𝑚𝑎𝑥 {
∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))

2
. (𝑢𝐴(𝑥𝑖))

2
+ (𝜁𝐴 (𝑥𝑖))

2
. (𝜁𝐴(𝑥𝑖))

2
+ (𝑣𝐴 (𝑥𝑖))

2
. (𝑣𝐴(𝑥𝑖))

2
)𝑛

𝑖=1 ,

∑ 𝜔𝑖 ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

}

It can be easy to verify that if 𝜔 = (
1

𝑛
,

1

𝑛
, … ,

1

𝑛
)

𝑇

, then Equation  (3) and (4)  reduce that (1) and (2), respectively.

Theorem 3.7 

Let 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  be the weight vector of 𝑥𝑖(𝑖 = 1,2, … . , 𝑛)  with 𝜔𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝜔𝑖 =𝑛
𝑖=1

1,  then the weighted correlation coefficient between the PNSs A and B defined by Equation (3) satisfies: 

 (i) 0 ≤  𝜌′′(𝐴, 𝐵) ≤ 1 

(ii) 𝜌′′(𝐴, 𝐵) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 = 𝐵 

(iii) 𝜌′′(𝐴, 𝐵) =  𝜌′′(𝐵, 𝐴). 

Proof: 

   The property (i) and (ii) are straight forward so omit here. Also  𝜌′′(𝐴, 𝐵) ≥ 0 is evident so we need to 

show only  𝜌′′(𝐴, 𝐵) ≤ 1. 

Since, 

𝐶𝜔(𝐴, 𝐵) = ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)

𝑛

𝑖=1

= 𝜔1 ((𝑢𝐴 (𝑥1))
2

. (𝑢𝐵(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐵(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐵(𝑥1))
2

) +

𝜔2  ((𝑢𝐴 (𝑥2))
2

. (𝑢𝐵(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐵(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐵(𝑥2))
2

) + ⋯ +

𝜔𝑛 ((𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐵(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐵(𝑥𝑛))
2

)

= (√𝜔1(𝑢𝐴 (𝑥1))
2

. √𝜔1(𝑢𝐵(𝑥1))
2

+ √𝜔1(𝜁𝐴 (𝑥1))
2

. √𝜔1(𝜁𝐵(𝑥1))
2

+ √𝜔1(𝑣𝐴 (𝑥1))
2

. √𝜔1(𝑣𝐵(𝑥1))
2

)

+  (√𝜔2(𝑢𝐴 (𝑥2))
2

. √𝜔2(𝑢𝐵(𝑥2))
2

+ √𝜔2(𝜁𝐴 (𝑥2))
2

. √𝜔2(𝜁𝐵(𝑥2))
2

+ √𝜔2(𝑣𝐴 (𝑥2))
2

. √𝜔2(𝑣𝐵(𝑥2))
2

) + ⋯ +

(√𝜔𝑛(𝑢𝐴 (𝑥𝑛))
2

. √𝜔𝑛(𝑢𝐵(𝑥𝑛))
2

+ √𝜔𝑛(𝜁𝐴 (𝑥𝑛))
2

. √𝜔𝑛(𝜁𝐵(𝑥𝑛))
2

+

√𝜔𝑛(𝑣𝐴 (𝑥𝑛))
2

. √𝜔𝑛(𝑣𝐵(𝑥𝑛))
2

)

By using Cauchy-Schwarz inequality,   we get 
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(𝐶𝜔(𝐴, 𝐵))
2

  ≤   (𝜔1(𝑢𝐴 (𝑥1))
2

. (𝑢𝐴(𝑥1))
2

+ (𝜁𝐴 (𝑥1))
2

. (𝜁𝐴(𝑥1))
2

+ (𝑣𝐴 (𝑥1))
2

. (𝑣𝐴(𝑥1))
2

) +

(𝜔2(𝑢𝐴 (𝑥2))
2

. (𝑢𝐴(𝑥2))
2

+ (𝜁𝐴 (𝑥2))
2

. (𝜁𝐴(𝑥2))
2

+ (𝑣𝐴 (𝑥2))
2

. (𝑣𝐴(𝑥2))
2

) +

… + (𝜔𝑛(𝑢𝐴 (𝑥𝑛))
2

. (𝑢𝐴(𝑥𝑛))
2

+ (𝜁𝐴 (𝑥𝑛))
2

. (𝜁𝐴(𝑥𝑛))
2

+ (𝑣𝐴 (𝑥𝑛))
2

. (𝑣𝐴(𝑥𝑛))
2

) ×

(𝜔1(𝑢𝐵(𝑥1))
2

(𝑢𝐵(𝑥1))
2

+ (𝜁𝐵(𝑥1))
2

(𝜁𝐵(𝑥1))
2

+ (𝑣𝐵(𝑥1))
2

(𝑣𝐵(𝑥1))
2

) +

(𝜔2(𝑢𝐵(𝑥2))
2

(𝑢𝐵(𝑥2))
2

+ (𝜁𝐵(𝑥2))
2

(𝜁𝐵(𝑥2))
2

+  (𝑣𝐵(𝑥2))
2

 (𝑣𝐵(𝑥2))
2

)

+ ⋯ + (𝜔𝑛(𝑢𝐵(𝑥𝑛))
2

(𝑢𝐵(𝑥𝑛))
2

+  (𝜁𝐵(𝑥𝑛))
2

(𝜁𝐵(𝑥𝑛))
2

+ (𝑣𝐵(𝑥𝑛))
2

(𝑣𝐵(𝑥𝑛))
2

)

= ∑ 𝜔𝑖 ((𝑢𝐴 (𝑥𝑖))
2

. (𝑢𝐴(𝑥𝑖))
2

+ (𝜁𝐴 (𝑥𝑖))
2

. (𝜁𝐴(𝑥𝑖))
2

+ (𝑣𝐴 (𝑥𝑖))
2

. (𝑣𝐴(𝑥𝑖))
2

) ×

  𝑛

𝑖=1

∑ 𝜔𝑖 ((𝑢𝐵 (𝑥𝑖))
2

. (𝑢𝐵(𝑥𝑖))
2

+ (𝜁𝐵 (𝑥𝑖))
2

. (𝜁𝐵(𝑥𝑖))
2

+ (𝑣𝐵 (𝑥𝑖))
2

. (𝑣𝐵(𝑥𝑖))
2

)𝑛
𝑖=1

 = 𝐶𝜔(𝐴, 𝐴) × 𝐶𝜔(𝐵, 𝐵) 

Therefore, 𝐶𝜔(𝐴, 𝐵) ≤ √𝐶𝜔(𝐴, 𝐴) × 𝐶𝜔(𝐵, 𝐵) and hence 0 ≤  𝜌′′(𝐴, 𝐵) ≤ 1.

Theorem 3.8 

The correlation coefficient of two PNSs A and B as defined in Equation (4), that is, 𝜌′′′(𝐴, 𝐵) satisfies the 

same properties as those in Theorem 3.7 

Proof: The proof of this theorem is similar to that of Theorem 3.6. 

5. Application

In this section, we give some application of PNS in medical diagnosis problem using correlation measure. 

Medical Diagnosis Problem 

As medical diagnosis contains lots of uncertainties and increased volume of information available to 

physicians from new medical technologies, the process of classifying different set of symptoms under a 

single name of disease becomes difficult.In some practical problems, there is the possibility of each 

element having different truth membership , inderminate and false membership functions.The proposed 

correlation measure among the patients Vs. symptoms and symptoms Vs. diseases gives the proper 

medical diagnosis. Now, an example of a medical diagnosis will be presented  

Example 

Let P= {𝑃1, 𝑃2, 𝑃3} be a set of patients, D= {𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟, 𝑀𝑎𝑙𝑎𝑟𝑖𝑎, 𝑇𝑦𝑝ℎ𝑜𝑖𝑑, 𝐷𝑒𝑛𝑔𝑢} be a set of diseases and 

S= {𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, Headache, Cough, Joint pain} be a set of symptoms. 

Table 1: M (the relation between Patient and Symptoms) 

M 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 Headache Cough Joint pain

𝑃1 (0.8,0.7,0.6) (0.5,0.3,0.8) (0.6,0.9,0.4) (0.3,0.5,0.2) 
𝑃2 (0.2,0.7,0.9) (0.5,0.9,0.8) (0.4,0.6,0.3) (0.1,0.2,0.9) 
𝑃3 (0.3,0.1,0.5) (0.8,0.5,0.6) (0.4,0.8,0.9) (0.5,0.7,0.2) 
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Table 2: N (the relation between Symptoms and Diseases) 
N 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (0.9,0.5,0.4) (0.5,0.3,0.6) (0.8,0.9,0.4) (0.2,0.8,0.5) 

Headache (0.1,0.5,0.3) (0.5,0.6,0.7) (0.4,0.5,0.9) (0.9,0.8,0.3) 

Cough (0.3,0.7,0.8) (0.9,0.7,0.4) (0.1,0.3,0.9) (0.5,0.3,0.8) 

Joint pain (0.7,0.3,0.5) (0.8,0.9,0.6) (0.5,0.7,0.6) (0.1,0.5,0.8) 

Using Equations (1), we get the value of 𝜌(𝐴, 𝐵) 

Table 3: M and N (Correlation Measure) 

   M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.7670 0.5363 0.5965 0.5446 

𝑃2 0.4638 0.6253 0.4873 0.5434 

𝑃3 0.4596 0.6606 0.6072 0.7401 

Using Equations ( 2 ), we get the value of 𝜌′(𝐴, 𝐵)

Table 4: M and N (Correlation Measure) 

M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.6997 0.5223 0.5786 0.5357 

𝑃2 0.3670 0.5292 0.4358 0.5095 

𝑃3 0.4269 0.6562 0.5784 0.6729 

On the other hand, if we assign weights 0.10, 0.20, 0.30 and 0.40 respectively, then by applying correlation 

coefficient given in Equations (3) and (4), we can give the following values of the correlation coefficient: 

Using Equations ( 3 ), we get the value of 𝜌′′(𝐴, 𝐵) 

Table 5: M and N (Correlation Measure) 
M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.7233 0.6496 0.4527 0.4623 

𝑃2 0.4390 0.5469 0.4758 0.4194 

𝑃3 0.5123 0.6606 0.7229 0.7638 

Using Equations ( 4 ), we get the value of 𝜌′′′(𝐴, 𝐵)

Table 6: M and N (Correlation Measure) 

M 𝑉𝑖𝑟𝑎𝑙 𝐹𝑒𝑣𝑒𝑟 𝑀𝑎𝑙𝑎𝑟𝑖𝑎 𝑇𝑦𝑝ℎ𝑜𝑖𝑑 𝐷𝑒𝑛𝑔𝑢

𝑃1 0.6936 0.5324 0.4280 0.4039 

𝑃2 0.2812 0.5316 0.4245 0.4084 

𝑃3 0.4321 0.6154 0.6727 0.7518 
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The highest correlation measure from the Tables 3,4,5,6 gives the proper medical diagnosis. Therefore, 

patient 𝑃1    suffers from Viral Fever, patient 𝑃2 suffers from Malaria and patient  𝑃3 suffers from Dengu. 

Hence, we can see from the above four kinds of correlation coefficient indices that the results are same. 

Conclusion 

 In this paper, we found the correlation measure of Pythagorean neutrosophic set with T and F are 

neutrosophic components (PNS) and proved some of their basic properties. Based on that the present 

paper have extended the theory of correlation coefficient from and neutrosophic sets (NS) to the 

Pythagorean neutrosophic set with T and F are neutrosophic components in which the constraint 

condition of sum of membership, non-membership and indeterminacy be less than two has been relaxed. 

Illustrate examples have handle the situation where the existing correlation coefficient in NS environment 

fails. Also to deal with the situations where the elements in a set are correlative, a weighted correlation 

coefficients has been defined. We studied an application of correlation measure of Pythagorean 

neutrosophic set with T and F are neutrosophic components in medical diagnosis. 
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Abstract: In this paper, we introduced a new outranking approach for multi-criteria decision making 

(MCDM) problems to handle uncertain situations in neutrosophic multi environment. Therefore, we 

give some outranking relations of neutrosophic multi sets. We also examined some desired 

properties of the outranking relations and developed a ranking method for MCDM problems. 

Moreover, we describe a numerical example to verify the practicality and effectiveness of the 

proposed method. 

Keywords: Single valued neutrosophic sets, neutrosophic multi-sets, outranking relations, decision 

making. 

1. Introduction

Fuzzy set theory, intuitionistic fuzzy set theory and neutrosophic set theory is introduced by Zadeh 

[59], Atanassov [1] and Smarandache [28] to handle the uncertain, incomplete, indeterminate and 

inconsistent information, respectively. The above set theories have been applied to many different 

areas including real decision making problems [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 21, 22, 

23, 24, 25, 26, 27, 32, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 58]. Also, several generalizations of the set 

theories made such as fuzzy multi-set theory [34, 35, 48], intuitionistic fuzzy multi-set theory [16, 31, 

36, 37, 57] and n-valued refined neutrosophic set theory [29]. 

Another generalization of above theories that is relevant for our work is single valued 

neutrosophic refined (multi) set theory introduced by Ye [53, 56] which contain a few different 

values. A single valued neutrosophic multi set theory has truth-membership sequence

      1 2, ,..., P
A A At t t   , indeterminacy membership sequence       1 2, ,..., P

A A At t t    and 

falsity-membership sequence       1 2, ,..., P
A A At t t    of element .t T  Recently, the single 

valued neutrosophic multi set theory have attracted widely attention in [20, 33, 50, 51, 52, 54, 55]. The 

paper is organized as follows; In Section 2 we give some basic notions of neutrosophic sets and 

neutrosophic multi-sets. In Section 3, we first introduce outranking relations of neutrosophic 

multi-sets with proprieties. In Section 4, we propose an outranking approach for to solving the 

multi-criteria decision making problems based on neutrosophic multi-set information. In Section 5, 

we propose a selection example to validate the practicality. Finally, in Section 6, we conclude the 

paper. 

2. Preliminaries
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In this section, we present the basic definitions and results of neutrosophic set theory [28, 33] and 

neutrosophic multi (or refined) set theory [12, 53] that are useful for subsequent discussions. 

Definition 1 [28] let T be a universe. A neutrosophic set A over T is defined by 

       , , , , .A A AA t t t t t T     

where      ,  and 
A A A
t t t    are called truth-membership function, 

indeterminacy-membership function and falsity-membership function, respectively. They are 

respectively defined by  

     : 0,1 , : 0,1 , : 0,1
A A A
t T t T t T                     

          such that      0 3 .
A A A
t t t  

 
     

Definition 2 [33] Let T  be a universe. An single valued neutrosophic set (SVN-set) over T  is a 

neutrosophic set over T , but the truth-membership function, indeterminacy-membership function 

and falsity-membership function are respectively defined by 

     : 0,1 , : 0,1 , : 0,1
A A A
t T t T t T              

 

               such that      0 3.
A A A
t t t       

Definition 3 [53] Let T  be a universe. A neutrosophic multiset set (Nms) 𝒜 on T  can be defined 

as follows: 

𝒜 = {≺ 𝑡, (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … 𝑣𝒜

𝑝 (𝑡)) , (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), …𝑤𝒜
𝑝(𝑡)) ≻: 𝑡 ∈ 𝑇} 

Where, 

𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡): 𝑇 → [0,1], 

𝑣𝒜
1 (𝑡), 𝑣𝒜

2 (𝑡), … 𝑣𝒜
𝑝 (𝑡): 𝑇 → [0,1], 

and                              𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), …𝑤𝒜
𝑝(𝑡): 𝑇 → [0,1] 

such that                    0 ≤ 𝑠𝑢𝑝𝜇𝒜
𝑖 (𝑡) + 𝑠𝑢𝑝𝑣𝒜

𝑖 (𝑡) + 𝑠𝑢𝑝𝑤𝒜
𝑖 (𝑡) ≤ 3 

(𝑖 = 1,2, … , 𝑃)  and (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … , 𝜇𝒜
𝑝 (𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … , 𝑣𝒜

𝑝 (𝑡)) 𝑎𝑛𝑑 (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), … , 𝑤𝒜
𝑝(𝑡))Is 

the truth-membership sequence, indeterminacy-membership sequence and falsity- membership 

sequence of the element 𝑢, respectively. Also, P is called the dimension (cardinality) of Nms  𝒜, 

denoted   𝑑(𝒜) . We arrange the truth- membership sequence in decreasing order but the 

corresponding indeterminacy- membership and falsity-membership sequence may not be in 

decreasing or increasing order. 
The set of all Neutrosophic multisets on 𝑇 is denoted by NMS(𝑇). 

Definition 4 [12, 53, 56] Let 𝐴, 𝐵 ∈ 𝑁𝑀𝑆( 𝑇). Then, 

(1) 𝒜  is said to be Nm-subset of ℬ  is denoted by  𝒜 ⊆̃ ℬ if 𝜇𝒜
𝑖 (𝑡) ≤ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) ≥ 𝑣ℬ

𝑖 (𝑡) , 

𝑤𝒜
𝑖 (𝑡) ≥ 𝑤ℬ

𝑖 (𝑡), ∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃. 

   (2) 𝒜 is said to be neutrosophic equal of ℬ is denoted by 𝒜 = ℬ if 𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 

      𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡),  𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃. 

   (3) The complement of 𝒜 denoted by 𝒜𝑐̃ and is defined by  

 𝒜𝑐̃ =≺ 𝑡, (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), … , 𝑤𝒜
𝑝(𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … 𝑣𝒜

𝑝 (𝑡)) , (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 
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(4)  If 𝜇𝒜
𝑖 (𝑡) = 0  and 𝑣𝒜

𝑖 (𝑡) =  𝑤𝒜
𝑖 (𝑡) = 1  for all 𝑡 ∈ 𝑇  and 𝑖 = 1,2, … 𝑃,  then 𝒜  is called null     

ns-set and denoted by Φ. 

(5) If 𝜇𝒜
𝑖 (𝑡) = 1 and 𝑣𝒜

𝑖 (𝑡) =  𝑤𝒜
𝑖 (𝑡) = 0 for all 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃, then 

     𝒜 is called universal ns-set and denoted by �̃�. 

(6) The union of 𝒜 and ℬ is denoted by 𝒜 ∪̃ ℬ = 𝒞 and is defined by  

𝒞 = {≺ 𝑡, (𝜇𝒞
1(𝑡), 𝜇𝒞

2(𝑡), … 𝜇𝒞
𝑝(𝑡)) , (𝑣𝒞

1(𝑡), 𝑣𝒞
2(𝑡), … 𝑣𝒞

𝑝(𝑡)) , (𝑤𝒞
1(𝑡), 𝑤𝒞

2(𝑡), …𝑤𝒞
𝑝(𝑡)) ≻: 𝑡 ∈ 𝑇} 

      Where 𝜇𝒞
𝑖 = 𝜇𝒜

𝑖 (𝑡) ∨ 𝜇ℬ
𝑖 (𝑡),  𝑣𝒞

𝑖 = 𝑣𝒜
𝑖 (𝑡) ∧ 𝑣ℬ

𝑖 (𝑡), 𝑤𝒞
𝑖 = 𝑤𝒜

𝑖 (𝑡) ∧ 𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2, …𝑃.  

(7) The intersection of 𝒜 and ℬ is denoted by 𝒜 ∩̃ ℬ = 𝒟 and is defined by 

𝒟 = {≺ 𝑡, (𝜇𝒟
1 (𝑡), 𝜇𝒟

2 (𝑡), … 𝜇𝒟
𝑝(𝑡)) , (𝑣𝒟

1(𝑡), 𝑣𝒟
2(𝑡), … 𝑣𝒟

𝑝(𝑡)) , (𝑤𝒟
1(𝑡), 𝑤𝒟

2(𝑡), …𝑤𝒟
𝑝(𝑡)) ≻: 𝑡 ∈ 𝑇} 

     where 𝜇𝒟
𝑖 = 𝜇𝒜

𝑖 (𝑡) ∨ 𝜇ℬ
𝑖 (𝑡),  𝑣𝒟

𝑖 = 𝑣𝒜
𝑖 (𝑡) ∧ 𝑣ℬ

𝑖 (𝑡), 𝑤𝒟
𝑖 = 𝑤𝒜

𝑖 (𝑡) ∧ 𝑤ℬ
𝑖 (𝑡), ∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, … 𝑃. 

(8) The addition of 𝒜 and ℬ is denoted by 𝒜+̃ℬ = 𝒰1 and is defined by 

   𝒰1 = {≺ 𝑡, (𝜇𝒰1
1 (𝑡), 𝜇𝒰1

2 (𝑡), … 𝜇𝒰1
𝑝 (𝑡)) , (𝑣𝒰1

1 (𝑡), 𝑣𝒰1
2 (𝑡), … 𝑣𝒰1

𝑝 (𝑡)) , (𝑤𝒰1
1 (𝑡), 𝑤𝒰1

2 (𝑡), …𝑤𝒰1
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 

   where 𝜇𝒰1
𝑖 = 𝜇𝒜

𝑖 (𝑡) + 𝜇ℬ
𝑖 (𝑡) − 𝜇𝒜

𝑖 (𝑡). 𝜇ℬ
𝑖 (𝑡), 𝑣𝒰1

𝑖 = 𝑣𝒜
𝑖 (𝑡). 𝑣ℬ

𝑖 (𝑡), 𝑤𝒰1
𝑖 = 𝑤𝒜

𝑖 (𝑡). 𝑤ℬ
𝑖 (𝑡) ∀ 𝑡 ∈ 𝑇 and     

𝑖 = 1,2, … 𝑃. 

(9) The multiplication of 𝒜 and ℬ is denoted by 𝒜�̃�ℬ = 𝒰2 and is defined by 

𝒰2 = {≺ 𝑡, (𝜇𝒰2
1 (𝑡), 𝜇𝒰2

2 (𝑡), … 𝜇𝒰2
𝑝 (𝑡)) , (𝑣𝒰2

1 (𝑡), 𝑣𝒰2
2 (𝑡), … 𝑣𝒰2

𝑝 (𝑡)) , (𝑤𝒰2
1 (𝑡), 𝑤𝒰2

2 (𝑡), …𝑤𝒰2
𝑝 (𝑡)) ≻: 𝑡 ∈ 𝑇} 

where 𝜇𝒰2
𝑖 = 𝜇𝒜

𝑖 (𝑡). 𝜇ℬ
𝑖 (𝑡),   𝑣𝒰2

𝑖 = 𝑣𝒜
𝑖 (𝑡) + 𝑣ℬ

𝑖 (𝑡) − 𝑣𝒜
𝑖 (𝑡). 𝑣ℬ

𝑖 (𝑡),  𝑤𝒰2
𝑖 = 𝑤𝒜

𝑖 (𝑡) + 𝑤ℬ
𝑖 (𝑡)𝑤𝒜

𝑖 (𝑡). 𝑤ℬ
𝑖 (𝑡) 

∀ 𝑡 ∈ 𝑇 and 𝑖 = 1,2, …𝑃. 

Here ∨, ∧, +, . , −  denotes maximum, minimum, addition, multiplication, subtraction of real 

numbers respectively. 

Definition 5 [13] Let 

𝒜 = {≺ 𝑡, (𝜇𝒜
1 (𝑡), 𝜇𝒜

2 (𝑡), … 𝜇𝒜
𝑝 (𝑡)) , (𝑣𝒜

1 (𝑡), 𝑣𝒜
2 (𝑡), … 𝑣𝒜

𝑝 (𝑡)) , (𝑤𝒜
1 (𝑡), 𝑤𝒜

2 (𝑡), …𝑤𝒜
𝑝(𝑡)) ≻: 𝑡 ∈ 𝑇} 

and 
ℬ = {≺ 𝑡, (𝜇ℬ

1(𝑡), 𝜇ℬ
2(𝑡), … 𝜇ℬ

𝑝(𝑡)) , (𝑣ℬ
1(𝑡), 𝑣ℬ

2(𝑡), … 𝑣ℬ
𝑝(𝑡)) , (𝑤𝒜

1 (𝑡), 𝑤𝒜
2 (𝑡), …𝑤𝒜

𝑝(𝑡)) ≻: 𝑡 ∈ 𝑇} 
and be two NMSs, then the normalized hamming distance between 𝒜 and ℬ can be defined as 

follows: 

𝑑𝑁𝐻𝐷(𝒜, ℬ  ) =
1

3𝑛. 𝑃
∑∑(|𝜇𝒜

𝑗 (𝑡𝑖) − 𝜇ℬ
𝑗 (𝑡𝑖)| + |𝑣𝒜

𝑗 (𝑡𝑖) − 𝑣ℬ
𝑗 (𝑡𝑖)| + |𝑤𝒜

𝑗 (𝑡𝑖) − 𝑤ℬ
𝑗(𝑡𝑖)|)

𝑛

𝑖=1

𝑃

𝑗=1

. 

3. The Outranking Relations of Neutrosophic Multi-Sets 

In this section, the binary relations between two neutrosophic refined sets that are based on 

ELECTRE by extending the studies in [22]. Some of it is quoted from [13, 22, 35, 49]. 

Definition 6 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)} and  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)} be two NMS on 𝑇. Then, the strong dominance 

relation, weak dominance relation, and indifference relation of NMS can be defined as follows: 
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1. If 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡)  or 𝜇𝒜
𝑖 (𝑡) > 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) =

𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Then 𝒜  strongly dominates ℬ 

(ℬ is strongly dominated by 𝒜), denoted by 𝒜 ≻𝑠 ℬ. 

2. If 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) ≥ 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡)  or 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) ≥

𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Then 𝒜  weakly dominates ℬ 

(ℬ is weakly dominated by 𝒜), denoted by𝒜 ≻𝑤 ℬ. 

3. If 𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Then 𝒜 

indifferent to ℬ, denoted by𝒜 ∼𝑙 ℬ. 

4. If none of the relations mentioned above exist between 𝒜 and ℬ  for any 𝑡 ∈ 𝑇 , then 

𝒜 and ℬ  are incomparable, denoted by 𝒜 ⊥  ℬ .  

Proposition 7 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)} and  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  be two NMS on 𝑇 , then the following 

properties can be obtained: 

1. 𝐼𝑓  ℬ ⊂ 𝒜, 𝑡ℎ𝑒𝑛 𝒜 ≻𝑠 ℬ; 

2. 𝐼𝑓  𝒜 ≻𝑠 ℬ, 𝑡ℎ𝑒𝑛 𝐼𝑓  ℬ ⊆ 𝒜; 

3. 𝒜 ∼𝑙 ℬ 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝒜 = ℬ. 

Proof:  

1. 𝐼𝑓  ℬ ⊂ 𝒜,  then 𝜇ℬ
𝑖 (𝑡) ≤ 𝜇𝒜

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) ≥ 𝑣𝒜

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) ≥ 𝑤𝒜

𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2,3, … , 𝑝.  𝒜 ≻𝑠 ℬ 

is definitely validated according to the strong dominance relation in Definition 6. 

2. 𝒜 ≻𝑠 ℬ  then based on Definition 6, 𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡)  or 𝜇𝒜
𝑖 (𝑡) >

𝜇ℬ
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡) = 𝑣ℬ
𝑖 (𝑡), 𝑤𝒜

𝑖 (𝑡) = 𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2,3, … , 𝑝. are realized. Then we have ℬ ⊆ 𝒜. 

3. Necessity: 𝒜 ∼𝑙 ℬ ⇒ 𝒜 = ℬ. According to the indifference relation in Definition 6 it is known that 

𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 = 1,2,3, … , 𝑝.  Clearly 𝒜 ⊆ 𝒜  and ℬ ⊆

𝒜 are achieved, then 𝒜 = ℬ. 

 Sufficiency: 𝒜 = ℬ ⇒ 𝒜 ∼𝑙 ℬ. If 𝒜 = ℬ,  then it is know that 𝒜 ⊆ ℬ and ℬ ⊆ 𝒜, which means  

𝜇ℬ
𝑖 (𝑡) ≤ 𝜇𝒜

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) ≥ 𝑣𝒜

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) ≥ 𝑤𝒜

𝑖 (𝑡) 𝑜𝑟 𝜇𝒜
𝑖 (𝑡) = 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), ∀𝑡 ∈ 𝑇  

and 𝑖 = 1,2,3, … , 𝑝.  are obtained. Due to the indifference relation in Definition 6, 𝒜 ∼𝑙 ℬ  is 

definitely obtained. 

Proposition 8 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)},  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  and 𝐶 = {≺ 𝑡, (𝜇𝐶

𝑖 (𝑡), 𝑣𝐶
𝑖 (𝑡), 𝑤𝐶

𝑖 (𝑡)) ≻: 𝑡 ∈

𝑇, (𝑖 = 1,2,3, … , 𝑝)} be three NMS on 𝑇, if 𝒜 ≻𝑠 ℬ 𝑎𝑛𝑑 ℬ ≻𝑠 𝐶, then 𝒜 ≻𝑠 𝐶. 

Proof: According to the strong dominance relation in Definition 6, if 𝒜 ≻𝑠 ℬ,  then 𝜇𝒜
𝑖 (𝑡) ≥

𝜇ℬ
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡) < 𝑣ℬ
𝑖 (𝑡), 𝑤𝒜

𝑖 (𝑡) < 𝑤ℬ
𝑖 (𝑡)  or 𝜇𝒜

𝑖 (𝑡) > 𝜇ℬ
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡) = 𝑣ℬ
𝑖 (𝑡), 𝑤𝒜

𝑖 (𝑡) = 𝑤ℬ
𝑖 (𝑡), ∀𝑡 ∈ 𝑇  and 𝑖 =

1,2,3, … , 𝑝. 

if ℬ ≻𝑠 𝐶,  then 𝜇ℬ
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡) or 𝜇ℬ
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) =

𝑤𝐶
𝑖 (𝑡), ∀𝑡 ∈ 𝑇 and 𝑖 = 1,2,3, … , 𝑝. 

Therefore the further derivations are: If  

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡), …..(1) 
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𝜇ℬ
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡),….. (2) 

from (1) and (2) 

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is realized. If  

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤ℬ

𝑖 (𝑡), …..(3) 

𝜇ℬ
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡),….. (4) 

from (3) and (4) 

𝜇𝒜
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is achieved. If  

𝜇𝒜
𝑖 (𝑡) > 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), …..(5) 

𝜇ℬ
𝑖 (𝑡) ≥ 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) < 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) < 𝑤𝐶

𝑖 (𝑡),….. (6) 

from (5) and (6) 

𝜇𝒜
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is obtained. If  

𝜇𝒜
𝑖 (𝑡) > 𝜇ℬ

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣ℬ

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤ℬ

𝑖 (𝑡), …..(7) 

𝜇ℬ
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣ℬ
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡),…..(8) 

from (7) and (8) 

𝜇𝒜
𝑖 (𝑡) > 𝜇𝐶

𝑖 (𝑡), 𝑣𝒜
𝑖 (𝑡) = 𝑣𝐶

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡) = 𝑤𝐶

𝑖 (𝑡), 

then based on Definition 6 𝒜 ≻𝑠 𝐶 is realized. Therefore, if 𝒜 ≻𝑠 ℬ 𝑎𝑛𝑑 ℬ ≻𝑠 𝐶, then 𝒜 ≻𝑠 𝐶. 

Proposition 9 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)},  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  and 𝐶 = {≺ 𝑡, (𝜇𝐶

𝑖 (𝑡), 𝑣𝐶
𝑖 (𝑡), 𝑤𝐶

𝑖 (𝑡)) ≻: 𝑡 ∈

𝑇, (𝑖 = 1,2,3, … , 𝑝)} be three NMS on 𝑇, if 𝒜 ∼𝑙 ℬ 𝑎𝑛𝑑 ℬ ∼𝑙 𝐶, then 𝒜 ∼𝑙 𝐶. 

Proof: Clearly, if 𝒜 ∼𝑙 ℬ 𝑎𝑛𝑑 ℬ ∼𝑙 𝐶, then 𝒜 ∼𝑙 𝐶 is surely validated. 

Proposition 10 Let 𝒜 = {≺ 𝑡, (𝜇𝒜
𝑖 (𝑡), 𝑣𝒜

𝑖 (𝑡), 𝑤𝒜
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)},  

ℬ = {≺ 𝑡, (𝜇ℬ
𝑖 (𝑡), 𝑣ℬ

𝑖 (𝑡), 𝑤ℬ
𝑖 (𝑡)) ≻: 𝑡 ∈ 𝑇, (𝑖 = 1,2,3, … , 𝑝)}  and 𝐶 = {≺ 𝑡, (𝜇𝐶

𝑖 (𝑡), 𝑣𝐶
𝑖 (𝑡), 𝑤𝐶

𝑖 (𝑡)) ≻: 𝑡 ∈

𝑇, (𝑖 = 1,2,3, … , 𝑝)} be three NMS on 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛 }, then the following results can be obtained. 

1. 
1 − 𝑖𝑟𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 ∶   ∀ 𝒜 ∈ 𝑁𝑀𝑆𝑠,𝒜 ⊁𝑠 𝒜;                                                 
2 − 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ∶ ∀ 𝒜 , ℬ 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑠 ℬ ⇒ ℬ ⊁𝑠 𝒜;                       
3 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: ∀ 𝒜 , ℬ, 𝐶 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑠 ℬ , ℬ ≻𝑠 𝐶, 𝑡ℎ𝑒𝑛 𝒜 ≻ 𝐶.  

 

2. 
4 − 𝑖𝑟𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 ∶   ∀ 𝒜 ∈ 𝑁𝑀𝑆𝑠,𝒜 ⊁𝑤 𝒜;                                                             
5 − 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ∶ ∀ 𝒜 , ℬ 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑤 ℬ ⇒ ℬ ⊁𝑤 𝒜;                                  
6 − 𝑛𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: ∃ 𝒜 , ℬ, 𝐶 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ≻𝑠 ℬ , ℬ ≻𝑠 𝐶, 𝑡ℎ𝑒𝑛 𝒜 ≻ 𝐶.  

 

3. 
7 − 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦 ∶   ∀ 𝒜 ∈ 𝑁𝑀𝑆𝑠,𝒜 ∼𝑙 𝒜;                                                 
8 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ∶ ∀ 𝒜 , ℬ 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ∼𝑙 ℬ ⇒ ℬ ∼𝑙 𝒜;                       
9 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: ∃ 𝒜 , ℬ, 𝐶 𝑜𝑛 𝑁𝑀𝑆𝑠;𝒜 ∼𝑙 ℬ , ℬ ∼𝑙 𝐶, 𝑡ℎ𝑒𝑛 𝒜 ∼𝑙 𝐶.  

 

Example 11 1,2,4,5 and 6 are exemplified as follows. 

1. If 𝒜 = 〈(0.8,0.5, … ,0.6), (0.3,0.1, … ,0.5), (0.2,0.3, … ,0.4)〉  is a NMSs, then 𝒜 ⊁𝑠 𝒜  can be 

obtained. 

2. If 𝒜 = 〈(0.5,0.7, … ,0.6), (0.2,0.3, … ,0.4), (0.1,0.3, … ,0.2)〉 and  

ℬ = 〈(0.4,0.6, … ,0.5), (0.3,0.4, … ,0.5), (0.2,0.5, … ,0.3)〉  are two NMSs, then 

𝒜 ≻𝑠 ℬ, 𝑏𝑢𝑡 ℬ ⊁𝑠 𝒜 is realized. 
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3. If 𝒜 = 〈(0.7,0.4, … ,0.5), (0.4,0.2, … ,0.6), (0.3,0.3, … ,0.2)〉  is a NMSs, then 𝒜 ⊁𝑤 𝒜  can be 

obtained. 

4. If 𝒜 = 〈(0.5,0.7, … ,0.6), (0.5,0.6, … ,0.4), (0.1,0.3, … ,0.2)〉 and  

ℬ = 〈(0.3,0.5, … ,0.6), (0.2,0.3, … ,0.1), (0.2,0.5, … ,0.3)〉  are two NMSs, then 

𝒜 ≻𝑤 ℬ, ℎ𝑜𝑤𝑒𝑣𝑒𝑟 ℬ ⊁𝑤 𝒜.  

5. If 𝒜 = 〈(0.5,0.7, … ,0.6), (0.3,0.2, … ,0.4), (0.1,0.3, … ,0.2)〉,  

6. ℬ = 〈(0.5,0.6, … ,0.4), (0.5,0.4, … ,0.6), (0.2,0.5, … ,0.3)〉 and  

𝐶 = 〈(0.4,0.3, … ,0.2), (0.6,0.5, … ,0.7), (0.3,0.6, … ,0.8)〉  are three NMSs, then 

𝒜 ≻𝑤 ℬ  𝑎𝑛𝑑  ℬ ≻𝑤 𝐶  are obtained, 𝒜 ≻𝑤 𝐶.  

Proposition 11 [22] Let 𝑡1 and 𝑡2 be two actions, the performances for actions 𝑡1 and 𝑡2 be in the 

form of NMSs, and 𝑃 = 𝑠 ∪𝓌 ∪ 𝑙 mean that “𝑡1 is at least as good as 𝑡2”, then four situations may 

arise: 

1. 𝑡1𝑃𝑡2 and not 𝑡2𝑃𝑡1,  that is 𝑡1 ≻𝑠 𝑡2 or 𝑡1 ≻𝑤 𝑡2; 

2. 𝑡2𝑃𝑡1 and not 𝑡1𝑃𝑡2,  that is 𝑡2 ≻𝑠 𝑡1 or 𝑡2 ≻𝑤 𝑡1; 

3. 𝑡1𝑃𝑡2 𝑎𝑛𝑑 𝑡2𝑃𝑡1,    that is 𝑡1 ∼𝑙 𝑡2; 

4. not 𝑡1𝑃𝑡2 and not 𝑡2𝑃𝑡1,  that is 𝑡1 ⊥ 𝑡2. 

4. An outranking approach for MCDM with simplified neutrosophic multi-set information 

In this section, we introduced an approach for a MCDM problem with neutrosophic multi-set 

information. Some of it is quoted from [22, 35, 49]. 

Definition 12 [15] Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) be a set of alternatives, 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝑛) be the set of 

criteria, 𝓌 = (𝓌1,𝓌,… ,𝓌𝑛)
𝑇  be the weight vector of the criterions 𝐶𝑗(𝑗 = 1,2, … , 𝑛)  such that 

𝓌𝑗 ≥ 0  and ∑ 𝓌𝑗 = 1
𝑛
𝑗=1  and 𝑍𝑖𝑗 = 〈(μij

1μij
2 , … , μij

n), (vij
1vij
2, … , vij

n), (wij
1wij

2, … ,wij
n)〉  be the decision 

matrix in which the rating values of the alternatives in for NMSs. Then, 

1 2

111 121

221 222

1 2



 
 
 
    
 
 
 
 

n

n

n

ij m n

m m m mn

c c c
ZZ Zx
ZZ Zx

Z
x Z Z Z

 

is called an NMS-multi-criteria decision making matrix of the decision maker. 

Definition 13 [22, 35] In multi-criteria decision making problems; 

1. The cost-type criterion values can be transformed into benefit-type criterion values as follows: 

 

𝛼𝑖𝑗 = {
𝑍𝑖𝑗   for benefit criterion 𝐶𝑗,                                                                   

(𝑍𝑖𝑗)
𝑐
  for benefit criterion 𝐶𝑗, (𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛)

           (9)  

 

where (𝑍𝑖𝑗)
𝑐
 is complement of 𝑍𝑖𝑗 as defined in Definition 4. 

2. The concordance set of subscripts, which should satisfy the constraint  𝑍𝑖𝑗𝑃𝑍𝑘𝑗 , is represented as: 

𝑂𝑖𝑘 = {𝑗:   𝑍𝑖𝑗𝑃𝑍𝑘𝑗} (𝑖, 𝑘 = 1,2, … ,𝑚). 

  𝑍𝑖𝑗𝑃𝑍𝑘𝑗 represents   𝑍𝑖𝑗 >𝑠 𝑍𝑘𝑗  or   𝑍𝑖𝑗 >𝑤 𝑍𝑘𝑗 or   𝑍𝑖𝑗 ∽ 𝑍𝑘𝑗. 

3. The concordance index ℎ𝑖𝑘  between 𝑥𝑖  and 𝑥𝑘  is thus defined as follows: 

 

ℎ𝑖𝑘 = ∑ 𝑤𝑗
𝑗∈𝑂𝑖𝑘

                                                                                    (10) 

Thus, the concordance matrix C is: 
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112

221

1 2

 
 

 
  
 

 
 
 

n

n

ik

n n

hh
hh

H h
h h

 

In H; ℎ𝑖𝑘 (𝑖 ≠ 𝑘) denote the degree to which the evaluations of 𝑥𝑖  are at least as good as those 

of the competitor𝑥𝑘, and the degree to which 𝑥𝑖  is inferior to 𝑥𝑘 decreases with increasing ℎ𝑖𝑘 . 

4. The discordance set of subscripts for criteria is given as; 

𝐺𝑖𝑘 = 𝐽 − 𝑂𝑖𝑘. 

5. The discordance index 𝐺(𝑥𝑖 ;  𝑥𝑘) is represented as: 

𝐺𝑖𝑘 =
max
𝑗∈𝐺𝑖𝑘

{𝑑(𝑍𝑖𝑗, 𝑍𝑘𝑗)}

max
𝑗∈𝐽
{𝑑(𝑍𝑖𝑗, 𝑍𝑘𝑗)}

                                                                      (11) 

 

here 𝑑(𝑍𝑖𝑗, 𝑍𝑘𝑗) denotes the normalized Hamming distance between 𝑍𝑖𝑗  and 𝑍𝑘𝑗  as defined in 

Definition 5. 

Thus, the discordance matrix D is: 
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In G; 𝑔𝑖𝑘 (𝑖 ≠ 𝑘) denote the degree to which the evaluations of 𝑥𝑖  are at least as good as those of the 

competitor𝑥𝑘, and the degree to which 𝑥𝑖  is inferior to 𝑥𝑘 decreases with increasing  𝑔𝑖𝑘 . 

6. To rank all alternatives, the net dominance index of 𝑥𝑘 

ℎ𝑖𝑘 = ∑ ℎ𝑖𝑘 − ∑ ℎ𝑘𝑖

𝑛

𝑖=1,𝑖≠𝑘

𝑛

𝑖=1,𝑖≠𝑘

                                                                  (12) 

and the net disadvantage index of 𝑥𝑘 is 

𝑔𝑖𝑘 = ∑ 𝑔𝑖𝑘 − ∑ 𝑔𝑘𝑖

𝑛

𝑖=1,𝑖≠𝑘

𝑛

𝑖=1,𝑖≠𝑘

                                                                  (13) 

In here, ℎ𝑘 is the sum of the concordance indices between 𝑥𝑘 and 𝑥𝑘 (𝑖 ≠ 𝑘) minus the sum of 

the concordance indices between 𝑥𝑘  (𝑖 ≠ 𝑘) and  𝑥𝑘 , and reflects the dominance degree of the 

alternative 𝑥𝑘 among the relevant alternatives. Meanwhile, 𝑔𝑘 reflects the disadvantage degree of 

the alternative 𝑥𝑘 among the relevant alternatives. Therefore, 𝑥𝑘 obtains a greater dominance over 

the other alternatives that are being compared as ℎ𝑘 increases and 𝑔𝑘 decreases. 

 

Definition 14 [35] The ranking rules of two alternatives are 

i. If ℎ𝑖 < ℎ𝑘 and 𝑔𝑖 > 𝑔𝑘 then 𝑥𝑘 is superior to 𝑥𝑖, as denoted by 𝑥𝑘 ≻ 𝑥𝑖; 

ii. If ℎ𝑖 = ℎ𝑘 and 𝑔𝑖 = 𝑔𝑘 then 𝑥𝑘 is indifferent to 𝑥𝑖, as denoted by 𝑥𝑘 ∼ 𝑥𝑖; 

i. if the relation between 𝑥𝑘  and 𝑥𝑖  does not belong to (i) or (ii);then 𝑥𝑘  and 𝑥𝑖  are 

incomparable; as denoted by 𝑥𝑘 ⊥ 𝑥𝑖. 

Now, we give an algorithm to develop a new approach as 

Algorithm: 

Step 1 Give the decision-making matrix


  ij m n
Z ; for decision; 

Step 2 Compute the weighted normalized matrix as; 

 

                   1,2,..., ;  1,2,..., . 


     ij ij jm n
w i m j n  
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where  jw is the weight of the j th criterion with ∑ 𝓌𝑗 = 1
𝑛
𝑗=1 . 

Step 3 Find the concordance set of subscripts; 

Step 4 Find the discordance set of subscripts; 

Step 5 Compute the concordance matrix 𝐻 = (ℎ𝑖𝑘)𝑛×𝑛 

Step 6 Compute the discordance matrix 𝐺 = (𝑔𝑖𝑘)𝑛×𝑛 

Step 7. Compute the net dominance index of each alternative ℎ𝑖 (i=1,2,3,...,m) 

Step 8. Compute the net disadvantage index of each alternative 𝑔𝑖 (i=1,2,...,m) 

Step 9. Rank all alternatives and select the best alternative. 

 

5 Illustrative examples 

In this section, we introduced an example for a MCDM problem with neutrosophic refined 

information. Some of it is quoted from [22, 35, 49]. 

Example 15 Assume that 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) be a set of alternatives and 𝐶 = (𝑐1, 𝑐2, 𝑐3, 𝑐4) be 

the set of criterions, 𝓌 = (0.1,0.3,0.2,0.4)𝑇 be the weight vector of the criterions 𝐶𝑗(𝑗 = 1,2, … , 𝑛). 

The four alternatives are to be evaluated under the above four criteria in the form of NMSs. Then, 

 

Step 1. The decision matrix 


  ij m n
Z  is given as; 

 

(

〈(0: 1;  0: 2;  0: 4;  0: 5); (0: 6;  0: 3;  0: 5;  0: 2); (0: 2;  0: 4;  0: 5;  0: 6)〉

〈(0: 3;  0: 4;  0: 6;  0: 7); (0: 2;  0: 5;  0: 1;  0: 8); (0: 3;  0: 4;  0: 6;  0: 8)〉
〈(0: 1;  0: 2;  0: 5;  0: 6); (0: 1;  0: 3;  0: 5;  0: 2); (0: 1;  0: 5;  0: 7;  0: 9)〉

〈(0: 2;  0: 3;  0: 4;  0: 5); (0: 3;  0: 2;  0: 4;  0: 6); (0: 2;  0: 3;  0: 5;  0: 7)〉

 

 
〈(0: 3;  0: 5;  0: 7;  0: 8); (0: 4;  0: 3;  0: 6;  0: 2); (0: 1;  0: 3;  0: 5;  0: 2)〉

〈(0: 2;  0: 3;  0: 4;  0: 5); (0: 1;  0: 4;  0: 3;  0: 6); (0: 2;  0: 3;  0: 4;  0: 5)〉

〈(0: 1;  0: 2;  0: 6;  0: 7); (0: 3;  0: 2;  0: 5;  0: 4); (0: 1;  0: 2;  0: 5;  0: 6)〉

〈(0: 3;  0: 4;  0: 6;  0: 8); (0: 2;  0: 1;  0: 3;  0: 6); (0: 4;  0: 3;  0: 2;  0: 5)〉

 

 
〈(0: 2;  0: 4;  0: 5;  0: 6); (0: 3;  0: 5;  0: 2;  0: 6); (0: 1;  0: 2;  0: 5;  0: 6)〉

〈(0: 4;  0: 5;  0: 7;  0: 8); (0: 1;  0: 6;  0: 2;  0: 3); (0: 1;  0: 4;  0: 3;  0: 6)〉

〈(0: 3;  0: 6;  0: 8;  0: 9); (0: 2;  0: 4;  0: 1;  0: 5); (0: 2;  0: 1;  0: 3;  0: 6)〉

〈(0: 1;  0: 2;  0: 4;  0: 6); (0: 1;  0: 3;  0: 7;  0: 4); (0: 3;  0: 4;  0: 6;  0: 7)〉

 

 
〈(0: 1;  0: 2;  0: 4;  0: 5); (0: 2;  0: 3;  0: 5;  0: 4); (0: 1;  0: 3;  0: 7;  0: 4)〉

〈(0: 3;  0: 4;  0: 5;  0: 6); (0: 3;  0: 1;  0: 2;  0: 5); (0: 3;  0: 6;  0: 8;  0: 9)〉

〈(0: 1;  0: 3;  0: 4;  0: 5); (0: 1;  0: 4;  0: 6;  0: 7); (0: 1;  0: 2;  0: 6;  0: 7)〉

〈(0: 2;  0: 4;  0: 5;  0: 7); (0: 2;  0: 3;  0: 5;  0: 6); (0: 3;  0: 2;  0: 4;  0: 6)〉)

  

Step 2. The weighted normalized matrix 


  ij m n
 is computed as; 

(

(0: 7943;  0: 8513;  0: 9124;  0: 9330); (0: 0875;  0: 0350;  0: 0669;  0: 0220); (0: 0220;  0: 0104;  0: 0669;  0: 0875)

(0: 6968;  0: 7596;  0: 8579;  0: 8985); (0: 0647;  0: 1877;  0: 0311;  0: 3829); (0: 1014;  0: 1420;  0: 2403;  0: 3829)
(0: 6309;  0: 7247;  0: 8705;  0: 9028); (0: 2080;  0: 0688;  0: 1294;  0: 0436); (0: 2080;  0: 1294;  0: 2140;  0: 3690)

(0: 5253;  0: 6178;  0: 6931;  0: 7578); (0: 1329;  0: 0853;  0: 1848;  0: 3068); (0: 0853;  0: 1329;  0: 2421;  0: 3822)

 

 

(0: 8865;  0: 9330;  0: 9649;  0: 9779); (0: 0498;  0: 0350;  0: 0875;  0: 0620); (0: 0104;  0: 0350;  0: 0669;  0: 0220) 

(0: 6170;  0: 6968;  0: 7596;  0: 8122); (0: 0311;  0: 1420;  0: 1014;  0: 2403); (0: 0647;  0: 1014;  0: 1420;  0: 1877) 

(0: 6309;  0: 7247;  0: 9028;  0: 9311); (0: 0188;  0: 0436;  0: 1294;  0: 0971); (0: 0208;  0: 0436;  0: 1294;  0: 1674) 

(0: 6178;  0: 6931;  0: 8151;  0: 9146); (0: 0853;  0: 0412;  0: 1329;  0: 3068); (0: 1848;  0: 1329;  0: 0853;  0: 2421) 

 

(0: 8513;  0: 9124;  0: 9330;  0: 9502); (0: 0350;  0: 0669;  0: 0720;  0: 0875); (0: 0104;  0: 0220;  0: 0669;  0: 0875) 

(0: 7596;  0: 8122;  0: 8985;  0: 9352); (0: 0311;  0: 0203;  0: 0647;  0: 1014); (0: 0311;  0: 1420;  0: 1014;  0: 2403) 

(0: 7860;  0: 9028;  0: 9563;  0: 9791); (0: 0436;  0: 0971;  0: 0208;  0: 1294); (0: 0436;  0: 0208;  0: 0688;  0: 1674) 

(0: 3981;  0: 5253;  0: 6931;  0: 8151); (0: 0412;  0: 1329;  0: 3822;  0: 1848); (0: 0412;  0: 1329;  0: 3822;  0: 6018) 
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(0: 7943;  0: 8513;  0: 9124;  0: 9330); (0: 0220;  0: 0350;  0: 0669;  0: 0498); (0: 0104;  0: 0350;  0: 1134;  0: 0498)

(0: 6968;  0: 7596;  0: 8122;  0: 8579); (0: 1014;  0: 0311;  0: 0647;  0: 1877); (0: 1014;  0: 2403;  0: 2403;  0: 4988)
(0: 6309;  0: 7860;  0: 8325;  0: 8705); (0: 0228;  0: 0971;  0: 1674;  0: 2140); (0: 0208;  0: 0436;  0: 1674;  0: 2140)

(0: 5253;  0: 6931;  0: 7578;  0: 8670); (0: 1853;  0: 1329;  0: 2421;  0: 3068); (0: 0329;  0: 0853;  0: 1848;  0: 3068)

) 

 

Step 3. The concordance set is found as; 

 12 O ;          21 31 41 13 234 ; ; ; 1,2 ; ;    O O O O O  

           32 42 14 24 34 43; ; 4 ; 1,3 ; 1,2 ; .     O O O O O O  

Step 4. The discordance set is found as; 
           12 21 31 41 13 231,2,3,4 ; 1,2,3 ; 1,2,3,4 ; 1,2,3,4 ; 1,2 ; 1,2,3, 4 ;     G G G G O G  

           32 42 14 24 34 431,2,3,4 ; 1,2,3,4 ; 1,2,3 ; 2,4 ; 3,4 ; 1,2,3,4 .     G G G G G G  

where   denotes “empty”. 

Step 5. The concordance is computed as; 

0 0.4 0.4
0.4 0.4 0.3
0 0 0.4
0 0 0

 
 

 
 
 

 

H  

Step 6. The discordance matrix is computed as; 

1 0.6612 1
0.9958 1 0.5778

1 1 1
1 1 1

 
 

 
 
 

 

G  

Step 7. The net dominance index of each alternative ℎ𝑖 (i=1,2,3,4) is computed as; 

ℎ1 = 0.4, ℎ2 = 1.1, ℎ3 = −0.4  and  ℎ4 = −1.1,⇒ ℎ4 < ℎ3 < ℎ1 < ℎ2; 

Step 8. The net disadvantage index of each alternative 𝑔𝑖 (i=1,2,3,4) is computed as; 

𝑔1 = −0.3346, 𝑔2 = −0.428, 𝑔3 = 0.3388  and  𝑔4 = 0.4242,⇒ 𝑔4 > 𝑔3 > 𝑔1 > 𝑔2. 

Step 9. The final ranking is and the best alte  𝑥2 ≻ 𝑥1 ≻ 𝑥3 ≻ 𝑥4   rnative is 𝑥2. 

 

6. Conclusions  

This paper developed a multi-criteria decision making method for neutrosophic multi-sets 

based on these given the outranking relations. In further research, we will develop different 

methods and compare the different methods on neutrosophic multi-sets. The contribution of this 

study is that the proposed approach is simple and convenient with regard to computing, and 

effective in decreasing the loss of evaluative information. More effective decision methods of this 

proposes a new outranking approach will be investigated in the near future and applied these 

concepts to engineering, game theory, multi-agent systems, decision-making and so on.  

Funding: This research received no external funding 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems,1986, 20 87–96. 

2. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Smarandache, F. (2019). A Hybrid Plithogenic 

Decision-Making Approach with Quality Function Deployment for Selecting Supply Chain Sustainability 

Metrics. Symmetry, 2019, 11(7), 903. 

3. Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., Aboelfetouh, A. Utilising neutrosophic theory to 

solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 2019, 1-21. 



Neutrosophic Sets and Systems, Vol. 30, 2019    222  

 

 
Vakkas Uluçay, Adil Kılıç¸, Ismet Yıldız and Memet Şahin, An outranking approach for MCDM-problems with neutrosophic 
multi-sets. 

4. Nabeeh, N. A., Abdel-Basset, M., El-Ghareeb, H. A., Aboelfetouh, A. Neutrosophic multi-criteria decision 

making approach for iot-based enterprises. IEEE Access, 2019, 7, 59559-59574. 

5. Abdel-Baset, M., Chang, V., Gamal, A. Evaluation of the green supply chain management practices: A 

novel neutrosophic approach. Computers in Industry, 2019, 108, 210-220. 

6. Abdel-Basset, M., Saleh, M., Gamal, A., Smarandache, F. An approach of TOPSIS technique for 

developing supplier selection with group decision making under type-2 neutrosophic number. Applied 

Soft Computing, 2019,77, 438-452. 

7. Abdel-Baset, M., Chang, V., Gamal, A., Smarandache, F. An integrated neutrosophic ANP and VIKOR 

method for achieving sustainable supplier selection: A case study in importing field. Computers in 

Industry, 2019, 106, 94-110. 

8. Abdel-Basset, M., Manogaran, G., Gamal, A., Smarandache, F. A group decision making framework 

based on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems, 

2019, 43(2), 38 

9. Athar, K. A neutrosophic multi-criteria decision making method. New Mathematics and Natural 

Computation, 2014, 10(02), 143–162. 

10. S. Broumi and F. Smarandache, (2013). Several similarity measures of neutrosophic sets, Neutro- sophic 

Sets and Systems , 2013,1(1) 54–62. 

11.  Chen, N., Xu, Z. Hesitant fuzzy ELECTRE II approach: a new way to handle multi-criteria decision 

making problems. Information Sciences, 2015, 292, 175–197. 

12.  Deli, I., Broumi, S., Ali, M. Neutrosophic Soft Multi-Set Theory and Its Decision Making. Neutrosophic 

Sets and Systems, 2014,5, 65–76. 

13.  Deli, I. Refined Neutrosophic Sets and Refined Neutrosophic Soft Sets: Theory and Applications. 

Handbook of Research on Generalized and Hybrid Set Structures and Applications for Soft Computing, 

2016, 321–343. 

14. Deli, I., Broumi S. Neutrosophic Soft Matrices and NSM-decision Making. Journal of Intelligent and 

Fuzzy Systems, 2015, 28: 2233-2241. 

15. Deli,I., S. Broumi, F. Smarandache, On neutrosophic refined sets and their applications in medical 

diagnosis, Journal of New Theory, 2015, 6, 88–98. 

16. Devi,K., S.P. Yadav, A multicriteria intuitionistic fuzzy group decision making for plant location selection 

with ELECTRE method, Int. J. Adv. Manuf. Technol. 2013, 66 (912), 1219-1229. 

17. Figueira,J.R., S. Greco, B. Roy, R. Slowinski, ELECTRE methods: main features and recent developments, 

Handbook of Multicriteria Analysis, vol. 103, Springer-Verlag, Berlin/Heidelberg, 2010, pp. 51-89. 

18. Hashemi, S. S., Hajiagha, S. H. R., Zavadskas, E. K., Mahdiraji, H. A. Multicriteria group decision making 

with ELECTRE III method based on interval-valued intuitionistic fuzzy information. Applied 

Mathematical Modelling, 2016, 40(2), 1554–1564.  

19. Karaaslan, F. Correlation Coefficient between Possibility Neutrosophic Soft Sets. Math. Sci. Lett. 2016, 5/1, 

71–74. 

20. Karaaslan, F. Correlation coefficients of single-valued neutrosophic refined soft sets and their 

applications in clustering analysis. Neural Computing and Applications, 2016, 1-13. 

21. Mondal, K., Pramanik, S. Neutrosophic tangent similarity measure and its application to multiple 

attribute decision making. Neutrosophic Sets and Systems, 2015, 9, 85-92. 

22. Peng, J. J.,Wang, J. Q., Zhang, H. Y., Chen, X. H. An outranking approach for multi-criteria 

decision-making problems with simplified neutrosophic sets. Applied Soft Computing, 2014, 25, 336-346. 

23. Peng, J. J.,Wang, J. Q.,Wang, J., Yang, L. J., Chen, X. H. An extension of ELECTRE to multi-criteria 

decision-making problems with multi-hesitant fuzzy sets. Information Sciences, 2015, 307, 113–126. 

24. Peng, J. J., Wang, J. Q., Wu, X. H. An extension of the ELECTRE approach with multi-valued 

neutrosophic information. Neural Computing and Applications, 2016, 1-12. 

25. Pramanik, S., Biswas, P., Giri, B. C. Hybrid vector similarity measures and their applications to 

multi-attribute decision making under neutrosophic environment. Neural computing and Applications, 

2015, 1-14. 

26. Pramanik, S., Mondal, K. Cosine similarity measure of rough neutrosophic sets and its application in 

medical diagnosis. Global Journal of Advanced Research, 2015, 2(1), 212-220. 

27. Roy, B. The outranking approach and the foundations of ELECTRE methods. Theory and decision, , 1991, 

31(1), 49–73. 



Neutrosophic Sets and Systems, Vol. 30, 2019    223  

 

 
Vakkas Uluçay, Adil Kılıç¸, Ismet Yıldız and Memet Şahin, An outranking approach for MCDM-problems with neutrosophic 
multi-sets. 

28. Smarandache F. A Unifying Field in Logics Neutrosophy: Neutrosophic Probability, Set and Logic. 

Rehoboth: American Research Press. 1998. 

29. Smarandache, F. n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in 

Physics, 2013, 4; 143– 146. 

30. Smarandache F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int J Pure Appl Math , 

2005, 24:287-297. 

31. Shen, F., Xu, J., Xu, Z. An outranking sorting method for multi-criteria group decision making using 

intuitionistic fuzzy sets. Information Sciences, 2016, 334, 338–353. 

32. Sahin,M., I. Deli, V. Ulucay, Jaccard Vector Similarity Measure of Bipolar Neutrosophic Set Based on 

Multi-Criteria Decision Making, International Conference on Natural Science and Engineering, 2016, 

(ICNASE’16), March 19–20, Kilis. 

33. Wang H, Smarandache FY, Q. Zhang Q, Sunderraman R (2010). Single valued neutrosophic sets. 

Multispace and Multistructure 2010, 4:410–413. 

34. Wang, J.Q., J.T. Wu, J. Wang, H.Y. Zhang, X.H. Chen, Interval-valued hesitant fuzzy linguistic sets and 

their applications in multi-criteria decision-making problemsOriginal, Information Sciences, 2014, 288/20 , 

55–72. 

35. Wang, J., Wang, J. Q., Zhang, H. Y., Chen, X. H. Multi-criteria decision-making based on hesitant fuzzy 

linguisticterm sets: an outranking approach. Knowledge-Based Systems, 2015, 86, 224–236. 

36. M.C. Wu, T.Y. Chen, The ELECTRE multicriteria analysis approach based on Atanassovs intuitionistic 

fuzzy sets, Expert Syst. Appl. 2011, 38 (10) , 12318-12327. 

37. , J., Shen, F. A new outranking choice method for group decision making under Atanassovs 

interval-valued intuitionistic fuzzy environment. Knowledge-Based Systems, 2014, 70, 177–188. 

38. Ulucay, V., Deli, I., and Sahin, M. Similarity measures of bipolar neutrosophic sets and their application 

to multiple criteria decision making. Neural Computing and Applications, 2018, 29(3), 739-748. 

39. Ulucay, V., Deli, I., and Sahin, M. Intuitionistic trapezoidal fuzzy multi-numbers and its application to 

multi-criteria decision-making problems. Complex and Intelligent Systems, 2019, 1-14. 

40. Ulucay, V., Deli, I., and Sahin, M. Trapezoidal fuzzy multi-number and its application to multi-criteria 

decisionmaking problems. Neural Computing and Applications, 2018, 30(5), 1469-1478. 

41. Sahin, M., Olgun, N., Ulucay, V., Kargn, A., and Smarandache, F. A new similarity measure based on 

falsity value between single valued neutrosophic sets based on the centroid points of transformed single 

valued neutrosophic numbers with applications to pattern recognition. 2017, Infinite Study.  

42. Ulucay, V., Sahin, M., Olgun, N., and Kilicman, A. (2017). On neutrosophic soft lattices. Afrika 

Matematika, 2017, 28(3-4), 379-388. 

43. Ulucay, V., Kilic, A., Sahin, M., Deniz, H. A New Hybrid Distance-Based Similarity Measure for Refined 

Neutrosophic sets and its Application in Medical Diagnosis. MATEMATIKA: Malaysian Journal of 

Industrial and Applied Mathematics, 2019, 35(1), 83-94. 

44. Bakbak,D., Ulucay, V. Chapter Eight Multiple Criteria Decision Making in Architecture Based on 

Q-Neutrosophic Soft Expert Multiset. NEUTROSOPHIC TRIPLET STRUCTURES, 2019, 90. 

45. Bakbak, D., Ulucay, V., Sahin, M. Neutrosophic soft expert multiset and their application to multiple 

criteria decision making. Mathematics, 2019, 7(1), 50. 

46. Ulucay, V., Sahin, M. Neutrosophic Multigroups and Applications. MATHEMATICS, 2019, 7(1). 

47. Ulucay, V., Kilic, A., Yildiz, I., Sahin, M. A new approach for multi-attribute decision-making problems in 

bipolar neutrosophic sets. Neutrosophic Sets Syst, 2018, 23(1), 142-159. 

48. Yang,W. E., Wang, J. Q., Wang, X. F. An outranking method for multi-criteria decision making with 

duplex linguistic information. Fuzzy Sets and Systems, 2012, 198, 20–33. 

49. Ye,J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic 

sets, J. Intell.Fuzzy Syst. 2014, 26 (5) 24592466. 

50. Ye, J. Vector similarity measures of simplified neutrosophic sets and their application in multicriteria 

decision making. International Journal of Fuzzy Systems, 2014,16(2), 204–215. 

51. Ye J. Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets 

for multiple attribute decision making. J Intell Fuzzy Syst 2014, 27:2453–2462. 

52. Ye, J., Zhang, Q. S. Single valued neutrosophic similarity measures for multiple attribute decision 

making. Neutrosophic Sets and Systems, 2014, 2, 48–54. 

53.  Ye,S., and J. Ye, Dice Similarity Measure between Single Valued Neutrosophic Multisets anf Its 

Application in Medical Diagnosis, Neutrosophic Sets and Systems, 2014,  6, 49–54. 



Neutrosophic Sets and Systems, Vol. 30, 2019    224  

 

 
Vakkas Uluçay, Adil Kılıç¸, Ismet Yıldız and Memet Şahin, An outranking approach for MCDM-problems with neutrosophic 
multi-sets. 

54. ,J., and J. Fub, Multi-period medical diagnosis method using a single-valued neutrosophic similarity 

measure based on tangent function, computer methods and programs in biomedicine 

doi:10.1016/j.cmpb.2015.10.002. 

55. Ye,J., Single-valued neutrosophic similarity measures based on cotangent function and their application 

in the fault diagnosis of steam trbine, Soft Computing, DOI 10.1007/s00500-015- 1818-y. 

56. Ye, S., Fu, J., Ye, J. Medical Diagnosis Using Distance-Based Similarity Measures of Single Valued 

Neutrosophic Multisets. Neutrosophic Sets and Systems, 2015, 7, 47–52. 

57. Wu, Y., Zhang, J., Yuan, J., Geng, S.,Zhang, H. Study of decision framework of offshore wind power 

station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China. 

Energy Conversion and Management, 2016, 113, 66–81. 

58. Zhang, H., Wang, J., Chen, X. An outranking approach for multi-criteria decision-making problems with 

intervalvalued neutrosophic sets. Neural Computing and Applications, 2015,1–13. 

59. L.A. Zadeh, (1965). Fuzzy Sets, Inform. and Control, 1965,8: 338–353. 

 
 

 

 

Received: Mar 15, 2019.  Accepted: Nov 28, 2019 

 

 



Neutrosophic Sets and Systems, Vol. 30, 2019 
University of New Mexico 

 
Prakasam Muralikrishna and Dass Sarath Kumar, Neutrosophic Approach on Normed Linear Space 

 

 
 

        Neutrosophic Approach on Normed Linear Space 

Prakasam Muralikrishna1 and Dass Sarath Kumar 2  

PG and Research Department of Mathematics, 

Muthurangam Government Arts College (Autonomous), Vellore, Tamil Nadu, India. 

Email: pmkrishna@rocketmail.com1 , sharathdass0996@gmail.com2 

 

Abstract: This paper proposed the idea of Neutrosophic norm in a linear space. An attempt has 

been made to find some related results in Neutrosophic normed linear space and study the Cauchy 

sequence and completeness in this structure. 

Keywords: Linear space, Norm, Co-norm, Fuzzy Set, Fuzzy Norm, Neutrosophic norm, 

Neutrosophic normed linear space. 

 

 

1. Introduction 

 

This section gives the basic introduction about the present work starting with Literature survey, 

Scope and objective and chapter distribution. 

1.1. Literature Survey: 

The notion of normed linear space plays a major role in Functional Analysis. Dimension in normed 

linear space has attracted researchers to a greater extend. 𝐺𝑎 ̈ hler (1965) took effort in developing 

the structure of 2-normed linear space and n-normed linear space. Recently many researchers have 

engaged themselves in developing the theory of n-normed linear space. Zadeh (1965) [40], 

introduced fuzzy set in his pioneering work which is a remarkable theory to deal with uncertainty. 

He stated that a fuzzy set assigns a membership value to each element of a given crisp universe set 

from [0, 1]. This notion laid the foundation for a wide range usage of Mathematics and also applied 

to a great variety of real-life scenarios. Later Atanassov (1986) [11-13], focused intuitionistic fuzzy 

set, which is characterized by a membership function and non-membership function for each in the 

Universe and then Smarandache (1998-2005) [2 - 4] developed another idea called Neutrosophic set 

by adding an intermediate membership. Maji (2013) also dealt about this Neutrosophic concept. 

Felbin (1992) [19,20,21] assigned a fuzzy real number to each element of the linear space and 

introduction another idea of fuzzy norm on a linear space and also proved that a finite dimensional 

fuzzy normed linear space has a unique fuzzy norm on it up to fuzzy equivalence. Further in 1993 he 

discussed about the completion of fuzzy normed linear spaces and in 1993 he proved that any finite 

dimensional fuzzy normed linear space is necessarily complete. 

  Beg & Samanta (2003) [14 - 17] introduced a definition of fuzzy norm on a linear space. They 

also provided a decomposition theorem of fuzzy norms into a family of crisp norms and studied the 

properties of finite dimensional fuzzy normed linear spaces. This paper motivated Narayanan et.al 

to develop the theory of fuzzy n-normed linear space. Santhosh & Ramakrishnan (2011) [36] 

introduced the concepts of norm and inner product on fuzzy linear spaces over fuzzy fields. 

Then Vijayabalaji (2008) [38, 39] et.al studied the idea of interval valued fuzzy n-normed linear 

spaces. Later Vijayabalaji (2007) et.al, Samanta (2009) et.al, and Issac (2012) [25] et.al dealt the 
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concepts of normed linear spaced with intuitionistic fuzzy settings. Recently Sandeep Kumar (2018) 

discussed some results on Interval valued intuitionistic fuzzy n-normed linear space. 

1.2. Scope and Objective of the Present Investigation: 

The present study is aimed to extend the structures of fuzzy normed linear space into Neutrosophic 

normed linear space. An attempt has been made to study some elegant results in this structure 

through Neutrosophic norm and analyze the Cauchy sequences on Neutrosophic Normed linear 

space. The paper is classified into the following sections: Section 1 shows the introduction and 

section 2 gives some basic definitions and properties of linear space, fuzzy set, t-norm, t-conorm , 

fuzzy normed linear space etc., Section 3 deals the Neutrosophic normed linear space and discussed 

their properties. Section 4, ends with concluding remarks and future scope of the study. 

  

2. Preliminaries 

This section recalls the basis definitions and results that are necessary for the present work. 

Definition 2.1. [14] A linear space (or vector space) 𝑉 over a field 𝐹 consist of the following 

1. A field 𝐹 of scalars. 

2. A set 𝑉 of objects called vectors 

3. A rule (or operation) called vector addition which associates with each pair of vectors, 

𝑢 , 𝑣 ∈ 𝑉 a vector 𝑢 +  𝑣 ∈ 𝑉  called the sum of 𝑢 and 𝑣 in such a way that 

 Addition is commutative, 

 Addition is associative  

 There is unique vector in 𝑢  in 𝑉  called the zero vector, such that           

𝑢 + 0 = 𝑢  ∀ 𝑢 ∈ 𝑉 

 For each vector 𝑢 ∈ 𝑉  , there is unique vectors − 𝑢 ∈ 𝑉   such that          

𝑢 + ( −𝑢) = 0.  

4. A rule (or operation) called scalars multiplication which associates with each scalar 

𝑎 ∈ 𝐹 and vector and 𝑢 ∈ 𝑉 in such a way that  

 1. 𝑢 = 𝑢  ∀ 𝑢 ∈ 𝑉  and 1 ∈ 𝐹 

 𝑎𝑏(𝑢) = 𝑎(𝑏𝑢) ∀ 𝑎 , 𝑏 ∈ 𝐹 and ∀ 𝑢 ∈ 𝑉   

 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣  ∀ 𝑎 ∈ 𝐹 and ∀ 𝑢 , 𝑣 ∈ 𝑉 

 (𝑎 + 𝑏)𝑢 = 𝑎𝑢 + 𝑏𝑢  ∀ 𝑎 , 𝑏 ∈ 𝐹 and ∀ 𝑢 ∈ 𝑉 

It is denoted as ( 𝑉 , + , ∙  ) is a linear space. 

 

 Definition 2.2. [14]A nonnegative function on a linear vector space 𝑉 , ∥ ∙ ∥ ∶ 𝑉 → [ 0 ,∞) is called 

a norm if    

1. ∥  𝑥 ∥ = 0 if and only if 𝑥 = 0 ;  

2. ∥  𝑥 + 𝑦 ∥ ≤ ∥  𝑥 ∥  + ∥  𝑦 ∥ for all 𝑥 , 𝑦 ∈ 𝑉 (the triangular inequality)  

3. ∥  𝛼𝑥 ∥ = | 𝛼 | ∥  𝑥 ∥  for all 𝑥 ∈ 𝑉 and 𝛼 ∈ 𝐹 

 

Definition 2.3. [14]A normed linear space is a linear space 𝑉 with a norm ∥ ∙ ∥𝑉 on it.  

 

Definition 2.4. [40] A fuzzy set 𝐴 in 𝑋 is defined as an object of the form 𝐴 = { ( 𝑥 , 𝜇𝐴(𝑥)) ∶ 𝑥 ∈

𝑋 } , where 𝜇𝐴(𝑥) is called the membership function of 𝑥 in 𝑋 which maps 𝑋 to the unit interval 

𝐼 = [ 0 , 1 ].  

 

Definition 2.5. [11]An intuitionistic fuzzy set 𝐴 in a nonempty set 𝑋  is defined as an objects of the 

form           𝐴 = { (𝑥 , 𝜇𝐴(𝑥) , 𝜗𝑣(𝑥)) ∶ 𝑥 ∈ 𝑋 } where the functions  𝜇𝐴 ∶ 𝑋 → [ 0 , 1 ] and 𝜗𝐴  ∶

𝑋 → [ 0 , 1 ] defined the degree of membership and degree of non-membership of the element 𝑥 ∈

𝑋 respectively, and for  0 ≤ 𝜇𝑣(𝑥) + 𝜗𝑣(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋. 
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An ordinary fuzzy set 𝐴  in 𝑋  may be viewed as special intuitionistic fuzzy set with the 

non-membership function  𝜗𝐴(𝑥) = 1 − 𝜇𝐴(𝑥). 

 

Definition 2.6. Let [I] be the set of all closed sub intervals of the interval [0,1] and M = [𝑀𝐿,𝑀𝑈]  [I] 

where 𝑀𝐿 𝑎𝑛𝑑 𝑀𝑈 are the lower extreme and upper extreme, respectively. For a set X, an IVFS 

(Interval Valued Fuzzy Set) A on X given by  

          A = {〈x , 𝑀𝐴(𝑥) 〉/  x  X} 

where the function  𝑀𝐴 : X→ [0,1]  defines the degree of membership of an element x on A, and  

𝑀𝐴(𝑥) = [𝑀𝐴𝐿(𝑥),𝑀𝐴𝑈(𝑥)] called an interval valued fuzzy number. 

 

Definition 2.7. For a set X, an IVIFS (Interval Valued Intuitionistic Fuzzy Set) A on X is an objects 

having the form A = {〈x , 𝑀𝐴(𝑥), 𝑁𝐴(𝑥)〉 /  x  X } where 𝑀𝐴 :  X→ [I] and 𝑁𝐴 :  X→ [I] represents 

the degree of membership and non-membership  0≤ 𝑠𝑢𝑝( 𝑀𝐴(𝑥) ) + 𝑠𝑢𝑝( 𝑁𝐴(𝑥) ) ≤ 1 for every x  

X 𝑀𝐴(𝑥) = [𝑀𝐴𝐿(𝑥),𝑀𝐴𝑈(𝑥)] and 𝑁𝐴(𝑥) = [𝑁𝐴𝐿(𝑥), 𝑁𝐴𝑈(𝑥)] 

Hence A ={[𝑀𝐴𝐿(𝑥),𝑀𝐴𝑈(𝑥)], [𝑁𝐴𝐿(𝑥), 𝑁𝐴𝑈(𝑥)]} is called IVIFS. 

 

Definition 2.8. [14] Let X be a linear space over the field F (real or complex) and ∗ is a continuous 

t-norm. A fuzzy subset N on X  ℝ (R-set of all real numbers) is called a fuzzy norm on X if and only 

if for x,y  X and c  F, 

(N1)   t  R with t ≤   0, N(x,t) = 0 

(N2)   t  R with t > 0 N(x,t) = 1, iff x = 0 

(N3)  t  R,  t > 0   

                     N(cx,t) = N(x,
𝑡

|𝑐|
). If ,c ≠ 0 

(N4)   s,t  R,  x,y  X, 

                        N(x+y , t+s) ≥ N(x,t)∗N(y,s)  

(N5)  lim
𝑡→∞

𝑁(𝑥, 𝑡) = 1. 

The triplet (X,𝑁,∗) will be referred to as a fuzzy normed linear space. 

 

Definition 2.9. [25] A binary operation ∗ ∶ [ 0 , 1 ]  × [ 0 , 1 ] → [ 0 , 1 ]  is continuous t-norm if ∗

 satisfies the following conditions: 

1. ∗ is commutative and associative  

2. ∗ is continuous  

3. 𝑎 ∗ 1 = 𝑎, for all 𝑎 ∈ [ 0 , 1 ]  

4. 𝑎 ∗ 𝑏 ≤  𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 and 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈ [ 0 , 1 ]. 

 

Definition 2.10. A binary operation ◊ ∶ [ 0 , 1 ]  × [ 0 , 1 ] → [ 0 , 1 ]  is continuous t-co-norm if ◊

 satisfies the following conditions: 

1. ◊ is commutative and associative  

2. ◊ is continuous  

3. 𝑎 ◊ 0 = 𝑎, for all 𝑎 ∈ [ 0 , 1 ] 

4. 𝑎 ◊ 𝑏 ≤  𝑐 ◊ 𝑑 whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 and 𝑎 , 𝑏 , 𝑐 , 𝑑 ∈ [ 0 , 1 ]. 

 

Definition 2.11 Let ∗ be a continuous t-norm, ◊ be a continuous t-co-norm, and 𝑉 be a linear space 

over the field 𝐹 ( = 𝑅 𝑜𝑟 𝐶 ). An intuitionistic fuzzy norm or in short 𝐼𝐹𝑁 on 𝑉 is an object of the 

form 𝐴 = { ( ( 𝑥, 𝑡 ) , 𝑁( 𝑥 , 𝑡 ) , 𝑀( 𝑥 , 𝑡 )) ∶ ( 𝑥 , 𝑡 )  ∈ 𝑉 ×  ℝ+ , where 𝑁 ,𝑀  are fuzzy sets on  𝑉 ×

 ℝ+ ,𝑁 denotes the degree of membership and 𝑀 denotes the degree of non-membership ( 𝑥 , 𝑡 )  ∈

𝑉 × ℝ+ satisfying the following conditions:  

1. 𝑁(𝑥, 𝑡) + 𝑀(𝑥, 𝑡)  ≤ 1 ∀ (𝑥, 𝑡) ∈ 𝑉 ×  ℝ+ 

2. 𝑁(𝑥, 𝑡)  > 0 

3. 𝑁(𝑥, 𝑡) = 1 if and only if 𝑥 = 0 
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4. 𝑁(𝑐𝑥, 𝑡) = 𝑁 (𝑥,
𝑡

|𝑐|
) , 𝑐 ≠ 0 , 𝑐 ∈ 𝐹 

5. 𝑁(𝑥, 𝑠) ∗  𝑁(𝑦, 𝑡)  ≤ 𝑁(𝑥 + 𝑦 , 𝑠 + 𝑡) 

6. 𝑁(𝑥, ⋅ ) is non – decreasing function of ℝ+ and lim𝑡→∞ 𝑁(𝑥, 𝑡) = 1 

7. 𝑀(𝑥, 𝑡)  > 0 

8. 𝑀(𝑥, 𝑡) = 0 if and only if 𝑥 = 0 

9. 𝑀(𝑐𝑥, 𝑡) = 𝑀 (𝑥,
𝑡

|𝑐|
) , 𝑐 ≠ 0 , 𝑐 ∈ 𝐹 

10. 𝑀(𝑥, 𝑠) ◊ 𝑀(𝑦, 𝑡)  ≥ 𝑀(𝑥 + 𝑦 , 𝑠 + 𝑡) 

11. 𝑀(𝑥, ⋅ ) is non – increasing function of ℝ+ and lim𝑡→∞𝑀(𝑥, 𝑡) = 0. 

Then the quadruple ( 𝑉 , 𝐴 ,∗ , ◊ ) will be referred as a intuitionistic fuzzy normed linear space. 

 

3. Neutrosophic Approach on Normed Linear Space 

This section introduces the idea of Neutrosophic normed linear space using the notion of 

Neutrosophic set. Further, some result related to Cauchy sequence on Neutrosophic normed linear 

space are also dealt. 

3.1 Neutrosophic Norm: 

Here Neutrosophic norm is defined with suitable example. Further the convergence of sequence in 

NNLS and some properties also studied.  

  

 Definition 3.1. [33]Let 𝑆 be a space of points (objects).  A NS 𝑁 on S is characterized by a 

truth-membership function 𝜌, an indeterminacy membership function 𝜉, and a falsity-membership 

function 𝜂, where 𝜌(𝑥), 𝜉(𝑥)𝑎𝑛𝑑 𝜂(𝑥) and real standard and non-standard subset of ]ˉ0,1+[ i.e.,  𝜌,

𝜉, 𝜂 : X→ ]ˉ0,1+[. Thus the NS 𝑁 over S is defined as: 

       𝑁 = {< 𝑥, (𝜌(𝑥), 𝜉(𝑥), 𝜂(𝑥)) >| 𝑥  𝑆} 

On the same of 𝜌(𝑥), 𝜉(𝑥)𝑎𝑛𝑑 𝜂(𝑥)  there is no restriction and so ˉ 0 ≤ 𝑠𝑢𝑝𝜌(𝑥) + 𝑠𝑢𝑝𝜉(𝑥) +

𝑠𝑢𝑝 𝜂(𝑥) ≤ 3+. Here 1+ = 1 + , where 1 is its standard part and  its non-standard part. Also, ˉ0 =

0 − where 0 is its standard part and    its non-standard part. 

From philosophical point of view, a NS takes the value from real standard or nonstandard subsets 

of] ˉ0,1+[. But to practice in real scientific and engineering areas, it is difficult to use NS with value 

from real standard or nonstandard subset of] ˉ0, 1+[. Hence, we consider the NS which takes the 

value from the subset of [0, 1].   

 

Definition 3.2. Let 𝑉 be a linear space field 𝐹 = (ℝ 𝑜𝑟 ℂ ) and ∗ be a continuous t – norm, ◊ be a 

continuous t – co – norm. Then, a Neutrosophic subset 𝑁 ∶  〈𝜌, 𝜉, 𝜂〉 𝑜𝑛 𝑉   𝐹 is called a Neutrosophic 

norm on 𝑉 if for 𝑥 , 𝑦 ∈ 𝑉 and 𝑐 ∈ 𝐹 (𝑐 being scalar), if the following conditions hold. 

1. 0 ≤ 𝜌(𝑥, 𝑡), 𝜉(𝑥, 𝑡), 𝜂(𝑥, 𝑡) ≤ 1, ∀  𝑡 ∈ 𝑅  

2. 0 ≤ 𝜌(𝑥, 𝑡) +  𝜉(𝑥, 𝑡) +  𝜂(𝑥, 𝑡) ≤ 3, ∀ 𝑡 ∈ 𝑅 

3. 𝜌(𝑥, 𝑡) = 0  with  𝑡 ≤ 0 

4. 𝜌(𝑥, 𝑡) = 1 𝑤𝑖𝑡ℎ 𝑡 > 0 𝑖𝑓𝑓 𝑥 = 0, the null vector 

5.  𝜌(𝑐𝑥, 𝑡) =  𝜌 (𝑥 ,
𝑡

|𝑐|
) , ∀ 𝑐 ≠ 0, 𝑡 > 0  

6.   𝜌(𝑥, 𝑠) ∗  𝜌(𝑦, 𝑡)  ≤ 𝜌(𝑥 + 𝑦 , 𝑠 + 𝑡) ∀ 𝑠 , 𝑡 ∈ 𝑅 

7.  𝜌(𝑥, ⋅ ) is continuous non – decreasing function for 𝑡 > 0 , lim
𝑡→∞

𝜌(𝑥, 𝑡) = 1 

8.  𝜉(𝑥, 𝑡) = 1 𝑤𝑖𝑡ℎ, 𝑡 ≤ 0 

9.   𝜉(𝑥, 𝑡) = 0 𝑤𝑖𝑡ℎ 𝑡 > 0 𝑖𝑓𝑓 𝑥 = 0, the null vector 
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10.  𝜉(𝑐𝑥, 𝑡) =  𝜉 (𝑥 ,
𝑡

|𝑐|
) , ∀ 𝑐 ≠ 0, 𝑡 > 0  

11.   𝜉(𝑥, 𝑠)  ◊  𝜉(𝑦, 𝑡) ≥ 𝜉(𝑥 + 𝑦 , 𝑠 + 𝑡) ∀ 𝑠 , 𝑡 ∈ 𝑅 

12.  𝜉(𝑥 ,⋅ ) is a continuous non-increasing function for t > 0,  lim
𝑡→∞

𝜉(𝑥, 𝑡) = 0 

13.   𝜂(𝑥, 𝑡) = 1 𝑤𝑖𝑡ℎ, t  ≤ 0; 

14.   𝜂(𝑥, 𝑡) = 0 𝑤𝑖𝑡ℎ 𝑡 > 0 𝑖𝑓𝑓 𝑥 = 0, the null vector; 

15.  𝜂(𝑐𝑥, 𝑡) =   𝜂 (𝑥 ,
𝑡

|𝑐|
) , ∀ 𝑐 ≠ 0, 𝑡 > 0  

16.   𝜂(𝑥, 𝑠) ◊  𝜂(𝑦, 𝑡) ≥  𝜂(𝑥 + 𝑦 , 𝑠 + 𝑡) ∀ 𝑠 , 𝑡 ∈ 𝑅 

17.  𝜉(𝑥 ,⋅ ) is a continuous non-increasing function for t > 0, lim
𝑡→∞

𝜂(𝑥, 𝑡) = 0; 

Further ( 𝑉 , 𝑁 ,∗ , ◊ ) is Neutrosophic normed linear space (NNLS). 

 

Example3.3. 

 Let ( 𝑉 , ∥ ⋅ ∥ ) be a normed linear space. Take  𝑎 ∗ b = 𝑎𝑏 𝑎𝑛𝑑 𝑎 ◊ 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏. Define, 

      𝜌(x, t) = {
𝑡

𝑡+||𝑥||
  𝑖𝑓  𝑡 > ||𝑥||

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

     𝜉(x, t) = {

𝑥

𝑡+||𝑥||
  𝑖𝑓  𝑡 > ||𝑥||

1              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

                 𝜂(x, t) = {
||𝑥||

𝑡
  𝑖𝑓  𝑡 > ||𝑥||

1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
     , Then ( 𝑉 , 𝑁 ,∗ , ◊ ) is an NNLS. 

 Proof:  

All the conditions are obvious except the condition (6), (11), (16).  For 𝑠, 𝑡 > 0 because these 

are clearly true for 𝑠, 𝑡 ≤ 0.  

Now,    𝜌(𝑥 + 𝑦, 𝑠 + 𝑡) −   𝜌(𝑥 , 𝑠) ∗ 𝜌(𝑦, 𝑡)  

=
𝑠 + 𝑡

𝑠 + 𝑡 + ||𝑥 + 𝑦||
−

𝑠𝑡

(𝑠 + ||𝑥||)(𝑡 + ||𝑦||)
 

  

≥
𝑠 + 𝑡

𝑠 + 𝑡 + ||𝑥 + 𝑦||
−

𝑠𝑡

(𝑠 + ||𝑥||)(𝑡 + ||𝑦||)
 

 

                     = {(𝑠 + 𝑡)(𝑠 + ||𝑥||)(𝑡 + ||𝑦||) − 𝑠𝑡(𝑠 + 𝑡 + ||𝑥|| + ||𝑦||)}/ℵ 

 

Where ℵ = (𝑠 + 𝑡 + ||𝑥|| + ||𝑦||)(𝑠 + ||𝑥||)(𝑡 + ||𝑦||)  

= {𝑡2||𝑥|| 𝑠2||𝑦||  + (𝑠 + 𝑡)||𝑥𝑦||}/ℵ  ≥ 0. 

 

Hence,     𝜌(𝑥 , 𝑠) ∗ 𝜌(𝑦, 𝑡) ≤  𝜌(𝑥 + 𝑦, 𝑠 + 𝑡), ∀ 𝑠 , 𝑡 ∈ 𝑅 

  𝜉(𝑥, 𝑠) ◊  𝜉(𝑦, 𝑡) − 𝜉(𝑥 + 𝑦 , 𝑠 + 𝑡)                      

=
||𝑥||

𝑠 + ||𝑥||
+

||𝑦||

𝑡 + ||𝑦||
−

||𝑥𝑦||

(𝑠 + ||𝑥||)  (𝑡 + ||𝑦||)
−

𝑥 + 𝑦

||𝑥 + 𝑦|| + 𝑠 + 𝑡
 

 

=
||𝑥𝑦|| + 𝑡||𝑥|| + 𝑠||𝑦||

(𝑠 + ||𝑥||) (𝑡 + ||𝑦||)
−

||𝑥 + 𝑦||

||𝑥 + 𝑦|| + 𝑠 + 𝑡
 

       

= {(||𝑥 + 𝑦|| + 𝑠 + 𝑡)(𝑡||𝑥|| + 𝑠||𝑥|| + ||𝑥𝑦||) − ||𝑥 + 𝑦||(𝑠 + ||𝑥||) (𝑡 + ||𝑦||)}/𝐷 

 

 Where 𝐷 = (𝑠 + 𝑡 + ||𝑥 + 𝑦||)(𝑠 + ||𝑥||)(𝑡 + ||𝑦||) 
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= {(𝑠 + 𝑡)(𝑡||𝑥|| + 𝑠||𝑦|| + ||𝑥𝑦||) − 𝑠𝑡||𝑥 + 𝑦||}/𝐷 

 

         ≥ {(𝑠 + 𝑡)(𝑡||𝑥|| + 𝑠||𝑦|| + ||𝑥𝑦||) − 𝑠𝑡(||𝑥|| + ||𝑦||)}/𝐷 

 

                                         = {𝑡2||𝑥|| + 𝑠||𝑦|| + (𝑠 + 𝑡)||𝑥𝑦||}/𝐷 ≥ 0.  

 

Hence,    𝜉(𝑥, 𝑠) ◊  𝜉(𝑦, 𝑡) ≥ 𝜉(𝑥 + 𝑦 , 𝑠 + 𝑡) , ∀ 𝑠 , 𝑡 ∈ 𝑅.  

Finally   𝜂(𝑥, 𝑠) ◊  𝜂(𝑦, 𝑡) ≥ (𝑥 + 𝑦 , 𝑠 + 𝑡) 

=
||𝑥||

𝑠
+
||𝑦||

𝑡
−
||𝑥𝑦||

𝑠𝑡
−
||𝑥 + 𝑦||

𝑠 + 𝑡
 

 

=
𝑡||𝑥|| + 𝑠||𝑦|| − ||𝑥𝑦||

𝑠𝑡
−
||𝑥 + 𝑦||

𝑠 + 𝑡
 

 

                 ≥ {𝑠2||𝑦|| + 𝑡2||𝑥|| − (𝑠 + 𝑡)||𝑥𝑦||}/𝑠𝑡(𝑠 + 𝑡) 

 

= {𝑠||𝑦||(𝑠 − ||𝑥||) + 𝑡||𝑥||(𝑡 − ||𝑦||)} / 𝑠𝑡(𝑠 + 𝑡) ≥ 0, (𝑎𝑠 𝑠 > ||𝑥||, 𝑡 > ||𝑦||).  

 

   Thus, 𝜂(𝑥, 𝑠) ◊  𝜂(𝑦, 𝑡) ≥ (𝑥 + 𝑦 , 𝑠 + 𝑡) , ∀ 𝑠 , 𝑡 ∈ 𝑅. This completes the proof. 

 

Definition 3.4. Let {𝑥𝑛} be a sequence of points in a NNLS (𝑉, 𝑁,∗,◊). Then the sequence converges to 

a point𝑥 ∈ 𝑉 if and only if for given 𝑟 ∈ (0,1), 𝑡 > 0 there exist 𝑛0 𝑁 (the set of natural numbers) 

such that  

𝜌(𝑥𝑛 − 𝑥, 𝑡) > 1 − 𝑟, 𝜉(𝑥𝑛 − 𝑥, 𝑡) < 𝑟, 𝜂(𝑥𝑛 − 𝑥, 𝑡) < 𝑟, 𝑛 ≥ 𝑛0. 

(or) 

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑥, 𝑡) = 1, lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑡) = 0, lim
𝑛→∞

𝜂(𝑥𝑛 − 𝑥, 𝑡) = 0, 𝑡 → ∞ 

Then the sequence {𝑥𝑛} is called a convergent sequence in the NNLS (𝑉, 𝑁,∗,◊). 

 

Theorem 3.5.  

 If the sequence {𝑥𝑛} in a NNLS  (𝑉, 𝑁,∗,◊) is convergent, then the point of convergence is 

unique. 

Proof: 

 Let lim
𝑛→∞

𝑥𝑛 = 𝑥  𝑎𝑛𝑑  lim
𝑛→∞

𝑥𝑛 = 𝑦. 𝑓𝑜𝑟 𝑥 ≠ 𝑦.  𝑇ℎ𝑒𝑛 𝑓𝑜𝑟 𝑠, 𝑡 > 0,  

 

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑥, 𝑠) = 1, lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑠) = 0, lim
𝑛→∞

𝜂(𝑥𝑛 − 𝑥, 𝑠) = 0, 𝑎𝑠 𝑠 → ∞  𝑎𝑛𝑑 

 

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑥, 𝑡) = 1, lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑡) = 0, lim
𝑛→∞

𝜂(𝑥𝑛 − 𝑥, 𝑡) = 0, 𝑎𝑠 𝑡 → ∞ 

Now, 

                        𝜌(𝑥 − 𝑦, 𝑠 + 𝑡) = 𝜌(𝑥 − 𝑥𝑛 + 𝑥𝑛 − 𝑦, 𝑠 + 𝑡) ≤ 𝜌(𝑥𝑛 − 𝑥, 𝑠) ∗ 𝜌(𝑥𝑛 − 𝑦, 𝑡)  

Taking limit as 𝑛 → ∞ and for s, t 𝑛 → ∞, 

𝜌(𝑥 − 𝑦, 𝑠 + 𝑡) ≥ 1 ∗ 1 = 1 𝑖. 𝑒. , 𝜌(𝑥 − 𝑦, 𝑠 + 𝑡) = 1 

Further, 

𝜉(𝑥 − 𝑦, 𝑠 + 𝑡) = 𝜉(𝑥 − 𝑥𝑛 + 𝑥𝑛 − 𝑦, 𝑠 + 𝑡) ≤ 𝜉(𝑥𝑛 − 𝑥, 𝑠) ◊ 𝜉(𝑥𝑛 − 𝑦, 𝑡) 

Taking limit as 𝑛 → ∞ and for s, t 𝑛 → ∞, 

𝜉(𝑥 − 𝑦, 𝑠 + 𝑡) ≤ 0 ◊ 0 = 0𝑖. 𝑒. , 𝜉(𝑥 − 𝑦, 𝑠 + 𝑡) = 0 
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Similarly, 𝜂(𝑥 − 𝑦, 𝑠 + 𝑡) = 0 

Hence, 𝑥 = 𝑦 and this complete the proof.  

 

Theorem 3.6. 

In an NNLS (𝑉, 𝑁,∗,◊), if lim
𝑛→∞

(𝑥𝑛) = 𝑥 and  lim
𝑛→∞

(𝑦𝑛) = 𝑦 then         lim
𝑛→∞

(𝑥𝑛 + 𝑦𝑛) = 𝑥 + 𝑦 

Proof: 

 Here, for 𝑠, 𝑡 > 0   

lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑥, 𝑠) = 1, lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑠) = 0, lim
𝑛→∞

𝜂(𝑥𝑛 − 𝑥, 𝑠) = 0, 𝑎𝑠 𝑠 → ∞  𝑎𝑛𝑑 

 

              lim
𝑛→∞

𝜌(𝑦𝑛 − 𝑦, 𝑡) = 1, lim
𝑛→∞

𝜉(𝑦𝑛 − 𝑦, 𝑡) = 0, lim
𝑛→∞

𝜂(𝑦𝑛 − 𝑦, 𝑡) = 0, 𝑎𝑠 𝑡 → ∞ . 

 

Now, lim
𝑛→∞

𝜌[(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦), 𝑠 + 𝑡)] = lim
𝑛→∞

𝜌[(𝑥𝑛 − 𝑥) + (𝑦𝑛 − 𝑦), 𝑠 + 𝑡)] , 

 

≥ lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑥, 𝑠) ∗ lim
𝑛→∞

𝜌(𝑦𝑛 − 𝑦, 𝑡)[𝑏𝑦 (6)𝑖𝑛 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.2] 

 

   = 1 ∗ 1 = 1 𝑎𝑠 𝑠, 𝑡 → ∞  

   Hence lim
𝑛→∞

𝜌[(𝑥𝑛 − 𝑦𝑛) − (𝑥 + 𝑦), 𝑠 + 𝑡)] = 1 𝑎𝑠, 𝑠, 𝑡 → ∞.  𝐴𝑔𝑎𝑖𝑛 

lim
𝑛→∞

𝜉[(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦), 𝑠 + 𝑡)] = lim
𝑛→∞

𝜉[(𝑥𝑛 − 𝑥) + (𝑦𝑛 − 𝑦), 𝑠 + 𝑡)] 

 

≥ lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑠) ◊ lim
𝑛→∞

𝜉(𝑦𝑛 − 𝑦, 𝑡) [𝑏𝑦 (11)𝑖𝑛 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.2]  

 

                                      = 0 ◊ 0 = 0 𝑎𝑠 𝑠, 𝑡 → ∞  

𝑆𝑜, lim
𝑛→∞

𝜉[(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦), 𝑠 + 𝑡)] =0 𝑎𝑠 𝑠, 𝑡 → ∞. 

    Similarly, 

 lim
𝑛→∞

𝜂[(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦), 𝑠 + 𝑡)] =0 𝑎𝑠 𝑠, 𝑡 → ∞. 𝑎𝑛𝑑 𝑡ℎ𝑖𝑠 𝑒𝑛𝑑 𝑡ℎ𝑒 𝑡ℎ𝑒𝑜𝑟𝑒𝑚. 

 

Theorem 3.7. 

 If lim
𝑛→∞

𝑥𝑛 = 𝑥 and 0 ≠ 𝑐  𝐹, then lim
𝑛→∞

𝑐𝑥𝑛 in an NNLS (𝑉, 𝑁,∗,◊). 

Proof: 

  Here, 

       lim
𝑛→∞

𝜌(𝑐𝑥𝑛 − 𝑐𝑥, 𝑡) = lim
𝑛→∞

𝜌 (𝑥𝑛 − 𝑥,
𝑡

|𝑐|
) = 1, 𝑎𝑠 

𝑡

|𝑐|
→ ∞. 

 

lim
𝑛→∞

𝜉(𝑐𝑥𝑛 − 𝑐𝑥, 𝑡) = lim
𝑛→∞

𝜉 (𝑥𝑛 − 𝑥,
𝑡

|𝑐|
) = 1, 𝑎𝑠 

𝑡

|𝑐|
→ ∞. 

 

lim
𝑛→∞

𝜂(𝑐𝑥𝑛 − 𝑐𝑥, 𝑡) = lim
𝑛→∞

𝜂 (𝑥𝑛 − 𝑥,
𝑡

|𝑐|
) = 1, 𝑎𝑠 

𝑡

|𝑐|
→ ∞. 

Thus, the theorem is proved. 

3.2. Completeness on Neutrosophic Normed Linear Space: 

Here the Cauchy sequence in NNLS and complete NNLS are introduced. Further several structural 

characteristics of complete NNLS also studied. . 

Definition 3.8.  A sequence {𝑥𝑛}  of points in an NNLS (𝑉, 𝑁,∗,◊)  is said to be bounded for 

𝑟 (0,1) and 𝑡 > 0. if the following hold: 
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𝜌(𝑥𝑛 , 𝑡) > 1 − 𝑟, 𝜉(𝑥𝑛, 𝑡) < 𝑟, 𝜂(𝑥𝑛, 𝑡) < 𝑟, 𝑛  𝑁. (𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ). 

 

Definition 3.9. 

1. A sequence {𝑥𝑛} of points in an NNLS (𝑉, 𝑁,∗,◊) .is said to be a Cauchy sequence if 

give𝑟 (0,1), 𝑡 > 0 there exist 𝑛0  𝑁 (𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝜌(𝑥𝑛 − 𝑥𝑚, 𝑡) > 1 − 𝑟, 𝜉(𝑥𝑛 − 𝑥𝑚, 𝑡) < 𝑟, 𝜂(𝑥𝑛 − 𝑥𝑚, 𝑡) < 𝑟 𝑚, 𝑛  𝑛0. 

(𝑜𝑟) 
lim

𝑛,𝑚→∞
𝜌(𝑥𝑛 − 𝑥𝑚, 𝑡) = 1, lim

𝑛,𝑚→∞
𝜉(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0, lim

𝑛,𝑚→∞
𝜂(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0, 𝑎𝑠 𝑡 → ∞ 

 

2. Let {𝑥𝑛} be Cauchy sequence of points in a normed linear space (𝑉, ||||). Then 

        lim
𝑛,𝑚→∞

||𝑥𝑛 − 𝑥𝑚|| = 0 hold. 

 

Example 3.10. For 𝑡 > 0, 𝑙𝑒𝑡 𝜌(𝑥, 𝑡) =
𝑡

𝑡+||𝑥||
 , 𝜉(𝑥, 𝑡) =

||𝑥||

𝑡+||𝑥||
, 𝜂(𝑥, 𝑡) =

||𝑥||

𝑡
. Then (𝑉, 𝑁,∗,◊) is an 

NNLS. Now, 

lim
𝑛,𝑚→∞

𝑡

𝑡 + ||𝑥𝑛 − 𝑥𝑚||
= 1 , lim

𝑛,𝑚→∞

||𝑥𝑛 − 𝑥𝑚||

𝑡 + ||𝑥𝑛 − 𝑥𝑚||
= 0 , lim

𝑛,𝑚→∞

||𝑥𝑛 − 𝑥𝑚||

𝑡
= 0 

 
lim

𝑛,𝑚→∞
𝜌(𝑥𝑛 − 𝑥𝑚, 𝑡) = 1, lim

𝑛,𝑚→∞
𝜉(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0, lim

𝑛,𝑚→∞
𝜂(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0, 𝑎𝑠 𝑡 → ∞ 

 

This shows that {𝑥𝑛} is a Cauchy sequence in the NNLS (𝑉, 𝑁,∗,◊). 

 

Theorem 3.11. Every convergent sequence of points in a NNLS (𝑉, 𝑁,∗,◊) is a Cauchy sequence. 

Proof: 

Let {𝑥𝑛} be a convergent sequence of a points in a NNLS (𝑉, 𝑁,∗,◊) so that lim
𝑛→∞

𝑥𝑛 = 𝑥. Then for 

𝑡 > 0, 
lim

𝑛,𝑚→∞
𝜌(𝑥𝑛 − 𝑥𝑚, 𝑡) =  lim

𝑛,𝑚→∞
𝜌(𝑥𝑛 − 𝑥𝑚 + 𝑥 − 𝑥, 𝑡) = lim

𝑛,𝑚→∞
𝜌[(𝑥𝑛 − 𝑥) + (𝑥 − 𝑥𝑚), 𝑡]), 

 

≥ lim
𝑛→∞

𝜌 (𝑥𝑛 − 𝑥,
𝑡

2
) =  ∗ lim

𝑚→∞
𝜌 (𝑥 − 𝑥𝑚 ,

𝑡

2
) [𝑏𝑦 (6)𝑖𝑛 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.2] 

 

= lim
𝑛→∞

𝜌 (𝑥𝑛 − 𝑥,
𝑡

2
) =  ∗ lim

𝑚→∞
𝜌 (𝑥𝑚 − 𝑥,

𝑡

2
) [𝑏𝑦 (5)𝑖𝑛 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.2] 

 

                                  = 1 ∗ 1 = 1  𝑎𝑠  𝑡 → ∞.  
                So , lim

𝑛,𝑚→∞
𝜌(𝑥𝑛 − 𝑥𝑚, 𝑡) = 1.  

 

Again lim
𝑛,𝑚→∞

𝜉(𝑥𝑛 − 𝑥𝑚, 𝑡) =  lim
𝑛,𝑚→∞

𝜉(𝑥𝑛 − 𝑥𝑚 + 𝑥 − 𝑥, 𝑡) 

= lim
𝑛,𝑚→∞

𝜉[(𝑥𝑛 − 𝑥) + (𝑥 − 𝑥𝑚), 𝑡]) 

 

≥ lim
𝑛→∞

𝜉 (𝑥𝑛 − 𝑥,
𝑡

2
) =  ◊ lim

𝑚→∞
𝜉 (𝑥 − 𝑥𝑚 ,

𝑡

2
) [𝑏𝑦 (11) 𝑖𝑛 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.2] 

 

= lim
𝑛→∞

𝜉 (𝑥𝑛 − 𝑥,
𝑡

2
) =  ◊ lim

𝑚→∞
𝜉 (𝑥𝑚 − 𝑥,

𝑡

2
) [𝑏𝑦 (10) 𝑖𝑛 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 3.2] 

 

                                  = 0 ◊ 0 = 0  𝑎𝑠  𝑡 → ∞.  

 So lim
𝑛,𝑚→∞

𝜉(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0 and similarly lim
𝑛,𝑚→∞

𝜂(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0. 

 

Hence,{𝑥𝑛} is a Cauchy Sequence. 



Neutrosophic Sets and Systems, Vol. 30, 2019 233  

 

 
Prakasam Muralikrishna and Dass Sarath Kumar , Neutrosophic Approach on Normed Linear Space 
 

 

Example 3.12. The following example will clarify that the inverse of the Theorem 3.11 may not be 

true.  Let 𝑅1 = {
1

𝑛
|𝑛 𝜖 N} (the set of natural numbers) be a subset of real numbers and ||𝑥|| = |𝑥|. 

With respect to the neutrosophic norm defined in Example.3.10, obviously (R,N,∗,◊) is an NNLS.  

Now 

lim
𝑛,𝑚→∞

𝑡

𝑡 + ||𝑥𝑛 − 𝑥𝑚||
= lim
𝑛,𝑚→∞

𝑡

𝑡 + |
1

𝑛
−

1

𝑚
|
= 1, 

 

lim
𝑛,𝑚→∞

||𝑥𝑛 − 𝑥𝑚||

𝑡 + ||𝑥𝑛 − 𝑥𝑚||
= lim
𝑛,𝑚→∞

|
1

𝑛
−

1

𝑚
|

𝑡 + |
1

𝑛
−

1

𝑚
|
= 0, 

 

𝑎𝑛𝑑, lim
𝑛,𝑚→∞

||𝑥𝑛 − 𝑥𝑚||

𝑡
= lim
𝑛,𝑚→∞

|
1

𝑛
−

1

𝑚
|

𝑡
= 0, 

 

Thus {𝑥𝑛} is a Cauchy Sequence of points in the NNLS (R, N,∗,◊). But 

 

lim
𝑛→∞

(𝑥𝑛 − 𝑥𝑘, 𝑡) = lim
𝑛→∞

|
1

𝑛
−

1

𝑘
|

𝑡 + |
1

𝑛
−

1

𝑘
|
≠ 0 . 

This shows that the Cauchy Sequence {𝑥𝑛}  is not convergent in that NNLS. 

 

Theorem 3.13. In an NNLS (𝑉, 𝑁,∗,◊) , if {𝑥𝑛}, {𝑦𝑛} are Cauchy Sequence of vectors and {𝑛} is 

Cauchy Sequence of scalars in an NNLS  (𝑉, 𝑁,∗,◊) , then {𝑥𝑛 + 𝑦𝑛} 𝑎𝑛𝑑 {𝑛𝑦𝑛} are also Cauchy 

Sequence in NNLS (𝑉, 𝑁,∗,◊). 

Proof: 

   For 𝑡 > 0, we have, 
lim

𝑛,𝑚→∞
𝜌(𝑥𝑛 − 𝑥𝑚, 𝑡) = 1, lim

𝑛,𝑚→∞
𝜉(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0, lim

𝑛,𝑚→∞
𝜂(𝑥𝑛 − 𝑥𝑚, 𝑡) = 0, 𝑎𝑠 𝑡 → ∞ 

 And  
lim

𝑛,𝑚→∞
𝜌(𝑦𝑛 − 𝑦𝑚, 𝑡) = 1, lim

𝑛,𝑚→∞
𝜉(𝑦𝑛 − 𝑦𝑚, 𝑡) = 0, lim

𝑛,𝑚→∞
𝜂(𝑦𝑛 − 𝑦𝑚, 𝑡) = 0, 𝑎𝑠 𝑡 → ∞ 

 
lim

𝑛,𝑚→∞
𝜌[(𝑥𝑛 + 𝑦𝑛) − (𝑥𝑚 + 𝑦𝑚), 𝑡)] = lim

𝑛,𝑚→∞
𝜌[(𝑥𝑛 − 𝑥𝑚) + (𝑦𝑛 − 𝑦𝑚), 𝑡)] 

 

≥ lim
𝑛,𝑚→∞

𝜌 (𝑥𝑛 − 𝑥𝑚,
𝑡

2
) ∗  lim

𝑛,𝑚→∞
𝜌 (𝑦𝑛 − 𝑦𝑚,

𝑡

2
) = 1 ∗ 1 = 1  𝑎𝑠 𝑡 → ∞ 

 

Hence, lim
𝑛,𝑚→∞

𝜌[(𝑥𝑛 + 𝑦𝑛) − (𝑥𝑚 + 𝑦𝑚), 𝑡)] = 1 𝑎𝑠 𝑡 → ∞ 

 
lim

𝑛,𝑚→∞
𝜉[(𝑥𝑛 + 𝑦𝑛) − (𝑥𝑚 + 𝑦𝑚), 𝑡)] = lim

𝑛,𝑚→∞
𝜉[(𝑥𝑛 − 𝑥𝑚) + (𝑦𝑛 − 𝑦𝑚), 𝑡)] 

 

≤ lim
𝑛,𝑚→∞

𝜉 (𝑥𝑛 − 𝑥𝑚,
𝑡

2
)  ◊ lim

𝑛,𝑚→∞
𝜉 (𝑦𝑛 − 𝑦𝑚,

𝑡

2
) = 0 ◊ 0 = 0  𝑎𝑠 𝑡 → ∞ 

 

So, lim
𝑛,𝑚→∞

𝜉[(𝑥𝑛 + 𝑦𝑛) − (𝑥𝑚 + 𝑦𝑚), 𝑡)] = 0 𝑎𝑠 𝑡 → ∞ 

Similarly, 
          lim

𝑛,𝑚→∞
𝜂[(𝑥𝑛 + 𝑦𝑛) − (𝑥𝑚 + 𝑦𝑚), 𝑡)] = 0 𝑎𝑠 𝑡 → ∞ 

This ends the first part. For the next part, 

 
lim

𝑛,𝑚→∞
𝜌[(𝑚𝑦𝑚 − 𝑛𝑦𝑛), 𝑡] =  lim

𝑛,𝑚→∞
𝜌[(𝑚𝑦𝑚 − 𝑛𝑦𝑛) + (𝑚𝑦𝑛 − 𝑚𝑦𝑛), 𝑡] 
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= lim
𝑛,𝑚→∞

𝜌[(𝑚(𝑦𝑚 − 𝑦𝑛) + 𝑦𝑛(𝑚 − 𝑛), 𝑡] ≥  lim
𝑛,𝑚→∞

𝜌[((𝑦𝑚 − 𝑦𝑛),
𝑡

2|𝑚|
)] ∗ 𝜌 (𝑦𝑛,

𝑡

2|𝑚 − 𝑛|
) 

 

Since |𝑚 − 𝑛| → 0 𝑎𝑠 𝑚, 𝑛 → ∞, 𝑆𝑜 |𝑚 − 𝑛| ≠ 0. Again {𝑦𝑛} being Cauchy sequence is bounded. 

 

Hence , lim
𝑛,𝑚→∞

𝜌[(𝑚𝑦𝑚 − 𝑛𝑦𝑛), 𝑡] = 1 𝑎𝑠 𝑡 → ∞. 𝐹𝑢𝑟𝑡ℎ𝑒𝑟, 

 
lim

𝑛,𝑚→∞
𝜉[(𝑚𝑦𝑚 − 𝑛𝑦𝑛), 𝑡] = lim

𝑛,𝑚→∞
𝜉[(𝑚𝑦𝑚 − 𝑛𝑦𝑛) + (𝑚𝑦𝑛 − 𝑚𝑦𝑛), 𝑡] 

 

= lim
𝑛,𝑚→∞

𝜉[(𝑚(𝑦𝑚 − 𝑦𝑛) + 𝑦𝑛(𝑚 − 𝑛), 𝑡] ≤  lim
𝑛,𝑚→∞

𝜉[((𝑦𝑚 − 𝑦𝑛),
𝑡

2|𝑚|
)] ◊ 𝜉 (𝑦𝑛,

𝑡

2|𝑚 − 𝑛|
) 

 

By similar argument, lim
𝑛,𝑚→∞

𝜉[(𝑚𝑦𝑚 − 𝑛𝑦𝑛), 𝑡] = 0 𝑎𝑠 𝑡 → ∞ and finally, 

 
lim

𝑛,𝑚→∞
𝜂[(𝑚𝑦𝑚 − 𝑛𝑦𝑛), 𝑡] = 0 𝑎𝑠 𝑡 → ∞  

Hence, the 2nd part is complete. 

 

Definition 3.14. Let (𝑉, 𝑁,∗,◊) be a NNLS and △𝑉  be the collection of all points on V. Then 

(𝑉, 𝑁,∗,◊) is said to be a complete NNLS if every Cauchy sequence of points in △𝑉 converges to a 

point of △𝑉. 

 

Theorem 3.15. In an NNLS (𝑉, 𝑁,∗,◊), if every Cauchy sequence has a convergent subsequence then 

(𝑉, 𝑁,∗,◊) is a complete NNLS. 

 

Proof: Let {𝑥𝑛𝑘} be a convergent subsequence of a Cauchy sequence {𝑥𝑛} in an NNLS (𝑉, 𝑁,∗,◊) 

such that {𝑥𝑛𝑘} → 𝑥   𝑉. Since {𝑥𝑛} be a Cauchy sequence in (𝑉,𝑁,∗,◊), given  𝑡 > 0 

 

lim
𝑛,𝑘→∞

𝜌 (𝑥𝑛 − 𝑥𝑛𝑘,
𝑡

2
) = 1, lim

𝑛,𝑘→∞
𝜉 (𝑥𝑛 − 𝑥𝑛𝑘,

𝑡

2
) = 0, lim

𝑛,𝑘→∞
𝜂 (𝑥𝑛 − 𝑥𝑛𝑘,

𝑡

2
) = 0, 𝑎𝑠 𝑡 → ∞ 

 

Again since {𝑥𝑛𝑘} converges to x, then 

 

lim
𝑛,𝑘→∞

𝜌 (𝑥𝑛𝑘 − 𝑥,
𝑡

2
) = 1, lim

𝑛,𝑘→∞
𝜉 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
) = 0, lim

𝑛,𝑘→∞
𝜂 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
) = 0, 𝑡 → ∞ 

Now,  

          𝜌(𝑥𝑛 − 𝑥, 𝑡) = 𝜌(𝑥𝑛 − 𝑥𝑛𝑘 + 𝑥𝑛𝑘 − 𝑥, 𝑡) ≥ 𝜌 (𝑥𝑛 − 𝑥𝑛𝑘,
𝑡

2
) ∗ 𝜌 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
). 

It implies  
  lim

𝑛→∞
𝜌(𝑥𝑛 − 𝑥, 𝑡) = 1 

Further, 

  𝜉(𝑥𝑛 − 𝑥, 𝑡) = 𝜉(𝑥𝑛 − 𝑥𝑛𝑘 + 𝑥𝑛𝑘 − 𝑥, 𝑡) ≤ 𝜉 (𝑥𝑛 − 𝑥𝑛𝑘,
𝑡

2
) ◊ 𝜉 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
). 

It implies lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑡) = 0. 

It implies lim
𝑛→∞

𝜂(𝑥𝑛 − 𝑥, 𝑡) = 0. 

This shows that 𝑥𝑛 converges to 𝑥 𝜖 𝑉 and thus the theorem is proved. 

 

Theorem 3.16.  In an NNLS (𝑉, 𝑁,∗,◊), every convergent sequence is a Cauchy sequence. 

Proof: Let {𝑥𝑛} be a convergent sequence in the NNLS (𝑉, 𝑁,∗,◊) with lim
𝑛→∞

𝑥𝑛 = 𝑥. Let 𝑠, 𝑡 𝜖 ℝ+ and 

p = 1,2,3,…, we have 

𝜌(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑠 + 𝑡) = 𝜌(𝑥𝑛+𝑝 − 𝑥 + 𝑥 − 𝑥𝑛, 𝑠 + 𝑡) 
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                                        ≥ 𝜌(𝑥𝑛+𝑝 − 𝑥, 𝑠) ∗ 𝜌(𝑥 − 𝑥𝑛, 𝑡) 

 

                                          = 𝜌(𝑥𝑛+𝑝 − 𝑥, 𝑠) ∗ 𝜌(𝑥𝑛 − 𝑥, 𝑡) 

Taking limit, we have  

lim
𝑛→∞

𝜌(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑠 + 𝑡) ≥ lim
𝑛→∞

𝜌(𝑥𝑛+𝑝 − 𝑥, 𝑠) ∗ lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑥, 𝑡) 

= 1 ∗ 1 = 1 

 

 lim
𝑛→∞

𝜌(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑠 + 𝑡) = 1 𝑠, 𝑡 → ∞ 𝑎𝑛𝑑 𝑝 = 1,2,3…. 

 Again, 

𝜉(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑠 + 𝑡) ≥ 𝜉(𝑥𝑛+𝑝 − 𝑥 + 𝑥 − 𝑥𝑛, 𝑠 + 𝑡) 

                                              

                                             ≥ 𝜉(𝑥𝑛+𝑝 − 𝑥, 𝑠) ◊ 𝜉(𝑥 − 𝑥𝑛, 𝑡) 

 

                                              = 𝜉(𝑥𝑛+𝑝 − 𝑥, 𝑠) ◊ 𝜉(𝑥𝑛 − 𝑥, 𝑡) 

Taking limit, we have  

lim
𝑛→∞

𝜉(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑠 + 𝑡) ≥ lim
𝑛→∞

𝜉(𝑥𝑛+𝑝 − 𝑥, 𝑠) ◊ lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑡) 

= 0 ◊ 0 = 0 

 

 lim
𝑛→∞

𝜉(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑠 + 𝑡) = 0 𝑠, 𝑡 → ∞ 𝑎𝑛𝑑 𝑝 = 1,2,3…. 

Similarly, 

lim
𝑛→∞

𝜂(𝑥𝑛+𝑝 − 𝑥𝑛, 𝑠 + 𝑡) = 0 𝑠, 𝑡 → ∞ 𝑎𝑛𝑑 𝑝 = 1,2,3…. 

 

 Thus, {𝑥𝑛} is a Cauchy sequence in the NNLS (𝑉, 𝑁,∗,◊). 

 

Theorem 3.17. Let (𝑉, 𝑁,∗,◊) be an NNLS, such that every Cauchy sequence in (𝑉, 𝑁,∗,◊)has a 

convergent sebsequence. Then (𝑉, 𝑁,∗,◊) is complete. 

 

Proof: Let {𝑥𝑛}  be a Cauchy sequence in  (𝑉,𝑁,∗,◊) and {𝑥𝑛𝑘}  be a subsequence of {𝑥𝑛}  the 

converges to 𝑥 𝜖 𝑉 𝑎𝑛𝑑 𝑡 > 0. Since {𝑥𝑛} is a Cauchy sequence in (𝑉, 𝑁,∗,◊), we have 

lim
𝑛,𝑘→∞

𝜌 (𝑥𝑛 − 𝑥𝑘,
𝑡

2
) = 1, lim

𝑛,𝑘→∞
𝜉 (𝑥𝑛 − 𝑥𝑘,

𝑡

2
) = 0, lim

𝑛,𝑘→∞
𝜂 (𝑥𝑛 − 𝑥𝑘,

𝑡

2
) = 0 

 

Again since {𝑥𝑛𝑘} converges to x, we have 

lim
𝑘→∞

𝜌 (𝑥𝑛𝑘 − 𝑥,
𝑡

2
) = 1, lim

𝑘→∞
𝜉 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
) = 0, lim

𝑛,𝑘→∞
𝜂 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
) = 0. 

Now, 
𝜌(𝑥𝑛 − 𝑥, 𝑡) = 𝜌(𝑥𝑛 − 𝑥𝑛𝑘 + 𝑥𝑛𝑘 − 𝑥, 𝑡) 

 

                                        ≥ 𝜌 (𝑥𝑛 − 𝑥𝑛𝑘,
𝑡

2
) ∗ 𝜌 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
) 

 
 lim
𝑛→∞

𝜌(𝑥𝑛 − 𝑥, 𝑡) = 1                                                  

 

Again, we see that  
𝜉(𝑥𝑛 − 𝑥, 𝑡) = 𝜉(𝑥𝑛 − 𝑥𝑛𝑘 + 𝑥𝑛𝑘 − 𝑥, 𝑡) 

 

                                        ≤ 𝜉 (𝑥𝑛 − 𝑥𝑛𝑘,
𝑡

2
) ◊ 𝜉 (𝑥𝑛𝑘 − 𝑥,

𝑡

2
) 

 
lim
𝑛→∞

𝜉(𝑥𝑛 − 𝑥, 𝑡) = 0                                                  



Neutrosophic Sets and Systems, Vol. 30, 2019 236  

 

 
Prakasam Muralikrishna and Dass Sarath Kumar , Neutrosophic Approach on Normed Linear Space 
 

 

Similarly, lim
𝑛→∞

𝜂(𝑥𝑛 − 𝑥, 𝑡) = 0 

Thus, {𝑥𝑛} converges to x in (𝑉, 𝑁,∗,◊) and hence is complete. 

 

Theorem 3.18. Every finite dimensional NNLS satisfying the condition. 

              
𝑎 ◊ 𝑎 = 𝑎
𝑎 ∗ 𝑎 = 𝑎

} 𝑎 𝜖[0,1] ………… . (1) 

 

𝜌(𝑥, 𝑡) > 0  𝑡 > 0 → 𝑥 = 0 …………….(2) is complete. 

Proof: Let (𝑉, 𝑁,∗,◊) be a finite dimensional NNLS satisfying the condition (1) and (2).  Also, let 

dim V =k and 𝑒1, 𝑒2, … , 𝑒𝑘 be a basic of V.  

Consider {𝑥𝑛} as an arbitrary Cauchy sequence in (V,A).  

Let 𝑥𝑛 = 𝛽1
(𝑛)
𝑒1 + 𝛽2

(𝑛)
𝑒2 + ⋯+ 𝛽𝑘

(𝑛)
𝑒𝑘 where 𝛽1

(𝑛)
, 𝛽2

(𝑛)
, … , 𝛽𝑘

(𝑛)
suitable scalars are. Then by the same 

calculation, there exist 𝛽1, 𝛽2, … , 𝛽𝑘 𝜖 𝐹  such that the sequence { 𝛽𝑖
(𝑛)
}𝑛  converges to 𝛽𝑖 𝑓𝑜𝑟 𝑖 =

1,2, . . , 𝑘.  clearly 𝑥 = 𝜌(∑ 𝛽𝑖
(𝑛)
𝑒𝑖

𝑘
𝑖=1  𝜖 𝑉  

𝜌(𝑥𝑛 − 𝑥, 𝑡) = 𝜌(∑𝛽𝑖
(𝑛)
𝑒𝑖

𝑘

𝑖=1

−∑𝛽𝑖 𝑒𝑖, 𝑡

𝑘

𝑖=1

) 

                     = 𝜌(∑(𝛽𝑖
(𝑛)

𝑘

𝑖=1

− 𝛽𝑖) 𝑒𝑖, 𝑡) 

                                                                        ≥ 𝜌 ((𝛽1
(𝑛)
− 𝛽1)𝑒𝑖,

𝑡

𝑘
) ∗ …∗  𝜌 ((𝛽𝑘

(𝑛)
− 𝛽𝑘)𝑒𝑘,

𝑡

𝑘
) 

                                        = 𝜌 (𝑒1,
𝑡

𝑘|𝛽1
(𝑛)
−𝛽1|

) ∗ … ∗ 𝜌 (𝑒𝑘,
𝑡

𝑘|𝛽𝑘
(𝑛)
−𝛽𝑘|

) 

Since lim
𝑛→∞

𝑡

𝑘|𝛽
𝑖
(𝑛)
−𝛽𝑖|

= ∞,  we see that lim
𝑛→∞

 𝜌 (𝑒𝑖,
𝑡

𝑘|𝛽
𝑖
(𝑛)
−𝛽𝑖|

) = 1 

 
lim
𝑛→∞

 𝜌(𝑥𝑛 − 𝑥, 𝑡) ≥ 1 ∗ … ∗ 1 = 1 ∀ 𝑡 > 0  

  
lim
𝑛→∞

 𝜌(𝑥𝑛 − 𝑥, 𝑡) = 1 ∀ 𝑡 > 0.  

 

Again, for all 𝑡 > 0 

𝜉(𝑥𝑛 − 𝑥, 𝑡) = 𝜉(∑𝛽𝑖
(𝑛)
𝑒𝑖

𝑘

𝑖=1

−∑𝛽𝑖 𝑒𝑖, 𝑡

𝑘

𝑖=1

) 

                     = 𝜉(∑(𝛽𝑖
(𝑛)

𝑘

𝑖=1

− 𝛽𝑖) 𝑒𝑖, 𝑡) 

                                                                        ≤ 𝜉 ((𝛽1
(𝑛)
− 𝛽1)𝑒𝑖,

𝑡

𝑘
) ◊ …◊  𝜉 ((𝛽𝑘

(𝑛)
− 𝛽𝑘)𝑒𝑘,

𝑡

𝑘
) 

                                        = 𝜉 (𝑒1,
𝑡

𝑘|𝛽1
(𝑛)
−𝛽1|

) ◊ … ◊ 𝜉 (𝑒𝑘,
𝑡

𝑘|𝛽𝑘
(𝑛)
−𝛽𝑘|

) 

Since lim
𝑛→∞

𝑡

𝑘|𝛽
𝑖
(𝑛)
−𝛽𝑖|

= ∞,  we see that lim
𝑛→∞

 𝜉 (𝑒𝑖,
𝑡

𝑘|𝛽
𝑖
(𝑛)
−𝛽𝑖|

) = 0 

 
lim
𝑛→∞

 𝜉(𝑥𝑛 − 𝑥, 𝑡) ≤ 0 ◊ …◊ 0 = 0 ∀ 𝑡 > 0  

  
lim
𝑛→∞

 𝜉(𝑥𝑛 − 𝑥, 𝑡) = 0 ∀ 𝑡 > 0.  
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Similarly, Since lim
𝑛→∞

𝑡

𝑘|𝛽
𝑖
(𝑛)
−𝛽𝑖|

= ∞,  we see that lim
𝑛→∞

 𝜂 (𝑒𝑖,
𝑡

𝑘|𝛽
𝑖
(𝑛)
−𝛽𝑖|

) = 0 

 

Thus, we see that {𝑥𝑛} is an arbitrary Cauchy Sequence that converges to x  V, Hence the NNLS 

(𝑉, 𝑁,∗,◊) is complete. 

 

Theorem 3.19. Let (𝑉, 𝑁,∗,◊)be an NNLS satisfying the condition equation (1). Every Cauchy 

sequence in (𝑉, 𝑁,∗,◊) is bounded. 

Proof: Let {𝑥𝑛} be a Cauchy sequence in the NNLS (𝑉, 𝑁,∗,◊). Then we have  

lim
𝑛→∞

 𝜌(𝑥𝑛+𝑝 − 𝑥, 𝑡) = 1

lim
𝑛→∞

 𝜉(𝑥𝑛+𝑝 − 𝑥, 𝑡) = 0

lim 
𝑛→∞

 𝜂(𝑥𝑛+𝑝 − 𝑥, 𝑡) = 0
}
 
 

 
 

 𝑡 > 0, 𝑝 = 1,2, … 

Choose a fixed 𝑟0 with 0 < 𝑟0 < 1. Now we see that 

 

lim
𝑛→∞

 𝜌(𝑥𝑛 − 𝑥𝑛+𝑝, 𝑡) = 1 > 𝑟0 𝑡 > 0, 𝑝 = 1,2, … 

 

 For 𝑡′ > 0 ∃ 𝑛0 = 𝑛0(𝑡
′) such that 𝜌(𝑥𝑛 − 𝑥𝑛+𝑝, 𝑡

′) > 𝑟0 𝑛 ≥ 𝑛0, 𝑝 = 1,2, … 

Since, lim
𝑛→∞

 𝜌(𝑥, 𝑡) = 1, we have for each 𝑥 𝜖 𝑡 > 0 such that  

𝜌(𝑥𝑛, 𝑡) > 𝑟0 𝑡 > 𝑡𝑖, 𝑛 = 1,2, … 

 

Let 𝑡0 = 𝑡′ + 𝑚𝑎𝑥{𝑡1, 𝑡2, … , 𝑡𝑛0} Then, 

𝜌(𝑥𝑛, 𝑡0) ≥ 𝜌(𝑥𝑛, 𝑡
′ + 𝑡𝑛0) 

 

                                           = 𝜌(𝑥𝑛 − 𝑥𝑛0 + 𝑥𝑛0, 𝑡
′ + 𝑡𝑛0) 

 

                                               ≥ 𝜌(𝑥𝑛 − 𝑥𝑛0, 𝑡
′) ∗ 𝜌(𝑥𝑛0, 𝑡𝑛0) 

                                

                                    >    𝑟0 ∗ 𝑟0 = 𝑟0   𝑛 ≥ 𝑛0 

           Thus, we have 

𝜌(𝑥𝑛, 𝑡0) >  𝑟0  𝑛 ≥ 𝑛0 

 

𝐴𝑙𝑠𝑜, 𝜌(𝑥𝑛, 𝑡0) ≥ 𝜌(𝑥𝑛, 𝑡𝑛) >  𝑟0  𝑛 = 1,2, … , 𝑛0  

           So, we have, 

𝜌(𝑥𝑛, 𝑡0) >  𝑟0  𝑛 = 1,2, ……………… . . (1) 

 

𝑁𝑜𝑤,   lim
𝑛→∞

 𝜉(𝑥𝑛 − 𝑥𝑛+𝑝, 𝑡) = 0 < (1 − 𝑟0)  𝑡 > 0, 𝑝 = 1,2, … 

 

 For 𝑡′ > 0 ∃ 𝑛0
′ = 𝑛0

′ (𝑡′) such that 𝜉(𝑥𝑛 − 𝑥𝑛+𝑝, 𝑡
′) < (1 − 𝑟0)  𝑛 ≥ 𝑛0

′ , 𝑝 = 1,2, … 

Since, lim
𝑛→∞

 𝜉(𝑥, 𝑡) = 0, we have for each 𝑥𝑖 ∃  𝑡𝑖
′ > 0 such that  

 

𝜉(𝑥𝑛, 𝑡) < (1 − 𝑟0) 𝑡 >  𝑡𝑖
′, 𝑛 = 1,2, … 

 

Let  𝑡0
′ = 𝑡′ +  𝑚𝑎𝑥{𝑡1

′ , 𝑡2
′ , … , 𝑡𝑛0

′ } Then,  

𝜉(𝑥𝑛, 𝑡0
′ ) ≤ 𝜉(𝑥𝑛, 𝑡

′ + 𝑡𝑛0
′ ) 

 

                                           = 𝜉 (𝑥𝑛 − 𝑥 𝑛0′ + 𝑥 𝑛0′ , 𝑡
′ + 𝑡𝑛0

′ ) 

 

                                               ≤ 𝜉 (𝑥𝑛 − 𝑥 𝑛0′ , 𝑡
′) ◊ 𝜉(𝑥 𝑛0′ , 𝑡𝑛0

′ ) 
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                                   <   (1 − 𝑟0) ◊ (1 − 𝑟0) = (1 − 𝑟0)  𝑛 > 𝑛0
′  

           Thus, we have 

𝜉(𝑥𝑛, 𝑡0
′ ) < (1 − 𝑟0) 𝑛 > 𝑛0

′  

 

𝐴𝑙𝑠𝑜, 𝜉(𝑥𝑛, 𝑡0
′ ) ≤ 𝜉(𝑥𝑛, 𝑡𝑛

′ ) < (1 − 𝑟0)  𝑛 = 1,2, … , 𝑛0
′   

           So, we have, 

𝜉(𝑥𝑛, 𝑡0
′ ) < (1 − 𝑟0)  𝑛 = 1,2, ……………… . . (2) 

   Similarly, we prove 

𝜂(𝑥𝑛, 𝑡0
′ ) < (1 − 𝑟0)  𝑛 = 1,2, ……………… . . (3) 

 

 Let 𝑡0
′′ = max {𝑡0, 𝑡0

′ }. Hence from (1),(2), and (3) we see that  

 
𝜌(𝑥𝑛, 𝑡0

′′)          >     𝑟0
 𝜉(𝑥𝑛, 𝑡0

′′) < (1 − 𝑟0)

 𝜂(𝑥𝑛, 𝑡0
′′) < (1 − 𝑟0)

}  𝑛 = 1,2, … 

 

This implies that {𝑥𝑛} is bounded in (𝑉, 𝑁,∗,◊). 

 

4. Conclusion 

 

4.1 Concluding Remarks: 

The aim of the present work is to introduce a Neutrosophic norm on a linear space. Also, the 

convergence of sequence, characteristic of Cauchy sequence in NNLS (Neutrosophic normed linear 

space) have been studied here. These are illustrated by suitable examples. Their related properties 

and structural characteristic have been discussed. 

 

4.2 Future Scope: 

 This studied provides the structure of NNLS (Neutrosophic normed linear space) on a NLS 

(Normed linear space) with help of NS (Neutrosophic Set). In future this study leads to the extension 

of the following ideas: 

 Neutrosophic-n-Normed Linear Space 

 Finite Dimensional Neutrosophic-n-Normed Linear Space 

 Neutrosophic Metric Space  
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Abstract: This paper studies the imaginative play in young children using a model based on 

neutrosophic logic, viz, Neutrosophic Cognitive Maps (NCMs). NCMs are constructed with the help 

of expert opinion to establish relationships between the several concepts related with the 

imaginative play in children in the age group 1-10 years belonging to socially, economically and 

educationally backward groups. The NCMs are important in overcoming the hindrance posed by 

complicated and often imprecise nature of psychological or social data. Data was collected by video 

recording of children playing and the interpretations given by experts. Fifteen attributes / concepts 

related with children playing with the same toy were observed and according to experts several 

concepts were related and for some the relations between concepts were indeterminate, so it was 

appropriate to use NCMs. These NCMs were built using five expert’s opinion and the hidden 

patterns of them happened to be a fixed point. 

Keywords: Neutrosophic Cognitive Maps (NCMs) model; Dynamical system; Hidden patterns; 

Fixed point; Limit cycle; Child psychology; Imaginative play 

 

 

1. Introduction 

Imaginative play is role-play in which children are using their imagination to express something 

they have experienced or display what they like. It is an integral part for the development of social, 

cognitive and emotional well-being and language and thinking skills of children in the age group 1-

10 years. It serves as a determinant of the imaginative capability and psychological development of 

the child. In this paper, we study the importance of imaginative play in children in the age group of 

1 to 10 years using mathematical and computational models. This will help to qualitatively and 

quantitatively analyse the influence of imaginative play in the psychological development of a child. 

In order to objectively study the influence of imaginative play in child development, we make 

use of Neutrosophic Cognitive Maps (NCMs) [1] model, a generalization of the Fuzzy Cognitive 

Maps (FCMs) models. The benefit of these tools lies in their ability to handle incomplete and/or 

conflicting information that gives the result as the hidden pattern which may be a fixed point or a 

limit cycle. They are also one of the most efficient and strongest AI technologies that can be used 

when the data in hand in not large. They work as combination of neural networks and neutrosophic 

logic. 

Given the imprecise and subjective nature of our study, artificial intelligence is best suited for it. 

FCMs and NCMs are important tools in AI when the data is small [1-4] and with the help of these 

tools we propose a model for assessing the influence of imaginative play in a child’s psychological 

development. The study begins with collecting data from various sources which is processed and 

transformed to NCMs models with the help of expert’s opinion. Using these directed neutrosophic 
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graphs [5] of the NCMs, a dynamical system is formed which acts as the mathematical model to 

determine the influence of imaginative play in child development. 

2. Related Works  

Fuzzy Cognitive Maps (FCMs) and Neutrosophic Cognitive Maps (NCMs) have found 

applications in several fields in their classical forms and have also been extended to suit other 

applications [1-2, 6-12]. The most fundamental application of FCMs and NCMs is to establish 

relationships between seemingly unrelated concepts. A cause-effect relationship has been established 

in the parameters determining interrelated dynamics in socio-political and psychological 

backgrounds. The FCMs and NCMs models have been used in social issues like untouchability, 

school dropouts, social aspects of migrant labourers living with HIV/AIDS [7, 11, 13] and so on. Hence 

using FCMs and NCMs in study of finding the cognitive and mental abilities of children in the age 

group of 1-10 will certainly yield a better result by relating the seemingly unrelated factors associated 

with child development. For this study we collected data by video recording of children playing with 

the toy phone and the interpretations were obtained from the experts. Using these experts NCMs 

models were constructed.  Another important application of predictive capability of FCMs is to 

diagnose autism spectrum disorder [9]. However, they have not considered the indeterminacy 

concept involved in this study. 

Diagnosis of language impairment in children using FCMs is another application of FCMs in the 

field of artificial intelligence [3]. The determinants of the disorder are assigned fuzzy weights and a 

qualitative and quantitative computer model is developed which gives accurate diagnosis. FCMs 

have played a significant role in development of IQ tests for AI-based systems [4]. This helps in 

establishing a relationship between IQ characteristics for AI system and analyze them objectively. 

FCMs have been used for opinion mining in [10]. 

NCMs have been used in the study of socio-economic model [8], problems of school dropouts 

[7], social stigma faced by people suffering with AIDS [6], psychological problems suffered by women 

with AIDS [11] and in medical diagnosis [12]. Neutrosophy has been used for studying several 

decision-making problems [14-17] 

However, FCMs cannot asses when the problem under investigation is clouded under 

indeterminacy and incompleteness, under these situations NCMs is a better tool which can tackle 

them and yield a better solution. So, in this paper we use the NCMs model to study the imaginative 

play in children. 

This paper is organized into six sections. Section one is introductory in nature. A literature 

survey and related works are mentioned in section two. Section three gives the necessary basic 

concepts to make the paper a self-contained one. Section four describes the problem in general and 

the concepts / attributes involved. Section five gives the NCMs model using five experts’ opinion and 

the final section gives the conclusions based on our study.  

  

3. Basic Concepts  

This section describes the FCMs and NCMs to make the paper a self-contained one.  

3.1. FCMs  

The notion of Fuzzy Cognitive Maps (FCMs) which are fuzzy signed directed graphs with 

feedback are discussed and described [2]. The directed edge 𝑒𝑖𝑗 from causal concept 𝐶𝑖 to concept 

𝐶𝑗  measures how much 𝐶𝑖  causes 𝐶𝑗 . The time varying concept function 𝐶𝑖(𝑡) measures the non 

negative occurrence of some fuzzy event, perhaps the strength of a political sentiment, historical 

trend or opinion about some topics like child labor or school dropouts etc. FCMs model the world as 

a collection of classes and causal relations between them. The edge 𝑒𝑖𝑗  takes values in the fuzzy 

causal interval [1,1]  ( 𝑒𝑖𝑗 = 0  indicates no causality, 𝑒𝑖𝑗 > 0  indicates causal increase; that 𝐶𝑗 
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increases as 𝐶𝑖 increases and 𝐶𝑗 decreases as 𝐶𝑖 decreases and 𝑒𝑖𝑗 < 0 indicates causal decrease or 

negative causality 𝐶𝑗 decreases as 𝐶𝑖 increases or 𝐶𝑗, increases as 𝐶𝑖 decreases. Simple FCMs have 

edge value in {−1,0,1}. Thus if causality occurs it occurs to maximal positive or negative degree. It is 

important to note that 𝑒𝑖𝑗 measures only absence or presence of influence of the node 𝐶𝑖 on 𝐶𝑗 but 

till now any researcher has not contemplated the indeterminacy of any relation between two nodes 

𝐶𝑖  and 𝐶𝑗 . When we deal with unsupervised data, there are situations when no relation can be 

determined between some two nodes. So in this section we try to introduce the indeterminacy in 

FCMs, and we choose to call this generalized structure as Neutrosophic Cognitive Maps (NCMs). In 

our view this will certainly give a more appropriate result and also caution to the user about the risk 

of indeterminacy. 

3.2. NCMs 

 

Now we proceed on to define the concepts about NCMs [1]. For the notion of neutrosophic 

graphs refer [5]. 

 

Definition 3.1 A Neutrosophic Cognitive Maps (NCMs) is a neutrosophic directed graph with concepts 

like policies, events etc. as nodes and causalities or indeterminates as edges. It represents the causal relationship 

between concepts. Let 𝐶1, 𝐶2, … , 𝐶𝑛 denote n nodes, further we assume each node is a neutrosophic vector from 

the neutrosophic vector space 𝑉. So a node 𝐶𝑖 will be represented by(𝑥1, … 𝑥𝑛) where 𝑥𝑘’s are zero or one or 

𝐼 (𝐼 is the indeterminate) and 𝑥𝑘 = 1 means that the node 𝐶𝑘 is in the on state and 𝑥𝑘 = 0 means the node 

is in the off state and 𝑥𝑘 = 𝐼 means the nodes state is an indeterminate one at that time or in that situation. 

Let 𝐶𝑖 and 𝐶𝑗 denote the two nodes of the NCM. The directed edge from 𝐶𝑖 to 𝐶𝑗 denotes the causality of 𝐶𝑖 

on 𝐶𝑗 called connections or relations. Every edge in the NCM is weighted with a number in the set {−1,0,1, 𝐼}. 

Let 𝑒𝑖𝑗 be the weight of the directed edge 𝐶𝑖𝐶𝑗, 𝑒𝑖𝑗 ∈ {−1,0,1, 𝐼}. 𝑒𝑖𝑗 = 0 if 𝐶𝑖 does not have any effect on 𝐶𝑗, 

𝑒𝑖𝑗 = 1 if increase (or decrease) in 𝐶𝑖 causes increase (or decreases) in 𝐶𝑗, 𝑒𝑖𝑗 = −1 if increase (or decrease) 

in 𝐶𝑖 causes decrease (or increase) in 𝐶𝑗 . 𝑒𝑖𝑗 = 𝐼 if the relation or effect of 𝐶𝑖 on 𝐶𝑗 is an indeterminate. 

 

NCMs with edge weight from {−1,0,1, 𝐼} are called simple NCMs. 

Let the neutrosophic matrix 𝑁(𝐸) be defined as 𝑁(𝐸) = (𝑒𝑖𝑗) where 𝑒𝑖𝑗  is the weight of the 

directed edge 𝐶𝑖 𝐶𝑗, where 𝑒𝑖𝑗 ∈ {0,1, −1, 𝐼}. N(E) is called the neutrosophic adjacency matrix of the 

NCMs. 

Let 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑛)  where 𝑎𝑖 ∈ {0,1, 𝐼} . A is called the instantaneous state neutrosophic 

vector and it denotes the on-off-indeterminate state position of the node at an instant; 𝑎𝑖 = 0 if 𝑎𝑖 is 

off (no effect) 𝑎𝑖 = 1  if 𝑎𝑖  is on (has effect) 𝑎𝑖 = 𝐼  if 𝑎𝑖  is indeterminate(effect cannot be 

determined) for 𝑖 = 1,2, … 𝑛. 

Let 𝐶1𝐶2, 𝐶2𝐶3, 𝐶3𝐶4, … , 𝐶𝑖𝐶𝑗, be the edges of the NCMs. Then the edges form a directed cycle. A 

NCM is said to be cyclic if it possesses a directed cycle. A NCM is said to be acyclic if it does not 

possess any directed cycle. A NCM with cycles is said to have a feedback. When there is a feedback 

in the NCMs i.e. when the causal relations flow through a cycle in a revolutionary manner the NCMs 

is called a dynamical system. 

Let 𝐶1𝐶2 , 𝐶2𝐶3 , 𝐶3𝐶4, … , 𝐶𝑛−1𝐶𝑛  be a cycle, when 𝐶𝑖  is switched on and if the causality flow 

through the edges of a cycle and if it again causes 𝐶𝑖, we say that the dynamical system goes round 

and round. This is true for any node 𝐶𝑖, for 𝑖 = 1,2, … 𝑛. The equilibrium state for this dynamical 

system is called the hidden pattern. 

If the equilibrium state of a dynamical system is a unique state vector, then it is called a fixed 

point. 

Consider the NCMs with 𝐶1, 𝐶2, … , 𝐶𝑛 as nodes. For example let us start the dynamical system 

by switching on 𝐶1. Let us assume that the NCMs settles down with 𝐶1 and 𝐶𝑛 on, i.e. the state 

vector remains as (1, 0,…, 0, 1) this neutrosophic state vector (1,0, …, 0, 1) is called the fixed point. 

If the NCM settles with a neutrosophic state vector repeating in the form  
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𝐴1 → 𝐴2 →. . . → 𝐴𝑡 →  𝐴t+1 → . . . → 𝐴𝑛 → 𝐴𝑡     

 Where 𝐴i  is the vector which is passed into a dynamical system N(E) repeatedly; 1 ≤ i ≤ n then 

this equilibrium is called a limit cycle of the NCM [1]. 

 

4. Description of the Problem  

Here for the theme of imaginative play in children in the age group 1-10 years, the data is 

collected from nearby schools and an orphanage in Vellore, India. The play material supplied to them 

was just a play with a toy mobile phone that is to conduct imaginary talks which was video recorded. 

We recorded by video on phone separately we also recorded the comments made from observations 

of the expert. This data was analysed by a group of five experts and they gave the 15 concepts or 

attributes associated with the data, which formed the parameter or the concepts /attributes of our 

observation and is described the Table 1. The experts agreed on the point that the play material cannot 

be used as an attribute so the other 14 concepts can be used as attributes. However, the experts were 

given the liberty to use any number of concepts from the table and some of them used 8 of the 

concepts and some only 6 and others all the 14 of the concepts. They gave their directed neutrosophic 

graphs which gave the dynamical system and they worked with the attributes of their own choice 

which are described in the following section. 

Based on expert’s opinion and on the previous works [9, 3], the following have been considered as 

important parameters in assessing imaginative play capabilities in children. Each of these 

components will be used as attributes/nodes of the NCMs based on experts’ opinion, the influence of 

these parameters is then mathematically determined by performing necessary operations and 

obtaining hidden pattern of the dynamical system. 

Table 1. Concepts / Attributes of the NCMs 

Concept Concept Description  

𝐶1   Imaginative Theme  
𝐶2   Physical Movements  
𝐶3   Gestures  
𝐶4   Facial Expressions  
𝐶5   Nature and Length of Social Interaction  
𝐶6   Play Materials Used  
𝐶7  Way Play Materials were Used  
𝐶8   Verbalisation  
𝐶9   Tone of Voice  
𝐶10   Role Identification  
𝐶11   Engagement Level  
𝐶12   Eye Reaction  
𝐶13   Cognitive Response  
𝐶14   Grammar and Linguistics  
𝐶15   Coherence  

 

All the fifteen attributes or concepts happens to be self explanatory. Using these five experts work 

the NCMs models were construcuted.   

5. NCMs in the analysis of the imaginative play in young children  

We have described in the earlier section the method of data collection and the assignments of 

the fifteen concepts and their list is provided in the Table 1. Now we have five experts working with 

this problem taking some or all the attributes mentioned in the Table 1. The five experts are child 
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psychologists, Montessori trained teachers and specialist in child psychology. However they wanted 

to remain anonymous. 

The first expert wished to work with the concepts 𝐶2, 𝐶3, 𝐶4, 𝐶8, 𝐶9, 𝐶10, 𝐶11, and 𝐶12 . Figure 1 

represents the directed neutrosophic graph 𝐺1 given by the first expert. 

 

 

Figure 1. Directed Neutrosophic Graph G1 

Let 𝑀1 be the connection matrix associated with the directed graph 𝐺1. 

 

 
  

𝑀1 will serve as the dynamical system to find the effect of any state vector 𝑥 on 𝑀1. The state 

vectors 𝑥 ∈ {(𝐶2, 𝐶3, 𝐶4, 𝐶8, 𝐶9, 𝐶10, 𝐶11, 𝐶12); 𝐶𝑖 ∈ {0,1, I}; 𝑖 = 2,3,4,8,9,10,11,12}. By default of notation 

we denote it by 𝐶𝑖’s as we wish to record that the 𝐶𝑖’s correspond to the attributes / concepts from 

the table and their on or off or indeterminate state. Let 𝑥 = (0,0,1,0,0,0,0,0) where only the concept 

𝐶4 that is facial expressions alone is in the on state and all other nodes are in the off state. The effect 

of 𝑥 on the dynamical system 𝑀1 is given by 

 

𝑥 ∘ 𝑀1 = (0,0,0, 𝐼, 0,0,0,0) ↪ (0,0,1, 𝐼, 0,0,0,0) = 𝑥1(𝑠𝑎𝑦) 

 

(↪ symbol is used to denote the resultant vector that is thresholded and updated). 

Now  

𝑥1 ∘ 𝑀1 ↪ (0,0,1, 𝐼, 0, 𝐼, 0,0) = 𝑥2(𝑠𝑎𝑦) 

𝑥2 ∘ 𝑀1 ↪ (0,0,1, 𝐼, 0, 𝐼, 𝐼, 0) = 𝑥3(𝑠𝑎𝑦) 

𝑥3 ∘ 𝑀1 ↪ (0,0,1, 𝐼, 0, 𝐼, 𝐼, 0) = 𝑥4(= 𝑥3) 



Neutrosophic Sets and Systems, Vol. 30, 2019     246 

 

 
Vasantha W.B., Kandasamy I., Devvrat V., and Ghildiyal S., Study of Imaginative Play in Children using NCM     

 

Thus the hidden pattern of the state vector 𝑥 is a fixed point given by 𝑥4 = (0,0,1, 𝐼, 0, 𝐼, 𝐼, 0). 

Facial expression results in the indeterminate state of 𝐶8, 𝐶10 and 𝐶11; that is, role identification and 

engagement level respectively. That is according to this expert facial expression and its relation to 

verbalization, role identification and engagement level can not be determined as one can not find out 

exactly what the child imagines when he uses the phone. It can be an imitation of parents or others 

whom they have seen using it. 

Next we find the effect of the on state of the two nodes 𝐶10 and 𝐶11 that is role identification 

and engagement level on the dynamical system 𝑀1. Let 𝑡 = (0,0,0,0,0,1,1,0) be the state vector in 

which only the nodes 𝐶10 and 𝐶11 are in the on state. The effect of 𝑡 on the dynamical system 𝑀1 

is given by  

𝑡 ∘ 𝑀1 ↪ (0,0,0,0,0,1,1,0) = 𝑡1(𝑠𝑎𝑦) 

This also results in a fixed point with no effect on the other concepts or attributes. So role 

identification and engagement level has no effect on the other nodes chosen by this expert for the 

study. Clearly when the child identifies the role it plays the engagement level is high and both the 

concepts are interdependent. We have just given these two state vectors but have worked with several 

such state vectors. 

The second expert was interested to work with the attributes 𝐶1, 𝐶4, 𝐶5, 𝐶7, 𝐶10  and 𝐶15  from 

Table 1. The neutrosophic directed graph 𝐺2 given by him is as follows: 

 

 
Figure 2. Directed Neutrosophic Graph 𝐺2 

   

Let 𝑀2  be the connection matrix related with the graph 𝐺2  which serves as the dynamical 

system.  

 
Now the expert wishes to work with a state vector in which only the node 𝐶4 is in the on state 

and all other nodes are in the off state. 

Let 𝑥 = (0,1,0,0,0,0), the effect of 𝑥 on the dynamical system 𝑀2. 

 

𝑥 ∘ 𝑀2 = (0,0,0, 𝐼, 0,0) ↪ (0,1,0, 𝐼, 0,0) = 𝑥1(𝑠𝑎𝑦) 

 

𝑥1 ∘ 𝑀2 ↪ (0,1,0, 𝐼, 𝐼, 0) = 𝑥2(𝑠𝑎𝑦) 

 

𝑥2 ∘ 𝑀2 ↪ (0,1,0, 𝐼, 𝐼, 0) = 𝑥3(= 𝑥2). 

Thus the hidden pattern is a fixed point given by 𝑥2 = (0,1,0, 𝐼, 𝐼, 0) that is the on state of facial 

expressions has indeterminate effect on 𝐶7 and 𝐶10 that is the way play materials are used and role 
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identification respectively. It is interesting to keep on record both the experts agree and arrive at the 

same conclusions. 

If 𝐶15 alone is in on state we see the effect on the dynamical system 𝑀2 has no influence for if 

𝑠 = (0,0,0,0,0,1) then  

 𝑠 ∘ 𝑀2 ↪ (0,0,0,0,0,1) = 𝑠. 

That is coherence has no influence on imaginative theme, facial expressions, nature and length 

of social interaction, way play materials are used and role identification. Evident from the fixed point 

resulting in 𝑠. 

For usually a normal child with average IQ can not relate them however we found that majority 

of these children on whom we made the sample study belong to a poor and first generation learners 

background so in the task of using a phone, coherence can not play a role. 

Next the 3𝑟𝑑 expert works with the nodes 𝐶2, 𝐶3, 𝐶4, 𝐶8, 𝐶9, 𝐶12, 𝐶14, 𝐶15. 𝐺3 is the directed graph 

given by the expert. 

 

 
Figure 2. Directed Neutrosophic Graph 𝐺3 

   

Let 𝑀3 be the connection matrix associated with the neutrosophic graph 𝐺3. 

 

 
  

Let 𝑚 = (0,0,1,0,0,0,0,0) be the state vector where only the node 𝐶4 is in the on state and all 

other nodes are in the off state. 

The effect of 𝑚 on the dynamical system 𝑀3 is given in the following 

𝑚 ∘ 𝑀3 = (0,0,1, 𝐼, 0,0,0,0) = 𝑚1(𝑠𝑎𝑦) 

𝑚1 ∘ 𝑀3 ↪ (0,0,1, 𝐼, 𝐼, 0, 𝐼, 𝐼) = 𝑚2(𝑠𝑎𝑦) 

𝑚2 ∘ 𝑀3 ↪ (0,0,1, 𝐼, 𝐼, 0, 𝐼, 𝐼) = 𝑚3(= 𝑚2). 
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Thus the hidden pattern is a fixed point given by 

𝑚2 = 𝑚3 = (0,0,1, 𝐼, 𝐼, 0, 𝐼, 𝐼). 

 

Clearly the on state of 𝐶4 node that is facial expression has indeterminate effect on verbalization 

- 𝐶8, tone of voice - 𝐶9, grammar, linguistics - 𝐶14 and coherence - 𝐶15. Clearly the 3rd expert alone 

can not relate coherence he finds it is an indeterminate. 

Let 𝑛 = (0,0,0,0,0,0,1,0)  be the given state vector, to find the effect of 𝑛  on 𝑀3 ; Next we 

consider the only on state of the node 𝐶14 alone that is the child has grammar and linguistics in the 

on state and all other nodes are in the off state. 

𝑛 ∘ 𝑀3 ↪ (0,0,0,0,0,0,1,1) = 𝑛1(𝑠𝑎𝑦) 

𝑛1 ∘ 𝑀3 ↪ (0,0,0,0, ,0,1,1) = 𝑛2(= 𝑛1). 

The hidden pattern is a fixed point given by 𝑛2. Clearly if the child has developed grammar and 

linguistics naturally the child would have developed coherence and vice versa. 

The fourth expert wishes to work with 9 nodes, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶7, 𝐶8, 𝐶9, 𝐶14  and 𝐶15  be the 

directed graph given by him. 

 
Figure 4. Directed Neutrosophic Graph 𝐺4 

   

Let 𝑀4 be the connection matrix associated with the directed graph 𝐺4 which will serve as the 

dynamical system for the neutrosophic directed graph 𝐺4.  

 
The effect of the state vector 𝑣 = (0,0,1,0,0,0,0,0,0) where only the node 𝐶4 is in the on state and 

all other nodes are in the off state. The effect of 𝑟 on the dynamical system 𝑀4 is given by  

 

𝑟 ∘ 𝑀4 ↪ (0,0,1,0,0, 𝐼, 0,0,0) = 𝑟1(𝑠𝑎𝑦) 
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𝑟1 ∘ 𝑀4 ↪ (0,0,1,0,0, 𝐼, 𝐼, 0,0) = 𝑟2(𝑠𝑎𝑦) 

𝑟2 ∘ 𝑀4 ↪ (0,0,1,0,0, 𝐼, 𝐼, 0,0) = 𝑟3(= 𝑟2). 

 

Thus the hidden pattern is a fixed point given by 𝑟2 = (0,0,1,0,0, 𝐼, 𝐼, 0,0). The on state of facial 

expression makes on state 𝐶8 and 𝐶9  but both verbalization 𝐶8  and tone of voice 𝐶9  are in the 

indeterminate state only. That is facial expressions makes verbalization and tone of voice only to 

indeterminate state, rest of the states remain off. Next we study the effect of the state vector 𝑧 =

(0,0,0,1,0,0, ,0,0,0) on the dynamical system 𝑀4. That is only the node 𝐶5 nature and length of the 

social interaction is in the on state. All other nodes are in the off state. Effect of 𝑧 on 𝑀4 is as follows:  

𝑧 ∘ 𝑀4 ↪ (0,0,0,1,1,0,0,0, 𝐼) = 𝑧1(𝑠𝑎𝑦) 

𝑧1 ∘ 𝑀4 ↪ (0,0,0,1,1,0,0,0, 𝐼) = 𝑧2(= 𝑧1) 

 

So the hidden pattern is the fixed point. On state of the concept nature and length of the social 

interaction makes on the node 𝐶7  the way play materials are used but the coherence is in the 

indeterminate state, all other nodes remain unaffected. 

Next expert wishes to work with all the 14 concepts barring the play materials used for study. 

𝐺5 is the directed graph given by this expert. Let 𝑀5 be the connections matrix which will serve 

as the dynamical system of the graph 𝐺5. 

 

 
Figure 5. Directed Neutrosophic Graph 𝐺5 
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Let 𝑝 = (0,0,0,1,0,0,0,0,0,0,0,0,0,0) be the initial state vector in which only the node 𝐶4 is in the 

on state all other nodes are in the off state. Effect of 𝑝 on 𝑀5 is given by 

 

𝑝 ∘ 𝑀5 ↪ (0,0,0,1,0,0,0,0,0,0,1,0,0,0) = 𝑝1(𝑠𝑎𝑦) 

𝑝1 ∘ 𝑀5 ↪ (0,0,0,1,0,0,0,0,0,0,1,0,0,0) = 𝑝2(𝑠𝑎𝑦) 

𝑝2 ∘ 𝑀5 ↪ (0,0,1,1,0,0,0,0,0,0,1,0,0,0) = 𝑝3(𝑠𝑎𝑦) 

𝑝3 ∘ 𝑀5 ↪ (0,0,1,1,0,0,0,0,0,0,1,0,0,0) = 𝑝4(= 𝑝3). 

 

Thus the hidden pattern is a fixed point. This expert has taken all the 14 concepts, the on state of 

concept 𝐶4 alone that is facial expressions makes on the states 𝐶3 and 𝐶12 namely gestures and eye 

reaction respectively.  

Next we study the effect of 𝑤 = (1,0,0,1,0,0,1,0,0,1,0,0,0,1) where 𝐶1, 𝐶4, 𝐶8, 𝐶11 and 𝐶14. 

 

𝑤 ∘ 𝑀5 ↪ (1, 𝐼, 1,1,0,0,1,1,1,1,1,0,0,1) = 𝑤1(𝑠𝑎𝑦) 

𝑤1 ∘ 𝑀5 ↪ (1, 𝐼, 1,1,0,1,1,1,1,1,1,0,1,1) = 𝑤2(𝑠𝑎𝑦) 

𝑤2 ∘ 𝑀5 ↪ (1, 𝐼, 1,1,0,1,1,1,1,1,1,0,1,1) = 𝑤3(= 𝑤2) 

 

Thus the hidden pattern of 𝑤 is a fixed point and on state of the concepts 𝐶1, 𝐶4, 𝐶8, 𝐶11 and 𝐶15 

makes on all the states except 𝐶5  nature and length of social interaction and 𝐶14- grammar and 

linguistics and makes 𝐶2 an indeterminate. 

 

6. Conclusions  

In this paper the authors have studied the imaginative play of children in the age group 1 to 10 

years. We have taken these children from educationally, socially and economically backward classes. 

Study shows that the concepts C1 to C15 are interrelated in a very special way. Further we saw that 

most children did not relate the facial expression with their verbal communication, in fact we could 

not determine it. For several, the coherence and the verbal communications or otherwise cannot be 

determined. For an 8-year old child started to talk to his elderly relative and ended up talking with a 

friend in less than 2 minutes of conversation. In fact, our study has authentically revealed that several 

concepts/relations cannot be determined. Further we felt for these children generally their overall 

ability was below average. Conclusions of each model for the state vectors under investigation are 

given along with the models. So, our future research would be to use the same toy phone and study 

the children of the same age group but from better socio-economic background and compare it with 

these children so that one can determine the ways to develop the first-generation learners.  

Further for future research, we plan to adopt different Neutrosophic concepts [18-26] like Single 

Valued Neutrosophic Sets (SVNS), Double Valued Neutrosophic Sets (DVNS) and Triple Refined 

Indeterminate Neutrosophic sets (TRINS), Neutrosophic triplets and duplets in Cognitive models 

and study this problem.  
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Abstract: The work departs with a model for knowledge management in the country productive 

organizations of cocoa of Vinces, in Ecuador. A model that is developed for the need to boost the 

correct management of knowledge and development of this type of entrepreneurship. The objective 

of the present work is to validate the qualitative aspects of the model using neutrosophy and the 

Iadov technique, due to that these techniques are appropriate for validating knowledge in different 

areas in the presence of uncertainty and indeterminacy. A final result is obtained that facilitates to 

calculate the index group satisfaction of the proposed model.  The index of group satisfaction (GSI), 

in this case, is GSI =0.85. Results are positive, which validate the satisfaction with the model. Paper 

ends with conclusions and future works proposals.  

Keywords: knowledge management, cocoa production, neutrosophic logic, Iadov  

 

1. Introduction 

The small and medium enterprises (SMEs) of Ecuador, have an impact of 40% in the gross 

domestic product and 60% in the generation of direct employment, according to Zúñiga Santillán, et 

al. [1]. These authors recognize that the main factors of the failure of the SMEs, they find in the limited 

knowledge on the official programs of support and information about sources of available public 

financings and the absence of competences. 

Coincident with the before related authors, refer Messina and Hochsztain [2] that is important 

the level that possesses the SMEs and especially, the human capital, as for the knowledge, skills, and 

capacitances that can be converted in factors that induce to the success/failure. Other studies carried 

out in Ecuador recognize that the main influential elements to lean it take of decisions, are the ones 

not based in technical elements, nor in the registers took on the products that possess the SMEs. 

It is shown in the studies of the before mentioned authors, faulty planning, organization and 

control of the labor process, about the matter Poveda Morales and Varna Hernández [3], outline the 

need for better implementation of knowledge management strategies and gaining institutional 

support [4]. On the other hand, Rodríguez and Gómez [5], recognize as factors of success of the SMEs 

such as human committed, competent capital, motivated with the business and with the dominion of 

management tools.  
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The development of the knowledge in the SMEs of Ecuador corresponds with the sustainable 

development and the exigencies that the state imposes in this sense [6]. Specifically, for the country 

productive organizations of cocoa of Vinces in Ecuador, where the economic and social development, 

requires the management of the knowledge generated [7], favoring: 

 The support to takes empiric decisions  

 The mechanisms to register historical results 

 That the distribution of the work is carried out without the criterion of the managers 

 The follow-up and control of the carried out work 

 An improvement as for the external contracting pf adviser. 

Other difficulties are recognized to keep the experiences of the region in the cultivation of the 

product, the conditions, and the particular properties of the area, transmit and formalize experiences 

and knowledge. The producers are developed in an environment that lacks activities that stimulate 

the management of human talent and knowledge, with impact on the organizational culture and 

productive results. 

The management of human talent in the scientific literature defines the following mains steps: 

management of human resources, management of the human capital, management of the personnel. 

However, the fundamental thing is considered to the person or the human being as bearing integrity 

of the capacitance of work or the human capital, not as a means [8]. 

It is recognized that entrepreneurship must incorporate a philosophy of management that is 

based on the belief that the person could generalize the knowledge that generates. To center in the 

work position for the design of the systems of knowledge management.   

It is essential to create the context that facilitated the peoples to acquire the capacitance and the 

motivation, as well as that, have the opportunity to involve in operation in which promotes collective 

apprenticeship [9] and it incorporates the organizational culture. In this sense, the effort of the 

national association of exporters highlights the cocoa producers [10].  

The deficiencies and difficulties outlined, result in an exigency for the development of the 

human talent in the country productive organizations of cocoa of Vinces: 

 Deciding the leaders of human talent and identify relevant knowledge 

 Making good use of better experiences and transfers it. 

 To motivate the personnel to explore and use knowledge 

 Propitiating the innovation and the creation of values added in order to achieve 

competitiveness and sustainability. 

Based on the documentary analysis, the literature consulted not recognize studies using 

knowledge management (KM) of these organizations. As for the KM that it has been effective, it has 

originated of enlarging interest, and it has been treated from different perspectives, as systems of 

information, organizational apprenticeship, strategic direction, and [11] innovations, accustomed is 

insufficient, for these undertakings. 

In agreement with it before related, it is of highlighting that the models of knowledge 

management define in simplified form: symbolic and schematic the components that define it; to 

delimit someone of your dimensions; permitting an approximate sight; to describe processes and 

construct; finding one's bearings strategies; as well as to contribute essential data [12] is vital for the 

SMEs. Therefore, the KM model to boost the human talent in productive organizations of cocoa of 

Vinces, for later operationalization in specific procedures, contribute to keep the traditions (good 

practical in the historical conditions-make concrete of the territory), and at the same time to 

incorporate experiences, tools and knowledge to the increment of the productivity and the 

effectiveness of the process. 

To verify the validity of the model that it is proposed neutrosophic Iadov technique is used.  

The Iadov technique constitutes an indirect form to study the users´ satisfaction [13]  

 This technique uses [14], the main criterion to formulate questions that validate the proposals, 

while the questions not related or complementary serve as an introduction and to get additional 
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information about the proposal. The results of these form the “logical table of Iadov“[15, 16]. In this 

document, the satisfaction of the emitting actors and the beneficiaries of the strategy of development, 

are combined to form the receiving actors. The techniques of the criterion of user must be used as a 

form to evaluate the results in those cases in which the proposal is contextualized, immersed in the 

context and for finding the applicability of the result [17]. 

The degree of satisfaction- in satisfaction is a psychological state that it shows in the peoples as 

an expression of the interaction that moves between the positive poles and negative [17]. 

Neutrosophic Iadov allows to include indetermination and the importance of the user. 

Recently, neutrosophy has been introduced as a theory for decision making [18]. The 

neutrosophic term means knowledge of the neutral thought and this neutral represents the main 

distinction between fuzzy and intuitionist logic [19]. The theory of neutrosophy introduces a new 

logic in which is estimated that each proposition has a true degree (t), indetermination degree (i) and 

a falsity degree (f) [20]. They have proposed many extensions of the classic methods of taking of 

decisions to treat the indetermination based on the theory of the neutrosophic as TOPSIS [19], 

DEMATEL [21], AHP [22] and VIKOR [23].  

The original proposal of the Iadov method do not allow appropriate management of the 

indetermination. Another weakness is the impossibility of including users’ importance. The 

introduction of the neutrosophy theory resolves the problems of indetermination that appear in the 

evaluations, being useful for capturing the neutrals or ambiguous positions of users [24]. Each idea 

tends to is neutralized, decreased, balanced for other ideas [25]. 

2. Materials and Methods  

In the Iadov technique, questionnaires are used to decide the degree of satisfaction of the users 

with the proposal to measure the impact of the strategy of the investigator with a total of seven 

questions, three of those which are closed and four open, whose report is unknown for the subject 

[26]. These three ask about hidden sections relate through the "logical table of Iadov", that is to present 

adapted to investigation. The interrelation of the three questions shows the position of each user in 

the scale of satisfaction. This scale of satisfaction is expressed using SVN numbers [28]. The original 

definition of true value in the neutrosophic logic is presented as follow [27]: 

It is N = {(T, I, F) ∶ T, I, F ⊆ [0, 1]} a neutrosophic valuation as a mapped of a group from 

proportional formulae to N, and for each p sentence then:  

𝑣 (𝑝)  =  (𝑇, 𝐼, 𝐹)                                       (1) 

In order to make easy practical application to real-world, it was developed a proposal of single-

valued neutrosophic sets (SVNS) allowing to use of linguistic variables [28, 29], this increase the 

interpretability of models and the use of the indetermination in practical problems. 

Be 𝑋 a universe of discourse. A SVNS 𝐴 on 𝑋 is an object of the form.  

𝐴 =  {〈𝑥, 𝑢𝐴(𝑥), 𝑟𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈  𝑋}                          (2) 

Where, 𝑢𝐴(𝑥): 𝑋 → [0,1], 𝑟𝐴(𝑥)∶ 𝑋 → [0,1] y 𝑣𝐴(𝑥): 𝑋 → [0,1], con 0 ≤ 𝑢𝐴(𝑥)+ 𝑟𝐴(𝑥)+𝑣𝐴(𝑥): ≤ 3 for 

all 𝑥 ∈ 𝑋. The intervals (𝑥), (𝑥) and (𝑥) denote the true, indeterminate and false membership of x in A, 

respectively. For motives of convenience, an SVN number could be expressed as 𝐴 = (𝑎, 𝑏, 𝑐), where 

𝑎, 𝑏, 𝑐 ∈ [0,1], y + 𝑏 + 𝑐 ≤ 3. The SVN numbers, that it is obtained, is of utility for the systems of decision 

making.  To analyze the results, it establishes as a function of punctuation. To arrange the 

alternatives uses a function of [30] punctuation adapted 

𝑠(V) = T − F − I                                    (3) 

In the case that the assessment corresponds to indeterminacy (I) a process of de-

neutrosophication is developed [1]. In this case, I ∈ [-1, 1]. Lastly, we work with the average of the 

extreme values 𝐼 ∈ [0,1]to obtain a single value. 

𝜆([𝑎1, 𝑎2]) =
𝑎1+ 𝑎2

2
                                       (4) 
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Then, the results are aggregated. In this paper, the weighted average aggregation operator is 

proposed to calculate the group satisfaction index (GSI). The weighted average (WA) is extensively 

used [2, 3]. A WA operator has associated a vector of weights, 𝑉, with 𝑣𝑖 ∈  [0,1] and∑ 𝑣𝑖
𝑛
1 = 1, with 

the following form:  

𝑊𝐴(𝑎1, . . , 𝑎𝑛) = ∑ 𝑣𝑖𝑎𝑖
𝑛
1                                       (5) 

Where 𝑣𝑖 represented the importance of expert i. This proposal allows dealing with 

indeterminacy and importance of users due to expertise or any other reason making Iadov method 

more practical [19].  

3. Survey to Country Producers of Cocoa in Vinces  

A model to promote the knowledge management of the country organizations producers of 

cocoa of Vinces, province Los Rios, Ecuador was proposed based on the study of a group of models 

of knowledge management, the legal framework and the particular properties of the sector by means 

of diagnosis. 

The general procedure describes previously proposes five phases: build a work team, creation 

of the center of strategic information, allies and possibilities, implementation and measurement, and 

feedback. The conception integrates a series of tools as a methodological solution to the outlined 

scientific problem. The implementation permits the identification of the main deficiencies and related 

risks with the integral acting of the human talent and the generation of actions of improvement 

accordingly, as part of the continuous improvement. 

A case study was developed for the validation of the model.  A scale with individual 

expressions satisfaction and its corresponding score value is shown in Table 1. 

Table 1. Scale satisfaction with SVN values. 

Linguistic expression SVN Number Scoring 

Clearly pleased (1, 0, 0) 1 

More pleased than unpleased (1, 0.25, 0.25) 0.5 

Not defined I 0 

More unpleased than pleased (0.25, 0.25, 1) -0.5 

Clearly unpleased (0,0,1) -1 

Contradictory (1,0,1) 0 

 

Table 2. The Iadov logical table 

 Would you consider knowledge management without using the proposed 

model? 

No I don´t know yes 

Do your 

expectations meet 

the application of 

the model for 

knowledge 

management? 

If you could choose freely, a model for knowledge management, would 

you use the proposed model? 

yes I don´t 

know 

No yes I don´t 

know 

No yes I don´t 

know 

No 

Very pleased. 1 (6) 2  (1) 6 2 2 6 6 6 6 

Partially pleased. 2 2 3 2 3 (1) 3 6 3 6 

It’s all the same to 

me 

3 3 3 3 3 3 3 3 3 

More unpleased 

than pleased. 

6 3 6 3 4 4 3 4 4 
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Not pleased 6 6 6 6 4 4 6 4 5 

I don´t know 

what to say 

2 3 6 3 3 3 6 3 4 

A sample of 21 specialists directed linked to the model were surveyed. The survey elaborated 

comprises 7 questions, three closed questions interspersed in four open questions, of which 1 fulfilled 

the introductory function and three functioned as reaffirmation and sustenance of objectivity of the 

user response. 

In this case, the results are shown in Table 3. 

 

Table 3. Results of the application to producers of cocoa in Vinces. 

Expression Total % 

Clearly pleased 6 75 

More pleased than unpleased 1 12.5 

Not defined 1 12.5 

More unpleased than pleased 0 0 

Clearly unpleased 0 0 

Contradictory 0 0 

   

The calculation of the score is carried out. In this case, it two initial user have more expertise 

with V= [0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1].  The final result of the index of group satisfaction (GSI) 

that the method portrays, in this case, is: GSI =0.85. Results are positive, show the satisfaction with 

the model, as displayed in Figure 1. 

 

 
Figure 1. Scale with group satisfaction index. 

 

The proposal to extend the Iadov method with SVN numbers making it easy to use and practical 

in applications for knowledge management model validation. The inclusions of indetermination 

allow a more robust and real-world compatible form to represent information in comparison with 
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the typical application of Iadov. The inclusion of the WA operator improves the traditional method 

allowing to express the importance of the [34] sources of information o expertise of users. The real-

world application of the proposal validates the model for knowledge management in the country 

productive organizations of cocoa of Vinces, Ecuador.  

4. Conclusions (authors also should add some future directions points related to her/his research)  

In this paper, the neutrosophic Iadov is used, which contributes to an appropriate method for 

the management of indeterminacy and for taking into account uncertainty in real-world problems 

and the importance of the users. The Iadov method with the inclusion of the neutrosophic analysis 

showed applicability and facility of use in the validation of the knowledge management model. 

Between the advantages concerning the original, it is that it can incorporate the indetermination in a 

more natural way. Another advantage is that allows the use of aggregation operators, which permits 

express the importance or the expertise of the users according to the experience or some other 

criterion.  

The final result is of GSI = 0.85.  Results that validate the satisfaction with the model for 

knowledge management in the cocoa producing peasant organizations of Vinces. Future works will 

concentrate on including the modeling of knowledge in the proposal trough neutrosophic cognitive 

mapping extending previous works from [35-38]. 
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Abstract: In this paper, some new connectivity concepts in neutrosophic labeling graphs are 

portrayed. Definition of neutrosophic strong arc, neutrosophic partial cut node, Neutrosophic Bridge 

and block are introduced with examples. Also, neutrosophic labeling tree and partial intuitionistic 

fuzzy labeling tree is explored with interesting properties. 

 

Keywords: neutrosophic graphs, neutrosophic labeling graphs, neutrosophic labeling tree, partial 

neutrosophic labeling tree. 

 

1. Introduction 

Fuzzy is a concept characterized by three basic criteria namely imprecision, uncertainty, and degrees 

of truthfulness of values. These criteria has been introduced by Zadeh in 1965 to give the detailed 

description for linguistic variables, representing size, age and temperature etc., used for system input 

and output. Once we collect the set of categories of the linguistic variables, it defines a fuzzy set along 

with the membership function developed for each member in that set. The membership function 

always takes values in the interval [0, 1] and this range is referred to as the membership grade or 

degree of membership. Intuitionistic fuzzy set, an extension of fuzzy set, has been introduced by 

Atanassov (1986). Intuitionistic fuzzy set has been found to be more efficient in dealing with 

vagueness and ambiguity. It is characterized by a membership function (μA(x)) and a non-

membership function (νA(x)) with their sum being less than or equal to one (μA(x) + νA(x) ≤ 1). This 

relaxes the enforced duality νA(x) = 1- μA(x) from fuzzy set theory. Intuitionistic fuzzy set allows one 

to address the positive and negative side of an imprecise concept separately. 

Neutrosophic set is simply an extension of intuitionistic fuzzy set and fuzzy set. This concept 

came into existence when Floretic Smarandache, the professor of mathematics from university of 

New Mexico, proposed a paper in 1998 [26, 27]. He characterized the Neutrosophic set by using 3 

values namely a truth-membership degree, an indeterminacy-membership degree and a falsity 

membership degree, whose sum lies between 0 and 3. This concept has been successfully applied to many 

fields such as medical diagnosis problem, decision making problem, etc. The graphical representation of 

fuzzy set was developed by Rosenfeld in1973. This induces several graphical concepts based of fuzzy-

graph logics. Ansari in 2013 extended the fuzzy logic to neutrosophic logic and also developed 

neutrosophication of fuzzy models. In 2016, Rajab Ali Borzooei defined some basic concepts in fuzzy 
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labeling graph and in 2017, Akram and shahzadi introduced the neutrosophic graph. Recently many 

applications of neutrosophic sets were developed by Abdel Basset [1-6] and Broumi [14-22]. 

In this paper, we extend the fuzzy- graph logics by introducing the neutrosophic labeling 

graphs which has a scope in the entire real world field which involves decision making problems. 

The new criteria that define neutrosophic labeling tree were introduced. 

2. Preliminaries 

Definition 2.1: A neutrosophic graph is of the form G∗ = (V,  , ) where  = (T1, I1, F1)  

and  = (T2, I2, F2) 

(i) V = {v1, v2, v3, ···, vn} such that T1: V → [0, 1], I1: V → [0, 1] and F1 : V → [0, 1] denote the degree of 

truth-membership function, indeterminacy-membership function and falsity-membership function 

of the vertex vi ∈ V respectively, and 0 ≤ T1 (v) + I1 (v) + F1 (v) ≤ 3 ∀ vi ∈ V (i=1, 2, 3….n). 

(ii) T2 : V × V → [0, 1], I2 : V × V →  [0, 1] and F2 : V × V → [0, 1], where T2(vi, vj) ,  

I2(vi, vj) and F2(vi, vj) denote the degree of truth-membership function, indeterminacy membership 

function and falsity-membership function of the edge (vi, vj) respectively such that for every (vi, vj), 

 T2 (vi, vj) ≤ min {T1(vi), T1(vj)},  

 I2 (vi, vj) ≤ min {I1(vi), I1(vj)},  

 F2 (vi, vj) ≤ max {F1 (vi), F1(vj)}, and 0 ≤ T2(vi, vj) + I2(vi, vj) + F2(vi, vj) ≤ 3 . 

 

Example 2.2: Let G∗ = (V,  , ) be an neutrosophic graph, where  = (T1(v), I1(v), F1(v)),  

 = (T2(vi, vj) , I2(vi, vj), F2(vi, vj)). Let the vertex set be V= {v1, v2, v3, v4, v5} and 

 (v1) = (0.5,0.3,0.4),  (v2) = (0.2,0.2,0.6),  (v3) = (0.6,0.45,0.3),  (v4) = (0.4,0.8,0.35),  

 (v5) = (0.4,0.6,0.5),  ( v1, v2) = (0.1,0.2,0.5),  (v2, v3) = (0.15,0.1,0.5),  (v3, v4) = (0.3,0.35,0.3),  

 (v4, v5) = (0.35,0.5,0.45)  (v5, v1) = (0.4,0.2,0.4),  (v5, v2) = (0.15,0.15,0.4),  (v1, v4) = 

(0.3,0.25,0.3),  ( v4, v2) = (0.05,0.1,0.4). 

 

3. Neutrosophic labeling graph 
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In this section we introduce neutrosophic labeling graph, neutrosophic labeling subgraph, 

connectedness in neutrosophic labeling graph, neutrosophic partial cut node and neutrosophic 

partial bridge and investigated some of the properties with suitable examples.  

Definition 3.1: A neutrosophic graph G∗ = (V,  , ) is said to be an neutrosophic labeling graph if T1 

: V → [0, 1], I1 : V → [0, 1] F1 : V → [0, 1] and T2 : V × V → [0, 1], I2 : V × V →  [0, 1], F2 : V × V → [0, 1] 

is bijective such that truth-membership function, indeterminacy-membership function and falsity-

membership of the vertices and edges are distinct and for every edges (vi, vj), 

T2(vi, vj) ≤ min{T1(vi), T1(vj)}, 

I2(vi, vj) ≤ min{I1(vi), I1(vj)},  

F2(vi, vj) ≤ max{F1(vi), F1(vj)}, and  

0 ≤ T2(vi, vj) + I2(vi, vj) + F2(vi, vj) ≤ 3  

 

Example 3.2: In the above figure 2, all the vertices and edges have distinct values for membership, 

indeterminacy and falsity. Therefore , I and   are one to one and onto functions.  

Definition 3.3: Neutrosophic labeling graph R= (V, α, β) where α = (α1(c), α2(c), α3(c)) and  

β= (β1(c,d), β2(c,d), β3(c,d)) is called an neutrosophic labeling subgraph of G∗ = (V,  , ) where                 

 = (T1(c), I1(c), F1(c)) and  = (T2(c,d) , I2(c,d), F2(c,d)), if α1(c) ≤ T1(c), α2(c) ≤ I1(c), α3(c) ≥ F1(c) for all  

c ∈ V and β1(c,d) ≤ T2(c,d), β2(c,d) ≤ I2(c,d), β3(c,d) ≤ F2(c,d) for all edges (c,d). 

Theorem 3.4: If R=(V, α, β) is an neutrosophic  labeling  subgraph of G∗ = (V,  , ), then  



1  (c,d) ≤ 


2T (c,d), 


2  (c,d) ≤ 


2I (c,d),


3  (c,d)≥ 


2F (c,d), for all c,d ∈ V. 

Proof: Let G∗ = (V,  , ) be any neutrosophic labeling graph and R = (v, α, β) be its subgraph. Let 

(c,d) be any path in G* then its strength be ((


2T (c,d), 


2I (c,d), 


2F (c,d)). Since R in a subgraph of 

G* ,then α1(c) ≤ T1(c), β1(c,d) ≤ T2(c,d), α2(c) ≤ I1(c), β2(c,d) ≤ I2(c,d), α3(c) ≥ F1(c) and β3(c,d) ≥ F2(c,d), 

which implies that 


1  (c,d) ≤ 


2T (c,d), 


2  (c,d) ≤ 


2I (c,d),


3  (c,d) ≥ 


2F (c,d), for all c,d ∈ 

V.  
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Theorem 3.5: The union of any two neutrosophic labeling graph  11
1* ,,V G  and 

 22
11** ,,V G  where  )(),(),( 1111 cFcIcT ,  ),(),,(),,( 2221 dcFdcIdcT , 

 )(),(),( 3332 cFcIcT ,  ),(),,(),,( 4442 dcFdcIdcT , is also an neutrosophic labeling 

graph, if the Truth membership, Indeterminacy, Falsity membership values of the edges between *G

and **G are distinct. 

Proof: Let  11
1* ,,V G  and  22

11** ,,V G  be any two neutrosophic labeling graph such 

that, the Truth membership, Indeterminacy, Falsity membership values of the edges between *G and 

**G are distinct and   ,,VG  , where  NIM  ,,  and  NIM  ,, , be the union of 

two neutrosophic labeling graph *G and **G . 

To prove: G is a Neutrosophic labeling graph. 

Now, 
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Thus the Truth membership, Indeterminacy and Falsity membership values of the vertices and edges 

are distinct. Hence,   ,,VG  is a Neutrosophic labeling graph. 

Definition 3.6:  Let G∗ = (V,  , ) be an neutrosophic labeling graph. The strength of the path P of n 

edges ei for i = 1,2,……,n is denoted by S(P) = (S1(P), S2(P), S3(P)) and denoted by S1(P) = min1≤i≤n  T2(ei), 

S2(R) = min1≤i≤n  I2(ei) and S3(R) = max1≤i≤n  F2(ei). 
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Definition 3.7: Let G = (V,  , ) be a neutrosophic labeling graph. Then for a pair of vertices c,d ∈ V, 

the strength of connectedness, denoted by CONNG(c,d) = (CONN1G(c,d), CONN2G(c,d), CONN3G(c,d)) 

and is defined as  

CONN1G(c,d) = max{S1(P)}, CONN2G(c,d) = max{S1(P)}  and CONN3G(c,d) = min{S2(P)},  where P is a 

path connecting  the vertices c,d  in G. If c and d are isolated vertices of G, then CONNG(c,d) = (0, 

0). 

 

 

Example 3.8: Figure 3 is an example of neutrosophic labeling graph G having CONNG (v1, v2) = (0.02, 

0.75, 0.37), CONNG (v1, v3) = (0.04, 0.6, 0.62), CONNG (v1, v5) = (0.04, 0.65, 0.52) and so on. 

 

Proposition 3.9: Let G be an neutrosophic labeling graph and R is an neutrosophic labeling subgraph 

of G. Then for every pair of vertices c,d ∈ V, we have CONN1R(c,d) ≤ CONN1G(c,d),  

CONN2R(c,d) ≤ CONN2G(c,d)  and CONN3R(c,d) ≥CONN3G(c,d). 

 

Definition 3.10:  If S1(P) = CONN1G(c,d) S2(P) = CONN2G(c,d) and S3(P) = CONN3G(c,d), where P is a 

path connecting  the vertices c,d  in the neutrosophic labeling graph G then P is called the strongest 

path connecting c, d in G. 

 

Definition 3.11: Let G be an neutrosophic labeling graph. A node z is called a neutrosophic partial 

cut node ( Neu p-cut node) of G if there exists a pair of nodes c,d ∈ G such that c   d   z and  

CONN1(G-z)(c,d) < CONN1G(c,d), CONN2(G-z)(c,d) < CONN2G(c,d) and  CONN3(G-z)(c,d) > CONN3G(c,d) 

 

A neutrosophic partial block (Neu p-block) is a neutrosophic labeling graph which is connected and 

does not contain any Neu p-cut nodes in it. 
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Example 3.12 : Let G be an neutrosophic labeling graph, which is shown in above Figure 4. 

Node v1 is a neutrosophic partial cut node, since 

CONN1(G- 1v )(v2, v4) = 0.02 < 0.04 = CONN1G (v2, v4),  

 CONN2(G- 1v )(v2, v4) = 0.1 < 0.15 = CONN2G (v2, v4) and  

CONN3(G- 1v )(v2, v4) =0.65 > 0.55= CONN3G (v2, v4).  

Similarly, Node v2 is a neutrosophic partial cut node, since, 

CONN1(G- 2v )(v1, v3) = 0.02 < 0.03 = CONN1G (v1, v3),   

CONN2(G- 2v )(v1, v3) = 0.1 < 0.17 =CONN2G (v1, v3) and  

CONN1(G- 2v )(v1, v3) =0.65 >0.52= CONN3G (v1, v3). 

Definition 3.13: Let G be an neutrosophic labeling graph. An arc e = (c,d) is called neutrosophic 

partial bridge (Neu p- bridge) if CONN1(G-e)(c,d) < CONN1G(c,d), CONN1(G-e)(c,d) < CONN1G(c,d) and 

CONN3(G-e)(c,d) > CONN3G(c,d). 

A neutrosophic p-bridge is said to be a neutrosophic partial bond (Neu p-bond) if  

CONN1(G-e)(x, y) < CONN1G(x, y), CONN2(G-e)(x, y) < CONN2G(x, y), CONN3(G-e)(x, y) > CONN3G(x, y) with at 

least one of x or y different from both u and v and is said to be a neutrosophic partial cut bond (p-cut 

bond) if both x or y are different from u and v. 

 

Example 3.14 : In the  Figure 4, for all arcs except the arc (v4, v3) are neutrosophic partial bridge. In 

specific particular, arc (v2, v3) is a neutrosophic partial cut bond, since  

CONN1(G-(v2,v3))(v3, v4) = 0.03 < 0.06 = CONN1G(v3, v4) , CONN2(G-(v2,v3))(v3, v4) = 0.03 < 0.06 = CONN2G(v3, v4) 

and CONN3(G-(v2,v3))(v3, v4) = 0.55 > 0.5 = CONN3G(v3, v4).  

  

4. Types of Arcs in a Neutrosophic Labeling Graph 

In this section we discussed some types of neutrosophic α strong, δ strong, β strong arcs.  

Definition 4.1: If all the arcs of cycle C in the neutorsophic labeling graph G are strong, then C is 

called the strong cycle in G. 

Definition 4.2: An arc (n,m) of G is called neutrosophic α strong if  T2(c,d) > CONN1(G-(n,m))(n,m),  

I2(c,d) > CONN2(G-(n,m)) (n,m) and F2(c,d) < CONN3(G-(n,m)) (n,m) 
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Definition 4.3: An arc (n,m) of G is called neutrosophic δ strong if  T2(c,d) <  CONN1(G-(n,m))(n,m), 

I2(c,d) <  CONN2(G-(n,m)) (n,m) and F2(c,d) > CONN3(G-(n,m)) (n,m) 

Definition 4.4: An arc (n,m) of G is called neutrosophic β strong if  T2(c,d) =  CONN1(G-(n,m))(n,m), 

I2(c,d) =  CONN2(G-(n,m)) (n,m) and F2(c,d) = CONN3(G-(n,m)) (n,m) 

Definition 4.5: An n-m path P in G is called a strong n-m path if all the arcs of P are strong. In 

particular, if all the arcs of P are neutrosophic α-strong, then P is called neutrosophic α strong path. 

Obviously, An arc (n,m) is strong if it is neutrosophic α-strong, if (n,m) is strong arc, then n and m 

are said to be strong neighbors of each other. 

 

Example 4.6: In the above figure 5, the arcs (V1, V2), (V2, V4), (V4, V5) are neutrosophic α strong, the 

arc (V3, V4) is neutrosophic δ strong, the arcs (V1, V3) is neutrosophic β strong and P = V1V2V4V5 is a 

neutrosophic α strong path. 

Theorem 4.7. Let G be a connected neutrosophic labeling graph and let r and s be any two nodes in 

G. Then there exists a strong path from c to do. 

 

Proof.  

Assume that G = (V,  , ) is a connected neutrosophic labeling graph. Let r and s be any two nodes 

of G. If the arc (r, s) is strong, then there is nothing to prove. Otherwise, either (r, s) is a δ arc or there 

exist a path of length more than one from r to s. 

 In the first case, we can find a path P (say) such that S1 (P) > T2(r,s), S2(P) > I2(r,s)  and 

S3(P) < F2(r,s) In either case, the path from c to d of length more than one. If some arc on this path is 

not strong, replace it by a path having more strength. Hence P is a path from r to s, whose arcs are 

strong and thus P is a strong path from r to s.  

Theorem 4.8: A connected neutrosophic labeling graph G is a neutrosophic partial block if and only 

if any two nodes x, y ∈ V such that (x y) is not neutrosophic α strong are joined by two internally 

disjoint strongest path. 

Proof:   

Suppose that G is a neutrosophic partial block. Let x, y ∈ V such that (x, y) is not neutrosophic α 

strong arc. Now, we shall prove that there exist two internally disjoint strongest x–y paths. If not, i.e 
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there exist exactly one internally disjoint strongest x-y path in G. Since (x, y) is not α strong, length 

of all strongest x - y path must be at least two. Also for all strongest x - y paths in G, there must be a 

common vertex. Let z be such node in G. Then CONN1 (G-z) (x, y) > CONN1G(x, y), CONN2 (G-z)(x, y) > 

CONN2G(x, y)  and CONN3(G-z)(x, y) < CONN3G(x, y), which contradict the fact that G has no P-cut nodes. 

Hence there exist two internally disjoint strongest x - y paths. 

Conversely, let any two nodes of G are joined by two internally disjoint strongest paths. Let w be a 

node in G. For any pair of nodes c,d  ∈ V such that u  v   w, there always exists a strongest 

path not containing w. So, we cannot be a neutrosophic p-cut node. Hence G is a neutrosophic partial 

block. 

 

5. Neutrosophic Labeling Tree 

In this section we define neutrosophic labeling tree as follows 

Definition 5.1: A graph G∗ = (V,  , ) where   (v)= (T1(r), I1(r), F1(r)) and  = (T2(r,s) , I2(r,s), 

F2(r,s)) is said to be neutrosophic labeling tree, if it has neutrosophic labeling graph and an 

neutrosophic spanning subgraph M= (V, α, β) where α(r)= (α1(r), α2(r), α3(r)) and β= (β1(r,s), β2(r,s), 

β3(r,s)) which is a tree, where for all arcs (r, s) not in T2(r,s) < 


1 (r,s), I2(r,s) < 


2  (r,s), F2(r,s) >



3  (r,s). 

Theorem 5.2: If G∗ = (V,  , ) is a neutrosophic labeling tree, then the arcs of neutrosophic spanning 

subgraph M= (V, α, β) are neutrosophic bridges of G∗. 

 

Proof: Let G∗ = (V,  , ) be a neutrosophic labeling tree and M= (V, α, β) be its spanning subgraph. 

Let (r, s) be an arc in M. Then 


1 (r,s) < T2(r,s) ≤ 


2T (c,d),


2  (r,s) < I2(r,s) ≤ 


2I (r,s),  


3  (r,s) > 

F2(r,s) ≥


2F (r,s), which implies that the arc (r, s) is an neutrosophic bridge of G∗. Since the arc (r, s) 

is an arbitrary, then the arcs of M are the neutrosophic bridges of G∗. 

 

Theorem 5.3: Every neutrosophic labeling graph is a neutrosophic labeling tree. 

Proof: Let G∗ = (V,  , ) be a neutrosophic labeling graph. Since is   is bijective, each and every 

vertex of G* will have at least one arc as neutrosophic bridge. Therefore, the spanning subgraph M 

will exist, such that whose arcs are neutrosophic bridges. Hence, by above theorem 5.2, every 

neutrosophic labeling graph is an neutrosophic labeling tree. 

 

6. Partial Neutrosophic Labeling Tree 

Finally, we define partial neutrosophic labeling tree and discussed some of the properties. 

Definition 6.1: A connected neutrosophiclabeling graph G∗ = (V,  , ) is called a partial neutrosophic 

labeling tree if G* has a spanning subgraph M= (V, α, β) which is a tree, where for all arc (r, s) of G* 

which are not in M, CONN1G(r,s) > T2(r,s), CONN2G(r,s) > I2(r,s)  and CONN3G(r,s) < F2(r,s). 

If all the components of disconnected graph G* satisfies above condition, then G*   is called a partial 

forest. 
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Example 6.2: If we remove the arc (v1, v2) figure 6, we will get a spanning tree M. Also for the arc (v1, 

v2), CONN1G (v1, v2) = 0.03 > 0.02 = T1 (v1, v2), CONN2G (v1, v2) = 0.16 > 0.15 = I1 (v1, v2), and CONN3G 

(v1, v2) = 0.42 < 0.55 = F1 (v1, v2). Thus figure 6 is an example of partial neutrosophic labeling tree. 

 

Theorem 6.3: Let G∗ = (V,  , ) be a connected neutrosophic labeling graph. Then the necessary and 

sufficient condition for G*  to be  a neutrosophic partial tree is that , for  any cycle C in G*, there 

must exists an arc γ = (r, s) such that T2(γ) < CONN1(G* -γ)(r, s), I2(γ) < CONN2(G* - γ)(r, s) and  

F2(γ) > CONN3(G* - γ)(r, s), where G*- γ is the subgraph of G* obtained by deleting the arc γ from G*. 

Proof: Assume that G∗ is a connected neutrosophic labeling graph. If G∗ has no cycle, then G∗ itself 

behave as a partial tree.  

If G* has a cycle C and let γ = (r,s) be an arc of C with minimum weightage for truth membership, 

indeterminacy  and maximum weightage for falsity  membership in  G* . Now, remove the arc γ = 

(r,s) from G* and continue this process until we get a tree M which is the subgraph of G*. 

The arcs deleted in each process were stronger than the one which removed preceding 

process. Since M is a tree and the arc γ = (r, s) having minimum membership value, minimum 

indeterminacy and maximum falsity membership value from the arcs of a cycle in G* does not belongs 

to M,  we can conclude that there exists a path from r to s whose membership value greater than 

T2(r, s), indeterminacy value greater than I2(r, s) and falsity membership value less than F2(r, s), and 

that does not involve (r, s) or any arcs deleted prior to it. It contains only the arcs of M. Thus G* is a 

partial neutrosophic labeling tree. 

 Conversely, if G* is a partial neutrosophic labeling tree and P is cycle, then some arc 

γ = (r, s) of P does not belong to M. Thus by definition we have T2(γ) < CONN1(G* -γ)(r, s), I2(γ) < 

CONN2(G* - γ)(r, s) and F2(γ) > CONN3(G* - γ)(r, s). 

Theorem 6.4: Between any two nodes of G*, If there exist at most one strongest path, then G* must be 

a partial forest. 

Proof: 

Assume that G* is not a partial forest. Then G* must contain a cycle C such that T2(r, s) ≥ CONN1G(r, 

s), I2(r, s) ≥ CONN2G(r, s) and F2(r, s) ≤ CONN3G(r, s) for all arcs γ = (r, s) of the cycle C. Thus, γ = (r, s) 

is the strongest path from r to s. If we choose (r, s) to be a weakest arc of C, it follows that the rest of 

the cycle C is also a strongest path from r to s, which is a contradiction. Hence, G* must be a partial 

forest. 
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Theorem 6.5: If G* is a not a tree but partial tree, then has G* at least one arc γ = (r, s) for which  

T2(r, s) < CONN1G(r, s), I2(r, s) < CONN2G(r, s) and F2(r, s) > CONN3G(r, s). 

Proof:   

Assume that G* is a partial tree, then by definition of partial tree, G* must contain a spanning tree M 

such that T2(r, s) < CONN1G(r, s), I2(r, s) < CONN2G(r, s) and F2(r, s) > CONN3G(r, s), for all arcs  

γ = (r, s) not in M. Thus has G* at least one arc γ = (r, s) (since G* is not a tree), which satisfies the above 

condition.  

Theorem 6.6:  If M is the spanning tree of the partial tree G*, then the arcs of M are the partial bridges 

of G*. 

Proof:  

Let γ = (r, s) be an arc in M. Since, M is a spanning tree, this arc γ form a unique path between the 

nodes r and s in M.  

If G* has no other paths between r and s, then clearly γ = (r, s) is a bridge of G* and hence it is a partial 

bridge of G*.  

On the other hand, if P is a path connecting r and s in G*, then P must contain an arc γ = (r, s) which 

is not in M such that T2(r, s) < CONN1G(r, s), I2(r, s) < CONN2G(r, s) and F2(r, s) > CONN3G(r, s). Then 

γ = (r, s) is not a weakest arc of any cycle in G* and hence (r, s) is a partial bridge. 

 

7. Conclusion 

Connectivity concepts are the major key in neutrosophic graph problems. This paper presented new 

connectivity concepts in neutrosophic labeling graphs. Definition of neutrosophic strong arc, 

neutrosophic partial cut node, Neutrosophic Bridge and block based on connectivity concepts of 

intuitionistic fuzzy graph was introduced. The neutrosophic labeling tree and partial neutrosophic 

labeling tree concepts were established with interesting properties on them.  We extended our 

research work to bipolar neutrosophic graph, covering problem on neutrosophic graphs, Chromatic 

number in neutrosophic graphs, Colouring of neutrosophic graphs. 
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Abstract: The aim of this paper is to find the reasons for traffic congestion problem and its solution 

using Neutrosophic Cognitive Maps (NCMs) and Fuzzy Cognitive Maps (FCMs). Fuzzy theory 

only measures the grade of membership but fuzzy theory has failed to characteristic the perception 

when the relations between concepts in problems are indeterminate. Addition of concepts of 

indeterminate situation with fuzzy logic forms the neutrosophic logic. Since, some of the reasons 

for traffic congestions are indeterminate we use Neutrosophic Cognitive Maps to find a solution. 

The discussion is based on Indian road scenario. 

Keywords: Fuzzy Cognitive Maps; Neutrosophic Cognitive Maps; Traffic congestion problem; 

Connection matrix. 

 

 

1. Introduction 

            Road traffic congestion is a main problem in most of the cities in India, particularly 

in developing regions resulting in unexpected waiting time, fuel wastage and unnecessary tension. 

Congestion in the cities has increased considerably over the previous 10 years because of increase in 

no of private vehicles in the road. As a result of traffic congestion, people are suffering economically, 

physically and even mentally.  Identification of traffic congestion is the initial step and essential 

guidance for selecting appropriate measures. In this paper, our goal is to determine the main reasons 

for traffic congestion using Neutrosophic Cognitive Maps(NCMs) which is an extension of Fuzzy 

Cognitive Maps (FCMs) with an inclusion of indeterminacy. FCMs mainly find the 

relationship/non-relationship between two nodes or concepts but fail to find the relation between 

two conceptual nodes when the relationship is an indeterminate one.  FCMs are suitable when the 

data is unsupervised. Both FCM and NCM are based on the opinion of experts.  

The reason for using NCMs to identify the main reason for traffic congestion is that some of the 

concepts in traffic are indeterminate.  For instance, political leaders visit, unannounced meetings in 

the main road, sudden diversions due to heavy downpour are some of the concepts are 

indeterminate reasons for the traffic in India. In this paper we will mathematically find the main 

reasons for traffic congestions and we will give some realistic possible suggestions based on the 

results of FCMs and NCMs to control the traffic. This paper is structured in eight sections. The 

background and motivation of this study is discussed in section 2.  The fundamental concepts of 
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FCMs and NCMs are given in section 3. In Section 4 an experimental example is detailed. Then, in 

fifth section the comparison of expert’s opinion is analysed and in Section 6 conclusions are exposed. 

Finally in the seventh section suggestions are given to reduce the traffic congestion based on the 

conclusion of NCMs and FCMs. 

2. Background and Motivation 

         Zadeh [26] introduced the concept of fuzzy set theory in 1965. In crisp set, membership 

function 𝜇𝐴 maps the set of all elements in the universal set ′𝑋′ to the set {0, 1} , whereas in fuzzy 

set each element in ′𝑋′ is mapped to the set [0,1] by the membership function 𝜇𝐴. Fuzzy set is 

‘vague boundary set’ when compared with crisp set. Table.1 helps to understand the basic concepts 

of fuzzy set and neutrosophic set in a better way. 

 

Table 1: Comparison of Fuzzy set and Neutrosophic set 

            Fuzzy set            Neutrosophic set 

Fuzzy set gives only the degree of membership 

of an element  𝑥 ∈ 𝐴.   

 

Example:𝜇(0.3) ∈ 𝐴 means probability of 30% 

′𝑥′  belong to the set 𝐴. 

 

In more practical example, we say there will be 

a chance of 30% traffic tomorrow in the city. 

Here the degree of non-membership funcion is 

not discussed. 

The Neutrosophic set gives the degrees of 

membership, indeterminacy, and 

non-membership of the element  𝑥 ∈ 𝐴. 

 

Example: 𝜇(0.5,0.3,0.2) ∈ 𝐴  means probability of 

50% ′𝑥′ belong to the set  𝐴  20% ′𝑥′ is not in 

𝐴 and 30% is undecided. Also we say 50% there 

will be a traffic tomorrow, 20% no traffic and 30% 

is indeterminate. 

Max,Min operations in Fuzzy sets 

 

Example: For any two fuzzy sets 𝐴 and 𝐵 in 

𝑋 their union is defined by the membership 

function 𝜇𝐴∪𝐵 = max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ∀ 𝑥 ∈ 𝑋. 

Operations are entirely different. 

 

Example:For any two neutrosophic sets 𝐴 and 𝐵,  

𝜇(𝑇1, 𝐼1, 𝐹1) ∈ 𝐴 𝑎𝑛𝑑 𝜇(𝑇2, 𝐼2, 𝐹2) ∈ 𝐵 𝑡ℎ𝑒𝑛 𝜇((𝑇1  +

𝑇2) − (𝑇1 ∗ 𝑇2)), (𝐼1 + 𝐼2) − (𝐼1 ∗ 𝐼2), (𝐹1 + 𝐹2) −

(𝐹1 ∗ 𝐹2)) ∈ 𝐴 ∪ 𝐵. 

In fuzzy theory,fuzzy numbers are used. 

Example:Triangular fuzzy number,trapezoidal 

fuzzy etc. 

 

In neutrosophic theory,neutrosophic numbers are 

used denoted by 𝑎 + 𝐼𝑏 where 𝑎, 𝑏 ∈ 𝑅. 

Example: Trapezoidal neutrosophic number. 

              

FCM is a combination of fuzzy logic and cognitive mapping. Fuzzy cognitive map was introduced 

by Bart kosko [11] in 1965 as an extension of cognitive maps, powerful equipment for modelling of 

dynamical systems. As a data representation and logic technique, it depicts a system in a structure 

that corresponds strongly to the way humans observe it.  

        Due to its simplicity, FCM was applied to many diverse scientific areas including 

medicine [16,22],software engineering [21], transportation [24] and so on. Many methods of FCM 

modelling and/or extension of FCM for modelling dynamical systems have been proposed in 

[4,5,6,7,8,9,14,15,17,19,22,.23].  Smarandache and Vasantha Kandasamy W.B[25] introduced the 

concept of indefinite statistics called Neutrosophic Cognitive Maps (NCMs) as generalizations of 

FCMs. Like FCMs, NCMs also many applications in practical life. We listed few here. Abdel-Basset 

et al [1] used NCMs to solve the transition difficulties of IoT-based enterprises. Real time 

applications of NCMs is given in [2,3,12,13,20]. Kalaichelvi et al[10] used NCMs to identify the 

problems faced by girl students who got married during the period of study. In another applications, 
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Rahunathan Anitha et al. [18] used NCMs for raga classifications using musical features. This is the 

first approach used NCMs in transportation field. 

3. Fundamental concepts of FCMs and NCMs 

 A directed graph representing concepts like policies, events etc as nodes and causalities as 

edges is FCM denoted as (𝐶1,𝐶2, 𝐶3 … 𝐶𝑛).  The edge weights between the concepts denote the causal 

relationship between them.  Weight 𝑒𝑖𝑗 = 1   denotes increase (or decrease) leading to a 

corresponding increase (or decrease) in the other.  Weight 𝑒𝑖𝑗 = −1 means vice versa; weight 𝑒𝑖𝑗 =

0  means no relation between them.  Thus edge weight is from the set {0,1, −1}.   Weights of the 

directed edges are denoted by the connection matrix 𝑀 = (𝑒𝑖𝑗), with diagonal entries as zero.  The 

indeterminacy between the concepts cannot be captured by FCMs.  In such circumstances 

Neutrosophic Cognitive Map (NCM) can be used.  NCM is similar to FCM; 𝑒𝑖𝑗 = 𝐼 if the relation or 

effect of  𝐶𝑖 on 𝐶𝑗 is an indeterminate.  Dotted lines denote indeterminacy of an edge between two 

vertices. The neutrosophic adjacency matrix is 𝑁(𝐸).  To derive conclusions from the FCM, the 

instantaneous behaviour of each node is given as an input vector 𝐴 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛)  where 𝑎𝑖 ∈

{0,1} ; 0 represents OFF and 1 represents ON position. The hidden pattern is the equilibrium state of 

the FCM.  If the equilibrium state is a unique state vector, then is called fixed point.  The dynamical 

system goes round and round when the causality flows through the edges like a cycle starting with 

concept Ci and ending at  Ci when Ci is switched ON.    

         In order to find the hidden pattern, the instantaneous input vector 𝐴1 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛)  

is passed into a dynamical system i.e. FCM or NCM.  This is done by multiplying 𝐴 with matrix 𝐸 

or 𝑁(𝐸).  Let us consider 𝑁(𝐸). Let. 𝐴 ∗ 𝑁(𝐸) = (𝑏1, 𝑏2, … , 𝑏𝑛). With the threshold operation, 𝑏𝑖 is 

replaced by 1 if 𝑏𝑖 > 𝑘 𝑎𝑛𝑑 𝑏𝑖 𝑏𝑦 0 𝑏𝑖 < 𝑘 (𝑘-a suitable positive integer) and 𝑏𝑖   by 𝐼 if 𝑏𝑖  is not 

an integer. This vector is further updated by making the corresponding entries as 1 for the concepts 

in the ON position of the input. The resultant vector after thresholding and updating is 𝐴2. This 

procedure is repeated till we get a limit cycle or a fixed point. 

The pseudo code for the Traffic Congestion Problem is 

 Collect the concepts (nodes) for the Traffic congestion problem. 

 Obtain the connection square matrix 𝐸 ,𝑁(𝐸)  and the corresponding graph, neutrosophic    

graph through expert opinion. 

 Set the concept 𝐶𝑖 (i=1, 2, 3,…, n) in ON-State.  

 Multiply 𝐶𝑖 (i=1, 2, 3,…, n) with 𝐸 , 𝑁(𝐸)  and threshold value is calculated by assigning 1 to 

the first state and for the values > 0 to get 𝐶2. 

 Multiply 𝐶2 with 𝐸 ,𝑁(𝐸) and repeat the procedure to get the fixed point. 

 Similarly proceed the above process for the remaining state vector and find the hidden pattern 

and the indeterminacy in the traffic congestion problem. 

       Both FCM and NCM are based on experts’ opinion.  To avoid biasness, it is essential to 

consider more than one expert. Now we will see the difference between the FCMs and NCMs in 

Table 2. 
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Table 2: Comparison of Neutrosophic cognitive maps and Fuzzy cognitive maps 

Let 𝑀1 and 𝑀2 be any two FCMs or NCMs working on the same set of concepts. We consider a 

state vector 𝑋 = (𝑎1, 𝑎2, … 𝑎𝑛) where 𝑎𝑖 ∈ {0,1, 𝐼}. Let the resultant of 𝑋 on 𝑀1 and 𝑀2 be 𝑌1 and 

𝑌2. The Kosko-Hamming distance between them is denoted by 𝑑𝑘(𝑌1, 𝑌2).  Using the definition of 

Kosko-Hamming distance we can find how far two experts have the same opinion or differ upon a 

given consequential state vector.  By this comparison, one can get the variation or the maximum 

deviated state vectors for a particular concept which can be specially analysed to identify the cause 

of such variation. 

 

4. Description of the traffic congestion problem 

 

          India is a country which is one of the major non-lane road network in the world. The 

traffic congestions are frequent problem in India. India is one of the quick developing country in the 

world which have the peak density of public and private vehicles. It is very hard to maintain traffic 

in India.  High traffic congestion problem is the consequence of variable expected and unexpected 

factors. In this paper we list all the reasons for the traffic congestion problems and we identity the 

main reasons to control the traffic using FCMs and NCMs.  The concepts for the traffic congestion 

problem are identified.  The connection matrices for FCM and NCM are constructed based on the 

experts opinion. 

 The different reasons considered to study the traffic congestion problem are: 

𝐶1 − Traffic congestion 

𝐶2 − Increase in no number of private vehicles in the road 

𝐶3 − Damage of roads (construction of drainages, metro train) 

𝐶4 −Present roadwidth conditions (depending on the number of vehicles the road width is not 

expanded) 

𝐶5 − Special occurrences (such as religious functions, special road meetings, dharnas etc) 

𝐶6 − Sudden signal failure 

𝐶7 − Vehicle parking in main road (due to increase in vehicles and non-availability of parking 

facilities). 

      𝐶8 − Accidents 

𝐶9 −Inadequate enforcement of traffic rules. 

    Neutrosophic Cognitive Maps            Fuzzy Cognitive Maps 

In neutrosophic cognitive maps we have 

the possibility to consider that the relation 

between two vertices is indeterminate 

(unknown), denoted by "𝐼". 

 

We are not having such concepts in fuzzy 

cognitive maps. 

NCMs cannot be applied for all 

unsupervised data. NCM has meaning only 

when the relation between at least two concepts 

𝐶𝑖 and 𝐶𝑗 are indeterminate. 

 

Fuzzy cognitive maps are applicable to all 

unsupervised datas. 

Neutrosophic graphs have the values 

(𝑇, 𝐼, 𝐹) for vertices and for edges in which the 

indeterminacy is denoted by dotted lines [20]; 

whereas NCMs are directed neutrosophic 

graphs with the weights of the edges are from 

the set {−1,0,1, 𝐼}. 

Fuzzy cognitive maps are directed fuzzy graphs 

with the edge set belong to {-1,0,1}. 
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          The above nine main reasons for the traffic congestion problem we considered for our 

study. In Figure 1 we give the directed graph as well as the connection square matrix 𝐸 by the first 

expert’s opinion. 

                        
Figure-1: Directed graph given by the first Expert for the traffic congestion problem. 

The connection square matrix E to the above directed graph is given below:
                            

                               987654321 CCCCCCCCC  
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Case-1: Suppose we take the state vector 𝐴1 = (1,0,0,0,0,0,0,0,0)  in ON State. We will see the 

effect of 𝐴1 on 𝐸.   

𝐴1𝐸 = (0,1,0,1,0,0,1,0,1) 

                                      → (1,1,0,1,0,0,1,0,1) 

                                      = 𝐴2.                                                (2) 

                                 𝐴2𝐸 = (4,1,0,1,0,0,2,2,1) 

                                     → (1,1,0,1,0,0,1,1,1)  

                                      = 𝐴3                                                 (3) 

𝐴3𝐸 = (4,1,0,1,0,0,2,2,1) 

                                     → (1,1,0,1,0,0,1,1,1) 

                                     = 𝐴4 = 𝐴3.                                            (4) 

For the traffic congestion problem, now we allow the first expert to give answers  regarding 

the indeterminance between the nodes. Because NCM handles the indeterminance, the expert of the 

model can give suitable careful demonstration while implementing the results of the model.  Using 

the concept of indeterminacy and based on the first experts opinion we get the following 

neutrosophic directed graph given in Figure-2. 
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Figure-2  Neutrosophic Directed graph given by the first Expert for the traffic congestion problem. 

 

The corresponding neutrosophic adjacency matrix N(E) related to the above neutrosophic 

directed graph is given below:   

                            987654321 CCCCCCCCC
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Case-2: Now we find the effect of 𝐴1 = (1,0,0,0,0,0,0,0,0) in ON state on 𝑁(𝐸). 

                      𝐴1𝑁(𝐸) = (0,1,0,1,0,0,1,0,1) 

                               → (1,1,0,0, 𝐼, 𝐼, 1, 𝐼, 1) 

                                = 𝐴2.                                                      (6) 

        𝐴2𝑁(𝐸) = (3 + 3𝐼2, 2 + 𝐼, 𝐼, −1 + 𝐼, 𝐼, 𝐼, 2,1 + 𝐼, 1) 

                                = (3 + 3𝐼, 1, 𝐼, 0, 𝐼, 𝐼, 1,1,1) 

                                      → (1,1, 𝐼, 0, 𝐼, 𝐼, 1,1,1) 

                                     = 𝐴3.                                                      (7) 

                             𝐴3𝑁(𝐸) = (3 + 2𝐼 + 2𝐼2, 3,1, −1 + 𝐼, 𝐼, 𝐼, 2,1 + 2𝐼, 1) 

                                     = (3 + 2𝐼 + 2𝐼, 3,1, −1 + 𝐼, 𝐼, 𝐼, 2,1 + 2𝐼, 1) 

                                = (3 + 4𝐼, 3,1, −1 + 𝐼, 𝐼, 𝐼, 1 + 2𝐼, 1)           

                                → (1,1,1,0, 𝐼, 𝐼, 2,1 + 2𝐼, 1) 

                                = 𝐴4.                                                      (8) 

                       𝐴4𝑁(𝐸) = (4 + 𝐼 + 2𝐼2, 3,1, −1 + 𝐼, 𝐼, 𝐼, 2, +𝐼, 2 + 𝐼, 1)                                                                                        

                               = (4 + 𝐼 + 2𝐼, 3,1, −1 + 𝐼, 𝐼, 𝐼, 2,2 + 𝐼, 1) 

                               = (4 + 3𝐼, 3,1, −1 + 𝐼, 𝐼, 𝐼, 2,2 + 𝐼, 1)                                                                                     

                               → (1,1,1,0, 𝐼, 𝐼, 1,1,1) 

                               = 𝐴5 = 𝐴4.                                                  (9) 

           Next,based on the opinion of second expert FCM model is constructed. Let us 

consider the second experts directed graph given in Figure-3 and the connection matrix of the FCM 

of the traffic congestion problem with the same set of attributes.       
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Figure-3: Directed graph given by the second Expert for the traffic congestion problem. 

The connection square matrix 𝐸1 to the above directed graph is given below:    
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Case-3: Take 𝐴1 = (1,0,0,0,0,0,0,0,0) the effect of 𝐴1on the system 𝐸1 is 

𝐴1𝐸1 = (0,1,0,1,0,0,1,0,1) 
                                                → (1,1,1,0,1,0,1,1,1) 
                                                = 𝐴2.                                                   (11)                    
                                          𝐴2𝐸1 = (6,1,1, −1,1,0,2,3,1) 
                                                → (1,1,1,0,1,0,1,1,1) 
                                                = 𝐴3 = 𝐴2.                                             (12) 

          Now the second expert is permitted to give his opinion including indeterminacy. The 

neutrosophic directed graph is drawn using this opinion given in the Figure-4. 

                             

Figure-4 Neutrosophic Directed graph given by the second Expert for the traffic congestion problem. 
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The corresponding neutrosophic connection matrix is as follows: 

                           987654321 CCCCCCCCC                                                                                   
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Case-4 Suppose 𝐴1 = (1,0,0,0,0,0,0,0,0) is the state vector whose effect on the neutrosophic 

system 𝑁(𝐸1) is to be considered. 

𝐴1𝑁(𝐸1) = (0,1,1,0, 𝐼, 𝐼, 1, 𝐼, 1) 

                                       → (1,1,1,0, 𝐼, 𝐼, 1, 𝐼, 1) 

                                       = 𝐴2.                                              (14) 

                              𝐴2𝑁(𝐸1) = (4 + 3𝐼2, 1 + 2𝐼, 1 + 𝐼, −1 + 𝐼, 𝐼, 𝐼, 2,1 + 𝐼, 1) 

                                       = (4 + 3𝐼, 1 + 2𝐼, 1 + 𝐼, −1 + 𝐼, 𝐼, 𝐼, 2,1 + 𝐼, 1) 

                                       → (1,1,1,0, 𝐼, 𝐼, 1,1,1) 

               .                        = 𝐴3.                                              (15)  

                              𝐴3𝑁(𝐸1) = (4 + 𝐼 + 𝐼2, 2 + 𝐼, 1 + 𝐼, −1 + 2𝐼, 𝐼, 𝐼, 2,2 + 𝐼, 𝐼) 

                                       = (4 + 𝐼 + 𝐼, 2 + 𝐼, 1 + 𝐼, −1 + 2𝐼, 𝐼, 𝐼, 2,2 + 𝐼, 1) 

                                       → (1,1,1,0, 𝐼, 𝐼, 1,1,1) 

                                       = 𝐴4 = 𝐴3.                                         (16) 

                                                                  

5. Comparison of experts opinion 

 

 We now give the Kosko-Hamming distance function for the FCMs between the hidden pattern 

given by the two experts for the 𝐴𝑖′𝑠 where 𝐴1 = (1,0,0,0,0,0,0,0,0), 𝐴2 = (0,1,0,0,0,0,0,0,0), … , 𝐴9 =

(0,0,0,0,0,0,0,0,1). We tabulate them in table 3. 

 

Table 3: Expert’s opinion comparison for FCMs 

 

 

 

 

 

 

 

 

 

 

 

 

Clearly from the table for the FCMs we see the experts do not agree upon the resultants and the 

deviations in most of the places are large. Let us compare the two experts’ opinion using NCM on 

𝑨𝒊′𝒔 Hidden pattern 

  given by 𝑬 

Hidden pattern 

  given by 𝑬𝟏  

  𝒅(𝑬, 𝑬𝟏) 

(1,0,0,0,0,0,0,0,0) 

(0,1,0,0,0,0,0,0,0) 

(0,0,1,0,0,0,0,0,0) 

(0,0,0,1,0,0,0,0,0) 

(0,0,0,0,1,0,0,0,0) 

(0,0,0,0,0,1,0,0,0) 

(0,0,0,0,0,0,1,0,0) 

(0,0,0,0,0,0,0,1,0) 

(0,0,0,0,0,0,0,0,1) 

(1,1,0,1,0,0,1,1,1) 

(1,1,0,1,0,0,1,1,1) 

(1,1,1,1,0,0,1,1,1) 

(1,1,0,1,0,0,1,1,1) 

(0,0,0,0,0,1,0,0,0) 

(0,0,0,0,0,0,1,0,0) 

(1,1,0,1,0,0,1,1,1) 

(1,1,0,1,0,0,1,1,1) 

(1,1,0,1,0,0,1,1,1) 

(1,1,1,0,1,0,1,1,1) 

(1,1,1,0,1,0,1,1,1) 

(1,1,1,0,1,0,1,1,1) 

(0,0,0,1,0,0,0,1,0) 

(1,0,0,0,1,0,0,0,0) 

(0,0,0,0,0,1,0,0,0) 

(1,1,1,0,1,0,1,1,1) 

(1,1,1,0,1,0,1,1,1) 

(1,1,1,0,1,0,1,1,1) 
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the same problem.  From case-3 and case-4 we are getting (1,1,1,0, 𝐼, 𝐼, 1,1,1) as the fixed point. The 

Kosko-Hamming distance is 0. So both the experts have the same opinion. Simply the preface of the 

Kosko-Hamming distance function can give such fine results and yield of such experts’ comparison. 

By this process we can find the experts nearness or distance. 

 

6. Conclusion 

        From Case-1, the result (1,1,0,1,0,0,1,1,1) is the fixed point given by FCM. According to this 

expert, the traffic congestion problem flourishes mainly with Increase in number of private vehicles, 

present road width conditions, vehicle parking in the main road, accidents, inadequate enforcement 

of traffic rules causes traffic congestion problem but damage of roads, special occurrences and 

sudden signal failures are absent in such a scenario. 

      From Case-3, we are getting (1,1,1,0,1,0,1,1,1) as the fixed point by FCMs. According to this 

expert opinion the Damage of roads and Sudden signal failures are not the consequences for the 

traffic congestion problem. 

      From Case-2 and Case-4, we are getting the same fixed point is (1,1,1,0, 𝐼, 𝐼, 1,1,1) by NCMs. 

According to the two experts, the increase or the on state of the traffic congestion problem increases 

with Increase in number of private vehicles, Present road width conditions, Vehicle parking in the 

main road, Accidents, Inadequate enforcement of traffic rules and other factors such as  Special 

occurrences and Sudden signal failure are indeterminate. 

 

7. Some suggestions to reduce traffic congestion using FCMs and NCMs: 

           From the above conclusions of FCMs and NCMs from case-1 and case-3 we observe that 

increase in number of private vehicles is the main reason for the traffic congestion problem because 

at present we observe that most of the people having own car use them to reach even a small 

distance. A car can occupy minimum capacity of 4 people but, mostly only one person uses the car 

and occupy additional space on the main road. Further, 30 cars placed in a row it will engage atleast 

half kilometer on a single lane whereas, if 60 people travel in public transport, then it leads to less 

vehicles on the road and less pollution as well. So encouraging public transport reduces traffic 

congestion problem in most of the cities. It is suggested that Government can take action to run the 

buses frequently particularly in the peak hours. Carpooling and introducing flying trains all over the 

city are also the best options to reduce the traffic congestion. 

           According to the result of FCMs and NCMs recognising vehicle parking control as a 

powerful tool in combating traffic congestion. Develop multi-level parking at major traffic 

generating locations with (or without) private participation. Construct multilevel parking facility at 

all critical sub-urban railway stations, metro railway stations, all critical bus terminals and mainly in 

shopping complexes. Establish the idea of community parking. Use the bottom space of flyovers for 

parking. Finally Government must take necessary action atleast not to decrease the present road 

width conditions for the free flow of traffic. 
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