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Abstract: The objective of this paper is to study algebraic properties of neutrosophic matrices, where 

a necessary and sufficient condition for the invertibility of a square neutrosophic matrix is presented 

by defining the neutrosophic determinant. On the other hand, this work introduces the concept of 

neutrosophic Eigen values and vectors with an easy algorithm to compute them. Also, this article 

finds a necessary and sufficient condition for the diagonalization of a neutrosophic matrix. 

Keywords: Neutrosophic matrix, neutrosophic Eigen value, neutrosophic determinant, 

neutrosophic inverse,  diagonalization of neutrosophic matrices 

1. Introduction 

Neutrosophy is a general form of logic founded by Smarandache to deal with indeterminacy in all 

fields of knowledge science. We find many applications in, decision making [2,3,23], optimization 

theory [1], topology [7], medical studies [26,27], energy studies [25], and number theory [16], 

Recently, there is an increasing interesting in algebraic applications of neutrosophy such as 

neutrosophic modules [11,17], spaces [4,18], rings [14,16], and their generalizations [5,6,19].  

After the emergence of the neutrosophic logic at 1995 there were a lot of applications to handle the 

indeterminacy notion. It is common for anyone to say that an unknown data is indeterminate than 
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saying it is not exist as well in mathematics. Because when that the unknown data is not exist to a 

common mind it means that this data is absent does not exist. However, indeterminacy is suitable, 

for we can say to any layman, "We cannot determine what you ask for", but we cannot say, "your 

inquiry is not exist". Therefore, when we are in a moderate position as we cannot perceive ∅ for un 

known data, so we felt it is appropriate under these circumstances to introduce the notion of 

indeterminacy I where 𝐼2  =  𝐼 . Using this indeterminacy, we construct some notion regarding 

neutrosophic matrices, which can be used in neutrosophic models. Researchers have already defined 

the concept of neutrosophic matrices and have used them in Neutrosophic Cognitive Maps model 

and in the Neutrosophic Relational Equations models, which are analogous to Fuzzy Cognitive Map 

and Fuzzy Relational Equations models respectively. 

In [21], Kandasamy et al, proposed for the first time the notion of bi-matrices. Also, a minimal study 

of their properties can be found in [8,12,13]. 

In this essay and for the first time sheds the light on the notion of determinant of a neutrosophic 

matrix, and we find the form of its inverse and illustrate them with examples. Also, we introduce 

easy algorithms to find Eigen values and vectors for neutrosophic matrices, with a direct application 

into the problem of diagonalization. 

Neutrosophic matrices are useful in the study of indeterminacy and they have many important 

properties in algebra, from this point of view we introduce this work. 

All matrices through this paper are defined over a neutrosophic field 𝐹(𝐼). 

2. Preliminaries 

Definition 2.1 [24]:  Let 𝑋 be a non-empty fixed set. A neutrosophic set 𝐴 is an object having the 

form {𝑥, (𝜇𝐴(𝑥), 𝛿𝐴(𝑥), 𝛾𝐴(𝑥)): 𝑥 ∈ 𝑋} , where 𝜇𝐴(𝑥) , 𝛿𝐴(𝑥)  𝑎𝑛𝑑 𝛾𝐴(𝑥) represent the degree of 

membership, the degree of indeterminacy, and the degree of non-membership respectively of each 

element 𝑥 ∈  𝑋 to the set 𝐴 . 

Definition 2.2 [10]: Let 𝐾 be a field, the neutrosophic file generated by 〈𝐾 ∪ 𝐼〉 which is denoted by 

𝐾(𝐼) = 〈𝐾 ∪ 𝐼〉. 

Definition 2.3 [9]: Classical neutrosophic number has the form 𝑎 + 𝑏𝐼  where 𝑎, 𝑏 are real or 

complex numbers and 𝐼 is the indeterminacy such that 0 ∙ 𝐼 = 0 and 𝐼2 = 𝐼 which results that  

𝐼𝑛 = 𝐼 for all positive integers 𝑛. 
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Definition 2.4 (Neutrosophic matrix) [16]. Let 𝑀𝑚×𝑛 =  {( 𝑎𝑖𝑗) ∶  𝑎𝑖𝑗 ∈ 𝐾(𝐼)} , where 𝐾 (𝐼) is a 

neutrosophic field. We call to be the neutrosophic matrix. 

3. Main discussion 

Definition 3.1:  

Let 𝑀 = 𝐴 + 𝐵𝐼 a neutrosophic 𝑛square matrix, where 𝐴 and 𝐵 are two 𝑛 squares matrices, then 

𝑀  is called an invertible neutrosophic 𝑛  square matrix, if and only if there exists an 𝑛  square 

matrix 𝑆 = 𝑆1 + 𝑆2𝐼 , where 𝑆1 and 𝑆2 are two 𝑛 square matrices such that 

𝑆 ∙ 𝑀 = 𝑀 ∙ 𝑆 = 𝑈𝑛×𝑛, where 𝑈𝑛×𝑛 denotes the 𝑛 × 𝑛 identity matrix. 

Definition 3.2:  

Let 𝑀 = 𝐴 + 𝐵𝐼 be a neutrosophic 𝑛 square matrix. The determinant of M is defined as 

𝑑𝑒𝑡𝑀 = 𝑑𝑒𝑡𝐴 + 𝐼[𝑑𝑒𝑡(𝐴 + 𝐵) − 𝑑𝑒𝑡𝐴]. 

Theorem 3.3: 

Let 𝑀 = 𝐴 + 𝐵𝐼 a neutrosophic square 𝑛 × 𝑛 matrix, where 𝐴 , 𝐵 are two squares 𝑛 × 𝑛 matrices, 

then 𝑀 is invertible if and only if𝐴 and 𝐴 + 𝐵 are invertible matrices and  

𝑀−1 = 𝐴−1 + 𝐼[(𝐴 + 𝐵)−1 − 𝐴−1]. 

Proof: 

If 𝐴 and 𝐴 + 𝐵 are invertible matrices, then (𝐴 + 𝐵)−1, 𝐴−1 are existed, and  

𝑀−1 = 𝐴−1 + 𝐼[(𝐴 + 𝐵)−1 − 𝐴−1] exists too. Now to prove  𝑀−1is the inverse of 𝑀, 

𝑀𝑀−1 = (𝐴 + 𝐵𝐼) ∙ (𝐴−1 + 𝐼[(𝐴 + 𝐵)−1 − 𝐴−1]) 

= 𝐴𝐴−1 + 𝐼[𝐴(𝐴 + 𝐵)−1 − 𝐴𝐴−1 + 𝐵 ∙ 𝐴−1 + 𝐵(𝐴 + 𝐵)−1 − 𝐵𝐴−1] 

                 = 𝑈𝑛×𝑛 + 𝐼[(𝐴 + 𝐵)(𝐴 + 𝐵)−1 − 𝑈𝑛×𝑛] 

                 = 𝑈𝑛×𝑛 + 𝐼[𝑈𝑛×𝑛 − 𝑈𝑛×𝑛] = 𝑈𝑛×𝑛 = 𝑀−1𝑀. 

conversely, we suppose that 𝑀  is invertible, thus there is a matrix 𝑆 = 𝑆1 + 𝑆2𝐼, with the property 

𝑀 ∙ 𝑆 = 𝑆 ∙ 𝑀 = 𝑈𝑛×𝑛 . 

𝑀𝑆 = (𝐴 + 𝐵𝐼)(𝑆1 + 𝑆2𝐼) = 𝐴𝑆1 + 𝐼[(𝐴 + 𝐵)(𝑆1 + 𝑆2) − 𝐴𝑆1] = 𝑈𝑛×𝑛 + 0𝑛×𝑛=𝑆𝑀. Hence, we get: 

(a)𝑆1𝐴 = 𝐴𝑆1 = 𝑈𝑛×𝑛, 𝑡ℎ𝑢𝑠 𝐴 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝐴−1 = 𝑆1. 

(b)(𝐴 + 𝐵)(𝑆1 + 𝑆2) − 𝐴𝑆1 = (𝑆1 + 𝑆2)(𝐴 + 𝐵) − 𝑆1𝐴 = 𝑂𝑛×𝑛 , thus, 

(𝑆1 + 𝑆2)(𝐴 + 𝐵) = (𝐴 + 𝐵)(𝑆1 + 𝑆2) = 𝐴𝑆1 = 𝑈𝑛×𝑛  . This implies that (𝐴 + 𝐵) is invertible. 
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Theorem 3.4: 

𝑀 is invertible matrix if and only if 𝑑𝑒𝑡𝑀 ≠ 0. 

Proof: 

From Theorem 3.3 we find that 𝑀 is invertible matrix if and only if 𝐴 + 𝐵, 𝐴 are two invertible 

matrices, hence  𝑑𝑒𝑡[𝐴 + 𝐵] ≠ 0, 𝑑𝑒𝑡𝐴 ≠ 0 which means  

𝑑𝑒𝑡𝑀 = 𝑑𝑒𝑡𝐴 + 𝐼[det (𝐴 + 𝐵) − 𝑑𝑒𝑡𝐴] ≠ 0. 

Example 3.5: 

Consider the following neutrosophic matrix  

𝑀 = 𝐴 + 𝐵𝐼 = (
1 −1 + 𝐼
𝐼 2 + 𝐼

)   . Where 𝐴 = (
1 −1
0 2

)  , 𝐵 = (
0 1
1 1

). 

(a)𝑑𝑒𝑡𝐴 = 2, 𝐴 + 𝐵 = (
1 0
1 3

) , det(𝐴 + 𝐵) = 3, 𝑑𝑒𝑡𝑀 = 2 + 𝐼[3 − 2] = 2 + 𝐼 ≠ 0, ℎ𝑒𝑛𝑐𝑒 𝑀 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒. 

(b) We have 𝐴−1 = (
1

1

2

0
1

2

) , (𝐴 + 𝐵)−1 = (
1 0

−
1

3

1

3

) , 𝑡ℎ𝑢𝑠 𝑀−1 = (𝐴−1) + 𝐼[(𝐴 + 𝐵)−1 − 𝐴−1] 

= (
1

1

2

0
1

2

) + 𝐼 (
0 −

1

2

−
1

3
−

1

6

) = (
1

1

2
−

1

2
𝐼

−
1

3
𝐼

1

2
−

1

6
𝐼
). 

(c) We can compute 𝑀𝑀−1 = (
1 0
0 1

) = 𝑈2×2. 

Theorem 3.6: 

Let 𝑀 = 𝐴 + 𝐵𝐼 be a neutrosophic 𝑛 square matrix, were 𝐴 and 𝐵 are two 𝑛 square matrices, then 

3.6.1) 𝑀𝑟 = 𝐴𝑟 + 𝐼[(𝐴 + 𝐵)𝑟 − 𝐴𝑟]. 

3.6.2)𝑀 𝑖𝑠 𝑛𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑡 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴, 𝐴 + 𝐵 𝑎𝑟𝑒 𝑛𝑖𝑙𝑝𝑜𝑡𝑒𝑛𝑡. 

3.6.3)𝑀 𝑖𝑠𝑖 𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴, 𝐴 + 𝐵 𝑎𝑟𝑒 𝑖𝑑𝑒𝑚𝑝𝑜𝑡𝑒𝑛𝑡. 

Proof: 

(3.6.1) By using mathematical induction, it easy to see 𝑃(𝑟 = 1) is true.  

Suppose𝑃(𝑘), then we must prove 𝑃(𝑘 + 1) is true like the following 

𝑀𝑘+1 = 𝑀𝑘 ∙ 𝑀 = (𝐴𝑘 + 𝐼[(𝐴 + 𝐵)𝑘 − 𝐴𝑘]) ∙ (𝐴 + 𝐼𝐵) 

= 𝐴𝑘+1 + 𝐼[(𝐴𝑘 ∙ 𝐵 + (𝐴 + 𝐵)𝑘 ∙ 𝐴 + (𝐴 + 𝐵)𝑘 ∙ 𝐵 − 𝐴𝑘 ∙ 𝐴 − 𝐴𝑘 ∙ 𝐵)] 

= 𝐴𝑘+1 + 𝐼[(𝐴 + 𝐵)𝑘 ∙ (𝐴 + 𝐵) − 𝐴𝑘+1] 

= 𝐴𝑘+1 + 𝐼[(𝐴 + 𝐵)𝑘+1 − 𝐴𝑘+1]. 
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(2) 𝑀is nilpotent 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ∃ 𝑟 ∈ 𝑁+;  𝑀𝑟 = 0, this is equivalent to 

𝐴𝑟 + 𝐼[(𝐴 + 𝐵)𝑟 − 𝐴𝑟] = 0, thus 

𝐴𝑟 = (𝐴 + 𝐵)𝑟 = 0. Which is equivalent to 

𝐴, 𝐴 + 𝐵 are nilpotent. 

(3) The proof is similar to (2). 

Theorem 3.7: 

Let 𝑀 = 𝐴 + 𝐵𝐼 and 𝑁 = 𝐶 + 𝐷𝐼 be two neutrosophic 𝑛 square matrices, then 

(3.7.1) 𝑑𝑒𝑡(𝑀 ∙ 𝑁) = 𝑑𝑒𝑡𝑀 ∙ 𝑑𝑒𝑡𝑁. 

(3.7.2) det(𝑀−1) = (𝑑𝑒𝑡𝑀)−1. 

(3.7.3) 𝑑𝑒𝑡𝑀 =1 if and only if 𝑑𝑒𝑡𝐴 = 𝑑𝑒𝑡(𝐴 + 𝐵) = 1. 

Proof: 

(a) 𝑀 ∙ 𝑁 = 𝐴 ∙ 𝐶 + 𝐼[𝐵 ∙ 𝐶 + 𝐵 ∙ 𝐷 + 𝐴 ∙ 𝐷] 

= 𝐴 ∙ 𝐶 + 𝐼[(𝐴 + 𝐵)(𝐶 + 𝐷) − 𝐴 ∙ 𝐶]. 

det(𝑀 ∙ 𝑁) = det(𝐴 ∙ 𝐶) + 𝐼[det((𝐴 + 𝐵)(𝐶 + 𝐷)) − det(𝐴 ∙ 𝐶)], 

= det 𝐴 ∙ det 𝐶 + 𝐼[det(𝐴 + 𝐵) ∙ det(𝐶 + 𝐷) − det(𝐴 ∙ 𝐶)], 

= det 𝐴 ∙ det 𝐶 + 𝐼[det(𝐴 + 𝐵) ∙ det(𝐶 + 𝐷) − det 𝐴 ∙ det 𝐶], 

= (det 𝐴 + 𝐼[det(𝐴 + 𝐵) − det 𝐴]) ∙ (det 𝐶 + 𝐼[det(𝐶 + 𝐷) − det 𝐶]), 

= det 𝑀 ∙ det 𝑁. 

(b) We have 

det(𝑀𝑀−1) = det(𝑈𝑛×𝑛) = 1, 𝑡ℎ𝑢𝑠 𝑑𝑒𝑡𝑀. det(𝑀−1) = 1, 𝑠𝑜 𝑡ℎ𝑎𝑡  det(𝑀−1) = (𝑑𝑒𝑡𝑀)−1. 

(c) 𝑑𝑒𝑡𝑀 = 1 is equivalent to det 𝐴 + 𝐼[det(𝐴 + 𝐵) − det 𝐴] = 1, thus it is equivalent to 

𝑑𝑒𝑡𝐴 = 𝑑𝑒𝑡(𝐴 + 𝐵) = 1. 

Remark: The result in the section (c) can be generalized easily to the following fact: 

𝑑𝑒𝑡𝑀 = 𝑑𝑒𝑡𝐴 if and only if 𝑑𝑒𝑡𝐴 = 𝑑𝑒𝑡(𝐴 + 𝐵). 

Definition 3.8:  

Let 𝑀 = 𝐴 + 𝐵𝐼 be a neutrosophic 𝑛 square matrix, where 𝐴 and 𝐵 are two 𝑛 squarematrices. 𝑀 

is satisfying the orthogonality property if and only if 𝑀 ∙ 𝑀𝑇 = 𝑈𝑛×𝑛. 

Theorem 3.9: 
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Let 𝑀 = 𝐴 + 𝐵𝐼 a neutrosophic 𝑛 square matrix, then 

(a) 𝑀 𝑖𝑠 orthogonal  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴, 𝐵 are two orthogonal  matrices . 

(b) 𝐼𝑓 𝑀 𝑖𝑠 orthogonal, then  𝑑𝑒𝑡𝑀 ∈ {1, −1, −1 + 2𝐼, 1 − 2𝐼}. 

Proof: 

(a) 𝑀 𝑖𝑠 orthogonal neutrosophic matrix 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑀𝑇 = 𝑀−1, this is equivalent to 

𝐴𝑇 + 𝐵𝑇𝐼 = 𝐴−1 + 𝐼[(𝐴 + 𝐵)−1 − 𝐴−1], thus 

𝐴−1 = 𝐴𝑇 , (𝐴 + 𝐵)−1 − 𝐴−1 = 𝐵𝑇   . This is equivalent to 

𝐴−1 = 𝐴𝑇𝑎𝑛𝑑 (𝐴 + 𝐵)−1 = 𝐵𝑇 + 𝐴−1 = 𝐵𝑇 + 𝐴𝑇 = (𝐴 + 𝐵)𝑇. Thus the proof is complete. 

(b) If M is orthogonal, we get that 𝑑𝑒𝑡(𝑀 ∙ 𝑀𝑇) = 𝑑𝑒𝑡(𝑈𝑛×𝑛) = 1. This implies 

𝑑𝑒𝑡𝑀 ∙ 𝑑𝑒𝑡𝑀𝑇 = 1, 

(det 𝑀)2 = 1, hence 

𝑑𝑒𝑡𝑀 ∈ {1, −1, −1 + 2𝐼, 1 − 2𝐼}. 

Definition 3.10: 

Let 𝑀 = 𝐴 + 𝐵𝐼 be a square neutrosophic matrix, we say that M is diagonalizable if and only if there 

is an invertible neutrosophic matrix 𝑆 = 𝐶 + 𝐷𝐼  such that 𝑆−1𝑀𝑆 = 𝐷 . Where 𝐷  is a diagonal 

neutrosophic matrix( 𝑖. 𝑒.  𝑑𝑖𝑗 = 0  ∀𝑖 ≠ 𝑗, 𝑎𝑛𝑑 𝑑𝑖𝑗 ≠ 0   ∀𝑖 = 𝑗). 

Theorem 3.11: 

Let 𝑀 = 𝐴 + 𝐵𝐼  be any square neutrosophic matrix. Then M is diagonalizable if and only if 𝐴, 𝐴 +

𝐵 are diagonalizable. 

Proof: 

Consider a diagonalizable neutrosophic matrix M, then there exists an invertible matrix S such that 

𝑆−1𝑀𝑆 = 𝐾(𝑘𝑖𝑗)(3.11,1). 

Now, to compute the entries elements 𝑘𝑖𝑗 , solve (3.1.11) as follows: 

[𝐶−1 + 𝐼[(𝐶 + 𝐷)−1 − 𝐶−1]](𝐴 + 𝐵𝐼)(𝐶 + 𝐷𝐼) = [𝐶−1 + 𝐼[(𝐶 + 𝐷)−1 − 𝐶−1]][𝐴𝐶 + 𝐼[(𝐴 + 𝐵)(𝐶 + 𝐷) −

𝐴𝐶]] = 𝐶−1𝐴𝐶 + 𝐼[(𝐶 + 𝐷)−1(𝐴 + 𝐵)(𝐶 + 𝐷) − 𝐶−1𝐴𝐶] = 𝐷1 + (𝐷2 − 𝐷1)𝐼 = 𝐾 . Where 𝐾  is a 

diagonal matrix, thus 𝐷1, 𝐷2  are diagonal, and 𝐴, 𝐴 + 𝐵 are diagonalizable. Conversely, assume 

that 𝐴, 𝐴 + 𝐵 are diagonalizable, then there are 𝐶, 𝐷, where  𝐶−1𝐴𝐶 = 𝐷1, 𝐷−1(𝐴 + 𝐵)𝐷 = 𝐷2 . Put 

𝑆 = 𝐶 + (𝐷 − 𝐶)𝐼. 
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Now we compute 𝑆−1𝑀𝑆 = [𝐶−1 + 𝐼[𝐷−1 − 𝐶−1]](𝐴 + 𝐵𝐼)(𝐶 + (𝐷 − 𝐶)𝐼) 

= [𝐶−1 + 𝐼[𝐷−1 − 𝐶−1]][𝐴𝐶 + 𝐼[(𝐴 + 𝐵)(𝐷) − 𝐴𝐶]] = 𝐶−1𝐴𝐶 + 𝐼[𝐷−1(𝐴 + 𝐵)𝐷 − 𝐶−1𝐴𝐶] 

= 𝐷1 + (𝐷2 − 𝐷1)𝐼 = 𝐾. Thus,𝑀 is diagonalizable, that is because 𝐷1, 𝐷2 are diagonal matrices. 

Remark 3.12: 

If 𝐶 is the diagonalization matrix of 𝐴, and 𝐷 is the diagonalization matrix of 𝐴 + 𝐵, then 

𝑆 = 𝐶 + (𝐷 − 𝐶)𝐼is the diagonalization matrix of 𝑀 = 𝐴 + 𝐵𝐼. 

Example 3.13: 

Consider the neutrosophic matrix defined in Example 3.5, we have: 

(a) 𝐴 is a diagonalizable matrix. Its diagonalization matrix is 𝐶 = (
1 1
0 −1

) , the corresponding 

diagonal matrix is 𝐷1 = (
1 0
0 2

), we can see that 𝐶−1𝐴𝐶 = 𝐷1. Also, the diagonalization matrix of 

𝐴 + 𝐵 is 𝐷 = (
1 0

−
1

2
1), the corresponding diagonal matrix is 𝐷2 = (

1 0
0 3

). It is easy to check that 

𝐷−1(𝐴 + 𝐵)𝐷 = 𝐷2  . 

(b) Since 𝐴, 𝐴 + 𝐵 are diagonalizable, then M is diagonalizable. The neutrosophic diagonalization 

matrix of M is 𝑆 = 𝐶 + (𝐷 − 𝐶)𝐼 = (
1 1 − 𝐼

−
1

2
𝐼 −1 + 2𝐼). The corresponding diagonal matrix is 

𝐿 = 𝐷1 + 𝐼[𝐷2 − 𝐷1] = (
1 0
0 2 + 𝐼

). 

(c) It is easy to see that 𝑆−1 = 𝐶−1 + 𝐼[𝐷−1 − 𝐶−1] = (
1 1 − 𝐼

1

2
𝐼 −1 + 2𝐼). 

(d) We can compute 𝑆−1𝑀𝑆 = (
1 1 − 𝐼

1

2
𝐼 −1 + 2𝐼) (

1 −1 + 𝐼
𝐼 2 + 𝐼

) (
1 1 − 𝐼

−
1

2
𝐼 −1 + 2𝐼)   =(

1 0
0 2 + 𝐼

) = 𝐿. 

Definition 3.14: 

Let 𝑀 = 𝐴 + 𝐵𝐼 be a 𝑛square neutrosophic matrix over the neutrosophic field 𝐹(𝐼), we say that 

𝑍 = 𝑋 + 𝑌𝐼 is a neutrosophic Eigen vector if and only if 𝑀𝑍 = (𝑎 + 𝑏𝐼)𝑍. The neutrosophic number 

𝑎 + 𝑏𝐼 is called the Eigen value of the eigen vector 𝑍. 

Theorem 3.15: 

Let 𝑀 = 𝐴 + 𝐵𝐼 be a 𝑛 square neutrosophic matrix, then 𝑎 + 𝑏𝐼 is an eigen value of 𝑀 if and only 

if 𝑎 is an eigen value of 𝐴, and 𝑎 + 𝑏 is an eigen value of 𝐴 + 𝐵. As well as, the eigen vector of 𝑀is 

𝑍 = 𝑋 + 𝑌𝐼 if and only if 𝑋 is the corresponding eigen vector of 𝐴, and 𝑋 + 𝑌 is the corresponding 

eigen vector of 𝐴 + 𝐵. 
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Proof: 

We suppose that 𝑍 = 𝑋 + 𝑌𝐼 is an eigen vector of 𝑀 with the corresponding eigen value 𝑎 + 𝑏𝐼, 

hence 𝑀𝑍 = (𝑎 + 𝑏𝐼)𝑍, this implies 

(𝐴 + 𝐵𝐼)(𝑋 + 𝑌𝐼) = (𝑎 + 𝑏𝐼)(𝑋 + 𝑌𝐼), 𝑡ℎ𝑢𝑠 𝐴𝑋 + 𝐼[(𝐴 + 𝐵)(𝑋 + 𝑌) − 𝐴𝑋] = 𝑎𝑋 + 𝐼[(𝑎 + 𝑏)(𝑋 + 𝑌) −

𝑎𝑋]. We get: 

𝐴𝑋 = 𝑎𝑋, (𝐴 + 𝐵)(𝑋 + 𝑌) = (𝑎 + 𝑏)(𝑋 + 𝑌), so that 𝑋  is an eigen vector of 𝐴, 𝑋 + 𝑌  is an eigen 

vector of 𝐴 + 𝐵. The corresponding eigen value of 𝑋 is 𝑎, and the corresponding eigen value of 

𝑋 + 𝑌 is 𝑎 + 𝑏. 

For the converse, we assume that 𝑋 is an eigen vector of 𝐴 with 𝑎 as the corresponding eigen 

value, and 𝑋 + 𝑌 is an eigen vector of 𝐴 + 𝐵 with 𝑎 + 𝑏 as the corresponding eigen value, so that 

we get 𝐴𝑋 = 𝑎𝑋, (𝐴 + 𝐵)(𝑋 + 𝑌) = (𝑎 + 𝑏)(𝑋 + 𝑌). 

Let us compute  

𝑀𝑍 = (𝐴 + 𝐵𝐼)(𝑋 + 𝑌𝐼) = 𝐴𝑋 + 𝐼[(𝐴 + 𝐵)(𝑋 + 𝑌) − 𝐴𝑋] 

= 𝑎𝑋 + 𝐼[(𝑎 + 𝑏)(𝑋 + 𝑌) − 𝑎𝑋] = (𝑎 + 𝑏𝐼)(𝑋 + 𝑌𝐼) = (𝑎 + 𝑏𝐼)𝑍. Thus 𝑍 = 𝑋 + 𝑌𝐼 is an eigen vector 

of M with 𝑎 + 𝑏𝐼 as a neutrosophic eigen value. 

Theorem 3.16: 

The eigen values of a neutrosophic matrix 𝑀 = 𝐴 + 𝐵𝐼  can be computed by solving the 

neutrosophic equation 𝑑𝑒𝑡(𝑀 − (𝑎 + 𝑏𝐼) 𝑈𝑛×𝑛) = 0. 

Proof: 

We have 𝑑𝑒𝑡(𝑀 − (𝑎 + 𝑏𝐼)𝑈𝑛×𝑛) = det([𝐴 − 𝑎𝑈𝑛×𝑛] + 𝐼[𝐵 − 𝑏𝑈𝑛×𝑛]) 

= det ([𝐴 − 𝑎𝑈𝑛×𝑛] + 𝐼[det((𝐴 + 𝐵) − (𝑎 + 𝑏)𝑈𝑛×𝑛) − det[𝐴 − 𝑎𝑈𝑛×𝑛]]. Thus, the equation  

𝑑𝑒𝑡(𝑀 − (𝑎 + 𝑏𝐼) 𝑈𝑛×𝑛) = 0 is equivalent to  

det ([𝐴 − 𝑎𝑈𝑛×𝑛] = 0 (3,16,1), 𝑎𝑛𝑑 [det ((𝐴 + 𝐵) − (𝑎 + 𝑏)𝑈𝑛×𝑛) − det[𝐴 − 𝑎𝑈𝑛×𝑛] = 0   (3.16.2). 

From equation (3,16,1),  we get 𝑎 as eigen value of 𝐴, and from  (3.16.2) we get 

[det((𝐴 + 𝐵) − (𝑎 + 𝑏)𝑈𝑛×𝑛) = det[𝐴 − 𝑎𝑈𝑛×𝑛] = 0, thus𝑎 + 𝑏 is an eigen value of 𝐴 + 𝐵. 

Example 3.17: 

Consider 𝑀 the neutrosophic matrix defined in Example 3.5, we have 
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(a) The eigen values of the matrix A are {1,2}, and {1,3} for the matrix 𝐴 + 𝐵. This implies that the 

eigen values of the neutrosophic matrix 𝑀 are 

{1 + (3 − 1)𝐼, 1 + (1 − 1)𝐼, 2 + (3 − 2)𝐼, 2 + (1 − 2)𝐼} = {1 + 2𝐼, 1,2 + 𝐼, 2 − 𝐼}. 

(b) If we solved the equation det (𝑀 − (𝑎 + 𝑏𝐼)𝑈𝑛×𝑛)=0 has been solved, the same values will be 

gotten. 

(c) The eigen vectors of A are {(1,0), (1, −1)},the eigen vectors of 𝐴 + 𝐵 are {(1, −1/2), (0,1)}. Thus, 

the neutrosophic eigen vectors of M are 

{(1,0) + 𝐼[(0,1) − (1,0)], (1,0) + 𝐼 [(1, −
1

2
) − (1,0)] , (1, −1) + 𝐼[(0,1) − (1, −1)], (1, −1) +

𝐼 [(1, −
1

2
) − (1, −1)]} = {(1,0) + 𝐼(−1,1), (1,0) + 𝐼(0, −1/2), (1, −1) + 𝐼(−1,2), (1, −1) + 𝐼(0,1/2)} =

{(1 − 𝐼, 𝐼), (1, −1/2 𝐼), (1 − 𝐼, −1 + 2𝐼), (1, −1 + 1/2 𝐼)} . 

To determine the neutrosophic eigen vectors using Theorem 3.15. let  𝑋 be an eigen vector of 

𝐴, 𝑎𝑛𝑑 𝑌 be an eigen vector of 𝐴 + 𝐵, hence 𝑋 + [(𝑌) − 𝑋]𝐼 = 𝑋 + (𝑌 − 𝑋)𝐼 is an Eigen vector of 𝑀 =

𝐴 + 𝐵𝐼. 

Conclusion 

In this article, we have determined necessary and sufficient conditions for the invertibility and 

diagonalization of neutrosophic matrices. Also, we have found an easy algorithm to compute the 

inverse of a neutrosophic matrix and its Eigen values and vectors. 

As a future research direction, we aim to find the representation of neutrosophic matrices by linear 

transformations in neutrosophic vector spaces. 
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Abstract: The correlation coefficient between two variables plays an essential part in statistics. In 

addition, the preciseness in the assessment of correlation relies on information from the set of 

discourse. The data collected for various statistical studies is full of ambiguities. In this article, we 

investigated some fundamental concepts that strengthen the current research structure, such as soft 

sets, hypersoft sets, neutrosophic hypersoft set (NHSS), and interval-valued neutrosophic hypersoft 

set (IVNHSS). The IVNHSS is an extension of the interval-valued neutrosophic soft set. The main 

objective of this paper is to develop the concept of correlation and weighted correlation coefficients 

for IVNHSS. We also, discuss the desirable properties of correlation and weighted correlation 

coefficients under the IVNHSS environment in the following research. Also, develop a decision-

making technique based on the proposed correlation coefficient. Through the developed 

methodology, a technique for solving decision-making concerns is planned. Moreover, an 

application of the projected methods is presented for the selection of a medical superintendent in a 

public hospital.  

Keywords: Hypersoft set, NHSS, IVNHSS, correlation coefficient, weighted correlation coefficient 

 

1. Introduction 

Correlation plays a vital role in statistics and engineering; through correlation analysis, the joint 

relationship of two variables can be used to evaluate the interdependence of two variables. Although 

probabilistic methods have been applied to various practical engineering problems, there are still 

some obstacles to probabilistic strategies. For example, the probability of the process depends on the 

large amount of data collected, which is random. However, large complex systems have many fuzzy 

uncertainties, so it is difficult to obtain accurate probability events. Therefore, due to limited 

quantitative information, results based on probability theory do not always provide useful 

information for experts. In addition, in practical applications, sometimes there is not enough data to 

correctly process standard statistical data. Due to the aforementioned obstacles, results based on 

probability theory are not always available to experts. Therefore, probabilistic methods are usually 

insufficient to resolve such inherent uncertainties in the data. Many researchers in the world have 

proposed and suggested different methods to solve problems that contain uncertainty. First, Zadeh 

developed the concept of a fuzzy set (FS) [1] to solve those problems that contain uncertainty and 

ambiguity. It can be seen that in some cases, FS cannot solve this situation. To overcome such 
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situations, Turksen [2] proposed the idea of interval-valued fuzzy sets (IVFS). In some cases, we must 

carefully consider membership as a non-member value in the proper representation of objects that 

cannot be processed by FS or IVFS under conditions of uncertainty. To overcome these difficulties, 

Atanasov proposed the idea of intuitionistic fuzzy sets (IFSs) [3]. The theory proposed by Atanassov 

only deals with insufficient data due to membership and non-membership values, but IFS cannot 

deal with incompatible and imprecise information.  

Molodtsov [4] proposed a general mathematical tool to deal with uncertain, ambiguous, and 

undefined substances, called soft sets (SS). Maji et al. [5] Expanded the work of SS and developed 

some operations with properties. In [6], they also use SS theory to make decisions. Ali etc. [7] 

Modified the Maji method of SS and developed some new operations with its properties. By using 

different operators, they proved De Morgan's laws [8] under the SS environment. Cagman and 

Enginoglu [9] proposed the concept of soft matrices with operations and discussed their properties. 

They also introduced a decision-making method to solve problems that contain uncertainty. In [10], 

they modified the operation proposed by Molodtsov's SS. Maji et al. [11] proposed the concept of 

fuzzy soft set (FSS) by combining FS and SS. They also proposed an Intuitionistic Fuzzy Soft Set (IFSS) 

with basic operations and attributes [12]. Atanassov and Gargov [13] extended the theory of IFS and 

established a new concept called Interval Valued Intuitionistic Fuzzy Set (IVIFS). Zulqarnain et al. 

[14] utilized the intuitionistic fuzzy soft matrices for disease diagnosis. Yang et al. [15] proposed the 

concept of interval-valued fuzzy soft sets with operations (IVFSS) and proved some important results 

by combining IVFS and SS, and they also used the developed concepts for decision-making. Jiang et 

al. [16] proposed the concept of interval-valued intuitionistic fuzzy soft sets (IVIFSS) by extending 

IVIFS. They also proposed the necessity and possibility operations for IVIFSS with their properties. 

Zulqarnain and Saeed [17] developed some operations for interval-valued fuzzy soft matrix (IVFSM) 

and proposed a decision-making technique to solve the decision making problem. They also applied 

the IVFSM for decision making [18], a comparison among fuzzy soft matrices and IVFSM in [19]. Ma 

and Rani [20] constructed an algorithm based on IVIFSS and used the developed algorithm for 

decision-making. Zulqarnain et al. [21] developed the aggregation operators for IVIFSS. They also 

extended the TOPSIS technique under IVIFSS and utilized the presented approach to solving multi-

attribute decision making problem. Zulqarnain et al. [22] utilized fuzzy TOPSIS to solve the multi-

criteria decision-making (MCDM) problem. 

Maji [23] offered the idea of a neutrosophic soft set (NSS) with necessary operations and 

properties. The idea of the possibility NSS was developed by Karaaslan [24] and introduced a 

possibility of neutrosophic soft decision-making method to solve those problems which contain 

uncertainty based on And-product. Broumi [25] developed the generalized NSS with some 

operations and properties and used the proposed concept for decision making. To solve MCDM 

problems with single-valued Neutrosophic numbers (SVNNs) presented by Deli and Subas in [26], 

they constructed the concept of cut sets of SVNNs. Based on the correlation of IFS, the term CC of 

SVNSs [27] was introduced. In [28] the idea of simplified NSs introduced with some operational laws 

and aggregation operators such as weighted arithmetic and weighted geometric average operators. 

They constructed an MCDM method on the base of proposed aggregation operators. Zulqarnain et 

al. [29] presented the generalized version of neutrosophic TOPSIS and utilized the considered 

technique to solve the MCDM problem. Hung and Wu [30] proposed the centroid method to calculate 

the CC of IFSs and extended the proposed method to IVIFS. Bustince and Burillo [31] introduced the 

correlation and CC of IVIFS and proved the decomposition theorems on the correlation of IVIFS. 

Hong [32] and Mitchell [33] also established the CC for IFSs and IVIFSs respectively. Garg and Arora 

introduced the correlation measures on IFSS and constructed the TOPSIS technique on developed 

correlation measures [34]. Huang and Guo [35] gave an improved CC on IFS with their properties, 

they also established the coefficient of IVIFS. Singh et al. [36] developed the one- and two- parametric 
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generalization of CC on IFS and used the proposed technique in multi-attribute group decision-

making problems. Zulqarnain et al. [37] proposed the aggregation operators for Pythagorean fuzzy 

soft sets and developed a decision-making approach to solving multi-criteria decision making 

problems. Sometimes experts considered the sub-attributes of the given attributes in the decision-

making process. In such situations, all the above-discussed theories cannot provide any information 

to experts about sub-attributes of the given attributes. 

To overcome the above-mentioned limitations Smarandche [38] extended the concept of soft sets 

to hypersoft sets (HSS) by replacing function F of one parameter to multi-parameter (sub-attributes) 

function defined on the cartesian product of n different attributes. The established HSS is more 

flexible than soft sets and more suitable for decision-making environments. He also presented the 

further extension of HSS, such as crisp HSS, fuzzy HSS, intuitionistic fuzzy HSS, neutrosophic HSS, 

and plithogenic HSS. Nowadays, the HSS theory and its extensions rapidly progress, many 

researchers developed different operators and properties based on HSS and its extensions [39-42]. 

Abdel-Basset et al. [43] plithogenic set theory was used to eliminate uncertainty and to evaluate the 

financial performance of the manufacturing industry. They then used the VIKOR and TOPSIS 

methods to determine the weight of the financial ratio using the AHP method to achieve this goal. 

Abdel-Basset et al. [44] presented an effective combination of plithogenic aggregate operations and 

quality feature deployment procedures. The advantage of this combination is to improve accuracy, 

as a result, summarizes the decision-makers. Zulqarnain et al. [45] extended the TOPSIS technique to 

an intuitionistic fuzzy hypersoft set and developed some aggregation operators under-considered 

environment. They also established a decision-making approach based on developed TOPSIS to solve 

the MADM problem.  

Basset et al. [46] proposed the type 2 neutrosophic numbers with some operational laws. They 

also developed the aggregation operators for type 2 neutrosophic numbers and developed the 

decision-making technique based on developed operators to solve the MADM problem. Basset et al. 

[47] established the AHP and VIKOR methods for neutrosophic numbers and utilized them for 

supplier selection. Basset et al. [48] presented the robust ranking technique under a neutrosophic 

environment for the green supplier chain management. Basset et al. [49] presented a neutrosophic 

multi-criteria decision-making technique to aid the patient and physician to know if a patient is 

suffering from heart failure Smarandache’s NHSS is unable to solve those problems where the 

truthness, indeterminacy, and falsity object of any sub-attribute is given in interval form. We know 

that generally, the values vary, for example, medical experts generate the report of any patient we 

can observe that the HP level of blood varies from 0-17.5, these values can not be handled by NHSS. 

To handle the above-discussed environment we need to develop IVNHSS. The developed IVNHSS 

competently deals with uncertain problems comparative to NHSS and other existing studies. The 

main objective of this research is to introduce CC and WCC for IVNHSS. 

The following research is organized as follows: In Section 2, we review some basic definitions 

used in the following sequels, such as SS, NSS, NHSS, and IVNHSS, etc. Section 3, established the 

notions of CC and WCC under IVNHSS and discussed their desirable properties. An algorithm and 

decision-making method developed in section 4 is based on the proposed CC. We also used the 

established approach to solve decision making problems in an uncertain environment. Finally, the 

conclusion is made in section 5. 

2. Preliminaries  

In this section, we recollect some basic definitions which are helpful to build the structure of the 

following manuscript such as soft set, hypersoft set, and neutrosophic hypersoft set. 

Definition 2.1 [4] 
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Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and ⩜ ⊆ ℰ. A pair (ℱ, ⩜) is called a soft set over 𝒰 and its mapping is given as 

ℱ:⩜ → 𝒫(𝒰) 

It is also defined as: 

(ℱ,⩜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ∉ ⩜} 

Definition 2.2 [38] 

Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = 𝒜  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of multi-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be HSS over 𝒰 and 

its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝒫(𝒰). 

It is also defined as  

(ℱ, ⩜⃛) = {𝑎̌, ℱ𝒜(𝑎̌): 𝑎̌ ∈⩜⃛, ℱ𝒜(𝑎̌)  ∈  𝒫(𝒰)} 

Definition 2.3 [38] 
Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝑁𝑆𝒰 be a collection of all neutrosophic subsets over 𝒰. Then the pair 

(ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be NHSS over 𝒰 and its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝑁𝑆𝒰. 

It is also defined as  

(ℱ , ⩜⃛) = {(𝑎̌, ℱ⩜⃛(𝑎̌)): 𝑎̌ ∈⩜⃛, ℱ⩜⃛(𝑎̌)  ∈  𝑁𝑆
𝒰} , where ℱ⩜⃛(𝑎̌)  = {〈𝛿, 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿)〉: 𝛿 ∈ 𝒰} , 

where 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), and 𝛾ℱ(𝑎̌)(𝛿) represent the truth, indeterminacy, and falsity grades of the 

attributes such as 𝜎ℱ(𝑎̌)(𝛿), 𝜏ℱ(𝑎̌)(𝛿), 𝛾ℱ(𝑎̌)(𝛿) ∈  [0, 1], and 0 ≤ 𝜎ℱ(𝑎̌)(𝛿) + 𝜏ℱ(𝑎̌)(𝛿) + 𝛾ℱ(𝑎̌)(𝛿) ≤ 3. 

Example 2.4  

Consider the universe of discourse 𝒰  = {𝛿1, 𝛿2}  and 𝔏 = {ℓ1 = 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑑𝑜𝑙𝑜𝑔𝑦, ℓ2 =

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, ℓ3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠}  be a collection of attributes with following their corresponding attribute 

values are given as teaching methodology = 𝐿1  = {𝑎11 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =  𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛} , 

Subjects = 𝐿2 = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 =  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠}, and Classes = 𝐿3 = 

{𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =  𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙}. Let ⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 be a set of attributes 

⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22, 𝑎23} × {𝑎31, 𝑎32} 

= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32), (𝑎11, 𝑎23, 𝑎31), (𝑎11, 𝑎23, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32), (𝑎12, 𝑎23, 𝑎31), (𝑎12, 𝑎23, 𝑎32),
} 

⩜⃛ = {𝑎̌1, 𝑎̌2, 𝑎̌3, 𝑎̌4, 𝑎̌5, 𝑎̌6, 𝑎̌7, 𝑎̌8, 𝑎̌9, 𝑎̌10, 𝑎̌11, 𝑎̌12} 

Then the NHSS over 𝒰 is given as follows 

(𝓕,⩜⃛) = 

{
 
 

 
 

(𝒂̌𝟏, (𝜹𝟏, (. 𝟔, . 𝟑, . 𝟖)), (𝜹𝟐, (. 𝟗, . 𝟑, . 𝟓))), (𝒂̌𝟐, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟕)), (𝜹𝟐, (. 𝟕, . 𝟏, . 𝟓))), (𝒂̌𝟑, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟖)), (𝜹𝟐, (. 𝟒, . 𝟑, . 𝟒))),

 (𝒂̌𝟒, (𝜹𝟏, (. 𝟐, . 𝟓, . 𝟔)), (𝜹𝟐, (. 𝟓, . 𝟏, . 𝟔))) , (𝒂̌𝟓, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟑)), (𝜹𝟐, (. 𝟐, . 𝟑, . 𝟓))) , (𝒂̌𝟔, (𝜹𝟏, (. 𝟗, . 𝟔, . 𝟒)), (𝜹𝟐, (. 𝟕, . 𝟔, . 𝟖))) ,

(𝒂̌𝟕, (𝜹𝟏, (. 𝟔. . 𝟓, . 𝟑)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟖))), (𝒂̌𝟖, (𝜹𝟏, (. 𝟖, . 𝟐, . 𝟓)), (𝜹𝟐, (. 𝟔, . 𝟖, . 𝟒))), (𝒂̌𝟗, (𝜹𝟏, (. 𝟕, . 𝟒, . 𝟗)), (𝜹𝟐, (. 𝟕. . 𝟑, . 𝟓))),

(𝒂̌𝟏𝟎, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟔)), (𝜹𝟐, (. 𝟕, . 𝟐, . 𝟗))), (𝒂̌𝟏𝟏, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟓)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟓))), (𝒂̌𝟓, (𝜹𝟏, (. 𝟕, . 𝟓, . 𝟖)), (𝜹𝟐, (. 𝟕, . 𝟓, . 𝟗))) }
 
 

 
 

 

Definition 2.5 [42] 
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Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝐼𝑉𝑁𝑆𝒰 be a collection of all interval-valued neutrosophic subsets over 

𝒰. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be IVNHSS over 𝒰 and its mapping is 

defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝐼𝑉𝑁𝑆𝒰. 

It is also defined as  

( ℱ , ⩜⃛ ) = {(𝑎̌𝑘, ℱ⩜⃛(𝑎̌𝑘)): 𝑎̌𝑘 ∈⩜⃛, ℱ⩜⃛(𝑎̌𝑘)  ∈  𝑁𝑆𝒰} , where ℱ⩜⃛(𝑎̌)  = 

{〈𝛿, 𝜎ℱ(𝑎̌𝑘)
(𝛿), 𝜏ℱ(𝑎̌𝑘)

(𝛿), 𝛾ℱ(𝑎̌𝑘)
(𝛿)〉 : 𝛿 ∈ 𝒰}, where 𝜎ℱ(𝑎̌𝑘)

(𝛿), 𝜏ℱ(𝑎̌𝑘)
(𝛿), and 𝛾ℱ(𝑎̌𝑘)

(𝛿) represent the 

interval truth, indeterminacy, and falsity grades of the attributes such as 𝜎ℱ(𝑎̌𝑘)
(𝛿)  = 

[𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿)] , 𝜏ℱ(𝑎̌𝑘)
(𝛿)  = [𝜏ℱ(𝑎̌𝑘)

ℓ (𝛿), 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿)] , 𝛾ℱ(𝑎̌𝑘)

(𝛿)  = [𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝛾

ℱ(𝑎̌𝑘)
ひ (𝛿)] , 

where 𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿) , 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿) , 𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿), 𝛾

ℱ(𝑎̌𝑘)
ひ (𝛿)  ⊆  [0, 1] , and 0 ≤ 

𝜎ℱ(𝑎̌𝑘)
ひ (𝛿) + 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿)+ 𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿) ≤ 3. 

Simply an interval-valued neutrosophic hypersoft number (IVNHSN) can be expressed as 𝓕 = 

{[𝝈𝓕(𝒂̌𝒌)
𝓵 (𝜹),𝝈𝓕(𝒂̌𝒌)

ひ (𝜹)] , [𝝉𝓕(𝒂̌𝒌)
𝓵 (𝜹), 𝝉𝓕(𝒂̌𝒌)

ひ (𝜹)] , [𝜸𝓕(𝒂̌𝒌)
𝓵 (𝜹),𝜸𝓕(𝒂̌𝒌)

ひ (𝜹)]}, where  0 ≤ 𝝈𝓕(𝒂̌𝒌)
ひ (𝜹) + 

𝝉𝓕(𝒂̌𝒌)
ひ (𝜹)+ 𝜸

𝓕(𝒂̌𝒌)
ひ (𝜹) ≤ 3. 

3. Correlation Coefficient for Interval-Valued Neutrosophic Hypersoft Set 

In this section, the concept of correlation coefficient and weighted correlation coefficient on 

NHSS has been proposed with some basic properties. 

Definition 3.1  

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs defined over a universe of discourse 𝒰. Then, the informational interval neutrosophic 

energies of (ℱ,⩜⃛) and (𝒢,⩕⃛) can be described as follows: 

Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛) = ∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+ (𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
+ (𝜏ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
+ (𝛾ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+𝑛

𝑖=1
𝑚
𝑘=1

(𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2
)                                                                                               (1) 

Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛) = ∑ ∑ ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+ (𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
+ (𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
+ (𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+𝑛

𝑖=1
𝑚
𝑘=1

(𝛾𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2
).                                                                                               (2) 

Definition 3.2 

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs defined over a universe of discourse 𝒰. Then, the correlation measure between (ℱ,⩜⃛) 

and (𝒢,⩕⃛) can be described as follows: 

𝓒𝑰𝑽𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  
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∑ ∑ (
𝝈𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊) ∗𝝈𝓖(𝒂̌𝒌)

𝓵 (𝜹𝒊) + 𝝈𝓕(𝒂̌𝒌)
ひ (𝜹𝒊) ∗ 𝝈𝓖(𝒂̌𝒌)

ひ (𝜹𝒊)+ 𝝉𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊) ∗ 𝝉𝓖(𝒂̌𝒌)

𝓵 (𝜹𝒊) + 𝝉𝓕(𝒂̌𝒌)
ひ (𝜹𝒊) ∗ 𝝉𝓖(𝒂̌𝒌)

ひ (𝜹𝒊) +

𝜸𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊) ∗ 𝜸𝓖(𝒂̌𝒌)

𝓵 (𝜹𝒊) + 𝜸𝓕(𝒂̌𝒌)
ひ (𝜹𝒊) ∗ 𝜸𝓖(𝒂̌𝒌)

ひ (𝜹𝒊)
)𝒏

𝒊=𝟏
𝒎
𝒌=𝟏

                          (3) 

Proposition 3.3 

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs and 𝒞𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) be a correlation between them, then the following properties 

hold. 

1. 𝒞𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛) 

2. 𝒞𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛) 

Proof: The proof is trivial. 

Definition 3.4  

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs, then correlation coefficient between them given as 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and expressed 

as follows: 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛)∗ √Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
                                                 (4) 

𝜹𝑰𝑽𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  

∑ ∑ (
𝝈
𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊)∗𝝈𝓖(𝒂̌𝒌)

𝓵 (𝜹𝒊)+ 𝝈𝓕(𝒂̌𝒌)
ひ (𝜹𝒊)∗𝝈𝓖(𝒂̌𝒌)

ひ (𝜹𝒊)+𝝉𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊)∗𝝉𝓖(𝒂̌𝒌)

𝓵 (𝜹𝒊)+ 𝝉𝓕(𝒂̌𝒌)
ひ (𝜹𝒊)∗𝝉𝓖(𝒂̌𝒌)

ひ (𝜹𝒊)+

𝜸
𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊)∗𝜸𝓖(𝒂̌𝒌)

𝓵 (𝜹𝒊)+ 𝜸𝓕(𝒂̌𝒌)
ひ (𝜹𝒊)∗𝜸𝓖(𝒂̌𝒌)

ひ (𝜹𝒊)
)𝒏

𝒊=𝟏
𝒎
𝒌=𝟏

√∑ ∑ ((𝝈
𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝝈
𝓕(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐

+(𝝉
𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝝉
𝓕(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐

+(𝜸
𝓕(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+( 𝜸
𝓕(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐

)𝒏
𝒊=𝟏

𝒎
𝒌=𝟏  

√∑ ∑ ((𝝈
𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝝈
𝓖(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐

+(𝝉
𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+(𝝉
𝓖(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐

+(𝜸
𝓖(𝒂̌𝒌)
𝓵 (𝜹𝒊))

𝟐

+( 𝜸
𝓖(𝒂̌𝒌)
ひ (𝜹𝒊))

𝟐

)𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

      (5) 

Proposition 3.5 

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs, then CC satisfies the following properties 

1. 0 ≤ 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((𝒢,⩕⃛), (ℱ,⩜⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), 

𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), and 𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝛾

𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖) = 

𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖), then 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof 1. 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≥ 0 is trivial, here we only need to prove that 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) 

≤ 1. 

From equation 3, we have 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) +𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖) +

𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1
𝑚
𝑘=1  

= 

∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿1)
)𝑚

𝑘=1  
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environment     

+ 

∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿2)
)𝑚

𝑘=1  

+ 
⋮ 
+ 

∑(
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑛)
)

𝑚

𝑘=1

 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) 

= 

{
 
 
 
 
 

 
 
 
 
 (
𝜎ℱ(𝑎̌1)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌1)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌1)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌1)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌1)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌1)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌1)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌1)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌1)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌1)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌1)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌1)

ひ (𝛿1)
) +

(
𝜎ℱ(𝑎̌2)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌2)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌2)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌2)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌2)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌2)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌2)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌2)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌2)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌2)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌2)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌2)

ひ (𝛿1)
)

+
⋮
+

(
𝜎ℱ(𝑎̌𝑚)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑚)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌𝑚)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑚)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌𝑚)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑚)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌𝑚)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑚)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌𝑚)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑚)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌𝑚)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑚)

ひ (𝛿1)
)
}
 
 
 
 
 

 
 
 
 
 

 

+ 

{
 
 
 
 
 

 
 
 
 
 (
𝜎ℱ(𝑎̌1)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌1)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌1)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌1)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌1)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌1)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌1)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌1)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌1)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌1)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌1)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌1)

ひ (𝛿2)
) +

(
𝜎ℱ(𝑎̌2)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌2)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌2)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌2)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌2)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌2)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌2)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌2)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌2)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌2)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌2)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌2)

ひ (𝛿2)
)

+
⋮
+

(
𝜎ℱ(𝑎̌𝑚)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑚)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌𝑚)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑚)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌𝑚)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑚)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌𝑚)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑚)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌𝑚)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑚)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌𝑚)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑚)

ひ (𝛿2)
)
}
 
 
 
 
 

 
 
 
 
 

 

+ 
⋮ 
+ 

{
 
 
 
 
 

 
 
 
 
 (
𝜎ℱ(𝑎̌1)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌1)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌1)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌1)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌1)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌1)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌1)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌1)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌1)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌1)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌1)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌1)

ひ (𝛿𝑛)
) +

(
𝜎ℱ(𝑎̌2)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌2)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌2)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌2)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌2)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌2)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌2)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌2)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌2)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌2)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌2)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌2)

ひ (𝛿𝑛)
)

+
⋮
+

(
𝜎ℱ(𝑎̌𝑚)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑚)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌𝑚)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑚)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌𝑚)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑚)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌𝑚)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑚)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌𝑚)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑚)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌𝑚)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑚)

ひ (𝛿𝑛)
)
}
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environment     

= 

∑ (
(𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿1) + 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)
ひ (𝛿1)) + (𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿2) + 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)
ひ (𝛿2))

+⋯+ (𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑛))
)m

k=1 +

∑ (
(𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿1)) + (𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿2))

+⋯+ (𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑛))
)m

k=1  

∑(
(𝛾

ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿1)) + (𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿2))

+⋯+ (𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑛))
)

m

k=1

 

By using Cauchy-Schwarz inequality 
𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))

2 ≤  

∑

{
 
 
 
 

 
 
 
 (((𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿1))
2

+ (𝜎ℱ(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜎ℱ(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝜏ℱ(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜏ℱ(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))
}
 
 
 
 

 
 
 
 

𝑚

𝑘=1

×∑

{
 
 
 
 

 
 
 
 (((𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿1))
2

+ (𝜎𝒢(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜎𝒢(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜎𝒢(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝜏𝒢(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜏𝒢(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜏𝒢(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝛾𝒢(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝛾𝒢(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝛾𝒢(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))
}
 
 
 
 

 
 
 
 

𝑚

𝑘=1

 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤  

∑∑(((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+ (𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝜏ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝛾ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
))

𝑛

𝑖=1

𝑚

𝑘=1

 

×∑∑(((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+ (𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
))

𝑛

𝑖=1

𝑚

𝑘=1

 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤ Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛). 

Therefore, 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤ Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛) × Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛). Hence, by using definition 3.4, we 

have   

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. So, 0 ≤ 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

Proof 2. The proof is obvious. 

Proof 3. From equation 5, we have 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+

𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1
𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  

√∑ ∑ ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

 

As we know that  

𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), and 

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝛾

𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖) = 𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖). We get 
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𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  √∑ ∑ ((𝜎ℱ(𝑎̌𝑘)

(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1 

Thus, prove the required result. 

Definition 3.6  

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs. Then, their correlation coefficient is given as 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined as 

follows: 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

𝒞𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

𝑚𝑎𝑥{Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛),Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛)}
                                              (6) 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) =  

∑ ∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1
𝑚
𝑘=1

𝑚𝑎𝑥

{
 
 

 
 ∑ ∑ ((𝜎

ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1 ,

 ∑ ∑ ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

}
 
 

 
 

 

                    (7) 

Proposition 3.7  

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs. Then, CC satisfies the following properties 

1. 0 ≤ 𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝐼𝑉𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), 

𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), and 𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝛾

𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖) = 

𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖). Then, 𝛿𝐼𝑉𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof 1. 𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≥ 0 is trivial, here we only need to prove that 𝛿𝐼𝑉𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) 

≤ 1. 

From equation 3, we have 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) +𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖) +

𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1
𝑚
𝑘=1  

= 

∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿1)
)𝑚

𝑘=1  

+ 

∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿2)
)𝑚

𝑘=1  

+ 
⋮ 
+ 

∑(
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑛)
)

𝑚

𝑘=1
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𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) 

= 

{
 
 
 
 
 

 
 
 
 
 (
𝜎ℱ(𝑎̌1)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌1)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌1)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌1)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌1)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌1)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌1)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌1)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌1)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌1)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌1)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌1)

ひ (𝛿1)
) +

(
𝜎ℱ(𝑎̌2)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌2)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌2)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌2)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌2)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌2)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌2)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌2)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌2)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌2)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌2)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌2)

ひ (𝛿1)
)

+
⋮
+

(
𝜎ℱ(𝑎̌𝑚)
ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑚)

ℓ (𝛿1) + 𝜎ℱ(𝑎̌𝑚)
ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑚)

ひ (𝛿1)+ 𝜏ℱ(𝑎̌𝑚)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑚)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌𝑚)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑚)

ひ (𝛿1) +

𝛾
ℱ(𝑎̌𝑚)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑚)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌𝑚)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑚)

ひ (𝛿1)
)
}
 
 
 
 
 

 
 
 
 
 

 

+ 

{
 
 
 
 
 

 
 
 
 
 (
𝜎ℱ(𝑎̌1)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌1)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌1)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌1)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌1)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌1)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌1)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌1)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌1)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌1)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌1)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌1)

ひ (𝛿2)
) +

(
𝜎ℱ(𝑎̌2)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌2)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌2)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌2)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌2)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌2)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌2)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌2)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌2)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌2)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌2)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌2)

ひ (𝛿2)
)

+
⋮
+

(
𝜎ℱ(𝑎̌𝑚)
ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑚)

ℓ (𝛿2) + 𝜎ℱ(𝑎̌𝑚)
ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑚)

ひ (𝛿2)+ 𝜏ℱ(𝑎̌𝑚)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑚)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌𝑚)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑚)

ひ (𝛿2) +

𝛾
ℱ(𝑎̌𝑚)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑚)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌𝑚)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑚)

ひ (𝛿2)
)
}
 
 
 
 
 

 
 
 
 
 

 

+ 
⋮ 
+ 

{
 
 
 
 
 

 
 
 
 
 (
𝜎ℱ(𝑎̌1)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌1)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌1)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌1)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌1)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌1)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌1)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌1)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌1)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌1)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌1)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌1)

ひ (𝛿𝑛)
) +

(
𝜎ℱ(𝑎̌2)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌2)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌2)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌2)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌2)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌2)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌2)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌2)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌2)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌2)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌2)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌2)

ひ (𝛿𝑛)
)

+
⋮
+

(
𝜎ℱ(𝑎̌𝑚)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑚)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌𝑚)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑚)

ひ (𝛿𝑛)+ 𝜏ℱ(𝑎̌𝑚)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑚)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌𝑚)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑚)

ひ (𝛿𝑛) +

𝛾
ℱ(𝑎̌𝑚)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑚)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌𝑚)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑚)

ひ (𝛿𝑛)
)
}
 
 
 
 
 

 
 
 
 
 

 

= 

∑ (
(𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿1) + 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿1) ∗ 𝜎𝒢(𝑎̌𝑘)
ひ (𝛿1)) + (𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿2) + 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿2) ∗ 𝜎𝒢(𝑎̌𝑘)
ひ (𝛿2))

+⋯+ (𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑛))
)m

k=1 +

∑ (
(𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿1)) + (𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿2))

+⋯+ (𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑛))
)m

k=1  

∑(
(𝛾

ℱ(𝑎̌𝑘)
ℓ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿1) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿1) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿1)) + (𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿2) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿2) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿2))

+⋯+ (𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑛) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑛) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑛))
)

m

k=1

 

By using Cauchy-Schwarz inequality 
𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤  
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∑

{
 
 
 
 

 
 
 
 (((𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿1))
2

+ (𝜎ℱ(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜎ℱ(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝜏ℱ(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜏ℱ(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))
}
 
 
 
 

 
 
 
 

𝑚

𝑘=1

×∑

{
 
 
 
 

 
 
 
 (((𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿1))
2

+ (𝜎𝒢(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜎𝒢(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜎𝒢(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝜏𝒢(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝜏𝒢(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝜏𝒢(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))

+(((𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿1))

2

+ (𝛾𝒢(𝑎̌𝑘)
ひ (𝛿1))

2

) + ((𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿2))

2

+ (𝛾𝒢(𝑎̌𝑘)
ひ (𝛿2))

2

) + ⋯+ ((𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑛))

2

+ (𝛾𝒢(𝑎̌𝑘)
ひ (𝛿𝑛))

2

))
}
 
 
 
 

 
 
 
 

𝑚

𝑘=1

 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤  

∑∑(((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+ (𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝜏ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝛾ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖))
2
))

𝑛

𝑖=1

𝑚

𝑘=1

 

×∑∑(((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2
+ (𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
) + ((𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖))
2
+ (𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖))
2
))

𝑛

𝑖=1

𝑚

𝑘=1

 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤ Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛). 

Therefore, 𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤ Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛) × Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛). Hence, by using definition 3.4, we 

have   

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. So, 0 ≤ 𝛿𝐼𝑉𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

Proof 2. The proof is obvious. 

Proof 3. From equation 5, we have 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+

𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1
𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  

√∑ ∑ ((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

 

As we know that  

𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), and 

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝛾

𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖) = 𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖). We get 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  √∑ ∑ ((𝜎ℱ(𝑎̌𝑘)

(𝛿𝑖))

2

+(𝜏ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(𝑎̌𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1 

Thus, prove the required result. 

Definition 3.8  

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs. Then, their weighted correlation coefficient is given as 𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and 

defined as follows: 

𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝑊𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛)∗ √Ϛ𝑊𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
                                            (8) 
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𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ Ω𝑘(∑ γ𝑖(
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1 )𝑚
𝑘=1

√∑ Ω𝑘(∑ γ𝑖((𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1  

√∑ Ω𝑘(∑ γ𝑖((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1

                   (9) 

Definition 3.9  

Let (ℱ,⩜⃛)  = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰}  and 

(𝒢,⩕⃛)  = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰}  be two 

IVNHSSs. Then, their weighted correlation coefficient is given as 𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined 

as follows: 

𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

𝒞𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

𝑚𝑎𝑥{Ϛ𝑊𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛),Ϛ𝑊𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛)}
                                          (10) 

𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ Ω𝑘(∑ γ𝑖(
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)+

𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖)+ 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖)∗𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1 )𝑚
𝑘=1

𝑚𝑎𝑥

{
 
 

 
 ∑ Ω𝑘(∑ γ𝑖((𝜎ℱ(𝑎̌𝑘)

ℓ (𝛿𝑖))
2

+(𝜎
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
ℱ(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1 ,

∑ ὡ𝑘(∑ Ω𝑘(∑ γ𝑖((𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜎
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+(𝜏
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

+(𝛾
𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖))

2

+( 𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1 )𝑚
𝑘=1

}
 
 

 
 

 

        (11) 

If we consider Ω  = {
1

𝑚
, 

1

𝑚
,…, 

1

𝑚
} and γ  = {

1

𝑛
, 

1

𝑛
,…, 

1

𝑛
}, then 𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))  and 

𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) are reduced to 𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and 𝛿𝐼𝑉𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) respectively. 

Proposition 3.10 

Let (ℱ,⩜⃛) = {(𝛿𝑖, [𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} and 

(𝒢,⩕⃛) = {(𝛿𝑖, [𝜎𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝜏𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)] , [𝛾𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)])  ⎸𝛿𝑖 ∈  𝒰} be two 

IVNHSSs, then WCC between satisfies the following properties 

1. 0 ≤ 𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((𝒢,⩕⃛), (ℱ,⩜⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), 

𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖), 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) = 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖), and 𝛾
ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) = 𝛾

𝒢(𝑎̌𝑘)
ℓ (𝛿𝑖), 𝛾ℱ(𝑎̌𝑘)

ひ (𝛿𝑖) = 

𝛾
𝒢(𝑎̌𝑘)
ひ (𝛿𝑖), then 𝛿𝑊𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof 1. Similar to proposition 3.5. 

4. Application of Correlation Coefficient for Decision Making Under IVNHSS Environment 

In this section, we proposed the algorithm based on CC under IVNHSS and utilize the proposed 

approach for decision making in real-life problems. 

4.1 Algorithm for Correlation Coefficient under IVNHSS 

Step 1. Pick out the set containing sub-attributes of parameters. 

Step 2. Construct the IVNHSS according to experts in form of IVNHSNs. 

Step 3. Find the informational interval neutrosophic energies for IVNHSS. 

Step 4. Calculate the correlation between IVNHSSs by using the following formula 

𝓒𝑰𝑽𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  
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∑ ∑ (
𝜎ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) + 𝜎ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝜎𝒢(𝑎̌𝑘)

ひ (𝛿𝑖) + 𝜏ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) + 𝜏ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝜏𝒢(𝑎̌𝑘)

ひ (𝛿𝑖) +

𝛾ℱ(𝑎̌𝑘)
ℓ (𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)

ℓ (𝛿𝑖) + 𝛾ℱ(𝑎̌𝑘)
ひ (𝛿𝑖) ∗ 𝛾𝒢(𝑎̌𝑘)

ひ (𝛿𝑖)
)𝑛

𝑖=1
𝑚
𝑘=1

Step 5. Calculate the CC between IVNHSSs by using the following formula 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝐼𝑉𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(ℱ,⩜⃛)∗ √Ϛ𝐼𝑉𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
  

Step 6. Choose the alternative with a maximum value of CC. 

Step 7. Analyze the ranking of the alternatives. 

A flowchart of the above-presented algorithm can be seen in figure 1. 

 
Figure 1: Flowchart for correlation coefficient under IVNHSS 

4.1 Problem Formulation and Application of IVNHSS For Decision Making 

Ministry of health advertises for the one vacant position of medical superintendent (MS) in 

hospital. Several medical experts apply for the post of MS, but referable probabilistic along with 

experience simply four experts are considered for further evaluation such as ℵ = {ℵ1, ℵ2, ℵ3, ℵ4} be a 

set of alternatives. The secretary of the health department hires a committee of four decision-makers 

(DM) 𝒰 = {𝛿1, 𝛿2, 𝛿3, 𝛿4} for the selection of MS. The team of DM decides the criteria (attributes) for 

the selection of MS position such as 𝔏 = {ℓ1 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑎𝑛𝑐𝑒, ℓ2 = 𝐷𝑒𝑎𝑙𝑖𝑛𝑔 𝑠𝑘𝑖𝑙𝑙𝑠, ℓ3 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} 

be a collection of attributes and their corresponding sub-attribute are given as Experience = ℓ1 = 

{𝑎11 = 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 20, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 20} , Dealing skills = ℓ2  = {𝑎21 = 𝑝𝑢𝑏𝑙𝑖𝑐 𝑑𝑒𝑎𝑙𝑖𝑛𝑔, 𝑎22 =

 𝑆𝑡𝑎𝑓𝑓 𝑑𝑒𝑎𝑙𝑖𝑛𝑔} , and Qualification = ℓ3  = {𝑎31 = 𝐷𝑜𝑐𝑡𝑜𝑟𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎32 =

 𝑀𝑎𝑠𝑡𝑒𝑟𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛}. Let 𝔏′ = ℓ1 × ℓ2 × ℓ3 be a set of sub-attributes 

𝔏′ = ℓ1 × ℓ2 × ℓ3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22} × {𝑎31, 𝑎32} 

= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32) 
}, 𝔏′ = {𝑎̌1, 𝑎̌2, 𝑎̌3, 𝑎̌4, 𝑎̌5, 𝑎̌6, 𝑎̌7, 𝑎̌8} be a set 

of all multi sub-attributes. Each DM will evaluate the ratings of each alternative in the form of 

IVNHSNs under the considered multi sub-attributes. The developed method to find the best 

alternative is as follows. 

4.1.1. Application of IVNHSS For Decision Making 
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Assume ℵ  = {ℵ1, ℵ2, ℵ3, ℵ4}  be a set of alternatives who are shortlisted for interview and  𝔏 = 

{ℓ1 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑎𝑛𝑐𝑒, ℓ2 = 𝐷𝑒𝑎𝑙𝑖𝑛𝑔 𝑠𝑘𝑖𝑙𝑙𝑠, ℓ3 = 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} be a set of parameters for the selection of 

MS. Experience = ℓ1  = {𝑎11 = 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 20, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 20} , Dealing skills = ℓ2  = {𝑎21 =

𝑝𝑢𝑏𝑙𝑖𝑐 𝑑𝑒𝑎𝑙𝑖𝑛𝑔, 𝑎22 =  𝑆𝑡𝑎𝑓𝑓 𝑑𝑒𝑎𝑙𝑖𝑛𝑔} , and Qualification = ℓ3  = {𝑎31 =

𝐷𝑜𝑐𝑡𝑜𝑟𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎32 =  𝑀𝑎𝑠𝑡𝑒𝑟𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝑚𝑒𝑑𝑖𝑐𝑎𝑙 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛}. Let 𝔏′ = ℓ1 × 

ℓ2 × ℓ3 be a set of sub-attributes. The health ministry defines a criterion for the selection of MS for 

all alternatives in terms of IVNHSNs given in Table 1. 

Table 1. Decision Matrix of Concerning Department 

℘ 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([. 3, .5], [. 2, .4], [. 2, .6]) ([. 2, .3], [. 5, .7], [. 1, .3]) ([.5, .6], [.1, .3], [.4, .6]) ([.2, .4], [.3, .5], [.3, .6]) ([.2, .3], [.2, .4], [.4, .5]) ([.4, .6], [.1, .3], [.2, .4]) ([.6, .7], [.2, .3], [.3, .4]) ([.4, .5], [.5, .8], [.1, .2]) 

𝜹𝟐 ([.5, .6], [.1, .3], [.4, .6]) ([.5, .7], [.1, .2], [.4, .6]) ([.2, .4], [.3, .4], [.2, .5]) ([.6, .8], [.1, .2], [.3, .5]) ([.4, .6], [.4, .5], [.3, .5]) ([.3, .5], [.4, .5], [.1, .3]) ([.1, .2], [.5, .8], [.2, .4]) ([.5, .7], [.1, .2], [.5, .6]) 

𝜹𝟑  ([.2, .4], [.5, .6], [.4, .6]) ([.2, .4], [.3, .4], [.2, .5]) ([.4 .6], [.2, .3], [.1, .4]) ([.2, .5], [.2, .3], [.1, .6]) ([.3, .4], [.2, .5], [.5, .7]) ([.3, .5], [.4, .5], [.1, .3]) ([.2, .4], [.7, .8], [.1, .2]) ([.1, .2], [.7, .8], [.2, .3]) 

𝜹𝟒 ([.2, .3], [.5, .7], [.1, .3]) ([.3, .4], [.2, .5], [.5, .7]) ([.2, .4], [.3, .5], [.3, .6]) ([.5, .7], [.1, .2], [.4, .6]) ([.4, .6], [.1, .3], [.2, .4]) ([.1, .2], [.5, .8], [.2, .4]) ([.2, .4], [.3, .4], [.2, .5]) ([.5, .6], [.1, .3], [.4, .6]) 

Table 2. Decision Matrix for Alternative ℵ(1) 

ℵ(𝟏) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([.2, .4], [.4, .5], [.3, .4]) ([.3, .4], [.4, .5], [.2, .5]) ([.3, .6], [.2, .3], [.1, .2]) ([.2, .4], [.4, .6], [.1, .2]) ([.1, .3], [.6, .7], [.2, .3]) ([.4, .5], [.2, .5], [.2, .3]) ([.6, .7], [.1, .2], [.2, .3]) ([.4, .6], [.2, .3], [.4, .5]) 

𝜹𝟐 ([.3, .4], [.2, .5], [.5, .7]) ([.4, .7], [.1, .2], [.1, .2]) ([.4, .5], [.2, .5], [.1, .2]) ([.5, .7], [.1, .2], [.2, .4]) ([.6, .8], [.1, .2], [.1, .5]) ([.2, .4], [.7, .8], [.1, .2]) ([.2, .4], [.3, .5], [.3, .6]) ([.3, .4], [.4, .5], [.2, .4]) 

𝜹𝟑 ([.5, .6], [.2, .3], [.4, .5]) ([.5, .7], [.1, .2], [.2, .4]) ([.7, .8], [.1, .2], [.2, .4]) ([.1, .3], [.1, .5], [.2, .5]) ([.1, .4], [.2, .4], [.1, .2]) ([.2, .5], [.2, .4], [.3, .5]) ([.3, .5], [.2, .4], [.4, .6]) ([.5, .7], [.1, .2], [.5, .6]) 

𝜹𝟒 ([.3, .5], [.3, .4], [.6, .7]) ([.2, .4], [.3, .4], [.2, .5]) ([.2, .4], [.7, .8], [.1, .2]) ([.4, .7], [.1, .2], [.1, .2]) ([.5, .6], [.2, .3], [.4, .5]) ([.2, .4], [.3, .5], [.3, .6]) ([.4, .6], [.2, .3], [.4, .5]) ([.1, .3], [.1, .5], [.2, .5]) 

Table 3. Decision Matrix for Alternative  ℵ(2) 

ℵ(𝟐) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([.2, .4], [.4, .6], [.4, .5]) ([.2, .3], [.4, .6], [.3, .5]) ([.1, .2], [.6, .8], [.2, .5]) ([.4, .5], [.2, .5], [.1, .2]) ([.2, .3], [.4, .6], [.3, .5]) ([.1, .2], [.6, .8], [.2, .5]) ([.7, .8], [.1, .2], [.2, .3]) ([.1, .3], [.6, .7], [.2, .5]) 

𝜹𝟐 ([.4, .5], [.2, .5], [.1, .2]) ([.5, .7], [.1, .2], [.2, .4]) ([.1, .3], [.6, .7], [.2, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.1, .4], [.2, .4], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) 

𝜹𝟑 ([.3, .4], [.2, .6], [.4, .6]) ([. 2, .4], [. 3, .4], [. 2, .5]) ([.4, .5], [.2, .5], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) ([.3, .5], [.3, .5], [.6, .7]) ([.3, .5], [.3, .5], [.6, .7]) ([.1, .2], [.2, .5], [.4, .6]) ([.5, .7], [.1, .2], [.2, .4]) 

𝜹𝟒 ([.2, .4], [.4, .5], [.6, .8]) ([.3, .5], [.3, .5], [.6, .7]) ([.1, .2], [.2, .5], [.4, .6]) ([.1, .4], [.2, .4], [.1, .2]) ([.4, .5], [.2, .5], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) ([.4, .5], [.2, .5], [.1, .2]) ([.1, .2], [.2, .5], [.4, .6]) 

Table 4. Decision Matrix for Alternative ℵ(3) 

ℵ(𝟑) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 

𝜹𝟏 ([.6, .7], [.1, .2], [.3, .5]) ([.6, .8], [.1, .2], [.2, .3]) ([.6, .7], [.3, .5], [.1, .2]) ([.7, .8], [.1, .2], [.2, .5]) ([.6, .7], [.1, .2], [.1, .2]) ([.5, .8], [.1, .2], [.2, .4]) ([.1, .3], [.6, .7], [.2, .5]) ([.7, .8], [.1, .2], [.2, .3]) 

𝜹𝟐 ([.5, .7], [.3, .4], [.2, .3]) ([.5, .7], [.2, .5], [.2, .3]) ([.5, .6], [.3, .4], [.1, .2]) ([.7, .8], [.3, .5], [.1, .3]) ([.1, .2], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.4, .6], [.2, .3], [.1, .2]]) ([.4, .6], [.2, .3], [.1, .2]) 

𝜹𝟑 ([. 2, .4], [. 3, .4], [. 2, .5]) ([.4, .7], [.2, .3], [.3, .7]) ([.4, .6], [.2, .3], [.1, .2]) ([.3, .5], [.3, .5], [.6, .7]) ([.6, .8], [.1, .2], [.1, .2]) ([.7, .8], [.1, .2], [.2, .4]) ([.1, .2], [.2, .5], [.4, .6]) ([.6, .8], [.1, .2], [.1, .3]) 

𝜹𝟒 ([.6, .8], [.3, .4], [.1, .2]) ([.5, .7], [.1, .2], [.4, .5]) ([.1, .2], [.2, .5], [.4, .6]) ([.5, .6], [.3, .4], [.1, .2]) ([. 2, .4], [. 3, .4], [. 2, .5]) ([.1, .3], [.6, .7], [.2, .5]) ([.7, .8], [.1, .2], [.2, .5]) ([.4, .6], [.2, .3], [.1, .2]]) 

Table 5. Decision Matrix for Alternative ℵ(4) 

ℵ(𝟒) 𝒂̌𝟏 𝒂̌𝟐 𝒂̌𝟑 𝒂̌𝟒 𝒂̌𝟓 𝒂̌𝟔 𝒂̌𝟕 𝒂̌𝟖 
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𝜹𝟏 ([.3, .5], [.2, .4], [.1, .2]) ([.3, .6], [.1, .2], [.4, .7]) ([.4, .7], [.3, .4], [.2, .3]) ([.7, .8], [.2, .4], [.3, .5]) ([.5, .7], [.3, .4], [.2, .4]) ([.4, .6], [.2, .5], [.3, .4]) ([.2, .3], [.5, .7], [.2, .4]) ([.5, .7], [.2, .4], [.3, .5]) 

𝜹𝟐 ([.4, .5], [.5, .7], [.2, .4]) ([.4, .7], [.3, .5], [.2, .4]) ([.5, .8], [.3, .4], [.2, .3]) ([.2, .4], [.2, .3], [.4, .5]) ([.3, .5], [.2, .3], [.3, .5]) ([.2, .4], [.2, .3], [.3, .6]) ([.5, .8], [.3, .6], [.2, .3]) ([.4, .6], [.2, .3], [.1, .2]]) 

𝜹𝟑 ([. 2, .4], [. 3, .4], [. 2, .5]) ([.4, .6], [.2, .3], [.3, .5]) ([.3, .5], [.3, .5], [.1, .2]) ([.3, .5], [.4, .6], [.6, .7]) ([.5, .7], [.1, .2], [.4, .5]) ([.4, .6], [.3, .5], [.1, .2]) ([.6, .7], [.1, .2], [.3, .5]) ([.2, .5], [.2, .3], [.4, .6]) 

𝜹𝟒 ([.1, .2], [.2, .5], [.4, .6]) ([.5, .7], [.2, .4], [.1, .3]) ([.3, .5], [.2, .5], [.1, .3]) ([.4, .6], [.2, .5], [.3, .4]) ([.5, .8], [.3, .4], [.2, .3]) ([.4, .6], [.2, .3], [.1, .2]]) ([.4, .7], [.3, .5], [.2, .4]) ([. 2, .4], [. 3, .4], [. 2, .5]) 

By using Tables 1-5, compute the correlation coefficient between 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(1)) , 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(2)) , 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(3)), 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(4)) by using equation 5 given as follows: 

𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(1)) = .99701, 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(2)) = .99822, 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(3)) = .99986, and 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(4)) = 

.99759. This shows that 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(3)) >  𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(2)) > 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(4))  > 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(1)). It can 

be seen from this ranking alternative  ℵ(3) is the most suitable alternative. Therefore  ℵ(3) is the best alternative 

for the vacant position of associate professor, the ranking of other alternatives given as ℵ(3) > ℵ(2) > ℵ(4) >
ℵ(1). Graphical results of alternatives ratings can be seen in figure 2. 

 

 

Figure 2: Alternatives rating based on correlation coefficient under IVNHSS 

5. Conclusion 

 The interval-valued neutrosophic hypersoft set is a novel concept that is an extension of the 

interval-valued neutrosophic soft set. In this manuscript, we studied some basic concepts which were 

necessary to build the structure of the article. We introduced the correlation and weighted correlation 

coefficients under the IVNHSS environment. Some basic properties based on developed CC under 

IVNHSS were also introduced. A decision-making approach has been developed based on the 

established correlation coefficient and presented an algorithm under IVNHSS. Finally, a numerical 

illustration has been described to solve the decision-making problem by using the proposed 

technique. In the future, the correlation coefficient, the TOPSIS method based on correlation 

coefficient under IVNHSS can be presented. Future research will concentration on presenting 

numerous other operators under the IVNHSS environment to solve decision-making issues. Many 

other structures such as topological, algebraic, ordered structures, etc. can be developed and 

discussed under-considered environment. 
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Abstract: Lasers are medical devises and widely used in surgery to treat; diseased blood vessels, 

reduce blood loss, infection reduction, and many other purposes. Whereas, Lasers has many types 

based on the construction materials.  Thus, the right selection of laser for surgery is very important 

to accomplish complex medical tasks. With the development of MCDM techniques and neutrosophic 

soft set, this problem can be solved with more accuracy and precision. The aim of this paper is to 

select the right type of laser for specific surgeries. To, select the right choice, six different laser types 

and seven criteria are taken. To find the best alternative, generalized TOPSIS, WSM, and WPM along 

with MATLAB coding techniques are used.  Results are the same and showing the right selection of 

the same alternative which is already being used in the field of surgery. This shows that in the future, 

these techniques can be applied in the selection of medical equipment too. 

 

Keywords: Accuracy Function, Fuzzy Soft Set, Neutrosophic Soft Set, MCDM, MATLAB, WSM, WPM, TOPSIS 
________________________________________________________________________________________ 

1. Introduction 

All anesthetists need to have fundamental information on laser material science and how laser 

radiation can associate with the careful condition, including the patient, sedative mechanical 

assembly and careful group. Lasers are finding expanding application in both medication and 

medical procedure and their utilization offers ascend to a few perils. The majority of these risks 

emerge as an immediate consequence of the idea of laser radiation. The role of laser as a safe, non-

corrosive, non-toxic surgical tool in hospitals is very important. The approach of current century is 

to advance the medical technology and equipment as a result, the procedures become less invasive, 

and low cost for treatment.  Due to this importance laser is in the spotlight.  

The most commonly used type of laser (CO2 laser) was designed by C. Kumar [1, 2], it has 

crossed many stages to become important tool in surgical instrument [2, 3]. The instrument designer, 

Uzi Sharon, was the person who joined the light emission noticeable (red) helium-neon laser with the 

undetectable light emission CO2 laser. The gadget from the mid-1970s was outfitted with the 

necessities of clinical medical procedure [4].  Isaac Kaplan is famous for “father of laser medical 
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procedure” who created various laser-careful procedures that assisted with characterizing new 

fundamental conditions in plastic and reconstructive medical procedure [5]. 

 In current century, laser treatments have a bigger number; major surgeries, skin care, ENT 

procedures, gall bladder removal procedure and many more [6, 7]. Additionally, lasers made a 

difference to build up another interventional method also to traditional medical procedure, the 

supposed in situ coagulation which can be performed cursorily, interstitially or intravascularly [8, 9, 

10]. In this issue of Photonics and Lasers in Medicine, Philipp et al. [11] present information of 450 

patients determined to have pyogenic granuloma who were dealt with utilizing the Nd: YAG laser 

(1064 nm) in impression strategy or on the other hand by direct coagulation. The outcomes mirror 

the significant skills of this division in applying the in-situ coagulation, guaranteeing not just 

supported helpful achievement yet in addition an incredible corrective result. 

 

With the development of fuzzy sets [12] decision making becomes easier but later on this 

theory was extended by [13] named as Intuitionistic fuzzy number theory. To deal with more 

precision, accuracy and indeterminacy this idea was extended by [14] called as neutrosophy theory. 

To, discuss the applications of these theory number of developments were made but the most 

important one is the theory of soft set [15]. Later on, fuzzy, intuitionist and neutrosophy theories were 

extended to fuzzy softset [16], intuitionistic soft set [17] and neutrosophic soft set [18]. In different 

fields the applications of these theories are presented by many researchers [19-26], but with the 

development of TOPSIS, WSM and WPM techniques [27-32] it becomes more powerful tool to solve 

the MCDM problems [33-38]. Many other novel works under neutrosophic environment are done 

along with real life applications [43-46]. In object selection, neutrosophic sets are widely used for 

accuracy [47-49]. 

 

Now the question arises why we are using these techniques in this case study? To get the 

answer of this question, firstly you need to know the attribute and alternatives; since laser are of 

many types having different properties which makes it a perfect problem to apply the above-

mentioned MCDM techniques. The neutrosophic theory is used for more accuracy thus the 

techniques to solve MCDM problems under neutrosophic environment can be applied.  

 

1.1 Contribution / Motivation 

LASER is widely used in all over the fields of sciences, especially in the field of medicine LASERS 

play revolutionary role. There are many kinds used in medical field for various surgeons, in surgery 

LASERS are used to cut deeply and cauterize. Producing precise and accurate surgical cut. Ablate 

tissues and cells from the surface. Internal surgery of patients without visible wound. To evaporate 

the damaged cells, there are countless uses of LASER in medical field.  

In this research five construction-based types of LASERS are being discussed and we are 

finding which type is more efficient and accurate in the surgical field using mathematical tools along 

with the use of MATLAB. 

1.2 The paper presentation 
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The layout of this research is presented in Figure:1. Section 1, consists of introduction of the topic, 

literature review and the motivation along with contribution. Section 2, preliminaries are presented 

in this section. In third section, algorithms of TOPSIS, WSM and WPM are listed along with 

flowcharts. In section 5, the case study of LASER selection is done using TOPSIS algorithm and in 

section 6, the case study is solved with the help of WSM and WPM using MATLAB code. Finally, 

result discussion is done and the present research is concluded with future directions.  

 

Figure 1:  The layout of the paper 

2.Preliminaries 

Definition 2.1: Linguistic Set [39] 

Let A= {𝑎0, 𝑎1, 𝑎2, … . , 𝑎𝑛} be finite and fully ordered set of discrete terms where 𝑛 ∈ 𝑁.  

 

Example: Let us consider a set A= { 𝑎1, 𝑎2, … . , 𝑎5} every element representing a specific linguistic 

term value, which are as; “None”, “low effective”, “moderate effective”, “effective”, “high effective” 

Definition 2.2: Fuzzy Set [12] 

In fuzzy set, an element "𝜕"  is assigned a degree of membership from [0,1]. Mathematically, 

represented as 𝜇𝜕 ∈ [0,1]. 

Definition 2.3: Neutrosophic Set [14] 

Let 𝜏  be an initial universal set and E be a set of parameters. Let’s consider,  Α⊂ E. Let Ρ( 𝜏) 

represents the set of all neutrosophic sets over 𝜏, where F is a mapping given by 

Ϝ ∶  Α ⟶ Ρ( 𝜏) 

Definition 2.4: MCDM [42] 
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Multi-criteria decision makings are very complex. To find out the best option MCDM techniques are 

used like, TOPSIS, VIKOR, AHP, ELECTREE, WSM, WPM, etc. 

Definition 2.5: Accuracy Function [41] 

The process /mathematical form of conversion of neutrosophic numbers N into crisp numbers is said 

to be accuracy function. 

𝐴(𝑁) =  
[𝑇(𝑥) + 𝐼(𝑥) + 𝐹(𝑥)]

3
∶ 𝑥 𝜖 𝑁 

Definition 2.6: TOPSIS [33] 

TOPSIS is an acronym that stands for 'Technique of Order Preference Similarity to the Ideal Solution' 

and is a pretty straight forward MCDA method. As the name implies, the method is based on finding 

an ideal and an anti-ideal solution and comparing the distance of each one of the alternatives to those. 

Definition 2.7: LASER [1] 

Laser stands for light amplification by stimulated emission of radiation, A laser is a physical device 

that radiate light through a process of optical amplification via stimulated emission of 

electromagnetic radiation. 

3. Algorithms 

In this section three algorithm are presented to solve MCDM problem under neutrosophic 

environment. 

3.1 Generalized Fuzzy TOPSIS Algorithm 

The TOPSIS technique [33] is mainly used for the ranking of alternatives in MCDM and MAGDM 

problems. In this method crisp/fuzzy/intuitionistic numbers were used to select the best alternative. 

Thus, technique of TOPSIS was extended for the Neutrosophic environment and said to be 

Generalized Fuzzy TOPSIS. The stepwise algorithm of generalized fuzzy TOPSIS is presented in 

Figure: 2.  

Step: 1 Consideration of problem.  

Step: 2 The formulation and assumptions of the problem. 

Step: 3 Construction of linguistic decision matrix. 

Step: 4 Assigning of neutrosophic numbers (NN’s) to each linguistic value. 

Step: 5 Conversion of neutrosophic numbers into crisp using accuracy function. 

Step: 6 Now apply TOPSIS algorithm. (Presented below) 

    TOPSIS Algorithm   {Step 1: Construct the Normalized Decision Matrix to transform the 

various attribute dimensions into non-dimensional attributes, which allows comparison across the 

attributes. 

𝑟
𝑖𝑗 =

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 

Step 2: Construct the Weighted Normalized Decision Matrix. 

Assume we have a set of weights for each criteria wj for j = 1, 2, 3…n. Multiply each column of the 

normalized decision matrix 𝑟𝑖𝑗  by its associated weight. An element of the new matrix is: 

𝑉𝑖𝑗   =  𝑤𝑗  𝑟𝑖𝑗  
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Step 3: Determine Ideal and Negative-Ideal Solutions, A+ = { 𝑉1, … , 𝑉𝑛}, where 

    𝑉𝑗
+

  = {max (𝑉𝑖𝑗) if j  J; min (𝑉𝑖𝑗) if j  𝐽+} 

𝐽+ Associated with the criteria having a positive impact. 

    𝐴− = { 𝑉1, … , 𝑉𝑛}, where 𝑉𝑗
−

  = {min (𝑉𝑖𝑗) if j  J; max (𝑉𝑖𝑗) if j  𝐽−} 

𝐽− Associated with the criteria having a negative impact. 

 

Step 4: Calculate the Separation Measure: 

 

o Ideal Separation 

𝑆𝑖
+=  √∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)2 𝑛
𝑗=1        𝑖 = 1,2,3, … , 𝑚 

 

o Negative Ideal Separation 

𝑆𝑖
−=  √∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)2 𝑛
𝑗=1        𝑖 = 1,2,3, … , 𝑚 

Step 5: Calculate the Relative Closeness to the Ideal Solution 

𝐶𝑖
∗ =

𝑆𝑖
−

(𝑆𝑖
++𝑆𝑖

−)
 , 0 < 𝐶𝑖

∗ < 1,         𝑖 = 1,2,3, … , 𝑚 . 

𝐶𝑖
∗ = 1, 𝑖𝑓 𝐴𝑖 = 𝐴+ 

𝐶𝑖
∗ = 0, 𝑖𝑓 𝐴𝑖 = 𝐴− 

Step 6: Rank the preference order a set of alternatives can now be preference ranked according to 

the descending order of  𝐶𝑖
∗ } End of TOPSIS algorithm. 

 

Step: 7 Rank the alternatives. 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Flowchart for generalized fuzzy TOPSIS 

3.2 Weighted Sum Model (WSM) Algorithm [27] 

The WSM is commonly used for single dimensional problems. In this method the weighted sum 

performance rating of each alternative is calculated using the algorithm. The stepwise procedure is 

shown in Figure 3; 

Step 1: Construction of decision matrix Μ from the given problem. 

Problem 

Consideration 

 

Rank 
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Step 2: Construction of normalized decision matrix ℜ = [𝑟𝑘𝑗]
𝑚×𝑛

𝑘 = 1,2,3, … . , 𝑚 𝑎𝑛𝑑 𝑗 = 1,2,3, … . , 𝑛 

Step 3: Construction of weighted normalized decision matrix ℘ = [𝑤𝑗𝑟𝑘𝑗]
𝑚×𝑛

 𝑎𝑛𝑑 ∑ 𝑤𝑗 = 1𝑛
𝑗=1  

Step 4: Calculation of 𝑆𝑘
𝑊𝑆𝑀  ; 𝑘 = 1,2,3, … . , 𝑚 score of each alternative.  

𝑆𝑘
𝑊𝑆𝑀  = ∑ 𝑤𝑗𝑟𝑘𝑗

𝑛

𝑗=1
; 𝑘 = 1,2,3, … . , 𝑚 𝑎𝑛𝑑 𝑗 = 1,2,3, … . , 𝑛 

Step 5: Selection of best alternative i.e. 𝑚𝑎𝑥 (𝑆𝑘
𝑊𝑆𝑀  ; 𝑘 = 1,2,3, … . , 𝑚) 

 

Figure 3:  Flowchart for WSM algorithm 

 

3.3 Weighted Product Model (WPM) Algorithm [29] 

The WPM is mainly used to find best alternative in MCDM problems. In this method the alternatives 

are simplified by multiplying a number of ratios of each criterion. This method is some time known 

as dimensionless analysis. The stepwise procedure is shown in Figure 4; 

Step 1: Construction of decision matrix ℳ from the given problem. 

Step 2: Construction of normalized decision matrix ℝ = [𝑟𝑘𝑗]
𝑚×𝑛

𝑘 = 1,2,3, … . , 𝑚 𝑎𝑛𝑑 𝑗 = 1,2,3, … . , 𝑛 

Step 3: Construction of weighted normalized decision matrix ℕ = [𝑟𝑘𝑗
𝑤𝑗]𝑚×𝑛 𝑎𝑛𝑑 ∑ 𝑤𝑗 = 1𝑛

𝑗=1  

Step 4: Calculation of 𝑆𝑘
𝑊𝑃𝑀  ; 𝑘 = 1,2,3, … . , 𝑚 score of each alternative.  

𝑆𝑘
𝑊𝑆𝑀  = ∏ 𝑟𝑘𝑗

𝑤𝑗

𝑛

𝑗=1

; 𝑘 = 1,2,3, … . , 𝑚 𝑎𝑛𝑑 𝑗 = 1,2,3, … . , 𝑛 

Step 5: Selection of best alternative i.e. 𝑚𝑎𝑥 (𝑆𝑘
𝑊𝑃𝑀  ; 𝑘 = 1,2,3, … . , 𝑚) 

•Construction 
of Decision 

Matrix

Step 1 

•Construction 
of Normalized 

Decision 
Matrix

Step 2
•Construction of 

Weighted  
Normalized 

Decision Matrix

Step 3

•Calculation of 
Score of each 

Alternative

Step 4
•Selection of 

best 
Alternative

Step 5



Neutrosophic Sets and Systems, Vol. 40, 2021    35  

Muhammad Umer Farooq, Muhammad Saqlain, and Zaka-ur-Rehman, The selection of LASER as Surgical Instrument in Medical using 

Neutrosophic Soft Set with Generalized Fuzzy TOPSIS, WSM and WPM along with MATLAB Coding  

 

Figure 4:  Flowchart for WPM algorithm 

4: Case Study 

In this section a case study of LASER selection for the surgery in medical is considered and the 

selection is made by applying all the above-mentioned algorithms. 

 

4.1  Problem Formulation 

LASERS are widely used in all over the fields of sciences, especially in the field of medicine and 

surgery. In surgery, LASERS are used to cut deeply and cauterize. Producing precise and accurate 

surgical cut. Ablate tissues and cells from the surface. Internal surgery of patients without visible 

wound. To evaporate the damaged cells, there are countless uses of LASER in medical field.  

 

4.2  Parameters 

Selection is a complex issue, to resolve this problem criteria and alternative plays an important role. 

Following criteria and alternatives are considered in this problem formulation. 

Criteria’s of Each Laser 

∁𝟏 ∁2 ∁3 ∁4 ∁5 ∁6 ∁7 
Construction 

Type 
Wavelength Frequency 

Delivery 

System 
Medium 

Pumping 

Method 
Interaction 

Lasers as Alternatives 

L𝟏 L2 L3 L4 L5 L6 

Argon KTP Helium Neon YAG YSGG Diode 

 

4.3  Assumptions 

Consider 𝐾 = {κ1, κ2, κ3, κ4}  decision makers who will assign linguistic values from Table .1 

according to his own interest, knowledge and experience, to the above-mentioned criteria and 

alternatives and shown in Table.2. 

Sr # No Linguistic variable Code Neutrosophic Number 

1 None N (0.0, 0.1,0.5) 

2 Low Effective LE (0.2,0.4,0.8) 

3 Moderate Effective ME (0.4,0.2,0.5) 
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4 Effective E (0.6,0.2,0.3) 

5 High Effective HE (1.0,0.0,0.1) 

Table 1: Linguistic variables, codes and neutrosophic numbers  

 

4.4 Application of Proposed Generalized Fuzzy TOPSIS Algorithm 

 

Step 1:  Presented in section 4.1 

Step 2:  Presented in section 4.2 and 4.3. 

Step 3: Assigning linguistic variables to each alternatives and criteria’s / attributes. 

 

  Strategies κ1 κ2 κ3 κ4 

∁ 1
= 

C
o

n
st

ru
ct

io
n

 T
y

p
e

 

L𝟏 N ME E ME 

L2 LE E HE E 

L3 ME HE N HE 

L4 E ME N N 

L5 HE N LE LE 

L6 N LE ME ME 

∁
2
= 

W
av

el
en

g
th

 L𝟏 LE ME E E 

L2 ME E HE HE 

L3 E HE N ME 

L4 HE ME LE E 

L5 N E ME HE 

L6 LE HE E ME 

∁
3
= 

F
re

q
u

en
cy

 

L𝟏 ME N HE E 

L2 E LE ME HE 

L3 HE ME E N 

L4 ME E HE LE 

L5 E HE LE ME 

L6 HE ME E N 

∁
4
= 

D
el

iv
er

y
 S

y
st

em
 

L𝟏 N E HE LE 

L2 LE HE N E 

L3 ME E E HE 

L4 E HE N LE 

L5 HE N LE E 

L6 N ME LE ME 

∁
5
=M

ed
iu

m
 

L𝟏 LE E E E 

L2 ME HE LE HE 

L3 E ME HE N 
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Table 2: Each decision maker, will assign linguistic values to each attribute, from Table .1  

 

Step 4: Substitution of neutrosophic numbers (NNs) to each linguistic variable. 

 

 
∁𝟏 ∁𝟐 ∁𝟑 ∁𝟒 ∁𝟓 ∁𝟔 ∁𝟕 

L𝟏 
(0.0, 0.1,0.5) (1.0, 0.0, 0.1) (0.6, 0.2,0.3) (0.6, 0.2,0.3) (0.4, 0.2,0.5) (0.0, 0.1,0.5) (0.6, 0.2,0.3) 

L2 
(0.2, 0.4,0.8) (0.4, 0.2,0.5) (0.0, 0.1,0.5) (1.0, 0.0, 0.1) (0.6, 0.2,0.3) (0.2, 0.4,0.8) (0.0, 0.1,0.5) 

L3 
(0.4, 0.2,0.5) (0.0, 0.1,0.5) (0.2, 0.4,0.8) (1.0, 0.0, 0.1) (0.6, 0.2,0.3) (0.4, 0.2,0.5) (1.0, 0.0, 0.1) 

L4 (0.6, 0.2,0.3) (1.0, 0.0, 0.1) (0.4, 0.2,0.5) (0.2, 0.4,0.8) (1.0, 0.0, 0.1) (0.6, 0.2,0.3) (0.0, 0.1,0.5) 

L5 
(1.0, 0.0, 0.1) (0.2, 0.4,0.8) (0.6, 0.2,0.3) (0.4, 0.2,0.5) (0.0, 0.1,0.5) (1.0, 0.0, 0.1) (0.4, 0.2,0.5) 

L4 HE E LE HE 

L5 ME HE E N 

L6 HE N LE E 

∁
𝟔
= 

P
u

m
p

in
g

 M
et

h
o

d
 

L𝟏 LE E E E 

L2 ME HE LE HE 

L3 E ME HE N 

L4 HE E LE HE 

L5 ME HE E N 

L6 HE N LE E 

∁
7
=

 I
n

te
ra

ct
io

n
 

L𝟏 LE E E E 

L2 ME HE LE HE 

L3 E ME HE N 

L4 HE E LE HE 

L5 ME HE E N 

L6 HE N LE E 
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L6 
(0.4, 0.2,0.5) (0.0, 0.1,0.5) (1.0, 0.0, 0.1) (0.6, 0.2,0.3) (0.0, 0.1,0.5) (0.4, 0.2,0.5) (0.6, 0.2,0.3) 

 

Table: 3 Assign neutrosophic number to each linguistic value from table 1. 

 

Step 5: Conversion of fuzzy neutrosophic numbers NNs of step 4, into fuzzy numbers by using  

   accuracy function. 

A(F) = { 𝑥 =
[𝑇𝑥+𝐼𝑥+𝐹𝑥] 

3
 } 

 

 
∁𝟏 ∁2 ∁3 ∁4 ∁5 ∁6 ∁7 

L𝟏 
0.200 0.366 0.366 0.366 0.366 0.200 0.366 

L2 
0.400 0.366 0.200 0.366 0.366 0.466 0.200 

L3 
0.366 0.200 0.466 0.366 0.366 0.366 0.3666 

L4 0.366 0.366 0.366 0.466 0.366 0.366 0.200 

L5 
0.366 0.466 0.366 0.366 0.200 0.366 0.366 

L6 
0.366 0.200 0.366 0.366 0.200 0.366 0.366 

 

Table: 4 After applied accuracy function the obtain result converted into fuzzy value 

 

 

Step 6: Now we apply algorithm of TOPSIS to obtain relative closeness.  

 ∁𝟏 ∁2 ∁3 ∁4 ∁5 ∁6 ∁7 

L𝟏 0.2 0.1 0.1 0.1 0 0.266 0.0006 

L2 0 0.1 0.266 0.1 0 0 0.1666 

L3 0.034 0.266 0 0.1 0 0.1 0 

L4 0.034 0.1 0.1 0 0 0.1 0.1666 

L5 0.034 0 0.1 0.1 0.166 0.1 0.0006 

L6 0.034 0.266 0.1 0.1 0.166 0.1 0.0006 

Table: 5 Normalized decision matrices 

 

Step 6.1: Calculation of weighted normalized matrix 

weights 0.1 0.3 0.1 0.1 0.1 0.1 0.2 

 ∁𝟏 ∁2 ∁3 ∁4 ∁5 ∁6 ∁7 
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L𝟏 
0.2 0.1 0.1 0.1 0 0.266 0.0006 

L2 
0 0.1 0.266 0.1 0 0 0.1666 

L3 
0.034 0.266 0 0.1 0 0.1 0 

L4 
0.034 0.1 0.1 0 0 0.1 0.1666 

L5 
0.034 0 0.1 0.1 0.166 0.1 0.0006 

L6 
0.034 0.266 0.1 0.1 0.166 0.1 0.0006 

Table: 5 Weighted normalized decision matrices 

Step 6.2: Calculation of the ideal best and ideal worst value, 



jv
=Indicates the ideal (best) 



jv
 = Indicates the ideal (worst) 

 ∁𝟏 ∁2 ∁3 ∁4 ∁5 ∁6 ∁7 

L𝟏 
0.094677 0.072439 0.030048 0.044721 0 0.079928 0.000509 

L2 
0 0.072439 0.079928 0.044721 0 0 0.14142 

L3 
0.016095 0.192688 0 0.044721 0 0.030048 0 

L4 
0.016095 0.072439 0.030048 0 0 0.030048 0.14142 

L5 
0.016095 0 0.030048 0.044721 0.070711 0.030048 0.000509 

L6 
0.016095 0.192688 0.030048 0.044721 0.070711 0.030048 0.000509 



jv  

0.211244 0.41414 0.3328 0.223607 0.234759 0.3328 0.23561 


jv  

0.094677 0.192688 0.079928 0.044721 0.070711 0.079928 0.14142 

Table: 6 Ideal worst and Ideal best values 

 

 

Step 7: Calculation of rank. 

_

_

ijij

ij

i
ss

s
p





 

 

js  


js  
_

_

ijij

ij

i
ss

s
p





 

 

Rank 

𝐋𝟏 0.130184 0.130821 0.501 3 

𝐋𝟐 0.153048 0.116773 0.433 4 

𝐋𝟑 0.112088 0.198464 0.639 2 
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𝐋𝟒 0.158502 0.080059 0.336 5 

𝐋𝟓 0.213991 0.056231 0.208 6 

𝐋𝟔 0.093076 0.200726 0.683 1 

Table: 7 Calculation of rank by relative closeness 

5. Case Study using WSM and WPM MATLAB Code [ 43] 

To run the WSM and WPM MATLAB code for the case study, the variable used in coding are defined 

by; 

 

X: this is defined as decision matrix and presented in Table: 4. 

W: this is defined as weight of each attribute and presented in Table: 5. 

Wcriteria: < (0,1,1,0,0,0,0) > 

 𝒊 = 1,2,3,4,5,6  𝑎𝑛𝑑 𝒋 = 1,2,3,4,5,6,7 

 

MATLAB COMMAND 

 Xval=length(X(:,1)); 

for i=1:Xval 

for j= 1:length(W) 

if Wcriteria(1,j)== 0 

Y(i,j)=min(X(:,j))/X(i,j); 

else 

Y(i,j)=X(i,j)/max(X(:,j)); 

end 

end 

end 

for i=1:Xval 

PWSM(i,1)=sum(Y(i,:).*W); 

PWPM(i,1)=prod(Y(i,:).^W); 

End 

Results 

Preference score of WSM = < (0.65641, 0.70442, 0.809, 0.72181, 0.66273, 0.83398) > 

Preference score of WPM = < (0.63378, 0.66305, 0.77807, 0.69813, 0.62619, 0.80708) > 

 

6. Result Discussion 

To check the validity or applicability of algorithms in neutrosophic soft set and MCDM environment 

the case study of Laser selection is considered in which six lasers are considered based on the 

construction material. Firstly, using the generalized neutrosophic TOPSIS technique the ranking of 

alternatives is calculated. Secondly, WSM and WPM techniques are applied using MATLAB code to 

calculate the rank. In these calculations, the ranking of each laser with respect to each criterion is 
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calculated which are shown in Table 8 and Figure 5. Result shows that the above-mentioned 

techniques can be used to rank medical equipment too.  

 

Figure 5: Ranking comparison of alternatives 

Graphical and tabular comparison is presented in Table 8 and in Figure 5, which shows that under 

TOPSIS, WSM and WPM technique 𝐿6  is best alternative whereas, 𝐿5  is the worst selection 

respectively. 

 Alternative TOPSIS WPM WSM 

L1 0.613 0.63378 0.65641 

L2 0.583 0.66305 0.70442 

L3 0.739 0.77807 0.8099 

L4 0.661 0.69813 0.72181 

L5 0.538 0.62619 0.66273 

L6 0.813 0.80708 0.83398 

                       Table: 8 Alternatives rank comparison using WSM, WPM and TOPSIS 

5.  Conclusions  

Lasers are medical devices that used a precisely focused beam of lights to treat or remove tissues or 

blood vessels etc. Based on construction material, lasers are divided into five main categories which 

also have different parameters and attributes. Thus, considering it as a case study, MCDM techniques 

are applied in the neutrosophic soft set environment. The results calculated using WSM, WPM and 

TOPSIS are the same. The lasers which are being used in medical filed for the surgery already have 

the same ranks. This shows that this technique is very helpful to rank the medical equipment in the 

future with more accuracy and precision.   

This work can’t be compared; as no one has applied these techniques to rank laser in medical 

surgery. In our forthcoming work, we will provide more application of these techniques in medical 

filed like nebulizer, infusion pumps and suction devices etc.  In future, this study can be used in 

some more medical equipment selection. 
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Abstract: Neutrosophic quadruple numbers are the newest field studied in neutrosophy. Neutrosophic 

quadruple numbers, using the certain extent known data of an object or an idea, help us uncover their known 

part and moreover they allow us to evaluate the unknown part by the trueness, indeterminacy and falsity values. 

In this study, we generalized Hamming similarity measures for the generalized set-valued neutrosophic 

quadruple sets and numbers. We showed that generalized Hamming measure satisfies the similarity measure 

condition. Also, we generalized an algorithm for the generalized set-valued neutrosophic quadruple sets and 

numbers, we gave a multi-criteria decision making application for using the this generalized algorithm.  In this 

application, we examined which of the laws established in different situations were more efficient. Furthermore, 

we obtained different result compared to previous algorithm and previous similarity measure based on single-

valued neutrosophic numbers. Therefore, we have shown that generalized set-valued neutrosophic quadruplet 

sets and numbers, a new field of neutrosophic theory, are more useful for decision-making problems in law 

science and more precise results are obtained. The application in this study can be developed and used in 

decision-making applications for law science and other sciences. 

 
Keywords: Neutrosophic quadruple sets, generalized set valued neutrosophic quadruple sets and numbers, 

Hamming similarity measure, decision-making applications, law applications

 

1 Introduction   

Smarandache proposed the neutrosophic logic and the neutrosophic set [3] in 1998. Neutrosophic logic 

and neutrosophic sets have a degree of membership T, a degree of indeterminacy I and a degree of non-

membership F. These degrees are defined independently. Thus, neutrosophic theory is generalized of 

fuzzy theory [4] and intuitionistic fuzzy theory [5]. Also, many researchers have studied neutrosophic 
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theory [6 - 19]. Recently, Smarandache extended the neutrosophic set to refined (n-valued) neutrosophic 

set, and to refined neutrosophic logic, and to refined neutrosophic probability, i.e. the truth value T is 

refined\split into types of sub-truths such as T1,  T2, …, similarly indeterminacy I is refined\split into 

types of sub-indeterminacies  I1,  I2, …, and the falsehood F is refined\split into sub-falsehoods F1, F2, 

… [20]; Peng et al. obtained multi-parametric similarity measure for neutrosophic set [21]; Ye et al. 

introduced similarity measures of single-valued neutrosophic sets [22]; Uluçay et al. studied MCDM-

problems with neutrosophic multi-sets [23]; Kandasamy et al. studied refined neutrosophic sets [24]; 

Hashmi et al. obtained m-Polar neutrosophic topology [25]; Aslan et al. studied Neutrosophic Modeling 

of Talcott Parsons’s Action [2].  

Decision-making applications and similarity measures are very important in neutrosophic theory. Thus, 

many researchers studied based on decision-making applications in neutrosophic theory. Recently, Tian 

et al. obtained a multi-criteria decision-making method based on neutrosophic theory [28]; Saqlain et al. 

studied single and multi-valued neutrosophic hypersoft set [29]; Roy et al. introduced similarity 

Measures of Quadripartitioned single-valued bipolar neutrosophic sets [30]; Uluçay et al. obtained 

decision-making method based on neutrosophic soft expert graphs [31]; Şahin et al. studied interval 

valued neutrosophic sets and applications [32];  Nabeeh et al. obtained an integrated neutrosophic-

TOPSIS approach and its application to personnel selection [41]; Nabeeh et al.  studied neutrosophic 

multi-criteria decision-making approach for IoT-Based enterprises [42]; Abdel-Basset et al. obtained 

utilizing neutrosophic theory to solve transition difficulties of IoT-Based enterprises [43]. 

In 2015, Smarandache discussed neutrosophic quadruple sets and neutrosophic quadruple numbers [1]. 

A neutrosophic quadruple set is a generalized form of a neutrosophic set. A neutrosophic quadruple set 

is denoted by {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. Here, x is referred to as the known part, (yT, zI, tF) as 

the unknown part and T, I and F are the usual tools of the neutrosophic logic. So, neutrosophic quadruple 

sets are generalized of neutrosophic sets. Furthermore, researchers have studied neutrosophic quadruple 

sets and numbers [33 - 36]. Recently, Rezaei et al. studied neutrosophic quadruple a-ideals [38]; 

Mohseni et al. obtained commutative neutrosophic quadruple ideals [39]; Kandasamy et al. introduced 

neutrosophic quadruple algebraic codes [40]. Also, Şahin et al. introduced generalized set-valued 

neutrosophic quadruple sets and numbers [37]. A generalized set-valued neutrosophic quadruple set 

denoted by                                                                              

 𝐺𝑠𝑖
=  {(𝐾𝑠𝑖

, 𝐿𝑠𝑖
𝑇𝑠𝑖

, 𝑀𝑠𝑖
𝐼𝑠𝑖

, 𝑁𝑠𝑖
𝐹𝑠𝑖

): 𝐾𝑠𝑖
, 𝐿𝑠𝑖

, 𝑀𝑠𝑖
, 𝑁𝑠𝑖

 ∈  P(X); i = 1, 2, 3, … , n}.  

Where 𝑇𝑖, 𝐼𝑖 and 𝐹𝑖 have their usual neutrosophic logic; X is a nonempty set, P(X) is power set of X, 𝐾𝑠𝑖
 

is called the known part and (𝐿𝑠𝑖
𝑇𝑠𝑖

, 𝑀𝑠𝑖
𝐼𝑠𝑖

, 𝑁𝑠𝑖
𝐹𝑠𝑖

) is called the unknown part. Thanks to this definition, 
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neutrosophic quadruple sets have become available in the field of decision-making application. Most 

importantly, this definition, which has a more general structure than neutrosophic sets, will find more 

application areas and will give more objective results to many problems with the help of the known part, 

unknown part and K, L, M, N sets. 

As in many branches of science, many uncertainties are encountered in terms of application and 

decision-making in law science. In order to cope with these uncertainties, mostly known classical 

methods are inadequate or cause wrong decisions to be made. In addition, many criteria should be 

considered in determining the laws in law science. In addition, it is clear that unknown situations will 

arise in the implementation of laws prepared for known situations. For all these reasons, in this study, 

we have prepared an application in order to determine which of the different legal applications with 

multiple criteria will yield most effective results. For this application, we generalized Hamming 

similarity measures for the generalized set-valued neutrosophic quadruple sets (GsvNQs) and numbers 

(GsvNQn) since GsvNQs and GsvNQn are more useful then neutrosophic sets. Also, we generalized an 

algorithm [2] (based on single valued neutrosophic number (SvNn) and set (SvNs)) for the GsvNQs and 

GsvNQn. Also, we gave a multi-criteria decision-making application using this generalized algorithm.  

In this application, we examined which of the laws established in different situations were more efficient. 

Furthermore, we obtained different result compared to previous algorithm and previous similarity 

measure based on SvNn thanks to structure of GsvNQs and GsvNQn.  

In this paper, in Section 2, we examined neutrosophic sets [3, 8], Hamming similarity measure [22], 

GsvNQs and properties [33]. In section 3, we defined firstly generalized Hamming similarity measure 

based on GsvNQn. In Section 4, we firstly generalized an algorithm [2] for GsvNQn. In Section 5, we 

give a multi-criteria decision making application using the generalized algorithm in Section 4. In Section 

6, we compared the results of the generalized algorithm in Section 5 with the results of algorithm (based 

on single valued neutrosophic set and Hamming similarity measure [22]) [2]. In Section 6, we give 

conclusions. 

2 Preliminaries  

 

Definition 1: [3] Let 𝐸 be the universal set. For ∀𝑥 ∈ 𝐸, 0− ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3+, by the help 

of the functions  𝑇𝐴: 𝐸 → ] – 0, 1+ [ , 𝐼𝐴: 𝐸 →  ] – 0, 1+ [ and 𝐹𝐴: 𝐸 →] – 0, 1+ [ a neutrosophic set 𝐴 on 𝐸 

is defined by 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝐸} . 
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Here, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are the degrees of trueness, indeterminacy and falsity of 𝑥 ∈ 𝐸 

respectively.  

Definition 2: [8] Let 𝐸 be the universal set. For ∀𝑥 ∈ 𝐸, 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, using the 

functions 𝑇𝐴: 𝐸 → [0,1], 𝐼𝐴: 𝐸 → [0,1] and 𝐹𝐴: 𝐸 → [0,1], a SvNs 𝐴 on 𝐸 is defined by 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝐸} . 

Here, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are the degrees of trueness, indeterminacy and falsity of 𝑥 ∈ 𝐸 

respectively. 

Definition 3: [22] Let 

𝐴1 = <𝑇𝐴1
(𝑥), 𝐼𝐴1

(𝑥), 𝐹𝐴1
(𝑥) > and 𝐴2  = <𝑇𝐴2

(𝑥), 𝐼𝐴2
(𝑥), 𝐹𝐴2

(𝑥) > 

be two SvNns,  𝑆: 𝐴1 × 𝐴2 → [0,1] be a function. The Hamming similarity measure between 𝐴1 and 𝐴2 

denoted by 𝑆(𝐴1, 𝐴2) such that 

𝑆(𝐴1, 𝐴2) = 
1

3
[|𝑇𝐴1

(𝑥) − 𝑇𝐴2
(𝑦)| + |𝐼𝐴1

(𝑥) − 𝐼𝐴2
(𝑦)| + |𝐹𝐴1

(𝑥) − 𝐹𝐴2
(𝑦)|] 

 

Theorem 1: [22] Let 𝐴1 and 𝐴2 be two SvNns, 𝑆: 𝐴1 × 𝐴2 → [0,1] be a Hamming similarity measure. 

𝑆(𝐴1, 𝐴2) satisfies below properties. 

i. 0 ≤ 𝑆(𝐴1, 𝐴2) ≤ 1, 

ii. 𝑆(𝐴1, 𝐴2) = 1 if and only if 𝐴1 = 𝐴2, 

iii. 𝑆(𝐴1, 𝐴2) = 𝑆(𝐴2, 𝐴1), 

iv. If 𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ∈ 𝐸, then 𝑆(𝐴1, 𝐴3) ≤ 𝑆(𝐴1, 𝐴2) and 𝑆(𝐴1, 𝐴3) ≤ 𝑆(𝐴2, 𝐴3). 

Definition 4: [1] Neutrosophic quadruple number is a number of the form  

(k, lT, mI, nF) 

 Here, T, I and F are used as the ordinary neutrosophic logical tools and k, l, m, n ∈ ℝ or ℂ. For a 

neutrosophic quadruple number (k, lT, mI, nF), k is named the known part and (lT, mI, nF) is named the 

unknown part where k represents any asset such as a number, an idea, an object, etc. Also, 

NQ = {(k, lT, mI, nF): k, l, m, n ∈ ℝ or ℂ} 

is defined by neutrosophic quadruple set. 

Definition 5: [33] Let X be a set and P(X) be power set of X. A GsvNQs is a set of the form 

𝐺𝑠𝑖
 = {(𝐴𝑠𝑖

, 𝐵𝑠𝑖
𝑇𝑠𝑖

, 𝐶𝑠𝑖
𝐼𝑠𝑖

, 𝐷𝑠𝑖
𝐹𝑠𝑖

): 𝐴𝑠𝑖
, 𝐵𝑠𝑖

, 𝐶𝑠𝑖
, 𝐷𝑠𝑖

 ∈ P(X); i = 1, 2, 3, … , n} 

Where, 𝑇𝑖, 𝐼𝑖 and 𝐹𝑖 have their usual neutrosophic logic means and GsvNQn defined by 
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𝐺𝑁𝑖
= (𝐴𝑠𝑖

, 𝐵𝑠𝑖
𝑇𝑠𝑖

, 𝐶𝑠𝑖
𝐼𝑠𝑖

, 𝐷𝑠𝑖
𝐹𝑠𝑖

). 

As in neutrosophic quadruple number, for a GsvNQn (𝐴𝑠𝑖
, 𝐵𝑠𝑖

𝑇𝑠𝑖
, 𝐶𝑠𝑖

𝐼𝑠𝑖
, 𝐷𝑠𝑖

𝐹𝑠𝑖
), representing any entity 

which may be a number, an idea, an object, etc.; 𝐴𝑠𝑖
 is called the known part and (𝐵𝑠𝑖

𝑇𝑠𝑖
, 𝐶𝑠𝑖

𝐼𝑠𝑖
, 𝐷𝑠𝑖

𝐹𝑠𝑖
) 

is called the unknown part.  

Definition 6: [33] Let 

𝐺𝑁1
= (𝐴𝑠1

, 𝐵𝑠1
𝑇𝑠1

, 𝐶𝑠1
𝐼𝑠1

, 𝐷𝑠1
𝐹𝑠1

) and 𝐺𝑁2
= (𝐴𝑠2

, 𝐵𝑠2
𝑇𝑠1

, 𝐶𝑠2
𝐼𝑠2

, 𝐷𝑠2
𝐹𝑠2

) 

be two GsvNQns. 𝐴𝑠1
=𝐴𝑠2

, 𝐴𝑠1
=𝐴𝑠2

, 𝐴𝑠1
=𝐴𝑠2

, 𝐴𝑠1
=𝐴𝑠2

 and 𝑇𝑠1
 = 𝑇𝑠2

, 𝐼𝑠1
 = 𝐼𝑠2

, 𝐹𝑠1
 = 𝐹𝑠2

 if and only if 

we say 𝐺𝑁1
 is a equal to  𝐺𝑁2

 and denote it by 𝐺𝑁1
= 𝐺𝑁2

. 

Definition 7: [33] Let 

𝐺𝑁1
= (𝐴𝑠1

, 𝐵𝑠1
𝑇𝑠1

, 𝐶𝑠1
𝐼𝑠1

, 𝐷𝑠1
𝐹𝑠1

) and 𝐺𝑁2
= (𝐴𝑠2

, 𝐵𝑠2
𝑇𝑠1

, 𝐶𝑠2
𝐼𝑠2

, 𝐷𝑠2
𝐹𝑠2

) 

be two GsvNQns. 𝐴𝑠1
⊂𝐴𝑠2

, 𝐴𝑠1
⊂𝐴𝑠2

, 𝐴𝑠1
⊂𝐴𝑠2

, 𝐴𝑠1
⊂𝐴𝑠2

 and 𝑇𝑠1
 ≤ 𝑇𝑠2

, 𝐼𝑠1
 ≤ 𝐼𝑠2

, 𝐹𝑠1
 ≤ 𝐹𝑠2

, if and only 

if we say 𝐺𝑁1
 is a subset of  𝐺𝑁2

 and denote it by 𝐺𝑁1
⊂ 𝐺𝑁2

. 

 

3 Generalized Hamming Similarity Measure for Generalized Set-Valued 
Neutrosophic Quadruple Numbers 

Now, we define generalized Hamming similarity measure for GsvNQn. Also, we assume that T, I, F ∈ 

[0, 1], as in SvNn, in this paper. 

Definition 8: Let X be a non – empty set, 

𝐺𝑁1
= (𝐴𝑠1

, 𝐵𝑠1
𝑇𝑠1

, 𝐶𝑠1
𝐼𝑠1

, 𝐷𝑠1
𝐹𝑠1

) and 𝐺𝑁2
= (𝐴𝑠2

, 𝐵𝑠2
𝑇𝑠1

, 𝐶𝑠2
𝐼𝑠2

, 𝐷𝑠2
𝐹𝑠2

) 

 be two GsvNQns, 𝑆𝐻 : 𝐺𝑁1
 × 𝐺𝑁𝑗

 → [0, 1] be a function. Then,  

𝑆𝐻(𝐺𝑁1
, 𝐺𝑁2

) = 1 −
1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
] 

is called generalized Hamming similarity measure for GsvNQns. 

Where, s(A) is the number of element of A ∈ X. 

Theorem 2: Let X be a non – empty set; 

𝐺𝑁1
= (𝐴𝑠1

, 𝐵𝑠1
𝑇𝑠1

, 𝐶𝑠1
𝐼𝑠1

, 𝐷𝑠1
𝐹𝑠1

), 𝐺𝑁2
= (𝐴𝑠2

, 𝐵𝑠2
𝑇𝑠1

, 𝐶𝑠2
𝐼𝑠2

, 𝐷𝑠2
𝐹𝑠2

) and 𝐺𝑁3
= (𝐴𝑠3

, 𝐵𝑠3
𝑇𝑠3

, 𝐶𝑠3
𝐼𝑠3

, 𝐷𝑠3
𝐹𝑠3

) 

be three GsvNQns, 𝑆𝐻 : 𝐺𝑁1
 × 𝐺𝑁𝑗

 → [0, 1] be  generalized Hamming similarity measure in Definition 

8. Then, 𝑆𝐻 satisfies the below conditions. 

i) 𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁2

) ∈ [0, 1] 

ii) 𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁2

) = 1 ⇔ 𝐺𝑁1
 = 𝐺𝑁2

 

iii) 𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁2

) = 𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁2

) 

iv) If 𝐺𝑁1
 ⊂ 𝐺𝑁2

 ⊂ 𝐺𝑁3
, then 

𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁3

) ≤ 𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁2

) and 𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁3

) ≤ 𝑆𝐻 (𝐺𝑁2
, 𝐺𝑁3

). 
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Proof:  

i) Let 𝐺𝑁1
 = 𝐺𝑁2

. Then,  

𝑆𝐻(𝐺𝑁1
, 𝐺𝑁1

) = 

                   1 −
1

2
[

|𝑇1−𝑇1|+|𝐼1−𝐼1|+|𝐹1−𝐹1|

3
+

4−[
𝑠(𝐾1∩𝐾𝑖)

max{𝑠(𝐾1∪𝐾1),1}
+

𝑠(𝐿1∩𝐿1)

max{𝑠(𝐿1∪𝐿1),1}
+

𝑠(𝑀1∩𝑀1)

max{𝑠(𝑀1∪𝑀1),1}
+

𝑠(𝑁1∩𝑁1)

max{𝑠(𝑁1∪𝑁1),1}
]

4
]  

                      = 1 −
1

2
[

0+0+0

3
+

4−[1+1+1+1]

4
]                                                                                                             (1)                                                                                           

Thus, max{𝑆𝐻(𝐺𝑁1
, 𝐺𝑁1

)} = 1. 

Now, let  𝐾1 ∩ 𝐾2 = ∅, 𝐿1 ∩ 𝐿2 = ∅, 𝑀1 ∩ 𝑀2 = ∅, 𝑁1 ∩ 𝑁2 = ∅, |𝑇1 − 𝑇2| = 1, |𝐼1 − 𝐼2| = 1 and |𝐹1 − 𝐹2| 
= 1. Then, 

𝑆𝐻(𝐺𝑁1
, 𝐺𝑁2

) = 1 −
1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
]                  

                      = 1 −
1

2
[

1+1+1

3
+

4−[0+0+0+0]

4
]  

                      = 0. 

Thus, min{𝑆𝐻(𝐺𝑁1
, 𝐺𝑁1

)} = 0. Hence, we obtain  

𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁2

) ∈ [0, 1]. 

ii) Let 𝐺𝑁1
 = 𝐺𝑁2

. From (1), we obtain 𝑆𝐻(𝐺𝑁𝑖
, 𝐺𝑁𝑗

)  = 1. We assume that 

𝑆𝐻(𝐺𝑁𝑖
, 𝐺𝑁𝑗

)  = 1 −
1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
] 

                       = 1. 

Where, it must be  

1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
] = 0. 

Thus, 

 |𝑇1 − 𝑇2| + |𝐼1 − 𝐼2| + |𝐹1 − 𝐹2| = 0  

and 

[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
] = 4.                                                                           

(2) 

From (2), we obtain that 

|𝑇1 − 𝑇2| = |𝐼1 − 𝐼2| = |𝐹1 − 𝐹2| = 0 

and 

𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
 = 

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
 = 

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
 = 

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
 = 1. 

Thus, we have that 

𝑇1 = 𝑇2, 𝐼1 = 𝐼2, 𝐹1 = 𝐹2, 𝐾1 = 𝐾2, 𝐿1 = 𝐿2, 𝑀1 = 𝑀2, 𝑁1 = 𝑁2. 
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Therefore, from Definition 6; we obtain                 

𝐺𝑁1
 = 𝐺𝑁2

 

iii)                        

  𝑆𝐻(𝐺𝑁1
, 𝐺𝑁2

) = 1 −
1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
]              

                        = 1 −
1

2
[

|𝑇2−𝑇1|+|𝐼2−𝐼1|+|𝐹2−𝐹1|

3
+

4−[
𝑠(𝐾2∩𝐾1)

max{𝑠(𝐾2∪𝐾1),1}
+

𝑠(𝐿2∩𝐿1)

max{𝑠(𝐿2∪𝐿1),1}
+

𝑠(𝑀2∩𝑀1)

max{𝑠(𝑀2∪𝑀1),1}
+

𝑠(𝑁2∩𝑁1)

max{𝑠(𝑁2∪𝑁1),1}
]

4
] 

                        = 𝑆𝐻(𝐺𝑁2
, 𝐺𝑁1

). 

iv) Let 𝐺𝑁1
 ⊂ 𝐺𝑁2

 ⊂ 𝐺𝑁3
. From Definition 7, we obtain that  

𝑇1 < 𝑇2 < 𝑇3, 

𝐼1 < 𝐼2 < 𝑇3, 

𝐹1 < 𝐹2 < 𝑇3, 

𝐾1 ⊂ 𝐾2 ⊂ 𝐾3,  

𝐿1 ⊂ 𝐿2 ⊂ 𝐿3, 

𝑀1 ⊂ 𝑀2 ⊂ 𝑀3,                                      

𝑁1 ⊂ 𝑁2 ⊂ 𝑁3.                                                                                                                                                              (3) 

From (3), we have that 

𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
 > 

𝑠(𝐾1∩𝐾3)

max{𝑠(𝐾1∪𝐾3),1}
+

𝑠(𝐿1∩𝐿3)

max{𝑠(𝐿1∪𝐿3),1}
+

𝑠(𝑀1∩𝑀3)

max{𝑠(𝑀1∪𝑀3),1}
+

𝑠(𝑁1∩𝑁3)

max{𝑠(𝑁1∪𝑁3),1}
.                                                                           

(4) 

Also, from (4), we have that  

|𝑇1 − 𝑇2| + |𝐼1 − 𝐼2| + |𝐹1 − 𝐹2| < |𝑇1 − 𝑇3| + |𝐼1 − 𝐼3| + |𝐹1 − 𝐹3|.                                                                       
(5)  

Thus, from (4) and (5), we obtain that 

1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
]< 

1

2
[

|𝑇1−𝑇3|+|𝐼1−𝐼3|+|𝐹1−𝐹3|

3
+

4−[
𝑠(𝐾1∩𝐾3)

max{𝑠(𝐾1∪𝐾3),1}
+

𝑠(𝐿1∩𝐿3)

max{𝑠(𝐿1∪𝐿3),1}
+

𝑠(𝑀1∩𝑀3)

max{𝑠(𝑀1∪𝑀3),1}
+

𝑠(𝑁1∩𝑁3)

max{𝑠(𝑁1∪𝑁3),1}
]

4
].                                         (6) 

Hence, from (6), we have that 

1 −
1

2
[

|𝑇1−𝑇3|+|𝐼1−𝐼3|+|𝐹1−𝐹3|

3
+

4−[
𝑠(𝐾1∩𝐾3)

max{𝑠(𝐾1∪𝐾3),1}
+

𝑠(𝐿1∩𝐿3)

max{𝑠(𝐿1∪𝐿3),1}
+

𝑠(𝑀1∩𝑀3)

max{𝑠(𝑀1∪𝑀3),1}
+

𝑠(𝑁1∩𝑁3)

max{𝑠(𝑁1∪𝑁3),1}
]

4
]< 

1 −
1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
]. 

Therefore, we obtain 𝑆𝐻(𝐺𝑁1
, 𝐺𝑁3

) ≤ 𝑆𝐻(𝐺𝑁1
, 𝐺𝑁2

). 
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Also, 𝑆𝐻 (𝐺𝑁1
, 𝐺𝑁3

) ≤ 𝑆𝐻 (𝐺𝑁2
, 𝐺𝑁3

) can be proved similar to 𝑆𝐻(𝐺𝑁1
, 𝐺𝑁3

) ≤ 𝑆𝐻(𝐺𝑁1
, 𝐺𝑁2

). 

Example 1: Let X = {k, l, m, n, p, r} be a set, 𝐺𝑁1
= ({k, l, m}, {k, l}(0.7), {m, l}(0.4), {n, p, r}(0.1)),                                                                  

𝐺𝑁2
= ({k, l, m, n, r}, {k, l, m, n}(0.8), {n, r}(0.2), {p}(0.2)) be two GsvNQns and 𝑆𝐻(𝐺𝑁1

, 𝐺𝑁2
) be 

generalized Hamming similarity measure for GsvNQns. Then,  

𝑆𝐻(𝐺𝑁1
, 𝐺𝑁2

) = 1 −
1

2
[

|𝑇1−𝑇2|+|𝐼1−𝐼2|+|𝐹1−𝐹2|

3
+

4−[
𝑠(𝐾1∩𝐾2)

max{𝑠(𝐾1∪𝐾2),1}
+

𝑠(𝐿1∩𝐿2)

max{𝑠(𝐿1∪𝐿2),1}
+

𝑠(𝑀1∩𝑀2)

max{𝑠(𝑀1∪𝑀2),1}
+

𝑠(𝑁1∩𝑁2)

max{𝑠(𝑁1∪𝑁2),1}
]

4
] 

                     = 1 −
1

2
[

|0.7−0.8|+|0.4−0.2|+|0.1−0.2|

3
+

4−[
3

max{5,1}
+

2

max{4,1}
+

0

max{4,1}
+

1

max{3,1}
]

4
] 

                    = 0.6125. 

Where,  

𝑇1 = 0.7, 𝐼1 = 0.4, 𝐹1 = 0.1; 𝐾1 = {k, l, m}, 𝐿1 = {k, l}, 𝑀1 = {l, m}, 𝑁1 = {n, p, r}; 

𝑇2 = 0.8, 𝐼2 = 0.2, 𝐹2 = 0.2; 𝐾2 = {k, l, m, n, r}, 𝐿2 = {k, l, m, n}, 𝑀2 = {n, r}, 𝑁2 = {p}.    

4 Algorithm for Multi-Criteria Decision-Making Application 

In this section, we rearranged the algorithm in Aslan et al. [2] for GsvNQns. Also, in this new algorithm, 

we used generalized Hamming similarity measure in section 3. So, we use the GsvNQns and generalized 

Hamming similarity measure instead of SvNns and similarity measure in algorithm [2]. Also, we assume 

that X is a nonempty set. 

Step 1: The criteria are determined by considering the application. Let the set of criteria of laws be   

𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑚}. 

Step 2: The weight values of the criteria for the application. Let the set of weight values be                                            

W = {𝑤1, 𝑤2, … , 𝑤𝑚}. 

 Where, 

           the weight value of criterion k1 is 𝑤1, 

                       the weight value of criterion k2 is 𝑤2, 

                                   the weight value of criterion k3 is 𝑤3, 
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                                 . 

                                 . 

                                 . 

      the weight value of criterion km is 𝑤𝑚, 

Also, 𝑤𝑖 𝜖 [0, 1] and  ∑ 𝑤𝑖
𝑚
𝑖=1  = 1. 

Step 3: The ideal object is determined as GsvNQs according to criterias in Step 1 such that 

𝐼 = {k1:(𝐴𝐼1
, 𝐵𝐼1

𝑇𝐼1
, 𝐶𝐼1

𝐼𝐼1
, 𝐷𝐼1

𝐹𝐼1
), k2:(𝐴𝐼2

, 𝐵𝐼2
𝑇𝐼2

, 𝐶𝐼2
𝐼𝐼2

, 𝐷𝐼2
𝐹𝐼2

), …, km:(𝐴𝐼𝑚
, 𝐵𝐼𝑚

𝑇𝐼𝑚
, 𝐶𝐼𝑚

𝐼𝐼𝑚
, 

𝐷𝐼𝑚
𝐹𝐼𝑚

),                                                    𝐴𝐼𝑖
, 𝐵𝐼𝑖

, 𝐶𝐼𝑖
, 𝐷𝐼𝑖

 ∈ P(X); i = 1, 2, 3, … , m}. 

Step 4: The n objects are determined as GsvNQs according to criterias in Step 1 such that 

𝑂1 ={k1:(𝐴𝑂11
, 𝐵𝑂11

𝑇𝑂11
, 𝐶𝑂11

𝐼𝑂11
, 𝐷𝑂11

𝐹𝑂11
), k2:(𝐴𝑂12

, 𝐵𝑂12
𝑇𝑂12

, 𝐶𝑂12
𝐼𝑂12

, 𝐷𝑂12
𝐹𝑂12

), …,                                    

km:(𝐴𝑂1𝑚
, 𝐵𝑂1𝑚

𝑇𝑂1𝑚
, 𝐶𝑂1𝑚

𝐼𝑂1𝑚
, 𝐷𝑂1𝑚

𝐹𝑂1𝑚
),    𝐴𝑂1𝑖

, 𝐵𝑂1𝑖
, 𝐶𝑂1𝑖

, 𝐷𝑂1𝑖
 ∈ P(X); i = 1, 2, 3, … , m} 

𝑂2 ={k1:(𝐴𝑂21
, 𝐵𝑂21

𝑇𝑂21
, 𝐶𝑂21

𝐼𝑂21
, 𝐷𝑂21

𝐹𝑂21
), k2:(𝐴𝑂22

, 𝐵𝑂22
𝑇𝑂2

, 𝐶𝑂22
𝐼𝑂22

, 𝐷𝑂22
𝐹𝑂22

), …,                                    

km:(𝐴𝑂2𝑚
, 𝐵𝑂2𝑚

𝑇𝑂2𝑚
, 𝐶𝑂2𝑚

𝐼𝑂2𝑚
, 𝐷𝑂2𝑚

𝐹𝑂2𝑚
),    𝐴𝑂2𝑖

, 𝐵𝑂2𝑖
, 𝐶𝑂2𝑖

, 𝐷𝑂2𝑖
 ∈ P(X); i = 1, 2, 3, … , m} 

. 

. 

. 

𝑂𝑛 ={k1:(𝐴𝑂𝑛1
, 𝐵𝑂𝑛1

𝑇𝑂𝑛1
, 𝐶𝑂𝑛1

𝐼𝑂𝑛1
, 𝐷𝑂𝑛1

𝐹𝑂𝑛1
), k2:(𝐴𝑂𝑛2

, 𝐵𝑂𝑛2
𝑇𝑂𝑛2

, 𝐶𝑂𝑛2
𝐼𝑂𝑛2

, 𝐷𝑂𝑛2
𝐹𝑂𝑛2

), …,                                    

km:(𝐴𝑂𝑛𝑚
, 𝐵𝑂𝑛𝑚

𝑇𝑂𝑛𝑚
, 𝐶𝑂𝑛𝑚

𝐼𝑂𝑛𝑚
, 𝐷𝑂𝑛𝑚

𝐹𝑂𝑛𝑚
),    𝐴𝑂𝑛𝑖

, 𝐵𝑂𝑛𝑖
, 𝐶𝑂𝑛𝑖

, 𝐷𝑂𝑛𝑖
 ∈ P(X); i = 1, 2, 3, … , m} 

Step 5: The objects given in Step 4 are stated in the form of table (Table 1). 
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Table 1. Table of objects  

 𝑘1 𝑘2 … 𝑘𝑚 

𝑂1 (𝐴𝑂11
, 𝐵𝑂11

𝑇𝑂11
, 𝐶𝑂11

𝐼𝑂11
, 𝐷𝑂11

𝐹𝑂11
) (𝐴𝑂12

, 𝐵𝑂12
𝑇𝑂12

, 𝐶𝑂12
𝐼𝑂12

, 𝐷𝑂12
𝐹𝑂12

) … (𝐴𝑂1𝑚
, 𝐵𝑂1𝑚

𝑇𝑂1𝑚
, 𝐶𝑂1𝑚

𝐼𝑂1𝑚
, 𝐷𝑂1𝑚

𝐹𝑂1𝑚
) 

𝑂2 (𝐴𝑂21
, 𝐵𝑂21

𝑇𝑂21
, 𝐶𝑂21

𝐼𝑂21
, 𝐷𝑂21

𝐹𝑂21
) (𝐴𝑂22

, 𝐵𝑂22
𝑇𝑂2

, 𝐶𝑂22
𝐼𝑂22

, 𝐷𝑂22
𝐹𝑂22

) … (𝐴𝑂2𝑚
, 𝐵𝑂2𝑚

𝑇𝑂2𝑚
, 𝐶𝑂2𝑚

𝐼𝑂2𝑚
,𝐷𝑂2𝑚

𝐹𝑂2𝑚
) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… 

. 

. 

 

. 

. 

. 

𝑂𝑛 (𝐴𝑂𝑛1
, 𝐵𝑂𝑛1

𝑇𝑂𝑛1
, 𝐶𝑂𝑛1

𝐼𝑂𝑛1
, 𝐷𝑂𝑛1

𝐹𝑂𝑛1
) (𝐴𝑂𝑛2

, 𝐵𝑂𝑛2
𝑇𝑂𝑛2

, 𝐶𝑂𝑛2
𝐼𝑂𝑛2

, 𝐷𝑂𝑛2
𝐹𝑂𝑛2

) … (𝐴𝑂𝑛𝑚
, 𝐵𝑂𝑛𝑚

𝑇𝑂𝑛𝑚
, 𝐶𝑂𝑛𝑚

𝐼𝑂𝑛𝑚
,𝐷𝑂𝑛𝑚

𝐹𝑂𝑛𝑚
) 

  

Step 6: In this step, the similarity value of the criteria of the ideal object and the criteria of other objects 

are calculated by using Table 1 with 𝑆𝐻 in Section 3. So, 𝑆𝐻(𝐼𝑘𝑗
, 𝑂𝑖𝑘𝑗

) is calculated for i = 1, 2, …, n; j 

= 1, 2, …, m. After all calculations, Table 2 is obtained. 

Table 2. Similarity of the criterias of object to the criteria of ideal object 

 𝑘1 𝑘2 … 𝑘𝑚 

𝑂1 𝑆𝐻(𝐼𝑘1
, 𝑂1𝑘1

) 𝑆𝐻(𝐼𝑘2
, 𝑂1𝑘2

) … 𝑆𝐻(𝐼𝑘𝑚
, 𝑂1𝑘𝑚

) 

𝑂2 𝑆𝐻(𝐼𝑘1
, 𝑂2𝑘1

) 𝑆𝐻(𝐼𝑘2
, 𝑂2𝑘2

) … 𝑆𝐻(𝐼𝑘𝑚
, 𝑂2𝑘𝑚

) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… 

. 

. 

 

. 

. 

.  

𝑂𝑛 𝑆𝐻(𝐼𝑘1
, 𝑂𝑛𝑘1

) 𝑆𝐻(𝐼𝑘2
, 𝑂𝑛𝑘2

) … 𝑆𝐻(𝐼𝑘𝑚
, 𝑂𝑛𝑘𝑚

) 

 

Step 7: The weight value of each criterion given in Step 2 is multiplied by the similarity values in Table 

2. Hence, the weighted similarity of the criterias of object to the criteria of ideal object in Table 3 is 

obtained.
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Table 3. Weighted Similarity of the criterias of object to the criteria of ideal object 

 𝑤1𝑘1 𝑤2𝑘2 … 𝑤𝑚𝑘𝑚 

𝑂1 𝑤1. 𝑆𝐻(𝐼𝑘1
, 𝑂1𝑘1

) 𝑤2. 𝑆𝐻(𝐼𝑘2
, 𝑂1𝑘2

) … 𝑤𝑚. 𝑆𝐻(𝐼𝑘𝑚
, 𝑂1𝑘𝑚

) 

𝑂2 𝑤1. 𝑆𝐻(𝐼𝑘1
, 𝑂2𝑘1

) 𝑤2. 𝑆𝐻(𝐼𝑘2
, 𝑂2𝑘2

) … 𝑤𝑚. 𝑆𝐻(𝐼𝑘𝑚
, 𝑂2𝑘𝑚

) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… 

. 

. 

 

. 

. 

. 

𝑂𝑛 𝑤1. 𝑆𝐻(𝐼𝑘1
, 𝑂𝑛𝑘1

) 𝑤2. 𝑆𝐻(𝐼𝑘2
, 𝑂𝑛𝑘2

) … 𝑤𝑚. 𝑆𝐻(𝐼𝑘𝑚
, 𝑂𝑛𝑘𝑚

) 

 

Step 8: In this last step, the weighted similarity values for each objects given in Table 7 are added and 

the similarity ratio of each law over the ideal law is obtained. So,  

𝑆𝐻𝑡 (I, 𝑂𝑡) = ∑ 𝑤𝑡
𝑚
𝑡=1 . 𝑆𝐻(𝐼𝑘𝑡

, 𝑂𝑛𝑘𝑡
) is calculated for k = 1, 2, …, m. After all calculations, Table 4 is 

obtained. 

Table 4. The similarity value of the object’ to the ideal object  

 Similarity Value 

𝑂1 𝑆𝐻1 (I, 𝑂1) 

𝑂2 𝑆𝐻2 (I, 𝑂2) 

. 

. 

. 

. 

. 

. 

𝑂𝑛 𝑆𝐻𝑛 (I, 𝑂𝑛) 
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Graph 1: Diagram of the algorithm. 

 

5 Multi-Criteria Decision-Making Application  

We assume that four different state laws should be created to make use of night watchmen in places 

where police are inactive at night in four different states. We used the algorithm in Section 4 to find out 

which law in which state is more effective after a period of time. 

Step 1: Let 𝐾 = {𝑘1, 𝑘2,  𝑘3} be set of criterias such that 

        𝑘1 = life safety 

   𝑘2 = property safety 

1. Determine 
the criteria

2.

Determine 
the weighted 

value of 
criteria

3.

Show the ideal 
object as 
GsvNQs

4.

Show the 
objects as 
GsvNQs

5.

Obtain the

Criteria table 
of object

6. 

Obtain the 
table of 

similarities to 
ideal object 

7.

Obtain the table 
of weighted 

similairties to 
ideal object

8.

Obtain the 
Similarity value 
table of objects 
to ideal object
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   𝑘3 = cost 

Step 2: Let W = {0.6, 0.3, 0.1} be set of the weight values such that 

0.6 for the criterion k1 

0.3 for the criterion k2 

0.1 for the criterion 𝑘3 

Step 3: Let the ideal law of state be I such that 

I 

=

{

𝑘1: ({𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4} , {𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4}(1), ∅(0), ∅(0)),

𝑘2: ({𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4} , {𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4}(1), ∅(0), ∅(0)),

𝑘3: ({𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4}, {𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4}(1), ∅(0), ∅(0))

} 

Where, {𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4}  is known part and  

 {𝑝1, … , 𝑝4, 𝑞1, … , 𝑞4, 𝑟1, … , 𝑟4, 𝑡1, … , 𝑡4}(1), ∅(0), ∅(0) is unknown part for each criteria. 

Where, T = 1,  I = 0 and F = 0. This means that this law gave exactly the desired result. Therefore, this 

law is the ideal law. 

Also, 

𝑝1: Pedestrian police with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑝2: Pedestrian night watchmen with police who drive a vehicle from 1.00 a.m to 4.00 a.m  

𝑝3: Pedestrian police with pedestrian night watchmen from 7.00 p.m to 10.00 p.m  

𝑝4: Police who drive a vehicle with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑞1: Police who drive a vehicle with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑞2: Pedestrian police with pedestrian night watchmen from 1.00 a.m to 4.00 a.m  

𝑞3: Pedestrian night watchmen with police who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑞4: Pedestrian police with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m  
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𝑟1: Pedestrian police with pedestrian night watchmen from 7.00 p.m to 10.00 p.m  

𝑟2: Police who drive a vehicle with night watchmen who drive a vehicle from 1.00 a.m to 4.00 a.m  

𝑟3: Pedestrian police with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑟4: Pedestrian night watchmen with police who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑡1: Pedestrian night watchmen with police who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑡2: Pedestrian police with night watchmen who drive a vehicle from 1.00 a.m to 4.00 a.m  

𝑡3: Police who drive a vehicle with night watchmen who drive a vehicle from 7.00 p.m to 10.00 p.m  

𝑡4: Pedestrian police with pedestrian night watchmen from7.00 p.m to 10.00 p.m   

Step 4: Let L = {𝐿1, 𝐿2, 𝐿3, 𝐿4} be set of law of states such that 

𝐿1={

𝑘1: ({𝑝1, 𝑝2, 𝑝3, 𝑝4} , {𝑝1, 𝑝2}(0.8), { 𝑝4}(0.2), {𝑝3}(0.1)),

𝑘2: ({𝑝1, 𝑝2, 𝑝3, 𝑝4} , {𝑝3}(0.8), {𝑝1}(0.3), {, 𝑝2, 𝑝4}(0.1)),

𝑘3: ({𝑝1, 𝑝2, 𝑝3, 𝑝4} , {𝑝1, 𝑝2, 𝑝3, }(0.9), ∅(0), { 𝑝4}(0.3))

} 

𝐿2={

𝑘1: ({𝑞1, 𝑞2, 𝑞3, 𝑞4} , {𝑞1, 𝑞2, 𝑞3}(0.8), { 𝑞4}(0.4), ∅(0)),

𝑘2: ({𝑞1, 𝑞2, 𝑞3, 𝑞4} , {𝑞1, 𝑞2, 𝑞3}(0.5), ∅(0), { 𝑞4}(0.4)),

𝑘3:  ({𝑞1, 𝑞2, 𝑞3, 𝑞4} , {𝑞3, 𝑞4}(0.4), {𝑞1}(0.1), {𝑞2}(0.7))

} 

𝐿3={

𝑘1: ({𝑟1, 𝑟2, 𝑟3, 𝑟4} , {𝑟1}(0.9), {𝑟2, 𝑟3}(0.2), { 𝑟4}(0.3)),

𝑘2: ({𝑟1, 𝑟2, 𝑟3, 𝑟4} , {𝑟1, 𝑟2, 𝑟3, 𝑟4}(0.9), ∅(0), ∅(0)),

𝑘3: ({𝑟1, 𝑟2, 𝑟3, 𝑟4} , {𝑟1, 𝑟4}(0.6), {𝑟2}(0.4), {𝑟3}(0.3))

} 

𝐿4={

𝑘1: ({𝑡1, 𝑡2, 𝑡3, 𝑡4} , { 𝑡4}(0.9), {𝑡1, 𝑡2}(0.1), {𝑡3}(0.1)),

𝑘2: ({𝑡1, 𝑡2, 𝑡3, 𝑡4} , {𝑡2, 𝑡4}(0.7), {𝑡3}(0.5), {𝑡1}(0.2)),

𝑘3: ({𝑡1, 𝑡2, 𝑡3, 𝑡4} , {𝑡1, 𝑡2, 𝑡4}(0.4), {𝑡3}(0.5), ∅(0))

} 

Step 5: We obtain Table 5 according to Step 4 
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Table 5. Table of laws 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 6: We obtain similarity of the criterias of law to the criteria of ideal law in Table 6. 

Table 6. Similarity of the criterias of law to the criteria of ideal law 

 𝑘1 𝑘2 𝑘3 

𝐿1 0.322917 0.306250 0.339583 

𝐿2 0.400000 0.350000 0.266667 

𝐿3 0.400000 0.483333 0.316667 

𝐿4 0.450000 0.333333 0.316667 

  

Step 7: We obtain weighted similarity of the criterias of law to the criterias of ideal law in Table 7. 

                                                 𝑘1  𝑘2 𝑘3 

𝐿1 

 

 

𝐿2 

 

 

 

𝐿3 

 

(
{𝑝1, 𝑝2, 𝑝3, 𝑝4} , {𝑝1, 𝑝2}(0.8),

{ 𝑝4}(0.2), {𝑝3}(0.1)
) 

 

 

(
{𝑞1, 𝑞2, 𝑞3, 𝑞4} , {𝑞1, 𝑞2, 𝑞3}(0.8),

{ 𝑞4}(0.4), ∅(0)
) 

 

 

 

(
{𝑟1, 𝑟2, 𝑟3, 𝑟4} , {𝑟1}(0.9), {𝑟2, 𝑟3}(0.2),

{ 𝑟4}(0.3)
) 

 

 
(

{𝑝1, 𝑝2, 𝑝3, 𝑝4} , {𝑝3}(0.8), {𝑝1}(0.3),

 {, 𝑝2, 𝑝4}(0.1)
) 

 

 

(
{𝑞1, 𝑞2, 𝑞3, 𝑞4} , {𝑞1, 𝑞2, 𝑞3}(0.5), ∅(0),

 { 𝑞4}(0.4)
) 

 

 

 

(
{𝑟1, 𝑟2, 𝑟3, 𝑟4} , {𝑟1, 𝑟2, 𝑟3, 𝑟4}(0.9), ∅(0),

 ∅(0)
) 

 

(
{𝑝1, 𝑝2, 𝑝3, 𝑝4} , {𝑝1, 𝑝2, 𝑝3, }(0.9), ∅(0),

{ 𝑝4}(0.3)
) 

 

 

(
{𝑞1, 𝑞2, 𝑞3, 𝑞4} , {𝑞3, 𝑞4}(0.4), {𝑞1}(0.1),

{𝑞2}(0.7)
) 

 

 

 

(
{𝑟1, 𝑟2, 𝑟3, 𝑟4} , {𝑟1, 𝑟4}(0.6), {𝑟2}(0.4),

 {𝑟3}(0.3)
) 

 

     

𝐿4 (
{𝑡1, 𝑡2, 𝑡3, 𝑡4} , { 𝑡4}(0.9), {𝑡1, 𝑡2}(0.1),

{𝑡3}(0.1)
) 

 

 
(

{𝑡1, 𝑡2, 𝑡3, 𝑡4} , {𝑡2, 𝑡4}(0.7), {𝑡3}(0.5),
{𝑡1}(0.2)

) 

 

(
{𝑡1, 𝑡2, 𝑡3, 𝑡4} , {𝑡1, 𝑡2, 𝑡4}(0.4), {𝑡3}(0.5),

 ∅(0)
) 
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Table 7. Weighted similarity of the criterias of law to the criterias of ideal law 

 (0.6).𝑘1 (0.3).𝑘2 (0.1). 𝑘3 

𝐿1 0.19375 0.091875 0.033958 

𝐿2 0.24000 0.10500 0.026667 

𝐿3 0.24000 0.144999 0.031667 

𝐿4 0.27000 0.099990 0.031667 

 

 

Step 8: We obtain similarity value of the object’ to the ideal object in Table 8. 

 

Table 8. The similarity value of the law’ to the ideal law 

 Similarity value 

𝐿1 𝑆𝐻1 (I, 𝐿1) = 0.319583 

 

𝐿2 𝑆𝐻2 (I, 𝐿2) = 0.371667 

 

𝐿3 𝑆𝐻3 (I, 𝐿3) = 0.41666 

 

𝐿4 𝑆𝐻4 (I, 𝐿4) = 0.31958 

 

 

From Table 8, the laws that work best are 𝐿3, 𝐿2, 𝐿1 and 𝐿4, respectively. 

6 Comparison Method 

In this section, we compared the results of the generalized algorithm based on the generalized Hamming 

similarity measure and GsvNQn with the results of the algorithm [2] based on the Hamming similarity 

measure and SvNn.  

If only the T, I, F components of the GsvNQns are in Section 5, we obtain in Table 9.  
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If we used the Hamming similarity measure [22] with algorithm [2] according to Table 9, we 

obtain Table 10 for choosing the best laws.   

Table 10. The similarity value of the law’ to the ideal law according to Hamming similarity measure [22] and SvNn 

 Similarity value 

𝐿1 𝑆𝐻1 (I, 𝐿1) = 0.826656 

 

𝐿2 𝑆𝐻2 (I, 𝐿2) = 0.74333 

 

𝐿3 𝑆𝐻3 (I, 𝐿3) = 0.833333 

 

𝐿4 𝑆𝐻4 (I, 𝐿4) = 0.80333 

 

From Table 10, the laws that work best are 𝐿3, 𝐿1, 𝐿4 and 𝐿2, respectively. Thus, we obtain different 

result from Section 5. 

 

 

                                                 𝑘1 𝑘2 𝑘3 

 

𝐿1 

 

𝐿2 

 

𝐿3 

 

 

(0.8, 0.2, 01) 

 

 

(0.8, 0.4, 0.0) 

 

(0.9, 0.2, 0.3) 

 

(0.8, 0.3, 0.1) 

 

 

(0.5, 0.0, 0.4) 

 

(0.9, 0.0, 0.0) 

 

(0.9, 0.0, 0.3) 

 

 

(0.4, 0.1, 0.7) 

 

(0.6, 0.4, 0.3) 

𝐿4 (0.9, 0.1, 01) (0.7, 0.5, 0.2) (0.4, 0.5, 0.0) 

Table 9. Table of laws based on only (T, I , F) 
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7 Discussion and Conclusions 

In this study, we firstly generalized Hamming similarity measures for the GsvNQn. We showed that 

generalized Hamming measure satisfies the similarity measure condition. Also, we firstly generalized 

an algorithm (based on SvNn) for the GsvNQn and we gave a multi-criteria decision-making application 

using this generalized algorithm.  In this application, we examined which of the laws established in 

different states were more efficient. 

From Table 8, if we use generalized Hamming similarity measure and GsvNQn we obtain the laws that 

work best are 

𝐿3, 𝐿2, 𝐿1 and 𝐿4 

 respectively. 

 From Table 10, if we use Hamming similarity measure and SvNn, we obtain the laws that work best 

are 

𝐿3, 𝐿1, 𝐿4 and 𝐿2 

 respectively. Thus, we obtain different results according to Hamming similarity measure and SvNn in 

this paper. In addition, the result we obtained in Table 8 is more valid because the generalized set-valued 

neutrosophic quadruple numbers contain components (T, I, F) of neutrosophic sets and have more 

extensive components (known part, unknown part) than neutrosophic sets. As can be seen in this study, 

it is clear that generalized set-valued neutrosophic structures will give more objective results than both 

the applications using classical structures and the applications using neutrosophic structures. 

Also, using this study or revising this application researchers can also work on other law applications 

and other science applications for decision-making problems. Furthermore, there are a lot of similarity 

measure for neutrosophic sets. Researchers can generalize the other similarity measures of neutrosophic 

set according to GsvNQn. Also, in this paper, we use single-valued neutrosophic component T, I, F ∈ 

[0, 1] (as in SvNn). Researchers can study generalized set-valued neutrosophic quadruple set according 

to bipolar neutrosophic component or interval valued neutrosophic component and researchers can use 

these structures for decision-making applications. 
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Abbreviations 

SvNn: Single valued neutrosophic number 

SvNs: Single valued neutrosophic set 

GsvNQn: Generalized set valued neutrosophic quadruple number 

GsvNQs: Generalized set valued neutrosophic quadruple set 
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Abstract: In this paper, the notions of three operators, Basic Belief Assignment Operator, Dynamic 

Basic Belief Assignment Operator, and Dynamic Weight Vector Operator in interval neutrosophic 

set are defined and presented. The procedure based on Dynamic Basic Belief Assignment and 

Dynamic Weight Vector using Dezert-Smarandache Theory is developed to solve the dynamic 

decision-making problems in a neutrosophic environment where criteria values take the form of 

interval neutrosophic numbers collected at various periods.  Practical applications for validating 

the proposed method and assessing system safety are given taking an example from the marine 

industry. The results indicate that the proposed methodology provides a feasible solution for 

monitoring and enhancing the safety of systems working in complex and dynamically changing 

environment. The model can be applied to solve multicriteria decision-making problems in 

diversified areas that require dynamic data.   

Keywords: Basic Belief Assignment Operator; Dezert-Smarandache Theory; Dynamic Basic Belief 

Assignment Operator; Dynamic Weight Vector; Evidential Reasoning; Interval Neutrosophic 
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1. Introduction 

Multi-Criteria Decision Making (MCDM) involves either selecting the best alternative or 

prioritizing them after evaluating for the laid down criteria. MCDM takes the required data from 

records. In case the data are unreliable or scarce, experts’ judgments are used for analysis. Such data 

contain a lot of uncertainty and hence conventional crisp techniques do not work. To overcome the 

limitation of crisp sets, Zadeh [1, 2] proposed the concept of a fuzzy set. The fuzzy sets were further 

extended to Interval Valued Fuzzy Set (IVFS) [3], Intuitionistic Fuzzy Set (IFS) [4], and Interval 

Valued Intuitionistic Fuzzy Set (IVIFS) [5]. The fuzzy sets are extensively used in solving MCDM 

problems [6-18]. But, none of the above fuzzy sets could explain the indeterminacy component 

associated with the membership of an element. The fuzzy sets cannot handle the possibility of the 

statement being true is 0.6, the statement being false is 0.4 and the statement not being sure is 0.3. 

Smarandache [19] developed the concept of neutrosophic sets where indeterminacy is explicitly 

characterized that overcome the prime limitation of fuzzy set. Neutrosophic set is defined as, a set 

A in a universal set X is characterized independently by a truth membership function  XTA
, 

indeterminacy membership function  XI A
, and falsity membership function  XFA

, wherein 
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X are real or nonstandard subsets of   1,0 . In neutrosophic notation, the above example can be 

characterized as  4.0,3.0,6.0A . To use neutrosophic sets in practical applications, Wang [20, 

21] proposed the concept of a Single Valued Neutrosophic set (SVNS) and an Interval Neutrosophic 

set (INS). Neutrosophic sets have wide applications in decision-making problems [22-26]. Triangular 

neutrosophic numbers [27, 28], pentagonal fuzzy neutrosophic numbers [29-32], cylindrical 

neutrosophic numbers [33] are other forms of neutrosophic numbers used in solving MCDM 

problems. N-valued neutrosophic sets [34], bipolar neutrosophic sets [35], and neutrosophic refined 

sets [36] are also very popular among researchers. Neutrosophic sets are further generalized into 

plithogenic sets [37] which are currently used to solve real-life problems [38, 39].  

Most of the MCDM problems are solved by taking static data that must be available in advance 

for assessment. But, most of the time we need to make decisions in dynamic conditions where 

scenarios change very often. Several techniques and methods have been proposed in the past to 

solve such dynamic decision-making problems [40-46]. Decision making in dynamic conditions 

requires a fusion of information gathered at different periods, different operating conditions, and 

even by different teams of experts [47]. Amongst the most popular theories of information fusion is 

the Dempster-Shafer theory of evidential reasoning [48]. But, this theory suffers from a major 

limitation under highly conflicting conditions and gives counter-intuitive results [49-51]. 

Dezert-Smarandache [52] proposed a new DSm rule of combination (DSmT). The classic DSm rule is 

simple and corresponds to the Free DSm model. Like D-S theory, the classic DSm rule exhibits the 

commutative and associative properties. It does not use the renormalization process and hence does 

not suffer from the problems faced by the D-S rule. 

Neutrosophic PROMETHEE techniques [53], IoT based fog computing model [54], and 

neutrosophic analytical hierarchy process [55, 56] are effectively used to solve MCDM problems 

with fuzzy information. Neutrosophic sets in combination with rough sets are used to segregate and 

apply only the precise/complete data to enhance the quality of service in smart cities [57]. In this 

paper, a model is proposed to assess the safety of engineering systems in dynamic conditions. 

Decision-making in safety (risk) assessment is based on data collected from experts’ ambiguous 

judgment. We have to rely on experts’ judgments because the past data are either incomplete, 

imprecise, or not reliable. The neutrosophic sets are preferred in this study because they can very 

easily handle the hesitancy part of the experts’ judgment. The third component of indeterminacy in 

the neutrosophic set eliminates the major limitation of a fuzzy set that cannot handle the hesitancy. 

The model used the INS because of its greater flexibility and precision over single valued 

neutrosophic sets. The fusion of information in dynamic conditions is done using DSmT of 

information fusion. 

Three operators, Basic Belief Assignment Operator (BBAO), Dynamic Basic Belief Assignment 

Operator (DBBAO), and Dynamic weight Vector Operator (DWVO) are proposed in this study to get 

the basic belief assignments from Interval Neutrosophic Number (INN) and to combine the 

information in a dynamic environment. We have also suggested the utility of the proposed model to 

solve real-life problems. 

1.1. The motivation for the study 

Most of the multi-criteria decision-making problems are solved in static conditions where the 

data are available beforehand. But, in reality, there are situations when we need to use data collected 

in different periods. This requires the model to be robust which can be used dynamically and 

iteratively to ascertain the benefits of the actions taken. Moreover, we need to avoid uncertainty due 

to incomplete, imprecise, and missing data. Neutrosophic set has the potential to eliminate such 

uncertainty. In this paper, a model is proposed using neutrosophic numbers wherein the data 

collected in dynamic conditions can be suitably incorporated. 
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1.2. The novelty of the work 

Neutrosophic sets are used to develop a model to assess the risk/safety of the system 

dynamically in a complex uncertain environment using an evidential reasoning approach. The 

primary purpose is to develop, 

1. Basic Belief Assignment Operator (BBAO) 

2. Dynamic Basic Belief Assignment Operator (DBBAO) 

3. Dynamic Weight Vector Operator (DWVO) 

4. A model using Dezert Smarandache’s theory to solve the dynamic decision-making problems 

2. Preliminaries  

2.1. Neutrosophic Set 

Smarandache [19] proposed and developed the concept of a neutrosophic set as an 

improvement of a fuzzy set. The neutrosophic sets become popular over fuzzy sets due to their 

indeterminacy component which handles the hesitancy efficiently and in a better way than even the 

highest level fuzzy set i.e. IVIFS.  The neutrosophic set contains three independent components 

namely, the truth membership T , the Indeterminacy membership I , and the Falsity membership 

F . SVNS and INS help us represent the real world with uncertain, imprecise, incomplete, and 

inconsistent information. 

2.2. Set Definition 

Definition 2.1 [19]: Let U  represent a universe of discourse. A neutrosophic set is: 

      UxXFXIXTxA AAA  ,,,:   

Where        1,0,,, xXFXIXT AAA and 

           3supsupsup0 XFXIXT AAA  

Definition 2.2 [47]: A Dynamic Single-Valued Neutrosophic Set (DSVNS) is: 

       tFtItTxUxA xxx ,,;
 for all 

Ax : 

   1,0,0:,, xxx FIT
 

where xxx FIT ,,
are continuous functions whose arguments is time  t . 

A Dynamic Interval Valued Neutrosophic Set (DIVNS) is: 

 

               tFtFtItItTtTx U

x

L

x

U

x

L

x

U

x

L

x ,,,,,  where 0t  

 

           tFtFtItItTtT U

x

L

x

U

x

L

x

U

x

L

x  ,, and 

 

                1,0,,,,, tFtFtItItTtT U

x

L

x

U

x

L

x

U

x

L

x
 

In DIVNS, all intervals are changing w.r.t. time  t . 
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2.3. Set theoretic operations of DIVNS 

Let us consider two DIVN numbers: 

              k

A

xk

A

xk

A

x

A

x

A

x

A

x tFtItTtFtItTta ,,,...,,, 111  

              k

B

xk

B

xk

B

x

B

x

B

x

B

x tFtItTtFtItTtb ,,,...,,, 111  

where  ktttt ,...,, 21 is a time sequence at each time kltl 1,
 

Definition 2.3 [47]: Addition of Dynamic Interval Valued Neutrosophic Numbers (DIVNN): 

   
               

                


















k

B

xk

A

xk

B

xk

A

xk

B

xk

A

xk

B

xk

A

x

B

x

A

x

B

x

A

x

B

x

A

x

B

x

A

x

tFtFtItItTtTtTtT

tFtFtItItTtTtTtT
tbta

,,

,...,,, 11111111

 (1) 

Multiplication of DIVNN 

   
                   
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Scalar Multiplication of DIVNN 
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Power of the DIVNN 
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2.4. Dezert-Smarandache Theory 

Dezert-Smarandache [52] developed the theory of information fusion (DSmT) for dealing with 

imprecise, uncertain, and conflicting sources of information. It overcame three limitations of D-S 

theory i.e. accepting Shafer’s model for the fusion problem under consideration which requires all 

hypotheses to be mutually exclusive and exhaustive, the third middle excluded principle, and the 

acceptance of Dempster’s rule of combination as the framework for the combination of independent 

sources of information.  DSmT starts with a free DSm model and is denoted as  fM , and 

considers  only as a frame of exhaustive elements, nii ,...,1,  which can potentially overlap. 

The free DSm model is commutative and associative. 

 

Definition 2.4 [52]: Let  n ,...,1  be a finite set of n exhaustive elements. The hyper-power 

set 
D  is defined as the set of all composite subsets built from elements of   with   and   

operators such that 

1. 
Dn ,...,, 1

 

2. If 
DBA, , then 

 DBA and 
 DBA  

3. No other elements belong to 
D , except those obtained by rules 1 and 2. 
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When there is no constraint on the elements of the frame, the classic model is called free DSm model, 

 fM  of two independent sources of evidence over the same frame with belief functions 

associated with generalized basic belief assignments  1m and  2m  and is given by 

 

            

 












CBA
DBA

M BmAmBmAmCmCfmDC
,

2121,      (5) 

This rule is extended for 2k  independent sources as, 

         

 

 

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k

XmCmmCmCfmDC

...
,...,, 1

1

21

21

...,    (6) 

and      0fM
m  

3. Basic Belief Assignment (BBA), Dynamic Basic Belief Assignment (DBBA) and Dynamic 

Weight Vector (DWV)  

3.1. Basic Belief Assignment (BBA) 

Consider an interval neutrosophic set. To use the neutrosophic number in the DSmT evidential 

reasoning approach, we need to convert the neutrosophic number into its corresponding BBA. BBA 

or mass function assigns evidence to a preposition. BBAO is proposed to transform the interval 

neutrosophic number into their corresponding BBA’s i.e.    FmTm ,  and  Im . 

   
 

 



meantheofsum

mean
BBAm

___
      (7) 

where mean    finds the mean of the neutrosophic component interval given by 

 
   

2

UL

mean


           (8) 

and  meantheofsum ___  gives the summation of the means of all the three components of 

INS. 

 

3.2. Dynamic Basic Belief Assignment (DBBA) 

Consider  vAAAA ,...,, 21 ,  nCCCC ,...,, 21 , and  hDDDD ,...,, 21  be the sets of 

alternatives, criteria and decision makers [47]. For a decision maker hqDq ,...,1;  , the evaluation 
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characteristic of an alternative vaAa ,...,1;   on a criterion npC p ,...,1;   in time sequence 

 kl tttt ,...,, 21  is represented by 

                 
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DBBA for the above neutrosophic number is obtained by DBBAO and DSmT of information fusion. 

Since DSmT is closed on  and  , so also truthness and falsity components are exclusive, both 

the belief components of FT  and FT   are assigned to FT  . 

 

Dynamic basic belief mass, 
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   (10) 

for va ,..,1 and np ,...,1  

3.3. Dynamic Weight Vector (DWV) 

Decision-makers assess various alternatives w.r.t. assigned criteria. These criteria, in turn, are also 

evaluated to decide their importance by a group of decision-makers in different periods. These are 

generally expressed in linguistic terms. These are to be converted into neutrosophic numbers and 

aggregated to get the dynamic weight vector for information fusion. This is done by horizontal 

integration of neutrosophic numbers for all the decision-makers in all periods using DWVO. 

Consider  nCCCC ,...,, 21  and  hDDDD ,...,, 21  be the sets of criteria and decision makers 

[47]. For a decision maker hqDq ,...,1;  , the evaluation characteristic of a criterion npC p ,...,1;   

in time sequence  kl tttt ,...,, 21  is represented by 

                 
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The averaged aggregation is, 
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where  
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and 
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The dynamic weight vector is a column vector  
1


ndwW  and obtained by DWVO using the 

averaged aggregation, 

 
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    (16) 

4. Dynamic information fusion 

Two methods are given below, one to dynamically evaluate and rank the alternatives and the second 

one to assess the safety of systems dynamically in a complex and uncertain environment. 

 

4.1 Method to evaluate and rank the alternatives 

Consider  vAAAA ,...,, 21 ,  nCCCC ,...,, 21 ,  hDDDD ,...,, 21  and  ktttt ,...,, 21  be 

the sets of alternatives, criteria, decision-makers and periods. The proposed steps are: 

 

Step 1: Let ''h decision-makers evaluate ''v alternatives w.r.t. ''n criteria in ''k periods as per the 

suitability ratings given in Table 1. Represent the evaluated characteristics in a matrix   
kvtapq l

tX


  

given by, 

                 
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L

apqlapq XFXFXIXIXTXTtX ,,,,,    (17) 

va ,...,1 ; np ,...,1 ; hq ,...,1 ; kl ,...,1  

 

Table 1. Suitability ratings as linguistic variables 

Linguistic terms INS 

Very_Poor (Ve_Po)  ([0.1, 0.2], [0.6, 0.7], [0.7, 0.8]) 

Poor (Po) ([0.2, 0.3], [0.5, 0.6], [0.6, 0.7]) 

Medium (Me) ([0.3, 0.5], [0.4, 0.6], [0.4, 0.5]) 

Good (Go)  ([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]) 

Very_Good (Ve_Go) ([0.6, 0.7], [0.2, 0.3], [0.2, 0.3]) 

 

Step 2: Applying DSmT on the evaluated characteristic matrix and using DBBAO, get the dynamic 

mass of an alternative ''a for a criterion '' p using Eq. (10). 
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Step 3: Let ''h decision-makers evaluate ''n criteria in ''k periods as per their weights given in 

Table 2. 

Table 2. Importance weights as linguistic variables 

Linguistic terms INS 

Unimportant (U_IPA)  ([0.1, 0.2], [0.4, 0.5], [0.6, 0.7]) 

Ordinary_Important (O_IPA) ([0.2, 0.4, [0.5, 0.6], [0.4, 0.5]) 

Important (IPA) ([0.4, 0.6], [0.4, 0.5], [0.3, 0.4]) 

Very_Important (V_IPA)  ([0.6, 0.8], [0.3, 0.4], [0.2, 0.3]) 

Absolutely_Important (A_IPA) ([0.7, 0.9], [0.2, 0.3], [0.1, 0.2]) 

 

Step 4: Find the averaged aggregation of all the ''n criteria as given by ''h decision-makers in ''k

periods using Eq. (12).  

Step 5: Calculate the dynamic weight vector using Eq. (16). 

Step 6: Obtain the weighted dynamic basic belief assignments  wDm  for all the alternatives from 

the dynamic basic belief assignments  Dm  and the dynamic weight vector  Dw  of the criteria. 

   XmwXm
apap DdwD    for va ,...,1 and np ,...,1   (18) 

Step 7: Synthesize the information using weighted dynamic basic belief assignments w.r.t. criteria 

and applying the classic DSmT of information fusion to get the dynamic belief masses for all the 

alternatives which are further normalized to get the final belief masses. 
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 for va ,...,1      (19) 

Step 8: To rank the alternatives and choose the best one, compare it with the ideal alternative using 

the similarity measure. The similarity measure proposed by Jiang [58] using the correlation 

coefficient of belief functions is used. 

The flowchart of all the steps to evaluate and rank the alternatives is shown in Fig. 1. 

 

Fig.1. The flowchart to evaluate and rank the alternatives 

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Obtain weighted dynamic basic belief assignments

Apply classic DSmT

Rank the alternatives using similarity measure

Evaluate alternatives w.r.t. criteria

Get the dynamic mass of alternatives

Evaluate criteria in different periods

Find averaged aggregation of all criteria

Calculate dynamic weight vector
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Definition 4.1. [58]: Consider a discernment frame  of N elements. If we denote the mass of two 

pieces of evidence by 1m  and 2m , then the correlation coefficient is defined as, 

 
 

   2211

21
21

,,,

,
,

mmcmmc

mmc
mmrBPA         (20) 

where the correlation coefficient  1,0BPAr  and  21,mmc  is the degree of correlation denoted 

as: 
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2121,       (21) 

and ji

n AAji ,;2,...,1,  are the focal elements of mass and  is the cardinality of a subset. 

The higher value of the correlation coefficient indicates that the belief masses are close to each other. 

The ideal and the best interval neutrosophic number is,       0,0,0,0,1,1*  . 

The correlation coefficient ir  calculated between 
* and any other INN is an unscaled distance. 

Higher the value of ir  indicates the two numbers are closer to each other. 1ir  indicates 
*  is 

the same as the number. ir  can be normalized as, 





4

1i

i

i
i

r

r
            (22) 

where,  4,3,2,1ii  represents the degree of matching between 
*  and the given neutrosophic 

number. 

 

4.2 Method for assessing system safety 

Consider  vFFFF ,...,, 21 ,  hDDDD ,...,, 21  and  ktttt ,...,, 21  be the sets of failure 

modes of a system, decision-makers and periods. The proposed steps for assessing system safety are, 

Step 1: Let ''h decision-makers identify ''v failure modes of a system. 

 

Step 2: The decision-maker’s views are collected on all the ''v failure modes in ''k periods as per 

the suitability ratings in linguistic terms from Table 1. The evaluated characteristic by ''q  

decision-maker on failure mode ''a in a period ''l is represented in a matrix form as, 

                  
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    (23) 
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va ,...,1 ; hq ,...,1 ; kl ,...,1  

 

Step 3: Horizontal integration is done using DBBAO and by applying DSmT on the evaluated 

characteristic matrix to get the dynamic mass of all the failure modes. 

 

Step 4: Vertical integration of the dynamic masses of all the failure modes is done using DSmT to get 

the final dynamic mass of the system.  

 

Step 5:  The obtained dynamic mass of the system from step 4 above, is mapped back to the safety 

expressions of ''Poor , '' Average , ''Good  or using Eqs. (20) – (22). The mapping of dynamic 

mass with safety expressions gives a distributed assessment in combination of more than one safety 

expressions. Safety expressions in linguistic terms are shown in Table 3. The neutrosophic safety 

expressions are converted to their BBA’s using BBAO to use the similarity measure. 

The flowchart of all the steps for assessing system safety is shown in Fig. 2. 

 

 

Fig.2. The flowchart for assessing system safety 

 

Table 3. Safety expressions 

Linguistic terms INS 

Poor (P)  ([0.1, 0.2], [0.2, 0.3], [0.8, 0.9]) 

Average (A) ([0.4, 0.5, [0.4, 0.5], [0.6, 0.7]) 

Good (G)  ([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) 

Excellent (E)  ([0.8, 0.9], [0.2, 0.3], [0.1, 0.2]) 

 

5. Applications 

Two numerical examples are discussed in this section, the first one to validate and demonstrate the 

proposed method. The second example shows the application of the proposed method to estimate 

the safety level of the systems on-board the ship. 

 

Example 1: This example is taken from Thong et.al. [47] to evaluate lecturers’ performance in the 

case study of ULIS-VNU. Consider five lecturers i.e. 521 ,...,, AAA  and three decision-makers i.e. 

321 ,, DDD . Five lecturers are evaluated with respect to 6 criteria: total publications  1C , teaching 

Step 1

Step 2

Step 3

Step 4

Step 5

Identify various failure modes

Collect decision makers views on failure modes

Carry out horizontal integration applying DSmT

Carry out vertical integration applying DSmT

Obtain the safety level of the system
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student evaluations  2C , personality characteristics  3C , professional society  4C , teaching 

experience  5C , fluency of foreign language  6C .  

Suitability ratings as given by three decision-makers for lecturers versus defined criteria in three 

different periods are given in Table 4. Their dynamic basic belief assignments are shown at the right 

end in Table 4. 

Table 4. Suitability ratings for lecturers 

 

Criteria 

 

Lecturers 

Decision makers Dynamic Basic Belief masses 

(T, F, TUF) t1 t2 t3 

D1 D2 D3 D1 D2 D3 D1 D2 D3  

 

 

C1 

A1 Me Go Go Go Go Go Go Ve_Go Go (0.537456, 0.167772, 0.294773) 

A2 Go Go Ve_Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go (0.677230, 0.089733, 0.233037) 

A3 Me 
Go Go Go Go Go Go Go 

Ve_Go (0.551952, 0.157914, 0.290134) 

A4 Go Me 
Go Go Go Go Go Go Go 

(0.506046, 0.189117, 0.304836) 

A5 Me Go Me Go Go Me Go Go Go (0.445630, 0.231638, 0.322731) 

 

 

C2 

A1 Go Go Go Ve_Go Go Go Go Go Go (0.545188, 0.161556, 0.293256) 

A2 Ve_Go Go Ve_Go Me Go Go Ve_Go Go Go (0.587106, 0.137222, 0.275673) 

A3 Ve_Go Go Go Go Me Go Go Me Go ( 0.495164, 0.194219, 0.310617) 

A4 Go Go Go Go Ve_Go Go Go Go Ve_Go (0.592985, 0.134266, 0.272749) 

A5 Ve_Go Go Go Go Ve_Go Go Go Go Me (0.516687, 0.172812, 0.310501) 

 

 

C3 

A1 Ve_Go Ve_Go Go Go Ve_Go Go Go Me Go (0.547366, 0.152625, 0.300009) 

A2 Go Ve_Go Go Ve_Go Go Ve_Go Go Go Ve_Go (0.639759, 0.107299, 0.252942) 

A3 Go Ve_Go Ve_Go Go Go Go Go Ve_Go Go (0.605431, 0.125957, 0.268611) 

A4 Go Go Go Ve_Go Go Go Ve_Go Go Go (0.577997, 0.142833, 0.279170) 

A5 Ve_Go Go Go Go Ve_Go Go Go Go Go (0.564545, 0.147920, 0.287535) 

 

 

C4 

A1 Me Go Me Go Go Me Me Go Me (0.374181, 0.293782, 0.332038) 

A2 Go Me Go Go Me Go Go Me Go (0.456588, 0.224954, 0.318457) 

A3 Go Go Go Go Go Me Go Go Ve_Go (0.542148, 0.163564, 0.294288) 

A4 Me Po Me Go Me Me Go Go Me (0.335600, 0.325733, 0.338667) 

A5 Me Me Po Me Me Me Me Go Me (0.279417, 0.384679, 0.335904) 

 

 

C5 

A1 Me Go Me Me Go Go Go Me Go (0.427180, 0.248386, 0.324434) 

A2 Go Ve_Go Go Ve_Go Go Go Go Ve_Go Go (0.597962, 0.130556, 0.271483) 

A3 Go Go Me Go Go Go Go Ve_Go Go (0.527769, 0.173730, 0.298501) 

A4 Ve_Go Go Go Ve_Go Go Go Ve_Go Go Go (0.597962, 0.130556, 0.271483) 

A5 Go Go Go Go Go Go Go Ve_Go Go (0.557417, 0.155493, 0.287090) 

 

 

C6 

A1 Ve_Go Go Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go (0.668533, 0.094153, 0.2237315) 

A2 Go Go Go Go Ve_Go Go Go Go Ve_Go (0.592985, 0.134266, 0.272749) 

A3 Ve_Go Go Ve_Go Ve_Go Go Ve_Go Ve_Go Go Ve_Go (0.693488, 0.081472, 0.225040) 

A4 Go Ve_Go Go Go Ve_Go Go Go Go Go (0.564545, 0.147920, 0.287535) 

A5 Go Go Go Ve_Go Go Go Go Ve_Go Go (0.577997, 0.142833, 0.279170) 
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The evaluation of criteria by decision-makers as per their importance is shown in Table 5. The right 

end column of Table 5 shows the dynamic weight vector.  

 

Table 5. Evaluation of criteria by decision makers 

 

Criteria 

Decision makers 

Dynamic Weight vector t1 t2 t3 

D1 D2 D3 D1 D2 D3 D1 D2 D3 

C1 IPA IPA IPA IPA V_IPA IPA V_IPA IPA V_IPA 0.166934 

C2 V_IPA V_IPA IPA V_IPA V_IPA V_IPA A_IPA V_IPA V_IPA 0.166570 

C3 IPA 
IPA V_IPA IPA IPA V_IPA V_IPA IPA 

V_IPA 0.167202 

C4 IPA V_IPA 
IPA IPA O_IPA IPA IPA IPA IPA 

0.165894 

C5 IPA IPA 
IPA V_IPA IPA V_IPA IPA IPA IPA 

0.166197 

C6 V_IPA V_IPA 
IPA IPA IPA IPA V_IPA V_IPA IPA 

0.167202 

 

The final normalized weighted dynamic belief masses of lecturers are given in Table 6. Table 7 gives 

the normalized correlation coefficients of all the alternatives w.r.t. the best and ideal neutrosophic 

number.  

 

Table 6. Final normalized weighted dynamic belief masses 

Lecturers Normalized Weighted Dynamic Belief masses 

A1 (0.697808, 0.078287, 0.223905) 

A2 (0.760933, 0.050429, 0.188578) 

A3 (0.796668, 0.042129, 0.161202) 

A4 (0.701103, 0.077390, 0.221507) 

A5 (0.662146, 0.097506, 0.240348) 

 

Table 7. Normalized correlation coefficients 

Lecturers Normalised correlation coefficients 

r1(α*,A1) 0.198675 

r2(α*,A2) 0.202459 

r3(α*,A3) 0.204062 

r4(α*,A4) 0.198903 

r5(α*,A5) 0.195901 

 

Referring to Table 7, the order of best performed lecturer to the least performed lecturer is 

51423 AAAAA  . The ranking order given by [47] is 51432 AAAAA  . Except for 

the first two alternatives, the ranking order for the rest of other alternatives is in line with [47]. 

Example 2(a): An example from Ship is taken to illustrate how dynamically we can monitor the 

safety level of systems in a complex and uncertain environment using a neutrosophic set. Failure 
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modes of Steering Gear on board ship are monitored periodically after maintenance and the safety 

level of the system is assessed. Steering Gear failure is common in the maritime industry and 

resulted in very serious accidents in the past causing major damage to the ship and its crew. This 

demands periodic maintenance to ensure and maintain the smooth functioning of the ship’s steering 

gear. Two experts from the marine field (two Chief Engineers on the ship with sea sailing experience 

of over 20 years) were asked to analyze the steering gear system and identify the common failure 

modes of the system.  Equal weights are assigned to the two experts. Experts identified five critical 

failure modes (Fig. 3) and their safety level using linguistic terms from Table 1 in two different 

periods. The evaluated characteristic matrix by experts in linguistic terms is given in Table 8. 

 

Table 8. Evaluated characteristic matrix for failure modes 

Failure 

Modes 

Experts 

t1 t2 

D1 D2 D1 D2 

F1 Me Me Go Go 

F2 Go Go Go Go 

F3 Me Go Me Go 

F4 Po Po Me Me 

F5 Me Me Me Go 

 

 

Fig.3. Steering Gear system with failure modes 

Dynamic masses of all the failure modes are obtained by horizontal integration using DSmT and 

DBBAO. These are given in Table 9. 

 

Table 9. Dynamic belief masses for the failure modes 

Failure Modes 
Dynamic Belief masses 

m(T) m(F) m(T, F) 

F1 0.379971 0.281706 0.338324 

F2 0.473601 0.212394 0.314005 

F3 0.38612 0.283486 0.330394 

F4 0.194758 0.481636 0.323606 

F5 0.341035 0.323677 0.335288 

Vertical integrating all the masses of failure mode using DSmT, we get the system’s dynamic belief 

masses as, 

System

Malfunctioning of limit switches (F4)

Rudder Angle Transmitter and Tiller Link failure (F5)

Steering Gear

Failure Modes

Oil Leakage (F1)

Unsatisfactory Steering (F2)

High Oil Temperature (F3)
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  325928.0Tm ,   340302.0Fm , and   33377.0, FTm  

The safety score of the system is mapped back to the safety expressions using similarity measures. 

The safety level of the system obtained is, 

 

23539.0poor , 266823.0Average , 265923.0Good , 231864.0Excellent  

From the above results, it is seen that the steering gear system is assessed as '' Average  with a 

belief of 26.68 %, as ''Good  with a belief of 26.59 %, as ''Poor  with a belief of 23.54 % and as 

''Excellent with a belief of 23.19%. 

The result in graphical form is shown in Fig. 4.  

 

Fig. 4. System safety level 

 

Example 2(b): The system safety level of the same example above is assessed in one more period 

after the regular maintenance. The two experts’ views at time 𝑡3 are given in Table 10.  

 

Table 10. Evaluated characteristic matrix for failure modes at time 𝑡3 

Failure 

Modes 

Experts 

t3 

D1 D2 

F1 Ve_Go Go 

F2 Ve_Go Ve_Go 

F3 Go Ve_Go 

F4 Go Go 

F5 Go Ve_Go 

 

System safety level after including the third period 𝑡3 is, 

190742.0poor , 255002.0Average , 277084.0Good , 277172.0Excellent  

 

The results show that after inclusion of the third period, the steering gear system is assessed as 

''Excellent with a belief of 27.72 %, as ''Good with a belief of 27.71 %, as '' Average with a 

belief of 25.50 % and as ''Poor with a belief of 19.07%. With periodic maintenance of the system, 

the safety level can be improved. Fig. 5. shows the result in graphical form. 

0.2

0.22

0.24

0.26

0.28

Sunay P. Pai and Rajesh S. Prabhu Gaonkar,  The safety assessment in dynamic conditions using interval neutrosophic sets



Neutrosophic Sets and Systems, Vol. 04, 2012     82  

 

 

 

 

 

Fig. 5. System safety level (including the third period) 

 

6. Conclusion 

This paper proposed three operators Basic Belief Assignment Operator, Dynamic Basic Belief 

Assignment Operator (DBBAO), and Dynamic Weight Vector Operator (DWVO) to get Basic Belief 

Assignment (BBA), Dynamic Basic Belief Assignment (DBBA), and Dynamic Weight Vector (DWV) 

from the Interval Neutrosophic Number (INN). Methods are proposed with these operators in 

combination with Dezert-Smarandache Theory (DSmT) of information fusion to take decisions 

dynamically in the complex uncertain neutrosophic environments using INS. The feasibility and 

application of proposed methods are shown by examples from the marine industry. The method 

proposed can be used to monitor the systems’ performance dynamically. 

The main benefits of the proposed model are handling of fuzzy/vague data, converting the fuzzy 

data in their basic belief masses, combining the evidence using theory of information fusion and 

monitoring of the system periodically with different sets of data in dynamic conditions. Researchers 

can use this model to solve multi-criteria decision-making problems in various diversified research 

areas which requires data to be collected dynamically like autonomous ships, medical diagnostic 

support systems, weather forecasting, improving safety in transportation, etc. As future research, 

this model can be developed further using a plithogenic set which is an extension of a neutrosophic 

set. 
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Abstract: In this paper, we develop a new method of decision-making algorithm with Hausdorff distance and 

Hausdorff similarity measures based on generalized set-valued neutrosophic quadruple numbers. To establish 

the algorithm, we define Hausdorff distance measure and Hausdorff similarity measure on generalized set-

valued neutrosophic quadruple. Next, we give a new method of decision-making application for impact of 

online learning on the learner. Also, we obtain different result from some previous applications (based on 

neutrosophic sets) for decision making algorithm. Thanks to our decision-making algorithm and similarity 

measure, researchers can obtain new applications for other decision making problems. 

 

Keywords: Generalized set – valued neutrosophic quadruple sets, Hausdorff measures, decision making 

applications, adequacy of online education application

 
1 Introduction   

The rapid population growth experienced in the world at the end of the twentieth century and 

the inadequacy of classical learning-teaching (education-training) activities and methods in this respect 

led to new searches in the field of education. As a result of these searches, online education programs 

have been developed. Online education program is the name given to the study carried out with the 

curriculum prepared by educational institutions in a certain order to help students practice education 

alone. In the most general sense, we can define online education as the education practices that are 

structured on environments where teachers and students are separated from each other in terms of time 
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and space. In this study, we will define a new similarity measure for generalized set-valued 

neutrosophic quadruple numbers to assess the competence of online education and remove 

uncertainties and provide a more objective assessment, and show the requirements for the similarity 

measure. Some of the environmental factors that affect the competence of online education are 

infrastructure, course material, and course hours. The difference of the similarity measure we will define 

from other similarity measures is that we add set operations on it. These set operations caused the result 

of the similarity measure to be seen more clearly. Similarities between human beings, a medicine or a 

new law to be exemplified can be examples of the assets we are talking about. In this report, some 

criteria will be selected to evaluate the adequacy of online education and the weight values of these 

criteria will be determined. A community of experts will then be created and an ideal (I) student 

template will be prepared for the assessment of online education, using generalized set-valued 

neutrosophic quadruples and numbers. Then, experts will be able to evaluate other students' criteria as 

generalized set - valued neutrosophic quadruple sets and numbers with the help of this ideal student. 

The evaluation result of each student will be handled separately and evaluation results of each will be 

obtained. Thus, an objective assessment will be made. 

Smarandache defined neutrosophic logic and neutrosophic sets [1] in 1998. In terms of 

neutrosophic logic and neutrosophic sets, there is a membership degree (T), an indeterminacy degree 

(I) and a non-membership degree (F). These degrees are defined independently. A neutrosophic value 

is in the form (T, I, F). In other words, in explaining an event or finding a solution to a problem, a 

condition is handled according to its accuracy, inaccuracy and uncertainty. Therefore, neutrosophic 

logic and the neutrosophic sets help us find solutions to many uncertainties around us and in explaining 

complexity. Also, the distance measures and similarity measures are useful for decision making 

applications in neutrosophic theory. Therefore, many researchers studied neutrosophic theory [2-25] 

and decision making for neutrosophic theory [25-31]. Recently, Uluçay et al. [6] introduced neutrosophic 

multi-groups and applications; Uluçay [7] introduced a new similarity function of trapezoidal fuzzy 

multiple numbers based on multiple criteria decision making; Şahin et al. [8] obtained some weighted 

arithmetic operators and geometric operators with SVNSs and their application to multi-criteria 

decision making problems; Şahin et al. [9] studied some new operations of (α, β, γ) interval cut set of 
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interval valued neutrosophic sets; Şahin et al. [10] obtained refined neutrosophic hierarchical clustering 

methods; Sahin et al. [11] studied extension principle based on neutrosophic multi-fuzzy sets and 

algebraic operations; Şahin et al. [12] introduced neutrosophic triplet partial g-metric space; Şahin et al. 

[13] introduced neutrosophic triplet normed ring space; Şahin et al. [14] studied neutrosophic quadruple 

theory; Broumi et al. [15] obtained Hausdroff distance and similarity measure for neutrosophic set and 

numbers; Şahin et al. [16] studied combined classic–neutrosophic sets and double neutrosophic sets; 

Şahin et al.[17] obtained decision-making applications in professional proficiencies in neutrosophic 

theory; Uluçay et al. [18] introduced decision-making method based on neutrosophic soft expert graphs; 

Ulucay et al. [19] studied  an outranking approach for MCDM-problems with neutrosophic multi-sets; 

Hassan et al. [32] studied Q-neutrosophic soft expert set and its application in decision making; Bakbak 

et al.  [33]  obtained a theoretic approach to decision making problems in architecture with neutrosophic 

soft set; Şahin et al. [34] introduced neutrosophic triplet metric topology; Aslan et al. [35] introduced 

neutrosophic modeling of Talcott Parsons’s action; Şahin et al. [36] studied an outperforming approach 

for multi-criteria decision-making problems with interval-valued bipolar neutrosophic sets; Abdel-

Basset et al. studied a new hybrid multi-criteria decision-  making approach for location selection of 

sustainable offshore wind energy stations [37]; Abdel-Basset et al. introduced neutrosophic theory 

based security  approach for fog and mobile-edge computing [38]; Abdel-Basset et al. studied a model 

for the effective COVID-19 identification in uncertainty environment using primary symptoms and CT 

scans [39]; Abdel-Basset et al. introduced evaluation of sustainable hydrogen production options using 

an advanced hybrid MCDM approach [40]. 

Smarandache [20] discussed the neutrosophic quadruple set and the neutrosophic quadruple 

number. Neutrosophic quadruple sets are a generalized form of neutrosophic set. A neutrosophic 

quadruple set is represented by {(k, lT, mI, nF): k, l, m, n  ∈ ℝ or ℂ}. Here k is named as the known part, 

(lT, mI, nF) is named as the unknown part and T, I, F have the usual neutrosophic logic tools. Also, 

Şahin et al. [21] introduced generalized set-valued neutrosophic quadruple sets. Unlike neutrosophic 

quadruple set and number, in a generalized set-valued neutrosophic set and numbers; k, l, m and n are 

sets and T, I and F are not fixed. Thus, generalized set-valued neutrosophic set and numbers are more 

useful for decision making applications. 
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The organization of this paper is as follows: In section 2, some basis conception of the 

neutrosophic sets [1, 4], Hausdorff measures [15], the concept of neutrosophic quadruple sets [20, 21], 

Euclid measures [23] and   Dice measures [22]. By adding set operations to the known Hausdorff 

distance measurement, we will obtain a larger set point Hausdorff distance measurement based on 

generalized set-valued neutrosophic quadruple numbers so that we can more clearly deal with the 

problems we encounter in section 3. In section 4, we will write an algorithm that we can use on sets of 

neutrosophic quadruple. Later, we will show the operability of Hausdorff’s distance measurement, 

which we developed, by writing a numerical example with a neutrosophic quadruple structure. The 

example we gave in section 4 was calculated with other distance measurements in Seciton 5. and then, 

as a result of this calculation, we will comparison that the distance measurement we developed gives 

different results. Section 6 presents final conclusions and further research. 

2 Preliminaries  

Definition 2.1: [1] Let 𝐸 be the universal set. For ∀𝑥 ∈ 𝐸, 0− ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3+, by the help of 

the functions  𝑇𝐴: 𝐸 → ] – 0, 1+ [ , 𝐼𝐴: 𝐸 →  ] – 0, 1+ [ and 𝐹𝐴: 𝐸 →] – 0, 1+ [ a neutrosophic set 𝐴 on 𝐸 is defined 

by 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝐸} . 

Here, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are the degrees of trueness, indeterminacy and falsity of 𝑥 ∈ 𝐸 respectively. 

Where, – 0 = 0 - 𝜀 and 1+ = 1 + 𝜀 . 

Definition 2.2: [4] Let 𝐸 be the universal set. For ∀𝑥 ∈ 𝐸, 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, using the 

functions 𝑇𝐴: 𝐸 → [0,1], 𝐼𝐴: 𝐸 → [0,1] and 𝐹𝐴: 𝐸 → [0,1], a single-valued neutrosophic set 𝐴 on 𝐸 is defined 

by 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝐸} . 

Here, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥) are the degrees of trueness, indeterminacy and falsity of 𝑥 ∈ 𝐸, respectively. 
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Definition 2.3: [15] Let 𝐴1 = <𝑇𝐴1
(𝑥), 𝐼𝐴1

(𝑥), 𝐹𝐴1
(𝑥)> and 𝐴2 = <𝑇𝐴2

(𝑥), 𝐼𝐴2
(𝑥), 𝐹𝐴2

(𝑥)>  be two single – 

valued neutrosophic numbers. The Hausdorff distance measure between 𝐴1 and 𝐴2, which is shown as 

𝑑ℎ(𝐴1, 𝐴2) is defined as  

𝑑ℎ = (𝐴1, 𝐴2) = 𝑚𝑎𝑥{|𝑇𝐴1
(𝑥) − 𝑇𝐴2

(𝑥)|, |𝐼𝐴1
(𝑥) − 𝐼𝐴2

(𝑥)|, |𝐹𝐴1
(𝑥) − 𝐹𝐴2

(𝑥)|} . 

Also, the Hausdorff similarity measure between 𝐴1 and 𝐴2, which is shown as 𝑆ℎ(𝐴1, 𝐴2) is defined as  

𝑆ℎ = (𝐴1, 𝐴2) = 1 − 𝑚𝑎𝑥{|𝑇𝐴1
(𝑥) − 𝑇𝐴2

(𝑥)|, |𝐼𝐴1
(𝑥) − 𝐼𝐴2

(𝑥)|, |𝐹𝐴1
(𝑥) − 𝐹𝐴2

(𝑥)|}. 

Theorem 2.4: [15] Let 𝑋1, 𝑋2 and 𝑋3 be three single – valued neutrosophic sets, 𝑑ℎ be Hausdorff 

distance measure. Then the following properties hold.   

i. 0 ≤ 𝑑𝐻(𝑋1, 𝑋2) ≤ 1 

ii. 𝑋1 = 𝑋2 if and only if 𝑑𝐻(𝑋1, 𝑋2) = 0 

iii. 𝑑𝐻(𝑋1, 𝑋2) = 𝑑𝐻(𝑋2, 𝑋1) 

iv. If 𝑋1 𝑋2𝑋3, then 𝑑𝐻(𝑋1, 𝑋2) ≤ 𝑑𝐻(𝑋1, 𝑋3)  and 𝑑𝐻(𝑋1, 𝑋3) ≤ 𝑑𝐻(𝑋2, 𝑋3). 

Theorem 2.5: [15]: Let 𝐴1, 𝐴2 and 𝐴3 be three single – valued neutrosophic sets, 𝑆ℎ be Hausdorff 

similarity measure. Then the following properties hold.   

i. 0 ≤ 𝑆ℎ(𝐴1, 𝐴2) ≤ 1 

ii. 𝑆ℎ(𝐴1, 𝐴2) = 1 ⇔  𝐴1 = 𝐴2 

iii. 𝑆ℎ(𝐴1, 𝐴2) = 𝑆ℎ(𝐴2, 𝐴1) 

iv. If  𝐴1 ⊆ 𝐴2 ⊆ 𝐴3 ∈ 𝐸, then 𝑆ℎ(𝐴1, 𝐴3) ≤ 𝑆ℎ(𝐴1, 𝐴2) and 𝑆ℎ(𝐴1, 𝐴3) ≤ 𝑆ℎ(𝐴2, 𝐴3). 

Definition 2.6: [20] NQN is a number of the form (k, lT, mI, nF). Here, T, I and F are used as the ordinary 

neutrosophic logical tools and k, l, m, n ∈ ℝ or ℂ. NQ = {(k, lT, mI, nF): k, l, m, n ∈ ℝ or ℂ} is defined by 

neutrosophic quadruple set. 

For a neutrosophic quadruple number (k, lT, mI, nF), k is named the known part and (lT, mI, nF) is 

named the unknown part where k represents any asset such as a number, an idea, an object, etc. 
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Definition 2.7: [21] Let X be a set and P(X) be power set of X. A generalized set – valued neutrosophic 

quadruple set is a set of the form 𝐺𝑠𝑖
= {(𝐴𝑠𝑖

, 𝐵𝑠𝑖
𝑇𝑠𝑖

, 𝐶𝑠𝑖
𝐼𝑠𝑖

, 𝐷𝑠𝑖
𝐹𝑠𝑖

): 𝐴𝑠𝑖
, 𝐵𝑠𝑖

, 𝐶𝑠𝑖
, 𝐷𝑠𝑖

 ∈  P(X); i = 1, 2, 3, … , 

n}. 

Where 𝑇𝑖 , 𝐼𝑖  and 𝐹𝑖 have their usual neutrosophic logic means and generalized set – valued neutrosophic 

quadruple number defined by 

𝐺𝑁𝑖
= (𝐴𝑠𝑖

, 𝐵𝑠𝑖
𝑇𝑠𝑖

, 𝐶𝑠𝑖
𝐼𝑠𝑖

, 𝐷𝑠𝑖
𝐹𝑠𝑖

). 

As in neutrosophic quadruple number, for a generalized set – valued neutrosophic quadruple number                 

(𝐴𝑠𝑖
, 𝐵𝑠𝑖

𝑇𝑠𝑖
, 𝐶𝑠𝑖

𝐼𝑠𝑖
, 𝐷𝑠𝑖

𝐹𝑠𝑖
) representing any entity which may be a number, an idea, an object, etc.; 𝐴𝑠𝑖

 is 

called the known part and (𝐵𝑠𝑖
𝑇𝑠𝑖

, 𝐶𝑠𝑖
𝐼𝑠𝑖

, 𝐷𝑠𝑖
𝐹𝑠𝑖

) is called the unknown part. 

Definition 2.8: [20] Let 𝐺𝑁𝑖
= (𝐴𝑠𝑖

, 𝐵𝑠𝑖
𝑇𝑠𝑖

, 𝐶𝑠𝑖
𝐼𝑠𝑖

, 𝐷𝑠𝑖
𝐹𝑠𝑖

) and 𝐺𝑁𝑗
= (𝐴𝑠𝑗

, 𝐵𝑠𝑗
𝑇𝑠𝑗

, 𝐶𝑠𝑗
𝐼𝑠𝑗

, 𝐷𝑠𝑗
𝐹𝑠𝑗

) be two 

generalized set – valued neutrosophic quadruple numbers. 𝐴𝑠𝑖
⊆ 𝐴𝑠𝑗

, 𝐴𝑠𝑖
⊆ 𝐴𝑠𝑗

, 𝐴𝑠𝑖
⊆ 𝐴𝑠𝑗

, 𝐴𝑠𝑖
⊆ 𝐴𝑠𝑗

 and                 

𝑇𝑠𝑖
≤ 𝑇𝑠𝑗

, 𝐼𝑠𝑖
≤ 𝐼𝑠𝑗

, 𝐹𝑠𝑖
≤  𝐹𝑠𝑗

, then we say 𝐺𝑁𝑖
 is a subset of  𝐺𝑁𝐽

 and denote it by 𝐺𝑁𝑖
⊆ 𝐺𝑁𝐽

. 

 

Definition 2.9: [23] Let 𝐴1 = <𝑇𝐴1
(𝑥), 𝐼𝐴1

(𝑥), 𝐹𝐴1
(𝑥)> and 𝐴2 = <𝑇𝐴2

(𝑥), 𝐼𝐴2
(𝑥), 𝐹𝐴2

(𝑥)> be two single – 

valued neutrosophic numbers. The Euclid similarity measure between 𝐴1 and 𝐴2, which is shown as 

𝑑𝐸(𝐴1, 𝐴2) is defined as  

 

            𝑑𝐸(𝐴1, 𝐴2) = 1 − 
1

3
∑ √(𝑇𝐴1

(𝑥) − 𝑇𝐴2
(𝑥))

2

+ (𝐼𝐴1
(𝑥) − 𝐼𝐴2

(𝑥))
2

+ (𝐹𝐴1
(𝑥) − 𝐹𝐴2

(𝑥))
2

𝑛
𝑗=1 .

 

 

Definition 2.10: [22] Let 𝐴1 = <𝑇𝐴1
(𝑥), 𝐼𝐴1

(𝑥), 𝐹𝐴1
(𝑥)> and 𝐴2 = <𝑇𝐴2

(𝑥), 𝐼𝐴2
(𝑥), 𝐹𝐴2

(𝑥)> be two single – 

valued neutrosophic numbers. The Dice similarity measure between 𝐴1 and 𝐴2, which is shown as 

𝑑𝐸(𝐴1, 𝐴2) is defined as   

𝑆𝐷1(𝐴1, 𝐴2) = 1 - 
2[(𝑇𝐴1

(𝑥).𝑇𝐴2
(𝑥)+𝐼𝐴1

(𝑥).𝐼𝐴2
(𝑥)+𝐹𝐴1

(𝑥).𝐹𝐴2
(𝑥))]

((𝑇𝐴1
(𝑥))

2
+(𝐼𝐴1

(𝑥))
2
+(𝐹𝐴1

(𝑥))
2
)+((𝑇𝐴2

(𝑥))
2
+(𝐼𝐴2

(𝑥))
2
+(𝐹𝐴2

(𝑥))
2
)
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3 Hausdorff Measures Based on Generalized Set-Valued Neutrosophic Quadruple Numbers and 

Sets 

In this paper, we take T, I, F ∈ [0, 1] like single valued neutrosophic numbers in Definition 2.2. 

Definition 3.1: 𝐺𝑁1
= (𝐴𝑠1

, 𝐵𝑠1
𝑇𝑠1

, 𝐶𝑠1
𝐼𝑠1 , 𝐷𝑠1

𝐹𝑠1
) and 𝐺𝑁2

= (𝐴𝑠2
, 𝐵𝑠2

𝑇𝑠2
, 𝐶𝑠2

𝐼𝑠2 , 𝐷𝑠2
𝐹𝑠2

) be two generalized 

set – valued neutrosophic quadruple number. We define a function 𝑑𝑄𝐻𝑁: 𝐺𝑁1
 ×  𝐺𝑁2

 →  [0, 1]  such that  

 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  =  𝑑𝑄𝐻𝑁  ((𝐴𝑠1
, 𝐵𝑠1

𝑇𝑠1
, 𝐶𝑠1

𝐼𝑠1 , 𝐷𝑠1
𝐹𝑠1

), (𝐴𝑠2
, 𝐵𝑠2

𝑇𝑠2
, 𝐶𝑠2

𝐼𝑠2 , 𝐷𝑠2
𝐹𝑠2

))    

 =
1

2

[
 
 
 
 

𝑚𝑎𝑥{|𝑇𝑠1 − 𝑇𝑠2|, |𝐼𝑠1 − 𝐼𝑠2|, |𝐹𝑠1 − 𝐹𝑠2|}                                                           

+
1

4

(

 
 

𝑚𝑎𝑥{𝑠(𝐴𝑠1
∖ 𝐴𝑠2

), 𝑠(𝐴𝑠2
∖ 𝐴𝑠1

)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1), 𝑠(𝐴𝑠2), 1}
+   

𝑚𝑎𝑥{𝑠(𝐵𝑠1
∖ 𝐵𝑠2

), 𝑠(𝐵𝑠2
∖ 𝐵𝑠1

)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1), 𝑠(𝐵𝑠2), 1}
   

   + 
𝑚𝑎𝑥{𝑠(𝐶𝑠1 ∖ 𝐶𝑠2), 𝑠(𝐶𝑠2 ∖ 𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1), 𝑠(𝐶𝑠2), 1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1 ∖ 𝐷𝑠2), 𝑠(𝐷𝑠2 ∖ 𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1), 𝑠(𝐷𝑠2), 1} )

 
 

]
 
 
 
 

 

 

Then, 𝑑𝑄𝐻𝑁 is called a Hausdorff distance measure on generalized set-valued neutrosophic quadruple 

numbers.  

Where, s(A) is number of element of set A. 

Also, we generalized Hausdorff distance measure for generalized set-valued neutrosophic quadruple 

numbers in Definition 3.1. 

Theorem 3.2: Let 𝐺𝑁1
= (𝐴𝑠1 , 𝐵𝑠1𝑇𝑠1 , 𝐶𝑠1𝐼𝑠1 , 𝐷𝑠1𝐹𝑠1), 𝐺𝑁2

= (𝐴𝑠2 , 𝐵𝑠2𝑇𝑠2 , 𝐶𝑠2𝐼𝑠2 , 𝐷𝑠2𝐹𝑠2) and                                   

𝐺𝑁3
= (𝐴𝑠3 , 𝐵𝑠3𝑇𝑠3 , 𝐶𝑠3𝐼𝑠3 , 𝐷𝑠3𝐹𝑠3)  be two generalized set – valued neutrosophic quadruple numbers. 

Then, 𝑑𝑄𝐻𝑁 satisfies the below conditions. 

i) 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  ∈  [0, 1]  

ii) 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  =  0 ⇔  𝐺𝑁1
 =  𝐺𝑁2

  

iii) 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  =  𝑑𝑄𝐻𝑁  (𝐺𝑁2
, 𝐺𝑁1

)  

iv) If  𝐺𝑁1
 ⊂  𝐺𝑁2

 ⊂  𝐺𝑁3
 , then 

𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  ≤  𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁3

)   and  𝑑𝑄𝐻𝑁  (𝐺𝑁2
, 𝐺𝑁3

)  ≤  𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

) . 

Proof:  

i)  

Let 𝐺𝑁1
= 𝐺𝑁2

. From Definition 2.8, 
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𝐴𝑠1
= 𝐴𝑠2

, 𝐵𝑠1
= 𝐵𝑠2

, 𝐶𝑠1
= 𝐶𝑠2

, 𝐷𝑠1
= 𝐷𝑠2

, 𝑇𝑠1
= 𝑇𝑠2

, 𝐼𝑠1 = 𝐼𝑠2  and 𝐹𝑠1
= 𝐹𝑠2

 .Thus, we have 

𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁1

)  =  
1

2
[𝑚𝑎𝑥{|𝑇𝑠1 − 𝑇𝑠1|, |𝐼𝑠1 − 𝐼𝑠1|, |𝐹𝑠1 − 𝐹𝑠1|}

+
1

4
(
𝑚𝑎𝑥{𝑠(𝐴𝑠1

∖ 𝐴𝑠1
), 𝑠(𝐴𝑠1

∖ 𝐴𝑠1
)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1), 𝑠(𝐴𝑠1), 1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠1
∖ 𝐵𝑠1

), 𝑠(𝐵𝑠1
∖ 𝐵𝑠1

)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1), 𝑠(𝐵𝑠1), 1}

+
𝑚𝑎𝑥{𝑠(𝐶𝑠1 ∖ 𝐶𝑠1), 𝑠(𝐶𝑠1 ∖ 𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1
), 𝑠(𝐶𝑠1

), 1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1 ∖ 𝐷𝑠1), 𝑠(𝐷𝑠1 ∖ 𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1
), 𝑠(𝐷𝑠1

), 1}
)]

=
1

2
[0 +

1

4
(

0

𝑠(𝐴𝑠1)
+

0

𝑠(𝐵𝑠1)
+

0

𝑠(𝐶𝑠1)
+

0

𝑠(𝐷𝑠1)
)] = 0 

 

Let 𝐺𝑁1
≠ 𝐺𝑁2

. We have 𝐴𝑠1
≠ 𝐴𝑠2

, 𝐵𝑠1
≠ 𝐵𝑠2

, 𝐶𝑠1
≠ 𝐶𝑠2

, 𝐷𝑠1
≠ 𝐷𝑠2

, 𝑇𝑠1
≠ 𝑇𝑠2

, 𝐼𝑠1 ≠ 𝐼𝑠2 , 𝐹𝑠1
≠ 𝐹𝑠2

. 

In this case, 𝑑𝑄𝐻𝑁(𝐺𝑁1
,  𝐺𝑁2

)   >  0. 

Let 𝐺𝑁1
≠ ∅ and 𝐺𝑁2

= ∅. So, 

𝐺𝑁1
= (𝐴𝑠1 , 𝐵𝑠1𝑇𝑠1 , 𝐶𝑠1𝐼𝑠1 , 𝐷𝑠1𝐹𝑠1), 𝐺𝑁2

=  ∅ =  (∅, ∅𝑇𝑠2 , ∅𝐼𝑠2 , ∅𝐹𝑠2). Since we are looking for the highest 

value of the result, we take 𝑇𝑠1 = 𝐼𝑠1 = 𝐹𝑠1 = 1 and  𝑇𝑠2 = 𝐼𝑠2 = 𝐹𝑠2 = 0. 

𝑑𝑄𝐻𝑁(𝐺𝑁1
,  𝐺𝑁2

) =
1

2
[𝑚𝑎𝑥{|𝑇𝑠1 − 0|, |𝐼𝑠1 − 0|, |𝐹𝑠1 − 0|}

+
1

4
(
𝑚𝑎𝑥{𝑠(𝐴𝑠1 ∖ ∅), 𝑠(∅ ∖ 𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1), 0, 1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠1 ∖ ∅), 𝑠(∅ ∖ 𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1), 0, 1}

+
𝑚𝑎𝑥{𝑠(𝐶𝑠1 ∖ ∅), 𝑠(∅ ∖ 𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1), 0, 1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1 ∖ ∅), 𝑠(∅ ∖ 𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1), 0, 1}
)]

=
1

2
[1 +

1

4
(1 + 1 + 1 + 1)] = 1 

 

As the highest value of 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

) is 1 and the lowest value is 0, 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  ∈  [0, 1]. 

ii) 𝑑𝑄𝐻𝑁(𝐺𝑁1
,  𝐺𝑁2

)  =  0 ⇔  𝐺𝑁1
 =  𝐺𝑁2

 

(⇒): If 𝑑𝑄𝐻𝑁(𝐺𝑁1
,  𝐺𝑁2

)  =  
1

2
[𝑚𝑎𝑥{|𝑇𝑠1

− 𝑇𝑠2
|, |𝐼𝑠1 − 𝐼𝑠2|, |𝐹𝑠1

− 𝐹𝑠2
|} +

1

4
(

𝑚𝑎𝑥{𝑠(𝐴𝑠1∖𝐴𝑠2),𝑠(𝐴𝑠2∖𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1),𝑠(𝐴𝑠2),1}
+

                                                
𝑚𝑎𝑥{𝑠(𝐵𝑠1∖𝐵𝑠2),𝑠(𝐵𝑠2∖𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1),𝑠(𝐵𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐶𝑠1∖𝐶𝑠2),𝑠(𝐶𝑠2∖𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1),𝑠(𝐶𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1∖𝐷𝑠2),𝑠(𝐷𝑠2∖𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1),𝑠(𝐷𝑠2),1}
)]  

                                                           = 0,  

then 

𝑚𝑎𝑥{|𝑇𝑠1 − 𝑇𝑠2|, |𝐼𝑠1 − 𝐼𝑠2|, |𝐹𝑠1 − 𝐹𝑠2|} =  0  and 

1

4
(

𝑚𝑎𝑥{𝑠(𝐴𝑠1∖𝐴𝑠2),𝑠(𝐴𝑠2∖𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1),𝑠(𝐴𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠1∖𝐵𝑠2),𝑠(𝐵𝑠2∖𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1),𝑠(𝐵𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐶𝑠1∖𝐶𝑠2),𝑠(𝐶𝑠2∖𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1),𝑠(𝐶𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1∖𝐷𝑠2),𝑠(𝐷𝑠2∖𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1),𝑠(𝐷𝑠2),1}
) =  0  
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If  |𝑇𝑠1
− 𝑇𝑠2

| =  0, then  𝑇𝑠1
= 𝑇𝑠2

; if |𝐼𝑠1 − 𝐼𝑠2| =  0, then 𝐼𝑠1 = 𝐼𝑠2 ; if |𝐹𝑠1
− 𝐹𝑠2

| =  0, then 𝐹𝑠1
= 𝐹𝑠2

 and if 

𝑚𝑎𝑥{𝑠(𝐴𝑠1∖𝐴𝑠2),𝑠(𝐴𝑠2∖𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1),𝑠(𝐴𝑠2),1}
=  0, 

𝑚𝑎𝑥{𝑠(𝐵𝑠1∖𝐵𝑠2),𝑠(𝐵𝑠2∖𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1),𝑠(𝐵𝑠2),1}
=  0, 

𝑚𝑎𝑥{𝑠(𝐶𝑠1∖𝐶𝑠2),𝑠(𝐶𝑠2∖𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1),𝑠(𝐶𝑠2),1}
= 0,  

𝑚𝑎𝑥{𝑠(𝐷𝑠1∖𝐷𝑠2),𝑠(𝐷𝑠2∖𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1),𝑠(𝐷𝑠2),1}
=  0, 

then 

𝐴𝑠1
= 𝐴𝑠2

, 𝐵𝑠1
= 𝐵𝑠2

, 𝐶𝑠1
= 𝐶𝑠2

, 𝐷𝑠1
= 𝐷𝑠2

 . 

Then, from Definition 2.8, we obtain that 𝐺𝑁1
= 𝐺𝑁2

. 

(⟸):  

Let 𝐺𝑁1
= 𝐺𝑁2

. From i, we have𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁1

)  = 0. 

 

 

 

 

 

 

                        

iii)  

𝑑𝑄𝐻𝑁(𝐺𝑁1
,  𝐺𝑁2

) =  
1

2
[𝑚𝑎𝑥{|𝑇𝑠1 − 𝑇𝑠2|, |𝐼𝑠1 − 𝐼𝑠2|, |𝐹𝑠1 − 𝐹𝑠2|}

+
1

4
(
𝑚𝑎𝑥{𝑠(𝐴𝑠1 ∖ 𝐴𝑠2), 𝑠(𝐴𝑠2 ∖ 𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1), 𝑠(𝐴𝑠2), 1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠1 ∖ 𝐵𝑠2), 𝑠(𝐵𝑠2 ∖ 𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1), 𝑠(𝐵𝑠2), 1}

+
𝑚𝑎𝑥{𝑠(𝐶𝑠1 ∖ 𝐶𝑠2), 𝑠(𝐶𝑠2 ∖ 𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1), 𝑠(𝐶𝑠2), 1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1 ∖ 𝐷𝑠2), 𝑠(𝐷𝑠2 ∖ 𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1), 𝑠(𝐷𝑠2), 1}
)]

=  
1

2
[𝑚𝑎𝑥{|𝑇𝑠2

− 𝑇𝑠1
|, |𝐼𝑠2 − 𝐼𝑠1|, |𝐹𝑠2

− 𝐹𝑠1
|}

+
1

4
(
𝑚𝑎𝑥{𝑠(𝐴𝑠2 ∖ 𝐴𝑠1), 𝑠(𝐴𝑠1 ∖ 𝐴𝑠2)}

𝑚𝑎𝑥{𝑠(𝐴𝑠2), 𝑠(𝐴𝑠1), 1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠2 ∖ 𝐵𝑠1), 𝑠(𝐵𝑠1 ∖ 𝐵𝑠2)}

𝑚𝑎𝑥{𝑠(𝐵𝑠2), 𝑠(𝐵𝑠1), 1}

+
𝑚𝑎𝑥{𝑠(𝐶𝑠2 ∖ 𝐶𝑠1), 𝑠(𝐶𝑠1 ∖ 𝐶𝑠2)}

𝑚𝑎𝑥{𝑠(𝐶𝑠2), 𝑠(𝐶𝑠1), 1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠2 ∖ 𝐷𝑠1), 𝑠(𝐷𝑠1 ∖ 𝐷𝑠2)}

𝑚𝑎𝑥{𝑠(𝐷𝑠2), 𝑠(𝐷𝑠1), 1}
)] = 𝑑𝑄𝐻𝑁(𝐺𝑁2

, 𝐺𝑁1
). 

iv) Let 𝐺𝑁1
⊂ 𝐺𝑁2

⊂ 𝐺𝑁3
. From Definition 2.8, we obtain 𝐴𝑠1

⊂ 𝐴𝑠2
⊂ 𝐴𝑠3

, 𝐵𝑠1
⊂ 𝐵𝑠2

⊂ 𝐵𝑠3
, 𝐶𝑠1

⊂ 𝐶𝑠2
⊂ 𝐶𝑠3

, 

𝐷𝑠1
⊂ 𝐷𝑠2

⊂ 𝐷𝑠3
. Also, we have 

𝑠(𝐴𝑠1) ≤ 𝑠(𝐴𝑠2) ≤ 𝑠(𝐴𝑠3), 𝑠(𝐵𝑠1) ≤ 𝑠(𝐵𝑠2) ≤ 𝑠(𝐵𝑠3), 𝑠(𝐶𝑠1) ≤ 𝑠(𝐶𝑠2) ≤ 𝑠(𝐶𝑠3), 𝑠(𝐷𝑠1) ≤ 𝑠(𝐷𝑠2) ≤ 𝑠(𝐷𝑠3),   

and 
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𝑚𝑎𝑥{𝑠(𝐴𝑠1∖𝐴𝑠2),𝑠(𝐴𝑠2∖𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1),𝑠(𝐴𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠1∖𝐵𝑠2),𝑠(𝐵𝑠2∖𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1),𝑠(𝐵𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐶𝑠1∖𝐶𝑠2),𝑠(𝐶𝑠2∖𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1),𝑠(𝐶𝑠2),1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1∖𝐷𝑠2),𝑠(𝐷𝑠2∖𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1),𝑠(𝐷𝑠2),1}
≤

𝑚𝑎𝑥{𝑠(𝐴𝑠1∖𝐴𝑠3),𝑠(𝐴𝑠3∖𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1),𝑠(𝐴𝑠3),1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠1∖𝐵𝑠3),𝑠(𝐵𝑠3∖𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1),𝑠(𝐵𝑠3),1}
+

𝑚𝑎𝑥{𝑠(𝐶𝑠1∖𝐶𝑠3),𝑠(𝐶𝑠3∖𝐶𝑠1)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1),𝑠(𝐶𝑠3),1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1∖𝐷𝑠3),𝑠(𝐷𝑠3∖𝐷𝑠1)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1),𝑠(𝐷𝑠3),1}
  

since 

𝑠(𝐴𝑠1 ∖ 𝐴𝑠2) =  𝑠(𝐴𝑠2 ∖ 𝐴𝑠3)  =  𝑠(𝐴𝑠1 ∖ 𝐴𝑠3)  =  ∅  

𝑠(𝐵𝑠1
∖ 𝐵𝑠2

) =  𝑠(𝐵𝑠2
∖ 𝐵𝑠3

)  =  𝑠(𝐵𝑠1
∖ 𝐵𝑠3

)  =  ∅  

𝑠(𝐶𝑠1
∖ 𝐶𝑠2

) =  𝑠(𝐶𝑠2
∖ 𝐶𝑠3

)  =  𝑠(𝐶𝑠1
∖ 𝐶𝑠3

)  =  ∅  

𝑠(𝐷𝑠1 ∖ 𝐷𝑠2) =  𝑠(𝐷𝑠2 ∖ 𝐷𝑠3)  =  𝑠(𝐷𝑠1 ∖ 𝐷𝑠3)  =  ∅  

𝑠(𝐴𝑠2 ∖ 𝐴𝑠1)  ≤  𝑠(𝐴𝑠3 ∖ 𝐴𝑠1), 𝑠(𝐵𝑠2 ∖ 𝐵𝑠1) ≤ 𝑠(𝐵𝑠3 ∖ 𝐵𝑠1),  𝑠(𝐶𝑠2 ∖ 𝐶𝑠1) ≤ 𝑠(𝐶𝑠3 ∖ 𝐶𝑠1),  𝑠(𝐷𝑠2 ∖ 𝐷𝑠1) ≤ 𝑠(𝐷𝑠3 ∖

𝐷𝑠1
),  

𝑠(𝐴𝑠3
∖ 𝐴𝑠2

) ≤ 𝑠(𝐴𝑠3
∖ 𝐴𝑠1

), 𝑠(𝐵𝑠3
∖ 𝐵𝑠2

) ≤ 𝑠(𝐵𝑠3
∖ 𝐵𝑠1

), 𝑠(𝐶𝑠3
∖ 𝐶𝑠2

) ≤ 𝑠(𝐶𝑠3
∖ 𝐶𝑠1

),   𝑠(𝐷𝑠3
∖ 𝐷𝑠2

) ≤ 𝑠(𝐷𝑠3
∖

𝐷𝑠1) . 

Also, from Definition 2.8, we obtain 

|𝑇𝑠1 − 𝑇𝑠2| ≤ |𝑇𝑠1 − 𝑇𝑠3|, |𝐼𝑠1 − 𝐼𝑠2| ≤ |𝐼𝑠1 − 𝐼𝑠3|, |𝐹𝑠1 − 𝐹𝑠2| ≤ |𝐹𝑠1 − 𝐹𝑠3|, 

|𝑇𝑠2 − 𝑇𝑠3| ≤ |𝑇𝑠1 − 𝑇𝑠3|, |𝐼𝑠2 − 𝐼𝑠3| ≤ |𝐼𝑠1 − 𝐼𝑠3| , |𝐹𝑠2 − 𝐹𝑠3| ≤ |𝐹𝑠1 − 𝐹𝑠3|. 

Thus, we have 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  ≤  𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁3

).  

Where, 𝑑𝑄𝐻𝑁(𝐺𝑁2
,  𝐺𝑁3

)  ≤  𝑑𝑄𝐻𝑁(𝐺𝑁1
,  𝐺𝑁3

) can be shown similar to 𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  ≤  𝑑𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁3

). 

Definition 3.3: Let 𝐺𝑁1
= (𝐴𝑠1 , 𝐵𝑠1𝑇𝑠1 , 𝐶𝑠1𝐼𝑠1 , 𝐷𝑠1𝐹𝑠1) and 𝐺𝑁2

= (𝐴𝑠2 , 𝐵𝑠2𝑇𝑠2 , 𝐶𝑠2𝐼𝑠2 , 𝐷𝑠2𝐹𝑠2) be two 

generalized set – valued neutrosophic quadruple numbers. We define a function 𝑑𝐻𝐷: 𝐺𝑁1
 ×  𝐺𝑁2

 →

 [0, 1]  such that  

 𝑆𝑄𝐻𝑁: (𝐺𝑁1
, 𝐺𝑁2

)  =  𝑆𝑄𝐻𝑁  ((𝐴𝑠1 , 𝐵𝑠1𝑇𝑠1 , 𝐶𝑠1𝐼𝑠1 , 𝐷𝑠1𝐹𝑠1), (𝐴𝑠2 , 𝐵𝑠2𝑇𝑠2 , 𝐶𝑠2𝐼𝑠2 , 𝐷𝑠2𝐹𝑠2)) 

= 1 −
1

2
[𝑚𝑎𝑥{|𝑇𝑠1 − 𝑇𝑠2|, |𝐼𝑠1 − 𝐼𝑠2|, |𝐹𝑠1 − 𝐹𝑠2|}                                                 

+
1

4
(
𝑚𝑎𝑥{𝑠(𝐴𝑠1 ∖ 𝐴𝑠2), 𝑠(𝐴𝑠2 ∖ 𝐴𝑠1)}

𝑚𝑎𝑥{𝑠(𝐴𝑠1
), 𝑠(𝐴𝑠2

), 1}
+

𝑚𝑎𝑥{𝑠(𝐵𝑠1 ∖ 𝐵𝑠2), 𝑠(𝐵𝑠2 ∖ 𝐵𝑠1)}

𝑚𝑎𝑥{𝑠(𝐵𝑠1
), 𝑠(𝐵𝑠2

), 1}

+
𝑚𝑎𝑥{𝑠(𝐶𝑠1

∖ 𝐶𝑠2
), 𝑠(𝐶𝑠2

∖ 𝐶𝑠1
)}

𝑚𝑎𝑥{𝑠(𝐶𝑠1), 𝑠(𝐶𝑠2), 1}
+

𝑚𝑎𝑥{𝑠(𝐷𝑠1
∖ 𝐷𝑠2

), 𝑠(𝐷𝑠2
∖ 𝐷𝑠1

)}

𝑚𝑎𝑥{𝑠(𝐷𝑠1), 𝑠(𝐷𝑠2), 1}
)] 
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Then, 𝑆𝑄𝐻𝑁 is called a Hausdorff similarity measure on generalized set - valued neutrosophic quadruple 

numbers. 

Where, s(A) is number of element of set A. 

Also, we generalized Hausdorff similarity measure for  generalized set - valued neutrosophic quadruple 

numbers in Definition 3.3. 

Theorem 3.4: Let 𝐺𝑁1
= (𝐴𝑠1 , 𝐵𝑠1𝑇𝑠1 , 𝐶𝑠1𝐼𝑠1 , 𝐷𝑠1𝐹𝑠1), 𝐺𝑁2

= (𝐴𝑠2 , 𝐵𝑠2𝑇𝑠2 , 𝐶𝑠2𝐼𝑠2 , 𝐷𝑠2𝐹𝑠2) and                                   

𝐺𝑁3
= (𝐴𝑠3 , 𝐵𝑠3𝑇𝑠3 , 𝐶𝑠3𝐼𝑠3 , 𝐷𝑠3𝐹𝑠3)  be three generalized set – valued neutrosophic quadruple numbers. 

Then, 𝑆𝑄𝐻𝑁 satisfies the below conditions. 

i) 𝑆𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  ∈  [0, 1]  

ii) 𝑆𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  =  1 ⇔  𝐺𝑁1
= 𝐺𝑁2

  

iii) 𝑆𝑄𝐻𝑁(𝐺𝑁1
, 𝐺𝑁2

)  =  𝑆𝑄𝐻𝑁  (𝐺𝑁2
, 𝐺𝑁1

)  

iv) If  𝐺𝑁1
⊂ 𝐺𝑁2

⊂ 𝐺𝑁3
, then 

𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

)  ≤  𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

) and 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

) ≤  𝑆𝑄𝐻𝑁 (𝐺𝑁2
, 𝐺𝑁3

). 

Proof: 

i) From Theorem 3.2,  

when 𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁1

)  =  0, 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁1

)  =  1 − 𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁1

)  =  1 − 0 = 1. 

when 𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁1

)  =  1, 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁1

)  =  1 − 𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁1

)  =  1 − 1 = 0. 

Then, 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  ∈  [0, 1]. 

ii)  

From Theorem 3.2, 

(⇒): If  𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1, then 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁2

) 

𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

) 

                                                          𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 1 = 0. 

From Theorem 3.2, 

(⇐): If 𝐺𝑁1
 =  𝐺𝑁2

 , then  𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁2

)  =  0 . 

Since 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 0 = 1, one can write 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 . 

iii) From Theorem 3.2, 

 

Since 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

) and 𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁2

)  =  𝑑𝑄𝐻𝑁  (𝐺𝑁2
, 𝐺𝑁1

), 

𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  =  1 − 𝑑𝑄𝐻𝑁 (𝐺𝑁2
, 𝐺𝑁1

)  =  𝑆𝑄𝐻𝑁  (𝐺𝑁2
, 𝐺𝑁1

). 
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iv) Let 𝐺𝑁1
 ⊂  𝐺𝑁2

 ⊂  𝐺𝑁3
. 

From Theorem 3.2, if 𝐴𝑠1  ⊂  𝐴𝑠2  ⊂  𝐴𝑠3, 𝐵𝑠1  ⊂  𝐵𝑠2  ⊂  𝐵𝑠3 , 𝐶𝑠1  ⊂  𝐶𝑠2  ⊂  𝐶𝑠3 , 𝐷𝑠1  ⊂  𝐷𝑠2 ⊂ 𝐷𝑠3  , then 

𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  ≤  𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

) and 𝑑𝑄𝐻𝑁 (𝐺𝑁2
, 𝐺𝑁3

)  ≤  𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁3

) . 

𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  ≤  𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

) 

−𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  ≥  −𝑑𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

) 

1 − 𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁2

) ≥ 1 − 𝑑𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁3

) 

𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  ≥  𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

). 

Also, 𝑆𝑄𝐻𝑁 (𝐺𝑁1
, 𝐺𝑁3

)  ≤  𝑆𝑄𝐻𝑁  (𝐺𝑁2
, 𝐺𝑁3

) can be shown similar to 𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁2

)  ≥  𝑆𝑄𝐻𝑁  (𝐺𝑁1
, 𝐺𝑁3

). 

Example 3.5: Let 𝑋 = ({𝑥2, 𝑥3, 𝑥5, 𝑥6}, {𝑥1, 𝑥6, 𝑥8}(1), ∅(0), ∅(0)) and 

X1 = ({𝑥1, 𝑥3, 𝑥5, 𝑥7, 𝑥9}, {𝑥2, 𝑥4, 𝑥5, 𝑥6, 𝑥7}(0,4), {𝑥2, 𝑥3, 𝑥7}(0,1), {𝑥4, 𝑥5 }(0,2)) be two generalized set-

valued neutrosophic quadruple numbers. 

We calculate 𝑑𝑄𝐻𝑁(𝑋, 𝑋1), namely the distance between X and 𝑋1. 

𝑑𝑄𝐻𝑁(𝑋, 𝑋1) =  
1

2
[𝑚𝑎𝑥{|T − 𝑇1|, |I − 𝐼1|, |F − 𝐹1|}

+
1

4
(
𝑚𝑎𝑥{𝑠(A ∖ 𝐴1), 𝑠(𝐴1 ∖ A)}

𝑚𝑎𝑥{𝑠(A), 𝑠(𝐴1), 1}
+

𝑚𝑎𝑥{𝑠(B ∖ 𝐵1), 𝑠(𝐵1 ∖ B)}

𝑚𝑎𝑥{𝑠(B), 𝑠(𝐵1), 1}
+

𝑚𝑎𝑥{𝑠(C ∖ 𝐶1), 𝑠(𝐶1 ∖ C)}

𝑚𝑎𝑥{𝑠(C), 𝑠(𝐶1), 1}

+
𝑚𝑎𝑥{𝑠(D ∖ 𝐷1), 𝑠(𝐷1 ∖ D)}

𝑚𝑎𝑥{𝑠(D), 𝑠(𝐷1), 1}
)]. 

𝑑𝑄𝐻𝑁(𝑋, 𝑋1) =
1

2
[𝑚𝑎𝑥{|1 − 0,4|, |0 − 0,1|, |0 − 0,2|}

+
1

4
(
𝑚𝑎𝑥{𝑠({𝑥2, 𝑥3, 𝑥5, 𝑥6} ∖ {𝑥1, 𝑥3, 𝑥5, 𝑥7, 𝑥9}), 𝑠({𝑥1, 𝑥3, 𝑥5, 𝑥7, 𝑥9} ∖ {𝑥2, 𝑥3, 𝑥5, 𝑥6})}

𝑚𝑎𝑥{𝑠({𝑥2, 𝑥3, 𝑥5, 𝑥6}), 𝑠({𝑥1, 𝑥3, 𝑥4}), 1}

+
𝑚𝑎𝑥{𝑠({𝑥1, 𝑥6, 𝑥8} ∖ {𝑥2, 𝑥4, 𝑥5, 𝑥6, 𝑥7}), 𝑠({𝑥2, 𝑥4, 𝑥5, 𝑥6, 𝑥7} ∖ {𝑥1, 𝑥6, 𝑥8})}

𝑚𝑎𝑥{𝑠({𝑥1, 𝑥6, 𝑥8}), 𝑠({𝑥2, 𝑥4, 𝑥5, 𝑥6, 𝑥7}), 1}

+
𝑚𝑎𝑥{𝑠(∅ ∖ {𝑥2, 𝑥3, 𝑥7}), 𝑠({𝑥2, 𝑥3, 𝑥7} ∖ ∅)}

𝑚𝑎𝑥{𝑠({}), 𝑠({𝑥2, 𝑥3, 𝑥7}), 1}
+

𝑚𝑎𝑥{𝑠(∅ ∖ {𝑥4, 𝑥5}), 𝑠({𝑥4, 𝑥5} ∖ ∅)}

𝑚𝑎𝑥{𝑠({}, 𝑠({𝑥4, 𝑥5}), 1}
)] 

        𝑑𝑄𝐻𝑁(𝑋, 𝑋1) =  
1

2
[𝑚𝑎𝑥{0.6, 0.1, 0.2} +

1

4
(

𝑚𝑎𝑥{2,3}

𝑚𝑎𝑥{4,3,1}
+

𝑚𝑎𝑥{2,4}

𝑚𝑎𝑥{3,5,1}
+

𝑚𝑎𝑥{0,3}

𝑚𝑎𝑥{0,3,1}
+

𝑚𝑎𝑥{0,2}

𝑚𝑎𝑥{0,2,1}
)] 

=
1

2
[0.6 +

1

4
(
3

4
+

4

5
+

3

3
+

2

2
)] = 0.74375. 

As 𝑑𝑄𝐻𝑁(𝑋, 𝑋1)  =  0.74375, 𝑆𝑄𝐻𝑁  (𝑋, 𝑋1)  =  1 − 𝑑𝑄𝐻𝑁(𝑋, 𝑋1)  =  1 − 0.74375 =  0.25625.  
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4 Decision Making Applications for Adequacy of Online Education  

Now, we give an algorithm based on the generalized set-valued neutrosophic quadruple numbers and 

Hausdroff measures on the generalized set-valued neutrosophic quadruple numbers for multi-criteria 

decision making method applications. 

Algorithm 4.1: 

Step 1: The criteria are determined. The criteria set get K. 

𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑛} (𝑛 ∈ ℕ) 

The weight values of the criteria determined to 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛} (𝑛 ∈ ℕ) and  ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, 𝑤𝑖 ∈ ℕ. 

Where, 

 𝑤1 is the weight of criterion k1, 

𝑤2 is the weight of criterion k2, 

𝑤3 is the weight of criterion k3, 

                        . 

                        . 

                        . 

𝑤𝑛 is the weight of criterion kn. 

Step 2: Let I be the ideal status. For the generalized set – valued neutrosophic quadruple numbers, we 

define I such that 

𝐼 = {𝑘1: (𝑃(𝑋), 𝑃(𝑋)𝑇1, ∅𝐼1 , ∅𝐹1), 𝑘2: (𝑃(𝑌), 𝑃(𝑌)𝑇2, ∅𝐼2, ∅𝐹2), … , 𝑘𝑛: (𝑃(𝑍), 𝑃(𝑍)𝑇𝑛 , ∅𝐼𝑛 , ∅𝐹𝑛𝑖
)} . 

Where, 

𝑇1 = 𝑇2 = ⋯ = 𝑇𝑛 = 1 
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𝐼1 = 𝐼2 = ⋯ = 𝐼𝑛 = 0 

𝐹1 = 𝐹2 = ⋯ = 𝐹𝑛 = 0 . 

Step 3: The adequacy of the efficiency of the criteria should be assessed by samples references according 

to each criterion and each status should be identified as a generalized set valued neutrosophic 

quadruple numbers. 

Let the sets of the samples references be 

𝐴1 = {𝑘1: (𝑋11
, 𝑋12

𝑇11
, 𝑋13

𝐼11
, 𝑋14

𝐹11
), 𝑘2: (𝑌11

, 𝑌12
𝑇12

, 𝑌13
𝐼12

, 𝑌14
𝐹12

), … , 𝑘𝑛: (𝑍11
, 𝑍12

𝑇1𝑛
, 𝑍13

𝐼1𝑛
, 𝑍14

𝐹1𝑛
)} 

𝐴2 = {𝑘1: (𝑋21
, 𝑋22

𝑇21
, 𝑋23

𝐼21
, 𝑋24

𝐹21
), 𝑘2: (𝑌21

, 𝑌22
𝑇22

, 𝑌23
𝐼22

, 𝑌24
𝐹22

),…,        𝑘𝑛: (𝑍21
, 𝑍22

𝑇2𝑛
, 𝑍23

𝐼2𝑛
, 𝑍24

𝐹2𝑛
)}  

. 

. 

. 

𝐴𝑛 = {𝑘1: (𝑋𝑛1
, 𝑋𝑛2

𝑇𝑛1
, 𝑋𝑛3

𝐼𝑛1
, 𝑋𝑛4

𝐹𝑛1
), 𝑘2: (𝑌𝑛1

, 𝑌𝑛2
𝑇𝑛2

, 𝑌𝑛3
𝐼𝑛2

, 𝑌𝑛4
𝐹𝑛2

), …,   𝑘𝑚: (𝑍𝑛1
, 𝑍𝑛2

𝑇𝑛𝑛
, 𝑍𝑛3

𝐼𝑛𝑛
, 𝑍𝑛4

𝐹𝑛𝑛
)}  

and each samples reference is evaluated according to each criterion. Here; 

𝑋𝑖𝑗
∈ 𝑃(𝑋), 𝑌𝑖𝑗

∈ 𝑃(𝑌), … , 𝑍𝑖𝑗
∈ 𝑃(𝑍)  (i = 1, 2, 3, …,n ) ( j = 1, 2, … , n ) 

Step 4: The sample reference criteria are given as generalized set valued neutrosophic quadruple 

numbers in Step 4. Now show them in Table 1.  

Table 1. Example reference criterion table 

 𝑘1 𝑘2 … 𝑘𝑛 

𝐴1 (𝑋11
, 𝑋12

𝑇11
, 𝑋13

𝐼11
, 𝑋14

𝐹11
) (𝑌11

, 𝑌12
𝑇12

, 𝑌13
𝐼12

, 𝑌14
𝐹12

) … (𝑍11
, 𝑍12

𝑇1𝑛
, 𝑍13

𝐼1𝑛
, 𝑍14

𝐹1𝑛
) 

𝐴2 (𝑋21
, 𝑋22

𝑇21
, 𝑋23

𝐼21
, 𝑋24

𝐹21
) (𝑌21

, 𝑌22
𝑇22

, 𝑌23
𝐼22

, 𝑌24
𝐹22

) … (𝑍21
, 𝑍22

𝑇2𝑛
, 𝑍23

𝐼2𝑛
, 𝑍24

𝐹2𝑛
) 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

… 

… 

… 

 

. 

. 

. 

𝐴𝑛 (𝑋𝑛1
, 𝑋𝑛2

𝑇𝑛1
, 𝑋𝑛3

𝐼𝑛1
, 𝑋𝑛4

𝐹𝑛1
) (𝑌𝑛1

, 𝑌𝑛2
𝑇𝑛2

, 𝑌𝑛3
𝐼𝑛2

, 𝑌𝑛4
𝐹𝑛2

) … (𝑍𝑛1
, 𝑍𝑛2

𝑇𝑛𝑛
, 𝑍𝑛3

𝐼𝑛𝑛
, 𝑍𝑛4

𝐹𝑛𝑛
) 

  

Step 5: Let's calculate the similarity values of the sample references with the I ideal criterion. While 

doing this, calculate  𝑆𝑄𝐻𝑁 (𝐼𝑘𝑗
, 𝐴𝑖𝑘𝑗

) in Table 2. 

Table 2. The I ideal criterion and the similarity values of the sample references 

 𝑘1 𝑘2 … 𝑘𝑛 

𝐴1 𝑆𝑄𝐻𝑁(𝐼𝑘1
, 𝐴1𝑘1

) 𝑆𝑄𝐻𝑁(𝐼𝑘2
, 𝐴1𝑘2

) … 𝑆𝑄𝐻𝑁(𝐼𝑘𝑛
, 𝐴1𝑘𝑛

) 

𝐴2 𝑆𝑄𝐻𝑁(𝐼𝑘1
, 𝐴2𝑘1

) 𝑆𝑄𝐻𝑁(𝐼𝑘2
, 𝐴2𝑘2

) … 𝑆𝑄𝐻𝑁(𝐼𝑘𝑛
, 𝐴2𝑘𝑛

) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… 

. 

. 

 

. 

. 

. 

𝐴𝑛 𝑆𝑄𝐻𝑁(𝐼𝑘1
, 𝐴𝑛𝑘1

) 𝑆𝑄𝐻𝑁(𝐼𝑘2
, 𝐴𝑛𝑘2

) … 𝑆𝑄𝐻𝑁(𝐼𝑘𝑛
, 𝐴𝑛𝑘𝑛

) 

 

Step 6: In this last step ın the similarity found, it is multiplied by the weight value of a criterion. For 

this, use the k-th weight value for each of the similarity values in the k-th column (k = 1, 2, …, n). Thus, 
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get the weighted similarity table in Table 3. The sum of 𝐴𝑖 in Table 3 will be given as 𝑆𝑄𝐻𝑁
𝑖 similarity 

value. (i = 1, 2, … n) (𝑛 ∈ ℕ) 

 

Table 3. Weighted similarity table 

 𝑤1𝑘1 𝑤2𝑘2 … 𝑤𝑛𝑘𝑛 
∑ 𝑤𝑖𝑘𝑖

𝑛

𝑖=1

= 𝑆𝑄𝐻𝑁
𝑖 

𝐴1 𝑤1. 𝑆𝑄𝐻𝑁(𝐼𝑘1
, 𝐴1𝑘1

) 𝑤2. 𝑆𝑄𝐻𝑁(𝐼𝑘2
, 𝐴1𝑘2

) … 𝑤𝑛. 𝑆𝑄𝐻𝑁(𝐼𝑘𝑛
, 𝐴1𝑘𝑛

) 𝑆𝑄𝐻𝑁
1 

𝐴2 𝑤1. 𝑆𝑄𝐻𝑁(𝐼𝑘1
, 𝐴2𝑘1

) 𝑤2. 𝑆𝑄𝐻𝑁(𝐼𝑘2
, 𝐴2𝑘2

) … 𝑤𝑛. 𝑆𝑄𝐻𝑁(𝐼𝑘𝑛
, 𝐴2𝑘𝑛

) 𝑆𝑄𝐻𝑁
2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

… 

. 

. 

 

. 

. 

. 

. 

. 

. 

𝐴𝑛 𝑤1. 𝑆𝑄𝐻𝑁(𝐼𝑘1
, 𝐴𝑛𝑘1

) 𝑤2. 𝑆𝑄𝐻𝑁(𝐼𝑘2
, 𝐴𝑛𝑘2

) … 𝑤𝑛. 𝑆𝑄𝐻𝑁(𝐼𝑘𝑛
, 𝐴𝑛𝑘𝑛

) 𝑆𝑄𝐻𝑁
𝑛 

 

Example 4.2: The similarity measure is an important mathematical tool to deal with the problems we 

encounter in daily life. One of the bad consequences of the epidemic that affects the whole world is that 

we have to stop education. Therefore, education and training institutions have temporarily started 

online education practices so that students do not stay away from education. Of course, it has been seen 

that future online education does not have the same effect on students. Some of the factors that 

negatively affect students in this process are the environment, internet infrastructure, and the materials 

used in the course. In this section, the new similarity measure is applied to an online education problem. 

The generalized set-valued neutrosophic quadruple number is just a tool to deal with such cases, and 

for each evaluations for an alternative under the criterias can be considered as a generalized set-valued 
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neutrosophic quadruple number. Now, In the example below, 4 criteria and weight values of these 

criteria are determined in the first step. In step 2, the ideal set I to be referenced is written. In step 3, how 

to determine the efficiency of online courses, 10 student sets will be determined and these sets will be 

written as generalized set-valued neutrosophic quadruple number. The similarity values of these 

student sets with ideal set I are calculated and the results are multiplied by the weight values of the 

criteria. The similarity values of each criterion are added and the student with the best result is 

determined by finding the similarity values of each student separately. 

Step 1: Let the set of criteria to be considered in evaluating the students' efficiency in online education 

be K. 

𝐾 = {𝑘1, 𝑘2, 𝑘3, 𝑘4}. 

𝑘1 : Communication. The criterion weight values 𝑤1= 0.4 

𝑘2 : Lesson plan. The criterion weight values 𝑤2 =  0.2   

𝑘3 : Attendance. The criterion weight values 𝑤3  =  0.1 

𝑘4 : Source of Knowledge. The criterion weight values 𝑤4 =  0.3 

Step 2: For the I ideal student, in the generalized set valued neutrosophic quadruple set 

𝐼 = { 𝑘1: ({𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} , {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}(1), ∅(0), ∅(0)),  

         𝑘2: ({𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5} , {𝑦1, 𝑦2, 𝑦3 , 𝑦4, 𝑦5}(1), ∅(0), ∅(0)),  

         𝑘3: ({𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5}, {𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5}(1), ∅(0), ∅(0)),  

         𝑘4: ({𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5} , {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}(1), ∅(0), ∅(0))},  

Step 3: Each student whose adequacy of the efficiency of the online lessons will be evaluated according 

to each criterion and each student is determined as a generalized set valued neutrosophic quadruple 

number. 

Let the set of the students be A = {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10} . 
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𝐴1  =  {𝑘1: ({𝑥1, 𝑥2, 𝑥4, 𝑥5}, {𝑥2, 𝑥4}(0.4), {𝑥1, 𝑥2, 𝑥4}(0.2), {𝑥1, 𝑥2}(0.3)), 𝑘2: ({𝑦1 , 𝑦2, 𝑦3, 𝑦5},  

         {𝑦1, 𝑦2, 𝑦3}(0.5), {𝑦2 , 𝑦3, 𝑦5}(0.2), {𝑦1, 𝑦5}(0.4)), 𝑘3: ({𝑧2, 𝑧3, 𝑧4, 𝑧5}, {𝑧2, 𝑧4, 𝑧5}(0.3), {𝑧2}(0.2),   

         {𝑧2, 𝑧3, 𝑧5}(0.4)), 𝑘4: ({𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}, {𝑡1}(0.2), {𝑡4, 𝑡5}(0.3), {𝑡4}(0.2))} 

𝐴2  =  {𝑘1: ({𝑥2, 𝑥3}, {𝑥3}(0.5), {𝑥2, 𝑥3}(0.3), {𝑥3}(0.1)), 𝑘2: ({𝑦1, 𝑦3 , 𝑦4, 𝑦5}, {𝑦1, 𝑦4, 𝑦5}(0.7), {𝑦3}(0.1),                 

           {𝑦1}(0.1)), 𝑘3: ({𝑧5}, {𝑧5}(0.6), {𝑧5}(0.3), ∅(0.1)), 𝑘4: ({𝑡1, 𝑡2, 𝑡3}, {𝑡1, 𝑡2}(0.5), {𝑡2, 𝑡3}(0.2),   

          {𝑡1, 𝑡3}(0.2))} 

𝐴3  =  {𝑘1: ({𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑥1, 𝑥2, 𝑥3}(0.6), {𝑥1, 𝑥2, 𝑥3, 𝑥4}(0.2), {𝑥1, 𝑥3, 𝑥4}(0.3)), 𝑘2: ({𝑦1, 𝑦2, 𝑦3, 𝑦4},   

         {𝑦1, 𝑦2, 𝑦3, 𝑦4}(0.09), {𝑦1, 𝑦2, 𝑦3}(0.05), {𝑦1, 𝑦2, 𝑦3, 𝑦4}(0.01)), 𝑘3: ({𝑧5}, {𝑧5}(0.4), ∅(0.1), ∅(0.3)),   

          𝑘4: ({𝑡1, 𝑡2, 𝑡3, 𝑡4}, {𝑡1, 𝑡2, 𝑡3, 𝑡4}0.7), ∅(0.7), ∅(0.7))} 

𝐴4  =  {𝑘1: ({𝑥1, 𝑥2, 𝑥3, 𝑥4}, ∅(0.5), ∅(0.1), ∅(0.1)), 𝑘2: ({𝑦1, 𝑦2 , 𝑦4, 𝑦5}, {𝑦1, 𝑦4, 𝑦5}(0.4), ∅(0.6),  

         {𝑦1, 𝑦2}(0.8)), 𝑘3: ({𝑧1, 𝑧2, 𝑧3, 𝑧4}, {𝑧1, 𝑧2}(0.8), ∅(0.7), {𝑧3}(0.3)), 𝑘4: ({𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5},   

         {𝑡1, 𝑡4}(0.6), {𝑡1, 𝑡3, 𝑡4, 𝑡5}(0.1), {𝑡1, 𝑡4}(0.2))} 

𝐴5 = {𝑘1: ({𝑥1, 𝑥2, 𝑥3}, {𝑥2, 𝑥3}(0.9), {𝑥1, 𝑥2, 𝑥3}(0.02), {𝑥1, 𝑥3}(0.1)), 𝑘2: ({𝑦2, 𝑦3}, {𝑦2, 𝑦3}(0.7),   

         {𝑦3}(0.6), {𝑦2, 𝑦3}(0.4)), 𝑘3: ({𝑧3, 𝑧4, 𝑧5}, {𝑧3}(0.1), {𝑧5}(0.1), {𝑧3, 𝑧5}(0.2)), 𝑘4: ({𝑡1, 𝑡2, 𝑡5}, ∅(0.8), 

         {𝑡1, 𝑡5}(0.9), {𝑡5}(0.9))} 

𝐴6  =  {𝑘1: ({𝑥1, 𝑥3}, {𝑥5}(0.04), {𝑥3, 𝑥4}(0,06), ∅(0.003)), 𝑘2: ({𝑦2, 𝑦3, 𝑦4, 𝑦5},  

         ∅(0.07), ∅(0.02), {𝑦2}(0.01)), 𝑘3: ({𝑧2}, {𝑧2, 𝑧3, 𝑧4}(0.4),   

         {𝑧2, 𝑧3, 𝑧4, 𝑧5}(0.02), ∅(0.02)), 𝑘4: (∅, {𝑡1, 𝑡5}(0.004), {𝑡3, 𝑡4}(0.02), 

         {𝑡5}(0.5))} 

𝐴7  =  {𝑘1: ({𝑥1, 𝑥3, 𝑥4, 𝑥5}, {𝑥5}(0.9), {𝑥5}(0.8), ∅(0.08)), 𝑘2: ({𝑦1, 𝑦2 , 𝑦3, 𝑦4, 𝑦5},   
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         {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}(0.1), ∅(0.1), ∅(0.1)), 𝑘3: (∅, {𝑧4, 𝑧5}(0.6), ∅(0.3), {𝑧4}(0.9)), 

          𝑘4: (∅, ∅(0.9), ∅ (0.9), ∅(0.1))} 

𝐴8  =  {𝑘1: ({𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}(0.3), {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}(0.5), {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}(0.2)), 

          𝑘2: ({𝑦4}, ∅(0.8), {𝑦4}(0.3), ∅(0.1)), 𝑘3: ({𝑧2}, ∅(0.2), ∅(0.02), ∅(0.1)), 

          𝑘4: ({𝑡1, 𝑡5}, ∅(0.9), ∅(0.1), {𝑡5}(0.1))} 

𝐴9 = {𝑘1: (∅, ∅(0.2), ∅(0.2), ∅(0.1)), 𝑘2: ({𝑦1, 𝑦3, 𝑦4}, {𝑦3, 𝑦4}(0.6), {𝑦4}(0.03), {𝑧1, 𝑧3, 𝑦4}(0.09)),   

          𝑘3: ({𝑧2, 𝑧3, 𝑧4, 𝑧5}, {𝑧2}(0.1), {𝑧2, 𝑧3, 𝑧4, 𝑧5}(0.7), {𝑧3, 𝑧4, 𝑧5}(0.7)),   

          𝑘4: ({𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}, {𝑡4}(0.6), {𝑡3}(0.9), {𝑡2}(0.9))} 

𝐴10 ={𝑘1: (∅, ∅(0.01), ∅(0.02), ∅(0.02)), 𝑘2: ({𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}, {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}(0.4), 

          ∅(0.1), {𝑦3}(0.1)), 𝑘3: (∅, ∅(0.01), ∅(0.01), ∅(0.01)), 𝑘4: (∅, ∅(0.05), ∅(0.05), ∅(0.1))}                         

Step 4: We show the criteria of the students which were given as neutrosophic quadruple sets in Table 

4. 

Table 4. Student criteria table 

                      𝑘1 𝑘2 𝑘3 𝑘4 

𝐴1 ({𝑥1, 𝑥2, 𝑥4, 𝑥5}, 

{𝑥2, 𝑥4}(0.4), 

{𝑥1, 𝑥2, 𝑥4}(0.2), 

{𝑥1, 𝑥2}(0.3)) 

({𝑦1, 𝑦2, 𝑦3 , 𝑦5}, 

{𝑦1, 𝑦2 , 𝑦3}(0.5), 

{𝑦2, 𝑦3, 𝑦5}(0.2),   

 {𝑦1, 𝑦5}(0.4)) 

({𝑧2, 𝑧3, 𝑧4, 𝑧5}, 

{𝑧2, 𝑧4, 𝑧5}(0.3), 

{𝑧2}(0.2), 

{𝑧2, 𝑧3, 𝑧5}(0.4)) 

({𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}  

{𝑡1}(0.2), 

{𝑡4, 𝑡5}(0.3), 

{𝑡4}(0.2)) 
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𝐴2 ({𝑥2, 𝑥3}, 

{𝑥3}(0.5), 

{𝑥2, 𝑥3}(0.3), 

{𝑥3}(0.1)) 

({𝑦1, 𝑦3, 𝑦4, 𝑦5}, 

{𝑦1, 𝑦4, 𝑦5}(0.7), 

{𝑦3}(0.1), 

{𝑦1}(0.1)) 

({𝑧5}, 

{𝑧5}(0.6), 

{𝑧5}(0.3), 

∅(0.1)) 

({𝑡1, 𝑡2, 𝑡3}, 

{𝑡1, 𝑡2}(0.5), 

{𝑡2, 𝑡3}(0.2), 

{𝑡1, 𝑡3}(0.2)) 

𝐴3 ({𝑥1, 𝑥2, 𝑥3, 𝑥4}, 

{𝑥1, 𝑥2, 𝑥3}(0.6), 

{𝑥1, 𝑥2, 𝑥3, 

𝑥4}(0.2), 

{𝑥1, 𝑥3, 𝑥4}(0.3)) 

({𝑦1, 𝑦2, 𝑦3, 𝑦4}, 

{𝑦1, 𝑦2, 𝑦3, 

𝑦4}(0.09), 

{𝑦1, 𝑦2, 𝑦3}(0.05), 

{𝑦1, 𝑦2, 𝑦3, 

𝑦4}(0.01)) 

({𝑧5}, 

{𝑧5}(0.4), 

∅(0.1), 

∅(0.3)) 

({𝑡1, 𝑡2, 𝑡3, 𝑡4}, 

{𝑡1, 𝑡2, 𝑡3, 𝑡4}0.7), 

∅(0.7), 

∅(0.7)) 

𝐴4 ({𝑥1, 𝑥2, 𝑥3, 𝑥4}, 

∅(0.5), 

∅(0.1), 

∅(0.1)) 

({𝑦1, 𝑦2, 𝑦4, 𝑦5}, 

{𝑦1, 𝑦4, 𝑦5}(0.4), 

∅(0.6), 

 ∅(0.8)) 

({𝑧1, 𝑧2, 𝑧3, 𝑧4}, 

{𝑧1, 𝑧2}(0.8), 

∅(0.7), 

{𝑧3}(0.3)) 

({𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}, 

{𝑡1, 𝑡4}(0.6), 

{𝑡1, 𝑡3, 𝑡4, 

𝑡5}(0.1), 

{𝑡1, 𝑡4}(0.2)) 

𝐴5 ({𝑥1, 𝑥2, 𝑥3}, 

{𝑥2, 𝑥3}(0.9), 

{𝑥1, 𝑥2, 

𝑥3}(0.02), 

{𝑥1, 𝑥3}(0.1)) 

({𝑦2, 𝑦3}, 

{𝑦2, 𝑦3}(0.7), 

{𝑦3}(0.6), 

{𝑦2, 𝑦3}(0.4)) 

({𝑧3, 𝑧4, 𝑧5}, 

{𝑧3}(0.1), 

{𝑧5}(0.1), 

{𝑧3, 𝑧5}(0.2)) 

({𝑡1, 𝑡2, 𝑡5}, 

∅(0.8), 

{𝑡1, 𝑡5}(0.9), 

{𝑡5}(0.9)) 
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𝐴6 ({𝑥1, 𝑥3}, 

{𝑥5}(0.04), 

{𝑥3, 𝑥4}(0.06), 

∅(0.003)) 

({𝑦2, 𝑦3, 𝑦4, 𝑦5}, 

∅(0.07), 

∅(0.02), 

{𝑦2}(0.01)) 

({𝑧2}, 

{𝑧2, 𝑧3, 𝑧4}(0.4), 

{𝑧2, 𝑧3, 𝑧4, 

𝑧5}(0.02), 

∅(0.02)) 

∅, 

{𝑡1, 𝑡5}(0.004), 

{𝑡3, 𝑡4}(0.02), 

{𝑡5}(0.5)) 

𝐴7 ({𝑥1, 𝑥3, 𝑥4, 𝑥5}, 

{𝑥5}(0.9), 

{𝑥5}(0.8), 

∅(0.08)) 

({𝑦1, 𝑦2, 𝑦3, 𝑦4, 

𝑦5}, 

{𝑦1, 𝑦2, 𝑦3, 𝑦4, 

𝑦5}(0.1), ∅(0.1), 

∅(0.1)) 

(∅, 

{𝑧4, 𝑧5}(0.6), 

∅(0.3), 

{𝑧4}(0.9)) 

(∅, 

∅(0.9), 

∅(0.9), 

∅(0.1)) 

𝐴8 ({𝑥1, 𝑥2, 

𝑥3, 𝑥4, 𝑥5}, 

{𝑥1, 𝑥2, 

𝑥3, 𝑥4, 𝑥5}(0.3), 

{𝑥1, 𝑥2, 

𝑥3, 𝑥4, 𝑥5}(0.5), 

{𝑥1, 𝑥2, 

𝑥3, 𝑥4, 𝑥5}(0.2)) 

({𝑦4}, 

∅(0.8), 

{𝑦4}(0.3), 

∅(0.01)) 

({𝑧3}, 

∅(0.2), 

∅(0.02), 

∅(0.1)) 

({𝑡1, 𝑡5}, 

∅(0.9), 

∅(0.1), 

{𝑡5}(0.1)) 

𝐴9 (∅, 

∅(0.2), 

∅ (0.2), 

({𝑦1, 𝑦3, 𝑦4}, 

{𝑦3, 𝑦4}(0.6), 

{𝑦4}(0.03), 

({𝑧2, 𝑧3, 𝑧4, 𝑧5}, 

{𝑧2}(0.1), 

{𝑧2, 𝑧3, 𝑧4, 

({𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5}, 

{𝑡5}(0.6), 

{𝑡3}(0.9), 
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∅(0.1)) {𝑦1, 𝑦3, 𝑦4}(0.09)) 𝑧5}(0.7), 

{𝑧3, 𝑧4, 𝑧5}(0.7)) 

{𝑡2}(0.9)) 

𝐴10 (∅, ∅(0.01), 

∅(0.02), 

∅(0.02)) 

({𝑦1, 𝑦2, 𝑦3, 𝑦4, 

𝑦5}, 

{𝑦1, 𝑦2, 𝑦3, 𝑦4, 

𝑦5}(0.4), ∅(0.1), 

{𝑦3}(0.1)) 

(∅, 

∅(0.01), 

∅(0.01), 

∅(0.01)) 

(∅, 

∅(0.05), 

∅(0.05), 

∅(0.1)) 

 

Step 5: We calculate the individual evaluation values of the students given in Table 4 with respect to 

the criteria values of the I ideal student given in Step 3, one by one, using the measure of similarity. 

Thus, we obtain        Table 5. 

Table 5. Similarity table 

 𝑘1 𝑘2 𝑘3 𝑘4 

𝐴1 0.4750 0.3500 0.5250 0.4625 

𝐴2 0.6750 0.6175 0.7000 0.5125 

𝐴3 0.7250 0.9125 0.4750 0.5000 

𝐴4 0,7750 0.4375 0.4875 0.7125 

𝐴5 0.8250 0.5375 0.3875 0.3750 

𝐴6 0.1270 0.1600 0.400 0.127 

𝐴7 0.9500 0.8000 0.9750 0.5500 
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𝐴8 0.6000 0.6325 0.3125 0.7375 

𝐴9 0.3000 0.6500 0.4500 0.4000 

𝐴10 0.3050 0.5875 0.2550 0.2750 

  

Step 6: We multiply the weights of all criteria in Step 2 with each of the similarity values in Table 6. The 

sum of the similarity values of each criterion is given as the similarity value of our student set. 

Table 6. Weighted similarity table 

 0,4 ∗ 𝑘1 0,2 ∗ 𝑘2 0,1 ∗ 𝑘3 0,3 ∗ 𝑘4 
∑ 𝑤𝑖𝑘𝑖

4

𝑖=1

= 𝑆𝑄𝐻𝑁
𝑖 

𝐴1 0.19000 0.07000 0.05250 0.13875 𝑆𝑄𝐻𝑁
1(I, 𝐴1)  =  0.45125 

𝐴2 0.27000 0.12350 0.00700 0.15375 𝑆𝑄𝐻𝑁
2(I, 𝐴2)  =  0.555425 

𝐴3 0.29000 0.18250 0.04750 0.15000 𝑆𝑄𝐻𝑁
3(I, 𝐴3)  =  0.67000 

𝐴4 0.31000 0.08750 0.04875 0.21375 𝑆𝑄𝐻𝑁
4(I, 𝐴4)  =  0.66000 

𝐴5 0.33000 0.10750 0.03875 0.11250 𝑆𝑄𝐻𝑁
5(I, 𝐴5)  =  0.58875 

𝐴6 0.05080 0.03200 0.04000 0.03810 𝑆𝑄𝐻𝑁
6(I, 𝐴6)  =  0.1609 

𝐴7 0.38000 0.16000 0.09750 0.16500 𝑆𝑄𝐻𝑁
7(I, 𝐴7)  =  0.80250 

𝐴8 0.24000 0.12650 0.03125 0.22125 𝑆𝑄𝐻𝑁
8(I, 𝐴8)  =  0.62025 

𝐴9 0.12000 0.13000 0.04500 0.12000 𝑆𝑄𝐻𝑁
9(I, 𝐴9)  =  0.41500 

𝐴10 0.12200 0.11750 0.02550 0.08250 𝑆𝑄𝐻𝑁
10(I, 𝐴10)  =  0.34750 
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𝐴7 > 𝐴3 > 𝐴4 > 𝐴8 > 𝐴5 > 𝐴2 > 𝐴1 > 𝐴9 > 𝐴10 > 𝐴6 

Similarity values of each student were calculated. According to the results, the most efficient student in 

online education is 𝐴7 student with similarity value of 0.80250. 

5 Numerical Comparison Analysis 

In this section, we will compare the results of Euclid similarity measure [23], Dice similarity measure 

[22] and Hausdorff similarity measure [15] using the only values (T, I, F) for which we calculate the 

similarity value with the Hausdorff measures based on generalized set-valued neutrosophic  quadruple 

numbers. 

i) The result of calculating the similarity value of the students calculated in 4.2 with Hausdorff similarity 

measure [15] in Table 7. 

Table 7. Result according to Hausdorff similarity measure [15] 

𝐴1 0,650 

𝐴2 0.450 

𝐴3 0.628 

𝐴4 0,550 

𝐴5 0,520 

𝐴6 0,228 

𝐴7 0,860 

𝐴8 0,450 

𝐴9 0,760 

𝐴10 0,283 
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𝐴7 > 𝐴9 > 𝐴1 > 𝐴3 > 𝐴4 > 𝐴5 > 𝐴2 = 𝐴8 > 𝐴10 > 𝐴6 

ii) The result of calculating the similarity value of the students calculated in 4.2 with Euclid similarity 

measure [23] in Table 8. 

Table 8. Result according to Euclid similarity measure [23] 

𝐴1 0,7463 

𝐴2 0.8244 

𝐴3 0.7407 

𝐴4 0,7827 

𝐴5 0,7689 

𝐴6 0,5308 

𝐴7 0,6981 

𝐴8 0,8129 

𝐴9 0,6836 

𝐴10 0,6980 

 

𝐴2 > 𝐴8 > 𝐴4 > 𝐴5 > 𝐴1 > 𝐴3 > 𝐴7 > 𝐴10 > 𝐴9 > 𝐴6 

iii) The result of calculating the similarity value of the students calculated in 4.2 with Dice similarity 

measure [22] in Table 9. 

 

Table 9. Result according to Dice similarity measure [22] 
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𝐴1 0,5349 

𝐴2 0.7892 

𝐴3 0.5911 

𝐴4 0,7162 

𝐴5 0,7008 

𝐴6 0,1303 

𝐴7 0,5301 

𝐴8 0,6908 

𝐴9 0,4528 

𝐴10 0,1748 

𝐴2 > 𝐴4 > 𝐴5 > 𝐴8 > 𝐴3 > 𝐴1 > 𝐴7 > 𝐴9 > 𝐴10 > 𝐴6 

 

From i, ii, iii; we obtain Graphic 1. 

Graphic 1: Comparison of similarity measures 
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6 Conclusions 

In this study, a new decision making application based on generalized set – valued neutrosophic 

quadruple numbers has been developed to calculate the efficiency of students participating in online 

education, which is applied to students who have to take a break from their education. We define some 

measures for generalized set-valued neutrosophic quadruple sets. We proved that this similarity 

measures satisfies the similarity conditions. Using this similarity measure, we developed an algorithm 

to evaluate the adequacy of online education applied to ensure that students' education is not 

interrupted by the epidemic, and we gave an example through this algorithm. In the developed 

algorithm and in the example given, we determined the highest efficiency student among the students 

taking courses with online education by using the generalized set-valued neutrosophic quadruple 

numbers. Also, we obtain different result from some previous applications (based on neutrosophic sets) 

for decision making algorithm. In future, we will discuss the following integration of the related topics; 
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1) This measure and algorithm we have obtained can be used not only for online education, but also to 

evaluate the competence of any newly designed application, the competence of the people who will 

enter the profession and its effect on a law.  

2) For proposed method the effect of a drug on a particular disease.  

3) For proposed method more than one expert opinion can be obtained and different weight values can 

be created for each expert. 

4) In addition, criteria and criterion weights can be selected as desired in proposed method. 
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Abstract. This article exposes a system of Neutrosophic Soft Linear Equations (NSLE) of the form A⊗x = b

and is said to be solvable if A⊗ x(A; b) = b holds, otherwise unsolvable. We derive conditions under which the

above system is solvable and further using Chebychev Approximation we find a prinicipal solution if the given

systen is not solvable.
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tor(NSEv), System of Neutrosophic Soft Linear Equation(NSLE), Chebychev distance.

—————————————————————————————————————————-

1. Introduction

In human judgment, the importance of relations is almost self-evident. But the problem is

mainly to pass from a vague and customary concept to a precisely formulated one. The theory

of fuzzy sets is a step in such a direction and we believe that a straightforward study of fuzzy

relations deserves to be developed for a better interpretation and explanation of real-world

problems. The system of fuzzy relation equations is an important topic in fuzzy set theory.

Sanchez [29] first introduced fuzzy relation equations with sup-inf composition in complete

Brouwerian lattices. Since then, many authors investigated the methods for solving fuzzy

relation equations with different composite operators over various special Brouwerian lattices.

Among them, for finite fuzzy relation equations with sup-inf composition, Higashi et,al. [10]

showed that the solution set can be determined by minimal solutions and the greatest solution

in the linear lattice [0,1]. The solvability and unique solvability of linear systems in the max-

min algebra which is one of the most important fuzzy algebra, and the related question of

the strong regularity of max-min matrices was considered in [5, 6]. Cechlarova [7] studied the
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unique solvability of linear systems of equation over the max-min fuzzy algebra on the unit

real interval. In 2010 Sriram and Murugadas discussed the relation between row space, column

space and regularity of Intuitionistic Fuzzy Matrix(IFM) etc.(see [25,26,31–35]). Pradhan and

Pal [27] introduced the concepts that the Intuitionistic Fuzzy Relation Equation of the form

A⊗ x = b is consistent when the coefficient IFM A is regular.

But all these theories have their inherent difficulties as pointed out by Molodtsove [24].

The reason for these difficulties is, possibly, the inadequacy of the parameterization tools of

the theories. The fuzzy soft set representation of the intuitionistic fuzzy soft set has been

studied by Maji et.al, [23]. Likewise, Rajarajeswari et.al [28], proposed new definitions for

intuitionistic fuzzy soft matrices and its sort.

The notion of Neutrosophic Set (NS) was introduced by Smarandache [30]. Deli [8] defined

Neutrosophic parameterized Neutrosophic soft sets (npn-soft sets) which is the combination of

NS and a soft set. Deli and Broumi [9] redefined the notion of NS in a new way and put forward

the concept of NSM and different types of matrices in neutrosophic soft theory. They have

introduced some new operations and properties on these matrices. For recent development of

NS in decision making theory see the work done by Abdel Basset et.al, [1–3] and N . Nabeeh

et.al, [18–20]. The minimal solution of NSM was done by Kavitha et.al, [12] based on the notion

of NSM given by Sumathi and Arokiarani [4]. As the time goes some works on NSM were done

by Kavitha et.al, [13–15,17]. The Monotone interval fuzzy neutrosophic soft eigenproblem and

Monotone fuzzy neutrosophic soft eigenspace structures in max-min algebra were investigated

by Murugadas et.al, [21,22]. Also, two kinds of fuzzy neutrosophic soft matrices are presented

by Uma et.al, [36].

In this paper, we will concentrate on the solvability of the system of NSLEs be solvable of

the form A ⊗ x(A; b) = b. We derived the maximum solution for a system of NSLEs and we

define that particular solution x(A; b) as principal solution. In the concluding section-5, we

have tried to give an algorithm for coefficient NSM A of an unsolvable system, A ⊗ x = b to

get a principal solution.

2. Preliminaries

In this section, some elementary aspects that are necessary for this paper are introduced.

Definition 2.1. [30] A neutrosophic set A on the universe of discourse X is defined as

A = {⟨x, TA(x), IA(x), FA(x)⟩, x ∈ X}, where T, I, F : X → ]−0, 1+[ and

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+. (1)]

From philosophical point of view the NS set takes the value from real standard or non-

standard subsets of ]−0, 1+[. But in real life application especially in Scientific and Engineer-

ing problems it is difficult to use NS with value from real standard or non-standard subset
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of ]−0, 1+[. Hence we consider the NS which takes the value from the subset of [0, 1]. Therefore

we can rewrite equation (1) as 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. In short an element ã in the

NS A, can be written as ã = ⟨aT , aI , aF ⟩, where aT denotes degree of truth, aI denotes degree

of indeterminacy, aF denotes degree of falsity such that 0 ≤ aT + aI + aF ≤ 3.

Definition 2.2. [4] A NS A on the universe of discourse X is defined as A =

{x, ⟨TA(x), IA(x), FA(x)⟩, x ∈ X}, where T, I, F : X → [0, 1] and 0 ≤ TA(x)+IA(x)+FA(x) ≤
3.

Definition 2.3. [24] Let U be the initial universe set and E be a set of parameter. Consider

a non-empty set A,A ⊂ E. Let P (U) denotes the set of all NSs of U. The collection (F,A) is

termed to be the NSS over U, where F is a mapping given by F : A → P (U). Here after we

simply consider A as NSS over U instead of (F,A).

Definition 2.4. [4] Let U = {c1, c2, ..., cm} be the universal set and E be the set of parame-

ters given by E = {e1, e2, ..., em}. Let A ⊂ E. A pair (F,A) be a NSS over U. Then the subset

of U × E is defined by RA = {(u, e); e ∈ A, u ∈ FA(e)}
which is called a relation form of (FA, E). The membership function, indeterminacy member-

ship function and non membership function are written by

TRA
: U × E → [0, 1], IRA

: U × E → [0, 1] and FRA
: U × E → [0, 1] where TRA

(u, e) ∈
[0, 1], IRA

(u, e) ∈ [0, 1] and FRA
(u, e) ∈ [0, 1] are the membership value, indeterminacy value

and non membership value respectively of u ∈ U for each e ∈ E.

If [(Tij , Iij , Fij)] = [Tij(ui, ej), Iij(ui, ej) , Fij(ui, ej)] we define a matrix

[⟨Tij , Iij , Fij⟩]m×n =


⟨T11, I11, F11⟩ · · · ⟨T1n, I1n, F1n⟩
⟨T21, I21, F21⟩ · · · ⟨T2n, I2n, F2n⟩

...
...

...

⟨Tm1, Im1, Fm1⟩ · · · ⟨Tmn, Imn, Fmn⟩

 .

Which is called an m× n FNSM of the NSS (FA, E) over U.

Definition 2.5. [36] Let A = (⟨aTij , aIij , aFij⟩), B = ⟨(bTij , bIij , bFij⟩) ∈ N(m,n), NSM of

order m × n) and N(n)-denotes a square NSM of order n. The component wise addition and

component wise multiplication is defined as

A⊕B = (sup{aTij , bTij}, sup{aIij , bIij}, inf{aFij , bFij})
A⊗B = (inf{aTij , bTij}, inf{aIij , bIij}, sup{aFij , bFij})
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Definition 2.6. Let A ∈ N(m,n), B ∈ N(n,p, the composition of A and B is defined as

A ◦B =

(
n∑

k=1

(aTik ∧ bTkj),

n∑
k=1

(aIik ∧ bIkj),

n∏
k=1

(aFik ∨ bFkj)

)
equivalently we can write the same as

=

(
n∨

k=1

(aTik ∧ bTkj),
n∨

k=1

(aIik ∧ bIkj),
n∧

k=1

(aFik ∨ bFkj)

)
.

The product A ◦B is defined if and only if the number of columns of A is same as the number

of rows of B. Then A and B are said to be conformable for multiplication. We shall use AB

instead of A ◦B.

Where
∑

(aTik ∧ bTkj) means max-min operation and
n∏

k=1

(aFik ∨ bFkj) means min-max operation.

Definition 2.7. [16] Let Vn will denote the set of all n-tuples (⟨vT1 , vI1 , vF1 ⟩, ..., ⟨vTn , vIn, vFn ⟩)
over [0, 1]3

An element of Vn is called a Neutrosophic Soft vector (NSV) of dimension n.

Definition 2.8. [16] If A ∈ N(m,n) and X ∈ N(n,m) satisfies the relation AXA = A then X is

called a generalized inverse(g-inverse) of A which is denoted by A−. The g-inverse of an NSM

is not necessarily unique. We denote the set of all g-inverses of A by A{1}.

Definition 2.9. [16] Let A = ⟨aTij , aIij , aFij⟩ ∈ N(m,n). Then the element ⟨aTij , aIij , aFij⟩ is called
the (i, j) entry of A. Let Ai∗(A∗j) denote the i

th row (column) of A. The row space R(A) of A
is the subspace of Vn generated by rows {Ai∗} of A. The column space C(A) of A is the space

of Vm generated by the columns {A∗j} of A.

Definition 2.10. [16] For NSM A,X ∈ N(m×n), are said to be a Moore-Penrose of A, if

AXA = A,XAX = X, (AX)t = AX and (XA)t = XA.

3. Results

Definition 3.1. (Linear combination of NSVs )

Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ..., ⟨aTp , aIp, aFp ⟩} be a set of NSV of dimension n. The

linear combination of elements of the set S is a finite sum
p∑

i=1
⟨cTi , cIi , cFi ⟩⟨aTi , aIi , aFi ⟩ where

⟨aTi , aIi , aFi ⟩ ∈ S and ⟨cTi , cIi , cFi ⟩ ∈ [0, 1]3. The set of all linear combinations of the elements of

S is calld the span of S, denoted by ⟨S⟩.

Here we illustrate the above concept.

Example 3.2. Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} be a subset of V3, where

⟨aT1 , aI1, aF1 ⟩ = (⟨0.8, 0.7, 0.2⟩, ⟨0.6, 0.5, 0.4⟩, ⟨0.4, 0.3, 0.6⟩),
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⟨aT2 , aI2, aF2 ⟩ = (⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩),
and ⟨aT3 , aI3, aF3 ⟩ = (⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩). Then
⟨S⟩ = {⟨cT1 , cI1, cF1 ⟩(⟨0.8, 0.7, 0.2⟩, ⟨0.6, 0.5, 0.2⟩, ⟨0.4, 0.3, 0.6⟩)

+⟨cT2 , cI2, cF2 ⟩(⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩
+⟨cT3 , cI3, cF3 ⟩(⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩}.

Definition 3.3 (Dependenece of NSVs). A set S of NSVs is independent if and only if each

element of S can be expressed as a linear combination of other elements of S, that is, no

element s ∈ S is a linear combination of S \ {s}. If a vector α can be expressed by some

other vectors, then the vector α is called dependent otherwise it is called independent. These

terminologies are similar to classical vectors.

An independent and dependent set of vectors are illustrated below.

Example 3.4. Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} be a subset of V3, where

⟨aT1 , aI1, aF1 ⟩ = (⟨0.8, 0.7, 0.2⟩, ⟨0.6, 0.5, 0.4⟩, ⟨0.4, 0.3, 0.6⟩),
⟨aT2 , aI2, aF2 ⟩ = (⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩), and
⟨aT3 , aI3, aF3 ⟩ = (⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩).

Here the set S is an independent set.

If not then ⟨aT1 , aI1, aF1 ⟩ = ⟨αT , αI , αF ⟩⟨aT2 , aI2, aF2 ⟩+ ⟨βT , βI , βF ⟩⟨aT3 , aI3, aF3 ⟩
for ⟨αT , αI , αF ⟩, ⟨βT , βI , βF ⟩ ∈ N . So

⟨aT1 , aI1, aF1 ⟩ = ⟨αT , αI , αF ⟩(⟨0.5, 0.4, 0.6⟩, ⟨0.5, 0.4, 0.6⟩, ⟨0.4, 0.3, 0.6⟩)
+⟨βT , βI , βF ⟩(⟨0.7, 0.6, 0.3⟩, ⟨0.7, 0.6, 0.3⟩, ⟨0.9, 0.8, 0.1⟩

= (⟨max{min(0.5, αT ),min(0.7, βT )},max{min(0.4, αI),min(0.6, βI)},
min{max(0.6, αF ),max(0.3, βF )}),
(⟨max{min(0.5, αT ),min(0.7, βT )},max{min(0.4, αI),min(0.6, βI)},
min{max(0.6, αF ),max(0.3, βF )}),

(⟨max{min(0.4, αT ),min(0.9, βT )},max{min(0.3, αI),min(0.8, βI)},
min{max(0.6, αF ),max(0.1, βF )}).

It is not possible to find any ⟨αT , αI , αF ⟩, ⟨βT , βI , βF ⟩ ∈ N such that the corresponding

coefficients on both sides will be equal. That is,

⟨aT1 , aI1, aF1 ⟩ ̸= ⟨αT , αI , αF ⟩⟨aT2 , aI2, aF2 ⟩+ ⟨βT , βI , βF ⟩⟨aT3 , aI3, aF3 ⟩. Similarly,

⟨aT2 , aI2, aF2 ⟩ ̸= ⟨αT , αI , αF ⟩⟨aT1 , aI1, aF1 ⟩+ ⟨βT , βI , βF ⟩⟨aT3 , aI3, aF3 ⟩ and
⟨aT3 , aI3, aF3 ⟩ ̸= ⟨αT , αI , αF ⟩⟨aT2 , aI2, aF2 ⟩+ ⟨βT , βI , βF ⟩⟨aT1 , aI1, aF1 ⟩. So the set S is independent.
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Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩} be a subset of V3,

where ⟨aT1 , aI1, aF1 ⟩ = (⟨0.7, 0.6, 0.3⟩, ⟨0.5, 0.4, 0.5⟩, ⟨0.6, 0.5, 0.4⟩) and
⟨aT2 , aI2, aF2 ⟩ = (⟨0.8, 0.7, 0.2⟩, ⟨0.5, 0.4, 0.5⟩, ⟨0.6, 0.5, 0.4⟩).
Here ⟨aT1 , aI1, aF1 ⟩ = ⟨cT , cI , cF ⟩(⟨aT2 , aI2, aF2 ⟩) for ⟨cT , cI , cF ⟩ = ⟨0.7, 0.6, 0.3⟩. So S is a dependent

set.

Definition 3.5 (Basis). Let W be an Neutrosophic Soft Subspace of Vn and S be a subset

of W such that the elements of S are independent. If every element of W can be expressed

uniquely as a linear combination of the elements of S, then S is called a basis of neutrosophic

soft subspace W .

Definition 3.6 (Standard basis). A basis B of an Neutrosophic Soft Vector Space (NSVS)

W is a standard basis if and only if whenever

⟨bTi , bIi , bFi ⟩ =
n∑

j=1
⟨aTij , aIij , aFij⟩⟨bTj , bIj , bFj ⟩ for ⟨bTi , bIi , bFi ⟩, ⟨bTj , bIj , bFj ⟩ ∈ N

and ⟨aTij , aIij , aFij⟩ ∈ [1, 0] then ⟨aTii, aIii, aFii⟩⟨bTi , bIi , bFi ⟩ = ⟨bTi , bIi , bFi ⟩.

Example 3.7. Let S = {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} be a subset of V3 given by

a1 = (⟨0.5, 0.4, 0.5⟩, ⟨0.5, 0.4, 0.5⟩, ⟨0.5, 0.4, 0.5⟩) and
a2 = (⟨0.5, 0.4, 0.5⟩, ⟨0.6, 0.5, 0.4⟩, ⟨0.8, 0.7, 0.2⟩) and
a3 = (⟨0.4, 0.3, 0.6⟩, ⟨0.4, 0.3, 0.6⟩, ⟨0.8, 0.7, 0.2⟩).
Then S is independent set, since

⟨aT1 , aI1, aF1 ⟩ ̸= ⟨cT1 , cI1, cF1 ⟩(⟨aT2 , aI2, aF2 ⟩) + ⟨cT2 , cI2, cF2 ⟩(⟨aT3 , aI3, aF3 ⟩),
⟨aT2 , aI2, aF2 ⟩ ̸= ⟨cT3 , 3I3, cF3 ⟩⟨aT1 , aI1, aF1 ⟩+ ⟨cT4 , cI4, cF4 ⟩⟨aT3 , aI3, aF3 ⟩ and
⟨aT3 , aI3, aF3 ⟩ ̸= ⟨cT5 , cI5, cF5 ⟩(⟨aT1 , aI1, aF1 ⟩) + ⟨cT6 , cI6, cF6 ⟩(⟨aT2 , aI2, aF2 ⟩).
So {⟨aT1 , aI1, aF1 ⟩, ⟨aT2 , aI2, aF2 ⟩, ⟨aT3 , aI3, aF3 ⟩} is a basis for ⟨S⟩.
Now this is a standard basis . For, ⟨aT1 , aI1, aF1 ⟩ = ⟨cT11, cI11, cF11⟩(⟨aT1 , aI1, aF1 ⟩) +

⟨cT12, cI12, cF12⟩(⟨aT2 , aI2, aF2 ⟩) + ⟨cT13, cI13, cF13⟩(⟨aT3 , aI3, aF3 ⟩) holds if ⟨cT11, cI11, cF11⟩ = ⟨0.8, 0.7, 0.2⟩,
⟨cT12, cI12, cF12⟩ = ⟨0.5, 0.4, 0.5⟩ and ⟨cT13, cI13, cF13⟩ = ⟨0.6, 0.5, 0.4⟩.
Also ⟨aT1 , aI1, aF1 ⟩ = ⟨cT11, cI11, cF11⟩(⟨aT1 , aI1, aF1 ⟩) for ⟨cT11, cI11, cF11⟩ = ⟨0.8, 0.7, 0.2⟩.
Similarly for ⟨aT2 , aI2, aF2 ⟩ and ⟨aT3 , aI3, aF3 ⟩.

4. Solvability

In this section, we are going to study the system of NSLEs of the form,

A⊗ x = b (1)

that is

⟨max
j

min(aTij , x
T
j ),max

j
min(aIij , x

I
j ),min

j
max(aFij , x

F
j )⟩ = ⟨bTi , bIi , bFi ⟩ (2)
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where the NSM A ∈ N(m×n) and the NSV b ∈ N(m) are given and the NSV x ∈ N(n) is

unknown.

The solution set of the system defined in (1) for a given NSM A and an NSV b will be

denoted by S(A, b) = {x ∈ Nn|A⊗ x = b}.
Now our aim is to find whether the system (1) is solvable, that is, whether the solution set

S(A, b) is non-empty.

Lemma 4.1. Let us consider the system of NSLE A⊗ x = b.

If max
j

(⟨aTij , aIij , aFij⟩) < ⟨bTj , bIj , bFj ⟩ for some k, then S(A, b) = ϕ, that is the sysem is not

solvable.

Proof: If max
j

(⟨aTij , aIij , aFij⟩) < ⟨bTj , bIj , bFj ⟩ for some j, then

min
j

(⟨aTij , aIij , aFij⟩) ≤ ⟨aTij , aIij , aFij⟩ ≤ max
j

(⟨aTij , aIij , aFij⟩) < (⟨bTj , bIj , bFj ⟩)

Hence, ⟨max
j

min(aTij , x
T
i ),max

j
min(aIij , x

I
i ),min

j
max(aFij , x

F
i )⟩ < (⟨bTj , bIj , bFj ⟩) for some j, and

by equation (2) no values ⟨xTi , xIi , xFi ⟩ exists that satisfy the equation (1). Therefor S(A, b) = ϕ.

Remark 4.2. Let us consider the condition of the Lemma 4.1 be

max
j

(⟨aTij , aIij , aFij⟩) > (⟨bTj , bIj , bFj ⟩) for some j. Then according to the proof of the Lemma 4.1,

min
j

(⟨aTij , aIij , aFij⟩, ⟨xTi , xIi , xFi ⟩) ≥ ⟨aTij , aIij , aFij⟩ ≥ max(⟨aTij , aIij , aFij⟩) > (⟨bTj , bIj , bFj ⟩) implies the

only possibility is, ⟨aTij , aIij , aFij⟩ are same for all i. Then two case may arises,

Case-1: If ⟨bTj , bIj , bFj ⟩ are equal for all j. Then the system reduce to one equation. So that

the system is solvable.

Case-2: If ⟨bTj , bIj , bFj ⟩ are different for some j. Then the equation of the system will be such

that, all have the same left side with some different right side. Hence the system is not solvable.

Example 4.3. Let us consider the system of NSLEs A⊗ x = b where,

A =

⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 0.7⟩
⟨0.6 0.5 0.4⟩ ⟨0.6 0.5 0.4⟩
⟨0.8 0.7 0.2⟩ ⟨0.4 0.3 0.6⟩

 and

b =

⟨0.4 0.3 0.6⟩
⟨1, 1, 0⟩

⟨0.5 0.4 0.5⟩

 .

Here for j = 2,

max{⟨0.3 0.2 0.7⟩, ⟨0.6 0.5 0.4⟩, ⟨0.4 0.3 0.6⟩} = ⟨0.6 0.5 0.4⟩ < ⟨1, 1, 0⟩. Hence by Lemma 4.1,

the system of NSLEs A⊗ x = b is not solvable.

The following theorem deduce the fact its solvability of a system of NSLEs of the form (1)

depends upon the characteristics of the coefficient NSM A.
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Theorem 4.4. The system of NSLEs of the form (1) has a solution if the non-zero rows of

the coefficient NSM A forms a standard basis for the row space of itself.

Proof: As the non-zero rows of the NSM A forms a standard basis for the row space of A, then

the NSM A be regular. That is there exists a g-inverse A− of A such that A⊗ A− ⊗ A = A.

Now, A⊗ x = b gives A⊗A− ⊗A⊗ x = b.

That implies, A ⊗ A− ⊗ b = b. Which shows, (A− ⊗ b) is a solution of the given sytem.

Therefore the system of NSLE is solvable.

Example 4.5. Let us consider the system of NSLEs A⊗ x = b. with

A =

[
⟨0.7 0.6 0.3⟩ ⟨0.6 0.5 0.4⟩ ⟨0.5 0.4 0.5⟩
⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.8 0.7 0.2⟩

]

X = [⟨xT1 , xI1, xF1 ⟩, ⟨xT2 , xI2, xF2 ⟩, ⟨xT3 , xI3, xF3 ⟩]T and

b =

[
⟨0.6 0.5 0.4⟩
⟨0.5, 0.4, 0.5⟩

]
.

Here the non-zero rows of the NSM S are linearly independent and form s standard basis .

So

A is regular and one of its g− inverse is

A− =

⟨0.8 0.7 0.2⟩ ⟨0.5 0.4 0.5⟩
⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 05⟩
⟨0.5 0.4 0.5⟩ ⟨0.8 0.7 0.2⟩


x = A−b =

⟨0.6 0.5 0.4⟩
⟨0.5 0.4 0.3⟩
⟨0.5 0.4 0.5⟩


This is one of the solution of the above system of NSLEs.

The assertion of the g−inverse of a NSM A is not unique. So the solution of a system of

NSLEs may have many solution. Among these solutions the maximum solution is defined as

follows.

Definition 4.6. Any arbitrary element x̄ of S(A, b) is called a maximum solution of the system

A⊗ x = b if for all x ∈ S(A, b), x ≥ x̄ implies x = x̄.

The following theorem demonstrate how to find the maximum solution of the system of

NSLEs.
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Theorem 4.7. If for a system of NSLEs A ⊗ x = b has a solution denoted by x̄(A, b) and is

defined by

x̄ = ⟨x̄T , x̄I , x̄F ⟩ =

⟨1, 1, 0⟩ if ⟨aTij , aIij , aFij⟩ ≤ ⟨bTj , bIj , bFj ⟩ ∀imin{⟨bTj , bIj , bFj ⟩} if ⟨aTij , aIij , aFij⟩ > ⟨bTj , bIj , bFj ⟩,

is the maximum solution.

Proof: As the system of NSLEs A ⊗ x = b has a solution, so it is consistent, then x̄ is a

solution of the system. If x̄ is not a solution, then A⊗ x ̸= b and therefore

max
j

min(aTij , x
T
j ),max

j
min(aIij , x

I
j )min

j
max(aFij , x

F
j ) ̸= (⟨bTj0 , b

I
j0
, bFj0⟩) for at least one j0. The

above definition of x̄,

since ⟨x̄Ti , x̄Ii , x̄Fi ⟩ ≤ ⟨bTj , bIj , bFj ⟩ for each j, so

⟨x̄Ti , x̄Ii , x̄Fi ⟩ ≤ ⟨bTj0 , b
I
j0
, bFj0⟩. By our assumption, max

j
(⟨aTij , aIij , aFij⟩ < ⟨bTj0 , b

I
j0
, bFj0⟩) for some j0

and by Lemma 4.1 it follows that S(A, b) = ϕ, which is a contradiction. Hence x̄ is a solution

of the system A⊗ x = b.

Now let us prove that x̄ is a maximum solution. If possible let us assume that y = ⟨yT , yI , yF ⟩
be a solution of the system such that y > x̄, that is

⟨yTi0 , y
I
i0
, yFi0⟩ > ⟨x̄

T
i0
, x̄Ii0 , x̄

F
i0
⟩ for at least one i0.

Therefore by definition of x̄, we have ⟨yTi0 , y
I
i0
, yFi0⟩ > min(⟨bTj , bIj , bFj ⟩) when ⟨aTi0j , a

I
i0j

, aFi0j⟩ >
⟨bTj , bIj , bFj ⟩ for some j. Again, since S(A, b) ̸= ∅, by Lemma 4.1,

max
i

(⟨aTij0 , a
I
ij0

, aFij0⟩ > ⟨b
T
j0
, bIj0 , b

F
j0
⟩) for each j0.

Hence, ⟨bTj0 , b
I
j0
, bFj0⟩ ̸= ⟨max

i
min(aTij0 , y

T
i ),max

i
min(aIij0 , y

I
i ),min

i
max(aFij0 , y

F
i ), which contra-

dicts our assumption y ∈ S(A, b).

Therefore, x̄ is the maximum solution of the system of NSLEs A⊗ x = b.

Example 4.8. Given

A =

[
⟨0.7 0.6 0.3⟩ ⟨0.6 0.5 0.4⟩ ⟨0.5 0.4 0.5⟩
⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.8 0.7 0.2⟩

]
and

b =

[
⟨0.5 0.4 0.5⟩
⟨0.6, 0.5, 0.4⟩

]
.

From the definition of maximum solution,

x1 = ⟨0.5 0.4 0.5⟩, x2 = ⟨0.6 0.5 0.4⟩,
x3 = ⟨0.5 0.4 0.5⟩. So x̄ = [⟨0.5 0.4 0.5⟩, ⟨0.6 0.5 0.4⟩, ⟨0.5 0.4 0.5⟩]T . Thus, S(A, b) ̸= ϕ and

A ⊗ x̄ = b hold. Hence x = [⟨0.5 0.4 0.5⟩, ⟨0.6 0.5 0.4⟩, ⟨0.5 0.4 0.5⟩]t = x̄ is the maximum

solution.

Now we consider the definition 2.10 of Moore-Penrose Inverse.
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Theorem 4.9. Let us consider a system of NSLEs (1). The system must have a solution, that

is, must be consistent if the coefficient NSM A is a symmetric and idempotent of order n.

Proof: Since A is symmetric and idempotent square NSM, that is A itself is a Moore-Penrose

inverse. That is, A = A+. So in the case the solution will be

x = A+b = Ab.

Example 4.10. Consider the system of NSLEs A⊗ x = b where,

A =

[
⟨0.8 0.7 0.2⟩ ⟨0.6 0.5 0.4⟩
⟨0.6 0.5 0.4⟩ ⟨0.7 0.6 0.3⟩

]
and

b =

[
⟨0.8 0.7 0.2⟩
⟨0.6, 0.5, 0.4⟩

]
.

Here, AT = A and A2 = A, that is, the NSM A is symmetric and idempotent. So the Moore-

Penrose inverse A+ of A is itself A. Then the solution will be

x = A+b = Ab = [⟨0.8 0.7 0.2⟩, ⟨0.6, 0.5, 0.4⟩]t.

5. Chebychev Approximation

In this section, we describe an algorithm by which we approach the right hand side of the

system of NSLEs A⊗ x = b by successively changing the original NSM A ∈ Nm×n to a NSM

D ∈ Nm×n such that D ⊗ x = b is solvable.

Let us consider the solution or tolerable solution x
′
(A; b) of the system of NSLEs

A⊗ x = b as x
′
(A; b) =

⟨1, 1, 0⟩ if ⟨aTij , aIij , aFij⟩ ≤ ⟨bTi , bIi , bFi ⟩ ∀imin{⟨bTi , bIi , bFi ⟩} if ⟨aTij , aIij , aFij⟩ > ⟨bTi , bIi , bFi ⟩ (3)

Now if we define that the system (1) is solvable if and only if (3) is its solution,

that is A⊗ x
′
(A, b) = b holds, but in general A⊗ x

′
(A; b) ≤ b holds always. So our aim is, by

changing the NSM A and retain the right hand side of the system same to make the system

solvable.

First we have to define some importent Definitions.

Definition 5.1. The Chebychev distance of two NSMs A,B ∈ N(m×n) is denoted by ρ(A,B)

and is defined by

ρ(A,B) = ⟨max
i,j
|aTij − bTij |,max

i,j
|aIij − bIij |,min

ij
|aFi,j − bFij |⟩.

The Chebychev distance of a NSM A ∈ N(m×n) and the set S ∈ N(m×n) is defined by ρ(A,S) =

inf
B∈S

ρ(A,B).
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Definition 5.2. We say that a NSM B ∈ N(m×n) is closer to a NSV v ∈ N(m) than a NSM

A ∈ N(m×n) if

⟨aTij , aIij , aFij⟩ ≤ ⟨bTij , bIij , bFij⟩ ≤ ⟨vTi , vIi , vFi ⟩ or ⟨aTij , aIij , aFij⟩ ≥ ⟨bTij , bIij , bFij⟩ ≥ ⟨vTi , vIi , vFi ⟩ for all

indices i ∈M and j ∈ N and we denote by A→ B ← v.

Lemma 5.3. Let us consider two NSMs A,C ∈ N(m×n) and the NSV b ∈ N(m) such that

A→ C ← b. Then x
′
(C; b) ≥ x

′
(A; b).

Proof: From the definition of the solution of the system of NSLEs of the form A⊗ x = b we

have,

x
′
(C; b) =

⟨1, 1, 0⟩ if ⟨cTij , cIij , cFij⟩ ≤ ⟨bTi , bIi , bFi ⟩ ∀imin{⟨bTi , bIi , bFi ⟩} if ⟨cTij , cIij , cFij⟩ > ⟨bTi , bIi , bFi ⟩

and

x
′
(A; b) =

⟨1, 1, 0⟩ if ⟨aTij , aIij , aFij⟩ ≤ ⟨bTi , bIi , bFi ⟩ ∀imin{⟨bTi , bIi , bFi ⟩} if ⟨aTij , aIij , aFij⟩ > ⟨bTi , bIi , bFi ⟩.

Now, as A→ C ← b, we have

{i; ⟨cTij , cIij , cFij⟩ > ⟨bTi , bIi , bFi ⟩} ⊆ {i; ⟨aTij , aIij , aFij⟩ > ⟨bTi , bIi , bFi ⟩} for each j ∈ N. So x
′
(C; b) ≥

x
′
(A; b).

Lemma 5.4. Let A and C be two NSMs of order (m × n) and b ∈ N(m) be a NSV with

A→ C ← b. If A⊗ x = b is solvable then C ⊗ x = b is solvable.

Proof: From our assumption, solvability of A⊗ x = b means that A⊗ x
′
(A, b) = b. Then ith

equation of which gives,
n∑

j=1
⟨aTij , aIij , aFij⟩ ⊗ x

′
j(A; b) = bi. (4)

Le us suppose that in (4) the equality has been achieved in term k.

Thus, ⟨aTik, aIik, aFik⟩ ⊗ x
′
(A; b) = bi which is only possible if

⟨aTik, aIik, aFik⟩ ≥ ⟨bTi , bIi , bFi ⟩ as well as x
′
k(X; b) ≥ bi.

Since, A → C ← b, we get ⟨aTik, aIik, aFik⟩ ≥ ⟨cTik, cIik, cFik⟩ ≥ ⟨bTi , bIi , bFi ⟩ and Lemma 5.3

gives, x
′
k(C; b) ≥ x

′
k(A; b) ≥ bi. This implies, ⟨cTik, cIik, cFik⟩ ⊗ x

′
k(C; b) ≥ bj . Again for any NSM

C,C ⊗ x
′
(C; b) ≤ bi.

Hence the only possibility is, C ⊗ x
′
(C; b) = b, that is, C ⊗ b = b is solvable.

Lemma 5.5. Let us consider the system of NSLE A ⊗ x = b and x
′
(A; b) be its tolerable

solution. If there exists a NSM D such that, D ⊗ x = b is solvable with ρ(A,D) = δ, then

there exists NSM C such that A→ C ← b and ρ(A,C) ≤ δ with C ⊗ x = b is solvable.
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Proof: The NSM C can be chosen in three different way.

Case-1: If ⟨bTi , bIi , bFi ⟩ ≤ ⟨aTi , aIi , aFi ⟩ ≤ ⟨dTi , dIi , dFi ⟩ or
⟨bTi , bIi , bFi ⟩ ≥ ⟨aTi , aIi , aFi ⟩ ≥ ⟨dTi , dIi , dFi ⟩, we set

cij = ⟨cTij , cIij , cFij⟩ = ⟨max{bTi , aTij − (dTij − aTij)},max{bIi , aIij − (dIij − aIij)},
min{bFi , aFij + (aFij − dFij)}⟩

=⟨max{bTi , (2aTij − dTij)},max{bIi , (2aIij − dIij)},
min{bFi , (2aFij − dFij)}⟩, or

cij = ⟨cTij , cIij , cFij⟩ = ⟨min{bTi , aTij + (aTij − dTij)},min{bIi , aIij + (aIij − dIij)},
max{bFi , aFij − (dFij − aFij)}⟩
= ⟨min{bTi , (2aTij − dTij)},min{bIi , (2aIij − dIij)},
max{bFi , (2aFij − dFij)}⟩,

respectively.

Case-2: If ⟨aTi , aIi , aFi ⟩ ≤ ⟨dTi , dIi , dFi ⟩ ≤ ⟨bTi , bIi , bFi ⟩ or

⟨aTi , aIi , aFi ⟩ ≥ ⟨dTi , dIi , dFi ⟩ ≥ ⟨bTi , bIi , bFi ⟩,
then take cij = dij

Case-3: If ⟨aTi , aIi , aFi ⟩ ≤ ⟨bTi , bIi , bFi ⟩ ≤ ⟨dTi , dIi , dFi ⟩ or

⟨aTi , aIi , aFi ⟩ ≥ ⟨bTi , bIi , bFi ⟩ ≥ ⟨dTi , dIi , dFi ⟩,
then take cij = bij

Now from the construction of C by the above three cases, it is obviouse that ρ(A;C) ≤ δ

and A→ C ← b. More over, D → C ← b, hence by Lemma 5.4, C ⊗ x = b is solvable.

Definition 5.6. For a given NSM A ∈ N(m×n) and the NSV b ∈ N(n) we denote the NSM

D ∈ N(m×n) by (A,∆→ b) such that for each i ∈ {1, 2, 3, ...,m} and j ∈ {1, 2, 3, ..., n},

⟨dTij , dIij , dFij⟩ =

min{aTij +∆T , bTi },min{aIij +∆I , bIi },max{aFij −∆F , bFi } if aij < bi

max{aTij −∆T , bTi },max{aIij −∆I , bIi },min{aFij +∆F , bFi } if aij ≥ bi

It is obvious that, A→ (A,∆→ b)← b for any non-negative ∆ = ⟨∆T ,∆I ,∆F ⟩. More over as

∆ increase, we finally arrive at a NSM D such that dij = bi for all i ∈M, j ∈ N, which satisfy

the condition, D ⊗ x
′
(D; b) = b. So computation of the NSM D is an iterative process, which

can be described by the following flowchart.
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Algorithm MATRIX

begin k = 0;∆k = ⟨0, 0, 0⟩; A(∆k) = A;

compute x
′
(A; b);

If A⊗ x
′
(A; b) ̸= b then

repeat ∆k+1 = ⟨∆T
k+1,∆

I
k+1,∆

F
k+1⟩

= ⟨∆T
k +min{|A(δk)ij − bTi |;A(δTk )ij ̸= bTi },

∆I
k +min{|A(δk)ij − bIi |;A(δIk)ij ̸= bIi },

∆F
k +min{|A(δk)ij − bFi |;A(δFk )ij ̸= bFi }⟩,

k = k + 1;

A(∆k) = (A; δk → b)

until A(δk)⊗ x
′
(A(δk); b) = b;

output: A(δk);∆k

end MATRIX.
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START

k=0 ∆k=(0, 0, 0)
A (∆k) = A

x
′
=(A, b)

if A ∗ x′
(A, b)
̸= b

∆k+1 = (∆T
k+1,∆

I
k+1,∆

F
k+1)

k = k+1

A(∆k)=(A;∆k → b)

until
A (∆k)⊗

x
′
(A(∆k);b) = b

A (∆k) = ∆k

END

Yes

No

No

Yes

The following example illustrate the concept of the above flowchart.

Let us consider the system of NSLEs A⊗ x = b where,

Example 5.7. A =


⟨0.3 0.2 0.7⟩ ⟨0.6 0.5 0.4⟩ ⟨0.7 0.6 0.3⟩ ⟨0.4 0.5 0.6⟩ ⟨0.2 0.1 0.8⟩
⟨0.6 0.5 0.4⟩ ⟨0.2 0.1 08⟩ ⟨0.9 0.8 0.1⟩ ⟨0.1 0.1 0.9⟩ ⟨0.6 0.5 0.4⟩
⟨0.3 0.2 0.7⟩ ⟨0.8 0.7 0.2⟩ ⟨0.5 0.4 0.5⟩ ⟨0.4 0.3 0.6⟩ ⟨0.2 0.1 0.8⟩
⟨0.5 0.4 0.5⟩ ⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 0.7⟩ ⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 0.7⟩


and

b =


⟨0.4 0.3 0.6⟩
⟨0.9 0.8 0.1⟩
⟨0.3 0.2 0.7⟩
⟨0.5 0.4 0.5⟩

 .
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The corresponding tolerable solution will be

x
′
(A; b) = [⟨0.5 0.4 0.5⟩, ⟨0.3 0.2 0.7⟩, ⟨0.3 0.2 0.7⟩, ⟨0.3 0.2 0.7⟩, ⟨0.5 0.4 0.5⟩]t but

A⊗ x
′
(A; b) ≤ b so the system is unsolvable.

In the first iteration,

∆1⟨0.1, 0.1, 0.9⟩, A(∆1) =
⟨0.4 0.3 0.6⟩ ⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.4 0.5 0.6⟩ ⟨0.3 0.2 0.7⟩
⟨0.7 0.6 0.3⟩ ⟨0.3 0.2 07⟩ ⟨0.9 0.8 0.1⟩ ⟨0.2 0.1 0.8⟩ ⟨0.7 0.6 0.3⟩
⟨0.3 0.2 0.7⟩ ⟨0.7 0.6 0.3⟩ ⟨0.4 0.3 0.6⟩ ⟨0.3 0.2 0.7⟩ ⟨0.3 0.2 0.7⟩
⟨0.5 0.4 0.5⟩ ⟨0.6 0.5 0.4⟩ ⟨0.4 0.3 0.6⟩ ⟨0.6 0.5 0.4⟩ ⟨0.6 0.5 0.4⟩


and

x
′
(A(∆1); b) = [⟨1 1 0⟩, ⟨0.3 0.2 0.7⟩, ⟨0.3 0.2 0.7⟩, ⟨0.5 0.4 0.5⟩, ⟨0.5 0.4 0.5⟩]t.

Here , A⊗ x
′
(A(∆1); b) ≤ b.

In the second iteration,

∆2 = ⟨0.2 0.2 0.8⟩, A(∆2) =
⟨0.4 0.3 0.6⟩ ⟨0.4 0.3 0.6⟩ ⟨0.4 0.3 0.6⟩ ⟨0.4 0.5 0.6⟩ ⟨0.4 0.3 0.6⟩
⟨0.9 0.8 0.1⟩ ⟨0.5 0.4 05⟩ ⟨0.9 0.8 0.1⟩ ⟨0.4 0.3 0.6⟩ ⟨0.9 0.8 0.1⟩
⟨0.3 0.2 0.7⟩ ⟨0.5 0.4 0.5⟩ ⟨0.3 0.2 0.7⟩ ⟨0.3 0.2 0.7⟩ ⟨0.3 0.2 0.7⟩
⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩ ⟨0.5 0.4 0.5⟩


and

x
′
(A(∆2); b) = [⟨1 1 0⟩, ⟨0.3 0.2 0.7⟩, ⟨1 1 0⟩, ⟨1 1 0⟩, ⟨1 1 0⟩]t.

In this case, A ⊗ x
′
(A(∆2); b) = b. So D = A(∆2) is the Chebychev best approximation of the

coefficient NSM A of the given system and x
′
(A(∆2); b) is the principal solution.

6. Conclusion

In this piece of work, we try to find the conditions under which a system of NSLE is solvable. We

have provided necessary examples to describe the theory. Further using the Chebychev approximation

discussed the principal solution when the given system (1) has no solution. As a future work we are

trying to apply this theory in all operation research problems.
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Abstract: Multi-criteria decision-making (MCDM) focuses on coordination, choice and planning 

issues, including multi-criteria. the neutrosophic soft set cannot handle environments involving 

multiple attributes. In order to overcome these obstacles, the neutrosophic hypersoft set (NHSS) and 

Interval Value neutrosophic hypersoft set (IVNHSS) are defined. In this paper, we extend the 

concept of IVNHSS with basic properties. We also developed some basic operations on IVNHSS 

such as union, intersection, addition, difference, Truth-favorite, and False-favorite, etc. with their 

desirable properties. Finally, the necessity and possibility operations on IVNHSS with properties 

are presented in the following research. 

Keywords: Soft set; Neutrosophic Set; Interval-valued neutrosophic set; Hypersoft set; Interval-

valued neutrosophic hypersoft set. 

 

1. Introduction 

Anxiety performs a dynamic part in lots of areas of life such as modeling, medicine, and 

engineering. However, people have raised a general question, that is, how can we verbalize anxiety in 

mathematical modeling. Several investigators all over the world have recommended and advised 

different methodologies to minimize uncertainty. First of all, Zadeh planned the idea of fuzzy sets [1] 

to resolve these complications which contain anxiety as well as ambiguity. It is seen that sometimes; 

fuzzy sets can't deal with scenarios. To overcome such scenarios, Turksen [2] suggested the concept 

of interval-valued fuzzy sets (IVFS). In some cases, we need to debate the suitable representation of 

the object under the circumstances of anxiety and uncertainty, and regard its unbiased 

membership value and non-membership value of the suitable representation of the object, that cannot 

be processed by these fuzzy sets or IVFS. To overcome such concerns, Atanassov projected the theory 

of IFS in [3]. The theory proposed by Atanassov only considers membership and non-membership 

values to deal with insufficient data, but the IFS theory cannot deal with incompatible and imprecise 

information. To deal with this incompatible and imprecise data, Smarandache proposed the idea of 

NS [4]. Molodtsov [5] proposed a general mathematical tool to deal with uncertain, ambiguous, and 

undefined substances, called soft sets (SS). Maji et al. [6] extended the work of SS and defined some 

operations and their attributes. In [7], they also use SS theory to make decisions. Ali et al. [8] Modified 

the Maji method of SS and developed some new operations with its properties. In [9], they proved 

De Morgan's SS theory and law by using different operators. Cagman and Enginoglu [10] proposed 

the concept of soft matrices with operations and discussed their properties. They also introduced a 

decision-making method to solve problems that contain uncertainty. In [11], they modified the 
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actions proposed by Molodtsov's SS. In [12], the author proposed some new operations for soft 

matrices, such as soft difference product, soft restricted difference product, soft extended difference 

product, and weak extended difference product.  

Maji [13] put forward the idea of NSS with necessary operations and characteristics. The idea of 

Possibility NSS was proposed by Karaaslan [14] and introduced a neutrosophic soft decision method 

to solve those uncertain problems based on And-product. Broumi [15] developed a generalized NSS 

with certain operations and properties and used the proposed concept for decision-making. To solve 

the MCDM problem with single-valued neutrosophic numbers proposed by Deli and Subas in [16], 

they constructed the concept of the cut set of single-valued neutrosophic numbers. Based on the 

correlation of IFS, the term correlation coefficient of SVNS is introduced [17]. In [18], the idea of 

simplifying NS introduced some algorithms and aggregation operators, such as weighted arithmetic 

operators and weighted geometric average operators. They constructed the MCDM method based on 

the proposed aggregation operator. Zulqarnain et al. [19] extended the fuzzy TOPSIS technique to 

the Neutrosophic TOPSIS technique and used the developed approach to solve the MCDM problem. 

Abdel-basset et al [20] presented the integration of TOPSIS methodology decision-making test as well 

as evaluation laboratory (DEMATEL) solution (TOPSIS) CIIC environment delivers a new method to 

pick out the proper project. Abdel-basset Mohamed [21] developed an MCDM model to discover 

along with display screen cancer addressing obscure, anxiety, the incompleteness of reported signs 

as well as handicapping apparently within cancer or replaceable ailments in the signs and symptoms. 

Abdel-Basset et al. [22] raised the issue of assessment of the smart emergency response techniques is 

interpreted as MCDM problem. they suggested a framework by combining three common MCDM 

strategies which are AHP, TOPSIS, and VIKOR. 

All the above-mentioned studies cannot deal with the problems in which attributes of the 

alternates have their corresponding sub-attributes. To handle such compilations Smarandache [23] 

generalized the SS to HSS by converting the function to a multi-attribute function to deal with 

uncertainty. Saqlain et al. [24] developed the generalization of TOPSIS for the NHSS, by using 

accuracy function they transformed the fuzzy neutrosophic numbers to crisp form. Zulqarnain et al. 

[25] extended the notion of NHSSs and presented the generalized operations for NHSSs, they also 

developed the necessity and possibility operations and discussed their desirable features. In [26], the 

author’s proposed the fuzzy Plithogenic hypersoft set in matrix form with some basic operations and 

properties. Saqlain et al. [27] proposed the aggregate operators on NHSS. In [28], the author extended 

the NHSS approach and introduced IVNHSS, m-polar, and m-polar IVNHSS. Zulqarnain et al. [29] 

presented the intuitionistic fuzzy hypersoft set, they developed the TOPSIS technique by developing 

a correlation coefficient to solve multi-attribute decision making problems. Many other novel 

researchers are done under neutrosophic environment and their applications in everyday life [30-34]. 

The following research is organized as follows: Some basic definitions recalled in section 2, 

which are used in the following research such as SS, NS, NSS, HSS, NHSS, and IVNHSS. We present 

different operators on IVNHSS such as union, intersection, addition, difference, extended union, 

extended intersection, truth-favorite, and false-favorite operations in section 3 with properties and 

prove the De Morgan laws by using union and intersection operators. We also proposed the necessity 

and possibility operators, OR, and operations with some properties in section 4. 

2. Preliminaries  

In this section, we recollect some basic definitions such as SS, NSS, NHSS, and IVNHSS which use in 

the following sequel. 

Definition 2.1 [5] 

The soft set is a pair (F, Ʌ) over 𝕌 if and only if F: Ʌ → 𝑃 (𝕌) is a mapping. That is the parameterized 

family of subsets of 𝕌 known as a SS. 

Definition 2.2 [4] 
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Let 𝕌 be a universe and Ʌ be an NS on 𝕌 is defined as Ʌ = {< 𝑢, 𝓊𝐴(𝑢), 𝓋𝐴(𝑢), 𝓌𝐴(𝑢) > : 𝑢 ∈ 𝕌}, 

where 𝓊, 𝓋, 𝓌: 𝕌 → ]0−, 1+[ and 0− ≤ 𝓊Ʌ(𝑢) + 𝓋Ʌ(𝑢) + 𝓌Ʌ(𝑢) ≤ 3+. 

Definition 2.3 [13] 

Let 𝕌 and Ḝ are universal set and set of attributes respectively. Let P(𝕌) be the set of Neutrosophic 

values of 𝕌 and Ʌ ⊆ Ḝ. A pair (F, Ʌ) is called an NSS over 𝕌 and its mapping is given as  

F: Ʌ → (𝕌) 

Definition 2.4 [35] 

Let 𝕌 be a universal set, then interval valued neutrosophic set can be expressed by the set 𝑨 = 

{< 𝒖, 𝓾𝑨(𝒖), 𝓿𝑨(𝒖), 𝔀𝑨(𝒖) > : 𝒖 ∈  𝕌}, where 𝓾𝑨, 𝓿𝑨, and 𝔀𝑨 are truth, indeterminacy and falsity 

membership functions for 𝑨 respectively, 𝓾𝑨, 𝓿𝑨, and 𝔀𝑨 ⊆ [0, 1] for each 𝒖 ∈  𝕌. Where    

𝓾𝑨(𝒖) = [𝓾𝑨
𝑳  (𝒖), 𝓾𝑨

𝑼 (𝒖)] 

𝓿𝑨(𝒖) = [𝓿𝑨
𝑳  (𝒖), 𝓿𝑨

𝑼 (𝒖)] 

𝔀𝑨(𝒖) = [𝔀𝑨
𝑳  (𝒖), 𝔀𝑨

𝑼 (𝒖)] 

For each point 𝒖 ∈ 𝕌, 0 ≤ 𝓾𝑨(𝒖) + 𝓿𝑨(𝒖) + 𝔀𝑨(𝒖) ≤ 3 and IVN(𝕌) represents the family of all 

interval valued neutrosophic sets. 

Definition 2.5 [23] 

Let 𝕌 be a universal set and 𝑃(𝕌) be a power set of 𝕌 and for 𝑛 ≥ 1, there are 𝑛 distinct attributes 

such as 𝑘1 , 𝑘2 , 𝑘3 , …, 𝑘𝑛  and 𝐾1 , 𝐾2 , 𝐾3 , …, 𝐾𝑛  are sets for corresponding values attributes 

respectively with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair 

(F, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛) is said to be HSS over 𝕌 where F is a mapping from 𝐾1 × 𝐾2 × 𝐾3× … × 

𝐾𝑛 to 𝑃(𝕌).  

Definition 2.6 [23]  

Let 𝕌 be a universal set and 𝑃(𝕌) be a power set of 𝕌 and for 𝑛 ≥ 1, there are 𝑛 distinct attributes 

such as 𝑘1 , 𝑘2 , 𝑘3 , …, 𝑘𝑛  and 𝐾1 , 𝐾2 , 𝐾3 , …, 𝐾𝑛  are sets for corresponding values attributes 

respectively with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair 

(F, Ʌ) is said to be NHSS over 𝕌 if there exists a relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = Ʌ.  F is a mapping 

from 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛  to 𝑃(𝕌) and F(𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛) = {< 𝑢, 𝓊𝐴(𝑢), 𝓋𝐴(𝑢), 𝓌𝐴(𝑢) >

: 𝑢 ∈ 𝕌}  where 𝓊 , 𝓋 , 𝓌  are membership values for truthness, indeterminacy and falsity 

respectively such that 𝓊, 𝓋, 𝓌: 𝕌 → ]0−, 1+[ and 0− ≤ 𝓊Ʌ(𝑢) + 𝓋Ʌ(𝑢) + 𝓌Ʌ(𝑢) ≤ 3+. 

Definition 2.7 [28] 

Let 𝕌 be a universal set and 𝑃(𝕌 ) be a power set of 𝕌 and for 𝑛 ≥ 1, there are 𝑛 distinct attributes 

such as 𝑘1 , 𝑘2 , 𝑘3 , …, 𝑘𝑛  and 𝐾1 , 𝐾2 , 𝐾3 , …, 𝐾𝑛  are sets for corresponding values attributes 

respectively with following conditions such as 𝐾𝑖 ∩ 𝐾𝑗 = ∅ (𝑖 ≠ 𝑗) and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Then the pair 

(𝐹, 𝐴) is said to be IVNHSS over 𝕌 if there exists a relation 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = 𝐴. Where   

𝐹: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 → (𝕌) and  

𝐹 (𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛 ) = {< 𝑢, [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)], [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)], [𝓌𝐴
𝐿  (𝑢), 𝓌𝐴

𝑈  (𝑢)] > : 𝑢 ∈ 𝕌} , 

where 𝓊𝐴
𝐿 , 𝓋𝐴

𝐿 , and 𝓌𝐴
𝐿  are lower and 𝓊𝐴

𝑈 , 𝓋𝐴
𝑈 , and 𝓌𝐴

𝑈  are upper membership values for 

truthiness, indeterminacy, and falsity respectively for 𝐴  and  [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)] , [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)],

[𝓌𝐴
𝐿  (𝑢), 𝓌𝐴

𝑈  (𝑢)] ⊆ [0, 1] and 0 ≤ 𝑠𝑢𝑝𝓊𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐴(𝑢) + 𝑠𝑢𝑝 𝓌𝐴(𝑢) ≤ 3 for each 𝑢 ∈  𝕌. 

Example 1 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. Consider 𝐹𝐴 be an IVNHSS over 𝕌 can be expressed as follows 
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𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, 0.9], [.1, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [0, .3], [. 6, .8], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.7, .8]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .8]〉})}. 

Tablur representation of IVNHSS 𝐹𝐴 over 𝕌 given as follows 

Table 1: Tablur representation of IVNHSS 𝑭𝑨 

𝕌 𝒖𝟏 𝒖𝟏 

𝔁𝟏 〈[. 6, .8], [. 5, .9], [.1, .4]〉 〈[. 4, .7], [. 3, .9], [.2, .6]〉 

𝔁𝟐 〈[. 4, .7], [. 3, .9], [.3, .5]〉 〈[0, .3], [. 6, .8], [.3, .7]〉 

𝔁𝟑 〈[. 2, .9], [. 1, .5], [.7, .8]〉 〈[. 4, .9], [. 1, .6], [.5, .7]〉 

𝔁𝟒 〈[. 6, .9], [. 6, .9], [1, 1]〉 〈[. 5, .9], [. 6, .8], [.1, .8]〉 

 

 

3. Operations on Interval Valued Neutrosophic Hypersoft Set with Properties 

In this section, we extend the concept of IVNHSS and introduce some fundamental operations on 

IVNHSS with their properties. 

Definition 3.1 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then 𝐹𝐴 ⊆ 𝐺𝐵 if   

𝑖𝑛𝑓𝓊𝐴(𝑢) ≤ 𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢) ≤ 𝑠𝑢𝑝𝓊𝐵(𝑢) 

𝑖𝑛𝑓𝓋𝐴(𝑢) ≥ 𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢) ≥ 𝑠𝑢𝑝𝓋𝐵(𝑢) 

𝑖𝑛𝑓𝓌𝐴(𝑢) ≥ 𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢) ≥ 𝑠𝑢𝑝𝓌𝐵(𝑢) 

Example 2 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. Consider 𝐺𝐵 be an IVNHSS over 𝕌 can be expressed as follows and 𝐹𝐴 given in example 

1 

𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 6, .9], [. 3, .7], [.1, .3]〉, 〈𝑢2, [. 6, .9], [. 3, .5], [.1, .4]〉}), 

(𝓍2, {〈𝑢1, [. 6, .8], [. 2, .5], [.2, .3]〉, 〈𝑢2, [. 3, .5], [. 4, .7], [.1, .4]〉}), 

(𝓍3, {〈𝑢1, [. 4, .9], [. 1, .3], [.4, .6]〉, 〈𝑢2, [. 6, 1], [. 1, .4], [.3, .4]〉}), 

(𝓍4, {〈𝑢1, [. 7, .9], [. 4, .6], [.6, 1]〉, 〈𝑢2, [. 5, .7], [. 4, .7], [.1, .4]〉})}. 

Thus  

𝐹𝐴 ⊆ 𝐺𝐵. 

Definition 3.2  

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then  

i. Empty IVNHSS can be represented as 𝐹0̌, and defined as follows 𝐹0̌ =  {< 𝑢, [0, 0], [1, 1],

[1, 1] > : 𝑢 ∈ 𝕌}.  

ii. Universal IVNHSS can be represented as 𝐹𝐸̌, and defined as follows 𝐹𝐸̌ =  {< 𝑢, [0, 0], [1, 1],

[1, 1] > : 𝑢 ∈ 𝕌}. 
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iii. The complement of IVNHSS can be defined as follows 𝐹𝐴
𝑐  = {< 𝑢, [𝓌𝐴

𝐿  (𝑢), 𝓌𝐴
𝑈 (𝑢)],

[1 − 𝓋𝐴
𝑈  (𝑢), 1 − 𝓋𝐴

𝐿  (𝑢)], [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)]  > : 𝑢 ∈ 𝕌}. 

Example 3 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. The tabular representation of 𝐹0̌  and 𝐹𝐸̌  given as follows in table 2 and table 3 

respectively.  

Table 2:Tablur representation of IVNHSS 𝑭𝟎̌ 

𝕌 𝒖𝟏 𝒖𝟏 

𝔁𝟏 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

𝔁𝟐 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

𝔁𝟑 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

𝔁𝟒 〈[0, 0], [1, 1], [1, 1]〉 〈[0, 0], [1, 1], [1, 1]〉 

 

Table 3:Tablur representation of IVNHSS 𝑭𝑬̌ 

𝕌 𝒖𝟏 𝒖𝟏 

𝔁𝟏 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

𝔁𝟐 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

𝔁𝟑 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

𝔁𝟒 〈[1, 1], [0, 0], [0, 0]〉 〈[1, 1], [0, 0], [0, 0]〉 

 

Proposition 3.3 

If 𝐹A ∈ IVNHSS, then  

1. (𝐹𝐴
𝑐)𝑐 = 𝐹A 

2. (𝐹0̌)𝑐 = 𝐹𝐸̌ 

3. (𝐹𝐸̌)𝑐 = 𝐹0̌ 

Proof 1 Let 𝐹A  = {< 𝑢, [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)], [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)], [𝓌𝐴
𝐿  (𝑢), 𝓌𝐴

𝑈  (𝑢)] > : 𝑢 ∈ 𝕌}  be an 

IVNHSS. Then by using definition 3.3(iii), we have  

𝐹𝐴
𝑐 = {< 𝑢, [𝓌𝐴

𝐿 (𝑢), 𝓌𝐴
𝑈  (𝑢)], [1 − 𝓋𝐴

𝑈  (𝑢), 1 − 𝓋𝐴
𝐿  (𝑢)], [𝓊𝐴

𝐿  (𝑢), 𝓊𝐴
𝑈  (𝑢)]  > : 𝑢 ∈ 𝕌} 

Thus  

(𝐹𝐴
𝑐)𝑐 = {< 𝑢, [𝓊𝐴

𝐿  (𝑢), 𝓊𝐴
𝑈  (𝑢)], [1 − (1 − 𝓋𝐴

𝐿  (𝑢)), 1 − (1 − 𝓋𝐴
𝑈  (𝑢))], [𝓌𝐴

𝐿  (𝑢), 𝓌𝐴
𝑈  (𝑢)] > : 𝑢 ∈ 𝕌} 

(𝐹𝐴
𝑐)𝑐 = {< 𝑢, [𝓊𝐴

𝐿  (𝑢), 𝓊𝐴
𝑈  (𝑢)], [𝓋𝐴

𝐿  (𝑢), 𝓋𝐴
𝑈  (𝑢)], [𝓌𝐴

𝐿  (𝑢), 𝓌𝐴
𝑈  (𝑢)] > : 𝑢 ∈ 𝕌} 

(𝐹𝐴
𝑐)𝑐 = 𝐹A 

Proof 2 

As we know that 𝐹0̌ =  {< 𝑢, [0, 0], [1, 1], [1, 1] > : 𝑢 ∈ 𝕌} 

By using definition 3.3(iii), we get 

(𝐹0̌)𝑐 = {< 𝑢, [1, 1], [0, 0], [0, 0] > : 𝑢 ∈ 𝕌} = 𝐹𝐸̌. 
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Similarly, we can prove 3. 

Definition 3.4 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then 

𝐹𝐴 ∪ 𝐺𝐵= {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

  [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}.   (1) 

Example 4 Assume 𝕌 = {𝑢1 , 𝑢2} be a universe of discourse and 𝐸 = {𝓍1 , 𝓍2 , 𝓍3 , 𝓍4} be a set of 

attributes. Consider 𝐹𝐴 and 𝐺𝐵 are IVNHSS over 𝕌 can be given as follows 

𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, .9], [.1, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [. 2, .8], [. 6, .8], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.4, .7]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .8]〉})} 

𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .7], [.4, .6]〉, 〈𝑢2, [. 3, .9], [. 3, .6], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .8], [. 4, .5], [.4, .9]〉, 〈𝑢2, [. 4, .7], [. 5, .9], [.4, .6]〉}), 

(𝓍3, {〈𝑢1, [. 3, .5], [. 2, .6], [.3, .8]〉, 〈𝑢2, [. 3, 1], [. 2, .7], [.3, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 7, .8], [.4, 1]〉, 〈𝑢2, [. 4, .8], [. 3, .6], [.2, .6]〉})} 

Then  

𝐹𝐴 ∪ 𝐺𝐵= {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, .7], [.1, .4]〉, 〈𝑢2, [. 4, .9], [. 3, .6], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .8], [. 3, .5], [.3, .5]〉, 〈𝑢2, [. 4, .8], [. 5, .8], [.3, .6]〉}), 

(𝓍3, {〈𝑢1, [. 3, .9], [. 1, .5], [.3, .7]〉, 〈𝑢2, [. 4, 1], [. 1, .6], [.3, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .8], [.4 1]〉, 〈𝑢2, [. 5, .9], [. 3, .6], [.1, .6]〉})} 

Proposition 3.5 

Let ℱ𝐴, 𝒢𝐵̌, ℋ𝐶̌ ∈ IVNHSS over 𝕌. Then   

1. ℱ𝐴 ∪ ℱ𝐴 = ℱ𝐴 

2. ℱ𝐴 ∪ ℱ0̌ = ℱ0̌ 

3. ℱ𝐴 ∪ ℱ𝐸̌ = ℱ𝐴 

4. ℱ𝐴 ∪ 𝒢𝐵̌ = 𝒢𝐵̌ ∪ ℱ𝐴 

5. (ℱ𝐴 ∪ 𝒢𝐵̌) ∪ ℋ𝐶̌ = ℱ𝐴 ∪ (𝒢𝐵̌  ∪ ℋ𝐶̌) 

Proof By using definition 3.4 we can prove easily. 

Definition 3.6 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then  

𝐹𝐴 ∩ 𝐺𝐵 = {

< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

  [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}.   (2) 

Example 5 Reconsider example 4  

𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, .9], [.1, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [. 2, .8], [. 6, .8], [.3, .7]〉}), 
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(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.4, .7]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .8]〉})} 

𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .7], [.4, .6]〉, 〈𝑢2, [. 3, .9], [. 3, .6], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .8], [. 4, .5], [.4, .9]〉, 〈𝑢2, [. 4, .7], [. 5, .9], [.4, .6]〉}), 

(𝓍3, {〈𝑢1, [. 3, .5], [. 2, .6], [.3, .8]〉, 〈𝑢2, [. 3, 1], [. 2, .7], [.3, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 7, .8], [.4, 1]〉, 〈𝑢2, [. 4, .8], [. 3, .6], [.2, .6]〉})} 

Then 

𝐹𝐴 ∩ 𝐺𝐵= {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .9], [.4, .6]〉, 〈𝑢2, [. 3, .7], [. 3, .9], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .7], [. 4, .9], [.4, .9]〉, 〈𝑢2, [. 2, .7], [. 6, .9], [.4, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .5], [. 2, .6], [.4, .8]〉, 〈𝑢2, [. 3, .9], [. 2, .7], [.5, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 7, .9], [1, 1]〉, 〈𝑢2, [. 4, .8], [. 6, .8], [.2, .8]〉})} 

Proposition 3.7 

Let ℱ𝐴, 𝒢𝐵̌, ℋ𝐶̌ ∈ IVNHSS over 𝕌. Then   

1. ℱ𝐴 ∩ ℱ𝐴 = ℱ𝐴 

2. ℱ𝐴 ∩ ℱ0̌ = ℱ𝐴 

3. ℱ𝐴 ∩ ℱ𝐸̌ = ℱ𝐸̌ 

4. ℱ𝐴 ∩ 𝒢𝐵̌ = 𝒢𝐵̌ ∩ ℱ𝐴 

5. (ℱ𝐴 ∩ 𝒢𝐵̌) ∩ ℋ𝐶̌ = ℱ𝐴 ∩ (𝒢𝐵̌  ∩ ℋ𝐶̌) 

Proof By using definition 3.6 we can prove easily. 

Proposition 3.8  

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then 

1. (𝐹𝐴 ∪ 𝐺𝐵)𝐶= 𝐹𝐴
𝐶 ∩  𝐺𝐵

𝐶  

2. (𝐹𝐴 ∩ 𝐺𝐵)𝐶= 𝐹𝐴
𝐶 ∪  𝐺𝐵

𝐶  

Proof 1 As we know that  

𝐹𝐴 = {< 𝑢, 𝓊𝐴(𝑢), 𝓋𝐴(𝑢), 𝓌𝐴(𝑢) > : 𝑢 ∈ 𝕌} and 𝐺𝐵 = {< 𝑢, 𝓊𝐵(𝑢), 𝓋𝐵(𝑢), 𝓌𝐵(𝑢) > : 𝑢 ∈ 𝕌}. Where  

𝓊𝐴(𝑢) = [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)] or  [𝓊𝐴
𝐿  (𝑢), 𝓊𝐴

𝑈  (𝑢)], 𝓊𝐴
𝐿  (𝑢) = 𝑖𝑛𝑓𝓊𝐴(𝑢) and 𝓊𝐴

𝑈  (𝑢) = 𝑠𝑢𝑝𝓊𝐴(𝑢) 

𝓋𝐴(𝑢) = [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)] or  [𝓋𝐴
𝐿  (𝑢), 𝓋𝐴

𝑈  (𝑢)], 𝓋𝐴
𝐿  (𝑢) = 𝑖𝑛𝑓𝓋𝐴(𝑢) and 𝓋𝐴

𝑈  (𝑢) = 𝑠𝑢𝑝𝓋𝐴(𝑢) 

𝓌𝐴(𝑢) = [ 𝑖𝑛𝑓𝓌𝐴(𝑢) , 𝑠𝑢𝑝𝓌𝐴(𝑢) ] or  [𝓌𝐴
𝐿 (𝑢), 𝓌𝐴

𝑈  (𝑢)] , 𝓌𝐴
𝐿  (𝑢)  = 𝑖𝑛𝑓𝓌𝐴(𝑢)  and 𝓌𝐴

𝑈  (𝑢)  = 

𝑠𝑢𝑝𝓌𝐴(𝑢) 

𝓊𝐵(𝑢) = [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)] or  [𝓊𝐵
𝐿  (𝑢), 𝓊𝐵

𝑈  (𝑢)], 𝓊𝐵
𝐿  (𝑢) = 𝑖𝑛𝑓𝓊𝐵(𝑢) and 𝓊𝐵

𝑈  (𝑢) = 𝑠𝑢𝑝𝓊𝐵(𝑢) 

𝓋𝐵(𝑢) = [𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)] or  [𝓋𝐵
𝐿  (𝑢), 𝓋𝐵

𝑈  (𝑢)], 𝓋𝐵
𝐿  (𝑢) = 𝑖𝑛𝑓𝓋𝐵(𝑢) and 𝓋𝐵

𝑈  (𝑢) = 𝑠𝑢𝑝𝓋𝐵(𝑢) 

𝓌𝐵(𝑢) =[ 𝑖𝑛𝑓𝓌𝐵(𝑢) , 𝑠𝑢𝑝𝓌𝐵(𝑢) ] or  [𝓌𝐵
𝐿 (𝑢), 𝓌𝐵

𝑈  (𝑢)] , 𝓌𝐵
𝐿  (𝑢)  = 𝑖𝑛𝑓𝓌𝐵(𝑢)  and 𝓌𝐵

𝑈  (𝑢)  = 

𝑠𝑢𝑝𝓌𝐵(𝑢) 

Then by using Equation 1 

𝐹𝐴 ∪ 𝐺𝐵= {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 
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By using definition 3.3(iii), we get 

(𝐹𝐴 ∪ 𝐺𝐵)𝐶= {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}],
[1 − 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 1 − 𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)}],

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

Now 

𝐹𝐴
𝐶  = {< 𝑢, [𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)], [1 − 𝑠𝑢𝑝𝓋𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓋𝐴(𝑢)], [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)] > : 𝑢 ∈ 𝕌} 

𝐺𝐵
𝐶 = {< 𝑢, [𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)], [1 − 𝑠𝑢𝑝𝓋𝐵(𝑢), 1 − 𝑖𝑛𝑓𝓋𝐵(𝑢)], [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)] > : 𝑢 ∈ 𝕌} 

𝐹𝐴
𝐶  ∩  𝐺𝐵

𝐶  = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}],
[𝑚𝑎𝑥{1 − 𝑠𝑢𝑝𝓋𝐴(𝑢), 1 − 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 𝑚𝑎𝑥{1 − 𝑖𝑛𝑓𝓋𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓋𝐵(𝑢)}],

  [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

𝐹𝐴
𝐶  ∩  𝐺𝐵

𝐶  = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}],
[1 − 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 1 − 𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

Hence  

(𝐹𝐴 ∪ 𝐺𝐵)𝐶= 𝐹𝐴
𝐶 ∩  𝐺𝐵

𝐶  

Proof 2 

Similar to assertion 1. 

Proposition 3.9 

Let ℱ𝐴, 𝒢𝐵̌, ℋ𝐶̌ ∈ IVNHSS over 𝕌. Then 

1. ℱ𝐴 ∪ (𝒢𝐵̌ ∩ ℋ𝐶) = (ℱ𝐴 ∪ 𝒢𝐵̌) ∩ (ℱ𝐴  ∪ ℋ𝐶̌) 

2. ℱ𝐴 ∩ (𝒢𝐵̌ ∪ ℋ𝐶) = (ℱ𝐴 ∩ 𝒢𝐵̌) ∪ (ℱ𝐴 ∩ ℋ𝐶̌) 

3. ℱ𝐴 ∪ (ℱ𝐴 ∩ 𝒢𝐵̌) = ℱ𝐴 

4. ℱ𝐴 ∩ (ℱ𝐴 ∪ 𝒢𝐵̌) = ℱ𝐴 

Proof 1 From Equation 2, we have 

𝒢𝐵̌ ∩ ℋ𝐶̌ = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑖𝑛𝑓𝓋𝐶 (𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐶(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

ℱ𝐴 ∪ (𝒢𝐵̌ ∩ ℋ𝐶̌)= 

{

(< 𝑢, [max {𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)}} , max {𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}}],

[min {𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑖𝑛𝑓𝓋𝐶(𝑢)}} , min {𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐶 (𝑢)}}],

 [𝑚𝑖𝑛 {𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)}} , 𝑚𝑖𝑛 {𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}}] >/ 𝑢 ∈ 𝕌)

} 

ℱ𝐴 ∪ 𝒢𝐵̌ = {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

ℱ𝐴  ∪ ℋ𝐶̌  = {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐶 (𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐶(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

(ℱ𝐴 ∪ 𝐺𝐵̌) ∩ (ℱ𝐴  ∪ ℋ𝐶̌) =  
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{

(< 𝑢, [min {𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)}, 𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)} , min {𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}],

[max {𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐶(𝑢)} , max {𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}, 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐶(𝑢)}],
[𝑚𝑎𝑥 {𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)} , 𝑚𝑎𝑥{𝑚𝑖𝑛 {𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}, 𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}] >/ 𝑢 ∈ 𝕌)

}

(ℱ𝐴 ∪ 𝒢𝐵̌) ∩ (ℱ𝐴  ∪ ℋ𝐶) = 

{

(< 𝑢, [max {𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑖𝑛𝑓𝓊𝐶(𝑢)}} , max {𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐶(𝑢)}}],

[min {𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑖𝑛𝑓𝓋𝐶(𝑢)}} , min {𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐶 (𝑢)}}],

 [𝑚𝑖𝑛 {𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑖𝑛𝑓𝓌𝐶(𝑢)}} , 𝑚𝑖𝑛 {𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐶(𝑢)}}] >/ 𝑢 ∈ 𝕌)

} 

Hence 

ℱ𝐴 ∪ (𝒢𝐵̌ ∩ ℋ𝐶̌) = (ℱ𝐴 ∪ 𝒢𝐵̌) ∩ (ℱ𝐴  ∪ ℋ𝐶̌). 

Similarly, we can prove other results. 

Definition 3.10  

Let 𝐹𝐴, 𝐺𝐵 ∈ IVNHSS, then their extended union is 

𝓊 (𝐹𝐴 ∪ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)]                                                                                𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)]                                                                               𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}]         𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓋 (𝐹𝐴 ∪ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)]                                                                             𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)]                                                                             𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}]         𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓌 (𝐹𝐴 ∪ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)]                                                                                 𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌(𝑢)]                                                                                  𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]          𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

Definition 3.11 

Let 𝐹𝐴, 𝐺𝐵 ∈ IVNHSS, then their extended intersection is 

𝓊 (𝐹𝐴 ∩ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)]                                                                              𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)]                                                                             𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}]        𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓋 (𝐹𝐴 ∩ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)]                                                                             𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)]                                                                             𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}]       𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

𝓌 (𝐹𝐴 ∩ 𝐺𝐵) = {

[𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)]                                                                                  𝑖𝑓 𝑢 ∈  𝐴 −  𝐵

[𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌(𝑢)]                                                                                   𝑖𝑓 𝑢 ∈  𝐵 −  𝐴

[𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]         𝑖𝑓 𝑢  ∈  𝐴 ∩  𝐵

 

Definition 3.12 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then their difference defined as follows 

𝐹𝐴 \ 𝐺𝐵 = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 1 − sup𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 1 − inf𝓋𝐵(𝑢)}],

  [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}.   (3) 

Example 6 Reconsider example 4  

𝐹𝐴 \ 𝐺𝐵 = {(𝓍1, {〈𝑢1, [. 5, .7], [. 5, .9], [.4, .6]〉, 〈𝑢2, [. 3, .7], [. 4, .9], [.4, .7]〉}), 

(𝓍2, {〈𝑢1, [. 3, .7], [. 5, .9], [.4, .9]〉, 〈𝑢2, [. 2, .7], [. 6, .8], [.4, .7]〉}), 
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(𝓍3, {〈𝑢1, [. 2, .5], [. 4, .8], [.4, .8]〉, 〈𝑢2, [. 3, .9], [. 3, .8], [.5, .8]〉}), 

(𝓍4, {〈𝑢1, [. 4, .6], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 4, .8], [. 6, .8], [.2, .8]〉})} 

Definition 3.13 

Let 𝐹𝐴 and 𝐺𝐵 ∈ IVNHSS over 𝕌, then their addition defined as follows 

𝐹𝐴 + 𝐺𝐵 = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢) +  𝑖𝑛𝑓𝓊𝐵(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢) +  𝑠𝑢𝑝𝓊𝐵(𝑢), 1}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢) + 𝑖𝑛𝑓𝓋𝐵(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐵(𝑢), 1}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢) +  𝑖𝑛𝑓𝓌𝐵(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢) + 𝑠𝑢𝑝𝓌𝐵(𝑢), 1}] >/ 𝑢 ∈ 𝕌)

}.  (4) 

Example 7 Reconsider example 4 

𝐹𝐴 + 𝐺𝐵 = {(𝓍1, {〈𝑢1, [1.0, 1.0], [1.0, 1.0], [0.5, 1.0]〉, 〈𝑢2, [0.7, 1.0], [0.6, 1.0], [0.6, 1.0]〉}), 

   (𝓍2, {〈𝑢1, [0.7, 1.0], [0.7, 1.0], [0.7,1.0]〉, 〈𝑢2, [0.6, 1.0], [1.0, 1.0], [0.7, 1.0]〉}), 

   (𝓍3, {〈𝑢1, [0.5, 1.0], [0.3, 1.0], [0.7, 1.0]〉, 〈𝑢2, [0.7, 1.0], [0.3, 1.0], [0.8, 1.0]〉}), 

   (𝓍4, {〈𝑢1, [1.0, 1.0], [1.0, 1.0], [1.0, 1.0]〉, 〈𝑢2, [0.9, 1.0], [0.9, 1.0], [0.3, 1.0]〉})}. 

Definition 3.14 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then its scalar multiplication is represented as 𝐹𝐴.𝑎̌, where 𝑎̌ ∈ [0, 1] and 

defined as follows 

𝐹𝐴.𝑎̌ = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢). 𝑎̌, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢). 𝑎̌, 1}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢). 𝑎̌, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢). 𝑎̌, 1}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢). 𝑎̌, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢). 𝑎̌, 1}] >/ 𝑢 ∈ 𝕌)

}.       (5) 

Definition 3.15 

Let 𝐹𝐴  ∈ IVNHSS over 𝕌, then its scalar division is represented as 𝐹𝐴/𝑎̌, where 𝑎̌ ∈ [0, 1] and 

defined as follows 

𝐹𝐴/𝑎̌ = {

(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢)/𝑎̌, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢)/𝑎̌, 1}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢)/𝑎̌, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢)/𝑎̌, 1}],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢)/𝑎̌, 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢)/𝑎̌, 1}] >/ 𝑢 ∈ 𝕌)

}.       (6) 

Definition 3.16 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then Truth-Favorite operator on 𝐹𝐴 is denoted by Δ̃𝐹𝐴 and defined as 

follows 

Δ̃𝐹𝐴 = {
(< 𝑢, [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢) + 𝑖𝑛𝑓𝓋𝐴(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐴(𝑢), 1}], [0, 0],

[𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)] >/ 𝑢 ∈ 𝕌)
}.   (7) 

Example 8 Reconsider example 1 

Δ̃𝐹𝐴 = {(𝓍1, {〈𝑢1, [1, 1], [0, 0], [.1, .4]〉, 〈𝑢2, [. 7, 1], [0, 0], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 7, 1], [0, 0], [.3, .5]〉, 〈𝑢2, [. 6, 1], [0, 0], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 3, 1], [0, 0], [.7, .8]〉, 〈𝑢2, [. 5, 1], [0, 0], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [1, 1], [0, 0], [1, 1]〉, 〈𝑢2, [1, 1], [0, 0], [.1, .8]〉})} 

Proposition 3.17 

Let ℱ𝐴, 𝒢𝐵̌ ∈ IVNHSS over 𝕌, then 

1. Δ̃Δ̃ℱ𝐴 = Δ̃ℱ𝐴 

2. Δ̃(ℱ𝐴  ∪  𝒢𝐵̌) ⊆ Δ̃ℱ𝐴 ∪ Δ̃𝒢𝐵̌ 
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3. Δ̃(ℱ𝐴  ∩  𝒢𝐵̌) ⊆ Δ̃ℱ𝐴 ∩  Δ̃𝒢𝐵̌ 

4. Δ̃ (ℱ𝐴 + 𝒢𝐵̌) = Δ̃ℱ𝐴 + Δ̃𝒢𝐵̌ 

Proof of the above proposition is easily obtained by using definitions 3.4, 3.6, 3.13, and 3.16. 

Definition 3.18 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then False-Favorite operator on 𝐹𝐴 is denoted by 𝛻̃𝐹𝐴 and defined as 

follows 

 𝛻̃𝐹𝐴 = {
(< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [0, 0],

[𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢) + 𝑖𝑛𝑓𝓋𝐴(𝑢), 1} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢) + 𝑠𝑢𝑝𝓋𝐴(𝑢), 1}] >/ 𝑢 ∈ 𝕌)
}.   (8) 

Example 9 Reconsider example 1 

𝛻̃𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [0, 0], [.6, 1]〉, 〈𝑢2, [. 4, .7], [0, 0], [.5, 1]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [0, 0], [.6, 1]〉, 〈𝑢2, [0, .3], [0, 0], [.9, 1]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [0, 0], [.8, 1]〉, 〈𝑢2, [. 4, .9], [0, 0], [.6, 1]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [0, 0], [1, 1]〉, 〈𝑢2, [. 5, .9], [0, 0], [.7, 1]〉})} 

Proposition 3.19 

Let ℱ𝐴 and 𝒢𝐵̌ ∈ IVNHSS over 𝕌, then 

1. 𝛻̃𝛻̃ℱ𝐴 = 𝛻̃ℱ𝐴 

2. 𝛻̃(ℱ𝐴 ∪  𝒢𝐵̌) ⊆ 𝛻̃ℱ𝐴 ∪ 𝛻̃𝒢𝐵̌ 

3. 𝛻̃(ℱ𝐴  ∩  𝒢𝐵̌) ⊆ 𝛻̃ℱ𝐴 ∩  𝛻̃𝒢𝐵̌ 

4. 𝛻̃ (ℱ𝐴 + 𝒢𝐵̌) = 𝛻̃ℱ𝐴 + 𝛻̃𝒢𝐵̌ 

Proof of the above proposition is easily obtained by using definitions 3.4, 3.6, 3.13, and 3.18. 

4. Necessity and Possibility Operations on IVNHSS 

In this section, some further operations on IVNHSS are developed such as OR-Operation, And-

Operation, necessity, and possibility operations with some properties. 

Definition 4.1  

Let 𝐹𝐴  and 𝐺𝐵  ∈ IVNHSS over 𝕌, then OR-Operator is represented by 𝐹𝐴  ˅ 𝐺𝐵  and defined as 

follows  

𝓊 (𝐹𝐴 × B) = [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}], 

𝓋 (𝐹𝐴 × B) = [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}], 

𝓌 (𝐹𝐴 × B) = [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]. 

Definition 4.2  

Let 𝐹𝐴 and 𝐺𝐵  ∈ IVNHSS over 𝕌, then And-Operator is represented by 𝐹𝐴 ˄ 𝐺𝐵  and defined as 

follows  

𝓊 (𝐹𝐴 × B) = [𝑚𝑖𝑛{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}], 

𝓋 (𝐹𝐴 × B) = [𝑚𝑎𝑥{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}], 

𝓌 (𝐹𝐴 × B) = [𝑚𝑎𝑥{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}]. 

Proposition 4.3  

Let ℱ𝐴, 𝒢𝐵̌, ℋ𝐶̌ ∈ IVNHSSs, then 
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1. ℱ𝐴 ˅ 𝒢𝐵̌ = 𝒢𝐵̌  ˅ ℱ𝐴 

2. ℱ𝐴 ˄ 𝒢𝐵̌ = 𝒢𝐵̌  ˄ ℱ𝐴 

3. ℱ𝐴 ˅ (𝒢𝐵̌  ˅ ℋ𝐶̌) = (ℱ𝐴 ˅ 𝒢𝐵̌) ˅ ℋ𝐶̌ 

4. ℱ𝐴 ˄ (𝒢𝐵̌  ˄ ℋ𝐶̌) = (ℱ𝐴 ˄ 𝒢𝐵̌) ˄ ℋ𝐶̌ 

5. (ℱ𝐴 ˅ 𝒢𝐵̌)𝑐 = ℱ𝑐(𝐴̌) ˄ 𝒢𝑐(𝐵̌) 

6. (ℱ𝐴 ˄ 𝒢𝐵̌)𝑐 = ℱ𝑐(𝐴̌) ˅ 𝒢𝑐(𝐵̌) 

Proof We can prove easily by using definitions 4.1 and 4.2. 

Definition 4.4  

Let 𝐹𝐴  ∈ IVNHSS over 𝕌, then necessity operator IVNHSS represented as ⊕ 𝐹𝐴  and defined as 

follows 

⊕ 𝐹𝐴 = {< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐴(𝑢)] > : 𝑢 ∈ 𝕌} 

Example 10 Reconsider example 1 

⊕𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .8], [. 5, 0.9], [.2, .4]〉, 〈𝑢2, [. 4, .7], [. 3, .9], [.3, .6]〉}), 

(𝓍2, {〈𝑢1, [. 4, .7], [. 3, .9], [.3, .6]〉, 〈𝑢2, [0, .3], [. 6, .8], [.7, 1]〉}), 

(𝓍3, {〈𝑢1, [. 2, .9], [. 1, .5], [.1, .8]〉, 〈𝑢2, [. 4, .9], [. 1, .6], [.1, .6]〉}), 

(𝓍4, {〈𝑢1, [. 6, .9], [. 6, .9], [.1, .4]〉, 〈𝑢2, [. 5, .9], [. 6, .8], [.1, .5]〉})} 

Definition 4.5 

Let 𝐹𝐴 ∈ IVNHSS over 𝕌, then possibility operator on IVNHSS represented as ⊗ 𝐹𝐴 and defined 

as follows 

⊗ 𝐹𝐴 = {(< 𝑢, [1 − 𝑠𝑢𝑝𝓌𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓌𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)] >/ 𝑢 ∈ 𝕌})} 

Example 11 Reconsider example 1 

⊗ 𝐹𝐴 = {(𝓍1, {〈𝑢1, [. 6, .9], [. 5, 0.9], [.1, .4]〉, 〈𝑢2, [. 4, .8], [. 3, .9], [.2, .6]〉}), 

(𝓍2, {〈𝑢1, [. 5, .7], [. 3, .9], [.3, .5]〉, 〈𝑢2, [. 3, .7], [. 6, .8], [.3, .7]〉}), 

(𝓍3, {〈𝑢1, [. 2, .3], [. 1, .5], [.7, .8]〉, 〈𝑢2, [. 3, .5], [. 1, .6], [.5, .7]〉}), 

(𝓍4, {〈𝑢1, [0, 0], [. 6, .9], [1, 1]〉, 〈𝑢2, [. 2, .9], [. 6, .8], [.1, .8]〉})} 

Proposition 4.6 

Let ℱ𝐴 and 𝒢𝐵̌ ∈ IVNHSS over 𝕌, then 

1. ⊕ (ℱ𝐴  ∪  𝒢𝐵̌) = ⊕ ℱ𝐴 ∪ ⊕ 𝒢𝐵̌ 

2. ⊕ (ℱ𝐴  ∩  𝒢𝐵̌) = ⊕ ℱ𝐴 ∩ ⊕ 𝒢𝐵̌ 

Proof 1. As we know that 

ℱ𝐴= {(< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐴(𝑢)] >/ 𝑢 ∈ 𝕌})} and  

𝒢𝐵̌= {(< 𝑢, [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)], [𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)], [𝑖𝑛𝑓𝓌𝐵(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)] >/ 𝑢 ∈ 𝕌})} 

Then by using definition 3.5, we get  

ℱ𝐴 ∪ 𝒢𝐵̌= {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓌𝐴(𝑢), 𝑖𝑛𝑓𝓌𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓌𝐴(𝑢), 𝑠𝑢𝑝𝓌𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

By using the necessity operator, we get 
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⊕ (ℱ𝐴  ∪  𝒢𝐵̌) = {

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],

 [𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [1 − 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 1 − 𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}. 

⊕ (ℱ𝐴  ∪  𝒢𝐵̌) = 

{

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 𝑚𝑖𝑛{1 − 𝑖𝑛𝑓𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

}.  

⊕ ℱ𝐴 = {(< 𝑢, [𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐴(𝑢)], [𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐴(𝑢)], [1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐴(𝑢)] >/ 𝑢 ∈

𝕌})} and  

⊕ 𝒢𝐵̌ = {(< 𝑢, [𝑖𝑛𝑓𝓊𝐵(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)], [𝑖𝑛𝑓𝓋𝐵(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)], [1 − 𝑠𝑢𝑝𝓊𝐵(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐵(𝑢)] >/ 𝑢 ∈

𝕌})} 

Again, by using definition 3.5 we get 

⊕ ℱ𝐴 ∪ ⊕ 𝒢𝐵̌ = 

{

(< 𝑢, [𝑚𝑎𝑥{𝑖𝑛𝑓𝓊𝐴(𝑢), 𝑖𝑛𝑓𝓊𝐵(𝑢)} , 𝑚𝑎𝑥{𝑠𝑢𝑝𝓊𝐴(𝑢), 𝑠𝑢𝑝𝓊𝐵(𝑢)}],
[𝑚𝑖𝑛{𝑖𝑛𝑓𝓋𝐴(𝑢), 𝑖𝑛𝑓𝓋𝐵(𝑢)} , 𝑚𝑖𝑛{𝑠𝑢𝑝𝓋𝐴(𝑢), 𝑠𝑢𝑝𝓋𝐵(𝑢)}],

 [𝑚𝑖𝑛{1 − 𝑠𝑢𝑝𝓊𝐴(𝑢), 1 − 𝑠𝑢𝑝𝓊𝐵(𝑢)}, 𝑚𝑖𝑛{1 − 𝑖𝑛𝑓𝓊𝐴(𝑢), 1 − 𝑖𝑛𝑓𝓊𝐵(𝑢)}] >/ 𝑢 ∈ 𝕌)

} 

Hence 

⊕ (ℱ𝐴  ∪ 𝒢𝐵̌) = ⊕ ℱ𝐴 ∪ ⊕ 𝒢𝐵̌ 

Similarly, we can prove assertion 2. 

Proposition 4.7  

Let ℱ𝐴 and 𝒢𝐵̌ ∈ IVNHSS, then we have the following  

1. ⊕(ℱ𝐴 ˄ 𝒢𝐵̌) = ⊕ℱ𝐴 ˄ ⊕𝒢𝐵̌ 

2. ⊕(ℱ𝐴 ˅ 𝒢𝐵̌) = ⊕ℱ𝐴 ˅ ⊕𝒢𝐵̌ 

3. ⊗ (ℱ𝐴 ˄ 𝒢𝐵̌) = ⊗ ℱ𝐴 ˄ ⊗ 𝒢𝐵̌ 

4. ⊗ (ℱ𝐴 ˅ 𝒢𝐵̌) = ⊗ ℱ𝐴 ˅ ⊗ 𝒢𝐵̌  

Proof By using definitions 4.1, 4.2, 4.4, and 4.5 the proof of the above proposition can be obtained 

easily.  

5. Conclusion 

In this paper, we study NHSS and IVNHSS with some basic definitions and examples. We extend 

the work on IVNHSS and proposed some fundamental operations on IVNHSS such as union, 

intersection, extended union, extended intersection, addition, and difference, etc. are developed with 

their properties and proved the De Morgan laws by using union, intersection, OR-operation, and 

And-Operation. We also developed the addition, difference, scalar multiplication, Truth-Favorite, 

and False-Favorite operators on IVNHSS. Finally, the concept of necessity and possibility operations 

on IVNHSS with properties are presented. For future trends, we can develop the interval-valued 

neutrosophic hypersoft matrices by using proposed operations and use them for decision making. 

Furthermore, several other operators such as weighted average, weighted geometric, interaction 

weighted average, interaction weighted geometric, etc. can be developed with their decision-making 

approaches to solve MCDM problems.  
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Abstract: In this paper, the notion of the interval valued complex neutrosophic soft set (IV-CNSS) is 

defined as a combination of interval valued  complex neutrosophic set and  soft set. Then, we introduce 

the  IV-CNSS’s operations such as union, intersection and complement. To explore the study further, we 

present some basic operational rules, and investigate their properties. A new algorithm is developed by 

transforming the interval complex neutrosophic soft values from complex space to the real space using a 

practical formula which gives a decision-making with a simple computational process without the need 

to carry out directed operations by complex numbers. This algorithm is then applied to evaluate two 

kinds of a certain product from a manufacturer and choose the most suitable one. IV-CNSS  provides an 

interval-based membership structure to handle the uncertain data. This feature allows decision makers 

to record their hesitancy in assigning membership values which in turn  best catch the obscurity and the 

complexity of such data. 

Keywords: soft set; neutrosophic set; interval complex neutrosophic set; interval neutrosophic set; 

complex neutrosophic soft set. 

1. Introduction 

         In 1999, the model of neu-trosophic set(NS) presented by Smarandache [1] as a popularization of  

fuzzy set [3], intuitionistic fuzzy set [6], interval-valued fuzzy sets[8]and interval-valued  intuitionistic 

fuzzy sets [13] . it's also an important method and powerful tool to deal with incomplete, indeterminate, 

and inconsistent information in some real-life problem. The notion of neu-trosophic soft set(NSS) was 

grounded by Maji [11], as a popularization of a soft set [2], fuzzy soft set [4], and intuitionist fuzzy soft 

set [6]. In some real life applications, such as decision-making processes, he also used this concept[11].

This concept(NSS) deals with indeterminate data, while when the relationships are indefinite, the fuzzy 

soft set and the intuitionistic fuzzy soft set fail to work..Since the neu-trosophic set is difficult to use 

explicitly in real-life implementations, Maji,first of all proposed the idea of single-valued neu-trosophic 

soft set and supplied its theoretical practices and properties. Additionally, in numerous real-life  

mailto:aalquran@kfu.edu.sa
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problems, the degrees of  membership, non membership, and ind-eterminacy of a proven statement may 

be suitably given by interval forms, instead of real numbers. Deli [14], deals with this case, proposed 

connotation of the interval neutrosophic soft  set , which is described by the degrees of  membership  , 

falsehood membership  and indeterminacy, that are values of which are intervals rather than true 

numbers. Mukherjee [17], The numerous similarity measures of interval valued neutrosophic soft sets 

were presented and their application in problems with pattern recognition. Abdel-Basset et al [19-26], 

suggested a solution to supply change problems,  professional selection problems,  time-cost tradeoffs, 

and leveling problems in construction using a  neutrosophic environment. Recent studies have focused 

on designing systems using complex fuzzy sets[30] in (NSS) and (INSS)[15,29,35,36,37,39,42].To design 

and model real-life applications in a better way, the 'complex' feature is used to manage uncertainty and 

periodicity data at the same time. By adding to the concept of a complex fuzzy set, complex-valued non-

membership grade [30], the definition of complex intuitionist fuzzy soft set was introduced by Kumar[31]. 

A complex neutrosophic soft set was proposed by Broumi et all [29], which is an extension type of a 

complex fuzzy soft set and a complex intuitionistic soft .The complex neutrosophic soft set will deal with 

the redundant existence of insecurity, incompleteness, indeterminacy, inconsistency in periodic data. The 

advantage of complex neutrosophic soft  sets over the neutrosophic soft  sets is the fact that, in addition 

to the membership degree provided by the neutrosophic soft sets and represented in the complex 

neutrosophic soft  sets by amplitude, The phase, which is an attribute degree characterizing the 

amplitude, is also given by the complex neutrosophic soft sets. Yet it is not easy to find a crisp (exact) 

neutrosophic soft membership degree in many real-life applications (as in the single-value neutrosophic 

soft set), because we deal with unclear and ambiguous details. So we must establish a new notion to solve 

this, which uses a neutrosophic soft membership degree interval. In this article, we first describe complex 

interval neutrosophical soft sets (IV-CNSSs) as a generalization the concept of the soft set, complex fuzzy 

soft set, interval valued complex fuzzy soft set [32,33,34], complex intuitionistic fuzzy soft set, interval 

complex valued intuitionistic fuzzy soft sets. We then add such definitions and operations of interval 

complex neutrosophic soft sets. Several properties of IV-CNSSs have been established that are related to 

activities. The goal of this paper is also to explore decision-making on the basis of interval-value complex 

neutrosophical soft sets. We develop an adaptable approach to decision-making based on interval-

complex valued neutrosophic soft sets and include examples to demonstrate the established approach. 

the novelty of this work can be viewed: 

 In this work, we have combined all of the following concepts Interval, Complex setting, 

Neutrosophic set, and Soft set .Thus we got a new model is interval valued complex neutrosophic 

soft set (IV-CNSS). 

 

 We have used this hybrid model to solve one of the famous real-life problems, which is the 

decision-making problem. 

 

The rest of this article is organized as follows. Section 2 recalls some basic concepts of neutrosophic set, 

soft set, complex fuzzy soft set, neutrosophic soft set, complex neutrosophic set, and their operations. 

Section 3 presents the formulation of the interval-valued complex neutrosophic set and some examples. 

Section 4 presenting Set-Theoretic Operations of Interval Valued Complex Neutrosophic Soft  Set(IV-

CNSs). Section 5 presenting Operational rules of operation Interval Valued Complex Neutrosophic Soft 

Sets (IV-CNSs). Section6 we introduce an application of our concept to a decision-making problem. 

Section 7 delineates conclusions and suggests further studies. 
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Now, we present the basic meanings of the neutrosophic set in this section[1,5], soft set theory [2], and 

complex fuzzy soft set [31,34],  signal valued  complex neutrosophic soft set [12]  that is helpful for 

subsequent discussions. 

Let X be a space of points (objects) denoted as x with generic elements in X. 

Definition 2.1. [5] A neutrosophical set A is an entity that has the structure 𝐴 = {〈 𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)  〉: 𝑥 ∈

indeterminacy, .membership functions of truth, enote thed 1],+,0-:[,I,FTwhere the functions  𝑋}

The condition must satisfy these . element with regard to set X∈xfalsehood, respectively, of the .and

functions are actual    𝑇𝐴(𝑥), 𝐼𝐴(𝑥)and𝐹𝐴(𝑥)  The .+3 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤  0-membership functions 

interval. 1]+0,-[standard subsets of the -normal or non 

Definition 2.2. [2] Let U be a discourse universe and A be a parameter set. Let a power set of U be P(U). A 

soft set over U is called an ordered pair (F,A), where F is a mapping given by𝐹 ∶ 𝐴 → 𝑃(𝑈). 

The parameterized family of subsets of the U set is a soft set. All 𝐹(𝑒), 𝑒 𝜖 𝐸 set from this family can be 

interpreted as a set consisting of soft set e-elements (𝐹, 𝐸) or as an e-approximate soft set member. 

Definition 2.3. [34] Let U  be an initial set and E  be a set of parameters. Let ( )P U  denote the power set 

of the complex fuzzy sets of  𝑈  and let  𝐴 ⊂ 𝐸.  A pair ( , )F A  is called a complex fuzzy soft set over 𝑈, 

where 𝐹 is a mapping given by : ( )F A P U  such that 

𝐹(𝑒𝑖) = {(ℎ𝑘 , 𝑟𝑘(𝑥). 𝑒𝑖𝑎𝑟𝑔𝑘(𝑥))|𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝑘: 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠} 

Definition 2.4. [11] Let  𝑈 be an initial universe,𝐸 be a set of parameters and let 𝑁𝑃(𝑈) denotes the set of 

all neutrosophic sets. Then the pair(𝑆, 𝐴) is termed to be the neutrosophic soft set over 𝑈  , where S is a 

mapping given by  𝑆: 𝐴 → 𝑁𝑃(𝑈). 

Definition 2.5. [12] Let U be a universal set, E be a set of parameters under, A ⊆ E and for all x ∈ U, 𝛹𝐴 is 

a complex neutrosophic set over U. Then a single-value complex neutrosophic soft set 𝑆𝐴 over  U  is then 

defined as a mapping 𝑆𝐴: 𝐸 → 𝐶𝑁(𝑈) , Where the complex neutrosophic sets in U are denoted by CN(U), 

and 𝛹𝐴(𝑥) = ∅ If 𝑥 𝑛𝑜 𝑏𝑒𝑙𝑜𝑛𝑔 𝐴 Here 𝛹𝐴(𝑥)  is referred to here as a complex neutrosophical approximate 

function of𝑆𝐴 and the values of 𝑆𝐴  are referred to as the x-elements of the CNSS for all x ∈ U.  Here 𝑆𝐴 

then be represented in the following manner by a series of ordered pairs: 

𝑆𝐴 = {〈 𝑥, 𝛹𝐴(𝑥)  〉: 𝑥 ∈ 𝐸, 𝛹𝐴(𝑥) ∈ 𝐶𝑁(𝑈)} 

Where 𝛹𝐴(𝑥) = (〈 𝑥, 𝑝𝐴(𝑥). 𝑒𝑖𝜔𝐴(𝑥), 𝑞𝐴(𝑥). 𝑒𝑖𝜑𝐴(𝑥), 𝑟𝐴(x). 𝑒𝑖𝛾𝐴(𝑥)〉  ), 

𝑝𝐴, 𝑞𝐴, 𝑟𝐴are real-valued and lie in [0,1] and 𝜔𝐴 , 𝜑𝐴, 𝛾𝐴 ∈ (0,2𝜋]. This is achieved in order to ensure that the 

CNSS model description refers to the original form of the complex fuzzy set on which the CNSS model is 

centered. 

Definition 2.6. [12] Over the universe U, let 𝑆𝐴 and 𝑆𝐵  be two complex neutrosophic sets,we define the 

operations of complement, subset, union and intersection as follows.The complement of  𝑆𝐴, denoted by 

𝑆𝑐
𝐴,𝑖𝑠 𝑎 𝐶𝑁𝑆𝑆 defined by 𝑆𝑐

𝐴 = {(𝑥, 𝛹𝑐
𝐴,(𝑥)) : 𝑥 ∈ 𝑈}, where 𝛹𝑐

𝐴  (𝑥) is the complex neutrosophic 

complement of 𝛹𝐴(𝑥). 

It is said that 𝑆𝐴 is a CNS − subset of 𝑆𝐵   and denoted by 𝑆𝐴  ⊆  𝑆𝐵  for all 𝑥 ∈ 𝑈, 𝛹𝐴(𝑥) ⊆  𝛹𝐵(𝑥), that is 

conditions are satisfied: 

 

2. Preliminaries 
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𝑝𝐴(𝑒) ≤ 𝑝𝐵(𝑒), 𝑞𝐴(𝑒) ≤ 𝑞𝐵(𝑒), 𝑟𝐴(𝑒) ≤ 𝑟𝐵(𝑒) 

And  𝜔𝐴(𝑒) ≤ 𝜔𝐵(𝑒), 𝜑𝐴(𝑒) ≤ 𝜑𝐵(𝑒), 𝛾𝐴(𝑒) ≤ 𝛾𝐵(𝑒) 

 

    iii) The union(intersection) of 𝑆𝐴and 𝑆𝐵 , denoted as 𝑆𝐴 ∪ (∩)𝑆𝐵  is defined as: 𝑆𝐶 = 𝑆𝐴 ∪ (∩)𝑆𝐵 =

{(𝑥, 𝛹𝐴  (𝑥) ∪ (∩)𝛹𝐵  (𝑥)): 𝑥 ∈ 𝑈} 

 

𝑆𝐶(𝑒) = {

(𝑥, 𝛹𝐴  (𝑥)) if   𝑒 ∈ 𝐴 − 𝐵

(𝑥, 𝛹𝐵  (𝑥)) if   𝑒 ∈ 𝐵 − 𝐴

(𝑥, 𝛹𝐴  (𝑥) ∪ (∩)𝛹𝐵  (𝑥)) if   𝑒 ∈ 𝐴 ∪ (∩)𝐵 

} 

 

where 𝐶 = 𝐴 ∪ (∩)𝐵, 𝑥 ∈ 𝑈, 𝑎𝑛𝑑 

𝛹𝐴  (𝑥) ∪ (∩)𝛹𝐵  (𝑥) = {

𝑝𝐴(𝑥) ∨ (∧)𝑝𝐵(𝑥). 𝑒𝑗(𝜔𝐴(𝑥)∪(∩)𝜔𝐵(𝑥)),

𝑞𝐴(𝑥) ∧ (∨ )𝑞𝐵(𝑥). 𝑒𝑗(𝜑𝐴(𝑥)∪(∩)𝜑𝐵(𝑥)),

𝑟𝐴(𝑥) ∧ (∨ )𝑟𝐵(𝑥). 𝑒𝑗(𝜔𝐴(𝑥)∪(∩)𝜔𝐵(𝑥)),

 

 

where ∨ and ∧  respectively denote the maximum and minimal operators. 

 

3. Interval Valued Complex Neutrosophic Soft Set 

The interval complex neutrosophic.soft set(IV-CNSS) model, which is a.combination of the IV-

CNS and softset models, is presented in this section. As seen below, the formal description of 

this model and some definitions related to this model are: 

Defintion 3.1 : Let U be an initial universe, E be a set of.parameters under consideration, 𝐴 ⊂ 𝐸 

and IV-CNS(U) denotes the set of IV-CNS-subset of U. Then a pair (𝑆̅, 𝐴) is called an interval- 

valued complex neutrosophic.soft set in short (IV-CNSS) over U , where 𝑆̅ is a mapping given 

by 𝑆̅: 𝐴 → 𝐼𝑉𝐶𝑁𝑆(𝑈) such that 𝑆𝐴̅(𝑥) = {〈 𝑎, 𝑇𝑆̅𝑎
(𝑥), 𝐼𝑆̅𝑎

(𝑥), 𝐹𝑆̅𝑎
(𝑥)  〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴  }. The IV-CNSSs 

model is defined over a universe of discourse U by three membership function its truth 

membership.function 𝑇𝑆̅𝑎
,an.indeterminate membership function 𝐼𝑆̅𝑎

, and 

falsehood.membership function 𝐹𝑆̅𝑎
 as follows: 

𝑇𝑆̅𝑎
: 𝐴 → 𝐼𝐶𝑁𝑆(𝑈), 𝑇𝑆̅𝑎

(𝑥) = 𝑡𝑆̅𝑎
(𝑥). 𝑒𝑗𝛼𝜔𝑠̅𝑎(𝑥) 

𝐼𝑆̅𝑎
: 𝐴 → 𝐼𝐶𝑁𝑆(𝑈), 𝐼𝑆𝑎̅

(𝑥) = 𝑖𝑆̅𝑎
(𝑥). 𝑒

𝑗𝛽ѱ𝑆̿𝑎
(𝑥)
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𝐹𝑆̅𝑎
: 𝐴 → 𝐼𝐶𝑁𝑆(𝑈), 𝐹𝑆̅𝑎

(𝑥) = 𝑓𝑆̅𝑎
(𝑥). 𝑒𝑗𝛾ɸ𝑆̅𝑎(𝑋) 

 

In the above equations,  the IV-CNS is a collection of complex neutrosophical interval sets,the 

function of the interval truth membership is 𝑡𝑆̅𝑎
(𝑥), 𝑖𝑆̅𝑎

(𝑥) is the interval.indeterminate 

membership.and 𝑓𝑆̅𝑎
(𝑥) is the interval falsehood membership function, while 𝑒𝑗𝛼𝜔𝑠̅𝑎(𝑥), 

𝑒
𝑗𝛽ѱ𝑆̿𝑎

(𝑥)
and 𝑒𝑗𝛾ɸ𝑆̅𝑎(𝑋)  are the corresponding interval-valued phase terms, respectively, with 𝑗 =

√−1.The scaling factors 𝛼, 𝛽 and 𝛾 lie within the interval (0,2𝜋]. This study implies that the 

values 𝛼, 𝛽, 𝛾 = 2𝜋. An interval-complex neutrosophic soft set can be written in set theoretical 

form as: 

(𝑆̅, 𝐴) = {𝑎, 〈 
𝑇𝑆̅𝑎

(𝑥)=𝑡𝑆̅𝑎
(𝑥).𝑒

𝑗𝛼𝜔𝑠̅𝑎(𝑥)
 ,𝐼𝑆̅𝑎

(𝑥)= 𝑖𝑆̅𝑎
(𝑥).𝑒

𝑗𝛽ѱ
𝑆̿𝑎

(𝑥)
 ,𝐹𝑆̅𝑎

(𝑥)=𝑓𝑆̅𝑎
(𝑥).𝑒

𝑗𝛾ɸ𝑆̅𝑎(𝑋)    

𝑥
〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴} 

In the above set theoretic form,  the amplitude interval-valued terms 𝑡𝑆̅𝑎
(𝑥), 𝑖𝑆̅𝑎

(𝑥) and 𝑓𝑆̅𝑎
(𝑥)  can be 

further split as 𝑡𝑆̅𝑎
(𝑥) = [𝑡𝐿

𝑆̅𝑎
(𝑥), 𝑡𝑈

𝑆̅𝑎
(𝑥)], 𝑖𝑆̅𝑎

(𝑥) = [𝑖𝐿
𝑆̅𝑎

(𝑥), 𝑖𝑈
𝑆̅𝑎

(𝑥)] and 𝑓𝑆̅𝑎
(𝑥) =

[𝑓𝐿
𝑆̅𝑎

(𝑥), 𝑓𝑈
𝑆̅𝑎

(𝑥)],where 𝑡𝐿
𝑆̅𝑎

(𝑥), 𝑖𝐿
𝑆̅𝑎

(𝑥), 𝑓𝐿
𝑆̅𝑎

(𝑥) represent the lower bound, while 

𝑡𝑈
𝑆̅𝑎

(𝑥), 𝑖𝑈
𝑆̅𝑎

(𝑥), 𝑓𝑈
𝑆̅𝑎

(𝑥) represent the upper bound in each interval, respectively. likewise, for the 

phases: 𝜔𝑠̅𝑎
(𝑥) = [𝜔𝐿

𝑠̅𝑎
(𝑥), 𝜔𝑈

𝑠̅𝑎
(𝑥)], ѱ𝑠̅𝑎

(𝑥) = [ѱ𝐿
𝑠̅𝑎

(𝑥), ѱ𝑈
𝑠̅𝑎

(𝑥)] , ɸ𝑠̅𝑎
(𝑥) = [ɸ𝐿

𝑠𝑎̅
(𝑥), ɸ𝑈

𝑠̅𝑎
(𝑥)] . 

Example3.2 Let U be a set of developing countries in the area of West Asia (WA), considered to be a set 

of criteria that characterize the economic indicators of a nation, and  𝐴 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} ⊂ 𝐸,where these 

sets are as defined below: 

𝑈 = {𝑢1 = 𝐼𝑟𝑎𝑞, 𝑢2 = 𝐾𝑖𝑛𝑔𝑑𝑜𝑚 𝑜𝑓 𝑆𝑎𝑢𝑑𝑖 𝐴𝑟𝑎𝑏𝑖𝑎, 𝑢3 = 𝐽𝑜𝑟𝑑𝑎𝑛, 𝑢4 = 𝑈𝐴𝐸} 

𝐸 = {𝑒1 = 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 , 𝑒2 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑤𝑡ℎ, 𝑒3 = 𝐺𝐷𝑃 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒, 𝑒4 =

𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒, 𝑒5 = 𝑒𝑥𝑝𝑜𝑟𝑡 𝑣𝑜𝑙𝑢𝑚𝑒}. 

The IV-CNSS 𝑆𝐴̅(𝑒1), 𝑆𝐴̅(𝑒2), 𝑆𝐴̅(𝑒3)and𝑆𝐴̅(𝑒4)are defined as: 

 

𝑆𝐴̅(𝑒1) = 

{(
[0.4,0.6]. 𝑒𝑗2𝜋[0.5,0.6], [0.1,0.7]. 𝑒𝑗2𝜋[0.1,0.3], [0.3,0.5]. 𝑒𝑗2𝜋[0.8,0.9]

𝑢1

), (
[0.2,0.4]. 𝑒𝑗2𝜋[0.3,0.6], [0.1,0.1]. 𝑒𝑗2𝜋[0.7,0.9], [0.5,0.9]. 𝑒𝑗2𝜋[0.2,0.5]

𝑢2

), 

(
[0.3,0.4]. 𝑒𝑗2𝜋[0.7,0.8], [0.6,0.7]. 𝑒𝑗2𝜋[0.6,0.7], [0.2,0.6]. 𝑒𝑗2𝜋[0.6,0.8]

𝑢3

), (
[0,0.9]. 𝑒𝑗2𝜋[0.9,1], [0.2,0.3]. 𝑒𝑗2𝜋[0.7,0.8], [0.3,0.5]. 𝑒𝑗2𝜋[0.4,0.5]

𝑢4

)} 

𝑆𝐴̅(𝑒2) = 

{(
[0.2,0.5]. 𝑒𝑗2𝜋[0.4,0.7], [0.5,0.7]. 𝑒𝑗2𝜋[0.2,0.3], [0.6,0.8]. 𝑒𝑗2𝜋[0.6,0.9]

𝑢1

), (
[0.1,0.3]. 𝑒𝑗2𝜋[0.1,0.3], [0.2,0.7]. 𝑒𝑗2𝜋[0.6,0.8], [0.4,0.7]. 𝑒𝑗2𝜋[0.1,0.5]

𝑢2

), 

(
[0.6,0.8]. 𝑒𝑗2𝜋[0.8,0.9], [0.4,0.6]. 𝑒𝑗2𝜋[0.4,0.7], [0.1,0.4]. 𝑒𝑗2𝜋[0.7,0.8]

𝑢3

), (
[0.3,0.8]. 𝑒𝑗2𝜋[0.7,0.9], [0,0.1]. 𝑒𝑗2𝜋[0.7,0.7], [0.2,0.4]. 𝑒𝑗2𝜋[0.6,0.8]

𝑢4

)} 

S̅A(e3) = 
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{(
[0.3,0.7]. ej2π[0.5,0.6], [0.1,0.7]. ej2π[0.1,0.3], [0.3,0.5]. ej2π[0.8,0.9]

u1

), (
[0.4,0.4]. ej2π[0.6,0.7], [0.1,0.9]. ejπ[0.2,0.4], [0.3,0.8]. ejπ[0.5,0.6]

u2

), 

(
[0.37,0.64]. ejπ[0.47,0.50], [0.36,0.57]. ejπ[0.64,0.7], [0.28,0.66]. ejπ[0.16,0.20]

u3

), (
[0.15,0.52]. ejπ[0.1,0.2], [0,0.5]. ejπ[0.6,0.7], [0.3,0.3]. ejπ[0.6,0.7]

u4

)} 

S̅A(e4) = 

{(
[0.5,1]. ejπ[0.6,0.71], [0.11,0.73]. ejπ[0.12,0.34], [0.6,0.7]. ejπ[0.82,0.94]

u1

), (
[0.35,0.41]. ejπ[0.52,0.71], [0.2,0.9]. ejπ[0.1,0.4], [0.5,0.8]. ejπ[0.56,0.62]

u2

), 

 

(
[0.21,0.63]. ejπ[0.41,0.55], [0.31,0.52]. ejπ[0.11,0.67], [0.17,0.49]. ejπ[0.26,0.40]

u3

), (
[0.22,0.42]. ejπ[0.2,0.35], [0,3,0.65]. ejπ[0.36,0.88], [0.4,0.6]. ejπ[0.74,0.91]

u4

)} 

 

 

Then a selection of IV-CNSS of the  form can be written by the interval valued complex neutrosophic soft 

sets (𝑆̅, 𝐴) such that (𝑆̅, 𝐴) = {𝑆𝐴̅(𝑒1), 𝑆𝐴̅(𝑒2), 𝑆𝐴̅(𝑒3), 𝑆𝐴̅(𝑒4)}. 

 

Definition 3.3 : Let (𝑆̅, 𝐴)𝑎𝑛𝑑 (𝑆̅, 𝐵) be two IV-CNSSs over U. Then 

(𝑆̅, 𝐴) is said to be a subset of (𝑆̅, 𝐵),denoted by (𝑆̅, 𝐴) ⊂  (𝑆̅, 𝐵) iff 𝑡𝐿
𝑆̅𝑎

(𝑥) ≤ 𝑡𝐿
𝑆̅𝑏

(𝑥), 𝑖𝐿
𝑆̅𝑎

(𝑥) ≤

𝑖𝐿
𝑆̅𝑏

(𝑥) , 𝑓𝐿
𝑆̅𝑎

(𝑥) ≤ 𝑓𝐿
𝑆̅𝑏

(𝑥) and 𝑡𝑈
𝑆̅𝑎

(𝑥) ≤ 𝑡𝑈
𝑆̅𝑏

(𝑥), 𝑖𝑈
𝑆𝑎̅

(𝑥) ≤ 𝑡𝑈
𝑆̅𝑏

(𝑥), 𝑓𝑈
𝑆̅𝑎

(𝑥) ≤ 𝑓𝑈
𝑆̅𝑏

(𝑥)  for the amplitude 

terms, and 𝜔𝐿
𝑠̅𝑎

(𝑥) ≤ 𝜔𝐿
𝑠̅𝑏

(𝑥), ѱ𝐿
𝑠̅𝑎

(𝑥) ≤ ѱ𝐿
𝑠̅𝑏

(𝑥), ɸ𝐿
𝑠̅𝑎

(𝑥) ≤ ɸ𝐿
𝑠̅𝑎

(𝑥) and 𝜔𝑈
𝑠̅𝑎

(𝑥) ≤ 𝜔𝑈
𝑠̅𝑏

(𝑥), ѱ𝑈
𝑠̅𝑎

(𝑥) ≤

ѱ𝑈
𝑠̅𝑏

(𝑥), ɸ𝑈
𝑠̅𝑎

(𝑥) ≤ ɸ𝑈
𝑠̅𝑏

(𝑥) for the phase terms for all 𝑥 ∈ 𝑈.  

(𝑆̅, 𝐴)is said to be equal of (𝑆̅, 𝐵),denoted by (𝑆̅, 𝐴) =  (𝑆̅, 𝐵) iff 𝑡𝐿
𝑆̅𝑎

(𝑥) = 𝑡𝐿
𝑆̅𝑏

(𝑥), 𝑖𝐿
𝑆̅𝑎

(𝑥) =

𝑖𝐿
𝑆̅𝑏

(𝑥) , 𝑓𝐿
𝑆̅𝑎

(𝑥) = 𝑓𝐿
𝑆̅𝑏

(𝑥) and 𝑡𝑈
𝑆̅𝑎

(𝑥) = 𝑡𝑈
𝑆̅𝑏

(𝑥), 𝑖𝑈
𝑆𝑎̅

(𝑥) = 𝑡𝑈
𝑆̅𝑏

(𝑥), 𝑓𝑈
𝑆̅𝑎

(𝑥) = 𝑓𝑈
𝑆̅𝑏

(𝑥)   for the amplitude 

terms, and 𝜔𝐿
𝑠̅𝑎

(𝑥) = 𝜔𝐿
𝑠̅𝑏

(𝑥), ѱ𝐿
𝑠̅𝑎

(𝑥) = ѱ𝐿
𝑠̅𝑏

(𝑥), ɸ𝐿
𝑠̅𝑎

(𝑥) = ɸ𝐿
𝑠̅𝑏

(𝑥) and 𝜔𝑈
𝑠̅𝑎

(𝑥) = 𝜔𝑈
𝑠̅𝑏

(𝑥), ѱ𝑈
𝑠̅𝑎

(𝑥) =

ѱ𝑈
𝑠̅𝑏

(𝑥), ɸ𝑈
𝑠̅𝑎

(𝑥) = ɸ𝑈
𝑠̅𝑏

(𝑥)for the phase terms for all 𝑥 ∈ 𝑈.  

Definition 3.4: (𝑆̅, 𝐴) is said to be a null IV-CNSS, denoted by (𝑆̅, 𝐴)ɸif for all 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴,the amplitude 

and phase terms of the membership function are given by 𝑡𝐿
𝑆̅𝑎

(𝑥) = 𝑡𝑈
𝑆̅𝑎

(𝑥), 𝑖𝐿
𝑆𝑎̅

(𝑥) = 𝑖𝑈
𝑆̅𝑎

(𝑥) , 𝑓𝐿
𝑆̅𝑎

(𝑥) =

𝑓𝑈
𝑆̅𝑎

(𝑥) = 0 𝑎𝑛𝑑 𝜔𝐿
𝑠̅𝑎

(𝑥) = 𝜔𝑈
𝑠̅𝑎

(𝑥), ѱ𝐿
𝑠̅𝑎

(𝑥) = ѱ𝑈
𝑠̅𝑎

(𝑥), ɸ𝐿
𝑠̅𝑎

(𝑥) = ɸ𝑈
𝑠̅𝑎

(𝑥) =  0𝜋,respectively  

Definition 3.5: (𝑆̅, 𝐴) is said to be an absolute IV-CNSS, denoted by (𝑆̅, 𝐴)𝛿if for all 𝑥 ∈ 𝑈, the amplitude 

and phase terms of the membership function are given by  

𝑡𝐿
𝑆̅𝑎

(𝑥) = 𝑡𝑈
𝑆̅𝑎

(𝑥), 𝑖𝐿
𝑆̅𝑎

(𝑥) = 𝑖𝑈
𝑆̅𝑎

(𝑥) , 𝑓𝐿
𝑆̅𝑎

(𝑥) = 𝑓𝑈
𝑆̅𝑎

(𝑥) = 1 and 𝜔𝐿
𝑠̅𝑎

(𝑥) = 𝜔𝑈
𝑠̅𝑎

(𝑥), ѱ𝐿
𝑠̅𝑎

(𝑥) =

ѱ𝑈
𝑠̅𝑎

(𝑥), ɸ𝐿
𝑠̅𝑎

(𝑥) = ɸ𝑈
𝑠̅𝑎

(𝑥) =  2𝜋,respectively  

The IV-CNSS effectively decreases to a crisp collection of the universe U in each of the cases defined in 

Definitions 3.4 and 3.5, 
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i.e. (𝑆̅, 𝐴)ɸ = {(
[0,0.].𝑒𝑗𝜋[0.0],[0.0].𝑒𝑗𝜋[0,0],[0,0].𝑒𝑗𝜋[0,0]

x
)} = { ( 

0,0,0

𝑥   
)}. 

and (𝑆̅, 𝐴)𝛿 =  {(
[1,1].𝑒𝑗2𝜋,[1.1].𝑒𝑗2𝜋,[1,1].𝑒𝑗2𝜋

x
)} = { ( 

1,1,1

𝑥   
)}. 

 

4. Set Theoretic Operations of Interval Valued Complex Neutrosophic Soft  Set 

The basic set of theoretical operations on IV-CNSS, namely the complement, union intersection, are 

described in this section. 

Definition 4.1: Let (𝑆̅, 𝐴)𝑎𝑛𝑑 (𝑆̅, 𝐵) be two IV-CNSSs over U. The union of (𝑆̅, 𝐴)and (𝑆̅, 𝐵) is an IV-CNSS  

(𝑆̅, 𝐶) where = 𝐴 ∪ 𝐵 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and  𝑥 ∈ 𝑈. to define the union we consider three cases : 

Case 1: if 𝑐 ∈ 𝐴 − 𝐵.then  

𝑇𝑆̅𝑎
(𝑥) = [𝑖𝑛𝑓𝑡𝑆̅𝑎

(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝑎
(𝑥)]. 𝑒𝑗𝛼𝜔𝑠̅𝑎(𝑥) 

𝐼𝑆̅𝑎
(𝑥) = [𝑖𝑛𝑓𝑖𝑆̅𝑎

(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝑎
(𝑥)]. 𝑒𝑗𝛼ѱ𝑠̅𝑎(𝑥) 

𝐹𝑆̅𝑎
(𝑥) = [𝑖𝑛𝑓𝑓𝑆̅𝑎

(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝑎
(𝑥)]. 𝑒𝑗𝛼ɸ𝑠̅𝑎(𝑥) 

 

Case 2: if 𝑐 ∈ 𝐵 − 𝐴.then 

𝑇𝑆̅𝑏
(𝑥) = [𝑖𝑛𝑓𝑡𝑆̅𝑏

(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝑏
(𝑥)]. 𝑒𝑗𝛼𝜔𝑠̅𝑏

(𝑥) 

𝐼𝑆̅𝑏
(𝑥) = [𝑖𝑛𝑓𝑖𝑏(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝑏

(𝑥)]. 𝑒𝑗𝛼ѱ𝑠̅𝑏
(𝑥) 

𝐹𝑆̅𝑏
(𝑥) = [𝑖𝑛𝑓𝑓𝑆̅𝑏

(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝑏
(𝑥)]. 𝑒𝑗𝛼ɸ𝑠̅𝑏

(𝑥) 

Case 3: if 𝑐 ∈ 𝐴 ∩ 𝐵.then 

𝑇𝑆̅𝐶
(𝑥) = [𝑖𝑛𝑓𝑡𝑆̅𝐶

(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝐶
(𝑥)]. 𝑒𝑗𝛼𝜔𝑠̅𝐶

(𝑥) 

𝐼𝑆̅𝐶
(𝑥) = [𝑖𝑛𝑓𝑖𝑆̅𝐶

(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝐶
(𝑥)]. 𝑒𝑗𝛼ѱ𝑠̅𝐶

(𝑥) 

𝐹𝑆̅𝐶
(𝑥) = [𝑖𝑛𝑓𝑓𝑆̅𝐶

(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝐶
(𝑥)]. 𝑒𝑗𝛼ɸ𝑠̅𝐶

(𝑥) 

Where 

𝑖𝑛𝑓𝑡𝑆̅𝐶
(𝑥) = ˅ (𝑖𝑛𝑓𝑡𝑆̅𝐴

(𝑥), 𝑖𝑛𝑓𝑡𝑆̅𝐵
(𝑥)) , 𝑠𝑢𝑝𝑡𝑆̅𝐶

(𝑥) = ˅ (𝑠𝑢𝑝𝑡𝑆̅𝐴
(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝐵

(𝑥)) ; 

𝑖𝑛𝑓𝑖𝑆̅𝐶
(𝑥) = ˄ (𝑖𝑛𝑓𝑖𝑆̅𝐴

(𝑥), 𝑖𝑛𝑓𝑖𝑆̅𝐵
(𝑥)) , 𝑠𝑢𝑝𝑖𝑆̅𝐶

(𝑥) = ˄ (𝑠𝑢𝑝𝑖𝑆̅𝐴
(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝐵

(𝑥)) ; 

𝑖𝑛𝑓𝑓𝑆̅𝐶
(𝑥) = ˄ (𝑖𝑛𝑓𝑓𝑆̅𝐴

(𝑥), 𝑖𝑛𝑓𝑓𝑆̅𝐵
(𝑥)) , 𝑠𝑢𝑝𝑖𝑆̅𝐶

(𝑥) = ˄ (𝑠𝑢𝑝𝑓𝑆̅𝐴
(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝐵

(𝑥)) ; 
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 The union of the phase terms are the same as defined for the union of the amplitude terms . The symbols 

˅,˄ represent respectively max and min operators. 

Example 4.2. Let 𝑈 = {𝑢1, 𝑢2} be a universe of discourse, (𝑆̅, 𝐴)𝑎𝑛𝑑 (𝑆̅, 𝐵)  be two interval complex 

neutrosophic soft sets such that A={𝑒1, 𝑒2, 𝑒3 }, B={𝑒2, 𝑒3, 𝑒4 } defined on U as follows: 

(𝑆̅, 𝐴) = 

{e1, (
[0.1,0.8]. ej2π[0.22,0.48], [0.4,0.8]. ej2π[0.55,0.62], [0.37,0.46]. ej2π[0.57,0.83]

u1

), (
[0.26,0.39]. ej2π[0.53,0.86], [0.65,0.86]. ej2π[0.43,0.61], [0.53,0.9]. ej2π[0.2,0.5]

u2

), 

𝑒2, (
[0.4,0.6]. 𝑒𝑗2𝜋[0.5,0.6], [0.1,0.7]. 𝑒𝑗2𝜋[0.1,0.3], [0.3,0.5]. 𝑒𝑗2𝜋[0.8,0.9]

𝑢1

), (
[0.2,0.4]. 𝑒𝑗2𝜋[0.3,0.6], [0.1,0.1]. 𝑒𝑗2𝜋[0.7,0.9], [0.5,0.9]. 𝑒𝑗2𝜋[0.2,0.5]

𝑢2

 )), 

𝑒3, (
[0.2,0.5]. 𝑒𝑗2𝜋[0.4,0.7], [0.5,0.7]. 𝑒𝑗2𝜋[0.2,0.3], [0.6,0.8]. 𝑒2𝑗𝜋[0.6,0.9]

𝑢1

), (
[0.1,0.3]. 𝑒𝑗2𝜋[0.1,0.3], [0.2,0.7]. 𝑒2𝑗𝜋[0.6,0.8], [0.4,0.7]. 𝑒𝑗2𝜋[0.1,0.5]

𝑢2

)} 

(𝑆̅, 𝐵) = 

{𝑒2, (
[0.3,0.7]. ej2π[0.7,0.8], [0.4,0.9]. ej2π[0.3,0.5], [0.6,0.8]. ej2π[0.5,0.6]

u1

), (
[0.4,0.4]. ej2π[0.6,0.7], [0.1,0.9]. ej2π[0.2,0.4], [0.3,0.8]. ej2π[0.5,0.6]

u2

) 

, 𝑒3, (
[0.3,0.7]. 𝑒𝑗2𝜋[0.4,0.5], [0.3,0.5]. 𝑒𝑗2𝜋[0.6,0.7], [0.2,0.6]. 𝑒𝑗2𝜋[0.16,0.3]

𝑢1

), (
[0.21,0.63]. 𝑒𝑗2𝜋[0.41,0.55], [0.31,0.52]. 𝑒𝑗2𝜋[0.11,0.67], [0.3,0.73]. 𝑒𝑗2𝜋[0.2,0.58]

𝑢2

) 

𝑒4, (
[0.2,0.6]. ej2π[0.6,0.7], [0.3,0.8]. ej2π[0.2,0.4], [0.5,0.7]. ej2π[0.4,0.5]

u1

), (
[0.5,0.6]. ej2π[0.7,0.8], [0.2,0.8]. ej2π[0.3,0.5], [0.4,0.9]. ej2π[0.6,0.7]

u2

)} 

 

Then  the union between two IV-CNSS defined as: 

(𝑆̅, 𝐴) ∪  (𝑆̅, 𝐵) = (𝑆̅, 𝐶) = 

{𝑒1, (
[0.1,0.8]. 𝑒𝑗2𝜋[0.22,0.48], [0.4,0.8]. 𝑒𝑗2𝜋[0.55,0.62], [0.37,0.46]. 𝑒𝑗2𝜋[0.57,0.83]

𝑢1

), (
[0.26,0.39]. 𝑒𝑗2𝜋[0.53,0.86], [0.65,0.86]. 𝑒𝑗2𝜋[0.43,0.61], [0.53,0.9]. 𝑒𝑗2𝜋[0.2,0.5]

𝑢2

)), 

{(𝑒2, (
[0.4,0.7]. 𝑒𝑗2𝜋[0.7,0.8], [0.1,0.7]. 𝑒𝑗2𝜋[0.1,0.3], [0.3,0.5]. 𝑒𝑗2𝜋[0.5,0.6]

𝑢1

), (
[0.4,0.4]. 𝑒𝑗2𝜋[0.6,0.7], [0.1,0.1]. 𝑒𝑗2𝜋[0.2,0.4], [0.4,0.91]. 𝑒𝑗2𝜋[0.58,0.69]

𝑢2

)), 

𝑒3, (
[0.3,0.7]. 𝑒𝑗2𝜋[0.4,0.7], [0.3,0.7]. 𝑒𝑗2𝜋[0.6,0.7], [0.2,0.6]. 𝑒𝑗2𝜋[0.16,0.3]

𝑢1

), (
[0.21,0.63]. 𝑒𝑗2𝜋[0.41,0.55], [0.2,0.52]. 𝑒𝑗2𝜋[0.11,0.67], [0.3,0.8]. 𝑒𝑗2𝜋[0.1,0.5]

𝑢2

), 

𝑒4, (
[0.2,0.6]. ej2π[0.6,0.7], [0.3,0.8]. ej2π[0.2,0.4], [0.5,0.7]. ej2π[0.4,0.5]

u1

), (
[0.5,0.6]. ej2π[0.7,0.8], [0.2,0.8]. ej2π[0.3,0.5], [0.4,0.9]. ej2π[0.6,0.7]

u2

)} 

𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝐴 ∪ 𝐵. 

Definition 4.3. Let (𝑆̅, 𝐴)and (𝑆̅, 𝐵) be two IV-CNSs over U. The intersection of (𝑆̅, 𝐴)and (𝑆̅, 𝐵) is an IV-

CNSS  (𝑆̅, 𝐶) where 𝐶 = 𝐴 ∩ 𝐵, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and  𝑥 ∈ 𝑈. to define the intersection we consider three cases: 

Case 1: if 𝑐 ∈ 𝐴 − 𝐵.then  

  𝑇𝑆̅𝑎
(𝑥) = [𝑖𝑛𝑓𝑡𝑆̅𝑎

(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝑎
(𝑥)]. 𝑒𝑗𝛼𝜔𝑠̅𝑎(𝑥) 

𝐼𝑆̅𝑎
(𝑥) = [𝑖𝑛𝑓𝑖𝑆̅𝑎

(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝑎
(𝑥)]. 𝑒𝑗𝛼ѱ𝑠̅𝑎(𝑥) 
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𝐹𝑆̅𝑎
(𝑥) = [𝑖𝑛𝑓𝑓𝑆̅𝑎

(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝑎
(𝑥)]. 𝑒𝑗𝛼ɸ𝑠̅𝑎(𝑥) 

Case 2: if 𝑐 ∈ 𝐵 − 𝐴.then 

𝑇𝑆̅𝑏
(𝑥) = [𝑖𝑛𝑓𝑡𝑆̅𝑏

(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝑏
(𝑥)]. 𝑒𝑗𝛼𝜔𝑠̅𝑏

(𝑥) 

𝐼𝑆̅𝑏
(𝑥) = [𝑖𝑛𝑓𝑖𝑏(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝑏

(𝑥)]. 𝑒𝑗𝛼ѱ𝑠̅𝑏
(𝑥) 

𝐹𝑆̅𝑏
(𝑥) = [𝑖𝑛𝑓𝑓𝑆̅𝑏

(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝑏
(𝑥)]. 𝑒𝑗𝛼ɸ𝑠̅𝑏

(𝑥) 

Case 3: if 𝑐 ∈ 𝐴 ∩ 𝐵.then 

𝑇𝑆̅𝐶
(𝑥) = [𝑖𝑛𝑓𝑡𝑆̅𝐶

(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝐶
(𝑥)]. 𝑒𝑗𝛼𝜔𝑠̅𝐶

(𝑥) 

𝐼𝑆̅𝐶
(𝑥) = [𝑖𝑛𝑓𝑖𝑆̅𝐶

(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝐶
(𝑥)]. 𝑒𝑗𝛼ѱ𝑠̅𝐶

(𝑥) 

𝐹𝑆̅𝐶
(𝑥) = [𝑖𝑛𝑓𝑓𝑆̅𝐶

(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝐶
(𝑥)]. 𝑒𝑗𝛼ɸ𝑠̅𝐶

(𝑥) 

Where 

𝑖𝑛𝑓𝑡𝑆̅𝐶
(𝑥) = ˄ (𝑖𝑛𝑓𝑡𝑆̅𝐴

(𝑥), 𝑖𝑛𝑓𝑡𝑆̅𝐵
(𝑥)) , 𝑠𝑢𝑝𝑡𝑆̅𝐶

(𝑥) = ˄ (𝑠𝑢𝑝𝑡𝑆̅𝐴
(𝑥), 𝑠𝑢𝑝𝑡𝑆̅𝐵

(𝑥)) ; 

𝑖𝑛𝑓𝑖𝑆̅𝐶
(𝑥) = ˅ (𝑖𝑛𝑓𝑖𝑆̅𝐴

(𝑥), 𝑖𝑛𝑓𝑖𝑆̅𝐵
(𝑥)) , 𝑠𝑢𝑝𝑖𝑆̅𝐶

(𝑥) = ˅ (𝑠𝑢𝑝𝑖𝑆̅𝐴
(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝐵

(𝑥)) ; 

𝑖𝑛𝑓𝑓𝑆̅𝐶
(𝑥) = ˅ (𝑖𝑛𝑓𝑓𝑆̅𝐴

(𝑥), 𝑖𝑛𝑓𝑓𝑆̅𝐵
(𝑥)) , 𝑠𝑢𝑝𝑖𝑆̅𝐶

(𝑥) = ˅ (𝑠𝑢𝑝𝑓𝑆̅𝐴
(𝑥), 𝑠𝑢𝑝𝑓𝑆̅𝐵

(𝑥)) ; 

The intersection of the phase terms are the same as defined for the intersection of the amplitude terms. 

The symbols ˅,˄ represent respectively max and min operators. 

Example 4.4. As in Example 4.2, let (𝑆̅, 𝐴)and (𝑆̅, 𝐵) be two two interval value complex neutrosophic soft 

sets  . Then, (𝑆̅, 𝐶) is given by the intersection of two interval value complex neutrosophic soft sets: 

(𝑆̅, 𝐴) ∩  (𝑆̅, 𝐵) = (𝑆̅, 𝐶) = 

{e1, (
[0.1,0.8]. ej2π[0.22,0.48], [0.4,0.8]. ej2π[0.55,0.62], [0.37,0.46]. ej2π[0.57,0.83]

u1

), (
[0.26,0.39]. ej2π[0.53,0.86], [0.65,0.86]. ej2π[0.43,0.61], [0.53,0.9]. ej2π[0.2,0.5]

u2

), 

 𝑒2, (
[0.3,0.6]. 𝑒𝑗2𝜋[0.5,0.6], [0.4,0.9]. 𝑒𝑗2𝜋[0.3,0.5], [0.6,0.8]. 𝑒𝑗2𝜋[0.8,0.9]

𝑢1

), (
[0.2,0.4]. 𝑒𝑗2𝜋[0.3,0.6], [0.1,0.9]. 𝑒𝑗2𝜋[0.7,0.9], [0.5,0.9]. 𝑒𝑗2𝜋[0.5,0.6]

𝑢2

), 

𝑒3, (
[0.2,0.5]. 𝑒𝑗2𝜋[0.4,0.7], [0.5,0.7]. 𝑒𝑗2𝜋[0.8,0.7], [0.2,0.8]. 𝑒𝑗2𝜋[0.6,0.9]

𝑢1

), (
[0.1,0.3]. 𝑒𝑗2𝜋[0.1,0.3], [0.31,0.7]. 𝑒𝑗2𝜋[0.6,0.8], [0.4,0.73]. 𝑒𝑗2𝜋[0.2,0.58]

𝑢2

), 

𝑒4, (
[0.2,0.6]. ej2π[0.6,0.7], [0.3,0.8]. ej2π[0.2,0.4], [0.5,0.7]. ej2π[0.4,0.5]

u1

), (
[0.5,0.6]. ej2π[0.7,0.8], [0.2,0.8]. ej2π[0.3,0.5], [0.4,0.9]. ej2π[0.6,0.7]

u2

)} 

𝑊ℎ𝑒𝑟𝑒 𝐶 = 𝐴 ∩ 𝐵  

Definition4.5.Let (𝑆̅, 𝐴) be IV-CNSs over U. The complement of (𝑆̅, 𝐴), denoted by (𝑆̅, 𝐴) 𝑐 is as defined 

below: 
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(𝑆̅, 𝐴) 𝑐 = (𝑆̅𝑐 , 𝐴) = {𝑎,〈 
𝑇𝑆̅

𝐴𝐶
(𝑥)=𝑡𝑆̅𝐴𝑐

(𝑥).𝑒
𝑗2𝜋𝜔𝑠̅𝐴𝑐 (𝑥)

 ,𝐼𝑆̅
𝐴𝐶

(𝑥)=𝑖𝑆̅𝐴𝑐
(𝑥).𝑒

𝑗2𝜋ѱ𝑠̅𝐴𝑐 (𝑥)
 ,𝐹𝑆̅

𝐴𝐶
(𝑥)=𝑓𝑆̅𝐴𝑐

(𝑥).𝑒
𝑗2𝜋ɸ𝑠̅𝐴𝑐 (𝑥)

   

𝑥
〉: 𝑥 ∈

𝑈, 𝑎 ∈ 𝐴}. 

Where 𝑡𝑆̅𝐴𝑐 (𝑥) = 𝑓𝑆̅𝐴
(𝑥) and 𝜔𝑠̅𝐴𝑐 (𝑥) = 2𝜋 − 𝜔𝑠̅𝐴

(𝑥) . Similarly 𝑖𝑆̅𝐴𝑐 (𝑥) = (𝑖𝑛𝑓𝑖𝑆̅𝐴𝑐(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝐴𝑐(𝑥))where 

𝑖𝑛𝑓𝑖𝑆̅𝐴𝑐(𝑥) = 1 − 𝑠𝑢𝑝𝑖𝑆̅𝐴
(𝑥) and 𝑠𝑢𝑝𝑖𝑆̅𝐴𝑐(𝑥) = 1 − 𝑖𝑛𝑓𝑖𝑆̅𝐴

(𝑥),with phase term ѱ𝑠̅𝐴𝑐(𝑥) = 2𝜋 − ѱ𝑠̅𝐴
(𝑥) Also, 

𝑓𝑆̅𝐴𝑐(𝑥) = 𝑡𝑆̅𝐴
(𝑥),while the phase term ɸ𝑠̅𝐴𝑐(𝑥) = 2𝜋 − ɸ𝑠̅𝐴

(𝑥) . 

Proposition 4.6. Let (𝑆̅, 𝐴) is a IV-CNSs over U, then, ((𝑆̅, 𝐴)𝐶)𝐶 = (𝑆̅, 𝐴). 

Proof.From Definition 4.5, we have 

(𝑆̅, 𝐴) 𝑐 = (𝑆̅𝑐 , 𝐴) = {𝑎,〈 𝑇𝑆̅
𝐴𝐶

(𝑥) , 𝐼𝑆̅
𝐴𝐶

(𝑥) , 𝐹𝑆̅
𝐴𝐶

(𝑥)〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴}. 

={𝑎,〈 𝑡𝑆̅𝐴𝑐 (𝑥). 𝑒
𝑗2𝜋𝜔𝑠̅𝐴𝑐 (𝑥)

 , 𝑖𝑆̅𝐴𝑐 (𝑥). 𝑒
𝑗2𝜋ѱ𝑠̅𝐴𝑐 (𝑥)

 , 𝑓𝑆̅𝐴𝑐(𝑥). 𝑒
𝑗2𝜋ɸ𝑠̅𝐴𝑐 (𝑥)

〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴}. 

={𝑎,〈 𝑓𝑆̅𝐴
(𝑥). 𝑒𝑗2𝜋(2𝜋−𝜔𝑠̅𝐴

(𝑥)) , (𝑖𝑛𝑓𝑖𝑆̅𝐴𝑐(𝑥), 𝑠𝑢𝑝𝑖𝑆̅𝐴𝑐(𝑥)). 𝑒𝑗2𝜋(2𝜋−ѱ𝑠̅𝐴
(𝑥)) , 𝑡𝑆̅𝐴

(𝑥). 𝑒𝑗2π(2𝜋−ɸ𝑠̅𝐴
(𝑥))〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴}. 

={𝑎,〈 𝑓𝑆̅𝐴
(𝑥). 𝑒𝑗2𝜋(2𝜋−𝜔𝑠̅𝐴

(𝑥)) , (1 − 𝑠𝑢𝑝𝑖𝑆̅𝐴
(𝑥), 1 − 𝑖𝑛𝑓𝑖𝑆̅𝐴

(𝑥)). 𝑒𝑗2𝜋(2𝜋−ѱ𝑠̅𝐴
(𝑥)) , 𝑓𝑆̅𝐴𝑐 (𝑥). 𝑒𝑗2π(2𝜋−ɸ𝑠̅𝐴

(𝑥))〉: 𝑥 ∈

𝑈, 𝑎 ∈ 𝐴}. 

Thus  

((𝑆̅, 𝐴) 𝑐)𝑐 

={𝑎,〈 𝑓𝑆̅𝐴𝑐 (𝑥). 𝑒
𝑗2𝜋(2𝜋−(2𝜋−𝜔𝑠̅𝐴𝑐 (𝑥)))

 (1 − 𝑠𝑢𝑝𝑖𝑆̅𝐴𝑐(𝑥), 1 −

𝑖𝑛𝑓𝑖𝑆̅𝐴𝑐). 𝑒
𝑗2𝜋(2𝜋−ѱ𝑠̅𝐴𝑐 (𝑥))

, 𝑡𝑆̅𝐴𝑐 (𝑥). 𝑒
𝑗2π(2𝜋−(2𝜋−ɸ𝑠̅𝐴𝑐 (𝑥)))

〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴}. 

={𝑎,〈 𝑓𝑆̅𝐴𝑐 (𝑥). 𝑒𝑗2𝜋(2𝜋−(2𝜋−(2𝜋−𝜔𝑠̅𝐴
(𝑥))) (1 − (1 − 𝑖𝑛𝑓𝑖𝑆̅𝐴

(𝑥)),1 − (1 −

𝑠𝑢𝑝𝑖𝑆̅𝐴
(𝑥)). 𝑒𝑗2𝜋(2𝜋−(2𝜋−ѱ𝑠̅𝐴

(𝑥)), 𝑡𝑆̅𝐴𝑐(𝑥). 𝑒
𝑗2π(2𝜋−(2π − ɸ𝑆̅𝐴

(x )
〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴}. 

={𝑎,〈 𝑡𝑆̅𝐴
(𝑥). 𝑒𝑗2𝜋𝜔𝑠̅𝐴

(𝑥) , 𝑖𝑆̅𝐴
(𝑥). 𝑒𝑗2𝜋ѱ𝑠̅𝐴

(𝑥) , 𝑓𝑆̅𝐴
(𝑥). 𝑒𝑗2𝜋ɸ𝐴(𝑥)〉: 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴}. 

=(𝑆̅, 𝐴). 

Example 4.7. Consider Example 1. The complement of (𝑆̅, 𝐴)  is given by  (𝑆̅, 𝐴) 𝑐 =

{𝑆𝐴̅
𝑐
(𝑒1), 𝑆𝐴̅

𝑐
(𝑒2), 𝑆𝐴̅

𝑐
(𝑒3), 𝑆𝐴̅

𝑐
(𝑒4)}, we just give the complement to  

  𝑆̅̅
𝐴̅

𝑐
(𝑒1)below for the sake of brevity 

𝑆𝐴̅
𝑐
(𝑒1) = 

{(
[0.3,0.5]. 𝑒𝑗2𝜋[0.5,0.6], [0.3,0.9]. 𝑒𝑗2𝜋[0.1,0.3], [0.4,0.6]. 𝑒𝑗2𝜋[0.8,0.9]

𝑢1

), (
[0.5,0.9]. 𝑒𝑗2𝜋[0.3,0.6], [0.9,0.9]. 𝑒𝑗2𝜋[0.7,0.9], [0.2,0.4]. 𝑒𝑗2𝜋[0.2,0.5]

𝑢2

), 

(
[0.2,0.6]. 𝑒𝑗2𝜋[0.7,0.8], [0.3,0.4]. 𝑒𝑗2𝜋[0.6,0.7], [0.3,0.4]. 𝑒𝑗2𝜋[0.6,0.8]

𝑢3

), (
[0.3,0.5]. 𝑒𝑗2𝜋[0.9,1], [0.7,0.8]. 𝑒𝑗2𝜋[0.7,0.8], [0,0.9]. 𝑒𝑗2𝜋[0.4,0.5]

𝑢4

)} 

 

Proposition 4.8. Let (𝑆̅, 𝐴), (𝑆̅, 𝐵) and (𝑆̅, 𝐶)  be three interval complex neutrosophic soft sets over U. Then:  
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i. (𝑆̅, 𝐴) ∪ (𝑆̅, 𝐵) = (𝑆̅, 𝐵) ∪  (𝑆̅, 𝐴) (Commutative law) 

ii. (𝑆̅, 𝐴) ∩ (𝑆̅, 𝐵) = (𝑆̅, 𝐵) ∩  (𝑆̅, 𝐴) (Commutative law) 

iii. (𝑆̅, 𝐴) ∪ ((𝑆̅, 𝐵) ∪ (𝑆̅, 𝐶)) = ((𝑆̅, 𝐴) ∪ (𝑆̅, 𝐵)) ∪ (𝑆̅, 𝐶) (Associative law) 

iv. (𝑆̅, 𝐴) ∩ ((𝑆̅, 𝐵) ∩ (𝑆̅, 𝐶)) = ((𝑆̅, 𝐴) ∩ (𝑆̅, 𝐵)) ∩ (𝑆̅, 𝐶) (Associative law) 

v. (𝑆̅, 𝐴) ∪ ((𝑆̅, 𝐵) ∩  (𝑆̅, 𝐶))= ((𝑆̅, 𝐴) ∪ (𝑆̅, 𝐵)) ∩ ((𝑆̅, 𝐴)) ∪ (𝑆̅, 𝐶)) (Distribution law) 

vi. (𝑆̅, 𝐴) ∩ ((𝑆̅, 𝐵) ∪  (𝑆̅, 𝐶))= ((𝑆̅, 𝐴) ∩ (𝑆̅, 𝐵)) ∪ ((𝑆̅, 𝐴)) ∩ (𝑆̅, 𝐶)) (Distribution law) 

vii. (𝑆̅, 𝐴) ∪ ((𝑆̅, 𝐴) ∩ (𝑆̅, 𝐵)) = (𝑆̅, 𝐴) 

viii. (𝑆̅, 𝐴) ∩ ((𝑆̅, 𝐴) ∪ (𝑆̅, 𝐵)) = (𝑆̅, 𝐴) 

ix. (𝑆̅, 𝐴) ∪ (𝑆̅, 𝐵)𝑐 = (𝑆̅, 𝐴)𝑐 ∩ (𝑆̅, 𝐵)𝑐  (De Morgan's law)  

x. ((𝑆̅, 𝐴) ∩ (𝑆̅, 𝐵))𝑐 = ((𝑆̅, 𝐴)𝑐 ∪ (𝑆̅, 𝐵))𝑐 (De Morgan's law) 

Proof: All of these assertions can be directly proven. 

 

Theorem  4.9. Let (𝑆̅, 𝐴) 𝑎𝑛𝑑 (𝑆̅, 𝐵)be two interval complex neutrosophic soft set,Then The smallest one 

containing both (𝑆̅, 𝐴) and (𝑆̅, 𝐵)is (𝑆̅, 𝐴) ∪ (𝑆̅, 𝐵). 

Proof: Directly 

Theorem  4.10. Let (𝑆̅, 𝐴) 𝑎𝑛𝑑 (𝑆̅, 𝐵)be two interval complex neutrosophic soft set,then the largest one 

present in both(𝑆̅, 𝐴) and (𝑆̅, 𝐵)is (𝑆̅, 𝐴) ∩ (𝑆̅, 𝐵). 

Proof: Directly 

Theorem  4.11. Let (𝑆̅, 𝐴) and (𝑆̅, 𝐵). be two interval complex neutrosophic soft sets  on U. Then, (𝑆̅, 𝐴) ≤

(𝑆̅, 𝐵)iff (𝑆̅, 𝐵)𝑐 ≤ (𝑆̅, 𝐴)𝑐 

Proof: Directly 

Theorem  4.12. Let 𝑃̅  be the power set of all interval complex neutrosophic soft set. Then, (𝑃̅,∪,∩) forms 

a distributive lattice. 

Proof: Directly 

 



 

Neutrosophic Sets and Systems, Vol. 40, 2021                                                                                                           160  
______________________________________________________________________________________________________________ 

__________________________________________________________________________________________________ 

Faisal Al-Sharqi, Ashraf Al-Quran, Abd Ghafur Ahmad and Said Broumi, Interval-Valued Complex Neutrosophic Soft Set 

and its Applications in Decision-Making 

Let(𝑆̅, 𝐴) = {𝑎, ([𝑇𝐿
𝑆̅𝐴

, 𝑇𝑈
𝑆̅𝐴

], [𝐼𝐿
𝑆̅𝐴

, 𝐼𝑈
𝑆̅𝐴

], [𝐹𝐿
𝑆̅𝐴

, 𝐹𝑈
𝑆̅𝐴

]), 𝑎 ∈ 𝐴}.and(𝑆̅, 𝐵) =

{𝑏, ([𝑇𝐿
𝑆̅𝐵

, 𝑇𝑈
𝑆̅𝐵

], [𝐼𝐿
𝑆̅𝐵

, 𝐼𝑈
𝑆̅𝐵], [𝐹𝐿

𝑆̅𝐵
, 𝐹𝑈

𝑆̅𝐵
]), 𝑏 ∈ 𝐵}. be two interval valued complex neutrosophic soft sets 

over U which are defined by 

 [𝑇𝐿
𝑆̅𝐴

, 𝑇𝑈
𝑆̅𝐴

] = [𝑡𝐿
𝑆̅𝐴

(𝑥), 𝑡𝑈
𝑆̅𝐴

(𝑥)]. 𝑒𝑗𝛼[𝜔𝐿
𝑠̅𝐴

(𝑥),𝜔𝑈
𝑠̅𝐴

(𝑥)]., [𝐼𝐿
𝑆̅𝐴

, 𝐼𝑈
𝑆̅𝐴

] = 

[𝑖𝐿
𝑆̅𝐴

(𝑥), 𝑖𝑈
𝑆̅𝐴

(𝑥)]. 𝑒
𝑗𝛽[ѱ𝐿

𝑠̅𝐴
(𝑥),ѱ𝑈

𝑠̅𝐴
(𝑥)].

, [𝐹𝐿
𝑆̅𝐴

, 𝐹𝑈
𝑆̅𝐴

] = 

[𝑓𝐿
𝑆̅𝐴

(𝑥), 𝑓𝑈
𝑆̅𝐴

(𝑥)] . 𝑒𝑗𝛾[𝛷𝐿
𝑠̅𝐴

(𝑥),𝛷𝑈
𝑠̅𝐴

(𝑥)].and  

[𝑇𝐿
𝑆̅𝐵

, 𝑇𝑈
𝑆̅𝐵

] = [𝑡𝐿
𝑆̅𝐵

(𝑥), 𝑡𝑈
𝑆̅𝐵

(𝑥)]. 𝑒𝑗𝛼[𝜔𝐿
𝑠̅𝐵

(𝑥),𝜔𝑈
𝑠̅𝐵

(𝑥)]., [𝐼𝐿
𝑆̅𝐵

, 𝐼𝑈
𝑆̅𝐵

] = 

[𝑖𝐿
𝑆̅𝐵

(𝑥), 𝑖𝑈
𝑆̅𝐵

(𝑥)]. 𝑒
𝑗𝛽[ѱ𝐿

𝑠̅𝐵
(𝑥),ѱ𝑈

𝑠̅𝐵
(𝑥)].

,   [𝐹𝐿
𝑆̅𝐵

, 𝐹𝑈
𝑆̅𝐵

] = 

[𝑓𝐿
𝑆̅𝐵

(𝑥), 𝑓𝑈
𝑆̅𝐵

(𝑥)] . 𝑒𝑗𝛾[𝛷𝐿
𝑠̅𝐵

(𝑥),𝛷𝑈
𝑠̅𝐵

(𝑥)].,  

respectively. Then,some operational rules of  IV-CNSSs as follows, are described: 

    (i)  The product of (𝑆̅, 𝐴) and (𝑆̅, 𝐵). denoted as (𝑆̅, 𝐴)  × (𝑆̅, 𝐵) is:  

{〈(a,b), 𝑇𝑆̅𝐴× 𝐵
(𝑥), 𝐼𝑆̅𝐴× 𝐵

(𝑥), 𝐹𝑆̅𝐴× 𝐵
(𝑥)〉:(a,b)∈ 𝐴 × 𝐵}, where   

𝑇𝑆̅𝐴× 𝐵
(𝑥) = [𝑡𝐿

𝑆̅𝐴
(𝑥). 𝑡𝐿

𝑆̅𝐵
(𝑥), 𝑡𝑈

𝑆̅𝐴
(𝑥). 𝑡𝑈

𝑆̅𝐵
(𝑥)]. 𝑒𝑗𝛼[𝜔𝐿

𝑠̅𝐴× 𝐵
(𝑥),𝜔𝑈

𝑠̅𝐴× 𝐵
(𝑥)]., 

𝐼𝑆̅𝐴× 𝐵
(𝑥) = [𝑖𝐿

𝑆̅𝐴
(𝑥) + 𝑖𝐿

𝑆̅𝐵
(𝑥) − 𝑖𝐿

𝑆̅𝐴
(𝑥). 𝑖𝐿

𝑆̅𝐵
(𝑥), 𝑖𝑈

𝑆̅𝐴
(𝑥)+𝑖𝑈

𝑆̅𝐵
(𝑥)

− 𝑖𝑈
𝑆̅𝐴

(𝑥). 𝑖𝑈
𝑆̅𝐵

(𝑥)]. 𝑒
𝑗𝛼[ѱ𝐿

𝑠̅𝐴× 𝐵
(𝑥),ѱ𝑈

𝑠̅𝐴× 𝐵
(𝑥)].

, 

𝐹𝑆̅𝐴× 𝐵
(𝑥) = [𝑓𝐿

𝑆̅𝐴
(𝑥) + 𝑓𝐿

𝑆̅𝐵
(𝑥) − 𝑓𝐿

𝑆̅𝐴
(𝑥). 𝑓𝐿

𝑆̅𝐵
(𝑥), 𝑓𝑈

𝑆̅𝐴
(𝑥)+𝑓𝑈

𝑆̅𝐵
(𝑥)

− 𝑓𝑈
𝑆̅𝐴

(𝑥). 𝑓𝑈
𝑆̅𝐵

(𝑥)] . 𝑒𝑗𝛼[𝛷𝐿
𝑠̅𝐴× 𝐵

(𝑥),𝛷𝑈
𝑠̅𝐴× 𝐵

(𝑥)]., 

The product of phase terms is defined below: 

𝜔𝐿
𝑠̅𝐴×𝐵

(𝑥)= 𝜔𝐿
𝑠̅𝐴

(𝑥)𝜔𝐿
𝑠̅𝐵

(𝑥), 𝜔𝑈
𝑠̅𝐴×𝐵

(𝑥)= 𝜔𝑈
𝑠̅𝐴

(𝑥)𝜔𝑈
𝑠̅𝐵(𝑥) 

ѱ𝐿
𝑠̅𝐴×𝐵

(𝑥)= ѱ𝐿
𝑠̅𝐴

(𝑥)ѱ𝐿
𝑠̅𝐵

(𝑥), ѱ𝑈
𝑠̅𝐴×𝐵

(𝑥)= ѱ𝑈
𝑠̅𝐴

(𝑥)ѱ𝑈
𝑠̅𝐵

(𝑥) 

𝛷𝐿
𝑠̅𝐴×𝐵

(𝑥)= 𝛷𝐿
𝑠̅𝐴

(𝑥)𝛷𝐿
𝑠̅𝐵

(𝑥), 𝛷𝑈
𝑠̅𝐴×𝐵

(𝑥)= 𝛷𝑈
𝑠̅𝐴

(𝑥)𝛷𝑈
𝑠̅𝐵

(𝑥). 

The addition of  (𝑆̅, 𝐴) and (𝑆̅, 𝐵), denoted as (𝑆̅, 𝐴) +  (𝑆̅, 𝐵),is defined as : 

𝑇𝑆̅𝐴+ 𝐵
(𝑥) = [𝑡𝐿

𝑆̅𝐴
(𝑥) + 𝑡𝐿

𝑆̅𝐵
(𝑥) − 𝑡𝐿

𝑆̅𝐴
(𝑥). 𝑡𝐿

𝑆̅𝐵
(𝑥), 𝑡𝑈

𝑆̅𝐴
(𝑥)+𝑡𝑈

𝑆̅𝐵
(𝑥)

− 𝑡𝑈
𝑆̅𝐴

(𝑥). 𝑡𝑈
𝑆̅𝐵

(𝑥)]. 𝑒𝑗𝛼[𝜔𝐿
𝑠̅𝐴+ 𝐵

(𝑥),𝜔𝑈
𝑠̅𝐴+ 𝐵

(𝑥)].  

𝐼𝑆̅𝐴+ 𝐵
(𝑥) = [𝑖𝐿

𝑆̅𝐴
(𝑥). 𝑖𝐿

𝑆̅𝐵
(𝑥), 𝑖𝑈

𝑆̅𝐴
(𝑥). 𝑖𝑈

𝑆̅𝐵
(𝑥)]. 𝑒

𝑗𝛼[ѱ𝐿
𝑠̅𝐴+ 𝐵

(𝑥),ѱ𝑈
𝑠̅𝐴+ 𝐵

(𝑥)].
, 

  𝐹𝑆̅𝐴+ 𝐵
(𝑥)  = [𝑓𝐿

𝑆̅𝐴
(𝑥). 𝑓𝐿

𝑆̅𝐵
(𝑥), 𝑓𝑈

𝑆̅𝐴
(𝑥). 𝑓𝑈

𝑆̅𝐵
(𝑥)] . 𝑒𝑗𝛼[𝛷𝐿

𝑠̅𝐴+ 𝐵
(𝑥),𝛷𝑈

𝑠̅𝐴+ 𝐵
(𝑥)]., 

below is  the addition of phase terms is defined : 

5. Operational rules of operation Interval Valued Complex Neutrosophic Soft Sets 
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𝜔𝐿
𝑠̅𝐴+𝐵

(𝑥)= 𝜔𝐿
𝑠̅𝐴

(𝑥)+𝜔𝐿
𝑠̅𝐵

(𝑥), 𝜔𝑈
𝑠̅𝐴+𝐵

(𝑥)= 𝜔𝑈
𝑠̅𝐴

(𝑥)+𝜔𝑈
𝑠̅𝐵

(𝑥) 

ѱ𝐿
𝑠̅𝐴+𝐵

(𝑥)= ѱ𝐿
𝑠̅𝐴

(𝑥) + ѱ𝐿
𝑠̅𝐵

(𝑥), ѱ𝑈
𝑠̅𝐴+𝐵

(𝑥)= ѱ𝑈
𝑠̅𝐴

(𝑥) + ѱ𝑈
𝑠̅𝐵

(𝑥) 

𝛷𝐿
𝑠̅𝐴+𝐵

(𝑥)= 𝛷𝐿
𝑠̅𝐴

(𝑥) + 𝛷𝐿
𝑠̅𝐵

(𝑥), 𝛷𝑈
𝑠̅𝐴+𝐵

(𝑥)= 𝛷𝑈
𝑠̅𝐴

(𝑥) + 𝛷𝑈
𝑠̅𝐵

(𝑥). 

 

 (iii)   The scalar multiplication of (𝑆̅, 𝐴)  is an interval valued complex neutrosophic soft  set denoted as 

(𝑆̅, 𝐶) =𝑘(𝑆̅, 𝐴) and defined as: 

{〈a, 𝑇𝑆̅𝑐
(𝑥), 𝐼𝑆̅𝑐

(𝑥), 𝐹𝑆̅𝑐
(𝑥)〉: a∈ 𝐴}, where   

𝑇𝑆̅𝐶
(𝑥) = [1 − (1 − 𝑡𝐿

𝑆̅𝐶
(𝑥))𝑘 , 1 − (1 − 𝑡𝑈

𝑆̅𝐴
(𝑥))𝑘]. 𝑒𝑗2𝜋[𝜔𝐿

𝑠̅𝐶
(𝑥) ,𝜔𝑈

𝑠̅𝐶
(𝑥)]., 

𝐼𝑆̅𝐶
(𝑥) = [(𝑖𝐿

𝑆̅𝐴
(𝑥))𝑘 , (𝑖𝑈

𝑆̅𝐴
(𝑥))𝑘].  𝑒

𝑗2𝜋[ѱ𝐿
𝑠̅𝐶

(𝑥) ,ѱ𝑈
𝑠̅𝐶

(𝑥)].
, 

𝐹𝑆̅𝐶
(𝑥) = [(𝑓𝐿

𝑆̅𝐴
(𝑥))𝑘 , (𝑓𝑈

𝑆̅𝐴
(𝑥))𝑘] .  𝑒𝑗2𝜋[𝛷𝐿

𝑠̅𝐶
(𝑥) ,𝛷𝑈

𝑠̅𝐶
(𝑥)]., 

below is  the scalar of phase terms defined : 

𝜔𝐿
𝑠̅𝐶

(𝑥)= 𝜔𝐿
𝑠̅𝐴

(𝑥). 𝑘, 𝜔𝑈
𝑠̅𝐶

(𝑥)= 𝜔𝑈
𝑠̅𝐴

(𝑥). 𝑘, 

ѱ𝐿
𝑠̅𝐶

(𝑥)= ѱ𝐿
𝑠̅𝐴

(𝑥). 𝑘, ѱ𝑈
𝑠̅𝐶

(𝑥)= ѱ𝑈
𝑠̅𝐴

(𝑥). 𝑘, 

𝛷𝐿
𝑠̅𝐶

(𝑥)= 𝛷𝐿
𝑠̅𝐴

(𝑥). 𝑘, 𝛷𝑈
𝑠̅𝐶

(𝑥)= 𝛷𝑈
𝑠̅𝐴

(𝑥). 𝑘, 

6. Interval Valued Complex Neutrosophic Soft Set Approach to Problem-Making Decisions 

In this here section, by considering the following case, we introduce an application of IV-CNSSs to a 

decision-making problem. 

Example 6.1. Assume that two kinds of a single commodity from a source must be compared by a 

merchant company and pick the most appropriate one. Assume that the current phase an expert view in 

two phases on these two categories of products: once before using the products and once again after 

reviewing a trial of one of the two types of products. Assume that the universe of the two alternatives 

consists of 𝑈 = {𝑢1, 𝑢2}  (the two product types) and 𝐸 = {𝑒1, 𝑒2, 𝑒3} is the set of attributes, where 𝑒1 

symbolize “easy to use”, 𝑒2 symbolize “ functional ” and 𝑒3 symbolize “durable”. The expert is now asked 

to decide on the most suitable choice based on the goals and constraints of setting up the IV-CNSS. 

(𝑆̅, 𝐴) = 

{(𝑒1, ({(
[0.4,0.6]. 𝑒𝑗2𝜋[0.5,0.6], [0.1,0.7]. 𝑒𝑗2𝜋[0,8,0.9], [0.3,0,5]. 𝑒𝑗2𝜋[0.8,0.9]

𝑢1

), (
[0.2,0.4]. 𝑒𝑗2𝜋[0.3,0.6], [0.1,0.1]. 𝑒𝑗2𝜋[0.7,0.9], [0.5,0.9]. 𝑒𝑗2𝜋[0.2,0.5]

𝑢2

 )})), 

(𝑒2, ({(
[0.2,0.5]. 𝑒𝑗2𝜋[0.4,0.7], [0.5,0.7]. 𝑒𝑗2𝜋[0.5,0.6], [0.2,0.8]. 𝑒𝑗2𝜋[0.6,0.9]

𝑢1

), (
[0.1,0.3]. 𝑒𝑗2𝜋[0.1,0.3], [0.31,0.7]. 𝑒𝑗2𝜋[0.6,0.8], [0.4,0.61]. 𝑒𝑗2𝜋[0.2,0.58]

𝑢2

) })), 

(𝑒3, ({(
[0.2,0.7]. 𝑒𝑗2𝜋[0.7,0.8], [0.4,0.9]. 𝑒𝑗2𝜋[0.3,0.5], [0.6,0.8]. 𝑒𝑗2𝜋[0.5,0.6]

𝑢1

), (
[0.15,0.52]. 𝑒𝑗2𝜋[0.1,0.3], [0,0.5]. 𝑒𝑗2𝜋[0.6,0.8], [0.3,0.3]. 𝑒𝑗2𝜋[0.6,0.7]

𝑢2

 )}))} 
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The opinions of the experts in stage one reflect the amplitude of true membership, falsehood membership 

and indeterminate membership (before the products are used) in the IV-CNSS(𝑆̅, 𝐴) above, while the 

terms of membership, non-membership and indeterminacy process reflect the opinions of the experts in 

the second phase (in accordance with having tried a selection of both of the product's two types). Thus, 

the amplitude term of the truth membership of the first phase and the phase term of the membership of 

the second phase form a complex-valued function of the truth membership of the IV-CNSS(𝑆̅, 𝐴) . 

Similarly, a complex-valued falsity membership function is generated by the non-membership amplitude 

term in phase one and the falsehood membership phase term in the second phase. In addition, the 

amplitude term of undecidedness in the first phase and the phase term of indeterminacy in the second 

phase form the complex-valued indeterminate membership function. Our problem now is to choose the 

most suitable product type for the merchant company. We use IV-CNSS (𝑆̅, 𝐴)  along with the proposed 

algorithm to disband this decision-making problem. Using a functional formula that allows fast 

computational decision-making without the need to perform guided operations on complex numbers, 

this algorithm converts interval complex neutrosophic soft values (I-CNSVs) to interval neutrosophic soft 

values (INSVs). This algorithm. After that we convert interval neutrosophic.soft values (INSVs) to single 

neutrosophic soft values (SNSVs) by taking the arithmetic average of 𝑇𝑆̅𝐴
(𝑥), 𝐼𝑆̅𝐴

(𝑥) and 

𝐹𝑆̅𝐴
(𝑥) respectively. In this formula, we assign a weight to the amplitude terms (a weight to the expert's 

opinion previous to using the product) by multiplying the weight vector to each amplitude term. 

Similarly, by multiplying the weight vector for each phase term, we assign a weight to the phase terms (a 

weight to the opinion of the expert after using the product). Then, to obtain the IV-CNSVs that together 

reflect the views of the experts on both phases, We combine the values and phase terms of the weighted 

amplitude terms. After conducting these simple arithmetic for all membership functions of the IVCNSS 

(𝑆̅, 𝐴), we then lead to the final decision using the single neutrosophic soft method. 

 Algorithm:  

Step 1.Input the IV-CNSS (𝑆̅, 𝐴),   

Step 2.Convert IV-CNSS (S̅, A),to IVNSS (S,A) By gaining the values of the weighted aggregation 

of 𝑇𝑆̅𝐴
(𝑥), 𝐼𝑆̅𝐴

(𝑥) and 𝐹𝑆̅𝐴
(𝑥), ∀𝑎 ∈ 𝐴 and ∀𝑥 ∈ 𝑈 as the following Formulas: 

𝑇𝑆̅𝐴
(𝑥) = [𝑤1𝑡𝐿

𝑆̅𝐴
(𝑥) + 𝑤2 (

1

2𝜋
) 𝛼𝜔𝐿

𝑠̅𝐴
(𝑥) , 𝑤1𝑡𝑈

𝑆̅𝐴
(𝑥) + 𝑤2 (

1

2𝜋
) 𝛼𝜔𝑈

𝑠̅𝐴
(𝑥)], 

𝐼𝑆̅𝐴
(𝑥) = [𝑤1𝑖𝐿

𝑆̅𝐴
(𝑥) + 𝑤2 (

1

2𝜋
) 𝛽ѱ𝐿

𝑠̅𝐴
(𝑥) , 𝑤1𝑖𝑈

𝑆̅𝐴
(𝑥) + 𝑤2 (

1

2𝜋
) 𝛽ѱ𝑈

𝑠̅𝐴
(𝑥)], 

𝐹𝑆̅𝐴
(𝑥) = [𝑤1𝑓𝐿

𝑆̅𝐴
(𝑥) + 𝑤2 (

1

2𝜋
)  𝛾𝛷𝐿

𝑠̅𝐴
(𝑥) , 𝑤1𝑓𝑈

𝑆̅𝐴
(𝑥) + 𝑤2 (

1

2𝜋
)  𝛾𝛷𝑈

𝑠̅𝐴
(𝑥)], 

where 𝑡𝐿
𝑆̅𝐴

(𝑥), 𝑡𝑈
𝑆̅𝐴

(𝑥), 𝑖𝐿
𝑆̅𝐴

(𝑥), 𝑖𝑈
𝑆̅𝐴

(𝑥) and 𝑓𝐿
𝑆̅𝐴

(𝑥), 𝑓𝑈
𝑆̅𝐴

(𝑥)are the amplitude terms  and 

𝜔𝐿
𝑠̅𝐴

(𝑥) , 𝜔𝑈
𝑠̅𝐴

(𝑥), ѱ𝐿
𝑠̅𝐴

(𝑥), ѱ𝑈
𝑠̅𝐴

(𝑥) and  𝛷𝐿
𝑠̅𝐴

(𝑥), 𝛷𝑈
𝑠̅𝐴

(𝑥)  are the phase terms in the the  Interval 

Complex Neutrosophic..Soft Set (𝑆̅, 𝐴), respectively. 𝑇𝑆̅𝐴
(𝑥), 𝐼𝑆̅𝐴

(𝑥) and 𝐹𝑆̅𝐴
(𝑥) are 

truth.membership.function ,anindeterminate membership.function,and falsehood  membership.function 

in IV-NSS (𝑆, 𝐴), respectively  and 𝑤1, 𝑤2 the weights for the terms of the amplitude and phase terms, 

respectively, where 𝑤1, 𝑤2 ∈ [0,1]  𝑎𝑛𝑑   𝑤1 + 𝑤2 = 1. 

Step 3. Convert IVNSS (S,A) to SVNSS by taking the arithmetic average of 𝑇𝑆̅𝐴
(𝑥), 𝐼𝑆̅𝐴

(𝑥) and 

𝐹𝑆̅𝐴
(𝑥) respectively. 
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Step 4. Compute the comparison matrix of the SVNSS. Comparison matrix of SVNSS [40], is a matrix 

whose rows are labelled by the object names 𝑢1, 𝑢2, … , 𝑢𝑛 and the columns are labelled by the parameters 

𝑒1, 𝑒2, … , 𝑒𝑚 The entries 𝑐𝑖𝑗  are calculated by 𝑐𝑖𝑗 = aij + (bij − cij) , where 'a' is the integer calculated as 

`how many times 𝑇𝑒𝑖
(𝑢𝑗) exceeds or equal to𝑇𝑒𝑖

(𝑢𝑘), for 𝑢𝑗 ≠ 𝑢𝑘,∀ 𝑢𝑗 ∈ 𝑈, 'b' is the integer calculated as 

`how many times 𝐼𝑒𝑖
(𝑢𝑗) exceeds or equal to𝐼𝑒𝑖

(𝑢𝑘), for 𝑢𝐽 ≠ 𝑢𝑘,∀ 𝑢𝐽 ∈ 𝑈,  and 'c' is the integer.calculated 

as `how many times 𝐹𝑒𝑖
(𝑢𝑗) exceeds.or.equal to 𝐼𝑒𝑖

(𝑢𝑘) ', for 𝑢𝑖 ≠ 𝑢𝑘,∀ 𝑢𝑗 ∈ 𝑈.  

Step 5.Calculate the score𝑐𝑖 of 𝑢𝑖, ∀𝑖. The score of an object  𝑢𝑖 of 𝑐𝑖 its calculated as  𝑐𝑖 = ∑ 𝑐𝑖𝑗𝑗 . 

Step 6. The.decision is to select 𝑢𝑖 if 𝑐𝑘 = 𝑚𝑎𝑥𝑢𝑖∈𝑈𝑐𝑖  

Step 7. if we  has more than one decision then any one of 𝑢𝑖could be the preferable choice. 

Now, to change the form of the IV-CNSS (S̅, A),to IV-NSS (S,A) we assume that the weight vectors are 

𝑤1 = 0.6  𝑎𝑛𝑑 𝑤2 = 0.4. To illustrate this step, we calculate 𝑇𝑒1
(𝑢1), 𝐼𝑒1

(𝑢1) and 𝐹𝑒1
(𝑢1), as shown below: 

𝑇𝑒1
(𝑢1) = [𝑤1𝑡𝐿

𝑆̅𝑒1
(𝑢1) + 𝑤2 (

1

2𝜋
) 𝛼𝜔𝐿

𝑠̅𝑒1
(𝑢1) , 𝑤1𝑡𝑈

𝑆̅𝑒1
(𝑢1) + 𝑤2 (

1

2𝜋
) 𝛼𝜔𝑈

𝑠̅𝑒1
(𝑢1)] 

             =[0.6(0.4) +  0.4 (
1

2𝜋
) (2𝜋)(0.5), 0.6(0.6) +  0.4 (

1

2𝜋
) (2𝜋)(0.6)] 

            =[0.44, 0.6] 

𝐼𝑒1
(𝑢1) = [𝑤1𝑖𝐿

𝑆̅𝑒1
(𝑢1) + 𝑤2 (

1

2𝜋
) 𝛽 ѱ𝐿

𝑠̅𝑒1
(𝑢1) , 𝑤1𝑖𝑈

𝑆̅𝑒1
(𝑢1) + 𝑤2 (

1

2𝜋
) 𝛽 ѱ𝑈

𝑠̅𝑒1
(𝑢1)] 

             =[0.6(0.1) +  0.4 (
1

2𝜋
) (2𝜋)(0.8), 0.6(0.7) +  0.4 (

1

2𝜋
) (2𝜋)(0.9)] 

            =[0.38, 0.78].  

𝐹𝑒1
(𝑢1) = [𝑤1𝑓𝐿

𝑆̅𝑒1
(𝑢1) + 𝑤2 (

1

2𝜋
) 𝛾𝛷𝐿

𝑠̅𝑒1
(𝑢1) , 𝑤1𝑓𝑈

𝑆̅𝑒1
(𝑢1) + 𝑤2 (

1

2𝜋
) 𝛾𝛷𝑈

𝑠̅𝑒1
(𝑢1)] 

              =   [0.6(0.3) +  0.4 (
1

2𝜋
) (2𝜋)(0.8), 0.6(0.5) +  0.4 (

1

2𝜋
) (2𝜋)(0.9)] 

             = [0.5,0.66]  

Then the IV-NSS 

 ([𝑇𝐿
𝑆̅𝑒1

(𝑢1), 𝑇𝑈
𝑆̅𝑒1

(𝑢1)] , [𝐼𝐿
𝑆̅𝑒1

(𝑢1), 𝐼𝑈
𝑆̅𝑒1

(𝑢1)] , [𝐹𝐿
𝑆̅𝑒1

(𝑢1), 𝐹𝑈
𝑆̅𝑒1

(𝑢1)]) 

    = ([0.44,0.6], [0.38, 0.78], [0.5,0.66]). 

we measure the other IV-NSSS in the same way. ∀ 𝑒𝑖 ∈ 𝐴 and ∀ 𝑢𝑗 ∈ 𝑈. as shown.Table 1. 
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Table1.values of IV-NSS 

U                         𝒖𝟏      𝒖𝟐 

𝒆𝟏  ([0.44,0.6], [0.38, 0.78], [0.5,0.66]) ([0.24,0.48], [0.34, 0.42], [0.38,0.74]) 

𝒆𝟐  

                     
𝒆𝟑 

([0.28,0.58], [0.5,0.66], [0.36,0.84])          

             

([0.4,0.74] ,[0.36,0.74] ,[0.68,0.72]) 

 

 ([0.10,0.30] ,[0.43,0.74] ,[0.32,0.59]) 

 

 ([0.13,0.43] ,[0.24,0.62] ,[0.42,0.46]) 

 

Now we convert  the IV-NSVS  to  SVNSV by taking the arithmetic average of 𝑇𝑆̅𝐴
(𝑥), 𝐼𝑆̅𝐴

(𝑥) and 

𝐹𝑆̅𝐴
(𝑥) respectively as shown Table2 

 

Table2 . values of SVNSS 

  U  𝒖𝟏    𝒖𝟐  

𝑒1 
𝒆𝟏  (0.52,0.58,0.58)    (0.36,0.38 ,0.56) 

𝑒2 

 

𝑒3 

𝒆𝟐  

                     
𝒆𝟑 

   (0.43,0.58,0.6) 

 

(0.57,0.55,0.7) 

 

(0.2,0.50,0.46) 

 

 (0.28 ,0.43 ,0.44) 

 

Table 3. comparison matrix of the SVNSS 
U               𝑢1  𝑢2 

𝑒1  3 0 

𝑒2  

                     
𝑒3 

1 

 

0 

-1 

 

2 

 

Table 4: compute the score 𝑐𝑖 

U    𝑢1  𝑢2             

𝑒1  3 0                  

𝑒2  

                     
𝑒3 

1 

 

0 

-1                 

 

2                  

Score(𝑐𝑖)        4                  1      



 

Neutrosophic Sets and Systems, Vol. 40, 2021                                                                                                           165  

______________________________________________________________________________________________________________ 

__________________________________________________________________________________________________ 

Faisal Al-Sharqi, Ashraf Al-Quran, Abd Ghafur Ahmad and Said Broumi, Interval-Valued Complex Neutrosophic Soft Set 

and its Applications in Decision-Making 

Decision:The best option is to select 𝑢1. Since 𝑐1 = 𝑚𝑎𝑥𝑢𝑖∈𝑈𝑐𝑖 = 𝑢1. The expert advice therefore 

selects the form 𝑢1 of this product as 𝑢1 desirable alternative. 

7. Conclusion 

 We established the concept of IV-CNSS by combining the two concepts of interval complex 

neutrosophic sets with soft sets. The basic operations on IV-CNSS, namely complement,   subset,   

union,   intersection operations,  were defined.  Subse-quently, the basic properties of these 

operations such as De Morgan’s laws and other relevant laws pertain-ing to the concept of IV-

CNSS were proven. Finally, a new algorithm is introduced and applied to the IV-CNSS model 

to solve a hypothetical decision-making problem, and its superiority and feasibility are further 

verified by comparison with other existing methods.  This new extension will provide a  

significant addition to existing theories for handling indeterminacy, where time plays a vital 

role in the decision process,  and spurs more developments of further research and pertinent 

applications. For further research, we intend to take into account unknown weight information 

to develop some real applications of IV-CNSS in other areas, where the phase term may 

represent other variables such as distance, speed, and temperature. 
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Abstract: Neutrosophication is the process of converting crisp values into neutrosophic values, 

which is considered the first and basic step for any processing system that depends on the 

neutrosophic logical relationships and features, especially those that take into account 

indeterminacy values that result from ambiguity, noise, or inaccuracy. In this paper, we have 

presented a set of neutrosophication functions by modifying the functions used in fuzzy logic 

(trapezoid, triangle, gauss, bell-shaped, s-shaped, z-shaped) in a way that preserves the essence of 

the neutrosophic logic philosophy and the independence of truth, indeterminacy, and falsity values 

for each element of the neutrosophic set. Neutrosophication functions have also been implemented 

through the use of a suggested MATLAB code. It is possible through the proposed 

neutrosophication functions to build neutrosophic processing systems, especially digital image 

processing systems, by converting the crisp values of the pixels of the digital image to neutrosophic 

values using the proposed functions. Then, by building on the neutrosophic logic operations and 

the related researches, the new neutrosophic values are processed, after which they are returned to 

their crisp values through de-neutrosophication. 

Keywords: Neutrosophication; trapezoid; triangle; gauss; bell-shaped; s-shaped; z-shaped. 

 

 

1. Introduction 

The proof of any mathematical matter depends mainly on making logical and mathematical 

steps on a set of data and hypotheses to reach the objective results. This importance prompts pure 

and applied mathematicians permanently and continuously to develop and infer logical relationships 

in accordance with the shape and features of the new and different groups of mathematical, 

descriptive and arithmetic values. In this context, neutrosophic logic was founded in 1995 by the 

American professor Florentin [1,2] to develop logical philosophy through the definition of the 

neutrosophic sets and the resulting definitions, consequences, and neutrosophic logical relationships 

[3-6]. 

What distinguishes the neutrosophic sets from other preceding sets, such as intuitionistic and n-

hyperspherical fuzzy sets [2], is that they add an independent value: the degree of indeterminacy. 

Consequently, each element of the neutrosophic set is expressed by (T, I, F), where (T) degree of truth-

membership, (I) degree of indeterminacy-membership, (F) degree of falsehood-membership. These 

three values are completely independent. 

mailto:reema47@gmail.com
mailto:qosai.kanafani@gmail.com
mailto:mouhammad1988@gmail.com
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Importance of the neutrosophication functions comes from the fact that any neutrosophic data 

processing system [7-11] must start by converting the given values into neutrosophic values, using 

the neutrosophication functions. 

Few researchers have made proposals for some of the neutrosophication functions. Broumi, 

Nagarajan, Bakali, and Talea (2019) [12] have introduced neutrosophic trapezoidal function and 

implementation using MATLAB program. Faruk Karaaslan (2018) [13] has studied neutrosophic 

gaussian function and its application about decision making. Chakraborty, Mondal, Ahmadian, Senu, 

Alam, and Salahshour (2018) [14] also have a study on neutrosophication and de-neutrosophication 

by neutrosophic triangular function, and their applications. 

The previous researches have studied one function separately from the other functions and 

assumed that the value of truth-membership degree, indeterminacy-membership degree, and 

falsehood-membership degree was calculated according to one form of the neutrosophic functions. 

This research is divided into 5 parts. Part 2 discusses preliminaries about the neutrosophic set. 

Part 3 presents new neutrosophication functions. Part 4 proposes MATLAB code for these 

neutrosophication functions. In part 5, we have concluded our research. 

2. Neutrosophic Set [8] 

Neutrosophic set was founded by Prof. Smarandache in 1995 and was published in 1998. It 

was an extension of many existing sets, such as spherical, intuitionistic, inconsistent intuitionistic, 

and q-rung orthopair fuzzy set. For any variable 𝑣 in the neutrosophic set 𝑁, it is described by 

(𝑡, 𝑖, 𝑓), where: 

𝑡 = 𝑇𝑁(𝑣): Truth-membership function, for any 𝑣 in the neutrosophic set 𝑁, where: 

𝑇𝑁(𝑣):  𝑁 →  ]0
−, 1+[ 

𝑖 = 𝐼𝑁(𝑉): Indeterminacy-membership function, for any 𝑣 in the neutrosophic set 𝑁, where: 

𝐼𝑁(𝑣):  𝑁 →   ]0
−, 1+[ 

𝑓 = 𝐹𝑁(𝑣): Falsehood-membership function, for any 𝑣 in the neutrosophic set 𝑁, where: 

𝐹𝑁(𝑣):  𝑁 →   ]0
−, 1+[ 

3. Neutrosophication Functions 

The functions used to convert the crisp values into neutrosophic values are called 

neutrosophication functions. For each function 𝑓𝑢𝑛 [15], we distinguish two types in neutrosophic 

logic: 

𝑓𝑢𝑛0: function values starting from zero (down to up). 

𝑓𝑢𝑛1: function values starting from one (up to down). 

The truth-membership, indeterminacy–membership and falsehood-membership functions take 

their forms from the proposed functions independently of each other, and they do not necessarily 

take the same form. 

3.1. Neutrosophic trapezoidal function (𝑛𝑡𝑝𝑓) 

The 𝑛𝑡𝑝𝑓 is defined by specifying 5 parameters (𝛼, 𝛽, 𝛾, 𝛿, 𝑤) where: 

(𝛼, 𝛽, 𝛾, 𝛿) are the vertices of the trapezoid. 

(𝑤) represents the height of the neutrosophic trapezoidal function. 

Neutrosophic trapezoidal function is defined as: 

 

𝑛𝑡𝑝𝑓0(𝑥, 𝛼, 𝛽, 𝛾, 𝛿, 𝑤) =

{
 
 
 
 

 
 
 
 

0              𝑥 ≤ 𝛼         
 

𝑤(𝑥−𝛼)

𝛽−𝛼
         𝛼 ≤ 𝑥 ≤ 𝛽          

 
𝑤             𝛽 ≤ 𝑥 ≤ 𝛾

 
𝑤(𝛿−𝑥)

𝛿−𝛾
           𝛾 ≤ 𝑥 ≤ 𝛿      

 
0                𝛿 ≤ 𝑥          

=   max (min (
𝑤(𝑥−𝛼)

𝛽−𝛼
, 𝑤,

𝑤(𝛿−𝑥)

𝛿−𝛾
) , 0)                                                                             



Neutrosophic Sets and Systems, Vol. 40, 2021     171  

 

 

M. Bakro, R. Al-Kamha, Q. Kanafani, Neutrosophication Functions and their Implementation by MATLAB Program. 

 

or 

𝑛𝑡𝑝𝑓1(𝑥, 𝛼, 𝛽, 𝛾, 𝛿, 𝑤) =

{
 
 
 
 

 
 
 
 

1              𝑥 ≤ 𝛼         
 

𝛽 − 𝛼 − 𝑤(𝑥 − 𝛼)

𝛽 − 𝛼
         𝛼 ≤ 𝑥 ≤ 𝛽          
 

1 − 𝑤             𝛽 ≤ 𝑥 ≤ 𝛾
 

𝛿 − 𝛾 −𝑤(𝛿 − 𝑥)

𝛿 − 𝛾
           𝛾 ≤ 𝑥 ≤ 𝛿      
 

1                𝛿 ≤ 𝑥          

= min (max(
𝛽 − 𝛼 −𝑤(𝑥 − 𝛼)

𝛽 − 𝛼
, 1 − 𝑤,

𝛿 − 𝛾 −𝑤(𝛿 − 𝑥)

𝛿 − 𝛾
) , 1) 

 

Example 1. The diagrammatic representation of 𝑛𝑡𝑝𝑓0(𝑥, 0.2, 0.6, 0.7,1,0.5) and 𝑛𝑡𝑝𝑓1(𝑥, 0.3, 0.5, 0.8, 0.9,0.8) is 

shown in figure 1. 

 

 
Figure 1. 𝑛𝑡𝑝𝑓0 and 𝑛𝑡𝑝𝑓1 for example 1. 

3.2. Neutrosophic triangular function (𝑛𝑡𝑔𝑓) 

The 𝑛𝑡𝑔𝑓 is defined by specifying 4 parameters (𝛼, 𝛽, 𝛾, 𝑤) where: 

(𝛼, 𝛽, 𝛾) are the vertices of the triangle. 

(𝑤) represents the height of the neutrosophic triangular function. 

Neutrosophic triangular function is given as: 

𝑛𝑡𝑔𝑓0(𝑥, 𝛼, 𝛽, 𝛾, 𝑤) =

{
 
 

 
 

0              𝑥 ≤ 𝛼
𝑤(𝑥 − 𝛼)

𝛽 − 𝛼
         𝛼 ≤ 𝑥 ≤ 𝛽

𝑤(𝛾 − 𝑥)

𝛾 − 𝛽
           𝛾 ≤ 𝑥 ≤ 𝛿  

0                𝛿 ≤ 𝑥

   =  max (min (
𝑤(𝑥 − 𝛼)

𝛽 − 𝛼
,
𝑤(𝛾 − 𝑥)

𝛾 − 𝛽
) , 0) 

 

or 

 

𝑛𝑡𝑔𝑓1(𝑥, 𝛼, 𝛽, 𝛾, 𝑤) =

{
  
 

  
 

1                                  𝑥 ≤ 𝛼
𝛽 − 𝛼 −𝑤(𝑥 − 𝛼)

𝛽 − 𝛼
         𝛼 ≤ 𝑥 ≤ 𝛽

𝛾 − 𝛽 − 𝑤(𝛾 − 𝑥)

𝛾 − 𝛽
          𝛽 ≤ 𝑥 ≤ 𝛾  

1                                 𝛾 ≤ 𝑥

 = min (max (
𝛽 − 𝛼 −𝑤(𝑥 − 𝛼)

𝛽 − 𝛼
,
𝛾 − 𝛽 − 𝑤(𝛾 − 𝑥)

𝛾 − 𝛽
) , 1) 
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Example 2. The graphic representation of 𝑛𝑡𝑔𝑓0(𝑥, 0.2, 0.6, 0.7,0.9)  and 𝑛𝑡𝑔𝑓1(𝑥, 0.3, 0.6, 1, 0.5)  is 

shown in figure 2. 

 
Figure 2. 𝑛𝑡𝑔𝑓0 and 𝑛𝑡𝑔𝑓1 for example 2. 

3.3. Neutrosophic (S and Z)-shaped function (𝑛𝑠𝑧𝑓) 

The 𝑛𝑠𝑧𝑓 is defined by specifying 3 parameters (𝛼, 𝛽, 𝑤) where: 

(𝛼, 𝛽) they control the start and end of the bend. 

(𝑤) represents the height of the neutrosophic (S and Z)-shaped function. 

Neutrosophic (S and Z)-shaped function takes the form: 

𝑛𝑠𝑧𝑓0(𝑥, 𝛼, 𝛽, 𝑤) =

{
  
 

  
 

0                              𝑥 ≤ 𝛼

2𝑤 (
𝑥 − 𝛼

𝛽 − 𝛼
)
2

         𝛼 ≤ 𝑥 ≤
𝛼 + 𝛽

2

𝑤 − 2𝑤 (
𝑥 − 𝛽

𝛽 − 𝛼
)
2

           
𝛼 + 𝛽

2
≤ 𝑥 ≤ 𝛽  

𝑤                               𝛽 ≤ 𝑥

 

or 

𝑛𝑠𝑧𝑓1(𝑥, 𝛼, 𝛽, 𝑤) =

{
  
 

  
 

1                              𝑥 ≤ 𝛼

1 − 2𝑤 (
𝑥 − 𝛼

𝛽 − 𝛼
)
2

         𝛼 ≤ 𝑥 ≤
𝛼 + 𝛽

2

1 − 𝑤 + 2𝑤 (
𝑥 − 𝛽

𝛽 − 𝛼
)
2

           
𝛼 + 𝛽

2
≤ 𝑥 ≤ 𝛽  

1 − 𝑤                               𝛽 ≤ 𝑥

 

Example 3. The diagrammatic representation of 𝑛𝑠𝑧𝑓0(𝑥, 0.3,0.7,0.8)  and 𝑛𝑠𝑧𝑓1(𝑥, 0.3,0.7,0.8)  is 

shown in figure 3. 

 
Figure 3. 𝑛𝑠𝑧𝑓0 and 𝑛𝑠𝑧𝑓1 for example 3. 
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3.4. Neutrosophic generalized bell-shaped function (𝑛𝑔𝑏𝑙𝑓) 

The 𝑛𝑔𝑏𝑙𝑓 is defined by specifying 4 parameters (𝛼, 𝛽, 𝛾, 𝑤) where:  

(𝛼) represents the width of the shape. 

(𝛽) is the intensity of the bend on the sides, whenever the value of 𝛽 increases the bend becomes 

more intense. 

(𝛾) is the center of the shape. 

(𝑤) represents the height of the neutrosophic generalized bell-shaped function. 

Neutrosophic generalized bell-shaped function is given by: 

 

𝑛𝑔𝑏𝑙𝑓0(𝑥, 𝛼, 𝛽, 𝛾, 𝑤) =
𝑤

1 + |
𝑥 − 𝛾
𝛼

|
2𝛽

 

or 

𝑛𝑔𝑏𝑙𝑓1(𝑥, 𝛼, 𝛽, 𝛾, 𝑤) =
1 + |

𝑥 − 𝛾
𝛼

|
2𝛽

−𝑤

1 + |
𝑥 − 𝛾
𝛼

|
2𝛽

 

 

Example 4. The graphic representation of 𝑛𝑔𝑏𝑙𝑓0(𝑥, 0.2,3, 0.6,1)  and 𝑛𝑔𝑏𝑙𝑓1(𝑥, 0.3,7, 0.6,0.8) is shown 

in figure 4. 

 

 
Figure 4. 𝑛𝑔𝑏𝑙𝑓0 and 𝑛𝑔𝑏𝑙𝑓1 for example 4. 

3.5. Neutrosophic gaussian function (𝑛𝑔𝑠𝑓) 

The 𝑛𝑔𝑠𝑓 is defined by specifying 3 parameters (𝛼, 𝛽, 𝑤) where:  

(𝛼) represents the standard deviation for shape. 

(𝛽) it is the center of the shape. 

(𝑤) represents the height of the Neutrosophic gaussian function. 

Neutrosophic gaussian function is defined as: 

 

𝑛𝑔𝑠𝑓0(𝑥, 𝛼, 𝛽, 𝑤) = 𝑤𝑒
−(𝑥−𝛽)2

2𝛼2  

 

or 

 

𝑛𝑔𝑠𝑓1(𝑥, 𝛼, 𝛽, 𝑤) = 1 − 𝑤𝑒
−(𝑥−𝛽)2

2𝛼2  
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Example 5. The diagrammatic representation of 𝑛𝑔𝑠𝑓0(𝑥, 0.1, 0.6,0.9)  and 𝑛𝑔𝑠𝑓1(𝑥, 0.3, 0.6, 0.3) is 

shown in figure 5. 

 

 
Figure 5. 𝑛𝑔𝑠𝑓0 and 𝑛𝑔𝑠𝑓1 for example 5. 

3.6. Neutrosophic sigmoidal function (𝑛𝑠𝑚𝑓) 

The 𝑛𝑠𝑚𝑓 is defined by specifying 3 parameters (𝛼, 𝛽, 𝑤) where: 

(𝛼) controls the width of the transition area. 

(𝛽) defines the center of the transition area. 

(𝑤) represents the height of the Neutrosophic sigmoidal function. 

Neutrosophic sigmoidal function takes the form: 

 

𝑛𝑠𝑚𝑓0(𝑥, 𝛼, 𝛽, 𝑤) =
𝑤

1 + 𝑒−𝛼(𝑥−𝛽)
 

or 

𝑛𝑠𝑚𝑓1(𝑥, 𝛼, 𝛽, 𝑤) =
1 + 𝑒−𝛼(𝑥−𝛽) − 𝑤

1 + 𝑒−𝛼(𝑥−𝛽)
 

 

Example 6. The graphic representation of 𝑛𝑠𝑚𝑓0(𝑥, 15,0.5,1)  and 𝑛𝑠𝑚𝑓1(𝑥, 15,0.5,0.4) is shown in figure 6. 

 

 
Figure 6. 𝑛𝑠𝑚𝑓0 and 𝑛𝑠𝑚𝑓1 for example 6. 
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4. Proposed MATLAB code to neutrosophication functions 

In this section, neutrosophication functions have proposed using MATLAB program, a graphic 

representation has been given for the different membership values, and the MATLAB code has been 

designed as follows: 
function [y,z,t]=nfun(x,tt,ii,ff) 

y= feval(tt{1},x,tt); 

z=feval(ii{1},x,ii); 

t=feval(ff{1},x,ff); 

plot(x,y,x,z,x,t); 

legend('Truth-membership function','Indeterminacy–membership function','Falsehood-membership function'); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [y]=ntpf(x,tt) 

y = trapmf(x,[tt{3} tt{4} tt{5} tt{6}])*tt{end}; 

if(tt{2}==1) 

y=1-y; 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [y]=ntgf(x,tt) 

y = trimf(x,[tt{3} tt{4} tt{5}])*tt{end}; 

if(tt{2}==1) 

y=1-y; 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [y]=ngsf(x,tt) 

y = gaussmf(x,[tt{3} tt{4}])*tt{end}; 

if(tt{2}==1) 

y=1-y; 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [y]=ngblf(x,tt) 

y = gbellmf(x,[tt{3} tt{4} tt{5}])*tt{end}; 

if(tt{2}==1) 

y=1-y; 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [y]=nsmf(x,tt) 

y = sigmf(x,[tt{3} tt{4}])*tt{end}; 

if(tt{2}==1) 

y=1-y; 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [y]=nszf(x,tt) 

y = smf(x,[tt{3} tt{4}])*tt{end}; 

if(tt{2}==1) 

y=1-y; 

end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Example 7. The figure 7 represents the truth-membership function 𝑛𝑡𝑝𝑓0(𝑥, 0.3, 0.4,0.8,0.9,1), indeterminacy–

membership function 𝑛𝑡𝑔𝑓1(𝑥, 0.2, 0.4, 1,0.6) , and falsehood-membership function 𝑛𝑔𝑠𝑓1(𝑥, 0.1, 0.6, 0.7)  by 

writing the code in the MATLAB program below: 

x=0:0.01:1; 

% {'fun name', 0≈fun0 or 1≈fun1, fun parameters} 

tt={'ntpf',0,0.3, 0.4,0.8,0.9,1}; 

ii={'ntgf',1,0.2, 0.4, 1,0.6}; 

ff={'ngsf',1,0.1, 0.6, 0.7}; 

% [y,z,t]=nfun (x, truth, indeterminacy, falsehood) 

[y,z,t]=nfun(x,tt,ii,ff); 

 

 

Figure 7. Represents neutrosophic functions in the example 7. 

 

Example 8. The figure 8 represents the truth-membership function 𝑛𝑔𝑏𝑙𝑓0(𝑥, 0.2, 4,0.5,1) , indeterminacy–

membership function 𝑛𝑠𝑧𝑓1(𝑥, 0.1, 0.7, 0.9) , and falsehood-membership function 𝑛𝑡𝑔𝑓1(𝑥, 0.1, 0.5,0.9, 1)  by 

writing the code in the MATLAB program below: 

x=0:0.01:1; 

tt={'ngblf',0,0.2, 4,0.5,1}; 

ii={'nszf',1,0.1, 0.7, 0.9}; 

ff={'ntgf',1,0.1, 0.5,0.9, 1}; 

[y,z,t]=nfun(x,tt,ii,ff); 

 

 

Figure 8. Represents neutrosophic functions in the example 8. 
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Example 9. The figure 9 represents the truth-membership function 𝑛𝑡𝑝𝑓0(𝑥, 15, 21,26,35,1) , indeterminacy–

membership function 𝑛𝑠𝑚𝑓0(𝑥, 1, 35,0.6), and falsehood-membership function 𝑛𝑔𝑠𝑓1(𝑥, 5, 24, 1) by writing the 

code in the MATLAB program below: 

x=10:40; 

tt={'ntpf',0,15, 21,26,35,1}; 

ii={'nsmf',0,1, 35,0.6}; 

ff={'ngsf',1,5, 24, 1}; 

[y,z,t]=nfun(x,tt,ii,ff); 

 

 

Figure 9. Represents neutrosophic functions in the example 9. 

5. Conclusions 

By taking advantage of the most important functions used in the different fuzzy processing 

systems, we introduced the neutrosophication functions in a way that preserves the properties and 

independence of the values of truth, indeterminacy, and falsity. These functions have been 

graphically represented using MATLAB by proposing a code for that. 

Our current research is an important reference for writing papers related to neutrosophic 

processing systems by relying on the proposed functions, and this is what we will work on in the 

future in relation to digital image processing, in particular denoising digital images using 

neutrosophic logic. 
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Abstract: Hypersoft sets have gained more importance as a generalization of soft sets and have 

been investigated for possible extensions in many fields of mathematics. The main objective of this 

paper is to introduce Fuzzy Hypersoft Topology and study some of its properties such as 

neighbourhood of fuzzy hypersoft set, interior hypersoft set and closure fuzzy hypersoft set. Fuzzy 

hypersoft topology is then extended to Intuitionistic Hypersoft topology, Neutrosophic Hypersoft 

topology and its basic properties are discussed. 

Keywords: Fuzzy Hypersoft Set, Hypersoft Set, Fuzzy Hypersoft Topology, Intuitionistic Hypersoft 

Topology, Neutrosophic Hypersoft Topology, Interior, Closure. 

________________________________________________________________________________________ 

1. Introduction 

Zadeh [1] in 1965 presented the idea of fuzzy set theory, which has a very important role in 

solving problems by providing a suitable way for the expression of vague concepts by having 

membership.  Computer scientists and mathematicians have studied and developed fuzzy set 

theory with widened applications in fuzzy logic, fuzzy topology, fuzzy control systems, etc. Also 

theories such as fuzzy probability, soft and rough set theories are used to solve these problems. A 

new approach for handling uncertainty, the idea of soft theory was presented by Molodtsov [2] in 

1999. Now, there is a rapid growth of soft theory with applications in many fields. Several basic 

notions of soft set theory were defined by Maji et al. [3] while his works were improved in [4-7]. A 

combination of fuzzy sets and soft sets, named as fuzzy soft set theory, was presented by Maji et al. 

[8].  

The idea of soft sets was generalized into hypersoft sets by Smarandache [9] by transforming 

the argument function F into a multi-argument function. He also introduced many results on 

hypersoft sets. Saqlain et al. [10] utilized this notion and proposed a generalized TOPSIS method for 

decision making. Neutrosophic sets [17], from their very introduction, have seen many such 

extensions and have been very successful in applications [18-29, 48-50]. In 2019, Rana et al. [11] 

introduced Plithogenic Fuzzy Hypersoft Set (PFHS) in matrix form and defined some operations on 

PFHS. Single and multi-valued Neutrosophic Hypersoft set were proposed by Saqlain et al. [12], 

who also defined tangent similarity measure for single-valued sets and an application of the same 

in a decision making scenario. In an another effort, Saqlain et al. [13] also introduced aggregation 

operators for neutrosophic hypersoft sets.  A recent development in this area of research is the 
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introduction of basic operations on hypersoft sets in which hypersoft points in different fuzzy 

environments are also introduced [14].  

Fuzzy topology, a collection of fuzzy sets fulfilling the axioms was defined by Chang [15] in 

1968. Fuzzy set theory was applied into topology by Chang and many topological notions were 

introduced in fuzzy setting such as convergence and compactness [30-32]. Then Intuitionistic fuzzy 

topological spaces were introduced and were developed further into many new concepts as 

separation axioms, categorical property, connectedness [33, 34, 37-39]. Neutrosophic topological 

spaces were introduced by Salma et al. and further concepts as connectedness, semi closed sets and 

generalized closed sets were developed [40-44]. Olgun developed the concept of Pythagorean 

topological spaces and recently Pythagorean nano topological spaces were introduced and 

advanced into concepts such as weak open sets [35, 36, 45-47]. The notion of fuzzy soft topological 

structure was coined by Tanay et al. and was further enquired [16, 51, 52]. This notion was applied 

to the advanced sets as intuitionistic and neutrosophic soft sets thus developed as Intuitionistic and 

Neutrosophic soft topological spaces [53-59].  

In this paper, we define the concept of ‘Fuzzy Hypersoft Topology’ with the fuzzy hypersoft 

sets and we define some basic notions. A logical extension of this topology would necessarily be 

Intuitionistic and Neutrosophic Hypersoft topologies. Hence we propose Intuitionisitc and 

Neutrosophic Hypersoft topology in this paper. Following this we describe the basic definitions 

and concepts in second section and the third section contains the introduction of the base fuzzy 

hypersoft topological spaces with few properties. Fourth and fifth sections contain the extension of 

fuzzy hypersoft topological spaces which are intuitionistic and neutrosophic hypersoft topological 

spaces along with basic properties.  

2. Preliminaries  

Definition 2.1 

Let 𝑉 be the universe, 𝑃(𝑉) the power set of 𝑉 and 𝐸1, 𝐸2, 𝐸3…𝐸𝑚 be the parameters which are 

pairwise disjoint. Let 𝐴𝑙 be the non-empty subset of 𝐸𝑙  for each 𝑙 = 1, 2, …𝑚. A hypersoft set is the 

pair (Θ, 𝐴1 × 𝐴2 × …× 𝐴𝑚) where 
Θ: 𝐴1  ×  𝐴2 × …× 𝐴𝑚 → 𝑃(𝑉). 

Simply, we write the symbols 𝔼 for 𝐸1 × 𝐸2 × …× 𝐸𝑚, 𝔍 for  𝐴1 × 𝐴2 × …× 𝐴𝑚 and 𝒂 for an 

element of 𝔍. 

Definition 2.2 

Let the fuzzy universe be 𝑉, 𝔄 a subset of 𝔼. Then (Θ, 𝔍) is called 

1. a null fuzzy hypersoft set if for each parameter 𝒂 ∈ 𝔍, Θ(𝒂) is 0.  

2. an absolute fuzzy hypersoft set if for each parameter 𝒂 ∈ 𝔍, Θ(𝒂) is 𝑉.  

Definition 2.3 [14]  

Let (Θ, 𝔍) and (ϑ, 𝔅) be two fuzzy hypersoft (FH) sets over 𝑉. Then union of (Θ, 𝔍) and (ϑ, 𝔅) is 

(𝜉, 𝔊) = (Θ, 𝔍) ⋃ (ϑ, 𝔅) with 𝔊 = 𝐺1  ×  𝐺2 × …× 𝐺𝑛  where 𝐺𝑘 = 𝐴𝑘 ⋃ 𝐵𝑘 for 𝑘 = 1, 2, … 𝑛 and 𝜉 is 

defined by 

𝜉(𝒂) =  {

Θ(𝒂)                     𝑖𝑓  𝒂 ∈ 𝔍 − 𝔅

ϑ(𝒂)                     𝑖𝑓  𝒂 ∈ 𝔅 − 𝔍

Θ(𝒂)⋃ ϑ(𝒂)       𝑖𝑓  𝒂 ∈ 𝔍 ⋃𝔅
0                                 𝑒𝑙𝑠𝑒        

              where 𝒂 = (𝐺1, 𝐺2 , … 𝐺𝑛) ∈ 𝔊. 

Definition 2.4 [14] 

Let (Θ, 𝔍) and (ϑ, 𝔅) be two FH sets. The intersection is denoted by  

(𝜉, 𝔊) = (Θ, 𝔍) ⋂ (ϑ, 𝔅) where 𝔊 = 𝐺1 × 𝐺2 × …× 𝐺𝑛 where 𝐺𝑘 = 𝐴𝑘 ⋂ 𝐵𝑘 for 𝑘 = 1, 2, …𝑛. 
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𝜉(𝒂) =  {

Θ(𝒂)                     𝑖𝑓  𝒂 ∈ 𝔍 − 𝔅

ϑ(𝒂)                     𝑖𝑓  𝒂 ∈ 𝔅 − 𝔍

Θ(𝒂) ⋂ ϑ(𝒂)       𝑖𝑓  𝒂 ∈ 𝔍 ⋂ 𝔅

               where 𝒂 = (𝐺1, 𝐺2 , …𝐺𝑛) ∈ 𝔊. 

Definition 2.5  

Let (Θ, 𝔍) and (ϑ, 𝔅) be two FH sets. (Θ, 𝔍) is called a FH subset of (ϑ, 𝔅), if 𝔍 ⊆ 𝔅 & Θ(𝒂) ⊆

ϑ(𝒂) for all 𝒂 ∈ 𝔍. We denote this by (Θ, 𝔍) ⊆ (ϑ,𝔅) [14]. 

Definition 2.6 

Let (Θ, 𝔍) and (ϑ, 𝔅) be two FH sets. (Θ, 𝔍) & (ϑ, 𝔅) are equal if and only if (Θ, 𝔍) ⊆ (ϑ,𝔅) and 

(ϑ, 𝔅) ⊆  (Θ, 𝔍) [14]. 

3. Fuzzy Hypersoft Topological Space 

In this section, we define the concept of “Fuzzy Hypersoft Topology”. Let 𝐸1, 𝐸2, 𝐸3…𝐸𝑛 be 

the parameters of the universe 𝑉, the set of all fuzzy sets be 𝐹(𝑉), the collection of all FH sets over 

𝑉𝔼 (where 𝔼 = 𝐸1 × 𝐸2  × 𝐸3…×  𝐸𝑛) be 𝔓(𝑉, 𝔼) . 

Definition 3.1 

Let (𝜚, 𝔛) be an element of 𝔓(𝑉, 𝔼) (where 𝔛 = X1 x X2 x X3…x Xn with each 𝑋𝑖 is a subset of 

𝐸𝑖 (𝑖 = 1, 2…𝑛), set of all fuzzy hypersoft (FH) subsets of (𝜚, 𝔛) be 𝑃(𝜚, 𝔛) and 𝜏, a subcollection of 
𝑃(𝜚, 𝔛).  

(i) ϕ𝔛 , (𝜚, 𝔛) ∈ 𝜏 

(ii) (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝜏 ⟹ (Θ, 𝔍) ⋂ (ϑ, 𝔅) ∈ 𝜏 

(iii) {(Θ, 𝔍)𝑙  | 𝑙 ∈ 𝐿} ∈ 𝜏 ⟹ ⋃  (Θ, 𝔍)𝑙𝑙∈𝐿 ∈ 𝜏 

If the above axioms are satisfied then 𝜏 is fuzzy hypersoft topology (FHT) on (𝜚, 𝔛). (𝔛𝜚 , 𝜏) 

is called a fuzzy hypersoft topological space (FHTS). Every member of 𝜏 is called open fuzzy 

hypersoft set (OFHS). A fuzzy hypersoft set if called closed fuzzy hypersoft set (CFHS) if its 

complement is OFHS. 

For example, {ϕ𝔛 , (𝜚, 𝔛)} and 𝑃(𝜚, 𝔛) are fuzzy hypersoft topology on (𝜚, 𝔛) and are called 

as indiscrete FHT and discrete FHT respectively.  

Example 3.2 

Let 𝑉 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and the attributes be 𝐸1 = {𝑎1, 𝑎2}, 𝐸2 = {𝑎3, 𝑎4} and 𝐸3 = {𝑎5, 𝑎6}. 

Then the fuzzy hypersoft set be  

{
((𝑎1, 𝑎3, 𝑎5), { 

𝑥2
0.4
 ,
𝑥4
0.6

 }) , ((𝑎1, 𝑎3, 𝑎6), { 
𝑥1
0.7
}) , ((𝑎1, 𝑎4, 𝑎5), { 

𝑥1
0.4
 ,
𝑥2
0.3

 }) , ((𝑎1, 𝑎4, 𝑎6), { 
𝑥1
0.5
 ,
𝑥3
0.7

 }) ,

 ((𝑎2, 𝑎3, 𝑎5), { 
𝑥2
0.3
 ,
𝑥3
0.5

 }) , ((𝑎2, 𝑎3, 𝑎6), { 
𝑥3
0.8
}) , ((𝑎2, 𝑎4, 𝑎5), { 

𝑥4
0.9
}) , ((𝑎2, 𝑎4, 𝑎6), { 

𝑥2
0.6
}) 

} 

Let us consider this fuzzy hypersoft as (𝜚, 𝔛). Then the subfamily  

𝜏 = {ϕ𝔛 , (𝜚, 𝔛), 

 {((𝑎1, 𝑎3, 𝑎5), { 
𝑥1
0.3
 ,
𝑥2
0.6

 }) , ((𝑎2, 𝑎3, 𝑎5), { 
𝑥2
0.4
 ,
𝑥3
0.5

 })} , {((𝑎1, 𝑎3, 𝑎5), { 
𝑥2
0.4
}) , ((𝑎2, 𝑎3, 𝑎5), { 

𝑥2
0.3
 ,
𝑥3
0.5

 }) }, 
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{
 

 ((𝑎1, 𝑎3, 𝑎5), { 
𝑥1
0.3
 ,
𝑥2
0.6

 ,
𝑥4
0.6

 }) , ((𝑎1, 𝑎4, 𝑎6), { 
𝑥1
0.5
 ,
𝑥3
0.7

 }) , ((𝑎1, 𝑎3, 𝑎6), { 
𝑥1
0.7
}) , ((𝑎1, 𝑎4, 𝑎5), { 

𝑥1
0.4
 ,
𝑥2
0.3

 }) , ((𝑎2, 𝑎3, 𝑎5), { 
𝑥2
0.4
 ,
𝑥3
0.5

 })
 

,

((𝑎2, 𝑎3, 𝑎6), { 
𝑥3
0.8
}) , ((𝑎2, 𝑎4, 𝑎5), { 

𝑥4
0.9
}) , ((𝑎2, 𝑎4, 𝑎6), { 

𝑥2
0.6
}) }

 

 
 

of 𝑃(𝜚, 𝔛) is a FHT on (𝜚, 𝔛). 

Definition 3.3 

Let 𝜏 be a FHT on (𝜚, 𝔛) ∈ 𝔓(𝑉, 𝔼) and (ϑ, 𝔅) be a FH set in 𝑃(𝜚, 𝔛). A FH set (Θ, 𝔍) in 

𝑃(𝜚, 𝔛) is a neighbourhood of FH  set of (ϑ, 𝔅) if and only if there exists an OFHS (𝜉, ℭ) such that 
(ϑ, 𝔅) ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). 

Theorem 3.4 

A FH set (Θ, 𝔍) in 𝑃(𝜚, 𝔛) is an OFHS if and only if (Θ, 𝔍) is a neighbourhood of each FH set 

(ϑ, 𝔅) contained in (Θ, 𝔍). 

Proof: 

Consider an OFHS (Θ, 𝔍) and any FH set (ϑ, 𝔅) confined in (Θ, 𝔍). Thus we have (ϑ, 𝔅) ⊂

(Θ, 𝔍) ⊂ (Θ, 𝔍). Implies that (𝜃, 𝔄) is a neighbourhood of (ϑ, 𝔅). 

Let (𝜃, 𝔄) be a neighbourhood of each FH set confined in it. Since (Θ, 𝔍) ⊂ (Θ, 𝔍), there 

exists an OFHS (𝜉, ℭ) such that  (Θ, 𝔍) ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). Thus (Θ, 𝔍) = (𝜉, ℭ), (Θ, 𝔍) is OFHS. 

Definition 3.5 

Let (𝔛𝜚 , 𝜏) is called a FHTS on (𝜚, 𝔛) and (Θ, 𝔍) be a FH set in 𝑃(𝜚, 𝔛). The neighbourhood 

system of (Θ, 𝔍) relative to 𝜏 is the collection of all neighbourhood of (Θ, 𝔍) and denoted by 𝐻𝑁(Θ,𝔍).   

Theorem 3.6 

If 𝐻𝑁(Θ,𝔍) is the neighbourhood systems of FH set (Θ, 𝔍). Then, 

1. Finite intersection of member of 𝐻𝑁(Θ,𝔍) belongs to 𝐻𝑁(Θ,𝔍). 

2. Each FH set which has a member of 𝐻𝑁(Θ,𝔍) belongs to 𝐻𝑁(Θ,𝔍). 

Proof 

1. (ϑ, 𝔅) and (𝜉, ℭ) ∈ 𝐻𝑁(Θ,𝔍) then there exists (ϑ′, 𝔅′), (𝜉′, ℭ′) ∈ 𝜏 such that  

    (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (ϑ,𝔅) and (Θ, 𝔍) ⊂ (𝜉′, ℭ′) ⊂ (𝜉, ℭ). 

Since (ϑ′, 𝔅′) ⋂ (𝜉′, ℭ′) ∈ 𝜏 we get (𝜃, 𝔄) ⊂ (ϑ′, 𝔅′) ⋂ (𝜉′, ℭ′) ⊂ (ϑ,𝔅) ⋂ (𝜉, ℭ)  

Hence (ϑ, 𝔅) ⋂ (𝜉, ℭ) belongs to 𝐻𝑁(Θ,𝔍). 

2. Let (ϑ, 𝔅) ∈ 𝐻𝑁(Θ,𝔍) and (𝜉, ℭ) be a FH set having (ϑ, 𝔅). 

Since (ϑ, 𝔅) ∈ 𝐻𝑁(Θ,𝔍) there exists an OFHS containing (ϑ′, 𝔅′) such that (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (ϑ,𝔅) it 

follows that (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (𝜉, ℭ). Thus (𝜉, ℭ) belongs to 𝐻𝑁(Θ,𝔍). 

Definition 3.7 

Let (𝔛𝜚 , 𝜏) is called a FHTS and (Θ, 𝔍), (ϑ, 𝔅) be FH set in 𝑃(𝜚, 𝔛) such that (ϑ, 𝔅) ⊂ (Θ, 𝔍). 

Then (ϑ, 𝔅) is said to be an interior fuzzy hypersoft set (IFHS) of (Θ, 𝔍) if and only if (Θ, 𝔍) is a 

neighbourhood of (ϑ, 𝔅). 

 The union of whole IFHS of (Θ, 𝔍) is named the interior of (Θ, 𝔍) and denoted as (Θ, 𝔍)○. 
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Theorem 3.8 

Let (𝔛𝜚 , 𝜏) is called a FHTS and (Θ, 𝔍), a FH set in 𝑃(𝜚, 𝔛). Then, 

i) (Θ, 𝔍)○ is open and (Θ, 𝔍)○ is the biggest OFHS confined in (Θ, 𝔍). 

ii) (Θ, 𝔍) is OFHS iff (Θ, 𝔍) = (Θ, 𝔍)○. 

Proof 

i) Since (Θ, 𝔍)○ = ⋃ {(ϑ, 𝔅)/(Θ, 𝔍) 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 (ϑ, 𝔅)}, (Θ, 𝔍)○ is itself an IFHS of 

(Θ, 𝔍). Then there exists an OFHS (𝜉, ℭ) such that (Θ, 𝔍)○ ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). (𝜉, ℭ) is an IFHS of (Θ, 𝔍), 

hence (𝜉, ℭ) ⊂ (Θ, 𝔍)○.  Thus (Θ, 𝔍)○ is the largest OFHS enclosed in (Θ, 𝔍). 

ii) Let (Θ, 𝔍) be an OFHS. Since (Θ, 𝔍)○ is the IFHS of (Θ, 𝔍), we have (Θ, 𝔍) = (Θ, 𝔍)○. 

Conversely if (Θ, 𝔍) = (Θ, 𝔍)○ then (Θ, 𝔍) is OFHS. 

Definition 3.9 

Let (𝔛𝜚 , 𝜏1) and (𝔛𝜚 , 𝜏2) be two FHTS. If each (Θ, 𝔍) ∈ 𝜏1 is in 𝜏2 then 𝜏2 is called the FH 

finer than 𝜏1 (or) 𝜏1 is FH coarser than 𝜏2. 

Definition 3.10 

Let (𝔛𝜚 , 𝜏) be a FHTS and (Θ, 𝔍) ∈ 𝔓(𝑉, 𝔼). The fuzzy hypersoft closure (FHC) of (Θ, 𝔍) is 

the intersection of all CFH sets that contains (Θ, 𝔍) which is denoted by (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

Thus, (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is the smallest CFHS which has (Θ, 𝔍) and (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is CFHS. 

Theorem 3.11 

Let (𝔛𝜚 , 𝜏) be a FHTS and (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝔓(𝑉, 𝔼). 

Then,  

(i) (Θ, 𝔍) ⊆ (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅   

(ii)  (Θ, 𝔍)̿̿ ̿̿ ̿̿ ̿̿ = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  

(iii) If (Θ, 𝔍) ⊂ (ϑ,𝔅), then (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ ⊂ (ϑ,𝔅)̅̅ ̅̅ ̅̅ ̅̅ . 

(iv) (Θ, 𝔍) is a CFHS iff (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

(v) (Θ, 𝔍) ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  

Proof 

From the definition of FHC, the proof of (i) to (iii) is attained. 

(iv) Let (Θ, 𝔍) be CFHS. By (i) (Θ, 𝔍) ⊆ (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . Since (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is the minutest CFHS which has (Θ, 𝔍), 

then (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ ⊆ (Θ, 𝔍). Thus (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

Conversely let, (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . Since (Θ, 𝔍) is CFHS, then (Θ, 𝔍) is also CFHS. 

(v) By (iv) (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ , (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . So  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 Conversely by (i), (Θ, 𝔍) ⋃ (ϑ, 𝔅) ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Since (Θ, 𝔍), (ϑ, 𝔅) are FH sets and (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the minutest CFHS which has (Θ, 𝔍) ⋃ (ϑ, 𝔅), 

then (Θ, 𝔍) ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  

Thus the equality is obtained. 
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Theorem 3.12 

Let (𝔛𝜚 , 𝜏) be a FHTS and (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝔓(𝑉, 𝔼). 

Then,  

(i) (Θ, 𝔍)○ ⊆ (Θ, 𝔍)  

(ii) ((Θ, 𝔍)○)○ = (Θ, 𝔍)○ 

(iii) If (Θ, 𝔍) ⊆ (ϑ,𝔅), then (Θ, 𝔍)○ ⊆ (ϑ,𝔅)○. 

(iv) (Θ, 𝔍) is OFHS iff (Θ, 𝔍) = (Θ, 𝔍)○. 

(v) ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
= (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○. 

Proof 

(i) – (iii) are obvious from definition of interior  

(iv) Let (Θ, 𝔍) be a OFHS, by (i) (Θ, 𝔍)○ ⊆ (Θ, 𝔍). Since (Θ, 𝔍)○ is the largest OFHS that is contained in 

(Θ, 𝔍), then (Θ, 𝔍) ⊆ (Θ, 𝔍)○. Thus (Θ, 𝔍) = (Θ, 𝔍)○ 

 Conversely, let (Θ, 𝔍) = (Θ, 𝔍)○ since (Θ, 𝔍)○ is OFHS, (Θ, 𝔍) is also OFHS. 

(v) (Θ, 𝔍) ⋂ (ϑ, 𝔅) ⊆ (Θ, 𝔍), (ϑ, 𝔅). Thus by (iii) ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
⊆ (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○. 

Conversely by (i), (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○ ⊆ (Θ,𝔍) ⋂ (ϑ, 𝔅). Since (Θ, 𝔍)○, (ϑ, 𝔅)○ are OFHS & 

((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
 is the largest OFHS that has (Θ, 𝔍) ⋂ (ϑ, 𝔅), then (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○ ⊆

 ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
. Thus, the equality is achieved.  

Definition 3.13 

Let (𝔛𝜚 , 𝜏) be a FHTS and ℬ be a subcollection of 𝜏. If each element of 𝜏 can be written as the 

arbitrary union of few elements of ℬ, then ℬ is called a fuzzy hypersoft basis (FHB) for the FHT 𝜏.  

Lemma 3.14 

Let (𝔛𝜚 , 𝜏) be a FHTS and ℬ be FHB for 𝜏. Then 𝜏 is the collection of FH union of elements of 

ℬ. 

Lemma 3.15 

Let (𝔛𝜚 , 𝜏) and (𝔛𝜚 , 𝜏
′) be FHTS and ℬ, ℬ′ be FHB for 𝜏 and 𝜏′ respectively. If  ℬ′ ⊂ ℬ, then 𝜏 

is FH finer than 𝜏′. 

Lemma 3.16 

Let {(ϑ𝑖 , 𝔅𝑖)/𝑖 ∈ I} be a collection of FH sets corresponding to 𝑉, and (Θ, 𝔍) be a FH over 𝑉. 

Then  

(i) ⋃𝑖∈I [(Θ, 𝔍) ⋂ (ϑ
𝑖 , 𝔅𝑖)]  = (Θ, 𝔍) ⋂  ( ⋃  (ϑ𝑖 , 𝔅𝑖)𝑖∈I ) 

(ii) ⋂𝑖∈I [(Θ, 𝔍) ⋃ (ϑ
𝑖 , 𝔅𝑖)] = (Θ, 𝔍) ⋃ ( ⋂  (ϑ𝑖 , 𝔅𝑖))𝑖∈I  

Proof 

(i) Let (Θ, 𝔍) ⋂ (ϑ𝑖 , 𝔅𝑖) = (𝜉, ℭ) where ℭ = 𝔍 ⋂ 𝔅𝒊. Then ⋃𝑖∈I [(Θ, 𝔍) ⋂ (ϑ
𝑖 , 𝔅𝑖)]  = (𝜉′, ℭ′) where ℭ′ =

⋃𝑖∈I (𝔍 ⋂ 𝔅𝒊). let ⋃𝑖∈I (ϑ
𝑖 , 𝔅𝑖) = (𝜉

′′, ℭ′′) where ℭ′′ = ⋃𝑖∈I 𝔅𝒊. Then (Θ, 𝔍) ⋂ ⋃𝑖∈I (ϑ
𝑖 , 𝔅𝑖)  = (𝜉

′′′, ℭ′′′) 

where ℭ′′′ = (𝔍 ⋂ ℭ′′). Since 𝔍 ⋂ (⋃𝑖∈I 𝔅) = ⋃𝑖∈I (𝔍⋂ 𝔅𝒊), we have 

ℭ′ = ⋃𝑖∈I (𝔍 ⋂ 𝔅𝒊) and ℭ′′′ = 𝔍 ⋂ (⋃𝑖∈I 𝔅𝒊)  = ⋃𝑖∈I (𝔍 ⋂ 𝔅𝒊). 
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Thus (Θ, 𝔍) ⋂ (⋃𝑖∈I (ϑ
𝑖 , 𝔅𝑖)) = ⋃𝑖∈I (Θ, 𝔍) ⋂ (ϑ

𝑖 , 𝔅𝑖). 

 

(ii) Let ⋂𝑖∈I (ϑ
𝑖 , 𝔅𝑖) = (𝜂,𝔇) where 𝔇 = ⋂𝑖∈I 𝔅𝑖 . Thus (Θ, 𝔍) ⋃ (⋂𝑖∈I (ϑ

𝑖 , 𝔅𝑖))  = (𝜂′, 𝔇′) where 𝔇′ =

(𝔍 ⋃ 𝔇). Now consider (Θ, 𝔍) ⋃ (ϑ𝑖 , 𝔅𝑖) = (𝜂
′′, 𝔇′′), where 𝔇′′ = (𝔍 ⋃ 𝔅𝑖). Then 

⋂𝑖∈I ((Θ, 𝔍) ⋃ (ϑ
𝑖 , 𝔅𝑖)) = (𝜂

′′′, 𝔇′′′) where 𝔇′′′ = ⋂𝑖∈I (𝔇
′′). Since,  𝔍 ⋃ (⋂𝑖∈I 𝔅) = ⋂𝑖∈I (𝔍 ⋃ 𝔅),  we 

get 

𝔇′ = (𝔍 ⋃ 𝔇) = 𝔍 ⋃ (⋂𝑖∈I 𝔅𝑖) = ⋂𝑖∈I (𝔍 ⋃ 𝔅𝑖) and 𝔇′′′ = ⋂𝑖∈I (𝔇
′′) = ⋂𝑖∈I (𝔍 ⋃ 𝔅). 

Thus, (Θ, 𝔍) ⋃ (⋂𝑖∈I (ϑ
𝑖 , 𝔅𝑖)) = ⋂𝑖∈I ((Θ, 𝔍) ⋃ (ϑ

𝑖 , 𝔅𝑖)). 

Theorem 3.17 

Let (𝔛𝜚 , 𝜏) be a FHTS and (Θ, 𝔍) 𝜖 𝑃(𝜚, 𝔛) then the collection  

𝜏(Θ,𝔍) = {(Θ, 𝔍) ⋂ (ϑ, 𝔅)/(ϑ,𝔅) ∈ 𝜏} is a FHT. 

Proof 

(i) Since ϕ𝔛, (𝜚, 𝔛) ∈ 𝜏, (Θ, 𝔍) = (Θ, 𝔍) ⋂ (𝜚, 𝔛) and ϕ𝔄 = (Θ, 𝔍) ⋂ ϕ𝔛, then ϕ𝔄, (Θ, 𝔍) ∈ 𝜏(Θ,𝔍). 

 

(ii) Consider (Θ1, 𝔍1), (Θ2 𝔍2) ∈ 𝜏(Θ,𝔍). Then there exists (ϑ𝑖 , 𝔅𝑖) ∈ 𝜏(Θ,𝔍) for each 𝑖 = 1,2 such that 

(Θ𝑖 , 𝔍𝑖) = (Θ, 𝔍) ⋂ (ϑ𝑖 , 𝔅𝑖).  

Thus, (Θ1, 𝔍1) ⋂ (Θ2, 𝔍2) = [(Θ, 𝔍) ⋂ (ϑ1, 𝔅1)] ⋂ [(Θ, 𝔍) ⋂ (ϑ2, 𝔅2)]  

= (Θ, 𝔍) ⋂ [(ϑ1, 𝔅1) ⋂ (ϑ2, 𝔅2)] 

Since [(ϑ1, 𝔅1) ⋂ (ϑ2, 𝔅2) ∈ 𝜏, we have (Θ1, 𝔍1) ⋂ (Θ2, 𝔍2) ∈ 𝜏(Θ,𝔍). 

 

(iii) Let {(ϑ, 𝔅)𝑗/j ∈ 𝐽} be a subcollection of 𝜏(Θ,𝔍). Then for each 𝑗 ∈ 𝐽, there is a FH set (𝜉, ℭ)𝑗 of 𝜏 

such that (ϑ, 𝔅)𝑗 = (Θ, 𝔍) ⋂ (𝜉, ℭ)𝑗 . 

Thus, ⋃𝑗∈J (ϑ, 𝔅)𝑗  = ⋃𝑗∈J ((𝜃, 𝔍) ⋂ (𝜉, ℭ)𝑗)  = (Θ, 𝔍) ⋂ (⋃𝑗∈J  (𝜉, ℭ)𝑗). 

Since ⋃𝑗∈J  (𝜉, ℭ)𝑗 ∈ 𝜏, then (ϑ,𝔅)𝑗 ∈ 𝜏(Θ,𝔍).  

Definition 3.18 

Let (𝔛𝜚 , 𝜏) be a FHTS and (Θ, 𝔍) ⊂ 𝑃(𝜚, 𝔛). Then, the FHT 𝜏(Θ,𝔍) as in Theorem 3.17 is called Fuzzy 

hypersoft subspace topology and (𝔄𝜃 , 𝜏(Θ,𝔍)) is called a fuzzy hypersoft subspace of (𝔛𝜚 , 𝜏). 

4. Intuitionistic Hypersoft Topological Spaces 

In this section, we define the concept of “Intuitionistic Hypersoft Topology”. Let 

𝐸1, 𝐸2, 𝐸3…𝐸𝑛 be the parameters of the universe 𝑇, the set of all intuitionistic sets be 𝐹(𝑇), the 

collection of all intuitionistic hypersoft sets over 𝑇𝔼 (where 𝔼 = 𝐸1 × 𝐸2  × 𝐸3…×  𝐸𝑛) be 𝔓(𝑇, 𝔼) . 

Definition 4.1 

Let (𝜚, ℌ) be an element of 𝔓(𝑇, 𝔼) (where ℌ = H1 x H x H3…x Hn with each 𝑌𝑖 is a subset of 

𝐸𝑖 (𝑖 = 1, 2…𝑛), set of all intuitionistic hypersoft (IH) subsets of (𝜚, ℌ) be 𝑃(𝜚, ℌ) and 𝜏, a 

subcollection of 𝑃(𝜚, ℌ).  

(i) ϕ𝔜 , (𝜚, 𝔜) ∈ 𝜏 

(ii) (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝜏 ⟹ (Θ, 𝔍) ⋂ (ϑ, 𝔅) ∈ 𝜏 

(iii) {(Θ, 𝔍)𝑙  | 𝑙 ∈ 𝐿} ∈ 𝜏 ⟹ ⋃  (Θ, 𝔍)𝑙𝑙∈𝐿 ∈ 𝜏 
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If the above axioms are satisfied then 𝜏 is an intuitionistic hypersoft topology (IHT) on 

(𝜚, ℌ) and (ℌ𝜚 , 𝜏) is called an intuitionistic hypersoft topological space (IHTS). Every member of 𝜏 is 

called an open intuitionistic hypersoft set (OIHS). An intuitionistic hypersoft set is called a closed 

intuitionistic hypersoft set (CIHS) if its complement is an OIHS. 

Example 4.2 

Let 𝑇 = {𝑦1 , 𝑦2, 𝑦3, 𝑦4} and the attributes be 𝐸1 = {𝑏1, 𝑏2}, 𝐸2 = {𝑏3, 𝑏4} and 𝐸3 = {𝑏5, 𝑏6}. Then 

the intuitionitic hypersoft set be  

{
 
 

 
 ((𝑏1, 𝑏3, 𝑏5), { 

𝑦2
(0.4,0.3)

 ,
𝑦4

(0.6,0.2)
 }) , ((𝑏1, 𝑏3, 𝑏6), { 

𝑦1
(0.7,0.1)

}) , ((𝑏1, 𝑏4, 𝑏5), { 
𝑦1

(0.4,0.4)
 ,

𝑦2
(0.3,0.2)

 }) , ((𝑏1, 𝑏4, 𝑏6), { 
𝑦1

(0.5,0.3)
 ,

𝑦3
(0.7,0.1)

 }) ,

 ((𝑏2, 𝑏3, 𝑏5), { 
𝑦2

(0.3,0.5)
 ,

𝑦3
(0.5,0.1)

 }) , ((𝑏2, 𝑏3, 𝑏6), { 
𝑦3

(0.8,01.)
}) , ((𝑏2, 𝑏4, 𝑏5), { 

𝑦4
(0.9,0.1)

}) , ((𝑏2, 𝑏4, 𝑏6), { 
𝑦2

(0.6,0.3)
}) 

}
 
 

 
 

 

Let us consider this intuitionistic hypersoft set as (𝜚, ℌ). Then the subfamily  

𝜏

= {ϕℌ , (𝜚, ℌ), {((𝑏1, 𝑏3, 𝑏5), { 
𝑦1

(0.3,0.4)
 ,

𝑦2
(0.6,0.1)

 }) , ((𝑏2, 𝑏3, 𝑏5), { 
𝑦2

(0.4,0.3)
 ,

𝑦3
(0.5,0.3)

 })} , { ((𝑏1, 𝑏3, 𝑏5), { 
𝑦2

(0.4,0.3)
}) 

((𝑏2, 𝑏3, 𝑏5), { 
𝑦2

(0.3,0.5)
 ,

𝑦3
(0.5,0.3)

 })}, { ((𝑏1, 𝑏3, 𝑏5), { 
𝑦1

(0.3,0.4)
 ,

𝑦2
(0.6,0.1)

 ,
𝑦4

(0.6,0.2)
 }) , ((𝑏1, 𝑏4, 𝑏6), { 

𝑦1
(0.5,0.3)

 ,
𝑦3

(0.7,0.1)
 }), 

 ((𝑏1, 𝑏3, 𝑏6), { 
𝑦1

(0.7,0.1)
}) , ((𝑏1, 𝑏4, 𝑏5), { 

𝑦1
(0.4,0.4)

 , 𝑦2
(0.3,0.2)

 }),((𝑏2, 𝑏3, 𝑏5), { 
𝑦2

(0.4,0.3)
 , 𝑦3
(0.5,0.1)

 }),((𝑏2, 𝑏3, 𝑏6), { 
𝑦3

(0.8,0.1)
}), 

((𝑏2, 𝑏4, 𝑏5), { 
𝑦4

(0.9,0.1)
}), ((𝑏2, 𝑏4, 𝑏6), { 

𝑦2
(0.6,0.3)

})}} 

of 𝑃(𝜚, ℌ) is a IHT on (𝜚, ℌ). 

Definition 4.3 

Let 𝜏 be an IHT on (𝜚, ℌ) ∈ 𝔓(𝑇, 𝔼) and (ϑ, 𝔅) be an IH set in 𝑃(𝜚, ℌ). An IH set (Θ, 𝔍) in 

𝑃(𝜚, ℌ) is a neighbourhood of IH  set of (ϑ, 𝔅) if and only if there exists an OIHS (𝜉, ℭ) such that 
(ϑ, 𝔅) ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). 

Theorem 4.4 

An IH set (Θ, 𝔍) in 𝑃(𝜚, ℌ) is an OIHS if and only if (Θ, 𝔍) is a neighbourhood of each IH set 

(ϑ, 𝔅) contained in (Θ, 𝔍).  

Proof: 

Consider an OIHS (Θ, 𝔍) and any IH set (ϑ, 𝔅) confined in (Θ, 𝔍). Thus we have (ϑ, 𝔅) ⊂

(Θ, 𝔍) ⊂ (Θ, 𝔍). This implies that (𝜃, 𝔄) is a neighbourhood of (ϑ, 𝔅). 

Let (𝜃, 𝔄) be a neighbourhood of each IH set confined in it. Since (Θ, 𝔍) ⊂ (Θ, 𝔍), there exists 

an OIHS (𝜉, ℭ) such that  (Θ, 𝔍) ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). Thus (Θ, 𝔍) = (𝜉, ℭ), (Θ, 𝔍) is OIHS. 

Definition 4.5 

Let (ℌ𝜚 , 𝜏) be called an IHTS on (𝜚, ℌ) and (Θ, 𝔍) be an IH set in 𝑃(𝜚, ℌ). The neighbourhood 

system of (Θ, 𝔍) relative to 𝜏 is the collection of all neighbourhoods of (Θ, 𝔍) and is denoted by 
𝐻𝑁𝑁(Θ,𝔍).   

Theorem 4.6 

If 𝐻𝑁𝑁(Θ,𝔍) is the neighbourhood systems of IH set (Θ, 𝔍). Then, 
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1. Finite intersection of member of 𝐻𝑁𝑁(Θ,𝔍) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

2. Each IH set which has a member of 𝐻𝑁𝑁(Θ,𝔍) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

Proof 

1. (ϑ, 𝔅) and (𝜉, ℭ) ∈ 𝐻𝑁𝑁(Θ,𝔍) then there exists (ϑ′, 𝔅′), (𝜉′, ℭ′) ∈ 𝜏 such that  

    (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (ϑ,𝔅) and (Θ, 𝔍) ⊂ (𝜉′, ℭ′) ⊂ (𝜉, ℭ). 

Since (ϑ′, 𝔅′) ⋂ (𝜉′, ℭ′) ∈ 𝜏 we get (𝜃, 𝔄) ⊂ (ϑ′, 𝔅′) ⋂ (𝜉′, ℭ′) ⊂ (ϑ,𝔅) ⋂ (𝜉, ℭ)  

Hence (ϑ, 𝔅) ⋂ (𝜉, ℭ) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

2. Let (ϑ, 𝔅) ∈ 𝐻𝑁𝑁(Θ,𝔍) and (𝜉, ℭ) be a IH set having (ϑ, 𝔅). 

Since (ϑ, 𝔅) ∈ 𝐻𝑁𝑁(Θ,𝔍) there exists an OIHS containing (ϑ′, 𝔅′) such that (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (ϑ,𝔅) it 

follows that (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (𝜉, ℭ). Thus (𝜉, ℭ) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

Definition 4.7 

Let (ℌ𝜚 , 𝜏) be an IHTS and (Θ, 𝔍), (ϑ, 𝔅) be an IH set in 𝑃(𝜚, ℌ) such that (ϑ, 𝔅) ⊂ (Θ, 𝔍). 

Then (ϑ, 𝔅) is said to be an interior intuitionistic hypersoft set (IIHS) of (Θ, 𝔍) if and only if (Θ, 𝔍) is 

a neighbourhood of (ϑ, 𝔅). 

 The union of whole IIHS of (Θ, 𝔍) is named the interior of (Θ, 𝔍) and is denoted as (Θ, 𝔍)○. 

Theorem 4.8 

Let (ℌ𝜚 , 𝜏) be an IHTS and (Θ, 𝔍), an IH set in 𝑃(𝜚, ℌ). Then, 

i) (Θ, 𝔍)○ is open and (Θ, 𝔍)○ is the biggest OIHS confined in (Θ, 𝔍). 

ii) (Θ, 𝔍) is OIHS iff (Θ, 𝔍) = (Θ, 𝔍)○. 

Proof 

i) Since (Θ, 𝔍)○ = ⋃ {(ϑ, 𝔅)/(Θ, 𝔍) is a neighbourhood of (ϑ, 𝔅)}, (Θ, 𝔍)○ is itself an IIHS of 

(Θ, 𝔍). Then there exists an OIHS (𝜉, ℭ) such that (Θ, 𝔍)○ ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). (𝜉, ℭ) is an IIHS of (Θ, 𝔍), 

hence (𝜉, ℭ) ⊂ (Θ, 𝔍)○.  Thus (Θ, 𝔍)○ is the largest OIHS enclosed in (Θ, 𝔍). 

ii) Let (Θ, 𝔍) be an OIHS. Since (Θ, 𝔍)○ is the IIHS of (Θ, 𝔍), we have (Θ, 𝔍) = (Θ, 𝔍)○. 

Conversely if (Θ, 𝔍) = (Θ, 𝔍)○ then (Θ, 𝔍) is OIHS. 

Definition 4.9 

Let (ℌ𝜚 , 𝜏1) and (ℌ𝜚 , 𝜏2) be two IHTS. If each (Θ, 𝔍) ∈ 𝜏1 is in 𝜏2 then 𝜏2 is called the IH finer 

than 𝜏1 (or) 𝜏1 is IH coarser than 𝜏2. 

Definition 4.10 

Let (ℌ𝜚 , 𝜏) be a IHTS and (Θ, 𝔍) ∈ 𝔓(𝑇, 𝔼). The intuitionistic hypersoft closure (IHC) of 

(Θ, 𝔍) is the intersection of all CIH sets that contains (Θ, 𝔍) which is denoted by (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

Thus, (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is the smallest CIHS which has (Θ, 𝔍) and (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is CIHS. 

Theorem 4.11 

Let (ℌ𝜚 , 𝜏) be an IHTS and (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝔓(𝑇, 𝔼). 

Then,  
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(i) (Θ, 𝔍) ⊆ (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅   

(ii)  (Θ, 𝔍)̿̿ ̿̿ ̿̿ ̿̿ = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  

(iii) If (Θ, 𝔍) ⊂ (ϑ,𝔅), then (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ ⊂ (ϑ,𝔅)̅̅ ̅̅ ̅̅ ̅̅ . 

(iv) (Θ, 𝔍) is a CIHS iff (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

(v) (Θ, 𝔍) ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  

Proof 

From the definition of IHC, the proof of (i) to (iii) is attained. 

(iv) Let (Θ, 𝔍) be CIHS. By (i) (Θ, 𝔍) ⊆ (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . Since (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is the minutest CIHS which has (Θ, 𝔍), then 

(Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ ⊆ (Θ, 𝔍). Thus (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

Conversely let, (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . Since (Θ, 𝔍) is CIHS, then (Θ, 𝔍) is also a CIHS. 

(v) By (iv) (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ , (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . So  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 Conversely by (i), (Θ, 𝔍) ⋃ (ϑ, 𝔅) ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Since (Θ, 𝔍), (ϑ, 𝔅) are IH sets and (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the minutest CIHS which has (Θ, 𝔍) ⋃ (ϑ, 𝔅), 

then (Θ, 𝔍) ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  

Thus the equality is obtained. 

Theorem 4.12 

Let (ℌ𝜚 , 𝜏) be an IHTS and (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝔓(𝑇, 𝔼). 

Then,  

(i) (Θ, 𝔍)○ ⊆ (Θ, 𝔍)  

(ii) ((Θ, 𝔍)○)○ = (Θ, 𝔍)○ 

(iii) If (Θ, 𝔍) ⊆ (ϑ,𝔅), then (Θ, 𝔍)○ ⊆ (ϑ,𝔅)○. 

(iv) (Θ, 𝔍) is OIHS iff (Θ, 𝔍) = (Θ, 𝔍)○. 

(v) ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
= (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○. 

Proof 

(i) – (iii) are obvious from the definition of interior  

(iv) Let (Θ, 𝔍) be a OIHS, by (i) (Θ, 𝔍)○ ⊆ (Θ, 𝔍). Since (Θ, 𝔍)○ is the largest OIHS that is contained in 

(Θ, 𝔍), then (Θ, 𝔍) ⊆ (Θ, 𝔍)○. Thus (Θ, 𝔍) = (Θ, 𝔍)○ 

 Conversely, let (Θ, 𝔍) = (Θ, 𝔍)○ since (Θ, 𝔍)○ is OIHS, (Θ, 𝔍) is also OIHS. 

(v) (Θ, 𝔍) ⋂ (ϑ, 𝔅) ⊆ (Θ, 𝔍), (ϑ, 𝔅). Thus by (iii) ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
⊆ (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○. 

Conversely by (i) (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○ ⊆ (Θ, 𝔍) ⋂ (ϑ, 𝔅). Since (Θ, 𝔍)○, (ϑ, 𝔅)○ are OIHS & 

((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
 is the largest OIHS that has (Θ, 𝔍) ⋂ (ϑ, 𝔅), then (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○ ⊆

 ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
.  Thus, the equality is achieved. 

5. Neutrosophic Hypersoft Topological Spaces 

In this section, we define the concept of “Neutrosophic Hypersoft Topology”. Let 

𝐸1, 𝐸2, 𝐸3…𝐸𝑛 be the parameters of the universe 𝐾, the set of all neutrosophic sets be 𝐹(𝐾), the 

collection of all neutrosophic hypersoft sets over 𝐾𝔼 (where 𝔼 = 𝐸1 × 𝐸2  × 𝐸3…×  𝐸𝑛) be 𝔓(𝐾, 𝔼) . 
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Definition 5.1 

Let (𝜚, 𝔜) be an element of 𝔓(𝐾, 𝔼) (where 𝔜 = Y1 x 𝑌2 x Y3…x Yn with each 𝑌𝑖 is a subset of 

𝐸𝑖 (𝑖 = 1, 2…𝑛), set of all neutrosophic hypersoft (NH) subsets of (𝜚, 𝔜) be 𝑃(𝜚, 𝔜) and 𝜏, a 

subcollection of 𝑃(𝜚, 𝔜).  

(i) ϕ𝔜 , (𝜚, 𝔜) ∈ 𝜏 

(ii) (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝜏 ⟹ (Θ, 𝔍) ⋂ (ϑ, 𝔅) ∈ 𝜏 

(iii) {(Θ, 𝔍)𝑙  | 𝑙 ∈ 𝐿} ∈ 𝜏 ⟹ ⋃  (Θ, 𝔍)𝑙𝑙∈𝐿 ∈ 𝜏 

If the above axioms are satisfied then 𝜏 is neutrosophic hypersoft topology (NHT) on 

(𝜚, 𝔜). (𝔜𝜚, 𝜏) is called a neutrosophic hypersoft topological space (NHTS). Every member of 𝜏 is 

called open neutrosophic hypersoft set (ONHS). A neutrosophic hypersoft set if called closed fuzzy 

hypersoft set (CNHS) if its complement is ONHS. 

Example 5.2 

Let 𝐾 = {𝑧1, 𝑧2, 𝑧3, 𝑧4} and the attributes be 𝐸1 = {𝑐1, 𝑐2}, 𝐸2 = {𝑐3, 𝑐4} and 𝐸3 = {𝑐5, 𝑐6}. Then 

the neutrosophic hypersoft set be  

{
  
 

  
 ((𝑐1, 𝑐3, 𝑐5), { 

𝑧2
(0.4,0.3,0.4)

 ,
𝑧4

(0.6,0.2,0.4)
 }) , ((𝑐1, 𝑐3, 𝑐6), { 

𝑧1
(0.7,0.1,0.4)

}) , ((𝑐1, 𝑐4, 𝑐5), { 
𝑧1

(0.4,0.4,0.6)
 ,

𝑧2
(0.3,0.2,0.8)

 }) ,

 ((𝑐1, 𝑐4, 𝑐6), { 
𝑧1

(0.5,0.3,0.4)
 ,

𝑧3
(0.7,0.1,0.6)

 }) , ((𝑐2, 𝑐3, 𝑐5), { 
𝑧2

(0.3,0.5,0.6)
 ,

𝑧3
(0.5,0.1,0.4)

 }) ,

 , ((𝑐2, 𝑐3, 𝑐6), { 
𝑧3

(0.8,0.1,0.6)
}) , ((𝑐2, 𝑐4, 𝑐5), { 

𝑧4
(0.9,0.6,0.4)

}) , ((𝑐2, 𝑐4, 𝑐6), { 
𝑧2

(0.6,0.3,0.7)
}) 

}
  
 

  
 

 

Let us consider this neutrosophic hypersoft as (𝜚, 𝔜). Then the subfamily  

𝜏

= {ϕ𝔜 , (𝜚, 𝔜), {((𝑐1, 𝑐3, 𝑐5), { 
𝑧1

(0.3,0.4,0.5)
 ,

𝑧2
(0.6,0.1,0.7)

 }) , ((𝑐2, 𝑐3, 𝑐5), { 
𝑧2

(0.4,0.3,0.6)
 ,

𝑧3
(0.5,0.3,0.7)

 })} , { ((𝑐1, 𝑐3, 𝑐5), { 
𝑧2

(0.4,0.1,0.7)
}) 

((𝑐2, 𝑐3, 𝑐5), { 
𝑧2

(0.3,0.3,0.6)
 ,

𝑧3
(0.5,0.1,0.7)

 })}, ((𝑐1, 𝑐3, 𝑐5), { 
𝑧1

(0.3,0.4,0.5)
 ,

𝑧2
(0.6,0.3,0.4)

 ,
𝑧4

(0.6,0.2,0.4)
 }) , ((𝑐1, 𝑐4, 𝑐6), { 

𝑧1
(0.5,0.3,0.4)

 ,
𝑧3

(0.7,0.1,0.6)
 }), 

 ((𝑐1, 𝑐3, 𝑐6), { 
𝑧1

(0.7,0.1,0.4)
}) , ((𝑐1, 𝑐4, 𝑐5), { 

𝑧1
(0.4,0.4,0.6)

 , 𝑧2
(0.3,0.2,0.8)

 }),((𝑐2, 𝑐3, 𝑐5), { 
𝑧2

(0.4,0.5,0.6)
 , 𝑧3
(0.5,0.3,0.4)

 }), 

((𝑐2, 𝑐3, 𝑐6), { 
𝑧3

(0.8,0.1,0.6)
}), ((𝑐2, 𝑐4, 𝑐5), { 

𝑧4
(0.9,0.6,0.4)

}), ((𝑐2, 𝑐4, 𝑐6), { 
𝑧2

(0.6,0.3,0.7)
})}} 

of 𝑃(𝜚, 𝔜) is a NHT on (𝜚, 𝔜). 

Definition 5.3 

Let 𝜏 be a NHT on (𝜚, 𝔜) ∈ 𝔓(𝐾, 𝔼) and (ϑ, 𝔅) be a NH set in 𝑃(𝜚, 𝔜). A FH set (Θ, 𝔍) in 

𝑃(𝜚, 𝔜) is a neighbourhood of NH  set of (ϑ, 𝔅) if and only if there exists an ONHS (𝜉, ℭ) such that 
(ϑ, 𝔅) ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). 

Theorem 5.4 

A NH set (Θ, 𝔍) in 𝑃(𝜚, 𝔜) is an ONHS if and only if (Θ, 𝔍) is a neighbourhood of each NH 

set (ϑ, 𝔅) contained in (Θ, 𝔍).  

Proof: 

Consider an ONHS (Θ, 𝔍) and any NH set (ϑ, 𝔅) confined in (Θ, 𝔍). Thus we have (ϑ, 𝔅) ⊂

(Θ, 𝔍) ⊂ (Θ, 𝔍). Implies that (𝜃, 𝔄) is a neighbourhood of (ϑ, 𝔅). 
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Let (𝜃, 𝔄) be a neighbourhood of each NH set confined in it. Since (Θ, 𝔍) ⊂ (Θ, 𝔍), there 

exists an ONHS (𝜉, ℭ) such that  (Θ, 𝔍) ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). Thus (Θ, 𝔍) = (𝜉, ℭ), (Θ, 𝔍) is ONHS. 

Definition 5.5 

Let (𝔜𝜚 , 𝜏) is called a NHTS on (𝜚, 𝔜) and (Θ, 𝔍) be a NH set in 𝑃(𝜚, 𝔜). The neighbourhood 

system of (Θ, 𝔍) relative to 𝜏 is the collection of all neighbourhood of (Θ, 𝔍) and denoted by 
𝐻𝑁𝑁(Θ,𝔍).   

Theorem 5.6 

If 𝐻𝑁𝑁(Θ,𝔍) is the neighbourhood systems of NH set (Θ, 𝔍). Then, 

1. Finite intersection of member of 𝐻𝑁𝑁(Θ,𝔍) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

2. Each NH set which has a member of 𝐻𝑁𝑁(Θ,𝔍) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

Proof 

1. (ϑ, 𝔅) and (𝜉, ℭ) ∈ 𝐻𝑁𝑁(Θ,𝔍) then there exists (ϑ′, 𝔅′), (𝜉′, ℭ′) ∈ 𝜏 such that  

    (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (ϑ,𝔅) and (Θ, 𝔍) ⊂ (𝜉′, ℭ′) ⊂ (𝜉, ℭ). 

Since (ϑ′, 𝔅′) ⋂ (𝜉′, ℭ′) ∈ 𝜏 we get (𝜃, 𝔄) ⊂ (ϑ′, 𝔅′) ⋂ (𝜉′, ℭ′) ⊂ (ϑ,𝔅) ⋂ (𝜉, ℭ)  

Hence (ϑ, 𝔅) ⋂ (𝜉, ℭ) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

2. Let (ϑ, 𝔅) ∈ 𝐻𝑁𝑁(Θ,𝔍) and (𝜉, ℭ) be a NH set having (ϑ, 𝔅). 

Since (ϑ, 𝔅) ∈ 𝐻𝑁𝑁(Θ,𝔍) there exists an ONHS containing (ϑ′, 𝔅′) such that (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (ϑ,𝔅) 

it follows that (Θ, 𝔍) ⊂ (ϑ′, 𝔅′) ⊂ (𝜉, ℭ). Thus (𝜉, ℭ) belongs to 𝐻𝑁𝑁(Θ,𝔍). 

Definition 5.7 

Let (𝔜𝜚 , 𝜏) is called a NHTS and (Θ, 𝔍), (ϑ, 𝔅) be NH set in 𝑃(𝜚, 𝔜) such that (ϑ, 𝔅) ⊂ (Θ, 𝔍). 

Then (ϑ, 𝔅) is said to be an interior neutrosophic hypersoft set (INHS) of (Θ, 𝔍) if and only if (Θ, 𝔍) 

is a neighbourhood of (ϑ, 𝔅). 

 The union of whole INHS of (Θ, 𝔍) is named the interior of (Θ, 𝔍) and denoted as (Θ, 𝔍)○. 

Theorem 5.8 

Let (𝔜𝜚 , 𝜏) is called a NHTS and (Θ, 𝔍), a NH set in 𝑃(𝜚, 𝔜). Then, 

i) (Θ, 𝔍)○ is open and (Θ, 𝔍)○ is the biggest ONHS confined in (Θ, 𝔍). 

ii) (Θ, 𝔍) is ONHS iff (Θ, 𝔍) = (Θ, 𝔍)○. 

Proof 

i) Since (Θ, 𝔍)○ = ⋃ {(ϑ, 𝔅)/(Θ, 𝔍) is a neighbourhood of (ϑ, 𝔅)}, (Θ, 𝔍)○ is itself an INHS of 

(Θ, 𝔍). Then there exists an ONHS (𝜉, ℭ) such that (Θ, 𝔍)○ ⊂ (𝜉, ℭ) ⊂ (Θ, 𝔍). (𝜉, ℭ) is an INHS of 

(Θ, 𝔍), hence (𝜉, ℭ) ⊂ (Θ, 𝔍)○.  Thus (Θ, 𝔍)○ is the largest ONHS enclosed in (Θ, 𝔍). 

ii) Let (Θ, 𝔍) be an ONHS. Since (Θ, 𝔍)○ is the INHS of (Θ, 𝔍), we have (Θ, 𝔍) = (Θ, 𝔍)○. 

Conversely if (Θ, 𝔍) = (Θ, 𝔍)○ then (Θ, 𝔍) is ONHS. 
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Definition 5.9 

Let (𝔜𝜚 , 𝜏1) and (𝔜𝜚, 𝜏2) be two NHTS. If each (Θ, 𝔍) ∈ 𝜏1 is in 𝜏2 then 𝜏2 is called the NH 

finer than 𝜏1 (or) 𝜏1 is NH coarser than 𝜏2. 

Definition 5.10 

Let (𝔜𝜚 , 𝜏) be a NHTS and (Θ, 𝔍) ∈ 𝔓(𝐾, 𝔼). The neutrosophic hypersoft closure (NHC) of 

(Θ, 𝔍) is the intersection of all CNH sets that contains (Θ, 𝔍) which is denoted by (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

Thus, (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is the smallest CNHS which has (Θ, 𝔍) and (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is CNHS. 

Theorem 5.11 

Let (𝔜𝜚 , 𝜏) be a NHTS and (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝔓(𝐾, 𝔼). 

Then,  

(i) (Θ, 𝔍) ⊆ (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅   

(ii)  (Θ, 𝔍)̿̿ ̿̿ ̿̿ ̿̿ = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  

(iii) If (Θ, 𝔍) ⊂ (ϑ,𝔅), then (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ ⊂ (ϑ,𝔅)̅̅ ̅̅ ̅̅ ̅̅ . 

(iv) (Θ, 𝔍) is a CNHS iff (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

(v) (Θ, 𝔍) ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  

Proof 

From the definition of NHC, the proof of (i) to (iii) is attained. 

(iv) Let (Θ, 𝔍) be CNHS. By (i) (Θ, 𝔍) ⊆ (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . Since (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  is the minutest CNHS which has (Θ, 𝔍), 

then (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ ⊆ (Θ, 𝔍). Thus (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . 

Conversely let, (Θ, 𝔍) = (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ . Since (Θ, 𝔍) is CNHS, then (Θ, 𝔍) is also CNHS. 

(v) By (iv) (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅ , (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . So  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 Conversely by (i), (Θ, 𝔍) ⋃ (ϑ, 𝔅) ⊆  (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Since (Θ, 𝔍), (ϑ, 𝔅) are NH sets and (Θ, 𝔍) ⋃  (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the minutest CNHS which has (Θ, 𝔍) ⋃ (ϑ, 𝔅), 

then (Θ, 𝔍) ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆  (Θ, 𝔍)̅̅ ̅̅ ̅̅ ̅̅  ⋃ (ϑ, 𝔅)̅̅ ̅̅ ̅̅ ̅̅  

Thus the equality is obtained. 

Theorem 5.12 

Let (𝔜𝜚 , 𝜏) be a NHTS and (Θ, 𝔍), (ϑ, 𝔅) ∈ 𝔓(𝐾, 𝔼). 

Then,  

(i) (Θ, 𝔍)○ ⊆ (Θ, 𝔍)  

(ii) ((Θ, 𝔍)○)○ = (Θ, 𝔍)○ 

(iii) If (Θ, 𝔍) ⊆ (ϑ,𝔅), then (Θ, 𝔍)○ ⊆ (ϑ,𝔅)○. 

(iv) (Θ, 𝔍) is ONHS iff (Θ, 𝔍) = (Θ, 𝔍)○. 

(v) ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
= (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○. 

Proof 

(i) – (iii) are obvious from definition of interior  

(iv) Let (Θ, 𝔍) be a ONHS, by (i) (Θ, 𝔍)○ ⊆ (Θ, 𝔍). Since (Θ, 𝔍)○ is the largest ONHS that is contained 

in (Θ, 𝔍), then (Θ, 𝔍) ⊆ (Θ, 𝔍)○. Thus (Θ, 𝔍) = (Θ, 𝔍)○ 

 Conversely, let (Θ, 𝔍) = (Θ, 𝔍)○ since (Θ, 𝔍)○ is ONHS, (Θ, 𝔍) is also ONHS. 



Neutrosophic Sets and Systems, Vol. 40, 2021     192  

 

D. Ajay, J. Joseline Charisma, Neutrosophic Hypersoft Topological Spaces     

 

(v) (Θ, 𝔍) ⋂ (ϑ, 𝔅) ⊆ (Θ, 𝔍), (ϑ, 𝔅). Thus by (iii) ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
⊆ (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○. 

Conversely by (i), (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○ ⊆ (Θ,𝔍) ⋂ (ϑ, 𝔅). Since (Θ, 𝔍)○, (ϑ, 𝔅)○ are ONHS & 

((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
 is the largest ONHS that has (Θ, 𝔍) ⋂ (ϑ, 𝔅), then (Θ, 𝔍)○ ⋂ (ϑ, 𝔅)○ ⊆

 ((Θ, 𝔍) ⋂ (ϑ, 𝔅))
○
. Thus, the equality is achieved. 

6. Conclusion 

 Herein we have defined fuzzy hypersoft topology and few basic properties have also been 

presented. In addition fuzzy hypersoft topology is extended to intuitionistic hypersoft, 

neutrosophic hypersoft topology along with some of its basic properties. In future, many properties 

of topological spaces can be extended to fuzzy hypersoft, intuitionistic and neutrosophic hypersoft 

topological spaces. 
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Abstract: Scaling system can be considered as range-base measurement system, it’s a fatal tool used 

in all human activities in daily-bases, also, all business domains and sectors heavily use scaling 

systems in all business process specially in decisions-making as one of the main critical business 

activities, despite the fact that, there is no scientific base for calculate an unified scale system ranges, 

all provided scales or ranges are determined based on expert opinions’, an enhanced scale system 

using single-valued neutrosophic set SVNS is offered that suggest a scientific methods for defining 

ranges in scaling systems, in addition, a new crisp value functions “De-neutrosophication” for 

converting both Simplified Neutrosophic Number SNN, and SVNS to them equivalent crisp values 

using distance measure based on Euclidean space are proposed, Finally, the offered framework and 

methods are implemented with numerical examples for best prove and validate of the framework 

and proposed methods. 

Keywords: Neutrosophic; De-neutrosophic; Single-valued Neutrosophic Set SVNS; Scale system, 

Scoring System; Decisions-making 

 

 

1. Introduction 

Smarandache presented Neutrosophic Logic as a generalization of fuzzy logic considering 

Neutrosophic Set NS is a generalization of the intuitionistic set, classical set, and fuzzy set, where 

Neutrosophic uses every entity < 𝑋 > and its opposite or negation < 𝑎𝑛𝑡𝑖𝑋 > together with their 

neutralities < 𝑛𝑒𝑢𝑡𝑋 >  in between them, therefore, the < 𝑛𝑒𝑢𝑡𝑋 >  & < 𝑎𝑛𝑡𝑖𝑋 >  together will 

considered as < 𝑛𝑜𝑛𝑋 > , in neutrosophic logic a proposition has a degrees of truth (𝑇) , 

indeterminacy (𝐼), falsity (𝐹), where (𝑇), (𝐼), (𝐹) are standard or non-standard subsets of -]0,1[+ [1]. 

The Neutrosophic logic best fit in decision-making where its process mostly has a lot of 

vagueness, indeterminacies which is the typical case in real life decision-making process, therefore, 

using neutrosophic in decision-making activities provides decision-makers with a great flexibility to 

deal with indeterminacy and uncertainty, in addition, neutrosophic logic and its subfields has a lot 

of scientific implementations in numerous fields using the three neutrosophic logic’s membership 

degrees (𝑇) truth, (𝐼) indeterminacy 𝑎𝑛𝑑(𝐹) falsity degree to express any system inputs’ values in 

detailed way specially when the system inputs’ values characterized with indeterminacy and 

uncertainty. 

Measurement systems is a method of defining a measurement unit for best unify the scales, 

scaling systems is range-base measurement system, it’s a critical tool used to classify measured items 

into ranges of values, each range has an equivalent qualitative values “Linguistic terms”, though, 

there is no standard way for defining the ranges as ranges are determined based on expert opinions’ 

such as, National Institute of Standards and Technology NIST [2], when performing risk assessments 
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they uses five level scale, first level starting from 0% to 4% and name it “very low”, the second level 

started from 5% to 20% and name it “low”, the third level 21% to 79% as “moderate”, forth from 80% 

to 95% as “high”, and lastly from 96% to 100% as “very high”, while NIST uses different ranges in 

“Common Vulnerability Scoring System” [3] which firstly uses 10-base scale instead of 100-base scale, 

also uses different ranges, it was “very low” name it as “none” 0 %, “low” 1-39%, “moderate” 40-

69%, “high” 70-89%, and lastly “very high” name it as “Critical” 90-100%, which clearly presenting 

same scale levels with different ranges, This research paper offers a scientific methods for defining 

ranges in scaling systems. 

Many efforts done for calculate de-neutrosophication for SVNS using Entropy, cross-entropy, 

distance, similarity, score and accuracy functions which are very important in uncertainty 

environment while ranking neutrosophic sets and numbers, since entropy is typically developed to 

determining uncertain degree of information. Distance, similarity, score, accuracy and cross-entropy 

are mostly applied to calculate the level of similarity among two elements. The importance of these 

functions manifested of comparing or converting neutrosophic numbers and sets into a comparable 

crisp value, these functions are completely calculated based on the value of truth, falsity, and 

indeterminacy memberships [4]. 

Researchers made an attempt to present a neutrosophic 3D visualization for both SNN and 

SVNS using Euclidean space, in addition, new crisp value functions “De-neutrosophication” for 

converting both Simplified Neutrosophic Number SNN, and SVNS to them equivalent crisp values 

using similarity measure based on Euclidean distance are proposed, also the researchers propose a 

new Neutrosophic Scaling System algorithm, Finally, the proposed Neutrosophic Scaling System is 

applied to risk assessment case study. 

The remining sections in this paper organized as follows: section two, represent a literature 

review about scaling system and some neutrosophic concepts used in the paper; Section three, 

contains some neutrosophic basic definitions are outlined; a proposed neutrosophic scaling system 

algorithm presented and two illustrative numerical examples are presented in section four; section 

five contains a conclusion followed by references.       

2. Literature review  

An overview of neutrosophic logic, Simplified Neutrosophic Number SNN, Single-Valued 

Neutrosophic Set SVNS, are discussed, in addition to evaluate some de-neutrosophication methods 

such as distance and similarity, also, concept of scale system is discussed.   

Smarandache extend Neutrosophic logic as a branch of philosophy [5] that reviews the basis and 

scope of neutrality, neutrosophic was discussed by a lot of researchers and applied in a variety of 

businesses assisting in solving many challenges as a powerful scale in the selection [6], Multi-criteria 

decision making MCDM [7] [8] [9], achieving PERT in project management [10], exploring the 

influence of Internet of Things (IoT) and how IOT influence supply chain [11], a lot of studies propose 

an enhanced variety of aggregation operators [12]. Wen, et al, (2017) [13] offered a novel method to 

calculate the similarity between SVNSs, plus Jun and Shigui (2017) [14] offer distances, similarity and 

entropy methods for IVNS, Surapati and Kalyan (2015) [15] explain a rough cosine similarity 

calculation among two rough NS., said and Florentin (2014) [16] offer a novel cosine similarity among 

two IVNS based on Bhattacharya’s distance, Ye (2014) [17] suggest a few of aggregation operators, as 

well as a simplified neutrosophic weighted arithmetic average operator and a simplified 

neutrosophic weighted geometric average operator. 

National Institute of Standards and Technology used five level Risk Assessment Scale in its 

special publication 800-30 “Guide for Conducting Risk Assessments” as standard scale where the 

percentages from 0% up to 4% refers to the linguistic scale of “Very Low” or lowest scale level, on 

the other hand they used the percentages from 96% up to 100% to refer to linguistic scale of “Very 

High” or highest scale level, all five levels of the qualitative risk scale values and its equivalent 

percentage ranges as proposed by NIST, nevertheless, NIST didn’t explain the scientific base for 

selecting this specific ranges for each Qualitative Values [2] 
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3. Preliminaries 

In this section, the basic definitions related to NS, SVNS, absolute and empty NS, Simplified 

Neutrosophic Set SNS, SNN and them operations are outlined, in addition de-neutrosophication, 

score functions, similarity functions, and distance functions are evaluated and enhanced. 

Definition 3.1. Neutrosophic Set: 

Florentin Smarandache 1998 proposed neutrosophic logic and neutrosophic sets and coined the 

definition of “Neutrosophic Set” with three principles (membership, indeterminacy, and non-

membership) [18], [7] Let 𝑇𝐴(𝑥), 𝑇𝐴(𝑥), 𝑎𝑛𝑑 𝐹𝐴(𝑥) be real standard or non-standard Statically subsets 

(𝑠𝑢𝑏) of ]-0, 1+[ , Let 𝑋 is a universe of discourse, and 𝑀 a set included in 𝑋, and 𝑥 is an element 

from 𝑋 is described with respect to the set 𝐴 as 𝑥(𝑇𝐴(𝑥), 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)) and belongs to 𝐴 where 𝑥 is 

(𝑡% 𝑡𝑟𝑢𝑒) in the set, (𝑖% 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒) or undefined in the set, and (𝑓% 𝑓𝑎𝑙𝑠𝑒), considering that 

(𝑡) changes in 𝑇𝐴(𝑥): 𝑋 → ]−0, 1+[, (𝑖) changes in 𝐼𝐴(𝑥): 𝑋 → ]−0, 1+[, (𝑓) changes in 𝐹𝐴(𝑥): 𝑋 → 

]−0 ,  1+ [, without restriction in the sum of  𝑇𝐴(𝑥) , 𝐼𝐴(𝑥)  and 𝐹𝐴(𝑥) , and meets the condition of 

summation: (−0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+)  

𝑁𝑆(𝐴) = {〈𝑥,  𝑇𝐴(𝑥),  𝐼𝐴(𝑥),  𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑋,  𝑇𝐴(𝑥), 𝐼𝐴(𝑥),  𝐹𝐴(𝑥) ∈ ]−0, 1+[ } (1) 

Definition 3.2. Single-Valued Neutrosophic set (SVNS) 

Wang et al. [19], presented “Single Valued Neutrosophic Set” (SVNS), as a subclass of the NS. 

which defined in Definition 3.1 and Simplified Neutrosophic Set SNS which defined in Definition 3.4 

below, in consequence of that, SVNS is an instance of NS that can implemented in our life applications 

[20], [21], Let 𝑋 be a universe of discourse, a SVNS 𝐴 over 𝑋 is an object with the form of 𝐴 =

{〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑋} , for the intervals 𝑇𝐴(𝑥) , 𝐼𝐴(𝑥)  and 𝐹𝐴(𝑥)  refer to truth, 

indeterminacy, and falsity memberships degrees respectively of 𝑥 to 𝐴, also, 𝑇𝐴(𝑥) ∈ [1,0], 𝐼𝐴(𝑥) ∈

[1,0] and 𝐹𝐴(𝑥) ∈ [1,0] and 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋, for 𝑋 is discrete, a 𝑆𝑉𝑁𝑆 𝐴 

will stated as shown in formula (2), while 𝑋 is continuous, a 𝑆𝑉𝑁𝑆 𝐴 will stated as shown in formula 

(3). 

SVNS (𝐴) = ∑
⟨𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)⟩

𝑥𝑖

𝑛

𝑖=1

 | 𝑥𝑖 ∈ 𝑋 (2) 

𝑆𝑉𝑁𝑆 (𝐴) = ∫
⟨𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)⟩

𝑥
𝑥

 | 𝑥 ∈ X (3) 

Definition 3.3. Absolute and Empty Neutrosophic Set 

Gayyar (2016) [22] defined two special cases for neutrosophic set which are the Null (Empty) 

neutrosophic set (0𝑁)  and the absolute (universe) neutrosophic set (1𝑁) , where Empty 

Neutrosophic Set has two forms (0𝑁) =< 𝑥, 0,0,1 >  𝑥 ∈ 𝑋  and (0𝑁) =< 𝑥, 0,1,1 >  𝑥 ∈ 𝑋 , also the 

absolute neutrosophic set has two forms (1𝑁) =< 𝑥, 1,1,0 >  𝑥 ∈ 𝑋 , and (1𝑁) =< 𝑥, 1,0,0 >  𝑥 ∈ 𝑋 , 

which is not accepted where < 𝑥, 0,0,1 > is not equal to < 𝑥, 0,1,1 > and < 𝑥, 0,1,1 > is not empty, 

on the other hand the < 𝑥, 1,1,0 > is not equal to < 𝑥, 1,0,0 > and < 𝑥, 1,1,0 > is not universal set, 

Therefore, we propose that, “Empty Simplified Neutrosophic Number” can denoted by one form as 

shown in formula (4), and , “Absolute Simplified Neutrosophic Number” can denoted by one form 

as shown in formula (5) only. 

0𝑁 =< 0,0,1 >  𝑥 ∈ 𝑋 (4) 

1𝑁 =< 1,0,0 >  𝑥 ∈ 𝑋 (5) 
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Definition 3.4. Simplified Neutrosophic Set (SNS): 

Ye, (2014) [17], SNS is an special case of NS, where the functions 𝑇𝐴(𝑥) , 𝐼𝐴(𝑥), 𝑎𝑛𝑑 𝐹𝐴(𝑥) 

represented as single points in the real standard [0,1] instead of subintervals / subsets in the real 

standard [0,1], that is  𝑇𝐴(𝑥) ∈ [1,0] , 𝐼𝐴(𝑥) ∈ [1,0],  and 𝐹𝐴(𝑥) ∈ [1,0] . Therefore, 𝑆𝑁𝑆 𝐴  is 

represented by formula (6), with no limitation on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝑎𝑛𝑑 𝐹𝐴(𝑥), satisfies the 

condition of: 0 ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) + 𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3. 

 

𝑆𝑁𝑆 (𝐴) = {〈𝑥,  𝑇𝐴(𝑥), 𝐼𝐴(𝑥),  𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑋,  𝑇𝐴(𝑥), 𝐼𝐴(𝑥),  𝐹𝐴(𝑥) ∈]0,1[ } (6) 

Definition 3.5. Simplified Neutrosophic Number (SNN) 

Considering SNS is a subclass of NS, Ye, (2014) [17] offer Simplified Neutrosophic Number 

(SNN) as a special case of SNS, in specific when 𝑋  consist of one object of 𝐴 , where 𝐴 =

{〈 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑋} it named as SNN, for ease, SNN is presented as shown in formula (7),. 

SNN (𝐴) = 〈𝑇𝐴 , 𝐼𝐴, 𝐹𝐴〉 (7) 

Definition 3.6. Cosine Similarity  

Ye, (2014) [17], proposed a method to compare any SVNS with absolute SVNS built on the cosine 

similarity measure as shown in formula (8), that can be extended to SNN 𝑥 = (𝑇, 𝐼, 𝐹) considering 

the absolute SNN = (1,0,0) as defined in formula (5),  

𝐶𝑂𝑆(𝑥) =
𝑇𝑥

√𝑇𝑥
2 + 𝐼𝑥

2 + 𝐹𝑥
2

 (8) 

However, in some cases the formula (8) didn’t represent the correct similarity for example: for 

𝐴 = (0.1,0.1,0.1) , 𝐵 = (0.9,0.9,0.9) and 𝐾 = (𝑘, 𝑘, 𝑘)|1 ≥ 𝑘 > 0]  where the three memberships has 

the same value then  𝐶𝑂𝑆(𝐴) = 𝐶𝑂𝑆(𝐵) = 𝐶𝑂𝑆(𝐾) =  0.577350269  using formula (8), also when 

falsity membership and indeterminacy membership are equal to zero formula (8) returns the 

similarity value of 1 regardless truth membership value, for 𝐴 = (0.1,0,0), 𝐵 = (0.9,0,0) and 𝐾 =

(𝑧, 𝑘, 𝑘)|𝑧 ∈ [0,1], 𝑘 = 0], then 𝐶𝑂𝑆(𝐴) = 𝐶𝑂𝑆(𝐵) = 𝐶𝑂𝑆(𝐾) = 1, which is not accepted. 

Definition 3.7. Kanika’s similarity measure 

Kanika, (2020) [23] propose a similarity measure 𝑆1(𝐴, 𝐵) for SVNS, for 𝐴 = ⟨𝑥𝑖 ,

𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)⟩ , 𝐵 = ⟨𝑥𝑖 , 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)⟩  where 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖) , 𝑇𝐵(𝑥𝑖) , 𝐼𝐵(𝑥𝑖) , 

𝐹𝐵(𝑥𝑖) ∈ [0,1], 𝑥𝑖  (𝑖 = 1, 2, … , 𝑛) as shown in formula (9). 

𝑆1(𝐴, 𝐵) = 1 −
1

2𝑛
× ∑[|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)| + 𝑀𝑎𝑥{|𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|, |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)| }]

𝑛

𝑖

  (9) 

However, in some cases the formula (9) didn’t return correct similarity value, for example: when 

using formula (9) to calculating the similarity between absolute SVNS 1𝑁 = (1,0,0) and both 𝐴 =

(0.5,0,0.2), 𝐵 = (0.4,0,0.1), 𝑆1(1𝑁 , 𝐴) = 𝑆1(1𝑁 , 𝐵) =0.65, also for 𝐴 = (0.5,0.2,0.6), 𝐵 = (0.2,0.2,0.3), 

𝑆1(1𝑁 , 𝐴) = 𝑆1(1𝑁 , 𝐵) = 0.45 which is not accepted. 

Definition 3.8. Score Function 

Nancy, et al (2016) [24] propose a score function 𝑆2(1𝑁 , 𝐴)  shown in formula (10), as an 

enhancement for 𝑆3(1𝑁 , 𝐴)  shown in formula (11) proposed by Şahin, (2014) [25], for 𝐴 =

⟨𝑥𝑖 , 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)⟩  where 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖) ∈ [0,1] , 𝑥𝑖  (𝑖 = 1, 2, … , 𝑛) , in case 𝑇𝐴(𝑥𝑖) +

𝐹𝐴(𝑥𝑖) = 1, Nancy, et al propose to use 𝑆3(1𝑁 , 𝐴) shown in formula (11).  
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𝑆2(1𝑁 , 𝐴) =
1 + (𝑇𝐴(𝑥𝑖) − 2𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))(2 − 𝑇𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖))

2
  (10) 

𝑆3(1𝑁 , 𝐴) =
1 + 𝑇𝐴(𝑥𝑖) − 2𝐼𝐴(𝑥𝑖) − 𝐹𝐴(𝑥𝑖)

2
 (11) 

On the other hand, Both formulas (10) and (11) have some limitation in some cases for example: 

for 𝐴 = (0.4,0.9,0.5)  both formulas return a negative similarity = −0.545, −0.45  respectively, in 

case of 𝑇𝐴(𝑥𝑖) + 𝐹𝐴(𝑥𝑖) = 1, 𝑇𝐴(𝑥𝑖) = 0, 𝐹𝐴(𝑥𝑖) = 1 both formulas return a negative similarity also, in 

addition, for 𝐴 = (0.4,0.4,0.4) , formulas return 0.02, 0.1 , also for 𝐴 = (0.9,0.9,0.9)  the formulas 

return 0.32, −0.4 respectively, which are not accepted. 

Definition 3.9. Euclidean-base similarity 

Majumdar and Samanta (2014) [26], offer SVNS similarity formula for 𝐴 = ⟨𝑥𝑖 ,

𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)⟩ , 𝐵 = ⟨𝑥𝑖 , 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)⟩  where 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖) , 𝑇𝐵(𝑥𝑖) , 𝐼𝐵(𝑥𝑖) , 

𝐹𝐵(𝑥𝑖) ∈ [0,1], 𝑥𝑖  (𝑖 = 1, 2, … , 𝑛) as shown in formula (12). 

𝑆4(𝐴, 𝐵) = 1 −
1

3
(|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)| + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)| + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|)  (12) 

Formula (12), has some drawbacks, such as for two SVNS 𝐴 = (0.5,0.2,0.6), 𝐵 = (0.2,0.2,0.3) 

which are two different SVNS but 𝑆4(1𝑁 , 𝐴) = 𝑆4(1𝑁 , 𝐵) = 0.566666667, which is not accepted for 

totally different SVNS, also for 𝐴 = (0.1,0,0) , then 𝑆4(1𝑁 , 𝐴) = 0.7  which is not sound logical 

similarity value.  

Ye, (2014) [27], extend the Euclidean distance measure by adding a weight for his method when 

measuring distance and similarity between SVNSs, for 𝐴 𝑎𝑛𝑑 𝐵, two SVNSs giving  𝑆𝑉𝑁𝑆 (𝐴) =

⟨𝑥𝑖 , 𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)⟩ , 𝑆𝑉𝑁𝑆 (𝐵) = ⟨𝑥𝑖 , 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖)⟩  where 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖) , 𝑇𝐵(𝑥𝑖) , 

𝐼𝐵(𝑥𝑖), 𝐹𝐵(𝑥𝑖) ∈ [0,1], consider the weight w𝑖  (𝑖 = 1, 2, … , 𝑛) of an object for 𝑥𝑖  (𝑖 = 1, 2, … , 𝑛), for 

𝑤𝑖 ≥ 0 (𝑖 =  1, 2, … , 𝑛)  and ∑ 𝑤𝑖
𝑛
𝑖 = 1, single-valued neutrosophic weighted distance measure 

between 𝐴, 𝑎𝑛𝑑 𝐵  defined as shown in formula (13), which considered as a generic formula for 

calculating the distance using both Hamming and Euclidean distance methods, where, 𝑝 = 1 in case 

of using Hamming distance and 𝑝 = 2 in case of using Euclidean distance, also Ye, (2014) prove the 

relation distance and similarity are complementary where similarity 𝑆1(𝐴, 𝐵) = 1 − 𝑑𝑝(𝐴, 𝐵)  and 

vice versa as shown in formula (14) [27]. 

𝑑𝑝(𝐴, 𝐵) = √
∑ 𝑤𝑖([𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)]𝑃 + [𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)]𝑃 + [𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)]𝑃)𝑛

𝑖

3

𝑝

 |𝑝 > 0 (13) 

𝑆1(𝐴, 𝐵) = 1 − 𝑑𝑝(𝐴, 𝐵) =

1 − √
∑ 𝑤𝑖([𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)]𝑃 + [𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)]𝑃 + [𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)]𝑃)𝑛

𝑖

3

𝑝

     | 𝑝 > 0 
(14) 

considering that distance 𝑑𝑝(𝐴, 𝐵) for 𝑝 > 0  satisfies four properties first: 0 ≤ 𝑑𝑝(𝐴, 𝐵)  ≤  1; 

second: 𝑑𝑝(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵; third: 𝑑𝑝(𝐴, 𝐵) = 𝑑𝑝(𝐵, 𝐴); and forth property is: 𝐼𝑓𝐴 ⊆

𝐵 ⊆ 𝐶, for 𝐶 is an SVNS in X, then 𝑑𝑝(𝐴, 𝐶) ≥ 𝑑𝑝(𝐴, 𝐵) 𝑎𝑛𝑑 𝑑𝑝(𝐴, 𝐶) ≥ 𝑑𝑝(𝐵, 𝐶) [27], but formulas 

(13) and (14) have some limitation in some cases such as for when applying formula (14) for SVNS 

𝐴(𝑥) = {𝑥, (0.40,0.65,0.60), (0.50,0.50,0.50), (0.40,0.65,0.60)}  it return = -0.005816418 which is not 

accepted, the proposed formula below overcome that shortage.  

Definition 3.10. SNN and SVNS 3D visualization 

Few effort paid in visualizing neutrosophic sets and numbers, Smarandache, el at (2019) and 

others [28] use Figure 1 to demonstrate the graphical visualization for neutrosophic environment, 

also this graph used as a part from Neutrosophic Sets and Systems journal’s cover page.  
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Figure 1 – neutrosophic graphical visualization [28]  

Also, Garai et al, 2020 [29], use graph presentation shown in Figure 2 to represent for example 

SNVN 𝐴 = ⟨((1, 3, 5, 8), 0.9), ((1, 2, 6, 8), 0.3), ((1, 3, 5, 8), 0.5)⟩. 

 

Figure 2 – Single-Valued neutrosophic number [29]  

Meanwhile, Karaaslan & Hunu (2020) [30] present SVNN graphically as shown in Figure 3 which 

represent each truth, indeterminacy, and falsity memberships separately.  

 

Figure 3 – type 2 SVNS graphical representation [30] 

The researchers offer a graphical representation for simplified neutrosophic number SNN and 

single-valued neutrosophic set SVNS using 3-Dimentional Euclidean space as shown in Figure 4 

below, where the empty SNN 0𝑁 = (0,0,1) located in the origin point and the absolute SNN 1𝑁 =

(1,0,0) located in the top 𝑇(𝑥) axis, the SNN 𝐴 = (0.5,0.3,0.6) “an example” which presented in the 

graph with a “Red Point” using 𝑇(𝑥) = 0.5, 𝐼(𝑥) = 0.3, 𝐹(𝑥) = 0.6. 
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Figure 4 – SNN in 3-Dimentional Euclidean space 

Extending the in 3-Dimentional visualization for SNN, Figure 5 below shows in 3-D 

visualization for two discrete SVNSs 𝐴𝑖 = ⟨𝑥𝑖 , 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)⟩  and 𝐵𝑖 = ⟨𝑥𝑖 , 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖),

𝐹𝐵(𝑥𝑖)⟩ where 𝑇𝐴(𝑥𝑖) , 𝐼𝐴(𝑥𝑖) , 𝐹𝐴(𝑥𝑖) , 𝑇𝐵(𝑥𝑖) , 𝐼𝐵(𝑥𝑖) , 𝐹𝐵(𝑥𝑖) ∈ [0,1], and  𝑥𝑖  (𝑖 = 1, 2,3,4)  giving the 

value of each element in both SVNSs as the following, for 𝐴𝑖  elements  𝐴1 = (0.8,0.3,0.8) ,  𝐴2 =

(0.2,0.2,0.2), 𝐴3 = (0.5,0.3,0.5), 𝐴4 = (0.8,0.2,0.8) and for  𝐵𝑖  elements 𝐵1 = (0.5,0.9,0.1) , 𝐵2 =

(0.7,0.7,0.4), 𝐵3 = (0.3,0.7,0.5), 𝐵4 = (0.2,1,1). 

 

Figure 5 - Two SVNS in 3-Dimentional Euclidean space 

Definition 3.11. SNN Euclidean distance 

“Euclidean distance” or commanlly named as “Pythagorean distance” which is purely the 

straight-line distance between two points in the Euclidean space as shown in Figure 4 above, fomula 

(15) represent the Euclidean distance for 𝑆𝑁𝑁 (𝐴) which refare to the straight-line distance between 

absolute 𝑆𝑁𝑁 1𝑁 = (1,0,0) and 𝑆𝑁𝑁 (𝐴) , where 𝑑5(1𝑛, 𝐴) = 0.931149915  as a pure distance 

considring 0 ≤ 𝑑5(1𝑛, 𝐴) ≤ √3. 

𝑑5(1𝑛 , 𝐴) = √𝑇𝐴(𝑥)2 + 𝐼𝐴(𝑥)2 + 𝐹𝐴(𝑥)2  (15) 

Definition 3.12. Two SNN Euclidean distance 

For generalization, it’s clear from Figure 6 that, the Euclidean distance 𝑑6(𝐴, 𝐵) between two 

SNNs 𝐴 and 𝐵 can be calculated using formula (16) considering that 0 ≤ 𝑑6(𝐴, 𝐵) ≤ √3, for seek of 

normalizations formula (17) provided normalized Euclidean distance 𝑑7(𝐴, 𝐵) between the SNN A 

and SNN B considering that 0 ≤ 𝑑7(𝐴, 𝐵) ≤ 1, considering that Ye, (2014) prove the relation distance 
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and similarity are complementary, therefore the normalized similarity 𝑆7(𝐴, 𝐵) for normalized 

Euclidean distance 𝑆7(𝐴, 𝐵) = (1 − 𝑑7(𝐴, 𝐵)) × 100 as shown in formula (18). 

𝑑6(𝐴, 𝐵) = √|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|2 + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|2 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|2  (16) 

𝑑7(𝐴, 𝐵) = √
|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|2 + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|2 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|2

3
 (17) 

𝑆7(𝐴, 𝐵) = (1 − √
|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|2 + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|2 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|2

3
) × 100 (18) 

 

Figure 6 - Two SNN in 3-Dimentional Euclidean space 

Definition 3.13. New SVNS distance and similarity measures  

Figure 7 represents the Euclidean distance 𝑑(𝐴, 𝐵), between SVNSs 𝐴  and 𝐵  where 

𝑑𝑖(𝐴𝑖, 𝐵𝑖) | (𝑖 = 1, 2,3,4) represents the distance between each two elements in SVNS 𝐴𝑖 and SVNS 

𝐵𝑖 , 𝑑8(𝐴, 𝐵), formula (19) represents the Euclidean distance between SVNS 𝐴𝑖 and SVNS 𝐵𝑖  which 

extended from formula (16), where 0 ≤ 𝑑8(𝐴, 𝐵) ≤ √3, for reaching normalizations, formula (21) 

provided normalized Euclidean distance 𝑑9(𝐴, 𝐵) between SVNS 𝐴𝑖 and SVNS 𝐵𝑖  considring that 

0 ≤ 𝑑9(𝐴, 𝐵) ≤ 1 , [27] where similarity equal 1- distance and vice versa so, 𝑆8(𝐴, 𝐵) = (1 −

𝑑8(𝐴, 𝐵)) × 100 and 𝑆9(𝐴, 𝐵) = (1 − 𝑑9(𝐴, 𝐵)) × 100 as shown in formulas (20) and (22) respectively. 

𝑑8(𝐴, 𝐵) = √∑ (|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|2 + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|2 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|2)𝑛
𝑖   (19) 

𝑆8(𝐴, 𝐵) = (1 − √∑(|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|2 + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|2 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|2)

𝑛

𝑖

) × 100 (20) 

𝑑9(𝐴, 𝐵) =
∑ √|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|2 + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|2 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|2𝑛

𝑖

𝑛√3
  (21) 

𝑆9(𝐴, 𝐵) = ( 1 −
∑ √|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|2 + |𝐼𝐴(𝑥𝑖) − 𝐼𝐵(𝑥𝑖)|2 + |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|2𝑛

𝑖

𝑛√3
 ) × 100 (22) 
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Figure 7 - Euclidean distance between SVNS 𝐴𝑖 and SVNS 𝐵𝑖 

4. Proposed Framework  

in this research paper effort paid off to proposes a scaling system using Simplified Neutrosophic 

Number or Single-Valued neutrosophic set as elaborated in the below algorithm. 

Neutrosophic scaling system algorithm: 

Step 1:  Create a sorted list of Qualitative terms “Linguistic terms”, which will be used as final 

scaling system outputs, remarking that Linguistic terms shall be sorted either ascending or 

descending according to the purpose of scaling system, ℕ  represent the number of 

Linguistic terms as shown in formula (23). 

ℕ= Number of language terms  (23) 

Step 2:  Business expert enter the SNN 𝐴 or SVNS 𝐴 value for each linguistic term, considering 

keeping Linguistic terms sorted “bad to good” or “good to bad”.  

Step 3:  Using formula (24) to calculating the equivalent risk crisp value ℚ corresponding to each 

giving SNN using formula (18) similarity 𝑆7(1𝑛, 𝐴) or SVNS using formula (22) similarity 

𝑆9(1𝑛 , 𝐴) multiplied by number of Linguistic terms ℕ calculated in formula (23), domain 

experts can override manually any of calculated equivalent crisp values ℚ, in this case a 

modified flag must be added for each override/changed value, keeping in mind that 

modifying any equivalent crisp values must not changing the order of Linguistic terms.  

{
ℚ = 𝑆7(1𝑛, 𝐴) × ℕ|A is SNN  

ℚ = 𝑆9(1𝑛 , 𝐴) × ℕ|A is SVNS
 (24) 

Step 4:  Build 2D Matrix with ℕ rows and columns specified in Step 1: , then add Linguistic terms 

in the top row and first column with its corresponding equivalent crisp value ℚ  and 

calculate the 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑒𝑙𝑙𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 by multiple the row value times column value.  

Step 5:  Convert all 𝑐𝑒𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 to 𝑐𝑒𝑙𝑙 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 using formula (25) by dividing each matrix cell 

value by maximum cell value squared, where maximum cell value squared equal 𝑀𝑎𝑥(ℚ)2 

defined in Step 1: above. 
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𝑐𝑒𝑙𝑙 𝑝𝑒𝑟𝑐𝑛𝑡𝑎𝑔𝑒 =
𝑐𝑒𝑙𝑙 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥(ℚ)2
 (25) 

Step 6:  Generate Strict risk assessment scale: 

1. To determine maximum percentage value for each Linguistic term, look for 

intersected cells with same Linguistic term, considering these intersected cells as the 

maximum percentage value for Linguistic terms. 

2. To determine minimum percentages values for each Linguistic term, use maximum 

percentage value for preceding Linguistic terms as minimum percentages values for 

Linguistic terms. 

3. Domain expert can change the range boundary as appropriate.  

Step 7:  Generate Lenient risk assessment scale: 

1. To determine minimum percentage value for each Linguistic term, look for 

intersected cells with same Linguistic term, considering these intersected cells as the 

minimum percentage value for Linguistic terms. 

2. To determine maximum percentages values for each Linguistic term, use minimum 

percentage value for following Linguistic term as maximum percentages values for 

Linguistic terms and add 100% as a maximum for the highest Linguistic term.  

3. Domain expert can change the range boundary as appropriate.  

Neutrosophic risk assessment scale illustrative numerical example 1: 

Step 1:  Create a sorted list of qualitative terms “Linguistic terms”, as shown in Table 1 ℕ = 11. 

Table 1 qualitative value “Linguistic terms” 

Linguistic terms abbreviation 

Extremely bad EB 

Very very bad VVB 

Very bad VB 

Bad B 

Medium bad MB 

Medium M 

Medium good MG 

Good G 

Very good VG 

Very very good VVG 

Extremely good EG 

Step 2:  Enter the equivalent SNN value provided by business expert for each linguistic term, 

shown in Table 2 

Table 2 Linguistic terms, Equivalent SNN 

Linguistic terms 

bad to good 

Linguistic terms 

good to bad  

Equivalent SNN 

values 

Extremely bad Extremely good (1,0,0) 

Very very bad Very very good (0.9, 0.1, 0.1) 

Very bad Very good (0.8,0.15,0.20) 

Bad Good (0.70,0.25,0.30) 

Medium bad Medium good (0.60,0.35,0.40) 

Medium Medium (0.50,0.50,0.50) 
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Linguistic terms 

bad to good 

Linguistic terms 

good to bad  

Equivalent SNN 

values 

Medium good Medium bad (0.40,0.65,0.60) 

Good Bad (0.30,0.75,0.70) 

Very good Very bad (0.20,0.85,0.80) 

Very very good Very very bad (0.10,0.90,0.90) 

Extremely good Extremely bad (0,1,1) 

Step 3:  Calculate the equivalent crisp value ℚ corresponding to each giving SNN Using formula 

(24) as shown in Table 3, noting that the Crisp Values of the linguistic term “Extremely 

good” was modified from 0 to 0.10 according to expert opinion and modified flag inserted.  

Table 3 Linguistic terms, SNN, and its equivalent crisp values ℚ 

Linguistic value 

bad to good 

Linguistic value 

good to bad 

Equivalent SNN 

values 

Calculated 

Crisp 

Values 

Modified 

Crisp 

Values 

Modified 

flag 

Extremely bad Extremely good (1,0,0) 11 11.00  

Very very bad Very very good (0.9, 0.1, 0.1) 9.9 9.90  

Very bad Very good (0.8,0.15,0.20) 8.966735 8.97  

Bad Good (0.70,0.25,0.30) 7.872568 7.87  

Medium bad Medium good (0.60,0.35,0.40) 6.77537 6.78  

Medium Medium (0.50,0.50,0.50) 5.5 5.50  

Medium good Medium bad (0.40,0.65,0.60) 4.211714 4.21  

Good Bad (0.30,0.75,0.70) 3.112404 3.11  

Very good Very bad (0.20,0.85,0.80) 2.012926 2.01  

Very very good Very very bad (0.10,0.90,0.90) 1.1 1.10  

Extremely good Extremely bad (0,1,1) 0 0.10 * 

Step 4:  Build Two-dimensional Symmetric Matrix with ℚ = 11  rows and columns then add 

Linguistic terms in the top row and first column as shown in Table 4 below, then calculate 

the matrix cells values by multiple the row value times column value, for example: cell(1,8) 

which are (𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛) reflect is the intersection of row no 1: “EB as Extremely Bad” with 

the value of (11.00) and column no 8: “B as Bad” with value of (7.87), so the cell(1,8) value 

equal 7.87 × 11.0 = 86.60; Another example: the cell(5,3) which is the intersection of row 

no:5 “MB” with the value of (6.78) and column no:3 “VG” with value of (2.01), so cell(5.3) 

value equal 6.78 × 2.01 = 13.64, and so on for all matrix cells as shown in Table 4 below.  

Table 4 Two-dimensional Symmetric Matrix value 

R
o

w
 N

o
. 

Col No. 1 2 3 4 5 6 7 8 9 10 11 

ℚ  0.10 1.10 2.01 3.11 4.21 5.50 6.78 7.87 8.97 9.90 11.00 

term Prefix EG VVG VG G MG M MB B VB VVB EB 

1 11.00 EB 1.10 12.10 22.14 34.24 46.33 60.50 74.53 86.60 98.63 108.90 121.00 

2 9.90 VVB 0.99 10.89 19.93 30.81 41.70 54.45 67.08 77.94 88.77 98.01 108.90 

3 8.97 VB 0.90 9.86 18.05 27.91 37.77 49.32 60.75 70.59 80.40 88.77 98.63 

4 7.87 B 0.79 8.66 15.85 24.50 33.16 43.30 53.34 61.98 70.59 77.94 86.60 

5 6.78 MB 0.68 7.45 13.64 21.09 28.54 37.26 45.91 53.34 60.75 67.08 74.53 

6 5.50 M 0.55 6.05 11.07 17.12 23.16 30.25 37.26 43.30 49.32 54.45 60.50 

7 4.21 MG 0.42 4.63 8.48 13.11 17.74 23.16 28.54 33.16 37.77 41.70 46.33 

8 3.11 G 0.31 3.42 6.27 9.69 13.11 17.12 21.09 24.50 27.91 30.81 34.24 
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R
o

w
 N

o
. 

Col No. 1 2 3 4 5 6 7 8 9 10 11 

ℚ  0.10 1.10 2.01 3.11 4.21 5.50 6.78 7.87 8.97 9.90 11.00 

term Prefix EG VVG VG G MG M MB B VB VVB EB 

9 2.01 VG 0.20 2.21 4.05 6.27 8.48 11.07 13.64 15.85 18.05 19.93 22.14 

10 1.10 VVG 0.11 1.21 2.21 3.42 4.63 6.05 7.45 8.66 9.86 10.89 12.10 

11 0.10 EG 0.01 0.11 0.20 0.31 0.42 0.55 0.68 0.79 0.90 0.99 1.10 

Step 5:  Convert the matrix cells’ value to percentage as shown in Table 5 using formula (25) where 

ℚ = 11  and maximum cell value is 112 = 121 , so for example 𝑐𝑒𝑙𝑙(5,5)𝑝𝑒𝑟𝑐𝑛𝑡𝑎𝑔𝑒 =

28.54/121 = 23.58%another example the 𝑐𝑒𝑙𝑙(2,7)𝑝𝑒𝑟𝑐𝑛𝑡𝑎𝑔𝑒 = 67.08/121 = 55.43%, and 

so on for all matrix cells’. 

Table 5 Two-dimensional Symmetric Matrix percentage 

R
o

w
 N

o
. 

Col No. 1 2 3 4 5 6 7 8 9 10 11 

ℚ  0.10 1.10 2.01 3.11 4.21 5.50 6.78 7.87 8.97 9.90 11.00 

term Prefix EG VVG VG G MG M MB B VB VVB EB 

1 11.00 EB 0.91% 10.00% 18.30%  28.29% 38.29% 50.00% 61.59% 71.57% 81.52% 90.00% 100% 

2 9.90 VVB 0.82% 9.00% 16.47% 25.47% 34.46% 45.00% 55.43% 64.41% 73.36% 81.00% 90.00% 

3 8.97 VB 0.74% 8.15% 14.92% 23.06% 31.21% 40.76% 50.21% 58.34% 66.45% 73.36% 81.52% 

4 7.87 B 0.65% 7.16% 13.10% 20.25% 27.40% 35.78% 44.08% 51.22% 58.34% 64.41% 71.57% 

5 6.78 MB 0.56% 6.16% 11.27% 17.43% 23.58% 30.80% 37.94% 44.08% 50.21% 55.43% 61.59% 

6 5.50 M 0.45% 5.00% 9.15% 14.15% 19.14% 25.00% 30.80% 35.78% 40.76% 45.00% 50.00% 

7 4.21 MG 0.35% 3.83% 7.01% 10.83% 14.66% 19.14% 23.58% 27.40% 31.21% 34.46% 38.29% 

8 3.11 G 0.26% 2.83% 5.18% 8.01% 10.83% 14.15% 17.43% 20.25% 23.06% 25.47% 28.29% 

9 2.01 VG 0.17% 1.83% 3.35% 5.18% 7.01% 9.15% 11.27% 13.10% 14.92% 16.47% 18.30% 

10 1.10 VVG 0.09% 1.00% 1.83% 2.83% 3.83% 5.00% 6.16% 7.16% 8.15% 9.00% 10.00% 

11 0.10 EG 0.01% 0.09% 0.17% 0.26% 0.35% 0.45% 0.56% 0.65% 0.74% 0.82% 0.91% 

Step 6:  Generate Strict risk assessment scale: 

1. To determine maximum percentage value for each Linguistic term, highlight 

intersected cells with same Linguistic term as shown in Table 6, considering these 

intersected cells values as the maximum percentage value for Linguistic terms. 

Table 6 two-dimensional Symmetric maximum value for category 

Ling. Prefix EG VVG VG G MG M MB B VB VVB EB 

EB           100% 

VVB          81.00%  

VB         66.45%   

B        51.22%    

MB       37.94%     

M      25.00%      

MG     14.66%       

G    8.01%        

VG   3.35%         

VVG  1.00%          

EG 0.01%           

2. To determine minimum percentages values for Linguistic terms, use maximum 

percentage value for preceding Linguistic terms as minimum percentages values for 
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Linguistic terms From the previous step minimum and maximum percentages 

values for each qualitative value and qualitative values rang have been determined 

as shown in Table 7, domain expert can change the range edge as appropriate.  

Table 7 Strict Linguistic terms rang percentage  

Linguistic Terms  

Good to bad 

Linguistic Terms  

Bad to good 
Min Max Strict Range 

Extremely good Extremely bad 81.00% 100.0% >81.0% & <=100% 

Very very good Very very bad 66.45% 81.00% >66.4% & <=81.0% 

Very good Very bad 51.22% 66.45% >51.2% & <=66.4% 

Good Bad 37.94% 51.22% >37.9% & <=51.2% 

Medium good Medium bad 25.00% 37.94% >25.0% & <=37.9% 

Medium Medium 14.66% 25.00% >14.7% & <=25.0% 

Medium bad Medium good 8.01% 14.66% >8.0% & <=14.7% 

Bad Good 3.35% 8.01% >3.3% & <=8.0% 

Very bad Very good 1.00% 3.35% >1.0% & <=3.3% 

Very very bad Very very good 0.01% 1.00% >0.01% & <=1.0% 

Extremely bad Extremely good 0.00% 0.01% >0% & <=0.01% 

Step 7:  Generate Lenient risk assessment scale: 

1. To determine minimum percentage value foreach Linguistic term, highlight 

intersected cells with same Linguistic term as shown in Table 6, considering these 

intersected cells values as the minimum percentage value for Linguistic terms. 

Ling. Prefix EG VVG VG G MG M MB B VB VVB EB 

EB           100% 

VVB          81.00%  

VB         66.45%   

B        51.22%    

MB       37.94%     

M      25.00%      

MG     14.66%       

G    8.01%        

VG   3.35%         

VVG  1.00%          

EG 0.01%           

2. To determine maximum percentages values for each Linguistic term, use minimum 

percentage value for following Linguistic term as maximum percentages values for 

Linguistic terms and add 100% as a maximum for the highest Linguistic term as 

shown Table 8.  

3. Domain expert can change the range boundary as appropriate 

Table 8 Lenient qualitative Values rang percentage 

Linguistic Terms  

Good to bad 

Linguistic Terms  

Bad to good 
Min Max Lenient Range 

Extremely good Extremely bad 100% 100% >=100.0%  
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Linguistic Terms  

Good to bad 

Linguistic Terms  

Bad to good 
Min Max Lenient Range 

Very very good Very very bad 81.00% 100% >=81.00% & <100.0% 

Very good Very bad 66.45% 81.00% >=66.45% & <81.0% 

Good Bad 51.22% 66.45% >=51.22% & <66.4% 

Medium good Medium bad 37.94% 51.22% >=37.94% & <51.2% 

Medium Medium 25.00% 37.94% >=25.00% & <37.9% 

Medium bad Medium good 14.66% 25.00% >=14.66% & <25.0% 

Bad Good 8.01% 14.66% >=8.01% & <14.7% 

Very bad Very good 3.35% 8.01% >=3.35% & <8.0% 

Very very bad Very very good 1.00% 3.35% >=1.00% & <3.3% 

Extremely bad Extremely good 0.01% 1.00% >=0% & <1.00% 

Calculate risk assessment illustrative numerical example 2: 

Step 1:  This example aims to calculate risk assessment for a project has four 4 major risk areas named 

personnel quality, production equipment, work environment, and safety management; these 

areas contains 23 risk factors, Table 9 below contains list of risk categories and its risk factors. 

Table 9 –Risks categories and factors  

Risk Category Factors (𝒙𝒊) Risk Factors (subcategory) 

People quality 

𝑥1 Education level 

𝑥2 Learner's time 

𝑥3 Age 

𝑥4 duration of service 

𝑥5 Worker density 

𝑥6 Body status 

𝑥7 Business period 

Production equipment 

𝑥8 Restrict dropping devices 

𝑥9 equipment design dependability 

𝑥10 equipment proper rate 

𝑥11 Protecting equipment dependability 

𝑥12 equipment flexibility 

Environment 

𝑥13 Heat 

𝑥14 Light 

𝑥15 humidity 

𝑥16 Environmental security dependability 

𝑥17 running surface efficiency 

Safety management 

𝑥18 Security system 

𝑥19 Safety society 

𝑥20 … feedback 

𝑥21 … assessment 

𝑥22 … cotching 

𝑥23 … checks 

Step 2:  In this case will use the linguistic terms and its equivalent “strict ranges” and “lenient ranges” 

previously calculated in Table 7 and Table 8 above, using sorted linguistics terms from “bad 

to good” as consolidated in Table 10.  
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Table 10 Linguistic terms, both Strict Range and Lenient Range 

Linguistic Terms  

Bad to good 
Strict Ranges Lenient Ranges 

Extremely bad >81.0% & <=100% >=100.0% 

Very very bad >66.4% & <=81.0% >=81.00% & <100.0% 

Very bad >51.2% & <=66.4% >=66.45% & <81.0% 

Bad >37.9% & <=51.2% >=51.22% & <66.4% 

Medium bad >25.0% & <=37.9% >=37.94% & <51.2% 

Medium >14.7% & <=25.0% >=25.00% & <37.9% 

Medium good >8.0% & <=14.7% >=14.66% & <25.0% 

Good >3.3% & <=8.0% >=8.01% & <14.7% 

Very good >1.0% & <=3.3% >=3.35% & <8.0% 

Very very good >0.01% & <=1.0% >=1.00% & <3.3% 

Extremely good >0% & <=0.01% >=0% & <1.00% 

Step 3:  Each risk factor 𝑥𝑖 was evaluated by three experts 𝐸𝑛, each expert used even linguistics 

terms or SVNS to define the value of risk factors as shown in Table 11.  

Table 11 Risk factors evaluation 

𝒙𝒊 𝑬𝟏 𝑬𝟐 𝑬𝟑 SVNS 𝑨(𝒙𝒊) 

𝑥1 (0.8,0.15,0.20) (0.60,0.35,0.40) Risky 
𝐴(𝑥1) =

{ 𝑥1, (0.8,0.15,0.20), (0.60,0.35,0.40), (0.70,0.25,0.30)} 

𝑥2 (0.60,0.35,0.40) (0.50,0.50,0.50) (0.70,0.25,0.30) 
𝐴(𝑥2) =

{ 𝑥2, (0.60,0.35,0.40), (0.50,0.50,0.50), (0.70,0.25,0.30)} 

𝑥3 (0.40,0.65,0.60) (0.50,0.50,0.50) 
Medium low 

risky 

𝐴(𝑥3) =

{ 𝑥3, (0.40,0.65,0.60), (0.50,0.50,0.50), (0.40,0.65,0.60)} 

𝑥4 (0.30,0.75,0.70) (0.20,0.85,0.80) (0.50,0.50,0.50) 
𝐴(𝑥4) =

{ 𝑥4, (0.30,0.75,0.70), (0.20,0.85,0.80), (0.50,0.50,0.50)} 

𝑥5 (0.30,0.75,0.70) 
Medium low 

risky 
(0.30,0.75,0.70) 

𝐴(𝑥5) =

{ 𝑥5, (0.30,0.75,0.70), (0.40,0.65,0.60), (0.30,0.75,0.70)} 

𝑥6 (0.60,0.35,0.40) (0.8,0.15,0.20) (0.60,0.35,0.40) 
𝐴(𝑥6) =

{ 𝑥6, (0.60,0.35,0.40), (0.8,0.15,0.20), (0.60,0.35,0.40)} 

𝑥7 (0.50,0.50,0.50) (0.70,0.25,0.30) (0.50,0.50,0.50) 
𝐴(𝑥7) =

{𝑥7, (0.50,0.50,0.50), (0.70,0.25,0.30), (0.50,0.50,0.50)} 

𝑥8 (0.40,0.65,0.60) (0.60,0.35,0.40) 
Medium low 

risky 

𝐴(𝑥8) =

{ 𝑥8, (0.40,0.65,0.60), (0.60,0.35,0.40), (0.40,0.65,0.60)} 

𝑥9 (0.30,0.75,0.70) Medium risky (0.30,0.75,0.70) 
𝐴(𝑥9) =

{ 𝑥9, (0.30,0.75,0.70), (0.50,0.50,0.50), (0.30,0.75,0.70)} 

𝑥10 (0.8,0.15,0.20) Risky (0.20,0.85,0.80) 
𝐴(𝑥10) =

{ 𝑥10, (0.8,0.15,0.20), (0.70,0.25,0.30), (0.20,0.85,0.80)} 

𝑥11 (0.70,0.25,0.30) (0.60,0.35,0.40) (0.60,0.35,0.40) 
𝐴(𝑥11) =

{ 𝑥11, (0.70,0.25,0.30), (0.60,0.35,0.40), (0.60,0.35,0.40)} 

𝑥12 (0.60,0.35,0.40) Medium risky (0.50,0.50,0.50) 
𝐴(𝑥12) =

{ 𝑥12, (0.60,0.35,0.40), (0.50,0.50,0.50), (0.50,0.50,0.50)} 

𝑥13 (0.50,0.50,0.50) (0.40,0.65,0.60) (0.40,0.65,0.60) 
𝐴(𝑥13) =

{ 𝑥13, (0.50,0.50,0.50), (0.40,0.65,0.60), (0.40,0.65,0.60)} 

𝑥14 (0.50,0.50,0.50) (0.70,0.25,0.30) (0.30,0.75,0.70) 
𝐴(𝑥14) =

{ 𝑥14, (0.50,0.50,0.50), (0.70,0.25,0.30), (0.30,0.75,0.70)} 
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𝒙𝒊 𝑬𝟏 𝑬𝟐 𝑬𝟑 SVNS 𝑨(𝒙𝒊) 

𝑥15 (0.40,0.65,0.60) (0.60,0.35,0.40) (0.50,0.50,0.50) 
𝐴(𝑥15) =

{ 𝑥15, (0.40,0.65,0.60), (0.60,0.35,0.40), (0.50,0.50,0.50)} 

𝑥16 (0.30,0.75,0.70) Medium risky (0.40,0.65,0.60) 
𝐴(𝑥16) =

{ 𝑥16, (0.30,0.75,0.70), (0.50,0.50,0.50), (0.40,0.65,0.60)} 

𝑥17 (0.20,0.85,0.80) (0.40,0.65,0.60) (0.30,0.75,0.70) 
𝐴(𝑥17) =

{ 𝑥17, (0.20,0.85,0.80), (0.40,0.65,0.60), (0.30,0.75,0.70)} 

𝑥18 (0.8,0.15,0.20) (0.70,0.25,0.30) (0.20,0.85,0.80) 
𝐴(𝑥18) =

{ 𝑥18, (0.8,0.15,0.20), (0.70,0.25,0.30), (0.20,0.85,0.80)} 

𝑥19 (0.70,0.25,0.30) (0.60,0.35,0.40) Medium risky 
𝐴(𝑥19) =

{ 𝑥19, (0.70,0.25,0.30), (0.60,0.35,0.40), (0.50,0.50,0.50)} 

𝑥20 (0.60,0.35,0.40) Medium risky (0.40,0.65,0.60) 
𝐴(𝑥20) =

{ 𝑥20, (0.60,0.35,0.40), (0.50,0.50,0.50), (0.40,0.65,0.60)} 

𝑥21 Medium risky (0.40,0.65,0.60) (0.30,0.75,0.70) 
𝐴(𝑥21) =

{ 𝑥21, (0.50,0.50,0.50), (0.40,0.65,0.60), (0.30,0.75,0.70)} 

𝑥22 (0.20,0.85,0.80) (0.30,0.75,0.70) (0.40,0.65,0.60) 
𝐴(𝑥22) =

{ 𝑥22, (0.20,0.85,0.80), (0.30,0.75,0.70), (0.40,0.65,0.60)} 

𝑥23 (0.10,0.90,0.90) (0.20,0.85,0.80) (0.30,0.75,0.70) 
𝐴(𝑥23) =

{𝑥23, (0.10,0.90,0.90), (0.20,0.85,0.80), (0.30,0.75,0.70)} 

Step 4:  Using formula (22) to calculate the crisp value for SVNS 𝐴(𝑥𝑖), results shown in Table 12, 

then used both Table 7 and Table 8 above to compare calculated crisp value for each 

SVNS 𝐴(𝑥𝑖) with risk ranges to select the equivalent risk level, result shown in Table 13 

below.  

Table 12 Risk factors and its crisp value  

SVNS 𝑨(𝒙𝒊) Crisp value 

𝐴(𝑥1) = { 𝑥1, (0.8,0.15,0.20), (0.60,0.35,0.40), (0.70,0.25,0.30)} 71.56% 

𝐴(𝑥2) = { 𝑥2, (0.60,0.35,0.40), (0.50,0.50,0.50), (0.70,0.25,0.30)} 61.05% 

𝐴(𝑥3) = { 𝑥3, (0.40,0.65,0.60), (0.50,0.50,0.50), (0.40,0.65,0.60)} 42.19% 

𝐴(𝑥4) = { 𝑥4, (0.30,0.75,0.70), (0.20,0.85,0.80), (0.50,0.50,0.50)} 32.20% 

𝐴(𝑥5) = { 𝑥5, (0.30,0.75,0.70), (0.40,0.65,0.60), (0.30,0.75,0.70)} 31.63% 

𝐴(𝑥6) = { 𝑥6, (0.60,0.35,0.40), (0.8,0.15,0.20), (0.60,0.35,0.40)} 68.23% 

𝐴(𝑥7) = {𝑥7, (0.50,0.50,0.50), (0.70,0.25,0.30), (0.50,0.50,0.50)} 57.19% 

𝐴(𝑥8) = { 𝑥8, (0.40,0.65,0.60), (0.60,0.35,0.40), (0.40,0.65,0.60)} 46.06% 

𝐴(𝑥9) = { 𝑥9, (0.30,0.75,0.70), (0.50,0.50,0.50), (0.30,0.75,0.70)} 35.53% 

𝐴(𝑥10) = { 𝑥10, (0.8,0.15,0.20), (0.70,0.25,0.30), (0.20,0.85,0.80)} 57.13% 

𝐴(𝑥11) = { 𝑥11, (0.70,0.25,0.30), (0.60,0.35,0.40), (0.60,0.35,0.40)} 64.92% 

𝐴(𝑥12) = { 𝑥12, (0.60,0.35,0.40), (0.50,0.50,0.50), (0.50,0.50,0.50)} 53.86% 

𝐴(𝑥13) = { 𝑥13, (0.50,0.50,0.50), (0.40,0.65,0.60), (0.40,0.65,0.60)} 42.19% 

𝐴(𝑥14) = { 𝑥14, (0.50,0.50,0.50), (0.70,0.25,0.30), (0.30,0.75,0.70)} 49.95% 

𝐴(𝑥15) = { 𝑥15, (0.40,0.65,0.60), (0.60,0.35,0.40), (0.50,0.50,0.50)} 49.96% 

𝐴(𝑥16) = { 𝑥16, (0.30,0.75,0.70), (0.50,0.50,0.50), (0.40,0.65,0.60)} 38.86% 

𝐴(𝑥17) = { 𝑥17, (0.20,0.85,0.80), (0.40,0.65,0.60), (0.30,0.75,0.70)} 28.29% 

𝐴(𝑥18) = { 𝑥18, (0.8,0.15,0.20), (0.70,0.25,0.30), (0.20,0.85,0.80)} 57.13% 

𝐴(𝑥19) = { 𝑥19, (0.70,0.25,0.30), (0.60,0.35,0.40), (0.50,0.50,0.50)} 61.05% 

𝐴(𝑥20) = { 𝑥20, (0.60,0.35,0.40), (0.50,0.50,0.50), (0.40,0.65,0.60)} 49.96% 

𝐴(𝑥21) = { 𝑥21, (0.50,0.50,0.50), (0.40,0.65,0.60), (0.30,0.75,0.70)} 38.86% 

𝐴(𝑥22) = { 𝑥22, (0.20,0.85,0.80), (0.30,0.75,0.70), (0.40,0.65,0.60)} 28.29% 

𝐴(𝑥23) = {𝑥23, (0.10,0.90,0.90), (0.20,0.85,0.80), (0.30,0.75,0.70)} 18.86% 
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Table 13 Risk factors and its equivalent risk level 

𝑆𝑉𝑁𝑆 𝑨(𝒙𝒊) Crisp value Strict risk level Lenient risk level 

𝐴(𝑥1) 71.56% Very very bad Very bad 

𝐴(𝑥2) 61.05% Very bad Bad 

𝐴(𝑥3) 42.19% Bad Medium bad 

𝐴(𝑥4) 32.20% Medium bad Medium 

𝐴(𝑥5) 31.63% Medium bad Medium 

𝐴(𝑥6) 68.23% Very very bad Very bad 

𝐴(𝑥7) 57.19% Very bad Bad 

𝐴(𝑥8) 46.06% Bad Medium bad 

𝐴(𝑥9) 35.53% Medium bad Medium 

𝐴(𝑥10) 57.13% Very bad Bad 

𝐴(𝑥11) 64.92% Very bad Bad 

𝐴(𝑥12) 53.86% Very bad Bad 

𝐴(𝑥13) 42.19% Bad Medium bad 

𝐴(𝑥14) 49.95% Bad Medium bad 

𝐴(𝑥15) 49.96% Bad Medium bad 

𝐴(𝑥16) 38.86% Bad Medium bad 

𝐴(𝑥17) 28.29% Medium bad Medium 

𝐴(𝑥18) 57.13% Very bad Bad 

𝐴(𝑥19) 61.05% Very bad Bad 

𝐴(𝑥20) 49.96% Bad Medium bad 

𝐴(𝑥21) 38.86% Bad Medium bad 

𝐴(𝑥22) 28.29% Medium bad Medium 

𝐴(𝑥23) 18.86% Medium Medium good 

Step 5:  After calculating the crisp values for each risk factor, risk assessment expert shall take the 

appropriate decisions.  

5. Conclusion and future works: 

In this research paper a neutrosophic 3D visualization for both SNN and SVNS was presented, 

in addition, some existing distance and similarity measure are validated and shortcoming are 

exposed, new crisp value functions “De-neutrosophication” for converting both Simplified 

Neutrosophic Number SNN, and Single-Valued Neutrosophic set SVNS to them equivalent crisp 

values using similarity measure based on Euclidean distance are proposed to overcome the exposed 

shortcoming, also a new Neutrosophic Scaling System algorithm is proposed, Finally, the proposed 

Neutrosophic Scaling System is applied to risk assessment case study.  
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Abstract: The notions of an implicative (∈, ∈)-neutrosophic ideal and an implicative falling neutrosophic ideal are
introduced, and several properties are investigated. Characterizations of an implicative (∈, ∈)-neutrosophic ideal
are considered, and relations between an implicative (∈, ∈)-neutrosophic ideal and an (∈, ∈)-neutrosophic ideal are
discussed. Conditions for an (∈, ∈)-neutrosophic ideal to be an implicative (∈, ∈)-neutrosophic ideal are provided,
and relations between an implicative (∈, ∈)-neutrosophic ideal, a falling neutrosophic ideal and an implicative falling
neutrosophic ideal are studied. Conditions for a falling neutrosophic ideal to be implicative are provided. Relations
between implicative falling neutrosophic ideal, commutative falling neutrosophic ideal and positive implicative falling
neutrosophic ideal are discussed.

Keywords: neutrosophic random set; neutrosophic falling shadow; (positive implicative) (∈, ∈)-neutrosophic ideal;
(positive implicative) falling neutrosophic ideal; (commutative) (∈, ∈)-neutrosophic ideal; (commutative) falling neu-
trosophic ideal; (implicative) (∈, ∈)-neutrosophic ideal; (implicative) falling neutrosophic ideal.

1 Introduction
The fuzzy set was introduced by L.A. Zadeh in 1965, where each element had a degree of membership. As a
generalization of fuzzy set, the intuitionistic fuzzy set on a universeX was introduced by K. Atanassov in 1983,
where besides the degree of membership µA(x) ∈ [0, 1] of each element x ∈ X to a set A there was considered
a degree of non-membership νA(x) ∈ [0, 1], but such that µA(x) + νA(x) ≤ 1 for all x ∈ X . Neutrosophic
set (NS) developed by Smarandache [19, 20, 21] is a more general platform which extends the concepts of
the classic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic

X.L. Xin, H. Bordbar, F. Smarandache, R.A. Borzooei, Y.B. Jun, Implicative falling neutrosophic ideals of
BCK-algebras.
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set theory is applied to various part which is refered to the site http://fs.gallup.unm.edu/neutrosophy.htm. Jun
et al. studied neutrosophic subalgebras/ideals in BCK/BCI-algebras based on neutrosophic points (see [1],
[3], [7] [16] and [18]). It is a reasonable and convenient approach for the theoretical development and the
practical applications of neutrosophic sets and neutrosophic logics. Jun et al. [10] introduced the notion of
neutrosophic random set and neutrosophic falling shadow. Using these notions, they introduced the concept
of falling neutrosophic subalgebra and falling neutrosophic ideal in BCK/BCI-algebras, and investigated
related properties. They discussed relations between falling neutrosophic subalgebra and falling neutrosophic
ideal, and established a characterization of falling neutrosophic ideal (see [9], [11], and [13]).Jun et al. [12]
introduced the concepts of a commutative (∈, ∈)-neutrosophic ideal and a commutative falling neutrosophic
ideal, and investigate several properties. Bordbar et al. [2] introduced the concepts of a positive implicative (∈,
∈)-neutrosophic ideal and a positive implicative falling neutrosophic ideal, and investigate several properties.

In this paper, we introduce the concepts of an implicative (∈, ∈)-neutrosophic ideal and an implicative
falling neutrosophic ideal, and investigate several properties. We obtain characterizations of an implicative
(∈, ∈)-neutrosophic ideal, and discuss relations between an implicative (∈, ∈)-neutrosophic ideal and an
(∈, ∈)-neutrosophic ideal. We provide conditions for an (∈, ∈)-neutrosophic ideal to be an implicative
(∈, ∈)-neutrosophic ideal, and consider relations between an implicative (∈, ∈)-neutrosophic ideal, a falling
neutrosophic ideal and an implicative falling neutrosophic ideal. We give conditions for a falling neutrosophic
ideal to be implicative. We consider relations between implicative falling neutrosophic ideal, commutative
falling neutrosophic ideal and positive implicative falling neutrosophic ideal.

2 Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki (see [5] and [6]).
By a BCI-algebra, we mean a set X with a special element 0 and a binary operation ∗ that satisfies the

following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)
(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)
(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)
(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)
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where x ≤ y if and only if x ∗ y = 0. A BCK-algebra X is said to be positive implicative if the following
assertion is valid.

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z) . (2.5)

A BCK-algebra X is said to be implicative if the following assertion is valid.

(∀x, y ∈ X) (x = x ∗ (y ∗ x)) . (2.6)

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S. A
subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies:

0 ∈ I, (2.7)
(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (2.8)

A subset I of a BCK-algebra X is called a commutative ideal (see [15]) of X if it satisfies (2.7) and

(∀x, y ∈ X)(∀z ∈ I) ((x ∗ y) ∗ z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I) . (2.9)

Observe that every commutative ideal is an ideal, but the converse is not true (see [15]).
A subset I of a BCK-algebra X is called a positive implicative ideal (see [15]) of X if it satisfies (2.7) and

(∀x, y, z ∈ X)(((x ∗ y) ∗ z ∈ I, y ∗ z ∈ I ⇒ x ∗ z ∈ I) . (2.10)

Observe that every positive implicative ideal is an ideal, but the converse is not true (see [15]).
A subset I of a BCK-algebra X is called an implicative ideal (see [15]) of X if it satisfies (2.7) and

(∀x, y, z ∈ X)((x ∗ (y ∗ x)) ∗ z ∈ I, z ∈ I ⇒ x ∈ I) . (2.11)

Observe that every implicative ideal is an ideal, but the converse is not true (see [15]).
We refer the reader to the books [4, 15] for further information regarding BCK/BCI-algebras.
For any family {ai | i ∈ Λ} of real numbers, we define∨

{ai | i ∈ Λ} := sup{ai | i ∈ Λ}

and ∧
{ai | i ∈ Λ} := inf{ai | i ∈ Λ}.

If Λ = {1, 2}, we will also use a1∨a2 and a1∧a2 instead of
∨
{ai | i ∈ Λ} and

∧
{ai | i ∈ Λ}, respectively.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [20]) is a structure of the form:

A∼ := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate membership
function, and AF : X → [0, 1] is a false membership function. For the sake of simplicity, we shall use the
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symbol A∼ = (AT , AI , AF ) for the neutrosophic set

A∼ := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

Given a neutrosophic set A∼ = (AT , AI , AF ) in a set X , α, β ∈ (0, 1] and γ ∈ [0, 1), we consider the
following sets:

T∈(A∼;α) := {x ∈ X | AT (x) ≥ α},
I∈(A∼; β) := {x ∈ X | AI(x) ≥ β},
F∈(A∼; γ) := {x ∈ X | AF (x) ≤ γ}.

We say T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are neutrosophic ∈-subsets.
A neutrosophic set A∼ = (AT , AI , AF ) in a BCK/BCI-algebra X is called an (∈, ∈)-neutrosophic

subalgebra of X (see [7]) if the following assertions are valid.

(∀x, y ∈ X)

 x ∈ T∈(A∼;αx), y ∈ T∈(A∼;αy) ⇒ x ∗ y ∈ T∈(A∼;αx ∧ αy),
x ∈ I∈(A∼; βx), y ∈ I∈(A∼; βy) ⇒ x ∗ y ∈ I∈(A∼; βx ∧ βy),
x ∈ F∈(A∼; γx), y ∈ F∈(A∼; γy) ⇒ x ∗ y ∈ F∈(A∼; γx ∨ γy)

 (2.12)

for all αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).
A neutrosophic set A∼ = (AT , AI , AF ) in a BCK/BCI-algebra X is called an (∈, ∈)-neutrosophic ideal

of X (see [18]) if the following assertions are valid.

(∀x ∈ X)

 x ∈ T∈(A∼;αx) ⇒ 0 ∈ T∈(A∼;αx)
x ∈ I∈(A∼; βx) ⇒ 0 ∈ I∈(A∼; βx)
x ∈ F∈(A∼; γx) ⇒ 0 ∈ F∈(A∼; γx)

 (2.13)

and

(∀x, y ∈ X)

 x ∗ y ∈ T∈(A∼;αx), y ∈ T∈(A∼;αy) ⇒ x ∈ T∈(A∼;αx ∧ αy)
x ∗ y ∈ I∈(A∼; βx), y ∈ I∈(A∼; βy) ⇒ x ∈ I∈(A∼; βx ∧ βy)
x ∗ y ∈ F∈(A∼; γx), y ∈ F∈(A∼; γy) ⇒ x ∈ F∈(A∼; γx ∨ γy)

 (2.14)

for all αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).
In what follows, letX and P(X) denote aBCK/BCI-algebra and the power set ofX , respectively, unless

otherwise specified.
For each x ∈ X and D ∈ P(X), let

x̄ := {C ∈ P(X) | x ∈ C}, (2.15)

and

D̄ := {x̄ | x ∈ D}. (2.16)

An ordered pair (P(X),B) is said to be a hyper-measurable structure on X if B is a σ-field in P(X) and
X̄ ⊆ B.

Given a probability space (Ω,A, P ) and a hyper-measurable structure (P(X),B) on X , a neutrosophic
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random set on X (see [10]) is defined to be a triple ξ := (ξT , ξI , ξF ) in which ξT , ξI and ξF are mappings from
Ω to P(X) which are A-B measurables, that is,

(∀C ∈ B)

 ξ−1T (C) = {ωT ∈ Ω | ξT (ωT ) ∈ C} ∈ A
ξ−1I (C) = {ωI ∈ Ω | ξI(ωI) ∈ C} ∈ A
ξ−1F (C) = {ωF ∈ Ω | ξF (ωF ) ∈ C} ∈ A

 . (2.17)

Given a neutrosophic random set ξ := (ξT , ξI , ξF ) on X , consider functions:

H̃T : X → [0, 1], xT 7→ P (ωT | xT ∈ ξT (ωT )),

H̃I : X → [0, 1], xI 7→ P (ωI | xI ∈ ξI(ωI)),

H̃F : X → [0, 1], xF 7→ 1− P (ωF | xF ∈ ξF (ωF )).

Then H̃ := (H̃T , H̃I , H̃F ) is a neutrosophic set on X , and we call it a neutrosophic falling shadow (see [10])
of the neutrosophic random set ξ := (ξT , ξI , ξF ), and ξ := (ξT , ξI , ξF ) is called a neutrosophic cloud (see [10])
of H̃ := (H̃T , H̃I , H̃F ).

For example, consider a probability space (Ω,A, P ) = ([0, 1],A,m) where A is a Borel field on [0, 1]
and m is the usual Lebesgue measure. Let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic set in X . Then a triple
ξ := (ξT , ξI , ξF ) in which

ξT : [0, 1]→ P(X), α 7→ T∈(H̃;α),

ξI : [0, 1]→ P(X), β 7→ I∈(H̃; β),

ξF : [0, 1]→ P(X), γ 7→ F∈(H̃; γ)

is a neutrosophic random set and ξ := (ξT , ξI , ξF ) is a neutrosophic cloud of H̃ := (H̃T , H̃I , H̃F ). We will call
ξ := (ξT , ξI , ξF ) defined above as the neutrosophic cut-cloud (see [10]) of H̃ := (H̃T , H̃I , H̃F ).

Let (Ω,A, P ) be a probability space and let ξ := (ξT , ξI , ξF ) be a neutrosophic random set onX . If ξT (ωT ),
ξI(ωI) and ξF (ωF ) are subalgebras (resp., ideals) of X for all ωT , ωI , ωF ∈ Ω, then the neutrosophic falling
shadow H̃ := (H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is called a falling neutrosophic subalgebra (resp., falling
neutrosophic ideal) of X (see [10]).

3 Implicative (∈, ∈)-neutrosophic ideals

Definition 3.1. A neutrosophic set A∼ = (AT , AI , AF ) in a BCK-algebra X is called an implicative (∈,
∈)-neutrosophic ideal of X if it satisfies the condition (2.13) and

(x ∗ (y ∗ x)) ∗ z ∈ T∈(A∼;αx), z ∈ T∈(A∼;αy) ⇒ x ∈ T∈(A∼;αx ∧ αy)
(x ∗ (y ∗ x)) ∗ z ∈ I∈(A∼; βx), z ∈ I∈(A∼; βy) ⇒ x ∈ I∈(A∼; βx ∧ βy)
(x ∗ (y ∗ x)) ∗ z ∈ F∈(A∼; γx), z ∈ F∈(A∼; γy) ⇒ x ∈ F∈(A∼; γx ∨ γy)

(3.1)

for all x, y, z ∈ X , αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Example 3.2. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 1. Then
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Table 1: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

(X; ∗, 0) is a BCK-algebra (see [15]). Let A∼ = (AT , AI , AF ) be a neutrosophic set in X defined by Table 2.

Table 2: Tabular representation of A∼ = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.7 0.6 0.1
1 0.7 0.6 0.1
2 0.7 0.6 0.1
3 0.5 0.2 0.6
4 0.3 0.4 0.9

Routine calculations show that A∼ = (AT , AI , AF ) is an implicative (∈, ∈)-neutrosophic ideal of X .

Theorem 3.3. Every implicative (∈, ∈)-neutrosophic ideal of a BCK-algebra X is an (∈, ∈)-neutrosophic
ideal of X .

Proof. It is clear by substituting x for y in (3.1) and using (2.1).

Corollary 3.4. Every implicative (∈, ∈)-neutrosophic ideal of a BCK-algebra X is an (∈, ∈)-neutrosophic
subalgebra of X .

The converse of Theorem 3.3 is not true as seen in the following example.

Example 3.5. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 3.
Then (X; ∗, 0) is a BCK-algebra (see [15]). Let A∼ = (AT , AI , AF ) be a neutrosophic set in X defined by
Table 4. It is routine to verify that A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X , but it is not an
implicative (∈, ∈)-neutrosophic ideal of X since

(1 ∗ (3 ∗ 1)) ∗ 2 = 0 ∈ T∈(A∼; 0.6) and 2 ∈ T∈(A∼; 0.65)

but 1 /∈ T∈(A∼; 0.6 ∧ 0.65) = T∈(A∼; 0.6), and/or

(1 ∗ (3 ∗ 1)) ∗ 2 = 0 ∈ F∈(A∼; 0.35) and 2 ∈ F∈(A∼; 0.45),

but 1 /∈ F∈(A∼; 0.45) = F∈(A∼; 0.35 ∨ 0.45).
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Table 3: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 3 4 1 0

Table 4: Tabular representation of A∼ = (AT , AI , AF )

X AT (x) AI(x) AF (x)
0 0.7 0.8 0.3
1 0.5 0.6 0.5
2 0.7 0.4 0.4
3 0.5 0.2 0.9
4 0.5 0.2 0.9

Theorem 3.6. For a neutrosophic set A∼ = (AT , AI , AF ) in a BCK-algebra X , the following are equivalent.

(1) The non-empty ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are implicative ideals ofX for all α, β ∈
(0, 1] and γ ∈ [0, 1).

(2) A∼ = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)
(
AT (0) ≥ AT (x), AI(0) ≥ AI(x), AF (0) ≤ AF (x)

)
(3.2)

and

(∀x, y, z ∈ X)

 AT (x) ≥ AT ((x ∗ (y ∗ x)) ∗ z) ∧ AT (z)
AI(x) ≥ AI((x ∗ (y ∗ x)) ∗ z) ∧ AI(z)
AF (x) ≤ AF ((x ∗ (y ∗ x)) ∗ z) ∨ AF (z)

 (3.3)

Proof. Assume that the non-empty ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are implicative ideals of
X for all α, β ∈ (0, 1] and γ ∈ [0, 1). If AT (0) < AT (a) for some a ∈ X , then a ∈ T∈(A∼;AT (a)) and 0 /∈
T∈(A∼;AT (a)). This is a contradiction, and so AT (0) ≥ AT (x) for all x ∈ X . Similarly, AI(0) ≥ AI(x) for
all x ∈ X . Suppose that AF (0) > AF (a) for some a ∈ X . Then a ∈ F∈(A∼;AF (a)) and 0 /∈ F∈(A∼;AF (a)).
This is a contradiction, and thus AF (0) ≤ AF (x) for all x ∈ X . Therefore (3.2) is valid. Assume that there
exist a, b, c ∈ X such that

AT (a) < AT ((a ∗ (b ∗ a)) ∗ c) ∧ AT (c).

Taking α := AT ((a ∗ (b ∗ a)) ∗ c) ∧ AT (c) implies that (a ∗ (b ∗ a)) ∗ c ∈ T∈(A∼;α) and c ∈ T∈(A∼;α) but
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a /∈ T∈(A∼;α), which is a contradiction. Hence

AT (x) ≥ AT ((x ∗ (y ∗ x)) ∗ z) ∧ AT (z)

for all x, y, z ∈ X . By the similar way, we can verify that

AI(x) ≥ AI((x ∗ (y ∗ x)) ∗ z) ∧ AI(z)

for all x, y, z ∈ X . Now suppose there are x, y, z ∈ X such that

AF (x) > AF ((x ∗ (y ∗ x)) ∗ z) ∨ AF (z) := γ.

Then (x ∗ (y ∗ x)) ∗ z ∈ F∈(A∼; γ) and z ∈ F∈(A∼; γ) but x /∈ F∈(A∼; γ), a contradiction. Thus

AF (x) ≤ AF ((x ∗ (y ∗ x)) ∗ z) ∨ AF (z)

for all x, y, z ∈ X .
Conversely, let A∼ = (AT , AI , AF ) be a neutrosophic set in X satisfying two conditions (3.2) and (3.3).

Assume that T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are nonempty for α, β ∈ (0, 1] and γ ∈ [0, 1). Let x ∈
T∈(A∼;α), a ∈ I∈(A∼; β) and u ∈ F∈(A∼; γ) for α, β ∈ (0, 1] and γ ∈ [0, 1). Then AT (0) ≥ AT (x) ≥ α,
AI(0) ≥ AI(a) ≥ β, and AF (0) ≤ AF (u) ≤ γ by (3.2). It follows that 0 ∈ T∈(A∼;α), 0 ∈ I∈(A∼; β) and
0 ∈ F∈(A∼; γ). Let a, b, c ∈ X be such that (a ∗ (b ∗ a)) ∗ c ∈ T∈(A∼;α) and c ∈ T∈(A∼;α) for α ∈ (0, 1].
Then

AT (a) ≥ AT ((a ∗ (b ∗ a)) ∗ c) ∧ AT (c) ≥ α

by (3.3), and so a ∈ T∈(A∼;α). If (x ∗ (y ∗ x)) ∗ z ∈ I∈(A∼; β) and z ∈ I∈(A∼; β) for all x, y, z ∈ X and
β ∈ (0, 1], then AI((x ∗ (y ∗ x)) ∗ z) ≥ β and AI(z) ≥ β. Hence the condition (3.3) implies that

AI(x) ≥ AI((x ∗ (y ∗ x)) ∗ z) ∧ AI(z) ≥ β,

that is, x ∈ I∈(A∼; β). Finally, suppose that (x∗(y∗x))∗z ∈ F∈(A∼; γ) and z ∈ F∈(A∼; γ) for all x, y, z ∈ X
and γ ∈ (0, 1]. Then AF ((x ∗ (y ∗ x)) ∗ z) ≤ γ and AF (z) ≤ γ, which imply from the condition (3.3) that

AF (x) ≤ AF ((x ∗ (y ∗ x)) ∗ z) ∨ AF (z) ≤ γ.

Hence x ∈ F∈(A∼; γ). Therefore the non-empty ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are implica-
tive ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1).

Theorem 3.7. Let A∼ = (AT , AI , AF ) be a neutrosophic set in a BCK-algebra X . Then A∼ = (AT , AI , AF )
is a implicative (∈, ∈)-neutrosophic ideal ofX if and only if the non-empty neutrosophic ∈-subsets T∈(A∼;α),
I∈(A∼; β) and F∈(A∼; γ) are implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1).

Proof. Let A∼ = (AT , AI , AF ) be an implicative (∈, ∈)-neutrosophic ideal of X and assume that T∈(A∼;α),
I∈(A∼; β) and F∈(A∼; γ) are nonempty for α, β ∈ (0, 1] and γ ∈ [0, 1). Then there exist x, y, z ∈ X such that
x ∈ T∈(A∼;α), y ∈ I∈(A∼; β) and z ∈ F∈(A∼; γ). It follows from (2.13) that 0 ∈ T∈(A∼;α), 0 ∈ I∈(A∼; β)
and 0 ∈ F∈(A∼; γ). Let x, y, z, a, b, c, u, v, w ∈ X be such that (x ∗ (y ∗ x)) ∗ z ∈ T∈(A∼;α), z ∈ T∈(A∼;α),
(a ∗ (b ∗ a)) ∗ c ∈ I∈(A∼; β), c ∈ I∈(A∼; β), (u ∗ (v ∗ u)) ∗ w ∈ F∈(A∼; γ) and w ∈ F∈(A∼; γ). Then
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x ∈ T∈(A∼;α ∧ α) = T∈(A∼;α), a ∈ I∈(A∼; β ∧ β) = I∈(A∼; β), and u ∈ F∈(A∼; γ ∨ γ) = F∈(A∼; γ)
by (3.1). Hence the non-empty neutrosophic ∈-subsets T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are implicative
ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1).

Conversely, let A∼ = (AT , AI , AF ) be a neutrosophic set in X for which T∈(A∼;α), I∈(A∼; β) and
F∈(A∼; γ) are nonempty and are implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1). Obviously, (2.13)
is valid. Let x, y, z ∈ X and αx, αy ∈ (0, 1] be such that (x ∗ (y ∗ x)) ∗ z ∈ T∈(A∼;αx) and z ∈ T∈(A∼;αy).
Then (x ∗ (y ∗ x)) ∗ z ∈ T∈(A∼;α) and z ∈ T∈(A∼;α) where α = αx ∧αy. Since T∈(A∼;α) is an implicative
ideal of X , it follows that x ∈ T∈(A∼;α) = T∈(A∼;αx ∧ αy). Similarly, if (x ∗ (y ∗ x)) ∗ z ∈ I∈(A∼; βx)
and z ∈ I∈(A∼; βy) for all x, y, z ∈ X and βx, βy ∈ (0, 1], then x ∈ I∈(A∼; βx ∧ βy). Now, suppose that
(x∗(y∗x))∗z ∈ F∈(A∼; γx) and z ∈ F∈(A∼; γy) for all x, y, z ∈ X and γx, γy ∈ [0, 1). Then (x∗(y∗x))∗z ∈
F∈(A∼; γ) and z ∈ F∈(A∼; γ) where γ = γx ∨ γy. Hence x ∈ F∈(A∼; γ) = F∈(A∼; γx ∨ γy) since F∈(A∼; γ)
is an implicative ideal of X . Therefore A∼ = (AT , AI , AF ) is an implicative (∈, ∈)-neutrosophic ideal of
X .

Corollary 3.8. LetA∼ = (AT , AI , AF ) be a neutrosophic set in aBCK-algebraX . ThenA∼ = (AT , AI , AF )
is an implicative (∈, ∈)-neutrosophic ideal of X if and only if it satisfies two conditions (3.2) and (3.3).

We provide conditions for an (∈, ∈)-neutrosophic ideal to be an implicative (∈, ∈)-neutrosophic ideal.

Theorem 3.9. If X is an implicative BCK-algebra, then every (∈, ∈)-neutrosophic ideal is an implicative
(∈, ∈)-neutrosophic ideal.

Proof. If X is an implicative BCK-algebra, then x = x ∗ (y ∗ x) for all x, y ∈ X . Let A∼ = (AT , AI , AF ) be
an (∈, ∈)-neutrosophic ideal of X . Then

AT (x) ≥ AT (x ∗ z) ∧ AT (z) ≥ AT ((x ∗ (y ∗ x)) ∗ z) ∧ AT (z),

AI(x) ≥ AI(x ∗ z) ∧ AI(z) ≥ AI((x ∗ (y ∗ x)) ∗ z) ∧ AI(z),

and

AF (x) ≤ AF (x ∗ z) ∨ AF (z) ≤ AF ((x ∗ (y ∗ x)) ∗ z) ∨ AF (z)

for all x, y, z ∈ X . Therefore A∼ = (AT , AI , AF ) is an implicative (∈, ∈)-neutrosophic ideal of X by
Corollary 3.8.

Lemma 3.10 ([17]). Every (∈, ∈)-neutrosophic ideal A∼ = (AT , AI , AF ) of a BCK/BCI-algebra X
satisfies the following assertion.

(∀x, y ∈ X)

x ≤ y ⇒


AT (x) ≥ AT (y)
AI(x) ≥ AI(y)
AF (x) ≤ AF (y)

 . (3.4)

Lemma 3.11 ([17]). Given a neutrosophic set A∼ = (AT , AI , AF ) in a BCK/BCI-algebra X , the following
assertions are equivalent.

(1) A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X .
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(2) A∼ = (AT , AI , AF ) satisfies the following assertions.

(∀x ∈ X)
(
AT (0) ≥ AT (x), AI(0) ≥ AI(x), AF (0) ≤ AF (x)

)
(3.5)

and

(∀x, y ∈ X)

 AT (x) ≥ AT (x ∗ y) ∧ AT (y)
AI(x) ≥ AI(x ∗ y) ∧ AI(y)
AF (x) ≤ AF (x ∗ y) ∨ AF (y)

 (3.6)

Theorem 3.12. Suppose that A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X . Then the following
assertions are equivalent. Given a neutrosophic set A∼ = (AT , AI , AF ) in a BCK-algebra X , the following
assertions are equivalent.

(1) A∼ = (AT , AI , AF ) is an implicative (∈, ∈)-neutrosophic ideal of X .

(2) A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X satisfying the condition:

(∀x, y ∈ X)

 AT (x) ≥ AT (x ∗ (y ∗ x))
AI(x) ≥ AI(x ∗ (y ∗ x))
AF (x) ≤ AF (x ∗ (y ∗ x)).

 (3.7)

(3) A∼ = (AT , AI , AF ) is an (∈, ∈)-neutrosophic ideal of X satisfying the condition:

(∀x, y ∈ X)

 AT (x) = AT (x ∗ (y ∗ x))
AI(x) = AI(x ∗ (y ∗ x))
AF (x) = eAF (x ∗ (y ∗ x)).

 (3.8)

Proof. (1)⇒ (2). LetA∼ = (AT , AI , AF ) be an implicative (∈, ∈)-neutrosophic ideal ofX . ThenA∼ = (AT ,
AI , AF ) be an (∈, ∈)-neutrosophic ideal of X by Theorem 3.3. Using (3.2) and (3.3) implies that

AT (x) ≥ AT ((x ∗ (y ∗ x)) ∗ 0) ∧ AT (0) = AT (x ∗ (y ∗ x)) ∧ AT (0) = AT (x ∗ (y ∗ x)),

AI(x) ≥ AI((x ∗ (y ∗ x)) ∗ 0) ∧ AI(0) = AI(x ∗ (y ∗ x)) ∧ AI(0) = AI(x ∗ (y ∗ x))

and

AF (x) ≤ AF ((x ∗ (y ∗ x)) ∗ 0) ∨ AF (0) = AF (x ∗ (y ∗ x)) ∨ AF (0) = AF (x ∗ (y ∗ x))

for all x, y ∈ X .
(2)⇒ (3). Observe that x∗ (y ∗x) ≤ x for all x, y ∈ X . Using Lemma 3.10, we have AT (x) ≤ AT (x∗ (y ∗

x)), AI(x) ≤ AI(x∗ (y ∗x)) and AF (x) ≥ AF (x∗ (y ∗x)). It follows from (3.7) that AT (x) = AT (x∗ (y ∗x)),
AI(x) = AI(x ∗ (y ∗ x)) and AF (x) = AF (x ∗ (y ∗ x)) for all x, y ∈ X .

(3)⇒ (1). Let A∼ = (AT , AI , AF ) be an (∈, ∈)-neutrosophic ideal of X satisfying the condition (3.8).

X.L. Xin, H. Bordbar, F. Smarandache, R.A. Borzooei, Y.B. Jun, Implicative falling neutrosophic ideals of
BCK-algebras.

Neutrosophic Sets and Systems, Vol. 40, 2021                                                                                                            223



Then

AT (x) = AT (x ∗ (y ∗ x)) ≥ AT ((x ∗ (y ∗ x)) ∗ z) ∧ AT (z),

AI(x) = AI(x ∗ (y ∗ x)) ≥ AI((x ∗ (y ∗ x)) ∗ z) ∧ AI(z),

AF (x) = AF (x ∗ (y ∗ x)) ≤ AF ((x ∗ (y ∗ x)) ∗ z) ∨ AF (z)

for all x, y, z ∈ X by (3.8) and (3.6). Therefore A∼ = (AT , AI , AF ) is an implicative (∈, ∈)-neutrosophic
ideal of X .

Lemma 3.13 ([14]). Let I and A be ideals of a BCK-algebra X such that I ⊆ A. If I is an implicative ideal
of X , then so is A.

Theorem 3.14. Let A∼ = (AT , AI , AF ) and B∼ = (BT , BI , BF ) be (∈, ∈)-neutrosophic ideals of X such
that A∼ v B∼, that is, AT (x) ≤ BT (x), AI(x) ≤ BI(x) and AF (x) ≥ BF (x) for all x ∈ X . If A∼ = (AT ,
AI , AF ) is implicative, then so is B∼ = (BT , BI , BF ).

Proof. It is sufficient to show that the non-empty neutrosophic ∈-subsets T∈(B∼;α), I∈(B∼; β) and F∈(B∼; γ)
are implicative ideals ofX for all α, β ∈ (0, 1] and γ ∈ [0, 1). If x ∈ T∈(A∼;α), thenBT (x) ≥ AT (x) ≥ α and
so T∈(A∼;α) ⊆ T∈(B∼;α). Similarly, I∈(A∼; β) ⊆ I∈(B∼; β). If x ∈ F∈(A∼; γ), then BF (x) ≤ AF (x) ≤ γ
and thus F∈(A∼; γ) ⊆ F∈(B∼; γ). SinceA∼ = (AT , AI , AF ) is an implicative (∈, ∈)-neutrosophic ideal ofX ,
it follows from Theorem 3.7 that T∈(A∼;α), I∈(A∼; β) and F∈(A∼; γ) are implicative ideals of X . Therefore
T∈(B∼;α), I∈(B∼; β) and F∈(B∼; γ) are implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1), and hence
B∼ = (BT , BI , BF ) is an implicative (∈, ∈)-neutrosophic ideal of X .

4 Implicative falling neutrosophic ideals

Definition 4.1. Let (Ω,A, P ) be a probability space and let ξ := (ξT , ξI , ξF ) be a neutrosophic random set on
a BCK-algebra X . If ξT (ωT ), ξI(ωI) and ξF (ωF ) are implicative ideals of X for all ωT , ωI , ωF ∈ Ω, then the
neutrosophic shadow H̃ := (H̃T , H̃I , H̃F ) of the neutrosophic random set ξ := (ξT , ξI , ξF ) on X , that is,

H̃T (xT ) = P (ωT | xT ∈ ξT (ωT )),

H̃I(xI) = P (ωI | xI ∈ ξI(ωI)),

H̃F (xF ) = 1− P (ωF | xF ∈ ξF (ωF ))

(4.1)

is called an implicative falling neutrosophic ideal of X .

Example 4.2. Consider a set X = {0, 1, 2, 3} with the binary operation ∗ which is given in Table 5. Then
(X; ∗, 0) is a BCK-algebra (see [15]). Consider (Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be a
neutrosophic random set on X which is given as follows:

ξT : [0, 1]→ P(X), x 7→


{0} if t ∈ [0, 0.25),
{0, 1} if t ∈ [0.25, 0.55),
{0, 1, 3} if t ∈ [0.55, 0.95),
X if t ∈ [0.95, 1],
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Table 5: Cayley table for the binary operation “∗”

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

ξI : [0, 1]→ P(X), x 7→


{0} if t ∈ [0, 0.45),
{0, 2} if t ∈ [0.45, 0.65),
{0, 2, 3} if t ∈ [0.65, 0.95),
X if t ∈ [0.95, 1],

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.9, 1],
{0, 3} if t ∈ (0.7, 0.9],
{0, 1, 2} if t ∈ (0.5, 0.7],
{0, 1, 3} if t ∈ (0.3, 0.5],
X if t ∈ [0, 0.3].

Then ξT (t), ξI(t) and ξF (t) are implicative ideals ofX for all t ∈ [0, 1]. Hence the neutrosophic falling shadow
H̃ := (H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is an implicative falling neutrosophic ideal of X , and it is given as
follows:

H̃T (x) =


1 if x = 0,
0.75 if x = 1,
0.05 if x = 2,
0.35 if x = 3,

H̃I(x) =


1 if x = 0,
0.05 if x = 1,
0.55 if x = 2,
0.35 if x = 3,

and

H̃F (x) =


0 if x = 0,
0.3 if x = 1,
0.5 if x = 2,
0.3 if x = 3.

Given a probability space (Ω,A, P ), let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling shadow of a neutro-

X.L. Xin, H. Bordbar, F. Smarandache, R.A. Borzooei, Y.B. Jun, Implicative falling neutrosophic ideals of
BCK-algebras.

Neutrosophic Sets and Systems, Vol. 40, 2021                                                                                                            225



sophic random set ξ := (ξT , ξI , ξF ). For x ∈ X , let

Ω(x; ξT ) := {ωT ∈ Ω | x ∈ ξT (ωT )},
Ω(x; ξI) := {ωI ∈ Ω | x ∈ ξI(ωI)},
Ω(x; ξF ) := {ωF ∈ Ω | x ∈ ξF (ωF )}.

Then Ω(x; ξT ),Ω(x; ξI),Ω(x; ξF ) ∈ A (see [10]).

Proposition 4.3. Let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling shadow of the neutrosophic random set
ξ := (ξT , ξI , ξF ) on a BCK-algebra X . If H̃ := (H̃T , H̃I , H̃F ) is an implicative falling neutrosophic ideal of
X , then

(∀x, y, z ∈ X)

 Ω((x ∗ (y ∗ x)) ∗ z; ξT ) ∩ Ω(z; ξT ) ⊆ Ω(x; ξT )
Ω((x ∗ (y ∗ x)) ∗ z; ξI) ∩ Ω(z; ξI) ⊆ Ω(x; ξI)
Ω((x ∗ (y ∗ x)) ∗ z; ξF ) ∩ Ω(z; ξF ) ⊆ Ω(x; ξF )

 , (4.2)

(∀x, y, z ∈ X)

 Ω(x; ξT ) ⊆ Ω((x ∗ (y ∗ x)) ∗ z; ξT )
Ω(x; ξI) ⊆ Ω((x ∗ (y ∗ x)) ∗ z; ξI)
Ω(x; ξF ) ⊆ Ω((x ∗ (y ∗ x)) ∗ z; ξF )

 . (4.3)

Proof. Let ωT ∈ Ω((x ∗ (y ∗ x)) ∗ z; ξT ) ∩ Ω(z; ξT ), ωI ∈ Ω((x ∗ (y ∗ x)) ∗ z; ξI) ∩ Ω(z; ξI) and ωF ∈
Ω((x ∗ (y ∗ x)) ∗ z; ξF ) ∩ Ω(z; ξF ) for all x, y, z ∈ X . Then

(x ∗ (y ∗ x)) ∗ z ∈ ξT (ωT ) and z ∈ ξT (ωT ),
(x ∗ (y ∗ x)) ∗ z ∈ ξI(ωI) and z ∈ ξI(ωI),
(x ∗ (y ∗ x)) ∗ z ∈ ξF (ωF ) and z ∈ ξF (ωF ).

Since ξT (ωT ), ξI(ωI) and ξF (ωF ) are implicative ideals ofX , it follows from (2.11) that x ∈ ξT (ωT )∩ξI(ωI)∩
ξF (ωF ) and so that ωT ∈ Ω(x; ξT ), ωI ∈ Ω(x; ξI) and ωF ∈ Ω(x; ξF ). Hence (4.2) is valid. Now let x, y, z ∈ X
be such that ωT ∈ Ω(x; ξT ), ωI ∈ Ω(x; ξI), and ωF ∈ Ω(x; ξF ). Then x ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ). Note
that

((x ∗ (y ∗ x)) ∗ z) ∗ x = ((x ∗ (y ∗ x)) ∗ x) ∗ z
= ((x ∗ x) ∗ (y ∗ x)) ∗ z = (0 ∗ (y ∗ x)) ∗ z = 0 ∗ z = 0,

and thus

((x ∗ (y ∗ x)) ∗ z) ∗ x = 0 ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ).

Since ξT (ωT ), ξI(ωI) and ξF (ωF ) are implicative ideals and hence ideals of X , it follows that (x ∗ (y ∗ x)) ∗
z ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ). Hence ωT ∈ Ω((x ∗ (y ∗ x)) ∗ z; ξT ), ωI ∈ Ω((x ∗ (y ∗ x)) ∗ z; ξI), and
ωF ∈ Ω((x ∗ (y ∗ x)) ∗ z; ξF ). Therefore (4.3) is valid.

Given a probability space (Ω,A, P ), let

F(X) := {f | f : Ω→ X is a mapping}. (4.4)

Define a binary operation ~ on F(X) as follows:

(∀ω ∈ Ω) ((f ~ g)(ω) = f(ω) ∗ g(ω)) (4.5)
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for all f, g ∈ F(X). Then (F(X);~, θ) is a BCK/BCI-algebra (see [8]) where θ is given as follows:

θ : Ω→ X, ω 7→ 0.

For any subset A of X and gT , gI , gF ∈ F(X), consider the followings:

Ag
T := {ωT ∈ Ω | gT (ωT ) ∈ A},

Ag
I := {ωI ∈ Ω | gI(ωI) ∈ A},

Ag
F := {ωF ∈ Ω | gF (ωF ) ∈ A}

and

ξT : Ω→ P(F(X)), ωT 7→ {gT ∈ F(X) | gT (ωT ) ∈ A},
ξI : Ω→ P(F(X)), ωI 7→ {gI ∈ F(X) | gI(ωI) ∈ A},
ξF : Ω→ P(F(X)), ωF 7→ {gF ∈ F(X) | gF (ωF ) ∈ A}.

Then Ag
T , A

g
I , A

g
F ∈ A (see [10]).

Theorem 4.4. If K is an implicative ideal of a BCK-algebra X , then

ξT (ωT ) = {gT ∈ F(X) | gT (ωT ) ∈ K},
ξI(ωI) = {gI ∈ F(X) | gI(ωI) ∈ K},
ξF (ωF ) = {gF ∈ F(X) | gF (ωF ) ∈ K}

are implicative ideals of F(X).

Proof. Assume that K is an implicative ideal of a BCK-algebra X . Since θ(ωT ) = 0 ∈ K, θ(ωI) = 0 ∈ K
and θ(ωF ) = 0 ∈ K for all ωT , ωI , ωF ∈ Ω, we have

θ ∈ ξT (ωT ) ∩ ξI(ωI) ∩ ξF (ωF ).

Let fT , gT , hT ∈ F(X) be such that (fT ~ (gT ~ fT )) ~ hT ∈ ξT (ωT ) and hT ∈ ξT (ωT ). Then

(fT (ωT ) ∗ (gT (ωT ) ∗ fT (ωT ))) ∗ hT (ωT ) = ((fT ~ (gT ~ fT )) ~ hT )(ωT ) ∈ K

and hT (ωT ) ∈ K. Since K is an implicative ideal of X , it follows from (2.11) that fT (ωT ) ∈ K, that is,
fT ∈ ξT (ωT ). Hence ξT (ωT ) is an implicative ideal of F(X). Similarly, we can verify that ξI(ωI) is an
implicative ideal of F(X). Now, let fF , gF , hF ∈ F(X) be such that (fF ~ (gF ~ fF )) ~ hF ∈ ξF (ωF ) and
hF ∈ ξF (ωF ). Then

(fF (ωF ) ∗ (gF (ωF ) ∗ fF (ωF ))) ∗ hF (ωF ) = ((fF ~ (gF ~ fF )) ~ hF )(ωF ) ∈ K

and hF (ωF ) ∈ K. Hence fF (ωF ) ∈ K, i.e., fF ∈ ξF (ωF ). Therefore ξF (ωF ) is an implicative ideal of F(X).
This completes the proof.

Theorem 4.5. If we consider a probability space (Ω,A, P ) = ([0, 1],A,m), then every implicative (∈, ∈)-
neutrosophic ideal of a BCK-algebra is an implicative falling neutrosophic ideal.
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Proof. Let H̃ := (H̃T , H̃I , H̃F ) be an implicative (∈, ∈)-neutrosophic ideal of a BCK-algebra X . Then
T∈(H̃;α), I∈(H̃; β) and F∈(H̃; γ) are implicative ideals of X for all α, β ∈ (0, 1] and γ ∈ [0, 1) by Theorem
3.7. Hence a triple ξ := (ξT , ξI , ξF ) in which

ξT : [0, 1]→ P(X), α 7→ T∈(H̃;α),

ξI : [0, 1]→ P(X), β 7→ I∈(H̃; β),

ξF : [0, 1]→ P(X), γ 7→ F∈(H̃; γ)

is a neutrosophic cut-cloud of H̃ := (H̃T , H̃I , H̃F ), and so H̃ := (H̃T , H̃I , H̃F ) is an implicative falling
neutrosophic ideal of X .

The converse of Theorem 4.5 is not true as seen in the following example.

Example 4.6. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 6.

Table 6: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 0 2
3 3 2 1 0 3
4 4 4 4 4 0

Then (X; ∗, 0) is a BCK-algebra (see [15]). Consider (Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be
a neutrosophic random set on X which is given as follows:

ξT : [0, 1]→ P(X), x 7→


{0, 1} if t ∈ [0, 0.25),
{0, 2} if t ∈ [0.25, 0.55),
{0, 2, 4} if t ∈ [0.55, 0.7),
{0, 1, 2, 3} if t ∈ [0.7, 1],

ξI : [0, 1]→ P(X), x 7→


{0, 2} if t ∈ [0, 0.28),
{0, 4} if t ∈ [0.28, 0.68),
{0, 1, 2, 3} if t ∈ [0.68, 1]

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.75, 1],
{0, 4} if t ∈ (0.63, 0.75],
{0, 2, 4} if t ∈ (0.44, 0.63],
{0, 1, 4} if t ∈ (0.23, 0.44],
{0, 1, 2, 3} if t ∈ [0, 0.23].
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Then ξT (t), ξI(t) and ξF (t) are implicative ideals ofX for all t ∈ [0, 1]. Hence the neutrosophic falling shadow
H̃ := (H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is an implicative falling neutrosophic ideal of X , and it is given as
follows:

H̃T (x) =


1 if x = 0,
0.55 if x = 1,
0.75 if x = 2,
0.3 if x = 3,
0.15 if x = 4,

H̃I(x) =


1 if x = 0,
0.32 if x = 1,
0.6 if x = 2,
0.32 if x = 3,
0.4 if x = 4,

and

H̃F (x) =


0 if x = 0,
0.56 if x = 1,
0.58 if x = 2,
0.77 if x = 3,
0.48 if x = 4.

If α ∈ [0, 0.55), then T∈(H̃T ;α) = {0, 1, 2} is not an implicative ideal of X since

(3 ∗ (2 ∗ 3)) ∗ 1 = (3 ∗ 0) ∗ 1 = 3 ∗ 1 = 2 ∈ T∈(H̃T ;α)

and 1 ∈ T∈(H̃T ;α), but 3 /∈ T∈(H̃T ;α). Therefore H̃ := (H̃T , H̃I , H̃F ) is not an implicative (∈, ∈)-
neutrosophic ideal of X by Theorem 3.7.

We provide relations between a falling neutrosophic ideal and an implicative falling neutrosophic ideal .

Theorem 4.7. Let (Ω,A, P ) be a probability space and let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling
shadow of a neutrosophic random set ξ := (ξT , ξI , ξF ) on a BCK-algebra X . If H̃ := (H̃T , H̃I , H̃F ) is an
implicative falling neutrosophic ideal of X , then it is a falling neutrosophic ideal of X .

Proof. Let H̃ := (H̃T , H̃I , H̃F ) be an implicative falling neutrosophic ideal of a BCK-algebra X . Then
ξT (ωT ), ξI(ωI) and ξF (ωF ) are implicative ideals of X , and so ξT (ωT ), ξI(ωI) and ξF (ωF ) are ideals of X for
all ωT , ωI , ωF ∈ Ω. Therefore H̃ := (H̃T , H̃I , H̃F ) is a falling neutrosophic ideal of X .

The following example shows that the converse of Theorem 4.7 is not true in general.

Example 4.8. Consider a set X = {0, 1, 2, 3, 4} with the binary operation ∗ which is given in Table 7. Then
(X; ∗, 0) is a BCK-algebra (see [15]). Consider (Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be a
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Table 7: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 1 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

neutrosophic random set on X which is given as follows:

ξT : [0, 1]→ P(X), x 7→


{0, 3} if t ∈ [0, 0.37),
{0, 1, 2, 3} if t ∈ [0.37, 0.67),
{0, 1, 2} if t ∈ [0.67, 1],

ξI : [0, 1]→ P(X), x 7→
{
{0, 1, 2} if t ∈ [0, 0.45),
{0, 1, 2, 4} if t ∈ [0.45, 1],

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.74, 1],
{0, 3} if t ∈ (0.66, 0.74],
{0, 1, 2} if t ∈ (0.48, 0.66],
{0, 1, 2, 3} if t ∈ [0, 0.48].

Then ξT (t), ξI(t) and ξF (t) are ideals of X for all t ∈ [0, 1]. Hence the neutrosophic falling shadow H̃ :=
(H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a falling neutrosophic ideal of X . But it is not an implicative falling
neutrosophic ideal of X because if α ∈ [0.67, 1], β ∈ [0, 0.45) and γ ∈ (0.66, 0.74], then ξT (α) = {0, 1, 2},
ξI(β) = {0, 1, 2} and ξF (γ) = {0, 3} are not implicative ideals of X respectively.

Since every ideal is implicative in an implicative BCK-algebra (see [15]), we have the following theorem.

Theorem 4.9. Let (Ω,A, P ) be a probability space and let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling
shadow of a neutrosophic random set ξ := (ξT , ξI , ξF ) on an implicativeBCK-algebra. If H̃ := (H̃T , H̃I , H̃F )
is a falling neutrosophic ideal of X , then it is an implicative falling neutrosophic ideal of X .

Corollary 4.10. Let (Ω,A, P ) be a probability space. For any BCK-algebra X which satisfies one of the
following assertions

(∀x, y ∈ X)(y ∗ (y ∗ x) = (x ∗ (x ∗ y)) ∗ (x ∗ y)),

(∀x, y ∈ X)((x ∗ (x ∗ y)) ∗ (y ∗ x) = y ∗ (y ∗ x)),

(∀x, y ∈ X)((x ∗ (x ∗ y)) ∗ (x ∗ y) = (y ∗ (y ∗ x)) ∗ (y ∗ x)),

let H̃ := (H̃T , H̃I , H̃F ) be a neutrosophic falling shadow of a neutrosophic random set ξ := (ξT , ξI , ξF ) on X .
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If H̃ := (H̃T , H̃I , H̃F ) is a falling neutrosophic ideal of X , then it is an implicative falling neutrosophic ideal
of X .

Definition 4.11 ([12]). Let (Ω,A, P ) be a probability space and let ξ := (ξT , ξI , ξF ) be a neutrosophic random
set on a BCK-algebra X . Then the neutrosophic falling shadow H̃ := (H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is
called a commutative falling neutrosophic ideal of X if ξT (ωT ), ξI(ωI) and ξF (ωF ) are commutative ideals of
X for all ωT , ωI , ωF ∈ Ω.

Definition 4.12 ([2]). Let (Ω,A, P ) be a probability space and let ξ := (ξT , ξI , ξF ) be a neutrosophic random
set on a BCK-algebra X . If ξT (ωT ), ξI(ωI) and ξF (ωF ) are positive implicative ideals of X for all ωT , ωI ,
ωF ∈ Ω, then the neutrosophic falling shadow H̃ := (H̃T , H̃I , H̃F ) of the neutrosophic random set ξ :=
(ξT , ξI , ξF ) on X , that is,

H̃T (xT ) = P (ωT | xT ∈ ξT (ωT )),

H̃I(xI) = P (ωI | xI ∈ ξI(ωI)),

H̃F (xF ) = 1− P (ωF | xF ∈ ξF (ωF ))

(4.6)

is called a positive implicative falling neutrosophic ideal of X .

Since every implicative ideal is both a commutative ideal and a positive implicative ideal inBCK-algebras
(see [15]), the following theorem is straightforward.

Theorem 4.13. Every implicative falling neutrosophic ideal is both a commutative falling neutrosophic ideal
and a positive implicative falling neutrosophic ideal.

The following example shows that there exist a commutative falling neutrosophic ideal and a positive
implicative falling neutrosophic ideal which is not an implicative falling neutrosophic ideal.

Example 4.14. (1) Consider a BCK-algebra X = {0, 1, 2, 3, 4} which is given in Example 3.2. Consider
(Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be a neutrosophic random set on X which is given as
follows:

ξT : [0, 1]→ P(X), x 7→


{0, 3} if t ∈ [0, 0.25),
{0, 4} if t ∈ [0.25, 0.55),
{0, 1, 2} if t ∈ [0.55, 0.85),
{0, 3, 4} if t ∈ [0.85, 1],

ξI : [0, 1]→ P(X), x 7→


{0, 1, 2} if t ∈ [0, 0.45),
{0, 1, 2, 3} if t ∈ [0.45, 0.75),
{0, 1, 2, 4} if t ∈ [0.75, 1],

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.9, 1],
{0, 3} if t ∈ (0.7, 0.9],
{0, 4} if t ∈ (0.5, 0.7],
{0, 1, 2, 3} if t ∈ (0.3, 0.5],
X if t ∈ [0, 0.3].
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Then the neutrosophic falling shadow H̃ := (H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a commutative falling
neutrosophic ideal of X (see [12]). If t ∈ [0.85, 1], then ξT (t) = {0, 3, 4} is not an implicative ideal of X .
Also, if t ∈ (0.5, 0.7], then ξF (t) = {0, 4} is not an implicative ideal of X . Therefore H̃ := (H̃T , H̃I , H̃F ) is
not an implicative falling neutrosophic ideal of X .

(2) Let X = {0, 1, 2, 3} be a set with the binary operation ∗ which is given in Table 8.

Table 8: Cayley table for the binary operation “∗”

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 3 0

Then (X; ∗, 0) is a BCK-algebra (see [15]). Consider (Ω,A, P ) = ([0, 1],A,m) and let ξ := (ξT , ξI , ξF ) be
a neutrosophic random set on X which is given as follows:

ξT : [0, 1]→ P(X), x 7→


{0} if t ∈ [0, 0.35),
{0, 2} if t ∈ [0.35, 0.55),
{0, 1, 2} if t ∈ [0.55, 0.95),
X if t ∈ [0.95, 1],

ξI : [0, 1]→ P(X), x 7→


{0, 1} if t ∈ [0, 0.2),
{0, 2} if t ∈ [0.2, 0.5),
{0, 1, 2} if t ∈ [0.5, 0.9),
X if t ∈ [0.9, 1],

and

ξF : [0, 1]→ P(X), x 7→


{0} if t ∈ (0.95, 1],
{0, 1} if t ∈ (0.6, 0.95],
{0, 2} if t ∈ (0.4, 0.6],
{0, 1, 2} if t ∈ (0.1, 0.4],
X if t ∈ [0, 0.1].

Then the neutrosophic falling shadow H̃ := (H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is a positive implicative falling
neutrosophic ideal of X . If t ∈ [0.35, 0.55), then ξT (t) = {0, 2} is not an implicative ideal of X . If t ∈
[0.2, 0.5), then ξI(t) = {0, 2} is not an implicative ideal of X . Also, if t ∈ (0.6, 0.95], then ξF (t) = {0, 1} is
not an implicative ideal of X . Therefore H̃ := (H̃T , H̃I , H̃F ) is not an implicative falling neutrosophic ideal
of X .

The notions of a commutative falling neutrosophic ideal and a positive implicative falling neutrosophic
ideal are independent, that is, a commutative falling neutrosophic ideal need not be a positive implicative falling
neutrosophic ideal, and vice versa. In fact, the commutative falling neutrosophic ideal H̃ := (H̃T , H̃I , H̃F ) in
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Example 4.14(1) is not a positive implicative falling neutrosophic ideal. Also the positive implicative falling
neutrosophic ideal H̃ := (H̃T , H̃I , H̃F ) in Example 4.14(2) is not a commutative implicative falling neutro-
sophic ideal.

Theorem 4.15. If the neutrosophic falling shadow H̃ := (H̃T , H̃I , H̃F ) of ξ := (ξT , ξI , ξF ) is both a commu-
tative implicative falling neutrosophic ideal and a positive implicative falling neutrosophic ideal, then it is an
implicative falling neutrosophic ideal.

Proof. It is straightforward because if any ideal is both commutative and position implicative, then it is im-
plicative.
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Abstract. The aim of the study is to examine a neutrosophicN−subalgebra, a neutrosophicN−filter, level sets

of these neutrosophic N−structures and their properties on a strong Sheffer stroke non-associative MV-algebra.

We show that the level set of neutrosophic N−subalgebras on this algebra is its strong Sheffer stroke non-

associative MV-subalgebra and vice versa. Then it is proved that the family of all neutrosophic N−subalgebras

of a strong Sheffer stroke non-associative MV-algebra forms a complete distributive lattice. By defining a

neutrosophic N−filter of a strong Sheffer stroke non-associative MV-algebra, it is presented that every neutro-

sophic N−filter of a strong Sheffer stroke non-associative MV-algebra is its neutrosophic N−subalgebra but

the inverse is generally not true, and some properties

Keywords: strong Sheffer stroke non-associative MV- algebra, filter, neutrosophic N−subalgebra, neutro-

sophic N−filter.

—————————————————————————————————————————-

1. Introduction

The concept of fuzzy sets which has the truth (t) (membership) function was introduced by

L. Zadeh [29]. Since a positive meaning of information is explained by means of fuzzy theory,

researchers desire to deal with a negative meaning of information. Thus, Atanassov introduced

intuitionistic fuzzy sets [2] which are fuzzy sets with the falsehood (f) (nonmembership) func-

tion. Then, Smarandache introduced neutrosophic sets which are intuitionistic fuzzy sets with

the indeteminacy/neutrality (i) function [26,27]. Accordingly, neutrosophic sets are defined on

three components: (t, i, f) : (truth, indeteminacy, falsehood) [32]. Specially, many scientists

applied neutrosophic sets to the algebraic structures such as BCK/BCI-algebras, BE-algebras

and semigroups [3, 4, 11–16,24,28,30,31].
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Sheffer stroke, which is also called the NAND operator in computer science, was firstly

introduced by H. M. Sheffer [25]. Since any axioms and formulas in Boolean algebras can

be written only by using this operation [17], Sheffer stroke can be applied to many logical

algebras such as orthoimplication algebras [1], ortholattices [5], Hilbert algebras [18]- [19], BL-

algebras [23], UP-algebras [20] and BG-algebras [21]. Therefore, it is easier to control a logical

system consisting of Sheffer stroke itself. Moreover, C. C. Chang introduced MV-algebras

which are algebraic counterparts of Lukasiewicz many-valued logic [9, 10]. Then Chajda et

al. introduced and improved non-associative MV-algebras (briefly, NMV-algebras) which are

generalizations of MV-algebras [7,8]. Also, non-associative MV-algebras with Sheffer stroke [6]

and their filters [22] are presented.

Basic definitions and notions about strong Sheffer stroke non-associative MV-algebras,

N−functions and neutrosophic N−structures defined by the N−functions on a nonempty uni-

verse X are presented. Then the concepts of a neutrosophic N−subalgebra and a (a, b, c)−level

set defined by N−functions are given on strong Sheffer stroke non-associative MV-algebras. It

is shown that the (a, b, c)−level set of a neutrosophic N−subalgebra defined by N−functions

on strong Sheffer stroke non-associative MV-algebras is its strong Sheffer stroke non-associative

MV-subalgebra and the inverse is true. In fact, we state that the family of all neutrosophic

N−subalgebras of this algebraic structure forms a complete distributive lattice. Some prop-

erties of neutrosophic N−subalgebras of strong Sheffer stroke non-associative MV-algebras

are analyzed. Also, it is investigated the images of the sequence under N−functions on a

strong Sheffer stroke non-associative MV-algebra. Besides, we examine that the case which

N−functions defining a neutrosophic N−subalgebra of a strong Sheffer stroke non-associative

MV-algebra are constant. After defining a neutrosophic N−filter of a strong Sheffer stroke

non-associative MV-algebra by N−functions, some features of N−functions defining the neu-

trosophicN−filter are studied. We propound that (a, b, c)−level set of a neutrosophicN−filter

of a strong Sheffer stroke non-associative MV-algebra is its filter and that the subsets defined

by N−functions on a strong Sheffer stroke non-associative MV-algebra must be its filters so

that a neutrosophic N−structure on this algebra is a neutrosophic N−filter. It is stated that

every neutrosophic N−filter of a strong Sheffer stroke non-associative MV-algebra is its neu-

trosophic N−subalgebra while the inverse is usually not valid. In addition, new subsets of a

strong Sheffer stroke non-associative MV-algebra are described by the N−functions and cer-

tain elements in the algebra. We show that these subsets are filters of a strong Sheffer stroke

non-associative MV-algebra for its neutrosophic N−filter but the inverse does not mostly hold.
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2. Preliminaries

In this section, we give basic definitions and notions about strong Sheffer stroke non-

associative MV-algebras (briefly, strong Sheffer stroke NMV-algebras) and neutrosophic

N−structures.

Definition 2.1. [5] Let A = 〈A, |〉 be a groupoid. The operation | is said to be a Sheffer

stroke operation if it satisfies the following conditions:

(S1) x|y = y|x,
(S2) (x|x)|(x|y) = x,

(S3) x|((y|z)|(y|z)) = ((x|y)|(x|y))|z,
(S4) (x|((x|x)|(y|y)))|(x|((x|x)|(y|y))) = x.

Definition 2.2. [6] A strong Sheffer stroke NMV-algebra is an algebra (A, |, 1) of type (2, 0)

satisfying the identities for all x, y, z ∈ A:

(n1) x|y ≈ y|x,

(n2) x|0 ≈ 1,

(n3) (x|1)|1 ≈ x,

(n4) ((x|1)|y)|y ≈ ((y|1)|x)|x,

(n5) (x|1)|((x|y)|1) ≈ 1,

(n6) x|(((((x|y)|y)|z)|z)|1) ≈ 1,

where 0 denotes the algebraic constant 1|1.

Proposition 2.3. [22] Let (A, |, 1) be a strong Sheffer stroke NMV-algebra. Then the binary

relation ≤ defined by

x ≤ y if and only if x|(y|1) ≈ 1

is a partial order on A. Hence, (A,≤) is a poset with the least element 0 and the greatest

element 1.

Lemma 2.4. [22] In a strong Sheffer stroke NMV-algebra (A, |, 1), the following properties

hold for all x, y, z ∈ A:

(i) x|(x|1) ≈ 1,

(ii) x ≤ y ⇔ y|1 ≤ x|1,

(iii) y ≤ x|(y|1),

(iv) y|1 ≤ x|y,

(v) x ≤ (x|y)|y,

(vi) x ≤ (((x|y)|y)|z)|z,

(vii) ((x|y)|y)|y ≈ x|y,
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(viii) x|1 ≈ x|x,

(ix) x|(x|x) ≈ 1,

(x) 1|(x|x) ≈ x,

(xi) x ≤ y ⇒ y|z ≤ x|z,

(xii) x|(y|1) ≤ (y|(z|1))|((x|(z|1))|1),

(xiii) x|(y|1) ≤ (z|(x|1))|((z|(y|1))|1),

(xiv) x ≤ y and z ≤ t imply y|t ≤ x|z.

Definition 2.5. [22] A nonempty subset F ⊆ A is called a filter of A if it satisfies the following

properties:

(Sf − 1) 1 ∈ F ,

(Sf − 2) For all x, y ∈ A, x|(y|1) ∈ F and x ∈ F imply y ∈ F .

Lemma 2.6. [22] A nonempty subset F ⊆ A is a filter of A if and only if 1 ∈ F and x ≤ y

and x ∈ F imply y ∈ F .

Definition 2.7. [11] F(X, [−1, 0]) denotes the collection of functions from a set X to [−1, 0]

and a element of F(X, [−1, 0]) is called a negative-valued function from X to [−1, 0] (briefly,

N−function on X). An N−structure refers to an ordered pair (X, f) of a set X and an

N−function f on X.

Definition 2.8. [16] A neutrosophic N−structure over a nonempty universe X is defined by

XN :=
X

(TN , IN , FN )
= { x

(TN (x), IN (x), FN (x))
: x ∈ X},

where TN , IN and FN are N−function on X, called the negative truth membership function,

the negative indeterminacy membership function and the negative falsity membership function,

respectively.

Every neutrosophic N−structure XN over X satisfies the condition

(∀x ∈ X)(−3 ≤ TN (x) + IN (x) + FN (x) ≤ 0).

3. Neutrosophic N−structures

In this section, we give neutrosophic N−subalgebras and neutrosophic N−filters on strong

Sheffer stroke NMV-algebras. Unless indicated otherwise, A states a strong Sheffer stroke

NMV-algebra.

Definition 3.1. A neutrosophic N−subalgebra AN on a strong Sheffer stroke NMV-algebra

A is a neutrosophic N−structure of A satisfying the conditions

min{TN (x), TN (y)} ≤ TN (x|(y|1)),

max{IN (x), IN (y)} ≥ IN (x|(y|1))
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and

max{FN (x), FN (y)} ≥ FN (x|(y|1)),

for all x, y ∈ A.

Example 3.2. Consider a strong Sheffer stroke NMV-algebra A in which the set A = {0, u,
v, 1} and the Sheffer operation | on A has the following Cayley table:

Table 1

| 0 u v 1

0 1 1 1 1

u 1 v 1 v

v 1 1 u u

1 1 v u 0

A neutrosophic N−structure

AN = { 0

(−0.79,−0.001, 0)
,

u

(−0.68,−0.72,−0.4)
,

v

(−0.68,−0.72,−0.4)
,

1

(0,−0.88,−1)
}

on A is a neutrosophic N−subalgebra of A.

Definition 3.3. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-

algebra A and a, b, c be any elements of [−1, 0] such that −3 ≤ a + b + c ≤ 0. For

T a
N := {x ∈ A : TN (x) ≥ a},

IbN := {x ∈ A : IN (x) ≤ b}

and

F c
N := {x ∈ A : FN (x) ≤ c},

the set

AN (a, b, c) := {x ∈ H : TN (x) ≥ a, IN (x) ≤ b and FN (x) ≤ c}

is called the (a, b, c)−level set of AN . Moreover,

AN (a, b, c) = T a
N ∩ IbN ∩ F c

N .

Definition 3.4. [22] A subset B of a strong Sheffer stroke NMV-algebra A is called a strong

Sheffer stroke NMV-subalgebra of A if 1 of A is in B and (B, |, 1) forms a strong Sheffer stroke

NMV-algebra. Clearly, A itself and {1} are strong Sheffer stroke NMV-subalgebras of A.

Lemma 3.5. Let B be a nonempty subset of a strong Sheffer stroke NMV-algebra A. Then

B is a strong Sheffer stroke NMV-subalgebra of A if and only if x|(y|1) ∈ B, for all x, y ∈ B.
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Proof. Let B be a nonempty subset of a strong Sheffer stroke NMV-algebra A such that

x|(y|1) ∈ B, for all x, y ∈ B. Then 1 ≈ x|(x|1) ∈ B from Lemma 2.4 (i). Since B ⊆ A, (B, |, 1)

satisfies (n1)-(n6), for all x, y, z ∈ B. Thus, (B, |, 1) is a strong Sheffer stroke NMV-subalgebra

A.

Conversely, let B be a strong Sheffer stroke NMV-subalgebra of A. Since B states a strong

Sheffer stroke NMV-algebra, it must be closed under the Sheffer operation |, that is, x|y ∈ B,

for all x, y ∈ B. Hence, x|(y|1) ∈ B, for all x, y ∈ B.

Theorem 3.6. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A and a, b, c be any elements in [−1, 0] such that −3 ≤ a + b + c ≤ 0. If AN is a neutrosophic

N−subalgebra of A, then the nonempty level set AN (a, b, c) of AN is a subalgebra of A.

Proof. Let AN be a neutrosophic N−subalgebra of A and x, y be any elements in AN (a, b, c),

for a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0. Then TN (x) ≥ a, IN (x) ≤ b, FN (x) ≤ c,

TN (y) ≥ a, IN (y) ≤ b and FN (y) ≤ c. Since

TN (x|(y|1)) ≥ min{TN (x), TN (y)} ≥ a,

IN (x|(y|1))| ≤ max{IN (x), IN (y)} ≤ b

and

FN (x|(y|1)) ≤ max{FN (x), FN (y)} ≤ c,

for all x, y ∈ A, it follows that x|(y|1) ∈ T a
N , x|(y|1) ∈ IbN and x|(y|1) ∈ F c

N , which implies

that x|(y|1) ∈ T a
N ∩ IbN ∩ F c

N = AN (a, b, c). Thus, AN (a, b, c) is a subalgebra of A by Lemma

3.5.

Theorem 3.7. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A and T a
N , IbN and F c

N be subalgebras of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0.

Then AN is a neutrosophic N−subalgebra of A.

Proof. Let T a
N , IbN and F c

N be subalgebras of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a+ b+ c ≤ 0.

Assume that x and y are any elements in A such that u1 = TN (x|(y|1)) < min{TN (x), TN (y)} =

v1. If a0 =
1

2
(u1 + v1) ∈ [−1, 0), then u1 < a0 < v1. So, x, y ∈ T a0

N while x|(y|1) /∈ T a0
N , which

is a contradiction. Thus, min{TN (x), TN (y)} ≤ TN (x|(y|1)), for all x, y ∈ A.

Suppose that x and y are any elements in A such that u2 = max{IN (x), IN (y)} <

IN (x|(y|1)) = v2. If b0 =
1

2
(u2 + v2) ∈ [−1, 0), then u2 < b0 < v2, which implies that

x, y ∈ Ib0N but x|(y|1) /∈ Ib0N . This is a contradiction. Thus, IN (x|(y|1)) ≤ max{IN (x), IN (y)},
for all x, y ∈ A.
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Assume that x and y are any elements in A such that v3 = FN (x|(y|1)) > max{FN (x),

FN (y)} = u3. If c0 =
1

2
(u3 + v3) ∈ [−1, 0), then u3 < c0 < v3. Thus, x, y ∈ F c0

N but

x|(y|1) /∈ F c0
N , which is a contradiction. Thereby, max{FN (x), FN (y)} ≥ FN (x|(y|1)), for all

x, y ∈ A.

Therefore, AN is a neutrosophic N−subalgebra of A.

Theorem 3.8. Let {ANi : i ∈ N} be a family of all neutrosophic N−subalgebras of a strong

Sheffer stroke NMV-algebra A. Then {ANi : i ∈ N} forms a complete distributive lattice.

Proof. Let B be a nonempty subset of {ANi : i ∈ N}. Since ANi is a neutrosophic

N−subalgebra of A, for all ANi ∈ B, it satisfies

min{TN (x), TN (y)} ≤ TN (x|(y|1)),

IN (x|(y|1)) ≤ max{IN (x), IN (y)}

and

FN (x|(y|1)) ≤ max{FN (x), FN (y)},

for all x, y ∈ A. Then
⋂
B satisfies these inequalities. Thus,

⋂
B is a neutrosophic

N−subalgebra of A.

Let C be a family of all neutrosophic N−subalgebras of A containing
⋃
{ANi : i ∈ N}. Then⋂

C is also a neutrosophic N−subalgebra of A.

If
∧

i∈NANi =
⋂

i∈NANi and
∨

i∈NANi =
⋂
C, then ({ANi : i ∈ N},

∨
,
∧

) forms a complete

lattice. Moreover, it is distibutive by the definitions of
∨

and
∧

.

Lemma 3.9. If a neutrosophic N−structure AN on a strong Sheffer stroke NMV-algebra A is

a neutrosophic N−subalgebra of A, then TN (x) ≤ TN (1), IN (x) ≥ IN (1) and FN (x) ≥ FN (1),

for all x ∈ A.

Proof. Let a neutrosophic N−structure AN on a strong Sheffer stroke NMV-algebra A be a

neutrosophic N−subalgebra of A. By substituting [y := x] in the inequalities in Definition

3.1, it is obtained from Lemma 2.4 (i) that

TN (x) = min{TN (x), TN (x)} ≤ TN (x|(x|1)) = TN (1),

IN (1) = IN (x|(x|1)) ≤ max{IN (x), IN (x)} = IN (x)

and

FN (1) = FN (x|(x|1)) ≤ max{FN (x), FN (x)} = FN (x),

for all x ∈ H.
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The inverse of Lemma 3.9 does not hold in general.

Example 3.10. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Then a

neutrosophic N−structure

AN = { 0

(−0.8,−0.7,−0.02)
,

u

(−0.5,−0.4,−0.3)
,

v

(−0.2,−0.1,−0.11)
,

1

(0,−1,−0.6)
}

on A is not a neutrosophic N−subalgebra of A since

max{IN (u), IN (0)} = max{−0.4,−0.7} = −0.4 < −0.1 = IN (v) = IN (u|(0|1)).

Lemma 3.11. Let AN be a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra

A. If there exists a sequence {an} on A such that

limn−→∞ TN (an) = 0, limn−→∞ IN (an) = −1 and limn−→∞ FN (an) = −1,

then

TN (1) = 0, IN (1) = −1 and FN (1) = −1.

Proof. Let AN be a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra

A. Suppose that there exists a sequence {an} on A such that limn−→∞ TN (an) = 0 and

limn−→∞ IN (an) = −1 = limn−→∞ FN (an). Since TN (an) ≤ TN (1), IN (an) ≥ IN (1) and

FN (an) ≥ FN (1), for every n ∈ N from Lemma 3.9, it is obtained that

0 = lim
n−→∞

TN (an) ≤ lim
n−→∞

TN (1) = TN (1) ≤ 0,

−1 ≤ IN (1) = lim
n−→∞

IN (1) ≤ lim
n−→∞

IN (an) = −1

and

−1 ≤ FN (1) = lim
n−→∞

FN (1) ≤ lim
n−→∞

FN (an) = −1.

Thus, TN (1) = 0 and IN (1) = FN (1) = −1.

Lemma 3.12. A neutrosophic N−subalgebra AN of a strong Sheffer stroke NMV-algebra A

satisfies TN (x) ≤ TN (x|(y|1)), IN (x) ≥ IN (x|(y|1)) and FN (x) ≥ FN (x|(y|1)), for all x, y ∈ A

if and only if TN , IN and FN are constant.

Proof. Let AN be a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra A

satisfying TN (x) ≤ TN (x|(y|1)), IN (x) ≥ IN (x|(y|1)) and FN (x) ≥ FN (x|(y|1)), for all x, y ∈
A. Since TN (1) ≤ TN (1|(x|1)) = TN ((x|1)|1) = TN (x), IN (1) ≥ IN (1|(x|1)) = IN ((x|1)|1) =

IN (x) and FN (1) ≥ FN (1|(x|1)) = FN ((x|1)|1) = FN (x) from (n1) and (n3), it follows from

Lemma 3.9 that TN (x) = TN (1), IN (x) = IN (1) and FN (x) = FN (1), for all x ∈ A.

Conversely, every neutrosophicN−subalgebra AN of a strong Sheffer stroke NMV-algebra A

satisfies TN (x) ≤ TN (x|(y|1)), IN (x) ≥ IN (x|(y|1)) and FN (x) ≥ FN (x|(y|1)), for all x, y ∈ A

because TN , IN and FN are constant.
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Definition 3.13. A neutrosophic N−structure AN on a strong Sheffer stroke NMV-algebra

A is called a neutrosophic N−filter of A if

min{TN (x|(y|1)), TN (x)} ≤ TN (y) ≤ TN (1),

IN (1) ≤ IN (y) ≤ max{IN (x|(y|1)), IN (x)}

and

FN (1) ≤ FN (y) ≤ max{FN (x|(y|1)), FN (x)},

for all x, y ∈ A.

Example 3.14. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Then a

neutrosophic N−structure

AN = { 0

(−0.23,−0.3,−0.01)
,

u

(−0.02,−0.98,−0.11)
,

v

(−0.23,−0.3,−0.01)
,

1

(−0.02,−0.98,−0.11)
}

on A is a neutrosophic N−filter of A.

Lemma 3.15. Every a neutrosophic N−filter AN of a strong Sheffer stroke NMV-algebra

A satisfies that x ≤ y implies TN (x) ≤ TN (y), IN (x) ≥ IN (y) and FN (x) ≥ FN (y), for all

x, y ∈ A.

Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A and

x ≤ y. Then x|(y|1) ≈ 1 from Proposition 2.3. Thus,

TN (x) = min{TN (1), TN (x)} = min{TN (x|(y|1)), TN (x)} ≤ TN (y),

IN (x) = max{IN (1), IN (x)} = max{IN (x|(y|1)), IN (x)} ≥ IN (y)

and

FN (x) = max{FN (1), FN (x)} = max{FN (x|(y|1)), FN (x)} ≥ FN (y),

for any x, y ∈ A.

The inverse of Lemma 3.15 is generally not true.

Example 3.16. Consider the neutrosophic N−filter of A in Example 3.14. Then v � u when

−0.98 = IN (u) ≤ IN (v) = −0.3.
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Lemma 3.17. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A.

Then
TN ((x|(y|1))|(z|1)) ≤ TN ((x|(z|1))|((y|(z|1))|1)),

IN ((x|(y|1))|(z|1)) ≥ IN ((x|(z|1))|((y|(z|1))|1)),

and

FN ((x|(y|1))|(z|1)) ≥ FN ((x|(z|1))|((y|(z|1))|1)),

(1)

for all x, y, z ∈ A.

Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A. Since

(x|(y|1))|(z|1) ≤ y|(z|1) ≤ (x|(z|1))|((y|(z|1))|1) from Lemma 2.4 (iii) and (xi), it follows from

Lemma 3.15 that

TN ((x|(y|1))|(z|1)) ≤ TN ((x|(z|1))|((y|(z|1))|1)),

IN ((x|(y|1))|(z|1)) ≥ IN ((x|(z|1))|((y|(z|1))|1))

and

FN ((x|(y|1))|(z|1)) ≥ FN ((x|(z|1))|((y|(z|1))|1)),

for all x, y, z ∈ A.

The inverse of Lemma 3.17 does not usually hold.

Example 3.18. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Then a

neutrosophic N−structure

AN = { 0

(−0.69,−0.12, 0)
,

u

(−0.58,−0.87,−0.22)
,

v

(−0.58,−0.87,−0.22)
,

1

(−0.14,−0.93, 0.96)
}

on A satisfies the condition (1) in Lemma 3.17 but it is not a neutrosophic N−filter of A since

min{TN (u|(0|1)), TN (u)} = min{TN (v), TN (u)} = −0.58 > −0.69 = TN (0).

Lemma 3.19. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A and a, b, c be any elements of [−1, 0] with −3 ≤ a + b + c ≤ 0. If AN is a neutrosophic

N−filter of A, then the nonempty subset AN (a, b, c) is a filter of A.

Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A and

AN (a, b, c) 6= ∅ for a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0. Since a ≤ TN (x) ≤ TN (1), b ≥
IN (x) ≥ IN (1) and c ≥ FN (x) ≥ FN (1), for all x ∈ AN (a, b, c), we have 1 ∈ AN (a, b, c).

Let x|(y|1), x ∈ AN (a, b, c). Then a ≤ TN (x), IN (x) ≤ b, FN (x) ≤ c, a ≤ TN (x|(y|1)),

IN (x|(y|1)) ≤ b and FN (x|(y|1)) ≤ c. Since

a ≤ min{TN (x|(y|1)), TN (x)} ≤ TN (y),
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IN (y) ≤ max{IN (x|(y|1)), IN (x)} ≤ b

and

FN (y) ≤ max{FN (x|(y|1)), FN (x)} ≤ c,

for all x, y ∈ A, it is obtained y ∈ AN (a, b, c). Hence, AN (a, b, c) is a filter of A.

Theorem 3.20. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-

algebra A and T a
N , IbN , F c

N be filters of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a+ b+ c ≤ 0. Then

AN is a neutrosophic N−filter of A.

Proof. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra A

and T a
N , IbN , F c

N be filters of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0. Assume

that TN (1) < TN (x0), IN (y0) < IN (1) and FN (z0) < FN (1). If a0 =
1

2
(TN (1) + TN (x0)),

b0 =
1

2
(IN (1) + IN (y0)) and c0 =

1

2
(FN (1) + FN (z0)) in [−1, 0), then TN (1) < a0 < TN (x0),

IN (1) > b0 > IN (y0) and FN (1) > c0 > FN (z0). Thus, 1 /∈ T a0
N , 1 /∈ Ib0N and 1 /∈ F c0

N , which

contradict with (Sf − 1). Hence, TN (x) ≤ TN (1), IN (x) ≥ IN (1) and FN (x) ≥ FN (1), for all

x ∈ A. Suppose that x1, x2, x3, y1, y2 and y3 are any elements of A such that

v1 = TN (y1) < min{TN (x1|(y1|1)), TN (x1)} = u1,

u2 = max{IN (x2|(y2|1)), IN (x2)} < IN (y2) = v2,

and

u3 = max{FN (x3|(y3|1)), FN (x3)} < FN (y3) = v3.

If a
′

=
1

2
(u1 + v1), b

′
=

1

2
(u2 + v2) and c

′
=

1

2
(u3 + v3) in [−1, 0), then v1 < a

′
< u1,

u2 < b
′
< v2 and u3 < c

′
< v3. So, y1 /∈ T a

′

N , y2 /∈ Ib
′

N and y3 /∈ F c
′

N when x1|(y1|1), x1 ∈ T a
′

N ,

x2|(y2|1), x2 ∈ Ib
′

N and x3|(y3|1), x3 ∈ F c
′

N . This is a contradiction. Thereby,

min{TN (x|(y|1)), TN (x)} ≤ TN (y),

IN (y) ≤ max{IN (x|(y|1)), IN (x)}

and

FN (y) ≤ max{FN (x|(y|1)), FN (x)},

for all x, y ∈ A. Therefore, AN is a neutrosophic N−filter of A.

Lemma 3.21. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A. Then AN is a neutrosophic N−filter of A if and only if z ≤ y|(x|1) implies

min{TN (y), TN (z)} ≤ TN (x),

IN (x) ≤ max{IN (y), IN (z)}
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and

FN (x) ≤ max{FN (y), FN (z)},

for all x, y, z ∈ A.

Proof. Let AN be a neutrosophic N−filter of A and x, y and z be any elements of A such that

z ≤ y|(x|1). Since TN (z) ≤ TN (y|(x|1)), IN (z) ≥ IN (y|(x|1)) and FN (z) ≥ FN (y|(x|1)) from

Lemma 3.15, it follows that

min{TN (y), TN (z)} ≤ min{TN (y|(x|1)), TN (y)} ≤ TN (x),

IN (x) ≤ max{IN (y|(x|1)), IN (y)} ≤ max{IN (y), IN (z)}

and

FN (x) ≤ max{FN (y|(x|1)), FN (y)} ≤ max{FN (y), FN (z)},

for all x, y, z ∈ A.

Conversely, suppose that AN is a neutrosophic N−structure on A such that z ≤ y|(x|1)

implies

min{TN (y), TN (z)} ≤ TN (x),

IN (x) ≤ max{IN (y), IN (z)}

and

FN (x) ≤ max{FN (y), FN (z)},

for all x, y, z ∈ A. Since x ≤ 1 ≈ x|0 ≈ x|(1|1) from (n2), it is obtained that TN (x) ≤ TN (1),

IN (1) ≤ IN (x) and FN (1) ≤ FN (x), for all x ∈ A. Since x ≤ (x|(y|1))|(y|1) from Lemma 2.4

(v), we have

min{TN (x|(y|1)), TN (x)} ≤ TN (y),

IN (y) ≤ max{IN (x|(y|1)), IN (x)}

and

FN (y) ≤ max{FN (x|(y|1)), FN (x)},

for all x, y ∈ A. Hence, AN is a neutrosophic N−filter of A.

Theorem 3.22. Every neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A is a

neutrosophic N−subalgebra of A.
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Proof. Let AN be a neutrosophic N−filter of A. Since

min{TN (x), TN (y)} ≤ min{TN (1), TN (y)}
= min{TN (((y|1)|1)|(((y|1)|x)|1)), TN (y)}
= min{TN (y|((x|(y|1))|1)), TN (y)}
≤ TN (x|(y|1)),

and similarly,

IN (x|(y|1)) ≤ max{IN (x), IN (y)}

and

FN (x|(y|1)) ≤ max{FN (x), FN (y)},

from (n1), (n3) and (n5), it follows that AN is a neutrosophic N−subalgebra of A.

The inverse of Theorem 3.22 does not usually hold.

Example 3.23. The neutrosophic N−subalgebra AN of A in Example 3.2. Then it is not a

neutrosophic N−filter of A since min{TN (u|(0|1)), TN (u)} = min{TN (v), TN (u)} = −0.68 >

−0.79 = TN (0).

Definition 3.24. Let A be a strong Sheffer stroke NMV-algebra. Define

Axt
N := {x ∈ A : TN (xt) ≤ TN (x)},

Axi
N := {x ∈ A : IN (x) ≤ IN (xi)}

and

A
xf

N := {x ∈ A : FN (x) ≤ FN (xf )},

for all xt, xi, xf ∈ A. Obviously, xt ∈ Axt
N , xi ∈ Axi

N and xf ∈ A
xf

N .

Example 3.25. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Let

TN (0) = −0.113, TN (u) = −0.12, TN (v) = −0.13, TN (1) = 0, IN (0) = −0.21, IN (u) = −0.22,

IN (v) = −0.23, IN (1) = −1, FN (0) = −0.31, FN (u) = −0.32, FN (v) = −0.33, FN (1) =

−0.34, xt = u, xi = v and xf = 0. Then

Axt
N = {x ∈ A : TN (u) ≤ TN (x)} = {0, u, 1},

Axi
N = {x ∈ A : IN (x) ≤ IN (v)} = {v, 1}

and

A
xf

N = {x ∈ A : FN (x) ≤ FN (0)} = A.

Theorem 3.26. Let xt, xi and xf be any elements of a strong Sheffer stroke NMV-algebra A.

If AN is a neutrosophic N−filter of A, then Axt
N , Axi

N and A
xf

N are filters of A.
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Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A. Since

TN (xt) ≤ TN (1), IN (1) ≤ IN (xi) and FN (1) ≤ FN (xf ), for any xt, xi, xf ∈ A, we have 1 ∈ Axt
N ,

1 ∈ Axi
N and 1 ∈ A

xf

N . Let x1|(y1|1), x1 ∈ Axt
N , x2|(y2|1), x2 ∈ Axi

N and x3|(y3|1), x3 ∈ A
xf

N .

Then TN (xt) ≤ TN (x1|(y1|1)), TN (xt) ≤ TN (x1), IN (x2|(y2|1)) ≤ IN (xi), IN (x2) ≤ IN (xi) and

FN (x3|(y3|1)) ≤ FN (xf ), FN (x3) ≤ FN (xf ). Since

TN (xt) ≤ min{TN (x1|(y1|1)), TN (x1)} ≤ TN (y1),

IN (y2) ≤ max{IN (x2|(y2|1)), IN (x2)} ≤ IN (xi)

and

FN (y3) ≤ max{FN (x3|(y3|1)), FN (x3)} ≤ FN (xf ),

we get y1 ∈ Axt
N , y2 ∈ Axi

N and y3 ∈ A
xf

N . Thus, Axt
N , Axi

N and A
xf

N are filters of A.

Example 3.27. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. For a

neutrosophic N−filter

AN = { 0

(−0.32,−0.29,−0.07)
,

u

(−0.32,−0.29,−0.07)
,

v

(−0.1,−0.78,−0.17)
,

1

(−0.1,−0.78,−0.17)
}

of A, xt = u, xi = v and xf = 1 ∈ A, the subsets

Axt
N = {x ∈ A : TN (u) ≤ TN (x)} = A,

Axi
N = {x ∈ A : IN (x) ≤ IN (v)} = {v, 1}

and

A
xf

N = {x ∈ A : FN (x) ≤ FN (1)} = {v, 1}

of A are filterss of A.

Theorem 3.28. Let xt, xi and xf be any elements of a strong Sheffer stroke NMV-algebra A

and AN be a neutrosophic N−structure on A.

(a) If Axt
N , Axi

N and A
xf

N are filters of A, then

TN (x) ≤ min{TN (y|(z|1)), TN (y)} ⇒ TN (x) ≤ TN (z),

IN (x) ≥ max{IN (y|(z|1)), IN (y)} ⇒ IN (x) ≥ IN (z)

and

FN (x) ≥ max{FN (y|(z|1)), FN (y)} ⇒ FN (x) ≥ FN (z),

(2)

for all x, y, z ∈ A.
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(b) If AN satisfies the condition (3.2) and

TN (x) ≤ TN (1), IN (1) ≤ IN (x) and FN (1) ≤ FN (x), for all x ∈ A, (3)

then Axt
N , Axi

N and A
xf

N are filters of A, for all xt ∈ T−1N , xi ∈ I−1N and xf ∈ F−1N .

Proof. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra A.

(a) Let Axt
N , Axi

N and A
xf

N be filters of A, for any xt, xi, xf ∈ A, and x, y, z be any elements of

A such that TN (x) ≤ min{TN (y|(z|1)), TN (y)}, IN (x) ≥ max{IN (y|(z|1)), IN (y)} and FN (x) ≥
max{FN (y|(z|1)), FN (y)}. Since y|(z|1), y ∈ Axt

N , y|(z|1), y ∈ Axi
N and y|(z|1), y ∈ A

xf

N , where

xt = xi = xf = x, it follows from (Sf − 2) that z ∈ Axt
N , z ∈ Axi

N and z ∈ A
xf

N , where

xt = xi = xf = x. Thus, TN (x) ≤ TN (z), IN (z) ≤ IN (x) and FN (z) ≤ FN (x), for all

x, y, z ∈ A.

(b) Let AN be a neutrosophic N−structure on A satisfying the conditions (2) and (3),

for xt ∈ T−1N , xi ∈ I−1N and xf ∈ F−1N . Then 1 ∈ Axt
N , 1 ∈ Axi

N and 1 ∈ A
xf

N from the

condition (3). Let x1|(y1|1), x1 ∈ Xxt
N , x2|(y2|1), x2 ∈ Axi

N and x3|(y3|1), x3 ∈ A
xf

N . Thus,

TN (xt) ≤ TN (x1|(y1|1)), TN (xt) ≤ TN (x1), IN (x2|(y2|1)) ≤ IN (xi), IN (x2) ≥ IN (xi) and

FN (x3|(y3|1)) ≤ FN (xf ), FN (x3) ≤ FN (xf ). Since

TN (xt) ≤ min{TN (x1|(y1|1)), TN (x1)},

max{IN (x2|(y2|1)), IN (x2)} ≤ IN (xi)

and

max{FN (x3|(y3|1)), FN (x3)} ≤ FN (xf ),

it follows from the condition (2) that TN (xt) ≤ TN (y1), IN (y2) ≤ IN (xi) and FN (y3) ≤ FN (xf ).

Hence, y1 ∈ Axt
N , y2 ∈ Axi

N and y3 ∈ A
xf

N . Therefore, Axt
N , Axi

N and A
xf

N are filters of A.

Example 3.29. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Let

TN (0) = TN (v) = −1, TN (u) = TN (1) = 0, IN (0) = IN (v) = 0, IN (u) = IN (1) = −1, FN (0) =

FN (v) = −0.71, FN (u) = FN (1) = −0.5. Then the filters

Axt
N = A,Axi

N = {u.1} and A
xf

N = A

of A satisfy the condition (2) in Theorem 3.28, for xt = v, xi = u and xf = 1 ∈ A.

Moreover, let

AN = { 0

(−0.99, 0,−0.01)
,

u

(−0.99, 0,−0.01)
,

v

(−0.99, 0,−0.01)
,

1

(0,−1,−1)
}

be a neutrosophic N−structure on A satisfying the conditions (2) and (3) in Theorem 3.28.

Then the subsets

Axt
N = {x ∈ A : TN (1) ≤ TN (x)} = {1},

Axi
N = {x ∈ A : IN (x) ≤ IN (0)} = A
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and

A
xf

N = {x ∈ A : FN (x) ≤ FN (u)} = A

of A are filters of A, where xt = 1, xi = 0 and xf = u ∈ A.

4. Conclusion

In this study, neutrosophic N−structures defined by N−functions on strong Sheffer stroke

NMV-algebras have been investigated. Basic definitions and notions about strong Sheffer

stroke NMV-algebras and neutrosophic N−structures defined by N−functions on a nonempty

universe X are presented and then a neutrosophic N−subalgebra and a (a, b, c)− level set of

a neutrosophic N−structure are defined by the help of N−functions on strong Sheffer stroke

NMV-algebras. It is shown that the (a, b, c)−level set of a neutrosophic N−subalgebra of

a strong Sheffer stroke NMV-algebra is its strong Sheffer stroke NMV-subalgebra and vice

versa. Also, it is proved that the family of all neutrosophic N−subalgebras of this alge-

braic structure forms a complete distributive lattice. It is illustrated that every neutrosophic

N−subalgebra of a strong Sheffer stroke NMV-algebra satisfies TN (x) ≤ TN (1), IN (1) ≤ IN (x)

and FN (1) ≤ FN (x), for all elements x in this algebra but a neutrosophic N−structure on a

strong Sheffer stroke NMV-algebra satisfying this property is generally not its neutrosophic

N−subalgebra. Besides, it is interpreted the images of the sequence under N−functions on

a strong Sheffer stroke NMV-algebra. Moreover, it is stated the case which N−functions

determining a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra are con-

stant. Then a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra is defined via

N−functions and shown that the functions TN , IN and FN defining the neutrosophic N−filter

satisfies TN (x) ≤ TN (y), IN (x) ≥ IN (y) and FN (x) ≥ FN (y) when x ≤ y, but the inverse does

not usually hold. It is demonstrated that (a, b, c)−level set of a neutrosophic N−filter of a

strong Sheffer stroke NMV-algebra is its filter. Indeed, it is given that the subsets defined by

N−functions on a strong Sheffer stroke NMV-algebra must be its filters so that a neutrosophic

N−structure on this algebra is a neutrosophic N−filter. It is proved that every neutrosophic

N−filter of a strong Sheffer stroke NMV-algebra is its neutrosophic N−subalgebra whereas

the inverse is not true in general. Additionally, new three subsets Axt
N , Axi

N and A
xf

N of a strong

Sheffer stroke NMV-algebra are defined by N−functions and any elements xt, xi and xf of the

algebra. We show that these subsets are filters of a strong Sheffer stroke NMV-algebra for its

neutrosophic N−filter but the inverse holds under special conditions.

In our future works, we wish to introduce new Sheffer stroke algebraic structures and inves-

tigate their neutrosophic N−structures.
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Abstract: Multi-criteria decision making (MCDM) is the technique of selecting the best alternative 

from multiple alternatives and multiple conditions. The technique for order preference by similarity 

to an ideal solution (TOPSIS) is a crucial practical technique for ranking and selecting different 

options by using a distance measure. In this article, we protract the fuzzy TOPSIS technique to 

neutrosophic fuzzy TOPSIS and prove the accuracy of the method by explaining the MCDM 

problem with single-valued neutrosophic information and use the method for supplier selection in 

the production industry. We hope that this article will promote future scientific research on 

numerous existing issues based on multi-criteria decision making. 

Keywords: Neutrosophic set, Single valued Neutrosophic set, TOPSIS, MCDM 

 

1. Introduction 

We faced a lot of complications in different areas of life which contain vagueness such as 

engineering, economics, modeling, and medical diagnoses, etc. However, a general question is raised 

that in mathematical modeling how we can express and use the uncertainty. A lot of researchers in 

the world proposed and recommended different approaches to solve those problems that contain 

uncertainty. In decision-making problems, multiple attribute decision making (MADM) is the most 

essential part which provides us to find the most appropriate and extraordinary alternative. 

However, choosing the appropriate alternative is very difficult because of vague information in some 

cases. To overcome such situations, Zadeh developed the notion of fuzzy sets (FSs) [1] to solve those 

problems which contain uncertainty and vagueness. Fuzzy sets are like sets whose components have 

membership (Mem) degrees. In the classical set theory, the Mem degree of the elements in the set is 

checked in binary form according to the bivalent condition of whether the elements completely 

belong to the set. In contrast, the fuzzy set theory allows modern ratings of the Mem of elements in 

the set. This is represented by the Mem function, and the effective unit interval of the Mem function 

is [0, 1]. The fuzzy set is the generalization of the classical set because the indicator function of the 

classic set is a special case of the Mem function of the fuzzy set if the latter only takes the value 0 or 

1. In the fuzzy set theory, the classical bivalent set is usually called the crisp set. Fuzzy set theory can 

be used in a wide range of fields with incomplete or imprecise information.  
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It is observed that in some cases circumstances cannot be handled by fuzzy sets, to overcome 

such types of situations Turksen [2] gave the idea of interval-valued fuzzy sets (IVFSs). In some cases, 

we must deliberate membership unbiassed as the non-membership values for the suitable 

representation of an object in uncertain and indeterminate conditions that could not be handled by 

FSs nor IVFSs. To overcome these difficulties Atanassov offered the concept of Intuitionistic fuzzy 

sets (IFSs) [3]. The theory which was presented by Atanassov only deals the insufficient data 

considering both the membership and non-membership values, but the intuitionistic fuzzy set theory 

cannot handle the incompatible and imprecise information. To deal with such incompatible and 

imprecise data Smarandache [4] extended the work of Atanassov IFSs and proposed a powerful tool 

comparative to FSs and IFSs to deal with indeterminate, incomplete, and inconsistent information’s 

faced in real-life problems. Since the direct use of Neutrosophic sets (NSs) for TOPSIS is somewhat 

difficult. To apply the NSs, Wang et al. introduced a subclass of NSs known as single-valued 

Neutrosophic sets (SVNSs) in [5]. In [6] the author proposed a geometric interpretation by using NSs. 

Gulfam et al. [7] introduced a new distance formula for SVNSs and developed some new techniques 

under the Neutrosophic environment. The concept of a single-valued Neutrosophic soft expert set is 

proposed in [8] by combining the SVNSs and soft expert sets. To solve MCDM problems with single-

valued Neutrosophic numbers (SVNNs) presented by Deli and Subas in [9], they constructed the 

concept of cut sets of SVNNs. On the base of the correlation of IFSs, the term correlation coefficient 

of SVNSs [10] introduced and proposed a decision-making method by using a weighted correlation 

coefficient or the weighted cosine similarity measure of SVNSs. In [11] the idea of simplified 

Neutrosophic sets introduced with some operational laws and aggregation operators such as real-life 

Neutrosophic weighted arithmetic average operator and weighted geometric average operator. They 

constructed an MCDM method based on proposed aggregation operators and cosine similarity 

measure for simplified neutrosophic sets. Sahin and Yiğider [12] extended the TOPSIS method to 

MCDM with a single-valued neutrosophic technique.  

Hwang and Yoon [13] established TOPSIS to solve the general difficulties of DM. The TOPSIS 

method can effectively maintain the minimum distance from the ideal solution, thereby helping to 

select the finest choice. After the TOPSIS technique came out, some investigators utilized the TOPSIS 

technique for DM and protracted the TOPSIS technique to several other hybrid structures of FS. The 

most important determinant of current scientific research is to present an integrated model for 

neutrosophic TOPSIS to solve the MCDM problem. Chen & Hwang [14] extended the idea of the 

TOPSIS method and proposed a new TOPSIS model. The author uses the newly proposed decision-

making method to solve uncertain data [15]. Zulqarnain et al. [16] utilized the TOPSIS method for the 

prediction of diabetic patients in medical diagnosis. They also utilized the TOPSIS extensions of 

different hybrid structures of FS [17–19] and used them for decision making. Pramanik et al. [21] 

established the TOPSIS to resolve the multi-attribute decision-making problem under a single-valued 

neutrosophic soft set expert scenario. Zulqarnain et al. [21] presented the generalized neutrosophic 

TOPSIS to solve the MCDM problem. Zulqarnain et al. [22] utilized fuzzy TOPSIS to solve the MCDM 

problem. Maji [23] proposed the concept of neutrosophic soft sets (NSSs) with some properties and 

operations. The authors studied NSSs and gave some new definitions on NSSs [24], they also gave 

the idea of neutrosophic soft matrices with some operations and proposed a decision-making 

method. Many researchers developed the decision-making models by using the NSSs reported in the 

literature [25–27]. Elhassouny and Smarandache [28] extended the work on a simplified TOPSIS 

method and by using single-valued Neutrosophic information they proposed Neutrosophic 

simplified TOPSIS method. The concept of single-valued neutrosophic cross-entropy measure 

introduced by Jun [29], he also constructed an MCDM method and claimed that this proposed 

method is more appropriate than previous methods for decision making.  

Saha and Broumi [31] studied the interval-valued neutrosophic sets (IVNSs) and developed 

some new set-theoretic operations on IVNSs with their properties. The idea of an Interval-valued 

generalized single valued neutrosophic trapezoidal number (IVGSVTrN) was presented by Deli [32] 

with some operations and discussed their properties based on neutrosophic numbers. Hashim et al 
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[33], studied the vague set and interval neutrosophic set and established a new theory known as 

interval neutrosophic vague set (INVS), they also presented some operations for INVS with their 

properties and derived the properties by using numerical examples. Abdel basset et al. [34] applied 

TODIM and TOPSIS methods based on the best-worst method to increase the accuracy of evaluation 

under uncertainty according to the NSs. They also used the Plithogenic set theory to resolve the 

indeterminate information and evaluate the economic performance of manufacturing industries, they 

used the AHP method to find the weight vector of the financial ratios to achieve this goal after that 

they used the VIKOR and TOPSIS methods to utilize the companies ranking [35, 36]. Nabeeh et al. 

[37] utilized the integrating neutrosophic analytical hierarchy process (AHP) with the TOPSIS for 

personal selection. Nabeeh et al. [38] developed the AHP neutrosophic by merging the AHP and NS.  

Abdel-Basset et al. [39] merged the AHP, MCDM approach, and NS to handle the indefinite and 

irregularity in decision making. Abdel-Basset et al. [40] constructed the TOPSIS technique for type-2 

neutrosophic numbers and utilized the presented approach for supplier selection. Abdel-Basset et al. 

[41] utilized the neutrosophic TOPSIS for the selection of medical instruments and many. Saqlain et. 

al. applied TOPSIS for the prediction of sports, and in MCDM problems [42-44].   

The FS and IFS theories do not provide any information about the indeterminacy part of the 

object. Because the above work is considered to examine the environment of linear inequality 

between the degree of membership (MD) and the degree of non-membership (NMD) of the 

considered attributes. However, all existing studies only deal with the scenario by using MD and 

NMD of attributes. If any decision-maker considers the truthiness, falsity, and indeterminacy of any 

attribute of the alternatives, then clearly, we can see that it cannot be handled by the above-mentioned 

FS and IFS theories. To overcome the above limitations, Smarandache [4] proposed the NS to solve 

uncertain objects by considering the truthiness, falsity, and indeterminacy. In the following article, 

we explain some positive impacts of this research. The concentration of this study is to evaluate the 

best supplier for the production industry. This research is a very suitable illustration of Neutrosophic 

TOPSIS. A group of decision-makers chooses the best supplier for the production industry. The 

Neutrosophic TOPSIS method increases alternative performances based on the best and worst 

solutions. Classical TOPSIS uses clear techniques for language assessment, but due to the imprecision 

and ambiguity of language assessment, we propose neutrosophic TOPSIS. In this paper, we discuss 

the NSs and SVNSs with some operations. We presented the generalization of TOPSIS for the SVNSs 

and use the proposed method for supplier selection. 

In Section 2, some basic definitions have been added, which will help us to design the structure 

of the current article. In section 3, we develop an integrated model to solve the MCDM problem under 

single-valued neutrosophic information. We also established the graphical and mathematical 

structure of the proposed TOPSIS approach. To ensure the validity of the developed methodology 

we presented a numerical illustration for supplier selection in the production industry in section 4. 

2. Preliminaries 

In this section, we remind some basic definitions such as NSs and SVNSs with some operations that 

will be used in the following sequel. 

Neutrosophic Set (NS) [30]: Let X be a space of points and x be an arbitrary element of X. A 

neutrosophic set A in X is defined by a Truth-membership function TA(x) , an Indeterminacy-

membership function IA(x) and a falsity-membership function FA(x). TA(x), IA(x) and FA(x) are 

real standard or non-standard subsets of ]0−, 1+[ i.e.; TA(x), IA(x), FA(x): X → ]0−, 1+[, and 0− ≤ 

sup TA(x) + sup IA(x) + sup FA(x) ≤ 3+.  

Single Valued Neutrosophic Sets [5]: Let E be a universe. An SVNS over E is an NS over E, but 

truthiness, indeterminacy, and falsity membership functions are defined  
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TA(x): X → [0, 1], IA(x): X → [0, 1], FA(x): X → [0, 1], and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Multiplication of SVNS [11]: Let A = {𝛼1, 𝛼2, 𝛼3} and B = {𝛽1, 𝛽2, 𝛽3} are two SVN numbers, then 

their multiplication is defined as follows  A ⊗ B = (𝛼1𝛽1, 𝛼2 + 𝛽2 − 𝛼2𝛽2, 𝛼3 + 𝛽3 − 𝛼3𝛽3). 

3. Neutrosophic TOPSIS [11] 

3. 1. Algorithm for Neutrosophic TOPSIS using SVNNs 

To explain the procedure of Neutrosophic TOPSIS using SVNNs the following steps 

are followed. Let A = {A1, A2, A3, …., Am} be a set of alternatives and C = {C1, C2, C3, …., Cn} be a set of 

evaluation criteria and DM be a set of “l” decision-makers as follows DM = {DM1, DM2, DM3,…, DMl}. 

In the form of linguistic variables, the importance of the evaluation criteria, DMs, and alternative 

ratings are given in Table 1. 

Step 1: Computation of weights of the DMs 

Let the SVN number for rating the kth DM is denoted by  

𝐷𝑘 = (𝑇𝑘
𝑑𝑚, 𝐼𝑘

𝑑𝑚, 𝐹𝑘
𝑑𝑚) 

The weight of the kth DM can be found by the following formula 

𝜆𝑘 = 
1−[

1

3
 {(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]

0.5

∑ (1−[
1

3
 {(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

  ; where 𝜆𝑘 ≥ 0 and ∑  𝜆𝑘
𝑙
𝑘=1  = 1   (1) 

Step 2: Computation of the Aggregated Neutrosophic Decision Matrix (ANDM) 

The ANDM is given as follows 

𝐷 = 

𝐴1
𝐴2
⋮
𝐴𝑚

[

𝑟11 𝑟12 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟1𝑛
⋮ ⋮ ⋱ ⋮
𝑟𝑚1 𝑟𝑚2 ⋯ 𝑟𝑚𝑛

] = [𝑟𝑖𝑗]𝑚×𝑛            (2) 

where 𝑟𝑖𝑗  can be defined as 

𝑟𝑖𝑗  = (𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗) = (𝑇𝐴𝑖 (𝑥𝑗), 𝐼𝐴𝑖 (𝑥𝑗), 𝐹𝐴𝑖 (𝑥𝑗)), where   𝑖 = 1, 2, 3, …., m; 𝑗 = 1, 2, 3, …., n 

Therefore, ANDM written as follows 

D = 

[
 
 
 
(𝑇𝐴1 (𝑥1), 𝐼𝐴1 (𝑥1), 𝐹𝐴1 (𝑥1)) (𝑇𝐴1 (𝑥2), 𝐼𝐴1 (𝑥2), 𝐹𝐴1 (𝑥2)) ⋯ (𝑇𝐴1 (𝑥𝑛), 𝐼𝐴1 (𝑥𝑛), 𝐹𝐴1 (𝑥𝑛))

(𝑇𝐴2 (𝑥1), 𝐼𝐴2 (𝑥1), 𝐹𝐴2 (𝑥1)) (𝑇𝐴2 (𝑥2), 𝐼𝐴2 (𝑥2), 𝐹𝐴2 (𝑥2)) ⋯ (𝑇𝐴2 (𝑥𝑛), 𝐼𝐴2 (𝑥𝑛), 𝐹𝐴2 (𝑥𝑛))

⋮ ⋮ ⋱ ⋮
(𝑇𝐴𝑚 (𝑥1), 𝐼𝐴𝑚 (𝑥1), 𝐹𝐴𝑚 (𝑥1)) (𝑇𝐴𝑚 (𝑥2), 𝐼𝐴𝑚 (𝑥2), 𝐹𝐴𝑚 (𝑥2)) ⋯ (𝑇𝐴𝑚 (𝑥𝑛), 𝐼𝐴𝑚 (𝑥𝑛), 𝐹𝐴𝑚 (𝑥𝑛))]

 
 
 

 

rating for the ith alternative w.r.t. the jth criterion by the kth DM 

𝑟𝑖𝑗
(𝑘)

 = (𝑇𝑖𝑗
(𝑘)

, 𝐼𝑖𝑗
(𝑘)

, 𝐹𝑖𝑗
(𝑘)

) 

For DM weights and alternative ratings 𝑟𝑖𝑗  can be calculated by using a single-valued neutrosophic 

weighted averaging operator (SVNWAO)   

𝑟𝑖𝑗  = [1 −  ∏ (1 − 𝑇𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ]         (3) 

Step 3: Computation of the weights for the criteria  

Let an SVNN allocated to the criterion by 𝑋𝑗 the kth DM is denoted as 

𝑤𝑗
(𝑘)

 = (𝑇𝑗
(𝑘)
, 𝐼𝑗
(𝑘)
, 𝐹𝑗

(𝑘)
) 

SVNWAO to compute the weights of the criteria is given as follows 
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𝑤𝑗  = [1 −  ∏ (1 − 𝑇𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ]         (4) 

The aggregated weight for the criterion 𝑋𝑗 is represented as 

𝑤𝑗  = (𝑇𝑗, 𝐼𝑗, 𝐹𝑗)  𝑗 = 1, 2, 3, …., n 

W = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛]
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 

Step 4: Computation of Aggregated Weighted Neutrosophic Decision Matrix (AWNDM) 

The AWNDM is calculated as follows 

𝑅′ = [

𝑟11
′ 𝑟12

′ ⋯ 𝑟1𝑛
′

𝑟21
′ 𝑟22

′ ⋯ 𝑟2𝑛
′

⋮ ⋮ ⋱ ⋮
𝑟𝑚1
′ 𝑟𝑚2

′ ⋯ 𝑟𝑚𝑛
′

] = [𝑟𝑖𝑗
′ ]
𝑚×𝑛

             (5) 

where 𝑟𝑖𝑗
′  = (𝑇𝐴𝑖.𝑊 (𝑥𝑗), 𝐼𝐴𝑖.𝑊 (𝑥𝑗), 𝐹𝐴𝑖.𝑊 (𝑥𝑗)) where 𝑖 = 1, 2, 3, …., m; 𝑗 = 1, 2, 3, …., n. 

Therefore, 𝑅′ can be written as 

𝑅′ = 

[
 
 
 
(𝑇𝐴1.𝑊 (𝑥1), 𝐼𝐴1.𝑊 (𝑥1), 𝐹𝐴1.𝑊 (𝑥1)) (𝑇𝐴1.𝑊 (𝑥2), 𝐼𝐴1.𝑊 (𝑥2), 𝐹𝐴1.𝑊 (𝑥2)) ⋯ (𝑇𝐴1.𝑊 (𝑥𝑛), 𝐼𝐴1.𝑊 (𝑥𝑛), 𝐹𝐴1.𝑊 (𝑥𝑛))

(𝑇𝐴2.𝑊 (𝑥1), 𝐼𝐴2.𝑊 (𝑥1), 𝐹𝐴2.𝑊 (𝑥1)) (𝑇𝐴2.𝑊 (𝑥2), 𝐼𝐴2.𝑊 (𝑥2), 𝐹𝐴2.𝑊 (𝑥2)) ⋯ (𝑇𝐴2.𝑊 (𝑥𝑛), 𝐼𝐴2.𝑊 (𝑥𝑛), 𝐹𝐴2.𝑊 (𝑥𝑛))

⋮ ⋮ ⋱ ⋮
(𝑇𝐴𝑚.𝑊 (𝑥1), 𝐼𝐴𝑚.𝑊 (𝑥1), 𝐹𝐴𝑚.𝑊 (𝑥1)) (𝑇𝐴𝑚.𝑊 (𝑥2), 𝐼𝐴𝑚.𝑊 (𝑥2), 𝐹𝐴𝑚.𝑊 (𝑥2)) ⋯ (𝑇𝐴𝑚.𝑊 (𝑥𝑛), 𝐼𝐴𝑚.𝑊 (𝑥𝑛), 𝐹𝐴𝑚.𝑊 (𝑥𝑛))]

 
 
 

 

To find 𝑇𝐴𝑖.𝑊 (𝑥𝑗), 𝐼𝐴𝑖.𝑊 (𝑥𝑗) and 𝐹𝐴𝑖.𝑊 (𝑥𝑗) we used  

R ⊗ W = {‹x, 𝑇𝐴𝑖.𝑊 (x)›, ‹x, 𝐼𝐴𝑖.𝑊 (x)›, ‹x, 𝐹𝐴𝑖.𝑊 (x)›│x ∈  X}         (6) 

The components of the product given as 

𝑇𝐴𝑖.𝑊 (x) = 𝑇𝐴𝑖  (x). 𝑇𝑗 

𝐼𝐴𝑖.𝑊 (𝑥) = 𝐼𝐴𝑖  (𝑥) + 𝐼𝑗  (𝑥) -  𝐼𝐴𝑖  (𝑥)× 𝐼𝑗  (𝑥) 

𝐹𝐴𝑖.𝑊 (𝑥) = 𝐹𝐴𝑖  (𝑥) + 𝐹𝑗  (𝑥) -  𝐹𝐴𝑖  (𝑥)× 𝐹𝑗  (𝑥) 

Step 5: Computation of Single Valued Neutrosophic Positive Ideal Solution (SVN-PIS) and Single     

Valued Neutrosophic Positive Ideal Solution (SVN-NIS)  

Let 𝐽1 be the benefit criteria and 𝐽2 be the cost criteria. 𝐴∗ be an SVN-PIS and 𝐴′ be an SVN-NIS as 

follows  

𝐴∗ = (𝑇𝐴∗𝑊 (𝑥𝑗), 𝐼𝐴∗𝑊 (𝑥𝑗), 𝐹𝐴∗𝑊 (𝑥𝑗)) and 

𝐴′ = (𝑇𝐴′𝑊 (𝑥𝑗), 𝐼𝐴′𝑊 (𝑥𝑗), 𝐹𝐴′𝑊 (𝑥𝑗)) 

The components of SVN-PIS and SVN-NIS are following 

𝑇𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2)) 

𝐼𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2)) 

𝐹𝐴∗𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2)) 

𝑇𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑖𝑛
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑎𝑥
𝑖
𝑇𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2)) 

𝐼𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝐼𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2)) 

𝐹𝐴′𝑊 (𝑥𝑗) = ((
𝑚𝑎𝑥
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗1) , (

𝑚𝑖𝑛
𝑖
𝐹𝐴𝑖.𝑊(𝑥𝑗) │j ∈  𝑗2)) 
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Step 6: Computation of Separation Measures 

For the separation measures 𝑑∗and 𝑑′, Normalized Euclidean Distance is used as given as 

𝑑𝑖
∗= (

1

3𝑛
 ∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

 (7) 

𝑑𝑖
′= (

1

3𝑛
 ∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴′𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴′𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴′𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

 (8) 

Step 7: Computation of Relative Closeness Coefficient (RCC) 

The RCC of an alternative Ai w.r.t. the SVN-PIS A* is computed as 

RCCi = 
𝑑𝑖
′ 

𝑑𝑖
′+𝑑𝑖

∗  where 0 ≤ RCCi ≤ 1             (9) 

Step 8: Ranking alternatives 

After computation of RCCi for each alternative 𝐴𝑖 , the rank of the alternatives presented in 

descending orders of RCCi.  

The flow chart of the presented technique can be seen in Figure 1.  

 

Figure 1: Flow chart of the presented approach 

4. Application of Neutrosophic TOPSIS in decision making    

A production industry wants to hire a supplier, for the selection of supplier managing director of the 

industry decides the criteria for supplier selection. The industry hires a team of decision-makers for 

the selection of the best supplier. Consider A = {Ai: i = 1, 2, 3, 4, 5} be a set of supplier and DM = {DM1, 

DM2, DM3, DM4} be a team of decision-makers (l = 4). The evaluation criteria (n = 5) for the selection 

of supplier given as follows,     

C = {
𝐵𝑒𝑛𝑖𝑓𝑖𝑡 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎
𝐶𝑜𝑠𝑡 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎

 𝑗1 = {

𝑋1:     𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦
𝑋2:       𝑄𝑢𝑎𝑙𝑖𝑡𝑦
𝑋3:  𝐹𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦
𝑋4:        𝑆𝑒𝑟𝑣𝑖𝑐𝑒

 𝑗2 = {𝑋5 ∶ 𝑃𝑟𝑖𝑐𝑒 

Step 1
• Computation of weights of decision maker

Step 2
•Computation of the Aggregated Neutrosophic Decision Matrix

Step 3
•Compue the weights for the criteria

Step 4
•Developed the Aggregated Weighted Neutrosophic Decision Matrix 

Step 5
•Compute the SVN-PIS and SVN-NIS

Step 6
•Compute the Separation Measures

Step 7
•Find Relative Closeness Coefficient

Step 8
•Ranking alternatives
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Calculations of the problem using the proposed SVN-TOPSIS for the importance of criteria and 

DMs SVN rating scale is given in the following Table 

Table 1. Linguistic variables LV’s for rating the importance of criteria and decision-makers 

LVs SVNNs 

VI (.90, .10, .10) 

I (.75, .25, .20) 

M (.50, .50, .50) 

UI (.35, .75, .80) 

VUI (.10, .90, .90) 

Where VI, I, M, UI, VUI stand for very important, important, medium, unimportant, very 

unimportant respectively. The alternative ratings are given in the following table 

Table 2. Alternative Ratings for Linguistic Variables 

LVs SVNNs 

EG (1.0, 0.0,0.0) 

VVG (.90, .10, .10) 

VG (.80, .15, .20) 

G (.70, .25, .30) 

MG (.60, .35, .40) 

M (.50, .50, .50) 

MB (.40, .65, .60) 

B (.30, .75, .70) 

VB (.20, .85, .80) 

VVB (.10, .90, .90) 

EB (0.0,1.0,1.0) 

Where EG, VVG, VG, G, MG, M, MB, B, VB, VVB, EB are representing extremely good, very very 

good, very good, good, medium good, medium, medium bad, bad, very bad, very very bad, 

extremely bad respectively. 

Step 1: Determine the weights of the DMs        

By using Equation 1, weights for the DMs are calculated as follows: 

𝜆𝑘 = 
1−[

1

3
 {(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]

0.5

∑ (1−[
1

3
 {(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

  ; 𝜆𝑘 ≥ 0 and ∑  𝜆𝑘
𝑙
𝑘=1  = 1 

𝜆1 = 
1−[

1

3
 {(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

∑ (1−[
1

3
 {(1−𝑇𝑘

𝑑𝑚(𝑥))
2
+ (𝐼𝑘

𝑑𝑚(𝑥))
2
+(𝐹𝑘

𝑑𝑚(𝑥))
2
}]
0.5

)𝑙
𝑘=1

   

𝜆1 = 
1−[

1

3
 {(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

1−[
1

3
 {(1−𝑇1

𝑑𝑚(𝑥))
2
+ (𝐼1

𝑑𝑚(𝑥))
2
+(𝐹1

𝑑𝑚(𝑥))
2
}]
0.5

+ 1−[
1

3
 {(1−𝑇2

𝑑𝑚(𝑥))
2
+ (𝐼2

𝑑𝑚(𝑥))
2
+(𝐹2

𝑑𝑚(𝑥))
2
}]
0.5

+

1−[
1

3
 {(1−𝑇3

𝑑𝑚(𝑥))
2
+ (𝐼3

𝑑𝑚(𝑥))
2
+(𝐹3

𝑑𝑚(𝑥))
2
}]
0.5

+1−[
1

3
 {(1−𝑇4

𝑑𝑚(𝑥))
2
+ (𝐼4

𝑑𝑚(𝑥))
2
+(𝐹4

𝑑𝑚(𝑥))
2
}]
0.5

 

   

𝜆1 = 
1−[

1

3
 {(1−0.9)2+ (0.10)2+(0.10)2}]

0.5

1−[
1

3
 {(1−0.9)2+ (0.10)2+(0.10)2}]

0.5
+ 1−[

1

3
 {(1−0.75)2+ (0.25)2+(0.20)2}]

0.5
+

1−[
1

3
 {(1−0.50)2+ (0.50)2+(0.50)2}]

0.5
+1−[

1

3
 {(1−0.35)2+ (0.75)2+(0.80)2}]

0.5
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𝜆1 = 
0.9

0.9+0.76548+0.5+0.26402
 

𝜆1 = 
0.9

2.42950
 = 0.37045 

𝜆1 = 0.37045 

Similarly, we get the weights for the other decision-makers as follows  

𝜆2 = 
0.76548

2.42950
 = 0.31508 

𝜆2 = 0.31508 

𝜆3 = 
0.5

2.42950
 = 0.20580 

𝜆3 = 0.20580 

𝜆4 = 
0.26402

2.42950
 = 0.10867 

𝜆4 = 0.10867 

The weights for DMs are given in the following Table 

Table 3. Weights of Decision Makers 

Criteria Alternatives Decision Makers 

DM1 DM2 DM3 DM4 

X1  A1  VG (0.80,0.15,0.20) 

𝑟11
(1)

 = (𝑇11
(1)

, 𝐼11
(1)

, 𝐹11
(1)

) 

MG (0.60,0.35,0.40) 

𝑟11
(2)

 = (𝑇11
(2)

, 𝐼11
(2)

, 𝐹11
(2)

) 

VG (0.80,0.15,0.20) 

𝑟11
(3)

 = (𝑇11
(3)

, 𝐼11
(3)

, 𝐹11
(3)

) 

G (0.70,0.25,0.30) 

𝑟11
(4)

 = (𝑇11
(4)

, 𝐼11
(4)

, 𝐹11
(4)

  

A2  G (0.70,0.25,0.30) 

𝑟21
(1)

 = (𝑇21
(1)

, 𝐼21
(1)

, 𝐹21
(1)

) 

VG (0.80,0.15,0.20) 

𝑟21
(2)

 = (𝑇21
(2)

, 𝐼21
(2)

, 𝐹21
(2)

) 

MG (0.60,0.35,0.40) 

𝑟21
(3)

 = (𝑇21
(3)

, 𝐼21
(3)

, 𝐹21
(3)

) 

MG (0.60,0.35,0.40) 

𝑟21
(4)

 = (𝑇21
(4)

, 𝐼21
(4)

, 𝐹21
(4)

) 

A3  M (0.50,0.50,0.50)  

𝑟31
(1)

 = (𝑇31
(1)

, 𝐼31
(1)

, 𝐹31
(1)

) 

G (0.70,0.25,0.30) 

𝑟31
(2)

 = (𝑇31
(2)

, 𝐼31
(2)

, 𝐹31
(2)

) 

MG (0.60,0.35,0.40) 

𝑟31
(3)

 = (𝑇31
(3)

, 𝐼31
(3)

, 𝐹31
(3)

) 

M (0.50,0.50,0.50) 

𝑟31
(4)

 = (𝑇31
(4)

, 𝐼31
(4)

, 𝐹31
(4)

) 

A4  G (0.70,0.25,0.30) 

𝑟41
(1)

 = (𝑇41
(1)

, 𝐼41
(1)

, 𝐹41
(1)

) 

MG (0.60,0.35,0.40) 

𝑟41
(2)

 = (𝑇41
(2)

, 𝐼41
(2)

, 𝐹41
(2)

) 

G (0.70,0.25,0.30) 

𝑟41
(3)

 = (𝑇41
(3)

, 𝐼41
(3)

, 𝐹41
(3)

) 

MG (0.60,0.35,0.40) 

𝑟41
(4)

 = (𝑇41
(4)

, 𝐼41
(4)

, 𝐹41
(4)

) 

A5  MG (0.60,0.35,0.40) 

𝑟51
(1)

 = (𝑇51
(1)

, 𝐼51
(1)

, 𝐹51
(1)

) 

G (0.70,0.25,0.30) 

𝑟51
(2)

 = (𝑇51
(2)

, 𝐼51
(2)

, 𝐹51
(2)

) 

VG (0.80,0.15,0.20) 

𝑟51
(3)

 = (𝑇51
(3)

, 𝐼51
(3)

, 𝐹51
(3)

) 

VG (0.80,0.15,0.20) 

𝑟51
(4)

 = (𝑇51
(4)

, 𝐼51
(4)

, 𝐹51
(4)

) 

X2  A1  G (0.70,0.25,0.30) 

𝑟12
(1)

 = (𝑇12
(1)

, 𝐼12
(1)

, 𝐹12
(1)

) 

G (0.70,0.25,0.30) 

𝑟12
(2)

 = (𝑇12
(2)

, 𝐼12
(2)

, 𝐹12
(2)

) 

MG (0.60,0.35,0.40) 

𝑟12
(3)

 = (𝑇12
(3)

, 𝐼12
(3)

, 𝐹12
(3)

) 

G (0.70,0.25,0.30) 

𝑟12
(4)

 = (𝑇12
(4)

, 𝐼12
(4)

, 𝐹12
(4)

) 

A2  VG (0.80,0.15,0.20) 

𝑟22
(1)

 = (𝑇22
(1)

, 𝐼22
(1)

, 𝐹22
(1)

) 

MG (0.60,0.35,0.40) 

𝑟22
(2)

 = (𝑇22
(2)

, 𝐼22
(2)

, 𝐹22
(2)

) 

M (0.50,0.50,0.50) 

𝑟22
(3)

 = (𝑇22
(3)

, 𝐼22
(3)

, 𝐹22
(3)

) 

MG (0.60,0.35,0.40) 

𝑟22
(4)

 = (𝑇22
(4)

, 𝐼22
(4)

, 𝐹22
(4)

) 

A3  M (0.50,0.50,0.50) 

𝑟32
(1)

 = (𝑇32
(1)

, 𝐼32
(1)

, 𝐹32
(1)

) 

VG (0.80,0.15,0.20) 

𝑟32
(2)

 = (𝑇32
(2)

, 𝐼32
(2)

, 𝐹32
(2)

) 

G (0.70,0.25,0.30) 

𝑟32
(3)

 = (𝑇32
(3)

, 𝐼32
(3)

, 𝐹32
(3)

) 

G (0.70,0.25,0.30) 

𝑟32
(4)

 = (𝑇32
(4)

, 𝐼32
(4)

, 𝐹32
(4)

) 

A4  MG (0.60,0.35,0.40) 

𝑟42
(1)

 = (𝑇42
(1)

, 𝐼42
(1)

, 𝐹42
(1)

) 

M (0.50,0.50,0.50) 

𝑟42
(2)

 = (𝑇42
(2)

, 𝐼42
(2)

, 𝐹42
(2)

) 

VG (0.80,0.15,0.20) 

𝑟42
(3)

 = (𝑇42
(3)

, 𝐼42
(3)

, 𝐹42
(3)

) 

M (0.50,0.50,0.50) 

𝑟42
(4)

 = (𝑇42
(4)

, 𝐼42
(4)

, 𝐹42
(4)

) 

A5  G (0.70,0.25,0.30) 

𝑟52
(1)

 = (𝑇52
(1)

, 𝐼52
(1)

, 𝐹52
(1)

) 

G (0.70,0.25,0.30) 

𝑟52
(2)

 = (𝑇52
(2)

, 𝐼52
(2)

, 𝐹52
(2)

) 

MG (0.60,0.35,0.40) 

𝑟52
(3)

 = (𝑇52
(3)

, 𝐼52
(3)

, 𝐹52
(3)

) 

VG (0.80,0.15,0.20) 

𝑟52
(4)

 = (𝑇52
(4)

, 𝐼52
(4)

, 𝐹52
(4)

) 

X3  A1  MG (0.60,0.35,0.40) MG (0.60,0.35,0.40) M (0.50,0.50,0.50) M (0.50,0.50,0.50) 
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Table 4. Importance and Weights of Decision-Makers 

  DM1  DM2  DM3  DM4  

Linguistic 

Variables  

Weights 

VI(0.90,0.10,0.10) 

(𝑇1
𝑑𝑚, 𝐼1

𝑑𝑚 , 𝐹1
𝑑𝑚)  

𝜆𝐷𝑀1= 0.37045 

I (0.75,0.25,0.20) 

(𝑇2
𝑑𝑚, 𝐼2

𝑑𝑚 , 𝐹2
𝑑𝑚) 

𝜆𝐷𝑀2= 0.31508 

M (0.50,0.50,0.50)  

(𝑇3
𝑑𝑚, 𝐼3

𝑑𝑚 , 𝐹3
𝑑𝑚) 

𝜆𝐷𝑀3= 0.20580 

UI (0.35,0.75,0.80) 

(𝑇4
𝑑𝑚, 𝐼4

𝑑𝑚 , 𝐹4
𝑑𝑚) 

𝜆𝐷𝑀4= 0.10867 

Step 2: Computation of Aggregated Single Valued Neutrosophic Decision Matrix (ASVNDM)  

To find the ASVNDM not only the weights of the DMs, but the alternative ratings are also required. 

The alternative ratings, according to the DMs given in the following table. 

Now by using Equation 3, alternative ratings 𝑟𝑖𝑗
(𝑘)

 and the DM weights 𝜆𝑘 we get 

𝑟13
(1)

 = (𝑇13
(1)

, 𝐼13
(1)

, 𝐹13
(1)

) 𝑟13
(2)

 = (𝑇13
(2)

, 𝐼13
(2)

, 𝐹13
(2)

) 𝑟13
(3)

 = (𝑇13
(3)

, 𝐼13
(3)

, 𝐹13
(3)

) 𝑟13
(4)

 = (𝑇13
(4)

, 𝐼13
(4)

, 𝐹13
(4)

) 

A2  VG (0.80,0.15,0.20) 

𝑟23
(1)

 = (𝑇23
(1)

, 𝐼23
(1)

, 𝐹23
(1)

) 

G (0.70,0.25,0.30) 

𝑟23
(2)

 = (𝑇23
(2)

, 𝐼23
(2)

, 𝐹23
(2)

) 

VG (0.80,0.15,0.20) 

𝑟23
(3)

 = (𝑇23
(3)

, 𝐼23
(3)

, 𝐹23
(3)

) 

VG (0.80,0.15,0.20) 

𝑟23
(4)

 = (𝑇23
(4)

, 𝐼23
(4)

, 𝐹23
(4)

) 

A3  M (0.50,0.50,0.50) 

𝑟33
(1)

 = (𝑇33
(1)

, 𝐼33
(1)

, 𝐹33
(1)

) 

G (0.70,0.25,0.30) 

𝑟33
(2)

 = (𝑇33
(2)

, 𝐼33
(2)

, 𝐹33
(2)

) 

MG (0.60,0.35,0.40) 

𝑟33
(3)

 = (𝑇33
(3)

, 𝐼33
(3)

, 𝐹33
(3)

) 

MG (0.60,0.35,0.40) 

𝑟33
(4)

 = (𝑇33
(4)

, 𝐼33
(4)

, 𝐹33
(4)

) 

A4  G (0.70,0.25,0.30) 

𝑟43
(1)

 = (𝑇43
(1)

, 𝐼43
(1)

, 𝐹43
(1)

) 

MG (0.60,0.35,0.40) 

𝑟43
(2)

 = (𝑇43
(2)

, 𝐼43
(2)

, 𝐹43
(2)

) 

G (0.70,0.25,0.30) 

𝑟43
(3)

 = (𝑇43
(3)

, 𝐼43
(3)

, 𝐹43
(3)

) 

MG (0.60,0.35,0.40) 

𝑟43
(4)

 = (𝑇43
(4)

, 𝐼43
(4)

, 𝐹43
(4)

) 

A5  MG (0.60,0.35,0.40) 

𝑟53
(1)

 = (𝑇53
(1)

, 𝐼53
(1)

, 𝐹53
(1)

) 

G (0.70,0.25,0.30) 

𝑟53
(2)

 = (𝑇53
(2)

, 𝐼53
(2)

, 𝐹53
(2)

) 

VG (0.80,0.15,0.20) 

𝑟53
(3)

 = (𝑇53
(3)

, 𝐼53
(3)

, 𝐹53
(3)

) 

G (0.70,0.25,0.30) 

𝑟53
(4)

 = (𝑇53
(4)

, 𝐼53
(4)

, 𝐹53
(4)

) 

X4  A1  G (0.70,0.25,0.30) 

𝑟14
(1)

 = (𝑇14
(1)

, 𝐼14
(1)

, 𝐹14
(1)

) 

M (0.50,0.50,0.50) 

𝑟14
(2)

 = (𝑇14
(2)

, 𝐼14
(2)

, 𝐹14
(2)

) 

MG (0.60,0.35,0.40) 

𝑟14
(3)

 = (𝑇14
(3)

, 𝐼14
(3)

, 𝐹14
(3)

) 

M (0.50,0.50,0.50) 

𝑟14
(4)

 = (𝑇14
(4)

, 𝐼14
(4)

, 𝐹14
(4)

) 

A2  VG (0.80,0.15,0.20) 

𝑟24
(1)

 = (𝑇24
(1)

, 𝐼24
(1)

, 𝐹24
(1)

) 

VG (0.80,0.15,0.20) 

𝑟24
(2)

 = (𝑇24
(2)

, 𝐼24
(2)

, 𝐹24
(2)

) 

M (0.50,0.50,0.50) 

𝑟24
(3)

 = (𝑇24
(3)

, 𝐼24
(3)

, 𝐹24
(3)

) 

G (0.70,0.25,0.30) 

𝑟24
(4)

 = (𝑇24
(4)

, 𝐼24
(4)

, 𝐹24
(4)

) 

A3  MG (0.60,0.35,0.40) 

𝑟34
(1)

 = (𝑇34
(1)

, 𝐼34
(1)

, 𝐹34
(1)

) 

MG (0.60,0.35,0.40) 

𝑟34
(2)

 = (𝑇34
(2)

, 𝐼34
(2)

, 𝐹34
(2)

) 

MG (0.60,0.35,0.40) 

𝑟34
(3)

 = (𝑇34
(3)

, 𝐼34
(3)

, 𝐹34
(3)

) 

MG (0.60,0.35,0.40) 

𝑟34
(4)

 = (𝑇34
(4)

, 𝐼34
(4)

, 𝐹34
(4)

) 

A4  M (0.50,0.50,0.50) 

𝑟44
(1)

 = (𝑇44
(1)

, 𝐼44
(1)

, 𝐹44
(1)

) 

MB (0.40,0.65,0.60) 

𝑟44
(2)

 = (𝑇44
(2)

, 𝐼44
(2)

, 𝐹44
(2)

) 

MG (0.60,0.35,0.40) 

𝑟44
(3)

 = (𝑇44
(3)

, 𝐼44
(3)

, 𝐹44
(3)

)  

VG (0.80,0.15,0.20) 

𝑟44
(4)

 = (𝑇44
(4)

, 𝐼44
(4)

, 𝐹44
(4)

)  

A5  MG (0.60,0.35,0.40) 

𝑟54
(1)

 = (𝑇54
(1)

, 𝐼54
(1)

, 𝐹54
(1)

) 

G (0.70,0.25,0.30) 

𝑟54
(2)

 = (𝑇54
(2)

, 𝐼54
(2)

, 𝐹54
(2)

) 

VG (0.80,0.15,0.20) 

𝑟54
(3)

 = (𝑇54
(3)

, 𝐼54
(3)

, 𝐹54
(3)

) 

G (0.70,0.25,0.30) 

𝑟54
(4)

 = (𝑇54
(4)

, 𝐼54
(4)

, 𝐹54
(4)

) 

X5 A1  M (0.50,0.50,0.50) 

𝑟15
(1)

 = (𝑇15
(1)

, 𝐼15
(1)

, 𝐹15
(1)

) 

MG (0.60,0.35,0.40) 

𝑟15
(2)

 = (𝑇15
(2)

, 𝐼15
(2)

, 𝐹15
(2)

) 

VG (0.80,0.15,0.20) 

𝑟15
(3)

 = (𝑇15
(3)

, 𝐼15
(3)

, 𝐹15
(3)

) 

M (0.50,0.50,0.50) 

𝑟15
(4)

 = (𝑇15
(4)

, 𝐼15
(4)

, 𝐹15
(4)

) 

A2  VG (0.80,0.15,0.20) 

𝑟25
(1)

 = (𝑇25
(1)

, 𝐼25
(1)

, 𝐹25
(1)

) 

M (0.50,0.50,0.50) 

𝑟25
(2)

 = (𝑇25
(2)

, 𝐼25
(2)

, 𝐹25
(2)

) 

G (0.70,0.25,0.30) 

𝑟25
(3)

 = (𝑇25
(3)

, 𝐼25
(3)

, 𝐹25
(3)

) 

G (0.70,0.25,0.30) 

𝑟25
(4)

 = (𝑇25
(4)

, 𝐼25
(4)

, 𝐹25
(4)

) 

A3  G (0.70,0.25,0.30) 

𝑟35
(1)

 = (𝑇35
(1)

, 𝐼35
(1)

, 𝐹35
(1)

) 

G (0.70,0.25,0.30) 

𝑟35
(2)

 = (𝑇35
(2)

, 𝐼35
(2)

, 𝐹35
(2)

)  

M (0.50,0.50,0.50) 

𝑟35
(3)

 = (𝑇35
(3)

, 𝐼35
(3)

, 𝐹35
(3)

) 

MG (0.60,0.35,0.40) 

𝑟35
(4)

 = (𝑇35
(4)

, 𝐼35
(4)

, 𝐹35
(4)

)  

A4  M (0.50,0.50,0.50) 

𝑟45
(1)

 = (𝑇45
(1)

, 𝐼45
(1)

, 𝐹45
(1)

) 

M (0.50,0.50,0.50) 

𝑟45
(2)

 = (𝑇45
(2)

, 𝐼45
(2)

, 𝐹45
(2)

) 

MG (0.60,0.35,0.40) 

𝑟45
(3)

 = (𝑇45
(3)

, 𝐼45
(3)

, 𝐹45
(3)

) 

G (0.70,0.25,0.30) 

𝑟45
(4)

 = (𝑇45
(4)

, 𝐼45
(4)

, 𝐹45
(4)

) 

A5  G (0.70,0.25,0.30) 

𝑟55
(1)

 = (𝑇55
(1)

, 𝐼55
(1)

, 𝐹55
(1)

) 

VG (0.80,0.15,0.20) 

𝑟55
(2)

 = (𝑇55
(2)

, 𝐼55
(2)

, 𝐹55
(2)

) 

VG (0.80,0.15,0.20) 

𝑟55
(3)

 = (𝑇55
(3)

, 𝐼55
(3)

, 𝐹55
(3)

)  

VG (0.80,0.15,0.20) 

𝑟55
(4)

 = (𝑇55
(4)

, 𝐼55
(4)

, 𝐹55
(4)

)  
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𝑟𝑖𝑗= 𝜆1𝑟𝑖𝑗
(1)

 ⊕ 𝜆2𝑟𝑖𝑗
(2)
⊕ 𝜆3𝑟𝑖𝑗

(3)
⊕⋯ ⊕ 𝜆𝑙𝑟𝑖𝑗

(𝑙)
 

𝑟𝑖𝑗  = (1 − ∏ (1 − 𝑇𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑖𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ) 

where i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5 and (l = 4). 

For i = j = 1 and l = 4 

𝑟11= 𝜆1𝑟11
(1)

 ⊕ 𝜆2𝑟11
(2)
⊕ 𝜆3𝑟11

(3)
⊕⋯ ⊕ 𝜆𝑙𝑟11

(𝑙)
 

𝑟11 = (1 − ∏ (1 − 𝑇11
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐼11
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐹11
(𝑘)
)𝜆𝑘4

𝑘=1 ) 

𝑟11 = (1- (1 − 𝑇11
(1)
)𝜆1(1 − 𝑇11

(2)
)𝜆2(1 − 𝑇11

(3)
)𝜆3(1 − 𝑇11

(4)
)𝜆4, (𝐼11

(1)
)𝜆1(𝐼11

(2)
)𝜆2(𝐼11

(3)
)𝜆3(𝐼11

(4)
)𝜆4,  

(𝐹11
(1)
)𝜆1(𝐹11

(2)
)𝜆2(𝐹11

(3)
)𝜆3(𝐹11

(4)
)𝜆4) 

𝑟11 = (1-((1 − 0.8)0.37045(1 − 0.6)0.31508(1 − 0.8)0.20580(1 − 0.7)0.10867),  

((0.15)0.37045(0.35)0.31508(0.15)0.20580(0.25)0.10867) , 

((0.20)0.37045(0.40)0.31508(0.20)0.20580(0.30)0.10867)) 

𝑟11 = (0.740, 0.207, 0.260) 

Similarly, we can find other values 

𝑟21 = (0.711, 0.237, 0.289) 

𝑟31 = (0.593, 0.373, 0.407) 

𝑟41 = (0.661, 0.288, 0.339) 

𝑟51 = (0.706, 0.241, 0.294) 

𝑟12 = (0.682, 0.268, 0.318) 

𝑟22 = (0.676, 0.275, 0.324) 

𝑟32 = (0.681, 0.275, 0.324) 

𝑟42 = (0.619, 0.342, 0.381) 

𝑟52 = (0.695, 0.253, 0.305) 

𝑟13 = (0.505, 0.392, 0.429) 

𝑟23 = (0.773, 0.176, 0.227) 

𝑟33 = (0.603, 0.359, 0.397) 

𝑟43 = (0.661, 0.288, 0.339) 

𝑟53 = (0.693, 0.255, 0.307) 

𝑟14 = (0.605, 0.359, 0.395) 

𝑟24 = (0.748, 0.203, 0.252) 

𝑟34 = (0.600, 0.350, 0.400) 

𝑟44 = (0.542, 0.443, 0.458) 

𝑟54 = (0.693, 0.339, 0.307) 

𝑟15 = (0.614, 0.349, 0.386) 

𝑟25 = (0.697, 0.257, 0.303) 

𝑟35 = (0.656, 0.299, 0.344) 

𝑟45 = (0.548, 0.431, 0.452) 

𝑟55 = (0.768, 0.181, 0.232)        

Table 5. Aggregated Single Valued Neutrosophic Decision Matrix D = [𝑟𝑖𝑗]5×4 

  X1 X2 X3 X4 X5 

A1  𝑟11 = (0.740, 0.207, 0.260) 𝑟12 = (0.682, 0.268, 0.318) 𝑟13 = (0.505, 0.392, 0.429) 𝑟14 = (0.605, 0.359, 0.395) r15 = (0.614, 0.349, 0.386) 

A2  𝑟21 = (0.711, 0.237, 0.289) 𝑟22 = (0.676, 0.275, 0.324) 𝑟23 = (0.773, 0.176, 0.227) 𝑟24 = (0.748, 0.203, 0.252) r25 = (0.697, 0.257, 0.303) 
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A3  𝑟31 = (0.593, 0.373, 0.407) 𝑟32 = (0.681, 0.275, 0.324) 𝑟33 = (0.603, 0.359, 0.397) 𝑟34 = (0.600, 0.350, 0.400) r35 = (0.656, 0.299, 0.344) 

A4  𝑟41 = (0.661, 0.288, 0.339) 𝑟42 = (0.619, 0.342, 0.381) 𝑟43 = (0.661, 0.288, 0.339) r43 = (0.661, 0.288, 0.339) r45 = (0.548, 0.431, 0.452) 

A5  𝑟51 = (0.706, 0.241, 0.294) 𝑟52 = (0.695, 0.253, 0.305) 𝑟53 = (0.693, 0.255, 0.307) 𝑟54= (0.693, 0.339, 0.307) 𝑟55 = (0.768, 0.181, 0.232) 

Step 3: Computation of the weights of the criteria  

The individual weights given by each DM is given in Table 6.  

Table 6. Weights of alternatives determined by the DMs 𝑤𝑗
(𝑘)

= (𝑇𝑗
(𝑘)
, 𝐼𝑗
(𝑘)
, 𝐹𝑗

(𝑘)
) 

Criteria  DM1 DM2 DM3 DM4 

X1  

(DELIVERY)  

VI (0.90,0.10,0.10)  

𝑤1
(1)
=(𝑇1

(1)
, 𝐼1

(1)
, 𝐹1

(1)
)  

VI (0.90,0.10,0.10)  

𝑤1
(2)

 = (𝑇1
(2)

, 𝐼1
(2)

, 𝐹1
(2)

) 

VI (0.90,0.10,0.10)  

𝑤1
(3)

 = (𝑇1
(3)

, 𝐼1
(3)

, 𝐹1
(3)

)  

I (0.75,0.25,0.20)  

𝑤1
(4)

 = (𝑇1
(4)

, 𝐼1
(4)

, 𝐹1
(4)

) 

X2  

(QUALITY)  

I (0.75,0.25,0.20)  

𝑤2
(1)

 = (𝑇2
(1)

, 𝐼2
(1)

, 𝐹2
(1)

) 

M (0.50,0.50,0.50)  

𝑤2
(2)

 = (𝑇2
(2)

, 𝐼2
(2)

, 𝐹2
(2)

) 

M (0.50,0.50,0.50)  

𝑤2
(3)

 = (𝑇2
(3)

, 𝐼2
(3)

, 𝐹2
(3)

)  

I (0.75,0.25,0.20) 

𝑤2
(4)

 = (𝑇2
(4)

, 𝐼2
(4)

, 𝐹2
(4)

) 

X3 

(FLEXIBILITY)  

VI (0.90,0.10,0.10)  

𝑤3
(1)

 = (𝑇3
(1)

, 𝐼3
(1)

, 𝐹3
(1)

)  

VI (0.90,0.10,0.10)  

𝑤3
(2)

 = (𝑇3
(2)

, 𝐼3
(2)

, 𝐹3
(2)

) 

I (0.75,0.25,0.20)  

𝑤3
(3)

 = (𝑇3
(3)

, 𝐼3
(3)

, 𝐹3
(3)

)  

VI (0.90,0.10,0.10)  

𝑤3
(4)

 = (𝑇3
(4)

, 𝐼3
(4)

, 𝐹3
(4)

) 

X4  

(SERVICE)  

I (0.75,0.25,0.20)  

𝑤4
(1)

 = (𝑇4
(1)

, 𝐼4
(1)

, 𝐹4
(1)

)  

I (0.75,0.25,0.20)  

𝑤4
(2)

 = (𝑇4
(2)

, 𝐼4
(2)

, 𝐹4
(2)

) 

M (0.50,0.50,0.50)  

𝑤4
(3)

 = (𝑇4
(3)

, 𝐼4
(3)

, 𝐹4
(3)

)   

UI (0.35,0.75,0.80)  

𝑤4
(4)

 = (𝑇4
(4)

, 𝐼4
(4)

, 𝐹4
(4)

) 

X5  

(PRICE)  

M (0.50,0.50,0.50)  

𝑤5
(1)

 = (𝑇5
(1)

, 𝐼5
(1)

, 𝐹5
(1)

)   

M (0.50,0.50,0.50)  

𝑤5
(2)

 = (𝑇5
(2)

, 𝐼5
(2)

, 𝐹5
(2)

)   

VI (0.90,0.10,0.10)  

𝑤5
(3)

 = (𝑇5
(3)

, 𝐼5
(3)

, 𝐹5
(3)

)    

VI (0.90,0.10,0.10)  

𝑤5
(4)

 = (𝑇5
(4)

, 𝐼5
(4)

, 𝐹5
(4)

)   

By using the values from Table 6, the aggregated criteria weights are calculated as follows 

𝑤𝑗  = (𝑇𝑗, 𝐼𝑗, 𝐹𝑗) =  𝜆1𝑤𝑗
(1)

 ⊕ 𝜆2𝑤𝑗
(2)
⊕ 𝜆3𝑤𝑗

(3)
⊕⋯ ⊕ 𝜆𝑙𝑤𝑗

(𝑙)
 

𝑤𝑗  = (1-∏ (1 − 𝑇𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐼𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 , ∏ (𝐹𝑗
(𝑘)
)𝜆𝑘𝑙

𝑘=1 ) where j = 1, 2, 3, 4, 5 and (l = 4). 

For j = 1 and l = 4  

𝑤1 = 𝜆1𝑤1
(1)
⊕ 𝜆2𝑤1

(2)
⊕𝜆3𝑤1

(3)
⊕ 𝜆4𝑤1

(4)
 

𝑤1 = (1-∏ (1 − 𝑇1
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐼1
(𝑘)
)𝜆𝑘4

𝑘=1 , ∏ (𝐹1
(𝑘)
)𝜆𝑘4

𝑘=1 ) 

𝑤1 = (1- (1 − 𝑇1
(1)
)𝜆1(1 − 𝑇1

(2)
)𝜆2(1 − 𝑇1

(3)
)𝜆3(1 − 𝑇1

(4)
)𝜆4, (𝐼1

(1)
)𝜆1(𝐼1

(2)
)𝜆2(𝐼1

(3)
)𝜆3(𝐼1

(4)
)𝜆4 ,  

(𝐹1
(1)
)𝜆1(𝐹1

(2)
)𝜆2(𝐹1

(3)
)𝜆3(𝐹1

(4)
)𝜆4) 

𝑤1 = (1 − ((1 − 0.9)0.37045(1 − 0.9)0.31508(1 − 0.9)0.20580(1 − 0.75)0.10867),  

((0.10)0.37045(0.10)0.31508(0.10)0.20580(0.25)0.10867) , 

((0.10)0.37045(0.10)0.31508(0.10)0.20580(0.20)0.10867)) 

𝑟11 = (0.740, 0.207, 0.260) 

𝑤1 = (𝑇1, 𝐼1, 𝐹1) = (0.890, 0.110, 0.108) 

Similarly, we can get other values 

Therefore 

𝑊{𝑋1,𝑋2,𝑋3,𝑋4} = 

[
 
 
 
 
(0.890, 0.110, 0.108)

(0.641, 0.359, 0.322)

(0.879, 0.121, 0.115)

(0.680, 0.325, 0.281)

(0.699, 0.301, 0.301)]
 
 
 
 
𝑇

 

Step 4: Construction of Aggregated Weighted Single Valued Neutrosophic Decision Matrix 

(AWSVNDM) 
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After finding the weights of the criteria and the alternative ratings, the aggregated weighted single-

valued neutrosophic ratings are calculated by using Equation 4 as follows: 

𝑟𝑖𝑗
′  = (𝑇𝑖𝑗

′ , 𝐼𝑖𝑗
′ , 𝑟𝐹𝑖𝑗

′ ) = (𝑇𝐴𝑖(𝑥).𝑇𝑗, 𝐼𝐴𝑖(𝑥) + 𝐼𝑗  - 𝐼𝐴𝑖(𝑥).𝐼𝑗, 𝐹𝐴𝑖(𝑥) + 𝐹𝑗 - 𝐹𝐴𝑖(𝑥).𝐹𝑗) 

By using the above equation, we can get an aggregated weighted single-valued neutrosophic decision 

matrix. 

Table 7. Aggregated Weighted Single Valued Neutrosophic Decision Matrix 𝑅′ = [𝑟𝑖𝑗
′ ]5×5 

  X1 X2 X3 X4 X5 

A1  𝑟11
′ =  (0.659,0.294,0.340) 𝑟12

′ = (0.437,0.531,0.538)  𝑟13
′ = (0.444,0.466,0.495) 𝑟14

′ = (0.411,0.567,0.565)  𝑟15
′ =  (0.429,0.545,0.571) 

A2  𝑟21
′ = (0.633,0.321,0.366)  𝑟22

′ = (0.433,0.535,0.542)  𝑟23
′ = (0.679,0.276,0.316) 𝑟24

′ = (0.509,0.462,0.462) 𝑟25
′ = (0.487,0.481,0.513) 

A3  𝑟31
′ = (0.528,0.442,0.471) 𝑟32

′ = (0.437,0.535,0.542)  𝑟33
′ = (0.530,0.437,0.466)  𝑟34

′ = (0.408,0.561,0.569)  𝑟35
′ = (0.459,0.510,0.541) 

A4  𝑟41
′ = (0.588,0.366,0.410)  𝑟42

′ = (0.397,0.578,0.580) 𝑟43
′ = (0.581,0.374,0.415)  𝑟44

′ = (0.037,0.624,0.610) 𝑟45
′ = (0.383,0.602,0.617) 

A5  𝑟51
′ = (0.628,0.324,0.3700  𝑟52

′ = (0.445,0.521,0.529) 𝑟53
′ = (0.609,0.345,0.387)  𝑟54

′ = (0.471,0.554,0.502)  𝑟55
′ = (0.537,0.428,0.463) 

Step 5: Computation of SVN-PIS and SVN-NIS 

Since Delivery, Quality, Flexibility, and Services are benefit criteria that is why they are in the set 

𝐽1= {𝑋1, 𝑋2, 𝑋3, 𝑋4} 

whereas Price being the cost criteria, so it is in the set 𝐽2= {𝑋2} SVN-PIS and SVN-NIS are calculated 

as, 

Table 8. SVN-PIS and SVN-NIS 

SVN-PIS SVN-NIS 

𝑻𝟏
+ = max {0.659,0.633,0.528,0.588,0.628} = 0.659  

𝑰𝟏
+ = min {0.294,0.321,0.442,0.366,0.324} = 0.294 

𝑭𝟏
+ = min {0.340,0.366,0.471,0.410,0.370} = 0.340  

𝑇1
− = min {0.659,0.633,0.528,0.588,0.628} = 0.528 

𝐼1
− = max {0.294,0.321,0.442,0.366,0.324} = 0.442 

𝐹1
− = max {0.340,0.366,0.471,0.410,0.370} = 0.471  

𝑻𝟐
+ = max {0.437,0.433,0.437,0.397,0.445} = 0.445  

𝑰𝟐
+ = min {0.531,0.535,0.535,0.578,0.521} = 0.521 

𝑭𝟐
+ = min {0.538,0.542,0.542,0.580,0.529} = 0.529  

𝑇2
− = min {0.437,0.433,0.437,0.397,0.445} = 0.397  

𝐼2
− = max {0.531,0.535,0.535,0.578,0.521} = 0.578 

𝐹2
− = max {0.538,0.542,0.542,0.580,0.529} = 0.580  

𝑻𝟑
+= max {0.444,0.679,0.530,0.581,0.609} = 0.679  

𝑰𝟑
+ = min {0.466,0.276,0.437,0.374,0.345} = 0.276 

𝑭𝟑
+ = min {0.495,0.316,0.466,0.415,0.387} = 0.316  

𝑇3
− = min {0.444,0.679,0.530,0.581,0.609} = 0.444 

𝐼3
− = max {0.466,0.276,0.437,0.374,0.345} = 0.466 

𝐹3
− = max {0.495,0.316,0.466,0.415,0.387} = 0.495  

𝑻𝟒
+  = max {0.411,0.509,0.408,0.037,0.471} = 0.509  

𝑰𝟒
+  = min {0.567,0.462,0.561,0.624,0.554} = 0.462 

𝑭𝟒
+  = min {0.565,0.462,0.569,0.610,0.502} = 0.462  

𝑇4
−  = min {0.411,0.509,0.408,0.037,0.471} = 0.037 

𝐼4
−  = max {0.567,0.462,0.561,0.624,0.554} = 0.624 

𝐹4
−  = max {0.565,0.462,0.569,0.610,0.502} = 0.610  

𝑻𝟓
+  = min {0.429,0.487,0.459,0.383,0.537} = 0.383 

𝑰𝟓
+  = max {0.545,0.481,0.510,0.602,0.428} = 0.602   

𝑭𝟓
+  = max {0.571,0.513,0.541,0.617,0.463} = 0.617 

𝑇5
−  = max {0.429,0.487,0.459,0.383,0.537} = 0.537 

𝐼5
−  = min {0.545,0.481,0.510,0.602,0.428} = 0.428 

 𝐹5
−  = min {0.571,0.513,0.541,0.617,0.463} = 0.463 
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 𝐴+ = 

{
 
 

 
 
(0.659, 0.294, 0.340),
(0.445, 0.521, 0.529),
(0.679, 0.276, 0.316),
(0.509, 0.462, 0.462),
(0.383, 0.602, 0.617)}

 
 

 
 

   𝐴−=

{
 
 

 
 
(0.528, 0.442, 0.471),
(0.397, 0.578, 0.580),
(0.444, 0.466, 0.495),
(0.037, 0.624, 0.610),
(0.537, 0.428, 0.463)}

 
 

 
 

 

Step 6: Computation of Separation Measures 

Normalized Euclidean Distance Measure is used to find the negative and positive separation 

measures 𝒅+ and 𝒅−respectively by using Equation 7, 8. Now for the SVN-PIS, we use 

𝑑𝑖
+= (

1

3𝑛
 ∑ [(𝑇𝐴𝑖.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴𝑖.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴𝑖.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]𝑛
𝑗=1 )

0.5

 

For i = 1and n = 5 

𝑑1
+= (

1

3(5)
 ∑ [(𝑇𝐴1.𝑊(𝑥𝑗) − 𝑇𝐴∗𝑊 (𝑥𝑗))

2

+ (𝐼𝐴1.𝑊(𝑥𝑗) − 𝐼𝐴∗𝑊 (𝑥𝑗))
2

+ (𝐹𝐴1.𝑊(𝑥𝑗) − 𝐹𝐴∗𝑊 (𝑥𝑗))
2

]5
𝑗=1 )

0.5

 

𝑑1
+= 

(

 
 
 
 
 
 
 

1

15
  

[
 
 
 
 
 
 
 
 
 (𝑇𝐴1.𝑊(𝑋1) − 𝑇𝐴∗𝑊 (𝑋1))

2

+ (𝐼𝐴1.𝑊(𝑋1) − 𝐼𝐴∗𝑊 (𝑋1))
2

+ (𝐹𝐴1.𝑊(𝑋1) − 𝐹𝐴∗𝑊 (𝑋1))
2

+

 (𝑇𝐴1.𝑊(𝑋2) − 𝑇𝐴∗𝑊 (𝑋2))
2

+ (𝐼𝐴1.𝑊(𝑋2) − 𝐼𝐴∗𝑊 (𝑋2))
2

+ (𝐹𝐴1.𝑊(𝑋2) − 𝐹𝐴∗𝑊 (𝑋2))
2

+

 (𝑇𝐴1.𝑊(𝑋3) − 𝑇𝐴∗𝑊 (𝑋3))
2

+ (𝐼𝐴1.𝑊(𝑋3) − 𝐼𝐴∗𝑊 (𝑋3))
2

+ (𝐹𝐴1.𝑊(𝑋3) − 𝐹𝐴∗𝑊 (𝑋3))
2

+

(𝑇𝐴1.𝑊(𝑋4) − 𝑇𝐴∗𝑊 (𝑋4))
2

+ (𝐼𝐴1.𝑊(𝑋4) − 𝐼𝐴∗𝑊 (𝑋4))
2

+ (𝐹𝐴1.𝑊(𝑋4) − 𝐹𝐴∗𝑊 (𝑋4))
2

+

(𝑇𝐴1.𝑊(𝑋5) − 𝑇𝐴∗𝑊 (𝑋5))
2

+ (𝐼𝐴1.𝑊(𝑋5) − 𝐼𝐴∗𝑊 (𝑋5))
2

+ (𝐹𝐴1.𝑊(𝑋5) − 𝐹𝐴∗𝑊 (𝑋5))
2

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 

0.5

 

𝑑1
+= 

(

  
 1

15
  

[
 
 
 
 
 
(0659 − 0.659)2 + (0.294 − 0.294)2 + (0.340 − 0.340)2 +

 (0.437 − 0.445)2 + (0.531 − 0.521)2 + (0.538 − 0.529)2 +

 (0.444 − 0.679)2 + (0.466 − 0.276)2 + (0.495 − 0.316)2 +

(0.411 − 0.509)2 + (0.567 − 0.462)2 + (0.565 − 0.462)2 +

(0.429 − 0.383)2 + (0.545 − 0.602)2 + (0.571 − 0.617)2 ]
 
 
 
 
 

)

  
 

0.5

 

𝑑1
+= [

1

15
 (0.000245 + 0.123366 + 0.031238 + 0.007481)]

0.5

 

𝑑1
+= 0.1040 

Similarly, we can find other separation measures. 

Step 7: Computation of Relative Closeness Coefficient (RCC)  

The RCC is calculated by using Equation 9. 

RCCi = 
𝑑𝑖
′

𝑑𝑖
′+ 𝑑𝑖

∗ ; i = 1, 2, 3, 4, 5  

RCC1 = 
𝑑1
′

𝑑1
′+ 𝑑1

∗ = 
0.127532

0.127532+0.104029
 = 0.551 

RCC2 = 0.896 

RCC3 = 0.505 

RCC4 = 0.363 

RCC5 = 0.757 

The separation measure and the value of relative closeness coefficient (RCC) expressed in the 

following Figure 2. 
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Figure 2. Separation measure and the RCC for each Alternative 

Step 8: Ranking alternatives 

From the above figure, we can see the RCC are ranked as follows 

RCC2 > RCC5 > RCC1 > RCC3 > RCC4 ⇒ A2 > A5 > A1 > A3 > A4 

By using the presented technique, we choose the best supplier for the production industry and 

observe that A2 is the best alternative. 

5. Conclusion 

In this paper, we studied the neutrosophic set and SVNSs with some basic operations and 

developed the generalized neutrosophic TOPSIS by using single-valued neutrosophic numbers. By 

using crisp data, it is more difficult to solve decision-making problems in uncertain environments. 

Single valued neutrosophic sets can handle these limitations competently and provide the 

appropriate choice to decision-makers. We also developed the integrated model for neutrosophic 

TOPSIS. The closeness coefficient has been defined to compute the ranking of the alternatives by 

using an established approach under-considered environment. Moreover, for the justification of the 

proposed technique an illustrated example has been described for the selection of suppliers in the 

production industry. Consequently, relying upon the obtained results it can be confidently concluded 

that the proposed methodology indicates higher stability and usability for decision-makers in the DM 

process. Future research will surely concentrate upon presenting the TOPSIS technique based on 

correlation coefficient under-considered environment. The suggested approach can be applied to 

quite a lot of issues in real life, including the medical profession, robotics, artificial intelligence, 

pattern recognition, economics, etc. 
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