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Abstract: This paper introduces the concept of n-refined neutrosophic module as a new 

generalization of neutrosophic modules and refined neutrosophic modules respectively and as a 

new algebraic application of n-refined neutrosophic set. It studies elementary properties of these 

modules. Also, This work discusses some corresponding concepts such as weak/strong n-refined 

neutrosophic modules, n-refined neutrosophic homomorphisms, and kernels. 

Keywords: n-Refined weak neutrosophic module, n-Refined strong neutrosophic module, 

n-Refined neutrosophic homomorphism.  

 

 

1. Introduction 

In 1980s the international movement called paradoxism, based on contradictions in science and 

literature, was founded by Smarandache, who then extended it to neutrosophy, based on 

contradictions and their neutrals. [30] 

Neutrosophy as a new branch of philosophy studies origin, nature, and indeterminacies, it was 

founded by F. Smarandache and became a useful tool in algebraic structures. Many neutrosophic 

algebraic structures were defined and studied such as neutrosophic groups, neutrosophic rings, 

neutrosophic vector spaces, and neutrosophic modules [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. In 2013 

Smarandache proposed a new idea, when he extended the neutrosophic set to refined [n-valued] 

neutrosophic set, i.e. the truth value T is refined/split into types of sub-truths such as (T1, T2, 

…,)  similarly indeterminacy I is refined/split into types of sub-indeterminacies (I1, I2, …,) and the 

falsehood F is refined/split into sub-falsehood (F1, F2,..,) [17,18]. 

Recently, there are increasing efforts to study the neutrosophic generalized structures and spaces 

such as refined neutrosophic modules, spaces, equations, and rings [5,14,21,22,23,24]. Smarandache 

et.al introduced the concept of n-refined neutrosophic ring [20], and n-refined neutrosophic vector 

space [19] by using n-refined neutrosophic set concept. Also, neutrosophic sets played an important 

role in applied science such as health care, industry, and optimization [25,26,27,28].  

In this paper we give a new concept based on n-refined neutrosophic set, where we define and study 

the concept of n-refined neutrosophic modules, submodules, and homomorphisms as a 

generalization of similar concepts in the case of neutrosophic and refined neutrosophic modules 

[13,14]. Also, we discuss some elementary properties. 

mailto:Hasan.Sankari2@gmail.com
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For our purpose we use multiplication operation (defined in [20]) between indeterminacies 

 as follows: 

 

All rings considered through this paper are commutative. 

2. Preliminaries 

Definition 2.1: [20] 

Let (R,+, ) be a ring and  be n indeterminacies. We define 

(I)={ } to be n-refined neutrosophic ring. 

Definition 2.2: [20] 

(a) Let (I) be an n-refined neutrosophic ring and P =  = { }, 

where  is a subset of R, we define P to be an AH-subring if  is a subring of R for all . 

AHS-subring is defined by the condition  for all . 

(b) P is an AH-ideal if  is an two sides ideal of R for all , the AHS-ideal is defined by the condition 

 for all . 

(c) The AH-ideal P is said to be null if  for all i. 

Definition 2.3 :[10] 

Let ( V , + , . ) be a vector space over the field K then ( V(I) , + ,. ) is called a weak neutrosophic vector 

space over the field K , and it is called a strong neutrosophic vector space if it is a vector space over 

the neutrosophic field K(I). 

Definition 2.4: [13] 

Let ( M,+,.) be a module over the ring R then (M(I),+,.) is called a weak neutrosophic module over the 

ring R, and it is called a strong neutrosophic module if it is a module over the neutrosophic ring R(I). 

Elements of M(I) have the form , i.e M(I) can be written as . 

Definition 2.5: [13] 

Let M(I) be a strong neutrosophic module over the neutrosophic ring R(I) and W(I) be a non empty 

set of M(I), then W(I) is called a strong neutrosophic submodule if W(I) itself is a strong neutrosophic 

module. 
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Definition 2.6: [13] 

Let U(I) and W(I) be two strong neutrosophic submodules of M(I) and let , we say 

that f is a neutrosophic vector space homomorphism if  

(a) . 

(b)  is a module homomorphism. 

3. Main concepts and results 

Definition 3.1 : 

Let (M,+,.) be a module over the ring R, we say that 

 is a weak n-refined neutrosophic 

module over the ring R. Elements of  are called n-refined neutrosophic vectors, elements of R 

are called scalars. 

If we take scalars from the n-refined neutrosophic ring , we say that  is a strong 

n-refined neutrosophic module over the n-refined neutrosophic ring . Elements of  are 

called n-refined neutrosophic scalars. 

Remark 3.2: 

If we take n=1 we get the classical neutrosophic module. 

Addition on  is defined as: 

  

Multiplication by a scalar  is defined as: 

. 

Multiplication by an n-refined neutrosophic scalar  is defined as: 

. 

Where . 

Theorem 3.3 : 
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Let (M,+,.) be a module over the ring R. Then a weak n-refined neutrosophic module  is a 

module over the ring R. A strong n-refined neutrosophic module is a module over the n-refined 

neutrosophic ring (I). 

Proof: 

It is similar to that of Theorem 5 in [9]. 

Example 3.4: 

Let  be the finite module of integers modulo 2 over itself, we have: 

(a) The corresponding weak 2-refined neutrosophic module over the ring  is 

. 

Definition 3.5: 

Let  be a weak n-refined neutrosophic module over the ring R, a nonempty subset  is 

called a weak n-refined neutrosophic module of  if  is a submodule of  itself. 

Definition 3.6: 

Let  be a strong n-refined neutrosophic module over the n-refined neutrosophic ring , a 

nonempty subset  is called a strong n-refined neutrosophic submodule of  if  is a 

submodule of  itself. 

Theorem 3.7: 

Let  be a weak n-refined neutrosophic module over the ring R,  be a nonempty subset 

of . Then  is a weak n-refined neutrosophic submodule if and only if: 

  for all . 

Proof: 

It holds directly from the fact that is  is a submodule of . 

Theorem 3.8: 

Let  be a strong n-refined neutrosophic module over the n-refined neutrosophic ring , 

 be a nonempty subset of . Then  is a strong n-refined neutrosophic submodule if 

and only if: 



Neutrosophic Sets and Systems, Vol. 36, 2020     5  

 

__________________________________________________________________________________________________  

 Sankari, Abobala n-Refined Neutrosophic Modules 

  for all . 

Proof: 

It holds directly from the fact that is  is a submodule of  over the n-refined neutrosophic 

ring . 

Example 3.9: 

 is a module over the ring R,  is a submodule of M, 

} is the corresponding weak/strong 2-refined 

neutrosophic module. 

 is a weak 2-refined neutrosophic 

submodule of the weak 2-refined neutrosophic module  over the ring R. 

 is a strong 2-refined 

neutrosophic submodule of the strong 2-refined neutrosophic module  over the n-refined 

neutrosophic ring . 

Definition 3.10: 

Let  be a weak n-refined neutrosophic module over the ring R,  be an arbitrary element of 

, we say that x is a linear combination of {  is 

: . 

Example 3.11: 

Consider the weak 2-refined neutrosophic module in Example 3.11, 

 

, we have  

 

i.e x is a linear combination of the set  over the ring R. 

Definition 3.12: 
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Let  be a strong n-refined neutrosophic module over the n-refined neutrosophic ring ,  

be an arbitrary element of , we say that x is a linear combination of {  is 

: . 

Example 3.12: 

Consider the strong 2-refined neutrosophic module 

} over the 2-refined neutrosophic ring , 

, hence x is a linear =

combination of the set  

 

 over the 2-refined neutrosophic ring . 

Definition 3.15: 

Let  be a subset of a weak n-refined neutrosophic module  over the ring R, X is 

a weak linearly independent set if . 

Definition 3.16: 

Let  be a subset of a strong n-refined neutrosophic module  over the n-refined 

neutrosophic ring , X is a weak linearly independent set if 

 

Definition 3.17: 

Let  be two strong n-refined neutrosophic modules over the n-refined neutrosophic 

ring , let  be a well defined map. It is called a strong n-refined neutrosophic 

homomorphism if: 

  for all . 

A weak n-refined neutrosophic homomorphism can be defined as the same. 

Definition 3.18: 

Let  be a weak/strong n-refined neutrosophic homomorphism, we define: 

(a) . 
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(b) . 

Theorem 3.19: 

Let  be a weak n-refined neutrosophic homomorphism. Then 

(a)  is a weak n-refined neutrosophic submodule of (I). 

(b)  is a weak n-refined neutrosophic submodule of . 

Proof: 

(a)  is a module homomorphism since  are modules, hence  is a submodule of 

the module , thus  is a weak n-refined neutrosophic submodule of . 

(b) Holds by similar argument. 

Theorem 3.20: 

Let  be a strong n-refined neutrosophic homomorphism. Then 

(a)  is a strong n-refined neutrosophic submodule of (I). 

(b)  is a strong n-refined neutrosophic submodule of . 

Proof: 

(a)  is a module homomorphism since  are modules over the n-refined neutrosophic 

ring , hence  is a submodule of the module , thus  is a strong n-refined 

neutrosophic submodule of . 

(b) Holds by similar argument. 

Theorem 3.21: 

Let  be a strong n-refined neutrosophic homomorphism. Then 

(a)  is a strong n-refined neutrosophic submodule of (I). 

(b)  is a strong n-refined neutrosophic submodule of . 

Proof: 
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(a)  is a module homomorphism since  are modules over the n-refined neutrosophic 

ring , hence  is a submodule of the module , thus  is a strong n-refined 

neutrosophic submodule of . 

(b) Holds by similar argument. 

Example 3.22: 

Let ,  be two weak 

2-refined neutrosophic modules over the ring of real numbers R. Consider , where 

,  is a weak 2-refined neutrosophic 

homomorphism over the ring R. 

. 

. 

Example 3.23: 

, Let 

refined neutrosophic modules -} be two strong 2

(I). Define refined neutrosophic ring -over 2 refined neutrosophic module -of the strong 2

.;  

 is a strong 2-refined neutrosophic homomorphism: 

Let , we have  

  

Let  be a 2-refined neutrosophic scalar, we have 

, 

, hence  is a strong 2-refined neutrosophic 

homomorphism. 

. 
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. 

5. Conclusion   

In this paper, we continuo the efforts about defining and studying n-refined neutrosophic 

algebraic structures, where we have introduced the concept of weak/strong n-refined neutrosophic 

module. Also, some related concepts such as weak/strong n-refined neutrosophic submodule, 

n-refined neutrosophic homomorphism have been presented and studied. 

Future research 

Authors hope that some corresponding notions will be studied in future such as weak/strong 

n-refined neutrosophic basis of n-refined neutrosophic modules, and AH-submodules. 

Funding:: This research received no external funding 

Conflicts of Interest: The authors declare no conflict of interest 
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Abstract: This research paper presents a neutrosophic mathematical representation of the elements of the digital 

image by dividing the points of the digital picture matrix into neutrosophic sets (PNS - Picture Neutrosophic 

Set), and studying the degree of connection between the points of the digital image for us to reach to the 

connected neutrosophic sets. We have also introduced many mathematical theories and results to calculate the 

difference and dissimilarity between the neutrosophic sets, which contributes practically in the comparison 

between digital images and their different uses. Our results help mainly to upgrade and create new neutrosophic 

algorithms for searching inside images and videos databases. 

Keywords: Neutrosophic set; connected neutrosophic set; picture neutrosophic set (PNS); difference measure; 

dissimilarity measure. 

 

1. Introduction 

The neutrosophic logic, which resulted in a revolution in the mathematical logic world, was first 

introduced by Florentin in 1995 [1, 2]. It is a generalization of intuitionistic fuzzy logic. Several papers 

have been published in this field by Florentin and Salama et al [3-15]. It is necessary to take advantage 

of the features of this logic in various applied sciences. 

Having studied researches related to digital image processing [16-18], we have noted that 

applied sciences researchers are interested in the use of fuzzy logic, first introduced by Lotfi Zadeh 

[19], for digital image processing because of its flexibility and appropriate features to deal with 

different forms of digital images. Moreover, the neutrosophic logic is a generalization and extension 

of fuzzy logic. It has provided many additional methods and tools, which we can be used to study 

digital images with greater accuracy and comprehensiveness than before. 

Digital image processing is mainly based on mathematical concepts [20-26], such as 

mathematical logic, linear algebra (matrices), topology, statistics (especially Bayes' theory), Shannon 

information theory, and Fourier transform in different representations along with neural networks. 

Several researchers have performed studies specifying methods to measure the dissimilarity, 

difference and distance between NSs. Salama, Smarandache, & Eisa, (2014) [27] have introduced image 

processing via neutrosophic techniques. Mohana & Mohanasundari (2019) [28] have studied some 
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similarity measures of single valued neutrosophic rough sets. Sinha & Majumdar (2019) [29] have 

studied an approach to similarity measure between neutrosophic soft sets. Das, Samanta, Khan, 

Naseem & De (2020) [30] also have a study on discrete mathematics: sum distance in neutrosophic 

graphs with application.  

We have organized this paper into 4 sections. In section 2, we discuss preliminaries about digital 

images and the neutrosophic set. In section 3, we have introduced new neutrosophic concepts, such 

as 𝐾𝑆(𝛼) (the extent to which the series of points (𝛼) belongs to the neutrosophic set S), and 𝐶𝑆(𝑝, 𝑞) 

(the connection strength between the points 𝑝, 𝑞 ∈ 𝑆), based on which we have deduced connected 

neutrosophic sets. In addition, we have presented our vision in the field of distance and dissimilarity 

measures in neutrosophic sets. In section 4, we have concluded our paper. 

2. Preliminaries 

2.1. Digital Image:[31] It is a representation of a two-dimensional image in the form of a matrix of 

small squares, each image consists of thousands or millions of small squares, each of which is called 

the elements of the image or pixels. 

When the computer starts drawing the image, it divides the screen or printed page into a grid of 

pixels. Then the computer uses the stored values of the digital image to give each pixel its color and 

brightness. The images posted on websites or by mobile phone are examples of digital images. For 

example, the small picture (Felix) can be represented in Figure 1: 

 

 

With an array (35 × 35), its elements are composed of numbers 0 and 1. Each element indicates 

the color of the pixel. It takes the value (0) for the black pixel and the value (1) for the white pixel. 

Note that digital images using two colors are called binary or Boolean images. 

 

 

The grayscale images are represented by a matrix, each element of which specifies the 

corresponding pixel intensity. For practical reasons, most of the current digital files use integers 

Figure 1: Image of Cat Felix [31] 

Figure 2: Matrix representing the image of Cat Felix [31] 
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enclosed between zero-0 (for black pixels, very low color) and 255 (for the white pixel, the color is 

super hard). 

2.2. Neutrosophic Logic:[2] Was created by professor Florentin Smarandache in 1995. It is a 

generalization of (fuzzy, intuitionistic, paraconsistent) logic. For any logical variable   𝑥  in the 

neutrosophic logic 𝐴, it is described by (𝑡, 𝑖, 𝑓), where: 

𝑡 = 𝑇𝐴(𝑥) : Truth membership function: a degree of membership function, for any 𝑥  in the 

neutrosophic set 𝐴, and its values range in the open interval non-standard, where: 

𝑇𝐴(𝑥):  𝐴 →  ]0
−, 1+[ 

𝑖 = 𝐼𝐴(𝑥) : Indeterminacy membership function: a degree of indeterminacy, for any 𝑥  in the 

neutrosophic set 𝐴, and its values range in the open interval non-standard, where: 

𝐼𝐴(𝑥):  𝐴 →  ]0
−, 1+[ 

𝑓 = 𝐹𝐴(𝑥): Falsity membership function: a degree of non-membership, for any 𝑥 in the neutrosophic 

set 𝐴, and its values range in the open interval non-standard, where: 

𝐹𝐴(𝑥):  𝐴 →  ]0
−, 1+[ 

3. Neutrosophic Digital Image 

Let 𝑀 be the digital image matrix 𝐴, so any pixel (point) of image A that is expressed by the 

element 𝑝 (𝑥, 𝑦)  of the matrix 𝑀  has four horizontal and vertical adjacent points (𝑥 ±  1, 𝑦) and 

(𝑥, 𝑦 ±  1) and four diagonal adjacent points (𝑥 ±  1, 𝑦 ±  1), so any point or pixel is surrounded by 

eight adjacent points (8-adjacent), noting the cases where the point 𝑃 is present on the border of the 

matrix 𝑀.[18]  

3.1. Connected Neutrosophic Sets:  

Definition 3.1: Let 𝑆 be a subset of 𝑀. For any 𝑝, 𝑞 from 𝑆, they are connected in 𝑆 if you find a 

path of points from 𝑆 that connects 𝑝 with 𝑞 as follows: 

𝛼: 𝑝 = 𝑝0, 𝑝1, 𝑝2, … . . , 𝑝𝑛−1, 𝑝𝑛 = 𝑞 . 

Where 𝑝𝑖  is adjacent to 𝑝𝑖−1 (1 ≤ 𝑖 ≤ 𝑛). 

We denote the connection relationship between 𝑝, 𝑞 by 𝑝𝜌𝑞. 

Obviously, the relationship (𝜌) represents an equivalence relationship: 

𝑅𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒: [𝑝𝜌𝑝]     &    𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐: [𝑝𝜌𝑞  ⇒   𝑞𝜌𝑝]    &    𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒: [𝑝𝜌𝑞  & 𝑞𝜌𝑧  ⇒   𝑝𝜌𝑧] 

 

Remark 3.1: By introducing the concept of non- member function and the function of indeterminacy 

to the neutrosophic logic, it has got more accuracy than fuzzy logic in different cases, such as an equal 

degree of membership. Thus, we can introduce the order relation (≤⃛) between any two elements in 

the neutrosophic set: 

Definition 3.2: ∀ 𝑝, 𝑞 ∈ 𝑆, (𝑆 is neutrosophic set), then: 

𝑝 ≤⃛ 𝑞 ⇔  { 

𝑇𝑆(𝑝)  <  𝑇𝑆(𝑞)                                                                 

(𝑜𝑟)  𝐹𝑆(𝑝)  >  𝐹𝑆(𝑞)   ;   𝑇𝑆(𝑝) =  𝑇𝑆(𝑞)                                        

 (𝑜𝑟)   𝐼𝑆(𝑝)  ≥  𝐼𝑆(𝑞)     ;   𝑇𝑆(𝑝) =  𝑇𝑆(𝑞), 𝐹𝑆(𝑝) =  𝐹𝑆(𝑞)  
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Remark 3.2: The order relation (≤⃛) maintains its consistency with fuzzy logic in the case 

of  𝑇𝑆(𝑝)  ≠  𝑇𝑆(𝑞), and maintains consistency with intuitionistic fuzzy logic in the case of  

𝐹𝑆(𝑝)  ≠  𝐹𝑆(𝑞)   &  𝑇𝑆(𝑝) =  𝑇𝑆(𝑞). 

Example 3.1: (0,1,1)  ≤⃛ (0,0,0)   , (1,1,1)  ≤⃛ (1,0.5,1)  

              (0.9,1,0.8)  ≤⃛ (1,0.3,0.1)  ,   (0.7,0,0.4)  ≤⃛ (0.7,1,0.3) 

Definition 3.3: [2] ∀ 𝑝, 𝑞 ∈ 𝑆, then:[𝑝 ≤ 𝑞]  ⇔ [𝑇𝑆(𝑝)  ≤ 𝑇𝑆(𝑞)  , 𝐼𝑆(𝑝) ≥ 𝐼𝑆(𝑞)    𝑎𝑛𝑑   𝐹𝑆(𝑝) ≥ 𝐹𝑆(𝑞)] 

Remark 3.3: ∀ 𝑝, 𝑞 ∈ 𝑆  ⇒  [
 [𝑝 ≤ (1,0,0) = 1𝑁    &      0𝑁 = (0,1,1)  ≤ 𝑝] 

[ 𝑝 ≤⃛ (1,0,0) = 1𝑁   &     0𝑁 = (0,1,1)  ≤⃛ 𝑝]
] & [𝑝 ≤ 𝑞   ⇒   𝑝 ≤⃛ 𝑞]    

Definition 3.4: Let (𝛼: 𝑝 = 𝑝0, 𝑝1, 𝑝2, … . . , 𝑝𝑛−1, 𝑝𝑛 = 𝑞), series of adjacent points, between the points 

, 𝑞 : 𝑝𝑖 ∈ 𝑆  (𝑆 neutrosophic set). The extent to which the series of points (𝛼) belongs to the 

neutrosophic set S, denote by 𝐾𝑆(𝛼): 

𝐾𝑆(𝛼) = 𝑥     ;     (𝑥 ∈  𝛼)   𝑎𝑛𝑑 ( 𝑥 ≤⃛    𝑝𝑖   ;  𝑖 = 0,1, … . , 𝑛 )  

⇒  𝐾𝑆(𝛼) = min≤⃛ (𝑝𝑖) 

Definition 3.5: The connect strength between the points 𝑝, 𝑞 ∈ 𝑆 (𝑆 neutrosophic set). 

denote by 𝐶𝑆(𝑝, 𝑞): 𝐶𝑆(𝑝, 𝑞) = 𝐾𝑆(𝛽)  ;  𝐾𝑆(𝛼𝑖)  ≤⃛   𝐾𝑆(𝛽)    (∀𝛼𝑖 , 𝛽: 𝑝, … , 𝑞) 

⇒  𝐶𝑆(𝑝, 𝑞) = max≤⃛(𝐾𝑆(𝛼𝑖)) 

Theorem 3.1: 𝑆 neutrosophic set and ∀ 𝑝, 𝑞 ∈ 𝑆, then: 

1: 𝐶𝑆(𝑝, 𝑝) = 𝑝 

2: 𝐶𝑆(𝑝, 𝑞) = 𝐶𝑆(𝑞, 𝑝) 

Proof: 

1: 𝛼𝑖 any path, from 𝑝 to 𝑝    ⇒    𝐾𝑆(𝛼𝑖) = min≤⃛(𝑝𝑖)  ≤⃛   𝑝   

  On the other hand: 

  The point 𝑝 alone represents a series with a length of 0 from 𝑝 to 𝑝, then: 

∃ 𝛼𝑖 ∶   𝐾𝑆(𝛼𝑖) =   𝑝 

  Thus: 𝐶𝑆(𝑝, 𝑝) = max≤⃛(𝐾𝑆(𝛼𝑖)) = 𝑝 

2: Obviously. (by Definition 3.4) 

Theorem 3.2: ∀ 𝑝, 𝑞 ∈ 𝑆 (S neutrosophic set), then: 

𝐶𝑆(𝑝, 𝑞) ≤ min≤⃛(𝑝, 𝑞) 

Proof: 

𝛼 any path, from 𝑝 to 𝑞: (𝛼: 𝑝 = 𝑝0, 𝑝1, … , 𝑝𝑛−1, 𝑝𝑛 = 𝑞), then: 

𝐾𝑆(𝛼) = min≤⃛(𝑝𝑖)  ≤ min≤⃛(𝑝0, 𝑝𝑛) = min≤⃛(𝑝, 𝑞)      ; 𝑖 = 0,1, … . , 𝑛 

⇒  𝐶𝑆(𝑝, 𝑞) = max≤⃛(𝐾𝑆(𝛼𝑖))  ≤ min≤⃛(𝑝, 𝑞) 

Definition 3.6: ∀ 𝑝, 𝑞 ∈ 𝑆, 𝑝 and 𝑞 is connected in 𝑆  iff: 𝐶𝑆(𝑝, 𝑞) =  min≤⃛(𝑝, 𝑞). 

Theorem 3.3: 𝑆 neutrosophic set and ∀ 𝑝, 𝑞 ∈ 𝑆, then: 

𝑝 and 𝑞 is connected in 𝑆  ⇔ ∃ 𝛼′: 𝑝 = 𝑝0, 𝑝1, … , 𝑝𝑛−1, 𝑝𝑛 = 𝑞 : 𝑃𝑖 ∈ 𝑆  &  𝑃𝑖 ≥ min≤⃛(𝑝, 𝑞)  (for all 𝑖) 
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Proof: 

Let  𝛼′ path from 𝑝 to  : 𝑃𝑖 ∈ 𝑆  &  𝑃𝑖 ≥ min≤⃛(𝑝, 𝑞), then: 

𝐶𝑆(𝑝, 𝑞) = max≤⃛(𝐾𝑆(𝛼)) ≥ 𝐾𝑆(𝛼
′) = min≤⃛(𝑝𝑖) ≥  min≤⃛(𝑝, 𝑞)  

And   𝐶𝑆(𝑝, 𝑞) ≤ min≤⃛(𝑝, 𝑞)  (Theorem 3.2) 

Then: 𝐶𝑆(𝑝, 𝑞) =  min≤⃛(𝑝, 𝑞) ⇒ 𝑝 and 𝑞 is connected in 𝑆   

On the other hand: 𝑝 and 𝑞 is connected in  , then: 

∃ 𝛼′ path from 𝑝 to 𝑞 : 𝐾𝑆(𝛼
′) = max≤⃛(𝐾𝑆(𝛼)) = 𝐶𝑆(𝑝, 𝑞) = min≤⃛(𝑝, 𝑞) 

Then for all 𝑃𝑖  on  𝛼′, we have:  𝑃𝑖 ≥ 𝐾𝑆(𝛼
′) = min≤⃛(𝑝, 𝑞) 

Corollary 3.1: From the above we note that the relationship of the connection between two points is 

the relationship of: 1: reflexivity, 2: Symmetry, 3: not necessarily transitive. 

Proof: 

1: 𝐶𝑆(𝑝, 𝑝) = 𝑝 = min≤⃛(𝑝, 𝑝) 

2: min≤⃛(𝑝, 𝑞) = 𝐶𝑆(𝑝, 𝑞) ⇒ 𝐶𝑆(𝑞, 𝑝) = 𝐶𝑆(𝑝, 𝑞) = min≤⃛(𝑝, 𝑞) 
3: Let 𝑝, 𝑞, 𝑧 three points from neutrosophic set 𝑆 = [𝑝, 𝑞, 𝑧] (𝑀𝑎𝑡𝑟𝑖𝑥 1 × 3): 

𝑞 ≤⃛ 𝑝 = 𝑧, then:   

𝐶𝑆(𝑝, 𝑞) = 𝐶𝑆(𝑞, 𝑧) = 𝑞 and 𝐶𝑆(𝑝, 𝑧) = 𝑞 ≠  min≤⃛(𝑝, 𝑧) , thus: 

(𝑝 and 𝑞 is connected in 𝑆) and (𝑞 and 𝑧 is connected in 𝑆), but (𝑝 and 𝑧 is not connected in 𝑆)   

Definition 3.7: 𝑆 neutrosophic set, 𝑆 is connected iff: [∀ 𝑝, 𝑞 ∈ 𝑆]  ⇒ [𝐶𝑆(𝑝, 𝑞) = min≤⃛(𝑝, 𝑞)]. 

3.2. Operations on neutrosophic sets: 

We will now in this section, we present our vision of distance and dissimilarity measures 

between two neutrosophic sets. 

Definition 3.8: Let 𝑈 be the set of points of the matrix 𝑀, a representative of the digital image 𝐼. 

denote by 𝑃𝑁𝑆(𝑈) for set of all neutrosophic sets in 𝑈 (𝑃𝑁𝑆 - Picture Neutrosophic Set). 

For 𝐴, 𝐵 ∈  𝑃𝑁𝑆(𝑈): 

Union:             𝐴 ∪ 𝐵 = {𝑢: (𝑇𝐴∪𝐵(𝑢), 𝐼𝐴∪𝐵(𝑢), 𝐹𝐴∪𝐵(𝑢)); 𝑢 ∈ 𝑈}, where: 

𝑇𝐴∪𝐵(𝑢) = max (𝑇𝐴(𝑢), 𝑇𝐵(𝑢)) 

𝐼𝐴∪𝐵(𝑢) = min (𝐼𝐴(𝑢), 𝐼𝐵(𝑢)) 

𝐹𝐴∪𝐵(𝑢) = min (𝐹𝐴(𝑢), 𝐹𝐵(𝑢)) 

Intersection:       𝐴 ∩ 𝐵 = {𝑢: (𝑇𝐴∩𝐵(𝑢), 𝐼𝐴∩𝐵(𝑢), 𝐹𝐴∩𝐵(𝑢)); 𝑢 ∈ 𝑈}, where: 

𝑇𝐴∩𝐵(𝑢) = min (𝑇𝐴(𝑢), 𝑇𝐵(𝑢)) 

𝐼𝐴∩𝐵(𝑢) = max (𝐼𝐴(𝑢), 𝐼𝐵(𝑢)) 

𝐹𝐴∩𝐵(𝑢) = max (𝐹𝐴(𝑢), 𝐹𝐵(𝑢)) 
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Example 3.2: Let us consider the following neutrosophic sets 𝐴 and 𝐵 in 

𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, where: 

𝐴 = {𝑢1: (0,1,1),  𝑢2: (1,0.2,0),  𝑢3: (0.7,0.3,1), 𝑢4: (0.9,0.3,1)}  

𝐵 = {𝑢1: (0.2,1,0.2), 𝑢2: (1,0.5,0.3), 𝑢3: (1,0.8,1),  𝑢4: (0.9,0.8,0.2)}  

Then: 

𝐴 ∪ 𝐵 = {𝑢1: (0.2,1,0.2),  𝑢2: (1,0.2,0),  𝑢3: (1,0.3,1),  𝑢4: (0.9,0.3,0.2)}  

𝐴 ∩ 𝐵 = {𝑢1: (0,1,1),  𝑢2: (1,0.5,0.3),  𝑢3: (0.7,0.8,1),  𝑢4: (0.9,0.8,1)}  

Theorem 3.4: Let  𝐴, 𝐵 ∈  𝑃𝑁𝑆 (𝑈), then: (for all 𝑢 ∈ 𝑈) 

𝐴 ⊆ 𝐵   ⟺    [𝑇𝐴(𝑢)  ≤ 𝑇𝐵(𝑢)  , 𝐼𝐴(𝑢) ≥ 𝐼𝐵(𝑢)     𝑎𝑛𝑑    𝐹𝐴(𝑢) ≥ 𝐹𝐵(𝑢)] 

Proof: 

𝐴 ⊆ 𝐵   ⟺   𝐴 ∪ 𝐵 = 𝐵                                                   

           ⟺ {

max(𝑇𝐴(𝑢), 𝑇𝐵(𝑢)) = 𝑇𝐵(𝑢)

min(𝐼𝐴(𝑢), 𝐼𝐵(𝑢)) = 𝐼𝐵(𝑢)   

min(𝐹𝐴(𝑢), 𝐹𝐵(𝑢)) = 𝐹𝐵(𝑢)

  ⟺  {

𝑇𝐴(𝑢)  ≤ 𝑇𝐵(𝑢)

𝐼𝐴(𝑢)   ≥ 𝐼𝐵(𝑢)

𝐹𝐴(𝑢)   ≥ 𝐹𝐵(𝑢)
                           

Definition 3.9: An operator \: 𝑃𝑁𝑆(𝑈) ×  𝑃𝑁𝑆(𝑈) →    𝑃𝑁𝑆(𝑈) 

Is the difference, if it satisfies for all 𝐴, 𝐵, 𝐶 ∈  𝑃𝑁𝑆(𝑈), follow properties:  

DIF1: 𝐴\𝐵 ⊆ 𝐴      

DIF2: 𝐴\∅ = 𝐴     

DIF3: 𝐴 ⊆ 𝐵   ⟺   𝐴\𝐵 = ∅       

DIF4: 𝑖𝑓 𝐵 ⊆ 𝐶   ⟹ 𝐵\𝐴 ⊆ 𝐶\𝐴       

Theorem 3.5: The function \: 𝑃𝑁𝑆(𝑈)  ×  𝑃𝑁𝑆(𝑈)  →    𝑃𝑁𝑆(𝑈) given by: 

𝐴\𝐵 = {𝑢: (𝑇𝐴\𝐵(𝑢), 𝐼𝐴\𝐵(𝑢), 𝐹𝐴\𝐵(𝑢)) ; 𝑢 ∈ 𝑈}, where: 

𝑇𝐴\𝐵(𝑢) = max (0, 𝑇𝐴(𝑢) − 𝑇𝐵(𝑢))  

     𝐼𝐴\𝐵(𝑢) = min (1,1 + (𝐼𝐴(𝑢) − 𝐼𝐵(𝑢)))  

      𝐹𝐴\𝐵(𝑢) = min (1,1 + (𝐹𝐴(𝑢) − 𝐹𝐵(𝑢)))  

Is the difference between 𝑃𝑁𝑆(𝑈) sets. 

Proof: 

DIF1: 𝐴\𝐵 ⊆ 𝐴      

∀ 𝑢 ∈ 𝑈 ⇒     

{
 
 

 
 𝑇𝐴\𝐵(𝑢) = max(0, 𝑇𝐴(𝑢) − 𝑇𝐵(𝑢))           

𝐼𝐴\𝐵(𝑢) = min (1,1 + (𝐼𝐴(𝑢) − 𝐼𝐵(𝑢)))  

𝐹𝐴\𝐵(𝑢) = min (1,1 + (𝐹𝐴(𝑢) − 𝐹𝐵(𝑢)))

                  

[0 ≤ 𝑇𝐴(𝑢)]        𝑎𝑛𝑑          [0 ≤ 𝑇𝐵(𝑢)   ⇒   𝑇𝐴(𝑢) − 𝑇𝐵(𝑢) ≤ 𝑇𝐴(𝑢)]    

Hence: 𝑇𝐴\𝐵(𝑢) = max(0, 𝑇𝐴(𝑢) − 𝑇𝐵(𝑢)) ≤ 𝑇𝐴(𝑢) 

𝐼𝐴(𝑢) ≤ 1    𝑎𝑛𝑑          [
𝐼𝐵(𝑢) ≤ 1  ⇒   𝐼𝐵(𝑢) + 𝐼𝐴(𝑢) ≤ 1 + 𝐼𝐴(𝑢)  

                       ⇒  𝐼𝐴(𝑢) ≤ 1 + (𝐼𝐴(𝑢) − 𝐼𝐵(𝑢))
]  

Hence:  𝐼𝐴\𝐵(𝑢) = min (1,1 + (𝐼𝐴(𝑢) − 𝐼𝐵(𝑢))) ≥ 𝐼𝐴(𝑢) 

Similarity: 𝐹𝐴\𝐵(𝑢) = min (1,1 + (𝐹𝐴(𝑢) − 𝐹𝐵(𝑢))) ≥ 𝐹𝐴(𝑢) 

Thus: 𝐴\𝐵 ⊆ 𝐴     (by Theorem 3.4) 
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DIF2: 𝐴\∅   = 𝐴     

∅ = {𝑢: (0,1,1)   ; ∀𝑢 ∈ 𝑈}   ⇒  

∀ 𝑢 ∈ 𝑈 ⇒     {

𝑇𝐴\∅(𝑢) = max(0, 𝑇𝐴(𝑢) − 0)   =   𝑇𝐴(𝑢)       

𝐼𝐴\∅(𝑢)  = min(1,1 + (𝐼𝐴(𝑢) − 1)) =  𝐼𝐴(𝑢) 

𝐹𝐴\∅(𝑢) = min(1,1 + (𝐹𝐴(𝑢) − 1)) =  𝐹𝐴(𝑢)

           

Then: 𝐴\∅   = 𝐴       

DIF3: 𝐴 ⊆ 𝐵   ⟺   𝐴\𝐵 = ∅       

𝐴 ⊆ 𝐵   ⇔    {

𝑇𝐴(𝑢)  ≤ 𝑇𝐵(𝑢)

𝐼𝐴(𝑢)  ≥ 𝐼𝐵(𝑢) 

𝐹𝐴(𝑢) ≥ 𝐹𝐵(𝑢)
      ⇔     {

𝑇𝐴\𝐵(𝑢) = 0

𝐼𝐴\𝐵(𝑢) = 1

𝐹𝐴\𝐵(𝑢) = 1

        ⇔      𝐴\𝐵 = ∅   

DIF4: 𝑖𝑓 𝐵 ⊆ 𝐶   ⟹ 𝐵\𝐴 ⊆ 𝐶\𝐴       

𝐵 ⊆ 𝐶   ⟹   {

𝑇𝐵(𝑢)  ≤ 𝑇𝐶(𝑢)

𝐼𝐵(𝑢)   ≥ 𝐼𝐶(𝑢) 

𝐹𝐵(𝑢) ≥ 𝐹𝐶(𝑢)
     ⟹     {

𝑇𝐵(𝑢) − 𝑇𝐴(𝑢) ≤ 𝑇𝐶(𝑢) − 𝑇𝐴(𝑢)

𝐼𝐵(𝑢) − 𝐼𝐴(𝑢) ≥ 𝐼𝐶(𝑢) − 𝐼𝐴(𝑢)

𝐹𝐵(𝑢) − 𝐹𝐴(𝑢) ≥ 𝐹𝐶(𝑢) − 𝐹𝐴(𝑢)
        

        ⟹  {

𝑇𝐵\𝐴(𝑢) ≤ 𝑇𝐶\𝐴(𝑢)

𝐼𝐵\𝐴(𝑢)  ≥ 𝐼𝐶\𝐴(𝑢) 

𝐹𝐵\𝐴(𝑢) ≥ 𝐹𝐶\𝐴(𝑢)

      ⟹      𝐵 − 𝐴 ⊆ 𝐶 − 𝐴     

Example 3.3: Let 𝑈 = {𝑢1, 𝑢2, 𝑢3}, and 𝐴, 𝐵 ∈ 𝑃𝑁𝑆(𝑈) : 

𝐴 = {𝑢1: (0.8,0.1,0.3), 𝑢2: (0.9,0.2,0), 𝑢3: (0.9,0.8,1)}  

𝐵 = {𝑢1: (0.2,1,0.2), 𝑢2: (1,0.5,0.3),  𝑢3: (0.9,0.8,1)}  

Then: 𝐴\𝐵 = {𝑢1: (0.6,0.1,1), 𝑢2: (0,0.7,0.7), 𝑢3: (0,1,1)} 

Definition 3.10: An operator 𝐷: 𝑃𝑁𝑆(𝑈) × 𝑃𝑁𝑆(𝑈)  →  ] 0 
− , 1+[  

Is the distance measure, if it satisfies for all 𝐴, 𝐵, 𝐶 ∈  𝑃𝑁𝑆(𝑈), follow properties: 

DIS1: 𝐷(𝐴, 𝐵) = 0  ⇔   𝐴 = 𝐵       

DIS2: 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴)      

DIS3: 𝐷(𝐴, 𝐶) ≤ 𝐷(𝐴, 𝐵) + 𝐷(𝐵, 𝐶)      

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: A three-dimension representation of a neutrosophic set [27] 
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Theorem 3.6: The function 𝐷: 𝑃𝑁𝑆(𝑈)  ×  𝑃𝑁𝑆(𝑈)  →  ] 0 
− , 1+[ given by: [27]  

𝐷(𝐴, 𝐵) = √
1

3𝑛
∑[(𝑇𝐴(𝑢𝑖) − 𝑇𝐵(𝑢𝑖))

2 + (𝐼𝐴(𝑢𝑖) − 𝐼𝐵(𝑢𝑖))
2 + (𝐹𝐴(𝑢𝑖) − 𝐹𝐵(𝑢𝑖))

2]

𝑛

𝑖=1

 

Is the distance measure between 𝑃𝑁𝑆(𝑈) sets. 

Proof: Obviously: 𝐷(𝐴, 𝐵) is generalization of the usually used to measure the distance of objects 

in Euclidean geometry 

Example 3.4: Let 𝑈 = {𝑢1, 𝑢2, 𝑢3}, and 𝐴, 𝐵 ∈ 𝐼𝑁𝑆(𝑈) : 

𝐴 = {𝑢1: (0.8,0.1,0.3),  𝑢2: (0.4,0.5,0),  𝑢3: (0.7,0.8,1)} 

𝐵 = {𝑢1: (0.7,1,0.5),  𝑢2: (1,0.5,0.3),  𝑢3: (0.9,0.8,0.7)} 

Then: 𝐷𝑁𝐸(𝐴, 𝐵) = √
1

9
(0.86 + 0.45 + 0.13)  =  √

1

9
1.44 = √0.16 = 0.4 

Definition 3.11: An operator 𝐷𝑀:𝑃𝑁𝑆(𝑈) ×  𝑃𝑁𝑆(𝑈) → (𝐷𝑀𝑇 , 𝐷𝑀𝐼 , 𝐷𝑀𝐹), where: 

𝐷𝑀𝑇 : denote the degree of dissimilarity. ( 0 
− ≤ 𝐷𝑀𝑇 ≤ 1

+) 

𝐷𝑀𝐼 : denote the degree of indeterminate dissimilarity. ( 0 
− ≤ 𝐷𝑀𝐼 ≤ 1

+) 

𝐷𝑀𝐹 : denote the degree of non-dissimilarity. ( 0 
− ≤ 𝐷𝑀𝐹 ≤ 1+) 

Is the dissimilarity measure, if it satisfies for all 𝐴, 𝐵, 𝐶 ∈  𝑃𝑁𝑆(𝑈), follow properties: 

DISM1: 𝐷𝑀(𝐴, 𝐴) = (0,1,1)     

DISM2: 𝐷𝑀(𝐴, 𝐵) = 𝐷𝑀(𝐵, 𝐴)      

DISM3: 𝐴 ⊆ 𝐵 ⊆ 𝐶  ⟹  𝐷𝑀(𝐴, 𝐵) ≤  𝐷𝑀(𝐴, 𝐶) & 𝐷𝑀(𝐵, 𝐶) ≤  𝐷𝑀(𝐴, 𝐶) 

Remark 3.4: Let  𝐴, 𝐵 ∈  𝑃𝑁𝑆(𝑈), then: 

(𝐴\𝐵) ∪ (𝐵\𝐴) = {𝑢: (𝑇′(𝑢), 𝐼′(𝑢), 𝐹′(𝑢)); 𝑢 ∈ 𝑈}, where: 

𝑇′(𝑢) = max(max(0, 𝑇𝐴(𝑢) − 𝑇𝐵(𝑢)) ,max(0, 𝑇𝐵(𝑢) − 𝑇𝐴(𝑢))) = |𝑇𝐴(𝑢) − 𝑇𝐵(𝑢)|  

𝐼′(𝑢) = min (min (1,1 + (𝐼𝐴(𝑢) − 𝐼𝐵(𝑢))) ,min (1,1 + (𝐼𝐵(𝑢) − 𝐼𝐴(𝑢)))) = 1 − |𝐼𝐴(𝑢) − 𝐼𝐵(𝑢)|  

𝐹′(𝑢) = min (min (1,1 + (𝐹𝐴(𝑢) − 𝐹𝐵(𝑢))) ,min (1,1 + (𝐹𝐵(𝑢) − 𝐹𝐴(𝑢)))) = 1 − |𝐹𝐴(𝑢) − 𝐹𝐵(𝑢)|  

Theorem 3.7: The function 𝐷𝑀:𝑃𝑁𝑆(𝑈)  ×  𝑃𝑁𝑆(𝑈)  →   (𝐷𝑀𝑇 , 𝐷𝑀𝐼 , 𝐷𝑀𝐹)   

Given by, ∀ 𝐴, 𝐵 ∈ 𝑃𝑁𝑆(𝑈):    𝐷𝑀(𝐴, 𝐵) = (𝐷𝑀𝑇(𝐴, 𝐵), 𝐷𝑀𝐼(𝐴, 𝐵), 𝐷𝑀𝐹(𝐴, 𝐵)), where: 

𝐷𝑀𝑇(𝐴, 𝐵) =
1

𝑛
∑[|𝑇𝐴(𝑢𝑖) − 𝑇𝐵(𝑢𝑖)|]

𝑛

𝑖=1

 

𝐷𝑀𝐼(𝐴, 𝐵) =
1

𝑛
∑[1 − |𝐼𝐴(𝑢𝑖) − 𝐼𝐵(𝑢𝑖)|]

𝑛

𝑖=1

 

𝐷𝑀𝐹(𝐴, 𝐵) =
1

𝑛
∑[1 − |𝐹𝐴(𝑢𝑖) − 𝐹𝐵(𝑢𝑖)|]

𝑛

𝑖=1

 

Is the dissimilarity measure between 𝑃𝑁𝑆(𝑈) sets. 
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Proof:  

DISM1: 𝐷𝑀(𝐴, 𝐴) = (0,1,1)     

𝐷𝑀𝑇(𝐴, 𝐴) =
1

𝑛
∑[|𝑇𝐴(𝑢𝑖) − 𝑇𝐴(𝑢𝑖)|]

𝑛

𝑖=1

=
1

𝑛
∑[0]

𝑛

𝑖=1

= 0 

𝐷𝑀𝐼(𝐴, 𝐴) =
1

𝑛
∑[1 − |𝐼𝐴(𝑢𝑖) − 𝐼𝐴(𝑢𝑖)|]

𝑛

𝑖=1

=
1

𝑛
∑[1 − 0]

𝑛

𝑖=1

= 1 

𝐷𝑀𝐹(𝐴, 𝐴) =
1

𝑛
∑[1 − |𝐹𝐴(𝑢𝑖) − 𝐹𝐴(𝑢𝑖)|]

𝑛

𝑖=1

=
1

𝑛
∑[1 − 0]

𝑛

𝑖=1

= 1 

DISM2: 𝐷𝑀(𝐴, 𝐵) = 𝐷𝑀(𝐵, 𝐴)      

𝐷𝑀𝑇(𝐴, 𝐵) =
1

𝑛
∑[|𝑇𝐴(𝑢𝑖) − 𝑇𝐵(𝑢𝑖)|]

𝑛

𝑖=1

=
1

𝑛
∑[|𝑇𝐵(𝑢𝑖) − 𝑇𝐴(𝑢𝑖)|]

𝑛

𝑖=1

= 𝐷𝑀𝑇(𝐵, 𝐴) 

𝐷𝑀𝐼(𝐴, 𝐵) =
1

𝑛
∑[1 − |𝐼𝐴(𝑢𝑖) − 𝐼𝐵(𝑢𝑖)|]

𝑛

𝑖=1

=
1

𝑛
∑[1 − |𝐼𝐵(𝑢𝑖) − 𝐼𝐴(𝑢𝑖)|]

𝑛

𝑖=1

= 𝐷𝑀𝐼(𝐵, 𝐴) 

𝐷𝑀𝐹(𝐴, 𝐵) =
1

𝑛
∑[1 − |𝐹𝐴(𝑢𝑖) − 𝐹𝐵(𝑢𝑖)|]

𝑛

𝑖=1

=
1

𝑛
∑[1 − |𝐹𝐴(𝑢𝑖) − 𝐹𝐵(𝑢𝑖)|]

𝑛

𝑖=1

= 𝐷𝑀𝐹(𝐵, 𝐴) 

DISM3: 𝐴 ⊆ 𝐵 ⊆ 𝐶  ⟹  𝐷𝑀(𝐴, 𝐵) ≤  𝐷𝑀(𝐴, 𝐶) & 𝐷𝑀(𝐵, 𝐶) ≤  𝐷𝑀(𝐴, 𝐶) 

𝐴 ⊆ 𝐵 ⊆ 𝐶  ⟹ 𝑇𝐴(𝑢)  ≤ 𝑇𝐵(𝑢) ≤ 𝑇𝐶(𝑢)  

         ⟹ |𝑇𝐴(𝑢) − 𝑇𝐵(𝑢)| + |𝑇𝐵(𝑢) − 𝑇𝐶(𝑢)| = |𝑇𝐴(𝑢) − 𝑇𝐶(𝑢)| 

         ⟹ |𝑇𝐴(𝑢) − 𝑇𝐵(𝑢)| ≤ |𝑇𝐴(𝑢) − 𝑇𝐶(𝑢)|  &  |𝑇𝐵(𝑢) − 𝑇𝐶(𝑢)| ≤ |𝑇𝐴(𝑢) − 𝑇𝐶(𝑢)| 

         ⟹𝐷𝑀𝑇(𝐴, 𝐵) ≤ 𝐷𝑀𝑇(𝐴, 𝐶) &  𝐷𝑀𝑇(𝐵, 𝐶) ≤ 𝐷𝑀𝑇(𝐴, 𝐶) 

𝐴 ⊆ 𝐵 ⊆ 𝐶  ⟹ 𝐼𝐴(𝑢) ≥ 𝐼𝐵(𝑢) ≥ 𝐼𝑐(𝑢)  

⟹ |𝐼𝐴(𝑢) − 𝐼𝐵(𝑢)| + |𝐼𝐵(𝑢) − 𝐼𝑐(𝑢)| = |𝐼𝐴(𝑢) − 𝐼𝐶(𝑢)| 

⟹ |𝐼𝐴(𝑢) − 𝐼𝐵(𝑢)| ≤ |𝐼𝐴(𝑢) − 𝐼𝐶(𝑢)|  &  |𝐼𝐵(𝑢) − 𝐼𝑐(𝑢)| ≤ |𝐼𝐴(𝑢) − 𝐼𝐶(𝑢)|                 

⟹ 1− |𝐼𝐴(𝑢) − 𝐼𝐵(𝑢)| ≥ 1 − |𝐼𝐴(𝑢) − 𝐼𝐶(𝑢)|  & 1 − |𝐼𝐵(𝑢) − 𝐼𝑐(𝑢)| ≥ 1 − |𝐼𝐴(𝑢) − 𝐼𝐶(𝑢)| 

⟹𝐷𝑀𝐼(𝐴, 𝐵) ≥ 𝐷𝑀𝐼(𝐴, 𝐶) &  𝐷𝑀𝐼(𝐵, 𝐶) ≥ 𝐷𝑀𝐼(𝐴, 𝐶) 

Similarity, 𝐷𝑀𝐹(𝐴, 𝐵) ≥ 𝐷𝑀𝐹(𝐴, 𝐶) &  𝐷𝑀𝐹(𝐵, 𝐶) ≥ 𝐷𝑀𝐹(𝐴, 𝐶). 

Then:  𝐷𝑀(𝐴, 𝐵) ≤  𝐷𝑀(𝐴, 𝐶) & 𝐷𝑀(𝐵, 𝐶)  ≤  𝐷𝑀(𝐴, 𝐶)  
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Example 3.5: Let 𝑈 = {𝑢1, 𝑢2, 𝑢3}, and 𝐴, 𝐵 ∈ 𝑃𝑁𝑆(𝑈) : 

𝐴 = {𝑢1: (0.1,0.1,1),  𝑢2: (0,0.2,0.8),  𝑢3: (1,1,0)} 

𝐵 = {𝑢1: (0.5,1,0.5),  𝑢2: (1,0.5,0.2),  𝑢3: (0,1,1)} 

Then: 

𝐷𝑀𝑇(𝐴, 𝐵) =
1

𝑛
∑[|𝑇𝐴(𝑢𝑖) − 𝑇𝐵(𝑢𝑖)|]

𝑛

𝑖=1

=
1

3
(0.4 + 1 + 1) =

2.4

3
= 0.8 

𝐷𝑀𝐼(𝐴, 𝐵) =
1

𝑛
∑[1 − |𝐼𝐴(𝑢𝑖) − 𝐼𝐵(𝑢𝑖)|]

𝑛

𝑖=1

=
1

3
(0.1 + 0.7 + 1) =

1.8

3
= 0.6 

𝐷𝑀𝐹(𝐴, 𝐵) =
1

𝑛
∑[1 − |𝐹𝐴(𝑢𝑖) − 𝐹𝐵(𝑢𝑖)|]

𝑛

𝑖=1

=
1

3
(0.5 + 0.4 + 0) =

0.9

3
= 0.3 

Thus: 𝐷𝑀(𝐴, 𝐵) = (0.8,0.6,0.3) 

4. Conclusion 

By combining the concepts of algebraic with the neutrosophic sets, we introduce the 

neutrosophic order relation (≤⃛), the connected points, the connection strength between the points 

inside the neutrosophic set and the connected neutrosophic sets. Thus, it became a new and 

interesting research topic on which researchers can do further studies. In addition, in this paper, we 

have defined the basic operations (union, intersection, difference) on the picture neutrosophic set 

𝑃𝑁𝑆(𝑈). We have proposed a new method for dissimilarity measure between 𝑃𝑁𝑆(𝑈) sets. These 

measures and operations are used basically in image processing and comparison. In the future, we 

will study the properties of these measures and their applications in practical problems. 
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Abstract: Assignment problem (AP) is well- studied and important area in optimization. In this 

research manuscript, an assignment problem in neutrosophic environment, called as neutrosophic 

assignment problem (NAP), is introduced. The problem is proposed by using the interval-valued 

trapezoidal neutrosophic numbers in the elements of cost matrix. As per the concept of score 

function, the interval-valued trapezoidal neutrosophic assignment problem (IVTNAP) is 

transformed to the corresponding an interval-valued AP. To optimize the objective function in 

interval form, we use the order relations. These relations are the representations of choices of 

decision maker. The maximization (or minimization) model with objective function in interval form 

is changed to multi- objective based on order relations introduced by the decision makers' preference 

in case of interval profits (or costs). In the last, we solve a numerical example to support the 

proposed solution methodology. 

Keywords: Assignment problem; Interval-valued trapezoidal neutrosophic numbers; Score 

function; Interval-valued assignment problem; Multi-objective assignment problem; Weighting 

Tchebycheff program; Decision Making. 

 

Glossary 

AP: Assignment problem. 

DM: Decision makers.  

FN-LPP: Fuzzy neutrosophic LPP.  

GAMS: General Algebraic Modeling System. 

IVN : Interval-valued neutrosophic. 

LP : Linear programming. 

MOLP: Multi-objective linear programming 

MOAP: Multi-objective assignment problem 

MOOP: Multi-objective optimization problem. 

NAP: Neutrosophic assignment problem. 
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IVTNAP: Interval- valued trapezoidal 

neutrosophic assignment. 

 

1. Introduction 

     In important real-life applications, an AP appears such as production planning, 

telecommunication, resource scheduling, vehicle routing and distribution, economics, 

plant location and flexible manufacturing systems, and attracts more and more 

researchers' attention [10, 13, 37], where it deals with the question how to set n number of 

people or machines to m number of works in such a way that an optimal assignment can 

be obtained to minimize the cost (or maximize the profit).  

    Following these research objectives, the DM has to make an attempt for the 

optimization of models starting from linear AP to nonlinear AP. In view of this, the linear 

AP is a special kind of linear programming problem (LPP) where the people or machines 

are being assigned to various works as one to one rule so that the assignment profit (or 

cost) is optimized. An optimal assignee for the work is a good description of the AP, 

where number of rows is equal to the number of columns as explained in Ehrgott et al. 

[14]. A new approach was developed to study the assignment problem with several 

objectives, by Bao et al. [4], which was followed with applications to determine the cost- 

time AP problem as multiple criteria decision making problem by Geetha and Nair [16]. 

   Few decades ago, a large number of authors and policy makers around the world have 

investigated the basic idea of fuzzy sets. The theory of fuzzy sets was, first, originated by Zadeh [45], 

which has been intensely applied to study several practical problems, including financial risk 

management. Then the fuzzy concept is also represented by fuzzy constraints and / or fuzzy 

quantities. Dubois and Prade [13] suggested the implementation of algebraic operations on crisp 

numbers to fuzzy numbers with the help of fuzzification method. However, AP representing real- 

life scenario consists of a set of parameters. The values of these parameters are set by decision 

makers. DMs required fixing exact values to the parameters that in the conventional approach. In 

that case, DMs do not precisely estimate the exact value of parameters, therefore the model 

parameters are generally defined in an uncertain manner. Zimmermann [46] was the first solved LP 

model having many objectives through suitable membership functions. Bellmann and Zadeh [6] 

implemented fuzzy set notion to the decision-making problem consisting of imprecision as well as 

uncertainty.   

Sakawa and Yano [39] suggested the idea of fuzzy multiobjective linear programming (MOLP) 

problems. Hamadameen [18] derived an approach for getting the optimal solution of fuzzy MOLP 

model considering the coefficients of objective function as triangular fuzzy numbers. The fuzzy 

MOLP problem was reduced to crisp MOLP with the help of ranking function as explained by Wang 

[42]. Thereafter, the problem was solved with the help of the fuzzy programming method. Leberling 

[28] solved vector maximum LP problem using a particular kind of nonlinear membership functions. 

Bit et al. [7] applied fuzzy methodology for multiple objective transportation model. Belacela and 

Boulasselb [5] studied a multiple criteria fuzzy AP. Lin and Wen [29] designed an algorithm for the 
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solution of fuzzy AP problem. Kagade and Bajaj [22] discussed interval numbers cost coefficients 

MOAP problem. Yang and Liu [44] developed a Tabu search method with the help of fuzzy 

simulation to determine an optimal solution to the fuzzy AP. Moreover, De and Yadav [11] 

proposed a solution approach to MOAP with the implementation of fuzzy goal programming 

technique. Mukherjee and Basu [32] solved fuzzy cost AP problem using the ranking method 

introduced by Yager [43]. Pramanik and Biswas [36] studied multi-objective AP with imprecise 

costs, time and ineffectiveness. Haddad et al. [17] investigated some generalized AP models in 

imprecise environment. Emrouznejad et al. An alternative development was suggested for the fuzzy 

AP with fuzzy profits or fuzzy costs for all possible assignments as explained by Emrouznejad et al. 

[15]. Kumar and Gupta [26] investigated a methodology to solve fuzzy AP as well as fuzzy travelling 

salesman problem under various membership functions and ranking index introduced by Yager 

[43]. Medvedeva and Medvedev [31] applied the concept of the primal and dual for getting the 

optimal solution to a MOAP. Hamou and Mohamed [19] applied the branch & bound based method 

to generate the set of each efficient solution to MOAP. Jayalakshmi and Sujatha [21] investigated a 

novel procedure, referred as optimal flowing method providing the ideal and set of all efficient 

solutions. Pandian and Anuradha [34] investigated a novel methodology to determine the optimal 

solution of the problem consisting of zero-point method which was introduced by Pandian and 

Natarajan [33].  

Khalifa and Al- Shabi [23] studied the multi-objective assignment problem with trapezoidal fuzzy 

numbers. They introduced an interactive approach for solving it and then determined the stability 

set of the first kind corresponding the solution. Khalifa [25] introduced an approach based on the 

Weighting Tchebycheff  program to solve the multi- objective assignment problem in neutrosophic 

environment. 

   The extension of intuitionistic fuzzy set is the neutrosophic set. The neutrosophic set consists of 

three defining functions. These functions are the membership function, the non-membership 

function, and the indeterminacy function. All these functions are entirely independent to each other. 

A new solution approach for the FN-LPP was proposed with real life application by Abdel et al. [3]. 

Kumar et al. [27] investigated a novel solution procedure for the computation of fuzzy pythagorean 

transportation problem, where they extended the interval basic feasible solution, then existing 

optimality method to obtain the cost of transportation. Khalifa et al. [24] studied the complex 

programming problem with neutrosophic concept. They applied the lexicographic order to 

determine the optimal solution of neutrosophic complex programming. Vidhya et al. [41] studied 

neutrosophic MOLP problem. Pramanik and Banerjee [35] proposed a goal programming 

methodology to MOLP problem under neutrosophic numbers. Broumi and Smarandaache [8] 

introduced some novel operations for interval neutrosophic sets in terms of arithmetic, geometrical, 

and harmonic means. Rizk-Allah et al. [38] suggested a novel compromise approach for many 

objective transportation problem, which was further studied by Zimmermann's fuzzy programming 

approach as well as the neutrosophic set terminology. Abdel- Basset et al. [1] introduced a 

plithogenic multi- criteria decision- making model based on neutrosophic analytic hierarchy process 

in order of performance by similarity to the ideal solution of financial performance. Abdel- Basset et 

http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
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al. [2] evaluated a set of measurements for providing sustainable supply chain finance in the gas 

industry in the uncertain environment. Abdel- Basset et al. [3] proposed an integrated method based 

on neutrosophic set to evaluate innovation value for smart product- service systems.    

   In this paper, the assignment problem having interval- valued trapezoidal neutrosophic numbers 

in all the parameters is introduced. This problem is converted into two objectives assignment 

problem, then the Weighting Tchebycheff program with the ideal targets are applied for solving it. 

           The outlay of the proposed research article is organized as follows: In the next Section, 

we present some sort of preliminaries, which is essential for the present study. Section 3 

formulate interval-valued trapezoidal neutrosophic assignment problem. Section 4 

proposes solution approach for the determination of preferred solution. A numerical 

example is solved, in Section 5, to support the efficiency of the solution approach. In the 

last, some concluding remarks as well as the further research directions are summarized 

in Section 6. 

2. Preliminaries 

      This section introduces some of basic concepts and results related to fuzzy numbers, 

neutrosophic set, and their arithmetic operations.  

Definition 1. A fuzzy set P̃ defined on the set of real numbers ℝ is called fuzzy number 

when the membership function 

   μ
P̃
(x):  ℝ → [0,1], have the following properties: 

1. μ
P̃
(x) is an upper semi-continuous membership function; 

2. P̃ is convex fuzzy set, i.e., μ
P̃
(δ x + (1 − δ) y) ≥ min{μ

P̃
(x),μ

P̃
(y) }  for all x, y ∈ ℝ; 0 ≤ δ ≤ 1; 

3. P̃ is normal, i.e., ∃ x0 ∈ ℝ for which μ
P̃
(x0) = 1;  

4. Supp (P̃) = {x ∈ ℝ: μ
P̃
(x) > 0 } is the support of P̃ , and the closure cl(Supp(P̃)) is 

compact set. 

Definition 2. (Ishibuchi and Tanaka [20). An interval on ℝ is defined as  

A = [aL, aR] = {a: , aL ≤ a ≤ aR, a ∈  ℝ}, where aL is left limit and aR is right limit of A.                                          

Definition 3.  (Ishibuchi and Tanaka [20]).The interval is also defined by 

A = 〈aC, aW〉 = {𝐚: aC − aW ≤ 𝐚 ≤ aC + aW, 𝐚 ∈ ℝ },  where aC =
1

2
( aR+aL)  is center and aW =

1

2
(aR − aL)  is width of A.  

Definition 4. (Neutrosophic set, Wang et al. [42]). Let 𝑋 be a nonempty set. Then a neutrosophic set 

𝑃𝑁 of nonempty set X is defined as  

PN = {〈x; , TPN , IPN , FPN  〉: x ∈ X}, 

http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
http://fs.unm.edu/NSS/OnOptimizingNeutrosophic20.pdf
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where TPN , IPN ,   FPN: X → ]0−, 1
+[  define respectively the degree of membership function, the 

degree of indeterminacy , and the degree of non-membership of element 𝑥 ∈ 𝑋 to the set 𝑃𝑁 with 

the condition: 

                     0− ≤ TPN + IPN + FPN ≤ 3
+.                                         (1) 

Definition 5. (Interval-valued neutrosophic set, Broumi and Smarandache [8]). Let 𝑋  be a 

nonempty set. Then an interval valued neutrosophic (IVN) set 𝑃𝑁
𝐼𝑉

 of 𝑋 is defined as: 

PN
IV
= {〈x; [T

PN

L , T
PN

U  ] , [I
PN

L , I
PN

U ] , [F
PN

L , F
PN

U ] 〉 : x ∈ X}, 

where [T
PN

L , T
PN

U  ] , [I
PN

L , I
PN

U ],  and [F
PN

L , F
PN

U ] ⊂ [0,1] for each x ∈ X . 

Definition 6. (Broumi and Smarandache [8]). Let 

PN
IV
= {〈x; [T

PN

L , T
PN

U  ] , [I
PN

L , I
PN

U ] , [F
PN

L , F
PN

U ] 〉 : x ∈ X} be IVNS, then 

(i) PN
IV

 is empty if T
PN

L = T
PN

U = 0, I
PN

L = I
PN

U = 1, F
PN

L = F
PN

U = 1, for all x ∈ PN,  

(ii) Let 0 = 〈x;  0,1, 1 〉, and 1 = 〈x;  1,0, 0 〉. 

Definition 7. (Interval-valued trapezoidal neutrosophic number). Let uã, vã, wã ⊂ [0,1], 

and a1, a2, a3, a4 ∈ ℝ such that a1 ≤ a2 ≤ a3 ≤ a4. Then an interval-valued trapezoidal 

fuzzy neutrosophic number,         

                             ã = 〈(a1, a2, a3, a4);  [uã
L, uã

U ], [vã
L, vã

U ], [wã
L, wã

U ] 〉,  

whose degrees of membership function, the degrees of indeterminacy, and the degrees 

of non-membership are 

                  ϑã(x) =

{
 
 

 
 uã (

x−a1

a2−a1
) ,          for a1 ≤ x ≤ a2,

uã,                           for a2 ≤ x ≤ a3,

uã (
a4−x

a4−a3
) ,          for a3 ≤ x ≤ a4,

0,                                         Otherwise,

 

           μ
ã
(x) =

{
 
 

 
 

a2−x+vã(x−a1)

a2−a1
, for a1 ≤ x ≤ a2,

vã,                           for a2 ≤ x ≤ a3,
x−a3+vã(a4−x)

a4−a3
, for a3 ≤ x ≤ a4,

1,                                         Otherwise,

                                         (2) 

            φ
ã
(x) =

{
 
 

 
 

a2−x+wã(x−a1)

a2−a1
, for a1 ≤ x ≤ a2,

wã,                           for a2 ≤ x ≤ a3,
x−a3+wã(a4−x)

a4−a3
, for a3 ≤ x ≤ a4,

1,                                         Otherwise.

 

Where, 𝑢�̃�,  𝑣�̃�,  and 𝑤�̃�  are the upper bound of membership degree, lower bound of 

indeterminacy degree, and lower bound of non-membership degree, respectively. 
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Definition 8. (Arithmetic operations). Let �̃� = 〈(a1, a2, a3, a4); [uã
L, uã

U ], [vã
L, vã

U ], [wã
L, wã

U ] 〉, and 

 b̃ = 〈(b1, b2, b3, b4);  [ub̃
L , ub̃

U ], [vb̃
L, vb̃

U ], [wb̃
L, wb̃

U ]〉 be two IVN numbers. Then, 

1. ã ⊕ b̃ =  〈(a1 + b1, a2 + b2, a3 + b3, a4 + b4): A, B, C〉, 

2. ã ⊖ b̃ =  〈(a1 − b4, a2 − b3, a3 − b2, a4 − b1): A, B, C〉, 

3. ã ⊙ b̃ = {

〈(a1b1, a2b2, a3b3, a4b4): A, B, C〉, if a4 > 0, b4 > 0,

〈(a1b4, a2b3, a3b2, a4b1): A, B, C〉, if a4 < 0, b4 > 0
〈(a4b4, a3b3, a2b2, a1b1): A, B, C〉, if a4 < 0, b4 < 0.

 , 

4. ã ⊘ b̃ = {

〈(a1/b4, a2/b3, a3/b2, a4/b1): A, B, C〉, if a4 > 0, b4 > 0,

〈(a4/b4, a3/b3, a2/b2, a1/b1): A, B, C〉, if a4 < 0, b4 > 0
〈(a4/b1, a3/b2, a2/b3, a1/b4): A, B, C〉, if a4 < 0, b4 < 0.

 

5. k ã = {
〈(ka1, k a2, ka3, ka4);  [uã

L, uã
U ], [vã

L, vã
U ], [wã

L, wã
U ] 〉, if k > 0

〈(ka4, ka3, ka2, ka1);  [uã
L, uã

U ], [vã
L, vã

U ], [wã
L, wã

U ] 〉, k < 0.
 

6. ã−1 = 〈(1/a4, 1/a3, 1/a2, 1/a1);  [uã
L, uã

U ], [vã
L, vã

U ], [wã
L, wã

U ] 〉, ã ≠ 0. 

Where, A = [min(uã
L, ub̃

L , ), min(uã
U, u

b̃
U ) ], B = [max(vã

L, vb̃
L, ), max(vã

U, v
b̃
U ) ], and                                            

 C = [max(wã
L, wb̃

L, ), max(wã
U, wb̃

U ) ]. 

Definition 9. (Score function, Tharmaraiselvi and Santhi [40]). The score function for the IVN 

number �̃� = 〈(a1, a2, a3, a4);  [uã
L, uã

U ], [vã
L, vã

U ], [wã
L, wã

U ] 〉  is defined as 

𝑆(�̃�) =
1

16
(a1 + a2 + a3 + a4) × [ϑã + (1 − μã) + (1 − φ

ã
)]. 

3. Problem statement and solution concepts 

3.1 Assumptions, Index and notation 

      3.1.1. Assumption 

        We assume that there are n number of jobs, which must be performed by and n 

persons, where the costs are based on the specific assignments. Each job must be 

assigned to exactly one person and each person has to perform exactly one job.  

       3.1.2. Index 

i:     Persons. 

j:     Jobs. 

       3.1.3. Notation 

(c̃ij)N
IV

 : Interval-valued trapezoidal neutrosophic cost of  ith  person assigned to jth job. 

           xij: Number of  jth  jobs assigned to ith person. 
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Consider the following interval-valued trapezoidal neutrosophic assignment problem (IVTNAP)  

     (IVTNAP)   Min   Z̃N
IV = ∑ ∑ (c̃ij)N

IVn
j=1

n
i=1  xij   

                    Subject to                                                                                                                       

                      ∑ xij
n
i=1 = 1, j = 1, 2, … , n (only one person would be assigned the jth job)   

                      ∑ xij
n
j=1 = 1, i = 1, 2, … , n (only one job selected by ith person) 

                           xij = 0  or 1.        

 It obvious that (c̃ij)N
IV
 ( i = j = 1, 2,3, … , n; 1, 2, 3, … , K) are interval-valued trapezoidal neutrosophic 

numbers.  

Based on score function defined in Definition 9, the IVTNAP in converted into the following 

interval-valued assignment problem (IVAP)  

     (IVAP)     Min   ZIV = ∑ ∑ [cij
L, cij

U]n
j=1

n
i=1  xij   

                      Subject to 

𝑥 ∈ 𝑋′ = { ∑ xij
n
i=1 = 1, j = 1, 2, … , n; ∑ xij

n
j=1 = 1, i = 1, 2, … , n;  xij = 0  or 1}.                                                                                                                      

Definition 10. 𝑥 ∈ 𝑋′  is solution of problem IVAP  if and only if there is no �̂� ∈ 𝑋′  satisfies  

Z(x̂) ≤LR Z(x), or Z(x̂) <CW Z. 

Or equivalently, 

Definition 11. 𝑥 ∈ 𝑋′ is solution of problem IVAP if and only if there is no x̂ ∈ X′  satisfies that  

Z(x̂) ≤RC Z(x). 

The solution set of problem IVAP   can be obtained as the efficient solution of the following MOAP:  

                   Min (ZR, ZC) 

                   Subject to      x ∈ X′.                                                   (3) 

Using the Weighting Tchebycheff problem, the Problem (3) is described in the following form 

                  Min  ψ 

            Subject to   

                  w1[Z
R − ẐR  ] ≤ ψ,                                                (4) 

                   w2[Z
C − ẐC  ] ≤ ψ,             

                     x ∈ X′.    

  Where  w1, w2 ≥ 0;  Ẑ
R,  and ẐC  are defined as the ideal targets.  

4. Solution procedure 

  The steps of the solution procedure to solve the IVTNAP can be summarized as: 

Step 1: Formulate the IVTNAP    

Step 2: Convert the IVTNAP using the score function (Definition 9) into the IVAP.   

Step 3: Estimate the ideal points �̂�𝑅  and �̂�𝐶 for the IVAP from the following relation 

        ẐR = Min ZR, 

                   Subject to x ∈ X′, and 
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        ẐC = Min ZC, 

                   Subject to x ∈ X′. 

Step 4: Determine the value of individual maximum and minimum for every objective function 

subject to given constraints.  

Step 5: Compute the weights from the relation           

        w1 =
Z
R
−ZR

(Z
R
−ZR)+(Z

C
−ZC)

, w2 =
Z
C
−ZC

(Z
R
−ZR)+(Z

C
−ZC)

                                 (5) 

Here Z
R

,  Z
C

 and ZR , ZC  are the value of individual maximum and minimum of the  ZR,

and ZC, respectively. 

Step 6: Applying the GAMS software to problem (5) to obtain the optimum compromise solution, 

and hence the fuzzy cost. 

Step 7: Stop. 

The flowchart of the proposed method is presented in Figure 1, below. 
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5. Numerical example 

     Consider the following IVTNAP  

Min  Z(x)N
IV =

(

 
 
 
 
 
 
 

〈(14, 17, 21, 28); [0.7, 0.9], [0.1, 0.3], [0.5, 0.7]〉 x11
⊕ 〈((13, 18, 20, 24)); [0.5, 0.7], [0.3, 0.5], [0.4, 0.6]〉 x12
⊕ 〈(20, 25, 30, 35); [0.8, 1.0], [0.2, 0.4], [0.1, 0.3]〉 x13
 ⊕ 〈(15, 18, 23, 30); [0.7, 1.0], [0.2, 0.3], [0.2,0.5]〉x21
⊕ 〈(6, 10, 13, 15); [0.6, 0.8], 0.1,0.4], [0.2,0.6]〉x22

⊕ 〈(15, 18, 23, 30); [0.7,0.9], [ 0.1, 0.4], [ 0.3, 0.5]〉x23
〈(13, 18, 20, 24); [0.3, 0.7], [0.1,0.4], [0.3,0.7]〉𝑥31
⊕ 〈(13, 18, 20, 24); [0.2, 0.7], 0.2,0.5], [0.3, 0.6]〉x32
⊕ 〈(14, 16, 21, 23); [0.6,0.8], [ 0.3,0.6], [0.2, 0.4]〉x33 )

 
 
 
 
 
 
 

 

Subject to  

                       ∑ 𝑥𝑖𝑗
3
𝑖=1 = 1, 𝑗 = 1, 2, 3; ∑ 𝑥𝑖𝑗

3
𝑗=1 = 1, 𝑖 = 1, 2, 3, 

                          xij = 0  or 1.        

Step 2: 

Min Z(x)IV = (

[8.5, 11.5]x11 + [6.5625, 9.375]x12 + [14.4375, 18.5625]x13
[10.2125, 13.975]x21 + [4.4, 6.875]x22 + [9.675, 13.4375]x23

[5.625, 10.78125]x31 + [5.15625, 10.3125]x32 + [7.4, 10.6375]x33

) 

Subject to  

                       ∑ 𝑥𝑖𝑗
3
𝑖=1 = 1, 𝑗 = 1, 2, 3; ∑ 𝑥𝑖𝑗

3
𝑗=1 = 1, 𝑖 = 1, 2, 3, 

                          xij = 0  or 1.        

Step 4:  We determine optimal solution for the following problems individually with respect to 

the given constraints: 

ẐR = Min ZR = (
11.5𝑥11 + 9.375𝑥12 + 18.5625𝑥13 + 13.975𝑥21 + 6.875𝑥22
13.4375𝑥23 + 10.78125𝑥31 + 10.3125𝑥32 + 10.6375𝑥33

) 

ẐC = Min ZC = (
10𝑥11 + 7.96875𝑥12 + 16.5𝑥13 + 12.09375𝑥21 + 5.6375𝑥22
11.55625𝑥23 + 8.203125𝑥31 + 7.734375𝑥32 + 9.01875𝑥33

) 

Max ZR = (
11.5𝑥11 + 9.375𝑥12 + 18.5625𝑥13 + 13.975𝑥21 + 6.875𝑥22
13.4375𝑥23 + 10.78125𝑥31 + 10.3125𝑥32 + 10.6375𝑥33

) 

Max ZC = (
10𝑥11 + 7.96875𝑥12 + 16.5𝑥13 + 12.09375𝑥21 + 5.6375𝑥22
11.55625𝑥23 + 8.203125𝑥31 + 7.734375𝑥32 + 9.01875𝑥33

) 

                      Subject to  

                                     ∑ 𝑥𝑖𝑗
3
𝑖=1 = 1, 𝑗 = 1, 2, 3; ∑ 𝑥𝑖𝑗

3
𝑗=1 = 1, 𝑖 = 1, 2, 3, 

                                       Xij = 0  or 1.        

ẐR = Min ZR =29.01, ẐC = Min ZC =24.66,  Max ZR =42.85,  Max ZC =  36.33  

Step 5:  Calculate the weights 

𝑤1 =
13.84 

25.15  
= 0.542532,      𝑤2 =

11.67 

25.51
= 0.45747 
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Step6: Determine the optimal solution of the problem: 

                    Min ψ 

            Subject to   

 (
11.5x11 + 9.375x12 + 18.5625x13 + 13.975x21 + 6.875x22

13.4375x23 + 10.78125x31 + 10.3125x32 + 10.6375x33 − 1.84321ψ
) ≤ 29.01,                                                         

    (
10x11 + 7.96875x12 + 16.5x13 + 12.09375x21 + 5.6375x22

11.55625x23 + 8.203125x31 + 7.734375x32 + 9.01875x33 − 2.18595ψ,
) ≤ 24.66,             

                                         x ∈ X′.    

The optimal compromise solution is x11 = 1, x22 = 1, x33 = 1, 

x12 = x13 = x21 = x23 = x31 = x32 = 0, and ψ = 0.0014.  

So, the interval-valued trapezoidal neutrosophic optimum value is  

Z(x)N
IV = 〈(34, 43, 55, 66); [0.6, 0.8], [0.3, 0.6], [0.5, 0.7]〉. 

It is evident that the total minimum assigned cost will be greater than 34 and less than 66 . The 

total minimum assigned cost lies in between 43 and 55, the overall satisfaction lies in between 

60% and 80%. Then, for the remaining of total minimum assigned cost, the truthfulness degree is  

                                 ϑã(x) × 100 =

{
 
 

 
 [0.6, 0.8] (

x−34

43−34
) ,          for 34 ≤ x ≤ 43,

[0.6, 0.8],                           for 43 ≤ x ≤ 55,

[0.6, 0.8] (
66−x

66−55
) ,          for 55 ≤ x ≤ 66,

0,                                         Otherwise,

 

   Also, the indeterminacy and falsity degrees for the assigned cost are 

                            μ
ã
(x) =

{
 
 

 
 
43−x+[0.3,0.6](x−34)

43−34
, for 34 ≤ x ≤ 43,

vã,           for 43 ≤ x ≤ 55,
x−55+[0.3,0.6](66−x)

66−55
, for 55 ≤ x ≤ 66,

  1,               Otherwise,

             

                            φ
ã
(x) =

{
 
 

 
 
43−x+[0.5,0.7](x−34)

43−34
, for 34 ≤ x ≤ 43,

wã,           for 43 ≤ x ≤ 55,
x−55+[0.5,0.7](66−x)

66−55
, for 55 ≤ x ≤ 66

1,              Otherwise.

 

Thus, the DM concludes that the total interval-valued trapezoidal neutrosophic 

assigned cost lies in between 34 and 66 with truth, indeterminacy, and falsity degrees 

lies in between [0.6, 0.8], [0.3, 0.6], and [0.5, 0.7], respectively, and also he is able to 

schedule the assignment and constraints under budgetary. 

6. Concluding remarks and further research directions 

The present research article addressed a novel solution methodology to the assignment problem 

with objective function coefficients characterized by interval-valued trapezoidal neutrosophic 

numbers. The problem is transformed to the corresponding interval–valued problem, and hence 
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into the multi-objective optimization problem (MOOP). Then, the so obtained MOOP is 

undertaken for the solution by using the Weighting Tchebycheff problem beside the GAMS 

software. The advantage of this approach is more flexible than the standard assignment problem, 

where it allows the DM to choose the targets he is willing.  

   For further research, one may incorporate this concept in transportation model. Also, one may 

consider the stochastic nature in assignment problem and develop the same methodology to 

solve the problem. Additionally, one possible extension might be explored by considering the 

fuzzy-random, fuzzy-stochastic, etc. In addition, the proposed solution methodology may be 

applied in different branches (viz. management science, financial management and decision 

science) where the assignment problems occur in neutrosophic environment. 
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1. Introduction 

In recent years, neutrosophic graphs as one of the new branches of graph theory has been welcomed 

by many researchers and a lot of work has been done on the features and applications of this particular 

type of graph [1, 2, 4-6, 17-25]. One of these is finding the spanning tree in neutrosophic graphs. In an article 

by S.Broumi et al. [7], an algorithm for finding the minimum spanning tree is presented. Using the score 

function, they calculated a rank for each edge, then constructed a minimum spanning tree based on the 

lowest score. Other people, including I.Kandasamy [13], also provided algorithms for the minimum 

spanning tree in the Double-Valued neutrosophic graph. 

What we present here is an algorithm for finding the maximum spanning tree in neutrosophic graphs. 

Our proposed algorithm is similar in appearance to the algorithm presented in [7] but differs from it. First, 

the algorithm is presented for graphs that have weighted edges, while our algorithm includes the general 

state of the neutrosophic graphs. The second difference is in how you choose to build the tree. In [7], the 

score function is used and we use the strength function. The strength function has the advantage of having 

a more realistic view of indeterminacy-membership (I). In fact, in this function, we have improved the effect 

of effect indeterminacy-membership (I). In [7, 16], the effect of falsity-membership (F) and indeterminacy-

membership (I) was the same, which does not seem very appropriate due to the different nature of falsity-

membership (F) and indeterminacy-membership (I). 

The definition of a neutrosophic tree used in this paper is similar in structure to the definition given 

in [12]. The difference between the two definitions stems from the difference in the definition of the strength 

of connectivity between the two vertices. 

 

2. Preliminaries 

In this section, some of the important and basic concepts required are given by mentioning the source. 

Definition 1. [3] A single-valued neutrosophic graph on a nonempty 𝑉 is a pair 𝐺 = (𝑁,𝑀). Where 𝑁 is 

single-valued neutrosophic set in 𝑉 and 𝑀 single-valued neutrosophic relation on 𝑉 such that 

𝑇𝑀(𝑢𝑣) ≤ min{𝑇𝑁(𝑢), 𝑇𝑁(𝑣)}, 
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𝐼𝑀(𝑢𝑣) ≤ min{𝐼𝑁(𝑢), 𝐼𝑁(𝑣)}, 

𝐹𝑀(𝑢𝑣) ≤ max{𝐹𝑁(𝑢), 𝐹𝑁(𝑣)}, 

 

For all 𝑢, 𝑣 ∈ 𝑉. 𝑁 is called single-valued neutrosophic vertex set of 𝐺 and, 𝑀 is called single-valued 

neutrosophic edge set of 𝐺, respectively. 

 

Definition 2. [12] A connected SVN-graph 𝐺 = (𝑁,𝑀) is said to be a SVN-tree if it has a SVN spanning 

subgraph 𝐻 = (𝑁, 𝐵) which is a tree, where for all edges 𝑢𝑣 not in H satisfying 

 

𝑇𝑀(𝑢𝑣) < 𝑇𝐵
∞(𝑢𝑣),              𝐼𝑀(𝑢𝑣) > 𝐼𝐵

∞(𝑢𝑣),               𝐹𝑀(𝑢𝑣) > 𝐹𝐵
∞(𝑢𝑣). 

 

3. Neutrosophic tree 

In this section, the types of edges are first classified and defined in terms of edge strength. Then we 

will provide some other definitions depending on the type of edges. Based on the strength of connectivity 

between the end vertices of an edge, edges of neutrosophic graphs can be divided into two categories as 

given below. 

 

Definition 3. An edge 𝑢𝑣 in a neutrosophic graph 𝐺 = (𝑁,𝑀) is called 

 

a. A 𝒘𝒆𝒂𝒌 edge if 𝐶𝑂𝑁𝑁(𝐺−𝑢𝑣)(𝑢, 𝑣) =  𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) 𝑎𝑛𝑑 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) ≠ 𝑀(𝑢𝑣), 

 

b. A 𝒏𝒆𝒖𝒕𝒓𝒂𝒍 edge if 𝐶𝑂𝑁𝑁(𝐺−𝑢𝑣)(𝑢, 𝑣) =  𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) 𝑎𝑛𝑑 𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) = 𝑀(𝑢𝑣),  

 

c. A 𝚰 − 𝒔𝒕𝒓𝒐𝒏𝒈 𝒆𝒅𝒈𝒆 if 𝐶𝑂𝑁𝑁(𝐺−𝑢𝑣)(𝑢, 𝑣) <  𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) 𝑎𝑛𝑑, 

𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) = (𝑇𝑀(𝑢𝑣), 𝐼𝑀(𝑢𝑣), 𝐹𝑀(𝑢𝑣)) = 𝑀(𝑢𝑣), 

 

d. A 𝚰𝚰 − 𝒔𝒕𝒓𝒐𝒏𝒈 𝒆𝒅𝒈𝒆 if 𝐶𝑂𝑁𝑁(𝐺−𝑢𝑣)(𝑢, 𝑣) <  𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣)  𝑎𝑛𝑑,  𝐶𝑂𝑁𝑁𝐺(𝑢, 𝑣) ≠ 𝑀(𝑢𝑣). 

 
Example 1. Consider the neutrosophic graph 𝐺 = (𝑁,𝑀) on 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} as shown in figure 1. 

 
 

Figure 1. A neutrosophic graph 

 

Table 1. The strength of connectedness between each pair of vertices 𝑢 and 𝑣. 
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𝑪𝑶𝑵𝑵𝑮(𝒖, 𝒗) 𝑪𝑶𝑵𝑵𝑮−𝒖𝒗(𝒖, 𝒗) 𝑴(𝒖𝒗) 

𝑎, 𝑏 (0.3, 0.3, 0.5) (0.3, 0.5, 0.7) (0.2, 0.3, 0.5) 

𝑎, 𝑑 (0.3, 0.3, 0.5) (0.2, 0.3, 0.5) (0.3, 0.5, 0.7) 

𝑏, 𝑐 (0.6, 0.4, 0.5) (0.6, 0.4, 0.5) (0.3, 0.4, 0.7) 

𝑏, 𝑑 (0.5, 0.3, 0.5) (0.5, 0.3, 0.7) (0.3, 0.7, 0.5) 

𝑏, 𝑒 (0.7, 0.3, 0.5) (0.3, 0.4, 0.7) (0.7, 0.3, 0.5) 

𝑏, 𝑓 (0.8, 0.2, 0.1) (0.1, 0.6, 0.7) (0.8, 0.2, 0.1) 

𝑐, 𝑒 (0.6, 0.4, 0.5) (0.3, 0.4, 0.7) (0.6, 0.4, 0.5) 

𝑐, 𝑓 (0.6, 0.4, 0.5) (0.6, 0.4, 0.5) (0.1, 0.6, 0.7) 

𝑑, 𝑒 (0.5, 0.3, 0.5) (0.3, 0.5, 0.5) (0.5, 0.3, 0.7) 

 

As can be seen in Table 1, edge 𝑏𝑐 and 𝑐𝑓 are weak, 𝑏𝑒, 𝑏𝑓 and 𝑐𝑒 are Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒𝑠, and 𝑎𝑐, 𝑎𝑑, 𝑏𝑑 

and 𝑑𝑒 are ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒. 

 

Definition 4. A path in a neutrosophic graph is called a Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑝𝑎𝑡ℎ if all its edges are Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 and 

called a ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑝𝑎𝑡ℎ if all its edges are ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔. Also is said to be a 𝑠𝑡𝑟𝑜𝑛𝑔 𝑝𝑎𝑡ℎ if all its edges are 

either Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒 or ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒. 

 

Definition 5. Let 𝐺 = (𝑁,𝑀) be a neutrosophic graph and 𝐶 be a cycle in 𝐺. 𝐶 called strong cycle if all its 

edges are either Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒 or ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒. 

 

Definition 6.  Let 𝐺 = (𝑁,𝑀) be a neutrosophic graph. 𝐺 called a neutrosophic tree if it has no strong cycle. 

 

Example 1. Consider a neutrosophic graph 𝐺 = (𝑁,𝑀) and 𝐻 = (𝐴, 𝐵) as shown in figure 2. 

 

 

 

a. 𝐺 is not a neutrosophic tree 
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b. 𝐻 is a neutrosophic tree 

Figure 2. a. 𝐺 is not a neutrosophic tree and b.  𝐻 is a neutrosophic tree 

 

It is clear from fig 1 that 𝐺 is not a neutrosophic tree. Since 𝐺 contains strong neutrosophic cycles. 

Cycles such as 𝑎𝑏𝑑𝑎, 𝑎𝑏𝑒𝑑𝑎, 𝑎𝑏𝑐𝑒𝑑𝑎, ect. are strong  neutrosophic cycles in 𝐺. But 𝐻 is a neutrosophic 

tree, 𝐻 has no strong neutrosophic cycle. 

 

Definition 7.  Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph and 𝑇, is a neutrosophic spanning 

subgraph of 𝐺 that 𝑇 spanned by the vertex set of 𝐺 and 𝑇∗ is a tree. If the edges of 𝑇 are selected from 

𝐺 such that for each edge 𝑢𝑣 of 𝑇, 𝑢𝑣 is either Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒 or ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒. Then 𝑇 called a 

strong spanning tree and denoted by (𝑆𝑆𝑇). 

 

Definition 8.  Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph with at least one strong spanning 

tree. Then the strength of strong spanning tree in 𝐺 is defined and denoted by 

 

𝑆(𝑇) = ∑ 𝑆(𝑢𝑣) = ∑
4 + 2𝑇𝑀(𝑢𝑣) − 2𝐹𝑀(𝑢𝑣) − 𝐼𝑀(𝑢𝑣)

6
𝑢𝑣∈𝑇𝑢𝑣∈𝑇

. 

 

Also, F called maximum spanning tree if 𝑆(𝐹) ≥ 𝑆(𝑇) for any strong spanning tree 𝑇. 

 

Theorem 1. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph. Then 𝐺 is a neutrosophic tree if and 

only if the following conditions are equivalent for any 𝑢, 𝑣 ∈ 𝑉. 

a. 𝑢𝑣 is a Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒 

b. (𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣)) = (𝑇𝑀(𝑢𝑣), 𝐼𝑀(𝑢𝑣), 𝐹𝑀(𝑢𝑣)). 

 

Proof. This theorem can be easily proved by defining a strong edge. 

 

 

Definition 9. Let 𝐺 = (𝑁,𝑀) be the Neutrosophic Graph. The 𝒑𝒂𝒓𝒕𝒊𝒂𝒍 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝒊𝒏𝒅𝒆𝒙 of 𝐺 is 

defined as  

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁
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Where 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣) is the strength of truth, 𝐶𝑂𝑁𝑁𝐼𝐺

(𝑢, 𝑣) is the strength of indeterminacy and 

𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) is the strength of falsity between two vertices 𝑢 and 𝑣. we have 

 

𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣) = max {min 𝑇𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣) = min {max 𝐼𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) = min {max 𝐹𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

 

Also, the 𝒕𝒐𝒕𝒂𝒍𝒍𝒚 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝒊𝒏𝒅𝒆𝒙 of 𝐺 is defined as 

 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
. 

 

3.1. Maximum spanning tree 

In this section, a version of the maximum spanning tree discussed on a graph by strength of edges. 

In the following, we propose a neutrosophic maximum spanning tree algorithm, whose computing 

steps are described below. Note that the strength function 𝑆(𝑢𝑣) =
4+2𝑇𝑀(𝑢𝑣)−2𝐹𝑀(𝑢𝑣)−𝐼𝑀(𝑢𝑣)

6
 is used to 

label here. 

 

The algorithm for finding the maximum spanning tree (MST) 

Here, the input is adjacency matrix 𝑀 = [(𝑇𝑀(𝑢𝑖𝑢𝑗), 𝐼𝑀(𝑢𝑖𝑢𝑗), 𝐹𝑀(𝑢𝑖𝑢𝑗))]𝑛×𝑛
 of the neutrosophic 

graph 𝐺 = (𝑁,𝑀), and output is a tree 𝐹 with weighted edges. 

Step 1. Input matrix 𝑀; 

Step 2. Using the strength function 𝑆(𝑢𝑖𝑢𝑗) =
4+2𝑇𝑀(𝑢𝑖𝑢𝑗)−2𝐹𝑀(𝑢𝑖𝑢𝑗)−𝐼𝑀(𝑢𝑖𝑢𝑗)

6
, convert the 

neutrosophic matrix into a strength matrix 𝑆 = [𝑆(𝑢𝑖𝑢𝑗)]𝑛×𝑛
; 

Step 3. Iterate steps 4 and 5 until all 𝑛 − 1 elements of S are either labeled to 0 or all the nonzero 

elements of the matrix are labeled; 

Step 4. Find the 𝑀 either column or row to compute the unlabeled maximum element 𝑆(𝑢𝑖𝑢𝑗), 

which is the value of the corresponding are 𝑒(𝑢𝑖𝑢𝑗) ∈ 𝑀; 

Step 5. If the corresponding edge 𝑒(𝑢𝑖𝑢𝑗) ∈ 𝑀 of chosen 𝑆 produce a cycle whit the previous 

labeled entries of the strength matrix 𝑆 than set 𝑆(𝑢𝑖𝑢𝑗) = 0 else label 𝑆(𝑢𝑖𝑢𝑗); 

Step 6. Design the tree 𝐹 including only the labeled elements from the 𝑆 which will be computed 

𝑀𝑆𝑇 of 𝐺; 

Step 6. Stop (end algorithm).  

 

Example 3. Consider a neutrosophic graph 𝐺 = (𝑁,𝑀) on 𝑉 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} as shown in Figure 3.  
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Figure 3. a neutrosophic graph 𝐺 on 𝑉 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} 

 

And 

  

𝑀 =

[
 
 
 
 
 

0 (0.4, 0.5, 0.6) 0

(0.4, 0.5, 0.6) 0 (0.4, 0.3, 0.5)

0 (0.4, 0.3, 0.5) 0

(0.4, 0.5, 0.7) 0 0

(0.6,0.5, 0.7) (0.7,0.3, 0.3) (0.5, 0.4, 0.6)

0 (0.4, 0.3, 0.5) (0.4, 0.4, 0.6)
(0.4, 0.5, 0.7) (0.6,0.5, 0.7) 0

0 (0.7, 0.3, 0.3) (04, 0.3, 0.5)

0 (0.5, 0.4, 0.6) (0.4, 0.4, 0.6)

0 (0.7, 0.3, 0.2)           0
(0.6, 0.5, 0.7) 0        0

0 0       0

           
]
 
 
 
 
 

. 

 

  Using the strength function 𝑆(𝑢𝑖𝑢𝑗) =
4+2𝑇𝑀(𝑢𝑖𝑢𝑗)−2𝐹𝑀(𝑢𝑖𝑢𝑗)−𝐼𝑀(𝑢𝑖𝑢𝑗)

6
 we have 

 

𝑆(𝑢𝑖𝑢𝑗) =

[
 
 
 
 
 

0 0.517 0
0.517 0 0.583

0 0.583 0

0.483 0 0
0.550 0.750 0.567

0 0.583 0.533
0.483 0.550 0

0 0.750 0.583
0 0.567 0.533

0 0.550   0
0.550 0 0

0 0 0
     

]
 
 
 
 
 

, 

 

 

Figure 4. A neutrosophic graph 𝐺 whit strength of edges 
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Now search the matrix 𝑆 to find the maximum value and select the edge corresponding to the row and 

column of that element. The following figure edge 𝑢2𝑢5 is highlighted.  

 

𝑆(𝑢𝑖𝑢𝑗) =

[
 
 
 
 
 

0 0.517 0
0.517 0 0.583

0 0.583 0

0.483 0 0
0.550 0.750 0.567

0 0.583 0.533
0.483 0.550 0

0 0.750 0.583
0 0.567 0.533

0 0.550   0
0.550 0 0

0 0 0
     

]
 
 
 
 
 

, 

 

 

Figure 5. An edge 𝑢2𝑢5 is highlighted 

 

The next maximum element 0.583 is marked and corresponding edges  𝑢2𝑢3 and 𝑢3𝑢5, but the 

simultaneous selection of these two edges causes the formation of a cycle, so we choose one of these two 

edges arbitrarily and ignore the other.  

 

𝑆(𝑢𝑖𝑢𝑗) =

[
 
 
 
 
 

0 0.517 0
0.517 0 0.583

0 0.583 0

0.483 0 0
0.550 0.750 0.567

0 0.583 0.533
0.483 0.550 0

0 0.750 0.583
0 0.567 0.533

0 0.550   0
0.550 0 0

0 0 0
     

]
 
 
 
 
 

, 

 

 

Figure 6. An edge 𝑢2𝑢3 is highlighted 
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Continuing this process, edges 𝑢2𝑢6, 𝑢2𝑢4, and 𝑢2𝑢1 are selected, respectively.  The maximum 

spanning tree is obtained as figure 8. 

 

 

Figure 7. The edges 𝑢2𝑢6 and 𝑢2𝑢4 are highlighted 

Figure 8. Maximum spanning tree (𝑀𝑆𝑇) 

 

As it was observed, the selection of the maximum spanning tree was not unique, so neutrosophic 

graph 𝐺 = (𝑁,𝑀) is not a neutrosophic tree, also 𝐺 contains a strong neutrosophic cycle. 

 

Note. Obviously, if 𝐺 = (𝑁,𝑀) has a unique strong spanning tree, it will also have a unique maximum 

spanning tree, but the conversely is not necessarily true. 

 

3.2. Partial connectivity index in the neutrosophic tree 

In this section, the results of examining the Partial connectivity index and totally connectivity index 

on the neutrosophic trees are presented and proved. 

 

Theorem 2. Let 𝐺 = (𝑁,𝑀) be a neutrosophic graph. Then 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) = 𝑇𝐶𝐼(𝐺) if and only if either 𝑢𝑣 is 

a weak edge or neutral edge. 

 

Proof. The proof of this theorem is clear using definition 8. 

 

 

Corollary 1. Let 𝐺 = (𝑁,𝑀) be a neutrosophic graph and, 𝑢𝑣 is an edge in 𝐺, 𝑢𝑣 is a bridge if and only if 𝑢𝑣 

is either Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒 or ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒.  
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Corollary 2. Let 𝐺 = (𝑁,𝑀) be a neutrosophic graph. Then for any 𝑢𝑣,  𝑇𝐶𝐼(𝐺 − 𝑢𝑣) ≠ 𝑇𝐶𝐼(𝐺) if 𝐺∗ is a tree. 

 

Theorem 3. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph whit strong spanning tree (𝑆𝑆𝑇) 𝑇. for any 

𝑢𝑣 ∈ 𝑀, where 𝑢𝑣 is an edge of 𝑇, then either  

𝑃𝐶𝐼𝑇(𝐺 − 𝑢𝑣) < 𝑃𝐶𝐼𝑇(𝐺) 

𝑜𝑟 

[(𝑃𝐶𝐼𝐼(𝐺 − 𝑢𝑣) > 𝑃𝐶𝐼𝐼(𝐺)) ∨  (𝑃𝐶𝐼𝐹(𝐺 − 𝑢𝑣) > 𝑃𝐶𝐼𝐹(𝐺))] 

Hence we have 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) < 𝑇𝐶𝐼(𝐺). 

 

Proof. Suppose 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph whit strong spanning tree (𝑆𝑆𝑇) 𝑇. Since T 

is SST then any edge of T is either Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒 or ΙΙ − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒. By Corollary 1, for each 𝑢𝑣 ∈ 𝑀, 𝑢𝑣 

is a bridge. Then 𝑃𝐶𝐼𝑇(𝐺 − 𝑢𝑣) < 𝑃𝐶𝐼𝑇(𝐺) 𝑜𝑟 [(𝑃𝐶𝐼𝐼(𝐺 − 𝑢𝑣) > 𝑃𝐶𝐼𝐼(𝐺)) ∨ (𝑃𝐶𝐼𝐹(𝐺 − 𝑢𝑣) > 𝑃𝐶𝐼𝐹(𝐺))]. 

 

 

Theorem 4. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic tree and 𝐺∗ is not a tree. Then there exists at least 

one edge 𝑢𝑣 ∈ 𝑀∗ such that 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) = 𝑇𝐶𝐼(𝐺). 

 

Proof. Let 𝐺 = (𝑁,𝑀) be a neutrosophic tree and 𝐺∗ is not a tree. Hence there is at least one cycle in 𝐺∗. As 

respects a tree is a connected forest, there exist 𝑢𝑣 ∈ 𝑀∗ so that at least one of the following 

 
𝑇𝑀(𝑢𝑣) < 𝐶𝑂𝑁𝑁𝑇(𝐺−𝑢𝑣)(𝑢, 𝑣),  

𝐼𝑀(𝑢𝑣) >  𝐶𝑂𝑁𝑁𝐼(𝐺−𝑢𝑣)(𝑢, 𝑣), 𝐹𝑀(𝑢𝑣) > 𝐶𝑂𝑁𝑁𝐹(𝐺−𝑢𝑣)(𝑢, 𝑣)) 

Then  

𝑃𝐶𝐼𝑇(𝐺 − 𝑢𝑣) = 𝑃𝐶𝐼𝑇(𝐺)   𝑎𝑛𝑑   𝑃𝐶𝐼𝐼(𝐺 − 𝑢𝑣) = 𝑃𝐶𝐼𝐼(𝐺)  𝑎𝑛𝑑   𝑃𝐶𝐼𝐹(𝐺 − 𝑢𝑣) = 𝑃𝐶𝐼𝐹(𝐺) 

Therefore, 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) = 𝑇𝐶𝐼(𝐺). 

 

 

Theorem 5. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph then 𝐺 is a neutrosophic tree if and only if 

𝐺 has a unique strong spanning tree.  

 

Proof. Suppose 𝐺 = (𝑁,𝑀) is a connected neutrosophic graph with only one strong spanning tree 𝑇. Then 

𝐺 has no strong edges except the edges of 𝑇. hence 𝐺 has no strong cycle. Therefore by definition 6, 𝐺 is a 

neutrosophic tree. Conversely, assume that 𝐺 is a neutrosophic tree. Again according to definition 6, 𝐺 lacks 

a strong circle. Therefore, there is only one strong path between the two arbitrary vertices of 𝐺. then the 

strong spanning tree of 𝐺 is unique.  

 
 

Theorem 6. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph and 𝑇 the corresponding 𝑆𝑆𝑇 of 𝐺. Then 

𝑇𝐶𝐼(𝑇) = 𝑇𝐶𝐼(𝐺) if and only if 𝑇 is the unique strong spanning tree of 𝐺.  

 

Proof. Suppose 𝐺 = (𝑁,𝑀) is a connected neutrosophic graph and 𝑇 the corresponding 𝑆𝑆𝑇 of 𝐺. And 

𝑇𝐶𝐼(𝑇) = 𝑇𝐶𝐼(𝐺). Now, shown that 𝑇 is a unique strong spanning tree of 𝐺. Proof of this is easily possible 

using Theorem 5. Conversely, assume that 𝑇 is the unique strong spanning tree of 𝐺. It is clear that to obtain 

the connectivity index of 𝐺, only the strong paths will be the same paths of 𝑇. then 𝑇𝐶𝐼(𝑇) = 𝑇𝐶𝐼(𝐺) 

 
Corollary 3. Let 𝐺 = (𝑁,𝑀) be a neutrosophic tree with the unique strong spanning tree (T) and the unique 

maximum spanning tree (F). Then 𝑇𝐶𝐼(𝑇) = 𝑇𝐶𝐼(𝐺) = 𝑇𝐶𝐼(𝐹). 
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Theorem 7. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph and 𝑢𝑣 ∈ 𝑀∗. Then 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) < 𝑇𝐶𝐼(𝐺) 

for any 𝑢𝑣 and (𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣)) = (𝑇𝑀(𝑢𝑣), 𝐼𝑀(𝑢𝑣), 𝐹𝑀(𝑢𝑣)) if and only if 𝐺∗ is 

a tree. 

Proof. Suppose  𝐺 = (𝑁,𝑀) is a connected neutrosophic graph and 𝐺∗ is a tree. It is clear 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) <

𝑇𝐶𝐼(𝐺). Since 𝐺∗ is a tree, for any 𝑢𝑣 ∈ 𝑀∗, 𝐺 − 𝑢𝑣 is not connected. Also for any 𝑢𝑣 ∈ 𝐺 we have 

(𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣)) = (𝑇𝑀(𝑢𝑣), 𝐼𝑀(𝑢𝑣), 𝐹𝑀(𝑢𝑣)). Conversely assume that for each 

𝑢𝑣, 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) < 𝑇𝐶𝐼(𝐺) and (𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣)) = (𝑇𝑀(𝑢𝑣), 𝐼𝑀(𝑢𝑣), 𝐹𝑀(𝑢𝑣)), 

then both 𝑢𝑣 is a neutrosophic bridge and a Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒. By theorem 1, G is a tree. Since, for each 𝑢𝑣, 

𝑇𝐶𝐼(𝐺 − 𝑢𝑣) < 𝑇𝐶𝐼(𝐺), 𝐺∗ is a tree. 

 
 

Theorem 8. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph such that 𝐺∗ is a star graph. If 𝑣1 is the center 

vertex and for any 𝑢𝑣 ∈ 𝑀∗,  

 

𝑇𝑀(𝑢𝑣) = min{𝑇𝑁(𝑢), 𝑇𝑁(𝑣)} ,  𝐼𝑀(𝑢𝑣) = min{𝐼𝑁(𝑢), 𝐼𝑁(𝑣)} , 𝐹𝑀(𝑢𝑣) = max{𝐹𝑁(𝑢), 𝐹𝑁(𝑣)}. 

 

Also ∀ 𝑗 ≥ 2, 𝑡1 ≤ 𝑡𝑗 , 𝑖1 ≤ 𝑖𝑗  and 𝑓1 ≥ 𝑓𝑗 where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗), 𝑖𝑗 = 𝐼𝑁(𝑣𝑗) and 𝑓𝑗 = 𝐹𝑁(𝑣𝑗) for 𝑗 = 1, 2, … , 𝑛. Then  

𝑃𝐶𝐼𝑇(𝐺) = 𝑡1 ∑ 𝑡𝑗

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐼(𝐺) = 𝑖1 ∑ 𝑖𝑗

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐹(𝐺) = 𝑓1 ∑ 𝑓𝑗

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 

Proof. Let 𝐺 = (𝑁,𝑀) be a neutrosophic graph such that 𝐺∗ is a star graph and 𝑣1 is the center vertex. 

Therefore for any vertex 𝑣𝑗, we have 

 

𝐶𝑂𝑁𝑁𝑇𝐺(𝑣1, 𝑣𝑗) = 𝑇𝑀(𝑣1𝑣𝑗) = min{𝑇𝑁(𝑣1), 𝑇𝑁(𝑣𝑗)} =  𝑇𝑁(𝑣1), 

𝐶𝑂𝑁𝑁𝐼𝐺(𝑣1, 𝑣𝑗) = 𝐼𝑀(𝑣1𝑣𝑗) = min{𝐼𝑁(𝑣1), 𝐼𝑁(𝑣𝑗)} =  𝐼𝑁(𝑣1), 

𝐶𝑂𝑁𝑁𝐹𝐺(𝑣1, 𝑣𝑗) = 𝐹𝑀(𝑣1𝑣𝑗) = max{𝐹𝑁(𝑣1), 𝐹𝑁(𝑣𝑗)} =  𝐹𝑁(𝑣1). 

Then 

∑ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣1, 𝑣𝑘)

𝑛

𝑘=2

= (𝑇𝑁(𝑣1))
2 ∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=2

= 𝑡1
2 ∑ 𝑡𝑘

𝑛

𝑘=2

, 

 

Too for any 𝑗, 𝑘 ≠ 1, we have 𝐶𝑂𝑁𝑁𝑇𝐺(𝑣𝑗 , 𝑣𝑘) = 𝑇𝑁(𝑣1) = 𝑡1. Hence  

 



Neutrosophic Sets and Systems, Vol. 36, 2020     47 

 

 
Masoud Ghods and Zahra Rostami, Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree 

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= ∑ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣1, 𝑣𝑘)

𝑛

𝑘=2

+ ∑ 𝑇𝑁(𝑣2)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣2, 𝑣𝑘)

𝑛

𝑘=3

+ ⋯

+ 𝑇𝑁(𝑣𝑛−1)𝑇𝑁(𝑣𝑛)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣𝑛−1, 𝑣𝑛)

= (𝑇𝑁(𝑣1))
2
∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=2

+ 𝑇𝑁(𝑣1) ∑ 𝑇𝑁(𝑣2)𝑇𝑁(𝑣𝑘)

𝑛

𝑘=3

+ ⋯+ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑛−1)𝑇𝑁(𝑣𝑛)

= (𝑇𝑁(𝑣1))
2
∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=2

+ 𝑇𝑁(𝑣1) ∑ 𝑇𝑁(𝑣𝑗)

𝑛−1

𝑗=𝑛

∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

= 𝑡1 ∑ 𝑡𝑗

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

. 

 

Using a similar proof, we can show that  𝑃𝐶𝐼𝐼(𝐺) = 𝑖1 ∑ 𝑖𝑗
𝑛−1
𝑗=1 ∑ 𝑖𝑘

𝑛
𝑘=𝑗+1  and  𝑃𝐶𝐼𝐹(𝐺) = 𝑓1 ∑ 𝑓𝑗

𝑛−1
𝑗=1 ∑ 𝑓𝑘

𝑛
𝑘=𝑗+1 .  

 

 

Theorem 9. Let 𝐺 = (𝑁,𝑀) be a connected neutrosophic graph such that 𝐺∗ = 𝐶𝑛. Then the following are 

equivalent. 

a. 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) = 𝑇𝐶𝐼(𝐺) for any 𝑢𝑣. 

b. 𝑀 is a constant function. 

c. 𝐺 has 𝑛 strong spanning tree whit 𝑆(𝑇) =  𝛾 that 𝛾 is a constant value.  

 

Proof. Suppose 𝐺 = (𝑁,𝑀) be a neutrosophic graph with 𝐺∗ = 𝐶𝑛.    

a → b Assume that 𝑇𝐶𝐼(𝐺 − 𝑢𝑣) = 𝑇𝐶𝐼(𝐺) for any 𝑢𝑣. This means that deleting each edge will not 

change the value of the connectivity index. Therefore, the membership function will be the same for all 

edges. 

b → c Assume that 𝑀 is a constant function. Hence all the edges of 𝐺 are 𝐼 − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒. Since 

removing each edge from the cycle will result a new tree of 𝐺. then the number of strong spanning trees of 

𝐺 will be n and strength of any strong spanning tree is a constant value. 

c → a Assume that 𝐺 has 𝑛 strong spanning tree whit 𝑆(𝑇) =  𝛾 that 𝛾 is a constant value. It is clear for 

each edge of 𝐺 we have  𝑇𝐶𝐼(𝐺 − 𝑢𝑣) = 𝑇𝐶𝐼(𝐺). 

 

 

4. Conclusion 

In the paper, deals with a maximum spanning tree (𝑀𝑆𝑇) and a strong spanning tree (𝑆𝑆𝑇) problem 

under the neutrosophic graphs. Also, the Partial connectivity index and totally connectivity index in 

neutrosophic trees was presented here and some results obtained from the study of this index in trees were 

presented and proved. It should be noted that the results obtained in this article can be generalized to 

directed neutrosophic graphs, bipolar neutrosophic graphs and interval-valued neutrosophic graph, in 

general. 
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Abstract: This paper develops a general form of neutrosophic linear fractional programming (NLFP) 

problem and proposed a novel model to solve it. In this method the NLFP problem is decomposed 

into two neutrosophic linear programming (NLP) problem. Furthermore, the problem has been 

solved by combination of dual simplex method and a special ranking function. In addition, the 

model is compared with an existing method.  An illustrative example is shown for better 

understanding of the proposed method. The results show that the method is computationally very 

simple and comprehensible.  

 

Keywords: Triangular neutrosophic numbers; dual simplex method, ranking function, linear 

fractional programming, linear programming 

 

1. Introduction 

Liner fractional programming (LFP) problem is a special type of linear programming(LP) problem 

where the constraints are in linear form and the objective functions must be a ratio of two linear 

functions. Last few years, many researchers have been developed various methods to solve LFP 

problem in both classical logic and fuzzy logic [1-8]. These methods are interesting, however, in 

daily life circumstances, due to ambiguous information supplied by decision makers, the 

parameters are often illusory and it is very hard challenge for decision maker to make a decision. In 

such a case, it is more appropriate to interpret the ambiguous coefficients and the vague aspirations 

parameters by means of the fuzzy set theory. 
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In this manuscript a real life problem was presented, having vague parameters. Perhaps the 

best task given to mankind is to control the earth inside which they live. Anyway, some guidance’s 

have been given and, limits have been set with the end goal that some law of nature ought not to be 

abused. During the time spent controlling nature, humanity has developed extremely incredible 

instruments that permit them to have control of some significant spots like the ocean, air, and 

ground. For instance, and as a genuine circumstance, an infection called Covid-19 was recognized 

first in the city of Wuhan China, which is the capital of Hubei territory on December 31, 2019. In the 

wake of appearing the pneumonia without an unmistakable reason and for which the antibodies or 

medicines were not found. Further, it is indicated that the transmission of the infection differs from 

Human to Human. The case spread Wuhan city as well as to different urban areas of China. 

Moreover, the disease spread to other area of the world, for example, Europe, North America, and 

Asia. It is obscure to all whether the infection will be spread all world or constrained to some nation. 

In this point, what is the amount of the affected related to the number of the individuals? It's 

absolutely blind in regards to everybody and the information's are uncertain. Whether or not it was 

impacted to each age social occasion or some specific get-together? Everything is questionable and 

uncertain. Hence, from the above real-life conditions, the values are incomplete and ambiguous. 

This type of problem can be handled by way of fuzzy sets.  

The thought of fuzzy logic was setup by Zadeh [16] and from that point forward it has discovered 

enormous applications in different fields. When applied the LFP problem with fuzzy numbers, it is 

termed as fuzzy LFP (FLFP) problem. As yet, exceptional sorts of FLFP problem have already been 

interpreted within many articles to resolve such kind of problems. Li and Chen [9] developed an 

approach for solving FLFP problem via triangular fuzzy numbers, inspired by them, a 

multi-objective LFP problem with the fuzzy strategy is viewed via Luhandjula [10]. Meher et al. [20] 

proposed an idea to compute an ( , )   optimal solution for finding FLFP problem. Subsequently, 

Veeramani and Sumathi [15] examined a FLFP problem with triangular fuzzy number by way of 

multi-objective LFP problem and changed into a single objective linear programming problem. A 

goal programming approach used to be delivered to solve FLFP problem via Veeramani and 
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Sumathi [6]. However, Das et al. [11] solved the FLFP problem using the concepts of simple ranking 

approach between two triangular fuzzy numbers. Das and Mandal [14] introduced a ranking 

method for solving the FLFP problem. A method was introduced by Pop and Minasian [2] for 

solving fully FLFP (FFLFP) problem where the cost of objective, constraints and the variables are 

triangular fuzzy numbers. Later on, some of the mathematicians [3-4,17-19,21-23] proposed a 

different methods for solving  FFLFP problem. A new method of lexicographic optimal solution 

was proposed by Das et al. [12].  

The drawback of fuzzy sets, whence its incapacity to successfully symbolize facts as its only take 

into consideration the truth membership function. To conquer this trouble, Atanassov [24]presented 

the concept of intuitionistic fuzzy sets (IFS) which is a hybrid of fuzzy sets, he took into 

consideration both truth and falsity membership functions. However, in real-life situations it’s still 

facing some difficulty in case of decision making. Therefore, new set theory was introduced which 

dealt with incomplete, inconsistency and indeterminate informations called neutrosophic set (NS).  

Neutrosophic logic was introduced by Smarandache [27] as a new generalization of fuzzy logic 

and IFSs. Neutrosophic set may be characterized by three independent components i.e. (i) 

truth-membership component (T), (ii) indeterminacy membership component (I), (iii) falsity 

membership component (F). 

The decision makers in neutrosophic set want to increase the degree of truth membership and 

decrease the degree of both indeterminacy and falsity memberships. The truth membership function 

is exactly the inverse or in the opposite side of the falsity membership function, while the 

indeterminate membership function took some of its values from the truth membership function 

and other values of indeterminacy are took from the falsity membership function, that is mean the 

indeterminate membership is in the middle position between truth and falsity. For solving practical 

problems, a single value neutrosophic set (SVNS) was introduced by Wang et al. [45]. Some authors 

[46-48] considered the problem of SVNS in practical applications like educational sector, social 

sector. The basic definitions and notions of neutrosophic number (NN) were set up by 

Samarandache [37]. Recently, Abdel-Basset et al. [38] presented a novel technique for neutrosophic 
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LP problem by considering trapezoidal neutrosophic numbers. Edalatpanah [34] proposed a direct 

model for solving LP by considering triangular neutrosophic numbers. A new method to find the 

optimal solution of LP problem in NNs environment was proposed by Ye et al. [43]. The field of 

solving LP problem with single objective in NNs environment with the help of goal programming 

introduced by Banerjee and Pramanik [42]. Again, Pramanik and Dey [41] have solved the problem 

of linear bi-level-LP problem under NNs. Maiti et al. [39] introduced a strategy for multi-level 

multi-objective LP problem with NNs. Huda E. Khalid [54] established a new branch in 

neutrosophic theory named as neutrosophic geometric programming problems with their newly 

algorithms , and novel definitions and theorems. 

Here, we consider NLFP problem in which all the parameters, except crisp decision variables are 

considered as triangular neutrosophic numbers. We emphasize that there are few manuscripts have 

used triangular neutrosophic numbers in LFP problems. Recently, an interesting method was 

proposed by Abdel-Basset et al. [28] for solving neutrosophic LFP (NLFP). The NLFP problem is 

transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) 

problem, where the authors have transformed the crisp MOLFP problem is reduced to a single 

objective LP problem which can be solved easily by suitable LP technique. However, the above 

mentioned method has a drawback where the solutions are obtained does not satisfy the 

constraints, more constraints arise step by step.  

In this paper, the NLFP problem is decomposed in two NLP problem. The NLP problem is 

transformed into crisp LP problem by using ranking function. By using dual simplex method, the 

crisp LP problem was solved. Consequently, the adequacy of the applied procedure is shown 

through a numerical example. 

The remain parts of this paper were orchestrated as follow: some basic definitions and 

arithmetical operation with respect to the neutrosophic numbers are introduced in Section 2. The 

strategy of the proposed technique was contained in Section 3. In section 4, the proposed system 

applied with representation numerical guide to explain its appropriateness. The article reaches a 

conclusion containing the finishing up comments introduced in Section 5. 
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2. Preliminaries 

In this section, we present the basic notations and definitions, which are used throughout this paper.  

Definition 1.  [28] 

Assume X is a universal set and x∈𝑋. A neutrosophic set N may be defined via three membership 

functions for truth, indeterminacy along with falsity and denoted by  ( )NT x , ( )NI x  and ( )NF x

.These are real standard or real nonstandard subsets of ]0 ,1 [. 
That is 

( ) : 0,1 , ( ) : 0,1N NT x X I x X            and ( ) : 0,1NF x X      . There is no restriction 

on the sum of ( )NT x , ( )NI x  and ( )NF x ,so 0 sup ( ) sup ( ) sup ( ) 3 .N N NT x I x F x      

Definition 2. [38] 

A single-valued neutrosophic set (SVNS) N over 𝑋 is an object having the form 

{ , ( ), ( ), ( )}N N NN x T x I x F x , where X be a space of discourse, 

( ) : [0,1], ( ) : [0,1] ( ) : [0,1]N N NT x X I x X and F x X   with 

0 ( ) ( ) ( ) 3,N N NT x I x F x x X      .  

Definition 3 [34]. A triangular neutrosophic number (TNNs) is signified via

1 2 3 1 2 3( , , );( , , )l l l l lN a a a q q q   is an extended version of the three membership functions for the 

truth, indeterminacy, and falsity of x can be defined as follows: 
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Where, ( ) ( ) )0 ( 3,N N Nx I x FT x x N     Additionally, when 
1 0,la  N is called a non 

negative TNN. Similarly, when 
1 0,la  N  becomes a negative TNN. 

 

Definition 4 [28].(Arithmetic Operations) 

Suppose
1 1 2 3 1 2 3( , , );( , , )l l l l lN a a a q q q   and

2 1 2 3 1 2 3( , , );( , , )l l l l lN b b b r r r be two TNNs. Then the 

arithmetic relations are defined as: 

1 2 1 1 2 2 3 3 1 1 2 2 3 3( ) ( , , );( , , )l l l l l l l l l li N N a b a b a b q r q r q r          

1 2 1 3 2 2 3 1 1 1 2 2 3 3( ) ( , , );( , , )l l l l l l l l l lii N N a b a b a b q r q r q r          

1 2 1 1 2 2 3 3 1 1 2 2 3 3 1 1( ) ( , , 0,);( ,) , 0, ,l l l l l l l l l l l liii ifN N a b a b a b q r q s q r a b        

1 2 3 1 2 3

1

3 2 1 1 2 3

( , , );( , , ) , 0
( )

( , , );( , , ) , 0

l l l l l

l l l l l

a a a q q q if
iv N

a a a q q q if

   


   

  
 

    

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2

31 2
3 3

3 2 1

31 2 1
3 3

2 3 2 1

3 3
3 2 1

3 3

1 2 3

, ,

,

( , , ); ( 0, 0)

( ) ( , , ); ( 0, 0)

( , , ); (

,

, , 0, 0)

ll l
l l

l l

l l l l

l l l l

l

l l l
l l

l l l

l l l
ll l

l l

l

l

l l

q r q r q r

q r q r q r

q

aa a
a b

b b b

aN a a
v a b

N b b b

a a a
r q a b

b
r q r

b b

  

  

 


 





  

 






 

 

Definition 5 [28].Suppose 1N and 2N be two TNNs. Then: 

(i) 1N  2N  if and only if 1 2( ) ( ).N N   
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(ii) 1N < 2N  if and only if 1 2( ) ( ).N N   

Where (.)  is a ranking function. 

Definition 6 [32].The ranking function for triangular neutrosophic number 

1 2 3 1 2 3( , , );( , , )l l l l lN a a a q q q  is defined as: 

1 2 3
1 2 3( ) ( (1 ) (1 )).

9

l l l
l la a a

N q q q
 

       

3. Proposed Method 

One of the main aims of this paper is to extend the linear fractional problem into neutrosophic linear 

fractional programming problem.  

The crisp LFP problem can be presented in the following way: 

( )
( ) ( )

( )

N x
Max or Min z x

D x
  

Subject to                             (1) 

                        .x S  

where ( ) ( )N x and D x  are linear functions and the set S is defined as { / , 0}S x Ax b x   . 

Here A is a fuzzy m x n  matrix. 

The problem (1) can be written as: 

max ( min) ( ) ( )

. .

min ( max) ( ) ( )

. .

or z x N x

s t x S

or z x D x

s t x S





          (2) 

Now, we consider the neutrosophic linear fractional programming (NLFP) problem with  m  

constraints and n  variables:  

Max (or min) 

T

T

n x r
Z

d x s

 


 
        (3) 

Subject to  

A x b   

0, 1,2,..., .x j n   
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where 
1 1[ ]T T

i nn n   , 1 1[ ]T T

i nd d    and rank ( , ) ( )A b rank A m  . r and s   are 

constants.  

         Due to some challenges exists in the crisp methods, these methods cannot be tackling above 

NLFP problem, and to overcome the challenges, another strategy is proposed.  The means of the 

proposed technique are described in the following algorithm: 
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Step-1:substituting 1 1 1 1[ ] , [ ] , [ ] , [ ] , [ ]T T

j n j n ij m n j n j nn n d d A a r r s s          and 1[ ]i mb b   

the above NLFP problem may be rewritten as : 

Max (or min)  ( )Z x 
1

1

n

j j j

j

n

j j j

j

n x r

d x s












 

Subject to           (4) 

                   1

0 , 1, 2 , . . ,

m

i j j i

i

j

a x b

x i m





 


 

Step-2:By considering the following triangular neutrosophic numbers: 

1 2 3 1 2 3

( , , );( , , ), ( , , );( , , ), ( , , );( , , ),

( , , ; , , ), ( , , ; , , ) ( , , );( , , ).

j j j j j j j j j j j d d d ij ij ij ij a a a

j j j j jr jr jr j j j j js js js i i i i b b b

n l m n v w d c d f v w a a b c v w

r r r r v w s s s s v w and b p q r v w

  

  

  

  
 

the NLFP problem may be written as :  

max (or min)  ( )Z x 

1 2 3

1

1 2 3

1

( , , ; , , ) ( , , ; , , )

( , , ; , , ) ( , , ; , , )

n

j j j j j j j j j j jr jr jr

j

n

j j j d d d j j j j js js js

j

l m n v w x r r r v w

c d f v w x s s s v w

 

 












 

subject to  

    
1

( , , ; , , ) , , ; , ,
n

ij ij ij j j j j i i i j j j

j

a b c v w x p q r v w 


  

     0, 1,2,..., .jx i m   

Step-3. To determine the optimal value of the above problem, we take transform the objective 

function into two neutrosophic linear programming problem and the problem may be written as 

follows: 

(E-1)          max (or min)  ( )Z x  1 2 3

1

( , , ; , , ) ( , , ; , , )
n

j j j j j j j j j j j j j

j

l m n v w x r r r v w 


  

subject to  
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1

( , , ; , , ) , , ; , ,
n

ij ij ij j j j j i i i j j j

j

a b c v w x p q r v w 


  

     0, 1,2,..., .jx i m   

(E-2)     min (or max)  ( )Z x  1 2 3

1

( , , ; , , ) ( , , ; , , )
n

j j j j j j j j j j j j j

j

c d f v w x s s s v w 


  

subject to  

    
1

( , , ; , , ) , , ; , ,
n

ij ij ij j j j j i i i j j j

j

a b c v w x p q r v w 


  

     0, 1,2,..., .jx i m   

Step-4: Using arithmetic operations, defined in definition 5 and 7, the above NLP problems (E-1) and 

(E-2) are converted into crisp linear programming problems, separately. 

 (E-3)         max (or min)  ( )Z x  1 2 3

1

( ( , , ; , , ) ( , , ; , , ))
n

j j j j j j j j j j j j j

j

l m n v w x r r r v w 


   

subject to  

    
1

( ( , , ; , , ) , , ; , , )
n

ij ij ij j j j j i i i j j j

j

a b c v w x p q r v w 


   

     0, 1,2,..., .jx i m   

(E-4)    min (or max)  ( )Z x  1 2 3

1

( ( , , ; , , ) ( , , ; , , ))
n

j j j j j j j j j j j j j

j

c d f v w x s s s v w 


   

subject to  

    
1

( ( , , ; , , ) , , ; , , )
n

ij ij ij j j j j i i i j j j

j

a b c v w x p q r v w 


   

     0, 1,2,..., .jx i m   

Step-5: Now solve the above crisp LP problem (E-3) and (E-4) by using the dual simplex method. 

Step-6: Find the optimal solution of jx  by solving crisp LP problem obtained in Step-5. 
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Step-7: Find the fuzzy optimal value by putting jx in both (E-3) and (E-4) and get crisp linear 

fractional programming problem.  

4. Numerical Example 

Here, we select a case of [28] to represent the model alongside correlation of existing technique. 

Example-1  

In Jamshedpur City, India, A Wooden company is the producer of three kinds of products A, B and 

C with profit around 8, 7 and  9 dollar per unit, respectively. However the cost for each one unit of 

the above products is around 8, 9 and 6 dollars respectively. It is assume that a fixed cost of around 

1.5 dollar is added to the cost function due to expected duration through the process of production. 

Suppose the raw material needed for manufacturing product A, B and C is about 4, 3 and 5 units per 

dollar respectively, the supply for this raw material is restricted to about 28 dollar. Man-hours per 

unit for the product A is about 5 hour,  product B is about 3 hour  and C is about 3 hour per unit for 

manufacturing but total Man-hour available is about 20 hour daily. Determine how many products 

A, B and C should be manufactured in order to maximize the total profit.  

Let 1 2,x x and 3x component be the measure of A, B and C, individually to be created. 

Afterprediction of evaluated parameters, the above issue can be defined as the followingNLFPP: 

1 2 3

1 2 3

8 7 9

8 9 6 1.5

l l l

l l l l

x x x
Max Z

x x x

 


  
                                                            

(5) 

Subject to 

   1 2 34 3 5 28l l l lx x x    

   1 2 35 3 3 20l l l lx x x    

    1 2 3, , 0.x x x   

Here we consider,  
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8 (7,8,9;0.5,0.8,0.3),7 (6,7,8;0.2,0.6,0.5),9 (8,9,100.8,0.1,0.4),6 (4,6,8;0.75,0.25,0.1),

1.5 (1,1.5,2;0.75,0.5,0.25),4 (3,4,5;0.4,0.6,0.5),3 (2,3,4;1,0.25,0.3),5 (4,5,6;0.3,0.4,0.8)

28 (25,28

l l l l

l l l l

l

   

   

 ,30;0.4,0.25,0.6),20 (18,20,22;0.9,0.2,0.6)l 

 

Presently the problem is modified as follows: 

1 2 3

1 2 3

(7,8,9;0.5,0.8,0.3) (6,7,8;0.2,0.6,0.5) (8,9,10.8,0.1,0.4)

(7,8,9;0.5,0.8,0.3) (8,9,10.8,0.1,0.4) (4,6,8;0.75,0.25,0.1) (1,1.5,2;0.75,0.5,0.25)

x x x
Max Z

x x x

 


  

 

Subject to 

1 2 3

1 2 3

(3,4,5;0.4,0.6,0.5) (2,3,4;1,0.25,0.3) (4,5,6;0.3,0.4,0.8) (25,28,30;0.4,0.25,0.6)

(4,5,6;0.3,0.4,0.8) (2,3,4;1,0.25,0.3) (2,3,4;1,0.25,0.3) (18,20,22;0.9,0.2,0.6)

x x x

x x x

  

  

    1 2 3, , 0.x x x   

Utilizing Step 2 the NFP problem can be transformed into two NLP problem as: 

1 2 3(7,8,9;0.5,0.8,0.3) (6,7,8;0.2,0.6,0.5) (8,9,10.8,0.1,0.4)Max Z x x x  
 

(E-1)     Subject to 

1 2 3

1 2 3

(3,4,5;0.4,0.6,0.5) (2,3,4;1,0.25,0.3) (4,5,6;0.3,0.4,0.8) (25,28,30;0.4,0.25,0.6)

(4,5,6;0.3,0.4,0.8) (2,3,4;1,0.25,0.3) (2,3,4;1,0.25,0.3) (18,20,22;0.9,0.2,0.6)

x x x

x x x

  

  

   

    1 2 3, , 0.x x x   

1 2 3(7,8,9;0.5,0.8,0.3) (8,9,10.8,0.1,0.4) (4,6,8;0.75,0.25,0.1) (1,1.5,2;0.75,0.5,0.25)Max Z x x x   

 

(E-2)  Subject to 

1 2 3

1 2 3

(3,4,5;0.4,0.6,0.5) (2,3,4;1,0.25,0.3) (4,5,6;0.3,0.4,0.8) (25,28,30;0.4,0.25,0.6)

(4,5,6;0.3,0.4,0.8) (2,3,4;1,0.25,0.3) (2,3,4;1,0.25,0.3) (18,20,22;0.9,0.2,0.6)

x x x

x x x

  

  

   

    1 2 3, , 0.x x x 
 

Using Step-3, the ranking function the problem (E-1) and (E-2) can be written as follows: 

1 2 33.73 2.56 6.9Max Z x x x  
 

(E-1)     Subject to 

1 2 3

1 2 3

1.73 2.45 1.83 14.29

1.83 2.45 2.45 14

x x x

x x x
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    1 2 3, , 0.x x x 
 

 

1 2 33.73 6.9 4.8 1Max Z x x x   
 

(E-2) Subject to 

1 2 3

1 2 3

1.73 2.45 1.83 14.29

1.83 2.45 2.45 14

x x x

x x x

  

  
 

       1 2 3, , 0.x x x 
 

Now solve the problem (E-1) by dual simplex method  

1 2 33.73 2.56 6.9Max Z x x x  
 

(E-3)     Subject to 

1 2 3

1 2 3

1.73 2.45 1.83 14.29

1.83 2.45 2.45 14

x x x

x x x

  

  
 

       1 2 3, , 0.x x x   

Now the problem (E-3) is solved by dual simplex method and get the optimal solution is as: 

1 2 30, 0, 5.71x x x   and the objective solution is 39.42z  . 

1 2 33.73 6.9 4.8 1Max Z x x x   
 

(E-4) Subject to 

1 2 3

1 2 3

1.73 2.45 1.83 14.29

1.83 2.45 2.45 14

x x x

x x x

  

  
 

       1 2 3, , 0.x x x 
 

Now the problem (E-4) is solved by dual simplex method and get the optimal solution is as: 

1 2 30, 2.65, 3.05x x x   and the objective solution is 33.92z  . 

Finally, the optimum solution of crisp linear fractional programming problem is obtained.  

Thus,  

     
39.42

max 1.16
33.92

z    

By comparing the results of objective solutions, we can conclude that our solution is more maximize 

the cost.  
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(Pr ) ( [28])1.16 1oposed Method Existing Methodz z    

By comparing the results of the proposed method with existing method [28] based on ranking 

function and ordering by using Definition 6, we can conclude that our 

result is more effective, because: 

(Pr ) ( [28])0.208 0.069oposed Method Existing Methodz z   . 

This example  has been solved by the proposed method to show that one can overcome the 

limitations of the existing method [28] by using the proposed method. Earlier this problem was also 

solved by Abel-Basset [28]. Obtained result of the present method has been compared with the 

results of existing method [28]. It is worth mentioning that one may check that the results obtained 

by the existing method may not satisfy the constraints properly where the results obtained by the 

present method satisfied those constraints exactly. Based on the ranking function the proposed 

method is higher optimized the value as compare to the existing method. In the proposed 

methodology the FFLP problem turns into a crisp linear programming problem and that problem is 

solved by using LINGO Version 13.0. 

Result Analysis:  

In this segment, we give an outcome examination of the proposed strategy with existing technique. 

In the above writing perusing, we infer that there is exceptionally less exploration paper for taking 

care of neutrosophic LFP issue. In this manner, we consider the traditional LFP issue and fuzzy LFP 

issue for correlation with our proposed strategy.  

 Our proposed outcomes are better than traditional LFP [22] and fluffy LFP [56] model. The 

objective solution of our proposed technique is 1.16, anyway in the current strategy [22,56] the 

objective solution  is 1.09. Obviously our target arrangement is maximized.  

 In real-life problem, the leaders faces numerous issue to take choice as truth, not truth and 

bogus. In any case, in Das et al. [56] the fluffy model the leaders consider just truth work. This is the 
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fundamental downside of Das et al. fluffy model. Taking these points of interest, we proposed new 

technique.  

 Our model is applied in any genuine issue.  

 In the above conversation, we reason that our model is another approach to deal with the 

vulnerability and indeterminacy in genuine issue. 

5. Conclusions  

This paper introduced a novel method for solving NLFP problem where all the parameters are 

triangular neutrosophic numbers except decision variables. In our proposed method, NLFP problem 

is transformed into two equivalent NLP problems and the resultant problem is converted into crisp 

LP problem by using ranking function. Dual simplex method is used for solving the crisp LP 

problem. From the computational discussion, we conclude that with respect to the existing method 

[28], proposed method has less computational steps and the optimum solution is maximize the 

values. The proposed method NLFP problem has successfully overcome the drawbacks of the 

existing work [28].  Finally, from the procured results, it might be derived that the model is capable 

and supportive.  

Funding:  “This research received no external funding”  
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Abstract: We define the concepts of neutrosophic ℵ -interior ideal and neutrosophic 

ℵ −characteristic interior ideal structures of a semigroup. We infer different types of semigroups 

using neutrosophic  ℵ-interior ideal structures. We also show that the intersection of neutrosophic 

ℵ-interior ideals and the union of neutrosophic ℵ-interior ideals is also a neutrosophic ℵ-interior 

ideal.  

 

Keywords: Semi group, neutrosophic ℵ − ideals, neutrosophic ℵ -interior ideals, neutrosophic 

ℵ −product. 

 

 

1. Introduction 

Nowadays, the theory of uncertainty plays a vital role to manage different issues relating to 

modelling engineering problems, networking, real-life problem relating to decision making and so 

on. In 1965, Zadeh[24] introduced the idea of fuzzy sets for modelling vague concepts in the globe. 

In 1986, Atanassov [1] generalized fuzzy set and named as Intuitionistic fuzzy set. Also, from his 

viewpoint, there are two degrees of freedom in the real world, one a degree of membership to a 

vague subset and the other is a degree of non-membership to that given subset. 

Smarandache generalized fuzzy set and intuitionistic fuzzy set, and named as neutrosophic set 

(see [4, 7, 8, 14, 19, 22-23]). These sets are characterized by a truth membership function, an 

indeterminacy membership function and a falsity membership function. These sets are applied to 

many branches of mathematics to overcome the complexities arising from uncertain data. A 

Neutrosophic set can distinguish between absolute membership and relative membership. 

Smarandache used this in non-standard analysis such as the result of sports games 

(winning/defeating/tie), decision making and control theory, etc. This area has been studied by 

several authors (see [3, 11, 12, 16-18]).  

For more details on neutrosophic set theory, the readers visit the website 

http://fs.gallup.unm.edu/FlorentinSmarandache.htm 

In [2], Abdel Basset et al. designed a framework to manage scheduling problems using 

neutrosophic theory. As the concept of time-cost tradeoffs and deterministic project scheduling 

disagree with the real situation, some data were changed during the implementation process. Here 

fuzzy scheduling and time-cost tradeoffs models assumed only truth-membership functions dealing 

mailto:porselvi94@yahoo.co.in
mailto:porselvi@karunya.edu
mailto:belavarasan@gmail.com
mailto:elavarasan@karunya.edu
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with uncertainties of the project and their activities duration which were unable to treat 

indeterminacy and inconsistency.  

In [6], Abdel Basset et al. evaluated the performance of smart disaster response systems under 

uncertainty. In [5], Abdel Basset et al. introduced different hybrid neutrosophic multi-criteria 

decision-making framework for professional selection that employed a collection of neutrosophic 

analytical network process and order preference by similarity to the ideal solution under bipolar 

neutrosophic numbers. 

In [21], Prakasam Muralikrishna1 et al. presented the characterization of MBJ – Neutrosophic 𝛽 

– Ideal of 𝛽 – algebra. They analyzed homomorphic image, pre–image, cartesian product and related 

results, and these concepts were explored to other substructures of a 𝛽 – algebra. In [9], Chalapathi et 

al. constructed certain Neutrosophic Boolean rings, introduced Neutrosophic complement elements 

and mainly obtained some properties satisfied by the Neutrosophic complement elements of 

Neutrosophic Boolean rings. 

In [14], M. Khan et al. presented the notion of neutrosophic ℵ-subsemigroup in semigroup and 

explored several properties. In [11], Gulistan et al. have studied the idea of complex neutrosophic 

subsemigroups and introduced the concept of the characteristic function of complex neutrosophic 

sets, direct product of complex neutrosophic sets.  

In [10], B. Elavarasan et al. introduced the notion of neutrosophic ℵ-ideal in semigroup and 

explored its properties. Also, the conditions for neutrosophic ℵ-structure to be neutrosophic ℵ-ideal 

are given, and discussed the idea of characteristic neutrosophic ℵ-structure in semigroups and 

obtained several properties. In [20], we have introduced and discussed several properties of 

neutrosophic ℵ-bi-ideal in the semigroup. We have proved that neutrosophic ℵ-product and the 

intersection of neutrosophic ℵ-ideals were identical for regular semigroups. In this paper, we define 

and discuss the concepts of neutrosophic ℵ-interior ideal and neutrosophic ℵ-characteristic interior 

ideal structures of a semigroup. 

 Throughout this paper, 𝑋 denotes a semigroup. Now, we present the important definitions of 

semigroup that we need in sequel.   

Recall that for any 𝑋1, 𝑋2 ⊆ 𝑋,   𝑋1𝑋2 =  {𝑎𝑏|𝑎 ∈ 𝑋1 𝑎𝑛𝑑 𝑏 ∈ 𝑋2} , multiplication of  𝑋1 and 𝑋2. 

Let 𝑋 be a semigroup and ∅ ≠ 𝑋1 ⊆ 𝑋. Then 

(i) 𝑋1 is known as subsemigroup if 𝑋1
2 ⊆ 𝑋1.  

(ii) A subsemigroup 𝑋1 is known as left (resp., right) ideal if 𝑋1𝑋 ⊆ 𝑋1(resp., 𝑋𝑋1 ⊆ 𝑋1).  

(iii) 𝑋1 is known as ideal if 𝑋1 is both a left and a right ideal.  

(iv)   𝑋  is known as left (resp., right) regular if for each 𝑟 ∈ 𝑋, there exists 𝑖 ∈ 𝑋 such    

  that 𝑟 = 𝑖𝑟2(resp., 𝑟 = 𝑟2𝑖) [13]. 

(v) 𝑋  is known as regular if for each 𝑏1 ∈ 𝑋, there exists 𝑖 ∈ 𝑋 such that 𝑏1 = 𝑏1𝑖𝑏1  

(vi) 𝑋  is known as intra-regular if for each 𝑥1 ∈ 𝑋, there exist 𝑖, 𝑗 ∈ 𝑋 such that 𝑥1 =

𝑖𝑥1
2𝑗 [15].  

2. Definitions of neutrosophic ℵ - structures 

We present definitions of neutrosophic ℵ −structures namely neutrosophic ℵ −subsemigroup, 

neutrosophic ℵ −ideal, neutrosophic ℵ −interior ideal of a semigroup 𝑋 
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The set of all the functions from 𝑋 to [−1, 0] is denoted by ℑ(𝑋, [−1, 0]). We call that an 

element of ℑ(𝑋, [−1, 0]) is ℵ −function on 𝑋. A ℵ −structure means an ordered pair (𝑋, 𝑔) of 

𝑋 and an ℵ −function 𝑔 on 𝑋. 

 

Definition 2.1.[14] A neutrosophic ℵ − structure of  𝑿  is defined to be the structure: 

𝑿𝑴: =  
𝑿

(𝑻𝑴,  𝑰𝑴,   𝑭𝑴) 
=  {

𝒓

𝑻𝑴(𝒓), 𝑰𝑴(𝒓),   𝑭𝑴(𝒓)
 | 𝒓 ∈ 𝑿}, 

where 𝑻𝑴, 𝑰𝑴  and 𝑭𝑴  are the negative truth, negative indeterminacy and negative falsity 

membership function on X (ℵ − functions). 

It is evident that −𝟑 ≤  𝑻𝑴(𝒓) +  𝑰𝑴(𝒓) + 𝑭𝑴(𝒓) ≤ 𝟎 for all 𝒓 ∈ 𝑿. 

Definition 2.2.[14] A neutrosophic ℵ − structure 𝑿𝑴  of 𝑿  is called a neutrosophic 

ℵ −subsemigroup of 𝑿 if the following assertion is valid: 

(∀ 𝒈𝒊, 𝒉𝒋 ∈ 𝑿) (

𝑻𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑻𝑴(𝒈𝒊) ˅ 𝑻𝑴(𝒉𝒋)

𝑰𝑴(𝒈𝒊𝒉𝒋) ≥ 𝑰𝑴(𝒈𝒊)  ∧  𝑰𝑴(𝒉𝒋)

𝑭𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑭𝑴(𝒈𝒊) ˅ 𝑭𝑴(𝒉𝒋)

). 

.Let 𝑿𝑴 be a neutrosophic ℵ −structure and 𝜸, 𝜹, 𝜺 ∈ [−𝟏, 𝟎] with −𝟑 ≤   𝜸 + 𝜹 + 𝜺 ≤ 𝟎.  Consider 

the sets: 

𝑻𝑴
𝜸

= {𝒓𝒊 ∈ 𝑿|𝑻𝑴(𝒓𝒊) ≤  𝜸} 

𝑰𝑴
𝜹 = {𝒓𝒊 ∈ 𝑿|𝑰𝑴(𝒓𝒊) ≥  𝜹} 

𝑭𝑴
𝜺 = {𝒓𝒊 ∈ 𝑿|𝑭𝑴(𝒓𝒊) ≤ 𝜺}. 

The set 𝑿𝑴(𝜸, 𝜹, 𝜺) ≔ {𝒓𝒊  ∈ 𝑿 |𝑻𝑴(𝒓𝒊) ≤  𝜸, 𝑰𝑴(𝒓𝒊) ≥  𝜹, 𝑭𝑴(𝒓𝒊) ≤ 𝝐}  is known as            

(𝜸, 𝜹, 𝜺)-level set of 𝑿𝑴.  It is easy to observe that 𝑿𝑴(𝜸, 𝜹, 𝜺) = 𝑻𝑴
𝜸

 ∩  𝑰𝑴
𝜹  ∩  𝑭𝑴

𝜺 . 

 

Definition 2.3.[10] A neutrosophic ℵ −structure 𝑿𝑴 of 𝑿  is called a neutrosophic ℵ −left (resp., 

right) ideal of 𝑿 if  

(∀ 𝒈𝒊, 𝒉𝒋  ∈ 𝑿) (

𝑻𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑻𝑴(𝒉𝒋) (𝒓𝒆𝒔𝒑. , 𝑻𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑻𝑴(𝒈𝒊)) 

𝑰𝑴(𝒈𝒊𝒉𝒋) ≥ 𝑰𝑴(𝒉𝒋) (𝒓𝒆𝒔𝒑., 𝑰𝑴(𝒈𝒊𝒉𝒋) ≥ 𝑰𝑴(𝒈𝒊))

𝑭𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑭𝑴(𝒉𝒋) (𝒓𝒆𝒔𝒑., 𝑭𝑴(𝒈𝒊𝒉𝒋) ≤ 𝑭𝑴(𝒈𝒊))  

). 

𝑿𝑴 is neutrosophic  ℵ −ideal of 𝐗 if 𝑿𝑴 is neutrosophic ℵ −left and ℵ −right ideal of 𝑿.  

 

Definition 2.4. A neutrosophic ℵ −subsemigroup 𝑿𝑴 of 𝑿  is known as neutrosophic ℵ −interior 

ideal if  

(∀ 𝒙, 𝒂, 𝒚 ∈ 𝑿) (

𝑻𝑴(𝒙𝒂𝒚) ≤ 𝑻𝑴(𝒂)

𝑰𝑴(𝒙𝒂𝒚) ≥ 𝑰𝑴(𝒂)

𝑭𝑴(𝒙𝒂𝒚) ≤ 𝑭𝑴(𝒂)
). 

It is easy to observe that every neutrosophic ℵ −ideal is neutrosophic ℵ −interior ideal, but 

neutrosophic ℵ −interior ideal need not be a neutrosophic ℵ − ideal, as shown by an example. 

Example 2.5. Let 𝑿  be the set of all non-negative integers except 1. Then 𝑿 is a semigroup with 

usual multiplication. 

Let 𝑋𝑀 = {
0

(−0.9,−0.1,−0.7)
,

2

(−0.4  −0.6,−0.5)
,

5

(−0.3,−0.8,−0.3)
,

10

(−0.3,−0.8,−0.1)
,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(−0.7,−0.4,−0.6)
}. Then 𝑋𝑀 is 

neutrosophic ℵ −interior ideal, but not neutrosophic  ℵ − ideal with 𝑇𝑁(2.5) = −0.3 ≰ 𝑇𝑁(2).  

Definition 2.6.[14]  For any 𝑬 ⊆ 𝑿, the characteristic neutrosophic ℵ −structure is defined as 

𝝌𝑬(𝑿𝑴) =   
𝑿

(𝝌𝑬(𝑻)𝑴,  𝝌𝑬( 𝑰)𝑴, 𝝌𝑬(𝑭)𝑴)
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where 

𝝌𝑬(𝑻)𝑴: X→ [−𝟏, 𝟎], 𝒓 → {
−𝟏 𝒊𝒇 𝒓 ∈ 𝑬  

𝟎   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,
 

𝝌𝑬(𝑰)𝑴: X→ [−𝟏, 𝟎], 𝒓 → {
𝟎 𝒊𝒇 𝒓 ∈ 𝑬  

−𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,
 

𝝌𝑬(𝑭)𝑴: X→ [−𝟏, 𝟎], 𝒓 → {
−𝟏  𝒊𝒇 𝒓 ∈ 𝑬  
𝟎  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

 

 

Definition 2.7.[14] Let 𝑿𝑵: =  
𝑿

(𝑻𝑵,  𝑰𝑵,   𝑭𝑵) 
 and 𝑿𝑴: =  

𝑿

(𝑻𝑴,  𝑰𝑴,   𝑭𝑴) 
 be neutrosophic ℵ −structures of  

𝑿. Then 

(i) 𝑿𝑵 is called a neutrosophic ℵ −  substructure of 𝑿𝑴,  denote by  𝑿𝑴 ⊆ 𝑿𝑵 , if  𝑻𝑴(𝒓) ≥

 𝑻𝑵(𝒓),  𝑰𝑴(𝒓) ≤  𝑰𝑵(𝒓), 𝑭𝑴(𝒓) ≥  𝑭𝑵(𝒓) for all r ∈ 𝑿. 

(ii) If 𝑿𝑵 ⊆ 𝑿𝑴 and 𝑿𝑴 ⊆ 𝑿𝑵, then we say that 𝑿𝑵 = 𝑿𝑴. 

(iii) The neutrosophic ℵ − product of 𝑿𝑵 and 𝑿𝑴 is  defined to be a neutrosophic ℵ −structure 

of 𝑿, 

𝑿𝑵 ʘ 𝑿𝑴 ∶=  
𝑿

(𝑻𝑵∘𝑴,  𝑰𝑵∘𝑴,   𝑭𝑵∘𝑴) 
=  {

𝒉

𝑻𝑵∘𝑴(𝒉),  𝑰𝑵∘𝑴(𝒉),   𝑭𝑵∘𝑴(𝒉) 
 | 𝒉 ∈ 𝑿}, 

where 

(𝑻𝑵 ∘ 𝑻𝑴)(𝒉) = 𝑻𝑵∘𝑴(𝒉) = {
⋀ {𝑻𝑵(𝒓) ˅ 𝑻𝑴(𝒔)}

𝒉=𝒓𝒔

  𝒊𝒇 ∃ 𝒓, 𝒔 ∈ 𝑿 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒉 = 𝒓𝒔

𝟎                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

 

(𝑰𝑵 ∘ 𝑰𝑴)(𝒉) = 𝑰𝑵∘𝑴(𝒉) = {
⋁ {𝑰𝑵(𝒓) ˄ 𝑰𝑴(𝒔)}

𝒉=𝒓𝒔

  𝒊𝒇 ∃ 𝒖, 𝒗 ∈ 𝑿 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒉 = 𝒓𝒔

−𝟏                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,

 

 

(𝑭𝑵 ∘ 𝑭𝑴)(𝒉) = 𝑭𝑵∘𝑴(𝒉) = {
⋀ {𝑭𝑵(𝒓) ˅ 𝑭𝑴(𝒔)}

𝒉=𝒓𝒔

  𝒊𝒇 ∃ 𝒖, 𝒗 ∈ 𝑿 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒉 = 𝒓𝒔

𝟎                                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.

 

For 𝒊 ∈ 𝑿, the element
𝐢

(𝐓𝐍∘𝐌(𝐢),  𝐈𝐍∘𝐌(𝐢),   𝐅𝐍∘𝐌(𝐢))
 is simply denoted by (𝐗𝐍 ʘ 𝐗𝐌)(𝐢) =

 (𝐓𝐍∘𝐌(𝐢),   𝐈𝐍∘𝐌(𝐢),   𝐅𝐍∘𝐌(𝐢)). 

(iii) The union of 𝑿𝑵 and 𝑿𝑴, a neutrosophic ℵ −structure over 𝑿 is defined as  

𝑿𝑵 ∪ 𝑿𝑴 = 𝑿𝑵∪𝑴 = (𝑿; 𝑻𝑵∪𝑴,   𝑰𝑵∪𝑴,    𝑭𝑵∪𝑴), 

where 

(𝑻𝑵 ∪ 𝑻𝑴)(𝒉𝒊) = 𝑻𝑵∪𝑴(𝒉𝒊) =  𝑻𝑵(𝒉𝒊) ˄ 𝑻𝑴(𝒉𝒊), 

(𝑰𝑵 ∪ 𝑰𝑴)(𝒉𝒊) = 𝑰𝑵∪𝑴(𝒉𝒊) =  𝑰𝑵(𝒉𝒊) ˅ 𝑰𝑴(𝒉𝒊), 

                  (𝑭𝑵 ∪ 𝑭𝑴)(𝒉𝒊) = 𝑭𝑵∪𝑴(𝒉𝒊) =  𝑭𝑵(𝒉𝒊) ˄ 𝑭𝑴(𝒉𝒊) ∀𝒉𝒊 ∈ 𝑿. 

(iv) The intersection of 𝑿𝑵 and 𝑿𝑴, a neutrosophic  ℵ −structure over 𝑿 is defined as 

𝑿𝑵 ∩ 𝑿𝑴 = 𝑿𝑵∩𝑴 = (𝑿; 𝑻𝑵∩𝑴,   𝑰𝑵∩𝑴,    𝑭𝑵∩𝑴), 

where 

(𝑻𝑵 ∩ 𝑻𝑴)(𝒉𝒊) = 𝑻𝑵∩𝑴(𝒉𝒊) =  𝑻𝑵(𝒉𝒊) ˅ 𝑻𝑴(𝒉𝒊), 

(𝑰𝑵 ∩ 𝑰𝑴)(𝒉𝒊) = 𝑰𝑵∩𝑴(𝒉𝒊) =  𝑰𝑵(𝒉𝒊) ˄ 𝑰𝑴(𝒉𝒊), 

                   (𝑭𝑵 ∩ 𝑭𝑴)(𝒉𝒊) = 𝑭𝑵∩𝑴(𝒉𝒊) =  𝑭𝑵(𝒉𝒊) ˅ 𝑭𝑴(𝒉𝒊) ∀ 𝒉𝒊 ∈ 𝑿. 

 

3. Neutrosophic ℵ −interior ideals 

 We study different properties of neutrosophic ℵ −interior ideals of 𝑋 . It is evident that 

neutrosophic ℵ − ideal is a neutrosophic ℵ −interior ideal of 𝑋, but not the converse. Further, for 

a regular and for an intra-regular semigroup, every neutrosophic ℵ −interior ideal is neutrosophic 

ℵ −ideal. 
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All throughout this part, we consider 𝑋𝑀 and 𝑋𝑁 are neutrosophic ℵ −structures of 𝑋. 

Theorem 3.1. For any L ⊆ X, the equivalent assertions are: 

(i) 𝐿 is an interior ideal, 

(ii) The characteristic neutrosophic ℵ −structure χL(XN) is a neutrosophic ℵ −interior ideal. 

Proof: Suppose 𝐿 is an interior ideal and let 𝑥, 𝑎, 𝑦 ∈ 𝑋. 

If 𝑎 ∈ 𝐿,  then 𝑥𝑎𝑦 ∈ 𝐿, so 𝜒𝐿(𝑇)𝑁(𝑥𝑎𝑦) = −1 = 𝜒𝐿(𝑇)𝑁(𝑎),   𝜒𝐿(𝐼)𝑁(𝑥𝑎𝑦) = 0 = 𝜒𝐿(𝐼)𝑁(𝑎) and 

𝜒𝐿(𝐹)𝑁(𝑥𝑎𝑦) = −1 = 𝜒𝐿(𝐹)𝑁(𝑎).  

If 𝑎 ∉ 𝐿,  then 𝜒𝐿(𝑇)𝑁(𝑥𝑎𝑦) ≤ 0 = 𝜒𝐿(𝑇)𝑁(𝑎),    𝜒𝐿(𝐼)𝑁(𝑥𝑎𝑦) ≥ −1 = 𝜒𝐿(𝐼)𝑁(𝑎) and 

𝜒𝐿(𝐹)𝑁(𝑥𝑎𝑦) ≤ 0 = 𝜒𝐿(𝐹)𝑁(𝑎).  

 Therefore 𝜒𝐿(𝑋𝑁) is a neutrosophic ℵ −interior ideal. 

Conversely, assume that 𝜒𝐿(𝑋𝑁) is a neutrosophic ℵ − interior ideal. Let 𝑢 ∈ 𝐿 and  𝑥, 𝑦 ∈ 𝑋. 

Then  

𝜒𝐿(𝑇)𝑁(𝑥𝑢𝑦) ≤ 𝜒𝐿(𝑇)𝑁(𝑢) = −1, 

𝜒𝐿(𝐼)𝑁(𝑥𝑢𝑦) ≥ 𝜒𝐿(𝐼)𝑁(𝑢) = 0, 

𝜒𝐿(𝐹)𝑁(𝑥𝑢𝑦) ≤ 𝜒𝐿(𝐹)𝑁(𝑢) = −1 .  

So  𝑥𝑢𝑦 ∈ 𝐿.                      □ 

 

Theorem 3.2. If 𝑋𝑀 and 𝑋𝑁 are neutrosophic ℵ − interior ideals, then 𝑋𝑀∩𝑁 is neutrosophic  ℵ − 

interior ideal. 

Proof: Let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − interior ideals. For any 𝑟, 𝑠, 𝑡 ∈ 𝑋, we have 

𝑇𝑀∩𝑁(𝑟𝑠𝑡) = 𝑇𝑀(𝑟𝑠𝑡)˅𝑇𝑁(𝑟𝑠𝑡) ≤ 𝑇𝑀(𝑠)˅𝑇𝑁(𝑠) = 𝑇𝑀∩𝑁(𝑠), 

𝐼𝑀∩𝑁(𝑟𝑠𝑡) = 𝐼𝑀(𝑟𝑠𝑡)˄𝐼𝑁(𝑟𝑠𝑡) ≥ 𝐼𝑀(𝑠)˄𝐼𝑁(𝑠) = 𝐼𝑀∩𝑁(𝑠), 

𝐹𝑀∩𝑁(𝑟𝑠𝑡) = 𝐹𝑀(𝑟𝑠𝑡)˅𝐹𝑁(𝑟𝑠𝑡) ≤ 𝐹𝑀(𝑠)˅𝐹𝑁(𝑠) = 𝐹𝑀∩𝑁(𝑠). 

Therefore 𝑋𝑀∩𝑁 is neutrosophic ℵ − interior ideal.                   □ 

 

Corollary 3.3. The arbitrary intersection of neutrosophic ℵ − interior ideals is a neutrosophic ℵ − 

interior ideal. 

 

Theorem 3.4. If 𝑋𝑀 and 𝑋𝑁 are neutrosophic ℵ − interior ideals, then 𝑋𝑀∪𝑁 is neutrosophic ℵ − 

interior ideal. 

Proof: Let 𝑋𝑀 and 𝑋𝑁 be neutrosophic ℵ − interior ideals. For any 𝑟, 𝑠, 𝑡 ∈ 𝑋, we have  

𝑇𝑀∪𝑁(𝑟𝑠𝑡) = 𝑇𝑀(𝑟𝑠𝑡)˄𝑇𝑁(𝑟𝑠𝑡) ≤ 𝑇𝑀(𝑠)˄𝑇𝑁(𝑠) = 𝑇𝑀∪𝑁(𝑠), 

𝐼𝑀∪𝑁(𝑟𝑠𝑡) = 𝐼𝑀(𝑟𝑠𝑡)˅𝐼𝑁(𝑟𝑠𝑡) ≥ 𝐼𝑀(𝑠)˅𝐼𝑁(𝑠) = 𝐼𝑀∪𝑁(𝑠), 

𝐹𝑀∪𝑁(𝑟𝑠𝑡) = 𝐹𝑀(𝑟𝑠𝑡)˄𝐹𝑁(𝑟𝑠𝑡) ≤ 𝐹𝑀(𝑠)˄𝐹𝑁(𝑠) = 𝐹𝑀∪𝑁(𝑠). 

Therefore 𝑋𝑀∪𝑁 is neutrosophic ℵ − interior ideal.                 □ 

 

Corollary 3.5. The arbitrary union of neutrosophic ℵ − interior ideals is neutrosophic ℵ − interior 

ideal. 

 

Theorem 3.6. Let 𝑋 be a regular semigroup. If 𝑋𝑀 is neutrosophic ℵ − interior ideal, then 𝑋𝑀 is 

neutrosophic ℵ − ideal. 
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Proof: Assume that 𝑋𝑀 is an interior ideal, and let 𝑢, 𝑣 ∈ 𝑋. As 𝑋 is regular and 𝑢 ∈ 𝑋, there 

exists 𝑟 ∈ 𝑋  such that 𝑢 = 𝑢𝑟𝑢.  Now, 𝑇𝑀(𝑢𝑣) = 𝑇𝑀(𝑢𝑟𝑢𝑣) ≤ 𝑇𝑀(𝑢),   𝐼𝑀(𝑢𝑣) = 𝐼𝑀(𝑢𝑟𝑢𝑣) ≥ 𝐼𝑀(𝑢) 

and 𝐹𝑀(𝑢𝑣) = 𝐹𝑀(𝑢𝑟𝑢𝑣) ≤ 𝐹𝑀(𝑢). Therefore 𝑋𝑀 is neutrosophic ℵ − right ideal. 

Similarly, we can show that 𝑋𝑀 is neutrosophic ℵ − left ideal and hence 𝑋𝑀 is neutrosophic 

ℵ − ideal.                     □ 

Theorem 3.7. Let 𝑋 be an intra-regular semigroup. If 𝑋𝑀 is neutrosophic ℵ − interior ideal, then 

𝑋𝑀 is neutrosophic ℵ − ideal. 

Proof: Suppose that 𝑋𝑀 is neutrosophic ℵ − interior ideal, and let 𝑢, 𝑣 ∈ 𝑋. As 𝑋 is intra regular 

and 𝑢 ∈ 𝑋, there exist 𝑠, 𝑡 ∈ 𝑆 such that 𝑢 = 𝑠𝑢2𝑡. Now, 

𝑇𝑀(𝑢𝑣) = 𝑇𝑀(𝑠𝑢2𝑡𝑣) ≤ 𝑇𝑀(𝑢), 

𝐼𝑀(𝑢𝑣) = 𝐼𝑀(𝑠𝑢2𝑡𝑣) ≥ 𝐼𝑀(𝑢) 

𝐹𝑀(𝑢𝑣) = 𝐹𝑀(𝑠𝑢2𝑡𝑣) ≤ 𝐹𝑀(𝑢). 

Therefore 𝑋𝑀 is neutrosophic ℵ − right ideal. similarly, we can show that 𝑋𝑀 is neutrosophic ℵ − 

left ideal and hence 𝑋𝑀 is neutrosophic ℵ − ideal.            □ 

 

Definition 3.8. A semigroup 𝑋 is left simple (resp., right simple) if it does not contain any proper left 

ideal (resp., right ideal) of 𝑋. A semigroup 𝑋 is simple if it does not contain any proper ideal of 𝑋. 

 

Definition 3.9. A semigroup 𝑋 is said to be neutrosophic ℵ −simple if every neutrosophic  ℵ −

ideal is a constant function 

 i.e., for every neutrosophic ℵ − ideal 𝑋𝑀  of 𝑋,  we have 𝑇𝑀(𝑖) = 𝑇𝑀(𝑗), 𝐼𝑀(𝑖) = 𝐼𝑀(𝑗)  and 

𝐹𝑀(𝑖) = 𝐹𝑀(𝑗) for all 𝑖, 𝑗 ∈ 𝑋. 

 

Notation 3.10. If 𝑋 is a semigroup and 𝑠 ∈ 𝑋, we define a subset, denoted by 𝐼𝑠 as follows: 

𝐼𝑠 ≔ {𝑖 ∈ 𝑋 |  𝑇𝑁(𝑖) ≤ 𝑇𝑁(𝑠),   𝐼𝑁(𝑖) ≥ 𝐼𝑁(𝑠)   𝑎𝑛𝑑   𝐹𝑁(𝑖) ≤ 𝐹𝑁(𝑠)}. 

 

Proposition 3.11. If 𝑋𝑁 is neutrosophic ℵ − right (resp., ℵ − left, ℵ − ideal) ideal, then 𝐼𝑠 is right 

(resp., left, ideal) ideal for every 𝑠 ∈ 𝑋. 

Proof: Let 𝑠 ∈ 𝑋. Then it is clear that φ ≠ Is𝑋. Let 𝑢 ∈ Is  and 𝑥 ∈ 𝑋. Then 𝑢𝑥 ∈ Is.  Indeed; 

Since 𝑋𝑁  is neutrosophic ℵ −  right ideal and 𝑢, 𝑥 ∈ 𝑋,  we get 𝑇𝑁(𝑢𝑥) ≤ 𝑇𝑁(𝑢),  𝐼𝑁(𝑢𝑥) ≥ 𝐼𝑁(𝑢) 

and 𝐹𝑁(𝑢𝑥) ≤ 𝐹𝑁(𝑡). Since 𝑢 ∈ Is, we get 𝑇𝑁(𝑢) ≤ 𝑇𝑁(𝑠), 𝐼𝑁(𝑢) ≥ 𝐼𝑁(𝑠) and 𝐹𝑁(𝑢) ≤ 𝐹𝑁(𝑠) which 

imply 𝑢𝑥 ∈ Is. Therefore 𝐼𝑠 is a right ideal for every 𝑠 ∈ 𝑋.          □ 

 

Theorem 3.12.[4]  For any 𝐿 ⊆ 𝑋, the equivalent assertions are: 

(i) L is left (resp., right) ideal, 

(ii) Characteristic neutrosophic ℵ −structure χL(XN)   is neutrosophic ℵ − left (resp., right) 

ideal. 

 

Theorem 3.13. Let 𝑋  be a semigroup. Then 𝑋  is simple if and only if 𝑋  is neutrosophic 

ℵ −simple. 
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Proof: Suppose 𝑋  is simple. Let 𝑋𝑀  be a neutrosophic ℵ −  ideal and 𝑢, 𝑣 ∈ 𝑋.  Then by 

Proposition 3.11, 𝐼𝑢  is an ideal of 𝑋.As𝑋  is simple, we have 𝐼𝑢 = 𝑋.  Since 𝑣 ∈ 𝐼𝑢,  we have 

𝑇𝑀(𝑣) ≤ 𝑇𝑀(𝑢),  𝐼𝑀(𝑣) ≥ 𝐼𝑀(𝑢) and 𝐹𝑀(𝑣) ≤ 𝐹𝑀(𝑢).  

Similarly, we can prove that 𝑇𝑀(𝑢) ≤ 𝑇𝑀(𝑣),    𝐼𝑀(𝑢) ≥ 𝐼𝑀(𝑣)  and 𝐹𝑀(𝑢) ≤ 𝐹𝑀(𝑣).   So 

𝑇𝑀(𝑢) = 𝑇𝑀(𝑣), 𝐼𝑀(𝑢) = 𝐼𝑀(𝑣) and 𝐹𝑀(𝑢) = 𝐹𝑀(𝑣). Hence 𝑋 is neutrosophic ℵ − simple.   

Conversely, assume that 𝑋  is neutrosophic ℵ −  simple and 𝐼  is an ideal of 𝑋.  Then by 

Theorem 3.12, χI(XN) is a neutrosophic ℵ − ideal. We now claim that 𝑋 = 𝐼. Let 𝑤 ∈ 𝑋. Since 𝑋 

is neutrosophic ℵ − simple, we have χI(XN) is a constant function and χI(XN)(w) = χI(XN)(y) for 

every 𝑦 ∈ 𝑋. In particular, we have χI(TN)(w) = χI(TN)(d) = −1,    χI(IN)(w) = χI(IN)(d) = 0 and 

χI(FN)(w) = χI(FN)(d) = −1 for any 𝑑 ∈ 𝐼 which implies 𝑤 ∈ 𝐼. Thus 𝑋 ⊆ 𝐼 and hence 𝑋 = 𝐼.  □ 

                 

Lemma 3.14. Let 𝑋 be a semigroup. Then 𝑋  is simple if and only for every 𝑡 ∈ 𝑋, we have 𝑋 =

𝑋𝑡𝑋. 

Proof: Suppose 𝑋  is simple and let 𝑡 ∈ 𝑋. Then 𝑋(𝑋𝑡𝑋) ⊆ 𝑋𝑡𝑋 and (𝑋𝑡𝑋)𝑋 ⊆ 𝑋𝑡𝑋 imply that 

𝑋𝑡𝑋 is an ideal. Since 𝑋  is simple, we have 𝑋𝑡𝑋 = 𝑋. 

Conversely, let 𝑃 be an ideal and let 𝑎 ∈ 𝑃. Then 𝑋 = 𝑋𝑎𝑋,   𝑋𝑎𝑋 ⊆ 𝑋𝑃𝑋 ⊆ 𝑃 which implies 

𝑃 = 𝑋. Therefore 𝑋 is simple.               □ 

 

Theorem 3.15. Suppose 𝑋 is a semigroup. Then 𝑋  is simple if and only every neutrosophic ℵ − 

interior ideal of 𝑋 is a constant function. 

Proof: Suppose 𝑋  is simple and 𝑠, 𝑡 ∈ 𝑋. Let 𝑋𝑁  be neutrosophic ℵ − interior ideal. Then by 

Lemma 3.14, we get 𝑋 = 𝑋𝑠𝑋 = 𝑋𝑡𝑋.  As   𝑠 ∈ 𝑋𝑠𝑋,  we have 𝑠 = 𝑎𝑡𝑏  for 𝑎, 𝑏 ∈ 𝑋.  Since 𝑋𝑁  is 

neutrosophic ℵ − interior ideal ,  we have 𝑇𝑁(𝑠) = 𝑇𝑁(𝑎𝑡𝑏) ≤ 𝑇𝑁(𝑡),     𝐼𝑁(𝑠) = 𝐼𝑁(𝑎𝑡𝑏) ≥ 𝐼𝑁(𝑡)  and 

𝐹𝑁(𝑠) = 𝐹𝑁(𝑎𝑡𝑏) ≤ 𝐹𝑁(𝑡). Similarly, we can prove that 𝑇𝑁(𝑡) ≤ 𝑇𝑁(𝑠),     𝐼𝑁(𝑡) ≥ 𝐼𝑁(𝑠) and 𝐹𝑁(𝑡) ≤

𝐹𝑁(𝑠). So 𝑋𝑁 is a constant function. 

Conversely, suppose 𝑋𝑁 is neutrosophic ℵ − ideal.  Then 𝑋𝑁  is neutrosophic ℵ −  interior 

ideal. By hypothesis, 𝑋𝑁 is a constant function and so 𝑋𝑁 is neutrosophic ℵ −simple. By Theorem 

3.13, 𝑋  is simple.                    □ 

 

Theorem 3.16. Let 𝑋𝑀 be neutrosophic ℵ − structure and let 𝛾, 𝛿, 휀 ∈ [−1, 0] with−3 ≤  𝛾 + 𝛿 + 휀 ≤

0. If 𝑋𝑀 is neutrosophic ℵ −interior ideal, then (𝛾, 𝛿, 휀)-level set of 𝑋𝑀 is neutrosophic ℵ −interior 

ideal whenever 𝑋𝑀(𝛾, 𝛿, 휀) ≠  ∅. 

Proof: Suppose 𝑿𝑴(𝜸, 𝜹, 𝜺) ≠  ∅ for 𝜸, 𝜹, 𝜺 ∈ [−𝟏, 𝟎] with −𝟑 ≤  𝜸 + 𝜹 + 𝜺 ≤ 𝟎.  

Let 𝑿𝑴  be a neutrosophic ℵ −interior ideal and let 𝒖, 𝒗, 𝒘 ∈ 𝑿𝑴(𝜸, 𝜹, 𝜺). Then 𝑻𝑴(𝒖𝒗𝒘) ≤

𝑻𝑴(𝒗) ≤ 𝜶;   𝑰𝑴(𝒖𝒗𝒘) ≥ 𝑰𝑴(𝒗) ≥ 𝜷  and 𝑭𝑴(𝒖𝒗𝒘) ≤ 𝑭𝑴(𝒗) ≤ 𝜸  which imply 𝒖𝒗𝒘 ∈ 𝑿𝑴 ( 𝜶, 𝜷, 𝜸) . 

Therefore 𝑿𝑴(𝜸, 𝜹, 𝜺) is a neutrosophic ℵ −interior ideal of 𝑿.                 □ 

 

Theorem 3.17. Let 𝑋𝑁  be neutrosophic ℵ − structure with 𝛼, 𝛽, 𝛾 ∈ [−1, 0]  such that −3 ≤  𝛼 +

 𝛽 +  𝛾 ≤ 0. If 𝑇𝑁
𝛼 , 𝐼𝑁

𝛽
 and 𝐹𝑁

𝛾 are interior ideals, then 𝑋𝑁 is neutrosophic ℵ − interior ideal of 𝑋 

whenever it is non-empty. 

Proof: Suppose that for 𝒂, 𝒃, 𝒄 ∈ 𝑿 with 𝑻𝑵(𝒂𝒃𝒄) > 𝑻𝑵(𝒃). Then 𝑻𝑵(𝒂𝒃𝒄) > 𝒕𝜶 ≥ 𝑻𝑵(𝒃) for some 

𝒕𝜶 ∈ [−𝟏, 𝟎). So 𝒃 ∈ 𝑻𝑵
𝒕𝜶(𝒃) but 𝒂𝒃𝒄 ∉ 𝑻𝑵

𝒕𝜶(𝒃), a contradiction. Thus 𝑻𝑵(𝒂𝒃𝒄) ≤ 𝑻𝑵(𝒃). 
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Suppose that for 𝒂, 𝒃, 𝒄 ∈ 𝑿 with 𝑰𝑵(𝒂𝒃𝒄) < 𝑰𝑵(𝒃). Then 𝑰𝑵(𝒂𝒃𝒄) < 𝒕𝜶 ≤ 𝑰𝑵(𝒃) for some 𝒕𝜶 ∈

[−𝟏, 𝟎). So 𝒃 ∈ 𝑰𝑵
𝒕𝜶(𝒃) but 𝒂𝒃𝒄 ∉ 𝑰𝑵

𝒕𝜶(𝒃),  a contradiction. Thus 𝑰𝑵(𝒂𝒃𝒄) ≥ 𝑰𝑵(𝒃). 

Suppose that for 𝒂, 𝒃, 𝒄 ∈ 𝑿  with 𝑭𝑵(𝒂𝒃𝒄) > 𝑭𝑵(𝒃).  Then 𝑭𝑵(𝒂𝒃𝒄) > 𝒕𝜶 ≥ 𝑭𝑵(𝒃)  for some 

𝒕𝜶 ∈ [−𝟏, 𝟎). So 𝒃 ∈ 𝑭𝑵
𝒕𝜶(𝒃) but 𝒂𝒃𝒄 ∉ 𝑭𝑵

𝒕𝜶(𝒃),  a contradiction. Thus 𝑭𝑵(𝒂𝒃𝒄) ≤ 𝑭𝑵(𝒃). 

 Thus 𝑿𝑵 is neutrosophic ℵ − interior ideal.              □ 

 

Theorem 3.18. Let 𝑿𝑴 be neutrosophic ℵ − structure over 𝑿.  Then the equivalent assertions are: 

(i) 𝑿𝑴 is neutrosophic ℵ −interior ideal, 

(ii) 𝑿𝑵ʘ 𝑿𝑴ʘ𝑿𝑵 ⊆  𝑿𝑴 for any neutrosophic ℵ − structure 𝑿𝑵. 

Proof: Suppose  𝑿𝑴  is neutrosophic ℵ − interior ideal. Let 𝒙 ∈ 𝑿.  For any 𝒖, 𝒗, 𝒘 ∈ 𝑿 such that 

𝒙 = 𝒖𝒗𝒘.  Then 𝑻𝑴(𝒙) = 𝑻𝑴(𝒖𝒗𝒘)  ≤ 𝑻𝑴(𝒗) ≤ 𝑻𝑵(𝒖)˅𝑻𝑴(𝒗)˅𝑻𝑵(𝒘)  which implies 𝑻𝑴(𝒙) ≤

𝑻𝑵∘𝑴∘𝑵(𝒙).  Otherwise 𝒙 ≠ 𝒖𝒗𝒘.  Then 𝑻𝑴(𝒙) ≤ 𝟎 = 𝑻𝑵∘𝑴∘𝑵(𝒙).  Similarly, we can prove that 

𝑰𝑴(𝒙) ≥ 𝑰𝑵∘𝑴∘𝑵(𝒙) and  𝑭𝑴(𝒙) ≤ 𝑭𝑵∘𝑴∘𝑵(𝒙).  Thus 𝑿𝑵ʘ 𝑿𝑴ʘ𝑿𝑵 ⊆  𝑿𝑴. 

Conversely, assume that 𝑿𝑵ʘ 𝑿𝑴ʘ𝑿𝑵 ⊆  𝑿𝑴 for any neutrosophic ℵ −structure 𝑿𝑵.  

Let 𝒖, 𝒗, 𝒘 ∈ 𝑿. If 𝒙 = 𝒖𝒗𝒘, then 

𝑻𝑴(𝒖𝒗𝒘) = 𝑻𝑴(𝒙) ≤ (𝝌𝑿(𝑻)𝑵 ∘ 𝑻𝑴 ∘ 𝝌𝑿(𝑻)𝑵 )(𝒙) = ⋀ {𝝌𝑿(𝑻)𝑵 ∘ 𝑻𝑴)

𝒙=𝒓𝒘

(𝒓) ˅ 𝝌𝑿(𝑻)𝑵(𝒘)} 

 

                                                                                 = ⋀{ ⋀ {𝝌𝑿(𝑻)𝑵

𝒓=𝒖𝒗

(𝒖) ˅ (𝑻)𝑴

𝒙=𝒓𝒄

(𝒗)} ˅ 𝝌𝑿(𝑻)𝑵(𝒘)} 

      

                                                                        ≤ 𝝌𝑿(𝑻)𝑵(𝒖)˅ (𝑻)𝑴(𝒗)˅ 𝝌𝑿(𝑻)𝑵(𝒘) = 𝑻𝑴(𝒗), 

  

𝑰𝑴(𝒖𝒗𝒘) = 𝑰𝑴(𝒙) ≤ (𝝌𝑿(𝑰)𝑵 ∘ 𝑰𝑴 ∘ 𝝌𝑿(𝑰)𝑵 )(𝒙) = ⋁ {𝝌𝑿(𝑰)𝑵 ∘ 𝑰𝑴)(𝒓) ˄  𝝌𝑿(𝑰)𝑵(𝒘)

𝒙=𝒓𝒘

} 

                                                                     = ⋁{ ⋁ {𝝌𝑿(𝑰)𝑵

𝒓=𝒖𝒗

(𝒖)˄(𝑰)𝑴(𝒗)} ˄ 𝝌𝑿(𝑰)𝑵(𝒘)

𝒙=𝒓𝒄

} 

                                                                  ≥ 𝝌𝑿(𝑰)𝑵(𝒖)˄(𝑰)𝑴(𝒗)˄ 𝝌𝑿(𝑰)𝑵(𝒘) = (𝑰)𝑴(𝒗), 

 

and 

𝑭𝑴(𝒖𝒗𝒘) = 𝑭𝑴(𝒙) ≤ (𝝌𝑿(𝑭)𝑵 ∘ 𝑭𝑴 ∘ 𝝌𝑿(𝑭)𝑵 )(𝒙) = ⋀ {𝝌𝑿(𝑭)𝑵 ∘ 𝑭𝑴)

𝒙=𝒓𝒘

(𝒓) ˅ 𝝌𝑿(𝑭)𝑵(𝒘)} 

 

                                                                                       = ⋀{ ⋀ {𝝌𝑿(𝑭)𝑵

𝒓=𝒖𝒗

(𝒖) ˅ (𝑭)𝑴

𝒙=𝒓𝒄

(𝒗)} ˅ 𝝌𝑿(𝑭)𝑵(𝒘)} 

      

                                                                              ≤ 𝝌𝑿(𝑭)𝑵(𝒖)˅ (𝑭)𝑴(𝒗)˅ 𝝌𝑿(𝑭)𝑵(𝒘) = 𝑭𝑴(𝒗).    

Therefore  𝑿𝑴 is neutrosophic ℵ −interior ideal.                □ 

 

Notation 3.19. Let 𝑿  and 𝒁 be semigroups. A mapping 𝒈: 𝑿 → 𝒁 is said to be a homomorphism if 

𝒈(𝒖𝒗) = 𝒈(𝒖)𝒈(𝒗) for all 𝒖, 𝒗 ∈ 𝑿. Throughout this remaining section, we denote 𝑨𝒖𝒕(𝑿), the set 

of all automorphisms of 𝑿. 

 

Definition 3.20. An interior ideal 𝑱 of a semigroup 𝑿 is called a characteristic interior ideal if 

𝒉(𝑱) = 𝑱 for all 𝒉 ∈ 𝑨𝒖𝒕(𝑿). 
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Definition 3.21. Let 𝑿  be a semigroup. A neutrosophic ℵ − interior ideal 𝑿𝑵  is called 

neutrosophic ℵ − characteristic interior ideal if 𝑻𝑵(𝒉(𝒖)) = 𝑻𝑵(𝒖),   𝑰𝑵(𝒉(𝒖)) = 𝑰𝑵(𝒖)  and 

𝑭𝑵(𝒉(𝒖)) = 𝑭𝑵(𝒖) for all 𝒖 ∈ 𝑿 and all 𝒉 ∈ 𝑨𝒖𝒕(𝑿). 

 

Theorem 3.22. For any L ⊆ X, the equivalent assertions are: 

(i) L is characteristic interior ideal, 

(ii) The characteristic neutrosophic ℵ − structure χL(XM)  is neutrosophic ℵ − characteristic 

interior ideal. 

Proof: Suppose 𝐿 is characteristic interior ideal and let 𝑥 ∈ 𝑋. Then by Theorem 3.1, χL(XM) is 

neutrosophic ℵ −interior ideal. If 𝑥 ∈ 𝐿,  then 𝜒𝐿(𝑇)𝑀(𝑥) = −1, 𝜒𝐿(𝐼)𝑀(𝑥) = 0, and 𝜒𝐿(𝐹)𝑀(𝑥) =

−1.  Now, for any ℎ ∈ 𝐴𝑢𝑡(𝑋),   ℎ(𝑥) ∈ ℎ(𝐿) = 𝐿 which implies 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = −1, 𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) =

0,  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) = −1.  If 𝑥 ∉ 𝐿,  then 𝜒𝐿(𝑇)𝑀(𝑥) = 0, 𝜒𝐿(𝐼)𝑀(𝑥) = −1,  and 𝜒𝐿(𝐹)𝑀(𝑥) = 0. 

Now, for any ℎ ∈ 𝐴𝑢𝑡(𝑋), ℎ(𝑥) ∉ ℎ(𝐿) which implies 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = 0, 𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) = −1, and 

𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) = 0.  Thus 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝑇)𝑀(𝑥),   𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝐼)𝑀(𝑥),  and 

𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝐹)𝑀(𝑥)  for all 𝑥 ∈ 𝑋 and hence  χL(XM)  is neutrosophic ℵ − characteristic 

interior ideal. 

Conversely, assume that χL(XM) is neutrosophic ℵ −characteristic interior ideal . Then by 

Theorem 3.1, 𝐿 is an interior ideal .  Now, let ℎ ∈ 𝐴𝑢𝑡(𝑋)  and 𝑥 ∈ 𝐿.  Then 𝜒𝐿(𝑇)𝑀(𝑥) =

−1,   𝜒𝐿(𝐼)𝑀(𝑥) = 0 and 𝜒𝐿(𝐹)𝑀(𝑥) = −1. Since χL(XM) is neutrosophic  ℵ −characteristic interior 

ideal ,  we have 𝜒𝐿(𝑇)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝑇)𝑀(𝑥),   𝜒𝐿(𝐼)𝑀(ℎ(𝑥)) = 𝜒𝐿(𝐼)𝑀(𝑥)  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑥)) =

𝜒𝐿(𝑇)𝑀(𝑥) which imply ℎ(𝑥) ∈ 𝐿. So ℎ(𝐿) ⊆ 𝐿 for all ℎ ∈ 𝐴𝑢𝑡(𝑋). Again, since ℎ ∈ 𝐴𝑢𝑡(𝑋) and 

𝑥 ∈ 𝐿, there exists 𝑦 ∈ 𝐿 such that ℎ(𝑦) = 𝑥. 

Suppose that 𝑦 ∉ 𝐿.  Then 𝜒𝐿(𝑇)𝑀(𝑦) = 0, 𝜒𝐿(𝐼)𝑀(𝑦) = −1  and 𝜒𝐿(𝐹)𝑀(𝑦) = 0. 

Since 𝜒𝐿(𝑇)𝑀(ℎ(𝑦)) = 𝜒𝐿(𝑇)𝑀(𝑦),     𝜒𝐿(𝐼)𝑀(ℎ(𝑦)) = 𝜒𝐿(𝐼)𝑀(𝑦)  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑦)) = 𝜒𝐿(𝑇)𝑀(𝑦),  we 

get 𝜒𝐿(𝑇)𝑀(ℎ(𝑦)) = 0,   𝜒𝐿(𝐼)𝑀(ℎ(𝑦)) = −1  and 𝜒𝐿(𝐹)𝑀(ℎ(𝑦)) = 0  which imply ℎ(𝑦) ∉ 𝐿,  a 

contradiction. So 𝑦 ∈ 𝐿  i.e., ℎ(𝑦) ∈ 𝐿.  Thus 𝐿 ⊆ ℎ(𝐿)  for all ℎ ∈ 𝐴𝑢𝑡(𝑋)  and hence 𝐿  is 

characteristic interior ideal.                     □  

 

Theorem 3.23. For a semigroup 𝑋,  the equivalent statements are: 

(i) 𝑋 is intra-regular, 

(ii) For any neutrosophic ℵ −interior ideal 𝑋𝑀, we have 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋. 

Proof: (𝑖) ⇒ (𝑖𝑖) Suppose 𝑋 is intra-regular, and 𝑋𝑀 is neutrosophic ℵ − interior ideal and 𝑤 ∈ 𝑋. 

Then there exist 𝑟, 𝑠 ∈ 𝑋 such that 𝑤 = 𝑟𝑤2𝑠. Now 𝑇𝑀(𝑤) = 𝑇𝑀(𝑟𝑤2𝑠) ≤ 𝑇𝑀(𝑤2) ≤ 𝑇𝑀(𝑤) and so 

𝑇𝑀(𝑤) = 𝑇𝑀(𝑤2),    𝐼𝑀(𝑤) = 𝐼𝑀(𝑟𝑤2𝑠) ≥ 𝐼𝑀(𝑤2) ≥ 𝐼𝑀(𝑤)  and so 𝐼𝑀(𝑤) = 𝐼𝑀(𝑤2),  and 𝐹𝑀(𝑤) =

𝐹𝑀(𝑟𝑤2𝑠) ≤ 𝐹𝑀(𝑤2) ≤ 𝐹𝑀(𝑤) and so 𝐹𝑀(𝑤) = 𝐹𝑀(𝑤2). Therefore 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋. 

(𝑖𝑖) ⇒ (𝑖)  Let (𝑖𝑖) holds and 𝑠 ∈ 𝑋. Then 𝐼(𝑠2) is an ideal of 𝑋. By Theorem 3.5 of [4],  𝜒𝐼(𝑠2)(𝑋𝑀) 

is neutrosophic ℵ − ideal. By assumption, 𝜒𝐼(𝑠2)(𝑋𝑀)(𝑠) = 𝜒𝐼(𝑠2)(𝑋𝑀)(𝑠2).  Since 𝜒𝐼(𝑠2)(𝑇)𝑀(𝑠2) =

−1 = 𝜒𝐼(𝑠2)(𝐹)𝑀(𝑠2)  and 𝜒𝐼(𝑠2)(𝐼)𝑀(𝑠2) = 0,  we get 𝜒𝐼(𝑠2)(𝑇)𝑀(𝑠) = −1 = 𝜒𝐼(𝑠2)(𝐹)𝑀(𝑠)  and 

𝜒𝐼(𝑠2)(𝐼)𝑀(𝑠2) = 0 which imply 𝑠 ∈ 𝐼(𝑠2). Hence 𝑋 is intra-regular.         □ 

 

Theorem 3.24. For a semigroup 𝑋,  the equivalent statements are: 

(i) 𝑋 is left (resp., right) regular, 
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(ii) For any neutrosophic  ℵ −interior ideal 𝑋𝑀 , we have 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋. 

Proof: (𝑖) ⇒ (𝑖𝑖) Let 𝑋 be left regular. Then there exists 𝑦 ∈ 𝑋 such that 𝑤 = 𝑦𝑤2.  Let 𝑋𝑀 be a 

neutrosophic ℵ −interior ideal. Then 𝑇𝑀(𝑤) = 𝑇𝑀(𝑦𝑤2) ≤ 𝑇𝑀(𝑤) and so 𝑇𝑀(𝑤) = 𝑇𝑀(𝑤2),  𝐼𝑀(𝑤) =

𝐼𝑀(𝑦𝑤2) ≥ 𝐼𝑀(𝑤)  and so 𝐼𝑀(𝑤) = 𝐼𝑀(𝑤2),  and 𝐹𝑀(𝑤) = 𝐹𝑀(𝑦𝑤2) ≤ 𝐹𝑀(𝑤)  and so 𝐹𝑀(𝑤) =

𝐹𝑀(𝑤2).  Therefore 𝑋𝑀(𝑤) = 𝑋𝑀(𝑤2) for all 𝑤 ∈ 𝑋. 

(𝑖𝑖) ⇒ (𝑖) Suppose (𝑖𝑖) holds and let 𝑋𝑀  be neutrosophic ℵ −interior ideal. Then for any 𝑤 ∈ 𝑋,

𝜒𝐿(𝑤2)(𝑇)𝑀(𝑤) = 𝜒𝐿(𝑤2)(𝑇)𝑀(𝑤2) = −1,    𝜒𝐿(𝑤2)(𝐼)𝑀(𝑤) = 𝜒𝐿(𝑤2)(𝐼)𝑀(𝑤2) = 0  and 𝜒𝐿(𝑤2)(𝐹)𝑀(𝑤) =

𝜒𝐿(𝑤2)(𝐹)𝑀(𝑤2) = −1 which imply 𝑤 ∈ 𝐿(𝑤2). Thus 𝑋 is left regular.               □ 

 

Conclusions 

In this paper, we have introduced the concepts of neutrosophic ℵ − interior ideals and 

neutrosophic ℵ − characteristic interior ideals in semigroups and studied their properties, and 

characterized regular and intra-regular semigroups using neutrosophic ℵ-interior ideal structures. 

We have also shown that R is a characteristic interior ideal if and only if the characteristic 

neutrosophic ℵ −structure χ
R

(XN) is neutrosophic ℵ −characteristic interior ideal. In future, we 

will define neutrosophic ℵ −prime ideals in semigroups and study their properties.  
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Abstract: Connectivity is one of the most important concepts in graph theory. Since Neutrosophic Graphs 

are a branch of graphs, connectivity will be very important in this branch as well. In this paper, we will 

define the connectivity in Neutrosophic graphs using the strength of connectedness between each pair of 

its vertices. Also in this article, we define two new concepts of Partial connectivity index and totally 

connectivity index. We present several theorems related to these concepts and prove the theorems. 
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1. Introduction 

Neutrosophic graphs are a new branch of graphs that has been very popular among graph theorists 

in recent decades. Neutrosophic graphs are a generalized form of fuzzy graph theory. One of the features 

that have been considered in fuzzy graphs is connectivity and types of connectivity indices in fuzzy graphs 

[7]. The connectivity index is a numerical quantity that can be used to calculate some of the properties of 

the studied graph in more detail. Many researchers have pointed to different uses of neutrosophic Graphs, 

such as the use of neutrosophic sets and graphs in medicine [3], social media [4], decision-making problem 

[9], Economics Theorizing [11] and so on. In this article, after introducing the partial connectivity index 

and totally connectivity index in neutrosophic graphs, we will point out some applications of it. 

In our previous article [8], we also presented the correlation index in neutrosophic graphs and gave 

an example of its applications. In the following works, we will compare and examine the strengths and 

weaknesses of each. 

 

2. Preliminaries 

In this section, some of the important and basic concepts required are given by mentioning the source. 
 

Definition 1. [4] A single-valued neutrosophic graph on a nonempty 𝑉 is a pair 𝐺 = (𝑁, 𝑀). Where 𝑁 is 

single-valued neutrosophic set in 𝑉 and 𝑀 single-valued neutrosophic relation on 𝑉 such that 
 

𝑇𝑀(𝑢𝑣) ≤ min{𝑇𝑁(𝑢), 𝑇𝑁(𝑣)}, 
𝐼𝑀(𝑢𝑣) ≤ min{𝐼𝑁(𝑢), 𝐼𝑁(𝑣)}, 

𝐹𝑀(𝑢𝑣) ≤ max{𝐹𝑁(𝑢), 𝐹𝑁(𝑣)}, 
 

For all 𝑢, 𝑣 ∈ 𝑉. 𝑁 is called single-valued neutrosophic vertex set of 𝐺 and, 𝑀 is called single-valued 

neutrosophic edge set of 𝐺, respectively. 
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Definition 2. [4] Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph of 𝐺∗. If 𝐻 = (𝑁′, 𝑀′)  is a neutrosophic graph 

of 𝐺∗ such that  

 
𝑇′(𝑢) ≤ 𝑇(𝑢),                         𝐼′(𝑢) ≥ 𝐼(𝑢),                                𝐹′(𝑢) ≥ 𝐹(𝑢),                      ∀𝑢 ∈ 𝑋, 

𝑇𝑀′(𝑢𝑣) ≤ 𝑇𝑀(𝑢𝑣),                 𝐼𝑀′(𝑢𝑣) ≥ 𝐼𝑀(𝑢𝑣),                     𝐹𝑀′(𝑢𝑣) ≥ 𝐹𝑀(𝑢𝑣),                   ∀𝑢𝑣 ∈ 𝐸,    
 

Then 𝐻 is called a Neutrosophic subgraph of the Neutrosophic graph 𝐺. 
 

Definition 3. [4] A neutrosophic graph 𝐺 = (𝑁, 𝑀) is called complete if the following conditions are 

satisfied: 
 

𝑇𝑀(𝑢𝑣) = min{𝑇𝑁(𝑢), 𝑇𝑁(𝑣)}, 
𝐼𝑀(𝑢𝑣) = min{𝐼𝑁(𝑢), 𝐼𝑁(𝑣)}, 

𝐹𝑀(𝑢𝑣) = max{𝐹𝑁(𝑢), 𝐹𝑁(𝑣)}, 

For all 𝑢, 𝑣 ∈ 𝑉. 
 

Definition 4. [4] A neutrosophic graph 𝐺1 = (𝑁1, 𝑀1) of the graph 𝐺1
∗ = (𝑉1, 𝐸1) is isomorphic with 

neutrosophic graph 𝐺2 = (𝑁2, 𝑀2) of the graph 𝐺2
∗ = (𝑉2, 𝐸2) if we have 𝑓 where 𝑓: 𝑉1  →  𝑉2 is a bijection 

and following relations are satisfied 

𝑇𝑁1
(𝑢) =  𝑇𝑁2

(𝑓(𝑢)),                        𝐼𝑁1
(𝑢) =  𝐼𝑁2

(𝑓(𝑢)),                               𝐹𝑁1
(𝑢) =  𝐹𝑁2

(𝑓(𝑢)), 

For all  𝑢 ∈ 𝑉1 and 

𝑇𝑀1
(𝑢𝑣) = 𝑇𝑀2

(𝑓(𝑢)𝑓(𝑣)),                  𝐼𝑀1
(𝑢𝑣) = 𝐼𝑀2

(𝑓(𝑢)𝑓(𝑣)),                   𝐹𝑀1
(𝑢𝑣) = 𝐹𝑀2

(𝑓(𝑢)𝑓(𝑣)), 

For all 𝑢𝑣 ∈ 𝐸1. 
 

Definition 5. [4] the m-barbell graph 𝐵(𝑚,𝑚) is the simple graph obtained by connecting two copies of a 

complete graph 𝐾𝑚 by abridge.  
 

3. Totally and Partial connectivity index 

In this section, which is the main part of the article, we first define the connected neutrosophic graph 

and connectivity index in the neutrosophic graphs. Note that definitions are provided for a connected 

neutrosophic graph in some references [5, 6], but the definition we use here will be based on connectivity. 

After providing some examples, the theorems related to the connectivity index are expressed and proved 

in neutrosophic graphs. 
 

3.1. Partial connectivity index in neutrosophic graphs 

Here we first define the Partial and totally connectivity indices in neutrosophic graphs and provide 

examples to better understand it. And then in the next part we will present the boundaries for the Partial 

and totally connectivity indices in neutrosophic graphs. 
 

Definition 6. Let 𝐺 = (𝑁, 𝑀) be the connected Neutrosophic Graph. The partial connectivity index of 𝐺 is 

defined as  

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁
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Where 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣) is the strength of truth, 𝐶𝑂𝑁𝑁𝐼𝐺

(𝑢, 𝑣) the strength of indeterminacy and 𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) 

the strength of falsity between two vertices 𝑢 and 𝑣. We have 

 
𝐶𝑂𝑁𝑁𝑇𝐺

(𝑢, 𝑣) = max {min 𝑇𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣) = min {max 𝐼𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) = min {max 𝐹𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}. 

 

Also, the totally connectivity index of 𝐺 is defined as 
 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
. 

 

Definition 7. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic graph. 𝐺 called a connected neutrosophic graph if for 

any two vertices 𝑢, 𝑣 ∈ 𝑁, 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣) > 0, 𝐶𝑂𝑁𝑁𝐼𝐺

(𝑢, 𝑣) > 0, and 𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) > 0. 

 

Example 1. Consider the Neutrosophic graph 𝐺 = (𝑁, 𝑀) with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, that shown in figure 1. As 

can be seen, (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑎) = (0.4, 0.6, 0.5), (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑏) = (0.7, 0.5, 0.4), (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑐) = (0.7, 0.4, 0.3), and 

(𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑑) = (0.5, 0.4, 0.5), The edge set contains (𝑇𝑀 , 𝐼𝑀, 𝐹𝑀)(𝑎, 𝑏) = (0.4, 0.5, 0.5), (𝑇𝑀 , 𝐼𝑀, 𝐹𝑀)(𝑏, 𝑐) =

(0.7, 0.4, 0.4), (𝑇𝑀, 𝐼𝑀 , 𝐹𝑀)(𝑐, 𝑑) = (0.5, 0.4, 0.5), (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑎, 𝑑) = (0.4, 0.4, 0.5) and (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑏, 𝑑) =

(0.3, 0.5, 0.7). 

By direct calculations, we have 

Table 1. The strength of connectedness between each pair of vertices 𝑢 and 𝑣. 

 𝑪𝑶𝑵𝑵𝑻𝑮
(𝒖, 𝒗) 𝑪𝑶𝑵𝑵𝑰𝑮

(𝒖, 𝒗) 𝑪𝑶𝑵𝑵𝑭𝑮
(𝒖, 𝒗) 

𝑎 , 𝑏 0.4 0.5 0.5 

𝑎 , 𝑐 0.4 0.4 0.5 

𝑎 , 𝑑 0.4 0.4 0.5 

𝑏 , 𝑐 0.7 0.4 0.4 

𝑏 , 𝑑 0.5 0.4 0.5 

𝑐 , 𝑑 0.5 0.4 0.5 

 

Then the partial connectivity index of 𝐺 is, 
 

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.4)(0.7)(0.4) + (0.4)(0.7)(0.4) + (0.4)(0.5)(0.4) + (0.7)(0.7)(0.7) + (0.7)(0.5)(0.5)
+ (0.7)(0.5)(0.5) = 0.112 + 0.112 + 0.080 + 0.147 + 0.245 + 0.245 = 0.941, 

 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.6)(0.5)(0.5) + (0.6)(0.4)(0.4) + (0.6)(0.4)(0.4) + (0.5)(0.4)(0.4) + (0.5)(0.4)(0.4)
+ (0.4)(0.4)(0.4) = 0.180 + 0.096 + 0.096 + 0.080 + 0.080 + 0.064 = 0.596, 

 

𝑃𝐶𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.5)(0.4)(0.5) + (0.5)(0.3)(0.5) + (0.5)(0.5)(0.5) + (0.4)(0.3)(0.4) + (0.4)(0.5)(0.5)
+ (0.3)(0.5)(0.5) = 0.1 + 0.075 + 0.125 + 0.048 + 0.1 + 0.075 = 0.523. 
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Also by definition 1, we have 

 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
=  

4 + 2(0.941) − 2(0.523) − 0.596

6
= 0.707. 

 

 
Figure 1. A neutrosophic graph with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} 

 

Theorem 1. Let 𝐺 = (𝑁, 𝑀) be a connected neutrosophic graph and 𝐻 = (𝑁′, 𝑀′) is a partial neutrosophic 

subgraph of 𝐺. then  
𝑃𝐶𝐼𝑇(𝐻) ≤ 𝑃𝐶𝐼𝑇(𝐺), 
𝑃𝐶𝐼𝐼(𝐻) ≥ 𝑃𝐶𝐼𝐼(𝐺), 
𝑃𝐶𝐼𝐹(𝐻) ≥ 𝑃𝐶𝐼𝐹(𝐺), 

 

Moreover, we have 𝑇𝐶𝐼(𝐻) ≤ 𝑇𝐶𝐼(𝐺). 
 

Proof. Let 𝐻 = (𝑁′, 𝑀′)  is a partial neutrosophic subgraph of 𝐺, and 𝑇𝑁′(𝑢) ≤ 𝑇𝑁(𝑢) for 𝑢 ∈ 𝑉. Since  

𝑇𝑀′(𝑢𝑣) ≤ 𝑇𝑀(𝑢𝑣) for 𝑢𝑣, then 𝐶𝑂𝑁𝑁𝑇𝐻(𝑢, 𝑣) ≤ 𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣)  thus we get 
 

𝑃𝐶𝐼𝑇(𝐻) = ∑ 𝑇𝑁′(𝑢)𝑇𝑁′(𝑣)𝐶𝑂𝑁𝑁𝑇𝐻(𝑢, 𝑣) ≤ 

𝑢,𝑣 ∈𝑋

∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) = 

𝑢,𝑣 ∈𝑋

𝑃𝐶𝐼𝑇(𝐺). 

Using a similar proof, we can show that 
 

𝑃𝐶𝐼𝐼(𝐻) = ∑ 𝐼𝑁′(𝑢)𝐼𝑁′(𝑣)𝐶𝑂𝑁𝑁𝐼𝐻(𝑢, 𝑣) ≥ 

𝑢,𝑣 ∈𝑋

∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣) = 

𝑢,𝑣 ∈𝑋

𝑃𝐶𝐼𝐼(𝐺), 

And 

𝑃𝐶𝐼𝐹(𝐻) = ∑ 𝐹𝑁′(𝑢)𝐹𝑁′(𝑣)𝐶𝑂𝑁𝑁𝐹𝐻(𝑢, 𝑣) ≥ 

𝑢,𝑣 ∈𝑋

∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣) = 

𝑢,𝑣 ∈𝑋

𝑃𝐶𝐼𝐹(𝐺). 

 

Now, we show that  
𝑇𝐶𝐼(𝐻) ≤ 𝑇𝐶𝐼(𝐺). 

 

By definition totally connectivity index, and since 𝑃𝐶𝐼𝑇(𝐻) ≤ 𝑃𝐶𝐼𝑇(𝐺), 𝑃𝐶𝐼𝐼(𝐻) ≥ 𝑃𝐶𝐼𝐼(𝐺), 𝑃𝐶𝐼𝐹(𝐻) ≥

𝑃𝐶𝐼𝐹(𝐺), we have 
 

𝑇𝐶𝐼(𝐻) =
4 + 2𝑃𝐶𝐼𝑇(𝐻) − 2𝑃𝐶𝐼𝐹(𝐻) − 𝑃𝐶𝐼𝐼(𝐻)

6
 ≤  

4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐻) − 𝑃𝐶𝐼𝐼(𝐻)

6
 

≤  
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
= 𝑇𝐶𝐼(𝐺), 
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And, hence 𝑇𝐶𝐼(𝐻) ≤ 𝑇𝐶𝐼(𝐺). 
 
 

Example 2. Consider the neutrosophic graph 𝐺 = (𝑁, 𝑀) whit 
 

𝑁 = {(𝑎, 0.7, 0.3, 0.4), (𝑏, 0.5, 0.2, 0.3), (𝑐, 0.7, 0.3, 0.6), (𝑑, 0.4, 0.3, 0.5)}, 

And 
𝑀 = {(𝑎𝑏, 0.5, 0.2, 0.4), (𝑎𝑐, 0.7, 0.3, 0.6), (𝑏𝑐, 0.5, 0.2, 0.6), (𝑐𝑑, 0.4, 0.3, 0.6)}. 

 

Also, let 𝐻 = (𝑁′, 𝑀′)  be a neutrosophic subgraph of 𝐺, whit 
 

𝑁′ = {(𝑎, 0.6, 0.3, 0.5), (𝑏, 0.4, 0.2, 0.4), (𝑐, 0.6, 0.3, 0.7), (𝑑, 0.3, 0.3, 0.6)}, 
 

And 
𝑀′ = {(𝑎𝑏, 0.4, 0.2, 0.5), (𝑎𝑐, 0.5, 0.3, 0.7), (𝑏𝑐, 0.4, 0.2, 0.7), (𝑐𝑑, 0.3, 0.3, 0.7)}. 

   

 
Figure 2. The neutrosophic graph 𝐺 and the neutrosophic subgraph of 𝐺 

 

By direct calculations, we have 
 

𝑃𝐶𝐼𝑇(𝐺) = 0.997, 𝑃𝐶𝐼𝐼(𝐺) = 0.120, 𝑃𝐶𝐼𝐹(𝐺) = 0.690, 

And 
𝑃𝐶𝐼𝑇(𝐻) = 0.516, 𝑃𝐶𝐼𝐼(𝐻) = 0.120, 𝑃𝐶𝐼𝐹(𝐻) = 1.213. 

 

Moreover 
 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
=  

4 + 2(0.997) − 2(0.690) − 0.120

6
= 0.749. 

 

𝑇𝐶𝐼(𝐻) =
4 + 2𝑃𝐶𝐼𝑇(𝐻) − 2𝑃𝐶𝐼𝐹(𝐻) − 𝑃𝐶𝐼𝐼(𝐻)

6
=  

4 + 2(0.516) − 2(1.213) − 0.120

6
= 0.622.  

 

It is easy to see that 𝑇𝐶𝐼(𝐻) = 0.622 ≤ 𝑇𝐶𝐼(𝐺) = 0.749. 
 

Note 1. Note that if 𝐻 = (𝑁′, 𝑀′)  is a partial neutrosophic subgraph of 𝐺 = (𝑁, 𝑀) such that 𝑁′ = 𝑁\{𝑣} then 

 𝑃𝐶𝐼𝑇(𝐻) < 𝑃𝐶𝐼𝑇(𝐺), 𝑃𝐶𝐼𝐼(𝐻) < 𝑃𝐶𝐼𝐼|(𝐺),  𝑃𝐶𝐼𝐹(𝐻) < 𝑃𝐶𝐼𝐹(𝐺). 

 

Theorem 2. Let 𝐺1 = (𝑁1, 𝑀1) be isomorphic with 𝐺2 = (𝑁2, 𝑀2). Then all of the following equation are 

established. 
𝑃𝐶𝐼𝑇(𝐺1) = 𝑃𝐶𝐼𝑇(𝐺2), 
𝑃𝐶𝐼𝐼(𝐺1) = 𝑃𝐶𝐼𝐼(𝐺2), 
𝑃𝐶𝐼𝐹(𝐺1) = 𝑃𝐶𝐼𝐹(𝐺2), 
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Also, we have 𝑇𝐶𝐼(𝐺1) = 𝑇𝐶𝐼(𝐺2). 
 

Proof. Let 𝐺1 = (𝑁1, 𝑀1) be isomorphic with 𝐺2 = (𝑁2, 𝑀2), and 𝑓: 𝑉1  →  𝑉2  be the bijection from  𝑉1 to 𝑉2 

such that  

𝑇𝑁1
(𝑢) =  𝑇𝑁2

(𝑓(𝑢)), 𝐼𝑁1
(𝑢) =  𝐼𝑁2

(𝑓(𝑢)), 𝐹𝑁1
(𝑢) =  𝐹𝑁2

(𝑓(𝑢)), 

For all  𝑢 ∈ 𝑉1, and 
 

𝑇𝑀1
(𝑢𝑣) = 𝑇𝑀2

(𝑓(𝑢)𝑓(𝑣)),    𝐼𝑀1
(𝑢𝑣) = 𝐼𝑀2

(𝑓(𝑢)𝑓(𝑣)),    𝐹𝑀1
(𝑢𝑣) = 𝐹𝑀2

(𝑓(𝑢)𝑓(𝑣)), 

 

For all 𝑢𝑣 ∈ 𝐸1. Since 𝐺1 isomorphic with 𝐺2, the strength of any strongest path between 𝑢 and 𝑣 in 𝐺1 is 

equal to that between 𝑓(𝑢) and 𝑓(𝑣) in 𝐺2. Hence  
 

𝐶𝑂𝑁𝑁𝑇𝐺1
(𝑢, 𝑣) =  𝐶𝑂𝑁𝑁𝑇𝐺2

(𝑓(𝑢), 𝑓(𝑣)),  𝐶𝑂𝑁𝑁𝐼𝐺1
(𝑢, 𝑣) =  𝐶𝑂𝑁𝑁𝐼𝐺2

(𝑓(𝑢), 𝑓(𝑣)),  

𝐶𝑂𝑁𝑁𝐹𝐺1
(𝑢, 𝑣) =  𝐶𝑂𝑁𝑁𝐹𝐺2

(𝑓(𝑢), 𝑓(𝑣)),  

 

For 𝑢, 𝑣 ∈ 𝑁1
∗. Therefore  

 
𝑃𝐶𝐼𝑇(𝐺1) = 𝑃𝐶𝐼𝑇(𝐺2), 𝑃𝐶𝐼𝐼(𝐺1) = 𝑃𝐶𝐼𝐼(𝐺2), 𝑃𝐶𝐼𝐹(𝐺1) = 𝑃𝐶𝐼𝐹(𝐺2), 

And 

 

𝑇𝐶𝐼(𝐺1) =
4 + 2𝑃𝐶𝐼𝑇(𝐺1) − 2𝑃𝐶𝐼𝐹(𝐺1) − 𝑃𝐶𝐼𝐼(𝐺1)

6
=

4 + 2𝑃𝐶𝐼𝑇(𝐺2) − 2𝑃𝐶𝐼𝐹(𝐺2) − 𝑃𝐶𝐼𝐼(𝐺2)

6
= 𝑇𝐶𝐼(𝐺2). 

 
 

Theorem 3. Let 𝐺 = (𝑁, 𝑀) be a complete neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝑡1 ≤ 𝑡2 ≤

⋯  ≤ 𝑡𝑛, 𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛 where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗), 𝑖𝑗 = 𝐼𝑁(𝑣𝑗) and 𝑓𝑗 = 𝐹𝑁(𝑣𝑗) for 𝑗 =

1, 2, … , 𝑛. Then  

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 

Proof. Suppose 𝑣1 is a vertex with the least Truth-membership value 𝑡1. In a complete neutrosophic graph, 

𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) = 𝑇𝑀(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉. Therefore 𝑇𝑀(𝑣1𝑣𝑘) = 𝑡1 for 𝑘 = 2, 3, … , 𝑛 and hence 

𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣1, 𝑣𝑘) = 𝑡1
2𝑡𝑘 for 𝑘 = 2, 3, … , 𝑛. Then for 𝑣1, we have 

 

∑ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣1, 𝑣𝑘)

𝑛

𝑘=2

= ∑ 𝑡1
2𝑡𝑘

𝑛

𝑘=2

. 

 

For 𝑣2, 𝑇𝑁(𝑣2)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣2, 𝑣𝑘) = 𝑡2
2𝑡𝑘 for 𝑘 = 3, 4, … , 𝑛. 

 

∑ 𝑇𝑁(𝑣2)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣2, 𝑣𝑘)

𝑛

𝑘=3

= ∑ 𝑡2
2𝑡𝑘

𝑛

𝑘=3

, 

 

For 𝑣𝑛−2, 𝑇𝑁(𝑣𝑛−2)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣𝑛−2, 𝑣𝑘) = 𝑡𝑛−2
2 𝑡𝑘 for 𝑘 = 𝑛 − 1, 𝑛. 
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For 𝑣𝑛−1, 𝑇𝑁(𝑣𝑛−1)𝑇𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝑇𝐺(𝑣𝑛−1, 𝑣𝑘) = 𝑡𝑛−1
2 𝑡𝑗 for 𝑘 = 𝑛. 

 

Thus, by summing over 𝑣𝑗, 𝑗 = 1, 2, 3, … , 𝑛 − 1, we get  

 

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡1
2𝑡𝑘

𝑛

𝑘=2

+ ∑ 𝑡2
2𝑡𝑘

𝑛

𝑘=3

+ ⋯ + ∑ 𝑡𝑛−2
2 𝑡𝑘

𝑛

𝑘=𝑛−1

+ ∑ 𝑡𝑛−1
2 𝑡𝑘

𝑛

𝑘=𝑛

 = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

. 

 

Using the same argument, we can prove the other two cases. 
 
 

Theorem 4. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝐺∗ = (𝑉, 𝐸) is a 

complete bipartite graph and 𝑇𝑀(𝑢𝑣) = min{𝑇𝑁(𝑢), 𝑇𝑁(𝑣)}, 𝐼𝑀(𝑢𝑣) = min{𝐼𝑁(𝑢), 𝐼𝑁(𝑣)}, 𝐹𝑀(𝑢𝑣) =

max{𝐹𝑁(𝑢), 𝐹𝑁(𝑣)} For all 𝑢, 𝑣 ∈ 𝑉. Also, 𝑉1 = {𝑣1, 𝑣2, … , 𝑣𝑚}, and 𝑉2 = {𝑣𝑚+1, 𝑣𝑚+2, … , 𝑣𝑛} whit 𝑡1 ≤ 𝑡2 ≤

⋯  ≤ 𝑡𝑛, 𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛, and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛 where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗), 𝑖𝑗 = 𝐼𝑁(𝑣𝑗) and 𝑓𝑗 = 𝐹𝑁(𝑣𝑗) for 𝑗 =

1, 2, … , 𝑛. Then 

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑚

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

+ 𝑡𝑚 ∑ 𝑡𝑗

𝑛−1

𝑗=𝑚+1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑚

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

+  𝑖𝑚 ∑ 𝑖𝑗

𝑛−1

𝑗=𝑚+1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

 

𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑚

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

+  𝑓𝑚 ∑ 𝑓𝑗

𝑛−1

𝑗=𝑚+1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 

Proof. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐺∗ = 𝐾𝑚,𝑛, such that  𝑡1 ≤ 𝑡2 ≤

⋯  ≤ 𝑡𝑛, 𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛.  

Here we prove 𝑃𝐶𝐼𝐹(𝐺), states 𝑃𝐶𝐼𝑇(𝐺) and 𝑃𝐶𝐼𝐼(𝐺) are similarly proved. 

Using definition, we have 

𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝐹𝑁(𝑣𝑗)𝐹𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐹𝐺(𝑣𝑗 , 𝑣𝑘).

𝑣𝑗,𝑣𝑘∈𝑉

 

Too, for 𝑣1, 𝑣𝑘 ∈ 𝑉, we have 

 

𝐶𝑂𝑁𝑁𝐹𝐺(𝑣1, 𝑣𝑘) = min  {max{𝑓1} , max{𝑓1, 𝑓2} , … , max{𝑓1, 𝑓𝑚}} = min  {𝑓1, 𝑓1, … , 𝑓1} = 𝑓1. 

 

Accordingly for 𝑣1, 𝑣𝑘 ∈ 𝑉 

∑ 𝐹𝑁(𝑣1)𝐹𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐹𝐺(𝑣1, 𝑣𝑘) =  𝑓1𝑓1 ∑ 𝑓𝑘

𝑛

𝑘=2𝑣𝑘≠𝑣1
𝑣𝑘∈𝑉

. 

 

Similarly, for 𝑣𝑗 , 𝑣𝑘 ∈ 𝑉 𝑗 = 2, 3, … , 𝑚 

∑ 𝐹𝑁(𝑣𝑗)𝐹𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐹𝐺(𝑣𝑗 , 𝑣𝑘) =  𝑓𝑗𝑓𝑗 ∑ 𝑓𝑘

𝑛

𝑘=𝑗+1𝑘=𝑗+1

. 

 

On the other hand, we have for 𝑚 < 𝑗 < 𝑛 

∑ 𝐹𝑁(𝑣𝑗)𝐹𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐹𝐺(𝑣𝑗 , 𝑣𝑘) =  𝑓𝑚𝑓𝑗 ∑ 𝑓𝑘

𝑛

𝑘=𝑗+1𝑘=𝑗+1

, 
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Then 

 

𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝐹𝑁(𝑣𝑗)𝐹𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐹𝐺(𝑣𝑗 , 𝑣𝑘)

𝑣𝑗,𝑣𝑘∈𝑉

= 𝑓1𝑓1 ∑ 𝑓𝑘

𝑛

𝑘=2

+ 𝑓2𝑓2 ∑ 𝑓𝑘

𝑛

𝑘=3

+ ⋯ +  𝑓𝑚𝑓𝑚 ∑ 𝑓𝑘

𝑛

𝑘=𝑚+1

+ 𝑓𝑚𝑓𝑚+1 ∑ 𝑓𝑘

𝑛

𝑘=𝑚+2

+ ⋯ + 𝑓𝑚𝑓𝑛−1𝑓𝑛

=  ∑ 𝑓𝑗
2

𝑚

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

+  𝑓𝑚 ∑ 𝑓𝑗

𝑛−1

𝑗=𝑚+1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 
 
 

Note 2. Clearly, in the above theorem it is enough to have 
 

∀ 𝑣 ∈ 𝑉1 ∀𝑢 ∈ 𝑉2,  𝑇𝑁(𝑣) ≤ 𝑇𝑁(𝑢), 𝐼𝑁(𝑣) ≥ 𝐼𝑁(𝑢), 𝐹𝑁(𝑣) ≥ 𝐹𝑁(𝑢). 
 

Then the case will be established. In the following example you can see the correctness of this claim. 
 

Example 3. Consider the neutrosophic graph 𝐺 = (𝑁, 𝑀) whit 
 

𝑁 = {(𝑎, 0.2, 0.6, 0.7), (𝑏, 0.4, 0.6, 0.5), (𝑐, 0.7, 0.5, 0.4), (𝑑, 0.5, 0.3, 0.5), (𝑒, 0.6, 0.4, 0.5)}, 

And 
𝑀 = {(𝑎𝑐, 0.2, 0.6, 0.7), (𝑎𝑑, 0.2, 0.6, 0.7), (𝑎𝑒, 0.2, 0.6, 0.7), 

 (𝑏𝑐, 0.4, 0.6, 0.5), (𝑏𝑑, 0.4, 0.6, 0.5), (𝑏𝑒, 0.4, 0.6, 0.5)}. 

 

 
Figure 3. A complete bipartite neutrosophic graph whit 𝐺∗ = 𝐾2,3 

 

By direct calculation, we have 

 
𝐶𝑂𝑁𝑁𝑇𝐺

(𝑎, 𝑏) = 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑎, 𝑐) = 𝐶𝑂𝑁𝑁𝑇𝐺

(𝑎, 𝑑) = 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑎, 𝑒) = 0.2 = 𝑇𝑁(𝑎), 

𝐶𝑂𝑁𝑁𝑇𝐺
(𝑏, 𝑐) = 𝐶𝑂𝑁𝑁𝑇𝐺

(𝑏, 𝑑) = 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑏, 𝑒) = 0.4 =  𝑇𝑁(𝑏), 

𝐶𝑂𝑁𝑁𝑇𝐺
(𝑐, 𝑑) = 𝐶𝑂𝑁𝑁𝑇𝐺

(𝑐, 𝑒) = 0.4 = 𝑇𝑁(𝑏), 

𝐶𝑂𝑁𝑁𝑇𝐺
(𝑑, 𝑒) = 0.4 = 𝑇𝑁(𝑏), 
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𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.2)(0.4)(0.2) + (0.2)(0.7)(0.2) + (0.2)(0.5)(0.2) + (0.2)(0.6)(0.2) + (0.4)(0.4)(0.7)
+ (0.4)(0.4)(0.5) + (0.4)(0.4)(0.6) + (0.7)(0.5)(0.4) + (0.7)(0.6)(0.4) + (0.5)(0.4)(0.6)
= 0.804, 

 

Using Theorem 4, 

 

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑚

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

+ 𝑡𝑚 ∑ 𝑡𝑗

𝑛−1

𝑗=𝑚+1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

= ∑ 𝑡𝑗
2

2

𝑗=1

∑ 𝑡𝑘

5

𝑘=𝑗+1

+ 𝑡𝑚 ∑ 𝑡𝑗

4

3

∑ 𝑡𝑘

5

𝑘=𝑗+1

= (0.2)(0.2)(0.4 + 0.7 + 0.5 + 0.6) + (0.4)(0.4)(0.7 + 0.5 + 0.6) + (0.4)(0.7)(0.5 + 0.6)
+ (0.4)(0.5)(0.6) = 0.804. 

 

As observed, the value of truth- partial connectivity index 𝑃𝐶𝐼𝑇(𝐺) is obtained from both methods equally. 

 

Theorem 5. Let 𝐺 = (𝑁, 𝑀) be a wheel neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝐺∗ is a wheel 

graph and for any 𝑢𝑣 ∈ 𝑀∗, 

  
𝑇𝑀(𝑢𝑣) = min{𝑇𝑁(𝑢), 𝑇𝑁(𝑣)},      𝐼𝑀(𝑢𝑣) = min{𝐼𝑁(𝑢), 𝐼𝑁(𝑣)},     𝐹𝑀(𝑢𝑣) = max{𝐹𝑁(𝑢), 𝐹𝑁(𝑣)}. 

 

If 𝑡1 ≤ 𝑡2 ≤ ⋯  ≤ 𝑡𝑛, 𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛 where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗), 𝑖𝑗 = 𝐼𝑁(𝑣𝑗) and 𝑓𝑗 = 𝐹𝑁(𝑣𝑗) 

for 𝑗 = 1, 2, … , 𝑛 and 𝑣1 is the center vertex. Then 

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 

Proof. Let 𝐺 = (𝑁, 𝑀) be a wheel neutrosophic graph whit the conditions stated in the theorem. Here we 

prove 𝑃𝐶𝐼𝐼(𝐺), states 𝑃𝐶𝐼𝑇(𝐺) and 𝑃𝐶𝐼𝐹(𝐺) are similarly proved. Then 

 

Suppose 𝑣1 is the center vertex. Using definition,  

 

𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝐼𝑁(𝑣𝑗)𝐼𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐼𝐺(𝑣𝑗 , 𝑣𝑘)

𝑣𝑗,𝑣𝑘∈𝑉

. 

Now, for 𝑣1, 𝑣𝑘 ∈ 𝑉 we have 

 

𝐶𝑂𝑁𝑁𝐼𝐺(𝑣1, 𝑣2) = min{max{𝑖1} , max{𝑖1, 𝑖2} , max{𝑖1, 𝑖2, 𝑖3} , … , max{𝑖, 𝑖𝑚}} = min{𝑖1, 𝑖2, … ,  𝑖𝑛} = 𝑖1, 
 

Hence 

∑ 𝐼𝑁(𝑣1)𝐼𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐼𝐺(𝑣1, 𝑣𝑘)

𝑛

𝑘=2

= 𝑖1𝑖1𝑖2 + 𝑖1𝑖1𝑖3 + ⋯ + 𝑖1𝑖1𝑖𝑛−1 + 𝑖1𝑖1𝑖𝑛 = ∑ 𝑖1
2𝑖𝑘

𝑛

𝑘=2

. 

Similarly for 𝑣𝑗 , 𝑣𝑘 ∈ 𝑉 𝑗 = 2, 3, … , 𝑛 − 1 



Neutrosophic Sets and Systems, Vol. 36, 2020     90 

 

Ghods, M. & Rostami, Z. Introduction Totally and Partial Connectivity Indices in Neutrosophic graphs with Application in 

Behavioral Sciences 

𝐶𝑂𝑁𝑁𝐼𝐺(𝑣𝑗 , 𝑣𝑘) =  ∑ 𝐼𝑁(𝑣𝑗)𝐼𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐼𝐺(𝑣𝑗 , 𝑣𝑘)

𝑛

𝑘=𝑗+1

= ∑ 𝑖𝑗
2𝑖𝑘

𝑛

𝑘=𝑗+1

, 

This shows that 

𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝐼𝑁(𝑣𝑗)𝐼𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐼𝐺(𝑣𝑗 , 𝑣𝑘)

𝑣𝑗,𝑣𝑘∈𝑉

=  ∑ 𝑖1
2𝑖𝑘

𝑛

𝑘=2

+ ∑ 𝑖2
2𝑖𝑘

𝑛

𝑘=3

+ ⋯ +  ∑ 𝑖𝑗
2𝑖𝑘

𝑛

𝑘=𝑗+1

+ ⋯ + 𝑖𝑛−1𝑖𝑛−1𝑖𝑛

= ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

. 

 
 

Theorem 6. Let 𝐺 = (𝑁, 𝑀) be a complete neutrosophic graph of 𝐺∗ = (𝑉, 𝐸), and 𝐵(𝑚,𝑚) is a m-barbell graph 

of 𝐺. if 𝑡1 ≤ 𝑡2 ≤ ⋯  ≤ 𝑡𝑛, 𝑖1 ≥ 𝑖2 ≥ ⋯  ≥ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛 where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗), 𝑖𝑗 = 𝐼𝑁(𝑣𝑗) and 𝑓𝑗 =

𝐹𝑁(𝑣𝑗) for 𝑗 = 1, 2, … , 𝑛. And 𝑢𝑣 is a Ι − 𝑠𝑡𝑟𝑜𝑛𝑔 𝑒𝑑𝑔𝑒 whit 𝑀(𝑢𝑣) = (𝑇𝑀(𝑢𝑣), 𝐼𝑀(𝑢𝑣), 𝐹𝑀(𝑢𝑣)), where 

𝑇𝑀(𝑢𝑣) ≤ 𝑡1, 𝐼𝑀(𝑢𝑣) ≤ 𝑖1, 𝐹𝑀(𝑢𝑣) ≥ 𝑓1,   and 𝑢𝑣 connecting two copies of complete neutrosophic graphs 𝐺. 

Then 

𝑃𝐶𝐼𝑇(𝐵(𝑚,𝑚)) = 2 ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

+  𝑇𝑀(𝑢𝑣) ∑ 𝑡𝑗

𝑛

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗

, 

𝑃𝐶𝐼𝐼(𝐵(𝑚,𝑚)) = 2 ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

+ 𝐼𝑀(𝑢𝑣) ∑ 𝑖𝑗

𝑛

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗

, 

𝑃𝐶𝐼𝐹(𝐵(𝑚,𝑚)) = 2 ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

+  𝐹𝑀(𝑢𝑣) ∑ 𝑓𝑗

𝑛

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗

. 

 

Proof. Let 𝐺 = (𝑁, 𝑀) be a wheel neutrosophic graph whit the conditions stated in the theorem. By 

definition 5, here we have two copies of the complete graph 𝐾𝑚. Also using Theorem 3, for a complete 

neutrosophic graph  
 

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 

𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 

Now it suffices to obtain the connectivity between two vertices from two copies of 𝐾𝑚. Suppose vertex 𝑣𝑗 

is from one of the two copies of 𝐾𝑚 and vertex 𝑣𝑘 is from another copy, in which case we have  
 

𝐶𝑂𝑁𝑁𝑇𝐺(𝑣𝑗 , 𝑣𝑘) = max{𝑚𝑖𝑛{𝑇𝑀(𝑢𝑣) ∧ min {𝑡𝑘  | 𝑡𝑘 ∈ 𝑃(𝑣𝑗_𝑣𝑘)}} = 𝑇𝑀(𝑢𝑣), 

Then 



Neutrosophic Sets and Systems, Vol. 36, 2020     91 

 

Ghods, M. & Rostami, Z. Introduction Totally and Partial Connectivity Indices in Neutrosophic graphs with Application in 

Behavioral Sciences 

𝑃𝐶𝐼𝑇(𝐵(𝑚,𝑚)) = ∑ 𝐼𝑁(𝑣𝑗)𝐼𝑁(𝑣𝑘)𝐶𝑂𝑁𝑁𝐼𝐺(𝑣𝑗 , 𝑣𝑘)

𝑣𝑗,𝑣𝑘∈𝑉

= ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

+ ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

+  𝑣1𝑣1𝑇𝑀(𝑢𝑣) + 𝑣1𝑣2𝑇𝑀(𝑢𝑣) + ⋯ + 𝑣𝑛𝑣𝑛𝑇𝑀(𝑢𝑣)

= 2 ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

+ 𝑇𝑀(𝑢𝑣) ∑ 𝑡𝑗

𝑛

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗

. 

The proof will be the same for the other two cases. 
 
 

Example 4. Consider the neutrosophic graph 𝐺 =  𝐾4 = (𝑁, 𝑀) whit 
 

𝑁 = {(𝑎, 0.2, 0.6, 0.8), (𝑏, 0.3, 0.5, 0.7), (𝑐, 0.3, 0.4, 0.7), (𝑑, 0.4, 0.4, 0.5)}, 

And 
𝑀 = {(𝑎𝑏, 0.2, 0.6, 0.8), (𝑎𝑐, 0.2, 0.6, 0.8), (𝑎𝑑, 0.2, 0.6, 0.8), 

 (𝑏𝑐, 0.3, 0.5, 0.7), (𝑏𝑑, 0.3, 0.4, 0.7), (𝑐𝑑, 0.3, 0.4, 0.7)}. 
 

Now suppose that the edge that connects the two complete graphs does not hold true. As shown in figure 

4, for example, if we want to go from vertex b in the right graph to vertex a in the left graph, there are paths 

with different connectivity.  

 

 
Figure 4. A m-barbell neutrosophic graph whit 𝐺∗ = 𝐾4 

 

3.2.  Bounds for connectivity index 

In this section, we discuss bunds for partial connectivity index (𝑃𝐶𝐼) and totally connectivity index 

(𝑇𝐶𝐼). We show that, among all neutrosophic graphs whit a same support, the complete neutrosophic graph 

will have maximum totally connectivity index. 
 

Theorem 7. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph whit |𝑁| = 𝑛, and 𝐺′ = (𝑁′, 𝑀′) is the complete 

neutrosophic graph spanned by the vertex set of G. Then, 
 

0 ≤ 𝑃𝐶𝐼𝑇(𝐺) ≤ 𝑃𝐶𝐼𝑇(𝐺′), 
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0 ≤ 𝑃𝐶𝐼𝐼(𝐺) ≤ 𝑃𝐶𝐼𝐼(𝐺′), 
0 ≤ 𝑃𝐶𝐼𝐹(𝐺) ≤ 𝑃𝐶𝐼𝐹(𝐺′). 

 

Also if 𝐼𝑀(𝑢𝑣) = 𝐼𝑀′(𝑢𝑣), and 𝐹𝑀(𝑢𝑣) = 𝐹𝑀′(𝑢𝑣), for all 𝑢𝑣 ∈ 𝐸 then 0 ≤ 𝑇𝐶𝐼𝐹(𝐺) ≤ 𝑇𝐶𝐼𝐹(𝐺′). 
 

𝒑𝒓𝒐𝒐𝒇. Consider the neutrosophic graph 𝐺 = (𝑁, 𝑀) whit |𝑁| = 𝑛. If |𝐸| = 0 clearly, 𝑃𝐶𝐼𝑇(𝐺) = 𝑃𝐶𝐼𝐼(𝐺) =

𝑃𝐶𝐼𝐹(𝐺) = 𝑇𝐶𝐼(𝐺) = 0. Let |𝐸| > 0 and 𝐺′ = (𝑁′, 𝑀′) is the complete neutrosophic graph whit |𝑁′| = 𝑛. 

Suppose (𝑇𝑁(𝑢), 𝐼𝑁(𝑢), 𝐹𝑁(𝑢)) = (𝑇𝑁′(𝑢), 𝐼𝑁′(𝑢), 𝐹𝑁′(𝑢)) for all 𝑢 ∈ 𝑋. Since 
 

𝑇𝑀(𝑢𝑣) ≤ 𝑇𝑀′ ;    𝐼𝑀(𝑢𝑣) ≤ 𝐼𝑀′(𝑢𝑣);  𝐹𝑀(𝑢𝑣) ≤ 𝐹𝑀′(𝑢𝑣);  ∀𝑢𝑣 ∈ 𝐸. 
 

Therefore, we have 𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) ≤ 𝐶𝑂𝑁𝑁𝑇𝐺′(𝑢, 𝑣), 𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣) ≤ 𝐶𝑂𝑁𝑁𝐼𝐺′(𝑢, 𝑣) and 𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣) ≤

𝐶𝑂𝑁𝑁𝐹𝐺′(𝑢, 𝑣). Then 
 

0 ≤ 𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣)

𝑢,𝑣∈𝑋

≤ ∑ 𝑇𝑁′(𝑢)𝑇𝑁′(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺′(𝑢, 𝑣)

𝑢,𝑣∈𝑋

=  𝑃𝐶𝐼𝑇(𝐺′). 

 

Using a similar proof we can show that 
 

0 ≤ 𝑃𝐶𝐼𝐼(𝐺) ≤ 𝑃𝐶𝐼𝐼(𝐺′), 𝑎𝑛𝑑             0 ≤ 𝑃𝐶𝐼𝐹(𝐺) ≤ 𝑃𝐶𝐼𝐹(𝐺′). 
 

Also, according to definition  𝑇𝐶𝐼(𝐺), if  𝐼𝑀(𝑢𝑣) = 𝐼𝑀′(𝑢𝑣), and 𝐹𝑀(𝑢𝑣) = 𝐹𝑀′(𝑢𝑣), for all 𝑢𝑣 ∈ 𝐸, then  
 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
 ≤

4 + 2𝑃𝐶𝐼𝑇(𝐺′) − 2𝑃𝐶𝐼𝐹(𝐺′) − 𝑃𝐶𝐼𝐼(𝐺′)

6
= 𝑇𝐶𝐼(𝐺′). 

 

Note 3. Note that the above theorem for case 𝑇𝐶𝐼(𝐺) ≤ 𝑇𝐶𝐼(𝐺′) may not always be true. 
 

4. Applications  

Neutrosophic graphs are one of the most practical branches of graph theory. Different applications of 

it have been studied to date [1-3, 12-20]. Here we will mention another application. 

Behavioral sciences, which is one of the branches of humanities, is one of the most extensive sciences 

in our time. Every day, many theorists in this field create new theories and cause them to expand more and 

more. So every day they are faced with a lot of new data and information. 

Mathematics has always been one of the best tools for modeling and categorizing this data and 

information. Among these, graphic models are among the most appropriate models that come with the 

help of behavioral sciences and with proper modeling, provide the conditions for a more accurate analysis 

of these complex problems. What is very important in behavioral sciences is the existence of a relationship, 

the relationship between individuals, groups, communities, organizations and institutions, and, so on. 

Studying and discovering these relationships, categorizing them, and then examining and studying the 

extent and impact of these relationships on each other is a complex task. Neutrosophic graph models can 

help with these problems and help answer some of the questions. Questions such as: Which relationship is 

most effective? Which relationship should end? Which person is more influential in a relationship? And 

many other questions 

Here we are dealing with the relationship between several families. Information related to this 

problem is data from a real study obtained from a behavioral science study clinic. Of course, given the 

limitations we had, we have provided a small sample of that data in this article.  

In this problem, we studied 5 families that are related. First, each family was studied separately and 

the behavior of each family member was studied by experts, and then we obtained an average of the 

behaviors and traits studied in family members. These features were classified into three categories. Good 
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qualities include the ability to communicate, cooperate, be honest, etc; Bad traits include jealousy, 

misconceptions, lack of anger control, personal aggression, etc; Neutral behaviors include behaviors that 

do not involve any behavioral actions.   The experts then assigned a numerical value to each of these 

behaviors, which we named 𝑇, 𝐹, and 𝐼, respectively. Experts then studied the relationships between 

families and the extent of each family's impact on another family and the type of impact of each family. The 

effect of each family on other families was evaluated using behavioral science criteria. The experts coded 

these relationships into three categories: good, neutral, and bad, and obtained a numerical quantity for each 

category based on the coding results. 

 Here we present a neutrosophic graph model related to 5 families from 137 families surveyed. 

 

Figure 5. A neutrosophic graph model corresponding to 5 families 

 

By direct calculations 

 

Table 2. The strength of connectedness between each pair of vertices 𝑢 and 𝑣. 

 𝑪𝑶𝑵𝑵𝑻𝑮
(𝒖, 𝒗) 𝑪𝑶𝑵𝑵𝑰𝑮

(𝒖, 𝒗) 𝑪𝑶𝑵𝑵𝑭𝑮
(𝒖, 𝒗) 

𝑎 , 𝑏 0.45 0.35 0.2 

𝑎 , 𝑐 0.35 0.4 0.2 

𝑎 , 𝑑 0.45 0.3 0.2 

𝑎 , 𝑒 0.45 0.35 0.2 

𝑏 , 𝑐 0.35 0.4 0.2 

𝑏 , 𝑑 0.55 0.35 0.1 

𝑏 , 𝑒 0.5 0.35 0.1 

𝑐 , 𝑑 0.35 0.4 0.2 

𝑐 , 𝑒 0.35 0.4 0.2 

𝑑 , 𝑒 0.5 0.35 0.1 
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Then 

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣) = 1.3845

𝑢,𝑣 ∈𝑁

, 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣) = 0.519

𝑢,𝑣 ∈𝑁

, 

𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) = 0.118

𝑢,𝑣 ∈𝑁

. 

Also, we have 
 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
=  

4 + 2(1.3845) − 2(0.118) − 0.519

6
= 1.002. 

 

The connectivity index is used as a numerical index in evaluating the interactions of these five families. 

Note that the analysis of this problem will be done by behavioral science experts and the results will be 

presented in detail in another article. 

 

5. Conclusion 

Connectivity is one of the major parameters associated with a neutrosophic network and a 

neutrosophic graph. In this paper, two concepts of partial connectivity index and totally connectivity index 

were studied. In a neutrosophic graph, according to the parameters of the problem, we can obtain the 

partial connectivity index and totally connectivity for it. The higher the Truth-partial connectivity index 

and the lower the Falsity-partial correlation index, the more complete our information is and the more 

reliable the problem will be. 
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Abstract: Topology is one of the classical subjects in Mathematics. A lot of researchers have 

published their ideas.As a generalization of topological concepts many new kind of closed and open 

sets are published continuously. Salama presented Neutrosophic topological spaces by using 

Smarandache ‘s Neutrosophic sets. Many Researchers introduced so many closed sets in 

Neutrosophic topological spaces. Purpose of this research paper is we introduce Neutrosophic 

g*-Closed sets and Neutrosophicg*-open sets in Neutrosophic topological spaces. Also we study 

about study about mappings of Neutrosophic g*-Closed sets 

. 

Keywords: Neutrosophic g-Closed sets Neutrosophic g*-Closed sets, Neutrosophicg*-open sets, 

Neutrosophic g*-continuous. 

 

 

1. Introduction 

Smarandache [10,11] characterized the Neutrosophic set on three segment Neutrosophic sets(T 

Truth, I-Indeterminacy, F-Falsehood). Neutrosophic topological spaces(NS-T-S) presented by 

Salama [19,20]et al. Neutrosophic have wide scope of constant applications for the fields of Electrical 

& Electronic, Artificial Intelligence, Mechanics, Computer Science, Information Systems, Applied 

Mathematics , basic leadership. Prescription and  Management Science and so on. 

  Neutrosophic semi closed, α- closed, pre closed and regular closed sets are introduced by I. 

Arokiarani[6] et al.,R.Dhavaseelan[8] et al. introduced Neutrosophic g closed sets and gα closed sets 

.Point of this paper is R .Dhavaseelan[9] and S.Jafari, are introduced Generalized Neutrosophic 

Closed sets . D.Jayanthi [13]presented αG Closed Sets in Neutrosophic Topological Spaces, 

V.K.Shanthi [22]  developed Neutrosophic gs and sg closed set. C.Mahesawri[14,15] et al 

introduced  Neutrosophic gb  closed sets. 

 Aim of this present paper is, we introduce and study the concepts of Neutrosophic g*-Closed sets 

and Neutrosophic g*-open sets in Neutrosophic topological spaces. Also we study about mappings 

of Neutrosophicg*-Closed sets 

2. Preliminaries  

mailto:ats.wesly@gmail.com
mailto:chandrumat@gmail.com
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In this section, we recall required and necessary definition and results of Neutrosophic sets  

Definition 2.1 [16,17]  Let NuX
∗  be a non-empty fixed set. A Neutrosophic set W1

∗  is  a object 

having the form  W1
∗ = {< 𝑤, μ

W1
∗ (w), σW1

∗ (w), γ
W1

∗ (w) >: 𝑤 ∈ NuX
∗ }, 

μ
W1

∗ (w)- membership function 

σW1
∗ (w)- Indeterminacy function 

γ
W1

∗ (w)- Non-Membership function 

Definition 2.2 [16,17]. Neutrosophic set  W1
∗  = {<  𝑤, μ

W1
∗ (w), σW1

∗ (w), γ
W1

∗ (w) >: 𝑤 ∈ NuX
∗ },  on 

NuX
∗  and ∀w ∈ NuX

∗  then complement of W1
∗ is 

 W1
∗C  = {<  𝑤, γ

W1
∗ ((w)), 1 − σW1

∗ (w), μ
W1

∗ (w) >: 𝑤 ∈ NuX
∗ } 

Definition 2.3 [16,17]. Let W1
∗ and W2

∗ are two Neutrosophic sets, ∀w ∈ NuX
∗  

W1
∗ = {<  w, μ

W1
∗ (w), σW1

∗ (w), γ
W1

∗ (w) >: w ∈ NuX
∗ } 

W2
∗ = {<  w, μ

W2
∗ (w), σW2

∗ (w), γ
W2

∗ (w) >: w ∈ NuX
∗ } 

Then W1
∗ ⊆  W2

∗ ⇔ μ
W1

∗ (w) ≤ μ
W2

∗ (w), σW1
∗ (w) ≤ σW2

∗ (w)  & γ
W1

∗ (w) ≥ γ
W2

∗ (w)} 

Definition 2.4[16,17]. Let NuX
∗  be a non-empty set, and Let W1

∗and W2
∗ be two Neutrosophic sets 

are 

W1
∗ = {<  𝑤, μ

W1
∗ (w), σW1

∗ (w), γ
W1

∗ (w) >: 𝑤 ∈ NuX
∗ } , W2

∗ = {<  𝑤, μ
W2

∗ (w), σW2
∗ (w), γ

W2
∗ (w) >: 𝑤 ∈ NuX

∗ }  

Then   W1
∗ ∩ W2

∗ = {<  𝑤, μ
W1

∗ (w) ∩ μ
W2

∗ (w), σW1
∗ (w) ∩ σW2

∗ (w), γ
W1

∗ (w) ∪ γ
W2

∗ (w) >: 𝑤 ∈ NuX
∗ } 

W1
∗ ∪ W2

∗ = {<  𝑤, μ
W1

∗ (w) ∪ μ
W2

∗ (w), σW1
∗ (w) ∪ σW2

∗ (w), γ
W1

∗ (w) ∩ γ
W2

∗ (w) >: 𝑤 ∈ NuX
∗ } 

Definition 2.5 [19,20]. Let  NuX
∗  be non-empty set and Nuτ  be the collection of Neutrosophic 

subsets of NuX
∗ satisfying the accompanying properties: 

1.0Nu, 1Nu ∈ Nuτ   

2. NuT1
∩ NuT2

∈  Nuτ for any NuT1
, NuT2

∈ Nuτ  

3. ∪ NuTi
∈ Nuτ for every {NuTi

: i ∈ j} ⊆  Nuτ 

Then the space  (NuX
∗ , Nuτ), is called a Neutrosophic topological space(NS-T-S) The component of   

Nuτ are called Nu-OS (Neutrosophic open set)and its complement is Nu-CS(Neutrosophic closed 

set) 

Example 2.6. Let NuX
∗  ={w} and ∀w ∈ NuX

∗  ,W1
∗ = 〈w,

6

10
,

6

10
,

5

10
〉,  W2

∗ = 〈w,
5

10
,

7

10
,

9

10
〉 

W3
∗ = 〈w,

6

10
,

7

10
,

5

10
〉  ,W4

∗ = 〈w,
5

10
,

6

10
,

9

10
〉 Then the collection Nuτ = {0Nu, W1

∗, W2
∗, W3

∗, W4
∗1Nu} is called 

a NS-T-S on NuX
∗ . 

Definition 2.7.Let (NuX
∗ , Nuτ), be a NS-T-S  

and W1
∗ = {<  𝑤, μ

W1
∗ (w), σW1

∗ (w), γ
W1

∗ (w) >: 𝑤 ∈ NuX
∗ } bea Neutrosophic set in NuX

∗ . Then W1
∗  is 

said to be 
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[1] Neutrosophic α-closed set [6] (Nu −  αCS in short) Nu-cl(Nu-in(Nu-cl(W1
∗)))⊆ W1

∗, 

[2] Neutrosophic pre-closed set [22] (Nu-PCS in short) Nu -cl(Nu -in(W1
∗))⊆ W1

∗, 

[3] Neutrosophic regular closed set [6] (Nu -RCS in short) Nu-cl(Nu-in(W1
∗))=W1

∗, 

[4] Neutrosophic semi closed set [7] (Nu-SCS in short) Nu -in(Nu-cl(W1
∗))⊆ W1

∗, 

[5] Neutrosophic generalized closed set [4] (Nu -GCS in short) Nu-cl(W1
∗ ⊆  ℋ whenever W1

∗ ⊆

 ℋ and ℋ is a Nu -OS, in NuX
∗  

[6] Neutrosophic α  generalized closed set [13] ( Nu -  (αG) CS in short) Nuα cl( W1
∗ ) ⊆  ℋ 

whenever W1
∗ ⊆  ℋ And  ℋ is a  Nu-OS, in NuX

∗  

[7] Neutrosophic generalized semi closed set [21](  Nu -GSCS in short) Nu -Scl( W1
∗ ) ⊆  ℋ 

whenever   W1
∗ ⊆  ℋ and ℋ is a Nu-OS in NuX

∗  

[8] Neutrosophic semi generalized closed set[21]( Nu-SGCS in short) if Nu scl(W1
∗) ⊆ ℋ 

whenever W1
∗ ⊆ ℋ and ℋ is a  Nu-SOS in NuX

∗   ,  

[9] Neutrosophic generalized alpha closed set[9]. (Nu-GαCS in short) if Nu-αcl(W1
∗ ) ⊆ ℋ 

whenever W1
∗⊆ ℋ and ℋ is a  Nu-αOS in NuX

∗    

[10] Neutrosophic generalized b closed set[14](Nu-GbCS in short) if Nu-bcl(W1
∗ ) ⊆ ℋ whenever 

W1
∗ ⊆ ℋ and ℋ is a Nu-OS in NuX

∗    

Definition 2.8.[13] An (NS)S W1
∗ in an (NS)TS (NuX

∗ , Nuτ), is said to be aNeutrosophic weakly 

generalized closed set ((Nu-WG)CS) Nu-cl(Nu-in(W1
∗))⊆  𝒦  whenever W1

∗ ⊆  𝒦 , 𝒦  is (Nu)OS in 

NuX
∗ .  

Definition 2.9. (NuX
∗ , Nuτ), be a NS-T-S and W1

∗ = {< 𝑤, μ
W1

∗ (w), σW1
∗ (w), γ

W1
∗ (w) >: 𝑤 ∈ NuX

∗ } NuX
∗ . 

Then Neutrosophic closure of W1
∗ is Nu-Cl(W1

∗)= ∩ { ℋ: ℋ is a Nu-CS in NuX
∗  and W1

∗ ⊆  ℋ } 

Neutrosophic interior of W1
∗ is Nu-Int(W1

∗)= ∪{M:M is a Nu-OS in NuX
∗  and M⊆  W1

∗}. 

Definition 2.10.[2] Let (NuX
∗ , Nuτ), be a NS-T-S and 

 W1
∗ = {< 𝑤, μ

W1
∗ (w), σW1

∗ (w), γ
W1

∗ (w) >: 𝑤 ∈ NuX
∗ }  

Nu-Sint(W1
∗)= ∪{ ℋ/ ℋ is a Nu-SOS in NuX

∗  and ℋ ⊆  W1
∗},  

Nu -Scl(W1
∗)= ∩{ 𝒦 / 𝒦 is a Nu -SCS in NuX

∗  and W1
∗ ⊆  𝒦 }. 

Nu-αint(W1
∗)= ∪{ ℋ / ℋ is a Nu-αOS in NuX

∗  and ℋ ⊆  W1
∗},  

Nu-αcl(W1
∗)= ∩{ 𝒦 / 𝒦 is a Nu-αCS in NuX

∗  and W1
∗ ⊆  𝒦 }. 

3. NEUTROSOPHIC G* CLOSED SETS 

In this section we introduce Neutrosophic G*-Closed sets and studied some of its basic properties. 

Definition 3.1: An NS W1
∗ in (NuX

∗ , 𝑁𝑢𝜏) is said to be a NeutrosophicG*-Closed set (Nu-G*CS in short) if 

Nu-cl(W1
∗) ⊆  𝒦 whenever W1

∗ ⊆  𝒦 and 𝒦 is Nu-GOS in (NuX
∗ , 𝑁𝑢𝜏) . 

The family of all Nu-G*CS’s of A NTS (NuX
∗ , 𝑁𝑢𝜏) is denoted by Nu-G*C(NuX

∗ ). 

Example 3.2: Let NuX
∗  = { 𝑤1 , 𝑤2 } and let 𝑁𝑢𝜏   ={0Nu, 𝒦 , 1Nu}is NT on NuX

∗ ,where 𝒦 =

〈w, (
3

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉 .Then the NS W1

∗ = 〈w, (
7

10
,

5

10
,

1

10
) , (

6

10
,

5

10
,

0

10
)〉  is Nu-G*CS in (NuX

∗ , 𝑁𝑢𝜏 ) 

Theorem 3.3: Every Nu-CS is Nu-G*CS . 

Proof: Let W1
∗ be aNu-CS in (NuX

∗ , Nuτ) . Then Nu-cl(W1
∗) = W1

∗. Let W1
∗⊆ 𝒦 and 𝒦 is Nu-GOS in 

(NuX
∗ , Nuτ) . Therefore Nu-cl(W1

∗) = W1
∗⊆ 𝒦. Thus W1

∗ is Nu-G*CS inNuX
∗ . 

Example 3.4: Let NuX
∗ ={w1,w2} and let Nuτ={0Nu, 𝒦,1Nu}is NT on NuX

∗ , where  

𝒦 = 〈w, (
4

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)〉Then the NS W1

∗ =〈w, (
6

10
,

5

10
,

1

10
) , (

7

10
,

5

10
,

1

10
)〉 is Nu-G*CS but not an 
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Nu-CS in NuX
∗ . 

Theorem 3.5: Every Nu-G*CS is Nu-GCS. 

Proof: Let W1
∗ be aNu-G*CS in (NuX

∗ , Nuτ) . Let W1
∗⊆ 𝒦 and 𝒦 is Nu-OS in (NuX

∗ , Nuτ) . Since every 

Nu-OS is Nu-GOS and since W1
∗ is Nu-G*CS in NuX

∗ . Therefore Nu-cl(W1
∗)⊆ 𝒦 whenever W1

∗⊆ 𝒦 , 

𝒦 is Nu-OS in NuX
∗ . Thus W1

∗ is Nu-GCS in NuX
∗ . 

Example 3.6: Let NuX
∗ ={w1,w2, w3} and  

let Nuτ={0Nu, 𝒦, 1Nu}is NT on NuX
∗ , where 𝒦 =  〈w, (

2

10
,

5

10
,

7

10
) , (

5

10
,

5

10
,

4

10
) , (

3

10
,

5

10
,

5

10
)〉. 

 Then the NS W1
∗ =〈w, (

5

10
,

5

10
,

5

10
) , (

2

10
,

5

10
,

7

10
) , (

3

10
,

5

10
,

6

10
)〉 is Nu-GCS but not an Nu-G*CS in NuX

∗ . 

Theorem 3.7: Every Nu-G*CS is Nu-αGCS . 

Proof: Let W1
∗  be aNu-G*CS in (NuX

∗ , 𝑁𝑢𝜏 ) . By Theorem 3.6 W1
∗  is Nu-GCS in NuX

∗ . Since 

Nuα-cl(W1
∗) ⊆  Nu-cl(W1

∗) and W1
∗ is a Nu-GCS in NuX

∗ . Therefore Nuα -cl(W1
∗) ⊆  Nu-cl(W1

∗)⊆  𝒦 

whenever W1
∗ ⊆  𝒦 , 𝒦 is Nu-OS in NuX

∗ . Thus W1
∗ is Nu-αGCS in NuX

∗ . 

Example 3.8: Let NuX
∗  = {w1, w2} and let Nuτ ={0Nu, 𝒦, 1Nu}is NT on NuX

∗ , 

where 𝒦 =〈w, (
1

10
,

5

10
,

6

10
) , (

4

10
,

5

10
,

5

10
)〉 . Then the NS W1

∗ =〈w, (
3

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

5

10
)〉  

is Nu-αGCS but not an Nu-G*CS in NuX
∗ . 

Theorem 3.9: Every Nu-RCS is Nu-G*CS . 

Proof: Let W1
∗ be a Nu-RCS in (NuX

∗ , Nuτ) . Then W1
∗ = Nu-cl(Nu-int(W1

∗)). Let W1
∗⊆ 𝒦 and 𝒦 is 

Nu-GOS in( NuX
∗ , Nuτ ) .Therefore Nu-cl( W1

∗ )⊆Nu-cl(Nu-int( W1
∗ )). This implies Nu-cl( W1

∗ )⊆  

W1
∗⊆ 𝒦. Thus W1

∗ is Nu-G*CS in NuX
∗ . 

Example 3.10: Let NuX
∗  = {w1, w2} and let Nuτ = {0Nu, 𝒦, 1Nu}is NT on NuX

∗ ,Where 

 𝒦  =〈w, (
3

10
,

5

10
,

6

10
) , (

7

10
,

5

10
,

3

10
)〉Then NS W1

∗  =〈w, (
7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉 is Nu-G*CS but not an 

Nu-RCS in NuX
∗ . 

Diagram:I 

 

Remark 3.11:  

Nu-G*CS is independent from Nu-𝛼CS, Nu-SCS, Nu-PCS, and Nu-bCS as seen from the following 

example. 
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Example 3.12: Let NuX
∗  = {w1, w2} and let Nuτ = {0Nu, 𝒦, 1Nu}is NT on NuX

∗ , where 

 𝒦 =〈w (
2

10
,

5

10
,

6

10
) , (

4

10
,

5

10
,

5

10
) 〉. Then  NS W1

∗=〈w, (
3

10
,

5

10
,

5

10
) , (

4

10
,

5

10
,

5

10
)〉  

is NuSCS, Nu-bCS, but not an Nu-G*CS in NuX
∗ . 

Example 3.13: Let NuX
∗  = {w1, w2} and let Nuτ = {0Nu, 𝒦, 1Nu}is NT on NuX

∗ , where 

 𝒦 =〈w (
6

10
,

5

10
,

2

10
) , (

5

10
,

5

10
,

4

10
) 〉. Then  NS W1

∗=〈w, (
1

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

5

10
)〉  

is Nu-PCS, Nu-αCS, but not an Nu-G*CS in NuX
∗ . 

Example 3.14: Let NuX
∗  = {w1,w2} and let Nuτ={0Nu, 𝒦, 1Nu}is NT on NuX

∗ , where  

𝒦 =〈w, (
6

10
,

5

10
,

2

10
) , (

5

10
,

5

10
,

2

10
)〉 Then the NS W1

∗=〈w, (
1

10
,

5

10
,

3

10
) , (

4

10
,

5

10
,

2

10
)〉  

is Nu-G*CS but not NuSCS, Nu-bCS NuX
∗ . 

Example 3.15: Let NuX
∗  = {w1,w2} and let Nuτ={0Nu, 𝒦, 1Nu}is NT on NuX

∗ , where  

𝒦 =〈w, (
2

10
,

5

10
,

6

10
) , (

3

10
,

5

10
,

5

10
)〉 Then the NS W1

∗=〈w, (
3

10
,

5

10
,

1

10
) , (

3

10
,

5

10
,

3

10
)〉  

is Nu-G*CS but not NuαCS, Nu-PCS NuX
∗ . 

Theorem 3.16: The union of two Nu-G*CS’s is Nu-G*CS 

Proof: Let W1
∗ and W2

∗ be the two Nu-G*CS’s in NuX
∗  and let W1

∗∪W2
∗⊆ 𝒦, where 𝒦 is a Nu-GOS 

in NuX
∗ . Therefore W1

∗ ⊆ 𝒦  or W2
∗ ⊆ 𝒦  or both contained 𝒦 . Since W1

∗  and W2
∗  are Nu-G*CS, 

Nu-cl(W1
∗)⊆ 𝒦 and Nu-cl(W2

∗) ⊆ 𝒦. Therefore Nu-cl(W1
∗∪W2

∗)⊆ 𝒦. Thus W1
∗∪W2

∗ is Nu-G*CS. 

Remark 3.17: The intersection of any two Nu-G*CSs is not an Nu-G*CS in general as seen in the 

following example. 

Example 3.18: Let NuX
∗  = {w1, w2} and let Nuτ={0Nu, 𝒦, 1Nu}is NT on NuX

∗ ,  

where 𝒦 =〈w, (
5

10
,

5

10
,

1

10
) , (

1

10
,

5

10
,

8

10
)〉.  

Then NS’s W1
∗ = 〈w, (

2

10
,

5

10
,

5

10
) , (

7

10
,

5

10
,

0

10
)〉  W2

∗ =〈w, (
6

10
,

5

10
,

0

10
) , (

3

10
,

5

10
,

7

10
)〉  

are Nu-G*CS’s in NuX
∗  but W1

∗∩W2
∗ is not a Nu-G*CS in NuX

∗ . 

Theorem 3.19: If W1
∗ is Nu-G*CS in (NuX

∗ ,Nuτ), such that W1
∗⊆W2

∗⊆ Nu-cl(W1
∗). Then W2

∗ is also a 

Nu-G*CS of (NuX
∗ ,Nuτ)  

Proof: Let 𝒦 be a Nu-GOS in (NuX
∗ ,Nuτ) such that W2

∗⊆ 𝒦, Since W1
∗⊆W2

∗, W1
∗⊆ 𝒦 and 𝒦 be a 

Nu-GOS. Also since W1
∗ is Nu-G*CS, Nu-cl(W1

∗)⊆ 𝒦. By hypothesis W2
∗⊆Nu-cl(W1

∗). This implies 

Nu-cl(W2
∗)⊆Nu-cl(Nu-cl(W1

∗))⊆ 𝒦. Therefore Nu-cl(W2
∗)⊆ 𝒦. Hence W2

∗ is Nu-G*CS of NuX
∗ . 

Theorem 3.20: If W1
∗ is both Nu-GOS and Nu-G*CS of (NuX

∗ ,Nuτ), then W1
∗ is Nu-CS in NuX

∗ . 

Proof: Let W1
∗ is Nu-GOS in NuX

∗ . Since W1
∗⊆W1

∗, by hypothesis Nu-cl(W1
∗)⊆W1

∗. But from the 

Definition, W1
∗⊆Nu-cl(W1

∗). Therefore Nu-cl(W1
∗)=W1

∗. Hence W1
∗ is Nu-CS of NuX

∗ . 

Theorem 3.21: Let (NuX
∗ ,Nuτ)   be a NTS.  Then Nu-GO(NuX

∗ )=Nu-GC(NuX
∗ ) iff every NS in  

(NuX
∗ , Nuτ) is Nu-G*CS in NuX

∗ . 

Proof:  

Necessity: Suppose that Nu-GO(NuX
∗ )=Nu-GC(NuX

∗ ). Let W1
∗⊆ 𝒦 and 𝒦 is Nu-GOS in NuX

∗ . This 

implies Nu-cl(W1
∗)⊆Nu-cl(𝒦). Since 𝒦 is Nu-GOS in NuX

∗ . Since by hypothesis 𝒦 is Nu-GCS in 

NuX
∗ , Nu-cl(𝒦)⊆ 𝒦. This implies Nu-cl(W1

∗)⊆ 𝒦. Therefore W1
∗ is Nu-G*CS in NuX

∗ . 

Sufficiency: Suppose that every NS in (NuX
∗ , Nuτ) is Nu-G*CS in NuX

∗ .  Let 𝒦 ⊆Nu-O(NuX
∗ ), then 



Neutrosophic Sets and Systems, Vol. 36, 2020 101  

 

 

A.Atkinswestley ,S.Chandrasekar, Neutrosophic g*-Closed sets and its maps 

𝒦 ⊆Nu-GO(NuX
∗ ).  Since 𝒦 ⊆ 𝒦 and 𝒦 is  Nu-OS  in  NuX

∗ ,  by  hypothesis Nu-cl(𝒦)⊆ 𝒦. 

I.e., 𝒦 ⊆Nu-GC(NuX
∗ ). Hence Nu-GO(NuX

∗ )⊆Nu-GC(NuX
∗ ).Let W1

∗⊆Nu-GC(NuX
∗ ) then  W1

∗C is  

an  Nu-GOS  in  NuX
∗ . But Nu-GO(NuX

∗ )⊆Nu-GC(NuX
∗ ).  Therefore W1

∗C⊆Nu-GC(NuX
∗ ). I.e., 

W1
∗⊆Nu-GO(NuX

∗ ). Hence Nu-GC(NuX
∗ )⊆Nu-GO(NuX

∗ ). Thus Nu-GO(NuX
∗ )⊆Nu-GC(NuX

∗ ). 

Theorem 3.22: If W1
∗ is Nu-OS and an Nu-G*CS in (NuX

∗ ,Nuτ) , then 

W1
∗ is Nu-ROS in NuX

∗  

W1
∗ is Nu-RCS in NuX

∗  

Proof: (i) Let W1
∗  be a Nu-OS and a Nu-G*CS in NuX

∗ .Then Nu-cl( W1
∗ )⊆ W1

∗ . I.e., Nu 

int(Nu-clW1
∗))⊆W1

∗.Since W1
∗ is a Nu-OS, W1

∗ is Nu-POS in NuX
∗ . Hence W1

∗⊆ Nu-int(Nu-cl(W1
∗)). 

Therefore W1
∗= Nu-int(Nu-cl(W1

∗)). Hence W1
∗ is Nu-ROS in NuX

∗ . 

(ii): Let W1
∗ be a Nu-OS and an Nu-G*CS inNuX

∗ . Then Nu-cl(W1
∗)⊆W1

∗. I.e., Nu-cl(Nu-int(W1
∗))⊆W1

∗. 

Since W1
∗  is a Nu-OS, W1

∗  is Nu-OS in NuX
∗ . Hence W1

∗ ⊆Nu-cl(Nu-int(W1
∗ )). Therefore W1

∗  = 

Nu-int(Nu-cl(W1
∗)). Hence W1

∗ is Nu-RCS in NuX
∗ . 

4. NEUTROSOPHIC g*-OPEN SETS 

In this section we introduce Neutrosophic g*-open sets and studied some of its properties. 

Definition 4.1: An NS W1
∗ is said to be a Neutrosophic g*-open set (Nu-G*OS in short) in (NuX

∗ , 

Nuτ) if the complement W1
∗C is Nu-G*CS in NuX

∗ .The family of all Nu-G*OS’s of A NTS (NuX
∗ , 

Nuτ) is denoted by Nu-G*O(NuX
∗ ). 

Theorem 4.2:A subset W1
∗ of (NuX

∗ , Nuτ) is Nu-G*OS iff W2
∗⊆ Nu-int(W1

∗) whenever W2
∗ is Nu-GCS 

in NuX
∗  and W2

∗⊆ W1
∗. 

Proof: Necessity: Let W1
∗ is Nu-G*OS in NuX

∗ . Let W2
∗ be a Nu-GCS in NuX

∗  and W2
∗⊆ W1

∗. Then 

W2
∗C  is Nu-GOS in NuX

∗  such that W1
∗C⊆ W2

∗C . Since W1
∗C  is Nu-G*CS, we have Nu-cl(W1

∗C )⊆  

W2
∗C. Hence Nu-int(W1

∗))𝐶⊆ W2
∗C. Therefore W2

∗⊆ Nu-int(W1
∗). 

Sufficiency: Let W2
∗⊆ Nu-int(W1

∗) whenever W2
∗  is Nu-GCS in NuX

∗  and W2
∗⊆ W1

∗ . Then W1
∗C⊆  

W2
∗C and W2

∗C is Nu-GOS. By hypothesis, (Nu-int(W1
∗))C⊆ W2

∗C, which implies Nu-cl(W1
∗C)⊆  W2

∗C. 

Therefore W1
∗C is Nu-G*CS of NuX

∗ . Hence W1
∗ is Nu-G*OS in NuX

∗ . 

Theorem 4.3: Every Nu-OS is Nu-G*OS . 

Proof: Let W1
∗  be a Nu-OS. Then W1

∗C  is Nu-CS. By Theorem 3.3, every Nu-CS is Nu-G*CS. 

Therefore W1
∗C is Nu-G*CS. Hence W1

∗ is Nu-G*OS. 

Example 4.4: Let NuX
∗  = {w1, w2} and let Nuτ={0Nu, 𝒦, 1Nu}is NT on NuX

∗ , where  

𝒦 =〈w, (
2

10
,

5

10
,

2

10
) , (

5

10
,

5

10
,

8

10
)〉. Then NS W1

∗ =〈 w, (
2

10
,

5

10
,

3

10
) , (

7

10
,

5

10
,

8

10
)〉  

is Nu-G*OS but not an Nu-OS in NuX
∗ . 

Theorem 4.5: Every Nu-ROS is Nu- G*OS . 

Proof: Let W1
∗ be aNu-WS. Then W1

∗C is Nu-RCS. By Theorem 3.15, every Nu-RCS is Nu-G*CS. 

Therefore W1
∗C is Nu-G*CS. Hence W1

∗ is Nu-G*OS. 

Example 4.6: Let NuX
∗  = {w1, w2} and  let Nuτ={0Nu, 𝒦, 1Nu}is NT on NuX

∗ , where 

 𝒦  =〈w, (
3

10
,

5

10
,

6

10
) , (

7

10
,

5

10
,

3

10
)〉  Then NS W1

∗=〈w, (
3

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉is Nu-G*OS but not an 

Nu-ROS in NuX
∗ . 

Theorem 4.7: Every Nu-G*OS is Nu-GOS . 

Proof: Let W1
∗ be a Nu-G*OS in (NuX

∗ , Nuτ) . Then W1
∗C is Nu-G*CS. By Theorem 3.6, every 

Nu-G*CS is Nu-GCS. Therefore W1
∗C is Nu-GCS. Hence W1

∗ is Nu-GOS. 
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Example 4.8: Let NuX
∗  ={w1,w2} and let Nuτ ={0Nu, 𝒦, 1Nu}is NT on NuX

∗ , where 

 𝒦  =〈w, (
5

10
,

5

10
,

4

10
) , (

2

10
,

5

10
,

2

10
)〉. Then NS W1

∗  =〈w, (
4

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

6

10
)〉is Nu-GOS but not an 

Nu-G*OS inNuX
∗ . 

Theorem 4.9: Every Nu-G*OS is Nu-αGOS . 

Proof: Let W1
∗  be aNu-G*OS in (NuX

∗ ,Nuτ ). Then W1
∗C  is Nu-G*CS. By Theorem 3.9, every 

Nu-G*CS is Nu-αGCS. Therefore W1
∗C is Nu-αGCS. Hence W1

∗ is Nu-αGOS. 

Example 4.10: Let NuX
∗ ={ w1 , w2 } and let Nuτ ={0Nu,  𝒦 ,1Nu}is NT on NuX

∗ , where 𝒦  = 

〈w, (
4

10
,

5

10
,

2

10
) , (

6

10
,

5

10
,

7

10
)〉Then the NS W1

∗ = 〈w, (
6

10
,

5

10
,

4

10
) , (

5

10
,

5

10
,

3

10
)〉  is Nu-𝛼 GOS but not an 

Nu-G*OS in NuX
∗ . 

Theorem 4.11: The intersection of two Nu-G*OS’s is Nu-G*OS. 

Proof: Let W1
∗  and W2

∗  be the two Nu-G*OS’s inNuX
∗ ,  W1

∗C   and  W2
∗C   are Nu-G*CS.  By 

Theorem 3.28  W1
∗C∪W2

∗C is Nu-G*CS in NuX
∗ . Therefore (W1

∗∩W2
∗) is Nu-G*CS. Thus W1

∗∩W2
∗ is 

Nu-G*OS in NuX
∗ . 

Theorem 4.12: Let ( NuX
∗ , Nuτ )   be a NTS. If W1

∗  is NS of NuX
∗ . Then for every W1

∗ ∈ 

Nu-G*O(NuX
∗ ) and every W2

∗ ∈(NuX
∗ ), Nu-int(W1

∗)⊆W2
∗ ⊆ W1

∗ implies W2
∗ ∈ Nu-G*O(NuX

∗ ). 

Proof: By hypothesis Nu-int(W1
∗)⊆W2

∗ ⊆ W1
∗. Taking complement on both sides, we get W1

∗C ⊆

W2
∗C⊆Nu-cl(W1

∗C). Let W2
∗C⊆ 𝒦 and 𝒦 is Nu-GOS in NuX

∗ . SinceW1
∗C ⊆ W2

∗C, W1
∗C⊆ 𝒦. Since W1

∗C 

is Nu-G*CS, Nu-cl(W1
∗C)⊆ 𝒦. Therefore Nu-cl(W2

∗C)⊆Nu-cl(W1
∗C)⊆ 𝒦. Hence W2

∗C is Nu-G*CS in 

NuX
∗ . Therefore W2

∗ is Nu-G*OS in NuX
∗ . I.e., W2

∗ ⊆Nu-G*O(NuX
∗ ) 

 Definition: 4.13:  For any Nu. set W1
∗  in any NSTS, 

          Nu-g*cl(W1
∗) =∩{ 𝒰 : 𝒰 is Nu-g*CS Nu. set and W1

∗⊆ 𝒰 } 

          Nu-g*int (W1
∗) = ∪{  : 𝒱 is Nu-g* OS  and W1

∗ ⊇  𝒱 } 

Theorem: 4.14:   In a Its (NuX
∗ , Nuτ) a Nu. set W1

∗  is Nu-g*- CS iff W1
∗  = Nu-g* cl(W1

∗). 

Proof: Let W1
∗  be a Nu-g*CS Nu. set in NSTS  (NuX

∗ , Nuτ). Since W1
∗  ⊆  W1

∗  and W1
∗  is Nu-g*CS , 

 W1
∗  ∈{ 𝒦 : 𝒦 is a Nu-g*CS  Nu. set and W1

∗ ⊆ 𝒦 } and W1
∗ ⊆ 𝒦 ⇒ W1

∗ = ∩{ 𝒦: 𝒦 is Nu-g*CS  

and W1
∗ ⊆ 𝒦 } that is W1

∗  = Nu-g* cl(W1
∗). 

Conversely, suppose that W1
∗  = Nu-g*cl(W1

∗),that is W1
∗= ∩{ 𝒦: 𝒦 is a Nu-g*- CS Nu. set and 

W1
∗ ⊆  𝒦 }. This denotes that W1

∗ ∈{ 𝒦: 𝒦 is a Nu-g*CS  Nu. set and W1
∗ ⊆ 𝒦 }. From now W1

∗  is 

Nu-g*CS Nu. set. 

Theorem: 4.15 In a NSTS NuX
∗  the subsequent results hold for Nu-g* - closure. 

1) Nu-g*cl (0Nu) = 0Nu. 

2) Nu-g*cl (W1
∗) is Nu-g*CS Nu. set in NuX

∗ . 

3) Nu-g*cl (W1
∗) ⊆Nu-g*cl (W2

∗ ) if W1
∗ ⊆W2

∗ . 

4) Nu-g* cl ( Nu-g*cl(W1
∗)) = Nu-g* cl(W1

∗). 

5) Nu-g* cl (W1
∗ ∪ W2

∗)⊇Nu-g* cl(W1
∗)∪Nu-g* cl(W2

∗). 

6) Nu-g* cl (W1
∗ ∩ W2

∗ )⊆Nu-g* cl(W1
∗)∩Nu-g* cl(W2

∗). 

Proof: easy  

Theorem: 4.16 In a NSTS NuX
∗ , a Nu. set W1

∗  is Nu-g* OS  iff W1
∗  = Nu-g*int (W1

∗). 

Proof: Let W1
∗  be Nu-g*OS Nu. set in NuX

∗ . Since W1
∗  ⊆  W1

∗  and W1
∗  is Nu-g* OS  and W1

∗ ∈{ 

𝒦: 𝒦 is a Nu-g* OS  Nu. set and W1
∗ ⊇  𝒦 } and W1

∗ ⊇  𝒦 ⇒ W1
∗ = ∪{ 𝒦: 𝒦 is Nu-g*OS and 

W1
∗ ⊇  𝒦 }. That is W1

∗ =Nu-g*int (W1
∗ ). 
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Conversely, suppose that W1
∗  = Nu-g*int (W1

∗ ), that is W1
∗ =∪( 𝒦: 𝒦 is Nu-g*OS and W1

∗  ⊇  𝒦 }. 

This implies that W1
∗ ∈{ 𝒦: 𝒦 is Nu-g*OS and W1

∗ ⊇  𝒦 }.Hence W1
∗  is Nu-g*OS Nu. set. 

Theorem: 4.17  In a NSTS NuX
∗ , the following hold for Nu-g* -interior. 

1) Nu-g*int  (0Nu) = 0Nu 

2) Nu-g*int(W1
∗) ⊆Nu-g*int (W2

∗) if W1
∗ ⊆W2

∗ . 

3) Nu-g*int (W1
∗) is Nu-g*OS in NuX

∗ . 

4) Nu-g*int (Nu-g*int (W1
∗)) = Nu-g*int (W1

∗ ). 

5) Nu-g*int (W1
∗ ∪ W2

∗)⊇Nu-g*int(W1
∗)∪Nu-g*int (W2

∗). 

6) Nu-g*int (W1
∗ ∩ W2

∗)⊆Nu-g*int(W1
∗)∩Nu-g*int (W2

∗). 

Proof: proof is as usual. 

5. NEUTROSOPHIC g*- CONTINUOUS  

In this section we introduce Neutrosophic g*-continuous and studied some properties of 

neutrosophic g* - open map and closed map. 

Definition:5.1 Let NuX
∗  and NuY

∗  be two NTS. A function 𝑓: NuX
∗ ⟶ NuY

∗   is said to be neutrosophic 

g* - continuous  (Nu-g* - continuous) if the inverse image of every neutrosophic open set in NuY
∗  is 

g* - open in NuX
∗ . 

Theorem:5.2  A function 𝑓: NuX
∗ ⟶ NuY

∗  is Nu-g* - continuous iff the inverse image of every 

Nu-closed  set in NuY
∗  is g* - closed set  in NuX

∗ . 

Proof: Suppose the function 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g* - continuous.  Let ℱ  be Nu-closed  set in NuY
∗ . 

Then ℱ𝑐  is Nu- open set in NuY
∗ . Since 𝑓 is Nu-g* - continuous, 𝑓−1(ℱ𝑐) is Nu- g* - open in NuX

∗ . But 

𝑓−1(ℱ𝑐)= (𝑓−1(ℱ𝑐))𝑐and so   𝑓−1(ℱ)is Nu-g* - closed in NuX
∗ .      

 Conversely, assume that the inverse image of every Nu-closed  set in NuY
∗  is Nu-g* - closed in 

NuX
∗ . Let 𝒱 be neutrosophic open set in NuY

∗ . Then𝒱𝑐is Nu-closed in NuY
∗ . By hypothesis, 𝑓−1(𝒱𝑐) is 

Nu-g*-closed  set in NuX
∗ .  But 𝑓−1(𝒱𝑐) = (𝑓−1(𝒱𝑐))𝑐 and so 𝑓−1(𝒱)is Nu-g* - open set in NuX

∗ . 

Hence 𝑓 is Nu-g*-continuous. 

Theorem:5.3  Every Nu- continuous function is Nu-g* -  continuous. 

Proof: Let 𝑓: NuX
∗ ⟶ NuY

∗ be Nu-continuous. Let ℱ be Nu-closed  set in NuY
∗ . Then 𝑓−1(ℱ) is Nu-closed  

set in NuX
∗  since 𝑓 is neutrosophic continuous. And therefore 𝑓−1(ℱ)is Nu-g* - closed in NuX

∗ . Hence 𝑓 

is Nu-g* - continuous. 

Theorem:5.4Every  Nu-g* - continuous  function  is Nu-g - continuous. 

Proof: Let 𝑓: NuX
∗ ⟶ NuY

∗  be Nu-g* - continuous. Let ℱ be a Nu-closed  set inNuY
∗ . Since 𝑓 is Nu-g* - 

continuous, 𝑓−1(ℱ)  is Nu-g* - closed in NuX
∗ . And therefore 𝑓−1(ℱ) is Nu-g - closed in NuX

∗  as every 

Nu-g*-closed  set is Nu-g - closed. Hence 𝑓 is Nu-g- continuous. 

The converse of the above theorem need not be true as seen from the following example. 

Theorem:5.5 If 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g* - continuous and NuX
∗  is neutrosophic –T*1/2 NTS. Then 𝑓 is 

neutrosophic -continuous. 

Proof: Let 𝑓: NuX
∗ ⟶ NuY

∗ be Nu-g*- continuous . Let ℱ be Nu-closed  set in NuY
∗ . Then 𝑓−1(ℱ)is 

𝑓−1(ℱ) Nu- g* - closed in NuX
∗  since 𝑓 is Nu-g* - continuous. Also since NuX

∗  is neutrosophic - T*1/2, 

𝑓−1(ℱ)is closccl in NuX
∗ . Hence 𝑓 is Nu-continuous. 

Theorem:5.6 If 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g - continuous and NuX
∗  is neutrosophic - T*1/2 NTS. Then 𝑓 is 

Nu-g* - continuous. 

Proof: Let 𝑓: NuX
∗ ⟶ NuY

∗  be Nu-g - continuous. Let ℱ be Nu-closed  set in NuY
∗ , then 𝑓−1(ℱ) is g- 

closed in NuX
∗ . Since X is neutrosophic - T*1/2, 𝑓−1(ℱ)is Nu- g* - closed in NuX

∗ . Hence  𝑓 is Nu-g* - 
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continuous. 

Theorem:5.7If 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g* - continuous and g : NuY
∗  ⟶ NuZ

∗  is Nu-continuous then  

gof : NuX
∗   ⟶ NuZ

∗  is Nu-g * - continuous. 

Proof: Let ℱ be Nu-closed  set in NuZ
∗ . Then 𝑔−1(ℱ) is closed in NuY

∗  since 𝑔 is Nu-continuous.  

And then 𝑓−1(𝑔−1(ℱ))  is Nu-g* - closed in NuX
∗  since 𝑓 is Nu-g* - continuous.  

Now(𝑔 ∘ 𝑓)−1(ℱ) = 𝑓−1(𝑔−1(ℱ))  is Nu- g* - closed in NuX
∗ . Hence 𝑔 ∘ 𝑓 : NuX

∗   ⟶ NuZ
∗  is Nu-g*- 

continuous.  

Theorem:5.8 If 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g* - continuous and g : NuY
∗  ⟶ NuZ

∗  is Nu-g* - continuous and  

NuY
∗  is neutrosophic –T*1/2 space. Then gof : NuX

∗ ⟶ NuZ
∗  is Nu-g*- continuous. 

Proof:  Let ℱ  be Nu-closed  set in NuZ
∗ . Then 𝑔−1(ℱ)  is Nu-g*CS in NuY

∗  since 𝑔  is Nu-g*- 

continuous. Since NuY
∗  is neutrosophic –T*1/2, 𝑔−1(ℱ)  is Nu-closed in NuY

∗ . And then 𝑓−1(𝑔−1(ℱ))  

is Nu-g*CS in NuX
∗  as  𝑓 is Nu-g* - continuous.  Now (𝑔 ∘ 𝑓)−1(ℱ)  = 𝑓−1(𝑔−1(ℱ))is  Nu-g*CS  

in  NuX
∗ .  Hence 𝑔 ∘ 𝑓 is Nu-g* - continuous. 

Definition:5.9A map 𝑓: NuX
∗ ⟶ NuY

∗  is said to be neutrosophic g* - open if the image of every 

neutrosophic open set in NuX
∗  is Nu-g*-open set in NuY

∗ . 

Definition:5.10 A map 𝑓: NuX
∗ ⟶ NuY

∗ is said to be neutrosophic g* - closed if the image of every 

Nu-closed  set in NuX
∗  is Nu-g*-closed  set in NuY

∗ . 

Theorem: 5.11 Every neutrosophic open map is neutrosophic g* - open. 

Proof: Let 𝑓: NuX
∗ ⟶ NuY

∗  be a neutrosophic open map let 𝒱 be an neutrosophic open set in NuX
∗  

then  𝑓 (𝒱) is Nu-open in NuY
∗  since  𝑓 is neutrosophic open map. And therefore 𝑓(𝒱) is Nu-g* - 

open in NuY
∗ . Hence  𝑓 is neutrosophic g* open map. 

Theorem :5.12 If 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g*-open map and NuY
∗  is neutrosophic –T*1/2, then  𝑓 is a 

Nu-open map.  

Proof : Let 𝑓: NuX
∗ ⟶ NuY

∗ is neutrosophic g*- open map. Let 𝒱 be neutrosophic open set in NuX
∗ .  

Then  𝑓 (𝒱) is Nu- g* - open in NuY
∗ . Since NuY

∗  is neutrosophic -T*1/2 , 𝑓(𝒱) is neutrosophic open set 

in NuY
∗ . Hence  𝑓 is Nu- open map. 

Theorem:5.13 Every Nu-g* - open map is neutrosophic g - open. 

Proof: Let 𝑓: NuX
∗ ⟶ NuY

∗  be a Nu-g*- open map. Let 𝒱 be neutrosophic open set in NuX
∗ . Then  𝑓 

(𝒱) is Nu-g* - open in NuY
∗  since  𝑓 is Nu-g* - open map. And therefore  𝑓(𝒱) is Nu-g- open  set in 

NuY
∗ . Hence  𝑓 is neutrosophic g - open map. 

Theorem : 5.14If 𝑓: NuX
∗ ⟶ NuY

∗ is neutrosophic g - open and NuY
∗  is neutrosophic - *T1/2 space, then  𝑓 

in Nu-g* - open map. 

Proof: Let 𝒱 be neutrosophic open set in NuX
∗ . Then  𝑓(𝒱) is Nu-g - open in NuY

∗ . Since NuY
∗  is 

neutrosophic -*T1/2, 𝑓 (𝒱) is Nu-g* - open in NuY
∗ . And hence  𝑓 is Nu-g* - open map. 

Theorem : 5.15 Every Nu-closed  map is Nu-g* - closed map. 

Proof: Let 𝑓: NuX
∗ ⟶ NuY

∗  be Nu-closed  map. Let ℱ  be Nu-closed  set in NuX
∗ .Then  𝑓(ℱ)  is 

closed in NuY
∗ . And therefore 𝑓(ℱ) is Nu- g* - closed in NuY

∗ . And hence 𝑓 is Nu-g* - closed map.  

Theorem :5.16 If 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g* - closed and NuY
∗  is neutrosophic -T*1/2. Then 𝑓 is Nu-closed  

map. 

Proof:  Let 𝑓: NuX
∗ ⟶ NuY

∗  be  Nu-g* - closed map. Let ℱ be Nu-closed set in NuX
∗ .Then 𝑓−1 (ℱ) is 

Nu- g* - closed in NuY
∗ . Since NuY

∗  is neutrosophic -T*l/2 , 𝑓(ℱ) is Nu-closed in NuY
∗ .  Hence 𝑓 is 

neutrosophic closcd map. 

Theorem: 5.17 A map 𝑓: NuX
∗ ⟶ NuY

∗ is Nu-g* - closed iff for each neutrosophic set 𝒮 of NuY
∗ and for 
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each neutrosophic open set 𝒰 such that 𝑓−1(𝒮)⊆  𝒰 there is a Nu-g*-open set 𝒱 of NuY
∗  such that 

𝒮 ⊆  𝒱 and 𝑓−1(𝒱) ⊆ 𝒰. 

Proof: Suppose 𝑓  is Nu-g* - closed map. Let 𝒮  be a neutrosophic set of NuY
∗  and 𝒰  be a 

neutrosophic open set of NuX
∗  such that 𝑓−1(𝒰)⊆ 𝒰. Then 𝒱 = NuY

∗  – 𝑓 (𝒰𝐶) is a Nu-g*-open set in 

NuY
∗  such that 𝒮 ⊆  𝒱 and 𝑓−1(𝒱)⊆ 𝒰. 

        Conversely, suppose that  ℱ  is  a  Nu-closed    set  of  NuX
∗ .  Then   𝑓−1  (𝑓(ℱ𝐶 ))⊆  

ℱ𝐶and ℱ𝐶is Nu-open.  By hypothesis, there is a Nu-g*-open set 𝒱 of NuY
∗  such that 𝑓(ℱ)𝑐⊆  𝒱 

and 𝑓−1(𝒱)⊆  ℱ𝐶  Therefore ℱ ⊆  𝑓−1(𝒱)
𝑐

. Hence 𝒱𝑐⊆  𝑓(ℱ)⊆  𝑓(𝑓−1(𝒱)𝑐)⊆ 𝒱𝑐  which implies 

𝑓(ℱ) = 𝒱𝑐. Since 𝒱𝑐is Nu-g* - closed, 𝑓(ℱ) is Nu-g*CS and thus 𝑓 is a Nu-g*- closed m ap. 

Conclusion 

In this paper, we have defined the neutrosophic g* closed sets and open sets.then discussed about 

neutrosophic g* continuity  Then,we have presented some properties of these operations. We have 

also investigated neutrosophic topological structures of neutrosophic sets. Hence, we hope that the 

findings in this paper will help researchers enhance and promote the further study on neutrosophic 

topology. 
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Intuitionistic fuzzy sets. A.A. Salama introduced Neutrosophic topological spaces by using the 
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generalized closed sets and Neutrosophic b generalized continuity in Neutrosophic topological 

spaces and its Properties are discussed details. 
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1. Introduction 

Neutrosophic system plays important role in the fields of Information Systems, Computer 

Science, Artificial Intelligence, Applied Mathematics, Mechanics, decision making, Medicine, 

Management Science, and Electrical & Electronic, etc,. Topology is a classical subject, as a 

generalization topological spaces many type of topological spaces introduced over the year. T Truth, 

F -Falsehood, I- Indeterminacy are three component of Neutrosophic sets. Neutrosophic topological 

spaces(N-T-S) introduced by Salama [22,23]etal., R.Dhavaseelan[10], Saied Jafari are introduced 

Neutrosophic generalized closed sets. Neutrosophic b closed sets are introduced by 

C.Maheswari[17] et al.Aim of this paper is we introduce and study about Neutrosophic b 

generalized closed sets and Neutrosophic b generalized continuity in Neutrosophic topological 

spaces and its properties and Characterization are discussed details. 

2. Preliminaries  

In this section, we recall needed basic definition and operation of Neutrosophic sets and its 

fundamental Results 

Definition 2.1 [13]  Let 𝔛 be a non-empty fixed set. A Neutrosophic set 𝒥1
∗   is a object having the 

form 

𝒥1
∗ = {< 𝑥, μ

𝒥1
∗ (x), σ𝒥1

∗ (x), γ
𝒥1

∗ (x) >: 𝑥 ∈ 𝔛}, 

μ𝒥1
∗(x)-represents the degree of membership function 

σ𝒥1
∗(x)-represents degree indeterminacy and then 

γ𝒥1
∗(x)-represents the degree of non-membership function 
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Definition 2.2 [13].Neutrosophic set 𝒥1
∗  = {<  𝑥, μ

𝒥1
∗ (x), σ𝒥1

∗ (x), γ
𝒥1

∗ (x) >: 𝑥 ∈ 𝔛}, on 𝔛 and  ∀x ∈ 𝔛 

then complement of 𝒥1
∗  is 𝒥1

∗C  = {<  𝑥, γ𝒥1
∗(x), 1 − σ𝒥1

∗(x), μ𝒥1
∗(x) >: 𝑥 ∈ 𝔛} 

Definition 2.3 [13]. Let 𝒥1
∗  and 𝒥2

∗  are two Neutrosophic sets, ∀x ∈ 𝔛 

𝒥1
∗ = {<  𝑥, μ

𝒥1
∗ (x), σ𝒥1

∗ (x), γ
𝒥1

∗ (x) >: 𝑥 ∈ 𝔛} 

𝒥2
∗ = {<  𝑥, μ

𝒥2
∗ (x), σ𝒥2

∗ (x), γ
𝒥2

∗ (x) >: 𝑥 ∈ 𝔛} 

Then 𝒥1
∗ ⊆ 𝒥2

∗ ⇔ μ
𝒥1

∗ (x) ≤ μ
𝒥2

∗ (x), σ𝒥1
∗ (x) ≤ σ𝒥2

∗ (x)& γ
𝒥1

∗ (x) ≥ γ
𝒥2

∗ (x)} 

Definition 2.4 [13]. Let 𝔛 be a non-empty set, and Let 𝒥1
∗  and 𝒥2

∗  be two Neutrosophic sets are 

𝒥1
∗ = {<  𝑥, μ

𝒥1
∗ (x), σ𝒥1

∗ (x), γ
𝒥1

∗ (x) >: 𝑥 ∈ 𝔛}, 𝒥2
∗ = {<  𝑥, μ

𝒥2
∗ (x), σ𝒥2

∗ (x), γ
𝒥2

∗ (x) >: 𝑥 ∈ 𝔛}Then 

1. 𝒥1
∗ ∩ 𝒥2

∗ = {<  𝑥, μ
𝒥1

∗ (x) ∩ μ
𝒥2

∗ (x), σ𝒥1
∗ (x) ∩ σ𝒥2

∗ (x), γ
𝒥1

∗ (x) ∪ γ
𝒥2

∗ (x) >: 𝑥 ∈ 𝔛} 

2. 𝒥1
∗ ∪ 𝒥2

∗ = {<  𝑥, μ
𝒥1

∗ (x) ∪ μ
𝒥2

∗ (x), σ𝒥1
∗ (x) ∪ σ𝒥2

∗ (x), γ
𝒥1

∗ (x) ∩ γ
𝒥2

∗ (x) >: 𝑥 ∈ 𝔛} 

Definition 2.5 [23].Let 𝔛 be non-empty set and τN be the collection of Neutrosophic subsets of 𝔛 

satisfying the following properties: 

1.0N, 1N ∈ τN 

2.T1 ∩ T2 ∈ τN for any T1, T2 ∈ τN 

3. ∪ Ti ∈ τNfor every {Ti: i ∈ j} ⊆ τN 

Then the space (𝔛, τN) is called a Neutrosophic topological space(N-T-S). 

The element of τN are called Ne.OS (Neutrosophic open set) 

and its complement is Ne.CS(Neutrosophic closed set) 

Example 2.6.Let 𝔛 ={x} and ∀x ∈ 𝔛 

A1 = 〈x,
6

10
,

6

10
,

5

10
〉,A2 = 〈x,

5

10
,

7

10
,

9

10
〉 

A3 = 〈x,
6

10
,

7

10
,

5

10
〉  ,A4 = 〈x,

5

10
,

6

10
,

9

10
〉 

Then the collection τN = {0N, A1, A2, A3, A4,1N} is called a N-T-S on 𝔛. 

Definition 2.7.Let (𝔛, τN)be a N-T-S and 𝒥1
∗ = {<  𝑥, μ

𝒥1
∗ (x), σ𝒥1

∗ (x), γ
𝒥1

∗ (x) >: 𝑥 ∈ 𝔛} be a 

Neutrosophic set in 𝔛. Then 𝒥1
∗  is said to be 

1. Neutrosophic b closed set [17] (Ne.bCS)  if Ne.cl(Ne.int(𝒥1
∗ ))∩Ne.int(Ne.cl(𝒥1

∗))⊆ 𝒥1
∗, 

2. Neutrosophic α-closed set [7] (Ne. αCS) if Ne.cl(Ne.int(Ne.cl(𝒥1
∗ )))⊆ 𝒥1

∗, 

3. Neutrosophic pre-closed set [25] (Ne.Pre-CS) if Ne.cl(Ne.int(𝒥1
∗ ))⊆ 𝒥1

∗, 

4. Neutrosophic regular closed set [7] (Ne.RCS) if Ne.cl(Ne.int(𝒥1
∗)) = 𝒥1

∗ , 

5. Neutrosophic semi closed set [7] (Ne.SCS) if Ne.int(Ne.cl(𝒥1
∗))⊆ 𝒥1

∗, 

6. Neutrosophic generalized closed set [10] (Ne.GCS) if Ne.cl(𝒥1
∗)⊆H whenever 𝒥1

∗ ⊆H and H  

 

 

    is aNe.OS, 
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7. Neutrosophic generalized pre closed set [17] (Ne.GPCS in short) if Ne.Pcl(𝒥1
∗) ⊆ H whenever  

   𝒥1
∗  ⊆ H and H is aNe.OS, 

8. Neutrosophic α generalized closed set [15] (Ne. αGCS in short) if Neu α-cl(𝒥1
∗ )⊆H whenever 𝒥1

∗  

  ⊆H and H  is a Ne.OS, 

9. Neutrosophic generalized semi closed set [24](Ne.GSCS in short) if Ne.Scl(𝒥1
∗)⊆H whenever  

  𝒥1
∗ ⊆H and H is a Ne.OS. 

10. Neutrosophic generalized α closed set [11] (Ne. G α CS in short) if Neu α-cl(𝒥1
∗ )⊆H whenever        

   𝒥1
∗  ⊆H and H is aNe. αOS. 

11. Neutrosophic semi generalized closed set [24](Ne.SGCS in short) if Ne.Scl(𝒥1
∗)⊆H whenever  

  𝒥1
∗ ⊆H and H is a Ne.SOS. 

Definition 2.8.[9] (𝔛, τN)be a N-T-S and 𝒥1
∗ = {< 𝑥, μ

𝒥1
∗ (x), σ𝒥1

∗ (x), γ
𝒥1

∗ (x) >: 𝑥 ∈ 𝔛} be a 

Neutrosophic set in 𝔛.Then  

Neutrosophic closure of 𝒥1
∗  is Ne.Cl(𝒥1

∗)=∩{H:H is a Ne.CS in 𝔛 and 𝒥1
∗ ⊆H} 

Neutrosophic interior of 𝒥1
∗  is Ne.Int(𝒥1

∗)=∪{M:M is a Ne.OS in 𝔛 and M⊆ 𝒥1
∗}. 

Definition 2.9. Let (𝔛, τN)be a N-T-S and 𝒥1
∗ = {< 𝑥, μ

𝒥1
∗ (x), σ𝒥1

∗ (x), γ
𝒥1

∗ (x) >: 𝑥 ∈ 𝑋} be a 

Neutrosophic set in 𝔛. Then the Neutrosophic b closure of 𝒥1
∗( Ne.bcl(𝒥1

∗ )in short) and  

Neutrosophic b interior of 𝒥1
∗  (Ne.bint(𝒥1

∗ ) in short) are defined as  

Ne.bint(𝒥1
∗ )= ∪{ G/G is a Ne.bOS in 𝔛 and G⊆ 𝒥1

∗},  

Ne.bcl(𝒥1
∗)= ∩{ K/K is a Ne.bCS in 𝔛 and 𝒥1

∗ ⊆K }. 

Proposition 2.10. Let (𝔛, 𝒩𝜏) be any N-T-S. Let 𝒥1
∗  and 𝒥2

∗  be any two Neutrosophic sets in 

(𝔛, τN).Then the Neutrosophic generalized b closure operator satisfy the following properties. 

1. Ne.bcl(0N)=0N and Ne.bcl(1N) = 1N, 

2. 𝒥1
∗ ⊆Ne.bcl(𝒥1

∗ ), 

3. Ne.bint(𝒥1
∗)⊆ 𝒥1

∗, 

4. If 𝒥1
∗  is a Ne.bCS then 𝒥1

∗=Ne.bcl(Ne.bcl(𝒥1
∗)), 

5. 𝒥1
∗ ⊆ 𝒥2

∗ ⇒Ne.bcl(𝒥1
∗) ⊆Ne.bcl(𝒥2

∗ ), 

6. 𝒥1
∗ ⊆ 𝒥2

∗ ⇒Ne.bint(𝒥1
∗)⊆Ne.bint(𝒥2

∗ ). 

NEUTROSOPHIC b GENERALIZED CLOSED SETS  

In this part we introduce neutrosophicb bG closed sets its properties are discussed. 

Definition 3.1. 

A Ne. set 𝒥1
∗ in an NSTS (𝔛, 𝒩𝜏)is called Neutrosophic b generalized CS (briefly Ne.(bG)CS) iff 

Ne.bCl(𝒥1
∗)⊆𝒥2

∗, whenever 𝒥1
∗⊆𝒥2

∗ and 𝒥2
∗ is Ne. (b)OS in 𝔛. 

Example 3.2. 

Let 𝔛= {𝑗
1
, 𝑗

2
}, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛 where 𝒥1
∗ = 〈x, (

2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉.  

Then the Neutrosophic set 𝒥2
∗ = 〈x, (

7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉is a Ne.bGCS in 𝔛. 

Remark 3.3. 

A Ne. set 𝒥1
∗   in a NSTS (𝔛, 𝒩𝜏) is called Ne.(b)generalized open (briefly Ne.(bG)OS) if its 

compliment 𝒥1
∗𝑐is Ne.(bG)CS. 

Theorem 3.4. 
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Every Ne.-CS in (𝔛, 𝒩𝜏)is Ne.(bG)CS. 

Proof. 

Let 𝒥1
∗be a Ne.CS in NSTS 𝔛. Let 𝒥1

∗ ⊆𝒥2
∗ , where 𝒥2

∗  is Ne.(b)OS in 𝔛. Since 𝒥1
∗  is Ne.CS it is 

Ne.(b)CS and so NeuCl(𝒥1
∗) =Ne.bCl(𝒥1

∗)=𝒥1
∗⊆𝒥2

∗.Thus Ne.bCl(𝒥1
∗)⊆𝒥2

∗. Hence 𝒥1
∗ is Ne.(bG)CS. 

Example 3.5  

Let 𝔛= {𝑗
1
, 𝑗

2
}, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛 where𝒥1
∗ = 〈x, (

3

10
,

5

10
,

6

10
) , (

2

10
,

5

10
,

7

10
)〉. Then the 

Neutrosophic set 𝒥2
∗ = 〈x, (

5

10
,

5

10
,

4

10
) , (

6

10
,

5

10
,

3

10
)〉 is a Ne.bGCS but not a Ne.CS in 𝔛 

Theorem 3.6. 

Every Ne.(b)CS in (𝔛, 𝒩𝜏)is Ne.(bG)CS. 

Proof. 

Let 𝒥1
∗ be a Ne.(b)CS in NSTS 𝔛 . Let 𝒥1

∗ ⊆𝒥2
∗ . where𝒥2

∗ is Ne.(b)OS in 𝔛 . Since 𝒥1
∗ is Ne.(b)CS , 

Ne.bCl(𝒥1
∗) =𝒥1

∗⊆𝒥2
∗. Thus Ne.bCl(𝒥1

∗)⊆𝒥2
∗.Hence 𝒥1

∗is Ne.(bG)CS. 

Example 3.7. Let 𝔛= {𝑗
1
, 𝑗

2
}, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛  

where 𝒥1
∗ = 〈x, (

6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set 𝒥2

∗ = 〈x, (
8

10
,

5

10
,

2

10
) , (

9

10
,

5

10
,

1

10
)〉is a 

Ne.bGCS but not a Ne.bCS in 𝔛. 

Remark 3.8. 

(i).Every Ne. (bG)CS is Ne.(Gb)CS. 

(ii). Every Ne.(sG)CS is Ne.(bG)CS. 

(iii) Every Ne.(Gα)CS is Ne.(bG)CS. 

Example 3.9. 

Let 𝔛= {𝑗
1
, 𝑗

2
}, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛 

where 𝒥1
∗, = 〈x, (

3

10
,

5

10
,

6

10
) , (

6

10
,

5

10
,

2

10
)〉.Then the Neutrosophic set 𝒥2

∗ = 〈x, (
5

10
,

5

10
,

4

10
) , (

6

10
,

5

10
,

3

10
)〉 

is a Ne.GbCS but not Ne.(bG)CS in 𝔛 

Example 3.10. 

Let 𝔛= {𝑗
1
, 𝑗

2
}, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛 where 𝒥1
∗ = 〈x, (

2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉.  

Then the Neutrosophic set 𝒥2
∗ = 〈x, (

3

10
,

5

10
,

7

10
) , (

4

10
,

5

10
,

6

10
)〉is a Ne.bGCS in 𝔛 is not Ne.(sG)-CS 

Diagram:1 
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Theorem 3.11. 

A Ne. set 𝒥1
∗ of a NSTS (𝔛, 𝒩𝜏)is called Ne.(bG)OSiff𝒥2

∗⊆Ne.bint (𝒥1
∗), whenever 𝒥2

∗ is Ne.(b)CS and 

𝒥2
∗⊆𝒥1

∗. 

Proof. 

Suppose 𝒥1
∗is Ne.(bG)OS in 𝔛. Then 𝒥1

∗ 𝑐
is Ne.(bG)CS in 𝔛.Let 𝒥2

∗ be a Ne.(b)CS in 𝔛 such that 

𝒥2
∗⊆𝒥1

∗. Then 𝒥1
∗ 𝑐

⊆𝒥2
∗ 𝑐

,𝒥2
∗ 𝑐

is Ne.(b)OS in 𝔛. Since 𝒥1
∗ 𝑐

is Ne.(bG)CS, Ne.bCl(𝒥1
∗ 𝑐

) ⊆𝒥2
∗ 𝑐

,which implies 

(Ne. blnt(𝒥1
∗))𝐶⊆𝒥2

∗ 𝑐
. Thus 𝒥2

∗⊆Ne.blnt(𝒥1
∗). 

Conversely, assume that 𝒥2
∗ ⊆Ne.bint( 𝒥1

∗ ), whenever 𝒥2
∗ ⊆ 𝒥1

∗ and 𝒥2
∗ isNe.(b)CS in 𝔛 . Then 

(Ne. blnt(𝒥1
∗))𝐶⊆𝒥2

∗ 𝑐
⊆𝒥3

∗, where 𝒥3
∗ is Ne.(b)OS in 𝔛. Hence Ne.bCl(𝒥1

∗ 𝑐)⊆𝒥3
∗, which implies 𝒥1

∗𝑐is 

Ne.(bG)CS.Therefore 𝒥1
∗is Ne.(bG)OS. 

Theorem 3.12. 

If 𝒥1
∗ is Ne.(bG)CS in (𝔛, 𝒩𝜏) and 𝒥1

∗⊆𝒥2
∗⊆Ne.bCl(𝒥1

∗), then 𝒥2
∗ is Ne.(bG)CS in (𝔛, 𝒩𝜏). 

Proof. 

Let𝒥3
∗ be Ne.(b)-OS in 𝔛such that 𝒥2

∗⊆𝒥3
∗., then 𝒥1

∗⊆𝒥3
∗. Since 𝒥1

∗is a Ne.(bG)CS in 𝔛, it follows that 

Ne.bCl(𝒥1
∗)⊆𝒥3

∗. Now 𝒥2
∗⊆Ne.bCl(𝒥1

∗) implies Ne.bCl(𝒥2
∗) ⊆Ne.bCl(Ne.bCl(𝒥1

∗)) = Ne.bCl(𝒥1
∗). Thus 

Ne.bCl(𝒥2
∗)⊆𝒥3

∗. Hence 𝒥2
∗is Ne.(bG)CS in 𝔛. 

Theorem 3.13. 

If 𝒥1
∗ is Ne.(bG)OS in (𝔛, 𝒩𝜏)and Ne.blnt(𝒥1

∗) ⊆𝒥2
∗⊆𝒥1

∗then 𝒥2
∗ is Ne.(bG)-OS in (𝔛, 𝒩𝜏). 

Proof. 

 Let  𝒥1
∗ be Ne.(bG)OS and 𝒥2

∗be any Ne. set in 𝔛such that Ne.blnt(𝒥1
∗)⊆𝒥2

∗⊆𝒥1
∗. Then 𝒥1

∗ 𝑐
is 

Ne.(bG)CS and 𝒥1
∗ 𝑐

⊆𝒥2
∗ 𝑐

⊆Ne.bCl(𝒥1
∗ 𝑐

). Then 𝒥2
∗ 𝑐

is Ne.(bG)CS.Hence 𝒥2
∗is Ne.(bG)OS of 𝔛. 

Theorem 3.14. 

Finite intersection of Ne.(bG)CSs is a Ne.(bG)CS. 

Proof. 

Let𝒥1
∗and 𝒥2

∗be Ne.(bG)CSs in 𝔛. Let 𝔉⊆𝒥1
∗ ∩ 𝒥2

∗, where 𝔉is  Ne.(b)CS in 𝔛. Then 𝔉⊆𝒥1
∗and 

𝔉⊆𝒥2
∗.Since 𝒥1

∗and 𝒥2
∗are Ne.(bG)CSs, 𝔉⊆𝒥1

∗= Ne.blnt(𝒥1
∗) and 𝔉⊆𝒥2

∗= Ne.bInt(𝒥2
∗), which implies 

𝔉⊆(Ne.blnt(𝒥1
∗)∩(Ne.blnt(𝒥2

∗)). Hence 𝔉⊆Ne.bInt(𝒥1
∗ ∩ 𝒥2

∗). Therefore 𝒥1
∗ ∩ 𝒥2

∗Ne.(bG)CS in 𝔛. 

Theorem 3.15. 

A finite union of Ne.(bG)OS is a Ne.(bG)OS. 

Proof. 
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Let 𝒥1
∗and 𝒥2

∗be Ne.(bG)OS in 𝔛. Let 𝒥1
∗ ∪ 𝒥2

∗⊆ 𝔉, where 𝔉is Ne.(b)OS in 𝔛. Then 𝒥1
∗⊆ 𝔉or 

𝒥2
∗⊆ 𝔉.Since 𝒥1

∗and 𝒥2
∗are Ne.(bG)OS,Ne.bCl(𝒥1

∗)=𝒥1
∗⊆ 𝔉 or Ne.bCl(𝒥2

∗)=𝒥2
∗⊆ 𝔉, which implies 

Ne.bCl(𝒥1
∗)∪Ne.bCl(𝒥2

∗)⊆ 𝔉. Hence Ne.bCl(𝒥1
∗ ∪ 𝒥2

∗)⊆ 𝔉. Therefore 𝒥1
∗ ∪ 𝒥2

∗Ne.(bG)OS in 𝔛. 

However, union of two Ne.(bG)CSs need not be a Ne.(bG)CSas shown in the following example. 

Example 3.16. 

Let 𝔛= {𝑗
1
, 𝑗

2
}, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛  

Where 𝒥1
∗ = 〈x, (

6

10
,

5

10
,

4

10
) , (

8

10
,

5

10
,

2

10
)〉. 

Then Neutrosophic set 𝒥1
∗ = 〈x, (

1

10
,

5

10
,

9

10
) , (

8

10
,

5

10
,

2

10
)〉, 

𝒥2
∗ = 〈x, (

6

10
,

5

10
,

4

10
) , (

7

10
,

5

10
,

3

10
)〉is a are Ne.bGCSs but 𝒥1

∗ ∪ 𝒥2
∗  is not a Ne.bGCS in 𝔛,  

Theorem 3.17. 

If 𝒥1
∗ is Ne.(b)OS in (𝔛, 𝒩𝜏) and Ne.(bG)CS, then 𝒥1

∗ is Ne.(b)CS in (𝔛, 𝒩𝜏) . 

Proof. 

Let 𝒥1
∗be Ne.(b)OS and Ne.(bG)CS in 𝔛. For 𝒥1

∗⊆𝒥1
∗, by definition Ne.bCl(𝒥1

∗)⊆𝒥1
∗.  

But 𝒥1
∗⊆Ne.bCl(𝒥1

∗),which implies 𝒥1
∗=Ne.bCl(𝒥1

∗).Hence 𝒥1
∗is Ne.(b)CS in 𝔛. 

Definition 3.18. 

A NSTS (𝔛, 𝒩𝜏) is called a Neutrosophic bT1/2 space (in short Ne.(b)T*1/2 space) if every Ne.(bG)CS in 

𝔛 is Ne.-CS. 

Definition 3.19. 

A NSTS (𝔛, 𝒩𝜏)is called a Neutrosophic bT1/2 space (in short Ne.T1/2space ) if every Ne.(bG)CS in 𝔛 

is Ne.(b)CS. 

Theorem 3.20. 

A NSTS (𝔛, 𝒩𝜏)is Ne.(b)T1/2 space iff every Ne. set in (𝔛, 𝒩𝜏)is both Ne.(b)OS and Ne.(bG)OS. 

Proof. 

Let𝔛be Ne.(b)T1/2space and let 𝒥1
∗ be Ne.(bG)OS in 𝔛 . Then 𝒥1

∗ 𝑐
is Ne.(bG)CS 𝔛 . By definition 

allNe.(bG)CS in 𝔛is Ne.(b)CS, so 𝒥1
∗ 𝑐

is Ne.(b)CS and hence 𝒥1
∗is Ne.(b)OS in 𝔛.  

Conversely, let𝒥1
∗be Ne.(bG)CS. Then 𝒥1

∗ 𝑐
is Ne.(bG)OS which implies 𝒥1

∗ 𝑐
isNe.(b)OS. Hence 𝒥1

∗is 

Ne.(b)CS. Every Ne.(bG)CS in 𝔛is Ne.(b)CS.Therefore 𝔛is Ne.(b)T1/2 space. 

Theorem 3.21. 

A NSTS (𝔛, 𝒩𝜏)is Ne.(b)T1/2 space iff every Ne. set in (𝔛, 𝒩𝜏)is both Ne.OS and Ne.(bG)OS. 

Remark 3.22.  

A NSTS (𝔛, 𝒩𝜏)  is 

(i) Ne.(b)T1/2space if every Ne.(bG)OS in 𝔛 is Ne.(b)OS. 

(ii) Ne.(b)T*1/2space if ∀Ne.(Gb)OS in 𝔛 is Ne-open. 

Remark 3.23.  

In a NSTS ((𝔛, 𝒩𝜏) 

(i) Every Ne.Tl/2 space is Ne.(b)Tl/2 

(ii) Every Ne.(b)Tl/2  space  is Ne.(Gb)Tl/2 

(iii) Every Ne.(b)T1/2  space  is Ne.(Gb)T1/2 
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4. Ne.(bG)-Continuous and Ne.(Gb)-closed mappings 

In this section, Neutrosophic bg-CTS maps, Neutrosophic bg-irresolute maps, and Neutrosophic bg- 

homeomorphism in Neutrosophic topological spaces are introduced and studied. 

Definition 4.1. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)  is said to be Neutrosophic b generalized Continuous 

(Ne.(bG)-CTS), if 𝜚−1(𝒥1
∗) is Ne.(bG)CS in 𝔛, for every Neutrosophic-CS 𝒥1

∗ in 𝔜. 

Theorem 4.2. 

𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)isNe.(bG)-CTS iff the inverse image of each NSOS in 𝔜 is Ne.(bG)OS in 𝔛. 

Proof. 

Let 𝒥2
∗ be a Ne.(bG)OS in 𝔜 . Then 𝒥2

∗ 𝑐
is Ne.(bG)CS in 𝔜 . Since ϱ is Ne.(bG)-CTS 𝜚−1 (𝒥2

∗ 𝑐
) = 

(𝜚−1(𝒥2
∗) )𝑐is Ne.(bG)CS in 𝔛.Thus 𝜚−1(𝒥2

∗) is Ne.(bG)OS in 𝔛. 

Converse, is obvious. 

Theorem 4.3. 

Every Ne.-CTS map is Ne.(bG)-CTS. 

Proof. 

Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) be Ne.-CTS function. Let 𝒥1
∗ be a Ne. OS in 𝔜. Since ϱ is Ne.-CTS, 𝜚−1 Ne. 

OS in𝔛. Mean while each Ne.OS is Ne.(bG)OS, 𝜚−1 is Ne.(bG)OS in 𝔛.Therefore ϱ is Ne.(bG)-CTS. 

Example 4.4. 

Let 𝔛= {𝑗
1
, 𝑗

2
}= 𝔜, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛 𝒩𝜎= {0, 𝒥2
∗, 1} on 𝔜,then Then the Neutrosophic sets 

𝒥1
∗ = 〈x, (

2

10
,

5

10
,

8

10
) , (

3

10
,

5

10
,

7

10
)〉.  

𝒥2
∗ = 〈x, (

7

10
,

5

10
,

3

10
) , (

6

10
,

5

10
,

4

10
)〉is a Ne.bGCS in 𝔛. 

Identity mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) ϱ is Ne.(Gb)-CTS but not Ne.-CTS 

Definition 4.5 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)  is said to be Neutrosophic b-generalized irresolute (briefly 

Ne.(bG)-irresolute), if 𝜚−1(𝒥1
∗) is Ne.(bG)CS set in 𝔛, for each Ne.(bG) CS 𝒥1

∗ in 𝔜. 

Theorem 4.6. 

Every Ne.(bG)-irresolute map is Ne.(bG)-CTS. 

Proof. 

Let 𝜚: 𝔛 ⟶ 𝔜  be Ne.(bG)-irresolute and let 𝒥1
∗ be Ne.-CS in 𝔜 . Since every Ne.-CS is Also 

Ne.(bG)CS, 𝒥1
∗  is Ne.(bG)CS in 𝔜. Since 𝜚: 𝔛 ⟶ 𝔜 is Ne.(bG)-irresolute, 𝜚−1 (𝒥1

∗ ) is Ne.(bG)CS. 

Thus inverse image of every Ne.CS in 𝔜 is Ne.(bG)CS in 𝔛. Therefore the function 𝜚: 𝔛 ⟶ 𝔜 is 

Ne.(bG)-CTS. The converse is not true. 

Example 4.7. 

Let 𝔛= {𝑗
1
, 𝑗

2
}= 𝔜, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛 𝒩𝜎= {0, 𝒥2
∗, 1} on 𝔜,then  

Then the Neutrosophic sets 

𝒥1
∗ = 〈x, (

4

10
,

5

10
,

7

10
) , (

5

10
,

5

10
,

6

10
)〉, and𝒥2

∗ = 〈x, (
8

10
,

5

10
,

3

10
) , (

4

10
,

6

10
,

7

10
)〉 . 

Then Identity mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)  

We have 𝒥3
∗ = 〈x, (

2

10
,

5

10
,

9

10
) , (

6

10
,

5

10
,

5

10
)〉 is a Ne.(bG)-CTS  maps but not Ne.(bG)-irresolute maps. 

Theorem 4.8. 
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Every Ne.(bG)- CTS map is Ne.(Gb) -CTS. 

Proof. 

Clear from the fact that Ne.(bG)CS is Ne.(Gb)CS. 

Theorem 4.9. 

Let 𝜚: 𝔛 ⟶ 𝔜, 𝜁: 𝔜 ⟶ ℨbe two mappings. Then 

(i) ζ∘ϱ is Ne.(bG)-CTS, if ϱ is Ne.(bG)-CTS and ζ is Ne.-CTS. 

(ii) ζ∘ϱ is Ne.(bG)- irresolute, if ϱ and ζ are Ne.(bG)- irresolute. 

(iii) ζ∘ϱ is Ne.(bG)-CTS if ϱ is Ne.(bG)-irresolute and ζ is Ne.(bG)-CTS. 

Proof. 

(i)Let 𝒥2
∗be Ne.CS in ℨ. Since ζ: 𝔜 ⟶ ℨis Neutrosophic CTS, by definition 𝜁−1(𝒥2

∗) is Ne.CS  of 𝔜. 

Now 𝜚: 𝔛 ⟶ 𝔜is Ne.(bG)-CTS so 𝜚−1(𝜁−1(𝒥2
∗)) =(ζ ∘ ϱ)−1(𝒥2

∗) is Ne.(bG)CS in 𝔛. Hence ζ∘ϱ: 𝔛 ⟶ ℨis 

Ne.(bG)-CTS. 

(ii) Let ζ:𝔜 ⟶ ℨbe Ne.(bG)-irresolute and let 𝒥2
∗be Ne.(bG)CS subset in ℨ. Since ζis 

Ne.(bG)-irresolute by definition , 𝜁−1(𝒥2
∗) is Ne.(bG)CS in 𝔜. Also 𝜚: 𝔛 ⟶ 𝔜is Ne.(bG)-irresolute, so 

𝜚−1(𝜁−1(𝒥2
∗)) =(ζ ∘ ϱ)−1(𝒥2

∗) is Ne.(bG)CS. Thus ζ ∘ ϱ:𝔛 ⟶ ℨis Ne.(bG)-irresolute. 

(iii) Let 𝒥2
∗be Ne.(b)-CS in ℨ. Since ζ:𝔜 ⟶ ℨis Ne.(bG)-CTS, 𝜁−1(𝒥2

∗) is Ne.(bG)CS in 𝔜. Also 𝜚: 𝔛 ⟶

𝔜is Ne.(bG)-irresolute, so every Ne.(bG)CS in 𝔜 is Ne.(bG)CS in 𝔛. Hence 𝜚−1𝜁−1(𝒥2
∗)) = (ζ ∘

ϱ)−1(H) is Ne.(bG)CS in 𝔛. Thus ζ ∘ ϱ: 𝔛 ⟶ ℨ is Ne.(bG)-irresolute. 

Theorem 4.11. 

If 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is Ne.(b)*-CTS and ζ :( 𝔜, 𝒩𝜎)⟶ (ℨ, 𝒩𝛿) is Ne.(bG)-CTS 

then ζ ∘ ϱ: (𝔛, 𝒩𝜏) ⟶(ℨ, 𝒩𝛿)is Ne.(bG)CTS if 𝔜 is Ne.(b)T1/2-space. 

Proof. 

Suppose 𝒥1
∗is Ne.(b)-CS subset of ℨ. Since ζ:𝔜 ⟶ ℨ is Ne.(bG)CTS 𝜁−1(𝒥

2
∗) is Ne.(bG)CS subset of 

𝔜. Now since 𝔜 is Ne.(b)T1/2-space, 𝜁−1(𝒥2
∗) is Ne.(b)-CS subset of 𝔜. Also since 𝜚: 𝔛 ⟶ 𝔜 is 

Ne.(b)*-CTS ϱ−1(𝜁−1(𝒥2
∗)) =(ζ ∘ ϱ)−1(𝒥2

∗) is Ne.(b)-CS. Thus ζ ∘ ϱ : 𝔛 ⟶ ℨ is Ne.(bG)-CTS. 

Theorem 4.12. 

Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)be Ne.(bG)-CTS. Then ϱ is Ne.(b)-CTS if 𝔛 is Ne.(b)T1/2space. 

Proof.  

Let 𝒥2
∗ be Ne.-CS in 𝔜. Since 𝜚: 𝔛 ⟶ 𝔜is Ne.(bG)CTS, ϱ−1(𝒥2

∗ ) is Ne.(bG)CS subset in 𝔛. Since 𝔛 is 

Ne.(b)T1/2 space, by hypothesis every Ne.(bG)CS is Ne.(b)-CS . Hence ϱ−1(𝒥1
∗ ) is Ne.(b)CS subset in 

𝔛. Therefore 𝜚: 𝔛 ⟶ 𝔜 is Ne.(b)-CTS. 

Theorem 4.13. 

Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) be onto Ne.(bG)-irresolute and Ne. b*CS. If 𝔛 is Ne.(b)T1/2-space, then 

(𝔜, 𝒩𝜎) is Ne.(b)T1/2-space. 

Proof. 

 Let 𝒥1
∗ be a Ne.(bG)CS in 𝔜. Since 𝜚: 𝔛 ⟶ 𝔜is Ne.(bG)irresolute,ϱ−1(𝒥1

∗) is Ne.(bG)CS in 𝔛. As 𝔛 

is Ne.(b)T1/2-space, ϱ−1(𝒥1
∗) is Ne.(b)CS in 𝔛. Also 𝜚: 𝔛 ⟶ 𝔜 is Ne. b*CS, ϱ(ϱ−1(𝒥1

∗)) is Ne.(b)CS  in 

𝔜. Since 𝜚: 𝔛 ⟶ 𝔜is onto, ϱ(𝜚−1(𝒥1
∗)) =𝒥1

∗. Thus 𝒥1
∗is Ne.(b)CS in 𝔜. Hence(𝔜, 𝒩𝜎)is also 

Ne.(b)T1/2-space. 

Theorem 4.14. 

Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) be Ne.(bG)-CTS and ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿) be Ne.g-CTS. Then ζ ∘ ϱ is 

Ne.(bG)- CTS if 𝔜 is Ne.T1/2 space. 

Proof. 
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Let 𝒥1
∗ be Ne.-CS in ℨ. Since ζ is Ne.g-CTS, 𝜁−1(𝒥1

∗) is Ne.g-CS in 𝔜. But 𝔜is Ne.T1/2 space and so 

𝜁−1(𝒥1
∗) is Ne.-CS in 𝔜. Since ϱ is Ne.(bG)-CTS ϱ−1(𝜁−1(𝒥1

∗)) = (ζ ∘ ϱ)−1(𝒥
1
∗ ) is Ne.(bG)CS in 𝔛. Hence 

ζ ∘ ϱ Ne.(bG)-CTS. 

Theorem 4.15. 

If the bijective map 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is Ne.(b)*-open and Ne.(b)-irresolute, then 𝜚: (𝔛, 𝒩𝜏) ⟶

(𝔜, 𝒩𝜎) is Ne.(bG)-irresolute. 

Proof. 

Let 𝒥1
∗ be a Ne.(bG)CS in 𝔜 and let 𝜚−1(𝒥1

∗) ⊆𝒥2
∗where 𝒥2

∗is a Ne.(b)OS in 𝔛. Clearly, 𝒥1
∗⊆ϱ(𝒥2

∗). 

Since 𝜚: 𝔛 ⟶ 𝔜is Ne.(b)*-open map, ϱ(𝒥2
∗) is Ne.(b)-open in 𝔜 and 𝒥1

∗ is Ne.(bG)CS in 𝔜.Then 

Ne.bCl(𝒥1
∗)⊆ϱ(𝒥2

∗), and thus ϱ−1(Ne.bCl(𝒥1
∗))⊆𝒥2

∗. Also 𝜚: 𝔛 ⟶ 𝔜 irresolute and Ne.bCl(𝒥1
∗) is a 

Ne.(b)-CS in 𝔜, then ϱ−1(Ne.bCl(𝒥1
∗)) is Ne.(b)CS in 𝔛. Thus Ne.bCl(ϱ−1(𝒥

1
∗))⊆Ne.bCl(ϱ−1Ne. 

bCl(𝒥1
∗)))⊆𝒥2

∗. So ϱ−1(𝒥1
∗) is Ne.(bG)CS in 𝔛. Hence 𝜚: 𝔛 ⟶ 𝔜is Ne.(bG)-irresolute map. 

Definition 4.16. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is said to be Neutrosophic bg-open (briefly Ne.(bG)OS) if the image 

of every Ne.-OS in 𝔛, is Ne.(bG)OS in 𝔜. 

Definition 4.17. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is said to be Neutrosophic bg-CS (briefly Ne.(bG)CS) if the image of 

every Ne.CS  in 𝔛 is Ne.(bG)CS in 𝔜. 

Definition 4.18. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is said to be Neutrosophic bg*-open (briefly Ne.(bG)*-OS) if the 

image of every Ne.(bG)OS in 𝔛 is Ne.(bG)OS in 𝔜. 

Definition 4.19. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is said to be Neutrosophic bg-CS (briefly Ne.(bG)*-CS) if the image 

of every Ne.(bG)CS in 𝔛 is Ne.(bG)CS in 𝔜. 

Remark 4.20. 

(i)Every Ne.(bG)*-CS mapping is Ne.(bG)CS. 

(ii)Every Ne.(bG)*-CS mapping is Ne.(Gb)* -CS. 

Theorem 4.23. 

If 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)) is Ne.CS and ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿) is Ne.(bG)CS, then ζ ∘ ϱ is Ne.(bG)CS. 

Proof.  

Let 𝒥1
∗ be a Ne.CS  in 𝔛. Then ϱ(𝒥1

∗) is Ne.CSin 𝔜. Since ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿)is Ne.(bG)CS, ζ(ϱ(𝒥1
∗)) = 

(ζ ∘ ϱ)(𝒥1
∗) is Ne.(bG)CS in ℨ. Therefore ζ ∘ ϱ is  Ne.(bG)CS. 

Theorem 4.24. 

If 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is a Ne.(bG)CS map and 𝔜 is Ne.(b)T1/2 space, then ϱ is a Ne.-CS. 

Proof.  

Let 𝒥1
∗ be a Ne.CS in 𝔛. Then ϱ(𝒥1

∗) is Ne.(Gb)-CS in 𝔜,since ϱ is  Ne.(Gb)CS. Again since 𝔜 is 

Ne.(b)T1/2space, ϱ(𝒥1
∗) is Ne.-CS in 𝔜. Hence 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is a ϱ-CS. 

Theorem 4.25. 

If 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is a Ne.(bG)CS map and 𝔜 is Ne.(b)T1/2 space, then ϱ is a Ne.(b)-CS map. 

Theorem 4.26. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is Ne.(bG)CS iff for each Ne. set 𝒥1
∗ in 𝔜 and Ne.OS 𝒥2

∗ such that 

𝜚−1(𝒥1
∗) ⊆𝒥2

∗, there is a Ne.(bG)OS𝒥3
∗ of 𝔜 such that 𝒥1

∗⊆𝒥3
∗ and ϱ−1(𝒥3

∗)⊆𝒥2
∗. 

Proof. 
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Suppose ϱ is  Ne.(bG)CS map. Let 𝒥1
∗  be a Ne. set of 𝔉,and 𝒥2

∗ be an Ne.OS of 𝔛 , such that 

ϱ−1(𝒥1
∗)⊆𝒥2

∗. Then 𝒥3
∗=(𝒥2

∗𝑐)𝑐is a Ne.(bG)OS in 𝔉 such that 𝒥1
∗⊆𝒥3

∗and 𝜚−1(𝒥3
∗)⊆𝒥2

∗. 

Conversely, suppose that 𝔉  is a Ne.CS  of𝔛 . Then 𝜚−1 ((ϱ ( 𝔉))𝐶 )⊆𝔉𝐶 , and 𝔉𝐶 , is Ne.OS. By 

hypothesis, there is a Ne.(bG)OS 𝒥3
∗  of 𝔜  such that (ϱ ( 𝔉))𝐶 ⊆𝒥3

∗ and 𝜚−1 (𝒥3
∗ ) ⊆𝔉𝐶 . Therefore 

𝔉⊆(𝜚−1(𝒥3
∗))

𝑐

Hence 𝒥3
∗𝑐 ⊆ϱ( 𝒥3

∗ )⊆ϱ (𝜚−1(𝒥3
∗))

𝑐

⊆ 𝒥3
∗ 𝑐

, which implies ϱ(𝔉 ) = 𝒥3
∗𝑐 . Since 𝒥3

∗𝑐 is 

Ne.(bG)CS, ϱ( 𝔉) is Ne.(bG)CS and thus ϱ is a Ne.(bG)CS map. 

Theorem 4.27. 

If 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) and ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿) are Ne.(bG)CS maps and 𝔜 is Ne.(b)T1/2 space, 

then ζ ∘ ϱ:𝔛 ⟶ ℨ is Ne.(bG)CS. 

Proof.Let 𝒥1
∗ be a Ne.-CS in 𝔛. Since 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is Ne.(bG)CS, ϱ(𝒥1

∗) is Ne.(bG)CS in 𝔉. 

Now 𝔉 is Ne.(b)T1/2space, so ϱ(𝒥1
∗) is Ne.-CS in 𝔉. Also ζ : 𝔜 ⟶ ℨ is Ne.(bG)CS, ζ(ϱ(𝒥1

∗)) = (ζ ∘

ϱ)((𝒥1
∗) is Ne.(bG)CS in ℨ. Therefore ζ ∘ ϱ is Ne.(bG)CS. 

Theorem 4.28.If 𝒥1
∗ is Ne.(bG)CS in 𝔛 and 𝜚: 𝔛 ⟶ 𝔜 is bijective, Ne.(b)-irresolute and Ne.(bG)CS, 

then ϱ(𝒥1
∗) is Ne.(bG)CS in 𝔜. 

Proof. 

Let ϱ(𝒥1
∗)⊆𝒥2

∗ where 𝒥2
∗is Ne.(b)OS in 𝔉. Since ϱ is Ne.(b)irresolute,𝜚−1(𝒥2

∗) is Ne.(b)OS containing 

𝒥1
∗. Hence Ne.bCl(𝒥1

∗)⊆𝜚−1(𝒥2
∗) as 𝒥1

∗ is Ne.(bG)CS. Since ϱ is  Ne.(bG)CS, ϱ(Ne.bCl(𝒥1
∗)) is 

Ne.(bG)CS contained in the Ne.(b)OS 𝒥2
∗, which implies Ne.bCl(ϱ(Ne.bCl(𝒥1

∗))) ⊆𝒥2
∗and hence 

Ne.bCl(ϱ(𝒥1
∗))⊆𝒥2

∗. So ϱ(𝒥1
∗) is Ne.(bG)CS in 𝔉. 

Theorem 4.29. 

If 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is Ne.(bG)CS and ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿)is Ne.(bG)*-CS, then ζ ∘ ϱ is Ne.(bG) 

-CS. 

Proof.Let 𝒥1
∗ be Ne.CS in 𝔛. Then ϱ(𝒥1

∗) is Ne.(bG)CS in 𝔜.Since ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿)is Ne.(bG)*-CS. 

Thus ζ(ϱ(𝒥1
∗)) = (ζ ∘ ϱ)(𝒥1

∗) is Ne.(bG)CS in ℨ. Therefore ζ ∘ ϱ is Ne.(bG)CS.If 𝜚: (𝔛, 𝒩𝜏) ⟶

(𝔜, 𝒩𝜎)and ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿) are Ne.(bG)*CS maps, then ζ ∘ ϱ: 𝔛 ⟶ ℨ is Ne.(bG)* CS. 

Theorem 4.30. 

Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎), ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿)be two maps such that ζ ∘ ϱ: 𝔛 ⟶ ℨ is Ne.(bG)CS. 

(i) If ϱ is Ne.-CTS and surjective, then ζ is Ne.(bG)CS. 

(ii) If ζ is Ne.(bG)-irresolute and injective, then ϱ is Ne.(bG)CS. 

Proof. 

(i). Let 𝔉 be Ne.CS in 𝔜. Then 𝜚−1(𝔉)is Ne.CS in 𝔛,as ϱ is  Ne.-CTS. Since ζ ∘ ϱ is Ne.(bG)CS map 

and ϱ is  surjective,( ζ ∘ ϱ)(𝜚−1(𝔉)) = ζ(𝔉) is Ne.(bG)CS in ℨ. Hence ζ:𝔜 ⟶ ℨ is Ne.(bG)CS. 

(ii).Let 𝔉 be a Ne. CS in 𝔛. Then (ζ ∘ ϱ)( 𝔉) is Ne.(bG)CS in ℨ. Since ζ is Ne.(bG)-irresolute and 

injective 𝜁−1(ζ ∘ ϱ)( 𝔉) = ϱ(𝔉) is Ne.(bG)CS in 𝔜. Hence ϱ is a Ne.(bG)CS. 

Theorem 4.31. 

Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎), ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿)be two maps such that ζ ∘ ϱ : 𝔛 ⟶ ℨ is Ne.(bG)*CS 

map. 

(i) If ϱ is Ne.(bG)-CTS and surjective, then ζ is Ne.(bG)CS. 

(ii) If ζ is Ne.(bG)-irresolute and injective, then ϱ is Ne.(bG)*-CS. 

Theorem 4.32.Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) then the following statements are equivalent 

(i) ϱ is Ne.(bG)-irresolute. 

(ii) for every Ne.(bG)CS 𝒥1
∗ in 𝔜,𝜚−1(𝒥1

∗) is Ne.(bG)CS in 𝔛. 
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Proof.(i)⇒ (ii)Obvious. 

(ii)⇒(i) Let 𝒥1
∗is a Ne.(bG)CS in 𝔜 which implies 𝒥1

∗𝑐, is Ne.(bG)OS in 𝔜. 𝜚−1(𝒥1
∗𝑐) is Ne.(bG)-open 

in 𝔛 implies 𝜚−1(𝒥1
∗)is Ne.(bG)CS in 𝔛.Hence ϱ is Ne.(bG)-irresolute. 

Neutrosophic bg- homeomorphism and Neutrosophic bg*-homeomorphism are defined as follows. 

Definition 4.33. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is called Neutrosophic bg-homeomorphism (briefly 

Ne.(b)-homeomorphism) if ϱ and 𝜚−1 are Ne.(bG)CTS. 

Definition 4.34. 

A mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is called Neutrosophic bg*-homeomorphism (briefly 

Ne.(bG)*-homeomorphism) if ϱ and 𝜚−1are Ne.(bG)irresolute. 

Theorem 4.35. 

Every Ne.-homeomorphism is Ne.(bG)-homeomorphism. 

The converse of the above theorem need not be true as seen from the following example. 

Example 4.36.  

Let 𝔛= {𝑗
1
, 𝑗

2
}= 𝔜, 𝒩𝜏= {0, 𝒥1

∗, 1}, is a N.T.on 𝔛 𝒩𝜎= {0, 𝒥2
∗, 1} on 𝔜, 

Then Neutrosophic sets 

𝒥1
∗ = 〈x, (

10

10
,

5

10
,

0

10
) , (

8

10
,

5

10
,

2

10
)〉, 

 𝒥2
∗ = 〈x, (

3

10
,

5

10
,

7

10
) , (

6

10
,

6

10
,

4

10
)〉 . and 𝒥3

∗ = 〈x, (
4

10
,

5

10
,

6

10
) , (

6

10
,

5

10
,

4

10
)〉 

Define mapping 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) by ϱ(𝑗
1
)= 𝑗

1
 and ϱ(𝑗

2
) = 𝑗

2
 

Then ϱ is Ne.(bG)-homeomorphism but not Ne.-homeomorphism  

Theorem 4.37. 

Every Ne.(bG)*-homeomorphism is Ne.(bG)- homeomorphism. 

Proof. 

Let 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)  be Ne.(Gb)*-homeomorphism. Then ϱ and 𝜚−1  are Ne.(bG)-irresolute 

mappings. By theorem 4.7 ϱ and 𝜚−1 are Ne.(bG)-CTS. Hence 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎) is 

Ne.(bG)-homeomorphism. 

Theorem 4.38. 

If 𝜚: (𝔛, 𝒩𝜏) ⟶ (𝔜, 𝒩𝜎)is Ne.(bG)-homeomorphism and  

ζ :(𝔜, 𝒩𝜎) ⟶(ℨ,𝒩𝛿) is Ne.(bG)-homeomorphism and 𝔜 is Ne.(b)T1/2 space, 

 then ζ ∘ ϱ: 𝔛 ⟶ ℨ is Ne.(bG)-homeomorphism. 

Proof.  

To show that ζ ∘ ϱ  and (ζ ∘ ϱ)−1 are Ne.(bG)- CTS. Let 𝒥1
∗ be a Ne.OS in ℨ . Since ζ: 𝔜 ⟶ ℨ is 

Ne.(bG)- CTS, 𝜁−1(𝒥1
∗) is Ne.(bG)open in 𝔜. Then 𝜁−1(𝒥1

∗) is a Ne.-open in 𝔜as 𝔜 is  Ne.(b)T1/2 

space. Also since ϱ :𝔛 ⟶ 𝔜 is Ne.(bG)- CTS, 𝜚−1(𝜁−1(𝒥1
∗)) = (ζ ∘ ϱ)−1(𝒥1

∗) is Ne.(bG)-open in 𝔛. 

Therefore ζ ∘ ϱ is Ne.(bG) CTS. Again, let 𝒥1
∗ be a Ne.OS in 𝔛. Since 𝜚−1 : 𝔜 ⟶ 𝔛 is Ne.(bG)- CTS, 

(𝜚−1)−1(𝒥1
∗)) = ϱ(𝒥1

∗) is Ne.(bG)OS in 𝔜. And so ϱ(𝒥1
∗) is Ne.-open in 𝔜 since 𝔜 is Ne.(b)T1/2 space. 

Also since 𝜁−1:ℨ ⟶ 𝔜 is Ne.(bG)-CTS, (𝜁−1)−1(ϱ(𝒥1
∗)) = ζ(ϱ(𝒥1

∗)) = (ζ ∘ ϱ)(𝒥1
∗) is Ne.(bG)-open in ℨ. 

Therefore ((ζ ∘ ϱ)−1)−1(𝒥1
∗) = (ζ ∘ ϱ)(𝒥1

∗) is Ne.(bG)OS in ℨ. Hence (ζ ∘ ϱ)−1 is Ne.(bG) - CTS. Thus 

ζ ∘ ϱ is Ne.(bG) - homeomorphism. 
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Abstract:  Neutrosophic graphs are employed as a mathematical key to hold an imprecise and 

unspecified data. Vague sets gives more intuitive graphical notation of vague information, that 

delicates crucially better analysis in data relationships, incompleteness and similarity measures. In 

this paper, the neutrosophic vague line graphs are introduced. The necessary and sufficient 

condition for a line graph to be neutrosophic vague line graph is provided. Further, homomorphism, 

weak vertex and weak line isomorphism are discussed. The given results are illustrated with 

suitable example.  

 

Keywords: Neutrosophic vague line graph, Weak isomorphism of neutrosophic vague line graph, 

Homomorphism. 

 

 

1. Introduction 

The line graph, 𝐿(𝐺), of a graph 𝐺 is the intersection graph of the set of lines of 𝐺. Hence 

the vertices of 𝐿(𝐺)  are the lines of 𝐺  with two vertices of 𝐿(𝐺)  adjacent whenever the 

corresponding lines of 𝐺 are adjacent [20]. Vague sets are denoted as a higher-order fuzzy sets 

which develops the solution process are more complex to obtain the results more accurate than 

fuzzy but not affecting the complexity on computation time/volume and memory space. Can we see 

an example, suppose there are 10 patients to check a pandemic during testing. In which, there are 

four patients having positive, five will have negative and one is undecided or yet to come. In the 

view of neutrosophic concepts, the mathematical form is represented as 𝑥(0.4,0.1,0.5). Thus it is 

clear that, the neutrosophic field arises to hold the indeterminacy data. It generalizes the fuzzy sets 

and intuitionistic sets from the philosophical viewpoint. The single-valued neutrosophic set is the 

generalisation of intuitionistic fuzzy sets and is used expediently to deal with real-world problems, 

especially in decision support [1, 2, 3]. The computation of believe in that element (truth), the 

disbelieve in that element (falsehood) and the indeterminacy part of that element with the sum of 

these three components are strictly less than 1. The neutrosophic set is introduced by the author 

Smarandache in order to use the inconsistent and indeterminate information, and has been studied 

extensively (see [28]-[33]). In the definition of neutrosophic set, the indeterminacy value is quantified 

explicitly and truth-membership, indeterminacy-membership and false-membership are defined 

mailto:sathamhussain5592@gmail.com
mailto:hssn_jhr@yahoo.com
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completely independent with the sum of these values lies between 0 and 3. Neutrosophic set and 

related notions paid attention by the researchers in many weird domains. The combination of 

neutrosophic set and vague set are introduced by Alkhazaleh in 2015 [6]. Single valued neutrosophic 

graph are established in [11, 12]. 

The neutrosophic graph is efficiently model the inconsistent information about any real-life 

problem. Some types of neutrosophic graphs and co-neutrosophic graphs are discussed in [16]. 

Intuitionistic bipolar neutrosophic set and its application to graphs are established in [25]. Al-Quran 

and Hassan in [5] introduced a combination of neutrosophic vague set and soft expert set to 

improving the reason-ability of decision making in real life application. Neutrosophic vague graphs 

are investigated in [24]. Comparative study of regular and (highly) irregular vague graphs with 

applications are obtained in [13]. Furthermore, some properties of degree of vague graphs, 

domination number and regularity properties of vague graphs are established by the author 

Borzooei in [7, 8, 9]. Neutrosophic vague set theory was extensively studied in [6]. The concept of a 

single-valued neutrosophic line graph of a single-valued neutrosophic graph is introduced by the 

authors in [21]. In which, a necessary and sufficient condition for a single-valued neutrosophic graph 

to be isomorphic to its corresponding single-valued neutrosophic line graph. Further, some 

remarkable properties of strong neutrosophic vague graphs, complete neutrosophic vague graphs 

and self-complementary neutrosophic vague graphs are investigated in [24]. Moreover, Cartesian 

product, lexicographic product, cross product, strong product and composition of neutrosophic 

vague graphs are investigated in [22]. As far, there exists no research work on the concept of 

neutrosophic vague line graphs until now. In order to fill this gap in the literature and motivated by 

papers [6, 21, 24], we put forward a new idea concerning the neutrosophic vague line graphs. The 

main contributions of this paper are as follows:   

    • Neutrosophic Vague Line Graphs (NVLGs) are introduced and explained with an 

example. The obtained neutrosophic vague line graph 𝐿(𝔾) is a strong neutrosophic vague graph.  

    • The necessary and sufficient condition for a line graph to be NVLG is formulated with 

supporting proofs.  

    • Furthermore, the results of homomorphism, weak vertex and weak line isomorphism 

are developed.  

The manuscript is organised as follows: The basic definitions and example which are 

essential for the main results are given in Section 2. The necessary and sufficient condition of NVLG 

are provided and also the definition of NVLGs, homomorphism and weak isomorphism are given in 

Section 3. Finally, a conclusion is provided.  

 

2  Preliminaries 

In this section, basic definitions and example are given.  

Definition 2.1 [34] A vague set 𝔸 on a non empty set 𝕏 is a pair (𝑇𝔸, 𝐹𝔸), where 𝑇𝔸: 𝕏 → [0,1] and 

𝐹𝔸: 𝕏 → [0,1] are true membership and false membership functions, respectively, such that  

0 ≤ 𝑇𝔸(𝑥) + 𝐹𝔸(𝑥) ≤ 1 for any 𝑥 ∈ 𝕏. 
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 Let 𝕏 and 𝕐 be two non-empty sets. A vague relation ℝ of 𝕏 to 𝕐 is a vague set ℝ on 

𝕏 × 𝕐 that is ℝ = (𝑇ℝ, 𝐹ℝ), where 𝑇ℝ: 𝕏 × 𝕐 → [0,1], 𝐹ℝ: 𝕏 × 𝕐 → [0,1] and satisfy the condition:  

0 ≤ 𝑇ℝ(𝑥, 𝑦) + 𝐹ℝ(𝑥, 𝑦) ≤ 1 for any 𝑥, 𝑦 ∈ 𝕏. 

  

Definition 2.2 [7] Let 𝔾∗ = (𝕍, 𝔼) be a graph. A pair 𝔾 = (𝕁, 𝕂) is called a vague graph on 𝔾∗, where 𝕁 =

(𝑇𝕁, 𝐹𝕁) is a vague set on 𝕍 and 𝕂 = (𝑇𝕂, 𝐹𝕂) is a vague set on 𝔼 ⊆ 𝕍 × 𝕍 such that for each 𝑥𝑦 ∈ 𝔼, 

𝑇𝕂(𝑥𝑦) ≤ min(𝑇𝕁(𝑥), 𝑇𝕁(𝑦)) and 𝐹𝕂(𝑥𝑦) ≥ max(𝐹𝕁(𝑥), 𝐹𝕁(𝑦)).  

Definition 2.3 [28]  A Neutrosophic set 𝔸 is contained in another neutrosophic set 𝔹, (i.e) 𝔸 ⊆ 𝔹 if ∀𝑥 ∈

𝕏, 𝑇𝔸(𝑥) ≤ 𝑇𝔹(𝑥), 𝐼𝔸(𝑥) ≥ 𝐼𝔹(𝑥)and 𝐹𝔸(𝑥) ≥ 𝐹𝔹(𝑥).  

Definition 2.4 [14, 28] Let 𝕏 be a space of points (objects), with generic elements in 𝕏 denoted by 𝑥. A 

single valued neutrosophic set 𝔸  in 𝕏  is characterised by truth-membership function 𝑇𝔸(𝑥), 

indeterminacy-membership function 𝐼𝔸(𝑥) and falsity-membership-function 𝐹𝔸(𝑥), 

For each point 𝑥 in 𝕏, 𝑇𝔸(𝑥), 𝐹𝔸(𝑥), 𝐼𝔸(𝑥) ∈ [0,1]. Also 𝐴 = {𝑥, 𝑇𝔸(𝑥), 𝐹𝔸(𝑥), 𝐼𝔸(𝑥)} and  

0 ≤ 𝑇𝔸(𝑥) + 𝐼𝔸(𝑥) + 𝐹𝔸(𝑥) ≤ 3. 

Definition 2.5 [4, 12] A neutrosophic graph is defined as a pair 𝔾∗ = (𝕍, 𝔼) where  

(i) 𝕍 = {𝑣1, 𝑣2, . . , 𝑣𝑛}  such that 𝑇1: 𝕍 → [0,1] , 𝐼1: 𝕍 → [0,1]  and 𝐹1: 𝕍 → [0,1]  denote the 

degree of truth-membership function, indeterminacy-function and falsity-membership function, 

respectively, and  

0 ≤ 𝑇1(𝑣) + 𝐼1(𝑣) + 𝐹1(𝑣) ≤ 3,  

 (ii) 𝔼 ⊆ 𝕍 × 𝕍 where 𝑇2: 𝔼 → [0,1], 𝐼2: 𝔼 → [0,1] and 𝐹2: 𝔼 → [0,1] are such that  

𝑇2(𝑢𝑣) ≤ min{𝑇1(𝑢), 𝑇1(𝑣)}, 

𝐼2(𝑢𝑣) ≤ min{𝐼1(𝑢), 𝐼1(𝑣)}, 

𝐹2(𝑢𝑣) ≤ max{𝐹1(𝑢), 𝐹1(𝑣)}, 

and 0 ≤ 𝑇2(𝑢𝑣) + 𝐼2(𝑢𝑣) + 𝐹2(𝑢𝑣) ≤ 3, ∀𝑢𝑣 ∈ 𝔼.  

Definition 2.6 [6] A neutrosophic vague set 𝔸𝑁𝑉 (NVS in short) on the universe of discourse 𝕏 be written as  

𝔸𝑁𝑉 = {〈𝑥, �̂�𝔸𝑁𝑉
(𝑥), 𝐼𝔸𝑁𝑉

(𝑥), �̂�𝔸𝑁𝑉
(𝑥)〉, 𝑥 ∈ 𝕏}, whose truth-membership, indeterminacy-membership 

and falsity-membership function is defined as  

 �̂�𝔸𝑁𝑉
(𝑥) = [𝑇−(𝑥), 𝑇+(𝑥)], 𝐼𝔸𝑁𝑉

(𝑥) = [𝐼−(𝑥), 𝐼+(𝑥)]and�̂�𝔸𝑁𝑉
(𝑥) = [𝐹−(𝑥), 𝐹+(𝑥)], 

where 𝑇+(𝑥) = 1 − 𝐹−(𝑥), 𝐹+(𝑥) = 1 − 𝑇−(𝑥), and 0 ≤ 𝑇−(𝑥) + 𝐼−(𝑥) + 𝐹−(𝑥) ≤ 2. 

Definition 2.7 [6] The complement of NVS 𝔸𝑁𝑉 is denoted by 𝔸𝑁𝑉
𝑐  and it is given by  

 �̂�𝔸𝑁𝑉

𝑐 (𝑥) = [1 − 𝑇+(𝑥),1 − 𝑇−(𝑥)], 

 𝐼𝔸𝑁𝑉

𝑐 (𝑥) = [1 − 𝐼+(𝑥),1 − 𝐼−(𝑥)], 

 �̂�𝔸𝑁𝑉

𝑐 (𝑥) = [1 − 𝐹+(𝑥),1 − 𝐹−(𝑥)]. 

Definition 2.8 [6] Let 𝔸𝑁𝑉 and 𝔹𝑁𝑉 be two NVSs of the universe 𝕌. If for all 𝑢𝑖 ∈ 𝕌, 

�̂�𝔸𝑁𝑉
(𝑢𝑖) ≤ �̂�𝔹𝑁𝑉

(𝑢𝑖), 𝐼𝔸𝑁𝑉
(𝑢𝑖) ≥ 𝐼𝔹𝑁𝑉

(𝑢𝑖), �̂�𝔸𝑁𝑉
(𝑢𝑖) ≥ �̂�𝔹𝑁𝑉

(𝑢𝑖),  

 then the NVS, 𝔸𝑁𝑉 are included in 𝔹𝑁𝑉, denoted by 𝔸𝑁𝑉 ⊆ 𝔹𝑁𝑉 where 1 ≤ 𝑖 ≤ 𝑛. 

Definition 2.9 [6] The union of two NVSs 𝔸𝑁𝑉 and 𝔹𝑁𝑉 is a NVSs, ℂ𝑁𝑉, written as ℂ𝑁𝑉 = 𝔸𝑁𝑉 ∪ 𝔹𝑁𝑉, 

whose truth-membership function, indeterminacy-membership function and false-membership function are 

related to those of 𝔸𝑁𝑉 and 𝔹𝑁𝑉 by  

 �̂�ℂ𝑁𝑉
(𝑥) = [max(𝑇𝔸𝑁𝑉

− (𝑥), 𝑇𝔹𝑁𝑉

− (𝑥)), max(𝑇𝔸𝑁𝑉

+ (𝑥), 𝑇𝔹𝑁𝑉

+ (𝑥))] 
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 𝐼ℂ𝑁𝑉
(𝑥) = [min(𝐼𝔸𝑁𝑉

− (𝑥), 𝐼𝔹𝑁𝑉

− (𝑥)), min(𝐼𝔸𝑁𝑉

+ (𝑥), 𝐼𝔹𝑁𝑉

+ (𝑥))] 

 �̂�ℂ𝑁𝑉
(𝑥) = [min(𝐹𝔸𝑁𝑉

− (𝑥), 𝐹𝔹𝑁𝑉

− (𝑥)), min(𝐹𝔸𝑁𝑉

+ (𝑥), 𝐹𝔹𝑁𝑉

+ (𝑥))]. 

Definition 2.10 [6] The intersection of two NVSs, 𝐴𝑁𝑉 and 𝐵𝑁𝑉 is a NVSs 𝐶𝑁𝑉, written as 𝐶𝑁𝑉 = 𝐴𝑁𝑉 ∩

𝐵𝑁𝑉, whose truth-membership function, indeterminacy-membership function and false-membership function 

are related to those of 𝐴𝑁𝑉 and 𝐵𝑁𝑉 by  

 �̂�ℂ𝑁𝑉
(𝑥) = [min(𝑇𝔸𝑁𝑉

− (𝑥), 𝑇𝔹𝑁𝑉

− (𝑥)), min(𝑇𝔸𝑁𝑉

+ (𝑥), 𝑇𝔹𝑁𝑉

+ (𝑥))] 

 𝐼ℂ𝑁𝑉
(𝑥) = [max(𝐼𝔸𝑁𝑉

− (𝑥), 𝐼𝔹𝑁𝑉

− (𝑥)), max(𝐼𝔸𝑁𝑉

+ (𝑥), 𝐼𝔹𝑁𝑉

+ (𝑥))] 

 �̂�ℂ𝑁𝑉
(𝑥) = [max(𝐹𝔸𝑁𝑉

− (𝑥), 𝐹𝔹𝑁𝑉

− (𝑥)), max(𝐹𝔸𝑁𝑉

+ (𝑥), 𝐹𝔹𝑁𝑉

+ (𝑥))]. 

Definition 2.11 [24] Let 𝔾∗ = (ℝ, 𝕊) be a graph. A pair 𝔾 = (𝔸, 𝔹) is called a neutrosophic vague graph 

(NVG) on 𝔾∗ or a neutrosophic vague graph where 𝔸 = (�̂�𝔸, 𝐼𝔸, �̂�𝔸) is a neutrosophic vague set on ℝ and 

𝔹 = (�̂�𝔹, 𝐼𝔹, �̂�𝔹) is a neutrosophic vague set 𝕊 ⊆ ℝ × ℝ where  

(1)  ℝ = {𝑣1, 𝑣2, . . . , 𝑣𝑛} such that 𝑇𝔸
−: ℝ → [0,1], 𝐼𝔸

−: ℝ → [0,1], 𝐹𝔸
−: ℝ → [0,1] which satisfies the 

condition 𝐹𝔸
− = [1 − 𝑇𝔸

+] 

𝑇𝔸
+: ℝ → [0,1], 𝐼𝔸

+: ℝ → [0,1], 𝐹𝔸
+: ℝ → [0,1] which satisfying the condition 𝐹𝔸

+ = [1 − 𝑇𝔸
−] 

denotes the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 ∈ ℝ, and  

 0 ≤ 𝑇𝔸
−(𝑣𝑖) + 𝐼𝔸

−(𝑣𝑖) + 𝐹𝔸
−(𝑣𝑖) ≤ 2 

 0 ≤ 𝑇𝔸
+(𝑣𝑖) + 𝐼𝔸

+(𝑣𝑖) + 𝐹𝔸
+(𝑣𝑖) ≤ 2. 

 (2) 𝕊 ⊆ ℝ × ℝ where  

 𝑇𝔹
−: ℝ × ℝ → [0,1], 𝐼𝔹

−: ℝ × ℝ → [0,1],  𝐹𝔹
−: ℝ × ℝ → [0,1] 

 𝑇𝔹
+: ℝ × ℝ → [0,1], 𝐼𝔹

+: ℝ × ℝ → [0,1],   𝐹𝔹
+: ℝ × ℝ → [0,1] 

represents the degree of truth membership function, indeterminacy membership and falsity 

membership of the element 𝑣𝑖 , 𝑣𝑗 ∈ 𝕊, respectively and such that,  

 0 ≤ 𝑇𝔹
−(𝑣𝑖𝑣𝑗) + 𝐼𝔹

−(𝑣𝑖𝑣𝑗) + 𝐹𝔹
−(𝑣𝑖𝑣𝑗) ≤ 2 

 0 ≤ 𝑇𝔹
+(𝑣𝑖𝑣𝑗) + 𝐼𝔹

+(𝑣𝑖𝑣𝑗) + 𝐹𝔹
+(𝑣𝑖𝑣𝑗) ≤ 2, 

 such that  

 𝑇𝔹
−(𝑣𝑖𝑣𝑗) ≤ min{𝑇𝔸

−(𝑣𝑖), 𝑇𝔸
−(𝑣𝑗)} 

         𝐼𝔹
−(𝑣𝑖𝑣𝑗) ≤ min{𝐼𝔸

−(𝑣𝑖), 𝐼𝔸
−(𝑣𝑗)} 

 𝐹𝔹
−(𝑣𝑖𝑣𝑗) ≤ max{𝐹𝔸

−(𝑣𝑖), 𝐹𝔸
−(𝑣𝑗)}, 

 and similarly  

 𝑇𝔹
+(𝑣𝑖𝑣𝑗) ≤ min{𝑇𝔸

+(𝑣𝑖), 𝑇𝔸
+(𝑣𝑗)} 

 𝐼𝔹
+(𝑣𝑖𝑣𝑗) ≤ min{𝐼𝔸

+(𝑣𝑖), 𝐼𝔸
+(𝑣𝑗)} 

 𝐹𝔹
+(𝑣𝑖𝑣𝑗) ≤ max{𝐹𝔸

+(𝑣𝑖), 𝐹𝔸
+(𝑣𝑗)}. 

3  Neutrosophic Vague Line Graphs 

 In this section, the necessary and sufficient condition of NVLGs are provided. The 

definition of NVLGs, homomorphism and weak isomorphism are given.  

Definition 3.1 Let 𝛬(𝐷) = (𝐷, 𝑆) be an intersection graph 𝐺 = (𝑉, 𝐸) and let 𝔾 = (𝐻1, 𝐾1) be a NVG with 

underlying set 𝑉. A NVG of 𝛬(𝐷) is a pair (𝐻2, 𝐾2), where 𝐻2 = (𝑇𝐻2
+ , 𝐼𝐻2

+ , 𝐹𝐻2
+ , 𝑇𝐻2

− , 𝐼𝐻2
− , 𝐹𝐻2

− ) and 𝐾2 =

(𝑇𝐾2
+ , 𝐼𝐾2

+ , 𝐹𝐾2
+ , 𝑇𝐾2

− , 𝐼𝐾2
− , 𝐹𝐾2

− ) are NVSs of 𝐷 and 𝑆, respectively, such that  

 𝑇𝐻2
+ (𝐷𝑖) = 𝑇𝐻1

+ (𝑣𝑖), 𝐼𝐻2
+ (𝐷𝑖) = 𝐼𝐻1

+ (𝑣𝑖), 𝐹𝐻2
+ (𝐷𝑖) = 𝐹𝐻1

+ (𝑣𝑖), 
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 𝑇𝐻2
− (𝐷𝑖) = 𝑇𝐻1

− (𝑣𝑖), 𝐼𝐻2
− (𝐷𝑖) = 𝐼𝐻1

− (𝑣𝑖), 𝐹𝐻2
− (𝐷𝑖) = 𝐹𝐻1

− (𝑣𝑖), 

 for all 𝐷𝑖 ,  𝐷𝑗 ∈ 𝐷. 

 𝑇𝐾2
+ (𝐷𝑖𝐷𝑗) = 𝑇𝐾1

+ (𝑣𝑖𝑣𝑗), 𝐼𝐾2
+ (𝐷𝑖𝐷𝑗) = 𝐼𝐾1

+ (𝑣𝑖𝑣𝑗), 𝐹𝐾2
+ (𝐷𝑖𝐷𝑗) = 𝐹𝐾1

+ (𝑣𝑖𝑣𝑗), 

 𝑇𝐾2
− (𝐷𝑖𝐷𝑗) = 𝑇𝐾1

− (𝑣𝑖𝑣𝑗), 𝐼𝐾2
− (𝐷𝑖𝐷𝑗) = 𝐼𝐾1

− (𝑣𝑖𝑣𝑗), 𝐹𝐾2
− (𝐷𝑖𝐷𝑗) = 𝐹𝐾1

− (𝑣𝑖𝑣𝑗) 

 for all 𝐷𝑖𝐷𝑗 ∈ 𝑆. 

That is, any NVG of intersection graph Λ(𝐷) is also a neutrosophic vague intersection graph of 𝔾.  

Definition 3.2 Let 𝐿(𝐺) = (𝑀, 𝑁) be a line graph of a graph 𝐺 = (𝑉, 𝐸). A NVLG of a NVG 𝔾 = (𝐻1, 𝐾1) 

(with underlying set 𝑉 ) is a pair 𝐿(𝔾) = (𝐻2, 𝐾2) , where 𝐻2 = (𝑇𝐻2
+ , 𝐼𝐻2

+ , 𝐹𝐻2
+ , 𝑇𝐻2

− , 𝐼𝐻2
− , 𝐹𝐻2

− )  and 𝐾2 =

(𝑇𝐾2
+ , 𝐼𝐾2

+ , 𝐹𝐾2
+ , 𝑇𝐾2

− , 𝐼𝐾2
− , 𝐹𝐾2

− ) are NVSs of 𝑀 and 𝑁, respectively such that,  

 𝑇𝐻2
+ (𝐷𝑥) = 𝑇𝐾1

+ (𝑥) = 𝑇𝐾1
+ (𝑢𝑥𝑣𝑥) 

 𝐼𝐻2
+ (𝐷𝑥) = 𝐼𝐾1

+ (𝑥) = 𝐼𝐾1
+ (𝑢𝑥𝑣𝑥) 

 𝐹𝐻2
+ (𝐷𝑥) = 𝐹𝐾1

+ (𝑥) = 𝐹𝐾1
+ (𝑢𝑥𝑣𝑥) 

 𝑇𝐻2
− (𝐷𝑥) = 𝑇𝐾1

− (𝑥) = 𝑇𝐾1
− (𝑢𝑥𝑣𝑥) 

 𝐼𝐻2
− (𝐷𝑥) = 𝐼𝐾1

− (𝑥) = 𝐼𝐾1
− (𝑢𝑥𝑣𝑥) 

 𝐹𝐻2
− (𝐷𝑥) = 𝐹𝐾1

− (𝑥) = 𝐹𝐾1
− (𝑢𝑥𝑣𝑥). 

 for all 𝐷𝑥 ∈ 𝑀, 𝑢𝑥𝑣𝑥 ∈ 𝑁. 

 𝑇𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝑇𝐾1

+ (𝑥), 𝑇𝐾1
+ (𝑦)} 

 𝐼𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝐼𝐾1

+ (𝑥), 𝐼𝐾1
+ (𝑦)} 

 𝐹𝐾2
+ (𝐷𝑥𝐷𝑦) = max{𝐹𝐾1

+ (𝑥), 𝐹𝐾1
+ (𝑦)} 

 𝑇𝐾2
− (𝐷𝑥𝐷𝑦) = min{𝑇𝐾1

− (𝑥), 𝑇𝐾1
− (𝑦)} 

 𝐼𝐾2
− (𝐷𝑥𝐷𝑦) = min{𝐼𝐾1

− (𝑥), 𝐼𝐾1
− (𝑦)} 

 𝐹𝐾2
− (𝐷𝑥𝐷𝑦) = max{𝐹𝐾1

− (𝑥), 𝐹𝐾1
− (𝑦)}  for all 𝐷𝑥𝐷𝑦 ∈ 𝑁. 

Example 3.3 Consider 𝐺 = (𝑉, 𝐸),  where 𝑉 = {𝑏1, 𝑏2, 𝑏3, 𝑏4}  and 𝐸 = {𝑄1 = 𝑏1𝑏2, 𝑄2 = 𝑏2𝑏3, 𝑄3 =

𝑏3𝑏4, 𝑄4 = 𝑏4𝑏1}. Let 𝔾 = (𝐻1 , 𝐾1) be a NVG of 𝐺 as shown in figure 1, defined by  

 

 

𝐹𝑖𝑔𝑢𝑟𝑒 1 

Neutrosophic Vague Graph  

  consider a line graph 𝐿(𝐺) = (𝑀, 𝑁)  where 𝑀 = (𝐷𝑄1
, 𝐷𝑄2

, 𝐷𝑄3
, 𝐷𝑄4

)  and 𝑁 =

(𝐷𝑄1
𝐷𝑄2

, 𝐷𝑄2
𝐷𝑄3

, 𝐷𝑄3
𝐷𝑄4

, 𝐷𝑄4
𝐷𝑄1

). Let 𝐿(𝔾) be the NVLG, as shown in figure 2.  
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𝐹𝑖𝑔𝑢𝑟𝑒 2 

Neutrosophic Vague Line Graph 

𝐿(𝔾) 

 

Proposition 3.4  A NVLG is always a strong NVG.  

 

Proof. It is obvious from the definition, therefore it is omitted.  

 

Proposition 3.5  If 𝐿(𝔾) is NVLG of NVG 𝔾. Then 𝐿(𝐺) is the line graph of 𝐺.  

 

Proof. Given 𝔾 = (𝐻1, 𝐾1) is NVLG of 𝐺 and 𝐿(𝔾) = (𝐻2, 𝐾2) is a NVG of 𝐿(𝐺) 

 𝑇𝐻2
+ (𝐷𝑥) = 𝑇𝐾1

+ (𝑥) 

 𝐼𝐻2
+ (𝐷𝑥) = 𝐼𝐾1

+ (𝑥) 

 𝐹𝐻2
+ (𝐷𝑥) = 𝐹𝐾1

+ (𝑥) 

 𝑇𝐻2
− (𝐷𝑥) = 𝑇𝐾1

− (𝑥) 

 𝐼𝐻2
− (𝐷𝑥) = 𝐼𝐾1

− (𝑥) 

 𝐹𝐻2
− (𝐷𝑥) = 𝐹𝐾1

− (𝑥), 

∀𝑥 ∈ 𝐸 and so 𝐷𝑥 ∈ 𝑀 if and only if for 𝑥 ∈ 𝐸, 

 𝑇𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝑇𝐾1

+ (𝑥), 𝑇𝐾1
+ (𝑦)} 

 𝐼𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝐼𝐾1

+ (𝑥), 𝐼𝐾1
+ (𝑦)} 

 𝐹𝐾2
+ (𝐷𝑥𝐷𝑦) = max{𝐹𝐾1

+ (𝑥), 𝐹𝐾1
+ (𝑦)} 

 𝑇𝐾2
− (𝐷𝑥𝐷𝑦) = min{𝑇𝐾1

− (𝑥), 𝑇𝐾1
− (𝑦)} 

 𝐼𝐾2
− (𝐷𝑥𝐷𝑦) = min{𝐼𝐾1

− (𝑥), 𝐼𝐾1
− (𝑦)} 

 𝐹𝐾2
− (𝐷𝑥𝐷𝑦) = max{𝐹𝐾1

− (𝑥), 𝐹𝐾1
− (𝑦)}, 

 for all 𝐷𝑥𝐷𝑦 ∈ 𝑁, and so 𝑀 = {𝐷𝑥𝐷𝑦|𝐷𝑥 ∪ 𝐷𝑦 ≠ ∅, 𝑥, 𝑦 ∈ 𝐸, 𝑥 ≠ 𝑦}. Hence proved.  

 

Proposition 3.6  Let 𝐿(𝔾) = (𝐻2, 𝐾2) be a NVG of 𝔾. Then 𝐿(𝔾) is a NVG of some NVG of 𝐺 if and only 

if  

 𝑇𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝑇𝐻2

+ (𝐷𝑥), 𝑇𝐻2
+ (𝐷𝑦)} 

 𝑇𝐾2
− (𝐷𝑥𝐷𝑦) = min{𝑇𝐻2

− (𝐷𝑥), 𝑇𝐻2
− (𝐷𝑦)} 

 𝐼𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝐼𝐻2

+ (𝐷𝑥), 𝐼𝐻2
+ (𝐷𝑦)} 

 𝐼𝐾2
− (𝐷𝑥𝐷𝑦) = min{𝐼𝐻2

− (𝐷𝑥), 𝐼𝐻2
− (𝐷𝑦)} 
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 𝐹𝐾2
+ (𝐷𝑥𝐷𝑦) = max{𝐹𝐻2

+ (𝐷𝑥), 𝐹𝐻2
+ (𝐷𝑦)} 

 𝐹𝐾2
− (𝐷𝑥𝐷𝑦) = max{𝐹𝐻2

− (𝐷𝑥), 𝐹𝐻2
− (𝐷𝑦)}, 

 for all 𝐷𝑥𝐷𝑦 ∈ 𝑁. 

 

Proof. Suppose that 𝑇𝐾2
𝑃 (𝐷𝑥𝐷𝑦) = min{𝑇𝐻2

+ (𝐷𝑥), 𝑇𝐻2
+ (𝐷𝑦)},  

𝐼𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝐼𝐻2

+ (𝐷𝑥), 𝐼𝐻2
+ (𝐷𝑦)}, 𝐹𝐾2

+ (𝐷𝑥𝐷𝑦) = max{𝐹𝐻2
+ (𝐷𝑥), 𝐹𝐻2

+ (𝐷𝑦)} for all 𝐷𝑥𝐷𝑦 ∈ 𝑁. 

Define, 𝑇𝐻2
+ (𝐷𝑥) = 𝑇𝐾1

+ (𝑥), 𝐼𝐻2
+ (𝐷𝑥) = 𝐼𝐾1

+ (𝑥), 𝐹𝐻2
+ (𝐷𝑥) = 𝐹𝐾1

+ (𝑥) for all 𝑥 ∈ 𝐸, then 

𝑇𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝑇𝐻2

+ (𝐷𝑥), 𝑇𝐻2
+ (𝐷𝑦)} = min{𝑇𝐾1

+ (𝑥), 𝑇𝐾1
+ (𝑥)}, 

𝐼𝐾2
+ (𝐷𝑥𝐷𝑦) = min{𝐼𝐻2

+ (𝐷𝑥), 𝐼𝐻2
+ (𝐷𝑦)} = min{𝐼𝐾1

+ (𝑥), 𝐼𝐾1
+ (𝑥)}, 

𝐹𝐾2
+ (𝐷𝑥𝐷𝑦) = max{𝐹𝐻2

+ (𝐷𝑥), 𝐹𝐻2
+ (𝐷𝑦)} = max{𝐹𝐾1

+ (𝑥), 𝐹𝐾1
+ (𝑥)}, 

for all 𝐷𝑥𝐷𝑦 ∈ 𝑀. 

We know that NVG 𝐻1 yields the properties, 

 

 𝑇𝐾1
+ (𝑢𝑣) ≤ min{𝑇𝐻1

+ (𝑢), 𝑇𝐻1
+ (𝑣)} 

 

 𝐼𝐾1
+ (𝑢𝑣) ≤ min{𝐼𝐻1

+ (𝑢), 𝐼𝐻1
+ (𝑣)} 

 

 𝐹𝐾1
+ (𝑢𝑣) ≤ max{𝐹𝐻1

+ (𝑢), 𝐹𝐻1
+ (𝑣)}. 

In the similar way, we prove for the similar part also, The converse part of this theorem is obvious by 

using the definition of 𝐿(𝔾).  

Theorem 3.7 𝐿(𝔾) is a NVLG if and only if 𝐿(𝐺) is a line graph and  

 𝑇𝐾2
+ (𝑢𝑣) = min{𝑇𝐻2

+ (𝑢), 𝑇𝐻2
+ (𝑣)} 

 𝐼𝐾2
+ (𝑢𝑣) = min{𝐼𝐻2

+ (𝑢), 𝐼𝐻2
+ (𝑣)} 

 𝐹𝐾2
+ (𝑢𝑣) = max{𝐹𝐻2

+ (𝑢), 𝐹𝐻2
+ (𝑣)} 

 𝑇𝐾2
− (𝑢𝑣) = min{𝑇𝐻2

− (𝑢), 𝑇𝐻2
− (𝑣)} 

 𝐼𝐾2
− (𝑢𝑣) = min{𝐼𝐻2

− (𝑢), 𝐼𝐻2
− (𝑣)} 

 𝐹𝐾2
− (𝑢𝑣) = max{𝐹𝐻2

− (𝑢), 𝐹𝐻2
− (𝑣)}    ∀𝑢𝑣 ∈ 𝑀. 

Proof. The proof follows from the above Proposition 3.5 and Proposition 3.6.  

 

Definition 3.8 A homomorphism 𝜒: 𝔾1 → 𝔾2 of two NVGs 𝔾1 = (𝐻1, 𝐾1) and 𝔾2 = (𝐻2, 𝐾2) is mapping 

𝜒: 𝑉1 → 𝑉2 such that  

 (𝐴)𝑇𝐻1
+ (𝑥1) ≤ 𝑇𝐻2

+ (𝜒(𝑥1)), 𝑇𝐻1
− (𝑥1) ≤ 𝑇𝐻2

− (𝜒(𝑥1)), 

 𝐼𝐻1
+ (𝑥1) ≤ 𝐼𝐻2

+ (𝜒(𝑥1)), 𝐼𝐻1
− (𝑥1) ≤ 𝐼𝐻2

− (𝜒(𝑥1)), 

 𝐹𝐻1
+ (𝑥1) ≤ 𝐹𝐻2

+ (𝜒(𝑥1)), 𝐹𝐻1
− (𝑥1) ≤ 𝐹𝐻2

− (𝜒(𝑥1)),    ∀𝑥1 ∈ 𝑉1. 

 

 (𝐵)𝑇𝐾1
+ (𝑥1𝑦1) ≤ 𝑇𝐾2

+ (𝜒(𝑥1)𝜒(𝑦1)), 𝑇𝐾1
− (𝑥1𝑦1) ≤ 𝑇𝐾2

− (𝜒(𝑥1)𝜒(𝑦1)), 

 𝐼𝐾1
+ (𝑥1𝑦1) ≤ 𝐼𝐾2

+ (𝜒(𝑥1)𝜒(𝑦1)), 𝐼𝐾1
− (𝑥1𝑦1) ≤ 𝐼𝐾2

− (𝜒(𝑥1)𝜒(𝑦1)), 

 𝐹𝐾1
+ (𝑥1𝑦1) ≤ 𝐹𝐾2

+ (𝜒(𝑥1)𝜒(𝑦1)), 𝐹𝐾1
− (𝑥1𝑦1) ≤ 𝐹𝐾2

− (𝜒(𝑥1)𝜒(𝑦1)),    ∀𝑥1𝑦1 ∈ 𝐸1. 
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Definition 3.9 A (weak) vertex-isomorphism is a bijective homomorphism 𝜒: 𝔾1 → 𝔾2 such that  

 (𝐴)𝑇𝐻1
+ (𝑥1) = 𝑇𝐻2

+ (𝜒(𝑥1)), 

 𝑇𝐻1
− (𝑥1) = 𝑇𝐻2

− (𝜒(𝑥1)), 

 𝐼𝐻1
+ (𝑥1) = 𝐼𝐻2

+ (𝜒(𝑥1)), 

 𝐼𝐻1
− (𝑥1) = 𝐼𝐻2

− (𝜒(𝑥1)), 

 𝐹𝐻1
+ (𝑥1) = 𝐹𝐻2

+ (𝜒(𝑥1)), 

 𝐹𝐻1
− (𝑥1) = 𝐹𝐻2

− (𝜒(𝑥1)),    ∀𝑥1 ∈ 𝑉1. 

 A (weak) line-isomorphism is bijective homomorphism 𝜒: 𝔾1 → 𝔾2 such that  

 (𝐵)𝑇𝐾1
+ (𝑥1𝑦1) = 𝑇𝐾2

+ (𝜒(𝑥1)𝜒(𝑦1)), 

 𝑇𝐾1
− (𝑥1𝑦1) = 𝑇𝐾2

− (𝜒(𝑥1)𝜒(𝑦1)), 

 𝐼𝐾1
+ (𝑥1𝑦1) = 𝐼𝐾2

+ (𝜒(𝑥1)𝜒(𝑦1)), 

 𝐼𝐾1
− (𝑥1𝑦1) = 𝐼𝐾2

− (𝜒(𝑥1)𝜒(𝑦1)), 

 𝐹𝐾1
+ (𝑥1𝑦1) = 𝐹𝐾2

+ (𝜒(𝑥1)𝜒(𝑦1)), 

 𝐹𝐾1
− (𝑥1𝑦1) = 𝐹𝐾2

− (𝜒(𝑥1)𝜒(𝑦1)),    ∀𝑥1𝑦1 ∈ 𝐸1. 

 If 𝜒: 𝔾1 → 𝔾2 is a weak-vertex isomorphism and a (weak) line-isomorphism, then 𝜒 is called a 

(weak) isomorphism.  

 

Proposition 3.10 Let 𝔾 = (𝐻1, 𝐾1) be a NVG with underlying set 𝑉. Then (𝐻2, 𝐾2) is a NVG of Λ(𝐷) 

and (𝐻1, 𝐾1) ≅ (𝐻2, 𝐾2) 

 

Proposition 3.11 Let 𝔾 and 𝔾′ be NVGs of 𝐺 and 𝐺′ respectively, if 𝜒: 𝔾 → 𝔾′ is a weak isomorphism 

then 𝜒: 𝔾 → 𝔾′ is an isomorphism.  

Proof. Let 𝜒: 𝔾 → 𝔾′ be a weak isomorphism, then 𝑢 ∈ 𝑉 if and only if 𝜒(𝑢) ∈ 𝑉′ and 𝑢𝑣 ∈ 𝐸 if and 

only if 𝜒(𝑢)𝜒(𝑣) ∈ 𝐸′. Hence proved.  

 

Conclusion 

 A neutrosophic graph is very useful to interpret the real-life situations and it is regarded as 

a generalisation of intuitionistic fuzzy graph. Neutrosophic vague graphs are represented as a 

context-dependent generalized fuzzy graphs which holds the indeterminate and inconsistent 

information. This paper dealt with the necessary and sufficient condition for NVLG to be a line 

graph are also derived. The properties of homomorphism, weak vertex and weak line isomorphism 

are established. Further we are able to extend by investigating the regular and isomorphic properties 

of the interval valued neutrosophic vague line graph. 
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Abstract: Smarandache presented and built up the new idea of Neutrosophic set from the Intuition-

istic fuzzy sets. A.A. Salama presented Neutrosophic topological spaces by utilizing the Neutro-

sophic sets. M.L.Thivagar et al., created Nano topological spaces and Neutrosophic nano topologi-

cal spaces. Point of this paper is we present and study the properties of Neutrosophic Nano semi 

frontier in Neutrosophic nano topological spaces and its portrayal are talked about subtleties. 
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1. Introduction  

Nano topology explored by M.L.Thivagar [15]et.al can be communicated as an assortment 

of nano approximations, Neutrosophic sets set up by F.Smarandache[14]. Neutrosophic set is illus-

trate by three functions: a membership, indeterminacy and nonmembership functions that are in-

dependently related. Neutrosophic set have wide scope of uses, all things considered. M.L.Thivagar 

et al., created Neutrosophic nano topological spaces .Neutrosophic nano semi closed, neutrosophic 

nano αclosed, neutrosophic nano pre closed, neutrosophic nano semi pre closed and neutrosophic 

nano regular closed  are  presented by M.Parimala[17] et al. Point of the current paper is we learned 

about properties of Neutrosophic Nano frontier, Neutrosophic Nano semi frontier in Neutrosophic 

nano topological spaces 

 

2. PRELIMINARIES  

In this section, we recall needed basic definition and operation of Neutrosophic sets  

Definition 2.1 : [15] 

Let U be a non-empty set and R be an equivalence relation on U. Let F be a neutrosophic set 

in U with the membership function 𝜇𝐹 , the indeterminacy function 𝜎𝐹  and the non-membership 

function𝜈𝐹  . The neutrosophic nano lower,neutrosophic nano upper approximation and neutro-

sophic nano boundary of F in the approximation (U,R) denoted by N(F) , 𝑁(F)and BN(F)are respec-

tively defined as follows: 

(i) N(F) =  {<  𝑢, μR(𝑀1
∗)(u), σR(𝑀1

∗)(u), νR(𝑀1
∗)(u)  > /𝑦 ∈  [u]R, u ∈  U}. 

(ii) 𝑁(F) =  {<  𝑢, μR(𝑀1
∗)(u), σR(𝑀1

∗)(u), νR(𝑀1
∗)(u)  > /𝑦 ∈  [u]R, u ∈  U} . 

(iii) BN(F)=𝑁(F) − N(F)  

Definition 2.2 : [15] 

Let U be an universe, R be an equivalence relation on U and F be a neutrosophic set in U and if the 

collection 𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, N(F) , 𝑁(F),BN(F)} 
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 forms a topology then it is said to be a neutrosophic nano topology. We call (U, 𝑁𝑁(𝜏)) as the neu-

trosophic nano topological space. The elements of 𝑁𝑁(𝜏) are called neutrosophic nano open sets. 

Definition 2.3 : [15] 

Let U be a nonempty set and the Neutrosophic sets 𝑀1
∗ and 𝑀2

∗ in the 

form 𝑀1
∗={< u:𝜇𝑀1

∗(𝑢), 𝜎𝑀1
∗(𝑢), 𝜈𝑀1

∗(𝑢)>, u∈U},  

         𝑀2
∗={< u:𝜇𝑀2

∗(𝑢), 𝜎𝑀2
∗(𝑢),  𝜈𝑀2

∗(𝑢)>, u∈U}}. 

 Then the following statements hold: 

(i) 0𝑁𝑁
 = {< u, 0, 0, 1 >: u∈U} and 1𝑁𝑁

 = {< u, 1, 1, 0 >: u∈U}. 

(ii) 𝑀1
∗ ⊆ 𝑀2

∗ iff { 𝜇𝑀1
∗(𝑢) ≤ 𝜇𝑀2

∗(𝑢), 𝜎𝑀1
∗(𝑢) ≤ 𝜎𝑀2

∗(𝑢), 𝜈𝑀1
∗(𝑢) ≥ 𝜈𝑀2

∗(𝑢), ∀u∈U}. 

(iii) 𝑀1
∗ = 𝑀2

∗ iff 𝑀1
∗ ⊆𝑀2

∗ and 𝑀2
∗⊆ 𝑀1

∗. 

(iv) 𝑀1
∗C ={< u, 𝜈𝑀1

∗(𝑢), 1 − 𝜎𝑀1
∗(𝑢), 𝜇𝑀1

∗(𝑢) >: u ∈ U}. 

(v) 𝑀1
∗∩𝑀2

∗ ={u, 𝜇𝑀1
∗(𝑢)∧𝜇𝑀2

∗(𝑢), 𝜎𝑀1
∗(𝑢)∧𝜎𝑀2

∗(𝑢), 𝜈𝑀1
∗(𝑢)∨𝜈𝑀2

∗(𝑢), ∀u∈U}. 

(vi) 𝑀1
∗∪𝑀2

∗ ={u, 𝜇𝑀1
∗(𝑢)∨𝜇𝑀2

∗(𝑢), 𝜎𝑀1
∗(𝑢)∨𝜎𝑀2

∗(𝑢), 𝜈𝑀1
∗(𝑢)∧𝜈𝑀2

∗(𝑢), ∀u∈U}. 

(vii)  ∪𝑀𝑗
∗ = 〈𝑢, ⋁, ⋁, ⋀ 〉  

(viii)  ∩ 𝑀𝑗
∗ =〈𝑢, ⋀, ⋀, ⋁〉  

 (ix)  𝑀1
∗ – 𝑀2

∗ = 𝑀1
∗ ∩ 𝑀2

∗𝐶 

Proposition 2.4 [15] 

For any Neutrosophic Nano set 𝑀1
∗ in (U, 𝑁𝑁(𝜏))) we have  

(1) 𝑁𝑁Cl ((𝑀1
∗)C) = (𝑁𝑁Int (𝑀1

∗))C,  

(2) 𝑁𝑁Int ((𝑀1
∗)C) =(𝑁𝑁Cl (𝑀1

∗))C. 

(3) 𝑀1
∗ ⊆ 𝑀2

∗ ⇒ 𝑁𝑁Int (𝑀1
∗) ⊆ 𝑁𝑁Int (𝑀2

∗),  

(4) 𝑀1
∗⊆𝑀2

∗ ⇒ 𝑁𝑁Cl(𝑀1
∗) ⊆ 𝑁𝑁Cl(𝑀2

∗),  

(5) 𝑁𝑁Int (𝑁𝑁Int (𝑀1
∗)) = 𝑁𝑁Int(𝑀1

∗),  

(6) 𝑁𝑁Cl (𝑁𝑁Cl (𝑀1
∗)) = 𝑁𝑁Cl (𝑀1

∗),  

(7) 𝑁𝑁Int (𝑀1
∗ ∩ 𝑀2

∗)) = 𝑁𝑁Int (𝑀1
∗) ∩ 𝑁𝑁Int (𝑀2

∗),  

(8) 𝑁𝑁Cl (𝑀1
∗ ∪ 𝑀2

∗) = 𝑁𝑁Cl(𝑀1
∗) ∪ 𝑁𝑁Cl(𝑀2

∗),  

(9) 𝑁𝑁Int (0𝑁𝑁
) = 0𝑁𝑁

 ,  

(10) 𝑁𝑁Int (1𝑁𝑁
) = 1𝑁𝑁

 ,  

(11) 𝑁𝑁Cl (0𝑁𝑁
) = 0𝑁𝑁

 ,  

(12) 𝑁𝑁Cl (1𝑁𝑁
) = 1𝑁𝑁

 ,  

(13) 𝑀1
∗ ⊆ 𝑀2

∗ ⇒ (𝑀2
∗𝐶⊆ 𝑀1

∗𝐶,  

(14) 𝑁𝑁Cl (𝑀1
∗∩𝑀2

∗)⊆𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗),  

(15) 𝑁𝑁Int (𝑀1
∗∪ 𝑀2

∗)⊇ 𝑁𝑁Int (𝑀1
∗) ∪ 𝑁𝑁Int (𝑀2

∗). 

 

3. NEUTROSOPHIC NANO FRONTIER 

In this section, the concepts of the Neutrosophic Nano frontier in Neutrosophic Nano topological 

space are introduced and also discussed their characterizations with some related examples. 

Definition 3.1.  

Let U be a N-N-T-S and let 𝑀1
∗ NNS (U). Neutrosophic Nano frontier of M1

∗ and is denoted by NFr 

(𝑀1
∗). i.e., 𝑁𝑁Fr (𝑀1

∗) = 𝑁𝑁Cl(𝑀1
∗) ∩ 𝑁𝑁Cl(𝑀1

∗)𝐶 . 

Proposition 3.2. For each 𝑀1
∗ NNS(U), 𝑀1

∗ ∪ 𝑁𝑁Fr (𝑀1
∗) ⊆ 𝑁𝑁Cl (𝑀1

∗). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 3.1., 

𝑀1
∗ ∪ 𝑁𝑁Fr (𝑀1

∗) = 𝑀1
∗ ∪( 𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl ((𝑀1
∗𝐶))  

                     = (𝑀1
∗ ∪ 𝑁𝑁Cl (𝑀1

∗) ) ∩ ( 𝑀1
∗ ∪ 𝑁𝑁Cl ((𝑀1

∗𝐶))  

⊆ 𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀1

∗𝐶) 

⊆ 𝑁𝑁Cl (𝑀1
∗) 

Hence 𝑀1
∗ ∪ 𝑁𝑁Fr (𝑀1

∗) ⊆ 𝑁𝑁Cl (𝑀1
∗). 

Example 3.3.  

Let U and 𝒜 be two non-empty finite sets,  
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where U is the  universe and 𝒜 the set of attributes 

The members of U= {P1, P2, P3,P4}are pressure patients  

Let U/R ={{P1, P2, P3}, {P4}} be an equivalence relation 

𝒜 = {Salt food  , colostreal food } are two attributes  

P1= 〈x, (
5

10
,

10

10
,

1

10
) , (

9

10
,

2

10
,

5

10
)〉 

P2= 〈x, (
2

10
,

5

10
,

9

10
) , (

0

10
,

5

10
,

10

10
)〉 

P3= 〈x, (
5

10
,

10

10
,

1

10
) , (

9

10
,

5

10
,

5

10
)〉 

P4= 〈x, (
2

10
,

5

10
,

9

10
) , (

0

10
,

2

10
,

10

10
)〉 

𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, N(F) , 𝑁(F),BN(F)} 

           N(F) = 〈x, (
2

10
,

5

10
,

9

10
) , (

0

10
,

5

10
,

10

10
)〉  

           𝑁(F) = 〈x, (
5

10
,

10

10
,

1

10
) , (

9

10
,

5

10
,

5

10
)〉 

           BN(F) = 〈(
5

10
,

5

10
,

2

10
) , (

9

10
,

5

10
,

5

10
)〉 

𝑁𝑁(𝜏)= {0𝑁𝑁
, 1𝑁𝑁

, 〈x, (
2

10
,

5

10
,

9

10
) , (

0

10
,

5

10
,

10

10
)〉 , 〈 (

5

10
,

10

10
,

1

10
) , (

9

10
,

5

10
,

5

10
)〉, 

                               〈(
5

10
,

5

10
,

2

10
) , (

9

10
,

5

10
,

5

10
)〉 , 〈(

2

10
,

5

10
,

9

10
) , (

0

10
,

2

10
,

10

10
)〉}                                                                              

Here 𝑁𝑁Cl (P3) = 1𝑁𝑁
 and 𝑁𝑁Cl ( 𝑃3

𝑐) = 〈(
2

10
,

5

10
,

5

10
) , (

5

10
,

5

10
,

9

10
)〉. 

Using Definition 2.1, 𝑁𝑁Fr (𝑀1
∗) = 〈(

2

10
,

5

10
,

5

10
) , (

5

10
,

5

10
,

9

10
)〉. 

Also 𝑀1
∗ ∪ 𝑁𝑁Fr (𝑀1

∗) = 〈(
5

10
,

10

10
,

1

10
) , (

9

10
,

5

10
,

5

10
)〉 ⊆ 1𝑁𝑁

.  

Therefore 𝑁𝑁Cl (𝑀1
∗) = 1𝑁𝑁

 ⊈ 〈(
5

10
,

10

10
,

1

10
) , (

9

10
,

5

10
,

5

10
)〉. 

Theorem 3.5. 

 For a NNS M1
∗ in the N-N-T-S U, 𝑁𝑁Fr (𝑀1

∗) =𝑁𝑁Fr (𝑀1
∗𝐶). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 3.1., 

𝑁𝑁Fr (𝑀1
∗) = 𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl  (𝑀1
∗𝐶) 

= 𝑁𝑁Cl (𝑀1
∗𝐶) ∩ 𝑁𝑁Cl (𝑀1

∗) 

= 𝑁𝑁Cl (𝑀1
∗𝐶) ∩ 𝑁𝑁Cl(𝑀1

∗𝐶)
𝐶

 

Again by Definition 3.1,= 𝑁𝑁Fr (𝑀1
∗𝐶) 

Hence 𝑁𝑁Fr (𝑀1
∗) = 𝑁𝑁Fr (𝑀1

∗𝐶). 

Theorem 3.6. 

 If a 𝑁𝑁S 𝑀1
∗ is a NCS, then 𝑁𝑁Fr (𝑀1

∗) ⊆ 𝑀1
∗. 

Proof : 

 Let 𝑀1
∗ be the 𝑁𝑁S in the Neutrosophic Nano  topological space U. Using Definition 3.1., 

NNFr (M1
∗) = NNCl (M1

∗) ∩ NNCl (M1
∗C) ⊆ NNCl (M1

∗) 

By Propositon (2.4) ,= 𝑀1
∗ 

Hence 𝑁𝑁Fr (𝑀1
∗) ⊆ 𝑀1

∗, if 𝑀1
∗ is 𝑁𝑁CS in U. 

The converse of the above theorem needs not be true as shown by the following example. 

Theorem 3.7.  

If a NNS 𝑀1
∗ is 𝑁𝑁OS, then 𝑁𝑁Fr (𝑀1

∗) ⊆ 𝑀1
∗𝐶 . 

Proof : 

 Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 3.1 , 

𝑀1
∗ is 𝑁𝑁OS implies 𝑀1

∗𝐶is 𝑁𝑁CS in U. By Theorem 3.6, 𝑁𝑁Fr (𝑀1
∗𝐶) ⊆ 𝑀1

∗𝐶and by Theorem 3.5,  

we get 𝑁𝑁Fr (𝑀1
∗) ⊆ 𝑀1

∗𝐶 

Theorem 3.8. 

 For a NNS 𝑀1
∗ in the 𝑁𝑁TS U,  (𝑁𝑁Fr (𝑀1

∗))C= 𝑁𝑁Int (𝑀1
∗) ∪ 𝑁𝑁Int (𝑀1

∗𝐶). 

Proof :  

Let M1
∗ be the NNS in the N-N-T-S  U. Using Definition 3.1., 

(𝑁𝑁Fr (𝑀1
∗))C =  (𝑁𝑁𝐶𝑙 (𝑀1

∗) )𝐶(∩ 𝑁𝑁Cl (𝑀1
∗𝐶))) 
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By Propositon (2.4)  ,= (𝑁𝑁𝐶𝑙 (𝑀1
∗) )𝐶  ∪ (𝑁𝑁𝐶𝑙 (𝑀1

∗𝐶)))
𝐶

 

 By Propositon (2.4),= 𝑁𝑁Int (𝑀1
∗𝐶) ∪ 𝑁𝑁Int (𝑀1

∗) 

Hence (𝑁𝑁𝐹𝑟 (𝑀1
∗))𝐶 = 𝑁𝑁Int (𝑀1

∗) ∪ 𝑁𝑁Int (𝑀1
∗𝐶). 

Theorem 3.9 

 Let 𝑀1
∗ ⊆ 𝑀2

∗ and 𝑀2
∗ 𝑁𝑁C (U) ( resp.,𝑀2

∗ 𝑁𝑁O (U) ). Then 𝑁𝑁Fr (𝑀1
∗) ⊆ 𝑀2

∗ ( resp., 𝑁𝑁Fr (𝑀1
∗) ⊆

(𝑁𝑁𝐶𝑙 (𝑀2
∗) )𝐶), where 𝑁𝑁C (U) ( resp., 𝑁𝑁O (U) ) denotes the class of Neutrosophic Nano closed 

( resp., Neutrosophic Nano open) sets in U. 

Proof : Use Prop.,2.4 , 𝑀1
∗ ⊆ 𝑀2

∗ , 

𝑁𝑁Cl (𝑀1
∗) ⊆ 𝑁𝑁Cl (𝑀2

∗) -------------------- (1). 

By Definition 3.1., 

𝑁𝑁Fr (𝑀1
∗) = 𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶) 

⊆ 𝑁𝑁Cl (𝑀2
∗) ∩ 𝑁𝑁Cl (𝑀1

∗𝐶) by (1) 

⊆ 𝑁𝑁Cl (𝑀2
∗) = 𝑀2

∗ 

Hence 𝑁𝑁Fr (𝑀1
∗) ⊆ 𝑀2

∗. 

Theorem 3.10  

Let 𝑀1
∗ be the NNS in the N-N-T-S U. Then 

𝑁𝑁Fr (𝑀1
∗) = 𝑁𝑁Cl (𝑀1

∗) – 𝑁𝑁Int (𝑀1
∗). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. By Propositon (2.4), 

((𝑁𝑁𝐶𝑙 (𝑀1
∗𝐶)))

𝐶
  = 𝑁𝑁Int (𝑀1

∗) and by Definition 3.1., 

𝑁𝑁Fr (𝑀1
∗) = 𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶) 

             = 𝑁𝑁Cl (𝑀1
∗) – (NCl (𝑀1

∗𝐶))C 

by using 𝑀1
∗ – 𝑀2

∗ = 𝑀1
∗ ∩ 𝑀2

∗𝐶 

By Propositon (2.4), 

= 𝑁𝑁Cl (𝑀1
∗) – 𝑁𝑁Int (𝑀1

∗) 

Hence 𝑁𝑁Fr (𝑀1
∗) = 𝑁𝑁Cl (𝑀1

∗) – 𝑁𝑁Int (𝑀1
∗). 

Theorem 3.11. 

 For a NNS 𝑀1
∗ in the 𝑁𝑁TS U, 𝑁𝑁Fr (𝑁𝑁Int (𝑀1

∗)) ⊆ 𝑁𝑁Fr (𝑀1
∗). 

Proof : 

 Let M1
∗ be the NNS in the N-N-T-S  U. Using Definition 3.1., 

NNFr (NNInt (M1
∗)) = NNCl (NNInt (M1

∗)) ∩ NNCl (NNInt (M1
∗)) )C 

By Propositon (2.4), 

= NNCl (NNInt (M1
∗)) ∩ NNCl (NNCl (M1

∗C))) 

 By Propositon (2.4), 

= NNCl (NNInt (M1
∗)) ∩ NNCl (M1

∗C) ) 

. By Propositon (2.4), , 

⊆ NNCl (M1
∗) ∩ NNCl (M1

∗C)) 

Again by Definition 3.1., 

= NNFr (M1
∗) 

Hence NNFr (NNInt (M1
∗)) ⊆ NNFr (M1

∗). 

. 

Example 3.12.  

Let U and 𝒜 be two non-empty finite sets,  

where U is the  universe and 𝒜 the set of attributes 

The members of  U= {P1, P2, P3,P4}are pressure patients  

Let U/R ={{P1, P2, P3}, {P4}} be an equivalence relation 

𝒜 = {Head ache, Temperature} are  two attributes  

P1= 〈x, (
5

10
,

6

10
,

7

10
) , (

10

10
,

9

10
,

4

10
)〉 

P2= 〈x, (
3

10
,

9

10
,

2

10
) , (

4

10
,

1

10
,

6

10
)〉 
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P3= 〈x, (
5

10
,

9

10
,

2

10
) , (

4

10
,

9

10
,

4

10
)〉 

P4= 〈x, (
3

10
,

6

10
,

7

10
) , (

1

10
,

1

10
,

6

10
)〉 

𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, N(F) , 𝑁(F),BN(F)} 

           N(F) = 〈x, (
3

10
,

6

10
,

7

10
) , (

4

10
,

1

10
,

6

10
)〉  

           𝑁(F) = 〈x, (
5

10
,

9

10
,

2

10
) , (

10

10
,

9

10
,

4

10
)〉 

           BN(F) = 〈x, (
5

10
,

4

10
,

3

10
) , (

6

10
,

9

10
,

4

10
)〉 

𝑁𝑁(𝜏)= {0𝑁𝑁
, 1𝑁𝑁

, 〈x, (
3

10
,

6

10
,

7

10
) , (

4

10
,

1

10
,

6

10
)〉 , 〈 (

5

10
,

9

10
,

2

10
) , (

10

10
,

9

10
,

4

10
)〉, 

                               〈(
5

10
,

4

10
,

3

10
) , (

6

10
,

9

10
,

4

10
)〉 , (

3

10
,

6

10
,

7

10
) , (

1

10
,

1

10
,

6

10
)}                                                                              

𝑀3
∗ = 〈(

5

10
,

4

10
,

3

10
) , (

6

10
,

9

10
,

4

10
)〉 

Therefore by Definition 3.1., 𝑁𝑁Fr (𝑀3
∗) = ⊈ 𝑁𝑁Fr (𝑁𝑁Int (𝑀3

∗)). 

Theorem 3.13. 

 For a NNS 𝑀1
∗ in the N-N-T-S U, 𝑁𝑁Fr (𝑁𝑁Cl (𝑀1

∗)) ⊆ 𝑁𝑁Fr (𝑀1
∗). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 3.1., 

𝑁𝑁Fr (𝑁𝑁Cl (𝑀1
∗)) = 𝑁𝑁Cl (𝑁𝑁Cl (𝑀1

∗)) ∩ 𝑁𝑁Cl ((𝑁𝑁𝐶𝑙 (𝑀1
∗))) )𝐶  By Propositon (2.4), 

= 𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑁𝑁Int (𝑀1

∗𝐶))By Propositon (2.4), 

⊆ 𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀1

∗𝐶)Again by Definition 3.1., 

= 𝑁𝑁Fr (𝑀1
∗) 

Hence 𝑁𝑁Fr (𝑁𝑁Cl (𝑀1
∗)) ⊆ 𝑁𝑁Fr (𝑀1

∗). 

Theorem 3.14.  

Let 𝑀1
∗ be the NNS in the N-N-T-S U. Then 𝑁𝑁Int (𝑀1

∗) ⊆ 𝑀1
∗ – 𝑁𝑁Fr (𝑀1

∗). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Now by Definition 3.1., 

𝑀1
∗ – 𝑁𝑁Fr (𝑀1

∗) = 𝑀1
∗ − (𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶)) 

= (𝑀1
∗ – 𝑁𝑁Cl (𝑀1

∗)) ∪(𝑀1
∗ – 𝑁𝑁Cl (𝑀1

∗𝐶)) 

= 𝑀1
∗ – 𝑁𝑁Cl (𝑀1

∗𝐶) 

𝑁𝑁Int (𝑀1
∗). 

Hence 𝑁𝑁Int (𝑀1
∗) ⊆ 𝑀1

∗ – 𝑁𝑁Fr (𝑀1
∗). 

Remark 3.15.  

In general topology, the following conditions are hold : 

𝑁𝑁Fr (𝑀1
∗) ∩ 𝑁𝑁Int (𝑀1

∗) = 0N, 

𝑁𝑁Int (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀1

∗) = 𝑁𝑁Cl (𝑀1
∗), 

𝑁𝑁Int (𝑀1
∗) ∪ 𝑁𝑁Int (𝑀1

∗𝐶) ∪ 𝑁𝑁Fr (𝑀1
∗) = 1𝑁𝑁

. 

Theorem 3.16. 

 Let 𝑀1
∗ and 𝑀2

∗ be the two NNSs in the N-N-T-S.  

Then 𝑁𝑁Fr (𝑀1
∗ ∪ 𝑀2

∗) ⊆ 𝑁𝑁Fr (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀2

∗). 

Proof : Let 𝑀1
∗ and 𝑀2

∗ be the two NNSs in the N-N-T-S U. 

Using Definition 3.1., 

𝑁𝑁Fr (𝑀1
∗ ∪ 𝑀2

∗) = 𝑁𝑁Cl (𝑀1
∗ ∪ 𝑀2

∗) ∩ 𝑁𝑁Cl ((𝑀1
∗  ∪ 𝑀2

∗)𝐶 

. By Propositon (2.4), 

= 𝑁𝑁Cl (𝑀1
∗ ∪ 𝑀2

∗) ∩ 𝑁𝑁Cl ( 𝑀1
∗𝐶 ∩ 𝑀2

∗𝐶) 

⊆ (𝑁𝑁Cl (𝑀1
∗) ∪ 𝑁𝑁Cl (𝑀2

∗)) ∩ (𝑁𝑁Cl (𝑀1
∗𝐶) ∩ 𝑁𝑁Cl(𝑀2

∗𝐶)) 

= [(𝑁𝑁Cl (𝑀1
∗) ∪ 𝑁𝑁Cl (𝑀2

∗) ) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶) ] ∩ [ (𝑁𝑁Cl (𝑀1

∗) ∪ 𝑁𝑁Cl (𝑀2
∗) ) ∩ 𝑁𝑁Cl  (𝑀2

∗𝐶) ] 

= [(𝑁𝑁 Cl (𝑀1
∗ ) ∩ 𝑁𝑁 Cl (𝑀1

∗𝐶 ))  ∪  (  𝑁𝑁 Cl (𝑀2
∗ ) ∩ 𝑁𝑁 Cl(𝑀1

∗𝐶 ))] ∩ [(  𝑁𝑁 Cl (𝑀1
∗ ) ∩ 𝑁𝑁 Cl (𝑀2

∗𝐶 ))  ∪ 

( 𝑁𝑁Cl(𝑀2
∗) ∩ 𝑁𝑁Cl(𝑀2

∗𝐶))] 

Again by Definition 3.1., 

= [𝑁𝑁Fr (𝑀1
∗) ∪ ( 𝑁𝑁Cl (𝑀2

∗) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶)) ] ∩ [ (𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl (𝑀2
∗𝐶) ) ∪ 𝑁𝑁Fr(𝑀2

∗) ] 

= (𝑁𝑁Fr (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀2

∗)) ∩ [ (𝑁𝑁Cl (𝑀2
∗) ∩ 𝑁𝑁Cl (𝑀1

∗𝐶) ) 
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∪ ( 𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗𝐶) ) ] 

⊆ 𝑁𝑁Fr (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀2

∗). 

Hence 𝑁𝑁Fr (𝑀1
∗ ∪ 𝑀2

∗) ⊆ 𝑁𝑁Fr (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀2

∗). 

Note 3.17.  

𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊈ 𝑁𝑁Fr (𝑀1
∗) ∩ 𝑁𝑁Fr (𝑀2

∗) and 

𝑁𝑁Fr (𝑀1
∗) ∩ 𝑁𝑁Fr (𝑀2

∗) ⊈ 𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗). 

Theorem 3.18. 

 For any NNSs 𝑀1
∗ and 𝑀2

∗ in the N-N-T-S U, 

𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ ( 𝑁𝑁Fr (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗) ) ∪ ( 𝑁𝑁Fr (𝑀2
∗) ∩ 𝑁𝑁Cl (𝑀1

∗) ). 

Proof : Let 𝑀1
∗ and 𝑀2

∗ be the two NNSs in the N-N-T-S U. 

Using Definition 3.1., 

𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗) = 𝑁𝑁Cl (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁Cl ( (𝑀1
∗  ∩ 𝑀2

∗)𝐶 

Use Prop., 3.2 (1) [18] , 

= 𝑁𝑁Cl (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁Cl 𝑀1
∗𝐶 ∪ 𝑀2

∗𝐶) 

. By Propositon (2.4), 

⊆ (𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗)) ∩ (𝑁𝑁Cl (𝑀1
∗𝐶) ∪ 𝑁𝑁Cl (𝑀2

∗𝐶)) 

= [ (𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗) ) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶) ] ∪ [ (𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl (𝑀2
∗) ) ∩ 𝑁𝑁Cl (𝑀2

∗𝐶) ] 

Again by Definition 3.1., 

= (𝑁𝑁Fr (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗) ) ∪ ( 𝑁𝑁Fr (𝑀2
∗) ∩ 𝑁𝑁Cl (𝑀1

∗) ) 

Hence 𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ ( 𝑁𝑁Fr (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗) ) ∪ 

(𝑁𝑁Fr (𝑀2
∗) ∩ 𝑁𝑁Cl (𝑀1

∗) ). 

Corollary 3.19. 

 For any NNSs 𝑀1
∗ and 𝑀2

∗ in the N-N-T-S U, 

𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ 𝑁𝑁Fr (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀2

∗). 

Proof : 

 Let 𝑀1
∗ and 𝑀2

∗ be the two NNSs in the N-N-T-S U. Using Definition 3.1., 

𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗) = 𝑁𝑁Cl (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁Cl ((𝑀1
∗  ∩ 𝑀2 

∗ )𝐶 

. By Propositon (2.4),, 

= 𝑁𝑁Cl (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁Cl ( 𝑀1
∗𝐶 ∪ 𝑀2

∗𝐶) 

. By Propositon (2.4),, 

⊆ (𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗)) ∩ (𝑁𝑁Cl (𝑀1
∗𝐶) ∪ 𝑁𝑁Cl (𝑀2

∗𝐶)) 

= (𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶) ) ∪ ( 𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl (𝑀2
∗) ∩ 𝑁𝑁Cl (𝑀2

∗𝐶) ) 

Again by Definition 3.1., 

= (𝑁𝑁Fr (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀2

∗) ) ∪ ( 𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Fr (𝑀2

∗) ) 

⊆ 𝑁𝑁Fr (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀2

∗) 

Hence 𝑁𝑁Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ 𝑁𝑁Fr (𝑀1
∗) ∪ 𝑁𝑁Fr (𝑀2

∗). 

Theorem 3.20 

 For any NNS 𝑀1
∗ in the N-N-T-S U, 

(1) 𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗)) ⊆ 𝑁𝑁Fr (𝑀1

∗), 

(2) 𝑁𝑁Fr (𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗))) ⊆ 𝑁𝑁Fr (𝑁𝑁Fr (𝑀1

∗)). 

Proof : (1) Let 𝑀1
∗ be the NNS in the Neutrosophic Nano topological space U. Using Definition 3.1., 

𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗)) = 𝑁𝑁Cl (𝑁𝑁Fr (𝑀1

∗)) ∩ 𝑁𝑁Cl ((𝑁𝑁𝐹𝑟 (𝑀1
∗))𝐶Again by Definition 3.1., 

= 𝑁𝑁Cl (𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀1

∗𝐶) ) ∩ 𝑁𝑁Cl (((𝑁𝑁𝐶𝑙 (𝑀1
∗)  ∩ 𝑁𝑁𝐶𝑙 (𝑀1

∗𝐶) )
𝐶
  

 By Propositon (2.4), and by By Propositon (2.4), 

⊆ ( 𝑁𝑁Cl (𝑁𝑁Cl (𝑀1
∗)) ∩ 𝑁𝑁Cl (𝑁𝑁Cl (𝑀1

∗𝐶)) ) ∩  𝑁𝑁Cl (𝑁𝑁Int (𝑀1
∗𝐶) ∪ 𝑁𝑁Int (𝑀1

∗) ) 

Use Prop., 1.18 (f) [18] , 

= (𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀1

∗𝐶) ) ∩ ( 𝑁𝑁Cl (𝑁𝑁Int (𝑀1
∗𝐶 )) ∪  𝑁𝑁Cl (𝑁𝑁Int (𝑀1

∗)) 

⊆ 𝑁𝑁Cl (𝑀1
∗) ∩ 𝑁𝑁Cl (𝑀1

∗𝐶) 

By Definition 3.1., 
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= 𝑁𝑁Fr (𝑀1
∗) 

Therefore 𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗)) ⊆ 𝑁𝑁Fr (𝑀1

∗). 

(2) By Definition 3.1., 

𝑁𝑁Fr (𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗))) = 𝑁𝑁Cl (𝑁𝑁Fr (𝑁𝑁Fr (𝑀1

∗))) ∩ 𝑁𝑁Cl ((𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗)))C) 

Use Prop., 1.18 (f) [18] , 

⊆ (𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗))) ∩ 𝑁𝑁Cl((𝑁𝑁𝐹𝑟 (𝑁𝑁𝐹𝑟 (𝑀1

∗))) )𝐶 ⊆ 𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗)). 

Hence 𝑁𝑁Fr (𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗))) ⊆ 𝑁𝑁Fr (𝑁𝑁Fr (𝑀1

∗)). 

Example 3.21.  

Let U and 𝒜 be two non-empty finite sets,  

where U is the  universe and 𝒜 the set of attributes 

The members of  U= {P1, P2, P3,P4}are patients  

Let U/R ={{P1, P2, P3}, {P4}} be an equivalence relation 

𝒜 = {Head ache, Temperature} are two attributes  

P1= 〈x, (
8

10
,

4

10
,

5

10
) , (

4

10
,

6

10
,

7

10
)〉 

P2= 〈x, (
4

10
,

2

10
,

9

10
) , (

1

10
,

4

10
,

9

10
)〉 

P3= 〈x, (
5

10
,

6

10
,

8

10
) , (

7

10
,

4

10
,

4

10
)〉 

P4= 〈x, (
9

10
,

8

10
,

4

10
) , (

9

10
,

6

10
,

1

10
)〉 

𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, N(F) , 𝑁(F),BN(F)} 

           N(F) = 〈x, (
4

10
,

2

10
,

9

10
) , (

1

10
,

4

10
,

9

10
)〉  

           𝑁(F) = 〈x, (
8

10
,

6

10
,

5

10
) , (

7

10
,

6

10
,

4

10
)〉 

           BN(F) = 〈x, (
9

10
,

6

10
,

4

10
) , (

7

10
,

6

10
,

4

10
)〉 

𝑁𝑁(𝜏)= {0𝑁𝑁
, 1𝑁𝑁

, 〈x, (
4

10
,

2

10
,

9

10
) , (

1

10
,

4

10
,

9

10
)〉 , 〈(

8

10
,

6

10
,

5

10
) , (

7

10
,

6

10
,

4

10
)〉, 

                               〈(
9

10
,

6

10
,

4

10
) , (

7

10
,

6

10
,

4

10
)〉 , (

9

10
,

8

10
,

4

10
) , (

9

10
,

6

10
,

1

10
)}                                                                              

𝑀1
∗ = 〈x, (

6

10
,

7

10
,

8

10
) , (

5

10
,

4

10
,

5

10
)〉 

Then  𝑁𝑁Fr (𝑀1
∗) = 〈x, (

9

10
,

8

10
,

4

10
) , (

9

10
,

6

10
,

1

10
)〉  

𝑁𝑁Fr (𝑁𝑁Fr (𝑀1
∗)) = 〈x, (

4

10
,

2

10
,

9

10
) , (

1

10
,

4

10
,

9

10
)〉. 

𝑁𝑁𝐹𝑟 (𝑀1
∗) ⊈ 𝑁𝑁Fr (𝑁𝑁Fr (𝑀1

∗)) 

III. NEUTROSOPHIC NANO SEMI-FRONTIER 

In this section, we introduce the Neutrosophic Nano semi-frontier and their properties in N-N-T-S s. 

Definition 4.1. 

 Let 𝑀1
∗ be a NNS in the N-N-T-S U. Then the Neutrosophic Nano semi-frontier of 𝑀1

∗ is defined as 

 NN(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl(𝑀1
∗𝐶).  

Obviously𝑁𝑁(S)Fr (𝑀1
∗) is a NN(S)C set in U. 

Theorem 4.2. 

 Let 𝑀1
∗ be a NNS in the N-N-T-S U. Then the following conditions are holds : 

(i) 𝑁𝑁(S)Cl  (𝑀1
∗) = 𝑀1

∗ ∪ 𝑁𝑁Int (𝑁𝑁Cl (𝑀1
∗)), 

(ii) 𝑁𝑁(S)Int  (𝑀1
∗) = 𝑀1

∗ ∩ 𝑁𝑁Cl (𝑁𝑁Int (𝑀1
∗)). 

Proof : (i) Let 𝑀1
∗ be a NNS in U. Consider 

𝑁𝑁Int (𝑁𝑁Cl (𝑀1
∗ ∪ 𝑁𝑁Int (𝑁𝑁Cl (𝑀1

∗)) ) ) 

= 𝑁𝑁Int (𝑁𝑁Cl (𝑀1
∗) ∪ 𝑁𝑁Cl (𝑁𝑁Int (𝑁𝑁Cl (𝑀1

∗)) ) ) 

= 𝑁𝑁Int (𝑁𝑁Cl (𝑀1
∗)) 

⊆ 𝑀1
∗ ∪ 𝑁𝑁Int (𝑁𝑁Cl (𝑀1

∗)) 

It follows that 𝑀1
∗ ∪ 𝑁𝑁Int (𝑁𝑁Cl (𝑀1

∗)) is a NN(S)C set in U. 

Hence 𝑁𝑁(S)Cl  (𝑀1
∗) ⊆ 𝑀1

∗ ∪ 𝑁𝑁Int (𝑁𝑁Cl (𝑀1
∗)) ... (1) 

Use Prop𝑁𝑁(S)Cl  (𝑀1
∗) is 𝑁𝑁(S)C set in 
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U. We have 𝑁𝑁Int (𝑁𝑁Cl (𝑀1
∗)) ⊆ 𝑁𝑁Int (𝑁𝑁Cl (𝑁𝑁(S)Cl  (𝑀1

∗))) ⊆ 𝑁𝑁(S)Cl  (𝑀1
∗). 

Thus 𝑀1
∗ ∪ 𝑁𝑁Int (𝑁𝑁Cl (𝑀1

∗)) ⊆ 𝑁𝑁(S)Cl  (𝑀1
∗) ... (2). 

From (1) and (2), 𝑁𝑁(S)Cl  (𝑀1
∗) = 𝑀1

∗ ∪ 𝑁𝑁Int (𝑁𝑁Cl (𝑀1
∗)). 

(ii) This can be proved in a similar manner as (i). 

Theorem 4.3. 

For a NNS 𝑀1
∗ in the N-N-T-S U, 𝑁𝑁(S)Fr (𝑀1

∗) =𝑁𝑁(S)Fr (𝑀1
∗𝐶). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 4.1, 

𝑁𝑁(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) 

         = 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗) 

                       = 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) ∩ 𝑁𝑁(𝑆)𝐶𝑙 (𝑀1

∗𝐶)
𝐶

 

Again by Definition 4.1, 

                       = 𝑁𝑁(S)Fr (𝑀1
∗𝐶) 

Hence 𝑁𝑁(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Fr (𝑀1

∗𝐶). 

Theorem 4.4.  

If 𝑀1
∗ is NN(S)C set in U, then𝑁𝑁(S)Fr (𝑀1

∗) ⊆ 𝑀1
∗. 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 4.1, 

𝑁𝑁(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) 

                        ⊆  𝑁𝑁(S)Cl(𝑀1
∗)= 𝑀1

∗ 

Hence 𝑁𝑁(S)Fr (𝑀1
∗) ⊆ 𝑀1

∗, if 𝑀1
∗ is NN(S)C in U. 

The converse of the above theorem is not true as shown by the following example. 

Example 4.5. 

Let U and 𝒜 be two non-empty finite sets,  

where U is the  universe and 𝒜 the set of attributes 

  U={F1,F2 ,F3, F4}are Fruits 

Let U/R ={{ F1,F2 ,F3}, { F4}} be an equivalence relation 

𝒜 = {Proteins, minerals, vitamins} are  three attributes ,its Neutrosphic values are given below 

F1 = 〈(
4

10
,

5

10
,

3

10
) , (

3

10
,

2

10
,

2

10
) , (

9

10
,

5

10
,

8

10
)〉  

F2 =〈(
2

10
,

4

10
,

5

10
) , (

1

10
,

1

10
,

2

10
) , (

6

10
,

5

10
,

8

10
)〉  

F3 =〈(
5

10
,

5

10
,

3

10
) , (

4

10
,

2

10
,

2

10
) , (

9

10
,

5

10
,

8

10
)〉  

F4 = 〈(
4

10
,

4

10
,

5

10
) , (

2

10
,

2

10
,

2

10
) , (

6

10
,

5

10
,

8

10
)〉 

𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, N(M) , 𝑁(M),BN(M)} 

N(F) = 〈(
2

10
,

4

10
,

5

10
) , (

1

10
,

1

10
,

2

10
) , (

6

10
,

5

10
,

8

10
)〉 

𝑁(F)=     〈(
5

10
,

5

10
,

3

10
) , (

4

10
,

2

10
,

2

10
) , (

9

10
,

5

10
,

8

10
)〉     

BN(F)= 〈(
5

10
,

5

10
,

3

10
) , (

2

10
,

2

10
,

2

10
) , (

8

10
,

5

10
,

8

10
)〉 

𝑁𝑁(𝜏)= {0𝑁𝑁
, 1𝑁𝑁

,〈(
2

10
,

4

10
,

5

10
) , (

1

10
,

1

10
,

2

10
) , (

6

10
,

5

10
,

8

10
)〉, 

 〈(
5

10
,

5

10
,

3

10
) , (

4

10
,

2

10
,

2

10
) , (

9

10
,

5

10
,

8

10
)〉 

 〈(
5

10
,

5

10
,

3

10
) , (

2

10
,

2

10
,

2

10
) , (

8

10
,

5

10
,

8

10
)〉, 

〈(
4

10
,

4

10
,

5

10
) , (

2

10
,

2

10
,

2

10
) , (

6

10
,

5

10
,

8

10
)〉} 

 

𝑀1
∗ 〈(

2

10
,

5

10
,

5

10
) , (

2

10
,

7

10
,

2

10
) , (

7

10
,

5

10
,

5

10
)〉, is Neutrosophic Nano semi-closed set 

Then  𝑁𝑁(S)Fr (𝑀1
∗) ⊆ 𝑀1

∗ 

Theorem 4.6. 

 If M1
∗ is NNSO set in U, then NN(S)Fr (M1

∗) ⊆ M1
∗C 

Proof : Let M1
∗ be the NNS in the N-N-T-S  U. Using Proposition 4.3 [18] , 
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M1
∗ is NNSO set implies M1

∗Cis NN(S)C set in U. By Theorem 3.4, NN(S)Fr (M1
∗C) ⊆ M1

∗Cand by 

Theorem 3.3, we get NN(S)Fr (M1
∗) ⊆ M1

∗C 

Theorem 4.7. 

Let 𝑀1
∗  ⊆ 𝑀2

∗  and 𝑀2
∗  𝑁𝑁 (S)C (U) ( resp.,  𝑀2

∗  𝑁𝑁 SO (U) ). Then 𝑁𝑁 (S)Fr (𝑀1
∗ ) ⊆ 𝑀2

∗  ( resp., 

𝑁𝑁(S)Fr (𝑀1
∗) ⊆ 𝑀2

∗𝐶, where 𝑁𝑁(S)C (U) ( resp., 𝑁𝑁SO (U) ) denotes the class of Neutrosophic Nano 

semi-closed ( resp.,Neutrosophic Nano semi-open) sets in U. 

Proof : Use Prop., 6.3 (iv) [18] , 𝑀1
∗ ⊆ 𝑀2

∗ , 

𝑁𝑁(S)Cl  (𝑀1
∗) ⊆ 𝑁𝑁(S)Cl  (𝑀2

∗) -------------------- (1). 

By Definition 4.1, 

𝑁𝑁(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Cl(𝑀1

∗) ∩ 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) 

                        ⊆ 𝑁𝑁(S)Cl(𝑀2
∗) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗𝐶) by (1) 

                        ⊆ 𝑁𝑁(S)Cl (𝑀2
∗)Use Prop., 6.3 (ii) [18] ,= 𝑀2

∗ 

Hence 𝑁𝑁(S)Fr (𝑀1
∗) ⊆ 𝑀2

∗. 

Theorem 4.8. 

 Let M1
∗ be the NNS in the N-N-T-S U. Then (𝑁𝑁(𝑆)𝐹𝑟 (𝑀1

∗) )𝐶= 𝑁𝑁(S)Int  (𝑀1
∗) ∪ 𝑁𝑁(S)Int  (𝑀1

∗𝐶 ). 

Proof : Let M1
∗ be the NNS in the N-N-T-S  U. Using Definition 4.1, 

(𝑁𝑁(𝑆)𝐹𝑟 (𝑀1
∗) )𝐶  = ((𝑁𝑁(𝑆)𝐶𝑙 (𝑀1

∗)  ∩ 𝑁𝑁(𝑆)𝐶𝑙 (𝑀1
∗𝐶  )))

𝐶
Use Prop., 3.2 (1) [18] , 

                                = (𝑁𝑁(S)Cl  (𝑀1
∗))C ∪ (𝑁𝑁(S)Cl  (𝑀1

∗𝐶))CUse Prop., 6.2 (ii) [18] , 

                                = 𝑁𝑁(S)Int  (𝑀1
∗𝐶) ∪ 𝑁𝑁(S)Int  (𝑀1

∗) 

Hence (𝑁𝑁(𝑆)𝐹𝑟 (𝑀1
∗) )𝐶  = 𝑁𝑁(S)Int  (𝑀1

∗) ∪ 𝑁𝑁(S)Int  (𝑀1
∗𝐶). 

Theorem 4.9.  

For a NNS M1
∗ in the N-N-T-S U, then 𝑁𝑁(S)Fr (𝑀1

∗) ⊆ 𝑁𝑁Fr (𝑀1
∗). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Proposition 6.4 [18] , 

𝑁𝑁(S)Cl  (𝑀1
∗) ⊆ 𝑁𝑁Cl (𝑀1

∗) and 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) ⊆ 𝑁𝑁Cl (𝑀1

∗𝐶).Now by Definition 4.1, 

𝑁𝑁(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) ⊆  𝑁𝑁Cl (𝑀1

∗) ∩ 𝑁𝑁Cl (𝑀1
∗𝐶)By Definition 3.1., 

= 𝑁𝑁Fr (𝑀1
∗) 

Hence 𝑁𝑁(S)Fr (𝑀1
∗) ⊆ 𝑁𝑁Fr (𝑀1

∗). 

Theorem 4.10. 

 For a NNS 𝑀1
∗ in the N-N-T-S U, then 𝑁𝑁(S)Cl  (𝑁𝑁(S)Fr (𝑀1

∗)) ⊆ 𝑁𝑁Fr (𝑀1
∗). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 4.1, 

𝑁𝑁(S)Cl  (𝑁𝑁(S)Fr (𝑀1
∗)) = 𝑁𝑁(S)Cl  (𝑁𝑁(S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl  ((𝑀1
∗𝐶))) 

⊆ 𝑁𝑁(S)Cl  (𝑁𝑁(S)Cl  (𝑀1
∗)) ∩ 𝑁𝑁(S)Cl  (𝑁𝑁(S)Cl  ((𝑀1

∗𝐶)))Use Prop., 6.3 (iii) [18] , 

= 𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  ((𝑀1

∗𝐶))By Definition 4.1, 

= 𝑁𝑁(S)Fr (𝑀1
∗)By Theorem 3.10, 

⊆ 𝑁𝑁Fr (𝑀1
∗) 

Hence 𝑁𝑁(S)Cl  (𝑁𝑁(S)Fr (𝑀1
∗)) ⊆ 𝑁𝑁Fr (𝑀1

∗). 

Theorem 4.11 

 Let 𝑀1
∗ be a 𝑁𝑁S in the N-N-T-S U. Then 𝑁𝑁(S)Fr (𝑀1

∗) = 𝑁𝑁(S)Cl (𝑀1
∗) – 𝑁𝑁(S)Int  (𝑀1

∗). 

Proof :  

Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Use Prop., 6.2 (ii) [18] , 

(𝑁𝑁(S)Cl  (𝑀1
∗𝐶)))C = 𝑁𝑁(S)Int  (𝑀1

∗) and by Definition 4.1, 

 𝑁𝑁(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl  ( (𝑀1
∗𝐶)) 

= 𝑁𝑁(S)Cl  (𝑀1
∗) – (𝑁𝑁(𝑆)𝐶𝑙 ((𝑀1

∗𝐶)))𝐶by using 𝑀1
∗ – 𝑀2

∗ = 𝑀1
∗ ∩(𝑀2

∗𝐶)Use Prop., 6.2 (ii) [18] , 

= 𝑁𝑁(S)Cl  (𝑀1
∗) – 𝑁𝑁(S)Int  (𝑀1

∗) 

Hence 𝑁𝑁(S)Fr (𝑀1
∗) = 𝑁𝑁(S)Cl  (𝑀1

∗) – 𝑁𝑁(S)Int  (𝑀1
∗). 

Theorem 4.12. 

 For a NNS 𝑀1
∗ in the N-N-T-S U, then 𝑁𝑁(S)Fr (𝑁𝑁(S)Int  (𝑀1

∗)) ⊆ 𝑁𝑁(S)Fr (𝑀1
∗). 

Proof : Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 4.1, 

𝑁𝑁(S)Fr (𝑁𝑁Int (𝑀1
∗))= 𝑁𝑁(S)Cl (𝑁𝑁Int(𝑀1

∗))∩  𝑁𝑁(S)Cl ( (𝑁𝑁(S)Int  (𝑀1
∗))C) Use Prop., 6.2 (i) [18] , 
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                         =𝑁𝑁(S)Cl (𝑁𝑁(S)Int (𝑀1
∗))∩  𝑁𝑁(S)Cl (𝑁𝑁(S)Cl ((𝑀1

∗𝐶)))Use Prop., 6.3 (iii) [18] , 

                         = 𝑁𝑁(S)Cl  (𝑁𝑁(S)Int  (𝑀1
∗)) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗𝐶)Use Prop., 5.2 (ii) [18] , 

⊆ 𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  ( 𝑀1

∗𝐶))By Definition 4.1, 

                        = 𝑁𝑁(S)Fr (𝑀1
∗) 

Hence 𝑁𝑁(S)Fr (𝑁𝑁(S)Int  (𝑀1
∗)) ⊆ 𝑁𝑁(S)Fr (𝑀1

∗). 

Example 4.13. 

Let U and 𝒜 be two non-empty finite sets,  

where U is the  universe and 𝒜 the set of attributes 

  U={P1,P2 ,P3, P4}are Patients 

Let U/R ={{ P1,P2 ,P3, P4 }, { P5}} be an equivalence relation 

𝒜 = {Head ache, Temperature, Cold} are three attributes  

its Neutrosphic values are given below 

P1 = 〈(
3

10
,

4

10
,

2

10
) , (

5

10
,

6

10
,

7

10
) , (

9

10
,

5

10
,

2

10
)〉  

P2 =〈(
3

10
,

5

10
,

1

10
) , (

4

10
,

6

10
,

2

10
) , (

8

10
,

4

10
,

6

10
)〉  

P3 =〈(
3

10
,

5

10
,

1

10
) , (

4

10
,

6

10
,

2

10
) , (

8

10
,

4

10
,

6

10
)〉  

P4 = 〈(
3

10
,

4

10
,

2

10
) , (

4

10
,

6

10
,

7

10
) , (

8

10
,

4

10
,

6

10
)〉 

P5 = 〈(
5

10
,

6

10
,

1

10
) , (

6

10
,

7

10
,

1

10
) , (

9

10
,

5

10
,

2

10
)〉 

𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, N(M) , 𝑁(M),BN(M)} 

𝑁(𝐹) = 〈(
3

10
,

4

10
,

2

10
) , (

4

10
,

6

10
,

7

10
) , (

8

10
,

4

10
,

6

10
)〉 

𝑁(F)=     〈(
3

10
,

5

10
,

1

10
) , (

5

10
,

6

10
,

2

10
) , (

9

10
,

5

10
,

2

10
)〉     

BN(F)= 〈(
2

10
,

5

10
,

3

10
) , (

5

10
,

6

10
,

4

10
) , (

6

10
,

5

10
,

6

10
)〉 

𝑁𝑁(𝜏)= {0𝑁𝑁
, 1𝑁𝑁

,〈(
3

10
,

4

10
,

2

10
) , (

4

10
,

6

10
,

7

10
) , (

8

10
,

4

10
,

6

10
)〉, 〈(

3

10
,

5

10
,

1

10
) , (

5

10
,

6

10
,

2

10
) , (

9

10
,

5

10
,

2

10
)〉 

 〈(
2

10
,

5

10
,

3

10
) , (

5

10
,

4

10
,

4

10
) , (

6

10
,

5

10
,

6

10
)〉 , 〈(

5

10
,

6

10
,

1

10
) , (

6

10
,

7

10
,

1

10
) , (

9

10
,

5

10
,

2

10
)〉} 

𝑀1
∗ = 〈(

2

10
,

6

10
,

5

10
) , (

5

10
,

4

10
,

5

10
) , (

6

10
,

5

10
,

7

10
)〉 is a NNSO 

Therefore 𝑁𝑁(S)Fr (𝑀1
∗) ⊈ 𝑁𝑁(S)Fr (𝑁𝑁(S)Int  (𝑀1

∗)). 

 

Theorem 4.14. 

 For a NNS 𝑀1
∗ in the N-N-T-S U, then𝑁𝑁(S)Fr (𝑁𝑁(S)Cl  (𝑀1

∗)) ⊆ 𝑁𝑁(S)Fr (𝑀1
∗). 

Proof : 

 Let 𝑀1
∗ be the 𝑁𝑁S in the N-N-T-S  U. Using Definition 4.1, 

𝑁𝑁(S)Fr(𝑁𝑁(S)Cl (𝑀1
∗))= 𝑁𝑁(S)Cl (𝑁𝑁(S)Cl (𝑀1

∗))∩  𝑁𝑁(𝑆)𝐶𝑙((𝑁𝑁(𝑆)𝐶𝑙 (𝑀1
∗)))𝐶  

Use Prop., 6.3 (iii) and Proposition 6.2 (ii) [18] , 

= 𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑁𝑁(S)Int  (𝑀1

∗𝐶))Use Prop., 5.2 (i) [18] , 

⊆ 𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗𝐶)By Definition 4.1, 

= 𝑁𝑁(S)Fr (𝑀1
∗) 

Hence 𝑁𝑁(S)Fr (𝑁𝑁(S)Cl  (𝑀1
∗)) ⊆ 𝑁𝑁(S)Fr (𝑀1

∗). 

Remark 4.15. 

 In general topology, the following conditions conditions are hold : 

𝑁𝑁(S)Fr (𝑀1
∗) ∩ 𝑁𝑁(S)Int  (𝑀1

∗) = 0N, 

𝑁𝑁(S)Int  (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀1

∗) = 𝑁𝑁(S)Cl  (𝑀1
∗), 

𝑁𝑁(S)Int  (𝑀1
∗) ∪ 𝑁𝑁(S)Int  (𝑀1

∗𝐶) ∪ 𝑁𝑁(S)Fr (𝑀1
∗) = 1𝑁𝑁

. 

Theorem 4.16. 

 Let 𝑀1
∗ and 𝑀2

∗ be NNSs in the N-N-T-S U. 

Then 𝑁𝑁(S)Fr (𝑀1
∗ ∪ 𝑀2

∗) ⊆ 𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀2

∗). 

Proof : Let 𝑀1
∗ and 𝑀2

∗ be NNSs in the N-N-T-S U. Using Definition 4.1, 
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𝑁𝑁(S)Fr (𝑀1
∗ ∪ 𝑀2

∗) = 𝑁𝑁(S)Cl  (𝑀1
∗ ∪ 𝑀2

∗) ∩ 𝑁𝑁(S)Cl   (𝑀1
∗  ∪ 𝑀2

∗)𝐶  . By Propositon (2.4), 

  = 𝑁𝑁(S)Cl  (𝑀1
∗ ∪ 𝑀2

∗) ∩ 𝑁𝑁(S)Cl  ( (𝑀1
∗𝐶) ∩ (𝑀2

∗𝐶) )Use Prop., 6.5 (i) and (ii) [18] , 

⊆ (𝑁𝑁(S)Cl (𝑀1
∗) ∪ 𝑁𝑁(S)Cl (𝑀2

∗)) ∩ ( 𝑁𝑁(S)Cl (𝑀1
∗𝐶)∩  𝑁𝑁(S)Cl (𝑀2

∗𝐶)) 

 = [ (𝑁𝑁 (S)Cl(𝑀1
∗ ) ∪ 𝑁𝑁 (S)Cl  (𝑀2

∗ ) ) ∩ 𝑁𝑁 (S)Cl  ((𝑀1
∗𝐶 ] ∩  [ (𝑁𝑁 (S)Cl (𝑀1

∗ ) ∪ 𝑁𝑁 (S)Cl  (𝑀2
∗ ) ) 

∩ 𝑁𝑁(S)Cl  (𝑀2
∗𝐶) ] 

= [(𝑁𝑁(S)Cl (𝑀1
∗)∩  𝑁𝑁(S)Cl (𝑀1

∗𝐶)) ∪ ( 𝑁𝑁(S)Cl (𝑀2
∗)∩  𝑁𝑁(S)Cl (𝑀1

∗𝐶))] 

∩ [(𝑁𝑁(S)Cl (𝑀1
∗)∩  𝑁𝑁(S)Cl (𝑀2

∗𝐶)) ∪ ( 𝑁𝑁(S)Cl (𝑀2
∗)∩  𝑁𝑁(S)Cl (𝑀2

∗𝐶))]By Definition 4.1, 

= [𝑁𝑁(S)Fr (𝑀1
∗) ∪ ( 𝑁𝑁(S)Cl  (𝑀2

∗) ∩ 𝑁𝑁(S)Cl  (𝑀1
∗𝐶) ) ] ∩ [ (𝑁𝑁(S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl  (𝑀2
∗𝐶) )  

    ∪ 𝑁𝑁(S)Fr(𝑀2
∗) ] 

= (𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀2

∗)) ∩ [ (𝑁𝑁(S)Cl  (𝑀2
∗) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗𝐶) ) ∪ ( 𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl   

    (𝑀2
∗𝐶) ) ] 

⊆ 𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀2

∗). 

Hence 𝑁𝑁(S)Fr (𝑀1
∗ ∪ 𝑀2

∗) ⊆ 𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀2

∗). 

Example 4.17. 

Let U and 𝒜 be two non-empty finite sets,  

where U is the  universe and 𝒜 the set of attributes 

  U={P1,P2 ,P3, P4}are Patients 

Let U/R ={{ P1,P2 ,P3}, { P4}} be an equivalence relation 

𝒜 = {Temperature} are one attributes  

U/R = {P1}{ P2,P3, P4} 

P1 = 〈(
6

10
,

5

10
,

4

10
)〉 

P2 =〈(
4

10
,

5

10
,

7

10
)〉  

P3 = 〈(
6

10
,

5

10
,

4

10
)〉 

P4 = 〈(
3

10
,

5

10
,

6

10
)〉 .  

Then 𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, N(M) , 𝑁(M),BN(M)}  

N(F) =〈(
4

10
,

5

10
,

7

10
)〉 

𝑁(F)=〈(
6

10
,

5

10
,

4

10
)〉 

BN(F)= 〈(
6

10
,

5

10
,

4

10
)〉 

𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, (
4

10
,

5

10
,

7

10
), (

6

10
,

5

10
,

4

10
), (

6

10
,

5

10
,

4

10
) , (

3

10
,

8

10
,

6

10
)} 

𝑁𝑁(𝜏) = {0𝑁𝑁
, 1𝑁𝑁

, (
4

10
,

5

10
,

7

10
), (

6

10
,

5

10
,

4

10
) , (

3

10
,

5

10
,

6

10
) } 

𝑀1
∗ = (

4

10
,

5

10
,

6

10
),𝑀2

∗ = (
6

10
,

5

10
,

4

10
)are NN(S)C 

𝑀1
∗ ∪ 𝑀2

∗ = (
6

10
,

5

10
,

4

10
) 

𝑁𝑁(S)Fr (𝑀1
∗ ∪ 𝑀2

∗) ⊆ 𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀2

∗). 

Theorem 4.18. 

For any NNSs 𝑀1
∗ and 𝑀2

∗ in the N-N-T-S U, 

𝑁𝑁(S)Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ ( 𝑁𝑁(S)Fr (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑀2

∗) ) ∪ ( 𝑁𝑁(S)Fr (𝑀2
∗) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗) ). 

Proof : Let 𝑀1
∗ and 𝑀2

∗ be 𝑁𝑁Ss in the 𝑁𝑁TS U. Using Definition 4.1, 

𝑁𝑁(S)Fr (𝑀1
∗ ∩ 𝑀2

∗) = 𝑁𝑁(S)Cl  (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁(S)Cl   (𝑀1
∗  ∩ 𝑀2

∗)𝐶Use Prop., 3.2 (1) [18] , 

= 𝑁𝑁(S)Cl  (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁(S)Cl  ( (𝑀1
∗𝐶) ∪ (𝑀2

∗𝐶) ) Use Prop., 6.5 (ii) and (i) [18] , 

⊆ (𝑁𝑁(S)Cl (𝑀1
∗)∩  𝑁𝑁(S)Cl  (𝑀2

∗)) ∩ ( 𝑁𝑁(S)Cl ((𝑀1
∗𝐶))∪  𝑁𝑁(S)Cl ((𝑀2

∗𝐶))) 

= [ (𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑀2

∗) ) ∩ 𝑁𝑁 (S)Cl  ((𝑀1
∗𝐶 ] ∪ [ (𝑁𝑁 (S)Cl  (𝑀1

∗) ∩ 𝑁𝑁(S)Cl  (𝑀2
∗) ) 

∩ 𝑁𝑁(S)Cl  (𝑀2
∗𝐶) ]    By Definition 4.1, 

= (𝑁𝑁(S)Fr (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑀2

∗) ) ∪ ( 𝑁𝑁(S)Fr (𝑀2
∗) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗)) 

Hence 𝑁𝑁(S)Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ ( 𝑁𝑁(S)Fr (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑀2

∗) ) ∪ ( 𝑁𝑁(S)Fr (𝑀2
∗) ∩ 𝑁𝑁(S)Cl  (𝑀1

∗) ). 

Corollary 4.19 

 For any NNSs 𝑀1
∗ and 𝑀2

∗ in the N-N-T-S U, 
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 𝑁𝑁(S)Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ 𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀2

∗). 

Proof : Let 𝑀1
∗ and 𝑀2

∗ be NNSs in the N-N-T-S U. Using Definition 4.1, 

𝑁𝑁(S)Fr (𝑀1
∗ ∩ 𝑀2

∗) = 𝑁𝑁(S)Cl  (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁(S)Cl  (𝑀1
∗  ∩ 𝑀2

∗)𝐶  Use Prop., 3.2 (1) [18] , 

= 𝑁𝑁(S)Cl  (𝑀1
∗ ∩ 𝑀2

∗) ∩ 𝑁𝑁(S)Cl  ( (𝑀1
∗𝐶) ∪ (𝑀2

∗𝐶) ) , 

⊆ (𝑁𝑁(S)Cl (𝑀1
∗)∩  𝑁𝑁(S)Cl (𝑀2

∗)) ∩ ( 𝑁𝑁(S)Cl ((𝑀1
∗𝐶 ∪ 𝑁𝑁(S)Cl ((𝑀2

∗𝐶))) 

= (𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑀2

∗) ∩ 𝑁𝑁(S)Cl ((𝑀1
∗𝐶 ) ∪ ( 𝑁𝑁(S)Cl(𝑀1

∗) ∩ 𝑁𝑁(S)Cl  (𝑀2
∗) ∩ 𝑁𝑁(S)Cl  

((𝑀2
∗𝐶)) )  

By Definition 4.1, 

= (𝑁𝑁(S)Fr (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  (𝑀2

∗) ) ∪ ( 𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Fr (𝑀2

∗)) ⊆  𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr 

(𝑀2
∗). 

Hence 𝑁𝑁(S)Fr (𝑀1
∗ ∩ 𝑀2

∗) ⊆ 𝑁𝑁(S)Fr (𝑀1
∗) ∪ 𝑁𝑁(S)Fr (𝑀2

∗). 

Theorem 4.20  

For any NNS 𝑀1
∗ in the N-N-T-S U, 

(1) 𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗)) ⊆ 𝑁𝑁(S)Fr (𝑀1

∗), 

(2) 𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗))) ⊆ 𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1

∗)). 

Proof : (1) Let 𝑀1
∗ be the NNS in the N-N-T-S  U. Using Definition 4.1, 

𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗))= 𝑁𝑁(S)Cl  (𝑁𝑁(S)Fr (𝑀1

∗)) ∩ 𝑁𝑁(S)Cl  ((𝑁𝑁(𝑆)𝐹𝑟 (𝑀1
∗) )𝐶  (𝑁𝑁(S)Fr (𝑀1

∗) ))  

By Definition 4.1, 

= 𝑁𝑁(S)Cl  (𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl   (𝑀1

∗𝐶)) ∩ 𝑁𝑁(S)Cl  (((𝑁𝑁(𝑆)𝐶𝑙 (𝑀1
∗)  ∩ 𝑁𝑁(𝑆)𝐶𝑙 ((𝑀1

∗𝐶)))
𝐶
)) 

Use Prop., 6.3 (iii) and 6.2 (ii) [18] , 

⊆ ( 𝑁𝑁 (S)Cl  (𝑁𝑁 (S)Cl  (𝑀1
∗ )) ∩ 𝑁𝑁 (S)Cl  (𝑁𝑁 (S)Cl  ((𝑀1

∗𝐶 ))) ) ∩ 𝑁𝑁 (S)Cl  (𝑁𝑁 (S)Int  ((𝑀1
∗𝐶 )) 

∪ 𝑁𝑁(S)Int  (𝑀1
∗) )Use Prop., 6.3 (iii) [18] , 

= (𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl   (𝑀1

∗𝐶))) ∩ (𝑁𝑁(S)Cl  (𝑁𝑁(S)Int (𝑀1
∗𝐶)) ∪  𝑁𝑁(S)Cl  (𝑁𝑁(S)Int  (𝑀1

∗)) 

⊆ 𝑁𝑁(S)Cl  (𝑀1
∗) ∩ 𝑁𝑁(S)Cl  ( 𝑀1

∗𝐶)) By Definition 4.1, 

= 𝑁𝑁(S)Fr (𝑀1
∗) 

Therefore 𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗)) ⊆ 𝑁𝑁(S)Fr (𝑀1

∗).(2) By Definition 4.1, 

𝑁𝑁 (S)Fr (𝑁𝑁 (S)Fr (𝑁𝑁 (S)Fr (𝑀1
∗ ))) = 𝑁𝑁 (S)Cl  (𝑁𝑁 (S)Fr (𝑁𝑁 (S)Fr (𝑀1

∗ ))) ∩ 𝑁𝑁 (S)Cl  ( (𝑁𝑁 (S)Fr 

(𝑁𝑁(S)Fr (𝑀1
∗)))C) 

Use Prop., 6.3 (iii) [18] , 

⊆ (𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗))) ∩ 𝑁𝑁(S)Cl   ((𝑁𝑁(𝑆)𝐹𝑟 (𝑁𝑁(𝑆)𝐹𝑟 (𝑀1

∗)))𝐶) (𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗)))) 

⊆ 𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗)). 

Hence 𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1
∗))) ⊆ 𝑁𝑁(S)Fr (𝑁𝑁(S)Fr (𝑀1

∗)). 

Conclusion 

This research article shared some fundmental properties of introduce the Neutrosophic 

Nano semi-frontier .This concepts for further research will be on elaborating the structure of 

Neutrosophic Nano topology to more new classes of weak and strong forms of nano-open sets, new 

classes of generalized sets and new classes of continuous functions.There is further scope of 

launching into wider applications of Neutrosophic nano topology in different branches of Sciences 

and Humanities.  
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Abstract: The various generalized associative laws can be considered as generalizations of 

traditional symmetry. Based on the theories of CA-groupoid, TA-groupoid and neutrosophic 

extended triplet (NET), this paper first proposes a new concept, which is type-2 cyclic associative 

groupoid (shortly by T2CA-groupoid), and gives some examples and basic properties. 

Furthermore, as a combination of neutrosophic extended triplet group (NETG) and T2CA- 

groupoid, the notion of type-2 cyclic associative neutrosophic extended triplet groupoid (T2CA- 

NET-groupoid) is introduced, and a decomposition theorem of T2CA-NET-groupoid is proved. 

Finally, as a generalization of neutrosophic extended triplet group (NETG), the concept of quasi 

neutrosophic extended triplet groupoid (QNET-groupoid) is introduced, and the relationships 

among T2CA-QNET-groupoid, T2CA-NET-groupoid and CA-NET-groupoid are discussed. 

Keywords: Semigroup; Type-2 cyclic associative groupoid (T2CA-groupoid); neutrosophic 

extended triplet group (NETG); decomposition theorem; quasi neutrosophic extended triplet 

groupoid (QNET-groupoid) 

 

 

1. Introduction 

Groups and semigroups ([1–5, 7]) are essential branches of algebra, with the development of 

semigroup, the study of generalized semigroup has become an important topic. As far as we know 

the term groupoid (also called a magma) consists of a set G equipped with a binary operation. 

Despite the lack of further axioms, interesting results about groupoids exist [6]. 

The theory of non-associative algebras has seen new impetuous developments in recent years. 

Starting from algebraic topology, geometry and physics, new non-associative structures have 

emerged, such as triple systems, pairs, coalgebras and superalgebras. From a purely algebraic point 

of view, these structures are interesting. They have produced innovative ideas and methods that 

can help solve some algebraic problems. In fact, various generalized association identities are 

studied in many branches, for examples, functional equations [8-9], non-associative algebras [10], 

image processing [11] theory and networks [12].  

The term “cyclic associative law” first appeared in the paper [13] published in 1954, which 

means an equation in the axiomatic system of Boolean algebra obtained in the literature [14] in 1946, 

namely (ab)c=(bc)a. Later, references [15-18] studied the relevant algebraic structures satisfying the 

cyclic binding law, however, the cyclic associative law in these references is actually a dual form of 

the cyclic associative law in [13-14], which is, x(yz)=z(xy). In [19], we introduce the notion of formal 

cyclic associative groupoid (CA-groupoid), and systematically study its properties and the 

relationship between CA-groupoid and neutrosophic extended triplet group (NETG). 
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Moreover, in some literatures ([7-9, 20]), the cyclic associative law is also used to refer to the 

following equation:  

x(yz)=(zx)y.  

This meaning first appeared in Hosszü's study of function equation [20]. In this way, the term 

“cyclic associative law” has at least two different meanings in historical documents.  

In order to avoid confusion, the equation x(yz)=(zx)y is called type-2 cyclic associative law in 

this paper, and we focus on the basic properties and structures of the groupoid satisfying type-2 

cyclic associative law, calling it type-2 cyclic associative groupoid. 

In addition, Smarandache first proposed the new notion of neutrosophic extended triplet 

group (NETG) in [21], and many other significant results on NETGs and related algebraic systems 

can be found in [22-25]. In this paper, we analyze the structure of type-2 cyclic associative 

neutrosophic extended triplet groupoid (T2CA-NET-Groupoid) and study the relationship with the 

commutative regular semigroup. 

This paper is organized as follows. In Section 2, we show some significant concepts and basic 

properties of groupoid, CA-groupoid and neutrosophic extended triplet groupoid (NETG). In 

Section 3, we put forward the concept of type-2 cyclic associative groupoid (T2CA-groupoid), and 

show some typical examples. In Section 4, we discuss the basic properties of the T2CA-groupoid 

and show some important results on cancellative T2CA-Groupoids. In Section 5, we introduce an 

important class of T2CA-groupoids for the first time, and we call it a type-2 cyclic associative 

neutrosophic extended triplet groupoid (T2CA-NET-groupoid). We first study its basic properties, 

and then gets its decomposition theorem, and finally, we study the relationship between 

T2CA-NET-groupoid and commutative regular semigroup. In Section 6, we introduce another 

significant class of groupoids. We call it a quasi neutrosophic extended triplet groupoid 

(QNET-groupoid) and further discuss the relationship between T2CA-QNET-groupoid, QNETG, 

T2CA-NET-groupoid, and CA-NET-groupoid. In Section 7, we present the summary and plans for 

future work. 

2. Preliminaries 

We give some notions and results about groupoids in this section. 

A groupoid refers to an algebraic structure composed of non-empty sets, on which binary 

operations * are acted. Traditionally, when the * operator is omitted, it will not be confused. Assume 

(S, *) is a groupoid, we show some concepts as follows:  

(1) An element xS is called idempotent if x²=x. 

(2) An element xS is right cancellative (respectively left cancellative), if for all y, zS, y*x = z*x 

 y = z (x*y = x*z  y = z). If an element both right and left cancellative, then it is cancellative. S is 

called right cancellative (left cancellative, cancellative), if each element of S is right cancellative (left 

cancellative, cancellative). 

(3) If for any x, y, zS, x*(y*z)=(x*y)*z, S is called semigroup. A semigroup (S, *) is commutative, 

if for all x, yS, x*y=y*x.  

(4) If xS, x²=x, we call the semigroup (S, *) as a band.  

Definition 1. ([18, 26]) Let (S, *) be a groupoid, for any x, y, zS. 

(1) If x*(y*z) = z*(x*y), then S is called a cyclic associative groupoid (or shortly CA-groupoid).  

(2) If (x*y)*z = (z*y)*x, then S is called a CA-AG-groupoid. 

Proposition 1. [19] If (S, *) is a CA-groupoid ( r, s, t, u, v, wS), then: 

(1) (r*s)*(t*u) = (u*r)*(t*s);  

(2) (r*s)*((t*u)*(v*w)) = (u*r)*((t*s)*(v*w)). 
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Definition 2. ([21,27]) Let S be a non-empty set, and * is a binary operation on S. S is called a 

neutrosophic extended triplet set, if for each xS, there is a neutral “x” (denote by neut(x)), and the 

opposite of “x” (denote by anti(x)), such that x*neut(x) = neut(x)*x = x, x*anti(x) = anti(x)*x = neut(x). 

The set of neut(a) and anti(a) is represented by the notations {neut(a)} and {anti(a)}; any certain 

one of neut(a) and anti(a) is represented by us with neut(a) and anti(a). 

Definition 3. ([21, 27]) Let (S, *) be a neutrosophic extended triplet set. If  

(1) (S, *) is well-defined, i.e., x*yS ( x, yS). 

(2) (S, *) is associative, i.e., (x * y) * z = x * (y * z) ( x, y, zS). 

Then, (S, *) is called a neutrosophic extended triplet group (NETG). If x*y=y*x ( x, yS), S is called a 

commutative NETG. 

Proposition 2. ([23, 24]) If (S, *) is a NETG, then (xS) neut(x) is unique. 

Theorem 1. ([19]) Let (S, *) be a TA-NET-groupoid. Denote the set of all different neutral element in 

S by N(S). Put S(e) = {xS| neut(x) = e} ( eN(S)), then S(e) is a subgroup of S. 

Theorem 2. ([28]) Assume that (S, *) is a CA-groupoid, the following statements are equivalent:  

(1) S is a CA-NET-groupoid;  

(2) S is a CA- (r, l)-NET-groupoid;  

(3) S is a CA- (r, r)-NET-groupoid;  

(4) S is a CA- (l, r)-NET-groupoid; 

(5) S is a CA- (l, l)-NET-groupoid; 

(6) S is a commutative regular semigroup. 

3. Type-2 Cyclic Associative Groupoids (T2CA-Groupoids) 

Definition 4. Let (S, *) be a groupoid, for any r, s, tS. If  

r*(s*t) = (t*r)*s, 

then (S, *) is called a type-2 cyclic associative groupoid (shortly, T2CA-groupoid).  

The following example shows that there is T2CA-groupoid, which is not a CA-groupoid, not a 

semigroup, not an AG-groupoid. Obviously, it is not a CA-AG-groupoid. 

Example 1. Put S = {1, 2, 3, 4, 5, 6, 7 ,8}, and define the operations * on S as shown in Table 1. Then (S, 

*) is a T2CA-groupoid. We can verify that (S, *) is not a semigroup, due to the fact that (6*7)*7 = 2 ≠ 1 

= 6*(7*7); (S, *) is not a CA-groupoid, because 6*(6*7) = 1 ≠ 2 = 7*(6*6); (S, *) is not an AG-groupoid, 

since (6*7)*7 = 2 ≠ 1 = (7*7)* 6. Obviously, (S, *) is not a CA-AG-groupoid. 

Table 1. The operation * on S 

* 1                       2 3 4 5 6 7 8 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 

3 1 1 1 2 1 1 2 1 

4 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 2 2 1 

6 1 1 5 1 1 4 5 1 

7 1 1 2 2 1 4 2 2 

8 1 1 2 1 1 1 2 2 

From the following example, we know that there is T2CA-groupoid which is a semigroup but 

not commutative. 
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Example 2. Table 2 shows the non-commutative T2CA-groupoid of order 6, and (S, *) is a 

semigroup.  

Table 2. Cayley table on S = {r, s, t, u, v, w} 

* r                                  S t u v w 

r r R t t t t 

s r R t t t t 

t t T r r r r 

u t t r r r s 

v t t r s s r 

w t t r r s r 

Proposition 3. (1) Each commutative semigroup is a T2CA-groupoid. (2) Let (S, *) be a T2CA- 

groupoid. If S is commutative, then S is a commutative semigroup. 

Proof. By Definition 4, this is obvious. □ 

Definition 5. Let (S, *) is a T2CA-groupoid, then an element e in S is called the quasi left identity 

element if for all a in S, e*a = a (a  e); and it is called the quasi right identity element for all a in S, a*e 

= a (a  e). If e is both quasi left and right identity element, it is called quasi identity element. 

Example 3. As shown in Table 3, put S = {f, g, h, j, k}, and define the operations * on S. Then we can 

verify through MATLAB that (S, *) is a T2CA-groupoid, and f is the quasi identity element in S, due 

to the fact that f *g = g*f = g, f * h = h * f = h, f * j = j * f = j, f * k = k * f = k. 

Table 3. The operation * on S 

* f                                   g h j k 

f G g h j k 

g G g h j k 

h H h g j k 

j J j j j j 

k k k k j k 

Theorem 3. Let (S, *) be a T2CA-groupoid with quasi identity element e, that is xS, e*x = x*e = x (x 

≠ e). Then S is commutative.  

Proof. For any x, y S, when x = y, obviously x*y = y*x. Suppose x ≠ y, we have: 

(1) Assume that y = e, due to x ≠ y, then x ≠ e. Therefore, e*x = x = x*e. That is, x*y = y*x. 

(2) Suppose x ≠ e, and y ≠ e, there are: 

Case 1, if x*y ≠ e, by Definition 4, we can get that x*y = e*(x*y) = (y*e)*x = y*x. 

Case 2, if x*y = e, we have y*x = e. Otherwise, suppose y*x ≠ e, by Definition 4 we have y*x = e*(y*x) 

= (x*e)*y = x*y = e. This contradicts y*x ≠ e. 

Hence, S is commutative. □ 

Theorem 4. Let (S, *) be a T2CA-groupoid, e S.  

(1) If e is the quasi left identity element of S, that is, xS, e*x = x (x ≠ e), then e is the quasi right 

identity element. 

(2) If e is the quasi right identity element of S, that is, xS, x*e = x (x ≠ e), then e is the quasi left 

identity element. 

Proof. (1) If e is the quasi left identity element of S. For each xS, e*x = x (x ≠ e), we have x*e = (e*x) *e 

= x*(e*e), and  

x = e*x = e*(e*x) = (x*e)*e = (x*(e*e))*e = (e*e)*(e*x) = (e*e)*x = e*(x*e). 
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Case 1, when x*e ≠ e, from x = e*(x*e) and definition of quasi left identity element, we can get that 

x = x*e.   

Case 2, when x*e = e, x = e*(x*e) = e*e, then e*e ≠ e. Otherwise, if e*e = e, we have x = e*e = e. This 

contradicts x ≠ e. Due to that e is the quasi left identity element of S, therefore, e*(e*e) = e*e. And,  

x*e = x*(e*e) = x*(e*(e*e)) = (e*e)*(x*e) = (e*e)*e = e*(e*e) = e*e = x. 

Hence, e is the quasi right identity element. 

(2) Suppose that e is the quasi right identity element of S. For any xS, x*e = x (x ≠ e), we have ex 

= e*(x*e) = (e*e)*x, and 

x = x*e = (x*e)*e = e*(e*x) = e*((e*e)*x) = (x*e)*(e*e) = x*(e*e) = (e*x)*e. 

Case 1, when e*x ≠ e, from definition of quasi right identity element, we can get that (e*x)*x = e*x, 

so x = (e*x)*e = e*x.   

Case 2, when e*x = e, x = (e*x)*e = e*e, then e*e ≠ e. Otherwise, if e*e = e, we have x = e*e = e. This 

contradicts x ≠ e. Due to that e is the quasi right identity element of S, therefore, e*(e*e) = e*e. 

Moreover,  

e*x = (e*e)*x = x*x  (Applying x =e*e) 

              = x*(e*e) = x. 

Hence, e is the quasi left identity element. □ 

4. Some Properties of Type-2 Cyclic Associative Groupoids (T2CA-Groupoids) 

Proposition 4. Let (S, *) be a T2CA-groupoid. Then,  

(1) a, b, c, dS, (a*b)*(c*d) = (b*a)*(d*c); 

(2) a, b, c, d, e, fS, (a*b)*[(c*d)*(e*f)] = [(b*f)*(c*a)]*(e*d). 

Proof. (1) Suppose (S, *) is a T2CA-groupoid, then for any a, b, c, d, e, fS, by Definition 4 we have 

(a*b)*(c*d) = [d*(a*b)]*c = [(b*d)*a]*c = a*[c*(b*d)] = a*[(d*c)*b] = (b*a)*(d*c). 

  (2) For any a, b, c, d, e, fS, by Definition 4 we have 

  (a*b)*[(c*d)*(e*f)] = (a*b)*[(d*c)*(f*e)]                           (By (a*b)*(c*d) = (b*a)*(d*c)) 

  = b*[((d*c)*(f*e))*a] = b*[(f*e)*(a*(d*c))] = b*[(f*e)*((c*a)*d)]  

                 = b*[(d*(f*e))*(c*a)] = [(c*a)*b]*(d*(f *e)) = [a*(b*c)]*((e*d)*f)  

    = [f*(a*(b*c))]*(e*d) = [f*((c*a)*b)]*(e*d) = [(b*f)*(c*a)]*(e*d). □ 

Theorem 5. Suppose (S, *) is a T2CA-groupoid.  

(1) If kS, ∃ e S such that e*k = k, that is, S have a left identity element, then S is a commutative 

semigroup. 

(2) IfkS, ∃e S such that k*e = k, that is, S have a right identity element, then S is a commutative 

semigroup. 

(3) If e S is a left identity element, then e is an identity element. 

(4) If e S is a right identity element, then e is an identity element. 

Proof. (1) Suppose (S, *) is a T2CA-groupoid. k, w S, we have 

k*w = [e*(e*k)]*w = [(k*e)*e]*w = e*[w*(k*e)] = e*[(e*w)*k] = e*(w*k) = w*k. 

Therefore, (S, *) is a commutative T2CA-groupoid. Applying Proposition 3 (2), we get that (S, *) is a 

commutative semigroup. 

(2) Suppose (S, *) is a T2CA-groupoid.  k, w S, there are: 

k*w = [e*(e*k)]*w = k*[(w*e)*e] = (e*k)*(w*e) 

 = (k*e)*(e*w)                                     (By Proposition 4 (1)) 

 = [w*(k*e)]*e = (w*k)*e = w*k. 

Therefore, (S, *) is a commutative T2CA-groupoid. Applying Proposition 3 (2), we get that (S, *) is a 

commutative semigroup. 
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(3) If e is a left identity element in S.  k S, applying Proposition 4 (1) there are: 

k = e*k = e*(e*k) = (k*e)*e = (k*e)*(e*e) = (e*k)*(e*e) = k*e. 

Thus, e S is an identity element. 

(4) If e is a right identity element in S,  k S, applying Proposition 4 (1) we get 

k = k*e = (k*e)*e = e*(e*k) = (e*e)*(e*k) = (e*e)*(k*e) = e*k. 

Therefore, e S is an identity element. □ 

Definition 6. Suppose S is a T2CA-groupoid. S is called a left cancellative (right cancellative, 

cancellative) T2CA-groupoid, if each element of S is left cancellative (right cancellative, cancellative). 

Theorem 6. Suppose (S, *) is a T2CA-groupoid, p, qS: 

(1)  if p is right cancellative or left cancellative, then p is cancellative;  

(2)  if p is right cancellative and q is left cancellative, then p*q is cancellative;  

(3)  if p*q is right cancellative, then p*q = q*p; 

(4)  if p*q is cancellative, then p and q are cancellative; 

(5)  if p and p*q are right cancellative, then p*q is cancellative.  

Proof. Let (S, *) be a T2CA-groupoid, p, q S.  

(1) If p is a right cancellative element, p*k = p*w ( k, wS), using type-2 cyclic association:  

(k*p)*p = p*(p*k) = p*(p*w) = (w*p)*p. 

Applying right cancellation property of p two times, then k = w. Therefore, pS is a left cancellative 

element, so p is a cancellative element in S.  

Similarly, if p is a left cancellative element, k*p = w*p (k, wS), using type-2 cyclic association:  

 p*(p*k) = (k*p)*p = (w*p)*p = p*(p*w). 

Using left cancellation property of p two times, then k = w. Therefore, pS is a right cancellative 

element, so p is a cancellative element in S.  

(2) If p is right cancellative, q is left cancellative, k*(p*q) = w*(p*q) (k, wS), using type-2 cyclic 

association: 

(q*k)*p = k*(p*q) = k*(p*q) = w*(p*q) = w*(p*q) = (q*w)*p. 

Since p is right cancellative, q is left cancellative, we get k = w. Therefore, p*q is a right cancellative.  

Moreover, if (p*q)*k = (p*q)*w (k, wS), we have:  

q*(k*p) = (p*q)*k = (p*q)*k = (p*q)*w = q*(w*p). 

Since p is right cancellative, q is left cancellative, we get k = w. Therefore, p*q is a left cancellative. 

Hence, p*q is cancellative. 

(3) Suppose p*q is right cancellative. By Proposition 4 (2), we have: 

 [(p*q)*(q*p)] * (p*q) = (q*p)*[(p*q)*(p*q)] = [(p*q)*(p*q)]*(p*q). 

Since p*q is right cancellative, then (p*q)*(q*p) = (p*q)*(p*q). Applying Proposition 4 (1), we get that 

(q*p)*(p*q) = (p*q)*(p*q).Moreover, since p*q is right cancellative, then q*p = p*q.  

(4) Suppose p*q is cancellative. If q*k = q*w (k, wS), there are:  

k*(p*q) = (q*k)*p = (q*w)*p = w*(p*q). 

Since p*q is cancellative, so k=w. This means that q is left cancellative. According to (1), we know q is 

cancellative.  
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And, since p*q is cancellative, then p*q is right cancellative, according to (5) we get q*p = p*q. So, 

q*p is cancellative, p is cancellative. Therefore, if p*q is cancellative, then p and q are cancellative. 

(5) Assume that p and p*q are right cancellative. If (p*q) * k = (p*q) * w (k, w S), using type-2 

cyclic association: 

(k*p)*(p*q) = p*((p*q)*k) = p*((p*q)*w) = (w*p)*(p*q). 

Since p*q is right cancellative, so k*p = w*p. Moreover, p is right cancellative, so k = w. Thus, p*q is left 

cancellative, according to (1), we know p*q is cancellative. □ 

According to Theorem 6, we have the following corollary. 

Corollary 1. Suppose (S, *) is a T2CA-groupoid, then the following asserts are equivalent: 

(i)  S is a left cancellative T2CA-groupoid;  

(ii)  S is a right cancellative T2CA-groupoid; 

(iii)  S is a cancellative and commutative semigroup;  

Proof. (i) ⇒ (ii): Follow Theorem 6 (1). 

(ii) ⇒ (iii): Assume that S is right cancellative, by using Theorem 6 (1), we get S is cancellative. 

For any p, qS, according to Theorem 6 (3), we have p*q = q*p, then S is commutative. When applying 

Proposition 3 (2), we get that S is a commutative semigroup. Therefore, S is a cancellative and 

commutative semigroup.  

(iii) ⇒ (i): Obviously. □ 

Corollary 2. Let (S, *) be a T2CA-groupoid. If there exists a cancellative element in S, then the set M = 

{pS: p is cancellative} is a sub T2CA-groupoid of S. 

Proof. Through the existence of a condition for cancellative elements in S, we get that M is not 

empty. p, q M, p and q are right and left cancellative. By Theorem 6 (2), we get p*q is cancellative. 

Thus p*q M. Therefore, M is a sub T2CA-groupoid of S. □ 

Corollary 3. Let (S, *) be a T2CA-groupoid. If there exists a non-cancellative element in S, then the set 

N = {pS: p is non-cancellative} is a sub T2CA-groupoid of S.  

Proof. Obviously, N is non-empty.  p, qN, p and q are non-cancellative. Through Theorem 6 (4), 

we know that p*q is non-cancellative. Thus, p*qN. Therefore, N is a sub T2CA-groupoid of S.□ 

Theorem 7. Suppose (S, *) is a T2CA-groupoid, r, s, tS. Define on S the relation ~ as: 

r ∼ s ⇔ r and s are both cancellative or non−cancellative. 

Then ~ is an equivalence relation. 

Proof. Obviously, ~ is reflexive and symmetric.  

Next, Assume r~s and s~t. If r and s are non-cancellative, from s~t we get t is non-cancellative, 

thus r and t are non-cancellative, i.e., r~t; if r and s are cancellative, from s~t we get t is cancellative, 

thus r and t are cancellative, i.e., r~t. Thus ~ is transitive.  

Therefore, ~ is an equivalence relation. □ 

Definition 7. Let (S1, *1), (S2, *2) be two T2CA-groupoids, S₁×S₂ = {(p, q) |pS₁, qS₂}. Define binary 

operation * on S₁×S₂ as following: 
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(p₁, p2) * (q1, q₂) = (p₁*1 q₁, p₂*2q₂), for any (p₁, p2), (q1, q₂)S₁×S₂. 

S₁ and S₂ are called the direct factors of S₁×S₂, and (S₁×S₂, *) is called the direct product of (S1, *1) and 

(S2, *2).  

Theorem 8. Let (S1, *1), (S2, *2) be two T2CA-groupoids. Then the direct product (S₁×S₂, *) is a T2CA- 

groupoid. 

Proof. Let (r₁, r2), (s₁, s2), (t₁, t2)S₁×S₂. We have: 

    (r1, r2) * ((s1, s2) * (t1, t2)) = (r1, r2) * (s1 *₁ t₁, s2 *2 t2) 

         = (r₁ *₁ (s₁ *₁ t₁), r2 *2 (s2 *2 t2)) = ((t₁ *₁ r₁) *₁ s₁), (t2 *2 r2) *2 s2))  

   = (t₁ *₁ r₁, t2 *2 r2) * (s1, s2) = ((t1, t2) * (r1, r2)) * (s1, s2). 

Hence, (S₁×S₂, *) is a T2CA-groupoid. □ 

Theorem 9. Let S1, S2 are T2CA-groupoids, if a and b are cancellative, then (p, q)S1 ×S2 is cancellative 

(pS1, qS2).  

Proof. Applying Theorem 8, we know S1 × S2 is a T2CA-groupoid. Assume p and q are cancellative 

(pS1, qS2), for any (x1, x2), (y1, y2)S1 × S2, (p, q)*(x1, x2) = (p, q)*(y1, y2). Then 

(px1, qx2) = (py1, qy2); px1 = py1, qx2 = qy2. 

And, according to p and q are cancellative, we get that x1 = y1, x2 = y2. That is (x1, x2) = (y1, y2). Hence, (p, 

q) is cancellative. □ 

5. Type-2 Cyclic Associative Neutrosophic Extended Triplet Groupoids (T2CA-NET-Groupoids) 

In this section, we first proposed an important class of T2CA-groupoids, namely T2CA-NET- 

groupoids. After giving the basic definitions and properties, this section focuses on the structure of 

T2CA-NET-groupoids, and the relationship between T2CA-NET-groupoids and commutative 

regular semigroups. Fortunately, we got very exciting results. 

Definition 8. Let (S, *) be a neutrosophic extended triplet set. (S, *) is called a type-2 cyclic 

associative neutrosophic extended triplet groupoid (shortly, T2CA-NET-groupoid), if the following 

conditions are satisfied: 

(1) (S, *) is well-defined, i.e., a, bS, one has a*bS. 

(2) (S, *) is type-2 cyclic associative, i.e., a*(b*c) = (c*a)*b, a, b, cS. 

S is called a commutative T2CA-NET-groupoid if a*b = b*a, a, bS. 

Theorem 10. Let (S, *) be a T2CA-NET-groupoid, xS, then neut(x) is unique.  

Proof. We assume that local unit element neut(x) is not unique in S. Then, there is s, t{neut(x)} such 

that (p, qS) 

x*s = s*x = x and x*p = p*x = s; x*t = t*x = x and x*q = q*x = t. 

(1) To prove s = s*t. Due to the fact 

s = p*x = p*(t*x) = (x*p)*t = s*t. 

(2) To prove t = t*s. Due to the fact  

t = q*x = q*(s*x) = (x*q)*s = t*s. 

(3) To prove s = s*s. Due to the fact  

s = p*x = p*(s*x) = (x*p)*s = s*s. 

(4) To prove t*s = s*t. Due to the fact 

t*s = (t*s)*s = s*(s*t) = s*s = s = s*t. 

Hence s = t, and neut(x) is unique in S. □ 
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Remark 1. In a T2CA-NET-groupoid (S, *), we know from Example 4 that anti(x) may be not 

unique.  

Example 4. Let S = {g, k, u, v, w}. The operate * on S is defined as Table 4. Then, (S, *) is T2CA-NET- 

groupoid. Moreover, neut(g) = g, and {anti(g)} = {g, k, u, v, w}. 

Table 4. The operation * on S 

* g                                   k u v w 

g g g g g g 

k g k u v w 

u g u w k v 

v g v k w u 

w g w v u k 

Proposition 5. Suppose (S, *) is a T2CA-NET-groupoid. Then, for any tS, 

(1) neut(t)*neut(t) = neut(t); 

(2) neut(neut(t)) = neut(t); 

(3) anti(neut(t))*t = t. 

Proof. (1) Using anti(t)*t = t*anti(t) = neut(t), we get 

neut(t)*neut(t) = neut(t)*[anti(t)*t] = [t*neut(t)]*anti(t) = t*anti(t) = neut(t). 

(2) According to the definition of neut(neut(t)) we can get: 

neut(t)*neut(neut(t)) = neut(neut(t))*neut(t) = neut(t). 

By the definition of anti(neut(t)) we can get: 

neut(t)*anti(neut(t)) = anti(neut(t))*neut(t) = neut(neut(t)). 

Applying (1) and Theorem 10, we get neut(neut(t)) = neut(t). 

(3) By Definition 4, Definition 8 and Proposition 5 (2), there are: 

anti(neut(t))*t = anti(neut(t))*[t*neut(t)] = [neut(t)*anti(neut(t))]*t   

= neut(neut(t))*t = neut(t)*t = t. 

Therefore, anti(neut(t))*t = t. □ 

Remark 2. In a T2CA-NET-groupoid (S, *), we know from Example 5 that neut(anti(t)) may be not 

equal to neut(t). 

Example 5. Let S = {g, u, v, w}. The operate * on S is defined as Table 5. Then, (S, *) is T2CA-NET-groupoid. 

And,  

neut(g) = g, neut(u) = u, {anti(g)} = {g, u, v, w}. 

While anti(g) = u, neut(anti(g)) ≠ neut(g), because neut(anti(g)) = neut(u) = u ≠ g = neut(g). 

Table 5. The operation * on S 

* g                                   u v w 

G g g g g 

U g u g w 

V g g v g 

W g w g u 

Theorem 11. Suppose (S, *) is a T2CA-NET-groupoid, then its idempotents are commutative. 

Proof. If k, w an idempotent in S, then   

(k*w)*(k*w) = (w*k)*(w*k)                (Using Proposition 4 (1)) 

        = [(w*k)*w]*k = [k*(w*w)]*k = (w*w)*(k*k) = w*k. 

Moreover,  
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           (k*w)*(k*w) = [w*(k*w)]*k = [(w*w)*k]*k = (w*k)*k  

                                = k*(k*w) = (neut(k)*k)*(k*w)   

                                = (k*neut(k))*(w*k)                  (Using Proposition 4 (1)) 

                                = k*(w*k) = (k*k)*w = k*w. 

Hence, we get k*w = w*k. That is, in a T2CA-NET-groupoid, its idempotents are commutative. □ 

Corollary 4. Every T2CA-NET-groupoid is commutative. 

Proof. Suppose (S, *) is a T2CA-NET-groupoid. Applying Theorem 11, neut(x) (xS) is idempotent. 

 k, wS, we have 

neut(k) * neut(w) = neut(w) * neut(k). 

Further, for any k, w  S, we have: 

 k*w = [k*neut(k)]*[w*neut(w)] = [neut(w)*(k*neut(k))]*w 

       = [(neut(k)*neut(w))*k]*w = k*[w*(neut(k)*neut(w))] 

 = k*[(neut(w)*w)*neut(k)] = k*[w*neut(k)] 

 = [neut(k)*k]*[w*neut(k)] = k*[(w*neut(k))*neut(k)] 

 = k*[neut(k)*(neut(k)*w)] = [(neut(k)*w)*k]*neut(k)  

 = [w*(k*neut(k))]*neut(k) = (w*k)*neut(k)  

 = (w*k)*[neut(k)*neut(k)] 

 = (k*w)*[neut(k)*neut(k)]                     (Applying Proposition 4 (1)) 

 = (k*w)*neut(k)                             (Applying Proposition 5 (1)) 

 = w*[neut(k)*k] = w*k. 

Hence, every T2CA-NET-groupoid is commutative. □ 

Example 6. T2CA-NET-groupoid of order 5, given in Table 6, and 

 neut(a) = a, {anti(a)} = {a, e}; neut(b) = b, {anti(b)} = {a, b, c, d, e};  

neut(c) = c, {anti(c)} = {c, e}; neut(d) = d, {anti(d)} = {a, c, d, e}; neut(e) = e, anti(e) = e. 

Obviously, (S, *) is a commutative.  

Table 6. Cayley table on S = {a, b, c, d, e}. 

* a                                   b c d e 

a a b d d a 

b b b b b b 

c d b c d c 

d d b d d d 

e a b c d e 

 

Proposition 6. Let (S, *) be a T2CA-NET-groupoid. Then for any k S, for all t, u{anti(k)}, 

(1) t*neut(k) = u*neut(k); 

(2) neut(u)*neut(k) = neut(k)*neut(u) = neut(k). 

(3) u*neut(k)  {anti(k)}; 

(4) u*neut(k) = (neut(k)*u)*neut(k); 

(5) u*neut(k) = neut(k)*u; 

(6) neut(u*neut(k)) = neut(k). 

Proof. (1) t, u{anti(k)}, by the definition of opposite and neutral element, using Theorem 10, we 

get 

k*t = t*k = neut(k), k*u = u*k =neut(k). 

t*neut(k) = t*(u*k) = (k*t)*u = neut(k)*u = (k*u)*u = u*(u*k) = u*neut(k). 

(2) u {anti(k)}, by k*u = u*k = neut(k), we have 
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neut(u)*neut(k) = neut(u)*(k*u) = [u*neut(u)]*k = u*k = neut(k); 

neut(k)*neut(u) = (u*k)*neut(u) = k*[neut(u)*u] = k*u = neut(k). 

That is, neut(u)*neut(k) = neut(k)*neut(u) = neut(k) is true for all k S. 

(3) kS and u{anti(k)}, u*k=k*u=neut(k). Then, by Definition 4 and Proposition 5 (1), we have 

k*[u*neut(k)] = [neut(k)*k]*u = k*u = neut(k); 

[u*neut(k)]*k = neut(k)*(k*u) = neut(k)*neut(k) = neut(k). 

This means that u*neut(k){anti(k)}. 

(4) kS and u{anti(k)}, u*k = k*u = neut(k). Applying (1) and (3), we get 

u*neut(k) = (u*neut(k))*neut(k). 

On the other hand, by using Proposition 4 (1) and Proposition 5 (1), we get 

[u*neut(k)]*neut(k) = [u*neut(k)]*[neut(k)*neut(k)]  

= [neut(k)*u]*[neut(k)*neut(k)]= [neut(k)*u]*neut(k). 

Combining two equations above, we get u*neut(k) = [neut(k)*u]*neut(k). 

(5) Assume that u{anti(k)}, then k*u = u*k = neut(k), and u*neut(u) = neut(u)*u = u. By Proposition 

5 (1) and (2), applying (2) and (3), there are 

             neut(k)*u = [neut(k)*neut(k)]*[u*neut(u)] = [neut(u)*(neut(k)*neut(k))]*u 

       = [(neut(k)*neut(u))*neut(k)]*u = neut(k)*[u*(neut(k)*neut(u))] 

 = neut(k)*[u*(neut(u)*neut(k))] = neut(k)*[(neut(k)*u)*neut(u)]  

 = [neut(u)*neut(k)]*[neut(k)*u] = neut(k)*[neut(k)*u]  

 = [u*neut(k)]*neut(k)  

 = [neut(k)*u]*neut(k)        (By (3), [u*neut(k)]*neut(k) = [neut(k)*u]*neut(k)) 

 = u*neut(k).               (By (3), u*neut(k) = [neut(k)*u]*neut(k))  

(6) Assume u{anti(k)}, denote d = u*neut(k). We prove the following equations: 

d*neut(k) = neut(k)*d = d; d*k = k*d = neut(k). 

By Proposition 4 (1), Proposition 5 (1), and above (5), we get   

d*neut(k) = [u*neut(k)]*neut(k) = [u*neut(k)]*[neut(k)*neut(k)] 

    = [neut(k)*u]*[neut(k)*neut(k)] = [neut(k)*u]*neut(k) 

 = u*[neut(k)*neut(k)] = u*neut(k) = d. 

Using Definition 4 and (5), we have  

neut(k)*d = neut(k)*[u*neut(k)] = neut(k)*[neut(k)*u] = [u*neut(k)]*neut(k) = d*neut(k) = d. 

Moreover, using Proposition 5 (1), Definition 4, there are: 

d*k = [u*neut(k)]*k = neut(k)*(k*u) = neut(k)*neut(k) = neut(k). 

k*d = k*[u*neut(k)] = [neut(k)*k]*u = k*u = neut(k). 

Thus,  

d*neut(k) = neut(k)*d = d; d*k = k*d = neut(k). 

According to the definition of neutral element and Theorem 10, we get neut(k) is the neutral 

element of d = u*neut(k). Hence, neut(u*neut(k)) = neut(k). □ 

Theorem 12. Let (S, *) be a T2CA-NET-groupoid. Put the set of all different neutral elements in S by 

N(S), and S(n) = {aS| neut(a) = n} (nN(S)). Then: 

(1) S(n) is a subgroup of S; 

(2) for any n1, n2N(S), n1 ≠ n2  S(n1) ∩ S(n2) = ; 

(3) 
( )

( )
n N S

S S n
Î

= È . 

Proof. (1) For every kS(n), neut(k) = n, we get that n is an identity element in S(n). Applying 

Proposition 5 (1), there are n*n = n. 

Assume k, w S(n), then neut(k) = neut(w) = n. Next, we are going to prove that neut(k*w) = n. 

Applying Definition 4, and Corollary 4, we have 
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 (k*w)*n = y*(n*k) = w*k = k*w; 

n*(k*w) = (w*n)*k = w*k = k*w. 

Moreover, for any anti(k){anti(k)}, anti(w){anti(w)}. By using Definition 4 and Definition 8, we 

have 

(k*w)*[anti(k)*anti(w)] = w*[(anti(k)*anti(w))*k] = w*[anti(w)*(k*anti(k))] 

                  = w*(anti(w)*neut(k)) = [neut(k)*w]*anti(w) = (n*w)*anti(w)  

 = w*[anti(w)*n] = w*anti(w) = neut(w) = n.   

 [anti(k)*anti(w)]*(k*w) = anti(w)*[(k*w)*anti(k)] = anti(w)*[w*(anti(k)*k)]  

 = anti(w)*[w*neut(k)] = anti(w)*(w*n) = anti(w)*w  

 = neut(w) = n. 

Thus, according to Theorem 10 and the definition of neutral elements, we get that neut(k*w) = n. 

Therefore, k*wS(n), that is, S(n) is closed under operation *. 

Furthermore, kS(n), ∃uS such that u{anti(k)}. Using Proposition 6(3), u*neut(k){anti(k)}; 

and applying Proposition 6 (6), neut(u*neut(k)) = neut(k).  

Put d = u*neut(k), we have 

d = u*neut(k){anti(k)}, neut(d) = neut(u*neut(k)) = neut(k) = n. 

Thus d{anti(k)}, neut(d) = n, i.e., dS(n) and d is the inverse element of k in S(n). 

Hence, (S(n), *) is a subgroup of S. 

(2) Suppose kS(n1)∩S(n2) and n1, n2N(S). There are neut(k)=n1, neut(k)=n2. Applying Theorem 

10, we get n1 = n2. Hence, n1 ≠ n2  S(n1)∩S(n2) = . 

(3) kS, ∃neut(k)S. Put n=neut(k), then kS(n), nN(S). This means that
( )

( )
e N S

S S n
Î

= È . □ 

Example 7. T2CA-NET-groupoid of order 5, given in Table 7, and 

neut(a) = a, anti(a) = a; neut(s) = a, anti(s) = s; 

neut(d) = d, anti(d) = {a, d, g}; neut(f) = d, anti(f) = {s, f}; neut(g) = g, anti(g) = g. 

Denote S₁ = {a, s}, S₂ = {d, f}, S3 = {g}, then S₁, S₂ and S3 are subgroup of S, and S=S₁ ∪ S₂ ∪ S3, S₁ ∩ S₂= , 

S₁ ∩ S3 = , S2 ∩ S3 = . 

Table 7. Cayley table on S = {a, s, d, f, g}. 

* a                                   s d f g 

a a s d f d 

s s a f d f 

d d f d f d 

f f d f d f 

g d f d f g 

Theorem 13. Suppose (S, *) is a groupoid, then S is a T2CA-NET-groupoid if and only if it is a 

commutative regular semigroup.  

Proof. If S is a T2CA-NET-groupoid. By Corollary 4 and Proposition 3 (2), we know that S is a 

commutative semigroup. By Definition 8, there are: 

k*anti(k)*k = neut(k)*k = k. (kS) 

Therefore, element k is a regular element and S is a commutative regular semigroup. 

Next, if S is a commutative regular semigroup. Applying Proposition 3 (1), we get S is a T2CA- 

groupoid. kS, ∃wS we have 

k*(w*k) = k. 

Also, 

(w*k)*k = (w*k)*[k*(w*k)] = [(w*k)*(w*k)]*k = [(k*(w*k))*w]*k = (k*w)*k = k.  
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Therefore, there exists (w*k)S, such that k*(w*k) = (w*k)*k = k. 

Moreover, since 

w*k = w*[k*(w*k)] = [(w*k)*w]*k = k*[(w*k)*w]. 

Then, 

 [(w*k)*w]*k  

 = [(w*k)*w]*[k*(w*k)] = [(w*k)*((w*k)*w)]*k 

            = [(w*k)*(w*(w*k))]*k = [((w*k)*(w*k))*w]*k 

 = [(w * k) * w] * k                                (by (w*k)*(w*k) = (w*k)) 

 = w*[k*(w*k)] = w*k. 

Thus, there exists [(w*k)*w]S, such that k*[(w*k)*w] = [(w*k)*w]*k = w*k. Then S is a T2CA- 

NET-groupoid. □ 

Example 8. T2CA-NET-groupoid of order 5, given in Table 8, and 

neut(a)=a, {anti(a)} = {a, w, r, t}; neut(q) = a, anti(q) = q;  

neut(w) = r, anti(w) = w; neut(r) = r, anti(r) = r; neut(t) = t, anti(t) = t.  

Also (S, *) is a regular semigroup, due to the fact that a = a*a*a, q = q*q*q, w = w*w*w, r = r*r*r, t = t*t*t. 

Obviously, (S, *) is a commutative. 

Table 8. Cayley table on S = {a, q, w, r, t}. 

* a                                   q w r t 

a a q a a a 

q q a q q q 

w a q r w a 

r a q w r a 

t a q a a t 

Definition 9. Let (S, *) be a T2CA-groupoid. (1) If  kS, ∃ s, tS such that k*s = k, and t*k = s. Then, S 

is called a T2CA-(r, l)-NET-groupoid. 

(2) If  kS, ∃ s, tS such that k*s = k, and k*t = s. Then, S is called a T2CA-(r, r)-NET-groupoid. 

(3) If  kS, ∃ s, tS such that s*k = k, and k*t = s. Then, S is called a T2CA-(l, r)-NET-groupoid. 

(4) If  kS, ∃ s, tS such that s*k = k, and t*k = s. Then, S is called a T2CA-(l, l)-NET-groupoid. 

Theorem 14. Suppose (S, *) is a groupoid, then S is a T2CA- (r, l)-NET-groupoid if and only if it is a 

commutative regular semigroup.  

Proof. If S is a T2CA-(r, l)-NET-groupoid.  kS, by Definition 8, Definition 9 (1) there are: 

k*neut(k) = k, anti(k)*k = neut(k). 

Moreover, we have 

 k*anti(k) = [k*neut(k)]*anti(k) = [anti(k)*k]*neut(k) = neut(k)*neut(k), 

neut(k)*k = (anti(k)*k)*k = k*(k*anti(k)) = k*[(k*neut(k))*anti(k)]   

= (anti(k)*k)*(k*neut(k)) = neut(k)*(k*neut(k)) = [neut(k)*neut(k)]*k 

= (k*anti(k))*k                          (By k*anti(k) = neut(k)*neut(k))  

= anti(k)*(k*k) = anti(k)*[(k*neut(k))*k] = (k*anti(k))*(k*neut(k)) 

= (anti(k)*k)*(neut(k)*k)                  (Using Proposition 4 (1)) 

= neut(k)*(neut(k)*k) = (k*neut(k))*neut(k) 

= k*neut(k) = k. 

Thus, neut(k)*k = k*neut(k) = k. 

Further, we have 

k*anti(k) = neut(k)*neut(k) = (anti(k)*k)*(anti(k)*k) 

= (k*anti(k))*(k*anti(k))                   (Using Proposition 4 (1)) 
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= anti(k)*[(k*anti(k))*k] = anti(k)*[anti(k)*(k*k)] 

= anti(k)*[neut(k)*k]                       (By anti(k)*(k*k) = neut(k)*k) 

= [k*anti(k)]*neut(k) = anti(k)*[neut(k)*k]  

= anti(k)*k = neut(k). 

Thus, anti(k)*k = k*anti(k) = neut(k). 

Therefore, we prove that S is a T2CA-NET-groupoid. By Theorem 13, we get that T2CA-(r, l)- 

NET-groupoid is equivalent to commutative regular semigroup. □ 

Theorem 15. Suppose (S, *) is a groupoid, then S is a T2CA- (r, r)-NET-groupoid if and only if it is a 

commutative regular semigroup. 

Proof. If S is a T2CA-(r, r)-NET-groupoid. kS, by Definition 8, Definition 9 (2) there are: 

k * neut(k) = k, k * anti(k) = neut(k). 

Moreover, we have 

neut(k)*k = [k*anti(k)]*k = anti(k)*(k*k) = anti(k)*[k*(k*neut(k))] 

= [(k*neut(k))*anti(k)]*k = [neut(k)*(anti(k)*k)]*k  

= (anti(k)*k)*(k*neut(k)) = (anti(k)*k)*k = k*(k*anti(k)) 

= k*neut(k) = k. 

Thus, neut(k)*k = k*neut(k) = k. 

Further, we have 

anti(k)*k = anti(k)*(neut(k)*k) = anti(k)*[neut(k)*(k*neut(k))] 

= anti(k)*[(neut(k)*neut(k))*k] = (k*anti(k))*[neut(k)*neut(k)]  

= neut(k)*[neut(k)*neut(k)] = neut(k)*[(k*anti(k))*neut(k)] 

= neut(k)*[anti(k)*(neut(k)*k)] = neut(k)*[anti(k)*k]  

= [k*neut(k)]*anti(k) 

= k*anti(k) = neut(k). 

That is, anti(k)*k = k*anti(k) = neut(k). 

Therefore, we prove that S is a T2CA-NET-groupoid. By Theorem 13, we get that T2CA-(r, r)- 

NET-groupoid is equivalent to commutative regular semigroup. □ 

Theorem 16. Suppose (S, *) is a groupoid, then S is a T2CA-(l, r)-NET-groupoid if and only if it is a 

commutative regular semigroup. 

Proof. If S is a T2CA-(l, r)-NET-groupoid. kS, by Definition 8, Definition 9(3) we have 

neut(k)*k = k, k*anti(k) = neut(k). 

Moreover,  

                 anti(k)*k = anti(k)*(neut(k)*k) = (k*anti(k))*neut(k) = neut(k)*neut(k) 

= neut(k)*[k*anti(k)] = [anti(k)*neut(k)]*k = [anti(k)*(k*anti(k))]*k 

= [(anti(k)*anti(k))*k]*k = k*[k*(anti(k)*anti(k))] 

= k*[(anti(k)*k)*anti(k)] = [anti(k)*k]*[anti(k)*k]. 

neut(k)*neut(k) = [neut(k)*neut(k)]*[neut(k)*neut(k)]  

= [anti(k)*k]*[neut(k)*neut(k)]             (By anti(k)*k = neut(k)*neut(k)) 

= k*[(neut(k)*neut(k))*anti(k)] = k*[neut(k)*(anti(k)*neut(k))]  

= [(anti(k)*neut(k))*k]*neut(k) = [neut(k)*(k*anti(k))]*neut(k) 

= [neut(k)*neut(k)]*neut(k). 

Then,  

k*neut(k) = k*(k*anti(k)) = [anti(k)*k]*k  

= [neut(k)*neut(k)]*k                     (By anti(k)*k = neut(k)*neut(k)) 

= [(neut(k)*neut(k))*neut(k)]*k  

(By [neut(k)*neut(k)]*neut(k)=neut(k)*neut(k)) 

= [neut(k)*(neut(k)*neut(k))]*k = [neut(k)*neut(k)]*[k*neut(k)] 

= neut(k)*[(k*neut(k))*neut(k)] = neut(k)*[neut(k)*(neut(k)*k)] 
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= neut(k)*[neut(k)*k] = neut(k)*k = k. 

Thus, neut(k)*k = k*neut(k) = k. 

Further, we have 

[neut(k)*neut(k)]*neut(k)= neut(k)*[neut(k)*neut(k)]  

= neut(k)*[anti(k)*k]                     (By anti(k)*k = neut(k)*neut(k)) 

= [k*neut(k)]*anti(k) 

= k*anti(k) = neut(k). 

Thus, [neut(k)*neut(k)]*neut(k) = neut(k)*neut(k) = anti(k)*k = neut(k) = k*anti(k). 

Therefore, we prove that S is a T2CA-NET-groupoid. By Theorem 13, we get that T2CA-(l, r) 

-NET-groupoid is equivalent to commutative regular semigroup. □ 

Theorem 17. Suppose (S, *) is a groupoid, then S is a T2CA-(l, l)-NET-groupoid if and only if it is a 

commutative regular semigroup. 

Proof. If S is a T2CA-(l, l)-NET-groupoid. kS, by Definition 8, Definition 9 (4) we have neut(k)*k = 

k, anti(k)*k = neut(k). Moreover,  

k*neut(k) = k*[anti(k)*k]  

= (k*k)*anti(k) = [(neut(k)*k)*k]*anti(k) 

= [(k*(k*neut(k)))]*anti(k) = [k*neut(k)]*[anti(k)*k]  

= [k*neut(k)]*neut(k) = neut(k)*[neut(k)*k]  

= neut(k)*k = k. 

Thus, k*neut(k) = neut(k)*k = k. 

Further, we have 

k*anti(k)  

= [k*neut(k)]*anti(k) = neut(k)*[anti(k)*k] = neut(k)*neut(k) 

= [anti(k)*k]*neut(k) = k*[neut(k)*anti(k)] = k*[(anti(k)*k)*anti(k)] 

= k*[k*(anti(k)*anti(k))] = [(anti(k)*anti(k))*k]*k = [anti(k)*(k*anti(k))]*k 

= [k*anti(k)]*[k*anti(k)] = anti(k)*[(k*anti(k))*k] = anti(k)*[anti(k)*(k*k)] 

= [(k*k)*anti(k)]*anti(k) = [k*(anti(k)*k)]*anti(k) = [k*neut(k)]*anti(k)  

= [neut(k)*k]*anti(k) = k*[anti(k)*neut(k)] = k*[anti(k)*(anti(k)*k)] 

= k*[(k*anti(k))*anti(k)] = [anti(k)*k]*[k*anti(k)] = neut(k)*(k*anti(k)) 

= neut(k)*(neut(k)*neut(k))                (By neut(k)*neut(k)= k*anti(k))  

= [neut(k)*neut(k)]*neut(k))      

= [k*anti(k)]*neut(k)                     (By neut(k)*neut(k)= k*anti(k)) 

= anti(k)*[neut(k)*k] = anti(k)*k = neut(k). 

Thus, anti(k)*k = k*anti(k) = neut(k). 

Therefore, we prove that S is a T2CA-NET-groupoid. By Theorem 13, we get that T2CA-(l, l)- 

NET-groupoid is equivalent to commutative regular semigroup. □ 

Example 9. T2CA-(r, l)-NET-groupoid of order 4, given in Table 9, and  

neut(r, l)(c) = c, {anti(r, l)(c)} = {c, v, b, n}; neut(r, l)(v) = n, {anti(r, l)(v)} = v; 

neut(r, l)(b) = b, anti(r, l)(b) = b; neut(r, l)(n) = n, anti(r, l)(n) = n. 

It is easy to verify that (S, *) is also a T2CA-(r, r)-NET-groupoid, T2CA-(l, r)-NET-groupoid, T2CA- 

(l, l)-NET-groupoid. Moreover, (S, *) is a regular semigroup, due to the fact that c = c*c*c, v = v * v * v, 

b = b * b * b, n = n* n * n. Obviously, (S, *) is a commutative.  

Table 9. Cayley table on S = {c, v, b, n}. 

* c                                   v b n 

c c c c c 

v c n c v 

b c c b c 

n c v c n 
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6. Quasi Neutrosophic Extended Triplet (QNET) Groupoids and T2CA-QNET-Groupoids 

Definition 10. Let (S, *) be a groupoid. If for any xS, there exists y, zS such that 

(x*y = x, or y*x = x), and (z*x = y or x*z = y).  

then (S, *) is called a quasi neutrosophic extended triplet groupoid (shortly, QNET-groupoid). 

Suppose (S, *) is a semigroup and QNET-groupoid, then (S, *) is called a quasi neutrosophic triplet 

group (shortly, QNETG). Suppose (S, *) is a T2CA-groupoid and QNET-groupoid, then (S, *) is 

called a T2CA-QNET-groupoid. 

Let (S, *) be a QNET-groupoid and xS. We introduce the following concepts: 

(1) If ∃ y, zS, s.t. x * y = x and x * z = y, then x is called an QNET-element with (r-r)- property;  

(2) If ∃ y, zS, s.t. x * y = x and z * x = y, then x is called an QNET-element with (r-l)- property;  

(3) If ∃ y, zS, s.t. y * x = x and z * x = y, then x is called an QNET-element with (l-l)- property;  

(4) If ∃ y, zS, s.t. y * x = x and x * z = y, then x is called an QNET-element with (l-r)- property;  

(5) If ∃ y, zS, s.t. x * y = y * x = x and z* x=y, then x is called an QNET-element with (lr-l)-property;  

(6) If ∃ y, zS, s.t. x * y = y * x = x and x* z= y, then x is called an QNET-element with (lr-r)-property;  

(7) If ∃ y, zS, s.t. y * x = x and x * z= z* x = y, then x is called an QNET-element with (l-lr)-property;  

(8) If ∃ y, zS, s.t. x * y=x and x * z = z * x = y, then x is called an QNET-element with (r-lr)-property; 

(9) If ∃ y, zS, s.t. x * y = y * x = x and x * z = z * x = y, then x is called an QNET-element with 

(lr-lr)-property. 

Easy to verify: (i) if x is an QNET-element with (r-lr)-property, then x is an QNET-element with 

(r-r)-property and (r-l)-property; if x is an QNET-element with (lr-r)-property, then x is an QNET- 

element with (l-r)-property and (r-r)-property; and soon; (ii) if * is commutative, then the above 

properties coincide.  

Example 10. Denote S = {1, 2, 3, 4}, define the operation * on S in Table 10. Then (S, *) is QNET- 

groupoid, and 1 is an QNET-element with (lr-lr)-property; 2 is an QNET-element with (lr-r)- 

property; 3 is an QNET-element with (r-r)-property; and 4 is an QNET-element with (l-lr)-property. 

Obviously, (S, *) is not a NET-groupoid. 

Table 10. The operation * on S 

* 1                                   2 3 4 

1 1 1 1 4 

2 3 1 2 3 

3 3 2 4 1 

4 1 4 2 1 

Example 11. Denote S = {1, 2, 3, 4, 5}, define the operation * on S in Table 11. Then (S, *) is QNETG, 

and 1 is an QNET-element with (lr-lr)-property; 2 is an QNET-element with (lr-lr)-property; 3 is an 

QNET-element with (lr-lr)-property; 4 is an QNET-element with (lr-r)-property; and 5 is an 

QNET-element with (lr-r)-property. Obviously, (S, *) is not a NETG. Moreover, since 5 * (5 * 4) = 5  

1 = (4 * 5) * 5, (S, *) is not a T2CA-groupoid. 

Table 11. The operation * on S 

* 1                                   2 3 4 5 

1 1 1 1 1 1 

2 1 2 1 4 1 

3 1 1 3 1 5 

4 1 4 1 1 2 

5 1 1 5 3 1 
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Theorem 18. Suppose (S, *) is a groupoid, then S is a T2CA-QNET-groupoid if and only if it is a 

T2CA-NET-groupoid. 

Proof. Let (S, *) be a T2CA-QNET-groupoid. In particular, we consider the local unit element of each 

element. By Definition 10, we know that for any a, bS, there are four cases of their local unit. 

Case 1: There exists y, zS, such that a*y = a, b*z = b. Then a is an QNET-element with (r-l, or r-r, 

or r-lr)-property, b is an QNET-element with (r-l, or r-r, or r-lr)-property. We have 

a*b = (a*y)*b = y*(b*a) = y*[b*(a*y)] = y*[(y*b)*a]  

= (a*y)*(y*b) = a*(y*b) = (b*a)*y = [(b*z)*a]*y 

= [z*(a*b)]*y = (a*b)*(y*z)  

= (b*a)*(z*y)                             (Applying Proposition 4 (1)) 

= [y*(b*a)]*z = [(a*y)*b]*z = (a*b)*z = b*(z*a) 

= z*[(z*a)*b] = z*[a*(b*z)] = z*(a*b) = (b*z)*a  

= b*a.  

Case 2: There exists y, zS, such that y*a = a, z*b = b. Then a is an QNET-element with (l-l, or l-r, 

or l-lr)-property, b is an QNET-element with (l-l, or l-r, or l-lr)-property. According to case 1, we can 

similarly get 

a*b = (y*a)*(z*b) = (a*y)*(b*z) = b*a. 

Case 3: There exists y, zS, such that y*a = a, b*z = b. Then a is an QNET-element with (l-l, or l-r, 

or l-lr)-property, b is an QNET-element with (r-l, or r-r, or r-lr)-property. We have 

z*a = z*(y*a) = z*[y*(y*a)] = [(y*a)*z]*y  

= [a*(z*y)]*y = (z*y)*(y*a)  

= (z*y)*a; 

b*a = b*(y*a) = (a*b)*y = [(y*a)*b]*y = [a*(b*y)]*y = (b*y)*(y*a) 

= (b*y)*a = y*(a* b)                                 (By a*b = a*(b*y)) 

= y*[a*(b*y)] = [(b*y)*y]*a = [y*(y*b)]*a = (y*b)*(a*y) 

= (b*y)*(y*a)                             (Applying Proposition 4 (1)) 

= (b*y)*a  

= y*(a*b); 

a*b = a*(b*z) = (z*a)*b = [(z*y)*a]*b                     (By z*a = (z*y)*a) 

= a*[b*(z*y)] = a*[(y*b)*z]  

= (z*a)*(y*b) = (a*z)*(b*y)                  (Applying Proposition 4 (1)) 

= z*[(b*y)*a] = z*[y*(a*b)]  

= z*(b*a).                                          (By y*(a*b) = b*a) 

Moreover, 

b = b*z = (b*z)*z = z*(z*b) = z*[z*(b*z)] = [(b*z)*z]*z = [z*(z*b)]*z 

= (z*b)*(z*z) = (b*z)*(z*z)                  (Applying Proposition 4 (1)) 

= b*(z*z). 

Thus, 

a*b = a*(b*z) = a*[b*(z*z)]                             (By b*z = b*(z*z)) 

= [(z*z)*a]*b = [z*(a*z)]*b= (a*z)*(b*z)  

= (z*a)*(z*b)                             (Applying Proposition 4 (1)) 

= [b*(z*a)]*z = [(a*b)*z]*z 

= (b*a)*z = [(b*a)*z]*z= z*[z*(b*a)]  

= z*(a*b)                                          (By a*b = z*(b*a)) 

= (b*z)*a = b*a. 

Case 4: There exists y, zS, such that a*y = a, z*b =b. Then a is an QNET-element with (r-l, or r-r, 

or r-lr)-property, b is an QNET-element with (l-l, or l-r, or l-lr)-property. According to case 3, we can 

similarly get a*b = (a*y)*(z*b) = (y*a)*(b*z) = b*a. 
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From Case 1, Case2, Case 3, and Case 4, we know that S is a commutative T2CA-QNET- 

groupoid. Then, for any xS, there exists y, zS such that x*y = x, y*x = x, and z*x = y, x*z = y. 

Therefore, we prove that S is a T2CA-NET-groupoid. 

Conversely, it is obvious. □ 

Corollary 5. Assume (S, *) is a T2CA-QNET-groupoid, then (S, *) is a QNETG.  

Proof. Assume that S is a T2CA-QNET-groupoid. By Theorem 18 and 13, we get that S is a 

commutative regular semigroup. According to the Definition 10, we get that S is a QNETG. □ 

The inverse of Corollary 5 is not true, see Example 11. 

Corollary 6. Let (S, *) be a T2CA-groupoid. Then, the following statements are equivalent:  

(i) S is a T2CA-QNET-groupoid;  

(ii) S is a T2CA-NET-groupoid;  

(iii) S is a CA-NET-groupoid;  

(iv) S is a commutative regular semigroup. 

Proof. (i)Þ (ii). Suppose that S is a T2CA-QNET-groupoid. Applying Theorem 18, we get that S is a 

T2CA-NET-groupoid.  

(ii)Þ (iii). Suppose that S is a T2CA-NET-groupoid. Applying Theorem 13, we get that S is a 

commutative regular semigroup. Then by Theorem 2 (1) and (6), we get S is a CA-NET-groupoid.  

(iii)Þ (iv). Suppose that S is a CA-NET-groupoid. Applying Theorem 2 (1) and (6), we get that 

S is a commutative regular semigroup.  

(iv)Þ (i). Suppose that S is a commutative regular semigroup. Applying Theorem 13, we get S 

is a T2CA-NET-groupoid. Then by Theorem 18, S is a T2CA-QNET-groupoid. □  

7. Conclusions  

In the paper, we introduced the new concepts of T2CA-groupoid, T2CA-NET-groupoid, and 

QNET-groupoid for the first time. We precisely discussed some fundamental characteristics of 

T2CA-groupoids and T2CA-NET-groupoids, then a decomposition theorem of T2CA-NET- 

groupoid is proved (see Theorem 8), and the relationship between T2CA-NET-groupoids and 

commutative regular semigroups is strictly proved. Furthermore, we investigated relationships 

among T2CA-QNET-groupoid, T2CA-NET-groupoid, CA-NET-groupoid and commutative regular 

semigroup. The results show that T2CA-groupoids, as a non-associative algebraic structure, are 

typically representative and closely related to a variety of algebraic structures. 

For future research directions, we will discuss the integration of the related topics (such as 

algebraic systems related fuzzy logics and non-associative groupoids, see [29-34]). 
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Abstract: In this paper, we will define a new set called fuzzy neutrosophic strongly alpha 

generalized closed set, so we will prove some theorems related to this concept. After that, we will 

give some interesting properties were investigated and referred to some results related to the new 

definitions by theorems,  propositions to get some relationships among fuzzy neutrosophic 

strongly alpha generalized closed sets, fuzzy neutrosophic closed sets, fuzzy neutrosophic regular 

closed sets, fuzzy neutrosophic alpha closed sets, fuzzy neutrosophic alpha generalized closed sets 

and fuzzy neutrosophic pre closed sets which are compared with necessary examples based of fuzzy 

neutrosophic topological spaces. 

 

Keywords: Fuzzy neutrosophic set, fuzzy neutrosophic topological space, fuzzy neutrosophic 

strongly alpha generalized closed set.  

_________________________________________________________________________ 

1. Introduction 

        The concept of fuzzy set "FS"was introduced by Lotfi Zadeh in 1965 [1], then Chang 

depended the fuzzy set to introduce the concept of fuzzy topological space "FTS" in 1968 [7]. After 

that the concept of fuzzy set was developed into the concept of intutionistic fuzzy set "IFS" by 

Atanassov in 1983 [4-6], the intutionistic fuzzy set gives a degree of membership and a degree of non- 

membership functions. Cokor in 1997 [7] relied on intutionistic fuzzy set to introduced the concept of 

intutionistic fuzzy topological space."IFTS". In 2005 Smaradache [23] study the concept of 

neutrosophic set. "NS". After that and as developed the term of neutrosophic set, Salama has studied 

neutrosophic topological space "NTS"and many of its applications [18-21]. In 2013 Arockiarani 

Sumathi and Martina Jency [2] introduced the concept of fuzzy neutrosophic set as generalizes the 

concept of fuzzy set and intutionistic fuzzy set. where each element had three associated defining 

functions on the universe of discourse X, namely the membership function (T), indeterminacy 

function (I), the non-membership function (F) that is added an indeterminacy degree between the 

mailto:dr.fatimahmahmood@tu.edu.iq
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degree of membership and the degree of non- membership. In 2012 Salama and Alblowi defined 

fuzzy neutrosophic topological space [18]. 

 

        In the present work, we will generalized the concept of strongly alpha generalized closed set 

in fuzzy neutrosophic topological spaces which was studied by Santhi and Sakthivel in 2011 [22] via 

intuitinistic topological spaces and generalizing our works in 2018 [ 9,10 ], the new set will called  

fuzzy neutrosophic strongly alpha generalized closed set in fuzzy neutrosophic topological spaces. 

        Finally, there are many application of neutrosophic sets in many fields so we can enhance our 

work, we will try in the future to applied this work in different fields such as many authors 

applications see [11] and [13-17]. 

2. Preliminaries: 

  In this section, we will define some basic definitions and some operations which are useful in 

our present study.  

 

Definition 2.1 [18]: Let X be a non-empty fixed set. The fuzzy neutrosophic set (FNS, for short), ηN  

is an object having the form ηN  < x, ηN (x), ηN (x), 𝜈ηN (x) >: x X  where the functions ηN, 

ηN, 𝜈ηN: X   [0, 1] denote  the degree of membership function (namely ηN x), the degree of 

indeterminacy function (namely ηN (x )) and the degree of  non-membership (namely 𝜈ηN x) 

respectively of each element x X to the set ηN  and  0 ≤ ηN (x) + ηN (x) + 𝜈ηN (x) ≤ 3, for each 

x X. 

 

Remark 2.2 [18]: FNS ηN = {< x, 𝜇ηN (x), 𝜎ηN (x), 𝜈ηN (x) >: x ∈ X} can be identified to an ordered 

triple < x, 𝜇ηN, 𝜎ηN, 𝜈ηN > in [0, 1] on X.  

  

Definition 2.3 [18]: Let X be a non-empty set and the FNSs ηN and γN be in the form:                         

ηN = {< x, 𝜇ηN , 𝜎ηN , 𝜈ηN  >: x ∈ X} and γN ={< x, 𝜇 γN , 𝜎γN , 𝜈γN  >: x ∈X} on X then:                                                                  

i.  ηN ⊆ γN iff  𝜇ηN ≤ 𝜇γN , 𝜎ηN ≤ 𝜎γN  and 𝜈ηN ≥ 𝜈γN . 

ii.  ηN = γN iff ηN ⊆ γN and γN ⊆ ηN,                                                                                       

iii.  1N- ηN
  

= {< x, 𝜈ηN , 1 − 𝜎ηN, 𝜇ηN  >: x ∈ X},                                                                  

iv.  ηN ∪ γN = {< x, Max(𝜇ηN, 𝜇γN ), Max(𝜎ηN, 𝜎γN , Min(𝜈ηN, 𝜈γN ) >: x ∈ X},                                                                                                                            

v.  ηN ∩ γN = {< x, Min( 𝜇ηN , 𝜇γN ), Min(𝜎ηN, 𝜎γN), Max(𝜈ηN, 𝜈γN ) >: x ∈ X},                                                                                                                                       

vi.  0𝑁 = < x, 0, 0, 1> and 1𝑁 = <x, 1, 1, 0 >. 

 

Definition 2.4 [18]: "Fuzzy neutrosophic topology (FNT, for short) on a non-empty set X is a 

family 𝜏N of  fuzzy neutrosophic subsets in X satisfying the following axioms.   

i. 0𝑁,1𝑁∈𝜏N,  

ii. ηN1 ∩ ηN2 ∈ 𝜏N for any ηN1, ηN2 ∈ 𝜏N, 

iii. ∪ ηNi ∈ 𝜏N, ∀{ ηNi: i ∈ J} ⊆ 𝜏N."                                                                                                                                                                                                                     

  In this case the pair (X, 𝜏N) is called fuzzy neutrosophic topological space (FNTS, for short). 

The elements of 𝜏N are called fuzzy neutrosophic open set (FNOS, for short). The complement of 

FNOS in the FNTS (X, 𝜏N) is called fuzzy  neutrosophic closed set (FNCS, for short). 
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 Definition 2.5 [18]: Let (X, 𝜏N) be FNTS and ηN = < x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNS in X. Then the 

fuzzy neutrosophic closure of  ηN (FNCL, for short) and fuzzy neutrosophic interior of  ηN    

(FNIn, for short) are defined by:                                                                                     

FNCL(ηN) = ∩ {C𝑁: C𝑁 is FNCS in X and ηN ⊆ C𝑁 }, 

FNIn (ηN) = ∪ {O𝑁: O𝑁 is FNOS in X and O𝑁 ⊆ ηN }.                   

We know,  FNCL(ηN) is FNCS and FNIn (ηN) is FNOS in X. Further,                                                                                   

i.  ηN is FNCS in X iff  FNCL (ηN) = ηN,                                                                                      

ii. ηN is FNOS in X iff  FNIn (ηN) = ηN. 

                                      

Proposition 2.6 [25]: Let (X, 𝜏N) is FNTS and ηN, γN are FNSs in X. Then the following properties 

hold:                                                                                                                                                    

i.  FNIn (ηN) ⊆ ηN and ηN ⊆ FNCL(ηN),                                                                              

ii.  ηN ⊆ γN ⟹ FNIn (ηN) ⊆ FNIn (γN) and ηN ⊆ γN ⟹ FNCL(ηN) ⊆ FNCL(γN),            

iii.  FNIn (FNIn (ηN)) = FNIn (ηN) and FNCL(FNCL(ηN)) = FNCL(ηN),                              

iv.  FNIn (ηN ∩ γN) = FNIn (ηN) ∩ FNIn (γN) and FNCL(ηN ∪ γN) = FNCL(ηN) ∪FNCL(γN),                                                                                                                                   

v.  FNIn (1𝑁) =1𝑁 and FNCL(1𝑁) = 1N,                                                                                

vi.  FNIn (0𝑁) = 0𝑁 and FNCL(0𝑁) = 0N. 

 

Definition 2.7 [9]: FNS ηN in  FNTS (X, N) is called: 

i. Fuzzy neutrosophic regular closed set (FNRCS, for short) if ηN = FNCL(FNIn (ηN)). 

ii. Fuzzy neutrosophic pre closed set (FNPCS, for short) if FNCL(FNIn (ηN)) ⊆ ηN.  

iii. Fuzzy neutrosophic α closed set (FNαCS, for short)  if FNCL(FNIn(FNCL(ηN))) ⊆ ηN. 

Definition 2.8 [10]: Let (X, 𝜏N) be FNTS and ηN = < x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNS in X. Then the fuzzy 

neutrosophic alpha closure of  ηN (FNαCL, for short) and fuzzy neutrosophic alpha interior of ηN 

(FNαIn,  

for short) are defined by:  

FNαCL(ηN) = ∩ {C𝑁: C𝑁 is FNαCS in X and ηN ⊆ C𝑁 }, 

FNαIn (ηN) = ∪ {O𝑁: O𝑁 is FNαOS in X and O𝑁 ⊆ ηN}. 

We know,  FNαCL(ηN) is FNαCLS and FNαIn (ηN) is FNαOS in X. Further,                                               

i.  ηN is FNαCS in X iff  FNαCL(ηN) = ηN,                                                                                      

ii. ηN is FNαOS in X iff  FNαIn (ηN) = ηN.  

                                       

Definition 2.9 [9,10]: Fuzzy neutrosophic sub set ηN of FNTS (X, N) is called: 

i. fuzzy neutrosophic generalized closed set (FNGCS, for short   ( if FNCL(ηN) ⊆ UN 

wherever, ηN ⊆ UN and UN is FNOS in X. And ηN is said to be fuzzy neutrosophic 

generalized open set (FNGOS, for short) if the complement 1N- ηN
  

is FNGCS set in 

(X, N). 

ii. fuzzy neutrosophic alpha generalized closed set (FNαGCS, for short   ( if FNαCL(ηN) ⊆ 

UN wherever, ηN ⊆ UN and UN is FNOS in X. And ηN is said to be fuzzy neutrosophic 
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alpha generalized open set (FNαGOS, for short) if the complement 1N- ηN
  

is FNαGCS 

set in (X, N). 

 

3. Fuzzy Neutrosophic Strongly Alpha Generalized Closed Sets in Fuzzy Neutrosophic 

Topological Spaces. 

 

           Now, we will introduce the concept of fuzzy neutrosophic strongly alpha generalized 

closed set in fuzzy neutrosophic topological spaces. 

 

Definition 3.1: Fuzzy neutrosophic subset ηN of FNTS (X, N) is called fuzzy neutrosophic strongly 

alpha generalized closed set (FNSαGCS, for short   ( if FNαCL (ηN) ⊆ UN wherever, ηN ⊆ UN and UN is 

FNGOS in X. 

 

Example 3.2: Let X= {a, b} define FNS ηN in X as follows:                                                                      

ηN =<x, (0.2(a), 0.3(b)), (0.5(a), 0.5(b)), (0.8(a),0.7(b)) >, where the family 𝜏N ={0N, 1N, ηN }. 

If we take,
 
ψN =  <x, (0.8(a), 0.7(b)), (0.5(a), 0.5(b)), (0.1(a),0(b)) >.                                                                                                                                                 

And, UN = 1N where UN is FNGOS such that, ψN ⊆  UN. Then, FNαCL(ψN) = 1N. So, FNαCL(ψN) ⊆ 

UN.                                                                                                                                                                                                                                                                                                                                            

Hence, ψN is FNSαGCS. 

 

Theorem 3.3: For any FNSs, the following statements are true in general: 

i. Every FNOS is FNGOS.  

ii. Every FNCS is FNαCS. 

iii. Every FNCS is FNSαGCS.    

iv. Every FNRCS is FNSαGCS. 

v. Every FNαCS is FNSαGCS.   

vi. Every FNαGCS is FNSαGCS.  

vii. Every FNRCS is FNCS. 

viii. Every FNαCS is FNαGCS.    

 

Proof:.  

i. Let ηN = <x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNOS in the FNTS (X,N).                              

Then by Definition 2.5 ii we get, FNIn (ηN) = ηN.                                                                                                             

Now, let  UN  is FNCS such that, UN ⊆ ηN. Therefore, FNIn (ηN) = ηN   UN.                                                                                                                                                                     

Hence, ηN  is FNGOS in (X, N) . 

 

ii. Let ηN = <x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNCLS in the FNTS (X, N).                                   

Then by Definition 2.5 (i) we get, FNCL(ηN) = ηN……(1).                                                                                                                                                       

And by Proposition 2.6 i we get, FNIn (ηN) ⊆ ηN. 
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So we get, FNIn (FNCL(ηN)) ⊆ ηN                                                           

This implies FNCL(FNIn (FNCL(ηN))) ⊆ FNCL(ηN).                                                    

So by (1) we get, FNCL(FNIn (FNCL(ηN))) ⊆ ηN.                                                    

Hence, ηN  is FNαCS in (X, N). 

 

iii. Let ηN = <x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNCS in FNTS (X, N).                                        

Then by Definition 2.5 (i) we get, FNCL(ηN) = ηN. Now, let  UN  be FNGOS such that, ηN 

⊆ UN. 

Since, FNαCL(ηN) ⊆FNCL(ηN) by Definition 2.5 and Definition 2.8. 

So we get, FNαCL(ηN) ⊆ FNCL(ηN) = ηN ⊆ UN.                                               

Hence, ηN  is FNSαGCS in (X, N) .                               

 

iv. Let ηN = <x, 𝜇ηN, 𝜎ηN, 𝜈ηN >  be FNRCS in the FNTS (X, N).                        

   Then, FNCL(FNIn (ηN)) = ηN…….(1).                                                        

   This implies, FNCL(FNIn (ηN)) = FNCL(ηN)…….(2). 

Now, let  UN  be FNGOS such that, ηN ⊆ UN.                                                           

From (1) and (2) we get,  FNCL(ηN) = ηN. 

That ηN is FNCS in X.                                                                                                       

So by iii we get, FNαCL(ηN) ⊆ FNCL(ηN) = ηN ⊆ UN.                                                                                                                                          

Hence, ηN  is FNSαGCS in (X, N) . 

       v. Let ηN = <x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNαCLOS in the FNTS (X, N).                          

Then by Definition 2.8 i we get, FNαCL (ηN) = ηN.                                                                                    

Now, let  UN be FNGOS such that, ηN ⊆ UN. So, FNαCL (ηN) = ηN ⊆ UN.                                                                                                                                                                                                                        

Hence, ηN  is FNSαGCS in (X, N). 

       vi. Let ηN = <x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNαGCS in the FNTS (X, N).                         

    Then, FNαCL (ηN) ⊆ UN, ηN ⊆ UN and UN be FNOS, so by i we get , FNOS be 

FNGOS in (X, N).                                                         

    Therefore, FNαCL (ηN) ⊆ UN, ηN ⊆ UN and UN be FNGOS. Hence, ηN  is FNSαGCS 

in (X, N). 

 

vii. Let ηN = <x, 𝜇ηN, 𝜎ηN, 𝜈ηN > be FNαCS in the FNTS (X, N). Then, FNαCL (ηN) = ηN.                                                                                            

    Now, let  UN  be FNOS such that, ηN ⊆ UN, so, FNαCL (ηN) = ηN ⊆ UN.                                                                                                                                                                                                     

    Hence, ηN  is FNαGCS in (X, N). 

Remark 3.4: The convers of  Theorem 3.3 is not true and this can be clarified in the following 

examples. 

Example 3.5:  
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i. Let X= {a, b} define FNS ηN in X as follows:                                                             

ηN = <x, (0.5(a), 0.7(b)), (0.5(a), 0.5(b)), (0.5(a),0.2(b)) >.                                                                                                  

The family 𝜏N = {0N, 1N, ηN } be FNT.                                                                      

If we take,
 
ψN =  <x, (0.1(a), 0.6(b)), (0.5(a), 0.5(b)), (0.9(a),0.3(b)) >.                                                                   

And let, UN = 0N, where UN be FNCS such that, UN ⊆ ψN.                                                        

Then, FNIn (ψN) = <x, (0(a), 0(b)), (0(a), 0(b)), (1(a),1(b)) > ⊆ <x, (0.1(a), 0.6(b)), (0.5(a), 

0.5(b)), (0.9(a),0.3(b)) >  such that, (0(a), 0(b))   (0.1(a), 0.6(b)), (0(a), 0(b))    (0.5(a), 0.5(b)) 

and (1(a),1(b))   (0.9(a),0.3(b)) =  0N. So, FNIn (ψN)   UN. Hence, ψN is FNGOS but, 

not FNOS. 

 Since ψN   𝜏N.                                                                   

                                                                                               

ii. Let X={a } define the FNSs ηN and γN in X as follows:                                              

ηN = <x, (0.5(a)), (0.4(a)), (0.7(a)) >,  γN = <x, (0.4(a)), (0.1(a)), (0.8(a)) >.                                                                                       

The family 𝜏N ={0N, 1N, ηN, γN } be FNT.                                                                      

If we take, ψN = <x, (0.8(a)), (0.6(a)), (0.5(a)) >.                                                                                                                                                              

Then, FNCL(ψN) = <x, (0.8(a)), (0.9(a)), (0.4(a)) >. And, FNIn (FNCL(ψN)) = <x, (0.5(a)), 

(0.4(a)), (0.7(a)) >. So, FNCL(FNIn (FNCL(ψN))) = <x, (0.7(a)), (0.6(a)), (0.5(a)) >.                  

Therefore, <x, (0.7(a)), (0.6(a)), (0.5(a)) > ⊆ ψN.                                   

Hence, ψN is FNαCS but not FNCS. Since ψN   1N-𝜏N. 

  

iii. Take Example 3.2. Then, ψN is FNSαGCS but, not FNCS.                                            

Since, ψN   1N- 𝜏N. 

 

iv. Take Example 3.2. Then ψN is FNSαGCS but, not FNRCS.                                                           

Since, FNIn (ψN) = <x, (0.2(a), 0.3(b)), (0.5(a), 0.5(b)), (0.8(a),0.7(b)) > and  

FNCL(FNIn (ψN)) = <x, (0.8(a), 0.7(b)), (0.5(a), 0.5(b)), (0.2(a),0.3(b)) >   ψN. 

 

v. Let X={a, b } define the FNSs ηN and γN in X as follows:                                              

ηN = <x, (0.4(a), 0.2(b)), (0.5(a), 0.5(b)), (0.6(a),0.7(b)) >,                                                             

γN = <x, (0.8(a), 0.8(b)), (0.5(a), 0.5(b)), (0.2(a),0.2(b)) >.                                                                                     

The family 𝜏N ={0N, 1N, ηN, γN } be FNT.                                                                                                                                        

Now if, ψN = <x, (0.6(a), 0.7(b)), (0.5(a), 0.5(b)), (0.4(a),0.3(b)) >.                                            

By Theorem 3.3  i. If UN is FNOS then is FNGOS.                                                                     

So, UN = γN where, UN be FNGOS such that, ψN ⊆  UN.                                               

By Theorem 3.3  ii. Every FNCS is FNαCS.                                                                                                  
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Then, FNαCL(ψN) = 1N- ηN. Therefore FNαCL(ψN) ⊆  UN.                                                       

Hence, ψN is FNSαGCS but, not FNαCS.                                                                                                                                                                                                                         

Since, FNCL(ψN) = 1N- ηN, FNIn (FNCL(ψN)) =  ηN  and                                                

FNCL(FNIn (FNCL(ψN))) = 1N- ηN   ψN. 

 

vi. Let X={a} define the FNSs ηN and γN in X as follows:                                              

ηN = <x, (0.5(a)), (0.5(a)), (0.5(a)) >,  γN = <x, (0.5(a)), (0 (a)), (1(a)) >.                                                                                       

The family 𝜏N ={0N, 1N, ηN, γN } be FNT.                                                                                                                                                         

Now if, ψN = <x, (0.6(a)), (0.6(a)), (0.6(a)) >.                                                                                

Let UN = <x, (1(a)), (1(a)), (0.4(a)) > be FNGOS such that, ψN ⊆ UN.                                     

Then, FNαCL(ψN) = 1N- γN. So FNαCL(ψN) ⊆  UN.                                                     

Hence, ψN is FNSαGCS but, not FNαGCS.                                                                     

Since, UN is FNGOS but not FNOS. 

 

vii. Let X={a } define the FNSs ηN and γN in X as follows:                                              

ηN = <x, (0.5(a)), (0.5(a)), (0.7(a)) >,  γN = <x, (0.4(a)), (0 (a)), (1(a)) >.                                                                                       

The family 𝜏N ={0N, 1N, ηN, γN } be FNT.                                                            

Now if, ψN = <x, (1(a)), (1(a)), (0.4(a)) >.                                                                                     

Then, ψN is FNCS. Since ψN   1N- 𝜏N but, not FNRCS.                                                                            

Since FNIn (ψN) = <x, (0.5(a)), (0.5(a)), (0.7(a)) > and                                                    

FNCL(FNIn (ψN)) = <x, (0.7(a)), (0.5(a)), (0.5(a)) >   ψN. 

 

viii. Let X={a} define the FNSs ηN and γN in X as follows:                                              

ηN = <x, (0.5(a)), (0.5(a)), (0.6(a)) >,  γN = <x, (0.5(a)), (0 (a)), (1(a)) >.                                                                                       

The family 𝜏N ={0N, 1N, ηN, γN } be FNT.                                                            

Now if, ψN = <x, (0.6(a)), (0.6(a)), (0.6(a)) >.                                                                            

Let, UN = 1N be FNOS such that, ψN ⊆ UN.                                                                                                                             

Then, FNCL(ψN) = <x, (1(a)), (1(a)), (0.5(a)) > and FNCL(ψN) ⊆ UN.                                                                                                                      

Hence, ψN is FNαGCS but, not FNαCS. 

Since, FNCL(ψN) = <x, (1(a)), (1(a)), (0.5(a)) >, FNIn (FNCL(ψN)) = <x, (0.5(a)), (0.5(a)), 

(0.6(a)) > and                                 

FNCL(FNIn (FNCL(ψN))) = <x, (0.6(a)), (0.5(a)), (0.5(a)) >   ψN. 

 

Remark 3.6: i. The relation between FNPCS and FNSαGCS is independent and this can be 

clarified in the next example. 
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ii. The intersection of two FNSαGCS is not FNSαGCS in general and we explained it in 

the next example. 

Example 3.7:  

i. (1) Let X= {a, b} define FNS ηN in X as follows:                                                             

ηN = <x, (0.5(a), 0.5(b)), (0.5(a), 0.5(b)), (0.4(a),0.5 (b)) >.                                                                                                  

The family 𝜏N = {0N, 1N, ηN } be FNT.                                                                                                                                                   

Now if,
 
ψN =  <x, (0.5(a), 0.4(b)), (0.5(a), 0.5(b)), (0.6(a),0.5(b)) >.                                                                    

Then, FNIn (ψN) = 0N and FNCL(FNIn (ψN)) = 0N. So,  FNCL(FNIn (ψN)) ⊆ ψN.                                                                                                                                                                                                                                                       

Hence, ψN is FNPCS but, not FNSαGCS. Since                                                                                                                                                                                                                                                                                                   

Let, UN = ηN, where UN be FNGOS such that, ψN ⊆ UN. Then, FNαCL(ψN) = 1N. So FNαCL(ψN)   

UN.  

                                                                                                                                                                                                                                                                                                                                           

(2) Let X={a, b} define the FNSs ηN and γN in X as follows:                                               

ηN = <x, (0.5(a), 0.2(b)), (0.5(a), 0.5(b)), (0.5(a),0.7(b)) >,                                                             

γN = <x, (0.8(a), 0.8(b)), (0.5(a), 0.5(b)), (0.2(a),0.2(b)) >.                                                                                     

The family 𝜏N ={0N, 1N, ηN, γN }be FNT.                                                                                                                                          

Now if, ψN = <x, (0.5(a), 0.7(b)), (0.5(a), 0.5(b)), (0.5(a),0.3(b)) >.                                                                                                   

Let, UN = γN, where UN be FNGOS such that, ψN ⊆ UN.                                                                                                                                   

Then, FNαCL(ψN) = <x, (0.5(a), 0.7(b)), (0.5(a), 0.5(b)), (0.5(a),0.2(b)) > ⊆ UN.                                  

Hence, ψN is FNSαGCS but, not FNPCS.                                                                                                    

Since, FNIn (ψN) = ηN and FNCL(FNIn (ψN)) = <x, (0.5(a), 0.7(b)), (0.5(a), 0.5(b)), (0.5(a),0.2(b)) >.  

So,  FNCL(FNIn (ψN))   ψN.  

 

ii. Let X= {a, b} define FNS ηN in X as follows: ηN = <x, (0.5(a), 0(b)), (0.5(a), 0.5(b)), (0.1(a),1(b)) >.                                                                                                  

The family 𝜏N = {0N, 1N, ηN } be FNT.                                                                                                                                                    

Now if,
 
ψN1 = <x, (0.2(a), 1(b)), (1(a), 1(b)), (0.7(a),0 (b)) > and ψN2 =  <x, (0.6(a), 0(b)), (1(a), 1(b)), (0.3(a),1 (b)) 

> are FNSαGCS. But, ψN1  ψN2 = <x, (0.2(a), 0(b)), (1(a), 1(b)), (0.7(a),1 (b))>.                                                                                  

Now let, UN = ηN, where UN be FNGOS such that, ψN1  ψN2 ⊆ UN. Then, FNαCL(ψN1  ψN2) = 1N   

UN.                                                                                                           

Hence, ψN1  ψN2 is not FNSαGCS. 

 

Remark 3.8: The next diagram explains the relationships among different sets in the FNTS and the 

convers is not true in general. 
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Diagram 3.1 

 

5. Conclusions  

       In this present paper, we have defined new class of neutrosophic generalized closed sets called, 

fuzzy neutrosophic strongly alpha generalized closed set in fuzzy neutrosophic topological spaces. 

Many results have been discussed with some properties. Further, we giving some theorems, 

propositions and provided some useful examples where such properties failed to be preserved in order 

to get the relations between fuzzy neutrosophic strongly alpha generalized closed set and existing 

fuzzy neutrosophic closed sets in fuzzy neutrosophic topological spaces . We think, our studied class 

of sets belongs to the new class of fuzzy neutrosophic  sets which is useful not only in the deepening 

of our understanding of some special features of the well-known notions of fuzzy neutrosophic 

topology but also useful in neutrosophic control theory. 
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Abstract.:"The neutrosophic sets were known since 1999, and because of their wide applications and their 

great flexibility to solve the problems, we used these the concepts to define a new types of neutrosophic 

crisp closed sets and limit points in neutrosophic crisp topological space, namly [neutrosophic crisp 

Gem sets and neutrosophic crisp Turig points ] respactvely, we stady their properties in details and 

join it with topological concepts. Finally we used [neutrosophic crisp Gem sets and neutrosophic 

crisp Turig points] to introduce of topological concepts as : neutrosophic crisp closed (open) sets , 

neutrosophic crisp closure, neutrosophic crisp interior, neutrosophic crisp extrior and neutrosophic 

crisp boundary which are fundamental for further reserch on neutrosophic crisp topology and will 

setrengthen the foundations of theory of neutrosophic  topological spaces.  

 

 

Keywords: Neutrosophic crisp set, Neutrosophic crisp topology, Neutrosophic crisp closed set,  

1. Introduction.- 

 In,1999,,Smarandache firstly proposed the theory of neutrosophic set [1] which is the generalization 

of the class sets, conventional fuzz set [2] and intuitionistic set fuzzy [3]. After Smarandache, 

neutrosophic sets have been successfully, applied to many fields such as; topology, control theory, 

databases, medical diagnosis problem, decision making problem and so on, [4-37] .  

 A.A. Salama, et, al.[38] proposed a new mathematical model called " Neutrosophic crisp sets and 

Neutrosophic crisp topological spaces " .         

 The idea of "Gem-Set", which is a characterization of the concept of closure is introduced by 

AL-Nafee ,Al-Swidi [39] . After AL-Nafee, the idea of "Gem-Set has been successfully using to many  

topological concepts such as; interior, exterior, boundary ,separation axioms, continuous functions , 

bitopological spaces, compactness, soft topological spaces, and so on, [40,41,42,43,44,45,46,47,48]. 

 The idea of "controlling soft Gem-Set" and join it with topological concepts in soft topological space 

is introduced by [49]. The concept of the soft Turing point, and used it with separation axioms in soft 

topological space is introduced by [50,51].  

 The goal of this research is to combine the concept of "Gem-Set" and Turing point with 

neutrosophic crisp set to define a new types of neutrosophic crisp closed sets and limit points in 

neutrosophic crisp topological space, namly [neutrosophic crisp Gem sets and neutrosophic crisp 

Turig points ] respactvely, we stady their properties in details and we also use it to introduce the 

some of topological concepts as : neutrosophic crisp closed (open) sets , neutrosophic crisp closure, 

neutrosophic crisp interior, neutrosophic crisp extrior and neutrosophic crisp boundary which are 
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fundamental for further reserch on neutrosophic crisp topology and will setrengthen the 

foundations of theory of neutrosophic topological spaces.   

 The paper is structured, as follows; In section 2, we first recall the necessary background, on 

neutrosophic and neutrosophic crisp points [NCPN for short]. In section 3, a neutrosophic crisp 

Turing points properties are introduced with their properties. In section 4, the concept of 

neutrosophic crisp Gem sets are introduced and studied their properties. 

 Throughout. this paper,,NC𝖳S,means,a neutrosophic crisp topological space , also we write (H,) by 

H (for short),the collection of all neutrosophic crisp sets on H, will be denoted by, N(H) . 

2. Preliminaries,, 

2.1. Definition [52]   

  "Let H be a non-empty, fixed set, a neutrosophic crisp set (for short NCS) D is an object having the 

form  D = >D1,D2,D3> where D1,D2 and D3 are .subsets of H". 

 "We will exhibit the basic neutrosophic operations defnitions (union, intersection and 

complement)"."Since there are different definitions of neutrosophic operations","we will organize 

the existing definitions into two types in each type these operations will be consistent and 

functional"."In this work we will use one Type of neutrosophic crisp sets operations".   

2.2. Definition [52] 

  "A neutrosophic crisp topology (NCTS) on anon-empty set H is a family T of neutrosophic crisp 

susets in H satisfying the following conditions"; 

∅N, HN   T. 

C D T, for C,D  T 

"The union of any number of set in T belongs to T". 

"The pair ( H,T) is said to be a neutrosophic crisp topological space(NCTS) in H"."Moreover the 

elements in T are said to be neutrosophic crisp open sets. A neutrosophic crisp set F is closed iff its 

complement (FC) is an open neutrosophic crisp set ".  

2.3. Definition [52]  

  "Let NI be a non-null collection of neutrosophic crisp sets over a universe H"."Then NI  is called 

neutrosophic crisp ideal on H if" ; 

 "C   NI and D   NI then C ⋃D   NI ". 

 "C   NI and D ⊆ C then D   NI". 

2.4. Definition [52]  

  "Let (H,) be NCTS ,A be a neutrosophic crisp set then:"The intersection of any neutrosophic crisp 

closed sets contained A is called neutrosophic crisp clusuer of A (for short NC-CL(A))".  

2.5. Definition [52]  

 "((neutrosophic crisp sets operations of Type.I))" 

  "Let H be a non-empty, set and"C = > C1, C2, .C3. < ","D = > D1, D2, .D3. < " be two neutrosophic crisp 

sets, where "D1, C1,D2,C2 and D3 C1 are subsets of H" ,such that "(D1   D2)=∅" ,"(D1   D3)=∅","( D2  

 D3)=∅" ," (C1   C2)=∅" , "(C1   C3)=∅" , "(C2   C3)=∅" then: 

 "∅N = >∅,∅,H<" "(Neutrosophic empty set) ". 

 "HN =>H,∅,∅<" "(Neutrosophic universal set)" . 

 "C ⋂ D.= [ C1 ⋂ D1 ] ,[ C2 ⋂ D2 ] and [.C3 ⋃ D3 ]". 

 "C ⋃ D.= [C1 ⋃ D1 ] ,[.C2 ⋃ D2 ] and [.C3 ⋂ D3 ] ".  

  "C ⊆ D,⇔ C1 ⊆ . D1. ,C2 ⊆. D2  and D3 ⊆ C3.".  
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 "The complement of a NCS (D ) may. be defined.as:. D =   > D3 , D2 ,. D1.  ." <   

 "C = .D,⇔ C ⊆. D., D ⊆ .C" . 

2.6. Definition [53]   

 "((neutrosophic crisp sets operations of Type.2))" 

  "Let H be a non-empty,set and ",C = > C1, C2, .C3. <  ,"D = > D1, D2, .D3. "<  be two neutrosophic crisp 

sets, where" D1, C1, D2 ,C2 and D3 ,C1" are subsets of H then: 

 "∅N = >∅, ∅, ∅  "< (Neutrosophic empty set) . 

 "HN =>H,H,H< (Neutrosophic universal set)". 

 "C ⋂ D.= [ C1 ⋂ D1 ], [ C2 ⋂ D2 ] and [.C3 ⋂ D3 ] . 

 "C ⋃ D.= [ C1 ⋃ D1], [.C2 ⋃ D2 ] and [.C3 ⋃ D3 ] .  

 "C ⊆ D,⇔ C1  ⊆. D1., C2  ⊆ D2 and C3  ⊆ D3"..  

 "The complement of a NCS (D ) may. be defined.as:. DC = >D1c, D2c,.D3c.  ."<    

 "C =.D,⇔  C ⊆ .D., D ⊆ .C". 

2.7. Definition [53]  

  "For all a,b,c   H .Then the neutrosophic crisp points,related to a,b,c are defined as follows";  

 "   = >{a},∅,∅< on H" . 

     = >∅,{b},∅< on H" . 

      =>∅,∅,{c}> on H" . 

"(The set of all neutrosophic crisp points (           ) is denoted,by NCPN)". 

3. Neutrosophic.crisp turing point 

  "In this work, we will use Type.2 of neutrosophic crisp sets operations","this was necessary to 

homogeneous suitable results for the upgrade of this research". 

3.1. Definition   

  "Let (  𝖳) be NC𝖳S             , we define a neutrosophic.crisp ideal NI with respect to a 

neutrosophic.crisp point  , as follows ": 

"NI( ) ={  𝖳 :   ( ) +" 

3.2. Definition 

  "Let (  𝖳) be NC𝖳S           (  𝖳), Y H, we define a neutrosophic.crisp ideal YNI( ) respect 

to subspace (Y,𝖳Y), as follows:" 

  " YNI( ) ={D 𝖳Y :    ( \D)}". 

3.3. Remark  

  "Let (  𝖳) be NC𝖳S, YH, for each D ∅  and             , then";  

           "  YNI( ) ={ D  𝖳Y :     ( \D)}={D   𝖳Y  :    (Y\D) }". 

Proof  

 " YNI( ) = {D  𝖳Y :     ( \D)} ={ D   𝖳Y : P D,for each PY}={ D  𝖳Y : P  (Y\D), for each PY}". 

3.4. Remark 

   Let (  𝖳) be NC𝖳S ,Y H, for each D ∅  and            ,then ; 

                         YNI( ) = { D  𝖳Y :    ( \D)}={DY:for each D ∅  NI( )}. 

3.5. Example  

  "Let (  𝖳) be NC𝖳S , such that H={1} ",  

"𝖳={ ∅ ,  , A , B ,C ,D ,E ,F,G }",     = ∅ * +,∅   , such that; 

"A = * +, ∅, ∅  , B = ∅ * +, ∅  , C   * +, * +, ∅   , D = * +, ∅, * +   , 
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E = ∅, * +, * +  , F = ∅, ∅, * +   , G = * +, * +, * +  . 

Then, NI(  ) {∅  , A,D,F }.  

3.6. Definition 

   Let (  𝖳) be NC𝖳S              and NI be a neutrosophic.crisp ideal    (  𝖳), we say that p 

is a neutrosophic.crisp turing point of NI if DcNI,for each D𝖳P ,𝖳P is collection of all 

neutrosophic.crisp open, set of neutrosophic.crisp point, p. 

3.7. Remark 

  Let (  𝖳) be NC𝖳S             and NI( ) ={  𝖳:    ( ) + be aneutrosophic.crisp ideal 

on (  𝖳) . 

Then,   is a neutrosophic.crisp,turing point of NI( ) . 

3.8. Example  

   Let (  𝖳) be NC𝖳S , such that H={1},  

𝖳={ ∅ ,   , A , B ,C ,D ,E ,F,G },    =  ∅ * +,∅  ,    =  * + ∅, ∅   , such that; 

A =  * +, ∅,∅   , B =  ∅ * +, ∅   , C =  * +, * +,∅   , D =  * +, ∅, * +   , 

E =  ∅, * +, * +   , F =  ∅, ∅, * +   , G =  * +, * +, * +  . 

Then,    is a neutrosophic.crisp turing point of neutrosophic.crisp ideal NI(  ) ,but not    . 

3.9. Theorem  

   Let (  𝖳) be NC𝖳S                  , then,  * + ∅, ∅   is a neutrosophic.crisp closed set 

if and only if     is not a aneutrosophic.crisp turing point of NI(   ). 

Proof  

    Let                   . Assume that * + ∅, ∅ > is a neutrosophic.crisp closed set ,so 

that  * + ∅, ∅    cl ( * +  ∅, ∅  ). But         get that      cl ( * +  ∅, ∅  ). Therefore, 

there exists, a neutrosophic .crisp ,open set, U, such that,      U, U * + ∅, ∅   ∅  . So that 

     U, Uc  NI(   ) ,because if Uc  NI(   ), then * + ∅, ∅    U ,that means U * +  ∅, ∅   

∅  ,this a contradiction!. Hence    is not a neutrosophic.crisp turing point of NI(   ). 

Conversely,   

   Let                  . Since      is not a neutrosophic.crisp turing point of NI(   ), then 

there exists a neutrosophic.crisp open set U such that,      U, Uc  NI(   ), so  * + ∅, ∅   

 U.Thus       U, U * + ∅, ∅   ∅  implies     cl( * + ∅, ∅  ) . 

Hence  * + ∅, ∅   cl( * + ∅, ∅  ), thus  * + ∅, ∅   is a neutrosophic.crisp closed set in  .  

Proof by the same proof of 2.10. Theorem, . 

4. Neutrosophic.crisp Gem set 

4.1. Definition,, 

   Let (  𝖳) be NC𝖳S             ,NI( ) be aneutrosophic.crisp ideal on (  𝖳) and D (  𝖳), 

 we defined  the neutrosophic.crisp set ND*P with respect to space (  𝖳) as follows: 

 ND*P ={             ; F∩D   NI(P), for each F𝖳  ,𝖳  is collection of all neutrosophic.crisp open 

set of neutrosophic.crisp point   .The neutrosophic.crisp set ND*P is called neutrosophic.crisp 

Gem-Set .   

4.2. Example  

   Let (  𝖳) be NC𝖳S , such that H={1,2,3},  

𝖳 ={ ∅_N, H_N, A , B ,C ,D ,E ,F,G }, P =   ∅  {1} , ∅  , D =   ∅ {1,3} , ∅  , such that; 

A =   ∅ {1} ,∅  , B =    ∅ {2},∅    C =  ∅  {3} ,∅  , D =  ∅ {1,2},∅  . 
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E =  ∅ {1,3} ,∅, ∅  , F =  ∅ {2,3},∅   ,G =  ∅  {1,2,3},∅  . 

Then ,  NI(P) = {∅,N, B ,C ,F}  and ND*P =  {1},∅, ∅   .  

4.3. Theorem  

   Let (  𝖳) be NC𝖳S            , and let D,C be subsets of (  𝖳).Then                     

1. ∅ *P =∅  

2.   *P =  , whenever NI( )  ∅  . 

3. C ⊆ D   NC*P ⊆ ND*P.  

4. For any points                  ,with  NI(  ) ⊇ NI(  )  then       ⊆      . 

5. PD if and only if P ND*P. 

6. If     , then (ND*P) *P= ND*P. 

7. If      ,       with         , DC ∅ , then            ∅ . 

8. If    ,              with    ≠   , then    (   )
c implies    (   )

*   
 and 

   (   )
*   

 . 

4.4 . Remark  

  The equality of theorem part (3),(4) does not necessarily hold as shown :  

 Let (  𝖳) be NC𝖳S , such that  H={1,2},   =   ∅ * +, ∅  ,   =   ∅ * +,∅     

𝖳= { ∅ ,   , A , B, G },     =  ∅ * +, ∅  ,     =   ∅ * +, ∅  , 

  =   ∅ * +, ∅ >,   =   ∅ * +, ∅  ,   =   ∅ *   +, ∅  , 

Then , NI(   ) = {∅   } , NI(   ) = {∅   } and       =   ∅ * +, ∅  ,       ∅  ,      ∅  

 Note that, 

1)       ⊆       ,but NI(  ) ⊉ NI(  ) . 

2)       ⊆       ,but C⊈D.    

4.5 .Theorem 

  Let(  𝖳) be NC𝖳S              and D,C be subsets of (  𝖳).Then              (   )      

Proof  

  It is obviously known that D ⊂ (D∪C) and C ⊂ (D∪C), then from theorem 3.3 part(3) we get, 

      ⊂  (   )   and       ⊂  (   )   , for any             . Hence 

            ⊂  (   )    ----(1) 

For reverse inclusion, let           .Then there exists, neutrosophic.crisp open set, U containing, p 

,with D∩U  NI(   ).Similarly, if          ,then there,exists,neutrosophic.crisp,open,set V 

containing P,with C∩V  NI(  ) .Then by hereditary property of neutrosophic.crisp ideal, we get , 

D∩U∩V  NI(  ) and C∩U∩V  NI(  ). Again by the finite additivity condition of neutrosophic.crisp 

ideal, we get (D∪C)∩U∩V  NI(  ).Hence      (   )   .So, 

   (   )   ⊂              ----(2). 

 From (1) and (2) we get,              (   )    . 

4.6 .Theorem 
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 Let (  𝖳) be NC𝖳S              and D,C be subsets of (  𝖳).Then  (   )   ⊂            . 

Proof   

  It is known that D C⊂D and D∩C⊂C, then from theorem part (3),   (   )   ⊂       and 

  (   )   ⊂      .Hence   (   )   ⊂             ,for any             . 

4.7 .Theorem 

  Let (  𝖳) be NC𝖳S              , for each neutrosophic.crisp open set U containing   , then 

(   )
*     U. 

proof   

  Let    U ,so        ,then we get that U(   ) ∅   NI((   ).That means (   (   )
*    

 

.Thus{(   )
*     U. 

4.8 .Theorem 

  Let (  𝖳) be NC𝖳S              and D be subsets of (  𝖳).Then 

     {
 ∅                    

  (  )                 
} 

Proof  

Case(1) 

  If    ,To prove     ∅ .Let      ∅                                              
   (by 

definition of     ), we have         (  ). Hence         So      which contradiction!, 

then      ∅ . 

Case (2)  

  If     , to prove        (  ). Let     
    implies    D    for each      𝖳   implies 

that        for each      𝖳   it follows      (  ) then     ⊆   (  ) for each D be subsets of 

(  𝖳). Let      (  ) and          then, there exists.neutrosophic.crisp open, set     containing 

   such that D       (  ), which implies that    D    then     D or       which means 

that     D or       (  ) which contradiction! in two case. Hence     
    implies that  (  ) ⊆

    . Therefore        (  )        .  

4.9. Definition 

   Let (  𝖳)  (   ) be NC𝖳S. Then, the mapping f:(  𝖳)→(   ) is called NI*- map ,if and only if, 

for every subset D of (  𝖳),             , f(    ) =(f (D))*f (  ) . 

4.10. Example  

   Let (  𝖳)  (   ) be NC𝖳S, such that H={1,2,3}, Y={a,b,c}, 

𝖳={ ∅ ,   , A , B },  ={ ∅ ,   , G }             

 A   * +, ∅, ∅  , B=   *   +, ∅, ∅  ,   =  * + ∅, ∅  . 

Define f(2)=f(1)=c and f(3)=a, Put D{3} subset of (  𝖳) . 

Then      B=  *   +,∅,∅  , so f(   )=(f (D))*f(3)=a  (  *   +, ∅, ∅  )*a    *     +, ∅, ∅  . 

4.11. Definition 

  Let (  𝖳)  (   ) be NC𝖳S.Then, the mapping f:(  𝖳) → (   ) is called, NI**-map if and only if, 

for every subset, D of,(   ) ,           ,  f-1(   ) ,= (    (D))*    (P), .           

4.12. Example 

 "Let (  𝖳)  (   ) be NC𝖳S, such that H={a,b,c}, Y={1,2,3}" 

"𝖳={ ∅ ,   , A , B },  ={ ∅ ,   , G }             
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  A = * +, ∅, ∅   , "B=  *   +, ∅, ∅   ,    =  * + ∅, ∅  . 

"Define f(b)=f(a)=3 and f(c)=1.Put D{3} subset of (   )".  

"Then      B    *   +, ∅, ∅   , "so f-1 (D*1) = ( f-1 (D))*c  ( *   + , ∅, ∅  )*c   *   + , ∅, ∅   . 

Conclusion 

"We defined a new types of neutrosophic crisp closed sets and limit points in neutrosophic crisp 

topological space, namly"[neutrosophic crisp Gem sets and neutrosophic crisp Turig points]" 

respactvely","we stady their properties in details and we also use it to introduce the some of 

topological concepts as : neutrosophic crisp closed (open) sets","neutrosophic crisp closure", 

"neutrosophic crisp interior","neutrosophic crisp extrior and neutrosophic crisp boundary which are 

fundamental for further reserch on neutrosophic crisp topology and will setrengthen the 

foundations of theory of neutrosophic topological spaces .   

 "We expect, this paper will promote the future study on neutrosophic.crisp topological spaces and 

many other general frameworks". 
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Abstract: The main objective of this paper is to propose a new type of set which we call 

pentapartitioned neutrosophic set. We also prove some of its basic properties. 
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1. Introduction: 

Smarandache [1] defined Neutrosophic Set (NS) to deal with uncertainty, indeterminacy and 

inconsistency involved in mathematical objects. It generalizes fuzzy set [2] and intuitionistic fuzzy 

set [3] by incorporating degrees of indeterminacy and rejection (falsity or non-membership) as 

independent components. Wang et al. [4] defined Single Valued Neutrosophic Set (SVNS) in 2010.  

Chatterjee et al. [5] defined Quadripartitioned SVNS (QSVNS) that involves truth, falsity, unknown 

and contradiction based on four valued logics [6, 7].    

Smarandache [7] split indeterminacy into unknown, contradiction, ignorance and proposed 

Five Symbol Valued Neutrosophic Logic (FSVNL). In this paper we utilize FSVNL and propose 

pentapartitioned neutrosophic set. We also establish some basic properties of the proposed set. The 

proposed structure is generalization of existing theories of SVNS and QSVNS. 

The organization of the paper is as follows: Section 1 provides a brief introduction; Section 2 is 

dedicated to recalling some preliminary results; Section 3 introduces the concept of a 

pentapartitioned neutrosophic set. Section 4 deals with some basic set-theoretic operations over 

pentapartitioned neutrosophic sets. Section 5 concludes the paper stating future scope of research. 

1. Preliminary: 

Definition 1:  An NS [1] N on the universe of discourse Q is defined as: 

   { , ( ), , : }N N NN q T q I q F q q Q    where , , : ] 0,1 [T I F Q    and      0 3N N NT q I q F q     . 

2. Single Valued Pentapartitioned Neutrosophic Sets: 
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Based on Smarandache FSVNL [7], we define the concept of Pentapartitioned Neutrosophic Set 

(PNS). The term “pentapartitioned” means something that divided into five characteristic features. 

The indeterminacy is split into three parts signifying contradiction, ignorance and unknown 

respectively. We now defined a PNS as follows:  

Definition 3: Let P be a non-empty set. A PNS A over P characterizes each element p in P by a 

truth-membership function 
AT , a contradiction membership function 

AC , an ignorance 

membership function 
AG , unknown membership  function 

AU and a falsity membership function 

AF  such that for each ,p P , , , , [0,1]A A A A AT C G U F   and 

     0 ( ) ( ) 5A A A A AT p C p G p U p F p      . 

Example: Consider the statement: “Is Facebook good for society?”. 

Suppose, this statement is posed in front of a group of five people, say, 
1 2 3 4 5{ , , , }P p p p p p  (which 

constitute the universe under consideration) and they are requested to express their opinion 

regarding this statement. Now it may so happen that the opinion of the people may vary among the 

following possible options: “a degree of agreement with the statement”, “a degree of both agreement 

as well as disagreement regarding the statement “a degree of neither agreement nor disagreement 

regarding the statement”, “a degree of ignore agreement and disagreement” and “a degree of 

disagreement with respect to the statement”. According to the response of the people, the available 

information can be represented in terms of a PNS as follows: 

From the above PNS, it is seen that the person 
1p is to great extent, in agreement with the statement 

whereas, 
5p mostly disagrees with the statement while 

2p opines that the statement is both true as 

well as false, 
3p is mainly in ignorance regarding the truth of the statement and 

4p  totally ignores 

the truth and false of the statement. 

It is to be noted that when Indeterminacy (I) is refined into I1, I2, I3, and together T, I1, I2, I3, F form a 

pentapartitioned neutrosophic set. It is a special case of the n- valued refined neutrosophic set, introduced by 

Smarandache [7] in 2013. 

Definition 4: A PNS A is said to be absolute PNS if and only if its truth-membership, contradiction 

membership, ignorance membership, unknown membership and falsity membership function 

values are defined as follow,   

          1, 1, 0, 0, 0A A A A AT p C p G p U p F p     . 

Definition 5: A PNS is said to be null  PNS if and only if its truth-membership, contradiction 

membership, ignorance membership, unknown membership and falsity membership function 

values are respectively defined as follows:  

          0, 0, 1, 1, 1A A A A AT p C p G p U p F p     . 
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3. Basic properties: 

Definition 6: Consider two PNS 
1R  and 

2R  over P, 
1R  is said to be contained in 

2R , denoted 

by 
1 2R R iff 

1 2 1 2 1 2 1 2 1 2
( ) ( ), ( ) ( ), ( ) ( ), ( ) ( )and ( ) ( )R R R R R R R R R RT p T p C p C p G p G p U p U p F p F p      

where p P . 

Definition 7: The complement of PNS 
1R  is denoted by 1

CR and is defined as: 

1 1 1 1 11 {( ( ), ( ),1 ( ), ( ), ( )) | }C

R R R R RR F p U p G p C p T p p P    i.e.
1 1 1 1
( ) ( ), ( ) ( ),R R R RT p F p C p U p   

1 1 1 1 1 1
( ) 1 ( ), ( ) ( )and ( ) ( ),R R R R R RG p G p U p C p F p T p p P      

Definition 8: The union and intersection of any two PNSs 1R  and 2R  is denoted by 1 2R R  and 

1 2R R  is defined as: 

1 2 1 2 1 2 1 2 1 2

1 1 1 1 1 2 2 2 2 2

1 2 {(max( ( ), ( )),max( ( ), ( )),min( ( ), ( )),min( ( ), ( )),min( ( ), ( )) | }

{( ( ), ( ), ( ), ( ), ( ))V( ( ), ( ), ( ), ( ), ( )) | }

R R R R R R R R R R

R R R R R R R R R R

R R T p T p C p C p G p G p U p U p F p F p p P

T p C p G p U p F p T p C p G p U p F p p P

  

 

 

1 2 1 2 1 2 1 2 1 2

1 1 1 1 1 2 2 2 2 2

1 2 {(min( ( ), ( )),min( ( ), ( )),max( ( ), ( )),max( ( ), ( )),max( ( ), ( )) | }

{( ( ), ( ), ( ), ( ), ( )) ( ( ), ( ), ( ), ( ), ( )) | }

R R R R R R R R R R

R R R R R R R R R R

R R T p T p C p C p G p G p U p U p F p F p p P

T p C p G p U p F p T p C p G p U p F p p P

  

  

 

Example: Consider any two PNSs defined over P, presented as: 

1 2 3

1 2 3

0.6,0.4,0.3,0.2,0.3 / 0.5,0.3,0.4,0.5,0.4 / 0.3,0.7,0.5,0.2,0.4 /

0.7,0.2,0.4,0.3,0.5 / 0.7,0.4,0.3,0.4,0.5 / 0.6,0.5,0.6,0.4,0.3 /

E r r r

F r r r

  

  
 

Then we have, 

1 2 3

1 2 3

1 2

0.3,0.2,0.7,0.4,0.6 / 0.4,0.5,0.6,0.3,0.5 / 0.4,0.2,0.5,0.7,0.3 /

0.7,0.4,0.4,0.3,0.5 / 0.7,0.4,0.4,0.5,0.5 / 0.6,0.7,0.6,0.4,0.4 /

0.6,0.2,0.3,0.2,0.3 / 0.5,0.3,0.3,0.4,0.4 / 0.3,0.5

CE r r r

E F r r r

E F r r

  

   

    3,0.5,0.2,0.3 / r

 

Proposition 1: PNSs satisfy the following properties under the aforementioned set theoretic 

operations: 

i. Commutative law 

1 2 2 1

1 2 2 1

( )

( )

a R R R R

b R R R R

  

  
 

ii. Associative law 

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( ) ( )

( ) ( ) ( )

c R R R R R R

d R R R R R R

    

    
 

iii. Distributive law 
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1 2 3 1 2 1 3

1 2 3 1 2 1 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

e R R R R R R R

f R R R R R R R

     

     
 

iv. Absorption law 

1 1 2 1

1 1 2 1

( ) ( )

( ) ( )

g R R R R

h R R R R

  

  
 

v. Involution law 

1 1( )( )C Ci R R  

vi. Law of contradiction 

1 1( ) Cj R R    

vii. De Morgan’s law 

1 2 1 2

1 2 1 2

( )( )

( )( )

C C C

C C C

k R R R R

l R R R R

  

  
 

Proof:  

(a) 1 2 2 1R R R R     

We know that,  

1 2 1 2 1 2 1 2 1 2

1 1 1 1 1 2 2 2 2 2

1 2 {(max( ( ), ( )),max( ( ), ( )),min( ( ), ( )),min( ( ), ( )),min( ( ), ( )) | }

{( ( ), ( ), ( ), ( ), ( ))V( ( ), ( ), ( ), ( ), ( )) | }

R R R R R R R R R R

R R R R R R R R R R

R R T p T p C p C p G p G p U p U p F p F p p P

T p C p G p U p F p T p C p G p U p F p p P

  

 

 

1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1

1 2

2 1

,

{max( , ),max( , ),min( , ),min( , ),min( , )}

{max( , ),max( , ),min( , ),min( , ),min( , )}

i

i R R R R R R R R R R

i R R R R R R R R R R

i

Let x R R

x T T C C G G U U F F

x T T C C G G U U F F

x R R

 

 

 

  

 

1 2 2 1 (1)R R R R     

2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2

2 1

1 2

,

{max( , ),max( , ),min( , ),min( , ),min( , )}

{(max( , ),max( , ),min( , ),min( , ),min( , )}

i

i R R R R R R R R R R

i R R R R R R R R R R

i

Let y R R

y T T C C G G U U F F

y T T C C G G U U F F

y R R

 

 

 

  

 

2 1 1 2 (2)R R R R     

Therefore, from (1) and (2) we obtain, 

1 2 2 1R R R R    

(b)    Similarly, we can prove that  

1 2 2 1R R R R    

(c)   1 2 3 1 2 3( ) ( )R R R R R R      
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2 3 2 3 2 3 2 3 2 3

1 2 3 1 2 3 1 2 3 1 2 3 2 2 3

1 2

1 2 3

1

, ( )

max( , ),max( , ),min( , ),min( , ),min( , )

max( , , ),max( , , ),min( , , ),min( , , ),min( , , )

max( ,

i

i R R R R R R R R R R

i R R R R R R R R R R R R R R R

i R R

Assumthat x R R R

x R T T C C G G U U F F

x T T T C C C G G G U U U F F F

x T T

  

  

 

 
1 2 1 2 1 2 1 2 3),max( , ),min( , ),min( , ),min( , )R R R R R R R RC C G G U U F F R

 

1 2 3( )ix R R R     

1 2 3 1 2 3( ) ( ) (3)R R R R R R      

1 2 1 2 1 2 1 2 1 2

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

2

1 2 3

1

, ( )

max( , ),max( , ),min( , ),min( , ),min( , )

max( , , ),max( , , ),min( , , ),min( , , ),min( , , )

max( ,

i

i R R R R R R R R R R

i R R R R R R R R R R R R R R R

i R

Assumthat y R R R

y T T C C G G U U F F R

y T T T C C C G G G U U U F F F

y R T T

  

  

 

  
3 2 3 2 3 2 3 2 3

1 2 3

),max( , ),min( , ),min( , ),min( , )

( )

R R R R R R R R R

i

C C G G U U F F

y R R R   

 

1 2 3 1 2 3( ) ( ) (4)R R R R R R      

From (3) and (4) we conclude that, 

1 2 3 1 2 3( ) ( )R R R R R R      

(d)  Similarly, we can prove that  

1 2 3 1 2 3( ) ( )R R R R R R      

(e)    1 2 3 1 2 1 3( ) ( ) ( )R R R R R R R       

2 3 2 3 2 3 2 3 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1

1 2 3

1

, ( )

min( , ),min( , ),max( , ),max( , ) max( , )

max( ,min( , )),max( ,min( , )),min( ,max( , )),

min( ,max( , )),min( ,max(

i

i R R R R R R R R R R

R R R R R R R R R

i

R R R R

Assumethat x R R R

x R T T C C G G U U F F

T T T C C C G G G
x

U U U F

  

  

 

2 3

1 1 2 1 2 1 2 1 2

2 3 2 3 2 3 2 3 2 3

1 2 1 3

, ))

max( , ),max( , ),min( , ),min( , ),min( , )

max( , ),max( , ),min( , ),min( , ),min( , )

( ) ( ) (5)

R R

i R R R R R R R R R R

R R R R R R R R R R

i

F F

x T T C C G G U U F F

T T C C G G U U F F

x R R R R

 



    

 

1 1 2 1 2 1 2 1 2

2 3 2 3 2 3 2 3 2 3

1 2 3 1

1 2 1 3, ( ) ( )

max( , ),max( , ),min( , ),min( , ),min( , )

max( , ),max( , ),min( , ),min( , ),min( , )

max( ,min( , )),max( ,min

i

i R R R R R R R R R R

R R R R R R R R R R

R R R R

i

Assumethat y R R R R

y T T C C G G U U F F

T T C C G G U U F F

T T T C
y

   

 



 
2 3 1 2 3

1 2 3 1 2 3

1 1 1 1 1 2 3 2 3 2 3 2 3 2 3

2 3 2 31

( , )),min( ,max( , )),

min( ,max( , )),min( ,max( , ))

, , , , min( , ),min( , ),max( , ),max( , ) max( , )

min( , ),min( , ),

R R R R R

R R R R R R

i R R R R R R R R R R R R R R R

i R R R R

C C G G G

U U U F F F

y T C G U F T T C C G G U U F F

y R T T C C

   

  
2 3 2 3 2 3

1 2 3

max( , ),max( , ) max( , )

( ) (6)

R R R R R R

i

G G U U F F

y R R R   

 

From (5) and (6), we conclude that  

1 2 3 1 2 1 3( ) ( ) ( )R R R R R R R       

(g) 1 1 2 1( )R R R R    
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1 2 1 2 1 2 1 2 1 2

1 1 2 1 1 2 1 1 2

1 1 2 1

1 1 2

1

, ( )

min( , ),min( , ),max( , ),max( , ) max( , )

max( ,min( , )),max( ,min( , )),min( ,max( , )),

min( ,max( , )),min( ,max(

i

i R R R R R R R R R R

R R R R R R R R R

i

R R R R

Assumethat x R R R

x R T T C C G G U U F F

T T T C C C G G G
x

U U U F

  

  

 

1 2

1 1 1 1 1

1

, ))

, , , ,

R R

i R R R R R

i

F F

x T C G U F

x R

  

 

 

1 1 2 1( ) (7)R R R R     

1 1 1 1 1

1 1 2 1 1 2 1 1 2 1 1 2 1 1 2

1 2 1 2 1

1

1

,

, , , ,

max( ,min( , )),max( ,min( , )),min( ,max( , )),min( ,max( , )),min( ,max( , ))

min( , ),min( , ),max( ,

i

i R R R R R

i R R R R R R R R R R R R R R R

i R R R R R R

Assumethat x R

x T C G U F

x T T T C C C G G G U U U F F F

x R T T C C G G



  

 

  
2 1 2 1 2

1 1 2

1 1 1 2

),max( , ) max( , )

( )

( ) (8)

R R R R

i

U U F F

x R R R

R R R R

   

   

From (6) and (8), we conclude that  

1 1 2 1( )R R R R    

(h)  Similarly, we can prove that  

1 1 2 1( )R R R R    

(i)  1 1( )C CR R  

 
1 1 1 1 1

1 1 1 1 1

1

1

1 1

, ( )

, ,1 , ,

( , , , , )

( ) (9)

C C

i

C

i R R R R R

i R R R R R

i

C C

Assum that x R

x F U G C T

x T C G U F

x R

R R



  

 

 

 

 

 
1 1 1 1 1

1 1 1 1 1

1

1

1 1

,

( , , , , )

, ,1 , ,

( )

( ) (10)

i

i R R R R R

C

i R R R R R

C C

i

C C

Assum that y R

y T C G U F

y F U G C T

y R

R R



 

  

 

 

 

From (9) and (10), we obtain  

1 1( )C CR R  

(j) 
1 1

CR R    
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1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1

1 1

,

( , , , , ) ( , ,1 , , )

min( , ),min( , ),max( ,1 ),max , ,max( , )

(11)

C

i

i R R R R R R R R R R

i R R R R R R R R R R

i

C

Assum that x R R

x T C G U F F U G C T

x T F C U G G U C F T

x

R R





 

   

   

 

  

 

 
1 1 1 1 1 1 1 1 1 1

,

min( , ),min( , ),max( ,1 ),max , ,max( , )

i

i R R R R R R R R R R

Assum that y

y T F C U G G U C F T



   
 

1 1 1 1 1 1 1 1 1 1

1 1

1 1

( , , , , ) ( , ,1 , , )

(12)

i R R R R R R R R R R

C

i

C

y T C G U F F U G C T

y R R

R R

   

  

  

 

From (11) and (12), we obtain  

1 1

CR R    

(k) 1 2 1 2( )C C CR R R R    

 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 1 1 1 1 2 2

1 2, ( )

(max( , ),max( , ),min( , ),min( , ),min( , ))

min( , ),min( , ),1 min( , ),max( , ),max( , )

, ,1 , , , ,1

C

i

C

i R R R R R R R R R R

i R R R R R R R R R R

i R R R R R R R

Assumthat x R R

x T T C C G G U U F F

x F F U U G G C C T T

x F U G C T F U

 

 

  

     
2 2 2

1 2

1 2 1 2

, ,

( ) (13)

R R R

C C

i

C C C

G C T

x R R

R R R R



  

   

   
1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1

1 2, ,

, ,1 , , , ,1 , ,

min( , ),min( , ),1 min( , ),max( , ),max( , )

(max( , ),max( , ),min( , ),min( ,

C C

i

i R R R R R R R R R R

i R R R R R R R R R R

i R R R R R R R R

Again Assumthat y R R

y F U G C T F U G C T

y F F U U G G C C T T

y T T C C G G U U

 

    

  

 
2 1 2

1 2

1 2 1 2

),min( , ))

( )

( ) (14)

C

R R

C

i

C C C

F F

y R R

R R R R

  

   

 

From (13) and (14), we conclude that  

1 2 1 2( )C C CR R R R    

(l) 1 2 1 2( )C C CR R R R    

 

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 1 1 1 1 1 1

1 2, ( )

(min( , ),min( , ),max( , ),max( , ),max( , ))

max( , ),max( , ),1 max( , ),min( , ),min( , )

, ,1 , , , ,1

C

i

C

i R R R R R R R R R R

i R R R R R R R R R R

i R R R R R R R

Assumthat x R R

x T T C C G G U U F F

x F F U U G G C C T T

x F U G C T F U

 

 

  

     
1 1 1

1 2

, ,R R R

C C

i

G C T

x R R
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1 2 1 2( ) (15)C C CR R R R     

1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1

1 2, ,

, ,1 , , , ),1 , ,

max( , ), max( , ),1 max( , ), min( , ), min( , )

(min( , ), min( , ), max( , ), max( ,

C C

i

i R R R R R R R R R R

i R R R R R R R R R R

i R R R R R R R

Again Assumthat y R R

y F U G C T F U G C T

y F F U U G G C C T T

y T T C C G G U U

 

    

  

 
2 1 2

1 2

1 2 1 2

), max( , ))

( )

( ) (16)

C

R R R

C

i

C C C

F F

y R R

R R R R

  

   

 

From (15) and (16) we conclude that,  

1 2 1 2( )C C CR R R R    

4. Conclusion: 

In this article we have develop pentapartitioned neutrosophic set. The pentapartitioned 

neutrosophic set is extension of SVNS and QSVNS. The concept of complement law, inclusion law, 

union law, intersection law, commutative law, etc. have been defined on pentapartitioned 

neutrosophic sets. Future works may comprise of the study of different types of operators on 

pentapartitioned neutrosophic sets dealing with actual problems and implementing them in 

decision-making problems [8-13]. 
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Abstract. The primary goal of this article is to establish and investigate the idea of interval-valued neutrosophic

soft subring. Again, we have introduced function under interval-valued neutrosophic soft environment and

investigated some of its homomorphic attributes. Additionally, we have established product of two interval-

valued neutrosophic soft subrings and analyzed some of its fundamental attributes. Furthermore, we have

presented the notion of interval-valued neutrosophic normal soft subring and investigated some of its algebraic

properties and homomorphic attributes.

Keywords: Neutrosophic set; Interval-valued neutrosophic soft set; Interval-valued neutrosophic soft subring;

Interval-valued neutrosophic normal soft subring

—————————————————————————————————————————–

ABBREVIATIONS

TN indicates “T-norm”.

SN indicates “S-norm”.

IVTN indicates “Interval-valued T-norm”.

IVSN indicates “Interval-valued S-norm”.

CS indicates “Crisp set”.

US indicates “Universal set”.

FS indicates “Fuzzy set”.

IFS indicates “Intuitionistic fuzzy set”.

NS indicates “Neutrosophic set”.

PS indicates “Plithogenic set”.

SS indicates “Soft set”.

S. Gayen; F. Smarandache; S. Jha; M. K. Singh; S. Broumi; and R. Kumar. Soft Subring Theory Under
Interval-valued Neutrosophic Environment



Neutrosophic Sets and Systems, Vol. 36 , 2020 194

IVFS indicates “Interval-valued fuzzy set”.

IVIFS indicates “Interval-valued intuitionistic fuzzy set”.

IVNS indicates “Interval-valued neutrosophic set”.

NSSR indicates “Neutrosophic soft subring”.

NNSSR indicates “Neutrosophic normal soft subring”.

IVNSR indicates “Interval-valued neutrosophic subring”.

IVNSSR indicates “Interval-valued neutrosophic soft subring”.

IVNNSSR indicates “Interval-valued neutrosophic normal soft subring”.

DMP indicates “Decision making problem”.

φ(F ) indicates “Power set of F”.

K indicates “The set [0, 1]”.

1. Introduction

Uncertainty plays a huge part in different economical, sociological, biological, as well as

other scientific fields. It is not always possible to tackle ambiguous data using CS theory.

To cope with its limitations Zadeh introduced the groundbreaking concept of FS [1] theory.

Which was further generalized by Atanassov as IFS [2] theory. Later on, Smarandache ex-

tended these notions by introducing NS [3] theory, which became more reasonable for managing

indeterminate situations. From the beginning, NS theory became very popular among various

researchers. Nowadays, it is heavily utilized in numerous research domains. PS [4] theory is

another innovative concept introduced by Smarandache, which is more general than all the

previously mentioned notions. In NS and PS theory some of Smarandache’s remarkable contri-

butions are the notions of neutrosophic robotics [5], neutrosophic psychology [6], neutrosophic

measure [7], neutrosophic calculus [8], neutrosophic statistics [9], neutrosophic probability [10],

neutrosophic triplet group [11], plithogenic logic, probability [12], plithogenic subgroup [13],

plithogenic aggregation operators [14], plithogenic hypersoft set [15], plithogenic fuzzy whole

hypersoft set [16], plithogenic hypersoft subgroup [17], etc. Moreover, NS and PS theory

has several contributions in various other scientific fields, for instance, in selection of suppli-

ers [18], professional selection [19], fog and mobile-edge computing [20], fractional program-

ming [21], linear programming [22], shortest path problem [23–30], supply chain problem [31],

DMP [32–37], healthcare [38,39], etc.

Interval-valued versions of FS [40], IFS [41], and NS [42] are further generalizations of their

previously discussed counterparts. Since the beginning, various researchers have carried out

this concepts and explored them in different research domains. For instance, nowadays in

logic [42], abstract algebra [43–46], graph theory [47, 48], DMPs [49–51], etc., these concepts

are widely used.
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Another set theory of utmost importance is SS [52] theory. It was introduced by Molodtsov

to deal with uncertainty more conveniently and easily. At present, it is extensively used in

different scientific areas, like in DMPs [53–57], abstract algebra [58–61], stock treading [62], etc.

Furthermore, to achieve higher uncertainty handling potentials researchers have implemented

SS theory in different interval-valued environments. The following Table 1 comprises some

momentous aspects of different interval-valued soft notions.

Table 1. Significance of different interval-valued soft notions in various fields.

Author & references Year Contributions in various fields

Yang et al. [63] 2009 Introduced soft IVFS and defined complement,

“and” and “or” operations on them.

Jiang et al. [64] 2010 Proposed soft IVIFS and defined complement,

“and”, “or”, union, intersection, necessity, and pos-

sibility operations on them.

Feng et al. [65] 2010 Introduced soft reduct fuzzy sets of soft IVFS and

utilizing soft versions of reduct fuzzy sets and level

sets, proposed flexible strategy for DMP.

Broumi et al. [66] 2014 Presented generalized soft IVNS, analyzed some set

operations and further, applied it in DMP.

Mukherje et al. [67] 2014 Proposed relation on soft IVIFSs and presented a

solution to a DMP.

Broumi et al. [68] 2014 Proposed relation on soft IVNSs and studied reflex-

ivity, symmetry, transitivity of it.

Mukherje and Sarkar [69] 2015 Defined Euclidean and Hamming distances between

two soft IVNSs and presented similarity measures

according to distances within them.

Deli [70] 2017 Defined soft IVNS and introduced some operations.

Further, implemented this in DMP.

Garg and Arora [71] 2018 Solved DMP with soft IVIFS information.

Group theory and ring theory are essential parts of abstract algebra, which have various

applications in different research domains. But these were initially introduced under the crisp

environment, which has certain limitations. From the year 1971, various mathematicians

started implementing uncertainty theories to generalize these notions. Some noteworthy con-

tributions in the field of group theory under uncertainty can be found on [72–76]. In ring theory

under uncertainty, the following articles [77–80] are some important developments. Again, sev-

eral researchers introduced these notions under soft environments. For instance, researchers

have introduced the concepts of ring theory under soft fuzzy [81], soft intuitionistic fuzzy [82],
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and soft neutrosophic [83] environments. Also, some more articles which can be helpful to

different researchers are [84–91], etc. Now, by mixing interval-valued environment with soft

neutrosophic environment, we can introduce a more general version of NSSR, which will be

called IVNSSR. Also, their homomorphic attributes can be studied. Again, their product and

normal versions can be introduced and studied. Based on these perceptions, the followings are

our primary objectives for this article:

• Introducing the concept of IVNSSR and a analyzing its homomorphic attributes.

• Introducing the product of IVNSSRs.

• Introducing subring of a IVNSSR.

• Introducing the concept of IVNNSSR and a analyzing its homomorphic properties.

The arrangement our article is: in Section 2, some desk researches of IVTN, IVSN, NS,

IVNS, IVNSS, NSR, NSSR, etc., are discussed. In Section 3, the concept of IVNSSR has

been introduced and some fundamental theories are provided. Also, their product and nor-

mal versions are defined and some theories are given to understand their different algebraic

characteristics. Lastly, in Section 4, mentioning some future scopes, the concluding segment

is given.

2. Literature Review

Definition 2.1. [92] A function T : K → K is known as a TN iff ∀g, n, z ∈ K, the followings

can be concluded

(i) T (g, 1) = g

(ii) T (g, n) = T (n, g)

(iii) T (g, n) ≤ T (z, n) if g ≤ z
(iv) T (g, T (n, z)) = T (T (g, n), z)

Definition 2.2. [93] A function T̄ : φ(K) × φ(K) → φ(K) defined as T̄ (ḡ, n̄) =

[T (g−, n−), T (g+, n+)] (T is a TN) is known as an IVTN.

Definition 2.3. [92] A function S : K → K is known as SN iff ∀g, n, z ∈ K, the followings

can be concluded

(i) S(g, 0) = g

(ii) S(g, n) = S(n, g)

(iii) S(g, n) ≤ S(z, n) if g ≤ z
(iv) S(g, S(n, z)) = S(S(g, n), z)

Definition 2.4. [93] The function S̄ : φ(K) × φ(K) → φ(K) defined as S̄(ḡ, n̄) =

[S(g−, n−), S(g+, n+)] (S is a SN) is called an IVSN.
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Definition 2.5. [3] A NS σ of a CS Q is denoted as σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
.

Here ∀g ∈ Q, tσ(g), iσ(g), and fσ(g) are known as degree of truth, indeterminacy, and falsity

which satisfy the inequality −0 ≤ tσ(g) + iσ(g) + fσ(g) ≤ 3+.

The set of all NSs of Q will be expressed as NS(Q).

Definition 2.6. [52] Let Q be a US and A be a set of parameters. Also, let L ⊆ A. Then

the ordered pair (f, L) is called a SS over Q, where f : L→ φ(Q) is a function.

Definition 2.7. [94] Let Q be a US and A be a set of parameters. Also, let M ⊆ A. Then a

NSS over Q is denoted as (f,M) where f : M → NS(Q) is a function.

The following Definition 2.7 is a redefined version of NSS, which we have adopted in this

article.

Definition 2.8. [56] Let Q be a US and A be a set of parameters. Then a NSS δ of Q is

denoted as δ =
{(
r, lδ(r)

)
: r ∈ A

}
where lδ : A → NS(Q) is a function which is also known

as an approximate function of NSS δ and lδ(r) =
{(
g, tlδ(r)(g), ilδ(r)(g), flδ(r)(g)

)
: g ∈ Q

}
.

Here, ∀g ∈ Q, tlδ(r)(g), ilδ(r)(g), and flδ(r)(g) ∈ [0, 1] and they satisfy the inequality 3 ≥
tlδ(r)(g) + ilδ(r)(g) + flδ(r)(g) ≥ 0.

The set of all NSSs of a set Q will be expressed as NSS(Q).

Definition 2.9. [42] An IVNS of Q is defined as the mapping σ̄ : Q→ φ(K)×φ(K)×φ(K),

where σ̄(g) =
{(
g, t̄σ̄(g), īσ̄(g), f̄σ̄(g)

)
: g ∈ Q

}
, where ∀g ∈ Q, t̄σ̄(g), īσ̄(g), and f̄σ̄(g) ⊆ [0, 1].

The set of all IVNSs of a set Q will be expressed as IVNS(Q).

Definition 2.10. [70] Let Q be a US and A be a set of parameters. Then a IVNSS Ψ of Q is

denoted as Ψ =
{(
r, lΨ(r)

)
: r ∈ A

}
, where lΨ : A→ IVNS(Q) is a function which is also known

as an approximate function of IVNSS Ψ and lΨ(r) =
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

}
.

Here, ∀g ∈ Q, t̄lΨ(r)(g), īlΨ(r)(g), and f̄lΨ(r)(g) ⊆ [0, 1].

The set of all IVNSSs of a set Q will be expressed as IVNSS(Q).

Definition 2.11. [70] Ψ1 =
{(
r, lΨ1(r)

)
: r ∈ A

}
and Ψ2 =

{(
r, lΨ2(r)

)
: r ∈ A

}
be two

IVNSSs of Q. Then Ψ = Ψ1 ∪Ψ2 =
{(
r, lΨ(r)

)
: r ∈ A

}
is defined as

t̄lΨ(r) =
[

max
{
t̄−lΨ1

(r), t̄
−
lΨ2

(r)

}
,max

{
t̄+lΨ1

(r), t̄
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
min

{
ī−lΨ1

(r), ī
−
lΨ2

(r)

}
,min

{
ī+lΨ1

(r), ī
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
min

{
f̄−lΨ1

(r), f̄
−
lΨ2

(r)

}
,min

{
f̄+
lΨ1

(r), f̄
+
lΨ2

(r)

}]
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Definition 2.12. [70] Ψ1 =
{(
r, lΨ1(r)

)
: r ∈ A

}
and Ψ2 =

{(
r, lΨ2(r)

)
: r ∈ A

}
be two

IVNSSs of Q. Then Ψ = Ψ1 ∩Ψ2 =
{(
r, lΨ(r)

)
: r ∈ A

}
is defined as

t̄lΨ(r) =
[

min
{
t̄−lΨ1

(r), t̄
−
lΨ2

(r)

}
,min

{
t̄+lΨ1

(r), t̄
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
max

{
ī−lΨ1

(r), ī
−
lΨ2

(r)

}
,max

{
ī+lΨ1

(r), ī
+
lΨ2

(r)

}]
t̄lΨ(r) =

[
max

{
f̄−lΨ1

(r), f̄
−
lΨ2

(r)

}
,max

{
f̄+
lΨ1

(r), f̄
+
lΨ2

(r)

}]
2.1. Neutrosophic subring

Definition 2.13. [80] Let (Q,+, ·) be a crisp ring. A NS σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
is called a NSR of F , iff ∀g, n ∈ Q,

(i) tσ(g + n) ≥ T
(
tσ(g), tσ(n)

)
, iσ(g + n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g + n) ≤ F

(
fσ(g), fσ(n)

)
(ii) tσ(−g) ≥ tσ(g), iσ(−g) ≥ iσ(g), fσ(−g) ≤ fσ(g)

(iii) tσ(g · n) ≥ T
(
tσ(g), tσ(n)

)
, iσ(g · n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g · n) ≤ S

(
fσ(g), fσ(n)

)
.

Here, T and I are two TNs and S is a SN.

The set of all NSR of a crisp ring (Q,+, · ) will be expressed as NSR(Q).

Proposition 2.1. [80] A NS σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
is called a NSR of Q, iff

∀g, n ∈ Q,

(i) tσ(g − n) ≥ T
(
tσ(g), tσ(n)

)
, iσ(g − n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g − n) ≤ F

(
fσ(g), fσ(n)

)
(ii) tσ(g · n) ≥ T

(
tσ(g), tσ(n)

)
, iσ(g · n) ≥ I

(
iσ(g), iσ(n)

)
, fσ(g · n) ≤ S

(
fσ(g), fσ(n)

)
.

Here, T and I are two TNs and S is a SN.

Proposition 2.2. [80] Let σ1, σ2 ∈ NSR(Q). Then σ1 ∩ σ2 ∈ NSR(Q).

Theorem 2.3. [80] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If σ is a NSR of Q then h(σ) is a NSR of Y .

Theorem 2.4. [80] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If σ′ is a NSR of Y then h−1(σ′) is a NSR of Q.

Definition 2.14. [80] Let σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
be a NSR of Q. Then

∀s ∈ [0, 1] the s-level sets of Q are defined as

(i) (tσ)s = {g ∈ Q : tσ(g) ≥ s},
(ii) (iσ)s = {g ∈ Q : iσ(g) ≥ s}, and

(iii) (fσ)s = {g ∈ Q : fσ(g) ≤ s}.

Proposition 2.5. [80] A NS σ =
{(
g, tσ(g), iσ(g), fσ(g)

)
: g ∈ Q

}
of a crisp ring (Q,+, ·) is

a NSR of Q iff ∀s ∈ [0, 1] the s-level sets of Q, i.e. (tσ)s, (iσ)s, and (fσ)s are crisp rings of

Q.
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2.2. Neutrosophic soft subring

Definition 2.15. [83] Let (Q,+, ·) be a crisp ring and A be a set of parameters. Then a NSS

δ =
{(
r, lδ(r)

)
: r ∈ A

}
with lδ : A→ NS(Q) is called a NSSR if ∀r ∈ A, lδ(r) ∈ NSR(Q).

The set of all NSSR of a crisp ring (Q,+, · ) will be expressed as NSSR(Q).

Proposition 2.6. [83] A NSS δ =
{(
r,
{(
g, tlδ(r)(g), ilδ(r)(g), flδ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
over a crisp ring (Q,+, ·) is called a NSSR iff the following conditions hold:

(i) tlδ(r)(g−n) ≥ T
(
tlδ(r)(g), tlδ(r)(n)

)
, ilδ(r)(g−n) ≥ I

(
ilδ(r)(g), ilδ(r)(n)

)
, flδ(r)(g−n) ≤

F
(
flδ(r)(g), flδ(r)(n)

)
and

(ii) tlδ(r)(g · n) ≥ T
(
tlδ(r)(g), tlδ(r)(n)

)
, ilδ(r)(g · n) ≥ I

(
ilδ(r)(g), ilδ(r)(n)

)
, flδ(r)(g · n) ≤

S
(
flδ(r)(g), flδ(r)(n)

)
.

Proposition 2.7. [83] Let δ1, δ2 ∈ NSSR(Q). Then δ1 ∩ δ2 ∈ NSSR(Q).

Theorem 2.8. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be an

isomorphism. If δ is a NSSR of Q then h(δ) is a NSSR of Y .

Theorem 2.9. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If δ′ is a NSSR of Y then h−1(δ′) is a NSSR of Q.

Theorem 2.10. δ1 ∈ NSSR(Q) and δ2 ∈ NSSR(Y ), then their cartesian product δ1 × δ2 ∈
NSSR(Q× Y ).

Definition 2.16. [83] A NSSR δ =
{(
r, lδ(r)

)
: r ∈ A

}
of a crisp ring (Q,+, ·) is known as a

NNSSR of Q iff tlδ(r)(g ·n) = tlδ(r)(n ·g), ilδ(r)(g ·n) = ilδ(r)(n ·g), and flδ(r)(g ·n) = flδ(r)(n ·g).

The set of all NNSSR of Q will be expressed as NNSSR(Q).

Proposition 2.11. [83] Let δ1, δ2 ∈ NNSSR(Q). Then δ1 ∩ δ2 ∈ NNSSR(Q).

Theorem 2.12. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q→ Y be an

isomorphism. If δ is a NNSSR of Q then h(δ) is a NNSSR of Y .

Theorem 2.13. [83] Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

ring homomorphism. If δ′ is a NNSSR of Y then h−1(δ′) is a NNSSR of Q.

3. Proposed notion of interval-valued neutrosophic soft subring

Definition 3.1. Let (Q,+, ·) be a crisp ring and A be a set of parameters. An IVNSS

Ψ =
{(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
is called an IVNSSR of (Q,+, ·)

if ∀g, n ∈ Q, and ∀r ∈ A, the followings can be concluded:
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(i)


t̄lΨ(r)(g + n) ≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
,

īlΨ(r)(g + n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
,

f̄lΨ(r)(g + n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(ii)


t̄lΨ(r)(−r) ≥ tlΨ(r)(g),

īlΨ(r)(−r) ≤ ilΨ(r)(g),

f̄lΨ(r)(−r) ≤ flΨ(r)(g)

(iii)


t̄lΨ(r)(g · n) ≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
,

īlΨ(r)(g · n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
,

f̄lΨ(r)(g · n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
,

The set of all IVNSSR of a crisp ring (Q,+, · ) will be expressed as IVNSSR(Q).

Example 3.2. Let (Z,+, ·) be the ring and N be a set of parameters. Also, let Ψ ={(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z

})
: e ∈ N

}
be an IVNSS of Z, where

lΨ : N→ IVNS(Q) and ∀g ∈ Z, ∀r ∈ N corresponding memberships are

t̄lΨ(r)(g) =


[ 1

r + 1
,
1

r

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1

,

īlΨ(r)(g) =


[0, 0] if g ∈ 2Z[ 1

2r + 2
,

1

2r

]
if g ∈ 2Z+ 1

, and

f̄lΨ(r)(g) =


[0, 0] if g ∈ 2Z[r − 1

r
,

r

r + 1

]
if g ∈ 2Z+ 1

.

Here, considering minimum TN and maximum SNs ∀r ∈ N, Ψ ∈ IVNSSR(Z).

Example 3.3. Let (Z4,+, ·) be the ring of integers modulo 4 and A = {r1, r2, r3} be a set

of parameters. Also, let Ψ =
{(
r,
{(
r, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z4

})
: r ∈ A

}
be an

IVNSS of Z4, where lΨ : A → IVNS(Q). Again, let the membership values of the elements

belonging to Ψ are specified in Table 2, 3, and 4.

Table 2. Membership values of elements with respect to parameter r1

Ψ(r1) t̄lΨ(r1) īlΨ(r1) f̄lΨ(r1)

0̄ [0.64, 0.66] [0.33, 0.35] [0.13, 0.14]

1̄ [0.7, 0.72] [0.21, 0.23] [0.77, 0.79]

2̄ [0.74, 0.76] [0.24, 0.26] [0.51, 0.53]

3̄ [0.66, 0.68] [0.31, 0.33] [0.28, 0.3]
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Table 3. Membership values of elements with respect to parameter r2

Ψ(r2) t̄lΨ(r2) īlΨ(r2) f̄lΨ(r2)

0̄ [0.68, 0.7] [0.3, 0.32] [0.31, 0.33]

1̄ [0.61, 0.63] [0.31, 0.33] [0.41, 0.43]

2̄ [0.57, 0.59] [0.4, 0.42] [0.65, 0.67]

3̄ [0.7, 0.72] [0.26, 0.28] [0.52, 0.54]

Table 4. Membership values of elements with respect to parameter r3

Ψ(r3) t̄lΨ(r3) īlΨ(r3) f̄lΨ(r3)

0̄ [0.71, 0.73] [0.2, 0.23] [0.15, 0.17]

1̄ [0.83, 0.85] [0.15, 0.17] [0.24, 0.26]

2̄ [0.68, 0.7] [0.3, 0.32] [0.38, 0.4]

3̄ [0.78, 0.8] [0.18, 0.2] [0.4, 0.43]

Here, considering the  Lukasiewicz TN (T (g, n) = max{0, g + n − 1}) and bounded sum SNs

(S(g, n) = min{g + n, 1}), ∀r ∈ A, Ψ ∈ IVNSSR(Z4).

Proposition 3.1. An IVNSS Ψ =
{(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
of a crisp ring (Q,+, ·) is an IVNSSR iff the following conditions hold (considering idempotent

IVTN and IVSNs):

(i) t̄lΨ(r)(g − n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
, īlΨ(r)(g − n) ≤ Ī

(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, f̄lΨ(r)(g −

n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
and

(ii) t̄lΨ(r)(g · n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
, īlΨ(r)(g · n) ≤ Ī

(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, f̄lΨ(r)(g · n) ≤

F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
.

Proof. Let Ψ ∈ IVNSSR(Q). Then

t̄lΨ(r)(g − n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(−n)

)
[by Definition 3.1]

≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by Definition 3.1]

Similary, we will have

īlΨ(r)(g − n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, and

f̄lΨ(r)(g − n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
,

Again, (ii) follows immediately from condition (iii) of Definition 3.1.

Conversely, let conditions (i) and (ii) of Proposition 3.1 hold. Assuming θQ as the additive
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neutral member of (Q,+, ·), we have

t̄lΨ(r)(θQ) = t̄lΨ(r)(g − g)

≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(g)

)
= t̄lΨ(r)(g) (3.1)

Similaly,

īlΨ(r)(θQ) ≤ īlΨ(r)(g) (3.2)

f̄lΨ(r)(θQ) ≤ f̄lΨ(r)(g) (3.3)

Now,

t̄lΨ(r)(−g) = t̄lΨ(r)(θQ − g)

≥ T̄
(
t̄lΨ(r)(θQ), t̄lΨ(r)(g)

)
≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(g)

)
[by 3.1]

= t̄lΨ(r)(g) [since T̄ is idempotent] (3.4)

Similarly,

īlΨ(r)(−g) ≤ īlΨ(r)(g) [since Ī is idempotent] (3.5)

f̄lΨ(r)(−g) ≤ f̄lΨ(r)(g) [since F̄ is idempotent] (3.6)

Hence,

t̄lΨ(r)(g + n) = t̄lΨ(r)(g − (−n))

≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(−n)

)
≥ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by 3.4] (3.7)

Similarly,

īlΨ(r)(g + n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
[by 3.5] (3.8)

f̄lΨ(r)(g + n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
[by 3.6] (3.9)

Hence, Equations 3.7, 3.8, and 3.9 prove part (i) of Proposition 3.1. Again, part (ii) of

Proposition 3.1 is similar to condition (iii) of Definition 3.1. So, Ψ ∈ IVNSSR(Q).

Theorem 3.2. Let (Q,+, ·) be a crisp ring. If Ψ1,Ψ2 ∈ IVNSSR(Q), then Ψ1 ∩ Ψ2 ∈
IVNSSR(Q) (considering idempotent IVTN and IVSNs).
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Proof. Let Ψ = Ψ1 ∩Ψ2. Now, ∀g, n ∈ Q and ∀r ∈ A

t̄lΨ(r)(g + n) = T̄
(
t̄lΨ1

(r)(g + n), t̄lΨ2
(r)(g + n)

)
≥ T̄

(
T̄
(
t̄lΨ1

(r)(g), t̄lΨ1
(r)(n)

)
, T̄
(
t̄lΨ2

(r)(g), t̄lΨ2
(r)(n)

))
= T̄

(
T̄
(
t̄lΨ1

(r)(g), t̄lΨ1
(r)(n)

)
, T̄
(
t̄lΨ2

(r)(n), t̄lΨ2
(r)(g)

))
[as T̄ is commutative]

= T̄
(
T̄
(
t̄Ψ1(g), t̄lΨ2

(r)(g)
)
, T̄
(
t̄lΨ1

(r)(n), t̄lΨ2
(r)(n)

))
[as T̄ is associative]

= T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
(3.10)

and

t̄lΨ(r)(−g) = T̄
(
t̄lΨ1

(r)(−g), t̄lΨ2
(r)(−g)

)
≥ T̄

(
t̄lΨ1

(r)(g), t̄lΨ2
(r)(g)

)
[by Definition 3.1]

= t̄lΨ(r)(g) (3.11)

Similarly, we can show

īlΨ(r)(g + n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
(3.12)

f̄lΨ(r)(g + n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(3.13)

and

īlΨ(r)(−g) ≤ īlΨ(r)(g) (3.14)

f̄lΨ(r)(−g) ≤ f̄lΨ(r)(g) (3.15)

Also, we can show that

t̄lΨ(r)(g · n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
, (3.16)

īlΨ(r)(g · n) ≤ Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, and (3.17)

f̄lΨ(r)(g · n) ≤ F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(3.18)

So, from Equations 3.10–3.18 Ψ ∈ IVNSSR(Q).

Remark 3.3. In general, if Ψ1,Ψ2 ∈ IVNSSR(Q), then Ψ1∪Ψ2 may not always be an IVNSSR

of (Q,+, ·).

The following Example 3.4 will prove Remark 3.3.

Example 3.4. Let (Z,+, ·) be the ring of integers and N be a set of parameters. Again,

let Ψ1 =
{(
r,
{(
g, t̄lΨ1

(r)(g), īlΨ1
(r)(g), f̄lΨ1

(r)(g)
)

: g ∈ Z
})

: r ∈ N
}

and Ψ2 =
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r,
{(
g, t̄lΨ2

(r)(g), īlΨ2
(r)(g), f̄lΨ2

(r)(g)
)

: g ∈ Z
})

: r ∈ N \ {1}
}

be two IVNSSs of Z, where

lΨ1 : N→ IVNSS(Q) be defined as

t̄lΨ1
(r)(g) =


[ 1

r + 1
,
1

r

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1

,

īlΨ1
(r)(g) =


[0, 0] if g ∈ 2Z[ 1

2r + 2
,

1

2r

]
if g ∈ 2Z+ 1

, and

f̄lΨ1
(r)(g) =


[0, 0] if g ∈ 2Z[r − 1

r
,

r

r + 1

]
if g ∈ 2Z+ 1

.

and lΨ2 : N \ {1} → IVNSS(Q) be defined as

t̄lΨ2
(r)(g) =


[1

r
,

1

r − 1

]
if g ∈ 3Z

[0, 0] if g ∈ 3Z+ 1

,

īlΨ2
(r)(g) =


[0, 0] if g ∈ 3Z[ 1

2r
,

1

2r − 2

]
if g ∈ 3Z+ 1

, and

f̄lΨ2
(r)(g) =


[0, 0] if g ∈ 3Z[r − 2

r − 1
,
r − 1

r

]
if g ∈ 3Z+ 1

.

Here, considering minimum TN and maximum SNs Ψ1,Ψ2 ∈ IVNSSR(Z). Let Ψ = Ψ1 ∪Ψ2.

Now considering r = 3 we will have

t̄lΨ1
(3)(g) =


[1

4
,
1

3

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1
and

t̄lΨ2
(3)(g) =


[1

3
,
1

2

]
if g ∈ 3Z

[0, 0] if g ∈ 3Z+ 1

Now, taking g = 10 and n = 15, we will have

t̄lΨ(3)(g + n) = t̄lΨ(3)(10 + 15)

= t̄lΨ(3)(25)

= max{t̄lΨ1
(3)(25), t̄lΨ2

(3)(25)}

= max{[0, 0], [0, 0]}

= [0, 0]

S. Gayen; F. Smarandache; S. Jha; M. K. Singh; S. Broumi; and R. Kumar. Soft Subring Theory Under
Interval-valued Neutrosophic Environment



Neutrosophic Sets and Systems, Vol. 36 , 2020 205

Again, if Ψ ∈ IVNSSR(Q), then ∀g, n ∈ Q, t̄lΨ(3)(g+ n) ≥ min{t̄lΨ(3)(g), t̄lΨ(3)(n)}. But, here

for g = 10 and n = 15, min{t̄lΨ(3)(10), t̄lΨ(3)(15)} = min
{[

1
4 ,

1
3

]
,
[

1
3 ,

1
2

]}
=
[

1
4 ,

1
3

]
� [0, 0] =

t̄lΨ(3)(10 + 15). So, Ψ 6∈ IVNSSR(Q).

Corollary 3.4. If Ψ1,Ψ2 ∈ IVNSSR(Q), then Ψ1 ∪ Ψ2 ∈ IVNSSR(Q) iff one is a subset of

other.

Definition 3.5. let Ψ =
{(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z4

})
: r ∈ A

}
be an

IVNSS of a crisp ring (Q,+, ·). Also, let [g1, n1], [g2, n2], and [g3, n3] ∈ φ(K). Then the CS

Ψ(
[g1,n1],[g2,n2],[g3,n3]

) is called a level set of IVNSSR Ψ, where for any g ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

)
the following inequalities will hold: t̄lΨ(r)(g) ≥ [g1, n1], īlΨ(r)(g) ≤ [g2, n2], and f̄lΨ(r)(g) ≤
[g3, n3].

Theorem 3.5. Let (Q,+, ·) be a crisp ring. Then Ψ ∈ IVNSSR(Q) iff

∀[g1, n1], [g2, n2], [g3, n3] ∈ φ(K) with t̄lΨ(r)(θQ) ≥ [g1, n1], īlΨ(r)(θQ) ≤ [g2, n2], and

f̄lΨ(r)(θQ) ≤ [g3, n3], Ψ(
[g1,n1],[g2,n2],[g3,n3]

) is a crisp subring of (Q,+, ·) (considering idem-

potent IVTN and IVSNs).

Proof. Since, t̄lΨ(r)(θQ) ≥ [g1, n1], īlΨ(r)(θQ) ≤ [g2, n2], and f̄lΨ(r)(θQ) ≤ [g3, n3], θQ ∈
Ψ(

[g1,n1],[g2,n2],[g3,n3]
), i.e., Ψ(

[g1,n1],[g2,n2],[g3,n3]
) is non-empty. Now, let Ψ ∈ IVNSSR(Q) and

g, n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

). To show that, (g − n) and g · n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

). Here,

t̄lΨ(r)(g − n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by Proposition 3.1]

≥ T̄
(
[g1, n1], [g1, n1]

) [
as g, n ∈ Ψ(

[g1,n1],[g2,n2],[g3,n3]
)]

≥ [g1, n1] [as T̄ is idempotent] (3.19)

Again,

t̄lΨ(r)(g · n) ≥ T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
[by Proposition 3.1]

≥ T̄
(
[g1, n1], [g1, n1]

) [
as g, n ∈ Ψ(

[g1,n1],[g2,n2],[g3,n3]
)]

≥ [g1, n1] [as T̄ is idempotent] (3.20)

Similarly, as Ī and F̄ are idempotent, we can prove that

īlΨ(r)(g − n) ≤ [g2, n2], (3.21)

īlΨ(r)(g · n) ≤ [g2, n2], (3.22)

f̄lΨ(r)(g − n) ≤ [g3, n3], and (3.23)

f̄lΨ(r)(g · n) ≤ [g3, n3]. (3.24)
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So, from Equations 3.19–3.24 (g−n) and g ·n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

), i.e., Ψ(
[g1,n1],[g2,n2],[g3,n3]

)
is a crisp subring of (Q,+, ·).
Conversely, let Ψ(

[g1,n1],[g2,n2],[g3,n3]
) is a crisp subring of (Q,+, ·). To show that, Ψ ∈

IVNSSR(Q).

Let g, n ∈ Q, then there exists [g1, n1] ∈ φ(K) such that T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
= [g1, n1].

Wherefrom t̄lΨ(r)(g) ≥ [g1, n1] and t̄lΨ(r)(n) ≥ [g1, n1]. Also, let there exist [g2, n2], [g3, n3] ∈
φ(K) such that Ī

(̄
ilΨ(r)(g), īlΨ(r)(n)

)
= [g2, n2] and F̄

(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
= [g3, n3]. Then

g, n ∈ Ψ(
[g1,n1],[g2,n2],[g3,n3]

).
Now, as Ψ(

[g1,n1],[g2,n2],[g3,n3]
) is a crisp subring, g − n ∈ Ψ(

[g1,n1],[g2,n2],[g3,n3]
) and g · n ∈

Ψ(
[g1,n1],[g2,n2],[g3,n3]

).
Hence,

t̄lΨ(r)(g − n) ≥ [k1, s1]

= T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
and (3.25)

t̄lΨ(r)(g · n) ≥ [k1, s1]

= T̄
(
t̄lΨ(r)(g), t̄lΨ(r)(n)

)
(3.26)

Similarly, we can prove that

īlΨ(r)(g − n) ≤ [k2, s2]

= Ī
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, (3.27)

īlΨ(r)(g · n) ≤ [k2, s2]

= T̄
(̄
ilΨ(r)(g), īlΨ(r)(n)

)
, (3.28)

f̄lΨ(r)(g − n) ≤ [k3, s3]

= F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
, and (3.29)

f̄lΨ(r)(g · n) ≤ [k3, s3]

= F̄
(
f̄lΨ(r)(g), f̄lΨ(r)(n)

)
(3.30)

Hence, from Equations 3.25–3.30 Ψ ∈ IVNSSR(Q).

Definition 3.6. Let Ψ and Ψ′ be two IVNSSs of two CSs Q and Y , respectively. Also, let

h : Q→ Y be a function. Then

(i) image of Ψ under h will be

h(Ψ) =
{(
r,
{(
n, t̄h(lΨ(r))(n), īh(lΨ(r))(n), f̄h(lΨ(r))(n)

)
: n ∈ Y

})
: r ∈ A

}
,

where t̄h(lΨ(r))(n) = ∨
s∈h−1(n)

t̄lΨ(r)(s), īh(lΨ(r))(n) = ∧
s∈h−1(n)

īlΨ(r)(s), and f̄h(lΨ(r))(v) =
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∧
s∈h−1(n)

f̄lΨ(r)(s). Wherefrom, if h is injective then t̄h(lΨ(r))(n) = t̄lΨ(r)

(
h−1(n)

)
,

īh(lΨ(r))(n) = īlΨ(r)

(
h−1(n)

)
, f̄h(lΨ(r))(n) = f̄lΨ(r)

(
h−1(n)

)
.

(i) preimage of Ψ′ under h will be

h−1(Ψ′) =
{(
r,
{(
g, t̄h−1(lΨ′ (r))

(g), īh−1(lΨ′ (r))
(g), f̄h−1(lΨ′ (r))

(g)
)

: g ∈ Q
})

: r ∈ A
}

,

where t̄h−1(lΨ′ (r))
(g) = t̄lΨ′ (r)

(
h(g)

)
, īh−1(lΨ′ (r))

(g) = īlΨ′ (r)
(
h(g)

)
, f̄h−1(lΨ′ (r))

(g) =

f̄lΨ′ (r)
(
h(g)

)
.

Theorem 3.6. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be an

isomorphism. If Ψ is an IVNSSR of Q then h(Ψ) is an IVNSSR of Y .

Proof. Let n1 = h(g1) and n2 = h(g2), where g1, g2 ∈ Q and n1, n2 ∈ Y . Now,

t̄h(lΨ(r))(n1 − n2) = t̄lΨ(r)

(
h−1(n1 − n2)

)
[as h is injective]

= t̄lΨ(r)

(
h−1(n1)− h−1(n2)

)
[as h−1 is a homomorphism]

= t̄lΨ(r)(g1 − g2)

≥ T̄
(
t̄lΨ(r)(g1), t̄lΨ(r)(g2)

)
= T̄

(
t̄lΨ(r)

(
h−1(n1)

)
, t̄lΨ(r)

(
h−1(n2)

))
= T̄

(
t̄h(lΨ(r))(n1), t̄h(lΨ(r))(n2)

)
(3.31)

Again,

t̄h(lΨ(r))(n1 · n2) = t̄lΨ(r)

(
h−1(n1 · n2)

)
[as h is injective]

= t̄lΨ(r)

(
h−1(n1) · h−1(n2)

)
[as h−1 is a homomorphism]

= t̄lΨ(r)(g1 · g2)

≥ T̄
(
t̄lΨ(r)(g1), t̄lΨ(r)(g2)

)
= T̄

(
t̄lΨ(r)

(
h−1(n1)

)
, t̄lΨ(r)

(
h−1(n2)

))
= T̄

(
t̄h(lΨ(r))(n1), t̄h(lΨ(r))(n2)

)
(3.32)

Similarly,

īh(lΨ(r))(n1 − n2) ≤ Ī
(̄
ih(lΨ(r))(n1), īh(lΨ(r))(n2)

)
, (3.33)

īh(lΨ(r))(n1 · n2) ≤ Ī
(̄
ih(lΨ(r))(n1), īh(lΨ(r))(n2)

)
, (3.34)

f̄h(lΨ(r))(n1 − n2) ≤ F̄
(
f̄h(lΨ(r))(n1), f̄h(lΨ(r))(n2)

)
, and (3.35)

f̄h(lΨ(r))(n1 · n2) ≤ F̄
(
f̄h(lΨ(r))(n1), f̄h(lΨ(r))(n2)

)
(3.36)

So, from Equations 3.31–3.36 h(Ψ) is an IVNSSR of Y .
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Theorem 3.7. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a

homomorphism. If Ψ′ is an IVNSSR of Y then h−1(Ψ′) is an IVNSSR of Q. (Note that, h−1

may not be an inverse function but h−1(Ψ′) is an inverse image of Ψ′).

Proof. Let n1 = h(g1) and n2 = h(g2), where g1, g2 ∈ Q and n1, n2 ∈ Y . Now,

t̄h−1(lΨ′ (r))
(g1 − g2) = t̄lΨ′ (r)

(
h(g1 − g2)

)
= t̄lΨ′ (r)

(
h(g1)− h(g2)

)
[as h is a homomorphism]

= t̄lΨ′ (r)(n1 − n2)

≥ T̄
(
t̄lΨ′ (r)(n1), t̄lΨ′ (r)(n2)

)
= T̄

(
t̄lΨ′ (r)

(
h(g1)

)
, t̄lΨ′ (r)

(
h(g2)

))
= T̄

(
t̄h−1(lΨ′ (r))

(g1), t̄h−1(lΨ′ (r))
(g2)

)
(3.37)

Again,

t̄h−1(lΨ′ (r))
(g1 · g2) = t̄lΨ′ (r)

(
h(g1 · g2)

)
= t̄lΨ′ (r)

(
h(g1) · h(g2)

)
[as h is a homomorphism]

= t̄lΨ′ (r)(n1 · n2)

≥ T̄
(
t̄lΨ′ (r)(n1), t̄lΨ′ (r)(n2)

)
= T̄

(
t̄lΨ′ (r)

(
h(g1)

)
, t̄lΨ′ (r)

(
h(g2)

))
= T̄

(
t̄h−1(lΨ′ (r))

(g1), t̄h−1(lΨ′ (r))
(g2)

)
(3.38)

Similarly,

īh−1(lΨ′ (r))
(g1 − g2) ≤ Ī

(̄
ih−1(lΨ′ (r))

(g1), īh−1(lΨ′ (r))
(g2)

)
(3.39)

īh−1(lΨ′ (r))
(g1 · g2) ≤ Ī

(̄
ih−1(lΨ′ (r))

(g1), īh−1(lΨ′ (r))
(g2)

)
(3.40)

f̄h−1(lΨ′ (r))
(g1 − g2) ≤ F̄

(
f̄h−1(lΨ′ (r))

(g1), f̄h−1(lΨ′ (r))
(g2)

)
(3.41)

f̄h−1(lΨ′ (r))
(g1 · g2) ≤ F̄

(
f̄h−1(lΨ′ (r))

(g1), f̄h−1(lΨ′ (r))
(g2)

)
(3.42)

So, from Equations 3.37–3.42 h−1(Ψ′) is an IVNSSR of Q.

Definition 3.7. Let (Q,+, ·) be a crisp ring and Ψ ∈ IVNSSR(Q). Again, let ᾱ = [α1, α2], ν̄ =

[ν1, ν2], χ̄ = [χ1, χ2] ∈ φ(K). Then
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(i) Ψ is called a (ᾱ, ν̄, χ̄)−identity IVNSSR over Q, if ∀g ∈ Q

t̄lΨ(r)(g) =

ᾱ if g = θQ

[0, 0] if g 6= θQ
,

īlΨ(r)(g) =

ν̄ if g = θQ

[1, 1] if g 6= θQ
, and

f̄lΨ(r)(g) =

χ̄ if g = θQ

[1, 1] if g 6= θQ
,

where θQ is the additive zero element of Q.

(ii) Ψ is called a (ᾱ, ν̄, χ̄)−absolute IVNSSR over Q, if ∀g ∈ Q, t̄lΨ(r)(g) = ᾱ, īlΨ(r)(g) = ν̄,

and f̄lΨ(r)(g) = χ̄.

Theorem 3.8. Let (Q,+, ·) and (Y,+, ·) be two crisp rings and Ψ ∈IVNSSR (Q). Again, let

h : Q→ Y be a homomorphism. Then

(i) h(Ψ) will be a (ᾱ, ν̄, χ̄)−identity IVNSSR over Y , if ∀g ∈ Q

t̄lΨ(r)(g) =

ᾱ if g ∈ Ker(h)

[0, 0] otherwise
,

īlΨ(r)(g) =

ν̄ if g ∈ Ker(h)

[1, 1] otherwise
, and

f̄lΨ(r)(g) =

χ̄ if g ∈ Ker(h)

[1, 1] otherwise
,

(ii) h(Ψ) will be a (ᾱ, ν̄, χ̄)−absolute IVNSSR over Y , if Ψ is a (ᾱ, ν̄, χ̄)−absolute IVNSSR

over Q.

Proof. (i) Clearly, by Theorem 3.6 h(Ψ) ∈ IVNSSR(Y ). Let g ∈ Ker(h), then h(g) = θY .

So,

t̄h(lΨ(r))(θY ) = t̄lΨ(r)

(
h−1(θY )

)
= t̄lΨ(r)(g)

= ᾱ (3.43)

Similarly,

īh(lΨ(r))(θY ) = ν̄, and (3.44)

f̄h(lΨ(r))(θY ) = χ̄ (3.45)
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Again, let g ∈ Q \Ker(h) and h(g) = n. Then

t̄h(lΨ(r))(n) = t̄lΨ(r)

(
h−1(n)

)
= t̄lΨ(r)(g)

= [0, 0] (3.46)

Similarly,

īh(lΨ(r))(n) = [1, 1] and (3.47)

f̄h(lΨ(r))(n) = [1, 1] (3.48)

So, from the Equations 3.43–3.48 h(Ψ) is a (ᾱ, ν̄, χ̄)−identity IVNSSR over Y .

(ii) Let h(g) = n, for g ∈ Q and n ∈ Y . Then

t̄h(lΨ(r))(n) = t̄lΨ(r)

(
h−1(n)

)
= t̄lΨ(r)(g)

= ᾱ (3.49)

Similarly,

īh(lΨ(r))(n) = ν̄ and (3.50)

f̄h(lΨ(r))(n) = χ̄ (3.51)

So, from the Equations 3.48–3.51 h(Ψ) is a (ᾱ, ν̄, χ̄)−absolute IVNSSR over Y .

3.1. Product of interval-valued neutrosophic subrings

Definition 3.8. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Again, let Ψ1 ∈ IVNSSR(Q)

and Ψ2 ∈ IVNSSR(Y ), where Ψ1 =
{(
r1,
{(
g, t̄lΨ1

(r1)(g), īlΨ1
(r1)(g), f̄lΨ1

(r1)(g)
)

: g ∈ Q
})

:

r1 ∈ A
}

and Ψ2 =
{(
r2,
{(
v, t̄lΨ2

(r2)(n), īlΨ2
(r2)(n), f̄lΨ2

(r2)(n)
)

: n ∈ Y
})

: r2 ∈ A
}

. Then

cartesian product of Ψ1 and Ψ2 will be

Ψ = Ψ1 ×Ψ2

=
{(

(r1, r2), lΨ1×Ψ2(r1, r2)
)

: (r1, r2) ∈ A×A
}

where the approximate function lΨ1×Ψ2 : A×A→ IVNS(Q× Y ) is defined as

t̄lΨ1×Ψ2
(r1,r2)(g, n) = T̄

(
t̄lΨ1

(r1)(g), t̄lΨ2
(r2)(n)

)
,

īlΨ1×Ψ2
(r1,r2)(g, n) = Ī

(̄
ilΨ1

(r1)(g), īlΨ2
(r2)(n)

)
, and

f̄lΨ1×Ψ2
(r1,r2)(g, n) = F̄

(
f̄lΨ1

(r1)(g), f̄lΨ2
(r2)(n)

Similarly, product of 3 or more IVNSSRs can be defined.
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Theorem 3.9. Let (Q,+, ·) and (Y,+, ·) be two crisp rings with Ψ1 ∈ IVNSSR(Q) and Ψ2 ∈
IVNSSR(Y ). Then Ψ1 ×Ψ2 ∈ IVNSSR(Q× Y ).

Proof. Let Ψ = Ψ1 ×Ψ2 and (g1, n1), (g2, n2) ∈ Q×R. Then

t̄lΨ(r1,r2)

(
(g1, n1)− (g2, n2)

)
= t̄lΨ1×Ψ2

(r1,r2)

(
(g1 − g2, n1 − n2)

)
= T̄

(
t̄lΨ1

(r1)(g1 − g2), t̄lΨ2
(r2)(n1 − n2)

)
≥ T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ1
(r1)(g2)

)
, T̄
(
t̄lΨ2

(r2)(n1), t̄lΨ2
(r2)(n2)

))
= T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ2
(r2)(n1)

)
, T̄
(
t̄lΨ1

(r1)(g2), t̄lΨ2
(r2)(n2)

))
[as T̄ is associative]

= T̄
(
t̄lΨ(r1,r2)(g1, n1), t̄lΨ(r1,r2)(g2, n2)

)
(3.52)

Again,

t̄lΨ(r1,r2)

(
(g1, n1) · (g2, n2)

)
= t̄lΨ1×Ψ2

(r1,r2)

(
(g1 · g2, n1 · n2)

)
= T̄

(
t̄lΨ1

(r1)(g1 · g2), t̄lΨ2
(r2)(n1 · n2)

)
≥ T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ1
(r1)(g2)

)
, T̄
(
t̄lΨ2

(r2)(n1), t̄lΨ2
(r2)(n2)

))
= T̄

(
T̄
(
t̄lΨ1

(r1)(g1), t̄lΨ2
(r2)(n1)

)
, T̄
(
t̄lΨ1

(r1)(g2), t̄lΨ2
(r2)(n2)

))
[as T̄ is associative]

= T̄
(
t̄lΨ(r1,r2)(g1, n1), t̄lΨ(r1,r2)(g2, n2)

)
(3.53)

Similary,

īlΨ(r1,r2)

(
(g1, n1)− (g2, n2)

)
≤ Ī
(̄
ilΨ(r1,r2)(g1, n1), īlΨ(r1,r2)(g2, n2)

)
, (3.54)

īlΨ(r1,r2)

(
(g1, n1) · (g2, n2)

)
≤ Ī
(̄
ilΨ(r1,r2)(g1, n1), īlΨ(r1,r2)(g2, n2)

)
, (3.55)

f̄lΨ(r1,r2)

(
(g1, n1)− (g2, n2)

)
≤ F̄

(
f̄lΨ(r1,r2)(g1, n1), f̄lΨ(r1,r2)(g2, n2)

)
, and (3.56)

f̄lΨ(r1,r2)

(
(g1, n1) · (g2, n2)

)
≤ F̄

(
f̄lΨ(r1,r2)(g1, n1), f̄lΨ(r1,r2)(g2, n2)

)
(3.57)

So, by Proposition 3.1 and from Equations 3.52–3.57 Ψ1 ×Ψ2 ∈ IVNSSR(Q× Y ).

Corollary 3.10. Let ∀i ∈ {1, 2, ..., n}, (Qi,+, ·) are crisp rings and Ψi ∈ IVNSSR(Qi). Then

Ψ1 ×Ψ2 × · · · ×Ψn is a IVNSSR of Q1 ×Q2 × · · · ×Qn, where n ∈ N.
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3.2. Subring of a interval-valued neutrosophic soft subgring

Definition 3.9. Let (Q,+, ·) be a crisp ring and Ψ1,Ψ2 ∈ IVNSSR(Q), where

Ψ1 =
{(
r,
{(
g, t̄lΨ1

(r)(g), īlΨ1
(r)(g), f̄lΨ1

(r)(g)
)

: g ∈ Q
})

: r ∈ A
}

and Ψ2 ={(
r,
{(
g, t̄lΨ2

(r)(g), īlΨ2
(r)(g), f̄lΨ2

(r)(g)
)

: g ∈ Q
})

: r ∈ A
}

. Then Ψ1 is called a subring

of Ψ2 if ∀g ∈ Q, t̄lΨ1
(r)(g) ≤ t̄lΨ2

(r)(g), īlΨ1
(r)(g) ≥ īlΨ2

(r)(g), and f̄lΨ1
(r)(g) ≥ f̄lΨ2

(r)(g).

Theorem 3.11. Let (Q,+, ·) be a crisp ring and Ψ ∈ IVNSSR(Q). Again, let Ψ1 and Ψ2 be

two subrings of Ψ. Then Ψ1 ∩Ψ2 is also a subring of Ψ, considering all the IVTN and IVSNs

as idempotent.

Proof. Here, ∀g ∈ Q

t̄lΨ1∩Ψ2
(r)(g) = T̄

(
t̄lΨ1

(r)(g), t̄lΨ2
(r)(g)

)
≤ T̄

(
t̄lΨ(r)(g), t̄lΨ(r)(g)

)
= t̄lΨ(r)(g) [as T̄ is idempotent] (3.58)

Similarly, since Ī and F̄ are idempotent we have,

īlΨ1∩Ψ2
(r)(g) ≥ īlΨ(r)(g) and (3.59)

f̄lΨ1∩Ψ2
(r)(g) ≥ f̄lΨ(r)(g) (3.60)

So, from Equations 3.58–3.60 Ψ1 ∩Ψ2 is a subring of Ψ.

Theorem 3.12. Let (Q,+, ·) be a crisp ring and Ψ1,Ψ2 ∈ IVNSSR(Q) such that Ψ1 is a

subring of Ψ2. Let (Y,+, ·) is another crisp ring and h : Q→ Y be an isomorphism. Then

(i) h(Ψ1) and h(Ψ2) are two IVNSSRs over Y and

(i) h(Ψ1) is a subring of h(Ψ2).

Proof. (i) can be proved by using Theorem 3.6.

(ii) Let n = h(g), where g ∈ Q and n ∈ Y . Then

t̄lΨ1
(r)(g) ≤ t̄lΨ2

(r)(g) [as Ψ1 is a subring of Ψ2]

⇒t̄lΨ1
(r)

(
h−1(n)

)
≤ t̄lΨ2

(r)

(
h−1(n)

)
⇒t̄h(lΨ1

(r))(n) ≤ t̄h(lΨ2
(r))(n) (3.61)

Similarly,

īh(lΨ1
(r))(n) ≥ īh(lΨ2

(r))(n) and (3.62)

f̄h(lΨ1
(r))(n) ≥ f̄h(lΨ2

(r))(n) (3.63)

So, from Equations 3.61–3.63 h(Ψ1) is a subring of h(Ψ2).
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3.3. Interval-valued neutrosophic normal soft subrings

Definition 3.10. Let (Q,+, ·) be a crisp ring and Ψ is an IVNSS of Q, where Ψ ={(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Q

})
: r ∈ A

}
. Then Ψ is called an IVNNSSR

over Q if

(i) Ψ is an IVNSSR of Q and

(ii) ∀g, n ∈ Q, t̄lΨ(r)(g · n) = t̄lΨ(r)(n · g), īlΨ(r)(g · n) = īlΨ(r)(n · g), and f̄lΨ(r)(g · n) =

f̄lΨ(r)(n · g).

The set of all IVNNSSR of (Q,+, · ) will be expressed as IVNNSSR(Q).

Example 3.11. Let (Z,+, ·) be the ring and N be the set of parameters. Also, let Ψ ={(
r,
{(
g, t̄lΨ(r)(g), īlΨ(r)(g), f̄lΨ(r)(g)

)
: g ∈ Z

})
: r ∈ N

}
be an IVNSS of Z, where lΨ(r) : N→

IVNSS(Q) and ∀g ∈ Z, ∀r ∈ N corresponding membership values are

t̄lΨ(r)(g) =


[ 1

r + 1
,

1

r − 1

]
if g ∈ 2Z

[0, 0] if g ∈ 2Z+ 1

,

īlΨ(r)(g) =


[0, 0] if g ∈ 2Z[ 1

2r + 2
,

1

2r − 2

]
if g ∈ 2Z+ 1

, and

f̄lΨ(r)(g) =


[0, 0] if g ∈ 2Z[r − 2

r − 1
,

r

r + 1

]
if g ∈ 2Z+ 1

.

Here, considering minimum TN and maximum SNs ∀r ∈ N, Ψ ∈ IVNNSSR(Z).

Theorem 3.13. Let (Q,+, ·) be a crisp ring. If Ψ1,Ψ2 ∈ IVNNSSR(Q), then Ψ1 ∩ Ψ2 ∈
IVNNSSR(Q).

Proof. As Ψ1,Ψ2 ∈ IVNSSR(Q) by Theorem 3.2 Ψ1 ∩Ψ2 ∈ IVNSSR(Q). Again,

t̄lΨ1∩Ψ2
(r)(g · n) = T̄

(
t̄lΨ1

(r)(g · n), t̄lΨ2
(r)(g · n)

)
= T̄

(
t̄lΨ1

(r)(n · g), t̄lΨ2
(r)(n · g)

)
[as Ψ1,Ψ2 ∈ IVNNSSR(Q)]

= t̄Ψ1∩Ψ2(n · g) (3.64)

Similarly,

īlΨ1∩Ψ2
(r)(g · n) = īlΨ1∩Ψ2

(r)(n · g) (3.65)

f̄lΨ1∩Ψ2
(r)(g · n) = f̄lΨ1∩Ψ2

(r)(n · g) (3.66)

Hence, Ψ1 ∩Ψ2 ∈ IVNNSSR(Q).
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Remark 3.14. In general, if Ψ1,Ψ2 ∈ IVNNSSR(Q), then Ψ1 ∪ Ψ2 may not always be an

IVNNSSR of (Q,+, ·).

Remark 3.14 can be shown by Example 3.4.

Theorem 3.15. Let (Q,+, ·) be a crisp ring. Then Ψ ∈ IVNNSSR(Q) iff

∀[g1, n1], [g2, n2], [g3, n3] ∈ φ(K) with t̄lΨ(r)(θQ) ≥ [g1, n1], īlΨ(r)(θQ) ≤ [g2, n2], and

f̄lΨ(r)(θQ) ≤ [g3, n3], Ψ(
[g1,n1],[g2,n2],[g3,n3]

) is a crisp normal subring of (Q,+, ·) (considering

idempotent IVTN and IVSNs).

Proof. This can be proved using Theorem 3.5.

Theorem 3.16. Let (Q,+, ·) and (Y,+, ·) be two crisp rings. Also, let h : Q → Y be a ring

isomorphism. If Ψ is an IVNNSSR of Q then h(Ψ) is an IVNNSSR of Y .

Proof. As Ψ is an IVNSSR of Q, by Theorem 3.6 h(Ψ) is an IVNSSR of Y . Let h(g1) = n1

and h(g2) = n2, where g1, g2 ∈ Q and n1, n2 ∈ Y . Then

t̄h(lΨ(r))(n1 · n2) = t̄lΨ(r)

(
h−1(n1 · n2)

)
[as h is injective]

= t̄lΨ(r)

(
h−1(n1) · h−1(n2)

)
[as h−1 is a homomorphism]

= t̄lΨ(r)(g1 · g2)

= t̄lΨ(r)(g2 · g1) [as Ψ is an IVNNSSR of Q]

= t̄lΨ(r)

(
h−1(n2) · h−1(n1)

)
= t̄lΨ(r)

(
h−1(n2 · n1)

)
= t̄h(lΨ(r))(n2 · n1) (3.67)

Similarly,

īh(lΨ(r))(n1 · n2) = īh(lΨ(r))(n2 · n1) and (3.68)

f̄h(lΨ(r))(n1 · n2) = f̄h(lΨ(r))(n2 · n1) (3.69)

So, from Equations 3.67–3.69 h(Ψ) is an IVNNSSR of Y .

4. Conclusions

Interval-valued neutrosophic field is a dynamic research domain. Under soft environment,

it becomes more general and productive. For this reason, we have adopted this mixed envi-

ronment and defined the notions of interval-valued neutrosophic soft subring along with its

normal version. Also, we have studied several homomorphic attributes of these newly intro-

duced notions. Again, we have introduced the product of two interval-valued neutrosophic
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soft subrings. Furthermore, we have given several fundamental theories to understand some

of its algebraic characteristics. These newly introduced notions have the potentials to become

fruitful research domains. In future, for generalizing this concepts one can introduce them

under the hypersoft set environment.
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75. V. Çetkin and H. Aygün. An approach to neutrosophic subgroup and its fundamental properties. Journal

of Intelligent & Fuzzy Systems, 29(5):1941–1947, 2015.

76. S. Gayen, S. Jha, M. Singh, and R. Kumar. On a generalized notion of anti-fuzzy subgroup and some

characterizations. International Journal of Engineering and Advanced Technology, 8(3):385–390, 2019.

77. W. Liu. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems, 8(2):133–139, 1982.

78. V. N. Dixit, R. Kumar, and N. Ajmal. On fuzzy rings. Fuzzy sets and systems, 49(2):205–213, 1992.

79. L. Yan. Intuitionistic fuzzy ring and its homomorphism image. In 2008 International Seminar on Future

Bio-Medical Information Engineering, 75–77, IEEE, 2008.
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Abstract. The main purpose of this article is to develop and study the notion of interval-valued neutrosophic

subring. Also, we have studied some homomorphic characteristics of interval-valued neutrosophic subring.

Again, we have defined the concept of product of two interval-valued neutrosophic subrings and analyzed some

of its important properties. Furthermore, we have developed the notion of interval-valued neutrosophic normal

subring and studied some of its basic characteristics and homomorphic properties.

Keywords: Neutrosophic set; Interval-valued neutrosophic set; Interval-valued neutrosophic subring; Interval-

valued neutrosophic normal subring

—————————————————————————————————————————–

ABBREVIATIONS

TN signifies “T-norm”.

SN signifies “S-norm”.

IVTN signifies “interval-valued T-norm”.

IVSN signifies “interval-valued S-norm”.

CS signifies “crisp set”.

FS signifies “fuzzy set”.

IFS signifies “intuitionistic fuzzy set”.

NS signifies “neutrosophic set”.

PS signifies “plithogenic set”.

FSG signifies “fuzzy subgroup”.

IFSG signifies “intuitionistic fuzzy subgroup”.

NSG signifies “neutrosophic subgroup”.

CR signifies “crisp ring”.

FSR signifies “fuzzy subring”.

IFSR signifies “intuitionistic fuzzy subring”.
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NSR signifies “neutrosophic subring”.

IVFSR signifies “interval-valued fuzzy subring”.

IVIFSR signifies “interval-valued intuitionistic fuzzy subring”.

IVNSR signifies “interval-valued neutrosophic subring”.

IVNNSR signifies “interval-valued neutrosophic normal subring”.

DMP signifies “decision making problem”.

ψ(P ) signifies “power set of P”.

L signifies “the set [0, 1]”.

1. Introduction

Zadeh’s vision behind introducing the revolutionary concept of FS [1] theory was to tackle

uncertainty in a better way than CS theory, which has certain drawbacks. Later on, following

his vision Atanassov introduced a more general version of it, which is known as IFS [2] theory.

These IFSs are a little step ahead in managing ambiguities and hence are welcomed by numer-

ous researchers. Furthermore, following their footsteps Smarandache introduced NS [3] theory,

which is more capable of handling vague situations. It is a significant generalization over CS,

FS, and IFS theories. Smarandache has also initiated the concept of PS [4] theory which has

broader aspects than those previously discussed concepts. In NS and PS theory, he has also

developed the notions of neutrosophic calculus [5], neutrosophic probability [6], neutrosophic

statistics [7], integral, measure [8], neutrosophic psychology [9], neutrosophic robotics [10],

neutrosophic triplet group [11], plithogenic hypersoft set [12], plithogenic fuzzy whole hyper-

soft set [13], plithogenic logic, probability [14], plithogenic subgroup [15], plithogenic hypersoft

subgroup [16], etc. Again, NS theory has various other contributions in different scientific re-

searches, like in linear programming [17–20], decision making [21–27], healthcare [28,29], short-

est path problem [30–37], neutrosophic forecasting [38], resource leveling [39], transportation

problem [40,41], project scheduling [42], brain processing [43], etc.

Gradually, interval-valued versions of FS [44], IFS [45], and NS [46] were introduced, which

are further generalizations of their CS, FS, IFS, and NS counterparts. Presently, these set

theories are extensively used in different scientific domains. From the very start, various

researchers have carried out this concepts and explored them in different dimensions. In the

subsequent Table 1 we have referred some significant aspects of these notions.

Table 1. Importance of interval-valued notions in different domains.

Author & references Year Contributions in various fields

Biswas [47] 1994 Introduced interval-valued FSG.

continued . . .
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Author & references Year Contributions in various fields

Atanassov [45] 1999 Studied basic definition and some properties of

IVFS.

Mondal & Samanta [48] 2001 Defined and studied topology of IVIFSs.

Wang et al. [46] 2005 Proposed and studied IVNS and interval-valued

neutrosophic logic.

Ye [49] 2009 Worked on multi-criteria DMP under IVIFSs.

Kang & Hur [50] 2010 Introduced and studied the notion of IVFSR.

Akram & Dudek [51] 2011 Defined some basic operations on interval-valued

fuzzy graphs and studied some of their properties.

Aygünoğlu et al. [52] 2012 Introduced interval-valued IFSG and studied some

homomorphic properties of it.

Moorthy & Arjunan [53] 2014 Introduced and studied some properties of IVIFSR.

Aiwu et al. [54] 2015 Worked on multi-attribute DMP under IVNSs.

Broumi et al. [56] 2016 Worked on interval-valued neutrosophic graph the-

ory.

Deli [55] 2017 Applied soft version of IVNS in DMP.

Broumi et al. [56] 2019 Studied some properties of interval-valued neutro-

sophic graphs.

Group theory and ring theory are fundamental building blocks of abstract algebra, which

are utilized in different scientific domains. But, initially, these concepts were introduced upon

crisp environment. Gradually, from 1971 on-wards researchers started introducing these con-

cepts under various uncertain environments. Some significant developments of these notions

under uncertainty are the concepts of FSG [57], IFSG [58], NSG [59], FSR [60,61], IFSR [62],

NSR [63], etc. Again some researchers have introduced these concepts under interval-valued

environments and initiated the notions of interval-valued FSG [47], interval-valued IFSG [52],

interval-valued NSG [64], interval-valued FSR [50], interval-valued IFSR [53], etc. Some more

articles which can be helpful to different researchers are [65–71], etc. But, still, the notion

of interval-valued NSR is undefined. Hence, by mixing interval-valued environment with neu-

trosophic environment, we can introduce a more general version of NSR, which will be called

IVNSR. Also, their homomorphic properties can be studied. Again, their product and normal

forms can be developed and analyzed. Based on these observations, the followings are some

of our main objectives for this article:

• Introducing the notion of IVNSR and a analyzing its homomorphic properties.

• Introducing the product of IVNSRs.

• Introducing subring of a IVNSR.
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• Introducing the notion of IVNNSR and a analyzing its homomorphic attributes.

The subsequent arrangement of this article is: in Section 2, some desk researches of FS,

IFS, NS, IVFS, IVIFS, IVNS, FSR, IFSR, NSR, IVFSR, IVIFSR, etc., are discussed. In

Section 3, the idea of IVNSR has been introduced and some basic theories are provided. Also,

their product and normal versions are defined. Also, some theories are given to understand

their algebraic attributes. Lastly, in Section 4, the concluding segment is given and also some

opportunities for further studies are mentioned.

2. Literature Review

Definition 2.1. [1] A FS of a CS P is defined as the function ν : P → L.

Definition 2.2. [2] An IFS ρ of a CS P is defined as ρ =
{(
r, tρ(r), fγ(r)

)
: r ∈ P

}
, where

∀r ∈ P , tρ(r) and fρ(r) known as the degree of membership and non-membership which satisfy

the inequality 0 ≤ tρ(r) + fρ(r) ≤ 1.

Definition 2.3. [3] A NS κ of a CS P is defined as κ =
{(
r, tκ(r), iκ(r), fκ(r)

)
: r ∈ P

}
,

where ∀r ∈ P , tκ(r), iκ(r), and fκ(r) are known as degree of truth, indeterminacy, and falsity

which satisfy the inequality −0 ≤ tκ(r) + iκ(r) + fκ(r) ≤ 3+.

Definition 2.4. [52] An interval number of L = [0, 1] is denoted as k̄ = [k−, k+], where

1 ≥ k+ ≥ k− ≥ 0.

Definition 2.5. [44] An IVFS of P is defined as the mapping ν : P → ψ(L).

Definition 2.6. [45] An IVIFS of P is defined as the mapping ρ̄ : P → ψ(L) × ψ(L), It is

denoted as ρ̄ =
{(
r, t̄ρ̄(r), f̄ρ̄(r)

)
: r ∈ P

}
, where t̄ρ̄(r), f̄ρ̄(r) ⊆ [0, 1].

Definition 2.7. [46] An IVNS of P is defined as the mapping κ̄ : P → ψ(L)×ψ(L)×ψ(L), It

is denoted as κ̄ =
{(
r, t̄κ̄(r), īκ̄(r), f̄κ̄(r)

)
: r ∈ P

}
where ∀r ∈ P , t̄κ̄(r), īκ̄(r), and f̄κ̄(r) ⊆ L.

Definition 2.8. [46] Let κ̄1 =
{(
r, t̄κ̄1(r), īκ̄1(r), f̄κ̄1(r)

)
: r ∈ P

}
and κ̄2 ={(

r, t̄κ̄2(r), īκ̄2(r), f̄κ̄2(r)
)

: r ∈ P
}

be two IVNSs of P . Then union of κ̄1 and κ̄2 is defined as

t̄κ̄1∪κ̄2 =
[

max
{
t̄−κ̄1 , t̄

−
κ̄2

}
,max

{
t̄+κ̄1 , t̄

+
κ̄2

}]
t̄κ̄1∪κ̄2 =

[
min

{
ī−κ̄1 , ī

−
κ̄2

}
,min

{
ī+κ̄1 , ī

+
κ̄2

}]
t̄κ̄1∪κ̄2 =

[
min

{
f̄−κ̄1 , f̄

−
κ̄2

}
,min

{
f̄+
κ̄1 , f̄

+
κ̄2

}]
Then intersection of κ̄1 and κ̄2 is defined as

t̄κ̄1∩κ̄2 =
[

min
{
t̄−κ̄1 , t̄

−
κ̄2

}
,min

{
t̄+κ̄1 , t̄

+
κ̄2

}]
t̄κ̄1∩κ̄2 =

[
max

{
ī−κ̄1 , ī

−
κ̄2

}
,max

{
ī+κ̄1 , ī

+
κ̄2

}]
t̄κ̄1∩κ̄2 =

[
max

{
f̄−κ̄1 , f̄

−
κ̄2

}
,max

{
f̄+
κ̄1 , f̄

+
κ̄2

}]
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Definition 2.9. [72] A function T : L→ L is called a TN iff ∀r, v, z ∈ L, the followings can

be concluded

(i) T (r, 1) = r

(ii) T (r, v) = T (v, r)

(iii) T (r, v) ≤ T (z, v) if r ≤ z
(iv) T (r, T (v, z)) = T (T (r, v), z)

Definition 2.10. [73] A function T̄ : ψ(L) × ψ(L) → ψ(L) defined as T̄ (k̄, w̄) =

[T (k−, w−), T (k+, w+)], where T is a TN is known as an IVTN.

Definition 2.11. [72] A function S : L→ L is called a SN iff ∀r, v, z ∈ L, the followings can

be concluded

(i) S(r, 0) = r

(ii) S(r, v) = S(v, r)

(iii) S(r, v) ≤ S(z, v) if r ≤ z
(iv) S(r, S(v, z)) = S(S(r, v), z)

Definition 2.12. [73] The function S̄ : ψ(L) × ψ(L) → ψ(L) defined as S̄(k̄, w̄) =

[S(k−, w−), S(k+, w+)], where S is a SN is called an IVSN.

2.1. Fuzzy, Intuitionistic fuzzy & Neutrosophic subrings

Definition 2.13. [60] Let (P,+, ·) be a crisp ring. A FS λ is called a FSR of P , iff ∀r, v ∈ P ,

(i) λ(r − v) ≥ min{λ(r), λ(v)},
(ii) λ(r · v) ≥ min{λ(r), λ(v)}

The set of all FSR of a crisp ring (P,+, · ) will be denoted as FSR(P ).

Theorem 2.1. [61] Any FS λ of a ring (P,+, ·) is a FSR of P iff the level sets λs (λ(θP ) ≥
s ≥ 0) are crisp subrings of P , where θP is the zero element of P .

Definition 2.14. [61] Let λ be a FSR of (P,+, ·) and λ(θP ) ≥ s ≥ 0, where θP is the zero

element of P . Then λs is called a level subring of λ.

Proposition 2.2. [61] Let λ1, λ2 ∈ FSR(P ). Then λ1 ∩ λ2 ∈ FSR(P ).

Theorem 2.3. [61] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If λ is a FSR of P then l(λ) is a FSR of R.

Theorem 2.4. [61] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If λ′ is a FSR of R then l−1(λ′) is a FSR of P .
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Definition 2.15. [62] Let (P,+, ·) be a crisp ring. An IFS γ =
{(
r, tγ(r), fγ(r)

)
: r ∈ P

}
is

called an IFSR of P , iff ∀r, v ∈ P ,

(i) tγ(r + v) ≥ T
(
tγ(r), tγ(v)

)
, fγ(r + v) ≤ S

(
fγ(r), iγ(v)

)
(ii) tγ(−r) ≥ tγ(r), fγ(−r) ≤ fγ(r)

(iii) tγ(r · v) ≥ T
(
tγ(r), tγ(v)

)
, fγ(r · v) ≤ S

(
fγ(r), iγ(v)

)
.

Here, T is a TN and S is a SN.

The set of all IFSR of a crisp ring (P,+, · ) will be denoted as IFSR(P ).

Proposition 2.5. [62] Let γ ∈ IFSR(P ). Then the followings will hold

(i) tγ(−r) = tγ(r), fγ(−r) = fγ(r) and

(ii) tγ(θP ) ≥ tγ(r), fγ(θP ) ≤ fγ(r), where θP is the zero element of P .

Proposition 2.6. [62] An IFS γ =
{(
r, tγ(r), fγ(r)

)
: r ∈ P

}
is called an IFSR of P , iff

∀r, v ∈ P ,

(i) tγ(r − v) ≥ T
(
tγ(r), tγ(v)

)
, fγ(r − v) ≤ S

(
fγ(r), fγ(v)

)
(ii) tγ(r · v) ≥ T

(
tγ(r), tγ(v)

)
, fγ(r · v) ≤ S

(
fγ(r), fγ(v)

)
Proposition 2.7. [62] Let γ1, γ2 ∈ IFSR(P ). Then γ1 ∩ γ2 ∈ IFSR(P ).

Theorem 2.8. [62] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If γ is an IFSR of P then l(γ) is an IFSR of R.

Theorem 2.9. [62] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If γ′ is an IFSR of R then l−1(γ′) is an IFSR of P .

Definition 2.16. [63] Let (P,+, ·) be a crisp ring. A NS ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
is called a NSR of P , iff ∀r, v ∈ P ,

(i) tω(r + v) ≥ T
(
tω(r), tω(v)

)
, iω(r + v) ≥ I

(
iω(r), iω(v)

)
, fω(r + v) ≤ F

(
fω(r), fω(v)

)
(ii) tω(−r) ≥ tω(r), iω(−r) ≥ iω(r), fω(−r) ≤ fω(r)

(iii) tω(r · v) ≥ T
(
tω(r), tω(v)

)
, iω(r · v) ≥ I

(
iω(r), iω(v)

)
, fω(r · v) ≤ S

(
fω(r), fω(v)

)
.

Here, T and I are two TNs and S is a SN.

The set of all NSR of a crisp ring (P,+, · ) will be denoted as NSR(P ).

Proposition 2.10. [63] A NS ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
is called a NSR of P , iff

∀r, v ∈ P ,

(i) tω(r − v) ≥ T
(
tω(r), tω(v)

)
, iω(r − v) ≥ I

(
iω(r), iω(v)

)
, fω(r − v) ≤ F

(
fω(r), fω(v)

)
(ii) tω(r · v) ≥ T

(
tω(r), tω(v)

)
, iω(r · v) ≥ I

(
iω(r), iω(v)

)
, fω(r · v) ≤ S

(
fω(r), fω(v)

)
.

Here, T and I are two TNs and S is a SN.
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Proposition 2.11. [63] Let ω1, ω2 ∈ NSR(P ). Then ω1 ∩ ω2 ∈ NSR(P ).

Theorem 2.12. [63] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If ω is a NSR of P then l(ω) is a NSR of R.

Theorem 2.13. [63] Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a

homomorphism. If ω′ is a NSR of R then l−1(ω′) is a NSR of P .

Definition 2.17. [63] Let ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
be a NSR of P . Then

∀s ∈ [0, 1] the s-level sets of P are defined as

(i) (tω)s = {r ∈ P : tω(r) ≥ s},
(ii) (iω)s = {r ∈ P : iω(r) ≥ s}, and

(iii) (fω)s = {r ∈ P : fω(r) ≤ s}.

Proposition 2.14. [63] A NS ω =
{(
r, tω(r), iω(r), fω(r)

)
: r ∈ P

}
of a crisp ring (P,+, ·)

is a NSR of P iff ∀s ∈ [0, 1] the s-level sets of P , i.e. (tω)s, (iω)s, and (fω)s are crisp rings of

P .

2.2. Interval-valued Fuzzy and intuitionistic fuzzy subrings

Definition 2.18. [50] Let (P,+, ·) be a crisp ring. An IVFS Λ =
{(
r, t̄Λ(r)

)
: r ∈ P

}
is called

an IVFSR of (P,+, ·) with respect to IVTN T̄ if ∀r, v ∈ P, the followings can be concluded:

(i) t̄Λ(r + v) ≥ T̄
(
t̄Λ(r), t̄Λ(v)

)
,

(ii) t̄Λ(−r) ≥ Λ(r), and

(iii) t̄Λ(r · v) ≥ T̄
(
t̄Λ(r), t̄Λ(v)

)
,

The set of all IVFSR of a crisp ring (P,+, · ) with respect to an IVTN T̄ will be denoted as

IVFSR(P, T̄ ).

Proposition 2.15. [50] Let λ =
{(
r, tλ(r)

)
: r ∈ P

}
be a FSR of (P,+, ·). Then Λ = [tλ, tλ]

is an IVFSR of P .

Proposition 2.16. [50] Let Λ =
{(
r, t̄Λ(r)

)
: r ∈ P

}
be an IVFSR of (P,+, ·). Then

Λ− =
{(
r, t̄−Λ(r)

)
: r ∈ P

}
and Λ+ =

{(
r, t̄+Λ(r)

)
: r ∈ P

}
are FSRs of P .

Definition 2.19. [53] Let (P,+, ·) be a crisp ring. An IVIFS Γ =
{(
r, t̄Γ(r), f̄Γ(r)

)
: r ∈ P

}
is called an IVIFSR of (P,+, ·) if ∀r, v ∈ P, the followings can be concluded:

(i) t̄Γ(r + v) ≥ T̄
(
t̄Γ(r), t̄Γ(v)

)
, f̄Γ(r + v) ≤ F̄

(
f̄Γ(r), f̄Γ(v)

)
,

(ii) t̄Γ(−r) ≥ t̄Γ(r), f̄Γ(−r) ≤ f̄Γ(r), and

(iii) t̄Γ(r · v) ≥ T̄
(
t̄Γ(r), t̄Γ(v)

)
, f̄Γ(r · v) ≤ F̄

(
f̄Γ(r), f̄Γ(v)

)
.

The set of all IVIFSR of a crisp ring (P,+, · ) will be denoted as IVIFSR(P ).

S. Gayen; F. Smarandache; S. Jha; and R. Kumar. Introduction to Interval-valued Neutrosophic Subring



Neutrosophic Sets and Systems, Vol. 36 , 2020 227

Theorem 2.17. [53] If Γ =
{(
r, t̄Γ(r), f̄Γ(r)

)
: r ∈ P

}
∈ IVIFSR(P ), then t̄Γ(r) ≤ t̄Γ(θP )

and f̄Γ(r) ≥ f̄Γ(θP ).

Theorem 2.18. [53] If Γ1 and Γ2 ∈ IVIFSR(P ), then Γ1 ∩ Γ2 ∈ IVIFSR(P ).

Theorem 2.19. [53] Let Γ =
{(
r, t̄Γ(r), f̄Γ(r)

)
: r ∈ P

}
∈ IVIFSR(P ), then ∀r, v ∈ P

(i) t̄Γ(r − v) = t̄Γ(θP ) implies that t̄Γ(r) = t̄Γ(v).

(ii) f̄Γ(r − v) = f̄Γ(θP ) implies that f̄Γ(r) = f̄Γ(v).

3. Proposed notion of interval-valued neutrosophic subring

Definition 3.1. Let (P,+, ·) be a crisp ring. An IVNS Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
is called an IVNSR of (P,+, ·) if ∀r, v ∈ P, the followings can be concluded:

(i)


t̄Ω(r + v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r + v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r + v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
(ii)


t̄Ω(−r) ≥tΩ(r),

īΩ(−r) ≤iΩ(r),

f̄Ω(−r) ≤fΩ(r)

(iii)


t̄Ω(r · v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r · v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r · v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
,

where T̄ is an IVTN, Ī and F̄ are two IVSNs.

The set of all IVNSR of a crisp ring (P,+, · ) will be denoted as IVNSR(P ).

Example 3.2. Let (Z,+, ·) be the ring of integers with respect to usual addition and multi-

plication. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ Z

}
be an IVNS of Z, where ∀r ∈ Z

t̄Ω(r) =

[0.2, 0.25] if r ∈ 2Z

[0, 0] if r ∈ 2Z+ 1
,

īΩ(r) =

[0, 0] if r ∈ 2Z

[0.1, 0.12] if r ∈ 2Z+ 1
, and

f̄Ω(r) =

[0, 0] if r ∈ 2Z

[0.75, 0.8] if r ∈ 2Z+ 1
.

Now, if we consider minimum TN and maximum SNs, then Ω ∈ IVNSR(Z).
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Example 3.3. Let (Z4,+, ·) be the ring of integers modulo 4 with usual addition and multi-

plication. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ Z4

}
be an IVNS of Z4, where interval-valued

memberships of elements belonging to Ω are mentioned in Table 2.

Table 2. Membership values of elements belonging to Ω

Ω t̄Ω īΩ f̄Ω

0̄ [0.6, 0.7] [0.33, 0.35] [0.2, 0.3]

1̄ [0.7, 0.8] [0.21, 0.23] [0.5, 0.6]

2̄ [0.75, 0.85] [0.24, 0.26] [0.3, 0.7]

3̄ [0.75, 0.9] [0.31, 0.33] [0.5, 0.7]

Now, if we consider the  Lukasiewicz T-norm (T (r, v) = max{0, r + v − 1}) and bounded sum

S-norms (S(r, v) = min{r + v, 1}), then Ω ∈ IVNSR(Z4).

Proposition 3.1. An IVNS Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
of a crisp ring (P,+, ·)

is an IVNSR iff the followings can be concluded (assuming that all the IVTN and IVSNs are

idempotent):

(i)


t̄Ω(r − v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r − v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r − v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
(ii)


t̄Ω(r · v) ≥T̄

(
t̄Ω(r), t̄Ω(v)

)
,

īΩ(r · v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
,

f̄Ω(r · v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
.

Proof. Let Ω ∈ IVNSR(P ). Then we have

t̄Ω(r − v) ≥ T̄
(
t̄Ω(r), t̄Ω(−v)

)
[by condition (i) of Definition 3.1]

≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
[by condition (ii) of Definition 3.1]

Similary, we will have

īΩ(r − v) ≤Ī
(̄
iΩ(r), īΩ(v)

)
, and

f̄Ω(r − v) ≤F̄
(
f̄Ω(r), f̄Ω(v)

)
,

which proves (i).

Again, (ii) follows immediately from condition (iii) of Definition 3.1.

Conversely, let (i) and (ii) of Proposition 3.1 hold. Also, let θP be the additive neutral element
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in (P,+, ·). Then

t̄Ω(θP ) = t̄Ω(r − r)

≥ T̄
(
t̄Ω(r), t̄Ω(r)

)
= t̄Ω(r) (3.1)

Similaly, we can show that

īΩ(θP ) ≤ īΩ(r) (3.2)

f̄Ω(θP ) ≤ f̄Ω(r) (3.3)

Now,

t̄Ω(−r) = t̄Ω(θP − r)

≥ T̄
(
t̄Ω(θP ), t̄Ω(r)

)
≥ T̄

(
t̄Ω(r), t̄Ω(r)

)
[by 3.1]

= t̄Ω(r) [since T̄ is idempotent] (3.4)

Similarly, we can prove

īΩ(−r) ≤ īΩ(r) [since Ī is idempotent] (3.5)

f̄Ω(−r) ≤ f̄Ω(r) [since F̄ is idempotent] (3.6)

Hence,

t̄Ω(r + v) = t̄Ω(r − (−v))

≥ T̄
(
t̄Ω(r), t̄Ω(−v)

)
≥ T̄

(
t̄Ω(r), t̄Ω(v)

)
[by 3.4] (3.7)

Similarly,

īΩ(r + v) ≤ Ī
(
t̄Ω(r), t̄Ω(v)

)
[by 3.5] (3.8)

f̄Ω(r + v) ≤ F̄
(
t̄Ω(r), t̄Ω(v)

)
[by 3.6] (3.9)

So, by Equations 3.7, 3.8, and 3.9 condition (i) of Proposition 3.1 has been proved. Also,

condition (ii) of Proposition 3.1 is same as condition (iii) of Definition 3.1. Hence, Ω ∈
IVNSR(P ).

Theorem 3.2. Let (P,+, ·) be a crisp ring. If Ω1,Ω2 ∈ IVNSR(P ), then Ω1∩Ω2 ∈ IVNSR(P )

(assuming all the IVTN and IVSNs are idempotent).
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Proof. Let Ω = Ω1 ∩ Ω2. Now, ∀r, v ∈ P

t̄Ω(r + v) = T̄
(
t̄Ω1(r + v), t̄Ω2(r + v)

)
≥ T̄

(
T̄
(
t̄Ω1(r), t̄Ω1(v)

)
, T̄
(
t̄Ω2(r), t̄Ω2(v)

))
= T̄

(
T̄
(
t̄Ω1(r), t̄Ω1(v)

)
, T̄
(
t̄Ω2(v), t̄Ω2(r)

))
[as T̄ is commutative]

= T̄
(
T̄
(
t̄Ω1(r), t̄Ω2(r)

)
, T̄
(
t̄Ω1(v), t̄Ω2(v)

))
[as T̄ is associative]

= T̄
(
t̄Ω(r), t̄Ω(v)

)
(3.10)

Similarly, as both Ī and S̄ are commutative as well as associative, we will have

īΩ(r + v) ≤ Ī
(̄
iΩ(r), īΩ(v)

)
(3.11)

f̄Ω(r + v) ≤ F̄
(
f̄Ω(r), f̄Ω(v)

)
(3.12)

Again,

t̄Ω(−r) = T̄
(
t̄Ω1(−r), t̄Ω2(−r)

)
≥ T̄

(
t̄Ω1(r), t̄Ω2(r)

)
[by Definition 3.1]

= t̄Ω(r) (3.13)

Also,

īΩ(−r) ≤ īΩ(r) (3.14)

f̄Ω(−r) ≤ f̄Ω(r) (3.15)

Similarly, we can show that

t̄Ω(r · v) ≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
, (3.16)

īΩ(r · v) ≤ Ī
(̄
iΩ(r), īΩ(v)

)
, and (3.17)

f̄Ω(r · v) ≤ F̄
(
f̄Ω(r), f̄Ω(v)

)
(3.18)

Hence, by Equations 3.10–3.18 Ω = Ω1 ∩ Ω2 ∈ IVNSR(P ).

Remark 3.3. In general, if Ω1,Ω2 ∈ IVNSR(P ), then Ω1 ∪Ω2 may not always be an IVNSR

of (P,+, ·).

The following Example 3.4 will prove our claim.

Example 3.4. Let (Z,+, ·) be the ring of integers with respect to usual addition and multi-

plication. Let Ω1 =
{(
r, t̄Ω1(r), īΩ1(r), f̄Ω1(r)

)
: r ∈ Z

}
and Ω2 =

{(
r, t̄Ω2(r), īΩ2(r), f̄Ω2(r)

)
:
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r ∈ Z
}

be two IVNSs of Z, where ∀r ∈ Z

t̄Ω1(r) =

[0.25, 0.4] if r ∈ 2Z

[0, 0] if r ∈ 2Z+ 1
,

īΩ1(r) =

[0, 0] if r ∈ 2Z

[0.17, 0.2] if r ∈ 2Z+ 1
, and

f̄Ω1(r) =

[0, 0] if r ∈ 2Z

[0.33, 0.4] if r ∈ 2Z+ 1
.

and

t̄Ω2(r) =

[0.5, 0.67] if r ∈ 3Z

[0, 0] if r ∈ 3Z+ 1
,

īΩ2(r) =

[0, 0] if r ∈ 3Z

[0.2, 0.25] if r ∈ 3Z+ 1
, and

f̄Ω2(r) =

[0, 0] if r ∈ 3Z

[0.33, 0.5] if r ∈ 3Z+ 1
.

Now, if we consider minimum TN and maximum SNs, then Ω1,Ω2 ∈ IVNSR(Z).

Now let Ω = Ω1 ∪ Ω2. Then for r = 4 and v = 9

t̄Ω(r + v) = t̄Ω(4 + 9)

= t̄Ω(13)

= max{t̄Ω1(13), t̄Ω2(13)}

= max{[0, 0], [0, 0]}

= [0, 0]

Again, if Ω ∈ IVNSR(P ), then ∀r, v ∈ P , t̄Ω(r + v) ≥ min{t̄Ω(r), t̄Ω(v)}. But, here for r = 4

and v = 9, min{t̄Ω(4), t̄Ω(9)} = min{[0.25, 0.4], [0.5, 0.67]} = [0.25, 0.4] � [0, 0] = t̄Ω(4 + 9).

Hence, Ω 6∈ IVNSR(P ).

Corollary 3.4. If Ω1,Ω2 ∈ IVNSR(P ), then Ω1 ∪ Ω2 ∈ IVNSR(P ) iff one is contained in

other.

Definition 3.5. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
be an IVNS of a crisp ring (P,+, ·).

Also, let [k1, s1], [k2, s2] and [k3, s3] ∈ Ψ(L). Then the crisp set Ω(
[k1,s1],[k2,s2],[k3,s3]

) is called

a level set of IVNSR Ω, where for any r ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

) the following inequalities will

hold: t̄Ω(r) ≥ [k1, s1], īΩ(r) ≤ [k2, s2], and f̄Ω(r) ≤ [k3, s3].
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Theorem 3.5. Let (P,+, ·) be a crisp ring. Then Ω ∈ IVNSR(P ) iff ∀[k1, s1], [k2, s2], [k3, s3] ∈
Ψ(L) with t̄Ω(θP ) ≥ [k1, s1], īΩ(θP ) ≤ [k2, s2], and f̄Ω(θP ) ≤ [k3, s3], Ω(

[k1,s1],[k2,s2],[k3,s3]
) is a

crisp subring of (P,+, ·) (assuming all the IVTN and IVSNs are idempotent).

Proof. Since, t̄Ω(θP ) ≥ [k1, s1], īΩ(θP ) ≤ [k2, s2], and f̄Ω(θP ) ≤ [k3, s3], θP ∈
Ω(

[k1,s1],[k2,s2],[k3,s3]
), i.e., Ω(

[k1,s1],[k2,s2],[k3,s3]
) is non-empty.

Now, let Ω ∈ IVNSR(P ) and r, v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

). To show that, (r − v) and

r · v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

). Here,

t̄Ω(r − v) ≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
[by Proposition 3.1]

≥ T̄
(
[k1, s1], [k1, s1]

) [
as r, v ∈ Ω(

[k1,s1],[k2,s2],[k3,s3]
)]

≥ [k1, s1] [as T̄ is idempotent] (3.19)

Again,

t̄Ω(r · v) ≥ T̄
(
t̄Ω(r), t̄Ω(v)

)
[by Proposition 3.1]

≥ T̄
(
[k1, s1], [k1, s1]

) [
as r, v ∈ Ω(

[k1,s1],[k2,s2],[k3,s3]
)]

≥ [k1, s1] [as T̄ is idempotent] (3.20)

Similarly, we can show that

īΩ(r − v) ≤ [k2, s2], (3.21)

īΩ(r · v) ≤ [k2, s2], (3.22)

f̄Ω(r − v) ≤ [k3, s3], and (3.23)

f̄Ω(r · v) ≤ [k3, s3] (3.24)

Hence, by Equations 3.19–3.24 (r−v) and r ·v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

), i.e., Ω(
[k1,s1],[k2,s2],[k3,s3]

)
is a crisp subring of (P,+, ·).
Conversely, let Ω(

[k1,s1],[k2,s2],[k3,s3]
) is a crisp subgroup of (P,+, ·). To show that, Ω ∈

IVNSR(P ).

Let r, v ∈ P , then there exists [k1, s1] ∈ Ψ(L) such that T̄
(
t̄Ω(r), t̄Ω(v)

)
= [k1, s1]. So,

t̄Ω(r) ≥ [k1, s1] and t̄Ω(v) ≥ [k1, s1]. Also, let there exist [k2, s2], [k3, s3] ∈ Ψ(L) such that

Ī
(̄
iΩ(r), īΩ(v)

)
= [k2, s2] and F̄

(
f̄Ω(r), f̄Ω(v)

)
= [k3, s3]. Then r, v ∈ Ω(

[k1,s1],[k2,s2],[k3,s3]
).

Again, as Ω(
[k1,s1],[k2,s2],[k3,s3]

) is a crisp subring, r − v ∈ Ω(
[k1,s1],[k2,s2],[k3,s3]

) and r · v ∈
Ω(

[k1,s1],[k2,s2],[k3,s3]
).
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Hence,

t̄Ω(r − v) ≥ [k1, s1]

= T̄
(
t̄Ω(r), t̄Ω(v)

)
and (3.25)

t̄Ω(r · v) ≥ [k1, s1]

= T̄
(
t̄Ω(r), t̄Ω(v)

)
(3.26)

Similarly, we can prove that

īΩ(r − v) ≤ [k2, s2]

= Ī
(̄
iΩ(r), īΩ(v)

)
, (3.27)

īΩ(r · v) ≤ [k2, s2]

= Ī
(̄
iΩ(r), īΩ(v)

)
, (3.28)

f̄Ω(r − v) ≤ [k3, s3]

= F̄
(
f̄Ω(r), f̄Ω(v)

)
, and (3.29)

f̄Ω(r · v) ≤ [k3, s3]

= F̄
(
f̄Ω(r), f̄Ω(v)

)
(3.30)

So, Equations 3.25–3.30 imply that Ω follows Proposition 3.1, i.e., Ω ∈ IVNSR(P ).

Definition 3.6. Let Ω and Ω′ be two IVNSs of two CSs P and R, respectively. Also, let

l : P → R be a function. Then

(i) image of Ω under l will be l(Ω) =
{(
v, t̄l(Ω)(v), īl(Ω)(v), f̄l(Ω)(v)

)
: v ∈ R

}
, where

t̄l(Ω)(v) = ∨
s∈l−1(v)

t̄Ω(s), īl(Ω)(v) = ∧
s∈l−1(v)

īΩ(s), f̄l(Ω)(v) = ∧
s∈l−1(v)

f̄Ω(s). Wherefrom, if

l is injective then t̄l(Ω)(v) = t̄Ω
(
l−1(v)

)
, īl(Ω)(v) = īΩ

(
l−1(v)

)
, f̄l(Ω)(v) = f̄Ω

(
l−1(v)

)
,

and

(ii) preimage of Ω′ under l will be l−1(Ω′) =
{(
r, t̄l−1(Ω′)(r), īl−1(Ω′)(r), f̄l−1(Ω′)(r)

)
: r ∈ R

}
,

where t̄l−1(Ω′)(r) = t̄Ω′
(
l(r)
)
, īl−1(Ω′)(r) = īΩ′

(
l(r)
)
, f̄l−1(Ω′)(r) = f̄Ω′

(
l(r)
)
.

Theorem 3.6. Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a ring

isomorphism. If Ω is an IVNSR of P then l(Ω) is an IVNSR of R.
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Proof. Let v1 = l(r1) and v2 = l(r2), where r1, r2 ∈ P and v1, v2 ∈ R. Now,

t̄l(Ω)(v1 − v2) = t̄Ω
(
l−1(v1 − v2)

)
[as l is injective]

= t̄Ω
(
l−1(v1)− l−1(v2)

)
[as l−1 is a homomorphism]

= t̄Ω(r1 − r2)

≥ T̄
(
t̄Ω(r1), t̄Ω(r2)

)
= T̄

(
t̄Ω
(
l−1(v1)

)
, t̄Ω
(
l−1(v2)

))
= T̄

(
t̄l(Ω)(v1), t̄l(Ω)(v2)

)
(3.31)

Again,

t̄l(Ω)(v1 · v2) = t̄Ω
(
l−1(v1 · v2)

)
[as l is injective]

= t̄Ω
(
l−1(v1) · l−1(v2)

)
[as l−1 is a homomorphism]

= t̄Ω(r1 · r2)

≥ T̄
(
t̄Ω(r1), t̄Ω(r2)

)
= T̄

(
t̄Ω
(
l−1(v1)

)
, t̄Ω
(
l−1(v2)

))
= T̄

(
t̄l(Ω)(v1), t̄l(Ω)(v2)

)
(3.32)

Similarly,

īl(Ω)(v1 − v2) ≤ Ī
(̄
il(Ω)(v1), īl(Ω)(v2)

)
, (3.33)

īl(Ω)(v1 · v2) ≤ Ī
(̄
il(Ω)(v1), īl(Ω)(v2)

)
, (3.34)

f̄l(Ω)(v1 − v2) ≤ F̄
(
f̄l(Ω)(v1), f̄l(Ω)(v2)

)
, and (3.35)

f̄l(Ω)(v1 · v2) ≤ F̄
(
f̄l(Ω)(v1), f̄l(Ω)(v2)

)
(3.36)

Hence, Equations 3.31–3.36 imply that l(Ω) follows Proposition 3.1, i.e., l(Ω) is an IVNSR of

R.

Theorem 3.7. Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a ring

homomorphism. If Ω′ is an IVNSR of R then l−1(Ω′) is an IVNSR of P (Note that, l−1 may

not be an inverse mapping but l−1(Ω′) is an inverse image of Ω′).
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Proof. Let v1 = l(r1) and v2 = l(r2), where r1, r2 ∈ P and v1, v2 ∈ R. Now,

t̄l−1(Ω′)(r1 − r2) = t̄Ω′
(
l(r1 − r2)

)
= t̄Ω′

(
l(r1)− l(r2)

)
[as l is a homomorphism]

= t̄Ω′(v1 − v2)

≥ T̄
(
t̄Ω′(v1), t̄Ω′(v2)

)
= T̄

(
t̄Ω′
(
l(r1)

)
, t̄Ω′

(
l(r2)

))
= T̄

(
t̄l−1(Ω′)(r1), t̄l−1(Ω′)(r2)

)
(3.37)

Again,

t̄l−1(Ω′)(r1 · r2) = t̄Ω′
(
l(r1 · r2)

)
= t̄Ω′

(
l(r1) · l(r2)

)
[as l is a homomorphism]

= t̄Ω′(v1 · v2)

≥ T̄
(
t̄Ω′(v1), t̄Ω′(v2)

)
= T̄

(
t̄Ω′
(
l(r1)

)
, t̄Ω′

(
l(r2)

))
= T̄

(
t̄l−1(Ω′)(r1), t̄l−1(Ω′)(r2)

)
(3.38)

Similarly,

īl−1(Ω′)(r1 − r2) ≤ Ī
(̄
il−1(Ω′)(r1), īl−1(Ω′)(r2)

)
(3.39)

īl−1(Ω′)(r1 · r2) ≤ Ī
(̄
il−1(Ω′)(r1), īl−1(Ω′)(r2)

)
(3.40)

f̄l−1(Ω′)(r1 − r2) ≤ F̄
(
f̄l−1(Ω′)(r1), f̄l−1(Ω′)(r2)

)
(3.41)

f̄l−1(Ω′)(r1 · r2) ≤ F̄
(
f̄l−1(Ω′)(r1), f̄l−1(Ω′)(r2)

)
(3.42)

Hence, Equations 3.37–3.42 imply that l−1(Ω′) follows Proposition 3.1, i.e., l−1(Ω′) is an

IVNSR of P .

Definition 3.7. Let (P,+, ·) be a crisp ring and Ω ∈ IVNSR(P ). Again, let σ̄ = [σ1, σ2], τ̄ =

[τ1, τ2], δ̄ = [δ1, δ2] ∈ Ψ(L). Then
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(i) Ω is called a (σ̄, τ̄ , δ̄)−identity IVNSR over P , if ∀r ∈ P

t̄Ω(r) =

σ̄ if r = θP

[0, 0] if r 6= θP
,

īΩ(r) =

τ̄ if r = θP

[1, 1] if r 6= θP
, and

f̄Ω(r) =

δ̄ if r = θP

[1, 1] if r 6= θP
,

where θP is the zero element of P .

(ii) Ω is called a (σ̄, τ̄ , δ̄)−absolute IVNSR over P , if ∀r ∈ P , t̄Ω(r) = σ̄, īΩ(r) = τ̄ , and

f̄Ω(r) = δ̄.

Theorem 3.8. Let (P,+, ·) and (R,+, ·) be two crisp rings and Ω ∈IVNSR (P ). Again, let

l : P → R be a ring homomorphism. Then

(i) l(Ω) will be a (σ̄, τ̄ , δ̄)−identity IVNSR over R, if ∀r ∈ P

t̄Ω(r) =

σ̄ if r ∈ Ker(l)

[0, 0] otherwise
,

īΩ(r) =

τ̄ if r ∈ Ker(l)

[1, 1] otherwise
, and

f̄Ω(r) =

δ̄ if r ∈ Ker(l)

[1, 1] otherwise
,

(ii) l(Ω) will be a (σ̄, τ̄ , δ̄)−absolute IVNSR over R, if Ω is a (σ̄, τ̄ , δ̄)−absolute IVNSR

over P .

Proof. (i) Clearly, by Theorem 3.6 l(Ω) ∈ IVNSR(R). Let r ∈ Ker(l), then l(r) = θR.

So,

t̄l(Ω)(θR) = t̄Ω
(
l−1(θR)

)
= t̄Ω(r)

= σ̄ (3.43)

Similarly, we can show that

īl(Ω)(θR) = τ̄ , and (3.44)

f̄l(Ω)(θR) = δ̄ (3.45)
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Again, let r ∈ P \Ker(l) and l(r) = v. Then

t̄l(Ω)(v) = t̄Ω
(
l−1(v)

)
= t̄Ω(r)

= [0, 0] (3.46)

Similarly, we can show that

īl(Ω)(v) = [1, 1] and (3.47)

f̄l(Ω)(v) = [1, 1] (3.48)

Hence, by the Equations 3.43–3.48 l(Ω) is a (σ̄, τ̄ , δ̄)−identity IVNSR over R.

(ii) Let l(r) = v, for r ∈ P and v ∈ R. Then

t̄l(Ω)(v) = t̄Ω
(
l−1(v)

)
= t̄Ω(r)

= σ̄ (3.49)

Similarly, we can show that

īl(Ω)(v) = τ̄ and (3.50)

f̄l(Ω)(v) = δ̄ (3.51)

Hence, by the Equations 3.48–3.51 l(Ω) is a (σ̄, τ̄ , δ̄)−absolute IVNSR over R.

3.1. Product of interval-valued neutrosophic subrings

Definition 3.8. Let (P,+, ·) and (R,+, ·) be two crisp rings. Again, let Ω1 ={(
r, t̄Ω1(r), īΩ1(r), f̄Ω1(r)

)
: r ∈ P

}
and Ω2 =

{(
v, t̄Ω2(v), īΩ2(v), f̄Ω2(v)

)
: v ∈ R

}
are IVNSRs

of P and R respectively. Then Cartesian product of Ω1 and Ω2 will be

Ω = Ω1 × Ω2

=
{(

(r, v), T̄
(
t̄Ω1(r), t̄Ω2(v)

)
, Ī
(̄
iΩ1(r), īΩ2(v)

)
, F̄
(
f̄Ω1(r), f̄Ω2(v)

))
: (r, v) ∈ P ×R

}
Similarly, product of 3 or more IVNSRs can be defined.

Theorem 3.9. Let (P,+, ·) and (R,+, ·) be two crisp rings with Ω1 ∈ IVNSR(P ) and Ω2 ∈
IVNSR(R). Then Ω1 × Ω2 is a IVNSR of P ×R.
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Proof. Let Ω = Ω1 × Ω2 and (r1, v1), (r2, v2) ∈ P ×R. Then

t̄Ω
(
(r1, v1)− (r2, v2)

)
= t̄Ω1×Ω2

(
(r1 − r2, v1 − v2)

)
= T̄

(
t̄Ω1(r1 − r2), t̄Ω2(v1 − v2)

)
[by Definition 3.8]

≥ T̄
(
T̄
(
t̄Ω1(r1), t̄Ω1(r2)

)
, T̄
(
t̄Ω2(v1), t̄Ω2(v2)

))
[by Proposition 3.1]

= T̄
(
T̄
(
t̄Ω1(r1), t̄Ω2(v1)

)
, T̄
(
t̄Ω1(r2), t̄Ω2(v2)

))
[as T̄ is associative]

= T̄
(
t̄Ω(r1, v1), t̄Ω(r2, v2)

)
(3.52)

Again,

t̄Ω
(
(r1, v1) · (r2, v2)

)
= t̄Ω1×Ω2

(
(r1 · r2, v1 · v2)

)
= T̄

(
t̄Ω1(r1 · r2), t̄Ω2(v1 · v2)

)
[by Definition 3.8]

≥ T̄
(
T̄
(
t̄Ω1(r1), t̄Ω1(r2)

)
, T̄
(
t̄Ω2(v1), t̄Ω2(v2)

))
[by Proposition 3.1]

= T̄
(
T̄
(
t̄Ω1(r1), t̄Ω2(v1)

)
, T̄
(
t̄Ω1(r2), t̄Ω2(v2)

))
[as T̄ is associative]

= T̄
(
t̄Ω(r1, v1), t̄Ω(r2, v2)

)
(3.53)

Similary, the followings can be shown

īΩ
(
(r1, v1)− (r2, v2)

)
≤ Ī
(̄
iΩ(r1, v1), īΩ(r2, v2)

)
, (3.54)

īΩ
(
(r1, v1) · (r2, v2)

)
≤ Ī
(̄
iΩ(r1, v1), īΩ(r2, v2)

)
, (3.55)

f̄Ω

(
(r1, v1)− (r2, v2)

)
≤ F̄

(
f̄Ω(r1, v1), f̄Ω(r2, v2)

)
, and (3.56)

f̄Ω

(
(r1, v1) · (r2, v2)

)
≤ F̄

(
f̄Ω(r1, v1), f̄Ω(r2, v2)

)
(3.57)

Hence, using Proposition 3.1 and by Equations 3.52–3.57 Ω1 × Ω2 ∈ IVNSR(P ×R).

Corollary 3.10. Let ∀i ∈ {1, 2, ..., n}, (Pi,+, ·) are crisp rings and Ωi ∈ IVNSR(Pi). Then

Ω1 × Ω2 × · · · × Ωn is a IVNSR of P1 × P2 × · · · × Pn, where n ∈ N.

3.2. Subring of a interval-valued neutrosophic subgring

Definition 3.9. Let (P,+, ·) be a crisp ring and Ω1,Ω2 ∈ IVNSR(P ), where Ω1 ={(
r, t̄Ω1(r), īΩ1(r), f̄Ω1(r)

)
: r ∈ P

}
and Ω2 =

{(
r, t̄Ω2(r), īΩ2(r), f̄Ω2(r)

)
: r ∈ P

}
. Then

Ω1 is called a subring of Ω2 if ∀r ∈ P , t̄Ω1(r) ≤ t̄Ω2(r), īΩ1(r) ≥ īΩ2(r), and f̄Ω1(r) ≥ f̄Ω2(r).

Theorem 3.11. Let (P,+, ·) be a crisp ring and Ω ∈ IVNSR(P ). Again, let Ω1 and Ω2 be two

subrings of Ω. Then Ω1 ∩ Ω2 is also a subring of Ω, assuming that all the IVTN and IVSNs

are idempotent.
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Proof. Here, ∀r ∈ P

t̄Ω1∩Ω2(r) = T̄
(
t̄Ω1(r), t̄Ω2(r)

)
≤ T̄

(
t̄Ω(r), t̄Ω(r)

)
= t̄Ω(r) [as T̄ is idempotent] (3.58)

Similarly, as Ī and F̄ are idempotent we can show that,

īΩ1∩Ω2(r) ≥ īΩ(r) and (3.59)

f̄Ω1∩Ω2(r) ≥ f̄Ω(r) (3.60)

Hence, by Equations 3.58–3.60 Ω1 ∩ Ω2 is a subring of Ω.

Theorem 3.12. Let (P,+, ·) be a crisp ring and Ω1,Ω2 ∈ IVNSR(P ) such that Ω1 is a subring

of Ω2. Let (R,+, ·) is another crisp ring and l : P → R be a ring isomorphism. Then

(i) l(Ω1) and l(Ω2) are two IVNSRs over R and

(ii) l(Ω1) is a subring of l(Ω2).

Proof. (i) can be proved by using Theorem 3.6.

(ii) Let v = l(r), where r ∈ P and v ∈ R. Then

t̄Ω1(r) ≤ t̄Ω2(r) [as Ω1 is a subring of Ω2]

⇒t̄Ω1

(
l−1(v)

)
≤ t̄Ω2

(
l−1(v)

)
⇒t̄l(Ω1)(v) ≤ t̄l(Ω2)(v) (3.61)

Similarly, we can prove that

īl(Ω1)(v) ≥ īl(Ω2)(v) and (3.62)

f̄l(Ω1)(v) ≥ f̄l(Ω2)(v) (3.63)

Hence, by Equations 3.61–3.63 l(Ω1) is a subring of l(Ω2).

3.3. Interval-valued neutrosophic normal subrings

Definition 3.10. Let (P,+, ·) be a crisp ring and Ω is an IVNS of P , where Ω ={(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ P

}
. Then Ω is called an IVNNSR over P if

(i) Ω is an IVNSR of P and

(ii) ∀r, v ∈ P , t̄Ω(r · v) = t̄Ω(v · r), īΩ(r · v) = īΩ(v · r), and f̄Ω(r · v) = f̄Ω(v · r).

The set of all IVNNSR of a crisp ring (P,+, · ) will be denoted as IVNNSR(P ).
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Example 3.11. Let (Z,+, ·) be the ring of integers with respect to usual addition and mul-

tiplication. Let Ω =
{(
r, t̄Ω(r), īΩ(r), f̄Ω(r)

)
: r ∈ Z

}
be an IVNS of Z, where ∀r ∈ Z

t̄Ω(r) =

[0.67, 1] if r ∈ 2Z

[0, 0] if r ∈ 2Z+ 1
,

īΩ(r) =

[0, 0] if r ∈ 2Z

[0.33, 0.5] if r ∈ 2Z+ 1
, and

f̄Ω(r) =

[0, 0] if r ∈ 2Z

[0, 0.33] if r ∈ 2Z+ 1
.

Now, if we consider minimum TN and maximum SNs, then Ω ∈ IVNNSR(Z).

Theorem 3.13. Let (P,+, ·) be a crisp ring. If Ω1,Ω2 ∈ IVNNSR(P ), then Ω1 ∩ Ω2 ∈
IVNNSR(P ).

Proof. As Ω1,Ω2 ∈ IVNSR(P ) by Theorem 3.2 Ω1 ∩ Ω2 ∈ IVNSR(P ). Again,

t̄Ω1∩Ω2(r · v) = T̄
(
t̄Ω1(r · v), t̄Ω2(r · v)

)
= T̄

(
t̄Ω1(v · r), t̄Ω2(v · r)

)
[as Ω1,Ω2 ∈ IVNNSR(P )]

= t̄Ω1∩Ω2(v · r) (3.64)

Similarly,

īΩ1∩Ω2(r · v) = īΩ1∩Ω2(v · r) (3.65)

f̄Ω1∩Ω2(r · v) = f̄Ω1∩Ω2(v · r) (3.66)

Hence, Ω1 ∩ Ω2 ∈ IVNNSR(P ).

Remark 3.14. In general, if Ω1,Ω2 ∈ IVNNSR(P ), then Ω1 ∪ Ω2 may not always be an

IVNNSR of (P,+, ·).

Remark 3.14 can be proved by Example 3.4.

Theorem 3.15. Let (P,+, ·) be a crisp ring. Then Ω ∈ IVNNSR(P ) iff

∀[k1, s1], [k2, s2], [k3, s3] ∈ Ψ(L) with t̄Ω(θP ) ≥ [k1, s1], īΩ(θP ) ≤ [k2, s2], and f̄Ω(θP ) ≤ [k3, s3],

Ω(
[k1,s1],[k2,s2],[k3,s3]

) is a crisp normal subring of (P,+, ·) (assuming all the IVTN and IVSNs

are idempotent).

Proof. This can be proved using Theorem 3.5.
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Theorem 3.16. Let (P,+, ·) and (R,+, ·) be two crisp rings. Also, let l : P → R be a ring

isomorphism. If Ω is an IVNNSR of P then l(Ω) is an IVNNSR of R.

Proof. As Ω is an IVNSR of P by Theorem 3.6 l(Ω) is an IVNSR of R. Let l(r1) = v1 and

l(r2) = v2, where r1, r2 ∈ P and v1, v2 ∈ R. Then

t̄l(Ω)(v1 · v2) = t̄Ω
(
l−1(v1 · v2)

)
[as l is injective]

= t̄Ω
(
l−1(v1) · l−1(v2)

)
[as l−1 is a homomorphism]

= t̄Ω(r1 · r2)

= t̄Ω(r2 · r1) [as Ω is an IVNNSR of P ]

= t̄Ω
(
l−1(v2) · l−1(v1)

)
= t̄Ω

(
l−1(v2 · v1)

)
= t̄l(Ω)(v2 · v1) (3.67)

Similarly,

īl(Ω)(v1 · v2) = īl(Ω)(v2 · v1) and (3.68)

f̄l(Ω)(v1 · v2) = f̄l(Ω)(v2 · v1) (3.69)

Hence, by Equations 3.67–3.69 l(Ω) is an IVNNSR of R.

4. Conclusions

As interval-valued neutrosophic environment is more general than regular one, we have

adopted it and defined the notions of interval-valued neutrosophic subring and its normal

version. Also, we have analyzed some homomorphic properties of these newly defined notions.

Again, we have studied product of two interval-valued neutrosophic subrings. Furthermore,

we have provided some essential theories to study some of their algebraic structures. These

newly introduced notions have potentials to become fruitful research areas. For instance, soft

set theory can be implemented and the notion of interval-valued neutrosophic soft subring can

be defined.
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Abstract. We answer the following question: Are neutrosophic µ-compactness and neutrosophic µ-countably

compactness equivalent? which posted in [10]. Since every neutrosophic topology is neutrosophic µ-topology,

we answer the question for neutrosophic topological spaces, more precisely, we give an example of neutrosophic

topology which is neutrosophic countably comapact but not neutrosophic compact
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—————————————————————————————————————————-

1. Introduction

Neutrosophic sets first introduced in [25, 27] as a generalization of intuitionistic fuzzy

sets [14], where each element x ∈ X has a degree of indeterminacy with the degree of mem-

bership and the degree of non-membership . Operations on neutrosophic sets are investigated

after that. Neutrosophic topological spaces are studied by Smarandache [27], Lupianez [19,20]

and Salama [23]. The interior , closure, exterior and boundary of neutrosophic sets can be

found in [26]. Neutrosophic sets applied to generalize many notaions about soft topology and

applications [18], [22], [15], generalized open and closed sets [28] , fixed point theorems [18] ,

graph theory [17]and rough topology and applications [21]. Neutrosophy has many applications

specially in decision making, for more details about new trends of neutrosophic applications

one can consult [1]- [7].

Generalized topology and continuity introduced in 2002 in [13], where many generalized open

sets in general topology become examples in generalized topological spaces, and it become one

of the most important generalization in topology which has different properties than general

topology, see for example [9], [11] and [12]. There are a lot of studies about neutrosophic

topological spaces that shows the importance of studying neutrosophic topology where it has
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possible applications, see for example [24], Neutrosophic µ-topological spaces first introduced

in [10], and since Neutrosophic µ-topological space is a generalization of neutrosophic topo-

logical space it guarantees generalized results that are still true for neutrosophic topological

spaces, see for example Theorem 2.30 in [10] which shows that neutrosophic µ-compactness and

neutrosophic µ-countably compactness are equivalent, and this is not true in crisp topology,

but it becomes true for neutrosophic topological spaces since every neutrosophic µ-topological

space is neutrosophic topological space, another thing about the importance of neutrosophic

µ-topological space is that some existing notations about neutrosophic topology can be con-

sidered as examples of neurosophic µ-topological spaces, see for example Theorem 2.9 in [10]

which shows the relationship between µ-topological space and previous studies where we can

consider all neutrosophic α-open sets over (X; τ ) and all neutrosophic pre-closed sets in (X;

τ ) (introduced in [8]) as examples of strong neutrosophic µ-topology over X. The following

question appeared in [10].

Definition 1.1. [25]: A set A is said neutrosophic on X if A = {〈x, µA(x), σA(x), νA(x)〉;x ∈
X}; µ, σ, ν : X →]−0, 1+[ and −0 ≤ µ(x) + σ(x) + ν(x) ≤ 3+.

The class of all neutrosophic set on the universe X is by N (X). We will exhibit the

basic neutrosophic operations definitions (union, intersection and complement. Since there

are different definitions of neutrosophic operations, we will organize the existing definitions

into two types, in each type these operation will be consistent and functional.

Definition 1.2. [24][Neutrosophic sets operations] Let A,Aα, B ∈ N (X) such that α ∈ ∆.

Then we define the neutrsophic:

(1) (Inclusion): A v B If µA(x) ≤ µB(x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x).

(2) (Equality): A = B ⇔ A v B ∧B v A.

(3) (Intersection) u
α∈∆

Aα(x) = {〈x, ∧
α∈∆

µAα(x), ∨
α∈∆

σA(x), ∨
α∈∆

νA(x)〉;x ∈ X}.
(4) (Union) t

α∈∆
Aα(x) = {〈x, ∨

α∈∆
µAα(x), ∧

α∈∆
σA(x), ∧

α∈∆
νA(x)〉;x ∈ X}.

(5) (Complement) Ac = {〈x, νA(x), 1− σA(x), µA(x)〉;x ∈ X}
(6) (Universal set) 1X = {〈x, 1, 0, 0〉;x ∈ X}; will be called the neutrosophic universal set.

(7) (Empty set) 0X = {〈x, 0, 1, 1〉;x ∈ X}; will be called the neutrosophic empty set.

Proposition 1.3. [24] For A,Aα ∈ N (X) for every α ∈ ∆ we have:

(1) A u ( t
α∈∆

Aα) = t
α∈∆

(A uAα).

(2) A t ( u
α∈∆

Aα) = u
α∈∆

(A tAα).

Definition 1.4. [24] [Neutrosophic Topology ] τ ⊂ N (X) is called a neutrosophic topology for

X if
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(1) 0X , 1X ∈ τ .

(2) If Aα ∈ τ for every α ∈ ∆, then t
α∈∆

Aα ∈ τ ,

(3) For every A,B ∈ τ , we have A,B ∈ τ .

The ordered pair (X, τ) will be said a neutrosophic space over X. The elements of τ will be

called neutrosophic open sets. For any A ∈ N (X), If Ac ∈ τ , then we say A is neutrosophic

closed.

2. Neutrosophic Countably Compact Spaces

Definition 2.1. [10] Let X be nonempty, 0 < α, β, γ < 1. Then A ∈ N (X) is said a

neutrosophic point iff there exists x ∈ X such that A = {〈x, α, β, γ〉} ∪ {〈x́, 0, 1, 1〉; x́ 6= x}.
Neutrosophic points will be denoted by xα,β,γ .

Definition 2.2. [10] We say xα,β,γ in the neutrosophic set A -in symbols xα,β,γ ∈ A- iff

α < µA(x), β > σA(x) and γ > νA(x).

Lemma 2.3. [10] Let A ∈ N (X) and suppose that for every xα,β,γ ∈ A there exists

B(xα,β,γ) ∈ N (X) such that xα,β,γ ∈ B(xα,β,γ) v A. Then A = t{B(xα,β,γ);xα,β,γ ∈ A}.

Corollary 2.4. [10] A ∈ N (X) is neutrosophic open in (X, τ) iff for every xα,β,γ ∈ A there

exists a neutrosophic set B(xα,β,γ) ∈ τ ; xα,β,γ ∈ B(xα,β,γ) v A.

Definition 2.5. [10] Let (X, τ) be a neutrosophic topology on X. A sub-collection B ⊆ τ is

called a neutrosophic base for τ if for any U ∈ τ there exists B́ ⊆ B such that U = t{B;B ∈ B́}.

Definition 2.6. [10] Consider the neutrosophic space (X, τ) . We say the collection U from

τ is a neutrosophic open cover of X, if 1X = t{U ;U ∈ U}.

Definition 2.7. [10] Consider the space (X, τ) and the neutrosophic open cover U of X.

Then we say the sub-collection Ú ⊆ N (X) is a neutrosophic subcover of X from U , if Ú is

neutrosophic covers X and Ú ⊆ U .

The following is an immediate result of Corollary2.4.

Corollary 2.8. [10] A sub-collection U from the neutrosophic space (X, τ) is an open cover

of X iff for every xα,β,γ in X there exists U ∈ U such that xα,β,γ ∈ U .

Theorem 2.9. Consider the collection B of neutrosophic sets on the universe X. Then B is

a neutrosophic base for some neutrosophic topology on X iff

(1) For every U ∈ τ and every xα,β,γ ∈ U there exists B ∈ B such that xα,β,γ ∈ B v U .

(2) For every A,B ∈ B we have A uB is a union of elements from B.
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Proof. →) Obvious!

←) Suppose B satisfies the two conditions in the theorem. Let τ(B) be all possible neutrosophic

unions of elements from B with 0X . It suffices to show that τ(B) is a neutrosophic topology

on X. From the first condition and the construction of τ(B) we have 0X , 1X ∈ τ(B). Now let

H,K ∈ τ(B). Then H = t
i
Hi and K = t

j
Kj where Hi,Kj ∈ B for every i, j. So we have (by

parts (3) and (4) of Proposition1.3)

H uK = (t
i
Hi) u (t

j
Kj) = t

j
((t
i
Hi) uKj) = t

j
t
i

(Hi uKj)

Since Hi,Kj ∈ B for every i, j, we have H uK ∈ τ(B). The proof that the union of elements

from τ(B) is an element from τ(B) is easy! And we done.

τ(B) will be called the neutrosophic topology generated by the neutrosophic base B on X .

Definition 2.10. [10] (X, τ) is said to be neutrosophic compact if each neutrosophic open

(in τ) cover of X has a finite neutrosophic subcover.

Theorem 2.11. [10] Consider the space (X, τ), and let B be a neutrosophic base for τ . Then

(X, τ) is a neutrosophic compact space iff every neutrosophic open cover of X from B has a

finite neutrosophic subcover.

Definition 2.12. [10] A neutrosophic space (X, τ) is said:

(1) A neutrosophic Lindelöf space if each neutrosophic open cover of X from τ has a

countable neutrosophic subcover of X.

(2) A neutrosophic countably compact space if each neutrosophic open countable cover of

X from τ has a finite neutrosophic subcover of X.

The following thee results have proofs similar to their correspondings about neutrosophic

µ-topological spaces in [10].

Theorem 2.13. Every neutrosophic space with a countable neutrosophic base is neutrosophic

Lindelöf .

Theorem 2.14. Every neutrosophic Lindelöf and countably compact space is compact.

Corollary 2.15. Every neutrosophic countably compact space with a neutrosophic countable

base is neutrosophic compact.

The following example show that neutrosophic Lindelöf spaces are not neutrosophic count-

ably compact.

Example 2.16. Let Y = {a, b} and let B = {An;n = 1, 2, 3, ...} where An = {〈y, 1 −
1

2n ,
1

2n ,
1

2n〉; y ∈ X}. We will show that B is a base for some neutrosophic topology on Y ;
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i.e. we want to show B satisfies (1) and (2) in Theorem2.9.

First condtion: B neutrosophic covers Y , actually:

tB = t{An;n = 1, 2, 3, ...} = {〈y,∨∞1 1 − 1
2n ,∧

∞
1

1
2n ,∧

∞
1

1
2n〉; y ∈ Y } = {〈y, 1, 0, 0〉; y ∈ Y } =

1Y .

Second condition: The neutrosophic intersection of two elements from B is the neutrosophic

union of elements from B, but is clear that for any An and Am in B we have An u Am = At

where t = max{n,m} which an element of B, so that B is a neutrosophic base form some

neutrosophic topology τ(B) on Y . Since τ(B) has a countable base, τ(B) is neutrosophic

Lindelöf. Now, we will show that τ(B) is not neutrosophic countably paracompact (which im-

plies it is not neutrosophic compact). By contrapositive, suppose Y is neutrosophic countably

paracompact. Then U = B is a countable neutrosophic open cover of Y . But Y is a neutro-

sophic countably paracompact space, so that we have U has a neutrosophic finite subcover,

say U∗ = {An1, An2, ..., Ank}. But An1 t An2 t ... t Ank = At where t = max{n1, n2, ..., nk},
and At = {〈y, 1− 1

2t ,
1
2t ,

1
2t〉; y ∈ Y } 6= 1Y , a contradiction. So Y is not neutrosophic countably

paracompact and hence it is not neutrosophic compact.

The following theorem shows that neutrosophic compact spaces and neutrusophic countably

compact spaces are equivalent if the universe of discourse is countable, which is not true for

topological spaces.

Theorem 2.17. For every countable neutrosophic topological space Y , the following two state-

ments are equivalent :

(1) Y is neutrosophic compact.

(2) Y is neutrosophic countably compact.

Proof. ⇒) Obvious!

⇐) Suppose that Y is a countable neutrosophic countably compact space, and let U be a

neutrosophic open cover of Y . For every y ∈ Y we define the following three subsets of [0, 1].

(1) Dy
µ = {µA(y);A ∈ U}.

(2) Dy
σ = {σA(y);A ∈ U}.

(3) Dy
ν = {νA(y);A ∈ U}.

Let Dy
1 , Dy

2 and Dy
3 be three countable dense subsets of Dy

µ, Dy
σ and Dy

ν respectively in the

usual sense (the usual topology on the unit interval). Since U is a neutrosophic µ-open cover

of Y , we have supDy
1 = supDy

µ = 1 ,inf Dy
2 = inf Dy

σ = 0 and inf Dy
3 = inf Dy

ν = 0. Let

U(y) = {A ∈ U ;µA(y) ∈ Dy
1 , σA(y) ∈ Dy

2 or νA(y) ∈ Dy
3}. It is clear that U(y) is countable.

Let U∗ = ∪{U(y); y ∈ Y }. Since Y is countable, U∗ is a countable sub-collection from U . We

will show that U∗ is a neutrosophic cover of Y . Set B = tU∗. For every y ∈ Y we have:

(1) µB(y) = ∨{µA(y);A ∈ B} ≥ ∨{µA(y);A ∈ Dy
1} = supDy

1 = 1.
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(2) σB(y) = ∧{σA(y);A ∈ B} ≥ ∧{σA(y);A ∈ Dy
1} = inf Dy

2 = 0.

(3) νB(y) = ∧{νA(y);A ∈ B} ≥ ∧{∨A(y);A ∈ Dy
1} = inf Dy

3 = 0.

Which implies that B = 1Y and U∗ is a neutrosophic countable open cover. Since Y is a

neutrosophic µ-countably compact space, U∗ has a finite subcover , that is Y is compact.

The following example shows that neutrosophic compactness and neutrosophic countably

compactness are not equivalent.

Example 2.18. Consider the set of all countable ordinals W0 with the usual ordering. Let

β = {[s, t), s, t < ω1(the first uncountable ordinal)}. We know that β is a base for some topol-

ogy τ on Y = W0. For every [s, t) ∈ β define the neutrosophic set

A[s,t) =

(y, 1, 0, 0) if y ∈ [s, t)

(y, 0, 1, 1) if y /∈ [s, t)

Set β́ = {A[s,t); [s, t) ∈ β}. We will show that β́ is a base for some neutrosophic topology on Y .

First we show it is a neutrosophic cover for Y . Let A = tβ ; it suffices to show that A = 1Y .

But for every y ∈ Y , we have y ∈ [s, y) for some s < y, so that µA(y) = ∨{µC(y);C ∈ β́} ≥
µ[s,y) = 1, σA(y) = ∧{σC(y);C ∈ β́} ≤ σ[s,y) = 0, and νA(y) = ∧{νC(y);C ∈ β́} ≤ ν[s,y) = 0,

that means A = 1Y and β covers Y . Now, we will show that the intersection of any two

elements from β is empty or an element of β. Let A[s1,t1) and A[s2,t2) be two neutrosophic

sets in β and set C = A[s1,t1) u A[s2,t2), if [s1, t1) ∩ [s2, t2) = ∅, then for every y ∈ Y we have

y /∈ [s1, t1) or y /∈ [s2, t2), which implies µC = µ[s1,t1) ∧ µ[s2,t2) = 0, σC = σ[s1,t1) ∨ σ[s2,t2) = 1

and νC = ν[s1,t1) ∨ ν[s2,t2) = 1 and that means A[s1,t1) u A[s2,t2) = 0Y . Now, suppose that

[s1, t1)∩ [s2, t2) 6= ∅. Then for every y < max{s1, s2} or y ≥ min{t1, t2} we have y /∈ [s1, t1) or

y /∈ [s2, t2), which means µC = 0, σC = 1 and νC = 1, and if max{s1, s2} ≤ y < min{t1, t2},
then y ∈ [s1, t1) and y ∈ [s2, t2), that is µC = 1, σC = 0 and νC = 0 , so that we have

A[s1,t1) uA[s2,t2) = A[s,t) =

(y, 1, 0, 0) if y ∈ [s, t)

(y, 0, 1, 1) if y /∈ [s, t)
∈ β

where s = max{s1, s2} and t = max{t1, t2}. Let τ(β) be the neutrosophic topology gen-

erated on Y by β. Then τ(β) is a neutrosophic countably compact space: We will prove

this by showing τ(β) has no countable cover form β. Let C = {An = [sn, tn);n = 1, 2, 3, ...}
be any countable subset from β, it suffices to show that C does not cover Y ; by contaposi-

tive, suppose C covers Y , then D = tC =
∞
t
i=1
An = 1Y . So that for every y ∈ Y we have
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µC =
∞
∨
i=1
µAn = 1; since µAn = 1 or 0 for every n = 1, 2, 3, ..., there exist i such that µAi = 1,

that is y ∈ Ai = [si, ti), which implies Y =
∞
∪
i=1

[sn, tn), a contradiction, since Y is uncountable

and
∞
∪
i=1

[sn, tn) is countable, so β has no countable cover for Y , and so Y is neutrosophic count-

ably compact. Now, to show that Y is not neutrosophic compact. But β is a neutrosophic

open cover of Y and has no countable, and hence no finite, subcover, that means Y is not

neutrosophic compact.

Corollary 2.19. There is a neutrosophic µ−topological spaces which is neutrosophic countably

compact but not neutrosophic compact.

Proof. Since every neutrosophic space is µ−topological space, we have Example2.18 is an

example of a neutrosophic µ−topological spaces which is neutrosophic countably compact but

not neutrosophic compact.

The approach we used in Example2.18 can be generalized to get more counterexample for

neutrosophic topological spaces as follows.

Theorem 2.20. Let (X, τ) be a topological space and for every U ∈ τ set

AU =

(x, 1, 0, 0) if x ∈ U

(x, 0, 1, 1) if x /∈ U

and let Neut(τ) = {AU ;U ∈ τ}. Then (X,Neut(τ)) is a neutrosophic topological space.

Proof. Since ∅, X ∈ τ , we have A∅, AX ∈ Neut(τ), but

A∅ =

(x, 1, 0, 0) if x ∈ ∅

(x, 0, 1, 1) if x /∈ ∅
=

(x, 1, 0, 0) if x ∈ ∅

(x, 0, 1, 1) if x ∈ X
= 0X

AX =

(x, 1, 0, 0) if x ∈ X

(x, 0, 1, 1) if x /∈ X
=

(x, 1, 0, 0) if x ∈ X

(x, 0, 1, 1) if x ∈ ∅
= 1X

So we have 0X , 1X ∈ Neut(τ). Now, let H = AU uAV where AU , AV ∈ Neut(τ). Then

µH(x) =

1 if x ∈ U

0 if x /∈ U
∧

1 if x ∈ V

0 if x /∈ V
=

1 if x ∈ U ∩ V

0 if x /∈ U ∩ V
= µA(U∩V )(x)
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σH(x) =

0 if x ∈ U

1 if x /∈ U
∨

0 if x ∈ V

1 if x /∈ V
=

0 ifx ∈ U ∩ V

1 ifx /∈ U ∩ V
= σA(U∩V )

(x)

νH(x) =

0 if x ∈ U

1 if x /∈ U
∨

0 if x ∈ V

1 if x /∈ V
=

0 ifx ∈ U ∩ V

1 ifx /∈ U ∩ V
= νA(U∩V )

(x)

So we have AUuAV = A(U∩H) ∈ Neut(τ). Similarly we show that t
α∈∆

Aα ∈ Neut(τ) whenever

Aα ∈ Neut(τ) for every α ∈ ∆.

3. Applications and further studies

This paper is a completion part of [10] and gives an answer for the following question: Are

neutrosophic µ-compactness and neutrosophic µ-countably compactness equivalent? which

posted in [10]. We give an example to show that the answer is no! the approach is used to

give such example can be generalized to give many counter examples in neutrosophic topology

using those existing in general topology. This paper, also, studied more advanced notations

about neutrosophic topology such as neutrosophic comapactness and neutrosophic Lindelöf,

which opens doors for more studies about neutrosophic topology, such as neutrosophic para-

compactness, and other covering properties

Funding: This Project was supported by the Deanship of Scientific research at Prince
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Abstract. Hyperstructure theory, an 86 years old theory, has been of great interest for many algebraists where

their researches were divided in to two categories: theory and applications. On the other hand, neutrosophic

theory which is the study of neutralities, was introduced and developed by F. Smarandache in 1995 as an

extension of dialectics. The purpose of this paper is to study some connections between the two theories:

Neutrosophy and hyperstructures. In this regard, we define neutrosophic quadruple Hv-rings, neutrosophic

quadruple Hv-subrings, and neutrosophic quadruple homomorphism and study their various properties.

Keywords: Hv-ring; neutrosophic quadruple number; neutrosophic quadruple Hv-ring; neutrosophic homo-

morphism.

—————————————————————————————————————————-

1. Introduction

The concept of neutrosophic quadruple numbers was introduced by Smarandache [14] in

2015. Where he defined and presented some arithmetic operations of these numbers such as

addition, subtraction, multiplication, and scalar multiplication. Later in 2017, Akinleye et

al. [2] considered the set of neutrosophic quadruple numbers and defined some operations on it

and discussed neutrosophic quadruple algebraic structures. A generalization of the latter work

was done in 2016 where Agboola et al. [1] considered the set of neutrosophic quadruple numbers

and defined some hyperoperations on it and discussed neutrosophic quadruple hyperstructures.

For more details about neutrosophy and its applications, we refer to [3–7,10,13,15,16].

A generalization of hyperstructures, known as Hv-structures was introduced by T. Vou-

giouklis [19, 20]. We refer to [19, 20] for basic definitions and results on Hv-rings. Al Tahan

and Davvaz in [3] discussed neutrosophic Hv-groups and studied their properties. In this work,

we extend the results to Hv-rings and it is constructed as follows: after an Introduction, in
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Section 2, we present some basic definitions about hyperstructures that are used throughout

the paper. In Section 3, we define neutrosophic quadruple Hv-rings and provide some examples

on it. In Section 4, we define neutrosophic quadruple Hv-subrings and neutrosophic quadruple

homomorphism and study their properties.

2. Basic definitions about algebraic hyperstructures

In this section, we present some definitions and theorems related to hyperstructure theory

that are used throughout the paper. (See [8, 9, 19].)

Let H be a non-empty set and P∗(H) the set of all non-empty subsets of H. Then, a

mapping ◦ : H × H → P∗(H) is called a binary hyperoperation on H. The couple (H, ◦) is

called a hypergroupoid. In this definition, if X and Y are two non-empty subsets of H and

h ∈ H, then we define:

X ◦ Y =
⋃

x∈X
y∈Y

x ◦ y, h ◦X = {h} ◦X and X ◦ h = X ◦ {h}.

Definition 2.1. A hypergroupoid (H, ◦) is called a:

(1) semihypergroup if for every x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z;
(2) quasi-hypergroup if for every x ∈ H, x ◦H = H = H ◦ x (The latter condition is called

the reproduction axiom);

(3) hypergroup if it is a semihypergroup and a quasi-hypergroup.

T. Vougiouklis [19, 20] introduced Hv-structures as a generalization of the well-known al-

gebraic hyperstructures. The equality in some axioms of classical algebraic hyperstructures

is replaced by non-empty intersection in Hv-structures. The majority of Hv-structures are

applied in representation theory.

Definition 2.2. A hypergroupoid (H, ◦) is called an Hv-semigroup if the weak associative

axiom is satisfied. i.e., (x ◦ (y ◦ z)) ∩ ((x ◦ y) ◦ z) 6= ∅ for all x, y, z ∈ H.

An element 0 ∈ H is called an identity if x ∈ 0 ◦ h ∩ h ◦ 0 for all h ∈ H and it is called a

scalar identity if h = 0 ◦ h = h ◦ 0 for all h ∈ H. A scalar identity (if it exists) is unique. A

hypergroupoid (H, ◦) is called an Hv-group if it is a quasi-hypergroup and an Hv-semigroup. A

non-empty subset M of an Hv-group (H, ◦) is called Hv-subgroup of H if (M, ◦) is an Hv-group.

Definition 2.3. Let R be a non-empty set and “+”, “·” be hyperoperations. Then (R,+, ·)
is a hyperring if the following conditions hold. (1) (R,+) is a hypergroup; (2) (R, ·) is is a

semihypergroup; (3) · is distributive with respect to +. And it is an Hv-ring if (1) (R,+) is

an Hv-group; (2) (R, ·) is is an Hv-semigroup; (3) · is weak distributive with respect to +.

M. Al-Tahan and B. Davvaz, On Some Properties of Neutrosophic Quadruple Hv-rings



Neutrosophic Sets and Systems, Vol. 36, 2020 258

(R,+, ·) is said to be commutative if x + y = y + x and x · y = y · x for all x, y ∈ R. An

element 1 ∈ R is called a unit if x ∈ 1 · x ∩ x · 1 for all x ∈ R and it is called a scalar unit if

x = 1 · x = x · 1 for all x ∈ R. If the scalar unit exists then it is unique. A subset M of an

Hv-ring (R,+, ·) is called an Hv-subring if (M,+, ·) is an Hv-ring. To prove that (M,+, ·) is

an Hv-subring of (M,+, ·), it suffices to show that m + M = M + m = M and M ·M ⊆ M

for all m ∈M .

Let (R,+, ?) and (R′,+′, ?′) be two Hv-rings. Then f : R → R′ is said to be Hv-ring ho-

momorphism if f(r + s) = f(r) +′ f(s) and f(r ? s) = f(r) ?′ f(s) for all r, s ∈ R. (R,+, ?)

and (S,+′, ?′) are called isomorphic Hv-rings, and written as R ∼= S, if there exists a bijective

homomorphism f : R→ S.

The concept of very thin hyperstructures was introduced and studied by Vougioklis [17,18].

An Hv-structure is called a very thin Hv-structure, denoted as V T -Hv-structure, if all hy-

peroperations are operations except one which has all hyperproducts singletons except only

one. For example an Hv-ring (H, ?, ◦) is said to be a V T -Hv-ring if there exists only one

(x, y) ∈ H2 with the property |x ? y| > 1 or |x ◦ y| > 1.

3. Construction of neutrosophic quadruple Hv-rings

Symbolic (or Literal) neutrosophic theory is referring to the use of abstract symbols (i.e.

the letters T , I, F , representing the neutrosophic components: truth, indeterminacy, and

falsehood) in neutrosophics.

In [1, 2], Agboola et al. and Akinleye et al. respectively based their study of neutrosophic

quadruple algebraic structures (hyperstructures) on quadruple numbers based on the set of real

numbers. In this section, we consider neutrosophic quadruple numbers based on a set instead

of real or complex numbers and we use them to define neutrosophic quadruple Hv-rings.

Definition 3.1. [11] Let X be a nonempty set. A neutrosophic quadruple X-number is an

ordered quadruple (a, bT, cI, dF ) where a, b, c, d ∈ X and T, I, F have their usual neutrosophic

logical meanings.

The set of all neutrosophic quadruple X-numbers is denoted by NQ(X), that is,

NQ(X) = {(a, bT, cI, dF ) : a, b, c, d ∈ X}.

With respect to the preference law T < I < F , we define the Absorbance Law for the

multiplications of T , I, and F , in the sense that the bigger one absorbs the smaller one (or

the big fish eats the small fish); for example:

FT = TF = F (because F is bigger), TT = T (T absorbs itself), TI = IT = I (because I is

bigger), (because F is bigger), and FI = IF = I (because F is bigger).
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Let (R,+, ·) be an Hv-ring with zero “0” and unit “1”and define “⊕” and “�” on NQ(R)

as follows:

(x1, x2T, x3I, x4F )⊕ (y1, y2T, y3I, y4F )

= {(a, bT, cI, dF ) : a ∈ x1 + y1, b ∈ x2 + y2, c ∈ x3 + y3, d ∈ x4 + y4}.

and
(x1, x2T, x3I, x4F )� (y1, y2T, y3I, y4F )

= {(a, bT, cI, dF ) : a ∈ x1 · y1, b ∈ x1 · y2 ∪ x2 · y1 ∪ x2 · y2,
c ∈ x1 · y3 ∪ x2 · y3 ∪ x3 · y1 ∪ x3 · y2 ∪ x3 · y3,
d ∈ x1 · y4 ∪ x2 · y4 ∪ x3 · y4 ∪ x4 · y1 ∪ x4 · y2 ∪ x4 · y3 ∪ x4 · y4}.

Throughout this section, T < I < F and (R,+, ·) is an Hv-ring with identity “0”, unit “1”,

0 + 0 = 0, 1 · 1 = 1 and x · 0 = 0 · x = 0 for all x ∈ R (i.e, 0 is an absorbing element).

Theorem 3.2. [3] Let R be a set with 0 ∈ R. Then (NQ(R),⊕) is an Hv-group (called

neutrosophic Hv-group) with identity 0 = (0, 0T, 0I, 0F ) if and only if (R,+) is an Hv-group

with identity “0” and 0 + 0 = 0.

Theorem 3.3. [3] Let R be a set with 0 ∈ R. Then (NQ(R),⊕) is a hypergroup (called

neutrosophic hypergroup) with identity 0 = (0, 0T, 0I, 0F ) if and only if (R,+) is a hypergroup

with identity “0” and 0 + 0 = 0.

In [1], Agboola et al. gave an example on a hypergroup of order 3 (Example 2.4) and

said that it is a neutrosophic hypergroup which is an impossible case. We illustrate it by the

following remark.

Remark 3.4. A neutrosophic Hv-group (hypergroup) NQ(R) = {(a, bT, cI, dF ) : a, b, c, d ∈
R} is either infinite or of order |R|4 where |R| is the number of elements in R in case R is

finite. This is clear by using Theorem 3.2 and Theorem 3.3 respectively.

Theorem 3.5. [3] Let R be a set with 0 ∈ R. Then (NQ(R),⊕) is a commutative Hv-group

with identity 0 = (0, 0T, 0I, 0F ) if and only if (R,+) is a commutative Hv-group with identity

“0” and 0 + 0 = 0.

Proposition 3.6. Let R be a set containing “0” and “1” with a hyperoperation “·”. Then

(NQ(R),�) is a quadruple Hv-semigroup with unit 1 if and only if (R, ·) is an Hv-semigroup

with unit 1 = (1, 0T, 0I, 0F ).

Proof. Let (NQ(R),�) be a quadruple Hv-semigroup and let a, b, c ∈ R. Having x =

(a, 0T, 0I, 0F ) ∈ NQ(R), y = (b, 0T, 0I, 0F ) ∈ NQ(R), z = (c, 0T, 0I, 0F ) ∈ NQ(R) and

(x� (y � z)) ∩ ((x� y)� z) 6= ∅ implies that (a · (b · c)) ∩ ((a · b) · c) 6= ∅.
Let (R, ·) be an Hv-semigroup and let x, y, z ∈ NQ(R). Then there exist xi, yi, zi ∈ R

with i = 1, 2, 3, 4 such that x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ) and z =
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(z1, z2T, z3I, z4F ). We have (xi · (yi ·zi))∩ (xi ·yi) ·zi) 6= ∅ for i = 1, 2, 3, 4. Applying the latter

with some computations on x�(y�z) and on (x�y)�z, we get (x�(y�z))∩((x�y)�z) 6= ∅.

Proposition 3.7. R be a set containing “0” and “1” with a hyperoperation “·”. Then

(NQ(R),�) is a quadruple semihypergroup with 1 = (1, 0T, 0I, 0F ) as unit if and only if

(R, ·) is a semihypergroup with 1 as unit.

Proof. The proof is the same as that of Proposition 3.6 but instead of nonempty intersection,

we have equality.

Proposition 3.8. Let (NQ(R),⊕,�) be an Hv-ring with zero “0” and unit “1”. Then for all

a, b, c ∈ R, we have:

(a · (b+ c)) ∩ ((a · b) + (a · c)) 6= ∅.

Proof. Let a, b, c ∈ R. Then x = (a, 0T, 0I, 0F ), y = (b, 0T, 0I, 0F ), z = (c, 0T, 0I, 0F ) ∈
NQ(R). Since (x�(y⊕z))∩((x�y)⊕(x�z)) 6= ∅, it follows that (a·(b+c))∩((a·b)+(a·c)) 6= ∅.

Proposition 3.9. Let (R,+, ·) be an Hv-ring with identity “0” and unit “1”. Then for all

x, y, z ∈ NQ(R), we have:

(x� (y ⊕ z)) ∩ ((x� y)⊕ (y � z)) 6= ∅.

Proof. Let x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ), z = (z1, z2T, z3I, z4F ) ∈ NQ(R).

We have:

x� (y⊕ z) = {(t1, t2, t3, t4) : t1 ∈ x1 · (y1 + z1), t2 ∈ x1 · (y2 + z2)∪ x2 · (y1 + z1)∪ x2 · (y2 + z2),

t3 ∈ x1 · (y3 + z3) ∪ x2 · (y3 + z3) ∪ x3 · (y1 + z1) ∪ x3 · (y2 + z2) ∪ x3 · (y3 + z3),

t4 ∈ x1·(y4+z4)∪x2·(y4+z4)∪x3·(y4+z4)∪x4·(y1+z1)∪x4·(y2+z2)∪x4·(y3+z3)∪x4·(y4+z4)}.
On the other hand, we have:

(x � y) ⊕ (x � z) = {s = (s1, s2T, s3I, s4F ) : q = (q1, q2T, q3I, q4F ) ∈ x � y, r =

(r1, r2T, r3I, r4F ) ∈ x� z, si ∈ qi + ri for i = 1, 2, 3, 4}.
Having q = (q1, q2T, q3I, q4F ) ∈ x · y and r = (r1, r2T, r3I, r4F ) ∈ x · z implies that

q1 ∈ x1 · y1, q2 ∈ x1 · y2 ∪ x2 · y1 ∪ x2 · y2, q3 ∈ x1 · y3 ∪ x2 · y3 ∪ x3 · y1 ∪ x3 · y2 ∪ x3 · y3,
q4 ∈ x1 ·y4∪x2 ·y4∪x3 ·y4∪x4 ·y1∪x4 ·y2∪x4 ·y3∪x4 ·y4, r1 ∈ x1 ·z1, r2 ∈ x1 ·z2∪x2 ·z1∪x2 ·z2, r3 ∈
x1·z3∪x2·z3∪x3·z1∪x3·z2∪x3·z3 and r4 ∈ x1·z4∪x2·z4∪x3·z4∪x4·z1∪x4·z2∪x4·z3∪x4·z4. Since

xi·(yi+zi)∩(xi·yi+xi·zi) 6= ∅ for i = 1, 2, 3, 4, it follows that (x�(y⊕z))∩((x�y)⊕(y�z)) 6= ∅.

Proposition 3.10. Let (NQ(R),⊕,�) be an hyperring with zero “0” and unit “1”. Then for

all a, b, c ∈ R, we have:

(a · (b+ c)) = ((a · b) + (a · c)).
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Proof. The proof is the same as that of Proposition 3.8 but instead of nonempty intersection,

we have equality.

Proposition 3.11. Let (R,+, ·) be a hyperring with identity “0” and unit “1”. Then for all

x, y, z ∈ NQ(R), we have:

x� (y ⊕ z) ⊆ (x� y)⊕ (y � z).

Proof. The proof is straightforward.

Remark 3.12. The equality in Proposition 3.11 may not hold. We illustrate it by the following

example.

Example 3.13. Let R = Z2 be the ring of integers under standard addition and multiplication

modulo 2 and let x = (1, 1T, 0I, 0F ), y = (0, 1T, 0I, 0F ) and z = (1, 0T, 0I, 0F ). Having

x � (y ⊕ z) = (1, 1T, 0I, 0F ) and (x � y) ⊕ (x � z) = {(1, 0T, 0I, 0F ), (1, 1T, 0I, 0F )} implies

that x� (y ⊕ z) 6= (x� y)⊕ (y � z).

In the proof of Theorem 2.11, [1], the proof of distributivity contains a gap. Our example,

Example 3.13 can be used as an illustration.

Notation 1. Let (R,+, ·) be an Hv-ring with “0” and “1” as zero and unit respectively satis-

fying 0 + 0 = 0, 1 · 1 = 1 and 0 · x = x · 0 = 0 for all x ∈ R. Then (NQ(R),⊕,�) is called

neutrosophic quadruple Hv-ring.

Notation 2. Let (NQ(R),⊕,�) be a hyperring. Then we call it a neutrosophic quadruple

hyperring.

Remark 3.14. Let (R,+, ·) be a hyperring. Then (NQ(R),⊕,�) may fail to be a hyperring.

One can easily see that (NQ(R),⊕,�) in Example 3.13 is not a hyperring (as the distributivity

law does not hold.).

Theorem 3.15. Let R be any set with two hyperoperations “+” and “·”. Then (NQ(R),⊕,�)

is a neutrosophic Hv-ring with zero and unit 0 = (0, 0T, 0I, 0F ) and 1 = (1, 0T, 0I, 0F ) respec-

tively if and only if (R,+, ·) is an Hv-ring with zero and unit “0” and “1” respectively.

Proof. The proof follows from Theorem 3.2, Proposition 3.6, Proposition 3.8 and Proposition

3.9.

Corollary 3.16. Let (R,+, ·) be an Hv-ring containing an identity and absorbing element 0

and a unit 1 with the property that 0 + 0 = 0, 1 · 1 = 1. Then we can construct infinite number

of neutrosophic quadruple Hv-rings.
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Proof. Theorem 3.15 asserts that (NQ(R),⊕,�) is an Hv-ring with zero and unit 0 =

(0, 0T, 0I, 0F ) and 1 = (1, 0T, 0I, 0F ) respectively. Applying Theorem 3.15 on (NQ(R),⊕,�),

we get NQ(NQ(R)) is a quadruple Hv-ring. Continuing on this pattern, we can construct

infinite number of quadruple Hv-rings. Particularly, we have NQ(NQ(. . . NQ(. . . (R)) . . .) is

a quadruple Hv-ring.

Proposition 3.17. Let (R,+, ·) be any ring with unit. Then (NQ(R),⊕,�) is a neutrosophic

Hv-ring. Moreover, (NQ(R),⊕,�) is not a ring.

Proof. We can consider the ring (R,+, ·) as an Hv-ring with zero and unit. Theorem 3.15

asserts that (NQ(R),⊕,�) is a neutrosophic Hv-ring.

Having x = (1, 0T, 0I, 0F ), y = (1, T, 0I, 0F ) ∈ NQ(R) implies that x � y ⊆ NQ(R). It is

clear that (1, 0T, 0I, 0F ), (1, T, 0I, 0F ) ∈ x� y. Thus, |x� y| > 1.

Example 3.18. Let R1 = {0, 1} and define (R1,+1, ·1) as follows:

+1 0 1

0 0 1

1 1 R1

·1 0 1

0 0 0

1 0 1

Then (NQ(R1),⊕,�) is a quadruple Hv-ring with 16 elements.

By setting

1 = (1, 0T, 0I, 0F ), a6 = (0, 0T, I, F ), a11 = (1, 0T, 0I, F ),

a2 = (0, T, 0I, 0F ), a7 = (0, T, I, 0F ), a12 = (1, T, 0I, F ),

a3 = (0, 0T, I, 0F ), a8 = (0, T, 0I, F ), a13 = (1, 0T, I, F ),

a4 = (0, 0T, 0I, F ), a9 = (1, T, 0I, 0F ), a14 = (1, T, I, 0F ),

a5 = (0, T, I, F ), a10 = (1, 0T, I, 0F ), a15 = (1, T, I, F ),
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we present some of the results for ai ⊕ aj = aj ⊕ ai, i, j = 1, 2, . . . , 15 in the following table.

0⊕ x = {x} for all x ∈ NQ(R1) 1⊕ 1 = {1}
1⊕ a2 = {a9} a2 ⊕ a5 = {a5, a6}
a3 ⊕ a4 = {a6} 1⊕ a3 = {a10}

a5 ⊕ a5 = {0, 1, a2, a4, a5, a6, a7, a8, a10} a5 ⊕ a6 = {a5, a7, a8}
1⊕ a4 = {a11} a5 ⊕ a7 = {a4, a5, a6, a8}

a5 ⊕ a8 = {a5, a6, a7, a10} 1⊕ a5 = {a15}
a5 ⊕ a9 = {a13, a14, a15} a5 ⊕ a10 = {a5, a8}

1⊕ a6 = {a13} a5 ⊕ a11 = {a14, a15}
a5 ⊕ a12 = {a13, a14, a15} 1⊕ a7 = {a14}

a5 ⊕ a13 = {a9, a12, a14, a15} a5 ⊕ a14 = {a11, a13, a15}
1⊕ a8 = {a12} a4 ⊕ a14 = {a15}

a4 ⊕ a15 = {a14, a15} 1⊕ a9 = {a2, a9}
a14 ⊕ a14 = {1, a2, a3, a7, a9, a10, a14} a14 ⊕ a15 = {a4, a5, a6, a8, a11, a13, a15}

1⊕ a10 = {a3, a10} a15 + a15 = NQ(R1)

a15 ⊕ a3 = {a12, a15} 1⊕ a11 = {a4, a10}

and we present some of the results for ai � aj = aj � ai, i, j = 1, 2, . . . , 15 in the following

table.

0� x = {0} for all x ∈ NQ(R1) 1� 1 = {1}
1� a2 = {0, a2} 1� a3 = {0, a3}
1� a4 = {0, a4} 1� a5 = {0, a2, a3, a4, a5, a6, a7, a8}

1� a6 = {0, a3, a4, a6} 1� a7 = {0, a2, a3, a7}
1� a8 = {0, a2, a4, a8} 1� a9 = {1, a9}

1� a10 = {1, a10} 1� a11 = {1, a11}
1� a12 = {1, a9, a11, a12} 1� a13 = {1, a10, a11, a13}
1� a14 = {1, a9, a10, a14} 1� a15 = {1, a9, a10, a1, a12, a13, a14, a15}

a2 � a2 = {0, a2} a3 � a3 = {0, a3}

It is clear that (NQ(R1),⊕,�) is a commutative quadruple Hv-ring.

Proposition 3.19. Let (R,+, ·) be an Hv-ring. Then “1” is the scalar unit of (R,+, ·) if and

only if 1 = (1, 0T, 0I, 0F ) is the scalar unit of (NQ(R),⊕,�).

Proof. The proof is straightforward by applying the uniqueness of the scalar unit.

Proposition 3.20. Let (R,+, ·) be an Hv-ring. Then (R,+, ·) is a commutative Hv-ring if

and only if (NQ(R),⊕,�) is a commutative Hv-ring.
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Proof. Theorem 3.5 asserts that (NQ(R),⊕) is a commutative Hv-group if and only if (R,+) is

a commutative Hv-group. We need to show that (NQ(R),�) is a commutative Hv-semigroup

if and only if (R, ·) is a commutative Hv-semigroup. Suppose that (R, ·) is a commutative

Hv-semigroup and let x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ) ∈ NQ(R). Easy compu-

tations show that x� y = y � x. Thus, (NQ(R),�) is a commutative Hv-semigroup.

Conversely, let (NQ(R),�) be a commutative Hv-group and a, b ∈ R. Having x =

(a, 0T, 0I, 0F ), y = (b, T, 0I, 0F ) ∈ NQ(R) implies that x � y = (a · b, 0T, 0I, 0F ) = y � x =

(b · a, 0T, 0I, 0F ). Thus, a · b = b · a. Therefore, (R, ·) is a commutative Hv-semigroup.

Proposition 3.21. If (R,+, ·) is a V T -Hv-ring then (NQ(R),⊕,�) is not a V T -Hv-ring.

Proof. Suppose that (R,+) is a V T -Hv-ring. Then there exist a, b ∈ R with either |a+ b| > 1

or |a · b| > 1.

• Case |a+ b| > 1. Having 0 + 0 = 0 implies that either a 6= 0 or b 6= 0 (or both are not

equal to zero). Without loss of generality, we take b 6= 0. Let x = (a, aI, 0T, 0F ), y =

(b, 0I, 0T, 0F ), z = (0, bT, bI, bF ) ∈ NQ(R). It is clear that y 6= z, |x⊕ y| > 1 and that

|x⊕ z| > 1.

• Case |a · b| > 1. Having 1 · 1 = 1 implies that either a 6= 1 or b 6= 1 (or both are not

equal to 1). Without loss of generality, we take b 6= 1. Let x = (a, 0I, 0T, 0F ), y =

(b, 0I, 0T, 0F ), z = (0, bT, 0I, 0F ) ∈ NQ(R). It is clear that y 6= z, |x�y| > 1 and that

|x� z| > 1.

Therefore, (NQ(R),⊕,�) is not a V T -Hv-ring.

4. Neutrosophic quadruple Hv-subrings and neutrosophic homomorphisms

In this section, we define neutrosophic quadruple Hv-subrings and neutrosophic homo-

morphisms and investigate some of their properties.

Definition 4.1. Let (NQ(R),⊕,�) be a neutrosophic quadruple Hv-ring and T be a non-

empty subset of NQ(R). Then (T,⊕,�) is called a neutrosophic quadruple Hv-subring of

NQ(R) if (T,⊕,�) is a neutrosophic quadruple Hv-ring.

Remark 4.2. Neutrosophic Hv-rings have no proper neutrosophic Hv-ideals. This is clear as if

NQ(J) is a neutrosophiv Hv-ideal of NQ(R) then (1, 0T, 0I, 0F ) ∈ NQ(J). The latter implies

that (a, bT, cI, dF ) = (a, bT, cI, dF )� (1, 0T, 0I, 0F ) ∈ NQ(J) for all (a, bT, cI, dF ) ∈ NQ(R).

Theorem 4.3. [3] Let (R,+) be an Hv-group with identity “0”, S ⊆ R and 0 ∈ S. Then

(NQ(S),⊕) is an Hv-subgroup of (NQ(R),⊕) if and only if (S,+) is an Hv-subgroup of (R,+).
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Theorem 4.4. Let (R,+, ·) be an Hv-ring with identity “0” and unit 1, S ⊆ R and 0, 1 ∈ S.

Then (NQ(S),⊕,�) is an Hv-subring of (NQ(R),⊕,�) if and only if (S,+, ·) is an Hv-subring

of (R,+, ·).

Proof. Theorem 4.3 asserts that (NQ(S),⊕) is an Hv-subgroup of (NQ(R),⊕) if and only if

(S,+) is an Hv-subgroup of (R,+). We need to show that (NQ(S),�) is an Hv-subsemigroup

of (NQ(R),�) if and only if (S, ·) is an Hv-subsemigroup of (R, ·). Suppose that (S, ·) is an

Hv-subsemigroup of (R, ·). We need to show that x �NQ(S) ∪NQ(S) � x ⊆ NQ(S) for all

x = (x1, x2T, x3I, x4F ) ∈ NQ(S) which is clear.

Let (NQ(S),�) be an Hv-subsemigroup of (NQ(R),�) and let x1 ∈ S. We need to show

that x1 · S ∪ S · x1 ⊆ S. For all y1 ∈ S, we have x = (x1, 0T, 0I, 0F ), y = (y1, 0T, 0I, 0F ) ∈
NQ(S). Since x� y ⊆ NQ(S), it follows that x1 · y1 ⊆ S.

Example 4.5. Since (R1,+1, ·1) in Example 3.18 has only one Hv-subring (R1) containing

0 and 1, it follows by applying Theorem 4.4 that (NQ(R1),⊕,�) has only one neutrosophic

Hv-subring: (NQ(R1),⊕,�) .

Example 4.6. Let R2 = {0, 1, 2} and define (R2,+2, ·2) as follows:

+2 0 1 2

0 0 {0, 1} {0, 2}

1 {0, 1} 1 {1, 2}

2 {0, 2} {1, 2} 2

·2 0 1 2

0 0 0 0

1 0 1 {1, 2}

2 0 {1, 2} 2

It is clear that (R2,+2, ·2) is a commutative Hv-ring that has exactly two non-isomorphic

Hv-subrings containing 0 and 1: {0, 1} and R2. We can deduce that (NQ(R2),⊕,�) is a com-

mutative neutrosophic quadruple Hv-ring and has two non-isomorphic neutrosophic quadruple

Hv-subrings: NQ({0, 1}) = {0, 1} and NQ(R2).

Proposition 4.7. Let n ≥ 2 be a natural number and (Zn,+, ·) be the ring of integers under

standard addition and multiplication modulo n. Then (NQ(Zn),⊕,�) has no proper neutro-

sophic Hv-subrings.
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Proof. Proposition 3.17 asserts that (NQ(Zn),⊕,�) is a neutrosophic Hv-ring. Let S be a

subring of Zn. Then there exist d | n with 1 ≤ d ≤ n such that S = dZn. Since 1 ∈ S if and

only if d = 1 and (1, 0T, 0I, 0F ) ∈ NQ(S), it follows that NQ(S) = NQ(Zn).

Proposition 4.8. Let (S,+, ·) be an Hv-subring of (R,+, ·). Then NQ(S)⊕NQ(S) = NQ(S)

and NQ(S)�NQ(S) ⊆ NQ(S).

Proof. The proof is straightforward.

Definition 4.9. Let (NQ(R),⊕1,�1) and (NQ(J),⊕2,�2) be neutrosophic quadruple Hv-

rings. A function φ : NQ(R)→ NQ(J) is called neutosophic homomorphism if

(1) φ(0R, 0RT, 0RI, 0RF ) = (0J , 0JT, 0JI, 0JF );

(2) φ(1R, 0RT, 0RI, 0RF ) = (1J , 0JT, 0JI, 0JF );

(3) φ(0R, 1RT, 0RI, 0RF ) = (0J , 1JT, 0JI, 0JF );

(4) φ(0R, 0RT, 1RI, 0RF ) = (0J , 0JT, 1JI, 0JF );

(5) φ(0R, 0RT, 0RI, 1RF ) = (0J , 0JT, 0JI, 1JF );

(6) φ(x⊕1 y) = φ(x)⊕2 φ(y) for all x, y ∈ NQ(R);

(7) φ(x�1 y) = φ(x)�2 φ(y) for all x, y ∈ NQ(R).

If φ is a neutrosophic homomorphism and bijective then it is called neutrosophic isomorphism

and we write NQ(R) ∼= NQ(J).

Example 4.10. Let (R,+, ·) be an Hv-ring. Then f : NQ(R)→ NQ(R) is an isomorphism,

where f(x) = x for all x ∈ NQ(R).

Proposition 4.11. Let (R,+1, ·1) and (J,+2, ·2) be Hv-rings. If there exist a homomor-

phism f : R → J with f(0R) = 0J and f(1R) = 1J then there exist a homomorphism from

(NQ(R),⊕1,�1) to (NQ(J),⊕2,�2).

Proof. Suppose that f : R → J is a homomorphism. We define φ : NQ(R) → NQ(J) as

follows: For x = (x1, x2T, x3I, x4F ) ∈ NQ(R)

φ((x1, x2T, x3I, x4F )) = (f(x1), f(x2)T, f(x3)I, f(x4)F ).

It is clear that φ is well defined and that conditions 1. to 5. of Definition 4.9 are satisfied. Let

x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ) ∈ NQ(R). Since f(xi+1yi) = f(xi)+2f(yi) for

i = 1, 2, 3, 4, it follows that φ(x⊕1y) = φ(x)⊕2φ(y). Moreover, having f(xi ·1yi) = f(xi)·2f(yi)

for i = 1, 2, 3, 4 implies that φ(x�1 y) = φ(x)�2 φ(y).
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Proposition 4.12. Let (R,+1, ·1) and (J,+2, ·2) be isomorphic Hv-rings, 0R, 1R ∈ R with

0R + 0R = 0R, 1R · 1R = 1R, 0R · x = 0R for all x ∈ R and f : (R,+1, ·1) → (J,+2, ·2) be an

isomorphism. Then f(0R) = 0J and f(1R) = 1J .

Proof. let f(0R) = a, f(1R) = b. Since a = f(0R) = f(0R +1 0R) = a +2 a and a +2 y =

f(0R +1 x) 3 f(x) = y for all y ∈ J , it follows that a is a zero of J satisfying a +2 a = a.

Moreover, having b = f(1R ·1 1R) = b ·2 b and b ·2 y = f(1R ·1 x) 3 f(x) = y for all y ∈ J implies

that b is a unit of J satisfying 1J ·2 1J = 1J .

Corollary 4.13. Let (R,+1, ·1) and (J,+2, ·2) be isomorphic Hv-rings. Then

(NQ(R),⊕1,�1) ∼= (NQ(J),⊕2,�2).

Proof. The proof is straightforward by using Proposition 4.11 and Proposition 4.12.

Corollary 4.14. Let (R,+1, ·1) and (J,+2, ·2) be Hv-rings and let Hom(R, J) = {f : R →
J : f is homomorphism, f(0R) = 0J and f(1R) = 1J}. If |Hom(R, J)| <∞ then

|Hom(R, J)| ≤ |Hom(NQ(R), NQ(J)|.

Proof. The proof is straightforward using Proposition 4.11.

Let (R,+) be a commutative Hv-ring with identity “0” and unit “1” and S ⊆ R be an

Hv-subring of R. Then (R/S,+′, ·′) is an Hv-ring with: S as a zero, “1 + S” as a unit and

S +′ S = S. Here “+′” and “·′” are defined as follows: For all x, y ∈ R,

(x+ S) +′ (y + S) = (x+ y) + S and (x+ S) ·′ (y + S) = x · y + S.

Proposition 4.15. Let (S,+, ·) be an Hv-subring of a commutative Hv-ring (R,+, ·). Then

(NQ(R/S),⊕,�) is an Hv-ring.

Proof. Since (R,+, ·) is commutative, it follows that “+′” and “·′” are well defined. The proof

follows from having (R/S,+′, ·′) an Hv-ring with S as zero, 1 + S as unit, S ·′ (x + S) =

(x+ S) ·′ S = S and from Theorem 3.15.

Proposition 4.16. Let (S,+, ·) be an Hv-subring of a commutative Hv-ring (R,+, ·). Then

(NQ(R/S),⊕,�) ∼= (NQ(R)/NQ(S),⊕′,�′).
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Proof. Let g : NQ(R)/NQ(S)→ NQ(R/S) be defined as follows:

g((x1, x2T, x3I, x4F )⊕NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 + S)F ).

We claim that g is a neutrosophic isomorphism, that is, g is well defined, one-to-one, onto and

neutrosophic homomorphism.

(1) g is well defined. Let x ⊕ NQ(S) = y ⊕ NQ(S) ∈ NQ(R)/NQ(S). Then there exist

xi, yi ∈ R, i = 1, 2, 3, 4 such that x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ). We

need to show that xi + S = yi + S for i = 1, 2, 3, 4, that is xi + S ⊆ yi + S and

yi + S ⊆ xi + S for i = 1, 2, 3, 4. We show that xi + S ⊆ yi + S and yi + S ⊆ xi + S is

done in a similar manner. Since x⊕NQ(S) = y ⊕NQ(S), it follows that x ∈ x⊕ z ⊆
y⊕NQ(S) for all z = (z1, z2T, z3I, z4F ) ∈ NQ(S). The latter implies that there exist

s = (s1, s2T, s3I, s4F ) ∈ NQ(S) such that x⊕z ∈ y⊕s. We get xi+zi ∈ yi+si ⊆ yi+S
for i = 1, 2, 3, 4. The latter implies that xi + S ⊆ yi + S for i = 1, 2, 3, 4.

(2) g is onto. The proof is straightforward.

(3) g is one-to-one. Let x ⊕ NQ(S) = (x1, x2T, x3I, x4F ) ⊕ NQ(S), y ⊕ NQ(S) =

(y1, y2T, y3I, y4F ) ⊕ NQ(S) ∈ NQ(R)/NQ(S) with h(x ⊕ NQ(S)) = h(y ⊕ NQ(S)).

We need to show that x ⊕ NQ(S) = y ⊕ NQ(S), that is, x ⊕ NQ(S) ⊆ y ⊕ NQ(S)

and y ⊕NQ(S) ⊆ x⊕NQ(S). We prove x⊕NQ(S) ⊆ y ⊕NQ(S) and y ⊕NQ(S) ⊆
x⊕NQ(S) is done in a similar manner.

Having h(x⊕NQ(S)) = h(y⊕NQ(S)) implies that (x1 +S, (x2 +S)T, (x3 +S)I, (x4 +

S)F ) = (y1+S, (y2+S)T, (y3+S)I, (y4+S)F ). The latter implies that xi+S = yi+S

for i = 1, 2, 3, 4. Let z = (z1, z2T, z3I, z4F ) ∈ NQ(S). Having xi + S = yi + S for

i = 1, 2, 3, 4 implies that there exist si, i = 1, 2, 3, 4, such that xi + zi ⊆ yi + si for

i = 1, 2, 3, 4. The latter implies that x⊕NQ(S) ⊆ y ⊕ s ⊆ y ⊕NQ(S).

(4) g is neutrosophic homomorphism.

• g(0, 0T, 0I, 0F ) = (S, ST, SI, SF ),

• g(1, 0T, 0I, 0F ) = (1 + S, ST, SI, SF ),

• g(0, 1T, 0I, 0F ) = (S, (1 + S)T, SI, SF ),

• g(0, 0T, 1I, 0F ) = (S, ST, (1 + S)I, SF ),

• g(0, 0T, 0I, 1F ) = (S, ST, SI, (1 + S)F ),

• We have g((x1, x2T, x3I, x4F )⊕NQ(S)⊕′ (y1, y2T, y3I, y4F )⊕NQ(S)) = g((x1 +

y1, (x2+y2)T, (x3+y3)I, (x4+y4)F )⊕NQ(S)) = (x1+y1+S, (x2+y2+S)T, (x3+

y3 + S)I, (x4 + y4 + S)F ). On the other hand, we have g((x1, x2T, x3I, x4F ) ⊕
NQ(S)) ⊕ g((y1, y2T, y3I, y4F ) ⊕ NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 +

S)F )⊕ (y1 + S, (y2 + S)T, (y3 + S)I, (y4 + S)F ).
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• We have:(x1, x2T, x3I, x4F ) ⊕ NQ(S) �′ (y1, y2T, y3I, y4F ) ⊕ NQ(S) =

(x1, x2T, x3I, x4F ) � (y1, y2T, y3I, y4F ) ⊕ NQ(S) and g((x1, x2T, x3I, x4F ) ⊕
NQ(S)) � g((y1, y2T, y3I, y4F ) ⊕ NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 +

S)F ) � (y1 + S, (y2 + S)T, (y3 + S)I, (y4 + S)F ). Simple computations im-

ply that g((x1, x2T, x3I, x4F ) ⊕ NQ(S) �′ (y1, y2T, y3I, y4F ) ⊕ NQ(S)) =

g((x1, x2T, x3I, x4F )⊕NQ(S))� g((y1, y2T, y3I, y4F )⊕NQ(S)).

Therefore, (NQ(R/S),⊕,�) ∼= (NQ(R)/NQ(S),⊕′,�′).

Example 4.17. Let R2 = {0, 1, 2} and S = {0, 1} in Example 4.6. Then NQ(R2/S) ∼=
NQ(R2)/NQ(S).

5. Conclusion

This paper contributed to the study of neutrosophic hyperstructures by introducing neu-

trosophic quadruple Hv-rings and studying their properties. For future work, it will be inter-

esting to introduce and study other neutrosophic quadruple Hv-structures such as neutrosophic

Hv-modules and neutrosophic Hv-vectorspaces.
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Abstract: Multi-criteria decision making (MCDM) is concerned about coordinating as well as 

looking after selection as well as planning problems which included multi-criteria. The neutrosophic 

soft set cannot handle the environment which involved more than one attribute. To overcome those 

hurdles neutrosophic hypersoft set (NHSS) is defined. In this paper, we proposed the generalized 

aggregate operators on NHSS such as extended union, extended intersection, OR-operation, AND-

operation, etc. with their properties. Finally, the necessity and possibility operations on NHSS with 

suitable examples and properties are presented in the following research. 

Keywords: Soft set; Neutrosophic Set; Neutrosophic soft set; Hypersoft set; Neutrosophic hypersoft set. 

 

1. Introduction 

Zadeh developed the notion of fuzzy sets [1] to solve those problems which contain uncertainty 

and vagueness. It is observed that in some cases circumstances cannot be handled by fuzzy sets, to 

overcome such types of situations Turksen [2] gave the idea of interval-valued fuzzy set. In some 

cases, we must deliberate membership unbiassed as the non- membership values for the suitable 

representation of an object in uncertain and indeterminate conditions that could not be handled by 

fuzzy sets nor interval-valued fuzzy sets. To overcome these difficulties Atanassov presented the 

notion of Intuitionistic fuzzy sets in [3]. The theory which was presented by Atanassov only deals the 

insufficient data considering both the membership and non-membership values, but the intuitionistic 

fuzzy set theory cannot handle the incompatible and imprecise information. To deal with such 

incompatible and imprecise data the idea of the neutrosophic set (NS) was developed by 

Smarandache [4].  

A general mathematical tool was proposed by Molodtsov [5] to deal with indeterminate, fuzzy, 

and not clearly defined substances known as a soft set (SS). Maji et al. [6] extended the work on SS 

and defined some operations and their properties. In [7], they also used the SS theory for decision 

making. Ali et al. [8] revised the Maji approach to SS and developed some new operations with their 

properties. De Morgan’s Law on SS theory was proved in [9] by using different operators. Cagman 

and Enginoglu [10] developed the concept of soft matrices with operations and discussed their 

properties, they also introduced a decision-making method to resolve those problems which contain 

uncertainty. In [11], they revised the operations proposed by Molodtsov’s SS. In [12], the author’s 

proposed some new operations on soft matrices such as soft difference product, soft restricted 

difference product, soft extended difference product, and soft weak-extended difference product 

with their properties. 

 Maji [13] offered the idea of a neutrosophic soft set (NSS) with necessary operations and 

properties. The idea of the possibility NSS was developed by Karaaslan [14] and introduced a 

possibility of neutrosophic soft decision-making method to solve those problems which contain 

uncertainty based on And-product. Broumi [15] developed the generalized NSS with some 

operations and properties and used the proposed concept for decision making. To solve MCDM 

problems with single-valued Neutrosophic numbers presented by Deli and Subas in [16], they 
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constructed the concept of cut sets of single-valued Neutrosophic numbers. On the base of the 

correlation of intuitionistic fuzzy sets, the term correlation coefficient of SVNSs [17] was introduced. 

In [18], the idea of simplified NSs introduced with some operational laws and aggregation operators 

such as real-life Neutrosophic weighted arithmetic average operator and weighted geometric average 

operator. They constructed an MCDM method on the base of proposed aggregation operators. 

Smarandache [19] generalized the SS to hypersoft set (HSS) by converting the function to a multi-

attribute function to deal with uncertainty. Saqlain et al. [20] developed the generalization of TOPSIS 

for the NHSS, by using the accuracy function they transformed the fuzzy neutrosophic numbers to 

crisp form. In [21],s the author’s proposed the fuzzy plithogenic hypersoft set in matrix form with 

some basic operations and properties. Martin and Smarandache developed the plithogenic hypersoft 

set by combining the plithogenic sets and hypersoft set in [22]. Saqlain et al. [23] proposed the 

aggregate operators and similarity measure [24] on NHSS. In [25], Abdel basset et al. applied TODIM 

and TOPSIS methods based on the best-worst method to increase the accuracy of evaluation under 

uncertainty according to the neutrosophic set. They also used the plithogenic set theory to solve the 

uncertain information and evaluate the financial performance of manufacturing industries, they used 

the AHP method to find the weight vector of the financial ratios to achieve this goal after that they 

used the VIKOR and TOPSIS methods to utilized the companies ranking in [26]. 

In the following paragraph, we explain some positive impacts of this research. The main focus 

of this study is too generalized the aggregate operators of the neutrosophic hypersoft set. We will use 

the proposed aggregate operators to solve multi-criteria decision-making problems after developing 

distance-based similarity measures. Saqlain et al. [23], developed the aggregate operators on NHSS 

but in some cases, we face some limitations such as in union and intersection. To overcome these 

limitations we develop the generalized version of aggregate operators on NHSS. 

The following research is organized as follows: In section 2, we recall some basic definitions used 

in the following research such as SS, NS, NSS, HSS, and NHSS. We develop the generalized aggregate 

operators on NHSS such as extended union, extended intersection, And-operation, etc. in section 3 

with properties. In section 4, the necessity and possibility of operations are presented with examples 

and properties. 

2. Preliminaries  

In this section, we recall some basic definitions such as SS, NSS, and NHSS which use in the following 

sequel. 

Definition 2.1 [5] Soft Set 

The soft set is a pair (F, Ʌ) over Ṹ if and only if F: Ʌ → 𝑃(Ṹ) is a mapping. That is the parameterized 

family of subsets of Ṹ known as a SS. 

Definition 2.2 [4] Neutrosophic Set 

Let Ṹ be a universe and Ʌ be an NS on Ṹ is defined as Ʌ = {< 𝑢, 𝑇Ʌ(𝑢), 𝐼Ʌ(𝑢), 𝐹Ʌ(𝑢) >: 𝑢 ∈ Ṹ}, where T, 

I, F: Ṹ → ]0−, 1+[ and 0− ≤ 𝑇Ʌ(𝑢) + 𝐼Ʌ(𝑢) + 𝐹Ʌ(𝑢) ≤ 3+. 

Definition 2.3 [13] Neutrosophic Soft Set 

Let Ṹ and Ḝ are universal set and set of attributes respectively. Let P(Ṹ) be the set of Neutrosophic 

values of Ṹ and Ʌ ⊆ Ḝ. A pair (F, Ʌ) is called an NSS over Ṹ and its mapping is given as  

F: Ʌ → 𝑃(Ṹ)  

Definition 2.4 [19] Hypersoft Set 

Let Ṹ be a universal set and 𝑃(Ṹ ) be a power set of Ṹ and for 𝑛 ≥ 1, there are 𝑛 distinct attributes such 

as 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛 and 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 are sets for corresponding values attributes respectively 

with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair (F, 𝐾1 × 𝐾2 

× 𝐾3× … × 𝐾𝑛) is said to be Hypersoft set over Ṹ where F is a mapping from 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 

to 𝑃(Ṹ).  
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Definition 2.5 [22] Neutrosophic Hypersoft Set (NHSS)  

Let Ṹ be a universal set and 𝑃(Ṹ ) be a power set of Ṹ and for 𝑛 ≥ 1, there are 𝑛 distinct attributes such 

as 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛 and 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 are sets for corresponding values attributes respectively 

with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair (F, Ʌ) is said 

to be NHSS over Ṹ if there exists a relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ.  F is a mapping from 𝐾1 × 

𝐾2 × 𝐾3× … × 𝐾𝑛 to 𝑃(Ṹ) and F(𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛) = {< 𝑢, 𝑇Ʌ(𝑢), 𝐼Ʌ(𝑢), 𝐹Ʌ(𝑢) > : 𝑢 ∈  Ṹ} where 

T, I, F are membership values for truthness, indeterminacy, and falsity respectively such that T, I, F: 

Ṹ → ]0−, 1+[ and 0− ≤ 𝑇Ʌ(𝑢) + 𝐼Ʌ(𝑢) + 𝐹Ʌ(𝑢) ≤ 3+. 

Example 2.6 Assume that a person examines the attractiveness of a living house. Let Ṹ be a universe 

which consists of three choices Ṹ = {𝑢1, 𝑢2} and E = {έ1, έ2, έ3} be a set of decision parameters. Then, 

the NHSS is given as 

𝐹Ʌ = {< u1 , (έ1{0.4, 0.7, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.9}) > 

< u2, (έ1{0.1,0.5,0.7}, έ2{0.5, 0.6, 0.2}, έ3{0.7, 0.4, 0.6}) >} 

3. Generalized Aggregate Operators on Neutrosophic Hypersoft Set and Properties 

In this section, we present the generalized aggregate operations on NHSS with examples. We prove 

commutative and associative laws by using proposed aggregate operators in the following section. 

Definition 3.1  

Let 𝐹Ʌ ∈ NHSS, then its complement, is written as (𝐹Ʌ)𝑐  = 𝐹𝑐(Ʌ) and defined as 

𝐹𝑐(Ʌ) = {< 𝑢, 𝑇(𝐹𝑐(Ʌ)), 𝐼(𝐹𝑐(Ʌ)), 𝐹(𝐹𝑐(Ʌ)) > : 𝑢 ∈  U} such that     

𝑇(𝐹𝑐(Ʌ)) = 1- 𝑇Ʌ(𝑢), 

𝐼(𝐹𝑐(Ʌ)) = 1- 𝐼Ʌ(𝑢), 

𝐹(𝐹𝑐(Ʌ)) = 1- 𝐹Ʌ(𝑢). 

Example 3.2 Reconsider example 2.6 

𝐹𝑐(Ʌ) = {< u1 , (έ1{0.6, 0.3, 0.5}, έ2{0.2, 0.5, 0.7}, έ3{0.4, 0.5, 0.1}) > 

        < u2, (έ1{0.9, 0.5, 0.3}, έ2{0.5, 0.4, 0.8}, έ3{0.3, 0.6, 0.4}) >} 

Proposition 3.3 

If 𝐹Ʌ ∈ NHSS, then (𝐹𝑐(Ʌ))𝑐 = 𝐹Ʌ. 

Proof 

By using definition 3.1, we have 

𝐹𝑐(Ʌ) = {< 𝑢, 𝑇(𝐹𝑐(Ʌ)), 𝐼(𝐹𝑐(Ʌ)), 𝐹(𝐹𝑐(Ʌ)) > : 𝑢 ∈  U} 

= {< 𝑢, 1 −  𝑇 (𝐹Ʌ), 1 −  𝐼 (𝐹Ʌ), 1 −  𝐹 (𝐹Ʌ) > : 𝑢 ∈  U}, 

Thus 

(𝐹𝑐(Ʌ))𝑐 = {< 𝑢, 1 −  (1 −  𝑇(𝐹Ʌ)), 1 −  (1 −  𝐼(𝐹Ʌ)), 1 – (1 −  𝐹(𝐹Ʌ)) > : 𝑢 ∈  U}, 

(𝐹𝑐(Ʌ))𝑐 = {< 𝑢, 𝑇(𝐹Ʌ), 𝐼(𝐹Ʌ), 𝐹(𝐹Ʌ)  > : 𝑢 ∈  U} = 𝐹Ʌ.  

Which completes the proof. 

Definition 3.4 Extended Union of Two Neutrosophic Hypersoft Set  

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS, then their extended union is 

𝑇 (𝐹Ʌ1
 ∪ 𝐹Ʌ2

) = {

𝑇(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝑇(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥 (𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

))           𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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𝐼 (𝐹Ʌ1
 ∪ 𝐹Ʌ2

) = {

𝐼(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛 (𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

))             𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐹 (𝐹Ʌ1
 ∪ 𝐹Ʌ2

) = {

𝐹(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛 (𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

))           𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Example 3.5 Let U = {𝑢1, 𝑢2, 𝑢3, 𝑢4} be a universal set and E = {έ1, έ2, έ3, έ4} be a set of decision 

parameters and 𝐹Ʌ1
 = {u1, u4} and 𝐹Ʌ2

 = {u2, u4} 

𝐹Ʌ1
 = {< u1 , (έ1{0.4, 0.7, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.9}, έ4{0.3, 0.7, 0.2}) > 

< u4, (έ1{0.4, 0.7, 0.2}, έ2{0.6, 0.5, 0.3}, έ3{0.8, 0.4, 0.7}, έ4{0.6, 0.4, 0.3}) >} 

𝐹Ʌ2
 = {< u2, (έ1{0.7, 0.4, 0.6}, έ2{0.4, 0.6, 0.9}, έ3{0.7, 0.4, 0.6}, έ4{0.7, 0.6, 0.3}) > 

< u4, (έ1{0.6, 0.2, 0.7}, έ2{0.5, 0.7, 0.3}, έ3{0.4, 0.8, 0.5}, έ4{0.5, 0.6, 0.4}) >} 

𝐹Ʌ1
 ∪ 𝐹Ʌ2

 = {< u1 , (έ1{0.4, 0.7, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.9}, έ4{0.3, 0.7, 0.2}) > 

< u2, (έ1{0.7, 0.4, 0.6}, έ2{0.4, 0.6, 0.9}, έ3{0.7, 0.4, 0.6}, έ4{0.7, 0.6, 0.3}) > 

< u4, (έ1{0.6, 0.7, 0.7}, έ2{0.6, 0.7, 0.3}, έ3{0.8, 0.8, 0.7}, έ4{0.6, 0.6, 0.4}) >} 

Proposition 3.6 

Let 𝐹Ʌ1
, 𝐹Ʌ2

 and 𝐹Ʌ3
 are NHSSs than  

1. (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = (𝐹Ʌ2
 ∪  𝐹Ʌ1

) (Commutative law) 

2. (𝐹Ʌ1
 ∪  𝐹Ʌ2

) ∪ 𝐹Ʌ3
 = 𝐹Ʌ1

 ∪ (𝐹Ʌ2
 ∪  𝐹Ʌ3

) (Associative law) 

Proof 1. In the following proof first two cases are trivial, we consider only the third case in this 

proposition 

(𝐹Ʌ1
 ∪  𝐹Ʌ2

) = {< u, (𝑚𝑎𝑥 {𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}, 𝑚𝑖𝑛 {𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}, 𝑚𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}) >} 

= {< u, (𝑚𝑎𝑥{𝑇(𝐹Ʌ2
), 𝑇(𝐹Ʌ1

)}, 𝑚𝑖𝑛 {𝐼(𝐹Ʌ2
), 𝐼(𝐹Ʌ1

)}, 𝑚𝑖𝑛{𝐹(𝐹Ʌ2
), 𝐹(𝐹Ʌ1

)}) >} 

= (𝐹Ʌ2
 ∪  𝐹Ʌ1

) 

Proof 2: Let 𝐹Ʌ1
, 𝐹Ʌ2

 and 𝐹Ʌ3
 are NHSSs than 

𝐹Ʌ1
 ∪  𝐹Ʌ2

 = {< u, (𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}, 𝑀𝑖𝑛 {𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}, 𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}) >} 

(𝐹Ʌ1  ∪  𝐹Ʌ2 ) ∪ 𝐹Ʌ3  =  

{< u, max {max{𝑇(𝐹Ʌ1), 𝑇(𝐹Ʌ2)}, 𝑇(𝐹Ʌ3)}, min {min{ 𝐼(𝐹Ʌ1), 𝐼(𝐹Ʌ2)}, 𝐼(𝐹Ʌ3)}, min {min {𝐹(𝐹Ʌ1), 𝐹(𝐹Ʌ2)}, 𝐹(𝐹Ʌ3)} >} 

= {< u, max { 𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

), 𝑇(𝐹Ʌ3
)}, min { { 𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)}, 𝐼(𝐹Ʌ3

)}, min {{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}, 𝐹(𝐹Ʌ3
)} >} 

= {<  u, max {𝑇(𝐹Ʌ1), max {𝑇(𝐹Ʌ2), 𝑇(𝐹Ʌ3)}} , min {𝐼(𝐹Ʌ1), min {𝐼(𝐹Ʌ2), 𝐼(𝐹Ʌ3)}} , min {𝐹(𝐹Ʌ1), min {𝐹(𝐹Ʌ2), 𝐹(𝐹Ʌ3)}} >} 

= 𝐹Ʌ1
 ∪ (𝐹Ʌ2

 ∪  𝐹Ʌ3
) 

Definition 3.7 Extended Intersection of Two Neutrosophic Hypersoft Set  

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS, then their extended intersection is 

𝑇 (𝐹Ʌ1
 ∩ 𝐹Ʌ2

) = {

𝑇(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛 (𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

))             𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐼 (𝐹Ʌ1
 ∩ 𝐹Ʌ2

) = {

𝐼(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑎𝑥 (𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

))            𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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𝐹 (𝐹Ʌ1
 ∩ 𝐹Ʌ2

) = {

𝐹(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐹(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥 (𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

))          𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Proposition 3.8 Let 𝐹Ʌ1
, 𝐹Ʌ2

 and 𝐹Ʌ3
 are NHSSs than  

1. 𝐹Ʌ1
 ∩ 𝐹Ʌ2

 = 𝐹Ʌ2
 ∩ 𝐹Ʌ1

 (Commutative law) 

2. (𝐹Ʌ1
 ∩  𝐹Ʌ2

) ∩ 𝐹Ʌ3
 = 𝐹Ʌ1

 ∩ (𝐹Ʌ2
 ∩  𝐹Ʌ3

) (Associative law) 

Proof 1. Similar to Proposition 3.6. 

Proposition 3.9 Let 𝐹Ʌ1
, 𝐹Ʌ2

 are NHSSs then 

1. (𝐹Ʌ1
 ∪  𝐹Ʌ2

)𝒄 = 𝐹𝑐(Ʌ1) ∩ 𝐹𝑐(Ʌ2) 

2. (𝐹Ʌ1
 ∩  𝐹Ʌ1

)𝒄 = 𝐹𝑐(Ʌ1) ∪ 𝐹𝑐(Ʌ2) 

Proof 1. Let 𝐹Ʌ1
 and 𝐹Ʌ1

 ∈ NHSS, such as follows  

𝐹Ʌ1
 = {< u, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >} and 𝐹Ʌ2
 = {< u, {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >} 

(𝐹Ʌ1
 ∪  𝐹Ʌ2

)𝒄 = {< u, (𝑚𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}, 𝑚𝑖𝑛 {𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}, 𝑚𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)) >}
𝒄

  

= {< u, (𝑚𝑖𝑛{1 − 𝑇(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ2

)}, 𝑚𝑎𝑥 {1 − 𝐼(𝐹Ʌ1
), 1 −  𝐼(𝐹Ʌ2

)}, 𝑚𝑎𝑥{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)) >} 

= {< u, (𝑚𝑖𝑛{𝑇(𝐹𝑐(Ʌ1)), 𝑇(𝐹𝑐(Ʌ2))}, 𝑚𝑎𝑥 {𝐼(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ2))}, 𝑚𝑎𝑥{𝐹(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ2))}) >} 

= 𝐹𝑐(Ʌ1) ∩ 𝐹𝑐(Ʌ2) 

Proof 2. Similarly, we can prove 2.  

Definition 3.10 OR-Operation of Two Neutrosophic Hypersoft Set  

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS. Consider 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛  for , be  well-defined attributes, whose 

corresponding attributive values are respectively the set 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 with 𝐾𝑖 ∩ 𝐾𝑗 = ∅, for 𝑖 ≠ 

𝑗 and 𝑖, 𝑗𝜖{1,2,3 … 𝑛} and their relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ, then 𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, then  

𝑇 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑎𝑥 (𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)), 

𝐼 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑖𝑛 (𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)), 

𝐹 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑖𝑛 (𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)). 

Example 3.11 Reconsider example 3.5 

𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
  

 = {< (u1, u2), (έ1{0.7, 0.4, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.7, 0.4, 0.6}, έ4{0.7, 0.6, 0.2}) > 

< (u1, u4), (έ1{0.6, 0.2, 0.5}, έ2{0.8, 0.5, 0.3}, έ3{0.6, 0.5, 0.5}, έ4{0.5, 0.6, 0.2}) > 

< (u4, u2), (έ1{0.7, 0.4, 0.2}, έ2{0.6, 0.5, 0.3}, έ3{0.8, 0.4, 0.6}, έ4{0.7, 0.4, 0.3}) > 

   < (u4, u4), (έ1{0.6, 0.2, 0.2}, έ2{0.6, 0.5, 0.3}, έ3{0.8, 0.4, 0.5}, έ4{0.6, 0.4, 0.3}) >} 

Definition 3.12 AND-Operation of Two Neutrosophic Hypersoft Set  

Let 𝐹Ʌ1
, 𝐹Ʌ2

 ∈ NHSS. Consider 𝑘1, 𝑘2, 𝑘3, …, 𝑘𝑛  for , be  well-defined attributes, whose 

corresponding attributive values are respectively the set 𝐾1, 𝐾2, 𝐾3, …, 𝐾𝑛 with 𝐾𝑖 ∩ 𝐾𝑗 = = ∅, for 𝑖 

≠ 𝑗 and 𝑖, 𝑗𝜖{1,2,3 … 𝑛} and their relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ then 𝐹Ʌ1
 ˄ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, then  
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𝑇 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑖𝑛 (𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)), 

𝐼 (𝐹Ʌ1 × Ʌ2
) = 𝑀𝑎𝑥 (𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)), 

𝑭 (𝑭Ʌ𝟏 × Ʌ𝟐
) = 𝑴𝒂𝒙 (𝑭(𝑭Ʌ𝟏

), 𝑭(𝑭Ʌ𝟐
)). 

Proposition 3.13 Let 𝐹Ʌ1
, 𝐹Ʌ2

 are NHSSs then 

1. (𝐹Ʌ1
 ˅ 𝐹Ʌ2

)
𝑐
 = 𝐹𝑐(Ʌ1) ˄ 𝐹𝑐(Ʌ2) 

2. (𝐹Ʌ1
 ˄ 𝐹Ʌ2

)
𝑐
 = 𝐹𝑐(Ʌ1) ˅ 𝐹𝑐(Ʌ2) 

Proof 1. Let 𝐹Ʌ1
 and 𝐹Ʌ1

 ∈ NHSS, such as follows  

𝐹Ʌ1
 = {< 𝑢𝑖, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} > : 𝑢𝑖  ∈ 𝑈} and 𝐹Ʌ2
 = {< 𝑢𝑗 , {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} > : 𝑢𝑗  ∈ 𝑈} 

By using definition 3.10 we get 

𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, max{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >} 

(𝐹Ʌ1 ˅ 𝐹Ʌ2)
𝑐
 = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − max{𝑇(𝐹Ʌ1), 𝑇(𝐹Ʌ2)} , 1 − min{𝐼(𝐹Ʌ1), 𝐼(𝐹Ʌ2)} , 1 − min{𝐹(𝐹Ʌ1), 1 − 𝐹(𝐹Ʌ2)}] >} 

(𝐹Ʌ1
 ˅ 𝐹Ʌ2)

𝑐
 = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{1 − 𝑇(𝐹Ʌ1), 1 − 𝑇(𝐹Ʌ2

)} , max{1 − 𝐼(𝐹Ʌ1), 1 − 𝐼(𝐹Ʌ2
)} , max{1 − 𝐹(𝐹Ʌ1), 1 − 𝐹(𝐹Ʌ2

)}] >} 

(𝐹Ʌ1
 ˅ 𝐹Ʌ2)

𝑐
 = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹𝑐(Ʌ1)), 𝑇(𝐹𝑐(Ʌ2))} , max{𝐼(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ2))} , max{𝐹(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ2))}] >} 

Since 

𝐹𝑐(Ʌ1) = {< 𝑢𝑖, {𝑇(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ1))} > : 𝑢𝑖  ∈ 𝑈} and 

𝐹𝑐(Ʌ2) = {< 𝑢𝑗 , {𝑇(𝐹𝑐(Ʌ2)), 𝐼(𝐹𝑐(Ʌ2)), 𝐹(𝐹𝑐(Ʌ2))} > : 𝑢𝑗  ∈ 𝑈} 

By using definition 3.12, we get 

𝐹𝑐(Ʌ1) ˄ 𝐹𝑐(Ʌ2) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹𝑐(Ʌ1)), 𝑇(𝐹𝑐(Ʌ2))} , max{𝐼(𝐹𝑐(Ʌ1)), 𝐼(𝐹𝑐(Ʌ2))} , max{𝐹(𝐹𝑐(Ʌ1)), 𝐹(𝐹𝑐(Ʌ2))}] >} 

So 

(𝐹Ʌ1
 ˅ 𝐹Ʌ2

)
𝑐
 = 𝐹𝑐(Ʌ1) ˄ 𝐹𝑐(Ʌ2). 

Similarly, we can prove 2. 

4. Necessity and Possibility Operations 

The necessity and possibility operations on NHSS with some properties are presented in the 

following section.  

Definition 4.1 Necessity operation 

Let 𝐹Ʌ ∈ NHSS, then necessity operation on NHSS represented by ⊕ 𝐹Ʌ and defined as follows 

⊕ 𝐹Ʌ = {< u, {𝑇(𝐹Ʌ), 𝐼(𝐹Ʌ), 1 − 𝑇(𝐹Ʌ)} >} for all 𝑢 ∈ 𝑈. 

Example 4.2 Reconsider example 2.6 

⊕ 𝐹Ʌ = {< u1 , (έ1{0.4, 0.7, 0.6}, έ2{0.8, 0.5, 0.2}, έ3{0.6, 0.5, 0.4}) > 

< u2, (έ1{0.1,0.5,0.9}, έ2{0.5, 0.6, 0.5}, έ3{0.7, 0.4, 0.3}) >} 

Proposition 4.3  

1. ⊕ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊕ 𝐹Ʌ2
 ∪ ⊕ 𝐹Ʌ1

 

2. ⊕ (𝐹Ʌ1
 ∩  𝐹Ʌ2

) = ⊕ 𝐹Ʌ2
 ∩ ⊕ 𝐹Ʌ1

 

Proof 1. Let 𝐹Ʌ1
 ∪  𝐹Ʌ2

 = 𝐹Ʌ3
, then  

𝑇 (𝐹Ʌ3
) = {

𝑇(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}            𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}              𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐹 (𝐹Ʌ3
) = {

𝐹(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}             𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

By using the definition of necessity operation 

⊕𝐹Ʌ3
 = {< 𝑢, {⊕ 𝑇(𝐹Ʌ3

),⊕ 𝐼(𝐹Ʌ3
),⊕ 𝐹(𝐹Ʌ3

)} >: 𝑢 ∈ 𝑈}, where 

⊕ 𝑇 (𝐹Ʌ3
) = {

𝑇(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝑇(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}             𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊕ 𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐼(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}               𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊕ 𝐹 (𝐹Ʌ3
) = {

1 − 𝑇(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝑇(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

1 − 𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}              𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Assume  

⊕𝐹Ʌ1
 = {< 𝑢, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ1

)} >: 𝑢 ∈ 𝑈} 

⊕𝐹Ʌ2
 = {< 𝑢, {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 1 − 𝑇(𝐹Ʌ2

)} >: 𝑢 ∈ 𝑈} 

⊕𝐹Ʌ1
 ∪ ⊕𝐹Ʌ2

 = 𝐹𝛿, where 

𝐹𝛿 = {< 𝑢, {𝑇(𝐹𝛿), 𝐼(𝐹𝛿), 𝐹(𝐹𝛿)} >: 𝑢 ∈ 𝑈}, such that 

𝑇 (𝐹𝛿) = {

𝑇(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}            𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐼 (𝐹𝛿) = {

𝐼(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}              𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐹 (𝐹𝛿) = {

1 − 𝑇(𝐹Ʌ1
)                                              𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝑇(𝐹Ʌ2
)                                              𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{1 − 𝑇(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ2

)}            𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 OR 

𝐹 (𝐹𝛿) = {

1 − 𝑇(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝑇(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

1 − 𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}             𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Consequently ⊕𝐹Ʌ3
 and 𝐹𝛿 are same. So 

⊕ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊕ 𝐹Ʌ2
 ∪ ⊕ 𝐹Ʌ1

. 

Similarly, we can prove 2. 

Definition 4.4 Possibility operation 

Let 𝐹Ʌ ∈ NHSS, then possibility operation on NHSS represented by ⊗ 𝐹Ʌ and defined as follows 

⊗ 𝐹Ʌ = {< u, {1 − 𝐹(𝐹Ʌ), 𝐼(𝐹Ʌ), 𝐹(𝐹Ʌ)} >} for all 𝑢 ∈ 𝑈. 

Example 4.5 Reconsider the example 2.6 

⊗ 𝐹Ʌ = {< u1 , (έ1{0.5, 0.7, 0.5}, έ2{0.7, 0.5, 0.3}, έ3{0.1, 0.5, 0.9}) > 
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< u2, (έ1{0.3, 0.5, 0.7}, έ2{0.8, 0.6, 0.2}, έ3{0.4, 0.4, 0.6}) >} 

Proposition 4.6 

1. ⊗ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊗ 𝐹Ʌ2
 ∪ ⊗ 𝐹Ʌ1

 

2. ⊗ (𝐹Ʌ1
 ∩  𝐹Ʌ2

) = ⊗ 𝐹Ʌ2
 ∩ ⊗ 𝐹Ʌ1

 

Proof 1. Let 𝐹Ʌ1
 ∪  𝐹Ʌ2

 = 𝐹Ʌ3
, then  

𝑇 (𝐹Ʌ3
) = {

𝑇(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝑇(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑎𝑥{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}            𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐼(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}               𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

𝐹 (𝐹Ʌ3
) = {

𝐹(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}              𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

By using the definition of necessity operation 

⊗ 𝐹Ʌ3
 = {< u, {⊗ 𝑇(𝐹Ʌ3

),⊗ 𝐼(𝐹Ʌ3
),⊗ 𝐹(𝐹Ʌ3

)} >: 𝑢 ∈ 𝑈}, where 

⊗  𝑇 (𝐹Ʌ3
) = {

1 − 𝐹(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

1 − 𝐹(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

1 − 𝑀𝑎𝑥{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}             𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

= {

1 − 𝐹(𝐹Ʌ1
)                                              𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

1 − 𝐹(𝐹Ʌ2
)                                              𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)}            𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐼 (𝐹Ʌ3
) = {

𝐼(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐼(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}               𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐹 (𝐹Ʌ3
) = {

𝐹(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐹(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}              𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

Assume  

⊗ 𝐹Ʌ1
 = {< u, {1 − 𝐹(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >: 𝑢 ∈ 𝑈} 

⊗ 𝐹Ʌ2
 = {< u, {1 − 𝐹(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >: 𝑢 ∈ 𝑈} 

⊗ 𝐹Ʌ1
 ∪ ⊕𝐹Ʌ2

 = 𝐹𝛿, where 

𝐹𝛿 = {< u, {𝑇(𝐹𝛿), 𝐼(𝐹𝛿), 𝐹(𝐹𝛿)} >: 𝑢 ∈ 𝑈}, such that 

⊗  𝑇 (𝐹𝛿) = {

1 − 𝐹(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

1 − 𝐹(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 −  Ʌ1

1 − 𝑀𝑎𝑥{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}            𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐼 (𝐹𝛿) = {

𝐼(𝐹Ʌ1
)                                        𝑖𝑓 𝑢 ∈  Ʌ1 −  Ʌ2

𝐼(𝐹Ʌ2
)                                        𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)}               𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2

 

⊗  𝐹 (𝐹𝛿) = {

𝐹(𝐹Ʌ1
)                                       𝑖𝑓 𝑢 ∈  Ʌ1 − Ʌ2

𝐹(𝐹Ʌ2
)                                       𝑖𝑓 𝑢 ∈  Ʌ2 − Ʌ1

𝑀𝑖𝑛{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}             𝑖𝑓 𝑢  ∈  Ʌ1 ∩  Ʌ2
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Consequently ⊗ 𝐹Ʌ3
 and 𝐹𝛿 are same. So 

⊗ (𝐹Ʌ1
 ∪  𝐹Ʌ2

) = ⊗ 𝐹Ʌ2
 ∪ ⊗ 𝐹Ʌ1

 

Similarly, we can prove 2. 

Proposition 4.7 Let 𝐹Ʌ1
 and 𝐹Ʌ2

 ∈ NHSS, than we have the following  

1. ⊕(𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = ⊕𝐹Ʌ1
 ˄ ⊕𝐹Ʌ2

 

2. ⊕(𝐹Ʌ1
 ˅ 𝐹Ʌ2

) = ⊕𝐹Ʌ1
 ˅ ⊕𝐹Ʌ2

 

3. ⊗ (𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = ⊗ 𝐹Ʌ1
 ˄ ⊗ 𝐹Ʌ2

 

4. ⊗ (𝐹Ʌ1
 ˅ 𝐹Ʌ2

) = ⊗ 𝐹Ʌ1
 ˅ ⊗ 𝐹Ʌ2

 

Proof 1. Assume 𝐹Ʌ1
 ˄ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, where (𝑢𝑖 , 𝑢𝑗) ∈ Ʌ1  ×  Ʌ2  

𝐹Ʌ1 × Ʌ2
 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)} , max{𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)} , max{𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)}] >} 

By using definition 4.1, we have 

⊕(𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , 1 − min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}] >} 

Since  

⊕ 𝐹Ʌ1
 = {< u, {𝑇(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ1

)} >}, and  

⊕ 𝐹Ʌ2
 = {< u, {𝑇(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 1 − 𝑇(𝐹Ʌ2

)} >}, then by using AND-operation, we get 

⊕ 𝐹Ʌ1
 ˄ ⊕ 𝐹Ʌ2

 =  

{< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{1 − 𝑇(𝐹Ʌ1
), 1 − 𝑇(𝐹Ʌ2

)}] >} 

 = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , 1 −  min{𝑇(𝐹Ʌ1
), 𝑇(𝐹Ʌ2

)}] >} 

            = ⊕(𝐹Ʌ1
 ˄ 𝐹Ʌ2

) 

Proof 2. Similar to Assertion 1. 

Proof 3. Assume 𝐹Ʌ1
 ˄ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, where (𝑢𝑖 , 𝑢𝑗) ∈ Ʌ1  ×  Ʌ2  

𝐹Ʌ1 × Ʌ2
 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, min{𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)} , max{𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)} , max{𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)}] >} 

By using definition 4.4, we have 

⊗ (𝐹Ʌ1
 ˄ 𝐹Ʌ2

) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >} 

Since  

⊗ 𝐹Ʌ1
 = {< u, {1 − 𝐹(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >}, and  

⊗ 𝐹Ʌ2
 = {< u, {1 −  𝐹(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >}, then by using AND-operation, we get 

⊗ 𝐹Ʌ1
 ˄ ⊕ 𝐹Ʌ2

 =  

{< (𝑢𝑖 , 𝑢𝑗), [𝑒, min{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >} 

       = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , max{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , max{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >} 

        = ⊗ (𝐹Ʌ1
 ˄ 𝐹Ʌ2

) 

Proof 4. Assume 𝐹Ʌ1
 ˅ 𝐹Ʌ2

 = 𝐹Ʌ1 × Ʌ2
, where (𝑢𝑖, 𝑢𝑗) ∈ Ʌ1  ×  Ʌ2  

𝐹Ʌ1 × Ʌ2
 = {< (𝑢𝑖, 𝑢𝑗), [𝑒, max{𝑇(𝐹Ʌ1

), 𝑇(𝐹Ʌ2
)} , min{𝐼(𝐹Ʌ1

), 𝐼(𝐹Ʌ2
)} , min{𝐹(𝐹Ʌ1

), 𝐹(𝐹Ʌ2
)}] >} 

By using definition 4.4, we have 

⊗ (𝐹Ʌ1
 ˅ 𝐹Ʌ2

) = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >} 

Since  

⊗ 𝐹Ʌ1
 = {< u, {1 − 𝐹(𝐹Ʌ1

), 𝐼(𝐹Ʌ1
), 𝐹(𝐹Ʌ1

)} >}, and  

⊗ 𝐹Ʌ2
 = {< u, {1 −  𝐹(𝐹Ʌ2

), 𝐼(𝐹Ʌ2
), 𝐹(𝐹Ʌ2

)} >}, then by using OR-operation, we get 

⊗ 𝐹Ʌ1
 ˅ ⊕ 𝐹Ʌ2

 =  

{< (𝑢𝑖, 𝑢𝑗), [𝑒, max{1 − 𝐹(𝐹Ʌ1
), 1 − 𝐹(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >} 
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       = {< (𝑢𝑖 , 𝑢𝑗), [𝑒, 1 − min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)} , min{𝐼(𝐹Ʌ1
), 𝐼(𝐹Ʌ2

)} , min{𝐹(𝐹Ʌ1
), 𝐹(𝐹Ʌ2

)}] >} 

        = ⊗ (𝑭Ʌ𝟏
 ˄ 𝑭Ʌ𝟐

) 

5. Conclusion  

In this paper, we study neutrosophic hypersoft set with some basic definition. We proposed the 

generalized aggregate operators on neutrosophic hypersoft sets such as complement, extended 

union, extended intersection, And-operation, and Or-operation with their properties and proved the 

commutative and associative laws on NHSS by using extended union and extended intersection.  

Finally, the concept of necessity and possibility operations on NHSS with suitable numerical 

examples and properties are presented. For future trends, we can develop the distance-based 

similarity measure and will be used for decision making, medical diagnoses, pattern recognition, etc. 

We also develop the neutrosophic hypersoft matrices with its operations and properties by using 

proposed operations and use for decision making.  
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Abstract. The idea behind the neutrosophic set is we can connect the concept by dynamics of opposite interacts

and its neutral that are uncertain and get common parts. Automata theory is beneficial to solve computational

complexity problem and also it is an influential mathematical modeling tool in computer science. Inspired by

the concepts of neutrosophic sets and automata theory, here, we are introducing and discussing the algebraic

concept of neutrosophic finite automata based on the paper [10]. Generally, composite machines can be achieved

by the output of the one machine that will be used as input for another machines. This paper introduced the

concept of composite automata under the environment of the neutrosophic set and also examined the box

function between the composite neutrosophic finite automata.

Keywords: automata theory, stable, composite, box function, neutrosophic set

—————————————————————————————————————————-

1. Introduction

Smarandache [27, 28] has proposed an idea of neutrosophic sets which was extending from

fuzzy sets. Neutrosophic sets have membership values lies in ]0−, 1+[, the nonstandard unit

interval [23] which includes the degree of truth, indeterminacy, and falsity. It is a device for

handling the computational complexity of real-life and scientific problems whereas the fuzzy

set has limited sources to depict it. The neutrosophic sets are different from intuitionistic fuzzy

sets, it is because the neutrosophic set degree of indeterminacy can be defined independently

since it is quantified explicitly. Aftermath, there are lots of research works done in various fields

J. Kavikumar; D. Nagarajan; S.P. Tiwari; S. Broumi; F. Smarandache. Composite Neutrosophic Finite
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such as algebraic structures [5,21,29], topological structures [8,20,24], control theory [17,18,36],

decision-making [2, 3, 14,22,34], medical [1, 25,35] and smart product-service system [4].

Generally, computational complexity problems are solved by the automata theory. It has a

wide application in computer science and discrete mathematics which is also used to study the

behavior of dynamical discrete systems. Fuzzy automata emerge from the inclusion of fuzzy

logic into automata theory. Fuzzy finite automata are beneficial to model uncertainties which

inherent in many applications [6]. Wee [33] and Santos [26] first introduced the theory of

fuzzy finite automata to deal with the notions frequently encountered in the study of natural

languages such as vagueness and imprecision. Malik et al [16] introduced a considerably simpler

notion of a fuzzy finite state machine that is almost identical to fuzzy finite automatons and

greatly contributed to the algebraic study of the fuzzy automaton and fuzzy languages. In

addition, several researchers contributed to the development of the theory of fuzzy automata

( [11]). Fuzzy finite automata with output offer further inclination in providing output compare

to one without outputs. For each assigning input, the machine will generate output and its

value is a function of the current state and the current input. Verma and Tiwari [32] recently

introduced and studied the concepts of state distinguishability, input-distinguishability, and

output completeness of states of a crisp deterministic fuzzy automaton with output function

based on [7].

In recent years neutrosophic sets and systems have become an area of interest for many

researchers in different areas because it can provide a practical way to address real-world prob-

lems more efficiently along with indeterminacy naturally especially in the realm of decision-

making. Neutrosophic automata is a newer model, which is extended from a fuzzy automata

theory. The neutrosophic set idea was incorporated in automata theory by many researchers

in different forms such as finite state machine and its switchboard machine was introduced by

under the concept of interval neutrosophic sets [30] and single-valued neutrosophic sets [31].

Further, the finite automata theory has been extended by the concept of general fuzzy au-

tomata under the environment of neutrosophic sets, which is called as neutrosophic general

finite automata [12]. In addition, the concept of distinguishability and inverse of neutrosophic

finite automata was introduced by Kavikumar et al. in [10]. However, still, there are many

algebraic structures of neutrosophic automata theory that haven’t been studied yet especially

automaton with output. Hence, it is important to study more algebraic structures on neutro-

sophic automata theory with outputs. Therefore, our motive is to study and introduce the

concept of composite neutrosophic finite automata which we can obtain by using the outputs

of one automaton as inputs to another automaton.
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2. Preliminaries

Definition 2.1. Let X be a universe of discourse. The neutrosophic set is an object having the

form A = {≺ x, δ1(x), δ2(x), δ3(x) � |∀x ∈ X} where the functions can be defined by δ1, δ2, δ3 :

X →]0, 1[ and δ1 is the degree of membership or truth, δ2 is the degree of indeterminancy and

δ3 is the degree of non-membership or false of the element x ∈ X to the set A with the

condition δ1(x) + δ2(x) + δ3(x) ≤ 3.

Let X be a universe of discourse and λ is a neutrosophic subset of X. A map λ : X → L,

where L is a lattice-ordered monoid. The definition of lattice-ordered monoid is as follows:

Definition 2.2. An algebra L = (L,≤,∧,∨, •, 0, 1) is called a lattice-ordered monoid if

(1) L = (L,≤,∧,∨, 0, 1) is a lattice with the least element 0 and the element element 1.

(2) (L, •, 1) is a monoid with 1 identity 1 ∈ L such that a, b, c ∈ L.

(a) a • 0 = 0 • a = 0,

(b) a ≤ b⇒ a • x ≤ b • b,∀x ∈ L,

(c) a • (b ∨ c) = (a • b) ∨ (b • c) and (b ∨ c) • a = (b • a) ∨ (c • a).

Throughout, we work with a lattice-ordered monoid L so that the monoid (L, •, 1) satisfies

the left cancellation law. A neutrosophic finite automaton with outputs (in short; neutrosophic

finite automata (NFA)) has considered with neutrosophic transition function and neutrosophic

output function.

Definition 2.3. A NFA is a five-tuple M = (Q,Σ, Z, δ, σ), where Q is a finite non-empty

set of states, Σ is a finite set of input alphabet, Z is a finite set of output alphabet, δ is a

neutrosophic subset of Q×Σ×Q which represents neutrosophic transition function, and σ is

a neutrosophic subset of Q× Σ× Z which represents neutrosophic output function.

Definition 2.4. Let M = (Q,Σ, Z, δ, σ) be a NFA.

(1) Q = {q1, q2, . . . , qn}, is a finite set of states,

(2) Σ = {x1, x2, . . . , xn}, is a finite set of input symbols,

(3) Z = {y1, y2, . . . , yn}, is a finite set of output symbols,

(4) Let δ =≺ δ1, δ2, δ3 � is a neutrosophic subset of Q×Σ×Q such that the neutrosophic

transition function δ : A × Σ × Q → L × L × L is defined as follows: ∀qi, qj ∈ Q and

x1, x2 ∈ Σ,

δ1(qi,Λ, qj) =

{
1 if qi = qj

0 if qi 6= qj

δ2(qi,Λ, qj) =

{
0 if qi = qj

1 if qi 6= qj

δ3(qi,Λ, qj) =

{
0 if qi = qj

1 if qi 6= qj
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and

δ1(qi, x1x2, qj) =
∨
r∈Q
{δ1(qi, x1, r) ∧ δ1(r, x2, qj)}

δ2(qi, x1x2, qj) =
∧
r∈Q
{δ2(qi, x1, r) ∨ δ2(r, x2, qj)}

δ3(qi, x1x2, qj) =
∧
r∈Q
{δ3(qi, x1, r) ∨ δ3(r, x2, qj)}

(5) Let σ =≺ σ1, σ2, σ3 � is a neutrosophic subset of Q×Σ×Z such that the neutrosophic

output function σ : Q×Σ×Z → L×L×L is defined as follows: ∀qi, qj ∈ Q, x1, x2 ∈ Σ

and y1, y2 ∈ Z,

σ1(qi, x1, qj) =

{
1 if x1 = y1 = Λ

0 if x1 = Λ, y1 6= Λ or x1 6= Λ, y1 = Λ

σ2(qi, x1, qj) =

{
0 if x1 = y1 = Λ

1 if x1 = Λ, y1 6= Λ or x1 6= Λ, y1 = Λ

σ3(qi, x1, qj) =

{
0 if x1 = y1 = Λ

1 if x1 = Λ, y1 6= Λ or x1 6= Λ, y1 = Λ

and

σ1(qi, x1x2, y1y2) = σ1(qi, x1, y1) •
∨
r∈Q
{δ1(qi, x1, r) ∧ σ1(r, x2, y2)}

σ2(qi, x1x2, y1y2) = σ2(qi, x1, y1) •
∧
r∈Q
{δ2(qi, x1, r) ∨ σ2(r, x2, y2)}

σ3(qi, x1x2, y1y2) = σ3(qi, x1, y1) •
∧
r∈Q
{δ3(qi, x1, r) ∨ σ3(r, x2, y2)}

3. Composite Neutrosophic Finite Automata

This section is interested in the concept of composite finite automata under the environment

of neutrosophic sets.

Definition 3.1. For i ≤ n, let Mi = (Qi,Σi, Zi, δ
i, σi) be NFA’s. Let MT = M1 → M2 →

· · · →Mn be a composite NFA, where (q1, q2, . . . , qn) = qT ∈ QT and each qi ∈ Qi if

(1) Zi ⊆ Σi+1, for i ≤ n− 1.

(2) let {(xT ∈ ΣT ⇒ x1 ∈ Σ1)(yT ∈ ZT ⇒ yn ∈ Zn)|σ11(q1, xT , y1) > 0, σ12(q1, xT , y1) <

1, σ13(q1, xT , y1) < 1, for i = 1} then define

δT1
[
(q1, q2, . . . , qn), xT , (q

′
1, q
′
2, . . . , q

′
n)
]

=

{
δ11(q1, x1, q

′
1) > 0 for i = 1,

δi1(qi, (σ
i
1(qi, yi−1, yi)), q

′
i) for i > 1.

,

δT2
[
(q1, q2, . . . , qn), xT , (q

′
1, q
′
2, . . . , q

′
n)
]

=

{
δ12(q1, x1, q

′
1) < 1 for i = 1,

δi2(qi, (σ
i
2(qi, yi−1, yi)), q

′
i) for i > 1.
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δT3
[
(q1, q2, . . . , qn), xT , (q

′
1, q
′
2, . . . , q

′
n)
]

=

{
δ13(q1, x1, q

′
1) < 1 for i = 1,

δi3(qi, (σ
i
3(qi, yi−1, yi)), q

′
i) for i > 1.

and

σT1 ((q1, q2, . . . , qn), xT , yn) =

{
1 if xT = yn = Λ

0 if either xT 6= Λ and yn = Λ or xT = Λ and yn 6= Λ

σT2 ((q1, q2, . . . , qn), xT , yn) =

{
0 if xT = yn = Λ

1 if either xT 6= Λ and yn = Λ or xT = Λ and yn 6= Λ

σT3 ((q1, q2, . . . , qn), xT , yn) =

{
0 if xT = yn = Λ

1 if either xT 6= Λ and yn = Λ or xT = Λ and yn 6= Λ

Example 3.2. Let M = (Q,Σ, Z, δ, σ) is a NFA, where Q = {q1, q2}, Σ = {a, b} and Z = {0, 1}
and the transition diagram is given below:

q1 q2

0(0.6,0.25,0.3)/0(0.35,0.37,0.45)

1(0.2,0.3,0.6)/1(0.4,0.4,0.5)

1(0.7,0.15,0.2)/0(0.7,0.1,0.25)

0(0.8,0.0,0.1)/1(0.9,0.1,0.2)

Now, we define the composite NFA, MT = M→M and its transition diagram is given below:

q1q1 q2q1

q1q2 q2q2

0(0.6,0.25,0.3)/0(0.35,0.37,0.45)
1(0.7,0.15,0.2)/0(0.7,0.1,0.25)

1(0.2,0.3,0.6)/1(0.4,0.4,0.5)

0(0.6,0.0,0.2) / 0(0.35,0.4,0.3)

1(0.8,0.4,0.5)/0(0.9,0.4,0.5)

1(0.8,0.2,0.4)/1(0.4,0.1,0.2)

0(0.8,0.0,0.1)/1(0.9,0.1,0.2)

0(0.6,0.3,0.5)/1(0.3,0.4,0.5)

Then the output for input xT = 1001 is yT = 0010.
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Definition 3.3. Let M = (Q,Σ, Z, δ, σ) be a NFA. A non-empty set of states QA ⊆M is said

to be stable if

δ1(q, x, p) > 0, δ2(q, x, p) < 1, δ3(q, x, p) < 1,

for all q, p ∈ QA and x ∈ Σ.

Definition 3.4. Two NFA’s M1 = (Q1,Σ1, Z1, δ
1, σ1) and M2 = (Q2,Σ2, Z2, δ

2, σ2)

are said to be homomorphism if α
[
δ1(q, x, p)

]
= δ2(α(q), β(x), α(p)) and σ1(q, x, y) ≤

σ2(α(q), β(x), γ(y)), ∀q, p ∈ Q1, x ∈ Σ1 and y ∈ Z1, where the mapping α : Q1 → Q2,

β : Σ1 → Σ2 and γ : Z1 → Z2 are monoid homomorphisms. Moreover, two NFA’s are said to

be isomorphism when the mapping α, β and γ are bijective.

Lemma 3.5. Let M1 = (Q1,Σ1, Z1, δ
1, σ1), M2 = (Q2,Σ2, Z2, δ

2, σ2) and M3 =

(Q3,Σ3, Z3, δ
3, σ3) be NFA’s. Then M1 → (M2 →M3) and (M1 →M2)→M3 are isomorphic.

Proof. Since one neutrosophic finite automaton outputs are used as the another neutrosophic

finite automaton inputs and omit the parentheses as follows M1 → M2 → M3. Now, we have

an initial inputs for M1 and its outputs will become an input of M2. Then, the outputs of

M2 will be an input of M3. In this manner, M1 → (M2 → M3) and (M1 → M2) → M3 are

isomorphic.

Remark 3.6. Lemma 3.5 can be easily extend to four or more NFA’s.

Lemma 3.7. Let Mi = (Qi,Σi, Zi, δ
i, σi), where i = 1, 2, . . . , n, be NFA’s. If M1 → M2 →

· · · →Mn is a composite NFA if and only if Mn is a NFA.

Proof. Assume that M1 → M2 → · · · → Mn is a composite NFA. Then, by lemma 3.5, it is

clear that Mn is a NFA. Conversely, since Mn is a NFA, the input of Mn is a output of the

Mn−1, so in this manner, M1 →M2 → · · · →Mn is a composite NFA.

Definition 3.8. A NFA M = (Q,Σ, Z, δ, σ) is called free if ∀qi ∈ Q, x ∈ Σ ∃ y ∈ Z such that

σ1(qi, x, y) > 0, σ2(qi, x, y) < 1, and σ3(qi, x, y) < 1.

Theorem 3.9. For each positive integer i ≤ n, let Mi is a free NFA, then M1 →M2 → · · · →
Mn is a composite NFA.

Proof. Suppose Mi, i = 1, 2, . . . , n is a NFA. Let q, p ∈ Q1 and x1 ∈ Σ1 and y1 ∈ Z1. We prove

the theorem by induction on |i| = n.

If n = 1, then M1 is a free NFA. Now, we have

σ11(q1, x1, y1) > 0, σ12(q1, x1, y1) < 1, and σ13(q1x1, y1) < 1,

since δ11(q1, x1, p1) > 0, δ12(q1, x1, p1) < 1 and δ13(q1, x1, p1) < 1. This implies that M1 is a

composite NFA. Hence, the theorem is true for n = 1.
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Suppose the result is true for all xi ∈ Σi and yi ∈ Zi such that |i| = n − 1. Let Zi ⊆ Σi+1

for i ≤ n− 1, n > 1, so that Mn−1 is a free NFA. Now, we have,

σn−11 (qn−1, xn−1, yn−1) > 0, σn−12 (qn−1, xn−1, yn−1) < 1, and σn−13 (qn−1, xn−1, yn−1) < 1.

Then by Definition 3.1, we have

δn1 (qn, yn−1, pn) > 0, δn2 (qn, yn−1, pn) < 1 and δn3 (qn, yn−1, pn) < 1.

By the induction hypothesis and consider yn−1 = xn, then we have

δn1 (qn, xn, pn) > 0, δn2 (qn, xn, pn) < 1 and δn3 (qn, xn, pn) < 1.

This implies that, for xn ∈ Σn there exists yn ∈ Zn such that

σn1 (qn, xn, yn) > 0, σn2 (qn, xn, yn) < 1, and σn3 (qn, xn, yn) < 1.

Hence, the theorem is true for induction.

Remark 3.10. The converse of Theorem 3.9 is not true since the outputs of composite NFA

need not be satisfy the condition of free NFA.

Definition 3.11. Let M1 = (Q1,Σ1, Z1, δ
1, σ1) and M2 = (Q2,Σ2, Z2, δ

2, σ2) be NFA’s. A

box function β of (M1,M2) is satisfy the following conditions, where β : Q1 → Q2 such that

(1) Σ1 ⊆ Z2

(2) for all q, p ∈ Q1 and x ∈ Σ1 there exists y ∈ Z1 such that

β
[
δ1(q, x, p)

]
= δ2

[
β(q), σ1(q, x, y), β(p)

]
.

Definition 3.12. Let Mi = (Qi,Σi, Zi, δ
i, σi), i=1,2,. . . ,n, be NFA’s. To each box functions

βi of (Mi,Mi+1) for 1 ≤ i ≤ n − 1, there is a corresponding sub NFA N(β1, β2, . . . , βn−1) of

MT = M1 →M2 → · · · →Mn.

Proposition 3.13. Let MT = (QT ,ΣT , ZT , δ
T , σT ) be a composite NFA and N =

(QN ,ΣN , ZN , δ
N , σN ) ⊆ M, where QN = {(q1, q2, . . . , qn)|q1 ∈ M and qi = βi−1(qi−1) for i >

1}. If QT is stable, then N is a compositie NFA.

Proof. Let q = (q1, . . . , qn), q′ = (q′1, . . . , q
′
n) ∈ QN , xT ∈ ΣT and yi ∈ ZT . Then, by definition

3.1 and yi−1 = xi. Since QN ⊆ QT , it is enough to prove that QN is stable, for each i > 1.

Then

δi1(qi, xi, q
′
i) = δi1

[
βi−1(qi−1), (σ

i−1
1 (qi−1, yi−2, yi−1)), βi−1(q

′
i−1)

]
= βi−1

[
δi−11 (qi−1, xi−1, q

′
i−1)

]
, since βi−1 is a box function of (Mi−1,Mi),

= δi−11

[
βi−1(qi−1), xi−1, βi−1(q

′
i−1)

]
This implies that δi−11

[
βi−1(qi−1), xi−1, βi−1(q

′
i−1)

]
is stable, since δi−11 (qi−1, xi−1, q

′
i−1) is sta-

ble. Hence, QN is stable. Therefore, N is a composite NFA.

J. Kavikumar; D. Nagarajan; S.P. Tiwari; S. Broumi; F. Smarandache. Composite Neutrosophic Finite
Automata



Neutrosophic Sets and Systems, Vol. 36, 2020 289

Theorem 3.14. Let M1 = (Q1,Σ1, Z1, δ
1, σ1) and M2 = (Q2,Σ2, Z2, δ

2, σ2) be two NFA’s

and let H be a NFA with inputs ΣH which generating inputs set for Σ1. Suppose Z1 ⊆ Σ2

and for all p, q ∈ Q1, x1 ∈ ΣH , the map β : Q1 → Q2 such that β[δ1(q, x1, p)] =

δ2[β(q), σ1(q, x1, y1), β(p)]. Then β is a box function of (M1,M2).

Proof. We will prove the result by mathematical induction on the generated set of inputs ΣH .

For n = 1, let x1 ∈ ΣH the result follows from 3.11.

For n = 2, let x1, x2 ∈ ΣH and q, p ∈ Q1, then

β
[
δ1(q, x1x2, p)

]
= β

[∨
r∈Q1

{
δ1(q, x1, r) ∧ δ1(r, x2, p)

}]
=
∨
r∈Q1

{
β(δ1(q, x1, r)) ∧ β(δ1(r, x2, p))

}
=
∨
β(r)∈Q2

{
δ2(β(q), σ1(q, x1, y1), β(r)) ∧ δ2(β(r), σ1(q, x2, y2), β(p))

}
= δ2

[
β(q), σ1(q, x1, y1) • σ1(q, x2, y2), β(p)

]
= δ2

[
β(q), σ1(q, x1x2, y1y2), β(p)

]
If the induction continues for any finite sequence of inputs such as n > 2 for each xi ∈ ΣH ,

the results follows by induction. Hence β is a box function of (M1,M2).

4. Conclusions

The main focus of this paper is to study the algebraic automata theory based on the concept

of neutrosophic sets. Thus, this investigation contributes a small portion to algebraic automata

theory such as composite neutrosophic finite automata which is established by outputs of one

automaton as the inputs of another automaton. The future study will be concerned with

similar concepts but the approaches are based on the combination of N -fuzzy structures [9,13]

and type-2 fuzzy structures [15,19] under the environment of neutrosophic sets [27,28].
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—————————————————————————————————————————-

1. Introduction

Mathematical modeling of the real life space X requires that all the possible laws that can be defined

on X as well as all the possible axioms that can be defined on X should all be considered. In order to be

very close to reality, the laws as well as axioms on X should not be rigidly defined. The laws on X should

be so flexibly defined to make provisions for both totally inner-defined, totally outer-defined, partially-

defined and indeterminately-defined cases. Also, the axioms on X should be such that provisions

are made for both totally inner-defined, totally outer-defined, partially-defined and indeterminately-

defined cases. When the laws and axioms on X are totally inner-defined, they are called and referred

to as ClassicalLaws and ClassicalAxioms respectively. When the laws and axioms on X are partially-

defined, they are called and referred to as NeutroLaws and NeutroAxioms respectively. When the laws

and axioms on X are totally outer-defined, they are called and referred to as AntiLaws and AntiAxioms

respectively. Naturally, we have the neutrosophic triplets (Law, NeutroLaw, AntiLaw) and (Axiom,

NeutroAxiom, AntiAxiom) where NonLaw = NeutroLaw ∪ AntiLaw, NonAxiom = NeutroAxiom ∪

AntiAxiom, NeutroLaw ∩ AntiLaw = ∅ and NeutroAxiom ∩ AntiAxiom = ∅. These concepts have

A.A.A. Agboola and M.A. Ibrahim, Introduction to AntiRings



Neutrosophic Sets and Systems, Vol. 36, 2020 293

several applications in sciences, engineering, technology, soft computing, social sciences, psychology,

politics, sociology and humanities in general. For details on NeutroSociology the readers should see [14]

and [7–11,19] for more details on neutrosophy and applications.

Smarandache in [15–18] introduced and studied extensively the concepts of Neutro-Algebraic Struc-

tures and Anti-Algebraic Structures. Rezaei and Smarandache in [12] presented and studied Neutro-BE

Algebras and Anti-BE Algebras. Agboola et al. in [4] studied NeutroAlgebras and AntiAlgebras, in [5]

and [6], Agboola studied NeutroGroups and NeutroRings respectively. In [3], Agboola further studied

NeutroGroups, in [2], he studied AntiGroups and in [1], he further studied NeutroRings. In the present

paper, the concept of AntiRings is introduced. Several examples of AntiRings are presented. Specifi-

cally, certain types of AntiRings and their substructures are studied. It is shown that nonempty subsets

of an AntiRing can be AntiRings with algebraic properties different from the algebraic properties of the

parent AntiRing under the same binary operations. AntiIdeals, AntiQuotientRings and AntiRingHo-

momorphisms are studied with several examples. It is shown that the quotient of an AntiRing factored

by an AntiIdeal can exhibit algebraic properties different from the algebraic properties of the AntiRing.

2. Preliminaries

In this section, some definitions and results that will be used later in the paper are presented.

Definition 2.1. [15]

A classical operation is an operation well defined for all the set’s elements. A NeutroOperation is an

operation partially well defined, partially indeterminate, and partially outer defined on the given set

while an AntiOperation is an operation that is outer defined for all set’s elements.

A classical law/axiom defined on a nonempty set is a law/axiom that is totally true (i.e. true for all

set’s elements). A NeutroLaw/NeutroAxiom (or Neutrosophic Law/Neutrosophic Axiom) defined on a

nonempty set is a law/axiom that is true for some set’s elements [degree of truth (T)], indeterminate

for other set’s elements [degree of indeterminacy (I)], or false for the other set’s elements [degree of

falsehood (F)], where T, I, F ∈ [0, 1], with (T, I, F ) 6= (1, 0, 0) that represents the classical axiom, and

(T, I, F ) 6= (0, 0, 1) that represents the AntiAxiom while an AntiLaw/AntiAxiom defined on a nonempty

set is a law/axiom that is false for all set’s elements.

A PartialOperation on a set is an operation that is well defined for some elements of the set and

undefined for all the other elements of the set. A PartialAlgebra is an algebra that has at least one

PartialOperation, and all its axioms are classical.

A NeutroAlgebra is an algebra that has at least one NeutroOperation or one NeutroAxiom (axiom

that is true for some elements, indeterminate for other elements, and false for other elements), and no

AntiOperation or AntiAxiom while an AntiAlgebra is an algebra endowed with at least one AntiOper-

ation or at least one AntiAxiom. When a NeutroAlgebra has no NeutroAxiom, then it coincides with

the PartialAlgebra.
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Theorem 2.2. [15] The NeutroAlgebra is a generalization of PartialAlgebra.

Theorem 2.3. [12] Let U be a nonempty finite or infinite universe of discourse and let S be a finite

or infinite subset of U. If n classical operations (laws and axioms) are defined on S where n ≥ 1, then

there will be (2n − 1) NeutroAlgebras and (3n − 2n) AntiAlgebras.

Definition 2.4. [Classical ring] [13]

Let R be a nonempty set and let +, . : R × R → R be binary operations of the usual addition and

multiplication respectively defined on R. The triple (R,+, .) is called a classical ring if the following

conditions (R1−R9) hold:

(R1) x+ y ∈ R ∀x, y ∈ R [closure law of addition].

(R2) x+ (y + z) = (x+ y) + z ∀x, y, z ∈ R [axiom of associativity].

(R3) There exists e ∈ R such that x+ e = e+ x = x ∀x ∈ R [axiom of existence of neutral element].

(R4) There exists −x ∈ R such that x+ (−x) = (−x) + x = e ∀x ∈ G [axiom of existence of inverse

element]

(R5) x+ y = y + x ∀x, y ∈ R [axiom of commutativity].

(R6) x.y ∈ R ∀x, y ∈ R [closure law of multiplication].

(R7) x.(y.z) = (x.y).z ∀x, y, z ∈ R [axiom of associativity].

(R8) x.(y + z) = (x.y) + (x.z) ∀x, y, z ∈ R [axiom of left distributivity].

(R9) (y + z).x = (y.x) + (z.x) ∀x, y, z ∈ R [axiom of right distributivity].

If in addition we have,

(R10) x.y = y.x ∀x, y ∈ R [axiom of commutativity],

then (R,+, .) is called a commutative ring.

Definition 2.5. [1][NeutroSophication of the laws and axioms of the classical ring]

(NR1) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+y ∈ R (inner-defined with

degree of truth T) and [u + v = indeterminate (with degree of indeterminacy I) or p + q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] [NeutroClosure law of addition].

(NR2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x+(y+z) = (x+y)+z

(inner-defned with degree of truth T) and [[p + (q + r)]or[(p + q) + r] = indeterminate (with

degree of indeterminacy I) or u+ (v + w) 6= (u+ v) + w (outer-defined/falsehood with degree

of falsehood F)] [NeutroAxiom of associativity (NeutroAssociativity)].

(NR3) There exists an element e ∈ R such that x+ e = x+ e = x (inner-defined with degree of truth

T) and [[x+ e]or[e+ x] = indeterminate (with degree of indeterminate I) or x+ e 6= x 6= e+ x

(outer-defined/falsehood with degree of falsehood F)] for at least one x ∈ R [NeutroAxiom of

existence of neutral element (NeutroNeutralElement)].

(NR4) There exists −x ∈ R such that x + (−x) = (−x) + x = e (inner-defined with degree of

truth T) and [[−x + x]or[x + (−x)] = indeterminate (with the degree of indeterminate I) or
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−x + x 6= e 6= x + (−x) (outer-defined/falsehood with degree of falsehood F)] for at least one

x ∈ R [NeutroAxiom of existence of inverse element (NeutroInverseElement)].

(NR5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+ y = y+x (inner-defined

with degree of truth T) and [[p + q]or[q + p] = indeterminate (with degree of indeterminacy

I) or u + v 6= v + u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of

commutativity (NeutroCommutativity)].

(NR6) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y ∈ R (inner-defined

with degree of truth T) and [u.v = indeterminate (with degree of indeterminacy I) or p.q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] NeutroClosure law of multiplication].

(NR7) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y.z) = (x.y).z

(inner-defined with degree of truth T) and [[p.(q.r)]or[(p.q).r] = indeterminate (with degree of

indeterminacy I) or u.(v.w) 6= (u.v).w (outer-defined/falsehood with degree of falsehood F)]

[NeutroAxiom of associativity (NeutroAssociativity)].

(NR8) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y + z) = (x.y) +

(x.z) (inner-defined with degree of truth T) and [[p.(q + r)]or[(p.q) + (p.r)] = indeterminate

(with degree of indeterminacy I) or u.(v + w) 6= (u.v) + (u.w) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of left distributivity (NeutroLeftDistributivity)].

(NR9) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that (y + z).x = (y.x) +

(z.x) (inner-defined with degree of truth T) and [[(v + w).u]or[(v.u) + (w.u)] = indeterminate

(with degree of indeterminacy I) or (v + w).u 6= (v.u) + (w.u) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of right distributivity (NeutroRightDistributivity)].

(NR10) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y = y.x (inner-defined

with degree of truth T) and [[p.q]or[q.p] = indeterminate (with degree of indeterminacy I) or

u.v 6= v.u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of commutativity

(NeutroCommutativity)].

Definition 2.6. [1][AntiSophication of the laws and axioms of the classical ring]

(AR1) For all the duplets (x, y) ∈ R, x+ y 6∈ R [AntiClosure law of addition].

(AR2) For all the triplets (x, y, z) ∈ R, x+ (y+ z) 6= (x+ y) + z [AntiAxiom of associativity (AntiAs-

sociativity)].

(AR3) There doest not exist an element e ∈ R such that x + e = x + e = x ∀x ∈ R [AntiAxiom of

existence of neutral element (AntiNeutralElement)].

(AR4) There does not exist −x ∈ R such that x + (−x) = (−x) + x = e ∀x ∈ R [AntiAxiom of

existence of inverse element (AntiInverseElement)].

(AR5) For all the duplets (x, y) ∈ R, x+y 6= y+x [AntiAxiom of commutativity (AntiCommutativity)].

(AR6) For all the duplets (x, y) ∈ R, x.y 6∈ R [AntiClosure law of multiplication].
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(AR7) For all the triplets (x, y, z) ∈ R, x.(y.z) 6= (x.y).z [AntiAxiom of associativity (AntiAssociativ-

ity)].

(AR8) For all the triplets (x, y, z) ∈ R, x.(y + z) 6= (x.y) + (x.z) [AntiAxiom of left distributivity

(AntiLeftDistributivity)].

(AR9) For all the triplets (x, y, z) ∈ R, (y + z).x 6= (y.x) + (z.x) [AntiAxiom of right distributivity

(AntiRightDistributivity)].

(AR10) For all the duplets (x, y) ∈ R, x.y 6= y.x [AntiAxiom of commutativity (AntiCommutativity)].

Definition 2.7. [1][NeutroRing]

A NeutroRing NR is an alternative to the classical ring R that has at least one NeutroLaw or at least

one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} with no AntiLaw or AntiAxiom.

Definition 2.8. [ [1]][AntiRing]

An AntiRing AR is an alternative to the classical ring R that has at least one AntiLaw or at least one

of {AR1, AR2, AR3, AR4, AR5, AR6, AR7, AR8, AR9}.

Definition 2.9. [1][NeutroCommutativeRing]

A NeutroCommutativeRing NR is an alternative to the classical commutative ring R that has at least

one NeutroLaw or at least one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} and NR10

with no AntiLaw or AntiAxiom.

Definition 2.10. [1][AntiCommutativeRing]

An AntiCommutativeRing AR is an alternative to the classical commutative ring R that has at least

one AntiLaw or at least one of {AR1, AR2, AR3, AR4, AR5, AR6, AR7, AR8, AR9} and AR10.

Theorem 2.11. [1] Let (R,+, .) be a finite or infinite classical ring. Then:

(i) There are 511 types of NeutroRings.

(ii) There are 19171 types of AntiRings.

Theorem 2.12. [1] Let (R,+, .) be a finite or infinite classical commutative ring. Then:

(i) There are 1023 types of NeutroCommutativeRings.

(ii) There are 58025 types of AntiCommutativeRings.

Example 2.13. [1] Let NR = Z5 = {0, 1, 2, 3, 4} and let ⊕ and � be two binary operations defined

on NR by

x⊕ y = x+ y − 1, x� y = x+ xy ∀ x, y ∈ NR.

Then, (NR,⊕,�) is a NeutroCommutativeRing.
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Example 2.14. [1] Let NR = {a, b, c, d} and let ′′+′′ and ′′.′′ be binary operations defined on NR as

shown in the Cayley tables below:

+ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

. a b c d

a a b c d

b a c b c

c c d c d

d d a d a

Then, (NR,+, .) is a NeutroCommutativeRing.

Example 2.15. Let AR = Z and let ⊕ and � be two binary operations defined on AR such that ⊕ is

the usual addition of integers and ∀x, y ∈ AR, � is defined by

x� y = x2 + x2y + 2.

Then (AR,⊕,�) is an AntiRing. To see this, we first note that ⊕ is well defined for all x, y ∈ AR and

that R1−R5 are totally true. Hence, (AR,⊕) is an abelian group.

It is also noted that � is well defined for all x, y ∈ AR that is, R6 is totally true ∀x, y ∈ AR. Now

let x, y, z ∈ AR. Then

x� (y � z) = x2 + x2y2 + x2y2z + 2x2 + 2,

(x� y)� z = x4 + 2x4y + x4y2 + 4x2 + 4x2y

+x4z + 2x4yz + x4y2z + 4x2z + 4x2yz + 4z + 6.

∴ x� (y � z) 6= (x� y)� z ∀x, y, z ∈ AR.

It has just been shown that for all the elements of AR, � is AntiAssociative over AR. Thus, AR7 is

satisfied.

Also for all x, y, z ∈ AR, we have

x� (y ⊕ z) = x� (y + z)

= x2 + x2y + x2z + 2,

(x� y)⊕ (x� z) = (x� y) + (x� z)

= 2x2 + x2y + x2z + 4.

∴ x� (y ⊕ z) 6= (x� y)⊕ (x� y) ∀x, y, z ∈ AR.

It has again been shown that over AR, � is not left distributive over ⊕ for all x, y, z ∈ AR. Hence AR8

is satisfied.
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Lastly for all x, y, z ∈ AR, we have

(y ⊕ z)� x = (y + z)� x

= y2 + z2 + 2yz + xy2 + 2xyz + xz2 + 2,

(y � x)⊕ (z � x) = (y � x) + (z � x)

= y2 + z2 + y2x+ z2x+ 4.

∴ (y ⊕ z)� x 6= (y � x)⊕ (y � x) ∀x, y, z ∈ AR.

This also shows that over AR, � is not right distributive over ⊕ for all x, y, z ∈ AR. Hence, AR9 is

satisfied. It can easily be shown that � is NeutroCommutative over AR. Accordingly by Definition

2.8, (AR,⊕,�) is an AntiRing.

Example 2.16. (i) Let AR = Mn×n [R] be the set of all n× n matrices with real entries and let

⊕ and � be two binary operations defined on AR such that ⊕ is the usual addition of matrices

and ∀X,Y ∈ AR, � is defined by

X � Y = X2 +X2Y + 2I

where I is the n× n unit matrix. Then, (AR,⊕,�) is an AntiRing.

(ii) Let M be an additive abelian group and let AR = End(M) be the set of all endomorphisms of

M into itself. Let ⊕ and � be two binary operations defined on AR such that ⊕ is the usual

addition of mappings and ∀f, g ∈ AR, � is defined by

(f � g)(x) = f2(x) + f2(x)g(x) + 2i(x)

where i is the identity mapping. Then, (AR,⊕,�) is an AntiRing.

3. A Study of Certain Types of AntiRings

In this section, we are going to study certain types of AntiRings. Many examples and basic results

will be presented. Since there are many types of AntiRings, then AntiRings in this section will be

classified and named type-AR[,] according to which of AR1 − AR10 is(are) satisfied. If only AR1 is

satisfied, the AntiRing will be called of type-AR[1], type-AR[3,4] if only AR3 and AR4 are satisfied

and so on. AntiRings of type-AR[1,2,3,4-9] or of type-AR[1,2,3,4-10] will be called trivial AntiRings or

trivial AntiCommutativeRings respectively.

Definition 3.1. Let (AR,+, .) be an AntiRing.

(i) AR is called a finite AntiRing of order n if the cardinality of AR is n that is o(AR) = n.

Otherwise, AR is called an infinite AntiRing and we write o(AR) =∞.

(ii) AR is called an AntiRing with unity if there exists a multiplicative unit element u ∈ AR such

that ux = xu = x for at least one x ∈ R.
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(iii) If there exists a least positive integer n such that nx = e for at least one x ∈ AR, then AR is

called an AntiRing of characteristic n. If no such n exists, then AR is called an AntiRing of

characteristic zero.

(iv) An element x ∈ AR is called an idempotent element if x2 = x.

(v) An element x ∈ AR is called a nilpotent element if for the least positive integer n, we have

xn = e.

(vi) An element e 6= x ∈ AR is called a zero divisor element if there exists an element e 6= y ∈ AR

such that xy = e or yx = e.

(vii) An element x ∈ AR is called a multiplicative inverse element if there exists at least one y ∈ AR

such that xy = yx = u where u is the multiplicative unity element in AR.

Definition 3.2. Let (AR,+, .) be an AntiCommutativeRing with unity. Then

(i) AR is called an AntiIntegralDomain if all the elements of AR are zero divisors.

(ii) AR is called an AntiField if all the elements of AR have no multiplicative inverse elements.

Definition 3.3. Let (AR,+, .) be an AntiRing. A nonempty subset AS of AR is called an AntiSubring

of AR if (AS,+, .) is also an AntiRing of the same type as AR.

Definition 3.4. Let (AR,+, .) be an AntiRing. A nonempty subset AS of AR is called a QuasiAntiSub-

ring of AR if (AS,+, .) is also an AntiRing not of the same type as AR.

Definition 3.5. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a left AntiIdeal

of AR if the following conditions hold:

(i) AI is an AntiSubring of AR of the same type as AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI for all r ∈ AR.

Definition 3.6. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a right AntiIdeal

of AR if the following conditions hold:

(i) AI is an AntiSubring of AR of the same type as AR.

(ii) x ∈ AI and r ∈ AR imply that rx 6∈ AI for all r ∈ NR.

Definition 3.7. Let (AR,+, .) be an AntiRing. A nonempty subset AI of NR is called a two-sided

AntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring of AR of the same type as AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI and rx 6∈ AI for all r ∈ AR.

Definition 3.8. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a left QuasiAnti-

Ideal of AR if the following conditions hold:

(i) AI is a QuasiAntiSubring of AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI for all r ∈ AR.
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Definition 3.9. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a right

QuasiAntiIdeal of AR if the following conditions hold:

(i) AI is a QuasiAntiSubring of AR.

(ii) x ∈ AI and r ∈ AR imply that rx 6∈ AI for all r ∈ NR.

Definition 3.10. Let (AR,+, .) be an AntiRing. A nonempty subset AI of NR is called a two-sided

QuasiAntiIdeal of AR if the following conditions hold:

(i) AI is a QuasiAntiSubring of AR.

(ii) x ∈ AI and r ∈ AR imply that xr 6∈ AI and rx 6∈ AI for all r ∈ AR.

Definition 3.11. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a left Pseu-

doAntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring or a QuasiAntiSubring of AR.

(ii) For at least one x ∈ AI, xr 6∈ AI for all r ∈ AR.

Definition 3.12. Let (AR,+, .) be an AntiRing. A nonempty subset AI of AR is called a right

PseudoAntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring or a QuasiAntiSubring of AR.

(ii) For at least one x ∈ AI, rx 6∈ AI for all r ∈ AR.

Definition 3.13. Let (AR,+, .) be an AntiRing. A nonempty subset AI of NR is called a two-sided

PseudoAntiIdeal of AR if the following conditions hold:

(i) AI is an AntiSubring or a QuasiAntiSubring of AR.

(ii) For at least one x ∈ AI, xr 6∈ AI and rx 6∈ AI for all r ∈ AR.

Example 3.14. Let AR = {a, b} and let ′′+′′ and ′′.′′ be two binary operations defined on AR as

shown in the Cayley tables below.

+ a b

a a b

b b a

. a b

a b b

b a a

Since x+ y, xy ∈ AR ∀x, y ∈ AR and (AR,+) is an abelian group, it follows that R1−R6 of Definition

2.6 are totally true for all the elements of AR. Now consider the following:

(AR7) a(aa) = b, (aa)a = a 6= b, a(ab) = b, (aa)b = a 6= b, a(ba) = b, (ab)a = a 6= b, b(aa) =

a, (ba)a = b 6= a,a(bb) = b, (ab)b = a 6= b, b(ab) = a, (ba)b = b 6= a, b(ba) = a, (bb)a = b 6= a,

b(bb) = a, (bb)b = b 6= a. These show that the binary operation ′′.′′ is totally AntiAssociative

in AR.

(AR8) a(a+ a) = b while aa+ aa = a 6= b. Also, b(b+ b) = a while bb+ bb = a. These show that the

binary operation ′′.′′ is NeutroLeftDistributive over the binary operation ′′+′′.
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(AR9) (a + a)a = b, aa + aa = a 6= b, (a + a)b = b, ab + ab = a 6= b, (a + b)a = a, aa + ba = b 6= a,

(b + a)a = a, ba + aa = b 6= a, (a + b)b = a, ab + bb = b 6= a, (b + a)b = a, bb + ab = b 6= a,

(b+b)a = b, ba+ba = a 6= b, (b+b)b = b, bb+bb = a 6= b. These show that the binary operation

′′.′′ is AntiRightDistributive over the binary operation ′′+′′.

(AR10) aa = b, bb = a but ab = b, ba = a 6= b. These show that the binary operation ′′.′′ is NeutroCom-

mutative in AR.

Since AR7 and AR9 are totally true for all the elements of AR, it follows from Definition 2.8 that

(AR,+, .) is an AntiRing which we call an AntiRing of type-AR[7,9].

Example 3.15. Let (AR,+, .) be the AntiRing of Example 3.14. It is clear that e = a is the additive

identity element. The element b is idempotent since bb = a. Since ′′.′′ is totally AntiAssociative, it

follows that AR has no nilpotent elements. AR has no unity and consequently, none of the elements

of AR is invertible. Since AR is not an AntiCommutativeRing, it follows that AR is neither an

AntiIntegralDomain nor an AntiField.

Example 3.16. Let AR = Z6 = {0, 1, 2, 3, 4, 5}. Let ∗ and ◦ be two binary operations defined such

that ∗ is the usual addition modulo 6 and for all x, y ∈ AR, ◦ is defined by

x ◦ y = x+ xy + 2.

It is clear that x ∗ y, x ◦ y ∈ AR ∀x, y ∈ AR. This shows that R1−R6 of Definition 2.6 are totally true

for all the elements of AR. Now consider the following:

(AR7) x ◦ (y ◦ z) = 3x+ xy + xyz + 2 and (x ◦ y) ◦ z = x+ xy + xz + 2z + xyz + 4. Equating the two

expressions we obtain 2x = xz + 2z + 2 from which we have that the triplet (2, y, 2) ∈ AR can

verify the associativity of ◦ in AR. Thus, ◦ is NeutroAssociative in AR.

(AR8) x ◦ (y ∗ z) = x + xy + xz + 2 and (x ◦ y) ∗ (x ◦ z) = 2x + xy + xz + 4. Equating the two

expressions we have x = −2 ≡ 4 modulo 6. Hence, only the triplets (4, y, z) ∈ AR can verify

the left distributivity of ◦ over ∗ in AR. Thus, ◦ is NeutroLeftDistributive in AR.

(R9) (y ∗ z)◦x = y+ z+xy+xz+ 2 and (y ◦x)∗ (z ◦x) = y+ z+xy+xz+ 4. Since 2 6= 4 modulo 6,

it follows that ◦ is not right distributive over ∗ for all the triplets (x, y, z) ∈ AR. Hence ◦ is

totally AntiRightDistributive over ∗ in AR.

(R10) x ◦ y = x + xy + 2 and y ◦ x = y + yx + 2. Equating the two expressions we have x = y

showing that only the duplets (x, x) ∈ AR can verify the commutativity of ◦. Hence, ◦ is

NeutroCommutative in AR.

According to Definition 2.8, we have that (AR, ∗, ◦) is an AntiRing of type-AR[9].

Author(s), Paper’s title



Neutrosophic Sets and Systems, Vol. 36, 2020 302

Example 3.17. Let AS = {0, 3} be a subset of AR where (AR, ∗, ◦) is the AntiRing of Example 3.16.

Consider the compositions of the elements of AS as shown in the Cayley tables below.

∗ 0 3

0 0 3

3 3 0

◦ 0 3

0 2 2

3 5 2

R1 − R5 are totally true since for all x, y ∈ AS, x ∗ y ∈ AS and (AS, ∗) is an abelian group. Also for

all the elements of AS, R6− R10 are totally false. Accordingly, (AS, ∗, ◦) is an AntiRing of the type-

AR[6,7,8,9,10] which is different from the class of the parent AntiRing. Hence, AS is a QuasiAntiSubring

of AR.

Example 3.18. Let AT = {0, 2, 4} be a subset of AR where (AR, ∗, ◦) is the AntiRing of Example

3.16. Consider the compositions of the elements of AT as shown in the Cayley tables below.

∗ 0 2 4

0 0 2 4

2 2 4 0

4 4 0 2

◦ 0 2 4

0 2 2 2

2 4 2 0

4 0 2 4

R1−R6 are totally true since for all x, y ∈ AS, x ∗ y, x ◦ y ∈ AT and (AT, ∗) is an abelian group. Now

consider the following:

(AR7) 2 ◦ (4 ◦ 2) = (2 ◦ 4) ◦ 2 = 2 but 2 ◦ (0 ◦ 4) = 2, (2 ◦ 0) ◦ 4 = 4 6= 2. These show that the binary

operation ◦ is NeutroAssociative over AT .

(AR8) 4 ◦ (2 ∗ 4) = (4 ◦ 2) ∗ (4 ◦ 4) = 0 but 2 ◦ (4 ∗ 0) = 0, (2 ◦ 4) ∗ (2 ◦ 0) = 4 6= 0. These show that the

binary operation ◦ is NeutroLeftDistributive over ∗ in AT .

(AR9) For all the triplets (x, y, z) ∈ AS, we have (y ∗ z) ◦ x 6= (y ◦ x) ∗ (z ◦ x). This shows that the

binary operation ◦ is AntiRightDistributive over ∗ in AT .

(AR10) Since 0 ◦ 0 = 2, 2 ◦ 2 = 2, 4 ◦ 4 = 4 but 0 ◦ 2 = 2, 2 ◦ 0 = 4 6= 2, 2 ◦ 4 = 0, 4 ◦ 2 = 2 6= 0, 4 ◦ 0 =

0, 0 ◦ 4 = 2 6= 0, it follows that the binary operation ◦ is NeutroCommutative over AT .

Accordingly, (AT, ∗, ◦) is an AntiRing of the type-AR[9] which is the same as the class of the parent

AntiRing. Hence, AT is an AntiSubring of AR.

Example 3.19. Let AR = Z+ = {1, 2, 3, 4, · · · , } and let AS = 2Z+ = {2, 4, 6, 8, · · · , }, AT = 3Z+ =

{3, 6, 9, 12, · · · , }. Suppose that ∗ and ◦ are binary operations respectively of the usual addition and

multiplication of integers defined on AR,AS and AT . It can easily be shown that (AR, ∗, ◦), (AS, ∗, ◦)

and (AT, ∗, ◦) are AntiRings of type-AR[3,4] since R1, R2 and R5 − R10 are totally true but R3 and

R4 are totally false. Since AS and AT are subsets of AR, it follows that AS and AT are AntiSubrings

of AR. In general, (nZ+, ∗, ◦) are AntiSubrings of the AntiRing (Z+, ∗, ◦) for n = 2, 3, 4, 5, · · · .
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Remark 3.20. It is evident from Example 3.17 that an AntiRing of a particular type can have

nonempty subsets which are AntiRings of types different from the type of the parent AntiRing un-

der the same binary operations.

Example 3.21. Let AR be an AntiRing of Example 3.16 and let AS and AT be its QuasiAntiSubring

and AntiSubring of Examples 3.17 and 3.18 respectively. Then AS ∪AT = {0, 2, 3, 4} and AS ∩AT =

{0}. It is clear that AS ∩ AT is neither an AntiSubring nor a QuasiAntiSubring of AR. However, it

can be shown that (AS ∪AT, ∗, ◦) is an AntiRing of type-AR[9]. Hence, AS ∪AT is an AntiSubring of

AR.

Example 3.22. Let AR be the AntiRing of Example 3.19 and let AS and AT be its AntiSubrings.

Then AS ∪AT = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, · · · } and AS ∩AT = {6, 12, 18, 24, · · · } = 6Z+.

It can be shown that AS ∪AT is a QuasiAntiSubring of AR and AS ∩AT is an AntiSubring of AR.

Remark 3.23. The union of two AntiSubrings of an AntiRing can produce a QuasiAntiSubring of the

AntiRing.

Example 3.24. Let AR be an AntiRing of Example 3.16 and let AS be its QuasiAntiSubring of

Example 3.17. Then [0 ◦ 0 = 0 ◦ 1 = 0 ◦ 2 = 0 ◦ 3 = 0 ◦ 4 = 0 ◦ 5 = 2, 3 ◦ 0 = 3 ◦ 2 = 5, 3 ◦ 1 = 3 ◦ 5 =

2, 3 ◦ 3 = 1, 3 ◦ 4 = 4] 6∈ AS. These show that AS is a left QuasiAntiIdeal of AR.

However, [0 ◦ 0 = 2, 2 ◦ 0 = 4, 3 ◦ 0 = 5, 5 ◦ 0 = 1, 0 ◦ 3 = 2, 2 ◦ 3 = 4, 3 ◦ 3 = 1, 5 ◦ 3 = 4] 6∈ AS but

[1 ◦ 0 = 3, 4 ◦ 0 = 1 ◦ 3 = 4 ◦ 3 = 0] ∈ AS. These show that AS is a right PseudoAntiIdeal of AR.

Example 3.25. Let AR be an AntiRing of Example 3.16 and let AT be its AntiSubring of Example

3.18. Then [0 ◦ 0 = 0 ◦ 1 = 0 ◦ 2 = 0 ◦ 3 = 0 ◦ 4 = 0 ◦ 5 = 2, 2 ◦ 0 = 2 ◦ 3 = 4, 2 ◦ 1 = 2 ◦ 4 = 0, 2 ◦ 2 =

2 ◦ 5 = 2, 4 ◦ 0 = 4 ◦ 3 = 0, 4 ◦ 1 = 4 ◦ 4 = 4, 4 ◦ 2 = 4 ◦ 5 = 2] ∈ AT . These show that AT is neither a

left QuasiAntiIdeal nor a left PseudoAntiIdeal of AR.

Also, [0 ◦ 0 = 0 ◦ 2 = 2 ◦ 2 = 4 ◦ 2 = 0 ◦ 4 = 2, 2 ◦ 0 = 1 ◦ 2 = 3 ◦ 4 = 4 ◦ 4 = 4, 4 ◦ 0 = 2 ◦ 4 = 0] ∈ AT

but [1 ◦ 0 = 5 ◦ 4 = 3, 3 ◦ 0 = 3 ◦ 2 = 5 ◦ 2 = 5, 5 ◦ 0 = 1 ◦ 4 = 1] 6∈ AT . These show that AT is a right

PseudoAntiIdeal of AR.

Example 3.26. Let AR be the AntiRing of Example 3.19 and let AS and AT be its AntiSubrings.

Then AS and AT are two-sided PseudoAntiIdeals of AR. To see this, let x ∈ AS and r ∈ AR. Then

x ◦ r = r ◦ x =

{
a ∈ AS if r = 2, 4, 6, 8, · · ·
b 6∈ AS if r = 1, 3, 5, 7, · · ·

Also,

x ◦ r = r ◦ x =

{
c ∈ AT if r = 3, 6, 9, 12, · · ·
d 6∈ AT if r = 1, 2, 4, 8, · · ·
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Definition 3.27. Let (AR,+, .) be an AntiRing and let AI be a left(right)(two-sided) AntiIdeal or

a left(right)(two-sided) QuasiAntiIdeal or a left(right)(two-sided) PseudoAntiIdeal of AR. The set

AR/AI is defined by

AR/AI = {x+AI : x ∈ AR}.

For all x+AI, y +AI ∈ AR/AI, let ⊕ and � be two binary operations on AR/AI defined as follows:

(x+AI)⊕ (y +AI) = (x ∗ y) +AI,

(x+AI)� (y +AI) = (x ◦ y) +AI.

If (AR/AI,⊕,�) is an AntiRing, then AR/AI is called an AntiQuotientRing.

Example 3.28. Let AR be an AntiRing of Example 3.16 and let AS be its left QuasiAntiIdeal of

Example 3.24. Then

AR/AS = {AS, 1 +AS, 2 +AS}.

Let ⊕ and � be two binary operations defined on AR/AS as shown in the Cayley tables below.

⊕ AS 1 +AS 2 +AS

AS AS 1 +AS 2 +AS

1 +AS 1 +AS 2 +AS AS

2 +AS 2 +AS AS 1 +AS

� AS 1 +AS 2 +AS

AS 2 +AS 2 +AS 2 +AS

1 +AS AS 1 +AS 2 +AS

2 +AS 1 +AS AS 2 +AS

It can easily be shown that R1− R6 are totally true, R7, R8 and R10 are partially true and partially

false and R9 is totally false. Hence, (AR/AS,⊕,�) is an AntiRing of type-AR[9].

Example 3.29. Let AR be an AntiRing of Example 3.16 and let AT be its right PseudoAntiIdeal of

Example 3.25. Then

AR/AT = {AT, 1 +AT}.

Let ⊕ and � be two binary operations defined on AR/AT as shown in the Cayley tables below.

⊕ AT 1 +AT

AT AT 1 +AT

1 +AT 1 +AT AT

� AT 1 +AT

AT AT AT

1 +AT 1 +AT AT

It can easily be shown that R1 − R6 and R9 are totally true, R7, R8 and R10 are partially true and

partially false. Hence, (AR/AT,⊕,�) is a NeutroRing.

Example 3.30. Let AR be the AntiRing of Example 3.19 and let AS be its PseudoAntiIdeal of

Example 3.26. Then

AR/AS = {1 +AS, 2 +AS, 3 +AS, 4 +AS, · · · }

If ⊕ and � are two binary operations on AR/AS such that

(x+AS)⊕ (y +AS) = (x ∗ y) +AS,

(x+AS)� (y +AS) = (x ◦ y) +AS,
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It can be shown that (AR/AS,⊕,�) is an AntiRing of type-AR[3,4].

Remark 3.31. If (AR,+, .) is an AntiRing and AI is a left(right)(two-sided) AntiIdeal or a

left(right)(two-sided) QuasiAntiIdeal or a left(right)(two-sided) PseudoAntiIdeal of AR, then an An-

tiQuotientRing AR/AI can have algebraic properties different from the algebraic properties of AR.

Definition 3.32. Let (AR,+, .) and (AS,+′, .′) be any two AntiRings of the same type/class. The

mapping φ : AR → AS is called an AntiRingHomomorphism if φ anti-preserves the binary operations

of AR and AS that is if for all the duplets (x, y) ∈ AR, we have:

φ(x+ y) 6= φ(x) +′ φ(y),

φ(x.y) 6= φ(x).′φ(y).

The kernel of φ denoted by Kerφ is defined as

Kerφ = {x : φ(x) = eAR}.

The image of φ denoted by Imφ is defined as

Imφ = {y ∈ AS : y = φ(x) for at least one y ∈ AS}.

If in addition φ is an AntiBijection, then φ is called an AntiRingIsomorphism. AntiRingEpimorphism,

AntiRingMonomorphism, AntiRingEndomorphism and AntiRingAutomorphism are similarly defined.

Example 3.33. Let AR be the AntiRing of Example 3.19 and let AR/AS be the AntiQuotientRing

of Example 3.30. Then φ : AR→ AR/AS defined by

φ(x) = x+AS ∀x ∈ AR

is a classical homomorphism and not an AntiRingHomomorphism. To see this, for all m,n ∈ AR, we

have φ(m) = m+AS and φ(n) = n+AS so that

φ(m) + φ(n) = (m+AS)⊕ (n+AS)

= (m+ n) +AS

= φ(m+ n).

φ(m)φ(n) = (m+AS)� (n+AS)

= (mn) +AS

= φ(mn).

Kerφ = ∅.

Imφ = {1 +AS, 2 +AS, 3 +AS, 4 +AS, · · · } = AR/AS.

Remark 3.34. It is evident from Example 3.33 that the fundamental theorem of homomorphisms of

the classical rings cannot hold in the classes of AntiRings.
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4. Conclusions

We have in this paper introduced the concept of AntiRings with several examples. Specifically, cer-

tain types of AntiRings and their substructures were studied. It was shown that nonempty subsets of

an AntiRing can be AntiRings with algebraic properties different from the parent AntiRing under the

same binary operations. Also, we studied with several examples the concepts of AntiIdeals, AntiQuo-

tientRings and AntiRingHomomorphisms. It was shown that an AntiQuotientRing of an AntiRing

factored by an AntiIdeal can exhibit algebraic properties different from the algebraic properties of the

AntiRing. We hope to study morphisms and AntiMorphisms of AntiSubrings and QuasiAntiSubrings

of AntiRings and present further properties of different types of AntiRings in our future papers.
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—————————————————————————————————————————

1. Introduction

Fuzzy Sets was presented by Zadeh [20] as a class of elements with a grade of membership.

Kramosil and Michalek [9] defined new notion called Fuzzy Metric Space (FMS). Later, many

authors have examined the concept of fuzzy metric in various aspects. In 1984 Kaleva and

Seikkala [8] have characterized the FMS, where separation between any two points to be posi-

tive number. In particular, George and Veeramani [4,5] redefined the concept of fuzzy metric

space with the assistance of continuous t-norm, and continuous t-co norm. FMS has utilized in

applied science fields such as fixed point theory, decision making, medical imaging and signal

processing. Heilpern [7] defined fuzzy contraction for Fixed point theorem. Park [14] de-

fined Intuitionistic Fuzzy Metric Space (IFMS) from the concept of FMS and given some fixed

point results. Fixed point theorems related to FMS and IFMS given by Alaca et al [2] and

nemerous researchers [13,19].In 1998, Smarandache [16] characterized the new concept called
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neutrosophic logic and neutrosophic set. In the idea of neutrosophic sets, there is T degree

of membership, I degree of indeterminacy and F degree of non-membership. A neutrosophic

value is appeared by (T, I, F). Hence, neutrosophic logic and neutrosophic set assists us to

brief many uncertainties in our lives. In addition, several researchers have made significant

development on this theory [26–30]. Recently, Baset et al. [22–25] explored the neutrosophic

applications in different fields such as model for sustainable supply chain risk management,

resource levelling problem in construction projects, Decision Making and financial performance

evaluation of manufacturing industries. In fact, the idea of fuzzy sets deals with only a degree

of membership. In addition, the concept of intuitionistic fuzzy set established while adding

degree of non - membership with degree of membership. But these degrees are characterized

relatively one another. Therefore, neutrosophic set is a generalized state of fuzzy and intu-

itionistic fuzzy set by incorporating degree of indeterminacy. In 2019, Kirisci et al [10, 11]

defined neutrosophic metric space as a generalization of IFMS and brings about fixed point

theorems in complete neutrosophic metric space.

In this paper, we investigate and prove some contraction theorems that are extended to neu-

trosophic metric space with the assistance of Grabiec [6].

2. Preliminaries

Definition 2.1 [17] Let Σ be a non-empty fixed set. A Neutrosophic Set (NS for short) N

in Σ is an object having the form N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} where the functions

ξN (a), %N (a) and νN (a) represent the degree of membership, degree of indeterminacy and the

degree of non-membership respectively of each element a ∈ N to the set Σ.

A neutrosophic set N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} is expressed as an ordered triple

N = 〈a, ξN (a), %N (a), νN (a)〉 in Σ.

In NS, there is no restriction on (ξN (a), %N (a), νN (a)) other than they are subsets of ]−0, 1+[

Remark 2.2 [10] Neutrosophic Set N is included in another Neutrosophic set Γ ( N ⊆ Γ)

if and only if

inf ξN (a) ≤ infξΓ(a) sup ξN (a) ≤ sup ξΓ(a)

inf %N (a) ≥ inf%Γ(a) sup %N (a) ≥ sup %Γ(a)

inf νN (a) ≥ infνΓ(a) sup νN (a) ≥ sup νΓ(a)

Triangular Norms (TNs) were initiated by menger. Triangular co norms(TCs) knowns as

dual operations of triangular norms (TNs).

Definition 2.3 [4] A binary operation ? : [0, 1]× [0, 1]→ [0, 1] is called continuous t - norm

(CTN) if it satisfies the following conditions;

For all ε1, ε2, ε3, ε4 ∈ [0, 1]

(i) ε1 ? 0 = ε1;
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(ii) If ε1 ≤ ε3 and ε2 ≤ ε4 then ε1 ? ε2 ≤ ε3 ? ε4;

(iii) ? is continuous;

(iv) ? is commutative and associative.

Definition 2.4 [4] A binary operation � : [0, 1] × [0, 1] → [0, 1] is called continuous t - co

norm (CTC) if it satisfies the following conditions;

For all ε1, ε2, ε3, ε4 ∈ [0, 1]

(i) ε1 � 0 = ε1;

(ii) If ε1 ≤ ε3 and ε2 ≤ ε4 then ε1 � ε2 ≤ ε3 � ε4;

(iii) � is continuous;

(iv) � is commutative and associative.

Remark 2.5 From the definitions of CTN and CTC, we note that if we take 0 < ε1, ε2 < 1

for ε1 < ε2 then there exist 0 < ε3, ε4 < 1 such that ε1 ? ε3 ≥ ε2 and ε1 ≥ ε2 � ε4.

Further we choose ε5 ∈ (0, 1) then there exists ε6, ε7 ∈ (0, 1) such that ε6 ? ε6 ≥ ε5 and

ε7 � ε7 ≤ ε5.

Definition 2.6 [13] A Sequence {tn} is called s - non-decreasing sequence if there exists

m0 ∈ N such that tm ≤ tm+1 for all m > m0.

3. Neutrosophic Metric Space

In this section, we apply neutrosophic theory to generalize the Intuitionistic fuzzy metric

space. we also discuss some properties and examples in it.

Definition 3.1 A 6 - tuple (Σ,Ξ,Θ,Υ, ?, �)is called Neutrosophic Metric Space(NMS), if Σ is

an arbitrary non empty set, ? is a neutrosophic CTN and � is a neutrosophic CTC and Ξ,Θ,Υ

are neutrosophic sets on Σ2 × R+ satisfying the following conditions:

For all ζ, η, ω ∈ Σ, λ ∈ R+

(i) 0 ≤ Ξ(ζ, η, λ) ≤ 1; 0 ≤ Θ(ζ, η, λ) ≤ 1; 0 ≤ Υ(ζ, η, λ) ≤ 1;

(ii) Ξ(ζ, η, λ) + Θ(ζ, η, λ) + Υ(ζ, η, λ) ≤ 3;

(iii) Ξ(ζ, η, λ) = 1 if and only if ζ = η ;

(iv) Ξ(ζ, η, λ) = Ξ(η, ζ, λ) for λ > 0;

(v) Ξ(ζ, η, λ) ? Ξ(η, ζ, µ) ≤ Ξ(ζ, ω, λ+ µ), for all λ, µ > 0;

(vi) Ξ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(vii) limλ→∞Ξ(ζ, η, λ) = 1 for all λ > 0;

(viii) Θ(ζ, η, λ) = 0 if and only if ζ = η ;

(ix) Θ(ζ, η, λ) = Θ(η, ζ, λ) for λ > 0;

(x) Θ(ζ, η, λ) �Θ(ζ, ω, µ) ≥ Θ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xi) Θ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xii) limλ→∞Θ(ζ, η, λ) = 0 for all λ > 0;

(xiii) Υ(ζ, η, λ) = 0 if and only if ζ = η;
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(xiv) Υ(ζ, η, λ) = Υ(η, ζ, λ) for λ > 0;

(xv) Υ(ζ, η, λ) �Υ(ζ, ω, µ) ≥ Υ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xvi) Υ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xvii) limλ→∞Υ(ζ, η, λ) = 0 for all λ > 0;

(xviii) If λ > 0 then Ξ(ζ, η, λ) = 0,Θ(ζ, η, λ) = 1,Υ(ζ, η, λ) = 1.

Then (Ξ,Θ,Υ) is called Neutrosophic Metric on Σ. The functons Ξ,Θ and Υ denote degree of

closedness, neturalness and non - closedness between ζ and η with respect to λ respectively.

Example 3.2 Let (Σ, d) be a metric space. Define ζ ?η = min{ζ, η} and ζ �η = max{ζ, η},
and Ξ,Θ,Υ : Σ2 × R+ → [0, 1] defined by , we define

Ξ(ζ, η, λ) =
λ

λ+ d(ζ, η)
; Θ(ζ, η, λ) =

d(ζ, η)

λ+ d(ζ, η)
; Υ(ζ, η, λ) =

d(ζ, η)

λ

for all ζ, η ∈ Σ and λ > 0. Then (Σ,Ξ,Θ,Υ, ?, �) is called neutrosophic metric space induced

by a metric d the standard neutrosophic metric.

Example 3.3 If we take Σ = N, consider the CTN, CTC are ζ ? η = min{ζ, η} and

ζ � η = max{ζ, η}, Ξ,Θ,Υ : Σ2 × R+ → [0, 1] defined by

Ξ(ζ, η, λ) =


ζ
η if ζ ≤ η
η
ζ if η ≤ ζ

Θ(ζ, η, λ) =


η−ζ
η if ζ ≤ η
ζ−η
ζ if η ≤ ζ

Υ(ζ, η, λ) =

η − ζ if ζ ≤ η

ζ − η if η ≤ ζ

for all ζ, η ∈ Σ and λ > 0. Then Ξ,Θ,Υ : Σ2 × R+ → [0, 1] is a NMS.

Remark 3.4 In Neutrosophic Metric space Ξ is non - decreasing , Θ is a non - increasing , Υ

is decreasing for all ζ, η ∈ Σ.

Definition 3.5 Let (Σ,Ξ,Θ,Υ, ?, �) be neutrosophic metric space . Then

(a) a sequence {ζn} in Σ is converging to a point ζ ∈ Σ if for each λ > 0

limλ→∞Ξ(ζ, η, λ) = 1; limλ→∞Θ(ζ, η, λ) = 0; limλ→∞Υ(ζ, η, λ) = 0.

(b) a sequence ζn in Σ is said to be Cauchy if for each ε > 0 and λ > 0 there exist N ∈ N
such that Ξ(ζn, ζm, λ) > 1− ε ; Θ(ζn, ζm, λ) < ε ; Υ(ζn, ζm, λ) < ε for all n, m ≤ N.

(c) (Σ,Ξ,Θ,Υ, ?, �) is said to be complete neutrosophic metric space if every Cauchy

sequence is convergent.

(d) (Σ,Ξ,Θ,Υ, ?, �) is called compact neutrosophic metric space if every sequence contains

convergent sub sequence.
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4. Main Results

Theorem 4.1 (Neutrosophic Banach Contraction Theorem) Let (Σ,Ξ,Θ,Υ, ?, �) be a

complete neutrosophic metric space. Let z : Σ→ Σ be a function satisfying

Ξ(zζ,zη, λ) ≥ Ξ(ζ, η, λ); Θ(zζ,zη, λ) ≤ Θ(ζ, η, λ); Υ(zζ,zη, λ) ≤ Υ(ζ, η, λ) (4.1.1)

for all ζ, η ∈ Σ. 0 < k < 1. Then z has unique fixed point.

Proof: Let ζ ∈ Σ and {ζn} = zn(a) (n ∈ N). By Mathematical induction, we obtain

Ξ(ζn, ζn+1, λ) ≥ Ξ(ζ, ζ1,
λ

kn
); Θ(ζn, ζn+1, λ) ≤ Θ(ζ, ζ1,

λ

kn
); Υ(ζn, ζn+1, λ) ≤ Υ(ζ, ζ1,

λ

kn
) ....(4.1.2)

for all n > 0 and λ > 0. Thus for any non-negative integer p, we have

Ξ(ζn, ζn+p, λ) ≥ Ξ(ζ, ζn+1,
λ

p
) ? · · ·(p−times) · · · ? Ξ(ζn+p−1, ζn+p,

λ

p
)

≥ Ξ(ζ, ζ1,
λ

pkn
) ? · · ·(p−times) · · · ? Ξ(ζ, ζ1,

λ

pkn+p−1
)

Θ(ζn, ζn+p, λ) ≤ Θ(ζ, ζn+1,
λ

p
) � · · ·(p−times) · · · �Θ(ζn+p−1, ζn+p,

λ

p
)

≤ Θ(ζ, ζ1,
λ

pkn
) � · · ·(p−times) · · · �Θ(ζ, ζ1,

λ

pkn+p−1
)

Υ(ζn, ζn+p, λ) ≤ Υ(ζ, ζn+1,
λ

p
) � · · ·(p−times) · · · �Υ(ζn+p−1, ζn+p,

λ

p
)

≤ Υ(ζ, ζ1,
λ

pkn
) � · · ·(p−times) · · · �Υ(ζ, ζ1,

λ

pkn+p−1
)

by (4.1.2) and the definition of NMS conditions, we get

limn→∞Ξ(ζn, ζn+p, λ) ≥ 1 ? · · ·(p−times) · · · ? 1 = 1

limn→∞Θ(ζn, ζn+p, λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0

limn→∞Υ(ζn, ζn+p, λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0.

Therefore, {ζn} is Cauchy sequence and it is convergent to a limit, let the limit point is η.

Thus, we get

Ξ(zη, η, t) ≥ Ξ(zη,zζn,
λ

2
) ? Ξ(ζn+1, η,

λ

2
)

≥ Ξ(η, ζn,
λ

2k
) ? Ξ(ζn+1, η,

λ

2
)→ 1 ? 1 = 1.

Θ(zη, η, λ) ≤ Θ(zη,zζn,
λ

2
) �Θ(ζn+1, η,

λ

2
)

≤ Θ(η, ζn,
λ

2k
) �Θ(ζn+1, η,

λ

2
)→ 0 � 0 = 0.

Υ(zη, η, λ) ≤ Υ(zη,zζn,
λ

2
) �Υ(ζn+1, η,

λ

2
))

≤ Υ(η, ζn,
λ

2k
) �Υ(ζn+1, η,

λ

2
)→ 0 � 0 = 0.
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Since we see that

Ξ(ζ, η, λ) = 1 iff ζ = η; Θ(ζ, η, λ) = 0 iff ζ = η; Υ(ζ, η, λ) = 0 iff ζ = η

we get zη = η, which is the fixed point of Neutrosophic metric space.

To show the uniqueness, let us assume that zω = ω for some ω ∈ Σ

1 ≥ Ξ(ζ, ω, λ) = Ξ(zη,zω, λ) ≥ Ξ(ζ, ω,
λ

k
) = Ξ(zη,zη,

λ

k
) ≥ Ξ(ζ, ω,

λ

k2
)

≥ · · · ≥ Ξ(ζ, ω,
λ

kn
)→ 1 as n→∞

0 ≤ Θ(ζ, ω, λ) = Θ(zη,zωzω, λ) ≤ Θ(ζ, ω,
λ

k
) = Θ(zη,zω,

λ

k
) ≤ Θ(ζ, ω,

λ

k2
)

≤ · · · ≤ Θ(ζ, ω,
λ

kn
)→ 0 as n→∞

0 ≤ Υ(ζ, ω, λ) = Υ(zη,zω, λ) ≤ Υ(ζ, ω,
λ

k
) = Υ(zη,zω,

λ

k
) ≤ Υ(ζ, ω,

λ

k2
)

≤ · · · ≤ Υ(ζ, ω,
λ

kn
)→ 0 as n→∞.

From the definition of NMS, We get η = ω. Therefor, z has a unique fixed point.

Lemma 4.2 (a) If limn→∞ζn = ζ and limn→∞ηn = η, then

Ξ(ζ, η, λ− ε) ≤ limn→∞inf Ξ(ζn, ηn, λ)

Θ(ζ, η, λ− ε) ≥ limn→∞sup Θ(ζn, ηn, λ)

Υ(ζ, η, λ− ε) ≥ limn→∞sup Υ(ζn, ηn, λ)

(b) If limn→∞ζn = ζ and limn→∞ηn = η, then

Ξ(ζ, η, λ+ ε) ≥ limn→∞sup Ξ(ζn, ηn, λ)

Θ(ζ, η, λ+ ε) ≤ limn→∞inf Θ(ζn, ηn, λ)

Υ(ζ, η, λ+ ε) ≤ limn→∞inf Υ(ζn, ηn, λ)
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for all λ > 0 and 0 < ε < λ.

Proof for(a): By the definition of NMS, conditions (v),(x) and (xv)

Ξ(ζn, ηn, λ) ≥ Ξ(ζn, ζ,
ε

2
) ? Ξ(ζ, η, λ− ε) ? Ξ(η, ηn,

ε

2
)

limn→∞inf Ξ(ζn, ηn, λ) ≥ 1 ? Ξ(ζ, η, λ− ε) ? 1

Hence, limn→∞inf Ξ(ζn, ηn, λ) ≥ Ξ(ζ, η, λ− ε)

Θ(ζn, ηn, λ) ≤ Θ(ζn, ζ,
ε

2
) �Θ(ζ, η, λ− ε) �Θ(η, ηn,

ε

2
)

limn→∞sup Θ(ζn, ηn, λ) ≤ 0 �Θ(ζ, η, λ− ε) � 0

Hence, limn→∞sup Θ(ζn, ηn, λ) ≤ Θ(ζ, η, λ− ε)

Υ(ζn, ηn, λ) ≤ Υ(ζn, ζ,
ε

2
) �Υ(ζ, η, λ− ε) �Υ(η, ηn,

ε

2
)

limn→∞sup Υ(ζn, ηn, λ) ≤ 0 �Υ(ζ, η, λ− ε) � 0

Hence, limn→∞sup Υ(ζn, ηn, λ) ≤ Θ(ζ, η, λ− ε)

Proof for (b):By the definition of NMS, conditions (v),(x) and (xv)

Ξ(ζ, η, λ+ ε) ≥ Ξ(ζ, ζn,
ε

2
) ? Ξ(ζn, ηn, ε) ? Ξ(ηn, η,

ε

2
)

Hence, Ξ(ζ, η, λ+ ε) ≥ limn→∞supΞ(ζn, ηn, ε)

Θ(ζ, η, λ+ ε) ≤ Ξ(ζ, ζn,
ε

2
) �Θ(ζn, ηn, ε) �Θ(ηn, η,

ε

2
)

Hence, Θ(ζ, η, λ+ ε) ≤ limn→∞infΘ(ζn, ηn, ε)

Υ(ζ, η, λ+ ε) ≤ Υ(ζ, ζn,
ε

2
) �Υ(ζn, ηn, ε) �Υ(ηn, η,

ε

2
)

Hence, Υ(ζ, η, λ+ ε) ≤ limn→∞infΥ(ζn, ηn, ε)

Corollary 4.3 If limn→∞ζn = a and limn→∞ηn = η, then

(a) Ξ(ζ, η, λ) ≤ limn→∞inf Ξ(ζn, ηn, λ);

Θ(ζ, η, λ) ≥ limn→∞sup Θ(ζn, ηn, λ);

Υ(ζ, η, λ) ≥ limn→∞sup Υ(ζn, ηn, λ)....(4.3.1)

(b) Ξ(ζ, η, λ) ≥ limn→∞sup Ξ(ζn, ηn, λ)

Θ(ζ, η, λ) ≤ limn→∞inf Θ(ζn, ηn, λ)

Υ(ζ, η, λ) ≤ limn→∞inf Υζn, ηn, λ)....(4.3.2)

for all λ > 0 and 0 < ε < λ.

Theorem 4.4 (Neutrosophic Edelstein Contraction Theorem) Let (Σ,Ξ,Θ,Υ, ?, �) be

compact neutrosophic metric space. Let z : Σ→ Σ be a function satisfying

Ξ(zζ,zη, .) > Ξ(ζ, η, .); Θ(zζ,zη, .) < Θ(ζ, η, .); Υ(zζ,zη, .) < Υ(ζ, η, .). ...(4.4.1)
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Then z has fixed point.

Proof: Let a ∈ Σ and an = znζ (n ∈ N). Assume ζn 6= ζn+1 for each n (If not zζn = ζn)

consequently an 6= an+1 (n 6= m), For otherwise we get

Ξ(ζn, ζn+1, .) = Ξ(ζm, ζm+1, .) > Ξ(ζm−1, ζm, .) > · · · > Ξ(ζn, ζn+1, .)

Θ(ζn, ζn+1, .) = Θ(ζm, ζm+1, .) < Θ(ζm−1, ζm, .) < · · · < Θ(ζn, ζn+1, .)

Υ(ζn, ζn+1, .) = Υ(ζm, ζm+1, .) < Υ(ζm−1, ζm, .) < · · · < Υ(ζn, ζn+1, .)

where m > n , which is a contradiction. Since Σ is compact set, {ζn} has convergent sub

sequence {ζni}. Let η = limi→∞ζni , Also we assume that η such that zη ∈ {ζni ; i ∈ N}.
According to the above assumption, we may now write,

Ξ(zζni ,zη, .) > Ξ(ζni , η, .); Θ(zζni ,zη, .) < Θ(ζni , η, .); Υ(zζni ,zη, .) < Υ(ζni , η, .)

for all i ∈ N. Then by equation (4.3.1) we obtain

lim infΞ(zζni ,zη, λ) ≥ lim Ξ(ζni , η, λ) = Ξ(η, η, λ) = 1

lim supΘ(zζni ,zη, λ) ≤ lim Θ(ζni , η, λ) = Θ(η, η, λ) = 0

lim supΥ(zζni ,zη, λ) ≤ lim Υ(ζni , η, λ) = Υ(η, η, λ) = 0

for each λ > 0. Hence

lim zζni = zη....(4.4.2)

Simillarly

lim z2ζni = limz2η...(4.4.3)

(we recall that lim zζni = zη for all (i ∈ N)), Now observe that,

Ξ(ζni ,zζni , λ) ≤ Ξ(zζni ,z
2ζni , λ) ≤ · · · ≤ Ξ(ζni ,zζni , λ)

≤ Ξ(zζni ,z
2ζni , λ) ≤ · · · ≤ Ξ(zζni+1 ,z

2ζni+1 , λ)

≤ Ξ(zζni+1 ,z
2ζni+1 , λ) ≤ · · · ≤ 1.

Θ(ζni ,zζni , λ) ≥ Θ(zζni ,z
2ζni , λ) ≥ · · · ≥ Θ(ζni ,zζni , λ)

≥ Θ(zζni ,z
2ζni , λ) ≥ · · · ≥ Θ(zζni+1 ,z

2ζni+1 , λ)

≥ Θ(zζni+1 ,z
2ζni+1 , λ) ≥ · · · ≥ 0.

Υ(ζni ,zζni , λ) ≥ Υ(zζni ,z
2ζni , λ) ≥ · · · ≥ Υ(ζni ,zζni , λ)

≥ Υ(zζni ,z
2ζni , λ) ≥ · · · ≥ Υ(zζni+1 ,z

2ζni+1 , λ)

≥ Υ(zζni+1 ,z
2ζni+1 , λ) ≥ · · · ≥ 0.
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for all λ > 0. Thus {Ξ(ζni ,zζni , λ)}, {Θ(ζni ,zζni , λ)}, {Υ(ζni ,zζni , λ)} and {(zζni ,z2ζni , λ)}
(λ > 0) are convergent to a common limit point . So by equations (4.3.1) , (4.3.2) and (4.4.1)

and we get,

Ξ(η,zη, λ) ≥ lim sup Ξ(ζni ,zζni , λ) = lim sup (zζni ,z
2ζni , λ)

≥ lim infΞ(zζni ,z
2ζni , λ)

≥ Ξ(zη,z2η, λ)

Θ(η,zη, λ) ≤ lim inf Θ(ζni ,zζni , λ) = lim inf Θ(zζni ,z
2ζni , λ)

≤ lim supΘ(zζni ,z
2ζni , λ)

≤ Θ(zη,z2η, λ)

Υ(η,zη, λ) ≤ liminf Υ(ζni ,zζni , λ) = lim inf Υ(zζni ,z
2ζni , λ)

≤ lim supΥ(zζzζni ,z
2ζni , λ)

≤ Υ(zη,z2η, λ)

for all λ > 0. Suppose b 6= zη, By equation (4.4.1)

Ξ(η,zη, .) < Ξ(zη,z2η, .); Θ(η,zη, .) > θ(zη,z2η, .); Υ(η,zη, .) > Υ(zη,z2η, .).

which is a contradiction , because all the above functions are left continuous , non -decreasing

and right continuous , non - increasing respectively. Hence η = zη is a fixed point.

To prove the uniqueness of the fixed point, let us consider z(ζ) = ω for some ζ ∈ Σ.

Then

1 ≥ Ξ(ζ, ω, λ) = Ξ(zη,zω, λ) ≥ Ξ(ζ, ω,
λ

k
) = Ξ(zη,zω,

λ

k
) ≥ · · · ≥ Ξ(ζ, ω,

λ

kn
)

0 ≤ Θ(ζ, ω, λ) = Θ(zη,zω, λ) ≤ Θ(ζ, ω,
λ

k
) = Θ(zη,zω,

λ

k
) ≤ · · · ≤ Θ(ζ, ω,

λ

kn
)

0 ≤ Υ(ζ, ω, λ) = Υ(zη,zω, λ) ≤ Υ(ζ, ω,
λ

k
) = Υ(zω,zω,

λ

k
) ≤ · · · ≤ Υ(ζ, ω,

λ

kn
)

Now , we easily verify that { λkn } is an s - increasing sequence, then by assumption for a given

ε ∈ (0, 1), there exists n0 ∈ N such that

Ξ(ζ, ω,
λ

kn
) ≥ 1− ε; Θ(ζ, ω,

λ

kn
) ≤ ε; Υ(ζ, ω,

λ

kn
) ≤ ε.

Clearly

limn→∞Ξ(ζ, ω,
λ

kn
) = 1; limn→∞Θ(ζ, ω,

λ

kn
) = 0; limn→∞Υ(ζ, ω,

λ

kn
) = 0.

Hence Ξ(ζ, ω, λ) = 1; Θ(ζ, ω, λ) = 0; Υ(ζ, ω, λ) = 0. Thus η = ω. Hence proved.
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Conclusion: In this study, we have investigated the concept of Neutrosophic Metric Space

and its properties. We have proved fixed point results for contraction theorems in the setting

of neutrosophic metric Space. There is a scope to establish many fixed point results in the

areas such as fuzzy metric, generalized fuzzy metric, bipolar and partial fuzzy metric spaces

by using the concept of Neutrosophic Set.
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Abstract: In this study a decision making model through Neutrosophic 𝑄-fuzzy set has been 

designed. During Covid-19 – Pandemic situation, education sector is stabilizing its work 

through online mode. Information Communication Technology (ICT) platforms offer many 

opportunities for the academicians and Learners. This study intends to analyse the selection of 

best ICT tool by fixing important criteria. The selection of optimal ICT tool is scrutinized in this 

study using Significant Score of a Neutrosophic fuzzy number. 

Keywords: Information Communication Technology, Neutrosophic Set, Neutrosophic 𝑄- fuzzy 

set, Neutrosophic 𝑄- fuzzy decision set, Neutrosophic fuzzy number, Significant Score of a 

NFN 

1. Introduction 

Education Sector plays a vital role in the digital transformation and embraces the changes 

during Covid-19 Pandemic situation.  In the 21st century, education sector slowly moves to the 

online education. Many educationists apply ICTs application in online education. Especially 

during lock down period,  ICTs help the Academicians and Learners to balance the teaching – 

learning process. Yusuf  M.O. [25] analyzed about the policy implications in Nigerian 

education system. The system offered maximum use of ICT potential in the schooling system 

itself. Neeti Roy [17] analyzed the ICT act as student centered - learning settings.  It adopted  
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the general component in teaching and learning process. It helps to enhance the quality            

and accessibility of education. It aims to learning motivation. Sivakumar Ramaraj [19] explored 

role of ICT has strong impact on teaching learning in 21st Century. Vibha Thakur et al. [24] 

studied about transmission of ICT in the field of teaching and learning system by 

implementing e-learning, virtual learning, e-meeting and e-collaboration. ICT tools integrate, 

enhance and interact with wide coverage of learning and teaching.  It helps the learners to gain 

the knowledge in the wider range though they are in distant mode. 

Many ICT platforms and research are developed and emerged into the market. The tools 

support the educators to transfer the ideas into implications. During this pandemic situation, 

the tools act as a bridge between the learners and teachers. It is inevitable to note the 

application of tools in the education sector effectively. For this purpose, the researchers intend 

to analyze the different characteristics of ICT tools which are very commonly used in the 

Academic platform. To identify the optimal ICT tool, this study wants to apply Neutrosophic 

Q-fuzzy set. Various properties enhance the education system using ICT. The major criteria 

have been selected for ICT tool which shows the higher ability of it. The Criteria helps to make 

decision on the application of ICT tools in teaching – learning process. To improve the 

accuracy in decision making, several types of fuzzy sets are applied in different situations. 

Muthumeenakshi et al.[15,16] applied the notions fuzzy soft set and bipolar valued Q-fuzzy set 

to design some multi criteria decision making models. Zhikang Lu[28] used intuitionistic fuzzy 

values for decision-making method. Smarandache[20.21] generalized the intuitionistic fuzzy 

set into Neutrosophic Set. After the invention of Neutrosophic settings, the notion is explored 

by the authors of [7,8,9,12,14,23 ] in various decision making problems.  Later Mohseni et 

al.[11] introduced MBJ – Neutrosophic structure and applied it in BCK/BCI algebras. As an 

initiation, Surya et al.[22] applied MBJ – Neutrosophic structure in  β-algebra.  Recently in 

[10,13,18] also the concept of  Neutrosophic  set is applied  to evaluate the management of 

internal control, applications to Multi-Criteria Decision-Making, solving the Fully 

Neutrosophic Linear Programming Problems.   
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With all these motivations, this paper incorporates the application of Neutrosophic 𝑄- fuzzy 

set for the ideal selection of ICT tool in the education sector.  

2. Preliminaries  

This section discussed the essential notations for the construction of the model in this study. 

2.1 Definition: [26, 27] A fuzzy set in an nonempty set Ψ is a mapping,  𝜔 ∶ Ψ → [0,1] for each 

𝑥 in Ψ, 𝜔(𝑥) is called the membership value of 𝑥 . 

2.2 Definition: [6] An intuitionistic fuzzy set in an non – empty set Ψ is defined by the 

structure  𝐴 = { < 𝑥, 𝜔𝐴(𝑥), 𝜆𝐴(𝑥) > | 𝑥 ∈ Ψ} , where 𝜔𝐴 ∶ Ψ → [0,1] is a membership function of 

𝐴 and 𝜆𝐴 ∶ Ψ → [0,1] is a non – membership function of 𝐴 with  0 ≤ 𝜔𝐴 + 𝜆𝐴 ≤  1. 

2.3 Definition: [20, 21] The term Neutrosophic Fuzzy Set Ν on a nonempty set  Φ is is the 

structure of the form Ν = {< 𝑥, 𝜁Ν(𝑥),  𝜉Ν(𝑥), 𝜂Ν(𝑥) > | 𝑥 ∈ Φ} characterized by a truth – 

membership function 𝜁Ν , an indeterminacy membership function  𝜉Ν, and a falsity – 

membership function 𝜂Ν, where 𝜁Ν,  𝜉Ν, 𝜂Ν ∶ Φ → [0,1].  

2.4 Definition: [16] A 𝑄 -fuzzy subset µ in a non-empty set 𝑋 is a function   𝜇: 𝑋 × 𝑄 ⟶ [0,1], 

where 𝑄 is any non-empty set. 

2.5 Definition: [16] A 𝑄-fuzzy decision (QFD) set of 𝑋 denoted by 𝑄𝐹𝑋
𝐷 and is defined by                                 

𝑄𝐹𝑋
𝐷 = { 𝜇𝑄𝐹𝑋

𝐷(𝑥) | 𝑥 ∈ 𝑋} which is a fuzzy set over 𝑋 and its membership function 𝜇𝑄𝐹𝑋
𝐷  is 

defined by  𝜇𝑄𝐹𝑋
𝐷 : 𝑋 ⟶ [0,1] , where 𝜇𝑄𝐹𝑋

𝐷(𝑥) =
1

|Κ|
∑ 𝜇𝑋(𝑥, 𝑞𝑗).𝑛

𝑗=1  Here 𝑞𝑗 ∈ 𝑄 and Κ is number 

of characteristics which influences the particular population. 

 

3. Neutrosophic 𝑸 -Fuzzy Decision Set 

3.1 Definition: A Neutrosophic-𝑄-Fuzzy Set (NQFS) Ω, in a non-empty set Γ is defined as an 

object of the form  Ω =  {< (𝑥, 𝑞), 𝜁Ω(𝑥, 𝑞),  𝜉Ω(𝑥, 𝑞), 𝜂Ω(𝑥, 𝑞) > | (𝑥, 𝑞) ∈ Γ × 𝑄} ,                                 

where 𝜁Ω ,  𝜉Ω , 𝜂Ω ∶ Γ × 𝑄 → [0,1] represents the truth membership function, intermediate 

membership function and false membership function of Ω respectively. 
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3.2 Definition: For the Neutrosophic Set Ν = {< 𝑥, 𝜁Ν(𝑥),  𝜉Ν(𝑥), 𝜂Ν(𝑥) > | 𝑥 ∈ Φ} in Φ, the 

triple  〈𝜁Ν,  𝜉Ν, 𝜂Ν〉 is called Neutrosophic Fuzzy Number(NFN) and is denoted by Ν𝑥. 

3.3 Definition: The Significant Score of a NFN,  Ν𝑥 = 〈𝜁Ν,  𝜉Ν, 𝜂Ν〉  is defined as                      

𝑆𝑆(Ν𝑥) = (𝜁Ν𝑥
− 𝜂Ν𝑥

+ (
𝜉Ν𝑥

2
)) (1 − (𝜁𝛮𝑥

− 𝜂𝛮𝑥
+ (

𝜉𝛮𝑥

2
))

2

). This SS is used to identify an ideal 

solution from the various likewise objects of the given population. 

3.4 Definition: A Neutrosophic 𝑄-Fuzzy Decision (NQFD) set of Γ is defined by                                    

𝑁𝑄𝐹Γ
𝐷 = { ( 𝜁Ν𝑄𝐹Γ

𝐷(𝑥) ,  𝜉Ν𝑄𝐹Γ
𝐷(𝑥) , 𝜂Ν𝑄𝐹Γ

𝐷(𝑥)) | 𝑥 ∈ Γ} which is a Neutrosophic fuzzy set over Γ, 

where 𝜁Ν𝑄𝐹Γ
𝐷 ∶ Γ ⟶ [0,1] ,  𝜉Ν𝑄𝐹Γ

𝐷 ∶ Γ ⟶ [0,1] and 𝜂Ν𝑄𝐹Γ
𝐷 ∶ Γ → [0,1] are the truth membership 

function, intermediate  membership function and false membership function and  respectively 

with  𝜁Ν𝑄𝐹Γ
𝐷(𝑥) =

1

|Κ|
∑ 𝜁ΝΓ

(𝑥, 𝑞𝑗)𝑛
𝑗=1   ;    𝜉Ν𝑄𝐹Γ

𝐷(𝑥) =
1

|Κ|
∑ 𝜉ΝΓ

(𝑥, 𝑞𝑗)𝑛
𝑗=1  and 𝜂Ν𝑄𝐹Γ

𝐷(𝑥) =

1

|Κ|
∑ 𝜂ΝΓ

(𝑥, 𝑞𝑗)𝑛
𝑗=1 . Here 𝑞𝑗 ∈ 𝑄 and Κ is number of characteristics which influences the 

particular population. 

 

4. Ideal selection using Neutrosophic Q-Fuzzy Decision set 

In this section, the responses from the Academicians and Learners are analyzed. The optimal 

selection of the ICT tool will be decided using Neutrosophic 𝑄-Fuzzy Decision (NQFD) set. 

Based on the Experts’ advice five major Criteria have been fixed for the ICT tool in E- Learning 

Process.  The criteria are named as F1, F2, F3, F4 and F5 which are taken as the factor and the 

five different types of ICT tools are compared; E1, E2, E3, E4, E5. The commonly used ICT tools 

are selected based on the experts’ opinion. These tools have different application strategy with 

wide range coverage. Here, the factors to be considered for the optimal selection process are 

Easy Access (F1), Advanced Features (F2), Consumption of Bytes (F3), Less Interruption (F4), 

and Allowable Participants (F5). For each factor, four questions were asked to the respondents. 

Totally twenty items were analyzed with the application of NQFD set. These twenty items 

directly or indirectly collate the opinion of the respondents in the education sector about the 

ICT application. The items are designed with the three point Likert Scale.  
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The Scales are Satisfied, Neutral and Dissatisfied. Satisfied referred to Truth membership 

value, Neutral denotes Intermediate membership value and Dissatisfied denotes False 

membership value. 

The following procedure has been introduced for the purpose of selection. 

1. Construct  NQFS over X. 

2. Build 𝑁𝑄𝐹Γ
𝐷. 

3. Find SS (𝑁𝑄𝐹Γ
𝐷) . 

4. Interpretation. 

Here Γ = {E1, E2, E3, E4, E5} and 𝑄 = {F1, F2, F3, F4, F5} 

 

Step 1: To apply NQFS for the selection of ICT tool in E-Learning process, the universal set Γ 

and the non-empty set 𝑄 of characteristics are designed as follows. 

The responses are applied in the algorithm and values are calculated accordingly. Each 

characteristic is analyzed with four items in the form of statements. The google form has been 

structured and distributed to hundred respondents. The respondents are Academicians and 

Learners. The total satisfactory responses from the respondents for each statement are divided 

with number of respondents, i.e. 100. Likewise the total dissatisfactory and neutral responses 

are considered for the analysis. 

 

Step 2: Truth, Intermediate and False Membership values have been assigned based on Step 1 

Procedure. The following table shows the respective membership values for the optimal 

selection of ICT in E-Learning. 
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Table 1: Neutrosophic membership values 

 

Γ → 

Q ↓ 
E1 E2 E3 E4 E5 

F1 (0.43 ,0.23 , 0.34) (0.36 , 0.32 , 0.32) (0.57 , 0.21 , 0.22) (0.70 , 0.14 , 0.16) (0.63 , 0.21 , 0.16) 

F2 (0.45 , 0.30 , 0.25) (0.47 , 0.32 , 0.21) (0.52 , 0.29 , 0.19) (0.61 , 0.21 , 0.18) (0.53 , 0.23 , 0.24) 

F3 (0.36 , 0.42 , 0.22) (0.41 , 0.20 , 0.39) (0.49 , 0.24 , 0.27) (0.69 , 0.21 , 0.10) (0.30 , 0.50 , 0.20) 

F4 (0.38 , 0.32 , 0.30) (0.40 , 0.21 , 0.39) (0.60 , 0.20 , 0.20) (0.72 , 0.21 , 0.07) (0.50 , 0.32 , 0.18) 

F5 (0.34 , 0.31 , 0.35) (0.31 , 0.32 , 0.37) (0.43 , 0.32 , 0.25) (0.82 , 0.12 , 0.06) (0.62 , 0.21 , 0.17) 

 

Step 3: The 𝑁𝑄𝐹Γ
𝐷 has been attained using the definition 3.4.  

     𝑁𝑄𝐹Γ
𝐷={(0.392 , 0.316, 0.292)/ 𝐸1 , (0.390 , 0.274, 0.336)/ 𝐸2 ,    

                                 (0.522 , 0.252, 0.226)/ 𝐸3 , (0.708 , 0.178, 0.114)/ 𝐸4 

        (0.516 , 0.294, 0.190)/ 𝐸5 } 

Step 4: The Significant Score for all Ei’s are identified as using the definition 3.3.  

SS(E1) = 0.2376 

SS(E2) = 0.1840 

SS(E3) = 0.3468 

SS(E4) = 0.3644 

SS(E5) = 0.3672 

 

5. Conclusion  

In Education Sector, ICT plays a vital role especially during Covid19 situation. Many ICT tools 

are in the education arena. Each ICT tool gives benefits with some unique characteristics. The 

very important and common usages of characters are considered as the criteria for the analysis. 

For the optimal selection of ICT tool, the Academicians and Learners are using different 
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strategies in the Technology. In this study, Neutrosophic Q-Fuzzy Decision set has been used 

by considering the positive, intermediate and negative values of the responses from the 

Academicians and Learners opinions. The values are taken in the relative measures and 

applied in the Neutrosophic Q-Fuzzy Decision set. The result of the analysis revealed that the 

ICT (E5) is the best option which includes all the important characters of Tech tool for teaching 

and learning at the optimal level. This application enhances the opinion results and helps in 

decision making in the ICT tool selection and it can be explored in other such decision making 

scenarios.  
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Abstract. Recently, the concept of NeutroAlgebraic and AntiAlgebraic Structures were introduced and analyzed by

Florentin Smarandache. His new approach to the study of Neutrosophic Structures presents a more robust tool needed

for managing uncertainty, incompleteness, indeterminate and imprecise information. In this paper, we introduce for the

first time the concept of NeutroVectorSpaces. Specifically, we study a particular class of the NeutroVectorSpaces called

of type 4S and their elementarily properties are presented. It is shown that the NeutroVectorSpaces of type 4S may con-

tain NeutroSubspaces of other types and that the intersections of NeutroSubspaces of type 4S are not NeutroSubspaces.

Also, it is shown that if NV is a NeutroVector Space of a particular type and NW is a NeutroSubspace of NV , the

NeutroQuotientSpace NV/NW does not necessarily belong to the same type as NV .

Keywords: Neutrosophy; Vector Space; NeutroField; weak NeutroVectorSpace; strong NeutroVectorSpace; weak An-

tiVectorSpace; strong AntiVectorSpace; NeutroSubspace; weak NeutroQuotientSpace; strong NeutroQuotientSpace.

—————————————————————————————————————————-

1. Introduction

As an extension of his work in [15], Florentine Smarandache in [12] introduced a new way of handling

uncertainty, incompleteness, indeterminate and imprecise information. He studied and presented the

concept of NeutroAlgebraicStructures and AntiAlgebraicStructures, which can be generated from a

classical algebraic structure by a process called neutro-sophication and anti-sophication respectively.

The emergence of these processes has given birth to a new field of research in the theory of neutrosophic

algebraic structures. More details on neutrosophic algebraic structures can be found in [4]- [10].

Smarandache in [13] recalled, improved and extended several definitions and properties of NeutroAl-

gebras and AntiAlgebras given in [12]. This new concept was examined by Agboola et al. in [1]

viz-a-viz the classical number systems N,Z,Q,R and C . In [2], Agboola formally presented the notion

of NeutroGroups by considering three NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral

element and existence of NeutroInverse element). In addition, he showed that generally, Langrange’s

M.A. Ibrahim and A.A.A. Agboola, NeutroVectorSpaces I
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theorem and 1st isomorphism theorem of the classical groups do not hold in the class of NeutroGroups

considered. Also in [3], Agboola studied NeutroRing, NeutroSubring, NeutroIdeal, NeutroQuotien-

tRings and he showed that the 1st isomorphism theorem of the classical rings holds in this class of

NeutroRing. Recently, Rezaei and Smarandache [11] introduced the concept of Neutro-BE-algebras

and Anti-BE-algebras and they showed that given any classical algebra S with n operations (laws and

axioms) where n ≥ 1 we can generate (2n − 1) NeutroStructures and (3n − 2n) AntiStructures. For

comprehensive review of new trends in neutrosophic theory readers should see [4–6,8–10].

The present paper will be concerned with the introduction of NeutroVectorSpaces. Specifically in

the paper, we will introduce and study a class of NeutroVectorSpaces called NeutroVectorSpaces of

type 4S (i.e., 4 of its scalar multiplication axioms are NeutroAxioms) and we will present some of

their elementarily properties. It will be shown that the NeutroVectorSpaces of type 4S may contain

NeutroSubspaces of other types and that the intersections of NeutroSubspaces of type 4S are not Neu-

troSubspaces. Also, it will be shown that if NV is a NeutroVectorSpace of a particular type and NW

is a NeutroSubspace of NV , then the NeutroQuotientSpace NV/NW does not necessarily belong to

the same type as NV .

2. Preliminaries

In this section, we will give some definitions, examples and results that will be used in the sequel.

Definition 2.1. [14]

(i) A ClassicalOperation is an operation well-defined for all the set’s elements while a Neutro-

Operation is an operation partially well-defined, partially indeterminate, and partially outer

defined on the given set. An AntiOperation is an operation that is outer defined for all the

set’s elements.

(ii) A classicalLaw/Axiom defined on a nonempty set is a law/axiom that is totally true for all

the set’s elements while a NeutroLaw/Axiom defined on a nonempty set is a law/axiom that is

true for some set’s element, indeterminate for other set’s elements, or false for the other set’s

elements. An AntiLaw/Axiom defined on a nonempty set is a law/axiom that is false for all

set’s elements.

(iii) A NeutroAlgebra is an algebra that has at least one NeutroOperation or one NeutroAxiom

(axiom that is true for some elements, indeterminate for other elements, and false for other

elements), and no AntiOperation or AntiAxiom while an AntiAlgebra is an algebra endowed

with at least one AntiOperation or at least one AntiAxiom.

Theorem 2.2. [11] Let U be a nonempty finite or infinite universe of discourse and let S be a finite

or infinite subset of U. If n classical operations (laws and axioms) are defined on S where n ≥ 1, then

there will be (2n − 1) NeutroAlgebraicStructures and (3n − 2n) AntiAlgebraicStructures.

Author(s), Paper’s title
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Definition 2.3. [Classical group]

Let G be a nonempty set and let ∗ : G × G → G be a binary operation on G. The couple (G, ∗) is

called a classical group if the following conditions hold:

(G1) x ∗ y ∈ G ∀x, y ∈ G [closure law].

(G2) x ∗ (y ∗ z) = (x ∗ y) ∗ z ∀x, y, z ∈ G [axiom of associativity].

(G3) There exists e ∈ G such that x ∗ e = e ∗ x = x ∀x ∈ G [axiom of existence of neutral element].

(G4) There exists y ∈ G such that x ∗ y = y ∗ x = e ∀x ∈ G [axiom of existence of inverse element]

where e is the neutral element of G.

If in addition ∀x, y ∈ G, we have

(G5) x ∗ y = y ∗ x, then (G, ∗) is called an abelian group.

Definition 2.4. [NeutroSophication of the law and axioms of the classical group]

(NG1) There exist at least three duplets (x, y), (u, v), (p, q),∈ G such that x ∗ y ∈ G (inner-defined

with degree of truth T) and [u∗v = indeterminate (with degree of indeterminacy I) or p∗q 6∈ G

(outer-defined/falsehood with degree of falsehood F)] [NeutroClosureLaw].

(NG2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ G such that x∗ (y ∗z) = (x∗y)∗z

(inner-defined with degree of truth T) and [[p ∗ (q ∗ r)]or [(p ∗ q) ∗ r] = indeterminate (with

degree of indeterminacy I) or u ∗ (v ∗ w) 6= (u ∗ v) ∗ w (outer-defined/falsehood with degree of

falsehood F)] [NeutroAxiom of associativity (NeutroAssociativity)].

(NG3) There exists an element e ∈ G such that x ∗ e = e ∗ x = x (inner-defined with degree of truth

T) and [[x ∗ e]or[e ∗ x] = indeterminate (with degree of indeterminacy I) or x ∗ e 6= x 6= e ∗ x

(outer-defined/falsehood with degree of falsehood F)] for at least one x ∈ G [NeutroAxiom of

existence of neutral element (NeutroNeutralElement)].

(NG4) There exists an element u ∈ G such that x ∗ u = u ∗ x = e (inner-defined with degree of truth

T) and [[x ∗ u]or[u ∗ x)] = indeterminate (with degree of indeterminacy I) or x ∗ u 6= e 6= u ∗ x

(outer-defined/falsehood with degre of falsehood F)] for at least one x ∈ G [NeutroAxiom of

existence of inverse element (NeutroInverseElement)] where e is a NeutroNeutralElement in G.

(NG5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ G such that x ∗ y = y ∗ x (inner-defined

with degree of truth T) and [[u ∗ v]or[v ∗ u] = indeterminate (with degree of indeterminacy

I) or p ∗ q 6= q ∗ p (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of

commutativity (NeutroCommutativity)].

Definition 2.5. A NeutroGroup NG is an alternative to the classical group G that has at least one

NeutroLaw or at least one of {NG1, NG2, NG3, NG4} with no AntiLaw or AntiAxiom.

Definition 2.6. A NeutroAbelianGroup NG is an alternative to the classical abelian group G that

has at least one NeutroLaw or at least one of {NG1, NG2, NG3, NG4} and NG5 with no AntiLaw or

AntiAxiom.
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Example 2.7. Let NG = N = {1, 2, 3, 4 · · · , }. Then (NG, .) is a finite NeutroGroup where ′′.′′ is the

binary operation of ordinary multiplication.

Definition 2.8. [Classical ring] Let R be a nonempty set and let +, . : R×R→ R be binary operations

of the usual addition and multiplication respectively defined onR. The triple (R,+, .) is called a classical

ring if the following conditions (R1−R9) hold:

(R1) x+ y ∈ R ∀x, y ∈ R [closure law of addition].

(R2) x+ (y + z) = (x+ y) + z ∀x, y, z ∈ R [axiom of associativity].

(R3) There exists e ∈ R such that x+ e = e+ x = x ∀x ∈ R [axiom of existence of neutral element].

(R4) There exists −x ∈ R such that x+ (−x) = (−x) + x = e ∀x ∈ G [axiom of existence of inverse

element]

(R5) x+ y = y + x ∀x, y ∈ R [axiom of commutativity].

(R6) x.y ∈ R ∀x, y ∈ R [closure law of multiplication].

(R7) x.(y.z) = (x.y).z ∀x, y, z ∈ R [axiom of associativity].

(R8) x.(y + z) = (x.y) + (x.z) ∀x, y, z ∈ R [axiom of left distributivity].

(R9) (y + z).x = (y.x) + (z.x) ∀x, y, z ∈ R [axiom of right distributivity].

If in addition we have,

(R10) x.y = y.x ∀x, y ∈ R [axiom of commutativity],

then (R,+, .) is called a commutative ring.

Definition 2.9. [NeutroSophication of the laws and axioms of the classical ring]

(NR1) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+y ∈ R (inner-defined with

degree of truth T) and [u + v = indeterminate (with degree of indeterminacy I) or p + q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] [NeutroClosure law of addition].

(NR2) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x+(y+z) = (x+y)+z

(inner-defned with degree of truth T) and [[p + (q + r)]or[(p + q) + r] = indeterminate (with

degree of indeterminacy I) or u+ (v + w) 6= (u+ v) + w (outer-defined/falsehood with degree

of falsehood F)] [NeutroAxiom of associativity (NeutroAssociativity)].

(NR3) There exists an element e ∈ R such that x+ e = x+ e = x (inner-defined with degree of truth

T) and [[x+ e]or[e+ x] = indeterminate (with degree of indeterminate I) or x+ e 6= x 6= e+ x

(outer-defined/falsehood with degree of falsehood F)] for at least one x ∈ R [NeutroAxiom of

existence of neutral element (NeutroNeutralElement)].

(NR4) There exists −x ∈ R such that x + (−x) = (−x) + x = e (inner-defined with degree of

truth T) and [[−x + x]or[x + (−x)] = indeterminate (with the degree of indeterminate I) or

−x + x 6= e 6= x + (−x) (outer-defined/falsehood with degree of falsehood F)] for at least one

x ∈ R [NeutroAxiom of existence of inverse element (NeutroInverseElement)].
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(NR5) There exist at least three duplets (x, y), (u, v), (p, q) ∈ R such that x+ y = y+x (inner-defined

with degree of truth T) and [[p + q]or[q + p] = indeterminate (with degree of indeterminacy

I) or u + v 6= v + u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of

commutativity (NeutroCommutativity)].

(NR6) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y ∈ R (inner-defined

with degree of truth T) and [u.v = indeterminate (with degree of indeterminacy I) or p.q 6∈ R

(outer-defined/falsehood with degree of falsehood F)] NeutroClosure law of multiplication].

(NR7) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y.z) = (x.y).z

(inner-defined with degree of truth T) and [[p.(q.r)]or[(p.q).r] = indeterminate (with degree of

indeterminacy I) or u.(v.w) 6= (u.v).w (outer-defined/falsehood with degree of falsehood F)]

[NeutroAxiom of associativity (NeutroAssociativity)].

(NR8) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that x.(y + z) = (x.y) +

(x.z) (inner-defined with degree of truth T) and [[p.(q + r)]or[(p.q) + (p.r)] = indeterminate

(with degree of indeterminacy I) or u.(v + w) 6= (u.v) + (u.w) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of left distributivity (NeutroLeftDistributivity)].

(NR9) There exist at least three triplets (x, y, z), (p, q, r), (u, v, w) ∈ R such that (y + z).x = (y.x) +

(z.x) (inner-defined with degree of truth T) and [[(v + w).u]or[(v.u) + (w.u)] = indeterminate

(with degree of indeterminacy I) or (v + w).u 6= (v.u) + (w.u) (outer-defined/falsehood with

degree of falsehood F)] [NeutroAxiom of right distributivity (NeutroRightDistributivity)].

(NR10) There exist at least three duplets (x, y), (p, q), (u, v) ∈ R such that x.y = y.x (inner-defined

with degree of truth T) and [[p.q]or[q.p] = indeterminate (with degree of indeterminacy I) or

u.v 6= v.u (outer-defined/falsehood with degree of falsehood F)] [NeutroAxiom of commutativity

(NeutroCommutativity)].

Definition 2.10. A NeutroRing NR is an alternative to the classical ring R that has at least one

NeutroLaw or at least one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} with no AntiLaw

or AntiAxiom.

Definition 2.11. A NeutroNoncommutativeRing NR is an alternative to the classical noncommu-

tative ring R that has at least

one NeutroLaw or at least one of {NR1, NR2, NR3, NR4, NR5, NR6, NR7, NR8, NR9} and NR10

with no AntiLaw or AntiAxiom.

Example 2.12. (i) Let NR = Z and let ⊕ be a binary operation of ordinary addition and for all

x, y ∈ NR, let � be a binary operation defined on NR as x� y =
√
xy. Then (NR,⊕,�) is a

NeutroRing.

(ii) Let NR = Q and let ⊕ be a binary operation of ordinary addition and for all x, y ∈ NR, let �

be a binary operation defined on NR as x� y = x/y. Then (NR,⊕,�) is a NeutroRing.
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3. Formulation of NeutroVectorSpaces

In this section, we present the concept of NeutroVectorSpaces and study their elementary properties.

Definition 3.1. [7] [Classical Vector Space]

A vector space consists of a nonempty set V of objects (called vectors) that can be added, that can be

multiplied by a real or complex number (called a scalar in this context), and for which the following

laws and axioms hold:

The Law and Axioms for vector addition

(A1) If u and v are in V, then u+ v is in V.

(A2) u+ (v + w) = (u+ v) + w for all u, v, and w in V.

(A3) An element 0 in V exist such that v + 0 = v = 0 + v for every v in V.

(A4) For each v in V, an element −v in V exist such that −v + v = 0 and v + (−v) = 0.

(A5) u+ v = v + u for all u and v in V.

The Law and Axioms for scalar multiplication

(S1) If v is in V, then av is in V for all a in R.

(S2) a(v + w) = av + aw for all v and w in V and all a ∈ R.

(S3) (a+ b)v = av + bv for all v in V and all a and b ∈ R.

(S4) a(bv) = (ab)v for all v in V and all a and b in R.

(S5) 1v = v for all v in V.

Definition 3.2. [NeutroSophication of the law and axioms of the classical vector space]

NeutroSophication of the law and axioms for vector addition

(NA1) There exist at least three duplets (u, v), (w, x), (y, z) ∈ V such that u + v ∈ V (inner-defined

with degree of truth T) and [w+x = indeterminate (with degree of indeterminacy I) or y+z 6∈ V

(outer-defined/falsehood with degree of falsehood F)].

(NA2) There exist at least three triplets (u, v, w), (x, y, z), (p, q, r) ∈ V such that u+(v+w) = (u+v)+w

(inner-defined with degree of truth T) and [[x + (y + z)]or[(x + y) + z] = indeterminate (with

degree of indeterminacy I) or p+ (q + r) 6= (p+ q) + r (outer-defined/falsehood with degree of

falsehood F)].

(NA3) There exists an element e ∈ V such that v + e = e+ v = v (inner-defined with degree of truth

T) and [[v + e]or[e+ v] = indeterminate (with degree of indeterminacy I) or v + e 6= v 6= e+ v

(outer-defined/falsehood with degree of falsehood F)] for at least one v ∈ V .

(NA4) There exists −v ∈ V such that v+ (−v) = (−v) + v = e (inner-defined with degree of truth T)

and [[−v + v]or[v + (−v)] = indeterminate (with degree of indeterminacy I) or [−v + v 6= e 6=

v + (−v) (outer-defined/falsehood with degree of falsehood F)]
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(NA5) There exist at least three duplets (u, v), (x, y), (w, z) ∈ V such that u+v = v+u (inner-defined

with degree of truth T) and [[x+ y]or[y + x] = indeterminate (with degree of indeterminacy I)

or w + z 6= z + w (outer-defined/falsehood with degree of falsehood F)].

NeutroSophication of the law and axioms for scalar multiplication

(NS1) There exist at least three duplets (a, v), (b, u), (c, x) with a, b, c ∈ K and v, u, x ∈ V such

that av ∈ V (inner-defined with degree of truth T) and [bu = indeterminate (with degree of

indeterminacy I) or cx 6∈ V (degree of falsehood F)].

(NS2) There exist at least three triplets (k, x, y), (m,u, v), (n,w, z) with k,m, n ∈ K and

x, y, u, v, w, z ∈ X such that k(x + y) = kx + ky (inner-defined with degree of truth T) and

[[m(u+v)]or[mu+mv] = indeterminate (with degree of indeterminacy I) or n(w+z) 6= nw+nz

(outer-defined/falsehood with degree of falsehood F)].

(NS3) There exist at least three triplets (k,m, x),(p,q,y),(r,s,z) with k,m, p, q, r, s ∈ K and x, y, z ∈ X

such that (k+m)x = kx+mx (inner-defined with degree of truth T) and [[(p+q)y]or[py+qy] =

indeterminate (with degree of indeterminacy I) or (r + s)z 6= rz + sz (outer-defined/falsehood

with degree of falsehood F)].

(NS4) There exist at least three triplets (k,m, x), (p, q, y), (r, s, z) with k,m, p, q, r, s ∈ K and

x, y, z ∈ X such that k(mx) = (km)x = (mk)x (inner-defined with degree of truth T) and

[[p(qy)]or[q(py)]or[(pq)y] = indeterminate (with degree of indeterminacy I) or r(sz) 6= (rs)z

(outer-defined/falsehood with degree of falsehood F)].

(NS5) There exists an element k ∈ K such that kv = v (inner-defined with degree of truth T) and

[kv = indeterminate (with degree of indeterminacy I) or kv 6= v (outer-defined/falsehood with

degree of falsehood F)] for at least one v ∈ V .

Definition 3.3. [AntiSophication of the law and axioms of the classical vector space]

AntiSophication of the law and axioms for vector addition

(AA1) For all the duplets (u, v) ∈ V , u+ v /∈ V.

(AA2) For all the triplets (u, v, w) ∈ V , u+ (v + w) 6= (u+ v) + w.

(AA3) There does not exist an element e in V such that v + e = v = e+ v for every v in V.

(AA4) There does not exist −v in V such that v + (−v) = (−v) + v = e for all v ∈ V where e is a

AntiNeutralElement in V.

(AA5) For all the duplets (u, v) ∈ V , u+ v 6= v + u.

AntiSophication of the law and axioms for scalar multiplication

(AS1) For all v ∈ V and a ∈ R, av 6∈ V .

(AS2) For all u, v ∈ V and a ∈ R, a(u+ v) 6= au+ av.

(AS3) For all v ∈ V and a, b ∈ R, (a+ b)v 6= av + bv.

(AS4) For all v ∈ V and a, b ∈ R, a(bv) 6= (ab)v.
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(AS5) For all v ∈ V , 1v 6= v.

Definition 3.4. Let (K,+, ·) be a field. A NeutroField (NK,+, ·) is an alternative to the classical field

(K,+, ·) that has at least one NeutroLaw or at least one NeutroAxiom with no Antilaw or AntiAxiom.

Definition 3.5. Let (K,+, ·) be a field. An AntiField (AK,+, ·) is an alternative to the classical field

(K,+, ·) that has at least one AntiLaw or at least one AntiAxiom.

Definition 3.6. Let ” + ” be addition of vectors, ” · ” be multiplication of vector by scalars and let

K be a Neutro/classical field. A NeutroVectorSpace (NV,+, ·) is an alternative to the classical vector

space (V,+, ·) that has at least one NeutroLaw or at least one of {NA1 − NS5} with no Antilaw or

AntiAxiom.

If K is a classical field, then the quadruple (NV,+, ·,K) is called a weak NeutroVectorSpace over

K. And the quadruple (NV,+, ·,K) is called a strong NeutroVectorSpace if K is a NeutroField (i.e.,

K = NK).

Definition 3.7. Let ” + ” be addition of vectors, ” · ” be multiplication of vectors by scalars and let K

be a Anti/classical field. An AntiVectorSpace (AV,+, ·) is an alternative to the classical vector space

(V,+, ·) that has at least one AntiLaw or at least one of {AA1−AS5}.

If K is a classical field, then the quadruple (AV,+, ·,K) is called a weak AntiVectorSpace over K.

And the quadruple (AV,+, ·,K) is called a strong AntiVectorSpace if K is a AntiField (i.e., K = AK).

Theorem 3.8. Let (V,+, ·) be a classical vector space over a field K. Then,

(1) there are 1023 classes of NeutroVector Spaces.

(2) there are 58025 classes of AntiVector Spaces.

Proof. The proof follows easily from Theorem 2.2.

Theorem 3.8 shows that there are many classes of NeutroVector Spaces. The trivial cases from the

1023 classes are the cases where NA1−NS5 hold. Examples of weak and strong NeutroVectorSpaces

for the trivial cases are given in Example 3.9.

Example 3.9. Let V = Z12 and K = R. Define addition and scalar multiplication by

x⊕ y =
2x+ 3y

2
and k � a = ka2

where ⊕ is addition modulo 12. Then (V,⊕,�) is a weak NeutroVectorSpace over a field K.

To see this:

(1) We will show that (V,⊕) is a NeutroAbelianGroup.
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(a) There exist at least x, y ∈ V such that x ⊕ y ∈ V and at least a, b ∈ V such that

a⊕ b /∈ V. For instance, if we take (x, y) = (1, 2) and (a, b) = (2, 1), we will see that NV 1

holds. Therefore ⊕ is NeutroClosed.

(b) Let x, y, z ∈ V. Then

x⊕ (y ⊕ z) = 4x+6y+9z
4 and (x⊕ y)⊕ z = 4x+6y+6z

4 , equating these we have

4x+ 6y + 9z = 4x+ 6y + 6z which gives 9z = 6z,

∴ 3z = 0 this implies that z = 0, 4 and 8.

Thus, only the triplets (x, y, 0), (x, y, 4), and (x, y, 8) can verify the associativity of ⊕ and

therefore, ⊕ is NeutroAssociative.

(c) Let e ∈ V such that x⊕ e = 2x+3e
2 = x and e⊕ x = 2e+3x

2 = x.

Then 2x+3e
2 = 2e+3x

2 from which we obtain e = x.

The elements of V that satisfy x ⊕ x = x are 0, 8. This shows that V has NeutroNeutral

element.

(d) Considering each NeutroNeutral element in (b) we can show that V has NeutroInverse

element.

(e) Let x, y ∈ V, x⊕ y = 2x+3y
2 and y ⊕ x = 2y+3x

2 .

If ′′⊕′′ is commutative, we will have 2x+3y
2 = 2y+3x

2 from which we obtain x = y. This

shows that only the duplet (x, x) can verify commutativity of ⊕.

Thus, ⊕ is NeutroCommutative. Hence, (V,⊕) is a NeutroAbelianGroup.

(2) We wish to find at least a triplet (k,m, u) with u ∈ V and k,m ∈ K, such that k � (m� u) =

(km)� u.

Now, consider (km)� u = (km)u2 = kmu2 and k� (m� u) = k� (mu2) = k(mu2)2 = km2u4.

Equating these we have

kmu2 = km2u4,

which gives

mu2 = 1.

Since we need at least a triplet, take m = 1, then elements of V that will satisfy mu2 = 1 are

5, 7, 11.

So, k � (m� u) = (km)� u for at least the triplets (k, 1, 5), (k, 1, 7) and (k, 1, 11).

(3) We want to show that, there exist at least a triplet (k,m, u) with u ∈ V and k,m ∈ K, such

that (k +m)� u = k � u⊕m� u.

Consider, (k +m)� u = (k +m)u2 = ku2 +mu2 and

k � u⊕m� u = ku2 ⊕mu2 = 2ku2+3mu2

2 .

Equating these we have

ku2 +mu2 =
2ku2 + 3mu2

2
,
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which gives

mu2 = 0 =⇒ u2 = 0

∴ u = 0 and 6.

This shows that only the triplets (k,m, 0) and (k,m, 6) can verify

(k +m)� u = k � u⊕m� u.

(4) We want to show that there exists at least a triplet (k, u, v) with u, v ∈ V and k ∈ K, such that

k � (u⊕ v) = k � u⊕ k � v.

Now, consider k � (u ⊕ v) = k � (2u+3v)
2 = k (2u+3v)2

4 = 4ku2+12kuv+9kv2

4 = 4ku2+9kv2

4 and k �

u⊕ k � v = ku2 ⊕ kv2 = 2ku2+3kv2

2 .

Equating these we have

4ku2 + 9kv2 = 4ku2 + 6kv2,

which gives

9kv2 = 6kv2

3kv2 = 0 =⇒ v2 = 0.

So,

v = 0, 6.

This shows that only the triplets (k, u, 0) and (k, u, 6) can verify k � (u⊕ v) = k � u⊕ k � v.

(5) We want to show that there exists at least a u ∈ V such that 1� u = u.

We have that the only elements of V that satisfy 1� u = u2 = u are 4 and 9.

Accordingly, (V,⊕,�) is a weak NeutroVectorSpace over a field K = R.

Example 3.10. Let X = {a, b, c, d, e} be a universe of discourse and let K = {a, b, c, d}.

Let ⊕ and � be the binary operations defined on K as shown in the Cayley tables below.

Table 1. (a) Cayley table for the binary operation ′′⊕′′ and (b) Cayley table for the

binary operation ′′�′′

⊕ a b c d

a a c a c

b b d b d

c c a c a

d d b d b or d

(a)

� a b c d

a a c a c

b b d b d

c a c a c

d b d b d

(b)

(1) (K,⊕,�) is a trivial NeutroField.

(2) (K,⊕,�) taken over itself is a strong NeutroVector Space.
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(1) To show that (K,⊕,�) is a trivial NeutroField we proceed as follows:

(a) (K,⊕) is a NeutroAbelianGroup. It is clear from the table that;

(i) d⊕ d = b or d.

So, the composition d⊕d is indeterminate with 6.25% degree of indeterminacy and all

other compositions are true with 93.75% degree of truth. Hence ′′⊕′′ is NeutroClosed.

(ii) d⊕ (c⊕ a) = (d⊕ c)⊕ a = d,

a⊕ (c⊕ d) = a, but (a⊕ c)⊕ d = c 6= a. Hence ′′⊕′′ is NeutroAssociative.

(iii) Since only the duplet (x, x) ∈ K verify commutativity, for x = a, b, c ∈ K.

Hence ′′⊕′′ is NeutroCommutative.

(iv) Let Nx and Ix represent additive neutral and inverse element respectively with re-

spect to any element x ∈ K.

Then Na = a, Nc = c and Nb, Nd do not exist.

Ia = a, Ic = c and Ib, Id do not exist.

Hence, (K,⊕) is a NeutroAbelianGroup.

(b) (K,�) is a NeutroAbelianGroup. It is clear from the table that;

(i) (a� b)� d = a� (b� d) = c,

(b� c)� d = d but b� (c� d) = b 6= d. Hence ′′�′′ is NeutroAssociative.

(ii) a� c = c� a = a,

a� b = c but b� a = b. Hence, � is NeutroCommutative.

(iii) Let Ux and Ix represent multiplicative neutral and inverse element(s) respectively

with respect to any element x ∈ K.

Then, Ua = a and c. Ud = b and d. Ub and Uc do not exist.

Ia = a and c. Id = b and d. Ic and Ib do not exist.

Hence, (K,�) is a NeutroAbelianGroup.

(c) Now, we show that � is distributive over ⊕. It is clear from the table that ;

(i) a� (b⊕ c) = a� b⊕ a� c = c,

b � (a ⊕ b) = b, but b � a ⊕ b � b = d 6= b. So, ′′�′′ is left NeutroDistributive over

′′⊕′′.

(ii) (b⊕ c)� a = b� a⊕ c� a = b,

(c⊕ b)� d = c, but c� d⊕ b� d = a 6= c. So, ′′�′′ is right NeutroDistributive over

′′⊕′′. Hence, ′′�′′ is NeutroDistributive over ′′⊕′′.

Accordingly, (K,⊕,�) is a trivial NeutroField.

(2) That (K,⊕,�) is a strong NeutroVector Space over itself, follows easily from all the properties

established in solution of 1 above.

Proposition 3.11. Every NeutroField taken over itself is a strong NeutroVectorSpace.
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Proof. The proof follows from Example 3.10 .

4. A Study of a Class of NeutroVectorSpaces

In this section, we shall consider a particular class of NeutroVectorSpaces (NV,+, ·) where

(1) (NV,+) is a classical abelian group.

(2) S1 is totally true for all v ∈ V and a ∈ K.

(3) S2, S3, S4 and S5 are either partially true or partially indeterminate or partially false for some

elements of V and K.

We shall refer to this class of NeutroVectorSpace as NeutroVectorSpace of type 4S (i.e., 4 of its scalar

multiplication axioms are NeutroAxioms).

Example 4.1. Let K = Zp (where p is prime) and NV = Z8. Define ⊕ and � by

a⊕ b = a+ b and k � a = a2 + ka.

Where ′′+′′ is addition modulo 8 .

Then (NV,⊕,�) is a weak NeutroVectorSpace of type 4S over the field K = Zp.

It is easy to show that (NV,⊕) is an abelian group. Also, it is easy to see that S1 holds.

Now it remains to show that NS2, NS3, NS4 and NS5 hold.

(1) We want to show that there exists at least a triplet (k, x, y) with k ∈ K and x, y ∈ NV such

that

k � (x⊕ y) = k � x⊕ k � y.

Now, k � (x⊕ y) = k � (x+ y) = (x+ y)2 + k(x+ y) = x2 + y2 + 2xy + kx+ ky.

And k � x⊕ k � y = (x2 + kx)⊕ (y2 + ky) = x2 + y2 + kx+ ky.

∴ x2 + y2 + 2xy + kx+ ky = x2 + y2 + kx+ ky

=⇒ xy = 0.

Hence x = 0 or y = 0, (x, y) = (2, 4), (x, y) = (4, 2), (x, y) = (4, 6) and (x, y) = (6, 4).

This shows that only the triplets (k, x, 0), (k, 0, y), (k, 2, 4), (k, 4, 2), (k, 4, 6) and (k, 6, 4) can

verify NS2.

(2) We want to show that there exists at least a triplet (k,m, u) with k,m ∈ K and u ∈ NV such

that

(k +m)� u = k � u+m� u.

(k +m)� u = u2 + (k +m)u = u2 + ku+mu and k � u⊕m� u = 2u2 + ku+mu.

Then, we have

u2 + ku+mu = 2u2 + ku+mu

=⇒ u2 = 0.
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∴ u = 0 and 4.

Hence, only the triplet (k,m, 0) and (k,m, 4) can verify NS3.

(3) We want to show that there exists at least a triplet (k,m, u) with u ∈ NV and k,m ∈ K, such

that k � (m� u) = (km)� u.

Now, consider (km)� u = u2 + (km)u = u2 + kmu and

k � (m� u) = k � (u2 +mu) = (u2 +mu)2 + k(u2 +mu) = u4 + 2mu3 +m2u2 + ku2 + kmu.

Equating these we have

u2 + 2mu+m2 + k = 1.

Since we need at least a triplet, take k = 1, then we have u2 + 2um + m2 = 0 and this gives

u = −m.

Hence, at least the triplet (1,m,−m) satisfies NS4.

(4) We want to show that there exists at least v ∈ NV such that 1� v = v.

From definition of � we have that the only elements of NV that satisfy

1� u = v2 + v = v are 0 and 4.

Hence (NV,⊕,�) is a weak NeutroVectorSpace of type 4S over the field K = Zp.

Example 4.2. Let X = {a, b, c, d, e} be a universe of discourse. Let K = {a, b, c, d} be the Neutrofield

defined in Example 3.10 and let NV =
{
v1 = a

e , v2 = b
e , v3 = c

e , v4 = d
e

}
.

Define on NV the binary operation +′ as in the table below and scalar multiplication ? by

a ? v =
a� x
e

,

here � is the multiplication in K defined in Table 1 (b) for all elements in K.

Table 2. Cayley table for the binary operation +′

+′ v1 v2 v3 v4

v1 v1 v2 v3 v4

v2 v2 v3 v4 v1

v3 v3 v4 v1 v2

v4 v4 v1 v2 v3

Then (NV,+′, ?) is a strong NeutroVectorSpace of type 4S over K.

It is clear from Table 2 that (NV,+′) is an abelian group. Also, it is easy to see that S1 holds.

Now it remains to show that NS2, NS3, NS4 and NS5 hold.

It can be seen from Table 1 (a), Table 1 (b) and Table 2 that ;

Author(s), Paper’s title



Neutrosophic Sets and Systems, Vol. 36, 2020 341

(1) for c ∈ K and v2, v3 ∈ NV,

c ? (v2 +′ v3) = c ? (v2 +′ v3)

= c ? v4 from Table 2

= c�d
e

= c
e ∵ c� d = c, from Table 1 (b)

= v3.

c ? v2 +′ c ? v3 = c�b
e +′ c�ce

= c
e +′ ae from Table1 (b)

= v3 +′ v1

= v3.

=⇒ c ? (v2 +′ v3) = c ? v2 +′ c ? v3 = v3,

and for b ∈ K and v3, v4 ∈ NV,

b ? (v3 +′ v4) = v4 but b ? v3 +′ b ? v4 = v1 6= v4.

This shows that NS2 holds.

(2) for a, c ∈ K and v2 ∈ NV,

(a⊕ c) ? v2 = a ? v2 +′ c ? v2 = v3,

and for a, b ∈ K and v4 ∈ NV,

(a⊕ b) ? v4 = v3 but a ? v4 +′ b ? v4 = v2 6= v3.

This shows that NS3 holds.

(3) for a, b ∈ K and v4 ∈ NV,

(a� b) ? v4 = a ? (b ? v4) = v3,

and for b, c ∈ K and v4 ∈ NV

(b� c) ? v4 = v4 but b ? (c ? v4) = v2 6= v4.

This shows that NS4 holds.

(4) We know from Table 1 that NeutroUnityElements in K are Ua = a, c and Ud = b, d.

Now, suppose we consider the NeutroUnityElement Ud = b only.

We have that b ? v4 = v4 and b ? v3 = v2 6= v3.

This shows that NS5 holds.

Hence, we have that (NV,+′, ?) is a strong NeutroVectorSpace of type 4S over the NeutroField K.

From now on, every weak(strong) NeutroVectorSpaces of type 4S over K(NK) will simply be called a

weak(strong) NeutroVectorSpace over K(NK).

Proposition 4.3. Let (NV,+′1, ?1) and (NH,+′2, ?2) be two weak NeutroVectorSpace over the field K

and let

NV ×NH = {(v, h) : v ∈ NV and h ∈ NH},

for x = (v1, h1), y = (v2, h2) ∈ NV ×NH and k ∈ K define :

x⊕ y = ((v1 +′1 v2), (h1 +′2 h2),

Author(s), Paper’s title



Neutrosophic Sets and Systems, Vol. 36, 2020 342

k � x = (k ?1 v1, k ?2 v2).

Then (NV ×NH,⊕,�) is a weak NeutroVectorSpace over the field K.

Proof. Since (NV,+′1) and (NH,+′2) are classical abelian groups, then it can be shown that (NV ×

NH,⊕) is a classical abelian group. Also, it is easy to see that S1 is true in (NV ×NH).

Now, it remains to show that NS2−NS5 hold in NV ×NH.

(1) There exists at least a triplet (k, (v1, h1), (v2, h2)) with (v1, h1), (v2, h2) ∈ NV ×NH and k ∈ K,

such that

k � ((v1, h1)⊕ (v2, h2)) = k � (v1 +′1 v2, h1 +′2 h2)

= (k ?1 (v1 +′1 v2), k ?2 (h1 +′2 h2))

= (k ?1 v1 +′1 k ?1 v2, k ?2 h1 +′2 k ?2 h2) ∵ NS2 holds in NV and NH.

= (k ?1 v1, k ?2 h1)⊕ (k ?1 v2, k ?2 h2)

= k � (v1, h1)⊕ k � (v2, h2).

Also, there exists at least a triplet (m, (a1, b1), (a2, b2)) with (a1, b1), (a2, b2) ∈ NV ×NH and

m ∈ K, such that

m� ((a1, b1)⊕ (a2, b2)) = m� (a1 +′1 a2, b1 +′2 b2)

= (m ?1 (a1 +′1 a2), m ?2 (b1 +′2 b2))

6= (m ?1 a1 +′1 m ?1 a2, m ?2 b1 +′2 m ?2 b2) ∵ NS2 holds in NV and NH.

= (m ?1 a1,m ?2 b1)⊕ (m ?1 a2,m ?2 b2)

= m� (a1, b1)⊕ m� (a2, b2).

Hence, NS2 holds in NV ×NH.

(2) There exists at least a triplet (k,m, (v, h)) with k,m ∈ K and (v, h) ∈ NV ×NH such that

(k +m)� (v, h) = ((k +m) ?1 v, (k +m) ?2 h)

= ((k ?1 v +′1 m ?1 v), (k ?2 h+′2 m ?2 h)) ∵ NS3 holds in NV and NH.

= ((k ?1 v, k ?2 h)⊕ (m ?1 v,m ?2 h))

= k � (v, h)⊕m� (v, h).

Also, there exists at least a triplet (p, q, (a, b)) with p, q ∈ K and (a, b) ∈ NV ×NH such that

(p+ q)� (a, b) = ((p+ q) ?1 a, (p+ q) ?2 b)

6= ((p ?1 a+′1 q ?1 a), (p ?2 b+′2 q ?2 b)) ∵ NS3 holds in NV and NH.

= ((p ?1 a, p ?2 b)⊕ (q ?1 a, q ?2 b))

= p� (a, b)⊕ q � (a, b).

Hence, NS3 holds in NV ×NH.

(3) There exists at least a triplet (k,m, (v, h)) with k,m ∈ K and (v, h) ∈ NV ×NH such that

(km)� (v, h) = ((km) ?1 v, (km) ?2 h)

= (k ?1 (m ?1 v), k ?2 (m ?2 h)) ∵ NS4 holds in NV and NH.

= k � ((m ?1 v), (m ?2 h))

= k � (m� (v, h)).
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Also, there exists at least a triplet (p, q, (a, b)) with p, q ∈ K and (a, b) ∈ NV ×NH such that

(pq)� (a, b) = ((pq) ?1 a, (pq) ?2 b)

6= (p ?1 (q ?1 a), p ?2 (q ?2 b)) ∵ NS4 holds in NV and NH.

= p� ((q ?1 a), (p ?2 b))

= p� (q � (v, h)).

Hence, NS4 holds in NV ×NH.

(4) There exists (v, h) ∈ NV ×NH such that

1� (v, h) = (1 ? v, 1 ? h)

= (v, h). ∵ NS5 holds in NV and NH.

Also, there exists (a, b) ∈ NV ×NH such that

1� (a, b) = (1 ?1 a, 1 ?2 b)

6= (a, b). ∵ NS5 holds in NV and NH.

Accordingly, (NV ×NH,⊕,�) is a weak NeutroVectorSpace over the field K.

Proposition 4.4. Let (NV,+′1, ?1) be a weak NeutroVectorSpace over the field K and let (H,+, ·) be

a classical vector space over the same field K and let

NV ×H = {(v, h) : v ∈ NV and h ∈ H}

and for x = (v1, h1), y = (v2, h2) ∈ NV ×H and k ∈ K define :

x⊕ y = ((v1 +′1 v2), (h1 + h2) and k � x = (k ? v1, k · v2).

Then (NV ×H,⊕, ·) is a weak NeutroVectorSpace over the field K.

Proof. The proof is similar to the proof of Proposition 4.3 .

Proposition 4.5. Let (NV,+′1, ?1) and (NH,+′2, ?2) be two strong NeutroVectorSpaces over the Neu-

troField NK and let

NV ×NH = {(v, h) : v ∈ NV and h ∈ NH}

and for x = (v1, h1), y = (v2, h2) ∈ NV ×NH and k ∈ NK define :

x⊕ y = ((v1 +′1 v2), (h1 +′2 h2) and k � x = (k ?1 v1, k ?2 v2).

Then (NV ×NH,⊕,�) is a strong NeutroVectorSpace over the NeutroField NK.

Proof. The proof follows similar approach as the proof of Proposition 4.3.

Definition 4.6. Let NV be a NeutroVectorSpace. Then NW is a NeutroSubspace of NV if and only

if NW is a subset of NV, and NW is itself a NeutroVectorSpace with the same operations as in NV.
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Example 4.7. Let (NV,⊕,�) be a weak NeutroVectorSpace of Example 4.1 and let NW = 2Z8 be

a subset of NV. Following the approach in Example 4.1, it can be shown that (NW,⊕,�) is a weak

NeutroVectorSpace over the field Zp. Hence NW is a weak NeutroSubspace of NV.

Example 4.8. Let (NV,+′, ?) be the strong NeutroVectorSpace of Example 4.2 , NV is the only

strong NeutroSubspace of NV.

Remark 4.9. It should be noted that a NeutroVectorSpace NV of a particular class may contain a

NeutroSubspace NW which belongs to another class.

We will illustrate Remark 4.9 with Example 4.10 .

Example 4.10. Let (NV,+′, ?) be the strong NeutroVectorSpace of Example 4.2 and let NW =

{v1, v3} be a subset of NV. Then (NW,+′, ?) is a NeutroVectorSpace of a class other than the class of

NV.

We can see from Table 2 that (NW,+′) is an abelian group. Now, it can be seen from Table 1 (a),

Table 1 (b) and Table 2 that ;

(1) S1 fails to hold. Since ? is not true for all a ∈ K and v ∈ NW.

For instance, take b ∈ K and v3 ∈ NW, then

b ? v3 =
b · c
e

=
b

e
= v2 /∈ V3.

But if we take a ∈ K then for all v ∈ NW we will have that a ? v ∈ NW.

Hence, NS1 holds in NW.

(2) for a, b ∈ K and v1, v3 ∈ NW, we have

a ? (v1 +′ v3) = a ? v1 +′ a ? v3 = v1,

and b ? (v1 +′ v3) = v2 but b ? v1 +′ b ? v3 = v4 6= v2.

This shows that NS2 holds in NW .

(3) for a, c ∈ K and v3 ∈ NW,

(a⊕ c) ? v3 = a ? v3 +′ c ? v3 = v1,

and for a, b ∈ K and v3 ∈ NW,

(a⊕ b) ? v3 = v1 but a ? v3 +′ b ? v3 = v3 6= v1.

This shows that NS3 holds.

(4) for a, c ∈ K and v3 ∈ NW,

(a� c) ? v3 = a ? (c ? v3) = v1,
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and for a, b ∈ K and v3 ∈ NW ,

(a� b) ? v3 = v1 but a ? (b ? v3) = v3 6= v1.

This shows that NS4 holds.

(5) We know from Table 1 that NeutroUnityElements in K are Ua = a, c and Ud = b, d.

Now, suppose we consider the NeutroUnityElement Ua = c only.

We have that c ? v1 = v1 and c ? v3 = v1 6= v3.

This shows that NS5 holds.

Hence, we have that (NW,+′, ?) is a strong NeutroSubpace of type 5S over the NeutroField K. This

implies that the NeutroSubspace NW does not belong to the same class as NV.

Example 4.11. Let NV = Z12 and K = Zp. Define ⊕ and � for all u, v ∈ V and k ∈ K by

u⊕ v = u+ v and k � v = v2 + kv.

Where ′′+′′ is addition mod 12.

Following the approach of Example 4.1 it can be shown that (NV,⊕,�) is a weak NeutroVectorSpace

of type 4S over the field K.

Let NW = 2Z12 and NH = 3Z12 be two subsets of NV. Also, by following similar approach as in

Example 4.1 it can be shown that (NW,⊕,�) and (NH,⊕,�) are weak NeutroSubspaces of NV.

Now consider the following :

(1) NW +NH = {0, 1, 2, · · · , 11} = NV.

(2) NW ∪NH = {0, 2, 3, 4, 6, 8, 9, 10}.

(3) NW ∩NH = {0, 6}.

These show that NW + NH is a NeutroSubspace of NV but NW ∪NH and NW ∩NH are not

NeutroSubspaces of NV.

These observations are recorded in Proposition 4.12 .

Proposition 4.12. Let NW and NH be any two weak NeutroSubspaces of a NeutroVectorSpace NV

over a field K. Then

(1) NW +NH =
⋃
{(w + h) : w ∈ NW and h ∈ NU} is a NeutroSubspace of NV .

(2) NW ∩NU is not necessarily a NeutroSubspace of NV.

(3) NW ∪NU is not necessarily a NeutroSubspace of NV.

Definition 4.13. Let NW be a weak(strong) NeutroSubspace of a weak(strong) NeutroVectorSpace

NV over a field (NeutroField) K(NK). The quotient NV/NW is defined by the set

{v +NW : v ∈ NV }.
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Proposition 4.14. Let (NV,+′, ?) be a weak NeutroVectorSpace and (NW,+′, ?) be a weak Neutro-

Subspace of NV. The quotient NV/NW is a weak NeutroVectorSpace over a field K if addition and

multiplication are defined for all ū = u+NW, v̄ = v +NW ∈ NV/NW and k ∈ K as follows:

u⊕ v̄ = (u+NW )⊕ (v +NW ) = (u+′ v) +NW,

and

α� u = α� (u+NW ) = (α ? u) +NW.

This weak NeutroVectorSpace (NV/NW,⊕,�) over a field K is called a weak NeutroQuotientSpace.

Proof. We can easily show that ⊕ and � are well defined.

The proof that (NV/NW,⊕) is an abelian group follows similar approach as the proof in classical case.

Now it remains to show that NS2, NS3, NS4 and NS5 all hold.

(1) SinceNS2 holds inNV, then there exist at least the triplets (k, u, v) and (m, a, b) with u, v, a, b ∈

NV and k,m ∈ K such that k ? (u+′ v) = k ? u+′ k ? v and m ? (a+′ b) 6= m ? a+′ m ? b.

Let ū, v̄, ā, b̄ ∈ NV/NW and k,m ∈ K(NK). Then

k � (u⊕ v̄) = k � ((u+′ v) +NW )

= k ? (u+′ v) +NW

= (k ? u+′ k ? v) +NW

= (k ? u) +NW ⊕ (k ? v) +NW

= k � (u+NW )⊕ k � (v +NW )

= k � u⊕ k � v̄.

So, it implies k � (u⊕ v̄) = k � u⊕ k � v̄.

And also,

m� (ā⊕ b̄) = m� ((a+′ b) +NW )

= m ? (a+′ b) +NW

6= (m ? a+′ m ? b) +NW

= (m ? a) +NW ⊕ (m ? b) +NW

= m� (a+NW )⊕m� (b+NW )

= m� a⊕m� b̄.

This implies m� (ā⊕ ¯b̄) 6= m�a⊕m�

¯

¯ ¯

b̄. Hence, we can conclude that NS2 holds in NV/NW.

(2) Since NS3 holds in NV, then there exist at least the triplets (k,m, u) and (p, q, v) with u, v ∈

NV and k,m, p, q ∈ K such that (k +m) ? u = k ? u+′ m ? u and (p+ q) ? v 6= p ? v +′ q ? v.

Let ū, v̄ ∈ NV/NW and k,m, p, q ∈ K(NK). Then

(k +m)� u = (k +m)� (u+NW )

= (k +m) ? u+NW

= (k ? u+′ m ? u) +NW

= (k ? u) +NW ⊕ (m ? u) +NW

= k � (u+NW )⊕m� (u+NW )

= k � u⊕m� u.
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So, it implies (k +m)� u = k � u⊕m� u.

And also,

(p+ q)� v̄ = (p+ q)� (v +NW )

= (p+ q) ? v +NW

6= (p ? v +′ q ? v) +NW

= (p ? v) +NW ⊕ (q ? v) +NW

= p� (v +NW )⊕ q � (v +NW )

= p� v̄ ⊕ q � v̄.

So, it implies (p+ q)� v̄ 6= p� v̄ ⊕ q � v̄.

Hence, we can conclude that NS3 holds in NV/NW.

(3) Since NS4 holds in NV, then there exist at least the triplets (k,m, u) and (p, q, v) with u, v ∈

NV and k,m, p, q ∈ K such that (km) ? u = k ? (m ? u) and (pq) ? v 6= p ? (q ? v).

Let ū, v̄ ∈ NV/NW and k,m, p, q ∈ K(NK). Then

(km)� u = (km)� (u+NW )

= (km) ? u+NW

= (k ? (m ? u)) +NW

= k � ((m ? u) +NW )

= k � (m� (u+NW ))

= k � (m� u).

So, it implies (km)� u = k � (m� u).

And also,

(pq)� v̄ = (pq)� (v +NW )

= (pq) ? v +NW

6= (p ? (q ? v)) +NW

= p� ((q ? v) +NW )

= p� (q � (v +NW ))

= p� (q � v̄).

So, it implies that (pq)� v̄ 6= p� (q � v̄).

Hence, we can conclude that NS4 holds in NV/NW.

(4) In NV we have at least u and v such that 1 ? u = u and 1 ? v 6= v.

So, in NV/NW there exist ū and v̄ such that

1� u = 1� (u+NW ) = (1 ? u) +NW = u+NW = ū

and

1� v̄ = 1� (v +NW ) = (1 ? v) +NW 6= v +NW = v̄.

So, it implies 1� u = ū and 1� v̄ = v̄.

Hence, we can conclude that NS5 holds in NV/NW.

Accordingly, (NV/NW,⊕,�) is a weak NeutroVectorSpace over the field K.
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Remark 4.15. Let NV be weak(strong) NeutroVectorSpace of type 4S over a field(NeutroField)

K(NK) and let NW be a NeutroSubspace of NV. Then, the weak(strong) NeutroQuotient Space

NV/NW over K(NK) is not necessarily of type 4S.

We illustrate Remark 4.15 by Example 4.16 .

Example 4.16. Let (NV = Z12,+
′, ?) be a weak NeutroVectorSpace of type 4S over K = Zp and let

(NW = 2Z12,+
′, ?) be a NeutroSubspace of NV. Where +′ is addition mod 12 and ? is defined as

k ? v = v2 +′ kv

for all v ∈ NV and k ∈ K.

Then for all ū, v̄ ∈ NV/NW and k ∈ K define the operation ⊕ and � by

u⊕ v̄ = (u+′ v) +NW

and

k � u = (k ? u) +NW.

Then (NV/NW,⊕,�) is a weak NeutroVectorSpace over K of type other than 4S.

We know that NV = {0, 1, 2, · · · , 11} and NW = {0, 2, 4, 6, 8, 10} then we have

NV/NW = {NW, 1 +NW}.

Table 3. Cayley table for the binary operation ⊕

⊕ NW 1 +NW

NW NW 1 +NW

1 +NW 1 +NW NW

¯ ¯

From Table 3 it is clear that (NV/NW,⊕) is an abelian group.

Now,

(1) NS2 fails to hold since for any triplet (k, ū, v̄) we pick, with k ∈ K and ū, v̄ ∈ NV/NW,

k � (u⊕ v̄) = k � u⊕ k � v̄

is always satisfied. This implies that S2 is totally true in NV/NW.

(2) There exists at least a triplet (k,m, v̄) with k,m ∈ K and v̄ ∈ NV/NW such that

(k +m)� (v̄) = k � v̄ ⊕m� v̄.

Now,

(k +m)� (v̄) = ((k +m) ? v) +NW = (v2 +′ kv +′ mv) +NW
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and

k � v̄ ⊕m� v̄ = ((k ? v) +NW )⊕ ((m ? v) +NW ) = (2v2 +′ ku+′ mv) +NW.

Equating these we have that v2 +NW = NW which implies v2 ∈ NW.

So, only the triple (k,m,NW ) satisfies (k +m)� (v̄) = k � v̄ ⊕m� v̄.

Hence, NS3 holds in NV/NW.

(3) There exists at least a triplet (k,m, v̄) with k,m ∈ K and v̄ ∈ NV/NW such that

(km)� (v̄) = k � (m� v̄).

Now,

(km)� (v̄) = ((km) ? v) +NW = (v2 +′ kmv) +NW

and

k� (m� v̄) = k� ((m?v)+NW ) = (k ? (v2 +′mv))+NW = (v4 +′ 2v3m+′m2v2 +kv2 +′ kmv)+NW.

Equating these we have that (v4 +′ 2v3m +′ m2v2 + kv2) + NW = v2 + NW which implies

(v2 +′ 2vm+′ m2 +′ k) +NW = 1 +NW.

Since we needed at least a triplet, take k = 1, then we have

(v2 +′ 2vm+′m2 +′ 1) +NW = 1 +NW which gives (v2 +′ 2vm+′m2) +NW = NW. So, we

have that (v2 +′ 2vm+′m2) ∈ NW. Then, at least the triplet (1,m,NW ) satisfies (km)� (v̄) =

k � (m� v̄). Hence, NS4 holds in NV/NW.

(4) We can easily see that 1�NW = NW and

1� (1 +NW ) = (1 ? 1) +NW = 2 +NW = NW 6= 1 +NW.

Hence, NS5 holds in NV/NW.

Accordingly, we have that (NV/NW,⊕,�) is a weak NeutroVectorSpace of type 3S over K.

This implies that the NeutroQuotient Space (NV/NW,⊕,�) does not belong to the class of Neutro-

VectorSpace NV.

5. Conclusions

In this paper, we have for the first time introduced the concept of NeutroVectorSpaces. Specifically, a

class of NeutroVectorSpaces called of type 4S was investigated and some of their elementary properties

and examples were presented. It was shown that NeutroVectorSpaces of type 4S contained Neutro-

Subspaces of other types and that the intersections of NeutroSubspaces of type 4S are not necessarily

NeutroSubspaces. Also, it was shown that if NV is a NeutroVectorSpace of a particular type and NW

is a NeutroSubspace of NV , the NeutroQuotientSpace NV/NW does not necessarily belong to the

same type as NV . We hope to continue this work in our next paper to be titled “NeutroVectorSpaces

II”.
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Abstract. The main motivation of this article is to introduce the theme of Neutrosophic triplet(NT) Hv-

LA-Groups. This inspiration is recieved from the structure of weak non-associative Neutrosophic triplet(NT)

structures. For it, firstly, we define that each element x have left neut(x) and left anti(x) , which may or may

not unique. We further introduce the notion of neutrosophic triplet Hv-LA-subgroups and neutrosophic weak

homomorphism on NT Hv-LA-Group. Secondly, presented NT Hv-LA-Group and develop two Mathematica

Packages which help to check the left invertive law, weak left invertive law and reproductive axiom. Finally

established a numerical example to validate the proposed approach in chemistry using redox reactions.

Keywords: Hv LA-groups, NT sets, Neutro weak homomorphism, Mathematica Packages, Chemical applica-

tions,

—————————————————————————————————————————-

1. Introduction

Neutrosophic logic: Neutrosophy is the new branch of philosophy that studies the origin

and scope of neutralities, as well as their interaction with different ideational spectra. Smaran-

dache used the idea of neutrosophic set. He defined the theme of t-membership, i- membership

and f -membership, so neutrosophic logic generalize all previous versions, see [1], [2], [3]. Many

researchers have studied neutrosophic cubic set, complex neutrosophic cubic set, N-cubic set

and their applications in real life problems, see [52–55]. Further Abdel-Basset et. al., use

neutrosophic set in different direction and discuss their use in real life probems [56–60] More
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about the neutrosophic algebraic structures we refer the reader [4–6] and [7–12]. For the NT

groups see [13–18].

Hyperstructures theory: In 1934, Marty [19] introduced the theme of hyperstructures.

More about the hyperstructures we refer the reader [20–22]. The idea of weak structure, which

is known as Hv-structure is introduced by Vougiouklis [23], see also [24–31]. In 2007 Davvaz

and Fotea mainly dedicated to the study of hyperring theory [32]. Davvaz and Vougiouklis

[33], published recently a new book having title ”A walk through weak hyperstructures, Hv-

Structures” with some interesting applications of hyperstructures.

Left Invertive Structures: Kazim and Naseerudin [34] laid the idea of left almost semigroup

(denoted by LA-semigroup). Afterwards, Mushtaq [35] and some other researcher, further

worked in detail on the structure of LA-semigroup, see papers [36–42]. Hila and Dine [43] in

2011, furnished the idea of LA-semihypergroup. More detail can be seen in [44], [45], [46], [47],

[48], [49], [50], [51].

Our Approach: This paper is the continuation of our published paper [18] and it consists

of 6 sections. We arrange this work as: In section 2, we collected some of the relevant material

after the introduction. In section 3, we give a new class of algebraic hyperstructure known

as NT Hv-LA-Group, which is the main theme of LA-Group, LA-hypergroup, Hv-LA-Group.

In NT Hv-LA-Group each element k have left neut(k) and left anti(k) , which may or may

not unique. We also define the neutro weak homomorphism on NT Hv-LA-Group. Moreover,

we discuss many interesting properties of NT Hv-LA-Groups. In section 4, we provide the

construction of NT Hv-LA-Groups with the two Mathematica Packages which help to check

the left invertive law, weak left invertive law and reproductive axiom. In section 5, we present

the application of propose structure in chemical reactions. In section 6, we end with the

concluding remarks.

2. Preliminaries

In this section, we added some basic definition and result, which helped to prove the result

of our proposed structure.

Definition 2.1. [44] ”A hypergroupoid (ℵ, ◦) is called LA-semihypergroup, if it satisfies the

following law

([1 ◦ [2) ◦ [3 = ([3 ◦ [2) ◦ [1 for all [1, [2, [3 ∈ ℵ.

”

Example 2.2. [44] ”Let ℵ = Z if we define [1 ◦ [2 = [2 − [1 + 3Z, where [1, [2 ∈ Z. Then

(ℵ, ◦) become LA-semih ypergroup.”
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Definition 2.3. [24] ”The hyperoperation ∗ : ℵ × ℵ −→ P ∗(ℵ) is called weakly associative

hyperoperation (abbreviated as WASS) if for any [1, [2, [3 ∈ ℵ

([1 ∗ [2) ∗ [3 ∩ [1 ∗ ([2 ∗ [3) 6= φ

”

Definition 2.4. [24] ”The hyperoperation is weakly commutative (abbreviated as COW) if

for any [1, [2 ∈ ℵ

[1 ∗ [2 ∩ [2 ∗ [1 6= φ

”

Definition 2.5. [47] ”Let ℵ be non-empty set and ∗ be hyperoperation on ℵ. Then (ℵ, ∗) is

called an ℵv-LA-semigroup, if it satisfies the weak left invertive law for all [1, [2, [3 ∈ ℵ

([1 ∗ [2) ∗ [3 ∩ ([3 ∗ [2) ∗ [1 6= φ

”

Example 2.6. [47] ”Let ℵ = (0,∞) we define [1 ∗ [2 =
{

[2
[1+1 ,

[2
[1

}
where [1, [2 ∈ ℵ. Then for

all [1, [2, [3 ∈ ℵ. Then for all [1, [2, [3 ∈ ℵ satisfies ([1 ∗ [2) ∗ [3 ∩ ([3 ∗ [2) ∗ [1 6= φ. Hence (ℵ, ∗)
is an Hv-LA-semigroup.”

3. Neutrosophic Triplet(NT) Hv-LA-Groups

In this section, we define a new class of hyper algebraic structure known as NT Hv-LA-group

and discuss some results on NT Hv-LA-group.

Definition 3.1. Let (ℵ, ∗) be a left (resp., right, pure left, pure right) NT set. Then ℵ is called

left (resp., right, pure left , pure right) NT Hv-LA-group, if it satisfies the following axioms,

(1) (ℵ, ∗) is well defined,

(2) (ℵ, ∗) satisfies the weak left invertive law, i.e, ([1 ∗ [2) ∗ [3 ∩ ([3 ∗ [2) ∗ [1 6= φ for all

[1, [2, [3 ∈ ℵ,
(3) ℵ ∗ [1 = ℵ = ℵ ∗ [1 for all [1 ∈ ℵ.

Example 3.2. Let ℵ = {[1, [2, [3} be a finite set. The hyperoperation ∗ is defined in Table-1

∗ [1 [2 [3

[1 [1 {[1, [2} {[1, [3}
[2 [3 {ℵ} {[1, [2}
[3 [2 {[1, [3} {ℵ}

Table-1, neutrosophic triplet Hv-LA-group
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Here all elements of ℵ satisfy the weak left invertive law. Also left invertive law is not hold in

ℵ, i.e.

ℵ = ([1 ∗ [2) ∗ [3 6= ([3 ∗ [2) ∗ [1 = {[1, [2} .

Alike, associative law is not hold in ℵ i.e.

ℵ = ([3 ∗ [3) ∗ [1 6= [3 ∗ ([3 ∗ [1) = {[1, [3} .

Even, weak associative law is not valid here

{[2} = ([2 ∗ [1) ∗ [1 ∩ [2 ∗ ([1 ∗ [1) = {[3} = φ.

Here ([1, [1, [1) , ([2, [1, [2) , ([3, [1, [3) are left NT sets. Hence (ℵ, ∗) is a NT Hv-LA-group.

Proposition 3.3. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Then neut ([1)∗[2 = neut ([1)∗
[3 if anti ([1) ∗ [2 = anti([1) ∗ [3 for all [1, [2, [3 ∈ ℵ.

Proof. Suppose (ℵ, ∗) is a pure right NT Hv-LA-group and anti ([1) ∗ [2 = anti([1) ∗ [3 for

[1, [2, [3 ∈ ℵ. Multiply [1 to the left side of ([1 ∗ anti ([1) ∗ [2 = ([1 ∗ anti([1)) ∗ [3,

([1 ∗ anti ([1)) ∗ [2 = ([1 ∗ anti([1)) ∗ [3

neut ([1) ∗ [2 = neut ([1) ∗ [3 (because neut([1) = [1 ∗ anti ([1) ).

Therefore, neut ([1) ∗ [2 = neut ([1) ∗ [3.

Theorem 3.4. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Then neut([1) ∗ neut ([1) =

neut ([1).

Proof. Consider neut([1) ∗ neut ([1) = neut ([1) . Multiply first with [1 to the right, i.e.,

([1 ∗ (neut([1)) ∗ neut ([1) = [1 ∗ neut ([1)

(([1 ∗ neut ([1)) ∗ neut([1)) = [1

[1 ∗ neut ([1) = [1

[1 = [1.

This shows that neut([1) ∗ neut ([1) = neut ([1) .

Theorem 3.5. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Then neut([1) ∗ anti ([1) =

anti ([1) .
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Proof. Let (ℵ, ∗) be a pure right NT Hv-LA-group. Multiply [1 to the left of both side neut([1)∗
anti ([1) = anti ([1) , i.e.

([1 ∗ (neut([1)) ∗ anti ([1) = [1 ∗ anti ([1)

[1 ∗ anti ([1) = neut([1)

neut([1) = neut ([1)

neut ([1) = neut ([1)

This shows that neut([1) ∗ anti ([1) = anti ([1) .

Theorem 3.6. Let (ℵ, ∗) be a pure left NT Hv-LA-group. Then neut (anti ([1)) = neut ([1) .

Proof. Let neut (anti ([1)) = neut ([1) . If we put anti ([1) = [2, then

neut ([2) = neut ([1) . Post multiply by [2

neut ([2) ∗ [2 = neut ([1) ∗ [2

[2 = neut ([1) ∗ [2

anti([1) = neut ([1) ∗ anti([1), as [2 = anti ([1)

anti ([1) = anti ([1) , By Theorem 3.5 neut ([1) ∗ anti([1) = anti([1).

Hence neut (anti ([1)) = neut ([1) .

Definition 3.7. A non-empty subset B of a left NT Hv-LA-group (ℵ, ∗) is called a left NT

Hv-LA-subgroup of ℵ, if B itself form NT Hv-LA-group under same hyperoperation defined in

ℵ.

Example 3.8. Let ℵ = {[1, [2, [3, [4} and the hyperoperation is defined in the Table-2

∗ [1 [2 [3 [4

[1 [1 [2 [3 [4

[2 [3 {[1, [3} {[2, [3} [4

[3 [2 {[1, [3} {[1, [3} [4

[4 [4 [4 [4 {[1, [2, [3}

Table-2, neutrosophic triplet Hv-LA-group

Here ([1, [1, [1) , ([2, [1, [2) , ([3, [2, [2) and ([4, [3, [4) are NT sets. As all elements of ℵ satisfy

the weak left invertive law but ℵ do not satisfies the left invertive law, associative law and
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weak associative law i.e.

{[1, [3} = ([2 ∗ [2) ∗ [3 6= ([3 ∗ [2) ∗ [2 = {[1, [2, [3}

and {[1, [3} = ([2 ∗ [2) ∗ [3 6= [2 ∗ ([2 ∗ [3) = {[1, [2, [3} .

Also {[2} = ([2 ∗ [1) ∗ [1 ∩ [2 ∗ ([1 ∗ [1) = {[3} = φ.

So (ℵ, ∗) is a NT Hv-LA-group. Here [ = {[1, [2, [3} is a NT Hv-LA-subgroup of ℵ.

Lemma 3.9. If (ℵ, ∗) is a NT Hv-LA group, then

([1 ∗ [2) ∗ ([3 ∗ [4) ∩ ([1 ∗ [3) ∗ ([2 ∗ [4) 6= φ,

hold for all [1, [2, [3, [4 ∈ ℵ.

Proof. Let

([1 ∗ [2) ∗ ([3 ∗ [4)

= ([1 ∗ [2) ∗ g, where g = ([3 ∗ [4)

= ([1 ∗ [2) ∗ g ∩ (g ∗ [2) ∗ [1 by the weak left invertive law

= ([1 ∗ [2) ∗ g ∩ (g ∗ [2) ∗ [1 by the weak-left invertive law

= ([1 ∗ [2) ∗ g ∩ {(g ∗ [2) ∗ [1} by the weak-left invertive law

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩ {(([3 ∗ [4) ∗ [2) ∗ [1} , where g = ([3 ∗ [4)

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩ {{(([3 ∗ [4) ∗ [2) ∩ ([2 ∗ [4) ∗ [3} ∗ [1}

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩ {(([3 ∗ [4) ∗ [2) ∗ [1} ∩ {(([2 ∗ [4) ∗ [3) ∗ [1}}

= ([1 ∗ [2) ∗ ([3 ∗ [4) ∩

{
(([3 ∗ [4) ∗ [2) ∗ [1 ∩ ([1 ∗ [2) ∗ ([3 ∗ [4)}
∩{(([2 ∗ [4) ∗ [3) ∗ [1 ∩ ([1 ∗ [3) ∗ ([2 ∗ [4)}

}
→ (1)
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Now

([1 ∗ [3) ∗ ([2 ∗ [4)

= ([1 ∗ [3) ∗ g, where g = ([2 ∗ [4)

= ([1 ∗ [3) ∗ g ∩ (g ∗ [3) ∗ [1 by the weak left invertive law

= ([1 ∗ [3) ∗ g ∩ (g ∗ [3) ∗ [1 by the weak-left invertive law

= ([1 ∗ [3) ∗ g ∩ {(g ∗ [3) ∗ [1} by the weak-left invertive law

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩ {(([2 ∗ [4) ∗ [3) ∗ [1} , where g = ([2 ∗ [4)

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩ {{(([2 ∗ [4) ∗ [3) ∩ ([3 ∗ [4) ∗ [2} ∗ [1}

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩ {(([2 ∗ [4) ∗ [3) ∗ [1} ∩ {(([3 ∗ [4) ∗ [2) ∗ [1}}

= ([1 ∗ [3) ∗ ([2 ∗ [4) ∩

{
(([2 ∗ [4) ∗ [3) ∗ [1 ∩ ([1 ∗ [3) ∗ ([2 ∗ [4)}
∩{(([3 ∗ [4) ∗ [2) ∗ [1 ∩ ([1 ∗ [2) ∗ ([3 ∗ [4)}

}
→ (2)

From (1) and (2) we have ([1 ∗ [2)∗([3 ∗ [4)∩([1 ∗ [3)∗([2 ∗ [4) 6= φ, hold for all [1, [2, [3, [4 ∈ ℵ.

This law is known as weak medial law.

Proposition 3.10. Let (ℵ, ◦) be a NT Hv-LA-group with left identity e and φ 6= A ⊆ ℵ. If

(A ◦ (A ◦ [1)) ◦ [2 ∩ (A ◦ (A ◦ [2)) ◦ [1 6= φ ∀[1, [2 ∈ ℵ and we define a hyperoperation A⊗
R on ℵ

as [1A
⊗
R[2 = ([1 ◦ [2) ◦A, then (ℵ, A⊗

R) become a NT Hv-LA-group.

Proof. Let [1, [2, [3 ∈ ℵ, we have

([1A
⊗
R[2)A

⊗
R[3 = (([1 ◦ [2) ◦A)A⊗

R[3

= ((([1 ◦ [2) ◦A) ◦ [3) ◦A

= (([3 ◦A) ◦ ([1 ◦ [2)) ◦A

= (A ◦ (A ◦ [3)) ◦ ([2 ◦ [1)

= [2 ◦ ((A ◦ (A ◦ [3)) ◦ [1)

and on the other hand

([3A
⊗
R[2)A

⊗
R[1 = (([3 ◦ [2) ◦A)A⊗

R[1

= ((([3 ◦ [2) ◦A) ◦ [3) ◦A

= (([1 ◦A) ◦ ([3 ◦ [2)) ◦A

= (A ◦ (A ◦ [1)) ◦ ([2 ◦ [3)

= [2 ◦ ((A ◦ (A ◦ [1)) ◦ [3)
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but

[2 ◦ ((A ◦ (A ◦ [3)) ◦ [1) ∩ [2 ◦ ((A ◦ (A ◦ [1)) ◦ [3) 6= φ

for all [1, [2, [3 ∈ ℵ. It follows that

([1A
⊗
R[2)A

⊗
R[3 ∩ ([3A

⊗
R[2)A

⊗
R[1 6= φ.

Next, we have

[1A
⊗
Rℵ = ([1 ◦ ℵ) ◦A = ℵ also HA⊗

R[1 = (ℵ ◦ [1) ◦A = ℵ.

Hence (ℵ, A⊗
R) become an Hv-LA-group.

Definition 3.11. Let (ℵ1, ◦) and (ℵ2, ∗) be two NT Hv-LA-groups. The map f : ℵ1 −→ ℵ2 is

called neutro homomorphism, if for all [1, [2 ∈ ℵ1, the following conditions hold,

1. f([1 ◦ [2) ∩ f([1) ∗ f([2) 6= φ,

2. f (neut ([1)) ∩ neut (f ([1)) 6= φ,

3. f (anti ([1)) ∩ anti (f ([1)) 6= φ.

Example 3.12. Let ℵ1 = {v1, v2, v3} and ℵ2 = {[1, [2, [3} are two finite sets, where (ℵ1, ∗)
and (ℵ2,◦) are NT Hv-LA-groups, the hyperoperation is defined in following tables 3,4:

∗ v1 v2 v3

v1 {v1} {v2} {v3}
v2 {v3} {v1, v2} {v2}
v3 {v2} {v3} {v3, v1}

Table-3, neutrosophic triplet Hv-LA-group

and

◦ [1 [2 [3

[1 [1 {[1, [2} {[1, [3}
[2 [3 {ℵ} {[1, [2}
[3 [2 {[1, [3} {ℵ}

Table-4, neutrosophic triplet Hv-LA-group

The mapping f : ℵ1 −→ ℵ2 is defined by f(v1) = [1 , f(v2) = [2 , f(v3) = [3. Then clearly f

is a neutro homomorphism.
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4. Construction Of Neutrosophic triplet(NT) Hv-LA-groups

In this section we provide the construction of NT Hv-LA-groups and develop two Math-

ematica Packages which help us to check the left invertive law, weak left invertive law and

reproductive axiom.

Consider a finite set ℵ, such that |ℵ| > 2. Define the hyperoperation ◦ on ℵ as follows

[i ◦ [j =


[j for i = 1

[[ for j = 1and [ ≡ 2− i mod |ℵ|
ℵ for i = j, i 6= 1, j 6= 1

[i otherwise, for i ≺ j or i � j


and if neut ([i) and anti ([i) exist in ℵ. Then ℵ under the hyperoperation ◦ forms a NT Hv-

LA-group.

The above construction can be explained with the help of an example.

Example 4.1. Let ℵ = {[1[2, [3} under the binary hyperoperation ◦ defined in Table-5

◦ [1 [2 [3

[1 [1 [2 [3

[2 [3 ℵ [2

[3 [2 [3 ℵ

Table-5, neutrosophic triplet Hv-LA-group

Here ([1, [1, [1) , ([2, [1, [2) and ([3, [1, [3) are NT set. One can see that ◦ satisfy the weak left

invertive law, also ◦ is non-left invertive and non-associative i.e.

ℵ = ([3 ◦ [3) ◦ [2 6= ([2 ◦ [3) ◦ [3 = [2

and ℵ = ([2 ◦ [2) ◦ [1 6= [2 ◦ ([2 ◦ [1) = [2.

Also it is not WASS([2 ◦ [1) ◦ [1 ∩ [2 ◦ ([1 ◦ [1) = φ. Hence (ℵ, ◦) is a NT Hv-LA-group. The

result of table can easily be generalized to n elements.

Remark 4.2. In NT Hv-LA-group, the property of Hv-LA-group can be checked

by using the mathematica packages. The mathematica package(A) used to check

the left invertive property and mathematica package(B) is used to check the

weak non associative hypergroups. We paste the mathematica packages as under:
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Mathematica Package (A)
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and

Mathematica Package (B)

5. Application of Our proposed Structure

In the universe, the femininity, masculinity and neutrality exist. If we take the small particle,

the small particle is an atom. The atom consists of three particle electrons, proton and neutron.

So, from the above idea of the universe gave the concept of NT set. (Masculine, Neutral,

feminine) and (Proton, Neutron, Electron) are the example of NT set.

There are three workers working in a factory. All three workers are disabled. The first

worker has the right hand and no left hand. Factory made such a machine on which he can

work with his right hand. The second worker has left hand but no right hand. Such a machine

is made for him, on which he worked with his left hand. The third worker has an issue working

with both of his hand. Such a machine is made for him, he works with his legs. All of these
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three worker’s working performance is shown by the following Table-6.

~ L R N

L R N {L,N}
R N L {R,N}
N L R N

Table-6, neutrosophic triplet Hv-LA-group

In this table L represents the performance the worker, who work with his left hand. R

represents the performance of the worker, who work with his right hand and N represents the

performance of the worker, whose both hand are not functioning properly. Let F = {L,R,N}
be a finite set the hyperoperation is defined in the above table, and (L,N,R) , (R,N,L) and

(N,L,L) are left NT set. (F,~) is a NT Hv-LA group.

5.1. Chemical example of Neutrosophic Triplet(NT) Hv-LA- group

The best example of NT Hv-LA-group in chemical reaction is a redox reaction.

Redox reaction: The chemical reaction in which one specie loss the electron and other

specie gain the electron. Oxidation mean loss of electron. Reduction mean gain of electron.

The redox reaction is a vital for biochemical reaction and industrial process. The electron

transfer in cell and oxidation of glucose in the human body are the example of redox reaction.

The reaction between hydrogen and fluorine is an example of redox reaction i.e.

ℵ2 + F −→ 2ℵF

ℵ2 −→ 2ℵ+ + 2e−( Oxidation)

F2 + 2e− −→ 2F (Reduction)

Each half reaction has standard reduction potential
(
E0
)

which is equal to the potential

difference at equilibrium under the standard condition of an electrochemical cell in which the

cathode reaction is half reaction considered and anode is a standard hydrogen electrode (SHE).

For the redox reaction, the potential of cell is defined as

E◦cell = E◦
cathode − E◦

anode

where E◦
cathode is the standard potential at the anode and E◦

cathode is the standard potential

at the cathode as given in the table of standard electrode potential. Now consider the redox

reaction of Mn

Mn0 + 2Mn+4 + 2Mn+3 −→ 3Mn+2 + 2Mn+4

Mn0 −→Mn+2 +Mn+4 + 2e− + 2Mn+3 + 2Mn+4.
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Manganese having a variable oxidation state of 0,+1,+2,+3,+4,+5,+6,+7. If we take

Mn0,Mn+4,Mn+3,Mn+4 together we will get pure redox reaction. The flow chart is given

as

Flow chart

Mn species with different oxidation state react with themselves. All possible reactions are

presented in the following Table-7

⊕ Mn0 Mn+1 Mn+2 Mn+3 Mn+4

Mn0 Mn0
{
Mn0,Mn+1

} {
Mn0,Mn+2

} {
Mn0,Mn+3

} {
Mn0,Mn+4

}
Mn+1

{
Mn0,Mn+1

} {
Mn0,Mn+2

} {
Mn0,Mn+3

} {
Mn+2

} {
Mn+1,Mn+4

}
Mn+2 Mn+1

{
Mn0,Mn+3

} {
Mn+1,Mn+3

} {
Mn+1,Mn+4

} {
Mn+2,Mn+4

}
Mn+3

{
Mn0,Mn+3

} {
Mn+1,Mn+3

} {
Mn+2,Mn+3

}
Mn+3

{
Mn+3,Mn+4

}
Mn+4

{
Mn0,Mn+4

} {
Mn+1,Mn+4

} {
Mn+2,Mn+4

} {
Mn+3,Mn+4

}
Mn+4

Table-7, All possible reactions

The standard reduction potentials
(
E0
)

for conversion of each oxidation state to another are

E0
(
Mn+4/Mn+3

)
= +0.95,

E0
(
Mn+3/Mn+2

)
= +1.542,

E0
(
Mn+2/Mn+1

)
= −0.59,

E0
(
Mn+1/Mn+0

)
= 0.296.

If we replace

Mn0 = [1,Mn+1 = [2,Mn+2 = [3,Mn+3 = [4,Mn+4 = [5,
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then we obtain the following Table-8

⊕ [1 [2 [3 [4 [5

[1 {[1} {[1, [2} {[1, [3} {[1, [4} {[1, [5}
[2 {[1, [2} {[1, [3} {[1, [4} {[3} {[2, [5}
[3 {[1, [3} {[1, [4} {[2, [4} {[2, [5} {[3, [5}
[4 {[1, [4} {[2, [4} {[3, [4} {[4} {[4, [5}
[5 {[1, [5} {[2, [5} {[3, [5} {[4, [5} {[5}

Table-8, NT Hv-LA-group

As all elements of ℵ satisfy the weak left invertive law but ℵ do not satisfy the left invertive

law, associative law and weak associative law

{[1, [3} = ([2 ⊕ [2)⊕ [1 6= ([1 ⊕ [2)⊕ [2 = {[1, [2, [3} ,

{[1, [2, [3, [4} = ([2 ⊕ [2)⊕ [3 6= [2 ⊕ ([2 ⊕ [3) = {[1, [2, [3} ,

and ([2 ⊕ [4)⊕ [4 = {[2, [5} ∩ [3 = [2 ⊕ ([4 ⊕ [4) = φ

Here ([1, [1, [1) , ([2, [4, [3), ([3, [4, [2) , ([4, [5, [3) and ([5, [4, [4) are NT sets. Hence (ℵ,⊕) is a

NT Hv-LA-group.

Remark 5.1. NT set, which helps the chemist to take the state of Mn which react or not react

easily with other state or themselves. M+0
n plays the role of neuta with different oxidation

state and themselves. If the Mn have the same neuta and anti, it means that Mn having equal

chances of loss or gain of electron.

6. Difference between the proposed work and existing methods

Our proposed structure has two main purpose,

1) This structure generalize the structure of groups, LA-groups, semigroups, LA-semigroup

and as well as the hyper versions of above mentioned structures.

2) As NT set has the abelity to capture indeterminacy in a much better way so our proposed

stricture of NT LA-semigroups can handle the uncertanity in a better way as we have seen in

the Redox reaction.

7. Conclusions

In this article, we have studied and introduced NT Hv LA- groups. We presented some

result on NT Hv LA-groups and construction of NT Hv-LA groups. We defined the neutro

homomorphism on NT Hv LA groups. Also, we use the Mathematica packages to check the

properties of left invertive and weak left invertive. Our defined structure have an interesting

application in chemistry redox reaction.
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1. Introduction

The concept of fuzzy sets was introduced by Zadeh [21] in 1965 to overcome the uncertain-

ties in various problems in environment, economics, engineering etc. As an extension of it,

Atanassov [7] introduced intuitionistic fuzzy set in 1986, where a degree of non-membership

was considered besides the degree of membership of each element with (membership value +

non-membership value) ≤ 1.

After that several generalizations such as, rough sets, vague sets, interval-valued sets etc. are

considered as mathematical tools for dealing with uncertainties. In 2005, F. Smarandache

introduced Neutrosophic set [19] in which he introduced the indeterminacy to intuitionistic

fuzzy sets. So, the resultant can be taken as a tri-component logic which can be applied to

non-standard analysis such as decision making (for example, result of games (win/tie/defeat),

votes, from no/yes/NA), control theory etc.. Since then several researchers has applied this

concept in many practical fields such as multi-criteria decision making, signal processing, dis-

aster management etc.. Some of its recent applications can be found in [1–5,9, 18,20].

In 2011, Majumder [13] introduced and studied the concept of Q-fuzzifcation of ideals of Γ-

semigroup. Akram et al [6], Lekkoksung [11, 12], Mandal [14], Qamar et al [15, 16] extended

this concept in case of Γ-semigroup, ordered semigroups [10], ordered Γ-semiring, soft fields,

group theory and investigated some important properties.

Motivated by this idea and combining the concept with neutrosophic set, in the paper we
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have studied the ideal theory of semirings since it has several applications in graph theory,

automata theory, mathematical modelling etc. [8].

2. Preliminaries

At first let us remember some definitions which will be used in the discussion of the paper.

Definition 2.1. A semiring is a nonempty set S on which two operations + and · have been

defined such that (S,+) and (S, ·) form monoid where · distributes over + from any side.

Definition 2.2. A nonempty subset X(6= S) of semiring S is said to be an ideal if for all

x, y ∈ X and p ∈ S, x + y ∈ X, px ∈ X. Similarly we can define a right ideal also. An ideal

of S is a nonempty subset which satisfies both properties of left ideal and right ideal.

Definition 2.3. A neutrosophic set N on the universe U is defined as N = {<
u,AT (u), AI(u), AF (u) >, u ∈ U}, where AT , AI , AF : U →]−0, 1+[ and −0 ≤ AT (u)+AI(u)+

AF (u) ≤ 3+ . For practical purposes, it is difficult to consider ]−0, 1+[. So, for studying

neutrosophic set we consider the set which takes the value from the subset of [0, 1].

Definition 2.4. For a non-empty set Q, a mapping ν : S×Q −→ [0, 1] is said to be a Q-fuzzy

subset of S and νl = {(s, q) ∈ S ×Q|ν(s, q) ≥ l} where l ∈ [0, 1] is its level subset.

3. Main Results

Definition 3.1. Let ν = (νT , νI , νF ) be a non empty neutrosophic subset of a semiring S.

Then ν is called a Q-neutrosophic left ideal of S if

(i) νT (s1 + s2, p) ≥ min{νT (s1, p), ν
T (s2, p)}, νT (s1s2, p) ≥ νT (s2, p)

(ii) νI(s1 + s2, p) ≥ νI(s1,p)+νI(s2,p)
2 , νI(s1s2, p) ≥ νI(s2, p)

(iii) νF (s1 + s2, p) ≤ max{νF (s1, p), ν
F (s2, p)}, νF (s1s2, p) ≤ νF (s2, p).

for all s1, s2 ∈ S and p ∈ Q.

Theorem 3.2. Any Q-neutrosophic set ν of a semiring S is a left ideal iff its level subsets

νTl := {(x, p) ∈ S × Q : νT (x, p) ≥ l, l ∈ [0, 1], p ∈ Q}, νIl := {(x, p) ∈ S × Q : νI(x, p) ≥
l, l ∈ [0, 1]} and νFl := {(x, p) ∈ S ×Q : νF (x, p) ≤ l, l ∈ [0, 1]} are left ideals of S ×Q.

Proof. Suppose ν of S is a Q-neutrosophic left ideal of S. Then anyone of νT , νI or νF is not

equal to zero for some (s, p) ∈ S ×Q. Without loss of generality we consider, all of them are

not equal to zero.
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Suppose a, b ∈ νl = (νTl , ν
I
l , ν

F
l ), s ∈ S and p ∈ Q. Then

νT (a+ b, p) ≥ min{νT (a, p), νT (b, p)} ≥ min{l, l} = l

νI(a+ b, p) ≥ νI(a,p)+νI(b,p)
2 ≥ l+l

2 = l

νF (a+ b, p) ≤ max{νF (a, p), νF (b, p)} ≤ max{l, l} = l

which implies (a+ b, p) ∈ νTl , νIl , νFl i.e., (a+ b, p) ∈ νl. Also

νT (sa, p) ≥ νT (a, p) ≥ l
νI(sa, p) ≥ νI(a, p) ≥ l
νF (sa, p) ≤ νF (a, p) ≤ l

Hence (sa, p) ∈ νl.
Therefore νl is a left ideal of S.

Conversely, let νl( 6= φ) is a left ideal of S × Q and ν is not a Q-neutrosophic left ideal of S.

Then for a, b ∈ S and p ∈ Q anyone of the following inequality will hold.

νT (a+ b, p) < min{νT (a, p), νT (b, p)}
νI(a+ b, p) < νI(a,p)+νI(b,p)

2

νF (a+ b, p) > max{νF (a, p), νF (b, p)}

For the first inequality, choose l1 = 1
2 [νT (a+b, p)+min{νT (a, p), νT (b, p)}]. Then νT (a+b, p) <

l1 < min{νT (a, p), νT (b, p)} ⇒ (a, p), (b, p) ∈ νTl1 . but (a+ b, p) 6∈ νTl1 - contradiction.

For the second inequality, choose t2 = 1
2 [νI(a + b, p) + min{νI(a, p), νI(b, p)}]. Then νI(a +

b, p) < l2 <
νI(a,p)+νI(b,p)

2 ⇒ (a, p), (b, p) ∈ νIl2 . But (a+ b, p) 6∈ νIl2 - contradiction.

For the third inequality, choose t3 = 1
2 [νF (a + b, p) + max{νF (a, p), νF (b, p)}]. Then νF (a +

b, p) > l3 > max{νF (a, p), νF (b, p)} ⇒ (a, p), (b, p) ∈ νFt3 but (a+ b, p) 6∈ νFp3 - contradiction.

Hence the theorem.

Definition 3.3. For two Q-neutrosophic subsets ν and σ of S × Q, define their intersection

by

(νT ∩ σT )(a, p) = min{νT (a, p), σT (a, p)}

(νI ∩ σI)(a, p) = min{νI(a, p), σI(a, p)}

(νF ∩ σF )(a, p) = max{νF (a, p), σF (a, p)}

for all a ∈ S and p ∈ Q.

Proposition 3.4. Intersection of any number of Q-neutrosophic left ideals of S is also a

Q-neutrosophic left ideal.
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Proof. Assume that {νi : c ∈ C} be a collection of Q-neutrosophic left ideals of S and a, b ∈ S,

p ∈ Q. Then

( ∩
c∈C

νTc )(a+ b, p) = inf
c∈C

νTc (a+ b, p) ≥ inf
c∈C
{min{νTc (a, p), νTc (b, p)}}

= min{inf
c∈C

νTc (a, p), inf
c∈C

νTc (b, p)}

= min{( ∩
c∈C

νTc )(a, p), ( ∩
c∈C

νTc )(b, p)}

( ∩
c∈C

νIc )(a+ b, p) = inf
c∈C

νIc (a+ b, p) ≥ inf
c∈C

νIc (a,p)+ν
I
c (b,p)

2

=
inf
c∈C

νIc (a,p)+inf
c∈C

νIc (b,p)

2

=
∩

c∈C
νIc (a,p)+ ∩

c∈C
νIc (b,p)

2

( ∩
c∈C

νFc )(a+ b, p) = sup
c∈C

νFc (a+ b, p) ≤ sup
c∈C
{max{νFc (a, p), νFc (b, p)}}

= max{sup
c∈C

νFc (a, p), sup
c∈C

νFc (b, p)}

= max{( ∩
c∈C

νFc )(a, p), ( ∩
c∈C

νFc )(b, p)}

( ∩
c∈C

νTc )(ab, p) = inf
c∈C

νTc (ab, p) ≥ inf
c∈C

νTc (b, p) = ( ∩
c∈C

νTc )(b, p).

( ∩
c∈C

νIc )(ab, p) = inf
c∈C

νIc (ab, p) ≥ inf
c∈C

νIc (b, p) = ( ∩
c∈C

νIc )(b, p).

( ∩
c∈C

νFc )(ab, p) = sup
c∈C

νFc (ab, p) ≤ sup
c∈C

νFc (b, p) = ( ∩
c∈C

νFc )(b, p).

Therefore ∩
c∈C

νc is a Q-neutrosophic left ideal of S.

Definition 3.5. For two Q-neutrosophic subsets ν and σ of S, define their cartesian product

by

(νT × σT )((a, b), p) = min{νT (a, p), σT (b, p)}

(νI × σI)((a, b), p) =
νI(a, p) + σI(b, p)

2

(νF × σF )((a, b), p) = max{νF ((a, p), σF (b, p)}

∀a, b ∈ S, p ∈ Q.

Theorem 3.6. For two Q-neutrosophic left ideals ν and σ of S, ν × σ is a Q-neutrosophic

left ideal of S × S.

Proof. Let (a1, a2), (b1, b2) ∈ S × S and p ∈ Q. Now

(νT × σT )((a1, a2) + (b1, b2), p) = (νT × σT )((a1 + b1, a2 + b2), p)

= min{νT (a1 + b1, p), σ
T (a2 + b2, p)}

≥ min{min{νT (a1, p), ν
T (b1, p)},min{σT (a2, p), σ

T (b2, p)}}
= min{min{νT (a1, p), σ

T (a2, p)},min{νT (b1, p), σ
T (b2, p)}}

= min{(νT × σT )((a1, a2), p), (ν
T × σT )((b1, b2), p)}.
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(νI × σI)((a1, a2) + (b1, b2), p) = (νI × σI)((a1 + b1, a2 + b2), p)

= νI(a1+b1,p)+σI(a2+b2,p)
2

≥ 1
2{

νI(a1,p)+νI(b1,p)
2 + σI(a2,p)+σI(b2,p)

2 }
= 1

2{
νI(a1,p)+σI(a2,p)

2 + νI(b1,p)+σI(b2,p)
2 }

= 1
2{(ν

I × σI)((a1, a2), p) + (νI × σI)((b1, b2), p)}.

(νF × σF )((a1, a2) + (b1, b2), p) = (νF × σF )((a1 + b1, a2 + b2), p)

= max{νF (a1 + b1, p), ν
F (a2 + b2, p)}

≤ max{max{νF (a1, p), ν
F (b1, p)},max{σF (a2, p), σ

F (b2, p)}}
= max{max{νF (a1, p), σ

F (a2, p)},max{νF (b1, p), σ
F (b2, p)}}

= max{(νF × σF )((a1, a2), p), (ν
F × σF )((b1, b2), p)}.

(νT × σT )((a1, a2)(b1, b2), p) = (νT × σT )((a1b1, a2b2), p) = min{νT (a1b1, p), σ
T (a2b2, p)}

≥ min{νT (b1, p), σ
T (b2, p)} = (νT × σT )((b1, b2), p).

(νI × σI)((a1, a2)(b1, b2), p) = (νI × σI)((a1b1, a2b2), p) = νI(a1b1,p)+σI(a2b2,p)
2

≥ νI(b1,p)+σI(b2,p)
2 = (νI × σI)((b1, b2), p).

(νF × σF )((a1, a2)(b1, b2), p) = (νF × σF )((a1b1, a2b2), p) = max{νF (a1b1, p), σ
F (a2b2, p)}

≤ max{νF (b1, p), ν
F (b2, p)} = (νF × σF )(b1, b2, p).

Therefore ν × σ is a Q-neutrosophic left ideal of S × S.

Theorem 3.7. A Q-neutrosophic set ν of S is a Q-neutrosophic left ideal iff ν × ν is a

Q-neutrosophic left ideal of S × S.

Proof. If a Q-neutrosophic subset ν of S is a Q-neutrosophic left ideal then by Theorem 3.6,

ν × ν is a Q-neutrosophic left ideal of S × S.

Conversely, suppose ν × ν is a Q-neutrosophic left ideal of S × S and a1, a2, b1, b2 ∈ S, p ∈ Q.

Then

min{νT (a1 + b1, p), ν
T (a2 + b2, p)} = (νT × νT )((a1 + b1, a2 + b2), p)

= (νT × νT )((a1, a2) + (b1, b2), p)

≥ min{(νT × νT )((a1, a2), p), (ν
T × νT )((b1, b2), p)}

= min{min{νT (a1, p), ν
T (a2, p)},min{νT (b1, p), ν

T (b2, p)}}.

νI(a1+b1,p)+νI(a2+b2,p)
2 = (νI × νI)((a1 + b1, a2 + b2), p)

= (νI × νI)((a1, a2) + (b1, b2), p)

≥ (νI×νI)((a1,a2),p)+(νI×νI)((b1,b2),p)
2

= 1
2 [ν

I(a1,p)+νI(a2,p)
2 + νI(b1,p)+νI(b2,p)

2 ].
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max{νF (a1 + b1, p), ν
F (a2 + b2, p)} = (νF × νF )((a1 + b1, a2 + b2), p)

= (νF × νF )((a1, a2) + (b1, b2), p)

≤ max{(νF × νF )((a1, a2), p), (ν
F × νF )((b1, b2), p)}

= min{max{νF (a1, p), ν
F (a2, p)},max{νF (b1, p), ν

F (b2, p)}}.

Now, putting a1 = a, a2 = 0, b1 = b and b2 = 0, in the above inequalities and noting that

νT (0) ≥ νT (x), νI(0) = 0 and νF (0) ≤ νF (x) for all a ∈ S we obtain

νT (a+ b, p) ≥ min{νT (a, p), νT (b, p)}
νI(a+ b, p) ≥ νI(a,p)+νI(b,p)

2

νF (a+ b, p) ≤ max{νF (a, p), νF (b, p)}.

Next, we have

min{νT (a1b1), ν
T (a2b2)} = (νT × νT )(a1b1, a2b2) = (νT × νT )((a1, a2)(b1, b2))

≥ (νT × νT )(b1, b2) = min{νT (b1), ν
T (b2)}.

νI(a1b1,q)+νI(a2b2,q)
2 = (νI × νI)((a1, a2)(b1, b2), q)

≥ (νI × νI)((b1, b2), q)
= νI(b1,q)+νI(b2,q)

2 .

max{νF (a1b1, q), ν
F (a2b2, q)} = (νF × νF )((a1b1, a2b2), q) = (νF × νF )((a1, a2)(b1, b2), q)

≤ (νF × νF )((b1, b2), q) = max{νF (b1, q), ν
F (b2, q)}.

Taking a1 = a, b1 = b and b2 = 0, we obtain

νT (ab, p) ≥ νT (b, p)

νI(ab, p) ≥ νI(b, p)
νF (ab, p) ≤ νF (b, p).

Hence ν becomes a Q-neutrosophic left ideal of S.

Definition 3.8. For two Q-neutrosophic sets ν and σ of a semiring S, define their composition

by

νT oσT (a, p) = sup

a=

m∑
c=1

acbc

{min
c
{νT (ac, p), σ

T (bc, p)}}

= 0, otherwise

νIoσI(a, p) = sup

a=

m∑
c=1

acbc

∑m
c=1

νI(ac,p)+σI(bc,p)
2m

= 0, otherwise
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νF oσF (a, p) = inf

a=

m∑
c=1

acbc

{max
c
{νF (ac, p), σ

F (bc, p)}}

= 0, otherwise

where p ∈ Q, a, ac, bc ∈ S , m ∈ N -the set of natural number.

Theorem 3.9. For two Q-neutrosophic left ideals ν and σ of S, νoσ also forms a Q-

neutrosophic left ideal of S.

Proof. Consider two Q-neutrosophic left ideals ν, σ of S with a, b ∈ S, p ∈ Q. If (a+ b, p) has

the expression (
∑m

i=1 acbc, p), where ac, bc ∈ S and p ∈ Q, then the proof is immediate from

the definition. So, assume that a+ b can be expressed in the said form. Then

(νT oσT )(a+ b, p)

= sup

a+b=

m∑
c=1

acbc

{min
c
{νT (ac, p), σ

T (bc, p)}}

≥ sup{min
c
{νT (cc, p), σ

T (dc, p),

a=

m∑
c=1

ccdc, b =

m∑
c=1

ecfc

νT (ec, p), σ
T (fc, p)}}

= min{ sup{min
c
{

a=

m∑
c=1

ccdc

νT (cc, p), σ
T (dc, p)}}, sup{min

c
{

b=

m∑
c=1

ecfc

νT (ec, p), σ
T (fc, p)}}}

= min{(νT oσT )(a, p), (νT oσT )(b, p)}

(νIoσI)(a+ b, p)

= sup

a+b=

m∑
c=1

acbc

∑m
c=1

νI(ac,p)+σI(bc,p)
2m

≥ sup

a=

m∑
c=1

ccdc, b =
m∑
c=1

ecfc

∑m
c=1

νI(cc,p)+σI(dc,p)+νI(ec,p)+σI(fc,p)
2m

≥ 1
2 [ sup

a=

m∑
c=1

ccdc

∑m
c=1

νI(cc,p)+σI(dc,p)
2m , sup

b=

m∑
c=1

ecfc

∑m
c=1

νI(ec,p)+σI(fc,p)
2m ]

= (νIoσI)(a,p)+(νIoσI)(b,p)
2
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(νF oσF )(a+ b, p)

= inf

a+b=

m∑
c=1

acbc

{max
c
{νF (ac, p), σ

F (bc, p)}}

≤ inf

a=

m∑
c=1

ccdc, b =
m∑
c=1

ecfc

{max
c
{νF (cc, p), σ

F (dc, p), ν
F (ec, p), σ

F (fc, p)}}

= max{inf{max
c
{νF (cc, p),

a=

m∑
c=1

ccdc

σF (dcp)}}, inf{max
c
{νF (ec, p),

b=

m∑
c=1

ecfc

σF (fc, p)}}}

= max{(νF oσF )(a, p), (νF oσF )(b, p)}

(νT oσT )(ab, p) = sup

ab=

m∑
c=1

acbc

{min
c
{νT (ac, p), σ

T (bc, p)}}

≥ sup

ab=

m∑
c=1

aecfc

{min
c
{νT (aec, p), σ

T (fc, p)}}

≥ sup

b=

m∑
c=1

ecfc

{min
c
{νT (ec, p), σ

T (fc, p)}} = (νT oσT )(b, p)

(νIoσI)(ab, p) = sup

ab=

m∑
c=1

acbc

∑m
c=1

νI(ac,p)+σI(bc,p)
2m

≥ sup

ab=

m∑
c=1

aecfc

∑m
c=1

νI(aec,p)+σI(fc,p)
2m

≥ sup

b=

m∑
c=1

ecfc

∑m
c=1

νI(ec,p)+σI(fc,p)
2m = (νIoσI)(b, p)

(νF oσF )(ab, p) = inf

ab=

m∑
c=1

acbc

{max
c
{νF (ac, p), σ

F (bc, p)}}

≤ inf

ab=

m∑
c=1

aecfc

{max
c
{νF (aec, p), σ

F (fc, p)}}

≤ inf

b=

m∑
c=1

ecfc

{max
c
{νF (ec, p), σ

F (fc, p)}} = (νF oνF )(b, p)
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Therefore νoσ is a Q-neutrosophic left ideal of S.

Conclusion: In this paper, we have defined Q-neutrosophic ideals of a semiring and studied

some its elementary properties. Here also we obtain its characterizations by label subset

criteria, cartesian product and composition of two Q-neutrosophic ideals. Our next aim to

extend the idea in case of Q-neutrosophic bi-ideals, Q-neutrosophic quasi-ideals and investigate

some properties of regular semirings.

Acknowledgement: The author is thankful to the referees for their valuable comments to

improve the paper.
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Abstract. This paper is an introduction of neutrosophic minimal structure space and addresses properties of

neutrosophic minimal structure space. Neutrosophic set has plenty of applications. This motivates us to present

the concept of neutrosophic minimal structure space. We defined neutrosophic minimal structure space, closure

and interior of a set, subspace. Some properties of neutrosophic minimal structure space are also studied.

Finally, Decision making problem solved using score function.

Keywords: Neutrosophic minimal structure; Nm-closure; Nm-interior; Nm-connectedness.

—————————————————————————————————————————-

1. Introduction

Zadeh’s [23] Fuzzy set laid the foundation of many theories such as intuitionistic fuzzy set

and neutrosophic set, rough sets etc. Later, researchers developed K. T. Atanassov’s [4] in-

tuitionistic fuzzy set theory in many fields such as differential equations, topology, computer

science and so on. F. Smarandache [20, 21] found that some objects have indeterminacy or

neutral other than membership and non-membership. So he coined the notion of neutrosophy.

Researchers [12, 15–18] applied the concept of neutrosophy when object has inconsistent, in-

complete information. The universal set X and ∅ forms a topology (Munkrer [11]). Popa [14]

introduced minimal structures and defined separation axioms using minimal structure. M. Al-

imohammady, M. Roohi [5] introduced fuzzy minimal structure in lowen sense. S.Bhattacharya

(Halder) [6] presented the concept of intuitionistic fuzzy minimal space.
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1.1. Motivation and Objective

In general topology, the whole set and empty set forms a space with minimal structure.

Supra topological space is also a space with neutrosophic minimal structure. These are all

the generalization of topological spaces. Our objective is to introduce neutrosophic universal

set and neutrosophic null set with neutrosophic minimal structure. It is a generalization of

neutrosophic topological space. This paper consisting of basic definitions such as interior,

closure, open, closed, subspace with minimal structure and its properties.

1.2. Limitations

Neutrosophic topological space, neutrosophic supra topological space are space with neu-

trosophic minimal structure. The converse is not true that is space with neutrosophic minimal

structure is not a neutrosophic supra topological space or neutrosophic topological space.

In section 1, the basic definitions are presented which are useful for our paper and in section

2, the basic definitions of neutrosophic minimal structure space are presented. In further sec-

tions some properties of neutrosophic minimal structure space are also investigated. Finally,

we introduced an algorithm to solve some applications of neutrosophic minimal structure

space. Note that neutrosophic topological space, neutrosophic supra topological space are

neutrosophic minimal structure space but converse is not true.

2. Preliminaries

In this section, we presented the basic definitions developed by [15,19–21].

Definition 2.1. [20, 21] A neutrosophic set(in short NS) U on a set X 6= ∅ is defined by

U = {〈a, TU (a), IU (a), FU (a)〉 : a ∈ X} where TU : X → [0, 1], IU : X → [0, 1] and

FU : X → [0, 1] denotes the membership of an object, indeterminacy and non-membership of

an object, for each a ∈ X to U , respectively and 0 ≤ TU (a) + IU (a) + FU (a) ≤ 3 for each

a ∈ X.

Definition 2.2. [19] Let U = {〈a, TU (a), IU (a), FU (a)〉 : a ∈ X} be a neutrosophic set.

(i) A neutrosophic set U is an empty set i.e., U = 0∼ if 0 is membership of an object

and 1 is an indeterminacy and non-membership of an object respectively. i.e., 0∼ =

{x, (0, 1, 1) : x ∈ X}
(ii) A neutrosophic set U is a universal set i.e., U = 1∼ if 1 is membership of an object and

0 is an indeterminacy and non-membership of an object respectively. 1∼ = {x, (1, 0, 0) :

x ∈ X}
(iii) U1∪U2 = {a,max{TU1(a), TU2(a)},min{IU1(a), IU2(a)},min{FU1(a), FU2(a)} : a ∈ X}
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(iv) U1 ∩ U2 = {a,min{TU1(a), TU2(a)},max{IU1(a), IU2(a)},max{FU1(a), FU2(a)} : a ∈
X}

(v) UC
1 = {a, FU (a), 1− IU (a), TU (a) : a ∈ X}

Definition 2.3. [19] A neutrosophic topology (NT) in Salama’s sense on a nonempty set X

is a family τ of NSs in X satisfying three axioms:

(1) Empty set ( 0∼) and universal set( 1∼) are members of τ .

(2) U1 ∩ U2 ∈ τ where U1, U2 ∈ τ .

(3)
⋃∞

i=1 Ui ∈ τ where each Ui ∈ τ .

Each neutrosophic sets in neutrosophic topological spaces are called neutrosophic open sets.

Its complements are called neutrosophic closed sets.

Definition 2.4. [19] Let NS U in NTS X. Then a neutrosophic interior of U and a neu-

trosophic closure of U are defined by

n-int(U) = max {F : F is anNeutrosophic open set inX andF ≤ U} and

n-cl(U) = min {F : F is anNeutrosophic closed set inX andF ≥ U} respectively.

Definition 2.5. [15] A neutrosophic supra topology (in short, NST) on a nonempty set X is

a family τ of NSs in X satisfying the following axioms:

(1) Empty set ( 0∼) and universal set( 1∼) are members of τ .

(2)
⋃∞

i=1 Ui ∈ τ where each Ui ∈ τ .

3. Neutrosophic Minimal Structure Spaces

Neutrosophic minimal structure space is defined and studied its properties in this section.

Definition 3.1. Let the neutrosophic minimal structure space over a universal set X be

denoted by Nm. Nm is said to be neutrosophic minimal structure space (in short, NMS) over

X if it satisfying following the axiom:

(1) 0∼, 1∼ ∈ Nm.

A family of neutrosophic minimal structure space is denoted by (X,NmX)

Note that neutrosophic empty set and neutrosophic universal set can form a topology and it

is known as neutrosophic minimal structure space.

Each neutrosophic set in neutrosophic minimal structure space is neutrosophic minimal

open set.

The complement of neutrosophic minimal open set is neutrosophic minimal closed set.
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Remark 3.2. Each neutrosophic set in neutrosophic minimal structure space is neutrosophic

minimal open set.

The complement of neutrosophic minimal open set is neutrosophic minimal closed set.

In this paper, we refer definition 2.2 for basic operations.

Example 3.3. We know that 0∼ = {x, (0, 1, 1)} & 1∼ = {x, (1, 0, 0)} are neutrosophic mini-

mal open sets. Lets find out their complements.

0C∼ = {x, (1, 0, 0)} = 1∼ and 1C∼ = {x, (0, 1, 1)} = 0∼. This clears that 0∼ and 1∼ are both

neutrosophic minimal open and closed set.

Remark 3.4. From Definition 3.1. the following are obvious

(1) Neutrosophic supra topological spaces are neutrosophic minimal structure space but

converse not true.

(2) Similarly, Neutrosophic topological spaces are neutrosophic minimal structure space

but converse is not true.

The following Example 3.5 proves the above Remark 3.4.

Example 3.5. Let A = {< 0.6, 0.4, 0.3 >: a}, B = {< 0.6, 0.5, 0.1 >: a} are neutro-

sophic sets over the universal set X = {a}. Then the neutrosophic minimal structure space

is Nm = {0, 1, A,B}. But Nm is not a neutrosophic topological space and not a neutrosophic

supra topological space, since arbitrary union and finite intersection doesn’t hold in Nm.

Definintion 3.6. A is Nm-closed if and only if Nmcl(A) = A.

Similarly, A is a Nm-open if and only if Nmint(A) = A.

Definintion 3.7. Let Nm be any neutrosophic minimal structure space and A be any neu-

trosophic set. Then

(1) Every A ∈ Nm is open and its complement is closed.

(2) Nm-closure of A = min{F : F is a neutrosophic minimal closed set and F ≥ A}
and its denoted by Nmcl(A).

(3) Nm-interior of A = max{F : F is a neutrosophic minimal open set and F ≤ A} and

it is denoted by Nmint(A).

In general Nmint(A) is subset of A and A is a subset of Nmcl(A).

Proposition 3.8. Suppose A and B are any neutrosophic set of neutrosophic minimal struc-

ture space Nm over X. Then
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i. NC
m = {0, 1, AC

i } where AC
i is a complement of neutrosophic set Ai.

ii. X −Nmint(B) = Nmcl(X −B).

iii. X −Nmcl(B) = Nmint(X −B) .

iv. Nmcl(A
C) = (Nmcl(A))C = Nmint(A).

v. Nm closure of an empty set is an empty set and Nm closure of a universal set is a

universal set. Similarly, Nm interior of an empty set and universal set respectively an

empty and a universal set.

vi. If B is a subset of A then Nmcl(B) ≤ Nmcl(A) and Nmint(B) ≤ Nmint(A).

vii. Nmcl(Nmcl(A)) = Nmcl(A) and Nmint(Nmint(A)) = Nmint(A).

viii. Nmcl(A ∨B) = Nmcl(A) ∨Nmcl(B)

ix. Nmcl(A ∧B) = Nmcl(A) ∧Nmcl(B)

Proof. (i) We know that AC = X − A. Then Nmcl(X − A) = Nmcl(A
C) = (Nmcl(A))C =

Nmint(A), from (iv).

Similarly for (ii).

(vi) Let B ≤ A. We know that B ≤ Nmcl(B) and A ≤ Nmcl(B). So B ≤ Nmcl(B) ≤ A ≤
Nmcl(A). Therefore Nmcl(B) ≤ Nmcl(A).

Proof of (vii) is straight forward.

(viii) We know that A ≤ A ∨ B and B ≤ A ∨ B. Nmcl(A) ≤ Nmcl(A ∨ B) and

Nmcl(B) ≤ Nmcl(A ∨B) this implies Nmcl(A) ∨Nmcl(B) ≤ Nmcl(A ∨B).−→ (∗)
Also A ≤ Nmcl(A) and B ≤ Nmcl(B) ⇒ A ∨ B ≤ Nmcl(A) ∨ Nmcl(B). Nmcl(A ∨ B) ≤
Nmcl(Nmcl(A) ∨Nmcl(B)) = Nmcl(A) ∨Nmcl(B) −→ (∗∗).
From (*) and (**), we have Nmcl(A ∨B) = Nmcl(A) ∨Nmcl(B).

Example 3.9. Consider Example 3.5, the complement of Nm is {0, 1, AC , BC} where

AC = {< 1 − 0.6, 1 − 0.4, 1 − 0.3 > /a : a ∈ X} = {< 0.4, 0.6, 0.7 > /a : a ∈ X} and

BC = {< 1− 0.6, 1− 0.5, 1− 0.1 > /a : a ∈ X} = {< 0.4, 0.5, 0.9 > /a : a ∈ X}.

Definintion 3.10. A function f : (X,NmX) → (Y,NmY )) is called neutrosophic minimal

continuous function if and only if f−1(V ) ∈ NmX whenever V ∈ NmY .

Definintion 3.11. Boundary of a neutrosophic set A (in short Bd(A)) of neutrosophic mini-

mal structure (X,NmX) is the intersection of Nmclosure of the set A and Nmclosure of X−A.

i.e., Bd(A) = Nmcl(A) ∩Nmcl(X −A)

Theorem 3.12. If (X,NmX) and (Y,NmY ) are neutrosophic minimal structure space . Then
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(1) Identity map from (X,NmX) to (Y,NmY ) is a neutrosophic minimal continuous func-

tion.

(2) Any constant function which maps from (X,NmX) to (Y,NmY ) is a neutrosophic

minimal continuous function.

Proof. The proof is obvious.

Theorem 3.13. Let the map f from neutrosophic minimal structure space (X,NmX) to

neutrosophic minimal structure space (Y,NmY ). Then the following are equivalent,

(1) The map f is a neutrosophic minimal continuous function.

(2) f−1(V ) is a neutrosophic minimal closed set for each neutrosophic minimal closed set

V ∈ NmY . .

(3) Nmcl(f
−1(V )) ≤ f−1(Nmcl(V )), for each V ∈ NmY .

(4) Nmcl(f(A)) ≥ f(Nmcl(A)), for each A ∈ NmX .

(5) Nmint(f
−1(V )) ≥ f−1(Nmint(V )), for each V ∈ NmX .

Proof. (1)⇒ (2): Let A be a Nm-closed in Y. Then f−1(A)C = f−1(AC) ∈ NmX .

(2) ⇒ (3): Nmcl(f
−1(A) = ∧{D : f−1(A) ≤ D,DC ∈ NmX} ≤ ∧{f−1(D) : A ≤ D,DC ∈

NmY } = f−1({D : A ≤ DC ∈ NmY }) = f−1(Nmcl(A)).

(3) ⇒ (4): Since A ≤ f−1(f(A)), then Nmcl(A) ≤ Nmclf
−1(f(A)) ≤ f−1(Nmcl(f(A))).

Therefore f(Nmcl(A)) ≤ Nmcl(f(A)).

(4) ⇒ (5): f(Nmint(f
−1(A)))C = f(Nmcl(f

−1(A))C) = f(Nmcl(f(A)C)) ≤
Nmcl(f(f−1(AC))) ≤ Nmcl(A

C) = (Nmint(A))C . This implies that Nmint(f
−1(B))C ≤

f−1(Nmint(A))C = (f−1(Nmint(A)))C .

Taking complement on both sides, f−1(Nmint(A)) ≤ Nmint(f
−1(B)).

Definition 3.14. Let (X,NmX) be neutrosophic minimal structure space.

i. Arbitrary union of neutrosophic minimal open sets in (X,NmX) is neutrosophic mini-

mal open. (Union Property)

ii. Finite intersection of neutrosophic minimal open sets in (X,NmX) is neutrosophic

minimal open. (intersection Property)

4. Neutrosophic Minimal Subspace

In this section, we introduced the neutrosophic minimal subspace and investigate some

properties of subspace.

Definition 4.1. Let A be a neutrosophic set in neutrosophic minimal structure space

(X,NmX). Then Y is said to be neutrosophic minimal subspace if (Y,NmY ) = {A ∩ U :

U ∈ NmY }.
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Lemma 4.2. If neutrosophic set b in the basis B for neutrosophic minimal structure space

X. Then the collection BY = {b ∩ Y : Y ⊂ X} is a basis for neutrosophic minimal subspace

on Y.

Proof. Given a neutrosophic set A in X and C is a neutrosophic set in both A and subset Y

of X. Consider a basis element b of B such that C in b and in Y. Then C ∈ B ∩ Y ⊂ U ∩ Y .

Hence BY is a basis for the neutrosophic minimal subspace on the set Y.

Lemma 4.3. Let (Y,NmY ) be a subspace of (X,NmX). If A is a neutrosophic set in Y

and Y ⊂ X. Then A is in (X,NmX).

Proof. Given that neutrosophic set A in (Y,NmY ). A = Y ∩ B for some neutrosophic set

B ∈ X. Since Y and B in X. Then A is in X.

Proposition 4.4. Suppose (Y,NmY ) is a neutrosophic minimal subspace of (X, τX).

(1) If the neutrosophic minimal structure space (X,NmX) has the union property, then

the subspace (Y,NmY ) also has union property.

(2) If the neutrosophic minimal structure space (X,NmX) has the intersection property,

then the subspace (Y,NmY ) also has union property.

Proof. Suppose the family of open set {Vi : i ∈ Y } in neutrosophic minimal subspace(Y,NmY )

then there exist a family of open sets {Uj : j ∈ X} in neutrosophic minimal structure space

(X,NmX) such that Vi = Uj ∩ A,∀i ∈ Y where A ∈ NmY .
⋃

(i∈Y ) Vi =
⋃

(j∈X)(Uj ∩ A) =⋃
(i∈Y ) Uj ∩ A. Since (X,NmX) has union property then (Y,NmY ) also has union property.

The proof of (ii) is similarly to (i).

Definition 4.5. Suppose (B,NmB) and (C,NmC) are neutrosophic minimal subspaces of

neutrosophic minimal structure spaces (Y,NmY ) and (Z,NmZ) respectively. Also, suppose

that f is a mapping from (Y,NmY ) to (Z,NmZ) is a mapping. We say that f is a mapping

from (B,NmB) into (C,NmC) if the image of B under f is a subset of C.

Definition 4.6. Suppose (A,NmA) and (B,NmB) are neutrosophic minimal subspaces of

neutrosophic minimal structure spaces (Y,NmY ) and (Z,NmZ) respectively. The mapping f

from (A,NmA) into (B,NmB) is called a

(1) comparative neutrosophic minimal continuous, if f1(W ) ∧A ∈ NmA for every neutro-

sophic minimal structure set W in B,

(2) comparative neutrosophic minimal open, if f(V ) ∈ NmB for every fuzzy set V ∈ NmA.
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X/E c1 c2 c3 .... cn

a1 d11 d12 d13 .... d1n

a2 d21 d22 d23 .... d2n

. . . . . .

am dm1 dm2 dm3 .... dmn

Table 1. Attributes and Alternative

5. Applications

The application of neutrosophic minimal structure space is based on the minimal element

and maximal element. In neutrosophic minimal structure space, 0∼ is the minimal element

and 1∼ is the maximal element. The application of neutrosophic minimal structure space

used in consumer theory where the customer has only two objective. In consumer theory,

the customer has either minimize purchase cost and maximize the quantity or maximize the

durability.

The following steps are proposed to take better decision.

Step 1.

Input m Attributes and n alternatives (See TABLE 1).

Step 2. Construct the neutrosophic minimal structure from the data. τk = {0∼, 1∼, Uk} where

Uk = {d1k, d2k....dmk}
Step 3. compute the neutrosophic score function (in short, NF) using the following simple

formula, NF (Uk) = 1
3m [

∑m
i=1[2 + Ti − Ii − Fi]]

Step 4. Arrange the score function Uk which we calculated in step 3 in ascending order. Choose

the largest score value Uk for better decision.

Lets consider the following example. Let the set of variety of cars be X = {C1, C2, C3} and

the parameter set E = {a = cost of the car, b = safety, c = maintenance}. A customer will

assign minimum value of 0∼ to bad features,maximum 1∼ to the best feature of the product.

Membership, indeterminacy and non-membership values taken from customer’s review rating.

Membership referred to cost of the car is worth to the model, safe and low maintenance cost.

Non-membership referred to cost of the car is not worth to the model, not safe due to break

failure or some other reason and high maintenance cost. Indeterminacy referred to neutrality

of cost of the car, safe if drive safe and maintenance is neutral. Let us assume TABLE 2.

values are taken from customer review rating for the models C1, C2 and C3 with parameters

a, b and c.

Step 2. The neutrosophic minimal structure

τ1 = {0∼, 1∼, U1} where U1 = {(0.6, 0.2, 0.4), (0.7, 0.3, 0.4), (0.6, 0.3, 0.4)}
Similarly, τ2 = {0∼, 1∼, U2} where U2 = {(0.6, 0.3, 0.4), (0.6, 0.3, 0.4), (0.5, 0.2, 0.4)}
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X/E C1 C2 C3

a (0.6,0.2,0.4) (0.6,0.3,0.4) (0.7,0.3,0.4)

b (0.7,0.3,0.4) (0.6,0.3,0.4) (0.8,0.2,0.2)

c (0.6,0.3,0.4) (0.5,0.2,0.4) (0.6,0.2,0.3)

Table 2. Input matrix

τ3 = {0∼, 1∼, U3} where U3 = {(0.7, 0.3, 0.4), (0.8, 0.2, 0.2), (0.6, 0.2, 0.3)}
Step 3. Neutrosophic score functions are

NS(U1) = 0.6556

NS(U2) = 0.6333

NS(U3) = 0.7222

Step 4. The neutrosophic score functions are arranged in ascending order as follows U2 ≤
U1 ≤ U3. Based on score function, U3 is the largest score function. U3 related to the model

C3. Hence Model C3 is best to buy.

Comparison Analysis: The existing and proposed notion of neutrosophic minimal structure

space is compared in the below table.

Spaces Uncertainty Truth value

of parameter

Uncertainty

of parameter

False value

of parame-

ter.

Minimal

structure

space

- - - -

Fuzzy min-

imal struc-

ture space

Present Present - -

Intuitionistic

Minimal

structure

space

Present Present Present -

Neutrosophic

minimal

structure

space

Present Present Present present

Table 3. Comparison Table
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6. Conclusions

In this paper, Neutrosophic minimal structure space is introduced and some of its prop-

erties investigated along with this. Neutrosophic minimal continuous and subspace are also

investigated with few properties. Finally, application of neutrosophic minimal structure space

is discussed. Future work of this paper is to investigate and study various open sets and sep-

aration axioms in neutrosophic minimal structure space. Also the application part discussed

in this work leads to analyze in weak structure.
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Abstract: Decision making is a complex issue due to vague, imprecise and indeterminate 

environment specially, when attributes are more than one, and further bifurcated. To solve such type 

of problems, concept of neutrosophic hypersoft set (NHSS) was proposed [1]. The purpose of this 

paper is to provide the extension of NHSS into: Interval Valued, m-Polar and m-Polar interval valued 

Neutrosophic Hypersoft sets. The definitions of proposed extensions and mathematical operations 

are discussed in detail with suitable examples. Finally, concluded the present work with the future 

direction. 
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Neutrosophic Hypersoft set (NHSS) 

 

1. Introduction 

The concept of membership was initiated by Zadeh [2] known as fuzzy set (F’s). This, concept was 

extended by Atanassov [3] and known as intuitionistic fuzzy set (IF’s) and this concept was extended 

by Smarandache [4] who proposed the theory of neutrosophic set (N’s) with the addition of 

indeterminacy value along with membership, and non-membership values. The Hybrid within 

neutrosophic theory was suggested by [5], the hybrids consists of; single-valued neutrosophic set 

(SVNS), Interval-valued neutrosophic set (IVNS) [6], multi-valued neutrosophic set (MVNS) [7]. 

After these generalizations many researches related to SVNS have been conducted [8–17]. Broumi et 

al. [18] merged the concept of N’s and multi-valued and proposed the new idea; knowns as; multi-

valued interval neutrosophic set (MVINS). Many other developments within this structure has been 

discussed by [19-21]. One of the most important development in the field of fuzzy was made by 

Molodtsov [22] who provided the idea of soft set (SS), that is very useful to deal with uncertain and 

vague information. In recent years, the SS theory is extended to many other theories Firstly, Fuzzy 

soft set theory and its properties was developed by Cagman et al. [23].  The key role in these theories 

was made by Maji [24] who extended the theory of NS by combining with soft set, named as 

neutrosophic soft set (NSS). Within this set [25] introduced some basic definitions, operations, and 

decision-making approaches called as IVNSS. After this, these hybrids were extended to multi-

valued neutrosophic soft set (MVNSS) by [26]. Some definitions, operations and applications of 

MCDM approach-based problems using MVNSS was introduced [27]. Utilizing this idea a few 

mathematicians have proposed their examination work in various scientific fields [28-37] and this 

idea is likewise utilized in advancing decision-making calculations [38-42].  
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Smarandache [43] generalized the concept of soft set (SS) to hypersoft set (HSS) by converting 

the function into multi-attribute function to deal with uncertainty along with all the hybrids like crisp, 

fuzzy, intuitionistic and neutrosophic. Saqlain et al. [44] proposed the aggregate operators and 

similarity measure [45] on NHSS. Also, Saqlain et al. [46] developed the generalization of TOPSIS for 

the NHSS, by using accuracy function they transformed the fuzzy neutrosophic numbers to crisp 

form.  

The purpose of this paper is to overcome the uncertainty problem in more precise way by 

combing Interval-Valued Neutrosophic set IVNSS, m-Polar Neutrosophic set mpand m-Polar 

Interval-Valued Neutrosophic set with Hypersoft set. 

 

The paper presentation is as follows. Section 2, provides the basic definitions and major relation with 

the extension Interval-Valued, multi-polar and multi-polar Interval-valued from NHSS are 

presented. Section 3, proposes the basic definitions along with: subset, null set and Universal set of 

each type. Finally, conclusion and future direction is presented in section 4. 

 

1.1 Motivation 

From the literature, it is found that Interval Valued, m-Polar and m-Polar Interval Valued 

Neutrosophic Hypersoft Set respectively has not yet been studied so far. This leads us to the present 

study. 

2.Preliminaries 

Definition 2.1: IVNSS [6] 

Consider 𝕌 and 𝔼 be universal and set of attributes respectively and consider 𝔸 ⊆ 𝔼 . The mapping 

(₣, 𝔸) is called an IVNSS. over 𝕌 and is given as; 

 ₣: 𝔸 → ℙ(𝕌) and (₣, 𝔸)  = {< 𝑢, 𝕋(₣(𝔸)), 𝕀(₣(𝔸)), 𝔽(₣(𝔸)) >, 𝑢 ∈ 𝕌 } 

Where  𝕋(₣(𝔸)) ⊆ [0,1], 𝕀(₣(𝔸)) ⊆ [0,1] 𝑎𝑛𝑑 𝔽(₣(𝔸)) ⊆ [0,1] are the intervals with side conditions 

0 ≤ 𝑠𝑢𝑝𝕋(₣(𝔸)) +  𝑠𝑢𝑝 𝕀(₣(𝔸)) + 𝑠𝑢𝑝 𝔽(₣(𝔸)) ≤ 3. The terms 𝕋(₣(𝔸)), 𝕀(₣(𝔸)), 𝔽(₣(𝔸))  represent 

the truthiness, indeterminacy and falsity of 𝑢 to 𝔸 respectively. For our convenience,  

we assume that 𝔸 =< [𝕋(₣(𝔸))
−
. , 𝕋(₣(𝔸))

+
] , . [𝕀 (₣(𝔸))

−
. , 𝕀(₣(𝔸))

+
] , . [𝔽(₣(𝔸))

−
, 𝔽(₣(𝔸))

+
] >

 where;  

 𝕋(₣(𝔸)) = [𝕋(₣(𝔸))
−
, 𝕋(₣ (𝔸))

+
] ⊆ [0,1], 𝕀(₣(𝔸)) =. [𝕀 ( ₣ (𝔸))

−
, 𝕀 (₣ (𝔸))

+
] ⊆ [0,1] 𝑎𝑛𝑑 

 𝔽(₣(𝔸)). = [𝔽(₣(𝔸) )−, 𝔽 (₣ (𝔸))
+
] ⊆ [0,1]. 

Definition 2.2: m-Polar Neutrosophic Soft Set [26] 

Consider 𝕌 and 𝔼 be universal and set of attributes respectively and consider 𝔸 ⊆ 𝔼 . The mapping 

(₣, 𝔸) is called an MVNSS. over 𝕌 and is given as; 

 ₣: 𝔸 → ℙ(𝕌) and (₣, 𝔸)  = {
<𝕋𝑥(₣(𝔸)),𝕀𝑦(₣(𝔸)),𝔽𝑧(₣(𝔸))>

𝑢
, 𝑢 ∈ 𝕌 } 

Where  𝕋(₣(𝔸)) ⊆ [0,1], 𝕀(₣(𝔸)) ⊆ [0,1] 𝑎𝑛𝑑 𝔽(₣(𝔸)) ⊆ [0,1] are the multi-valued numbers and they 

are given as; 

                            𝕋𝑥(₣(𝔸)) = 𝕋1(₣(𝔸)), 𝕋2(₣(𝔸))…𝕋𝑥(₣(𝔸)), 
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  𝕀𝑦(₣(𝔸)) =  𝕀1(₣(𝔸)), 𝕀2(₣(𝔸))… 𝕀𝑦(₣(𝔸)),   

                            𝔽𝑧(₣(𝔸)) =  𝔽1(₣(𝔸)), 𝔽2(₣(𝔸))… 𝔽𝑧(₣(𝔸)).  

𝕋(₣(𝔸)), 𝕀(₣(𝔸)), 𝔽(₣(𝔸)) represent the truthiness, indeterminacy and falsity of 𝑢 to 𝔸 respectively. 

Definition 2.3: MVINSS [18] 

Consider 𝕌 and 𝔼 be universal and set of attributes respectively and consider 𝔸 ⊆ 𝔼 . The mapping 

(₣, 𝔸) is called an MVINSS. over 𝕌 and is given as; 

 ₣: 𝔸 → ℙ(𝕌) and (₣, 𝔸)  = {
<𝕋𝑥(₣(𝔸)),𝕀𝑦(₣(𝔸)),𝔽𝑧(₣(𝔸))>

𝑢
, 𝑢 ∈ 𝕌 } 

Where  𝕋(₣(𝔸)) ⊆ [0,1], 𝕀(₣(𝔸)) ⊆ [0,1] 𝑎𝑛𝑑 𝔽(₣(𝔸)) ⊆ [0,1] are the multi-valued numbers and they 

are given as; 

𝕋𝑥(₣(𝔸)) = [𝕋1(₣(𝔸))
−
, 𝕋1(₣(𝔸))

+
] . , [𝕋2(₣(𝔸))

−
, 𝕋2(₣(𝔸))

+
] … [𝕋𝑥(₣(𝔸))

−
, 𝕋𝑥(₣(𝔸))

+
]  

𝕀𝑦(₣(𝔸)) =  [𝕀1(₣(𝔸))
−
. , 𝕀1(₣(𝔸))

+
] . , [𝕀2(₣(𝔸))

−
. , 𝕀2(₣(𝔸))

+
]… [𝕀𝑦(₣(𝔸))

−
, 𝕀𝑦(₣(𝔸))

+
],   

      𝔽𝑧(₣(𝔸)) = [𝔽1(₣(𝔸))
−
, 𝔽1(₣(𝔸))

+
] . , [𝔽3(₣(𝔸))

−
, 𝔽3(₣(𝔸))

+
]… [𝔽𝑧(₣(𝔸))

−
, 𝔽𝑧(₣(𝔸))

+
].  

𝕋(₣(𝔸)), 𝕀(₣(𝔸)), 𝔽(₣(𝔸)) represent the truthiness, indeterminacy and falsity of 𝑢 to 𝔸 respectively. 

Definition 2.4: Neutrosophic Hypersoft Set [44] 

Let 𝕌 = {𝑢1, 𝑢2, … 𝑢𝒶} and ℙ(𝕌) be the universal set and power set of universal set respectively, also 

consider 𝕃1, 𝕃2, … 𝕃𝒷  for 𝒷 ≥ 1, 𝒷 well defined attributes, and corresponding. attributive values 

are the set 𝕃1
𝑎 , 𝕃2

𝑏 , … 𝕃𝒷
𝑧  and their relation 𝕃1

𝑎 × 𝕃2
𝑏 × … 𝕃𝒷

𝑧  where 𝑎, 𝑏, 𝑐, … 𝑧 = 1,2, … 𝑛 then the pair  

(𝔽, 𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 )  is said to be Neutrosophic Hypersoft set over 𝕌 where 𝔽: (𝕃1

𝑎 × 𝕃2
𝑏 × … 𝕃𝒷

𝑧 ) →

ℙ(𝕌) and it is define as 

𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) → ℙ(𝕌) and 

 𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) = {< 𝑢, 𝕋ℓ(𝑢), 𝕀ℓ(𝑢), 𝔽ℓ(𝑢) > 𝑢 ∈  𝕌, ℓ ∈ (𝕃1

𝑎 × 𝕃2
𝑏 × … 𝕃𝒷

𝑧 )}  where 𝕋, 𝕀, 𝔽 

represent the truthiness, indeterminacy and falsity of 𝑢 to 𝔸 respectively such that 𝕋, 𝕀, 𝔽: 𝕌 → [0,1] 

also 0 ≤  𝕋ℓ(𝑢) + 𝕀ℓ(𝑢) + 𝔽ℓ(𝑢) ≤ 3. 

3. Calculations 

In this section, NHSS is extended into the following: 

Notions: Following abbreviation will be used throughout the article, 

• Interval-valued Neutrosophic Hypersoft Set (IVNHSS) 

• m-Polar Neutrosophic Hypersoft Set (m-Polar NHSS) 

• m-Polar Interval-valued Neutrosophic Hypersoft Set (m-Polar IVNHSS) 

 

Example 1: (Following formulation and assumptions will be considered throughout as an example) 

Let 𝕌 be the set of different schools nominated for best school given as; 

𝕌 =. {𝕊1., 𝕊2., 𝕊3., 𝕊4., 𝕊5}. 

also consider the set of attributes as; 
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Assumptions: 

𝔸1 = 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠, 𝔸2 = 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝔸3 = 𝑂𝑛𝑔𝑜𝑖𝑛𝑔 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛, 𝔸4 = 𝐺𝑜𝑎𝑙𝑠 

And their respective attributes are given as 

𝔸1
𝒶 = 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠 = {ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑜𝑐𝑟𝑒, 𝑙𝑜𝑤} 

𝔸2
𝑏 = 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = {𝑔𝑜𝑜𝑑, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑝𝑜𝑜𝑟} 

𝔸3
𝑐 = 𝑂𝑛𝑔𝑜𝑖𝑛𝑔 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 = {𝑦𝑒𝑠, 𝑛𝑜} 

𝔸4
𝑑 = 𝐺𝑜𝑎𝑙𝑠 = {𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒, 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑑, 𝑢𝑝𝑡𝑜 𝑑𝑎𝑡𝑒} 

Formulation: 

₣: 𝔸1
𝒶 × 𝔸2

𝑏 × 𝔸3
𝑐 × 𝔸4

𝑑 →  ℙ(𝕌) 

Let’s assume  ₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) = {𝕊1, 𝕊5} 

Then one of, Neutrosophic Hypersoft set NHSS of above assumed relation is 

₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

= {𝕊1, (ℎ𝑖𝑔ℎ {0.9, 0.3, 0.1}, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 {0.8, 0.2, 0.4}, 𝑦𝑒𝑠 {0.4, 0.9, 0.6}, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 {0.6, 0.4, 0.5}) >, 

< 𝕊5(ℎ𝑖𝑔ℎ {0.5, 0.3, 0.8}, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 {0.6, 0.1, 0.2}, 𝑦𝑒𝑠 {0.6, 0.4, 0.7}, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 {0.4, 0.5, 0.3}) >} 

In this Example, 

Case 1: Substituting attributive values as; interval values in the form of neutrosophic, call it, IVNHSS.  

Case 2: Substituting attributive values as; m-neutrosophic values, call it, m-polar NHSS. 

Case 3: Substituting attributive values as; m-neutrosophic interval values, call it, IVNHSS. 

3.1 Interval-valued Neutrosophic Hypersoft Set (IVNHSS) 

Definition 3.1.1 IVNHSS 

Let 𝕌 = {𝑢1, 𝑢2, … 𝑢𝒶} and ℙ(𝕌) be the universal set and power set of universal set respectively, also 

consider 𝕃1, 𝕃2, … 𝕃𝒷  for 𝒷 ≥ 1, 𝒷 well defined attributes, and corresponding. attributive values 

are the set 𝕃1
𝑎 , 𝕃2

𝑏 , … 𝕃𝒷
𝑧  and their relation 𝕃1

𝑎 × 𝕃2
𝑏 × … 𝕃𝒷

𝑧  where 𝑎, 𝑏, 𝑐, … 𝑧 = 1,2, … 𝑛 then the pair  

(𝔽, 𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 )  is said to be .Interval-Valued Neutrosophic Hypersoft set IVNHSS, over 𝕌 

where 𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) → ℙ(𝕌) and it is define as 

𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) → ℙ(𝕌)  

And, 𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) = {< 𝑢, 𝕋ℓ(𝑢), 𝕀ℓ(𝑢), 𝔽ℓ(𝑢) > 𝑢 ∈  𝕌, ℓ ∈ (𝕃1

𝑎 × 𝕃2
𝑏 × … 𝕃𝒷

𝑧 )}  

Where  𝕋ℓ(𝑢) ⊆ [0,1], 𝕀ℓ(𝑢) ⊆ [0,1] 𝑎𝑛𝑑 𝔽ℓ(𝑢) ⊆ [0,1] are the interval numbers and 0 ≤ 𝑠𝑢𝑝𝕋ℓ(𝑢) +

 𝑠𝑢𝑝 𝕀ℓ(𝑢) + 𝑠𝑢𝑝 𝔽ℓ(𝑢) ≤ 3. The intervals 𝕋ℓ(𝑢), 𝕀ℓ(𝑢), 𝔽ℓ(𝑢) represent the truthiness, indeterminacy 

and falsity of 𝑢 to 𝔸 respectively. For convenience, we. assume that: 

𝔸 =< [( 𝕋ℓ(𝑢))
−
, ( 𝕋ℓ(𝑢))

+
] , [(𝕀ℓ(𝑢))

−
, (𝕀ℓ(𝑢))

+
] , [(𝔽ℓ(𝑢))

−
, (𝔽ℓ(𝑢))

+
] > where  

 𝕋ℓ(𝑢). = [( 𝕋ℓ(𝑢))
−
, ( 𝕋ℓ(𝑢))

+
] ⊆ [0,1],  𝕀ℓ(𝑢) = [(𝕀ℓ(𝑢))

−
, (𝕀ℓ(𝑢))

+
] ⊆ [0,1] 𝑎𝑛𝑑 

 𝔽ℓ(𝑢). =. [(𝔽ℓ(𝑢))
−
. , (𝔽ℓ(𝑢))

+
] ⊆ [0,1]. 

Example:  

     ₣: 𝔸1
𝒶 × 𝔸2

𝑏 × 𝔸3
𝑐 × 𝔸4

𝑑 →  ℙ(𝕌)   

Let’s assume  ₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) = {𝕊1, 𝕊5} 

Then Interval-Valued Neutrosophic Hypersoft set of above assumed relation is 
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₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) = {< 𝕊1,

(

 

ℎ𝑖𝑔ℎ < [0.4,0.9], [0.3,0.5], [0.1, 0.7] > ,

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 < [0.3,0.7], [0.3,0.4], [0.01, 0.17] >,

𝑦𝑒𝑠 < [0.41,0.49], [0.03,0.15], [0.18, 0.28] >,

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 < [0.12,0.54], [0.23,0.75], [0.51, 0.81] >)

 >, 

(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) = {< 𝕊5,

(

 

ℎ𝑖𝑔ℎ < [0.6,0.86], [0.53,0.65], [0.71, 0.89] > ,

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 < [0.3,0.4], [0.31,0.55], [0.01, 0.03] >,

𝑦𝑒𝑠 < [0.83,0.9], [0.23,0.59], [0.05, 0.09] >,

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 < [0.23,0.58], [0.03,0.3], [0.01, 0.1] >)

 >} 

Definition 3.1.2 Subset of IVNHSS 

Let 𝝍𝜾, 𝝎𝜾 ∈ 𝑰𝑽𝑵𝑯𝑺𝑺(𝕌). Then, 𝝍𝜾 for all 𝒙 ∈ ₣ is an IVNHSS subset of 𝝎𝜾 , denoted by 𝝍𝜾  ⊆ 𝝎𝜾.If 

𝝍𝜾(𝒙) ⊆ 𝝎𝜾(𝒙) for all 𝒙 ∈ ₣. 

Definition 3.1.3 Empty IVNHSS 

Let 𝝍𝜾 ∈ 𝑰𝑽𝑵𝑯𝑺𝑺(𝕌). If 𝝍𝜾 = 𝝓 for all 𝒙 ∈ ₣ then ℕ is called an empty IVNHSS, denoted by �̂�. 

Definition 3.1.4 Universal Set of IVNHSS 

Let 𝝍𝜾 ∈ 𝑰𝑽𝑵𝑯𝑺𝑺(𝕌). If 𝝍𝜾 = ₣̂ for all 𝒙 ∈ ₣ then ℕ is called universal set of IVNHSS, denoted by 

�̂�. 

3.2 m-Polar Neutrosophic Hypersoft Set (m-Polar NHSS) 

Definition 3.2.1 m-Polar NHSS 

Let 𝕌 = {𝑢1, 𝑢2, … 𝑢𝒶} and ℙ(𝕌) be the universal set and power set of universal set respectively, also 

consider 𝕃1, 𝕃2, … 𝕃𝒷  for 𝒷 ≥ 1, 𝒷 well defined attributes, and corresponding. attributive values 

are the set. 𝕃1
𝑎 , 𝕃2

𝑏 , … 𝕃𝒷
𝑧  and their relation 𝕃1

𝑎 × 𝕃2
𝑏 × … 𝕃𝒷

𝑧  where 𝑎, 𝑏, 𝑐, … 𝑧 = 1,2, … 𝑛 then the pair  

(𝔽, 𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 )   is said to be m-Polar Neutrosophic Hypersoft set m-Polar NHSS, over 𝕌 

where 𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) → ℙ(𝕌) and it is define as 

𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) → ℙ(𝕌)  

And, 

𝔽: (𝕃𝟏
𝒂 × 𝕃𝟐

𝒃 × … 𝕃𝓫
𝒛 ) = {

< 𝒖, . 𝕋𝓵
𝒊(𝒖), 𝕀𝓵

𝒋(𝒖), 𝔽𝓵
𝒌(𝒖) >. 𝒖 ∈  𝕌, 𝓵 ∈ (𝕃𝟏

𝒂 × 𝕃𝟐
𝒃 × … 𝕃𝓫

𝒛 ) ∶

𝒊, 𝒋, 𝒌. = 𝟏, 𝟐, 𝟑, …
} Also 

𝟎 ≤∑𝕋𝓵
𝒊(𝒖) ≤ 𝟏, 𝟎 ≤

𝒑

𝒊=𝟏

∑𝕀𝓵
𝒋(𝒖) ≤ 𝟏,   𝟎 ≤

𝒒

𝒋=𝟏

∑𝔽𝓵
𝒌(𝒖).

𝒓

𝒌=𝟏

≤ 𝟏 

 

Where  𝕋𝓵
𝒊(𝒖) ⊆ [𝟎, 𝟏], 𝕀𝓵

𝒋(𝒖) ⊆ [𝟎, 𝟏] 𝒂𝒏𝒅 𝔽𝓵
𝒌(𝒖) ⊆ [𝟎, 𝟏] are the numbers and 

𝟎 ≤∑𝕋𝓵
𝒊(𝒖) +

𝒑

𝒊=𝟏

∑𝕀𝓵
𝒋(𝒖) +

𝒒

𝒋=𝟏

∑𝔽𝓵
𝒌(𝒖).

𝒓

𝒌=𝟏

≤ 𝟑 

For our convenience, we assume that 

                            𝕋ℓ
𝑖(𝑢) = 𝕋ℓ1

1(𝑢), 𝕋ℓ2
2(𝑢), 𝕋ℓ3

3(𝑢), … , 𝕋ℓ𝑝
𝑝(𝑢) 

  𝕀ℓ
𝒋(𝑢) =  𝕀ℓ1

𝟏(𝑢), 𝕀ℓ2
2(𝑢), 𝕀ℓ3

3(𝑢), … , 𝕀ℓ𝑞
𝑞(𝑢)   

                            𝔽ℓ
𝒌(𝑢) =   𝔽ℓ1

1(𝑢), 𝔽ℓ2
2(𝑢), 𝔽ℓ3

𝟑(𝑢), … , 𝔽ℓ𝑟
𝒓(𝑢).  

Example:  

     ₣: 𝔸1
𝒶 × 𝔸2

𝑏 × 𝔸3
𝑐 × 𝔸4

𝑑 →  ℙ(𝕌)   
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Let’s assume  ₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) = {𝕊1, 𝕊5} 

Then in Neutrosophic Hypersoft set of above assumed relation is, 

 

₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

=

{
 

 

< 𝕊1,

(

 

ℎ𝑖𝑔ℎ < (0.01,0.003,0.1,0.023,0.07), (0.092,0.073,0.08,0.2,0.4), (0.2,0.017,0.06,0.13,0.3) > ,

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 <  (0.2,0.1,0.5,0.019,0.051), (0.21,0.14,0.27,0.009,0.1), (0.113,0.35,0.25,0.12,0.03) >,

𝑦𝑒𝑠 < (0.12,0.13,0.14,0.15,0.39), (0.17,0.20,0.24,0.15,0.1), (0.2,0.1,0.5,0.019,0.051) >,

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 < (0.2,0.017,0.06,0.13,0.3), (0.12,0.025,0.07,0.22,0.074), (0.01,0.003,0.1,0.023,0.07) >)

 >

}
 

 

 

.  

₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

=

{
 

 

< 𝕊5,

(

 

ℎ𝑖𝑔ℎ < (0.09,0.08,0.7,0.0260.05), (0.04,0.03,0.02,0.1,0.09), (0.32,0.51,0.06,0.03,0.12) > ,

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 <  (0.12,0.13,0.14,0.15,0.39), (0.17,0.20,0.24,0.15,0.1), (0.2,0.1,0.5,0.019,0.051) >,

𝑦𝑒𝑠 < (0.09,0.08,0.7,0.0260.05), (0.04,0.03,0.02,0.1,0.09), (0.32,0.51,0.06,0.03,0.12) >,

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 < (0.12,0.13,0.14,0.15,0.39), (0.12,0.025,0.07,0.22,0.074), (0.12,0.025,0.07,0.22,0.4) >)

 >

}
 

 

 

 

Definition 3.2.2 Subset of m-Polar NHSS 

Let 𝜻𝜾, 𝜹𝜾 ∈ 𝒎− 𝑷𝒐𝒍𝒂𝒓 𝑵𝑯𝑺𝑺(𝕌). Then, 𝜻𝜾  ∀ 𝒙 ∈ ₣ is an m-Polar NHSS subset of 𝜹𝜾 , represented 

by 𝜻𝜾  ⊆ 𝜹𝜾.If 𝜻𝜾(𝒙) ⊆ 𝜹𝜾(𝒙) for all 𝒙 ∈ ₣. 

Definition 3.2.3 Empty m-Polar NHSS 

Let 𝜻𝜾 ∈ 𝒎 − 𝑷𝒐𝒍𝒂𝒓 𝑵𝑯𝑺𝑺(𝕌). If 𝜻𝜾 = 𝝓  ∀ 𝒙 ∈ ₣ then ℕ is said to be an empty. m-polar NHSS, 

represented. by �̃�. 

Definition 3.2.4 Universal Set of m-Polar NHSS 

Let 𝜻𝜾 ∈ 𝒎 − 𝑷𝒐𝒍𝒂𝒓 𝑵𝑯𝑺𝑺(𝕌). If 𝜻𝜾 = ₣̂  ∀ 𝒙 ∈ ₣ then ℕ is called universal set of m-Polar NHSS, 

represented by �̂�. 

3.3 m-Polar Interval-Valued Neutrosophic Hypersoft Set (m-Polar IVNHSS) 

Definition 3.3.1:  m-Polar IVNHSS) 

Let 𝕌 = {𝑢1, 𝑢2, … 𝑢𝒶} and ℙ(𝕌) be the universal set and power set of universal set respectively, also 

consider 𝕃1, 𝕃2, … 𝕃𝒷  for 𝒷 ≥ 1, 𝒷 well defined attributes, and corresponding. attributive values 

are the set. 𝕃1
𝑎 , 𝕃2

𝑏 , … 𝕃𝒷
𝑧  and their relation 𝕃1

𝑎 × 𝕃2
𝑏 × … 𝕃𝒷

𝑧  where 𝑎, 𝑏, 𝑐, … 𝑧 = 1,2, … 𝑛 then the pair  

(𝔽, 𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 )  is said to be Interval-Valued. Neutrosophic. Hypersoft set IVNHSS, over 𝕌 

where 𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) → ℙ(𝕌) and it is define as 

𝔽: (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) → ℙ(𝕌)  

𝔽 =: {
< 𝑢, 𝕋ℓ

𝑥(𝑢), 𝕀ℓ
𝑦(𝑢), 𝔽ℓ

𝑧(𝑢) > 𝑢 ∈  𝕌, ℓ ∈ (𝕃1
𝑎 × 𝕃2

𝑏 × … 𝕃𝒷
𝑧 ) ∶

𝑥, 𝑦, 𝑧 = 1,2,3, …
} 

Where, 

𝕋ℓ
𝑥(𝑢) = [( 𝕋ℓ

𝑥(𝑢))
−
, ( 𝕋ℓ

𝑥(𝑢))
+
] ⊆ [0,1] 

𝕀ℓ
𝑦(𝑢) = [(𝕀ℓ

𝑦(𝑢))
−
, (𝕀ℓ

𝑦(𝑢))
+
] ⊆ [0,1]  

𝔽ℓ
𝑧(𝑢) = [(𝔽ℓ

𝑧(𝑢))
−
, (𝔽ℓ

𝑧(𝑢))
+
] ⊆ [0,1] 

 Also 
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𝟎 ≤∑𝑆𝑢𝑝 {𝕋𝓵
𝒙(𝒖)} ≤ 𝟏, 𝟎 ≤

𝒔

𝒙=𝟏

∑𝑆𝑢𝑝{𝕀𝓵
𝑦(𝒖)} ≤ 𝟏,   𝟎 ≤

𝒕

𝑦=𝟏

∑{𝔽𝓵
𝑧(𝒖)}

𝒗

𝒛=𝟏

≤ 𝟏 

And, 

𝟎 ≤∑𝑆𝑢𝑝 {𝕋𝓵
𝒙(𝒖)} +

𝒔

𝒙=𝟏

∑𝑆𝑢𝑝{𝕀𝓵
𝑦(𝒖)} +

𝒕

𝑦=𝟏

∑{𝔽𝓵
𝑧(𝒖)}

𝒗

𝒛=𝟏

≤ 𝟑 

For our convenience, we assume that: 

𝕋𝓵
𝒙(𝒖) = < [( 𝕋ℓ

1(𝑢))
−

, ( 𝕋ℓ
1(𝑢))

+

] , [( 𝕋ℓ
2(𝑢))

−

, ( 𝕋ℓ
2(𝑢))

+

] , … , [( 𝕋ℓ
𝑠(𝑢))

−
, ( 𝕋ℓ

𝑠(𝑢))
+
] >  

𝕀𝓵
𝑦(𝒖). = < [(𝕀𝓵

1(𝒖))
−

, . (𝕀𝓵
𝟏(𝒖))

+

] , . [( 𝕀𝓵
𝟐(𝒖))

−

. , ( 𝕀𝓵
𝟐(𝒖))

+

] . , … , [( 𝕀𝓵
𝒕(𝒖))

−

, ( 𝕀𝓵
𝒕(𝒖))

+

] >  

𝔽𝓵
𝑧(𝒖) = < [( 𝔽𝓵

1(𝒖))
−

, (𝔽𝓵
𝟏(𝒖))

+

] , [(𝔽𝓵
𝟐(𝒖))

−

, ( 𝔽𝓵
2(𝒖))

+

] , … , [( 𝔽𝓵
𝒗(𝒖))

−
, (𝔽𝓵

𝑣(𝒖))
+
] >  

Example:  

     ₣: 𝔸1
𝒶 × 𝔸2

𝑏 × 𝔸3
𝑐 × 𝔸4

𝑑 →  ℙ(𝕌)   

Let’s assume  ₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒) = {𝕊1, 𝕊5} 

Then m-Polar Interval-Valued Neutrosophic Hypersoft set of above assumed relation is 

₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

=

{
 

 

< 𝕊1,

(

 

ℎ𝑖𝑔ℎ < ([0.01,0.03], [0.1,0.23], [0.07,0.5]), ([0.072,0.073], [0.08,0.2], [0.14,0.32]), ([0.12,0.017], [0.06,0.13], [0.3,0.4]) > ,

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 <  ([0.2,0.21], [0.15,0.19], [0.02,0.03]), ([0.11,0.14], [0.27,0.39], [0.1,0.11]), ([0.113,0.35], [0.11,0.12], [0, 0.3) >,

𝑦𝑒𝑠 < ([0.12,0.13], [0.14,0.15], [0.39,0.4]), ([0.17,0.20], [0.14,0.15], [0.1,0.2]), ([0.1,0.11], [0.15,0.19], [0.01,0.09]) >,

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 < ([0.15,0.17], [0.06,0.13], [0.3,0.31]), ([0.12,0.25], [0.07,0.22], [0.07,0.09]), ([0.01,0.03], [0.1,0.23], [0.17,0.19]) >)

 >

}
 

 

 

.  

₣(ℎ𝑖𝑔ℎ , 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑦𝑒𝑠, 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)

=

{
 

 

< 𝕊5,

(

 

ℎ𝑖𝑔ℎ < ([0.01,0.03], [0.1,0.23], [0.07,0.5]), ([0.072,0.073], [0.08,0.2], [0.14,0.32]), ([0.12,0.017], [0.06,0.13], [0.3,0.4]) > ,

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 <  ([0.2,0.21], [0.15,0.19], [0.02,0.03]), ([0.11,0.14], [0.27,0.39], [0.1,0.11]), ([0.113,0.35], [0.11,0.12], [0, 0.3) >,

𝑦𝑒𝑠 < ([0.12,0.13], [0.14,0.15], [0.39,0.4]), ([0.17,0.20], [0.14,0.15], [0.1,0.2]), ([0.1,0.11], [0.15,0.19], [0.01,0.09]) >,

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 < ([0.15,0.17], [0.06,0.13], [0.3,0.31]), ([0.12,0.25], [0.07,0.22], [0.07,0.09]), ([0.01,0.03], [0.1,0.23], [0.17,0.19]) >)

 >

}
 

 

 

Definition 3.3.2 Subset of m-Polar IVNHSS 

Let 𝝕𝜾, 𝜷𝜾 ∈ 𝒎 − 𝑷𝒐𝒍𝒂𝒓 𝑰𝑽𝑵𝑯𝑺𝑺(𝕌). Then, 𝝕𝜾 ∀ 𝒙 ∈ ₣ is an m-Polar IVNHSS subset. of 𝜷𝜾 , 

represented by 𝝕𝜾  ⊆ 𝜷𝜾.If 𝝕𝜾(𝒙) ⊆ 𝜷𝜾(𝒙). for all 𝒙 ∈ ₣. 

Definition 3.3.3 Empty IVNHSS 

Let 𝝕𝜾 ∈ 𝒎 −𝑷𝒐𝒍𝒂𝒓 𝑰𝑽𝑵𝑯𝑺𝑺(𝕌). If 𝝕𝜾 = 𝝓. ∀ . 𝒙 ∈ ₣ then ℕ is said to be an empty m-Polar 

IVNHSS, represented by �̿�. 

Definition 3.3.4 Universal Set of IVNHSS 

Let 𝝕𝜾 ∈ 𝒎 −𝑷𝒐𝒍𝒂𝒓 𝑰𝑽𝑵𝑯𝑺𝑺(𝕌). If 𝝕𝜾 = ₣̂ ∀ 𝒙 ∈ ₣. then ℕ is called. universal set of m-Polar 

IVNHSS, represented by �̂�. 

4. Conclusions 

In this paper, the concept of Interval Valued NHSS, m-Polar NHSS and m-Polar interval-valued 

NHSS are proposed. The proposed sets have several significant features. Firstly, they emphasize the 

hesitant, indeterminate and uncertainty and can be used more practical to solve decision-making 
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problem. Secondly, some basic types of the proposed sets such as; universal set, empty set and subset 

of each type is defined. 

• Since this study has not yet been studied yet, comparative study cannot be done with the 

existing methods.  

• Further, this proposed can be applied immensely in various fields of research. In future, the 

present work may be extended to other special types of neutrosophic set like neutrosophic 

rough set etc. 

• The sets which are proposed in this paper can be applied in solving supply chain, time series forecasting 

and decision-making problem such as partner selection, wastewater treatment selection and renewable 

energy selection, by defining the following: 

• the aggregate operators,  

• distance measures, 

• matrix theory and   

• Algorithms. 
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