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Abstract: This paper introduces the concept of n-refined neutrosophic module as a new
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1. Introduction

In 1980s the international movement called paradoxism, based on contradictions in science and
literature, was founded by Smarandache, who then extended it to neutrosophy, based on
contradictions and their neutrals. [30]

Neutrosophy as a new branch of philosophy studies origin, nature, and indeterminacies, it was
founded by F. Smarandacheand became auseful tool in algebraic structures. Many neutro sophic
algebraic structures were defined and studied such as neutrosophic groups, neutrosophic rings,
neutrosophic vector spaces, and neutrosophic modules [1,2,3,4,5,6,7,8,90,11,12,13,14,15In 2013
Smarandacheproposed a new idea, when he extended the neutrosophic set to refined [n -valued]
neutrosophic set, i.e. the truth value T is refined/split into types of sub -truths such as (T, Tz,

6 & Usimilarly indeterminacy | is refined/split into types of sub -indeterminacies (11, 1281 68U1S—e1+‘71
falsehood F isrefined/split into sub -falsehood (F, F,..)) [17,18.

Recently, there are increasing efforts to study the neutrosophic generalized structures and spaces
such as refined neutrosophic modules, spaces, equations,and rings [5,14,21,22,23,24 Smarandache
et.al introduced the concept of n-refined neutrosophic ring [ 20], and n-refined neutrosophic vector
space [L9] by using n-refined neutrosophic set concept. Also, neutrosophic sets played an important
role in applied science such as health care, industry, andoptimization [25,26,27,28].

In this paper we give a new concept based on nrefined neutrosophic set, where we define and study
the concept of n-refined neutrosophic modules, submodules, and homomorphisms as a
generalization of similar concepts in the case of neutrosophic and refined neutrosophic modules

[13,14. Also, we discuss some elementary properties.
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For our purpose we use multiplication operation (defined in [20]) between indeterminacies

as follows:

All rings considered through this paper are commutative.

2. Preliminaries

Definition 2.1: [20]

Let (R,+, ) be aring and be n indeterminacies. We define

U= } to be n-refined neutrosophic ring.
Definition 2.2 : [20]

(@) Let  (I) be an n-refined neutrosophic ring and P = ={ },

where  is a subset of R, we define P to be an AHsubring if is a subring of R for all .

AHS-subring is defined by the condition for all

(b) P is an AH-ideal if  is an two sides ideal of R for all , the AHS-ideal is defined by the condition

for all

(c) The AH-ideal P is said to be null if for all i.

Definition 2.3 :[ 10Q]

Let (V, +,.) be avector space over the field K then ( V(I) , +,.) is called a weak neutrosophic vector
space over the field K, and it is called a strong neutrosophic vector space if it is a vector space over
the neutrosophic field K(I) .

Definition 2.4 : [13]

Let ( M,+,.) be a module over the ring R then (M(l),+,.) is called a weak neutrosophic module over the
ring R, and it is called a strong neutrosophic module if it is a module over the neutrosophic ring R(l).
Elements of M(I) have the form , i.e M(l) can be written as

Definition 2.5 : [13]

Let M(1) be a strong neutrosophic module over the neutrosophic ring R(l) and W(l) be a non empty
set of M(l), then W(I) is called a strong neutrosophic submodul e if W(l) itself is a strong neutrosophic
module.
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Definition 2.6 : [13]

Let U(l) and W(I) be two strong neutrosophic submodules of M(I) and let , We say

that f is a neutrosophic vector space homomorphism if

(@)

(b) is a module homomorphism.

3. Main concepts and results

Definition 3.1 :

Let (M,+,.) be a module over the ring R, we say that

is a weak n-refined neutrosophic

module over the ring R. Elements of are called n-refined neutrosophic vectors, elements of R
are called scalars.

If we take scalars from the n-refined neutrosophic ring , we say that is a strong

n-refined neutrosophic module over the n -refined neutrosophic ring . Elements of are

called n-refined neutrosophic scalars.
Remark 3.2:

If we take n=1 we get the classical neutrosophic module.

Addition on is defined as:

Multiplication by a scalar is defined as:

Multiplicati on by an n-refined neutrosophic scalar is defined as:

Where

Theorem 3.3:
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Let (M,+,.) be a module over the ring R. Then a weak nrefined neutrosophic module is a
module over the ring R. A strong n-refined neutrosophic module is a module over the n -refined
neutrosophic ring 0.

Proof:

It is similar to that of Theorem 5in [9].

Example 3.4
Let be the finite module of integers modulo 2 over itself, we have:
(a) The corresponding weak 2-refined neutrosophic module over the ring is
Definition 3.5 :
Let be a weak nrefined neutrosophic module over the ring R, a nonempty subset is
called a weak n-refined neutroso phic module of if is a submodule of itself.
Definition 3.6 :
Let be a strong nrefined neutrosophic module over the n -refined neutrosophic ring ,a
nonempty subset is called astrong n-refined neutrosophic submodule of if is a
submodule of itself.
Theorem 3.7:
Let be a weak nrefined neutrosophic module over the ring R, be a nonempty subset
of . Then is a weak n-refined neutrosophic submodule if and only if:
for all

Proof:
It hol ds directly from the fact that is is a submodule of
Theorem 3.8:
Let be a strong nrefined neutrosophic module over the n -refined neutrosophic ring ,

be a nonempty subset of . Then is a strong n-refined neutrosophic submodule if
and only if;
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for all
Proof:
It holds directly from the fact that is is a submodule of over the n-refined neutrosophic
ring
Example 3.9
is a module over the ring R, is a submodule of M,
}is the corresponding weak/strong 2 -refined

neutrosophic module.

is a weak 2-refined neutrosophic
submodule of the weak 2-refined neutrosophic module over the ring R.

is a strong 2-refined
neutrosophic submodule of the strong 2-refined neutrosophic module over the n-refined
neutrosophic ring
Definition 3.10 :
Let be a weak nrefined neutrosophic module over the ring R, be an arbitrary element of

, we say that x isa linear combination of { is

Example 3.11
Consider the weak 2-refined neutrosophic module in Example 3.11,

, we have

i.e x is a linear combination of the set over the ring R.

Defin ition 3.12:
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Let be a strong nrefined neutrosophic module over the n -refined neutrosophic ring ,
be an arbitrary element of , we say that x is a linear combination of { is
Example 3.12

Consider the strong 2-refined neutrosophic module

} over the 2-refined neutrosophic ring ,

= , hence x is a linear

combination of the set

over the 2-refined neutrosophic ring
Definition 3.15 :

Let be a subset of a weak nArefined neutrosophic module over thering R, X'is

a weak linearly independent set if
Definition 3.16 :

Let be a subset of a strong Arefined neutrosophic module over the n-refined

neutrosophic ring , X is a weak linearly independent set if

Definition 3.17 :

Let be two strong n-refined neutrosophic modul es over the nrefined neutrosophic

ring , let be a well defined map. It is called a strong n-refined neutrosophic
homomorphism if:
for all

A weak n-refined neutrosophic homomorphism can be defined as the same.
Definition 3.18 :

Let be a weak/strong n-refined neutrosophic homomorphism, we define:

(@)
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(b)

Theorem 3.19:

Let be a weak nrefined neutrosophic homomorphism. Then

€) is aweak n-refined neutrosophic submodule of .

(b) is a weak n-refined neutrosophic submodule of

Proof:

(&) is a module homomorphism since are modules, hence is a submodule of
the module , thus is a weak n-refined neutrosophic submodule of

(b) Holds by similar argument.
Theorem 3.20:

Let be a strong nrefined neutrosophic homomorphism. Then

€) is a strong n-refined neutrosophic submodule of .

(b) is a strong n-refined neutrosophic submodule of

Proof:

(&) is a module homomorphism since are modules over the n-refined neutrosophic
ring , hence is a submodule of the module , thus is a strong n-refined

neutrosophic submodule of

(b) Holds by similar argument.
Theorem 3.21:

Let be a strong nrefined neutrosophic homomorphism. Then
€)) is a strong n-refined neutrosophic submodule of .

(b) is a strong n-refined neutrosophic submodule of

Proof:
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(8 is a module homomorphism since are modules over the n-refined neutrosophic

ring , hence is a submodule of the module , thus is a strong n-refined

neutrosophic submodule of

(b) Holds by similar argument.

Example 3.22:
Let , be two weak
2-refined neutrosophic modules over the ring of real numbers R. Consider , Where

, Isaweak 2refined neutrosophic

homomorphism over the ring R.

Example 3.23:
Let ,

} be two strong 2-refined neutrosophic modules
of the strong 2-refined neutrosophic module over 2-refined neutrosophic ring (). Define

is a strong 2refined neutrosophic homomorphism:

Let , we have

Let be a 2refined neutrosophic scalar, we have

, hence s a strong 2refined neutrosophic

homomorphism.
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5. Conclusion

In this paper, we continuo the efforts about defining and studying n -refined neutrosophic
algebraic structures, where we have introduced the concept of weak/strong n-refined neutrosophic
module . Also, some related concepts such as weak/strongn-refined neutrosophic submodule ,
n-refined neutrosophic homomorphism have been presented and studied.

Future research
Authors hope that some corresponding notions will be studied in future such as weak/strong
n-refined neutrosophic basis of n-refined neutrosophic modules, and AH -submodules.
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Abstract: This research paper presents a neutrosophic mathematical representation of the elements of the digital
image by dividing the points of the digital picture matrix into neutrosophic sets (PNS - Picture Neutrosophic
Set), and studying the degree of connection between the points of the digital image for us to reach to the
connected neutrosophic sets. We have also introduced many mathematical theories and results to calculate the
difference and dissimilarity between the neu trosophic sets, which contributes practically in the comparison
between digital images and their different uses. Our results help mainly to upgrade and create new neutrosophic

algorithms for searching inside images and videos databases

Keywords: Neutrosophic set; connected neutrosophic set; picture neutrosophic set (  ); difference measure;

dissimilarity measure.

1. Introduction

The neutrosophic logic, which resulted in a revolution in the mathematical logic world , was first
introduced by Florentin in 1995[1, 2]. It is a generalization of intuitionistic fuzzy logic. Several papers
have been published in this field by Florentin and Salama et al[3-15]. It is necessary to take advantage
of the features of this logic in various applied sciences.

Having studied researches related to digital image processing [16-18], we have noted that
applied sciencesresearchers are interested inthe use of fuzzy logic, first introduced by Lotfi Zadeh
[19], for digital image processing because of its flexibility and appropriate features to deal with
different forms of digital images. Moreover, the neutrosophic logic is a generalization and extension
of fuzzy logic. It has provided many additional methods and tools, which we can be used to study
digital images w ith greater accuracy and comprehensiveness than before.

Digital image processing is mainly based on mathematical concepts [20-26], such as
mathematical logic, linear algebra (matrices), topology, statistics (especially Bayes' theory), Shannon
information t heory, and Fourier transform in different representations along with neural networks

Several researchers have performed studies specifying methods to measurethe dissimilarity,
difference and distance between NSs.Salama, Smarandache, & Eisa, (201427] have introduced image
processing via neutrosophic techniques. Mohana & Mohanasundari (2019) [28] have studied some
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similarity measures of single valued neutrosophic rough sets. Sinha & Majumdar (2019) [29] have

studied an approach to similarity measure between neutrosophic soft sets. Das, Samanta, Khan,
Naseem & De (2020) [30] also have a study on discrete mathematics: sum distance in neutrosophic
graphs with application.

We have organized this paper into 4 sections. In section 2, we discuss preliminariesabout digital
images and the neutrosophic set. In section 3, we have introduced newneutrosophic concepts such
as -; kUo(the extent to which the series of points (J belongs to the neutrosophic set S), and %:Lav
(the connection strength between the points Lavb 5, based on which we have deduced connected
neutrosophic sets. In addition, we have presented our vision in the field of distance and dissimilarity
measures inneutrosophic sets. In section 4, we have concluded our paper.

2. Preliminaries

2.1. Digital Image :[31] It is a representation of a two-dimensional image in the form of a matrix of
small squares, each image consists of thousands or millions of small squares, each of which is called
the elements of the image or pixels.

When the computer starts drawing the image, it divides the screen or printed page into a grid of
pixels. Then the computer uses the stored values of the digital image to give each pixel its color and
brightness. The images posted on websites or by mobile phone areexamples of digital images. For
example, the small picture (Felix) can be represented in Figure 1:

Figure 1: Image of Cat Felix [31]

With an array (35 x 35), its elements are composed of numbers 0 and 1. Each element indicates
the color of the pixel. It takes the value (0) for the black pixel and the value (1) for the white pixel.

Note that digital images using two colors are called binary or Boolean imag es.

Figure 2: Matrix representing the image of Cat Felix [31]
The grayscale images are represented by a matrix, each element of which specifies the

corresponding pixel intensity. For practical reasons, most of the current digital files use integers
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enclosed between zercO (for black pixels, very low color) and 255 (for the white pixel, the color is
super hard).

2.2. Neutrosophic Logic: [2] Was created by professor Florentin Smarandache in 1995. It is a
generalization of (fuzzy, intuitionistic, paracon sistent) logic. For any logical variable T in the
neutrosophic logic # itis described by :PEB; where:

PL 6 :T;: Truth membership function: a degree of membership function, for any T in the
neutrosophic set # and its values range in the open interval non -standard, where:

6:T;a# \ 2°& >

EL +:T;: Indeterminacy membership function: a degree of indeterminacy, for any T in the
neutrosophic set # and its values range in the open interval non-standard, where:

+:Ta# \ 17& >

BL (. :T; Falsity membership function: a degree of non-membership, for any T in the neutrosophic
set # and its values range in the open interval non-standard, where:

(c:T;8# \ 27& >

3. Neutrosophic Digital Image

Let / be the digital image matrix # so any pixel (point) of image A that is expressed by the
element L :T4J, of the matrix / has four horizontal and vertical adjacent points :T G saJ; and
:TaJ G s;and four diagonal adjacent points : T G sdJ G s;, so any point or pixel is surrounded by
eight adjacent points (8-adjacent), noting the cases where the point 2is present on the border of the

matrix / .[18]
3.1.Connected Neutrosophic Sets:

Definition 3.1 : Let 5be a subset of /. Forany L Mfrom § they are connected in 5 if you find a
path of points from 5 that connects L with Mas follows:

Ul L Lydsd 8 88lg,5d4 L M.

Where Lyis adjacentto Lyps (s Q EQ J).

We denote the connection relationship between LaJvby LéM

Obviously, the relationship ( € represents an equivalence relationship:

AABHATERA - S5UIIAPNEEM ce MLg = 6N=J0 EBEENRAMY = Lég

Remark 3.1:By introducing the concept of non - member function and the function of indeterminacy
to the neutrosophic logic, it has got more accuracy than fuzzy logic in different cases, such as an equal
degree of membership. Thus, we can introduce the order relation ( & between any two elements in
the neutrosophic set:

Definition 3.2: EL&VD 5 (5 is neutrosophic set), then:

§:L; O§g:M
LOMZ P:KN(G:L; P (G:M ag:L;L 6:M
KN +:L; R+:M agq:L;L g:M& (G:LiL (G:M
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Remark 3.2: The order relation (€ maintains its consistency with fuzzy logic in the case
of §:L; M G:M, and maintains consistency with intuitionistic fuzzy logic in the case of
G:L, MG:M = 6:L;L §:M

Example 3.1: :r&&; @ :raa; a:s&&; 0 :saad;
rdsag, © saaas; aryaay; @ :rysai;
Definition 3.3:[2] ELAMDSthen:3L QM 2z >6:L; Q6:M a+:L; R+:M =J@;:L; R(;:M?

A Qisd&;Lsc - rclLirds; QL?

Remark 3.3: EL4&VD5 o d . L
>L®:sdd;Lsgc - rclirés; @L?

h& L QM e LO®M

Definition 3.4:Let (VAL L L,d5448 &A4,584 L N series of adjacent points between the points
aV: LyD5 (5 neutrosophic set). The extent to which the series of points (U belongs to the
neutrosophic set S denote by -; kUo

-ikloL T a :Th U, =J@T & LjaEL r&& & ;

CE']kUOL‘("::LU;

Definition 3.5:The connect strength between the points LAVID 5 (5 neutrosophic set).
denote by %:L&V %:LaV L -1 kUo a-;:U; © -;kUo :EUAJAL& &V
e %:LaM L of5 - W

Theorem 3.1: 5 neutrosophic setand E L&D § then:
1 %:La; L L
2: %:Lav L %: M,
Proof:
1: Uyany path, from Lto L o -j:UsLece:ily & L
On the other hand:
The point L alone represents aserieswith a length of 0 from L to L then:
T y+ -1:Us L L
Thus: %:LA; L «f§ - U L L

2: Obviously. (by Definition 3.4)

Theorem 3.2: E LAVID 5 (S neutrosophic sef), then:

%:LaV Qe <o LaV
Proof:
Uany path, from Lto M(UA L L,d58 84,544 L Nl then:
-jkUoL ece il Qece ilydy; Loece LAV &L r&& &
® % LML *fSki:Us0 Qece LaAV

Definition 3.6: EL&MD5 Land Misconnected in 5 iff: %:LaV L <. :LaW.

Theorem 3.3: 5 neutrosophic setand E L&D 5 then:
Land Misconnectedin 5 7 1 UL L Lyds& dyosds L M: 25D5 = 2yRece. :LaV (forall ¥
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Proof:

Let U'pathfrom Lto : 23D5 - 2yR < L4V, then:

%:LAM L o f S ki:UoR-j:US Lece iLy R ece LAV

And %:LaVl Qe<e.:LaM (Theorem 3.2

Then: %:LaM L s<s.:L&V ce Land Mis connected in 5

On the other hand: L and Mis connected in , then:

I U'pathfrom Lto M: -j:U% L ef§ki:UoL %:LaV L e<e. :LaV
Thenforall 2;on Ulwe have: 2R -j:U% L ece. :LaV

Corollary 3.1: From the above we note that the relationship of the connection between two points is
the relationship of: 1: reflexivity, 2: Symmetry, 3: not necessarily transitive.
Proof:

1. %:La; L LL ece. LA,

2: ece.iLaM L %:LaM e %:MAL; L %:LaM L <. LAV

3: Let LaAwAVthree points from neutrosophic set 5L SLA&A?(/=PNERY:
M® L L Vthen:

%:LaM L %:MaV, L Mand %:La/, L MM e<ce. LAV, thus:
(Land Misconnectedin 5 and (Mand Visconnectedin 9, but (L and Vis not connected in §

Definition 3.7: 5neutrosophic set, 5is connectediff: >E LAVD5? ce %:La&V L ««< . :Lav?
3.2.0Operations on neutrosophic sets:

We will now in this section, we present our vision of distance and dissimilarity measures
between two neutrosophic sets.

Definition 3.8:Let 7 be the set of points of the matrix /, a representative of the digital image +
denote by 2 057; for set of all neutrosophic setsin 7 (2 0 5- Picture Neutrosophic Set).
For #& B 2057;

Union: #HE S L [QKG s, Qdabs,: Q&os,:QoaQD 7, where:
6:,.QL*f36:Q08,:Q;
ts, QL eco:+:Qa:Q;
(ce» QLo :Q&,:Q;
Intersection: #ePL Qkbg,: Qabe, Qdos,:QGoaQD 75where:
6ar, QL*:6:Q8&,:Q;
+s, . QLfS+:Qa:Q;

(°é»:Q L .fg:(" :Qé(»:QQ
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Example 3.2: Let us consider the following neutrosophic sets # and $in
7 L Q& &y &y swhere:

#L Qar&s;4Qasdadd;aQaryaas . dQardaas; =
$LQErdasad,aQasdavwmasaQasaas,aQardagad;=

Then:

#eé$L Qardsad,aQasada,aQasaas aQardaaad;=

#E S L QarssaQasaadda,dQaryaas,;aQardaas; =

Theorem 3.4:Let #& D 205:7;, then: (forall QD7)
#C$ ; %:Q Q6,:Q 4 +QR+t:Q =J@6-:QR(,:Q?
Proof:
#C$ ; #es$L S
*f%6:Q&,:QoL 6,:Q 6:Q Q6,:Q
;o Necok+:QaE:QoL Q@ ; P+:Q R+4:Q
ecok(o:Q&,: QoL (,:Q Q@ R(:Q

Definition 3.9:An operator 3@2057; H2057;\ 2057,

Is the difference, if it satisfies for all #&&6D 2 057;, follow properties:
DIF1: #33 C#

DIF2: #31 L #

DIF3: #C$ ; #3$L1

DIF4: EBC% : $3# Coua#

Theorem 3.5: The function 382 057; H2057; \ 2057, given by:
#3$ L @@3»:@&3» Qdog»QAaQD7?Where

63, QL fSr&d:QF6,:Q;
3, QLece:s&EE:+:QF+%:Q;;
(03 QLeoce:S&EE:(c:QF (,:Q;;
Is the difference between 2057, sets
Proof:
DIF1: #3%$ C#
:63»:(3 Lefsré&,:QFG6:Qo
EQDP7 ;¢ _*3:Q Lece@BEks:QF £:Q0A
8(03»:(3 Lece @BEK(:Q F (,:Q0A

Q6:Q? =J@ >Q6,:Q e 6:QF6:QQ6:Q"7

Hence: 63, QL fSkrd6:Q F6,:Q0Q6:Q

£+ Q Qs ® 4 QE+:QQsE+:Q
®+:QQsEks:QF +$:Qo

Hence: +3, Q L e<*:s&E:+:QF +:Q;; R+:Q

Similarity: (o3, Q L ¢<*:s&E:(:QF (,:Q;; R(::Q

Thus: #3%$ C# (by Theorem 3.4

+:Q Qs =J@ H
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DIF2: #31 L #
TL<arés; 8EQD7= e
65 QLfSr&&:QFr; L 6:Q
EQD7 e "+5:Q L e<eks&E:+:Q Fs;oL +:Q
(0g :Q L e<eks&E:(c:Q Fs;oL (c:Q
Then: #31 L #

DIF3: #C$ ; #3sL1
6:Q Q6,:Q 63:QLTr
#C$ 2z P+:Q R+:Q Z P+3:QLs 7 #3$ L1
(O:Q;R(»:Q; (03»:QLS
DIFA: EBC% : $3# Cud#
6,:Q Q6,Q 6,:QF6:QQ6,QF6:Q
$C% : Pt:Q R+,Q P+:QF+ QR+,QF+:Q
(»:QR(%:Q (»:QF(":QR(%:QF(°:Q
6,2:Q Q6 :Q
Pt2:Q R 43 :Q : $F#Cw%F#

(»3° :Q; R (1/80 :Q

Example 3.3:Let 7 L Q&Q&sand #&$ D2057;:

#L QaraasaadaQardada;aQardaas; =
$L<Qarddad;aQasaadasaQardaas,; =

Then: #3% L Qar&ass,aQa8rayasy , L arss,=

Definition 3.10:An operator &&2057; H2057; \ 7ré& >

Is the distance measure, if it satisfiesfor all #&&6D 2 057 ; follow properties:
DIS1: &#&;,Lr z #L $

DIS2: &:#&; L &: $&;

DIS3: &:#&4 Q & #&; E &:$&4

Figure 3: A three-dimension representation of a neutrosophic set [27]
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Theorem 3.6: The function &&2057; H 2057; \ 7ré& >given by: [27]

& #&; L ©U—SJI' 6 :Q; F6, QP E:+:Q;F4:Q8E:(c:Q; F(,:Q;;8?
Ugb

Is the distance measure between 2057 ; sets.
Proof: Obviously : &:#&; is generalization of the usually used to measure the distance of objects
in Euclidean geometry

Example 3.4:Let 7 L Q&Q&ysand #& BD+057;:
#L QaradasdaadQaraad.;dQaryaas; =
$L<QarysaaaQasaama,aQardagay,; =

Then: &y, #&; L §—i:rész r&wErdu L §—isé‘va Yr&xL r&

Definition 3.11:Anoperator &/ &2057;H 2057;\ :&/ja&/8&/,;, where:
&/ - denote the degree ofdissimilarity . (*r Q&/; Q)

&/ 4 denote the degree of indeterminate dissimilarity . (°r Q & /4 Qs

&/ . denote the degree of nondissimilarity. ( rQ &1, Qs

Is the dissimilarity measure, if it satisfies for all #&&6D 2 057 ; follow properties:
DISM1: &/ :#&t; L :r&&;

DISM2: &/ :#&; L &/ :$&#;

DISM3: #C$C% : &/ :#&, Q &/ :#&84 -~ &/ :$&6 Q &/ :#&%4

Remark 3.4:Let #& D 2057 then:
#3$; 8 :$3#; L Q6™ Q &l Q4 M QoaQb 7swhere:
6"Q LefSkefSkr& QF6 Qoaf3kiéhs QF6:QolL 6:QF6,:Q

QLo @<*@BBEEK+ QF t: QoA <* @BEkt:QF+: QoML sSF +:QF+:Q

("Q Loce @< BEEK-:QF(, QoA&<* @S EK(,:QF (c:QOMLSF (:QF(,:Q

Theorem 3.7: The function &/ &057; H2057; \ :&/ja&&/z8&/,;
Givenby, E#& D2057;8 &/ :#&; L &/ #&8,8&/ #8,8& [, #&;; where:
a
&1 #&; L—j'l' >6:Q; F6,:Q; ?
Ugs
a
&/ i #a: L—j'i SF +:Q F4:Q; ?
Ugs
a
&1, #&; L—jl’ SF (0 QF(,:Q ?
Uas

Is the dissimilarity measure between 2057; sets.

Mouhammad Bakro, Reema-Klamha and Qosai Kanafaii Neutrosophic Approach to Digital Images



Neutrosophic Sets and Systewsl. 36, 2020

20

Proof:

DISM1: &/ :#&, L r &&;

a

a
S S .
le g
st s 2
&l p#at L5l 3F +:QF+:Q ?L51 sFroLs
Ues Ve
st s 2
&/d:#é#;l-_\]' s F (°3QJ;F(01QJ;?L—Ji SFr?Ls
e Ve
DISM2 : &/ :#&; L &/ :$&;
s ° s 2
&/ #@i L1 >6:QiF6:Q 2Ll >6:Q F6:Q 2L &/ :$&
e g

a a

S, S,
&/ 5 H#E; L—JI SF +:Qy F +:Q; ?L—JI SF 4:Q; F+:Q; ?L &/ 4%,
a

a
S . S,
&1, #&,; L—JI SF (0:Qy F(,:Qs ?L—JI SF (0QF(:Q ?L &/, :$&

DISM3: #C$C% : &/ :#&, Q &/ #& -~ &/ :$&86 Q &/ :#&%
#CEC%: 6:Q Q6:Q Q6,Q

6:QF6:Q EG:QF6,Q L 6:QF6,Q

6:QF6:Q Q6:QF6,Q - 6:QF6,Q Q6:QF6,:Q

&1 #&, Q&/ | #&6 ~ &11:$846 Q&/ | :#&%
#CSC%: + QR+t QRHQ
+ QF+:Q E 4 QF+Q L +:QF+,:Q
+QF+$:Q Q+QF4%Q - $QFuQ Q +:QF #.Q
sF +QF+4:Q RsF +:QF+4,Q -sF $:QF Q@ RsF +:QF+,Q
&I HE, R&IAHELG -~ &I 386 R &/ A HES

Similarity, &/, :#&; R &/, #&% - &/ ,:$&%6 R &/, #&%

Then: &/ :#&; Q &/ #&6 -~ &/ :$&86 Q &/ #&4
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Example 3.5:Let 7 L Q&Q&sand #&$ D2057;:

#L Qardass, 4Qardaddad; aQassa;=
$LQaraddaaaQasaaad,;aQardssd; =
Then:
a .
i s . ta N
I >6,:QJ;F65>:Q-,;?L—u:ra/EsEs;L—uLra
Ugb

S

&/ :#a&, L 3

a
S . S s&
&/A:#$;L—JI SF +:Q; F+4:Qy ’?L—u:ré'sEra/Es;L—quég
Uas
a )
s S s, . . rg .
&/éz#aﬂs;L—Jl SF (0:Qy F(,:Qs ?L—u:ravEravEr;L—quaJ
Uap

Thus: &/ #&; L raa&aa;
4. Conclusion

By combining the concepts of algebraic with the neutrosophic sets, we introduce the
neutrosophic order relation ( €), the connected points, the connection strength between the points
inside the neutrosophic set and the connected neutrosophic sets. Thus, it became a new and
interesting research topic on which researchers can do further studies. In addition, in this paper, we
have defined the basic operations (union, intersection, difference) on the picture neutrosophic set
2057; We have proposed a new method for dissimilarity measure between 2057; sets These
measures andoperations are used basically in image processing and comparison. In the future, we
will study the properties of these measures and their applications in practical problems.
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Abstract: Assignment problem (AP) is well- studied and important area in optimization. In this
research manuscript, an assignment problem in neutrosophic environment, called as neutrosophic
assignment problem (NAP), is introduced. The problem is proposed by using the interval -valued
trapezoidal neutrosophic numbers in the elements of cost matrix. As per the concept of score
function, the interval-valued trapezoidal neutrosophic assignment problem (IVTNAP) is
transformed to the corresponding an interval -valued AP. To optimize the objective function in
interval form , we use the order relations. These relations are the representations ofchoices of
decision maker. The maximization (or minimization) model with objective function in interval form
is changedto multi - objective based on order relations introduced by the decision makers' preference
in case of interval profits (or costs). In the last, we solve a numerical example to support the
proposed solution methodology .

Keywords : Assignment problem; Interval -valued trapezoidal neutrosophic numbers; Score
function; Interval -valued assignment problem; Multi -objective assignment problem; Weighting
Tchebycheff program ; Decision Making.

Glossary

AP: Assignment problem. LP : Linear programming.

DM: Decision makers. MOLP: M ulti -objective linear programming
FN-LPP: Fuzzy neutrosophic LPP. MOAP: Multi -objective assignment problem

GAMS: General Algebraic Modeling System. | MOOP: Multi -objective optimization problem.
IVN : Interval -valued neutrosophic. NAP: Neutrosophic assignment problem .
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IVTNAP: Interval - valued trapezoidal

neutrosophic assignment.

1. Introduction

In important real -life applications, an AP appears such as production planning,
telecommunication, resource scheduling, vehicle routing and distribution, economics,
plant location and flexible manufacturing systems, and attracts more and more
researchers' attention [10, 13, 37], where it deals with the question how to set ¢ number of
people or machines to ¢ number of works in such a way that an optimal assignment can
be obtained to minimize the cost (or maximize the profit) .

Following these research objectives, the DM has to make an attempt for the
optimization of models starting from linear AP to nonlinear AP. In view of this, the linear
AP is a special kind of linear programming problem (LPP) where the people or machines
are being assigned to various works as one to one rule so that the assignment profit (or
cost) is optimized. An optimal assignee for the work is a good description of the AP,
where number of rows is equal to the number of columns as explained in Ehrgott et al.
[14. A new approach was developed to study the assignment problem with several
objectives, by Bao et al. H], which was followed with applications to determine the cost
time AP problem as multi ple criteria decision making problem by Geetha and Nair [16].

Few decades ago, a large number ofauthors and policy makers around the world have
investigated the basic ideaof fuzzy sets. The theory of fuzzy sets was, first, originated by Zadeh [45],
which has been intensely applied to study several practical problems, including financial risk
management. Then the fuzzy concept is also represented by fuzzy constraints and / or fuzzy
quantities. Dubois and Prade [13] suggested the implementation of algebraic operations on crisp
numbers to fuzzy numbers with the help of fuzzification method . However, AP representing real-
life scenario consists of a set of parameters The values of these parameters are setby decision
makers. DMs required fixing exact values to the parameters that in the conventional approach. In
that case, DMs do not precisely estimate the exact value of parameers, therefore the model
parameters are generally defined in an uncertain manner . Zimmermann [ 46] was the first solved LP
model having many objectives through suitable membership functions. Bellmann and Zadeh [6]
implemented fuzzy set notion to the decision -making problem consisting of imprecision as well as
uncertainty.

Sakawa and Yano B9 suggested the idea of fuzzy multiobjective linear programming (MOLP)
problems. Hamadameen [18] derived an approach for getting the optimal solution of fuzzy MOLP
model considering the coefficients of objective function as triangular fuzzy numbers. The fuzzy
MOLP problem was reduced to crisp MOLP with the help of ranking function as explained by Wang
[42]. Thereafter, the problem was solved with the help of the fuzzy programming method . Leberling
[28] solved vector maximum LP problem using a particular kind of non linear membership functions.
Bit et al. [7] applied fuzzy methodology for multiple  objective transportation mode |. Belacela and
Boulasselb [b] studied a multiple criteria fuzzy AP . Lin and Wen [29] designed an algorithm for the
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solution of fuzzy AP problem. Kagade and Bajaj P2] discussed interval humbers cost coefficients
MOAP problem. Yang and Liu [44] developed a Tabu search method with the help of fuzzy
simulation to determine an optimal solution to the fuzzy AP. Moreover, De and Yadav [11]
proposed a solution approach to MOAP with the implementation of fuzzy goal programming
technique. Mukherjee and Basu [32] solved fuzzy cost AP problem using the ranking method
introduced by Yager [43]. Pramanik and Biswas [36] studied multi -objective AP with imprecise
costs, time and ineffectiveness. Haddad et al. [17] investigated some generalized AP models in
imprecise environment. Emrouznejad et al. An alternative development was suggestedfor the fuzzy
AP with fuzzy profits or fuzzy costs for all possible assignments as explained by Emrouznejad et al.
[15]. Kumar and Gupta [ 26] investigated a methodology to solve fuzzy AP as well asfuzzy travelling
salesman problem under various membership functions and ranking index introduced by Yager
[43]. Medvedeva and Medvedev [ 31] applied the concept of the primal and dual for getting the
optimal solution to a MOAP. Hamou and Mohamed [19] applied the branch & bound based method
to generate the set of each efficient solution to MOAP. Jayalakshmi and Sujatha R1] investigated a
novel procedure, referred as optimal flowing method providing the ideal and set of all efficient
solutions. Pandian and Anuradha [ 34] investigated a novel methodology to determine the optimal
solution of the problem consisting of zero-point method which was introduced by Pandian and
Natarajan [33].

Khalifa and Al - Shabi [23] studied the multi -objective assignment problem with trapezoidal fuzzy
numbers. They introduced an interactive approach for solving it and then determined the stability
set of the first kind corresponding the solution. Khalifa [25] introduced an approach based on the
Weighting Tchebycheff program to solve the multi - objective assignment problem in neutrosophic
environment.

The extension of intuitionistic fuzzy set is the neutrosophic set. The neutrosophic set consists of
three defining functions. These functions are the membership function, the non-membership
function, and the indeterminacy function. All these functions are entirely independent to each other.
A new solution approach for the FN-LPP was proposed with real life application by Abdel et al.[3].
Kumar et al. [27] investigated a novel solution procedure for the computation of fuzzy pythagorean
transportation problem, where they extended the interval basic feasible solution, then existing
optimality method to obtain the cost of transportation. Khalifa et al. [24] studied the complex
programming problem with neutrosophic concept. They applied the lexicographic order to

determine [the optimal solution of neutrosophic complex programming. Vidhya et al. [4]] studied

neutrosophic MOLP problem. Pramanik and Banerjee [35] proposed a goal programming

methodology to MOLP problem under neutrosophic numbers. Broumi and Smarandaache [8]

introduced some novel operations for interval neutrosophic sets in terms of arithmetic, geometrical,

and harmonic means. Rizk-Allah et al. [38] suggested a novel compromise approach for many

objective transportation problem, which was further studied by Zimmermann's fuzzy programming

approach as well as the neutrosophic set terminology. Abdel- Basset et al.[1] introduced a

plith ogenic multi - criteria decision- making model based on neutrosophic analytic hierarchy process

in order of performance by similarity to the ideal solution of financial performance. Abdel - Basset et
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al. [2] evaluated a set of measurements for providing sustainable supply chain finance in the gas

industry in the uncertain environment. Abdel - Basset et al. [3]proposed an integrated method based

on neutrosophic set to evaluate innovation value for smart product - service systems.

In this paper, the assignment problem having interval - valued trapezoidal neutrosophic numbers
in all the parameters is introduced. This problem is converted into two objectives assignment
problem, then the Weighting Tchebycheff program with the ideal targets are applied for solving it.

The outlay of the proposed research article is organized as follows: In the next Section,
we present some sort of preliminaries, which is essential for the present study. Section 3
formulate interval -valued trapezoidal neutrosophic assignment problem. Section 4
proposes solution approach for the determination of preferred solution. A numerical
example is solved, in Section 5, to support the efficiency of the solution approach. In the
last, some concluding remarks as well as the further research directions are summarized
in Section 6.

2. Preliminaries

This section introduces some of basic concepts and results related to fuzzy numbes,
neutrosophic set, and their arithmetic operations.

Definition 1 . A fuzzy set € defined on the set of real numbers 9 is called fuzzy number
when the membership function

-é:é;ég \ > &?have the following properties:
* ¢ S;is an upper semi-continuous membership function;

€is convex fuzzy set, i.e., *¢. SEISF > Rece[o 5@ >, _forall $& B9a Q" Qsa

€is normal, i.e., 1 §, D9forwhich « :5,; L sa

PN PR

—'k€oL [D9& .5 Pr _is the support of €, and the closure ..:Z—'kéo; is
compact set.

Definition 2. ( Ishibuchi and Tanaka [20). An interval on 9is defined as
L >P&fV?L <faaf® Q f Q fV4f B 9=awhere fTisleftlimitand fYisright limitof &

Definition 3. (Ishibuchi and Tanaka [20]).The interval is also defined by
L Acdff AL<&GF f{ Q QfcE f; & P9 = where fg L—Z: fYEf’; is center and f; L
—Z:fVFf”; iswidth of &

Definition 4. (Neutrosophic set, Wang et al. [42]). Let : be a nonempty set. Then a neutrosophic set

_ZC of nonempty set X is defined as

"R L DB&s 47 45, D E
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where T é—TJ a 5,4 \ 7%, & >define respectively the degree of membership function, the

degree of indeterminacy , and the degree of non-membership of element TD: to the set _2(; with
the condition:

r. Q T, E_TJ E T, QU>. (1)
Definition 5. (Interval -valued neutrosophic set, Broumi and Smarandache [8]). Let

be a
Al
nonempty set. Then an interval valued neutrosophic (IVN) set 2: of : is defined as:

—MZ ~ ..
Ao P 2 Y P zY ~P zY v
rR L DﬁsaB—TJ a+, CaB—TJ CES CaB—TJ as, CASD E

where B—TPJ é—TYJ GéB% é—}(J Gand B—.Fr’J é—}fj C? > &?for each §D
Definition 6 . (Broumi and Smarandache [8]). Let

MZ % 0P 2Y ~oP 2Y ~aP 2 Y ~has
r L DﬁszaB—TJ a+, @B?J S @B—TJ as, CASS B Ebe IVNS, then

. —Mz P Y AP Y L P Y <N %

0] r IS empty if T L T L rég, L T Lsa—TJ L T, L sforall $b Rra

(ii) Let r L Aar&é Aand s L Aasaa A
Definition 7. (Interval-valued trapezoidal neutrosophic number). Let ——d 8™ ? ¥ &7
and fs8fgéf-4s P9 such that f5Q f6 Q f7 Q f& Then an interval-valued trapezoidal

fuzzy neutrosophic number,

AL Afséfodf-8fs:ac5at grfay gemfan gA
whose degrees of membership function, the degrees of indeterminacy, and the degrees
of non-membership are

A —g@—?f Aa """ Q8Q fsa
N '_.._- A & A
Ves | 3@ fe QSQ f7a
a = A ? , P « .
A 2@, Aa f1 Q8Q fsa

Ora — St ™.t
A =TEEESAT U Q8Q fod
AL, = ey “ .

o« - & Ela f6 QSQf7a (2)

S L AT e, Q8Q el

Osa —St ™.t
PVSUQGV? - 2 ~im g .
%a fs QS Q fea
L ™ "M Q8Qfra

|:

A 0%

Osa
Where,

QaRzaand Sy are the upper bound of membership degree,
indeterminacy degree, and lower bound of non-membership degree, respectively.

A V?2_/>U @i _0?Vi 2An « P
A VUMY 4o Q8 Q fod

- AACTE:

lower bound of
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Definition 8 . (Arithmeti c operations). Let &L Afsafeéf;4fs: acbay g 58 ) ge™ba™y ghand
€L A,:8,64,4 40045 gcbal ge™a™ gfbe two IVN numbers . Then,

AR 8L AfsE 586 E .68 E.7&4s E.;daaA
2. AS 8L AfsF ,g8fs F.78f F.c8fc F.5;a 44/
Afs,58f6,68f7,78s.8:8 8 4 A fgPrggPra

3. AV &L PAfs,s8c.78f7.68s.5:8 44 A3 OrggPr,
Af8!186f7n7af6116af5"5 aa % f8 O ran Ora

~ Afs .e8fc w787 we8fs 5@ AA R P TP A
4. AU L PAfg .58f7 .78fc .68fs .58 aaAxfg Orgg Pr
Afg w597 w686 n79s »g;8 @@ Axf[g Orgg Ora
A‘ fod foe fr8 fo;a058% gfg § gerkam gl Pr
A« foee f1& foar fs;05a% FCRE Y gc™ha™ ghe Ora
6. E>L As fgbs f18 fod5 f5,ac——a—-gaca § gemnba gAaMra

5. «ALJ

Where, L o<-k—a——a)a<-k—— 45 0CA L ofsk”aé“ aoa-fsk~ J ogdand
Lof Sle\PaTnP doa f SkTMY aTMY O

Definition 9. (Score function, Tharmaraiselvi and Santhi [40]). The score function for the IVN
number AL Afsé4féf,4f5;a c—a—- o a gacTNPaTW gA is defined as

s .
SR L?X:f5E fe Ef7E fgi HCYsEksF « ,0oE:sF @A

3. Problem statement and solution concepts
3.1 Assumptions, Index and notation

3.1.1. Assumption

We assume that there are ¢ number of jobs, which must be performed by and -«
persons, where the costs are basedon the specific assignments. Each job must be
assigned to exactly one person and each person has to performexactly one job.

3.1.2. Index

4 Persons.
& Jobs.

3.1.3.Notation
kég.p:: % Interval -valued trapezoidal neutrosophic cost of  <— Serson assigned to (E jo8.

SqaNumber of & —j8bs assigned to < — Berson.
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Consider the following interval -valued trapezoidal neutrosophic assignment problem (IVTNAP)

(IVINAP) <+ &7 Al Alakag, Sn

Subject to
A!:@S Syl S&E s& & & (only one person would be assigned the E joB)
Algs Sgik s& L s& & & (only one job selected by <— ferson)
Sgnb r orl.

numbers.
Based on score function defined in Definition 9, the IVTNAP in converted into the following
interval -valued assignment problem (IVAP)

(IVAP) <o MZA A AgCoadSn
Subject to
TD: L[AgSH SAE sa & 2aAg S saLsa@ aadlr "s.
Definiton 10 . TH: is solution of problem IVAP if and only if there is no UD: satisfies
8l Qpy (58" 8 Og; &
Or equivalently,
Definition 11. TH: is solution of problem IVAP if and only if there is no &P  satisfies that

& Qg 8.
The solution set of problem IVAP  can be obtained as the efficent solution of the following MOAP:
<o V4 G;
Subject to Sb . 3)

Using the Weighting Tchebycheff problem, the Problem (3) is described in the following form

<e (&
Subject to
™cVF & gQa# (4)
™cCF & gQo&
$b .

Where ™4™ Rra a'dand 2 are defined as the ideal targets.

4. Solution procedure

Thesteps of the solution procedure to solve the IVTNAP can be summarized as:
Step 1. Formulate the IVTNAP
Step 2: Convert the IVTNAP using the score function (Definition 9) into the IVAP.
Step 3: Estimate the ideal points <F and <*for the IVAP from the following relation

&L eV

Subjectto §B , and
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G| o G

Subjectto §B
Step 4: Determine the value of individual maximum and minimum for  every objective function
subject to given constraints.
Step 5: Compute the weights from the relation
NS AN A7 oa?
2z ™ L 22

™
L L

AN AN s [R 7o A2 AN AN s (A7 9 A2 ®)
I~ 28Np>| A7 277 I~ 28Np>| A7 277

-V -G oo : - .
Here , and _V, © are the value of individual maximum a nd minimum of the Va

f 1 Caespectively.

Step 6: Applying the GAM S software to problem (5) to obtain the optim um compromise solution,
and hence the fuzzy cost.

Step 7: Stop.

The flowchart of the proposed method is presented in Figure 1, below.
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5. Numerical e xample

Consider the following IVTNAP

AsVés yit s& z, 81 §& § 2or Ba& w%r avdr § D& 5
R Acs Us ZA r & v; 08T & & %01 Adr A8 A& KPS op
R Atr & waurdu war aésd %rd & 4% & A, £
R Asws zA udur,ar §scadrdad adraaads;s F
R Ax& rés s War X& 2 Sa a%r 4 a X Mg 4
R:&svészétuéur;éw&éd%r&éé/%rmér&y?ﬁémﬁ

Asuszarav,&r g 25 3a8Braayl,; g
RASUSZArav,8rda §% 4 aabr ad x5,
R Asvisxdsdu,arxag@raaxxraaa™, |

'|'|; '|'|; '|'|; '|'|; '|'|; '|'|;

mh

Subject to

Algs Tosk S&FL s& aiaAlg Ty b SAEL s& &
Sgpk r or 1.
Step2:
7865 AV s E XXt WAy BsgE>sVvlruy @ z3v X t &5 ;

<o ZMA L >srdstwis Wy Vs E VAXKZ YW sE {&ydsuwuy®;, M
WX twsry zst@®, sEnswxtdsra st gE yasrkuy %, ;

Subject to

Algs Tyvk saFL s& aiaAlg TyyL SaEL s& &
Sgrk r or 1.
Step4: Wedetermine optimal solution for the following problems individually with respect to
the given constraints:

ST, s E{AIy Mg ESZvXtT,ESWyWssE XZy Wy g

AL e VLT, 6 5 3
SWUYyW,EsryzstlysEsrastibgEsr&uyW;,

B o GL IsrT55Ey:'{xzng6Es>éivT57Est&{uy\IésEV\é(un6
ssAvw Xy E zAdrustWsEyguvuyiwE {&szyW,

ST, s E{AIy W gESZvXtT,EsWyWysE XZy Wy g

& V
fs oL SWUYW,Esrg§zstiysEsraustlgEsr&uyWw,

SIT5sEydxzyWeE sxals;Esta{uyWsEWK Uy Wg

& G
f$ =L Iss;ﬂvwxfrg\hEzélrust\7l775Eyé3(uquy\gE{aiszyW7

Subject to

Algs Tyvk saFL s& aldAlg TyyL saEL s& &
gnk rorl
L <o V0it{asa EL <o SLtvaxa f8 VLvtava f3 CL uxuu
Step5: Calculate the weights
SV

Ss L——
twa w

. i SSsXy .
Lravvtwat S L—— L r&wyvy
t Wiy s
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Stef®: Determine the optimal solution of the problem:
<e (&
Subject to

SSA&sE{AyBESZAVXtH,ESHY s E XY B 6 Qt{asa
SWUYS,Esr&zstsEsraist@gEsr&uysy,F szvuted

SI&sEYdXzZyBgE sSxiSs,Esta{uySsEWk Uy, o
ssSAVWX By E zdrust @ sEyduvugwE {dszysy,F téi;zw{cﬁ)Qtva{)“?l
$b
The optimal compromise solutionis §5L s&5L sasS;;L sa
el S&7L S5L Ss7L §;5L §,5L r,and cel rédrsv
So, the interval -valued trapezoidal neutrosophic optimum value is
(SN2 Auvay LA K X BT & & 2T dudr &%t aver A

It is evident that the total minimum assigned cost will be greater than uvand less than x x. The
total minimum assigned cost lies in between vuand wwthe overall satisfaction lies in between
xr” and zr". Then, for the remaining of total minimum assigned cost, the tr uthfulness degree is

ATEEZ?@SCA8 TTUVQEQV A
VesHsrrL TROEE L udeQwd
Axaaa?@ngAa wwR S Q xxa
O ra —S 1™t

Also, the indeterminacy and falsity degrees for the assigned cost are

B T2V>AFAE?2V?TE

< 5778 a~""uvQsQvua
— et T'vuQsSQww
a =’ A?IP>AFABE?: 1?2V, LAy « .
h#a WVQSQX)@
o) sa — St ™ot
BTV>ABDAL2V?T 8 L~y - .
~ 5778 a~‘"uvQsQvu
. ™4 TttvuQsSQww
g's’ L AV?OSHADAA2: 2V, L a Ly N
A 2ee a "'ww SQxx
@) sa —St” ™t

Thus, the DM concludes that the total interval-valued trapezoidal neutrosophic
assigned cost lies in between uvand xxwith truth, indeterminacy, and falsity degrees
lies in between > && &%y aa&?and > &aé& §?7 respectively, and also he is able to
schedule the assignment and constraints under budgetary.

6. Concluding remarks and further research directions
The present research article addressed a novel solution methodology to theassignment problem
with objective function coefficients characterized by interval -valued trapezoidal neu trosophic
numbers. The problem is transformed to the corresponding interval .valued problem, and hence
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into the multi -objective optimization problem (MOOP). The n, the so obtained MOOP is
undertaken for the solution by using the Weighting Tchebycheff problem beside the GAMS
software. The advantage of this approach is more flexible than the standard assignment problem,
where it allows the DM to choose the targets he is willing.

For further research, one may incorporate this concept in transportation model. Also, one may
consider the stochastic nature in assignment problem and develop the same methodology to
solve the problem. Additionally , one possible extension might be explored by considering the
fuzzy -random, fuzzy -stochastic, etc. In addition , the proposed solution methodology may be
applied in different branches (viz. management science, financial management and decision
science) wheae the assignment problems occurin neutrosophic environment.
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Abstract: In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We
then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting
the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related
theorems for Neutrosophic trees.

Keywords: Neutrosophic trees;totally and partial Connectivity indices ; maximum spanning tree ; strong
spanning tree; strong cycle; strong edge

1. Introduction

In recent years, neutrosophic graphs as one of he new branches of graph theory has been welcomed
by many researchers and a lot of work has been done on the features and applications of this particular
type of graph [1, 2, 46, 17-25]. One of these is finding the spanning tree in neutrosophic graphs. In an article
by S.Broumi et al. [7], an algorithm for finding the minimum spanning tree is presented. Using the score
function, they calculated a rank for each edge, then constructed a minimum spanning tree based on the
lowest score. Other people, including I.Kandasamy [13], also provided algorithms for the minimum
spanning tree in the Double-Valued neutrosophic graph .

What we present here is an algorithm for finding the maximum spanning tree in neutrosophic graphs.
Our proposed algorithm is similar in appearance to the algorithm presented in [7] but differs from it. First,
the algorithm is presented for graphs that have weighted edges, while our algorithm includes the general
state of the neutrosophic graphs. The second difference is in how you choose to build the tree. In [7], the
scorefunction is used and we use the strength function. The strength function has the advantage of having
a more realistic view of indeterminacy -membership (I). In fact, in this fu nction, we have improved the effect
of effect indeterminacy -membership (1). In [7, 16, the effect of falsity -membership (F) and indeterminacy -
membership (1) was the same, which does not seem very appropriate due to the different nature of falsity -
membership (F) and indeterminacy -membership (1).

The definition of a neutrosophic tree used in this paper is similar in structure to the definition given
in [12]. The difference between the two definitions stems from the difference in the definition of the strength
of connectivity between the two vertices.

2. Preliminaries
In this section, some of the important and basic concepts required are given by mentioning the source.
Definition 1. [3] A single-valued neutrosophic graph on a nonempty 8isapair ) L :04 ;. Where Ois
single-valued neutrosophic setin 8and / single-valued neutrosophic relation on 8such that

6 QRQe<*<G Q&K R=
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# QRQe<*<¢:Qé&:R=
(£:1QRQf5(¢c:QdcR=

For all Q&R B8 0 is called single-valued neutrosophic vertex set of ) and, / is called single-valued
neutrosophic edge set of ), respectively.

Definition 2. [12] A connected SVN-graph ) L :04& ;is said to be a SVNtree if it has a SVN spanning
subgraph * L :0&b;which is a tree, where for all edges Q Rot in H satisfying

6e:QROG! :QR #QRP 4 QR (£:QRP (J:QRa
3. Neutrosophic tree

In this section, the types of edges are first classified and defined in terms of edge strength. Then we
will provide some other definitions depending on the type of edges. Based on the strength of connectivity
between the end vertices of an edge, edges of neutrosophic graphs can be divided into two categories as
given below.
Definition 3. An edge Q R a neutrosophic graph ) L :0& ;is called

a. A e<t'edgeif %10Q-06 QR L %100QR =J@ 100QR M/ QR

b. A "8 tédgeif %10Qr66 QR L %100QER =J@ 100 QR L/ QR

C. A BF™E e"aSedf %10Q,06: QR O N10Q0QR =J@
%1000 L kb QR QR £ QRoL/ :QRa

d. A SF ™ME e eSedif %10Qec QR O %100QR =J@%L0QQR M/ QR4

Example 1. Consider the neutrosophic graph ) L :0& ;on 8 L <&&4aaB-as shown in figure 1.

Figure 1. A neutrosophic graph

Table 1. The grength of connectedness between each pair of verticesQand R
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o{zz.:> &e 0{z2z2g47,e> a8 y >0
=& (0.3,0.3,0.5) (0.3,0.5,0.7) (0.2,0.3,0.5)
=a@ (0.3,0.3,0.5) (0.2,0.3,0.5) (0.3,0.5,0.7)
> (0.6,0.4,0.5) (0.6,0.4,0.5) (0.3,0.4,0.7)
>a@ (0.5,0.3,0.5) (0.5,0.3,0.7) (0.3,0.7,0.5)
>8A (0.7,0.30.5) (0.3,0.4,0.7) (0.7,0.3,0.5)
>B (0.8,0.2,0.1) (0.1,0.6,0.7) (0.8,0.2,0.1)
?78A (0.6,0.4,0.5) (0.3,0.4,0.7) (0.6,0.4,0.5)
78 (0.6,0.4,0.5) (0.6,0.4,0.5) (0.1,0.6,0.7)
@A (0.5,0.3,0.5) (0.3,0.5,0.5) (0.5,0.30.7)

As can be seen in Table 1, edge> and ? Bure weak, >A>Bind ? Are SF OPNKA@ Ca#nd =?2=@> @

and @a#e $$ OPNKA@CA

Definition 4. A path in a neutrosophic graph is called a $F O P N KLJ®f all its edges are $F O P N laddC
called a $& O P N K.JX®f all its edges are $& O P N KAIL® is said to be a O P N KLX®if all its edges are
either SF OPNKAJ@ GrAS & OP N KAJ@.C A

Definition 5.Let ) L :04 ;be a neutrosophic graph and %be a cycle in ). %called strong cycle if all its
edges are either SF O P N KAJ@ 6rA$ & O P N KAJ@.C A

Definition 6. Let ) L :0& ;be a neutrosophic graph. ) called a neutrosophic tree if it has no strong cycle.

Example 1. Consider a neutrosophic graph ) L :0& ;and * L :#&;as shown in figure 2.

a. ) is not aneutrosophic tree
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b. *is a neutrosophic tree
Figure 2. a. ) is not a neutrosophic tree and b. * is a neutrosophic tree

Itis clear from fig 1 that ) is not a neutrosophic tree. Since ) contains strong neutrosophic cycles.
Cycles such as=> @=> A @=> ? A @ct: are strong neutrosophic cycles in). But * is a neutrosophic
tree, * has no strong neutrosophic cycle.

Definition 7. Let ) L :0& ;be aconnected neutrosophic graph and 64as a neutrosophic spanning
subgraph of ) that 6spanned by the vertex set of ) and 6Yis a tree If the edges of 6are selected from
) such that for each edge Q Rf 6 Q I either $F O P N KAJ@ GrA$ & O P N KAJ@.CTAen 6called a
strong spanning tree and denoted by :55 6a

Definition 8. Let ) L :04 ;be a connected neutrosophic graph with at least one strong spanning
tree. Then the strength of strong spanning tree in ) is defined and denoted by

VEt6eQRF t (£:QRF %:QR
X

56;L 1 5QRL I
& ébl & ébl

Also, F called maximum spanning tree if 5:(; R 5:6;for any strong spanning tree 6

Theorem 1. Let ) L :0& ;be a connected neutrosophic graph. Then) is a neutrosophic tree if and
only if the following conditions are equivalent forany QR B8
a QRBa$SFOPNKA@CA

b. k%100 QR&61003QR &@6100,QROL :6£: QR QR £ QR.
Proof. This theorem can be easily proved by defining a strong edge.

Definition 9. Let ) L :04& ;be the Neutrosophic Graph. The —f "5« Pboe”" < %o 5+ " SN¥f ) is
defined as

2%+);L | & Q6 :R%1L00:QRE

e#DC

29%#H ;L I t Qt:R%100:QRA
e#DC

2%4);L | (c:Q(c:R%100:QR4
2% DG
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Where % 100 :Q&R is the strength of truth, % 100:Q8R is the strength of indeterminacy and
% 100 : Q&R is the strength of falsity between two vertices Qand Rwe have

%100 QR L efde<e6:A AD2=J@ESGL=P>APSAXRI @4
%100 QR L ece fS4A AD2=J@EOGL=P>APSAXI @A
%100 QR L ecowf3(eA AD2=J@EOL=D>APSAXI @A

Also, the $¢81 'We”" <%0 S+ e FNbf ) is defined as

VEtZ%i-ﬁ);FtZ%é‘t');FZ%xH);a

6%:¥; L
6. ) ~

3.1. Maximum spanning tree
In this section, a version of the maximum spanning tree discussed on a graph by strength of edges.
In the following, we propose a neutrosophic maximum spanning tree algorithm, whose computing

steps are described below. Note that thestrength function 5:Q RL 2281#8€76¢wi€a?h 08 s 1saq to

label here.

The algorithm for finding  the maximum spanning tree (MST)

Here, the input is adjacency matrix / L C6;EkQJQ/Oé+;EkQ;Q/Oé(;EkQ)QO;%Hé of the neutrosophic
graph ) L :0& ; and outputis a tree ( with weighted edges.

Step 1. Input matrix /;

. . 8>6i Ak‘\“?G‘AZ‘\“'?AAZ\\”‘
Step 2. Using the strength function 5kQMQoL —XiCEE?0 CEE7 56

neutrosophic matrix into a strength matrix 5L dSkQJQo%Hé;

Step 3. Iterate steps 4 and 5 until all J F selements of S are either labeled tor or all the nonzero
elements of the matrix are labeled;

Step 4. Find the / either column or row to compute the unlabeled maximum element 5kQQ0
which is the value of the corresponding are AQQob/ ;

Step 5. If the corresponding edge AkQQoD/ of chosen 5produce a cycle whit the previous
labeled entries of the strength matrix 5than set 5kQQoL relse label 5kQQ0

Step 6. Design the tree ( including only the labeled elements from the 5which will be computed
/5 60f );

Step 6. Stop (end algorithm).

, convert the

Example 3. Consider a neutrosophic graph ) L :0& ;on 8 L <Q&Q &Y & & & =as shown in Figure 3.
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Figure 3. a neutrosophic graph ) on 8 L QaQ & & =

And
(o rdadax v rddaay; v T g
T:ravara\era(; r raa aa ay, rxaae §, ryaadla al; :ra\era/ara;;m
/ LT r rada aa ay, r r rava ala ay, rdva va X,
lraaaay, rxaaay, r r ryFATAE; r Ki
1 r ryTATA; rvaaTd rx&dad y; r r N
| r TR AT X, r¥TNTX; r r r O

Using the strength function 5kQQoL il %ké‘ﬁp%éf/“:é&ﬁ”’/“:é@s we have
i "r ravsy "r r::a:vzu "r "r n
&Sy r ravzur@wrrywr rdvxy
SKQQOLI T ravzu r r ravzuravu
fr&zuravwr r r ravwr r K
For rwr r&zurdwr r r N
Iy ravxy ravuu r r r O

Figure 4. A neutrosophic graph ) whit strength of edges
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Now search the matrix 5to find the maximum value and select the edge corresponding to the row and
column of that element. The following figure edge Q Qis highlighted.

i r ravsy r r’ezu or A
jravsy r ravzuravwrrywr ravxy,
ir&zu ravwr r r ravwr r i
Fr rywr ravzurawr r r N
Iy ravxy ravuu r r r O

Figure 5. An edge @ Qis highlighted

The next maximum element 0.583 is marked and corresponding edges QQ and QQ, but the
simultaneous selection of these two edges causes the formation of a cycle, so we choose one of these two
edges arbitrarily and ignore the other.

i "r ravsy "r r::a:vzu "r "r n

TAVSY T TAVZUTAVWITHWI ravxy

SKQQOLE T rz:{wzu r r ré.i.rvzure'wu
r&zu ravwr r r ravwr r K
T r  rywrravzuravwr r r N
Iy ravxy ravuu r r r O

Figure 6. An edge Q@ is highlighted
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Continuing this process, edges QQ, QQ and QQ are selected, respectively. The maximum
spanning tree is obtained as figure 8.

Figure 7. The edges @ Q and Q Qare highlighted

Figure 8. Maximum spanning tree (/5 6)

As it was observed, the selection of the maximum spanning tree was not unique, so neutrosophic
graph ) L :04& ;is not aneutrosophic tree, also ) contains a strong neutrosophic cycle.

Note. Obviously, if ) L :04 ;has a unique strong spanning tree, it will also have a uniqgue maximum
spanning tree, but the conversely is not necessarily true.

3.2. Partial connectivity index in  the neutrosophic tree
In this section, the results of examining the Partial connectivity index and totally connectivity index

on the neutrosophic trees are presented and proved.

Theorem 2. Let ) L :0& ;be a neutrosophic graph. Then 6 %:> F Q RL 6 %:¥;if and only if eith er Q B
a weak edge orneutral edge.

Proof. The proof of this theorem is clear using definition 8.

Corollary 1. Let ) L :0& ;be a neutrosophic graph and, Q B an edge in ), Q B a bridge ifand only if QR
is either $F OP NKAI@ 6rA3 & O P N KAJ@.C A
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Corollary 2. Let ) L :04 ;be aneutrosophic graph. Then forany QR6 %:¥ F Q RM6 %:};if ) Uis a tree.

Theorem 3. Let ) L :04 ;be aconnected neutrosophic graph whit strong spanning tree (5 5)66 for any
Q P/, where Q B an edge of § then either
2%+ FOQRO2%+1);
KN
32%H FQRP2%H¥ ;; € :2%+) FQRP2%+);,?
Hence we have 6 %3y F QRO 6 %:};a

Proof. Suppose ) L :0& ;be a @nnected neutrosophic graph whit strong spanning tree ( 55)%66 Since T
is SST then any edge of T is either$F O P N KAJ@ 6rA$3 & O P N KAJ&.®®Corollary 1, foreach Q®/, QR
is abridge. Then 2% +) FQRO2%+); KNe2%#H) FQRP 2%#) ;; € :2%%) FQRP2%+);;?

Theorem 4. Let ) L :04 ;be aconnected neutrosophic tree and ) Uis not a tree. Then there exist at least
one edge Q B/ Ysuch that 6 %:¥ F QRL 6 %:};

Proof. Let ) L :0& ;be a neutrosophic tree and ) Uis not a tree. Hence there is at least one cycle in) UAs
respects a tree is a connected forest, there exisQ R/ Yso that at least one of the following

6:QRO% 1004706 QR A
% QRP %10Mes:QRA (£ QRP % 1004006 :QR;
Then
2%+) FQRL2%+); =J@2%H FOQRL 2%%; =J@2%+) FQRL 2%+) ;
Therefore, 6 %3 F Q RL 6 %:%} ;.

Theorem 5. Let ) L :0& ;be a connected neutrosophicgraph then ) is a neutrosophic tree if and only if
) has a unique strong spanning tree.

Proof. Suppose ) L :0& ;is a connected neutrosophic graph with only one strong spanning tree & Then
) has no strong edges except the edges ofé hence ) has no strong cycle. Therefore by definition 6, ) is a
neutrosophic tree. Conversely, assume that ) is a neutrosophic tree. Again according to definition 6, ) lacks
a strong circle. Therefore, there is only one strong path between the two arbitrary vertices of ). then the
strong spanning tree of ) is unique.

Theorem 6. Let ) L :0& ; be aconnected neutrosophic graph and 6the corresponding 55 &f ). Then
6 %:6; L 6 %:¥;if and only if 6is the unique strong spanning tree of ).

Proof. Suppose ) L :04 ;is a connected neutrosophic graph and 6 the corresponding 55 &f ). And
6 %:86; L 6 %:} ;. Now, shown that 6is aunique strong spanning tree of ). Proof of this is easily possible
using Theorem 5. Conversely, assume that 6is the unique strong spanning tree of ). Itis clear that to obtain
the connectivity index of ), only the strong paths will be the same paths of 6 then 6% 4#6; L 6 %:7};

Corollary 3. Let ) L :04d ;be a neutrosophic tree with the unique strong spanning tree (T) and the unique
maximum spanning tree (F). Then 6 %:6; L 6 %:}; L 6 %:€..
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Theorem 7. Let ) L :04 ;be aconnected neutrosophic graph and Q RB/ Y Then 6 %:} F Q RO 6 %} ;
forany QRnd k% 1000 : QR &0 1005 QR &6 1 00:: QAR oL :6£:Q Rée: Q R £: Q R if and only if ) Yis
atree.

Proof. Suppose ) L :04& ;is a connected neutrosophic graph and ) Uis a tree. It is clear 6 %y F QRO
6 %:}; Since )Ois a tree, for any QRD/ o ) F QRs not connected. Also for any Q D) we have
k%100 QR @0 100 QR &0 100, QAR oL :6¢£:Q Rae: Q RA £:Q R. Conversely assume that for each
QR6% Y FQRO6%:¥; and k% 10Q QR &6 100;QR &01005: QR oL 16 QR QR £ QR,
then both Q & a neutrosophic bridge and a $F O P N KAJ@.@ptheorem 1, G is a tree. Sincefor each Q R
6% F QRO6%:Y; ) Us atree.

Theorem 8.Let ) L :0& ;pe aconnectedneutrosophic graph such that ) Uis a star graph. If Ris the center
vertex and forany Q BB/ Y
B QRL ¢<eG:Qa&:'R=a % :QRL s<*<¢:Qap:R=a(£ QRL * fc:Qac'R~=

Also EFRt4R QR4 Qkand B R Bwhere R L 6 kROdk L tkRoand B L (ckRofor FL s& & aahen

a?s5 a
2%+ ;LRI RI Ra
Y@ b@y>-5
a?5 a
2%#H;LEI BI Ea&
Y@ b@>5
a?5 a
2%+ ;LBI B I Ba
Y@ Pp@~5

Proof. Let ) L :04& ;be a neutrosophic graph such that ) Uis a star graph and R is the center vertex.
Therefore for any vertex R; we have

% 10QkR&ROL 6.kRROL *<[6::R;&:kRo L &:R;a
% 10QkR&R0L #kRRoOL *<[+:R;a-kRo_L t:R;a
% 100:kRaRoL (gkRRoL *f §(c:R;ackRo_L (¢:R;a
Then ) ] ]
| 6&:R;&:R;%10Q:R&; L &:R;;°1 &:R;LEI Ra

P@b P@ P@

Too for any FEGM s we have % 1 0Q kRaRoL & :R; L R Hence
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2%+) ;L | 6:Q6:R%100:QR
&% BC )

a

Li 6 R;&R:%100:R&A;EI 6:R;6R:%10Q:RA, E®

Ezc@é%?s;e‘bé%;%lo@:@?sé%; “

Lk6Q:R5;06i 6Q:R3;E6¢:R5;I' &:R6 R E®E G R &:R9s5,6:R;
Da@6 g@% a a?5 a

L k&:R;0 | 6:R;E6&R;I 6&kRol 6&:R;LRI RIi RA

b@b6 Y@a b@y>5 Y@ p@>5

Using a similar proof, we can show that 2%3# ; L EASS EAS s Fand 2% 4) ; L BAYE RALG.sBa

Theorem 9. Let ) L :0& ;be a connected neutrosophic graph such that ) UL %. Then the following are
equivalent.

a. 6% FQRL 6%:7y;forany QR

b. / isaconstant function.

c. ) has Jstrong spanning tree whit 5:6; L (that Us a constant value.

Proof. Suppose ) L :0& ;be a neutrosophic graph with ) YL %,

a \ b Assume that 6% 3 F Q RL 6 %:}; for any Q RThis means that deleting each edge will not
change the value of the connectivity index. Therefore, the membership function will be the same for all
edges.

b \ ¢ Assume that / is a constant function. Hence all the edges of ) are +F O P N KAJ@.CSince
removing each edge from the cycle will result a new tree of ). then the number of strong spanning trees of
) will be n and strength of any strong spanning tree is a constant value.

¢\ aAssumethat ) has Jstrong spanning tree whit 5:6; L (that Us a constant value. It is clear for
each edge of ) we have 6%y F QRL 6 %:};a

4. Conclusion
In the paper, deals with a maximum spanning tree :/5 6;and a strong spanning tree :5 5 6problem
under the neutrosophic graphs. Also, the Partial connectivity index and totally connectivity index in
neutrosophic trees was presented here and some resuts obtained from the study of this index in trees were
presented and proved. It should be noted that the results obtained in this article can be generalized to
directed neutrosophic graphs, bipolar neutrosophic graphs and interval -valued neutrosophic graph, in
general.
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Abstract: We define the concepts of neutrosophic E-interior ideal and neutrosophic
E Fcharacteristic interior ideal structures of a semigroup. We infer different types of semigroups
using neutrosophic Einterior ideal structures. We also show that the intersection of neutrosophic
Einterior ideals and the union of neutrosophic Einterior ideals is also a neutrosophic Einterior
ideal.

Keywords: Semi group, neutrosophic EFideals, neutrosophic E-interior ideals, neutrosophic
E Fproduct.

1. Introduction

Nowadays, the theory of uncertainty plays a vital role to manage different issues relating to
modelling engineering problems, networking, real -life problem relating to decision making and so
on. In 1965, Zadeh[24] introduced the idea of fuzzy sets for modelling vague concepts in the globe.
In 1986, Atanassov [1] generalized fuzzy set and named as Intuitionistic fuzzy set. Also, from his
viewpoint, there are two degrees of freedom in the real world, one a degree of membership to a
vague subset and the other is a degree of noamembership to that given subset.

Smarandache generalized fuzzy set andintuitionistic fuzzy set, and named asneutrosophic set
(see B, 7, 8, 14, 19, 22-23]). These sets are characterized by a truth membership function, an
indeterminacy membership function and a falsity membership function. These sets are applied to
many branches of mathematics to overcome the complexities arising from uncertain data. A
Neutrosophic set can distinguish between absolute membership and relative membership.
Smarandache used this in nonstandard analysis such as the result of sports games
(winning/defeating/tie), decision making and control theory, etc. This area has been studied by
several authors (see B, 11, 12 16-18)).

For more details on neutrosophic set theory, the readers visit the website
http://fs.gallup.unm.edu/FlorentinSmarandache.htm

In [2], Abdel Basset et al. designed a framework to manage scheduling problems using
neutrosophic theory. As the concept of time-cost tradeoffs and deterministic project scheduling
disagree with the real situation, some data were changed during the implementation process. Here

fuzzy scheduling and time -cost tradeoffs models assumed only truth-membership functions dealing

K. Porselvi, B. Elavarasan and F. Smarandache, NeutrosdpRicterior ideals irsemigroups



Neutrosophic Sets and Systewsl. 36, 2020 71

with uncertainties of the project and their activities duration which were unable to tr eat
indeterminacy and inconsistency.

In [6], Abdel Basset et al. evaluated the performance of smart disaster response systems under
uncertainty. In [5], Abdel Basset et al. introduced different hybrid neutrosophic multi -criteria
decision-making framework for professional selection that employed a collection of neutrosophic
analytical network process and order preference by similarity to the ideal solution under bipolar
neutrosophic numbers.

In [21], Prakasam Muralikrishnal et al. presented the characterization of MBJ . Neutrosophic U
.Ideal of U.algebra. They analyzed homomorphic image, pre .image, cartesian product and related
results, and these concepts were explored to other substructures of aU. algebra. In [9], Chalapathi et
al. constructed certain Neutrosophic Boolean rings, introduced Neutrosophic complement elements
and mainly obtained some properties satisfied by the Neutrosophic complement elements of
Neutrosophic Boolean rings.

In [14], M. Khan et al. presented the notion of neutrosophic Esubsemigroup in semigroup and
explored several properties. In [11], Gulistan et al. have studied the idea of complex neutrosophic

subsemigroups and introduced the concept of the characteristic function of complex neutrosophic
sets, direct product of compl ex neutrosophic sets.

In [10], B. Elavarasan et al. introduced the notion of neutrosophic Eideal in semigroup and
explored its properties. Also, the conditions for neutrosophic Estructure to be neutrosophic Eideal
are given, and discussed the idea of characteristic neutrosophic Estructure in semigroups and
obtained several properties. In [20], we have introduced and discussed several properties of
neutrosophic Ebi-ideal in the semigroup. We have proved that neutrosophic Eproduct and the
intersection of neutrosophic Eideals were identical for regular semigroups. In this paper, we define
and discuss the concepts of neutrosophic Einterior ideal and neutrosophic Echaracteristic interior
ideal structures of a semigroup.

Throughout this paper, : denotes a semigroup. Now, we present the important definitions of
semigroup that we need in sequel.

Recallthatforany 546 C:4 :5:6 L <>=D:5=J@D:g=&nultiplication of :5and :¢&

Let : be asemigroupand 1T M:g C: &Then

()  :5is known as subsemigroup if ::® C:5a
(i) A subsemigroup :5isknown as left (resp., right) ideal if :5: C:gresp., ::5C:5;8
(i)  :g5is known asideal if : g is both a left and aright ideal .
(iv)  : isknown as left (resp., right) regular if for each NB: athere exists ED: such
that NL BN(resp., NL NE[13].
(v) : isknown as regular if for each > D: éthere exists ED: suchthat > L By
(vi) : is known as intra-regular if for each Tz B: dhere exist BFD: such that T5 L
BEF[15].

2. Definitions of n eutrosophic E - structures

We present definitions of neutrosophic E Fstructures namely neutrosophic E Fsubsemigroup,
neutrosophic E Fdeal, neutrosophic E Finterior ideal of a semigroup
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The set of all the functions from : to >s& ?is denoted by 1:: & s& 7 aWe call that an
element of 1:: & s&? is EFfunction on :. A EFstructure means an ordered pair :: &, of
:and an EFunction Con : &

Definition 2.1. [14] A neutrosophic EF structure of , is defined to be the structure:
vy d Z€yél.;,’él’y; L I'r\éy:“;éu),:“;eiry:“; b,k

where €, ay, and r, are the negative truth, negative indeterminacy and negative falsity
membership function on X ( EF functions).

Itis evident that FUQ €,:"; E y :"; Ery:"; QUforall ~ B, a

Definition  2.2[14] A neutrosophic EF structure
E Fsubsemigroup of ,, if the following assertionis valid:
€ ke.Z0Q¥€ :*.;- € kZo
KEe.& D, ony ke.ZO0R Y, :*.; &y kZor.
ryke.ZoQry:e.;-rykZo
Let ,, be a neutrosophic EFstructure and ¥#¥& B> Udwith FUQ %E %E ¢ Q UaConsider
the sets:

.y Oof , is called a neutrosophic

€§f LS.D, €7, Q%
UL<S. D, y:" R ¥F
rg LS.D, ry 7L Qés
The set ,,:¥&®&;, <.b, € :7.,;,Q%ay :".;R %ar,:".,; QG is known as
(v&¥8)-level setof , . Itis easy to observe that ,, :Y&¥&, L €;/2 é uj/ érga

Definition 2.3 .[10] A neutrosophic EFstructure ,, of , is called a neutrosophic EReft (resp.,
right) ideal of , if
€ ke .Z0Q€ kZ0:" <« ™EE, ke . ZOQE, *.i;
kEs.&. D,on y ke.ZORY kZ0:" <™y ke .ZOR Y, *.;; T.
ryke.ZoQry kZ.o:" <« ™a@r, ke.Z0Qr, io.;;
.y Isneutrosophic EFdealof if ,, isneutrosophic EHeftand EFightideal of .

Definition 2.4. A neutrosophic E Fsubsemigroup ,, of , is known as neutrosophic E Finterior
ideal if
€:21YQ%€ 1,
EZ&aYDb, Ly i 2EtYRuyY H M
ry:2fYQry:f;

It is easy to observe that every neutrosophic EHFHdeal is neutrosophic E Finterior ideal, but
neutrosophic E Finterior ideal need not be a neutrosophic EF ideal, asshown by an example.

Example 2.5. Let , be the set of all non-negative integers except 1 Then ,, is a smigroup with
usual multiplication.

4 - 6 - 9 - 54 . agoaele
Let c£L B 4 4 A 5 ad

&s’t Then : is
ToAERABRAA; 74B 24 R4M; PAARAKR AT P AARAKRAB: 248 RABR LA &

neutrosophic EFinterior ideal, but not neutrosophic EF ideal with & :t&; L Fra- 6::t;a

Definition 2.6[14] Forany q C, &he characteristic neutrosophic E Fstructure is defined as

Nty b RTE AR L an
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where

. FU CEDq

Ny:€;y: X\ SFUdsA™ \ \ oo TH <

_— e~y | UsE DG

Ny ity X\ SFud)a™ \ \Fu_éz(N._Ta(
FU>s *EDq

Ryiriyi X\ PO\ o -0 =0

Definiton 2.7[14] Let ,,d ———— and ,, & ————— be neutrosophic EFstructures of
€,an ar,; (=2yau),ary

.. Then
€ R

() .,is called a neutrosophic EF substructure of ,,4denote by ,, C,,, if
€:7ay "y QuTiary ", R, forallr B, a

@y 1t ,, C,yand,, C,,, thenwesaythat ,, L ,.

(iii) The neutrosophic EF product of ,, and ,, is defined to be a neutrosophic E Fstructure

of , &
3 : » z 7
”z /4”y t €y Ay sy s L %Z@:Z;éw@:z:érz@:i; ZD,E
where
. 5 . % <€,:7;-€ =@ TAMD, MH>UZTEL "
€, UE i L &y i L Py
U o877 <o TH ¢
. . YTy ™M= e > deD, ™MH>%ZFTEL T
WUy 4Ly i4 L Pz@m
FU o572 ¢ e T8
. . % T, -1y ™M= >deD, W% ABZIEL T
iy Ury iZi Lry,g i4 L Pz@m
U o877 o0 TH ¢
. 4 i i Y -
For b, 4the element T VI W is simply denoted by aYs g3 L
(ow:@asw: aGu: ;4
(i) The union of ,, and ,, saneutrosophic EFstructure over , is defined as
"z ény L nz8y L k, a€zéyéu L&éyé rzéyc’é-
where
€, e€y,Z. L €6y Z,L €,:7; - € Z.a
w ey, Z.LuleyZ.LL;ZZ. y Z
€y Z; Lryey: Z; L rZ.Z.;—|ry Z. EZ D, &
(iv) The intersection of ,, and , , sa neutrosophic EFstructure over ,, is defined as
"z ény L nz@y L k, é€zéyél Lkéyé\ rzéyOé-
where
:€Zé€y 2L €ey 2L €12 - €124
b ey ; Z.LL&éy.Z.;LLkZ,,—.Lyz.
oy 8ry i Zg Lr,eyiZsLor,iZ-ry 2 EZD
3. Neutrosophic E Finterior ideals
i ior i . It is evident that

We study different properties of neutrosophic E Finterior ideals of
neutrosophic EF ideal is a neutrosophic E Finterior ideal of : abut not the converse. Further, for

a regular and for an intra-regular semigroup, every neutrosophic E Fnterior ideal is neutrosophic

E Fdeal.

K. Porselvi, B. Elavarasan and F. Smarandache, NeutrosdpRicterior ideals in semigroups



Neutrosophic Sets and Systewsl. 36, 2020 74

All't hroughout this part, we consider : g and : ¢ are neutrosophic EFstructures of : a
Theorem 3.1.Forany C é&the equivalent assertionsare:
(i) . is aninterior ideal &
(ii) The characteristic neutrosophic E Fstructure \b: g; is a neutrosophic E Finterior ideal &
Proof: Suppose . is an interior ideal and let T&aUb: &
If =D.athen T=W.&0 i4:6;c:T=UL FsL Tg:6;c:=aia+c:T=ULr Lig+c:i=and
Ta(5c:T=UL FsLiai(icisa
if =N.a then TA6c:T=UQr Lig6ici=iaig+c:T=URFsLig+ci= and
TA (e T=UQr LTa:(icisa
Therefore i4::¢; is aneutrosophic EFinterior ideal &
Conversely, assume that 74:: ¢; is a neutrosophic EF interior ideal. Let Qb. and TdJb: a
Then
T4:6;c:TQWT4:6;c:Q L Fsa
A+ TQURIg%c:Q Lra
TA G TQWITA(5¢c:Q L Fs.
So TQDB.a

Theorem 3.2. If : g and : . are neutrosophic EF interior ideals, then : g is neutrosophic EF
interior ideal .
Proof: Let : £ and : ¢ be neutrosophic EF interior ideals &or any NGPD: ave have
6rec:NOPR 6e:NORNOR 6£:Q-6:Q L 6g¢c:Qa
#ec ' NOPR #NOFNOR #:Q-%:Q L 4c:0a
(mec:NOB (£:NORNOR (£0-(¢c:QL (g¢:Qa
Therefore : gac is neutrosophic EF interior ideal a

Corollary 3.3. The arbitrary intersection of neutrosophic EF interior ideals is a neutrosophic EF
interior ideal .

Theorem 3.4. If : gand : are neutrosophic EF interior ideals, then : g is neutrosophic EF
interior ideal.
Proof: Let : £ and : ¢ be neutrosophic EF interior ideals. For any NCGPD: ave have
6rec'NOPR 62:NOFNOR 6£:Q-6::Q L 6g¢c:Qa
e 'NORB #:NOPNOR #:0-¢:0Q L #c:0a
(msc:NOB (£:NORNOR (£0-(c:Q L (mc:Qa
Therefore : g is neutrosophic EF interior ideal .

Corollary 3.5. The arbitrary union of neutrosophic EF interior ideals is neutrosophic EF interior
ideal.

Theorem 3.6. Let : be a regular semigroup. If : g is neutrosophic EF interior ideal &hen : gis
neutrosophic EF ideal &
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Proof: Assume that : g is an interior ideal, and let QERD: 8As : is regular and Qb: athere
exists ND: such that QL Q NaDlow, 6z :QRL 6. QNQR6 Qa % QRL % QNQR#:Q
and (£ QRL (£ QNQQR(£:Qé&Therefore : gis neutrosophic EF rightideal &
Similarly, we can show that : g is neutrosophic EF left ideal and hence : g is neutrosophic

EF ideal &
Theorem 3.7. Let : be an intra-regular semigroup. If : g is neutrosophic EF interior ideal ahen
: £ 1s neutrosophic EF ideal &
Proof: Supposethat : g is neutrosophic EF interior ideal dand let Q&RD: 8As : is intra regular
and QD: &here exist GPD5 such that QL OF RiNow,

6. QRL 6£.:0FPRQ6£:Q4

= QRL 4% GFPRR 4%:Q

(£:QRL (£:0PPRQ (£ Q4
Therefore : g is neutrosophic EF right ideal &imilarly , we canshow that : g is neutrosophic EF
left ideal and hence : g is neutrosophic EF ideal &

Definition 3.8. A semigroup : is left simple (resp., right simple) if it does not contain any proper left
ideal (resp., right ideal) of : 8A semigroup : is simple if it does not contain any proper ideal of : &

Definition 3.9 . A semigroup : is said to be neutrosophic EFsimple if every neutrosophic EF
< tat is a constant function

i.e., for every neutrosophic EFideal : g of : awe have 6z:E L 6g:Fa+#:E L 4%:F and
(gEL (g:Eforal BEFb: a

Notation 3. 10.If : is a semigroup and OB : &we define a subset, denoted by + as follows:
= <Eb: &EQ6&:Qat:ER+t:Q =J@EQ(c:0=

Proposition 3.11 If :( is neutrosophic EF right (resp., EF left, EF ideal) ideal ahen +is right
(resp., left, ideal) ideal for every Ob: &

Proof: Let OB: &Then it is clear that 3%, :A&alLet QP and TDH: &aThen QT jilndeed;
Since : is neutrosophic EF right ideal and Qarb:awe get 6:QTQ6&:Qat: QTR ¢:Q
and (¢c:QTQ(¢:RaSince Qb awe get &:Q Q6&:Qa+:Q Rt:Qand (¢c:Q Q(¢:Q which
imply Q™ dTherefore +is aright ideal forevery Ob: &

Theorem 3.12.[4] Forany . C: éhe equivalent assertions are:
M is left (resp., right) ideal a
(i) Characteristic neutrosophic EFstructure \b: r; is neutrosophic EFleft (resp., right)
ideal &

Theorem 3.13. Let : be a semigroup. Then : is simple if and only if : is neutrosophic
E Fsimple &
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Proof: Suppose : is simple. Let : & be a neutrosophic EF ideal and QRD: aThen by
Proposition 3.11, 4 is an ideal of : &s: is simple, we have 4 L : a4Since RD ,we have
6gR Q6 Qax'R R%:Q and (R Q(£:Qa

Similarly, we can prove that 6£:Q Q6g:Ra %' Q R#% 'R and (£Q Q(gRa So
6. QL 6gRAaHwE QL %R and (£Q L (g:RaHence : is neutrosophic EF simple &

Conversely, assume that : is neutrosophic EF simple and +is an ideal of : &Then by
Theorem 3.12, \{; g; is a neutrosophic EF ideal &We now claim that : L +Let S D: aSince :
is neutrosophic EF simple, we have \{; gr; is a constant function and \{; r;:™ L s r;:>; for
every UD: aln particular, we have M; ri:™ L M4 ri:Th L FS&A Mir:™ L Mr::T;Lrand
Mi r::™ L My riiT: L Fsforany @b +whichimplies S B+Thus : C +and hence : L #

Lemma 3.14. Let : be a semigroup. Then : is simple if and only for every PD: awe have : L
:P:a
Proof: Suppose : is simple and let PB: &Then :::P:; C:P:and ::P:: C:P:imply that
:P:isanideal. Since : issimple,we have :P:L : &

Conversely, let 2 be an ideal and let =B 2&8Then : L :=:4:=: C:2: C 2 which implies
2 L : &rherefore : is simple.

Theorem 3.15. Suppose : is a semigroup. Then : is simple if and only every neutrosophic EF
interior ideal of : is a constant function.
Proof: Suppose : is simple and G#PD: dlLet :. be neutrosophic EF interior ideal. Then by
Lemma 3.14 we get : L :O:L :P:8As ODb:O:awe have OL =P¥for =& D:aSince : is
neutrosophic EF interior ideal awe have 6:Q L &:=P>Q6&:Pa +:QL £:=P>R ¢:P and
(c:Q L (¢:=P;>Q (c:PaSimilarly, we can prove that &P Q&:Qa +:P Rt:Qand (¢:P Q
(c:QaSo : ¢ is a constant function.

Conversely, suppose : ¢ is neutrosophic EF ideal. Then : is neutrosophic EF interior
ideal 8By hypothesis, : ¢ is a constant function and so : ¢ is neutrosophic E Fsimple. By Theorem
3.13 : issimple.

Theorem 3.16. Let : £ be neutrosophic EF structure and let UdJ4Y B >Fs& ?with FuQ UE UE YQ
rédf : gis neutrosophic E Finterior ideal, then (UdJ4Y-level set of : g is neutrosophic E Finterior
ideal whenever : g GdJay; M 1.

Proof: Suppose ,, ,(V&/&,; M 1 for v&/& D Udlwith FUQ %E %E ¢ Q Ua

Let ,, be aneutrosophic EFinterior ideal and let >a& D, (%Y8&.,. Then € >e Q
€ :®Q»ay >es Ry :wR%and r,H>oes Qry e QY¥%which imply >aceb,  (»&/ds.
Therefore ,, , :¥4¥&:, is a neutrosophic E Finterior ideal of ,,.

Theorem 3.17. Let : be neutrosophic EF structure with UaJAJD >Fs& ?such that FuQ UE
UE UQraf 6 a+ and (¢ are interior ideals, then : is neutrosophic EF interior ideal of :
whenever it is non-empty.

Proof: Suppose that for & &b, with €, :3 %P €,:";8Then €, :f" %P §, R€,:"; for some
§ D>FUALESo " PE):"; but £ %NE " ;4 contradiction. Thus €, 11" %Q€,:";4
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Suppose that for 1& &b, with U, 11" %O Uy :";8Then y ¥ % 0OS, Qu :"; forsome § D
FUd)aso ~ B but 7 %N W " ;4 a contradiction. Thus b, i %Ry :" ;4

Suppose that for & &b, with r,:$ %P r,:";8Then r,:¥ " %P § Rr,:"; for some
§ DFUdJESo ~ Bry:";but 7 %Nr> 1" ;4 acontradiction. Thus 1, 3" %Qr,: ;&

Thus , , is neutrosophic EF interior ideal.

Theorem 3.18. Let ,, be neutrosophic EF structure over ,. Then the equivalent assertions are:

() »y isneutrosophic EFinterior ideal,
(i) ,,%,y ¥, C ,y forany neutrosophic EF structure ,, ,.

Proof: Suppose ,, is neutrosophic EF interior ideal. Let Z D, &or any > &e D, such that
ZL>ce«aThen €, :Z2;L€ >y Q€ :Q€,>;-€ :®-€,:+; which implies €, :Z;Q
€, :Z;80therwise Z M>ce<«aThen €, :Z; QUL €, :Z;aSmilarly , we can prove that
U:Z;Ryyw:Z;and ry:Z;Qr,yw:2;aThus ,,, %,y %,, C ,,a

Conversely, assume that ,, , %,y %, , C ,, for any neutrosophic EFstructure , ,.

Let >éoé D, df ZL >ce«dhen
€ >oes L€z, Q:N €, Ug UN:€, :2;L % N :€,0€6;:";-N:€,:;=

1@
L% <% <N :€,:5;-:€, 0e=-N:€,:+;=
2@ %o @ o=

QN :€;,:>;-:€;, :08- N :€;,:+; L € :®a

ooes Ly :z; Q:N:u, Oy ON :uy, ;:z; L' Noiuy, Oy 7= Notupy, e =
1@«
L' < N:u, os=iuy te=-N g, e =
2@ %" @@ -
RN U, > ;-uy 18N U, i Ly tga

and
ry>oes Lry:z;Q:Nr;, Uy ON:iri, ;:z;L % N oir;, Uy 7 - Noirs i =
1@
L% <% <N :r;, ;- = N:r;ie;=
7@ % @ oo

QN :ri, - ir;yte- Nirj, e Lry toed

Therefore ,,, is neutrosophic E Finterior ideal.

Notation 3.19.Let ,, and T be semigroups. A mapping <&, \ T is said to be a homomorphism if

e>0e L e;e:forall »&eb, d&hroughout this remaining section, we denote m» 3§, ;&he set
of all automorphisms of , &

Definition 3.20. An interior ideal

vof a semigroup , is called a characteristic interior ideal if
Z:v; L vforall ZBm>3§, ;a
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Definition 3. 21. Let , be a semigroup. A neutrosophic EFinterior ideal ,, is called
neutrosophic EF characteristic interior ideal if €,kZ:>;oL €,:>;aukZ:>;0L uy:>; and
r,kZi ;oL r, > foral > B, andall ZBm>§, ;4

Theorem 3.22. Forany C éthe equivalent assertionsare:

(i) is characteristic interior ideal a

(i) The characteristic neutrosophic EFstructure \b: o; is neutrosophic E Fcharacteristic

interior ideall.

Proof: Suppose .is characteristic interior ideal and let TD: &Then by Theorem 3.1, \b: o, is
neutrosophic EFinterior ideal. If TD.athen T4:6;£: T, L Fsaia:+g T, Lraand Ta:(;£ T L
FsaNow, forany DBD#Q:P;4 DT, BDD:..; L . whichimplies i4:6;£:DT;; L Fsd:+z:DT;; L
rdaand Ta:(;gDT;; L Fsalf TN.athen 7x:6;£ T, Lréda €T, LFsaand ig(;zT;Lra
Now, for any DD#Q:P;aDT; ND.; which implies i4:6;£:DT;; L rd s+ DT,; L Fsdand
ia(;eDT;;Lra Thus Ta:6;£DT;; LTa:6, g T4l 4% DT, Lig+gTa and
A G DT Liai(5£ T, for all TH:and hence . o; is neutrosophic EF characteristic
interior ideal .

Conversely, assume that \b: o; is neutrosophic EFcharacteristic interior ideal &Then by
Theorem 3.1, .is an interior ideal &Now, let DB#Q:P; and TB.&Then 71x:6;£: T, L
Fsaig: g T, Lrand T4 (;£ T, L FsaSince .. o is neutrosophic  E Fcharacteristic interior
ideal 4 we have 146, DT, Lig6,£T,aiatgDT;; LiatgeT, and Ta:(;£DT;; L
TA:6;£:T, which imply DT, b.&So D.; C. for al Db#Q:P;8Again, since DB#Q:P; and
TD. ahere exists UD. suchthat DU L Ta

Suppose that UN.& Then i4:6;£U Lrais+sULFs and ia(;2ULra
SinceT4:6;£DU; Lig6;gUda TatgDU; LigitgU and Ta:(52DU; L6 £ Uawe
get T1x:6;£DU; Lraig+gDU;LFs and ia(;£DU;Lr which imply DU N.4&aa
contradiction. So UDb. ie, DU DB.aThus . CD.; for al Db#Q:P; and hence . is
characteristic interior ideal &a

Theorem 3.23. For a semigroup : & the equivalent statements are:

(i) : isintra-regular,

(ii) For any neutrosophic E Finterior ideal : 5 we have : £:S; L : £:S%; forall SD: a
Proof: :E ce:E;EBSuppose : isintra-regular, and : g is neutrosophic EF interiorideal and S B: &
Then there exist NNOD: such that S L NS®GiINow 64:S; L 6£:NS6Q Q64:S%; Q64:S; and so
6£:S; L 6£:S%8 4%:S; L %:NS®Q R4£:S%; R+4:S; and so +4:S; L 4:S%dand (&£:S;L
(£:NS®Q Q (£:S%; Q(&£:S;andso (&£:S; L (g£:S8;aTherefore : £:S; L : £:S8; forall SP:4a
[E ce:E Let :E;fholds and OP: &Then +0C;isanideal of : &y Theorem 3.5 0f [4], Txp.:! 4
is neutrosophic EFideal. By assumption, Tage.:i4:Q L T4, .14 :0;8Since T5,.:6;£0; L
FSLTamp (&0 and Tae. ®e0;Lrawe get Tz..:6£QLFSLize :(;£Q and

The. t2&:0; L rwhichimply OP+0;aHence : is intra-regular.

Theorem 3.24. For a semigroup : & the equivalent statements are:
(i) : is left (resp., right) regular,
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(ii) For any neutrosophic E Finterior ideal : gzave have : £:S; L : £:S%;forall SB: &

Proof: :E ce:E;Het : be left regular. Then there exists UD: such that S L US®& Let : £ be a
neutrosophic E Finterior ideal &Then 64:S; L 6;:US®; Q6£:S; and so 64:S; L 6£:S%;44:S; L
4:US®; R4:S; and so +4:S; L 4:S%dand (£S; L (£:US® Q(£:S; and so (£:S;L
(£:S%;a Therefore : £:S; L : £:S®; forall SB: &

:E;Ece :E Suppose :E;Eholds and let : g be neutrosophic E Finterior ideal &hen for any S bB: a
Tae  16;£Si Lige . 16,£S% LFsaipge ££S;Ligg. ££S% Lrand igq .:(;&S;L
Tae . ( :S%; L Fswhichimply S B.:S%;aThus : is left regular.

Conclusions

In this paper, we have introduced the concepts of neutrosophic EF <¢—1"idé&als and
neutrosophic EF ...Sf”f ... <#>didé&als in semigroups and studied their properties, and
characterized regular and intra-regular semigroups using neutrosophic Einterior ideal structures.
We have also shown that is a characteristic interior ideal if and only if t he characteristic
neutrosophic EFstructure »,,: g; is neutrosophic E Fcharacteristic interior ideal . In future, we
will define neutrosophic  E Fprime ideals in semigroups and study their properties .
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Abstract: Connectivity is one of the most important concepts in graph theory. Since Neutrosophic Graphs
are a branch of graphs, connectivity will be very important in this branch as well. In this paper, we will
define the connectivity in Neutrosophic graphs u sing the strength of connectedness betweeneach pair of
its vertices. Also in this article, we define two new concepts of Partial connectivity index and totally
connectivity index. We present several theorems related to these concepts and prove the theorems.

Keywords: neutrosophic graphs; partial connectivity index ; totally connectivity index ; m-barbell graph;
connected neutrosophic graph

1. Introduction

Neutrosophic graphs are a new branch of graphs that has been very popular among graph theorists
in recent decades.Neutrosophic graphs are a generalized form of fuzzy graph theory. One of the features
that have been considered in fuzzy graphs is connectivity and types of connectivity indices in fuzzy graphs
[7]. The connectivity index is a numerical quantity that can be used to calculate some of the properties of
the studied graph in more detail. Many researchers have pointed to different uses of neutrosophic Graphs,
such as the use ofeutrosophic sets and graphs in medicine [ 3], social media [4], decision-making problem
[9], Economics Theorizing [11] and so on. In this article, after introducing the partial connectivity index
and totally connectivity index in neutrosophic graphs, we will point out some applications of it.

In our previous article [ 8], we also presented the correlation index in neutrosophic graphs and gave
an example of its applications. In the following works, we will compare and examine the strengths and
weaknesses of each.

2. Preliminaries
In this section, some of the important and basic concepts required are given by mentioning the source.

Definition 1. [4] A single-valued neutrosophic graph on a nonempty 8is apair ) L :0& ;. Where Ois
single-valued neutrosophic setin 8and / single-valued neutrosophic relation on 8such that

6 QRQ*<+G:Q&: R
# QRQe<*<¢:Qé&:R=
(£2QRQfS(c:Qac:R=A

For all Q&R B8 0 is called single-valued neutrosophic vertex set of ) and, / is called single-valued
neutrosophic edge set of ), respectively.
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Definjtion 2. [4 Let ) L :0& ;be the Neutrosophic Graph of )QIf * L :0%g M is aneutrosophic graph
of ) Ysuch that

6"Q Q6:Qa f:Q R+Q4a ("QR(:Qa EQD: 4
6 QRQ6£:QRA 4 QRR QR (' QRR(£QRA EQRD' &

Then * is called a Neutrosophic subgraph of the Neutrosophic graph ).

Definition 3. [4] A neutrosophic graph ) L :04 ;is called complete if the following conditions are
satisfied:

6 QRL s <G Q&R

# QRL e<e<¢:Qap:R=

(£:QRL «f ¢:Qa¢:R=
Forall R B8

Definition 4. [4] A neutrosophic graph )s L :95:91 5; Of the graph )SUL :&d 5; is isomorphic with
neutrosophic graph )¢ L :05d ¢; of the graph ){ L :8&d 4;if we have Bwhere Bag \ & is a bijection
and following relations are satisfied

6 QL & kB:Qoa t QL £ kBQoa (c.:Q L (¢ kB:Qoa
For all Qb &and
6z :QRL 6 kB:QB:Ro0a # !QRL 4% kBQBR o0& (2 'QRL (£ kB:QB:Roa
Forall QM's.

Definition 5. [4] the m-barbell graph $.; 5 . is the simple graph obtained by connecting two copies of a
complete graph - by abridge.

3. Totally and Partial connectivity index
In this section, which is the main part of the article, we first define the connected neutrosophic graph
and connectivity index in the neutrosophic graphs. Note that definitions are provided for a connected
neutrosophic graph in some references|5, 6, but the definition we use here will be based on connectivity .
After providing some examples, the theorems related to the connectivity index are expressed and proved
in neutrosophic graphs.

3.1. Partial connectivity index in neutrosophic graphs
Here we first define the Partial and totally connectivity indices in neutrosophic graphs and provide
examples to better understand it. And t hen in the next part we will present the boundaries for the Partial
and totally connectivity indices in neutrosophic graphs.

Definition 6. Let ) L :0& ;be the connected Neutrosophic Graph. The partial connectivity index of ) is
defined as

2%+);L | & Q6 :R%1L00:QRE

e#DC

29%#H ;L I t Qt:R%100:QRA
e#DC

2%4);L | (c:Q(c:R%100:QR4
&&BC
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Where % 100 : Q&R is the strength of truth, % 1 00:Q&R; the strength of indeterminacy and % 100 : Q&R
the strength of falsity between two vertices Qand RWe have

%100 QR L +fSec6:A AD2=J@EOL=P>APSAQXI @4
%100 QR L eco 34 A AD2=J@EBGL=P>AFAAD=J @A
%100 QR L ecof3(gA AD2=J@EOL=P>APSAXRI @A

Also, the totally connectivity index of ) is defined as

vEt2%,—+:);FtZ%(.je);sz%;;:w‘);él

0. .
6%} ; L .

Definition 7. Let ) L :0& ;be the Neutrosophic graph. ) called a connected neutrosophic graph if for
any two vertices QGRDO0, %100 QR Pr, % 100:QR Pr,and %100 :QR Pr.

Example 1. Consider the Neutrosophic graph ) L :04 ;with 8 L <=&&&ar that shown in figure 1. As
canbeseen, (G at ;= L r&axaavatacdc:: > L ryaaad;abagdc::? L rya&aa;and
‘Gt A @L raer &a & arhe edge set contains (G aned( g =8 L r&a &a &V & & d £, > L
ryATN,;, Opbpd g AL rda & A, 6gad g =A@ L r&ad&a @, and 68 dA £ >AQ L
radx dd y,

By direct calculations, we have

Table 1. The strength of connectedness between each pair of verticesQand R

0{zz¢ > am o{zz, > aw o{zz, »ae
=& 0.4 0.5 0.5
=& 0.4 0.4 0.5
=a 0.4 04 0.5
> & 0.7 0.4 0.4
>ao 0.5 04 0.5
?4@ 0.5 0.4 0.5

Then the partial connectivity index of ) is,

29+ ;L | 6 Q6:R%100:QR
e&BC
Lir&;:rd,:r& Er&;ir§;r& Eir&;ra:r&, Erd; r&; r§, Erdy;irav:ray
Eirg;ra:réy L r&stEr&stErdazrEr&vyErdvwErdvwL rfvs

2%#H:L | +:Qt:R%10Q:QR
&&BC ’
Lir&:ra:ray Er&;ird;rd&; Eir&irdsr& Erdrd;r&; Era:rd;ir;
Er&;r&;r&; Lr&zrEr&a{xEra{xEr&zrErdzrEraxvL rq {4

2%+ ;L I (c:Q(c:R%100:QR
2% DC
L:rav:rd;:ra Erav:ra;:ravy E:rav:rav:rayv E ra;ra;:ra; E rdv;irav:.ray
Erard:rdy LrSErayweErdtwErdvzErSErayw ravt @
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Also by definition 1 , we have

VEt2%+); Ft2%+) ; F 2% ; L VEt:r§vs Ft:ra'wtuFréW{xL

0. .
6%:}; L . .

rgrya

Figure 1. A neutrosophic graph with 8 L <&&acr

Theorem 1. Let ) L :04 ;be aconnected neutrosophic graph and * L :07¢ f:is a partial neutrosophic

subgraph of ). then
2%+, Q2%+) ;4
2%, R2%H ;4
2%+, R2%+);a

Moreover, we have 6 %:*; Q6 %:};a

Proof. Let * L :074 % is a partial neutrosophic subgraph of ), and 6c0:Q Q6&::Q for QD8 Snce
6 QRQ6£:QRor QRhen %100, :Q&R Q% 10Q : Q&R thus we get

2%+ ;L | 6c0:Q 60 R% 10Q: QR Q i 6:Q6:R%10Q:QR L 2%+);a
e& bR e& BN
Using a similar proof, we can show that

2%# ;L | +0Q+toR%1I00sQBR R I +£:Q+:R%10QiQR L 2% ;4
&% BN && BN
And
2%+ ;L I (c0Q(coR%1I00SQR R | (c:Q(c:R% 100 QR L 2% 1) ;4
&% BN && BN
Now, we show that
6% *; Q6%:};a

By definition totally connectivity index, and since 2% +*; Q2% +) ;& %¥ ; R2%3) ;&2 %+ ; R
2 % +) ;&ve have

VEt2%+*; Ft2%+ ; F 2%¥ ; Q VEt2%+); Ft29%+ ; F 2%z ;

6%:*; L
X

X
0 VEt2%4); Ft2%,%); F 2% ;

L 6%:7%;4
- 6.} ;&
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And, hence 6 %:*; Q6 %: ¥,

Example 2. Consider the neutrosophic graph ) L :04&/ ;whit
OL<=adaagq a>aaadaaa?ayaaax aCr yaaad=a
And
[ L<=%frawdad a=ayaaaxa>raadax a?@aaaax =
Also, let * L :07& " be a neutrosophic subgraph of ), whit
0ML <=&&& @& da>a ¥a 4 & &, 424 X& A& §,4 G A& 4& &;=a
And
[Tl <= qaddqaa=Haadaa §,4>H 4344 y,4? @adaay; 3

Figure 2. The neutrosophic graph ) and the neutrosophic subgraph of )

By direct calculations, we have

204+ ;L rg{ya 2%#H;Lraétra 2%+ ;Lrx{ra
And
2%+ Lravsa 2%¥ ;L r&tra 2%+ ;L sdswa

Moreover

vEt2%+);Ft2W%+);F2fVcAH3;L VEt:rd{y, Ftir&{r, Fr&tr

%:}; L Lr3 ;|
6 %:¥ x x ryv

VEt2%i+*  Ft2%+ ; F 2%¥ ; VEt:r@vsxFt:sdsuy Fra&tr L
6%:*; L " L " Lritta

Itiseasytoseethat6 %:*; L r&tt Q6% ¥y; L rgv{

Note 1.Note thatif * L :0% ™ is a partial neutrosophic subgraphof ) L :04 ;suchthat 07 L 03<Rthen
2%i+*; 02%+);42%# ; O2%+);a2% + ; 02%+) ..

Theorem 2. Let )5 L :05& 5; be isomorphic with ) L :0g& 4;. Then all of the following equation are
established.

2% +)5; L 2%+ a

2%+)s; L 2%+ 68
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Also, we have 6 %:¥5; L 6 %:}4;a

Proof. Let )5 L :054 5; be isomorphic with )g L :0¢& 4; and Bag \ & be the bijection from &to &
such that

6 QL & kB:Qoa £ :QL v kBQoa (c:QL (¢ckBQoa
Forall Qb g&and

6 :QRL 6z kBQBROA 4 :QRL 4 kB QB R0 (£:QRL (£ kBQBROA

For all Q ' Since )sisomorphic with )¢ the strength of any strongest path between Qand Rin )sis
equal to that between B:Qand B:Rin )¢ Hence

%100 QR L %100 kBQ&B R0 %100 QR L %100 kBQ&B R0
%100 :QR L %100 :BQ&BR;4

For @R b 05‘? Therefore

2%+)s; L 2%+ e;a 2%Hs L 2%Heda 2% )5 L 2%4)6a
And

VEt2%;+)s; Ft12%,%)s5;, F 2% 5, L VEt2%;+)g;, F12%,%)6, F 2%H6;

%:¥s; L
60)’5 X X

L 6%:}¢:8

Theorem 3. Let ) L :04 ;be a complete neutrosophic graph whit 8 L <Rax & & =suchthat R QR Q
® QRaEQEQ® Qgand BRBR® RB where RL 6kRoakL tkRoand BL (ckRofor FL
s& & aahen

a?5 a
2%+ ;LI B 1 Ra
Y@  P@>5
a?5 a
2%#H ;LT B Ea&
Y@ @5
a?5 a
2%9;LI BRI Ba
Y@ - b@>5

Proof. Suppose R is a vertex with the least Truth-membership value R In a complete neutrosophic graph,
%100 QR L 6.:QR for all QR D8 Therefore 6z:RR; LR for GL t&ai&d & and hence
6:R;6:R;%100Q:R&; L BRfor GL t&ud &l Then for R, we have

a a

I 6&:R:6:R;%100Q:R&; LI FERA

b@b b@b

For R, 6:R;6:R:%10Q:R&; L BRRfor GL uavd &l

I 6&:R;&:R;%10Q:R&AR:; LI KERa

p@r p@r

For Rioe 6c:R26:6c:Ri% 1000 :R06dR: L BygRfor GL JF s&l
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For Rios 6c:R25:6c:R:% 100Q :Ri»58; L BysRfor GL 1
Thus, by summing over R, FL s& && & F s we get

a a a a 4?5 4
2%+ ;LI EREI EBRE®E I FE,,REI EBsRLI B I Ra
P@ p@r P@?5 P@ Y@  P@*>5

Using the same argument, we can prove the other two cases.

Theorem 4. Let ) L :0& ; be a neutrosophic graph whit 8 L <R &R & &3 =such that ) UL :84 ;is a
complete bipartite graph and 6£:QRL *<* G Q&R % QRL s<e<¢:Qac:R=A (£ QRL
*f$(c:Q&c:R=Forall R D8 Also, & L R&AR&A AR <and & L R .5 -8 &R =whit RQRQ
® QRAEQEQ® QEénd BRBR® RB where RL 6 kRoaEL tkRoand B L (ckRofor FL
s& & &ahen

a a a?5 a
2%+ ;LT BRI RER I RI Ra

Y@ b@"5 Y@ >5 b@¥>5

a a a?5 a
2%#H; LT B EEE | EI E

Y@ b@¥-5 Yaa >5 b@¥>5

a a a?5 a
2%+ ;LI B BERB I BI Ba

Y@b p@>5 Y@ >5 b@w®5

Proof. Let ) L :0& ;be a neutrosophic graph whit 8 L <Ra& & =and )YL -, 4 suchthat R QR Q
® QREEQEQ® QRand BRBER® RER
Here we prove 2 % +) ; states 2% +) ;and 2 %3) ; are similarly proved.
Using definition, we have
2%+) ;L I (ckROo(c:R:;% 1003kR&R,04
éeabl
Too, for R&, b 84&ve have

%LOORE L oc» <fSB=2[SBB=-B &[SBB =L -- BBAB-L Ba
Accordingly for R&R, B8

a

I (c:Ri(c:R:%100:R&; L BRI Ba
2%9?_ bes

Similarly , for R&R, P8 FL tai&d 4
a
I (ckRo(c:R:% 100:kRé&R 0L BR | Ba
p@*5 P@">5

On the other hand, we have for | OFOJ )
a
i (ckRO(¢c:R;% 100:kRaR0L B B i Ba
P@¥%5 P@¥>5
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Then
2%+ ;L 1 (ciRi(c:R;% 100 R&R;
ecobl . . ) .
LBBI BEBBI BE®ERBRB | BEBB.s | BE®ERBRBH
a p@b 4 b@r 475 5 p@ >5 b@a >6
LI i BEB I BI Ba
Y@s p@Y>5 Yaa >5 b@v>5

Note 2. Clearly, in the above theorem it is enough to have
ERP&EQP&A &R Q&:Qa +t:RR+:Qa (c:RR(¢c:Qa
Then the case will be established. In the following example you can see the correctness of this claim.
Example 3. Consider the neutrosophic graph ) L :04 ;whit
OL<-&dad&&§,4>04a&adana?d a8, aCGradaavara&aaaaa
And

| L<=Ha&a&ay,4= @454y, 4=Maaxa ¥4
> HAG KA AE> @ E XE A E> A AE &a av =

Figure 3. A complete bipartite neutrosophic graph whit ) U - 64

By direct calculation, we have

%100:=2; L %100:=& L %100:=2@ L %100:=8A L rd L &:=;a
%100:>8; L %100:>a@ L %100 :>8 L r& L 6&:>a
%100:?4@ L %100:?28A L r& L &:>a
%100: @A Lra&l 6:>a
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2%+);L | 6:Q6:R%100:QR
&&BC
L:ird;:r&,:r&;, E:r&;:r§;:ird; Erd;:r&:rd; Erd;:r&:rd; E:rd;ir&;:rg;
Er&;r&;:r& E:r&;:r&;:r& Eird;iravird&; Erd;ir&r&; Eravird;ir,

Lrarva
Using Theorem 4,
a a 4?75 a 6 9 8 9
2u+);Ll BRI RER I RI RLI BRI RERI RI R
Ya  p@%>5 Y@ >5 b@>5 Y@  p@-5s 7 p@®~5

Lird,:rd; r&¥Er§Er&Er& Er&;r&, r§yEr&Er& E r&;:r§, r&vEr¥;
Er&;irdq:r& Lrarva

As observed, the value of truth - partial connectivity index 2 9% +) ;is obtained from both methods equally.

Theorem 5. Let ) L :04 jbe a wheel neutrosophic graph whit 8 L <R &3 & & =such that ) Uis a wheel
graph and forany Q B/ Y

6 QRL *<+6:Q&:'R=a #QRL *<*<¢:Qac:R= (£ QRL *f3c:Q4c:R=
If RQRQ® QRaAaBEQEQ® Qgand BRB R® RBwhere RL 6kRoakL tkRoand B L (ckRo

for FL s& & &and Ris the center vertex. Then

a?5 a
2%+ ;LI B I Ra
Y@ @5
a?5 a
2%H ;LT B I Ea&
Y@ b@r>5
a?5 a
2% ¥ ;LI BRI Ba
Y@b p@Y>5

Proof. Let ) L :04 ;be a wheel neutrosophic graph whit the conditions stated in the theorem. Here we
prove 2 %3 ; states 2% +) ;and 2 9% +) ;are similarly proved. Then

Suppose Ris the center vertex. Using definition,

2%H;L | £ R+t:R:;%100iR&;4
o2
Now , for R &% B 8we have

%LOQIRM; L o< [ 5= [ SE&=0 [ SEMH= & [ SBE =L - - &A 4G=L B4
Hence

a a

I+ R;t:R:%100iR&; L EEREEEEE®EEERBsEEEEL T ERa
Similarly forp%é% D8FLta&&Fs "
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% 100kR& 0oL | tkRot:R;% 1 00kRaR0L I EEga
p@>5 p@y>5
This shows that ] ] ]
2%#H ;L I th,ot:Rg;%lop*Ra’&oLl' EEEIl EEE®E I $5E®E Bos5Bosk
oD P@ p@r P@%5
a?5 a
LI B Ea
Y@ b@">5

Theorem 6.Let ) L :0& ;be acomplete neutrosophic graphof ) YL :84 ; and $., & .is a m-barbell graph
of ).if BRQRQ® QRaERER® RgEand BRB R® RB where RL 6kRoakL tkRoand B L
(ckRofor FL s&& &. And QRs a $F OP NKA@Awhit / :QRL :6£:Q Ry Q R £:Q R, where
6 QRQR&: QRQEA £ Q RR Baand Q Ronnecting two copies of complete neutrosophic graphs ).
Then

a?5s a a a

2% 4$s5. 0Lt BRI REG6QRI RI RA
Y@ b@">5 Y@ b@Y
a?5 a a a

2%k$ 5. 0Lt1 B I EE % QR EI Ea
Y@ b@r>5 Y@ p@Y
a?5s a a a

2%¥$ 5. 0Lt B I BE (z£QRI BI Ba
Y@  b@"~5 Y@ @Y

Proof. Let ) L :04d ; be a wheel neutrosophic graph whit the conditions stated in the theorem. By
definition 5, here we have two copies of the complete graph - ;. Also using Theorem 3, for a complete
neutrosophic graph

a?5 a
2%+ ;LI B I RA&
Y@  b@">5
a?5 a
2%#H ;LT B Ea&
Y@ @5
a?5 a
2% 9 ;LI BRI Ba
Y@b p@Y>5

Now it suffices to obtain the connectivity between two vertices from two copies of - ;. Suppose vertex R/
is from one of the two copies of -3 and vertex Rsis from another copy, in which case we have

% 10Q kR&0OL « fSHEJ6 QRes<e® RD2:RAR; =L 6£:QRA
Then
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2%*%$24.0L | ©Rit:R;%100:R&R;
%o 2]
a?5 a 4?5 a
LI BRI REI BRI RERRG6:QRERRG6:QRE®ERRG6£QR
Y@ @5 Y@ p@"~5
4?5 a a a
Lti BRI REG6:QRI RI R&
Y@  p@"5 Yas p@
The proof will be the same for the other two cases.

Example 4. Consider the neutrosophic graph ) L -g L :0& ;whit
OL<=dda&aa d>daxaay a?qaaaay aCGryadyaan=a
And
| L<=4d&d&&d & d-Hia&aa,d-@aa&aa é
SHATAE Y, E> @ aaady.d?@adaay;Aa
Now suppose that the edge that connects the two complete graphs does not hold true. As shown in figure

4, for example, if we want to go from vertex b in the right graph to vertex a in the left graph, there are paths
with different connectivity.

Figure 4. A m-barbell neutrosophic graph whit ) oL - 8

3.2. Bounds for connectivity index
In this section, we discuss bunds for partial connectivity index :2 %;&and totally connectivity index
: 6 %, &Ve show that, among all neutrosophic graphs whit a same support, the complete neutrosophic graph
will have maximum totally connectivity index.

Theorem 7. Let ) L :04 ; be a neutrosophic graph whit 0 L J and )"L :04 ™ is the complete
neutrosophic graph spanned by the vertex set of G.Then,

r Q2%+ ; Q2u+Ma
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r Q2% ; Q2% "a
r Q2%+ ; Q2%+ Na

Also if % QRL +p:QRand (£ QRL (p:QRiorall QRD' then r Q6% #) ; Q6%6+)ﬁ;a

— " e+ (®onsider the neutrosophic graph ) L :0& ;whit O L JIf ' Lrclearly, 2%+); L 2%%;L
2%+);L6%¥;Lr.Let ' Prand )7L :0% T is the complete neutrosophic graph whit 0% L J
Suppose k&;:Qat:Qac:QoL :6co:Qao: QA co:Q;forall QB:. Since
62 QRQ6p8 % QRQ 4 QR (£ QRQ(» QRAEQM &
Therefore, we have % 10/Q:QR Q% 100:QR, % 100;QR Q% 10Q.:QR and % 100, QR Q
% 10 Qio: QR &hen
rQ2%+) ;L I & Q6 R%IOQ: QR Qi 60:Q60:R%1000:QR L 2%+ "4
e&BN e &N
Using a similar proof we can show that
rQ2%#; Q2%HMHa =J@ r Q2%6+);Q2%6+)ﬁ;é
Also, according to definition 6 %:¥;, if % QRL +»:QRand (£ QRL (m:Q Riorall QRD' dhen

VEt2%+); Ft2%+) ; F 2% ; QvEt2%i+:)ﬁ; Ft2%+) 0 F 20

6% ¥; L
6y X X

L 6%:}%a
Note 3 Note that the above theorem for case 6 %:¥}; Q 6 %:}; may not always be true.

4. Application s

Neutrosophic graphs are one of the most practical branches of graph theory. Different applications of
it have been studied to date [1-3, 1220]. Here we will mention another application.

Behavioral sciences, which isone of the branches of humanities, is one of the most extensive sciences
in our time. Every day, many theorists in this field create new theories and cause them to expand more and
more. So every day they are faced with a lot of new data and information.

Mathematics has always been one of the best tools for modeling and categorizing this data and
information. Among these, graphic models are among the most appropriate models that come with the
help of behavioral sciences and with proper modeling, provide the conditions for amore accurateanalysis
of these complex problems. What is very important in behavioral sciences is the existence of a relationship,
the relationship between individuals, groups, communities, organizations and institutions, and , so on.
Studying and discovering these relationships, categorizing them, and then examining and studying the
extent and impact of these relationships on each other is a complex task.Neutrosophic graph models can
help with these problems and help answer same of the questions. Questions such as: Which relationship is
most effective? Which relationship should end? Which person is more influential in a relationship? And
many other questions

Here we are dealing with the relationship between several families. Information related to this
problem is data from a real study obtained from a behavioral science study clinic. Of course, given the
limitations we had, we have provided a small sample of that data in this article.

In this problem, we studied 5 families that are related. First, each family was studied separately and
the behavior of each family member was studied by experts, and then we obtained an average of the
behaviors and traits studied in family members. These features were classified into three categories. Good
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qualities include the ability to communica te, cooperate, be honest, etc;Bad traits include jealousy,
misconceptions, lack of anger contol, personal aggression, etc;Neutral behaviors include behaviors that
do not invo Ive any behavioral actions. The experts then assigned a numerical value to each of these
behaviors, which we named 6 (, and + respectively. Experts then studied the relationships between
families and the extent of each family's impact on another family and the type of impact of each family. The
effect of each family on other families was evaluated using behavioral science criteria. The experts coded
these relationships into three categories: good, neutral, and bad, and obtained a numerical quantity for each
category based on the coding results

Here we present aneutrosophic graph model related to 5 families from 137 families surveyed.

Figure 5. A neutrosophic graph model corresponding to 5 families

By direct calculations

Table 2. The strength of connectedness between each pair of verticesQand R

0{zze > am of{zz,»éae o{zz, »ae
=& 0.45 0.35 0.2
=& 0.35 0.4 0.2
=2 0.45 0.3 0.2
=2 0.45 0.35 0.2
>& 0.35 0.4 0.2
>a@ 0.5 0.35 0.1
> 3A 0.5 0.35 0.1
?a@ 0.35 0.4 0.2
?3A 0.35 0.4 0.2
@A 0.5 0.35 0.1
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Then
2%+ ;L i 6:Q6:R%100: QR L sizva
e&BC
2%#H ;L I +:Qt:R%10Q:QR Lravsd
& BC
2%%) ;L I (c:Q(c:R%100: QR Lrasa
& BC

Also, we have

VEt2%+); Ft2%+) ; F 2% ; vEt:smzvat:ra;stra'rvs{L L
L sdrta

6%7Y; L
0} X X

The connectivity index is used as a numerical index in evaluating the interactions of these five families.
Note that the analysis of this problem will be done by behavioral science experts and the results will be
presented in detail in another article.

5. Conclusion
Connectivity is one of the major parameters associated with a neutrosophic network and a
neutrosophic graph. In this paper, two concepts ofpartial connectivity index and totally connectivity index
were studied. In a neutrosophic graph, according to the parameters of the problem, we can obtain the
partial connectivity index and totally connectivity for it. The higher the Truth-partial connectivity index
and the lower the Falsity-partial correlation index, the more complete our information is and the more
reliable the problem will be.
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Abstract: Topology is one of the classical subjects in Mathematics. A lot of researchers have
published their ideas.As a generalization of topological concepts many new kind of closed and open
sets are published continuously . Salama presented Neutrosophic topological spaces by using

-8>S —« S E Neltrosophic sets. Many Researchers introduced so many closed sets in
Neutrosophic topological spaces. Purpose of this research paperis we introduce Neutrosophic
g*-Closed sets and Neutrosophic g*-open sets in Neutrosophic topological spaces. Also we study
about study about mappings of Neutrosophic g* -Closed sets

Keywords: Neutrosophic g-Closed setsNeutrosophic g*-Closed sets,Neutrosophic g*-open sets,

Neutrosophic g*-continuous.

1. Introduction

Smarandache [L0,11] characterized the Neutrosophic set on three segment Neutrosophic sets(T
Truth, |-Indeterminacy, F-Falsehood). Neutrosophic topological spaces(NST-S) presented by
Salama [19,2(0]et al. N eutrosophic have wide scope of constant applications for the fields of Electrical
& Electronic, Artificial Intellig ence, Mechanics, Computer Science, Information Systems, Applied
Mathematics , basic leadership. Prescription and Management Science and soon.

Neutrosophic semi closeds t closed pre closedand regular closedsets are introduced by .
Arokiarani [6] et al.,R.Dhavaseelaij8] et al. introduced Neutrosophic g closed setsand g = closed sets
.Point of this paper is R .Dhavaseelarf9] and S.Jafari, are introduced Generalized Neutrosophic
Closed sets . D.Jayanthi [13] ™ >Z ce Z —« Lédbed. Sets in Neutrosophic Topological Spaces,
V.K.Shanthi [22] developed Neutrosophic gs and sg closed set. C.Mahesawri[14,15] et al
introduced Neutrosophic gb closed sets.

Aim of this present paper is, we introduce and study the concepts of Neutrosophic g*-Closed sets
and Neutrosophic g*-open sets in Neutrosophic topological spaces. Also we study about mappings

of Neutrosophic g*-Closed sets
2. Preliminaries
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In this section, we recall required and necessarydefinition and results of Neutrosophic sets
Definition 2.1 [ 16,17] Let —%J be a nonempty fixed set. A Neutrosophic set Jis a object

having the form JL <OSa 0l ™ &0 T“’*a:t o:™ P& D V=

L ™- membership function

— 0: ™:- Indeterminacy function

i[ o ™- Non-Membership function

Definition 2.2 [ 16,17. Neutrosophic set JL <o Sér[ o M & 0! TMett ™ PAS D —V:aon

—Yand E™P —Uthen complementof Jis

£ LOSE oi™SF 0 ™e ™ PESD =
Definition 2.3 [16,17. Let soand éjare two Neutrosophic sets, E™D —%’
lJ|_<OTNa TMa_rU TMat UTM PAMP _9:
UL@TN& TMa_l_U TM&: UTM PaTMD _9:

Then JcC 602 Co™ Qe o ™MATU™M QU™ o F o™ RE o™=

Definition 2.4[ 16,17. Let —‘TJ be a nonempty set, and Let é%md GUbe two Neutrosophic sets

are

JL <0 S& ¢ ™MaTo™E o ™MPESD L5 JL O S& o ™MaTO™ME o™ PESD =

Then  f& JL<OS& ¢i™@&. o:™ETo™ETo™ME ™ et o™ PESD =

Je YL o Sé[ o™ &e oi™aTo™ & To™ME i™ &% o™ P& D 9=
Definition 2.5 [19,20. Let — be non-empty set and — be the collection of Neutrosophic
subsets of —%atisfying the accompanying properties:
l.rreBrs B —

2. ;& —¢Pb —forany —w.,ad—x,D —

3. é —ng — for every <—Xgé<DCEC —

Then the space : —a4 —;&s called a Neutrosophic topological space(NST-S) The component of
— are called —OS (Neutrosophic open set)and its complement is —CS(Neutrosophic closed

set)
Example 2.6.Let —J={™and E™P Y 6 JL ,51"’5%:—4%—4%4;5\ gL ,51”5%24%4%34,&

Renvcs oz 29 R 0 ,9 1 = i M. M. . .
L Avg & & A, gL T"’as—4 4<';\5—4AThen the collection — L <g.4 Ja Ja Y4 Ysge=is called

~o

aNST-Son —%’
Definition 2.7. Let( —J —), be a NST-S

and JL <O Sa- TMa—l-u TMa¢ M P& D —szea Neutrosophic set in —‘VJ Then Jis

said to be
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[1]  Neutrosophic .-closedsetp]( —F .CSinshort) —el( —in( —el( J)c I

[2]  Neutrosophic pre -closed set P2 ( —PCS inshort) —cl( —in( J)c Y

[3]  Neutrosophic regular closed set [6] ( —RCS inshort) —el( —in( J)= Y

[4] Neutrosophic semi closed set [7] ( —SCS in short) —in( —e€l( Lj C éJ

[5] Neutrosophic generalized closed set [4] ( —GCS in short) —el( C whenever EPC
aand aisa —OS,in -Y

[6] Neutrosophic ...generalized closed set L3 ( — :...;CS in short) —.cl( 50) C a
whenever Y9 C a And 4&isa —OSin -

[7] Neutrosophic generalized semi closed set R1]( —GSCS in short) —Scl( 50) C a
whenever Jcaand aisa —0Sin Y

[8] Neutrosophic semi generalized closed sd[21]( —SGCS in short) if Nu scl( 5‘3 ca

whenever U Caand aisa —SOSin -2,
[9] Neutrosophic generalized alpha closed sef9]. ( — ... 1'—1 ce‘"»>d.l Giﬁj £ a
whenever JC a and 4 isa —.0Sin -U

[10] Neutrosophic generalized b closed sef14](Nu-GbCS in short) if Nu-bcl( ;’) C & whenever
Yca and & isaNu- OS|n v
Definition 2.8.[13 ] An (NS)S Yin an (NS)TS ( —%’ —), is said to be aNeutrosophic weakly

generalized closed set (( —WG)CS) —cl( —in( J)C & whenever JC &, & is ( 9OS in
0]
_T.

Definiton 2.9. ( —J —),beaNST-Sand YL OS& o:™ap0™a o™ P& D L= 2

Then Neutrosophic closure of Yis —CI( J= é{a:aisa —CSin —Yand JC a}

Neutrosophic interior of ~ Jis —Int( J= §M:Misa —0Sin —YandM C 4.
Definition 2.10. [2] Let ( —¢ —), be a NST-S and
JL <OS& o ™&0: ™&, o™ P& D 0=

[
—Sint( 592 g a4/ 4 isa —SOS in — Uand & C 5f},
= e{ y

—scl( J a/&aisa —sScSin —Yand cal
—.'—Heg asaisa —.. 1'—Yand a C &,
—. . Eds g &a/disa —.. 1'—Yand JcC A}

3. NEUTROSOPHIC G* CLOSED SETS

In this section we introduce Neutrosophic G*-Closed sets and studied some of its basic properties.
Definition 3.1: An NS 50in ( —%’ 0 Q) is said to be &leutrosophic G*-Closed setNu-G'CS in short) if
Nu-cl( J C & whenever Y C & and & isNuGOSin( — 0Q).

The family of allNu-G'CS YV RNTS ( —Y 0 Q) is denoted by NG*C( —J.

Example 3.2: Let —Y = { S5, S} and let 0Q ={Owy, &, InJis NT on —Ywhere & L

~ .9 .; , ,9 . U— : * . 9]
Rve@, & & A8, &, & MThen theNs & Av@ & &A@, &, & Alis Nu-GCS in (- 0Q)
Theorem 3.3:Every Nu-CS is Nu-G*CS.

Proof: Let Ibe aNu-CSin( —¢ —.Then Nu-cl( J= Y Let 5U and & is Nu-GOS in
( =¥ —).Therefore Nu-cl( J= JSCA4. Thus &isNu-G*CSin -2

Example 3.4:Let —VU:{ ™ ™ and let  —={0Ow, &,In}is NT on —%’ where

= Ava@ & 4 A&@ & & Alihen the NS 50:5\”’5@ & aEAa@ ég aEAAls Nu-G*CS but not an
45454 45454 45454 45454
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Nu-cSin —Y

Theorem 3.5: Every Nu -G*CS is Nu-GCS.

Proof: Let  <be aNu-G*CS in( U —).Let Yca and & isNu-OSin( -2 —. Since every
Nu-OS is Nu-GOS and since Jis Nu-G*CS in —‘VJ Therefore Nu-cl( 5Lj C & whenever EPC a,
4 isNu-0Ssin —YThus JYisNu-GCSin Y

Example 3.6:Let —r“- ™ ™ &ML and

y .
let —={Ow, &, Iw}isNTon —¥ U where & = A@“as—“as—“A &8, @4%—4%—4,%

0o .
Thenthe NS g —AN@4a5—4a5—4A 4.515—4a5—4A 4a5—4a5—4AA|s Nu-GCS but not an Nu-G*CS in .

Theorem 3.7: Every Nu-G*CS is Nu-... 1

Proof: Let Jbe aNu-GCSin ( —Y, 0Q) . By Theorem 3.6 Jis Nu-GCS in —U. Since
Nu ..l J C Nu-cl{ Jand JisaNu-GCSin —UY Therefore Nu ..-cl( & C Nu-cl( JC &
whenever YC &, &isNu-0Sin -2 Thus JisNu-.GCSin -2

Example 3.8:Let —J={™ ™}andlet — ={Ow, &, lw}lisNTon U

where 3 =AY4@ & & A4 a—a—AAThentheNS Q:AWé@siégégA & & A
45454 4545 45454 45454

is Nu- .GCS but not an Nu-G*CSin -

Theorem 3.9: Every Nu-RCS is Nw-G*CS .

Proof: Let YbeaNu-RCSin( —¢ —).Then &=Nu-clNu-int( J).Let IC& and & is

Nu-GOS in( —Q, —) .Therefore Nu-cl( &) QNu-cl(Nu-int( &)). This implies Nu-cl( &cC
dca. Thus  LJisNu-G*CSin —Y

Example 3.10:Let —F ={™, ™landlet — ={0w, &, Iwl}is NT on —Q,Where

U = *
a —AT'VBé @4@4A@4a5—4%—Mhen NS &= ”@ 635—4a5—4 a@Aas—Aas—AAls Nu-G*CS but not an
Nu-RCSin —Y
Diagram:|

Remark 3.11:
Nu-G*CS is independent from Nu- UCS, Nu-SCS, NuPCS, and Nu-bCS as seerfrom the following
example.
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Example 3.12:Let —%’ ={™, ™}andlet — ={0w, &, Iwl}is NT on —%’ where

2 X (L Rrvz 9 9 . /9 .9
3 =Av@ & 4 A4 a—a—AAThen NS g =A & & A48 & & M
45454 4545 45454 45454

is —SCS, Nu-bCS, but not an Nu-G*CS in -
Example 3.13: Let —%’ ={™, ™}andlet — ={0w, &, Iwl}is NT on —%’ where

o X Nz ) /9 .9
a :ATM@a—a—A & & AAThen NS 5-AT & & Ad@ & & AA
4545 45454 45454 45454

is —PCS,Nu-... 81cZzel—"s@€Sil 2V
Example 3.14: Let —%’ ={™ ™landlet —={Ow, &, Inu}is NT on —P where

O A 9 7
ATM‘B@4 L% aé“as—dfa—AAThen the NS _ANQ@ as_ aETAE@h &, 54

is Nu-G*CS butnot -SCS, Nu-bCS —Y
Example 3.15: Let —P ={™ ™landlet —={Ow, &, Inu}is NT on —%’ where

=Ava@ & & Aa@ & & MThenthe NS L AYE & & Ad@ & 4 AA
45454 45454 45454 45454
is Nu-G*CS but not —CS, Nu-PCS U
Theorem 3.16: The union of two Nu - e 1’ ed@Cs
Proof: Let Yand ¢ be the two Nu- el —Yandlet JO YCa, where & is a Nu-GOS

o

in  —J Therefore YJC& or YC4& or both contained &. Since Jand Jare Nu-G*CS,
Nu-cl( JCa& andNu-cl( J C&. Therefore Nu-cl( &0 Jca.Thus JO Jis Nu-G*CS.
Remark 3.17: The intersection of any two Nu -G*CSs is not an Nu-G*CS in general as seen in the
following example.

Example 3.18: Let —F ={™, ™landlet —={0Ow, &, Iu}is NT on —P

e _ &9 9 5 .5 9 < .
where a _NN@4%4%4A@4%_4%_4M

‘3 . 0 - Ava@ 4 . L Ak
Z—1 ot Aw 4a5—4a5—4A a5—4a5—4AA 6 =A%@ & &A@, &, & P

are Nu- ®el’ —Vf‘lbut UO U is not a Nu-G*CS in —%’

Theorem 3.19 If  Jis Nu-G*CSin ( —¢ —, suchthat JC YCNu-cl( J. Then Jisalsoa
Nu-G*CS of ( =2 —)

Proof: Let & be a Nu-GOS in ( —¢ —) such that JC4&, Since JCc ¢ JCc4& and & be a
Nu-GOS. Also since 5‘3 is Nu-G*CS, Nu-cl( SCé By hypothesis lJC]\Iu -cl( 53 ThIS implies
Nu -cl( é:jO\lu-cI(Nu -cl( S)Cé Therefore Nu-cl( ljCa Hence Jis Nu -G*CS of —¢
Theorem 3.20: If & is both Nu GOS and Nu- G*CS of ( =¥ —, then Jis Nu-CSin —‘VJ

Proof: Let 50 is Nu-GOS in  — Since 5UC 5, by hypothesis Nu-cl( ESC é’ But from the
Definition, SUCNU-C|( 5‘3.Theref0re Nu-cl( 55: 5L? Hence 50 is Nu-CS of —‘VJ

Theorem 3.21: Let ( —%’ — be a NTS. Then NuGO( —%zNu-GC( —%) iff every NS in

( =¥ —isNu-G*CcSin -2

Proof:

Necessity: Suppose that Nu-GO( —J=Nu-GC( —J. Let UCé and & is Nu-GOS in —Y This

implies Nu -cl( 3 QNu-cl(&). Since & is Nu-GOS in Slnce by hypothesis & is Nu-GCS in
—U Nu-cl(&) C &. This implies Nu-cl( 3 C a. Therefore Ujs Nu-G*CSin —Y

Sufficiency: Suppose that every NSin ( —, —is Nu-G*CS in —%’ Let & Nu-O( —%,then
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o

4 ONu-GO( —J. Since & C& and & is Nu-0S in —Y by hypothesisNu-cl(&)Ca.
l.e., & ONU-GC( —9. Hence Nu-GO( —9 Nu-GC( —J.Let JaNu-GC( —Ythen  Fis
an Nu-GOS in —JButNu-GO( -9 Nu-GC( —9. Therefore PNu-GC( V. le.,
JaNu-GOo( Y. Hence Nu-GC( —9 QNu-GO( 9. Thus Nu-GO( -9 aNu-GC( 9.
Theorem 3.22:1f  Yis Nu-OS and anNu-G*CSin ( —, —9 , then
Jis Nu-ROS in —%’
Jis Nu-RCSin -V
Proof: () Let & be a Nu-OS and a Nu-G*CS in —YThen Nu-cl( 9C I le, Nu
int(Nu-cl J)C ISince Jis a Nu-0S, Jis Nu-POS in - Hence JCNu-int(Nu -cl( J).
Therefore & Nu-int(Nu -cl( J). Hence Yis Nu-ROSin -2
(i): Let Y be a Nu-OS and an Nu-G*CSin —Z Then Nu-cl( JC Zle., Nu-ciNu-int( J)C
Since Jis a Nu-0S, Jis —0S in -2 Hence JNu-ci(Nu-int( 9). Therefore J=
Nu -int(Nu -cl( 59). Hence SUis Nu-RCS in —P
4. NEUTROSOPHIC g*-OPEN SETS
In this section we introduce Neutrosophic g*-open sets and studied some of its properties.
Definition 4.1: An NS 50 is said to be aNeutrosophic g*-open set (Nu-G*OS in short) in ( —‘VJ
—p if the complement € is Nu-G*CS in  —ZThe family of all Nu - e 1 ANTS ( Y
— is denoted by Nu-G*O( —%)
Theorem 4.2:A subset  Jof ( -2 — is Nu-G*OS iff  JCNu-int( 3 whenever  Jis Nu-GCS
in —Yand Jc Y
Proof: Necessity: Let Jis Nu-G*0S in Y Let Jbe aNu-GCSin —Yand Jc ¥ Then
% is Nu-GOS in —Csuch that Fc © Since Fis Nu-G*CS, we have Nucl( HC
3 HenceNu-int : &;%#C & Therefore  JoNu-int( J.
Sufficiency: Let JCNu-int( 9 whenever Yis Nu-GCS in —Yand JC Y Then [Fc
Fand Fis Nu-GOS. By hypothesis, (Nu—lnt( Jec & which implies Nu cl( $§c  &E
Therefore ¥ is Nu-G*CSof —Z Hence &isNu-G*0Sin —U
Theorem 4.3. Every Nu-0OS is Nu-G*OS .
Proof: Let EPbe a Nu-OS. Then E,LG is Nu-CS. By Theorem 3.3, every NuCS is Nu-G*CS.
Therefore & is Nu-G*CS. Hence Jis Nu-G*OS.
Example 4.4:Let —lVJ ={™ ™landlet —={0w, &, In}is NT on —%‘ where

& :AW@ %94%64'6‘@ a&e&—AAThen NS Q:ATA@4§43514A@43594§4AA

is Nu-G*OS but not an Nu-OS in —?

Theorem 4.5: Every Nu -ROS is Nu- G*OS .

Proof: Let 50be aNu-WS. Then 506 is Nu-RCS. By Theorem 3.15, every NURCS is Nu-G*CS.
Therefore 500 is Nu-G*CS. Hence 50 is Nu-G*OS.

Example 4.6:Let —Z={™ ™land let —{Ow, &, lu}isNTon -2 where

a4 =AM a—a—A a—a—AA Then NS 5-,0:,0\T & & A4 a—a—AAls Nu-G*OS but not an
45454 45454 4545

Nu-ROSin -

Theorem 4.7: Every Nu-G*OS isNu-GOS .

Proof: Let 50 be a Nu-G*OS in ( —%’ —) . Then 5‘3lG is Nu-G*CS. By Theorem 3.6, every
Nu-G*CS is Nu-GCS. Therefore &€ is Nu-GCS. Hence Yis Nu-GOS.
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Example 4.8: Let —%J ={™ ™landlet — ={Ow, &, Iw}isNT on —%’ where

8 =Aw@ & & A a—a—AA Then NS 5U:ﬁ”éc§4é§4ési—4A' a—a—Ak; Nu-GOS but not an

45454 4545 45454
Nu-G*0Sin —Y
Theorem 4.9: Every Nu-G*OS is Nu- ... 1

Proof: Let Ybe aNu-G*OS in ( —J —). Then fis Nu-G*CS. By Theorem 3.9, every
Nu-G*CS is Nu- .GCS. Therefore s Nu- .GCS. Hence Yis Nu-.GOS.
Example 4.10: Let —Y={ ™, ™} and let —={Ow, & ,w}ls NT on -V, where & =

~ . g 8 . ~
Ams 4a5—4a5—4A a5—4a5—4AA'hen the NS A as— aS—Aaé4a5—4a5—4AAls Nu- USOS but not an

Nu-G*0Sin -2
Theorem 4.11: The intersection of two Nu - e 1’ =e@*aS.
Proof: Let 50 and éjbe the two Nu- ceith —%’ 5"G and é’G are Nu-G*CS. By
Theorem 3.28 0 Fis Nu-G*CS in —U Therefore ( YO Jis Nu-G*CS. Thus Y6 Jis
Nu-G*0Sin -Y
Theorem 4.12: Let ( —%’ —z) be a NTS. If SUis NS of —%’ Then for every EPE)
Nu-G*O( —Jandevery ¢& -9, Nu-int( Jc fC Jimplies ¢ BDNu-G*O( —9.
Proof: By hypothesis Nu-int( 59 C ch 59 Taking complement on both sides, we get

Fanu-cl( &9.Let Pca and & is Nu-GOSin —Y Since ¥c ¥ KFca. since L
is Nu-G*CS, Nu-cl( &9 Ca. Therefore Nu-cl( ¥ Nu-cl( ¥ Ca&. Hence Fis Nu-G*CS in
—U Therefore  Jis Nu-G*0Sin —Zle., & Nu-G*O( -9

Definition: 4.13: For any Nu. set gin any NSTS,

Nu-g*cl( J=¢ 1 : 7 isNu-g*CSNu.setand JCi }
Nu-gsint( J= & : 8isNu-gcOS and JD &}
Theorem: 4.14: Inalts( =Y —)aNu. set ;’ is Nu-g*- CS iff ;’ = Nu-g* cl( 5
Proof: Let Sbe a Nu-g*CS Nu. setin NSTS ( —P —. Since g C Eand gis Nu-g*CS ,
g a: &isaNu-g‘CS Nu.setand JC & }and YCc& o O= & &: & is Nu-g*CS

and Jca }thatis 2=Nu-g*cl( 9.
Conversely, suppose that g’:Nu—g*cI( 5,that is s“: & a: & isaNu-g* CS Nu. set and

9C & }. This denotesthat EE{ 4: & isaNu-g*CS Nu.setand JC& }.Fromnow Uis
Nu-g*CS Nu. set.
Theorem: 4.15In aNSTS Y the subsequentresults hold for Nu -g* - closure.
1) Nu-g*cl (Onu) =Onw.
2) Nu-g*cl ( 5 is Nu-g*CS Nu. set in 9
3) Nu-g¥cl (9 aNu-grel ( Yif Yc U
4) Nu-g* cl (Nu-g*cl(  9) = Nu-g* cl( 5
YoNu-g*cl( YeNu-grel( J.

e

5)Nu-g¥cl ( Ve
6)Nu-g*cl( Y& YaNu-gtcl( YeNu-grcl( J.
Proof: easy

Theorem: 4.16 In aNSTS —Y a Nu. set ;’ is Nu-g* OS iff g = Nu-g*int ( 5
Proof: Let ;’ be Nu-g*OS Nu. setin —Y Since g C ;’ and g is Nu-g*OS and ;J H
4: & isaNu-gtOS Nu.setand 2D &}tand 2D & e J= & & & isNu-g*OSand

UD & ). Thatis  LNu-g*int (9.
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Conversely, suppose that 2= Nu-g¥int (9, thatis L& &: & isNu-g*0Sand U D & }.
This implies that Y 5 &: & isNu-g*0Sand 2D & }.Hence Yis Nu-gOS Nu. set.
Theorem: 417 InaNSTS —Ythe following hold for Nu -g* -interior.

1) Nu-g*int  (Onu) =Onu

2) Nu-gtint( 9 Nu-g*int ( Jif Jc Y

3) Nu-g*int ( 5 is Nu-g*OSin 9

4) Nu-g*int (Nu -g*int ( 5) = Nu-g*int ( 5

5) Nu-gtint (98 Y DNu-ghint( 9 &Nu-grint( J.

6) Nu-gtint (Y& Y aNu-gint( Y eNu-grint( J.

Proof: proof is as usual.

5. NEUTROSOPHIC g* - CONTINUOUS

In this section we introduce Neutrosophic g*-continuous and studied some properties of
neutrosophic g* - open map and closed map.

Definition: 5.1Let —and —Fbetwo NTS.A function B4 -7 —f issaid to be neutrosophic

g* - continuous  (Nu-g* - continuous) if the inverse image of every neutrosophic open setin —Yis

g*-openin —Y
Theorem:5.2 A function Ba—7 —fis Nu-g* - continuous iff the inverse image of every
Nu-closed setin —Yis g* - closed set in —P
Proof: Suppose the function Ba —P 7 —ﬁs Nu-g* - continuous. Let a be Nu-closed set in -9
Then aCis Nu- open set in —U Since Bis Nu-g* - continuous, B ¥ ac') is Nu- g* - open in —%’ But
B’5:20= :B?%:a%;%ndso B’5:ajsNu-g*-closedin —C
Conversely, assume that the inverse image of every Nu-closed set in VUis Nu-g* - closed in
—Q. Let & be neutrosophic open set in —Y Then89s Nu-closed in Y By hypothesis, B’5:89 is
Nu-g*-closed set in —Y But B89 = :B?5:8%;%and so B’5:8js Nu-g* - open set in —C
Hence Bis Nu-g*-continuous.
Theorem:5.3 Every Nu- continuous function is Nu -g* - continuous.
Proof: Let Ba —Y 7 —r‘:be Nu-continuous. Let a be Nu-closed setin —Y Then B?5:a; is Nu-closed
setin —‘VJ since Bis neutrosophic continuous. And therefore B’°:ajis Nu-g* - closed in —%’ Hence B
is Nu-g* - continuous.
Theorem:5.4Every Nu-g*-continuous function isNug-continuous.
Proof: Let Ba —%’ 7 —F be Nug* - continuous. Let a be aNu-closed setin —U Since Bis Nu-g* -
continuous, B?5:a; is Nug* - closed in —Y And therfore B?5:a;is Nug - closed in  —C as every
Nu-g*-closed setisNu-g - closed. Hence Bis Nu-g- continuous.
The converse of the above theorem need not be true as seen from the following example.
Theorem:55If Ba —%J 7 —ﬁs Nu-g* - continuous and —P is neutrosophic .T*12 NTS. Then Bis
neutrosophic -continuous.
Proof: Let Ba —%’ 7 —rcbe Nu-g*- continuous . Let a be Nu-closed set in Y Then B?®:ajis
B’5:a; Nu- g* - closed in —%’ since Bis Nu-g* - continuous. Also since —%’ is neutrosophic - T* 2,
B’5:ajs closcclin - —Y Hence Bis Nu-continuous.
Theorem:56 If Ba —%’ 7 —Hs Nu-g - continuous and —%’ is neutrosophic - Tw2 NTS. Then Bis
Nu -g* - continuous.
Proof: Let Ba —%’ 7 —F be Nu-g - continuous. Let a be Nu-closed setin —Uthen B’5:a:is o-
closed in —¥ Since X is neutrosophic- T‘12, B?®:ajs Nu- g* - closed in — Hence Bis Nu-g* -

A.Atkinswestley ,S.Chandrasekisleutrosophic g*Closed setand its maps



Neutrosophic Sets and Systewsl. 36, 2020 104

continuous.

Theorem:5.7If Ba — 7 —fls Nu-g*- continuousandg: - 7 —Yis Nu-continuous then

gof: —¢ 7 —Yis Nu-g *-continuous.

Proof: Let & be Nu-closed setin —Y Then ?%:a;isclosedin —Ysince Cis Nu-continuous.

Andthen B?5:C?5:a;; isNu-g*-closedin —Usince Bis Nu-g*-continuous.

Now :CUB;?5:a;= B?5:C?%:a;; isNu- g* - closed in —Y Hence cUB - 7 —VYis Nu-g*~

continuous.

Theorem:58If Ba —%’ 7 —Hs Nu-g* - continuous and g : U7 YisNu -g* - continuous and
—Yis neutrosophic .T~,, space. Thengof: — 7 —Yis Nu-g*- continuous.

Proof: Let a be Nu-closed set in -2 Then C°5:a;is Nu-g*CS in —Ysince Cis Nu-g*

continuous. Since —Yis neutrosophic T+, C?5:a; is Nu-closedin -2 And then B’5:C?5:a:;

is Nu-g*CS in —Yas Bis Nu-g* - continuous. Now :CUB;?5:a; L B°5:C?5:a;js Nu-g*CS

in —Y Hence CUBis Nu-g* - continuous.

Definition: 59A map B& —%’ 7 —F is said to be neutrosophic g* - open if the image of every

neutrosophic open set in Yis Nu-g*-open set in -y

Definition: 5.10 A map Ba —%’ 7 —ﬁs said to be neutrosophic g* - closed if the image of every

Nu-closed setin —%J is Nu-g*-closed setin -y

Theorem: 5.11 Every neutrosophic open map is neutrosophic g* - open.

Proof: Let Ba —%’ 7 —}J be a neutrosophic open map let & be an neutrosophic open set in —P

then B(9d) is Nu-open in —Usince Bis neutrosophic open map. And therefore B d) is Nu-g* -

open in —Y Hence Bis neutrosophic g* open map.

Theorem :5.12 If Ba —%’ 7 —ﬁs Nu-g*-open map and VUis neutrosophic .T*12, then Bis a

Nu -open map.

Proof : Let Ba —F 7 —ﬁs neutrosophic g*- open map. Let d be neutrosophic open set in —P

Then B(9)isNu-g*-openin U since Yis neutrosophic -T*12, B @) is neutrosophic open set

in —Y Hence BisNu- open map.

Theorem:5.13 Every Nu -g* - open map is neutrosophic g - open.

Proof: Let Ba —‘VJ 7 —}’ be a Nu-g*- open map. Let & be neutrosophic open set in —%’ Then B

(0) is Nu-g* - open in —Usince Bis Nu-g* - open map. And therefore R @) is Nu-g- open setin
—U Hence Bis neutrosophic g - open map.

Theorem : 5.14If Ba —%’ 7 —ﬁs neutrosophic g - open and —Ujs neutrosophic - *Tu2 space, then B

in Nu -g* - open map.

Proof: Let & be neutrosophic open set in —? Then R ) is Nu-g - open in U since Uis

neutrosophic -*T12. B( &) is Nu-g*-openin - And hence Bis Nu-g* - open map.

Theorem : 5.15 Every Nu -closed map is Nu-g* - closed map.

Proof: Let Bzi—%J 7 —F be Nu-closed map. Let & be Nu-closed set in —Q.Then B:a;is

closedin —Y And therefore B:a: is Nu- g* - closed in —Y And hence Bis Nu-g* - closed map.

Theorem :5.16 If Ba —C 7 —ﬁs Nu-g* - closed and —Yis neutrosophic -T*1.. Then Bis Nu-closed

map.

Proof: Let Ba —%’ 7 —F be Nu-g* - closed map. Let a be Nu-closed setin —Q.Then BS (d)is

Nu- g* - closed in Y sSince Yis neutrosophic -T*2 , R &) is Nu-closed in Y Hence Bis

neutrosophic closcd map.

Theorem: 517 A map Ba —%’ 7 —]qs Nu-g* - closed iff for each neutrosophic set i of —%ind for
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each neutrosophic open set i such that B’ {)C i there is a Nu-g*-open set & of —Ysuch that
i C dand B’ C .

Proof: Suppose Bis Nu-g* - closed map. Let i be a neutrosophic set of VYand i be a

neutrosophic open set of —Y such that B'S(i)C i. Then 8= —Y . B(i ¥ isa Nu-g*-open set in
—Usuchthat i C dand B8 Ci.

Conversely, suppose that a is a Nu-closed set of —‘VJ Then B (Ra%)C
a’and a’ts Nu-open. By hypothesis, there is a Nu-g*-open set 8 of —UYsuch that B:a;°C &
and B8 C a”Therefore a C B°:5:7 Hence 39C Ba)C RE®:8;9C 8°which implies
B a) = 8° Since 8% Nu-g* - closed, K ) is Nu-g*CS and thus Bis a Nu-g*- closed m ap.
Conclusion
In this paper, we have defined the neutrosophic g* closed sets and open sets.then discussed about
neutrosophic g* continuity Then,we have presented some properties of these operations. We have
also investigated neutrosophic topological structures of neutrosophic sets. Hence, we hope that the
findings in this paper will help researchers enhance and promote the further study on n eutrosophic
topology.
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Abstract: Smarandache introduced and developed the new concept of Neutrosophic set from the
Intuitionistic fuzzy sets. A.A. Salama introduced Neutrosophic topological spaces by using the

Neutrosophic crisp sets. Aim of this paper is we introduce and study the concepts Neutrosop hic b
generalized closed sets and Neutrosophic b generalized continuity in Neutrosophic topological

spaces and its Properties are discussed details.

Keywords: Neutrosophic bg closed sds, Neutrosophic bg open sets, Neutrosophic bg continuity,
Neutrosophic bg maps.

1. Introduction

N eutrosophic system plays important role in the fields of Information Systems, Computer
Science, Artificial Intelligence, Applied Mathematics, Mechanics, decision making, Medicine,
Management Science and Electrical & Electronic, etc,. Topology is a classical subject, as a
generalization topological spaces many type of topological spaces introduced over the year. T Truth,
F -Falsehood, |- Indeterminacy are three component of Neutrosophic sets. Neutrosophic topological
spaces(N-T-S) introduced by Salama [22,23etal., R.DhavaseelanfL(], Saied Jafari are introduced
Neutrosophic generalized closed sets. Neutrosophic b closed sets are introduced by
C.Maheswari[17] et al.Aim of this paper is we introduce and study about Neutrosophic b
generalized closed sets and Neutrosophic b generalized continuity in Neutrosophic topological
spaces and its properties and Characteization are discussed details.

2. Preliminaries

In this section, we recall needed basic definition and operation of Neutrosophic sets and its
fundamental Results
Definition 2.1 [ 13] Let Rbe a nonempty fixed set. A Neutrosophic set ag is aobject having the
form

=0 L9 M Ay e Xt AN . X DX P
a L @Ta]ég.s,d:’ég.s,a@aﬂsj.s, P&T PR3
J;0: S-represents the degree of membership function

P,0: S-represents degree indeterminacy and then
@u: Si-represents the degree of norrmembership function
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Definition 2.2 [ 13].Neutrosophic set a;’ L O Té]aoié;éPétS‘Jié;é@J:é; P&T D R=<on Rand E3PR

then complement of ag is 4 L <O Tagu:§;& F Pyo:54,0:8;, PATDR=
Definition 2.3 [ 13]. Let a;’ and af’ are two Neutrosophic sets, ESPR

a) L <O Tal!8,87018;4Qu:$; PATD R=
.0 Y R _
& L <o Ta]ay.s,aPay.s,a@tu.s, PaT b R=

.U +0 x - Mgy e o s e
Then & Ca; z Jag.s, QJa}J.s,dDag.s, QPa%J.s,—.@g.s, R @tu.s,_
Definition 2.4 [ 13]. Let Rbe a nonempty set, and Let a;’ and 'af’ be two Neutrosophic sets are

.0 D _ .0 N
a L <o Ta]ég.s,e%g.s,a@g.s, PaTbRs & L <O Ta]ay.s,dDay.s,a@tu.s, P&T B R3hen

1 alea’L <O Talp:!s & J,0:8,4P018 & Pis;a@n:s; & @S PATDR=
S t S

t s t

2. aleal L O Talp§; & 0184008 & P8 4Qu:S; & @i PATPR=

a S s t

Definition 2.5 [ 23].Let Rbe non-empty set and R be the collection of Neutrosophic subsets of R
satisfying the following properties:

l.rrésgr DR

2. 56 gbRforany s54¢ DR

3. & jDRforevery < &b @&C R

Then the space :Ra%; is called a Neutrosophic topological space(N-T-S).

The element of R are called Ne.OS (Neutrosophic open set)

and its complement is Ne.CS(Neutrosophic closed set)

Example 2.6Let R={x}and ESPR

oo 29 R 29 2 7R
L A& & &A, gL K& & & A
545454 545454

Then the collection Ry L <ga sa ga ;4 gsg=is called a N-T-Son R
Definition 2.7 .Let :Ra%be a N-T-S and a;’ L <O Té]aoié;éPaoié;é@,:é; P&T b R=be a
S S s

Neutrosophic setin R Then a;’ is said to be

. Neutrosophic b closed set [17] (Ne.bCS) if Ne.cl(Ne.int( é&}) éNe.int(Ne.cl( ég) C aé’

. Neutrosophic =closed set [7/] (Ne. =CS) if Ne.cl(Ne.int(Ne.cl( a5)) C aé’

. Neutrosophic pre-closed set R5] (Ne.Pre-CS) if Ne.cl(Ne.int( aS) C abLJ

. Neutrosophic regular closed set [7] (Ne.RCS) if Ne.cl(Ne.int( 35) = ag

. Neutrosophic semi closed set [7] (Ne.SCS) ifNe.int(Ne.cl( 35) C aby

. Neutrosophic generalized closed set [LO] (Ne.GCS) if Ne.cl( ab H whenever ag H and H

D O~ W N P

is aNe.OS,
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7. Neutrosophic generalized pre closed set [17] (Ne.GPCS in short) if Ne.PcI(éS C H whenever
&) CHand His aNe.OS,
8. Neutrosophic =generalized closed set [L5] (Ne. =GCS in short) if Neu =cl( a;} CH whenever ag
(Hand H isaNe.OS,
9. Neutrosophic generalized semi closed set [24](Ne.GSCS in short) ifNe.ScI(éS (H whenever
a;’ (H and His a Ne.OS.
10. Neutrosophic generalized =closed set [11] (Ne. G =CS in short) if Neu =cl( ab (H whenever
a0 CHand H is aNe. =OS.
11. Neutrosophic semi generalized closed set R4](Ne.SGCS in short) ifNe.ScI(a5 (H whenever
4 CH and H is a Ne.SOS.
Definition 2.8.[9] : R&% be a N-T-S and a‘sJ L O Té]agié;é&g:.é;é@a: S; PaT b R=be a

S

Neutrosophic setin RThen
Neutrosophic closure of a;’ is Ne.CI( égj: éH:Hisa Ne.CSin Rand a;’ H}
Neutrosophic interior of ag is Ne.Int( éSC): gM:Misa Ne.OSin RandM C ag}

Definition 2.9. Let :Ré&%be a N-T-S and ag L <O Tal,u:8;aP,0:8,8@Qu:S; PaT b : =be a

Neutrosophic setin R Then the Neutrosophic b closure of a;{ Ne.bcl( 'agjin short) and
Neutrosophic b interior of a;’ (Ne.bint( aj in short) are defined as

Ne.bint( 89= & G/G is aNe.bOS in Rand G C &8,

Ne.bcl( &)= & K/K is a Ne.bCS in Rand &’ K }.

Proposition 2.10. Let :R& ; be any N-T-S. Let a;’ and éf’ be any two Neutrosophic sets in
: R&% ; &hen the Neutrosophic generalized b closure operator satisfy the following properties.
1. Ne.bcl(On)=0v and Ne.bcl(In) = Iy,

2. a2 aNe.bel( &Y,

3.Ne.bint( aj C &Y

4.1f a’is aNe.bCS then a%Ne.bcl(Ne.bcl( &J),

5. a2 C &Y aNe.bcl(aJ QNe.bel( &Y,

6. a2 C &a” ade.bint( 4 QNe.bint( &9.

NEUTROSOPHIC b GENERALIZED CLOSED SETS

In this part we introduce neutrosophicb bG closed sets its properties are discussed.
Definition 3.1.

A Ne. set ég’in an NSTS :Ré& s called Neutrosophic b generalized CS (briefly Ne.(bG)CS) iff
Ne.bCI( aéj Ca{%J whenever aé’Caé’ and ég’is Ne. (b)OSin R

Example 3.2.

Let R{F, F}, &={0, aY 1},isa N.T.on Rwhere &aJL %é@éé& '<4A@4é§4ég—4AA

. 201 Feam 29 27z 29 28 nk .
Then the Neutrosophic set &g L ,Osa@4a§4a§4Aa@4a5—4a5—4Ak aNe.bGCSin R

Remark 3.3.

A Ne. set a5U in a NSTS :R& ;is called Ne.(b)generalized open (briefly Ne.(bG)OS) if its
compliment aé‘?s Ne.(bG)CS.

Theorem 34.
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Every Ne.-CSin :R& js Ne.(bG)CS.

Proof.

Let athe a Ne.CSin NSTS R Let a9Cal where &Yis Ne.(b)OSin R Since &Jis Ne.CS it is
Ne.(b)CSand so NeuCI( aéj =Ne.bClI( aéj: éECégThus Ne.bCI( aéj CaéJ Hence a}f is Ne.(bG)CS.
Example 3.5

. 9 L
Let R{F, F}, e={0, a5, 1},isaN.T.on Rwhere a5 L A4 4a5—4a5—4A 4a\L3—4a5—4,Af.°\Then the

Neutrosophic set a6 L Az@ & a—Aa@4é594é514Aﬁis aNe.bGCS but not aNe.CSin R

45454
Theorem 3.6.
Every Ne.(b)CSin :R& jis Ne.(bG)CS.
Proof.

Let éSCbe a Ne.(b)CS in NSTS R Let aSUCaéJ where a}ﬂs Ne.(b)OS in R Since abHs Ne.(b)CS ,
Ne.bCl( aé) :a},JCaé’ Thus Ne.bClI( aéj CégHence aéfs Ne.(bG)CS.
Example 3.7. Let R{F, F}, ¢ ={0, & 1},isaN.T.on R

=0 Resn 29 28 a2 < 9 .6 9 5 ,x
where &L k@4a5—4a5—4A . 54a— AlThen the Neutrosophic set a6 L Asa@ a5— a5— @4a5—4a5—4m a

Ne.bGCS but not aNe.bCS in R

Remark 3.8.

().Every Ne. (bG)CSis Ne.(Gb)CS.

(ii). Every Ne.(sG)CSis Ne.(bG)CS.

0'u1 YZ>¢1 Zid ... 0 1'cel ZiGc U i
Example 3.9.

Let R{F, F}, € ={0, &) 1}isaN.T.on R

204 A<z (9 £ opzn 29 6 AR . =0
where &'d Asa@;4a5—4a5—4Aa@4a5—4a5—4ANhen the Neutrosophic set &5 L &4 4515—4&15—4A a5—4a5—4AA

is aNe.GbCS but notNe.(bG)CSin R
Example 3.10.

_ 9 4 AR
Let R{F, E} e ={0, a5, 1},isa N.T.on Rwhere a5 L A4 4a5‘4a§4A 4a5—4a5—4AA

Then the Neutrosophic set a2 L %@4%4%4A@4§4%4Ak aNe.bGCS in Ris not Ne.(sG)-CS

Diagram:1
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Theorem 3.11.
A Ne. set ésoof a NSTS :R& js called Ne.(bG)OSiff 'aECI\Ie.bint( aslj whenever ég’is Ne.(b)CSand

afcad
Proof.

Suppose aéfs Ne.(bG)OS in R Then ég?ls Ne.(bG)CS in RLet aé]be a Ne.(b)CS in Rsuch that
acad Then a”’ca” a"is Ne.(b)OSin R Since 4Yis Ne.(bG)CS,Ne.bCl(aY) calwhich implies

: 13,7 «a0;;%ca” Thus adaNe.bint( &Y.

Conversely, assume that aY QNe.bint( &), whenever &Y C &%nd &isNe.(b)CS in R. Then

. 18,7 «8Y; ;%Cathé% where &Yis Ne.(b)OSin R Hence Ne.bCI( ag') Ca7L,J which implies &8s
Ne.(bG)CS.Therefore &3s Ne.(bG)OS.

Theorem 3.12.

If &is Ne.(bG)CSin :R& ;and a’CalNe.bCl( &Y, then &Yis Ne.(bG)CSin :R& .

Proof.

Let a%’ be Ne.(b)-OSin Rsuch that agJCa7U then a;&’Ca%J Since aéfs aNe.(bG)CS in R it follows that
Ne.bCl( 3 ca¥ Now aJQNe.bCl( &Y implies Ne.bCl( 49 QNe.bCl(Ne.bCl( &) = Ne.bCI( &Y. Thus
Ne.bCI( aé) caY Hence aéfs Ne.(bG)CSin R

Theorem 3.13.

If a¥is Ne.(bG)OSin :R& and Ne.bint( &Y calCalthen &Yis Ne.(bG)-0OSin :R& ;

Proof.

Let ééjbe Ne.(bG)OSand é&)e any Ne. setin Rsuch that Ne.bint( a;,‘j CaéJCaéJ Then ag?|s
Ne.(bG)CS and &aY’ca”aNe.bCi( &Y). Then &”is Ne.(bG)CS.Hence &§s Ne.(bG)OSof R
Theorem 3.14.

Finite intersection of Ne.(bG)CSs is aNe.(bG)CS.

Proof.

Let aand adbe Ne.(bG)CSsin RlLet CCalé a¥where Gs Ne.(b)CSin RThen CCatnd
ccalSince atand afre Ne.(bG)CSs, CCaltNe.bint( 4 and CCaS: Ne.bint( 4, which implies

CQNe.bint( & &Ne.bint( &J). Hence CNe.bint( & é &J. Therefore & & aNe.(bG)CSin R
Theorem 3.15.

A finite union of Ne.(bG)OS is aNe.(bG)OS.
Proof.
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Let and &beNe.(bG)OSin RLet Y& 39C Gwhere GsNe.(b)OSin RThen &YC @r

39C CSince atand &%re Ne.(bG)OSNe.bCl( aJ=aJC Cor Ne.bCl( 43=&JC G which implies
Ne.bCl( &Y éNe.bCl( 4J C CHence Ne.bCl( &Y & 49 C C Therefore &Y& aiNe.(bG)OS in R
However, union of two Ne.(bG)CSs need not be aNe.(bG)CSas shown in the following example.
Example 3.16.

Let R{F, F}, ¢={0, &Y 1}isaN.T.on R

.U N - WV . Wt A
Where & L K@ & & Aa@ & & AA
Sr sr sr Sr sr sr

. WOy R W L AR W AR
Then Neutrosophic set & L K@ & &A@ & & PAA

Sr sr sr Sr s Sr

-

2L Aa@ & & MA@ & asE AB a areNe.bGCSs but &7 & &”is not aNe.bGCS in R

r
Theorem 3.17.

If aYis Ne.(b)OS in :R& ;and Ne.(bG)CS, then &is Ne.(b)CSin :R& ;.

Proof.

Let abe Ne.(b)OS andNe.(bG)CSin RFor aJCaY by definition Ne.bCl( a3 Cal

But é500\|e._bCI( E‘\S,Which implies éso—-Ne.bCI( égj.Hence aéfs Ne.(b)CSin R

Definition 3.18.

ANSTS :Ré& ; is called aNeutrosophic bTuz space (in shortNe.(b)T*12 space) if everyNe.(bG)CSin
Ris Ne.-CS.

Definition 3.19.

A NSTS :R& s called aNeutrosophic bTwz space (in short Ne.Twz2space ) if everyNe.(bG)CSin R
is Ne.(b)CS.

Theorem 3.20.

A NSTS :R& iis Ne.(b)Tvz spaceiff every Ne. setin :R& ;s both Ne.(b)OS andNe.(bG)OS.
Proof.

Let Roe Ne.(b)Twzspace and let éébe Ne.(bG)OS in R Then ag’?is Ne.(bG)CS R By definition
allNe.(bG)CSin Rs Ne.(b)CS, so ais Ne.(b)CSand hence &s Ne.(b)OS in R

Conversely, let éébe Ne.(bG)CS. Then ég?is Ne.(bG)OS which implies ég?lSNe.(b)OS. Hence aéfs
Ne.(b)CS. EveryNe.(bG)CSin Rs Ne.(b)CS.Therefore Rs Ne.(b)Twv2space.

Theorem 3.21.

ANSTS :R& jis Ne.(b)Twz spaceiff every Ne. setin :R& js both Ne.OSand Ne.(bG)OS.

Remark 3.22.

ANSTS R& ; is

(i) Ne.(b)Twzspace if every Ne.(bG)OS in Ris Ne.(b)OS.

(i) Ne.(b)T*uzspace if BNe.(Gb)OS in Ris Ne-open.

Remark 3.23.

Ina NSTS (:R& ;

(i) Every Ne.Twz space isNe.(b)Tiz

(ii) Every Ne.(b)Tw2 space is Ne.(Gb)Ti2

(iii) Every Ne.(b)Tw2 space is Ne.(Gb)Tw:
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4. Ne.(bG)-Continuous and Ne.(Gb)-closed mappings

In this section, Neutrosophic bg-CTS maps, Neutrosophic bg-irresolute maps, and Neutrosophic bg -
homeomorphism in Neutrosophic topological spaces areintroduced and studied.

Definition 4.1.

A mapping <&R& ;7 :S& ; is said to be Neutrosophic b generalized Continuous
(Ne.(bG)-CTS), if +?5:é$; is Ne.(bG)CSin R for every Neutrosophic-CS 'aSUin S

Theorem 4.2.

+&R& ;7 :S& isNe.(bG)-CTS iff the inverse image of eachNSOSin Sis Ne.(bG)OSin R
Proof.

Let abe a Ne.(bG)OS in S. Then a”is Ne.(bG)CS in S. Since Ais Ne.(bG)-CTS +5(&") =
:+?5:40: ;9s Ne.(bG)CS in RThus ="%(&J is Ne.(bG)OSin R

Converse, is obvious.

Theorem 4.3.

Every Ne.-CTS map isNe.(bG)-CTS.

Proof.

Let +&R& ;7 :S& ; beNe-CTSfunction. Let éEbeaNe. 0Sin S Since Ais Ne.-CTS, =75 Ne.
0Sin R Mean while eachNe.OSis Ne.(bG)OS, =" is Ne.(bG)OSin RTherefore Ais Ne.(bG)-CTS.
Example 44.

Let R{F, F}=S e={0, a5U 1l},isaN.T.on R & ={0, aéJ 1}on Sthen Then the Neutrosophic sets

=0 R 4 9 < s 9 2 AR
L A 5 508,544

af L k4@ &, 4 Ad@, &, & Als aNe.bGCS in R

Identity mapping +&R& ;7 :S& ; AsNe.(Gb)-CTS but notNe-CTS

Definition 4.5

A mapping +&R& ;7 :S& ; is said to be Neutrosophic b-generalized irresolute (briefly
Ne.(bG)-irresolute), if +F5(é5is Ne.(bG)CSset in R for eachNe.(bG) CS ég’in S

Theorem 4.6.

Every Ne.(bG)-irresolute map is Ne.(bG)-CTS.

Proof.

Let +8R7 S be Ne.(bG)-irresolute and let éSer Ne.-CS in S. Since every Ne.-CS is Also
Ne.(bG)CS, &Yis Ne.(bG)CS in S. Since +8R7 Sis Ne.(bG)-irresolute, + 3( &Y is Ne.(bG)CS.
Thus inverse image of every Ne.CSin Sis Ne.(bG)CS in R Therefore the function +8R7 Sis
Ne.(bG)-CTS.The converse is not true.

Example 4.7.

Let R{F, F}=S e={0, aY 1}isaN.T.on R & ={0, aJ 1}on Sthen

Then the Neutrosophic sets

=0 R 2 9 , 9 i AR = () RS 29 7 52 2l 2t AR =
alL As@a—a—A@a—a—AAandag’L Ra@ &, &A@ & & Mha
45454 45454 45454 45454

Thenidentity mapping +&R& ;7 :S& ;

20 Fead 29 2= oz 29 29 ki ,
We have &Y L As@4a5—4a5—4Aa@4a5—4a5—4AAls aNe.(bG)-CTS maps but not Ne.(bG)-irresolute maps.

Theorem 4.8.
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Every Ne.(bG)- CTS map isNe.(Gb) -CTS.
Proof.
Clear from the fact that Ne.(bG)CSis Ne.(Gb)CS.
Theorem 4.9.
Let +8R7 § P&S 7 =be two mappings. Then
(i) U is Ne.(bG)-CTS, if As Ne.(bG)-CTS and Ss Ne-CTS
(i) SUis Ne.(bG)- irresolute, if Aand Sare Ne.(bG)- irresolute.
(i) Wis Ne.(bG)-CTS if As Ne.(bG)-irresolute and Sis Ne.(bG)-CTS.
Proof.
()Let aheNe.CSin = Since § S 7 =s Neutrosophic CTS,by definiton B aJis Ne.CS of S
Now +&R7 SsNe.(bG)-CTSso ="S(BS(ad)=:CU ;°( &y isNe.(bG)CSin RHence &J: R7 =is
Ne.(bG)-CTS.
(i) Let $S 7 =be Ne.(bG)-irresolute and let &%be Ne.(bG)CS subset in = Since %
Ne.(bG)-irresolute by definition, B ag is Ne.(bG)CSin S Also +@R7 3s Ne.(bG)-irresolute, so
F(B(ad) =:cU ;F(aYis Ne.(bG)CS. Thus CU:R7 =is Ne.(bG)-irresolute.
(i) Let égbe Ne.(b)-CSin = Since $S 7 4is Ne.(bG)-CTS, B ¥ ag is Ne.(bG)CSin SAlso +a8R7
Ss Ne.(bG)-irresolute, so every Ne.(bG)CSin Sis Ne.(bG)CS in R Hence "8 aJ) = :cU

:?YH) is Ne.(bG)CSin RThus CU: R7 =is Ne.(bG)-irresolute.
Theorem 4.11.
If +&R& ;7 :S& ;isNe.(b)*-CTSand S(S & )7 (5 &)isNe.(bG)-CTS
then CU: :R& ; 7 (5 ¢&)isNe.(bG)CTSif Sis Ne.(b)Twvz-space.
Proof.
Suppose asts Ne.(b)-CSsubset of = Since $S 7 =is Ne.(bG)CTS tfszas is Ne.(bG)CS subset of
S Now since S is Ne.(b)Twz-space, B ag is Ne.(b)-CSsubset of S Also since +8R7 Sis
Ne.(b)~CTS FY(B(ad)=:cU ;F(&Y; isNe.(b)-CS. Thus CU : R7 =isNe.(bG)-CTS.
Theorem 4.12.
Let ~&AR& ;7 :S& beNe.(bG)-CTS.Then Ais Ne.(b)-CTS if Ris Ne.(b)Twzspace.
Proof.
Let aé’ beNe.-CSin S Since +8R7 9sNe.(bG)CTS, F* 135 is Ne.(bG)CS subset in R Since Ris
Ne.(b)Twzspace, by hypothesis every Ne.(bG)CSis Ne.(b)-CS. Hence F* :23'15 is Ne.(b)CSsubset in
R Therefore +@R7 Sis Ne.(b)-CTS.
Theorem 4.13.
Let +&R& ; 7 :S& ; be ontoNe.(bG)-irresolute and Ne. b*CS. If Ris Ne.(b)Twz-space, then
(S& ) is Ne.(b)Twv-space
Proof.

Let éSU be aNe.(bG)CSin S Since +4R7 Ss Ne.(bG)irresolute, " a;,‘j is Ne.(bG)CSin RAs R
is Ne.(b)Tvz-space, " & isNe.(b)CSin RAlso +8R7 SisNe.b*CS, A FYaY)is Ne.(b)CS in
S Since +8R7 Ssonto, A+ % &Y) =& Thus &Ys Ne.(b)CSin S Hence:S& js also
Ne.(b)Tv2-space.
Theorem 4.14.
Let +&AR& ;7 :S& ;beNe.(bG)-CTSand S:S& ;7 (5 & )beNe.g-CTS. Then CU is
Ne.(bG)- CTS if Sis Ne.T2space.
Proof.
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Let ééjbe Ne.-CSin = Since Ss Ne.g-CTS, B¥ aéj is Ne.g-CSin S But Ss Ne.Tiz2space and so
B(aJisNe.-CSin S Since Ais Ne.(bG)-CTS (B (al) = :CU ;7:a)is Ne.(bG)CS in RHence
CU Ne.(bG)-CTS.

Theorem 4.15.

If the bijective map +&Ré& ;7 :S& ;is Ne.(b)*-open and Ne.(b)-irresolute, then +&Ré& ; 7
:Sé& ; is Ne.(bG)-irresolute.

Proof.

Let abe aNe.(bG)CSin Sandlet =S aJ Cafvhere afs aNe.(b)OSin R Clearly, a'CAay.
Since -8R 7 Ss Ne.(b)*-open map, /Qag is Ne.(b)-openin S and aé’ is Ne.(bG)CSin SThen
Ne.bCl(aJ CA &Y, and thus "S(Ne.bCl(ad) Cal Also +a8R7 Sirresolute and Ne.bCl( &Y is a
Ne.(b)-CSin Sthen F(Ne.bCl(4Y)is Ne.(b)CSin R Thus Ne.bCl( FS:'agi) Ne.bCI( *Ne.
bCl(ad)) ca¥ So (& is Ne.(bG)CSin RHence +8R7 Ss Ne.(bG)-irresolute map.

Definition 4.16.

A mapping +&R& ;7 :S& s saidto be Neutrosophic bg-open (briefly Ne.(bG)OS) if the image
of every Ne.-OSin Ris Ne.(bG)OSin S

Definition 4.17.

A mapping +&Ré& ;7 :S& s saidto be Neutrosophic bg-CS (briefly Ne.(bG)CY) if the image of
every Ne.CS in RisNe.(bG)CSin S

Definition 4.18.

A mapping +&R& ;7 :S& ;is said to be Neutrosophic bg*-open (briefly Ne.(bG)*-OS)if the
image of every Ne.(bG)OSin Ris Ne.(bG)OSin S

Definition 4.19.

A mapping +&Ré& ;7 :S& s saidto be Neutrosophic bg-CS(briefly Ne.(bG)*-CS) if the image
of every Ne.(bG)CSin RisNe.(bG)CSin S

Remark 4.20.

()Every Ne.(bG)*-CSmapping is Ne.(bG)CS.

(iEvery Ne.(bG)*-CSmapping is Ne.(Gb)* -CS

Theorem 4.23.

If +&R& ;7 :S& ;) isNe.CSand S1$& ; 7 (=& )is Ne.(bG)CS, then CU is Ne.(bG)CS.
Proof.

Let a’be aNe.CS in RThen AaJisNe.CSn S Since $1S& ; 7 (= & )is Ne.(bG)CS, $43d) =
(CU)(&J is Ne.(bG)CS in = Therefore CU is Ne.(bG)CS.

Theorem 4.24.

If +&R& ;7 :S& ;isaNe.(bG)CS map and Sis Ne.(b)Tw2 space, then Ais aNe-CS.

Proof.

Let a)be aNe.CSin RThen A&aYis Ne.(Gb)-CSin Ssince Ais Ne.(Gb)CS Again since Sis
Ne.(b)Tuzspace, A& is Ne.-CSin S Hence +&R& ;7 :S& isa ACS

Theorem 4.25.

If +&R& ;7 :S& ;isaNe.(bG)CS map and Sis Ne.(b)Tiz2space, then Ais aNe.(b)-CSmap.
Theorem 4.26.

A mapping +~&R& ;7 :S& ;isNe.(bG)CS iff for eachNe. set &Jin Sand Ne.OS & such that
-FS(aY caf there is aNe.(bG)OS&Yof Ssuchthat adCa¥and FS(ay cad

Proof.
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Suppose Ais Ne.(bG)CS map. Let é}?be a Ne. set of Gand égbe an Ne.OS of R such that
Fs(aY cal Then a%:5%°:9s aNe.(bG)OSin Csuch that a9Calnd +F5( &y cal

Conversely, suppose that Cis a Ne.CS of R Then +3(: :C;;»CC% and C% is Ne.OS. By

hypothesis, there is a Ne.(bG)OS aYof Ssuch that : : C;;*Catnd +75(&Y) CC”“ Therefore
cc@s kaSOAOHence aPchayc @ kéEvo C &%, which implies 4O = &® Since a¥s

Ne.(bG)CS, A& Qis Ne.(bG)CSand thus Ais aNe.(bG)CS map.

Theorem 4.27.

If +&R& ;7 :S& ;and S1%& ,; 7 (= e () areNe.(bG)CS maps and S is Ne.(b)Tw2 space,

then CU:R7 =isNe.(bG)CS.

Proof.Let &be aNe.-CSin RSince +&R& ;7 :S& jsNe.(bG)CS, A&YisNe.(bG)CSin C

Now Cis Ne.(b)Twzspace, soAadis Ne.-CSin CAlso & S7 =isNe.(bG)CS, $4aJ) = :CcU
)((4Y is Ne.(bG)CS in = Therefore CU is Ne.(bG)CS.

Theorem 4.28If é}?is Ne.(bG)CS in Rand +a8R7 Sis bijective, Ne.(b)-irresolute and Ne.(bG)CS,

then A &Y is Ne.(bG)CSin S

Proof.

Let /(\aé) CaéJ where aéfs Ne.(b)OSin C Since Ais Ne.(b)irresolute, = ag is Ne.(b)OS containing
a0 Hence Ne.bCl( 8J C+"S( 4 as alis Ne.(bG)CS. SinceAis Ne.(bG)CS, ANe.bCl( ad) is

Ne.(bG)CScontained in the Ne.(b)OS &g which implies Ne.bCl( ANe.bCl( &Y)) Caand hence

Ne.bCl( AaJ) ca So A&l is Ne.(bG)CS in C

Theorem 4.29.

If +&R& ;7 :S& ;isNe.(bG)CSand S1%& ,; 7 (= & pis Ne.(bG)*-CS, then CU is Ne.(bG)

-CS

Proof.Let abeNe.CSin RThen A&aYis Ne.(bG)CSin SSince S 184 ; 7 (= & )is Ne.(bG)*-CS.

Thus $44Y) = (CU)( & is Ne.(bG)CS in = Therefore CU is Ne.(bG)CSIf +&R& ;7

:S& and S1%& .; 7 (= & o are Ne.(bG)*CSmaps, then CU: R7 =isNe.(bG)*CS.

Theorem 4.30.

Let +&R& ;7 :S& ;, S1%& 4, 7 (= e Jbe two maps suchthat CU: R7 =isNe.(bG)CS.

(i) If Ais Ne-CTSand surjective, then Ss Ne.(bG)CS.

(i) If Ss Ne.(bG)-irresolute and injective, then As Ne.(bG)CS.

Proof.

(). Let CbeNe.CSin S Then =" Qis Ne.CSin Ras Ais Ne-CTS Since CU is Ne.(bG)CS map

and Ais surjective,( CU)(=%(Q) = $Qis Ne.(bG)CSin = Hence $S 7 =is Ne.(bG)CS.

(ii).Let Cbe aNe.CSin RThen (CU)( Qis Ne.(bG)CSin = Since Ss Ne.(bG)-irresolute and

injective BS(CU)( Q= AQis Ne.(bG)CS in S Hence Ais aNe.(bG)CS.

Theorem 4.31.

Let +&R& ;7 :S& ;, S1%& ,; 7 (=& Jbe two maps suchthat CU : R7 =isNe.(bG)*CS

map.

(i) If Ais Ne.(bG)-CTS and surjective, then Ss Ne.(bG)CS.

(i) If Ss Ne.(bG)-irresolute and injective, then As Ne.(bG)*-CS.

Theorem 4.32.Let +&R& ; 7 :S& ; then the following statements are equivalent

(i) Ais Ne.(bG)-irresolute.

(ii) for every Ne.(bG)CS &%in S -F( &Y is Ne.(bG)CSin R
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Proof.(i) ce (ii)Obvious.

(i) odi) Let s aNe.(bG)CSin S which implies & is Ne.(bG)OSin S < (&l is Ne.(bG)-open
in Rimplies <" ais Ne.(bG)CS in RHence Ais Ne.(bG)-irresolute.

Neutrosophic bg- homeomorphism and Neutrosophic bg*-homeomorphism are defined as follows.
Definition 4.33.

A mapping +&R& ; 7 :S& s called Neutrosophic bg-homeomorphism (briefly
Ne.(b)-homeomorphism) if Aand =S are Ne.(bG)CTS.

Definition 4.34.

A mapping +&R& ;7 :S& s called Neutrosophic bg*-homeomorphism (briefly
Ne.(bG)*-homeomorphism) if Aand ="°are Ne.(bG)irresolute.

Theorem 4.35.

Every Ne-homeomorphisnis Ne.(bG)-homeomorphism.

The converse of the above theorem need not be true as seen fronthe following example.

Example 4.36.

Let R{F, =S ¢={0, & 1}isaN.T.on R& ={0, & 1}on §

Then Neutrosophic sets

201 FeaBbs9 4 o< 9 6 &
L AR AR

8 i
aﬁ L AS@4 &% a@4a5—4a—AAaand a7 L Aa YL Y, @4‘5‘5—4%_4AA

Define mapping +&R& ;7 :S& ;by AP=F and AF)= F

Then Ais Ne.(bG)-homeomorphism but not Ne-homeomorphism

Theorem 4.37.

Every Ne.(bG)*-homeomorphism is Ne.(bG)- homeomorphism.

Proof.

Let +&R& ;7 :S& ; be Ne.(Gb)*-homeomorphism. Then Aand ="° are Ne.(bG)-irresolute
mappings. By theorem 47 A and =% are Ne.(bG)-CTS. Hence +&R& ;7 :S& ;is
Ne.(bG)-homeomorphism.

Theorem 4.38.

If +&R& ;7 :S& js Ne.(bG)-homeomorphism and

S18& 4; 7 (=@ ) is Ne.(bG)-homeomorphism and S is Ne.(b)T12 space,

then CU: R7 =isNe.(bG)-homeomorphism.

Proof.

To show that CU and :CU ;’5are Ne.(bG)- CTS. Let abe a Ne.OS in = Since $§ S7 =is
Ne.(bG)- CTS, P 4 is Ne.(bG)open in S Then B5:4Y% is a Ne.-open in Sas Sis Ne.(b)Tuz
space. Also since A:R7 Sis Ne.(bG)- CTS, < (B5(ad) = :cU ;°% &y is Ne.(bG)-open in R
Therefore CU is Ne.(bG) CTS.Again, let &Ybe aNe.OSin R Since <"®: S 7 Ris Ne.(bG)- CTS,
:+75:7%a8) = A&Y is Ne.(bG)OSin S And so A&Y is Ne.-open in Ssince Sis Ne.(b)Tuzspace.
Also since B%=7 Sis Ne.(bG)-CTS, :F°;°Y44&Y) = $44Y) = (CU)(&J is Ne.(bG)-open in =
Therefore ::CU ;?5;?% &Y = (cU)(&J is Ne.(bG)OS in = Hence :CU ;?%is Ne.(bG) - CTS. Thus
CU is Ne.(bG) - homeomorphism.
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Abstract: Neutrosophic graphs are employed as a mathematical key to hold an imprecise and
unspecified data. Vague sets gives more intuitive graphical notation of vague information, that
delicates crucially better analysis in data relationships, incompleteness and smilarity measures. In
this paper, the neutrosophic vague line graphs are introduced. The necessary and sufficient
condition for a line graph to be neutrosophic vague line graph is provided. Further, homomorphism,
weak vertex and weak line isomorphism are discussed. The given results are illustrated with

suitable example.

Keywords: Neutrosophic vague line graph, Weak isomorphism of neutrosophic vague line graph,

Homomorphism.

1. Introduction

The line graph, .:) ;&f a graph ) is the intersection graph of the set of lines of ) &Hence
the vertices of .:); are the lines of ) with two vertices of .:),; adjacent whenever the
corresponding lines of ) are adjacent [20]. Vague sets are denoted as a higheorder fuzzy sets
which develops the solution process are more complex to obtain the results more accurate than
fuzzy but not affecting the complexity on computation time/volume and memory space. Can we see
an example, suppose there are 10 patients to check a pandemic during teshg. In which, there are
four patients having positive, five will have negative and one is undecided or yet to come. In the
view of neutrosophic concepts, the mathematical form is represented as T:r &a& && & aThus it is
clear that, the neutrosophic field arises to hold the indeterminacy data. It generalizes the fuzzy sets
and intuitionistic sets from the philosophical viewpoint. The single -valued neutrosophic set is the
generalisation of intuitionistic fuzzy sets and is used expediently to deal with real -world problems,
especially in decision support [1, 2, 3]. The computation of believe in that element (truth), the
disbelieve in that element (falsehood) and the indeterminacy part of that element with the sum of
these three components are strictly less ttan s The neutrosophic set is introduced by the author
Smarandache in order to use the inconsistent and indeterminate information, and has been studied
extensively (see [28}[33]). In the definition of neutrosophic set, the indeterminacy value is quantifie d

explicitly and truth -membership, indeterminacy -membership and false-membership are defined
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completely independent with the sum of these values lies between r and u Neutrosophic set and
related notions paid attention by the researchers in many weird doma ins. The combination of
neutrosophic set and vague set are introduced by Alkhazaleh in 2015 [6]. Single valued neutrosophic
graph are established in [11, 12].

The neutrosophic graph is efficiently model the inconsistent information about any real -life
problem. Some types of neutrosophic graphs and coeneutrosophic graphs are discussed in [16].
Intuitionistic bipolar neutrosophic set and its application to graphs are established in [25]. Al -Quran
and Hassan in [5] introduced a combination of neutrosophic vagu e set and soft expert set to
improving the reason -ability of decision making in real life application. Neutrosophic vague graphs
are investigated in [24]. Comparative study of regular and (highly) irregular vague graphs with
applications are obtained in [13]. Furthermore, some properties of degree of vague graphs,
domination number and regularity properties of vague graphs are established by the author
Borzooei in [7, 8, 9]. Neutrosophic vague set theory was extensively studied in [6]. The concept of a
single-valued neutrosophic line graph of a single -valued neutrosophic graph is introduced by the
authors in [21]. In which, a necessary and sufficient condition for a single -valued neutrosophic graph
to be isomorphic to its corresponding single -valued neutrosophic line graph. Further, some
remarkable properties of strong neutrosophic vague graphs, complete neutrosophic vague graphs
and self-complementary neutrosophic vague graphs are investigated in [24]. Moreover, Cartesian
product, lexicographic product, cros s product, strong product and composition of neutrosophic
vague graphs are investigated in [22]. As far, there exists no research work on the concept of
neutrosophic vague line graphs until now. In order to fill this gap in the literature and motivated by
papers [6, 21, 24], we put forward a new idea concerning the neutrosophic vague line graphs. The
main contributions of this paper are as follows:

1 Zze> "™ €1 S¢221 '—721 >S™'®1ld ®U1S>Z1 —e>"e72EZ+1S—-
example. The obtained neutrosophic vague line graph . :s; is a strong neutrosophic vague graph.

1'Z21—72CZ2Z0®S>¢1S—elezee’ E'Z—+1E " —e'e'"—1"51S1e¢’ —Z1e>S5S™"]
supporting proofs.

1 2>¢'725-">7281'Z1>7207%2e001" 1" -"=-">™ " _§1 &iSohokpHismZ 1S —e+1 ZS
are developed.

The manuscript is organised as follows: The basic definitions and example which are
essential for the main results are given in Section 2. The necessary and sufficient condition of NVLG
are provided and also the definition of NVLGs, homomorphism and weak isomorphism are given in

Section 3. Finally, a conclusion is provided.

2 Preliminaries

In this section, basic definitions and example are given.
Definition 2.1 [34] A vague setnh on a non empty se# is a pair :6,&,,;, where 6,8 \ > &?and
(,& \ > &7are true membership and false membership functions, respectively, such that
rQ6,:T,E(,:T, Qsforany Tbea
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Let « and € be two non-empty sets. A vague relation 9 of ¢ to € is a vague set 9 on
e HEthatis 9 L :6&g;awhere 68 HE\ x&H 8 HE€\ > &?and satisfy the condition:
rQ6:Td) E (o:TdJ) Qsforany Tadubea

Definition 2.2 [7] Let sYL :} &; be a graph. A pairs L :ué ; is called a vague graph osY where uL
16,4, isavague setor} and v L :6, 4, ;is avague setorg C} H} such that for eachl Ub ga
6 :TYUQe<e:6,:T;86,:U;;and (,:TYURfS(,;T;&:U;;
Definition 2.3 [28] A Neutrosophic setn is contained in another neutrosophic set(i.e) n C o if ETD
&6, T, Q6,:T;&:T, Rt:Tand (,:T; R(,: T
Definition 2.4 [14, 28] Let » be a space of points (objects), with generic elementsdenoted by T8A
single valued neutrosophic sen in < is characterised by trutmembership function 6,:T;a
indeterminacymembership functiont, : T; and falsitymembershigunction (,,:T;a
Foreach point Tin «, 6,:T;4,,:T;&:T, Dx&BAlso # L <I&,:T;&,,:T;4&:T,=and
rQ6,:T,E+:T,E(,:T;, Qua
Definition 2.5 [4, 12] A neutrosophic graph is defined as a paFr‘ L :} &; where
() } LR&A&R=such that 6& \ >¥&7 +& \ >x&?and (58 \ > &?denote the
degree of truth-membership function, indeterminacy -function and falsity -membership function,
respectively, and
rQ&6:RE+:RE(s:R Qu
(i) gC} H} where 68\ >&? &\ > &?and (g8g \ > &?are such that
6:QRQe<+6:Q&:R=A
£:QRQ <o <5:Qés: R4
(6:QRQf3(s:Qds:R=a
and r Q6:QRE 4:QRE (6:QRQUAEQ PO g
Definition 2.6 [6] A neutrosophic vague setic; (NVS in short) on the universe of discoursebe written as
nci L WQLC:T;%&:T;&%&Q:T; AT D » =whose truth-membership, indeterminacy -membership
and falsity -membership function is defined as
QCQ:T; L>67:T;8™ T, %, T, L > &7 T, %f -ﬁég:T; LYX”:T4>: T
where 6™:T;LsF(?:T;4>:T;LsF6°:T,and rQ6”:T,E¥:T,E(?:T; Qta
Definition 2.7 [6] The complement of NV3i; is denoted byn8|- and it is given by
@2@:1—; L>sF6™ :T;&F6°:T;%
ﬁ_c:T; LsF+:T;8F+: T,
(?\xr?&c:T; L>sF(>:T;8F(°:T;%
Definition 2.8 [6] Let ncy and oy be two NVSs of the universg. If for all QD | a
@ac:QJ; QQ&C:QJ;@FQC:QJ; R taC:Qjé@”aC:Qj R (%éC:QJ;’
then the NVS, ncj are included in ocj, denoted by ncj C oy where s QEQ Ja
Definition 2.9 [6] The union of two NVSsncy and ocjis a NVSs, ' ¢y, written as ' ¢j L n¢y € ocj,
whose truthmembership function, indeterminacyembership function and falseembership function are
related to those oficj and ocj by
@ac:T; L>f é:q?éC:T;éﬁ;’éc:T;;é fs6,  T&, T
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+,o: T L >-<-:ﬁéc:T;égéc:T;;é<-:ﬁéC:T;é€éC:T;;?

@éC:T; L >-<-:(n?é©:T;é(géc:T;;ér<-:(;LQ:T;é(géQ:T;;’.é
Definition 2.10 [6] The intersection of two NVSs#c; and $¢; is a NVSs %, written as % L #c; €
$c i, whose truthmembership function, indeterminacyembership function and falseembership function
are related to those afc and $cy by

@C_Q:T; Lo>»cei6] T80, i Ti& 6 T8, o Tii?

+ T L>f é:ﬁéc:T;égéQ:T;;érfé:ﬁéQ:T;égéc:T;;?

@éC:T; L>f é:(n?éc:T;a’(géQ:T;;é f8(7,c Tl T2
Definition 2.11 [24] Let sYL :9&; be a graph. A pairs L :néo; is called a neutrosophic vague graph
(NVG) on sYor a neutrosophic vague graph whemel : & &t &8 ; is a neutrosophic vague set ¢hand
o L :@ & &3 ; is a neutrosophic vague setC 9 H9 where

's; 9L R&R&ER =suchthat 6’3 \ >&2%£ O \ > &2 \ > &?which satisfies the
condition (7 L sF 67°?

68\ X&%UE A\ x&A, 8 \ > &?which satisfying the condition (7 L >sF §’?
denotes the degree of truth membership function, indeterminacy membership and falsity
membership of the element R;D 9, and

r Q67:R; E£:Rj E(7:Rs; Qt

rQ6 'Ry Ef:R; E(7:Ry Qtéa
(2) z C9 H9 where

6B HI\ X&ALHDHI\ ¥&A(COHI\ x&?

6O HI9\ ¥&ALHO HI\ ¥&A(JOHI\ x&”?
represents the degree of truth membership function, indeterminacy membership and falsity
membership of the element R& b z&espectively and such that,

r Q& :RR: E £ :RR: E (¢ :RR: Qt
£

r Q& :RR: E€:RR: E(J:RR: Qta
such that
& :RR; Q<< :R; & R;=
£:RR: Qe+ <f :Riaf :Ri=
(¢ :RR: Q8] :Ri& R =
and similarly

6 :RR; Qe <G R R =

£:RR; Qe+ RjaR R =

(o 1RR: Q f (7 :Ri &y 1R =
3 Neutrosophic Vague Line Graphs

In this section, the necessary and sufficient condition of NVLGs are provided. The

definition of NVLGs, homomorphism and weak isomorphism are given.
Definition 3.1 Let E:&; L :&&5; be anintersectiongraph) L :84 ;andlet s L :*s&5; be a NVG with
underlying set 8. A NVG of E:&; is a pair :*gé&¢;, Where * L 165 &8 &% &% &8 &£ ;and -¢ L
168 &% A X &L &R &£ ; are NVSs of&and § respectively, such that

6 ‘&5 L 6 'R;&K ‘& L K 'Ry &R ‘& L (R ‘Rya
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62 :&; L 6 ‘RjaRk & L € R;&Z & L (£ :Rya

forall &@A& b &a
6: (&8 L 65 :RRiak (&8 L R :RRIAA &k L (X :RR;a
& (&8 L 6 :RR; 8K (&R L K IRR:AR &8 L (L RR;

forall &8 B 5&

That is, any NVG of intersection graph  : &; is also a neutrosophic vague intersection graph of s.
Definition 3.2 Let .:); L :/ @ ;bealinegraphofagrapph L :84 ; ANVLGofaNVGs L :*5&s5;
(with underlying set 8) is a pair .:s; L :*gé¢;, Where * L 165 &8 &Z &% &K &£ ; and -4 L

16x &R X ®{ &R &£ ;are NVSsof/ and 0, respectively such that,

2

62 :&; L 6 :T, L 68 :QR;
£ & LK :T.LK:QR;
(A &: L (Z:T.L(X:QR;
6 :&; L 6T, L 6 :QR;
£ & L£:T,L£:QR;

(R :&: L ({:TL(X:QR:a
forall & B/ QR B0&

6 (& & ;L eceG] T 86K U=

% && ;L ook (TER (U=

(R && L+ f3R T:4Z U=

67 (8 & ; L e<o<B T &6 U=

R && ;L ece<f Tk (U=

(£ 1&& ; L o f3({ T, 4L :U=forall && DO0a
Example 3.3 Consider ) L :84 ;awhere 8 L <y&38va&g=and ' L Bg L x>&g L »>&; L
>>&8g L 3>xxLet s L :*5&5; be a NVG of) as shown in figure 1, defined by

(ECQNA
Neutrosophic Vague Graph
consider a line graph .:);L:/ &; where [ L :& & & &,; and 0L
& & B 8¢ g &, 8¢ & ;. Let .:s; bethe NVLG, as shown in figure 2.

S. Satham Hussain, R. Jahir Hussain and Ghulam Muhiuddin, Neutrosophic Vague Line Graphs



Neutrosophic Send Systemd/ol. 36, 2020 126

(ECQINA
Neutrosophic Vague Line Graph

.1S;
Proposition 3.4 A NVLG is always a strong NVG.
Proof.It is obvious from the definition, therefore it is omitted.
Proposition 3.5 If .:s;is NVLG of NVG s. Then . :) ; is the line graph of).

Proof.Given s L :*5&5;isNVLGof ) and .:s; L :*g&g;isaNVGoOf .:);
& L 6T,
& ;L KT,

& L (R

& L 6T,

& L KT,
(R &; L ({:Ta

ETD' andso & D/ ifandonlyiffor TH' &
6 (& & ;L sceG] T, 6K U=
% && ;L ook (TEK (U=
(X &%& ;L of X :TAZ U=
6 (& & ; L ool T &K U=
R && ;L ece<f Tk (U=
(X && ;L +f < T4 U=

forall & & DO&ndso /| L K& & € & MITardJb' & M U=iHence proved.

SIS SRR <

=)

Proposition 3.6 Let .:s; L :*s&¢; be a NVG ofs. Then . :s; is a NVG of some NVG of if and only
if
65_ & & : L '<'<6A>_ :&é;éﬁK_ & ;=
6 (8& ;L oo B] & (& ;=

£ &e& Lo 1&i8K & =
K Ce& Loco<f (& &K (& ;=
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(R 18& ;i L+ f 47 ‘& AR °

. &
(£ 18 & ;L f3F & &7 &

forall & & DO0a

Proof.Suppose that 6f :& & ; L *<*<6} :&; & :& ;7
B && ;Lo 1&:8K &7 (R && ;L fS(R & &R :& ;=forall && DO.
Define, 6 :&; L 65 :T;a8 & L ® :T,&Z :&; L ({ :T,forall TH' &hen
BF (& & i L ocoB] (&R & ;=L cco< T8 T, 5
R && ;Lo (& aR & ;=L s (TR (T
(R && ;L ofSR & AR ‘& ;=L X T&RX:T,5
forall & & DB/ &
We know that NVG *; yields the properties,

67 {QRQe<+<67 :Q&Z R=
£ :QRQe<*<} :Q&R :R=

(A QRQ-fZ Q4L R=

In the similar way, we prove for the similar part also, The converse part of this theorem is obvious by
using the definition of .:s;
Theorem 3.7 .:s;isaNVLG ifandonlyif.:) ;is aline graph and
‘QRL e<+< Q& :R=
QRL *<*<§ :Q&R :R=
'QRL *f 53 :Q4Z :R=
IQRL *<+<6{ :Q&{ :R=
QRL e<e<f :Q&f :R=

(R :QRL «f 5% :Q4Z :R= EQP/ &
Proof.The proof follows from the above Proposition 3.5 and Proposition 3.6.

Sv b S

2

>ty

Definition 3.8 A homomorphismi &5\ sgof two NVGs sy L :*5&5; and sg L :*g& ¢; iS mapping
18\ & such that

#6 1Ts; Q6 1:Ts;; 88 1 Ts; Q6 1:Ts554

R Tes QK 11 TsiaK Ts; QK 11:Ts;54

(R:T5; QR :1:Ts;;&Z Ts; Q(£ 11:Ts;;4 ET; D&a

1668 T Q6% i Ts iU 8 i TsW; Q67 1Ty WA
# W QR T 01U &K W, QR 11:T51:U554
(R :TsW: QR 1T WAL i TsWs Q(F :7:Ts57: 4554 EY D' sé
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Definition 3.9 A (weak) vertexsomorphism is a bijective homomorphisriss \ sg such that
#,68 :Ts; L 68 11 i 5554
6 :T5; L 68 :i:Tg;;4a

st Bt

Tsy LK i Ts54

Ts; L K 17:Ts554
(A :Tss L (R :1:Ts554
(Z:Ts; L (Z:1:Ts;;84 ET; P&a

A (weak) line -isomorphism is bijective homomorphism 1&g\ sg such that
(8,68 i TsUs L 68 (T Ts51: 554

TsW; L6 11T W54

W LKA

T LK 0Ts0 04554

(R:TsW5 L (K 110 Ts51:4558

(R :TsW; L (£ :1:T5;7: U554 BT D' 58

If 185\ sgis a weak-vertex isomorphism and a (weak) line -isomorphism, then 17 is called a

o v D)

(weak) isomorphism.

Proposition 3.10 Let s L :*5&5; be a NVG with underlying se8. Then :*g& ¢; is a NVG of :&;

and :*s5é&5; *gae

Proposition 3.11 Let s and s be NVGs of) and ) respectively, ifids \ s is a weak isomorphism
then 18 \ s is anisomorphism.

Proof.Let T8 \ s be aweak isomorphism,then Qb8ifandonlyif 1:Q B8 and QR ifand
onlyif 7T:Q7:R D' .Hence proved.

Conclusion

A neutrosophic graph is very useful to interpret the real -life situations and it is regarded as
a generalisation of intuitionistic fuzzy graph. Neutrosophic vague graphs are represented as a
context-dependent generalized fuzzy graphs which hold s the indeterminate and inconsistent
information. This paper dealt with the necessary and sufficient condition for NVLG to be a line
graph are also derived. The properties of homomorphism, weak vertex and weak line isomorphism
are established. Further we ae able to extend by investigating the regular and isomorphic properties
of the interval valued neutrosophic vague line graph.
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Abstract . Smarandache presented and built up the new idea of Neutrosophic set from the Intuition-
istic fuzzy sets. A.A. Salama presented Neutrosophic topological spaces by utilizing the Neutro-
sophic sets. M.L.Thivagar et al., created Nano topological spaces and Neutosophic nano topologi-
cal spaces. Point of this paper is we present and study the properties of Neutrosophic Nano semi
frontier in Neutrosophic nano topological spaces and its portrayal are talked about subtleties.

Keywords: Neutrosophic Nano semi open set, Neutrosophic Nano semi closed set, Neutrosophic
Nano frontier Neutrosophic Nansemi frontier, Neutrosophic nano topology.

1. Introduction
Nano topology explored by M.L.Thivagar [15]et.al can be communicated as an assortment

of nano approximations, Neutrosophic sets set up by F.Smarandachq14]. Neutrosophic set is illus-
trate by three functions: a membership, indeterminacy and nonmembership functions that are in-
dependently related. Neutrosophic set have wide scope of uses, all things onsidered. M.L.Thivagar
et al., created Neutrosophic nano topological spaces .Neutrosophic nano semiclosed, neutrosophic
—S—"1...E+"eZ*31—7277>closéd"re@EdseplBc-nario™erd pre closed and neutrosophic
nano regular closed are presented by M.Parimala[17] et al. Point of the current paper is we learned
about properties of Neutrosophic Nano frontier, Neutrosophic Nano semi frontier in Neutrosophic
nano topological spaces

2. PRELIMINARIES
In this section, we recall needed basic definition and operation of Neutrosophic sets
Definition 2.1 : [15]
Let U be a non-empty set and R be an equivalence relation on U. Let be a neutrosophic set
in U with the membership function &, , the indeterminacy function €&, and the non-membership

o

function a, . The neutrosophic nano lower,neutrosophic nano upper approximation and neutro-

sophic nano boundary of Fin the approximation (U,R) denoted by : ;, 0: :and Bn(F)are respec-
tively defined as followgz ) ) -

() ;L <O/ &=t/ sh=&:/s:=P UbP>3&D =

(i) 0: ;L O Qy:/ &:—=&r:) Oi=a:/ 95— P UD>34D =

(i) Bn(F)=0: ;°1: ;

Definition 2.2:[15]
Let U be an universe, R be an equivalence relation on U andF be a neutrosophic set in U and if the
collection O¢:1;={rg,, sg,, : ;, 0: ;Bu(F)}
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