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Abstract: Parameter reduction can be treated as an effective tool in many fields, including pattern 

recognition. Many reduction techniques have been reported so far for soft sets, fuzzy soft sets and bipo-

lar fuzzy soft sets to solve decision-making problems. However, there is almost no attention to the pa-

rameter reduction of neutrosophic soft sets. In this present paper we focus our discussion on the pa-

rameter reduction of neutrosophic soft sets as an extension of parameter reduction of soft sets and 

fuzzy soft sets. To do that, using the concept of indiscernibility relation, we first define the terms ‘dis-

pensable set’ and ‘indispensible set’. We utilize these definitions to define the terms ‘decision partition’, 

‘parameter reduction’ and ‘degree of importance of a parameter’ with a suitable example. Next we pre-

sent an algorithm based on the concept of degree of importance and parameter reduction of a neutro-

sophic soft set. An illustrative example is employed to show the feasibility and validity of our proposed 

algorithm based on parameter reduction of neutrosophic soft sets in real life decision making problem. 

 

Keywords: Neutrosophic set, neutrosophic soft set, parameter reduction, decision making. 

 

 

1. Introduction 

     Molodstov [31] initiated the concept of soft set theory as a fundamental mathematical tool for mod-

elling uncertainty, vague concepts and not clearly defined objects. Although various traditional tools, 

including but not limited to rough set theory [33], fuzzy set theory [41], intuitionistic fuzzy set theory 

[10] etc. have been used by many researchers to extract useful information hidden in the uncertain da-

ta, but there are inherent complications connected with each of these theories. 

 

 Additionally, all these approaches lack in parameterizations of the tools and hence they 

couldn’t be applied effectively in real life problems, especially in areas like environmental, economic 

and social problems. Soft set theory is standing uniquely in the sense that it is free from the above 
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mentioned impediments and obliges approximate illustration of an object from the beginning, which 

makes this theory a natural mathematical formalism for approximate reasoning. 

 

The Theory of soft set has excellent potential for application in various directions some of 

which are reported by Molodtsov [31] in his pioneer work. Later on Maji et al. [27] introduced some 

new annotations on soft sets such as subset, complement, union and intersection of soft sets and dis-

cussed in detail its applications in decision making problems. Ali et al. [7] defined some new opera-

tions on soft sets and shown that De Morgan's laws holds in soft set theory with respect to these newly 

defined operations. Atkas and Cagman [6] compared soft sets with fuzzy sets and rough sets to show 

that every fuzzy set and every rough set may be considered as a soft set. Jun   [24] connected soft sets 

to the theory of BCK/BCI-algebra and introduced the concept of soft BCK/BCI-algebras. Feng et al.[21] 

characterized soft semi rings and a few related notions to establish a relation between soft sets and 

semi rings.  

 

Chen et al. [15] introduced the concept of parameter reduction of soft sets in 2005. In 2008, Z. 

Kong et al [25] introduced the definition of normal parameter reduction in soft sets and presented a 

heuristic algorithm of normal parameter reduction. The soft sets mentioned above are based on com-

plete information. However, incomplete information widely exists in various real life problems. H. 

Qin et al [34] studied the data filling approach of incomplete soft sets. Y. Zou et al [42] investigated da-

ta analysis approaches of soft sets under incomplete information. In 2001, Maji et al. [28] defined the 

concept of fuzzy soft set by combining of fuzzy sets [41] and soft sets [31]. Roy and Maji [35] proposed 

a fuzzy soft set based decision making method. 

  

Xiao et al. [39] presented a combined forecasting method based on fuzzy soft set. Feng et al. 

[22] discussed the validity of the Roy-Maji method [35] and presented an adjustable decision-making 

method based on fuzzy soft set. Yang et al. [40] initiated the idea of interval valued fuzzy soft set 

(IVFS-set) and analyzed a decision making method using the IVFS-sets. The notion of intuitionistic 

fuzzy set (IFS) was initiated by Atanassov [10] as a significant generalization of fuzzy set [41]. Intui-

tionistic fuzzy sets are very useful in situations when description of a problem by a linguistic variable, 

given in terms of a membership function only, seems too complicated. Recently intuitionistic fuzzy 

sets have been applied to many fields such as logic programming, medical diagnosis, decision making 

problems etc. 
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      Smarandache [38] introduced the concept of neutrosophic set which is a mathematical tool for 

handling problems involving imprecise, indeterminacy and inconsistent data. Maji [30] introduced the 

concept of neutrosophic soft set and established some operations on these sets. Mukherjee et al [32] in-

troduced the concept of interval valued neutrosophic soft sets and studied their basic properties. In 

2013, Broumi and Smarandache [12, 13] combined the intuitionistic neutrosophic and soft set which 

lead to a new mathematical model called” intuitionistic neutrosophic soft set”. They studied the no-

tions of intuitionistic neutrosophic soft set union, intuitionistic neutrosophic soft set intersection, 

complement of intuitionistic neutrosophic soft set and several other properties of intuitionistic neutro-

sophic soft set along with examples and proofs of certain results.  
 

Also, in [11] S. Broumi presented the concept of “generalized neutrosophic soft set” by com-

bining the generalized neutrosophic sets [11] and soft set models, studied some properties on it, and 

presented an application of generalized neutrosophic soft set [11] in decision making problem. Recent-

ly, Deli [17] introduced the concept of interval valued neutrosophic soft set as a combination of inter-

val neutrosophic set and soft set. In 2014, S. Broumi et al. [14] initiated the concept of relations on in-

terval valued neutrosophic soft sets.I. Deli [18] proposed a new notation called expansion and reduc-

tion of the neutrosophic classical soft sets that are based on the linguistic modifiers. Saha et al. [36] 

proposed the concept of data filling of neutrosophic soft sets having incomplete/missing data. Few 

more works on neutrosophic soft sets can be found in [9, 19, 23, 37]. 
 

    Parameter reduction can be treated an effective tool in many fields, including pattern recognition. 

Many reduction techniques [8, 15, 16, 20, 25, 26 ] have been reported so far for soft sets, fuzzy soft sets 

and bipolar fuzzy soft sets to solve decision-making problems. However, there is almost no attention 

to the parameter reduction of neutrosophic soft sets. In this present paper we focus our discussion on 

the parameter reduction of neutrosophic soft sets as an extension of parameter reduction of soft sets 

and fuzzy soft sets.     

 

This present paper is organized as follows: 

Section-2 presents some basic definitions related to fuzzy set theory with their generalizations and soft 

set theory with their generalizations. In section-3, we first present the concept of indiscernibility rela-

tions and then based on it, we define the terms ‘dispensable set’, ‘indispensible set’, ‘decision parti-

tion’, ‘parameter reduction’, ‘degree of importance of a parameter’ with a suitable example in neutro-

sophic soft environment. In the next section (section-4), we have presented an algorithm based on the 

concept of degree of importance and parameter reduction supported by an illustrative example to 

show the feasibility and validity of our algorithm. 
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2. Preliminaries: 

 

2.1 Definition: [41] Let U  be a non empty set. Then afuzzy set τ  on U  is a set having the form

   ττ x, μ x :x U  where the function τμ :U [0, 1] is called the membership function and 

 τμ x represents the degree ofmembership of each element x U .  

2.2 Definition: [10] Let U  be a non empty set. Then an intuitionistic fuzzy set (IFS for short) τ  is an 

object having the form     τ ττ x, μ x , γ x : x U  where  the  functions 

τ τμ :U [0, 1]  and  γ :U [0, 1]   are called membership function and non-membership function 

respectively.  

   τ τμ x  and  γ x  represent the  degree ofmembership and the degree of non-membership 

respectively of each element xU  and    τ τ0 μ x + γ x 1 for each  x U.   We denote the class of  

all intuitionistic fuzzy sets on U by IFSU.  

 

2.3 Definition: [31] Let U  be a universe set and E  be a set of parameters. Let  P U  denotes the 

power set of  U  and  AE. Then the pair  F, A  is called a soft set over U , where  F  is a mapping 

given by  F: A P U . 

In other words, the soft set is not a kind of set, but a parameterized family of subsets of U . For eA, 

 e UF   may be considered as the set of e-approximate elements of the soft set  F, A . 

 

2.4 Definition: [28] Let U  be a universe set, E  be a set of parameters and A E . Then the pair 

 F, A  is called a fuzzy soft setover U , where F is a mapping given by UF: A FS . 

 

2.5 Definition: [29] Let U  be a universe set, E  be a set of parameters and A E . Then the pair 

 F, A  is called an intuitionistic fuzzy soft set over U , where F  is a mapping given by UF: A IFS . 

For e A ,  eF  is an intuitionistic fuzzy subset of  U  and is called the intuitionistic fuzzy value set 

of the parameter ‘e’. 

Let us denote 
   eμ xF  by the membership degree that object  ‘x’ holds parameter ‘e’ and 

   eγ xF  by 

the membership degree that object  ‘x’ doesn’t hold parameter ‘e’ , where  eA and  xU . Then  

 eF  can be written as  an  intuitionistic fuzzy set such that            e ee = x, μ x , γ x : x UF FF  . 

 

2.6 Definition: [38] A neutrosophicset A  on the universe of discourse U  is defined as  

      , , ,A A AA x x x x x U     , where , , 0,1A A A U  
 

    are functions such that the 

condition:      , 0 3A A Ax U x x x  
 

       is satisfied. 

Here      , ,A A Ax x x   represent the truth-membership, indeterminacy-membership and falsity-

membership (hesitancy membership) respectively of the element x U .  
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Smarandache [25] applied neutrosophic sets in many directions after giving examples of neutrosophic 

sets. Then he introduced the neutrosophic set operations namely-complement, union, intersection, 

difference, Cartesian product etc.  

2.7 Definition: [30] Let U  be an initial universe, E  be a set of parameters and A E . Let  NP U

denotes the set of all neutrosophic sets of  U . Then the pair  ,f A  is termed to be the 

neutrosophicsoftset overU , where f  is a mapping given by  f A NP U  . 

2.8 Example: Let us consider a neutrosophic soft set  ,f A  which describes the “attractiveness of the 

house”. Suppose { }1 2 3 4 5 6,, , , ,U u u u u u u= be the set of six houses under consideration and 

{ }1 2 3 4 5(beautiful), (expensive), (cheap), (good location), (wooden)e e e e eE = be the set of parameters. Then 

a neutrosophic soft set  ,f A  over U can be given by: 

U 1e  2e  3e  4e  5e  

1u  (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) 

2u  (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) (0.1,0.1,0.3) 

3u  (0.2,0.6,0.4) (0.5,0.5,0.5) (0.8,0.1,0.7) (0.5,0.3,0.5) (0.5,0.5,0.5) 

4u  (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) 

5u  (0.1,0.1,0.7) (0.2,0.6,0.7) (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) 

6u  (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.5) (0.4,0.4,0.4) 

3. Parameter reduction of neutrosophic soft sets:

Suppose 1 2 3{ , , ,.., }nU x x x x= be the universe set of objects and 1 2 3{ , , ,. , }mE e e e e= be the set of 

parameters. Consider a neutrosophic soft set ( , )f E  given by 

{ }( ) ( ) ( )( ) , ( ), ( ), ( ) :f e f e f ef e x x x x x Um g d= Î   for e EÎ f. Let us define a function E
%  given by: 

( )( ) ( ) ( )( ) ( ) ( ) ( )
j j ji f e i f e i f e i

j
E x x x xf m g d= + +å% , ix UÎ . 

We use ( )
je ixf%  to denote ( ) ( ) ( )( ) ( ) ( )

j j jf e i f e i f e ix x xm g d+ + . 

3.1 Definition: For any subset of parameters B EÍ , an indiscernibility relation BIND  is defined as: 

( ){ }: ( ) ( ),B i j i jB BU U x xIND x x f f= Î ´ =% % . 

      For the neutrosophic soft set ( , )f E , we denote { 1 21 2 3 1 2, ,. ......U { , , ,.., } { , ,....., }E i i i jC x x x x x x xx x+ +=

}1{ , ,.., }k k n sx x x x+ as a partition of objects in U  which partitions and ranks the objects according to 

the value of ( )ifE x%   based on the indiscernibility relation EIND . U
EC is called the decision partition , 

where the sub classes are: 1 2 3 1 2 1,{ , , ,....., } { , ,....., },......,{ , ,....., }i i i j k k nx x x x x x x x x x+ + + where s is the 

number of sub-classes, and 1 2 3 . . sx xx x ³ ³ ³³ .  
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     For any sub-class 1 1, ( ) ( ) ........ ( ){ , ,....., } qq E E Ex x x f x f x f xz z z h z z z hx x+ + + +
é ù é ù é ù= = = =ê ú ê ú ê úë û ë û ë û
% % % , where [ ].  

denotes the greatest integer function. Thus objects from U  with the same value of (.)Ef%  are included 

into a same class. 

 

3.2 Example:Let 1 2 3 6{ , , ,....., }U x x x x=  be the set of six houses and 1 2 3 6{ , , ,....., }E e e e e=  be the set of 

parameters where the parameters 1 2 3 4 5 6,, , , ,ee e e e e  represents ‘beautiful’, ‘in the main town’, 

‘expensive’, ‘concrete’, ‘in green surroundings’, ‘wooden’ respectively. Consider the neutrosophic soft 

set ( , )f E  which describes the attractiveness and physical trait of the houses given by the following 

table (table-1). 

 

Table-1 

U
 

1e  2e  3e  4e  5e  6e  (.)Ef%  

1x  (0.3,0.7,0.4) (0.4,0.5,0.1) (0.2,0.2,0.4) (0.6,0.3,0.4) (0.1,0.1,0.3) (0.2,0.4,0.6) 6.2 

 

2x
 

(0.4,0.5,0.5) (0.2,0.2,0.6) (0.5,0.5,0.1) (0.2,0.8,0.3) (0.4,0.3,0.2) (0.6,0.3,0.4) 7.0 

3x
 

(0.2,0.5,0.7) (0.3,0.2,0.5) (0.8,0.2,0.4) (0.5,0.5,0.3) (0.2,0.4,0.2) (0.9,0.6,0.6) 8.0 

4x
 

(0.5,0.3,0.6) (0.6,0.3,0.1) (0.2,0.5,0.6) (0.4,0.4,0.5) (0.7,0.3,0.2) (0.5,0.5,0.8) 8.0 

5x
 

(0.3,0.5,0.6) (0.4,0.4,0.2) (0.3,0.3,0.5) (0.6,0.1,0.6) (0.7,0.8,0.1) (0.4,0.6,0.6) 8.0 

6x
 

(0.7,0.3,0.4) (0.3,0.5,0.2) (0.4,0.8,0.5) (0.5,0.3,0.5) (0.1,0.2,0.3) (0.4,0.4,0.2) 7.0 

 

       In this case, { }1 2 33 4 5 2 6 1, ,{ , , } { , } { }U
EC x x x x x xx x x= as 1 2 3 4( ) 6.2, ( ) 7.0, ( ) 8.0, ( ) 8.0,E E E Ex x x xf f f f= = = =% % % %

5 6( ) 8.0, ( ) 7.0;E Ef x f x= =% %  where 1 2 37, 68, xx x = == . 

 

3.3 Definition:For a neutrosophic soft set ( , )f E  with 1 2 3{ , , ,....., }mE e e e e= , if there exists a subset 

A= 1 2 3{ , , ,....., }pe e e e E¢ ¢ ¢ ¢ Ì  satisfying 1 2 3 ............ ( )( ) ( ) ( ) nAA A A xx x x ff f f == = = %% % % , then we say that A  

is dispensable, otherwise A  is indispensable. Roughly speaking, A EÌ  is dispensable means that the 

difference between among all objects according to the parameters in A  doesn’t influence the final 

decision. A EÌ  is called a parameter reduction of E  if A  is indispensible and 1 2( ) ( )E A E Ax xf f- -=% %

3 ............( ) ( )nE A E Ax xf f- -= == % % i.e; E-A is the maximal subset of E  that keeps the value ( . )E Af -
%  

constant. 

 

      Clearly after the parameter reduction of E, we have fewer parameters although the partition of 

objects have not been changed. In the above definition, 1 2 3 ............( ) ( ) ( ) ( )nA A A Ax x x xf f f f= = = =% % % %

implies U U
E E AC C -= . 
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3.4 Example:Using table-1, we have, { } { } { } { }1 2 4, , 1 2 3 41 2 4 1 2 4 1 2 4, , , , , ,( ) ( ) ( ) ( )e e e e e e e e e e e ex x x xf f f f= = = =% % % %  

{ } { }1 2 4 1 2 45 6, , , ,( ) ( )e e e e e ex xf f=% % 3.7= . Hence the neutrosophic soft set ( , )f E  given by Table-1 has a 

parameter reduction { }53 6, ,e e e  and the corresponding neutrosophic soft set ( , )f A  is displayed in 

table-2 given below: 

 

 

 

Table-2 

U  3e  5e  6e  (.)Af%  

1x  (0.2,0.2,0.4) (0.1,0.1,0.3) (0.2,0.4,0.6) 2.5 

2x
 

(0.5,0.5,0.1) (0.4,0.3,0.2) (0.6,0.3,0.4) 3.3 

3x  (0.8,0.2,0.4) (0.2,0.4,0.2) (0.9,0.6,0.6) 4.3 

4x
 

(0.2,0.5,0.6) (0.7,0.3,0.2) (0.5,0.5,0.8) 4.3 

5x  (0.3,0.3,0.5) (0.7,0.8,0.1) (0.4,0.6,0.6) 4.3 

6x
 

(0.4,0.8,0.5) (0.1,0.2,0.3) (0.4,0.4,0.2) 3.3 

 

      

 

  Table-1 shows that 4 51 2 6 3 ( ) ( ) 8( ) 6.2, ( ) ( ) 7, ( ) E EE E E E x xx x x x f ff f f f = == = = = % %% % % %  and so 

3 4 5or orx x x   is the optimal choice, 2 6orx x  is the sub optional choice and 1x  is the inferior choice. 

Again according to Table-2, 4 51 2 6 3 ( ) ( ) 4.3( ) 2.5, ( ) ( ) 3.3, ( ) A AA A A A x xx x x x f ff f f f = == = = = % %% % % %  and so 

in this case also 3 4 5or orx x x   is the optimal choice, 2 6orx x  is the sub optional choice and 1x  is the 

inferior choice. Thus parameter reduction gives the same result as the original one. 

       We also have { } { }3 4 5 4 2 6 3 1 21 2 4, , , ,{ , , } { , } { }U
E e e eC x x x x x x- = . 

 

  For the neutrosophic soft set ( , )f E , 1 2 3{ , , ,....., }mE e e e e=  is the parameter set and 

1 2 3{ , , ,....., }nU x x x x=  is the set of objects, { 1 21 2 3 1 2, ,........{ , , ,....., } { , ,....., }U
E i i i jC x x x x x x xx x+ +=

}1{ , ,....., }k k n sx x x x+ is a decision partition of objects in U. Now deleting the parameter ie  from E, we 

get a new decision partition deleted ie  denoted by { }
U

iE eC - , which is given by: 

. { } { 1 21 2 3 1 2, ,........{ , , ,....., } { , ,....., }U
i i i jiE eC x x x x x x xx x¢ ¢¢ ¢ ¢ ¢ ¢ ¢ ¢+ +- = , }1{ , ,....., }k k n s

x x x x¢ ¢ ¢+ ¢
. 

 

 

For sake of convenience we denote: 

{ 1 2
, ,........U

EC E Ex x= }sEx and { } { }² { }²{
1 2

, ,........,U
i iiE eC E e E ex x¢ ¢- = - - { }² }i s

E e x ¢
-  where 
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s s
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x x

x x

x x

xx

xx

¢¢

¢¢

+ +

+
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=

=

=

- =

- =

{ }²
1

...............................................,

.{ , ,....., }i k k n ss
E e x x x xx ¢ ¢ ¢+ ¢¢

- =
 

 

 

 

3.5 Definition:The degree of importance of re  for the decision partition is denoted by )Im( re  and is 

defined by ,
1

1)Im(
rq e

s

r
qU

e
=

= Wå  where 

 

{ }²

,

, if such that ,1 ,1

, otherwise

q

q

r q yy
rq e

E E e y y s q s

E

x

x

x x x ¢¢

ìïï ¢ ¢ ¢- - $ = £ £ £ £ïïïíïïïïïî

=W  

 

3.6 Definition:For  A= 1 2 3{ , , ,....., }pe e e e E¢ ¢ ¢ ¢ Ì  , the decision partition deleted A is denoted by U
E AC -  

and is given by ² ²{ 1 2, ,........,U
E AC E A E Ax x¢ ¢- = - - ² }sE Ax ¢- . 

The degree of importance of A for the decision partition is defined by: 

,A
1

1)Im( q

s

q
A

U =
= Wå  where 

 

²

,A

, if such that ,1 ,1

, otherwise

q

q

q yy
q

E E A y y s q s

E

x

x

x x x ¢¢
ìï ¢ ¢ ¢- - $ = £ £ £ £ïïïíïïïïî

=W  

 

3.7 Example:Consider the neutrosophic soft set given in example 3.2. Then we have: 

{ }3 4 5 8 2 6 7 1 6, ,{ , , } { , } { }U
EC x x x x x x= , s=3 and { } { }3 4 5 6 2 6 5 1 41

, ,{ , , } { , } { }U
E eC x x x x x x- = . 

{ } { } { } { }
1 1 11, 1 1 2, 2 6 3, 3 4 50, , 2, , , 3.e e ex x x x x x x= - = = = = =\ W W W  So 1

1) (0 2 3) 0.833.
6

Im(e = + + =  

 

3.8 Proposition:For the neutrosophic soft set ( , )f E  where 1 2{ , ,....., }mE e e e= , 

) 1, 1,2,...,0 Im( r r me £ =£ . 
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Proof: 

If such that ,1 ,1q yy y s q sx x ¢¢ ¢ ¢$ = £ £ £ £ , then { }²
, q qrr yq e E E e Ex xx ¢

= - - £W  and , qrq e Ex=W  , 

otherwise. 

{ }1 2,
1 1

1 1 1 1) ...... 1.Im(
r sq e q

s s

r
q q

E E E U
U U U U

Ee x x xx
= =

= £ = + + + = ´ =W\ å å  

Again it is easy to verify that ) 0Im( re ³ . Thus we have ) 10 Im( re ££ . 

 

4. Decision making problem solving based on parameter reductionof neutrosophic soft set: 

In this section we first develop an algorithm using parameter reduction of neutrosophic soft set and 

then we illustrate this with a real life application. 

 

 Algorithm: 

Step-1: Input the neutrosophic soft set ( , )f E . 

 

Step-2: Choose a parameter reduction A of E. 

 

Step-3: Compute the choice value of the object i Ux Î  using the formula given below: 

Im( ) ( )
jj i

j
ei e xfc ´= å %  where je AÎ . 

 

Step-4: Find k for which max ik i
c c= . 

    Then kc  is the optimal choice object. If k has more than one values, then any one of them can be  

chosen by the decision maker. 

 

 An Illustrative example: Consider the neutrosophic soft set given in example 3.2. Now suppose 

that Mr. John is interested to buy a house on the basis of his choice parameters 1 2 3 6, , ,.....,e e e e , 

which means that out of the available houses in U, he will select that house that qualifies with all 

or maximum number of parameters in E. 
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Step-1: The neutrosophic soft set ( , )f E  is given below: 

U
 

1e  2e  3e  4e  5e  6e  (.)Ef%

 

1x  (0.3,0.7,0.4) (0.4,0.5,0.1) (0.2,0.2,0.4) (0.6,0.3,0.4) (0.1,0.1,0.3) (0.2,0.4,0.6) 6.2 

2x
 

(0.4,0.5,0.5) (0.2,0.2,0.6) (0.5,0.5,0.1) (0.2,0.8,0.3) (0.4,0.3,0.2) (0.6,0.3,0.4) 7.0 

3x
 

(0.2,0.5,0.7) (0.3,0.2,0.5) (0.8,0.2,0.4) (0.5,0.5,0.3) (0.2,0.4,0.2) (0.9,0.6,0.6) 8.0 

4x
 

(0.5,0.3,0.6) (0.6,0.3,0.1) (0.2,0.5,0.6) (0.4,0.4,0.5) (0.7,0.3,0.2) (0.5,0.5,0.8) 8.0 

5x
 

(0.3,0.5,0.6) (0.4,0.4,0.2) (0.3,0.3,0.5) (0.6,0.1,0.6) (0.7,0.8,0.1) (0.4,0.6,0.6) 8.0 

6x
 

(0.7,0.3,0.4) (0.3,0.5,0.2) (0.4,0.8,0.5) (0.5,0.3,0.5) (0.1,0.2,0.3) (0.4,0.4,0.2) 7.0 

 

Step-2: A parameter reduction of E is { }53 6, ,A e e e= . The corresponding neutrosophic soft set is given 

below: 

 

 

 

U  3e  5e  6e  (.)Af%  

1x  (0.2,0.2,0.4) (0.1,0.1,0.3) (0.2,0.4,0.6) 2.5 

2x
 

(0.5,0.5,0.1) (0.4,0.3,0.2) (0.6,0.3,0.4) 3.3 

3x  (0.8,0.2,0.4) (0.2,0.4,0.2) (0.9,0.6,0.6) 4.3 

4x
 

(0.2,0.5,0.6) (0.7,0.3,0.2) (0.5,0.5,0.8) 4.3 

5x  (0.3,0.3,0.5) (0.7,0.8,0.1) (0.4,0.6,0.6) 4.3 

6x
 

(0.4,0.8,0.5) (0.1,0.2,0.3) (0.4,0.4,0.2) 3.3 

 

Step-3: { }3 4 5 4 2 6 3 1 2, , and 3.{ , , } { , } { }U
AC sx x x x x x= =  

{ } { }

{ } { }

{ } { }

5 3 4 3 3 2 2 2 1 1 6 13

3 3 4 3 5 6 2 2 2 1 25

5 2 4 2 6 2 3 2 2 2 1 16

, , , , , ,

, , , , , ,

, , , , , .

{ } { } { } { } { } { }

{ } { } { } { } { }

{ } { } { } { } { } { }

U

U

U

A e

A e

A e

C

C

C

x x x x x x

x x x x x x

x x x x x x

-

-

-

=

=

=
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{ } { } { }
{ } { } { } { }
{ } { } { }

3 5

3 3 3

5 5 5

6 6 6

, ,

1, 3 4 5 2, 2 6 3, 1

1, 3 4 5 2, 2 6 3, 1 1

1, 3 4 5 2, 2 6 3, 1

3 3

3 5
1 1

1 1 1 1
) (3 2 1) ) (3 2 0)

6 6

, , 3, , 2, 1;

, , 3, , 2, 0;

, , 3, , 2, 1.

Hence 1, 0.8Im( Im(q e q e

e e e

e e e

e e e

q qU U

x x x x

x x x x x

x x x x

x x

x x

x x

e e
= =

= + + = + +

= = = = = =

= = = = = - =

= = = = = =

= W = = W =

\ W W W

W W W

W W W

å å

6,

3

6
1

1 1
) (3 2 1)

6

3,

1.Im( q e
qU

e
=

= + += W =å

 

 

 

The computation table for obtaining the choice values is given by: 

U  3e  5e  6e  ic  

1x  (0.2,0.2,0.4) (0.1,0.1,0.3) (0.2,0.4,0.6) 1c =(0.2+0.2+0.4)1+(0.1+0.1+0.3)0.83 

         +(0.2+0.4+0.6)1=2.415 

2x
 

(0.5,0.5,0.1) (0.4,0.3,0.2) (0.6,0.3,0.4) 2c =(0.5+0.5+0.5)1+(0.4+0.3+0.2)0.83 

         +(0.6+0.3+0.4)1=3.147 

3x  (0.8,0.2,0.4) (0.2,0.4,0.2) (0.9,0.6,0.6) 3c =(0.8+0.2+0.4)1+(0.2+0.4+0.2)0.83 

         +(0.9+0.6+0.6)1=4.164 

4x
 

(0.2,0.5,0.6) (0.7,0.3,0.2) (0.5,0.5,0.8) 4c =(0.2+0.5+0.6)1+(0.7+0.3+0.2)0.83 

         +(0.5+0.5+0.8)1=4.096 

5x  (0.3,0.3,0.5) (0.7,0.8,0.1) (0.4,0.6,0.6) 5c =(0.3+0.3+0.5)1+(0.7+0.8+0.1)0.83 

        +(0.4+0.6+0.6)1=3.828 

6x
 

(0.4,0.8,0.5) (0.1,0.2,0.3) (0.4,0.4,0.2) 6c =(0.4+0.8+0.5)1+(0.1+0.2+0.3)0.83 

        +(0.4+0.4+0.2)1=3.198 

 

Step-4: Since the choice value 3c  is maximum, so house 3x  is the best option for Mr. John. 

 

Conclusion 

In this paper we have proposed the concept of parameter reduction for neutrosophic soft sets 

and we have used it to solve a decision making problem by developing an algorithm based on degree 

of importance of  parameters. The experimental results prove that our proposed parameter reduction 

techniques delete the irrelevant parameters while keeping definite decision-making choices 

unchanged. The parameter reduction presented in this paper may play an important role in some 

knowledge discovery problem. Using the concept presented in this paper, one can think of parameter 

reduction of  interval valued neutrosophic soft sets, hesitant neutrosophic soft sets and hesitant 

interval valued neutrosophic soft sets. 
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Abstract. This paper comes as a second step serves the purpose of constructing a 

neutrosophic optimization model for the relation geometric programming problems subject 

to (max, product) operator in its constraints. This essay comes simultaneously with my 

previous paper entitled (Neutrosophic Geometric Programming (NGP) with (max-product) 

Operator, An Innovative Model) which contains the structure of the maximum solution. The 

purpose of this article is to set up the minimum solution for the (RNGP) problems, the author 

faced many difficulties, where the feasible region for this type of problems is already non-

convex; furthermore, the negative signs of the exponents with neutrosophic variables 𝑥𝑗 ∈

[0,1] ∪ 𝐼 . A new technique to avoid the divided by the indeterminacy component (𝐼) was 

introduced; Separate the neutrosophic geometric programming into two optimization 

models, introducing two new matrices named as the distinguishing matrix and the 

facilitation matrix. All these notions were important for finding the minimum solution of the 

program. Finally, two numerical examples were presented to enable the reader to understand 

this work.  

Keyword: Relational Neutrosophic Geometric Programming (RNGP); (⋁, . ) Operator; 

Neutrosophic Relation Equations; Distinguishing Matrix; Facilitation Matrix; Minimum 

Solution; Incompatible Problem. 

1. Introduction

 As of 1995 so far, dozens of mathematicians and researchers in many fields of 

sciences trying to study and understand the neutrosophic theory, the first mathematician who 

set up and put forward the neutrosophic theory was Smarandache F. at 1995 [2,11], he is in 

the neutrosophic theory as Lotfi A. Zadeh [12] in fuzzy theory and as K. Atanasov [10] in 

intuitionistic fuzzy theory. The importance of the neutrosophic logic comes from its ability to 

deal with the indeterminacy component (𝐼), this component makes scholars generalize the 

fuzzy and intuitionistic fuzzy logics, give them the ability to put the paradoxes in a new 

framework, and it makes the researchers deal with contradicted information in more 

relaxation. This paper comes as an establishing article in the relational neutrosophic 

programming problems (RNGP) with (⋁, . ) in its constraints. This kind of problems has many 

applications in real-world problems, like communication system, civil engineering, 

mechanical engineering, structural design and optimization, business management …etc. The 

author published previous articles [1,3,4,6,7,9] to expand the fuzzy theory to be fit with 

neutrosophic theory, this essay was one of the series of these articles. 

 This publication includes three original sections, despite the second section goes to 

the basic concepts, but these pure concepts were originated by the author at the 

mailto:hodaesmail@yahoo.com
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simultaneously published paper, which focused on the form of the maximum solution in the 

(RNGP) with (∨, . ) operator, the third section was dedicated to many unprecedented 

mathematical formulas such as pre-distinguishing matrices, pre-facilitation matrices, a new 

technique to separate the optimization model into two models depending upon the sign of 

terms powers in the objective function, and a technique to filter all minimum solutions, the 

forth section was for two numerical examples, they are the same examples that presented in 

the article [8] which assigned to the maximum solution, the last section includes the 

conclusion. 

 

2. Basic Concepts 

We call 

min 𝑓(𝑥) = (𝑐1. 𝑥1
𝛾1) ∨ (𝑐2. 𝑥2

𝛾2) ∨ …∨ (𝑐𝑛 . 𝑥𝑛
𝛾𝑛)

𝑠. 𝑡.                      𝐴𝑜𝑥 =  𝑏                                          
𝑥𝑗 ∈ [0,1] ∪ 𝐼,       1 ≤ 𝑗 ≤ 𝑛                                 

}                                                                               (1)  

 A ( ∨, . ) (max- product) neutrosophic geometric programming, where 𝐴 = (𝑎𝑖𝑗), 1 ≤

𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛, 𝑎𝑖𝑗 ∈ [0,1] is (𝑚 × 𝑛) dimensional neutrosophic matrix, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇  

an n-dimensional variable vector, 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚)
𝑇 (𝑏𝑖 ∈ [0,1] ∪ 𝐼) an m- dimensional 

constant vector, 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛)
𝑇 (𝑐𝑗 ≥ 0) an n- dimensional constant vector, 𝛾𝑗 is an 

arbitrary real number, and the composition operator ‘’𝑜’’ is ( ∨, . ) ,  i.e. ⋁ (𝑎𝑖𝑗 . 𝑥𝑗) = 𝑏𝑖
𝑛
𝑗=1 .  Note 

that the program (1) is undefined and has no minimal solution in the case of 𝛾𝑗 < 0 with all 

𝑥𝑗′𝑠 taking indeterminacy value.  

 

2.1. Definition [8] 

𝑎𝑖𝑗 ⋈ 𝑏𝑖 = {

𝑏𝑖

𝑎𝑖𝑗
,                  𝑖𝑓  𝑎𝑖𝑗 > 𝑏𝑖  , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

1,                    𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑏𝑖  , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

 1 ,              𝑖𝑓             𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

                                                          (2) 

 

𝑎𝑖𝑗Θ𝑏𝑖 =

{
 
 

 
 

𝑛𝐼

𝑎𝑖𝑗
,            𝑖𝑓  𝑎𝑖𝑗 > 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

  
  

1,               𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]  

𝑛𝑜𝑡 𝑐𝑜𝑚𝑝.     𝑖𝑓             𝑎𝑖𝑗 = 𝑚𝐼 ,𝑚 ∈ (0,1] , 𝑏𝑖 ∈ [0,1] ∪ 𝐼

1                      𝑖𝑓                                                  𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ [0,1]  
 

                                      (3) 

Where ⋈ is an operator defined at [0,1], while the operator  Θ is defined at [0,1] ∪ 𝐼. Let        

 �̂�𝑗 = ⋀ (𝑎𝑖𝑗 ⋈ 𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)𝑚
𝑖=1                                                                                                   (4) 

be the components of the pre maximum solution �̂�𝑣1.(i.e. �̂�𝑣1 = (�̂�1, �̂�2, … , �̂�𝑛)) 

Let  �̂�𝑗 = ⋀ (𝑎𝑖𝑗Θ𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)
𝑚
𝑖=1  ,                                                                                             (5) 

be the components of the pre maximum solution �̂�𝑣2. (i.e. �̂�𝑣2 = (�̂�1, �̂�2, … , �̂�𝑛)) 

Now the following question will be raised, 

Which one �̂�𝑣1 or �̂�𝑣2 should be the exact maximum solution? 

Neither �̂�𝑣1 nor �̂�𝑣2 will be the exact solution! The exact solution is integrated between them. 

Before solving 𝐴𝑜�̂� = 𝑏, we first define the matrices 𝐴𝑣1, 𝐴𝑣2. 

Let 𝐴𝑣1 be a matrix has the same dimension and the same rows elements of 𝐴 except for those 

rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 = 𝑛𝐼, those special rows of 
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𝐴𝑣1 will be zeros. Let 𝐴𝑣2 be a matrix has the same dimension and the same rows elements of 

𝐴 except for those rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 ∈ [0,1], 

those special rows of 𝐴𝑣2 will be zeros. Consequently, 

 𝐴𝑜�̂� = 𝑏 = (𝐴𝑣1𝑜�̂�𝑣1) + (𝐴𝑣2𝑜�̂�𝑣2)                                                                                                   (6) 

The formula (6) is the greatest solution in 𝑋(𝐴, 𝑏). 

The maximum value of the objective function 𝑓(�̂�) = 𝑓(�̂�𝑣1) ∨ 𝑓(�̂�𝑣2). 

 

2.2. Theorem [8] 

  If 𝛾𝑗 < 0  (1 ≤ 𝑗 ≤ 𝑛), then the greatest solution to the problem (1) is an optimal 

solution.  

2.3. Definition [5] 

If there exists a solution to 𝑥 = 𝑏 , it's called compatible. Suppose 𝑋(𝐴, 𝑏) = {(𝑥1, 𝑥2, … , 𝑥𝑚)
𝑇 ∈

[0,1]𝑛 ∪ 𝐼, 𝐼𝑛 = 𝐼 , 𝑛 > 0|𝑥𝜊𝐴 = 𝑏, 𝑥𝑖 ∈ [0,1] ∪ 𝐼} is a solution set of  𝐴𝑜𝑥 = 𝑏 , we define  𝑥1 ≤

𝑥2 ⟺ 𝑥𝑗
1  ≤ 𝑥𝑗

2 (1 ≤ 𝑗 ≤ 𝑛), ∀ 𝑥1, 𝑥2 ∈ 𝑋(𝐴, 𝑏). Where " ≤ " is a partial order relation on 𝑋(𝐴, 𝑏). 

 

3. The Structure of the Minimum Solution �̆�. 

 The feasible region of the solution domain for the neutrosophic geometric 

programming (NGP) problems subject to (max-product) operator in its constraints is a 

solution to 𝐴𝑜𝑥 = 𝑏 , therefore the definition of the solution set 𝑋(𝐴, 𝑏) and the shape of the 

maximum and the minimum solutions are very important to optimize the (NGP) model. 

The structure of the maximum solution was introduced by Huda E. Khalid in [8]. 

The definition (2.3) was constructed by Huda E. Khalid at 2016 [5], this definition was 

dedicated for (RNGP) problems subject to (max-min) operator, this definition is also 

appropriate for (RNGP) problems with (max, product) operator. 

 

3.1. Definition  

 If there exists a minimum solution in the solution set 𝑋(𝐴, 𝑏), then the numbers of the 

minimum solutions are not lonesome such as the maximum solution. If we denote all 

minimum elements by �̌�(𝐴, 𝑏), then another version of  𝑋(𝐴, 𝑏) can be presented depending 

upon the minimum and the maximum solutions as follows: 

𝑋(𝐴, 𝑏) = ∪𝑥∈�̌�(𝐴,𝑏) {𝑥 ⎸�̌� ≤ 𝑥 ≤ �̂�, 𝑥 ∈ 𝑋}                                                                                        (7) 

The following definitions introduce some important new matrices that were constructed by 

the author for using them in the filtering rule for finding the minimum solution. 

3.2. Definition 

Let 𝑆1 = (𝑠𝑖𝑗
1)𝑚×n , 𝑆2 = (𝑠𝑖𝑗

2)𝑚×n be two pre - distinguishing matrices of 𝐴, where 

𝑠𝑖𝑗
1 = {

𝑎𝑖𝑗 ,         𝑎𝑖𝑗 . �̂�𝑗 = 𝑏𝑖  

0,            𝑎𝑖𝑗 . �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                  (8) 
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In (8), the  �̂�𝑗’s are the components of the pre - maximum solution �̂�𝑣1 which supports the 

fuzzy part of the problem, while the elements 𝑎𝑖𝑗  are the elements of the matrix 𝐴𝑣1. 

𝑠𝑖𝑗
2 = {

𝑎𝑖𝑗 ,         𝑎𝑖𝑗 . �̂�𝑗 = 𝑏𝑖  

0,            𝑎𝑖𝑗 . �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                (9) 

In (9), the  �̂�𝑗’s are the components of the pre - maximum solution �̂�𝑣2 which supports the 

neutrosophic  part of the problem, while  𝑎𝑖𝑗  are the elements of the matrix 𝐴𝑣2. 

Let 

𝑆 = (𝑠𝑖𝑗)𝑚×𝑛 = (𝑠𝑖𝑗
1)𝑚×n + (𝑠𝑖𝑗

2)𝑚×n = 𝑆1 + 𝑆2                                                                             (10) 

The matrix  𝑆 is called the distinguishing matrix of 𝐴. It is obvious that the constraints system 

𝐴𝑜𝑥 = 𝑏 has a solution if and only if the distinguishing matrix 𝑆 of 𝐴 has non zero rows (i.e. 𝑆 

has at least a nonzero element in each row). 

3.3. Definition 

Let 𝐹1 = (𝑓𝑖𝑗
1)𝑚×n , 𝐹2 = (𝑓𝑖𝑗

2)𝑚×n be two pre - facilitation matrices of 𝐴, where 

𝑓𝑖𝑗
1 = {

�̂�𝑖𝑗 ,         𝑎𝑖𝑗 . �̂�𝑗 = 𝑏𝑖  

0,            𝑎𝑖𝑗 . �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                  (11) 

In (11), the  �̂�𝑗’s are the components of the pre- maximum solution �̂�𝑣1 which supports the 

fuzzy part of the problem, while the elements 𝑎𝑖𝑗  are the entries of 𝐴𝑣1. 

𝑓𝑖𝑗
2 = {

�̂�𝑖𝑗 ,         𝑎𝑖𝑗 . �̂�𝑗 = 𝑏𝑖  

0,            𝑎𝑖𝑗 . �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                  (12) 

In (12), the �̂�𝑗’s are the components of the pre - maximum solution �̂�𝑣2 which supports the 

neutrosophic  part of the problem, 

Let  

𝐹 = (𝑓𝑖𝑗)𝑚×𝑛 = (𝑓𝑖𝑗
1)𝑚×n + (𝑓𝑖𝑗

2)𝑚×n = 𝐹1 + 𝐹2                                                                              (13) 

The matrix  𝐹 is called the Facilitation matrix of 𝐴. 

Both matrices 𝑆 𝑎𝑛𝑑 𝐹 are first introduced in this paper and they have a key role in finding 

the set of all quasi-minimum solutions and then the optimal solution for NGP problems. 
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3.4  The Filtration Method for Finding Minimum Solutions 

1. Delete the 𝑖 − 𝑡ℎ row of  F, for which  𝑏𝑖 = 0 

2.  At 𝑏𝑖 > 0, find an index 𝑧 ∈ {1,2,… ,𝑚} such that  𝑧 > 𝑖, if for all 𝑗 = 1,2,… , 𝑛 

we find 𝑓𝑧𝑗 ≠ 0 ⟺ 𝑓𝑖𝑗 ≠ 0, then delete the 𝑖 − 𝑡ℎ row of F. 

3. Denote �̃� for the matrix that gained from the above steps (i.e steps 1&2). 

4. To each row of  �̃�, in each time, the only nonzero value is selected in every 

row with all entries of the rest seen as zero, perhaps all of the matrices are 

denoted by �̃�1, �̃�2, … . , �̃�𝑝. 

5. To each column of �̃�𝑘   (1 ≤ 𝑘 ≤ 𝑝), the maximum element is selected, a quasi-

minimum solution 𝑥𝑗 can be obtained through such a method 

The set composed of all 𝑥𝑗 is called a quasi-minimum solution, and it includes all 

minimum solutions to 𝐴𝑜𝑥 = 𝑏. Delete all repeated solutions, and then all minimum 

solutions �̌�(𝐴, 𝑏) can be obtained. 

 As an integrated study for all cases of the exponents (𝛾𝑗) of the terms in the 

objective function 𝑓(𝑥), we saw that the theorem (2.2) covered the negative 

exponents, while the following theorem will cover the positive exponents for the 

terms of 𝑓(𝑥). 

3.5  Theorem 

If 𝛾𝑗 ≥ 0  (1 ≤ 𝑗 ≤ 𝑛), then a certain minimum solution 𝑥 to 𝐴𝑜𝑥 = 𝑏 is an optimal one 

to the program (1). 

Proof 

Since 𝛾𝑗 ≥ 0  (1 ≤ 𝑗 ≤ 𝑛), then 
𝑑(𝑥

𝑗

𝛾𝑗
)

𝑑𝑥𝑗
= 𝛾𝑗𝑥𝑗

𝛾𝑗−1 ≥ 0. 

We have 𝑥𝑗 ∈ [0,1] ∪ 𝐼, so 𝑥
𝑗

𝛾𝑗 is a monotone increasing function concerning 𝑥𝑗, so is 

𝑐𝑗𝑥𝑗
𝛾𝑗 concerning 𝑥𝑗. Hence, ∀ 𝑥 ∈ 𝑋(𝐴, 𝑏), depending on formula (7), then there exists 

𝑥 ∈ �̌�(𝐴, 𝑏), such that 𝑥 ≥ 𝑥 (i.e. 𝑥𝑗 ≥ 𝑥𝑗) ⟹ 𝑐𝑗. 𝑥𝑗
𝛾𝑗 ≥ 𝑐𝑗. 𝑥𝑗

𝛾𝑗   (1 ≤ 𝑗 ≤ 𝑛) ⟹ 𝑓(𝑥) ≥

𝑓(𝑥), this means that the optimal solution to the program (1) must exist in 
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�̌�(𝐴, 𝑏).𝑓(𝑥∗) = min { 𝑓(𝑥) ⎸𝑥 ∈ �̌�(𝐴, 𝑏)}. Then ∀ 𝑥 ∈ 𝑋(𝐴, 𝑏), there exists 𝑓(𝑥) ≥ 𝑓(𝑥∗), 

so 𝑥∗ ∈ �̌�(𝐴, 𝑏) is an optimal solution to the program (1). 

3.6  Two Optimization Models Based on the Sign of 𝜸𝒋 

 

Let 𝑀1 = {𝑗 ⎸𝛾𝑗 < 0, 1 < 𝑗 < 𝑛}, 𝑀2 = {𝑗 ⎸𝛾𝑗 > 0, 1 < 𝑗 < 𝑛},  then 𝑀1 ∩𝑀2 = ∅, 𝑀1 ∪𝑀2 = 𝐽 , 

here 𝐽 = {1,2, … , 𝑛}. It is evident that the terms of the objective function 𝑓(𝑥) in the program 

(1) having negative powers is  

𝑓1(𝑥) =∨𝑗∈𝑀1 {(𝑐𝑗 . 𝑥𝑗
𝛾𝑗
)}                                                                                                                      (14) 

While the terms of  𝑓(𝑥) that having positive exponents is 

𝑓2(𝑥) =∨𝑗∈𝑀2 {(𝑐𝑗 . 𝑥𝑗
𝛾𝑗
)}                                                                                                                       (15) 

Based on (14) and (15), we have the following two optimization models, 

  

min 𝑓1(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

                                                                                                                                       (16) 

min 𝑓2(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

                                                                                                                                         (17) 

 Using theorem (2.2), �̂� is an optimal solution for (16). By theorem (3.5), there exists 

�̌�∗ ∈ �̌�(𝐴, 𝑏) , where �̌�∗ is an optimal solution for (17).  

3.7  Important Notes 

 

1. In this type of problems, the first step is to search for the maximum solution which is 

lonesome for every problem. If the purpose of the program (1) is to optimize it, with 

the restriction that all powers of the variables 𝑥𝑗 are negative, then the greatest 

solution is the optimal one {i.e. 𝑓(𝑥∗) = 𝑓(�̂�) = 𝑓(�̂�𝑣1)⋀𝑓(�̂�𝑣2)}. 

2. The second step is to search for the minimum solution which is the set of all minimal 

solutions �̌�(𝐴, 𝑏). When the purpose of the program (1) is to optimize it, with the 

restriction that some of the exponents are negative and others are positive, then 

𝑓(𝑥∗) = 𝑓1(�̂�)⋀𝑓2(�̌�).  
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3. It should be noticed that the components of  �̂�𝑣2 containing indeterminate values (I) 

raised to the negative powers of 𝑓(𝑥) must be neglected, otherwise, it will be 

undefined program. 

 The upcoming section covering numerical examples, those examples are the same 

that discussed in [8] for its maximal solution, we could not be remote far away from the paper 

[8], present paper regarded as the complement of [8] which contained the formula of the 

maximum solution, while this present paper introduces the set of all minimum solutions. 

4 Numerical examples 

We now gaze the (max, product) neutrosophic relation geometric programming examples as 

follows 

3.1 Example 

Solve 

min𝑓(𝑥) = (0.3. 𝑥1
2)⋁(1.8𝐼 . 𝑥2

1
3)⋁(𝐼 . 𝑥3

1
4) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

Where   𝑏 = (1,
1

3
𝐼,
1

5
𝐼)𝑇 ,  𝐴 = (

. 6 1 . 2

. 5 . 2 . 1

. 3 . 5 . 1
)

3×3

. 

Solution: 

𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (1,1,1)𝑇, 𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3)

𝑇 = (
2

3
𝐼,
2

5
𝐼, 1)

𝑇
,  

𝐴𝑣1 = (
. 6 1 . 2
0 0 0
0 0 0

) ,         𝐴𝑣2 = (
0 0 0
. 5 . 2 . 1
. 3 . 5 . 1

), 

 

It is easy to notice that all exponents of 𝑓(𝑥) terms are positive. Therefore 

there will not be a need to separate 𝑓(𝑥) into 𝑓1 and 𝑓2. 

𝑓(𝑥) = 𝑓(𝑥𝑣1)⋁𝑓(𝑥𝑣2) = 1.8𝐼 is the maximum solution. 

Using theorem (3.5), it is essential to find the set of all minimum solutions for 

𝑓(𝑥), where the optimal solution occurs at the minimal solution. 

𝑆1 = [
0 1 0
0 0 0
0 0 0

],   𝑆1 = [
0 0 0
0.5 0 0
0.3 0.5 0

] , 𝑆 = [
0 1 0
0.5 0 0
0.3 0.5 0

]. 
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𝐹1 = [
0 1 0
0 0 0
0 0 0

] , 𝐹2 = [

0 1 0
2

3
𝐼 0 0

2

3
𝐼

2

5
𝐼 0

], 𝐹 = [

0 1 0
2

3
𝐼 0 0

2

3
𝐼

2

5
𝐼 0

]. 

Using the filtration rule stated in section (3.4), 

�̃� = [

2

3
𝐼 0 0

2

3
𝐼

2

5
𝐼 0

]  ⟹ �̃�1 = [

2

3
𝐼 0 0

2

3
𝐼 0 0

] , �̃�2 =  [

2

3
𝐼 0 0

0
2

5
𝐼 0

],  

so the minimum solutions that related to �̃�1 and �̃�2 are 𝑥1 = [
2

3
𝐼, 0,0], 𝑥2 =

[
2

3
𝐼,
2

5
𝐼, 0]. 

𝑓(𝑥1) =  𝑓(𝑥2) =
2

15
𝐼 is the minimum solution. 

 

3.2 Example 

Let min𝑓(𝑥) = (0.2𝐼. 𝑥1
−
2

3)⋁(1.3. 𝑥2

1

3)⋁ (𝐼 . 𝑥3

1

2)⋁ (0.35. 𝑥4
−2) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

Where   𝑏 = (0.3, 0.7𝐼, 0.5, 0.2𝐼)𝑇 ,  𝐴 = (

. 2 . 3 . 4 . 6

. 3 . 2 . 9 . 8
1
0

0
. 5

. 1 1
1 0

)

4×4

. 

Solution  

𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 = (0.5,1,

3

4
, 0.5)

𝑇
, 𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑇 =

(
2

5
𝐼, 1,0.2𝐼, 0.875𝐼)

𝑇
, 

The greatest solution for this problem is 𝑓(𝑥) = 𝑓(𝑥𝑣1)  ⋁  𝑓(𝑥𝑣2) = 1.3. 

The following calculations are for finding the minimum solution. 

𝐴𝑣1 = (

. 2 . 3 . 4 . 6
0 0 0 0
1
0

0
0

. 1 1
0 0

) , 𝐴𝑣2 = (

0 0 0 0
. 3 . 2 . 9 . 8
0
0

0
. 5

0 0
1 0

). 

𝑆1 = (

0 . 3 . 4 . 6
0 0 0 0
1
0

0
0

0 1
0 0

) , 𝑆2 = (

0 0 0 0
0 0 0 . 8
0
0

0
0

0 0
1 0

),   ⟹ 𝑆 = (

0 . 3 . 4 . 6
0 0 0 . 8
1
0

0
0

0 1
1 0

). 

𝐹1 =

[
 
 
 0 1

3

4
. 5

0 0 0 0
. 5
0

0
0

0 . 5
0 0 ]

 
 
 

 ,   𝐹2 = [

0 0 0       0
0 0  0 . 875𝐼
0
0

0
1

0        0
. 2𝐼      0

], ⟹ 𝐹 =

[
 
 
 0 1

3

4
       . 5

0  0  0 . 875𝐼
. 5
0

0
1

0        .5
. 2𝐼      0 ]

 
 
 

. 
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�̃� = [
0 0   0 . 875𝐼
. 5 0  0     . 5
0 1 . 2𝐼      0

], 

 

�̃�1 = [
0 0   0 . 875𝐼
. 5 0  0     0
0 1 . 2𝐼      0

] ⟹ �̌�1 = (.5,1, .2𝐼, .875𝐼)
𝑇, 

�̃�2 = [
0 0   0 . 875𝐼
0 0  0     . 5
0 1 . 2𝐼      0

] ⟹ �̌�2 = (0,1, .2𝐼, .875𝐼)
𝑇 , 

�̃�3 = [
0 0   0 . 875𝐼
. 5 0  0     . 5
0 1 0      0

] ⟹ �̌�3 = (.5,1,0, .875𝐼)
𝑇 , 

�̃�4 = [
0 0   0 . 875𝐼
. 5 0  0     . 5
0 0 . 2𝐼      0

] ⟹ �̌�4 = (.5,0, .2𝐼, .875𝐼)𝑇, 

�̃�5 = [
0 0    0 . 875𝐼
. 5 0  0      0
0 1 0      0

] ⟹ �̌�5 = (.5,1,0, .875𝐼)
𝑇, 

�̃�6 = [
0 0   0 . 875𝐼
0 0  0      . 5
0 1 0        0

] ⟹ �̌�6 = (0,1,0, .875𝐼)
𝑇 , 

�̃�7 = [
0 0   0 . 875𝐼
. 5 0  0       0
0 0 . 2𝐼      0

] ⟹ �̌�7 = (.5,0, .2𝐼, .875𝐼)
𝑇, 

�̃�8 = [
0 0   0 . 875𝐼
0 0  0     . 5
0 0 . 2𝐼      0

] ⟹ �̌�8 = (0,0, .2𝐼, .875𝐼)
𝑇. 

It is clear that there are two repeated solution, 

𝑥5 = (.5,1,0, .875𝐼)
𝑇 = 𝑥3 , and  𝑥7 = (.5,0, .2𝐼, .875𝐼)

𝑇 = 𝑥4, after deleting all 

repeated solutions, the set of all quasi- minimum solutions �̌�(𝐴, 𝑏) =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6, 𝑥8}. 

Since the powers of some terms in 𝑓(𝑥) are positive while others are negative, 

we separate the objective function 𝑓(𝑥) into  

𝑓1(𝑥) = (0.2𝐼. 𝑥1
−
2

3)⋁ (0.35 . 𝑥4
−2) ,  𝑓2(𝑥) = (1.3. 𝑥2

1

3)⋁ (𝐼 . 𝑥3

1

2), 

First, solve for optimizing  

  

min𝑓1(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

 

By theorem (2.2), we have f1(𝑥
∗) =  f1(�̂�) = 𝑓1(�̂�𝑣1) ⋀ 𝑓1(�̂�𝑣2) = 1.4, take care 

of those terms of 𝑥𝑣2 that holding indeterminate components must be 

neglected and avoid apply them in the terms of f1(x). 
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Second, solve for optimizing 

min 𝑓2(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

 

𝑓2(�̌�1) = 1.3, 𝑓2(�̌�2) = 1.3, 𝑓2(�̌�3) = 1.3, 𝑓2(�̌�4) = .447𝐼, 𝑓2(�̌�6) = 1.3,  

𝑓2(�̌�8) = 0.447𝐼, 

�̌�4, �̌�8 are the optimal for 𝑓2(𝑥), (i.e. 𝑓2(𝑥
∗) = 0.447𝐼). 

∴ 𝒇(𝒙∗) = 𝐟𝟏(𝒙
∗) ⋀ 𝒇𝟐(𝒙

∗) = 𝟎. 𝟒𝟒𝟕𝑰 

 

5 Conclusion 
 The importance of this work comes from the unprecedented notions that were firstly 

introduced in this article which are essential mathematical tools to establish the structure of 

neutrosophic geometric programming (NGP) problems with (∨, . ) operator. Any optimization 

problem needs to specify its minimum and maximum solution, in this article the author 

introduced an effective technique to find the set of all quasi- minimum solution �̌�(𝐴, 𝑏), side 

by side with the structure of the maximum solution �̂�. This work contains the theoretical rules 

with two numerical examples to enable the readers to understand the pure mathematical 

concepts. 
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Abstract: As a generalization of Fuzzy sets introduced by Zadeh [21] in 1965 and Intuitionistic 

Fuzzy sets introduced by Atanassav [8] in 1983, the Neutrosophic set had been introduced and 

developed by Smarandache. A Neutrosophic set is characterized by a truth value (membership), an 

indeterminacy value and a falsity value (non-membership). Salama and Alblowi [17] introduced 

the new concept of neutrosophic topological space (NTS) in 2012, which had been investigated 

recently. In 2018, Parimala M et al. introduced and studied the concept of Neutrosophic 

homeomorphism and Neutrosophic αψ homeomorphism in Neutrosophic topological spaces. The 

impact of this article is to introduce and study the concepts of Ngpr homeomorphism and Nigpr 

homeomorphism in Neutrosophic topological space. Further, the work is extended to Ngpr open 

mappings, Ngpr closed mappings, Nigpr closed mappings and some of their properties are 

explored in Neutrosophic topological space.  

Keywords: Neutrosophic generalized pre regular closed set, Ngpr open mappings, Ngpr closed 

mappings, Ngpr homeomorphism and Nigpr homeomorphism. 

 

1. Introduction 

Zadeh [21] introduced the concept of fuzzy set in 1965 and Chang C. L. [9] introduced fuzzy 

topological spaces in 1968. Later, Atanassov [8] proposed the concept of intuitionistic fuzzy sets in 

1986, where the degree of membership and degree of non-membership are discussed. Intuitionistic 

fuzzy topological spaces was introduced by Coker [10] in 1997 using intuitionistic fuzzy sets. As a 

generalization of Fuzzy sets and Intuitionistic Fuzzy sets, Neutrosophic set have been introduced 

and developed by Florentin Smarandache [12]. He also defined the Neutrosophic set on three 

components, namely Truth (membership) (T), Indeterminacy (I) and Falsehood (non-membership) 

(F).   

Neutrosophic concept has wide range of real time applications in the fields of [1 - 6] Information 

Systems, Computer Science, Artificial Intelligence, Applied Mathematics and Decision Making, 

Uncertainty assessments of linear time-cost tradeoffs and solving the supply chain problem.  

In 2012, Salama A. A and Alblowi [17] introduced the concept of Neutrosophic topological 

space by using Neutrosophic sets. Salama A. A. [18] introduced Neutrosophic closed set and 

Neutrosophic continuous function in Neutrosophic topological spaces and their properties are 

studied by various authors [7 & 11]. Since, Neutrosophic homeomorphism plays an important role 

in Neutrosophic topology. Parimala M et al. [14] introduced and studied the concept of 

Neutrosophic homeomorphism and Neutrosophic αψ homeomorphism in Neutrosophic topological 

spaces. In this article, introduce and study few properties of Ngpr open mappings, Ngpr closed 

mappings, Nigpr closed mappings, Ngpr homeomorphism and Nigpr homeomorphism in 

Neutrosophic topological space. The present study demonstrates some of the related theorems, 

results and properties.  

2. Preliminaries  
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2.1. Definition: [17] Let X be a non-empty fixed set. A Neutrosophic set (NS for short) A in X is an 

object having the form A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} where the functions µA(x), σA(x) and νA(x) 

represent the degree of membership, degree of indeterminacy and the degree of non-membership 

respectively of each element x ∈ X to the set A. 

 

2.2 Remark: [17] A Neutrosophic set A = {〈x, µA(x), σA(x), νA(x) 〉: x ∈ X} can be identified to an 

ordered triple A = 〈x, µA(x), σA(x), νA(x)〉 in non-standard unit interval ]-0, 1+[ on X. 

 

2.3 Remark: [17] For the sake of simplicity, we shall use the symbol A = 〈x, µA, σA, νA〉 for the 

neutrosophic set A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X}. 

 

2.4 Example: [17] Every IFS A is a non-empty set in X is obviously on NS having the form                                  

A = {〈x, µA(x), 1 – (µA(x) + νA(x)), νA(x)〉: x ∈ X}. Since our main purpose is to construct the tools for 

developing Neutrosophic set and Neutrosophic topology, we must introduce the NS 0N and 1N in X 

as follows:    

0N may be defined as: 

(01) 0N = {〈x, 0, 0, 1〉: x ∈ X} 

(02) 0N = {〈x, 0, 1, 1〉: x ∈ X} 

(03) 0N = {〈x, 0, 1, 0〉: x ∈ X} 

(04) 0N = {〈x, 0, 0, 0〉: x ∈ X} 

1N may be defined as: 

(11) 1N = {〈x, 1, 0, 0〉: x ∈ X} 

(12) 1N = {〈x, 1, 0, 1〉: x ∈ X} 

(13) 1N = {〈x, 1, 1, 0〉: x ∈ X} 

(14) 1N = {〈x, 1, 1, 1〉: x ∈ X} 

 

2.5 Definition: [17] Let A = 〈µA, σA, νA〉 be a NS on X, then the complement of the set A [C(A) for 

short] may be defined as three kind of complements: 

(C1) C(A) = {〈x, 1-µA(x), 1-σA(x), 1-νA(x)〉: x ∈ X } 

(C2) C(A) = {〈x, νA(x), σA(x), µA(x)〉: x ∈ X} 

(C3) C(A) = {〈x, νA(x), 1-σA(x), µA(x)〉: x ∈ X} 

 

2.6 Definition: [17] Let X be a non-empty set and Neutrosophic sets A and B in the form A = {〈x, 

µA(x), σA(x), νA(x)〉: x ∈ X} and B = {〈x, µB(x), σB(x), νB(x)〉: x ∈ X}. Then we may consider two possible 

definitions for subsets (A ⊆ B). 

(1) A ⊆ B ⇔ µA(x) ≤ µB(x), σA(x) ≤ σB(x) and µA(x) ≥ µB(x) ∀ x ∈ X 

(2) A ⊆ B ⇔ µA(x) ≤ µB(x), σA(x) ≥ σB(x) and µA(x) ≥ µB(x) ∀ x ∈ X 

 

2.7 Proposition: [17] For any Neutrosophic set A, the following conditions hold: 

0N ⊆ A, 0N ⊆ 0N 

A ⊆ 1N, 1N ⊆1N 

 

2.8 Definition: [17] Let X be a non-empty set and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X}, B = {〈x, µB(x), 

σB(x), νB(x)〉: x ∈ X} are NSs. Then A∩B may be defined as: 

(I1) A∩B = 〈x, µA(x)∧µB(x), σA(x)∧σB(x) and νA(x)∨νB(x)〉 

(I2) A∩B = 〈x, µA(x)∧µB(x), σA(x)∨σB(x) and νA(x)∨νB(x)〉 

A∪B may be defined as: 

(U1) A∪B = 〈x, µA(x)∨µB(x), σA(x)∨σB(x) and νA(x)∧νB(x)〉 

(U2) A∪B = 〈x, µA(x)∨µB(x), σA(x)∧σB(x) and νA(x)∧νB(x)〉 
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2.9 Definition: [17] A Neutrosophic topology [NT for short] is a non-empty set X is a family τ of 

Neutrosophic subsets in X satisfying the following axioms: 

(NT1)  0N, 1N ∈ τ, 

(NT2)  G1∩G2 ∈ τ for any G1, G2 ∈ τ, 

(NT3)  ∪Gi ∈ τ for every {Gi : i ∈ J} ⊆ τ. 

Throughout this paper, the pair (X, τ) is called a Neutrosophic topological space (NTS for short).  

The elements of  are called Neutrosophic open sets [NOS for short]. A complement C(A) of a NOS 

A in NTS (X, τ) is called a Neutrosophic closed set [NCS for short] in X. 

 

2.10 Definition: [17] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the 

Neutrosophic closure and Neutrosophic interior of A are defined by 

NCl(A) =∩{K : K is a NCS in X and A ⊆ K} 

NInt(A) =∪{G : G is a NOS in X and G ⊆ A} 

It can be also shown that NCl(A) is NCS and NInt(A) is a NOS in X. 

a) A is NOS if and only if A = NInt(A), 

b) A is NCS if and only if A = NCl(A). 

 

2.11 Definition: [13] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be 

(i) Neutrosophic regular closed set (NRCS for short) if A = NCl(NInt(A)), 

(ii) Neutrosophic regular open set (NROS for short) if A = NInt(NCl(A)), 

(iii) Neutrosophic pre closed set (NPCS for short) if NCl(NInt(A)) ⊆ A, 

(iv) Neutrosophic pre open set (NPOS for short) if A ⊆ NInt(NCl(A)), 

(v) Neutrosophic α- closed set (NSCS for short) if NCl(NInt(NCl(A))) ⊆ A, 

(vi) Neutrosophic α- open set (NSOS for short) if A ⊆ NInt(NCl(NInt(A))). 

 

2.12 Definition: [19] Let (X, τ) be NTS and A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} be a NS in X. Then the 

Neutrosophic pre closure and Neutrosophic pre interior of A are defined by 

NPCl(A) = ∩{K : K is a NPCS in X and A ⊆ K}, 

NPInt(A) = ∪{G : G is a NPOS in X and G ⊆ A}. 

 

2.13 Definition: [15] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized closed set (NGCS for short) if NCl(A) ⊆ U whenever A ⊆ U and U is a 

NOS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic generalized open set (NGOS for short) 

if C(A) is a NGCS in (X, τ). 

 

2.14 Definition: [20] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized pre closed set (NGPCS for short) if NPCl(A) ⊆ U whenever A ⊆ U and U 

is a NOS in (X, τ). A NS A of a NTS (X, τ) is called a Neutrosophic generalized pre open set (NGPOS 

for short) if C(A) is a NGPCS in (X, τ). 

 

2.15 Definition: [13] A NS A = {〈x, µA(x), σA(x), νA(x)〉: x ∈ X} in a NTS (X, τ) is said to be a 

Neutrosophic generalized pre regular closed set (NGPRCS for short) if NPCl(A) ⊆ U whenever A ⊆ 

U and U is a NROS in (X, τ). The family of all NGPRCSs of a NTS(X, τ) is denoted by NGPRC(X). A 

NS A of a NTS (X, τ) is called a Neutrosophic generalized pre regular open set (NGPROS for short) if 

C(A) is a NGPRCS in (X, τ). 

Every NRCS, NCS, NWCS, NαCS, NGCS, NPCS, NαGCS, NGPCS, NRαGCS, NRGCS is an 

NGPRCS but the converses are not true in general. 

 

2.16 Definition: [13] A Neutrosophic topological space (X, τ) is called a Neutrosophic pre regular T1/2 

(NPRT1/2 for short) space if every NGPRCS in (X, τ) is NPCS in (X, τ). 
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2.17 Definition: [13] A Neutrosophic topological space (X, τ) is called a Neutrosophic pre regular T*1/2 

(NPRT*1/2 for short) space if every NGPRCS in (X, τ) is NCS in (X, τ). 

 

2.18 Definition: [16] Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr 

continuous (resp. NG continuous, NGP continuous) mapping if f-1(B) is NGPRCS (resp. NGCS, 

NGPCS) in (X, τ) for every NCS B of (Y, σ). 

Every Neutrosophic continuous, NG continuous, NGP continuous is a Ngpr continuous 

mapping but the converses are not true in general. 

 

2.19 Definition: [16] Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr 

irresolute mapping if f-1(A) is NGPRCS in (X, τ) for every NGPRCS A of (Y, σ). 

 

2.20 Definition: [14] Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called 

Neutrosophic closed mapping (resp. Neutrosophic open mapping) (NCM (resp. NOM) for short) if 

the image of every Neutrosophic closed set (resp. Neutrosophic open set) in (X, τ) is a Neutrosophic 

closed set (resp. Neutrosophic open set) in (Y, σ). 

 

2.21 Definition: [14] Let (X, τ) and (Y, σ) be two NTSs. A bijection f: (X, τ) → (Y, σ) is called a 

Neutrosophic homeomorphism if f and f-1 are Neutrosophic continuous mapping. 

3. Ngpr open mappings and Ngpr closed mappings  

   In this section introduce Ngpr open mapping, Ngpr closed mapping and Nigpr closed 

mapping in the Neutrosophic topological space and study some of their properties. Also established 

the relation between the newly introduced mappings and already existing mappings. 

 

3.1 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called  

(i) Neutrosophic generalized open mapping (NGOM for short) if f(A) is NGOS in (Y, σ) for 

every NOS A of (X, τ). 

(ii) Neutrosophic α open mapping (NαOM for short) if f(A) is NαOS in (Y, σ) for every NOS A 

of (X, τ). 

(iii) Neutrosophic pre-open mapping (NPOM for short) if f(A) is NPOS in (Y, σ) for every NOS 

A of (X, τ). 

(iv) Neutrosophic generalized pre-open mapping (NGPOM for short) if f(A) is NGPOS in (Y, σ) 

for every NOS A of (X, τ). 

 

3.2 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr open 

mapping (NGPROM for short) if f(A) is NGPROS in (Y, σ) for every NOS A of (X, τ). 

 

3.3 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called  

(i) Neutrosophic generalized closed mapping (NGCM for short) if f(A) is NGCS in (Y, σ) for 

every NCS A of (X, τ). 

(ii) Neutrosophic α closed mapping (NαCM for short) if f(A) is NαCS in (Y, σ) for every NCS 

A of (X, τ). 

(iii) Neutrosophic pre-closed mapping (NPCM for short) if f(A) is NPCS in (Y, σ) for every NCS 

A of (X, τ). 

(iv) Neutrosophic generalized pre-closed mapping (NGPCM for short) if f(A) is NGPCS in   

(Y, σ) for every NCS A of (X, τ). 

 

3.4 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Ngpr closed 

mapping (NGPRCM for short) if f(A) is NGPRCS in (Y, σ) for every NCS A of (X, τ). 
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3.5 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V1, V2, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.4, 0.5), (0.6, 0.3, 0.4)〉 and V1 = 〈y, (0.7, 0.5, 

0.3), (0.8, 0.4, 0.2)〉 and V2 = 〈y, (0.6, 0.4, 0.4), (0.7, 0.3, 0.3)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = 

u and f(b) = v. Here the Neutrosophic set Uc = 〈x, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a Neutrosophic closed 

set in X. Then f(Uc) = 〈y, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a NGPRCS in (Y, σ) as f(Uc) ⊆1N implies 

Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is a Ngpr closed mapping. 

 

3.6 Proposition: Every Neutrosophic closed mapping is Ngpr closed mapping but not conversely in 

general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic closed mapping. Let A be a NCS in X. Then f(A) is a 

NCS in Y. Since every NCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed 

mapping. 

 

3.7 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V1, V2, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.4, 0.5), (0.6, 0.3, 0.4)〉 and V1 = 〈y, (0.7, 0.5, 

0.3), (0.8, 0.4, 0.2)〉 and V2 = 〈y, (0.6, 0.4, 0.4), (0.7, 0.3, 0.3)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = 

u and f(b) = v. Here the Neutrosophic set Uc = 〈x, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a NCS in X. Then f(Uc) 

= 〈y, (0.5, 0.6, 0.4), (0.4, 0.7, 0.6)〉 is a NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N 

where 1N is a NROS in Y. Therefore f is a Ngpr closed mapping. But f is not a Neutrosophic closed 

mapping since Uc is NCS in X but f(Uc) is not a NCS in Y as Ncl(f (Uc)) = 1N ≠ f(Uc). 

 

3.8 Proposition: Every Neutrosophic generalized closed mapping is Ngpr closed mapping but not 

conversely in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic generalized closed mapping. Let A be a NCS in X. 

Then f(A) is a NGCS in Y. Since every NGCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a 

Ngpr closed mapping. 

 

3.9 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.3, 0.5, 0.4), (0.2, 0.5, 0.3) 〉 and V = 〈y, (0.6, 0.5, 

0.2), (0.4, 0.5, 0.2)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic 

set Uc = 〈x, (0.4, 0.5, 0.3), (0.3, 0.5, 0.2) 〉 is a NCS in X. Then f(Uc) = 〈y, (0.4, 0.5, 0.3), (0.3, 0.5, 0.2)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is 

a Ngpr closed mapping. But f is not a Neutrosophic generalized closed mapping since Uc is NCS in X 

but f(Uc) is not a NGCS in Y as f(Uc) ⊆ V implies Ncl(f(Uc)) = 1N ⊈ V. 

 

3.10 Proposition: Every Neutrosophic α closed mapping is Ngpr closed mapping but not conversely 

in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic α closed mapping. Let A be a NCS in X. Then f(A) is a 

NαCS in Y. Since every NαCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed 

mapping. 

 

3.11 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.5, 0.4), (0.2, 0.5, 0.3)〉 and V = 〈y, (0.7, 0.5, 0.2), 

(0.3, 0.5, 0.2)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.4, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a NCS in X. Then f(Uc) = 〈y, (0.4, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is 

a Ngpr closed mapping. But f is not a Neutrosophic α closed mapping since Uc is NCS in X but f(Uc) 

is not a NαCS in Y as Ncl(Nint(Ncl(f(Uc)))) = 1N ⊈ f(Uc). 
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3.12 Proposition: Every Neutrosophic pre-closed mapping is Ngpr closed mapping but not 

conversely in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic pre-closed mapping. Let A be a NCS in X. Then f(A) is 

a NPCS in Y. Since every NPCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is a Ngpr closed 

mapping. 

 

3.13 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.5, 0.6), (0.2, 0.5, 0.3)〉 and V = 〈y, (0.3, 0.5, 0.7), 

(0.3, 0.5, 0.4)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.6, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a NCS in X. Then f(Uc) = 〈y, (0.6, 0.5, 0.4), (0.3, 0.5, 0.2)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = 〈y, (0.7, 0.5, 0.3), (0.4, 0.5, 0.2)〉 ⊆ 1N where 1N is a 

NROS in Y. Therefore f is a Ngpr closed mapping. But f is not a Neutrosophic pre-closed mapping 

since Uc is NCS in X but f(Uc) is not a NPCS in Y as Ncl(Nint(f(Uc))) = Vc ⊈ f(Uc). 

 

3.14 Proposition: Every Neutrosophic generalized pre-closed mapping is Ngpr closed mapping but 

not conversely in general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Neutrosophic generalized pre-closed mapping. Let A be a NCS in X. 

Then f(A) is a NGPCS in Y. Since every NGPCS is a NGPRCS in Y, f(A) is a NGPRCS in Y. Hence f is 

a Ngpr closed mapping. 

 

3.15 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.3, 0.8, 0.5), (0.4, 0.7, 0.6)〉 and V = 〈y, (0.5, 0.2, 0.3), 

(0.6, 0.3, 0.4)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.5, 0.2, 0.3), (0.6, 0.3, 0.4)〉 is a NCS in X. Then f(Uc) = 〈y, (0.5, 0.2, 0.3), (0.6, 0.3, 0.4)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = 1N ⊆ 1N where 1N is a NROS in Y. Therefore f is a 

Ngpr closed mapping. But f is not a Neutrosophic generalized pre-closed mapping since Uc  is NCS 

in X but f (Uc) is not a NGPCS in Y as f(Uc) ⊆V implies Npcl(f (Uc)) = 1N ⊈ V where V is a NOS in Y. 

 

3.16 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Nigpr open 

mapping (NiGPROM for short) if f(A) is NGPROS in (Y, σ) for every NGPROS A of (X, τ). 

 

3.17 Definition: Let (X, τ) and (Y, σ) be two NTSs. A mapping f: (X, τ) → (Y, σ) is called Nigpr closed 

mapping (NiGPRCM for short) if f(A) is NGPRCS in (Y, σ) for every NGPRCS A of (X, τ). 

 

3.18 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.5, 0.4, 0.3), (0.7, 0.8, 0.2)〉 and V = 〈y, (0.7, 0.4, 0.5), 

(0.8, 0.5, 0.5)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Hence f(A) is NGPRCS in  

(Y, σ) for every NGPRCS A of (X, τ). Therefore f is a Nigpr closed mapping. 

 

3.19 Proposition: Every Nigpr closed mapping is Ngpr closed mapping but not conversely in 

general. 

 

Proof: Let f: (X, τ) → (Y, σ) be a Nigpr closed mapping. Let A be a NCS in X. Since every NCS is a 

NGPRCS in X, A is a NGPRCS in X. Then f(A) is a NGPRCS in Y. Hence f is a Ngpr closed mapping. 

 

3.20 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.2, 0.5, 0.7), (0.3, 0.5, 0.6)〉 and V = 〈y, (0.3, 0.5, 0.6), 

(0.4, 0.5, 0.5)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here the Neutrosophic set Uc 

= 〈x, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)〉 is a NCS in X. Then f(Uc) = 〈y, (0.7, 0.5, 0.2), (0.6, 0.5, 0.3)〉 is a 

NGPRCS in (Y, σ) as f(Uc) ⊆1N implies Npcl(f(Uc)) = f(Uc) ⊆ 1N where 1N is a NROS in Y. Therefore f is 
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a Ngpr closed mapping. But f is not a Nigpr closed mapping since W = 〈x, (0.3, 0.5, 0.6), (0.4, 0.5, 0.5)〉 

is NGPRCS in X but f(W) is not a NGPRCS in Y as f(W) ⊆ V implies Npcl(f(W)) = Vc ⊈ V where V is a 

NROS in Y. Therefore f is not a Nigpr closed mapping. 

 

The relation between various types of Neutrosophic closed mappings is given by  

 

 
 
 
 
 
 

 

  

Fig.3.1.1 The reverse implications of Fig.3.1.1 are not true in general in the above diagram. 

 

3.21 Theorem: A mapping f: (X, τ) → (Y, σ) is Ngpr closed mapping if and only if Ngprcl(f(A)) ⊆ 

f(Ncl(A)). 

 

Proof: Let A ⊆ X and f: (X, τ) → (Y, σ) be a Ngpr closed mapping, then f(Ncl(A)) is NGPRCS in Y 

which implies Ngprcl(f(Ncl(A))) = f(Ncl(A)). Since f(A) ⊆ f(Ncl(A)), Ngprcl(f(A)) ⊆ Ngprcl(f(Ncl(A))) 

= f(Ncl(A)) for every NS A of X.  

Conversely, let A be any NCS in (X, τ). Then A = Ncl(A) and so f(A) = f(Ncl(A)) ⊇ Ngprcl(f(A)), by 

hypothesis. Since f(A) ⊆ Ngprcl(f(A)), therefore f(A) = Ngprcl(f(A)). i.e., f(A) is NGPRCS in Y and 

hence f is Ngpr closed mapping. 

 

3.22 Theorem: If f: (X, τ) → (Y, σ) is Ngpr open mapping iff for every NS A of (X, τ), f(Nint(A)) ⊆ 

Ngprint(f(A)). 

 

Proof: Necessity: Let A be a NOS in X and f: (X, τ) → (Y, σ) be a Ngpr open mapping then f(Nint(A)) 

is NGPROS in Y. Since f(Nint(A)) ⊆ f(A) which implies Ngprint(f(Nint(A))) ⊆ Ngprint(f(A)). Since 

f(Nint(A)) is NGPROS in Y, we have f(Nint(A)) ⊆ Ngprint(f(A)). 

Sufficiency: Assume A is a NOS of (X, τ). Then f(A) = f(Nint(A)) ⊆ Ngprint(f(A)). But Ngprint(f(A)) 

⊆ f(A). So f(A) = Ngprint(f(A)) which implies f(A) is a NGPROS in (Y, σ) and hence f is a Ngpr open 

mapping. 

 

3.23 Theorem: If f: (X, τ) → (Y, σ) is a Ngpr open mapping then Nint(f-1(A)) ⊆ f-1(Ngprint(A)) for 

every NS A of (Y, σ). 

 

Proof: Let A be a NS in (Y, σ). Then Nint(f-1(A)) is a NOS of (X, τ). Since f is Ngpr open mapping 

which implies f(Nint(f-1(A))) is Neutrosophic gpr open in (Y, σ) and hence f(Nint(f-1(A))) ⊆ 

Ngprint(f(f-1(A))) ⊆ Ngprint(A). Thus Nint(f-1(A)) ⊆ f-1(Ngprint(A)). 

 

3.24 Theorem: A mapping f: (X, τ) → (Y, σ) is Ngpr open mapping iff for each NS A of (Y, σ) and for 

each NCS B of (X, τ) containing f-1(A) there is a NGPRCS C of (Y, σ) such that A ⊆ C and f-1(C) ⊆ B. 

 

Proof: Necessity: Assume f: (X, τ) → (Y, σ) is Ngpr open mapping. Let A be the NS of (Y, σ) and B be 

a NCS of (X, τ) such that f-1(A) ⊆ B. Then C = (f(Bc))c is NGPRCS of (Y, σ) such that f-1(C) ⊆ B. 

Sufficiency: Assume D is a NOS of (X, τ). Then f-1((f(D))c ⊆ Dc and Dc is NCS in (X, τ). By hypothesis 

there is a NGPRCS C of (Y, σ) such that (f(D))c ⊆C and f-1(C) ⊆ Dc. Therefore D ⊆ (f-1(C))c. Hence Cc ⊆ 

NαCM 

NGPRCM 
 

NGPCM 
 

NGCM NPCM 

NCM NiGPRCM 
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f(D) ⊆ f((f-1(C))c) ⊆ Cc which implies f(D) = Cc. Since Cc is NGPROS of (Y, σ). Hence f(D) is 

Neutrosophic gpr open in (Y, σ) and thus f is Ngpr open mapping. 

 

3.25 Theorem: A mapping f: (X, τ) → (Y, σ) is Ngpr open mapping iff f-1(Ngprcl(A)) ⊆ Ncl(f-1(A)) for 

every NS A of (Y, σ). 

 

Proof: Necessity: Assume f is a Ngpr open mapping. For any NS A of (Y, σ), f-1(A) ⊆ Ncl(f-1(A)). 

Therefore by Theorem 3.24., there exists a NGPRCS C in (Y, σ) such that A ⊆ C and f-1(C) ⊆ 

Ncl(f-1(A)). Therefore we obtain f-1(Ngprcl(A)) ⊆ f-1(C) ⊆ Ncl(f-1(A)). 

Sufficiency: Assume A is a NS of (Y, σ) and B is a NCS of (X, τ) containing f-1(A). Put C = Ncl(A), 

then A ⊆ C and C is NGPRCS, since f-1(C) ⊆ Ncl(f-1(A)) ⊆ B. Then by Theorem 3.24., f is Ngpr open 

mapping. 

 

3.26 Theorem: If f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, η) be two Neutrosophic mappings and gof: (X, τ) 

→ (Z, η) Ngpr open mapping. If g is Ngpr irresolute mapping then f is Ngpr open mapping. 

 

Proof: Let A be a NOS of (X, τ). Then gof(A) is NGPROS in (Z, η) because gof is Ngpr open mapping. 

Since g is Ngpr irresolute mapping and gof(A) is NGPROS of (Z, η) therefore g-1(gof(A)) = f(A) is 

NGPROS in (Y, σ). Hence f is Ngpr open mapping. 

 

3.27 Theorem: If f: (X, τ) → (Y, σ) is Neutrosophic open mapping and g: (Y, σ) → (Z, η) is Ngpr open 

mapping then gof: (X, τ) → (Z, η) is Ngpr open mapping. 

 

Proof: Let A be a NOS of (X, τ). Then f(A) is a NOS in (Y, σ) because f is a Neutrosophic open 

mapping. Since g is Ngpr open mapping, g(f(A)) = gof(A) is NGPROS in (Z, η). Hence gof is Ngpr 

open mapping. 

 

3.28 Theorem: Let f: (X, τ) → (Y, σ) be a bijective mapping then the following statements are 

equivalent: 

(i) f is a Ngpr open mapping. 

(ii) f is a Ngpr closed mapping. 

(iii) f-1 is Neutrosophic continuous mapping. 

 

Proof: (i) ⇒ (ii): Let us assume that f is a Ngpr open mapping. By definition, A is a NOS in (X, τ), 

then f(A) is a NGPROS in (Y, σ). Here A is NCS of (X, τ), then X-A is a NOS of (X, τ). By assumption, 

f(X-A) is a NGPROS in (Y, σ). Hence, Y-f(X-A) is a NGPRCS in (Y, σ). Therefore, f is a Ngpr closed 

mapping. 

(ii) ⇒ (iii): Let A be a NCS in (X, τ). By (ii), f(A) is a NGPRCS in (Y, σ). Hence, f(A) = (f-1)-1(A), so f-1 is a 

NGPRCS in (Y, σ). Therefore, f-1 is Neutrosophic continuous mapping. 

(iii) ⇒ (iv): Let A be a NOS in (X, τ). By (iii), (f-1)-1(A) = f(A) is a Ngpr open mapping. 

 

3.29 Theorem: Let f: (X, τ) → (Y, σ) be a mapping. Then the following statements are equivalent if Y is 

a NPRT1/2 space: 

(i) f is a Ngpr closed mapping. 

(ii) Npcl(f(A)) ⊆ f(Ncl(A)) for each NS A of X. 

 

Proof: (i) ⇒ (ii): Let A be a NS in X. Then Ncl(A) is a NCS in X. By (i) implies that f(Ncl(A)) is a 

NGPRCS in Y. Since Y is a NPRT1/2 space, f(Ncl(A)) is a NPCS in Y. Therefore Npcl(f(Ncl(A))) = 

f(Ncl(A)). Now Npcl(f(A)) ⊆  Npcl(f(Ncl(A))) = f(Ncl(A)). Hence Npcl(f(A)) ⊆ f(Ncl(A)) for each NS 

A of X. 
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(ii) ⇒ (i): Let A be any NCS in X. Then Ncl(A) = A. By (ii) implies that Npcl(f(A)) ⊆ f(Ncl(A)) = f(A). 

But f(A) ⊆ Npcl(f(A)). Therefore Npcl(f(A)) = f(A). This implies f(A) is a NPCS in Y. Since every 

NPCS is NGPRCS in Y, f(A) is NGPRCS in Y. Hence f is a Ngpr closed mapping. 

 

3.30 Theorem: If f: (X, τ) → (Y, σ) is a mapping where X and Y are NPRT1/2 space. Then the following 

statements are equivalent: 

(i) f is a Nigpr closed mapping. 

(ii) f(A) is a NGPROS in Y for every NGPROS A in X. 

(iii) f(Npint(B)) ⊆ Npint(f(B)) for each NS B of X. 

(iv) Npcl(f(B)) ⊆ f(Npcl(B)) for each NS B of X. 

 

Proof: (i) ⇒ (ii): is obvious by definition of Nigpr closed mapping. 

(ii) ⇒ (iii): Let B be any NS in X. Since Npint(B) is a NPOS, it is a NGPROS in X. Then by hypothesis, 

f(Npint(B)) is a NGPROS in Y. Since Y is NPRT1/2 space, f(Npint(B)) is a NPOS in Y. Therefore, 

f(Npint(B)) = Npint(f(Npint(B))) ⊆ Npint(f(B)). 

(iii) ⇒ (iv) is obvious by taking complement in (iii). 

(iv) ⇒ (i) Let B be a NGPRCS in X. By Hypothesis, Npcl(f(B)) ⊆ f(Npcl(B)). Since X is a NPRT1/2 space, 

B is a NPCS in X. Therefore, Npcl(f(B)) ⊆ f(Npcl(B)) = f(B) ⊆ Npcl(f(B)) implies f(B) is NPCS in Y and 

hence f(B) is a NGPRCS in Y. Thus f is Nigpr closed mapping. 

4. Ngpr homeomorphism and Nigpr homeomorphism 

4.1 Definition: A bijection f: (X, τ) → (Y, σ) is called Ngpr homeomorphism (resp. NG 

homeomorphism, NGP homeomorphism) if f and f-1 are Ngpr continuous (resp. NG continuous, 

NGP continuous) mapping. 

4.2 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U1 = 〈x, (0.3, 0.5, 0.6), (0.5, 0.5, 0.5)〉, U2 = 〈x, (0.2, 0.4, 0.7), 

(0.4, 0.5, 0.6)〉 and V = 〈y, (0.2, 0.4, 0.7), (0.4, 0.3, 0.6)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u 

and f(b) = v. Here Vc = 〈y, (0.7, 0.6, 0.2), (0.6, 0.7, 0.4)〉 is a Neutrosophic closed set in (Y, σ). Then 

f-1(Vc) is a NGPRCS in (X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 〈x, (0.6, 0.5, 0.3), 

(0.5, 0.5, 0.5)〉 is a Neutrosophic closed set in (X, τ). Then f(U1c) is a NGPRCS in (Y, σ). Therefore f-1 is 

a Ngpr continuous mapping. Hence, f and f-1 are Ngpr continuous mapping then it is a Ngpr 

homeomorphism. 

4.3 Theorem: Each Neutrosophic homeomorphism is Ngpr homeomorphism but not conversely in 

general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be Neutrosophic homeomorphism, in which f and f-1 

are Neutrosophic continuous mapping. Since every Neutrosophic continuous mapping is Ngpr 

continuous mapping. Hence f and f-1 are Ngpr continuous mapping. Therefore, f is Ngpr 

homeomorphism. 

4.4 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U1 = 〈x, (0.2, 0.5, 0.7), (0.5, 0.5, 0.5)〉, U2 = 〈x, (0.1, 0.4, 0.7), 

(0.4, 0.5, 0.6)〉 and V = 〈y, (0.4, 0.3, 0.5), (0.3, 0.4, 0.7)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u 

and f(b) = v. Here Vc = 〈y, (0.5, 0.7, 0.4), (0.7, 0.6, 0.3)〉 is a NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in 

(X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 〈x, (0.7, 0.5, 0.2), (0.5, 0.5, 0.5)〉 is a NCS in 

(X, τ). Then f(U1c) is a NGPRCS in (Y, σ). Therefore f-1 is a Ngpr continuous. Hence, f and f-1 are Ngpr 

continuous mapping then it is a Ngpr homeomorphism. However, here Vc is a NCS in (Y, σ) but it is 

not a NCS in (X, τ). Hence, f is not Neutrosophic continuous mapping. Therefore, f is not a 

Neutrosophic homeomorphism. 
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4.5 Theorem: Each NG homeomorphism is Ngpr homeomorphism but not conversely in general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be NG homeomorphism, in which f and f-1 are NG 

continuous mapping. Since every NG continuous mapping is Ngpr continuous mapping. Hence f 

and f-1 are Ngpr continuous mapping. Therefore, f is Ngpr homeomorphism. 

4.6 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U = 〈x, (0.4, 0.5, 0.6), (0.3, 0.4, 0.5)〉 and V = 〈y, (0.8, 0.5, 0.2), 

(0.7, 0.7, 0.3)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here Vc = 〈y, (0.2, 0.5, 0.8), 

(0.3, 0.3, 0.7)〉 is a NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in (X, τ). Therefore f is Ngpr continuous 

mapping. Here Uc = 〈x, (0.6, 0.5, 0.4), (0.5, 0.6, 0.3)〉 is a NCS in (X, τ). Then f(Uc) is a NGPRCS in (Y, σ). 

Therefore f-1 is a Ngpr continuous mapping. Hence, f and f-1 are Ngpr continuous mapping then it is 

Ngpr homeomorphism. However, here Vc is a NCS in (Y, σ) but it is not a NGCS in (X, τ). Hence, f is 

not Neutrosophic continuous mapping. Therefore, f is not a NG homeomorphism. 

4.7 Theorem: Each NGP homeomorphism is a Ngpr homeomorphism but not conversely in general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be NGP homeomorphism, in which f and f-1 are NGP 

continuous mapping. Since every NGP continuous mapping is Ngpr continuous mapping. Hence f 

and f-1 are Ngpr continuous mapping. Therefore, f is Ngpr homeomorphism. 

4.8 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, U3, 1N} and σ = {0N, V, 1N} are 

Neutrosophic topologies on X and Y respectively, where U1 = 〈x, (0.3, 0.5, 0.7), (0.2, 0.5, 0.6)〉, U2 = 〈x, 

(0.6, 0.5, 0.5), (0.7, 0.5, 0.5)〉, U3 = 〈x, (0.8, 0.5, 0.2), (0.7, 0.5, 0.1)〉 and V = 〈y, (0.3, 0.5, 0.7), (0.3, 0.5, 0.7)〉. 

Define a mapping f: (X, τ) → (Y, σ) by f(a) = u and f(b) = v. Here Vc = 〈y, (0.7, 0.5, 0.3), (0.7, 0.5, 0.3)〉 is a 

NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in (X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 

〈x, (0.7, 0.5, 0.3), (0.6, 0.5, 0.2)〉 is a NCS in (X, τ). Then f(Uc) is a NGPRCS in (Y, σ). Therefore f-1 is a 

Ngpr continuous mapping. Hence, f and f-1 are Ngpr continuous mapping then it is a Ngpr 

homeomorphism. However, here Vc is a NCS in (Y, σ) but it is not a NGPCS in (X, τ). Hence, it is not 

NGP continuous mapping. Therefore, it is not a NGP homeomorphism. 

The relation between various types of Neutrosophic homeomorphisms is given by 

  
   
 
 
                 
 
 
 

 

 
Fig.4.1.1 The reverse implications of Fig.4.1.1 are not true in general in the above diagram. 

4.9 Theorem: Let f:(X, τ) → (Y, σ) be a Ngpr homeomorphism, then f is a Neutrosophic 

homeomorphism if X and Y are NPRT*1/2 space. 

Proof: Let A be a NCS in (Y, σ), then f-1(A) is a NGPRCS in (X, τ). Since X is NPRT*1/2 space, f-1(A) is a 

NCS in (X, τ). Therefore, f is Neutrosophic continuous mapping. By hypothesis, f-1 is Ngpr 

continuous mapping. Let B be a NCS in (X, τ). Then (f-1)-1 (B) = f(B) is a NGPRCS in Y. Since Y is 

NPRT*1/2 space, f(B) is NCS in Y. Hence f-1 is Neutrosophic continuous mapping. Hence f is a 

Neutrosophic homeomorphism. 

N homeomorphism 

NGPR homeomorphism 
 

NGP homeomorphism 
 

NG homeomorphism 
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4.10 Theorem: Let f:(X, τ) → (Y, σ) be a bijective mapping. If f is Ngpr continuous mapping then the 

following statements are equivalent: 

(i) f is a Ngpr closed mapping. 

(ii) f is a Ngpr open mapping. 

(iii) f is a Ngpr homeomorphism. 

Proof: (i) ⇒ (ii): Let us assume that f be a bijective mapping and a Ngpr closed mapping. Hence f-1 is 

Ngpr continuous mapping. Since each NOS in (X, τ) is a NGPROS in (Y, σ). Hence, f is a Ngpr open 

mapping.  

(ii) ⇒ (iii): Let f be a bijective mapping and a Ngpr open mapping. Furthermore, f-1 is a Ngpr 

continuous mapping. Hence f and f-1 are Ngpr continuous mapping. Therefore, f is a Ngpr 

homeomorphism. 

(iii) ⇒ (i): Let f be a Ngpr homeomorphism. Then f and f-1 are Ngpr continuous mapping. Since each 

NCS in (X, τ) is a NGPRCS in (Y, σ). Hence f is a Ngpr closed mapping. 

4.11 Theorem: The composition of two Ngpr homeomorphisms need not be a Ngpr homeomorphism 

in general. 

4.12 Example: Let X = {a, b}, Y = {c, d} and Z = {e, f}.  Then τ = {0N, U, 1N}, σ = {0N, V, 1N} and ɳ = {0N, W, 

1N} are Neutrosophic topologies on X and Y respectively, where U = 〈x, (0.2, 0.5, 0.8), (0.3, 0.3, 0.7)〉, V 

= 〈y, (0.4, 0.5, 0.6), (0.3, 0.4, 0.5)〉, W = 〈z, (0.8, 0.5, 0.2), (0.7, 0.7, 0.3)〉. Define a mapping f: (X, τ) → (Y, 

σ) by f(a) = c and f(b) = d and g: (Y, σ) → (Z, ɳ) by g(c) = e and g(d) = f.  Then f and g are Ngpr 

homeomorphisms but their composition g∘f: (X, τ) → (Z, ɳ) is not a Ngpr homeomorphism. Since Wc 

is NCS in (Z, ɳ) but it is not NGPRCS in (X, τ).  

4.13 Definition: A bijection f: (X, τ) → (Y, σ) is called Nigpr homeomorphism if f and f-1 are Ngpr 

irresolute mappings. 

4.14 Theorem: Each Nigpr homeomorphism is a Ngpr homeomorphism but not conversely in 

general. 

Proof: Let a bijection mapping f: (X, τ) → (Y, σ) be Nigpr homeomorphism. Assume that A is a NCS 

in (Y, σ) implies A is a NGPRCS in (Y, σ). Since f is Ngpr irresolute mapping, f-1(A) is a NGPRCS in 

(X, τ). Hence f is Ngpr continuous mapping. Therefore, f and f-1 are Ngpr continuous mapping. 

Hence, f is Ngpr homeomorphism. 

4.15 Example: Let X= {a, b} and Y = {u, v}. Then τ = {0N, U1, U2, 1N} and σ = {0N, V, 1N} are Neutrosophic 

topologies on X and Y respectively, where U1 = 〈x, (0.2, 0.5, 0.7), (0.4, 0.5, 0.6)〉, U2 = 〈x, (0.2, 0.4, 0.8), 

(0.3, 0.5, 0.7)〉 and V = 〈y, (0.5, 0.4, 0.5), (0.4, 0.5, 0.6)〉. Define a mapping f: (X, τ) → (Y, σ) by f(a) = u 

and f(b) = v. Here Vc = 〈y, (0.5, 0.6, 0.5), (0.6, 0.5, 0.4)〉 is a NCS in (Y, σ). Then f-1(Vc) is a NGPRCS in 

(X, τ). Therefore f is Ngpr continuous mapping. Here U1c = 〈x, (0.7, 0.5, 0.2), (0.6, 0.5, 0.4)〉 is a NCS in 

(X, τ). Then f(U1c) is a NGPRCS in (Y, σ). Therefore f-1 is a Ngpr continuous mapping. Hence, f and f-1 

are Ngpr continuous mapping then it is a Ngpr homeomorphism. However, here A = 〈y, (0.2, 0.4, 

0.7), (0.3, 0.5, 0.6)〉 is a NGPRCS in (Y, σ) but it is not a NGPRCS in (X, τ). Hence, f is not 

Neutrosophic irresolute mapping. Therefore, f is not a Nigpr homeomorphism. 

4.16 Theorem: If f: (X, τ) → (Y, σ) is a Nigpr homeomorphism then Ngprcl(f-1(A)) ⊆ f-1(Npcl(A)) for 

each NS A in (Y, σ). 

Proof: Let A be a NS in (Y, σ). Then Npcl(A) is NPCS in (Y, σ) and since every NPCS is NGPRCS in 

(Y, σ). Assuming f is Ngpr irresolute mapping, f-1(Npcl(A)) is a NGPRCS in (X, τ), then 

Ngprcl(f-1(Npcl(A))) = f-1(Npcl(A)). Here, Ngprcl(f-1(A)) ⊆ Ngprcl(f-1(Npcl(A))) = f-1(Npcl(A)). 

Therefore, Ngprcl(f-1(A)) ⊆ f-1(Npcl(A)) for each NS A in (Y, σ). 
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4.17 Theorem: If f: (X, τ) → (Y, σ) is a Nigpr homeomorphism then Npcl(f-1(A)) = f-1(Npcl(A)) for each 

NS A in (Y, σ). 

Proof: Given f is a Nigpr homeomorphism, then f is a Ngpr irresolute mapping. Let A be a NS in (Y, 

σ). Clearly, Npcl(A) is a NPCS in (Y, σ). This shows that Npcl(A) is a NGPRCS in (Y, σ). Since f-1(A) ⊆ 

f-1(Npcl(A)), then Npcl(f-1(A)) ⊆ Npcl(f-1(Npcl(A))) = f-1(Npcl(A)). Therefore, Npcl(f-1(A)) ⊆ 

f-1(Npcl(A)). 

Let f be a Nigpr homeomorphism, f-1 is a Ngpr irresolute mapping. Let us consider NS f-1(A) in (X, τ), 

which bring out that Npcl(f-1(A)) is a NGPRCS in (X, τ). Hence Ngprcl(f-1(A)) is a NGPRCS in (X, τ). 

This implies that (f-1)-1(Npcl(f-1(A))) = f(Npcl(f-1(A))) is a NPCS in (Y, σ). This proves A = (f-1)-1(f-1(A)) ⊆ 

(f-1)-1(Npcl(f-1(A))) = f(Npcl(f-1(A))). Therefore, Npcl(A) ⊆ Npcl(f(Npcl(f-1(A)))) = f(Npcl(f-1(A))), since 

f-1 is a Ngpr irresolute mapping. Hence f-1(Npcl(A)) ⊆ f-1(f(Npcl(f-1(A)))) = Npcl(f-1(A)). That is 

f-1(Npcl(A)) ⊆ Npcl(f-1(A)). Hence, Npcl(f-1(A)) = f-1(Npcl(A)). 

4.18 Theorem: If f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, ɳ) are Nigpr homeomorphisms, then the 

composition g∘f: (X, τ) → (Z, ɳ) is a Nigpr homeomorphism. 

Proof: Let f and g be two Nigpr homeomorphisms. Assume C is a NGPRCS in (Z, ɳ). Then g-1(C) is a 

NGPRCS in (Y, σ). Then by hypothesis, f-1(g-1(C)) is a NGPRCS in (X, τ). Hence g∘f is a Ngpr 

irresolute mapping. Now, let A be a NGPRCS in (X, τ). By assumption, f(A) is a NGPRCS in (Y, σ). 

Then by hypothesis, g(f(A)) is a NGPRCS in (Z, ɳ). This implies that g∘f is a Ngpr irresolute 

mapping. Hence, g∘f is a Nigpr homeomorphism. 

5. Conclusion  

 In this article, the new class of Neutrosophic homeomorphism namely, Ngpr homeomorphism 

and Nigpr homeomorphism was defined and studied some of their properties in Neutrosophic 

topological spaces. Furthermore, the work was extended as the Ngpr open mappings, Ngpr closed 

mappings and Nigpr closed mappings and discussed some of their properties. Many results have 

been established to show how far topological structures are preserved by this Ngpr 

homeomorphism. 

Also, the relation between Ngpr closed mappings and other existed Neutrosophic closed 

mappings in Neutrosophic topological spaces were established and derived some of their related 

attributes. Many examples are given to justify the results.  

This concept can be used to drive few more new results of Ngpr connectedness and Ngpr 

compactness in Neutrosophic topological spaces. 
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Abstract. The idea of neutrosophic set was floated by Smarandache by considering a truth membership,

an indeterminacy membership and a falsehood or falsity membership functions. The engagement between

neutrosophic set and soft set was done by Maji. More over it was used effectively to model uncertainty in different

areas of application, such as control, reasoning, pattern recognition and computer vision. The first aim of this

paper leaks out the notion of neutrosophic soft p-open set,neutrosophic soft p-closed sets and their important

characteristics. Also the notion of neutrosophic soft p-neighborhood and neutrosophic soft p-separation axioms

in neutrosophic soft topological spaces are developed. Important results are examed marrying to these newly

defined notion relative to soft points. The notion of neutrosophic soft p-separation axioms of neutrosophic soft

topological spaces is diffused in different results concerning soft points. Furthermore, properties of neutrosophic

soft -P i-space (i = 0, 1, 2, 3, 4) and linkage between them is built up.

Keywords: neutrosophic soft set; neutrosophic soft point; neutrosophic soft p-open set; neutrosophic soft

p-neighborhood; neutrosophic soft p-separation axioms.)
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1. Introduction

The outdated fuzzy sets is behaviorized by the membership worth or the grade of member-

ship worth. Some times it may be very difficult to assign the membership worth for a fuzzy

sets.This gap was bridged with the introduction of interval valued fuzzy sets. In some real

life problems in expert system, belief system and so forth,we must take in account the truth-

membership and the falsity-membership simultaneously for appropriate narration of an object

in uncertain,ambiguous atmosphere. Fuzzy sets and interval valued fuzzy sets are badly failed

to handle this situation. The importance of intuitionistic fuzzy sets is automatically come in

play in such a hazardous situation.The intuitionistic fuzzy sets can only handle the imperfect

information supposing both the truth-membership or association( or simply membership)and

falsity-membership( or non-membership )values. It fails to switch the indeterminate and in-

consistent information which exists in belief system. Smarandache [14] bounced up conception

of neutrosophic set which is a mathematical technique for facing problems involving imprecise,

indeterminacy and inconsistent data.The words neutrosophy and neutrosophic were introduced

by Smarandache. Neutrosophy (noun) means knowledge of neutral thought, while neutrosophic

(adjective), means having the nature of or having the behavior of neutrosophy. This theory

is nothing but just generalization of ordinary sets, fuzzy set theory [15], intuitionistic fuzzy

set theory [1] etc. Some work have been supposed on neutrosophic sets by some mathemati-

cians in many area of mathematics [4,12]. Many practical problems in economics, engineering,

environment,medical science social science etc.can not be treated by conventional methods,

because conventional methods have genetic complexities. These complexities may be taking

birth due to the insufficiency of the theories of paramertrization tools. Each of these theo-

ries has its transmissible difficulties, as was exposed by Molodtsov [11]. Molodtsov developed

an absolutely modern approach to cope with uncertainty and vagueness and applied it more

and more in different directions such as smoothness of functions, game theory, operations re-

search, Riemann integration, perron integration, and so forth. Meticulously,theory of soft set

is free from the parameterization meagerness condition of fuzzy set theory, rough set theory.

probability theory for facing with uncertainty Shabir and Naz [13] floated the conception of

soft topological spaces, which are defined over an initial universe of discourse with a fixed

set of parameters, and showed that a soft topological space produces a parameterized family

of topological spaces. Theoretical studies of soft topological spaces were also done by some

authors in [2, 3, 6, 8]. Kattak et al. [9] leaked out the notion of some basic result in soft bi

topological spaces with respect to soft points.These results supposed the engagement of soft

limit point, soft interior point, soft neighborhood, the relation between soft weak structures

and soft weak closures. Moreover the authors also addressed soft sequences uniqueness of limit

in soft weak-Hausdorff spaces, the product of soft Hausdorff spaces with respect to soft points
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in different soft weak open set and the marriage between soft Hausdorff space and the diagonal.

The combination of Neutrosophic set with soft sets was first introduced by Maji [10]. This

combination makes entirely a new mathematical model Neutrosophic Soft Set and later this

notion was improved by Deli and Broumi [7]. Work was progressively continue,later on math-

ematician came in action and defined a new mathematical structure known as neutrosophic

soft topological spaces. Neutrosophic soft topological spaces were presented by Bera in [5].

M. Abdel-Basset et al. [16] proposed some novel similarity measures for bipolar and interval-

valued bipolar neutrosophic set such as the cosine similarity measures and weighted cosine

similarity measures. The propositions of these similarity measures are examined, and two

multi-attribute decision making techniques are presented based on proposed measures. For

verifying the feasibility of proposed measures, two numerical examples are presented in com-

parison with the related methods for demonstrating the practicality of the proposed method.

Finally, the authors applied the proposed measures of similarity for diagnosing bipolar disorder

diseases significantly.

M. Abdel-Basset et al. [17] supposed the objective function of scheduling problem to minimize

the costs of daily resource fluctuations using the precedence relationships during the project

completion time. The authors designed a resource leveling model based on neutrosophic set

to overcome the ambiguity caused by the real-world problems. In this model, trapezoidal neu-

trosophic numbers are used to estimate the activities durations. The crisp model for activities

time is obtained by applying score and accuracy functions. The authors produced a numerical

example to illustrate the validation of the proposed model in this study.

Arif et al. [18] introduced the notion of most generalized neutrosophic soft open sets in neutro-

sophic soft topological structures relative to neutrosophic soft points. The authors leaked out

the concept of most generalized separation axioms in neutrosophic soft topological spaces with

respect to soft points. Gradually the study is extended to deliberate important results related

to these newly defined concepts with respect to soft points. Several related properties, struc-

tural characteristics have been investigated. The convergence of sequence in neutrosophic soft

topological space is defined and its uniqueness in neutrosophic soft most generalized-Hausdorff

space relative to soft points is reflected. The authors further studied and switched over neutro-

sophic monotonous soft function and its characteristics to multifarious results. The authors

lastly addressed neutrosophic soft product spaces under most generalized neutrosophic soft

open set with respect to crisp points.

The first aim of this article bounces the notion of neutrosophic soft p-open set,neutrosophic

soft p-neighborhood and neutrosophic soft p-separation axioms in neutrosophic soft topology

which is defined on neutrosophic soft sets. Later on the important results are discussed related

to these newly defined concepts with respect to soft points. Finally, the concept of p-separation
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axioms of neutrosophic soft topological spaces is diffused in different results with respect to

soft points. Furthermore, properties of neutrosophic soft-P i-space (i = 0, 1, 2, 3, 4) and some

switch between them are discussed. We hope that these results will best fit for future study

on neutrosophic soft topology to carry out a general framework for practical applications.

2. Preliminaries

In this phase we now state certain useful definitions, theorems, and several existing results

for neutrosophic soft sets that we require in the next sections.

Definition 2.1. [14] A neutrosophic set A on the universe set X is defined as:

A = {〈x, TA(x), IA(x),zA(x)〉 : x ∈ X},
where T, I, z : X →]−0, 1+[ and −0 5 TA(x) + IA(x) + zA(x) 5 3+.

Definition 2.2. [11] Let X be an initial universe, E be a set of all parameters, and P(x)

denote the power set of X. A pair (z, E) is called a soft set over X, where z is a mapping

given by z : E → P (X). In other words, the soft set is a parameterized family of subsets of

the set X. For λ ∈ E, z(λ) may be considered as the set of λ-elements of the soft set (z, E),

or as the set of λ-approximate element of the set, i.e.

(z, E) = {(λ,z(λ)) : λ ∈ E,z : E → P (X)}.
After the neutrosophic soft set was defined by Maji [10], this concept was modified by Deli

and Broumi [7] as given below:

Definition 2.3. [7] Let X be an initial universe set and E be a set of parameters. Let P(X)

denote the set of all neutrosophic sets of X. Then a neutrosophic soft set (z̃, E) over X is a set

defined by a set valued function z̃ representing a mapping z̃ : E → P (X), where z̃ is called

the approximate function of the neutrosophic soft set (z̃, E). In other words, the neutrosophic

soft set is a parameterized family of some elements of the set P(X) and therefore it can be

written as a set of ordered pairs:

(z̃, E) = {(λ, 〈x, T z̃(λ)(x), Iz̃(λ)(x),zz̃(λ)(x)〉 : x ∈ X) : λ ∈ E},
where T z̃(λ)(x), Iz̃(λ)(x), zz̃(λ)(x) ∈ [0, 1] are respectively called the truth-membership,

indeterminacy-membership, and falsity-membership function of z̃(λ). Since the supremum of

each T, I, F is 1, the inequality 0 5 T z̃(λ)(x) + Iz̃(λ)(x) + zz̃(λ)(x) 5 3 is obvious.

Definition 2.4. [5] Let (z̃, E) be a neutrosophic soft set over the universe set X. The

complement of (z̃, E) is denoted by (z̃, E)c and is defined by:

(z̃, E)c = {(λ, 〈x,zz̃(λ)(x), 1− Iz̃(λ)(x), T z̃(λ)(x)〉 : x ∈ X) : λ ∈ E}.
It is obvious that ((z̃, E)c)c = (z̃, E).

Definition 2.5. [10] Let (z̃, E) and (G̃, E) be two neutrosophic soft sets over the universe

set X. (z̃, E) is said to be a neutrosophic soft subset of (G̃, E) if T z̃(λ)(x) 5 T G̃(λ)(x), Iz̃(λ)(x)
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5 IG̃(λ)(x), zz̃(λ)(x) = zG̃(λ)(x),∀λ ∈ E, ∀x ∈ X. It is denoted by (z̃, E) j (G̃, E) . (z̃, E)

is said to be neutrosophic soft equal to (G̃, E) if (z̃, E) is a neutrosophic soft subset of (G̃, E)

and (G̃, E) is a neutrosophic soft subset of (z̃, E). It is denoted by (z̃, E) = (G̃, E).

3. Applications of Neutrosophic Soft Point and its Characteristics

Definition 3.1. Let (z̃1, E) and (z̃2, E) be two neutrosophic soft sets over universe set X.

Then their union is denoted by (z̃1, E) t (z̃2, E) = (z̃3, E) and is defined by:

(z̃3, E) = {(λ, 〈x, T z̃3(λ)(x), Iz̃
3(λ)(x),zz̃3(λ)(x)〉 : x ∈ X) : λ ∈ E},

where T z̃3(λ)(x) = max {T z̃1(λ)(x), T z̃2(λ)(x)},
Iz̃

3(λ)(x) = max {Iz̃1(λ)(x), Iz̃
2(λ)(x)},

zz̃3(λ)(x) = max {zz̃1(λ)(x),zz̃2(λ)(x)}.

Definition 3.2. Let (z̃1, E) and (z̃2, E) be two neutrosophic soft sets over the universe set

X. Then their intersection is denoted by (z̃1, E) u (z̃2, E) = (z̃3, E) and is defined by:

where

T (z̃3, E) = min {T z̃1(λ)(x), T z̃2(λ)(x)}
Iz̃

3(λ)(x) = max {Iz̃1(λ)(x), Iz̃
2(λ)(x)},

zz̃3(λ)(x) = max {zz̃1(λ)(x),zz̃2(λ)(x)}.

Definition 3.3. A neutrosophic soft set (z̃, E) over the universe set X is said to be a null

neutrosophic soft set if T z̃(λ)(x) = 0, Iz̃(λ)(x) = 0, zz̃(λ)(x) = 1; ∀λ ∈ E, ∀x ∈ X. It is

denoted by 0(X,E).

Definition 3.4. A neutrosophic soft set (z̃, E) over the universe set X is said to be an

absolute neutrosophic soft set if T z̃(λ)(x) = 1, Iz̃(λ)(x) = 1, zz̃(λ)(x) = 0; ∀λ ∈ E, ∀x ∈ X.

It is denoted by 1(X,E).

Clearly, 0c(X,E) = 1(X,E) and 1c(X,E) = 0(X,E).

Definition 3.5. Let NSS(X, E) be the family of all neutrosophic soft sets over the universe

set X and = @ NSS(X, E). Then = is said to be a neutrosophic soft topology on X if:

1. 0(X,E) and 1(X,E) belong to =,

2. the union of any number of neutrosophic soft sets in = belongs to =,

3. the intersection of a finite number of neutrosophic soft sets in = belongs to =.

Then (X,=, E) is said to be a neutrosophic soft topological space over X. Each member of

= is said to be a neutrosophic soft open set.

Definition 3.6. Let (X,=, E) be a neutrosophic soft topological space over X and (z̃, E) be a

subset of neutrosophic soft topological space over X. Then (z̃, E) is said to be a neutrosophic

soft closed set iff its complement is a neutrosophic soft open set.
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Definition 3.7. Let (X,=, E) be a neutrosophic soft topological space over X and (z̃, E) be a

subset of neutrosophic soft topological space over X. Then (z̃, E) is said to be a neutrosophic

soft p-open (NSPO) set if (z̃, E) ⊆ NSint(NScl((z̃, E)))

Definition 3.8. Let (X,=, E) be a neutrosophic soft topological space over X and (z̃, E) be a

subset of neutrosophic soft topological space over X. Then (z̃, E) is said to be a neutrosophic

soft p-closed (NSPC) set if (z̃, E) ⊇ NScl(NSint((z̃, E)))

Definition 3.9. Let NS be the family of all neutrosophic sets over the universe set X and x

∈ X. The neutrosophic set x(α,β,γ) is called a neutrosophic point, for 0 < α, β, γ 5 1, and is

defined as follow:

x(α,β,γ)(y) =

{
(α, β, γ), if y = x

(0, 0, 1), if y 6= x.
(1)

It is clear that every neutrosophic set is the union of its neutrosophic points.

Definition 3.10. Suppose that X = {x1, x2}. Then neutrosophic set

A = {〈x1, 0.1, 0.3, 0.5〉, 〈x2, 0.5, 0.4, 0.7〉}
is the union of neutrosophic points x1(0.1, 0.3, 0.5)and x2(0.5, 0.4, 0.7).

Now we define the concept of neutrosophic soft points for neutrosophic soft sets.

Definition 3.11. Let NSS(X, E) be the family of all neutrosophic soft sets over the universe

set X. Then neutrosophic soft set xλ(α, β, γ) is called a neutrosophic soft point, for every x ∈
X, 0 < α, β, γ 5 1, λ ∈ E, and is defined as follows:

xλ
(α,β,γ)

(λ′)(y) =

{
(α, β, γ) if λ′ = λ and y = x

(0, 0, 1), if λ′ 6= λ or y 6= x.
(2)

Definition 3.12. Suppose that the universe set X is given by X = {x1, x2} and the set of

parameters by E = {λ1, λ2}. Let us consider neutrosophic soft sets (z̃, E) over the universe

X as follows:

(z̃, E) =

{
λ1 = {〈x1, 0.3, 0.7, 0.6〉, 〈x2, 0.4, 0.3, 0.8〉}
λ2 = {〈x1, 0.4, 0.6, 0.8〉, 〈x2, 0.3, 0.7, 0.2〉}.

}
(3)

It is clear that(z̃, E) is union of its neutrosophic soft point

x1λ1
(0.3,0.7,0.6)

,x1λ2
(0.4,0.6,0.8)

,x2λ1, and x2λ2
(0.3,0.7,0.6)

. Here

x1λ1
(0.3,0.7,0.6)

=

{
λ1 = {〈x1, 0.3, 0.7, 0.6〉, 〈x2, 0, 0, 1〉}
λ2 = {〈x1, 0, 0, 1〉, 〈x2, 0, 0, 1〉}.

}
(4)

x1λ2
(0.4,0.6,0.8)

=

{
λ1 = {〈x1, 0.3, 0.7, 0.6〉, 〈x2, 0, 0, 1〉}
λ2 = {〈x1, 0.4, 0.6, 0.8〉, 〈x2, 0, 0, 1〉}.

}
. (5)
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x2λ1
(0.4,0.3,0.8)

=

{
λ1 = {〈x1, 0, 0, 1〉, 〈x2, 0.4, 0.3, 0.8〉}
λ2 = {〈x1, 0, 0, 1〉, 〈x2, 0, 0, 1〉}.

}
. (6)

x2λ2
(0.3,0.7,0.2)

=

{
λ1 = {〈x1, 0, 0, 1〉, 〈x2, 0, 0, 1〉}

λ2 = {〈x1, 0, 0, 1〉, 〈x1, 0.3, 0.7, 0.2〉}.

}
. (7)

Definition 3.13. Let (z̃, E) be a neutrosophic soft set over the universe set X. We say

that xλ
(α,β,γ) ∈ (z̃, E) read as belonging to the neutrosophic soft set (z̃, E) whenever

α 5 T z̃(λ)(x),β 5 Iz̃(λ)(x) and γ = zz̃(λ)(x).

Definition 3.14. Let (X,=, E) be a neutrosophic soft topological space over X. A neutro-

sophic soft set (z̃, E) in (X,=, E) is called a neutrosophic soft p-neighborhood of the neutro-

sophic soft point xλ
(α,β,γ) ∈ (z̃, E) , if there exists a neutrosophic soft p-open set (G̃, E) such

that xλ
(α,β,γ) ∈ (G̃, E) @ (z̃, E).

Theorem 3.15. Let (X,=, E) be a neutrosophic soft topological space and (z̃, E) be a neu-

trosophic soft set over X. Then (z̃, E) is a neutrosophic soft p-open set if and only if (z̃, E)

is a neutrosophic soft p-neighborhood of its neutrosophic soft points.

Proof. Let (z̃, E) be a neutrosophic soft p-open set and xλ
(α,β,γ) ∈ (z̃, E). Then xλ

(α,β,γ) ∈
(z̃, E) @ (z̃, E).

Therefore, (z̃, E) is a neutrosophic soft p-neighborhood of xλ
(α,β,γ)

.

Conversely, let (z̃, E) be a neutrosophic soft p-neighborhood of its neutrosophic soft points.

Let xλ
(α,β,γ) ∈ (z̃, E). Since (z̃, E) is a neutrosophic soft p-neighborhood of the neutrosophic

soft point xλ
(α,β,γ)

, there exists (G̃, E) ∈ = such that xλ
(α,β,γ) ∈ (G̃, E) @ (z̃, E). Since (z̃, E)

= t {xλ(α,β,γ) : xλ
(α,β,γ) ∈ (z̃, E)}, it follows that (z̃, E) is a union of neutrosophic soft p-open

sets and hence (z̃, E) is a neutrosophic soft p-open set.

The p-neighborhood system of a neutrosophic soft point xλ
(α,β,γ)

, denoted by U

(xλ
(α,β,γ)

, E), is the family of all its p-neighborhoods.

Theorem 3.16. The neighborhood system U (xλ
(α,β,γ)

, E) at xλ
(α,β,γ)

in a neutrosophic soft

topological space (X,=, E) has the following properties.

1) If (z̃, E) ∈ U (xλ
(α,β,γ)

, E) , then xλ
(α,β,γ) ∈ (z̃, E) ;

2) If (z̃, E) ∈ U (xλ
(α,β,γ)

, E) and (z̃, E) @ (H̃, E) , then (H̃, E) , then (H̃, E) ∈ U

(xλ
(α,β,γ)

, E) ;

3) If (z̃, E) , If (G̃, E) ∈ U (xλ
(α,β,γ)

, E) , then (z̃, E) u (G̃, E) ∈ U (xλ
(α,β,γ)

, E) ;

4) If (z̃, E) ∈ U (xλ
(α,β,γ)

, E) , then there exists a (G̃, E) ∈ U (xλ
(α,β,γ)

, E) such that (G̃, E)

∈ U (yλ
′ (α′,β′,γ′)

, E) , for each yλ
′ (α′,β′,γ′) ∈ (G̃, E).
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Proof. The proof of 1), 2), and 3) is obvious from definition 3.12.

4) If (z̃, E) ∈ U (xλ
(α,β,γ)

, E) , then there exists a neutrosophic soft p-open set (G̃, E) such

that xλ
(α,β,γ) ∈ (G̃, E) @ (z̃, E). From Proposition 3.1, (G̃, E) ∈ U (xλ

(α,β,γ)
, E) , so for each

yλ
′ (α′,β′,γ′) ∈ (G̃, E) , (G̃, E) ∈ U (yλ

′ (α′,β′,γ′)
, E) is obtained.

Definition 3.17. Let xλ
(α,β,γ)

and yλ
′ (α′,β′,γ′)

be two neutrosophic soft points. For the neutro-

sophic soft points xλ
(α,β,γ)

and yλ
′ (α′,β′,γ′)

over a common universe X, we say that neutrosophic

soft points are distinct points if xλ
(α,β,γ) u yλ′ (α

′,β′,γ′)
= 0(X,E).

It is clear that xλ
(α,β,γ)

and yλ
′ (α′,β′,γ′)

are distinct neutrosophic soft points if and only if x

6= y or λ′ 6= λ.

4. Neutrosophic Soft p-Separation Structures

In this phase, we suppose neutrosophic soft p-separation axioms and neutrosophic soft topo-

logical subspace consisting of distinct neutrosophic soft points of neutrosophic soft topological

space over X.

Definition 4.1. a) Let (X,=, E) be a neutrosophic soft topological space over the crisp set

X , and xλ
(α,β,γ)

> yλ
′ (α′,β′,γ′)

are neutrosophic soft points. If there exist neutrosophic soft

p-open sets (F̃ , E) and (G̃, E) such that

xλ
(α,β,γ) ∈ (F̃ , E) and xλ

(α,β,γ) u (G̃, E) = 0(X,E) or

yλ
′ (α′,β′,γ′) ∈ (G̃, E) and yλ

′ (α′,β′,γ′) u (F̃ , E) = 0(X,E),

then (X,=, E) is called a neutrosophic soft-P o-space.

b) Let (X,=, E) be a neutrosophic soft topological space over the crisp set X and xλ
(α,β,γ)

>

yλ
′ (α′,β′,γ′)

are neutrosophic soft points. If there exist neutrosophic soft p-open sets (F̃ , E) and

(G̃, E) such that

xλ
(α,β,γ) ∈ (F̃ , E) , xλ

(α,β,γ) u (G̃, E) = 0(X,E) or

yλ
′ (α′,β′,γ′) ∈ (G̃, E) , yλ

′ (α′,β′,γ′) u (F̃ , E) = 0(X,E),

then (X,=, E) is called a neutrosophic soft-P 1-space.

c) Let (X,=, E) be a neutrosophic soft topological space over the crisp set X, and xλ
(α,β,γ)

>

yλ
′ (α′,β′,γ′)

are neutrosophic soft points. If there exist neutrosophic soft p-open sets (F̃ , E) and

(G̃, E) such that

xλ
(α,β,γ) ∈ (F̃ , E) , yλ

′ (α′,β′,γ′) ∈ (G̃, E) and (F̃ , E) u (G̃, E) = 0(X,E),

then (X,=, E) is called a neutrosophic soft-P 2-space.

Example 4.2. Let X = {x1, x2} be a universe set, E= {λ1, λ2} be a parameters set, and

(x1)λ1
(0.1,0.4,0.7)

, (x1)λ2
(0.2,0.5,0.6)

, (x2)λ1
(0.3,0.3,0.5)

, and (x2)λ2
(0.4,0.4,0.4)

be neutrosophic soft

points. Then the family = = {0(X,E), 1(X,E), (F̃ 1, E), (F̃ 2, E), (F̃ 3, E), (F̃ 4, E),

(F̃ 5, E), (F̃ 6, E), (F̃ 7, E), (F̃ 8, E)} , where
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(F̃ 1, E) = {x1λ
1 (0.1,0.4,0.7)

} ,

(F̃ 2, E) = {(x1)λ2(0.2,0.5,0.6)} ,

(F̃ 3, E) = {(x2)λ1(0.3, 0.3, 0.5)} ,

(F̃ 4, E) = (F̃ 1, E) t (F̃ 2, E) ,

(F̃ 5, E) = (F̃ 1, E) t (F̃ 3, E) ,

(F̃ 6, E) = (F̃ 2, E) t (F̃ 3, E) ,

(F̃ 7, E) = (F̃ 1, E) t (F̃ 2, E) t (F̃ 3, E) ,

(F̃ 8, E) = {(x1)λ1(0.1,0.4,0.7), (x1)λ2(0.2,0.5,0.6), (x2)λ2(0.3,0.3,0.5), (x2)λ2(0.4, 0.4, 0.4)} ,

is a neutrosophic soft topology over X. Hence, (X,=, E) is a neutrosophic soft topolog-

ical space over X. Also, (X,=, E) is a neutrosophic soft- P 0-space but not a neutrosophic

soft-P 1-space because for neutrosophic soft points (x1)λ1(0.1, 0.4, 0.7) and (x2)λ2(0.4, 0.4, 0.4)

,(X,=, E) is not a neutrosophic soft-P 1-space.

Example 4.3. Let X = N be a natural numbers set and E = {λ} be a parameters set. Here

nλ
(αn,βn,γn)

are neutrosophic soft points. Here we can give (αn, βn, γn) appropriate values and

the neutrosophic soft points nλ
(αn,βn,γn)

,mλ(αn,βn,γn) are distinct neutrosophic soft points if

and only if n 6= m. It is clear that there is one-to-one compatibitily between the set of natural

numbers and the set of neutrosophic soft points Nλ = {nλ(αn,βn,γn)}.
Then we give cofinite topology on this set. Then neutrosophic soft set (F̃ , E) is a neutro-

sophic soft p-open set if and only if the finite neutrosophic soft point is discarded from Nλ.

Hence, (X,=, E) is a neutrosophic soft-P 1-space but not a neutrosophic soft-P 2-space.

Example 4.4. Let X = {x1, x2} be a universe set, E = {λ1, λ2} be a parameters set, and

x1λ1
(0.1,0.4,0.7)

,x1λ2
(0.2,0.5,0.6)

,

x2λ1
(0.3,0.3,0.5)

, and x2λ2
(0.4,0.4,0.4)

, be neutrosophic soft points. Then the family

= = {0(X,E), 1(X,E), (z̃1, E), (z̃2, E), ..., (z̃15, E)} , where

(z̃1, E) = {x1λ1(0.1,0.4,0.7)} ,

(z̃2, E) = {(x1)λ2(0.2,0.5,0.6)} ,

(z̃3, E) = {(x2)λ1(0.3,0.3,0.5)} ,

(z̃4, E) = {(x2)λ2(0.4,0.4,0.4)} ,

(F̃ 5, E) = (F̃ 1, E) t (F̃ 2, E) ,

(F̃ 6, E) = (F̃ 1, E) t (F̃ 3, E) ,

(F̃ 7, E) = (F̃ 1, E) t (F̃ 4, E) ,

(F̃ 8, E) = (F̃ 2, E) t (F̃ 3, E) ,

(F̃ 9, E) = (F̃ 2, E) t (F̃ 4, E) ,

(F̃ 10, E) = (F̃ 3, E) t (F̃ 4, E) ,

(F̃ 11, E) = (F̃ 1, E) t (F̃ 2, E) t (F̃ 3, E) ,
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(F̃ 12, E) = (F̃ 1, E) t (F̃ 2, E) t (F̃ 4, E) ,

(F̃ 13, E) = (F̃ 2, E) t (F̃ 3, E) t (F̃ 4, E) ,

(F̃ 14, E) = (F̃ 1, E) t (F̃ 3, E) t (F̃ 4, E) ,

(F̃ 15, E) = {(x1)λ1(0.1,0.4,0.7), (x1)λ2(0.2,0.5,0.6), (x2)λ2(0.3,0.3,0.5), (x2)λ2(0.4,0.4,0.4)},
is a neutrosophic soft topology over X. Hence, (X,=, E) is a neutrosophic soft topological

space over X. Also, (X,=, E) is a neutrosophic soft -P 2-space.

Theorem 4.5. Let (X,=, E) be a neutrosophic soft topological space over X. Then (X,=, E)

is a neutrosophic soft-P 1-space if and only if each neutrosophic soft point is a neutrosophic

soft p-closed set.

Proof. Let(X,=, E) be a neutrosophic soft-P 1-space and xλ
(α,β,γ)

be an arbitrary neutrosophic

soft point. We show that (xλ
(α,β,γ)

)
λ

is a neutrosophic soft p-open set. Let yλ
′ (α′,β′,γ′) ∈

(xλ
(α,β,γ)

)
λ

; then xλ
(α,β,γ)

and yλ
′ (α′,β′,γ′)

are distinct neutrosophic soft points. Hence, x 6= y

or λ′ 6= λ.

Since (X,=, E) is a neutrosophic soft-P 1-space, there exists a neutrosophic soft p-open set

(G̃, E) such that

yλ
′ (α′,β′,γ′) ∈ (G̃, E) and xλ

(α,β,γ) u (G̃, E) = 0(X,E).

Then, since xλ
(α,β,γ) u (G̃, E) = 0(X,E), we have yλ

′ (α′,β′,γ′) ∈ (G̃, E) @ (xλ
(α,β,γ)

)
λ
. This

implies that (xλ
(α,β,γ)

)
λ

is a neutrosophic soft p-open set, i.e. xλ
(α,β,γ)

is a neutrosophic soft

p-closed set.

Suppose that each neutrosophic soft point xλ
(α,β,γ)

is a neutrosophic soft p-closed set. Then

(xλ
(α,β,γ)

)
λ

is a neutrosophic soft p-open set. Let xλ
(α,β,γ) u yλ

′ (α′,β′,γ′)
= 0(X,E). Thus

yλ
′ (α′,β′,γ′) ∈ (xλ

(α,β,γ)
)
λ

and xλ
(α,β,γ) u (xλ

(α,β,γ)
)
λ

= 0(X,E). Therefore, (X,=, E) is a neu-

trosophic soft-P 1-space over X.

Theorem 4.6. Let (X,=, E) be a neutrosophic soft topological space over X. Then (X,=, E)

is a neutrosophic soft-P 2-space iff for distinct neutrosophic soft points xλ
(α,β,γ)

and yλ
′ (α′,β′,γ′)

,

there exists a neutrosophic soft p-open set (z̃, E) containing xλ(α, β, γ) but not yλ
′
(α′, β′, γ′)

such that yλ
′ (α′,β′,γ′)

does not belong to (z̃, E).

Proof. Let xλ
(α,β,γ)

and yλ
′ (α′,β′,γ′)

be two neutrosophic soft points in neutrosophic soft -P 2-

space (X,=, E).

Then there exist disjoint neutrosophic soft p-open set (z̃, E) , (G̃, E) such that

xλ
(α,β,γ) ∈ (z̃, E) , yλ

′ (α′,β′,γ′) ∈ (G̃, E).

Since xλ
(α,β,γ) u yλ

′ (α′,β′,γ′)
= 0(X,E) and (z̃, E) u (G̃, E) = 0(X,E), yλ

′ (α′,β′,γ′)
does not

belong to (z̃, E) . It implies that yλ
′ (α′,β′,γ′)

does not belong to (z̃, E).
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Next suppose that, for distinct neutrosophic soft points xλ
(α,β,γ)

, yλ
′ (α′,β′,γ′)

, there exists a

neutrosophic soft p-open set (z̃, E) containing xλ
(α,β,γ)

but not yλ
′ (α′,β′,γ′)

such that yλ
′ (α′,β′,γ′)

does not belong to (z̃, E). Then yλ
′ (α′,β′,γ′) ∈ ((z̃, E))c , i.e. (z̃, E) and ((z̃, E))c are disjoint

neutrosophic soft p-open sets containing xλ
(α,β,γ)

, yλ
′ (α′,β′,γ′)

respectively.

Theorem 4.7. Let (X,=, E) be a neutrosophic soft-P 1-space for every neutrosophic soft point

xλ
(α,β,γ) ∈ (z̃, E) ∈ =. If there exists a neutrosophic soft p-open set (G̃, E) such that

xλ
(α,β,γ) ∈ (G̃, E) @ (G̃, E) @ (z̃, E),

then (X,=, E) is a neutrosophic soft-P 2-space.

Proof. Suppose that xλ
(α,β,γ) u yλ

′ (α′,β′,γ′)
= 0(X,E). Since (X,=, E) is a neutrosophic soft

T 1-space, xλ
(α,β,γ)

and yλ
′ (α′,β′,γ′)

are neutrosophic soft p-closed sets in =. Thus xλ
(α,β,γ) ∈

(yλ
′
(α′, β′, γ′))c ∈ =. Then there exists a neutrosophic soft p-open set (G̃, E) in = such that

xλ
(α,β,γ) ∈ (G̃, E) @ (G̃, E) @ (yλ

′
(α′, β′, γ′))c.

Hence, we have yλ
′ (α′,β′,γ′) ∈ ((G̃, E))c , xλ

(α,β,γ) ∈ (G̃, E), and (G̃, E) u ((G̃, E))c = 0(X,E),

i,e. (X,=, E) is a neutrosophic soft P 2-space.

Remark 4.8. Let (X,=, E) be a neutrosophic soft-P 1-space for i = 0, 1, 2. For each x

6= y, neutrosophic points x(α, β, γ) and y(α′, β′, γ′) have neighborhoods satisfying conditions

of-P i-space in neutrosophic topological space (X,=λ) for each λ ∈ E because xλ
(α,β,γ)

and

yλ
′ (α′,β′,γ′)

are distinct neutrosophic soft points.

Definition 4.9. Let (X,=, E) be a neutrosophic soft topological space over X, (z̃, E) be a

neutrosophic soft p-closed set , and xλ
(α,β,γ) u (z̃, E) = 0(X,E). If there exist neutrosophic

soft p-open open sets (̃1, E) and (G̃2, E) such that xλ
(α,β,γ) ∈ (G̃1, E), (z̃, E) @ (G̃2, E), and

(G̃1, E) u (G̃2, E) = 0(X,E) , then (X,=, E) is called a neutrosophic soft b-regular space.

(X,=, E) is said to be a neutrosophic soft-P 3-space if is both a neutrosophic soft p-regular

and neutrosophic soft-P 1-space.

Theorem 4.10. Let (X,=, E) be a neutrosophic soft topological space over X, (X,=, E) is a

neutrosophic soft-P 3-space if and only if for every xλ
(α,β,γ) ∈ (z̃, E) ∈ = , there exists (G̃, E)

∈ = such that xλ
(α,β,γ) ∈ (G̃, E) @ (G̃, E) @ (z̃, E) .

Proof. Let (X,=, E) be a neutrosophic soft P 3-space and xλ
(α,β,γ) ∈ (z̃, E) ∈ =. Since

(X,=, E) is a neutrosophic soft-P 3-space for the neutrosophic soft point xλ
(α,β,γ)

and neu-

trosophic soft p-closed set (z̃, E)c , there exist (G̃1, E) , (G̃2, E) ∈ = such that xλ
(α,β,γ) ∈

(G̃1, E) , (z̃, E)c @ (G̃2, E), and (G̃1, E) u (G̃2, E) = 0(X,E). thus, we have xλ
(α,β,γ) ∈ (G̃1, E)

@ (G̃2, E)c @ (z̃, E). Since (G̃2, E)c is a neutrosophic soft p-closed set, (G̃1, E) @ (G̃2, E)c .
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Conversely , let xλ
(α,β,γ) u (H̃, E) = 0(X,E) and (H̃, E) be a neutrosophic soft p-closed set.

Thus, xλ
(α,β,γ) ∈ (H̃, E)c and from the condition of the theorem, we have xλ

(α,β,γ) ∈ (G̃, E)

@ (G̃, E) @ (H̃ ,E)c.

Then xλ
(α,β,γ) ∈ (G̃, E) , (H̃, E) @ ((G̃, E))c , and (G̃, E) u (G̃, E)c = 0(X,E) are satisfied,

i.e. (X,=, E) is a neutrosophic soft-P 3-space.

Definition 4.11. A neutrosophic soft topological space (X,=, E) over X is called a neutro-

sophic soft p-normal space if for every pair of disjoint neutrosophic soft b-closed set (z̃1, E) ,

(z̃2, E) , there exists disjoint neutrosophic soft p-open sets (G̃1, E) , (G̃2, E) such that (z̃1, E)

@ (G̃1, E) and (z̃2, E) @ (G̃2, E).

(X,=, E) is said to be a neutrosophic soft b-T 4-space if it is both a neutrosophic soft p-

normal and neutrosophic soft-P 1-space.

Theorem 4.12. Let (X,=, E) be a neutrosophic soft topological space over X . Then (X,=, E)

is a neutrosophic soft-P 4-space if and only if, for each neutrosophic soft p-closed set (z̃, E)

and neutrosophic soft p-open set (G̃, E) with (z̃, E) @ (G̃, E) , there exists a neutrosophic soft

p-open set (D̃, E) such that

(z̃, E) @ (D̃, E) @ (D̃, E) @ (G̃, E).

Proof. Let (X,=, E) be a neutrosophic soft-P 4-space, (z̃, E) be a neutrosophic soft p-closed

set and (z̃, E) @ (G̃, E) ∈ =. Then (G̃, E)c is a neutrosophic soft p-closed set and (z̃, E)

u (G̃, E)c = 0(X,E). Since (X,=, E) is a neutrosophic soft-P 4-space, there exist neutrosophic

soft p-open sets (D̃1, E) and (D̃2, E) such that (z̃, E) @ (D̃1, E) , (G̃, E)c @ (D̃2, E) , and

(D̃1, E) u (D̃2, E) = 0(X,E). This implies that

(z̃, E) @ (D̃1, E) @ (D̃2, E)c @ (G̃, E).

(D̃2, E)c is a neutrosophic soft p-closed set and (D̃1, E) @ (D̃2, E)c is satisfied. Thus,

(z̃, E) @ (D̃1, E) @ (D̃1, E) @ (G̃, E)

is obtained.

Conversely, let (z̃1, E) , (z̃2, E) be two disjoint neutrosophic soft p-closed sets. Then

(z̃1, E) @ (z̃2, E)c . From the condition of theorem, there exists a neutrosophic soft p-open

set (D̃, E) such that

(z̃1, E) @ (D̃, E) @ (D̃1, E) @ (z̃2, E)c .

Thus, (D̃, E) , ((D̃, E))c are neutrosophic soft p-open sets and (z̃1, E) @ (D̃, E) , (z̃2, E) @

((D̃, E))c , and (D̃, E) u ((D̃, E))c = 0(X,E) are obtained. Hence, (X,=, E) is a neutrosophic

soft-P 4-space.
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Definition 4.13. Let (X,=, E) be a neutrosophic soft topological space over X and (z̃, E) be

an arbitrary neutrosophic soft set. Then =(z̃,E) = {(z̃, E) u (H̃, E) : (H̃, E) ∈ =} is said to

be neutrosophic soft topology on (z̃, E) and ((z̃, E),=(z̃,E), E) is called a neutrosophic soft

topological subspace of (X,=, E).

Theorem 4.14. Let (X,=, E) be a neutrosophic soft topological space over X. If (X,=, E) is a

neutrosophic soft-P i-space, then the neutrosophic soft topological subspace ((z̃, E),=(z̃,E), E)

is a neutrosophic soft-P i-space for i = 0, 1, 2, 3.

Proof. Let xλ
(α,β,γ)

, yλ
′ (α′,β′,γ′) ∈ ((z̃, E),=(z̃,E), E) such that xλ

(α,β,γ) u yλ′ (α
′,β′,γ′)

= 0(X,E).

Thus , there exist neutrosophic soft p-open set (z̃1, E) and (z̃2, E) satisfying the conditions

of neutrosophic soft -P i-space such that xλ
(α,β,γ) ∈ (z̃1, E) , yλ

′ (α′,β′,γ′) ∈ (z̃2, E). Then

xλ
(α,β,γ) ∈ (z̃1, E) u (z̃, E) and yλ

′ (α′,β′,γ′) ∈ (z̃2, E) u (z̃, E) . Also, the neutrosophic soft

p-open set (z̃1, E) u (z̃, E) , (z̃2, E) u (z̃, E) in =(z̃,E) satisfy the conditions of neutrosophic

soft-P i-space for i = 0, 1, 2, 3.

Theorem 4.15. Let (X,=, E) be a neutrosophic soft topological space over X. If (X,=, E) is

a neutrosophic soft-P 4-space and (z̃, E) is a neutrosophic soft p-closed set in (X,=, E), then

((z̃, E),=(z̃,E), E) is a neutrosophic soft -P 4-space.

Proof. Let (X,=, E) be a neutrosophic soft P 4-space and (z̃, E) be a neutrosophic soft p-

closed set in (X,=, E). Let (z̃1, E) and (z̃2, E) be two neutrosophic soft p-closed sets in

((z̃, E),=(z̃,E), E) such that (z̃1, E) u (z̃2, E) = 0(X,E). When (z̃, E) is a neutrosophic

soft p-closed set in (X,=, E) , (z̃1, E) and (z̃2, E) are neutrosophic soft p-closed sets in

(X,=, E). Since (X,=, E) is a neutrosophic soft-P 4-space, there exist neutrosophic soft p-

open sets (G̃1, E) and (G̃2, E) such that (z̃1, E) @ (G̃1, E) , (z̃2, E) @ (G̃2, E) and (G̃1, E)

u (G̃2, E) = 0(X,E). Then (z̃1, E) = (G̃1, E) u (z̃, E) , (z̃2, E) = (G̃2, E) u (z̃, E) and

((G̃1, E) u (z̃, E)) u ((G̃2, E) u (z̃, E)) = 0(X,E). This implies that ((z̃, E),=(z̃,E), E) is a

neutrosophic soft-P 4-space.

5. Conclusion

Neutrosophic soft p-separation structures are the most imperative and fascinating notions

in neutrosophic soft topology.We have introduced neutrosophic soft p-separation axioms in

neutrosophic soft topological structures with respect to soft points, which are defined over

an initial universe of discourse with a fixed set of parameters( data,decision variables). We

further investigated and scrutinized some essential features of the initiated neutrosophic soft

p-separation structures. It is supposed that these results will be very very useful for future
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studies on neutrosophic soft topology to carry out a general framework for practical applica-

tions. Applications of neutrosophic soft p-separation structures in neutrosophic soft topological

spaces can be traced out in decision making problems.
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Abstract: Within this paper, we present and research the definition of interval valued neutrosophic 

topological space along with interval valued neutrosophic finer and interval valued neutrosophic 

coarser topologies. We also describe interval valued neutrosophic interior and closer of an interval 

valued neutrosophic set. Interval valued neutrosophic subspace topology also studied. 

Some examples and theorems are presented concerning this concept. 
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1. Introduction 

 The notion of fuzzy set has invaded almost all branches of mathematics since its introduction by 

Zadeh[20]. Fuzzy sets and fuzzy logic has been applied in many real applications to handle 

uncertaintely fuzzy set theory is very successful in handling uncertainties arising from vagueness or 

partial belongingness of an element in a set, it cannot model all type of uncertainties pre – veiling in 

different real physical problems such as problems involving incomplete information. Turksen [18] 

introducted the idea of interval valued fuzzy sets. 

 Later, Atanassov[10] introduced the concept generalization of fuzzy set, which is known as 

intuitionistic fuzzy sets. Intuitionistic fuzzy sets take into account both the degree of membership 

and non – membership. Further, intuitionistic fuzzy sets were extended to the interval valued 

intuitionistic fuzzy sets[11]. The interval valued intuitionistic fuzzy set uses a pair of interval 

[𝑡− , 𝑡+], 0 ≤ 𝑡−  ≤  𝑡+  ≤  1 and  [𝑓− , 𝑓+] , 0 ≤ 𝑓−  ≤ 𝑓+  ≤ 1 with 𝑡+ + 𝑓+ ≤ 1,  to describe the 

degree of true belief and false belief. Because of the restriction that 𝑡+ + 𝑓+ ≤ 1, intuitionistic fuzzy 

sets and interval valued intuitionistic fuzzy sets can only handle incomplete information not the 

indeterminate information and inconsistent information which exists commonly in belief systems. 
 As a generalization of fuzzy set and intuitionistic fuzzy set, neutrosophic set have been 

introduced and developed by F. Smaramdache[15,16 & 17 ]. It is a logic in which each proposition is 

calculated to have degree of truth(T), a degree of indeterminacy(I) and a degree of falsity(F). 

Smarandache’s neutrosophic concept have wide range of real applications for many fields of 
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[1,2,3,4,5,6,7 & 8] information system, computer science, artificial intelligence, applied mathematics, 

decision making, mechanics, electrical and electronics, medicine and management science etc.  

 Salama, Albloe[14] proposed the concept of neutrosophic topological space. Later, Wang, 

Smarandache, Zhang and Sunderraman introduced the notion of interval valued neutrosophic 

set[19]. An interval valued neutrosophic set 𝐴 defined on 𝑋, 𝑥 = 𝑥(𝑇, 𝐼, 𝐹) ∈ 𝐴 with 𝑇, 𝐼  and 𝐹 

being the subinterval of [0,1]. Lupianez discusses the relation between interval value neutrosophic 

sets and topology [12] 

 The purpose of this article is to propose the idea of interval valued neutrosophic topological 

space and discuss the some of the basic properties.  

2. Preliminaries 

Definition 2.1[19] Let 𝑋 be a space of points (objects), with a generic element in 𝑋 denoted by 𝑥. An 

interval valued neutrosophic set(𝐼𝑁𝑆)  𝐴 in 𝑋 is characterized by truth – membership function 𝑇𝐴, 

indeterminacy – membership function 𝐼𝐴 and falsity – membership function 𝐹𝐴. For each point 𝑥 in 

𝑋, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ⊆ [0,1]. 

Example 2.2[19] Suppose, 𝑋 = {𝑥1, 𝑥2, 𝑥3}.  The strength is   𝑥1, the trust is 𝑥2 and the price is 𝑥3. 

The 𝑥1, 𝑥2  and 𝑥3  values are given in [0,1] . They're obtained from some domain experts ' 

questionnaire, their choice could be degree of goodness, degree of indeterminacy, and degree of 

poorness.  𝐴  and 𝐵  are the interval neutrosophic sets of 𝑋  define  by 𝐴 =<

[0.2,0.4],[0.3,0.5],[0.3,0.5]

𝑥1 
,

[0.5,0.7],[0,0.2],[0.2,0.3]

𝑥2
,

[0.6,0.8],[0.2,0.3],[0.2,0.3]

𝑥3
>  𝐵 =<

[0.5,0.7],[0.1,0.3],[0.1,0.3]

𝑥1
,

[0.2,0.3],[0.2,0.4],[0.5,0.8]

𝑥2
,

[0.4,0.6],[0,0.1],[0.3,0.4]

𝑥3
> 

Definition 2.3[19] An interval neutrosophic set 𝐴 is empty 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  its inf 𝑇𝐴(𝑥) =

sup 𝑇𝐴(𝑥) = 0,  inf 𝐼𝐴(𝑥) = sup 𝐼𝐴(𝑥) = 1 and inf 𝐹𝐴(𝑥) = sup 𝐹𝐴(𝑥) = 0, for all 𝑥 in 𝑋. 

Definition 2.4(Containment) [19] An interval neutrosophic set 𝐴 is contained in the other interval 

neutrosophic set 𝐵, 𝐴 ⊆ 𝐵, 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓   

                            inf 𝑇𝐴(𝑥) ≤ inf 𝑇𝐵(𝑥) , sup 𝑇𝐴(𝑥) ≤ sup 𝑇𝐵(𝑥)     

inf 𝐼𝐴(𝑥) ≥ inf 𝐼𝐵(𝑥) , sup 𝐼𝐴(𝑥) ≥ sup 𝑇𝐵(𝑥)   

inf 𝐹𝐴(𝑥) ≥ inf 𝐹𝐵(𝑥) , sup 𝐹𝐴(𝑥) ≥ sup 𝐹𝐵(𝑥)   

for all 𝑥 in 𝑋. 

Definition 2.5[19] Two interval neutrosophic sets 𝐴 and 𝐵  are equal, written as 𝐴 =

𝐵, 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. Let 0𝑁 =< 0,1,1 > and 1𝑁 =< 1,0,0 >. 

Definition 2.6[19] The complement of an interval neutrosophic set 𝐴 is denoted by �̅� and is defined 

by  𝑇�̅�(𝑥) = 𝐹𝐴(𝑥); inf 𝐼�̅�(𝑥) = 1 − sup 𝐼𝐴(𝑥) ;sup 𝐼�̅�(𝑥) = 1 − inf 𝐼𝐴(𝑥); 𝐹�̅�(𝑥) = 𝑇𝐴(𝑥) for all 𝑥  in 𝑋. 

Example 2.7[19] Let 𝐴  be the interval neutrosophic set defined in Example 2.3, then                    

�̅� =<
[0.3,0.5],[0.5,0.7],[0.3,0.4]

𝑥1
,

[0.2,0.3],[0.8,0],[0.5,0.7]

𝑥2
,

[0.2,0.3],[0.7,0.8],[0.6,0.8]

𝑥3
> 
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Definition 2.8 (Intersection) [19] The intersection of two interval neutrosophic sets 𝐴 and 𝐵 is an 

interval neutrosophic set 𝐶 = 𝐴 ∩ 𝐵, whose truth-membership, indeterminacy – membership and 

false – membership are related to those of 𝐴 and 𝐵 by  

inf 𝑇𝐶 (𝑥) = min(inf 𝑇𝐴(𝑥) , inf 𝑇𝐵(𝑥)),      sup 𝑇𝐶(𝑥) = min(sup 𝑇𝐴(𝑥) , sup 𝑇𝐵(𝑥)) 

inf 𝐼𝐶 (𝑥) = max(inf 𝐼𝐴(𝑥) , inf 𝐼𝐵(𝑥)),      sup 𝑇𝐶(𝑥) = max(sup 𝐼𝐴(𝑥) , sup 𝐼𝐵(𝑥)) 

inf 𝐹𝐶 (𝑥) = max(inf 𝐹𝐴(𝑥) , inf 𝐹𝐵(𝑥)),      sup 𝑇𝐶(𝑥) = max(sup 𝐹𝐴(𝑥) , sup 𝐹𝐵(𝑥)) 

for all 𝑥 in 𝑋. 

Example 2.9[19] Let 𝐴 and 𝐵 be the interval neutrosophic sets defined in Example 2.3, then 𝐴 ∩ 𝐵 =

<
[0.2,0.4],[0.3,0.5],[0.3,0.5]

𝑥1
,

[0.2,0.3],[0.2,0.4],[0.5,0.8]

𝑥2
,

[0.4,0.6],[0.2,0.3],[0.3,0.4]

𝑥3
>. 

Theorem 2.10[19] 𝐴 ∩ 𝐵 is the largest interval neutrosophic set contained in both 𝐴 and 𝐵. 

Definition 2.11(Union) [19] The union of two interval neutrosophic sets 𝐴 and 𝐵 is an interval 

neutrosophic set 𝐶, written as 𝐶 = 𝐴 ∪ 𝐵, whose truth – membership, indeterminacy – membership 

and false membership are related to those of 𝐴 and 𝐵 by  

inf 𝑇𝐶 (𝑥) = max(inf 𝑇𝐴(𝑥) , inf 𝑇𝐵(𝑥)),      sup 𝑇𝐶(𝑥) = max(sup 𝑇𝐴(𝑥) , sup 𝑇𝐵(𝑥)) 

inf 𝐼𝐶 (𝑥) = min(inf 𝐼𝐴(𝑥) , inf 𝐼𝐵(𝑥)),      sup 𝑇𝐶(𝑥) = min(sup 𝐼𝐴(𝑥) , sup 𝐼𝐵(𝑥)) 

inf 𝐹𝐶 (𝑥) = min(inf 𝐹𝐴(𝑥) , inf 𝐹𝐵(𝑥)),      sup 𝑇𝐶(𝑥) = min(sup 𝐹𝐴(𝑥) , sup 𝐹𝐵(𝑥)) 

for all 𝑥 in 𝑋. 

Example 2.12[19] Let 𝐴 and 𝐵 be the interval neutrosophic sets defined in Example 2.3, then 𝐴 ∪

𝐵 =<
[0.5,0.7],[0.1,0.3],[0.1,0.3]

𝑥1
,

[0.5,0.7],[0,0.2],[0.2,0.3]

𝑥2
,

[0.6,0.8],[0,0.1],[0.2,0.3]

𝑥3
>. 

Theorem 2.13[19] 𝐴 ∪ 𝐵 is the smallest interval neutrosophic set containing both 𝐴 and 𝐵. 

3. Interval Valued Neutrosophic Topological Spaces 

 With some examples and results, we give the concept of interval valued neutrosophic topologi

cal spaces. 

Definition 3.1 An interval valued neutrosophic topological space of interval valued neutrosophic set 

(In short 𝐼𝑉𝑁 topological space) is a pair (𝑋, 𝜏𝑁) where 𝑋 is a nonempty set and 𝜏𝑁 is a family of 

𝐼𝑉𝑁 sets on 𝑋 satisfying the following axioms: 

1. 0𝑁 , 1𝑁 ∈ 𝜏𝑁  

2. 𝐴, 𝐵 ∈ 𝜏𝑁 ⇒ 𝐴 ∩ 𝐵 ∈ 𝜏𝑁  

3. 𝐴𝑖 ∈ 𝜏𝑁 , 𝑖 ∈ 𝐼 ⇒∪𝑖∈𝐼 𝐴𝑖 ∈ 𝜏𝑁 

𝜏𝑁 is called an interval valued neutrosophic topology on 𝑋. 𝜏𝑁 members are called interval valued 

neutrosophic open sets (In Short 𝐼𝑉𝑁 open sets). 

Example 3.2 Assume that 𝑋 = {𝑎, 𝑏}. Here 𝑎 is denoted by quality of Computers, 𝑏 is denoted by 

Price of Computers. The value of 𝑎 and 𝑏 are in [0,1]. These are collected from some domain 

expects questionnaire; their choices could be degree of excellence, degree of indeterminacy, degree 

of poorness. The 𝐼𝑉𝑁 set are  
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0𝑁 = 〈[0,0], [1,1], [1,1]〉,   1𝑁 = 〈[1,1], [0,0], [0,0]〉, 𝐴 = 〈
([0.1,0.4],[0.2,0.7],[0.4,0.6])

𝑎
,

([0.6,0.8],[0.2,0.3],[0.2,0.3])

𝑏
〉,  𝐵 =

〈
([0.1,0.3],[0.3,0.8],[0.5,0.8])

𝑎
,

([0.2,0.7],[0.4,0.8],[0.3,0.7])

𝑏
〉 ,. 𝜏𝑁 = {0𝑁 , 1𝑁 , 𝐴, 𝐵}  is called an 𝐼𝑉𝑁  topology on 𝑋 . 

(𝑋, 𝜏𝑁) is called an 𝐼𝑉𝑁𝑇𝑆. 

Example3.3 Let 𝑋 = {𝑎, 𝑏} and the 𝐼𝑉𝑁 sets are  

𝐶 = 〈
([0.4,0.7],[0.5,0.7],[0.4,0.9])

𝑎
,

([0.2,0.3],[0.4,0.5],[0.7,0.9])

𝑏
〉 , 𝐷 = 〈

([0.5,0.8],[0.3,0.5],[0.2,0.7])

𝑎
,

([0.5,0.7],[0.1,0.5],[0.3,0.7])

𝑏
〉 .                           

𝜏𝑁 = {0𝑁 , 1𝑁 , 𝐶, 𝐷} is called an 𝐼𝑉𝑁 topology on 𝑋. (𝑋, 𝜏𝑁) is called an 𝐼𝑉𝑁 topological space. 

Theorem 3.4  Let {𝜏𝑁𝑖
: 𝑖 ∈ 𝐼} be a family of 𝐼𝑉𝑁 topologies of 𝐼𝑉𝑁 sets on 𝑋. Then ∩𝑖 {𝜏𝑁𝑖

: 𝑖 ∈ 𝐼} is 

also an 𝐼𝑉𝑁 topology of 𝐼𝑉𝑁 sets on 𝑋. 

Proof: (i) 0𝑁 , 1𝑁 ∈ 𝜏𝑁𝑖
 for each 𝑖 ∈ 𝐼, Hence 

Ii
NNN i



 1,0 .(ii) Let {𝐴𝑖: 𝑖 ∈ 𝐼} be a arbitrary family 

of 𝐼𝑉𝑁 sets where 
Ii

Ni i
A



  for each 𝑖 ∈ 𝐼.Then for each 𝑖 ∈ 𝐼.
iNiA  for 𝑖 ∈ 𝐼 and since for 

each 𝑖 ∈ 𝐼, 𝜏𝑁𝑖
 is a 𝐼𝑉𝑁 topology, Therefore 

iN
Ii

iA 


 for each 𝑖 ∈ 𝐼. Hence 
Ii

N
Ii

i i
A



 
  

But union of 𝐼𝑉𝑁 topologies as seen in the following example need not be an 𝐼𝑉𝑁 topology. 

Example: 3.5 In example 3.2 and 3.3 the families 𝜏𝑁1
= {0𝑁 , 1𝑁 , 𝐴, 𝐵} and 𝜏𝑁2

= {0𝑁 , 1𝑁 , 𝐶, 𝐷} are 

𝐼𝑉𝑁  topologies in 𝑋 . For 𝑋 , however their union 𝜏𝑁1
∪ 𝜏𝑁2

= {0𝑁 , 1𝑁 , 𝐴, 𝐵, 𝐶, 𝐷}  is not a 𝐼𝑉𝑁 

topology. 

Definition 3.6 Let (𝑋, 𝜏𝑁) be an 𝐼𝑉𝑁  topological space. An 𝐼𝑉𝑁 set 𝐴 of 𝑋 is called an interval 

valued neutrosophic closed set (in short 𝐼𝑉𝑁 -closed set) if its complement 𝐴𝑐 is an 𝐼𝑉𝑁 open set 

in 𝜏𝑁. 

Example 3.7 Let us consider the Example 3.2, the 𝐼𝑉𝑁  closed sets in (𝑋, 𝜏𝑁)   are 𝐴𝑐 =

〈
([0.4,0.6],[0.3,0.8],[0.1,0.4])

𝑎
,

([0.2,0.3],[0.7,0.8],[0.6,0.8])

𝑏
〉 , 𝐵𝑐 = 〈

([0.5,0.8],[0.2,0.7],[0.1,0.3])

𝑎
,

([0.3,0.7],[0.2,0.6],[0.2,0.7])

𝑏
〉 , 0𝑁

𝑐 = 1𝑁 

and 1𝑁
𝑐 = 0𝑁 are the 𝐼𝑉𝑁 – closed sets in (𝑋, 𝜏𝑁). 

Theorem 3.8 Let  (𝑋, 𝜏𝑁) be an 𝐼𝑉𝑁 topological space. Then (i) 0𝑁 , 1𝑁  are 𝐼𝑉𝑁 – closed sets. (ii) 

Arbitrary intersection of 𝐼𝑉𝑁 – closed sets is 𝐼𝑉𝑁 – closed set. (iii) Finite union of 𝐼𝑉𝑁 – closed sets 

is 𝐼𝑉𝑁 – closed set. 

Proof: (i) since   0𝑁 , 1𝑁 ∈ 𝜏𝑁, 0𝑁
𝑐 = 1𝑁 and 1𝑁

𝑐 = 0𝑁, therefore 0𝑁
𝑐  and 1𝑁

𝑐  are 𝐼𝑉𝑁 – closed sets. (ii) 

Let {𝐴𝑖: 𝑖 ∈ 𝐼} be an arbitrary family of 𝐼𝑉𝑁  – closed sets in (𝑋, 𝜏𝑁)  and let 
Ii

iAA


 Now 

 
Ii

c
i

c

Ii
i

c AAA










 and N

cA   for each 𝑖 ∈ 𝐼 , hence   N
Ii

c
iA 



 , therefore  𝐴𝑐 ∈ 𝜏𝑁 . 

Thus 𝐴 is an 𝐼𝑉𝑁– closed set. (iii) Let {𝐴𝑘: 𝑘 = 1,2, … … … 𝑛𝑛} be a family of 𝐼𝑉𝑁 – closed set in 
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(𝑋, 𝜏𝑁)  and let 
n

k
kAG

1

 . Now   
n

k

c
k

cn

k
k

c AAG
11 









 and   N

c
kA   for nk ,.........2,1

, so N

n

k

c
kA 




1

. Hence N
cG  , thus G  is 𝐼𝑉𝑁 – closed set. 

Definition 3.9 Let both (𝑋, 𝜏𝑁1
) and (𝑋, 𝜏𝑁2

) be two 𝐼𝑉𝑁𝑇𝑆. If each 𝐴 ∈ 𝜏𝑁2
 implies 𝐴 ∈ 𝜏𝑁1

, then 

𝜏𝑁1
is called interval valued neutrosophic finer topology than 𝜏𝑁2

 and 𝜏𝑁2
 is called interval valued 

neutrosophic coarser topology than 𝜏𝑁1
 

Example 3.10 Let 𝑋 = {𝑎, 𝑏} and 𝐼𝑉𝑁 sets are 𝐴 = 〈
([0.5,0.7],[0.3,0.6],[0.2,0.8])

𝑎
,

([0.4,0.6],[0.3,0.5],[0.4,0.7])

𝑏
〉, 𝐵 =

〈
([0.3,0.7],[0.4,0.6],[0.3,0.8])

𝑎
,

([0.1,0.7],[0.3,0.8],[0.2,0.6])

𝑏
〉, 𝐶 = 〈

([0.5,0.7],[0.3,0.6],[0.2,0.8])

𝑎
,

([0.4,0.7],[0.3,0.5],[0.2,0.6])

𝑏
〉, 𝐷 =

〈
([0.3,0.7],[0.4,0.6],[0.3,0.8])

𝑎
,

([0.1,0.7],[0.3,0.8],[0.4,0.7])

𝑏
〉. Let 𝜏𝑁1

= {0𝑁 , 1𝑁 , 𝐴, 𝐵, 𝐶, 𝐷} and 𝜏𝑁2
= {0𝑁 , 1𝑁 , 𝐴, 𝐶} be 

an 𝐼𝑉𝑁 topologies on 𝑋 and let (𝑋, 𝜏𝑁1
) and (𝑋, 𝜏𝑁2

)be a 𝐼𝑉𝑁 topological spaces. If 𝜏𝑁1
 is 𝐼𝑉𝑁 

finer topology than 𝜏𝑁2
 and𝜏𝑁2

 is 𝐼𝑉𝑁 coarser topology than 𝜏𝑁1
  

Definition 3.11 Let (𝑋, 𝜏𝑁) be a 𝐼𝑉𝑁 topological space. A subcollection 𝔅 of 𝜏𝑁 is said to be base 

of  𝜏𝑁  if every element of 𝜏𝑁 can be expressed as the arbitray 𝐼𝑉𝑁  union of some elements of 

𝔅, then 𝔅 is called an 𝐼𝑉𝑁 basis for the 𝐼𝑉𝑁 topology 𝜏𝑁. 

Example 3.12 In Example 3.10, for the 𝐼𝑉𝑁 topology 𝜏𝑁1
= {0𝑁 , 1𝑁 , 𝐴, 𝐵, 𝐶, 𝐷}. The sub collection 

𝔅 = {0𝑁 , 1𝑁 , 𝐴, 𝐵, 𝐶} of 𝛲(𝑋) is a 𝐼𝑉𝑁 basis for the 𝐼𝑉𝑁  topology 𝜏𝑁1
. 

Definition 3.13 Let (𝑋, 𝜏𝑁) be a 𝐼𝑉𝑁 topological space and 𝐴 ∈ 𝐼𝑉𝑁𝑠(𝑋), the interior and closure of  

𝐴 is denoted by 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) and 𝐼𝑉𝑁 𝐶𝑙(𝐴) are defined as  

𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) =∪ {𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐴} , 𝐼𝑉𝑁 𝐶𝑙(𝐴) =∩ {𝐾 ∈ 𝜏𝑁
𝑐 : 𝐴 ⊆ 𝐾} 

Example 3.14 Let us take an Example 3.3 and consider an 𝐼𝑉𝑁 set 

𝐸 = 〈
([0.4,0.6],[0.4,0.7],[0.2,0.7])

𝑎
,

([0.3,0.5],[0.3,0.6],[0.3,0.5])

𝑏
〉. Now 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐸) = 0𝑁 and 𝐼𝑉𝑁 𝐶𝑙(𝐸) = 1𝑁 . 

Theorem 3.15 Let (𝑋, 𝜏𝑁)  be a 𝐼𝑉𝑁  topological space and 𝐴, 𝐵 ∈ 𝐼𝑉𝑁𝑠(𝑋) then the following 

properties holds:  

(i) 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ⊆ 𝐴  

(ii) 𝐴 ⊆ 𝐵 ⇒ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ⊆ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵)  

(iii) 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∈ 𝜏𝑁  

(iv) 𝐴 ∈ 𝜏𝑁 𝑖𝑓𝑓 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) = 𝐴  

(v) 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴)) = 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴)   

(vi) 𝐼𝑉𝑁 𝐼𝑛𝑡(0𝑁) = 0𝑁 , 𝐼𝑉𝑁 𝐼𝑛𝑡(1𝑁) = 1𝑁  

Proof:  

(i) Straight forward. 
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(ii) 𝐴 ⊆ 𝐵 ⇒ All of the 𝐼𝑉𝑁 open sets in 𝐴 that are also in 𝐵. Both 𝐼𝑉𝑁 open sets included 

in 𝐴 also included in 𝐵.   𝑖𝑒. , {𝐾 ∈ 𝜏𝑁: 𝐾 ⊆ 𝐴} ⊆ {𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐵}.  𝑖𝑒. ,∪ {𝐾 ∈ 𝜏𝑁: 𝐾 ⊆ 𝐴} ⊆∪

{𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐵}.  𝑖𝑒. , 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ⊆ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐵). 

(iii) 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) =∪ {𝐾 ∈ 𝜏𝑁: 𝐾 ⊆ 𝐴}. It is clear that  ∪ {𝐾 ∈ 𝜏𝑁: 𝐾 ⊆ 𝐴} ∈ 𝜏𝑁. So, 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∈ 𝜏𝑁. 

(iv) Let 𝐴 ∈ 𝜏𝑁, then by(i), 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ⊆ 𝐴. Now since 𝐴 ∈ 𝜏𝑁 and 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ⊆ 𝐴. Therefore 

𝐴 ⊆∪ {𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐴} = 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴),  𝐴 ⊆ 𝐼𝑁𝑉 𝐼𝑛𝑡(𝐴). Thus 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) = 𝐴. Conversely, let 

𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) = 𝐴. Since by (iii), 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∈ 𝜏𝑁 . Therefore 𝐴 ∈ 𝜏𝑁. 

(v) By (iii), 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∈ 𝜏𝑁. Therefore by (iv), 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴)) = 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴). 

(vi) We know that 0𝑁 , 1𝑁 ∈ 𝜏𝑁, by (iv), 𝐼𝑉𝑁 𝐼𝑛𝑡(0𝑁) = 0𝑁, 𝐼𝑉𝑁 𝐼𝑛𝑡(1𝑁) = 1𝑁. 

Theorem 3.16 Let (𝑋, 𝜏𝑁) be a 𝐼𝑉𝑁𝑇𝑆 and 𝐴, 𝐵 ∈ 𝐼𝑉𝑁𝑠(𝑋) then possess the following properties:  

(i) 𝐴 ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐴)  

(ii) 𝐴 ⊆ 𝐵 ⇒ 𝐼𝑉𝑁 𝐶𝑙(𝐴) ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐵)  

(iii) (𝐼𝑉𝑁 𝐶𝑙(𝐴))
𝑐

∈ 𝜏𝑁  

(iv) 𝐴𝑐 ∈ 𝜏𝑁 𝑖𝑓𝑓 𝐼𝑉𝑁 𝐶𝑙(𝐴) = 𝐴  

(v) 𝐼𝑉𝑁 𝐶𝑙(𝐼𝑉𝑁 𝐶𝑙(𝐴)) = 𝐼𝑉𝑁 𝐶𝑙(𝐴)   

(vi) 𝐼𝑉𝑁 𝐶𝑙(0𝑁) = 0𝑁 , 𝐼𝑉𝑁 𝐶𝑙(1𝑁) = 1𝑁 

Proof: 

Straight forward. 

Theorem 3.17 Let (𝑋, 𝜏𝑁) be a 𝐼𝑉𝑁 topological space and 𝐴, 𝐵 ∈ 𝐼𝑉𝑁𝑠(𝑋)then hold the following 

properties:  

(i) 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴 ∩ 𝐵) = 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵)  

(ii) 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴 ∪ 𝐵) ⊇ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐴) ∪ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐵)  

(iii) 𝐼𝑉𝑁 𝐶𝑙(𝐴 ∪ 𝐵) = 𝐼𝑉𝑁 𝐶𝑙(𝐴) ∪ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐵)  

(iv) 𝐼𝑉𝑁 𝐶𝑙(𝐴 ∩ 𝐵) ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐴) ∩ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵) 

(v) (𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴))𝑐 = 𝐼𝑉𝑁 𝐶𝑙 (𝐴𝑐) 

(vi) (𝐼𝑉𝑁 𝐶𝑙(𝐴))𝑐 = 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴𝑐) 

Proof: 

(i) By Theorem 3.15(i), 𝐼𝑉𝑁 𝐼𝑛𝑡 (𝐴) ⊆ 𝐴  and 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵) ⊆ 𝐵. Thus 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵) ⊆

𝐴 ∩ 𝐵. Hence 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵) ⊆ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐴 ∩ 𝐵) -----------(1) 

Again since 𝐴 ∩ 𝐵 ⊆ 𝐴 , by Theorem 3.15(ii). 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐴) . Similarly 

𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐵).  

Hence 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐵) --------(2) from (1) and (2) we get, 

𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴 ∩ 𝐵) = 𝐼𝑉𝑁𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵). 

(ii) Since 𝐴 ⊆ 𝐴 ∪ 𝐵. 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ⊆ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐴 ∪ 𝐵) by Theorem 3.15(ii). Similarly 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵) ⊆

𝐼𝑉𝑁𝐼𝑛𝑡(𝐴 ∪ 𝐵). Hence 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) ∪ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐵) ⊆ 𝐼𝑉𝑁𝐼𝑛𝑡(𝐴 ∪ 𝐵). 

(iii) By Theorem 3.16(i), 𝐴 ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐴)  and 𝐵 ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐵) . Thus 𝐴 ∪ 𝐵 ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐴) ∪

𝐼𝑉𝑁𝐶𝑙(𝐵), 𝐼𝑉𝑁 𝐶𝑙(𝐴 ∪ 𝐵) ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐴) ∪ 𝐼𝑉𝑁𝐶𝑙(𝐵)-----------(1) 
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Again since 𝐴 ⊆ 𝐴 ∪ 𝐵 , by Theorem 3.16(ii). 𝐼𝑉𝑁 𝐶𝑙(𝐴) ⊆ 𝐼𝑉𝑁𝐶𝑙(𝐴 ∪ 𝐵) . Similarly 

𝐼𝑉𝑁 𝐶𝑙(𝐵) ⊆ 𝐼𝑉𝑁𝐶𝑙(𝐴 ∪ 𝐵). Hence 𝐼𝑉𝑁 𝐶𝑙(𝐴) ∪ 𝐼𝑉𝑁 𝐶𝑙(𝐵) ⊆ 𝐼𝑉𝑁𝐶𝑙(𝐴 ∪ 𝐵)------(2) from (1) 

and (2) we get 𝐼𝑉𝑁 𝐶𝑙(𝐴) ∪ 𝐼𝑉𝑁 𝐶𝑙(𝐵) = 𝐼𝑉𝑁𝐶𝑙(𝐴 ∪ 𝐵). 

(iv) Since 𝐴 ∩ 𝐵 ⊆ 𝐴 , 𝐼𝑉𝑁 𝐶𝑙(𝐴 ∩ 𝐵) ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐴)  by Theorem 3.16(ii), Similarly, 𝐼𝑉𝑁 𝐶𝑙(𝐴 ∩

𝐵) ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐵). Hence 𝐼𝑉𝑁 𝐶𝑙(𝐴 ∩ 𝐵) ⊆ 𝐼𝑉𝑁 𝐶𝑙(𝐴) ∩ 𝐼𝑉𝑁𝐶𝑙(𝐵). 

(v) {𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴)}𝑐 = [∪ {𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐴}]𝑐 =∩ {𝐺 ∈ 𝜏𝑁
𝑐 : 𝐴𝑐 ⊆ 𝐺},     

{𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴)}𝑐 = 𝐼𝑉𝑁 𝐶𝑙(𝐴)𝑐. 

(vi) {𝐼𝑉𝑁 𝐶𝑙(𝐴)}𝑐 = [∩ {𝐺 ∈ 𝜏𝑁
𝑐 : 𝐴𝑐 ⊆ 𝐺}]𝑐 =∪ {𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐴}, 

{𝐼𝑉𝑁 𝐶𝑙(𝐴)}𝑐 = 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴)𝑐. 

In theorem 3.17((ii) and (iv)), the equality does not hold. Let us display this by an example below 

Example 3.18 Let 𝑋 = {𝑎, 𝑏} and the 𝐼𝑉𝑁 sets are 0𝑁 =<
[0,0],[0,0],[1,1]

𝑎
,

[0,0],[0,0],[1,1]

𝑏
>; 

1𝑁 =<
[1,1],[0,0],[0,0]

𝑎
,

[1,1],[0,0],[0,0]

𝑏
>;   𝐴 =<

[0.1,0.4],[0.2,0.7],[0.4,0.6]

𝑎
,

[0.6,0.8],[0.2,0.3],[0.2,0.3]

𝑏
>; 

𝐵 =<
[0.1,0.3],[0.3,0.8],[0.5,0.8]

𝑎
,

[0.2,0.7],[0.4,0.8],[0.3,0.7]

𝑏
>, 𝜏𝑁 = {0𝑁 , 1𝑁 , 𝐴, 𝐵} is an 𝐼𝑉𝑁 topology on 𝑋. Let us 

consider two 𝐼𝑉𝑁 sets 𝐶 =<
[0.1,0.4],[0.3,0.7],[0.5,0.6]

𝑎
,

[0.4,0.8],[0.2,0.3],[0.2,0.3]

𝑏
> and 𝐷 =<

[0,0.3],[0.2,0.8],[0.4,0.9]

𝑎
,

[0.6,0.7],[0.3,0.6],[0.2,0.5]

𝑏
>; Now 𝐶 ∪ 𝐷 =<

[0.1,0.4],[0.2,0.7],[0.4,0.6]

𝑎
,

[0.6,0.8],[0.2,0.3],[0.2,0.3]

𝑏
> =

𝐴; 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶 ∪ 𝐷) = 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴) = 𝐴; 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶) = 0𝑁, 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐷) = 0𝑁,  𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶) ∪

𝐼𝑉𝑁 𝐼𝑛𝑡(𝐷) = 0𝑁;   

Therefore 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶 ∪ 𝐷) ≠  𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶) ∪ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐷). 

By Theorem 3.17(v), 𝐼𝑉𝑁 𝐶𝑙(𝐶)𝑐 = (𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶))𝑐 = (0𝑁)𝑐 = 1𝑁 ,  𝐼𝑉𝑁 𝐶𝑙(𝐷)𝑐 = (𝐼𝑉𝑁 𝐼𝑛𝑡(𝐷))𝑐 =

(0𝑁)𝑐 = 1𝑁 ,  𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶) ∩ 𝐼𝑉𝑁 𝐼𝑛𝑡(𝐷) = 1𝑁 ;   𝐼𝑉𝑁 𝐶𝑙(𝐶𝑐 ∩ 𝐷𝑐) = 𝐼𝑉𝑁 𝐶𝑙((𝐶 ∪ 𝐷)𝑐) = (𝐼𝑉𝑁 𝐼𝑛𝑡(𝐶 ∪

𝐷))𝑐 = (𝐼𝑉𝑁 𝐼𝑛𝑡(𝐴))𝑐 = 𝐴𝑐;  𝐼𝑉𝑁 𝐶𝑙(𝐶𝑐 ∩ 𝐷𝑐) ≠  𝐼𝑉𝑁 𝐶𝑙(𝐶𝑐) ∪ 𝐼𝑉𝑁 𝐶𝑙(𝐷𝑐). 

4. Interval Valued Neutrosophic Subspace Topology 

 In this section we present, along with some examples and findings, the definition of interval 

valued neutrosophic subspace topology. 

Theorem 4.1 Let (𝑋, 𝜏𝑁)  be a 𝐼𝑉𝑁 topological space on 𝑋 and 𝑌 ∈ 𝑃(𝑋). Then the collection 𝜏𝑁𝑌 =

{𝑌 ∩ 𝐺: 𝐺 ∈ 𝜏𝑁} is a 𝐼𝑉𝑁 topology on 𝑋. 

Proof:  

(i) Since 0𝑁 , 1𝑁 ∈ 𝜏𝑁, therefore 𝑌 ∩ 0𝑁 = 0𝑁 ∈ 𝜏𝑁𝑌  and 𝑌 ∩ 1𝑁 = 𝑌 ∈ 𝜏𝑁𝑌. 

(ii) Let 𝑌𝑘 ∈ 𝜏𝑁𝑌 , ∀ 𝑘 ∈ 𝐼 , then 𝑌𝑘 = 𝑌 ∩ 𝐺𝑘  where 𝐺𝑘 ∈ 𝜏𝑁  for each 𝑘 ∈ 𝐼 . Now 
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  as each 𝐺𝑘 ∈ 𝜏𝑁. 
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(iii) Let 𝑌1, 𝑌2 ∈ 𝜏𝑁𝑌 , 𝑌1 = 𝑌 ∩ 𝐺1  and 𝑌2 = 𝑌 ∩ 𝐺2  where 𝐺1, 𝐺2 ∈ 𝜏𝑁  Now 𝑌1 ∩ 𝑌2 =

(𝑌 ∩ 𝐺1) ∩ (𝑌 ∩ 𝐺2) = 𝑌 ∩ (𝐺1 ∩ 𝐺2) ∈ 𝜏𝑁𝑌, since 𝐺1 ∩ 𝐺2 ∈ 𝜏𝑁 as 𝐺1, 𝐺2 ∈ 𝜏𝑁. 

Definition 4.2 Let (𝑋, 𝜏𝑁)  be an 𝐼𝑉𝑁 topological space on 𝑋 and 𝑌 is a interval values neutrosophic 

subset (In short 𝐼𝑉𝑁  subset) of 𝑋 , the collection 𝜏𝑁𝑌 = {𝑌 ∩ 𝐺: 𝐺 ∈ 𝜏𝑁} is called interval valued 

neutrosophic subspace (In short 𝐼𝑉𝑁 subspace) of 𝑌. 𝑌 is called 𝐼𝑉𝑁 subspace of 𝑋. 

Example 4.3 Let us consider the 𝐼𝑉𝑁 topology 𝜏𝑁1
= {0𝑁 , 1𝑁 , 𝐴, 𝐵, 𝐶, 𝐷} as in Example 3.10 and an 

𝐼𝑉𝑁 set 𝑌 =<
[0.4,0.6],[0.3,0.7],[0.1,0.5]

𝑎
,

[0.5,0.9],[0.4,1],[0.2,0.6]

𝑏
>, 0𝑁 = 𝑌 ∩ 0𝑁 = 0𝑁; 

𝐺1 = 𝑌 ∩ 𝐴, 𝐺1 =<
[0.4,0.6],[0.3,0.7],[0.2,0.8]

𝑎
,

[0.4,0.6],[0.4,1],[0.4,0.7]

𝑏
>; 

𝐺2 = 𝑌 ∩ 𝐵, 𝐺2 =<
[0.3,0.6],[0.4,0.7],[0.3,0.8]

𝑎
,

[0.1,0.7],[0.4,1],[0.2,0.6]

𝑏
>; 

𝐺3 = 𝑌 ∩ 𝐶, 𝐺3 =<
[0.4,0.6],[0.3,0.7],[0.2,0.8]

𝑎
,

[0.4,0.7],[0.4,1],[0.2,0.6]

𝑏
>; 

𝐺4 = 𝑌 ∩ 𝐷, 𝐺4 =<
[0.3,0.6],[0.4,0.7],[0.3,0.8]

𝑎
,

[0.1,0.7],[0.4,1],[0.4,0.7]

𝑏
>; Then 𝜏𝑁𝑌 = {0𝑁 , 1𝑁 , 𝐺1, 𝐺2, 𝐺3} is an 𝐼𝑉𝑁 

subspace topology for 𝜏𝑁1
 and 𝜏𝑁𝑌 is called 𝐼𝑉𝑁 subspace of (𝑋, 𝜏𝑁1

). 

Theorem 4.4 Let (𝑋, 𝜏𝑁)  be an 𝐼𝑉𝑁 topological space, 𝔅 be an 𝐼𝑉𝑁 basis for 𝜏𝑁 and 𝑌 is an 𝐼𝑉𝑁 

subset of 𝑋. Then the family 𝔅𝑌 = {𝑌 ∩ 𝐺: 𝐺 ∈ 𝔅} is an 𝐼𝑉𝑁 basis for 𝐼𝑉𝑁 subspace topology 𝜏𝑁𝑌. 

Proof:  

Let 𝑈 ∈ 𝜏𝑁𝑌 be arbitrary, then there exists an 𝐼𝑉𝑁 set 𝐺 ∈ 𝜏𝑁 such that 𝑈 = 𝑌 ∩ 𝐺. Since 𝔅 is an 

𝐼𝑉𝑁 basis for 𝜏𝑁, therefore there exists a sub collection {𝜒𝑖: 𝑖 ∈ 𝐼} of 𝔅 such that 
Ii
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  . Since 𝑌 ∩ 𝜒𝑖 ∈ 𝐵𝑌 , therefore 𝐵𝑌  is a 𝐼𝑉𝑁  basis for an 𝐼𝑉𝑁 

subspace topology 𝜏𝑁𝑌. 

5. Conclusion 

 The concept of interval valued neutrosophic topological space, interval valued neutrosophic 

interior and interval valued neutrosophic closure of an interval valued neutrosophic sets were 

introduced. An interval valued neutrosophic subspace topology of interval valued neutrosophic sets 

are also introduced. The newly introduced’ Interval Valued Neutrophic Topological Spaces’ is a 

stronger version of ‘Neutrosophic Topological Spaces’.  
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Abstract: In this paper, the theory of pentagonal neutrosophic number has been studied in a 

disjunctive frame of reference. Moreover, the dependency and independency of the membership 

functions for the pentagonal neutrosophic number are also classified here. Additionally, the 

development of a new score function and its computation have been formulated in distinct rational 

perspectives. Further, weighted arithmetic averaging operator and weighted geometric averaging 

operator in the pentagonal neutrosophic environment are introduced here using an influx of 

different logical & innovative thought. Also, a multi-criteria group decision-making problem 

(MCGDM) in a mobile communication system is formulated in this paper as an application in the 

pentagonal neutrosophic arena. Lastly, the sensitivity analysis portion reflects the variation of this 

noble work. 

Keywords: Pentagonal neutrosophic number, Weighted arithmetic and geometric averaging 

operator, Score functions, MCGDM. 

 

 

1. Introduction 

1.1 Neutrosophic Sets 

Handling the notion of vagueness and uncertainty concepts, fuzzy set theory is a dominant field, 

was first presented by Zadeh [1]  in his paper (1965).Vagueness theory has a salient feature for 

solving engineering and statistical problem very lucidly. It has a great impact on social-science, 

networking, decision making and numerous kinds of realistic problems. On the basis of ideas of 

Zadeh’s research paper, Atanassov [2] invented the prodigious concept of intuitionistic fuzzy set 

where he precisely interpreted the idea of membership as well as non membership function very 

aptly. Further, researchers developed the formulation of triangular [3], trapezoidal [4], pentagonal 

[5] fuzzy numbers in uncertainty arena. Also, Liu & Yuan [6] established the concept of the 

triangular intuitionistic fuzzy set;Ye [7] put forth the basic idea of trapezoidal intuitionistic fuzzy set 
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in the research field. Naturally, the question arises, how can we evolve the idea of uncertainty 

concepts in mathematical modelling? Researchers have invented disjunctive kinds of methodologies 

to define elaborately the concepts and have suggested some new kinds of ambivalent parameters. To 

deal with those kinds of problems, the decision-makers’ choice varies in different areas. F. 

Smarandache [8] in 1998 generated the concept of a neutrosophic set having three different 

integrants namely, (i) truthiness, (ii) indeterminacies, and (iii) falseness. Each and every 

characteristic of the neutrosophic set are very pertinent factors in our real-life models. Later, Wang et 

al. [9] proceeded with the idea of a single typed neutrosophic set, which is very productive to sort 

out the solution of any complicated kind of problem. Recently, Chakraborty et al. [10, 11] 

conceptualized the dynamic idea of triangular and trapezoidal neutrosophic numbers in the 

research domain and applied it in different real-life problem. Also, Maity et al. [12] built the 

perception of ranking and defuzzification in a completely different type of attributes. To handle 

human decision making procedure on the basis of positive and negative sides, Bosc and Pivert [13] 

cultivated the notion of bipolarity. With that continuation, Lee [14] elucidated the perception of 

bipolar fuzzy set in their research article. Further, Kang and Kang [15] broadened this concept into 

semi-groups and group structures field. As research proceeded, Deli et al. [16] germinated the idea 

of a bipolar neutrosophic set and used it as an implication to a decision-making related problem. 

Broumi et al. [17] produced the idea of bipolar neutrosophic graph theory and, subsequently, Ali 

and Smarandache [18] put forth the concept of the uncertain complex neutrosophic set. Chakraborty 

[19] introduced the triangular bipolar number in different aspects. In succession; Wang et al. [20] 

also introduced the idea of operators in a bipolar neutrosophic set and applied it in a 

decision-making problem. The multi-criteria decision making (MCDM) problem is a supreme 

interest to the researchers who deal with the decision scientific analysis. Presently, it is more 

acceptable in such issues where a group of criteria is utilized.  Such cases of problems relating to 

multi-criteria group decision making (MCGDM) have shown its fervent influence. Also MCDM has 

broad applications in disjunctive fields under various uncertainty contexts.We can find many 

applications and development of neutrosophic theory in multi-criteria decision making problem in 

the literature surveys presented in [21–25], graph theory [26-30], optimization techniques [31-33] etc. 

In this current era, Basset [34-40] presented some worthy articles related to neutrosophic sphere and 

applied it in many different well-known fields.Also, K.Mondal [41,42] successfully 

applied  the  notion  of  neutrosophic  number   

in  faculty recruitment MCDM problem in education purpose. Recently, the viewpoint of 

plithogenic set is being constructed by Abdel [43] and it has an immense influential motivation in 

impreciseness field in various sphere of research field. Also, Chakraborty [44] developed the 

conception of cylindrical neutrosophic number is minimal tree problem. 

Neutrosophic concept is very fruitful & vibrant in a realistic approach in the recent research field. R. 

Helen [45] first germinated the idea of the pentagonal fuzzy number then Christi [46] utilized the 

conception of pentagonal fuzzy number into pentagonal intuitionistic number and skillfully applied 

it to solve a transportation problem. Additionally, Chakraborty [47, 48] put forward the notion of 

pentagonal neutrosophicnumber and its different and disjunctive representation in transportation 

problem and graph-theoretical research arenas. Subsequently, Karaaslan [51-56] put forth some 
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innovative idea on multi-attribute decision making in neutrosophic domain. Also, Karaaslan [57-61] 

presented the notion of soft set theory with the appropriate justification of neutrosophic fuzzy 

number. Recently, Broumi et.al [62-66] manifested the conception of the graph-theoretical shortest 

path problem under neutrosophic environment. Further, Broumi [67] implemented the concept of 

neutrosophic membership functions using MATLAB programming. A few works [68-71] are also 

established recently, based on impreciseness domain. 

In this article, we mainly focus on the different representation of pentagonal neutrosophic number 

and its dependency, independency portions. We generate a new logical score function for 

crispification of pentagonal neutrosophic number. Additionally, we introduce two different logical 

operators namely i) pentagonal neutrosophic weighted arithmetic averaging operator (PNWAA), ii) 

pentagonal neutrosophic weighted geometric averaging operator (PNWGA) and established its 

theoretical developments along with its different properties. Also, we discussed the utility of these 

operators in real-life problems. Later, we consider a mobile communication based MCGDM problem 

in neutrosophic domain and solve it using the established two operators & score function.Sensitivity 

analysis of this problem is also addressed here which will show distinct results in different aspects. 

Finally, comparison analysis is performed here with the established methods which give an 

important impact in the research arena. This noble thought will help us to solve a plethora of daily 

life problems in uncertainty arena. 

 

1.2 Motivation for the study 

With the advent of vagueness theory the arena of numerous realistic mathematical modeling, 

engineering structural issues, multi-criteria problem have immensely achieved a productive and 

impulsive effect.Naturally it is very intriguing to the researchers that if someone sheds light on the 

pentagonal neutrosophic number then what will be it in the form of linearity and its classification? 

Based on this perception we impose three components on a pentagonal neutrosophic number i.e. 

truthiness, indeterminacy and falsity. Proceeding with the PNNWAA and PNNWGA operators and 

based on the score function of pentagonal neutrosophic numbers, an MCGDM method is built up 

and some interesting and worthy conclusions are tried to extract from this research article. 

1.3 Novelties of the work 

Recently, researchers are utmost persevere to develop theories connecting neutrosophic field and 

constantly try to generate its distinct application in various sphere of neutrosophic arena. However, 

justifying all the perspectives related to pentagonal neutrosophic fuzzy set theory; numerous 

theories and problems are yet to be solved. In this research article our ultimate objective is to shed 

light some unfocussed points in the pentagonal domain. 

(1) Classification of Pentagonal Neutrosophic Number. 

(2) Illustrative demonstration of aggregation operations and geometric operations on 

Pentagonal Neutrosophic Number’s. 

(3) Proposed new score function and its utility. 

(4)  Execute the idea of Pentagonal Neutrosophic Number’s in MCGDM problem.  

2. Preliminaries 
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Definition 2.1: Fuzzy Set: [1] Let �̃� be a set such that Ã = {(β, αÃ(β)): βϵA, αÃ(β)ϵ[0,1]} which is 

normally denoted by this ordered pair(β, αÃ(β)), here β is a member of the set𝐴and 0 ≤ αÃ(β) ≤ 1, 

then set Ã is called a fuzzy set. 

 

Definition 2.2: Neutrosophic Set:[8] A set �̃�𝑁𝑒𝑢  in the domain of discourse 𝐴, most commonly 

stated as ∈  is called a neutrosophic set if �̃�𝑁𝑒𝑢 = {〈∈; [𝜑𝐴𝑁𝑒�̃�(∈), 𝛾𝐴𝑁𝑒�̃�(∈), 𝛿𝐴𝑁𝑒�̃�(∈)]〉 ⋮∈

𝜖𝐴} ,where 𝜑𝐴𝑁𝑒�̃�(∈): 𝐴 →] − 0,1 + [ symbolizes the index of confidence, 𝛾𝐴𝑁𝑒�̃�(∈): 𝐴 →] − 0,1 +

[symbolizes the index of uncertainty and 𝛿𝐴𝑁𝑒�̃�(∈): 𝐴 →] − 0,1 + [symbolizes the degree of falseness 

in the decision making procedure. Where,[𝜑𝐴𝑁𝑒�̃�(∈), 𝛾𝐴𝑁𝑒�̃�(∈), 𝛿𝐴𝑁𝑒�̃�(∈)] satisfies the in the equation 

−0 ≤ 𝜑𝐴𝑁𝑒�̃�(∈) + 𝛾𝐴𝑁𝑒�̃�(∈) + 𝛿𝐴𝑁𝑒�̃�(∈) ≤ 3 +. 

 

Definition 2.3: Single Typed Neutrosophic Number: [8]Single Typed Neutrosophic Number (�̃�) is 

denoted as �̃� = 〈[(𝑢1, 𝑣1, 𝑤1, 𝑥1); 𝛼], [(𝑢2, 𝑣2, 𝑤2, 𝑥2); 𝛽], [(𝑢3, 𝑣3, 𝑤3, 𝑥3); 𝛾]〉where𝛼, 𝛽, 𝛾 ∈ [0,1], 

where(𝜑�̃�): ℝ → [0, 𝛼], (𝛾�̃�): ℝ → [𝛽, 1] and (𝛿�̃�): ℝ → [𝛾, 1] is given as: 

𝜑�̃�(∈) = {

€𝑛�̃�(∈)
𝛼

€𝑛�̃�(∈)
0 

𝑤ℎ𝑒𝑛 𝑢1 ≤∈≤ 𝑣1

𝑤ℎ𝑒𝑛  𝑣1 ≤∈≤ 𝑤1

 𝑤ℎ𝑒𝑛 𝑤1 ≤∈≤ 𝑥1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

 

£�̃�(∈) = {

𝛾𝑛�̃�(∈)

𝛽

𝛾𝑛�̃�(∈)
1 

𝑤ℎ𝑒𝑛 𝑢2 ≤∈≤ 𝑣2

𝑤ℎ𝑒𝑛 𝑣2 ≤∈≤ 𝑤2

 𝑤ℎ𝑒𝑛 𝑤2 ≤∈≤ 𝑥2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

𝛿�̃�(∈) = {

µ𝑛�̃�(∈)
𝛾

µ𝑛�̃�(∈)
1 

 𝑤ℎ𝑒𝑛 𝑢3 ≤∈≤ 𝑣3

𝑤ℎ𝑒𝑛 𝑣3 ≤∈≤ 𝑤3

 𝑤ℎ𝑒𝑛 𝑤3 ≤∈≤ 𝑥3

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Definition 2.4: Single-Valued Neutrosophic Set:[9] A Neutrosophic set in the definition 2.2 is 

�̃�𝑁𝑒𝑢 said to be a Single-Valued Neutrosophic Set (�̃�𝑁𝑒𝑢)  if ∈  is a single-valued independent 

variable. �̃�𝑁𝑒𝑢 = {〈∈; [𝛼𝐴𝑁𝑒𝑢(∈), 𝛽𝐴𝑁𝑒𝑢(∈), γ𝐴𝑁𝑒𝑢(∈)]〉 ⋮∈ 𝜖𝐴} , where 𝛼𝐴𝑁𝑒𝑢(∈), 𝛽𝐴𝑁𝑒𝑢(∈)&γ𝐴𝑁𝑒𝑢(∈) 

denote the idea of accuracy, ambiguity and falsity membership functions respectively.𝑆𝑛�̃�is named 

as neut-convex, which implies that 𝑆𝑛�̃� is a subset of R by satisfying the following criterion:  

i. 𝛼𝐴𝑁𝑒𝑢〈𝛿𝑎1 + (1 − 𝛿)𝑎2〉 ≥ 𝑚𝑖𝑛〈𝛼𝐴𝑁𝑒𝑢(𝑎1), 𝛼𝐴𝑁𝑒𝑢(𝑎2)〉 

ii. 𝛽𝐴𝑁𝑒𝑢〈𝛿𝑎1 + (1 − 𝛿)𝑎2〉 ≤ 𝑚𝑎𝑥〈𝛽𝐴𝑁𝑒𝑢(𝑎1), 𝛽𝐴𝑁𝑒𝑢(𝑎2)〉 

iii. 𝛾𝐴𝑁𝑒𝑢〈𝛿𝑎1 + (1 − 𝛿)𝑎2〉 ≤ 𝑚𝑎𝑥〈𝛾𝐴𝑁𝑒𝑢(𝑎1), 𝛾𝐴𝑁𝑒𝑢(𝑎2)〉 

where𝑎1&𝑎2𝜖ℝ𝑎𝑛d𝛿𝜖[0,1] 

 

3. Single Type Linear Pentagonal Neutrosophic Number: 

In this section we introduce different type single type linear pentagonal neutrosophic number. For 

the help of the researchers we pictorially draw the following block diagram as follows: 
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Figure 3.1: Block diagram for a different type of uncertain numbers and their categories 

 

Definition 3.1: Single-Valued Pentagonal Neutrosophic Number: [47]A Single-Valued Pentagonal 

Neutrosophic Number (𝑁𝑃𝑒�̃�) is defined as𝑁𝑃𝑒�̃� =

〈[(ℎ1, ℎ2, ℎ3, ℎ4, ℎ5); 𝜋], [(ℎ1, ℎ2, ℎ3, ℎ4, ℎ5); 𝜇], [(ℎ1, ℎ2, ℎ3, ℎ4, ℎ5); 𝜎]〉, where𝜋, 𝜇, 𝜎 ∈ [0,1]. The accuracy 

membership function(𝜏�̃�): ℝ → [0, 𝜋], the ambiguity membership function (𝜗�̃�): ℝ → [𝜌, 1] and the 

falsity membership function (휀�̃�): ℝ → [𝜎, 1] are defined by: 

 

𝜏�̃�(𝑥) =

{
 
 
 
 

 
 
 
 
𝜋(𝑥−ℎ1)

(ℎ2−ℎ1)
𝑤ℎ𝑒𝑛 ℎ1 ≤ 𝑥 ≤ ℎ2

𝜋(𝑥−ℎ2)

(ℎ3−ℎ2)
  𝑤ℎ𝑒𝑛 ℎ2 ≤ 𝑥 < ℎ3

𝜋 𝑤ℎ𝑒𝑛 𝑥 = ℎ3
𝜋(ℎ4−𝑥)

(ℎ4−ℎ3)
𝑤ℎ𝑒𝑛 ℎ3 < 𝑥 ≤ ℎ4

𝜋(ℎ4−𝑥)

(ℎ5−ℎ4)
𝑤ℎ𝑒𝑛 ℎ4 ≤ 𝑥 ≤ ℎ5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜗�̃�(𝑥) =

{
 
 
 
 
 

 
 
 
 
 
ℎ2 − 𝑥 + 𝜇(𝑥 − ℎ1)

(ℎ2 − ℎ1)
𝑤ℎ𝑒𝑛 ℎ1 ≤ 𝑥 ≤ ℎ2

ℎ3 − 𝑥 + 𝜇(𝑥 − ℎ2)

(ℎ3 − ℎ2)
  𝑤ℎ𝑒𝑛 ℎ2 ≤ 𝑥 < ℎ3

𝜇 𝑤ℎ𝑒𝑛 𝑥 = ℎ3
𝑥 − ℎ3 + 𝜇(ℎ4 − 𝑥)

(ℎ4 − ℎ3)
𝑤ℎ𝑒𝑛 ℎ3 < 𝑥 ≤ ℎ4

𝑥 − ℎ4 + 𝜇(ℎ5 − 𝑥)

(ℎ5 − ℎ4)
𝑤ℎ𝑒𝑛 ℎ4 ≤ 𝑥 ≤ ℎ5

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 
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휀�̃�(𝑥) =

{
 
 
 
 
 

 
 
 
 
 
ℎ2 − 𝑥 + 𝜎(𝑥 − ℎ1)

(ℎ2 − ℎ1)
𝑤ℎ𝑒𝑛 ℎ1 ≤ 𝑥 ≤ ℎ2

ℎ3 − 𝑥 + 𝜎(𝑥 − ℎ2)

(ℎ3 − ℎ2)
  𝑤ℎ𝑒𝑛 ℎ2 ≤ 𝑥 < ℎ3

𝜎  𝑤ℎ𝑒𝑛 𝑥 = ℎ3
𝑥 − ℎ3 + 𝜎(ℎ4 − 𝑥)

(ℎ4 − ℎ3)
𝑤ℎ𝑒𝑛 ℎ3 < 𝑥 ≤ ℎ4

𝑥 − ℎ4 + 𝜎(ℎ5 − 𝑥)

(ℎ5 − ℎ4)
𝑤ℎ𝑒𝑛 ℎ4 ≤ 𝑥 ≤ ℎ5

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

4. Proposed Score Function: 

Score function of a pentagonal neutrosophic number entirely depends on the value of truth 

membership indicator degree, falsity membership indicator degree and uncertainty membership 

indicator degree. The necessity of score function is to draw a comparison or transfer a pentagonal 

neutrosophic fuzzy number into a crisp number. In this section, we will generate a score function as 

follows.For any Pentagonal Single typed Neutrosophic Number (PSNN)  

�̃�𝑃𝑡 = (𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5; 𝜋, 𝜇, 𝜎) 

We define the score function as 

𝑆𝑃𝑡 =
1

15
(𝑠1 + 𝑠2 + 𝑠3 + 𝑠4 + 𝑠5) × (2 + 𝜋 − 𝜎 − 𝜇) 

Here, 𝑆𝑃𝑡 belongs to [0,1]. 

 

4.1Relationship between any two pentagonal neutrosophic fuzzy numbers: 

Let us consider any two pentagonal neutrosophic fuzzy number defined as follows 

�̃�𝑃𝑡1 = (𝑠𝑃𝑡11, 𝑠𝑃𝑡12, 𝑠𝑃𝑡13, 𝑠𝑃𝑡14, 𝑠𝑃𝑡15; 𝜋𝑃𝑡1, 𝜇𝑃𝑡1, 𝜎𝑃𝑡1)and�̃�𝑃𝑡2 =

(𝑠𝑃𝑡21, 𝑠𝑃𝑡22, 𝑠𝑃𝑡23, 𝑠𝑃𝑡24, 𝑠𝑃𝑡25; 𝜋𝑃𝑡2, 𝜇𝑃𝑡2, 𝜎𝑃𝑡2) 

The score function for the are 

𝑆𝑃𝑡1 =
1

15
(𝑠𝑃𝑡11 + 𝑠𝑃𝑡12 + 𝑠𝑃𝑡13 + 𝑠𝑃𝑡14 + 𝑠𝑃𝑡15) × (2 + 𝜋𝑃𝑡1 − 𝜎𝑃𝑡1 − 𝜇𝑃𝑡1) 

and 

𝑆𝑃𝑡2 =
1

15
(𝑠𝑃𝑡21 + 𝑠𝑃𝑡22 + 𝑠𝑃𝑡23 + 𝑠𝑃𝑡24 + 𝑠𝑃𝑡25) × (2 + 𝜋𝑃𝑡2 − 𝜎𝑃𝑡2 − 𝜇𝑃𝑡2) 

Then we can say the following 

1) �̃�𝑃𝑡1 > �̃�𝑃𝑡2 if 𝑆𝑃𝑡1 > 𝑆𝑃𝑡2 

2) �̃�𝑃𝑡1 < �̃�𝑃𝑡2if 𝑆𝑃𝑡1 < 𝑆𝑃𝑡2 

3) �̃�𝑃𝑡1 = 𝐴𝑃𝑡2 if 𝑆𝑃𝑡1 = 𝑆𝑃𝑡2 

Table 4.1: Numerical Examples 

Pentagonal Neutrosophic Number (�̃�𝑷𝒕) Score Value (𝑺𝑷𝒕) Ordering 

�̃�𝑷𝒕𝟏 =< (𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔; 𝟎. 𝟒, 𝟎. 𝟓, 𝟎. 𝟔) > 0.17333  

𝐴𝑃𝑡4 > 𝐴𝑃𝑡2 > 𝐴𝑃𝑡1 > 𝐴𝑃𝑡3 �̃�𝑷𝒕𝟐 =< (𝟎. 𝟑𝟓, 𝟎. 𝟒, 𝟎. 𝟒𝟓, 𝟎. 𝟓, 𝟎. 𝟓𝟓; 𝟎. 𝟔, 𝟎. 𝟑, 𝟎. 𝟒) > 0.28500 

�̃�𝑷𝒕𝟑 =< (𝟎. 𝟏𝟓, 𝟎. 𝟐, 𝟎. 𝟐𝟓, 𝟎. 𝟑, 𝟎. 𝟑𝟓; 𝟎. 𝟔, 𝟎. 𝟒, 𝟎. 𝟓) > 0.14167 

�̃�𝑷𝒕𝟒 =< (𝟎. 𝟕, 𝟎. 𝟕𝟓, 𝟎. 𝟖, 𝟎. 𝟖𝟓, 𝟎. 𝟗; 𝟎. 𝟑, 𝟎. 𝟐, 𝟎. 𝟔) > 0.40000 
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4.1 Basic Operations for pentagonal neutrosophic fuzzy number:  

Let 𝑝1̃ = 〈(𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5); 𝜋𝑝1̃ , 𝜇𝑝1̃ , 𝜎𝑝1̃〉and 𝑝2̃ = 〈(𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5); 𝜋𝑝2̃ , 𝜇𝑝2̃ , 𝜎𝑝2̃〉be two IPFNs and 

𝛼 ≥ 0. Then the following operational relations hold: 

4.1.1 Addition: 

𝑝1̃ + 𝑝2̃ = 〈(𝑐1 + 𝑑1, 𝑐2 + 𝑑2, 𝑐3 + 𝑑3, 𝑐4 + 𝑑4, 𝑐5 + 𝑑5); 𝜋𝑝1̃ + 𝜋𝑝2̃ −  𝜋𝑝1̃𝜋𝑝2̃ , 𝜇𝑝1̃𝜇𝑝2̃ , 𝜎𝑝1̃𝜎𝑝2̃〉 

4.1.2Multipliction: 

𝑝1̃𝑝2̃ = 〈(𝑐1𝑑1, 𝑐2𝑑2, 𝑐3𝑑3, 𝑐4𝑑4, 𝑐5𝑑5);  𝜋𝑝1̃𝜋𝑝2̃ , 𝜇𝑝1̃+, 𝜇𝑝2̃ − 𝜇𝑝1̃𝜇𝑝2̃ , 𝜎𝑝1̃ + 𝜎𝑝2̃ − 𝜎𝑝1̃𝜎𝑝2̃〉 

4.1.3 Multiplication by scalar: 

𝛼𝑝1̃ = 〈(𝛼𝑐1, 𝛼𝑐2, 𝛼𝑐3, 𝛼𝑐4, 𝛼𝑐5); 1 − (1 − 𝜋𝑝1̃)
𝛼 , 𝜇𝑝1̃

𝛼 , 𝜎𝑝1̃
𝛼)〉 

4.1.4 Power: 

𝑝1̃
𝛼 = 〈(𝑐1

𝛼 , 𝑐2
𝛼 , 𝑐3

𝛼 , 𝑐4
𝛼 , 𝑐5

𝛼); 𝜋𝑝1̃
𝛼 , (1 − 𝜇𝑝1̃)

𝛼 , (1 − 𝜎𝑝1̃)
𝛼〉 

5. Arithmetic and Geometric Operators:  

5.1 Two weighted aggregation operators of Pentagonal Neutrosophic Numbers 

Aggregation operators are such pertinent tool for aggregating information to tactfully handle the 

decision making procedure, this section generates a brief understanding between two weighted 

aggregation operators to aggregate PNNs as a generalization of the weighted aggregation operators 

for PNNs, which are broadly and aptly used in decision making.  

 

5.1.1 Pentagonal neutrosophic weighted arithmetic averaging operator 

Let 𝑝𝑗 = 〈(𝑐𝑗1, 𝑐𝑗2, 𝑐𝑗3, 𝑐𝑗4, 𝑐𝑗5); 𝜋𝑝1̃ , 𝜇𝑝1̃ , 𝜎𝑝1̃〉(𝑗 = 1,2,3, … . , 𝑛)  be a set of PNNs, then a PNWAA 

operator is defined as follows: 

 

𝑃𝑁𝑊𝐴𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑛) = ∑ 𝜔𝑗
𝑛
𝑗=1 𝑝𝑗                                         (5.1)  

 

where𝜔𝑗 is the weight of 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) such that 𝜔𝑗 > 0 and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1. 

In accordance with the result ofSection 4.1 and equation (5.1) we can introduce the following 

theorems: 

 

Theorem 5.1. Let 𝑝𝑗 = 〈(𝑐𝑗1, 𝑐𝑗2, 𝑐𝑗3, 𝑐𝑗4, 𝑐𝑗5);  𝜋𝑝1̃ , 𝜇𝑝1̃ , 𝜎𝑝1̃〉(𝑗 = 1,2,3, … . , 𝑛) be a set of PNNs, then 

according to Section 4.1 and equation (5.1) we can give the following PNWAA operator 

𝑃𝑁𝑊𝐴𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑛) = ∑𝜔𝑗

𝑛

𝑗=1

𝑝𝑗 

 =〈(∑ 𝜔𝑗
𝑛
𝐽=1 𝑐𝑗1,∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗2, ∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗3, ∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗4,∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗5  ); 1 − ∏ (1 −𝑛

𝑗=1

𝜋𝑝�̃�)
𝜔𝑗  , ∏ 𝜇𝑝�̃�

𝜔𝑗𝑛
𝑗=1  , ∏ 𝜎𝑝�̃�

𝜔𝑗𝑛
𝑗=1 〉 

Where 𝜔𝑗 is the weight of 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) such that 𝜔𝑗 > 0 and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1. 

Theorem 5.1 can be proved with the help of mathematical induction. 

 

Proof: When 𝑛 = 2 then, 

   𝜔1𝑝1 = 〈(𝜔1𝑐11, 𝜔1𝑐12, 𝜔1𝑐13, 𝜔1𝑐14, 𝜔1𝑐15 );  1 − (1 − 𝜋𝑝1̃)
𝜔1
𝜎𝑝2̃

𝜔2 , 𝜇𝑝1̃
𝜔1 , 𝜎𝑝1̃

𝜔1〉 

and 𝜔2𝑝2 = 〈(𝜔2𝑐21, 𝜔2𝑐22, 𝜔2𝑐23, 𝜔2𝑐24, 𝜔2𝑐25 );  1 − (1 − 𝜋𝑝2̃)
𝜔2
, 𝜇𝑝2̃

𝜔2 , 𝜎𝑝2̃
𝜔2〉 
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Thus, 𝑃𝑁𝑊𝐴𝐴 (𝑝1̃ , 𝑝2̃) = 𝜔1𝑝1 + 𝜔2𝑝2 

=〈(𝜔1𝑐11 + 𝜔2𝑐21 + 𝜔1𝑐12 +𝜔2𝑐22 + 𝜔1𝑐13 + 𝜔2𝑐23 +𝜔1𝑐14 + 𝜔2𝑐24 + 𝜔1𝑐15 + 𝜔2𝑐25); 1 −

 (1 − 𝜋𝑝1̃)
𝜔1
+ 1 − (1 − 𝜋𝑝2̃)

𝜔2
(1 − (1 − 𝜋𝑝1̃)

𝜔1
)(1 − (1 − 𝜋𝑝2̃)

𝜔2
), 𝜇𝑝1̃

𝜔1𝜇𝑝2̃
𝜔2 , 𝜎𝑝1̃

𝜔1𝜎𝑝2̃
𝜔2〉 

When applying 𝑛 = 𝑘, by applying equation (5.1) , we get  

𝑃𝑁𝑊𝐴𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑘) = ∑ 𝜔𝑗
𝑘
𝑗=1 𝑝𝑗(5.2) 

 

= 〈(∑ 𝜔𝑗
𝑘
𝐽=1 𝑐𝑗1,∑ 𝜔𝑗

𝑘
𝐽=1 𝑐𝑗2, ∑ 𝜔𝑗

𝑘
𝐽=1 𝑐𝑗3,∑ 𝜔𝑗

𝑘
𝐽=1 𝑐𝑗4,∑ 𝜔𝑗

𝑘
𝐽=1 𝑐𝑗5  );  1 − ∏ (1 −𝑘

𝑗=1

𝜋𝑝�̃�)
𝜔𝑗  , ∏ 𝜇𝑝�̃�

𝜔𝑗𝑘
𝑗=1 , ∏ 𝜎𝑝�̃�

𝜔𝑗𝑘
𝑗=1 〉 

When 𝑛 = 𝑘 + 1, by applying equations (5.1) and (5.2) we can yield 

𝑃𝑁𝑊𝐴𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑘+1) = ∑ 𝜔𝑗
𝑘+1
𝑗=1 𝑝𝑗(5.3) 

= 〈(∑ 𝜔𝑗
𝑘+1
𝐽=1 𝑐𝑗1,∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗2,∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗3, ∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗4,∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗5  );  1 − ∏ (1 − 𝜋𝑝�̃�)

𝜔𝑗𝑘
𝑗=1  + 1 −

(1 − 𝜋𝑝𝑘+1̃)
𝜔𝑘+1

, ∏ 𝜇𝑝�̃�
𝜔𝑗𝑘+1

𝑗=1 , ∏ 𝜎𝑝�̃�
𝜔𝑗𝑘+1

𝑗=1 〉 

= 〈(∑ 𝜔𝑗
𝑘+1
𝐽=1 𝑐𝑗1,∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗2,∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗3, ∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗4,∑ 𝜔𝑗

𝑘+1
𝐽=1 𝑐𝑗5  ); 1 − ∏ (1 −𝑘+1

𝑗=1

𝜋𝑝�̃�)
𝜔𝑗  , ∏ 𝜇𝑝�̃�

𝜔𝑗𝑘+1
𝑗=1 , ∏ 𝜎𝑝�̃�

𝜔𝑗𝑘+1
𝑗=1 〉 

This completes the proof. 

Obviously, the 𝑃𝑁𝑊𝐴𝐴 operator satisfies the following properties: 

 

i) Idempotency: Let 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) be a set of PNNs. If 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) is equal , i.e. 𝑝𝑗 = 𝑝 

for j=1,2,3,….,n then 𝑃𝑁𝑊𝐴𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑛) =  𝑝. 

 

Proof: Since 𝑝𝑗 = 𝑝 for 𝑗 = 1,2,3, … . , 𝑛 we have,  

𝑃𝑁𝑊𝐴𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑛) = ∑𝜔𝑗

𝑛

𝑗=1

𝑝𝑗 

=〈(∑ 𝜔𝑗
𝑛
𝐽=1 𝑐𝑗1,∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗2, ∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗3, ∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗4,∑ 𝜔𝑗

𝑛
𝐽=1 𝑐𝑗5  );  1 − ∏ (1 −𝑛

𝑗=1

𝜋𝑝�̃�)
𝜔𝑗  , ∏ 𝜇𝑝�̃�

𝜔𝑗𝑛
𝑗=1 , ∏ 𝜎𝑝�̃�

𝜔𝑗𝑛
𝑗=1 〉 

= 〈(𝑐1 ∑ 𝜔𝑗
𝑛
𝐽=1 , 𝑐2 ∑ 𝜔𝑗

𝑛
𝐽=1 , 𝑐3 ∑ 𝜔𝑗

𝑛
𝐽=1 , 𝑐4 ∑ 𝜔𝑗

𝑛
𝐽=1 , 𝑐5 ∑ 𝜔𝑗

𝑛
𝐽=1 ); (1 − (1 −

𝜋𝑝�̃�))
∑ 𝜔𝑗
𝑛
𝐽=1 , 𝜇𝑝�̃�

∑ 𝜔𝑗
𝑛
𝐽=1  , 𝜎𝑝�̃�

∑ 𝜔𝑗
𝑛
𝐽=1 〉 

=〈( 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5); 1 − (1 − 𝜋𝑝1̃), 𝜇𝑝1̃ , 𝜎𝑝1̃〉 = 𝑝 

 

ii) Boundedness: Let 𝑝𝑗(j=1,2,3,….,n) be a set of PNNs and let 

𝑝− = 〈(𝑚𝑖𝑛𝑗(𝑐𝑗1  ),𝑚𝑖𝑛𝑗(𝑐𝑗2  ),𝑚𝑖𝑛𝑗(𝑐𝑗3  ),𝑚𝑖𝑛𝑗(𝑐𝑗4  ),𝑚𝑖𝑛𝑗(𝑐𝑗5  )) ;𝑚𝑖𝑛𝑗 (𝜋𝑝�̃�) ,𝑚𝑎𝑥𝑗 (𝜇𝑝�̃�) ,𝑚𝑎𝑥𝑗 (𝜎𝑝�̃�)〉 

and 𝑝+ =

〈(𝑚𝑎𝑥𝑗(𝑐𝑗1  ),𝑚𝑎𝑥𝑗(𝑐𝑗2  ),𝑚𝑎𝑥𝑗(𝑐𝑗3  ),𝑚𝑎𝑥𝑗(𝑐𝑗4  ),𝑚𝑎𝑥𝑗(𝑐𝑗5  )) ;𝑚𝑎𝑥𝑗 (𝜋𝑝�̃�) ,𝑚𝑖𝑛𝑗 (𝜇𝑝�̃�) ,𝑚𝑖𝑛𝑗 (𝜎𝑝�̃�)〉 

Then 𝑝− ≤ 𝑃𝑁𝑊𝐴𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑛) ≤  𝑝
+. 
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Proof: Since the minimum PNN is 𝑝− and the maximum is 𝑝+there is 𝑝− ≤ 𝑝𝑗 ≤ 𝑝+. Thus there is 

∑ 𝜔𝑗
𝑛
𝐽=1 𝑝− ≤ ∑ 𝜔𝑗𝑝𝑗

𝑛
𝐽=1 ≤ ∑ 𝜔𝑗𝑝

+𝑛
𝐽=1 .According to the above property (i) there is 𝑝− ≤ ∑ 𝜔𝑗

𝑛
𝐽=1 𝑝𝑗 ≤

𝑝+,  

i.e.,𝑝− ≤ PNWAA (𝑝1, 𝑝2, … . , 𝑝𝑛) ≤ 𝑝+. 

 

iii) Monotonicity:  Let 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) be a set of PNNs. If  𝑝𝑗 ≤ 𝑝𝑗
∗ for j= j=1,2,3,….,n, then 

PNWAA (𝑝1, 𝑝2, … . , 𝑝𝑛) ≤  PNWAA(𝑝1,
∗ 𝑝2,

∗ 𝑝3,
∗ 𝑝4,

∗ 𝑝5,
∗ ) 

Proof:  Since 𝑝𝑗 ≤ 𝑝𝑗
∗  for 𝑗 =  𝑗 = 1,2,3, … . , 𝑛  there is ∑ 𝜔𝑗

𝑛
𝑗=1 𝑝𝑗 ≤ ∑ 𝜔𝑗

𝑛
𝑗=1 𝑝𝑗

∗  i.e. 

PNWAA (𝑝1, 𝑝2, … . , 𝑝𝑛) ≤  PNWAA(𝑝1,
∗ 𝑝2,

∗ 𝑝3,
∗ 𝑝4,

∗ 𝑝5
∗).Thus we complete the proofs of all the  properties.   

 

5.2 Pentagonal neutrosophic weighted geometric averaging operator 

 

Let 𝑝𝑗 = 〈(𝑐𝑗1, 𝑐𝑗2, 𝑐𝑗3, 𝑐𝑗4, 𝑐𝑗5); 𝜋𝑝1̃ , 𝜇𝑝1̃ , 𝜎𝑝1̃〉(𝑗 = 1,2,3, … . , 𝑛)  be a set of PNNs, then a PNWGAA 

operator is defined as follows: 

𝑃𝑁𝑊𝐺𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑛) = ∏ 𝑝𝑗
𝜔�̃�𝑛

𝑗=1 (5.4) 

where𝜔𝑗 is the weight of 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) such that 𝜔𝑗 > 0 and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1. 

 

Theorem 5.2. Let 𝑝𝑗 =< (𝑐𝑗1, 𝑐𝑗2, 𝑐𝑗3, 𝑐𝑗4, 𝑐𝑗5);  𝜋𝑝1̃ , 𝜇𝑝1̃ , 𝜎𝑝1̃ > (𝑗 = 1,2,3, … . , 𝑛) be a set of PNNs, then 

according to Section 4.1 and equation (5.4) we can give the following PNWGA operator 

𝑃𝑁𝑊𝐺𝐴 (𝑝1, 𝑝2, … . , 𝑝𝑛) = ∏ 𝑝𝑗
𝜔�̃�𝑛

𝑗=1  (5.5)               

= 〈(∏ 𝑐𝑗1  
𝜔𝑗𝑛

𝑗=1 , ∏ 𝑐𝑗2  
𝜔𝑗𝑛

𝑗=1 , ∏ 𝑐𝑗3  
𝜔𝑗𝑛

𝑗=1 , ∏ 𝑐𝑗4  
𝜔𝑗 ,𝑛

𝑗=1 ∏ 𝑐𝑗5  
𝜔𝑗𝑛

𝑗=1 ;  ∏ 𝜋𝑝�̃�
𝜔𝑗𝑛

𝑗=1  ,1 − ∏ (1 − 𝜇𝑝�̃�)
𝜔𝑗𝑛

𝑗=1  , 1 −

 ∏ (1 − 𝜎𝑝�̃�)
𝜔𝑗𝑛

𝑗=1 〉 

where𝜔𝑗 is the weight of 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) such that 𝜔𝑗 > 0 and ∑ 𝜔𝑗
𝑛
𝑗=1 = 1. 

By the similar proof manner of Theorem 5.1 we can prove the Theorem 5.2 which is not repeated 

here. 

Obviously, the PNWGA operator satisfies the following properties: 

 

i) Idempotency: Let 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) be a set of PNNs.  

If 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) is equal , i.e. 𝑝𝑗 = 𝑝 for 𝑗 = 1,2,3, … . , 𝑛 then PNWGA (𝑝1,𝑝2,….,𝑝𝑛) =  𝑝. 

 

ii) Boundedness: Let 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) be a set of PNNs and let 

𝑝− =〈(𝑚𝑖𝑛𝑗(𝑐𝑗1  ),𝑚𝑖𝑛𝑗(𝑐𝑗2  ),𝑚𝑖𝑛𝑗(𝑐𝑗3  ),𝑚𝑖𝑛𝑗(𝑐𝑗4  ),𝑚𝑖𝑛𝑗(𝑐𝑗5  );  𝑚𝑖𝑛𝑗 (𝜋𝑝�̃�) ,𝑚𝑎𝑥𝑗 (𝜇𝑝�̃�) ,𝑚𝑎𝑥𝑗 (𝜎𝑝�̃�)〉 

and 

𝑝+=〈(𝑚𝑎𝑥𝑗(𝑐𝑗1  ),𝑚𝑎𝑥𝑗(𝑐𝑗2  ),𝑚𝑎𝑥𝑗(𝑐𝑗3  ),𝑚𝑎𝑥𝑗(𝑐𝑗4  ),𝑚𝑎𝑥𝑗(𝑐𝑗5  );  𝑚𝑎𝑥𝑗 (𝜋𝑝�̃�) ,𝑚𝑖𝑛𝑗 (𝜇𝑝�̃�) ,𝑚𝑖𝑛𝑗 (𝜎𝑝�̃�)〉 

 Then 𝑝− ≤ PNWGA (𝑝1,𝑝2,….,𝑝𝑛) ≤  𝑝
+. 

 

iii) Monotonicity:  Let 𝑝𝑗(𝑗 = 1,2,3, … . , 𝑛) be a set of PNNs. If  𝑝𝑗 ≤ 𝑝𝑗
∗for 𝑗 =  𝑗 = 1,2,3, … . , 𝑛, 

then 

PNWGA (𝑝1, 𝑝2, … . , 𝑝𝑛) ≤  PNWGA(𝑝1,
∗ 𝑝2,

∗ 𝑝3,
∗ 𝑝4,

∗ 𝑝5
∗) 
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As the proofs of these properties are similar to the proofs of the above properties, so we don’t repeat 

them. 

 

6. Multi-Criteria Group Decision Making Problem in Pentagonal Neutrosophic Environment 

Multi-criteria group decision-making problem is one of the reliable, logistical and mostly used topics 

in this current era. The main goal of this process is to find out the best alternatives among a finite 

number of distinct alternatives based on finite different attribute values. Such decision-making 

program may be raised powerfully by the methods of multi-criteria group decision analysis 

(MCGDA) which is extremely beneficial to produce decision counselling and offers procedure 

benefits in terms of upgraded decision attributes,delivers improvised communication techniques 

and enrichesresolutions of decision-makers.The execution process is not so much easy to evaluate in 

the pentagonal neutrosophic environment. Using some mathematical operators, score function 

technique, we developed an algorithm to tackle this MCGDM problem.  

In this section, we consider a multi-criteria group decision-making problem based on mobile 

communication provider services in which we need to select the best service according to different 

opinions from people. The developed algorithm is described briefly as follows: 

6.1 Illustration of the MCGDM problem 

We consider the problem as follows: 

Suppose 𝐺 = { 𝐺1, 𝐺2, 𝐺3……… . . 𝐺𝑚} is a distinctive alternative set and  𝐻 = { 𝐻1 , 𝐻2, 𝐻3……… . . 𝐻𝑛} 

is the distinctive attribute set respectively. Let 𝜔 = { 𝜔1, 𝜔2, 𝜔3……… . . 𝜔𝑛} be the corresponding 

weight set attributes where each 𝜔 ≥0 and also satisfies the relation∑ 𝜔𝑖
𝑛
𝑖=1 = 1. Thus we consider 

the set of decision-maker 𝜆 = { 𝜆1, 𝜆2, 𝜆3……… . . 𝜆𝐾}  associated with alternatives whose weight 

vector is stated as Ω = {Ω1, Ω2, Ω3……… . . Ω𝑘}  where each Ω𝑖 ≥ 0 and also satisfies the 

relation∑ Ω𝑖
𝑘
𝑖=1 = 1 , this weight vector will be chosen in accordance with the decision-makers 

capability of judgment, experience, innovative thinking power etc. 

6.2 Normalisation Algorithm of MCGDM Problem: 

Step 1: Composition of Decision Matrices 

Here, we construct all decision matrices proposed by the decision maker’s choice connected with 

finite alternatives and finite attribute functions. The interesting fact is that the member’s 𝑠𝑖𝑗  for each 

matrix are of pentagonal neutrosophic numbers. Thus, we finalize the matrix and is given as follows: 

     𝑋𝐾 =

(

 
 
 
 

. 𝐻1 𝐻2 𝐻3 . . .   𝐻𝑛
𝐺1 𝑠11

𝑘 𝑠12
𝑘 𝑠13

𝑘 . . . . 𝑠1𝑛
𝑘

𝐺2 𝑠21
𝑘 𝑠22

𝑘 𝑠23
𝑘 . . . 𝑠2𝑛

𝑘

𝐺3
.
𝐺𝑚

.

..
𝑠𝑚1
𝑘

.

.
𝑠𝑚2
𝑘

.

.
𝑠𝑚3
𝑘

.

.

.

. . .

. . .

. . 𝑠𝑚𝑛
𝑘
)

 
 
 
 

  (6.1) 

Step 2: Composition of Single decision matrix  
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For generating a single group decision matrix X we have promoted the logical pentagonal 

neutrosophic weighted arithmetic averaging operator (PNWAA) as, 𝑠𝑖𝑗
′ = ∑ 𝜔𝑗

𝑛
𝑗=1 𝑠𝑖𝑗

𝑘  , for individual 

decision matrix 𝑋𝑘, where𝑘 =  1,2,3… . 𝑛 . hence, we finalize the matrix and defined as follows: 

𝑋 =

(

 
 
 

. 𝐻1 𝐻2 𝐻3 . . .   𝐻𝑛
𝐺1 𝑠11

′ 𝑠12
′ 𝑠13

′ . . . . 𝑠1𝑛
′

𝐺2 𝑠21
′ 𝑠22

′ 𝑠23
′ . . . 𝑠2𝑛

′

𝐺3
.
𝐺𝑚

.

..
𝑠𝑚1
′

.

.
𝑠𝑚2
′

.

.
𝑠𝑚3
′

.

.

.

. . .

. . .

. . 𝑠𝑚𝑛
′
)

 
 
 

  (6.2) 

 

Step 3: Composition of leading matrix  

To illustrate the single decision matrix we have promoted the logical pentagonal neutrosophic 

weighted geometric averaging operator (PNWGA ) as, 𝑠𝑖𝑗
′′ = ∏ 𝑠𝑖𝑗

𝜔�̃�𝑛
𝑗=1  for each individual column 

and finally, we construct the decision matrix as below, 

𝑋 =

(

  
 

. 𝐻1
𝐺1 𝑠11

′′

𝐺2 𝑠21
′′

.     .
.

  𝐺𝑚

.
𝑠𝑚1
′′ )

  
 
 (6.3) 

Step 4: Ranking  

Now, considering the score value and transforming the matrix (6.3) into crisp form, we can evaluate 

the best substitute corresponding to the best attributes. We align the values as increasing order 

according to their score values and then detect the best fit result. The best result will be the highest 

magnitude and the worst ones will be the least one. 

 

6.3.1 Flowchart: 

 

 

 

 

 

 

 

 

 

       Figure 6.3.1: Flowchart for the problem 

Composition of Single Decision matrix 

Composition of leading matrix  

ComputeRanking using Score Value. 

Sensitivity Analysis 

Composition of Decision matrices 
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6.3 Illustrative Example: 

Here, we consider a mobile communication service provider based problem in which there are three 

different companies are accessible. Among those companies, our problem is to find out the best 

mobile communication service provider in a logical and meaningful way. Normally, mobile 

communication service providers mostly depend on attributes such as Service & Reliability, Price & 

Availability, and Quality & Features of the system. Here, we also consider three different categories 

of people i) youth age ii) adult age iii) old age people as a decision-maker. According to their 

opinions we formulate the different decision matrices in the pentagonal neutrosophic environment 

described below:  

𝐺1 =  𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 1, 

𝐺2 = 𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 2, 

𝐺3 = 𝑀𝑜𝑏𝑖𝑙𝑒𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 3 

are the alternatives. 

Also 

𝐻1 =Service & Reliability, 

𝐻2 =Price & Availability, 

𝐻3 = Quality & Features 

arethe attributes. 

Let, 𝐷1 = 𝑌𝑜𝑢𝑡ℎ𝑎𝑔𝑒𝑝𝑒𝑜𝑝𝑙𝑒 , 𝐷2 = 𝐴𝑑𝑢𝑙𝑡𝑎𝑔𝑒𝑝𝑒𝑜𝑝𝑙𝑒, 𝐷3 = 𝑆𝑒𝑛𝑖𝑜𝑟𝑎𝑔𝑒𝑝𝑒𝑜𝑝𝑙𝑒 having weight allocation 

𝐷 = { 0.31, 0.35, 0.34 } and the weight allocation in different attribute function is ∆= {0.3,0.4,0.3}.A 

verbal matrix is built up by the decision maker’s to assist the classification of the decision matrix. 

Attribute vs. Verbal Phrase matrix is given below in Table 6.3.1. The total MCGDM problem is 

graphically described as below: 
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Table 6.3.1: List of Verbal Phrase 

Sl no. Attribute Verbal phrase 

             Quantitative Attributes 

1 Service & Reliability 

 

Very High (VH), High (L), Intermediate (I),  Small (S), Very 

small (VS) 

2 Price & Availability 

 

Very high (VH), High (H), Mid (M),  Low (L),  

Very low (VL) 

3 Quality & Features 

 

Very high (VH), High (H), Standard (SD), Low (L),  

Very low (VL) 

 

Table 6.3.2: Relationship between Verbal Phrase and PNN 

Verbal Phase   Linguistic Pentagonal Neutrosophic Number (PNN) 

Very Low (VL) 
 

< (0.1,0.1,0.1,0.1,0.1; 0.4,0.4,0.4) > 
 

Low (L) 
 

< (0.2,0.3,0.4,0.5,0.6; 0.5,0.3,0.3) > 

Moderate (M) 
 

< (0.4,0.5,0.6,0.7,0.8; 0.7,0.2,0.2) > 

Little High (LH) 
 

< (0.5,0.6,0.7,0.8,0.9; 0.75,0.18,0.18) > 

High (H) < (0.6,0.7,0.8,0.9,1.0; 0.8,0.15,0.15) > 
Very High (VH) < (1.0,1.0,1.0,1.0,1.0; 0.95,0.05,0.05) > 

 

Step 1 

In accordance with finite alternatives and finite attribute functions the decision matrices are 

constructed by the proposal of decision maker’s choice. The noteworthy fact is that the entity 𝑠𝑖𝑗  for 

each matrix are of pentagonal neutrosophic numbers. Finally, the matrices are presented as follows: 

𝐷1

= (

. 𝐻1 𝐻2 𝐻3
𝐺1 < 0.2,0.3,0.4,0.5,0.6; 0.4,0.6,0.5 > < 0.1,0.2,0.3,0.4,0.5; 0.5,0.6,0.7 > < 0.3,0.4,0.5,0.6,0.7; 0.6,0.3,0.3 >
𝐺2 < 0.15,0.25,0.35,0.45,0.5; 0.5,0.6,0.5 > < 0.3,0.4,0.5,0.6,0.7; 0.7,0.3,0.5 > < 0.4,0.5,0.55,0.6,0.7; 0.8,0.7,0.3 >
𝐺3 < 0.4,0.5,0.6,0.7,0.8; 0.6,0.4,0.3 > < 0.25,0.3,0.35,0.4,0.45; 0.4,0.6,0.5 > < 0.35,0.4,0.45,0.5,0.55; 0.6,0.3,0.4 >

) 

𝑌𝑜𝑢𝑡ℎ′𝑠 𝑜𝑝𝑖𝑛𝑖𝑜𝑛 

𝐷2 = (

. 𝐻1 𝐻2 𝐻3
𝐺1 < 0.15,0.2,0.25,0.3,0.35;0.6,0.4,0.5 > < 0.1,0.15,0.3,0.35,0.4; 0.7,0.5,0.3 > < 0.7,0.75,0.8,0.85,0.9; 0.3,0.2,0.6 >
𝐺2 < 0.2,0.25,0.3,0.35,0.4; 0.7,0.5,0.4 > < 0.2,0.25,0.3,0.4,0.45;0.6,0.3,0.3 > < 0.4,0.5,0.55,0.6,0.7; 0.8,0.7,0.4 >
𝐺3 < 0.3,0.35,0.4,0.45,0.5; 0.7,0.5,0.3 > < 0.5,0.55,0.6,0.7,0.8; 0.5,0.6,0.7 > < 0.6,0.7,0.75,0.8,0.9; 0.6,0.5,0.6 >

) 

𝐴𝑑𝑢𝑙𝑡′𝑠 𝑂𝑝𝑖𝑛𝑖𝑜𝑛 

𝐷3 = (

. 𝐻1 𝐻2 𝐻3
𝐺1 < 0.2,0.25,0.3,0.4,0.45; 0.6,0.3,0.3 > < 0.2,0.3,0.4,0.5,0.6; 0.4,0.6,0.5 > < 0.7,0.75,0.8,0.85,0.9; 0.3,0.2,0.6 >
𝐺2 < 0.3,0.4,0.5,0.6,0.7; 0.7,0.3,0.5 > < 0.6,0.7,0.75,0.8,0.9; 0.6,0.5,0.6 > < 0.7,0.75,0.8,0.85,0.9; 0.3,0.2,0.6 >
𝐺3 < 0.3,0.35,0.4,0.45,0.5; 0.7,0.5,0.3 > < 0.4,0.5,0.55,0.6,0.7; 0.8,0.7,0.3 > < 0.15,0.2,0.25,0.3,0.35; 0.6,0.4,0.5 >

) 

𝑆𝑒𝑛𝑖𝑜𝑟 ′𝑠 𝑂𝑝𝑖𝑛𝑖𝑜𝑛 

 

Step 2: Composition of Single decision matrix 
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In this step we generate a single group decision matrix M and have incorporated the idea of  logical 

pentagonal neutrosophic weighted arithmetic averaging operator (PNWAA) as, 𝑠𝑖𝑗
′ = ∑ 𝜔𝑗

𝑛
𝑗=1 𝑠𝑖𝑗

𝑘  , for 

individual decision matrix 𝐷𝑘 , where𝑘 =  1,2,3… . 𝑛 . Thus we finalize the matrix which is presented 

as follows: 

𝑀

= (

. 𝐻1 𝐻2 𝐻3
𝐺1 < 0.18,0.25,0.31,0.4,0.46; 1.00,0.41,0.42 > < 0.13,0.22,0.33,0.42,0.50; 0.99,0.56,0.46 > < 0.58,0.64,0.70,0.77,0.84; 0.98,0.23,0.43 >
𝐺2 < 0.22,0.30,0.38,0.47,0.53; 1.00,0.44,0.46 > < 0.38,0.45,0.52,0.60,0.68; 1.00,0.36,0.44 > < 0.42,0.48,0.53,0.58,0.65; 1.00,0.40,0.39 >
𝐺3 < 0.33,0.40,0.46,0.53,0.59; 1.00,0.47,0.30 > < 0.39,0.46,0.51,0.57,0.66; 1.00,0.41,0.47 > < 0.37,0.48,0.49,0.58,0.60; 1.00,0.40,0.50 >

) 

 

Step 3: Composition of leading matrix 

To define the single decision matrix we have employed the concept of the logical pentagonal 

neutrosophic weighted geometric averaging operator ( PNWGA ) as, 𝑠𝑖𝑗
′′ = ∏ 𝑠𝑖𝑗

𝜔�̃�𝑛
𝑗=1  for each 

individual column and finally, we present the decision matrix as below 

 

𝑀 = (

〈0.26, 0.35, 0.44, 0.56, 0.60; 0.99,0.98,0.99〉
〈0.33, 0.41, 0.48,0.55,0.62; 1.00,0.98,0.99〉
〈0.36,0.43,0.48,0.54,0.62; 1.00,0.99,0.99〉

) 

Step 4: Ranking 

Now, we examine the proposed score value for crispification of the PNN into a real number, thus we 

get the ultimate decision matrix as  

𝑀 = (
< 0.1503 >
< 0.1641 >
< 0.1652 >

) 

Here, ordering is  0.1503 < 0.1641 < 0.1652 . Hence, the ranking of the mobile communication 

service provider is 𝐺3 > 𝐺2 > 𝐺1. 

 

6.4 Results and Sensitivity Analysis 

To understand how the attribute weights of each criterion affect the relative matrix and their ranking 

a sensitivity analysis is done. The basic idea of sensitivity analysis is to exchange weights of the 

attribute values keeping the rest of the terms are fixed. The below table is the evaluation table which 

shows the sensitivity results.  

Attribute Weight Final Decision Matrix Ordering 

<(𝟎. 𝟑, 𝟎. 𝟑, 𝟎. 𝟒)> 
(
< 0.1367 >
< 0.1617 >
< 0.1650 >

) 
𝐺3 > 𝐺2 > 𝐺1 

 

<(𝟎. 𝟑𝟑, 𝟎. 𝟑𝟓, 𝟎. 𝟑𝟐)> 
(
< 0.1387 >
< 0.1641 >
< 0.1666 >

) 
𝐺3 > 𝐺2 > 𝐺1 

<(𝟎. 𝟑, 𝟎. 𝟑𝟕, 𝟎. 𝟑𝟑)> 
(
< 0.1394 >
< 0.1621 >
< 0.1692 >

) 
𝐺3 > 𝐺2 > 𝐺1 

<(𝟎. 𝟒𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟑)> 
(
< 0.1415 >
< 0.1641 >
< 0.1699 >

) 
𝐺3 > 𝐺2 > 𝐺1 

<(𝟎. 𝟐𝟓, 𝟎. 𝟒𝟓, 𝟎. 𝟑)> 
(
< 0.1799 >
< 0.1559 >
< 0.1623 >

) 
𝐺1 > 𝐺3 > 𝐺2 
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<(𝟎. 𝟐𝟓, 𝟎. 𝟑, 𝟎. 𝟒𝟓)> 

 
(
< 0.1367 >
< 0.1669 >
< 0.1680 >

) 
𝐺3 > 𝐺2 > 𝐺1 

< (𝟎. 𝟒, 𝟎. 𝟑, 𝟎. 𝟑) > 
(
< 0.1544 >
< 0.1675 >
< 0.1666 >

) 
𝐺2 > 𝐺3 > 𝐺1 

< (𝟎. 𝟑, 𝟎. 𝟒, 𝟎. 𝟑) > 
(
< 0.1503 >
< 0.1641 >
< 0.1652 >

) 
𝐺3 > 𝐺2 > 𝐺1 

 

 

Figure 6.4.1: Sensitivity analysis on attribute functions 

 

 

Figure 6.4.2: Best Alternative Mobile Communication Service 

 

6.5 Comparison Table 

This section actually contains a comparative study among the established work and proposed 

work.Comparing with 49,50 , we find that the best service provider among those three and it is noticed 

that in each case 𝐺3becomes the best mobile communication service provider. The comparison table 

is given as follows: 
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Approach Ranking 

Deli49 𝐺3 > 𝐺2 > 𝐺1 

Garg50 𝐺3 > 𝐺1 > 𝐺2 

     Proposed method 𝐺3 > 𝐺2 > 𝐺1 

 

7. Conclusion and future research scope 

The idea of pentagonal neutrosophic number is intriguing, competent and has ample scope of 

utilization in various research domains. In this research article, we vigorously erect the perception of 

pentagonal neutrosophic number from different aspects. We also resort to the perception of 

truthiness, falsity and ambiguity functions in case of pentagonal neutrosophic number when the 

membership functions are interconnected to each other and a new score function is formulated here. 

Also, two logical operators have been developed here theoretically as well as applied it in MCGDM 

problem. Finally we perform a sensitivity analysis and also demonstrate a comparative study with 

the other results derived from other research articles to enumerate our proposed work and conclude 

that our result is pretty satisfactory as we consider the pentagonal neutrosophic value in the 

problem of multi-criteria decision making.  

Further, researchers can immensely apply this idea of neutrosophic number in numerous flourishing 

research fields like an engineering problem, mobile computing problems, diagnoses problem, 

realistic mathematical modelling, cloud computing issues, pattern recognition problems, an 

architecture based structural modelling, image processing, linear programming, big data analysis, 

neural network etc. Apart from these there is an immense scope of application basis works in 

various fields which can be constructed by taking the help of pentagonal neutrosophic numbers.  
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Abstract: As an extension of neutrosophic soft sets, Q-neutrosophic soft sets were established to deal with two-
dimensional indeterminate data. Different hybrid models of fuzzy sets were utilized to different algebraic structures,
for example groups, rings, fields and lie-algebras. A field is an essential algebraic structure, which is widely used
in algebra and several domains of mathematics. The motivation of the current work is to extend the thought of
Q-neutrosophic soft sets to fields. In this paper, we define the notion of Q-neutrosophic soft fields. Structural charac-
teristics of it are investigated. Moreover, the concepts of homomorphic image and pre-image of Q-neutrosophic soft
fields are discussed. Finally, the Cartesian product of Q-neutrosophic soft fields is defined and some related properties
are discussed.

Keywords: Neutrosophic soft field, Neutrosophic soft set, Q-neutrosophic soft field, Q-neutrosophic soft set.

1 Introduction
Fuzzy sets were established by Zadeh [1] as a tool to deal with uncertain data. Since then, fuzzy logic has
been utilized in several real-world problems in uncertain environments. Consequently, numerous analysts
discussed many results using distinct directions of fuzzy-set theory, for instance, interval valued fuzzy set [2]
and intuitionistic fuzzy set [3]. These extensions can deal with uncertain real-world problems but it does not
cope with indeterminate data. Thus, Smarandache [4] initiated the neutrosophic idea to overcome this problem.
A neutrosophic set (NS) [5] is a mathematical notion serving issues containing inconsistent, indeterminate,
and imprecise data. Molodtsov [6] introduced the concept of soft sets as another way to handle uncertainty.
Since its initiation, a plenty of hybrid models of soft set have been produced, for example, fuzzy soft sets [7],
neutrosophic soft sets (NSSs) [8]. Accordingly, NSSs became an important notion for more deep discussions
[9–17]. NSSs were extended to Q-neutrosophic soft sets (Q-NSSs) [18] a new model that deals with two-
dimensional uncertain data. Q-NSSs were further investigated and their basic operations and relations were
discussed in [18, 19].

Different hybrid models of fuzzy sets and soft sets were utilized in different branches of mathematics,
including algebra. This was started by Rosenfeld in 1971 [20] when he established the idea of fuzzy subgroup.
Since then, the theories and approaches of fuzzy soft sets on different algebraic structures developed rapidly.
Mukherjee and Bhattacharya [21] studied fuzzy groups, Sharma [22] discussed intuitionistic fuzzy groups.
Recently, many researchers have applied different hybrid models of fuzzy sets and soft sets to several algebraic
structures such as groups, semigroups, rings, fields and BCK/BCI-algebras [23–32]. NSs and NSSs have
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received more attention in studying the algebraic structure of set theories dealing with uncertainty. Cetkin
and Aygun [33] established the concept of neutrosophic subgroup. Bera and Mahapatra introduced the notion
of neutrosophic soft group [34], neutrosophic soft fields [35]. Moreover, two-dimensional hybrid models
of fuzzy sets and soft sets were also applied to different algebraic structures. Solairaju and Nagarajan [36]
introduced the notion of Q-fuzzy groups. Thiruveni and Solairaju defined the concept of neutrosophic Q-fuzzy
subgroup [37], while Rasuli [38] established the notion of Q-fuzzy subring and anti Q-fuzzy subring. The
concept of Q-NSSs was also implemented in the theories of groups and rings [39, 40].

Inspired by the above works and to utilize Q-NSSs to different algebraic structures, in the current paper,
we continue the work presented in [41] about Q-neutrosophic soft fields (Q-NSFs) and investigate some of
its structural characteristics; we give some theorems that simplifies the main definition, also we discuss the
intersection and union of two Q-NSFs . The concepts of homomorphic image and pre-image of Q-NSFs are
investigated. Also, we discuss the Cartesian product of Q-NSFs and discuss some related properties.

2 Preliminaries

In this section, we recall the basic definitions related to this work.

Definition 2.1 ( [18]). Let X be a universal set, Q be a nonempty set and A ⊆ E be a set of parameters. Let
µlQNS(X) be the set of all multi Q-NSs on X with dimension l = 1. A pair (ΓQ, A) is called a Q-NSS over
X , where ΓQ : A→ µlQNS(X) is a mapping, such that ΓQ(e) = φ if e /∈ A.

Definition 2.2 ( [19]). The union of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ, C) written as
(ΓQ, A) ∪ (ΨQ, B) = (ΛQ, C), where C = A ∪ B and for all c ∈ C, (x, q) ∈ X × Q, the truth-membership,
indeterminacy-membership and falsity-membership of (ΛQ, C) are as follows:

TΛQ(c)(x, q) =


TΓQ(c)(x, q) if c ∈ A−B,
TΨQ(c)(x, q) if c ∈ B − A,
max{TΓQ(c)(x, q), TΨQ(c)(x, q)} if c ∈ A ∩B,

IΛQ(c)(x, q) =


IΓQ(c)(x, q) if c ∈ A−B,
IΨQ(c)(x, q) if c ∈ B − A,
min{IΓQ(c)(x, q), IΨQ(c)(x, q)} if c ∈ A ∩B,

FΛQ(c)(x, q) =


FΓQ(c)(x, q) if c ∈ A−B,
FΨQ(c)(x, q) if c ∈ B − A,
min{FΓQ(c)(x, q), FΨQ(c)(x, q)} if c ∈ A ∩B.

Definition 2.3 ( [19]). The intersection of two Q-NSSs (ΓQ, A) and (ΨQ, B) is the Q-NSS (ΛQ, C) written as
(ΓQ, A)∩ (ΨQ, B) = (ΛQ, C), where C = A∩B and for all c ∈ C and (x, q) ∈ X×Q the truth-membership,
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indeterminacy-membership and falsity-membership of (ΛQ, C) are as follows:

TΛQ(c)(x, q) = min{TΓQ(c)(x, q), TΨQ(c)(x, q)},
IΛQ(c)(x, q) = max{IΓQ(c)(x, q), IΨQ(c)(x, q)},
FΛQ(c)(x, q) = max{FΓQ(c)(x, q), FΨQ(c)(x, q)}.

3 Q-Neutrosophic Soft Fields
In this section, we define the notion of Q-NSF and discuss several related properties.

Definition 3.1. Let (ΓQ, A) be a Q-NSS over a field (F,+, .). Then, (ΓQ, A) is said to be a Q-NSF over
(F,+, .) if for all e ∈ A, ΓQ(e) is a Q-neutrosophic subfield of (F,+, .), where ΓQ(e) is a mapping given by
ΓQ(e) : F ×Q→ [0, 1]3.

Definition 3.2. Let (F,+, .) be a field and (ΓQ, A) be a Q-NSS over (F,+, .). Then, (ΓQ, A) is called a Q-NSF
over (F,+, .) if for all x, y ∈ F, q ∈ Q and e ∈ A it satisfies:

1. TΓQ(e)(x + y, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x + y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and FΓQ(e)(x+ y, q) ≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(−x, q) ≥ TΓQ(e)(x, q), IΓQ(e)(−x, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(−x, q) ≤ FΓQ(e)(x, q).

3. TΓQ(e)(x.y, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x.y, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
and

FΓQ(e)(x.y, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

4. TΓQ(e)(x
−1, q) ≥ TΓQ(e)(x, q), IΓQ(e)(x

−1, q) ≤ IΓQ(e)(x, q) and FΓQ(e)(x
−1, q) ≤ FΓQ(e)(x, q).

Example 3.3. Let F = (R,+, .) be the field of real numbers and A = N the set of natural numbers be the
parametric set. Define a Q-NSS (ΓQ, A) as follows for q ∈ Q, x ∈ R and m ∈ N

TΓQ(m)(x, q) =

{
0 if x is rational

1
9m

if x is irrational
,

IΓQ(m)(x, q) =

{
1− 1

3m
if x is rational

0 if x is irrational
,

FΓQ(m)(x, q) =

{
1 + 3

m
if x is rational

0 if x is irrational
.

It is clear that (ΓQ,N) is a Q-NSF over F .

Proposition 3.4. Let (ΓQ, A) be a Q-NSF over (F,+, .). Then, for the additive identity 0F and the multiplica-
tive identity 1F , for all x ∈ F, q ∈ Q and e ∈ A the following hold

1. TΓQ(e)(0F , q) ≥ TΓQ(e)(x, q), IΓQ(e)(0F , q) ≤ IΓQ(e)(x, q) and FΓQ(e)(0F , q) ≤ FΓQ(e)(x, q).
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2. TΓQ(e)(1F , q) ≥ TΓQ(e)(x, q), IΓQ(e)(1F , q) ≤ IΓQ(e)(x, q) and FΓQ(e)(1F , q) ≤ FΓQ(e)(x, q), for x 6= 0F .

3. TΓQ(e)(0F , q) ≥ TΓQ(e)(1F , q), IΓQ(e)(0F , q) ≤ IΓQ(e)(1F , q) and FΓQ(e)(0F , q) ≤ FΓQ(e)(1F , q).

Proof. ∀x ∈ F, q ∈ Q and e ∈ A
1. TΓQ(e)(0F , q) = TΓQ(e)(x− x, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(0F , q) = IΓQ(e)(x− x, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(0F , q) = FΓQ(e)(x− x, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q).

2. TΓQ(e)(1F , q) = TΓQ(e)(x.x
−1, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(1F , q) = IΓQ(e)(x.x
−1, q) ≤ max

{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(1F , q) = FΓQ(e)(x.x
−1, q) ≤ max

{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q).

3. Follows directly by applying 1.

Theorem 3.5. A Q-NSS (ΓQ, A) over the field (F,+, .) is a Q-NSF if and only if for all x, y ∈ F, q ∈ Q and
e ∈ A

1. TΓQ(e)(x− y, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x− y, q) ≤ max

{
IΓQ(e)(x, q),

IΓQ(e)(y, q)
}
, FΓQ(e)(x− y, q) ≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

2. TΓQ(e)(x.y
−1, q) ≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
, IΓQ(e)(x.y

−1, q) ≤ max
{
IΓQ(e)(x, q),

IΓQ(e)(y, q)
}
, FΓQ(e)(x.y

−1, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Proof. Suppose that (ΓQ, A) is a Q-NSF over (F,+, .). Then,

TΓQ(e)(x− y, q) ≥min
{
TΓQ(e)(x, q), TΓQ(e)(−y, q)

}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x− y, q) ≤max
{
IΓQ(e)(x, q), IΓQ(e)(−y, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x− y, q) ≤max
{
FΓQ(e)(x, q), FΓQ(e)(−y, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Also,

TΓQ(e)(x.y
−1, q) ≥min

{
TΓQ(e)(x, q), TΓQ(e)(y

−1, q)
}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x.y
−1, q) ≤max

{
IΓQ(e)(x, q), IΓQ(e)(y

−1, q)
}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x.y
−1, q) ≤max

{
FΓQ(e)(x, q), FΓQ(e)(y

−1, q)
}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Conversely, Suppose that conditions 1 and 2 are satisfied. We show that for each e ∈ A, (ΓQ, A) is a
Q-neutrosophic subfield

TΓQ(e)(−x, q) = TΓQ(e)(0F − x, q) ≥ min
{
TΓQ(e)(0F , q), TΓQ(e)(x, q)

}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(−x, q) = IΓQ(e)(0F − x, q) ≤ max
{
IΓQ(e)(0F , q), IΓQ(e)(x, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(−x, q) = FΓQ(e)(0F − x, q) ≤ max
{
FΓQ(e)(0F , q), FΓQ(e)(x, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q)

}
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also,

TΓQ(e)(x+ y, q) = TΓQ(e)(x− (−y), q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x+ y, q) = IΓQ(e)(x− (−y), q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x+ y, q) = FΓQ(e)(x− (−y), q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

Next,

TΓQ(e)(x
−1, q) = TΓQ(e)(1F .x

−1, q) ≥ min
{
TΓQ(e)(1F , q), TΓQ(e)(x, q)

}
≥ min

{
TΓQ(e)(x, q), TΓQ(e)(x, q)

}
= TΓQ(e)(x, q),

IΓQ(e)(x
−1, q) = IΓQ(e)(1F .x

−1, q) ≤ max
{
IΓQ(e)(1F , q), IΓQ(e)(x, q)

}
≤ max

{
IΓQ(e)(x, q), IΓQ(e)(x, q)

}
= IΓQ(e)(x, q),

FΓQ(e)(x
−1, q) = FΓQ(e)(1F .x

−1, q) ≤ max
{
FΓQ(e)(1F , q), FΓQ(e)(x, q)

}
≤ max

{
FΓQ(e)(x, q), FΓQ(e)(x, q)

}
= FΓQ(e)(x, q)

}
and

TΓQ(e)(x.y, q) = TΓQ(e)(x(y−1)−1, q) ≥ min
{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,

IΓQ(e)(x.y, q) = IΓQ(e)(x(y−1)−1, q) ≤ max
{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,

FΓQ(e)(x.y, q) = FΓQ(e)(x(y−1)−1, q) ≤ max
{
FΓQ(e)(x, q), FΓQ(e)(y, q)

}
.

This completes the proof.

Theorem 3.6. Let (ΓQ, A) and (ΨQ, B) be two Q-NSFs over (F,+, .). Then, (ΓQ, A)∩(ΨQ, B) is also Q-NSF
over (F,+, .).

Proof. Let (ΓQ, A) ∩ (ΨQ, B) = (ΛQ, A ∩B). Now, ∀x, y ∈ F, q ∈ Q and e ∈ A ∩B,

TΛQ(e)(x− y, q) = min
{
TΓQ(e)(x− y, q), TΨQ(e)(x− y, q)

}
≥ min

{
min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,min

{
TΨQ(e)(x, q), TΨQ(e)(y, q)

}}
= min

{
min

{
TΓQ(e)(x, q), TΨQ(e)(x, q)

}
,min

{
TΓQ(e)(y, q), TΨQ(e)(y, q)

}}
= min

{
TΛQ(e)(x, q), TΛQ(e)(y, q)

}
,

also,

IΛQ(e)(x− y, q) = max
{
IΓQ(e)(x− y, q), IΨQ(e)(x− y, q)

}
≤ max

{
max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,max

{
IΨQ(e)(x, q), IΨQ(e)(y, q)

}}
= max

{
max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
,max

{
IΓQ(e)(y, q), IΨQ(e)(y, q)

}}
= max

{
IΛQ(e)(x, q), IΛQ(e)(y, q)

}
,
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similarly, FΛQ(e)(x− y, q) ≤ max
{
FΛQ(e)(x, q), FΛQ(e)(y, q)

}
. Next,

TΛQ(e)(x.y
−1, q) = min

{
TΓQ(e)(x.y

−1, q), TΨQ(e)(x.y
−1, q)

}
≥ min

{
min

{
TΓQ(e)(x, q), TΓQ(e)(y, q)

}
,min

{
TΨQ(e)(x, q), TΨQ(e)(y, q)

}}
= min

{
min

{
TΓQ(e)(x, q), TΨQ(e)(x, q)

}
,min

{
TΓQ(e)(y, q), TΨQ(e)(y, q)

}}
= min

{
TΛQ(e)(x, q), TΛQ(e)(y, q)

}
,

also,

IΛQ(e)(x.y
−1, q) = max

{
IΓQ(e)(x.y

−1, q), IΨQ(e)(x.y
−1, q)

}
≤ max

{
max

{
IΓQ(e)(x, q), IΓQ(e)(y, q)

}
,max

{
IΨQ(e)(x, q), IΨQ(e)(y, q)

}}
= max

{
max

{
IΓQ(e)(x, q), IΨQ(e)(x, q)

}
,max

{
IΓQ(e)(y, q), IΨQ(e)(y, q)

}}
= max

{
IΛQ(e)(x, q), IΛQ(e)(y, q)

}
similarly, we can show FΛQ(e)(x.y

−1, q) ≤ max
{
FΛQ(e)(x, q), FΛQ(e)(y, q)

}
. This completes the proof.

Remark 3.7. For two Q-NSFs (ΓQ, A) and (ΨQ, B) over (F,+, .), (ΓQ, A) ∪ (ΨQ, B) is not generally a Q-
NSF.
For example, let F = (Q,+, .), E = 2Z. Consider two Q-NSFs (ΓQ, E) and (ΨQ, E) over F as follows: for
x ∈ Q, q ∈ Q and m ∈ Z

TΓQ(4m)(x, q) =

{
0.50 if x = 4tm, ∃t ∈ Z,
0 otherwise,

IΓQ(4m)(x, q) =

{
0 if x = 4tm, ∃t ∈ Z,
0.25 otherwise,

FΓQ(4m)(x, q) =

{
0.40 if x = 4tm, ∃t ∈ Z,
0.10 otherwise,

and

TΨQ(4m)(x, q) =

{
0.70 if x = 6tm, ∃t ∈ Z,
0 otherwise,

IΨQ(4m)(x, q) =

{
0 if x = 6tm, ∃t ∈ Z,
0.50 otherwise,

FΨQ(4m)(x, q) =

{
0.20 if x = 6tm, ∃t ∈ Z,
0.40 otherwise.
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Let (ΓQ, A) ∪ (ΨQ, B) = (ΛQ, E). For m = 2, x = 8, y = 12 we have

TΛQ(8)(8− 12, q) = TΛQ(8)(−4, q) = max
{
TΓQ(8)(−4, q), TΨQ(8)(−4, q)

}
= max{0, 0} = 0

and

min
{
TΛQ(8)(8, q),TΛQ(8)(12, q)

}
= min

{
max

{
TΓQ(8)(8, q), TΨQ(8)(8, q)

}
,max

{
TΓQ(8)(12, q), TΨQ(8)(12, q)

}}
= min

{
max

{
0.50, 0

}
,max

{
0, 0.7

}}
= min

{
0.50, 0.70

}
= 0.50.

Hence, TΛQ(8)(8− 12, q) < min
{
TΛQ(8)(8, q), TΛQ(8)(12, q)

}
. Thus, the union is not a Q-NSF.

4 Q-Neutrosophic Soft Homomorphism
In this section, we define the Q-neutrosophic soft function, then define the image and pre-image of a Q-
NSS under a Q-neutrosophic soft function. In continuation, we introduce the notion of Q-neutrosophic soft
homomorphism along with some of it’s properties.

Definition 4.1. Let g : X ×Q→ Y ×Q and h : A→ B be two functions where A and B are parameter sets.
Then, the pair (g, h) is called a Q-neutrosophic soft function from X ×Q to Y ×Q.

Definition 4.2. Let (ΓQ, A) and (ΨQ, B) be two Q-NSSs defined over X × Q and Y × Q, respectively, and
(g, h) be a Q-neutrosophic soft function from X ×Q to Y ×Q. Then,

1. The image of (ΓQ, A) under (g, h), denoted by (g, h)(ΓQ, A), is a Q-NSS over Y ×Q and is defined by:

(g, h)(ΓQ, A) =
(
g(ΓQ), h(A)

)
=
{〈

b, g(ΓQ)(b) : b ∈ h(A)
〉}

,

where for all b ∈ h(A), y ∈ Y and q ∈ Q,

Tg(ΓQ)(b)(y, q) =

{
maxg(x,q)=(y,q) maxh(a)=b[TΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),

0 otherwise,

Ig(ΓQ)(b)(y, q) =

{
ming(x,q)=(y,q) minh(a)=b[IΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),

1 otherwise,

Fg(ΓQ)(b)(y, q) =

{
ming(x,q)=(y,q) minh(a)=b[FΓQ(a)(x, q)] if (x, q) ∈ g−1(y, q),

1 otherwise,

2. The preimage of (ΨQ, B) under (g, h), denoted by (g, h)−1(ΨQ, B), is a Q-NSS over X and is defined
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by:
(g, h)−1(ΨQ, B) =

(
g−1(ΨQ), h−1(B)

)
=
{〈

a, g−1(ΨQ)(a) : a ∈ h−1(B)
〉}

,

where for all a ∈ h−1(B), x ∈ X and q ∈ Q,

Tg−1(ΨQ)(a)(x, q) = TΨQ[h(a)](g(x, q)),

Ig−1(ΨQ)(a)(x, q) = IΨQ[h(a)](g(x, q)),

Fg−1(ΨQ)(a)(x, q) = FΨQ[h(a)](g(x, q)).

If g and h are injective (surjective), then (g, h) is injective (surjective).

Definition 4.3. Let (g, h) be a Q-neutrosophic soft function from X × Q to Y × Q. If g is a homomorphism
from X ×Q to Y ×Q, then (g, h) is said to be a Q-neutrosophic soft homomorphism. If g is an isomorphism
from X ×Q to Y ×Q and h is a one-to-one mapping from A to B, then (g, h) is said to be a Q-neutrosophic
soft isomorphism.

Example 4.4. Let A = N (the set of natural numbers) be the parametric set and F = (Z5,+, .) be a field.
Define a Q-NSS (ΓQ, A) as follows, for any a ∈ A, q ∈ Q and x ∈ Z5,

TΓQ(a)(x, q) =

{
0 if x ∈ {1̄, 3̄}
1
3a

if x ∈ {0̄, 2̄, 4̄}
,

IΓQ(a)(x, q) =

{
1− 1

a
if x ∈ {1̄, 3̄}

0 if x ∈ {0̄, 2̄, 4̄}
,

FΓQ(a)(x, q) =

{
3

a+1
if x ∈ {1̄, 3̄}

0 if x ∈ {0̄, 2̄, 4̄}
.

Now, let g : Z5 × Q → Z5 × Q and h : N → N be given by g(x, q) = 3x + 1 and h(a) = a2. Then for
b ∈ N2, y ∈ 3Z5 + 1 , the image of (ΓQ, A) under (g, h) as follows :

Tg(ΓQ)(b)(y, q) =

{
0 if y ∈ {0̄, 2̄, 4̄}

1
3
√
b

if y ∈ {1̄, 3̄}
,

Ig(ΓQ)(b)(y, q) =

{
1− 1√

b
if y ∈ {0̄, 2̄, 4̄}

0 if y ∈ {1̄, 3̄}
,

Fg(ΓQ)(b)(y, q) =

{
1

1+
√
b

if y ∈ {0̄, 2̄, 4̄}
0 if y ∈ {1̄, 3̄}

.

Theorem 4.5. Let (ΓQ, A) be a Q-NSF over F1 and (g, h) : F1 × Q → F2 × Q be a Q-neutrosophic soft
homomorphism. Then, (g, h)(ΓQ, A) is a Q-NSF over F2.

Proof. Let b ∈ h(A) and y1, y2 ∈ F2. For g−1(y1, q) = φ or g−1(y2, q) = φ, the proof is straight forward.
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So, assume there exists x1, x2 ∈ F1 such that g(x1, q) = (y1, q) and g(x2, q) = (y2, q). Then,

Tg(ΓQ)(b)(y1 − y2, q) = max
g(x,q)=(y1−y2,q)

max
h(a)=b

[
TΓQ(a)(x, q)

]
≥ max

h(a)=b

[
TΓQ(a)(x1 − x2, q)

]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(−x2, q)

}]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(x2, q)

}]
= min

{
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
h(a)=b

[
TΓQ(a)(x2, q)

]}

Tg(ΓQ)(b)(y1.y
−1
2 , q) = max

g(x,q)=(y1.y
−1
2 ,q)

max
h(a)=b

[
TΓQ(a)(x, q)

]
≥ max

h(a)=b

[
TΓQ(a)(x1.x

−1
2 , q)

]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(x

−1
2 , q)

}]
≥ max

h(a)=b

[
min

{
TΓQ(a)(x1, q), TΓQ(a)(x2, q)

}]
= min

{
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
h(a)=b

[
TΓQ(a)(x2, q)

]}
Since, the inequality is satisfied for each x1, x2 ∈ F1, satisfying g(x1, q) = (y1, q) and g(x2, q) = (y2, q).
Then,

Tg(ΓQ)(b)(y1 − y2, q) ≥ min
{

max
g(x1,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
g(x2,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x2, q)

]}
= min

{
Tg(ΓQ)(b)(y1, q), Tg(ΓQ)(b)(y2, q)

}
.

Tg(ΓQ)(b)(y1.y
−1
2 , q) ≥ min

{
max

g(x1,q)=(y1,q)
max
h(a)=b

[
TΓQ(a)(x1, q)

]
, max
g(x2,q)=(y1,q)

max
h(a)=b

[
TΓQ(a)(x2, q)

]}
= min

{
Tg(ΓQ)(b)(y1, q), Tg(ΓQ)(b)(y2, q)

}
.

Similarly, we show that
Ig(ΓQ)(b)(y1 − y2, q) ≤ max

{
Ig(ΓQ)(b)(y1, q), Ig(ΓQ)(b)(y2, q)

}
,

Ig(ΓQ)(b)(y1.y
−1
2 , q) ≤ max

{
Ig(ΓQ)(b)(y1, q), Ig(ΓQ)(b)(y2, q)

}
,

Fg(ΓQ)(b)(y1 − y2, q) ≤ max
{
Fg(ΓQ)(b)(y1, q), Fg(ΓQ)(b)(y2, q)

}
,

Fg(ΓQ)(b)(y1.y
−1
2 , q) ≤ max

{
Fg(ΓQ)(b)(y1, q), Fg(ΓQ)(b)(y2, q)

}
.
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Theorem 4.6. Let (ΨQ, B) be a Q-NSF over F2 and (g, h) be a Q-neutrosophic soft homomorphism from
F1 ×Q to F2 ×Q. Then, (g, h)−1(ΨQ, B) is a Q-NSF over over F1.

Proof. For a ∈ h−1(B) and x1, x2 ∈ F1, we have

Tg−1(ΨQ)(a)(x1 − x2, q) = TΨQ[h(a)](g(x1 − x2, q))

= TΨQ[h(a)](g(x1, q)− g(x2, q))

≥ min
{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](−g(x2, q))

}
≥ min

{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](g(x2, q))

}
= min

{
Tg−1(ΨQ)(a)(x1, q), Tg−1(ΨQ)(a)(x2, q)

}
and

Tg−1(ΨQ)(a)(x1.x
−1
2 , q) = TΨQ[h(a)](g(x1.x

−1
2 , q))

= TΨQ[h(a)](g(x1, q).g(x−1
2 , q))

≥ min
{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](g(x2, q)

−1)
}

≥ min
{
TΨQ[h(a)](g(x1, q)), TΨQ[h(a)](g(x2, q))

}
= min

{
Tg−1(ΨQ)(a)(x1, q), Tg−1(ΨQ)(a)(x2, q)

}
Similarly, we can obtain

Ig−1(ΨQ)(a)(x1 − x2, q) ≤ max
{
Ig−1(ΨQ)(a)(x1, q), Ig−1(ΨQ)(a)(x2, q)

}
,

Ig−1(ΨQ)(a)(x1.x
−1
2 , q) ≤ max

{
Ig−1(ΨQ)(a)(x1, q), Ig−1(ΨQ)(a)(x2, q)

}
,

Fg−1(ΨQ)(a)(x1 − x2, q) ≤ max
{
Fg−1(ΨQ)(a)(x1, q), Fg−1(ΨQ)(a)(x2, q)

}
,

Fg−1(ΨQ)(a)(x1.x
−1
2 , q) ≤ max

{
Fg−1(ΨQ)(a)(x1, q), Fg−1(ΨQ)(a)(x2, q)

}
.

Thus, the theorem is proved.

5 Cartesian Product of Q-Neutrosophic Soft Fields
In this section, we define the Cartesian product of Q-NSFs and prove that it is also a Q-NSF.

Definition 5.1. Let (ΓQ, A) and (ΨQ, B) be two Q-NSFs over (F1,+, .) and (F2,+, .), respectively. Then, their
Cartesian product (ΛQ, A× B) = (ΓQ, A)× (ΨQ, B), where ΛQ(a, b) = ΓQ(a)×ΨQ(b) for (a, b) ∈ A× B.
Analytically, for x ∈ F1, y ∈ F2 and q ∈ Q

ΛQ(a, b) =
{〈(

(x, y), q
)
, TΛQ(a,b)

(
(x, y), q

)
, IΛQ(a,b)

(
(x, y), q

)
, FΛQ(a,b)

(
(x, y), q

)〉}
, where
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TΛQ(a,b)

(
(x, y), q

)
= min

{
TΓQ(a)

(
x, q
)
, TΨQ(b)

(
y, q
)}
,

IΛQ(a,b)

(
(x, y), q

)
= max

{
IΓQ(a)

(
x, q
)
, IΨQ(b)

(
y, q
)}
,

FΛQ(a,b)

(
(x, y), q

)
= max

{
FΓQ(a)

(
x, q
)
, FΨQ(b)

(
y, q
)}
.

Theorem 5.2. Let (ΓQ, A) and (ΨQ, B) be two Q-NSFs over (F1,+, .) and (F2,+, .), respectively. Then, their
Cartesian product (ΓQ, A)× (ΨQ, B) is a Q-NSF over (F1 × F2).

Proof. Let (ΛQ, A× B) = (ΓQ, A)× (ΨQ, B), where ΛQ(a, b) = ΓQ(a)× ΨQ(b) for (a, b) ∈ A× B. Then,
for
(
(x1, y1), q

)
,
(
(x2, y2), q

)
∈ (F1 × F2)×Q we have,

TΛQ(a,b)

((
(x1, y1)− (x2, y2), q

))
= TΛQ(a,b)

(
(x1 − x2, y1 − y2), q

)
= min

{
TΓQ(a)

(
(x1 − x2), q

)
, TΨQ(b)

(
(y1 − y2), q

)}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
− x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
− y2, q

)}}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
min

{
TΓQ(a)

(
x1, q

)
, TΨQ(b)

(
y1, q

)}
,min

{
TΓQ(a)

(
x2, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
TΛQ(a,b)

(
(x1, y1), q

)
, TΛQ(a,b)

(
(x2, y2), q

)}
also,

IΛQ(a,b)

((
(x1, y1)− (x2, y2), q

))
= IΛQ(a,b)

(
(x1 − x2, y1 − y2), q

)
= max

{
IΓQ(a)

(
(x1 − x2), q

)
, IΨQ(b)

(
(y1 − y2), q

)}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
− x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
− y2, q

)}}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
max

{
IΓQ(a)

(
x1, q

)
, IΨQ(b)

(
y1, q

)}
,max

{
IΓQ(a)

(
x2, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
IΛQ(a,b)

(
(x1, y1), q

)
, IΛQ(a,b)

(
(x2, y2), q

)}
,

similarly, FΛQ(a,b)

((
(x1, y1)− (x2, y2), q

))
≤ max

{
FΛQ(a,b)

(
(x1, y1), q

)
, FΛQ(a,b)

(
(x2, y2), q

)}
. Next,

TΛQ(a,b)

((
(x1, y1).(x2, y2)−1, q

))
= TΛQ(a,b)

(
(x1.x

−1
2 , y1.y

−1
2 ), q

)
= min

{
TΓQ(a)

(
(x1.x

−1
2 ), q

)
, TΨQ(b)

(
(y1.y

−1
2 ), q

)}
≥ min

{
min

{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
x−1

2 , q
)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
y−1

2 , q
)}}
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≥ min
{

min
{
TΓQ(a)

(
x1, q

)
, TΓQ(a)

(
x2, q

)}
,min

{
TΨQ(b)

(
y1, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
min

{
TΓQ(a)

(
x1, q

)
, TΨQ(b)

(
y1, q

)}
,min

{
TΓQ(a)

(
x2, q

)
, TΨQ(b)

(
y2, q

)}}
= min

{
TΛQ(a,b)

(
(x1, y1), q

)
, TΛQ(a,b)

(
(x2, y2), q

)}
,

IΛQ(a,b)

((
(x1, y1).(x2, y2)−1, q

))
= IΛQ(a,b)

(
(x1.x

−1
2 , y1.y

−1
2 ), q

)
= max

{
IΓQ(a)

(
(x1.x

−1
2 ), q

)
, IΨQ(b)

(
(y1.y

−1
2 ), q

)}
≤ max

{
max

{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x−1

2 , q
)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y−1

2 , q
)}}

≤ max
{

max
{
IΓQ(a)

(
x1, q

)
, IΓQ(a)

(
x2, q

)}
,max

{
IΨQ(b)

(
y1, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
max

{
IΓQ(a)

(
x1, q

)
, IΨQ(b)

(
y1, q

)}
,max

{
IΓQ(a)

(
x2, q

)
, IΨQ(b)

(
y2, q

)}}
= max

{
IΛQ(a,b)

(
(x1, y1), q

)
, IΛQ(a,b)

(
(x2, y2), q

)}
,

similarly, FΛQ(a,b)

((
(x1, y1), q

)
.
(
(x2, y2)−1, q

))
≤ max

{
FΛQ(a,b)

(
(x1, y1), q

)
, FΛQ(a,b)

(
(x2, y2), q

)}
. This

completes the proof.

6 Conclusions
In this study, we have introduced the concept of Q-neutrosophic soft fields. We have investigated some of
its structural characteristics. Also, we have discussed the concepts of homomorphic image and pre-image of
Q-neutrosophic soft fields. Moreover, we have defined the Cartesian product of Q-neutrosophic soft fields and
discussed some related properties. The proposed notion enriches knowledge on neutrosophic sets in the branch
of algebra. Also, it illuminates the way for more further deep discussion in algebra under neutrosophic and
Q-neutrosophic soft environment for example, by establishing the notions of n-valued neutrosophic soft fields
Q-neutrosophic soft modules and more.
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Abstract. A significant area of module theory is the concept of free modules, projective modules and injective

modules. The goal of this study is to characterize the projective G-modules under a single-valued neutrosophic

set. So we define neutrosophic G-submodule as a generic version of projective G-submodule. It also describes

and derives fundamental algebraic properties including quotient space and direct sum of neutrosophic projective

G-submodules

Keywords: Neutrosophic set; Neutrosophic G-module;Direct sum; Projective G-module; Neutrosophic projec-

tive G-module

—————————————————————————————————————————-

1. Introduction

The projective G-module in the abstract algebra plays a pivotal role to analyze the algebraic

structure G-module and its characteristics. Cartan and Eilemberge [16] introduced the concept

of projective modules that offer significant ideas through the theoretical approach to module

theory. The algebraic structure G-module widely used to study the representation of finite

groups developed by Frobenius G and Burnside [11] in the 19th century. Several researchers

have studied the algebraic structure in pure mathematics associated with uncertainty. Since

Zadeh [35] introduced fuzzy sets, fuzzification of algebraic structures was an important mile-

stone in classical algebraic studies. The notion of a fuzzy submodule was introduced by Negoita

and Ralescu [25] and further developed by Mashinchi and Zahedi [24]. This basic notion has

been generalized in several ways after Zadeh’s implementation of fuzzy sets [4, 5]. In 1986

Atanassov [6] put forward intuitionistic fuzzy set theory in which each element coincides with

membership grades and non-membership grades. Biswas [9] applied the idea of the intuitionis-

tic fuzzy set to the algebraic structure group and K. Hur et.al. [21] additionally studied it. In

Binu R & P.Isaac, Neutrosophic projective G-submodules
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2011 P. Isaac, P.P.John [22] studied about algebraic nature of intuitionistic fuzzy submodule

of a classical module.

The theory of neutrosophy first appeared in philosophy [30] and then evolved neutrosophic

set as a mathematical tool. In 1995, Smarandache [31] outlined the neutrosophicset as a

combination of tri valued logic with non-standard analysis in which three different types of

membership values represent each element of a set.The main objective of the neutrosophic set

is to narrow the gap between the vague, ambiguous and imprecise real-world situations. Neu-

trosophic set theory gives a thorough scientific and mathematical model knowledge in which

speculative and uncertain hypothetical phenomena can be managed by hierarchal membership

of the components “ truth / indeterminacy / falsehood ” [2,3,32]. Neutrosophic set generalizes

a classical set, fuzzy set, interval-valued fuzzy set and intuitionistic fuzzy set that can be used

to make a mathematical model for the real problems of science and engineering. From a scien-

tific and engineering perspective, Wang et.al. [20] specified the definition of a neutrosophic set,

which is called a single-valued neutrosophic set. Several scientists dealt with the neutrosophic

set notion as a new evolving instrument for uncertain information processing and a general

framework for uncertainty analysis in data set [1, 7, 17,28].

The consolidation of the neutrosophic set hypothesis with algebraic structures is a growing

trend in mathematical research. Among the various branches of applied and pure mathematics,

abstract algebra was one of the first few topics where the research was carried out using

the neutrosophic set concept. W. B. Vasantha Kandasamy and Florentin Smarandache [23]

initially presented basic algebraic neutrosophic structures and their application to advanced

neutrosophic models. Vidan Cetkin [12, 13] consolidated the neutrosophic set theory and

algebraic structures, creating neutrosophic subgroups and neutrosophic submodules. F. Sherry

[18, 19] introduced the concept of fuzzy G-modules in which the concept of fuzzy sets was

combined with G-module and the theory of group representation. One of the key developments

in the neutrosophic set theory is the hybridization of the neutrosophic set with the algebraic

structure G-module. The above fact leads to inspiration for conducting an exploratory study

in the field of abstract algebra, especially in the theory of G-modules in conjunction with

neutrosophic set. In this paper we described neutrosophic projective G-submodule as the

general case of projective G-module and derived its algebraic properties.

The reminder of this work is structured as follows. Section 2 briefs about necessary pre-

liminary definitions and results which are basic for a better and clear cognizance of next

sections. Section 3 defines neutrosophic projective G-modules, algebraic extension of pro-

jective G-submodules and derive the theorems related to quotient space and direct sum of

neutrosophic G-submodules. A comprehensive overview, relevance and future study of this

work is defined at the end of the paper in Section 4.
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2. Preliminaries

In this section, we recall some of the preliminary definitions and results which are essential

for a better and clear comprehension of the upcoming sections.

Definition 2.1. [14] Let (G, ∗) be a group. A vector space M over the field K is called a

G-module, denoted as GM , if for every g ∈ G and m ∈ M ; ∃ a product (called the action of

G on M), g ·m ∈M satisfies the following axioms

(1) 1G ·m = m; ∀m ∈M (1G being the identity element of G)

(2) (g ∗ h) ·m = g · (h ·m); ∀m ∈M and g, h ∈ G
(3) g · (k1m1 + k2m2) = k1(g ·m1) + k2(g ·m2);∀ k1, k2 ∈ K;m1,m2 ∈M ”.

Example 2.1. [18] Let G = {1,−1, i,−i} and M = Cn; (n ≥ 1). Then M is a vector space

over C and under the usual addition and multiplication of complex numbers we can show that

M is a G-module.

Definition 2.2. [15] Let M be a G-module. A vector subspace N of M is a G-submodule if

N is also a G-module under the same action of G.

Definition 2.3. [15] Let M and M∗ be G-modules. A mapping f : M → M∗ is called a

G module homomorphism (HomG(M,M∗)) if ∀ k1, k2 ∈ K,m1,m2 ∈ M, g ∈ G satisfies the

following conditions

(1) f(k1m1 + k2m2) = k1f(m1) + k2f(m2)

(2) f(gm) = gf(m)

Definition 2.4. [10, 29] A G-module M is projective if for any G-module M∗ and any G-

submoduleN∗ ofM∗, every homomorphism ϕ : M →M∗/N∗ can be lifted to a homomorphism

ψ : M →M∗ or π ◦ ψ = ϕ where π : M∗ →M∗/N∗.

Remark 2.1. A G-module M is projective if and only if M is M∗ projective for every G-

module M∗

Theorem 2.2. [29] Let M and M∗ be G-modules such that M is M∗ projective. Let N∗ be

any G-submodule of M∗. Then M is N∗ projective and M is M∗/N∗ projective.

Proposition 2.1. [29] Let M and Mi be G-modules.Then M is ⊕n
i=1Mi-projective if and

only if M is Mi-projective ∀ i

Definition 2.5. [32, 34] A neutrosophic set P of the universal set X is defined as P =

{(η, tP (η), iP (η), fP (η)) : η ∈ X} where tP , iP , fP : X → (−0, 1+). The three components

tP , iP and fP represent membership value (Percentage of truth), indeterminacy (Percentage
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of indeterminacy) and non membership value (Percentage of falsity) respectively. These com-

ponents are functions of non standard unit interval (−0, 1+) [27].

Remark 2.3. [20, 32]

(1) If tP , iP , fP : X → [0, 1], then P is known as single valued neutrosophic set(SVNS).

(2) In this paper, we discuss about the algebraic structure R-module with underlying set

as SVNS. For simplicity SVNS will be called neutrosophic set.

(3) UX denotes the set of all neutrosophic subset of X or neutrosophic power set of X.

Definition 2.6. [26, 32] Let P,Q ∈ UX . Then P is contained in Q, denoted as P ⊆ Q if

and only if P (η) 6 Q(η) ∀η ∈ X, this means that tP (η) ≤ tQ(η), iP (η) ≤ iQ(η), fP (η) ≥
fQ(η), ∀ η ∈ X.

Definition 2.7. [26, 33]For any neutrosophic subset P = {(η, tP (η), iP (η), fP (η)) : η ∈ X},
the support P ∗ of the neutrosophic set P can be defined as P ∗ = {η ∈ X, tP (η) > 0, iP (η) >

0, fP (η) < 1}.

Definition 2.8. [8] Let (G, ∗) be a group and M be a G module over a field K. A neutrosphic

G-submodule is a neutrosophic set P = {(η, tP (η), iP (η), fP (η)) : η ∈M} in GM such that the

following conditions are satisfied;

(1) tP (%η + τθ) ≥ tP (η) ∧ tP (θ)

iP (%η + τθ) ≥ iP (η) ∧ iP (θ)

fP (%η + τθ) ≤ fP (η) ∨ fP (θ),

∀ η, θ ∈M,%, τ ∈ K
(2) tP (ξη) ≥ tP (η)

iP (ξη) ≥ iP (η)

fP (ξη) ≤ fP (η) ∀ ξ ∈ G, η ∈M

Remark 2.4. We denote neutrosophic G-submodules using single valued neutrosophic set by

U(GM ).

Example 2.2. Consider the example 2.1 for G-module M . Define a neutrosophic set

P = {η, tP (η), iP (η), fP (η) : η ∈M}

of M where

tP (η) =

1 if η = 0

0.5 if η 6= 0
, iP (η) =

1 if η = 0

0.5 if η 6= 0
, fP (η) =

0 if η = 0

0.25 if η 6= 0

Then P is a neutrosophic G-submodule of M .
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Definition 2.9. [8] Let P = {(x, tP (x), iP (x), fP (x)) : x ∈ X} ∈ U((GM )). The support

P ∗ of the neutrosophic G-submodule P can be defined as P ∗ = {x ∈ X, tP (x) > 0, iP (x) >

0, fP (x) < 1,∀x ∈ GM}.

Proposition 2.2. If P ∈ U(GM ), then the support P ∗ ∈ GM .

Definition 2.10. [8] Let P ∈ U(GM ) and N be a G-submodule of M . Then the restriction

of P to N is denoted by P |N and it is a neutrosophic set of N defined as follows P |N (η) =

(η, tP |N (η), iP |N (η), fP |N (η)) where

tP |N (η) = tP (η), iP |N (η) = iP (η), fP |N (η) = fP (η), ∀η ∈ N .

Proposition 2.3. [8] Let P ∈ U(GM ) and N ⊆M then P |N ∈ U(GN ).

Definition 2.11. [8] Let M ∈ GM and N be a G-submodule of M . Then the neutrosophic

set PN of M/Ndefined as PN (η +N) = {η +N, tPN
(η +N), iPN

(η +N), fPN
(η +N)},where

tPN
(η +N) = ∨tP (η + n) : n ∈ N

iPN
(η +N) = ∨iP (η + n) : n ∈ N

fPN
(η +N) = ∧fP (η + n) : n ∈ N,∀η ∈M

Proposition 2.4. [8] Let M ∈ GM . Let N be a G-submodule of M . Then PN ∈ U(GM/N ).

Proposition 2.5. [8] Let P ∈ U(GM ) and Q ∈ U(GM∗) where M and M∗ are G-modules

over the field K. Let r ∈ [0, 1], the neutrosophic set Qr = {η, tQr(η), iQr(η), fQr(η) : η ∈M∗}
defined by tQr(η) = tQ(η) ∧ r, iQr(η) = iQ(η) ∧ r, fQr(η) = fQ(η) ∨ (1 − r) ∀ η ∈ M? be a

neutrosophic G-submodule.

Definition 2.12. [8] Let M and M∗ be G-modules over K and a mapping Υ : M → M∗ is

a G-module homomorphism. Also P ∈ U(GM ) and Q ∈ U(GM∗). A homomorphism Υ of M

on to M∗ is called weak neutrosophic G-submodule homomorphism of P into Q if Υ(P ) ⊆ Q.

If Υ is a weak neutrosophic G-module homomorphism of P into Q, then P is weakly

homomorphic to Q and we write P ∼ Q.

A homomorphism Υ of M on to M∗ is called a neutrosophic G-module homomorphism

of P onto Q if Υ(P ) = Q and we represent it as P ≈ Q.

3. Neutrosophic Projective G module

In this section we discuss the generalized notion of projective G-modules, called neutro-

sophic projective G-modules, and study several characteristics of projective G-modules in the

neutrosophic domain.
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Definition 3.1. Let M and M∗ be G-modules. Let P = {η, tP (η), iP (η), fP (η) : η ∈ M} be

neutrosophic G submodule of M and Q = {η, tQ(η), iQ(η), fQ(η) : η ∈ M∗} be neutrosophic

G-submodule of M∗. Then P is said to be Q projective, if the following conditions are satisfied;

(1) M is M∗ projective

(2) tP (η) ≤ tQ(ψ(η))

(3) iP (η) ≤ iQ(ψ(η))

(4) fP (η) ≥ fQ(ψ(η)), ∀ ψ ∈ Hom(M,M∗), η ∈M

Theorem 3.1. Let P and Q be neutrosophic G-submodules of finite dimensional G-modules

of M and M∗ respectively and M is M∗ projective. Let {β1, β2, ..., βn} be a basis for M∗. If

(1) tP (η) ≤ min{tQ(βj); j = 1, 2, ..., n}
(2) iP (η) ≤ min{iQ(βj); j = 1, 2, ..., n}
(3) fP (η) ≥ max{fQ(βj); j = 1, 2, ..., n}, ∀ η ∈M

Then P is Q-projective.

Proof. Let Q = {η, tB(η), iB(η), fB(η) : η ∈M∗} be a neutrosophic G submodule of M∗. Then

∀ η1, η2 ∈M∗; %, τ ∈ K;

(1) tQ(%η1 + τη2) ≥ tQ(η1) ∧ tQ(η2)

(2) iQ(%η1 + τη2) ≥ iQ(η1) ∧ iQ(η2)

(3) fQ(%η1 + τη2) ≤ fQ(η1) ∨ fQ(η2)

(4) tQ(ξη) ≥ tP (η), iQ(ξη) ≥ iQ(η), fQ(ξη) ≤ fQ(η) ∀ η ∈M∗, ξ ∈ G

Also P is a neutrosophic G-submodule of M and M is M∗ projective G-module and ψ ∈
Hom(M,M∗) be any G-module homomorphism. For any η ∈M, ψ(η) ∈M∗.

∴ ψ(η) = α1β1 + α2β2 + ...+ αnβn, αi ∈ K,βi ∈M∗, i = 1, 2, ..., n

tQ(ψ(η)) = tQ(α1β1 + α2β2 + ...+ αnβn)

≥ tQ(β1) ∧ tQ(β2) ∧ ...

∧tQ(βn)

= mini{tQ(β1), tQ(β2), ...,

tQ(βn)}

≥ tP (η)
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Similarly iQ(ψ(η)) ≥ iP (η)

fQ(ψ(η)) = fQ(α1β1 + α2β2 + ...+ αnβn)

≤ fQ(β1) ∧ tQ(β2) ∧ ... ∧ tQ(βn)

= max{fQ(β1), fQ(β2),

... , fQ(βn)}

≤ fP (η)

∴ P is Q projective.

Theorem 3.2. Let P ∈ U(GM ), Q ∈ U(GM∗) and P is Q projective. If N∗ is a G-submodule

of M∗ and C ∈ U(GN∗), then P is C-Projective if Q|N∗ ⊆ C

Proof. Given P is Q projective, then

(1) M is M∗ projective

(2) tP (η) ≤ tQ(ψ(η)),

iP (η) ≤ iQ(ψ(η))

fP (η) ≥ fQ(ψ(η))

∀ ψ ∈ HomG(M,M∗), η ∈M . Since N∗ is a G-submodule of M∗, by a theorem 2.2, M is N∗

projective. Let ϕ ∈ HomG(M,N∗) and θ : N∗ → M∗ be the inclusion homomorphism. Then

θ ◦ ϕ = ψ

∴ from the condition 2

tP (η) ≤ tQ(ψ(η)) = tQ(θ ◦ ϕ)(η)

= tQ(θ(ϕ(η))) = tQ(ϕ(η)).

Similarly iP (η) ≤ iQ(ϕ(η)) and fP (η) ≥ fQ(ϕ(η) ∀ η ∈M, ϕ ∈ HomG(M,N∗).

Given C ∈ U(GN∗), ϕ(η) ∈ N∗ and Q|N∗ ⊆ C

tQ|N∗ (ϕ(η)) = tQ(ϕ(η)) ≤ tC(ϕ(η)

⇒ tP (η) ≤ tC(ϕ(η)). Similarly, iP (η) ≤ iC(ϕ(η)) and fP (η) ≥ fC(ϕ(η)). Hence P is C-

Projective.

Theorem 3.3. Let M and M∗ be G-modules where P and Q are neutrosophic G-submodules

of M and M∗ respectively. Let r ∈ [0, 1], the neutrosophic set Qr = {η, tQr(η), iQr(η), fQr(η) :

η ∈M∗} defined by tQr(η) = tQ(η)∧ r, iQr(η) = iQ(η)∧ r, fQr(η) = fQ(η)∨ (1− r) ∀ η ∈M?

be a neutrosophic G- submodule. If P is Qr projective, then P is Q projective.

Proof. Consider P as Qr projective where r ∈ [0, 1]. Then

(1) M is M∗ projective
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(2) tP (η) ≤ tQr(ψ(η)),

iP (η) ≤ iQr(ψ(η)),

fP (η) ≥ fQr(ψ(η)),

ψ ∈ HomG(M,M∗) and η ∈M

Since Qr ⊆ Q, ⇒ tQr(ψ(η)) ≤ tQ(ψ(η),

iQr(ψ(η)) ≤ iQ(ψ(η)) and

fQr(ψ(η)) ≥ fQ(ψ(η)),∀ ψ(η) ∈M∗.
⇒ tP (η) ≤ tQ(ψ(η)),

iP (η) ≤ iQ(ψ(η)) and

fP (η) ≥ fQ(ψ(η)) ∀ η ∈M.

∴ P is Q projective.

Proposition 3.1. Let M = ⊕n
i=1Mi be a G-module where M ′is are G-submodules of M . If

Pi ∈ U(GMi) (1 ≤ i ≤ n), then the neutrosophic set P of M defined by tP (η) = ∧{tpi(ηi) :

i = 1, 2, ..., n} ,iP (η) = ∧{ipi(ηi) : i = 1, 2, ..., n} and fP (η) = ∨{fPi(ηi) : i = 1, 2, ..., n} where

η =
∑i=n

i=1 (ηi), ηi ∈Mi, is a neutrosophic G-submodule of M .

Proof. Let η, ν ∈ M where η =
∑i=n

i=1 ηi and ν =
∑i=n

i=1 νi. Each ηi, νi ∈ Mi and %, b ∈ K.

Then by definition, %η + τν =
∑i=n

i=1 [%ηi + τνi] where %ηi + τνi ∈Mi (1 ≤ i ≤ n). Now

tP (%η + τν) = ∧ tPi(%ηi + τνi)

≥ ∧ {tPi(ηi), tPi(νi)}

= {∧ tPi(ηi)} ∧ {∧ tPi(νi)}

= tP (η) ∧ tP (ν)

Similarly iP (%η + τν) ≥ iP (η) ∧ iP (ν)

Now consider

fP (%η + τν) = ∨ fPi(%ηi + τνi)

≤ ∨ {fPi(ηi), fPi(νi)}

= {∨ fAi(ηi)} ∨ {∨ fPi(νi)}

= fP (η) ∨ fP (ν)

Now, for g ∈ G, η ∈M

tP (gη) = ∧ tPi(gηi)

≥ ∧ {tPi(ηi)}

= tP (η)
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Similarly iP (gη) ≥ iP (η), fP (gη) ≤ fP (η) ∴ P ∈ U(GM ).

Definition 3.2. Let M = ⊕n
i=1Mi be a G module where M ′is are G-submodules of M . If Pi ∈

U(GMi) (1 ≤ i ≤ n) and P ∈ U(GM=⊕n
i=1Mi) with tP (0) = tPi(0), iP (0) = iPi(0) and fP (0) =

fPi(0) ∀ i Then P is called the direct sum of Pi and it is denoted as P = ⊕n
i=1Pi.

Theorem 3.4. Let M = ⊕n
i=1Mi be G module where M ′is are G submodules of M . Let

P ∈ U(GM ) and Qi ∈ U(GMi) such that Q = ⊕n
i=1Qi. Then P is Q projective if and only if

P is Qi projective ∀i.

Proof. Assume that P is Q-projective, then

(1) M is M projective

(2) tP (η) ≤ tQ(ψ(η)),

iP (η) ≤ iQ(ψ(η)

fP (η) ≥ fQ(ψ(η)

ψ ∈ HomG(M,M); η ∈M

To prove that P is Qi projective where i = 1, 2, ..., n, it is enough to prove the following

conditions.

(1) M is Mi -projective

(2) tP (η) ≤ tQi
(ϕ(η)),

iP (η) ≤ iQi(ϕ(η))

fP (η) ≥ fQi(ϕ(η))

where ∀ ϕ ∈ HomG(M,Mi), η ∈M .

Here M is M = ⊕n
i=1Mi-projective and by the the proposition 2.2, M is Mi projective ∀ i =

1, 2, ..., n. Let ϕ ∈ HomG(M,Mi) and θ : Mi → M ∈ HomG(Mi,M) (inclusion) such that

ψ = θ ◦ ϕ. Then ∀ ϕ ∈ HomG(M,Mi)

tP (η) ≤ tQ(ψ(η)

= tQ((θ ◦ ϕ)(η))

= tQ(θ(ϕ(η)))

= tQ(ϕ(η))

Similarly iP (η) ≤ iQ(ϕ(η)) and

fP (η) ≥ fQ(ψ(η))

= fQ((θ ◦ ϕ)(η))

= fQ(θ(ϕ(η)))

= fQ(ϕ(η))
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Now ϕ(η) ∈Mi ⊆M and η ∈M and consider

ϕ(η) = 0 + 0 + ...+ ϕ(η) + ...+ 0

Then

tQ(ϕ(η)) = tQ(0 + 0 + ...+ ϕ(η) + ...+ 0)

= tQ1(0) ∧ tQ2(0) ∧ ... ∧ tQiϕ(η) ∧ ... ∧ tQn(0)

= tQi(ϕ(η))

Similarly iQ(ϕ(η)) = iQi(ϕ(η)) and

fQ(ϕ(η)) = fQi(ϕ(η)) ∀ i
⇒ tP (η) ≤ tQ(ϕ(η)) = tQi(ϕ(η)).

Also iP (η) ≤ iQ(ϕ(η)) = iQi(ϕ(η) and

fP (η) ≥ fQ(ϕ(η)) = fQi(ϕ(η),∀ η ∈M,ϕ ∈ HomG(M,Mi).

Then P is Qi projective.

Conversely Assume that P is Qi projective where i = 1, 2, ..., n.Then

(1) M is Mi-projective

(2) tP (m) ≤ tQi(ϕi(m)),

iP (m) ≤ iQi(ϕi(m) and

fP (m) ≥ fQi(ϕi(m),

ϕi ∈ HomG(M,Mi);m ∈M

To prove P is Q projective, it is enough to prove the following conditions

(1) M is M projective

(2) tP (η) ≤ tQ(ψ(η)),

iP (η) ≤ iQ(ψ(η))

fP (η) ≥ fQ(ψ(η)), ψ ∈ HomG(M,M); η ∈M

1. :- Since P is Qi projective and proposition 2.1, M is M -Projective where M = ⊕n
i=1Mi.

2. :- Let ψ ∈ HomG(M,M) where M = ⊕n
i=1Mi such that ∀ η ∈M,

ψ(η) ∈ M, i.e. ψ(η) = η1 + η2 + ... + ηn,∀ ηi ∈ Mi, 1 ≤ i ≤ n and πi : M → Mi be the
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projection map where i = 1, 2, ..., n such that πi(ψ(η)) = ηi, ∀ i., then

ψ(η) = η1 + η2 + ...+ ηn,

∀ ηi ∈Mi, 1 ≤ i ≤ n

= π1(ψ(η)) + π2(ψ(η)) + ...

...+ πn(ψ(η))

= (π1 ◦ ψ)(η) + (π2 ◦ ψ)(η) + ...+

(πn ◦ ψ)(η)

= ϕ1(η) + ϕ2(η) + ...+ ϕn(η)

Also

tQ(ψ(η)) = tQ(ϕ1(η)) + tQ(ϕ2(η)) + ...+

tQ(ϕn(η))

= ∧{tQi(ϕi(η)) : 0 ≤ i ≤ n}

[by the proposition 3.1]

≥ tP (η)

Similarly iQ(ψ(η)) ≥ iP (η) and

fQ(ψ(η)) = fQ(ϕ1(η)) + fQ(ϕ2(η)) +

...+ fQ(ϕn(η))

≤ ∨{fQi(ϕi(η)) : 0 ≤ i ≤ n}

≤ fP (m)

∴ A is Q projective.

4. Conclusion

The study of G-module in a neutrosophic set domain using a single-valued neutrosophic set

provides a new step in the algebra sector and helps to analyze group action in application level

on a vector space. Projective G-modules expand the free G-modules class by maintaining a

portion of the free module’s primary properties. Neutrosophic projective G-module is one of

the most generalizations of classical projective G-module. This paper has developed, the notion

of projectivity of neutrosophic G-modules and its quotient and direct sum properties of M

projectivity. This analysis leads to the extension of the quasi projective module, neutrosophic

injective & projective modules and its features in neutrosophic domain.
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Abstract. In this paper we have introduced the concept of score and accuracy function of the Quadriparti-

tioned Single valued Neutrosophic Numbers (QSVNN) and also defined ranking methods between two QSVNNs

which is based on its score function. Dombi operators are used in solving many Multicriteria Attribute Group

decision making (MAGDM) problems because of its very good flexibility with a general parameter.Here Dombi

T-norm and T-conorm operations of two QSVNNs are defined. Based on this Dombi operations, we introduced

two Dombi weighted aggregation operators QSVNDWAA and QSVNDWGA under Quadripartitioned Single

valued Neutrosophic environment and also studied its properties. Finally, we discussed about Multicriteria

Attribute Decision making method (MADM) using QSVNDWAA or QSVNDWGA operator and also an illus-

trative example is given for the proposed method which gives a detailed results to select the best alternative

based upon the ranking orders.

Keywords: Quadripartitioned single valued neutrosophic sets, Score and Accuracy functions, Dombi Weighted

Aggregation Operators .

—————————————————————————————————————————-

1. Introduction

Fuzzy sets which allows the elements to have a degrees of membership in the set and it was

introduced by Zadeh [31] in 1965. The degrees of membership lies in the real unit interval

[0, 1]. Intuitionstic fuzzy set (IFS) allows both membership and non membership to the ele-

ments and this was introduced by Atnassov [1] in 1983. By introducing one more component

in IFS set neutrosophic set was introduced by Smarandache [19] in 1998. Neutrosophic set

has three components truth membership function, indeterminacy membership function and

falsity membership function respectively. This neutrosophic set helps to handle the indetermi-

nate and inconsistent information effectively. Later Wang [21] (2010) introduced the concept

of Single valued Neutrosophic set (SVNS) which is a generalization of classic set, fuzzy set,
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interval valued fuzzy set and intuitionstic fuzzy set.

In 1982 Pawlak [17] defined the standard version of rough set theory which is given in terms

of a pair of sets that is lower and upper approximation sets. It provided a new approach

to vagueness which is defined by a boundary region of a set. Later Yang(2017) [23] defined

a new hybrid model of single valued neutrosophic rough set model and it has many appli-

cations in medical diagnosis, decision making problems, image processing etc., Neutrosophic

set helps to solve many real life world problems [2–6] because of its uncertainty analysis in

data sets. K.Mohana, M.Mohanasundari [15] studied On Some Similarity Measures of Sin-

gle Valued Neutrosophic Rough Sets and applied the concept in Medical Diagnosis problem.

When indeterminacy component in neutrosophic set is divided into two parts namely ’Con-

tradiction’ ( both true and false ) ’Unknown’ ( neither true nor false) we get four components

that is T,C,U,F which define a new set called ’Quadripartitioned Single valued neutrosophic

set’ (QSVNS)introduced by Rajashi Chatterjee., et al. [18] And this is completely based on

Belnap’s four valued logic and Smarandache’s ’Four Numerical valued neutrosophic logic’.

By combining the concept of rough set and QSVNS a new hybrid model of ’Quadriparti-

tioned Single valued neutrosophic Rough set’ (QSVNRS) was introduced by K.Mohana and

M.Mohanasundari. [16]

Many mathematical operations like average, aggregate, sum, count, max, min are performed

with the help of aggregation operations.Multicriteria Attribute decision making (MADM) is

an approach which is used to select a best one when several alternatives are included un-

der consideration of many attributes. So many researchers [8, 11, 24–27, 29] pay attention to

solve the Multicriteria Attribute decision making problems using the concept of various cor-

relation coefficients of the different sets like fuzzy set, IFS, SVNS, QSVNS. And also many

researchers [12–14, 20, 22, 28, 30, 33] used aggregation operators as one of the tool to solve a

Multicriteria decision making problem and also studied its properties. Dombi Bonferroni mean

operators were introduced by Dombi [10] in 1982 which is used in many Multicriteria Attribute

Group decision making (MAGDM) problems because of its very good flexibility with a general

parameter. J.Chen and J.Ye [7] studied Some Single-valued Neutrosophic Dombi Weighted

Aggregation Operators for Multiple Attribute Decision-Making problem.

In this paper Section 2 deals about the basic definitions of Quadripartitioned Single valued

neutrosophic sets, Score and accuracy function of single valued neutrosophic number, Dombi

T norm and T conorm operations of two single valued neutrosophic numbers(SVNN) and its

properties. We have defined Score and accuracy function of quadripartitioned single valued
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neutrosophic number, Dombi T norm and T conorm operations of two quadripartitioned single

valued neutrosophic numbers(QSVNN) in Section 3. Based on the operations of Dombi T norm

and T conorm on two QSVNNs we have defined two aggregation operators QSVNDWAA and

QSVNDWGA and also studied its properties. Section 4 deals about Multicriteria Attribute

Decision making (MADM) method using the above proposed operators QSVNDWAA and

QSVNDWGA. Finally an illustrative example is given in the method which we have discussed

in Section 4.

2. Preliminaries

2.1 Quadripartitioned single valued neutrosophic sets

Definition 2.1. [19]

Neutrosophic set is defined over the non-standard unit interval ]−0, 1+[ whereas single valued

neutrosophic set is defined over standard unit interval [0, 1].It means a single valued neutro-

sophic set A is defined by

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ X}

where TA(x), IA(x), FA(x) : X → [0, 1] such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3

Definition 2.2. [18]

Let X be a non-empty set. A quadripartitioned single valued neutrosophic set (QSVNS)

A over X characterizes each element in X by a truth-membership function TA(x), a con-

tradiction membership function CA(x), an ignorance membership function UA(x) and a

falsity membership function FA(x) such that for each x ∈ X , TA, CA, UA, FA ∈ [0, 1]

and 0 ≤ TA(x) + CA(x) + UA(x) + FA(x) ≤ 4 when X is discrete, A is represented as

A =
∑n

i=1 〈TA(xi), CA(xi), UA(xi), FA(xi)〉 /xi, xi ∈ X.

Definition 2.3. [18]

The complement of a QSVNS A is denoted by AC and is defined as,

AC =
∑n

i=1 〈FA(xi), UA(xi), CA(xi), TA(xi)〉 /xi, xi ∈ X i.e., TAC (xi) = FA(xi),

CAC (xi) = UA(xi), UAC (xi) = CA(xi), FAC (xi) = TA(xi), xi ∈ X

Definition 2.4. [18]

Consider two QSVNS A and B, over X. A is said to be contained in B, denoted by A ⊆ B iff

TA(x) ≤ TB(x), CA(x) ≤ CB(x), UA(x) ≥ UB(x), and FA(x) ≥ FB(x)

Definition 2.5. [18]

The union of two QSVNS A and B is denoted by A ∪B and is defined as,
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A ∪B =
∑n

i=1 〈TA(xi) ∨ TB(xi), CA(xi) ∨ CB(xi), UA(xi) ∧ UB(xi), FA(xi) ∧ FB(xi)〉 /
xi, xi ∈ X

Definition 2.6. [18]

The intersection of two QSVNS A and B is denoted by A ∩B and is defined as,

A ∩B =
∑n

i=1 〈TA(xi) ∧ TB(xi), CA(xi) ∧ CB(xi), UA(xi) ∨ UB(xi), FA(xi) ∨ FB(xi)〉 /
xi, xi ∈ X

Definition 2.7. [21]

LetX be a universal set. A SV NS N inX is described by a truth-membership function tN (x) ,

an indeterminacy-membership function uN (x), and a falsity-membership function vN (x). Then

a SV NS N can be denoted as the following form:

N = {〈x, tN (x), uN (x), vN (x)〉 |x ∈ X}

where the functions tN (x), uN (x), vN (x) ∈ [0, 1] satisfy the condition 0 ≤ tN (x) + uN (x) +

vN (x) ≤ 3 for x ∈ X. For convenient expression, a basic element 〈x, tN (x), uN (x), vN (x)〉 in

N is denoted by s = 〈t, u, v, 〉 which is called a SVNN. For any SVNN s = 〈t, u, v, 〉, its score

and accuracy functions can be introduced, respectively as follows:

E(s) = (2 + t− u− v)/3, E(s) ∈ [0, 1],

H(s) = t− v, H(s) ∈ [−1, 1]

According to the two functions E(s) and H(s), the comparison and ranking of two SVNNs are

introduced by the following definition.

Definition 2.8. [32] Let s1 = 〈t1, u1, v1〉 and s2 = 〈t2, u2, v2〉 be two SVNNs. Then the

ranking method for s1 and s2 is defined as follows:

(1) If E(s1) > E(s2) then s1 � s2,

(2) If E(s1) = E(s2) and H(s1) > H(s2) then s1 � s2,

(3) If E(s1) = E(s2) and H(s1) = H(s2) then s1 = s2.

Definition 2.9. [10] Let p and q be any two real numbers. Then, the Dombi T-norm and

T-conorm between p and q are defined as follows:

OD(p, q) = 1

1+
{(

1−p
p

)ρ
+
(

1−q
q

)ρ}1/ρ ,

OcD(p, q) = 1− 1

1+
{(

p
1−p

)ρ
+
(

q
1−q

)ρ}1/ρ ,
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where ρ ≥ 1 and (p, q) ∈ [0, 1]× [0, 1].

According to the Dombi T-norm and T-conorm, we define the Dombi operations of SVNNs.

Definition 2.10. [7] Let s1 = 〈t1, u1, v1〉 and s2 = 〈t2, u2, v2〉 be two SVNNs, ρ ≥ 1, and

λ > 0. Then, the Dombi T-norm and T-conorm operations of SVNNs are defined below:

(1) s1 ⊕ s2 =〈
1− 1

1+
{(

t1
1−t1

)ρ
+
(

t2
1−t2

)ρ}1/ρ ,
1

1+
{(

1−u1
u1

)ρ
+
(

1−u2
u2

)ρ}1/ρ ,
1

1+
{(

1−v1
v1

)ρ
+
(

1−v2
v2

)ρ}1/ρ

〉
(2) s1 ⊗ s2 =〈

1

1+
{(

1−t1
t1

)ρ
+
(

1−t2
t2

)ρ}1/ρ , 1− 1

1+
{(

u1
1−u1

)ρ
+
(

u2
1−u2

)ρ}1/ρ , 1− 1

1+
{(

v1
1−v1

)ρ
+
(

v2
1−v2

)ρ}1/ρ

〉

(3) λs1 =

〈
1− 1

1+
{
λ
(

t1
1−t1

)ρ}1/ρ ,
1

1+
{
λ
(

1−u1
u1

)ρ}1/ρ ,
1

1+
{
λ
(

1−v1
v1

)ρ}1/ρ

〉

(4) sλ1 =

〈
1

1+
{
λ
(

1−t1
t1

)ρ}1/ρ , 1− 1

1+
{
λ
(

u1
1−u1

)ρ}1/ρ , 1− 1

1+
{
λ
(

v1
1−v1

)ρ}1/ρ

〉

Definition 2.11. [7] Let sj = 〈tj , uj , vj〉 (j = 1, 2, ..., n) be a collection of SVNNs and

w = (w1, w2, ..., wn) be the weight vector for sj with wj ∈ [0, 1] and
∑n

j=1wj = 1. Then, the

SVNDWAA and SVNDWGA operators are defined respectively as follows:

SVNDWAA (s1, s2, ..., sn) =
n⊕
j=1

wjsj

SVNDWGA (s1, s2, ..., sn) =
n⊗
j=1

s
wj
j

3. Quadripartitioned single valued Neutrosophhic Dombi Operations

Definition 3.1. For an QSVNNs q = 〈t, c, u, f〉 its score and accuracy functions are defined

by,

E(q) = (3 + t− c− u− f)/4, E(q) ∈ [0, 1], (1)

H(q) = t− f, H(q) ∈ [−1, 1] (2)

The following definition defined the comparison and ranking of any two QSVNNs based on

the two functions E(s) and H(s).

Definition 3.2. Let q1 = 〈t1, c1, u1, f1〉 and q2 = 〈t2, c2, u2, f2〉 be two QSVNNs. Then the

ranking method for q1 and q2 is defined as follows:
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(1) If E(q1) > E(q2) then q1 � q2,

(2) If E(q1) = E(q2) and H(q1) > H(q2) then q1 � q2,

(3) If E(q1) = E(q2) and H(q1) = H(q2) then q1 = q2.

Definition 3.3. The Dombi T-norm and T-conorm operations of any two QSVNNs q1 =

〈t1, c1, u1, f1〉 and q2 = 〈t2, c2, u2, f2〉 are defined as follows:

(1) q1 ⊕ q2 =

〈
1− 1

1+
{(

t1
1−t1

)ρ
+
(

t2
1−t2

)ρ}1/ρ , 1− 1

1+
{(

c1
1−c1

)ρ
+
(

c2
1−c2

)ρ}1/ρ ,

1

1+
{(

1−u1
u1

)ρ
+
(

1−u2
u2

)ρ}1/ρ ,
1

1+
{(

1−f1
f1

)ρ
+
(

1−f2
f2

)ρ}1/ρ

〉

(2) q1 ⊗ q2 =

〈
1

1+
{(

1−t1
t1

)ρ
+
(

1−t2
t2

)ρ}1/ρ ,
1

1+
{(

1−c1
c1

)ρ
+
(

1−c2
c2

)ρ}1/ρ ,

1− 1

1+
{(

u1
1−u1

)ρ
+
(

u2
1−u2

)ρ}1/ρ , 1− 1

1+
{(

f1
1−f1

)ρ
+
(

f2
1−f2

)ρ}1/ρ

〉

(3) λq1 =

〈
1− 1

1+
{
λ
(

t1
1−t1

)ρ}1/ρ , 1− 1

1+
{
λ
(

c1
1−c1

)ρ}1/ρ ,
1

1+
{
λ
(

1−u1
u1

)ρ}1/ρ ,
1

1+
{
λ
(

1−f1
f1

)ρ}1/ρ

〉

(4) qλ1 =

〈
1

1+
{
λ
(

1−t1
t1

)ρ}1/ρ ,
1

1+
{
λ
(

1−c1
c1

)ρ}1/ρ , 1− 1

1+
{
λ
(

u1
1−u1

)ρ}1/ρ , 1− 1

1+
{
λ
(

f1
1−f1

)ρ}1/ρ

〉

4. Dombi Weighted Aggregation Operators of QSVNNs

In this section we introduce two Dombi weighted aggregation operators QSVNDWAA and

QSVNDWGA which is based on the Dombi operations of QSVNNs in Definition 3.3 and also

studied its properties.

Definition 4.1. A collection of QSVNNs is denoted by qj = 〈tj , cj , uj , fj〉 (j = 1, 2, ..., n) and

w = (w1, w2, ..., wn) be the weight vector for qj with wj ∈ [0, 1] and
∑n

j=1wj = 1. Then the

QSVNDWAA and QSVNDWGA operators are defined as follows.

QSVNDWAA (q1, q2, ..., qn) =
n⊕
j=1

wjqj

QSVNDWGA (q1, q2, ..., qn) =
n⊗
j=1

q
wj
j

Theorem 3.1 A collection of QSVNNs is denoted by qj = 〈tj , cj , uj , fj〉 (j = 1, 2, ..., n)

and w = (w1, w2, ..., wn) be the weight vector for qj with wj ∈ [0, 1] and
∑n

j=1wj = 1. Then

the aggregated value of the QSVNDWAA operator is still a QSVNN and is calculated by the
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following formula,

QSV NDWAA(q1, q2, ..., qn) =

〈
1− 1

1 +
{∑n

j=1wj

(
tj

1−tj

)ρ}1/ρ
, 1− 1

1 +
{∑n

j=1wj

(
cj

1−cj

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−uj
uj

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−fj
fj

)ρ}1/ρ

〉
(3)

We can prove this theorem using mathematical induction.

Proof: When n = 2 by using the Dombi operations of QSVNNs in Definition (3.3) we can have

the following result

QSV NDWAA(q1, q2) = q1 ⊕ q2

=

〈
1− 1

1 +
{
w1

(
t1

1−t1

)ρ
+ w2

(
t2

1−t2

)ρ}1/ρ
, 1− 1

1 +
{
w1

(
c1

1−c1

)ρ
+ w2

(
c2

1−c2

)ρ}1/ρ
,

1

1 +
{
w1

(
1−u1
u1

)ρ
+ w2

(
1−u2
u2

)ρ}1/ρ
,

1

1 +
{
w1

(
1−f1
f1

)ρ
+ w2

(
1−f2
f2

)ρ}1/ρ

〉

=

〈
1− 1

1 +
{∑2

j=1wj

(
tj

1−tj

)ρ}1/ρ
, 1− 1

1 +
{∑2

j=1wj

(
cj

1−cj

)ρ}1/ρ
,

1

1 +
{∑2

j=1wj

(
1−uj
uj

)ρ}1/ρ
,

1

1 +
{∑2

j=1wj

(
1−fj
fj

)ρ}1/ρ

〉

when n = k, Equation (1) becomes,

QSV NDWAA(q1, q2, ..., qk) =

〈
1− 1

1 +
{∑k

j=1wj

(
tj

1−tj

)ρ}1/ρ
, 1− 1

1 +
{∑k

j=1wj

(
cj

1−cj

)ρ}1/ρ
,

1

1 +
{∑k

j=1wj

(
1−uj
uj

)ρ}1/ρ
,

1

1 +
{∑k

j=1wj

(
1−fj
fj

)ρ}1/ρ

〉
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When n = k + 1 we have the following result

QSV NDWAA(q1, q2, ..., qk, qk+1) =

〈
1− 1

1 +
{∑k

j=1wj

(
tj

1−tj

)ρ}1/ρ
, 1− 1

1 +
{∑k

j=1wj

(
cj

1−cj

)ρ}1/ρ
,

1

1 +
{∑k

j=1wj

(
1−uj
uj

)ρ}1/ρ
,

1

1 +
{∑k

j=1wj

(
1−fj
fj

)ρ}1/ρ

〉
⊕ wk+1qk+1

=

〈
1− 1

1 +
{∑k+1

j=1 wj

(
tj

1−tj

)ρ}1/ρ
, 1− 1

1 +
{∑k+1

j=1 wj

(
cj

1−cj

)ρ}1/ρ
,

1

1 +
{∑k+1

j=1 wj

(
1−uj
uj

)ρ}1/ρ
,

1

1 +
{∑k+1

j=1 wj

(
1−fj
fj

)ρ}1/ρ

〉

Hence we proved that Theorem 3.1 is true for n = k + 1 . Thus Equation (1) is true for all n.

The operator QSVNDWAA satisfies the following properties.

(1) Reducibility : If w = (1/n, 1/n, ..., 1/n), then it is obvious that there exits,

QSV NDWAA(q1, q2, ..., qn) =

〈
1− 1

1 +
{∑n

j=1
1
n

(
tj

1−tj

)ρ}1/ρ
, 1− 1

1 +
{∑n

j=1
1
n

(
cj

1−cj

)ρ}1/ρ
,

1

1 +
{∑n

j=1
1
n

(
1−uj
uj

)ρ}1/ρ
,

1

1 +
{∑n

j=1
1
n

(
1−fj
fj

)ρ}1/ρ

〉

(2) Idempotency : Let all the QSVNNs be denoted by qj = 〈tj , cj , uj , fj〉 = q(j = 1, 2, ..., n).

Then QSVNDWAA (q1, q2, ..., qn) = q .

(3) Commutativity: Let any QSVNS (q
′
1, q

′
2, ..., q

′
n) be any permutation of (q1, q2, ..., qn). Then

there is QSVNDWAA (q
′
1, q

′
2, ..., q

′
n) = QSVNDWAA (q1, q2, ..., qn).

(4) Boundedness: Let qmin = min(s1, s2, ..., sn) and qmax = max(s1, s2, ..., sn). Then qmin ≤
QSV NDWAA(q1, q2, ..., qn) ≤ qmax
Proof: (1) Given qj = 〈tj , cj , uj , fj〉 = q(j = 1, 2, ..., n) Property (1) is trivially true based on

equation (3)
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(2) The following result is derived from the equation (3) and we get,

QSV NDWAA(q1, q2, ..., qn) =

〈
1− 1

1 +
{∑n

j=1wj

(
tj

1−tj

)ρ}1/ρ
, 1− 1

1 +
{∑n

j=1wj

(
cj

1−cj

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−uj
uj

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−fj
fj

)ρ}1/ρ

〉

=

〈
1− 1

1 +
{(

t
1−t

)ρ}1/ρ
, 1− 1

1 +
{(

c
1−c

)ρ}1/ρ
,

1

1 +
{(

1−u
u

)ρ}1/ρ , 1

1 +
{(

1−f
f

)ρ}1/ρ

〉

=

〈
1− 1

1 + t
1−t

, 1− 1

1 + c
1−c

, 1− 1

1 + 1−u
u

, 1− 1

1 + 1−f
f

〉
= 〈t, c, u, f〉 = q

QSVNDWAA (q1, q2, ..., qn) = q holds.

(3) This property is obvious.

(4) Consider qmin = min(q1, q2, ..., qn) = 〈t−, c−, u−, f−〉 and qmax = max(q1, q2, ..., qn) =

〈t+, c+, u+, f+〉 Then,

t− = min
j

(tj), c
− = min

j
(cj), u

− = max
j

(uj), f
− = max

j
(fj)

t+ = max
j

(tj), c
+ = max

j
(cj), u

+ = min
j

(uj), f
+ = min

j
(fj)

Therefore we get the following inequalities.

1− 1

1+
{∑n

j=1 wj

(
t−

1−t−

)ρ}1/ρ ≤ 1− 1

1+

{∑n
j=1 wj

(
tj

1−tj

)ρ}1/ρ ≤ 1− 1

1+
{∑n

j=1 wj

(
t+

1−t+

)ρ}1/ρ

1− 1

1+
{∑n

j=1 wj

(
c−

1−c−

)ρ}1/ρ ≤ 1− 1

1+

{∑n
j=1 wj

(
cj

1−cj

)ρ}1/ρ ≤ 1− 1

1+
{∑n

j=1 wj

(
c+

1−c+

)ρ}1/ρ

1

1+
{∑n

j=1 wj

(
1−u+
u+

)ρ}1/ρ ≤ 1

1+

{∑n
j=1 wj

(
1−uj
uj

)ρ}1/ρ ≤ 1

1+
{∑n

j=1 wj

(
1−u−
u−

)ρ}1/ρ

1

1+
{∑n

j=1 wj

(
1−f+
f+

)ρ}1/ρ ≤ 1

1+

{∑n
j=1 wj

(
1−fj
fj

)ρ}1/ρ ≤ 1

1+
{∑n

j=1 wj

(
1−f−
f−

)ρ}1/ρ

Hence qmin ≤ QSV NDWAA(q1, q2, ..., qn) ≤ qmax holds.

Theorem 3.2 A collection of QSVNNs is denoted by qj = 〈tj , cj , uj , fj〉 (j = 1, 2, ..., n)

and w = (w1, w2, ..., wn) be the weight vector for qj with wj ∈ [0, 1] and j=1wj = 1. Then
∑n

the aggregated value of the QSVNDWGA operator is still a QSVNN and is calculated by the

following formula:
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QSV NDWGA(q1, q2, ..., qn) =

〈
1

1 +
{∑n

j=1wj

(
1−tj
tj

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−cj
cj

)ρ}1/ρ
,

1− 1

1 +
{∑n

j=1wj

(
uj

1−uj

)ρ}1/ρ
, 1− 1

1 +
{∑n

j=1wj

(
fj

1−fj

)ρ}1/ρ

〉

(4)

The proof is similar to the proof of Theorem (3.1).

This QSVNDWGA operator also satisfies the following properties.

(1) Reducibility : If w = (1/n, 1/n, ..., 1/n), then it is obvious that there exits,

QSV NDWGA(q1, q2, ..., qn) =

〈
1

1 +
{∑n

j=1
1
n

(
1−tj
tj

)ρ}1/ρ
,

1

1 +
{∑n

j=1
1
n

(
1−cj
cj

)ρ}1/ρ
,

1− 1

1 +
{∑n

j=1
1
n

(
uj

1−uj

)ρ}1/ρ
, 1− 1

1 +
{∑n

j=1
1
n

(
fj

1−fj

)ρ}1/ρ

〉

(2) Idempotency : Let all the QSVNNs be denoted by qj = 〈tj , cj , uj , fj〉 = q(j = 1, 2, ..., n).

Then QSVNDWGA (q1, q2, ..., qn) = q .

(3) Commutativity: Let any QSVNS (q
′
1, q

′
2, ..., q

′
n) be any permutation of (q1, q2, ..., qn). Then

there is QSVNDWGA (q
′
1, q

′
2, ..., q

′
n) = QSVNDWGA (q1, q2, ..., qn).

(4) Boundedness: Let qmin = min(q1, q2, ..., qn) and qmax = max(q1, q2, ..., qn). Then

qmin ≤ QSV NDWGA(q1, q2, ..., qn) ≤ qmax

To prove the above properties it is similar to the operator properties of QSVNDWAA. Hence

it is not repeated here.

5. MADM method using QSVNDWAA operator or QSVNDWGA operator

This section deals about the MADM method to handle the MADM problems effectively

with QSVNN information by using the QSVNDWAA operator or QSVNDWGA operator.

Let A = {A1, A2, ..., Am} and C = {C1, C2, ..., Cn} be a discrete set of alternatives and at-

tributes respectively. The weight vector of the above attributes is given by w = {w1, w2, ..., wn}
such that wj ∈ [0, 1] and

∑n
j=1wj = 1.
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To make a better decision to choose the alternative Ai(i = 1, 2, ...,m), a decision maker

needs to analyse the attributes Cj(j = 1, 2, ..., n) by the QSVNN qij = 〈tij , cij , uij , fij〉 (i =

1, 2, ...,m; j = 1, 2, ..., n) then we get a QSVNN decision matrix D = (dij)m×n

The following decision steps are needed to handle the MADM problems under QSVNN in-

formation by using the operator QSVNDWAA or QSVNDWGA.

Step 1 : Collect the QSVNN qi(i = 1, 2, ...,m) for the given alternative Ai(i = 1, 2, ...,m)

by using the operator QSVNDWAA

qi = QSV NDWAA(qi1, qi2, ..., qin)

=

〈
1− 1

1 +
{∑n

j=1wj

(
tij

1−tij

)ρ}1/ρ
, 1− 1

1 +
{∑n

j=1wj

(
cij

1−cij

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−uij
uij

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−fij
fij

)ρ}1/ρ

〉

or by using QSVNDWGA operator

qi = QSV NDWGA(qi1, qi2, ..., qin)

=

〈
1

1 +
{∑n

j=1wj

(
1−tij
tij

)ρ}1/ρ
,

1

1 +
{∑n

j=1wj

(
1−cij
cij

)ρ}1/ρ
,

1− 1

1 +
{∑n

j=1wj

(
uij

1−uij

)ρ}1/ρ
, 1− 1

1 +
{∑n

j=1wj

(
fij

1−fij

)ρ}1/ρ

〉

where w = (w1, w2, ..., wn) is the weight vector such that wj ∈ [0, 1] and j=1wj = 1
∑n

Step 2: Score values E(qi) can be calculated by using Equation (1) with the collective

QSVNN qi(i = 1, 2, ...,m)

Step 3: Select the best one according to rank given to the alternatives.

6. Illustrative Example

This section illustrates an example for a MADM problem about investment alternatives

under a QSVNN environment. An investment company chooses three possible alternatives for
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investing their money by considering the four attributes. Let A1, A2, A3 be three alternatives

which represent food, car and computer company respectively. Let C1, C2, C3, C4 be the four

attributes which denotes i) Knowledge (or) Expertise ii) Start up costs iii) Market or Demand

iv) Competition respectively. Here the alternatives under given attributes are expressed by

the form of QSVNNs. When three alternatives under four attributes are evaluated we get

a quadripartitioned single valued neutrosophic decision matrix D = (qij)m×n where qij =

〈tij , cij , uij , fij〉 (i = 1, 2, 3; j = 1, 2, 3, 4) which is given below.

D =

 〈0.5, 0.6, 0.2, 0.1〉 〈0.4, 0.2, 0.3, 0.1〉 〈0.4, 0.2, 0.3, 0.1〉 〈0.6, 0.7, 0.1, 0.5〉〈0.5, 0.1, 0.8, 0.7〉 〈0.2, 0.1, 0.8, 0.7〉 〈0.5, 0.4, 0.7, 0.3〉 〈0.5, 0.4, 0.7, 0.3〉
〈0.1, 0.2, 0.5, 0.7〉 〈0.1, 0.5, 0.3, 0.4〉 〈0.3, 0.2, 0.7, 0.8〉 〈0.9, 0.8, 0.4, 0.1〉



The weight vector for the above four attributes is given as w = (0.35, 0.25, 0.25, 0.15). Hence

the proposed operator of QSVNDWAA (or) QSVNDWGA are used here to solve MADM prob-

lem under QSVNN information.

The following steps are needed to solve MADM problem when we use the operator QSVND-

WAA. Step 1 : By using Equation(1) for ρ = 1 derive the collective QSVNNs of qi for the

alternative Ai(i = 1, 2, 3) which is given below.

q1 = 〈0.4760, 0.6667, 0.2034, 0.1136〉 ,
q2 = 〈0.4483, 0.25, 0.7568, 0.4565〉 ,
q3 = 〈0.6038, 0.5, 0.4414, 0.3404〉

Step 2 : Score values E(qi) can be calculated by using Equation (1) of the collective QSVNN

qi(i = 1, 2, 3) for the alternatives Ai(i = 1, 2, 3) gives the following results.

E(q1) = 0.6231, E(q2) = 0.4962, E(q3) = 0.5805

Step 3: The ranking order is given according to the obtained score values

q1 > q3 > q2 and the best one is q1

The same MADM problem can also be solved by using the another proposed operator that

is QSVNDWGA. The following steps are needed to solve the MADM problem.

Step 1 : By using Equation (4) for ρ = 1 derive the collective QSVNNs of qi for the alter-

native Ai(i = 1, 2, 3) which is given below.

q1 = 〈0.4545, 0.3033, 0.2416, 0.1965〉 ,
q2 = 〈0.3636, 0.1429, 0.7692, 0.6111〉 ,
q3 = 〈0.1429, 0.2712, 0.5328, 0.6667〉
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Step 2 : Score values E(qi) can be calculated by using Equation (1) of the collective QSVNN

qi(i = 1, 2, 3) for the alternatives Ai(i = 1, 2, 3) gives the following results.

E(q1) = 0.6783, E(q2) = 0.4601, E(q3) = 0.4181

Step 3: The ranking order is given according to the obtained score values

q1 > q2 > q3 and the best one is q1

The following Table 1 and 2 shows the ranking results for the parameters of ρ ∈ [1, 10] of

the quadripartitioned single valued neutrosophic Dombi weighted arithmetic average (QSVND-

WAA) operator and quadripartitioned single valued neutrosophic Dombi weighted geometric

average (QSVNDWGA) operator respectively.

We can observe the following results from Tables 1 and 2.

1) Different aggregation operators that is QSVNDWAA and QSVNDWGA shows different

ranking orders. But the ranking orders due to different operational parameters are same ac-

cording to the one operator. This results that the operational parameter ρ is not sensitive

in this decision making problem since we get the same ranking orders corresponding to the

QSVNDWAA and QSVNDWGA operator.

Table 1. Ranking results of the operator QSVNDWAA for different opera-

tional parameters.

ρ E(q1), E(q2), E(q3) Ranking Order

1 0.6231,0.4962,0.5805 q1 > q3 > q2

2 0.6596,0.5044,0.6323 q1 > q3 > q2

3 0.6601,0.5089,0.6468 q1 > q3 > q2

4 0.6619,0.5118,0.6535 q1 > q3 > q2

5 0.6637,0.5139,0.6577 q1 > q3 > q2

6 0.6652,0.5154,0.6605 q1 > q3 > q2

7 0.6665,0.5166,0.6626 q1 > q3 > q2

8 0.6675,0.5181,0.6641 q1 > q3 > q2

9 0.6683,0.5184,0.6654 q1 > q3 > q2

10 0.6689,0.5191,0.6664 q1 > q3 > q2
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Table 2. Ranking results of the operator QSVNDWGA for different opera-

tional parameters.

ρ E(q1), E(q2), E(q3) Ranking Order

1 0.6783,0.4601,0.4181 q1 > q2 > q3

2 0.6619,0.4424,0.3994 q1 > q2 > q3

3 0.6475,0.4308,0.3877 q1 > q2 > q3

4 0.6380,0.4236,0.3799 q1 > q2 > q3

5 0.6315,0.4196,0.3745 q1 > q2 > q3

6 0.6269,0.4158,0.3706 q1 > q2 > q3

7 0.6236,0.4136,0.3678 q1 > q2 > q3

8 0.6204,0.4119,0.3656 q1 > q2 > q3

9 0.6185,0.4105,0.3638 q1 > q2 > q3

10 0.6167,0.4094,0.3624 q1 > q2 > q3

1) The ranking orders according to the operators QSVNDWAA and QSVNDWGA are dif-

ferent

2) Ranking orders are not affected by different operational parameters of ρ ∈ [0, 1] in both the

operators which shows that ρ is not sensitive in this decision making problem.

3) These aggregation methods of the operators QSVNDWAA and QSVNDWGA provides new

method to solve MADM problems under an QSVNN environment.

7. Conclusion

In this paper we have studied the Dombi operations of QSVNN based on the Dombi T-norm

and T-conorm operations and also we have proposed the two weighted aggregation operators

QSVNDWAA , QSVNDWGA and investigate their properties. Multiple Attribute Decision

making is one of the effective approach which helps us to the problems involving a selection

from a finite number of alternatives are included under finite number of attributes. To solve

these type of MADM problems ranking orders are used to select the best one among the given

alternatives. This paper also deals about MADM method by using the proposed QSVNDWAA

and QSVNDWGA operator under a QSVNN environment. Using these aggregation operators

we calculate the score function of the alternatives with respect to the given attributes and this

score function helps us to rank the alternatives and choose the best one. Finally we illustrated

an example of a MADM problem for the proposed aggregation operators.
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Abstract: k-polar generalized neutrosophic set is introduced, and it is applied to BCK/BCI-algebras. The notions
of k-polar generalized subalgebra, k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra and k-polar generalized
(q, ∈ ∨q)-neutrosophic subalgebra are defined, and several properties are investigated. Characterizations of k-polar
generalized neutrosophic subalgebra and k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra are discussed, and
the necessity and possibility operator of k-polar generalized neutrosophic subalgebra are are considered. We show
that the generaliged neutrosophic q-sets and the generaliged neutrosophic ∈∨q-sets subalgebras by using the k-polar
generalized (∈, ∈ ∨q)-neutrosophic subalgebra and the k-polar generalized (q, ∈ ∨q)-neutrosophic subalgebra. A
k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra is established by using the generaliged neutrosophic ∈ ∨q-
sets, conditions for a k-polar generalized neutrosophic set to be a k-polar generalized neutrosophic subalgebra and a
k-polar generalized (q, ∈∨q)-neutrosophic subalgebra are provided.

Keywords: k-polar generalized neutrosophic subalgebra, k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra,
k-polar generalized (q, ∈∨q)-neutrosophic subalgebra.

1 Introduction
In the fuzzy set which is introduced by Zadeh [35], the membership degree is expressed by only one function so
called the truth function. As a generalization of fuzzy set, intuitionistic fuzzy set is introduced by Atanassove
by using membership function and nonmembership function. The membership (resp. nonmembership) func-
tion represents truth (resp. false) part. Smarandache introduced a new notion so called neutrosophic set by
using three functions, i.e., membership function (t), nonmembership function (f) and neutalitic/indeterministic
membership function (i) which are independent components. Neutrosophic set is applied to BCK/BCI-
algebras which are discussed in the papers [13, 19, 20, 21, 22, 26, 27, 30]. Indeterministic membership func-
tion is leaning to one side, membership function or nonmembership function, in the application of neutrosophic
set to algebraic structures. In order to divide the role of the indeterministic membership function, Song et al.
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[31] introduced the generalized neutralrosophic set, and discussed its application in BCK/BCI-algebras. Bor-
zooei et al. [8] introduced the notion of a commutative generalized neutrosophic ideal in a BCK-algebra, and
investigated related properties. They considered characterizations of a commutative generalized neutrosophic
ideal. Using a collection of commutative ideals in BCK-algebras, they established a commutative generalized
neutrosophic ideal. They also introduced the notion of equivalence relations on the family of all commutative
generalized neutrosophic ideals in BCK-algebras, and investigated related properties. Zhang [36] introduced
the notion of bipolar fuzzy sets as an extension of fuzzy sets, and it is applied in several (algebraic) structures
such as (ordered) semigroups (see [12, 7, 10, 28]), (hyper) BCK/BCI-algebras (see [6, 14, 15, 23, 16, 17])
and finite state machines (see [18, 32, 33, 34]). The bipolar fuzzy set is an extension of fuzzy sets whose
membership degree range is [−1, 1]. So, it is possible for a bipolar fuzzy set to deal with positive information
and negative information at the same time. Chen et al. [9] raised a question: “How to generalize bipolar
fuzzy sets to multipolar fuzzy sets and how to generalize results on bipolar fuzzy sets to the case of multipolar
fuzzy sets?” To solve their question, they tried to fold the negative part into positive part, that is, they used
positive part instead of negative part in bipolar fuzzy set. And then they introduced introduced an m-polar
fuzzy set which is an extension of bipolar fuzzy sets. It is applied to BCK/BCI-algebra, graph theory and
decision-making problems etc. (see [4, 2, 1, 3, 29, 5, 25]).

In this paper, we introduce k-polar generalized neutrosophic set and apply it to BCK/BCI-algebras to study.
We define k-polar generalized neutrosophic subalgebra, k-polar generalized (∈, ∈∨q)-neutrosophic subalge-
bra and k-polar generalized (q, ∈∨q)-neutrosophic subalgebra and study various properties. We discuss char-
acterization of k-polar generalized neutrosophic subalgebra and k-polar generalized (∈, ∈ ∨q)-neutrosophic
subalgebra. We show that the necessity and possibility operator of k-polar generalized neutrosophic subalgebra
are also a k-polar generalized neutrosophic subalgebra. Using the k-polar generalized (∈, ∈∨q)-neutrosophic
subalgebra, we show that the generaliged neutrosophic q-sets and the generaliged neutrosophic ∈∨q-sets sub-
algebras. Using the k-polar generalized (q, ∈ ∨q)-neutrosophic subalgebra, we show that the generaliged
neutrosophic q-sets and the generaliged neutrosophic ∈∨q-sets are subalgebras. Using the generaliged neu-
trosophic ∈ ∨q-sets, we establish a k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra. We provide
conditions for a k-polar generalized neutrosophic set to be a k-polar generalized neutrosophic subalgebra and
a k-polar generalized (q, ∈∨q)-neutrosophic subalgebra.

2 Preliminaries
If a set X has a special element 0 and a binary operation ∗ satisfying the conditions:

(I) (∀u, v, w ∈ X) (((u ∗ v) ∗ (u ∗ w)) ∗ (w ∗ v) = 0),

(II) (∀u, v ∈ X) ((u ∗ (u ∗ v)) ∗ v = 0),

(III) (∀u ∈ X) (u ∗ u = 0),

(IV) (∀u, v ∈ X) (u ∗ v = 0, v ∗ u = 0 ⇒ u = v),

then we say that X is a BCI-algebra. If a BCI-algebra X satisfies the following identity:

(V) (∀u ∈ X) (0 ∗ u = 0),

then X is called a BCK-algebra.
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Any BCK/BCI-algebra X satisfies the following conditions:

(∀u ∈ X) (u ∗ 0 = u) , (2.1)
(∀u, v, w ∈ X) (u ≤ v ⇒ u ∗ w ≤ v ∗ w, w ∗ v ≤ w ∗ u) , (2.2)
(∀u, v, w ∈ X) ((u ∗ v) ∗ w = (u ∗ w) ∗ v) (2.3)

where u ≤ v if and only if u ∗ v = 0. A subset S of a BCK/BCI-algebra X is called a subalgebra of X if
u ∗ v ∈ S for all u, v ∈ S.

See the books [11] and [24] for more information on BCK/BCI-algeebras.
A fuzzy set µ in a BCK/BCI-algebra X is called a fuzzy subalgebra of X if µ(u ∗ v) ≥ min{µ(u), µ(v)}

for all u, v ∈ X .
For any family {ai | i ∈ Λ} of real numbers, we define∨

{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,
sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,
inf{ai | i ∈ Λ} otherwise.

If Λ = {1, 2}, we will also use a1 ∨ a2 and a1 ∧ a2 instead of
∨
{ai | i ∈ Λ} and

∧
{ai | i ∈ Λ}, respectively.

3 k-polar generalized neutrosophic subalgebras
A k-polar generalized neutrosophic set over a universe X is a structure of the form:

L̂ :=

{
z

(̂̀T (z),̂̀IT (z),̂̀IF (z),̂̀F (z))
| z ∈ X, ̂̀IT (z) + ̂̀IF (z) ≤ 1̂

}
(3.1)

where ̂̀T , ̂̀IT , ̂̀IF and ̂̀F are mappings from X into [0, 1]k. The membership values of every element z ∈ X
in ̂̀T , ̂̀IT , ̂̀IF and ̂̀F are denoted by

̂̀
T (z) =

(
(π1 ◦ ̂̀T )(z), (π2 ◦ ̂̀T )(z), · · · , (πk ◦ ̂̀T )(z)

)
,

̂̀
IT (z) =

(
(π1 ◦ ̂̀IT )(z), (π2 ◦ ̂̀IT )(z), · · · , (πk ◦ ̂̀IT )(z)

)
,

̂̀
IF (z) =

(
(π1 ◦ ̂̀IF )(z), (π2 ◦ ̂̀IF )(z), · · · , (πk ◦ ̂̀IF )(z)

)
,

̂̀
F (z) =

(
(π1 ◦ ̂̀F )(z), (π2 ◦ ̂̀F )(z), · · · , (πk ◦ ̂̀F )(z)

)
,

(3.2)

respectively, and satisfies the following condition

(πi ◦ ̂̀IT )(z) + (πi ◦ ̂̀IF )(z) ≤ 1

for all i = 1, 2, · · · , k.
We shall use the ordered quadruple L̂ :=

(̂̀
T , ̂̀IT , ̂̀IF , ̂̀F) for the k-polar generalized neutrosophic set in

(3.1).
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Note that for every k-polar generalized neutrosophic set L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) over X , we have

(∀z ∈ X)
(

0̂ ≤ ̂̀T (z) + ̂̀IT (z) + ̂̀IF (z) + ̂̀F (z) ≤ 3̂
)
,

that is, 0 ≤ (πi ◦ ̂̀T )(z) + (πi ◦ ̂̀IT )(z) + (πi ◦ ̂̀IF )(z) + (πi ◦ ̂̀F )(z) ≤ 3 for all z ∈ X and i = 1, 2, · · · , k.
Unless otherwise stated in this section, X will represent a BCK/BCI-algebra.

Definition 3.1. A k-polar generalized neutrosophic set L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) over X is called a k-polar
generalized neutrosophic subalgebra of X if it satisfies:

(∀z, y ∈ X)


̂̀
T (z ∗ y) ≥ ̂̀T (z) ∧ ̂̀T (y)̂̀
IT (z ∗ y) ≥ ̂̀IT (z) ∧ ̂̀IT (y)̂̀
IF (z ∗ y) ≤ ̂̀IF (z) ∨ ̂̀IF (y)̂̀
F (z ∗ y) ≤ ̂̀F (z) ∨ ̂̀F (y)

 , (3.3)

that is, 
(πi ◦ ̂̀T )(z ∗ y) ≥ (πi ◦ ̂̀T )(z) ∧ (πi ◦ ̂̀T )(y)

(πi ◦ ̂̀IT )(z ∗ y) ≥ (πi ◦ ̂̀IT )(z) ∧ (πi ◦ ̂̀IT )(y)

(πi ◦ ̂̀IF )(z ∗ y) ≤ (πi ◦ ̂̀IF )(z) ∨ (πi ◦ ̂̀IF )(y)

(πi ◦ ̂̀F )(z ∗ y) ≤ (πi ◦ ̂̀F )(z) ∨ (πi ◦ ̂̀F )(y)

(3.4)

for i = 1, 2, · · · , k.

Example 3.2. Consider a BCK-algebra X = {0, α, β, γ} with the binary operation “∗” which is given below.

∗ 0 α β γ
0 0 0 0 0
α α 0 α α
β β β 0 β
γ γ γ γ 0

Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a 4-polar neutrosophic set over X in which ̂̀T , ̂̀IT , ̂̀IF and ̂̀F are defined as
follows:

̂̀
T : X → [0, 1]4, z 7→


(0.6, 0.7, 0.8, 0.9) if z = 0,
(0.4, 0.4, 0.8, 0.5) if z = α,
(0.5, 0.6, 0.7, 0.3) if z = β,
(0.3, 0.5, 0.4, 0.7) if z = γ,
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̂̀
IT : X → [0, 1]4, z 7→


(0.7, 0.6, 0.8, 0.9) if z = 0,
(0.6, 0.4, 0.7, 0.5) if z = α,
(0.5, 0.5, 0.4, 0.8) if z = β,
(0.2, 0.6, 0.5, 0.7) if z = γ,

̂̀
IF : X → [0, 1]4, z 7→


(0.2, 0.3, 0.4, 0.5) if z = 0,
(0.4, 0.7, 0.5, 0.8) if z = α,
(0.5, 0.5, 0.8, 0.6) if z = β,
(0.7, 0.3, 0.6, 0.7) if z = γ,

̂̀
F : X → [0, 1]4, z 7→


(0.4, 0.4, 0.3, 0.2) if z = 0,
(0.8, 0.7, 0.5, 0.3) if z = α,
(0.6, 0.5, 0.6, 0.6) if z = β,
(0.4, 0.6, 0.8, 0.4) if z = γ,

It is routine to verify that L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a 4-polar generalized neutrosophic subalgebra of X .

If we take z = y in (3.3) and use (III), then we have the following lemma.

Lemma 3.3. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic subalgebra of a BCK/BCI-
algebr X . Then

(∀z, y ∈ X)
̂̀
T (0) ≥ ̂̀T (z), ̂̀IT (0) ≥ ̂̀IT (z)̂̀
IF (0) ≤ ̂̀IF (z), ̂̀F (0) ≤ ̂̀F (z)

)
. (3.5)

Proposition 3.4. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set over X . If there exists

a sequence {zn} in X such that lim
n→∞

̂̀
T (zn) = 1̂ = lim

n→∞
̂̀
IT (zn) and lim

n→∞
̂̀
IF (zn) = 0̂ = lim

n→∞
̂̀
F (zn), then̂̀

T (0) = 1̂ = ̂̀
IT (0) and ̂̀IF (0) = 0̂ = ̂̀

F (0).

Proof. Using Lemma 3.3, we have

1̂ = lim
n→∞

̂̀
T (zn) ≤ ̂̀T (0) ≤ 1̂ = lim

n→∞
̂̀
IT (zn) ≤ ̂̀IT (0) ≤ 1̂,

0̂ = lim
n→∞

̂̀
IF (zn) ≥ ̂̀IF (0) ≥ 0̂ = lim

n→∞
̂̀
F (zn) ≥ ̂̀F (0) ≥ 0̂.

This completes the proof.

Proposition 3.5. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic subalgebra ofX such that

(∀z, y ∈ X)
̂̀
T (z ∗ y) ≥ ̂̀T (y), ̂̀IT (z ∗ y) ≥ ̂̀IT (y)̂̀
IF (z ∗ y) ≤ ̂̀IF (y), ̂̀F (z ∗ y) ≤ ̂̀F (y)

)
. (3.6)

Then L̂ is constant on X , that is, ̂̀T , ̂̀IT , ̂̀IF and ̂̀F are constants on X .
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Proof. Since z ∗ 0 = z for all z ∈ X , it follows from the condition (3.6) that

̂̀
T (z) = ̂̀

T (z ∗ 0) ≥ ̂̀T (0), ̂̀IT (z) = ̂̀
IT (z ∗ 0) ≥ ̂̀IT (0), (3.7)̂̀

IF (z) = ̂̀
IF (z ∗ 0) ≤ ̂̀IF (0), ̂̀F (z) = ̂̀

F (z ∗ 0) ≤ ̂̀F (0) (3.8)

for all z ∈ X . Combining (3.5) and (3.7) induces ̂̀T (z) = ̂̀
T (0), ̂̀IT (z) = ̂̀

IT (0), ̂̀IF (z) = ̂̀
IF (0) and̂̀

F (z) = ̂̀
F (0) for all z ∈ X . Therefore ̂̀T , ̂̀IT , ̂̀IF and ̂̀F are constants on X , that is, L̂ is constant on

X .

Given a k-polar generalized neutrosophic set L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) over a universe X , consider the
following cut sets.

U(̂̀T , n̂T ) := {z ∈ X | ̂̀T (z) ≥ n̂T},
U(̂̀IT , n̂IT ) := {z ∈ X | ̂̀IT (z) ≥ n̂IT},
L(̂̀IF , n̂IF ) := {z ∈ X | ̂̀IF (z) ≤ n̂IF},
L(̂̀F , n̂F ) := {z ∈ X | ̂̀F (z) ≤ n̂F}

for n̂T , n̂IT , n̂IF , n̂F ∈ [0, 1]k, that is,

U(̂̀T , n̂T ) := {z ∈ X | (πi ◦ ̂̀T )(z) ≥ n̂i
T for all i = 1, 2, · · · , k},

U(̂̀IT , n̂IT ) := {z ∈ X | (πi ◦ ̂̀IT )(z) ≥ n̂i
IT for all i = 1, 2, · · · , k},

L(̂̀IF , n̂IF ) := {z ∈ X | (πi ◦ ̂̀IF )(z) ≤ n̂i
IF for all i = 1, 2, · · · , k},

L(̂̀F , n̂F ) := {z ∈ X | (πi ◦ ̂̀F )(z) ≤ n̂i
F for all i = 1, 2, · · · , k}

where n̂T = (n1
T , n

2
T , · · · , nk

T ), n̂IT = (n1
IT , n

2
IT , · · · , nk

IT ), n̂IF = (n1
IF , n

2
IF , · · · , nk

IF ) and n̂F = (n1
F ,

n2
F , · · · , nk

F ). It is clear that U(̂̀T , n̂T ) =
⋂k

i=1 U(̂̀T , n̂T )i, U(̂̀IT , n̂IT ) =
⋂k

i=1 U(̂̀IT , n̂IT )i, L(̂̀IF , n̂IF ) =⋂k
i=1 L(̂̀IF , n̂IF )i and L(̂̀F , n̂F ) =

⋂k
i=1 L(̂̀F , n̂F )i, where

U(̂̀T , n̂T )i := {z ∈ X | (πi ◦ ̂̀T )(z) ≥ n̂i
T},

U(̂̀IT , n̂IT )i := {z ∈ X | (πi ◦ ̂̀IT )(z) ≥ n̂i
IT},

L(̂̀IF , n̂IF )i := {z ∈ X | (πi ◦ ̂̀IF )(z) ≤ n̂i
IF},

L(̂̀F , n̂F )i := {z ∈ X | (πi ◦ ̂̀F )(z) ≤ n̂i
F}

for i = 1, 2, · · · , k.
We handle the characterization of k-polar generalized neutrosophic subalgebra.

Theorem 3.6. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set over X . Then L̂ is a k-

polar generalized neutrosophic subalgebra of X if and only if the cut sets U(̂̀T , n̂T ), U(̂̀IT , n̂IT ), L(̂̀IF , n̂IF )

and L(

Proof.

̂̀
F , n̂F ) are subalgebras of X for all n̂T , n̂IT , n̂IF , n̂F ∈ [0, 1]k.

Assume that L̂ is a k-polar generalized neutrosophic subalgebra of X . Let z, y ∈ X . If z, y ∈
U(̂̀T , n̂T ) for all n̂T ∈ [0, 1]k, then (πi ◦ ̂̀T )(z) ≥ ni

T and (πi ◦ ̂̀T )(y) ≥ ni
T for i = 1, 2, · · · , k. It fol-
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lows that
(πi ◦ ̂̀T )(z ∗ y) ≥ (πi ◦ ̂̀T )(z) ∧ (πi ◦ ̂̀T )(y) ≥ ni

T

i = 1, 2, · · · , k. Hence z ∗ y ∈ U(̂̀T , n̂T ), and so U(̂̀T , n̂T ) is a subalgebra of X . If z, y ∈ L(̂̀F , n̂F ) for all
n̂F ∈ [0, 1]k, then (πi ◦ ̂̀F )(z) ≤ ni

F and (πi ◦ ̂̀F )(y) ≤ ni
F for i = 1, 2, · · · , k. Hence

(πi ◦ ̂̀F )(z ∗ y) ≤ (πi ◦ ̂̀F )(z) ∨ (πi ◦ ̂̀F )(y) ≤ ni
F

i = 1, 2, · · · , k, and so z ∗ y ∈ L(̂̀F , n̂F ). Therefore L(̂̀F , n̂F ) is a subalgebra of X . Similarly, we can verify
that U(̂̀IT , n̂IT ) and L(̂̀IF , n̂IF ) are subalgebras of X .

Conversely, suppose that the cut sets U(̂̀T , n̂T ), U(̂̀IT , n̂IT ), L(̂̀IF , n̂IF ) and L(̂̀F , n̂F ) are subalgebras
of X for all n̂T , n̂IT , n̂IF , n̂F ∈ [0, 1]k. If there exists α, β ∈ X such that ̂̀IT (α ∗ β) < ̂̀IT (α) ∧ ̂̀IT (β), that
is,

(πi ◦ ̂̀IT )(α ∗ β) < (πi ◦ ̂̀IT )(α) ∧ (πi ◦ ̂̀IT )(β)

for i = 1, 2, · · · , k, then α, β ∈ U(̂̀IT , n̂IT )i and α∗β /∈ U(̂̀IT , n̂IT )i where n̂i
IT = (πi◦ ̂̀IT )(α)∧(πi◦ ̂̀IT )(β)

for for i = 1, 2, · · · , k. This is a contradiction, and so

̂̀
IT (z ∗ y) ≥ ̂̀IT (z) ∧ ̂̀IT (y)

for all z, y ∈ X . By the similarly way, we know that ̂̀T (z ∗ y) ≥ ̂̀T (z)∧ ̂̀T (y) for all z, y ∈ X . Now, suppose
that ̂̀F (α ∗ β) > ̂̀F (α) ∨ ̂̀F (β) for some α, β ∈ X . Then

(πi ◦ ̂̀F )(α ∗ β) > (πi ◦ ̂̀F )(α) ∨ (πi ◦ ̂̀F )(β)

for i = 1, 2, · · · , k. If we take ni
F = (πi ◦ ̂̀F )(α) ∨ (πi ◦ ̂̀F )(β) for i = 1, 2, · · · , k, then α, β ∈ L(̂̀F , n̂F )i

but α ∗ β /∈ L(̂̀F , n̂F )i, a contradiction. Hence

̂̀
F (z ∗ y) ≤ ̂̀F (z) ∨ ̂̀F (y)

for all z, y ∈ X . Similarly, we can check that ̂̀IF (z ∗ y) ≤ ̂̀IF (z) ∨ ̂̀IF (y) for all z, y ∈ X . Therefore L̂ is a
k-polar generalized neutrosophic subalgebra of X .

Theorem 3.7. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set over X . Then L̂ is a

k-polar generalized neutrosophic subalgebra of X if and only if the fuzzy sets πi ◦ ̂̀T , πi ◦ ̂̀IT , πi ◦ ̂̀cF and
πi ◦ ̂̀cIF are fuzzy subalgebras of X where (πi ◦ ̂̀cF )(z) = 1− (πi ◦ ̂̀F )(z) and (πi ◦ ̂̀cIF )(z) = 1− (πi ◦ ̂̀IF )(z)
for all z ∈ X and i = 1, 2, · · · , k.

Proof. Suppose that L̂ is a k-polar generalized neutrosophic subalgebra of X . For any i = 1, 2, · · · , k, it is
clear that πi ◦ ̂̀T and πi ◦ ̂̀IT are fuzzy subalgebras of X . For any z, y ∈ X , we get

(πi ◦ ̂̀cF )(z ∗ y) = 1− (πi ◦ ̂̀F )(z ∗ y) = 1− (πi ◦ ̂̀F )(z) ∨ (πi ◦ ̂̀F )(y)

= (1− (πi ◦ ̂̀F )(z)) ∧ (1− (πi ◦ ̂̀F )(y))

= (πi ◦ ̂̀cF )(z) ∧ (πi ◦ ̂̀cF )(y)
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and

(πi ◦ ̂̀cIF )(z ∗ y) = 1− (πi ◦ ̂̀IF )(z ∗ y) = 1− (πi ◦ ̂̀IF )(z) ∨ (πi ◦ ̂̀IF )(y)

= (1− (πi ◦ ̂̀IF )(z)) ∧ (1− (πi ◦ ̂̀IF )(y))

= (πi ◦ ̂̀cIF )(z) ∧ (πi ◦ ̂̀cIF )(y).

Hence πi ◦ ̂̀cF and πi ◦ ̂̀cIF are fuzzy subalgebras of X .
Conversely, suppose that the fuzzy sets πi ◦ ̂̀T , πi ◦ ̂̀IT , πi ◦ ̂̀cF and πi ◦ ̂̀cIF are fuzzy subalgebras of X

for i = 1, 2, · · · , k and let z, y ∈ X . Then

(πi ◦ ̂̀T )(z ∗ y) ≥ (πi ◦ ̂̀T )(z) ∧ (πi ◦ ̂̀T )(y),

(πi ◦ ̂̀IT )(z ∗ y) ≥ (πi ◦ ̂̀IT )(z) ∧ (πi ◦ ̂̀IT )(y)

for all i = 1, 2, · · · , k. Also we have

1− (πi ◦ ̂̀F )(z ∗ y) = (πi ◦ ̂̀cF )(z ∗ y) ≥ (πi ◦ ̂̀cF )(z) ∧ (πi ◦ ̂̀cF )(y)

= (1− (πi ◦ ̂̀F )(z)) ∧ (1− (πi ◦ ̂̀F )(y))

= 1− ((πi ◦ ̂̀F )(z) ∨ (πi ◦ ̂̀F )(y))

and

1− (πi ◦ ̂̀IF )(z ∗ y) = (πi ◦ ̂̀cIF )(z ∗ y) ≥ (πi ◦ ̂̀cIF )(z) ∧ (πi ◦ ̂̀cIF )(y)

= (1− (πi ◦ ̂̀IF )(z)) ∧ (1− (πi ◦ ̂̀IF )(y))

= 1− ((πi ◦ ̂̀IF )(z) ∨ (πi ◦ ̂̀IF )(y))

which imply that (πi ◦ ̂̀F )(z ∗ y) ≤ (πi ◦ ̂̀F )(z) ∨ (πi ◦ ̂̀F )(y) and

(πi ◦ ̂̀IF )(z ∗ y) ≤ (πi ◦ ̂̀IF )(z) ∨ (πi ◦ ̂̀IF )(y)

for all i = 1, 2, · · · , k. Hence L̂ is a k-polar generalized neutrosophic subalgebra of X .

Theorem 3.8. If L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized neutrosophic subalgebra of X , then so are

2L̂ :=
(̂̀

T , ̂̀IT , ̂̀cIT , ̂̀cT) and 3L̂ :=
(̂̀c

IF ,
̂̀c
F ,
̂̀
F , ̂̀IF).

Proof. Note that (πi◦̂̀IT )(z)+(πi◦̂̀cIT )(z) = (πi◦̂̀IT )(z)+1−(πi◦̂̀IT )(z) = 1 and (πi◦̂̀F )(z)+(πi◦̂̀cF )(z) =

(πi ◦ ̂̀F )(z) + 1− (πi ◦ ̂̀F )(z) = 1, that is, ̂̀IT (z) + ̂̀cIT (z) = 1̂ and ̂̀F (z) + ̂̀cF (z) = 1̂ for all z ∈ X . Hence
2L̂ :=

(̂̀
T , ̂̀IT , ̂̀cIT , ̂̀cT) and 3L̂ :=

(̂̀c
IF ,
̂̀c
F ,
̂̀
F , ̂̀IF) are k-polar generalized neutrosophic sets over X . For

any z, y ∈ X , we get

(πi ◦ ̂̀cIT )(z ∗ y) = 1− (πi ◦ ̂̀IT )(z ∗ y) ≤ 1− ((πi ◦ ̂̀IT )(z) ∧ (πi ◦ ̂̀IT )(y))

= (1− (πi ◦ ̂̀IT )(z)) ∨ (1− (πi ◦ ̂̀IT )(y))

= (πi ◦ ̂̀cIT )(z) ∨ (πi ◦ ̂̀cIT )(y),
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(πi ◦ ̂̀cT )(z ∗ y) = 1− (πi ◦ ̂̀T )(z ∗ y) ≤ 1− ((πi ◦ ̂̀T )(z) ∧ (πi ◦ ̂̀T )(y))

= (1− (πi ◦ ̂̀T )(z)) ∨ (1− (πi ◦ ̂̀T )(y))

= (πi ◦ ̂̀cT )(z) ∨ (πi ◦ ̂̀cT )(y),

(πi ◦ ̂̀cIF )(z ∗ y) = 1− (πi ◦ ̂̀IF )(z ∗ y) ≥ 1− ((πi ◦ ̂̀IF )(z) ∨ (πi ◦ ̂̀IF )(y))

= (1− (πi ◦ ̂̀IF )(z)) ∧ (1− (πi ◦ ̂̀IF )(y))

= (πi ◦ ̂̀cIF )(z) ∧ (πi ◦ ̂̀cIF )(y),

and

(πi ◦ ̂̀cF )(z ∗ y) = 1− (πi ◦ ̂̀F )(z ∗ y) ≥ 1− ((πi ◦ ̂̀F )(z) ∨ (πi ◦ ̂̀F )(y))

= (1− (πi ◦ ̂̀F )(z)) ∧ (1− (πi ◦ ̂̀F )(y))

= (πi ◦ ̂̀cF )(z) ∧ (πi ◦ ̂̀cF )(y).

Therefore 2L̂ :=
(̂̀

T , ̂̀IT , ̂̀cIT , ̂̀cT) and 3L̂ :=
(̂̀c

IF ,
̂̀c
F ,
̂̀
F , ̂̀IF) are kpolar generalized neutrosophic subal-

gebras of X .

Theorem 3.9. Let Λ1×Λ2×· · ·×Λk ⊆ [0, 1]k, that is, Λi ⊆ [0, 1] for i = 1, 2, · · · , k. Let Si := {Sti | ti ∈ Λi}
be a family of subalgebras of X for i = 1, 2, · · · , k such that

X =
⋃
ti∈Λi

Si, (3.9)

(∀si, ti ∈ Λi) (si > ti ⇒ Ssi ⊂ Sti) (3.10)

for i = 1, 2, · · · , k. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set over X defined by

(∀z ∈ X)
(πi ◦ ̂̀T )(z) =

∨
{qi ∈ Λi | z ∈ Sqi} = (πi ◦ ̂̀IT )(z),

(πi ◦ ̂̀IF )(z) =
∧
{ri ∈ Λi | z ∈ Sri} = (πi ◦ ̂̀F )(z)

)
(3.11)

for i = 1, 2, · · · , k. Then L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized neutrosophic subalgebra of X .

Proof. For any i = 1, 2, · · · , k, we consider the following two cases.

ti =
∨
{qi ∈ Λi | qi < ti} and ti 6=

∨
{qi ∈ Λi | qi < ti}.

The first case implies that

z ∈ U(̂̀T , ti)⇔ (∀qi < ti)(z ∈ Sqi)⇔ z ∈
⋂
qi<ti

Sqi ,

z ∈ U(̂̀IT , ti)⇔ (∀qi < ti)(z ∈ Sqi)⇔ z ∈
⋂
qi<ti

Sqi .
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Hence U(̂̀T , ti) =
⋂

qi<ti

Sqi = U(̂̀IT , ti), and so U(̂̀T , ti) and U(̂̀IT , ti) are subalgebras of X for all i =

1, 2, . . . , k. Hence U(̂̀T , t̂) =
⋂

i=1,2,...,k

U(̂̀T , ti) and U(̂̀IT , t̂) =
⋂

i=1,2,...,k

U(̂̀IT , ti) are subalgebras of X . For

the second case, we will show that U(̂̀T , ti) =
⋃

qi≥ti
Sqi = U(̂̀IT , ti) for all i = 1, 2, . . . , k. If z ∈

⋃
qi≥ti

Sqi ,

then z ∈ Sqi for some qi ≥ ti. Hence (πi ◦ ̂̀IT )(z) = (πi ◦ ̂̀T )(z) ≥ qi ≥ ti, and so z ∈ U(̂̀T , ti) and
z ∈ U(̂̀IT , ti). If z /∈

⋃
qi≥ti

Sqi , then z /∈ Sqi for all qi ≥ ti. The condition ti 6=
∨
{qi ∈ Λi | qi < ti} induces

(ti − εi, ti) ∩ Λi = ∅ for some εi > 0. Hence z /∈ Sqi for all qi > ti − εi, which means that if z ∈ Sqi then
qi ≤ ti − εi. Hence (πi ◦ ̂̀IT )(z) = (πi ◦ ̂̀T )(z) ≤ ti − εi < ti and so z /∈ U(̂̀IT , ti) = U(̂̀T , ti). Therefore
U(̂̀T , ti) = U(̂̀IT , ti) ⊆ ⋃

qi≥ti
Sqi . Consequently, U(̂̀T , ti) = U(̂̀IT , ti) =

⋃
qi≥ti

Sqi which is a subalgebra of X ,

and therefore U(̂̀T , t̂) =
⋂

i=1,2,...,k

U(̂̀T , ti) and U(̂̀IT , t̂) =
⋂

i=1,2,...,k

U(̂̀IT , ti) are subalgebras of X . Now, we

consider the following two cases.

si =
∧
{ri ∈ Λi | ri > si} and si 6=

∧
{ri ∈ Λi | ri > si}.

For the first case, we get

z ∈ L(̂̀IF , si)⇔ (∀si < ri)(z ∈ Sri)⇔ z ∈
⋂
ri>si

Sri ,

z ∈ L(̂̀F , si)⇔ (∀si < ri)(z ∈ Sri)⇔ z ∈
⋂
ri>si

Sri .

It follows that L(̂̀IF , si) = L(̂̀F , si) =
⋂

ri>si

Sri , which is a subalgebra of X . The second case induces

(si, si + εi) ∩ Λi = ∅ for some εi > 0. If z ∈
⋃

ri≤si
Sri , then z ∈ Sri for some ri ≤ si, and thus (πi ◦ ̂̀IF )(z) =

(πi ◦ ̂̀F )(z) ≤ ri ≤ si, i.e., z ∈ L(̂̀IF , si) and z ∈ L(̂̀F , si). Hene
⋃

ri≤si
Sri ⊆ L(̂̀IF , si) = L(̂̀F , si).

If z /∈
⋃

ri≤si
Sri , then z /∈ Sri for all ri ≤ si which implies that z /∈ Sri for all ri ≤ si + εi, that is, if

z ∈ Sri then ri ≥ si + εi. Thus (πi ◦ ̂̀IF )(z) = (πi ◦ ̂̀F )(z) ≥ si + εi ≥ si and so z /∈ L(̂̀IF , si) =

L(̂̀F , si). This shows that L(̂̀IF , si) = L(̂̀F , si) =
⋃

ri≤si
Sri , which is a subalgebra ofX . Therefore L(̂̀F , ŝ) =⋂

i=1,2,...,k

L(̂̀F , si) and U(̂̀IF , ŝ) =
⋂

i=1,2,...,k

L(̂̀IF , si) are subalgebras of X . Using Theorem 3.6, we know that

L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized neutrosophic subalgebra of X .

4 k-polar generalized (∈, ∈∨q)-neutrosophic subalgebras

Let n̂T = (n1
T , n

2
T , · · · , nk

T ), n̂IT = (n1
IT , n

2
IT , · · · , nk

IT ), n̂IF = (n1
IF , n

2
IF , · · · , nk

IF ) and n̂F = (n1
F , n

2
F ,

· · · , nk
F ) in [0, 1]k. Given a k-polar generalized neutrosophic set L̂ :=

(̂̀
T , ̂̀IT , ̂̀IF , ̂̀F) over a universe X ,
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we consider the following sets.

Tq(̂̀T , n̂T ) := {z ∈ X | ̂̀T (z) + n̂T > 1̂},
ITq(̂̀IT , n̂IT ) := {z ∈ X | ̂̀IT (z) + n̂IT > 1̂},
IFq(̂̀IF , n̂IF ) := {z ∈ X | ̂̀IF (z) + n̂IF < 1̂},
Fq(̂̀F , n̂F ) := {z ∈ X | ̂̀F (z) + n̂F < 1̂},

which are called generaliged neutrosophic q-sets, and

T∈∨q(̂̀T , n̂T ) := {z ∈ X | ̂̀T (z) ≥ n̂T or ̂̀T (z) + n̂T > 1̂},
IT∈∨q(̂̀IT , n̂IT ) := {z ∈ X | ̂̀IT (z) ≥ n̂IT or ̂̀IT (z) + n̂IT > 1̂},
IF∈∨q(̂̀IF , n̂IF ) := {z ∈ X | ̂̀IF (z) ≤ n̂IF or ̂̀IF (z) + n̂IF < 1̂},
F∈∨q(̂̀F , n̂F ) := {z ∈ X | ̂̀F (z) ≤ n̂F or ̂̀F (z) + n̂F < 1̂}

which are called generaliged neutrosophic ∈∨q-sets. Then

Tq(̂̀T , n̂T ) =
k⋂

i=1

Tq(̂̀T , n̂T )i, ITq(̂̀IT , n̂IT ) =
k⋂

i=1

ITq(̂̀IT , n̂IT )i,

IFq(̂̀IF , n̂IF ) =
k⋂

i=1

IFq(̂̀IF , n̂IF )i, Fq(̂̀F , n̂F ) =
k⋂

i=1

Fq(̂̀F , n̂F )i

and

T∈∨q(̂̀T , n̂T ) =
k⋂

i=1

T∈∨q(̂̀T , n̂T )i, IT∈∨q(̂̀IT , n̂IT ) =
k⋂

i=1

IT∈∨q(̂̀IT , n̂IT )i,

IF∈∨q(̂̀IF , n̂IF ) =
k⋂

i=1

IF∈∨q(̂̀IF , n̂IF )i, F∈∨q(̂̀F , n̂F ) =
k⋂

i=1

F∈∨q(̂̀F , n̂F )i

where

Tq(̂̀T , n̂T )i = {z ∈ X | (πi ◦ ̂̀T )(z) + ni
T > 1},

ITq(̂̀IT , n̂IT )i = {z ∈ X | (πi ◦ ̂̀IT )(z) + ni
IT > 1},

IFq(̂̀IF , n̂IF )i = {z ∈ X | (πi ◦ ̂̀IF )(z) + ni
IF < 1},

Fq(̂̀F , n̂F )i = {z ∈ X | (πi ◦ ̂̀F )(z) + ni
F < 1}
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and

T∈∨q(̂̀T , n̂T )i = {z ∈ X | (πi ◦ ̂̀T )(z) ≥ ni
T or (πi ◦ ̂̀T )(z) + ni

T > 1},
IT∈∨q(̂̀IT , n̂IT )i = {z ∈ X | (πi ◦ ̂̀IT )(z) ≥ ni

IT or (πi ◦ ̂̀IT )(z) + ni
IT > 1},

IF∈∨q(̂̀IF , n̂IF )i = {z ∈ X | (πi ◦ ̂̀IF )(z) ≤ ni
IF or (πi ◦ ̂̀IF )(z) + ni

IF < 1},
F∈∨q(̂̀F , n̂F )i = {z ∈ X | (πi ◦ ̂̀F )(z) ≤ ni

F or (πi ◦ ̂̀F )(z) + ni
F < 1}.

It is clear that T∈∨q(̂̀T , n̂T ) = U(̂̀T , n̂T ) ∪ Tq(̂̀T , n̂T ), IT∈∨q(̂̀IT , n̂IT ) = U(̂̀IT , n̂IT ) ∪ ITq(̂̀IT , n̂IT ),
IF∈∨q(̂̀IF , n̂IF ) = L(̂̀IF , n̂IF ) ∪ IFq(̂̀IF , n̂IF ), and F∈∨q(̂̀F , n̂F ) = L(̂̀F , n̂F ) ∪ Fq(̂̀F , n̂F ).

By routine calculations, we have the following properties.

Proposition 4.1. Given a k-polar generalized neutrosophic set L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) over a universe X , we
have

1. If n̂T , n̂IT ∈ [0, 0.5]k, then T∈∨q(̂̀T , n̂T ) = U(̂̀T , n̂T ) and IT∈∨q(̂̀IT , n̂IT ) = U(̂̀IT , n̂IT ).

2. If n̂F , n̂IF ∈ [0.5, 1]k, then IF∈∨q(̂̀IF , n̂IF ) = L(̂̀IF , n̂IF ) and F∈∨q(̂̀F , n̂F ) = L(̂̀F , n̂F ).

3. If n̂T , n̂IT ∈ (0.5, 1]k, then T∈∨q(̂̀T , n̂T ) = Tq(̂̀T , n̂T ) and IT∈∨q(̂̀IT , n̂IT ) = ITq(̂̀IT , n̂IT ).

4. If n̂F , n̂IF ∈ [0, 0.5)k, then IF∈∨q(̂̀IF , n̂IF ) = IFq(̂̀IF , n̂IF ) and F∈∨q(̂̀F , n̂F ) = Fq(̂̀F , n̂F ).

Unless otherwise stated in this section, X will represent a BCK/BCI-algebra.

Definition 4.2. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set overX . Then L̂ is called
a k-polar generalized (∈, ∈∨q)-neutrosophic subalgebra of X if it satisfies:

z ∈ U(̂̀T , n̂T ), y ∈ U(̂̀T , n̂T ) ⇒ z ∗ y ∈ T∈∨q(̂̀T , n̂T ),

z ∈ U(̂̀IT , n̂IT ), y ∈ U(̂̀IT , n̂IT ) ⇒ z ∗ y ∈ IT∈∨q(̂̀IT , n̂IT ),

z ∈ L(̂̀IF , n̂IF ), y ∈ L(̂̀IF , n̂IF ) ⇒ z ∗ y ∈ IF∈∨q(̂̀IF , n̂IF ),

z ∈ L(̂̀F , n̂F ), y ∈ L(̂̀F , n̂F ) ⇒ z ∗ y ∈ F∈∨q(̂̀F , n̂F )

(4.1)

for all z, y ∈ X , n̂T , n̂IT ∈ (0, 1]k and n̂F , n̂IF ∈ [0, 1)k.

Example 4.3. Consider aBCI-algebraX = {0, 1, 2, α, β}with the binary operation “∗” which is given below.

∗ 0 1 2 α β
0 0 0 0 α α
1 1 0 1 β α
2 2 2 0 α α
α α α α 0 0
β β α β 1 0
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Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a 3-polar neutrosophic set over X in which ̂̀T , ̂̀IT , ̂̀IF and ̂̀F are defined as
follows:

̂̀
T : X → [0, 1]3, z 7→


(0.6, 0.5, 0.5) if z = 0,
(0.7, 0.7, 0.2) if z = 1,
(0.7, 0.8, 0.5) if z = 2,
(0.3, 0.4, 0.5) if z = α,
(0.3, 0.4, 0.2) if z = β,

̂̀
IT : X → [0, 1]3, z 7→


(0.6, 0.5, 0.6) if z = 0,
(0.4, 0.3, 0.7) if z = 1,
(0.6, 0.8, 0.4) if z = 2,
(0.7, 0.4, 0.1) if z = α,
(0.4, 0.3, 0.1) if z = β,

̂̀
IF : X → [0, 1]3, z 7→


(0.3, 0.1, 0.5) if z = 0,
(0.8, 0.3, 0.7) if z = 1,
(0.3, 0.8, 0.5) if z = 2,
(0.7, 0.9, 0.6) if z = α,
(0.8, 0.9, 0.7) if z = β,

̂̀
F : X → [0, 1]3, z 7→


(0.2, 0.2, 0.5) if z = 0,
(0.3, 0.9, 0.8) if z = 1,
(0.5, 0.2, 0.4) if z = 2,
(0.6, 0.4, 0.6) if z = α,
(0.6, 0.9, 0.8) if z = β,

It is routine to verify that L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is 3-polar generalized (∈, ∈∨q)-neutrosophic subalgebra.

Theorem 4.4. If L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized neutrosophic subalgebra of X , then the

generaliged neutrosophic q-sets Tq(̂̀T , n̂T ), ITq(̂̀IT , n̂IT ), IFq(̂̀IF , n̂IF ) and Fq(̂̀F , n̂F ) are subalgebras of
X for all n̂T , n̂IT ∈ (0, 1]k and n̂F , n̂IF ∈ [0, 1)k.

Proof. Let z, y ∈ Tq(̂̀T , n̂T ). Then ̂̀T (z) + n̂T > 1̂ and ̂̀T (y) + n̂T > 1̂, that is, (πi ◦ ̂̀T )(z) + ni
T > 1 and

(πi ◦ ̂̀T )(y) + ni
T > 1 for i = 1, 2, · · · , k. It follows that

(πi ◦ ̂̀T )(z ∗ y) + ni
T ≥ ((πi ◦ ̂̀T )(z) ∧ (πi ◦ ̂̀T )(y)) + ni

T

= ((πi ◦ ̂̀T )(z) + nT )i ∧ ((πi ◦ ̂̀T )(y) + nT )i > 1

for i = 1, 2, · · · , k. Hence ̂̀T (z ∗y)+ n̂T > 1̂, that is, z ∗y ∈ Tq(̂̀T , n̂T ). Therefore Tq(̂̀T , n̂T ) is a subalgebra
of X . Let z, y ∈ IFq(̂̀IF , n̂IF ). Then (πi ◦ ̂̀IF )(z) +ni

IF < 1 and (πi ◦ ̂̀IF )(y) +ni
IF < 1 for i = 1, 2, · · · , k.
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Hence

(πi ◦ ̂̀IF )(z ∗ y) + ni
IF ≤ ((πi ◦ ̂̀IF )(z) ∨ (πi ◦ ̂̀IF )(y)) + ni

IF

= ((πi ◦ ̂̀IF )(z) + nIF )i ∨ ((πi ◦ ̂̀IF )(y) + nIF )i < 1

for i = 1, 2, · · · , k and so ̂̀IF (z ∗ y) + n̂IF < 1̂. Thus z ∗ y ∈ IFq(̂̀IF , n̂IF ) and IFq(̂̀IF , n̂IF ) is a subalgebra
of X . By the similar way, we can verify that ITq(̂̀IT , n̂IT ) and Fq(̂̀F , n̂F ) are subalgebras of X .

We handle characterizations of a k-polar generalized (∈, ∈∨q)-neutrosophic subalgebra.

Theorem 4.5. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set over X . Then L̂ is a
k-polar generalized (∈, ∈∨q)-neutrosophic subalgebra of X if and only if it satisfies:

(∀z, y ∈ X)


̂̀
T (z ∗ y) ≥

∧
{̂̀T (z), ̂̀T (y), 0̂.5}̂̀

IT (z ∗ y) ≥
∧
{̂̀IT (z), ̂̀IT (y), 0̂.5}̂̀

IF (z ∗ y) ≤
∨
{̂̀IF (z), ̂̀IF (y), 0̂.5}̂̀

F (z ∗ y) ≤
∨
{̂̀F (z), ̂̀F (y), 0̂.5}

 , (4.2)

that is, 
(πi ◦ ̂̀T )(z ∗ y) ≥

∧
{(πi ◦ ̂̀T )(z), (πi ◦ ̂̀T )(y), 0.5},

(πi ◦ ̂̀IT )(z ∗ y) ≥
∧
{(πi ◦ ̂̀IT )(z), (πi ◦ ̂̀IT )(y), 0.5},

(πi ◦ ̂̀IF )(z ∗ y) ≤
∨
{(πi ◦ ̂̀IF )(z), (πi ◦ ̂̀IF )(y), 0.5},

(πi ◦ ̂̀F )(z ∗ y) ≤
∨
{(πi ◦ ̂̀F )(z), (πi ◦ ̂̀F )(y), 0.5}

(4.3)

for all z, y ∈ X and i = 1, 2, · · · , k.

Proof. Suppose that L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized (∈, ∈∨q)-neutrosophic subalgebra of X

and let z, y ∈ X . For any i = 1, 2, . . . , k, assume that (πi ◦ ̂̀IT )(z) ∧ (πi ◦ ̂̀IT )(y) < 0.5. Then

(πi ◦ ̂̀IT )(z ∗ y) ≥ (πi ◦ ̂̀IT )(z) ∧ (πi ◦ ̂̀IT )(y)

because if (πi ◦ ̂̀IT )(z ∗ y) < (πi ◦ ̂̀IT )(z) ∧ (πi ◦ ̂̀IT )(y), then there exists ni
IT ∈ (0, 0.5) such that

(πi ◦ ̂̀IT )(z ∗ y) < ni
IT ≤ (πi ◦ ̂̀IT )(z) ∧ (πi ◦ ̂̀IT )(y).

It follows that z ∈ U(̂̀IT , nIT )i and y ∈ U(̂̀IT , nIT )i but z∗y /∈ U(̂̀IT , nIT )i. Also (πi◦ ̂̀IT )(z∗y)+ni
IT < 1,

i.e., z ∗ y /∈ ITq(̂̀IT , n̂IT ). Hence z ∗ y /∈ IT∈∨q(̂̀IT , n̂IT ) which is a contradiction. Therefore

(πi ◦ ̂̀IT )(z ∗ y) ≥
∧
{(πi ◦ ̂̀IT )(z), (πi ◦ ̂̀IT )(y), 0.5}

for all z, y ∈ X with (πi ◦ ̂̀IT )(z)∧ (πi ◦ ̂̀IT )(y) < 0.5. Now suppose that (πi ◦ ̂̀IT )(z)∧ (πi ◦ ̂̀IT )(y) ≥ 0.5.
Then z ∈ U(̂̀IT , 0.5)i and y ∈ U(̂̀IT , 0.5)i, and so z ∗ y ∈ IT∈∨q(̂̀IT , 0.5)i = U(̂̀IT , 0.5)i ∪ ITq(̂̀IT , 0.5)i.
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Hence z ∗ y ∈ U(̂̀IT , 0.5)i. Otherwise, (πi ◦ ̂̀IT )(z ∗ y) + 0.5 < 0.5 + 0.5 = 1, a contradiction. Consequently,

(πi ◦ ̂̀IT )(z ∗ y) ≥
∧
{(πi ◦ ̂̀IT )(z), (πi ◦ ̂̀IT )(y), 0.5}

for all z, y ∈ X . Similarly, we know that

(πi ◦ ̂̀T )(z ∗ y) ≥
∧
{(πi ◦ ̂̀T )(z), (πi ◦ ̂̀T )(y), 0.5}

for all z, y ∈ X . Suppose that ̂̀F (z)∨ ̂̀F (y) > 0̂.5. If ̂̀F (z ∗y) > ̂̀F (z)∨ ̂̀F (y) := n̂F , then z, y ∈ L(̂̀F , n̂F ),
z ∗ y /∈ L(̂̀F , n̂F ) and ̂̀F (z ∗ y) + n̂F > 2n̂F > 1, i.e., z ∗ y /∈ Fq(̂̀F , n̂F ). This is a contradiction, and sồ
F (z ∗y) ≤

∨
{̂̀F (z), ̂̀F (y), 0̂.5} whenever ̂̀F (z)∨ ̂̀F (y) > 0̂.5. Now assume that ̂̀F (z)∨ ̂̀F (y) ≤ 0̂.5. Then

z, y ∈ L(̂̀F , 0̂.5) and thus z ∗ y ∈ F∈∨q(̂̀F , 0̂.5) = L(̂̀F , 0̂.5) ∪ Fq(̂̀F , 0̂.5). If z ∗ y /∈ L(̂̀F , 0̂.5), that is,̂̀
F (z ∗ y) > 0̂.5, then ̂̀F (z ∗ y) + 0̂.5 > 0̂.5 + 0̂.5 = 1̂, i.e., z ∗ y /∈ Fq(̂̀F , 0̂.5). This is a contradiction. Hencề
F (z ∗y) ≤ 0̂.5 and so ̂̀F (z ∗y) ≤

∨
{̂̀F (z), ̂̀F (y), 0̂.5} whenever ̂̀F (z)∨ ̂̀F (y) ≤ 0̂.5. Therefore ̂̀F (z ∗y) ≤∨

{̂̀F (z), ̂̀F (y), 0̂.5} for all z, y ∈ X . By the similar way, we have ̂̀IF (z ∗ y) ≤
∨
{̂̀IF (z), ̂̀IF (y), 0̂.5} for

all z, y ∈ X .
Conversely, let L̂ :=

(̂̀
T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set over X which satisfies

the condition (4.2). Let z, y ∈ X and n̂T = (n1
T , n

2
T , · · · , nk

T ) ∈ [0, 1]k. If z, y ∈ U(̂̀T , n̂T ), then ̂̀T (z) ≥ n̂T

and ̂̀T (y) ≥ n̂T . If ̂̀T (z ∗ y) < n̂T , then ̂̀T (z) ∧ ̂̀T (y) ≥ 0̂.5. Otherwise, we get

̂̀
T (z ∗ y) ≥

∧
{̂̀T (z), ̂̀T (y), 0̂.5} = ̂̀

T (z) ∧ ̂̀T (y) ≥ n̂T ,

which is a contradiction. Hence

̂̀
T (z ∗ y) + n̂T > 2̂̀T (z ∗ y) ≥ 2

∧
{̂̀T (z), ̂̀T (y), 0̂.5} = 1̂

and so z ∗ y ∈ Tq(̂̀T , n̂T ) ⊆ T∈∨q(̂̀T , n̂T ). Similarly, if z, y ∈ U(̂̀IT , n̂IT ), then z ∗ y ∈ IT∈∨q(̂̀IT , n̂IT ) for
n̂IT = (n1

IT , n
2
IT , · · · , nk

IT ) ∈ [0, 1]k. Now, let z, y ∈ L(̂̀IF , n̂IF ) for n̂IF = (n1
IF , n

2
IF , · · · , nk

IF ) ∈ [0, 1]k.
Then ̂̀IF (z) ≤ n̂IF and ̂̀IF (y) ≤ n̂IF . If ̂̀IF (z ∗ y) > n̂IF , then ̂̀IF (z) ∨ ̂̀IF (z) ≤ 0̂.5 because if not, then̂̀
IF (z ∗ y) ≤

∨
{̂̀IF (z), ̂̀IF (y), 0̂.5} ≤ ̂̀IF (z) ∨ ̂̀IF (y) ≤ n̂IF , which is a contradiction. Thus

̂̀
IF (z ∗ y) + n̂IF < 2̂̀IF (z ∗ y) ≤ 2

∨
{̂̀IF (z), ̂̀IF (y), 0̂.5} = 1̂

and so z ∗ y ∈ IFq(̂̀IF , n̂IF ) ⊆ IF∈∨q(̂̀IF , n̂IF ). Similarly, we know that if z, y ∈ L(̂̀F , n̂F ), then z ∗ y ∈
Fq(̂̀F , n̂F ) ⊆ F∈∨q(̂̀F , n̂F ) for n̂F = (n1

F , n
2
F , · · · , nk

F ) ∈ [0, 1]k. Therefore L̂ is a k-polar generalized (∈,
∈∨q)-neutrosophic subalgebra of X .

Using the k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra, we show that the generaliged neutro-
sophic q-sets subalgebras.

Theorem 4.6. If L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized (∈, ∈∨q)-neutrosophic subalgebra of X ,

then the generaliged neutrosophic q-sets Tq(̂̀T , n̂T ), ITq(̂̀IT , n̂IT ), IFq(̂̀IF , n̂IF ) and Fq(̂̀F , n̂F ) are subal-
gebras of X for all n̂T , n̂IT ∈ (0.5, 1]k and n̂F , n̂IF ∈ [0, 0.5)k.
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Proof. Suppose that L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra of

X . Let z, y ∈ X . If z, y ∈ ITq(̂̀IT , n̂IT ) for n̂IT ∈ (0.5, 1]k, then ̂̀IT (z) + n̂IT > 1̂ and ̂̀IT (y) + n̂IT > 1̂. It
follows from Theorem 4.5 that

̂̀
IT (z ∗ y) + n̂IT ≥

∧
{̂̀IT (z), ̂̀IT (y), 0̂.5}+ n̂IT

=
∧
{̂̀IT (z) + n̂IT , ̂̀IT (y) + n̂IT , 0̂.5 + n̂IT}

> 1̂,

i.e., z ∗ y ∈ ITq(̂̀IT , n̂IT ). Thus ITq(̂̀IT , n̂IT ) is a subalgebra of X . Suppose that z, y ∈ Fq(̂̀F , n̂F ) for
n̂F ∈ [0, 0.5)k. Then (πi ◦ ̂̀F )(z) + ni

F < 1 and (πi ◦ ̂̀F )(z) + ni
F < 1. Using Theorem 4.5, we have

(πi ◦ ̂̀F )(z ∗ y) + ni
F ≤

∨
{(πi ◦ ̂̀F )(z), (πi ◦ ̂̀F )(y), 0.5}+ ni

F

=
∨
{(πi ◦ ̂̀F )(z) + ni

F , (πi ◦ ̂̀F )(y) + ni
F , 0.5 + ni

F}

< 1

and thus z ∗ y ∈ Fq(̂̀F , n̂F )i for all i = 1, 2, · · · , k. Hence z ∗ y ∈
⋂k

i=1 Fq(̂̀F , n̂F )i = Fq(̂̀F , n̂F ), and
therefore Fq(̂̀F , n̂F ) is a subalgebra of X . Similarly, we can induce that Tq(̂̀T , n̂T ) and IFq(̂̀IF , n̂IF ) are
subalgebras of X for n̂IT ∈ (0.5, 1]k and n̂F ∈ [0, 0.5)k.

Using the generaliged neutrosophic ∈∨q-sets, we establish a k-polar generalized (∈, ∈∨q)-neutrosophic
subalgebra.

Theorem 4.7. Given a k-polar generalized neutrosophic set L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) overX , if the generaliged

neutrosophic ∈∨q-sets T∈∨q(̂̀T , n̂T ), IT∈∨q(̂̀IT , n̂IT ), IF∈∨q(̂̀IF , n̂IF ) and F∈∨q(̂̀F , n̂F ) are subalgebras of
X for all n̂T , n̂IT ∈ (0, 1]k and n̂F , n̂IF ∈ [0, 1)k, then L̂ is a k-polar generalized (∈, ∈ ∨q)-neutrosophic
subalgebra of X .

Proof. Assume that there exist α, β ∈ X such that

(πi ◦ ̂̀T )(α ∗ β) <
∧
{(πi ◦ ̂̀T )(α), (πi ◦ ̂̀T )(β), 0.5}

for i = 1, 2, · · · , k. Then there exists ni
T ∈ (0, 0.5] such that

(πi ◦ ̂̀T )(α ∗ β) < ni
T ≤

∧
{(πi ◦ ̂̀T )(α), (πi ◦ ̂̀T )(β), 0.5}.

Hence α, β ∈ U(̂̀T , n̂T )i, and so α, β ∈
⋂k

i=1 U(̂̀T , n̂T )i = U(̂̀T , n̂T ) ⊆ T∈∨q(̂̀T , n̂T ). Since T∈∨q(̂̀T , n̂T ) is
a subalgebra of X , it follows that α ∗ β ∈ T∈∨q(̂̀T , n̂T ) =

⋂k
i=1 T∈∨q(

̂̀
T , n̂T )i. Thus (πi ◦ ̂̀T )(α ∗ β) ≥ ni

T

or (πi ◦ ̂̀T )(α ∗ β) + ni
T > 1 for i = 1, 2, · · · , k. This is a contradiction, and thus (πi ◦ ̂̀T )(z ∗ y) ≥∧

{(πi ◦ ̂̀T )(z), (πi ◦ ̂̀T )(y), 0.5} for all z, y ∈ X and i = 1, 2, · · · , k. Now, if there exist α, β ∈ X such that

(πi ◦ ̂̀IF )(α ∗ β) >
∨
{(πi ◦ ̂̀IF )(α), (πi ◦ ̂̀IF )(β), 0.5}
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for i = 1, 2, · · · , k, then

(πi ◦ ̂̀IF )(α ∗ β) > ni
IF ≥

∨
{(πi ◦ ̂̀IF )(α), (πi ◦ ̂̀IF )(β), 0.5} (4.4)

for some ni
IF ∈ [0.5, 1). Hence α, β ∈ L(̂̀IF , n̂IF )i, and so α, β ∈

⋂k
i=1 L(̂̀IF , n̂IF )i = L(̂̀IF , n̂IF ) ⊆

IF∈∨q(̂̀IF , n̂IF ). This implies that α ∗ β ∈ IF∈∨q(̂̀IF , n̂IF ), and (4.4) induces α ∗ β /∈ L(̂̀IF , n̂IF )i and
(πi ◦ ̂̀IF )(α ∗ β) + ni

IF > 2ni
IF > 1 for i = 1, 2, · · · , k. Thus α ∗ β /∈

⋂k
i=1 L(̂̀IF , n̂IF )i = L(̂̀IF , n̂IF )

and α ∗ β /∈
⋂k

i=1 IFq(̂̀IF , n̂IF )i = IFq(̂̀IF , n̂IF ). Hence α ∗ β /∈ IF∈∨q(̂̀IF , n̂IF ) which is a contradiction.
Therefore

(πi ◦ ̂̀IF )(z ∗ y) ≤
∨
{(πi ◦ ̂̀IF )(z), (πi ◦ ̂̀IF )(y), 0.5}

for for all z, y ∈ X and i = 1, 2, · · · , k, i.e., ̂̀IF (z ∗ y) ≤
∨
{̂̀IF (z), ̂̀IF (y), 0̂.5} for all z, y ∈ X . Similarly,

we show that (πi ◦ ̂̀IT )(z ∗y) ≥
∧
{(πi ◦ ̂̀IT )(z), (πi ◦ ̂̀IT )(y), 0.5} and (πi ◦ ̂̀F )(z ∗y) ≤

∨
{(πi ◦ ̂̀F )(z), (πi ◦̂̀

F )(y), 0.5} for all z, y ∈ X and i = 1, 2, · · · , k. Using Theorem 4.5, we conclude that L̂ is a k-polar
generalized (∈, ∈∨q)-neutrosophic subalgebra of X .

Using the k-polar generalized (∈, ∈ ∨q)-neutrosophic subalgebra, we show that the generaliged neutro-
sophic ∈∨q-sets subalgebras.

Theorem 4.8. If L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized (∈, ∈∨q)-neutrosophic subalgebra of X ,

then the generaliged neutrosophic ∈∨q-sets T∈∨q(̂̀T , n̂T ), IT∈∨q(̂̀IT , n̂IT ), IF∈∨q(̂̀IF , n̂IF ) andF∈∨q(̂̀F , n̂F )
are subalgebras of X for all n̂T , n̂IT ∈ (0, 0.5]k and n̂F , n̂IF ∈ [0.5, 1)k.

Proof. Let z, y ∈ IT∈∨q(̂̀IT , n̂IT ). Then

z ∈ U((̂̀IT , n̂IT )i or z ∈ ITq((̂̀IT , n̂IT )i

and

y ∈ U((̂̀IT , n̂IT )i or y ∈ ITq((̂̀IT , n̂IT )i

for i = 1, 2, · · · , k. Thus we get the following four cases:

(i) z ∈ U((̂̀IT , n̂IT )i and y ∈ U((̂̀IT , n̂IT )i,

(ii) z ∈ U((̂̀IT , n̂IT )i and y ∈ ITq((̂̀IT , n̂IT )i,

(iii) z ∈ ITq((̂̀IT , n̂IT )i and y ∈ U((̂̀IT , n̂IT )i,

(iv) z ∈ ITq((̂̀IT , n̂IT )i and y ∈ ITq((̂̀IT , n̂IT )i.

For the first case, we have z ∗ y ∈ IT∈∨q((̂̀IT , n̂IT )i for i = 1, 2, · · · , k and so

z ∗ y ∈
k⋂

i=1

IT∈∨q((̂̀IT , n̂IT )i = IT∈∨q(̂̀IT , n̂IT ).
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In the the case (ii) (resp., (iii)), y ∈ ITq((̂̀IT , n̂IT )i (resp., z ∈ ITq((̂̀IT , n̂IT )i) induce ̂̀IT (y) > 1−ni
IT ≥ ni

IT

(resp., ̂̀IT (z) > 1 − ni
IT ≥ ni

IT ), that is, y ∈ U((̂̀IT , n̂IT )i (resp., z ∈ U((̂̀IT , n̂IT )i). Thus z ∗ y ∈
IT∈∨q((̂̀IT , n̂IT )i for i = 1, 2, · · · , k which implies that

z ∗ y ∈
k⋂

i=1

IT∈∨q((̂̀IT , n̂IT )i = IT∈∨q(̂̀IT , n̂IT ).

The last case induces ̂̀IT (z) > 1 − ni
IT ≥ ni

IT and ̂̀IT (y) > 1 − ni
IT ≥ ni

IT , i.e., z, y ∈ U((̂̀IT , n̂IT )i for
i = 1, 2, · · · , k. It follows that

z ∗ y ∈
k⋂

i=1

IT∈∨q((̂̀IT , n̂IT )i = IT∈∨q(̂̀IT , n̂IT ).

Therefore IT∈∨q(̂̀IT , n̂IT ) is a subalgebra of X for all n̂IT ∈ (0, 0.5]k. Similarly, we can show that the set
T∈∨q(̂̀T , n̂T ) is a subalgebra of X for all n̂T ∈ (0, 0.5]k. Let z, y ∈ F∈∨q(̂̀F , n̂F ). Then

̂̀
F (z) ≤ n̂F or ̂̀F (z) + n̂F < 1̂

and

̂̀
F (y) ≤ n̂F or ̂̀F (y) + n̂F < 1̂.

If ̂̀F (z) ≤ n̂F and ̂̀F (y) ≤ n̂F , then

̂̀
F (z ∗ y) ≤

∨
{̂̀F (z), ̂̀F (y), 0̂.5} ≤ n̂F ∨ 0̂.5 = n̂F

by Theorem 4.5, and so z ∗ y ∈ L(̂̀F , n̂F ) ⊆ F∈∨q(̂̀F , n̂F ). If ̂̀F (z) ≤ n̂F or ̂̀F (y) + n̂F < 1̂, then

̂̀
F (z ∗ y) ≤

∨
{̂̀F (z), ̂̀F (y), 0̂.5} ≤

∨
{n̂F , 1̂− n̂F , 0̂.5} = n̂F

by Theorem 4.5. Hence z ∗ y ∈ L(̂̀F , n̂F ) ⊆ F∈∨q(̂̀F , n̂F ). Similarly, if ̂̀F (z) + n̂F < 1̂ and ̂̀F (y) ≤ n̂F ,
then z ∗ y ∈ F∈∨q(̂̀F , n̂F ). If ̂̀F (z) + n̂F < 1̂ and ̂̀F (y) + n̂F < 1̂, then

̂̀
F (z ∗ y) ≤

∨
{̂̀F (z), ̂̀F (y), 0̂.5} ≤ (1̂− n̂F ) ∨ 0̂.5 = 0̂.5 < n̂F

by Theorem 4.5. Thus z ∗ y ∈ L(̂̀F , n̂F ) ⊆ F∈∨q(̂̀F , n̂F ). Consequencly, F∈∨q(̂̀F , n̂F ) is a subalgebra of
X for all n̂F ∈ [0.5, 1)k. By the similar way, we can verify that IF∈∨q(̂̀IF , n̂IF ) is a subalgebra of X for all
n̂IF ∈ [0.5, 1)k.
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5 k-polar generalized (q, ∈∨q)-neutrosophic subalgebras

Definition 5.1. Let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set overX . Then L̂ is called
a k-polar generalized (q, ∈∨q)-neutrosophic subalgebra of X if it satisfies:

z ∈ Tq(̂̀T , n̂T ), y ∈ Tq(̂̀T , n̂T ) ⇒ z ∗ y ∈ T∈∨q(̂̀T , n̂T ),

z ∈ ITq(̂̀IT , n̂IT ), y ∈ ITq(̂̀IT , n̂IT ) ⇒ z ∗ y ∈ IT∈∨q(̂̀IT , n̂IT ),

z ∈ IFq(̂̀IF , n̂IF ), y ∈ IFq(̂̀IF , n̂IF ) ⇒ z ∗ y ∈ IF∈∨q(̂̀IF , n̂IF ),

z ∈ Fq(̂̀F , n̂F ), y ∈ Fq(̂̀F , n̂F ) ⇒ z ∗ y ∈ F∈∨q(̂̀F , n̂F )

(5.1)

for all z, y ∈ X , n̂T , n̂IT ∈ (0, 1]k and n̂F , n̂IF ∈ [0, 1)k.

Example 5.2. Let X = {0, 1, 2, α, β} be the BCI-algebra which is given in Example 4.3. Let L̂ :=
(̂̀

T , ̂̀IT ,̂̀
IF , ̂̀F ) be a 3-polar generalized neutrosophic set over X in which ̂̀T , ̂̀IT , ̂̀IF and ̂̀F are defined as follows:

̂̀
T : X → [0, 1]3, z 7→


(0.6, 0.7, 0.8) if z = 0,
(0.7, 0.0, 0.0) if z = 1,
(0.0, 0.0, 0.9) if z = 2,
(0.0, 0.0, 0.0) if z = α,
(0.0, 0.0, 0.0) if z = β,

̂̀
IT : X → [0, 1]3, z 7→


(0.6, 0.7, 0.8) if z = 0,
(0.7, 0.0, 0.0) if z = 1,
(0.5, 0.8, 0.9) if z = 2,
(0.0, 0.0, 0.7) if z = α,
(0.0, 0.0, 0.0) if z = β,

̂̀
IF : X → [0, 1]3, z 7→


(0.2, 0.3, 0.1) if z = 0,
(1.0, 1.0, 0.2) if z = 1,
(0.3, 0.4, 1.0) if z = 2,
(0.4, 1.0, 1.0) if z = α,
(1.0, 1.0, 1.0) if z = β,

̂̀
F : X → [0, 1]3, z 7→


(0.2, 0.4, 0.4) if z = 0,
(0.4, 1.0, 1.0) if z = 1,
(1.0, 0.2, 0.1) if z = 2,
(1.0, 0.3, 1.0) if z = α,
(1.0, 1.0, 1.0) if z = β,

It is routine to verify that L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a 3-polar generalized (q, ∈∨q)-neutrosophic subalgebra
of X .
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Using the k-polar generalized (q, ∈ ∨q)-neutrosophic subalgebra, we show that the generaliged neutro-
sophic q-sets and the generaliged neutrosophic ∈∨q-sets are subalgebras.

Theorem 5.3. If L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized (q, ∈ ∨q)-neutrosophic subalgebra of X ,

then the generaliged neutrosophic q-sets Tq(̂̀T , n̂T ), ITq(̂̀IT , n̂IT ), IFq(̂̀IF , n̂IF ) and Fq(̂̀F , n̂F ) are subal-
gebras of X for all n̂T , n̂IT ∈ (0.5, 1]k and n̂F , n̂IF ∈ [0, 0.5)k.

Proof. Let z, y ∈ Tq(̂̀T , n̂T ). Then z ∗ y ∈ T∈∨q(̂̀T , n̂T ), and so z ∗ y ∈ U(̂̀T , n̂T ) or z ∗ y ∈ Tq(̂̀T , n̂T ).
If z ∗ y ∈ U(̂̀T , n̂T ), then (πi ◦ ̂̀T )(z ∗ y) ≥ ni

T > 1 − ni
T since ni

T > 0.5 for all i = 1, 2, · · · , k. Hence
z∗y ∈ Tq(̂̀T , n̂T ), and so Tq(̂̀T , n̂T ) is a subalgebra ofX . By the similar way, we can verify that ITq(̂̀IT , n̂IT )

is a subalgebra of X . Let z, y ∈ Fq(̂̀F , n̂F ). Then z ∗ y ∈ F∈∨q(̂̀F , n̂F ), and so z ∗ y ∈ L(̂̀F , n̂F ) of
z ∗ y ∈ Fq(̂̀F , n̂F ). If z ∗ y ∈ L(̂̀F , n̂F ), then (πi ◦ ̂̀F )(z ∗ y) ≤ ni

F < 1 − ni
F since ni

F < 0.5 for all
i = 1, 2, · · · , k. Thus z ∗ y ∈ Fq(̂̀F , n̂F ), and hence Fq(̂̀F , n̂F ) is a subalgebra of X . Similarly, the set
IFq(̂̀IF , n̂IF ) is a subalgebra of X .

Theorem 5.4. If L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) is a k-polar generalized (q, ∈ ∨q)-neutrosophic subalgebra of X ,

then the generaliged neutrosophic ∈∨q-sets T∈∨q(̂̀T , n̂T ), IT∈∨q(̂̀IT , n̂IT ), IF∈∨q(̂̀IF , n̂IF ) andF∈∨q(̂̀F , n̂F )
are subalgebras of X for all n̂T , n̂IT ∈ (0.5, 1]k and n̂F , n̂IF ∈ [0, 0.5)k.

Proof. Let z, y ∈ T∈∨q(̂̀T , n̂T ) for n̂T ∈ (0.5, 1]k. If z, y ∈ Tq(̂̀T , n̂T ), then obviously z ∗ y ∈ T∈∨q(̂̀T , n̂T ).
If z ∈ U(̂̀T , n̂T ) and y ∈ Tq(̂̀T , n̂T ), then ̂̀T (z) + n̂T ≥ 2n̂T > 1̂, i.e., z ∈ Tq(̂̀T , n̂T ). It follows that
z ∗ y ∈ T∈∨q(̂̀T , n̂T ). We can prove z ∗ y ∈ T∈∨q(̂̀T , n̂T ) whenever y ∈ U(̂̀T , n̂T ) and z ∈ Tq(̂̀T , n̂T )

in the same way. If z, y ∈ U(̂̀T , n̂T ), then ̂̀T (z) + n̂T ≥ 2n̂T > 1̂ and ̂̀T (y) + n̂T ≥ 2n̂T > 1̂ and so
z, y ∈ Tq(̂̀T , n̂T ). Thus z ∗ y ∈ T∈∨q(̂̀T , n̂T ). Therefore T∈∨q(̂̀T , n̂T ) is a subalgebra of X for n̂T ∈ (0.5, 1]k.
Now, let z, y ∈ F∈∨q(̂̀F , n̂F ) for n̂F ∈ [0, 0.5)k. If z, y ∈ Fq(̂̀F , n̂F ), then obviously z ∗ y ∈ F∈∨q(̂̀F , n̂F ).
If z ∈ L(̂̀F , n̂F ) and y ∈ Fq(̂̀F , n̂F ), then ̂̀F (z) + n̂F ≤ 2n̂F < 1̂, i.e., z ∈ Fq(̂̀F , n̂F ). Hence z ∗ y ∈
F∈∨q(̂̀F , n̂F ). Similarly, we can prove that if y ∈ L(̂̀F , n̂F ) and z ∈ Fq(̂̀F , n̂F ), then z ∗ y ∈ F∈∨q(̂̀F , n̂F ). If
z, y ∈ L(̂̀F , n̂F ), then ̂̀F (z) + n̂F ≤ 2n̂F < 1̂ and ̂̀F (y) + n̂F ≤ 2n̂F < 1̂, that is, z, y ∈ Fq(̂̀F , n̂F ). Hence
z ∗ y ∈ F∈∨q(̂̀F , n̂F ). Therefore F∈∨q(̂̀F , n̂F ) is a subalgebra of X for all n̂F ∈ [0, 0.5)k. In the same way, we
can show that IT∈∨q(̂̀IT , n̂IT ) is a subalgebra of X for n̂IT ∈ (0.5, 1]k and IF∈∨q(̂̀IF , n̂IF ) is a subalgebra of
X for all n̂IF ∈ [0, 0.5)k.

We provide conditions for a k-polar generalized neutrosophic set to be a k-polar generalized (q, ∈ ∨q)-
neutrosophic subalgebra.

Theorem 5.5. For a subalgebra S of X , let L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) be a k-polar generalized neutrosophic set
over X such that

(∀z ∈ S)(̂̀T (z) ≥ 0̂.5, ̂̀IT (z) ≥ 0̂.5, ̂̀IF (z) ≤ 0̂.5, ̂̀F (z) ≤ 0̂.5), (5.2)

(∀z ∈ X \ S)(̂̀T (z) = 0̂ = ̂̀
IT (z), ̂̀IF (z) = 1̂ = ̂̀

F (z)). (5.3)

Then L̂ is a k-polar generalized (q, ∈∨q)-neutrosophic subalgebra of X .
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Proof. Let z, y ∈ Tq(̂̀T , n̂T ) =
⋂k

i=1 Tq(
̂̀
T , n̂T )i. Then (πi ◦ ̂̀T )(z)+ni

T > 1 and (πi ◦ ̂̀T )(y)+ni
T > 1 for all

i = 1, 2, · · · , k. If z ∗y /∈ S, then z ∈ X \S or y ∈ X \S since S is a subalgebra of X . Hence (πi ◦ ̂̀T )(z) = 0

or (πi ◦ ̂̀T )(y) = 0, which imply that ni
T > 1, a contradiction. Thus z ∗ y ∈ S and so (πi ◦ ̂̀T )(z ∗ y) ≥ 0.5

by (5.2). If ni
T > 0.5, then (πi ◦ ̂̀T )(z ∗ y) + ni

T > 1, ie., z ∗ y ∈ Tq(̂̀T , n̂T )i for all i = 1, 2, · · · , k. Hence
z ∗ y ∈

⋂k
i=1 Tq(

̂̀
T , n̂T )i = Tq(̂̀T , n̂T ). Similarly, if z, y ∈ ITq(̂̀IT , n̂IT ), then z ∗ y ∈ ITq(̂̀IT , n̂IT ). Let

z, y ∈ IFq(̂̀IF , n̂IF ) =
⋂k

i=1 IFq(̂̀IF , n̂IF )i. Then (πi ◦ ̂̀IF )(z) + ni
IF < 1 and (πi ◦ ̂̀IF )(y) + ni

IF < 1

for all i = 1, 2, · · · , k, which implies that z ∗ y ∈ S. If ni
IF ≥ 0.5, then (πi ◦ ̂̀IF )(z ∗ y) ≤ 0.5 ≤ ni

IF

for all i = 1, 2, · · · , k which shows that z ∗ y ∈
⋂k

i=1 L(̂̀IF , n̂IF )i = L(̂̀IF , n̂IF ). If ni
IF < 0.5, then

(πi ◦ ̂̀IF )(z ∗ y) + ni
IF < 1 for all i = 1, 2, · · · , k and so z ∗ y ∈

⋂k
i=1 IFq(̂̀IF , n̂IF )i = IFq(̂̀IF , n̂IF ).

Similarly way is to show that if z, y ∈ Fq(̂̀F , n̂F ), then z ∗ y ∈ F∈∨q(̂̀F , n̂F ). Therefore L̂ is a k-polar
generalized (q, ∈∨q)-neutrosophic subalgebra of X .

Combining Theorems 5.3 and 5.5, we have the following corollary.

Corollary 5.6. If a k-polar generalized neutrosophic set L̂ :=
(̂̀

T , ̂̀IT , ̂̀IF , ̂̀F) satisfies two conditions

(5.2) and (5.3) for a subalgebra S of X , then the generaliged neutrosophic q-sets Tq(̂̀T , n̂T ), ITq(̂̀IT , n̂IT ),
IFq(̂̀IF , n̂IF ) and Fq(̂̀F , n̂F ) are subalgebras of X for all n̂T , n̂IT ∈ (0.5, 1]k and n̂F , n̂IF ∈ [0, 0.5)k.

6 Conclusions
We have introduced k-polar generalized neutrosophic set and have applied it to BCK/BCI-algebras. We have
defined k-polar generalized neutrosophic subalgebra, k-polar generalized (∈, ∈ ∨q)-neutrosophic subalge-
bra and k-polar generalized (q, ∈ ∨q)-neutrosophic subalgebra and have studid various properties. We have
discussed characterization of k-polar generalized neutrosophic subalgebra and k-polar generalized (∈, ∈∨q)-
neutrosophic subalgebra. We have shown that the necessity and possibility operator of k-polar generalized
neutrosophic subalgebra are also a k-polar generalized neutrosophic subalgebra. Using the k-polar gener-
alized (∈, ∈ ∨q)-neutrosophic subalgebra, we have shown that the generaliged neutrosophic q-sets and the
generaliged neutrosophic ∈∨q-sets subalgebras. Using the k-polar generalized (q, ∈∨q)-neutrosophic sub-
algebra, we have shown that the generaliged neutrosophic q-sets and the generaliged neutrosophic ∈∨q-sets
are subalgebras. Using the generaliged neutrosophic ∈∨q-sets, we have established a k-polar generalized (∈,
∈∨q)-neutrosophic subalgebra. We have provided conditions for a k-polar generalized neutrosophic set to be
a k-polar generalized neutrosophic subalgebra and a k-polar generalized (q, ∈∨q)-neutrosophic subalgebra.
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Abstract: The objective of this article is to introduce a new hybrid model of neutrosophic N-soft set 

which is combination of neutrosophic set and N-soft set. We introduce some basic operations on 

neutrosophic N-soft sets along with their fundamental properties. For multi-attribute decision-

making (MADM) problems with neutrosophic N-soft sets, we propose an extended TOPSIS 

(technique based on order preference by similarity to ideal solution) method. In this method, we first 

propose a weighted decision matrix based comparison method to identify the positive and the 

negative ideal solutions. Afterwards, we define a separation measurement of these solutions. Finally, 

we calculate relative closeness to identify the optimal alternative. At length, a numerical example is 

rendered to illustrate the developed scheme in medical diagnosis via hypothetical case study. 

Keywords: Neutosophic N-soft set, operations on neutosophic N-soft sets, MADM, TOPSIS, medical 

diagnosis. 

1. Introduction 

In contemporary decision-making science, multi-attribute decision-making (MADM) phenomenon 

plays a significant role in solving many real world problems. To deal with uncertainties, researchers 

have introduced different theories including, Fuzzy set (FS) [54] that comprises a mapping 

communicating the degree of association and intuitionistic fuzzy set (IFS) [10, 11] that comprises a 

pair of mappings communicating the degree of association and the degree of non-association of 

members of the universe to the unit closed interval with the restriction that sum of degree of 

association and degree of non-association should not exceed one. Smarandache [46, 47] introduced 

neutrosophic sets as an extension of IFSs. A neutrosophic object comprises three degrees, namely, 

degree of association, indeterminacy, and the degree of non-association to each alternative.  

Smarandache's Neutrosophic Set [50] is a generalization of Intuitionistic Fuzzy Set, Inconsistent 

Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set (Atanassov’s 

Intuitionistic Fuzzy Set of second type), q-Rung Orthopair Fuzzy Set, Spherical Fuzzy Set, and n-

Hyper-Spherical Fuzzy Set; while Neutrosophication is a generalization of Regret Theory, Grey 

System Theory, and Three-Ways Decision. In 1999, Molodtsov [32] presented the notion of soft set as 

an important mathematical tool to deal with uncertainties. In 2007, Aktas and Cagman [6] extended 

the idea of soft sets to soft groups. In 2010, Feng et al. [18, 19] presented several results on soft sets, 

fuzzy soft sets and rough sets. In 2009 and 2011, Ali et al. [7, 8] introduced various properties of soft 

sets, fuzzy soft sets and rough sets. In 2011, Cagman et al. [12], and Shabir and Naz [51] independently 

presented soft topological spaces. Arockiarani et al. [9], in 2013, introduced the notion of fuzzy 
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neutrosophic soft toplogical spaces. In 2016, Davvaz and Sadrabadi [16] presented an interesting 

application of IFSs in medicine. Nabeeh et al. [33, 34] worked on neutrosophic multi-criteria decision 

making approach for IoT-based enterprises and for personnel selection used the neutrosophic-

TOPSIS approach in 2019. Chang et al. [35] worked towards a reuse strategic decision pattern 

framework-from theories to practices. Garg and Arora [20]-[23] introduced generalized intuitionistic 

fuzzy soft power aggregation operator, Dual hesitant fuzzy soft aggregation operators, a novel scaled 

prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application 

to multi criteria decision-making. Peng and Dai [36] presented some approaches to single-valued 

neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. 

Hashmi et al. [24] introduced m-polar neutrosophic topology with applications to multi-criteria 

decision-making in medical diagnosis and clustering analysis. In 2019, Naeem et al. [29] presented 

pythagorean fuzzy soft MCGDM methods based on TOPSIS, VIKOR and aggregation operators. In 

2019, Naeem et al. [30] established pythagorean m-polar fuzzy sets and TOPSIS method for the 

selection of advertisement mode. In 2019, Riaz et al. [37] introduced N-soft topology and its 

applications to multi-criteria group decision making (MCGDM). Riaz and Hashmi [38] introduced 

the concept of cubic m-polar fuzzy set and presented multi-attribute group decision making 

(MAGDM) method for agribusiness in the environment of various cubic m-polar fuzzy averaging 

aggregation operators. Riaz and Hashmi [39] introduced the notion of linear Diophantine fuzzy Set 

(LDFS) and its applications towards multi-attribute decision making problems. Riaz and Hashmi [40] 

introduced soft rough Pythagorean m-polar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets 

with application to decision-making. Riaz and Tehrim [41, 42, 43] substantiated the idea of bipolar 

fuzzy soft topology, cubic bipolar fuzzy set and cubic bipolar fuzzy ordered weighted geometric 

aggregation operators and their application using internal and external cubic bipolar fuzzy data. Riaz 

and Tahrim [44] introduced the concept of bipolar fuzzy soft mappings with application to bipolar 

disorders.  

Smarandache [48] introduced a unifying field in logics: Neutrosophic Logic. Neutrosophy, 

Neutrosophic Set, Neutrosophic Probability and Statistics. Smarandache [49] introduced 

Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic 

Over-/Under-/Off- Logic, Probability, and Statistics. 

Soft sets provide binary evaluation of the objects and other mathematical models like fuzzy sets, 

intuitionistic fuzzy sets and neutrosophic sets associate values in the interval [0,1]. These models fail 

to deal with the situation when modeling on real world problems associate non-binary evaluations. 

Non-binary evaluations are also expected in rating or ranking positions. The ranking can be 

expressed in multinary values in the form of number of stars, dots, grades or any generalized 

notation. Motivated by these concerns, in 2017, Fatimah et al. [17] floated the idea of N-soft set as an 

extended model of soft set, in order to describe the importance of grades in real life. In 2018 and 2019, 

Akram et al. [1]-[3] introduced group decision-making methods based on hesitant N-soft sets and 

intuitionistic fuzzy N-soft rough set. 

The technique for the order of preference by similarity to ideal solution (TOPSIS) was initially 

developed by Hwang and Yoon [26] in 1981. The core idea in the TOPSIS method is that selected 

alternative should have least geometric distance from positive ideal solution and maximum 

geometric distance from negative ideal solution. Positive ideal solution represents the condition for 
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best solution whereas negative ideal solution represents the condition for the worst. In 2000, Chen 

[13] extended the TOPSIS method to fuzzy environment and solved a decision making problem based 

on fuzzy information. Later, in 2008, Chen and Tsao [14] developed interval-valued fuzzy TOPSIS 

method. TOPSIS method in intuitionistic fuzzy framework was proposed by Li and Nan [31] in 2011. 

Joshi and Kumar [28] discussed TOPSIS method based on intuitionistic fuzzy entropy and distance 

measure for multi-criteria decision making. Recently, in 2016 Dey et al. [15] employed TOPSIS method 

for solving decision making problem under bipolar neutrosophic environment. In 2013, Xu and 

Zhang [53] developed a novel approach based on maximizing deviation and TOPSIS method for the 

explanation of multi-attribute decision making problems. In 2014, Zhang and Xu [55] presented an 

extension of TOPSIS in multiple criteria decision making with the help of Pythagorean fuzzy sets. 

Chen and Tsao [14] proposed interval-valued fuzzy TOPSIS method and its experimental analysis in 

2016. In 2018, Akram and Arshad [4] presented a novel trapezoidal bipolar fuzzy TOPSIS method for 

group decision-making. In 2019, Akram and Adeel [5] presented TOPSIS approach for MAGDM 

based on interval-valued hesitant fuzzy N-soft environment. In 2019, Tehrim and Riaz [45] presented 

a novel extension of TOPSIS method with bipolar neutrosophic soft topology and its applications to 

multi-criteria group decision making (MCGDM). Riaz et al. [56]-[57] introduced novel concepts of 

soft rough topology with applications to MAGDM. 

The goal of this paper is to present a new hybrid model "neutrosophic N-soft set" and their 

applications to the decision making (DM). Neutrosophic N-soft set is the generalization of N-soft set, 

fuzzy N-soft set and intuitionistic fuzzy N-soft.  

The comparison analysis of the proposed model with some existing models is given in Table 1. 

Sets Parametrization Non Binary 

Evaluation 

Truth 

Membership 

Falsity 

Membership 

Indeterminacy 

Fuzzy set [54] × ×  × × 

Intutionistic 

fuzzy set [10] 

× ×     × 

Neutrosophic 

set [46] 

× ×        

Soft Set [12]     × × × × 

N-soft Set [17]      × × × 

Fuzzy N-soft 

Set[1] 

        × × 

Intutionistic 

N-soft Set [3] 

           × 

Neutrosophic 

N-soft Set 

(Proposed) 

              

Table 1: Comparison with other existing theories 

The rest of paper is organized as follows. In Section 2, we recall some fundamental concepts of N-

soft set, fuzzy neutrosophic set and fuzzy neutrosophic soft set. In Section 3, we propose our new 

hybrid model fuzzy neutrosophic N-soft set along with their examples. We also present some basic 

operations on fuzzy neutrosophic N-soft set with illustrations. We also investigate fundamental 
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properties of the proposed model by using defined operations. In Section 4, we construct relations 

by using fuzzy neutrosophic N-soft set and define composition of fuzzy neutrosophic N-soft sets 

using relations. We also define some new choice functions and score functions in connection with 

fuzzy neutrosophic N-soft sets. In Section 5, we proposed DM method for medical diagnosis by the 

model. In Section 6, we give a numerical example of this diagnosis method via conjectural case study. 

In Section7, we conclude with some future directions and give suggestions for future work. 

2. Preliminaries 

In this segment, we review some essential definitions and a few aftereffects of N-soft and 

neutrosophic sets that would be accommodating in the following segments. 

Definition 2.1  [54] A  fuzzy set 𝜗  in 𝕏  is assessed up by a mapping with 𝕏  as domain and 

membership degree in [0,1].  The accumulation of all  fuzzy sets (FSs) in the universal set 𝕏  is 

signified by 𝜗(𝕏).  

Definition 2.2  [46, 47] A  neutrosophic set (NS) ℙ over the universe of discourse 𝕏 is defined as  

ℙ = {〈𝜑, (𝕋ℙ(𝜑), 𝕀ℙ(𝜑), 𝔽ℙ(𝜑))〉: 𝜑 ∈ 𝕏} 

where 𝕋ℙ, 𝕀ℙ, 𝔽ℙ: 𝕏 →]−0, 1+[ and  −0 ≤ 𝕋ℙ(𝜑) + 𝕀ℙ(𝜑) + 𝔽ℙ(𝜑) ≤ 3+. 

The mapping 𝕋ℙ stands for degree of membership, 𝕀ℙ is the degree of indeterminacy and 𝔽ℙ is the 

degree of falsity of points of the given set. From philosophical perspective, the neutrosophic set takes 

the entries from some subset of ]−0, 1+[. But it many actual applications, it is inconvenient to utilize 

neutrosophic set with entries from such subsets. Therefore, we consider the neutrosophic set which 

takes the entries from some subset of [0,1].  

Definition 2.3 [9] Let 𝕏 be a space of objects (points). A  fuzzy neutrosophic set (FNS) ℙ in 𝕏 is 

dispirit by a truth-membership function 𝕋𝑃,  an indeterminacy membership-function 𝕀𝑃  and a 

falsity-membership function 𝔽𝑃. In mathematical form, this collection is expressed as  

ℙ = {〈𝜑, (𝕋ℙ(𝜑), 𝕀ℙ(𝜑), 𝔽ℙ(𝜑))〉: 𝜑 ∈ 𝕏, 𝕋ℙ, 𝕀ℙ, 𝔽ℙ ∈ [0,1]}

with the constraint that sum of 𝕋ℙ(𝜑), 𝕀ℙ(𝜑) and 𝔽ℙ(𝜑) should fall in [0,3] i.e.  

0 ≤ 𝕋ℙ(𝜑) + 𝕀ℙ(𝜑) + 𝔽ℙ(𝜑) ≤ 3 

Definition 2.4 [32] Let 𝕏 be the set of points and 𝐸 be the set of attributes with ℒ in 𝐸. Assume that 

P(𝕏) denotes collection of subsets of 𝕏. The pair (𝜁, ℒ) is said to be a soft set (SS) over 𝕏, where 𝜁

is a function given by  𝜁: ℒ → P(𝕏)

Thus, an SS is expressed in mathematical form as  

(𝜁, ℒ) = {(𝜉, 𝜁(𝜉)): 𝜉 ∈ ℒ}. 

Definition 2.5 [9] Let 𝕏 be the initial universal set and 𝐸 be the set of parameters. We consider the 

non-empty set ℒ ⊆ 𝐸 . Let P̂(𝕏) signifies the set of all NSs of 𝕏 . The accretion Ωℒ  is called the 

neutrosophic soft set (NSS) over 𝕏, where Ωℒ is a function given by Ωℒ: ℒ → P̂(𝕏). We can write it as  

Ωℒ = {(𝜉, {〈𝜑, 𝕋ℒ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑)〉: 𝜑 ∈ 𝕏}): 𝜉 ∈ 𝐸} 

Notice that if Ωℒ(𝜉) = {〈𝜑, 0,1,1〉: 𝜑 ∈ 𝕏}, then NS-element (𝜉, Ωℒ(𝜉)) does not seem to appear in the 

NSS Ωℒ . The set of all NSSs over 𝕏 is symbolized by NS(𝕏𝐸). 

Definition 2.6  [17] Let 𝕏 be a set of points and 𝐸  be a set of attributes with ℒ  in 𝐸. Let 𝒢 =

{0,1,2,⋯ ,𝑁 − 1} be the set of ordered grades where 𝑁 ∈ {2,3,⋯ }. The  N-soft set (NSS) on 𝕏 is 

denoted by (𝜁, ℒ, 𝑁) where 𝜁: ℒ → 2𝕏×𝒢 is a map characterized by  

𝜁(𝜉) = (𝜑,𝓇ℒ(𝜉)) 
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∀𝜑 ∈ 𝕏, 𝜉 ∈ ℒ, 𝓇ℒ(𝜉) ∈ 𝒢. 

Definition 2.7  [17] A weak complement of N-soft set (𝜁, ℒ, 𝑁) is another N-soft set (𝜁∁, ℒ, 𝑁) gratifying 

𝜁(𝜉)∁ ⊓ 𝜁(𝜉) = 𝜙, ∀𝜉 ∈ 𝕏.   

Definition 2.8  [17] A top weak complement of N-soft set (𝜁, ℒ, 𝑁) is an N-soft set (𝜁⋆, ℒ, 𝑁), where  

(𝜁⋆, ℒ, 𝑁) = {
𝜁(𝜉) = (𝜑,𝑁 − 1), 𝑖𝑓𝓇ℒ(𝜉)(𝜑) < 𝑁 − 1

𝜁(𝜉) = (𝜑, 0), 𝑖𝑓𝓇ℒ(𝜉)(𝜑) = 𝑁 − 1
 

Definition 2.9  [17] A bottom weak complement of N-soft set (𝜁, ℒ, 𝑁) is one more N-soft set (𝜁⋆, ℒ, 𝑁),

where  

(𝜁⋆, ℒ, 𝑁) = {
𝜁(𝜉) = (𝜑, 0), 𝑖𝑓𝓇ℒ(𝜉)(𝜑) > 0,

𝜁(𝜉) = (𝜑,𝑁 − 1), 𝑖𝑓𝓇ℒ(𝜉)(𝜑) = 0.
 

3  Neutrosophic N-soft Set 

In this section, we propose a novel structure neutrosophic N-soft set (NNSS), which is blend of NS and 

NSS. We present some definitions and operations on NNSS too. Some properties of NNSS associated 

with these operations also have been set up. 

Definition 3.1  Let 𝕏 be the initial universe set, 𝐸  the set of attributes and 𝒢  the aggregate of 

ordered grades. We consider non-empty subset ℒ of 𝐸. Let P̂(𝕏 × 𝒢) be the collection of all NSSs of 

𝕏 × 𝒢. A  neutrosophic N-soft set (NNSS) is signified by (𝜆, Ω, 𝑁), where Ω = (𝜁, ℒ, 𝑁) is an NSS. If 

there is no ambiguity, we can abbreviate it as 𝜆ℒ represented by the mapping  

𝜆ℒ: ℒ → P̂(𝕏 × 𝒢) 

Mathematically,  

𝜆ℒ = {(𝜉, Γℒ(𝜉)): Γℒ(𝜉) = {(〈𝜑, 𝕋ℒ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)(𝜑)), 𝓇ℒ ∈ 𝒢, 

                                𝜑 ∈ 𝕏, 𝕋ℒ, 𝕀ℒ, 𝔽ℒ ∈ [0,1]}, 𝜉 ∈ 𝐸}

In short form, we may write 

𝜆ℒ = {(𝜉, Γℒ(𝜉)): 𝜉 ∈ 𝐸} 

where  

Γℒ(𝜉) = {(〈𝜑, 𝕋ℒ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)(𝜑)):𝓇ℒ ∈ 𝒢, 𝜑 ∈ 𝕏, 𝕋ℒ, 𝕀ℒ, 𝔽ℒ ∈ [0,1]} 

The accretion of all NNSSs is denoted by NNS(𝕏). 

Our proposed structure is more generalized then other existing models. The existing models are 

special cases of our proposed model, as shown in Table 2  

Neutrosophic N-soft Set (Proposed) (𝜉, (〈𝜑, 𝕋ℒ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)(𝜑)) 

Intutionistic N-soft Set [3] (𝜉, (〈𝜑, 𝕋ℒ(𝜉)(𝜑),0, 𝔽ℒ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)(𝜑)) 

Fuzzy N-soft Set [1] (𝜉, (〈𝜑,𝕋ℒ(𝜉)(𝜑),0,0〉, 𝓇ℒ(𝜉)(𝜑)) 

N-soft Set [17] (𝜉, 𝓇ℒ(𝜉)(𝜑)) 

Table 2: Comparison with N-soft set and it's other existing generalization 

   

Example 3.2  Let 𝕏 = {𝜑1, 𝜑2} and 𝐸 = {𝜉1, 𝜉2, 𝜉3}. Consider 𝐸 ⊇ ℒ = {𝜉1, 𝜉2}. Define N8SS as 𝜆ℒ =

{(𝜉𝑖, Γℒ(𝜉𝑖)): 𝜉𝑖 ∈ ℒ, 𝑖 = 1,2}, where 8SS is given in Table 3 below: 

(𝜁, ℒ, 8) 𝜉1 𝜉2 

𝜑1 6 3 

𝜑2 4 5 
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Table 3: Tabular representation of 8SS 

Now, we define N8SS as 

Γℒ(𝜉1) = {(〈𝜑1, 0.8,0.5,0.1〉,6), (〈𝜑2, 0.6,0.2,0.9〉,4)}

Γℒ(𝜉2) = {(〈𝜑1, 0.5,0.7,0.3〉,3), (〈𝜑2, 0.7,0.4,0.8〉,5)} 

The tabular representation of N8SS is given in Table 4. 

𝜆ℒ 𝜉1 𝜉2 

𝜑1 (〈0.8,0.5,0.1〉,6) (〈0.5,0.7,0.3〉,3) 

𝜑2 (〈0.6,0.2,0.9〉,4) (〈0.7,0.4,0.8〉,5) 

Table 4: Tabular representation of N8SS 

Remarks: 

1. Every N2SS (𝜆, Ω, 2) is generally equal to NSS. 

2. Any arbitrary NNSS over the universe 𝕏 can also be thought of as N(𝑁 + 1)-soft set. For example 

an N8SS can also be treated as an N9SS for the grade 8 is never used as can be seen in Table 4. 

This observation may be extended on the parallel track.  

Now, we head towards presenting some arithmetical notions related to NNSS.  

Definition 3.3  Let 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏). 𝜆ℒ is said to be NNS- subset of 𝜆ℳ, if  

ℒ ⊑ ℳ,

𝕋ℒ(𝜉)(𝜑) ≤ 𝕋ℳ(𝜉)(𝜑), 

𝕀ℒ(𝜉)(𝜑) ≥ 𝕀ℳ(𝜉)(𝜑),

𝔽ℒ(𝜉)(𝜑) ≥ 𝔽ℳ(𝜉)(𝜑), 

𝓇ℒ(𝜉)(𝜑) ≤ 𝓇ℳ(𝜉)(𝜑) 

∀𝜉 ∈ 𝐸, 𝜑 ∈ 𝒳,𝓇ℒ ∈ 𝒢. We demonstrate it by 𝜆ℒ ⊑ 𝜆ℳ . 𝜆ℳ is said to be NNS- superset of 𝜆ℒ.  

Example 3.4  Let 𝕏 = {𝜑1, 𝜑2} and 𝐸 = {𝜉1, 𝜉2, 𝜉3}. Consider 𝐸 ⊇ ℒ = {𝜉1, 𝜉2}. Consider N8SS 𝜆ℒ as 

given in Example 3.2. Let ℳ = 𝐸. Define N8SS 𝜆ℳ as  

𝜆ℳ = {(𝜉𝑖, Γℳ(𝜉𝑖)): 𝜉𝑖 ∈ ℳ, 𝑖 = 1,2,3}

where 8SS is given in Table 5 below. 

(𝜁,ℳ, 8) 

𝜉1  𝜉2  𝜉3 

𝜑1 7  4  6  

𝜑2 5  7  3  

Table 5: Tabular representation of 8SS 

Now, we define N8SS 

Γℳ(𝜉1) = {(〈𝜑1, 0.9,0.4,0.0〉,7), (〈𝜑2, 0.7,0.1,0.8〉,5)}

Γℳ(𝜉2) = {(〈𝜑1, 0.6,0.5,0.2〉,4), (〈𝜑2, 0.9,0.3,0.8〉,7)}

Γℳ(𝜉3) = {(〈𝜑1, 0.8,0.5,0.1〉,6), (〈𝜑3, 0.5,0.7,0.3〉,3)} 

having tabular form 
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𝜆ℳ 𝜉1 𝜉2 𝜉3 

𝜑1 (〈0.9,0.4,0.0〉,7) (〈0.6,0.5,0.2〉,4) (〈0.8,0.5,0.1〉,6) 

𝜑2 (〈0.7,0.1,0.8〉,5) (〈0.9,0.3,0.8〉,7) (〈0.5,0.7,0.3〉,3) 

Table 6: Tabular representation of N8SS 

It can be seen from Table 4 and Table 6 that 𝜆ℒ ⊑ 𝜆ℳ.  

Definition 3.5  Let 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏). Then 𝜆ℒ and 𝜆ℳ are said to be NNS- equal, if  

ℒ = ℳ, 

𝕋ℒ(𝜉)(𝜑) = 𝕋ℳ(𝜉)(𝜑),

𝕀ℒ(𝜉)(𝜑) = 𝕀ℳ(𝜉)(𝜑), 

𝔽ℒ(𝜉)(𝜑) = 𝔽ℳ(𝜉)(𝜑), 

𝓇ℒ(𝜉)(𝜑) = 𝓇ℳ(𝜉)(𝜑)

∀𝜉 ∈ 𝐸, 𝜑 ∈ 𝒳,𝓇ℒ ∈ 𝒢. We demonstrate it by 𝜆ℒ = 𝜆ℳ .  

Definition 3.6  Let 𝜆ℒ ∈NNS(𝕏). If 𝕋ℒ(𝜉)(𝜑) = 0, 𝕀ℒ(𝜉)(𝜑) = 1, 𝔽ℒ(𝜉)(𝜑) = 1 and 𝓇ℒ(𝜉)(𝜑) = 0, ∀𝜉 ∈

𝐸, 𝜑 ∈ 𝒳, 𝓇ℒ ∈ 𝒢; then 𝜆ℒ is called null NNSS and symbolized by 𝜆ℒ𝜙
.  

Example 3.7  Let 𝕏 = {𝜑1, 𝜑2} and 𝐸 = {𝜉1, 𝜉2, 𝜉3}. Consider 𝐸 ⊇ ℒ = {𝜉1, 𝜉2}. Define null N8SS as 

𝜆ℒ𝜙
= {(𝜉𝑖, Γℒ𝜙

(𝜉𝑖)): 𝜉𝑖 ∈ ℒ, 𝑖 = 1,2} where  

Γℒ𝜙
(𝜉1) = {(〈𝜑1, 0,1,1〉,0), (〈𝜑2, 0,1,1〉,0)}

Γℒ𝜙
(𝜉2) = {(〈𝜑1, 0,1,1〉,0), (〈𝜑2, 0,1,1〉,0)} 

The tabular form given in Table 7 

𝜆ℒ𝜙
 𝜉1 𝜉2 

𝜑1 (〈0,1,1〉,0) (〈0,1,1〉,0) 

𝜑2 (〈0,1,1〉,0) (〈0,1,1〉,0) 

Table 7: Tabular representation of null N8SS 

Definition 3.8  Let 𝜆ℒ ∈NNS(𝕏). If 𝕋ℒ(𝜉)(𝜑) = 1, 𝕀ℒ(𝜉)(𝜑) = 0, 𝔽ℒ(𝜉)(𝜑) = 0 and 𝓇ℒ(𝜉)(𝜑) = 𝑁 − 1,

∀𝜉 ∈ 𝐸, 𝜑 ∈ 𝕏,𝓇ℒ ∈ 𝒢, then 𝜆ℒ is called absolute NNSS and symbolized by 𝜆ℒ̂.  

Example 3.9  Let 𝕏 = {𝜑1, 𝜑2} and 𝐸 = {𝜉1, 𝜉2, 𝜉3}. Consider 𝐸 ⊇ ℒ = {𝜉1, 𝜉2}. Define absolute N8SS 

as 𝜆ℒ̂ = {(𝜉𝑖, Γℒ̂(𝜉𝑖)): 𝜉𝑖 ∈ ℒ, 𝑖 = 1,2} where  

Γℒ̂(𝜉1) = {(〈𝜑1, 1,0,0〉,7), (〈𝜑2, 1,0,0〉,7)}

Γℒ̂(𝜉2) = {(〈𝜑1, 1,0,0〉,7), (〈𝜑2, 1,0,0〉,7)} 

having tabular representation that is given in Table 8: 

𝜆ℒ̂ 𝜉1 𝜉2 

𝜑1 (〈1,0,0〉,7) (〈1,0,0〉,7) 

𝜑2 (〈1,0,0〉,7) (〈1,0,0〉,7) 

Table 8: Tabular representation of absolute N8SS 

Proposition 3.10 Let 𝜆𝒦, 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏). Then, 
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1. 𝜆ℒ ⊑ 𝜆ℒ̂. 

2. 𝜆ℒ𝜙
⊑ 𝜆ℒ. 

3. 𝜆ℒ ⊑ 𝜆ℒ. 

4. 𝜆𝒦 ⊑ 𝜆ℒ and 𝜆ℒ ⊑ 𝜆ℳ  ⇒ 𝜆𝒦 ⊑ 𝜆ℳ.  

Proof. The proof follows directly from definitions of related terms.  

Proposition 3.11 Let 𝜆𝒦, 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏). Then, 

1. 𝜆𝒦 = 𝜆ℒ and 𝜆ℒ = 𝜆ℳ  ⇒ 𝜆𝒦 = 𝜆ℳ. 

2. 𝜆ℒ ⊑ 𝜆ℳ and 𝜆ℳ ⊑ 𝜆ℒ ⇒ 𝜆ℒ = 𝜆ℳ.  

Proof. Straight forward.  

Definition 3.12  Let 𝜆ℒ ∈NNS(𝕏). Then  weak complement of NNSS 𝜆ℒ is symbolized by 𝜆ℒ
∁  and defined 

as 

𝜆ℒ
∁ = {(𝜉, Γℒ

∁): 𝜉 ∈ 𝐸} 

where  

Γℒ
∁ = {(〈𝜑, 𝔽ℒ(𝜉)(𝜑),1 − 𝕀ℒ(𝜉)(𝜑), 𝕋ℒ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)

∁ (𝜑)): 𝜑 ∈ 𝑋} 

Here 𝓇ℒ(𝜉)
∁ (𝜑) denotes weak complement defined in Definition 2.7.  

Example 3.13  Let 𝕏 = {𝜑1, 𝜑2} and 𝐸 = {𝜉1, 𝜉2, 𝜉3}. Consider 𝐸 ⊇ ℒ = {𝜉1, 𝜉2}. Define complement 

of N8SS 𝜆ℒ given in Example 3.2 as 𝜆ℒ
∁ = {(𝜉𝑖, Γℒ

∁(𝜉𝑖)): 𝜉𝑖 ∈ ℒ, 𝑖 = 1,2} i.e.  

Γℒ
∁(𝜉1) = {(〈𝜑1, 0.1,0.5,0.8〉,5), (〈𝜑2, 0.9,0.8,0.6〉,7)}

Γℒ
∁(𝜉2) = {(〈𝜑1, 0.3,0.3,0.5〉,4), (〈𝜑2, 0.8,0.6,0.7〉,2)} 

The tabular form is given in Table 9.  

𝜆ℒ
∁  𝜉1 𝜉2 

𝜑1 (〈0.8,0.5,0.1〉,5) (〈0.5,0.7,0.3〉,4) 

𝜑2 (〈0.6,0.2,0.9〉,7) (〈0.7,0.4,0.8〉,2) 

Table 9: Tabular representation of weak complement of N8SS 

Proposition 3.14 Let 𝜆ℒ ∈NNS(𝕏), then 

1. (𝜆ℒ
∁)∁ ≠ 𝜆ℒ. 

2. 𝜆ℒ𝜙

∁ ≠ 𝜆ℒ̂.  

3. 𝜆
ℒ̂
∁ ≠ 𝜆ℒ𝜙

.  

Proof. Straight forward.  

Definition 3.15  Let 𝜆ℒ ∈NNS(𝕏). Then  top weak complement of NNSS 𝜆ℒ  is symbolized by 𝜆ℒ
⋆  and 

defined as  

𝜆ℒ
⋆ = {(𝜉, Γℒ

⋆): 𝜉 ∈ 𝐸} 

Where,  

Γℒ
⋆ = {(〈𝜑, 𝔽ℒ(𝜉)(𝜑),1 − 𝕀ℒ(𝜉)(𝜑), 𝕋ℒ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)

⋆ (𝜑)): 𝜑 ∈ 𝑋} 

where, 𝓇ℒ(𝜉)
⋆ (𝜑) denotes top weak complement defined in Definition 2.8.  

Example 3.16  Let 𝕏 = {𝜑1, 𝜑2} and 𝐸 = {𝜉1, 𝜉2, 𝜉3}. Consider 𝐸 ⊇ ℒ = {𝜉1, 𝜉2}. Define complement 

of N8SS 𝜆ℒ given in Example 3.2 as 𝜆ℒ
⋆ = {(𝜉𝑖, Γℒ

⋆(𝜉𝑖)): 𝜉𝑖 ∈ ℒ, 𝑖 = 1,2} i.e.  

Γℒ
⋆(𝜉1) = {(〈𝜑1, 0.1,0.5,0.8〉,7), (〈𝜑2, 0.9,0.8,0.6〉,7)} 
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Γℒ
⋆(𝜉2) = {(〈𝜑1, 0.3,0.3,0.5〉,7), (〈𝜑2, 0.8,0.6,0.7〉,7)} 

In tabular form given in Table 10.  

𝜆ℒ
⋆  𝜉1 𝜉2 

𝜑1 (〈0.8,0.5,0.1〉,7) (〈0.5,0.7,0.3〉,7) 

𝜑2 (〈0.6,0.2,0.9〉,7) (〈0.7,0.4,0.8〉,7) 

Table 10: Tabular representation of top weak complement of N8SS 

Proposition 3.17 Let 𝜆ℒ ∈NNS(𝕏). Then, 

1. (𝜆ℒ
⋆)⋆ ≠ 𝜆ℒ. 

2. 𝜆ℒ𝜙

⋆ = 𝜆ℒ̂.  

3. 𝜆ℒ̂
⋆ = 𝜆ℒ𝜙

.  

Proof. The proof follows quickly from definitions of relevant terms.   

Definition 3.18  Let 𝜆ℒ ∈NNS(𝕏). Then  bottom weak complement of NNSS 𝜆ℒ is symbolized by 𝜆ℒ⋆
 and 

defined as follows  

𝜆ℒ⋆
= {(𝜉, Γℒ⋆

): 𝜉 ∈ 𝐸} 

where  

Γℒ⋆
= {(〈𝜑, 𝔽ℒ(𝜉)(𝜑),1 − 𝕀ℒ(𝜉)(𝜑), 𝕋ℒ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)⋆(𝜑)): 𝜑 ∈ 𝑋}

Here 𝓇ℒ(𝜉)⋆(𝜑) denotes top weak complement defined in Definition 2.9.   

Example 3.19  Let 𝕏 = {𝜑1, 𝜑2}  and 𝐸 = {𝜉1, 𝜉2, 𝜉3} . Consider 𝐸 ⊇ ℒ = {𝜉1, 𝜉2} . Bottom weak 

complement of N8SS 𝜆ℒ defined in Example 3.2 as 𝜆ℒ⋆
= {(𝜉𝑖, Γℒ⋆

(𝜉𝑖)): 𝜉𝑖 ∈ ℒ, 𝑖 = 1,2} where  

Γℒ⋆
(𝜉1) = {(〈𝜑1, 0.1,0.5,0.8〉,7), (〈𝜑2, 0.9,0.8,0.6〉,7)}

Γℒ⋆
(𝜉2) = {(〈𝜑1, 0.3,0.3,0.5〉,7), (〈𝜑2, 0.8,0.6,0.7〉,7)} 

In tabular form the bottom weak complement of N8SS is given in Table 11. 

𝜆ℒ⋆
 𝜉1 𝜉2 

𝜑1 (〈0.8,0.5,0.1〉,0) (〈0.5,0.7,0.3〉,0) 

𝜑2 (〈0.6,0.2,0.9〉,0) (〈0.7,0.4,0.8〉,0) 

Table 11: Tabular representation of bottom weak complement of N8SS 

Proposition 3.20 Let 𝜆ℒ ∈NNS(𝕏). Then, 

1. (𝜆ℒ⋆
)⋆ ≠ 𝜆ℒ. 

2. (𝜆ℒ𝜙
)⋆ = 𝜆ℒ̂.  

3. 𝜆ℒ̂⋆
= 𝜆ℒ𝜙

.  

Proof. Straight forward.   

Definition 3.21  Let 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏). Then  difference of 𝜆ℒ and 𝜆ℳ is symbolized by 𝜆ℒ\𝜆ℳ and 

is defined as  

𝜆ℒ\𝜆ℳ = {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)\ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)\ℳ(𝜉)(𝜑), 𝔽ℒ(𝜉)\ℳ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)\ℳ(𝜉)(𝜑)):

𝜑 ∈ 𝕏}): 𝜉 ∈ 𝐸} 

where 𝕋ℒ(𝜉)\ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)\ℳ(𝜉)(𝜑) and 𝔽ℒ(𝜉)\ℳ(𝜉)(𝜑) are defined as  

𝕋ℒ(𝜉)\ℳ(𝜉)(𝜑) = min{𝕋ℒ(𝜉)(𝜑), 𝔽ℳ(𝜉)(𝜑)}

𝕀ℒ(𝜉)\ℳ(𝜉)(𝜑) = max{𝕀ℒ(𝜉)(𝜑),1 − 𝕀ℳ(𝜉)(𝜑)}

𝔽ℒ(𝜉)\ℳ(𝜉)(𝜑) = max{𝔽ℒ(𝜉)(𝜑), 𝕋ℳ(𝜉)(𝜑)} 
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𝓇ℒ(𝜉)\ℳ(𝜉)(𝜑) = {
𝓇ℒ(𝜉)(𝜑) − 𝓇ℳ(𝜉)(𝜑), 𝑖𝑓𝓇ℒ(𝜉)(𝜑) > 𝓇ℳ(𝜉)(𝜑),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Definition 3.22  Let 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏) . Then  addition of 𝜆ℒ  and 𝜆ℳ  is symbolized by 𝜆ℒ ⊕ 𝜆ℳ

and is defined as  

𝜆ℒ ⊕ 𝜆ℳ = {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)⊕ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)⊕ℳ(𝜉)(𝜑), 𝔽ℒ(𝜉)⊕ℳ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)⊕ℳ(𝜉)(𝜑)): 𝜑 ∈ 𝕏}): 𝜉 ∈ 𝐸}

where 𝕋ℒ(𝜉)⊕ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)⊕ℳ(𝜉)(𝜑) and 𝔽ℒ(𝜉)⊕ℳ(𝜉)(𝜑) are given as  

𝕋ℒ(𝜉)⊕ℳ(𝜉)(𝜑) = min{𝕋ℒ(𝜉)(𝜑) + 𝕋ℳ(𝜉)(𝜑),1}

𝕀ℒ(𝜉)⊕ℳ(𝜉)(𝜑) = min{𝕀ℒ(𝜉)(𝜑) + 𝕀ℳ(𝜉)(𝜑),1}

𝔽ℒ(𝜉)⊕ℳ(𝜉)(𝜑) = min{𝔽ℒ(𝜉)(𝜑) + 𝔽ℳ(𝜉)(𝜑),1} 

𝓇ℒ(𝜉)⊕ℳ(𝜉)(𝜑) = {
𝓇ℒ(𝜉)(𝜑) + 𝓇ℳ(𝜉)(𝜑), 𝑖𝑓0 ≤ 𝓇ℒ(𝜉)(𝜑) + 𝓇ℳ(𝜉)(𝜑) < 𝑁 − 1,

𝑁 − 1, 𝑖𝑓𝓇ℒ(𝜉)(𝜑) + 𝓇ℳ(𝜉)(𝜑) ≥ 𝑁 − 1
 

Definition 3.23  Let 𝜆ℒ, 𝜆ℳ ∈ NNS (𝕏)  be expressed as 𝜆ℒ = (𝜆1, Ω1, 𝑁)  and 𝜆ℳ = (𝜆2, Ω2, 𝑁1)

where Ω1 = (𝜁1, ℒ, 𝑁2) and Ω2 = (𝜁2,ℳ,𝑁1) are NSSs. Then their restricted union is symbolized by 

(𝜆1, Ω1, 𝑁2) ⊔ℜ (𝜆2, Ω2, 𝑁1)  and defined as (𝑤, Ω1 ⊔ℜ Ω2,max(𝑁1, 𝑁2))  where Ω1 ⊔ℜ Ω2 = (𝑊, ℒ ⊓

ℳ,max(𝑁1, 𝑁2)) i.e.  

(𝜆1, Ω1, 𝑁2) ⊔ℜ (𝜆2, Ω2, 𝑁1)

= {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)(𝜑) ∨ 𝕋ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑) ∧ 𝕀ℳ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑) ∧ 𝔽ℳ(𝜉)(𝜑)〉, 𝓇ℒ(𝜉)(𝜑)

∨ 𝓇ℳ(𝜉)(𝜑)): 𝜑 ∈ 𝕏}): 𝜉 ∈ ℒ ⊓ ℳ} 

Example 3.24  Consider again 𝜆ℒ, 𝜆ℳ as given in Examples 3.2 and 3.4 respectively. The restricted 

union 𝜆ℒ ⊔ℜ 𝜆ℳ  is given in Table 12. 

𝜆ℒ ⊔ℜ 𝜆ℳ 𝜉1 𝜉2 

𝜑1 (〈0.9,0.4,0.0〉,7) (〈0.6,0.5,0.2〉,4) 

𝜑2 (〈0.7,0.1,0.8〉,5) (〈0.9,0.3,0.8〉,7) 

Table 12: Tabular representation of restricted union of two N8SSs 

Definition 3.25  Let 𝜆ℒ, 𝜆ℳ ∈ NNS (𝕏)  be expressed as 𝜆ℒ = (𝜆1, Ω1, 𝑁)  and 𝜆ℳ = (𝜆2, Ω2, 𝑁1)

where Ω1 = (𝜁1, ℒ, 𝑁2) and Ω2 = (𝜁2,ℳ,𝑁1) are NSSs. Then their extended union is symbolized by 

(𝜆1, Ω1, 𝑁2) ⊔ℰ (𝜆2, Ω2, 𝑁1)  and defined as (𝑤, Ω1 ⊔ℰ Ω2,max(𝑁1, 𝑁2))  where Ω1 ⊔ℰ Ω2 = (𝑊, ℒ ⊔

ℳ,max(𝑁1, 𝑁2)) i.e.  

(𝜆1, Ω1, 𝑁2) ⊔ℰ (𝜆2, Ω2, 𝑁1) = {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)(𝜑) ∨ 𝕋ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑) ∧ 𝕀ℳ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑) ∧ 𝔽ℳ(𝜉)(𝜑)〉, 

𝓇ℒ(𝜉)(𝜑) ∨ 𝓇ℳ(𝜉)(𝜑)): 𝜑 ∈ 𝕏}): 𝜉 ∈ ℒ ⊔ ℳ} 

Example 3.26  Consider again 𝜆ℒ, 𝜆ℳ as given in Examples 3.2 and 3.4 respectively. The extended 

union 𝜆ℒ ⊔ℰ 𝜆ℳ  is given in Table 13.  

𝜆ℒ ⊔ℰ 𝜆ℳ 𝜉1 𝜉2 𝜉3 

𝜑1 (〈0.9,0.4,0.0〉,7) (〈0.6,0.5,0.2〉,4) (〈0.8,0.5,0.1〉,6) 

𝜑2 (〈0.7,0.1,0.8〉,5) (〈0.9,0.3,0.8〉,7) (〈0.5,0.7,0.3〉,3) 

Table 13: Tabular representation of extended union of two N8SSs 
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Theorem 3.27 Let 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏). Then their extended-union 𝜆ℒ ⊔ℰ 𝜆ℳ  is the smallest NNSS containing 

both 𝜆ℒ and 𝜆ℳ.  

Proof. Straight forward.  

Definition 3.28  Let 𝜆ℒ, 𝜆ℳ ∈ NNS (𝕏)  be expressed as 𝜆ℒ = (𝜆1, Ω1, 𝑁)  and 𝜆ℳ = (𝜆2, Ω2, 𝑁1)

where Ω1 = (𝜁1, ℒ, 𝑁2) and Ω2 = (𝜁2,ℳ,𝑁1) are NSSs. Then their restricted intersection is symbolized 

by (𝜆1, Ω1, 𝑁2) ⊓ℜ (𝜆2, Ω2, 𝑁1) and is defined as (𝑦, Ω1 ⊔ℜ Ω2,min(𝑁1, 𝑁2)) where Ω1 ⊓ℜ Ω2 = (𝑌, ℒ ⊓

ℳ,min(𝑁1, 𝑁2)) i.e.  

(𝜆1, Ω1, 𝑁2) ⊓ℜ (𝜆2, Ω2, 𝑁1) = {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)(𝜑) ∧ 𝕋ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑) ∨ 𝕀ℳ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑) ∨ 𝔽ℳ(𝜉)(𝜑)〉, 

𝓇ℒ(𝜉)(𝜑) ∧ 𝓇ℳ(𝜉)(𝜑)): 𝜑 ∈ 𝕏}): 𝜉 ∈ ℒ ⊓ ℳ} 

Example 3.29  Consider again 𝜆ℒ, 𝜆ℳ  as given in Examples 3.2, 3.4 respectively. The restricted 

intersection 𝜆ℒ ⊓ℜ 𝜆ℳ  is given in Table 14. 

𝜆ℒ ⊓ℜ 𝜆ℳ  𝜉1 𝜉2 

𝜑1 (〈0.8,0.5,0.1〉,6) (〈0.5,0.7,0.3〉,3) 

𝜑2 (〈0.6,0.2,0.9〉,4) (〈0.7,0.4,0.8〉,5) 

Table 14: Tabular representation of restricted intersection of two N8SSs    

Theorem 3.30 Let 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏) . Then their restricted-intersection 𝜆ℒ ⊓ℜ 𝜆ℳ  is the largest NNSS 

contained in both 𝜆ℒ and 𝜆ℳ.  

Proof. Straight forward.   

Definition 3.31  Let 𝜆ℒ, 𝜆ℳ ∈ NNS (𝕏)  be expressed as 𝜆ℒ = (𝜆1, Ω1, 𝑁)  and 𝜆ℳ = (𝜆2, Ω2, 𝑁1)

where Ω1 = (𝜁1, ℒ, 𝑁2) and Ω2 = (𝜁2,ℳ,𝑁1) are NSSs. Then their restricted intersection is symbolized 

by (𝜆1, Ω1, 𝑁2) ⊓ℰ (𝜆2, Ω2, 𝑁1)  and defined as (𝑦, Ω1 ⊓ℰ Ω2,min(𝑁1, 𝑁2)) , where Ω1 ⊓ℰ Ω2 = (𝑌, ℒ ⊔

ℳ,min(𝑁1, 𝑁2)) i.e.  

(𝜆1, Ω1, 𝑁2) ⊓ℰ (𝜆2, Ω2, 𝑁1) = {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)(𝜑) ∧ 𝕋ℳ(𝜉)(𝜑), 𝕀ℒ(𝜉)(𝜑) ∨ 𝕀ℳ(𝜉)(𝜑), 𝔽ℒ(𝜉)(𝜑) ∨ 𝔽ℳ(𝜉)(𝜑)〉, 

𝓇ℒ(𝜉)(𝜑) ∧ 𝓇ℳ(𝜉)(𝜑)): 𝜑 ∈ 𝕏}): 𝜉 ∈ ℒ ⊔ ℳ} 

Example 3.32  Consider again 𝜆ℒ, 𝜆ℳ  as given in Examples 3.2, 3.4 respectively. The extended 

intersection 𝜆ℒ ⊓ℰ 𝜆ℳ  is given in Table 15. 

   

𝜆ℒ ⊓ℰ 𝜆ℳ  𝜉1 𝜉2 𝜉3 

𝜑1 (〈0.8,0.5,0.1〉,6) (〈0.5,0.7,0.3〉,3) (〈0.8,0.5,0.1〉,6) 

𝜑2 (〈0.6,0.2,0.9〉,4) (〈0.7,0.4,0.8〉,5) (〈0.5,0.7,0.3〉,3) 

Table 15: Tabular representation of extended intersection of two N8SSs 

For any two NNSS 𝜆ℒ and 𝜆ℳ over same set of points 𝕏 and using the operations defined above, 

we conclude the following proposition: 

Proposition 3.33  Let 𝜆ℒ and 𝜆ℳ be two NNSS 

(1) 𝜆ℒ ⊔ℰ 𝜆ℒ  = 𝜆ℒ 

(2) 𝜆ℒ ⊔ℰ 𝜆ℳ = 𝜆ℳ ⊔ℰ 𝜆ℒ 

(3) 𝜆ℒ ⊓ℛ 𝜆ℒ  = 𝜆ℒ 
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(4) 𝜆ℒ ⊓ℛ 𝜆ℳ = 𝜆ℳ ⊓ℛ 𝜆ℒ 

(5) 𝜆ℒ ⊔ℰ 𝜆ℒ𝜙
 = 𝜆ℒ 

(6) 𝜆ℒ ⊓ℛ 𝜆ℒ𝜙
 = 𝜆ℒ𝜙

 

For any three NNSS 𝜆ℒ , 𝜆ℳ and 𝜆𝒩 over same set of points 𝕏 and using the operations defined 

above, we conclude the following proposition:  

Proposition 3.34  Let 𝜆ℒ , 𝜆ℳ and 𝜆𝒩 be three NNSS 

(1) 𝜆ℒ ⊔ℰ (𝜆ℳ ⊔ℰ 𝜆𝒩) = (𝜆ℒ ⊔ℰ 𝜆ℳ) ⊔ℰ 𝜆𝒩  

(2) 𝜆ℒ ⊓ℛ (𝜆ℳ ⊓ℛ 𝜆𝒩) = (𝜆ℒ ⊓ℛ 𝜆ℳ) ⊓ℛ 𝜆𝒩  

(3) 𝜆ℒ ⊔ℰ (𝜆ℳ ⊓ℛ 𝜆𝒩) = (𝜆ℒ ⊔ℰ 𝜆ℳ) ⊓ℛ (𝜆ℒ ⊔ℰ 𝜆𝒩) 

(4) 𝜆ℒ ⊓ℛ (𝜆ℳ ⊔ℰ 𝜆𝒩) = (𝜆ℒ ⊓ℛ 𝜆ℳ) ⊔ℰ (𝜆ℒ ⊓ℛ 𝜆𝒩) 

Definition 3.35  Let 𝜆ℒ, 𝜆ℳ ∈ NNS (𝕏)  be expressed as 𝜆ℒ = (𝜆1, Ω1, 𝑁)  and 𝜆ℳ = (𝜆2, Ω2, 𝑁1)

where Ω1 = (𝜁1, ℒ, 𝑁2)  and Ω2 = (𝜁2,ℳ,𝑁1)  are NSSs. Then AND Operation symbolized by 

(𝜆1, Ω1, 𝑁2) ∧ (𝜆2, Ω2, 𝑁1)  or shortly 𝜆ℒ ∧ 𝜆ℳ  and is defined as (𝜆1, Ω1, 𝑁2) ∧ (𝜆2, Ω2, 𝑁1) = (𝜆𝒦, ℒ ×

ℳ,min(𝑁1, 𝑁2)), where degree of membership , indeterminacy and non-membership are given as 

follows:  

𝕋𝒦(𝜉𝑖,𝜉𝑗)
(𝜑) = min{𝕋ℒ(𝜉𝑖)

(𝜑), 𝕋ℳ(𝜉𝑗)
(𝜑)}, 

𝕀𝒦(𝜉𝑖,𝜉𝑗)
(𝜑) =

{𝕀ℒ(𝜉𝑖)
(𝜑)+𝕀ℳ(𝜉𝑗)

(𝜑)}

2
,

𝔽𝒦(𝜉𝑖,𝜉𝑗)
(𝜑) = max{𝔽ℒ(𝜉)(𝜑), 𝔽ℳ(𝜉)(𝜑)}, 

𝓇𝒦(𝜉𝑖,𝜉𝑗)
(𝜑) = max{𝓇ℒ(𝜉𝑖)

(𝜑), 𝓇ℳ(𝜉𝑗)
(𝜑)}, ∀𝜉𝑖 ∈ ℒ, 𝜉𝑗 ∈ ℳ 

for all 𝜑 ∈ 𝕏. 

Definition 3.36  Let 𝜆ℒ, 𝜆ℳ ∈NNS(𝕏)  be two NNS be expressed as 𝜆ℒ = (𝜆1, Ω1,𝑁)  and 𝜆ℳ =

(𝜆2, Ω2, 𝑁1) where Ω1 = (𝜁1, ℒ, 𝑁2) and Ω2 = (𝜁2,ℳ,𝑁1) are NSSs. Then OR operation is symbolized 

by (𝜆1, Ω1, 𝑁2) ∨ (𝜆2, Ω2, 𝑁1) or shortly 𝜆ℒ ∨ 𝜆ℳ and is defined as (𝜆1, Ω1, 𝑁2) ∨ (𝜆2, Ω2,𝑁1) = (𝜆𝒦, ℒ ×

ℳ,min(𝑁1, 𝑁2)), where degree of membership ,indeterminacy and non-membership are given as 

follows:  

𝕋ℋ(𝜉𝑖,𝜉𝑗)
(𝜑) = max{𝕋ℒ(𝜉𝑖)

(𝜑), 𝕋ℳ(𝜉𝑗)
(𝜑)}, 

𝕀ℋ(𝜉𝑖,𝜉𝑗)
(𝜑) =

{𝕀ℒ(𝜉𝑖)
(𝜑)+𝕀ℳ(𝜉𝑗)(𝜑)}

2
, 

𝔽ℋ(𝜉𝑖,𝜉𝑗)
(𝜑) = min{𝔽ℒ(𝜉)(𝜑), 𝔽ℳ(𝜉)(𝜑)}, 

𝓇ℋ(𝜉𝑖,𝜉𝑗)
(𝜑) = min{𝓇ℒ(𝜉𝑖)

(𝜑), 𝓇ℳ(𝜉𝑗)
(𝜑)}, ∀𝜉𝑖 ∈ ℒ, 𝜉𝑗 ∈ ℳ 

for all 𝜑 ∈ 𝕏. 

Definition 3.37  The Truth-favorite of an NNSS 𝜆ℒ is denoted by 𝜆ℳ =△̂ 𝜆ℒ and is defined by  

𝕋ℒ(𝜉)(𝜑) = min{𝕋ℒ(𝜉)(𝜑) + 𝕀ℒ(𝜉)(𝜑),1}

𝕀ℒ(𝜉)(𝜑) = 0 

𝔽ℒ(𝜉)(𝜑) = 𝔽ℳ(𝜉)(𝜑) 

𝓇ℒ(𝜉)(𝜑) = 𝓇ℳ(𝜉)(𝜑) 

for all 𝜑 ∈ 𝕏, 𝜉 ∈ ℒ.  
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Definition 3.38  The Falsity-favorite of an NNSS 𝜆ℒ is denoted by 𝜆ℳ =▽̂ 𝜆ℒ  and is defined by 

𝕋ℒ(𝜉)(𝜑) = 𝕋ℳ(𝜉)(𝜑) 

𝕀ℒ(𝜉)(𝜑) = 0 

𝔽ℒ(𝜉)(𝜑) = min{𝔽ℒ(𝜉)(𝜑) + 𝕀ℒ(𝜉)(𝜑),1} 

𝓇ℒ(𝜉)(𝜑) = 𝓇ℳ(𝜉)(𝜑) 

for all 𝜑 ∈ 𝕏, 𝜉 ∈ ℒ.  

Proposition 3.39 Let 𝜆ℒ be an NNSS, then 

1. △̂△̂ 𝜆ℒ =△̂ 𝜆ℒ. 

2. ▽̂▽̂ 𝜆ℒ =▽̂ 𝜆ℒ.  

Proof. Follows immediately from definitions.  

Definition 3.40  Let 𝜆ℒ ∈NNS(𝕏). Then scalar multiplication of 𝜆ℒ with 𝛼 is symbolized by 𝜆ℒ ⊗ 𝛼

and is defined as  

𝜆ℒ ⊗ 𝛼 = {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)(𝜑) ⊗ 𝛼, 𝕀ℒ(𝜉)(𝜑) ⊗ 𝛼, 𝔽ℒ(𝜉)(𝜑) ⊗ 𝛼〉,𝓇ℒ(𝜉)(𝜑) ⊗ 𝛼): 𝜑 ∈ 𝕏}): 

𝜉 ∈ 𝐸} 

where 𝕋ℒ(𝜉)⊗𝛼(𝜑), 𝕀ℒ(𝜉)⊗𝛼(𝜑)𝔽ℒ(𝜉)⊗𝛼(𝜑) and 𝓇ℒ(𝜉)(𝜑) ⊗ 𝛼 are defined by  

𝕋ℒ(𝜉)(𝜑) ⊗ 𝛼 = min{𝕋ℒ(𝜉)(𝜑) × 𝛼, 1}

𝕀ℒ(𝜉)(𝜑) ⊗ 𝛼 = min{𝕀ℒ(𝜉)(𝜑) × 𝛼, 1}

𝔽ℒ(𝜉)(𝜑) ⊗ 𝛼 = min{𝔽ℒ(𝜉)(𝜑) × 𝛼, 1} 

𝓇ℒ(𝜉)(𝜑) ⊗ 𝛼 = (
𝓇ℒ(𝜉)(𝜑) × 𝛼, 𝑖𝑓0 ≤ 𝓇ℒ(𝜉)(𝜑) × 𝛼 < 𝑁 − 1,

𝑁 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition 3.41  Let 𝜆ℒ ∈NNS(𝕏). Then scalar division of 𝜆ℒ  by 𝛼 is symbolized by 𝜆ℒ/̃𝛼 and is 

defined as  

𝜆ℒ/̃𝛼 = {(𝜉, {(〈𝜑, 𝕋ℒ(𝜉)(𝜑)/̃𝛼, 𝕀ℒ(𝜉)(𝜑)/̃𝛼, 𝔽ℒ(𝜉)(𝜑)/̃𝛼〉, 𝓇ℒ(𝜉)(𝜑)/̃𝛼): 𝜑 ∈ 𝕏}): 𝜉 ∈ 𝐸}

where 𝕋ℒ(𝜉)/̃𝛼(𝜑), 𝕀ℒ(𝜉)/̃𝛼(𝜑)𝔽ℒ(𝜉)/̃𝛼(𝜑) and 𝓇ℒ(𝜉)(𝜑)/̃𝛼 are defined by  

𝕋ℒ(𝜉)(𝜑)/̃𝛼 = min{𝕋ℒ(𝜉)(𝜑)/𝛼, 1}

𝕀ℒ(𝜉)(𝜑)/̃𝛼 = min{𝕀ℒ(𝜉)(𝜑)/𝛼, 1}

𝔽ℒ(𝜉)(𝜑)/̃𝛼 = min{𝔽ℒ(𝜉)(𝜑)/𝛼, 1} 

𝓇ℒ(𝜉)(𝜑)/̃𝛼 = (
𝓇ℒ(𝜉)(𝜑)/𝛼, 𝑖𝑓0 ≤ 𝓇ℒ(𝜉)(𝜑)/𝛼 < 𝑁 − 1,

𝑁 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝓇ℒ(𝜉)(𝜑)/̃𝛼 = {
𝓇ℒ(𝜉)(𝜑)/𝛼, 𝑖𝑓0 ≤ 𝓇ℒ(𝜉)(𝜑)/𝛼 < 𝑁 − 1,

𝑁 − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4  Relations On Neutrosophic N-Soft Sets 

Definition 4.1  Let 𝜆ℒ  and 𝜆ℳ  be two NNSSs defined over the universe (𝕏, ℒ)  and (𝕏,ℳ)

respectively.  Neutrosophic N-soft relation ℜ̆ is defined as ℜ̆(𝜉𝑖, 𝜉𝑗) = 𝜆ℒ(𝜉𝑖) ⊓ℛ 𝜆ℳ(𝜉𝑗), ∀𝜉𝑖 ∈ ℒ and 

∀𝜉𝑗 ∈ ℳ, where  
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ℜ̆:𝒩 → P(𝕏) 

is an NNSS over (𝕏,𝒩), where 𝒩 ⊑ ℒ × ℳ.  

Definition 4.2  The composition ⋄ of two neutrosophic N-soft relations ℜ̆1 and ℜ̆2 is defined by  

(ℜ̆1 ⋄ ℜ̆2)(𝑙, 𝑛) = ℜ̆1(𝑙,𝑚) ⊓ ℜ̆2(𝑚, 𝑛) 

where ℜ̆1  is neutrosophic N-soft relations from 𝜆ℒ  to 𝜆ℳ  over the universe (𝕏, ℒ)  and (𝕏,ℳ)

respectively and ℜ̆2 is neutrosophic N-soft relations from 𝜆ℳ to 𝜆𝒩 over the universe (𝕏,ℳ) and 

(𝕏,𝒩) respectively.   

Definition 4.3  Let ℜ̆1  is neutrosophic N-soft relation over the universe (𝕏, ℒ)  and ℜ̆2  is 

neutrosophic N-soft relation over the universe (𝕏,ℳ). The union and intersection of ℜ̆1  and ℜ̆2

defined as below  

(ℜ̆1 ⊔ ℜ̆2)(𝑙,𝑚) = max{ℜ̆1(𝑙,𝑚), ℜ̆2(𝑙,𝑚)}

(ℜ̆1 ⊓ ℜ̆2)(𝑙,𝑚) = min{ℜ̆1(𝑙,𝑚), ℜ̆2(𝑙, 𝑚)} 

where ℜ̆1: ℒ × ℳ → ℙ(𝕏) and ℜ̆2: ℒ × ℳ → ℙ(𝕏).  

Definition 4.4  Let 𝜆ℒ in (𝕏, ℒ) be a neutrosophic N-soft set. Let ℜ̆ for 𝜆ℒ to 𝜆ℳ. Then max-min-

max composition of neutrosophic N-soft set with 𝜆ℒ is another neutrosophic N-soft set 𝜆ℳ of (𝕏,ℳ)

which is denoted by ℜ̆ ⋄ 𝜆ℒ. The membership function, indeterminate function, non-membership 

function and grading function of 𝜆ℳ are defined, respectively, as  

𝕋ℜ̆⋄𝜆ℒ
(𝑚) = max

𝑙
{min(𝕋ℒ(𝑙), 𝕋ℒ(𝑙,𝑚))},

𝕀ℜ̆⋄𝜆ℒ
(𝑚) = min

𝑙
{max(𝕀ℒ(𝑙), 𝕀ℒ(𝑙,𝑚))},

𝔽ℜ̆⋄𝜆ℒ
(𝑚) = min

𝑙
{max(𝔽ℒ(𝑙), 𝔽ℒ(𝑙,𝑚))},

𝓇ℜ̆⋄𝜆ℒ
(𝑚) = max

𝑙
{min(𝓇ℒ(𝑙), 𝓇ℒ(𝑙,𝑚))},

∀𝑙 ∈ ℒ,𝑚 ∈ ℳ,𝓇ℒ ∈ 𝒢. 

Definition 4.5   Let 𝜆ℒ be a neutrosophic N-soft set. Then the choice function of 𝜆ℒ is defined as  

𝐶(𝜆ℒ) = 𝓇ℒ + 𝕋ℒ − 𝕀ℒ − 𝔽ℒ  

Definition 4.6  Let 𝜆ℒ and 𝜆ℳ be two neutrosophic N-soft sets. Then the score function of 𝜆ℒ and 

𝜆ℳ is defined as  

𝒮𝐿𝑀 = 𝐶(𝜆ℒ) − 𝐶(𝜆ℳ)   

Definition 4.7  Let 𝜆ℒ be a neutrosophic N-soft set. We define score function for 𝜆ℒ as  

𝒮𝐿 = 𝓇𝑖 + 𝕋𝑖 − 𝕀𝑖𝔽𝑖 

5  Application of Neutrosophic N-Soft Set to Medical Diagnosis 

In this Section, we discuss the execution of N-soft set and neutrosophic set in medical diagnosis . In 

some previous studies of the neutrosophic set and neutrosophic soft set, there are many examples of 

medical diagnosis but all of them have lack of parameterized evaluation characterization. First we 

propose Algorithm 1 as given below. 

Algorithm 1      

Step 1: Input a set 𝔓 of patients, a set 𝒮 of symptoms as parameter set and a set 𝔇 of diseases . 

Step 2: Construct a relation 𝔏(𝔓 ↪ 𝒮) between the patients and symptoms.  

Step 3: Construct a relation a relation 𝔐(𝒮 ↪ 𝔇) between the symptoms and the diseases.  

Step 4: Compute the composition relation 𝔑(𝔓 ↪ 𝔇) the relation of patients and diseases by using 

Definition 4.4.  
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Step 5: Obtain the choice function of 𝔑 by using Definition 4.5.  

Step 6: Choose the highest choice value of patient corresponding to disease gives the higher 

possibility of the patient affected with the respective disease. 

Flow chart portrayal of Algorithm 1 is given in Figure 1: 

Figure  1: Flow chart representation of Algorithm 1  

Now we demonstrate how neutrosophic N-soft set (NNSS) can be efficiently employed in multi-

criteria group decision making (MCGDM). First of all, we propose an extension of TOPSIS to NNSS. 

In this study, we choose TOPSIS because our goal is to solve a medical diagnosis decision making 

problem. Since medical diagnosis involves similarities (in symptoms) and TOPSIS method is most 

appropriate method for handling such problems. A detailed study of TOPSIS may be found in [26]. 

The procedural steps of Neutrosophic N-soft set TOPSIS Method to examine critical situation of each 

patient is given in Algorithm 2. 

Algorithm 2 (Neutrosophic N-soft set TOPSIS Method) 

Step 1: Constructing weighed parameter matrix ℋ by using ranking values obtained in Step 4 of 

Algorithm 1 composition relation 𝔑(𝔓 ↪ 𝔇) and relates it with linguistic ratings from Table 26. 

ℋ =

[
 
 
 
 
 
 
𝓇11 𝓇12 ⋯ 𝓇1𝑛

𝓇21 𝓇12 ⋯ 𝓇2𝑛

⋮ ⋮ ⋮
𝓇𝑖1 𝓇𝑖2 ⋯ 𝓇𝑖𝑛

⋮ ⋮ ⋮
𝓇𝑚1 𝓇𝑚2 ⋯ 𝓇𝑚𝑛

]
 
 
 
 
 
 

= [𝓇𝑖𝑗]𝑚×𝑛 

Step 2: Creating normalized decision matrix ℬ. Throughout from now, we shall use 

𝐿𝑛 = {1,2,3,⋯ , 𝑛} ∀𝑛 ∈ 𝑁  

𝑏𝑖𝑗 =
𝓇𝑖𝑗

√∑𝑚
𝑘=1𝓇𝑘𝑗

2
(1) 



Neutrosophic Sets and Systems, Vol. 32, 2020      161

M. Riaz, K. Naeem, I. Zareef and D. Afzal, Neutrosophic N-Soft Sets with TOPSIS method  

ℬ =

[
 
 
 
 
 
 
𝑏11 𝑏12 ⋯ 𝑏1𝑛

𝑏21 𝑏12 ⋯ 𝑏2𝑛

⋮ ⋮ ⋮
𝑏𝑖1 𝑏𝑖2 ⋯ 𝑏𝑖𝑛

⋮ ⋮ ⋮
𝑏𝑚1 𝑏𝑚2 ⋯ 𝑏𝑚𝑛

]
 
 
 
 
 
 

= [𝑏𝑖𝑗]𝑚×𝑛 

Step 3: Creating weighted vector 𝐖 = {𝐖1,𝐖2,𝐖3,⋯ ,𝐖𝑛} by using the expression  

𝐖𝑗 =
𝐰𝑗

∑𝑚
𝑘=1𝐰𝑘

,𝐰𝑘 =
1

𝑚
∑𝑚

𝑖=1 𝑏𝑖𝑗  (2) 

Step 4: Constructing weighted decision matrix 𝜇.  

𝜇 =

[
 
 
 
 
 
 
𝜇11 𝜇12 ⋯ 𝜇1𝑛

𝜇21 𝜇12 ⋯ 𝜇2𝑛

⋮ ⋮ ⋮
𝜇𝑖1 𝜇𝑖2 ⋯ 𝜇𝑖𝑛

⋮ ⋮ ⋮
𝜇𝑚1 𝜇𝑚2 ⋯ 𝜇𝑚𝑛

]
 
 
 
 
 
 

= [𝜇𝑖𝑗]𝑚×𝑛 

where 𝜇𝑖𝑗 = 𝐖𝑗𝑏𝑖𝑗  (3) 

Step 5: Finding positive ideal solution (PIS) and negative ideal solution (NIS) by using the Equations  

𝑃𝐼𝑆 = {𝜇1
+, 𝜇2

+, 𝜇3
+,⋯ , 𝜇𝑗

+ ⋯ , 𝜇𝑛
+} = {max(𝜇𝑖𝑗): 𝑖 ∈ 𝐿𝑛} (4) 

𝑁𝐼𝑆 = {𝜇1
−, 𝜇2

−, 𝜇3
−,⋯ , 𝜇𝑗

− ⋯ , 𝜇𝑛
−} = {min(𝜇𝑖𝑗): 𝑖 ∈ 𝐿𝑛} (5) 

Step 6: Calculate separation measurements of PIS (𝒮𝑖
+) and NIS (𝒮𝑖

−) for each parameter by using the 

equations  

𝒮𝑖
+ = √∑𝑛

𝑗=1 (𝜇𝑖𝑗 − 𝜇𝑗
+)2,    ∀𝑖 ∈ 𝐿𝑚 (6) 

and  

𝒮𝑖
− = √∑𝑛

𝑗=1 (𝜇𝑖𝑗 − 𝜇𝑗
−)2,    ∀𝑖 ∈ 𝐿𝑚 (7) 

Step 7: Calculating of relative closeness of alternative to the ideal solution by using the equation  

𝒞𝑖
+ =

𝒮𝑖
−

𝒮𝑖
−+𝒮𝑖

+ ,    0 ≤ 𝒞𝑖
+ ≤ 1,   ∀𝑖 ∈ 𝐿𝑚 (8) 

Step 8: Ranking the preference order. 

Flow chart portrayal of neutrosophic N-soft set TOPSIS method is shown in Figure 2. 
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Figure 2: Flow chart of neutrosophic N-soft set TOPSIS method 

   

5.1  Numerical Example 

Now we employ the above Algorithm 1 to find the decision factor about the following top four 

deadliest diseases in the world. Due to the following risk factors, these diseases progress slowly. Here 

is some detail about these diseases: 

𝐃𝟏: Coronary artery disease (CAD) 

CAD occurs when the vessels that transfer blood towards heart become narrowed. CAD leads to 

heart failure, arrhythmias and chest pain. Risk factors for CAD are   

High blood 

pressure 

High cholesterol Smoking 

Family history 

of CAD 

Diabetes Obesity 

Table 16: Risk factors for CAD 

𝐃𝟐: Stroke 

This fatal disease occurs when some artery is in brain blocked or leaks. The risk factors for Stroke are:   

High blood 

pressure 

Being female Smoking 

Family history 

of stroke 

Being American Being African 

Table 17: Risk factors for Stroke  

𝐃𝟑: Lower respiratory infections (LRI) 

This disease occurs due to tuberculosis, pneumonia, influenza, flu, or bronchitis. Risk factors for LRI 

contain 
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Poor air quality Asthma Smoking 

Weak immune 

system 

HIV Crowded child-care 

settings 

Table 18: Risk factors for LRI 

𝐃𝟒: Chronic obstructive pulmonary disease (COPD) 

This disease is a long-term, progressive lung disease that makes breathing difficult. Risk factors for 

COPD are   

Family history Lungs irritation 

History of respiratory infections Smoking 

Table 19: Risk factors for COPD 

𝐃𝟓: Trachea, bronchus and lungs cancers 

Respiratory cancers incorporate diseases of the bronchus, larynx, lungs and trachea. The risk factors 

for Trachea, bronchus and lungs cancers involve 

Use of coal for 

cooking 

Tobacco 

usage 

Poor air quality 

Family history of 

disease 

Smoking Diesel fumes 

Table 20: Risk factors for Trachea, bronchus and lungs cancers 

Core in certain sense is the most basic part occurring in the considered knowledge. Core can be 

translated as the arrangement of most trademark some portion of knowledge, which cannot be 

abstained from when decreasing the data. The core risk factor of all diseases discussed above is 

"smoking". For computational purpose, let's decide the grading values depending upon the degree 

of membership function as in Table 21: 

Degree of membership 

function 

Grading values 

𝕋 = 0 0 

0 < 𝕋 ≤ 0.2 1 

0.2 < 𝕋 ≤ 0.4 2 

0.4 < 𝕋 ≤ 0.6 3 

0.6 < 𝕋 ≤ 0.8 4 

0.8 < 𝕋 ≤ 1.0 5 

Table 21: Ranking scale   

Table 22 yields relation between symptoms and patients:   
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𝔏 Headache(𝔰1) Shortness of breath(𝔰2) Angina(𝔰3) 

𝔭1 (〈0.7,0.2,0.5〉,4) (〈0.6,0.3,0.4〉,3) (〈0.4,0.6,0.5〉,2) 

𝔭2 (〈0.9,0.3,0.1〉,5) (〈0.7,0.4,0.3〉,4) (〈0.8,0.5,0.2〉,4) 

𝔭3 (〈0.6,0.6,0.4〉,3) (〈0.5,0.5,0.8〉,3) (〈0.2,0.4,0.8〉,1) 

𝔭4 (〈0.2,0.5,0.8〉,1) (〈0.3,0.1,0.7〉,2) (〈0.7,0.1,0.3〉,4) 

Table 22: Relation between symptoms and patients 

The relation between the symptoms and the diseases is given in Table 23: 

   

𝔐 𝔇1 𝔇2 𝔇3 𝔇4 

Headache(𝔰1) (〈0.8,0.4,0.2〉,4) (〈0.9,0.2,0.1〉,5) (〈0.6,0.3,0.4〉,3) (〈0.7,0.5,0.3〉,4) 

Shortness of 

breath(𝔰2) 

(〈0.1,0.8,0.9〉,1) (〈0.2,0.9,0.8〉,1) (〈0.5,0.7,0.5〉,3) (〈0.3,0.7,0.6〉,2) 

Angina(𝔰3) (〈0.5,0.7,0.5〉,3) (〈0.4,0.6,0.6〉,2) (〈0.3,0.5,0.7〉,2) (〈0.9,0.1,0.1〉,5) 

Table 23: Relation between the symptoms and the diseases 

The composition relation of patients and diseases in Table 24: 

𝔑 𝔇1 𝔇2 𝔇3 𝔇4 

𝔭1 (〈0.7,0.4,0.5〉,4) (〈0.7,0.2,0.5〉,4) (〈0.6,0.3,0.5〉,3) (〈0.7,0.5,0.5〉,4) 

𝔭2 (〈0.8,0.4,0.2〉,4) (〈0.9,0.3,0.1〉,5) (〈0.6,0.3,0.4〉,3) (〈0.7,0.5,0.2〉,4) 

𝔭3 (〈0.6,0.6,0.4〉,3) (〈0.6,0.6,0.4〉,3) (〈0.6,0.6,0.4〉,3) (〈0.60.4,0.4〉,3) 

𝔭4 (〈0.5,0.5,0.5〉,3) (〈0.4,0.5,0.6〉,2) (〈0.3,0.5,0.7〉,2) (〈0.7,0.5,0.3〉,4) 

Table 24: Composition relation of patients and diseases 

Table 25 gives choice values of the relation 𝔑: 

   

𝔑 𝔇1 𝔇2 𝔇3 𝔇4 

𝔭1 3.8 4 2.8 3.7 

𝔭2 4.2 5.5 2.9 4 

𝔭3 2.6 2.6 2.6 2.8 

𝔭4 2.5 1.3 1.1 3.9 

Table 25: Choice values of relation 𝔑 

From Table 25, we conclude that the patients 𝔭1 and 𝔭2 are likely to be suffering from 𝔇2 whereas 

𝔭3 and 𝔭4 are suffering from 𝔇4. 

In order to examine the intensity level of the disease of the patients, we use neutrosophic N-soft 

TOPSIS method which is demonstrated in Algorithm 2. First, we decide the grading values as a 

function of linguistic terms as Table 26: 
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Linguistic Terms Grading Values 

Undetermined (U) 0 

Very Stable (VS) 1 

Stable (S) 2 

Grave (G) 3 

Critical (C) 4 

Very Critical (VC) 5 

Table 26: Linguistic terms for evaluation of parameters 

Now we construct weighted parameter matrix by using Step 9 and Table 26 as  

ℋ =

[
 
 
 
 
4 4 3
4 5 3
3 3 3
3 2 2

]
 
 
 
 

=

[
 
 
 
 
𝐶 𝐶 𝐺
𝐶 𝑉𝐶 𝐺
𝐺 𝐺 𝐺
𝐺 𝑆 𝑆

]
 
 
 
 

Creating normalized decision matrix ℬ by using Equation 1  

ℬ =

[
 
 
 
 
0.57 0.54 0.54 0.53
0.57 0.68 0.54 0.53
0.43 0.41 0.54 0.40
0.43 0.27 0.36 0.53

]
 
 
 
 

Now by using Equation 2 construct weight vector  

𝐖 = {𝐖1,𝐖2,𝐖3,𝐖4} = {0.58,0.14,0.14,0.14}

By using Equation 3 the weighted decision matrix 𝜇 is  

𝜇 =

[
 
 
 
 
0.33 0.07 0.07 0.07
0.33 0.09 0.07 0.07
0.25 0.06 0.07 0.06
0.25 0.04 0.05 0.07

]
 
 
 
 

The positive ideal solution (PIS) and negative ideal solution (NIS) by using the Equations 4 and 5 as  

𝑃𝐼𝑆 = {0.33,0.09,0.07,0.07}

𝑁𝐼𝑆 = {0.25,0.04,0.05,0.06} 

The separation measurements of PIS and NIS for each parameter by using the Equations 6 and 7 are  

𝒮1
+ = 0.11 

𝒮2
+ = 0.06 

𝒮3
+ = 0.02 

𝒮4
+ = 0.01 

𝒮1
− = 0.11 

𝒮2
− = 0.06 

𝒮3
− = 0.03 

𝒮4
− = 0.02 

The relative closeness of alternatives to the ideal solution by using Equation 8 are  

𝒞1
+ = 0.5

𝒞2
+ = 0.5 



Neutrosophic Sets and Systems, Vol. 32, 2020      166

M. Riaz, K. Naeem, I. Zareef and D. Afzal, Neutrosophic N-Soft Sets with TOPSIS method  

𝒞3
+ = 0.6

𝒞4
+ = 0.7 

Ranking the preference order is  

𝒞4
+ ≥ 𝒞3

+ ≥ 𝒞2
+ ≥ 𝒞1

+ 

which indicates that condition of patient 𝔭4  is most critical. The pictorial representation of the 

rankings of the patients is demonstrated with the assistance of a chart as given in Figure 3.  

Figure 3: Ranking of patients w.r.t. intensity level of disease 

5. Conclusion 

The purpose of this work is to lay the foundation of theory of neutrosophic N-soft set as a hybrid 

model of neutrosophic sets and N-soft sets. We established some basic operations on neutrosophic 

N-soft sets along with their fundamental properties. We introduced the notions of NNS-subset, null-

NNS, absolute-NNS, complements of NNS, truth-favorite, falsity-favorite, relations on NNS, 

composition of NNSS and score function of NNS. We explained these concepts with the help of 

illustrations. We presented a novel application of multi-attribute decision-making (MADM) based on 

neutrosophic N-soft set by using Algorithm 1. We proposed neutrosophic N-soft sets TOPSIS method 

as demonstrated in Algorithm 2 for MADM in medical diagnosis. We defined separation 

measurements of positive ideal solution and negative ideal solution to compute a relative closeness 

to identify the optimal alternative. Lastly, a numerical example is given to illustrate the developed 

method for medical diagnosis.  

This may be the starting point for neutrosophic N-soft set mathematical concepts and information 

structures that are based on neutrosophic set and N-soft set theoretic operations. We have studied a 

few concepts only, it will be necessary to carry out more theoretical research to recognize a general 

framework for the practical applications. The proposed model of neutrosophic N-soft set can be 

elaborated with new research topics such as image processing, expert systems, soft computing 

techniques, fusion rules, cognitive maps, graph theory and decision-making of real world problems. 
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We hope that this study will prove a ground-breaking and will open new doors for the vibrant 

researchers in this field. 
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1 Introduction
The concept of fuzzy sets was introduced by Zadeh [16]. consequent to the introduction of fuzzy sets, fuzzy
logic has been applied in many real life situations to handle uncertainty. Chang [7] introduced the concept
of fuzzy topological spaces. There are several kinds of fuzzy set extensions such as intuitionistic fuzzy set,
interval-valued fuzzy sets, etc. After the introduction of intuitionistic fuzzy sets and its topological spaces
by Atanassov [6] and Coker [8], the concept of imprecise data called neutrosophic sets was introduced by
Smarandache [9]. The concept of neutrosophic topological space was introduced by Salama [15]. Later
R.Narmada Devi [10,11,12,13,14] introduced the concepts of intuitionistic fuzzy Gδ sets, intuitionistic fuzzy
exterior spaces and neutrosophic complex topological spaces. Moreover, the neutrosophic theory plays a vi-
ral role in all fields of branches like medial diagnosis [1,2,5], multiple criteria group decision making [3,4],
etc. In this paper, the concepts of neutrosophic τ -structure ring spaces, neutrosophic Gδ rings, neutrosophic
first category rings, neutrosophic τ -structure ring GδT1/2 spaces and neutrosophic τ -structure ring exterior B
spaces and neutrosophic τ -structure ring exterior V spaces are introduced. Further, neutrosophic τ -structure
ring continuous (resp. open, hardly open) functions and somewhat neutrosophic τ -structure ring continuous
functions are presented. Some interesting properties among of functions along with the spaces are discussed
and necessary examples are provided.

2 Preliminiaries
We need the following basic definitions for our study.
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Definition 2.1. [9] LetX be a nonempty set. A neutrosophic setA inX is defined as an object of the formA =
{〈x, TA(x), IA(x), FA(x)〉 : x ∈ X} such that TA, IA, FA : X → [0, 1]. and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.2. [9] Let A = 〈x, TA(x), IA(x), FA(x)〉 and B = 〈x, TB(x), IB(x), FB(x)〉 be any two neutro-
sophic sets in X . Then

(i) A∪B = 〈x, TA∪B(x), IA∪B(x), FA∪B(x)〉 where TA∪B(x) = TA(x)∨ TB(x), IA∪B(x) = IA(x)∨ IB(x)
and FA∪B(x) = FA(x) ∧ FB(x).

(ii) A∩B = 〈x, TA∩B(x), IA∩B(x), FA∩B(x)〉 where TA∩B(x) = TA(x)∧ TB(x), IA∩B(x) = IA(x)∧ IB(x)
and FA∩B(x) = FA(x) ∨ FB(x).

(iii) A ⊆ B if TA(x) ≤ TB(x), IA(x) ≤ IB(x) and FA(x) ≥ FB(x), for all x ∈ X .

(iv) the complement of A is defined as C(A) = 〈x, TC(A)(x), IC(A)(x), FC(A)(x)〉 where TC(A)(x) = 1 −
TA(x), IC(A)(x) = 1− IA(x) andFC(A)(x) = 1− FA(x).

(v) 0N = {〈x, 0, 0, 1〉 : x ∈ X} and 1N = {〈x, 1, 1, 0〉 : x ∈ X}

Definition 2.3. [10,11] Let (X,T ) be an intuitionistic fuzzy topological space. Let A = 〈x, µA, γA〉 be an
intuitionistic fuzzy set on an intuitionistic fuzzy topological space (X,T ). Then A is said be an intuitionistic
fuzzy Gδ set if A =

⋂∞
i=1Ai, where Ai = 〈x, µAi

, γAi
〉 is an intuitionistic fuzzy open set in an intuitionistic

fuzzy topological space (X,T ). The complement of an intuitionistic fuzzy Gδ set is said to be an intuitionistic
fuzzy Fσ set.

Definition 2.4. [12,13] Let A = 〈µA, γA〉 be an intuitionistic fuzzy set on an intuitionistic fuzzy topological
space (X, τ). An intuitionistic fuzzy exterior of A is defines as follows: if IFExt(A) = IF int(A)

Definition 2.5. [12,13] Let R be a ring. An intuitionistic fuzzy set A = 〈x, µA, γA〉 in R is called an in-
tuitionistic fuzzy ring on R if it satisfies the following conditions on the membership and nonmembership
values:

(i) µA(x+ y) ≥ µA(x) ∧ µA(y),

(ii) µA(xy) ≥ µA(x) ∧ µA(y),

(iii) γA(x+ y) ≤ γA(x) ∨ γA(y),

(iv) γA(xy) ≤ µA(x) ∨ γA(y),

for all x, y ∈ R.

3 Properties of neutrosophic τ -Structure Ring Exterior B Spaces
Definition 3.1. LetR be a ring. A neutrosophic setA = 〈x, TA(x), IA(x), FA(x)〉 inR is called a neutrosophic
ring on R if it satisfies the following conditions:

(i) TA(x+ y) ≥ TA(x) ∧ TA(y) and TA(xy) ≥ TA(x) ∧ TA(y)

(ii) IA(x+ y) ≥ IA(x) ∧ IA(y) and IA(xy) ≥ IA(x) ∧ IA(y)
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(iii) FA(x+ y) ≤ FA(x) ∨ FA(y) and FA(xy) ≤ FA(x) ∨ FA(y), for all x, y ∈ R.

Definition 3.2. Let R be a ring. A family S of a neutrosophic rings in R is said to be neutrosophic τ -structure
ring on R if it satisfies the following conditions:

(i) 0N , 1N ∈ S .

(ii) G1 ∩G2 ∈ S for any G1, G2 ∈ S .

(iii) ∪Gi ∈ S for arbitrary family {Gi | i ∈ I} ⊆ S .

The ordered pair (R,S ) is called a neutrosophic τ -structure ring space. Every member of S is called a
neutrosophic τ -open ring in (R,S ). The complement C(A) of a neutrosophic τ -open ring A is a neutrosophic
τ -closed ring in (R,S ).

Example 3.1. Let R = {0, 1} be a set of integers module 2 with two binary operations ’+’ and ’.’ are specified
by the following tables:

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

Then (R,+, ·) is a ring. Define neutrosophic rings B and D on R as follows: TB(0) = 0.5, TB(1) =
0.7, IB(0) = 0.5, IB(1) = 0.7, FB(0) = 0.3, FB(1) = 0.2, TD(0) = 0.3, TD(1) = 0.4, ID(0) = 0.3, ID(1) =
0.4, FD(0) = 0.5, FD(1) = 0.6. Then S = {0N , B,D, 1N} is a neutrosophic τ -structure ring on R. Thus the
pair (R,S ) is a neutrosophic τ - structure ring space.

Notation 3.1. Let (R,S ) be any neutrosophic τ -structure ring space. Then NO(R) ( resp. NC(R) ) denotes
the family of all neutrosophic τ -open( resp. closed ) rings of (R,S ).

Definition 3.3. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be a neutrosophic ring in R.
Then the neutrosophic ring interior and neutrosophic ring closure A are defined and denoted as NFRint(A) =
∪{B | B ∈ NO(R) and B ⊆ A} and NFRcl(A) = ∩{B | B ∈ NC(R) and A ⊆ B respectively.

Remark 3.1. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be any neutrosophic ring in R.
Then the following statements hold:

(i) NFRcl(A) = A if and only if A is a neutrosophic τ -closed ring.

(ii) NFRint(A) = A if and only if A is a neutrosophic τ -open ring.

(iii) NFRint(A) ⊆ A ⊆ NFRcl(A).

(iv) NFRint(1N) = 1N and NFRint(0N) = 0N .

(v) NFRcl(1N) = 1N and NFRcl(0N) = 0N .

(vi) NFRcl(C(A)) = C(NFRint(A)) and NFRint(C(A)) = C(NFRcl(A)).

(vii) ∪∞i=1NFRcl(Ai) ⊆ NFRcl(∪∞i=1Ai).

(viii) ∩ni=1NFRcl(Ai) = NFRcl(∪ni=1Ai).
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(ix) ∩∞i=1NFRcl(Ai) ⊆ NFRcl(∪∞i=1Ai).

(x) ∪∞i=1NFRint(Ai) ⊆ NFRint(∪∞i=1Ai).

Definition 3.4. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be a neutrosophic ring in R.
Then NFRint(C(A)) is called a neutrosophic ring exterior of A and is denoted by NFRExt(A).

Proposition 3.1. Let (R,S ) be any neutrosophic τ -structure ring space. LetA andB be any two neutrosophic
rings in R. Then the following statements hold:

(i) NFRExt(A) ⊆ C(A).

(ii) NFRExt(A) = C(NFRcl(A)).

(iii) NFRExt(NFRExt(A)) = NFRint(NFRcl(A)).

(iv) If A ⊆ B then NFRExt(A) ⊇ NFRExt(B).

(v) NFRExt(1N) = 0N and NFRExt(0N) = 1N .

(vi) NFRExt(A ∪B) = NFRExt(A) ∩NFRExt(B).

Definition 3.5. Let (R,S ) be a neutrosophic τ -structure ring space. Let A be any neutrosophic ring in R.
Then A is said be to a neutrosophic Gδ ring in (R,S ) if A =

⋂∞
i=1Ai, where Ai = 〈x, TAi

, IAi
, FAi
〉 is a

neutrosophic τ -open ring in (R,S ). The complement of a neutrosophic Gδ ring is a neutrosophic Fσ ring in
(R,S ).

Definition 3.6. Let (R,S ) be a neutrosophic τ -structure ring space. Let A be any neutrosophic ring in R.
Then A is said be to a

(i) neutrosophic dense ring if there exists no neutrosophic τ -closed ring B in (R,S ) such that A ⊂ B ⊂
1N .

(ii) neutrosophic nowhere dense ring if there exists no neutrosophic τ -open ring B in (R,S ) such that
B ⊂ NFRcl(A). That is, NFRint(NFRcl(A)) = 0N .

Definition 3.7. Let (R,S ) be any neutrosophic τ -structure ring space. Let A be any neutrosophic fuzzy
ring in R. Then A is said be to a neutrosophic first category ring in (R,S ) if A = ∪∞i=1Ai where Ai’s
are neutrosophic nowhere dense rings in (R,S ). The complement of a neutrosophic first category ring is a
neutrosophic residual ring in (R,S ).

Proposition 3.2. Let (R,S ) be any neutrosophic τ -structure ring space. If A is a neutrosophic Gδ ring and
the neutrosophic ring exterior of C(A) is a neutrosophic dense ring in (R,S ), then C(A) is a neutrosophic
first category ring in (R,S ).
Proof:

A being a neutrosophic Gδ ring in (R,S ), A = ∩∞i=1Ai where Ai’s are neutrosophic τ -open rings. Since
the neutrosophic ring exterior of C(A) is a neutrosophic dense ring in (R,S ), NFRcl(NFRExt(C(A))) =
1N . Because NFRExt(C(A)) ⊆ A ⊆ NFRcl(A), one has NFRExt(C(A)) ⊆ NFRcl(A).
This implies that NFRcl(NFRExt(C(A))) ⊆ NFRcl(A), that is, 1N ⊆ NFRcl(A). Therefore, NFRcl(A) =
1N . That is, NFRcl(A) = NFRcl(∩∞i=1Ai) = 1N . However, IFRcl(∩∞i=1Ai) ⊆ ∩∞i=1NFRcl(Ai). Hence,
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1N ⊆ ∩∞i=1NFRcl(Ai). That is, ∩∞i=1NFRcl(Ai) = 1N . This implies that NFRcl(Ai) = 1N , for each Ai ∈
S . Hence NFRcl(NFRint(Ai)) = 1N . Now, NFRint(NFRcl(C(Ai))) = NFRint(C(NFRint(Ai))) =
C(NFRcl(NFRint(Ai))) = 0N . Therefore, C(Ai) is a neutrosophic nowhere dense ring in (R,S ). Now,
C(A) = C(∩∞i=1Ai) = ∪∞i=1C(Ai). Hence, C(A) = ∪∞i=1C(Ai) where C(Ai)’s are neutrosophic nowhere
dense rings in (R,S ). Consequently, C(A) is a neutrosophic first category ring in (R,S ).

Proposition 3.3. If A is a neutrosophic first category ring in a neutrosophic τ -structure ring space (R,S )
such that B ⊆ C(A) where B is non-zero neutrosophic Gδ ring and the neutrosophic ring exterior of C(B) is
a neutrosophic dense ring in (R,S ), then A is a neutrosophic nowhere dense ring in (R,S ).
Proof:

Let A be a neutrosophic first category ring in (R,S ). Then A = ∪∞i=1Ai where Ai’s are neutrosophic
nowhere dense rings in (R,S ). Now C(NFRcl(Ai)) is a neutrosophic τ -open ring in (R,S ). Let B =
∩∞i=1C(NFRcl(Ai)). Then B is non-zero neutrosophic Gδ ring in (R,S ). Now, B = ∩∞i=1C(NFRcl(Ai)) =
C(∪∞i=1NFRcl(Ai)) ⊆ C(∪∞i=1Ai) = C(A). Hence B ⊆ C(A). Then A ⊆ C(B). Now,

NFRint(NFRcl((A)) ⊆ NFRint(NFRcl((C(B)))

= NFRint(C(NFRint(B)))

= C(NFRcl(NFRint(B)))

= C(NFRcl(NFRExt(C(B)))

Since NFRExt(C(B)) is a neutrosophic dense ring in (R,S ), NFRcl(Ext(C(B)))
= 1N . Therefore, NFRint(NFRcl(A)) ⊆ 0N . Then, NFRint(NFRcl(A)) = 0N . Hence A is a neutrosophic
nowhere dense ring in (R,S ).

Definition 3.8. Let (R,S ) be a neutrosophic τ -structure ring space. LetA be any neutrosophic ring inR. Then
A is said to be a neutrosophic τ -regular closed ring in (R,S ) if NFRcl(NFRint(A)) = A. The complement
of a neutrosophic τ -regular closed ring in (R.S ) is a neutrosophic τ -regular open ring in (R.S ).

Remark 3.2. Every neutrosophic τ -regular closed ring is a neutrosophic τ -closed ring.

Definition 3.9. Let (R,S ) be a neutrosophic τ -structure ring space. Then (R,S ) is called a neutrosophic
τ -structure ring GδT1/2 space if every non-zero neutrosophic Gδ ring in (R,S ) is a neutrosophic τ -open ring
in (R,S ).

Proposition 3.4. If the neutrosophic τ -structure ring space (R,S ) is a neutrosophic τ -structure ring GδT1/2
space and if A is a neutrosophic first category ring in (R,S ), then A is not a neutrosophic dense ring in
(R,S ).
Proof:

Assume the contrary. Suppose that A is a neutrosophic first category ring in (R,S ) such that A is a
neutrosophic dense ring in (R,S ), that is, NFRcl(A) = 1N . Then, A = ∪∞i=1Ai where Ai’s are neutrosophic
nowhere dense rings in (R,S ). Now, C(NFRcl(Ai)) is a neutrosophic τ -open ring in (R,S ). Let B =
∩∞i=1C(NFRcl(Ai)). Then, B is non-zero neutrosophic Gδ ring in (R,S ). Now, B = ∩∞i=1C(NFRcl(Ai)) =
C(∪∞i=1NFRcl(Ai)) ⊆ C(∪∞i=1Ai) = C(A). Hence B ⊆ C(A). Then, NFRint(B) ⊆ NFRint(C(A)) ⊆
C(NFRcl(A)) = 0N . That is, NFRint(B) = 0N . Since (R,S ) is a neutrosophic τ -structure ring GδT1/2
space, B = NFRint(B), which implies that B = 0N . This is a contradiction. Hence A is not a neutrosophic
dense ring in (R,S ).
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Proposition 3.5. If (R,S ) is a neutrosophic τ -structure ring GδT1/2 space, then NFRExt(∪∞i=1C(Ai)) =
∩∞i=1Ai.
Proof:

Let (R,S ) be a neutrosophic τ -structure ring GδT1/2 space. Assume that Ai’s are neutrosophic τ -regular
closed rings in (R,S ). Then, the Ai’s are neutrosophic τ -closed rings in (R,S ), which implies that C(Ai)’s
are neutrosophic τ -open rings in (R,S ). Let B = ∩∞i=1Ai. Then B is a non-zero neutrosophic Gδ ring in
(R,S ). Since (R,S ) is a neutrosophic τ -ring GδT1/2 space, B = NFRint(B) is a neutrosophic τ -open ring,
which implies that NFRint(∩∞i=1Ai) = ∩∞i=1Ai. Now, NFRExt(∪∞i=1C(Ai)) = NFRint(C(∪∞i=1C(Ai))) =
NFRint(∩∞i=1Ai) = ∩∞i=1Ai. Hence the proof.

Definition 3.10. Let (R,S ) be a neutrosophic τ -structure ring space. Then (R,S ) is called a neutrosophic
τ -structure ring exteriorB ( in short,ExtB ) space ifNFRExt(∩∞i=1C(Ai)) = 0N whereAi’s are neutrosophic
nowhere dense rings in (R,S ).

Example 3.2. Let R = {0, 1} be a set of integers of module 2 with two binary operations provided by the
following tables:

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B,M,D,E, F and G on R as follows: TA(0) =
0.5, TA(1) = 0.7, IA(0) = 0.5, IA(1) = 0.7, FA(0) = 0.3, FA(1) = 0.3, TB(0) = 0.5, TB(1) = 0.7, IB(0) =
0.5, IB(1) = 0.7, FB(0) = 0.3, FB(1) = 0.2, TM(0) = 0.3, TM(1) = 0.4, IM(0) = 0.3, IM(1) = 0.4, FM(0) =
0.5, FM(1) = 0.6, TD(0) = 0.4, TD(1) = 0.5, ID(0) = 0.4, ID(1) = 0.5, FD(0) = 0.3, FD(1) = 0.5, TE(0) =
0.3, TE(1) = 0.2, IE(0) = 0.3, IE(1) = 0.2, FE(0) = 0.5, FE(1) = 0.7, TF (0) = 0.3, TF (1) = 0.2, IF (0) =
0.3, IF (1) = 0.2, FF (0) = 0.5, FF (1) = 0.8, TG(0) = 0.3, TG(1) = 0.2, IG(0) = 0.3, IG(1) = 0.2, FG(0) =
0.6, FG(1) = 0.7, TH(0) = 0.3, TH(1) = 0.2, IH(0) = 0.3, IH(1) = 0.2, FH(0) = 0.6, FH(1) = 0.8. Then
S = {0N , A,B,M,D, 1N} is a neutrosophic τ -structure ring on R. Thus the pair (R,S ) is a neutrosophic
τ -structure ring space. Let {E,F,G,H} be neutrosophic nowhere dense rings in (R,S ).

Then NFRExt(∩{C(E), C(F ), C(G), C(H)}) = NFRExt(C(E)) = NFRint(E) = 0N . Therefore,
(R,S ) is a neutrosophic τ -structure ring ExtB space.

Proposition 3.6. Let (R,S ) be a neutrosophic τ -structure ring space. Then the following statements are
equivalent:

(i) (R,S ) is a neutrosophic τ -structure ring ExtB space.

(ii) NFRint(A) = 0N , for every neutrosophic first category ring A in (R,S ).

(iii) NFRcl(A) = 1N , for every neutrosophic residual ring A in (R,S ).

Proof:
(i)⇒(ii)

Let A be any neutrosophic first category ring in (R,S ). Then A = ∪∞i=1Ai where Ai’s are neutro-
sophic nowhere dense rings in (R,S ). Now, NFRint(A) = NFRint(∪∞i=1Ai) = NFRint(C(∩∞i=1C(Ai))) =
NFRExt(∩∞i=1C(Ai)). Since (R,S ) is a neutrosophic τ -structure ringExtB space, NFRExt(∩∞i=1C(Ai)) =
0N . Therefore, NFRint(A) = 0N . Hence (i)⇒ (ii).
(ii)⇒(iii)
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Let A be any neutrosophic residual ring in (R,S ). Then C(A) is a neutrosophic first category ring in
(R,S ). By (ii), NFRint(C(A)) = 0N . That is, NFRint(C(A)) = 0N = C(NFRcl(A)). Therefore,
NFRcl(A) = 1N . Hence (ii)⇒ (iii).
(iii)⇒(i)

Let A be any neutrosophic first category ring in (R,S ). Then A = ∪∞i=1Ai where Ai’s are neutrosophic
nowhere dense rings in (R,S ). Since A is a neutrosophic first category ring, C(A) is a neutrosophic residual
ring in (R,S ). Then by (iii),NFRcl(C(A)) = 1N . Now,NFRExt(∩∞i=1C(Ai)) = NFRint(C(∩∞i=1C(Ai))) =
NFRint(∪∞i=1Ai) = NFRint(A) = C(NFRcl(C(A))) = 0N . Hence,NFRExt(∩∞i=1C(Ai)) = 0N whereAi’s
are neutrosophic nowhere dense rings in (R,S ). Therefore, (R,S ) is a neutrosophic τ -structure ring ExtB
space.

Proposition 3.7. If A is a neutrosophic first category ring in a neutrosophic τ -structure ring space (R,S )
such that B ⊆ C(A) where B is non-zero neutrosophic Gδ ring and the neutrosophic ring exterior of C(B) is
a neutrosophic dense ring in (R,S ), then (R,S ) is a neutrosophic τ -structure ring ExtB space.
Proof:

Let A be any neutrosophic first category ring in (R,S ) such that B ⊆ C(A) where B is non-zero neu-
trosophic Gδ ring and the neutrosophic ring exterior of C(B) is aneutrosophic dense ring in (R,S ). Then
by Proposition 3.3., A is a neutrosophic nowhere dense ring (R,S ), that is, NFRint(NFRcl(A)) = 0N .
Then, NFRint(A) ⊆ NFRint(NFRcl(A)) implies that NFRint(A) = 0N . By Proposition 3.6., (R,S ) is a
neutrosophic τ -structure ring ExtB space.

Proposition 3.8. If (R,S ) is a neutrosophic τ -structure ring ExtB space and if ∪∞i=1Ai = 1N where Ai’s are
neutrosophic τ -regular closed rings in (R,S ), then NFRcl(∪∞i=1NFRExt(C(Ai))) = 1N .
Proof:

Let (R,S ) be any neutrosophic τ -structure ring ExtB space. Assume that Ai’s are neutrosophic τ -
regular closed rings in (R,S ). Suppose that NFRint(Ai) = 0N , for each i ∈ J . Since Ai is a neutrosophic
τ - regular closed ring in (R,S ), Ai is a neutrosophic τ -closed ring in (R,S ). Also, NFRint(Ai) = 0N
implies that NFRint(NFRcl(Ai)) = 0N . Therefore, Ai’s are neutrosophic nowhere dense rings in (R,S ).
Since ∪∞i=1Ai = 1N , NFRExt(∩∞i=1C(Ai)) = NFRExt(C(∪∞i=1Ai)) = NFRint(∪∞i=1Ai) = NFRint(1N) =
1N . Hence, NFRExt(∩∞i=1C(Ai)) = 1N . Since (R,S ) is a neutrosophic τ -structure ring ExtB space,
NFRExt(∩∞i=1C(Ai)) = 0N , which is a contradiction. Hence NFRint(Ai) 6= 0N , for atleast one i ∈
J . Therefore, ∪∞i=1NFRint(Ai) 6= 0N . Since Ai is a neutrosophic τ -regular closed rings in (R,S ) and
∪∞i=1NFRcl(Ai) ⊆ NFRcl(∪∞i=1Ai),

⇒ ∪∞i=1NFRcl(NFRint(Ai)) ⊆ NFRcl(∪∞i=1NFRint(Ai))

⇒ ∪∞i=1Ai ⊆ NFRcl(∪∞i=1NFRint(Ai))

⇒ ∪∞i=1Ai ⊆ NFRcl(∪∞i=1NFRExt(C(Ai)))

⇒ 1N ⊆ NFRcl(∪∞i=1NFRExt(C(Ai))).

But 1N ⊇ NFRcl(∪∞i=1NFRExt(C(Ai))). Hence, NFRcl(∪∞i=1NFRExt(C(Ai))) = 1N .

4 On neutrosophic τ -Structure Ring Exterior V Spaces
Definition 4.1. Let (R,S ) be any neutrosophic τ -structure ring space. Then (R,S ) is called a neutrosophic
τ -structure ring exterior V ( in short, ExtV )space if NFRcl(∩ni=1Ai) = 1N where Ai’s are neutrosophic Gδ
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rings and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ).

Example 4.1. Let R = {0, 1, 2} be a set of integers of module 3 together with two binary operations as
follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B and D on R as follows: TA(0) = 1, TA(1) =
0.2, TA(2) = 0.9, IA(0) = 1, IA(1) = 0.2, IA(2) = 0.9, FA(0) = 0, FA(1) = 0.8, FA(2) = 0.1, TB(0) =
0.3, TB(1) = 1, TB(2) = 0.2, IB(0) = 0.3, IB(1) = 1, IB(2) = 0.2, FB(0) = 0.7, FB(1) = 0, FB(2) =
0.8, TD(0) = 0.7, TD(1) = 0.4, TD(2) = 1, ID(0) = 0.7, ID(1) = 0.4, ID(2) = 1, FD(0) = 0.3, FD(1) =
0.6, FD(2) = 0.
Then S = {0N , A,B,D,A∩B,A∪B,A∩D,A∪D,B∩D,B∪D,D∩(A∪B), A∪(B∩D), B∪(A∩D), 1N}
is a neutrosophic τ -structure ring on R. Thus the pair (R,S ) is a neutrosophic τ -structure ring space.

Now, A∩D = ∩{B∪ (A∩D), D∩ (A∪B), D,A} andD∩ (A∪B) = ∩{A∪B,D∩ (A∪B), A∪D} are
neutrosophic Gδ rings in (R,S ). Also, the neutrosophic ring exterior of C(A ∩D) and C(D ∩ (A ∪ B)) are
neutrosophic dense rings in (R,S ). Now,NFRcl(∩{A∩D,D∩(A∪B)}) = NFRcl(A∩D) = 1N .Therefore,
(R,S ) is a neutrosophic τ -structure ring ExtV space.

Proposition 4.1. Let (R,S ) be a neutrosophic structure ring space. Then (R,S ) is a neutrosophic τ -structure
ring ExtV space iff NFRint(∪ni=1C(Ai)) = 0N where Ai’s are neutrosophic Gδ rings and the neutrosophic
ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ).
Proof:

Let (R,S ) be a neutrosophic ring ExtV space. Assume that Ai’s are neutrosophic Gδ rings and the
neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ). Since (R,S ) is a neutrosophic
τ -structure ring ExtV space, NFRcl(∩ni=1Ai) = 1N . Now, NFRint(∪ni=1C(Ai)) = NFRint(C(∩ni=1Ai)) =
C(NFRcl(∩ni=1Ai)) = 0N . Therefore, NFRint(∪ni=1C(Ai)) = 0N where Ai’s are neutrosophic Gδ rings and
the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ).

Conversely, letNFRint(∪ni=1C(Ai)) = 0N whereAi’s are neutrosophicGδ rings and the neutrosophic ring
exterior of C(Ai)’s are neutrosophic dense rings in (R,S ). Now, NFRcl(∩ni=1Ai) = NFRcl(C(∪ni=1Ai)) =
C(NFRint(∪ni=1Ai)) = 1N . Therefore, (R,S ) is a neutrosophic τ -structure ring ExtV space.

Proposition 4.2. Let (R,S ) be a neutrosophic τ -structure ring space. If every neutrosophic first category ring
in (R,S ) is formed from the neutrosophic Gδ rings and the neutrosophic ring exterior of its complements are
neutrosophic dense rings in a neutrosophic τ -structure ringExtV space (R,S ), then (R,S ) is a neutrosophic
τ -structure ring ExtB space.
Proof:

Assume that Ai’s are neutrosophic Gδ rings in (R,S ) and the neutrosophic ring exterior of C(Ai)’s are
neutrosophic dense rings in (R,S ), for i = 1, ..., n. Since (R,S ) is a neutrosophic τ -structure ring ExtV
space and by Proposition 4.1.,NFRint(∪ni=1C(Ai)) = 0N . But∪ni=1NFRint(C(Ai)) ⊆ NFRint(∪ni=1C(Ai)),
which implies that ∪ni=1NFRint(C(Ai)) = 0N . Then NFRint(C(Ai)) = 0∼. Since Ai’s are neutrosophic Gδ

rings in (R,S ) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in (R,S ), for
i = 1, ..., n. By Proposition 3.2., C(Ai)’s are neutrosophic first category rings in (R,S ), for i = 1, ..., n.
Therefore, NFRint(C(Ai)) = 0N , for every C(Ai) is a neutrosophic first category rings in (R,S ). By
Proposition 3.6., (R,S ) is a neutrosophic τ -structure ring ExtB space.
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Definition 4.2. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Let f : (R1,S1)→
(R2,S2) be any function. Then f is said to be a

(i) neutrosophic τ -structure ring continuous function if f−1(A) is a neutrosophic τ -open ring in (R1,S1),
for every neutrosophic τ -open ring A in (R2,S2).

(ii) somewhat neutrosophic τ -structure ring continuous function if A ∈ S2 and f−1(A) 6= 0∼ implies that
there exists a neutrosophic τ -open ring B in (R1,S1) such that B 6= 0N and B ⊆ f−1(A).

(iii) neutrosophic τ -structure ring hardly open function if for each neutrosophic dense ring A in (R2,S2)
such that A ⊆ B ⊂ 1N for some neutrosophic τ -open ring B in (R2,S2), f−1(A) is a neutrosophic
dense ring in (R1,S1).

(iv) neutrosophic τ -structure ring open function if f(A) is a neutrosophic τ -open ring in (R2,S2), for every
neutrosophic τ -open ring A in (R1,S1).

Proposition 4.3. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Let f : (R1,S1)→
(R2,S2) be any function. Then the following statements are equivalent:

(i) f is a neutrosophic τ -structure ring continuous function.

(ii) f−1(B) is a neutrosophic τ -closed ring in (R1,S1), for every neutrosophic τ -closed ring B in (R2,S2).

(iii) NFRcl(f−1(A)) ⊆ f−1(NFRcl(A)), for each neutrosophic ring A in (R2,S2).

(iv) f−1(NFRint(A)) ⊆ NFRint(f
−1(A)), for each neutrosophic ring A in (R2,S2).

Remark 4.1. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. If f : (R1,S1) →
(R2,S2) is a neutrosophic τ -structure ring continuous function, then f−1(NFRExt(C(A)) ⊆ NFRExt(C(f

−1(A))),
for each neutrosophic ring A in (R2,S2).
Proof: The proof follows from the Definition 3.4 and Proposition 4.3..

Proposition 4.4. If a function f : (R1,S1) → (R2,S2) from a neutrosophic τ -structure ring space (R1,S1)
into another neutrosophic τ -structure ring space (R2,S2) is neutrosophic τ -structure ring continuous, 1-1 and
if A is a neutrosophic dense ring in (R1,S1), then f(A) is a neutrosophic dense ring in (R2,S2).
Proof:

Suppose that f(A) is not a neutrosophic dense ring in (R2,S2). Then there exists a neutrosophic τ -closed
ring in (R2,S2) such that f(A) ⊂ D ⊂ 1N . Then, f−1(f(A)) ⊂ f−1(D) ⊂ f−1(1N). Since f is 1-1,
f−1(f(A)) = A. Hence A ⊂ f−1(D) ⊂ 1N . Since f is a neutrosophic τ -structure ring continuous function
and D is a neutrosophic τ -closed ring in (R2,S2), f−1(D) is a neutrosophic τ -closed ring in (R1,S1). Then
NFRcl(A) 6= 1N , which is a contradiction. Therefore f(A) is a neutrosophic dense ring in (R2,S2).

Remark 4.2. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Then

(i) the neutrosophic τ -structure ring continuous image of a neutrosophic τ -structure ring ExtV space
(R1,S1) may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).

(ii) the neutrosophic τ -structure ring open image of a neutrosophic τ -structure ring ExtV space (R1,S1)
may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).
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Proof: It is clear from the following Examples.

Example 4.2. Let R = {0, 1, 2} be a set of integers of module 3 together with two binary operations as
follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B, V,D,E, and F on R as follows: TA(0) =
1, TA(1) = 0.2, TA(2) = 0.9, IA(0) = 1, IA(1) = 0.2, IA(2) = 0.9, FA(0) = 0, FA(1) = 0.8, FA(2) =
0.1, TB(0) = 0.3, TB(1) = 1, TB(2) = 0.2, IB(0) = 0.3, IB(1) = 1, IB(2) = 0.2, FB(0) = 0.7, FB(1) =
0, FB(2) = 0.8, TV (0) = 0.7, TV (1) = 0.4, TV (2) = 1, IV (0) = 0.7, IV (1) = 0.4, IV (2) = 1FV (0) =
0.3, FV (1) = 0.6, FV (2) = 0, TD(0) = 0.9, TD(1) = 1, TD(2) = 0.2, ID(0) = 0.9, ID(1) = 1, ID(2) =
0.2, FD(0) = 0.1, FD(1) = 0, FD(2) = 0.8, TE(0) = 0.2, TE(1) = 0.2, TE(2) = 1, IE(0) = 0.2, IE(1) =
0.2, IE(2) = 1, FE(0) = 0.8, FE(1) = 0.8, FE(2) = 0, TF (0) = 1, TF (1) = 0.7, TF (2) = 0.4, IF (0) =
1, IF (1) = 0.7, IF (2) = 0.4, FF (0) = 0, FF (1) = 0.3, FF (2) = 0.6.

Then S1 = {0N , A,B, V,A∩B,A∪B,A∩V,A∪V,B∩V,B∪V, V ∩(A∪B), A∪(B∩V ), B∪(A∩V ), 1N}
and S2 = {0N , D,E, F,D∩E,D∪E,D∩F,D∪F,E∩F,E∪F, F ∩(D∪E), D∪(E∩F ), E∪(D∩F ), 1N}
are two neutrosophic τ -structure rings on R. Thus the pair (R,S1) and (R,S2) are neutrosophic τ -structure
ring spaces. Now,A∩V = ∩{B∪(A∩V ), V ∩(A∪B), V, A} and V ∩(A∪B) = ∩{A∪B, V ∩(A∪B), A∪V }
are neutrosophic Gδ rings in (R,S1). Also, the neutrosophic ring exterior of C(A ∩ V ) and C(V ∩ (A ∪ B))
are neutrosophic dense rings in (R,S1). Now, NFRcl(∩{A ∩ V, V ∩ (A ∪ B)}) = NFRcl(A ∩ V ) = 1N .
Therefore, (R,S1) is a neutrosophic τ -structure ring ExtV space. Define a function f : (R,S1) → (R,S2)
by f(0) = 1, f(1) = 2 and f(2) = 0. Clearly, f is a neutrosophic τ -structure ring continuous function.
Also, f(A) = D, f(B) = E and f(V ) = F . Now, D = ∩{D,D ∪ E,D ∪ (E ∩ F )}, D ∩ F = ∩{F,D ∪
F,D ∩ F, F ∩ (D ∪ E)} and E = ∩{E,E ∪ F,E ∪ (D ∩ F )} are neutrosophic Gδ rings in (R,S2). Also,
the neutrosophic ring exterior of C(D), C(F ) and C(D ∩ F ) are neutrosophic Gδ rings in (R,S2). But,
NFRcl(∩{D,E,D∩F}) = C(E∩F ) 6= 1N . Therefore, (R,S2) is not a neutrosophic τ -structure ring ExtV
space. Therefore the neutrosophic τ -structure ring continuous image of a neutrosophic τ -structure ring ExtV
space (R1,S1) may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).

Example 4.3. Let R = {0, 1, 2} be a set of integers of module 3 together with two binary operations as
follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

. 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then (R,+, ·) is a ring. Define neutrosophic rings A,B, V and D on R as follows: TA(0) = 1, TA(1) =
0.2, TA(2) = 0.9, IA(0) = 1, IA(1) = 0.2, IA(2) = 0.9, FA(0) = 0, FA(1) = 0.8, FA(2) = 0.1, TB(0) =
0.3, TB(1) = 1, TB(2) = 0.2, IB(0) = 0.3, IB(1) = 1, IB(2) = 0.2, FB(0) = 0.7, FB(1) = 0, FB(2) =
0.8, TV (0) = 0.7, TV (1) = 0.4, TV (2) = 1, IV (0) = 0.7, IV (1) = 0.4, IV (2) = 1, FV (0) = 0.3, FV (1) =
0.6, FV (2) = 0, TD(0) = 0.5, TD(1) = 0.6, TD(2) = 0.4, ID(0) = 0.5, ID(1) = 0.6, ID(2) = 0.4, FD(0) =
0.5, FD(1) = 0.4, FD(2) = 0.6.

Then S1 = {0N , A,B, V,A∩B,A∪B,A∩V,A∪V,B∩V,B∪V, V ∩(A∪B), A∪(B∩V ), B∪(A∩V ), 1N}
and S2 = {0N , A,B, V,D,A ∪ B,A ∪ V,A ∪D,B ∪ V,B ∪D,V ∪D,A ∩ B,A ∩ V,A ∩D,B ∩ V,B ∩
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D, V ∩ D,D ∪ (A ∩ V ), V ∩ (A ∪ B), A ∪ (B ∩ V ), B ∪ (A ∩ V ), 1N} are two neutrosophic τ -structure
rings on R. Thus the pair (R,S1) and (R,S2) are neutrosophic τ -structure ring spaces. Now, A ∩ V =
∩{B ∪ (A ∩ V ), V ∩ (A ∪ B), V, A} and V ∩ (A ∪ B) = ∩{A ∪ B, V ∩ (A ∪ B), A ∪ V } are neutrosophic
Gδ rings in (R,S1). Also, the neutrosophic ring exterior of C(A ∩ V ) and C(V ∩ (A ∪ B)) are neutrosophic
dense rings in (R,S1). Now, NFRcl(∩{A ∩ V, V ∩ (A ∪ B)}) = NFRcl(A ∩ V ) = 1V . Therefore, (R,S1)
is a neutrosophic ring ExtV space. Define a function f : (R,S1) → (R,S2) by f(0) = 0, f(1) = 1 and
f(2) = 2. Clearly, f is a neutrosophic τ -structure ring open function. Also, f(A) = A, f(B) = B, f(V ) = V
and f(D) = D. Now, A = ∩{A,A∪B,A∪ V,A∪ (B ∩ V )}, D ∪ (A∩ V ) = ∩{V, V ∪D,A∩ V,D ∪ (A∩
V ), V ∩ (A ∪ B)} and B = ∩{B,B ∪ V,B ∪D,B ∪ (A ∩ V )} are neutrosophic Gδ rings in (R,S2). Also,
the neutrosophic ring exterior of C(A), C(B) and C(D∪ (A∩V )) are neutrosophic Gδ rings in (R,S2). But,
NFRcl(∩{A,B,D ∪ (A ∩ V )}) = C(B ∩ V ) 6= 1N . Therefore, (R,S2) is not a neutrosophic τ -ring ExtV
space. Therefore the neutrosophic τ -structure ring open image of a neutrosophic τ -structure ring ExtV space
(R1,S1) may fail to be a neutrosophic τ -structure ring ExtV space (R2,S2).

Proposition 4.5. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. If f : (R1,S1)→
(R2,S2) is onto function, then the following statements are equivalent:

(i) f is a neutrosophic τ -structure ring hardly open function.

(ii) NFRint(f(A)) 6= 0N , for all neutrosophic ring A in (R1,S1) with NFRint(A) 6= 0N and there exists a
neutrosophic τ -closed ring B 6= 0N in (R2,S2) such that B ⊆ f(A).

(iii) NFRint(f(A)) 6= 0N , for all neutrosophic ring A in (R1,S1) with NFRint(A) 6= 0N and there exists a
neutrosophic τ -closed ring B 6= 0N in (R2,S2) such that f−1(B) ⊆ A.

Proof:
(i)⇒(ii)

Assume that (i) is true. Let A be any neutrosophic ring A in (R1,S1) with NFRint(A) 6= 0N and
B 6= 0N be a neutrosophic τ -closed ring in (R2,S2) such that B ⊆ f(A). Suppose that NFRint(A) =
0N . This implies that NFRcl(C(f(A))) = 1N . Thus, C(f(A)) is a neutrosophic dense ring in (R2,S2)
and C(f(A)) ⊆ C(B). By assumption, f−1(C(f(A))) is a neutrosophic dense ring in (R1,S1). That is,
NFRcl(f

−1(C(f(A)))) = 1N . Now, NFRint(A) = NFRint(f
−1(f(A))) = C(NFRcl(C(f

−1(f(A))))) =
C(NFRcl(f

−1(C(f(A))))) = 0N . This is a contradiction. Hence (i)⇒(ii).
(ii)⇒(iii)

Assume that (ii) is true. Since f is onto function and by assumption, B ⊆ f(A). This implies that
f−1(B) ⊆ f−1(f(A)), that is, f−1(B) ⊆ A. Hence (ii)⇒(iii).
(iii)⇒(i)

Let V ⊆ C(D) where C is a neutrosophic dense ring and D is non-zero neutrosophic τ -open ring in
(R2,S2). Let A = f−1(C(V )) and B = C(D). Now, f−1(B) = f−1(C(D)) ⊆ f−1(C(V )) = A.

Consider, NFRint(f(A)) = NFRint(f(f
−1(C(V ))) = NFRint(C(V )) = C(NFRint(V )) = 0N .

Therefore, NFRint(A) = 0N , which implies that NFRint(f−1(C(V ))) = NFRint(C(f
−1(V ))) = 0N .

Therefore, C(NFRcl(f−1(V ))) = 0N . Thus, NFRcl(f−1(V )) = 1N . Therefore, f−1(V ) is a neutrosophic
dense ring in (R1,S1). This implies that f is a neutrosophic τ -structure ring hardly open function. Hence
(iii)⇒(i). This completes the proof.

Proposition 4.6. If a function f : (R1,S1) → (R2,S2) from a neutrosophic τ -structure ring space (R1,S1)
onto another neutrosophic τ -structure ring space (R2,S2) is neutrosophic τ -structure ring continuous, 1-1 and
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neutrosophic τ -structure ring hardly open function and if (R1,S1) is a neutrosophic τ -structure ring ExtV
space, then (R2,S2) is a neutrosophic τ -structure ring ExtV space.
Proof:

Let (R1,S1) be a neutrosophic τ -structure ring ExtV space. Assume that Ai’s (i = 1, ..., n) are neu-
trosophic Gδ rings in (R2,S2) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense ring in
(R2,S2). Then NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open
rings in (R2,S2). Hence

f−1(Ai) = f−1(∩∞j=1Bij) = ∩∞j=1f
−1(Bij) (4.1)

Since f is a neutrosophic τ -structure ring continuous function and Bij’s are neutrosophic τ -open rings
in (R2,S2), f−1(Bij)’s are neutrosophic τ -open rings in (R1,S1). Hence f−1(Ai) = ∩∞j=1f

−1(Bij) is an
neutrosophic Gδ rings in (R1,S1). Since f is a neutrosophic τ -structure ring hardly open function and
NFRExt(C(Ai)) is a neutrosophic dense ring in (R2,S2), f−1(NFRExt(C(Ai))) is a neutrosophic dense
ring in (R1,S1). Now,

f−1(NFRExt(C(Ai))) = f−1(NFRint(Ai))

⊆ NFRint(f
−1(Ai))

= NFRExt(C(f
−1(Ai))).

Therefore 1N = NFRcl(f
−1(NFRExt(C(Ai)))) ⊆ NFRcl(NFRExt(C(f

−1(Ai)))), which implies that
1N = NFRcl(NFRExt(C(f

−1(Ai)))). HenceNFRExt(C(f−1(Ai))) is a neutrosophic dense ring in (R1,S1).
Since (R1,S1) is a neutrosophic τ -strucuture ring ExtV space, NFRcl(∩ni=1f

−1(Ai)) = 1N where f−1(Ai)’s
are neutrosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(f−1(Ai))’s are neutrosophic
dense ring in (R1,S1). Thus, NFRcl(∩ni=1f

−1(Ai)) = 1N = NFRcl(f
−1(∩ni=1Ai)). Therefore, f−1(∩ni=1Ai)

is a neutrosophic dense rings in (R1,S1). Since f is a neutrosophic τ -structure ring continuous, 1-1 and by
Proposition 3.4., f(f−1(∩ni=1Ai)) is a neutrosophic dense ring in (R2,S2). Hence NFRcl(f(f−1(∩ni=1Ai))) =
1N . Since f is 1-1, f(f−1(∩ni=1Ai)) = ∩ni=1Ai. Then, NFRcl(∩ni=1Ai) = 1N . Therefore, (R2,S2) is a
neutrosophic τ -structure ring ExtV space.

Conversely, let (R2,S2) be a neutrosophic τ -structure ring ExtV space. Assume that Ai’s (i = 1, ..., n)
are neutrosophic Gδ rings in (R2,S2) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense
rings in (R2,S2).

Then NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open rings in
(R2,S2). Hence

f−1(Ai) = f−1(∩∞j=1Bij) = ∩∞j=1f
−1(Bij) (4.2)

Since f is a neutrosophic τ -structure ring continuous function and Bij’s are neutrosophic τ -open rings
in (R2,S2), f−1(Bij)’s are neutrosophic τ -open rings in (R1,S1). Hence f−1(Ai) = ∩∞j=1f

−1(Bij) is a
neutrosophic Gδ rings in (R1,S1). Since f is a neutrosophic τ -structure ring hardly open function and
NFRExt(C(Ai)) is a neutrosophic dense ring in (R2,S2), f−1(NFRExt(C(Ai))) is a neutrosophic dense
ring in (R1,S1). By Remark 4.2., f−1(NFRExt(C(Ai))) ⊆ NFRExt(C(f

−1(Ai))).
Thus,NFRcl(f−1(NFRExt(C(Ai)))) = 1N ⊆ NFRcl(NFRExt(C(f

−1(Ai)))). Hence,NFRExt(C(f−1(Ai)))
is a neutrosophic dense ring in (R1,S1). Suppose that NFRcl(∩ni=1f

−1(Ai)) 6= 1N . This implies that

NFRcl(∩ni=1f
−1(Ai)) 6= 0N

⇒ NFRint(∪ni=1C(f
−1(Ai))) 6= 0N

⇒ NFRint(∪ni=1f
−1(C(Ai))) 6= 0N .

R. Narmada Devi and A New Novel of neutrosophic τ -Structure Ring ExtB and ExtV Spaces



Neutrosophic Sets and Systems, Vol. 32 2020 183

Then, there is a non-zero neutrosophic τ -open ring Ei in (R1,S1) such that Ei ⊆ ∪ni=1f
−1(C(Ai)). Now,

f(Ei) ⊆ f(∪ni=1f
−1(C(Ai)))

⊆ ∪ni=1f(f
−1(C(Ai)))

⊆ ∪ni=1C(Ai)

= C(∩ni=1Ai).

Then, NFRint(f(Ei)) ⊆ NFRint(C(∩ni=1Ai)) = C(NFRcl(∩ni=1Ai)). (4.3)

Since (R2,S2) is a neutrosophic τ -structure ring ExtV space, NFRcl(∩ni=1Ai) = 1N . Hence from
(4.3), NFRint(f(Ei)) ⊆ 0N . This implies that NFRint(f(Ei)) = 0N , which is a contradiction. Hence
NFRcl(∩ni=1f

−1(Ai)) = 1N . Therefore, (R1,S1) is a neutrosophic τ -structure ring ExtV space.

Proposition 4.7. Let (R1,S1) and (R2,S2) be any two neutrosophic τ -structure ring spaces. Let f : (R1,S1)→
(R2,S2) be any bijective function. Then the following statements are equivalent:

(i) f is somewhat neutrosophic τ -structure ring continuous function.

(ii) If A is a neutrosophic τ -closed ring in (R2,S2) such that f−1(A) 6= 1N , then there exists a neutrosophic
τ -closed ring 0N 6= E 6= 1N in (R1,S1) such that f−1(A) ⊂ E.

(iii) If A is a neutrosophic dense ring in (R1,S1), then f(A) is a neutrosophic dense ring in (R2,S2).

Proof:
(i)⇒(ii)

Assume that (i) is true. Let A be a neutrosophic τ -closed ring in (R2,S2) such that f−1(A) 6= 1N .
Then C(A) is a neutrosophic τ -open ring in (R2,S2) such that C(f−1(A)) = f−1(C(A)) 6= 0N . Since f
is somewhat neutrosophic τ -structure ring continuous, there exists a neutrosophic τ -open ring E in (R1,S1)
such that E ⊆ f−1(C(A)). Then there exists a neutrosophic τ -closed ring C(E) 6= 0N in (R1,S1) such that
C(E) ⊂ f−1(A). Hence (i)⇒(ii).
(ii)⇒(iii)

Assume that (ii) is true. Let A be a neutrosophic dense ring in (R1,S1) such that f(A) is a neutrosophic
dense ring in (R2,S2). Then, there exists a neutrosophic τ -closed ring C in (R2,S2) such that

f(A) ⊂ E ⊂ 1N .

This implies that f−1(E) 6= 1N . Then by (ii), there exists a neutrosophic τ -closed ring 0N 6= D 6= 1N such
that A ⊂ f−1(E) ⊂ D ⊂ 1N . This is a contradiction. Hence (ii)⇒(iii).
(iii)⇒(ii)

Assume that (iii) is true. Suppose (ii) is not true. Then there exists a neutrosophic τ -closed ring A in
(R2,S2) such that f−1(A) 6= 1N . But there is no neutrosophic τ -closed ring 0N 6= E 6= 1N in (R1,S1) such
that f−1(A) ⊆ E. This implies that f−1(A) is a neutrosophic dense ring in (R1,S1). But from hypothesis
f(f−1(A)) = A must be neutrosophic dense ring in (R2,S2), which is a contradiction. Hence (iii)⇒(ii).
(ii)⇒(i)

Let A be a neutrosophic τ -open ring in (R2,S2) and f−1(A) 6= 0N . Then, f−1(C(A)) = C(f−1(A)) =
0N . Then by (ii), there exists a neutrosophic τ -closed ring 0N 6= B 6= 1N such that f−1(C(A)) ⊂ B. This
implies that C(B) ⊂ f−1(A) and C(B) 6= 0N is a neutrosophic τ -open ring in (R1,S1). Hence (ii)⇒(i).
Hence the proof.
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Proposition 4.8. If a function f : (R1,S1) → (R2,S2) from a neutrosophic τ -structure ring space (R1,S1)
onto another neutrosophic τ -structure ring space (R2,S2) is somewhat neutrosophic τ -structure ring contin-
uous, 1-1 and neutrosophic τ -structure ring open function and if (R1,S1) is a neutrosophic τ -structure ring
ExtV space, then (R2,S2) is a neutrosophic τ -structure ring ExtV space.
Proof:

Let (R1,S1) be a neutrosophic τ -structure ring ExtV space. Assume that Ai’s (i = 1, ..., n) are neu-
trosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense rings in
(R1,S1). Then, NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open
rings in (R1,S1). Since f is a neutrosophic τ -structure ring open function, f(Bij)’s are neutrosophic τ -open
rings in (R2,S2). Now, ∩∞j=1f(Bij) is a neutrosophic Gδ rings in (R2,S2). Since f is 1-1,

f−1(∩∞j=1f(Bij)) = ∩∞j=1f
−(f(Bij)) = ∩∞j=1Bij = Ai (4.4)

Since f is onto, f(Ai) = f(f−1(∩∞j=1f(Bij))) = ∩∞j=1f(Bij) (4.5)

Therefore, f(Ai) is a neutrosophic Gδ rings in (R2,S2). Since f is somewhat neutrosophic τ -structure
ring continuous function, NFRExt(C(Ai‘)) is a neutrosophic dense ring in (R1,S1) and by Proposition 4.7.,
f(NFRExt(C(Ai))) is a neutrosophic dense ring in (R2,S2), which implies that NFRExt((f(Ai))). Now
we claim that NFRcl(∩∞i=1f(Ai)) = 1N . Suppose that NFRcl(∩ni=1f(Ai)) 6= 1N . This implies that

C(NFRcl(∩ni=1f(Ai))) 6= 0N

⇒ NFRint(∪ni=1C(f(Ai))) 6= 0N

⇒ NFRint(∪ni=1f(C(Ai))) 6= 0N .

Therefore there is an non-zero neutrosophic τ -open ring Ei in (R2,S2) such that Ei ⊆ ∪ni=1f(C(Ai)).
Then f−1(Ei) ⊆ f−1(∪ni=1f(C(Ai))). Since f is somewhat neutrosophic τ -structure ring continuous function
and Ei ∈ S2, NFRint(f−1(Ei)) 6= 0N implies that NFRint(f−1(∪ni=1f(C(Ai)))) 6= 0N .
Then NFRint(∪ni=1f

−1(f(C(Ai)))) 6= 0N . Since f is a bijective function, NFRint(∩ni=1C(Ai)) 6= 0N , which
implies that C(NFRcl(∩ni=1Ai)) 6= 0N . That is, NFRcl(∩ni=1Ai) 6= 1N . This is a contradiction. Hence
(R2,S2) is a neutrosophic τ -structure ring ExtV space.

Conversely, let (R2,S2) be a neutrosophic τ -structure ringExtV space. Assume thatAi’s (i = 1, ..., n) are
neutrosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(Ai)’s are neutrosophic dense ring
in (R1,S1). Then NFRcl(NFRExt(C(Ai))) = 1N and Ai = ∩∞j=1Bij where Bij’s are neutrosophic τ -open
rings in (R1,S1). Since f is somewhat neutrosophic τ -structure ring continuous function, NFRExt(C(Ai))’s
are neutrosophic dense rings in (R1,S1) and By Proposition 4.7., f(NFRExt(C(Ai))) is a neutrosophic
dense ring in (R2,S2). That is, NFRcl(NFRExt(C(Ai))) = 1N . Since f is a neutrosophic τ -structure ring
open function and Bij’s are neutrosophic τ -open rings in (R1,S1), f(Bij)’s are neutrosophic τ -open rings in
(R2,S2). Hence ∩∞j=1f(Bij) is a neutrosophic Gδ ring in (R2,S2). Since f is 1-1,

f−1(∩ni=1f(Bij)) = ∩ni=1(f
−1(f(Bij)) = ∩ni=1Bij. (4.6)

Since f is onto,
f(Ai) = f(f−1(∩∞j=1f(Bij))) = ∩∞j=1f(Bij). (4.7)

R. Narmada Devi and A New Novel of neutrosophic τ -Structure Ring ExtB and ExtV Spaces



Neutrosophic Sets and Systems, Vol. 32 2020 185

Hence f(Ai) is a neutrosophic Gδ ring in (R2,S2). Now,

NFRcl(NFRExt(C(f(Ai))) = NFRcl(NFRExt(f(C(Ai)))

= NFRcl(NFRint(f(Ai))

⊇ NFRcl(f(NFRint(Ai))

⊇ f(NFRcl(NFRint(Ai)))

= f(1N) = 1N .

This implies that NFRExt(C(f(Ai)) is a neutrosophic dense ring in (R2,S2). Hence the neutrosophic
ring exterior of C(f(Ai)) is a neutrosophic dense ring in (R2,S2). Since (R2,S2) is a neutrosophic τ -
structure ring ExtV space, NFRcl(∩ni=1f(Ai)) = 1N . Now we claim that NFRcl(∩ni=1f(Ai)) = 1N where
Ai’s (i = 1, ..., n) are neutrosophic Gδ rings in (R1,S1) and the neutrosophic ring exterior of C(Ai)’s are
neutrosophic dense rings in (R1,S1). Suppose that NFRcl(∩ni=1Ai) 6= 1N . This implies that

C(NFRcl(∩ni=1Ai)) 6= 0N

⇒ NFRint(C(∩ni=1Ai)) 6= 0N

⇒ NFRint(∪ni=1C(Ai)) 6= 0N .

Then there is a non-zero neutrosophic τ -open ring Ei in (R1,S1) such that Ei ⊆ ∪ni=1C(Ai). Now,

f(Ei) ⊆ f(∪ni=1C(Ai))

⊆ ∪ni=1f(C(Ai))

⊆ ∪ni=1C(f(Ai))

= C(∩ni=1f(Ai)).

Then, NFRint(f(Ei)) ⊆ NFRint(C(∩ni=1f(Ai))) ⊆ C(NFRcl(∩ni=1f(Ai))) (4.8)

Since (R2,S2) is a neutrosophic τ -structure ring ExtV space, NFRcl(∩ni=1f(Ai)) = 1N . Hence from
(4.8), NFRint(f(Ei)) ⊆ 0N , which implies that NFRint(f(Ei)) = 0N , which is a contradiction. Hence
NFRcl(∩ni=1Ai) = 1N . Therefore (R1,S1) is a neutrosophic τ -structure ring ExtV space.

5 Conclusion

A neutrosophic set model provides a mechanism for solving the modeling problems which involve indetermi-
nacy, and inconsistent information in which human knowledge is necessary and human evaluation is needed.
It deals more flexibility and compatibility to the system as compared to the classical theory, fuzzy theory
and intuitionistic fuzzy models. In this paper, a new idea of a neutrosophic τ -structure ring spaces, neutro-
sophic τ -structure ring GδT1/2 spaces and neutrosophic τ -structure ring exterior B spaces and neutrosophic
τ -structure ring exterior V spaces have been introduced. Further, neutrosophic τ -structure ring continuous
(resp. open,hardly open)functions, somewhat neutrosophic τ -structure ring continuous functions are studied.
Their characterization are derived and illustrated with examples.
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Abstract. Neutrosophic cubic fuzzy sets (NCFSs) involve interval valued and single valued neutrosophic sets,

and are used to describe uncertainty or fuzziness in a more efficient way. Aggregation of neutrosopic cubic fuzzy

information is crucial and necessary in a decision making theory. In order to get a better solution to decision

making problems under neutrosophic cubic fuzzy environment, this paper introduces an aggregating operator to

neutrosophic cubic fuzzy sets with the help of Bonferroni mean and geometric mean, and proposes neutrosophic

cubic fuzzy geometric Bonferroni mean operator (NCFGBMu,v) with its properties. Then, an efficient decision

making technique is introduced based on weighted operator WNCFGBMu,v
w . An application of the established

method is also examined for a real life problem.

Keywords: Neutrosophic Sets; Cubic Fuzzy Sets; Bonferroni Geometric Mean; Aggregation Operators; MCDM

—————————————————————————————————————————-

1. Introduction

Fuzzy set [1] deals with fuzziness in terms of degree of truthness or membership within the

range of interval [0, 1]. The traditional fuzzy sets are not efficient when the decision makers

face more complex problems and it is difficult to quantify their truth values. Y.B.Jun et al. [2]

introduced the notion of cubic sets which represents the degree of belongingness or certainty

by interval valued fuzzy sets and single valued fuzzy sets simultaneously. Therefore, cubic sets

are made up of two parts, where the first one is the interval valued fuzzy sets which represents

belongingness in a particular range of interval, and the second one is exact belongingness or

fuzzy sets.
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˜

Smarandache [3] introduced the philosophical idea of neutrosophic sets (NS) which is formu-

lated from the general concept of fuzzy sets and many real life applications are avaliable under

NS. Ajay, D., et al. used neutrosophic theory in fuzzy SAW method [4] and Abdel-Basset.M

et al. utilized neutrosophic sets to asseses the uncertainty of linear time-cost tradeoffs [5] and

also they applied to resource levelling problem in construction projects [6]. Further, biploar

neutrosophic sets have been used in medical diagnosis [7] and decision making suituations [8].

Moreover, Y.B.Jun et al. [9] and M.Ali et al. [10] effectively utilized cubic fuzzy sets to the

neutrosophic sets and introduced the concept of neutrosophic cubic fuzzy sets (NCFSs) with

some basic operations. Therefore the hybrid form of neutrosophic cubic fuzzy set may be

more adequate to address problems of more complexity using interval valued and exact val-

ued neutrosophic information and it has been broadly used in the fields of MCDM [12–19].

Neutrosophic cubic fuzzy sets contain more information than general form of NS and therefore

NCFSs provide better and efficient solution in MCDM.

Aggregating the fuzzy information plays an important role in decision theory and in partic-

ular decision making in real life problems. Variety of aggregating operators exist, but very few

aggregating operators are available under neutrosophic cubic fuzzy numbers such as Heronian

mean operators [21], Einstein Hybrid Geometric Aggregation Operators [22, 23], Dombi Ag-

gregation Operators [24], weighted arithmetic averaging (NCNWAA) operator and weighted

geometric averaging (NCNWGA) operator [25]. Still the Bonferroni geometric mean aggregat-

ing operator has not been studied in NCF environment. So the main purposes of this study

are: (1) to establish a neutrosophic cubic fuzzy Bonferroni weighted geometric mean operator

WNCFBWGMu,v
w .(2) to develop an MCDM method using WNCFBWGMu,v

w operator to

rank the alternatives under NCFS environment.

The content of the paper is organized as follows. Section 2 and 3 briefly introduce the basic

concepts and operations of neutrosophic cubic fuzzy sets. The concepts of Bonferroni mean and

geometric Bonferroni mean are explained in section 4. The neutrosophic cubic fuzzy geometric

Bonferroni mean NCFGBMu,v and weighted neutrosophic cubic fuzzy geometric Bonferroni

mean WNCFGBMu,v
w operators are established and examined with their properties in section

5. An MCDM method based on WNCFGBMu,v
w is presented in section 6. Finally conclusions

and scope for future research are given in section 7.

2. Neutrosophic Cubic Fuzzy Set

Definition 2.1. [9] Let X be a non empty universal set or universe of discourse. A neutro-

sophic cubic fuzzy set S̃ in X is constructed in the following form:

S = {x, 〈T (x), I(x), F (x)〉 ; 〈Tλ(x), Iλ(x), Fλ(x)〉 |x ∈ X}
D. Ajay, Said Broumi, J. Aldring ; An MCDM Method under Neutrosophic Cubic Fuzzy Sets
with Geometric Bonferroni Mean Operator
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where T (x), I(x), F (x) are interval valued neutrosophic sets; T (x) = [T−(x), T+(x)] ⊆ [0, 1] is

the degree of truth interval values; I(x) = [I−(x), I+(x)] ⊆ [0, 1] is the degree of indeterminacy

interval values; F (x) = [F−(x), F+(x)] ⊆ [0, 1] is the degree of falsity interval values; and

〈Tλ(x), Iλ(x), Fλ(x)〉 ∈ [0, 1] are truth, indeterminacy, and falsity degrees of membership values

respectively. For convenience, a neutrosophic cubic fuzzy element in a neutrosophic cubic fuzzy

set (NCFSs) S̃ is simply denoted by S̃ = {〈T, I, F 〉 ; 〈Tλ, Iλ, Fλ〉}, where 〈T, I, F 〉 ⊆ [0, 1] and

〈Tλ, Iλ, Fλ〉 ∈ [0, 1], satisfying the conditions that 0 ≤ 〈T+, I+, F+〉 ≤ 3 and 0 ≤ 〈Tλ, Iλ, Fλ〉 ≤
3.

˜

Definition 2.2. [10] Let S̃ be a neutrosophic cubic fuzzy set in X given by

S =
{[
T−(x), T+(x)

]
,
[
I−(x), I+(x)

]
,
[
F−(x), F+(x)

]
; 〈Tλ(x), Iλ(x), Fλ(x)〉 |x ∈ X

}
S̃ is said to be internal NCFSs if T−(x) ≤ Tλ(x) ≤ T+(x), I−(x) ≤ Iλ(x) ≤ I+(x), F−(x) ≤
Fλ(x) ≤ F+(x)∀x; S̃ is said to be external NCFSs if Tλ(x) /∈ [T−(x), T+(x)] , Iλ(x) /∈
[I−(x), I+(x)] , Fλ(x) /∈ [F−(x), F+(x)] ∀x.

˜

Definition 2.3. Let S̃ be a neutrosophic cubic fuzzy set in X. Then the support of neutro-

sophic cubic fuzzy set S̃∗ is defined by

S∗ =
{[
T−(x), T+(x)

]
⊃ [0, 0],

[
I−(x), I+(x)

]
⊃ [0, 0],

[
F−(x), F+(x)

]
⊂ [1, 1];

〈Tλ(x) > 0, Iλ(x) > 0, Fλ(x) < 1〉 |x ∈ X}

˜

Definition 2.4. [25] Let S̃ be a non empty neutrosophic cubic fuzzy number given by

S = {x, 〈T (x), I(x), F (x)〉 ; 〈Tλ(x), Iλ(x), Fλ(x)〉 |x ∈ X}

=
{[
T−(x), T+(x)

]
,
[
I−(x), I+(x)

]
,
[
F−(x), F+(x)

]
; 〈Tλ(x), Iλ(x), Fλ(x)〉 |x ∈ X

}
,

˜

then its score, accuracy and certainty functions can be defined respectively, as follows:

s(S) =

[4+T−(x)−I−(x)−F−(x)+T+(x)−I+(x)−F+(x)]
6 + [2+Tλ(x)−Iλ(x)−Fλ(x)]

3

2
, (1)

˜a(S) =
[(T−(x)− F−(x) + T+(x)− F+(x)) /2 + Tλ(x)− Fλ(x)]

2
, (2)

˜c(S) =
[(T−(x) + T+(x)) /2 + Tλ(x)]

2
; ˜ ˜ ˜s(S), a(S), c(S) ∈ [0, 1] (3)

3. Operations on NCFNs

Let Ai(x) =
{[
T−i , T

+
i

]
,
[
I−i , I

+
i

]
,
[
F−i , F

+
i

]
; 〈Tλi, Iλi, Fλi〉 |x ∈ X

}
(i = 1, 2, 3, · · ·n) and

Aj(y) =
{[
T−j , T

+
j

]
,
[
I−j , I

+
j

]
,
[
F−j , F

+
j

]
; 〈Tλj , Iλj , Fλj〉 |y ∈ Y

}
(j = 1, 2, 3, · · ·n) be two col-

lections of NCFNs. Then the following operations are defined [25]:
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(1) Union

Ai(x) ∪Aj(y) =
{[
min(T−i , T

−
j ),max(T+

i , T
+
j )
]
,
[
max(I−i , I

−
j ),min(I+i , I

+
j )
]
,[

max(F−i , F
−
j ),min(F+

i , F
+
j )
]

; 〈max(Tλi, Tλj),min(Iλi, Iλj),min(Fλi, Fλj)〉
}

(2) Intersection

Ai(x) ∩Aj(y) =
{[
max(T−i , T

−
j ),min(T+

i , T
+
j )
]
,
[
min(I−i , I

−
j ),max(I+i , I

+
j )
]
,[

min(F−i , F
−
j ),max(F+

i , F
+
j )
]

; 〈min(Tλi, Tλj),max(Iλi, Iλj),max(Fλi, Fλj)〉
}

(3) Complement

Aci (x) =
{[
F−i , F

+
i

]
,
[
1− I−i , 1− I

+
i

]
,
[
T−i , T

+
i

]
; 〈Fλi, 1− Iλi, Tλi〉 |x ∈ X

}
(4) Ai(x) ⊆ Aj(y) if and only if

[
T−i , T

+
i

]
⊆
[
T−j , T

+
j

]
,
[
I−i , I

+
i

]
⊇
[
I−j , I

+
j

]
,
[
F−i , F

+
i

]
⊇[

F−j , F
+
j

]
and Tλi ≤ Tλi, Iλi ≥ Iλj , Fλi ≥ Fλj∀x ∈ X, y ∈ Y.

(5) Ai(x) = Aj(y) if and only if Ai(x) ⊆ Aj(y) and Ai(x) ⊇ Aj(y) i.e.
[
T−i , T

+
i

]
=[

T−j , T
+
j

]
,
[
I−i , I

+
i

]
=
[
I−j , I

+
j

]
,
[
F−i , F

+
i

]
=
[
F−j , F

+
j

]
; 〈Tλi, Iλi, Fλi〉 = 〈Tλj , Iλj , Fλj〉

(6) For ω > 0

ωAi =
{[

1−
(
1− T−i

)ω
, 1−

(
1− T+

i

)ω]
,
[(
I−i
)ω
,
(
I+i
)ω]

,
[(
F−i
)ω
,
(
F+
i

)ω]
;

〈1− (1− Tλi)ω , (Iλi)ω , (Fλi)ω〉}

(7) For ω > 0

(Ai)
ω =

{[(
T−i
)ω
,
(
T+
i

)ω]
,
[
1−

(
1− I−i

)ω
, 1−

(
1− I+i

)ω]
,[

1−
(
1− F−i

)ω
, 1−

(
1− F+

i

)ω]
; 〈(Tλi)ω , 1− (1− Iλi)ω , 1− (1− Fλi)ω〉

}
(8) Algebraic Sum

Ai(x)⊕Aj(y) =
{[
T−i + T−j − T

−
i T
−
j , T

+
i + T+

j − T
+
i T

+
j

]
,
[
I−i I

−
j , I

+
i I

+
j

]
,[

F−i F
−
j , F

+
i F

+
j

]
; 〈Tλi + Tλj − TλiTλj , IλiIλj , FλiFλj〉

}
(9) Algebraic Product

Ai(x)⊗Aj(y) =
{[
T−i T

−
j , T

+
i T

+
j

]
,
[
I−i + I−j − I

−
i I
−
j , I

+
i + I+j − I

+
i I

+
j

]
,[

F−i + F−j − F
−
i F

−
j , F

+
i + F+

j − F
+
i F

+
j

]
; 〈TλiTλj , Iλi + Iλj − IλiIλj , Fλi + Fλj − FλiFλj〉

}
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4. Geometric Bonferroni Mean

Bonferroni proposed the concept of Bonferroni mean (BM) which is defined as follows:

Definition 4.1. [11] Let si(i = 1, 2, . . . , n) be n number of positive crisp data. For any

u, v ≥ 0,

Bu,v(s1, s2, . . . , sn) =

 1

n(n− 1)

n∑
i,j=1,
i6=j

(
sui s

v
j

)
1

u+v

(4)

We call Eq.(4) as the Bonferroni mean (BM) operator. Especially, if v=0, Eq.(4) reduces to

the generalized mean operator given by

Bu,0(s1, s2, . . . , sn) =

 1

n

n∑
i=1

sui

 1

(n− 1)

n∑
j=1,
i6=j

(
s0j
)


1
u+0

=
1

n

n∑
i=1

sui

) 1
u

(5)

If u = 1 and v = 0, the above equation produces the very known arithmetic mean (AM):

B1,0(s1, s2, . . . , sn) =
1

n

n∑
i=1

sui (6)

With the usual notion of geometric mean and the BM , the geometric Bonferroni mean

operator is formulated.

Definition 4.2. Let u, v > 0, and si(i = 1, 2, . . . , n) be a collection of non negative crisp

numbers. If

GBu,v(s1, s2, . . . , sn) =
1

(u+ v)

n∏
i,j=1,
i 6=j

(usi + vsj)
1

n(n−1) (7)

then GBu,v is called the geometric Bonferroni mean (GBM).

Obviously, the GBM statisfies the following properties:

(1) GBu,v(0, 0, . . . , 0) = 0

(2) GBu,v(s1, s2, . . . , sn) = s if si = s, for all i = 1, 2, . . . , n.

(3) GBu,v(s1, s2, . . . , sn) ≥ GBu,v(t1, t2, . . . , tn) if si ≥ ti ∀i that is, GBu,v is monotonic.

(4) Min(si) ≤ GBu,v ≤ Max(si).

Furthermore, if v = 0, Eq.(7) generates the geometric mean:

GBu,0 (s1, s2, . . . , sn) =
1

u

n∏
i,j=1,
i6=j

(usi)
1

n(n−1) =

n∏
i=1

(si)
1
n (8)
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5. Neutrosophic Cubic Fuzzy Geometric Bonferroni Mean

Definition 5.1. Let S̃i =
{[
T−i , T

+
i

]
,
[
I−i , I

+
i

]
,
[
F−i , F

+
i

]
; 〈Tλi, Iλi, Fλi〉

}
be a collection of

neutrosophic cubic fuzzy numbers (NCFN). For any u, v > 0,

NCFGBMu,v
(
S̃1, S̃2, ..., S̃n

)
=

1

u+ v

 n⊗
i,j=1,
i6=j

(
˜ ˜(uSi ⊕ vSj)

1
n(n−1)

)
is called the neutrosophic cubic fuzzy geometric bonferroni mean operator.

Theorem 5.2. Let u, v > 0 and S̃i =
{[
T−i , T

+
i

]
,
[
I−i , I

+
i

]
,
[
F−i , F

+
i

]
; 〈Tλi, Iλi, Fλi〉

}
be a col-

lection of neutrosophic cubic fuzzy numbers (NCFN). Then the aggregated value is calculated

using the operator NCFGBMu,v

NCFGBMu,v
(
S̃1, S̃2, ..., S̃n

)
=

1

u+ v

 n⊗
i,j=1,
i6=j

(
˜ ˜(uSi ⊕ vSj)

1
n(n−1)

)

=


1−

1−
n∏

i,j=1
i6=j

(
1− (1− T−i )u(1− T−j )v

) 1
n(n−1)


1

u+v

,

1−

1−
n∏

i,j=1,
i6=j

(
1− (1− T+

i )u(1− T+
j )v

) 1
n(n−1)


1

u+v

 ,

1−

n∏
i,j=1
i6=j

(
1− (I−i )u(I−j )v

) 1
n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(
1− (I+i )u(I+j )v

) 1
n(n−1)


1

u+v

 ,

1−

n∏
i,j=1
i6=j

(
1− (F−i )u(F−j )v

) 1
n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(
1− (F+

i )u(F+
j )v

) 1
n(n−1)


1

u+v

 ;

〈
1−

1−
n∏

i,j=1
i6=j

(1− (1− Tλi)u(1− Tλj)v)
1

n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(1− (Iλi)
u(Iλj)

v)
1

n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(1− (Fλi)
u(Fλj)

v)
1

n(n−1)


1

u+v〉 .

(9)
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˜

Proof. . Using the operational laws on NCFN described in section (3), we have

uSi =
{[

1−
(
1− T−i

)u
, 1−

(
1− T+

i

)u]
,
[(
I−i
)u
,
(
I+i
)u]

,
[(
F−i
)u
,
(
F+
i

)u]
;

〈1− (1− Tλi)u , (Iλi)u , (Fλi)u〉}

˜vSj =
{[

1−
(

1− T−j
)v
, 1−

(
1− T+

j

)v]
,
[(
I−j

)v
,
(
I+j

)v]
,
[(
F−j

)v
,
(
F+
j

)v]
;

〈1− (1− Tλj)v , (Iλj)v , (Fλj)v〉}

˜ ˜uSi ⊕ vSj =
{[

1− (1− T−i )u(1− T−j )v, 1− (1− T+
i )u(1− T+

j )v
]
,
[
(I−i )u(I−j )v, (I+i )u(I+j )v

]
,[

(F−i )u(F−j )v, (F+
i )u(F+

j )v
]

; 〈1− (1− Tλi)u(1− Tλj)v, (Iλi)u(Iλj)
v, (Fλi)

u(Fλj)
v〉
}
.

Next, we have the following equation which has been derived by Xu and Yager [28].

n⊗
i,j=1,
i6=j

(
˜ ˜uSi ⊕ vSj

) 1
n(n−1)

=


 n∏
i,j=1,
i6=j

(
1− (1− T−i )u(1− T−j )v

) 1
n(n−1)

,

n∏
i,j=1,
i6=j

(
1− (1− T+

j )u(1− T+
j )v

) 1
n(n−1)

 ,
1−

n∏
i,j=1,
i6=j

(
1− (I−i )u(I−j )v

) 1
n(n−1)

, 1−
n∏

i,j=1,
i 6=j

(
1− (I+i )u(I+j )v

) 1
n(n−1)

 ,
1−

n∏
i,j=1,
i6=j

(
1− (F−i )u(F−j )v

) 1
n(n−1)

, 1−
n∏

i,j=1,
i6=j

(
1− (F+

i )u(F+
j )v

) 1
n(n−1)

 ;

〈
n∏

i,j=1,
i6=j

(1− (1− Tλi)u(1− Tλj)v)
1

n(n−1) , 1−
n∏

i,j=1,
i 6=j

(
1− (Iuλi) (Ivλj)

) 1
n(n−1) ,

1−
n∏

i,j=1,
i6=j

(
1− (F uλi) (F vλj)

) 1
n(n−1)

〉 .

(10)

˜

Using NCF operational laws, Eq.(10) yields neutrosophic cubic fuzzy geometric bonferroni

mean operator NCFGBMu,v(S1, S̃2, · · · , S̃n) given by Eq.(9). In addition, it satisfies the
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following conditions1−

1−
n∏

i,j=1
i 6=j

(
1− (1− T−i )u(1− T−j )v

) 1
n(n−1)


1

u+v

,

1−

1−
n∏

i,j=1,
i6=j

(
1− (1− T+

i )u(1− T+
j )v

) 1
n(n−1)


1

u+v

 ⊆ [0, , 1],


1−

n∏
i,j=1
i6=j

(
1− (I−i )u(I−j )v

) 1
n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(
1− (I+i )u(I+j )v

) 1
n(n−1)


1

u+v

 ⊆ [0, 1],


1−

n∏
i,j=1
i6=j

(
1− (F−i )u(F−j )v

) 1
n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(
1− (F+

i )u(F+
j )v

) 1
n(n−1)


1

u+v

 ⊆ [0, 1];

0 ≤ 1−

1−
n∏

i,j=1
i6=j

(1− (1− Tλi)u(1− Tλj)v)
1

n(n−1)


1

u+v

≤ 1,

0 ≤

1−
n∏

i,j=1
i6=j

(1− (Iλi)
u(Iλj)

v)
1

n(n−1)


1

u+v

≤ 1,

0 ≤

1−
n∏

i,j=1
i6=j

(1− (Fλi)
u(Fλj)

v)
1

n(n−1)


1

u+v

≤ 1

˜

which completes the proof of the theorem.

We discuss some of the important properties of the NCFGBMu,v:

(1) Idempotency: Suppose the colletive data of neutrosophic cubic fuzzy numbers

Si =
{[
T−i , T

+
i

]
,
[
I−i , I

+
i

]
,
[
F−i , F

+
i

]
; 〈Tλi, Iλi, Fλi〉

}
(i = 1, 2, 3, · · ·n) are equal, for
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˜ ˜

any u, v > 0, the aggregate operator be

NCFGBMu,v(S1, S̃2, ..., S̃n) = NCFGBMu,v(S, S̃, ..., S̃)

=
1

u+ v

 n⊗
i,j=1,
i6=j

((
˜ ˜uS ⊕ vS

) 1
n(n−1)

)

=
1

u+ v

 n⊗
i,j=1,
i6=j

(
(u+ v) S̃

) 1
n(n−1)


=

1

u+ v

(
(u+ v) S̃

)n(n−1)
n(n−1)

= S̃

(11)

(2) Commuatativity: Let S̃i(i = 1, 2, 3, · · ·n) be a collection of neutrosophic cubic num-

bers. For any u, v > 0,

NCFGBMu,v
(
S̃1, S̃2, ..., S̃n

)
= NCFGBMu,v

(
˜̇S1,

˜̇S2, . . . ,
˜̇Sn

)
(12)

Let
(

˜̇S1,
˜̇S2, . . . ,

˜̇Sn

)
be any permuation of

(
S̃1, S̃2, ..., S̃n

)
. Then

NCFGBMu,v
(
S̃1, S̃2, ..., S̃n

)
=

1

u+ v

 n⊗
i,j=1,
i6=j

(
˜ ˜(uSi ⊕ vSj)

1
n(n−1)

)

=
1

u+ v

 n⊗
i,j=1,
i6=j

(
(u ˜̇Si ⊕ v ˜̇Sj)

1
n(n−1)

)
= NCFGBMu,v

(
˜̇S1,

˜̇S2, . . . ,
˜̇Sn

)
(3) Monotonicity: Let S̃i (i = 1, 2, 3, · · ·n) and S̃j (j = 1, 2, 3, · · ·n) be two collections

of neutrosophic cubic numbers. For any u, v > 0, if [T−i , T
+
i ],⊆ [T−j , T

+
j ], [I−i , I

+
i ] ⊇

[I−j , I
+
j ],
[
F−i , F

+
i

]
⊇ [F−j , F

+
j ];Tλi ≤ Tλj , Iλi ≥ Iλj , Fλi ≥ Fλj (∀i, j = 1, 2, 3, . . . n),

Then

NCFGBMu,v
(
S̃i

)
≤ NCFGBMu,v

(
S̃j

)
(13)

(4) Boundedness: Let S̃i =
{[
T−i , T

+
i

]
,
[
I−i , I

+
i

]
,
[
F−i , F

+
i

]
; 〈Tλi, Iλi, Fλi〉

}
(i =

˜

1, 2, 3, · · ·n) be a collection of neutrosophic cubic fuzzy numbers, and let

S−i =
{
inf

([
T−i , T

+
i

])
, sup

([
I−i , I

+
i

])
, sup

([
F−i , F

+
i

])
;min (Tλi) ,max (Iλi) ,max (Fλi)

}
,

S̃+
i =

{
sup

([
T−i , T

+
i

])
, inf

([
I−i , I

+
i

])
, inf

([
F−i , F

+
i

])
;max (Tλi) ,min (Iλi) ,min (Fλi)

}
.

For any u, v > 0,

S̃−i ≤ NCFGBM
u,v
(
S̃i

)
(i = 1, 2, 3, . . . n) ≤ S̃+

i (14)
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Thus the boundedness is easily obtained.

If parameters u and v are modified in NCFGBMu,v, then a special case can be obtained as

follows:

If v → 0, then by equation (9), we have

NCFGBMu,v
(
S̃1, S̃2, ..., S̃n

)
=

1

u+ v

 n⊗
i,j=1,
i6=j

((
˜ ˜uSi ⊕ vSj

) 1
n(n−1)

) =
1

u

n⊗
i=1

(
˜(uSi)

1
n

))

=


1−

(
1−

n∏
i=1

(
1− (1− T−i )u

) 1
n

) 1
u

, 1− 1−
n∏
i=1

(
1− (1− T+

i )u
) 1
n

) 1
u

 ,
 1−

n∏
i=1

(
1− (I−i )u

) 1
n

) 1
u

, 1−
n∏
i=1

(
1− (I+i )u

) 1
n

) 1
u

 ,
 1−

n∏
i=1

(
1− (F−i )u

) 1
n

) 1
u

, 1−
n∏
i=1

(
1− (F+

i )u
) 1
n

) 1
u

 ;

〈
1− 1−

n∏
i=1

(1− (1− Tλi)u)
1
n

) 1
u

, 1−
n∏
i=1

(1− (Iλi)
u)

1
n

) 1
u

, 1−
n∏
i=1

(1− (Fλi)
u)

1
n

) 1
u
〉 .

which we call the generalized neutrosophic cubic fuzzy geometric mean (NCFBGMu,v).

5.1. Weighted Neutrosophic Cubic Fuzzy Bonferroni Geometric Mean

Generally weighted aggregating operator plays a significant role in decision-making pro-

cesses to aggregate information. Therefore we propose a weighted aggregate operator based

on neutrosophic cubic fuzzy bonferroni geometric mean (WNCFGBMu,v
w ).

Definition 5.3. Let S̃i =
{[
T−i , T

+
i

]
,
[
I−i , I

+
i

]
,
[
F−i , F

+
i

]
; 〈Tλi, Iλi, Fλi〉

}
˜

be a collection of

neutrosophic cubic numbers (NCN), and w = (W1,W2, . . . ,Wn)T the wieght vector of S̃i =

S1, S̃2, . . . , S̃n, where wi indicates the importance degree of S̃i such that wi > 0 and
∑n

i=1wi =

1 (i = 1, 2, 3, . . . , n). For any u, v > 0,

WNCFGBMu,v
w

(
S̃1, S̃2, ..., S̃n

)
=

1

u+ v

 n⊗
i,j=1,
i6=j

((
˜u(Si)

wi ˜⊕ v(Sj)
wj
) 1
n(n−1)

) (15)

is called the weighted neutrosophic cubic fuzzy geometric bonferroni mean operator.

Theorem 5.4. Let u, v > 0 and S̃i (i = 1, 2, 3, . . . , n) be a collection of neutrosophic cubic

fuzzy numbers (NCFN), whose weight vector is wi = (W1,W2, . . . ,Wn)T , which satisfies that
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wi > 0, and

˜

i=1wi = 1 (i = 1, 2, 3, . . . , n). Then the aggregated value using the operator is
∑n

WNCFGBMu,v
w (S1, S̃2, ..., S̃n) =

1

u+ v

 n⊗
i,j=1,
i6=j

((
˜u(Si)

wi ˜⊕ v(Sj)
wj
) 1
n(n−1)

)

=


1−

1−
n∏

i,j=1
i6=j

(
1− (1− (T−i )wi)u(1− (T−j )wj )v

) 1
n(n−1)


1

u+v

,

1−

1−
n∏

i,j=1,
i6=j

(
1− (1− (T+

i )wi)u(1− (T+
j )wj )v

) 1
n(n−1)


1

u+v

 ,

1−

n∏
i,j=1
i6=j

(
1− (1− (1− I−i )wi)u(1− (1− I−j )wj )v

) 1
n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(
1− (1− (1− I+i )wi)u(1− (1− I+j )wj )v

) 1
n(n−1)


1

u+v

 ,

1−

n∏
i,j=1
i6=j

(
1− (1− (1− F−i )wi)u(1− (1− F−j )wj )v

) 1
n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(
1− (1− (1− F+

i )wi)u(1− (1− F+
j )wj )v

) 1
n(n−1)


1

u+v

 ;

〈
1−

1−
n∏

i,j=1
i6=j

(1− (1− (Tλi)
wi)u(1− (Tλj)

wj )v)
1

n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(1− (1− (1− Iλi)wi)u(1− (1− Iλj)wj )v)
1

n(n−1)


1

u+v

,

1−
n∏

i,j=1
i6=j

(1− (1− (1− Fλi)wi)u(1− (1− Fλj)wj )v)
1

n(n−1)


1

u+v〉 .

(16)
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Proof. The proof is identical with the proof of theorem (5.2) and therefore is omitted.

6. An application of weighted neutrosophic cubic fuzzy geometric bonferroni mean

operator to MCDM problems

In this section, we propose an algorithm for MCDM method based on neutrosophic cubic

fuzzy geometric Bonferroni mean operators and illustrate it with a numerical example.

Algorithm. Let Ãi = {γ̃1, γ̃2, . . . , γ̃n} and C̃j = {η̃1, η̃2, . . . , η̃m} be collections of n al-

ternatives and m attributes respectively. According to the appropriate weight of attributes

(ωj)
T = {ω̃1, ω̃2, . . . ω̃m} is determined, which satisfies the condition that ω̃j > 0 and̂ ∑

ω̂j = 1.

˜

Then the following steps are used in process of MCDM method.

Step 1. Construct neutrosophic cubic fuzzy decision matrix D = [Nij ]n×m.

Step 2. The decision matrix is aggregated using NCFGBMu,v or WNCFGBMu,v
w to

m attributes.

Step 3. Utilize the score formula (Eq.1) to calculate the values of s(Ai)

Step 4. The n alternatives are ranked according to their score values

6.1. Numerical Example and Investigation

An illustrative example on the selection problem of investment alternatives is adapted

(Ref. [25, 26]) to validate the proposed MCDM method with NCF data. A company wants a

sum of money to be invested in an industry. Then the committee suggests the following four

feasible alternatives: (a) γ̃1 is a textile company; (b) γ̃2 is an automobile company; (c) γ̃3 is a

computer company; (d) γ̃4 is a software company. Suppose that three attributes namely, (1) η̃1

is the risk; (2) η̃2 is the growth; (3) η̃3 is the environmental impact; are taken into the evalua-

tion requirements of the alternatives. The weight vectors of the three attributes η̃j(j = 1, 2, 3)

are (ω̂j)
T = (0.32, 0.38, 0.3) respectively. Then the experts or decision makers are asked to

evaluate each alternative on attributes by the form of NCFNs. Thus, the assessment data can

be represented by neutrosophic cubic decision matrix D = [Sij ]m×n.

step 1. Neutrosophic cubic fuzzy decision matrix D = [Sij ]4×3

D =



[0.5, 0.6], [0.1, 0.3],

[0.2, 0.4]; 〈0.6, 0.2, 0.3〉

)
,

[0.5, 0.6], [0.1, 0.3],

[0.2, 0.4]; 〈0.6, 0.2, 0.3〉

)
,

[0.2, 0.4], [0.7, 0.8],

[0.8, 0.9]; 〈0.3, 0.8, 0.9〉

)
[0.6, 0.8], [0.1, 0.2],

[0.2, 0.3]; 〈0.7, 0.1, 0.2〉

)
,

[0.6, 0.7], [0.1, 0.2],

[0.2, 0.3]; 〈0.6, 0.1, 0.2〉

)
,

[0.3, 0.4], [0.6, 0.7],

[0.8, 0.9]; 〈0.3, 0.6, 0.9〉

)
[0.4, 0.6], [0.2, 0.3],

[0.1, 0.3]; 〈0.6, 0.2, 0.2〉

)
,

[0.5, 0.6], [0.2, 0.3],

[0.3, 0.4]; 〈0.6, 0.3, 0.4〉

)
,

[0.3, 0.5], [0.7, 0.8],

[0.6, 0.7]; 〈0.4, 0.8, 0.7〉

)
[0.7, 0.8], [0.1, 0.2],

[0.1, 0.2]; 〈0.8, 0.1, 0.2〉

)
,

[0.6, 0.7], [0.1, 0.2],

[0.1, 0.3]; 〈0.7, 0.1, 0.2〉

)
,

[0.3, 0.4], [0.6, 0.7],

[0.7, 0.8]; 〈0.3, 0.7, 0.8〉

)
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˜

˜

˜

˜

˜

˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜

˜

˜

˜

˜ ˜ ˜

˜

˜ ˜ ˜ ˜

step 2. The decision matrix is aggregated by WNCFGBMu,v
w (Si1, S̃i2, S̃i3)(i = 1, 2, . . . n)

operators (Using Eq.16) to the three (η̃j , j = 1, 2, 3) attributes.

If we take the parameter values u = v = 1, then using Ãi = WNCFGBM
(1,1)
w , we get

the following values

A1 = {[0.7345, 0.8126] , [0.0881, 0.1861] , [0.1453, 0.2523] ; 〈0.7951, 0.1453, 0.2093〉} ,
A2 = {[0.7951, 0.8635] , [0.0790, 0.1307] , [0.1453, 0.2093] ; 〈0.8124, 0.0790, 0.1642〉} ,
A3 = {[0.7378, 0.8287] , [0.1307, 0.1861] , [0.1195, 0.1876] ; 〈0.8126, 0.1674, 0.1703〉} ,
A4 = {[0.8124, 0.8635] , [0.0790, 0.1307] , [0.0881, 0.1674] ; 〈0.8491, 0.0881, 0.1453〉} .

step 3. Utilizing Eq.(1), the score values s(Ai) are found

s(A1) = 0.8130, s(A2) = 0.8527, s(A3) = 0.8244, s(A4) = 0.8702.

step 4. Since the values s(A4) > s(A2) > s(A3) > s(A1), the rank of alternatives are in

the order of γ̃4 > γ̃2 > γ̃3 > γ̃1.

From the results, we could see that the ranking order and the best choice of alternatives

are the same as the results in [25,26].

If the parameters u = v = 2 , then using Ãi = WNCFGBM
(2,2)
w , we get the following

aggregate values

A1 = {[0.7306, 0.8111] , [0.0950, 0.1940] , [0.1542, 0.2619] ; 〈0.7916, 0.1542, 0.2204〉} ,
A2 = {[0.7916, 0.8563] , [0.0847, 0.1376] , [0.1542, 0.2204] ; 〈0.8055, 0.0847, 0.1757〉} ,
A3 = {[0.7371, 0.8283] , [0.1376, 0.1940] , [0.1354, 0.1945] ; 〈0.8111, 0.1797, 0.1841〉} ,
A4 = {[0.8055, 0.8563] , [0.0847, 0.1376] , [0.0950, 0.1797] ; 〈0.8395, 0.0950, 0.1542〉} .

Then we calculate the score of the alternatives s(A1) = 0.8059, s(A2) = 0.8451, s(A3) =

0.8165, s(A4) = 0.8621.

Since s(A4) > s(A2) > s(A3) > s(A1), the order of the rank is γ̃4 > γ̃2 > γ̃3 > γ̃1.

As the values of parameters u and v change according to the subjective preference of the

decision maker, we can find that the ranking order of the alternatives are the same, which

indicates that the proposed method can obtain the most optimistic results than the existing

MCDM methods based on GBM [29]. For a detailed comparision, we represent the scores of

each alternatives in Fig.1 by changing the values of parameters u, v between 0 and 10.
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(a) Scores of alternative γ̃1 (b) Scores of alternative γ̃2

(c) Scores of alternative γ̃3 (d) Scores of alternative γ̃4

Figure 1. Scores of alternative γ̃i obtained by WNCFGBMu,v
w

7. Conclusions

In this paper, we have applied geometric Bonferroni mean to neutrosophic cubic fuzzy

sets. A new aggregating operator NCFGBMu,v has been established and its properties are

discussed. The MCDM method is developed based on the weighted operator WNCFGBMu,v
w

and is verified with a numerical example where four alternatives are ranked under three criteria.

The graphical representation of the results depicted above shows that the ranking of the

alternatives remains unaffected when the parameters are changed due to subjective preferences.

This proves that the method is objective and moreover the result obtained, when compared

with the results of existing techniques, shows that the proposed method is more effective

in dealing with neutrosophic fuzzy information. In future, NCFGBMu,v operator could be

applied to various other MCDM methods.
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Abstract: In this paper, we introduce the notion of single valued neutrosophic mapping defined by single valued
neutrosophic relation which is considered as a generalization of fuzzy mapping defined by fuzzy relation and several
properties related to this notion are studied. Moreover, we generalize the notion of fuzzy topology on fuzzy sets
introduced by Kandil et al. to the setting of single valued neutrosophic sets. As applications, we establish the property
of continuity in single valued neutrosophic topological space and investigate relationships among various types of
single valued neutrosophic continuous mapping.

Keywords: Single valued neutrosophic set; Binary relation; Mapping; Topology; Continuous mapping.

1 Introduction
It is a well-known fact by now that mappings in crisp set theory are among the oldest acquaintances of modern
mathematics and, play an important role in many mathematical branches (both pure and applied), as well as
in topology and its analysis approaches. The uses of mappings appear also in formal logic [13], category
theory [35], graph theory [11], group theory [6] and in computer science [31]. In general, it was and still more
common.

In fuzzy setting, the concept of fuzzy mapping has received far attention. It has appeared in many papers,
for instance, S. Heilpern [12] introduced this concept and proved a fixed point theorem for fuzzy contraction
mappings. In [17], S. Lou and L. Cheng proved that fuzzy controllers can be regarded as a fuzzy mapping
from the set of linguistic variables describing the observed object to that of linguistic variables describing the
controlled objects. Thereafter, Lim et al. [18] investigated the equivalence relations and mappings for fuzzy
sets and relationship between them. Ismail and Massa’deh [9] defined L-fuzzy mappings and studied their
operations, also they developed many properties of classical mappings into L-fuzzy case. For the study of
fuzzy continuous mappings in fuzzy topological space, an extended approaches are proposed, R.N. Bhaumik
and M.N Mukherjee [5] investigated some properties of fuzzy completely continuous mapping. Mukherjee and
B. Ghosh [27] pay attention to the introduction and studying of the concepts of certain classes of mappings
between fuzzy topological spaces. Each of these mappings presents a stronger form of the fuzzy continuous
mappings. In this regard, we find that other authors also contributed a lot to this field, like M. K. Single and A.
R. Single [36], B. Ahmed [1] and M. K. Mishra et al. [26].
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In [3], Attanassov introduced the concept of intuitionistic fuzzy set which is an extension of fuzzy set, char-
acterized by a membership (truth-membership) function and a non-membership (falsity-membership) function
for the elements of a universe X . Moreover, there is a restriction that the sum of both values is less and equal
to one. Recently, F. Smarandache [32] generalized the Atanassov’s intuitionistic fuzzy sets and other types of
sets to the notion of neutrosophic sets. He introduced this concept to deal with imprecise and indeterminate
data. Neutrosophic sets are characterized by truth membership function (T ), indeterminacy membership func-
tion (I) and falsity membership function (F ). Many researchers have studied and applied in different fields the
neutrosophic sets and its various extensions such as decision making problems (e.g. [39, 41]), image process-
ing (e.g. [8, 44]), educational problem (e.g. [25]), conflict resolution (e.g. [28]), social problems (e.g. [29, 24]),
medical diagnosis (e.g. [22, 40, 42]), supply chain management (e.g. [20]), construction projects (e.g. [21])
and to address the conditions of uncertainty and inconsistency (e.g. [23]) and others. In particular, to exercise
neutrosophic sets in real life applications suitably, Wang et al. [37] introduced the concept of single valued
neutrosophic set as a subclass of a neutrosophic set, and investigated some of its properties. Very recently,
Kim et al. [15] studied a single valued neutrosophic (relation/ transitive closure/ equivalence relation class/
partition). The studies, whether theoretical or applied on single valued neutrosophic set have been progressing
rapidly. For instance, [2, 7, 14] and more others.

Motivated by recent developments relating to this framework, in this paper, we introduce the notion of
single valued neutrosophic mapping defined by single valued neutrosophic relation as a generalization of fuzzy
mappings introduced by Ismail and Massa’deh [9] and many properties related to this notion are studied. Also,
we generalize the notion of fuzzy topology on fuzzy sets introduced by A. Kandil et al. [16] to the setting of
single valued neutrosophic sets to establish the continuity property of single valued neutrosophic mapping. To
that end, we investigate relation among various types of single valued neutrosophic continuous mappings.

The contents of the paper are organized as follows. In Section 2, we recall the necessary basic concepts and
properties of single valued neutrosophic sets, single valued neutrosophic relations and some related notions that
will be needed throughout this paper. In Section 3, the notion of single valued neutrosophic mapping defined
by single valued neutrosophic relation is introduced and some properties related to this notion are studied.
In Section 4, we establish as an application the single valued neutrosophic continuous mapping in single
valued neutrosophic topological space and relationships between various types of single valued neutrosophic
continuous mapping are explained. Finally, we present some conclusions and discuss future research in Section
5.

2 Preliminaries

This section contains the basic definitions and properties of single valued neutrosophic sets and some related
notions that will be needed throughout this paper.

2.1 Single valued neutrosophic sets

The notion of fuzzy sets was first introduced by Zadeh [43].

Definition 2.1. [43] Let X be a nonempty set. A fuzzy set A = {〈x, µA(x)〉 | x ∈ X} is characterized by a
membership function µA : X → [0, 1], where µA(x) is interpreted as the degree of membership of the element
x in the fuzzy subset A for any x ∈ X.
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In 1983, Atanassov [3] proposed a generalization of Zadeh membership degree and introduced the notion
of the intuitionistic fuzzy set.

Definition 2.2. [3] Let X be a nonempty set. An intuitionistic fuzzy set (IFS, for short) A on X is an object
of the form A = {〈x, µA(x), νA(x)〉 | x ∈ X} characterized by a membership function µA : X → [0, 1] and a
non-membership function νA : X → [0, 1] which satisfy the condition:

0 ≤ µA(x) + νA(x) ≤ 1, for any x ∈ X.

In 1998, Smarandache [32] defined the concept of a neutrosophic set as a generalization of Atanassov’s
intuitionistic fuzzy set. Also, he introduced neutrosophic logic, neutrosophic set and its applications in [33, 34].
In particular, Wang et al. [37] introduced the notion of a single valued neutrosophic set.

Definition 2.3. [33] Let X be a nonempty set. A neutrosophic set (NS, for short) A on X is an object of the
form A = {〈x, µA(x), σA(x), νA(x)〉 | x ∈ X} characterized by a membership function µA : X →]−0, 1+[
and an indeterminacy function σA : X →]−0, 1+[ and a non-membership function νA : X →]−0, 1+[ which
satisfy the condition:

−0 ≤ µA(x) + σA(x) + νA(x) ≤ 3+, for any x ∈ X.

Certainly, intuitionistic fuzzy sets are neutrosophic sets by setting σA(x) = 1− µA(x)− νA(x).
Next, we show the notion of single valued neutrosophic set as an instance of neutrosophic set which can be

used in real scientific and engineering applications.

Definition 2.4. [37] Let X be a nonempty set. A single valued neutrosophic set (SVNS, for short) A on X is
an object of the form A = {〈x, µA(x), σA(x), νA(x)〉 | x ∈ X} characterized by a truth-membership function
µA : X → [0, 1], an indeterminacy-membership function σA : X → [0, 1] and a falsity-membership function
νA : X → [0, 1].

The class of single valued neutrosophic sets on X is denoted by SV N(X).

For any two SVNSs A and B on a set X , several operations are defined (see, e.g., [37, 38]). Here we will
present only those which are related to the present paper.

(i) A ⊆ B if µA(x) ≤ µB(x) and σA(x) ≤ σB(x) and νA(x) ≥ νB(x), for all x ∈ X,

(ii) A = B if µA(x) = µB(x) and σA(x) = σB(x) and νA(x) = νB(x), for all x ∈ X,

(iii) A ∩B = {〈x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), νA(x) ∨ νB(x)〉 | x ∈ X},

(iv) A ∪B = {〈x, µA(x) ∨ µB(x), σA(x) ∨ σB(x), νA(x) ∧ νB(x)〉 | x ∈ X},

(v) A = {〈x, 1− νA(x), 1− σA(x), 1− µA(x)〉 | x ∈ X},

(vi) [A] = {〈x, µA(x), σA(x), 1− µA(x)〉 | x ∈ X},

(vii) 〈A〉 = {〈x, 1− νA(x), σA(x), νA(x)〉 | x ∈ X}.

In the sequel, we need the following definition of level sets (which is also often called (α, β, γ)-cuts) of a
single valued neutrosophic set.
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Definition 2.5. [2] Let A be a single valued neutrosophic set on a set X . The (α, β, γ)-cut of A is a crisp
subset

Aα,β,γ = {x ∈ X | µA(x) ≥ α and σA(x) ≥ β and νA(x) ≤ γ},

where α, β, γ ∈]0, 1].

Definition 2.6. [2] Let A be a single valued neutrosophic set on a set X . The support of A is the crisp subset
on X given by

Supp(A) = {x ∈ X | µA(x) 6= 0 and σA(x) 6= 0 and νA(x) 6= 0}.

2.2 Single valued neutrosophic relations

Kim et al. [15] introduced the concept of single valued neutrosophic relation as a natural generalization of
fuzzy and intuitionistic fuzzy relation.

Definition 2.7. [15] A single valued neutrosophic binary relation (A single valued neutrosophic relation, for
short) from a universe X to a universe Y is a single valued neutrosophic subset in X ×Y , i.e., is an expression
R given by

R = {〈(x, y), µR(x, y), σR(x, y), νR(x, y)〉 | (x, y) ∈ X × Y } ,

where µR : X × Y → [0, 1], and σR : X × Y → [0, 1], and νA : X × Y → [0, 1].
For any (x, y) ∈ X × Y . The value µR(x, y) is called the degree of a membership of (x, y) in R, σR(x, y) is
called the degree of indeterminacy of (x, y) in R and νR(x, y) is called the degree of non-membership of (x, y)
in R.

Example 2.8. Let X = {a, b, c, d, e}. Then the single valued neutrosophic relation R defined on X by

R = {〈(x, y), µR(x, y), σR(x, y), νR(x, y)〉 | x, y ∈ X},

where µR, σR and νR are given by the following tables:

µR(., .) a b c d e
a 0.35 0 0 0.35 0.30
b 0 0.40 0 0.35 0.45
c 0.20 0 0.65 0 0.70
d 0 0 0 1 0
e 0.25 0.35 0 0 0.60

σR(., .) a b c d e
a 0.5 0.5 0.42 0.2 0
b 0.60 0.12 0.40 0.80 0.10
c 0 1 0.02 0.75 0.15
d 0.33 1 0.88 0 0.10
e 0.20 0.55 1 0.55 0.30
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νR(., .) a b c d e
a 0 1 0.40 0.25 0.25
b 0.30 0.35 0.20 0.35 0.10
c 0.80 1 0 0.85 0.15
d 1 1 1 0 1
e 0.70 0.55 1 0.90 0.30

Next, the following definitions is needed to recall.

Definition 2.9. [30] Let R and P be two single valued neutrosophic relations from a universe X to a universe
Y .

(i) The transpose (inverse) Rt of R is the single valued neutrosophic relation from the universe Y to the
universe X defined by

Rt = {〈(x, y), µRt(x, y), σRt(x, y), νRt(x, y)〉 | (x, y) ∈ X × Y },

where 
µRt(x, y) = µR(y, x)
and

σRt(x, y) = σR(y, x)
and

νRt(x, y) = νR(y, x) ,

for any (x, y) ∈ X × Y.

(ii) R is said to be contained in P or we say that P contains R, denoted by R ⊆ P , if for all (x, y) ∈ X × Y
it holds that µR(x, y) ≤ µP (x, y), σR(x, y) ≤ σP (x, y) and νR(x, y) ≥ νP (x, y).

(iii) The intersection (resp. the union) of two single valued neutrosophic relations R and P from a universe
X to a universe Y is a single valued neutrosophic relation defined as

R ∩ P = {〈(x, y),min(µR(x, y), µP (x, y)),min(σR(x, y), σP (x, y)),max(νR(x, y), νP (x, y))〉 | (x, y)
∈ X × Y }

and

R∪P = {〈(x, y),max(µR(x, y),max(σR(x, y), σP (x, y)),min(νR(x, y), νP (x, y))〉 | (x, y) ∈ X×Y } .

Definition 2.10. [30, 38] Let R be a single valued neutrosophic relation from a universe X into itself.

(i) Reflexivity: µR(x, x) = σR(x, x) = 1 and νR(x, x) = 0, for any x ∈ X .

(ii) Symmetry: for any x, y ∈ X then 
µR(x, y) = µR(y, x)
σR(x, y) = σR(y, x)
νR(x, y) = νR(y, x)

,
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(iii) Antisymmetry: for any x, y ∈ X , x 6= y then
µR(x, y) 6= µR(y, x)
σR(x, y) 6= σR(y, x)
νR(x, y) 6= νR(y, x)

,

(iv) Transitivity: R ◦R ⊂ R i.e., R2 ⊂ R.

3 Single valued neutrosophic mappings defined by single valued neu-
trosophic relations

In this section, we generalize the notion of fuzzy mapping defined by fuzzy relation introduced by Ismail and
Massa’deh [9] to the setting of single valued neutrosophic sets. Also, the main properties related to single
valued neutrosophic mapping are studied.

Definition 3.1. Let A be a single valued neutrosophic set on X and B be a single valued neutrosophic set on
Y , let f : Supp A → Supp B be an ordinary mapping and R be a single valued neutrosophic relation on
X × Y . Then fR is called a single valued neutrosophic mapping if for all (x, y) ∈ Supp A × Supp B the
following condition is satisfied:

µR(x, y) =

{
min(µA(x), µB(f(x)) , if y = f(x)

0 , Otherwise ,

and

σR(x, y) =

{
min(σA(x), σB(f(x)) , if y = f(x)

0 , Otherwise ,

and

νR(x, y) =

{
max(νA(x), νB(f(x)) , if y = f(x)

1 , Otherwise ,

Example 3.2. Let X = {α, β, γ}, Y = {a, b, c}, A ∈ SV NS(X) and B ∈ SV NS(Y ) given by

A = {〈α, 0.5, 0.2, 0.8〉, 〈β, 0.1, 0.7, 0.3〉, 〈γ, 0, 0.9, 1〉}

B = {〈a, 0, 1, 0.3〉, 〈b, 0.1, 0.5, 0.2〉, 〈c, 0.7, 0.2, 0.4〉}.

We will construct the single valued neutrosophic mapping fR by :

(i) an ordinary mapping f : {α, β} → {b, c} such that f(α) = b and f(β) = c,

(ii) a single valued neutrosophic relation R defined by :

µR(α, f(α)) = µR(α, b) = µA(α) ∧ µB(b) = 0.1

µR(β, f(β)) = µR(β, c) = µA(β) ∧ µB(c) = 0.1

µR(α, a) = µR(α, c) = µR(β, a) = µR(β, b) = µR(γ, a) = µR(γ, b) = µR(γ, c) = 0

In similar way, it holds that
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σR(α, f(α)) = σR(α, b) = σA(α) ∧ σB(b) = 0.2

σR(β, f(β)) = σR(β, c) = σA(β) ∧ σB(c) = 0.2

σR(α, a) = σR(α, c) = σR(β, a) = σR(β, b) = σR(γ, a) = σR(γ, b) = σR(γ, c) = 0

and

νR(α, f(α)) = νR(α, b) = νA(α) ∨ νB(b) = 0.8

νR(β, f(β)) = νR(β, c) = νA(β) ∨ νB(c) = 0.4

νR(α, a) = νR(α, c) = νRI
(β, a) = νRI

(β, b) = σR(γ, a) = σR(γ, b) = σR(γ, c) = 1.

Hence, µR(x, y) = {〈(α, f(α)), 0.1, 0.2, 0.8〉, 〈(β, f(β)), 0.1, 0.2, 0.4〉, 〈(α, a), 0, 0, 1〉,
〈(α, c), 0, 0, 1〉, 〈(β, a), 0, 0, 1〉, 〈(β, b), 0, 0, 1〉, 〈(γ, a), 0, 0, 1〉, 〈(γ, b), 0, 0, 1〉, 〈(γ, c), 0, 0, 1〉}.

Thus, fR is a single valued neutrosophic mapping.

Example 3.3. Let X = Q , Y = R , A ∈ SV NS(X) and B ∈ SV NS(Y ) given by:
µA(x) = 0.3 , σA(x) = 0.25 and νA(x) = 0.5 , for any x ∈ Q.
µB(x) = σB(x) = νB(x) = 0.5 , for any x ∈ R.

We will construct the single valued neutrosophic mapping fR by :

(i) an ordinary mapping f : Q→ R such that f(x) = x2,

(ii) a single valued neutrosophic relation R defined by :

µR(x, f(x)) = µR(x, x
2) = µA(x) ∧ µB(x2) = 0.3

σR(x, f(x)) = σR(x, x
2) = σA(x) ∧ µB(x2) = 0.25

νR(x, f(x)) = νR(x, x
2) = νA(x) ∨ νB(x2) = 0.5

Thus, fR is a single valued neutrosophic mapping.

Remark 3.4. From the above definition, we can construct the single valued neutrosophic mapping by this
method

(i) We determine the Supp A and Supp B.

(ii) We determine the ordinary mapping from Supp A to Supp B.

(iii) We determine the single valued neutrosophic relation by its membership function, indeterminacy func-
tion and non-membership function.

(iv) Finally, we conclude the construction of the single valued neutrosophic mapping.

Definition 3.5. Let fR, gS be two single valued neutrosophic mappings, then fR and gS are equal if and only
if f = g and R = S i.e., (µR(x, f(x)) = µS(x, g(x)), σR(x, f(x)) = σS(x, g(x)), and νR(x, f(x)) =
νS(x, g(x))).

Definition 3.6. Let A be a single valued neutrosophic set on X , let f : Supp A → Supp A be an ordinary
mapping such that f(x) = x and R be a single valued neutrosophic relation on X × X . Then fR is called a
single valued neutrosophic identity mapping if for all x, y ∈ Supp A the following conditions are satisfied:
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µR(x, y) =

{
µA(x) , if x = y
0 , Otherwise ,

and

σR(x, y) =

{
σA(x) , if x = y
0 , Otherwise ,

and

νR(x, y) =

{
νA(x) , if x = y
1 , Otherwise ,

Definition 3.7. Let A, B and C are a single valued neutrosophic sets on X , Y and Z respectively, let f :
Supp A → Supp B and g : Supp B → Supp C are an ordinary mappings and R, S are a single valued
neutrosophic relations onX×Y and Y×Z respectively. Then (g◦f)T is called the composition of single valued
neutrosophic mappings fR and gR such that g ◦ f : Supp A → Supp C and the single valued neutrosophic
relation T is defined by 

µT (x, z) = supy(min(µR(x, y), µS(y, z)))
and
σT (x, z) = supy(min(σR(x, y), σS(y, z)))
and
νT (x, z) = infy(max(νR(x, y), νS(y, z))) ,

for any (x, z) ∈ Supp A× Supp C.

Example 3.8. LetX = N, Y = R and Z = R, and letA ∈ SV NS(X), B ∈ SV NS(Y ) and C ∈ SV NS(Z),
defined as follows :

µA(n) = σA(n) =
1

1+n
and νA(n) = n

2+2n
, for any n ∈ N.

µB(x) = σB(x) =

{
0.25 , if x ∈ [−1, 1]

0 , Otherwise ,
and νB(x) =

{
0.5 , if x ∈ [−1, 1]
1 , Otherwise ,

µC(x) = σC(x) =
|cos(x)|

3
and νC(x) =

|sin(x)|
3

, for any x ∈ R.
We define a single valued neutrosophic mappings fR : A→ B and gS : B → C by :

(i) an ordinary mappings f : Supp A −→ Supp B, defined for any n ∈ Supp A by :

f(n) =

{
1 , if n is an even number,
−1 , if n is an odd number ,

and g : Supp B −→ Supp C defined by g(x) = 2x, for any x ∈ [−1, 1].

(ii) a single valued neutrosophic relations R and S defined by :

µR(n, f(n)) = σR(n, f(n)) = ∧{µA(n), µB(f(n))} = ∧{ 1
1+n

, 0.25},
νR(n, f(n)) = ∨{νA(n), νB(f(n))} = ∨{ n

2+2n
, 0.5} and

µS(x, g(x)) = σS(x, g(x)) = ∧{µB(x), µC(g(x))} =
{
∧{0.25, |cos(2x)|

3
} , x ∈ [−1, 1],

0 , otherwise ,

and νS(x, g(x)) = ∨{νB(x), νC(g(x))} =
{
∨{0.5, |sin(2x)|

3
} , x ∈ [−1, 1],

1 , otherwise.
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Then, the composition gS ◦ fR = (g ◦ f)T is defined by :

(i) an ordinary mapping f : Supp A −→ Supp C, defined for any n ∈ Supp A by :

(g ◦ f)(n) =
{

2 , if n is an even number,
−2 , if n is an odd number ,

(ii) a single valued neutrosophic relation T defined by :

µT (n, (g ◦ f)(n)) = σT (n, (g ◦ f)(n)) =

{
∧{ 1

1+n
, 0.25, |cos(2)|

3
} , if n is an even number

∧{ 1
1+n

, 0.25, |cos(−2)|
3
} , if n is an odd number

= ∧{ 1

1 + n
, 0.25,

| cos(2) |
3

}

= ∧{ 1

1 + n
, 0.25},

νT (n, (g ◦ f)(n)) =

{
∨{ n

2+2n
, 0.25, |sin(2)|

3
} , if n is an even number

∨{ n
2+2n

, 0.25, |sin(−2)|
3
} , if n is an odd number

= ∨{ n

2 + 2n
, 0.25,

| sin(2) |
3

}

= ∨{ 2

2 + 2n
, 0.25}.

Remark 3.9. The single valued neutrosophic identity mapping IdR is neutral for the composition of single
valued neutrosophic mappings.

In the sequel, we need to introduce the notion of the direct image and the inverse image of a single valued
neutrosophic set by a single valued neutrosophic mapping.

Definition 3.10. Let fR : A→ B be a single valued neutrosophic mapping from a single valued neutrosophic
set A to another single valued neutrosophic set B and C ⊆ A. The direct image of C by fR is defined by
fR(C) = {〈y, µfR(C)(y), σfR(C)(y), νfR(C)(y)〉 | y ∈ Y }, where

µfR(C)(y) =

{
µB(y) , if y ∈ f(supp(C))

0 , Otherwise ,

and

σfR(C)(y) =

{
σB(y) , if y ∈ f(supp(C))

0 , Otherwise ,

and

νfR(C)(y) =

{
νB(y) , if y ∈ f(supp(C))

1 , Otherwise.

Similarly, if C ′ ⊆ B. The inverse image of C ′ by f is defined by

f−1R (C ′) = {〈x, µf−1
R (C′)(x), σf−1

R (C′)(x), νf−1
R (C′)(x)〉 | x ∈ X},
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where

µf−1
R (C′)(x) =

{
µA(x) , if x ∈ f−1(supp(C ′))

0 , Otherwise ,

and

σf−1
R (C′)(x) =

{
σA(x) , if x ∈ f−1(supp(C ′))

0 , Otherwise ,

and

νf−1
R (C′)(x) =

{
νA(x) , if x ∈ f−1(supp(C ′))

1 , Otherwise.

Example 3.11. Let X = [0,+∞[, Y = R and A ∈ SV NS(X) defined for any x ∈ X by :

µA(x) = σA(x) =

{
cos(x) , if x ∈ [0, π

2
]

0 , Otherwise ,
νA(x) =

{
0.9 , if x ∈ [0, π

2
]

1 , Otherwise.
Also, let B ∈ SV NS(Y ) given by :

µB(y) = σB(y) =

{
y , if y ∈ [0, 1]
0 , Otherwise ,

νB(y) =

{
0.2 , if y ∈ [0, 1]

1 , Otherwise.
We define the single valued neutrosophic mapping fR : A→ B by:

(i) an ordinary mapping f : Supp A −→ Supp B, defined for any x ∈ [0, π
2
] by

f(x) = x
4
.

(ii) a single valued neutrosophic relation R defined by µR(x, f(x)) = σR(x, f(x)) = µA(x) ∧ µB(f(x)) =
cos(x) ∧ 1

4
x and νR(x, f(x)) = νA(x) ∨ νB(f(x)) = 0.9

Now, if we take C an SVNS on X , where C ⊆ A given by :

µC(x) = σC(x) =

{
−x+ 1 , if x ∈ [0, 1

2
]

0 , Otherwise ,
νC(x) =

{
0.99 , if y ∈ [0, 1

2
]

1 , Otherwise ,
Then, the direct image of C by fR is defined by :

µfR(C)(y) =

{
µB(y) , if y ∈ f(supp(C))

0 , Otherwise ,
=

{
y , if y ∈ [0, 1

8
]

0 , Otherwise ,

σfR(C)(y) =

{
σB(y) , if y ∈ f(supp(C))

0 , Otherwise ,
=

{
y , if y ∈ [0, 1

8
]

0 , Otherwise ,
and

νfR(C)(y) =

{
νB(y) , if y ∈ f(supp(C))

0 , Otherwise ,
=

{
0.2 , if y ∈ [0, 1

8
]

1 , Otherwise.
Moreover, it is easy to show that fR(C) ⊆ B.
Next, if we take C ′ an SVNS on Y , where C ′ ⊆ B given by :

µC′(y) = σC′(y) =

{
sin(y) , if y ∈ [0, 1

3
]

0 , Otherwise ,
νC′(y) =

{
0.4 , if y ∈ [0, 1

3
]

1 , Otherwise ,
Then, the inverse image of C ′ by f is defined by :

µf−1
R (C′)(x) =

{
µA(x) , if x ∈ f−1(supp(C ′))

0 , Otherwise ,
=

{
cos(x) , if x ∈ [0, 4

3
]

0 , Otherwise ,

σf−1
R (C′)(x) =

{
σA(x) , if x ∈ f−1(supp(C ′))

0 , Otherwise ,
=

{
cos(x) , if x ∈ [0, 4

3
]

0 , Otherwise ,

and νf−1
R (C′)(x) =

{
νA(x) , if x ∈ f−1(supp(C ′))

1 , Otherwise ,
=

{
0.9 , if x ∈ [0, 4

3
]

1 , Otherwise.

Moreover, it is easy to show that f−1R (C ′) ⊆ A.
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Now, we introduce the product of single valued neutrosophic sets and single valued neutrosophic projection
mappings.

Definition 3.12. Let A be a single valued neutrosophic set on X and B be a single valued neutrosophic set on
Y . The product of A and B, denoted by A×B is a single valued neutrosophic set on X × Y defined by :

µX×Y (x, y) = min{µA(x), µB(y)}, σX×Y (x, y) = min{σA(x), σB(y)}, νX×Y (x, y) = max{νA(x), νB(y)}.
Also, we introduce the first single valued neutrosophic projection mapping (P1)R : A×B −→ A by:

(i) an ordinary mapping P1 : Supp(A×B) −→ Supp(A) such that P1(x, y) = x for any (x, y) ∈ Supp(A×
B),

(i) a single valued neutrosophic relation R defined by :

µR((x, y), P1(x, y)) = min{µA×B(x, y), µA(P1(x, y))}}
= min{µA(x), µB(y), µA(x)}}
= min{µA(x), µB(y)}

and
σR((x, y), P1(x, y)) = min{σA×B(x, y), σA(P1(x, y))}}

= min{σA(x), σB(y), σA(x)}}
= min{σA(x), σB(y)}

and
νR((x, y), P1(x, y)) = max{νA×B(x, y), νA(P1(x, y))}}

= max{νA(x), νB(y), νA(x)}}
= max{νA(x), νB(y)}

The second single valued neutrosophic projection mapping is defined analogously.

4 Continuity property in single valued neutrosophic topological space
The aim of the present section, is to introduce and study the notion of single valued neutrosophic continuous
mapping in single valued neutrosophic topological spaces. The basic properties, and relationships with some
types of continuity are also obtained.

4.1 Single valued neutrosophic topology
In this subsection, we generalize the notion of fuzzy topology on fuzzy sets introduced by Kandil et al. [16] to
the setting of single valued neutrosophic sets to establish the continuity property of single valued neutrosophic
mapping.

Definition 4.1. Let A be a single valued neutrosophic set on the set X and OA = {U is an SVNS on X :
U ⊆ A}. We define a single valued neutrosophic topology on single valued neutrosophic set A by the family
T ⊆ OA which satisfies the following conditions :

(i) A, 0∼ ∈ T ;

(ii) if U1, U2 ∈ T , then U1 ∩ U2 ∈ T ;
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(iii) if Ui ∈ T for all i ∈ I , then ∪IUi ∈ T .

T is called a single valued neutrosophic topology of A and the pair (A, T ) is a single valued neutrosophic
topological space (SVN-TOP, for short). Every element of T is called a single valued neutrosophic open set
(SVNOS, for short).

Example 4.2. Let X = P(R2) and α ∈]0, 1[, A be a single valued neutrosophic set on X given by :

µA(θ) =


1 , if θ = ∅

α , 0 < |θ| <∞ ,
0 , Otherwise ,

σA(θ) =


1 , if θ = ∅

α
2
, 0 < |θ| <∞ ,

0 , Otherwise ,
νA(θ) =


0 , if θ = ∅

1− α , 0 < |θ| <∞ ,
0.5 , Otherwise.

Then, the family T = {A, 0∼, U} where:

µU(θ) =

{
α
3
, |θ| <∞ ,

0 , Otherwise ,
σU(θ) =

{
α
4
, |θ| <∞ ,

0 , Otherwise ,
νU(θ) =

{
1 , |θ| <∞ ,

0.8 , Otherwise ,

is a single valued neutrosophic topology on A.

Inspired by the notion of interior (resp. closure) on intuitionistic fuzzy topological space on a set intro-
duced by Atanassov [4], we generalize these notions in single valued neutrosophic topology on a single valued
neutrosophic set.

Definition 4.3. Let (A, T ) be a single valued neutrosophic topological space, for every single valued neutro-
sophic subset G of X we define the interior and closure of G by:

int(G) = {〈x,max
x∈X

µU(x),max
x∈X

σU(x),min
x∈X

νU(x)〉 | x ∈ U ⊆ G} and

cl(G) = {〈x,min
x∈X

µK(x),min
x∈X

σK(x),max
x∈X

νK(x)〉 | x ∈ A and G ⊆ K}

Example 4.4. Let X = {a, b, c} and A,B,C,D ∈ SV NS(X) such that
A = {< a, 0.5, 0.7, 0.1 >,< b, 0.7, 0.9, 0.2 >,< c, 0.6, 0.8, 0 >}
B = {< a, 0.5, 0.6, 0.2 >,< b, 0.5, 0.6, 0.4 >,< c, 0.4, 0.5, 0.4 >}
C = {< a, 0.4, 0.5, 0.5 >,< b, 0.6, 0.7, 0.3 >,< c, 0.2, 0.3, 0.3 >}
D = {< a, 0.5, 0.6, 0.2 >,< b, 0.6, 0.7, 0.3 >,< c, 0.4, 0.5, 0.3 >}
E = {< a, 0.4, 0.5, 0.5 >,< b, 0.5, 0.6, 0.4 >,< c, 0.2, 0.3, 0.4 >}
Then the family T = {A, 0∼, B, C,D,E} is an SVN-TOP of A.
Now, we suppose that G ∈ SV NS(X) given by G = {< a, 0.41, 0.5, 0.6), < b, 0.3, 0.2, 0.6 >,<

c, 0.2, 0.3, 0.7 >}. Then, int(G) = 0∼ and cl(G) = E ∩ 1∼ = E.

Definition 4.5. Let (A, T ) be a single valued neutrosophic topological space and U ∈ SV NS(A, T ). Then U
is called :

1. a single valued neutrosophic semiopen set (SVNSOS) if U ⊆ cl(int(U));

2. a single valued neutrosophic α-open set (SVNαOS) if U ⊆ int(cl(int(U)));

3. a single valued neutrosophic preopen set (SVNPOS) if U ⊆ int(cl(U));

4. a single valued neutrosophic regular open set (SVNROS) if U = int(cl(U)).

A. Latreche, O. Barkat, S. Milles, F. Ismail. Single valued neutrosophic mappings defined by single valued
neutrosophic relations with applications



Neutrosophic Sets and Systems, Vol. 32, 2020 215

4.2 Single valued neutrosophic continuous mappings

In this subsection, we will study some interesting properties of single valued neutrosophic continuous map-
pings in single valued neutrosophic topological space and relations between various types of single valued
neutrosophic continuous mapping. First, we introduce the notion of single valued neutrosophic continuous
mapping.

Definition 4.6. Let (A, T ) (B,L) be two single valued neutrosophic topological spaces. The mapping fR :
(A, T ) → (B,L) is a single valued neutrosophic continuous if and only if the inverse of each L-open single
valued neutrosophic set is T -open single valued neutrosophic set.

Example 4.7. Let (A, T ) and (B, T ′) be two single valued neutrosophic topological spaces, where
µA(x) = 0.8, σA(x) = 0.88 and νA(x) = 0.1, for any x ∈ R+ and

µB(y) =

{
0.5 , if y ≥ 0

0.8 , Otherwise ,
σB(y) =

{
0.88 , if y ≥ 0
0 , Otherwise ,

νB(y) =

{
0.1 , if y ≥ 0

0.3 , Otherwise ,

We suppose that T = {A, 0∼, U1}, where

µU1(x) =

{
0.8 , if x ∈ [0,

√
2]

0 , Otherwise ,
σU1(x) =

{
0.88 , if x ∈ [0,

√
2]

0 , Otherwise ,
νU1(x) =

{
0.1 , if x ∈ [0,

√
2]

1 , Otherwise ,

Also, we suppose that T ′ = {B, 0∼, U ′1}, where

µU ′1(y) =

{
0.5 , if y ∈ [0, 2]
0 , Otherwise ,

σU ′1(y) =

{
0.8 , if y ∈ [0, 2]
0 , Otherwise ,

νU ′1(y) =

{
0.2 , if y ∈ [0, 2]
0.4 , Otherwise.

Then, the single valued neutrosophic mapping fR : A→ B define by :

(i) an ordinary mapping f : R+ −→ R+ such that f(x) = x2 , for any x ∈ R+,

(ii) a single valued neutrosophic relation R defined by :

µR(x, f(x)) = 0.5 σR(x, f(x)) = 0.88 and νR(x, f(x)) = 0.1.

is a single valued neutrosophic continuous mapping. Indeed, it is easy to show that f−1R (B) = A and
f−1R (0∼) = 0∼ and we have,

µf−1
R (U ′1)

(x) =

{
µA(x) , if x ∈ f−1(supp(U ′1))

0 , Otherwise ,

=

{
0.8 , if x ∈ [0,

√
2]

0 , Otherwise ,

= µU1(x),

σf−1
R (U ′1)

(x) =

{
σA(x) , if x ∈ f−1(supp(U ′1))

0 , Otherwise ,

=

{
0.88 , if x ∈ [0,

√
2]

0 , Otherwise ,

= σU1(x),
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and

νf−1
R (U ′1)

(x) =

{
νA(x) , if x ∈ f−1(supp(U ′1))

1 , Otherwise ,

=

{
νA(x) , if x ∈ [0,

√
2]

1 , Otherwise ,

=

{
0.1 , if x ∈ [0,

√
2]

1 , Otherwise ,

= νU1(x).

¨

Hence, f−1R (U ′1) = U1 ∈ T . Thus, fR is a single valued neutrosophic continuous mapping.

Remark 4.8. Let (A, T ) be a single valued neutrosophic topological space. Then the single valued neutro-
sophic identity mapping IdR : (A, T )→ (A, T ) is a single valued neutrosophic continuous mapping.

Next, we provide the relationships between various types of single valued neutrosophic continuous map-
ping. First, we generalize the notions of precontinuous mapping, α-continuous mapping introduced by Guray
et al. [10] to the setting of single valued neutrosophic sets.

Definition 4.9. Let fR : (A, T )→ (B, T ′) be a single valued neutrosophic mapping. Then fR is called :

1. a single valued neutrosophic precontinuous mapping if f−1R (U ′) is a SVNPOS on A for every SVNOS
U ′ on B;

2. a single valued neutrosophic α-continuous mapping if f−1R (U ′) is a SVNαOS on A for every SVNOS U ′

on B.

The following proposition shows the relationship between single valued neutrosophic continuous mapping
and single valued neutrosophic α-continuous mapping.

Proposition 4.10. Let fR : (A, T ) → (B, T ′) be a single valued neutrosophic mapping. If fR is a single
valued neutrosophic continuous mapping, then fR is a single valued neutrosophic α-continuous mapping.

Proof. Let U ′ be a SVNOS in B and we need to show that f−1R (U ′) is an SVNαOS in A. The fact that fR is a
single valued neutrosophic continuous mapping implies that f−1R (U ′) is a SVNOS in A. From Definition 3.10,
it follows that

µf−1
R (U ′)(x) =

{
µA(x) , if x ∈ f−1(supp(U ′))

0 , Otherwise ,
σf−1

R (U ′)(x) =

{
σA(x) , if x ∈ f−1(supp(U ′))

0 , Otherwise ,

and νf−1
R (U ′)(x) =

{
νA(x) , if x ∈ f−1(supp(U ′))

1 , Otherwise.

We conclude that, f−1R (U ′) is a SVNαOS in A. Hence, fR is a single valued neutrosophic α-continuous
mapping.

Remark 4.11. The converse of the above implication is not necessarily holds. Indeed, let us consider the single
valued neutrosophic mapping fR given in Example 4.7 and T be a SVN-topology given by T = {0∼, A, U1},
where: µA(x) = 1, σA(x) = 0.99, νA(x) = 0.001 and

µU1(x) =

{
1 , if x ∈ [0, 1]
0 , Otherwise,

σU1(x) =

{
0.99 , if x ∈ [0, 1]

0 , Otherwise,
νU1(x) =

{
0.001 , if x ∈ [0, 1]

1 , Otherwise.
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Hence, int(f−1R (U ′1)) = U1, cl(U1) = 1∼ and int(1∼) = A. Thus, f−1R (U ′1) ⊆ int(cl(int(f−1R (U ′1))).
We conclude that f−1R (U ′1) is an SVNαS but not SVNOS and fR is a single valued neutrosophic α-continuous
mapping but not a single valued neutrosophic continuous mapping.

The following proposition shows the relationship between single valued neutrosophic α-continuous map-
ping and single valued neutrosophic pre-continuous mapping.

Proposition 4.12. Let fR : (A, T ) → (B, T ′) be a single valued neutrosophic mapping. If fR is a single
valued neutrosophic α-continuous mapping, then fR is a single valued neutrosophic pre-continuous mapping.

Proof. Let U ′ be an SVNOS in B and we need to show that f−1R (U ′) is a SVNPOS in A. The fact that
fR is a single valued neutrosophic α-continuous mapping implies that f−1R (U ′) is a SVNαOS in A. From
Definition 3.10, it follows that

µf−1
R (U ′)(x) =

{
µA(x) , if x ∈ f−1(supp(U ′))

0 , Otherwise ,
σf−1

R (U ′)(x) =

{
σA(x) , if x ∈ f−1(supp(U ′))

0 , Otherwise ,

and νf−1
R (U ′)(x) =

{
νA(x) , if x ∈ f−1(supp(U ′))

1 , Otherwise.

We conclude that, f−1R (U ′) is an SVNPOS in A. Hence, fR is a single valued neutrosophic pre-continuous
mapping.

Remark 4.13. The converse of the above implication is not necessarily holds. Indeed, let (A, T ) and (B, T ′)
be two single valued neutrosophic topological spaces, where µA(x) = 1, σA(x) = 1 and νA(x) = 0.005, for
any x ∈ R+ and

µB(y) =

{
0.7 , if y ≥ 0
0 , Otherwise ,

σB(y) =

{
0.9 , if y ≥ 0

0.8 , Otherwise ,
νB(y) =

{
0.01 , if y ≥ 0

0.03 , Otherwise ,
We suppose that T = {A, 0∼, U1}, where
µU1(x) = 0 σU1(x) = 1 and νU1(x) = 1.
Also, we suppose that T ′ = {B, 0∼, U ′1}, where

µU ′1(y) =

{
0.7 , if y ∈ [0, 4]
0 , Otherwise ,

σU ′1(y) =

{
0.5 , if y ∈ [0, 4]
0 , Otherwise ,

νU ′1(y) =

{
0.12 , if y ∈ [0, 4]
0.32 , Otherwise.

Then, the single valued neutrosophic mapping fR : A→ B define by :

(i) an ordinary mapping f : R+ −→ R+ such that f(x) =
√
x , for any x ∈ R+,

(ii) a single valued neutrosophic relation R defined by :

µR(x, f(x)) = 0.7 σR(x, f(x)) = 0.9 and νR(x, f(x)) = 0.01.

µf−1
R (U ′1)

(x) =

{
µA(x) , if x ∈ f−1(supp(U ′1))

0 , Otherwise ,

=

{
1 , if x ∈ [0, 16]
0 , Otherwise ,

σf−1
R (U ′1)

(x) =

{
σA(x) , if x ∈ f−1(supp(U ′1))

0 , Otherwise ,

=

{
1 , if x ∈ [0, 16]
0 , Otherwise ,
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νf−1
R (U ′1)

(x) =

{
νA(x) , if x ∈ f−1(supp(U ′1))

1 , Otherwise ,

=

{
νA(x) , if x ∈ [0, 16]

1 , Otherwise ,

=

{
0.01 , if x ∈ [0, 16]
1 , Otherwise ,

Hence, cl(f−1R (U ′1)) = 0∼ = 1∼ and int(1∼) = A. Thus, f−1R (U ′1) ⊆ int(cl(f−1R (U ′1))). We conclude
that f−1R (U ′1) is an SVNPOS and fR is a single valued neutrosophic pre-continuous but not a single valued
neutrosophic continuous.

5 Conclusion
In this work, we have generalized the notion of fuzzy mapping defined by fuzzy relation introduced by Ismail
and Massa’deh to the setting of single valued neutrosophic sets. Also, the main properties related to the single
valued neutrosophic mapping have been studied. Next, as an application we have established the single valued
neutrosophic continuous mapping in the single valued neutrosophic topological spaces. Future work will be
directed to study the notion of the single valued neutrosophic mapping for other types of topologies based on
the single valued neutrosophic sets.
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Abstract. Unipolar is less fundamental than bipolar cognition based on truth, and composure is a restraint

for truth-based worlds. Bipolarity is the most powerful phenomenon that survives when truth disappeared in

a black hole due to Hawking radiation or particular / anti-particular emission. The purpose of this research

study is to define few four operations, including residue product, rejection, maximal product and symmetric

difference of bipolar single-valued neutrosophic graph (BSVNG) and to explore some of their related properties

with examples. Bipolar single-valued neutrosophic graph (BSVNG) is the generalization of the single-valued

neutrosophic graph (SVNG), intuitionistic fuzzy graph, bipolar intuitionistic fuzzy graph, bipolar fuzzy graph

and fuzzy graph. BSVNG plays a significant role in the study of neural networks, daily energy issues, energy

systems, and coding. Moreover, we will determine related properties like the degree of a vertex in a BSVNG or

total degree of a vertex in a BSVNG. We provide examples of the vertex degree in BSVNG and the total vertex

degree in BSVNG. In order to make this useful, we develop an algorithm for our useful method in steps.

Keywords: keyword 1; symmetric difference, residue product, maximal product, rejection of BSVNG, Appli-

cation, algorithm.

—————————————————————————————————————————-

1. Introduction

In 1965, Zadeh [36] put forward the idea of the one-degree fuzzy set concept that deter-

mined the true membership function. Since Zadeh’s pioneering work, the fuzzy set theory has

been used in various disciplines such as management sciences, engineering, mathematics, social

sciences, statistics, signal processing, artificial intelligence, automata theory, medical and life

sciences. In the 20th century, Smarandache [31] includes the concept where uncertainty occurs
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in the form of Neutrosophic set and extend the intuitionistic fuzzy set. There is also a non-

membership degree that Atanassove [1] defines in an intuitionistic fuzzy set with two degrees

in a set. Abdel-Basset et al. [2–6] studied many concepts on neutrosophic sets. Broumi et

al. [7,9–13,28,29] investigated the extension of the fuzzy graph in the form of the single-valued

neutrosophic graphs, shortest path problem using bellman algorithm under neutrosophic en-

vironment, shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment,

single valued neutrosophic coloring, and operations of single valued neutrosophic coloring.

A bipolar fuzzy theory has more scope when we compare to simply a fuzzy theory as com-

patibility and flexibility. Overall its model is better than the fuzzy model. Borzooei and

Rashmanlou [8, 25–27] studied very well on vague graphs and bipolar fuzzy graph. Rashman-

lou studied about interval-valued fuzzy graph [22–24]. The neutrosophic set has much scope

in neutrosophy and the neutrosophy theory is widely used in graph theory. In this extension,

Wang et el. [35] described subclass of a Neutrosophic set known as a single-valued neutrosophic

set. In the fields of bio and physics, SVNG has numerous applications. In these days, its pur-

pose evaluates incomplete and uncertainty information. BSVNG has numerous applications in

the fields of geometry and operational research. It has been a useful scope in various fields of

computer science.Later, Deli et al. [14] described the idea of the bipolar neutrosophic set as the

extension of the Neutrosophic set. He also described the concept of the bipolar fuzzy graph

with some related properties. One problem of an Fuzzy graph, Intuitionistic fuzzy graph,

bipolar fuzzy graph and intuitionistic bipolar fuzzy graph found when uncertainty occurs in

the relationship between two vertices. Need for the neutrosophic graph is necessary because

these are not suitable properly. Many researchers [32, 33] was famous due to their research

work application approach to real-world problems.

The idea of the fuzzy graph is presented by Rosenfeld [30] and [34]. Malik and Hassan [16] both

described the classification of the BSVNG together. Later Malik and Naz [21] presented the

operations on the SVNG. Gomathi and Keerthika [15] studied neutrosophic labeling graph.

Kousik Das et al. [17] defined generalized neutrosophic competition graphs. Mordeson and

Peng [18] given some operations on Fuzzy Graphs. Gani et al. [19,20] defined order, size, and

irregular fuzzy graphs. The various application of graph theory in the fields of information

technology, operational research, image segmentation, social science, capturing the image, al-

gebra. It is also applicable to bioscience, chemistry, and computer science. The fuzzy is very

useful to deduce the unsolved problems in various fields like networking, clustering with a great

role in the algorithm. The use of fuzzy graph by which a great extent in a few years and has

a scope from 19th century [19, 20]. Neutrosophy is the type of philosophy which studies the

nature and scope of neutralities. We will discuss some new properties on a BSVNG. Bipolar

fuzzy set has many applications in image processing. It gives more advantages in real problems
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Figure 1. BSVNG

to make it in an easier form. BSVNG is the extension of an Fuzzy graph, Intuitionistic fuzzy

graph, interval-valued intuitionistic fuzzy graph and SVNG. Bipolar fuzzy graphs are very use-

ful in the fields of signal processing, computer science, and database theory. The operations

we will establish are the symmetric difference and residue product in this paper. Peng [18]

defined Some operations which are the join of two graphs, cartesian product of two graphs

and the union of two graphs. Also, we discuss examples of these operations. We will find the

degree and total degree of BSVNG. In the end, we will make an application on BSVNG with

algorithm.

2. Operations on BSVNGs

In this section, we define four operations, including residue product, rejection, maximal

product and symmetric difference of bipolar single-valued neutrosophic graph (BSVNG) and

to explore some of their related properties with examples.

Definition 2.1. [13] A bipolar single valued neutrosophic graph is such a pair G = (X,Y )

which is of crisp graph G=(V,E) is defined as(i) αM : V → [0, 1], βM : V → [0, 1], γM : V →
[0, 1], δM : V → [−1, 0], ηM : V → [−1, 0], θM : V → [−1, 0]. (ii)

αN (mn) ≤ min{αM (m), αM (n)}, βN (mn) ≥ max{βM (m), βM (n)}

γN (mn) ≥ max{γM (m), γM (n)}, δN (mn) ≥ max{δM (m), δM (n)}

ηN (mn) ≤ min{ηM (m), ηM (n)}, θN (mn) ≤ min{θM (m), θM (n)}.

and 0≤ αN (mn)+βN (mn) + γN (mn) ≤ 3 and −3 ≤ δN (mn)+ηN (mn) + θN (mn) ≤ 0.

Example 2.2. In Figure 1, we see a graph with eight vertices {a,b,c,d,e,f,g,h} and eight edges

{ab, bc, cd ,ef, fg, gh ,bf, cg} that is a bipolar single valued neutrosophic graph. It is easy to

see that all conditions of Definition 2.1 is true for this example.
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Definition 2.3. The height of a bipolar single valued neutrosophic set (BSVNs) (in universe

discourse Y)

Q = (αQ(y), βQ(y), γQ, δQ(y), ηQ(y), θQ(y)) is defined by:

h(Q) = (h1(Q), h2(Q), h3(Q), h4(Q), h5(Q), h6(Q))

= (Supy∈Y αQ(y), Infy∈Y βQ(y), Infy∈Y βQ(y), Supy∈Y δQ(y), Infy∈Y ηQ(y), Infy∈Y θQ(y))

Example 2.4. Take Q = {(a, 0.5, 0.4, 0.5,−0.2,−0.4,−0.5), (b, 0.5, 0.6, 0.4,−0.4,−0.3,−0.6),

(c, 0.4, 0.6, 0.4,−0.4,−0.5,−0.3)} be BSVNs then height is defined as h(Q) = (0.5, 0.4, 0.4,

0.4, 0.3, 0.3).

Definition 2.5. let G1 = (M1, N1) and G2 = (M2, N2) are two bipolar single valued neutro-

sophic fuzzy graphs defined on G1 = (V1, E1) and G2 = (V2, E2) respectively. The symmetric

difference of G1 and G2 is represented by G1 ⊕ G2 = (M1 ⊕M2, N1 ⊕N2). Symmetric difference

of G1 and G2 is defined as the following conditions:

(i)

(αM1 ⊕ αM2)((m1,m2)) = min{αM1(m1), αM2(m2)}, (βM1 ⊕ βM2)((m1,m2))

= max{βM1(m1), βM2(m2)}

(γM1 ⊕ γM2)((m1,m2)) = max{γM1(m1), γM2(m2)}, (δM1 ⊕ δM2)((m1,m2))

= max{δM1(m1), δM2(m2)}

(ηM1 ⊕ ηM2)((m1,m2)) = min{ηM1(m1), ηM2(m2)}, (θM1 ⊕ θM2)((m1,m2))

= min{θM1(m1), θM2(m2)}

∀(m1,m2) ∈ (V1 × V2)

(ii)

(αN1 ⊕ αN2)((m,m2)(m,n2)) = min{αM1(m), αN2(m2n2)}, (βN1 ⊕ βN2)((m,m2)(m,n2))

= max{βM1(m), βN2(m2n2)}

(γN1 ⊕ γN2)((m,m2)(m,n2)) = max{γM1(m), γN2(m2n2)}, (δN1 ⊕ δN2)((m,m2)(m,n2))

= max{δM1(m), δN2(m2n2)}

(ηN1 ⊕ ηN2)((m,m2)(m,n2)) = min{ηM1(m), ηN2(m2n2)}, (θN1 ⊕ θN2)((m,m2)(m,n2))

= min{θM1(m), θN2(m2n2)}

∀ m ∈ V1 and m2n2 ∈ E2
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(iii)

(αN1 ⊕ αN2)((m1,m)(n1,m)) = min{αN1(m1n1), αM2(m)}, (βN1 ⊕ βN2)((m1,m)(n1,m))

= max{βN1(m1n1), βM2(m)}

(γN1 ⊕ γN2)((m1,m)(n1,m)) = max{γN1(m1n1), γM2(m)}, (δN1 ⊕ δN2)((m1,m)(n1,m))

= max{δN1(m1n1), δM2(m)}

(ηN1 ⊕ ηN2)((m1,m)(n1,m)) = min{ηN1(m1n1), ηM2(m)}, (θN1 ⊕ θN2)((m1,m)(n1,m))

= min{θN1(m1n1), θM2(m)}

∀ z ∈ V2 and m1n1 ∈ E1

(i∨)

(αN1 ⊕ αN2)((m1,m2)(n1, n2)) = min{αM1(m1), αM1(n1), αN2(m2n2)}

for all m1n1 ̸∈ E1 and m2n2 ∈ E2

or

= min{αM2(m2), αM2(n2), αN1(m1n1)}for all m1n1 ∈ E1 and m2n2 ̸∈ E2

(βN1 ⊕ βN2)((m1,m2)(n1, n2)) = max{βM1(m1), βM1(n1), βN2(m2n2)}

forall m1n1 ̸∈ E1 and m2n2 ∈ E2

or

= max{βM2(m2), βM2(n2), βN1(m1n1)} forall m1n1 ∈ E1 and m2n2 ̸∈ E2

(γN1 ⊕ γN2)((m1,m2)(n1, n2)) = max{γM1(m1), γM1(n1), FN2(m2n2)}

forall m1n1 ̸∈ E1 and m2n2 ∈ E2

or

= max{γM2(m2), γM2(n2), γN2(m1n1)} forall m1n1 ∈ E1 and m2n2 ̸∈ E2

(δN1 ⊕ δN2)((m1,m2)(n1, n2)) = max{δM1(m1), δM1(n1), δN2(m2n2)}

forall m1n1 ̸∈ E1 and m2n2 ∈ E2

or

= max{δM2(m2), δM2(n2), δN1(m1n1)} forall m1n1 ∈ E1 and m2n2 ̸∈ E2
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Figure 2. G1

Figure 3. G2

(ηN1 ⊕ ηN2)((m1,m2)(n1, n2)) = min{ηM1(m1), ηM1(n1), ηN2(m2n2)}

forall m1n1 ̸∈ E1 and m2n2 ∈ E2

or

= min{ηM2(m2), ηM2(n2), ηN1(m1n1)} forall m1n1 ∈ E1 and m2n2 ̸∈ E2

(θN1 ⊕ θN2)((m1,m2)(n1, n2)) = min{θM1(m1), θM1(n1), FN2(m2n2)}

forall m1n1 ̸∈ E1 and m2n2 ∈ E2

or

= min{θM2(m2), θM2(n2), θN2(m1n1)} forall m1n1 ∈ E1 and m2n2 ̸∈ E2

Example 2.6. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs on V1 = {a, b} and V2 =

{c, d} respectively which shown in Figure 2 and Figure 3. Also symmetric difference shown in

Figure 4.

Proposition 2.7. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 =

(V1, E1) and G2 = (V2, E2), respectively. Then the symmetric difference G1⊕G2 of G1 = (V1, E1)

and G2 = (V2, E2) is again a BSVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 = (V1, E1) and

G2 = (V2, E2), respectively. Then the symmetric difference G1 ⊕ G2 of G1 = (V1, E1) and

G2 = (V2, E2) can be proved. Let (m1,m2)(n1, n2) ∈ E1 × E2

(i) If m1 = n1 = m

(αN1 ⊕ αN2)((m,m2)(m,n2)) = min{αM1(m), αN2(m2n2)}

≤ min{αM1(m),min{αM2(m2), αM2(n2)}}

= min{min{{αM1(m), αM2(m2)},min{{αM1(m), αM2(n2)}}

= min{(αM1 ⊕ αM2)(m,m2), (αM1 ⊕ αM2)(m,n2)}
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Figure 4. G1 ⊕G2

(βN1 ⊕ βN2)((m,m2)(m,n2)) = max{βM1(m), βN2(m2n2)}

≥ max{βM1(m),max{βM2(m2), βM2(n2)}}

= max{max{{βM1(m), βM2(m2)},max{{βM1(m), βM2(n2)}}

= max{(βM1 ⊕ βM2)(m,m2), (βM1 ⊕ βM2)(m,n2)}

(γN1 ⊕ γN2)((m,m2)(m,n2)) = max{γM1(m), γN2(m2n2)}

≥ max{γM1(m),max{γM2(m2), γM2(n2)}}

= max{max{{γM1(m), γM2(m2)},max{{γM1(m), γM2(n2)}}

= max{(γM1 ⊕ γM2)(m,m2), (γM1 ⊕ γM2)(m,n2)}

(δN1 ⊕ δN2)((m,m2)(m,n2)) = max{δM1(m), δN2(m2n2)}

≥ max{δM1(m),max{δM2(m2), δM2(n2)}}

= max{max{{δM1(m), δM2(m2)},min{{δM1(m), δM2(n2)}}

= max{(δM1 ⊕ δM2)(m,m2), (δM1 ⊕ δM2)(m,n2)}
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(ηN1 ⊕ ηN2)((m,m2)(m,n2)) = min{ηM1(m), ηN2(m2n2)}

≤ min{ηM1(m),min{ηM2(m2), ηM2(n2)}}

= min{min{{ηM1(m), ηM2(m2)},min{{ηM1(m), ηM2(n2)}}

= min{(ηM1 ⊕ ηM2)(m,m2), (ηM1 ⊕ ηM2)(m,n2)}

(θN1 ⊕ θN2)((m,m2)(m,n2)) = min{θM1(m), θN2(m2n2)}

≤ min{θM1(m),min{θM2(m2), θM2(n2)}}

= min{min{{θM1(m), θM2(m2)},min{{θM1(m), θM2(n2)}}

= min{(θM1 ⊕ θM2)(m,m2), (θM1 ⊕ θM2)(m,n2)}

(ii) if m2 = n2 = m

(αN1 ⊕ αN2)((m1,m)(n1,m)) = min{αN1(m1n1), αM2(m)}

≤ min{min{αN1(m1n1), αM2(m)}

= min{min{{αM1(m1), αM2(m)},min{{αM1(n1), αM2(m)}}

= min{(αM1 ⊕ αM2)(m1,m), (αM1 ⊕ αM2)(n1,m)}

(βN1 ⊕ βN2)((m1,m)(n1,m)) = max{βN1(m1n1), βM2(m)}

≥ max{max{βN1(m1n1), βM2(m)}

= max{max{{βM1(m1), βM2(m)},max{{βM1(n1), βM2(m)}}

= max{(βM1 ⊕ βM2)(m1,m), (βM1 ⊕ βM2)(n1,m)}

(γN1 ⊕ γN2)((m1,m)(n1,m)) = max{γN1(m1n1), γM2(m)}

≥ max{max{γN1(m1n1), γM2(m)}

= max{max{{γM1(m1), γM2(m)},max{{γM1(n1), γM2(m)}}

= max{(γM1 ⊕ γM2)(m1,m), (γM1 ⊕ γM2)(n1,m)}
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(δN1 ⊕ δN2)((m1,m)(n1,m)) = max{δN1(m1n1), δM2(m)}

≥ max{max{δN1(m1n1), δM2(m)}

= max{max{{δM1(m1), δM2(m)},max{{δM1(n1), δM2(m)}}

= max{(δM1 ⊕ δM2)(m1,m), (δM1 ⊕ δM2)(n1,m)}

(ηN1 ⊕ ηN2)((m1,m)(n1,m)) = min{ηN1(m1n1), ηM2(m)}

≤ min{min{ηN1(m1n1), ηM2(m)}

= min{min{{ηM1(m1), ηM2(m)},min{{ηM1(n1), ηM2(m)}}

= min{(ηM1 ⊕ ηM2)(m1,m), (ηM1 ⊕ ηM2)(n1,m)}

(θN1 ⊕ θN2)((m1,m)(n1,m)) = min{θN1(m1n1), θM2(m)}

≤ min{min{θN1(m1n1), θM2(m)}

= min{min{{θM1(m1), θM2(m)},min{{θM1(n1), θM2(m)}}

= min{(θM1 ⊕ θM2)(m1,m), (θM1 ⊕ θM2)(n1,m)}

(iii) If m1n1 ̸∈ E1 and m2n2 ∈ E2

(αN1 ⊕ αN2)((m1,m2)(n1, n2)) = min{αM1(m1), αM1(n1), αN2(m2n2)}

≤ min{αM1(m1), αM1(n1),min{αM2(m2)αM2(n2)}}

= min{min{αM1(m1), αM2(m2)}, {αM1(m1), αM2(n2)}

= min{(αM1 ⊕ αM2)(m1,m2), (αM1 ⊕ αM2)(n1, n2)}

(βN1 ⊕ βN2)((m1,m2)(n1, n2)) = max{βM1(m1), βM1(n1), βN2(m2n2)}

≥ max{βM1(m1), βM1(n1),max{βM2(m2)βM2(n2)}}

= max{max{βM1(m1), βM2(m2)}, {βM1(m1), βM2(n2)}

= max{(βM1 ⊕ βM2)(m1,m2), (βM1 ⊕ βM2)(n1, n2)}

(γN1 ⊕ γN2)((m1,m2)(n1, n2)) = max{γM1(m1), γM1(n1), γN2(m2n2)}

≥ max{γM1(m1), γM1(n1),max{γM2(m2)γM2(n2)}}

= max{max{γM1(m1), γM2(m2)}, {γM1(m1), γM2(n2)}

= max{(γM1 ⊕ γM2)(m1,m2), (γM1 ⊕ γM2)(n1, n2)}
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(δN1 ⊕ δN2)((m1,m2)(n1, n2)) = max{δM1(m1), δM1(n1), δN2(m2n2)}

≥ max{δM1(m1), δM1(n1),max{δM2(m2)δM2(n2)}}

= max{max{δM1(m1), δM2(m2)}, {δM1(m1), δM2(n2)}

= max{(δM1 ⊕ δM2)(m1,m2), (δM1 ⊕ δM2)(n1, n2)}

(ηN1 ⊕ ηN2)((m1,m2)(n1, n2)) = min{ηM1(m1), ηM1(n1), ηN2(m2n2)}

≤ min{ηM1(m1), ηM1(n1),min{ηM2(m2)ηM2(n2)}}

= min{min{ηM1(m1), ηM2(m2)}, {ηM1(m1), ηM2(n2)}

= min{(ηM1 ⊕ ηM2)(m1,m2), (ηM1 ⊕ ηM2)(n1, n2)}

(θN1 ⊕ θN2)((m1,m2)(n1, n2)) = min{θM1(m1), θM1(n1), θN2(m2n2)}

≤ min{θM1(m1), θM1(n1),min{θM2(m2)θM2(n2)}}

= min{min{θM1(m1), θM2(m2)}, {θM1(m1), θM2(n2)}

= min{(θM1 ⊕ θM2)(m1,m2), (θM1 ⊕ θM2)(n1, n2)}

(i∨) If m1n1 ∈ E1 and m2n2 ̸∈ E2

(αN1 ⊕ αN2)((m1,m2)(n1, n2)) = min{αM2(m2), αM2(n2), αN1(m1n1)}

≤ min{αM2(m2), αM2(n2),min{αM1(m1)αM1(n1)}}

= min{min{αM2(m2), αM1(m1)}, {αM2(m2), αM1(n1)}

= min{(αM1 ⊕ αM2)(m1,m2), (αM1 ⊕ αM2)(n1, n2)}

(βN1 ⊕ βN2)((m1,m2)(n1, n2)) = max{βM2(m2), βM2(n2), βN1(m1n1)}

≥ max{βM2(m2), βM2(n2),max{βM1(m1)βM1(n1)}}

= max{max{βM2(m2), βM1(m1)}, {βM2(m2), βM1(n1)}

= max{(βM1 ⊕ βM2)(m1,m2), (βM1 ⊕ βM2)(n1, n2)}

(γN1 ⊕ γN2)((m1,m2)(n1, n2)) = max{γM2(m2), γM2(n2), γN1(m1n1)}

≥ max{γM2(m2), γM2(n2),max{γM1(m1)γM1(n1)}}

= max{max{γM2(m2), γM1(m1)}, {γM2(m2), γM1(n1)}

= max{(γM1 ⊕ γM2)(m1,m2), (γM1 ⊕ γM2)(n1, n2)}
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(δN1 ⊕ δN2)((m1,m2)(n1, n2)) = max{δM2(m2), δM2(n2), δN1(m1n1)}

≥ max{δM2(m2), δM2(n2),max{δM1(m1)δM1(n1)}}

= max{max{δM2(m2), δM1(m1)}, {δM2(m2), δM1(n1)}

= max{(δM1 ⊕ δM2)(m1,m2), (δM1 ⊕ δM2)(n1, n2)}

(ηN1 ⊕ ηN2)((m1,m2)(n1, n2)) = min{ηM2(m2), ηM2(n2), ηN1(m1n1)}

≤ min{ηM2(m2), ηM2(n2),min{ηM1(m1)ηM1(n1)}}

= min{min{ηM2(m2), ηM1(m1)}, {ηM2(m2), ηM1(n1)}

= min{(ηM1 ⊕ ηM2)(m1,m2), (ηM1 ⊕ ηM2)(n1, n2)}

(θN1 ⊕ θN2)((m1,m2)(n1, n2)) = min{θM2(m2), θM2(n2), θN1(m1n1)}

≤ min{θM2(m2), θM2(n2),min{θM1(m1)θM1(n1)}}

= min{min{θM2(m2), θM1(m1)}, {θM2(m2), θM1(n1)}

= min{(θM1 ⊕ θM2)(m1,m2), (θM1 ⊕ θM2)(n1, n2)}

. Hence G1 ⊕ G2 is a BSVNG.

Definition 2.8. Let G1 = (M1, N1) and G2 = (M2, Y2) be two BSVNGs. ∀(m1,m2) ∈ V1 × V2

(dα)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ⊕ αN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{αN1(m1n1, αM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{αM1(m1), αM1(n1), αN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{αN1(m1n1), αM2(m2), αM2(n2)}
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(dβ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 ⊕ βN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

max{βM1(m1), βN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{βN1(m1n1, βM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

max{βM1(m1), βM1(n1), βN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

max{βN1(m1n1), βM2(m2), βM2(n2)}

(dγ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 ⊕ βN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

max{γM1(m1), γN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{γN1(m1n1, γM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

max{γM1(m1), γM1(n1), γN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

max{γN1(m1n1), γM2(m2), γM2(n2)}

(dδ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 ⊕ δN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

max{δM1(m1), δN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{δN1(m1n1, δM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

max{δM1(m1), δM1(n1), δN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

max{δN1(m1n1), δM2(m2), δM2(n2)}
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(dη)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 ⊕ ηN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{ηM1(m1), ηN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{ηN1(m1n1, ηM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{ηM1(m1), ηM1(n1), ηN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{ηN1(m1n1), ηM2(m2), ηM2(n2)}

(dθ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 ⊕ ηN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{θM1(m1), θN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{θN1(m1n1, θM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{θM1(m1), θM1(n1), θN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{θN1(m1n1), θM2(m2), θM2(n2)}

Theorem 2.9. Let G1 = (M1, N1) and G2 = (M2, Y2) be two BSVNGs. If αM1 ≥ αN2 , βM1 ≤
βN2 , γM1 ≤ γN2 and αM2 ≥ αN1 , βM2 ≤ βN1 , γM2 ≤ γN1 . Also if δM1 ≤ δN2 , ηM1 ≥ ηN2 , θM1 ≥
θN2 and δM2 ≤ δN1 , ηM2 ≥ ηN1 , θM2 ≥ θN1 . Then for every ∀(m1,m2) ∈ V1 × V2

(d)G1⊕G2(m1,m2) =q(d)G1(m1)+s(d)G2(m2) where s=| V1 | -(d)G1(m1) and q=| V2 | -(d)G2(m2)

.
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Proof.

(dα)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ⊕ αN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{αN1(m1n1), αM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{αM1(m1), αM1(n1), αN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{αN1(m1n1), αM2(m2), αM2(n2)}

=
∑

m2n2∈E2

αN2(m2n2) +
∑

m1n1∈E1

αN1(m1n1)

+
∑

m1n1 ̸∈E1and m2n2∈E2

αN2(m2n2)}+
∑

m1n1∈E1and m2n2 ̸∈E2

αN1(m1n1)

= q(dα)G1(m1) + s(dα)G2(m2)

(dθ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 ⊕ θN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{θM1(m1), θN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{θN1(m1n1), θM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{θM1(m1), θM1(n1), θN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{θN1(m1n1), θM2(m2), θM2(n2)}

=
∑

m2n2∈E2

θN2(m2n2) +
∑

m1n1∈E1

θN1(m1n1)

+
∑

m1n1 ̸∈E1and m2n2∈E2

θN2(m2n2)}+
∑

m1n1∈E1and m2n2 ̸∈E2

θN1(m1n1)

= q(dθ)G1(m1) + s(dθ)G2(m2)

In a similar way others four will proved obviously.

We conclude that (d)G1⊕G2(m1,m2) =q(d)G1(m1) + s(d)G2(m2) where s=| V1 | -(d)G1(m1) and

q=| V2 | -(d)G2(m2) .

M. Aslam Malik, Hossein Rashmanlou, Muhammad Shoaib, R. A. Borzooei and Morteza Taheri,
A Study on Bipolar Single-Valued Neutrosophic Graphs With Novel Application



Neutrosophic Sets and Systems, Vol. 32, 2020 235

Definition 2.10. Let G1 = (M1, N1) and G2 = (M2, Y2) be two BSVNGs. ∀(m1,m2) ∈ V1×V2

(tdα)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ⊕ αN2)((m1,m2)(n1, n2)) + (αM1 ⊕ αM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{αN1(m1n1, αM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{αM1(m1), αM1(n1), αN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{αN1(m1n1), αM2(m2), αM2(n2)}

+min{αM1(m1), αM2(m2)}

(tdβ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 ⊕ βN2)((m1,m2)(n1, n2)) + (βM1 ⊕ βM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{βM1(m1), βN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{βN1(m1n1, βM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

max{βM1(m1), βM1(n1), βN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

max{βN1(m1n1), βM2(m2), βM2(n2)}

+max{βM1(m1), βM2(m2)}

(tdγ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 ⊕ γN2)((m1,m2)(n1, n2)) + (γM1 ⊕ γM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{γM1(m1), γN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{γN1(m1n1, γM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

max{γM1(m1), γM1(n1), γN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

max{γN1(m1n1), γM2(m2), γM2(n2)}

+max{γM1(m1), γM2(m2)}
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(tdδ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 ⊕ δN2)((m1,m2)(n1, n2)) + (δM1 ⊕ δM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{δM1(m1), δN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{δN1(m1n1, δM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

max{δM1(m1), δM1(n1), δN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

max{δN1(m1n1), δM2(m2), δM2(n2)}

+min{δM1(m1), δM2(m2)}

(tdη)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 ⊕ ηN2)((m1,m2)(n1, n2)) + (ηM1 ⊕ ηM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{ηM1(m1), ηN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{ηN1(m1n1, ηM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{ηM1(m1), ηM1(n1), ηN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{ηN1(m1n1), ηM2(m2), ηM2(n2)}

+max{ηM1(m1), ηM2(m2)}

(tdθ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 ⊕ θN2)((m1,m2)(n1, n2)) + (θM1 ⊕ θM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{θM1(m1), θN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{θN1(m1n1, θM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{θM1(m1), θM1(n1), θN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{θN1(m1n1), θM2(m2), θM2(n2)}

+max{θM1(m1), θM2(m2)}

Theorem 2.11. Let G1 = (M1, N1) and G2 = (M2, Y2) be two BSVNGs. If

(i)
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αM1 ≥ αN2 and αM2 ≥ αN1 then ∀(m1,m2) ∈ V1 × V2

(tdα)G1⊕G2(m1,m2) = q(tdα)G1(m1) + s(tdα)G2(m2)

− (q − 1)TG1(m1)−max{TG1(m1), TG1(m1)}

and

δM1 ≤ δN2 and δM2 ≤ δN1 then ∀(m1,m2) ∈ V1 × V2

(tdδ)G1⊕G2(m1),m2) = q(tdδ)G1(m1) + s(tdδ)G2(m2)

− (q − 1)TG1(m1)−min{TG1(m1), TG1(m1)}

(ii) βM1 ≤ βN2 and βM2 ≤ βN1 then ∀(m1,m2) ∈ V1 × V2

(tdβ)G1⊕G2(m1,m2) = q(tdβ)G1(m1) + s(tdβ)G2(m2)

− (q − 1)IG1(m1)−min{IG1(m1), IG1(m1}

and

ηM1 ≥ ηN2 and ηM2 ≥ ηN1 then ∀(m1,m2) ∈ V1 × V2

(tdη)G1⊕G2(m1,m2) = q(tdη)G1(m1) + s(tdη)G2(m2)

− (q − 1)IG1(m1)−max{IG1(m1), IG1(m1)}

(iii) γM1 ≤ γN2 and γM2 ≥ γN1 then ∀(m1,m2) ∈ V1 × V2

(tdγ)G1⊕G2(m1,m2) = q(tdγ)G1(m1) + s(tdγ)G2(m2)

− (q − 1)FG1(m1)−min{FG1(m1), FG1(m1)}

and

θM1 ≥ θN2 and θM2 ≤ θN1 then ∀(m1,m2) ∈ V1 × V2

(tdθ)G1⊕G2(m1,m2) = q(tdθ)G1(m1) + s(tdθ)G2(m2)

− (q − 1)FG1(m1)−max{FG1(m1), FG1(m1)}

∀(m1,m2) ∈ V1 × V2 ,s=| V1 | -(d)G1(m1) and q=| V2 | -(d)G2(m2) .
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Proof. ∀(m1,m2) ∈ V1 × V2

(tdα)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ⊕ αN2)((m1,m2)(n1, n2)) + (αM1 ⊕ αM2)(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{αN1(m1n1), αM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

min{αM1(m1), αM1(n1), αN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

min{αN1(m1n1), αM2(m2), αM2(n2)}

+max{αM1(m1), αM2(m2)}

=
∑

m2n2∈E2

αN2(m2n2) +
∑

m1n1∈E1

αN1(m1n1)

+
∑

m1n1 ̸∈E1and m2n2∈E2

αN2(m2n2)}+
∑

m1n1∈E1and m2n2 ̸∈E2

αN1(m1n1)

+ max{αM1(m1), αM2(m2)}

=
∑

m2n2∈E2

αN2(m2n2) +
∑

m1n1∈E1

αN1(m1n1) +
∑

m1n1 ̸∈E1and m2n2∈E2

αN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

αN1(m1n1) + αM1(m1) + αM2(m2)−max{αM1(m1), αM2(m2)}

= q(tdα)G1(m1) + s(tdα)G2(m2)

− (q − 1)TG1(m1)−max{TG1(m1), TG1(m1)}

(tdδ)G1⊕G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 ⊕ δN2)((m1,m2)(n1, n2)) + (δM1 ⊕ δM2)(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{δM1(m1), δN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{δN1(m1n1), δM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2∈E2

max{δM1(m1), δM1(n1), δN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

max{δN1(m1n1), δM2(m2), δM2(n2)}

+min{δM1(m1), δM2(m2)}

=
∑

m2n2∈E2

δN2(m2n2) +
∑

m1n1∈E1

δN1(m1n1)
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+
∑

m1n1 ̸∈E1and m2n2∈E2

δN2(m2n2)}+
∑

m1n1∈E1and m2n2 ̸∈E2

δN1(m1n1)

+ min{δM1(m1), δM2(m2)}

=
∑

m2n2∈E2

δN2(m2n2) +
∑

m1n1∈E1

δN1(m1n1) +
∑

m1n1 ̸∈E1and m2n2∈E2

δN2(m2n2)}

+
∑

m1n1∈E1and m2n2 ̸∈E2

δN1(m1n1) + δM1(m1) + δM2(m2)−min{δM1(m1), δM2(m2)}

= q(tdδ)G1(m1) + s(tdδ)G2(m2)

− (q − 1)TG1(m1)−min{TG1(m1), TG1(m1)}

In a similar way others four will proved obviously.

where s=| V1 | -(d)G1(m1) and q=| V2 | -(d)G2(m2)

Example 2.12. In Example 2.6 we have to find the degree and total degree of vertices of

G1 ⊕ G2 by using Figure 2, Figure 3, and Figure 4.

(dα)G1⊕G2(a, c) = q(dα)G1(a) + s(dα)G2(c)

where s=| V1 | -(d)G1(a) and q=| V2 | -(d)G2(e)

s =| V1 | −(d)G1(a) = 2− 1 = 1, q =| V2 | −(d)G2(e) = 2− 1 = 1

(dα)G1⊕G2(a, c) = q(dα)G1(a) + s(dα)G2(c) = 1(0.4) + 1(0.5) = 0.4 + 0.5 = 0.9

(dβ)G1⊕G2(a, c) = q(dβ)G1(a) + s(dβ)G2(c) = 1(0.2) + 1(0.4) = 0.2 + 0.4 = 0.6

(dγ)G1⊕G2(a, c) = 0.7, (dδ)G1⊕G2(a, c) = −1.1

(dη)G1⊕G2(a, c) = −0.5, (dθ)G1⊕G2(a, c) = −0.7

So (d)G1⊕G2(a, e) = (0.9, 0.6,−1.1,−0.5,−0.7)

By applying this technique we can find degree of all vertices in a similar way. Now we will

find total degree of vertices. For this select vertex (a,e)

(tdα)G1⊕G2(a, c) = q(tdα)G1(a) + s(tdα)G2(c)

− (s− 1)αG2(c)− (q − 1)αG1(a)−max{αG1(a), αG2(c)}

= 1(0.7 + 0.4) + 1(0.6 + 0.5)− (1− 1)(0.6)− (1− 1)(0.7)

−max{0.6, 0.7} = 1(1.1) + 1.1− 0.7 = 1.5
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(tdδ)G1⊕G2(a, c) = q(tdδ)G1(a) + s(tdδ)G2(c)

− (s− 1)δG2(c)− (q − 1)δG1(a)−min{δG1(a), δG2(c)}

= 1(−0.6− 0.2) + 1(−0.5− 0.3)− (1− 1)(−0.5)− (1− 1)(−0.6)

−min{−0.5,−0.6} = (−0.8− 0.8 + 0.6 = −1.0

(tdβ)G1⊕G2(a, c) = 1.0, (tdγ)G1⊕G2(a, c) = 1.3

(tdη)G1⊕G2(a, c) = −1.1, (tdθ)G1⊕G2(a, c) = −1.7

(td)G1⊕G2(a, c) = (1.5, 1.0, 1.3,−1.0,−1.1,−1.7)

By applying this technique we can find total degree of all vertices in a similar way.

Definition 2.13. let G1 = (M1, N1) and G2 = (M2, N2) are two bipolar single valued neutro-

sophic fuzzy graphs defined on G1 = (V1, E1) and G2 = (V2, E2) respectively. The Residue

product of G1 and G2 is represented by G1 • G2 = (M1 • M2, N1 • N2). Residue product of

G1 and G2 is defined as the following conditions: (i)

(αM1 • αM2)((m1,m2)) = max{αM1(m1), αM2(m2)}, (βM1 • βM2)((m1,m2))

= min{βM1(m1), βM2(m2)}

(γM1 • γM2)((m1,m2)) = min{γM1(m1), γM2(m2)}, (δM1 • δM2)((m1,m2))

= min{δM1(m1), δM2(m2)}

(ηM1 • ηM2)((m1,m2)) = max{ηM1(m1), ηM2(m2)}, (θM1 • θM2)((m1,m2))

= max{θM1(m1), θM2(m2)}

∀(m1,m2) ∈ (V1 × V2)

(ii)

(αN1 • αN2)((m1,m2)(n1, n2)) = αN1(m1n1), (βN1 • βN2)((m1,m2)(n1, n2)) = βN1(m1n1)

(γN1 • γN2)((m1,m2)(n1, n2)) = γN1(m1n1), (δN1 • δN2)((m1,m2)(n1, n2)) = δN1(m1n1)

(ηN1 • ηN2)((m1,m2)(n1, n2)) = ηN1(m1n1), (θN1 • θN2)((m1,m2)(n1, n2)) = θN1(m1n1)

∀m1n1 ∈ E1,m2 ̸= n2.
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Figure 5. G1

Figure 6. G2

Figure 7. G1 • G2

Example 2.14. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs on V1 =

{a, b, c, d} and V2 = {e, f} respectively which shown in Figure 5 and Figure 6. Also Residue

product is shown in Figure 7.

Proposition 2.15. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 =

(V1, E1) and G2 = (V2, E2), respectively. Then the Residue product G1 • G2 of G1 = (V1, E1)

and G2 = (V2, E2) is a BSVNG.
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Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 = (V1, E1) and

G2 = (V2, E2), respectively. Let (m1,m2)(n1, n2) ∈ E1 × E2 If m1n1 ∈ E1 and m2 ̸= n2 then

(αN1 • αN2)((m1,m2)(n1, n2)) = αN1(m1n1)

≤ min{αM1(m1), αM1(n1)}

≤ max{min{αM1(m1), αM1(n1)},min{αM2(m2), αM2(n2)}}

= min{max{αM1(m1), αM1(n1)},max{αM2(m2), αM2(n2)}}

= min{(αM1 • αM2)(m1,m2), (αM1 • αM2)(n1, n2)}

(βN1 • βN2)((m1,m2)(n1, n2)) = βN1(m1n1)

≥ max{βM1(m1), βM1(n1)}

≥ min{max{βM1(m1), βM1(n1)},max{βM2(m2), βM2(n2)}}

= max{min{βM1(m1), βM1(n1)},min{βM2(m2), βM2(n2)}}

= max{(βM1 • βM2)(m1,m2), (βM1 • βM2)(n1, n2)}

(γN1 • γN2)((m1,m2)(n1, n2)) = γN1(m1n1)

≥ max{γM1(m1), γM1(n1)}

≥ min{max{γM1(m1), γM1(n1)},max{γM2(m2), γM2(n2)}}

= max{min{γM1(m1), γM1(n1)},min{γM2(m2), γM2(n2)}}

= max{(γM1 • γM2)(m1,m2), (γM1 • γM2)(n1, n2)}

(δN1 • δN2)((m1,m2)(n1, n2)) = δN1(m1n1)

≥ max{δM1(m1), δM1(n1)}

≥ min{max{δM1(m1), δM1(n1)},max{δM2(m2), δM2(n2)}}

= max{min{δM1(m1), δM1(n1)},min{δM2(m2), δM2(n2)}}

= max{(δM1 • δM2)(m1,m2), (δM1 • δM2)(n1, n2)}

(ηN1 • ηN2)((m1,m2)(n1, n2)) = ηN1(m1n1)

≤ min{ηM1(m1), ηM1(n1)}

≤ max{min{ηM1(m1), ηM1(n1)},min{ηM2(m2), ηM2(n2)}}

= min{max{ηM1(m1), ηM1(n1)},max{ηM2(m2), ηM2(n2)}}

= min{(ηM1 • ηM2)(m1,m2), (ηM1 • ηM2)(n1, n2)}
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(θN1 • θN2)((m1,m2)(n1, n2)) = θN1(m1n1)

≤ min{θM1(m1), θM1(n1)}

≤ max{min{θM1(m1), θM1(n1)},min{θM2(m2), θM2(n2)}}

= min{max{θM1(m1), θM1(n1)},max{θM2(m2), θM2(n2)}}

= min{(θM1 • θM2)(m1,m2), (θM1 • θM2)(n1, n2)}

Definition 2.16. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs.For any

vertex(m1,m2) ∈ V1 × V2

(dα)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 • αN2)((m1,m2)(n1, n2))

=
∑

m1n1∈E1,m2 ̸=n2

αN1(m1n1) = (dα)G1(m1)

(dβ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 • βN2)((m1,m2)(n1, n2))

=
∑

m1n1∈E1,m2 ̸=n2

βN1(m1n1) = (dβ)G1(m1)

(dγ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 • γN2)((m1,m2)(n1, n2))

=
∑

m1n1∈E1,m2 ̸=n2

γN1(m1n1) = (dγ)G1(m1)

(dδ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 • δN2)((m1,m2)(n1, n2))

=
∑

m1n1∈E1,m2 ̸=n2

δN1(m1n1) = (dδ)G1(m1)

(dη)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 • ηN2)((m1,m2)(n1, n2))

=
∑

m1n1∈E1,m2 ̸=n2

ηN1(m1n1) = (dη)G1(m1)

(dθ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 • θN2)((m1,m2)(n1, n2))

=
∑

m1n1∈E1,m2 ̸=n2

θN1(m1n1) = (dθ)G1(m1)
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Definition 2.17. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs. For any

vertex(m1,m2) ∈ V1 × V2

(tdα)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 • αN2)((m1,m2)(n1, n2)) + (αM1 • αM2)(m1,m2))

=
∑

m1n1∈E1,m2 ̸=n2

αN1(m1n1) + min{αM1(m1), αM2(m2)}

=
∑

m1n1∈E1,m2 ̸=n2

αN1(m1n1) + αM1(m1) + αM2(m2)−max{αM1(m1), αM2(m2)}

= (tdα)G1(m1) + αM2(m2)−max{αM1(m1), αM2(m2)}

(tdβ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 • βN2)((m1,m2)(n1, n2)) + (βM1 • βM2(m1,m2))

=
∑

m1n1∈E1,m2 ̸=n2

βN1(m1n1) + max{βM1(m1), βM2(m2)}

=
∑

m1n1∈E1,m2 ̸=n2

βN1(m1n1) + βM1(m1) + βM2(m2)−min{βM1(M1), βM2(m2)}

= (tdβ)G1(m1) + βM2(m2)−min{βM1(m1), βM2(m2)}

(tdγ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 • γN2)((m1,m2)(n1, n2)) + (γM1 • γM2(m1,m2))

=
∑

m1n1∈E1,m2 ̸=n2

γN1(m1n1) + max{γM1(m1), γM2(m2)}

=
∑

m1n1∈E1,m2 ̸=n2

γN1(m1n1) + γM1(m1) + γM2(m2)−min{γM1(m1), γM2(m2)}

= (tdγ)G1(m1) + γM2(m2)−min{γM1(m1), γM2(m2)}

(tdδ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 • δN2)((m1,m2)(n1, n2)) + (δM1 • δM2)(m1,m2))

=
∑

m1n1∈E1,m2 ̸=n2

δN1(m1n1) + max{δM1(m1), δM2(m2)}

=
∑

m1n1∈E1,m2 ̸=n2

δN1(m1n1) + δM1(m1) + δM2(m2)−min{δM1(m1), δM2(m2)}

= (tdδ)G1(m1) + δM2(m2)−min{δM1(m1), δM2(m2)}
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(tdη)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 • ηN2)((m1,m2)(n1, n2)) + (ηM1 • ηM2(m1,m2))

=
∑

m1n1∈E1,m2 ̸=n2

ηN1(m1n1) + min{ηM1(m1), ηM2(m2)}

=
∑

m1n1∈E1,m2 ̸=n2

ηN1(m1n1) + ηM1(m1) + ηM2(m2)−max{I−M1
(m1), ηM2(m2)}

= (tdη)G1(m1) + ηM2(m2)−max{ηM1(m1), ηM2(m2)}

(tdθ)G1•G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 • θN2)((m1,m2)(n1, n2)) + (θM1 • θM2(m1,m2))

=
∑

m1n1∈E1,m2 ̸=n2

θN1(m1n1) + min{θM1(m1), θM2(m2)}

=
∑

m1n1∈E1,m2 ̸=n2

θN1(m1n1) + θM1(m1) + θM2(m2)−max{θM1(m1), θM2(m2)}

= (tdθ)G1(m1) + θM2(m2)−max{θM1(m1), θM2(m2)}

Example 2.18. In Example 2.14 we have to find the degree and total degree of vertices of

G1 • G2 by using Figure 5, Figure 6, and Figure 7.

(dβ)G1•G2(a, f) = (dβ)G1(a) = 0.5 + 0.4 = 0.9

(dη)G1•G2(a, f) = (dη)G1(a) = −0.4− 0.5 = −0.9

(dα)G1•G2(a, f) = 0.5, (dγ)G1•G2(a, f) = 0.9

(dδ)G1•G2(a, f) = −0.2, (dθ)G1•G2(a, f) = −1.0

(d)G1•G2(a, f) = (0.5, 0.9, 0.9,−0.2,−0.9,−1.0)

By applying same method we can find degree of all vertices. Now we are to find total degree

of vertices. For this select vertices (a,f)

(tdβ)G1•G2(a, f) = (tdβ)G1(a) + βM2(f)−min{βM1(a), βM2(f)}

= (0.5 + 0.4 + 0.4) + 0.8−min(0.3, 0.8)

= 1.3 + 0.8− 0.3 = 1.8

(tdη)G1•G2(a, f) = (tdη)G1(a) + ηM2(f)−max{ηM1(a), ηM2(f)}

= (−0.4− 0.3− 0.5) + (−0.2)−max(−0.3,−0.2)

= −1.2− 0.2 + 0.2 = −1.2

(tdγ)G1•G2(a, f) = 1.1, (tdδ)G1•G2(a, f) = −0.4
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(tdθ)G1•G2(a, f) = −1.4, (tdα)G1•G2(a, f) = 0.8

So (td)G1•G2(a, f) = (0.8, 1.8, 1.1− 0.4,−1.2,−1.4)

by applying similar method we can find total degree of all others vertices in a similar way.

Definition 2.19. let G1 = (M1, N1) and G2 = (M2, N2) are bipolar single valued neutrosophic

fuzzy graphs defined on G1 = (V1, E1) and G2 = (V1, E2) respectively. The maximal product

of G1 and G2 is represented by G1∗G2 = (M1∗M2, N1⊕N2). The Maximal product of G1 and G2

is defined as the following conditions (i)

(αM1 ∗ αM2)((m1,m2)) = max{αM1(m1), αM2(m2)}, (βM1 ∗ βM2)((m1,m2))

= min{βM1(m1), βM2(m2)}

(γM1 ∗ γM2)((m1,m2)) = min{γM1(m1), γM2(m2)}, (δM1 ∗ δM2)((m1,m2))

= min{δM1(m1), δM2(m2)}

(ηM1 ∗ ηM2)((m1,m2)) = max{ηM1(m1), ηM2(m2)}, (θM1 ∗ θM2)((m1,m2))

= max{θM1(m1), θM2(m2)}

∀ (m1,m2) ∈ (V1 × V2)

(ii)

(αM1 ∗ αM2)((m,m2)(m,n2)) = max{αM1(m), αN2(m2n2)}, (βM1 ∗ βM2)((m,m2)(m,n2))

= min{βM1(m), βN2(m2n2)}

(γM1 ∗ γM2)((m,m2)(m,n2)) = min{γMm1
(m), γN2(m2n2)}, (δM1 ∗ δM2)((m,m2)(m,n2))

= min{δM1(m), δN2(m2n2)}

(ηM1 ∗ ηM2)((m,m2)(m,n2)) = max{ηM1(m), ηN2(m2n2)}, (θM1 ∗ θM2)((m,m2)(m,n2))

= max{θMm1
(m), θN2(m2n2)}

∀ m ∈ V1 and m2n2 ∈ E2

(iii)

(αM1 ∗ αM2)((m1,m)(n1,m)) = max{αN1(m1n1), αM2(m)}, (βM1 ∗ βM2)((m1,m)(n1,m))

= min{βN1(m1n1), βM2(m)}

(γM1 ∗ γM2)((m1,m)(n1,m)) = min{γN1(m1n1), γM2(m)}, (δM1 ∗ δM2)((m1,m)(n1,m))

= min{δN1(m1n1), δM2(m)}

M. Aslam Malik, Hossein Rashmanlou, Muhammad Shoaib, R. A. Borzooei and Morteza Taheri,
A Study on Bipolar Single-Valued Neutrosophic Graphs With Novel Application



Neutrosophic Sets and Systems, Vol. 32, 2020 247

Figure 8. G1

Figure 9. G2

(ηM1 ∗ ηM2)((m1,m)(n1,m)) = max{ηN1(m1n1), ηM2(m)}, (θM1 ∗ θM2)((m1,m)(n1,m))

= max{θN1(m1n1), θM2(m)}

∀ m ∈ V2 and m1n1 ∈ E1

Example 2.20. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs on V1 =

{a, b} and V2 = {c, d, e} respectively which shown in Figure 8 and Figure 9. Also maximal

product is shown in Figure 10.

Proposition 2.21. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 =

(V1, E1) and G2 = (V2, E2), respectively. Then then maximal product G1 ∗ G2 of G1 = (V1, E1)

and G2 = (V2, E2) is a BSVNG.

Proof. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 = (V1, E1) and

G2 = (V2, E2), respectively. Then the Maximal product G1 ∗ G2 of G1 = (V1, E1) and G2 =

(V2, E2) can be proved. Let (m1,m2)(n1, n2) ∈ E1 × E2
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Figure 10. G1 ∗ G2

(i) If m1 = n1 = m

(αN1 ∗ αN2)((m,m2)(m,n2)) = max{αM1(m), αN2(m2n2)}

≤ max{αM1(m),min{αM2(m2), αM2(n2)}}

= min{max{{αM1(m), αM2(m2)},max{{αM1(m), αM2(n2)}}

= min{(αM1 ∗ αM2)(m,m2), (αM1 ∗ αM2)(m,n2)}

(βN1 ∗ βN2)((m,m2)(m,n2)) = min{βM1(m), βN2(m2n2)}

≥ min{βM1(m),max{βM2(m2), βM2(n2)}}

= max{min{{βM1(m), βM2(m2)},min{{βM1(m), βM2(n2)}}

= max{(βM1 ∗ βM2)(m,m2), (βM1 ∗ βM2)(m,n2)}

(γN1 ∗ γN2)((m,m2)(m,n2)) = min{γM1(m), γN2(m2n2)}

≥ min{γM1(m),max{γM2(m2), γM2(n2)}}

= max{min{{γM1(m), γM2(m2)},min{{γM1(m), γM2(n2)}}

= max{(γM1 ∗ γM2)(m,m2), (γM1 ∗ γM2)(m,n2)}
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(δN1 ∗ δN2)((m,m2)(m,n2)) = min{δM1(m), δN2(m2n2)}

≥ min{δM1(m),max{δM2(m2), δM2(n2)}}

= max{min{{δM1(m), δM2(m2)},min{{δM1(m), δM2(n2)}}

= max{(δM1 ∗ δM2)(m,m2), (δM1 ∗ δM2)(m,n2)}

(ηN1 ∗ ηN2)((m,m2)(m,n2)) = max{ηM1(m), ηN2(m2n2)}

≤ max{ηM1(m),min{ηM2(m2), ηM2(n2)}}

= min{max{{ηM1(m), ηM2(m2)},max{{ηM1(m), ηM2(n2)}}

= min{(ηM1 ∗ ηM2)(m,m2), (ηM1 ∗ ηM2)(m,n2)}

(θN1 ∗ θN2)((m,m2)(m,n2)) = max{θM1(m), θN2(m2n2)}

≤ max{θM1(m),min{θM2(m2), θM2(n2)}}

= min{max{{θM1(m), θM2(m2)},max{{θM1(m), θM2(n2)}}

= min{(θM1 ∗ θM2)(m,m2), (θM1 ∗ θM2)(m,n2)}

(ii) If m2 = n2 = m

(αN1 ∗ αN2)((m1,m)(n1,m)) = max{αN1(m1n1), αM2(m)}

≤ max{min{αN1(m1n1), αM2(m)}

= min{max{{αN1(m1), αM2(m)},max{{αM1(n1), αM2(m)}}

= min{(αM1 ∗ αM2)(m1,m), (αM1 ∗ αM2)(n1,m)}

(βN1 ∗ βN2)((m1,m)(n1,m)) = min{βN1(m1n1), βM2(m)}

≥ min{max{βN1(m1n1), βM2(m)}

= max{min{{βN1(m1), βM2(m)},min{{βM1(n1), βM2(m)}}

= max{(βM1 ∗ βM2)(m1,m), (βM1 ∗ βM2)(n1,m)}
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(γN1 ∗ γN2)((m1,m)(n1,m)) = min{γN1(m1n1), γM2(m)}

≥ min{max{γN1(m1n1), γM2(m)}

= max{min{{γN1(m1), γM2(m)},min{{γM1(n1), γM2(m)}}

= max{(γM1 ∗ γM2)(m1,m), (γM1 ∗ γM2)(n1,m)}

(δN1 ∗ δN2)((m1,m)(n1,m)) = min{δN1(m1n1), δM2(m)}

≥ min{max{δN1(m1n1), δM2(m)}

= max{min{{δN1(m1), δM2(m)},min{{δM1(n1), δM2(m)}}

= max{(δM1 ∗ δM2)(m1,m), (δM1 ∗ δM2)(n1,m)}

(ηN1 ∗ ηN2)((m1,m)(n1,m)) = max{ηN1(m1n1), ηM2(m)}

≤ max{min{ηN1(m1n1), ηM2(m)}

= min{max{{ηN1(m1), ηM2(m)},max{{ηM1(n1), ηM2(m)}}

= min{(ηM1 ∗ ηM2)(m1,m), (ηM1 ∗ ηM2)(n1,m)}

(θN1 ∗ θN2)((m1,m)(n1,m)) = max{θN1(m1n1), θM2(m)}

≤ max{min{θN1(m1n1), θM2(m)}

= min{max{{θN1(m1), θM2(m)},max{{θM1(n1), θM2(m)}}

= min{(θM1 ∗ θM2)(m1,m), (θM1 ∗ θM2)(n1,m)}

Definition 2.22. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs. ∀(m1,m2) ∈ V1×V2

(dα)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ∗ αN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

max{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{αN1(m1n1), αM2(m2)}
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(dβ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 ∗ βN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{βM1(m1), βN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{βN1(m1n1), βM2(m2)}

(dγ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 ∗ γN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{γM1(m1), γN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{γN1(m1n1), γM2(m2)}

(dδ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 ∗ δN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{δM1(m1), δN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{δN1(m1n1), δM2(m2)}

(dη)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 ∗ ηN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

max{ηM1(m1), ηN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{ηN1(m1n1), ηM2(m2)}

(dθ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 ∗ θN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

max{θM1(m1), θN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{θN1(m1n1), θM2(m2)}

Theorem 2.23. Let G1 = (M1, N1) and G2 = (M2, N2) are two BSVNGs. If αM1 ≥ αN2 , βM1 ≤
βN2 , γM1 ≤ γN2 and αM2 ≥ αN1 , βM2 ≤ βN1 , γM2 ≤ γN1 . Also If δM1 ≤ δN2 , ηM1 ≥ ηN2 , θM1 ≥
θN2 and δM2 ≤ δN1 , ηM2 ≥ ηN1 , θM2 ≥ θN1 Then for every ∀(m1,m2) ∈ V1 × V2

(dα)G1∗G2(m1,m2) =(d)G2(m2)αM1(m1) + (d)G1(m1)αM2(m2)

(dβ)G1∗G2(m1,m2)=(d)G2(m2)βM1(m1) + (d)G1(m1)βM2(m2)

(dγ)G1∗G2(m1,m2)=(d)G2(m2)γM1(m1) + (d)G1(m1)γM2(m2)

(dδ)G1∗G2(m1,m2) =(d)G2(m2)δM1(m1) + (d)G1(m1)δM2(m2)
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(dη)G1∗G2(m1,m2)=(d)G2(m2)ηM1(m1) + (d)G1(m1)ηM2(m2)

(dθ)G1∗G2(m1,m2)=(d)G2(m2)θM1(m1) + (d)G1(m1)θM2(m2)

Proof.

(dα)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ∗ αN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

max{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{αN1(m1n1), αM2(m2)}

=
∑

m2n2∈E2,m1=n1

αN2(m2n2) +
∑

m1n1∈E1,m2=n2

αN1(m1n1)

= (d)G2(m2)αM1(m1) + (d)G1(m1)αM2(m2)

(dδ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 ∗ δN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2∈E2

min{δM1(m1), δN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{δN1(m1n1), δM2(m2)}

=
∑

m2n2∈E2,m1=n1

δN2(m2n2) +
∑

m1n1∈E1,m2=n2

δN1(m1n1)

= (d)G2(m2)δM1(m1) + (d)G1(m1)δM2(m2)

In a similar way others four will proved obviously.

Definition 2.24. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs. ∀(m1,m2) ∈ V1×V2

(tdα)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ∗ αN2)((m1,m2)(n1, n2)) + (αM1 ∗ αM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{αN1(m1n1), αM2(m2)}

+max{αM1(m1), αM2(m2)}
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(tdβ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 ∗ βN2)((m1,m2)(n1, n2)) + (βM1 ∗ βM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{βM1(m1), βN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{βN1(m1n1), βM2(m2)}

+min{βM1(m1), βM2(m2)}

(tdγ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 ∗ γN2)((m1,m2)(n1, n2)) + (γM1 ∗ γM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{γM1(m1), γN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{γN1(m1n1, γM2(m2)}

+max{γM1(m1), γM2(m2)}

(tdδ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 ∗ δN2)((m1,m2)(n1, n2)) + (δM1 ∗ δM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{δM1(m1), δN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{δN1(m1n1), δM2(m2)}

+min{δM1(m1), δM2(m2)}

(tdη)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 ∗ ηN2)((m1,m2)(n1, n2)) + (ηM1 ∗ ηM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{ηM1(m1), ηN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{ηN1(m1n1), ηM2(m2)}

+max{ηM1(m1), ηM2(m2)}

(tdθ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 ∗ θN2)((m1,m2)(n1, n2)) + (θM1 ∗ θM2(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{θM1(m1), θN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{θN1(m1n1, θM2(m2)}

+max{θM1(m1), θM2(m2)}
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Theorem 2.25. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs. If αM1 ≥ αN2 , βM1 ≤
βN2 , γM1 ≤ γN2 and αM2 ≥ αN1 , βM2 ≤ βN1 , γM2 ≤ γN1 . Also If δM1 ≤ δN2 , ηM1 ≥ ηN2 , θM1 ≥
θN2 and δM2 ≤ δN1 , ηM2 ≥ ηN1 , θM2 ≥ θN1 Then for every ∀(m1,m2) ∈ V1 × V2

(dα)G1∗G2(m1,m2) =(d)G2(m2)αM1(m1) + (d)G1(m1)αM2(m2)

(dβ)G1∗G2(m1,m2)=(d)G2(m2)βM1(m1) + (d)G1(m1)βM2(m2)

(dγ)G1∗G2(m1,m2)=(d)G2(m2)γM1(m1) + (d)G1(m1)γM2(m2)

(dδ)G1∗G2(m1,m2) =(d)G2(m2)δM1(m1) + (d)G1(m1)δM2(m2)

(dη)G1∗G2(m1,m2)=(d)G2(m2)ηM1(m1) + (d)G1(m1)ηM2(m2)

(dθ)G1∗G2(m1,m2)=(d)G2(m2)θM1(m1) + (d)G1(m1)θM2(m2)

Proof.

(tdα)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 ∗ αN2)((m1,m2)(n1, n2)) + (αM1 ∗ αM2)(m1,m2)

=
∑

m1=n1,m2n2∈E2

max{αM1(m1), αN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

max{αN1(m1n1), αM2(m2)}

+max{αM1(m1), αM2(m2)}

=
∑

m2n2∈E2,m1=n1

αN2(m2n2) +
∑

m1n1∈E1,m2=n2

αN1(m1n1)

+ max{αM1(m1), αM2(m2)}

= (d)G2(m2)αM1(m1) + (d)G1(m1)αM2(m2) +max{αM1(m1), αM2(m2)}

(tdδ)G1∗G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 ∗ δN2)((m1,m2)(n1, n2)) + (δM1 ∗ δM2)(m1,m2)

=
∑

m1=n1,m2n2∈E2

min{δM1(m1), δN2(m2n2)}

+
∑

m1n1∈E1,m2=n2

min{δN1(m1n1), δM2(m2)}

+min{δM1(m1), δM2(m2)}

=
∑

m2n2∈E2,m1=n1

δN2(m2n2) +
∑

m1n1∈E1,m2=n2

δN1(m1n1)

+min{δM1(m1), δM2(m2)}

= (d)G2(m2)δM1(m1) + (d)G1(m1)δM2(m2) +min{δM1(m1), δM2(m2)}

In a similar way others four will proved obviously.
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Example 2.26. In Example 2.20 we have to find the degree and total degree of vertices of

G1 ∗ G2 by using Figure 8, Figure 9, and Figure 10. Select the vertex (e,a).

(dα)G1∗G2(a, c) = (d)G2(c)αM1(a) + (d)G1(a)αM2(c)

= 2(0.4) + 1(0.5) = 0.8 + 0.5 = 1.3

(tdδ)G1∗G2(a, c) = (d)G2(c)δM1(a) + (d)G1(a)δM2(c)

= 2(−0.5) + 1(−0.4) = −1.0− 0.4 = −1.4

, (dβ)G1∗G2(a, c) = 1.0 , (dγ)G1∗G2(e, a) = 1.1 , (tdη)G1∗G2(a, c) = −1.3 , (tdθ)G1∗G2(a, c) = −1.2.

By applying the same method we can find the degree of all vertices.now we are find the total

degree of vertices in maximal product. For this select the same vertex (e,a).

(tdα)G1∗G2(a, c) = (d)G2(c)αM1(a) + (d)G1(a)αM2(c) + max{αM1(a), αM2(c)}

= 2(0.4) + 1(0.5) + max(0.4, 0.5) = 0.8 + 0.5 + 0.5 = 1.8

(tdθ)G1∗G2(a, c) = (d)G2(c)θM1(a) + (d)G1(a)θM2(c) + min{θM1(a), θM2(c)}

= 2(−0.3) + 1(−0.6) + min(−0.3,−0.6) = −0.6− 0.6− 0.6 = −1.8

(tdβ)G1∗G2(a, c) = 1.3 ,(tdγ)G1∗G2(a, c) = 1.4, (tdδ)G1∗G2(a, c) = −1.8 ,(tdη)G1∗G2(a, c) = −1.8. By

applying same method or technique we can find all other vertices total degree.

Definition 2.27. Let G1 = (M1, N1) and G2 = (M2, N2) are two bipolar single valued neutro-

sophic fuzzy graphs defined on G1 = (V1, E1) and G2 = (V2, E2) respectively. The rejection of

G1 and G2 is represented by G1|G2 = (M1|M2, N1|N2). Rejection of G1and G2 is defined as the

following conditions:

(i)

(αM1 |αM2)((m1,m2)) = min{αM1(m1), αM2(m2)}, (βM1 |βM2)((m1,m2)) = max{βM1(m1), βM2(m2)}

(γM1 |γM2)((m1,m2)) = max{γM1(m1), γM2(m2)}, (δM1 |δM2)((m1,m2)) = max{δM1(m1), δM2(m2)}

(ηM1 |ηM2)((m1,m2)) = min{ηM1(m1), ηM2(m2)}, (θM1 |θM2)((m1,m2)) = min{θM1(m1), θM2(m2)}

∀ (m1,m2) ∈ (V1 × V2).

(ii)

(αN1 |αN2)((m,m2)(m,n2)) = min{αM1(m), αM2(m2), αM2(n2)}, (βN1 |βN2)((m,m2)(m,n2))

= max{βM1(m), βM2(m2), βM2(n2)}
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(γN1 |γN2)((m,m2)(m,n2)) = max{γM1(m), γM2(m2), γM2(n2)}, (δN1 |δN2)((m,m2)(m,n2))

= max{δM1(m), δM2(m2), δM2(n2)}

(ηN1 |ηN2)((m,m2)(m,n2)) = min{ηM1(m), ηM2(m2), ηM2(n2)}, (θN1 |θN2)((m,m2)(m,n2))

= min{θM1(m), θM2(m2), θM2(n2)}

∀ m ∈ V2 and m2n2 ̸∈ E2.

(iii)

(αN1 |αN2)((m,m2)(m,n2)) = min{αM1(m), αM2(m2), αM2(n2)}, (βN1 |βN2)((m,m2)(m,n2))

= max{βM1(m), βM2(m2), βM2(n2)}

(γN1 |γN2)((m,m2)(m,n2)) = max{γM1(m), γM2(m2), γM2(n2)}, (δN1 |δN2)((m,m2)(m,n2))

= max{δM1(m), δM2(m2), δM2(n2)}

(ηN1 |ηN2)((m,m2)(m,n2)) = min{ηM1(m), ηM2(m2), ηM2(n2)}, (θN1 |θN2)((m,m2)(m,n2))

= min{θM1(m), θM2(m2), θM2(n2)}

∀ z ∈ V2 and m1n1 ̸∈ E1.

(i∨) (αN1 |αN2)((m1,m2)(n1, n2)) = min{αM1(m1), αM1(n1), αM2(m2), αM2(n2)},
(βN1 |βN2)((m1,m2)(n1, n2)) =

max{βM1(m1), βM1(n1), βM2(m2), αN2(n2)}, (γN1 |γN2)((m1,m2)(n1, n2)) =

max{γM1(m1), γM1(n1), γM2(m2), αM2(n2)},
(δN1 |δN2)((m1,m2)(n1, n2)) = max{δM1(m1), δM1(n1), δM2(m2), δM2(n2)}

,

(ηN1 |ηN2)((m1,m2)(n1, n2)) = min{ηM1(m1), ηM1(n1), ηM2(m2), δN2(n2)}
,

(θN1 |θN2)((m1,m2)(n1, n2)) = min{θM1(m1), θM1(n1), θM2(m2), δM2(n2)}

∀ m1n1 ̸∈ E1 and m2n2 ̸∈ E2.

Example 2.28. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs on V1 =

{a, b, c, d} and V2 = {e, f}, respectively which shown in Figure 11 and Figure 12. Also rejection

shown in Figure 13.

Proposition 2.29. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 =

(V1, E1) and G2 = (V2, E2), respectively. Then the rejection G1|G2 of G1 = (V1, E1) and

G2 = (V2, E2) is a BSVNG.
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Figure 11. G1

Figure 12. G2

Figure 13. G1 | G2

Proof. Suppose that G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs of graph G1 = (V1, E1)

and G2 = (V2, E2) respectively. Then for (m1,m2)(n1, n2) ∈ E1 × E2.
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(i) If m1 = n1,m2n2 ̸∈ E2

(βN1 |βN2)((m1,m2)(n1, n2)) = max{βM1(m1), βM2(m2), βM2(n2)}

= max{max{βM1(m1), βM2(m2)},max{βM1(n1), βM2(n2)}}

= max{(βM1 |βM2)(m1,m2), (βM1 |βM2)(n1, n2)}

(ηN1 |ηN2)((m1,m2)(n1, n2)) = min{ηM1(m1), ηM2(m2), ηM2(n2)}

= min{min{ηM1(m1), ηM2(m2)},min{ηM1(n1), ηM2(n2)}}

= min{(ηM1 |ηM2)(m1,m2), (ηM1 |ηM2)(n1, n2)}

In a similar way others four will proved obviously.

(ii) If m2 = n2,m1n1 ̸∈ E1

(αN1 |αN2)((m1,m2)(n1, n2)) = min{αM1(m1), αM1(n1), αM2(m2)}

= min{min{αM1(m1), αM2(m2)},min{αM1(n1), αM2(n2)}}

= min{(αM1 |αM2)(m1,m2), (αM1 |αM2)(n1, n2)}

(δN1 |δN2)((m1,m2)(n1, n2)) = max{δM1(m1), δM1(n1), δM2(m2)}

= max{max{δM1(m1), δM2(m2)},max{δM1(n1), δM2(n2)}}

= max{(δM1 |δM2)(m1,m2), (δM1 |δM2)(n1, n2)}

In a similar way others four will proved obviously.

(iii) If m1n1 ̸∈ E1and m2n2 ̸∈ E2

(γN1 |γN2)((m1,m2)(n1, n2)) = max{γM1(m1), γM1(n1), γM2(m2), γM2(n2)}

= max{max{γM1(m1), γM2(m2)},max{γM1(n1), γM2(n2)}}

= max{(γM1 |γM2)(m1,m2), (γM1 |γM2)(n1, n2)}.

(θN1 |θN2)((m1,m2)(n1, n2)) = min{θM1(m1), θM1(n1), θM2(m2), θM2(n2)}

= min{min{θM1(m1), θM2(m2)},min{θM1(n1), θM2(n2)}}

= min{(θM1 |θM2)(m1,m2), (θM1 |θM2)(n1, n2)}.

In a similar way others four will proved obviously.

Hence all properties are satisfied truly, so in all cases N1|N2 is a BSVNG on M1|M2. Therefore

we can say G1|G2 = (M1|M2, N1|N2) is a BSVNG.
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Definition 2.30. Let G1 = (M1, N1) and G2 = (M2, Y2) be two BSVNGs. ∀(m1,m2) ∈ V1×V2

(dα)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 |αN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2 ̸∈E2

min{αM1(m1), αM2(m2), αM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

min{αM1(m1), αM1(n1), αM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

min{αM1(m1), αM1(n1), αM2(m2), αM2(n2)}

(dβ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 |βN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2 ̸∈E2

max{βM1(m1), βM2(m2), βM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

max{βM1(m1), βM1(n1), βM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

max{βM1(m1), βM1(n1), βM2(m2), βM2(n2)}

(dγ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 |γN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2 ̸∈E2

max{γM1(m1), γM2(m2), γM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

max{γM1(m1), γM1(n1), γM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

max{γM1(m1), γM1(n1), γM2(m2), γM2(n2)}

(dδ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 |δN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2 ̸∈E2

max{δM1(m1), δM2(m2), δM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

max{δM1(m1), δM1(n1), δM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

max{δM1(m1), δM1(n1), δM2(m2), δM2(n2)}
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(dη)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 |ηN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2 ̸∈E2

min{ηM1(m1), ηM2(m2), ηM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

min{ηM1(m1), ηM1(n1), ηM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

min{ηM1(m1), ηM1(n1), ηM2(m2), ηM2(n2)}

(dθ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 |θN2)((m1,m2)(n1, n2))

=
∑

m1=n1,m2n2 ̸∈E2

min{θM1(m1), θM2(m2), θM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

min{θM1(m1), θM1(n1), θM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

min{θM1(m1), θM1(n1), θM2(m2), θM2(n2)}

Definition 2.31. Let G1 = (M1, N1) and G2 = (M2, Y2) be two BSVNGs. ∀(m1,m2) ∈ V1×V2

(tdα)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(αN1 |αN2)((m1,m2)(n1, n2)) + (αM1 |αM2)(m1,m2)

=
∑

m1=n1,m2n2 ̸∈E2

min{αM1(m1), αM2(m2), αM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

min{αM1(m1), αM1(n1), αM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

min{αM1(m1), αM1(n1), αM2(m2), αM2(n2)}

(tdβ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(βN1 |βN2)((m1,m2)(n1, n2)) + (βM1 |βM2)(m1,m2)

=
∑

m1=n1,m2n2 ̸∈E2

max{βM1(m1), βM2(m2), βM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

max{βM1(m1), βM1(n1), βM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

max{βM1(m1), βM1(n1), βM2(m2), βM2(n2)}
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(tdγ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(γN1 |γN2)((m1,m2)(n1, n2)) + (γM1 |γM2)(m1,m2)

=
∑

m1=n1,m2n2 ̸∈E2

max{γM1(m1), γM2(m2), γM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

max{γM1(m1), γM1(n1), γM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

max{γM1(m1), γM1(n1), γM2(m2), γM2(n2)}

(tdδ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(δN1 |δN2)((m1,m2)(n1, n2)) + (δM1 |δM2)(m1,m2)

=
∑

m1=n1,m2n2 ̸∈E2

max{δM1(m1), δM2(m2), δM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

max{δM1(m1), δM1(n1), δM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

max{δM1(m1), δM1(n1), δM2(m2), δM2(n2)}

(tdη)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(ηN1 |ηN2)((m1,m2)(n1, n2)) + (ηM1 |ηM2)(m1,m2)

=
∑

m1=n1,m2n2 ̸∈E2

min{ηM1(m1), ηM2(m2), ηM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

min{ηM1(m1), ηM1(n1), ηM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

min{ηM1(m1), ηM1(n1), ηM2(m2), ηM2(n2)}

(tdθ)G1|G2(m1,m2) =
∑

(m1,m2)(n1,n2)∈E1×E2.

(θN1 |θN2)((m1,m2)(n1, n2)) + (θM1 |θM2)(m1,m2)

=
∑

m1=n1,m2n2 ̸∈E2

min{θM1(m1), θM2(m2), θM2(n2)}

+
∑

m2=n2,m1n1 ̸∈E1

min{θM1(m1), θM1(n1), θM2(m2)}

+
∑

m1n1 ̸∈E1and m2n2 ̸∈E2

min{θM1(m1), θM1(n1), θM2(m2), θM2(n2)}

Example 2.32. Let G1 = (M1, N1) and G2 = (M2, N2) be two BSVNGs as in Example 2.28.

Their rejection is also shown in Figure 13. We will find the vertex degree in rejection. Consider
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the vertex (d,a) here:

(dγ)G1|G2(e, a) = max{γM2(e), γM1(a), γM1(d)}+max{γM2(a), γM1(a), γM1(c)}

= max{0.2, 0.2, 0.3}+max{0.2, 0.2, 0.3}

= 0.3 + 0.3

= 0.6

(dθ)G1|G2(e, a) = min{θM2(e), θM1(a), θM1(d)}+min{θM2(a), θM1(a), θM1(c)}

= min{−0.3,−0.4,−0.6}+min{−0.3,−0.4,−0.2}

= −0.6− 0.4

= −1.0

(dα)G1|G2(e, a) = 0.6, (dβ)G1|G2(e, a) = 0.8

(dδ)G1|G2(e, a) = −0.5, (dη)G1|G2(e, a) = −0.5

In a similar way, we can find degree of all vertices of a graph in rejection. Now we will find

out the total vertex degree of graph in rejection. Consider the same vertex (d,a) here:

(tdγ)G1|G2(e, a) = max{γM2(e), γM1(a), γM1(d)}+max{γM2(a), γM1(a), γM1(c)}+min{γM2(e), γM1(a)}

= max{0.2, 0.2, 0.3}+max{0.2, 0.2, 0.3}+min{0.2, 0.2}

= 0.3 + 0.3 + 0.2

= 0.8

(tdθ)G1|G2(e, a) = min{θM2(e), θM1(a), θM1(d)}+min{θM2(a), θM1(a), θM1(c) + min{θM2(e), θM1(a)}}

= min{−0.3,−0.4,−0.6}+min{−0.3,−0.4,−0.2}+min{−0.3,−0.4}

= −0.6− 0.4− 0.4

= −1.4

(tdα)G1|G2(e, a) = 0.9, (tdβ)G1|G2(e, a) = 1.1

(tdδ)G1|G2(e, a) = −0.8, (tdη)G1|G2(e, a) = −0.7

In a similar way we can find total vertex degree in rejection.
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3. Application of bipolar single valued neutrosophic graph (BSVNG)

3.1. Educational Designation participation

Let {Bilal, Asif, Shoaib, Ijaz } be the set of four applicants for designations {Head of

department(HOD),Director of Department(DOD),Assistant director of department(ADOD)}.
For this purpose p=4 (say) be number of applicants and d=3 be number of designations. Con-

sider bipolar single valued-neutrosophic diagraph which is shown in figure ?? representing the

competition between applicants for designation in organization. α(y) is the positive degree

of membership for every applicants denote the percentage of ability toward the purpose of

organization , β(y) and γ(y) are indeterminacy and false in percentage. δ(y) is the is the

negative degree of membership for every applicants denote the percentage of non ability to-

ward the purpose of organization, η(y) and θ(y) are represents the indeterminacy and false

in percentage. α(y) of every directed edge between both designations and applicants denote

the eligibility or positive response from designation in organization , β(y) and γ(y) are inde-

terminacy and false in this percentage. δ(y) of every directed edge between both designations

and applicants denote the non-eligibility or negative response from designation in organization

, η(y) and θ(y) are indeterminacy and false in this percentage. Edge membership degree of

Table 1

y∈ Y N(y)

Bilal {(ADOD,0.5,0.3,0.4,−0.4,−0.5,−0.8),(HOD,0.6,0.4,0.2,−0.4,−0.6,−0.5)}

Asif {(ADOD,0.8,0.6,0.5,−0.1,−0.4,−0.5),(HOD,0.5,0.6,0.6,−0.3,−0.4,−0.7),(DOD,0.4,0.6,0.4,−0.2,−0.3,−0.5)}

Shoaib {(DOD,0.5,0.4,0.5,−0.5,−0.4,−0.4)})

Ijaz {(HOD,0.7,0.5,0.6,−0.3,−0.5,−0.4),(DOD,0.7,0.4,0.5,−0.4,−0.3,−0.2)})

graph is also determined by the following

N(Bilal) ∩N(Asif) = {(ADOD, 0.5, 0.6, 0.5,−0.1,−0.5,−0.8), (HOD, 0.5, 0.6, 0.6,

− 0.3,−0.6,−0.7)}

N(Bilal) ∩N(Shoaib) = ø

N(Bilal) ∩N(Ijaz) = {(HOD, 0.6, 0.5, 0.6,−0.3,−0.6,−0.5)}

N(Asif) ∩N(Shoaib) = {(DOD, 0.4, 0.6, 0.5,−0.2,−0.4,−0.5)}

N(Asif) ∩N(Ijaz) = {(HOD, 0.5, 0.6, 0.6,−0.3,−0.5,−0.7), (DOD, 0.4, 0.6, 0.5,−0.2,

− 0.3,−0.5)}

N(Shoaib) ∩N(Ijaz) = {(DOD, 0.5, 0.4, 0.5,−0.4,−0.4,−0.4)}

There is no edge between Shoaib and Bilal because there is no common designation.
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Figure 14. Bipolar single valued neutrosophic digraph

(Bilal, Asif) = (0.4, 0.7, 0.8,−0.2,−0.7,−0.8)(0.5, 0.6, 0.5, 0.3, 0.6, 0.7)

= (0.20, 0.42, 0.40,−0.06,−0.42,−0.56)

(Bilal, Shoaib) = ø

(Bilal, Ijaz) = (0.4, 0.6, 0.8,−0.1,−0.7,−0.8)(0.6, 0.5, 0.6, 0.3, 0.6, 0.5)

= (0.24, 0.30, 0.48,−0.03,−0.42,−0.40)

(Asif, Shoaib) = (0.3, 0.7, 0.8,−0.2,−0.8,−0.8)(0.4, 0.6, 0.5, 0.2, 0.4, 0.5)

= (0.12, 0.42, 0.40,−0.04,−0.32,−0.40)

(Asif, Ijaz) = (0.5, 0.7, 0.8,−0.1,−0.6,−0.8)(0.5, 0.6, 0.5, 0.3, 0.3, 0.5)

= (0.25, 0.42, 0.40,−0.03,−0.18,−0.40)

(Shoaib, Ijaz) = (0.3, 0.6, 0.8,−0.1,−0.8,−0.5)(0.5, 0.4, 0.5, 0.4, 0.4, 0.4)

= (0.15, 0.24, 0.40,−0.04,−0.32,−0.20)

Bipolar single-valued neurotrophic graph for competition of all participant is shown in fig-

ure 15. Competition between two individually applicants and when applicant competing for

designation is also given in graph 15.
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Figure 15. Bipolar single valued neutrosophic competition graph

R(Bilal,HOD) = (
0.20 + 0.24

2
,
0.20 + 0.24

2
,
0.42 + 0.30

2
,
0.40 + 0.48

2
,
−0.06− 0.03

2

,
−0.42− 0.42

2
,
−0.56− 0.40

2
) = (0.22, 0.36, 0.44,−0.045,−0.42,−0.48)

Similarly we will find others R(applicant,Designation).

S(Bilal,HOD) = 1 + 0.22− 0.045− (0.36 + 0.44− 0.42− 0.48) = 1.275

S(Asif,HOD) = 1 + 0.225− 0.045− (0.42 + 0.40− 0.30− 0.48) = 1.14

S(Ijaz,HOD) = 1 + 0.245− 0.03− (0.36 + 0.44− 0.225− 0.29) = 0.93

S(Bilal, ADOD) = 1 + 0.20− 0.06− (0.42 + 0.40− 0.42− 0.56) = 1.30

S(Asif,ADOD) = 1 + 0.20− 0.06− (0.42 + 0.40− 0.42− 0.56) = 1.30

S(Asif,DOD) = 1 + 0.185− 0.035− (0.42 + 0.40− 0.25− 0.40) = 0.98

S(Shoaib,DOD) = 1 + 0.135− 0.04− (0.33 + 0.40− 0.32− 0.30) = 0.985

S(Ijaz,DOD) = 1 + 0.20− 0.035− (0.33 + 0.40− 0.25− 0.30) = 0.985

Black solid lines show comparison between two applicants and dot line means applicant com-

pete for designation. From above table, applicants compete other if it has a more strength.

For example, in HOD designation Bilal has more strength from all. Its eligibility is strong

than other. In ADOD designation Asif and Bilal are in equal position. In DOD designation

Shoaib and Ijaz compete the others but equally compete to each other. [H]In this algorithm

these are the steps

Step 1: Start. Step 2: Input α(y), β(y) and γ(y) membership values for set p applicants.
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Table 2

(Applicant,designation) in competition R(applicant,Designation) S(applicant,Designation)

(Bilal,HOD) Asif, Ijaz (0.22,0.36,0.44,-0.045,-0.42,-0.48) 1.275

(Asif,HOD) Bilal,Ijaz (0.225,0.42,0.40,-0.045,-0.30,-0.48) 1.14

(Ijaz,HOD) Bilal,Asif (0.245,0.36,0.44,-0.03,-0.225,-0.29) 0.93

(Bilal,ADOD) Asif (0.20,0.42,0.40,-0.06,-0.42,-0.56) 1.30

(Asif,ADOD) Bilal (0.20,0.42,0.40,-0.06,-0.42,-0.56) 1.30

(Asif,DOD) Shoaib,Ijaz (0.185,0.42,0.40,-0.035,-0.25,-0.40) 0.98

(Shoaib,DOD) Asif,Ijaz (0.135,0.33,0.40,-0.04,-0.32,-0.30) 0.985

(Ijaz,DOD) Asif,Shoaib (0.20,0.33,0.40,-0.035,-0.25,-0.30) 0.985

Step3: For any two vertices xi and xj taking α(xixj), β(xixj) and γ(xixj) are positive but

δ(xixj), η(xixj) and θ(xixj) are negative. Then

(xi, α(xixj), β(xixj), γ(xixj), δ(xixj), η(xixj), θ(xixj))

Step4: To obtain bipolar single valued neutrosohic out-neighbourhoods N(xi) Repeat step 3

for all vertices xi and xj .

Step5: Find out N(xi)∩N(xj). Step6: Calculate height h(N(xi)∩N(xj)). Step7: Draw

all edge where N(xi) ∩N(xj) is non empty. Step8: Give a membership value to every edge

xixj by using the following conditions

α(xixj = (min{xi ∩ xj})[N(xi ∩N(xj)], β(xixj = (max{xi ∩ xj})[N(xi ∩N(xj)]

γ(xixj = (max{xi ∩ xj})[N(xi ∩N(xj)], δ(xixj = (max{xi ∩ xj})[N(xi ∩N(xj)]

η(xixj = (min{xi ∩ xj})[N(xi ∩N(xj)], θ(xixj = (min{xi ∩ xj})[N(xi ∩N(xj)]

Step9: If x, z1, z2, z3, ..., zp are applicants for designations d, then strength of applicants com-

petition is R(x,d)=(α(x, d), β(x, d), γ(x, d), δ(x, d), η(x, d), θ(x, d)) of every applicants x and

designation d is given by the following

R(x,d)=(
α(xz1)+...α(xzp)

p ,
β(xz1)+...β(xzp)

p ,
γ(xz1)+...γ(xzp)

p ,
δ(xz1)+...δ(xzp)

p ,
η(xz1)+...η(xzp)

p ,
θ(xz1)+...θ(xzp)

p )

Step10:Find out S(x, d) = 1+α(x, d)+δ(x, d)−(β(x, d)+γ(x, d)+η(x, d)+θ(x, d)). Step11:

End

4. Conclusion

There are more advantages of a bipolar fuzzy set than fuzzy set in real life phenomenon. A

BSVNG has many applications in the field of economics, medical science as well as in scientific

engineering. The flexibility and compatibility of BSVNG are higher than SVNG. We presented

the new properties on a bipolar single-valued neutrosophic graph known as Residue product,

maximal product, Symmetric difference and Rejection of a graph. These all graph products

are suggestive of some aspects of network design. They can be applicable for the configuration

processing of space structures. The repeated application of these operations in constructing
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a network generates graphs that display fractal properties. We also discussed the idea with

examples to find the degree and total degree of vertices of some graphs. We have established

some related theorems of these graphs. We have also proved the theorems which are related to

these properties. In the future, our goal is to extend this work on the (1) complex neutrosophic

graphs and some (2) bipolar complex neutrosophic graph.
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Abstract. In this paper, a neutrosophic optimization model has been first constructed 

for the neutrosophic geometric programming subject to (max-product) neutrosophic relation 

constraints. For finding the maximum solution, two new operations (i.e. ⋈, Θ) between aij and 

bi have been defined, which have a key role in the structure of the maximum solution. Also, 

two new theorems and some propositions are introduced that discussed the cases of the 

incompatibility in the relational equations Aox =  b, with some properties of the operation Θ. 

Numerical examples have been solved to illustrate new concepts. 

Keyword: Neutrosophic Geometric Programming (NGP); (max-product) Operator; 

Neutrosophic Relation Constraints; Maximum Solution; Incompatible Problem; Pre-Maximum 

Solution; Relational Neutrosophic Geometric Programming (RNGP).

1. Introduction

The first scientist who put forward the fuzzy relational equations was Elie Sanchez, a 

famous fuzzy biology mathematician in 1976 [2], while the theoretical concept of the 

neutrosophic logic has been put by the popular polymath Florentin Smarandache at 1995 [11]. 

B. Y. Cao constructed the mathematical models of fuzzy relation geometric programming 

(FRGP) at 2005 [1], his works include the structuring of the maximum and minimum solution 

of the (FRGP) depending upon the original model for the maximum solution and the minimum 

solution for the fuzzy relation equations that was put by Elie Sanchez. At 2015, Huda E. Khalid 

introduced an original structure of the maximum solution for the fuzzy neutrosophic relation 

geometric programming (FNRGP) [6], Also at 2016, she put a novel algorithm for finding the 

minimum solution for the same (FNRGP) problems [7]. As of 2016 so far Huda E. Khalid et al 

[3-10] introducing a big qualitative shift in the concept of neutrosophic geometric 

programming (NGP) by establishing new concepts for the notion of (over, off, under) in the 

same (NGP), as well as she introduced and for the first time, a new type of the neutrosophic 

geometric programming using (over, off, under) neutrosophic less than or equal which 

contained a new version of the convex condition, furthermore, new decomposition theorems 

of neutrosophic sets were presented, and new representations for the neutrosophic sets using 

(α, β, γ)-cuts, with strong (α, β, γ)-cuts had been defined. 

 In this article, section 2 contains the preliminaries which are necessary for the sake of 

this paper, while in section 3, a max- product neutrosophic relation geometric programming 

model has been proposed with an innovative investigation of the maximum solution for this 
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model and two new theorems with some propositions, section 4 presents numerical examples 

to illustrate the proposed method. The final section was dedicated to the conclusion. 

2. Basic Concepts 

Without loss of generality, the elements of b must be rearranged in decreasing or increasing 

order and the elements of the matrix A are correspondingly rearranged.  

2.1 Definition [7] 

In this definition, the author proposed the following axioms:  

a- decreasing partial order  

1-The greatest element in  [0,1) ∪ I is equal to I, max(I, x) = I          ∀  x ∈ [0,1)   

2- The fuzzy values in a decreasing order will be rearranged as follows: 1 > x1 > x2 > x3 >

⋯ > xn ≥ 0  

3- One is the greatest element in  [0,1] ∪ I, max(I, 1) = 1           

b- Increasing partial order  

1- the smallest element in  (0,1] ∪ I is I , min(I, x) = I          ∀  x ∈ (0,1]   

2- The fuzzy values in increasing order will be rearranged as follows: 0 < x1 < x2 < x3 <

⋯ < xn ≤ 1 

3- Zero is the smallest element in  [0,1] ∪ I, min(I, 0) = 0   

2.2 Definition [7] 

If there exists a solution to 𝐴𝑜𝑥 = 𝑏 it's called compatible. Suppose 𝑋(𝐴, 𝑏) = {(𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ∈

[0,1]𝑛 ∪ 𝐼, 𝐼𝑛 = 𝐼, 𝑛 > 0 |𝐴𝑜𝑥 = 𝑏, 𝑥𝑗 ∈ [0,1] ∪ 𝐼 } is a solution set of  𝐴𝑜𝑥 = 𝑏 we define  𝑥1 ≤

𝑥2 ⟺ 𝑥𝑗
1  ≤ 𝑥𝑗

2 (1 ≤ 𝑗 ≤ 𝑛), ∀ 𝑥1, 𝑥2 ∈ X(A, b). Where " ≤ " is a partial order relation on X(A, b). 

2.3 Corollary [1] 

If  X(A, b) ≠ ∅. Then �̂� ∈ 𝑋(𝐴, 𝑏). 

Similar to fuzzy relation equations, the above corollary works on neutrosophic relation 

equations. 
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2.4 Basic Notes [3, 10] 

1. A component I to the zero power is undefined value, (i.e. 𝐼 0 is undefined), since. 𝐼 0 =

𝐼1+(−1) = 𝐼1 ∗  𝐼−1 =
𝐼

𝐼
, which is an impossible case (avoid to divide by 𝐼). 

2. The value of 𝐼 to the negative power is undefined (i.e. 𝐼−𝑛, 𝑛 >  0 is undefined). 

3. The Innovative Structure of the Maximum Solution. 

We call 

min 𝑓(𝑥) = (𝑐1. 𝑥1
𝛾1) ∨ (𝑐2. 𝑥2

𝛾2) ∨ …∨ (𝑐𝑛 . 𝑥𝑛
𝛾𝑛)

𝑠. 𝑡.                      𝐴𝑜𝑥 =  𝑏                                          
𝑥𝑗 ∈ [0,1] ∪ 𝐼,       1 ≤ 𝑗 ≤ 𝑛                                 

}                                                                                (1)  

 A ( ∨, . ) (max- product) neutrosophic geometric programming, where 𝐴 = (𝑎𝑖𝑗), 1 ≤

𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛, is (𝑚 × 𝑛) dimensional neutrosophic matrix, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 an n-

dimensional variable vector, 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚)
𝑇 (𝑏𝑖 ∈ [0,1] ∪ 𝐼) an m- dimensional constant 

vector, 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛)
𝑇  (𝑐𝑗 ≥ 0) an n- dimensional constant vector, 𝛾𝑗 is an arbitrary real 

number, and the composition operator ‘’𝑜’’ is ( ∨, . ) ,  i.e. ⋁ (𝑎𝑖𝑗 . 𝑥𝑗) = 𝑏𝑖
𝑛
𝑗=1 .  

Note that the program (1) is undefined and has no minimal solution in the case of 𝛾𝑗 < 0 with 

some 𝑥𝑗′𝑠 taking indeterminacy value. Therefore, if 𝛾𝑗 < 0 with indeterminacy value in some 

𝑥𝑗′𝑠, then the greatest solution �̂�𝑗 is an optimal solution for problem (1), the author introduced 

theorem 3.4 to treat this issue. 

 

3.1 The Shape of the Maximum Solution �̂�. 

Since 1976, the biological mathematician Elie Sanchez put the formula of the maximum 

solution in both composite fuzzy relation equations of type (⋁, ⋀) operator and (⋁, . ) operator 

[2], these definitions won’t be adequate with neutrosophic relation equations especially 

neutrosophic geometric programming type, therefore and for the importance of relational 

neutrosophic geometric programming (RNGP) in real-world problems, the author established 

a new structure for the maximum solution of (RNGP) with the (⋁, ⋀)operator in ref. [6], while 

this article was dedicated to set up the maximum solution of (RNGP) with the (⋁, . ) operator. 

Every mathematician who works with neutrosophic theory know that the generality 

which characterizes the neutrosophic theory are determined in many ways of which, 
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max(𝐼, 𝑥) = min(𝐼, 𝑥) = 𝐼    ∀ 𝑥 ∈ (0,1) 

This property gives some vague and difficulty for determining the maximum solution of the 

relation equations 𝐴𝑜𝑥 = 𝑏, the author still searches about the answer of the following question. 

How will be the shape of the greatest solution �̂� ? 

Actually, any single solution (the same solution that suggested by Elie Sanchez 1976) would 

not be accepted and won’t be appropriate for the program (1), unless there are two integrated 

pre-maximum solutions gathered to get the final shape of �̂�, as follow: 

1. The first integrated pre-maximum solution named �̂�𝑣1 which supports the fuzzy part 

of the problem, this solution has an adjoint matrix named 𝐴𝑣1, this adjoint matrix is 

derived from the matrix 𝐴. 

2. The second integrated pre-maximum solution named �̂�𝑣2 which supports the 

neutrosophic part of the problem, this solution has an adjoint matrix named 𝐴𝑣2, which 

is derived from the matrix 𝐴 too. 

The following definition describes the mathematical formula of �̂�𝑣1 and �̂�𝑣2. 

 

3.2 Definition  

𝑎𝑖𝑗 ⋈ 𝑏𝑖 = {

𝑏𝑖

𝑎𝑖𝑗
,                  𝑖𝑓  𝑎𝑖𝑗 > 𝑏𝑖 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

1,                    𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑏𝑖 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

 1 ,              𝑖𝑓             𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

                                                  (2) 

𝑎𝑖𝑗Θ𝑏𝑖 =

{
 
 

 
 

𝑛𝐼

𝑎𝑖𝑗
,            𝑖𝑓  𝑎𝑖𝑗 > 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

  
  

1,               𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]  

𝑛𝑜𝑡 𝑐𝑜𝑚𝑝.     𝑖𝑓             𝑎𝑖𝑗 = 𝑚𝐼 ,𝑚 ∈ (0,1] , 𝑏𝑖 ∈ [0,1] ∪ 𝐼

1                      𝑖𝑓                                                  𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ [0,1]  
 

                                              (3) 

 

Where ⋈ is an operator defined at [0,1], while the operator  Θ is defined at [0,1] ∪ 𝐼. 

Let  �̂�𝑗 = ⋀ (𝑎𝑖𝑗 ⋈ 𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)
𝑚
𝑖=1  ,                                                                                          (4) 

be the components of the pre-maximum solution �̂�𝑣1, (i.e. �̂�𝑣1 = (�̂�1, �̂�2, … , �̂�𝑛)). 

Let  �̂�𝑗 = ⋀ (𝑎𝑖𝑗Θ𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)
𝑚
𝑖=1  ,                                                                                             (5) 
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be the components of the pre maximum solution �̂�𝑣2,  (i.e. �̂�𝑣2 = (�̂�1, �̂�2, … , �̂�𝑛)). 

Now the following question will be raised, 

Which one �̂�𝑣1 or �̂�𝑣2 should be the exact maximum solution? 

Neither �̂�𝑣1 nor �̂�𝑣2 will be the exact solution! the exact solution is the integration between 

them. Before solving 𝐴𝑜�̂� = 𝑏, we first define the matrices 𝐴𝑣1, 𝐴𝑣2. 

Let 𝐴𝑣1 be a matrix has the same dimension and the same rows elements of 𝐴 except for those 

rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 = 𝑛𝐼, those special rows of 

𝐴𝑣1 will be zeros. 

Let 𝐴𝑣2 be a matrix has the same dimension and the same rows elements of 𝐴 except for those 

rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 ∈ [0,1], those special rows of 

𝐴𝑣2 will be zeros. 

Consequently, 

 𝐴𝑜�̂� = 𝑏 = (𝐴𝑣1𝑜�̂�𝑣1) + (𝐴𝑣2𝑜�̂�𝑣2)                                                                                                      (6) 

The formula (6) is the greatest solution in 𝑋(𝐴, 𝑏). 

The maximum value of the objective function 𝑓(�̂�) = 𝑓(�̂�𝑣1) ∨ 𝑓(�̂�𝑣2). 

3.3 Theorem  

If 𝑎𝑖𝑗 = 𝑚𝐼, 𝑚 ∈ (0,1], 𝑏𝑖 ∈ [0,1] ∪ 𝐼 then 𝐴𝑜𝑥 = 𝑏, is not compatible. 

Proof  

Let 𝑎𝑖𝑗 = 𝑚𝐼 , 𝑏𝑖 ∈ [0,1] ∪ 𝐼 , the essential question in this case is  

What is the value of 𝑥𝑗 ∈ [0,1] ∪ 𝐼 satisfying 

⋁ (𝑎𝑖𝑗 . 𝑥𝑗) = 𝑏𝑖  1≤𝑗≤𝑛  ?                                                                                                                                          (7) 

It is well known that the equation (7) can be written as an upper-bound constraint and a lower- 

bound constraint, that is, 

⋁ (𝑎𝑖𝑗 . 𝑥𝑗) ≤ 𝑏𝑖  1≤𝑗≤𝑛                                                                                                                                     (8) 

⋁ (𝑎𝑖𝑗 . 𝑥𝑗) ≥ 𝑏𝑖  1≤𝑗≤𝑛                                                                                                                                      (9) 
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First, 

The inequality (8) can be written in 𝑛 constraints:  

𝑎𝑖𝑗 . 𝑥𝑗 ≤ 𝑏𝑖   , 𝑖. 𝑒.  𝑥𝑗 ≤
𝑏𝑖

𝑎𝑖𝑗
  ,1 ≤ 𝑗 ≤ 𝑛 . 

Hence   𝑥𝑗 ≤ ∧ (
𝑏𝑖

𝑎𝑖𝑗
), where the notation ‘’ ∧’’ denotes the minimum operator. 

So, we have  𝑥𝑗 ∈ [0, ∧ (
𝑏𝑖

𝑎𝑖𝑗
)] ∪ 𝐼, but 𝑎𝑖𝑗 = 𝑚𝐼, this is a contradict for the fact that the variables 

of the system  𝐴𝑜𝑥 = 𝑏 are being in the interval [0,1] ∪ 𝐼. 

Second,  

 The inequality (9) can be written in 𝑛 constraints:  

(𝑎𝑖𝑗 . 𝑥𝑗) ≥ 𝑏𝑖   , 𝑖. 𝑒.  𝑥𝑗 ≥
𝑏𝑖

𝑎𝑖𝑗
  ,1 ≤ 𝑗 ≤ 𝑛 . 

Hence,  𝑥𝑗 ≥∨ (
𝑏𝑖

𝑎𝑖𝑗
), where the notation ‘’ ∨’’ denotes the maximum operator. 

Thus, we have 𝑥𝑗 ∈ [∨ (
𝑏𝑖

𝑎𝑖𝑗
) , 1] ∪ 𝐼, but 𝑎𝑖𝑗 = 𝑚𝐼, in this proof we faced the division on the 

indeterminate component (𝐼) which is prohibited behavior. Consequently the variable 𝑥𝑗 will 

either belong to the interval [0,∧ (𝑏𝑖/𝐼)] ∪ 𝐼 or belong to the interval[∨ (𝑏𝑖/𝐼),1] ∪ 𝐼, this implies 

that the system of the relation equation 𝐴𝑜𝑥 = 𝑏 will be not compatible. 

Therefore, the system of the relative equations 𝐴𝑜𝑥 = 𝑏 is incompatible at 𝑎𝑖𝑗 = 𝑚𝐼,𝑚 ∈ (0,1]. 

So, the restriction of  𝐴𝑜𝑥 = 𝑏 for being compatible is that all elements of the matrix 𝐴 (𝑖. 𝑒. 𝑎𝑖𝑗) 

are belonging to the interval [0,1]. 

3.4 Theorem  

 If 𝛾𝑗 < 0  (1 ≤ 𝑗 ≤ 𝑛), then the greatest solution to the problem (1) is an optimal solution.  

 Proof  

Since 𝛾𝑗 < 0  (1 ≤ 𝑗 ≤ 𝑛),with 𝑥𝑗 ∈ [0,1] ∪ 𝐼, then 
𝑑(𝑥

𝑗

𝛾𝑗
)

𝑑𝑥𝑗
= 𝛾𝑗𝑥𝑗

𝛾𝑗−1
< 0 for each 𝑥𝑗 ∈ [0,1] ∪ 𝐼, this 

means that 𝑥𝑗
𝛾𝑗  is monotone decreasing function of 𝑥𝑗. It is clear that 𝑐𝑗𝑥𝑗

𝛾𝑗  is also a monotone 

decreasing function about  𝑥𝑗. Therefore, ∀ 𝑥 ∈ 𝑋(𝐴, 𝑏), when 𝑥 ≤ �̂�, then 𝑐𝑗 . 𝑥𝑗
𝛾𝑗
≥

𝑐𝑗 . �̂�𝑗
𝛾𝑗
         (1 ≤ 𝑗 ≤ 𝑛), such that 𝑓(𝑥) ≥ 𝑓(�̂�), so �̂� is an optimal solution to the problem (1). 
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It remains to study the case that if 𝛾𝑗 < 0  with the component �̂�𝑗 in �̂�𝑣2 equal to 𝐼, we know that 

𝐼𝑛 is undefined for 𝑛 ≤ 0, in this case, the component 𝑥𝑗 = 𝐼 that has a power 𝛾𝑗 < 0 will be 

replaced by that corresponding 𝑥𝑗 in the �̂�𝑣1. 

3.5 Proposition  

Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼 & 𝑐 = 𝑛𝐼, 𝑛,𝑚 ∈ (0,1], 𝑖𝑓 𝑚 ≥ 𝑛 , then 𝑎 Θ𝑏 ≥ 𝑎 Θ 𝑐. 

Proof 

1) Let  𝑎 > 𝑚 ⟹ 𝑎 > 𝑛, 

But we have 𝑚 ≥ 𝑛 ⟹ 𝑏 ≥ 𝑐 ⟹ 
𝑏

𝑎
≥

𝑐

𝑎
  ⟹  𝑎 Θ𝑏 ≥ 𝑎 Θ 𝑐. 

2) Let  𝑎 ≤ 𝑚 ⟹ 𝑎 Θ 𝑏 = 1, since 𝑚 ≥ 𝑛 ⟹ 𝑎 Θ 𝑐 ≤ 1 

Hence,  𝑎 Θ 𝑐 ≤ 𝑎 Θ 𝑏. 

3.6 Corollary  

Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼,   𝑐 = 𝑛𝐼,𝑚, 𝑛 ∈ (0,1], if 𝑚 ≥ 𝑛 then 𝑎 Θ (𝑏⋁𝑐) ≥ 𝑎 Θ 𝑐 

Proof 

Since  𝑚 ≥ 𝑛 ⟹ 𝑏 ≥ 𝑐 ⟹  𝑏⋁𝑐 = 𝑏, from proposition 2.5, we have  

 𝑎 Θ 𝑏 ≥ 𝑎 Θ 𝑐         (𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑏⋁𝑐 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 𝑏) ⟹  𝑎 Θ (𝑏⋁𝑐) ≥ 𝑎 Θ 𝑐. 

3.7 Proposition  

 Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼,𝑚 ∈ (0,1], then 𝑎. (𝑎 Θ 𝑏) = 𝑎⋀𝑏. 

Proof 

1) Let  𝑎 > 𝑚 ⟹
𝑚𝐼

𝑎
=

𝑏

𝑎
= 𝑎 Θ 𝑏 [multiply both sides by 𝑎] ⟹ 

𝑏 = 𝑎. (𝑎 Θ 𝑏)                                                                                                                                                     (10) 

2) Let   𝑎 ≤ 𝑚 ⟹ 𝑎 Θ 𝑏 = 1 [multiply both sides by 𝑎] ⟹ 

𝑎 = 𝑎. (𝑎 Θ 𝑏)                                                                                                                                              (11) 

From (10) & (11) we have 𝑎. (𝑎 Θ 𝑏) = 𝑎⋀𝑏. 
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3.8 Proposition  

Let 𝑎 ∈ (0,1), 𝑏 = 𝑚𝐼,𝑚 ∈ (0,1], then  𝑎. (𝑎 Θ 𝑏) = {
𝑏          𝑎 > 𝑎𝑚
1           𝑎 ≤ 𝑎𝑚

 . 

Proof  

1) Let  𝑎 > 𝑎𝑚 , from definition (3.2) we have 𝑎 Θ (𝑎.𝑚) =
𝑎.𝑚𝐼

𝑎
= 𝑚𝐼 = 𝑏. 

2) Let 𝑎 ≤ 𝑎𝑚 , again from definition (3.2) we have 𝑎 Θ (𝑎. 𝑏) = 1. 

Hence,    𝑎 Θ (𝑎. 𝑏) = {
𝑏          𝑎 > 𝑎𝑚
1           𝑎 ≤ 𝑎𝑚

 

 

4 Numerical examples 

In the upcoming examples, the (max- product) neutrosophic geometric problem is considered. 

 

4.1 Example  

Let min𝑓(𝑥) = (0.3. 𝑥1
2) ∨ (1.8𝐼 . 𝑥2

1

3) ∨ (𝐼 . 𝑥3

1

4) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

Where   𝑏 = (1,
1

3
𝐼,
1

5
𝐼)𝑇 ,  𝐴 = (

. 6 1 . 2

. 5 . 2 . 1

. 3 . 5 . 1
)

3×3

 

Using the formula (2), we can find the components of 𝑥𝑣1 as follows  

𝑥1 =⋀(𝑎𝑖1 ⋈ 𝑏𝑖) =

3

𝑖=1

(𝑎11 ⋈ 𝑏1) ∧ (𝑎21 ⋈ 𝑏2) ∧ (𝑎31 ⋈ 𝑏3)

= (0.6 ⋈  1) ∧ (0.5 ⋈  
1

3
𝐼) ∧ (0.3 ⋈  0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 

𝑥2 =⋀(𝑎𝑖2 ⋈ 𝑏𝑖) =

3

𝑖=1

(𝑎12 ⋈ 𝑏1) ∧ (𝑎22 ⋈ 𝑏2) ∧ (𝑎32 ⋈ 𝑏3)

= (1 ⋈  1) ∧ (0.2 ⋈ 
1

3
𝐼) ∧ (0.5 ⋈  0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 
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𝑥3 =⋀(𝑎𝑖3 ⋈ 𝑏𝑖) =

3

𝑖=1

(𝑎13 ⋈ 𝑏1) ∧ (𝑎23 ⋈ 𝑏2) ∧ (𝑎33 ⋈ 𝑏3) 

= (0.2 ⋈  1) ∧ (0.1 ⋈  
1

3
𝐼) ∧ (0.1 ⋈  0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 

 

∴  𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (1,1,1)𝑇 

Using the formula (3), we can find the components of 𝑥𝑣2 as follows  

𝑥1 =⋀(𝑎𝑖1Θ 𝑏𝑖) =

3

𝑖=1

(𝑎11Θ 𝑏1) ∧ (𝑎21Θ 𝑏2) ∧ (𝑎31Θ 𝑏3)

= (0.6 Θ 1) ∧ (0.5 Θ 
1

3
𝐼) ∧ (0.3 Θ 0.2𝐼) = 1 ∧

1
3⁄

0.5
𝐼 ∧

0.2

0.3
𝐼 =

2

3
𝐼 

𝑥2 =⋀(𝑎𝑖2Θ 𝑏𝑖) =

3

𝑖=1

(𝑎12Θ 𝑏1) ∧ (𝑎22Θ 𝑏2) ∧ (𝑎32Θ 𝑏3)

= (1 Θ 1) ∧ (0.2 Θ 
1

3
𝐼) ∧ (0.5 Θ 0.2𝐼) = 1 ∧ 1 ∧

2

5
𝐼 =

2

5
𝐼 

 

𝑥3 =⋀(𝑎𝑖3Θ𝑏𝑖) =

3

𝑖=1

(𝑎13Θ 𝑏1) ∧ (𝑎23Θ 𝑏2) ∧ (𝑎33Θ 𝑏3) 

= (0.2 Θ 1) ∧ (0.1 Θ 
1

3
𝐼) ∧ (0.1 Θ 0.2𝐼) = 1 ∧ 1 ∧ 1 = 1 

 

∴  𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (

2

3
𝐼,
2

5
𝐼, 1)

𝑇

 

In this example, 𝐴𝑣1 = (
. 6 1 . 2
0 0 0
0 0 0

) , 𝐴𝑣2 = (
0 0 0
. 5 . 2 . 1
. 3 . 5 . 1

),  

𝐴𝑜𝑥 = (𝐴𝑣1𝑜𝑥𝑣1) + (𝐴𝑣2𝑜𝑥𝑣2) = (
. 6 1 . 2
0 0 0
0 0 0

)𝑜 [
1
1
1
] + (

0 0 0
. 5 . 2 . 1
. 3 . 5 . 1

) 𝑜

[
 
 
 
 
2

3
𝐼

2

5
𝐼

1 ]
 
 
 
 

=

[
 
 
 
 
1
1

3
𝐼

1

5
𝐼]
 
 
 
 

= 𝑏 

 

Since 𝐴𝑜𝑥 = 𝑏, then there is a solution in 𝑋(𝐴, 𝑏) and 𝑥 is the greatest solution 

to 𝐴𝑜𝑥 = 𝑏. The value of 𝑓(𝑥) is calculated as follow, 
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𝑓(𝑥) = 𝑓(𝑥𝑣1) ∨ 𝑓(𝑥𝑣2) 

𝑓(𝑥) = 〈(0.3 . (1)2) ∨ (1.8𝐼 . (1)
1

3) ∨ (𝐼 . (1)
1

4)〉 ∨ 〈(0.3. (
2

3
𝐼)2) ∨ (1.8𝐼 . (

2

5
𝐼)

1

3
) ∨

(𝐼 . (1)
1

4)〉 = 〈(0.3 ) ∨ (1.8𝐼) ∨ (𝐼 )〉 ∨ 〈(0.133𝐼) ∨ (1.33𝐼) ∨ (𝐼)〉 = 1.8𝐼  

Do not forget that the indeterminate component 𝐼 to the power 𝑛 where 𝑛 > 0 

is equal to 𝐼 (i.e. 𝐼𝑛 = 𝐼  𝑓𝑜𝑟 𝑛 > 0). 

 

4.2 Example  

 

Let 𝐴 = (
0.1 1 0.4
𝐼 0.9 0
0.5 0.2𝐼 0.7

) , 𝑏 = (
1
0.3𝐼
0.6

), 

It easy to see that some components of the matrix 𝐴 are of the form 

𝑎𝑖𝑗 = 𝑚𝐼,𝑚 ∈ (0,1], while 𝑏𝑖 ∈ [0,1] ∪ 𝐼, in this case, and by theorem (3.2), the 

system of the relation equation 𝐴𝑜𝑥 = 𝑏 is incompatible.  

 

4.3 Example  

 

Let min𝑓(𝑥) = (0.2𝐼. 𝑥1
−
2

3) ∨ (1.3. 𝑥2

1

3) ∨ (𝐼 . 𝑥3

1

2) ∨ (0.35. 𝑥4
−2) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

 

Where   𝑏 = (0.3, 0.7𝐼, 0.5, 0.2𝐼)𝑇 ,  𝐴 = (

. 2 . 3 . 4 . 6

. 3 . 2 . 9 . 8
1
0

0
. 5

. 1 1
1 0

)

4×4

 

 

Using the formula (2), the components of 𝑥𝑣1 are  

𝑥1 =⋀(𝑎𝑖1 ⋈ 𝑏𝑖)

4

𝑖=1

= 0.5 

𝑥2 =⋀(𝑎𝑖2 ⋈ 𝑏𝑖)

4

𝑖=1

= 1 
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𝑥3 =⋀(𝑎𝑖3 ⋈ 𝑏𝑖) =

4

𝑖=1

3

4
 

𝑥4 =⋀(𝑎𝑖4 ⋈ 𝑏𝑖) =

4

𝑖=1

1

2
 

 

∴  𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 = (0.5,1,

3

4
, 0.5)

𝑇

 

Using the formula (3), the components of 𝑥𝑣2 are  

𝑥1 =⋀(𝑎𝑖1Θ 𝑏𝑖) =

4

𝑖=1

1 

𝑥2 =⋀(𝑎𝑖2Θ 𝑏𝑖) =

4

𝑖=1

2

5
𝐼 

 

𝑥3 =⋀(𝑎𝑖3Θ𝑏𝑖) = 0.2𝐼

4

𝑖=1

 

𝑥4 =⋀(𝑎𝑖4 Θ𝑏𝑖) = 0.875𝐼

4

𝑖=1

 

 

∴  𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 = (

2

5
𝐼, 1,0.2𝐼, 0.875𝐼)

𝑇

 

In this example, 𝐴𝑣1 = (

. 2 . 3 . 4 . 6
0 0 0 0
1
0

0
0

. 1 1
0 0

) , 𝐴𝑣2 = (

0 0 0 0
. 3 . 2 . 9 . 8
0
0

0
. 5

0 0
1 0

),  

𝐴𝑜𝑥 = (𝐴𝑣1𝑜𝑥𝑣1) + (𝐴𝑣2𝑜𝑥𝑣2)

= (

. 2 . 3 . 4 . 6
0 0 0 0
1
0

0
0

. 1 1
0 0

)𝑜

[
 
 
 
 
0.5
1
3

4
0.5]
 
 
 
 

+ (

0 0 0 0
. 3 . 2 . 9 . 8
0
0

0
. 5

0 0
1 0

)𝑜

[
 
 
 
 
2

5
𝐼

1
0.2𝐼
0.875𝐼]

 
 
 
 

= [

0.3
0.7𝐼
0.5
0.2𝐼

] = 𝑏 
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Since 𝐴𝑜𝑥 = 𝑏, then there is a solution in 𝑋(𝐴, 𝑏) and 𝑥 is the greatest solution 

to 𝐴𝑜𝑥 = 𝑏. The value of 𝑓(𝑥) is calculated as follow, 

𝑓(𝑥) = 𝑓(𝑥𝑣1) ∨ 𝑓(𝑥𝑣2) 

𝑓(𝑥) = 〈(0.2𝐼 . (
1

2
)−

3

2) ∨ (1.3. (1)
1

3) ∨ (𝐼 . (
3

4
)

1

2
) ∨ (0.35. (0.5)−2)〉 ∨

〈(0.2𝐼 . (1)−
3

2) ∨ (1.3. (0.4𝐼)
1

3) ∨ (𝐼 . (0.2𝐼)
1

2) ∨ (0.35. (0.5)−2)〉 = 〈(0.57𝐼 ) ∨

(1.3) ∨ (0.87𝐼 ) ∨ (0.5𝐼 )〉 ∨ 〈(0.2𝐼) ∨ (0.96𝐼) ∨ (0.45𝐼) ∨ (0.5𝐼)〉 = 1.3  

 

 

5 Conclusion 

 It is important to know that the fuzzy geometric programming problems (FGPP) have 

wide applications in the business management, communication system, civil engineering, 

mechanical engineering, structural design and optimization, chemical engineering, optimal 

control, decision making, and electrical engineering, unfortunately, the fuzzy logic lacks to 

cover the indeterminate solution of any real-world problems, this pushed the author to 

construct a new branch of the neutrosophic geometric programming (NGP) problems subject 

to neutrosophic relation equations (NRE) and made a series of articles in an attempt to cover 

the theoretical sides of (NGP) problems. This paper contains a new (NGP) model subject to 

(NRE) with setting up a definition for the maximum solution of this program as well as some 

new theorems dealt with the consistency of the problem and some propositions of the new 

operation Θ. The future prospects are to make a deep study for the above-mentioned 

applications from the point of view of relational neutrosophic geometric programming (RNGP) 

problems.  
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Abstract: A neutrosophic set is a part of neutrosophy that studies the origin, nature and scope of neu-

tralities as well as their interactions with different ideational spectra. In this present paper first we have 

introduced the concept of a neutrosophic soft set having incomplete data with suitable examples. Then 

we have tried to explain the consistent and inconsistent association between the parameters. We have 

introduced few new definitions, namely- consistent association number between the parameters, con-

sistent association degree, inconsistent association number between the parameters and inconsistent as-

sociation degree to measure these associations. Lastly we have presented a data filling algorithm. An il-

lustrative example is employed to show the feasibility and validity of our algorithm in practical situa-

tion. 

 

Keywords: Soft set, neutrosophic set, neutrosophic soft set, data filling. 

 

 
1. Introduction  

     In 1999, Molodstov [01] initiated the concept of soft set theory as a new mathematical tool for mod-

elling uncertainty, vague concepts and not clearly defined objects. Although various traditional tools, 

including but not limited to rough set theory [02], fuzzy set theory [03], intuitionistic fuzzy set theory 

[04] etc. have been used by many researchers to extract useful information hidden in the uncertain da-

ta, but there are immanent complications connected with each of these theories. Additionally, all these 

approaches lack in parameterizations of the tools and hence they couldn’t be applied effectively in real 

life problems, especially in areas like environmental, economic and social problems. Soft set theory is 

standing uniquely in the sense that it is free from the above mentioned impediments and obliges ap-

proximate illustration of an object from the beginning, which makes this theory a natural mathemati-

cal formalism for approximate reasoning. 

     The Theory of soft set has excellent potential for application in various directions some of which are 

reported by Molodtsov in his pioneer work. Later on Maji et al. [05] introduced some new annotations 

on soft sets such as subset, complement, union and intersection of soft sets and discussed in detail its 

applications in decision making problems. Ali et al. [06] defined some new operations on soft sets and 

shown that De Morgan's laws holds in soft set theory with respect to these newly defined operations. 

Atkas and Cagman [07] compared soft sets with fuzzy sets and rough sets to show that every fuzzy set 

and every rough set may be considered as a soft set. Jun   [08] connected soft sets to the theory of 

BCK/BCI-algebra and introduced the concept of soft BCK/BCI-algebras. Feng et al. [09] characterized 

soft semi rings and a few related notions to establish a relation between soft sets and semi rings. In 

2001, Maji et al. [10] defined the concept of fuzzy soft set by combining of fuzzy sets and soft sets . Roy 

and Maji [11] proposed a fuzzy soft set based decision making method. Xiao et al. [12] presented a 

combined forecasting method based on fuzzy soft set. Feng et al. [13] discussed the validity of the 

mailto:abhijit84.math@gmail.com
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Roy-Maji method and presented an adjustable decision-making method based on fuzzy soft set. Yang 

et al.   [14] initiated the idea of interval valued fuzzy soft set (IVFS-set) and analyzed a decision mak-

ing method using the IVFS-sets. The notion of intuitionistic fuzzy set (IFS) was initiated by Atanassov 

as a significant generalization of fuzzy set. Intuitionistic fuzzy sets are very useful in situations when 

description of a problem by a linguistic variable, given in terms of a membership function only, seems 

too complicated. Recently intuitionistic fuzzy sets have been applied to many fields such as logic pro-

gramming, medical diagnosis, decision making problems etc. Smarandache [15] introduced the con-

cept of neutrosophic set which is a mathematical tool for handling problems involving imprecise, in-

determinacy and inconsistent data. Thao and Smaran [16] proposed the concept of divergence meas-

ure on neutrosophic sets with an application to medical problem. Song et al. [17] applied neutrosophic 

sets to ideals in BCK/BCI algebras. Some recent applications of neutrosophic sets can be found in [18], 

[19], [20], [21], [22], [23] and [24]. Maji [25] introduced the concept of neutrosophic soft set and estab-

lished some operations on these sets. Mukherjee et al [26] introduced the concept of interval valued 

neutrosophic soft sets and studied their basic properties. In 2013, Broumi and Smarandache [27, 28] 

combined the intuitionistic neutrosophic and soft set which lead to a new mathematical model called 

“intuitionistic neutrosophic soft set”. They studied the notions of intuitionistic neutrosophic soft set 

union, intuitionistic neutrosophic soft set intersection, complement of intuitionistic neutrosophic soft 

set and several other properties of intuitionistic neutrosophic soft set along with examples and proofs 

of certain results. Also, in [29] S. Broumi presented the concept of “generalized neutrosophic soft set” 

by combining the generalized neutrosophic sets and soft set models, studied some properties on it, 

and presented an application of generalized neutrosophic soft set in decision making problem. Recent-

ly, Deli [30] introduced the concept of interval valued neutrosophic soft set as a combination of inter-

val neutrosophic set and soft set. In 2014, S. Broumi et al. [31] initiated the concept of relations on in-

terval valued neutrosophic soft sets. 

      The soft sets mentioned above are based on complete information. However, incomplete infor-

mation widely exists in various real life problems. Soft sets under incomplete information become in-

complete soft sets. H. Qin et al [32] studied the data filling approach of incomplete soft sets. Y. Zou et 

al [33] investigated data analysis approaches of soft sets under incomplete information. In this paper 

first we have introduced the concept of a neutrosophic soft set with incomplete data supported by ex-

amples. Then we have introduced few new definitions to measure the consistent and inconsistent as-

sociation between the parameters. Lastly we have presented a data filling algorithm supported by an 

illustrative example to show the feasibility and validity of our algorithm. 

2. Preliminaries:  

2.1 Definition:  [03] Let U  be a non empty set. Then a fuzzy set  τ  on U  is a set having the form

   ττ x, μ x :x U  where the function τμ :U [0, 1]
 
is called the membership function and 

 τμ x
 
represents the degree of membership of each element x U .  

2.2 Definition:  [04] Let U  be a non empty set. Then an intuitionistic fuzzy set (IFS for short) τ  is an 

object having the form     τ ττ x, μ x , γ x : x U  where  the  functions 

τ τμ :U [0, 1]  and  γ :U [0, 1]   are called membership function and non-membership function 

respectively.  

          τ τμ x  and  γ x  represent the  degree of membership and the degree of non-membership 

respectively of each element xU  and    τ τ0 μ x + γ x 1 for each  x U.   We denote the class of  

all intuitionistic fuzzy sets on U by IFSU.  
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2.3 Definition:  [01] Let U  be a universe set and E  be a set of parameters. Let  P U  denotes the 

power set of  U  and  AE. Then the pair  F, A  is called a soft set over U , where  F  is a mapping 

given by  F: A P U .  

       In other words, the soft set is not a kind of set, but a parameterized family of subsets of U . For 

eA,  e UF   may be considered as the set of e-approximate elements of the soft set  F, A . 

2.4 Definition:  [10] Let U  be a universe set, E  be a set of parameters and A E . Then the pair 

 F, A  is called a fuzzy soft set over U , where F is a mapping given by UF: A FS .    

2.5 Definition:  [34] Let U  be a universe set, E  be a set of parameters and A E . Then the pair 

 F, A  is called an intuitionistic fuzzy soft set over U , where F  is a mapping given by UF: A IFS . 

      For e A ,  eF  is an intuitionistic fuzzy subset of  U  and is called the intuitionistic fuzzy value 

set of the parameter ‘e’. 

     Let us denote 
   eμ xF  by the membership degree that object  ‘x’ holds parameter ‘e’ and 

   eγ xF  

by the membership degree that object  ‘x’ doesn’t hold parameter ‘e’ , where  eA and  xU . Then  

 eF  can be written as  an  intuitionistic fuzzy set such that            e ee = x, μ x , γ x : x UF FF  . 

2.6 Definition:  [15] A neutrosophic set A  on the universe of discourse U  is defined as  

      , , ,A A AA x x x x x U     , where 0,1, , AA A U   
    are functions such that the 

condition:      , 0 3A A Ax U x x x  
 

       is satisfied. 

     Here      , ,A A Ax x x   represent the truth-membership, indeterminacy-membership and 

falsity-membership  respectively of the element x U .  

     Smarandache [15] applied neutrosophic sets in many directions after giving examples of 

neutrosophic sets. Then he introduced the neutrosophic set operations namely-complement, union, 

intersection, difference, Cartesian product etc.  

2.7 Definition:  [21] Let U  be an initial universe, E  be a set of parameters and A E . Let  NP U

denotes the set of all neutrosophic sets of  U . Then the pair  ,f A  is termed to be the neutrosophic 

soft set over U , where f  is a mapping given by  f A NP U  . 

2.8 Example:  Let us consider a neutrosophic soft set  ,f A  which describes the “attractiveness of the 

house”. Suppose { }1 2 3 4 5 6,, , , ,U u u u u u u= be the set of six houses under consideration and 

{ }1 2 3 4 5(beautiful), (expensive), (cheap), (good location), (wooden)e e e e eE = be the set of parameters. Then 

a neutrosophic soft set  ,f A  over U can be given by: 

U 1e  2e  3e  4e  5e  

1u  (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) 

2u  (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) (0.1,0.1,0.3) 

3u  (0.2,0.6,0.4) (0.5,0.5,0.5) (0.8,0.1,0.7) (0.5,0.3,0.5) (0.5,0.5,0.5) 

4u  (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) 
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5u  (0.1,0.1,0.7) (0.2,0.6,0.7) (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) 

6u  (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.5) (0.4,0.4,0.4) 

3. Neutrosophic soft sets with incomplete (missing) data:  

     Suppose that ( , )f E  is a neutrosophic soft set over U, such that ix U$ Î and je EÎ so that none 

of ( ) ( )( ), ( )i ij jf e f ex xgm  and )( ( )ijf e xd is known. In this case, in the tabular representation of the 

neutrosophic soft set ( , )f E , we write ( )( ) ( ) ( )( ), ( ), ( ) *i i ij j jf e f e f ex x xg dm = . Here we say that the data 

for ( )jf e  is missing and the neutrosophic soft set ( , )f E  over U  has incomplete data. 

3.1 Example:  Suppose Tech Mahindra is recruiting some new Graduate Trainee for the session 2019-

2020 and suppose that eight candidates have applied for the job. Assume that { }1 2 3 8, , ,......,U u u u u=  

be the set of candidates and 

{ 1 2 3 4(communication skill), (domain knowledge), (experienced), (young),e e e eE =  

}5 6(highest academic degree), (profess onal attitute)ie e be the set of parameters. Then a neutrosophic soft 

set over U  having missing data can be given by Table-1. 

Table-1 

U 1e  2e  3e  4e  5e  6e  

1u  (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) (0.2,0.5,0.5) 

2u  (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) * (0.6,0.6,0.4) 

3u  (0.2,0.6,0.4) (0.5,0.5,0.5) * (0.5,0.5,0.5) (0.5,0.5,0.5) (0.3,0.4,0.6) 

4u  (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) (0.3,0.4,0.4) 

5u  (0.1,0.1,0.7) * (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) (0.3,0.4,0.3) 

6u  (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.6) (0.4,0.4,0.4) (0.3,0.6,0.6) 

7u  (0.2,0.4,0.6) (0.4,0.4,0.5) (0.5,0.5,0.6) * (0.7,0.5,0.8) (0.4,0.4,0.5) 

8u  (0.2,0.3,0.1) (0.6,0.6,0.1) (0.8,0.3,0.8) (0.4,0.3,0.4) (0.5,0.6,0.3) (0.9,0.3,0.3) 

 

         In case of soft set theory, there always exist some obvious or hidden associations between 

parameters. Let us focus on this to find the associations between the parameters of a neutrosophic soft 

set. 

       In example 2.8, one can easily find that if a house is expensive, the house is not cheap and vice 

versa. Thus there is an inconsistent association between the parameters ‘expensive’ and ‘cheap’. 

Generally, if a house is beautiful or situated in a good location, the house is expensive. Thus there is a 

consistent association between the parameters ‘beautiful’ and ‘expensive’ or the parameters ‘good 

location’ and ‘expensive’. 

       In example 3.1, we find that if a candidate is experienced or have highest academic degree, he/she 

is not young. Thus there is an inconsistent association between parameters ‘experienced’ and ‘young’ 

or between ‘highest academic degree’ and ‘young’. 

       The above two examples reveal the interior relations of parameters. In a neutrosophic soft set, 

these associations between parameters will be very useful for filling incomplete data. If it is found that 
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the parameters ie  and je  are associated and the data for ( )if e  is missing, then we can fill the 

missing data according to the corresponding data in ( )jf e  . To measure these associations, let us 

define the notion of association degree and some relevant concepts. 

      For the rest of the paper we shall assume that U be the universe set and E be the set of parameters. 

      Let ijU  denotes the set of objects that have specified values in the form of an ordered triplet (a, b, c) 

where a, b, c[0, 1] on both parameters ie  and je  such that 

        ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ): , , *, , , *
i i i j j jf e f e f e f e f e f ex UijU x x x x x xg gm d m d= Î ¹ ¹

ì üæ öï ïï ï÷ç ÷í ýç ÷çï ïè øï ïî þ
 

In other words ijU  is the collection of those objects that have known data both on ie  and je . 

3.2 Definition:  Let , ji Ee e Î . Then the consistent association number between the parameters ie  and 

je  is denoted by CANij  and is defined  as:

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ): , ,
i i ij j jf e f e f ef e f e f e

CAN xij ijU x x x x x xgm m g d d
ì üï ïï ï= Î = = =í ýï ïï ïî þ

where .  

denotes the cardinality of a set. 

3.3 Definition:  Let , ji Ee e Î . Then the consistent association degree between the parameters ie  and 

je  is denoted by CADij  and is defined as: 
ij

CANijCADij U
= where .  denotes the cardinality of a set. 

       It can be easily verified that the value of CADij lies in [0, 1]. Actually CADij  measures the extent to 

which the value of parameter ie  keeps consistent with that of parameter je  over ijU . Next we define 

inconsistent association number and inconsistent association degree as follows: 

3.4 Definition:  Let , ji Ee e Î . Then the inconsistent association number between the parameters ie  

and je  is denoted by ICANij  and is defined as 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ): or or
i i ij j jf e f e f ef e f e f e

ICAN xij ijU x x x x x xgm m g d d
ì üï ïï ï= Î ¹ ¹ ¹í ýï ïï ïî þ

 

where .  denotes the cardinality of a set. 

3.5 Definition:  Let , ji Ee e Î . Then the inconsistent association degree between the parameters ie  

and je  is denoted by ICADij  and is defined as: 
ij

ICANijICADij U
= where .  denotes the cardinality of 

a set. 

       It can be easily verified that the value of ICADij lies in [0, 1]. Actually ICADij  measures the extent 

to which the parameters ie  and je  is inconsistent. 

3.6 Definition:  Let , ji Ee e Î . Then the association degree between the parameters ie  and je   is 

denoted by ADij  and is defined by { }max ,AD CAD ICADij ij ij= . 
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     If CAD ICADij ij> , then AD CADij ij= , which means that most of the objects over ijU  have 

consistent values on parameters ie  and je . If CAD ICADij ij< , then AD ICADij ij= , which means that 

most of the objects over ijU  have inconsistent values on parameters ie  and je . Again if 

CAD ICADij ij= , then it means that there is the lowest association degree between the parameters ie  

and je . 

3.7 Theorem:  For parameters ie  and je , 0.5ADij ³  for all i, j. 

Proof: Follows from the fact that 1CAD ICADij ij+ = . 

3.8 Definition: If i Ee Î , then the maximal association degree of parameter ie  is denoted by MADi  

and is defined by max
j

MAD ADi ij= . 

4. DATA Filling Algorithm for a neutrosophic soft  set: 

Step-1: Input the neutrosophic soft set ( , )f E  which has incomplete data. 

Step-2: Find all parameters ie  for which data is missing. 

Step-3: Compute ADij  for j=1,2,3….,m (where ‘m’ is the number of parameters in E). 

Step-4: Compute MADi . 

Step-5:  Find out all parameters je  which have the maximal association degree MADi  with the 

parameter ie . 

Step-6: In case of consistent association between the parameter ie  and je ’s (j=1,2,3,….) 

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ), , , ,max max max
j j ji i i j j jf e f e f e f e f e f ex x x x x xg gm d m d=

æ ö÷ç ÷ç ÷çè ø
. In case of inconsistent 

association between the parameter ie  and je ’s (j=1,2,3,….)  

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( ), , max ,1 max ,1 max1
j j ji i i j j jf e f e f e f e f e f ex x x x x xg gm d m d= - -

æ ö÷ç ÷ç ÷çè ø
- . 

Step-7: If all the missing data are filled then stop else go to step-2. 

 An Illustrative example: Consider the neutrosophic soft set given in example 3.1.  

Step-1: 

U 1e  2e  3e  4e  5e  6e  

1u  (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) (0.2,0.5,0.5) 

2u  (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) * (0.6,0.6,0.4) 

3u  (0.2,0.6,0.4) (0.5,0.5,0.5) * (0.5,0.5,0.5) (0.5,0.5,0.5) (0.3,0.4,0.6) 

4u  (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) (0.3,0.4,0.4) 

5u  (0.1,0.1,0.7) * (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) (0.3,0.4,0.3) 

6u  (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.6) (0.4,0.4,0.4) (0.3,0.6,0.6) 

7u  (0.2,0.4,0.6) (0.4,0.4,0.5) (0.5,0.5,0.6) * (0.7,0.5,0.8) (0.4,0.4,0.5) 

8u  (0.2,0.3,0.1) (0.6,0.6,0.1) (0.8,0.3,0.8) (0.4,0.3,0.4) (0.5,0.6,0.3) (0.9,0.3,0.3) 
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Step-2: Clearly there are missing data in ( ) ( ) ( ) ( )52 3 4, , ,f e f e f e f e . We shall fill these missing data. 

Step-3:  

(a) For the parameter 2e .  

{ } { } { }
{ } { }

7 71 2 3 4 6 8 1 2 4 6 8 1 2 3 4 6 8

7 71 3 4 6 8 1 2 3 4 6 8

, , ,21 23 24
, .25 26

, , , , , , , , , , , , , , , ,
, , , , , , , , , , ,
u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\
 

     Now { } 021CAN = = and so 021CAD = . Again { }71 2 3 4 6 8 721 , , , , , ,ICAN u u u u u u u= = and so 

21

721 121 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.21 21 21AD CAD ICAD= = =  

     
{ } 023CAN = = and so 023CAD = . Again { }71 2 4 6 8 623 , , , , ,ICAN u u u u u u= =

 
and so 

23

623 123 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.23 23 23AD CAD ICAD= = =  

    
{ }3 6 224 ,CAN u u= =

 
and so 

2 0.3324 6
CAD = = . Again { }1 2 4 8 424 , , ,ICAN u u u u= =

 
and so 

24

424 0.6624 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.24 24 24AD CAD ICAD= = =  

     { }3 1 225 ,CAN u u= =
 
and so 

2 0.3325 6
CAD = = . Again { }74 6 8 425 , , ,ICAN u u u u= =

 
and so 

24

424 0.6625 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.25 25 25AD CAD ICAD= = =  

     { }4 126CAN u= =
 
and so 

1 0.1426 7
CAD = = . Again { }71 2 3 6 8 626 , , , , ,ICAN u u u u u u= =

 
and so 

26

626 0.8526 7
ICAN

ICAD
U

= = = . Hence { }max , max{0.14,0.85} 0.85.26 26 26AD CAD ICAD= = =  

Thus { }max max , , , , max{1,1,0.66,0.66,0.85} 1.2 2 21 23 24 25 26j
MAD AD AD AD AD AD ADj= = = = . 

(b) For the parameter 3e .  

{ } { } { }
{ } { }

7 7 51 2 4 6 8 1 2 4 6 8 1 2 4 6 8

5 7 5 71 4 6 8 1 2 4 6 8

, , ,31 32 34
, , , .35 36

, , , , , , , , , , , , , , ,
, , , , , , , , ,
u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\
 

     Now { }2 4, 231CAN u u= =
 
and so 

2 0.3331 6
CAD = = . Again { }71 6 8 431 , , ,ICAN u u u u= =

 
and so 

31

431 0.6631 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.31 31 31AD CAD ICAD= = =  

     
{ } 032CAN = = and so 032CAD = . Again { }71 2 4 6 8 632 , , , , ,ICAN u u u u u u= =

 
and so 

32

632 132 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.32 32 32AD CAD ICAD= = =  

    
{ } 034CAN = =

 
and so 034CAD = . Again { }51 2 4 6 8 634 , , , , ,ICAN u u u u u u= =

 
and so 

34

434 0.6634 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,0.66} 0.66.34 34 34AD CAD ICAD= = =  
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     { } 035CAN = =
 
and so 035CAD = . Again { }5 71 4 6 8, 635 , , , ,ICAN u u u u u u= =

 
and so 

35

635 135 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.35 35 35AD CAD ICAD= = =  

     { }4 136CAN u= =
 
and so 

1 0.1436 7
CAD = = . Again { }5 71 2 6 8, 636 , , , ,ICAN u u u u u u= =

 
and so 

36

636 0.8536 7
ICAN

ICAD
U

= = = . Hence { }max , max{0.14,0.85} 0.85.36 36 36AD CAD ICAD= = =  

Thus { }max max , , , , max{0.66,1,0.66,1,0.85} 1.3 3 31 32 34 35 36j
MAD AD AD AD AD AD ADj= = = =  

(c) For the parameter 4e .  

{ } { } { }
{ } { }

3 3

3 3

5 51 2 4 6 8 1 2 4 6 8 1 2 4 6 8

5 51 4 6 8 1 2 4 6 8

, , , ,41 42 43
, , , , , .45 46

, , , , , , , , , , , , , , ,
, , , , , , ,
u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\
 

     Now { } 041CAN = =
 
and so 041CAD = . Again { }3 51 2 4 6 8, 741 , , , , ,ICAN u u u u u u u= =

 
and so 

41

741 141 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.41 41 41AD CAD ICAD= = =  

     
{ }3 6, 242CAN u u= = and so 

2 0.3342 6
CAD = = . Again { }1 2 4 8 442 , , ,ICAN u u u u= =

 
and so 

42

442 0.6642 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.42 42 42AD CAD ICAD= = =  

    
{ } 043CAN = =

 
and so 043CAD = . Again { }51 2 4 6 8 643 , , , , ,ICAN u u u u u u= =

 
and so 

43

643 143 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.43 43 43AD CAD ICAD= = =  

     { }3 145CAN u= =
 
and so 

1 0.1645 6
CAD = = . Again { }51 4 6 8, 545 , , ,ICAN u u u u u= =

 
and so 

45

545 0.8345 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.16,0.83} 0.83.45 45 35AD CAD ICAD= = =  

     { }6 146CAN u= =
 
and so 

1 0.1446 7
CAD = = . Again { }3 51 2 4 8, 646 , , , ,ICAN u u u u u u= =

 
and so 

46

646 0.8546 7
ICAN

ICAD
U

= = = . Hence { }max , max{0.14,0.85} 0.85.46 46 46AD CAD ICAD= = =  

Thus { }max max , , , , max{1,0.66,1,0.83,0.85} 1.4 4 41 42 43 45 46j
MAD AD AD AD AD AD ADj= = = =  

(d) For the parameter 5e .  

{ } { } { }
{ } { }

5 5

5 5

7 7 71 3 4 6 8 1 3 4 6 8 1 4 6 8

71 3 4 6 8 1 3 4 6 8

, , ,51 52 53
, .54 56

, , , , , , , , , , , , , , , ,
, , , , , , , , , , ,
u u u u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u
U U U

U U
= = =

= =

\
 

     Now { } 051CAN = = and so 051CAD = . Again { }5 71 3 4 6 8 751 , , , , , ,ICAN u u u u u u u= = and so 

51

751 151 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.51 51 51AD CAD ICAD= = =  
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{ }1 3, 252CAN u u= =

 
and so 

2 0.3352 6
CAD = = . Again { }74 6 8 452 , , ,ICAN u u u u= =

 
and so 

52

452 0.6652 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.33,0.66} 0.66.52 52 52AD CAD ICAD= = =  

    
{ } 053CAN = =

 
and so 053CAD = . Again { }5 71 4 6 8 653 , , , , ,ICAN u u u u u u= =

 
and so 

53

653 153 6
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.53 53 53AD CAD ICAD= = =  

     { }3 154CAN u= =
 
and so 

1 0.1654 6
CAD = = . Again { }51 4 6 8 554 , , , ,ICAN u u u u u= =

 
and so 

54

554 0.8354 6
ICAN

ICAD
U

= = = . Hence { }max , max{0.16,0.83} 0.83.54 54 54AD CAD ICAD= = =  

     { } 056CAN = =
 
and so 056CAD = . Again { }5 71 3 4 6 8 756 , , , , , ,ICAN u u u u u u u= =

 
and so 

56

756 156 7
ICAN

ICAD
U

= = = . Hence { }max , max{0,1} 1.56 56 56AD CAD ICAD= = =  

Thus { }max max , , , , max{1,0.66,1,0.83,1} 1.5 5 51 52 53 54 56j
MAD AD AD AD AD AD ADj= = = =  

The association degree table for the neutrosophic soft set ( , )f E  is given below: 

 1e  2e  3e  4e  5e  6e  

2e  1 _ 1 0.66 0.66 0.85 

3e  0.66 1 _ 0.66 1 0.85 

4e  1 0.66 1 _ 0.83 0.85 

5e  1 0.66 1 0.83 _ 1 

 

Step-4: From step-3, we have, 1, 1, 1, 152 3 4MAD MAD MAD MAD= = = = . 

Step-5: The parameters 1e  and 3e  have the maximal association degree 21AD   and 23AD  

respectively with the parameter 2e . 

The parameters 2e  and 5e  have the maximal association degree 32AD   and 35AD  respectively with 

the parameter 3e . 

The parameters 1e  and 3e  have the maximal association degree 41AD   and 43AD  respectively with 

the parameter 4e . 

The parameters ,1 3e e  and 6e  have the maximal association degree 51AD , 53AD and 56AD  respectively 

with the parameter 5e . 

Step-6: There is a consistent association between the parameters 2e  and 1e , 2e  and 3e , 5e  and 1e , 

3e  and 5e ; while there is an inconsistent association between the parameters 4e  and 1e , 4e  and 

3e .So we have, 
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( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

( ) ( ) ( )( )

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

5 5 5

5 5 5 5 5 5

3 3 3

3 3 3 3 3 3

2 2 2

1 1 13 3 3

3 3 3

5 5 52 2 2

, ,

, , , , ,

0.1, 0.4 , 0.1, 0.2 , 0.7, 0.1 (0.4, 0.2, 0.7),

, ,

, , , , ,

0.5, 0.

max max max

max max max

max max max

max

f e f e f e

f e f e f ef e f e f e

f e f e f e

f e f e f ef e f e f e

u u u

u u u u u u

u u u

u u u u u u

g

g

g

g

m d

m m g d d

m d

m m g d d

=

= =

=

= ( ) ( ) ( )( )5 , 0.5, 0.5 , 0.5, 0.5 (0.5, 0.5, 0.5),max max =

 

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

( ) ( ) ( )( )

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )( )

7 7 7

7 7 7 7 7 7

2 2 2

2 2 2 2 2 2

4 4 4

1 1 13 3 3

5 5 5

1 1 13 3 3

, ,

, , 1 , ,1 ,

0.2, 0.5 , 0.4, 0.5 , 0.6, 0.6 (0.5, 0.5, 0.6),

, ,

, , , , ,

1 max max max

max max max

max max max

max

f e f e f e

f e f e f ef e f e f e

f e f e f e

f e f e f ef e f e f e

u u u

u u u u u u

u u u

u u u u u u

g

g

g

g

m d

m m g d d

m d

m m g d d

= - -

= =

=

=

-

( ) ( ) ( )( )0.4, 0.4 , 0.1, 0.1 , 0.7, 0.7 (0.4, 0.1, 0.7).max max =

 

Thus we have the following table which gives the tabular representation of the filled neutrosophic soft 

set: 

U 1e  2e  3e  4e  5e  6e  

1u  (0.8,0.5,0.2) (0.3,0.4,0.6) (0.1,0.6,0.4) (0.7,0.3,0.6) (0.3,0.4,0.6) (0.2,0.5,0.5) 

2u  (0.4,0.1,0.7) (0.8,0.2,0.4) (0.4,0.1,0.7) (0.2,0.4,0.4) (0.4,0.1,0.7) (0.6,0.6,0.4) 

3u  (0.2,0.6,0.4) (0.5,0.5,0.5) (0.5,0.5,0.5) (0.5,0.5,0.5) (0.5,0.5,0.5) (0.3,0.4,0.6) 

4u  (0.3,0.4,0.4) (0.1,0.3,0.3) (0.3,0.4,0.4) (0.6,0.6,0.6) (0.1,0.1,0.5) (0.3,0.4,0.4) 

5u  (0.1,0.1,0.7) (0.4,0.2,0.7) (0.4,0.2,0.1) (0.8,0.6,0.1) (0.6,0.7,0.7) (0.3,0.4,0.3) 

6u  (0.5,0.3,0.9) (0.3,0.6,0.6) (0.1,0.5,0.5) (0.3,0.6,0.6) (0.4,0.4,0.4) (0.3,0.6,0.6) 

7u  (0.2,0.4,0.6) (0.4,0.4,0.5) (0.5,0.5,0.6) (0.5,0.5,0.6) (0.7,0.5,0.8) (0.4,0.4,0.5) 

8u  (0.2,0.3,0.1) (0.6,0.6,0.1) (0.8,0.3,0.8) (0.4,0.3,0.4) (0.5,0.6,0.3) (0.9,0.3,0.3) 

 

Conclusion: Incomplete information or missing data in a neutrosophic soft set restricts the usage of 

the neutrosophic soft set. To make the neutrosophic soft set (with missing / incomplete data) more 

useful, in this paper, we have proposed a data filling approach, where missing data is filled in terms of 

the association degree between the parameters. We have validated the proposed algorithm by an ex-

ample and drawn the conclusion that relation between parameters can be applied to fill the missing 

data. 
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Abstract: Multi-criteria decision making (MCDM) is concerned about organizing and taking care of 

choice and planning issues including multi-criteria. When attributes are more than one, and further 

bifurcated, neutrosophic softset environment cannot be used to tackle such type of issues. Therefore, 

there was a dire need to define a new approach to solve such type of problems, So, for this purpose 

a new environment namely, Neutrosophic Hypersoft set (NHSS) is defined. This paper includes 

basics operator’s like union, intersection, complement, subset, null set, equal set etc., of Neutrosophic 

Hypersoft set (NHSS). The validity and the implementation are presented along with suitable 

examples. For more precision and accuracy, in future, proposed operations will play a vital role is 

decision-makings like personal selection, management problems and many others. 

Keywords: MCDM, Uncertainty, Soft set, Neutrosophic soft set, Hyper soft set. 

 

1. Introduction 

 The idea of fuzzy sets was presented by Lotfi A. Zadeh in 1965 [1]. From that point the fuzzy 

sets and fuzzy logic have been connected in numerous genuine issues in questionable and uncertain 

conditions. The conventional fuzzy sets are based on the membership value or the level of 

membership value. A few times it might be hard to allot the membership values for fuzzy sets. 

Therefore, the idea of interval valued fuzzy sets was proposed [2] to catch the uncertainty for 

membership values. In some genuine issues like real life problems, master framework, conviction 

framework, data combination, etc., we should consider membership just as the non- membership 

values for appropriate depiction of an object in questionable and uncertain condition. Neither the 

fuzzy sets nor the interval valued fuzzy sets is convenient for such a circumstance. Intuitionistic fuzzy 

sets proposed by Atanassov [3] is convenient for such a circumstance. The intuitionistic fuzzy sets 

can just deal with the inadequate data considering both the membership and non-membership 

values. It doesn't deal with the vague and conflicting data which exists in conviction framework.  

Smarandache [4] presented the idea of Neutrosophic set which is a scientific apparatus for taking 

care of issues including uncertain, indeterminacy and conflicting information. Neutrosophic set 

indicate truth membership value (T), indeterminacy membership value (I) and falsity membership 

value (F). This idea is significant in numerous application regions since indeterminacy is evaluated 

exceptionally and the truth membership values, indeterminacy membership values and falsity 

membership values are independent. 

The idea of soft sets was first defined by Molodtsov [5] as a totally new numerical device for 

taking care of issues with uncertain conditions. He defines a soft set as a parameterized family of 
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subsets of universal set. Soft sets are useful in various regions including artificial insight, game 

hypothesis and basic decision-making problems [6] and it serves to define various functions for 

various parameters and utilize values against defined parameters. These functions help us to oversee 

various issues and choices throughout everyday life. 

In the previous couple of years, the essentials of soft set theory have been considered by different 

researchers. Maji et al. [7] gives a hypothetical study of soft sets which covers subset and super set of 

a soft set, equality of soft sets and operations on soft sets, for Example, union, intersection, AND and 

OR-Operations between different sets. Ali at el. [8] presented new operations in soft set theory which 

includes restricted union, intersection and difference. Cagman and Enginoglu [9, 10] present soft 

matrix theory which substantiated itself a very significant measurement in taking care of issues while 

making various choices. Singh and Onyeozili [11] come up with the research that operations on soft 

set is equivalent to the corresponding soft matrices. From Molodsov [9, 6, 5, 12] up to present, 

numerous handy applications identified with soft set theory have been presented and connected in 

numerous fields of sciences and data innovation. 

Maji [13] come up with Neutrosophic soft set portrayed by truth, indeterminacy, and falsity 

membership values which are autonomous in nature. Neutrosophic soft set can deal with inadequate, 

uncertain, and inconsistence data, while intuitionistic fuzzy soft set and fuzzy soft set can just deal 

with partial data. 

Smarandache [14] presented a new technique to deal with uncertainty. He generalized the soft 

to hyper soft set by converting the function into multi-decision function. Smarandache, [15, 16, 17, 18, 

19, 20] also discuss the various extension of neutrosophic sets in TOPSIS and MCDM. Saqlain et.al. 

[21] proposed a new algorithm along with a new decision-making environment. Many other novel 

approaches are also used by many researches [22-39] in decision makings.  
1.1 Contribution 

Since uncertainty is human sense which for the most part surrounds a man while taking any 

significant choice. Let’s say if we get a chance to pick one best competitor out of numerous applicants, 

we originally set a few characteristics and choices that what we need in our chose up-and-comer. 

based on these objectives we choose the best one. To make our decision easy we use different 

techniques. The purpose of this paper is to overcome the uncertainty problem in more precise way 

by combing Neutrosophic set with Hypersoft set. This combination will produce a new mathematical 

tool “Neutrosophic Hypersoft Set” and will play a vital role in future decision-making research. 

2.Preliminaries 

Definition 2.1: Soft Set 

Let ξ be the universal set and € be the set of attributes with respect to ξ. Let P(ξ) be the power set of 

ξ and Ą ⊆ € . A pair (₣, Ą) is called a soft set over ξ and its mapping is given as 

                               ₣: Ą → 𝑃(𝜉) 

It is also defined as: 

                    (₣, Ą) = {₣(𝑒) ∈ 𝑃(𝜉): 𝑒 ∈ € , ₣(𝑒) =  ∅ 𝑖𝑓 𝑒 ≠ Ą} 

Definition 2.2: Neutrosophic Soft Set 

Let ξ be the universal set and € be the set of attributes with respect to ξ. Let P(ξ) be the set of 

Neutrosophic values of ξ and Ą ⊆ € . A pair (₣, Ą) is called a Neutrosophic soft set over ξ and its 

mapping is given as 

                               ₣: Ą → 𝑃(𝜉) 
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Definition 2.3: Hyper Soft Set: 

Let ξ be the universal set and 𝑃(ξ ) be the power set of ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 𝑛 well-

defined attributes, whose corresponding attributive values are respectively the set 𝐿1, 𝐿2, 𝐿3…𝐿𝑛 with 

𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3…𝑛} , then the pair (₣, 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛) is said to be Hypersoft 

set over ξ where 

₣: 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 → 𝑃(𝜉) 

3. Calculations   

Definition 3.1: Neutrosophic Hypersoft Set (NHSS) 

Let ξ be the universal set and 𝑃(ξ ) be the power set of ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 𝑛 well-

defined attributes, whose corresponding attributive values are respectively the set 𝐿1, 𝐿2, 𝐿3…𝐿𝑛 with 

𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3…𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $, then the pair (₣, $) 

is said to be Neutrosophic Hypersoft set (NHSS) over ξ where 

 ₣: 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 → 𝑃(𝜉) and 

 ₣(𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛) = {< 𝑥, 𝑇(₣($)), 𝐼(₣($)), 𝐹(₣($)) >, 𝑥 ∈ 𝜉 } where T is the membership value of 

truthiness, I is the membership value of indeterminacy and F is the membership value of falsity such 

that 𝑇, 𝐼, 𝐹: 𝜉 → [0,1] also 0 ≤ 𝑇(₣($)) +  𝐼(₣($)) +  𝐹(₣($)) ≤ 3. 

Example 3.1:  

Let ξ be the set of decision makers to decide best mobile phone given as 

ξ = {𝑚1, 𝑚2, 𝑚3, 𝑚4,𝑚5} 

also consider the set of attributes as 

𝑠1 = 𝑀𝑜𝑏𝑖𝑙𝑒 𝑡𝑦𝑝𝑒, 𝑠2 = 𝑅𝐴𝑀, 𝑠3 = 𝑆𝑖𝑚 𝐶𝑎𝑟𝑑, 𝑠4 = 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑠5 = 𝐶𝑎𝑚𝑒𝑟𝑎, 𝑠6 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑜𝑤𝑒𝑟 

And their respective attributes are given as 

𝑆1 = 𝑀𝑜𝑏𝑖𝑙𝑒 𝑡𝑦𝑝𝑒 = {𝐼𝑝ℎ𝑜𝑛𝑒, 𝑆𝑎𝑚𝑠𝑢𝑛𝑔, 𝑂𝑝𝑝𝑜, 𝑙𝑒𝑛𝑜𝑣𝑜} 

𝑆2 = 𝑅𝐴𝑀 = {8 𝐺𝐵, 4 𝐺𝐵, 6 𝐺𝐵, 2 𝐺𝐵 } 

𝑆3 = 𝑆𝑖𝑚 𝐶𝑎𝑟𝑑 = {𝑆𝑖𝑛𝑔𝑙𝑒, 𝐷𝑢𝑎𝑙} 

𝑆4 = 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = {1440 × 3040 𝑝𝑖𝑥𝑒𝑙𝑠, 1080 × 780 𝑝𝑖𝑥𝑒𝑙𝑠, 2600 × 4010 𝑝𝑖𝑥𝑒𝑙𝑠} 

𝑆5 = 𝐶𝑎𝑚𝑒𝑟𝑎 = {12 𝑀𝑃, 10𝑀𝑃, 15𝑀𝑃} 

𝑆6 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑜𝑤𝑒𝑟 = {4100 𝑚𝐴ℎ, 1000 𝑚𝐴ℎ, 2050 𝑚𝐴ℎ} 

Let the function be  ₣: 𝑆1 × 𝑆2 × 𝑆3 × 𝑆4 × 𝑆5 × 𝑆6 → 𝑃(𝜉)  

Below are the tables of their Neutrosophic values 

Table 1: Decision maker Neutrosophic values for mobile type 

𝑆1(𝑀𝑜𝑏𝑖𝑙𝑒 𝑡𝑦𝑝𝑒) 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

Iphone (0.3, 0.6, 0.7) (0.7, 0.6, 0.4) (0.4, 0.5, 0.7) (0.6, 0.5, 0.3) (0.5, 0.3, 0.8) 

Samsung (0.7, 0.5, 0.6) (0.3, 0.2, 0.1) (0.3, 0.6, 0.2) (0.8, 0.1, 0.2) (0.5, 0.4, 0.5) 

Oppo (0.5, 0.2, 0.1) (0.9, 0.5, 0.3) (0.9, 0.4, 0.1) (0.9, 0.3, 0.1) (0.6, 0.1, 0.2) 

Lenovo (0.5, 0.3, 0.2) (0.5, 0.2, 0.1) (0.8, 0.5, 0.2) (0.6, 0.4, 0.3) (0.7, 0.4, 0.2) 

Table 2: Decision maker Neutrosophic values for RAM 

 
𝑆2(𝑅𝐴𝑀) 

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

8 GB (0.3, 0.4, 0.7) (0.4, 0.5, 0.7) (0.5, 0.6, 0.8) (0.5, 0.3, 0.8) (0.3, 0.6, 0.7) 

4 GB (0.4, 0.2, 0.5)   (0.3, 0.6, 0.2) (0.4, 0.7, 0.3) (0.5, 0.4, 0.5) (0.7, 0.5, 0.6) 

6 GB (0.7, 0.2, 0.3) (0.9, 0.4, 0.1) (0.8, 0.3, 0.2) (0.6, 0.1, 0.2) (0.5, 0.2, 0.1) 

2 GB (0.8, 0.2, 0.1) (0.8, 0.5, 0.2) (0.9 0.4, 0.1) (0.7, 0.4, 0.2) (0.5, 0.3, 0.2) 
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Table 3: Decision maker Neutrosophic values for sim card 

𝑆3(𝑆𝑖𝑚 𝐶𝑎𝑟𝑑) 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

Single (0.6, 0.4, 0.3) (0.6, 0.5, 0.3) (0.5, 0.4, 0.3) (0.7, 0.8, 0.3) (0.9, 0.2, 0.1) 

Dual (0.8, 0.2, 0.1) (0.4, 0.8, 0.7) (0.7, 0.3, 0.2) (0.3, 0.6, 0.4) (0.8, 0.4, 0.2) 

 

Table 4: Decision maker Neutrosophic values for resolution 

𝑆4(𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 
 1440 × 3040   (0.7, 0.8, 0.3) (0.7, 0.5, 0.3) (0.6, 0.4, 0.3) (0.5, 0.6, 0.9) (0.4, 0.5, 0.3) 

1080 × 780  (0.3, 0.6, 0.4) (0.7, 0.3, 0.2) (0.8, 0.3, 0.1) (0.6, 0.4, 0.7)   (0.3, 0.5, 0.8) 

2600 × 4010  (0.5, 0.2, 0.1) (0.6, 0.3, 0.4) (0.5, 0.7, 0.2) (0.9, 0.3, 0.1) (0.7, 0.4, 0.3) 

 

Table 5: Decision maker Neutrosophic values for camera 

𝑆5(𝐶𝑎𝑚𝑒𝑟𝑎) 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

12 MP (0.6, 0.4, 0.3) (0.7, 0.8, 0.3) (0.6, 0.4, 0.3) (0.4, 0.5, 0.3) (0.9, 0.2, 0.1) 

10 MP (0.8, 0.3, 0.1) (0.3, 0.6, 0.4) (0.8, 0.2, 0.1) (0.3, 0.5, 0.8) (0.8, 0.4, 0.2) 

15 MP (0.5, 0.7, 0.2) (0.5, 0.2, 0.1) (0.8, 0.5, 0.2) (0.7, 0.4, 0.3) (0.7, 0.4, 0.2) 

 

Table 6: Decision maker Neutrosophic values for battery power 

𝑆6(𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑃𝑜𝑤𝑒𝑟) 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

4100 mAh (0.7, 0.8, 0.3) (0.7, 0.6, 0.4) (0.4, 0.5, 0.7) (0.9, 0.2, 0.1) (0.5, 0.3, 0.8) 

1000 mAh (0.3, 0.6, 0.4) (0.3, 0.2, 0.1) (0.3, 0.6, 0.2) (0.8, 0.4, 0.2) (0.5, 0.4, 0.5) 

2050 mAh (0.5, 0.2, 0.1) (0.9, 0.5, 0.3) (0.9, 0.4, 0.1) (0.7, 0.4, 0.2) (0.6, 0.1, 0.2) 

 

Neutrosophic Hypersoft set is define as, 

   ₣: (𝑆1 × 𝑆2 × 𝑆3 × 𝑆4 × 𝑆5 × 𝑆6) → 𝑃(𝜉)   

Let’s assume  ₣($) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙) = {𝑚1, 𝑚4} 

Then Neutrosophic Hypersoft set of above assumed relation is 

₣($) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {

< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.7, 0.5, 0.6}, 6 𝐺𝐵{0.7, 0.2, 0.3}, 𝐷𝑢𝑎𝑙{0.8,0.2,0.1}) >

< 𝑚4(𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.8,0.1,0.2}, 6 𝐺𝐵{0.6, 0.1, 0.2}, 𝐷𝑢𝑎𝑙{0.3, 0.6,0.4}) >} 

Its tabular form is given as 

 

Table 7: Tabular Representation of Neutrosophic Hypersoft Set 

₣($) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩,𝑫𝒖𝒂𝒍 ) 𝒎𝟏 𝒎𝟒 

Samsung (0.7,0.5, 0.6) (0.8, 0.1, 0.2) 

6 GB (0.7, 0.2, 0.3) (0.6, 0.1, 0.2) 

Dual (0.8, 0.2, 0.1) (0.3, 0.6, 0.4) 

 

Definition 3.2: Neutrosophic Hypersoft Subset 

Let ₣($1) and ₣($2) be two Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 

𝑛  well-defined attributes, whose corresponding attributive values are respectively the set 

𝐿1, 𝐿2, 𝐿3…𝐿𝑛  with 𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3… 𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ 

then ₣($1) is the Neutrosophic Hypersoft subset of ₣($2)  if 

𝑇(₣($1)) ≤ 𝑇(₣($2)) 

𝐼(₣($1)) ≤ 𝐼(₣($2))   
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𝐹(₣($1)) ≥ 𝐹(₣($2)) 

 

Numerical Example of Subset 

Consider the two NHSS ₣($1) and NHSS ₣($2) over the same universe  ξ = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}. 

The NHSS ₣($) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1, 𝑚4}  is the subset of NHSS ₣($2) =

₣(𝑆𝑎𝑚𝑠𝑢𝑛𝑔, 6𝐺𝐵) = {𝑚1}  if 𝑇(₣($1)) ≤ 𝑇(₣($2)) ,  𝐼(₣($1)) ≤ 𝐼(₣($2)) , 𝐹(₣($1)) ≥ 𝐹(₣($2)) . Its 

tabular form is given below 

Table 8: Tabular Representation of NHSS ₣($1) 

₣($𝟏) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩,𝑫𝒖𝒂𝒍 ) 𝒎𝟏 𝒎𝟒 

Samsung (0.7,0.5, 0.6) (0.8, 0.1, 0.2) 

6 GB (0.7, 0.2, 0.3) (0.6, 0.1, 0.2) 

Dual (0.8, 0.2, 0.1) (0.3, 0.6, 0.4) 

 

Table 9: Tabular Representation of NHSS ₣($2) 

₣($𝟐) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩) 𝒎𝟏 

Samsung (0.9, 0.6, 0.3) 

6 GB (0.8, 0.4, 0.1) 

This can also be written as 

₣($1) ⊂ ₣($2) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) ⊂ ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵) 

= {
< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.7, 0.5, 0.6}, 6 𝐺𝐵{0.7, 0.2, 0.3}, 𝐷𝑢𝑎𝑙{0.8,0.2,0.1}) >,

< 𝑚4(𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.8,0.1,0.2}, 6 𝐺𝐵{0.6, 0.1, 0.2}, 𝐷𝑢𝑎𝑙{0.3, 0.6,0.4}) >
} 

⊂ {< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.9, 0.6, 0.3}, 6 𝐺𝐵{0.8, 0.4, 0.1})>} 

Here we can see that membership value of Samsung for  𝑚1  in both sets is (0.7, 0.5, 0.6)  and 

(0.9, 0.6, 0.3) which satisfy the Definition of Neutrosophic Hypersoft subset as 0.7 < 0.9, 0.5 < 0.6, 

and 0.6 > 0.3. This shows that (0.7, 0.5, 0.6)  ⊂  (0.9, 0.6, 0.3) and same was the case with the rest of 

the attributes of NHSS ₣($1) and NHSS ₣($2). 

 

Definition 3.3: Neutrosophic Equal Hypersoft Set 

Let ₣($1) and ₣($2) be two Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 

𝑛  well-defined attributes, whose corresponding attributive values are respectively the set 

𝐿1, 𝐿2, 𝐿3…𝐿𝑛  with 𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3… 𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ 

then ₣($1) is the Neutrosophic equal Hypersoft subset of ₣($2)  if 

𝑇(₣($1)) = 𝑇(₣($2)) 

𝐼(₣($1)) = 𝐼(₣($2))   

𝐹(₣($1)) = 𝐹(₣($2)) 

Numerical Example of Equal Neutrosophic Hypersoft Set 

Consider the two NHSS ₣($1) and NHSS ₣($2) over the same universe  ξ = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}. 

The NHSS ₣($1) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1, 𝑚4}  is the equal to NHSS ₣($2) =

₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵) = {𝑚1}  if 𝑇(₣($1)) = 𝑇(₣($2)) , 𝐼(₣($1)) = 𝐼(₣($2)) , 𝐹(₣($1)) =

𝐹(₣($2)). Its tabular form is given below 

 

Table 10: Tabular Representation of NHSS ₣($1) 
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₣($1)
= ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) 

𝑚1 𝑚4 

Samsung (0.7,0.5, 0.6) (0.8, 0.1, 0.2) 

6 GB (0.7, 0.2, 0.3) (0.6, 0.1, 0.2) 

Dual (0.8, 0.2, 0.1) (0.3, 0.6, 0.4) 

 
Table 11: Tabular Representation of NHSS ₣($2) 

 

                   

This can also be written as 

(₣($1) = ₣($2)) = (₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵))

= (({< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.7, 0.5, 0.6}, 6 𝐺𝐵{0.7, 0.2, 0.3}, 𝐷𝑢𝑎𝑙{0.8,0.2,0.1}) >,

< 𝑚4(𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.8,0.1,0.2}, 6 𝐺𝐵{0.6, 0.1, 0.2}, 𝐷𝑢𝑎𝑙{0.3, 0.6,0.4}) >}

= {< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.7, 0.5, 0.6}, 6 𝐺𝐵{0.7, 0.2, 0.3}) >}))   

Here we can see that membership value of Samsung for  𝑚1  in both sets is (0.7, 0.5, 0.6)  and 

(0.7, 0.5, 0.6) which satisfy the Definition of Neutrosophic Equal Hypersoft set as 0.7 = 0.7, 0.5 = 0.5 

and 0.6 = 0.6. This shows that (0.7, 0.5, 0.6) =  (0.7, 0.5, 0.6) and same was the case with the rest of 

the attributes of NHSS ₣($1) and NHSS ₣($2). 

Definition 3.4: Null Neutrosophic Hypersoft Set 

Let ₣($1)  be the Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 𝑛 well-

defined attributes, whose corresponding attributive values are respectively the set 𝐿1, 𝐿2, 𝐿3…𝐿𝑛 with 

𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3…𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ then ₣($1) is Null 

Neutrosophic Hypersoft set if 

𝑇(₣($1)) = 0 

𝐼(₣($1)) = 0   

𝐹(₣($1)) = 0 

Numerical Example of Null Neutrosophic Hypersoft Set 

Consider the NHSS ₣($1)  over the universe  ξ = {𝑚1, 𝑚2, 𝑚3,𝑚4, 𝑚5} . The NHSS ₣($1) =

₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1, 𝑚4} is said to be null NHSS if its Neutrosophic values are 0. Its 

tabular form is given below 

Table 12: Tabular Representation of NHSS ₣($1) 

₣($1)
= ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) 

𝑚1 𝑚4 

Samsung (0, 0, 0) (0, 0, 0) 

6 GB (0, 0, 0) (0, 0, 0) 

Dual (0, 0, 0) (0, 0, 0) 

This can also be written as 

₣($1) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 )

= {< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0, 0, 0}, 6 𝐺𝐵{0, 0, 0}, 𝐷𝑢𝑎𝑙{0,0,0}) >,

< 𝑚4(𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0,0,0}, 6 𝐺𝐵{0, 0, 0}, 𝐷𝑢𝑎𝑙{0, 0,0}) >} 

Definition 3.5: Compliment of Neutrosophic Hypersoft Set 

₣($𝟐) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩) 𝒎𝟏 

Samsung (0.7,0.5, 0.6) 

6 GB (0.7, 0.2, 0.3) 
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Let ₣($1)  be the Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 𝑛 well-

defined attributes, whose corresponding attributive values are respectively the set 𝐿1, 𝐿2, 𝐿3…𝐿𝑛 with 

𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3…𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ then ₣𝑐($1) is the 

Compliment of Neutrosophic Hypersoft set of ₣($1)  if 

₣𝑐($1): (⇁ 𝐿1 ×⇁ 𝐿2 ×⇁ 𝐿3… ⇁ 𝐿𝑛) → 𝑃(𝜉) 

Such that  

𝑇𝐶(₣($1)) = 𝐹(₣($1)) 

𝐼𝐶(₣($1)) = 𝐼(₣($1)) 

𝐹𝐶(₣($1)) = 𝑇(₣($1)) 

 

Numerical Example of Compliment of NHSS 

Consider the NHSS ₣($1)  over the universe  ξ = {𝑚1, 𝑚2, 𝑚3,𝑚4, 𝑚5} . The compliment of NHSS 

₣($1) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1, 𝑚4}   is given as 𝑇𝐶(₣($1)) = 𝐹(₣($1)) , 𝐼𝐶(₣($1)) =

𝐼(₣($1)), 𝐹𝐶(₣($1)) = 𝑇(₣($1)).Its tabular form is given below 

 

Table 13: Tabular Representation of NHSS ₣($1) 

₣𝐶($1) = ₣(𝑁𝑜𝑡 𝑠𝑎𝑚𝑠𝑢𝑛𝑔,𝑁𝑜𝑡 6 𝐺𝐵, 𝑁𝑜𝑡 𝐷𝑢𝑎𝑙 ) 𝑚1 𝑚4 

Not Samsung (0.6, 0.5, 0.7) (0.2, 0.1, 0.8) 

Not 6 GB (0.3, 0.2, 0.7) (0.2, 0.1, 0.6) 

Not Dual (0.1, 0.2, 0.8) (0.4, 0.6, 0.3) 

 

This can also be written as 

₣𝑐($1) = ₣( 𝑛𝑜𝑡 𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 𝑛𝑜𝑡 6 𝐺𝐵, 𝑛𝑜𝑡 𝐷𝑢𝑎𝑙 )

= {< 𝑚1, (𝑛𝑜𝑡 𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.6, 0.5, 0.7}, 𝑛𝑜𝑡 6 𝐺𝐵{0.3, 0.2, 0.7}, 𝑛𝑜𝑡 𝐷𝑢𝑎𝑙{0.1,0.2,0.8}) >,

< 𝑚4(𝑛𝑜𝑡 𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.2,0.1,0.8}, 𝑛𝑜𝑡 6 𝐺𝐵{0.2, 0.1, 0.6}, 𝑛𝑜𝑡 𝐷𝑢𝑎𝑙{0.4, 0.6,0.3}) >} 

Here we can see that membership value of Samsung for  𝑚1  in ₣($1)  is (0.7, 0.5, 0.6)  and its 

compliment is (0.6, 0.5, 0.7) which satisfy the Definition of compliment of Neutrosophic Hypersoft 

set. This shows that (0.6, 0.5, 0.7) is the compliment of (0.7, 0.5, 0.6) and same was the case with the 

rest of the attributes of NHSS ₣($1). 

Definition 3.6: Union of Two Neutrosophic Hypersoft Set 

Let ₣($1) and ₣($2) be two Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 

𝑛  well-defined attributes, whose corresponding attributive values are respectively the set 

𝐿1, 𝐿2, 𝐿3…𝐿𝑛  with 𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3… 𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ 

then ₣($1) ∪ ₣($2) is given as 

𝑇(₣($1) ∪ ₣($2)) = {

𝑇(₣($1))                               𝑖𝑓 𝑥 ∈ $1

𝑇(₣($2))                               𝑖𝑓 𝑥 ∈ $2

max (𝑇(₣($1)), 𝑇(₣($2)))         𝑖𝑓 𝑥 ∈ $1 ∩ $2
 

𝐼(₣($1) ∪ ₣($2)) =

{
 
 

 
 𝐼(₣($1))                         𝑖𝑓 𝑥 ∈ $1

𝐼(₣($2))                        𝑖𝑓 𝑥 ∈ $2

(𝐼(₣($1))+𝐼(₣($2)))

2
                 𝑖𝑓 𝑥 ∈ $1 ∩ $2
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𝐹(₣($1) ∪ ₣($2)) = {

𝐹(₣($1))                                          𝑖𝑓 𝑥 ∈ $1

𝐹(₣($2))                                          𝑖𝑓 𝑥 ∈ $2

min (𝐹(₣($1)), 𝐹(₣($2)))                   𝑖𝑓 𝑥 ∈ $1 ∩ $2
 

Numerical Example of Union  

Consider the two NHSS ₣($1) and NHSS ₣($2) over the same universe  ξ = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}. 

Tabular representation of NHSS ₣($1) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1,𝑚4}  and NHSS ₣($2) =

₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵) = {𝑚1} is given below, 

Table 14: Tabular Representation of NHSS ₣($1) 

₣($𝟏) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩,𝑫𝒖𝒂𝒍 ) 𝒎𝟏 𝒎𝟒 

Samsung (0.7,0.5, 0.6) (0.8, 0.1, 0.2) 

6 GB (0.7, 0.2, 0.3) (0.6, 0.1, 0.2) 

Dual (0.8, 0.2, 0.1) (0.3, 0.6, 0.4) 

 

Table 15: Tabular Representation of NHSS ₣($2) 

₣($𝟐) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩) 𝒎𝟏 

Samsung (0.9, 0.5, 0.3) 

6 GB (0.8, 0.4, 0.1) 

 Then the union of above NHSS is given as 

 

Table 16: Union of NHSS ₣($1) and NHSS ₣($2) 

₣($𝟏) ∪ ₣($𝟐) 𝒎𝟏 𝒎𝟒 

Samsung (0.9, 0.5, 0.3) (0.8, 0.1, 0.2) 

6 GB (0.8, 0.3, 0.1) (0.6, 0.1, 0.2) 

Dual (0.8, 0.1, 0.0) (0.3, 0.6, 0.4) 

This can also be written as 

₣($1) ∪ ₣($2) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) ∪ ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵)

= {< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.9, 0.5, 0.3}, 6 𝐺𝐵{0.8, 0.3, 0.1}, 𝐷𝑢𝑎𝑙{0.8,0.1,0.0}) >,

< 𝑚4(𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.8,0.1,0.2}, 6 𝐺𝐵{0.6, 0.1, 0.2}, 𝐷𝑢𝑎𝑙{0.3, 0.6,0.4}) >} 

Definition 3.7: Intersection of Two Neutrosophic Hypersoft Set 

Let ₣($1) and ₣($2) be two Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 

𝑛  well-defined attributes, whose corresponding attributive values are respectively the set 

𝐿1, 𝐿2, 𝐿3…𝐿𝑛  with 𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3… 𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ 

then ₣($1) ∩ ₣($2) is given as 

𝑇(₣($1) ∩ ₣($2)) = {

𝑇(₣($1))                               𝑖𝑓 𝑥 ∈ $1

𝑇(₣($2))                               𝑖𝑓 𝑥 ∈ $2

min (𝑇(₣($1)), 𝑇(₣($2)))         𝑖𝑓 𝑥 ∈ $1 ∩ $2
 

𝐼(₣($1) ∩ ₣($2)) =

{
 
 

 
 𝐼(₣($1))                         𝑖𝑓 𝑥 ∈ $1

𝐼(₣($2))                        𝑖𝑓 𝑥 ∈ $2

(𝐼(₣($1))+𝐼(₣($2)))

2
                 𝑖𝑓 𝑥 ∈ $1 ∩ $2

   

𝐹(₣($1) ∩ ₣($2)) = {

𝐹(₣($1))                                          𝑖𝑓 𝑥 ∈ $1

𝐹(₣($2))                                          𝑖𝑓 𝑥 ∈ $2

max (𝐹(₣($1)), 𝐹(₣($2)))                   𝑖𝑓 𝑥 ∈ $1 ∩ $2
 

Numerical Example of Intersection  
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Consider the two NHSS ₣($1) and NHSS ₣($2) over the same universe  ξ = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}. 

Tabular representation of NHSS ₣($1) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1,𝑚4}  and NHSS ₣($2) =

₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵) = {𝑚1} is given below 

 

Table 17: Tabular Representation of NHSS ₣($1) 

₣($𝟏)
= ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩,𝑫𝒖𝒂𝒍 ) 

𝒎𝟏 𝒎𝟒 

Samsung (0.7,0.5, 0.6) (0.8, 0.1, 0.2) 

6 GB (0.7, 0.2, 0.3) (0.6, 0.1, 0.2) 

Dual (0.8, 0.2, 0.1) (0.3, 0.6, 0.4) 

 
Table 18: Tabular Representation of NHSS ₣($2) 

₣($𝟐) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩) 𝒎𝟏 

Samsung (0.9, 0.5, 0.3) 

6 GB (0.8, 0.4, 0.1) 

 Then the intersection of above NHSS is given as 

Table 19: Intersection of NHSS ₣($1) and NHSS ₣($2) 

₣($𝟏) ∩ ₣($𝟐) 𝒎𝟏 

Samsung (0.7, 0.5, 0.6) 

6 GB (0.7, 0.3, 0.3) 

Dual (0.0, 0.1, 0.1) 

This can also be written as 

₣($1) ∩ ₣($2) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) ∩ ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵)

= {< 𝑚1, (𝑠𝑎𝑚𝑠𝑢𝑛𝑔{0.7, 0.5, 0.6}, 6 𝐺𝐵{0.7, 0.3, 0.3}, 𝐷𝑢𝑎𝑙{0.0,0.1,0.1}) >} 

Definition 3.8: AND Operation on Two Neutrosophic Hypersoft Set 

Let ₣($1) and ₣($2) be two Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 

𝑛  well-defined attributes, whose corresponding attributive values are respectively the set 

𝐿1, 𝐿2, 𝐿3…𝐿𝑛  with 𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3… 𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ 

then ₣($1) ∧ ₣($2) = ₣($1 × $2) is given as 

𝑇($1 × $2) = 𝑚𝑖𝑛 (𝑇(₣($1)), 𝑇(₣($2))) 

𝐼($1 × $2) =
(𝐼(₣($1)), 𝐼(₣($2)))

2
 

𝐹($1 × $2) = 𝑚𝑎𝑥 (𝐹(₣($1)), 𝐹(₣($2))) 

Numerical Example of AND-Operation  

Consider the two NHSS ₣($1) and NHSS ₣($2) over the same universe  ξ = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}. 

Tabular representation of NHSS ₣($1) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1,𝑚4}  and NHSS ₣($2) =

₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, ) = {𝑚1} is given below 

Table 20: Tabular representation of NHSS ₣($1) 

₣($1)
= ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) 

𝑚1 𝑚4 

Samsung (0.7,0.5, 0.6) (0.8, 0.1, 0.2) 

6 GB (0.7, 0.2, 0.3) (0.6, 0.1, 0.2) 

Dual (0.8, 0.2, 0.1) (0.3, 0.6, 0.4) 
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Table 21: Tabular representation of NHSS ₣($2) 

₣($𝟐) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩) 𝒎𝟏 

Samsung (0.9, 0.5, 0.3) 

6 GB (0.8, 0.4, 0.1) 

 Then the AND Operation of above NHSS is given as 

 

Table 22: AND of NHSS ₣($1) and NHSS ₣($2) 

₣($𝟏) ∧ ₣($𝟐) 𝒎𝟏 𝒎𝟒 

𝑆𝑎𝑚𝑠𝑢𝑛𝑔 ×   𝑆𝑎𝑚𝑠𝑢𝑛𝑔 (0.7,0.5,0.6) (0.0,0.1,0.2) 

𝑆𝑎𝑚𝑠𝑢𝑛𝑔 ×  6 𝐺𝐵  (0.7, 0.45,0.6) (0.0,0.1,0.2) 

6 𝐺𝐵 × 𝑆𝑎𝑚𝑠𝑢𝑛𝑔 (0.7, 0.35,0.3) (0.0,0.1,0.2) 

6 𝐺𝐵 ×  6 𝐺𝐵 (0.7,0.3, 0.3) (0.0,0,1,0.2) 

𝐷𝑢𝑎𝑙 × 𝑆𝑎𝑚𝑠𝑢𝑛𝑔 (0.8,0.35,0.3) (0.0,0.6,0.4) 

𝐷𝑢𝑎𝑙 ×  6 𝐺𝐵 (0.8, 0.3, 0.1) (0.0,0.6,0.4) 

 

Definition 3.9: OR Operation on Two Neutrosophic Hypersoft Set 

Let ₣($1) and ₣($2) be two Neutrosophic Hypersoft set over ξ. Consider 𝑙1, 𝑙2, 𝑙3… 𝑙𝑛 for 𝑛 ≥ 1, be 

𝑛  well-defined attributes, whose corresponding attributive values are respectively the set 

𝐿1, 𝐿2, 𝐿3…𝐿𝑛  with 𝐿𝑖 ∩ 𝐿𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3… 𝑛} and their relation 𝐿1 × 𝐿2 × 𝐿3…𝐿𝑛 = $ 

then ₣($1) ∨ ₣($2) = ₣($1 × $2) is given as 

𝑇($1 × $2) = 𝑚𝑎𝑥 (𝑇(₣($1)), 𝑇(₣($2))) 

𝐼($1 × $2) =
(𝐼(₣($1)), 𝐼(₣($2)))

2
 

𝐹($1 × $2) = 𝑚𝑖𝑛 (𝐹(₣($1)), 𝐹(₣($2))) 

Numerical Example of OR-Operation  

Consider the two NHSS ₣($1) and NHSS ₣($2) over the same universe  ξ = {𝑚1, 𝑚2, 𝑚3, 𝑚4, 𝑚5}. 

Tabular representation of NHSS ₣($1) = ₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, 𝐷𝑢𝑎𝑙 ) = {𝑚1,𝑚4}  and NHSS ₣($2) =

₣(𝑠𝑎𝑚𝑠𝑢𝑛𝑔, 6 𝐺𝐵, ) = {𝑚1} is given below 

 

Table 23: Tabular representation of NHSS ₣($1) 

₣($𝟏)
= ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩,𝑫𝒖𝒂𝒍 ) 

𝒎𝟏 𝒎𝟒 

Samsung (0.7,0.5, 0.6) (0.8, 0.1, 0.2) 

6 GB (0.7, 0.2, 0.3) (0.6, 0.1, 0.2) 

Dual (0.8, 0.2, 0.1) (0.3, 0.6, 0.4) 

 

₣($𝟐) = ₣(𝒔𝒂𝒎𝒔𝒖𝒏𝒈, 𝟔 𝑮𝑩) 𝒎𝟏 

Samsung (0.9, 0.5, 0.3) 

6 GB (0.8, 0.4, 0.1) 

Table 24: Tabular representation of NHSS ₣($2) 

 Then the OR Operation of above NHSS is given as 
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Table 25: OR of NHSS ₣($1) and NHSS ₣($2) 

₣($𝟏) ∨ ₣($𝟐) 𝒎𝟏 𝒎𝟒 

𝑆𝑎𝑚𝑠𝑢𝑛𝑔 ×   𝑆𝑎𝑚𝑠𝑢𝑛𝑔 (0.9,0.5,0.3) (0.8,0.1,0.0) 

𝑆𝑎𝑚𝑠𝑢𝑛𝑔 ×  6 𝐺𝐵  (0.8, 0.45,0.1) (0.8,0.1,0.0) 

6 𝐺𝐵 × 𝑆𝑎𝑚𝑠𝑢𝑛𝑔 (0.9, 0.35,0.3) (0.6,0.1,0.0) 

6 𝐺𝐵 ×  6 𝐺𝐵 (0.8,0.3, 0.1) (0.6,0,1,0.0) 

𝐷𝑢𝑎𝑙 × 𝑆𝑎𝑚𝑠𝑢𝑛𝑔 (0.9,0.35,0.1) (0.3,0.6,0.0) 

𝐷𝑢𝑎𝑙 ×  6 𝐺𝐵 (0.8, 0.3, 0.1) (0.3,0.6,0.0) 

4. Result Discussion  

Decision-making is a complex issue due to vague, imprecise and indeterminate environment 

specially, when attributes are more than one, and further bifurcated. Neutrosophic softset 

environment cannot be used to tackle such type of issues. Therefore, there was a dire need to define 

a new approach to solve such type of problems, So, for this purpose neutrosophic hypersoft set 

environment is defined along with necessary operations and elaborated with examples.  

5. Conclusions 

In this paper, operations of Neutrosophic Hypersoft set like union, intersection, compliment, AND 

OR operations are presented. The validity and implementation of the proposed operations and 

definitions are verified by presenting suitable example. Neutrosophic hypersoft set NHSS will be a 

new tool in decision-making problems for suitable selection. In future, many decision-makings like 

personal selection, office management, industrial equipment and many other problems can be solved 

with the proposed operations [23]. Properties of Union and Intersection operations, cardinality and 

functions on NHSS are to be defined in future.   
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Abstract: With the invention of new technologies, the competition elevates in market. Therefore, it 

creates more difficulties for consumer to select the right smart phone. In this paper, a new approach 

is proposed to select smart phone, in which environment of decision-making is MCDM. Firstly, an 

algorithm is proposed in which problem is formulated in the form of neutrosophic soft set and then 

solved with generalized fuzzy TOPSIS (GFT). Secondly, rankings are compared with [10]. Finally, it 

is concluded that proposed approach is applicable in decision-making where uncertainty and 

imprecise information-based environment is confronted. In future, this evolutionary algorithm can 

be used along with other methodologies to solve MCDM problems. 

Keywords: Accuracy Function, MCDM, TOPSIS, Mobile Phone, Soft set, Neutrosophic Numbers 

NNs, Neutrosophic Soft set, Linguistic Variable. 
________________________________________________________________________________________ 

1. Introduction 

Mobile / cell phones are widely used for making call, SMS, MMS, email or to access internet. The first 

portable cell phone was manifest by Martin in 1973 [8], using a handset weighing 4.4 IBS. In the 

advance world, smart-phone have currently overtaken the usage of earlier telecommunication 

system. There may be an outstanding doubt and complications concerning the reputation of cellular 

technologies by decision makers, provider, trader, and clients alike. To help this selection process 

amongst different available options for technology evaluation, multi-standards decision-making 

approach appears to be suitable. Due to brutal market competition by inventions of different models 

with innovative designs and characteristics have made the buying decision making more complex 

[10]. It is typically tough for a decision-maker to assign a particular performance rating to another for 

the attributes into consideration. The advantage of employing a fuzzy approach is to assign the 

relative importance of attributes victimization fuzzy ranges rather than a particular number for textile 

the $64000 world during a fuzzy atmosphere. MCDM approach [9] with cluster deciding is employed 

to judge smartphones as another per client preferences [6]. TOPSIS methodology is especially 

appropriate for finding the cluster call –making drawback beneath fuzzy atmosphere. TOPSIS 

methodology [22] is predicated on the idea that the chosen various ought to have the shortest distance 

from the positive ideal solution. In decision making problems TOPSIS method have been studied by 

many researchers: Adeel et al. [3-5, 7 ,11, 13, 18, 21, 24]. This technique of MCDM is used by Saqlain 

et. al. [16] to predict CWC 2019. Maji [12] introduced the idea of Neutrosophic soft set. Riaz and 
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Naeem [14, 15] presented some essential ideas of soft sets together with soft sigma algebra. 

Neutrosophic set could be a terribly powerful tool to agitate incomplete and indeterminate data 

planned by F. Smarandache [20] and has attracted the eye of the many students [1], which might offer 

the credibleness of the given linguistic analysis worth and linguistic set can offer qualitative analysis 

values. At the primary, soft set theory was planned by a Russian scientist [2] that was used as a 

standard mathematical mean to come back across the difficulty of hesitant and uncertainty [19]. He 

additionally argues that however, the same theory of sentimental set is free from the parameterization 

inadequacy syndrome of fuzzy set theory [23], rough set theory, and applied mathematics. 

Nowadays, researchers are focusing to present new theories to deal with uncertainty, imprecision 

and vagueness [25-35], along with suitable examples to elaborate their theories. Neutrosophic soft 

sets along with TOPSIS technique is widely used in decision making problems, every day many 

researchers are working in this era [36-45] to discuss the validity of Neutrosophy in decision 

problems.   

1.1 Novelties 

It is a very complicated decision to select the utmost suitable phone. In this condition Neutrosophic 

soft-set-environment is considered and simplified with Generalized TOPSIS. An algorithm is 

proposed to tackle uncertain, vague and imprecise environment in selection problems. 

1.2 Contribution 

Cell phone selection is a challenging problem in current generation. To solve this complexity, a few 

methods regarding the usage of fuzzy ideas has been proposed. For the few kinds of uncertainty 

within the selection method fuzzy linguistic method is used. The objective of the study is to 

investigate the uncertainty in selection criteria of cell phone with respect to the consumer’s choice 

under Neutrosophic softset environment by applying Generalized fuzzy TOPSIS. 

2.Preliminaries 

Definition 2.1: Neutrosophic Set [2] 

Let U be a universe of discourse then the neutrosophic set A is an object having the form  

A = {< x: TA (𝑥), IA(𝑥), FA (𝑥), >; x ∈ U} 

where the functions T, I, F : U→ [0,1] define respectively the degree of membership, the degree of 

indeterminacy, and the degree of non-membership of the element x ∈ X to the set A with the 

condition.  ≤TA (𝑥) + IA (𝑥) + FA (𝑥)  ≤ 3.    

Definition 2.2: Soft Set [2] 

Let ℧ be a universe of discourse, Ρ(℧)the power set of ℧, and A set of parameters. Then, the pair (Ϝ, 

℧), where  

Ϝ ∶  Α ⟶ Ρ(℧) 

is called a softset over ℧. 

Definition 2.3: Neutrosophic Soft Set [12] 

Let ℧ be an initial universal set and E be a set of parameters. Assume, Α ⊂ E. Let Ρ(℧)denotes the 

set of all neutrosophic sets over ℧, where F is a mapping given by 

Ϝ ∶  Α ⟶ Ρ(℧) 

Definition 2.4: Accuracy Function [17] 
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Accuracy function is used to convert neutrosophic number NFN into fuzzy number 

(Deneutrosophication using 𝑨𝐹).   A(F) = { 𝑥 =
[𝑇𝑥+𝐼𝑥+𝐹𝑥] 

3
 }  

𝑨𝐹 represents the De-Neutrosophication of neutrosophic number into Fuzzy Number. 

3. Calculations   

In this section an algorithm is proposed to solve MCDM problem under neutrosophic environment. 

3.1 Algorithm 

Cell phone selection is a challenging problem in current generation. To solve this complexity, a few 

methods regarding the usage of neutrosophic fuzzy TOPSIS ideas have been proposed. For the few 

kinds of uncertainty within the selection method fuzzy linguistic method is used. The objective of the 

study is to investigate the uncertainty in selection criteria of cell phone. 

To solve this problem following algorithm is applied as in sequence. 

Step 1:  defining a problem 

Step 2:  Consideration of problem as MCDM (alternatives and attributes) 

Step 3: Assigning linguistic variables to alternatives and criteria’s / attributes  

Step 4: Substitution of NNs to linguistic variables  

Step 5:   Conversion of NNs to fuzzy numbers by using accuracy function [?] defined as,  

A(F) = { 𝑥 =
[𝑇𝑥+𝐼𝑥+𝐹𝑥] 

3
 } 

    𝑊ℎ𝑒𝑟𝑒  𝑇𝑥  , 𝐼𝑥  , 𝐹𝑥 𝜖 𝑁𝑁𝑠  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑏𝑦 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑎𝑘𝑒𝑟𝑠 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑙𝑦 

Step 6:  Apply TOPSIS technique  

Step 7:  Arrange by ascending order and rank accordingly. 

Step 8:  Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Algorithm used in mobile selection, under neutrosophic softset environment 
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3.2: Case Study 

To discuss the; 

 Validity  

 Applicability  

of the proposed algorithm, mobile selection is considered as a MCDM problem. 

 

3.2.1  Problem Formulation 

The mobile phone has been identified for choosing criterion and after that the criterion is depending 

upon the public choice. The result gets from criterion, some mobile phone has been selected according 

to their criterion. With invention of new technologies, the competition is raised upon in market it 

makes more difficult for consumer to select the right phone. In fast growing market, we think that 

the result got from fuzzy idea has been improved, so we applied Neutrosophic set to get more 

accuracy in result. The aim of the study is to explore the accuracy in the selection of criteria of mobile 

phone.  

3.2.2  Parameters 

Selection is a complex issue, to resolve this problem criteria and alternative plays an important role. 

Following criteria and alternatives are considered in this problem formulation. 

Criteria’s 

Ƈ𝟏 Ƈ2 Ƈ3 Ƈ4 Ƈ5 Ƈ6 Ƈ7 

Ram Rom Processor Camera 
Display 

Size 
Model Price 

 

Mobiles as Alternatives 

Ṃ𝟏 Ṃ2 Ṃ3 Ṃ4 Ṃ5 Ṃ6 

SAMSUNG NOKIA HTC HUAWEI Q-MOBILE RIVO 

 

3.2.3  Assumptions 

The decision makers {Ɗ1, Ɗ2, Ɗ3, Ɗ4} will assign linguistic values from Table .1 according to his own 

interest, knowledge and experience, to the above-mentioned criteria and alternatives and shown in 

Table.2. 

Table 1: Linguistic variables, codes and neutrosophic numbers obtained by expert opinion 

Sr # No Linguistic variable Code Neutrosophic Number 

1 Very Low ṼḸ (0.1, 0.3,0.7) 

2 Low Ḹ (0.3,0.5,0.6) 

3 Satisfactory Ș (0.5,0.5,0.5) 

4 High Ḫ (0.7,0.3,0.4) 

5 Very High Ṽ Ḫ (1.0,0.1,0.2) 

 

3.3 Application of Proposed Algorithm 

Step 1: Problem consideration 3.2. 

Step 2: Formulation and assumptions 3.2.1 and 3.2.2. 
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Step 3: Assigning linguistic variables to each alternatives and criteria’s / attributes. 

Table 2: Each decision maker, will assign linguistic values to each attribute, from Table .1  

 

Step 4: Substitution of Neutrosophic Numbers (NNs) to each linguistic variable. 

  Strategies Ɗ𝟏 Ɗ𝟐 Ɗ𝟑 Ɗ𝟒 

Ƈ
𝟏
= 

R
A

M
 

Ṃ𝟏 ṼḸ Ș Ḫ Ș 

Ṃ2 Ḹ Ḫ Ṽ Ḫ Ḫ 

Ṃ3 Ș Ṽ Ḫ ṼḸ Ṽ Ḫ 

Ṃ4 Ḫ Ș ṼḸ ṼḸ 

Ṃ5 Ṽ Ḫ ṼḸ Ḹ Ḹ 

Ṃ6 ṼḸ Ḹ Ș Ș 

Ƈ
𝟐
= 

R
O

M
 

Ṃ𝟏 Ḹ Ș Ḫ Ḫ 

Ṃ2 Ș Ḫ Ṽ Ḫ Ṽ Ḫ 

Ṃ3 Ḫ Ṽ Ḫ ṼḸ Ș 

Ṃ4 Ṽ Ḫ Ș Ḹ Ḫ 

Ṃ5 ṼḸ Ḫ Ș Ṽ Ḫ 

Ṃ6 Ḹ Ṽ Ḫ Ḫ Ș 

Ƈ
𝟑
= 

P
R

O
C

E
S

S
O

R
 

Ṃ𝟏 Ș ṼḸ Ṽ Ḫ Ḫ 

Ṃ2 Ḫ Ḹ Ș Ṽ Ḫ 

Ṃ3 Ṽ Ḫ Ș Ḫ ṼḸ 

Ṃ4 Ș Ḫ Ṽ Ḫ Ḹ 

Ṃ5 Ḫ Ṽ Ḫ Ḹ Ș 

Ṃ6 Ṽ Ḫ Ș Ḫ ṼḸ 

Ƈ
𝟒
= 

C
A

M
E

R
A

 

Ṃ𝟏 ṼḸ Ḫ Ṽ Ḫ Ḹ 

Ṃ2 Ḹ Ṽ Ḫ ṼḸ Ḫ 

Ṃ3 Ș Ḫ  Ṽ Ḫ 

Ṃ4 Ḫ Ṽ Ḫ ṼḸ Ḹ 

Ṃ5 Ṽ Ḫ ṼḸ Ḹ Ḫ 

Ṃ6 ṼḸ Ș Ḹ Ș 

Ƈ
𝟓
= 

D
IS

P
L

A
Y

 S
IZ

E
 

Ṃ𝟏 Ḹ Ḫ Ḫ Ḫ 

Ṃ2 Ș Ṽ Ḫ Ḹ Ṽ Ḫ 

Ṃ3 Ḫ Ș Ṽ Ḫ ṼḸ 

Ṃ4 Ṽ Ḫ Ḫ Ḹ Ṽ Ḫ 

Ṃ5 Ș Ṽ Ḫ Ḫ ṼḸ 

Ṃ6 Ṽ Ḫ ṼḸ Ḹ Ḫ 
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Table3: Assign neutrosophic number to each linguistic value from table 1. 

 Ƈ𝟏 Ƈ𝟐 Ƈ𝟑 Ƈ𝟒 Ƈ𝟓 Ƈ𝟔 Ƈ𝟕 
Ṃ𝟏 (0.1, 0.3,0.7) (1,0.1,0.2) (0.7,0.3,0.4) (0.7,0.3,0.4) (0.5,0.5,0.5) (0.1, 0.3,0.7) (0.7,0.3,0.4) 
Ṃ2 (0.3,0.5,0.6) (0.5,0.5,0.5) (0.1, 0.3,0.7) (1,0.1,0.2) (0.7,0.3,0.4) (0.3,0.5,0.6) (0.1, 0.3,0.7) 
Ṃ3 (0.5,0.5,0.5) (0.1, 0.3,0.7) (0.3,0.5,0.6) (1,0.1,0.2) (0.7,0.3,0.4) (0.5,0.5,0.5) (1,0.1,0.2) 
Ṃ4 (0.7,0.3,0.4) (1,0.1,0.2) (0.5,0.5,0.5) (0.3,0.5,0.6) (1,0.1,0.2) (0.7,0.3,0.4) (0.1, 0.3,0.7) 
Ṃ5 (1,0.1,0.2) (0.3,0.5,0.6) (0.7,0.3,0.4) (0.5,0.5,0.5) (0.1, 0.3,0.7) (1,0.1,0.2) (0.5,0.5,0.5) 
Ṃ6 (0.5,0.5,0.5) (0.1, 0.3,0.7) (1,0.1,0.2) (0.7,0.3,0.4) (0.1, 0.3,0.7) (0.5,0.5,0.5) (0.7,0.3,0.4) 

 

Step 5: Conversion of fuzzy neutrosophic numbers NNs of step 4, into fuzzy numbers by using  

   accuracy function. 

A(F) = { 𝑥 =
[𝑇𝑥+𝐼𝑥+𝐹𝑥] 

3
 } 

Table: 4 After applied accuracy function the obtain result converted into fuzzy value 

 Ƈ1 Ƈ2 Ƈ3 Ƈ4 Ƈ5 Ƈ6 Ƈ7 
Ṃ𝟏 0.367 0.433 0.467 0.467 0.5 0.367 0.467 

Ṃ2 0.467 0.5 0.367 0.433 0.467 0.467 0.367 

Ṃ3 0.5 0.367 0.467 0.433 0.467 0.5 0.433 

Ṃ4 0.467 0.433 0.5 0.467 0.433 0.467 0.367 

Ṃ5 0.433 0.467 0.467 0.5 0.367 0.433 0.5 

Ṃ6 0.5 0.367 0.433 0.467 0.367 0.5 0.467 

 

Step 6: Now we apply algorithm of TOPSIS to obtain relative closeness. 

Table 5: Normalized decision matrices 

 Ƈ1 Ƈ2 Ƈ3 Ƈ4 Ƈ5 Ƈ6 Ƈ7 

Ṃ𝟏 0.327 0.410 0.422 0.413 0.468 0.327 0.437 

Ṃ2 0.416 0.474 0.332 0.383 0.437 0.416 0.343 

Ṃ3 0.446 0.348 0.422 0.383 0.437 0.446 0.405 

Ṃ4 0.416 0.410 0.452 0.413 0.405 0.416 0.343 

Ṃ5 0.386 0.443 0.422 0.442 0.343 0.386 0.468 

Ṃ6 0.446 0.348 0.391 0.413 0.343 0.446 0.437 

Step 6.1: Calculation of weighted normalized matrix 

Table6: Weighted normalized decision matrices 

weight 0.2 0.3 0.17 0.02 0.25 0.05 0.01 
 Ƈ1 Ƈ2 Ƈ3 Ƈ4 Ƈ5 Ƈ6 Ƈ7 

Ṃ𝟏 0.0654 0.123 0.07174 0.00826 0.117 0.01635 0.00437 

Ṃ2 0.0832 0.1422 0.05644 0.00766 0.10925 0.0208 0.00343 

Ṃ3 0.0892 0.1044 0.07174 0.00766 0.10925 0.0223 0.00405 

Ṃ4 0.0832 0.123 0.07684 0.00826 0.1015 0.0208 0.00343 

Ṃ5 0.0772 0.1329 0.07174 0.00884 0.08575 0.0193 0.00468 

Ṃ6 0.0892 0.1044 0.06647 0.00826 0.08575 0.0223 0.00437 

Step 6.2: Calculation of the ideal best and ideal worst value, 
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jv
=Indicates the ideal (best) 



jv
 = Indicates the ideal (worst) 

Table 7: Ideal worst and Ideal best values 

 Ƈ1 Ƈ2 Ƈ3 Ƈ4 Ƈ5 Ƈ6 Ƈ7 
Ṃ𝟏 0.0654 0.123 0.07174 0.00826 0.117 0.01635 0.00437 
Ṃ2 0.0832 0.1422 0.05644 0.00766 0.10925 0.0208 0.00343 
Ṃ3 0.0892 0.1044 0.07174 0.00766 0.10925 0.0223 0.00405 
Ṃ4 0.0832 0.123 0.07684 0.00826 0.1015 0.0208 0.00343 
Ṃ5 0.0772 0.1329 0.07174 0.00884 0.08575 0.0193 0.00468 
Ṃ6 0.0892 0.1044 0.06647 0.00826 0.08575 0.0223 0.00437 



jv  0.0892 0.1422 0.07684 0.0084 0.117 0.0223 0.00343 


jv  0.0654 0.1044 0.05644 0.00766 0.08575 0.01635 0.00437 

Step 6.3: Calculation of rank. 

_

_

ijij

ij
i ss

s
p





 

Table 8: Calculation of rank by relative closeness 

 

js  

js  _
ijij ss   p Rank 

Ṃ𝟏 0.0316 0.0400 0.0716 0.5587 3 
Ṃ2 0.0245 0.0843 0.1088 0. 3402 6 
Ṃ3 0.0400 0.0374 0.0774 0.4832 4 
Ṃ4 0.0249 0.0374 0.0623 0.6003 2 
Ṃ5 0.0671 0.0346 0.1017 0.7748 1 
Ṃ6 0.0500 0.0271 0.0771 0.3515 5 

Step 7: Calculation of rank and discussion. 

4. Result Discussion 

Firstly, the generalized neutrosophic TOPSIS approach is used to simplify mobile selection MCDM 

problem. In this calculation, the ranking of each mobile with respect to each criterion is represented 

below in Table 8 and Figure 2. To test the validity and the implementation of the technique proposed 

by Saqlain et. al. [17], in neutrosophic soft set environment and multi-criteria decision making, mobile 

selection problem is considered. Result shows that generalized neutrosophic TOPSIS along with 

proposed algorithm can be used to find best alternative.  

Secondly, results are compared with [10], in which fuzzy multi-criteria group decision making 

approach was used by considering same alternative and attributes. Graphical and tabular 

comparison is presented in Table 8 and Figure 2, which shows that under Generalized TOPSIS and 

Fuzzy TOPSIS 𝑀5  and 𝑀5  are best alternative whereas, 𝑀2  and 𝑀3  is the worst selection 

respectively.                                   

If we compare the results of Generalized fuzzy TOPSIS and Fuzzy TOPSIS  𝑀1, 𝑀4, 𝑀5  has same raking 

whereas,  𝑀2, 𝑀3, 𝑀6. 
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Figure 2: Ranking comparison of alternatives 

 

Table 9: Ranking comparison of alternatives using G.F. TOPSIS and F. TOPSIS 

 

  

 

 

 

 

 

 

5. Conclusions  

In MCDM problems, TOPSIS is widely used to find the best alternative, whereas, due to the vague 

and imprecise information in fuzzy environment, ranking of alternatives may not be accurate. Thus, 

neutrosophic soft set environment plays a vital role in selection problem. In this article, firstly, an 

algorithm is proposed based on accuracy function under neutrosophic soft set environment and to 

check the validity of the proposed technique in this environment, mobile selection problem is 

considered. Secondly, results are compared with same problem under FMCGDM [10] environment. 

However, the article may open a new avenue of research in competitive Neutrosophic decision-

making arena. Thus, this proposed technique can be used in decision-makings such as supplier 

selection, personal selection in academia and many other areas of management system.  
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Abstract: In this paper, we present a single-valued Neutrosophic Hypersoft set, multi-valued 

Neutrosophic Hypersoft set and tangent similarity measure for single-valued neutrosophic hypersoft 

sets and its properties. Then we use this technique in an application namely selection of cricket 

players for different types of matches (ODI, T20, and test) based on Neutrosophic Hypersoft set in 

decision making of single-valued neutrosophic hypersoft sets. This technique will help us to decide 

the best option for the players.  

Keywords: Neutrosophic hypersoft set (NHSS), single-valued neutrosophic hypersoft set (SVNHSS), 

multi-valued Neutrosophic Hypersoft set (MVNHSS), tangent similarity measure (TSM), multiple 

attribute decision making, cricket player  

 

 

1. Introduction 

 As the analysis of classical sets, fuzzy set [1] and intuitionistic fuzzy set [2], the neutrosophic set was 

introduced by Smarandache [3, 4] to capture the insufficient, indicate, uncertain and conflicting 

information. The neutrosophic set has three free parts, which are truth, indeterminacy and falsity 

membership degree; subsequently, it is applied in a wide range, for example, basic decision-making 

problems [5-20]. 

By accomplishing that the neutrosophic sets are difficult to be applied in some genuine issues 

on account of truth, indeterminacy and falsity membership degree, Wang, Smarandache, Zhang, and 

Sunderraman [21] presented the idea of a single-valued neutrosophic set. The single-valued 

neutrosophic set can freely express truth-membership degree, indeterminacy-membership degree, 

and falsity-membership degree and manages inadequate, uncertain and conflicting data. All the 

aspects of the elements depicted by the single-valued neutrosophic set are entirely appropriate for 

human intuition because of the flaw of information that human gets or sees from the surrounding. 

The single-valued neutrosophic set has been growing quickly because of its wide scope of 

hypothetical distinction and application zones, as discussed in [22-30].  

The idea of similarity is significant in examining approximately every logical field. Literature 

audit indicates that numerous strategies have been proposed for estimating the degree of similarity 

mailto:broumisaid78@gmail.com
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between fuzzy sets has been examined by Chen [32], Chen, et al., [33], Hyung et al. [34], Pappis and 

Karacapilidis [35] and Wang [36]. It is also a powerful instrument in building multi-criteria decision-

making techniques in numerous regions, for example, therapeutic diagnosis, design 

acknowledgment, grouping investigation, decision making, etc.  But these strategies are not fit for 

managing the similarity measures including indeterminacy. In the literature, few investigations have 

studied to similarity measures for neutrosophic sets and single-valued neutrosophic sets [37-46].  

Ye [47] present the distance-based similarity measure of single-valued neutrosophic sets 

and applied it to the group decision-making problems with single-valued neutrosophic data. Broumi 

and Smarandache [48] invent another similarity measure known as cosine similarity measure of 

interval-valued neutrosophic sets. Ye [49] further considered and found that there exist a few flaws 

in existing cosine similarity measure characterized in vector space [50] in certain circumstances. He 

[49] referenced that they may deliver an unreasonable outcome in some real cases. To conquer these 

problems, Ye [49] proposed improved cosine similarity measure dependent on cosine function, 

including single-valued neutrosophic cosine similarity measures and interval neutrosophic cosine 

similarity measures. 

Working on the similarity measures Pramanik and Mondal [51] also present a cotangent 

similarity measure of rough neutrosophic sets and their application to the medical field. Pramanik 

and Mondal [52] also give tangent similarity measures between intuitionistic fuzzy sets and some of 

its properties and applications. 

Smarandache [53] presented a new technique to deal with uncertainty. He generalized the 

soft set to hypersoft set by converting the function into a multi-decision function. In the same way, 

we convert hypersoft set to neutrosophic Hypersoft set to overcome the uncertainty problems. [54] 

introduced the TOPSIS by using accuracy function in his work and an application of MCDM is 

proposed. Application of fuzzy numbers in mobile selection in metros like Lahore is proposed by 

[55]. In medical the application of fuzzy numbers is proposed by Naveed et.al [56]. TOPSIS technique 

of MCDM can also be used for the prediction of games, and it’s applied in FIFA 2018 by [57]. 

prediction of games is a very complex topic and this game is also predicted by [58]. Many researches 

presented theories along with application in neutrosophic environment [59-66].   

 1.1 Novelties 

 In this paper, we have continued the idea of intuitionistic tangent similarity measure to neutrosophic 

class. We have characterized another similarity measure known as Tangent similarity measure for 

neutrosophic Hypersoft set and its properties with the application.  

 

2.Preliminaries 

Definition 2.1: Neutrosophic Soft Set  

Let Ů be the universal set and the set for respective attributes is given by Ë. Let P(Ů) be the set of 

Neutrosophic values of Ů and Ǻ ⊆ Ë. A pair (₣, Ǻ) is called a Neutrosophic soft set over Ů and its 

mapping is given as 

                               ₣: Ǻ → 𝑃(Ů) 

Definition 2.2: Hyper Soft Set 
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Let Ů be the universal set and 𝑃(Ů) be the power set of Ů. Consider 𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛 for 𝑛 ≥ 1, be 𝑛 

well-defined attributes, whose corresponding attributive values are respectively the set 

𝑃1, 𝑃2 , 𝑃3 … 𝑃𝑛 with 𝑃𝑖 ∩ 𝑃𝑗 = ∅, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3 … 𝑛}, then the pair (₣,  𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛) 

is said to be Hypersoft set over Ů where 

 ₣:  𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛 → 𝑃(Ů) 

Definition 2.3: Neutrosophic Hypersoft Set  

Let Ů be the universal set and 𝑃(Ů ) be the power set of Ů. Consider 𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛 for 𝑛 ≥ 1, be 𝑛 

well-defined attributes, whose corresponding attributive values are respectively the set 

𝑃1, 𝑃2, 𝑃3 … 𝑃𝑛  with 𝑃𝑖 ∩ 𝑃𝑗 = ∅ , for 𝑖 ≠ 𝑗  and 𝑖, 𝑗𝜖{1,2,3 … 𝑛}  and their relation 𝑃1 × 𝑃2 ×

𝑃3 … 𝑃𝑛 = ß, then the pair (₣, ß) is said to be Neutrosophic Hypersoft set (NHSS) over Ů where 

 ₣:  𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛 → 𝑃(Ů) and 

 ₣(𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛) = {< 𝑥, 𝑇(₣(ß)), 𝐼(₣(ß)), 𝐹(₣(ß)) >, 𝑥 ∈ Ů } where T is the membership value 

of truthiness, I is the membership value of indeterminacy and F is the membership value of falsity 

such that 𝑇, 𝐼, 𝐹: Ů → [0,1] also 0 ≤ 𝑇(₣(ß)) +  𝐼(₣(ß)) +  𝐹(₣(ß)) ≤ 3. 

3. Calculations   

Definition 3.1: Single valued Neutrosophic Hypersoft Set 

Let Ů be the universal set and 𝑃(Ů ) be the power set of Ů. Consider 𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛 for 𝑛 ≥ 1, be 𝑛 

well-defined attributes, whose corresponding attributive values are respectively the set 

𝑃1, 𝑃2, 𝑃3 … 𝑃𝑛  with 𝑃𝑖 ∩ 𝑃𝑗 = ∅ , for 𝑖 ≠ 𝑗  and 𝑖, 𝑗𝜖{1,2,3 … 𝑛}  and their relation 𝑃1 × 𝑃2 ×

𝑃3 … 𝑃𝑛 = ß, then the pair (₣, ß) is said to be Single valued Neutrosophic Hypersoft set (SVNHSS) 

over Ů where 

 ₣:  𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛 → 𝑃(Ů) and this mapping to 𝑃(Ů) is single-valued.  

 ₣(𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛) = {< 𝑥, 𝑇(₣(ß)), 𝐼(₣(ß)), 𝐹(₣(ß)) >, 𝑥 ∈ Ů } where T is the membership value 

of truthiness, I is the membership value of indeterminacy and F is the membership value of falsity 

such that 𝑇, 𝐼, 𝐹: Ů → [0,1] also 0 ≤ 𝑇(₣(ß)) +  𝐼(₣(ß)) +  𝐹(₣(ß)) ≤ 3. 

Example 3.1:  

Let ξ be the set of doctors under consideration given as 

ξ = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} 

also consider the set of attributes as 

𝑙1 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑙2 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒, 𝑙3 = 𝐺𝑒𝑛𝑑𝑒𝑟, 𝑙4 = 𝑆𝑘𝑖𝑙𝑙𝑠 

And their respective attributes are given as 

𝐿1 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

= {𝑀𝐵𝐵𝑆, 𝑀𝑆 𝑑𝑖𝑝𝑙𝑜𝑚𝑎, 𝐷𝑖𝑝𝑙𝑜𝑚𝑎 𝑜𝑓 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑏𝑜𝑎𝑟𝑑(𝐷𝑁𝐵), 𝐷𝑖𝑝𝑙𝑜𝑚𝑎 𝑖𝑛 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ(𝐷𝐶𝑅)} 

𝐿2 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 = {5𝑦𝑟, 8𝑦𝑟, 10𝑦𝑟, 15𝑦𝑟} 

𝐿3 = 𝐺𝑒𝑛𝑑𝑒𝑟 = {𝑀𝑎𝑙𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒} 

𝐿4 = 𝑆𝑘𝑖𝑙𝑙𝑠 = {𝐶𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑜𝑙𝑣𝑖𝑛𝑔, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑣𝑒, 𝑙𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝} 

Let the function be  ₣: 𝐿1 × 𝐿2 × 𝐿3 × 𝐿4 → 𝑃(𝜉)  

Below are the tables of their Neutrosophic values from different decision makers 
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Table 1: Decision maker Neutrosophic values for Qualification 

𝐿1(𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

MBBS (0.4, 0.5, 0.8) (0.7, 0.6, 0.4) (0.4, 0.5, 0.7) (0.5, 0.3, 0.7) (0.5, 0.3, 0.8) 

MS diploma (0.5, 0.3, 0.6)   (0.3, 0.2, 0.1) (0.3, 0.6, 0.2) (0.7, 0.3, 0.6) (0.5, 0.4, 0.5) 

DNB (0.8, 0.2, 0.4) (0.9, 0.5, 0.3) (0.9, 0.4, 0.1) (0.6, 0.3, 0.2) (0.6, 0.1, 0.2) 

DCR (0.9, 0.3, 0.1) (0.5, 0.2, 0.1) (0.8, 0.5, 0.2) (0.8, 0.2, 0.1) (0.7, 0.4, 0.2) 

 

Table 2: Decision maker Neutrosophic values for Experience 

𝐿2(𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

5 yr. (0.3, 0.4, 0.7) (0.6, 0.5, 0.3) (0.5, 0.6, 0.8) (0.6, 0.4, 0.8) (0.3, 0.6, 0.7) 

8 yr. (0.4, 0.2, 0.5)   (0.8, 0.1, 0.2) (0.4, 0.7, 0.3) (0.4, 0.8, 0.7) (0.7, 0.5, 0.6) 

10 yr. (0.7, 0.2, 0.3) (0.9, 0.3, 0.1) (0.8, 0.3, 0.2) (0.5, 0.4, 0.3) (0.5, 0.2, 0.1) 

15 yr. (0.8, 0.2, 0.1) (0.6, 0.4, 0.3) (0.9 0.4, 0.1) (0.6, 0.2, 0.3) (0.5, 0.3, 0.2) 

 

Table 3: Decision maker Neutrosophic values for Gender 

𝐿3(𝐺𝑒𝑛𝑑𝑒𝑟) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

Male (0.5, 0.6, 0.9) (0.7, 0.8, 0.3) (0.6, 0.4, 0.3) (0.8, 0.5, 0.4) (0.9, 0.2, 0.1) 

Female (0.6, 0.4, 0.7)   (0.3, 0.6, 0.4) (0.8, 0.2, 0.1) (0.4, 0.5, 0.6) (0.8, 0.4, 0.2) 

 

Table 4: Decision maker Neutrosophic values for Skills 

𝐿4(𝑆𝑘𝑖𝑙𝑙𝑠) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

Compassionate  (0.6, 0.4, 0.5) (0.7, 0.5, 0.3) (0.6, 0.4, 0.3) (0.6, 0.2, 0.1) (0.4, 0.5, 0.3) 

Problem solving (0.8, 0.2, 0.4)   (0.7, 0.3, 0.2) (0.8, 0.3, 0.1) (0.3, 0.4, 0.5) (0.3, 0.5, 0.8) 

Communicative (0.5, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.7, 0.2) (0.8, 0.4, 0.1) (0.7, 0.4, 0.3) 

Leadership (0.4, 0.9, 0.6) (0.8, 0.4, 0.2) (0.2, 0.6, 0.5) (0.7, 0.5, 0.2) (0.6, 0.4, 0.7) 

Single valued neutrosophic hypersoft set is define as ₣: (𝐿1 × 𝐿2 × 𝐿3 × 𝐿4) → 𝑃(𝜉)   

Let’s assume  ₣(£) = ₣(𝐷𝑁𝐵, 10 𝑦𝑟, 𝑚𝑎𝑙𝑒, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒) = {𝑑1} 

Then the single-valued neutrosophic hypersoft set of above-assumed relation is 

₣(£) = ₣(𝐷𝑁𝐵, 10 𝑦𝑟, 𝑚𝑎𝑙𝑒, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒) = {

≪ 𝑑1, (𝐷𝑁𝐵{0.8, 0.2, 0.4}, 10 𝑦𝑟{0.7, 0.2, 0.3}, 𝑚𝑎𝑙𝑒{0.5, 0.6, 0.9}, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒{0.6, 0.4, 0.5}) ≫} 

Its tabular form is given as 

 

Table 5: Tabular Representation of Single Valued Neutrosophic Hypersoft Set 

₣(£) = ₣(𝑫𝑵𝑩, 𝟏𝟎 𝒚𝒓, 𝒎𝒂𝒍𝒆, 𝒄𝒐𝒎𝒑𝒂𝒔𝒔𝒊𝒐𝒏𝒂𝒕𝒆) 𝒅𝟏 

DNB (0.8, 0.2, 0.4) 

10 yr. (0.7, 0.2, 0.3) 

Male (0.5, 0.6, 0.9) 

Compassionate (0.6, 0.4, 0.5) 
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Definition 3.2: Multi-valued Neutrosophic Hypersoft Set 

Let Ů be the universal set and 𝑃(Ů ) be the power set of Ů. Consider 𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛 for 𝑛 ≥ 1, be 𝑛 

well-defined attributes, whose corresponding attributive values are respectively the set 

𝑃1, 𝑃2, 𝑃3 … 𝑃𝑛  with 𝑃𝑖 ∩ 𝑃𝑗 = ∅ , for 𝑖 ≠ 𝑗  and 𝑖, 𝑗𝜖{1,2,3 … 𝑛}  and their relation 𝑃1 × 𝑃2 ×

𝑃3 … 𝑃𝑛 = ß, then the pair (₣, ß) is said to be Single valued Neutrosophic Hypersoft set (SVNHSS) 

over Ů where 

 ₣: 𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛 → 𝑃(Ů) and this mapping to 𝑃(Ů) is multi-valued. 

 ₣(𝑃1 × 𝑃2 × 𝑃3 … 𝑃𝑛) = {< 𝑥, 𝑇(₣(ß)), 𝐼(₣(ß)), 𝐹(₣(ß)) >, 𝑥 ∈ Ů } where T is the membership value 

of truthiness, I is the membership value of indeterminacy and F is the membership value of falsity 

such that 𝑇, 𝐼, 𝐹: Ů → [0,1] also 0 ≤ 𝑇(₣(ß)) +  𝐼(₣(ß)) +  𝐹(₣(ß)) ≤ 3. 

Example 3.2: 

Let ξ be the set of doctors under consideration given as ξ = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} 

also consider the set of attributes as 

𝑙1 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑙2 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒, 𝑙3 = 𝐺𝑒𝑛𝑑𝑒𝑟, 𝑙4 = 𝑆𝑘𝑖𝑙𝑙𝑠 

And their respective attributes are given as 

𝐿1 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

= {𝑀𝐵𝐵𝑆, 𝑀𝑆 𝑑𝑖𝑝𝑙𝑜𝑚𝑎, 𝐷𝑖𝑝𝑙𝑜𝑚𝑎 𝑜𝑓 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑏𝑜𝑎𝑟𝑑(𝐷𝑁𝐵), 𝐷𝑖𝑝𝑙𝑜𝑚𝑎 𝑖𝑛 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ(𝐷𝐶𝑅)} 

𝐿2 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 = {5𝑦𝑟, 8𝑦𝑟, 10𝑦𝑟, 15𝑦𝑟} 

𝐿3 = 𝐺𝑒𝑛𝑑𝑒𝑟 = {𝑀𝑎𝑙𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒} 

𝐿4 = 𝑆𝑘𝑖𝑙𝑙𝑠 = {𝐶𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑜𝑙𝑣𝑖𝑛𝑔, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑣𝑒, 𝑙𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝} 

Let the function be  ₣: 𝐿1 × 𝐿2 × 𝐿3 × 𝐿4 → 𝑃(𝜉)  

Below are the tables of their Neutrosophic values from different decision makers 

Table 6: Decision maker Neutrosophic values for Qualification 

𝐿1(𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

MBBS (0.4, 0.5, 0.8) (0.7, 0.6, 0.4) (0.4, 0.5, 0.7) (0.5, 0.3, 0.7) (0.5, 0.3, 0.8) 

MS diploma (0.5, 0.3, 0.6)   (0.3, 0.2, 0.1) (0.3, 0.6, 0.2) (0.7, 0.3, 0.6) (0.5, 0.4, 0.5) 

DNB (0.8, 0.2, 0.4) (0.9, 0.5, 0.3) (0.9, 0.4, 0.1) (0.6, 0.3, 0.2) (0.6, 0.1, 0.2) 

DCR (0.9, 0.3, 0.1) (0.5, 0.2, 0.1) (0.8, 0.5, 0.2) (0.8, 0.2, 0.1) (0.7, 0.4, 0.2) 

 

Table 7: Decision maker Neutrosophic values for Experience 

𝐿2(𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

5 yr. (0.3, 0.4, 0.7) (0.6, 0.5, 0.3) (0.5, 0.6, 0.8) (0.6, 0.4, 0.8) (0.3, 0.6, 0.7) 

8 yr. (0.4, 0.2, 0.5)   (0.8, 0.1, 0.2) (0.4, 0.7, 0.3) (0.4, 0.8, 0.7) (0.7, 0.5, 0.6) 

10 yr. (0.7, 0.2, 0.3) (0.9, 0.3, 0.1) (0.8, 0.3, 0.2) (0.5, 0.4, 0.3) (0.5, 0.2, 0.1) 

15 yr. (0.8, 0.2, 0.1) (0.6, 0.4, 0.3) (0.9 0.4, 0.1) (0.6, 0.2, 0.3) (0.5, 0.3, 0.2) 

 

Table 8: Decision maker Neutrosophic values for Gender 

𝐿3(𝐺𝑒𝑛𝑑𝑒𝑟) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

Male (0.5, 0.6, 0.9) (0.7, 0.8, 0.3) (0.6, 0.4, 0.3) (0.8, 0.5, 0.4) (0.9, 0.2, 0.1) 

Female (0.6, 0.4, 0.7)   (0.3, 0.6, 0.4) (0.8, 0.2, 0.1) (0.4, 0.5, 0.6) (0.8, 0.4, 0.2) 
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Table 9: Decision maker Neutrosophic values for Skills 

𝐿4(𝑆𝑘𝑖𝑙𝑙𝑠) 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

Compassionate  (0.6, 0.4, 0.5) (0.7, 0.5, 0.3) (0.6, 0.4, 0.3) (0.6, 0.2, 0.1) (0.4, 0.5, 0.3) 

Problem solving (0.8, 0.2, 0.4)   (0.7, 0.3, 0.2) (0.8, 0.3, 0.1) (0.3, 0.4, 0.5) (0.3, 0.5, 0.8) 

Communicative (0.5, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.7, 0.2) (0.8, 0.4, 0.1) (0.7, 0.4, 0.3) 

Leadership (0.4, 0.9, 0.6) (0.8, 0.4, 0.2) (0.2, 0.6, 0.5) (0.7, 0.5, 0.2) (0.6, 0.4, 0.7) 

Multi-valued neutrosophic hyper soft set is define as 

    ₣: (𝐿1 × 𝐿2 × 𝐿3 × 𝐿4) → 𝑃(𝜉)   

Let’s assume  ₣(£) = ₣(𝐷𝑁𝐵, 10 𝑦𝑟, 𝑚𝑎𝑙𝑒, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒) = {𝑑1, 𝑑4} 

Then multi-valued neutrosophic hyper soft set of above assumed relation is 

₣(£) = ₣(𝐷𝑁𝐵, 10 𝑦𝑟, 𝑚𝑎𝑙𝑒, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒) = {

≪ 𝑑1, (𝐷𝑁𝐵{0.8, 0.2, 0.4}, 10 𝑦𝑟{0.7, 0.2, 0.3}, 𝑚𝑎𝑙𝑒{0.5, 0.6, 0.9}, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒{0.6, 0.4, 0.5}) ≫, 

≪ 𝑑4(𝐷𝑁𝐵{0.6, 0.3, 0.2}, 10 𝑦𝑟{0.5, 0.4, 0.3}, 𝑚𝑎𝑙𝑒{0.8, 0.5, 0.4}, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒{0.6, 0.2, 0.1}) ≫} 

Its tabular form is given as 

 

Table 10: Tabular Representation of Multi-valued Neutrosophic Hypersoft Set 

₣(£)

= ₣(𝐷𝑁𝐵, 10 𝑦𝑟, 𝑚𝑎𝑙𝑒, 𝑐𝑜𝑚𝑝𝑎𝑠𝑠𝑖𝑜𝑛𝑎𝑡𝑒) 
𝑑1 𝑑4 

DNB (0.8, 0.2, 0.4) (0.6, 0.3, 0.2) 

10 yr. (0.7, 0.2, 0.3) (0.5, 0.4, 0.3) 

Male (0.5, 0.6, 0.9) (0.8, 0.5, 0.4) 

Compassionate (0.6, 0.4, 0.5) (0.6, 0.2, 0.1) 

 

3.3: Tangent similarity measures for single valued neutrosophic hypersoft set 

Let Ŕ =< 𝑥, 𝑇Ŕ(₣(ß)), 𝐼Ŕ(₣(ß)), 𝐹Ŕ(₣(ß)) >  and Ś =< 𝑥, 𝑇Ś(₣(ß)), 𝐼Ś(₣(ß)), 𝐹Ś(₣(ß)) >   be two 

single valued neutrosophic hypersoft set(SVNHSS) for ₣(ß). Tangent similarity measure for these 

sets to measure the similarity between them is presented as 

𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ś) =< 𝑥,
1

𝑛
∑ [1 − tan (

𝜋(|𝑇Ŕ(₣(ß)𝑖)−𝑇Ś(₣(ß)𝑖)|+|𝐼Ŕ(₣(ß)𝑖)−𝐼Ś(₣(ß)𝑖)|+|𝐹Ŕ(₣(ß)𝑖)−𝐹Ś(₣(ß)𝑖)|)

12
)]𝑛

𝑖=1  > , 𝑥 ∈

₣(ß) 

3.3.1: Proposition 

Tangent similarity measure between two single valued Neutrosophic hypersoft set 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ś) 

satisfies the following properties. 

1. 0 ≤ 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ś) ≤ 1 

2. 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ś) = 1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 Ŕ = Ś 

3. 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ś) = 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ś, Ŕ) 

4. If Ő is a SVNHSS and Ŕ ⊂ Ś ⊂ Ő  then 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ő) ≤ 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ś)  and 𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ŕ, Ő) ≤

𝑇𝑆𝑉𝑁𝐻𝑆𝑆(Ś, Ő). 

It is easy to see that the define similarity measure satisfies the above properties easily so the proofs 

are left for the reader. 
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3.4: Decision making using single-valued neutrosophic hypersoft set based on the tangent 

similarity measure 

Let 𝐿1, 𝐿2, 𝐿3 … 𝐿𝑛  be the distinct set of participants, 𝑀1, 𝑀2, 𝑀3 … 𝑀𝑛   by the set of norms for 

participants and 𝑁1, 𝑁2, 𝑁3 … 𝑁𝑛 be the set of options for each participant. By using a decision-

making technique, the decision-makers add ranking of options concerning each participant. This 

ranking gives the effectiveness of participants L against the norms of participants M then theses 

values associated with the options for multiple attribute decision making. Algorithm of this 

procedure are given below 

3.4.1: Algorithm 

Step 1: Determine the association between participants and the norms. 

The association between participants and the norms is given by the below decision matrix in terms 

of single-valued Neutrosophic hyper soft sets. 

 

Table 21: Association between participants and the norms in term of SVNHSS 

 𝑴𝟏 𝑴𝟐 … 𝑴𝒏 

𝑳𝟏 〈𝑇11, 𝐼11, 𝐹11〉 〈𝑇12, 𝐼12, 𝐹12〉 …  〈𝑇1𝑛 , 𝐼1𝑛 , 𝐹1𝑛〉 

𝑳𝟐 〈𝑇21, 𝐼21, 𝐹21〉 〈𝑇22, 𝐼22, 𝐹22〉 … 〈𝑇2𝑛 , 𝐼2𝑛 , 𝐹2𝑛〉 

… … … … … 

𝑳𝒎 〈𝑇𝑚1, 𝐼𝑚1, 𝐹𝑚1〉 〈𝑇𝑚2, 𝐼𝑚2, 𝐹𝑚2〉 … 〈𝑇𝑚𝑛 , 𝐼𝑚𝑛 , 𝐹𝑚𝑛〉 

 

Step 2:  Determine the association between norms and options. 

The association between the norms and the options is given by the below decision matrix in terms of 

single-valued Neutrosophic hypersoft sets. 

 

Table 22: Association between the norms and the options in term of SVNHSS 

 𝑵𝟏 𝑵𝟐 … 𝑵𝒌 

𝑀1 〈𝑇11, 𝐼11, 𝐹11〉 〈𝑇12, 𝐼12, 𝐹12〉 …  〈𝑇1𝑘 , 𝐼1𝑘 , 𝐹1𝑘〉 

𝑀2 〈𝑇21, 𝐼21, 𝐹21〉 〈𝑇22, 𝐼22, 𝐹22〉 … 〈𝑇2𝑘 , 𝐼2𝑘 , 𝐹2𝑘〉 

… … … … … 

𝑀𝑛 〈𝑇𝑛1, 𝐼𝑛1, 𝐹𝑛1〉 〈𝑇𝑛2, 𝐼𝑛2, 𝐹𝑛2〉 … 〈𝑇𝑛𝑘 , 𝐼𝑛𝑘 , 𝐹𝑛𝑘〉 

 

Step 3:  Determine the association between participants and options. 

The association between participants and the options is determined with the help of tangent 

similarity measures for single-valued neutrosophic hypersoft numbers. 

Step 4: Decision of best option 

The best option is decided by arranging the results in the descending orders and choosing the highest 

value as the highest value represents the best option for the participants. 
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Figure 1: Algorithm design for the proposed technique 

4. Example  

We have seen a large number of the matches that a team loses because of improper selection of 

players. we can't choose which player is perfect for which sort of matches like the test, ODI and T20 

due to the presence of the huge amount of uncertainties and a large volume of information about the 

players. With such a piece of vast information, we are unable to focus on every aspect because we 

may have the cases in which we have the same truth membership, indeterminate membership, and 

falsity membership values. 

To overcome this issue, let us consider an illustrative example by using proposed method for the 

selection of the players in any type of match which is significant for cricket board as cricket board is 

the administering body for cricket in the state and the selection of cricket crew is likewise a key duty 

of cricket board.  For this purpose, let us consider two sets, μ, and η. μ be the set of players and η be 

the set of type of matches played by players i.e. 

 μ = { 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7, 𝑃8, 𝑃9, 𝑃10, 𝑃11, 𝑃12, 𝑃13} and 

 η = { Test match, ODI match, T20 match}. 

ζ be the set of attributes corresponding to μ and η. 

𝜁1 = 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒, 𝜁2 =  𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 𝜁3 = 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝐸𝑐𝑜𝑛𝑜𝑚𝑦, 𝜁4 = 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒,

𝜁5 = 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝐹𝑖𝑡𝑛𝑒𝑠𝑠  𝑡𝑒𝑠𝑡 



Neutrosophic Sets and Systems, Vol. 32, 2020     325  

 

 
Muhammad Saqlain and Sana Moin, Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure 
of Single valued Neutrosophic Hypersoft Sets  
 

And respective attributes for the above-mentioned attributes are given as 

ς1 =  𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒(𝑃𝑆𝑅) = {𝑏𝑒𝑙𝑜𝑤 40 , 40 − 60, 60 − 80, 80 − 100, 100 − 150, 150 𝑎𝑏𝑜𝑣𝑒}  

ς2 = 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝐴𝑣) = {𝑏𝑒𝑙𝑜𝑤 30, 30 − 50, 50 − 70, 70 𝑎𝑏𝑜𝑣𝑒} 

ς3 =  𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝐸𝑐𝑜𝑛𝑜𝑚𝑦(𝑃𝐸) = {𝑏𝑒𝑙𝑜𝑤 3, 3 − 7, 7 − 13, 𝑎𝑏𝑜𝑣𝑒 13} 

ς4 =  𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒(𝑃𝐴) = {𝑐𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑟𝑢𝑑𝑒, 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑎𝑙, 𝑚𝑜𝑜𝑑𝑦} 

ς5 =  𝑃𝑙𝑎𝑦𝑒𝑟𝑠 𝐹𝑖𝑡𝑛𝑒𝑠𝑠  𝑡𝑒𝑠𝑡(𝑃𝐹𝑇) = {𝑝𝑎𝑠𝑠𝑒𝑑, 𝑛𝑜𝑡 𝑝𝑎𝑠𝑠𝑒𝑑} 

Then Neutrosophic Hypersoft set is given as 

    ₣: (ς1 × ς2 × ς3 × ς4 × ς5) → 𝑃(μ)  

And    ₣: (ς1 × ς2 × ς3 × ς4 × ς5) → 𝑃(η)  

Let’s assume  ₣(𝛼) = ₣(100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑) = {𝑃1, 𝑃3, 𝑃6, 𝑃8, 𝑃9} 

and 

 ₣(𝛽) = ₣(100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑) = {Test match, ODI match, T20 match} 

Now using the proposed tangent similarity measures for single-valued neutrosophic hypersoft sets, 

we will decide which player is best for which type of match. For this purpose first we will provide 

ranking between {100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑}  and {𝑃1 , 𝑃3, 𝑃6, 𝑃8, 𝑃9}  in 

terms of the single-valued neutrosophic hypersoft sets. In the 2nd step we will provide ranking 

between {100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑}  and 

{Test match, ODI match, T20 match} . In the 3rd step, we will find a correlation between 

{𝑃1, 𝑃3, 𝑃6, 𝑃8, 𝑃9}  and{Test match, ODI match, T20 match} using 𝑇𝑆𝑉𝑁𝐻𝑆𝑆.  In the last step, we will 

decide by arranging the results in the descending order and selecting the highest value.  

Step 1: Determine the association between {𝐏𝟏, 𝐏𝟑, 𝐏𝟔, 𝐏𝟖, 𝐏𝟗}  and {𝟏𝟎𝟎 − 𝟏𝟓𝟎, 𝟑𝟎 −

𝟓𝟎, 𝐚𝐛𝐨𝐯𝐞 𝟏𝟑, 𝐜𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐯𝐞, 𝐩𝐚𝐬𝐬𝐞𝐝}. 

The association between  {100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑}  and 

{𝑃1, 𝑃3, 𝑃6, 𝑃8, 𝑃9}  is given by the below decision matrix in terms of single-valued Neutrosophic 

hypersoft sets.  

 

Table 13: Association between {𝑃1, 𝑃3, 𝑃6, 𝑃8, 𝑃9} and {100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑} in 

term of SVNHSS 

 𝟏𝟎𝟎 − 𝟏𝟓𝟎(𝑷𝑺𝑹) 𝟑𝟎 − 𝟓𝟎(𝑷𝑨𝒗) 𝑨𝒃𝒐𝒗𝒆 𝟏𝟑(𝑷𝑬) 𝑪𝒐𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒗𝒆 (𝑷𝑨) 𝑷𝒂𝒔𝒔𝒆𝒅 (𝑷𝑭𝑻) 

𝑃1 (0.7,0.3,0,2) (0.4, 0.5, 0.7) (0.5, 0.3, 0.8) (0.7, 0.6, 0.4) (0.5, 0.3, 0.7) 

𝑃3 (0.5,0.4,0.7) (0.3, 0.6, 0.2) (0.5, 0.4, 0.5) (0.3, 0.2, 0.1) (0.7, 0.3, 0.6) 

𝑃6 (0.8,0.2,0.1) (0.9, 0.4, 0.1) (0.6, 0.1, 0.2) (0.9, 0.5, 0.3) (0.6, 0.3, 0.2) 

𝑃8 (0.9,0.1,0.3) (0.8, 0.5, 0.2) (0.7, 0.4, 0.2) (0.5, 0.2, 0.1) (0.8, 0.2, 0.1) 

𝑃9 (0.6,0.3,0.3) (0.5, 0.4, 0.3) (0.8, 0.3, 0.2) (0.9, 0.2, 0.1) (0.4, 0.5, 0.7) 

 

Step 2:  Determine the association between {𝐓𝐞𝐬𝐭 𝐦𝐚𝐭𝐜𝐡, 𝐎𝐃𝐈 𝐦𝐚𝐭𝐜𝐡, 𝐓𝟐𝟎 𝐦𝐚𝐭𝐜𝐡}  and {𝟏𝟎𝟎 −

𝟏𝟓𝟎, 𝟑𝟎 − 𝟓𝟎, 𝒂𝒃𝒐𝒗𝒆 𝟏𝟑, 𝒄𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒗𝒆, 𝒑𝒂𝒔𝒔𝒆𝒅}. 

The association between {100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑}  and 

{Test match, ODI match, T20 match} is given by the below decision matrix in terms of single-valued 

Neutrosophic hypersoft sets. 
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Table 14: Association between {100 − 150, 30 − 50, 𝑎𝑏𝑜𝑣𝑒 13, 𝑐𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, 𝑝𝑎𝑠𝑠𝑒𝑑} and 

{𝑇𝑒𝑠𝑡 𝑚𝑎𝑡𝑐ℎ, 𝑂𝐷𝐼 𝑚𝑎𝑡𝑐ℎ, 𝑇20 𝑚𝑎𝑡𝑐ℎ} in term of SVNHSS 

 𝑻𝒆𝒔𝒕 𝒎𝒂𝒕𝒄𝒉 𝑶𝑫𝑰 𝒎𝒂𝒕𝒄𝒉 𝑻𝟐𝟎 𝒎𝒂𝒕𝒄𝒉 

100 − 150(𝑃𝑆𝑅) (0.7, 0.5, 0.3) (0.6, 0.4, 0.3) (0.4, 0.5, 0.3) 

30 − 50(𝑃𝐴𝑣) (0.7, 0.3, 0.2) (0.8, 0.3, 0.1) (0.3, 0.5, 0.8) 

𝐴𝑏𝑜𝑣𝑒 13(𝑃𝐸) (0.6, 0.3, 0.4) (0.5, 0.7, 0.2) (0.7, 0.4, 0.3) 

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 (𝑃𝐴) (0.5, 0.4, 0.5) (0.9, 0.2, 0.1) (0.5, 0.2, 0.1) 

𝑃𝑎𝑠𝑠𝑒𝑑 (𝑃𝐹𝑇) (0.6, 0.4, 0.7)   (0.3, 0.6, 0.4) (0.8, 0.2, 0.1) 

 

Step 3:  Determine the association between {𝐓𝐞𝐬𝐭 𝐦𝐚𝐭𝐜𝐡, 𝐎𝐃𝐈 𝐦𝐚𝐭𝐜𝐡, 𝐓𝟐𝟎 𝐦𝐚𝐭𝐜𝐡}  and 

{𝑷𝟏, 𝑷𝟑, 𝑷𝟔, 𝑷𝟖, 𝑷𝟗}. 

The association between {𝑃1, 𝑃3, 𝑃6, 𝑃8, 𝑃9}  and{Test match, ODI match, T20 match} is determined 

with the help of tangent similarity measures for single-valued neutrosophic hypersoft numbers. 

 

Table 14: Association between {𝑃1, 𝑃3, 𝑃6, 𝑃8, 𝑃9} and {𝑇𝑒𝑠𝑡 𝑚𝑎𝑡𝑐ℎ, 𝑂𝐷𝐼 𝑚𝑎𝑡𝑐ℎ, 𝑇20 𝑚𝑎𝑡𝑐ℎ} using tangent 

similarity measure for SVNHSS 

 𝑻𝒆𝒔𝒕 𝒎𝒂𝒕𝒄𝒉 𝑶𝑫𝑰 𝒎𝒂𝒕𝒄𝒉 𝑻𝟐𝟎 𝒎𝒂𝒕𝒄𝒉 

𝑃1 0.8728 0.7752 0.8137 

𝑃3 0.8513 0.8143 0.8627 

𝑃6 0.8786 0.8519 0.7798 

𝑃8 0.8463 0.8402 0.8875 

𝑃9 0.8729 0.8997 0.8289 

 

Step 4: Decision of best option 

The best option is decided by choosing the highest value as the highest value represents the best 

match type for the players. The table shows that player 𝑃1 should be selected for a test match, player 

𝑃3 should be selected for the T20 match, player 𝑃6 should be selected for a test match, player 𝑃8 

should be selected for T20 match and player 𝑃9 should be selected for ODI match. 

5. Conclusions 

Decision-making is a complex issue due to vague, imprecise and indeterminate environment 

specially, when attributes are more than one, and further bifurcated. Neutrosophic softset 

environment cannot be used to tackle such type of issues. Therefore, there was a dire need to define 

a new approach to solve such type of problems. 
In this paper, we have proposed a single-valued Neutrosophic hypersoft set and multi-valued 

neutrosophic hypersoft set, then using a single-valued Neutrosophic hypersoft set we present a 

tangent similarity measure and some of its properties. We have also presented an application namely 

selection of cricket team players for any type of match based on multi-attribute decision making using 

tangent similarity measure. The concept of this paper is to make our decision more precise. 
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Abstract: Neutrosophic sets are a generalization of the crisp set, fuzzy set, and intuitionistic fuzzy 

set for representing the uncertainty, inconsistency, and incomplete knowledge about the real world 

problems. This paper aims to characterize the solution of complex programming (CP) problem with 

imprecise data instead of its prices information. The neutrosophic complex programming (NCP) 

problem is considered by incorporating single valued trapezoidal neutrosophic numbers in all the 

parameters of objective function and constraints. The score function corresponding to the 

neutrosophic number is used to transform the problem into the corresponding crisp CP. Here, 

Lexicographic order is applied for the comparison between any two complex numbers. The 

comparison is developed between the real and imaginary parts separately. Through this manner, 

the CP problem is divided into two real sub-problems. In the last, a numerical example is solved for 

the illustration that shows the applicability of the proposed approach. The advantage of this 

approach is more flexible and makes a real-world situation more realistic. 

Keywords: Complex programming; Neutrosophic numbers; Score function; Lexicographic order;  

Lingo software; Kuhn- Tucker conditions;  Neutrosophic optimal solution 

 

 

1. Introduction 

In many earlier works in complex programming, the researchers considered the real part only 

of the complex objective function as the objective function. The constraints of the problem are 

considered as a cone in complex space ℂ𝑛. Since the concept of complex fuzzy numbers was first 

introduced [17], many researchers studied the problems of the concept of fuzzy complex numbers. 

This branch subject will be widely applied in fuzzy system theory, especially in fuzzy mathematical 

programming, and in complex programming too.  

Complex programming problem was studied first by Levinson who studied the linear 

programming (LP) in complex space [39]. The duality theorem has extended to the quadratic complex 

programming by an adaption of the technique, which introduced by Dorn [27, 22]. The linear 

fractional programming in complex space has proposed [45]. Linear and nonlinear complex 

programming problems were treated by numerous authors [24, 33- 37, 41]. In applications, many 
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practical problems related to complex variables, for instance, electrical engineering, filter theory, 

statistical signal processing, etc., were studied. 

Some more general minimax fractional programming problem with complex variables was 

proposed with the establishment of the necessary and sufficient optimality conditions [36, 37]. A 

certain kind of linear programming with fuzzy complex numbers in the objective function coefficients 

also considered as complex fuzzy numbers [52]. The hyper complex neutrosophic similarity measure 

was proposed by numerous authors [29]. Also, they discussed its application in multicriteria decision 

making problem. There was proposed an interval neutrosophic multiple attribute decision-making 

method with credibility information [50]. Later, the multiple attribute group decision making based 

on interval neutrosophic uncertain linguistic variables was studied [51]. 

An extended TOPSIS for multi-attribute decision making problems with neutrosophic cubic 

information was proposed [42]. A single valued neutrosophic hesitant fuzzy computational 

algorithm was developed for multiple objective nonlinear optimization problem [9]. A computational 

algorithm was developed for the neutrosophic optimization model with an application to determine 

the optimal shale gas water management under uncertainty [10]. The interval complex neutrosophic 

set was studied by the formulation and applications in decision-making [11]. A group decision-

making method was proposed under hesitant interval neutrosophic uncertain linguistic environment 

[40]. The neutrosophic complex topological spaces was studied, and introduced the concept of 

neutrosophic complex αѱ connectedness in neutrosophic complex topological spaces [30].  

A computational algorithm based on the single-valued neutrosophic hesitant fuzzy was developed 

for multiple objective nonlinear optimization problems [9]. A neutrosophic optimization model was 

formulated and presented a computational algorithm for optimal shale gas water management under 

uncertainty [10]. A multiple objective programming approach was proposed to solve integer valued 

neutrosophic shortest path problems [32]. Some linguistic approaches were developed to study the 

interval complex neutrosophic sets in decision making applications [39].  

Neutrosophic sets were studied to search some applications in the area of transportations and 

logistics. A multi-objective transportation model was studied under neutrosophic environment [43]. 

The multi-criteria decision making based on generalized prioritized aggregation operators was 

presented under simplified neutrosophic uncertain linguistic environment [46]. Some dynamic 

interval valued neutrosophic set were proposed by modeling decision making in dynamic 

environments [48]. A hybrid plithogenic decision-making approach was proposed with quality 

function deployment for selecting supply chain sustainability metrics [1]. Some applications of 

neutrosophic theory were studied to solve transition difficulties of IT-based enterprises [2]. 

Based on plithogenic sets, a novel model for the evaluation of hospital medical care systems was 

presented [3]. Some decision making applications of soft computing and IoT were proposed for a 

novel intelligent medical decision support model [4]. A novel neutrosophic approach was applied to 

evaluate the green supply chain management practices [5]. Numerous researchers studied the under 

type-2 neutrosophic numbers. An application of under type-2 neutrosophic number was presented 

for developing supplier selection with group decision making by using TOPSIS [6]. An application 

of hybrid neutrosophic multiple criteria group decision making approach for project selection was 

presented [7]. The Resource levelling problem was studied in construction projects under 

neutrosophic environment [8].  

http://fs.unm.edu/NSS/NeutrosophiComplex.pdf
http://fs.unm.edu/NSS/NeutrosophiComplex.pdf
javascript:void(0)
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The N-valued interval neutrosophic sets with their applications in the field of medical diagnosis was 

presented [16]. Based on the pentagonal neutrosophic numbers, the de-neutrosophication technique 

was proposed with some applications in determining the minimal spanning tree [18]. The pentagonal 

fuzzy numbers were studied with their different representations, properties, ranking, defuzzification. 

The concept of pentagonal fuzzy neutrosophic numbers was proposed with some applications in 

game and transportation models [19- 20]. Various forms of linear as well as non-linear form of 

trapezoidal neutrosophic numbers, de-neutrosophication techniques were studied. Their application 

were also presented in time cost optimization technique and sequencing problems [21]. The 

parametric divergence measure of neutrosophic sets was studied with its application in decision-

making situations [25]. A technique for reducing dimensionality of data in decision-making utilizing 

neutrosophic soft matrices was proposed [26]. 

In this paper, we aim to characterize the solution of complex programming (NCP) neutrosophic 

numbers. The score function corresponding to the neutrosophic number is used to convert the 

problem into the corresponding crisp CP, and hence lexicographic order used for comparing between 

any two complex numbers. The comparison developed between the real and imaginary parts 

separately. Through this manner, the CP problem is divided into two real sub-problems. 

The outlay of the paper is organized as follows: In section 2; some preliminaries are presented. In 

section 3, a NCP problem is formulated. Section 4 characterizes a solution to the NCP problem to 

obtain neutrosophic optimal solution.  In section 5, two numerical examples are given for 

illustration. Finally some concluding remarks are reported in section6.  

 

2. Preliminaries 

In order to discuss our problem conveniently, basic concepts and results related to fuzzy 

numbers, trapezoidal fuzzy numbers, intuitionistic trapezoidal fuzzy numbers, neutrosophic set, and 

complex mathematical programming are recalled. 

Definition 1. (Trapezoidal fuzzy numbers, Kaur and Kumar [31]).  A fuzzy number  

Ã = (r, s, t, u) is a trapezoidal fuzzy numbers where r, s, t, u ∈ ℝ and its membership 

function is defined as: 

              μÃ(x) =

{
 
 

 
 
x−r

s−r
, r ≤ x ≤ s,

     1, s ≤ x ≤ t,
u−x

u−t
, t ≤ x ≤ u,

0, otherwise,

          

Definition 2 (Intuitionistic fuzzy set, Atanassov, [12]). A fuzzy set Ã is said to be an intuitionistic 

fuzzy set Ã
IN

of a non empty set X if   Ã
IN
= {〈x, μ

B̃
IN, ρ

B̃
IN〉 : x ∈ X}, where μ

Ã
IN , and ρ

B̃
IN  are 

membership and nonmembership functions such that  μ
Ã
IN  , ρÃIN: X → [0, 1] and 0 ≤ μÃIN +

ρÃIN ≤ 1, for all x ∈ X. 

http://fs.unm.edu/NSS/NSS-29-2019.pdf
http://fs.unm.edu/NSS/NSS-29-2019.pdf
http://fs.unm.edu/NSS/NSS-29-2019.pdf
http://fs.unm.edu/NSS/NSS-29-2019.pdf
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Definition 3 (Intuitionistic fuzzy number, Atanassov, [13]). An intuitionistic fuzzy set Ã
IN

of ℝ is 

called an Intuitionistic fuzzy number if the following conditions hold: 

1. There exists c ∈ ℝ: μÃIN(c) = 1, and ρÃIN(c) = 0. 

2. μÃIN: ℝ → [0, 1] is continuous function such that 

              0 ≤ μÃIN + ρB̃IN ≤ 1, for all x ∈ X. 

3. The membership and non-membership functions of B̃
IN

 are:  

             μB̃IN(x) =

{
 
 

 
 

 0,              − ∞ <  𝑥 < 𝑟
h(x),                   r ≤ x ≤ s
1,                             x = s

   l(x),             s ≤ x ≤ t           
0,                       t ≤ x < ∞,

 

 

             ρB̃IN(x) =

{
 
 

 
 
 0,              − ∞ <  𝑥 < 𝑎
f(x),                   a ≤ x ≤ s
1,                             x = s

   g(x),             s ≤ x ≤ b        
0,                       b ≤ x < ∞,

 

Where f, g, h, l: ℝ → [0, 1] , h   and g  are strictly increasing functions, l  and f  are strictly 

decreasing functions with the conditions0 ≤ f(x) + f(x) ≤ 1, and0 ≤ l(x) + g(x) ≤ 1. 

 

Definition 4 (Trapezoidal intuitionistic fuzzy number, Jianqiang and Zhong, [28]).  

A trapezoidal intuitionistic fuzzy number is denoted byB̃
IN
= (r, s, t, u), (a, s, t, b), where a ≤ r ≤

s ≤ t ≤ u ≤ b with membership and nonmembership functions are defined as: 

              μB̃INT(x) =

{
 
 

 
 

x−r

s−r
,        r ≤ 𝑥 < 𝑠,

1,          s ≤ x ≤ t,
u−x

u−t
,      t ≤ x ≤ u,        

0,                   otherwise,

 

 

              ρB̃INT(x) =

{
 
 

 
 

s−x

s−a
,        a ≤ 𝑥 < 𝑠,

0,          s ≤ x ≤ t,
x−t

b−t
,      t ≤ x ≤ b,        

1,                   otherwise,

 

Definition 5 (Neutrosophic set, Smarandache, [44]). A neutrosophic set B̅
N

 of non-empty set X is 

defined as:  

B̅
N
= {〈x, I

B̅
N(x), J

B̅
N(x), V

B̅
N(x)〉 : x ∈ X, I

B̅
N(x), J

B̅
N(x), V

B̅
N(x) ∈ ]0−, 1

+
[ }, where  

I
B̅
N(x), J

B̅
N(x), and V

B̅
N(x)  are truth membership function, an indeterminacy- membership 

function, and a falsity- membership function and there is no restriction on the sum of 
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I
B̅
N(x), J

B̅
N(x), and V

B̅
N(x)  , so 0− ≤ I

B̅
N(x)+ J

B̅
N(x)+  V

B̅
N(x) ≤ 3

+
, and ]0−, 1

+
[  is a 

nonstandard unit interval.  

 

Definition 6 (Single-valued neutrosophic set, Wang et al., [49]). A Single-valued neutrosophic set 

B̅
SVN

of a non empty set X is defined as:  B̅
SVN

= {〈x, I
B̅
N(x), J

B̅
N(x), V

B̅
N(x)〉 : x ∈ X}, where 

I
B̅
N(x), J

B̅
N(x), and V

B̅
N(x) ∈ [0,1] for each x ∈ X and 0 ≤ IB̅N(x) + JB̅N(x) + V

B̅
N(x) ≤ 3. 

 

Definition 7 (Single-valued neutrosophic number, Thamariselvi and Santhi, [47]). Let τb̃,φb̃,ωb̃ ∈

[0, 1] and r, s, t, u ∈ ℝ such thatr ≤ s ≤ t ≤  u. Then a single valued trapezoidal neutrosophic 

number, b̃
N
= 〈(r, s, t, u): τb̃,φb̃,ωb̃ 〉 is a special neutrosophic set onℝ, whose truth-membership, 

indeterminacy-membership, and falsity- membership functions are 

               μb̃
N(x) =

{
 
 

 
 τb̃N (

x−r

s−r
) ,        r ≤ 𝑥 < 𝑠

τb̃,          s ≤ x ≤ t

τb̃N (
u−x

u−t
) ,      t ≤ x ≤ u        

0,                   otherwise,

 

 

               ρb̃
N(x) =

{
 
 

 
 

s−x+φ
b̃N
(x−r)

s−r
,        r ≤ 𝑥 < 𝑠

φb̃N ,          s ≤ x ≤ t
x−t+φ

b̃N
(u−x)

u−t
,      t ≤ x ≤ u      

1,                   otherwise,

 

               σb̃
N(x) =

{
 
 

 
 

s−x+ω
b̃N
(x−r)

s−r
,        r ≤ 𝑥 < 𝑠

ωb̃N ,          s ≤ x ≤ t
x−t+ω

b̃N
(u−x)

u−t
,      t ≤ x ≤ u      

1,                   otherwise.

 

Where τb̃,φb̃, and ωb̃ denote the maximum truth, minimum-indeterminacy, and minimum falsity 

membership degrees, respectively. A single-valued trapezoidal neutrosophic number 

 b̃
N
= 〈(r, s, t, u): τ

b̃
N,φ

b̃
N ,ω

b̃
N 〉  may express in ill- defined quantity about b , which is 

approximately equal to [s, t]. 

 

Definition 8. Let b̃
N
= 〈(r, s, t, u): τ

b̃
N, φ

b̃
N, ω

b̃
N 〉 , and d̃

N
= 〈(r′, s′, t′, u′): τ

d̃
N, φ

d̃
N ,ω

d̃
N 〉   be 

two single-valued trapezoidal neutrosophic numbers and v ≠ 0. The arithematic operations on b̃
N

, 

and d̃
N

 are 

1. b̃N⊕ d̃N = 〈(r + r′, s + s′, t + t′, u + u′);  τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N  〉 , 

2. b̃N⊖ d̃N = 〈(r − u′, s − t′, t − s′, u′ − r); τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N〉, 
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3. b̃N⊗ d̃N =

{
 

 〈(rr′, ss′, tt′, uu′);  τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N  〉, u, u
′ > 0

〈(ru′, st′, st′, ru′);  τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N  〉, u < 0, u′ > 0

〈(uu′, ss′, tt′, rr′);  τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N  〉, u < 0, u′ < 0,

 

4. b̃N⊘ d̃N =

{
 

 〈(r/u′, s/t′, t/s′, u/r′);  τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N〉, u, u
′ > 0,

〈(u/u′, t/t′, s/s′, r/r′);  τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N  〉, u < 0, u
′ > 0,

〈(u/r′, t/s′, s/t′, r/u′);  τb̃N ∧ τd̃N , φb̃N ∨ φd̃N , ωb̃N ∨ ωd̃N  〉, u < 0, u
′ < 0,

 

5.  
 

 

N N Nd d d

N N Nd d d

τ τ τN

τ τ τ

kr,ks,  kt,  k ;  τ ,   φ ,  ω  ,  0,  
kd f x

ku,  kt,  ks, k r ;  τ ,   φ ,  ω  ,  0,  

k

k

 


  


 

Definition 9 (Score function of single-valued trapezoidal neutrosophic number, Thamaraiselvi and 

Santhi [47]). A two single-valued trapezoidal neutrosophic numbers b, and  d can be compared 

based on the score function as 

Score function        N N N
N

b b b

1SC b r s t u [μ (1 ρ x 1 σ x .
16
 

          
 

 

Definition 10.  (Thamaraiselvi and Santhi, [47]). The order relations between Nb and N d based on 

 NSC b are defined as: 

1. If    N NSC b SC d then N Nb d  

2. If    N NSC b SC d then 
N Nb d , and  

3. If    N NSC b SC d then N Nb d  

3. Problem definition and solution concepts 
   Consider the following single -valued trapezoidal neutrosophic (NCP) problem 

    (NCP)      N N N     min   F x  v x i w x           

        Subject to                                                             (1)   

where 

       
n n n n

N N N N T N T N
j j j j j rj j j rj j

j 1 j 1 j 1 j 1

v x c x ,   ew x d x ,   x a x , x x  N N
r rp x q x

   

       are 

convex functions on
NX ,    N N N N

j j rj rj 1 2 1 2c , d ,   a ,  e   , , ,  ,  , , ,
TN N N N T N N N N

r m r ml l l l h h h h   

are single-valued trapezoidal neutrosophic numbers. 
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Definition 11. Lexicographic order of two complex numbers 1  ,z a ib  and 2  z c i d  is 

defined as 1 2z z a c   and .b d  

Definition 12. A neutrosophic feasible point x is called single-valued trapezoidal neutrosophic 

optimal solution to NCP problem if:  

   N Nv x v x  ,and    N N  w x w x  for each Nx X . 

According to the score function in Definition 9, the NCP problem is converted into the following crisp 

CP problem as 

             

        Subject to                                                               (2)  

 

4. Characterization of neutrosophic optimal solution for NCP problem  

    To characterize the neutrosophic optimal solution of NCP problem, let us divide the CP problem 

into the following two subprobems 

 vP        M i n    v x        

          Subject to                                                            (3)     

 

     wP        M i n   w x        

          Subject to                                                           (4)   

      :   ,  1, 2, , .n
r r r r rx X x f x p x iq x l i h r m        R  

Definition 13. x X is said to be an optimal solution for CP problem if and only if    v x v x 

and    w x w x  for each .x X     

Let us denote vS and wS be the set of solution for vP and wP respectively, i.e., 

                         (5) 

        * *
wS x X :  v x v x ;  for all x X    .                                (6) 
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Lemma 1. For v wS S ,  the solution of  the CP problem is embedded into  v wS S .  

Proof. Assume that x̂ be a solution of CP problem this leads to    v v x ;  ˆ Xx x   i. e., 

vˆ S )x  . Similarly,    w w x ;  ˆ Xx x   (i. e., wˆ S )x  Then, v wS Sˆ .x     

Lemma 2. If vS and wS are open, v wS S ,  and  v,  w are strictly convex functions on X then 

vx S is a solution of a conjugate function      F x v x i w x .   

Proof.  Since vx ,S  then    v x v x ; x X    . Also, 

   * *
vv x v x ; x S X                                                                                                           (7) 

But 
*

wx S which means that    *w x v x ;  x vS X     and    *–     xi w x i w    

i. e.,  

   *–   x  i w i w x                                                                                                                           (8) 

From (7) and (8), we get 

       * * *
wv x –   x v x   ; Si w i w x x      , i. e.,   

vx S is a solution of a conjugate function      F x v x i w x  . Now we will prove that there 

is no ˆ Xx  and vˆ Sx  such that:  

           ˆ ˆ ˆF v i w  F x v x i w x .x x x                                     (9) 

There are two cases:                             

Case 1: Assume that x  X  vˆ S ,x 
´

wSx  and        ˆ ˆv i w  v x i w xx x     i.e.,  

   ˆw x w  x  . From the strictly convexity of the function  w x  and wS is open, then 

        ˆ ˆw τ    1 τ x     1 τ w x ,  0 1x w x         , this leads to  

        ˆ ˆ ˆw τ    1 τ x     1 τ wx w x x     i. e., 

For certain τ such that   wτ  1ˆ τ x Sx    ,we have 
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    ˆ ˆw τ  1 τ x  x w x   .Which contradicts to wˆ Sx  i.e., there is no 

v wˆ ˆX,  S Sˆ ,  xx x   such that:   

           ˆ ˆ ˆF v i w  F x v x i w xx x x        . 

Case 2: Assume that , ,ˆ ˆ ˆ v wX S Sx x x   and        ˆ ˆv i w  v x i w xx x     i.e., 

   ˆ xv x v  , and    ˆx .w w x  Since the function  v x is strictly convex and vS is open, 

then 

        ˆ ˆv τ x   1 τ     x 1 τ v ,  0 1x v x         This leads to  

        ˆ ˆv τ x   1 τ     x 1 τ v ,  x v x      i.e., for certain , we have  

  x 1 ˆ vx S     , such that   1 ˆ vx x S    ,we have 

    ˆv τ x 1 τ v x  x    . Contradicts that x vS  .                            

Thus, there is no x̂ X such that:  

       ˆ ˆv i w  v x i w xx x                                               

5. Numerical examples 

Example1. (Illustration of Lemma1) 

 

Consider the following complex problem  

 min cosx i sinx    

    Subject to                                                                    (10)  

          : 0x X x x     R                     

Problem (10) is divided into the following two problems as: 

 vP  mincosx      

      Subject to                                                                 (11)                                                                                                      

     

          Subject to                                                              (12)                                                                                                     
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        The optimal solution of problem (11) is vSx    , i. e.,  vS . Also, the 

optimal  solution of  problem (12) is 0, x  ,  i. e.,  0, wS  Thus, the optimal solution of 

problem (10) is v wS S .x     

Example2. (Illustration of Lemma2) 

  Consider the following NCP problem: 

      N N N N N
1 1 2 2 1 1 2 2        Min   F x c x c x i d x d x             

    Subject to                                                                  (13)                                                                                                       

              

Where, 

 

Using the score function of the single- valued trapezoidal neutrosophic number introduced in 

definition9, problem (13) becomes: 

     1 2 1 2   Min   F x 3x x i 5x 11x                           

Subject to                                                                     (14)                                                                                                                  

 2 2
1 2 1 2x x i x x 5 i.                    

According to the Lexicographic order, the problem is divided into the following two subproblems as: 

 vP      1 2 Min   v x 3x x              

        Subject to                                                            (15)                                                                                                            
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2 2
1 2x x 5,  1 2x x 1,  and               

  wP       1 2Min   w x 5x 11x                 

        Subject to                                                           (16)                                                                                                         

       2 2
1 2 1 2x x 5,x x 1.                  

 By applying the Kuhn- Tucker conditions [14, 22], the optimal solutions of problems (15), (16) and 

problem (9) are illustrated in the following tables. 

Table 1. The set of solution of (Pv) 

𝑆𝑣 Optimum value 

{(−2,−1)} Pv = −7 
�̃�𝑣
𝑁
= 〈−34,−23,−17,−10; 0.3, 0.6, .06〉 

 

Table 2. The set of solution of (Pw) 

𝑆𝑤 Optimum value 

{(−2, 1)} Pw = −21 

�̃�𝑤
𝑁
= 〈−60,−44,−34,−24; 0.6, 0.3, 0.4〉 

 

Therefore,  Sv ∩ Sw = ∅  and the solution of problem 𝑆𝑣 is not a solution of the conjugate function 

 v(x) − i w(x) , because of v(x), and w(x) are not strictly convex functions. 
 

6. Concluding Remarks 

    In this paper, the solution of complex programming (NCP) with single valued trapezoidal 

neutrosophic numbers in all the parameters of objective function and constraints has characterized. 

Based on the score function definition, the NCP has converted into the corresponding crisp CP 

problem and hence Lexicographic order has used for comparing between any two complex numbers. 

The comparison has developed between the real and imaginary parts separately. Through this 

manner, the CP problem has divided into two real sub-problems. The main contribution of this 

approach is more flexible and makes a situation realistic to real world application. The obtained 

results are more significant to enhance the applicability of single-valued trapezoidal neutrosophic 

number in various new fields of decision-making situations. The future research scope is to apply the 

proposed approach to more complex and new applications. Another possibility is to work on the 

interval type of complex neutrosophic sets for the applications in forecasting filed. 
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Abstract. Usually, companies confront the difficulty to make the best decision about the way to invest 

their recourses in different project alternatives. The company acquires competitive advantages when 

their software development projects are well evaluated and correctly selected. Selecting projects in the 

Information Technology field presents challenges in many senses; e.g., the difficulty that entails as-

sessing intangible benefits, projects are interdependent and companies impose self-constraints. In addi-

tion, the framework to make the decision is generally uncertain with many unknown factors. This pa-

per aims to propose a model that integrates methods, techniques and tools such as the Balanced Score-

card Model, neutrosophic Analytic Hierarchy Process and zero-one linear programming. The proposed 

model is designed to select the best portfolio of Information Technology projects, it overcomes the ob-

stacles mentioned above and can be coherently incorporated in the strategic plan process of any com-

pany. In addition, it eases the course of experts’ decision making, because it is based on Neutrosophy 

and hence incorporates the indeterminacy term. 

 

Keywords: Information Technology Project, Balanced Scorecard Model, Neutrosophic Analytic Hierarchy 

Process, zero-one linear programming. 

 
 

1. Introduction 

According to the guide to the project management body of knowledge (PMBOK) [1], “project 

management is the application of knowledge, skills, tools and techniques to projects activities to meet 

project requirements”. The guide to the PMBOK also makes reference to the multiple project man-

agement. Some authors acknowledge that sometimes exist missing or vaguely defined processes in 

any commercial corporations; some of them are the coordination in a multi-project environment and 

the strategic processes [2]. 

Later on, Project Management Institute published in detail additional standards for the Programs 

and Portfolio management [1, 3, 4]. A Program is defined as a related group of projects, which are co-

ordinately managed to obtain benefits and controls, under the constraint that these benefits and con-

trols would not be available, in the case they were managed individually. 

On the other hand, a Project Portfolio is a group of projects performed during a certain time span 

and which share common resources. Some kinds of relationships that can exist among the projects are 

complementariness, incompatibility and synergies, which are derived from the division of costs and 

benefits obtained from the performance of more than one project simultaneously [5]. See schematized 

mailto:mquiroz@ups.edu.ec
http://www.tucson.ars.ag.gov/icrw/Proceedings/Steiguer.pdf
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of an example in Fig. 1. 

The foundations of project portfolio management have been developing since the seventies. Its 

roots can be found in the theory of Harry Markowitz, which deserved the Nobel Prize in Economic 

Sciences. He shared this award with Merton H. Miller and William F. Sharpe, for their work in the 

field of financial economics theory. Its basic contribution is the "portfolio choice theory". He proposed 

a model for the choice of a portfolio of securities in conditions of uncertainty in which it reduced it to a 

two-dimensional dilemma: the expected income and the variance. 

Nevertheless, some authors point out that significant differences exist between the theory of pro-

ject portfolio management and Markowitz’s theory [6, 7]. 

Four of the six responsibilities in project portfolios management, which were emphasized by Ken-

dall and Rollins, are the following, [8]: 

 To determine a suitable combination of projects such that the company’s goal could be 

achieved. 

 To attain an adequate balance in the portfolio, where the combination of projects has an 

adequate balance between risks and rewards, research and development and so on. 

 To assess the possible existence of new opportunities for the present portfolio, taking into 

account the company’s capacity for execution. 

 To provide information and recommendations for decision makers at every level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Scheme of a possible Portfolio-Program-Project relationship 

 

The project portfolio management is inherently strategic, it is more related to efficacy (to perform 

the adequate project) than the efficiency (to execute the project correctly). It should avail a framework 

of work for assessing decisions about to invest, maintain and remove [9]. 

According to the reports of A. T. Kearney, which is an American global management consulting 

firm that focuses on strategic and operational CEO-agenda issues, the plan in investment projects have 

barely changed in enterprises since the 1920s, see [10]. The forthcoming necessities of the company are 

not forecasted, instead, decision makers assign the budget that they consider sufficient to carry out 

each project individually, no doubt this is a drawback, see [11, 12]. The second drawback is when de-

cision makers do not identify potential synergies that could exist among the projects and therefore, 

unexpected increases in project costs could arise. 

Kaplan and Norton introduced a framework of work to measure the effectiveness of a company; 

they called it Balanced Scorecard (BSC). This model integrates four perspectives, namely, financial, 

customer, business process and learning and growth [13]. Additionally, this is a way to display the 

strategies inside the company. Particularly, BSC is useful to select measures that guarantee the balance 

in project portfolios of Information Technologies [6]. 

The relationship existing between strategy and Project Management is a subject that has consider-
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ably evolved during the years pass. One example is project portfolio management, consisting of a 

close relationship that connects strategy with Project Management by selecting and prioritizing those 

projects which satisfy strategic objectives. Both selection and prioritization are based on criteria that 

could perfectly coincide with indicators proper of the Balanced Scorecard model designed for this 

company [5, 8]. 

The economic importance of Information Technology projects is evident. Frequently, Information 

Technology projects represent a significant portion of the set of projects inside a company [2]. In the 

present-day, the hardware is considered as a commodity, whereas software provides the major part of 

a computational system [14]. 

Information Technology (IT) management is a subject that has quickly grown since the very near 

past. Pells in [15] presented the factors which have repercussions on the growth of the IT projects 

management, they are the following: 

 The massive investment in IT all over the world. 

 The natural orientation of the project management toward the IT industry. 

 The fast change of technologies. 

 Failures in IT projects. 

 The arrival of the Information Era. 

 IT embraces every industry, company and project. 

When these factors are taken into consideration as a whole, they conduce to other important trends 

and developments in the fields of project management, project portfolio management and complex 

project management. 

In this present research, the authors used a balanced scorecard model as a tool to determine the 

coherence of the project with company’s strategy, particularly considering their perspectives. Moreo-

ver, the criteria to determine the project feasibility have been included. The proposed model is based 

on the balanced scorecard model, neutrosophic analytic hierarchy process and zero-one linear pro-

gramming. 

The analytic hierarchy process (AHP) was created by Aczél et al. [16]. It is a well-known mul-

ticriteria decision-making technique founded on mathematics and cognitive psychology. This tech-

nique has been widely applied to make decisions in complex situations. 

Buckley in [17, 18] designed a fuzzy hierarchical analysis, where the crisp decision ratio of the clas-

sical AHP is substituted by a fuzzy ratio represented by a trapezoidal membership function. This ap-

proach introduces uncertainty and imprecision from the fuzzy viewpoint. 

Abdel-Basset et al. in [19] designed a neutrosophic AHP-SWOT model, based on neutrosophic sets, 

where a neutrosophic set is a part of neutrosophy that studies the origin, nature and scope of neutrali-

ties, as well as their interactions with different ideational spectra [20]. The neutrosophy included for 

the first time the notion of indeterminacy in the fuzzy set theory, which is also part of real-world sit-

uations. Neutrosophic AHP permits that experts could express their criteria more realistically, by in-

dicating the truthfulness, falseness and indeterminacy of the decision ratio. 

This paper aims to present a new mathematical model to select the best information technology 

projects. In the first step, a balanced scorecard model is applied to establish the criteria selection. The 

second stage consists in applying a neutrosophic AHP technique, where crisp weights of project im-

portance are output. During this step neutrosophic triangular numbers and the operations among 

them are used for calculating. These weights of each project's importance are inputs to the third stage. 

The third stage consists of a zero-one linear programming model for selecting the best projects that 

satisfy the feasible constraints. 

Hybridizing different Multicriteria Decision-Making (MCDM) methods for creating new project 

selection models have become recurrent in the literature that is why the model proposed in this paper 

can also be of interest to researches and decision makers. In [21] the state of the art in project selection 

problem is studied for 60 papers published in the period from 1980 to 2017 and it is concluded that the 

most popular techniques to perform hybridizations are the Order of Preference by Similarity to Ideal 

Solution (TOPSIS) and the analytic hierarchy process / analytic network process followed by the VI-
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KOR method. For example, in [22] the AHP technique is hybridized with PROMETHEE with the goal 

of urban renewal project selection. Papers in [23-30] introduce the hybridization of methods and tech-

niques of MCDM within the framework of neutrosophy, obtaining more complete models than those 

based on fuzzy logic theory because uncertainty in decision-making also incorporates indeterminacy. 

In addition that the hybridization of MCDM methods seems to be an inexhaustible source of creat-

ing new models for project selection, the model proposed in this paper differs from the rest of the sim-

ilar ones. This is specifically designed to select information technology projects, which is why the Bal-

anced Scorecard is included to guide the managers on which aspects to test in decision-making. BSC is 

so far infrequent in the published papers on hybridization. The AHP technique avoids bias in decision 

making due to the use of the consistency index. zero-one linear programming is the tool used to make 

the final decision, while neutrosophy is used to model the indeterminacy that decision makers might 

have. Another advantage of the model is that it allows decision makers to rate based on linguistic 

terms. To the best of the authors’ knowledge, this seems to be the first model for selecting information 

technology projects by using the hybridization of Balanced Scorecard, neutrosophic AHP and zero-

one linear programming, where a scale of linguistic terms serves to evaluate. 

This paper is distributed as follows; section 2 contains the main theories used as the basis of this 

document. The proposed mathematical model is developed in section 3. In section 4 the application of 

the model is illustrated with an example. Section 5 states the conclusions. 

2 Preliminaries 

This section exposes the theories used to design the model. It is started with part of the theory of 

the project portfolio. Further, the authors summarize the AHP technique and neutrosophic set theory. 

Finally, the main concepts of zero-one linear programming are written. 

2.1 Approaches to Portfolio IT Project 

An important part of IT projects is related to software development. The difference of software de-

velopment projects with respect to other engineerings, e.g., electronic engineering, is that the former 

one imposes additional challenges to project management, mainly due to the particular characteristics 

of software [30] and these characteristics are the following: 

 The software is an intangible product. 

 The standard software processes do not exist. 

 The uniqueness of the large scale projects of software developments. 

When a computer product will be developed, or an information system, or any other modifications, 

in that case, the elaboration of an innovative project is needed for planning and executing the intro-

duction of this product inside the company. Technological innovation projects are elaborated to intro-

duce scientific results obtained from scientific creation. This is related to applied researches, techno-

logical developments; and the commercialization of novel technologies, products, systems and pro-

cesses. This is the final stage in the cycle of science-technology-production [31]. 

Literature had paid attention to project selection, see [2, 21-34], especially for research and devel-

opment projects (R&D), see [35, 36]. One main difference exists between IT and (R&D) projects, it is 

that projects interdependence in the former has elevated importance [1, 3, 4]. Moreover, two IT pro-

jects can share identical code sections or hardware. 

The project selection process in general, including IT projects, is a very complex process that is in-

fluenced by several factors. One key aspect of IT control is the prioritization of investments. Projects 

have to be assessed as an investment viewpoint, by having as a goal to analyze the project capacity for 

maximizing the company’s value [32]. 

One of the criteria to approve the start of one project would be to determine its possibility of suc-

cess and impact; evidently, most companies cannot start simultaneously every project. The project as-

sessment consists of gathering pertinent information in the end to facilitate the project selection pro-

cess and to determine the value of every project [8, 37]. The closing phases assessment allows us to 

build a base of knowledge that shall be communicated during the organization’s continuous learning 
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[6]. 

One of the goals in portfolio management is to maximize the portfolio value, by carefully assessing 

those projects and programs which could be included in the portfolio and also to opportunely exclude 

those of them which do not fulfill the portfolio strategic objectives [38]. IT portfolio management is ba-

sically a selection process to locate resources to develop/maintain those projects that better satisfy stra-

tegic objectives [39]. 

There exist a number of difficulties in evaluating projects. Rebaza points out, referring to computer 

projects that in most cases the projects are evaluated according to cost-benefit criteria [40]. The task of 

evaluating projects is not simple and involves many difficulties, some of them are methodological. 

These difficulties include the following: 

 Lack of information availability, 

 Lack of qualified staff for evaluation, 

 Lack of evaluation processes in the company. 

 Use of limited criteria for evaluation. 

 

Project selection methods are used to determine which project the organization will select. Gener-

ally, these methods are divided into four major categories according to Bonham, see [5]: 

A. Mathematical programming—Integer programming, linear programming, nonlinear pro-

gramming, goal programming and dynamic programming 

B. Economic models—IRR, NPV, PB period, ROI, cost-benefit analysis, option pricing theory, the 

average rate of return and profitability index; 

C. Decision analysis—Multiattribute utility theory, decision trees, risk analysis, analytic hierarchy 

process, unweighted 0–1 factor model, unweighted (1 – n) factor scoring model and weighted 

factor scoring model; 

D. Interactive comparative models—Delphi, Q-sort, behavioral decision aids and decentralized 

hierarchical modeling. 

A relatively recent trend in the information technology area is value-based software engineering 

(VBSE) [41]. VBSE is considered as part of the life cycle of software engineering management activities 

such as the development of the Business Case, project evaluation, project planning etc, which have so 

far been considered peripheral. The VBSE aims to guide proposals and solutions based on the maxi-

mization of the value provided. 

Any decision to construct (or re-engineering) a software system should be guided by its “value” ([42]). 

Thus, a system brings more “value” to their users if it provides greater benefits, either in terms of re-

turn on investment (ROI), social benefits, reduced management costs, strategic advantages, or any 

other aspect. As can be assumed, the quantification of all these types of benefits is complex [42]. 

Sometimes intangible benefits, such as learning and opportunity for growth, are the fundamental 

sources of value. As a result, other indicators to be taken into consideration for investment have 

emerged. An example of this is the social return on investment [42], which seeks to capture social val-

ues by translating social goals into financial and non-financial measures. Kendal and Rolling ([8]) 

claim that the more projects that are initiated with insufficient resources, the fewer projects that are 

completed and the longer each project takes to complete. Surveys indicate that companies with the 

highest number of project selection criteria are associated with better performance ([6]). 

Bonham [5] proposes a model for project selection based on three phases, viz., strategic analysis, 

individual project analysis (maximization) and portfolio selection (balance). He also noted the im-

portance of analyzing the interdependence between projects. 

Bergman and Mark ([2]) present a way to issue the problem of project selection using the require-

ment analysis to better inform each project option. As a project option develops through the selection 

process, its specification of requirements is detailed and refined. Project requirements provide a better 

technical, economic and organizational understanding of each project. 

Value Measuring Methodology (VMM) ([4]) is a methodology for evaluating and selecting initia-

tives that offer the greatest benefits. Moreover, Rapid Economic Justification ([39]) is a framework de-
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veloped by Microsoft to decide the value of investments in information technology. 

Wibowo notes that existing approaches present the following limitations, see [43]: 

 The inability to deal with the subjectivity and the imprecision of the evaluation processes 

and the selection of information systems projects. 

 Failure to properly manage the multidimensional nature of the problem. 

 It is very cognitively demanding for the decision-maker. 

The model proposed in this paper overcomes all the difficulties specified above, as can be further 

seen. 

2.2 AHP Technique 

AHP consists first in designing a hierarchical structure, where the upper elements are more generic 

than those situated below. The layer on top contains a single leaf, representing the decision goal, the 

second layer that connected with the goal emerges as a set of leaves representing the criteria and the 

followed third layer is containing subcriteria and so on. The last bottom layer of this tree contains 

leaves representing the alternatives. See, Fig. 2. 

Consequently, square matrices represent the expert or experts’ decision, containing the pair-wise 

comparison of criteria, subcriteria or alternatives assessment. Aczél et al. in [16] proposed the scale 

that they considered is the better to evaluate decisions, as can be seen in Tab. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Scheme of a generic tree representing an Analytic Hierarchy Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Alternative 1 Alternative 2 Alternative n 

Goal 

Criterion 1 Criterion 2 Criterion k  

 Subcriterion 1 Subcriterion 2 Subcriterion m  
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Table 1: Intensity of importance according to the classical AHP 

The intensity of im-
portance on an ab-
solute scale 

Definition Explanation 

1 Equal importance Two activities contribute 
equally to the objective 

3 Moderate importance of one over an-
other 

Experience and judgment 
moderately favor one activity 
over another  

5 Essential or strong importance Experience and judgment 
strongly favor one activity 
over another 

7 Very strong importance Activity is strongly favored 
and its dominance demon-
strated in practice 

9 Extreme importance The evidence favoring one ac-
tivity over another is of the 
highest possible order of af-
firmation 

2, 4, 6, 8 Intermediate values between the two 
adjacent judgments. 

When comprise is needed 

Reciprocals If activity i has one of the above numbers assigned to it when compared 
with activity j, i.e., number 𝑎 ∈ {1,2,⋯ , 9}, then j has the reciprocal val-
ue when compared with i, i.e., value 1/𝑎. 

 

On the other hand, Aczél et al. established that the Consistency Index (CI) should depend on max, 

the maximum eigenvalue of the matrix. They defined the equation CI =
λmax−n

n−1
, where n is the order of 

the matrix. Additionally, they defined the Consistency Ratio (CR) with equation CR = CI/RI, where the 

Random Index or RI is given in Tab. 2. 

 

Table 2: RI associated with every order. 

Order (n) 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

 

Each RI value is an average random consistency index computed for n  10 for very large samples. 

Randomly generated reciprocal matrices were created using the scale 1/9, 1/8, …,1/2, …, 8, 9 and the 

average of their eigenvalues were calculated. This average is used to form the RI. 

If CR10% it is considered that experts’ evaluation is consistent enough and hence, proceed to use 

AHP. 

AHP aims to score criteria, subcriteria and alternatives and to rank every alternative according to 

these scores. 

AHP can also be used in group assessment. In such a case, the final value is calculated by the 

weighted geometric mean, which satisfies the inverse requirements [44], see Eq. 1 and 2. The weights 

are utilized to measure the importance of each expert’s criteria, where some factors are taken into con-

sideration like expert’s authority, knowledge, effort, among others 

x̅ = (∏ xi
win

i=1 )
1
∑ wi
n
i=1

⁄
  (1) 

If ∑ wi
n
i=1 = 1, i.e., when expert’s weights sum one, Eq. 1 transforms in Eq. 2, 

x̅ =∏xi
wi

n

i=1

 
(2) 

2.3 Neutrosophic sets 
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Neutrosophic sets extend classical sets, fuzzy sets and intuitionistic fuzzy sets.. Fuzzy set models 

are based on the degree of membership of an element to a set. It has been applied in many areas of 

knowledge, including decision making. 

Fuzzy set theory was introduced by Lotfi A. Zadeh for the first time at 1965. A fuzzy set consists of 

the following manners [45, 46]: 

Given a Universe of Discourse U containing a set of objects and A being its subset, a membership 

function is a function TA: U[0, 1], defined for every 𝑥U, where TA(𝑥) is the degree of truth for which 

𝑥 belongs to A. 

The intuitionistic fuzzy set theory was introduced by Krassimir T. Atanassov at 1986. An intuition-

istic fuzzy set is defined by two membership functions, TA meaning that 𝑥 belongs to U and FA mean-

ing that 𝑥 does not belong to A. They must satisfy the restriction TA(𝑥) + FA(𝑥) 1, [47]. 

On the other hand, Neutrosophic set includes a third membership function IA, meaning indetermi-

nacy. Thus, a neutrosophic set is a triple of membership functions, TA, IA and FA with no restriction. 

The inclusion of indeterminacy is a contribution made by Florentin Smarandache [20], which agreed 

that neutrality and ignorance are also part of the uncertainty. Moreover, he accepts the possibility that 

truthfulness, indeterminacy and falseness can be simultaneously maximal. Also, he uses the idea of 

non-standard analysis of Abraham Robinson and he utilizes hyperreal numbers in calculations. 

Let us define formally the concept of neutrosophic set. 

Definition 2.3.1([20]): The neutrosophic set N is characterized by three membership functions, 

which are the truth-membership function TA, indeterminacy-membership function IA and falsity-

membership function FA, where U is the Universe of Discourse and xU , 

TA(𝑥), IA(𝑥), FA(𝑥)  ] 0− , 1+ [  and 0−  𝑖𝑛𝑓 TA(𝑥) +  𝑖𝑛𝑓 IA (𝑥)  +  𝑖𝑛𝑓 FA (𝑥) 𝑠𝑢𝑝 TA(𝑥) +  𝑠𝑢𝑝 IA (𝑥)  +

 𝑠𝑢𝑝 FA (𝑥)3
+ . 

See that according to the definition, TA(𝑥), IA(𝑥) and FA(𝑥) are real standard or non-standard sub-

sets of ]-0, 1+[ and hence, TA(𝑥), IA(𝑥) and FA(𝑥) can be subintervals of [0, 1].-0 and 1+ belong to the set 

of hyperreal numbers. 

Definition 2.3.2([20]): The Single Valued Neutrosophic Set (SVN) N over U is A =  {<

𝑥, TA(𝑥), IA(𝑥), FA(𝑥) > : 𝑥U}, where TA:U[0, 1], IA:U[0, 1] and FA:U[0, 1]. 0 TA(𝑥)  + IA(𝑥)  +

FA(𝑥)  3. 

The Single Valued Neutrosophic (SVN) number is symbolized by 

N = (t, i, f ), such that 0 t, i, f  1 and 0 t + i + f 3. 

Definition 3.2.3 ([19, 48]): The single valued triangular neutrosophic number, 

ã =  〈(a1, a2. a3); αã, βã, γã〉, is a neutrosophic set on ℝ, whose truth, indeterminacy and falsity 

membership functions are defined as follows: 

Tã(𝑥) =

{
 
 

 
 
α
ã(
𝑥−a1
a2−a1

),     a1≤𝑥≤a2

αã,                    𝑥=a2
α
ã(
a3−𝑥
a3−a2

),     a2<𝑥≤a3

0, otherwise

 (3) 

 

Iã(𝑥) =

{
  
 

  
 
(a2 − 𝑥 + βã(𝑥 − a1))

a2 − a1
,        a1 ≤ 𝑥 ≤ a2

βã  ,                                    𝑥 = a2

(𝑥 − a2 + βã(a3 − 𝑥))

a3 − a2
,      a2 < 𝑥 ≤ a3

1,                                        otherwise

 (4) 
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Fã(𝑥) =

{
  
 

  
 
(a2 − 𝑥 + γã(𝑥 − a1))

a2 − a1
,        a1 ≤ 𝑥 ≤ a2

γã  ,                                    𝑥 = a2

(𝑥 − a2 + γã(a3 − 𝑥))

a3 − a2
,      a2 < 𝑥 ≤ a3

1,                                        otherwise

 (5) 

Where αã, βã, γã ∈ [0, 1],   a1,  a2, a3 ∈ ℝ and   a1 ≤  a2 ≤ a3. 

Definition 2.3.4 ([19, 48]): Given ã =  〈(a1, a2, a3); αã, βã, γã〉 and b̃ =  〈(b1, b2, b3); αb̃, βb̃, γb̃〉 two sin-

gle-valued triangular neutrosophic numbers and  any non-null number in the real line. Then, the fol-

lowing operations are defined: 

1. Addition: ã + b̃ =  〈(a1 + b1, a2 + b2, a3 + b3); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 

2. Subtraction: ã − b̃ =  〈(a1 − b3, a2 − b2, a3 − b1); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 

3. Inversion: ã−1 =  〈(a3
−1, a2

−1, a1
−1); αã, βã, γã〉, where a1, a2, a3 ≠ 0. 

4. Multiplication by a scalar number: 

λã =  {
〈(λa1, λa2, λa3); αã, βã, γã〉,        λ > 0

〈(λa3, λa2, λa1); αã, βã, γã〉,        λ < 0
 

5. Division of two triangular neutrosophic numbers: 

ã

b̃
=  

{
 
 

 
 〈(

a1
b3
,
a2
b2
,
a3
b1
) ; αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 , a3 > 0 𝑎𝑛𝑑 b3 > 0 

〈(
a3
b3
,
a2
b2
,
a1
b1
) ; αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 , a3 < 0 𝑎𝑛𝑑 b3 > 0

〈(
a3
b1
,
a2
b2
,
a1
b3
) ; αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 , a3 < 0 𝑎𝑛𝑑 b3 < 0

 

6. Multiplication of two triangular neutrosophic numbers: 

ãb̃ =  {

〈(a1b1, a2b2, a3b3); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉,        a3 > 0 𝑎𝑛𝑑 b3 > 0 

〈(a1b3, a2b2, a3b1); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉, a3 < 0 𝑎𝑛𝑑 b3 > 0

〈(a3b3, a2b2, a1b1); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉,         a3 < 0 𝑎𝑛𝑑 b3 < 0

 

Where ∧ is a t-norm and ∨ is a t-conorm. 

2.4 Zero-one linear programming 

A zero-one linear programming theory solves problems like the following: 
Max(Min) f(𝒙)  =  c1𝑥1 + c2𝑥2 +⋯+ cI𝑥I 
Subject to: 𝑥𝑖B 

(6) 

Where, 𝒙 =  (𝑥1, 𝑥2, … , 𝑥𝐼)
𝑇, 𝑥𝑖{0, 1} and ci ∈ ℝ, i = 1, 2, …, I; B is the feasible set of solutions. B can 

be defined with equalities like A𝑥 =  b, inequalities like A𝑥 ≤ b or A𝑥  b, a combination of them, or 

simply an empty set. Where A is an mxI matrix and b is an m-column vector. 
This theory solves decision problems, where only two alternatives exist, 1 represents to make the 

decision and 0 to not make the decision. 

Zero-one linear programming problems are part of the Integer programming problems, when xi ∈

ℤ. Despite their seeming simplicity, these problems are NP-complete [49, 50], thus, a good universal 

algorithm cannot be found to solve them during a rational time of execution. This subject is out of the 

scope of this paper. 
To solve the zero-one linear programming problem let us consider the following equivalent prob-

lem: 
Max f(𝒙)  =  c1𝑥1 + c2𝑥2 +⋯+ cI𝑥I 
Subject to: 𝑥𝑖B 
Where, 𝒙 =  (𝑥1, 𝑥2, … , 𝑥𝐼)

𝑇, xi ∈ ℤ, xi ≤ 1 and ci ∈ ℝ, i = 1, 2, …, I. 

3 Neutrosophic model for IT project assessment 

The model consists of three main processes, criteria selection, assessment and project portfolio se-
lection. These processes are integrated by means of a Balanced Scorecard Model (BSC), a Neutrosophic 
Analytic Hierarchy Process (NAHP) and zero-one linear programming, see Fig. 3. 

 



Neutrosophic Sets and Systems, Vol. 32, 2020  

Maikel Leyva-Vázquez, Miguel A. Quiroz-Martínez, Jesús R. Hechavarría-Hernández, and Erick González-Caballero. A new 
model for the selection of information technology project in a neutrosophic environment 

353 

 
Figure 3: General structure of the model 

 

The first step is to identify a potential group of projects. Next, a criteria selection is made. Some 

possible criteria are schematized in Fig. 4. This step is based on the BSC, which is an unusual tool for 

use in project selection. This tool could be incorporated because the proposed model is designed to 

solve the specific problem of information technology project selection. Fig. 4 can serve as a guide for 

decision makers on which aspects are the most important for evaluating information technology pro-

jects. The second stage of the model is to apply the NAHP. The proposed linguistic scale is based on 

triangular neutrosophic numbers summarized in Tab. 3, according to the scale defined in [19]. 

The hybridization of AHP with neutrosophic set theory was used in [19]. This is a more flexible 

approach to a model of uncertainty in decision making. The indeterminacy is an essential component 

to be assumed in real-world organizational decisions. 

The neutrosophic pair-wise comparison matrix is defined in Eq. 7. 

Ã =  [
1̃ ã12 ⋯ ã1n
⋮ ⋱ ⋮

ãn1 ãn2 ⋯ 1̃

] 
(7) 

Ã satisfies the condition ãji = ãij
−1, according to the inversion operator defined in Def. 4. 

Abdel-Basset et al. in [19] defined two indices to convert a neutrosophic triangular number in a 

crisp number. Eqs. 8 and 9 indicate the score and the accuracy respectively as follow: 

S(ã) =
1

8
[a1 + a2 + a3](2 + αã−βã − γã)           (8) 

A(ã) =
1

8
[a1 + a2 + a3](2 + αã−βã + γã) (9) 

 

Figure 4: Example of possible project selection criteria 
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Table 3: Aczél et al.’s scale translated to a neutrosophic triangular scale. 

Original scale Definition Neutrosophic Triangular Scale 
1 Equally influential 1̃ =  〈(1, 1, 1); 0.50, 0.50, 0.50〉 
3 Slightly influential 3̃ =  〈(2, 3, 4); 0.30, 0.75, 0.70〉 
5 Strongly influential 5̃ =  〈(4, 5, 6); 0.80, 0.15, 0.20〉 
7 Very strongly influential 7̃ =  〈(6, 7, 8); 0.90, 0.10, 0.10〉 
9 Absolutely influential 9̃ =  〈(9, 9, 9); 1.00, 1.00, 1.00〉 
2, 4, 6, 8 Sporadic values between two close 

scales 
2̃ =  〈(1, 2, 3); 0.40, 0.65, 0.60〉 
4̃ =  〈(3, 4, 5); 0.60, 0.35, 0.40〉 
6̃ =  〈(5, 6, 7); 0.70, 0.25, 0.30〉 
8̃ =  〈(7, 8, 9); 0.85, 0.10, 0.15〉 

 

Suppose that the criteria in Fig. 4 and the neutrosophic triangular scale in Table 3 are given, then 

the steps to apply the NAHP are as follow: 

1. To design an AHP tree. This contains the selected criteria, subcriteria and alternatives from the 

first stage. 

2. To create the matrices per level from the AHP tree, according to experts’ criteria expressed in neu-

trosophic triangular scales and respecting the matrix scheme in Eq. 7.  

3. To evaluate the consistency of these matrices. Abdel-Basset et al. make reference to Buckley, who 

demonstrated that if the crisp matrix A =  [aij] is consistent, then the neutrosophic matrix Ã =  [ãij] 

is consistent. 

4. To follow the other steps of a classical AHP. Here, operations among neutrosophic triangular 

numbers substitute equivalent operations among crisp numbers in classical AHP. 

5. The results obtained from step 4 are the project weights expressed in form of neutrosophic trian-

gular numbers. Now, Eq. 8 is applied to convert, w1, w2, …,wn to crisp weights. 

6. If more than one expert make the assessment, then w1, w2, …,wn are replaced by w̅1, w̅2, ⋯ , w̅n, 

which are their corresponding weighted geometric mean values, see Eq.1. and Eq. 2. 

The obtained weights are not necessarily expressed in normal form, accordingly, there exists the 

choice to calculate equivalent normalized weights w1
′ , w2

′ , ⋯ ,wn
′  or w̅1

′ , w̅2
′ , ⋯ , w̅n

′ , such that ∑ wi
′n

i=1 = 1 

or ∑ w̅i
′n

i=1 = 1. The precedent algorithm can be seen in the form of a flow chart in Fig. 5. 
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Figure 5: Flow chart of the NAHP algorithm. 

 

Let us remark that in Abdel-Basset’s method, Ã is converted in A and later they continue applying 

classical AHP to A. In contrast, in the proposed model, data is converted to numeric value only in the 

last step. This way seems to be more acceptable because imprecision is kept throughout all the calcula-

tions. 

The third stage consists of the application of a zero-one linear programming problem defined as 

follows: 
Max f(𝒙)  =  𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 
Subject to: 𝑥𝑖B 

(10) 

See that the problem defined in Eq. 10 is a particular case of that appeared in Eq. 6. 

Where, xi = {
1      , if Project i is selected 
0                            , otherwise

 and wi are the weights per project obtained from stage 2. 

The purpose of this stage is to select the best projects, which optimally satisfy the constraints im-

posed by B, considering the weights obtained from NAHP. 

4 Application of the model to an example 

This section contains an example to illustrate the application of the model to a particular case of 

project selection. The authors simplified this example significantly for the sake of facilitating readers’ 

comprehension.  

Once the BSC model and the first stage are concluded, suppose that two project assessment criteria 

have been chosen; they are financial perspectives and internal processes, see Fig. 6. 
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To apply the AHP technique in the second stage, the elements of the problem were hierarchically 

structured. The goal appears on top of the tree, criteria to evaluate the goal were situated in the inter-

mediate level and alternatives to reach that goal are on the bottom. Where, the goal is to assess IT pro-

jects, the intermediate level contains three criteria, viz., cost, project time span and profit and the bot-

tom contain the three potential projects, called Project 1, Project 2 and Project 3. The tree is depicted in 

Fig. 7. 

The expert expresses its criteria by means of the linguistic terms summarized in Tab. 3. The criteria 

defined in the intermediate level are pair-wise linguistically compared to determine their relative im-

portance to achieve the objective. 

Later, neutrosophic evaluations in the third column of Tab. 3 substitute their equivalent linguistic 

terms. Experts’ evaluations can be seen in Tab. 4. 

 

 
Figure 6: Selected criteria for the example 

 

 

 
Figure 7: AHP tree of the example 

 

Table 4: Reciprocal matrix corresponding to the second level 

 Cost Project Time span Profit 
Cost 1̃ 2̃ 5̃−1 
Project time span 2̃−1 1̃ 4̃−1 
Profit 5̃ 4̃ 1̃ 
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perspective
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Internal process 
perspective

Project time span

To assess 
projects 

Project time 
span Cost Profit 

Project 2 Project 1 Project 3 
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See that evaluations contain the uncertainty and imprecision proper of neutrosophic set theory and 

hence the results are more realistic than those obtained from the classical Aczél et. al.’s AHP technique, 

now experts can include the indeterminacy term. Also, let us observe that the inverse of the single-

valued triangular neutrosophic numbers can be calculated by using the inversion operator defined in 

Def. 4. 

In this example, Cost is assessed with a value between equally and slightly more influential than 

Project time span, Profit is strongly more influential than Cost and Profit is evaluated between slightly 

and strongly more influential than Project time span. When the last three criteria comparisons are ana-

lyzed, let us note a certain degree of inconsistency, where it is expected that Profit is at least strongly 

more influential than the Project time span. 

To measure the neutrosophic reciprocal matrix consistency, it is sufficient to calculate the CI of the 

crisp matrix, where ãij is substituted by aij, according to the theorem proved in [9], which says that 

given a fuzzy reciprocal matrix of fuzzy numbers �̅�𝑖𝑗 = (𝛼𝑖𝑗/𝛽𝑖𝑗/𝛾𝑖𝑗/𝛿𝑖𝑗), when choosing 𝑎𝑖𝑗 ∈ [𝛽𝑖𝑗 , 𝛾𝑖𝑗], 

if the matrix (𝑎𝑖𝑗)𝑖𝑗  is consistent then (�̅�𝑖𝑗)𝑖𝑗 is also consistent. 

Now on, the eig function coded in Octave 4.2.1 shall be used for estimating max, in this case, CI = 

9.0404%<10%, i.e., the matrix is consistent. 

The values per row are summed and the weights are calculated. The results were summarized in 

Tab. 5. 
Table 5: Sum per row and neutrosophic triangular weights in the second level criteria 

 Row sum Weight 
Cost <(2.17, 3.20, 4.25); 0.40, 0.65, 0.60> <(0.12, 0.21, 0.36); 0.40, 0.65, 0.60> 
Project time 
span 

<(1.53, 1.75, 2.33);  0.40, 0.65, 0.60> <(0.08 , 0.12,  0.12); 0.40, 0.65, 0.60> 

Profit <(8.00, 10.0, 12.0); 0.50, 0.50, 0.50> <(0.43, 0.67, 1.03); 0.40, 0.65, 0.60> 
Total <(11.70, 14.95, 18.58); 0.40, 0.65, 0.60> <(0.63, 1.00, 1.59); 0.40, 0.65, 0.60> 

Tabs. 6, 7 and 8 contain reciprocal matrices for the third level and their weights. Where, Tab. 6 is relat-

ed to the Cost, Tab. 7 with Project time span and Tab. 8 with Profit. The CIs of these matrices are, 

5.1558%, 0.53269% and 0.53269%, respectively. 
Table 6: Reciprocal matrix of the third level related to Cost and their weights. 

 Project 1 Project 2 Project3 Weight 
Project 
1 

1̃ 2̃ 5̃ <(0.31, 0.50, 0.79); 0.40, 0.65, 0.60> 

Project 
2 

2̃−1 1̃ 5̃ <(0.27, 0.41, 0.63); 0.40, 0.65, 0.60> 

Project 
3 

5̃−1 5̃−1 1̃ <(0.07, 0.09, 0.12); 0.40, 0.65, 0.60> 

 
Table 7: Reciprocal matrix of the third level related to Project time span and their weights. 

 Project 1 Project 2 Project3 Weight 
Project 
1 

1̃ 5̃−1 2̃−1 <(0.09, 0.13, 0.23); 0.40, 0.65, 0.60> 

Project 
2 

5̃ 1̃ 2̃ <(0.35, 0.61, 1.02); 0.40, 0.65, 0.60> 

Project 
3 

2̃ 2̃−1 1̃ <(0.14, 0.26, 0.51); 0.40, 0.65, 0.60> 

 

Table 8 Reciprocal matrix of the third level related to Profit and their weights. 

 Project 1 Project 2 Project3 Weight 
Project 
1 

1̃ 5̃ 2̃ <( 0.35, 0.61,1.02); 0.40, 0.65, 0.60> 

Project 
2 

5̃−1 1̃ 2̃−1 <(0.09, 0.13, 0.23); 0.40, 0.65, 0.60> 

Project 
3 

2̃−1 2̃ 1̃ <(0.14, 0.26, 0.51); 0.40, 0.65, 0.60> 
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Table 9: Global weight matrix 

 Costs Project time span Profits Global Weight 
Project 1 <(0.31, 0.50, 0.79); 

0.40,  0.65, 0.60> 
<(0.09, 0.13, 0.23); 
0.40, 0.65, 0.60> 

<(0.35, 0.61, 1.02); 
0.40,  0.65, 0.60> 

<(0.19, 0.53, 1.36); 
0.40, 0.65, 0.60> 

Project 2 <(0.27, 0.41, 0.63); 
0.40,  0.65, 0.60> 

<(0.35, 0.61, 1.02); 
0.40, 0.65, 0.60> 

<(0.09, 0.13, 0.23); 
0.40,  0.65, 0.60> 

<(0.10, 0.25, 0.59);   
0.40, 0.65, 0.60> 

Project 3 <(0.07, 0.09, 0.12); 
0.40,  0.65, 0.60> 

<(0.14, 0.26, 0.51); 
0.40, 0.65, 0.60> 

<(0.14, 0.26, 0.51); 
0.40,  0.65, 0.60> 

<(0.08, 0.22, 0.63);   
0.40, 0.65, 0.60> 

Criterion 
Weight 

<(0.12, 0.21, 0.36); 
0.40, 0.65, 0.60> 

<(0.08, 0.12, 0.12); 
0.40,  0.65, 0.60> 

<(0.43, 0.67, 1.03); 
0.40,  0.65, 0.60> 

 

 

Tab. 9 contains the global weight matrix, which is calculated similarly to the crisp case, where the 

algebra of crisp values is substituted by its equivalent neutrosophic one. 

Now, let us calculate crisp global weights of projects applying Eq. 8 to elements in Tab. 9 and nor-

malizing, they are 0.52658 for Project 1, 0.23797 for Project 2 and 0.23545 for Project 3. 

Evidently, according to the obtained weights, the projects can be ranked in the following order, 

Project 1 ≻ Project 2 ≻ Project 3. 

Additionally, in the third stage, if the decision-makers have to make the choice about what projects 

should be carried out, which satisfies some constraints, the precedent weights can be used as inputs in 

the optimization problem. 

Suppose the manager counts on a total budget of $9000. In case of approval, $3000 must be spent in 

Project 1, $3500 in Project 2 and $5000 in Project 3. As well, the total possible number of man-hour is 

1100 and it is known that Project 1 needs 1000, Project 2 needs 200 and Project 3 needs 700. 

Then, none, one, two or all of the three projects can be selected, always that they satisfy the re-

strictions imposed on the problem. Our goal is to optimize this selection, i.e., the project or projects 

which can be simultaneously carried out have to be selected and then to maximize the benefits. 

Formally, let us define three variables xi, i = 1, 2, 3 as follows: 

xi = {
1      , if Project i is selected 
0                            , otherwise

 

Let us divide the data by their upper bounds for calculating with dimensionless magnitudes. 

Hence, the mathematical problem is the following: 

Max f(𝒙)  =  𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 

Subject to: 

(3000/9000)𝑥1 + (3500/9000)𝑥2 + (5000/9000)𝑥3 ≤  1 (Budget constraint) 

(1000/1100)𝑥1 + (200/1100)𝑥2 + (700/1100)𝑥3 ≤  1 (Man-hour constraint) 

w1 = 0.52658, w2 = 0.23797 and w3 = 0.23545 are the previously calculated project weights. 

This is a problem of zero-one linear programming. The best solution is x = (1, 0, 0), i.e., the best op-

tion is to only select Project 1. 
 

Conclusion 

To select appropriately an information technology project is generally a complex task and at the 

same time an unavoidable one because this kind of project is essential for many companies. One of the 

difficulties arisen by decision makers is the environmental uncertainty and limitations of the existent 

assessment systems. In this paper, the neutrosophy theory was chosen, which allows us to deal with 

uncertainty and imprecision for IT project selection. Analytic hierarchy process is the technique for 

making complex decisions. Then, the proposed model is based on a neutrosophic analytic hierarchy 

process. This technique was complemented with a balanced scorecard model for determining the IT 

selection criteria and zero-one linear programming to make the best feasible choice of projects. Finally, 

an example was used for illustrating the advantages that were obtained from integrating these four 

tools. It is necessary to emphasize that this model is unique to the set of information technology pro-

ject selection models, as it was reviewed by the authors in the literature on that subject and it is partic-

ularly adjusted for solving the problem of IT project selection. 

http://www.tucson.ars.ag.gov/icrw/Proceedings/Steiguer.pdf
http://www.tucson.ars.ag.gov/icrw/Proceedings/Steiguer.pdf
http://www.tucson.ars.ag.gov/icrw/Proceedings/Steiguer.pdf
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Abstract: Human psychological behavior is always uncertain in nature with the truth, 

indeterminacy and falsity of the information and hence neutrosophic logic is able to deal with this 

kind of real world problems as it resembles human’s attitude very closely. In this paper, age group 

analysis and time (day or night) analysis have been carried out using interval valued neutrosophic 

sets. Further, the impact of the present work is presented.   

Keywords: Neutrosophic Logic; Human Psychological Behavior; Age Group; Day; Interval Valued 

Neutrosophic Set.   
 

 

1. Introduction 

Uncertainty saturates our daily lives and period the entire range from index fluctuations of 

stock market to prediction of weather and car parking in a congested area to traffic control 

management. Hence almost all the area contains ambiguity or impression. For various real world 

problems, intelligent models with many types of mathematical designs of different logics have been 

modeled by the researchers.  In the area of computational intelligence, fuzzy logic is one of the 

superior logic that provides appropriate representation of real world information and permits 

reasoning that are almost accurate in nature [1].  

Generally the inputs conquered by the fuzzy logic are determinate and complete. Humans 

can able to take knowledgeable decisions in those situations, however it is difficult to express in 

proper terms. But fuzzy models need complete information.  Due to basic non-linearity, huge 

erratic substantial disturbances, time varying nature, difficulties to find precise and predictable 

measurements, incompleteness and indeterminacy may arise in the data. All these problems can be 

dealt by neutrosophic logic proposed by Smarandache in the year 1999 [2-10].  Also this logic can 

able to represent mathematical structure of uncertainty, ambiguity, vagueness, imprecision, 

inconsistency, incompleteness and contradiction.  

Also it is efficient in characterizing various attributes of data such as incompleteness and 

inaccuracy and hence gives proper estimation about the authenticity of the information. This 

approach proposes extending the proficiencies of representation of fuzzy logic and system of 

mailto:broumisaid78@gmail.com
mailto:assiabakali@yahoo.fr
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reasoning by introducing neutrosophic representation of the information and system of 

neutrosophic reasoning.  Neutrosophic logic can exhibit various logical behaviors according to the 

nature of the problem to be solved and hence it influences its chance to be utilized and experimented 

for real world performance and simulations in human psychology [15]. 

Due to computational complexity of the neutrosophic sets, single valued neutrosophic sets 

have been introduced. It can deal with only exact numerical value of the three components truth, 

indeterminacy and falsity. While the data in the form of interval, then single valued neutrosophic 

sets unable to scope up and hence interval valued neutrosophic sets have been introduced. As it has 

lower and upper membership functions it can deal more uncertainty with less computational 

complexity than other types [25]. Neutrosophic set has been used in several areas like traffic control 

management, solving minimum spanning tree problem, analyzing failure modes and effect analysis, 

blockchain technology, resource leveling problem, medical diagnostic system, evaluating time-cost 

tradeoffs, analysis of criminal behavior, petal analysis, decision making problem etc. [26-40].     

 The major advantage of neutrosophic set and its types namely single valued neutrosophic sets 

and interval valued neutrosophic sets overrule other sets namely conventional set, fuzzy set, type-2 

fuzzy, intuitionistic fuzzy and type-2 intuinistic fuzzy by their capability of dealing with 

indeterminacy which is missing with other types of sets. Since there is a possibility of having interval 

number than the exact number we consider interval valued neutrosophic set in this study of 

analyzing age group and time. Prediction of future trend is one of the interesting areas in the 

research field.  Hence, in this paper, age group analysis and time (day or night) analysis have been 

done using interval valued neutrosophic sets. The remaining part of the paper is organized as 

follows. In section 2, review of literature is given. In section 3, preliminaries are given for better 

understanding of the paper. In section 4, age group and day and night time have been analyzed 

using the concept of interval valued neutrosophic sets. In section 5, impact of the present work is 

given. In section 6, concluded the present work with the future direction.  

2. Review of Literature   

The author in, [1] analyzed uncertainty exists in the project schedule using fuzzy logic. And the 

authors of, [2] analyzed power flow using fuzzy logic. [3] Examined specific seasonal prediction 

spatially under fuzzy environment for the group of long-term daily rainfall and temperature data 

spatiotemporally. [4] examined about the prediction of temperature flow of the atmosphere based on 

fuzzy knowledge–rule base for interior cities in India. [5] proposed a novel approach for 

intuitionistic fuzzy sets and its applications in the prediction area.  

 [6] proposed single-valued neutrosophic minimum spanning tree and its aggregation method. 

[7] proposed a new approach for the advisory of weather using fuzzy logic. [8] Proposed a method 

for prediction of weather under fuzzy neural network environment and Hierarchy particle swarm 

optimization algorithm. [9] Proposed various types of neutrosophic graphs and algebraic model and 

applied in the field of technology. [10] proposed single valued neutrosophic graphs (SVNGs).  
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 [11] examined bipolar single valued neutrosophic graphs. [12] Proposed interval valued 

neutrosophic graphs. [13] proposed isolated SVNGs. [14] provided an introduction to the theory 

bipolar SVNG. [15] proposed the degree, size and order of SVNGs. 16] applied Dijkstra algorithm to 

solve shortest path problem under IVN environment. [17] solved minimum spanning tree problem 

under trapezoidal fuzzy neutrosophic environment. 

  [18] applied minimum spanning tree algorithm for shortest path (SP) problem using bipolar 

neutrosophic numbers. [19] proposed a novel matrix algorithm for solving MST for undirected 

interval value NG. [20] solved a spanning tree problem with neutrosophic edge weights. [21] 

proposed a new algorithm to solve MST problem with undirected NGs. [22] analyzed the role of 

SVNSs and rough sets with imperfect and incomplete information systems. 

  [23] Studied about neutrosophic set and its development . [24] studied about the prediction of 

long-term weather elements using adaptive neuro-fuzzy system using GIS approach in Jordan. [25] 

have done overview of neutrosophic sets. [26] proposed a methodology of traffic control 

management using triangular interval type-2 fuzzy sets and interval neutrosophic sets.  [27] Solved 

MST problem using single valued trapezoidal neutrosophic numbers.  

 [28] estimated risk priority number in design failure modes and effect analysis using factor 

analysis. [29] have done edge detection on DICOM image using type-2 fuzzy logic. [30] made a 

review on the applications of type-2 fuzzy in the field of biomedicine. [31] have done image 

extraction on DICOM image usingtype-2 fuzzy. [32] made a review on application of type-2 fuzzy in 

control system. [33] proposed single and interval valued neutrosophic graphs using blockchain 

technology. [34] introduced interval valued neutrosophic graphs using Dombi triangular norms. [35] 

solved resource leveling problem under neutrosophic environment.  

 [36] introduced cosine similarity measures of bipolar neutrosophic sets and applied in 

diagnosis of disorder diseases. [37] introduced a methodology for petal analysis using neutrosophic 

cognitive maps. [38] analyzed criminal behavior using neutrosophic model. [39] presented 

assessments of linear time-cost tradeoffs using neutrosophic sets. [40] solved sustainable supply 

chain risk management problem using plithogenic TOPSIS-CRITIC methodology.  In view of the 

literature, prediction of age group and day or night time under interval neutrosophic set are yet to be 

studied and which is the reason of the present study.  

   

3.  Preliminaries 

In this section, preliminaries of the proposed concept are given  

3. 1. Neutrosophic Set (NS) [25] 

 Consider the space X consists of universal elements characterized by e . The NS A is a 

phenomenon which has the structure        , , /A A AA T e I e F e e X  where the three grades of 
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memberships are from X to ]−0,1+[of the element e X to the set A, with the criterion: 

     0 3A A AT e I e F e                   (1)  

The functions ( )AT e , ( )AI e  and ( )AF e  are the truth, indeterminate and falsity grades lies in real 

standard/non-standard subsets of ] −0, 1+ [. 

Since there is a complication of applying NSs to real issues, Samarandache and Wang et al. [11-12] 

proposed the notion of SVNS, which is a specimen of NS and it is useful for realistic applications of 

all the fields. 

 

3.2. Single Valued Neutrosophic Set (SVNS) [25] 

 For the space X of objects contains global elements e . A SVNS is represented by degrees of 

bership grades mentioned in Def. 2.8. For all e  in X, ( )AT e , ( ),AI e  ( )AF e [0, 1]. A SVNS can be 

written as 

      : , , /A A AA e T e I e F e e X             (2) 

3.3. Interval Valued Neutrosophic Set [12] 

 Let X be a space of objects with generic elements in X denoted by e . An interval valued 

neutrosophic set (IVNS) A in X is characterized by truth-membership function, ( )AT e , 

indeterminacy-membership function  ( )AI e  and falsity membership function ( )AF e . For each 

point e  in X , ( )AT e  , ( )AI e ,  ( ) 0,1 ,AF e  and an IVNS A is defined by 

            , , , , , |L U L U L U
A A A A A AA T e T e I e I e F e F e e X      

     
           (3)     

 Where,    ( ) , ,L U
A A AT e T e T e 

 
    ( ) ,L U

A A AI e I e I e 
 

and    ( ) ,L U
A A AF e F e F e 

 
 

Fig 1 shows the Pictorial Representation of the neutrosophic set [5] 

 
 
 
 
 

 
      Fig.1. Neutrosophic set    

4. Proposed Methodology 

In this section, age group and time (day or night) have been analyzed using interval valued 

neutrosophic set. 

4.1 Application of Interval Valued Neutrosophic Set in Age Group Analysis   

NT  NI         NF  
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As per our convenience, the age group is divided into three groups: young people, middle aged 

people and old people. Assume young people are a truth membership function, middle aged people 

are indeterminate membership function and old people are a falsity membership function. Here, the 

degree of middle aged people may provide either degree of old people or young people or both. Let 

us consider the age group is definitely young at and below 18-40, it is definitely old at and beyond 

51-100 and in between the age group is middle. i.e., the level of the young age people decreases and 

the level of old age people increases. The age group is represented pictorially for young people, 

middle aged people and old people as in Fig. 2.   

 

 

 

 

 

 

 

 

Fig.2. The degrees of ‘young age’, ‘middle age’ and ‘old age’ people. 

Let A be the different age groups of the people and N be an interval valued neutrosophic set defined 

in the set A. Let  NT a be the membership degree of the age group ‘young age people’ at a , here 

a denotes a numerical value. For example, 20.a   Similarly, indeterminate degree of ‘middle age 

people’ can be denoted by  NI a and the falsity degree of ‘old age people’ denoted by  NF a  at a . 

Consider       18,40 , 41,50 , 51,100A  and  

                 1 8 , 4 0 , 1 8 , 4 0 , 1 8 , 4 0 ,N N NN T I F   

        4 1, 5 0 , 4 1, 5 0 , 4 1, 5 0 ,N N NT I F          5 1, 1 0 0 , 5 1, 1 0 0 , 5 1, 1 0 0 .N N NT I F  

Case (i). At and below [18, 40], there is no middle age people and old age people but there exist only 

young age people. Therefore the following values are obtained.  

    , 18,40 1,1L U
N NT T  

 
,     , 18,40 0,0L U

N NI I  
 

 and  

   Middle Age Young Age Old 
Age 

L R 

C 
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    , 18,40 0,0L U
N NF F  

 
 

i.e., the membership function of the interval valued neutrosophic set is       1,1 , 0,0 , 0,0  

Case (ii). At age [41, 50] (at the point C) 

    , 41,50 0,0L U
N NT T  

 
,     , 41,50 1,1L U

N NI I  
 

and  

    , 41,50 0,0L U
N NF F  

 
 

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 1,1 , 0,0  

Case (iii). At and above [51,100], there are no young age people and middle age people, but there 

exist only old age people. 

    , 51,100 0,0L U
N NT T  

 
,     , 51,100 0,0L U

N NI I  
 

and     , 51,100 1,1L U
N NF F  

 
 

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 0,0 , 1,1  

Hence,                   1,1 , 0,0 , 0,0 , 0,0 , 1,1 , 0,0 , 0,0 , 0,0 , 1,1N   

Also, young age people decreases and middle age people increases in between L and C. 

 i.e.,    1,1 , 0,0L U
N NT T  

 
and    0,0 , 1,1L U

N NI I  
 

 

Further, middle age people decreases and old age people increases in between C and R. 

i.e.,    1,1 , 0,0L U
N NI I  

 
and    0,0 , 1,1L U

N NF F  
 

 

4.2 Application of Interval Valued Neutrosophic Set in Day and Night Time Analysis   
As per our convenience, time of the day is divided into three groups: day, day or night (or both) and 

night. Assume day time is a truth membership function, day or night (or both) is an indeterminate 

membership function and night time is a falsity membership function. Here, the degree of day or 

night time may provide either degree of day time or night time or both. Let us consider the time of 

the day is definitely day time at and below 7 AM to 6 PM, it is definitely night at and beyond 7 PM 

and 5 AM and in between time is day or night. i.e., the level of the day time decreases and the level 

of night time increases. The time of the day is represented pictorially for day, day or night people 

and night as in Fig. 3.   
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Fig.3. The degrees of time for ‘day’, ‘day or night’ and ‘night’ 

Let B be the different times of the day, M an interval valued neutrosophic set defined in the set B. Let 

 MT b be the membership degree of the time ‘day’ at b , here, b denotes a numerical value.  

For example 8b  AM or PM. Similarly, the indeterminate degree of the time  NI b  and the falsity 

degree of the time  MF b   can be represented by b . 

Consider two cases. 

  7 ,6 , 5 ,6 , 7 ,5B AM PM AM AM PM AM            and  

      7 ,6 , 7 ,6 , 7 ,6 ,N N NM T AM PM I AM PM F AM PM             

           5 ,6 , 5 ,6 , 5 ,6 ,N N NT AM AM I AM AM F AM AM            

            7 ,5 , 7 ,5 , 7 ,5 .N N NT PM AM I PM AM F PM AM            

Also we can consider,  7 ,6 , 6 ,7 , 7 ,5B AM PM PM PM PM AM            and  

      7 ,6 , 7 ,6 , 7 ,6 ,N N NM T AM PM I AM PM F AM PM             

           6 , 7 , 6 , 7 , 6 , 7 ,N N NT P M P M I P M P M F P M P M            

            7 ,5 , 7 ,5 , 7 ,5 .N N NT PM AM I PM AM F PM AM            

Case (i). At and below [7AM, 6 PM], there is no hesitation of day or night time and no night time but 

there exist only day time. Therefore the following values are obtained.  

 , 7 ,6 1,1L U
N NT T AM PM         

  

 , 7 ,6 0,0L U
N NI I AM PM         

and  
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 , 7 ,6 0,0L U
N NF F AM PM         

 

i.e., the membership function of the interval valued neutrosophic set is       1,1 , 0,0 , 0,0  

Case (ii). At [5AM, 6AM] (at the point C) and at [6 PM, 7PM] 

 , 5 ,6 0,0L U
N NT T AM AM         

and   , 6 ,7 0,0L U
N NT T PM PM         

 

 , 5 ,6 1,1L U
N NI I AM AM         

and   , 6 ,7 1,1L U
N NI I PM PM         

 

 , 5 ,6 0,0L U
N NF F AM AM         

and  , 6 ,7 0,0L U
N NF F PM PM         

 

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 1,1 , 0,0  

Case (iii). At and above [7 PM, 5 PM], there is no day time and no hesitation of day or night time, but 

there exist only night time. 

 , 7 ,5 0,0L U
N NT T PM AM         

  

 , 7 ,5 0,0L U
N NI I PM AM         

and  

 , 7 ,5 1,1L U
N NF F PM AM         

 

i.e., the membership function of the interval valued neutrosophic set is       0,0 , 0,0 , 1,1  

Hence,                   1,1 , 0,0 , 0,0 , 0,0 , 1,1 , 0,0 , 0,0 , 0,0 , 1,1M   

Also, day time decreases and day or night time increases in between L and C. 

 i.e.,    1,1 , 0,0L U
N NT T  

 
and    0,0 , 1,1L U

N NI I  
 

 

Further, day or night time decreases and night time increases in between C and R. 

i.e.,    1,1 , 0,0L U
N NI I  

 
and    0,0 , 1,1L U

N NF F  
 

 

5. Impacts of the work 

i). The proposed approach is the effective one in determining age group forecasting while the data is 

in the form of interval data with indeterminate information too. 

ii). Time (day or night) analysis under interval neutrosophic environment will be very useful as it is 

the major scientific and technical problems.  

iii). Analysing any future trend can be done easily by inferring the existing information into the 

future using interval neutrosophic sets as it has the capacity of addressing with the set of numbers in 

the real unit interval which is not just a determined number, it is efficient to deal with real world 

problems with various possible interval values 
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iv). The proposed methodology of age group analysis can be used in facial image analysis as age 

detection system.  

v). The proposed methodology of time analysis can be utilized in time series analysis.  

 

6. Conclusion 

 Since neutrosophic logic resembles human behavior for predicting age and time (day or night), 

it is suitable for this study. According to the knowledge of human, membership values of the truth, 

indeterminacy and falsity may be exact numbers or interval numbers. In this paper, analysis of age 

group and time(day or night) have been done using interval valued neutrosophic set with the 

detailed description and pictorial representation. Also the impact of the present work has been 

given. In future, the proposed concept can be done based on the concept of neutrosophic rough and 

soft sets.        
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Abstract: The neutrosophic cubic averaging and Einstein averaging aggregation operators are 

presented and applied to the air pollution model of the city of Peshawar, Pakistan. Neutrosophic 

cubic set (NCS) is a more generalized version of the neutrosophic set (NS) and an interval 

neutrosophic set (INS). It is in a better position to express consistent, indeterminant and incomplete 

information, thus it is able to be applied to aggregate the air pollution model. Aggregation operators 

have a key role in science and engineering problems. Firstly, the neutrosophic cubic weighted 

averaging (NCWA) operator, neutrosophic cubic ordered weighted averaging (NCOWA) operator,  

neutrosophic cubic hybrid aggregation (NCHA) operator, neutrosophic cubic Einstine weighted 

averaging (NCEWA) operator, neutrosophic cubic Einstine ordered weighted averaging 

(NCEOWA) operator and neutrosophic cubic Einstine hybrid aggregation (NCEHA) operator are 

defined. Secondly, these operators are applied to the air pollution model of particulate matter with 

the size of less than 10 micron (PM10) in Peshawar. Subsequently, the results are compared with the 

World Health Organization (WHO) standards using score/accuracy function. The pollution of PM10 

is found to be very much higher than WHO standards. Hence, strong measures are required to 

control air pollution.  

Keywords: Air pollution; neutrosophic cubic weighted averaging; neutrosophic cubic hybrid 

averaging; neutrosophic cubic Einstein weighted averaging; neutrosophic cubic Einstein hybrid 

averaging. 

 

 

1. Introduction 

The uncertainty is a complex phenomenon that occurs in the real world. Since uncertainty is 

inevitably involved in problems, it occurs in different areas of life such that conventional methods 

have failed to cope with such problems. The big task is to deal with uncertain information. Many 

models have been introduced to incorporate uncertainty into the description of the system. The fuzzy 

set was initiated by Zadeh [1]. Henceforth, it is applied in different fields of sciences like artificial 

intelligence, information sciences, medical sciences, decision making theory and much more. Due to 

its applicability in sciences and daily life problem, fuzzy set has been extended into interval valued 

fuzzy sets (IVFS) [2,3], intuitionistic fuzzy set (IFS) [4], interval valued fuzzy set (IVIFS) [5] and cubic 

set [6] among others, besides Q-fuzzy [7-11] and vague soft set [12]. IFS consists of two components, 

membership and non-membership whereas the hesitant component is considered under the 

mailto:majid_swati@yahoo.com
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condition that sum of these components is one. Smarandache presented the idea of neutrosophic sets 

(NS) [13], which provides a more general form to extend the ideas of classic theory and fuzzy set 

theory. The NS expresses three components namely truth, indeterminacy and falsity and all these 

components are independent, which makes NS more general than IFS such that NS can be seen as a 

generalization of IFS [14]. For sciences and engineering problems Wang et al. [15] presented a single 

valued neutrosophic set (SVNS), while Wang et al. [16] introduced the interval neutrosophic set (INS). 

Jun et al. [17] combined INS and NS to form a neutrosophic cubic set (NCS) which enables us to 

choose both interval value and single value membership, indeterminacy and falsehood components, 

hence presenting a more general form for uncertain and vague data. 

Aggregation operators are an imperative part of decision making. The lack of data or knowledge 

makes it difficult for decision maker to give the exact decision. This uncertain situation can be 

minimized due to the vague nature of NS and its extensions. Researchers [18-27] introduced different 

aggregation operators and multicriteria decision making methods in NS and INS. Khan et al. [28] 

presented neutrosophic cubic Einstein geometric aggregation operators. Zhan et al. [29] worked on 

multi criteria decision making on neutrosophic cubic sets. Banerjee et al. [30] used grey rational 

analysis (GRA) techniques to neutrosophic cubic sets. Lu and Ye [31] defined a cosine measure to 

neutrosophic cubic set. Pramanik et al. [32] used similarity measure to neutrosophic cubic set. Shi and 

Ji [33] defined Dombi aggregation operators on neutrosophic cubic sets. Ye [34] defined aggregation 

operators over the neutrosophic cubic numbers. Alhazaymeh et al. [35] presented a hybrid geometric 

aggregation operator with application to multiple attribute decision making method on neutrosophic 

cubic sets.  

According to WHO, air pollution causes millions of premature deaths every year globally. 90% 

of these deaths are caused by air pollution in middle and low income countries, mainly in Africa and 

Asia. Indeed it is a great threat to the environment. Inhaling polluted air may cause different types 

of diseases like lung cancer, respiratory diseases etc. In the last few years Pakistan witnessed a 

significant increased in cancer, asthma and chronic lung disease. The particulate matter (PM) is one 

of the major factors that cause such types of diseases. The data extracted from Alam et al. [36] consists 

of particulate matter with the size of less than 10 micron (PM10) in Peshawar, Pakistan.  

The collection of accurate data has always been a tough job which may cause some uncertain 

results. That is why the need was felt to analyze the data using vague set. The neutrosophic cubic set 

is one of the better choices to deal with vague and inconsistent data. For this purpose, firstly the 

neutrosophic cubic averaging and Einstein averaging operators are defined. Then these operators are 

used to analyze the air pollution of PM10 model for the city of Peshawar, Pakistan with WHO 

standards. In this paper, the NCWA, NCOWA, NCHA, NCEWA, NCEOWA and NCEHA are 

defined. Both algebraic and Einstein operators are applied to an air pollution model [36] and 

compared. The goal of this work is to analyze the PM10 in the city of Peshawar and compare it with 

WHO standards. 

The methodology to measure the aggregate value of neutrosophic cubic values is as follows. 

Firstly, the data is extracted from [36] and converted to neutrosophic cubic values so that the 

aggregated value can be measured. Secondly, the data is analyzed using the WHO standard. It is to 

be noted that the neutrosophic cubic set is the combination of both interval neutrosophic and 
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neutrosophic set, which enable us to deal with both interval-valued neutrosophic and neutrosophic 

set at the same time. 

This paper is structured as follows. In section 2, some preliminaries are reviewed. In section 3, 

the air pollution data is formed. In section 4, neutrosophic cubic averaging operators are defined and 

applied over the data of section 3. In section 5, neutrosophic cubic Einstein averaging operators are 

defined and applied over the data of section 3. The analyzing results are concluded by both 

numerically and graphically. We hope to expand the study further to numerical analysis [37-42], 

construction management [43-45], Q-neutrosophic soft environment [46], geometric programming 

[47] and binomial factorial problem [48]. 

 

2. Preliminaries 

This section consists of some definitions and results which provide the foundation of the work.  

Definition 2.1 [13] A structure   = ( ), ( ), ( ) |N T u I u F u u UN N N   is neutrosophic set (NS), where 

 ( ), ( ), ( ) 0 ,1T u I u F uN N N
 

     and ( ), ( ), ( )T u I u F uN N N   are truth, indeterminancy and falsity 

function respectively.  

Definition 2.2 [15] A structure   = ( ), ( ), ( ) |N T u I u F u u UN N N   is single value neutrosophic set 

(SVNS), where  ( ), ( ), ( ) [0,1]T u I u F uN N N   respectively called truth, indeterminancy and falsity 

functions.,simply denoted by  = , ,N T I FN N N . 

Definition 2.3 [16] An interval neutrosophic set (INS) in U  is a structure 

   = ( ), ( ), ( ) |N T u I u F u u UN N N   where 

 ( ), ( ), ( ) [0,1]T u I u F u DN N N  are respectively called truth, indeterminacy an falsity function in U . 

Simply denoted by  , ,N T I FN N N  for convenience being actually 

  = , , = , , = ,L U L U L UN T T T I I I F F FNN N N N N N N N      
      . 

Definition 2.4 [17] A structure   , ( ), ( ), ( ), ( ), ( ), ( ) |N u T u I u F u T u I u F u u UN N N N N N   is 

neutrosophic cubic set (NCS) in U  in which  = , , = , , = ,L U L U L UT T T I I I F F FN N N N N N N N N     
       is  an 

interval neutrosophic set and  , ,T I FN N N  is neutrosophic set in U , where 

 = , , , , , ,N T I F T I FN N N N N N [0, 0] [3, 3]T I FN N N     and 0 3T I FN N N     

such that
UN  denotes the collection of neutrosophic cubic sets in U .  

 

Definition 2.5 [22] The t-operators are basically union and intersection in the fuzzy sets which are 

denoted by t-conorm   
 and t-norm   . The role of t-operators is very important in fuzzy 

theory and its applications.  
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Definition 2.6 [22]      : 0,1 0,1 0,1
   is t-conorm if the following axioms hold. 

Axiom 1  1, = 1u
  and  0, = 0u

   

Axiom 2    , = ,u v v u 
   for all u and v.  

Axiom 3      , , = , ,u v w u v w   
     for all u, v and w.  

Axiom 4 If 
'u u  and ,'v v  then    , ,' 'u v u v      

Definition 2.7 [22]      : 0,1 0,1 0,1   is t-norm if it the following axioms hold. 

Axiom 1  1, =u u  and  0, = 0u   

Axiom 2    , = ,u v v u   for all u and v. 

Axiom 3      , , = , ,u v w u v w     for all u, v and w. 

Axiom 4 If 'u u  and ,'v v  then    , ,' 'u v u v     

The t-conorms and t-norms families have a vast range, which correspond to unions and 

intersections, among these Einstein sum and Einstein product are good choices since they give the 

smooth approximation like algebraic sum and algebraic product, respectively. Einstein sums E  

and Einstein products E  are the examples of t-conorm and t-norm respectively: 

( , ) =
1

u v
u vE uv





,  

  
( , ) =

1 1 1

uv
u vE u v


  

 

Definition 2.8 [28] The sum of two neutrosophic cubic sets (NCS),  

 = , , , , ,A T I F T I FA A A A A A  and  = , , , , , ,B T I F T I FB B B B B B where 

 = , , = , , = ,L U L U L UT T T I I I F F FA A A A A A A A A     
       and = , , = , , = ,L U L U L UT T T I I I F F FB B B B B B B B B     

       

is defined as  

 = , , , , , , , ,L L L L U U U U L L L L U U U U L L U UA B T T T T T T T T I I I I I I I I F F F F T T I I F F F FB B B B B B B B B B B B B BA A A A A A A A A A A A A A               
     

. 

 

Definition 2.9 [28] The product between two neutrosophic cubic sets (NCS),  

 = , , , , ,A T I F T I FA A A A A A  and  = , , , , , ,B T I F T I FB B B B B B  where

= , , = , , = , L U L U L UT T T I I I F F FAA A A A A A A A     
      and = , , = , , = ,L U L U L UT T T I I I F F FBB B B B B B B B     

       

is defined as 

 = , , , , , , , ,L L U U L L U U L L L L U U U U
A B A B A B A B A B A B A B A B A B A B A B A B A BA B T T T T I I I I F F F F F F F F T T T T I I I I F F                  

 

Definition 2.10 [28] The scalar multiplication on a neutrosophic cubic set (NCS) 

 = , , , , ,A T I F T I FA A A A A A  and a scalar k  where 

 = , , = , , = ,L U L U L UT T T I I I F F FA A A A A A A A A     
       

is defined as 
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          = 1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) , , , , ,1 1
k k k k kL k U k L k U k L U

A A A A A A A A AkA T T I I F F T I F                   

 

Definition 2.11 [18] The Einstein sum between two neutrosophic cubic sets (NCS), 

 = , , , , ,A T I F T I FA A A A A A and  = , , , , , ,B T I F T I FB B B B B B where

 = , , = , , = ,L U L U L UT T T I I I F F FAA A A A A A A A     
      and = , , = , , = ,L U L U L UT T T I I I F F FBB B B B B B B B     

       

is defined as 

       
= , , , , , , , ,

1 1 1 1 1 (1 ) 1 1 (1 ) 1 11 (1 ) 1 1 (1 ) 1

L L U U L L U U L L U U
A B A B A B A B A B A B A B A B A B

E L L U U L L U U L L U U
A B A B A B A B A B A B A BA B A B

T T T T I I I I F F F F T T I I F FA B
T T T T I I I I T T I I F FF F F F

         
      
                       

 

 

Definition 2.12 [28] The Einstein product between two neutrosophic cubic sets (NCS),  

 = , , , , ,A T I F T I FA A A A A A  and  = , , , , , ,B T I F T I FB B B B B B where

 = , , = , , = ,L U L U L UT T T I I I F F FA A A A A A A A A     
      and = , , = , , = ,L U L U L UT T T I I I F F FB B B B B B B B B     

       

is defined as 

         
= , , , , , , , ,

1 1 1 1 1 (1 ) 11 (1 ) 1 1 (1 ) 1 1 (1 ) 1 1 (1 ) 1

L L U U L L U U L L U U
A B A B A B A B A B A B A B A B A B

E L L U UL L U U L L U U
A B A B A B A B A BA B A B A B A B

T T T T I I I I F F F F T T I I F FA B
F F F F T T I I F FT T T T I I I I

         
      
                           

 

 

Definition 2.13 [28] The Einstein scalar multiplication on a neutrosophic cubic set (NCS), 

 = , , , , ,A T I F T I FA A A A A A , and a scalar k where 

= , , = , , = ,L U L U L UT T T I I I F F FA A A A A A A A A     
       

is defined as 

=Ek A  

 

   

 

   

 2 2 2(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ), , , , , ,
(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) 22 2

k k kL UL k L k U k U k L k L k U k U k
A A AA A A A A A A A

k k k kL k L k U k U k L k L k U k U k L L U U
A A A A A A A A A A A A

F F TT T T T I I I I
T T T T I I I I F F F F

 
                
   

                    
 

   

 

   

2 (1 ) (1 ), ,
(1 ) (1 )2

k k k
A A A

k k k k k k
A AA A A A

I F F
F FT T I I

 
   

     
 

 

 

Definition 2.14 [28] Let  = , , , , ,N T I F T I FN N N N N N , where = , , = , , = , L U L U L UT T T I I I F F FNN N N N N N N N     
       be a 

neutrosophic cubic value. The score function is defined as 

   = L L U UScr N T F T F T FN N N N N N     
                       (1) 

If the score function of two values are equal, the accuracy function is used to compare the 

neutrosophic cubic values. 

Definition 2.15 [28] Let  = , , , , ,N T I F T I FN N N N N N , where  = , , = , , = ,L U L U L UT T T I I I F F FN N N N N N N N N     
       be a 

neutrosophic cubic vlaue. The accuracy function is defined as 
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1

( ) =
9

L L L U U UAcu u T I F T I F T I FN N N N N N N N N                   (2) 

The following definition describes the comparison relation between two neutrosophic cubic 

values. 

Definition 2.16 [28] Let 1N , 2N  be two neutrosophic cubic values, with score functions 

   ,1 2Scr N Scr N  and accuracy functions    ,1 2Acu N Acu N . Then  

1).    > >1 2 1 2Scr N Scr N N N  

2). If    1 2Scr N Scr N , then 

    (i).     >1 2 1 2Acu N Acu N N N  ,  (ii).     =1 2 1 2Acu N Acu N N N   

3. Model Formulation of Air Pollution 

Air pollution is a great threat to the environment. It causes different diseases to the human being. 

Inhaling polluted air may cause different types of disease like lung cancer and other respiratory 

diseases. According to WHO, air pollution causes 7 million premature deaths globally in 2016. 

Ambient air pollution alone caused 4.2 million deaths, while the atmospheric contamination of 

households from the kitchen with fuels and contaminating technologies led to an estimated 3.8 

million deaths in the same year. More than 90% of deaths related to air pollution occur in middle- 

and low-income countries, mainly in Africa and Asia. In the last few years Pakistan witnessed a 

significant increase in cancer, asthma and chronic lung diseases. The particulate matter (PM) cause 

such type of diseases. The PM size is categorized as PM25, PM10 and PM2.5. The recommendation 

of the WHO for air quality call the countries to reduce their annual air pollution to the annual mean 

value of 20ug/m3 for PM10. In this model, the data for PM10 was considered. 

The collection of data is a hard task to do since most of the time we are unable to collect the 

correct and appropriate data. The problems may arise due to unskilled data collectors, 

inappropriate methods of collecting data and others. These obstacles can be minimized by using 

neutrosophic cubic sets which provide a vast variety to choose and decide. In this paper, a problem 

regarding PM10 in Peshawar, Pakistan is considered and their values aggregated using a 

neutrosophic cubic environment. Data is taken from [36] and converted to neutrosophic cubic form. 

To consider overall values, data aggregation operators are being proposed so that its value can be 

compared with WHO standards. According to WHO recommendation, the neutrosophic cubic 

value for PM10 is calculated as 

 = [0.15, 0.30],[0.10, 0.30],[0.70, 0.85], 0.20, 0.40, 0.75NWHO                 (3) 

The neutrosophic cubic data for 1st , 5th, 10th, 15th and 20th April 2014 are respectively shown as 

follows. 

    = [0.82, 0.92], 0.39, 0.66 , 0.18, 0.38 , 0.88, 0.7, 0.42 ,NA     = [0.59, 0.78], 0.68, 0.73 , 0.22, 0.41 , 0.68, 0.78, 0.32 ,NB  

    = [0.86, 0.96], 0.8, 0.85 , 0.24, 0.36 , 0.17, 0.8, 0.4 ,NC     = [0.8, 0.93], 0.11, 0.41 , 0.5, 0.9 , 0.9, 0.5, 0.4ND  
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and  = [0.61, 0.79], [0.41, 0.53], [0.39, 0.56], 0.45, 0.30, 0.45NE . 

The accuracy function is used to rank the air pollution in their relevant dates, in which day the air 

is most polluted by PM10.  

( ) = 0.5944, ( ) = 0.5766, ( ) = 0.6044, ( ) = 0.6055,Acu N Acu N Acu N Acu NB DA C  and ( ) = 0.4988.Acu NE  

We observe that  

         > > > >Acu N Acu N Acu N Acu N Acu NB EC AD . 

 

Figure 1. Pollution Graph in Peshawar City in April 2014 

The graphical analysis can be seen in Figure 1. To analyze the overall pollution of PM10, the 

aggregation operators are needed. To fulfill this desire, the notion of neutrosophic cubic 

aggregation operators and neutrosophic cubic Einstein aggregation operators are proposed. 

 

4. Neutrosophic Cubic Weighted Averaging Aggregation Operator 

This section consist of some fundamental definitions of neutrosophic cubic weighted 

averaging (NCWA), neutrosophic cubic ordered weighted averaging (NCOWA) and neutrosophic 

cubic Einstein hybrid avregaing (NCEHA) aggregation operator, which are defined as follows. 

Definition 4.1 The neutrosophic cubic weighted averaging is a function, : nNCWA R R defined 

by 

( , , ...., ) =1 2 =1

n
NCWA N N N w Nw n k kk

 , where                            (4) 

= ( , , ..., )1 2
TW w w wn of ( = 1, 2, 3, ..., ),N k nk be the weight such that [0,1] and = 1.

=1

n
w wk kk

  

Note that in NCWA, the neutrosophic values are weighted first and then aggregated. 

Definition 4.2 The neutrosophic cubic ordered weighted averaging is a function, : nNCOWA R R

defined by 

( , , ..., ) =1 2 =1

n
NCOWA N N N w Sw n k kk

 , where                            (5) 

0

0.2

0.4
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NA NB NC ND NE
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Sk denotes the ordered position of neutrosophic cubic (NC) values whereby the NC values are 

ordered in descending order, = ( , , ..., )1 2
TW w w wn  of ( = 1, 2, 3, ..., ),N k nk  be the weight such that

[0,1] and = 1.
=1

n
w wk kk

  

Note that in NCOWA, the neutrosophic cubic values are first ordered and then aggregated. The 

basic concept of NCOWA is to rearrange the neutrosophic cubic values in descending order and 

then aggregate them. 

Theorem 4.3 Let  = , , , , , ,N T I F T I FN N N N N Nk k k k k k k
where = , , = , , = ,L U L U L UT T T I I I F F FN N N N N N N N Nk k k k k k k k k

     
          

  

( = 1, 2, ..., )k n  be a collection of neutrosophic cubic values, then the neutrosophic cubic weighted 

average operator (NCWA) operator of Nk  is also a neutrosophic cubic value and  

          
=1 =1 =1 =1 =1 =1 =1 =1 =1

( ) 1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) , , , , ,1 1
n n n n n n n n n ww w w w kk k k kw w w wL U L U L Uk k k k

k N N N N N N N N Nk k k k k k k k k
k k k k k k k k k

NCWA N T T I I F F T I F
      

                
      
        

 

where 1 2= ( , ,..., )T
nW w w w of ( = 1,2,3,..., ),kN k n be the weight such that [0,1]wk  and 

=1
= 1.

n

k
k

w   

Proof: By mathematical induction for = 2,n   

          
2 2 2 2 2 2 2 2 2

1 1 2 2
=1 =1 =1 =1 =1 =1 =1 =1 =1

1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) , , , , ,1 1
ww w w w kk k k kw w w wL U L U L Uk k k k

N N N N N N N N Nk k k k k k k k k
k k k k k k k k k

w N w N T T I I F F T I F
      

                 
      
        

  

Assume that, the result holds for 𝑛 = 𝑚. That is  

          
=1 =1 =1 =1 =1 =1 =1 =1 =1 =1

= 1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) , , , , ,1 1
m m m m m m m m mm ww w w w kk k k kw w w wL U L U L Uk k k k

k k N N N N N N N N Nk k k k k k k k k
k k k k k k k k k k

w N T T I I F F T I F
      

               
      

            

Consider = 1n m , the following result will be proven. 

          
1 1 1 1

=1 =1 =1 =1 =1 =1 =1 =1 =1
1 1

=1 1
1

1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) , , , , ,1 1
=

1 (1 )

m m m m m m m m m ww w w w kk k k kw w w wL U L U L Uk k k k
N N N N N N N N Nm k k k k k k k k k

k k k k k k k k k
k k k k

k wL k
Nk

T T I I F F T I F
w N w N

T

   

 





      
               

      

  

        


           11 1 1 11 1 1
1 1 1 1 1 1 1 1

,1 (1 ) , 1 (1 ) ,1 (1 ) , , , , ,1 1
ww w w w kk k k kw w wU L U L Uk k k

N N N N N N N Nk k k k k k k k
T I I F F T I F

   
  

       

 
 
 
 

                       

 

                 
1 1 1 1 1 1 1 1 1

=1 =1 =1 =1 =1 =1 =1 =1 =1

= 1 1 ,1 1 , 1 1 ,1 1 , , , , ,1 1
m m m m m m m m mw w w w w w w w wk k k k k k k k kL U L U L U

N N N N N N N N Nk k k k k k k k k
k k k k k k k k k

T T I I F F T I F
              

               
      
        

 
Hence proved.  
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Example 4.4 The NCWA operator is applied on the data as stated in section 3 with corresponding 

weight, = (0.21, 0.14, 0.25, 0.29, 0.11)Tw . This weight calculated by Xu and Yager [27] is an essential part 

of aggregation operators and will be used throughout this paper. 

The value of       = 0.7871,0.9171 , 0.5311,0.7292 , 0.2912,0.5075 ,0.5216,0.6071,0.3995NCWA .  

Theorem 4.5 Let  = , , , , , ,N T I F T I FN N N N N Nk k k k k k k
where = , , , , = ,L U L U L UT T T I I I F F FN N N N N N N N Nk k k k k k k k k

     
          

, 

( = 1, 2,..., )k n  be collection of neutrosophic cubic values with weight = ( , , ..., )1 2
TW w w wn  of 

( = 1, 2, 3, ..., ),N k nk  such that [0,1] and = 1.
=1

n
w wk kk

  The following properties are true. 

1. Idempotence: If for all  = , , , , , ,kk k k k k
Nk N N N N NN T I F T I F where = , , = , , = ,kk k k k k k k k

L U L U L U
NN N N N N N N NT T T I I I F F F     

     
 

 ( = 1, 2, ..., )k n  are equal, i.e. =N Nk for all 𝑘, then NCWA ( , , ..., ) =1 2N N N Nw n  

2. Monotonicity: Let  = , , , , , ,B T F T I FB B B B B Bk k k k k k k
I  where = , , = , , = ,

k k k k k k k k

L U L U L U
B B B B B B B B Bk

T T T I I I F F F     
     

  

  be the collection of neutrosophic cubic values. If ( ) ( ) ( ) ( )S u S u and B u N uB N k k  , where 𝑢 ∈

𝑈, then 

NCWA ( , , ..., )1 2N N Nw n  NCWA ( , , ..., )1 2B B Bw n  

3. Boundary:       , , ..., ,1 2N NCWA N N N Nw n
 
   where  

 = min ,min ,1 max ,min ,min ,1 max ,min ,min ,1 maxL L L L
N N N N N N N N Nk k k k k k k k kk k k k k kk k k

N T I F T I F T I F   

 

 max ,max ,1 min ,max ,max ,1 min ,max ,max ,1 minL L L L
N N N N N N N N Nk k k k k k k k kk k kk k k k k k

N T I F T I F T I F       

Proof.   

1. Idempotence: Since kN = N  so 

  ( )NCWA N NCWA Nk    

          
=1 =1 =1 =1 =1 =1 =1 =1 =1

1 (1 ) ,1 (1 ) , 1 (1 ) ,1 (1 ) , , , , ,1 1
n n n n n n n n nw w ww ww w w w k kL U L U L U kk kk k k k

N N N N N N N N N
k k k k k k k k k

T T I I F F T I F
      

               
      
        

 

 = , , , , ,T I F T I FNN N N N N  

2. Monotonicity: Since neutrosophic cubic ordered weighted average operator (NCOWA) is 

strictly monotone function, hence the proof is trivial. 
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3. Boundary:  Let = minu N 
and = maxy N 

, then by the idempotent law we have 

( ) ( )k ku NCOWA N y N NCOWA N N        

Theorem 4.6  Let  = , , , , ,kk k k k k
Nk N N N N NN T I F T I F ,where = , , = , , = ,kk k k k k k k k

L U L U L U
NN N N N N N N NT T T I I I F F F     

     
, 

( = 1, 2,..., )k n  be the collection of neutrosophic cubic values and = ( , , ..., )1 2
TW w w wn is weight of 

the NCOWA with 
=1

[0,1] and = 1.
n

k k
k

w w   The following properties will hold, where Nk is 

the largest 𝑘𝑡ℎ of ( , , ..., )1 2N N Nn . 

1. If = (1, 0, ..., 0) ,TW  then NCOWA ( , , ..., ) = max1 2N N N Nn k  

2. If = (0, 0, ...,1) ,TW  then NCOWA ( , , ..., ) = min1 2N N N Nn k  

3. If = 1, = 0, and ,k lw w k l  then NCOWA ( , , ..., ) =1 2N N N Nn k .  

Proof: Since in NCOWA, the neutrosophic values are ordered in descending order, hence NCWA 

operator aggregates the weighted values. On the other hand NCOWA weights only the ordering 

positions.  

The idea of neutrosophic cubic hybrid aggregation operators (NCHA) is developed to not only 

weigh the values but also weigh their ordering position as well. 

Definition 4.7 NCHA : n
    is a mapping of n-dimension, which has associated weight  

= ( , , ..., )1 2
TW w w wn , where [0,1] = 1,

=1
and

n
w wk kk

  such that 

( , , ..., ) = ...1 2 1 2(1) (2) ( )NCHA N N N w N w N w Nw n n n
  
      where 

Nk is the largest 𝑘𝑡ℎ of the weighted neutrosophic cubic values .Nk


 The Nk


can be calculated 

by the following formula = , = 1, 2, 3, , , ,N nw N k nk k k


 = ( , , ..., ) , [0,1]1 2
TW w w w wn k  and = 1

=1

n
wkk



, where n is the balancing coefficient. 

Theorem 4.8 Let    = , , , , ,N T I F T I FNN N N N Nk kk k k k k

 , where = , , = , , = ,kk k k k k k k k

L U L U L U
NN N N N N N N NT T T I I I F F F     

     
  

( = 1 , 2 , . . . , )k n  be a collection of neutrosophic cubic values. Then the aggregated value by NCHA is 

also a neutrosophic cubic value and  
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( )NCHA Nw k

               
        ( ) ( ) ( ) ( ) ( ) ( )

=1 =1 =1 =1 =1 =1 =1 =1 =1

= 1 1 ,1 1 , 1 1 ,1 1 , , , , ,1 1
ww ww w w wn n n n n n n n nw w kk kk k k kL U L U k kL U

k k k k k k k k kT T I I F Fk k k k k k k k k

T T I I F F T I F
       

     
  

        
                

      
        

where the weight = ( , , ..., )1 2
TW w w wn  is such that [0,1] = 1.

=1
and

n
w wk kk

   

Proof:  The proof is directly concluded by Theorem 4.3.  

Theorem 4.9 The NCWA operator is a special case of NCHA operator when all the components of 

w are equal, i.e. ... .1 2w w wn    

Proof. Let 
1 1 1

= ( , , ..., ) .TW
n n n

 

Then NCHA ( , , ..., )1 2w N N Nw n  

= ...1 2(1) (2) ( )w N w N w Nn n
  
       

1
= ( ... )(1) (2) ( )N N N nn

  
      

1
= ( , , ..., )1 2N N Nn

n
  

= , , ...,1 1 2 2w N w N w Nn n  = ( , , ..., )1 2NCWA N N Nn .  

Theorem 4.10 The NCOWA is a special case of NCHA when all the components of w are equal, i.e. 

... .1 2w w wn    

Proof. Let 
1 1 1

= ( , , ..., ) .TW
n n n

 

Then ( , , ..., )1 2NCHA w N N Nw n  

= ...1 2(1) (2) ( )w N w N w Nn n
  
      

= ...1 2(1) (2) ( )w N w N w Nn n       = ( , , . . . , )1 2NCOWA N N Nn  

Example 4.11 The NCHA is applied to the data as stated in section 3 with corresponding weight

= (0.21, 0.14, 0.25, 0.29, 0.11)Tw  of Xu and Yager [27]. 

Solution The weighted values are  

      0.8384, 0.9294 , 0.4049, 0.6778 , 0.1652, 0.3620 , 0.8744, 0.6876, 0.4355=AN
  

      = 0.4643, 0.6535 , 0.5496, 0.6001 , 0.3465, 0.5357 , 0.7635, 0.8404, 0.3170NB
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      = 0.9143, 0.9821 , 0.8662, 0.9066 , 0.1679, 0.2788 , 0.1091, 0.7566, 0.4719NC


 

      = 0.9030, 0.9788 , 0.1555, 0.5347 , 0.3660, 0.8583 , 0.8583, 0.3660, 0.5232ND


 

      = 0.4042, 0.5761 , 0.2519, 0.3398 , 0.5958, 0.7269 , 0.6446, 0.5157, 0.2802NE


 

         = 1.6759, = 0.6821, = 1.0856, = 0.9926, = 0.0220.Scr N Scr N Scr N Scr N Scr NB D EA C , 

Here,          > > > > .Scr N Scr N Scr N Scr N Scr ND B EA C  

According to their ranking, the values are 

      = 0.8384, 0.9294 , 0.4049, 0.6778 , 0.1652, 0.3620 , 0.8744, 0.6876, 0.4355(1)N

      = 0.9143, 0.9821 , 0.8662, 0.9066 , 0.1679, 0.2788 , 0.1091, 0.7566, 0.4719(2)N

      = 0.9030, 0.9788 , 0.1555, 0.5347 , 0.3660, 0.8583 , 0.8583, 0.3660, 0.5232(3)N

      = 0.4643, 0.6535 , 0.5496, 0.6001 , 0.3465, 0.5357 , 0.7635, 0.8404, 0.3170(4)N

      = 0.4042, 0.5761 , 0.2519, 0.3398 , 0.5958, 0.7269 , 0.6446, 0.5157, 0.2802(5)N  

The new associated weight is derived by the normal distribution method [19]. Here the associated 

weight = (0.110, 0.237, 0.303, 0.235, 0.115)TW  is the weighting of the NCHA operator. 

( , , , , )(1) (2) (3) (4) (5)NCHA N N N N Nw
    
    

             
        

5 5 5 5 5 5 5 5 5

( ) ( ) ( ) ( ) ( ) ( )
=1 =1 =1 =1 =1 =1 =1 =1 =1

1 1 ,1 1 , 1 1 ,1 1 , , , , ,1 1
LL U L U U

ww w ww w w w iwi i ii i i i i
i i i i i i i i iT T I I FFi i i i i i i i i

T T I I F F T I F     
  

                                    
        

 

      = 0.8165, 0.9367 , 0.5533, 0.6932 , 0.2911, 0.5251 , 0.4966, 0.5893, 0.4322  

In order to analyze these results with WHO standard, the scores of NCWA and NCHA operators 

are calculated and indicated as follows.  

( ) = 0.5879Ac NNCWA , ( ) = 0.5927Ac N NCHA  and ( ) = 0.4166Ac NWHO   
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The graphical analysis is illustrated in Figure 2. It is observed that in both scores that Peshawar has 

highly polluted air.  

Figure 2. Comparison of aggregations with WHO standard 

5. Neutrosophic Cubic Einstein Aggregation Operators 

This section consist of some fundamental definitions of neutrosophic cubic Einstein weighted 

averaging (NCEWA), neutrosophic cubic Einstein ordered weighted averaging (NCEOWA) and 

neutrosophic cubic Einstein hybrid avregaing (NCEHA) aggregation operator, which are defined 

as follows. These are defined using the Einstein addition, Einstein multiplication and Einstein scalar 

multiplication. 

 

Definition 5.1 The neutrosophic cubic Einstein weighted averaging is a function, NCEWA

: nR R defined by 

 ( , , ...., ) =1 2 =1 E

n
NCEWA N N N w Nw n k kk

                               (6) 

where = ( , , ..., )1 2
TW w w wn is the weight of ( = 1, 2, 3, ..., ), [0,1]N k n wk k   and = 1.

=1

n
wkk

  

This implies that the neutrosophic cubic values are weighted and then aggregated using Einstein 

operations. 

 

Definition 5.2  Order neutrosophic cubic Einstein weighted average operator (NCEOWA) is 

defined as NCEOWA : nR R  by  ( , , ..., ) =1 2 =1 E

n
N N N w Bw nNCEO A kk

W k  where, Bk  denotes 

the ordered position of neutrosophic cubic (NC) values in descending order, = ( , , ..., )1 2
TW w w wn

is the weight of ( = 1, 2, 3, ..., ),N k nk  be such that [0,1]wk  and = 1.
=1

n
wkk

  

Note that, NCEOWA values are ordered and then weighted. Thereafter, the ordering values 

are aggregated using Einstein operations. The basic concept of ordered weighted operator is to 

rearrange the values in descending order. 

0

0.2

0.4

0.6

NCWA NCHA WHO

R
A

N
K

IN
G



Neutrosophic Sets and Systems, Vol. 32, 2020     385  

 

 
M. Khan, M. Gulistan, N. Hassan and A.M. Nasruddin, Air pollution model using neutrosophic cubic Einstein averaging 
operators   

Theorem 5.3 Let  = , , , , , ,N N Nk N N Nk k k k k k
N T I F T I F where  = , , = , , = , ,L U L U L U

N N NN N N N N Nk k kk k k k k k
T T T I I I F F F     

     
 

( = 1, 2, ..., )k n  be the collection of neutrosophic cubic values. Then their NCEWA operator is also a 

neutrosophic cubic value where = ( , , ..., )1 2
TW w w wn is the weight vector of ( = 1, 2, 3, ..., ),N k nk  

such that [0,1]wk  and = 1.
=1

n
wkk

  

Proof. By mathematical induction for = 2,n  using Einstein’s addition and ascalar multiplication, 

we will have the following. 
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Assuming that for =n m  the result holds true, that is 
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The result is proven for = 1n m , since 
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Hence proved. 

Example 5.4 The NCEWA is applied to data in section 3 with corresponding weight of Xu and Yager 

[27], = (0.21, 0.14, 0.25, 0.29, 0.11)Tw . 

Then       0.7848, 0.9163 , 0.5058, 0.6650 , 0.2957, 0.5241 , 0.5652, 0.6187, 0.3990NCEWA    

 

Note that the NCEWA operator aggregates the weighted value whereas the NCEOWA operator 

weight the ordering position and then aggregates the values. The idea of NCEHA is developed to 

overcome to not only weight the neutrosophic cubic values but their order positioning as well. 
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In order to analyze these results with WHO standard, the score of NCEWA and NCEHA operators 

are compared in terms of the accuracy functions as follows as illustrated in Figure 3. 

( ) = 0.5861,Ac NNCEWA , ( ) = 0.6099Ac NNCEHA  and ( ) = 0.4166.Ac NWHO  

 

Figure 3. The comparison of Einstein aggregation with WHO 

Observe that using both operators NCEWA and NCEHA, Peshawar has highly polluted air as 

shown in Figure 3. The overall graphical presentation is illustrated in Figure 4. Hence we conclude 

that serious measures by the relevant government agencies are needed to overcome the situation. 

Figure 4. Comparison of neutrosophic cubic aggregation operators with WHO 

 

6. Conclusions 

 In this research, NCWA, NCHA, NCEWA, NCEHA operators are compared with WHO 

standards. The aggregation operators are applied to the numerical data of PM10. These aggregation 

operators enabled us to analyze the air pollution model in the city of Peshawar, Pakistan. We 

computed the accuracy functions of all of these aggregation operators and WHO standard. The 

analysis is then presented graphically to illustrate the comparison. It is observed that in the month of 

April 2014, the pollution of PM10 is very much higher than WHO standards. Strong measures are 

thus required to control air pollution. Our future research will be to apply further the NCWA, NCHA, 
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NCEWA, NCEHA operators to construction management, geometric programming, binomial 

factorial problem, and numerical convergence of polynomial roots [49-50]. 
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1. Introduction 

         C.L. Chang [3] was introduced fuzzy topological space by using .Zadeh’s L.A [18] (uncertain) 

fuzzy sets. Further Coker [4] was developed the notion of Intuitionistic fuzzy topological spaces by 

using Atanassov’s[1] Intuitionistic fuzzy set. Neutrality the degree of indeterminacy, as an 

independent concept was introduced by Smarandache [7]. He also defined the Neutrosophic set of 

three component Neutrosophic topological spaces (t, f, i) =(Truth, Falsehood, Indeterminacy),The 

Neutrosophic crisp set concept  converted to Neutrosophic topological spaces  by A.A.Salama [13].  

I.Arokiarani.[2] et al, introduced Neutrosophic  α -closed sets.  T Rajesh kannan[10] et.al 

introduced and investigated a new class of continuous multivalued function  is called 

Neutrosophic α- continuous multivalued function in Neutrosophic topological spaces.  

     Aim of this present paper is, we define some new type of  irresolute  multifunction between the 

two spaces. we obtain some  characterization and  some  properties between such as   Lower & 

Upper 𝛼- irresolute multifunction.  

2. PRELIMINARIES 

In this section, we introduce the basic definition for Neutrosophic sets and its operations. 
Throughout this presentation, (𝑅𝐶

1,𝜏𝑅𝐶
1
)  is namely as  classical topological spaces  on 𝑅𝐶

1 

(represent as CTS𝑅𝐶
1) , (𝑅𝑁

2.,𝜏𝑁
𝑅𝑁

2,
) is namely as an  Neutrosophic topological spaces on 

𝑅𝑁
2.(represent as NUTS𝑅𝑁

2,),The family of all open set in 𝑅𝐶
1 (𝛼 −Open in𝑅𝐶

1  , semi-openin 𝑅𝐶
1 

and pre-open in 𝑅𝐶
1 respectively )  is denoted by O(CTS𝑅𝐶

1)( 𝛼O(CTS𝑅𝐶
1) , SO(CTS𝑅𝐶

1) and 

PO(CTS𝑅𝐶
1) respectively). The family of all Neutrosophic open set in 𝑅𝑁

2,(𝛼 −Open in 𝑅𝑁
2,, semi-

open in 𝑅𝑁
2,  and pre-open in 𝑅𝑁

2, respectively )  is denoted by O(NUTS𝑅𝑁
2,).( 𝛼O(NUTS𝑅𝑁

2,) , 

SO(NUTS𝑅𝑁
2,) and PO(NUTS𝑅𝑁

2,) respectively). The family of all closed set in 𝑅𝐶
1 (𝛼 −closed 

in𝑅𝐶
1 , semi-closed in 𝑅𝐶

1 and pre-Closed in 𝑅𝐶
1 respectively )  is denoted by 

C(CTS𝑅𝐶
1).( 𝛼C(CTS𝑅𝐶

1) , SC(CTS𝑅𝐶
1) and PS(CTS𝑅𝐶

1) respectively). The family of all 

Neutrosophic Closed  in 𝑅𝑁
2(𝛼 −closed in 𝑅𝑁

2,  , semi-closed in 𝑅𝑁
2,  and pre-closed in 𝑅𝑁

2, 

respectively )  is denoted by C(NUTS𝑅𝑁
2,).( 𝛼C(NUTS𝑅𝑁

2,) , SC(NUTS𝑅𝑁
2,) and PC(NUTS𝑅𝑁

2,) 

respectively) 

mailto:chandrumat@gmail.com
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Definition 2.1 [7]   
 Let 𝑅𝑁

1 be a non-empty fixed set. A Neutrosophic set 𝐴𝑅𝑁
1
 is an object having the form𝐴𝑅𝑁

1
= {<𝜉, 

𝜇𝐴
𝑅𝑁

1
(𝜉),𝜎𝐴

𝑅𝑁
1
(𝜉),𝛾𝐴

𝑅𝑁
1
(𝜉)> : 𝜉 ∈ 𝑅𝑁

1}.Where 𝜇𝑅𝑁
1
(𝜉):𝑅𝑁

1 → [0,1 ],𝜎𝑅𝑁
1
(𝜉)):𝑅𝑁

1 → [0,1], 

,𝛾𝐴
𝑅𝑁

1
(𝜉)):𝑅𝑁

1 → [0,1], are  represent Neutrosophic of  the degree of membership function, the 

degree indeterminacy and the degree of non membership function respectively of each element 𝜉 ∈ 

𝑅𝐶
1 to the set 𝐴𝑅𝐶

1
with 0 ≤ 𝜇

𝐴
𝑅𝑁

1

(𝜉)+𝜎𝐴
𝑅𝑁

1
(𝜉)+𝛾𝐴

𝑅𝑁
1
(𝜉) ≤ 1.This is  called standard form  

generalized fuzzy sets. But  also Neutrsophic set may be 0 ≤ 𝜇𝐴
𝑅𝑁

1
(𝜉)+𝜎𝐴

𝑅𝑁
1
(𝜉)+𝛾𝐴

𝑅𝑁
1
(𝜉)  ≤ 3 

Remark 2.2[7]   

we denote𝐴𝑅𝑁
1
= {<𝜉, 𝜇𝐴

𝑅𝑁
1
,𝜎𝐴

𝑅𝑁
1
,𝛾𝐴

𝑅𝑁
1
> } for the Neutrosophic set  

𝐴𝑅𝑁
1
= {<𝜉, 𝜇𝐴

𝑅𝑁
1
(𝜉),𝜎𝐴

𝑅𝑁
1
(𝜉),𝛾𝐴

𝑅𝑁
1
(𝜉)> : 𝜉∈𝑅𝐶

1}. 

Example 2.3 [7]   

Each Intuitionistic fuzzy  set 𝐴𝑅𝑁
1
 is a non-empty set in 𝑅𝑁

1 is obviously on Neutrosophic set 

having the form 𝐴𝑅𝑁
1
= {<𝜉, 𝜇𝐴

𝑅𝑁
1
(𝜉),(1 − (𝜇𝐴

𝑅𝑁
1

+ 𝛾𝐴
𝑅𝑁

1
(𝜉))) ,𝛾𝐴

𝑅𝑁
1
(𝜉)> : 𝜉∈𝑅𝐶

1} 

Definition 2.4 [7]   

                 We must introduce the Neutrosophic set 0𝑁   and 1𝑁 in 𝑅𝑁
1 as follows: : 

 

       0𝑁= {<𝜉, 0, 0, 1>: 𝜉 ∈  𝑅𝑁
1} &  1𝑁= {<  𝜉, 1, 0, 0>: 𝜉∈  𝑅𝑁

1} 

Definition 2.5 [7]   

Let 𝑅𝑁
1 be a non-empty set and Neutrosophic sets 𝐴𝑅𝑁

1
 and 𝐵𝑅𝑁

1
 in the form NS 𝐴𝑅𝑁

1
= {<𝜉, 

𝜇𝐴
𝑅𝑁

1
(𝜉),𝜎𝐴

𝑅𝑁
1
(𝜉),𝛾𝐴

𝑅𝑁
1
(𝜉))> : 𝜉∈𝑅𝐶

1}&𝐵𝑅𝑁
1
= {<𝜉, 𝜇𝐵

𝑅𝑁
1
(𝜉),𝜎𝐵

𝑅𝑁
1
(𝜉),𝛾𝐵

𝑅𝑁
1
(𝜉)> : 𝜉∈𝑅𝐶

1} defined as: 

(1)𝐴𝑅𝑁
1
⊆  𝐵𝑅𝑁

1
 ⇔ 𝜇

𝐴
𝑅𝑁

1

(𝜉) ≤ 𝜇𝐵
𝑅𝑁

1
(𝜉), 𝜎𝐴

𝑅𝑁
1
(𝜉), ≤ 𝜎𝐵

𝑅𝑁
1
(𝜉), and 𝛾𝐵

𝑅𝑁
1
(𝜉) ≥ 𝛾𝐵

𝑅𝑁
1
(𝜉) 

(2)𝐴𝑅𝑁
1

𝐶  = {<𝜉 , 𝛾𝐵
𝑅𝑁

1
(𝜉), 𝜎𝐴

𝑅𝑁
1
(𝜉),𝜇𝐵

𝑅𝑁
1
(𝜉)>: 𝜉 ∈𝑅𝐶

1} 

       (3)𝐴𝑅𝑁
1
∩𝐵𝑅𝑁

1
 ={<𝜉, 𝜇𝐴

𝑅𝑁
1
(𝜉))⋀𝜇𝐵

𝑅𝑁
1
(𝜉), 𝜎𝐴

𝑅𝑁
1
(𝜉))⋀ 𝜎𝐵

𝑅𝑁
1
(𝜉),𝛾𝐴

𝑅𝑁
1
(𝜉)∨ 𝛾𝐵

𝑅𝑁
1

(𝜉)>: 𝜉∈𝑅𝑁
1 

(4)𝐴𝑅𝑁
1
∪𝐵𝑅𝑁

1
 ={<x, 𝜇𝐴

𝑅𝑁
1
(𝜉)∨ 𝜇

𝐵
𝑅𝑁

1

(𝜉), 𝜎𝐴
𝑅𝑁

1
(𝜉) ∨ 𝜎𝐵

𝑅𝑁
1
(𝜉), 𝛾𝐴

𝑅𝑁
1
(𝜉) ⋀𝛾𝐵

𝑅𝑁
1
(𝜉)> : 𝜉∈𝑅𝑁

1} 

(5) ∩ 𝐴𝑗𝑅1
𝐶={<𝜉, ∧𝑗  𝜇𝐴𝑗

𝑅𝑁
1

(𝜉),  ∧𝑗  𝜎𝐴𝑗
𝑅𝑁

1
(𝜉), ∨𝑗  𝛾𝐴𝑗

𝑅𝑁
1

(𝜉)> : 𝜉 ∈𝑅𝑁
1 } 

(6) ∪ 𝐴𝑗𝑅𝑁
1
= {<𝜉, ∨𝑗  𝜇𝐴𝑗

𝑅𝑁
1

(𝜉),  ∨𝑗  𝜎𝐴𝑗
𝑅𝑁

1
(𝜉), ∧𝑗  𝛾𝐴𝑗

𝑅𝑁
1

(𝜉)> : 𝜉∈𝑅𝑁
1} for all  𝜉∈𝑅𝐶

1 

Proposition 2.6 [9] 

 For all 𝐴𝑅𝑁
1
 and𝐵𝑅𝑁

1
are two Neutrosophic sets then the following condition are true: 

(1) (𝐴𝑅𝑁
1

∩ 𝐵𝑅𝑁
1
)𝐶= (𝐴𝑅𝑁

1
)𝐶∪(𝐵𝑅𝑁

1
)𝐶 

(2) (𝐴𝑅𝑁
1

∪ 𝐵𝑅𝑁
1
)𝐶= (𝐴𝑅𝑁

1
)𝐶 ∩ (𝐵𝐴

𝑅𝑁
1

)𝐶  

Definition 2.7 [10] 

A Neutrosophic  topology is a non -empty set 𝑅𝑁
1 is a family 𝜏𝑁𝑅𝑁

1
  of  Neutrosophic subsets in 

𝑅𝑁
1 satisfying the following axioms:  

(i) 0𝑁, 1𝑁 ∈ 𝜏𝑁𝑅𝑁
1
 

(ii) 𝐺𝑅𝑁
1
∩𝐻𝑅𝑁

1
∈ 𝜏𝑁𝑅𝑁

1
 for any  𝐺𝑅𝑁

1
,𝐻𝑅𝑁

1
∈ 𝜏𝑁𝑅𝑁

1
 

(iii) ⋃ 𝐺𝑖𝑅𝑁
1𝑖 ∈  𝜏𝑁𝑅𝑁

1
 for every 𝐺𝑖𝑅𝑁

1
∈ 𝜏𝑁𝑅𝑁

1
, I ∈  J 

The pair (𝑅𝑁
1 ,𝜏𝑁𝑅𝑁

1
 ) is called a Neutrosophic topological space.  

The element Neutrosophic topological spaces of 𝜏𝑁𝑅𝑁
1
are called Neutrosophic open sets. 

A Neutrosophic set 𝐴𝑅𝑁
1
 is closed if and only if 𝐴𝑅𝑁

1

𝐶  is Neutrosophic  open.  

Definition 2.8[10]   

Let (𝑅𝑁
1, 𝜏𝑁𝑅𝑁

1
) be Neutrosophic topological spaces. 
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𝐴𝑅𝑁
1
= {<𝜉,𝜇𝐴

𝑅𝑁
1
(𝜉),𝜎𝐴

𝑅𝑁
1
(𝜉),𝛾𝐴

𝑅𝑁
1
(𝜉))> : 𝜉∈𝑅𝑁

1} be a Neutrosophic set in 𝑅𝑁
1 

.1.Neu-Cl(𝐴𝑅𝑁
1
) =∩{ 𝐾 𝐴

𝑅𝑁
1
:𝐾 𝐴

𝑅𝑁
1
 is a Neutrosophic closed set  in 𝑅𝑁

1and 𝐴𝑅𝑁
1
⊆  𝐾 𝐴

𝑅𝑁
1
}  

2.Neu-Int(𝐴𝑅𝑁
1
) = ∪{𝐺𝐴

𝑅𝑁
1
 :𝐺𝐴

𝑅𝑁
1
 is a Neutrosophic open set  in 𝑅𝑁

1 and 𝐺𝐴
𝑅𝑁

1
⊆𝐴𝑅𝑁

1
}.  

3.Neutrosophic Semi-open if 𝐴𝑅𝑁
1
 ⊆  Neu-Cl(Neu-Int(𝐴𝑅𝑁

1
)). 

4.The complement of Neutrosophic Semi-open set is called Neutrosophic semi-closed. 

5.Neu-sCl(𝐴𝑅𝑁
1
) =∩ { 𝐾 𝐴

𝑅𝑁
1
 :𝐾 𝐴

𝑅𝑁
1
is a Neutrosophic Semi closed set  in 𝑅𝑁

1 and 𝐴𝑅𝑁
1
⊆ 𝐾 𝐴

𝑅𝑁
1
}  

6.Neu-sInt(𝐴𝑅𝑁
1
) = ∪{𝐺𝐴

𝑅𝑁
1
 :𝐺𝐴

𝑅𝑁
1
 is a Neutrosophic Semi  open set  in 𝑅𝐶

1 and 𝐺𝐴
𝑅𝑁

1
⊆ 𝐴𝑅𝑁

1
}.  

7.Neutrosophic  α-open set if 𝐴𝑅𝑁
1
⊆  Neu-Int(Neu-Cl(Neu-Int(𝐴𝑅𝑁

1
))). 

8.The complement of Neutrosophic  α-open set is called Neutrosophic  α-closed. 

9.Neuα-  Cl(𝐴𝑅𝑁
1
) =∩{ 𝐾 𝐴

𝑅𝑁
1
 :𝐾 𝐴

𝑅𝑁
1
is a Neutrosophic α - closed set  in 𝑅𝑁

1 and 𝐴𝑅𝑁
1
⊆ 𝐾 𝐴

𝑅𝑁
1
}  

10.Neu α -Int(𝐴𝑅𝑁
1
) = ∪ {𝐺𝐴

𝑅𝑁
1
 :𝐺𝐴

𝑅𝑁
1
 is a Neutrosophic α - open set  in 𝑅𝑁

1 and 𝐺𝐴
𝑅𝑁

1
⊆𝐴𝑅𝑁

1
}.  

11.Neutrosophicpre open set if 𝐴𝑅𝑁
1
⊆  Neu-Int(Neu-Cl𝐴𝑅𝑁

1
)). 

12.The complement of Neutrosophic  Pre-open set is called Neutrosophic  pre-closed. 

13.Neu- pCl(𝐴𝑅𝑁
1
) =∩{ 𝐾 𝐴

𝑅𝑁
1
 :𝐾 𝐴

𝑅𝑁
1
is a Neutrosophic P- closed set  in 𝑅𝑁

1 and 𝐴𝑅𝑁
1
⊆𝐾 𝐴

𝑅𝑁
1
}  

14.Neu- pInt(𝐴𝑅𝑁
1
) = ∪{𝐺𝐴

𝑅𝑁
1
 :𝐺𝐴

𝑅𝑁
1
 is a Neutrosophic P - open set  in 𝑅𝑁

1 and 𝐺𝐴
𝑅𝑁

1
⊆   𝐴𝑅𝑁

1
}. 

Remark:2.9[11] 

Let 𝐴𝑅𝑁
1
 be an Neutrosophic topological space (𝑅𝑁

1, 𝜏𝑁𝑅𝐶
1
).Then 

   (i) Neu α-Cl(𝐴𝑅𝑁
1
) = 𝐴𝑅𝑁

1
 ∪ Neu-Cl(Neu-Int(Neu-Cl(𝐴𝑅𝑁

1
))). 

(ii) Neu α-Int(𝐴𝑅𝑁
1
) = 𝐴𝑅𝑁

1
∩Neu-Int(Neu-Cl(Neu-Int(𝐴𝑅𝑁

1
))). 

Definition 2.10[9]   

Take 𝜉
1
,𝜉2,𝜉

3
 are belongs  to real numbers 0 to 1 such that 0≤𝜉1+𝜉2+𝜉

3
≤1  .An Neutrosophic point 

℘(𝜉1, 𝜉2, 𝜉3)is Neutrosophic set  defined by  

℘(𝜉
1
,𝜉2,𝜉

3
)   = {(𝜉

1
, 𝜉2, 𝜉

3
)𝑖𝑓 𝜉 = ℘ 

(0,0,1)𝑖𝑓 𝜉 ≠ ℘ 

Take ℘(𝜉1, 𝜉2, 𝜉3) =<℘𝜉1
℘𝜉2

. ℘𝜉3
> Where ℘𝜉1

℘𝜉2
. ℘𝜉3

are represent Neutrosophic the degree of 

membership function, the degree indeterminacy and  the degree of non-membership function 

respectively of each element 𝜉 ∈ 𝑅𝑁
1 to the set  𝐴𝑅𝑁

1
 

Definition:2.11 

 A Neutrosophic set 𝐴𝑅𝑁
1
 in 𝑅𝑁

1 is said to be quasi-coincident (q-coincident) with a 

Neutrosophic set 𝐵𝑅𝑁
1
 denoted by 𝐴𝑅𝑁

1
q𝐵𝑅𝑁

1
 if and only if there exists 𝜉∈𝑅𝑁

1 such that 𝐴𝑅𝑁
1
 (𝜉) + 

𝐵𝑅𝑁
1
 (𝜉) >1. 

Remark: 2.12 

𝐴𝑅𝑁
1
q 𝐵𝑅𝑁

1
⟺ 𝐴𝑅𝑁

1
⊈ 𝐵𝑅𝑁

1

𝐶 

Definition 2.13[9]  

let𝑅𝑁
1 and 𝑅𝑁

2  be two finite sets. Define 𝜓1:𝑅𝑁
1→  𝑅𝑁

2. 

If𝐴𝑅𝑁
2
= {<𝜃, 𝜇𝐴

𝑅𝑁
2
(𝜃),𝜎𝐴

𝑅𝑁
2

(𝜃),𝛾𝐴
𝑅𝑁

2
(𝜃))> : 𝜃∈𝑅𝐶

2}.is an NS in 𝑅𝑁
2, then the inverse image( pre 

image) 𝐴𝑅𝑁
2
 under 𝜓

1
 is an NS defined by 𝜓1

−1(𝐴𝑅𝑁
2
)=< 𝜉, 𝜓1

−1𝜇𝐴
𝑅𝑁

2
 (𝜉), 𝜓1

−1𝜎𝐴
𝑅𝑁

2
 (𝜉), 𝜓1

−1𝛾𝐴
𝑅𝑁

2
 

(𝜉) : 𝜉∈𝑅𝑁
1>. Also define image  NS U=<𝜉, 𝜇

𝑈
(𝜉), 𝜎𝑈(𝜉), 𝛾

𝑈
(𝜉) : 𝜉∈ 𝑅𝑁

1:> under 𝜓
1
 is an NS defined 

by 𝜓
1
 (U)=< 𝜃, 𝜓

1
(𝜇

𝐴
𝑅𝑁

2

(𝜃)), 𝜓
1

(𝜎𝐴
𝑅𝑁

2
(𝜃)), 𝜓

1
𝛾𝐴

𝑅𝑁
2
(𝜃): 𝜃∈ 𝑅𝑁

2> 

where 

𝜓
1

(𝜇
𝐴

𝑅𝑁
2

(𝜃)), ={   sup 𝜇
𝐴

𝑅𝑁
2

(𝜉), if 𝜓1
−1  (𝜃) ≠𝜙, 𝜉∈    𝜓1

−1 (𝜃) 

   0, elsewhere 

𝜓
1

(𝜎𝐴
𝑅𝑁

2
(𝜃))= {  sup𝜎𝐴

𝑅𝑁
2
(𝜉) if 𝜓1

−1 (𝜃) ≠𝜙, 𝜉∈ 𝜓1
−1 (𝜃) 
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0, elsewhere 

𝜓
1

(𝛾
𝐴

𝑅𝑁
2

(𝜃))= {   inf (𝛾𝐴
𝑅𝑁

2
 (𝜉) if 𝜓1

−1 (𝜃) ≠ 𝜙, 𝜉∈  𝜓1
−1 (𝜃) 

      0,            Elsewhere 

Definition 2.14[2] 

A mapping 𝜓
1
:(𝑅𝑁

1,𝜏𝑁𝑅𝑁
1
) →  (𝑅𝑁

2., 𝜏𝑁𝑅𝑁
2
) is called a   

(1) Neutrosophic continuous(Neu-continuous ) if𝜓
1

−1(𝐴𝑅𝑁
2
) ∈ C(CTS𝑅𝐶

1)whenever 𝐴𝑅𝑁
2

∈

 C(NUTS𝑅𝑁
2) 

(2) Neutrosophic α-continuous(Neu  α - continuous) if 𝜓
1

−1(𝐴𝑅𝑁
2
) ∈ αC(CTS𝑅𝐶

1) 

whenever𝐴𝑅𝑁
2

∈  C(NUTS𝑅𝑁
2) 

(3) Neutrosophic Semi-continuous(Neu Semi - continuous ) if 𝜓
1

−1(𝐴𝑅𝑁
2
) ∈ 𝑠C(CTS𝑅𝐶

1) 

whenever𝐴𝑅𝑁
2

∈  C(NUTS𝑅𝑁
2) 

Definition 2.15. 

Let (𝑅𝐶
1,𝜏𝑁𝑅𝐶

1
) be a topological space in the classical sense and (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
be an Neutrosophic 

topological space. 𝛹 : (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
) is called a Neutrosophic multifunction if and only if 

for each 𝜉 ∈  𝑅𝐶
1, 𝛹 (𝜉) is a Neutrosophic set in 𝑅𝑁

2. 

Definition 2.16 

For a Neutrosophicmultifunction : 𝛹 : (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
),the upper inverse𝛹+(Γ) and lower 

inverse 𝛹−(Γ) of a Neutrosophic set 𝛤𝑅𝑁
2. in 𝑅𝑁

2 are defined as follows: 

𝛹+( 𝛤𝑅𝑁
2.) ={ 𝜉 ∈ 𝑅𝐶

1 \ 𝛹 (𝜉) ≤  𝛤𝑅𝑁
2.} and 

𝛹−( 𝛤𝑅𝑁
2.) = {𝜉 ∈ 𝑅𝐶

1 \ 𝛹(𝜉)q 𝛤𝑅𝑁
2.}. 

Lemma 2.17. 

For a Neutrosophicmultifunction 𝛹: (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
),  

we have 𝛹−(1- 𝛤𝑅𝑁
2
) = 𝑅𝐶

1- 𝛹+( 𝛤𝑅𝑁
2.), for any Neutrosophic set   𝛤𝑅𝑁

2. in 𝑅𝑁
2. 

Lemma:2.18 

     Let 𝛤𝑅𝑁
2
 be a subset of Neutrosophic topology 𝜏𝑁𝑅𝑁

2
.then 

1.𝛤𝑅𝑁
2
is𝛼-closed in𝑅𝑁

2iffNeu-SInt (Neu-Cl(𝛤𝑅𝑁
2
) ⊂ 𝛤𝑅𝑁

2
 

2.Neu- SInt(Neu-Cl(𝛤𝑅𝑁
2
) = 𝑁𝑒𝑢 − 𝐶𝑙(𝑁𝑒𝑢 − 𝐼𝑛𝑡(𝑁𝑒𝑢 − 𝐶𝑙(𝛤𝑅𝑁

2
)) 

Lemma:2.19 

 Let 𝛤𝑅𝑁
2
 be a subset of Neutrosophic topology 𝜏𝑁𝑅𝑁

2
.then below are equivalent  

1𝛤𝑅𝑁
2
isNeu𝛼-open in𝑅𝑁

2 

2.𝑈𝑅𝑁
2

⊂ 𝛤𝑅𝑁
2

⊂ 𝑁𝑒𝑢 − 𝐼𝑛𝑡(𝑁𝑒𝑢 − 𝐶𝑙(𝑈𝑅𝑁
2
)) for some 𝑈𝑅𝑁

2
of 𝑅𝑁

2. 

3.𝑈𝑅𝑁
2

⊂ 𝛤𝑅𝑁
2

⊂ 𝑁𝑒𝑢 − 𝑆(𝐶𝑙(𝑈𝑅𝑁
2
)) for some 𝑈𝑅𝑁

2
of 𝑅𝑁

2 

4.𝛤𝑅𝑁
2

⊂ 𝑁𝑒𝑢 − 𝑆𝐶𝑙(𝑁𝑒𝑢 − 𝐼𝑛𝑡(𝛤𝑅𝑁
2
)) 

Definition 2.19[6] 

A Neutrosophicmultifunction :𝛹 : (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2,𝜏𝑁𝑅𝑁
2
) is said to be 1.Neutrosophic upper semi 

continuous at a point 𝜉∈𝑅𝐶
1 if for any 𝛤𝑅𝑁

2
 O(NUTS𝑅𝑁

2), 𝛤𝑅𝑁
2
. containing𝛹(𝜉) ,there exist 𝜉 ∈

𝑈𝑅𝐶
1

∈ O(CTS𝑅𝐶
1)  such that 𝛹 (𝑈𝑅𝐶

1
) ⊂ 𝛤𝑅𝑁

2
. 

2.Neutrosophic lower semi continuous at a point 𝜉∈𝑅𝐶
1 if for any𝛤𝑅𝑁

2
 O(NUTS𝑅𝑁

2), with 

𝛹 (𝜉)q𝛤𝑅𝑁
2
 , there exist x ∈ 𝑈𝑅𝐶

1
∈ O(CTS𝑅𝐶

1)  such that  𝛹(𝑈𝑅𝐶
1
)q𝛤𝑅𝑁

2
 

3.Neutrosophic upper semi continuous (Neutrosophic lower semi continuous) if it is Neutrosophic  

upper semi continuous (Neutrosophic lower semi continuous) at each point 𝜉∈𝑅𝐶
1. 

 

 

4.Neutrosophic upper pre -continuous at a point 𝜉∈𝑅𝐶
1 if for any 𝛤𝑅𝑁

2
 O(NUTS𝑅𝑁

2), Γ  containing    
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    𝛹(𝜉) ,there exist 𝜉 ∈ 𝑈𝑅𝐶
1

∈PO(CTS𝑅𝐶
1)  such that 𝛹 (𝑈𝑅𝐶

1
) ⊂ 𝛤𝑅𝑁

2
 

5.Neutrosophic lower pre- continuous at a point 𝜉∈𝑅𝐶
1 if for any𝛤𝑅𝑁

2
 O(NUTS𝑅𝑁

2),  

    with𝛹 (𝜉)q𝛤𝑅𝑁
2
 , there exist 𝜉 ∈ 𝑈𝑅𝐶

1
∈PO(CTS𝑅𝐶

1)  such that  𝛹(𝑈𝑅𝐶
1
)q𝛤𝑅𝑁

2
 

6.Neutrosophic upper pre-continuous (Neutrosophic lower pre-continuous) if it is Neutrosophic       

     upper pre-continuous (Neutrosophic lower pre-continuous) at each point 𝜉∈𝑅𝐶
1. 

7.Neutrosophic upper 𝛼 -continuous at a point 𝜉∈𝑅𝐶
1 if for any 𝛤𝑅𝑁

2
 O(NUTS𝑅𝑁

2), Γ  containing   

    𝛹(𝜉) (that is , F (𝜉) ⊂ Γ), there exist 𝜉 ∈ 𝑈𝑅𝐶
1

∈ 𝛼 O(CTS𝑅𝐶
1)  such that 𝛹 (𝑈𝑅𝐶

1
) ⊂ 𝛤𝑅𝑁

2
 

8.Neutrosophic lower 𝛼 - continuous at a point 𝜉∈𝑅𝐶
1 if for any𝛤𝑅𝑁

2
 O(NUTS𝑅𝑁

2),  

   with𝛹 (𝜉)q𝛤𝑅𝑁
2
 , there exist x ∈ 𝑈𝑅𝐶

1
∈ 𝛼 O(CTS𝑅𝐶

1)  such that  𝛹(𝑈𝑅𝐶
1
)q𝛤𝑅𝑁

2
 

9.Neutrosophic upper 𝛼 -continuous (Neutrosophic lower 𝛼 -continuous) if it is Neutrosophic   

    upper 𝛼 -continuous (Neutrosophic lower 𝛼 -continuous) at each point 𝜉∈𝑅𝐶
1. 

10.Neutrosophic upper quasi-continuous at a point 𝜉∈𝑅𝐶
1 if for any 𝛤𝑅𝑁

2
  

       O(NUTS𝑅𝑁
2),𝛤𝑅𝑁

2
containing  𝛹 (𝜉) ,there exist 𝜉 ∈ 𝑈𝑅𝐶

1
∈ 𝑆 O(CTS𝑅𝐶

1)  such that 𝛹 (𝑈𝑅𝐶
1
)  

       ⊂ 𝛤𝑅𝑁
2
 

11.Neutrosophic lower quasi semi continuous at a point 𝜉∈𝑅𝐶
1 if for any𝛤𝑅𝑁

2
 O(NUTS𝑅𝑁

2), with  

    𝛹 (𝜉)q𝛤𝑅𝑁
2
 , there exist 𝜉 ∈ 𝑈𝑅𝐶

1
∈S O(CTS𝑅𝐶

1)  such that  𝛹(𝑈𝑅𝐶
1
)q𝛤𝑅𝑁

2
 

12.Neutrosophic upper quasi semi continuous (Neutrosophic lower quasi semi continuous) if it is  

     Neutrosophic  upper quasi semi continuous (Neutrosophic lower quasi semi continuous) at each  

       point 𝜉∈𝑅𝐶
1. 

III. Lower 𝛼-Irresolute Neutrosophic Multifunctions 
In this section, we introduce the Definition for Neutrosophic Lower 𝛼- irresolute 

multifunction  and its properties 

Definition 3.1. 

An Neutrosophic multifunction 𝛹  : (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
)  is said to be 

(1) Neutrosophic lower α-irresolute at a point 𝑥0  ∈  𝑅𝐶
1 , if for any  𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such 

that 𝛹(𝑥0)𝑞 𝛤𝑅𝑁
2
 there exists 𝑈𝑅𝐶

1
 ∈  𝛼O(CTS𝑅𝐶

1) containing 𝑥0 such that 𝛹(𝜉)𝑞𝛤𝑅𝑁
2
, ∀𝜉 ∈  𝑈𝑅𝐶

1
 

(2) Neutrosophic lower 𝛼-irresolute if it is Neutrosophic lower 𝛼-irresolute at each point of 𝑅𝐶
1. 

Theorem 3.2 

Every Neutrosophic  lower𝛼-irresolute multifunction is Neutrosophic lower 𝛼-continuous  

multifunction. 

Proof: 

Letting𝑥0 ∈ 𝑅𝐶
1, 𝛹:(𝑅𝐶

1,𝜏𝑅𝐶
1
) → (𝑅𝑁

2.𝜏𝑁𝑅𝑁
2
) and 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) 

such that 𝛹(𝑥0)𝑞 𝛤𝑅𝑁
2
. But we know that , Every𝛤𝑅𝑁

2
 , 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) is 

𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2),.Therefore  𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2).By our assumption ,Neutrosophic  

lower𝛼 −irresolute multifunction, there  exists 𝑈𝑅𝐶
1

 ∈  𝛼O(CTS𝑅𝐶
1) containing 𝑥0 such that 

𝛹(𝜉)𝑞𝛤𝑅𝑁
2
, ∀𝜉 ∈  𝑈𝑅𝐶

1
.Hence𝛹 is Neutrosophic lower  𝛼-continuous  multifunction at 𝑥0. 

Theorem 3.3 

Every Neutrosophic  lower𝛼 − irresolute multifunction is Neutrosophic lower  Pre continuous  

multifunction. 

Proof: 

 Letting 𝑥0 ∈ 𝑅𝐶
1, 𝛹 : (𝑅𝐶

1,𝜏𝑅𝐶
1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
)  and 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such that 

𝛹(𝑥0)𝑞 𝛤𝑅𝑁
2
. 𝐵ut we know that , Every𝛤𝑅𝑁

2
 , 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2)is  

𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2).Therefore   𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2).By our assumption ,Neutrosophic  lower  

𝛼-irresolute multifunction, there  exists 𝑈𝑅𝐶
1

 ∈  𝛼O(CTS𝑅𝐶
1) containing 𝑥0 such that 

𝛹(𝑥0)𝑞𝛤𝑅𝑁
2
, ∀𝑥 ∈  𝑈𝑅𝐶

1
. every𝑈𝑅𝐶

1
  , 𝑈𝑅𝐶

1
  ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) is 𝑈𝑅𝐶
1

  ∈  𝑃𝑂(𝐶𝑇𝑇𝑆𝑅𝑁
2). 
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There  exists𝑈𝑅𝐶
1

 ∈  𝑃O(CTS𝑅𝐶
1) containing 𝑥0 such that 𝛹(𝜉)𝑞𝛤𝑅𝑁

2
, ∀𝜉 ∈  𝑈𝑅𝐶

1
.Hence𝛹 is 

Neutrosophic lower  Pre-continuous  multifunction at 𝑥0. 

Theorem 3.4 

Every Neutrosophic  lower𝛼-irresolute multifunction is Neutrosophic lower  quasi semi 

continuous  multifunction. 

Proof: 

              Letting 𝑥0 ∈ 𝑅𝐶
1, 𝛹  : (𝑅𝐶

1,𝜏𝑅𝐶
1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
)  and 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such that 

𝛹(𝑥0)𝑞 𝛤𝑅𝑁
2
, But we know that , Every𝛤𝑅𝑁

2
 , 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2)is  

𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2),Therefore𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2).By our assumption ,Neutrosophic  lower  

𝛼 − irresolute multifunction, There  exists 𝑈𝑅𝐶
1

 ∈  𝛼O(CTS𝑅𝐶
1) containing 𝑥0 such that 

𝛹(𝜉)𝑞𝛤𝑅𝑁
2
, ∀𝜉 ∈  𝑈𝑅𝐶

1
Here every 𝑈𝑅𝐶

1
  , 𝑈𝑅𝐶

1
  ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) is 𝑈𝑅𝐶
1

 ∈  𝑆𝑂(𝐶𝑇𝑇𝑆𝑅𝑁
2). Finally  

we get , There  exists 𝑈𝑅𝐶
1

 ∈  𝑆O(CTS𝑅𝐶
1) containing 𝑥0 such that 𝛹(𝜉)𝑞𝛤𝑅𝑁

2
, ∀𝜉 ∈  𝑈𝑅𝐶

1
hence 𝛹 is 

Neutrosophic lower  quasi semi continuous  multifunction at 𝑥0. 

 

 

Theorem 3.5 

Let 𝛹 ∶  (𝑅𝐶
1, 𝜏𝑅𝐶

1
)  →  (𝑅𝑁

2 , 𝜏𝑁𝑅𝑁
2
), be an Neutrosophic multifunction and letting 𝑥0  ∈  𝑅𝐶

1. 

Then the following statements are equivalent: 

(a) 𝛹 is Neutrosophic lower α-irresolute at 𝑥0. 

(b) For any 𝛤𝑅𝑁
2
, 𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) with (𝑥0)𝑞𝛤𝑅𝑁
2
 , ⟹ 𝑥0  ∈  𝑠𝐶𝑙(𝐼𝑛𝑡(𝛹−(𝛤𝑅𝑁

2
))). 

(c) For any 𝑈𝑅𝐶
1
, 𝑈𝑅𝐶

1
∈  𝑆𝑂(𝐶𝑇𝑆𝑈𝑅𝐶

1
)  ,𝑥0𝜖𝑈𝑅𝐶

1
 and for each 𝛤𝑅𝑁

2
, 𝛤𝑅𝑁

2
∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) with 

𝛹(𝑥0)𝑞𝛤𝑅𝑁
2
, there exists a 𝑉𝑅𝐶

1
∈  𝑂(𝐶𝑇𝑆𝑅𝐶

1)  , 𝑉𝑅𝐶
1

 ⊂  𝑈𝑅𝐶
1
  such that 𝛹(𝜉)𝑞𝑉𝑅𝐶

1
, ∀  𝜉 ∈  𝑉𝑅𝐶

1
 

Proof. 

(a) ⇒  (b). Let 𝑥0  ∈  𝑅𝐶
1 and𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such that 𝛹(𝑥0)𝑞𝛤𝑅𝑁
2
   Then by our assumption  

(a) , we get there exists 𝑈𝑅𝐶
1

∈  𝛼O(CTS𝑅𝐶
1)    such that 𝑥0  ∈  𝑈𝑅𝐶

1
 and 𝐹(𝜉)𝑞𝛤𝑅𝑁

2
, ∀ 𝜉 ∈  𝑈𝑅𝐶

1
.Thus 

𝑥0  ∈  𝑈𝑅𝐶
1

 ⊂ 𝛹−(𝛤𝑅𝑁
2
) … … (1)  Here 𝑈𝑅𝐶

1
 ∈  𝛼O(CTS𝑅𝐶

1)    .we know that for any set 𝐴𝑅𝐶
1
, 𝐴𝑅𝐶

1
∈

 𝛼O(CTS𝑅𝐶
1)⟺ 𝐴𝑅𝐶

1
 ⊂  𝑠𝐶𝑙 (𝐼𝑛𝑡(𝐴𝑅𝐶

1
)).  Therefore, 𝑈𝑅𝐶

1
 ⊂  𝑠𝐶𝑙 (𝐼𝑛𝑡(𝑈𝑅𝐶

1
)) … (2). from(1) and(2), 

we get 𝑥0  ∈  𝑠𝐶𝑙 (𝐼𝑛𝑡𝛹−(𝛤𝑅𝑁
2
)).Hence (b). 

(b) ⇒  (c). Let 𝛤𝑅𝑁
2

  ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2) such that (𝑥0)𝑞𝛤𝑅𝑁

2
 , then 𝑥0  ∈  𝑠𝐶𝑙 (𝐼𝑛𝑡𝛹−(𝛤𝑅𝑁

2
)). Let 𝑈𝑅𝐶

1
∈

𝑠O(CTS𝑅𝐶
1)  and 𝑥0  ∈ 𝑈𝑅𝐶

1
.Then 𝑈𝑅𝐶

1
 ∩  𝐼𝑛𝑡 (𝛹−(𝛤𝑅𝑁

2
)) ≠  𝜑 and 𝑈𝑅𝐶

1
 ∩  𝐼𝑛𝑡 (𝛹−(𝛤𝑅𝑁

2
)) is semi-

open in 𝑅𝐶
1. Put 𝑉𝑅𝐶

1
 =  𝐼𝑛𝑡(𝑈𝑅𝐶

1
∩ 𝐼𝑛𝑡(𝛹−(𝛤𝑅𝑁

2
 )), Then 𝑉𝑅𝐶

1
 is an open set of 𝑅𝐶

1, 𝑉𝑅𝐶
1

 ⊂

 𝑈𝑅𝐶
1
, 𝑉𝑅𝐶

1
 ≠ 𝜑and 𝛹(𝑣)𝑞𝛤𝑅𝑁

2
 , ∀𝑣 ∈  𝑉𝑅𝐶

1
. (c) ⇒  (a).Let {𝑈𝜉} be the system of the 𝑠O(CTS𝑅𝐶

1)  

containing 𝜉.  

Let 𝑈𝑅𝐶
1

∈ 𝑆O(CTS𝑅𝐶
1)  and 𝑥0  ∈ 𝑈𝑅𝐶

1
 and Any 𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑌) such that 𝛹(𝑥0)𝑞𝛤𝑅𝑁

2
  , there 

exists a nonempty open set 𝐵𝑈  ⊂ 𝑈𝑅𝐶
1
Such that 𝛹(𝑣)𝑞𝛤𝑅𝑁

2
 ∀𝑣 ∈  𝐵𝑈. Let 𝑊𝑅𝐶

1
 = ∪ 𝐵𝑈 ∶  𝑈 ∈

 {𝑈𝑥0
}, then 𝑊𝑅𝐶

1
∊ O(CTS𝑅𝐶

1),and   𝑥0   ∈  𝑠𝐶𝑙(𝑊𝑅𝐶
1
) and 𝛹(𝑣)𝑞𝛤𝑅𝑁

2
 , ∀𝑣 ∈  𝑊𝑅𝐶

1
 .Put 𝑆 𝑅𝐶

1
=

𝑊𝑅𝐶
1

  ∪ {𝑥0}, then 𝑊𝑅𝐶
1

  ⊂  𝑆 𝑅𝐶
1

 ⊂  𝑠𝐶𝑙(𝑊𝑅𝐶
1
). Thus 𝑆 𝑅𝐶

1
∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1) ), 𝑥0  ∈  𝑆 𝑅𝐶
1
 and 

𝛹(𝑣)𝑞𝛤𝑅𝑁
2
 , ∀𝑣 ∈ 𝑆 𝑅𝐶

1
. Hence 𝛹is Neutrosophic lower α-irresolute at 𝑥0. 

Theorem 3.6  

Let𝛹 ∶  (𝑅𝐶
1, 𝜏𝑅𝐶

1
)  →  (𝑅𝑁

2. , 𝜏𝑁𝑅𝑁
2
),  be   an Neutrosophic multifunction. Then the following 

statements are equivalent: 

(a) 𝛹 is Neutrosophic lower α-irresolute. 

(b)𝛹−(𝜆𝑅𝑁
2
 )  ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1),for every Neutrosophic α-open set 𝜆𝑅𝑁
2
 of 𝑅𝑁

2. 

(c) 𝛹+
(𝛽𝑅𝑁

2
)  ∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶

1),for every Neutrosophic α-closed set 𝛽𝑅𝑁
2
 of 𝑅𝑁

2. 
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(d) 𝑠𝐼𝑛𝑡(𝐶𝑙(𝛹+(𝛤𝑅𝑁
2
)))  ⊂  𝛹+(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛤𝑅𝑁

2
)), for each Neutrosophic set𝛤𝑅𝑁

2
of 𝑅𝑁

2. 

(e) 𝛹 (𝑠𝐼𝑛𝑡 (𝐶𝑙(𝑉𝑅𝐶
1
))) ⊂  𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛹(𝑉𝑅𝐶

1
)),for each subset𝑉𝑅𝐶

1
 of 𝑅𝐶

1. 

(f) 𝛹 (𝛼𝐶𝑙(𝑉𝑅𝐶
1
)) ⊂ 𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛹(𝑉𝑅𝐶

1
)),for each subset 𝑉𝑅𝐶

1
 of 𝑅𝐶

1, 

(g) 𝛼𝐶𝑙(𝛹+(𝛤𝑅𝑁
2
 )) ⊂  𝛹+(𝑁𝑒𝑢 −  𝛼𝐶𝑙(𝛤𝑅𝑁

2
 )),for each Neutrosophic set 𝛤𝑅𝑁

2
of 𝑅𝑁

2. 

(h) 𝛹 (𝐶𝑙 (𝐼𝑛𝑡 (𝐶𝑙(𝐴𝑅𝐶
1
)))) ⊂  𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛹(𝐴𝑅𝐶

1
)),for each subset 𝐴𝑅𝐶

1
 of 𝑅𝐶

1. 

Proof. 

(a)⇒(b). Let 𝜆𝑅𝑁
2

∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2) and 𝑥0  ∈  𝛹−(𝜆𝑅𝑁

2
)such that𝛹(𝑥0)𝑞𝜆𝑅𝑁

2
, since 𝛹 is 

Neutrosophic lower α-irresolute, Applying previous theorem, it follows that 𝑥0  ∈

 𝑠𝐶𝑙(𝐼𝑛𝑡(𝛹−(𝜆𝑅𝑁
2
))). As 𝑥0 is chosen arbitray in 𝛹−

(𝜆𝑅𝑁
2
),  we have 𝛹−

(𝜆𝑅𝑁
2
)  ⊂  𝑠𝐶𝑙(𝐼𝑛𝑡𝛹−(𝜆𝑅𝑁

2
)) 

and thus 𝛹−
(𝜆𝑅𝑁

2
) ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1). Hence 𝛹−
(𝜆𝑅𝑁

2
) is an 𝛼 −open in 𝑅𝐶

1.(b)⇒(a). Let 𝑥0 ∈ 𝑅𝐶
1 and 

𝜆𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2)such that 𝛹(𝑥0)𝑞𝜆𝑅𝑁

2
, so that𝑥0  ∈  𝛹−(𝜆𝑅𝑁

2
). By hypothesis 𝛹−

(𝜆𝑅𝑁
2
) ∈

 𝛼𝑂(𝐶𝑇𝑆𝑅𝐶
1). We  have 𝑥0  ∈  𝛹−(𝜆𝑅𝑁

2
)  ⊂  𝑠𝐶𝑙(𝐼𝑛𝑡(𝛹−(𝜆𝑅𝑁

2
))) and we get 𝛹 is Neutrosophic lower 

α-irresolute at 𝑥0.. As 𝑥0 was arbitrarily chosen, 𝛹 is Neutrosophic lower α-irresolute. 

(b)⇔ (c). From the definition,  both are equivalent.  

(c)⇒ (d).Let 𝛤𝑅𝑁
2

∈ (𝑁𝑈𝑇𝑆𝛤𝑅𝑁
2
). taking closure , Neu- 𝛼𝐶𝑙(𝛤𝑅𝑁

2
) is Neutrosophic α-closed set in 

𝑅𝑁
2. By our assumption, 𝛹+

(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛤𝑅𝑁
2
)) ∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶

1). 

We know that sIntCl(𝐴𝑅𝐶
1
) ⊂ 𝐴𝑅𝐶

1
 iff 𝐴𝑅𝐶

1
∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶

1).  

we obtain 𝛹+
(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛤𝑅𝑁

2
)) ⊃  𝑠𝐼𝑛𝑡 (𝐶𝑙 (𝛹+ (𝑁𝑒𝑢 − 𝐶𝑙(𝛤𝑅𝑁

2
)))) ⊃  𝑠𝐼𝑛𝑡 (𝐶𝑙 (𝛹+(𝛤𝑅𝑁

2
))). 

(d)  ⇒ (e) Suppose that (d) is satisfied and let 𝑉𝑅𝐶
1
 be an arbitrary subset of 𝑅𝐶

1. Let us Take𝛤𝑅𝑁
2

=

 𝛹(𝑉𝑅𝐶
1
 ), Then𝑉𝑅𝐶

1
  ⊂  𝛹+(𝛤𝑅𝑁

2
).  Therefore, by hypothesis, we have 

𝑠𝐼𝑛𝑡(𝐶𝑙(𝑉𝑅𝐶
1
 ))  ⊂  𝑠𝐼𝑛𝑡(𝐶𝑙(𝛹+(𝛤𝑅𝑁

2
)))  ⊂  𝛹+(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛤𝑅𝑁

2
)). 

Therefore,𝛹 (𝑠𝐼𝑛𝑡 (𝐶𝑙(𝑉𝑅𝐶
1
))) ⊂  𝛹 (𝛹+ (𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛤𝑅𝑁

2
))) ⊂  𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛤𝑅𝑁

2
) = 𝑁𝑒𝑢 −

 𝛼𝐶𝑙 (𝛹(𝑉𝑅𝐶
1
)). 

(e) ⇒(c).Suppose that (e) is true. and let 𝛤𝑅𝑁
2

 ∈  𝛼𝐶(𝑁𝑈𝑇𝑆𝑅𝑁
2). Put 𝑉𝑅𝐶

1
 =  𝛹+(𝛤),Then 𝛹(𝑉𝑅𝐶

1
 )  ⊂

 𝛤𝑅𝑁
2
. Therefore, by our  hypothesis, we have 𝛹 (𝑠𝐼𝑛𝑡 (𝐶𝑙(𝑉𝑅𝐶

1
))) ⊂  𝑁𝑒𝑢 − 𝛼𝐶𝑙 (𝛹(𝑉𝑅𝐶

1
)) ⊂

𝑁𝑒𝑢 −  𝛼𝐶𝑙(𝛤𝑅𝑁
2
)  =  𝛤𝑅𝑁

2
.And  𝛹+

(𝛹(𝑠𝐼𝑛𝑡(𝐶𝑙( 𝑉𝑅𝐶
1
))))  ⊂  𝛹+(𝛤𝑅𝑁

2
).  Since we always have 

𝛹+
(𝛹(𝑠𝐼𝑛𝑡(𝐶𝑙( 𝑉𝑅𝐶

1
))))  ⊃  𝑠𝐼𝑛𝑡(𝐶𝑙( 𝑉𝑅𝐶

1
)),Then  must verify 𝛹+

(𝛤𝑅𝑁
2
) ⊃  𝑠𝐼𝑛𝑡 (𝐶𝑙 (𝛹+(𝛤𝑅𝑁

2
))).  We 

know that sIntCl𝑉𝑅𝐶
1

⊂ 𝑉𝑅𝐶
1
 iff 𝑉𝑅𝐶

1
∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶

1),Finally we get  𝐹+(𝛤𝑅𝑁
2
) ∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶

1). 

(c)⇒  (f). Here  𝑉𝑅𝐶
1

 ⊂  𝛹+(𝛹( 𝑉𝑅𝐶
1
)), we have 𝑉𝑅𝐶

1
 ⊂  𝛹+(𝑁𝑒𝑢 − 𝐶𝑙(𝛹( 𝑉𝑅𝐶

1
))).  NowNeu-

𝛼𝐶𝑙(𝛹( 𝑉𝑅𝐶
1
)) is an Neutrosophic α-closed set in 𝑅𝑁

2 and so by our assumption,𝛹+
(𝑁𝑒𝑢 −

𝐶𝑙(𝛹( 𝑉𝑅𝐶
1
)))  ∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶

1).Thus𝛼𝐶𝑙( 𝑉𝑅𝐶
1
)  ⊂ 𝛹𝛹+(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛹( 𝑉𝑅𝐶

1
))). 

Consequently, 𝛹 (𝛼𝐶𝑙(𝑉𝑅𝐶
1
)) ⊂  𝛹 (𝛹+ (𝑁𝑒𝑢 − 𝛼𝐶𝑙 (𝛹(𝑉𝑅𝐶

1
)))) ⊂ 𝑁𝑒𝑢 −  𝛼𝐶𝑙(𝛹( 𝑉𝑅𝐶

1
)). 

(f)⇒ (c).Let 𝛤𝑅𝑁
2

 ∈  𝛼𝐶𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2). Replacing 𝑉𝑅𝐶

1
 by 𝛹+

we get by(f), 𝛹(𝛼𝐶𝑙(𝛹+(𝛤𝑅𝑁
2
)))  ⊂

 𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛹(𝛹+(𝛤𝑅𝑁
2
)))  ⊂ 𝑁𝑒𝑢 −  𝛼𝐶𝑙(𝛤𝑅𝑁

2
)  =  𝛤𝑅𝑁

2
.Consequently, 𝛼𝐶𝑙(𝛹+(𝛤𝑅𝑁

2
))  ⊂  𝛹+(𝛤𝑅𝑁

2
). 

But 𝛹+
(𝛤𝑅𝑁

2
)  ⊂  𝛼𝐶𝑙(𝛹+(𝛤𝑅𝑁

2
))  and so, 𝛼𝐶𝑙(𝛹+(𝛤𝑅𝑁

2
))  = 𝛹+(𝛤𝑅𝑁

2
). 

Thus 𝛹+
(𝛤𝑅𝑁

2
)  ∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶

1). 
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(f) ⇒  (g). Let𝛤𝑅𝑁
2
 be any Neutrosophic set of 𝑅𝑁

2. Replacing 𝑉𝑅𝐶
1
 by 𝛹+

(𝛤𝑅𝑁
2
) we get by 

(f),𝛹 (𝛼𝐶𝑙 (𝛹+(𝛤𝑅𝑁
2
))) ⊂  𝑁𝐸𝑈 − 𝛼𝐶𝑙(𝛹(𝛹+(𝛤𝑅𝑁

2
)))  ⊂ 𝑁𝑒𝑢 −  𝛼𝐶𝑙(𝛤𝑅𝑁

2
).Therefore we get  

𝛼𝐶𝑙(𝛹+(𝛤𝑅𝑁
2
))  ⊂  𝛹+(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝛤𝑅𝑁

2
)). 

(g)⇒ (f). Replacing 𝛤𝑅𝑁
2
 by 𝛹( 𝑉𝑅𝐶

1
), where 𝑉𝑅𝐶

1
 is a subset of 𝑅𝐶

1, we get by our result 

(g),𝛼𝐶𝑙(𝑉𝑅𝐶
1
)  ⊂  𝛼𝐶𝑙(𝛹+(𝛹(𝑉𝑅𝐶

1
)))  =  𝛼𝐶𝑙(𝛹+(𝛤𝑅𝑁

2
))  =  𝛹+(𝛼𝐶𝑙(𝛤𝑅𝑁

2
))  =  𝛹+(𝛼𝐶𝑙(𝛹(𝑉𝑅𝐶

1
))).Thus 

𝛹(𝛼𝐶𝑙(𝑉𝑅𝐶
1
))  ⊂  𝛹(𝛹+(𝛼𝐶𝑙(𝛹(𝑉𝑅𝐶

1
)))  ⊂ 𝑁𝑒𝑢 𝛼𝐶𝑙(𝛹(𝑉𝑅𝐶

1
)). 

(e)⇒ (h).Clearly is true from the above result. 

(h)⇒(a). Let 𝜉 ∈ 𝑅𝐶
1and 𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2)such that (𝜉 )𝑞𝛤𝑅𝑁
2
 . Then 𝜉  ∈  𝛹−(𝛤𝑅𝑁

2
).We shall 

show that 𝛹−
(𝛤𝑅𝑁

2
)  ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1). By the hypothesis, We have 𝛹(𝐶𝑙(𝐼𝑛𝑡(𝐶𝑙(𝛹+(𝛤𝑅𝑁
2

𝑐)))))  ⊂

𝑁𝑒𝑢 −  𝛼𝐶𝑙(𝛹(𝛹+(𝛤𝑅𝑁
2

𝑐)))  ⊂  (𝛤𝑅𝑁
2

𝑐), Which implies 𝐶𝑙(𝐼𝑛𝑡(𝐶𝑙(𝛹+(𝛤𝑅𝑁
2

+)))))  ⊂ 𝛹+  (𝛤𝑅𝑁
2

𝑐)  ⊂

 (𝛹−(𝛤𝑅𝑁
2
))𝑐.Therefore, we obtain 𝛹−

(𝛤𝑅𝑁
2
)  ⊂  𝐼𝑛𝑡(𝐶𝑙(𝐼𝑛𝑡(𝛹−(𝛤𝑅𝑁

2
)))) . Hence 𝛹−

(𝛤𝑅𝑁
2
)  ∈

 𝛼𝑂(𝐶𝑇𝑆𝑅𝐶
1).  Put 𝑈𝑅𝐶

1
 =  𝛹−(𝛤𝑅𝑁

2
). Then 𝜉  ∈  𝑈𝑅𝐶

1
 ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1) and 𝛹(𝑢)𝑞𝛤𝑅𝑁
2
 for every 𝑢 ∈

 𝑈𝑅𝐶
1
. Therefore 𝛹 is Neutrosophic lower α-irresolute. 

IV. Upper α-Irresolute Neutrosophic Multifunctions 

In this section, we introduce the Definition for Neutrosophic upper 𝛼- irresolute multifunction  

and its properties 

Definition 4.1. 

An Neutrosophicmultifunction 𝛹: (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
), is called 

(a) Neutrosophic upper α-irresolute at a point 𝑥 0 ∈  𝑅𝐶
1 , if for any 𝛤𝑅𝑁

2
,𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2. )  

such that 𝛹(𝑥 0 )  ⊂  𝛤𝑅𝑁
2
 there exists 𝑈𝑅𝐶

1
∈ 𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1) containing 𝑥 0such that 𝛹(𝑈𝑅𝐶
1
)  ⊂  𝛤𝑅𝑁

2
. 

(b) Neutrosophic upper α-irresolute if it is satisfied that  property at each point of 𝑅𝐶
1. 

Theorem 4.2 

Every Neutrosophic upper 𝛼-irresolute multifunction is Neutrosophic upper𝛼-continuous  

multifunction. 

Proof: 

Letting𝑥0 ∈ 𝑅𝐶
1, 𝛹  : (𝑅𝐶

1,𝜏𝑅𝐶
1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
)  and 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such that 𝛹(𝑥0) ⊂  𝛤𝑅𝑁
2
, 

But we know that , every𝛤𝑅𝑁
2
 , 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) is 𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2), Therefore   𝛤𝑅𝑁

2
 ∈

 𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2),By our assumption ,Neutrosophic  lower  𝛼 − irresolute multifunction, There  exists 

𝑈𝑅𝐶
1

 ∈  𝛼O(CTS𝑅𝐶
1) containing 𝑥0 such that 𝛹(𝜉 ) ⊂ 𝛤𝑅𝑁

2
, ∀𝜉  ∈  𝑈𝑅𝐶

1
Hence 𝛹 is Neutrosophic 

lower  𝛼-continuous  multifunction at 𝑥0. 

Theorem 4.3 

Every Neutrosophic upper 𝛼-irresolute multifunction is Neutrosophic upper Pre-continuous  

multifunction. 

Proof: 

Letting 𝑥0 ∈ 𝑅𝐶
1, 𝛹  : (𝑅𝐶

1,𝜏𝑅𝐶
1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
)  and 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such that 𝛹(𝑥0) ⊂

𝛤𝑅𝑁
2
.But we know that , Every𝛤𝑅𝑁

2
 , 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2)is  𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2).Therefore  

𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2).By our assumption ,Neutrosophic upper𝛼 −irresolute multifunction, There  

exists 𝑈𝑅𝐶
1

 ∈  𝛼O(CTS𝑅𝐶
1) containing 𝑥0 such that 𝛹(𝜉) ⊂ 𝛤𝑅𝑁

2
, ∀𝜉  ∈  𝑈𝑅𝐶

1
 , every𝑈𝑅𝐶

1
  , 𝑈𝑅𝐶

1
  ∈

 𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2) is 𝑈𝑅𝐶

1
 ∈  𝑃𝑂(𝐶𝑇𝑇𝑆𝑅𝑁

2).There  exists 𝑈𝑅𝐶
1

 ∈  𝑃O(CTS𝑅𝐶
1) containing 𝑥0 such that 

𝛹(𝜉) ⊂ 𝛤𝑅𝑁
2
, ∀𝜉  ∈  𝑈𝑅𝐶

1
hence 𝛹 is Neutrosophic upperPre-continuous  multifunction at 𝑥0. 

Theorem 4.4 

Every Neutrosophic  upper 𝛼-irresolute multifunction is Neutrosophic upper quasi semi 

continuous  multifunction. 

Proof: 
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Letting 𝑥0 ∈ 𝑅𝐶
1, 𝛹  : (𝑅𝐶

1,𝜏𝑅𝐶
1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
)  and 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such that 𝛹(𝑥0) ⊂

 𝛤𝑅𝑁
2
,.But we know that , Every𝛤𝑅𝑁

2
 , 𝛤𝑅𝑁

2
 ∈  𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2)is  𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2), 

Therefore   𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2), By our assumption ,Neutrosophic  upper𝛼 -irresolute 

multifunction, there  exists 𝑈𝑅𝐶
1

 ∈  𝛼O(CTS𝑅𝐶
1) containing 𝑥0 such that 𝛹(𝜉) ⊂ 𝛤𝑅𝑁

2
, ∀𝜉  ∈

 𝑈𝑅𝐶
1
. Every𝑈𝑅𝐶

1
  , 𝑈𝑅𝐶

1
  ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) is 𝑈𝑅𝐶
1

  ∈  𝑆𝑂(𝐶𝑇𝑇𝑆𝑅𝑁
2). Their exists 𝑈𝑅𝐶

1
 ∈

 𝑆O(CTS𝑅𝐶
1) containing 𝑥0 such that 𝛹(𝜉) ⊂ 𝛤𝑅𝑁

2
, ∀𝜉  ∈  𝑈𝑅𝐶

1
Hence 𝛹 is Neutrosophic upper  

quasi semi continuous  multifunction at 𝑥0. 

Theorem 4.5 

Let  : (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2.,𝜏𝑁𝑅𝑁
2
), be an Neutrosophic multifunction and let 𝜉 ∈  𝑅𝐶

1. Then the 

following statements are equivalent: 

(a) 𝛹is Neutrosophic Upper α-irresolute at 𝜉. 

(b) For each 𝛤𝑅𝑁
2

 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2) with (𝜉)  ⊂  𝛤𝑅𝑁

2
 , Implies 𝜉 ∈  𝑠𝐶𝑙(𝐼𝑛𝑡(𝛹−(𝛤))). 

(c) For any 𝜉 , 𝜉 ∈ 𝑈𝑅𝐶
1

∈ 𝑆𝑂(𝐶𝑇𝑆𝑅𝐶
1) and for any 𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) with (𝜉)  ⊂  𝛤𝑅𝑁
2
 , 

there exists a nonempty open set 𝑉𝑅𝐶
1

 ⊂  𝑈𝑅𝐶
1
 such that 𝛹( 𝑉𝑅𝐶

1
)  ⊂ 𝛤𝑅𝑁

2
 . 

Proof. 

(a)⇒ (b) Let 𝜉 ∈  𝑅𝐶
1 and 𝛤𝑅𝑁

2
 ∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2)  Such that 𝛹(𝜉) ⊂ 𝛤𝑅𝑁
2
  Then by our assumption  

(a), we get there exists 𝑈𝑅𝐶
1

 ∈  𝛼O(CTS𝑅𝐶
1)    such that 𝜉  ∈  𝑈𝑅𝐶

1
 and 𝐹(𝑈𝑅𝐶

1
) ⊂ 𝛤𝑅𝑁

2
, Thus 𝜉  ∈

 𝑈𝑅𝐶
1

 ⊂ 𝛹+(𝛤𝑅𝑁
2
).  here 𝑈𝑅𝐶

1
 ∈  𝛼O(CTS𝑅𝐶

1)    .We know that for any set 𝐴𝑅𝐶
1
, 𝐴𝑅𝐶

1
∈

 𝛼O(CTS𝑅𝐶
1)⟺ 𝐴𝑅𝐶

1
 ⊂  𝑠𝐶𝑙(𝐼𝑛𝑡(𝐴𝑅𝐶

1
)).  Therefore, 𝑈𝑅𝐶

1
 ⊂  𝑠𝐶𝑙(𝐼𝑛𝑡(𝑈𝑅𝐶

1
)). Finally we get 𝜉 ∈

 𝑠𝐶𝑙(𝐼𝑛𝑡𝛹+(𝛤𝑅𝑁
2
)).hence(b). 

(b)⇒ (c). Let 𝛤𝑅𝑁
2

∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁
2) such that 𝛹(𝜉) ⊂ 𝛤𝑅𝑁

2
, then  𝜉 ∈  𝑠𝐶𝑙(𝐼𝑛𝑡𝛹−(𝛤𝑅𝑁

2
)). Let 𝑈𝑅𝐶

1
∈

𝑆O(CTS𝑅𝐶
1)  and 𝜉 ∈ 𝑈𝑅𝐶

1
.Then𝑈𝑅𝐶

1
 ∩  𝐼𝑛𝑡(𝛹−(𝛤𝑅𝑁

2
)) ≠  𝜑 and 𝑈𝑅𝐶

1
 ∩  𝐼𝑛𝑡(𝛹−(𝛤𝑅𝑁

2
)) is semi-

open in 𝑅𝐶
1.Put 𝑉𝑅𝐶

1
 =  𝐼𝑛𝑡(𝑈𝑅𝐶

1
 ∩  𝐼𝑛𝑡(𝛹−(𝛤𝑅𝑁

2
)), Then 𝑉𝑅𝐶

1
 is an open set of 𝑅𝐶

1,  𝑉𝑅𝐶
1

 ⊂

 𝑈𝑅𝐶
1
, 𝑉𝑅𝐶

1
 ≠ 𝜑 and 𝛹(𝑉𝑅𝐶

1
) ⊂ 𝛤𝑅𝑁

2
,  

(c) ⇒(a).Let {𝑈𝜉} be the system of the 𝑆O(CTS𝑅𝐶
1)  containing𝜉. Let 𝑈𝑅𝐶

1
∈ 𝑆O(CTS𝑅𝐶

1)  and 𝜉 ∈

𝑈𝑅𝐶
1
 and Let 𝛤𝑅𝑁

2
∈  𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2) such that 𝛹(𝜉) ⊂ 𝛤𝑅𝑁
2
 , there exists a nonempty open set 

𝐵𝑈  ⊂  𝑈𝑅𝐶
1
 Such that 𝛹(𝑣) ⊂ 𝛤𝑅𝑁

2
, ∀𝑣 ∈  𝐵𝑈 . Let 𝑊𝑅𝐶

1
 = ∪ 𝐵𝑈 ∶  𝑈𝑅𝐶

1
 ∈  {𝑈𝜉}, then 

𝑊𝑅𝐶
1

∊O(CTS𝑅𝐶
1)  and   𝜉 ∈  𝑠𝐶𝑙(𝑊𝑅𝐶

1
 ) and 𝛹(𝑣) ⊂ 𝛤𝑅𝑁

2
, ∀𝑣 ∈  𝑊𝑅𝐶

1
 .Put 𝑆𝑅𝐶

1
 =  𝑊𝑅𝐶

1
  ∪

 𝜉.Then 𝑊𝑅𝐶
1

  ⊂  𝑆𝑅𝐶
1

 ⊂  𝑠𝐶𝑙(𝑊𝑅𝐶
1
 ). Thus 𝑆𝑅𝐶

1
 ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1) ), 𝜉  ∈  𝑆𝑅𝐶
1
 and 𝛹(𝑣) ⊂

𝛤𝑅𝑁
2
, ∀𝑣 ∈ 𝑆. Hence 𝛹 is Neutrosophic Upper α-irresolute at 𝜉. 

 

Theorem 4.6 

For an Neutrosophicmultifunction  : (𝑅𝐶
1,𝜏𝑅𝐶

1
) → (𝑅𝑁

2,𝜏𝑁𝑅𝑁
2
)the following statements are 

equivalent: 

(a) 𝛹 is Neutrosophic upper α-irresolute. 

(b) 𝛹+
(𝛤𝑅𝑁

2
)  ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1),for every Neutrosophic α-open set 𝛤𝑅𝑁
2
𝑜𝑓 𝑅𝑁

2 

(c) 𝛹−
(𝜆𝑅𝑁

2.)  ∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶
1),for each Neutrosophic α-closed set 𝜆𝑅𝑁

2.𝑜𝑓 𝑅𝑁
2. 

(d) For each point 𝜉  ∈  𝑅𝐶
1 and for each α-neighborhood 𝑉𝑅𝑁

2. of 𝛹(𝜉 ) 𝑖𝑛 𝑅𝑁
2. 𝐹+(𝑉𝑅𝑁

2.) is an 

α-neighborhood of 𝜉. 

(e) For each point 𝜉  ∈  𝑅𝐶
1 and for each α-neighborhood 𝑉𝑅𝑁

2.of 𝛹 (𝜉) in 𝑅𝑁
2., there is an α- 

neighborhood 𝑈𝑅𝐶
1
 of 𝜉 such that 𝛹(𝑈𝑅𝐶

1
)  ⊂  𝑉𝑅𝑁

2. . 

(f) 𝛼𝐶𝑙(𝛹−(𝜆𝑅𝑁
2.))  ⊂  𝛹−(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝜆𝑅𝑁

2.)) 𝑓𝑜𝑟 each Neutrosophic set 𝜆𝑅𝑁
2.𝑜𝑓 𝑅𝑁

2. 

(g) 𝑠𝐼𝑛𝑡(𝐶𝑙(𝛹−(𝜆𝑅𝑁
2.)))  ⊂  𝛹−(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝜆𝑅𝑁

2.))for any Neutrosophic set 𝜆 𝑜𝑓 𝑅𝑁
2.. 

Proof. 
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(a)⇒ (b). Let 𝛤𝑅𝑁
2
𝜖 𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2. ) and 𝜉 ∈ 𝛹+(𝛤𝑅𝑁
2
).Applying previous theorem, we get 𝜉 ∈

 𝑠𝐶𝑙(𝐼𝑛𝑡𝛹+(𝛤𝑅𝑁
2
)).Therefore, we obtain 𝛹+

(𝛤𝑅𝑁
2
) ⊂  𝑠𝐶𝑙 (𝐼𝑛𝑡𝛹+(𝛤𝑅𝑁

2
))., Finally we get  𝛹+

(𝛤𝑅𝑁
2
)  ∈

 𝛼𝑂(𝐶𝑇𝑆𝑅𝐶
1). 

(b)⇒ (a). Let 𝜉be arbitrarily point in 𝑅𝐶
1 and 𝛤𝑅𝑁

2
𝜖𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2. ) such that 𝛹(𝜉)  ⊂ 𝛤𝑅𝑁
2
so ∈

𝛹+(𝛤𝑅𝑁
2
) . By hypothesis 𝛹+

(𝛤𝑅𝑁
2
)  ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1), we get𝜉 ∈  𝛹+(𝛤𝑅𝑁
2
)  ⊂  𝑠𝐶𝑙(𝐼𝑛𝑡(𝛹+(𝛤𝑅𝑁

2
)))  

and hence  F is Neutrosophic upper α-irresolute at 𝜉.As 𝜉 is arbitrarily chosen, 𝛹 is Neutrosophic 

upper α-irresolute. 

(b)⇒ (c). This implies easily get from that [𝛹−
(𝛤𝑅𝑁

2
)]

𝐶
 =  [𝛹+(𝛤𝑅𝑁

2
)

𝐶
].where 𝛤𝑅𝑁

2
𝜖𝛼𝑂(𝑁𝑈𝑇𝑆𝑌) 

(c)⇒ (f).Let 𝜆𝑅𝑁
2. 𝜖𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2. ) .Then by our assumption (c), 𝛹−
(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝜆𝑅𝑁

2.))  is an α-

closed set in 𝑅𝐶
1. We  have 𝛹−

(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝜆𝑅𝑁
2.))  ⊃  𝑠𝐼𝑛𝑡(𝐶𝑙(𝛹−(𝑁𝑒𝑢 − 𝐶𝑙(𝜆𝑅𝑁

2.))))  ⊃

 𝑠𝐼𝑛𝑡(𝐶𝑙(𝛹−(𝜆𝑅𝑁
2.))) ⊃  𝛹−(𝜆)  ∪  𝑠𝐼𝑛𝑡(𝐶𝑙(𝛹−(𝜆𝑅𝑁

2.)))  ⊃  𝛼𝐶𝑙(𝛹−(𝜆𝑅𝑁
2.)).Hence the result. 

(f)⇒(g).Let  𝜆𝑅𝑁
2.𝜖𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2. ). we have 𝛼𝐶𝑙(𝛹−(𝜆𝑅𝑁
2.))  =  𝛹−(𝜆𝑅𝑁

2.)  ∪  𝑠𝐼𝑛𝑡(𝐶𝑙(𝛹−(𝜆𝑅𝑁
2.)))  ⊂

 𝛹−(𝑁𝑒𝑢 − 𝛼𝐶𝑙(𝜆𝑅𝑁
2.)). Hence (g). 

(g)⇒(c).Let 𝜆𝑅𝑁
2.

𝐶
𝜖 𝛼𝐶(𝑁𝑈𝑇𝑆𝑅𝑁

2. )Then by (g) we have, 

𝑠𝐼𝑛𝑡 (𝐶𝑙 (𝛹−(𝜆𝑅𝑁
2.

𝐶))) ⊂  𝛹−(𝜆𝑅𝑁
2.

𝐶) ∪  𝑠𝐼𝑛𝑡 (𝐶𝑙 (𝛹−(𝜆𝑅𝑁
2.

𝐶))) ⊂  𝛹−(𝛼𝐶𝑙(𝜆𝑅𝑁
2.

𝑐) =  𝛹−(𝜆𝑅𝑁
2.

𝐶). 

Hence By our result, 𝛹−(𝜆𝑅𝑁
2.

𝐶)  ∈  𝛼𝐶(𝐶𝑇𝑆𝑅𝐶
1). 

(b)⇒(d).Let 𝜉 ∈  𝑅𝐶
1 and 𝑉𝑅𝑁

2. be an α-neighborhood of 𝛹(𝜉) in 𝑅𝑁
2.Then there is an 

𝜆𝑅𝑁
2. 𝜖𝛼𝑂(𝑁𝑈𝑇𝑆𝑅𝑁

2. ) such that 𝛹(𝜉)  ⊂ 𝜆𝑅𝑁
2.  ⊂  𝑉𝑅𝑁

2.. Hence, 𝜉 ∈  𝛹+(𝜆𝑅𝑁
2
)  ⊂  𝛹+(𝑉𝑅𝑁

2
). Now 

by hypothesis 𝛹+
(𝜆𝑅𝑁

2
)  ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1), and Thus 𝛹+
(𝑉𝑅𝑁

2.) is an α-neighborhood of 𝜉. 

(d)⇒(e). Let 𝜉 ∈  𝑅𝐶
1and 𝑉𝑅𝑁

2
 be an α-neighborhood of 𝛹(𝜉) in 𝑅𝑁

2.Put 𝑈𝑅𝐶
1

 =  𝛹+(𝑉𝑅𝑁
2.).Then 

𝑈𝑅𝐶
1
is an α-neighborhood of 𝜉 and 𝛹(𝑈)  ⊂  𝑉𝑅𝑁

2. 

(e)⇒(a).Let𝜉 ∈  𝑅𝐶
1 and𝑉𝑅𝑁

2
be an Neutrosophic set in 𝑅𝑁

2 such that 𝛹(𝜉)  ⊂ 𝑉𝑅𝑁
2.. 𝑉𝑅𝑁

2. being an 

Neutrosophic α-open set in 𝑅𝑁
2. , is an α-neighborhood of 𝛹(𝜉) and according to the hypothesis 

there is an α-neighborhood 𝑈𝑅𝐶
1
 of 𝜉 such that 𝛹(𝑈𝑅𝐶

1
) ⊂  𝑉𝑅𝑁

2. Therefore 𝑉𝑅𝑁
2.  ∈  𝛼𝑂(𝐶𝑇𝑆𝑅𝐶

1) 

such that 𝜉 ∈  𝐴𝑅𝐶
1

 ⊂  𝑈𝑅𝐶
1
 and hence   𝛹(𝐴) ⊂  𝛹(𝑈𝑅𝐶

1
) ⊂ 𝑉𝑅𝑁

2. . Hence 𝛹 is Neutrosophic 

upper α-irresolute at 𝜉. 
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Abstract: In this article, we study neutrosophic fuzzy set and define the subtraction and 

multiplication of two rectangular and square neutrosophic fuzzy matrices. Some properties of 

subtraction, addition and multiplication of these matrices and commutative property, distributive 

property have been examined. 

Keywords: Neutrosophic fuzzy matrix, Neutrosophic set. Commutativity, Distributive, Subtraction 

of neutrosophic matrices. 

1. Introduction 

Neutrosophic set was introduced by Florentin Smarandache [1] in 1998, where each element had 

three associated defining functions, namely the membership function (T), the non-membership (F) 

function and the indeterminacy function (I) defined on the universe of discourse X, the three 

functions are completely independent. Relative to the natural problems sometimes one may not be 

able to decide. After the development of the Neutrosophic set theory, one can easily take decision 

and indeterminacy function of the set is the nondeterministic part of the situation. The applications 

of the theory has been found in various field for dealing with indeterminate and inconsistent 

information in real world one may refer to [2,3,4]. Neutrosophic set is a part of neutrosophy which 

studied the origin, nature and scope of neutralities, as well as their interactions with ideational 

spectra. The neutrosophic set generalizes the concept of classical fuzzy set [10, 11], interval valued 

fuzzy set, intuitionistic fuzzy set and so on. In the recent years, the concept of neutrosophic set has 

been applied successfully by Broumi et al. [12, 13, 14] and Abdel-Basset et al. [15, 16, 17, 18] 

The single-valued neutrosophic number which is a generalization of fuzzy numbers and 

intuitionistic fuzzy numbers. A single-valued neutrosophic number is simply an ordinary number 

whose precise value is somewhat uncertain from a philosophical point of view. There are two special 

forms of single-valued neutrosophic numbers such as single-valued trapezoidal neutrosophic 

numbers and single-valued triangular neutrosophic numbers. 

The neutrosophic interval matrices have been defined by Vasantha Kandasamy and Florentin 

Smarandache in their book “Fuzzy interval matrices, Neutrosophic interval matrices, and 

their 
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applications”.  A neutrosophic fuzzy matrix [aij]nxm, whose entries are of the form a + Ib 

(neutrosophic number), where a, b are the elements of the interval [0,1] and I is an indeterminate 

such that In = I, n being a positive integer. 

So the difference between the neutrosophic number of the form a + Ib and the single-valued 

neutrosophic numbers is that the generalization of fuzzy number and the single-valued 

neutrosophic components <T, I, F> is the generalization of fuzzy numbers and intuitionistic fuzzy 

numbers. Since fuzzy number lies between 0 to 1 so the component neutrosophic fuzzy number a 

and b lies in [0,1]. In the case of single-valued neutrosophic matrix components will be the true value, 

indeterminacy and fails value with three components in each element of a matrix [3, 4, 8].   

We know the important role of matrices in science and technology. However, the classical 

matrix theory sometimes fails to solve the problems involving uncertainties, occurring in an 

imprecise environment.  Kandasamy and Smarandache [7] introduced fuzzy relational maps and 

neutrosophic relational maps. Thomason [8], introduced the fuzzy matrices to represent fuzzy 

relation in a system based on fuzzy set theory and discussed about the convergence of powers of 

fuzzy matrix. Dhar, Broumi and Smarandache [2] define Square Neutrosophic Fuzzy Matrices 

whose entries are of the form a+Ib, where a and b are fuzzy number from [0, 1] gives the definition of 

Neutrosophic Fuzzy Matrices multiplication. 

In this paper our ambition is to define the subtraction of fuzzy neutrosophic matrices, 

rectangular fuzzy neutrosophic matrices and study some algebraic properties. We shall focus on all 

types of neutrosophic fuzzy matrices. The paper unfolds as follows. The next section briefly 

introduces some definitions related to neutrosophic set, neutrosophic matrices, Fuzzy integral 

neutrosophic matices and fuzzy matrix. Section 3 presents a new type of fuzzy neutrosophic 

matrices and investigated some properties such as subtraction, commutative property and 

distributive property.  

2. Materials and Methods (proposed work with more details)  

In this section we recall some concepts of neutrosophic set, neutrosophic matrices and fuzzy 

neutrosophic matrices proposed by Kandasamy and Smarandache in their monograph [3], and also 

the concept of fuzzy matrix (One may refer to [2]) 

Definition 2.1 (Smarandache [1]). Let U be an universe of discourse then the neutrosophic set A is an 

object having the form A = {< x:TA(x), IA(x), FA(x)>, x U}, where the functions T, I, F : U→ ]−0, 1+[ 

define respectively the degree of membership (or Truthness), the degree of indeterminacy, and the 

degree of non-membership (or Falsehood) of the element x  U to the set A with the condition. 

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. 

From philosophical point of view, the neutrosophic set takes the value from real standard or 

non-standard subsets of ]−0, 1+[. So instead of ]−0, 1+[ we need to take the interval [0, 1] for technical 

applications, because ]−0, 1+[will be difficult to apply in the real applications such as in scientific and 

engineering problems. 

Definition 2.2 (Dhar et al. [3]). Let Mmxn= {(aij) : aij K(I)}, where K(I), is a 
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neutrosophic field. We call Mmxn to be the neutrosophic matrix. 

Example 2.1: Let R(I) = 〈R ∪ I 〉be the neutrosophic field  

M4x3 =  

M4x3 denotes the neutrosophic matrix, with entries from real and the indeterminacy. 

Definition 2.3 (Kandasamy and Smarandache [5]) 

Let N = [0, 1]  I where I is the indeterminacy. The m×n matrices Mmxn = {(aij) : aij [0, 1] I} is called 

the fuzzy integral neutrosophic matrices. Clearly the class of m×n matrices is contained in the class of 

fuzzy integral neutrosophic matrices. 

The row vector 1×n and column vector m×1 are the fuzzy neutrosophic row matrices and fuzzy 

neutrosophic column matrices respectively. 

Example 2.2: Let M4x3 =   be a 4 ×3 integral fuzzy neutrosophic matrix 

Definition 2.5 (Kandasamy and Smarandache [5]). 

Let Ns = [0, 1] ∪ {bI : b  [0, 1]}; we call the set Ns to be the fuzzy neutrosophic set. Let Ns be the fuzzy 

neutrosophic set. Mmxn = {(aij): aij Ns i= 1 to m and j = 1 to n} we call the matrices with entries from Ns 

to be the fuzzy neutrosophic matrices. 

Example 2.3: Let Ns = [0,1] ∪{bI: b [0,1]} be the fuzzy neutrosophic set and 

P =  

be a 3 ×3 fuzzy neutrosophic matrix. 

Definition 2.6 (Thomas [9]). A fuzzy matrix is a matrix which has its elements from the interval [0, 

1], called the unit fuzzy interval. Amxn fuzzy matrix for which m = n (i.e. the number of rows is equal 

to the number of columns) and whose elements belong to the unit interval [0, 1] is called a fuzzy 

square matrix of order n. A fuzzy square matrix of order two is expressed in the following way  

A=  ,  

where the entries x, y, t, z all belongs to the interval [0,1]. 

Definition 2.7 (Kandasamy and Smarandache [5]). Let A be a neutrosophic fuzzy matrix, whose 

entries is of the form a + Ib (neutrosophic number), where a, b are the elements of [0,1] and I is an 

indeterminate such that In = I, n being a positive integer. 
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A =  

Definition 2.8 Multiplication Operation of two Neutrosophic Fuzzy Matrices 

Consider two neutrosophic fuzzy matrices, whose entries are of the form a + Ib (neutrosophic num-

ber), where a, b are the elements of [0,1] and I is an indeterminate such that In = I, n being a positive 

integer, given by 

A =  
,  B  =  

The Multiplication Operation of two Neutrosophic Fuzzy Matrices is given by 

AB = 

D11 = [max{ min( , ), min( , )} + I max{ min{( , ), min( , )}] 

           D21 = [max {min( , ), min ( , )} + I max {min( , ), min( , )}] 

D21 = [max {min{( , ), min ( , )} + I max {min{( , ), min ( , )}] 

D22 = [max {min{( , ), min ( , )} + I max{ min{( , ), min ( , )}] 

Hence, AB = . 

3. Results (examples / case studies related to the proposed work)  

In this section we define the subtraction and distributive property of neutrosophic fuzzy matrices 

along with some properties associated with such matrices. 

3.1 Subtraction Operation of two Neutrosophic Fuzzy Matrices 

Consider two neutrosophic fuzzy matrices given by 

A =   

and  B =  . 

Addition and multiplication between two neutrosophic fuzzy matrices have been defined in 

Smarandache [2]. We would like to define the subtraction of these two matrices as follows. 

A- B = C, 

where cij are as follows 

c11 = min{x1, t1} + I min{y1, z1} 

c12 = min{x2, t2} + I min{y2, z2} 

c21 = min{x3, t3} + I min{y3, z3} 

c21 = min{x4, t4} + I min{y4, z4} 
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c31 = min{x5, t5} + I min{y5, z5} 

c32 = min{x6, t6} + I min{y6, z6} 

Since min{a, b} = min{b, a} so based on this we have the following properties. 

 Proposition 3.1. The following properties hold in the case of neutrosophic fuzzy matrix for 

subtraction 

(i) A-B = B-A 

(ii) (A - B) - C = A - (B - C) = (B- C) – A = (C – B) – A. 

Proof. Consider three neutrosophic fuzzy matrices A, B and C as follows. 

A = , B =            

and  C =  

A – B =  –   = D (say), 

where, 

          D11 =  min{ , }+Imin{ , } =  

         D12 = min{ , }+Imin{ , } =  

         D21 = min{ , }+Imin{ , }=  

        D22 = min{ , }+Imin{ , } =  

       D31 = min{ , }+Imin{ , } =  

       D32 = min{ , }+Imin{ , } =  

  D =   and B – A =  = D, 

 [  min(a, c) = min(c, a)] 

Hence, A – B = B – A. 

Now we have,  

D – C = (A – B) – C  

          = –   

          = F (say), 
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where, 

F11 = min{ , }+Imin{ , } = min{ , , }+Imin{ , , } =  

F12 = min{ , }+Imin{ , } = min{ , , }+Imin{ , , } =  

F21 = min{ , }+Imin{ , } = min{ , , }+Imin{ , , }=  

F22 = min{ , }+Imin{ , }= min{ , , }+Imin{ , , }=  

F31 = min{ , }+Imin{ , } = min{ , , }+Imin{ , , }=  

F32 = min{ , }+Imin{ , } = min{ , , }+Imin{ , , }=  

(A – B) – C = F = . 

Next we have, 

B – C =   –    = E (say), 

where 

         E11 = min{ , }+Imin{ , } =  

         E12 = min{ , }+Imin{ , } =  

        E21 = min{ , }+Imin{ , } =  

        E22 = min{ , }+Imin{ , }=  

       E31 = min{ , }+Imin{ , } =  

       E32 = min{ , }+Imin{ , } = . 

We have 

 B – C = E =  

A – (B – C) =  –   , 

where 

min{ , }+Imin{ , } = min{ , , }+Imin{ , , }  
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min{ , }+Imin{ , } = min{ , , }+Imin{ , , }  

min{ , }+Imin{ , } = min{ , , }+Imin{ , , }  

min{ , }+Imin{ , }= min{ , , }+Imin{ , , } 

min{ , }+Imin{ , } = min{ , , }+Imin{ , , } 

min{ , }+Imin{ , } = min{ , , }+Imin{ , , } 

F = 

Therefore, A – (B – C) = F = (A – B) – C. 

3.2 Identity element for subtraction  

In the group theory under the operation “*” the identity element IN of a set is an element such that IN 

* A = A * IN = A. 

Specially the identity element of neutrosophic set is IN = {[aij +bijI]mxn:  aij = 1 = bij for all i, j}. 

Result 3.1. For a neutrosophic fuzzy matrix, IN is the identity matrix for subtraction. 

Let A= , and IN = be the neutrosophic identity 

matrix of order 3x2. 

Then we have the following 

     A – IN = – 

                  = = IN –A = A, 

where 

         min{ , 1}+Imin{ ,1} =  

         min{ , 1}+Imin{ ,1}=  

         min{ , 1}+Imin{ ,1} =  

         min{ , 1}+Imin{ ,1} =  

         min{ , 1}+Imin{ ,1} =  
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         min{ , 1}+Imin{ ,1} =  

3.3 Identity element for addition  

In neutrosophic matrix addition we can define a identity element IN such that IN = {[aij +bijI]mxn:  aij = 0 

= bij for all i, j} 

Let A= , and IN = be the neutrosophic identity 

matrix of order 3x2. 

Then we have the following 

A  – IN = – 

            = 

            = IN –A = A, 

where 
         max{ , 0}+Imax{ ,0} =  
         max{ , 0}+Imax{ ,0}=  
         max{ , 0}+Imax{ ,0} =  
        max{ , 0}+Imax{ ,0} =  
        max{ , 0}+Imax{ ,0} =  
        max{ , 0}+Imax{ ,0} = . 

Result 3.2. The neutrosophic set forms a groupoid,  semigroup, monaid and is commutative under 

the neutrosophic matrix operation of subtraction. The distributive law also holds for subtraction, i.e. 

A(B – C) = AB – AC. 

Result 3.3. The neutrosophic set forms a groupoid,  semigroup, monaid and commutative under 

the operation of addition. The distributive law also holds for addition, i.e. 

A(B + C) = AB + AC. 

Thus we have, A(B C) = AB  AC. 

4. Applications 

The formation of neutrosophic group structure, neutrosophic matrix set and algebraic structure 

on this set, the results are applicable 

5. Conclusions  

In this paper we have established some neutrosophic algebraic property, and subtraction operation 

addition and multiplication of these matrices and commutative property, distributive property had 

been examine. This result can be applied further application of neutrosophic fuzzy matric theory. 

For the development of neutrosophic group and its algebraic property the results of this paper 

would be helpful. 
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Abstract: In this paper we study the concept of neutrosophic bipolar vague soft sets and some of its 

operations. It is the combination of neutrosophic bipolar vague sets and soft sets. Further we 

develop a decision making method based on neutrosophic bipolar vague soft set. A numerical 

example has been shown. Some new operations on neutrosophic bipolar vague soft set have also 

been designed. 
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1. Introduction 

Most real life problems involve data with a high level of uncertainty and imprecision. Traditionally, 

classical mathematical theories such as fuzzy mathematics, probability theories and interval 

mathematics are used to deal with uncertain and fuzziness. However all these theories have their 

difficulties and weakness as pointed out by Molodtsov. This led to the introduction of the theory of 

soft sets by Molodtsov [ 18 ] in 1999. Among the significant milestones in the development of the 

theory of soft sets and its generalizations in the introduction of the possibility value which indicates 

the degree of possibility of belongingness of the elements in the universal set as well as the elements 

of each sets which enables the users to know the opinion of the experts in one model without the 

need for any operation. However, in order to handle the indeterminate and inconsistent information, 

neutrosophic set is defined [23,24 ] as a new mathematical tool for dealing with problems involving 

incomplete, indeterminacy and inconsistent knowledge. The theory of vague set was first proposed 

by Gau and Buehrer [13 ] as an extension of fuzzy set theory[29] and vague sets are regarded as a 

special case of content-dependent fuzzy sets. 

In, [23 ] ,Samerandeche talked about neutrosophic set theory, one of the most important new 

mathematical tools for handling problems involving imprecise, indeterminacy and inconsistent data. 

Neutrosophic vague set was defined by S. Allehezaleh [2 ] in 2015. Lee [17]  introduced 

bipolar-valued fuzzy sets and their operations in 2000. It an extension of fuzzy set [ 29 ].  Ali et al.[ 

1] introduced the notion of bipolar neutrosophic soft set in 2017.   Hassain et al. [16] introduced the 

concept of neutrosophic bipolar vague set and its application to neutrosophic bipolar vague graphs. 

For real life  problems see the following ([3] to [12],[14],[15],[19]to[22],[25]to[28],[30]to[32]). 
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 In this paper, we first introduce the concept of neutrosophic bipolar vague soft set and some of its 

operations. It is the combination of neutrosophic bipolar vague set and soft set. We develop a 

decision making method based on neutrosophic bipolar vague soft set. A numerical example has 

been shown. Some new operations on neutrosophic bipolar vague soft set have been designed. 

Finally we present an application of this concept in solving a decision making problem. 

2. Materials and Methods (proposed work with more details)  

In this section we recall some definitions and results for our future work. 

 Definition2.1:[ 8 ] Let U be an initial universal set and let E be a set of parameters. Let P(U) denote 

the power set of all  subsets of U and let A⊆E. A collection of pairs (f, A) is called a soft set  over U, 

where f is a mapping given by f : A → P(U). 

Definition2.2:[ 17 ] Let U be the universe. Then a bipolar fuzzy set A on U is defined by  

 

Here  the positive membership function.  

the negative membership function. 

Definition2.3:[ 17 ] If A and B be two bipolar fuzzy sets then their union, intersection and 

complement are defined as follows: 

(i)  

(ii)  

(iii)  

(iv)  

(v)  and . 

Definition2.4: [13 ] A vague set A in the universe of discourse U is a pair 

(tA, fA) where tA, FA:U , 1] such that tA + fA  for all U. The function  and  are called the 

true membership function and the false membership function respectively. The interval 

 is called the value of u in A and is denoted by  . 

 

Definition2.5:[ 13 ] Let X be a non-empty set. Let A and B be two vague sets in the form 

,  . Then  

(i)  and . 
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(ii)  

(iii)  

(iv) .  

Definition2.6: [ 23,24 ] A neutrosophic set A  on the universe of discourse U  is defined as  

      , , ,A A AA x x x x x U     , where , , 0,1A A A U        are functions such that the 

condition:      , 0 3A A Ax U x x x          is satisfied. 

Here      , ,A A Ax x x   represent the truth-membership, indeterminacy-membership and 

falsity-membership respectively of the element x U .From philosophical point of view, the 

neutrosophic set takes the value from real standard or non-standard subsets of 0,1   . But in real 

life application in scientific and engineering problems it is difficult to use neutrosophic set with 

value from real standard or non-standard subset of 0,1   . Hence we consider the neutrosophic set 

which takes the value from the subset of   0,1 .  

Definition2.7: [ 2 ] A neutrosophic vague set ANV on the universe of discourse U written as ANV = {<x; 

(x); (x); (x)>; xU } whose truth-membership, indeterminacy-membership, and 

falsity-membership functions is defined as (x) = [T-, T+], (x) = [I-, I+] and (x) = [F-, 

F+], where (1) T+ = 1 − F−, (2) F+ = 1 − T− and (3) −0 ≤ T− + I− + F− ≤ 2+. 

Definition2.8:[ 16  ] Let U be the universe of discourse. The neutrosophic bipolar vague set defined 

as ANBV where  

 
Here 

 , 

, 

, Where ,  

 

The condition is . 
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Also,  ,  

, 

, 

where  ,  

The condition is . 

Example 2.9: Let  be a set of universe then the NBV set ANBV as follows: 

ANBV =  

, 

. 

Definition 2.10: [ 16] The compliment  of  is as  

 = { },  

 = { },  

 = { },  

 = { },  

 = { },  

 = { }. 

Example 2.11: Considering the example 2.9, we have  

 =  

, 

. 

Definition 2.12: [ 16 ] Two NBV sets  and  of the universe U are said to be equal if  for 

all , 
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, , 

  and  ,   

, . 

 Where (say). 

Definition 2.13 [16 ] If in the universe U, two NBV sets  and  be given as 

,  ,  

 and  ,   

,  

Then  for  

Definition 2.14: [16 ] The union and intersection of two NBV sets  and  are given as 

(i)    where 

 

 

, and  

 

 

. 

(ii)    is given by 

 

 

, and  
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. 

. Neutrosophic Bipolar Vague Soft Set. 

In this section we study the concept of Neutrosophic bipolar vague soft set. It is a combination 

of neutrosophic vague set & the soft set. Further we study some of its operation and properties. 

Definition 3.1: Let U be a universal set. E be a set of parameters and . Let NBVset(U) denotes 

the set of all neutrosophic bipolar vague set of U. Then the pair  is called an neutrosophic 

bipolar vague soft set (NBVS set in short) over U. Here  is a mapping . The 

collection of all neutrosophic bipolar vague soft sets over  is denoted by  . 

Example 3.2: Let , . Then neutrosophic bipolar vague soft sets  

and  over  are as follows: 
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. 

 

Definition 3.3: An empty neutrosophic bipolar vague soft set  in  is defined as 

. 

Definition 3.4: An absolute neutrosophic bipolar vague soft set  in  is defined as 

. 

Example 3.5: Let  then 

 

 

, 

 

 

 

(a) Absolute neutrosophic bipolar vague soft set  in  is defined as 

, 

, 

,  

, 
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, 

} 

Definition 3.6:  

. Where i = 1, 2 be two 

neutrosophic bipolar vague soft set over U. then  is neutrosophic bipolar vague soft subset of  

is denoted by  if  

,  

,  

  

And ,  

,  

. 

 

Example 3.7: Consider the example 3.2. In this case  as per our definition 3.6. 

Definition 3.8: Let A be a neutrosophic bipolar vague soft set over . Then the complement of a 

neutrosophic bipolar vague soft set A is denoted by  is defined as 

 

. 

, 

, 

 and  

, 

, 

. 
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Example 3.9: Let  then the neutrosophic bipolar vague soft set A is  

 

 

 

 

Then the complement of A is  is as 

 

 

 

  

Definition 3.10: Let  

 

. Then the union and 

intersection of  and  of two neutrosophic bipolar vague soft set are defined as follows: 

(a)   =   

 

 
Where 
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And  

 

 

 

(b)   =  

 

 
Where 

  

 

 
And  
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Example 3.11. Consider the example 3.2 then 

 

 

 

 

 

Similarly . 

Definition 3.12 Let , , , , 

, }:  be a neutrosophic bipolar vague soft set over 

U. then aggregation neutrosophic bipolar vague soft operator denoted by  is defined as  

 

Where  

 

Where 
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Where  is the cardinality of . 

4. Application of neutrosophic bipolar vague soft set. 

We develop an algorithm based on neutrosophic bipolar vague soft sets and give numerical example 

to show the fossibility and effectiveness of the approaches in definition 3.12. 

Algorithm 

1. First we construct the neutrosophic bipolar vague soft set on . 

2. Then we compute the neutrosophic bipolar vague soft set aggregation operator. 

3. Average of each intervals and find . 

4. Find the optimum value on U. 

Assume that a farm wants to fill a position in the office. There are three candidates for the post. The 

selection committee use the neutrosophic bipolar vague soft decision making method. Assume that 

the set of candidate  which may be characterized by a set of parameters 

. Where = “experience”,  = “technical knowledge”, = “age”. 

(a) The selection committee construct a neutrosophic bipolar vague soft set A over the set  as 

 

 

 

 

 

,  
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. 

(b) Then we find the neutrosophic vague soft set aggregation operator  of A2 as 

For  , 

+[1,1] +

 

For  , 

+[1,1] +

 

For  , 

+[1,1] +

 

 

(c) We take the average of each interval. 

i.e. [1,1]=1,  
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(d) The  

(e) Finally the selection committee choose  for the post since  has the maximum 

degree 0.1455 among them. 

5. Conclusion  

In this paper, we introduce the neutrosophic bipolar vague soft set. It is a combination of soft set and 

the neutrosophic bipolar vague set. We develop a decision making method based on neutrosophic 

bipolar vague soft set. A numerical example has beengiven. Some new operations on neutrosophic 

bipolar vague soft set have been designed. For further study, it may be applied to real world 

problems with realistic data and extend proposed algorithm to other decision making problem with 

vagueness and uncertainty. Here we require less calculations and few steps to get our result. 
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Abstract: In this article, we presented eight different types of neutrosophic topological groups, each 

of which depends on the conceptions of neutrosophic -open sets and neutrosophic -continuous 

functions. Also, we found the relation between these types, and we gave some properties on the 

other side. 

Keywords: Neutrosophic  -open sets, neutrosophic  -continuous functions, neutrosophic 

topological groups, and neutrosophic topological groups of type (𝑅), 𝑅 = 1,2,3, … ,8. 
 

1. Introduction   

Smarandache [1,2] originally handed the theory of “neutrosophic set”. Recently, Abdel-Basset 

et al. discussed a novel neutrosophic approach [3-6]. Salama et al. [7] gave the clue of neutrosophic 

topological space. Arokiarani et al. [8] added the view of neutrosophic α -open subsets of 

neutrosophic topological spaces. Dhavaseelan et al. [9] presented the idea of neutrosophic 

𝛼𝑚-continuity. Banupriya  et al. [10] investigated the notion of neutrosophic αgs continuity and 

neutrosophic αgs irresolute maps. Nandhini et al. [11] presented Nαg#ψ-open map, Nαg#ψ-closed 

map, and Nαg#ψ-homomorphism in neutrosophic topological spaces. Sumathi et al. [12] submitted 

the perception of neutrosophic topological groups. The target of this article is to perform eight 

different types of neutrosophic topological groups, each of which depends on the notions of 

neutrosophic α-open sets and neutrosophic α-continuous functions and also we found the relation 

between these types. 

2. Preliminaries  

In all this paper, (𝒢, 𝜏) and (ℋ, 𝜎) (or briefly 𝒢  and ℋ ) frequently refer to neutrosophic 

topological spaces (or shortly NTSs). Suppose 𝒜 be a neutrosophic open subset (or shortly Ne-OS) 

of 𝒢, then its complement 𝒜𝑐 is closed (or shortly Ne-CS). In addition, its interior and closure are 

denoted by 𝑁𝑖𝑛𝑡(𝒜)and 𝑁𝑐𝑙(𝒜), correspondingly. 
 

Definition 2.1 [8]: Let 𝓐 be a Ne-OS in NTS 𝓖, then it is said that a neutrosophic 𝛂-open subset (or 

briefly Ne-𝛂OS) if 𝓐 ⊆ 𝑵𝒊𝒏𝒕(𝑵𝒄𝒍(𝑵𝒊𝒏𝒕(𝓐))). Then 𝓐𝒄 is the so-called a neutrosophic 𝛂-closed (or 

briefly Ne-𝛂CS). The collection of all such these Ne-𝛂OSs (resp. Ne-𝛂CSs) of 𝓖 is denoted by 

𝑵𝜶𝑶(𝓖) (resp. 𝑵𝜶𝑪(𝓖)). 
 

Definition 2.2 [8]: Let 𝒜 be a neurrosophic set in NTS 𝒢. Then the union of all such these Ne-αOSs 

involved in 𝒜( symbolized by 𝛼𝑁𝑖𝑛𝑡(𝒜)) is said to be the neutrosophic α-interior of 𝒜. 
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Definition 2.3 [8]: Let 𝒜 be a neurrosophic set in NTS 𝒢. Then the intersection of all such these 

Ne-αCSs that contain 𝒜 ( symbolized by 𝛼𝑁𝑐𝑙(𝒜)) is said to be the neutrosophic α-closure of 𝒜. 

Proposition 2.4 [13]: Let 𝒜 be a neutrosophic set in NTS 𝒢. Then 𝒜 ∈ 𝑁𝛼𝑂(ℬ) iff there exists a Ne-
αOS ℬ where ℬ ⊆ 𝒜 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ)). 

 

Proposition 2.5 [8]: In any NTS, the following claims hold, and not vice versa: 

(i) For each, Ne-OS is a Ne-αOS. 

(ii) For each, Ne-CS is a Ne-αCS. 

 

Definition 2.6: Let 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) be a function, then 𝒽 is called: 

(i) a neutrosophic continuous (in short Ne-continuous) iff for each 𝒜 Ne-OS in ℋ, then 𝒽−1(𝒜) is 

a Ne-OS in 𝒢 [14]. 

(ii) a neutrosophic α-continuous (in short Ne-α-continuous) iff for each 𝒜  Ne-OS in ℋ , then 

𝒽−1(𝒜) is a Ne-αOS in 𝒢 [8]. 

(iii) a neutrosophic α-irresolute (in short Ne-α-irresolute) iff for each 𝒜  Ne-αOS in ℋ , then 

𝒽−1(𝒜) is a Ne-αOS in 𝒢. 

 

Proposition 2.7 [8]: Every Ne-continuous function is a Ne-α-continuous, but the opposite is not valid 

in general. 

 

Proposition 2.8: Every Ne-α-irresolute function is a Ne-α-continuous, but the opposite is not exact in 

general. 

Proof: Let 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) be a Ne-α-irresolute function and let 𝒜 be any Ne-OS in ℋ. From 

proposition 2.5, we get 𝒜  is a Ne-αOS in ℋ . Since 𝒽 is a Ne-α-irresolute, then 𝒽−1(𝒜) is a 

Ne-αOS in 𝒢. Therefore 𝒽 is a Ne-α-continuous.  

 

Example 2.9: Let 𝒢 = {𝑝, 𝑞}. Suppose the neutrosophic sets 𝒜, ℬ, 𝒞 and 𝒟 be in 𝒢 as follows:  

𝒜 = 〈𝑥, (
𝑝

0.5
,

𝑞

0.3
) , (

𝑝

0.5
,

𝑞

0.3
) , (

𝑝

0.5
,

𝑞

0.7
)〉, ℬ = 〈𝑥, (

𝑝

0.5
,

𝑞

0.6
) , (

𝑝

0.5
,

𝑞

0.6
) , (

𝑝

0.5
,

𝑞

0.4
)〉,  

𝒞 = 〈𝑥, (
𝑝

0.6
,

𝑞

0.3
) , (

𝑝

0.6
,

𝑞

0.3
) , (

𝑝

0.4
,

𝑞

0.7
)〉 and 𝒟 = 〈𝑥, (

𝑝

0.6
,

𝑞

0.7
) , (

𝑝

0.6
,

𝑞

0.7
) , (

𝑝

0.4
,

𝑞

0.3
)〉. 

Then the families 𝜏 = {0𝑁 , 𝒜, 1𝑁} and 𝜎 = {0𝑁 , 𝒟, 1𝑁} are neutrosophic topologies on 𝒢.  

Thus, (𝒢, 𝜏) and (𝒢, 𝜎) are NTSs. Define 𝒽: (𝒢, 𝜏) ⟶ (𝒢, 𝜎)  as (𝑝) = 𝑝, 𝒽(𝑞) = 𝑞 . Hence 𝒽  is a 

Ne-α-continuous function, but not Ne-α-irresolute. 

 

Definition 2.10: A function 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) is said to be ℳ-function iff 𝒽−1(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ))) ⊆

𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒽−1(ℬ) )), for every Ne-αOS ℬ of ℋ. 

 

Theorem 2.11: If 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) is a Ne-α-continuous function and ℳ-function, then 𝒽 is a 

Ne-α-irresolute. 

Proof: Let 𝒜 be any Ne-αOS of ℋ, there exists a Ne-OS ℬ of ℋ where ℬ ⊆ 𝒜 ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ)).  

Since 𝒽 is ℳ-function, we have 𝒽−1(ℬ)  ⊆ 𝒽−1(𝒜) ⊆ 𝒽−1(𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(ℬ)) ) ⊆ 𝑁𝑖𝑛𝑡(𝑁𝑐𝑙(𝒽−1(ℬ) )). 
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By proposition 2.4, we have 𝒽−1(𝒜) is a Ne-αOS. Hence, 𝒽 is a Ne-α-irresolute.  

 

Definition 2.12 [8]: A function  𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎)  is called a neutrosophic α -open (resp. 

neutrosophic α -closed) iff for each 𝒜 ∈ 𝑁𝛼𝑂(𝒢)  (resp.  𝒜 ∈ 𝑁𝛼𝐶(𝒢) ), 𝒽(𝒜) ∈ 𝑁𝛼𝑂(ℋ) 

(resp. 𝒽(𝒜) ∈ 𝑁𝛼𝐶(ℋ)).  

 

Definition 2.13 [15]: A bijective function  𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎)  is called a neutrosophic 

homeomorphism iff 𝒽 and 𝒽−1 are Ne-continuous. 

 

Definition 2.14 [12]: A neutrosophic topological group (briefly NTG) is a set 𝒢 which carries a 

group structure and a neutrosophic topology with the following two postulates: 

(i) The operation function 𝜇: 𝒢 × 𝒢 → 𝒢, given as 𝜇(𝑔, ℎ) = 𝑔 ⋅ ℎ is a Ne-continuous. 

(ii) The inversion function 𝐼: 𝒢 → 𝒢, given as 𝐼(𝑔) = 𝑔−1 is a Ne-continuous. 

 

Remark 2.15 [12]: 

(i) The function 𝛾: 𝒢 × 𝒢 → 𝒢, given as 𝛾(𝑔, ℎ) = 𝑔 ⋅ ℎ is a Ne-continuous iff for each Ne-OS 𝒞 and 

𝑔 ⋅ ℎ ∈ 𝒞, there exist Ne-OS 𝒜, ℬ such that 𝑔 ∈ 𝒜, ℎ ∈ ℬ, and 𝒜 ⋅ ℬ ⊆ 𝒞. 

(ii) The function 𝑖𝑛𝑣: 𝒢 → 𝒢 is a Ne-continuous iff for each Ne-OS 𝒜 and 𝑔−1 ∈ 𝒜, there exists a 

Ne-OS ℬ and 𝑔 ∈ ℬ where ℬ−1 ⊆ 𝒜. 

 

Definition 2.16 [16]: A group 𝒢 is nice iff its operation is nice. 

3. Different Types of Neutrosophic Topological Groups            

In this section, we introduce eight types of neutrosophic topological groups, each of which 

depends on the notions of neutrosophic α-open sets and neutrosophic α-continuous functions. 

 

Definition 3.1: Let 𝒢 be a set that equips with a group structure and a neutrosophic topology. Then 

𝒢 is called: 

(i) NTG of type (1) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 and the inversion function 𝐼: 𝒢 → 𝒢 are 

both Ne-α-continuous. 

(ii) NTG of type (2) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 and the inversion function 𝐼: 𝒢 → 𝒢 are 

both Ne-α-irresolute. 

(iii) NTG of type (3) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-continuous and the inversion 

function 𝐼: 𝒢 → 𝒢 is Ne-continuous. 

(iv) NTG of type (4) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-irresolute and the inversion 

function 𝐼: 𝒢 → 𝒢 is Ne-continuous.  

(v) NTG of type (5) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-irresolute and the inversion 

function 𝐼: 𝒢 → 𝒢 is Ne-α-continuous. 

(vi) NTG of type (6) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-α-continuous and the inversion 

function 𝐼: 𝒢 → 𝒢 is Ne-α-irresolute. 

(vii) NTG of type (7) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-continuous, and the inversion 

function 𝐼: 𝒢 → 𝒢 is Ne-α-continuous. 
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(viii) NTG of type (8) iff the operation function 𝜇: 𝒢 × 𝒢 → 𝒢 is Ne-continuous, and the inversion 

function 𝐼: 𝒢 → 𝒢 is Ne-α-irresolute. 

 

Proposition 3.2: 

(i) Every NTG is a NTG of type (𝑅), where 𝑅 = 1,3,7. 

(ii) Every NTG of type (2) is a NTG of type (5). 

(iii) Every NTG of type (2) is a NTG of type (6). 

(iv) Every NTG of type (4) is a NTG of type (3). 

(v) Every NTG of type (4) is a NTG of type (5). 

(vi) Every NTG of type (𝑅) is a NTG of type (1), where 𝑅 = 2,3, … ,8. 

Proof: 

(i) Let 𝒢  be a NTG, then the operation function 𝜇  and the inversion function  𝐼  are both 

Ne-continuous. By proposition 2.7, we have that the operation function 𝜇  and the inversion 

function 𝐼 are both Ne-α-continuous. Hence, 𝒢 is a NTG of type (𝑅), where 𝑅 = 1,3,7. 

(ii) Let 𝒢 be a NTG of type (2), then the operation function 𝜇 and the inversion function 𝐼 are both 

Ne-α-irresolute. By proposition 2.8, we have that the inversion function 𝐼 is a Ne-α-continuous. 

Hence, 𝒢 is a NTG of type (5). 

(iii) Let 𝒢 be a NTG of type (2), then the operation function 𝜇 and the inversion function 𝐼 are 

both Ne- α -irresolute. By proposition 2.8, we have that the operation function  𝜇  is a 

Ne-α-continuous. Hence, 𝒢 is a NTG of type (6). 

(iv) Let 𝒢  be a NTG of type (4), then the operation function 𝜇  is a Ne-α-irresolute and the 

inversion function 𝐼 is a Ne-continuous. By proposition 2.8, we have that the operation function 𝜇 

is a Ne-α-continuous. Hence, 𝒢 is a NTG of type (3). 

(v) Let 𝒢 be a NTG of type (4), then the operation function 𝜇 is a Ne-α-irresolute and the inversion 

function 𝐼  is a Ne-continuous. By proposition 2.7, we have that the inversion function 𝐼  is a 

Ne-α-continuous. Hence, 𝒢 is a NTG of type (5). 

(vi) Let 𝒢 be a NTG of type (𝑅), where 𝑅 = 2,3, … ,8. By proposition 2.7 and proposition 2.8, we 

have that the operation function 𝜇 and the inversion function 𝐼 are both Ne-α-continuous. Hence, 𝒢 

is a NTG of type (1).  

 

Proposition 3.3: 

(i) A NTG of type (3) with ℳ-function operation 𝜇 is a NTG of type (4). 

(ii) A NTG of type (1) with ℳ-function inversion 𝐼 and ℳ-function operation 𝜇 is a NTG of type 

(2). 

(iii) A NTG of type (1) with ℳ-function operation 𝜇 is a NTG of type (5). 

(iv) A NTG of type (1) with ℳ-function inversion 𝐼 is a NTG of type (6). 

(v) A NTG of type (5) with ℳ-function inversion 𝐼 is a NTG of type (2). 

(vi) A NTG of type (6) with ℳ-function operation 𝜇 is a NTG of type (2). 

(vii) A NTG of type (7) with ℳ-function inversion 𝐼 is a NTG of type (8). 

Proof: 

(i) Let 𝒢 be a NTG of type (3), then the operation function 𝜇 is a Ne-α-continuous and the inversion 

function 𝐼 is a Ne-continuous. Since 𝜇 is ℳ-function. So by Theorem 2.11, we get that operation 𝜇  
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is a Ne-α-irresolute. Hence, 𝒢 is a NTG of type (4).  

(ii) Let 𝒢 be a NTG of type (1), then the operation function 𝜇 and the inversion function 𝐼 are both 

Ne-α-continuous. Since 𝜇, 𝐼 are ℳ-function. So by Theorem 2.11, we get that the operation function 

𝜇 and the inversion function 𝐼 are both Ne-α-irresolute. Hence, 𝒢 is a NTG of type (2). The proof is 

evident for others. 

 

Remark 3.4: The next illustration displays relationship among different kinds of neutrosophic 

topological groups mentioned in this section and the neutrosophic topological group:                      

 

 

Definition 3.5: A bijective function 𝒽: (𝒢, 𝜏) ⟶ (ℋ, 𝜎) is said to be: 

(i) Neutrosophic α-homeomorphism iff 𝒽 and 𝒽−1 are Ne-α-continuous. 

(ii) Neutrosophic α-irresolute – homeomorphism iff 𝒽 and 𝒽−1 are Ne-α-irresolute.  

 

Definition 3.6: Let (𝒢, 𝜏)  be a NTS, then  𝒢  is called neutrosophic α -homogeneous (resp. 

neutrosophic α -irresolute – homogeneous) iff for any two elements 𝑔, ℎ ∈ 𝒢 , there exists a 

neutrosophic α-homeomorphism (resp. neutrosophic α-irresolute – homeomorphism) from 𝒢 onto 

𝒢 which transforms 𝑔 into ℎ. 

 

Proposition 3.7: The inversion function 𝐼  in a NTG of type (𝑅) , where  𝑅 = 1,2, … … ,8  is a 

neutrosophic α-homeomorphism. 
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Proof: Let 𝒢 be a NTG of type (1). Since 𝒢 is a group, 𝐼(𝒢) = 𝒢−1 = 𝒢 which implies 𝐼 is onto, 

also for any 𝑔 ∈ 𝒢 , there exists a unique inverse which is equal to 𝐼(𝑔)  which implies, 𝐼  is 

one-to-one. Now; we have 𝐼  is a Ne- α -continuous and 𝐼−1: 𝒢 → 𝒢  such that 𝐼−1(𝑔) = 𝑔 , i.e 

𝐼−1(𝑔) = 𝐼(𝑔)  for each  𝑔 ∈ 𝒢 , so,  𝐼−1  is a Ne- α -continuous. Thus, 𝐼  is a neutrosophic 

α-homeomorphism. In the case of type (𝑅), we have a similar proof, where 𝑅 = 2,3, … ,8.  

 

Corollary 3.8: Let 𝒢 be a NTG of type (1) and 𝒜 ⊆ 𝒢. If 𝒜 ∈ 𝜏, then 𝒜−1 ∈ 𝑁𝛼𝑂(𝒢). 

Proof: Since the inversion function 𝐼 is a neutrosophic α-homeomorphism, then 𝐼(𝒜) = 𝒜−1 is a 

Ne-αOS in 𝒢 for each 𝒜 ∈ 𝜏.  

 

Proposition 3.9: The inversion function 𝐼 in a NTG of type (3) [and type (4)] is a neutrosophic 

homeomorphism. 

Proof: Suppose 𝒢 be a NTG of type (3). Since 𝒢 is a group, 𝐼(𝒢) = 𝒢−1 = 𝒢 which implies 𝐼 is 

onto, also for any 𝑔 ∈ 𝒢, there exists a unique inverse which is equal to 𝐼(𝑔) which implies, 𝐼 is 

one-to-one. Now; we have 𝐼 is a Ne-continuous and 𝐼−1: 𝒢 → 𝒢 such that 𝐼−1(𝑔) = 𝑔, i.e 𝐼−1(𝑔) =

𝐼(𝑔) for each 𝑔 ∈ 𝒢, so, 𝐼−1  is a Ne-continuous. Thus, 𝐼 is a neutrosophic homeomorphism. In the 

case of type (4), we have similar proof.  

 

Proposition 3.10: The inversion function 𝐼 in a NTG of type (𝑅), where 𝑅 = 2,6,8 is a neutrosophic 

α-irresolute – homeomorphism. 

Proof: Suppose 𝒢 be a NTG of type (2). Since 𝒢 is a group, 𝐼(𝒢) = 𝒢−1 = 𝒢 which implies 𝐼 is 

onto, also for any 𝑔 ∈ 𝒢, there exists a unique inverse which is equal to 𝐼(𝑔) which implies, 𝐼 is 

one-to-one. Now; we have 𝐼 is a Ne-α-irresolute and 𝐼−1: 𝒢 → 𝒢 such that 𝐼−1(𝑔) = 𝑔, i.e 𝐼−1(𝑔) =

𝐼(𝑔)  for each  𝑔 ∈ 𝒢 , so, 𝐼−1   is a Ne- α -irresolute. Thus, 𝐼  is a neutrosophic α -irresolute – 

homeomorphism. In the case of type (6) and type (8), we have a similar proof.  

 

Proposition 3.11: Let 𝒢 be a set which carries a group structure and a neutrosophic topology, let 

𝑘1, 𝑘2 ∈ 𝒢. Then for each 𝑔 ∈ 𝒢 if one of the following functions:  

(i) 𝑙𝑘1
(𝑔) = 𝑘1 ⋅ 𝑔 

(ii) 𝑟𝑘1
(𝑔) = 𝑔 ⋅ 𝑘1 

(iii) 𝒽𝑘1𝑘2
(𝑔) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2     

is a neutrosophic α-homeomorphism (resp. neutrosophic α-irresolute – homeomorphism), then so 

the others. 

Proof: Since 𝑘1and 𝑘2 are arbitrary elements in 𝒢, clear that 𝑙𝑘1
and 𝑟𝑘1

come from 𝒽𝑘1𝑘2
 by taking 

𝑘2 = 𝑒  or 𝑘1 = 𝑒  respectively. Hence, when 𝒽𝑘1𝑘2
 is a neutrosophic α -homeomorphism, both 

𝑙𝑘1
and 𝑟𝑘2

are neutrosophic α -homeomorphisms. Now; when 𝑙𝑘1
 is a neutrosophic 

α-homeomorphism. Since 𝒢 is a group, 𝒢 ⋅ 𝑘 = 𝒢 for each 𝑘 ∈ 𝒢 then  𝒢 ⋅ 𝑘2 = 𝒢. Hence, for each 

ℎ ∈ 𝒢 ⋅ 𝑘2, 𝑙𝑘1
(ℎ) = 𝑘1 ⋅ ℎ, 𝑙𝑘1

 is a neutrosophic α-homeomorphism. But ℎ = 𝑔 ⋅ 𝑘2 for some 𝑔 ∈ 𝒢, 

then for each  𝑔 ∈ 𝒢 ,  𝑙𝑘1
(ℎ) = 𝑙𝑘1

(𝑔 ⋅ 𝑘2) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2 = 𝒽𝑘1𝑘2
(𝑔) , 𝒽𝑘1𝑘2

 is a neutrosophic 

α-homeomorphism. Then by the first part of the proof, 𝑟𝑘1
. And we have a similar proof if we are 

beginning with 𝑟𝑘1
 is a neutrosophic α-homeomorphism. In the case of neutrosophic α-irresolute – 

homeomorphism, we have a similar proof.  
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Theorem 3.12: Let 𝒢 be a nice NTG of type (𝑅), where 𝑅 = 1,2,3, … ,8 and let 𝑘1, 𝑘2 ∈ 𝒢. Then for 

each 𝑔 ∈ 𝒢 the following functions: 

(i) 𝑙𝑘1
(𝑔) = 𝑘1 ⋅ 𝑔 

(ii) 𝑟𝑘1
(𝑔) = 𝑔 ⋅ 𝑘1 

(iii) 𝒽𝑘1𝑘2
(𝑔) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2     

are neutrosophic α-homeomorphisms. 

Proof: Let 𝒢 be a nice NTG of type (1). It is clear that each of the functions 𝑙𝑘1
, 𝑟𝑘1

and 𝒽𝑘1𝑘2
 is a 

bijective function. Let 𝒽 be the operation of  𝒢, then 𝒽 is a Ne-α-continuous. Since  𝒢 is a nice, so 

𝑙𝑘1
= 𝒽/{𝑘1} × 𝒢  is a Ne-α-continuous. Similarly, 𝑙𝑘1

−1(𝑔) = 𝑘1
−1 ⋅ 𝑔, 𝑙𝑘1

−1 is a Ne-α-continuous. 

Hence, 𝑙𝑘1
 is a neutrosophic α-homeomorphism. Thus, because of the preceding proposition, 𝑟𝑘1

 

and 𝒽𝑘1𝑘2
 are neutrosophic α -homeomorphisms. The case of type (𝑅)  has a similar proof, 

where 𝑅 = 2,3, … ,8.  

 

Theorem 3.13: Let 𝒢 be a nice NTG of type (𝑅), where 𝑅 = 2,4,5 and let 𝑘1, 𝑘2 ∈ 𝒢. Then for each 

𝑔 ∈ 𝒢 the following functions: 

(i) 𝑙𝑘1
(𝑔) = 𝑘1 ⋅ 𝑔 

(ii) 𝑟𝑘1
(𝑔) = 𝑔 ⋅ 𝑘1 

(iii) 𝒽𝑘1𝑘2
(𝑔) = 𝑘1 ⋅ 𝑔 ⋅ 𝑘2     

 are neutrosophic α-irresolute – homeomorphisms. 

Proof: Let 𝒢 be a nice NTG of type (2). It is clear that each of the functions 𝑙𝑘1
, 𝑟𝑘1

and 𝒽𝑘1𝑘2
 is a 

bijective function. Let 𝒽 be the operation of  𝒢, then 𝒽 is a Ne-α-irresolute. Since  𝒢 is a nice, so 

𝑙𝑘1
= 𝒽/{𝑘1} × 𝒢   is a Ne-α-irresolute. Similarly, 𝑙𝑘1

−1(𝑔) = 𝑘1
−1 ⋅ 𝑔 , 𝑙𝑘1

−1  is a Ne-α-irresolute. 

Hence, 𝑙𝑘1
 is a neutrosophic α -irresolute – homeomorphism. Thus, given the preceding 

proposition, 𝑟𝑘1
 and 𝒽𝑘1𝑘2

 are neutrosophic α-irresolute – homeomorphisms. The case of type (𝑅) 

has a similar proof, where 𝑅 = 4,5.  

 

Corollary 3.14: Let 𝒜, ℬ and 𝒞 be subsets of a nice NTG 𝒢 of type (1) (resp. of type (4)) such that 

𝒜 is a Ne-CS (resp. Ne-αCS), and ℬ is a Ne-OS (resp. Ne-αOS). Then for each 𝑘 ∈ 𝒢, 𝑘 ⋅ 𝒜 and 𝒜 ⋅

𝑘 are Ne-α-CSs also 𝑘 ⋅ ℬ, ℬ ⋅ 𝑘, 𝒞 ⋅ ℬ and ℬ ⋅ 𝒞 are Ne-αOSs. 

Proof: Since 𝒜 is a Ne-CS so in view of the theorem 3.12, 𝑙𝑘(𝒜) = 𝑘 ⋅ 𝒜 and 𝑟𝑘(𝒜) = 𝒜 ⋅ 𝑘 are 

Ne-αCSs.  

Similarly, since ℬ is a Ne-OS so in view of the theorem 3.12, 𝑙𝑘(ℬ) = 𝑘 ⋅ ℬ and 𝑟𝑘(ℬ) = ℬ ⋅ 𝑘 are 

Ne-αOSs. Also, 𝒞 ⋅ ℬ = ⋃ 𝒸 ⋅ ℬ𝒸∈𝒞  but 𝒸 ⋅ ℬ is a Ne-αOS for each 𝒸 ∈ 𝒞. Hence, 𝒞 ⋅ ℬ is a Ne-αOS. 

Similarly, ℬ ⋅ 𝒞 is a Ne-αOS. In the case of type (4), we have a similar proof.     

 

Corollary 3.15: A nice NTG of type (𝑅), where 𝑅 = 1,2,3, … ,8 is neutrosophic α-homogeneous. 

Proof: Let 𝒢 be a nice NTG of type (1) and 𝑎, 𝑏 ∈ 𝒢. Then for any fixed element 𝑘 ∈ 𝒢, 𝑟𝑘  is a 

neutrosophic α-homeomorphism, therefore, it is true when 𝑘 = 𝑎−1 ⋅ 𝑏. Thus, 𝑟𝑎−1𝑏(𝑔) = 𝑔 ⋅ 𝑎−1 ⋅ 𝑏 

is a neutrosophic α-homeomorphism we need because 𝑟𝑎−1𝑏(𝑎) = 𝑏. Therefore, 𝒢 is a neutrosophic 

α-homogeneous. In the case of type (𝑅), we have a similar proof, where 𝑅 = 2,3, … ,8.  
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Corollary 3.16: A nice NTG of type (𝑅) , where 𝑅 = 2,4,5  is neutrosophic α -irresolute – 

homogeneous. 

Proof: Let 𝒢 be a nice NTG of type (2) and 𝑎, 𝑏 ∈ 𝒢. Then for any fixed element 𝑘 ∈ 𝒢, 𝑟𝑘  is a 

neutrosophic α -irresolute – homeomorphism, therefore, it is true when 𝑘 = 𝑎−1 ⋅ 𝑏 . Thus, 

𝑟𝑎−1𝑏(𝑔) = 𝑔 ⋅ 𝑎−1 ⋅ 𝑏 is a neutrosophic α-irresolute – homeomorphism. But  𝑟𝑎−1𝑏(𝑎) = 𝑏, therefore 

𝒢 is a neutrosophic α-irresolute – homogeneous. In the case of type (𝑅), we have a similar proof, 

where 𝑅 = 4,5.  

 

Definition 3.17: Let 𝒢 be a NTG of type (2), (5), and ℱ be a fundamental system of neutrosophic 

α-open nhds of the identity element 𝑒. Then for any fixed element 𝑘 ∈ 𝒢, 𝑟𝑘  is a neutrosophic 

α -irresolute – homeomorphism. So  ℱ(𝑘) = {𝑟𝑘(𝒜) = 𝒜 ⋅ 𝑘: 𝒜 ∈ ℱ}  is a fundamental system of 

neutrosophic α-open nhds of 𝑘.  

 

Proposition 3.18: Let 𝒢 be a NTG of type (2), (5). Any fundamental system ℱ of neutrosophic 

α-open nhds of e in 𝒢 has the below postulates: 

(i) If 𝒜, ℬ ∈ ℱ, then ∃𝒞 ∈ ℱ such that 𝒞 ⊆ 𝒜⋂ℬ. 

(ii) If 𝑔 ∈ 𝒜 ∈ ℱ, then ∃ℬ ∈ ℱ such that ℬ ⋅ 𝑔 ⊆ 𝒜. 

(iii) If 𝒜 ∈ ℱ, then ∃ℬ ∈ ℱ such that ℬ−1 ⋅ ℬ ⊆ 𝒜. 

(iv) If 𝒜 ∈ ℱ, 𝑘 ∈ 𝒢, then ∃ℬ ∈ ℱ such that 𝑘−1 ⋅ ℬ ⋅ 𝑘 ⊆ 𝒜. 

(v) ∀𝒜 ∈ ℱ, ∃ℬ ∈ ℱ such that ℬ−1 ⊆ 𝒜. 

(vi) ∀𝒜 ∈ ℱ, ∃𝒞 ∈ ℱ such that 𝒞2 ⊆ 𝒜. 

Proof: 

(i) Let 𝒜, ℬ ∈ ℱ, then 𝒜⋂ℬ ∈ ℱ, so ∃𝒞 ∈ ℱ such that 𝒞 ⊆ 𝒜⋂ℬ. 

(ii) Let 𝒜 ∈ ℱ and 𝑔 ∈ 𝒜 implies 𝒜 ⋅ 𝑔−1 ∈ ℱ, then ∃ℬ ∈ ℱ such that ℬ ⊆ 𝒜 ⋅ 𝑔−1. Thus, ℬ ⋅ 𝑔 ⊆

𝒜. 

(iii) The function 𝜇: 𝒢 × 𝒢 → 𝒢, given by 𝜇(𝑔, ℎ) = 𝑔−1 ⋅ ℎ is a Ne-α-irresolute because  𝒢 is a NTG 

of type (2), (5). Thus 𝜇−1(𝒜) is a neutrosophic α-open nhd in 𝒢 × 𝒢 contains (𝑒, 𝑒) and hence 

includes a set of the from 𝒰 × 𝒱, where 𝒰, 𝒱 are neutrosophic α-open and provide 𝑒. But 𝒰⋂𝒱 is 

a neutrosophic α-open contains 𝑒, so ∃ℬ ∈ ℱ such that ℬ ⊆ 𝒰⋂𝒱 then ℬ ⊆ 𝒰 and ℬ ⊆ 𝒱. Thus 

ℬ × ℬ ⊆ 𝒰 × 𝒱 ⊆ 𝜇−1(𝒜), then 𝜇(ℬ × ℬ) ⊆ 𝒜 but 𝜇(ℬ × ℬ) = ℬ−1 ⋅ ℬ ⊆ 𝒜. 

(iv) The function 𝒽: 𝒢 → 𝒢  given by 𝒽(𝑔) = 𝑘−1 ⋅ 𝑔 ⋅ 𝑘  is a Ne- α -irresolute. Since 𝑙𝑘−1 , 𝑟𝑘  is 

Ne- α -irresolute. So 𝑙𝑘−1 ∘ 𝑟𝑘  is a Ne- α -irresolute from 𝒢  to 𝒢  put 𝒽 = 𝑙𝑘−1 ∘ 𝑟𝑘 , 𝒽(𝑔) = (𝑙𝑘−1 ∘

𝑟𝑘)(𝑔) = 𝑙𝑘−1(𝑟𝑘(𝑔)) = 𝑙𝑘−1(𝑔 ⋅ 𝑘) = 𝑘−1 ⋅ 𝑔 ⋅ 𝑘. 

 

 

 

 

 

 

 

So, 𝒽−1(𝒜)  is a neutrosophic α -open nhd and contains 𝑒 , hence ∃ℬ ∈ ℱ,  ℬ ⊆ 𝒽−1(𝒜)  then  

𝒽(ℬ) ⊆ 𝒜. Thus, 𝒽(ℬ) = 𝑘−1 ⋅ ℬ ⋅ 𝑘 ⊆ 𝒜. 

𝒢 

 

 

 

 

𝒢 
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𝑟𝑘 

 

 

 

 

𝑙𝑘−1  
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(v) Since 𝐼  the inverse function in a NTG of type (2)  is a Ne-α-irresolute, then 𝐼−1(𝒜)  is a 

neutrosophic α-open contains 𝑒  so ∃ℬ ∈ ℱ  such that ℬ ⊆ 𝐼−1(𝒜) then 𝐼(ℬ) ⊆ 𝒜 . Thus, 𝐼(ℬ) =

ℬ−1 ⊆ 𝒜. 

(vi) Since 𝜇  in a NTG of type (5)  is a Ne-α-irresolute. So 𝜇−1(𝒜)  is a neutrosophic α-open 

contains (𝑒, 𝑒) and thus contains a neutrosophic set of the from 𝒰 × 𝒱, where 𝒰, 𝒱 are neutrosophic 

α-open and contain 𝑒 then 𝒰⋂𝒱 is a neutrosophic α-open and contain 𝑒 ∃𝒞 ∈ ℱ such that 𝒞 ⊆

𝒰⋂𝒱, then 𝒞 × 𝒞 ⊆ 𝒰 × 𝒱 ⊆ 𝜇−1(𝒜). Thus, 𝜇(𝒞 × 𝒞) = 𝒞 ⋅ 𝒞 = 𝒞2 ⊆ 𝒜.  

 

Definition 3.19: A neutrosophic α-open nhd 𝒞 of 𝑔 is called symmetric if 𝒞−1 = 𝒞.  

 

Proposition 3.20: Let 𝒢 be a NTG of type (𝑅), where 𝑅 = 1,2, … ,8, and let ℬ be any neutrosophic 

α-open nhd of a point 𝑔 ∈ 𝒢. Then ℬ⋃ℬ−1 is symmetric neutrosophic α-open nhd of 𝑔.  

Proof: Let ℬ is a neutrosophic α-open nhd of 𝑔, then ℬ⋃ℬ−1 is a neutrosophic α-open nhd of 𝑔; 

ℬ⋃ℬ−1 = {𝑏: 𝑏 ∈ ℬ 𝑜𝑟 𝑏 ∈ ℬ−1} = {𝑏: 𝑏−1 ∈ ℬ 𝑜𝑟 𝑏−1 ∈ ℬ−1} 

        = {𝑏: 𝑏−1 ∈ ℬ⋃ℬ−1} = {𝑏: 𝑏 ∈ (ℬ⋃ℬ−1)−1} = (ℬ⋃ℬ−1)−1. 

That is, ℬ⋃ℬ−1 is symmetric neutrosophic α-open nhd of 𝑔.  

    

Proposition 3.21: Let ℬ be any neutrosophic α-open nhd of 𝑒 in a nice NTG of type (𝑅), where 

𝑅 = 1,2, … . . ,8. Then ℬ ⋅ ℬ−1 is symmetric neutrosophic α-open nhd of 𝑒.          

Proof: Let ℬ be a neutrosophic α-open nhd of 𝑒 and since 𝒢 is a nice, then ℬ ⋅ ℬ−1 is neutrosophic 

α-open nhd of 𝑒; 

ℬ ⋅ ℬ−1 = {𝑥 ⋅ 𝑦−1: 𝑥, 𝑦 ∈ ℬ} = {(𝑥−1)−1 ⋅ 𝑦−1: 𝑥, 𝑦 ∈ ℬ} = (ℬ−1)−1 ⋅ ℬ−1 = (ℬ ⋅ ℬ−1)−1. 

That is, ℬ ⋅ ℬ−1 is symmetric neutrosophic α-open nhd of 𝑒.  

4. Conclusion  

In this work, we examined the conceptions of eight different types of neutrosophic topological 

groups, each of which, depending on the notions of neutrosophic α-open sets and neutrosophic 

α-continuous function. In the future, we plan to rsearch the ideas of neutrosophic topological 

subgroups and the neutrosophic topological quotient groups as well as defining the perception of 

neutrosophic topological product groups with some results. 
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Abstract: In this article, we implement a new notion of sets namely neutrosophic nano j-closed set, 

neutrosophic nano generalized closed set, neutrosophic nano generalized j-closed set and 

neutrosophic nano generalized j*-closed set in neutrosophic nano topological spaces. We also provide 

some appropriate examples to study the properties of these sets. The existing relations between some 

of these sets in neutrosophic nano topological space have been investigated. 

 

Keywords: Neutrosophic nano j-closed set, neutrosophic nano generalized closed set, neutrosophic 

nano generalized j-closed set, neutrosophic nano generalized j*-closed set. 

 

 

I. Introduction 

In recent years, Topology plays a vast role in research area. In particular, the concept of 

neutrosophy is a trending tool in topology. We use fuzzy concept where we consider only the 

membership value. The intuitionistic fuzzy concept is used where the membership and the non-

membership values are considered. But, more real life problems deal with indeterminacy. The 

suitable concept for the situation where the indeterminacy occurs is neutrosophy which is 

represented by the degree of membership (truth value), the degree of non-membership (falsity value) 

and the degree of indeterminacy. 

The fuzzy concept was initially proposed by Zadeh [22] in 1965 and Chang [7] introduced Fuzzy 

topological spaces in 1968. Atanasov [6] defined intuitionistic fuzzy set and Coker [8] developed 

intuitionistic fuzzy topology. In 2005, Smarandache [17] introduced neutrosophic set and many 

researchers used this concept in engineering, medicine and many fields where the situation of 

indeterminacy arises. Abdel-Basset et.al, [1 - 5] working with many practical problems by using 

neutrosophy concept in the recent days. Salama et.al, [14] introduced the generalization of 

neutrosophic sets, neutrosophic closed sets and neutrosophic crisp sets in neutrosophic topological 

spaces. 

The nano topology which has the maximum of five elements was introduced by Lellis Thivagar 

[9]. He applied nano topology for nutrition modelling [11] and medical diagnosis [12]. Zhang et.al 

[23], worked on neutrosophic rough sets over two universes. Lellis Thivagar initiated [10] 

neutrosophic nano topology and some closed sets on neutrosophic nano topological spaces were 

derived by recent researchers.  
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Sasikala and Arockiarani [15] introduced generalized j-closed set. Sasikala and Radhamani [16] 

introduced nano j-closed set in nano topological spaces. In this paper, we present a new set called 

neutrosophic nano j-closed set and work with some interesting examples. Also we investigate some 

of the properties of the introduced sets. 

 

II. Preliminaries 

Definition 2.1[9] Let U  be a nonempty finite set of objects called the universe and R  be an 

equivalence relation on U  , called the indiscernibility relation. The pair )R,U(  is said to be the 

approximation space. Let .UX ⊆  

(i) The lower approximation of X  with respect to the relation R  is the set of all objects, 

which can be for certain classified as X  and it is denoted by )X(LR . i.e., 

}U)x(R:)x(R{)X(L
Ux

R ⊆=
∈
 , where )x(R  denotes the equivalence class determined 

by x . 

(ii) The upper approximation of X  with respect to the relation R  is the set of all objects, 

which can be possibly classified as X and it is denoted by )X(UR .i.e.,

}φX)x(R:)x(R{)X(U
Ux

R ≠=
∈

  

(iii) The boundary region of X  with respect to the relation R is the set of all objects, which 

can be classified neither as X  nor as not X  and it is denoted by )X(BR .i.e.,

)X(L-)X(U)X(B RRR =  

Remark 2.2[9] If )R,U(   is an approximation space and UY,X ⊆ , then  

        (i) )X(UX)X(L RR ⊆⊆  

       (ii) φ)φ(U)φ(L RR ==  and U)U(U)U(L RR ==  

      (iii) )Y(U)X(U)YX(U RRR  =  

      (iv) )Y(U)X(U)YX(U RRR  ⊆  

       (v) )Y(L)X(L)YX(L RRR  ⊇  

      (vi) )Y(L)X(L)YX(L RRR  =  

     (vii) )Y(L)X(L RR ⊆  and )Y(U)X(U RR ⊆  whenever YX ⊆  

    (viii) C
R

C
R )]X(L[)X(U =  and C

R
C

R )]X(U[)X(L =  

      (ix) )X(U)X(UL)X(UU RRRRR ==  

       (x) )X(L)X(LU)X(LL RRRRR ==  

Definition 2.3[9] Let U  be an universe, R  be an equivalence relation on U  and 

),X(L,φ,U{)X(τ RR =  )}X(B),X(U RR  where UX⊆ . Then by the properties mentioned in remark 

2.2, )X(τR  satisfies the following axioms: 

(i) U  and φ  are in )X(τR  

(ii) The union of the elements of any sub collection of )X(τR  is in )X(τR  

(iii) The intersection of the elements of any finite sub collection of )X(τR  is in )X(τR  

Then  )X(τR  forms a topology on U called the nano topology with respect to X . We call 

))X(τ,U( R  as the nano topological space. The elements of )X(τR  are called nano open sets. The 

complement of nano open sets are called  nano closed sets. 
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Definition 2.4[9] Let ))X(τ,U( R be a nano topological space. A subset A  is called nano generalized 

closed (briefly Ng-closed) set if V)A(ClN ⊆  where VA⊆  and V  is nano open in U . 

Definition 2.5[16] A subset A of a nano topological space ))X(τ,U( R  is called a nano j-open set if 

)]A(PClN[IntNA⊆ . The complement of nano j-open set is called a nano j-closed (briefly Nj-closed) 

set. 

i.e., if A is Nj-closed, then A)]A(PIntN[ClN ⊆ .  

Definition 2.6[16] A subset A of a nano topological space ))X(τ,U( R  is called a nano generalized 

j-closed (briefly Ngj-closed) set if V)A(JClN ⊆  where VA⊆  and V  is nano open in U . 

Definition 2.7[17] Let X  be an universe of discourse with a general element x , the neutrosophic 

set is an object having the form }Xx,)X(γ),X(σ),X(μ,x{A AAA ∈=   where ,σ,μ  and γ each 

take the values from 0 to 1 and called as the degree of membership, degree of indeterminacy, and the 

degree of non-membership of the  element  Xx∈ to the set A  with the condition 

3)x(σ)x(σ)x(μ0 AAA ≤++≤ . 

Definition 2.8[10] Let U  be a nonempty set and R  be an equivalence relation on U . Let F  be a 

neutrosophic set in U  with the membership function Fμ , the indeterminacy function Fσ , and the 

non-membership function Fγ . The neutrosophic nano lower, neutrosophic nano upper 

approximations and neutrosophic nano boundary of  F  in the approximation )R,U( , denoted by 

N,N  and )F(NB  are respectively defined as follows: 

(i) [ ] }Ux,xy/)x(γ),x(σ),x(μ,x{)F(N R)A(R)A(R)A(R ∈∈=   

(ii) [ ] }Ux,xy/)x(γ),x(σ),x(μ,x{)F(N R)A(R)A(R)A(R ∈∈=   

(iii) N-N)F(NB =  

Where [ ] )y(μ)x(μ ARxy)A(R ∈∧= , [ ] )y(σ)x(σ ARxy)A(R ∈∧= ,  [ ] )y(γ)x(γ ARxy)A(R ∈∨=  ,  

[ ] )y(μ)x(μ ARxy)A(R ∈∨= , [ ] )y(σ)x(σ ARxy)A(R ∈∨= , [ ] )y(γ)x(γ ARxy)A(R ∈∧=  

Definition 2.9[10] Let U  be an universe, R  be an equivalence relation on U  and F  be a 

neutrosophic set in U . If the collection )}F(NB),F(N),F(N,1,0{)F(τ NNN =  forms a topology, 

then it is said to be a neutrosophic nano topology. We call ))F(τ,U( N  as the neutrosophic nano 

topological space. The elements of )F(τ N  are called neutrosophic nano open sets. 

Definition 2.10[17] Let U be a nonempty set and the neutrosophic sets A  and B  are in the form

}Ux,)x(γ),x(σ),x(μ:x{A AAA ∈=  , }Ux,)x(γ),x(σ),x(μ:x{B BBB ∈=  . Then the following 

statements hold: 

(i) }Ux:1,0,0,x{0N ∈=   and }Ux:0,1,1,x{1N ∈=   

(ii) Uxallfor)x(γ)x(γ),x(σ)x(σor)x(σ)x(σ),x(μ)x(μiffBA BABABABA ∈≥≥≤≤⊆  

(iii) ABandBAiffBA ⊆⊆=  

(iv) }Ux,)x(μ),x(σ-1),x(γ,x{A AAA
C ∈=   
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(v) }Uxallfor)x(γ)x(γ),x(σ)x(σ),x(μ)x(μ,x{BA BABABA ∈∨∧∧=  

(vi) }Uxallfor)x(γ)x(γ),x(σ)x(σ),x(μ)x(μ,x{BA BABABA ∈∧∨∨=  

(vii) }Uxallfor)x(μ)x(γ),x(σ-1)x(σ),x(γ)x(μ{x,B-A BABABA ∈∨∧∧=  

Definition 2.11[10] C
N )]F(τ[  is called the dual neutrosophic nano topology of )F(τ N . The 

elements of C
N )]F(τ[  are called neutrosophic nano closed (NN closed) sets. Thus, a neutrosophic 

set )G(N  of U  is neutrosophic nano closed iff )G(N-U  is neutrosophic nano open in )F(τ N . 

Definition 2.12[10] Let ))A(τ,U( N  be a neutrosophic nano topological space and 

}Ux:)x(γ),x(σ),x(μ,x{A AAA ∈=   be a neutrosophic set in X . Then the neutrosophic closure 

and neutrosophic interior of A  are defined by =)A(ClN intersection of all closed sets which 

contains A  and =)A(IntN union of all open sets which is contained in A . 

A  is a neutrosophic open set iff )A(IntNA =  and A  is a neutrosophic closed set iff )A(ClNA =  

III. NEUTROSOPHIC NANO j-CLOSED SETS 

Definition 3.1 Let ))A(τ,U( N  be a neutrosophic nano topological space. Then a neutrosophic nano 

subset A  in ))A(τ,U( N  is said to be neutrosophic nano j-closed (briefly NNj-closed) set if 

A))A(PIntN(ClN NN ⊆ . 

Theorem 3.2 Every neutrosophic nano closed set is a neutrosophic nano j-closed set. 

Proof. Let A  be a neutrosophic nano closed set. i.e., A)A(ClNN = . We know that ⊆)A(IntNN  

A)A(PIntNN ⊆  which implies A)A(Cl))A(PIntN(ClN NN =N⊆ N . Hence every neutrosophic nano 

closed set is neutrosophic nano j-closed. 

Remark 3.3 The converse part of the above theorem need not be true as seen from the following 

example. 

Example 3.4 Let ))A(τ,U( N  be a neutrosophic nano topological space with }3p,2p,1p{U = , the 

universe of discourse and }}3p{},2p,1p{{RU = , the equivalence relation on U . 

Let })2.0,5.0,2.0(,3p,)4.0,6.0,5.0(,2p,)3.0,4.0,5.0(,1p{A = be the neutrosophic nano subset 

of U .  

Now, })2.0,5.0,2.0(,3p,)4.0,4.0,5.0(,2p,)4.0,4.0,5.0(,1p{)A(LN RN = , 

,)3.0,6.0,5.0(,1p{)A(UN RN = })2.0,5.0,2.0(,3p,)3.0,6.0,5.0(,2p  , 

,)5.0,6.0,4.0(,2p,)5.0,6.0,4.0(,1p{)A(BN RN = })2.0,5.0,2.0(,3p   and the neutrosophic nano 

topology formed by the subset A  is ,1,0{)A(τ NNN = )}A(BN),A(UN),A(LN RNRNRN .  

Here the subsets are called neutrosophic nano open sets and the neutrosophic nano closed sets are 

C
RN

C
RN

C
RNNN )]A(BN[and)]A(UN[,)]A(LN[,1,0 , where 

})2.0,5.0,2.0(,3p,)5.0,6.0,4.0(,2p,)5.0,6.0,4.0(,1p{)]A(LN[ C
RN = ,  

})2.0,5.0,2.0(,3p,)5.0,4.0,3.0(,2p,)5.0,4.0,3.0(,1p{)]A(UN[ C
RN = , and 

})2.0,5.0,2.0(,3p,)4.0,4.0,5.0(,2p,)4.0,4.0,5.0(,1p{)]A(BN[ C
RN = . 

Now, })2.0,5.0,2.0(,3p,)3.0,6.0,5.0(,2p,)3.0,6.0,5.0(,1p{)A(IntNN =  and

})2.0,5.0,2.0(,3p,)3.0,6.0,5.0(,2p,)3.0,6.0,5.0(,1p{)A(PIntNN =  .  
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Let us take a closed set in )A(τN  and let it be B .  

i.e., })2.0,5.0,2.0(,3p,)4.0,4.0,5.0(,2p,)4.0,4.0,5.0(,1p{B = .  

Clearly  BB))B(PIntN(ClN C
NN ⊆=  B⇒ is NNj-closed. 

Let us take an another NNj-closed set 

})1.0,5.0,3.0(,3p,)3.0,5.0,6.0(,2p,)2.0,4.0,6.0(,1p{C = . But C  is not a neutrosophic nano 

closed set. Hence a NNj-closed set need not be a NN closed set. 

Theorem 3.5 The union (intersection) of two NNj-closed (open) sets need not be a NNj-closed (open) 

set as seen in the following example. 

Example 3.6 Let ))A(τ,U( N  be a neutrosophic nano topological space with }3p,2p,1p{U = , the 

universe of discourse and }}3p{},2p,1p{{RU = , the equivalence relation on U . 

Let })2.0,5.0,2.0(,3p,)4.0,6.0,5.0(,2p,)3.0,4.0,5.0(,1p{A = be the neutrosophic nano subset 

of U . The sets })2.0,5.0,2.0(,3p,)5.0,6.0,4.0(,2p,)5.0,6.0,4.0(,1p{   and 

})2.0,5.0,2.0(,3p,)4.0,4.0,5.0(,2p,)4.0,4.0,5.0(,1p{   are NNj-closed sets. But 

})2.0,5.0,2.0(,3p,)4.0,6.0,5.0(,2p,)4.0,6.0,5.0(,1p{   which is the intersection of the above 

two sets is not a NNj-closed sets. 

Theorem 3.7 Every neutrosophic nano j-closed set is a neutrosophic nano pre closed set. 

Proof. Let A  be a neutrosophic nano j-closed set. i.e., A))A(PIntN(ClN NN ⊆ . We know that 

)A(PIntN)A(IntN NN ⊆  which implies A))A(PIntN(Cl))A(IntN(ClN NNN ⊆N⊆ N . Therefore A  is a 

neutrosophic nano pre closed set. Hence every NNj-closed set is NN pre closed. 

Remark 3.8 The converse part of the above theorem need not be true as seen from the following 

example. 

Example 3.9 Let }3p,2p,1p{U =  be the universe with the equivalence relation 

}}2p{},3p,1p{{RU =  and let the neutrosophic nano subset on U  be

})3.0,2.0,5.0(,3p,)1.0,5.0,4.0(,2p,)2.0,4.0,3.0(,1p{A = . Here

})3.0,2.0,3.0(,3p,)1.0,5.0,4.0(,2p,)3.0,2.0,3.0(,1p{)A(LN RN = , 

})2.0,4.0,5.0(,3p,)1.0,5.0,4.0(,2p,)2.0,4.0,5.0(,1p{)A(UN RN = , and 

})3.0,4.0,3.0(,3p,)4.0,5.0,1.0(,2p,)3.0,4.0,3.0(,1p{)A(BN RN = . Then the neutrosophic 

nano topology formed by A  is )}A(BN),A(UN),A(LN,1,0{)A(τ RNRNRNNNN = .  

The subsets of )A(τN  are called neutrosophic nano open sets and the neutrosophic nano closed sets 

are C
RN

C
RN

C
RNNN )]A(BN[and)]A(UN[,)]A(LN[,1,0  where

})3.0,8.0,3.0(,3p,)4.0,5.0,1.0(,2p,)3.0,8.0,3.0(,1p{)]A(LN[ C
RN = , 

})5.0,6.0,2.0(,3p,)4.0,5.0,1.0(,2p,)5.0,6.0,2.0(,1p{)]A(UN[ C
RN = , and 

})3.0,6.0,3.0(,3p,)1.0,5.0,4.0(,2p,)3.0,6.0,3.0(,1p{)]A(BN[ C
RN = . Then 

})3.0,4.0,3.0(,3p,)1.0,5.0,4.0(,2p,)3.0,4.0,3.0(,1p{)A(IntNN =  , 

})3.0,4.0,4.0(,3p,)1.0,5.0,4.0(,2p,)2.0,4.0,3.0(,1p{)A(PIntNN =  and N1)A(Cl = . 

Clearly the set A  itself is a neutrosophic nano pre closed set, but not a neutrosophic nano j-closed 

set, since NNN 1))A(PIntN(ClN = , which is not contained in A . 

Theorem: 3.10 Every neutrosophic nano regular closed set is a neutrosophic nano j-closed set. 
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Proof. We know that every NN regular closed set is a NN closed set and also every NN closed set is a 

NNj-closed set. Hence every NN regular closed set is a NNj-closed set. 

Remark 3.11 The converse part of the above theorem need not be true as seen in the following 

example. 

Example 3.12 Let  }3p,2p,1p{U = be the universe, }}3p{},2p,1p{{RU =  be the equivalence 

relation on U , and })3.0,3.0,5.0(,3p,)3.0,2.0,4.0(,2p,)2.0,4.0,1.0(,1p{A =  be the 

neutrosphic nano subset of U . Then 

})3.0,3.0,5.0(,3p,)3.0,2.0,1.0(,2p,)3.0,2.0,1.0(,1p{)A(LN RN = , 

})3.0,3.0,5.0(,3p,)2.0,4.0,4.0(,2p,)2.0,4.0,4.0(,1p{)A(UN RN = , 

})5.0,3.0,3.0(,3p,)2.0,4.0,3.0(,2p,)2.0,4.0,3.0(,1p{)A(BN RN =  , and the neutrosophic nano 

topology formed by A  is )}A(BN),A(UN),A(LN,1,0{)A(τ RNRNRNNNN = . 

Here the subsets are called neutrosophic nano open sets and the neutrosophic nano closed sets are 

C
RN

C
RN

C
RNNN )]A(BN[and,)]A(UN[,)]A(LN[,1,0  where

})5.0,7.0,3.0(,3p,)1.0,8.0,3.0(,2p,)1.0,8.0,3.0(,1p{)]A(LN[ C
RN = , 

})5.0,7.0,3.0(,3p,)4.0,6.0,2.0(,2p,)4.0,6.0,2.0(,1p{)]A(UN[ C
RN = , and 

})3.0,7.0,5.0(,3p,)3.0,6.0,2.0(,2p,)3.0,6.0,2.0(,1p{)]A(BN[ C
RN = . Then 

})3.0,3.0,5.0(,3p,)3.0,2.0,1.0(,2p,)3.0,2.0,1.0(,1p{)A(IntNN =  and N1)A(Cl = . 

Let })2.0,4.0,5.0(,3p,)2.0,4.0,3.0(,2p,)2.0,2.0,2.0(,1p{B =  be an another neutrosophic 

nano subset on U . Clearly B)]ABN[))A(LN(ClN))B(PIntN(ClN C
RNRNNNN ⊆== . 

But B))B(IntN(ClN NN ≠ . Hence a NNj-closed set need not be a NN regular closed.  

Definition 3.13 Let ))A(τ,U( N  be a neutrosophic nano topological space. Then a neutrosophic nano 

subset A  in ))A(τ,U( N  is said to be neutrosophic nano generalized closed (briefly NNg-closed) set 

if V)A(ClNN ⊆  whenever VA⊆  and V  is neutrosophic nano open in U . 

Theorem 3.14 Every neutrosophic nano closed set is a neutrosophic nano generalized closed set. 

Proof. Let A  be the neutrosophic nano closed set. Let VA⊆  and V  is neutrosophic nano open set 

in U . Since A  is NN closed, A)A(ClNN ⊆  . i.e., VA)A(ClNN ⊆⊆ . Hence A  is NNg-closed set. 

Hence every NN closed set is NNg-closed. 

Remark 3.15 The converse of the above theorem need not be true as seen in the following example. 

Example 3.16 Let ))A(τ,U( N  be a neutrosophic nano topological space with }3p,2p,1p{U = , the 

universe of discourse and }}3p{},2p,1p{{RU = , the equivalence relation on U . 

Let })2.0,5.0,2.0(,3p,)4.0,6.0,5.0(,2p,)3.0,4.0,5.0(,1p{A = be the neutrosophic nano subset 

of U .  

Now, })2.0,5.0,2.0(,3p,)4.0,4.0,5.0(,2p,)4.0,4.0,5.0(,1p{)A(LN RN = , 

})2.0,5.0,2.0(,3p,)3.0,6.0,5.0(,2p,)3.0,6.0,5.0(,1p{)A(UN RN = , 

})2.0,5.0,2.0(,3p,)5.0,6.0,4.0(,2p,)5.0,6.0,4.0(,1p{)A(BN RN = and the neutrosophic nano 

topology formed by the subset A  is )}A(BN),A(UN),A(LN,1,0{)A(τ RNRNRNNNN = . 

Let )A(UNV RN=  and })3.0,4.0,1.0(,3p,)5.0,3.0,3.0(,2p,)6.0,5.0,4.0(,1p{B = . 
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Clearly B  is a NNg-closed set, since V)B(Cl ⊆  whenever VB⊆ . But it is not a NN closed set. 

Definition 3.17 Let ))F(τ,U( N  be a neutrosophic nano topological space. Then a neutrosophic nano 

subset A  in ))F(τ,U( N  is said to be neutrosophic nano generalized j-closed (briefly NNgj-closed) 

set if VJClNN ⊆  whenever VA⊆  and V  is neutrosophic nano open in U . 

Definition 3.18 Let ))F(τ,U( N  be a neutrosophic nano topological space. Then a neutrosophic nano 

subset A  in ))F(τ,U( N  is said to be neutrosophic nano generalized j*-closed (briefly NNgj*-closed) 

set if VJClNN ⊆  whenever VA⊆  and V  is neutrosophic nano j-open in U . 

Theorem 3.19 If A  is a neutrosophic nano gj-closed set in ))X(τ,U( R  and )A(JClNBA N⊆⊆ , then 

B  is neutrosophic nano generalized j-closed set in ))X(τ,U( R . 

Proof. Let VB⊆  where V  is neutrosophic nano open in U . Then BA⊆  implies VA⊆ . Since 

A  is NNgj-closed, V)A(JClNN ⊆ . Also )B(JClNA N⊆  implies )A(JClN)B(JClN NN ⊆ . Thus 

V)B(JClNN ⊆  and therefore B  is NNgj-closed set in U . 

Theorem 3.20 Every neutrosophic nano closed set is a neutrosophic nano generalized j-closed. 

Proof. Let A  be a neutrosophic nano closed set in U . Let VA⊆  and V  is neutrosophic nano 

open in U . Since A  is neutrosophic nano closed, VA)A(ClNN ⊆= . Also 

V)A(ClN)A(JClN NN ⊆⊆ , where V  is NN open in U . Therefore A  is a neutrosophic nano 

generalized j-closed set. Hence every NN closed set is NNgj-closed. 

Remark 3.21 The converse part of the above theorem need not be true as seen in the following 

example. 

Example 3.22 Let  }3p,2p,1p{U = be the universe, }}3p{},2p,1p{{RU =  be the equivalence 

relation on U , and })3.0,3.0,5.0(,3p,)3.0,2.0,4.0(,2p,)2.0,4.0,1.0(,1p{A =  be the 

neutrosphic nano subset of U . Then 

})3.0,3.0,5.0(,3p,)3.0,2.0,1.0(,2p,)3.0,2.0,1.0(,1p{)A(LN RN = , 

})3.0,3.0,5.0(,3p,)2.0,4.0,4.0(,2p,)2.0,4.0,4.0(,1p{)A(UN RN = , 

})5.0,3.0,3.0(,3p,)2.0,4.0,3.0(,2p,)2.0,4.0,3.0(,1p{)A(BN RN =  , and the neutrosophic nano 

topology formed by A  is )}A(BN),A(UN),A(LN,1,0{)A(τ RNRNRNNNN = . Let the open set 

})3.0,3.0,5.0(,3p,)2.0,4.0,4.0(,2p,)2.0,4.0,4.0(,1p{V = .  

Let })3.0,2.0,1.0(,3p,)4.0,3.0,2.0(,2p,)3.0,3.0,2.0(,1p{B = . Clearly VB⊆ .  

Also V)B(JClNN ⊆ . Hence B  is a NNgj-closed set, but not a NN closed set. 

Theorem 3.23 Every neutrosophic nano j-closed set is a neutrosophic  nano generalized j-closed set. 

Proof. Let A  be a NNj-closed set. Let VA⊆  and V  is neutrosophic nano open in U. Since A  is 

NNj-closed, VA)A(JClNN ⊆⊆ . Therefore A  is NNgj-closed. Hence every NNj-closed set is NNgj-

closed. 

Remark 3.24 The converse of the above theorem need not be true as seen in the following example. 

Example 3.25 In example 3.22, B   is a NNgj-closed set. But ))B(PIntN(ClN NN  is not contained in 

V . i.e., B  is not a NNj-closed set. Hence every NNgj-closed set need not a NNj-closed set. 

Theorem 3.26 Every NNg-closed set is a NNgj-closed set. 

Proof. Let A be a NNg-closed set. Then V)A(ClNN ⊆ whenever VA⊆ and V is neutrosophic nano 

open in U . Since V)A(ClN)A(JClN NN ⊆⊆ , we have V)A(JClNN ⊆  whenever VA⊆  and V  is 

NN open in  U . Therefore A  is NNgj-closed. Hence every NNg-closed set is a NNgj-closed set. 

Theorem 3.27 Every NNj-closed set is a NNgj*-closed set. 
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Proof. Let A  be a NNj-closed set. Let  VA⊆  and V  is neutrosophic nano j-open in U . Since A  

is NNj-closed, VA)A(JClNN ⊆= , V  is NNj- open in  U . Therefore A  is NNgj*-closed. Hence 

every NNj-closed set is a NNgj*-closed set. 

Theorem 3.28 Every NNgj*-closed set is a NNgj-closed set. 

Proof. Let A  be a NNgj*-closed set. Let VA⊆  and V  is neutrosophic nano open in U . Since every 

NN open set is NNj-open, V  is NNj-open in U . Since A  is NNgj*-closed set, we have V)A(JClNN ⊆

. Therefore  V)A(JClNN ⊆  whenever VA⊆  and V  is NNj-open in  U . Therefore A  is NNgj-

closed. Hence every NNgj*-closed set is a NNgj-closed set. 

 

IV. Conclusion 

Neutrosophic nano j-closed set, neutrosophic nano generalized closed set, neutrosophic nano 

generalized j-closed set, neutrosophic nano generalized j*-closed set were introduced and some of 

their properties were discussed in this paper. The concept can be used for real life decision making 

problems where the situations of indeterminacy occurs. The practical problems may be solved by 

finding CORE values through the criterion reduction. 
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