
 Neutrosophic Sets and Systems
An International Journal in Information Science and Engineering

ISSN 2331-6055 (Print) 
ISSN 2331-608X  (Online)

<A>    <neutA>   <antiA>

Volume 41, 2021

Florentin Smarandache . Mohamed Abdel-Basset . Said Broumi
Editors-in-Chief  



Neutrosophic 
Sets 
and 

Systems
An International Journal in Information Science and Engineering 

ISSN 2331-6055 (print)   ISSN 2331-608X (online) 

University of New Mexico

Neutrosophic Science 
International Association (NSIA) 



 

University of New Mexico

Neutrosophic Sets and Systems 
An International Journal in Information Science and Engineering 

Copyright Notice

Copyright @ Neutrosophics Sets and Systems
All rights reserved. The authors of the articles do hereby grant Neutrosophic Sets and Systems non-exclusive, 
worldwide, royalty-free license to publish and distribute the articles in accordance with the Budapest Open Initi-
ative: this means that electronic copying, distribution and printing of both full-size version of the journal and the 
individual papers published therein for non-commercial, academic or individual use can be made by any user 
without permission or charge. The authors of the articles published in Neutrosophic Sets and Systems retain their 
rights to use this journal as a whole or any part of it in any other publications and in any way they see fit. Any 
part of Neutrosophic Sets and Systems howsoever used in other publications must include an appropriate citation 
of this journal. 

Information for Authors and Subscribers

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in   neutrosophy, neutrosophic 
set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, 
such as the neutrosophic structures developed in algebra, geometry, topology, etc.  

The submitted papers should be professional, in good English, containing a brief review of a problem and obtained results. 
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their inter-

actions with different ideational spectra.  
This theory considers every notion or idea <A> together with its opposite or negation <antiA> and with their spectrum of 

neutralities <neutA> in between them (i.e. notions or ideas supporting neither <A> nor <antiA>). The <neutA> and <antiA> 
ideas together are referred to as <nonA>. 
Neutrosophy is a generalization of Hegel's dialectics (the last one is based on <A> and <antiA> only).  
According to this theory every idea <A> tends to be neutralized and balanced by <antiA> and <nonA> ideas - as a state of 
equilibrium.  
In a classical way <A>, <neutA>, <antiA> are disjoint two by two. But, since in many cases the borders between notions are 
vague, imprecise, Sorites, it is possible that <A>, <neutA>, <antiA> (and <nonA> of course) have common parts two by two, 
or even all three of them as well.  

Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of 
intuitionistic fuzzy set and respectively intuitionistic fuzzy logic). In neutrosophic logic a proposition has a degree of truth 
(T), a degree of indeterminacy (I), and a degree of falsity (F), where T, I, F are standard or non-standard subsets of ]-0, 1+[. 

Neutrosophic Probability is a generalization of the classical probability and imprecise probability.  
Neutrosophic Statistics is a generalization of the classical statistics.  
What distinguishes the neutrosophics from other fields is the <neutA>, which means neither <A> nor <antiA>.  
<neutA>, which of course depends on <A>, can be indeterminacy, neutrality, tie game, unknown, contradiction, igno-

rance, imprecision, etc.  
All submissions should be designed in MS Word format using our template file: 

http://fs.unm.edu/NSS/NSS-paper-template.doc.  
A variety of scientific books in many languages can be downloaded freely from the Digital Library of Science: 

http://fs.unm.edu/ScienceLibrary.htm.
To submit a paper, mail the file to the Editor-in-Chief. To order printed issues, contact the Editor-in-Chief. This journal 
is non-commercial, academic edition. It is printed from private donations. 
Information about the neutrosophics you get from the UNM website:  

http://fs.unm.edu/neutrosophy.htm. The 
home page of the journal is accessed on 

http://fs.unm.edu/NSS. 

ISSN 2331-6055 (print)   ISSN 2331-608X (online) 

 

Copyright © Neutrosophic Sets and Systems, 2021 

 



** NSS has been accepted by SCOPUS. Starting with Vol. 19, 2018, the NSS articles are 

indexed in Scopus. 

NSS ABSTRACTED/INDEXED IN 

SCOPUS,  

Google Scholar, 

Google Plus,  

Google Books,  

EBSCO,  

Cengage Thompson Gale (USA),  

Cengage Learning (USA), 

 ProQuest (USA),  

Amazon Kindle (USA),  

University Grants Commission (UGC) - India,  

DOAJ (Sweden), 

International Society for Research Activity (ISRA),  

Scientific Index Services (SIS), 

Academic Research Index (ResearchBib),  

Index Copernicus (European Union), 

CNKI (Tongfang Knowledge Network Technology Co.,  

Beijing, China), 

Baidu Scholar (China),  

Redalyc - Universidad Autonoma del Estado de Mexico (IberoAmerica),  

Publons,  

Scimago, etc. 

Google Dictionaries have translated the neologisms "neutrosophy" (1) and"neutrosophic" 

(2), coined in 1995 for the first time, into about 100 languages. 

FOLDOC Dictionary of Computing (1, 2), Webster 

Dictionary (1, 2), Wordnik (1),Dictionary.com, The Free 

Dictionary (1), Wiktionary (2), YourDictionary (1, 2),OneLook Dictionary (1, 2), Dictionary / 

Thesaurus (1), Online Medical Dictionary (1,2), Encyclopedia (1, 2), Chinese Fanyi Baidu 

Dictionary (2), Chinese Youdao Dictionary (2) etc. have included these scientific neologisms. 

Recently, NSS was also approved by Clarivate Analytics for Emerging Sources Citation 

Index (ESCI) available on the Web of Science platform, starting with Vol. 15, 2017. 

 

University of New Mexico

Neutrosophic Sets and Systems 
An International Journal in Information Science and Engineering 

ISSN 2331-6055 (print)   ISSN 2331-608X (online) 

 

Copyright © Neutrosophic Sets and Systems, 2021 

 



 
Clarivate Analytics 
1500 Spring Garden St. 4th Floor 
Philadelphia PA 19130 
Tel (215)386-0100   (800)336-4474 
Fax (215)823-6635 

Clarivate Analytics   

 

 
 

 
 

March 20, 2019 
 
 

   Prof. Florentin Smarandache 
   Univ New Mexico, Gallup Campus        
    

 
 

    Dear Prof. Florentin Smarandache, 
 
 
I am pleased to inform you that Neutrosophic Sets and Systems has been selected for coverage in Clarivate Analytics products and 
services.  Beginning with V. 15 2017, this publication will be indexed and abstracted in:  

♦ Emerging Sources Citation Index 
 

If possible, please mention in the first few pages of the journal that it is covered in these Clarivate Analytics services.   

Would you be interested in electronic delivery of your content?  If so, we have attached our Journal Information Sheet for your 
review and completion. 

In the future Neutrosophic Sets and Systems may be evaluated and included in additional Clarivate Analytics products to meet the 
needs of the scientific and scholarly research community.  

 

 Thank you very much. 

 Sincerely, 

 
 Marian Hollingsworth 
 Director, Publisher Relations 
 
 
 
 



ISSN 2331-6055 (print)                                  Editorial Board                       ISSN 2331-608X (online) 

                                                                                                                                                    University of New Mexico 

 

 

Copyright © Neutrosophic Sets and Systems, 2021 

 

Editors-in-Chief 

Prof. Dr. Florentin Smarandache, Postdoc, Department of Mathematics, University of New Mexico, Gallup, 
NM 87301, USA, Email: smarand@unm.edu. 
Dr. Mohamed Abdel-Basset, Faculty of Computers and Informatics, Zagazig University, Egypt, 
Email: mohamed.abdelbasset@fci.zu.edu.eg. 
Dr. Said Broumi, Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan 
II,  Casablanca, Morocco, Email: s.broumi@flbenmsik.ma. 
 

Associate Editors 
Alok Dhital, Mathematics, Physical and Natural Sciences Division, University of New Mexico, Gallup Campus, 
NM 87301, USA, Email: adhital@unm.edu. 
Charles Ashbacker, Charles Ashbacher Technologies, Box 294, 118 Chaffee Drive, Hiawatha, IA 52233, United 
States, Email: cashbacher@prodigy.net.  
Prof. Dr. Xiaohong Zhang, Department of Mathematics, Shaanxi University of Science &Technology, Xian 
710021, China, Email: zhangxh@shmtu.edu.cn.  
Prof. Dr. W. B. Vasantha Kandasamy, School of Computer Science and Engineering, VIT, Vellore 632014, 
India, Email: vasantha.wb@vit.ac.in. 
Prof. Dr. Huda E. Khalid, Head of Scientific Affairs and Cultural Relations Department, Nineveh Province, 
Telafer University, Iraq, Email: dr.huda-ismael@uotelafer.edu.iq. 

 
Editors 

 
Yanhui Guo, University of Illinois at Springfield, One 
University Plaza, Springfield, IL 62703, United States, 
Email: yguo56@uis.edu. 
Giorgio Nordo, MIFT - Department of Mathematical and 
Computer Science, Physical Sciences and Earth Sciences, 
Messina University, Italy, Email: giorgio.nordo@unime.it. 
Le Hoang Son, VNU Univ. of Science, Vietnam National 
Univ. Hanoi, Vietnam, Email: sonlh@vnu.edu.vn. 
A. A. Salama, Faculty of Science, Port Said University, 
Egypt, Email: ahmed_salama_2000@sci.psu.edu.eg. 
Young Bae Jun, Gyeongsang National University, South 
Korea, Email: skywine@gmail.com. 
Yo-Ping Huang, Department of Computer Science and 
Information, Engineering National Taipei University, New 
Taipei City, Taiwan, Email: yphuang@ntut.edu.tw. 
Vakkas Ulucay, Kilis 7 Aralık University, Turkey, 
Email: vulucay27@gmail.com. 
Peide Liu, Shandong University of Finance and 
Economics, China, Email: peide.liu@gmail.com. 
Jun Ye, Department of Electrical and Information 
Engineering, Shaoxing University, 508 Huancheng West 
Road, Shaoxing 312000, China; Email: yejun@usx.edu.cn. 
Memet Şahin, Department of Mathematics, Gaziantep 
University, Gaziantep 27310, Turkey, 
Email: mesahin@gantep.edu.tr. 
Muhammad Aslam & Mohammed Alshumrani, King 
Abdulaziz Univ., Jeddah, Saudi Arabia, 
Emails magmuhammad@kau.edu.sa,  

maalshmrani@kau.edu.sa. 
Mutaz Mohammad, Department of Mathematics, Zayed 
University, Abu Dhabi 144534, United Arab Emirates. 
Email: Mutaz.Mohammad@zu.ac.ae. Abdullahi 
Mohamud Sharif, Department of Computer Science, 
University of Somalia, Makka Al-mukarrama Road, 
Mogadishu, Somalia, 
Email: abdullahi.shariif@uniso.edu.so. 
NoohBany Muhammad, American University of Kuwait, 
Kuwait, Email: noohmuhammad12@gmail.com. 
Soheyb Milles, Laboratory of Pure and Applied 
Mathematics, University of Msila, Algeria, 
Email: soheyb.milles@univ-msila.dz. 
Pattathal Vijayakumar Arun, College of Science and 
Technology, Phuentsholing, Bhutan, 
Email: arunpv2601@gmail.com. 
Endalkachew Teshome Ayele, Department of 
Mathematics, Arbaminch University, Arbaminch, 
Ethiopia, Email:  endalkachewteshome83@yahoo.com. 
A. Al-Kababji, College of Engineering, Qatar University, 
Doha, Qatar, Email: ayman.alkababji@ieee.org. 
Xindong Peng, School of Information Science and 
Engineering, Shaoguan University, Shaoguan 512005, 
China, Email: 952518336@qq.com. 
Xiao-Zhi Gao, School of Computing, University of 
Eastern Finland, FI-70211 Kuopio, Finland, xiao-
zhi.gao@uef.fi. 

mailto:smarand@unm.edu
mailto:mohamed.abdelbasset@fci.zu.edu.eg
mailto:s.broumi@flbenmsik.ma
mailto:adhital@unm.edu
mailto:cashbacher@prodigy.net
mailto:zhangxh@shmtu.edu.cn
mailto:vasantha.wb@vit.ac.in
mailto:dr.huda-ismael@uotelafer.edu.iq
mailto:yguo56@uis.edu
mailto:giorgio.nordo@unime.it
mailto:sonlh@vnu.edu.vn
mailto:ahmed_salama_2000@sci.psu.edu.eg
mailto:skywine@gmail.com
mailto:yphuang@ntut.edu.tw
mailto:vulucay27@gmail.com
mailto:peide.liu@gmail.com
mailto:yejun@usx.edu.cn
mailto:mesahin@gantep.edu.tr
mailto:magmuhammad@kau.edu.sa
mailto:maalshmrani@kau.edu.sa
mailto:Mutaz.Mohammad@zu.ac.ae
mailto:abdullahi.shariif@uniso.edu.so
mailto:noohmuhammad12@gmail.com
mailto:soheyb.milles@univ-msila.dz
mailto:arunpv2601@gmail.com
mailto:endalkachewteshome83@yahoo.com
mailto:ayman.alkababji@ieee.org
mailto:952518336@qq.com
mailto:xiao-zhi.gao@uef.fi
mailto:xiao-zhi.gao@uef.fi


ISSN 2331-6055 (print)                                  Editorial Board                       ISSN 2331-608X (online) 

                                                                                                                                                    University of New Mexico 

 

 

Copyright © Neutrosophic Sets and Systems, 2021 

 

Madad Khan, Comsats Institute of Information 
Technology, Abbottabad, Pakistan,  
Email: madadmath@yahoo.com. 
Dmitri Rabounski and Larissa Borissova, independent 
researchers, Emails: rabounski@ptep-
online.com, lborissova@yahoo.com. 
G. Srinivasa Rao, Department of Statistics, The University 
of Dodoma, Dodoma, PO. Box: 259, Tanzania, 
Email: gaddesrao@gmail.com. 
Ibrahim El-henawy, Faculty of Computers and 
Informatics, Zagazig University, Egypt, 
Email: henawy2000@yahoo.com. 
A. A. A. Agboola, Federal University of Agriculture, 
Abeokuta, Nigeria, Email: agboolaaaa@funaab.edu.ng. 
Abduallah Gamal, Faculty of Computers and Informatics, 
Zagazig University, Egypt, 
Email: abduallahgamal@zu.edu.eg. 
Luu Quoc Dat, Univ. of Economics and Business, 
Vietnam National Univ., Hanoi, Vietnam, 
Email: datlq@vnu.edu.vn. 
Sol David Lopezdomínguez Rivas, Universidad Nacional 
de Cuyo, Argentina. 
Email: sol.lopezdominguez@fce.uncu.edu.ar. 
Maikel Leyva-Vazquez, Universidad de Guayaquil, 
Ecuador, Email: mleyvaz@gmail.com. 
Tula Carola Sanchez Garcia, Facultad de Educacion de la 
Universidad Nacional Mayor de San Marcos, Lima, Peru, 
Email: tula.sanchez1@unmsm.edu.pe. 
Carlos Javier Lizcano Chapeta, Profesor - Investigador de 
pregrado y postgrado de la Universidad de Los Andes, 
Mérida 5101, Venezuela, Email: lizcha_4@hotmail.com. 
Tatiana Andrea Castillo Jaimes, Universidad de Chile, 
Departamento de Industria, Doctorado en Sistemas de 
Ingeniería, Santiago de Chile, Chile, 
Email: tatiana.a.castillo@gmail.com. 
Muhammad Akram, University of the Punjab, New 
Campus, Lahore, Pakistan, Email: m.akram@pucit.edu.pk. 
Irfan Deli, Muallim Rifat Faculty of Education, Kilis 7 
Aralik University, Turkey, Email: irfandeli@kilis.edu.tr. 
Ridvan Sahin, Department of Mathematics, Faculty of 
Science, Ataturk University, Erzurum 25240, Turkey, 
Email: mat.ridone@gmail.com. 
Ibrahim M. Hezam, Department of computer, Faculty of 
Education, Ibb University, Ibb City, Yemen, 
Email: ibrahizam.math@gmail.com. 
Moddassir khan Nayeem, Department of Industrial and 
Production Engineering, American International 
University-Bangladesh, Bangladesh; 
nayeem@aiub.edu. 
Aiyared Iampan, Department of Mathematics, School of 
Science, University of Phayao, Phayao 56000, Thailand, 
Email: aiyared.ia@up.ac.th. 
Ameirys Betancourt-Vázquez, 1 Instituto Superior 
Politécnico de Tecnologias e Ciências (ISPTEC), Luanda, 
Angola, Email: ameirysbv@gmail.com. 

G. Srinivasa Rao, Department of Mathematics and 
Statistics, The University of Dodoma, Dodoma PO. Box: 
259, Tanzania. 
Karina Pérez-Teruel, Universidad Abierta para Adultos 
(UAPA), Santiago de los Caballeros, República 
Dominicana, Email: karinapt@gmail.com. 
Neilys González Benítez, Centro Meteorológico Pinar del 
Río, Cuba, Email: neilys71@nauta.cu. 
Jesus Estupinan Ricardo, Centro de Estudios para la 
Calidad Educativa y la Investigation Cinetifica, Toluca, 
Mexico, Email: jestupinan2728@gmail.com. 
Victor Christianto, Malang Institute of Agriculture (IPM), 
Malang, Indonesia, Email: victorchristianto@gmail.com. 
Wadei Al-Omeri, Department of Mathematics, Al-Balqa 
Applied University, Salt 19117, 
Jordan, Email: wadeialomeri@bau.edu.jo. 
Ganeshsree Selvachandran, UCSI University, Jalan Menara 
Gading, Kuala Lumpur, Malaysia, 
Email: Ganeshsree@ucsiuniversity.edu.my. 
Ilanthenral Kandasamy, School of Computer Science 
and Engineering (SCOPE), Vellore Institute of 
Technology (VIT), Vellore 632014, Tamil Nadu, India, 
Email: ilanthenral.k@vit.ac.in  
Kul Hur, Wonkwang University, Iksan, Jeollabukdo, South 
Korea, Email: kulhur@wonkwang.ac.kr. 
Kemale Veliyeva & Sadi Bayramov, Department 
of Algebra and Geometry, Baku State University, 23 Z. 
Khalilov Str., AZ1148, Baku, Azerbaijan, 
Email: kemale2607@mail.ru, Email: baysadi@gmail.com. 
Irma Makharadze & Tariel Khvedelidze, Ivane 
Javakhishvili Tbilisi State University, Faculty of Exact and 
Natural Sciences, Tbilisi, Georgia. 
Inayatur Rehman, College of Arts and Applied Sciences, 
Dhofar University Salalah, Oman, 
Email: irehman@du.edu.om. 
Riad K. Al-Hamido, Math Department, College of Science, 
Al-Baath University, Homs, Syria, Email: riad-
hamido1983@hotmail.com.   
Faruk Karaaslan, Çankırı Karatekin University, Çankırı, 
Turkey, Email: fkaraaslan@karatekin.edu.tr. 
Morrisson Kaunda Mutuku, School of Business, Kenyatta 
University, Kenya 
Surapati Pramanik, Department of Mathematics, Nandalal 
Ghosh B T College, India, 
Email: drspramanik@isns.org.in. 
Suriana Alias, Universiti Teknologi MARA (UiTM) 
Kelantan, Campus Machang, 18500 Machang, Kelantan, 
Malaysia, Email: suria588@kelantan.uitm.edu.my. 
Arsham  Borumand Saeid, Dept. of Pure Mathematics, 
Faculty of Mathematics and Computer, Shahid Bahonar 
University of Kerman, Kerman, Iran, 
Email: arsham@uk.ac.ir. 
Ahmed Abdel-Monem, Department of Decision support, 
Zagazig University, Egypt, 
Email: aabdelmounem@zu.edu.eg. 

mailto:madadmath@yahoo.com
mailto:rabounski@ptep-online.com
mailto:rabounski@ptep-online.com
mailto:lborissova@yahoo.com
mailto:gaddesrao@gmail.com
mailto:henawy2000@yahoo.com
mailto:agboolaaaa@funaab.edu.ng
mailto:abduallahgamal@zu.edu.eg
mailto:datlq@vnu.edu.vn
mailto:sol.lopezdominguez@fce.uncu.edu.ar
mailto:mleyvaz@gmail.com
mailto:tula.sanchez1@unmsm.edu.pe
mailto:lizcha_4@hotmail.com
mailto:tatiana.a.castillo@gmail.com
mailto:m.akram@pucit.edu.pk
mailto:irfandeli@kilis.edu.tr
mailto:mat.ridone@gmail.com
mailto:ibrahizam.math@gmail.com
mailto:nayeem@aiub.edu
mailto:aiyared.ia@up.ac.th
mailto:ameirysbv@gmail.com
mailto:karinapt@gmail.com
mailto:neilys71@nauta.cu
mailto:jestupinan2728@gmail.com
mailto:victorchristianto@gmail.com
mailto:Ganeshsree@ucsiuniversity.edu.my
mailto:ilanthenral.k@vit.ac.in
mailto:kulhur@wonkwang.ac.kr
mailto:kemale2607@mail.ru
mailto:baysadi@gmail.com
mailto:irehman@du.edu.om
mailto:riad-hamido1983@hotmail.com
mailto:riad-hamido1983@hotmail.com
mailto:fkaraaslan@karatekin.edu.tr
mailto:drspramanik@isns.org.in
mailto:suria588@kelantan.uitm.edu.my
mailto:arsham@uk.ac.ir
mailto:aabdelmounem@zu.edu.eg


ISSN 2331-6055 (print)                                  Editorial Board                       ISSN 2331-608X (online) 

                                                                                                                                                    University of New Mexico 

 

 

Copyright © Neutrosophic Sets and Systems, 2021 

 

Çağlar KARAMAŞA,Anadolu University, Faculty of 
Business, Turkey, Email: ckaramasa@anadolu.edu.tr. 
Mohamed Talea, Laboratory of Information Processing, 
Faculty of Science Ben M’Sik, Morocco, 
Email: taleamohamed@yahoo.fr. 
Assia Bakali, Ecole Royale Navale, Casablanca, Morocco, 
Email: assiabakali@yahoo.fr. 
V.V. Starovoytov, The State Scientific Institution «The 
United Institute of Informatics Problems of the National 
Academy of Sciences of Belarus», Minsk, Belarus, 
Email: ValeryS@newman.bas-net.by. 
E.E. Eldarova, L.N. Gumilyov Eurasian National 
University, Nur-Sultan, Republic of Kazakhstan, 
Email: Doctorphd_eldarova@mail.ru.  
Mohammad Hamidi, Department of Mathematics, Payame 
Noor University (PNU), Tehran, 
Iran. Email: m.hamidi@pnu.ac.ir. 
Lemnaouar Zedam, Department of Mathematics, Faculty 
of Mathematics and Informatics, University Mohamed 
Boudiaf, M’sila, Algeria, Email: l.zedam@gmail.com. 
M. Al Tahan, Department of Mathematics, Lebanese 
International University, Bekaa, Lebanon, 
Email: madeline.tahan@liu.edu.lb. 
Rafif Alhabib, AL-Baath University, College of Science, 
Mathematical Statistics Department, Homs, Syria, 
Email: ralhabib@albaath-univ.edu.sy. 
R. A. Borzooei, Department of Mathematics, Shahid 
Beheshti University, Tehran, Iran, borzooei@hatef.ac.ir.  
Selcuk Topal, Mathematics Department, Bitlis Eren 
University, Turkey, Email: s.topal@beu.edu.tr. 
Qin Xin, Faculty of Science and Technology, University of 
the Faroe Islands, Tórshavn, 100, Faroe Islands. 
Sudan Jha, Pokhara University, Kathmandu, Nepal, 
Email: jhasudan@hotmail.com. 
Mimosette Makem and Alain Tiedeu, Signal, Image and 
Systems Laboratory, Dept. of Medical and Biomedical 
Engineering, Higher Technical Teachers’ Training College 
of EBOLOWA, PO Box 886, University of Yaoundé, 
Cameroon, E-mail: alain_tiedeu@yahoo.fr. 
S. A. Edalatpanah, Department of Applied Mathematics, 
Ayandegan Institute of Higher Education, Tonekabon, 
Iran, Email: saedalatpanah@gmail.com. 
Mujahid Abbas, Department of Mathematics and Applied 
Mathematics, University of Pretoria Hatfield 002, Pretoria, 
South Africa, Email: mujahid.abbas@up.ac.za. 
Željko Stević, Faculty of Transport and Traffic 
Engineering Doboj, University of East Sarajevo, Lukavica, 
East Sarajevo, Bosnia and Herzegovina, 
Email: zeljkostevic88@yahoo.com. 
Michael Gr. Voskoglou, Mathematical Sciences School of 
Technological Applications, Graduate Technological 
Educational Institute of Western Greece, Patras, Greece, 
Email: voskoglou@teiwest.gr. 
Saeid Jafari, College of Vestsjaelland South, Slagelse, 
Denmark, Email: sj@vucklar.dk. 

Angelo de Oliveira, Ciencia da Computacao, Universidade 
Federal de Rondonia, Porto Velho - Rondonia, Brazil, 
Email: angelo@unir.br. 
Valeri Kroumov, Okayama University of Science, 
Okayama, Japan, Email: val@ee.ous.ac.jp. 
Rafael Rojas, Universidad Industrial de Santander, 
Bucaramanga, Colombia, 
Email: rafael2188797@correo.uis.edu.co. 
Walid Abdelfattah, Faculty of Law, Economics and 
Management, Jendouba, Tunisia, 
Email: abdelfattah.walid@yahoo.com. 
Akbar Rezaei, Department of Mathematics, Payame Noor 
University, P.O.Box 19395-3697, Tehran, Iran, 
Email: rezaei@pnu.ac.ir. 
John Frederick D. Tapia, Chemical Engineering 
Department, De La Salle University - Manila, 2401 Taft 
Avenue, Malate, Manila, Philippines, 
Email: john.frederick.tapia@dlsu.edu.ph. 
Galina Ilieva, Paisii Hilendarski, University of Plovdiv, 
4000 Plovdiv, Bulgaria, Email: galili@uni-plovdiv.bg. 
Paweł Pławiak, Institute of Teleinformatics, Cracow 
University of Technology, Warszawska 24 st., F-5, 31-155 
Krakow, Poland, Email: plawiak@pk.edu.pl. 
E. K. Zavadskas, Vilnius Gediminas Technical University, 
Vilnius, Lithuania, Email: edmundas.zavadskas@vgtu.lt. 
Darjan Karabasevic, University Business Academy, Novi 
Sad, Serbia, Email: darjan.karabasevic@mef.edu.rs. 
Dragisa Stanujkic, Technical Faculty in Bor, University of 
Belgrade, Bor, Serbia, Email: dstanujkic@tfbor.bg.ac.rs. 
Luige Vladareanu, Romanian Academy, Bucharest, 
Romania, Email: luigiv@arexim.ro. 
Hashem Bordbar, Center for Information Technologies 
and Applied Mathematics, University of Nova Gorica, 
Slovenia, Email: Hashem.Bordbar@ung.si. 
Quang-Thinh Bui, Faculty of Electrical Engineering and 
Computer Science, VŠB-Technical University of Ostrava, 
Ostrava-Poruba, Czech Republic, 
Email: qthinhbui@gmail.com. 
Mihaela Colhon & Stefan Vladutescu, University of 
Craiova, Computer Science Department, Craiova, 
Romania, 
Emails: colhon.mihaela@ucv.ro, vladutescu.stefan@ucv.r
o.  
Philippe Schweizer, Independent Researcher, Av. de 
Lonay 11, 1110 Morges, Switzerland, 
Email: flippe2@gmail.com. 
Madjid Tavanab, Business Information Systems 
Department, Faculty of Business Administration and 
Economics University of Paderborn, D-33098 Paderborn, 
Germany, Email: tavana@lasalle.edu. 
Rasmus Rempling, Chalmers University of Technology, 
Civil and Environmental Engineering, Structural 
Engineering, Gothenburg, Sweden. 
Fernando A. F. Ferreira, ISCTE Business School, BRU-
IUL, University Institute of Lisbon, Avenida das Forças 

mailto:ckaramasa@anadolu.edu.tr
mailto:taleamohamed@yahoo.fr
mailto:assiabakali@yahoo.fr
mailto:ValeryS@newman.bas-net.by
mailto:Doctorphd_eldarova@mail.ru
mailto:m.hamidi@pnu.ac.ir
mailto:l.zedam@gmail.com
mailto:madeline.tahan@liu.edu.lb
mailto:ralhabib@albaath-univ.edu.sy
mailto:borzooei@hatef.ac.ir
mailto:s.topal@beu.edu.tr
mailto:jhasudan@hotmail.com
mailto:alain_tiedeu@yahoo.fr
mailto:mujahid.abbas@up.ac.za
mailto:zeljkostevic88@yahoo.com
mailto:voskoglou@teiwest.gr
mailto:sj@vucklar.dk
mailto:angelo@unir.br
mailto:val@ee.ous.ac.jp
mailto:rafael2188797@correo.uis.edu.co
mailto:abdelfattah.walid@yahoo.com
mailto:rezaei@pnu.ac.ir
mailto:john.frederick.tapia@dlsu.edu.ph
mailto:galili@uni-plovdiv.bg
mailto:plawiak@pk.edu.pl
mailto:edmundas.zavadskas@vgtu.lt
mailto:darjan.karabasevic@mef.edu.rs
mailto:dstanujkic@tfbor.bg.ac.rs
mailto:luigiv@arexim.ro
mailto:Hashem.Bordbar@ung.si
mailto:qthinhbui@gmail.com
mailto:colhon.mihaela@ucv.ro
mailto:vladutescu.stefan@ucv.ro
mailto:vladutescu.stefan@ucv.ro
mailto:flippe2@gmail.com
mailto:tavana@lasalle.edu


ISSN 2331-6055 (print)                                  Editorial Board                       ISSN 2331-608X (online) 

                                                                                                                                                    University of New Mexico 

 

 

Copyright © Neutrosophic Sets and Systems, 2021 

 

Armadas, 1649-026 Lisbon, Portugal, 
Email: fernando.alberto.ferreira@iscte-iul.pt.     
Julio J. Valdés, National Research Council Canada, M-50, 
1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada, 
Email: julio.valdes@nrc-cnrc.gc.ca. 
Tieta Putri, College of Engineering Department of 
Computer Science and Software Engineering, University 
of Canterbury, Christchurch, New Zeeland. 
Phillip Smith, School of Earth and Environmental 
Sciences, University of Queensland, Brisbane, 
Australia, phillip.smith@uq.edu.au. 
Sergey Gorbachev, National Research Tomsk State 
University, 634050 Tomsk, Russia, 
Email: gsv@mail.tsu.ru. 
Sabin Tabirca, School of Computer Science, University 
College Cork, Cork, Ireland, 
Email: tabirca@neptune.ucc.ie. 
Willem K. M. Brauers, Faculty of Applied Economics, 
University of Antwerp, Antwerp, Belgium, 
Email: willem.brauers@uantwerpen.be. 
M. Ganster, Graz University of Technology, Graz, Austria, 
Email: ganster@weyl.math.tu-graz.ac.at. 
Ignacio J. Navarro, Department of Construction 
Engineering, Universitat Politècnica de València, 46022 
València, Spain, Email:  ignamar1@cam.upv.es. 
Francisco Chiclana, School of Computer Science and 
Informatics, De Montfort University, The Gateway, 
Leicester, LE1 9BH, United Kingdom, 
Email: chiclana@dmu.ac.uk. 
Jean Dezert, ONERA, Chemin de la Huniere, 91120 
Palaiseau, France, Email: jean.dezert@onera.fr. 

mailto:fernando.alberto.ferreira@iscte-iul.pt
mailto:julio.valdes@nrc-cnrc.gc.ca
mailto:phillip.smith@uq.edu.au
mailto:gsv@mail.tsu.ru
mailto:tabirca@neptune.ucc.ie
mailto:willem.brauers@uantwerpen.be
mailto:ganster@weyl.math.tu-graz.ac.at
mailto:ignamar1@cam.upv.es
mailto:ignamar1@cam.upv.es
mailto:chiclana@dmu.ac.uk
mailto:jean.dezert@onera.fr


 

ISSN 2331-6055 (print)                                                                          ISSN 2331-608X (online) 
                                                                                                                                                 University of New Mexico 

 
 
 
 

 

Copyright © Neutrosophic Sets and Systems, 2021 

 
 
 

Contents 

Atiqe Ur Rahman, Muhammad Saeed and Alok Dhital, Decision Making Application Based on 
Neutrosophic Parameterized Hypersoft Set Theory…………………………………………………1 
 

Mohd. Saif Wajid, Mohd Anas Wajid, The Importance of Indeterminate and Unknown Factors in 

Nourishing Crime: A Case Study of South Africa Using Neutrosophy............................................15 

Eman AboElHamd, Hamed M. Shamma, Mohamed Saleh and Ihab El-Khodary, Neutrosophic Logic 

Theory and Applications……………………………………………………………………………..30 

Suman Das, Rakhal Das, Carlos Granados and Anjan Mukherjee, Pentapartitioned Neutrosophic Q-

Ideals of Q-Algebra…………………………………………………………………………………...52 

 
Amany A.Slamaa, Haitham A. El-Ghareeb and Ahmed Aboelfetouh, Comparative analysis of AHP, 
FAHP and Neutrosophic-AHP based on multi-criteria for adopting ERPS  ……………………...64 
 

Walid Abdelfattah, Neutrosophic Data Envelopment Analysis: An Application to Regional 

Hospitals in Tunisia ………………………………………………………………………………….89 

Ayşe Nur Yurttakal and Yılmaz Çeven, Some Elementary Properties of Neutrosophic Integers……106 

Abdullah Ali Salamai, An Integrated Neutrosophic SWARA and VIKOR Method for Ranking Risks 

of Green Supply Chain ………………………………………………………………………………113 

 

Fahad Alsharari, F. Smarandache and  Yaser Saber, Compactness on Single-Valued Neutrosophic 

Ideal Topological Spaces …………………………………………………………...127 

Chinnadurai V, Sindhu M P and Bharathivelan K, An Introduction to Neutro-Prime Topology and 

Decision-Making Problem ………………………………………………………………………….146 

 

Akanksha Singh and Shahid Ahmad Bhat, A novel score and accuracy function for neutrosophic sets 

and their real-world applications to multi-criteria decision-making process ……………………168 

 

Shakil, Mohammed Talha Alam, Syed Ubaid, Shahab Saquib Sohail and M. Afshar Alam, A Neutrosophic 

Cognitive Map Based Approach to Explore the Health Deterioration Factors………………….198 
 
Rehan Ahmad Khan Sherwani, Mishal Naeem, Muhammad Aslam, Muhammad Ali Raza, Muhammad Abid 

and Shumaila Abbas, Neutrosophic Beta Distribution with Properties and Applications ………209 

 

Veerappan Chinnadurai and Albert Bobin, Interval Valued Intuitionistic Neutrosophic Soft Set and 

its Application on Diagnosing Psychiatric Disorder by Using Similarity Measure …………........215 

 

R.Jansi and K.Mohana , Pairwise Pythagorean Neutrosophic P-spaces (with dependent 
neutrosophic components between T and F) …………………………………………………….246 
 

V. Chinnadurai and A.Arulselvam, Pythagorean Neutrosophic Ideals in Semigroups………….....258 
 
Huseyin Kamacı, Simplified Neutrosophic Multiplicative Refined Sets and Their Correlation Co 
efficients with Application in Medical Pattern Recognition……………………………………….270 
 
Ather Ashraf and Muhammad Arif Butt, Extension of TOPSIS Method under Single-Valued 
Neutrosophic N-Soft Environment ………………………………………………………………...286 



University of New Mexico

Decision Making Application Based on Neutrosophic Parameterized Hypersoft

Set Theory

Atiqe Ur Rahman1,∗, Muhammad Saeed2 and Alok Dhital3

1 Department of Mathematics, University of Management and Technology, Lahore, Pakistan

aurkhb@gmail.com
2 Department of Mathematics, University of Management and Technology, Lahore, Pakistan

muhammad.saeed@umt.edu.pk
3 Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA ; adhital@unm.edu

∗Correspondence: aurkhb@gmail.com

Abstract. Hypersoft set is the generalization of soft set as it converts single attribute function to multi-

attribute function. The core purpose of this study is to make the existing literature regarding neutrosophic

parameterized soft set in line with the need of multi-attribute function. We first conceptualize the neutrosophic

parameterized hypersoft set along with some of its elementary properties and operations. Then we propose

decision making based algorithm with the help of this theory. Moreover, an illustrative example is presented

which depicts its validity for successful application to the problems involving vagueness and uncertainties.

Keywords: Neutrosophic Set; Hypersoft Set; Neutrosophic Parameterized Soft Set; Neutrosophic Parameter-

ized Hypersoft set.

—————————————————————————————————————————-

1. Introduction

Fuzzy sets theory (FST) [1] and intuitionistic fuzzy set theory (IFST) [2] are considered

apt mathematical modes to tackle many intricate problems involving various uncertainties, in

different mathematical disciplines. The former one emphasizes on the degree of true belong-

ingness of a certain object from the initial sample space whereas the later one accentuates on

degree of true membership and degree of non-membership with condition of their dependency

on each other. These theories depict some kind of inadequacy regarding the provision of due

status to degree of indeterminacy. Such impediment is addressed with the introduction of

neutrosophic set theory (NST) [3, 4] which not only considers the due status of degree of in-

determinacy but also waives off the condition of dependency. This theory is more flexible and

appropriate to deal with uncertainty and vagueness. NST has attracted the keen concentration
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of many researchers [5–19] to further utilization in statistics, topological spaces as well as in

the development of certain neutrosophic-like blended structures with other existing models for

useful applications in decision making.

FST, IFST and NST have some kind of complexities which restrain them to solve problem

involving uncertainty professionally. The reason for these hurdles is, possibly, the inadequacy

of the parametrization tool. It demands a mathematical tool free of all such impediments to

tackle such issues. This scantiness is resolved with the development of soft set theory [20] which

is a new parameterized family of subsets of the universe of discourse. The researchers [21–30]

studied and investigated some elementary properties, operations, laws and hybrids of SST

with applications in decision making. The gluing concept of NST and SST, is studied in [31]

to make the NST adequate with parameterized tool. In many real life situations, distinct

attributes are further partitioned in disjoint attribute-valued sets but existing SST is insuf-

ficient for dealing with such kind of attribute-valued sets. Hypersoft set theory (HST) [32]

is developed to make the SST in line with attribute-valued sets to tackle real life scenarios.

Certain elementary properties, aggregation operations, laws, relations and functions of HST,

are investigated by [33–35] for proper understanding and further utilization in different fields.

The applications of HST in decision making is studied by [36–39] and the intermingling study

of HST with complex sets, convex and concave sets is studied by [40, 41]. The core aim of

this study is to develop a novel theory of embedding structure of parameterized neutrosophic

set and hypersoft set with the extension of concept investigated in [42,43]. A decision-making

based algorithm is proposed to solve a real life problem relating to the purchase of most suitable

and appropriate product with the help of some essential operations of this presented theory.

The rest of the paper is systemized as:

Section 2 Some essential definitions and terminologies are recalled.

Section 3 Theory of neutrosophic parameterized hypersoft set is de-

veloped with suitable examples.

Section 4 Neutrosophic decision system is constructed with proposed

decision making algorithm and application.

Section 5 Paper is summarized with future directions.

2. Preliminaries

Here some basic terms are recalled from existing literature to support the proposed work.

Throughout the paper, X , P(X) and I will denote the universe of discourse, power set of X
and closed unit interval respectively.

Definition 2.1. [1]

A fuzzy set X defined as X = {(ε, ζX (ε))|ε ∈ X} such that ζX : X→ I where ζX (ε) denotes the

belonging value of ε ∈ X .
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Definition 2.2. [2]

An intuitionistic fuzzy set Y defined as Y = {(β,< ζY(β), ξY(β) >)|β ∈ X} such that ζY :

X→ I and ξY : X→ I, where ζY(β) and ξY(β) denote the belonging value and not-belonging

value of β ∈ Y with condition of 0 ≤ ζY(β) + ξY(β) ≤ 1.

Definition 2.3. [3]

A neutrosophic set Z defined as Z = {(γ,< AZ(γ),BZ(γ), CZ(γ) >)|γ ∈ X} such that

AZ(γ),BZ(γ), CZ(γ) : X → (−0, 1+), where AZ(γ),BZ(γ) and CZ(γ) denote the degrees

of membership, indeterminacy and non-membership of γ ∈ Z with condition of −0 ≤
AZ(γ) + BZ(γ) + CZ(γ) ≤ 3+.

Definition 2.4. [20]

A pair (ζS ,Λ) is called a soft set over X, where ζS : Λ → P(X) and Λ be a subset of a set of

attributes E.

For more detail on soft set, see [21–30].

Definition 2.5. [32]

The pair (Ψ, G) is called a hypersoft set over X, where G is the cartesian product of n dis-

joint sets G1, G2, G3, ...., Gn having attribute values of n distinct attributes g1, g2, g3, ...., gn

respectively and Ψ : G→ P(X).

For more definitions and operations of hypersoft set, see [33–35].

3. Neutrosophic Parameterized Hypersoft Set (nphs-set)with Application

In this section, neutrosophic parameterized hypersoft set is conceptualized and some of its

fundamentals are discussed.

Definition 3.1. Let A = {A1,A2,A3, ....,An} be a collection of disjoint attribute-valued

sets corresponding to n distinct attributes α1, α2, α3, ..., αn respectively. A NP-hypersoft set

(nphs-set) ΨN over X is defined as

ΨN = {(< PN (g), QN (g), RN (g) > /g, ψN (g)) : g ∈ G}

where

(i) G = A1 ×A2 ×A3 × ....×An
(ii) N is a neutrosophic set over G with PN , QN , RN : G → I as membership function,

indeterminacy function and nonmembership function of nphs-set.

(iii) ψN : G→ P(X) is called approximate function of nphs-set.

Note that collection of all nphs-sets is represented by ΩNPHS(X).
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Definition 3.2. Let ΨN ∈ ΩNPHS(X). If ψN (g) = φ, PN (g) = 0, QN (g) = 1, RN (g) = 1 for

all g ∈ G, then ΨN is called N -empty nphs-set, denoted by ΨΦN . If N = φ, then N -empty

nphs-set is called an empty nphs-set, denoted by ΨΦ.

Definition 3.3. Let ΨN ∈ ΩNPHS(X). If ψN (g) = X, PN (g) = 1, QN (g) = 0, RN (g) = 0

for all g ∈ G, then ΨN is called N -universal nphs-set, denoted by ΨÑ . If N = G , then the

N -universal nphs-set is called universal nphs-set, denoted by ΨG̃.

Example 3.4. Consider X = {u1, u2, u3, u4, u5} and A = {A1,A2,A3} with A1 = {a11, a12},
A2 = {a21, a22},A3 = {a31}, then

G = A1 ×A2 ×A3

G = {(a11, a21, a31) , (a11, a22, a31) , (a12, a21, a31) , (a12, a22, a31)} = {g1, g2, g3, g4}.
Case 1.

If N1 = {< 0.2, 0.3, 0.4 > /g2, < 0, 1, 1 > /g3, < 1, 0, 0 > /g4} and

ψN1(g2) = {u2, u4}, ψN1(g3) = φ, and ψN1(g4) = X, then

ΨN1 = {(< 0.2, 0.3, 0.4 > /g2, {u2, u4}), (< 0, 1, 1 > /g3, φ) , (< 1, 0, 0 > /g4,X)}.
Case 2.

If N2 = {< 0, 1, 1 > /g2, < 0, 1, 1 > /g3}, ψN2(g2) = φ and ψN2(g3) = φ, then ΨN2 = ΨΦN2
.

Case 3.

If N3 = φ corresponding to all elements of G, then ΨN3 = ΨΦ.

Case 4.

If N4 = {< 1, 0, 0 > /g1, < 1, 0, 0 > /g2} , ψN4(g1) = X, and ψN4(g2) = X, then ΨN4 = ΨÑ4
.

Case 5.

If N5 = X with respect to all elements of G, then ΨN5 = ΨG̃.

Definition 3.5. Let ΨN1 , ΨN2 ∈ ΩNPHS(X) then ΨN1 is an nphs-subset of ΨN2 , denoted by

ΨN1⊆̃ΨN2 if

PN1(g) ≤ PN2(g), QN1(g) ≥ QN2(g), RN1(g) ≥ RN2(g) and ψN1(g) ⊆ ψN2(g) for all g ∈ G.

Proposition 3.6. Let ΨN1 ,ΨN2 ,ΨN3 ∈ ΩNPHS(X) then

(1) ΨN1⊆̃ΨG̃.

(2) ΨΦ⊆̃ΨN1.

(3) ΨN1⊆̃ΨN1.

(4) if ΨN1⊆̃ΨN2 and ΨN2⊆̃ΨN3 then ΨN1⊆̃ΨN3.

Definition 3.7. Let ΨN1 ,ΨN2 ∈ ΩNPHS(X) then, ΨN1 and ΨN2 are nphs-equal, represented

as ΨN1 = ΨN2 , if and only if PN1(g) = PN2(g), QN1(g) = QN2(g), RN1(g) = RN2(g) and

ψN1(g) = ψN2(g) for all g ∈ G.

Proposition 3.8. Let ΨN1 ,ΨN2 ,ΨN3 ∈ ΩNPHS(X) then,
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(1) if ΨN1 = ΨN2 and ΨN2 = ΨN3 then ΨN1 = ΨN3.

(2) if ΨN1⊆̃ΨN2 and ΨN2⊆̃ΨN1 ⇔ ΨN1 = ΨN2.

Definition 3.9. Let ΨN ∈ ΩNPHS(X) then, complement of ΨN (i.e. Ψc̃
N ) is an nphs-set given

as P c̃N (g) = 1− PN (g), Qc̃N (g) = 1−QN (g), Rc̃N (g) = 1−RN (g) and ψc̃N (g) = X \ ψN (g)

Proposition 3.10. Let ΨN ∈ ΩNPHS(X) then,

(1) (Ψc̃
N )c̃ = ΨN .

(2) Ψc̃
φ = ΨG̃.

Definition 3.11. Let ΨN1 ,ΨN2 ∈ ΩNPHS(X) then, union of ΨN1 and ΨN2 , denoted by

ΨN1∪̃ΨN2 , is defined by

(i) PN1∪̃N2
(g) = max{PN1(x), PN2(g)},

(ii) QN1∪̃N2
(g) = min{QN1(x), QN2(g)},

(iii) RN1∪̃N2
(g) = min{RN1(x), RN2(g)},

(iv) ψN1∪̃N2
(g) = ψN1(g) ∪ ψN2(g), for all g ∈ G.

Proposition 3.12. Let ΨN1 ,ΨN2 ,ΨN3 ∈ ΩNPHS(X) then,

(1) ΨN1∪̃ΨN1 = ΨN1,

(2) ΨN1∪̃ΨΦ = ΨN1,

(3) ΨN1∪̃ΨG̃ = ΨG̃,

(4) ΨN1∪̃ΨN2 = ΨN2∪̃ΨN1,

(5) (ΨN1∪̃ΨN2) ∪̃ΨN3 = ΨN1∪̃ (ΨN2∪̃ΨN3).

Definition 3.13. Let ΨN1 ,ΨN2 ∈ ΩNPHS(X) then intersection of ΨN1 and ΨN2 , denoted by

ΨN1∩̃ΨN2 , is an nphs-set defined by

(i) PN1∩̃N2
(g) = min{PN1(x), PN2(g)},

(ii) QN1∩̃N2
(g) = max{QN1(x), QN2(g)},

(iii) RN1∩̃N2
(g) = max{RN1(x), RN2(g)},

(iv) ψN1∩̃N2
(g) = ψN1(g) ∩ ψN2(g), for all g ∈ G.

Proposition 3.14. Let ΨN1 ,ΨN2 ,ΨN3 ∈ ΩNPHS(X) then

(1) ΨN1∩̃ΨN1 = ΨN1.

(2) ΨN1∩̃ΨΦ = ΨΦ.

(3) ΨN1∩̃ΨG̃ = ΨÑ1
.

(4) ΨN1∩̃ΨN2 = ΨN2∩̃ΨN1.

(5) (ΨN1∩̃ΨN2)∩̃ΨΨN3
= ΨN1∩̃ (ΨN2∩̃ΨΨN3

).

Remark 3.15. Let ΨN ∈ ΩNPHS(X). If ΨN 6= ΨG̃, then ΨN ∪̃Ψc̃
N 6= ΨG̃ and ΨN ∩̃Ψc̃

N 6= ΨΦ
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Proposition 3.16. Let ΨN1 ,ΨN2 ∈ ΩNPHS(X) D’Morgans laws are valid

(1) (ΨN1 ∪̃ΨN2)c̃ = Ψc̃
N1
∩̃Ψc̃

N2
.

(2) (ΨN1 ∩̃ΨN2)c̃ = Ψc̃
N1
∪̃Ψc̃

N2
.

Proof. For all g ∈ G,

(1). Since (PN1∪̃N2
)c̃(g) = 1− PN1∪̃N2

(g)

= 1−max{PN1(g), PN2(g)}
= min{1− PN1(g), 1− PN2(g)}
= min{P c̃N1

(g), P c̃N2
(g)}

= P c̃N1∩̃N2
(g)

also

(QN1∪̃N2
)c̃(g) = 1−QN1∪̃N2

(g)

= 1−min{QN1(g), QN2(g)}
= max{1−QN1(g), 1−QN2(g)}
= max{Qc̃N1

(g), Qc̃N2
(g)}

= Qc̃N1∩̃N2
(g)

and

(RN1∪̃N2
)c̃(g) = 1−RN1∪̃N2

(g)

= 1−min{RN1(g), RN2(g)}
= max{1−RN1(g), 1−RN2(g)}
= max{Rc̃N1

(g), Rc̃N2
(g)}

= Rc̃N1∩̃N2
(g)

and

(ψN1∪̃N2
)c̃(g) = X \ ψN1∪̃N2

(g)

= X \ (ψN1(g) ∪ ψN2(g))

= (X \ ψN1(g)) ∩ (X \ ψN2(g))

= ψc̃N1
(g) ∩̃ψc̃N2

(g)

= ψc̃N1 ∩̃N2
(g).

similarly (2) can be proved easily.

Proposition 3.17. Let ΨN1 ,ΨN2 ,ΨN3 ∈ ΩNPHS(X) then

(1) ΨN1 ∪̃ (ΨN2 ∩̃ΨN3) = (ΨN1 ∪̃ΨN2) ∩̃ (ΨN1 ∪̃ΨN3).

(2) ΨN1 ∩̃ (ΨN2 ∪̃ΨN3) = (ΨN1 ∩̃ΨN2) ∪̃ (ΨN1 ∩̃ΨN3).

Proof. For all g ∈ G,

(1). Since PN1∪̃(N2∩̃N3)(g) = max{PN1(g), PN2∩̃N3
(g)}

= max{PN1(g),min{PN2(g), PN3(g)}}
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= min{max{PN1(g), PN2(g)},max{PN1(g), PN3(g)}}
= min{PN1∪̃N2

(g), PN1∪̃N3
(g)}

= P(N1∪̃N2)∩̃(N1∪̃N3)(g)

and

QN1∪̃(N2∩̃N3)(g) = min{QN1(g), QN2∩̃N3
(g)}

= min{QN1(g),max{QN2(g), QN3(g)}}
= max{min{QN1(g), QN2(g)},min{QN1(g), QN3(g)}}
= max{QN1∪̃N2

(g), QN1∪̃N3
(g)}

= Q(N1∪̃N2)∩̃(N1∪̃N3)(g)

and

RN1∪̃(N2∩̃N3)(g) = min{RN1(g), RN2∩̃N3
(g)}

= min{RN1(g),max{RN2(g), RN3(g)}}
= max{min{RN1(g), RN2(g)},min{RN1(g), RN3(g)}}
= max{RN1∪̃N2

(g), RN1∪̃N3
(g)}

= R(N1∪̃N2)∩̃(N1∪̃N3)(g)

and

ψN1∪̃(N2∩̃N3)(g) = ψN1(g) ∪ ψN2∩̃N3
(g)

= ψN1(g) ∪ (ψN2(g) ∩ ψN3(g))

= (ψN1(g) ∪ ψN2(g)) ∩ (ψN1(g) ∪ ψN3(g))

= ψN1∪̃N2
(g) ∩ ψN1ŨN3

(g)

= ψ(N1∪̃N2)∩̃(N1∪̃N3)(g)

In the same way, (2) can be proved.

Definition 3.18. Let ΨN1 ,ΨN2 ∈ ΩNPHS(X) then OR-operation of ΨN1 and ΨN2 , denoted

by ΨN1⊕̃ΨN2 , is an nphs-set defined by

(i) PN1⊕̃N2
(g1, g2) = max{PN1(g1), PN2(g2)},

(ii) QN1⊕̃N2
(g1, g2) = min{QN1(g1), QN2(g2)},

(iii) RN1⊕̃N2
(g1, g2) = min{RN1(g1), RN2(g2)},

(iv) ψN1⊕̃N2
(g1, g2) = ψN1(g1) ∪ ψN2(g2), for all (g1, g2) ∈ N1 ×N2.

Definition 3.19. Let ΨN1 ,ΨN2 ∈ ΩNPHS(X) then AND-operation of ΨN1 and ΨN2 , denoted

by ΨN1⊗̃ΨN2 , is an nphs-set defined by

(i) PN1⊗̃N2
(g1, g2) = min{PN1(g1), PN2(g2)},

(ii) QN1⊗̃N2
(g1, g2) = max{QN1(g1), QN2(g2)},

(iii) RN1⊗̃N2
(g1, g2) = max{RN1(g1), RN2(g2)},

(iv) ψN1⊗̃N2
(g1, g2) = ψN1(g1) ∩ ψN2(g2), for all (g1, g2) ∈ N1 ×N2.
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Proposition 3.20. Let ΨN1 ,ΨN2 ,ΨN3 ∈ ΩNPHS(X) then

(1) ΨN1⊗̃ΨΦ = ΨΦ.

(2) (ΨN1⊗̃ΨN2)⊗̃ΨN3 = ΨN1⊗̃ (ΨN2⊗̃ΨN3).

(3) (ΨN1⊕̃ΨN2)⊕̃ΨN3 = ΨN1⊕̃ (ΨN2⊕̃ΨN3).

4. Neutrosophic Decision Set of nphs-set

Having motivation from decision making methods stated in [42–50], here an algorithm is

presented with the help of characterization of neutrosophic decision set on nphs-set which

based on decision making technique and is explained with example.

Definition 4.1. Let ΨN ∈ ΩNPHS(X) then a neutrosophic decision set of ΨN (i.e. ΨD
N ) is

represented as

ΨD
N =

{
< T DN (u), IDN (u),FDN (u) > /u : u ∈ X

}
where T DN , IDN ,FDN : X→ I and

T DN (u) =
1

|X|
∑

v∈S(N )

TN (v)ΓψN (v)(u)

IDN (u) =
1

|X|
∑

v∈S(N )

IN (v)ΓψN (v)(u)

FDN (u) =
1

|X|
∑

v∈S(N )

FN (v)ΓψN (v)(u)

where | • | denotes set cardinality with

ΓψN (v)(u) =

{
1 ; u ∈ ΓψN (v)

0 ; u /∈ ΓψN (v)

Definition 4.2. If ΨN ∈ ΩNPHS(X) with neutrosophic decision set ΨD
N then reduced fuzzy

set of ΨD
N is a fuzzy set represented as

R(ΨD
N ) =

{
ζΨD
N

(u)/u : u ∈ X
}

where ζΨD
N

: X→ I with ζΨD
N

(u) = T DN (u) + IDN (u)−FDN (u)

4.1. Proposed Algorithm

Once ΨD
N has been established, it may be indispensable to select the best single substitute

from the options. Therefore, decision can be set up with the help of following algorithm.

Step 1 Determine N = {< TN (g), IN (g),FN (g) > /g : TN (g), IN (g),FN (g) ∈ I, g ∈ G},
Step 2 Find ψN (g)

Step 3 Construct ΨN over X,

Step 4 Compute ΨD
N ,
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Table 1. Degrees of Membership TN (gi)

TN (gi) Degree TN (gi) Degree

TN (g1) 0.1 TN (g9) 0.9

TN (g2) 0.2 TN (g10) 0.16

TN (g3) 0.3 TN (g11) 0.25

TN (g4) 0.4 TN (g12) 0.45

TN (g5) 0.5 TN (g13) 0.35

TN (g6) 0.6 TN (g14) 0.75

TN (g7) 0.7 TN (g15) 0.65

TN (g8) 0.8 TN (g16) 0.85

Step 5 Choose the maximum of ζΨD
N

(u).

Example 4.3. Suppose that Mr. James Peter wants to buy a mobile from a mobile mar-

ket. There are eight kinds of mobiles (options) which form the set of discourse X =

{m1,m2,m3,m4,m5,m6,m7,m8}. The best selection may be evaluated by observing the at-

tributes i.e. a1 = Company, a2 = Camera Resolution, a3 = Size, a4 = RAM, and a5 = Battery

power. The attribute-valued sets corresponding to these attributes are:

B1 = {b11, b12}
B2 = {b21, b22}
B3 = {b31, b32}
B4 = {b41, b42}
B5 = {b51}
then G = B1 ×B2 ×B3 ×B4 ×B5

G = {g1, g2, g3, g4, ....., g16} where each gi, i = 1, 2, ..., 16, is a 5-tuples element.

Step 1 :

From tables 1, 2, 3 we can construct N as

N =


< 0.1, 0.2, 0.3 > /g1, < 0.2, 0.3, 0.4 > /g2, < 0.3, 0.4, 0.5 > /g3, < 0.4, 0.5, 0.6 > /g4,

< 0.5, 0.6, 0.7 > /g5, < 0.6, 0.7, 0.8 > /g6, < 0.7, 0.8, 0.9 > /g7, < 0.8, 0.9, 0.1 > /g8,

< 0.9, 0.1, 0.2 > /g9, < 0.16, 0.27, 0.37 > /g10, < 0.25, 0.35, 0.45 > /g11, < 0.45, 0.55, 0.65 > /g12,

< 0.35, 0.45, 0.55 > /g13, < 0.75, 0.85, 0.95 > /g14, < 0.65, 0.75, 0.85 > /g15, < 0.85, 0.95, 0.96 > /g16


Step 2 :

Table 4 presents ψN (gi) corresponding to each element of G.

Step 3 :
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Table 2. Degrees of Indeterminacy IN (gi)

IN (gi) Degree IN (gi) Degree

IN (g1) 0.2 IN (g9) 0.1

IN (g2) 0.3 IN (g10) 0.27

IN (g3) 0.4 IN (g11) 0.35

IN (g4) 0.5 IN (g12) 0.55

IN (g5) 0.6 IN (g13) 0.45

IN (g6) 0.7 IN (g14) 0.85

IN (g7) 0.8 IN (g15) 0.75

IN (g8) 0.9 IN (g16) 0.95

Table 3. Degrees of Non-Membership FN (gi)

FN (gi) Degree FN (gi) Degree

FN (g1) 0.3 FN (g9) 0.2

FN (g2) 0.4 FN (g10) 0.37

FN (g3) 0.5 FN (g11) 0.45

FN (g4) 0.6 FN (g12) 0.65

FN (g5) 0.7 FN (g13) 0.55

FN (g6) 0.8 FN (g14) 0.95

FN (g7) 0.9 FN (g15) 0.85

FN (g8) 0.1 FN (g16) 0.96

With the help of step 1 and step 2, we can construct ΨN as

ΨN =



(< 0.1, 0.2, 0.3 > /g1, {m1,m2}) , (< 0.2, 0.3, 0.4 > /g2, {m1,m2,m3}) ,
(< 0.3, 0.4, 0.5 > /g3, {m2,m3,m4}) , (< 0.4, 0.5, 0.6 > /g4, {m4,m5,m6}) ,
(< 0.5, 0.6, 0.7 > /g5, {m6,m7,m8}) , (< 0.6, 0.7, 0.8 > /g6, {m2,m3,m4}) ,
(< 0.7, 0.8, 0.9 > /g7, {m1,m3,m5}) , (< 0.8, 0.9, 0.1 > /g8, {m2,m3,m7}) ,
(< 0.9, 0.1, 0.2 > /g9, {m2,m7,m8}) , (< 0.16, 0.27, 0.37 > /g10, {m6,m7,m8}) ,
(< 0.25, 0.35, 0.45 > /g11, {m2,m4,m6}) , (< 0.45, 0.55, 0.65 > /g12, {m2,m3,m6}) ,
(< 0.35, 0.45, 0.55 > /g13, {m3,m5,m7}) , (< 0.75, 0.85, 0.95 > /g14, {m1,m3,m5}) ,
(< 0.65, 0.75, 0.85 > /g15, {m5,m7,m8}) , (< 0.85, 0.95, 0.96 > /g16, {m4,m5,m6})


Step 4 :

From tables 5 to 8 , we can construct R(ΨD
N ) as

R(ΨD
N ) =

{
0.1688/m1, 0.4625/m2, 0.5313/m3, 0.2488/m4,

0.3988/m5, 0.2625/m6, 0.4575/m7, 0.2263/m8

}
Step 5 :

Since maximum of ζΨD
N

(mi) is 0.5313 so the mobile m3 is selected.
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Table 4. Approximate functions ψN (gi)

gi ψN (gi) gi ψN (gi)

g1 {m1,m2} g9 {m2,m7,m8}
g2 {m1,m2,m3} g10 {m6,m7,m8}
g3 {m2,m3,m4} g11 {m2,m4,m6}
g4 {m4,m5,m6} g12 {m2,m3,m6}
g5 {m6,m7,m8} g13 {m3,m5,m7}
g6 {m2,m3,m4} g14 {m1,m3,m5}
g7 {m1,m3,m5} g15 {m5,m7,m8}
g8 {m2,m3,m7} g16 {m4,m5,m6}

Table 5. Membership values T DN (mi)

mi T DN (mi) mi T DN (mi)

m1 0.2188 m5 0.4625

m2 0.4500 m6 0.3263

m3 0.5188 m7 0.4200

m4 0.3000 m8 0.2763

Table 6. Indeterminacy values IDN (mi)

mi IDN (mi) mi IDN (mi)

m1 0.2688 m5 0.5375

m2 0.4375 m6 0.4025

m3 0.6188 m7 0.3838

m4 0.3625 m8 0.2150

Table 7. Non-Membership values FDN (mi)

mi FDN (mi) mi FDN (mi)

m1 0.3188 m5 0.6013

m2 0.4250 m6 0.4663

m3 0.6063 m7 0.3463

m4 0.4138 m8 0.2650

5. Conclusion

In this study, neutrosophic parameterized hypersoft set is conceptualized along with some

of elementary properties and theoretic operations. A novel algorithm is proposed for decision

making and is validated with the help of an illustrative example for appropriate purchasing
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Table 8. Reduced Fuzzy membership ζΨD
N

(mi)

mi ζΨD
N

(mi) mi ζΨD
N

(mi)

m1 0.1688 m5 0.3988

m2 0.4625 m6 0.2625

m3 0.5313 m7 0.4575

m4 0.2488 m8 0.2263

of mobile from mobile market. Future work may include the extension of this work for other

neutrosophic-like environments and the implementation for solving more real life problems in

decision making.
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Abstract: There is no doubt regarding the notion that crime is deteriorating the socio-economic 

structure of society. Crime poses a serious threat to human values and existence. Therefore this 

menace should be stopped as early as possible otherwise it would lead to unavoidable 

circumstances. Whenever policies are formed there are some certain factors that are always taken 

into consideration to stop the crime. These measures were effective but with the passage of time 

there seems to be a constant situation and crime seems to be at its peak. This situation has forced us 

to think that there may be other factors that are leading to criminal behaviour in humans. These 

factors may be uncertain, unknown or indeterminate. Though previous researches in this regard 

have taken into consideration all the known factors, the present work takes into account both known 

and unknown factors together with the relationship among them. Taking into account all the factors 

which nourish crime either directly or indirectly, here we try to model the situation mathematically 

using Neutrosophic Cognitive Map since it provides us with a methodology of representing known 

and unknown factors together. The work is carried out using graphical methods and concepts 

together with linear algebra. The present work takes into account the crimes which are occurring in 

South Africa and models this situation taking into considerations all the certain and uncertain 

factors. The study reveals that relative poverty & inadequate housing, limited social and cognitive 

abilities, exclusion from school, family violence, culture conflict, colonialism, unemployment, 

income inequality, violent expressions of masculinity and use of violence to ‘resolve’ are directly 

related to crime in the country. The other factors such as Adherence to social norms, the multi-racial 

character of the society, Racial discrimination, apartheid policy, political transition, restructuring of 

the criminal justice system, gathering of people, intimate partner violence & femicide and use of 

‘tik’ (crystal meth/ methamphetamine) which were not supposed to have a direct influence on crime 

in the country by previous researches are also having a significant effect on crime. The present work 

contributes effectively in identifying the factors leading to criminal behaviour among people. This 

would in turn help policymakers to take necessary steps at ground level to curb the crime in the 

country. The work also shows the modelling of the situation using Fuzzy Cognitive Maps just to 

represent the effectiveness of Neutrosophic Cognitive Maps over them. 

 

Keywords: Crime Analysis, Unsupervised Data, Fuzzy Logic, Fuzzy Cognitive Maps, Neutrosophy, 

Neutrosophic Cognitive Maps 

 
 

1.  Introduction  

Crime has remained a serious challenge in the history of South Africa. The recent statistics by 

the police department have shown an increase in the number of crimes [18]. There are several 

instances where it has been noticed that criminal behaviour in humans is motivated by certain factors. 

The need to identify these factors more accurately, the present work is carried out using recent data 
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from South Africa. Various crime instances have been noticed in the recent past in the country. This 

has motivated researchers to study criminal behaviour among people. Though most of the studies 

are concerned with only known factors none has focused on indeterminate and unknown factors. 

This study takes into account both the factors and shows how indeterminate factors play important 

roles in determining criminal behaviour among people. The crime in South Africa has started 

increasing from the mid-1980s to the early 1990s [19]. The studies at that time foretold that the crime 

was expected to reduce in between 1995-1996 which happened as expected but later in 1996 it again 

started at a large scale. Recently released report by Mid-Year Population Estimates (MYPE) 2019 

shows that the population of South Africa is 56.78 million [26]. The population is not only comprised 

of native citizens but there exists a lot of multi-racial population. The Union contains four principal 

groups: Europeans, almost equally divided between British and Afrikaaner (2,643,187, according to 

the 1951 census); Africans or Bantus or "natives" (8,535,341); Colored, like those of mixed racial 

descent are known, (1,102,323); Asians, most of whom are Indians, (365,524). The multi-racial nature 

of society has led to various problems in the country. The crime in the country is at its peak at each 

and every corner. Below we show the crime statistics from the South African Police department which 

show how many numbers of crimes are committed annually with respect to the nature of the crime. 

 

Type of Crimes 2013/14 2014/15 2015/16 2016/17 2017/18 

Motor Vehicle Theft 57 415 67 104 57 783 47 586 56 526 

Housebreaking/Burglary 940 954 874 606 844 982 776 933 832 122 

Home Robbery 268 639 208 401 187 830 151 279 156 089 

Theft of livestock, poultry and other animals 253 373 164 710 148 785 161 063 159 421 

Theft of crops planted by the household 47 977 16 843 39 155 15 003 11 493 

Trends in murder 26 529 18 012 14 930 16 201 16 809 

Theft out of motor vehicle 208 978 196 236 192 736 139 432 130 350 

Deliberate damage, burning or destruction 

 of dwellings 
58 452 60 624 40 892 46 915 50 426 

Motor vehicle vandalism 54 633 74 824 67 715 31 907 40 155 

Theft of bicycle 54 119 60 375 37 227 21 051 29 264 

Theft of personal property 1 012 537 921 773 842 478 708 357 693 219 

Robbery 373 148 348 349 283 544 294 874 280 526 

Sexual Offences 62 074 44 464 29 473 73 842 28 596 

Assault 431 043 431 914 331 913 318 077 355 739 

Consumer Fraud 86 012 90 249 160 076 85 848 137 274 
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Table 1 Crime statistics of South Africa 

Source: South African Police Services http://www.statssa.gov.za 

The above table shows how crime is increasing in the country annually. The crime includes not only 

heinous crimes like murder, sexual assault but also includes the crime at a small level. These criminal 

behaviours among the people of South Africa are motivated due to several factors. However, while 

going through the previous researches in this regard the diversity in a population is regarded as one 

of the key reason for crime as explained by the experts [2]. Not only diversity but there are certainly 

other factors that are put forward by various researchers. These factors are regarded as certain factors 

throughout this study. These factors which are leading to most of the crimes in South Africa are 

Relative Poverty & inadequate housing [1], Limited social and cognitive abilities[1], Exclusion from 

school[1], Family violence [1], culture conflict [2], colonialism [9], unemployment [1], income 

inequality [10-12], violent expressions of masculinity [13-16], use of violence to ‘resolve’ conflict [10] 

and access to firearms [10] [17]. There exists a lot of literature that almost deals with all these factors. 

These certain or determinate factors have always been taken into consideration for making policies 

to tackle the situation of crime in South Africa. But despite considering all these factors and 

formulating strategies to curb crime in this country; crime appears to be the major problem at present. 

This situation has motivated us to inquire about the situation of this country to know what the other 

causes are leading to crime in this country. Through the reports by various agencies together with 

the opinion of the experts we came to know that there are uncertain and indeterminate factors that 

are increasing crime in this country more than certain factors. These factors are  lack of adherence to 

social norms [27-28], the multi-racial character of the society [2], Racial discrimination [2], apartheid 

policy [2], political transition [3], restructuring of the criminal justice system [3], gathering of people 

at various occasions [3], perpetrating intimate partner violence (IPV) & femicide [4-6] and most 

importantly the use of ‘tik’ (crystal meth/ methamphetamine) [7-8] by people in South Africa. The 

data which is collected for analyzing any situation is always unsupervised [28-29] and this 

unsupervised data is in no way free from uncertainty and indeterminacy. The present work attempts 

to prove mathematically how these indeterminate and uncertain factors are related to crime in South 

Africa. Since the mathematical field of neutrosophy [21] [23] deals with the uncertainty among 

concepts; we try to model the situation of crime in South Africa using neutrosophy. Though various 

factors are taken into consideration in earlier researches to identify the criminal behaviour among the 

masses, as per knowledge none has taken into consideration the unknown and indeterminate factors. 

The present work in this regard seems to be more effective in knowing the behaviours by considering 

all known and unknown factors. There is recent research work by researchers in the field of crime in 

South Africa. The authors in [38] have explored whether the crime rate has been affected due to the 

weather conditions in the country or not. Authors in [39] have performed a multi-level model analysis 

to check whether criminal behaviour among the masses of South Africa is the result of internal 

migration or immigration. Authors in [40] have come up totally with different viewpoints. Their 

http://www.statssa.gov.za/
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study seeks to argue that the extent of corruption in South African public service as being equal to a 

crime against human rights and dignity. Authors in [41] have studied the impact of social media on 

crimes in the country. The increasing xenophobic hate crime in South Africa is on its verge. The 

authors in [42] have studied the reasons for such crime in South Africa. The study related to property 

crime in South Africa is conducted in [43]. 

The rest of the paper is divided as follows; section 2 gives the concepts and preliminaries required to 

carry out this work, section 3 presents the methodology, section 4 models the situation of crime in 

South Africa using Neutrosophy, section 5 shows calculation and interprets the results obtained and 

section 6 concludes the paper. 

 
2. Concepts and Preliminaries  

 The situation of crime could also be modelled using fuzzy logic and fuzzy cognitive maps [24] 

but it has several limitations [22] [34]. The fuzzy logic is based on membership functions and crisp 

sets. It addresses the causal relationship between the concepts. The existence of membership and non-

existence of membership among various concepts is measured by Fuzzy theory but it says nothing 

about the indeterminate concepts. As it is a well-known fact that when we deal with unsupervised 

data indeterminacy and uncertainty is always present; hence it needs to be addressed while dealing 

with unsupervised data. Since fuzzy logic is limited to the certainty of concepts here in this study we 

have employed neutrosophic sets and theories for dealing with unsupervised data. 

Neutrosophy [21] [23] is a field of study that is not limited to certainties but it's an emerging field 

that incorporates all the indeterminacy and uncertainties. A number of problems are solved using 

this theory all around the globe with surprising results. The recent developments in this novel field 

could be seen in [35] where authors have proposed a multi-criteria decision-making model for 

evaluating sustainable hydrogen production. In [36] authors again proposed a multi-criteria decision-

making model for evaluation of the medical care system by taking various case studies to prove the 

feasibility of the proposed model. To describe the real cognitive information authors in [37] have 

proposed type-2 Neutrosophic Number TOPSIS. They have demonstrated the effectiveness of the 

proposed technique by taking into account several case studies. This has led us to apply this theory 

in analyzing the crime situation in South Africa. To apply this theory we need to understand some of 

the concepts and preliminaries as follows: 

 

Definition 1. Let N = {(T, I, F): T, I, F ∈ (0,1)} be a neutrosophic set. Let m: P → N is a mapping of a 

group of propositional formulas into N, i.e., each sentence p ∈ Pis associated to a value in N, as it is 

exposed in the Equation 1, meaning that p is T% true, I% indeterminate and F% false.  

m(p) = (T, I, F)                            (1) 

Hence, it can be concluded that fuzzy logic when generalized based on some concepts of 

neutrosophy; it becomes neutrosophic logic according to [21] 
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Definition 2. A Neutrosophic matrix is a matrix M =  [aij]ij
 where i = 1,2,3, … … . . , m  and j =

1,2,3, … … . . , nsuch that each aij ∈ K (I) where K (I) is a neutrosophic ring. Now let us understand 

this neutrosophic matrix by an example. Suppose each element of matrix is represented by a + bI 

where a and b are real numbers and I is a factor of indeterminacy.  

For Example: 

(
−1 I 5I

I 4 7
) (

I 9I 6
0 I 0

−4 7 5
) =  (

−21I 27I −6 + 25I
−28 + I 49 + 13I 35 + 6I

) 

 

Definition 3. A neutrosophic graph is a graph in which there exists an indeterminate node or an 

indeterminate edge. Now taking reference from the Definition 2 above we can conclude that when 

aij = 0 it means there is no connection between  nodes i and j, aij = 1 means there is a connection 

between  nodes i and j and aij = I means that connection is indeterminate (unknown). 

Definition 4. Cognitive maps are cause-effect networks, with nodes representing concepts articulated 

by individuals, and directional linkages capturing causal dependencies [25]. 

Definition 5. A directed graph whose nodes are represented as concepts and edges among concepts 

represents relationship which can be determinate &indeterminate edges; this graph is referred to as 

Neutrosophic Cognitive Map [20]  

 

3. Methodology  

The proposed methodology tries to introduce indeterminacy in Fuzzy Cognitive Maps (FCMs) 

[24]. This mapping would be referred as Neutrosophic Cognitive Maps (NCMs). This concept is well 

illustrated by W. B. Vasantha Kandasamy [20]. This concept of NCMs would be applied in modeling 

the situation in South Africa to study the influence of different determinate and indeterminate factors 

that have worsen the situation crime. To do this now let us understands NCMs. NCM is a 

neutrosophic graph. This is a directed graph in which dotted edge represents indeterminacy. The 

node of the graph is referred to various concepts. When K1, K2,……,Kn are n nodes of neutrosophic 

graph. These nodes of graph are connected using edges having weight ‘0’ or ‘1’ or ‘I’ where ‘I’ shows 

indeterminacy, ‘1’ indicates that the node is at ON state and when it has value ‘0’ it  indicates the 

OFF state of the node. These NCMs are most of the time referred to as simple NCMs. The matrix 

corresponding to neutrosophic graph is called Neutrosophic adjacency matrix. Later this matrix is 

evaluated using laws of mathematics and the results obtained by this will be interpreted which would 

show the importance of the present work. To show the effectiveness of Neutrosophic Cognitive Maps 

over Fuzzy Cognitive Maps in analyzing the situation of crime in South Africa let us model the 

situation using FCM.  
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Figure 1 Fuzzy Cognitive Map based on determinate factors affecting crime in South Africa 

The above graph is called is called Fuzzy cognitive map for studying the situation of crime in South 

Africa. The edges having weight ‘1’ denotes determinate edges which show how determinate factors 

are nourishing crime in South Africa. Since Fuzzy does not take into consideration the indeterminate 

relationship therefore the indeterminate factors are not connected to the node representing crimes in 

South Africa. We also show how these indeterminate concepts are related to each other which are 

represented using dotted line with symbol ‘I’ denotes indeterminate edges. Now we formulate the 

adjacency matrix based on above graph. 

 

 SA D1 I1 D2 I2 D3 I3 D4 I4 D5 I5 D6 I6 D7 I7 D8 I8 D9 I9 D10 

SA 0 1  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

D1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 

I1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 

I2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

I4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D7 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 2 Fuzzy Adjacency Matrix based on neutrosophic cognitive map in figure 1 

The fuzzy adjacency matrix is now evaluated to know the effect of factors on the crime is South Africa. 

Now for this we take vector SA as on state i.e.  

The state vector SA1 = (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) is given as input effect of SA1 on the 

combined system is SA1F(E) . The symbol  denotes that the resultant vector is updated and 

threshold. The following calculation is carried out till we obtain a constant state vector or it is also 

referred as limit cycle. 

 

𝑆𝐴1𝐹(𝐸) = (0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1) 

 (1   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1) = 𝑆𝐴2  

𝑆𝐴2𝐹(𝐸) = (9   4   0   3   0   2   0   2   0   1   0   1   0   3   0   3   0   2   0   2)  

 (1   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1) = 𝑆𝐴3 

 

We notice that SA2 = SA3 so further iterations are not required. SA8 is a fixed point or limit cycle. 

The significance of this limit cycle is the most since it shows a hidden pattern which is used in 

drawing inferences. The current results obtained above shows that when crime in South Africa is in 

on state all the factors such as relative poverty & inadequate housing, limited social and cognitive 

abilities, exclusion from school, family violence, culture conflict, colonialism, unemployment, income 

inequality, violent expressions of masculinity and use of violence to ‘resolve’ conflict are in on state. 

This signifies that all these factors have direct influence on crime in the country. But the factors which 

are put forward by the experts are other studies like Adherence to social norms, multi-racial character 

of the society, Racial discrimination, apartheid policy, political transition, restructuring of the 

criminal justice system, gathering of people, intimate partner violence (IPV) & femicide and use of 

‘tik’ (crystal meth/ methamphetamine) are absent in this regard. So it could be clearly inferred that 

the FCMs take no importance of uncertain factors which could have direct influence on the concepts. 

Now further we try to model the situation using Neutrosophy [31-33]. 

 

 

 

 

  

D8 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

I8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

I9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D10 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
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4. Application of Neutrosophy in modeling situation of Crime in South Africa 

To model the current situation of crime in South Africa we have considered some certain factor 

from previous researches and some of the factors are considered using expert’s opinion. We have also 

utilized reports from various official departments to ascertain the current scenario in this country. 

These factors not only include certain factors but also capture some of the uncertain and 

indeterminate factors. Lists of the factors which are considered whether known or indeterminate are 

as follows: 

 

Figure 2 Summary of factors leading to crime in South Africa based on previous researches and experts 

opinion 

Factors leading to criminal behaviour in 
South Africa 

Determinate or Certain factors

•Relative Poverty & inadequate housing (D1)

•Limited social and cognitive abilities (D2)

•Exclusion from school (D3)

•Family violence (D4)

•culture conflict (D5)

•colonialism (D6)

•unemployment (D7)

• income inequality (D8)

•violent expressions of masculinity (D9)

•use of violence to ‘resolve’ conflict (D10)

Indetermiante or Uncertain factors

•Adherence to social norms (I1)

•multi-racial character of the society (I2)

•Racial discrimination (I3)

•apartheid policy (I4)

•political transition (I5)

• restructuring of the criminal justice system (I6)

•gathering of people (I7)

• intimate partner violence (IPV) and femicide (I8)

•use of ‘tik’ (crystal meth/ methamphetamine) (I9)
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Now we model the situation with the help of neutrosophic cognitive maps since it represents better 

models while analyzing the situation [30]. We try to show how these indeterminate and uncertain 

factors do influence the determinate and certain factors. The previous researches in this regard show 

that determinate factor such as Relative Poverty & inadequate housing and Exclusion from school 

led to the difficulty in Adherence to social norms and gathering of people at several places which are 

indeterminate factors [1] [3] [27-28].  Culture conflict among the people of society directly influences 

Adherence to social norms and racial discrimination [2] [27-28]. Unemployment is thought to be the 

main factors that led to crime in South Africa [1] and this unemployment results in some 

indeterminate factors which are also increasing crimes in the country. These factors are Adherence to 

social norms and gathering of people [27-28] [3]. The expression of masculinity is referred to as one 

of the key cause of crime in the country in many studies [13-16]. This violent expression of masculinity 

results in intimate partner violence (IPV) and femicide which itself is a crime [4-6]. Use of violence to 

‘resolve’ conflict is also related to intimate partner violence (IPV) and femicide and use of ‘tik’ (crystal 

meth/ methamphetamine) [7-8] [10]. Many historical studies suggest that factors such as colonialism 

and apartheid have left a legacy of violence [2] [9]. This directly relates to political transition and 

restructuring of criminal justice system [3]. This shows how factors which always taken in 

considerations in various studies are linked which indeterminate and uncertain factors which most 

of the time are neglected. There some indeterminate factors which are interlinked like multi-racial 

character of the society and racial discrimination have association with apartheid policy of the 

country [2]. Taking all these factors and relationship among them we now model the situation of 

crime in South Africa using neutrosophic cognitive maps which is prominent concept of neutrosophy.  

 

 

Figure 3 Neutrosophic Cognitive Map based on determinate and indeterminate factors affecting crime in South 

Africa 

The above graph is called is called neutrosophic cognitive map for studying the situation of crime in 

South Africa. The edges having weight ‘1’ denotes determinate edges and those edges which are 

shown with symbol ‘I’ denotes indeterminate edges.  
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5. Results 

Now with the help of above cognitive map we form the neutrosophic adjacency matrix. This 

matrix is formulated taking in account the factors which are represented as nodes in cognitive maps 

and the relationship among the factors.  

 

 

 SA D1 I1 D2 I2 D3 I3 D4 I4 D5 I5 D6 I6 D7 I7 D8 I8 D9 I9 D10 

SA 0 1  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

D1 1 0 I 0 0 1 0 1 0 0 0 0 0 1 I 0 0 0 0 0 

I1 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 I 

D2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 

I2 0 0 0 0 0 0 I 0 I I 0 0 0 0 0 0 0 0 0 0 

D3 1 1 I 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 

I3 0 0 0 0 I 0 0 0 I I 0 0 0 0 0 0 0 0 0 0 

D4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

I4 0 0 0 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 

D5 1 0 I 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 

I5 0 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 0 0 

D6 1 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 

I6 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 

D7 1 1 I 1 0 I 0 0 0 0 0 0 0 0 I 0 0 0 0 0 

I7 0 I 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 

D8 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

I8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I 

D9 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 1 I 0 0 0 

I9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

D10 1 0 I 0 0 0 0 1 0 0 0 0 0 0 0 0 I 0 I 0 

 

Figure 4 Neutrosophic Adjacency Matrix based on neutrosophic cognitive map in figure 3 

The neutrosophic adjacency matrix is now evaluated to know the effect of factors on the crime is 

South Africa. Now for this we take vector SA as on state i.e.  

The state vector SA1 = (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) is given as input effect of SA1 on the 

combined system is SA1N(E) . The symbol  denotes that the resultant vector is updated and 

threshold. The following calculation is carried out till we obtain a constant state vector or it is also 

referred as limit cycle. 
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𝑆𝐴1𝑁(𝐸) = (0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1) →  (1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1) 

= 𝑆𝐴2 

𝑆𝐴2𝑁(𝐸) = (10  3  6𝐼  2  𝐼  𝐼 + 1  𝐼  2  0  0  𝐼  0  0  2  3𝐼  2  2𝐼  1  𝐼  1)( 1  1  𝐼  1  𝐼  1  𝐼  1  0  0  𝐼  0  0  1  𝐼  1  𝐼  1  𝐼  1)   

 = 𝑆𝐴3 

𝑆𝐴3𝑁(𝐸) = (8  2𝐼2 + 4  5𝐼  3  𝐼2  𝐼2 + 𝐼 + 2  𝐼2  3  2𝐼2  3𝐼2 + 1  0  𝐼2 + 1  𝐼2  2𝐼2 + 3  3𝐼  3  2𝐼  2𝐼2 + 2  𝐼  2𝐼  2𝐼2

+ 2)   

( 1  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  0  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1) =   𝑆𝐴4 

𝑆𝐴4𝑁(𝐸) = (10  2𝐼2 + 4  6𝐼  3  2𝐼2 + 𝐼  𝐼2 + 𝐼 + 2  2𝐼2 + 𝐼  3  2𝐼2  3𝐼2 + 1  𝐼2 + 𝐼  1  0  2𝐼2 + 3  3𝐼  3  2𝐼  2𝐼2

+ 2  𝐼  3𝐼2 + 2) ( 1  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  0  1  𝐼  1  𝐼  1  𝐼  1) = 𝑆𝐴5 

𝑆𝐴5𝑁(𝐸) = (10  2𝐼2 + 4  6𝐼  3  2𝐼2 + 𝐼  𝐼2 + 𝐼 + 2  2𝐼2 + 𝐼  3  2𝐼2  3𝐼2 + 1   𝐼  𝐼2 + 1  𝐼2  2𝐼2 + 3  3𝐼  3  2𝐼  2𝐼2

+ 2  𝐼  3𝐼2 + 2) (1  1  𝐼  1  𝐼  1  1  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1   𝐼  1) = 𝑆𝐴6 

𝑆𝐴6𝑁(𝐸) = (10  2𝐼2 + 4  6𝐼  3  𝐼2 + 2𝐼  𝐼2 + 𝐼 + 2  2𝐼2 + 𝐼  3  𝐼2 + 𝐼  2𝐼2 + 𝐼 + 1  𝐼2 + 𝐼  𝐼2 + 1  𝐼2  2𝐼2

+ 3  3𝐼  3  2𝐼  2𝐼2 + 2  𝐼  3𝐼2 + 2)(1  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1) = 𝑆𝐴7   

𝑆𝐴7𝑁(𝐸) = (10  2𝐼2 + 4  6𝐼  3  2𝐼2 + 𝐼  𝐼2 + 𝐼 + 2  2𝐼2 + 𝐼  3  2𝐼2  3𝐼2 + 1  𝐼2 + 𝐼  𝐼2 + 1  𝐼2  2𝐼2 + 3  3𝐼  3  2𝐼  2𝐼2

+ 2  𝐼  3𝐼2 + 2) (1  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1) = 𝑆𝐴8 

 

We notice that SA7 = SA8 so further iterations are not required. SA8 is a fixed point or limit cycle. 

The significance of this limit cycle is the most since it shows a hidden pattern which is used in 

drawing inferences. These inferences show the joint effect of interacting knowledge. The current 

results obtained using NCMs is (1  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1  𝐼  1)  which shows that when 

crime in South Africa is in on state all the factors such as relative poverty & inadequate housing, 

limited social and cognitive abilities, exclusion from school, family violence, culture conflict, 

colonialism, unemployment, income inequality, violent expressions of masculinity and use of 

violence to ‘resolve’ conflict are in on state. This signifies that all these factors have direct influence 

on crime in the country. The factors such as Adherence to social norms, multi-racial character of the 

society, Racial discrimination, apartheid policy, political transition, restructuring of the criminal 

justice system, gathering of people, intimate partner violence (IPV) & femicide and use of ‘tik’ (crystal 

meth/ methamphetamine) which were not supposed to have direct influence on crime in the country 

by previous researches are also having significant effect on crime as we have not obtained ‘0’ in the 

limit cycle at their position but we have obtained ‘I’ which shows these are having relationship with 

crime in the country. The previous result obtained using FCM is 

 (1   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1)  that clearly shows that all indeterminate and 

uncertain factors are absent which signifies that the study conducted using FCM is unable to 

represent any real life situation. This proves that NCMs are better to model real life situation than 

FCMs also representing the importance of indeterminate and uncertain events in analyzing any real 

life situation. 

 

 



Neutrosophic Sets and Systems, Vol. 41, 2021 26  

 

 

Mohd. Saif Wajid & Mohd Anas Wajid, The Importance of Indeterminate Factors in Nourishing Crime: A Case Study of 

South Africa Using Neutrosophic Cognitive Maps 

 

 

6. Conclusion  

The present work is aimed at mathematically analyzing the situation of crime in South 

Africa. The paper contributes in a sense that it takes into account all causes (factors) whether 

certain (known) or uncertain (indeterminate and unknown), responsible for nourishing crime 

in the country. Though the previous researches have focused only on known factors, the 

present work emphasizes both the factors which may not be considered in previous studies. 

Considering and representing all the factors mathematically we tried to develop a 

mathematical model using neutrosophic cognitive maps so that the situation could be 

analyzed at ground level. The model further evaluated using some mathematical laws of 

calculation like graphs and linear algebra. Later the results are interpreted which shows how 

indeterminate and uncertain factors are giving rise to criminal behaviour in the population of 

South Africa. Below is the finding of our work that shows what are the certain factors 

nourishing crime and what are the indeterminate/uncertain factors nourishing crime: 

Known and certain factors nourishing crime: 

 relative poverty & inadequate housing,  

 limited social and cognitive abilities,  

 exclusion from school,  

 family violence,  

 culture conflict,  

 colonialism,  

 unemployment,  

 income inequality,  

 violent expressions of masculinity and  

 use of violence to ‘resolve’ conflict  

Unknown and uncertain factors nourishing crime: 

 Adherence to social norms,  

 multi-racial character of the society,  

 Racial discrimination,  

 apartheid policy,  

 political transition,  

 restructuring of the criminal justice system,  

 gathering of people,  

 intimate partner violence (IPV) & femicide and  

 use of ‘tik’ (crystal meth/ methamphetamine) 

 This study is expected to help policymakers in taking corrective measures to curb crime in the 

country. The current work takes a very limited number of factors in consideration and all the work 

is performed manually. Future work in this regard would be modelling the situation mathematically 
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considering a large number of factors and employing machine learning algorithms so that it may 

become easy to model the situation and interpret the results.    
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Abstract: Neutrosophic logic is a very powerful and effective concept. It has different application areas due to 

its ability to capture the stochasticity in many complex real-life use cases. This paper presents the main types 

of neutrosophic sets. It also surveys and analyzes its most common applications.     
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1. Introduction 

The term Neutrosophic means neutral thought knowledge. It is a combination of two terms (Neuter) 

and (Sophia), wherein Latin Neuter means “Neutral” and Sophia means “Wisdom”. In general, 

Neutrosophic set and logic are generalizations of classical fuzzy and intuitionistic fuzzy [40], while 

neutrosophic Probability and Statistics are generalizations of classical and imprecise probability and 

statistics [3].  Neutrosophic Logic (NL) is a framework for unifying many existing logics, such as fuzzy 

logic, paraconsistent logic, intuitionistic logic, etc. [34, 37].  The main idea of NL is to characterize each 

logical statement in a 3D-Neutrosophic space, where each dimension of that space represents the truth 

(T), the indeterminacy (I), and the falsehood (F) of the statement respectively under consideration; 

where T, I, and F are standard or non-standard real subsets from ]0, 1[  with not necessarily any 

connection between them [2]. Many examples can be represented only by neutrosophic logic and neither 

by fuzzy nor intuitionistic fuzzy. One of those examples is “Voting” [36]. In general, the neutrosophic set 

depends on three membership functions (T, I, and F). These functions are independent, and their sum 

does not add up to 1. Meanwhile, it should add up to 3 [39]. Neutrosophic logic is considered a bigger 

umbrella of Fuzzy logic. Also, it has many applications; however, it has not been used so far alongside Q-

learning. Although, by combining it with Q-learning, more realistically and flexible long-term values for 

Q are expected to be obtained. 

 

https://www.youtube.com/watch?v=KwOOppCSYPE
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Figure-1: Relationship between neutrosophic set and other sets 

 

Many methods were invented to deal with uncertainty. Starting from Fuzzy logic [109], which 

represents the “partial Truth” concept as the true value ranges between 0 and 1 according to whether it 

is entirely false or completely true. Meanwhile, Fuzzy logic had many drawbacks that encouraged the 

researchers to propose interval-valued sets to allow interval membership values within the same set. 

Then, an intuitionistic fuzzy set was a generalization for the traditional fuzzy sets. In an intuitionistic 

fuzzy set, each element has a degree of membership and even non-membershsip [110]. Meanwhile, it had 

drawbacks that encouraged some researchers to propose a neutrosophic set [111]. Figure-1 

demonstrates the relationship between neutrosophic set and other sets, while, Table-1 lists sample 

advantages and disadvantages of each of these concepts [112].  

 

Table-1: Advantages and Disadvantages of uncertainty algorithms 

Algorithm Advantages  Disadvantages  

Fuzzy Sets - The first algorithm to deal with 

uncertainty 

- Ability to solve complex problems 

- Generates output even if only a few 

input data are at hand 

- Flexible algorithm and its rules can 

be modified  

- Easy to implement 

- It depends on human knowledge 

and expertise  

- Its rules have to be regularly visited 

and updated 

- Sometimes its accuracy is not 

entirely reliable when it works on 

inaccurate inputs  

- No single and systematic approach 

for solving a problem might lead to 

confusion  

- Assume only crisp values for 

representing True/False  

Intuitionistic Fuzzy 

Sets  

- Assume a value for not only the 

belongingness of a number to a set 

(i.e., membership) but also a non-

membership value  

- It ignores the indeterminacy 

component  

- Sometimes might generate 

confusing results [113] 

- It contradicts the intuitionistic logic 

in some cases [113] 
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Interval-Valued 

Intuitionistic Fuzzy 

Sets 

- Introduce interval for representing 

True and False values  

- It ignores the indeterminacy 

component  

Neutrosophic Sets - It is a generalization of other fuzzy 

concepts 

- Flexible  

- Takes into consideration the 

indeterminacy component that 

captures any vagueness and 

uncertainty  

- Solves many complex problems 

that have incomplete and imprecise 

information 

- Generates reliable results in many 

multi-criteria decision-making 

problems 

- Ability to deal with information 

that comes from different data 

sources 

- Assume single value for each 

component, and his might not lead 

to completely certain results  

Interval-Valued 

Neutrosophic Sets 

- Perfectly capture the uncertain and 

inconsistent information that exist 

in real-world  

- Assume an interval for each 

neutrosophic component (T, I, F) 

- There are only a few research in 

this area. Hence it still needs proof 

of its robustness 

    

 

Due to the significance of CLV and the effectiveness of Q-learning, fuzzy logic, and neutrosophic logic 

algorithms, many researchers compete in developing models to utilize these algorithms separately in the 

marketing context. Meanwhile, each of their implementations has a specific drawback. For instance, 

neutrosophic logic is not applied yet in a real-life marketing context to maximize CLV [11]. Also, fuzzy 

logic is not utilized to maximize CLV, but for many other purposes, including clustering the customer base 

according to their profitability level or measuring it with RFM values instead of CLV [28, 6]. Finally, Q-

learning has been combined with different machine learning and deep learning algorithms for that 

purpose. For instance, some researchers utilized deep learning to predict Q's optimal value that 

maximized the long-term profitability of the customers within the firm [31, 19]. Meanwhile, these 

algorithms overestimated Q's action values, hence generating unrealistic actions [14]. 

 

Single-Valued Neutrosophic Set  

Two types of membership functions for the NQL model are illustrated (Trapezoidal and Triangular). 

The goal is to utilize the neutrosophic model to learn the optimal Q value that maximizes long-term 

rewards. The stochastic nature of the problem is captured by assuming three values for Q (i.e., T, I, 
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and F) instead of a single value, each of which follows the Trapezoidal or Triangular membership 

function illustrated in the upcoming sub-sections. 

2.2.1. Trapezoidal Neutrosophic Q-Learning  

In light of neutrosophic logic’s definition mentioned in Section-1, which depends upon 3 core values 

(T, I, and F), this section illustrates how to calculate these values and how to calculate the model 

performance measurements [17].  

Let H be a universal set. Hence, a single-valued neutrosophic set B in H is calculated in Eq. (1) 

𝐵 = {ℎ,< 𝑇𝐵(ℎ), 𝐼𝐵(ℎ), 𝐹𝐵(ℎ) > |ℎ ∈ 𝐻},                       (1) 

Where truth membership function (T_B (h)), indeterminacy membership function (I_B (h)), and 

falsity membership function (F_B (h)) satisfy the following conditions:    

𝑇𝑆(𝑧) =  

{
 
 

 
 𝑡𝑆 (

(𝑧−𝑘)

(𝑙−𝑘)
) ,            𝑘 ≤ 𝑧 ≤ 𝑙 

𝑡𝑆,                  𝑙 ≤ 𝑧 ≤ 𝑚

𝑡𝑆 (
(𝑛−𝑧)

𝑛−𝑚
) ,           𝑚 ≤ 𝑧 ≤ 𝑛

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (2) 

𝐼𝑆(𝑧) =  

{
 
 

 
 
𝑙−𝑧+(𝑧−𝑘′)𝑖𝑆

(𝑙−𝑘′)
,            𝑘′ ≤ 𝑧 ≤ 𝑙

𝑖𝑆,                    𝑙 ≤ 𝑧 ≤ 𝑚
𝑧−𝑚+(𝑛′−𝑧)𝑖𝑆

(𝑛′−𝑚)
,          𝑚 < 𝑧 ≤ 𝑛′

1,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (3) 

            𝐹𝑆(𝑧) =  

{
 
 

 
 
𝑙−𝑧+(𝑧−𝑘′′)𝑓𝑆

(𝑙−𝑘′′)
,            𝑘′′ ≤ 𝑧 ≤ 𝑙

𝑓𝑆,                    𝑙 ≤ 𝑧 ≤ 𝑚
𝑧−𝑚+(𝑛′′−𝑧)𝑓𝑆

(𝑛′′−𝑚)
,          𝑚 < 𝑧 ≤ 𝑛′′

1,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (4) 

Where S is a trapezoidal neutrosophic number, 𝒌, 𝒍,𝒎, 𝒏  ∈ 𝑹 . Then 𝑺 = ([𝒌, 𝒍,𝒎, 𝒏]; 𝒕𝒔, 𝒊𝒔, 𝒇𝒔)  is 

called trapezoidal neutrosophic number (TrNN); and it has one of three possibilities (Positive TrNN, 

negative TrNN, or normalized TrNN). 𝒎 is called positive TrNN, if 𝟎 ≤ 𝒌 ≤ 𝒎 ≤ 𝒏. While, if 𝒌 ≤

𝒍 ≤ 𝒎 ≤ 𝒏 ≤ 𝟎, then 𝑺 is called negative TrNN. If 𝟎 ≤ 𝒌 ≤ 𝒍 ≤ 𝒎 ≤ 𝒏 ≤ 𝟏 and 𝑻𝒔 , 𝑰𝒔 , 𝑭𝒔  ∈ [𝟎, 𝟏], 

then 𝑿 is called normalized TrNN. The membership function is demonstrated in Fig.4. 

 

Figure 4 TrNN membership function for truth, indeterminacy, and falsity functions 
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Multi-Valued Neutrosophic Set  

 

Assume X is a space of points (each of which is x), then multi-valued neutrosophic set 𝐴 𝑖𝑛 𝑋 has 

membership functions (𝑇𝐴̃(𝑥), 𝐼𝐴̃(𝑥), 𝐹𝐴̃(𝑥)) defined on multiple-valued as follows 

𝐴 = {(𝑥, 𝑇𝐴̃(𝑥), 𝐼𝐴̃(𝑥), 𝐹𝐴̃(𝑥))| 𝑥𝜖𝑋}  

Where each of the membership functions 𝑇, 𝐼, 𝑎𝑛𝑑 𝐹 𝜖 [0,1], and is defined as a set of finite discrete 

values that satisfies the following conditions ( 0 ≤ 𝛾, η, ξ ≤ 1, 0 ≤  𝛾+ + η+ + ξ+ ≤ 3 ), where 

𝛾 𝜖 𝑇𝐴̃(𝑥), η 𝜖 𝐼𝐴̃(𝑥), ξ 𝜖 𝐹𝐴̃(𝑥), 𝛾
+ = 𝑠𝑢𝑝𝑇𝐴̃(𝑥), η

+ =  𝑠𝑢𝑝𝐼𝐴̃(𝑥), ξ
+ =  𝑠𝑢𝑝𝐹𝐴̃(𝑥)  [74]. Multi-valued 

neutrosophic can be converted to single-valued neutrosophic set 𝑖𝑓𝑓 each of 𝑇𝐴̃(𝑥), 𝐼𝐴̃(𝑥), 𝐹𝐴̃(𝑥) has 

only one value.   

 

Classification of Neutrosophic applications  

 

Neutrosophic logic plays a significant role and has many application areas [37]. This section presents 

a few of these applications. It starts with listing a set of theoretical contributions, then mentioning the 

role of neutrosophy in some practical application areas, including medicine, marketing, image 

processing, strategic planning, supply chain, and many other areas.  

 

Theoretical Contributions of Neutrosophic Logic 

 

Neutrosophic set is a powerful research area that proved its effectiveness and robustness in many 

application domains. Meanwhile, most of the contributions were theoretical and confirmed only by 

mathematical examples or few data-sets and were not generalized using other applications. In [50] 

they conducted a survey and listed the theoretical contributions of neutrosophic sets. They also 

proposed a method for designing the single-valued neutrosophic set. Their proposed method 

depended on creating neutrosophic membership functions through experimental data. Yet, their 

contribution needed to be applied to a real-life dataset. While in [52] they listed its applicability in 

medical applications. The researchers in [1] investigated different concepts, including (weighted 

average operator and weighted geometric operator) on neutrosophic cubic sets. This is for the sake 

of aggregating the neutrosophic cubic information. Their developed algorithm helped in multiple 

criteria decision-making. Their proposed algorithm was applied in a mathematical example to prove 

its usefulness and applicability. Yet, it was not implemented in a real-life business situation, which 

was on top of their limitations. Another theoretical contribution was done in [8]. They criticized the 

non-standard Neurtrsophic logic for the sake of its better understanding, although it was never used 

in practical applications. Their analysis we structured and well-formulated, yet it was not applied in 

cf situations or even in case studies to prove its robustness. An instance of a neutrosophic set called 

“interval neutrosophic set” was introduced in [10]. Meanwhile, their contribution was not applied to 

a real-life dataset. In [11] two special models of traditional neutrosophic logic, were introduced: 

Single-valued linguistic complex neutrosophic set, and Interval linguistic complex neutrosophic set. 

These models proved their applicability when they were applied in the University of Economics and 

Business for lecturer selection. As proposed by the researchers, this work might be extended by using 
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different membership functions, including trapezoidal and triangular. In [18] the researcher tried to 

investigate some properties of neutrosophic sets and subsets.  

Blending neutrosophic logic with Q learning attracted many researchers. In [22], they studied the 

relationship between those two algorithms. They applied their proposed algorithm in online 

education during Covid-19 pandemic. Their proposed model's goal was to select the best Information 

Communication Technology (ICT) tool as an online learning platform. Their model was illustrated 

through a numerical example, but it still needed to be applied in reality to prove its robustness and 

generalization. Interval neutrosophic sub-algebra and its properties were introduced in [26]. In [33] 

they focused on labor issues and tried to solve the untimely dismissal in Ecuador problem. To solve 

this, they integrated the IADOV method with neutrosophic logic. Their model obtained trusted 

results on their case study but still needed to be generalized to other datasets. In [36] they tried to test 

the effectiveness of neutrosophic logic in image processing. They expected to have good results when 

applying neutrosophic logic in imperfectly defined images. During their work, they studied different 

types of distance measures between neutrosophic sets. Although their work was theoretical, they 

expected to have outstanding results when applying their proposed model in image processing on 

real-life use cases.  In [39] they tried to list the main concepts in single-valued neutrosophic sets. 

Meanwhile, they did not mention practical examples or real-life use cases to prove its practicality. 

While in [40], they studied the hybridization between single-values neutrosophic sets and machine 

learning.  

In [42] they introduced a new concept in neutrosophic sub-algebra (i.e. MBJ neutrosophic sub-

algebra) and listed its applications. While in [45] they introduced neutrosophic generalized 

topological spaces. They discussed closed and open mappings, as well as their related attributes. 

Meanwhile, they did not mention the practical application of these concepts. In [49] they introduced 

neutrosophic social structures based on the three neutrosophic components (T, I, and F). In [53] they 

proposed a python based open-source implementation for basic concepts of neutrosophic logic. It 

was an awesome contribution that might be an atom for many neutrosophic logic implementations. 

In [59] they focused on neutrosophic sets and neutrosophic soft-sets. They mainly studied new 

algebraic operations and fundamental properties of these neutrosophic sets. Their analysis was well 

presented and well documented, but it still needed to be applied in real-life application areas to make 

it more concrete and reliable. In [60] they made an extended theoretical overview over the 

neutrosophic set and its instances. Meanwhile, it would be great if they mentioned the applicability 

of these models in real-life.  

On top of the applicable and powerful proposed model was that one in [62]. They combined 

neutrosophic logic with neural networks. Their built neural network model consisted of single input 

and one output. Their hidden layer contained two activation functions (i.e. Chebyshev neutrosophic 

orthogonal polynomial function and neutrosophic sigmoid activation function). Their model's main 

drawback was that it was not applied to a real-life dataset but only on illustrative examples. It could 

also be extended by implementing it using multiple inputs and/or multiple outputs. A contribution 

in empowering the multi-criteria decision-making by neutrosophic was mentioned in [65]. They 

utilized a bipolar neutrosophic set with both positive and negative membership functions. They 

illustrated their model using an illustrative example but not a real-life application. Hence, it would 

be recommended to apply it in the real-life use case to prove its reliability. While in [67] they proposed 

fuzzy equivalence concept on the standard concepts of neutrosophic sets and rough neutrosophic set 
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for cluster analysis. Their model was illustrated through numerical examples. Applying it to real-life 

clustering problems was highly recommended. In [71] they had many contributions in single-valued 

neutrosophic sets. On top of them was that they combined single-valued neutrosophic sets with 

rough sets. They presented their proposed models using illustrative examples but did not mention 

any practical applications. This is on top of the way forward steps of their work. Also, multi-valued 

neutrosophic sets might be applied instead of single-valued ones. While [72] focused on the inclusion 

relations of neutrosophic sets. They also built a ranking method using a neutrosophic set that proved 

its effectiveness on set of practical examples.sMeanwhile, their model was recommended to be 

applied in real-life application areas to confirm this effectiveness and prove its reliability.  

In [75] they proposed a model that combined data mining concepts to single-valued 

neutrosophic logic. They focused on machine learning and similarity measures concepts from the 

data mining umbrella. Other researchers could think of applying this proposed model in real-life 

datasets. While in [76] they combined single-valued neutrosophic (SVN) logic to a weighted 

correlation coefficient (CC) measure. They mentioned practical examples for their decision-making 

proposed method. Meanwhile, it was recommended to apply it in engineering and scientific 

applications. They also suggested generalizing it to other application areas. The work in [81] was also 

applied to combine neutrosophic set and correlation concept. But their main focus was interval 

neutrosophic set instead of single neutrosophic set. They illustrated their proposed model using an 

example. Yet, would be better to apply it in real-life use cases due to its effectiveness in empowering 

the decision-making process. Also in [77] they didn’t apply their proposed model in real-life 

applications. Their model that combined SVN to minimum spanning tree was illustrated using a set 

of examples. They implemented it in two phases (i.e., defined the distances between SVNs, and then 

constructed the minimum spanning tree as a clustering algorithm for SVN. Their proposed model 

could be applied in many application areas. Hence it still needed generalization. The same 

researchers contributed in [82] by combing the correlation concept to a single neutrosophic set. Their 

proposed multiple attribute decision-making process ranked the alternatives in an imprecise 

environment. It helped to select the best option out of all options at hand. This was proved through 

an illustrative example. Meanwhile, it still needed to be applied in reality to prove its reliability.  

 

Also in [78] the researchers were interested in combing SVN and even interval neutrosophic set to 

score function and accuracy function. Meanwhile, they did not apply their proposed models in real-

life cases. A bit different than this was the work in [79]. They focused mainly on interval neutrosophic 

numbers. They improved the entropy formula of interval neutrosophic number. They tried to mimic 

the attitude of the decision-maker towards risks and under indeterminacy. They did not apply their 

proposed model in reality but illustrated it throughput through mathematical examples. Meanwhile, 

it was recommended to apply their proposed model in real-life cases to prove its robustness. In [89], 

they listed a set of applications related to multi-attribute decision-making and applying it under the 

neutrosophic environment. Highlighting that the top applications in this area were related to medical 

diagnosis and pattern recognition. In [90] their contribution was a bit different. They proposed a 

method that utilized interval –valued neutrosophic set properties to generate formal concepts of 

interval-valued neutrosophic concepts and even refined some parameters (i.e., 𝛼,𝛽,𝛾) cuts. They 

illustrated their proposals through mathematical examples not real-life applications.            
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Neutrosophic Logic in Data Mining  

 

In [93] they utilized a multi-refined neutrosophic set in sentiment analysis. Their model consisted of 

two positive (T), two negative (F), and three indeterminate (I) membership functions. Their model 

showed outperforming results when analyzing tweets on ten different topics related to the Indian 

scenario and other international scenarios. While in [94] they proposed a neutrosophic association 

rules algorithm. sTheir algorithm-generated association rules through an item's neutrosophic 

attributes (i.e., T, I, F). Their model was compared to fuzzy to prove its effectiveness. Yet, it was 

recommended to be applied to different real-life applications to prove its effectiveness. In [95] they 

proposed a single-valued neutrosophic set algorithm that measured the factors that impacted 

students’ engagement and their overall attitude in mathematics achievements. They relied upon 

trends of international mathematics and science study. Although their model showed outperforming 

results, it still needed to be generalized. In [96] they proposed a neutrosophic based Dixon’s test due 

to its significance and applicability. Their model was illustrated through a mathematical example. In 

[105] they proposed a sentiment analysis model for large documents. Their model consisted of binary 

and ternary classifiers and combined neutrosophic logic to particle swarm optimization (PSO) 

algorithm. Their proposed model was tested on a real-life dataset, and the ternary classifier gave 

outperforming results. Meanwhile, other researchers might think of generalize it to other data sets 

and applications for both short and large text. While in [106] they developed a clustering model using 

k-means but reduced the number of attributes using rough neutrosophic sets. Their model was 

applied to a real-life dataset but still needed to be generalized. A bit different than this was the 

contribution in [108]. They proposed a domain generation algorithm using a neutrosophic set. They 

classified their data to benign, malicious, and indeterminacy domain names. Their model showed 

outperforming results when being applied to a real-life dataset. Yet, it might be generalized to other 

datasets.        

 

Neutrosophic in Blockchain 

 

In [97] they proposed utilized single-valued and interval-valued neutrosophic graphs in Blockchain 

and bitcoin application. They also listed the advantages and limitations of Blockchain graphs. While 

in [98] their main focus was to select the most appropriate Blockchain model for providing a secure 

and trustworthy healthcare Blockchain solution. Their proposed model was well-presented yet had 

a set of limitations, including its generalization.       

 

Neutrosophic Logic in marketing  

 

Neutrosophic PROMETHEE method in one-to-one marketing. They proved the necessity of 

analyzing different aspects of potential buyers, including their emotional and physiological states. 

One of the main obstacles of their model was the collection, and governance of the customers’ 

emotions related data, especially under the existence of the data privacy rules exist in many 

companies. Consequently, collecting the proper data needed time and cost [3]. A single-valued 

neutrosophic set was combined with multi-criteria group decision-making in [69]. They used their 

hybrid proposed model in market segment selection and evaluation. Their model was effectively 
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applied in a real-life dataset related to smart bike-sharing firm. As future work related to their 

contribution might be to employ weighting methods to provide the market segments' ranking. It 

could seven be applied in other applications. In [87] the researchers proposed a method that 

combined neutrosophic logic to Q learning. They compared its results to another developed model 

that combined fuzzy logic to Q learning. Both models were applied in two benchmark datasets. Yet, 

it was encouraged to apply them in real-life business cases to prove their reliability. Other researchers 

might also think of combining their model with neural networks to optimize the Q values. The 

researchers in [91] proposed a clustering algorithm based on single-valued neutrosophic and 

similarity measures. Their proposed model proved its effectiveness when it was applied in a car 

market. Meanwhile, it was recommended to be generalized to other applications.     

 

Neutrosophic in Medicine  

 

The researchers in [57] survived the contributions of neutrosophic logic in image segmentation. They 

focused on medical images. They recommended blinding the contributions they mentioned with 

deep learning for more effective, robust, and reliable outcomes. A neutrosophic login-based model 

was applied in the medical domain to act as a medical decision eid for the physicians. Their model 

outperformed the other fuzzy-based models. Their work's main limitation is its dependency on a 

huge amount of data for obtaining accurate and reliable outputs [2]. While in [4] they proposed a 

recommender system based on neutrosophic logic that contributed to medicine through predicting 

the disease. They could design the formulation of algebraic formulas using their proposed algebraic 

similarity measure. Their proposed algorithm proved its robustness when being applied to different 

medical datasets, including heart, Breast Cancer, Diabetes, and more from the University of 

California Irvin (UCI) benchmark datasets repository [6]. The limitation of their work was that it was 

generalized and even not applied to other real-life datasets. The researchers in [7] developed an 

automatic choroidal segmentation method from Enhanced Depth Imaging Optical Coherence 

Tomography (EDI-OCT) images. This was done in neutrosophic space. Their model started by 

transforming the images to the neutrosophic space, after that, calculating the weights between the 

nodes. Then applied Dijkstra algorithm to detect the Retinal Pigment Epithelium layer. Finally, 

defining the false set using a gamma homomorphic filter. Their model was applied and tested on 

real-life datasets and proved its robustness by obtaining relatively small and acceptable error values. 

Their model was well defined, and well-presented especially its experimental results.    

The researchers in [9] utilized offsets and off uniforms Neutrosophic sets in image processing. Mainly 

for a segmentation and edge detection of an image. They did not apply their model in real-life cases, 

but in demonstrated examples. This is on top of the limitations of their work. While, researchers in 

[16] developed a multi-criteria decision-making technique using neutrosophic algorithm to help 

physicians in diagnosing those who suffer from heart failure. Their model was already applied to 

real-life case studies and proved its effectiveness when was compared to other techniques. 

Meanwhile, their technique might be applied to larger dataset to confirm its robustness.  

In [17], they conducted a study that combined Neutrosophic logic to Convolutional Neural Networks. 

Their main goal was to classify a brain tumor as either benign or malignant. Their model could prove 

its robustness and reliability with was compared to other classifiers. Although their model was well 

written and presented, it still needed to be applied to a real-life dataset.  While the researchers in 
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[20] proposed cosine similarity measures that help diagnose bipolar disorder using neutrosophic 

logic. They verified their proposal on numerical examples. Their technique could prove its 

robustness; meanwhile, it might be applied to other case studies to prove its robustness and 

generalizability. The researchers in [32] conducted another contribution in cosine similarity. They 

build improved weighted single-valued neutrosophic cosine similarity measures. Their main goal 

was to help in the medical diagnosis. They applied their proposed model in two real case studies. 

Meanwhile, it still needed to be applied in other fields and other case studies to prove its reliability.    

The usage of single-valued neutrosophic sets has been presented in [21]. They projected their 

illustration in medicine. They utilized their model to help in the disease diagnosing based on the 

preliminary symptoms of each patient. This is done by formulating new distance measures for single-

valued neutrosophic sets. Their model has been applied in medical examples, yet it still needed to be 

applied to many real-life cases to prove its reliability. In comparison, the researchers in [29] illustrated 

the divergence measure in neutrosophic sets. They formulated this relationship and mentioned its 

properties. Finally, they applied their proposed model in a medical problem. Yet, their model still 

needed to be applied in other case studies. In [34] they introduced proposed types of distance 

measures for single-valued neutrosophic sets. Their proposed models were illustrated with pattern 

recognition, and medical case studies. Yet, these models still needed to be applied in other use cases 

to prove their generalization.  

 

The contribution of neutrosophic login in the early diagnosing of COVID-19 based on the patients’ 

medical images was discussed in [38]. Their model combined neutrosophic logic with deep learning. 

They applied their model to a real-life dataset. In conclusion, they encouraged using deep learning 

with neutrosophic logic to obtain reliable results to diagnose and overcome COVID-19. Hence, their 

model still needs to be applied in many datasets to increase its reliability. In [46] they introduced a 

refined technique of single-valued neutrosophic cosine similarity measure. They applied their 

proposed technique in medical diagnosis. Their model still needed to be generalized on other 

applications and might be extended by applying interval neutrosophic instead of single neutrosophic 

set. One of the most interesting application for neutrosophic logic was that one mentioned in [47]. 

They utilized neutrosophic statistics in analyzing dental fluorosis. Their analysis was well presented 

and expected to have a huge impact on improving human’s tooth health (especially children). In [68] 

they constructed a comprehensive framework using a single-valued neutrosophic set to capture both 

incomplete and/or inconsistent information. They applied their proposed framework in a real-life 

healthcare case study. Meanwhile, it was encouraged to generalize it in other application areas, 

especially smart cities. In [104] they proposed a framework that combined interval neutrosophic to a 

neural network. They compared their interval neutrosophic rough neural network to other 

algorithms, and it outperformed them. Meanwhile, it still needed to be generalized using other real-

life applications.        

 

Neutrosophic in COVID-19 

 

From 2020 until publishing this survey, the whole world is struggling with different generations of 

Coronavirus (i.e., COVID-19). Many researchers tried to contribute to developing models for dealing 

with COVID-19 using a different algorithm, and neutrosophic logic was on top of these utilized 
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algorithms. In [101] they developed a framework that combined COVID-19’s disruptive technologies 

for analyzing this pandemic virus. Their framework had many advantages, including restricting 

COVID-19’s outbreaks and ensuring the healthcare team’s safety. The power of their model was 

applying it in an empirical case study. Meanwhile, it would be great to be generalized on other use 

cases. In [99] they identified priority tanking of insurance companies related to healthcare services. 

They mainly built a multi-criteria performance evaluation methodology with the help of experts’ 

opinions. Their main focus was on Turkey. Meanwhile, their model could be generalized to other 

countries. They mainly focused on intuitionistic fuzzy logic, but it was encouraged to utilize 

neutrosophic logic instead for more effective results. While in [100] contributed to COVID-19’s 

vaccine. They identified a set of criteria and sub-criteria that helped identify priority groups for 

COVID-19’s vaccine doses distribution. Their proposed priority groups model was well-presented 

and well-illustrated; meanwhile, it still needed generalization. On the other hand, the researchers in 

[102] focused on the diagnosis part of COVID-19. They developed a framework for this purpose. 

Their framework not only focused on COVID-19’s early diagnosis but also on its treatment. Their 

proposed framework combined deep learning with a neutrosophic classifier. It was a well-presented 

and effective contribution, yet suffered from data availability limitations and a set of weaknesses of 

big data architectures. While the researchers in [103] differentiated between COVID-19 and other four 

chest diseases that had some common symptoms. They utilized neutrosophic logic for this purpose 

to diagnose COVID-19 using only the CT scan and the primary symptoms. They also studied the 

effect of the internet of things (IOT) in helping the medical staff monitor the spread of COVID-19. 

Their proposed model achieved 98% detection accuracy. Yet, it was recommended to update their 

study by including other COVID-19’s symptoms added by the World Health Organization (WHO) 

related to the virus's evolution.  

   

 

Neutrosophic in Image Processing  

 

In [25] they proposed a neutrosophic similarity clustering algorithm. They applied their model in 

image processing field for segmenting gray-level images. Their model was applied in many images, 

both artificial and real images. This proved the effectiveness of their proposed model in image 

processing and computer vision. In [44] they applied neutrosophic logic in grayscale image 

processing. Meanwhile, they did not mention real-life use cases to prove the effectiveness of their 

model. Another contribution of neutrosophic logic in image processing was mentioned in [48]. It was 

mainly used with Dice coefficients to deal with the missing data uncertainty. Their proposed model 

was experimentally validated. Their model had high applicability not only in image processing but 

only in natural language processing. Also, in [51] they utilized neutrosophic sets in image processing. 

They added two operations to the traditional neutrosophic membership functions (i.e., 𝛼-mean and 

𝛽-enhancement). These added operations could reduce the indeterminacy of the set. Their model was 

effective as it was able to segment different types of images, even noisy ones. Hence, it was 

recommended to be applied in real application areas to confirm its applicability. A bit different than 

this, is the contribution in [55]. They utilized a neutrosophic set in grayscale images. They analyzed 

the effect of applying bipolar neutrosophic set in grayscale images and came up with their proposed 

model. Their model could extract useful information from even the noisy images, and was tested on 
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different images, including human brain images. This could prove its effectiveness in the medical 

field. In [114] they proposed a particle swarm neutrosophic algorithm to cluster liver tumors in CT 

images. They evaluated the indeterminacy of the neutrosophic set using entropy. Their proposed 

showed outperforming results on both CT and non-CT images.  

 

Neutrosophic in Supply Chain   

 

In [12] the researchers combined neutrosophic techniques with AHP method. Their main goal was to 

support enterprise decision-making in the internet of things (IoT) era. Their proposed algorithm was 

applied in different enterprises, including Smart Village in Egypt and Smart City in U.K. and China. 

Meanwhile, involving more companies in their model validation would enrich its results. The 

researchers in [20] designed an interval complex neutrosophic set and listed its characteristics. To 

prove their model's practicality, they applied it in supplier selection related to a transportation 

company. Meanwhile, it still needed to be applied to more real-life datasets to prove its robustness. 

Another contribution in IoT field was proposed by the researchers in [24] who developed a model 

that helped detect cancer early. The data was extracted from a set of smart devices (i.e., sensor 

networks). Their model would help in the early prediction, detection, and treatment of cancer. Their 

proposed model was well presented, yet it still needs to be applied to many real-life case studies to 

prove its reliability.   

 

The effect of neutrosophic login in Blockchain has been proved in [28]. They developed single and 

interval-values neutrosophic Blockchain graphs. They applied their proposed model to various 

graphs of Blockchain. In [30] they utilized neutrosophic sets to build a ranking technique in a supply 

chain environment. Their main goal is to handle the economic and environmental vague 

performances. Their proposed model was applied in two real-life use cases: the petroleum industry 

and a manufacturing firm in China. Their model was an atom for a combination of analytics and 

neutrosophic sets. Consequently, it could be extended to predict future trends. In [35] they proposed 

a fuzzy neutrosophic approach based on trapezoidal neutrosophic variables. It was a decision-

making aid for supplier evaluation and selection. Their model was applied in a resilient supply chain 

management context, in a real-life business case study. Meanwhile, it could be applied in many other 

areas to test its reliability. It can also be integrated with other fuzzy tools (i.e. rough sets) to enrich its 

effectiveness. In [41] they proposed a model for the analysis of failure mode and effect. They applied 

their proposed algorithm in an empirical, real-life case study, and it showed its effectiveness and 

reliability yet still needed to be generalized. In [61] they had a different perspective in illustrating 

neutrosophic numbers (i.e., both linear and non-linear). They also tackled both neutrosophication 

and de-neutrosophication. They applied their proposed concepts in two application areas related to 

project evaluation review technique (PERT) and route selection.  Their proposals could be applied 

in different applications, and also other neutrosophic numbers’ types could be used.  

 

The researchers in [81] developed a supply chain-related multi-criteria group decision-making 

method. Their proposed model combined analytical network process method to ViseKriterijumska 

Optimizacija I Kompromisno Resenje (VIKOR) method. Their model that was developed for a 

neutrosophic environment that had incomplete information, utilized triangular membership function 
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was applied in a real case study. It showed outperforming results. Its main limitation was the 

dependency on experts’ opinions and it was hard to find those experts fulfilled the researchers’ 

predefined requirements. Also, its dependency on a forecasting phase that needed to have large input 

data to have robust results. Meanwhile, it was recommended to generalize it to other applications. 

The researchers in [83] also utilized VIKOR method to guide the decision-making process in an 

uncertain environment. For this purpose, they combined VIKOR method to the cubic neutrosophic 

number. This combination was illustrated through an example but was recommended to be applied 

in real applications. The contribution in [84] was mentioned to be the first contribution that combined 

Delphi method to neutrosophy. It was illustrated in a hypothetical case study. Meanwhile, it was 

recommended to apply it in practical use cases to prove its reliability and robustness. In [86] they 

proposed a dynamic interval valued neutrosophic set that was applied to a university of languages 

and international studies. Their proposed model proved its robustness yet still needed to be applied 

in other application areas.   

They also proposed a modified combination between correlation coefficient and single-valued 

neutrosophic set [86]. Their main objective was to build a decision-making method that helped in 

selecting the best alternative out of all these given alternatives. They applied their proposed model 

in an illustrative example for choosing between investment alternatives. Meanwhile, it was 

recommended to be applied in real-life business cases.     

           

 

Neutrosophic in Strategic Planning  

  

Neutrosophic analytic hierarchy process model would help select the best strategy out of many 

different possible strategies under the existence of vague and incomplete information situations. 

They integrated their model with SWOT analysis. They applied their model in “Starbucks” company. 

Their model proved its reliability and robustness based on the “Starbucks” dataset; meanwhile, it 

was flexible enough to be generalized to many other fields and industries [4].  

The researchers in [13] were interested in multi-attribute decision-making. Hence, they developed an 

outranking approach in a bipolar neutrosophic environment. They applied their model to a real 

example of an investment company. Yet, they did not compare their model's results with another 

traditional model to prove its effectiveness. A bit similar to this is the study conducted by the 

researchers in [14] to empower the decision-making using neutrosophic. They mainly designed a 

proactive approach to analyze and then determine the set of factors that would influence suppliers' 

selection in supply chain management. In conclusion, they found that “Quality” was the most 

influential criterion in suppliers’ selection. Generalizing their work might face some obstacles related 

to its need for a huge amount of data, large processing, and complex calculations.   

On the other hand, the researchers in [15] contributed to IoT companies' decision-making by 

proposing a hybrid analytical hierarchal process and neutrosophic theory combination. Their 

proposal detected and handled the challenges of uncertainty and inconsistency.  

In [23] the researchers presented the applicability of intuitionistic neutrosophic on the graph 

structure. They listed a set of applications using their proposed model that could boost the decision-

making process.  Meanwhile, they did not report applying it in a real-life case study step by step. 
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In [27] the researchers combined soft-sets and bipolar sets in their proposal of bipolar neutrosophic 

soft-sets. They illustrated their proposed model using only numerical examples but did not apply it 

in real-life. This is on top of their limitations. In [32] they presented some real number-based 

operational laws for single-valued neutrosophic numbers. They also developed a set of weighted 

averaging models and geometric aggregation operators. These operators have been utilized to build 

a multi-attribute decision-making model. Their model is illustrated on a real numerical example. 

Meanwhile, it still needed to be applied in many real-life use cases to prove its effectiveness and 

reliability. In [34] they developed a Hierarchical Neutrosophics Analytical model to solve bus routes 

expected to meet tourists’ demands. They achieved satisfactory results. The researchers in [54] 

studied the applications on entropy and similarity measures in decision-making (DS), especially 

multi-attribute DS. They mainly focused on hamming distance, contingent, and cosine functions. 

They confirmed their proposed model's applicability and efficiency, but they did not mention a real-

life application that proved its applicability.  

In [56] they made a different contribution compared to the above contributions. They utilized rough 

neutrosophic multisets to support the decision-making in marketing strategy. Their proposed model 

could be extended to other application areas to prove its effectiveness. Other neutrosophic multisets 

relations could also be applied than Max, Min, and composition of two rough multisets. In [58] they 

proposed three neutrosophic models, i.e., single-values hypersoft set, tangent similarity measure for 

single-valued neutrosophic hypersoft sets, and multi-values hypersoft set. They applied their 

proposed models in players’ match selection. Their models helped in selecting the best option for 

each player. Meanwhile, it could be applied in many other application areas to validate its 

effectiveness. In [63] they utilized logarithmic operations for two purposes. First, developing 

aggregation operators, second, a multi-criteria decision-making approach for a single-valued 

neutrosophic environment. Their model was tested on a practical case study and proved its 

effectiveness and selecting the best alternative. Hence, it was encouraged to be applied in other 

application areas to confirm its effectiveness. While in [64] their main focus was the interval 

neutrosophic sets. They studied its similarity and entropy. They also mentioned its applicability in 

multi-attribute decision-making. Their model showed its effectiveness and robustness. Yet, it was 

still needed to be applied in other applications to prove this effectiveness. An interesting contribution 

was in [66]. They studied the pathogenic hypersoft set. This concept covered most of the cases in 

fuzzy and neutrosophic sets. They presented this concept using an illustrative example. Then they 

built a multi-criteria decision-making model based on this concept and was applied in a real-life 

application. Meanwhile, it could be extended to other applications, especially graph theory and 

pattern recognition, to prove its reliability. In [70] validated the pedagogical strategy implementation 

through two case studies. Their main goal was to increase scientific knowledge through extending 

the implementation of Iadov method and neutrosophic analysis.  Their model could be extended 

through developing a software tool that could facilitate its applicability in other areas. In [88] they 

utilized single valued neutrosophic set for multi-attribute decision-making process mainly for school 

choice. They illustrate their idea through a numerical example, yet would be great to apply it in a 

real-life use case to prove its effectiveness. In [92] they utilized neutrosophic normal cloud concept, 

cloud aggregator, and many other concepts to build a multi-criteria group decision-making model. 

Their model was effectively applied in a real-life use case related to an online retailer. But it would 

be useful to generalize it to other applications. The researchers in [107] introduced the concept of 
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neutrosophic soft rough topology. They aimed to develop a multi-criteria decision-making method 

for ambiguous real-life problems. Meanwhile, their model might be integrated with other algorithms 

(i.e., TOPOSIS and AHP) to enhance its applicability to other application areas.  

 

Conclusion and Future Work 

 

Neutrosophic set is a very powerful and reliable algorithm. It proved its superiority in many 

application areas, including image processing, natural language processing, multi-criteria decision-

making, strategic planning, Blockchain, and many more. In this paper, sample contributions in these 

research areas have been presented. Meanwhile, there are a lot of other research points that other 

researchers might tackle. For instance, combing deep learning, Q learning, and deep Q learning with 

neutrosophic is an open research area. The researchers in [87] introduced the combination of Q 

learning with a neutrosophic set, but it still needs a generalization to prove its robustness. Also, 

combing machine learning to neutrosophic sets still a rich research area. Finally, most of the paper's 

contributions were not generalized to different application areas to confirm their reliability, which 

might be another future research direction.   
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1. Introduction 

 

Iseki and Tanaka [15] presented the concept of BCK-algebra in the year 1978. Later on, Negger 

and Kim [26] established the notion of d-algebra by extending the idea of BCK-algebra. In the year 

1999, Negger et al. [25] defined the d-ideal in d-algebra. The notion of fuzzy set (FS) theory was 

established by Zadeh [28] in the year 1965. Thereafter, Atanassov [4] introduced the idea of 

intuitionistic fuzzy set (IFS) theory by generalizing the concept of FS. In the year 2013 F. 

Smarandache [27] extended the neutrosophic set to refined [n-valued] neutrosophic set, and to 

refined neutrosophic logic, and to refined neutrosophic probability. The notion of fuzzy d-ideals of 

d-algebras was studied by Jun et. al. [17] in the year 2000. The idea of intuitionistic fuzzy d-algebra 

was presented by Jun et al. [16]. In the year 2017, the concept of intuitionistic fuzzy d-ideal of 

d-algebra was introduced by Hasan [12]. Hasan [13] also studied the intuitionistic fuzzy d-filter of 

d-algebra. The notion of Q-algebra was grounded by Neggers et. al. [24] in the year 2001. Thereafter, 

Abdullah and Jawad [1] studied some new types of ideals in Q-algebra. Mostafa et. al. [22] 

introduced the notion of fuzzy Q-ideals in Q-algebras. Mostafa et. al. [23] also studied the 

intuitionistic fuzzy Q-ideals of Q-algebra. In the year 2005, Smarandache [27] grounded the idea of 

mailto:suman.mathematics@tripurauniv.in
mailto:sumandas18843@gmail.com
mailto:rakhaldas95@gmail.com
mailto:rakhal.mathematics@tripurauniv.in


Neutrosophic Sets and Systems, Vol. 41, 2021 53  

 

 

Suman Das, Rakhal Das, Carlos Granados, Anjan Mukherjee, Pentapartitioned Neutrosophic Q-Ideals of 

Q-Algebra. 

 

neutrosophic set by extending the IFS. Later on, the notion of neutrosophic BCI/BCK-algebras was 

presented by Agboola and Davvaz [2]. In the year 2016, Martina Jency and Arockiarani [21] 

established the notion of single valued neutrosophic ideals of BCK-algebras. In the year 2019, 

Mallick and Pramanik [20] presented the concept of pentapartitioned neutrosophic set and studied 

different operations on them. In this article, we procure the idea of pentapartitioned neutrosophic 

Q-ideals of Q-algebra. 

 

The rest of the paper is designed as follows: 

In section 2, we recall some preliminary definitions and results on Q-algebra, Q-ideal, fuzzy 

Q-algebra, fuzzy Q-ideal, intuitionistic fuzzy Q-algebra, intuitionistic fuzzy Q-ideal. In section-3, we 

introduce the notion of pentapartitioned neutrosophic Q-ideal of Q-algebra by generalizing the 

theory of intuitionistic fuzzy Q-ideal and neutrosophic Q-ideal. Further, we formulate some results 

on pentapartitioned neutrosophic Q-ideals of Q-algebra. In section 4, we conclude the work done in 

this article. 

 

2. Relevant Definitions and Results: 

Here we procure some basic definition and example which is needed for our work. 

F. Smarandache[27] introduced the n-symbolic or numerical-Valued Refined Neutrosophic Logic  

In general: T can be split into many types of truths: T1, T2, ..., Tp, and I into many types of 

indeterminacies: I1, I2, ..., Ir, and F into many types of falsities: F1, F2, ..., Fs,, where all p, r, s ≥ 1 are 

integers, and p + r + s = n. 

All subcomponents Tj, Ik, Fl are symbolic or numerical for j∈{1,2,…,p}, k∈{1,2,…,r}, and l∈{1,2,…,s}. 

If at least one Ik = Tj  Fl = contradiction, we get again the Extenics. 

We use five valued neutrosophic logic which is the particular case of the n-valued neutrosophic 

logic. The details for the n-valued neutrosophic logic one may refer to [27]. 

Definition 2.1.[20] Assume that W be a fixed set. A pentapartitioned neutrosophic set P over W is 

defined as follows: 

Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W}, where ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c) (∈ ]0,1[ ) are the 

truth, contradiction, ignorance, unknown and falsity membership values of each cW. So,  

0  ÂY(c)+ĈY(c)+ÊY(c)+ĎY(c)+ÛY(c)  5. 

Definition 2.3.[20] Suppose that X = {(c, ÂX(c), ĈX(c), ÊX(c), ĎX(c), ÛX(c)) : c W} and Y = {(c, ÂY(c), 

ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be two pentapartitioned neutrosophic sets over W. Then, XY if 

and only if ÂX(c) ÂY(c), ĈX(c) ĈY(c), ÊX(c) ÊY(c), ĎX(c) ĎY(c), ÛX(c) ÛY(c), for all cW. 

Definition 2.4.[20] Suppose that X = {(c, ÂX(c), ĈX(c), ÊX(c), ĎX(c), ÛX(c)) : c W} and Y = {(c, ÂY(c), 

ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be two pentapartitioned neutrosophic sets over W. Then, X  Y = 
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{(c, min {ÂX(c), ÂY(c)}, min {ĈX(c), ĈY(c)}, max {ÊX(c), ÊY(c)}, max {ĎX(c), ĎY(c)}, max {ÛX(c), ÛY(c)}): 

cW}. 

Definition 2.5.[20] Suppose that X = {(c, ÂX(c), ĈX(c), ÊX(c), ĎX(c), ÛX(c)) : c W} and Y = {(c, ÂY(c), 

ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be two pentapartitioned neutrosophic sets over W. Then, X  Y = 

{(c, max {ÂX(c), ÂY(c)}, max {ĈX(c), ĈY(c)}, min {ÊX(c), ÊY(c)}, min {ĎX(c), ĎY(c)}, min {ÛX(c), ÛY(c)}): 

cW}. 

Definition 2.6.[20] Suppose that X = {(c, ÂX(c), ĈX(c), ÊX(c), ĎX(c), ÛX(c)) : c W} be a pentapartitioned 

neutrosophic set over W. Then, Xc = {(c, ÛX(c), ĎX(c), 1-ÊX(c), ĈX(c), ÂX(c)): qW}. 

Definition 2.1.[15] Suppose that W be a fixed set. Let 0 be a constant in W and  be a binary 

operation defined on W. Then (W, , 0) is called a BCK-algebra if the following holds: 

(i) ((x  y)  (x  z))  (z  y) = 0, 

(ii) (x  (x  y))  y = 0, 

(iii) x  x = 0, 

(iv) x  y = y  x = 0  x = y, 

(v) 0  x = 0, for all x, y, z ∈ X . 

Definition 2.2.[15] Let W be a BCK-algebra with binary operator  and a constant 0. Then I  W is 

called a BCK-ideal of W if the following holds: 

(i) 0  I; 

(ii) h  d I and d I  h I,  h, d W. 

Definition 2.3.[22] Suppose that W be a fixed set. Let 0 be a constant in W and  be a binary 

operation defined on W. Then (W, , 0) is called a Q-algebra if the followings hold: 

(i) h  h = 0, ∀ h ∈ W 

(ii) 0  h = h = h  0, ∀ h ∈ W 

(iii) (h  d)  e = (h  e)  d, ∀ h, d, e ∈ W.  

Sometime, one can refer to h ≤ d if and only if h  d = 0. 

Definition 2.4.[24] Let (W, , 0) be a Q-algebra. Then, (W, , 0) is said to be commutative Q-algebra if 

c  (c  d) = d  (d  c), c, d ∈W, and d  (d  c) is denoted by (c ∧ d). 

Definition 2.5.[24] A Q-algebra W is called bounded if there exist g ∈ W such that h ≤ g for all h ∈ W, 

i.e. h  g = 0, ∀ h ∈ W. 

Definition 2.6.[24] Let W be a Q-algebra with binary operator  and H (0N)  W. Then, H is called a 

Q-sub-algebra of W, if h, d A implies h  d  H. 

Definition 2.7.[1] Let W be a Q-algebra with binary operator  and a constant 0. Then, I  W is called 

a Q-ideal of W if the following holds: 

(i) 0 I; 

(ii) (h  d)  e I and d I  h  e I, for all h, d, e W. 

Proposition 2.1.[1] Let (W, , 0) be called a Q-algebra. Let I be a Q-ideal of W. Then, I be a BCK-ideal 

of W. 

Definition 2.8.[3] A fuzzy set Y={(c,TY(c)): cW} over a BCK-algebra W is called the fuzzy BCK-ideal 

if the following two conditions holds: 

(i) TY(0) TY(c), for all c W; 

(ii) TY(c)  min{TY((c  d), TY(d)} for all c, dW. 
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Definition 2.9.[22] A fuzzy set Y={(c,TY(c)): cW} over a Q-algebra W is called the fuzzy Q-ideal if 

the following holds: 

(i) TY(0)  TY(c), for all c W; 

(ii) TY(c  d)  min {TY((c  h)  d), TY(h)} for all c, h, dW. 

Lemma 2.1.[22] Let (W, , 0) be a Q-algebra. If Y = {(c,TY(c)): cW} is a fuzzy Q-ideal of W, then it is 

also a fuzzy BCK-ideal of W. 

Definition 2.10.[23] An intuitionistic fuzzy set Y={(c,TY(c),FY(c)): cW} over a Q-algebra W is called 

the intuitionistic fuzzy Q-ideal if it satisfies the following inequalities: 

(i) TY(0) TY(c), FY(0) FY(c), for all c W; 

(ii) TY(c  d)  min{TY((c  h)  d), TY(h)}; 

(iii)FY(c  d)  max {FY((c  h)  d), FY(h)}.  

Lemma 2.2.[23] Let Y={(c,TY(c),FY(c)): cW} be an intuitionistic fuzzy Q-ideal over a Q-algebra W. If c 

 d h, for all c, d, h W, then TY(c)  min{ TY(d), TY(h)} and FY(c)  max{ FY(d), FY(h)}, for all cW. 

Lemma 2.3.[23] Let Y={(c,TY(c),FY(c)): cW} be an intuitionistic fuzzy Q-ideal over a Q-algebra W. If c 

 d, , for all c, d W, then TY(c)  TY(d) and FY(c)  FY(d). 

Lemma 2.4.[23] If Y={(c,TY(c),FY(c)): cW} be an intuitionistic fuzzy Q-ideal over a Q-algebra W, then 

the sets -TY = {c: cW, TY(c)  } and -FY = {c: cW, FY(c)  } are Q-ideal of Q-algebra W. 

 

3. Pentapartitioned Neutrosophic Q-Ideals of Q-Algebra: 

In this section, we procure the notion of pentapartitioned neutrosophic Q-ideal (PN-Q-Ideal) of 

pentapartitioned neutrosophic Q-algebra (PN-Q-Algebra). Then, we formulate some definitions and 

results on PN-Q-Ideal and PN-Q-Algebra. 

Definition 3.1. Suppose that W be a Q-algebra and Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be 

a pentapartitioned neutrosophic set over W. Then, Y is said to be a pentapartitioned neutrosophic 

Q-algebra (PN-Q-algebra) if and only if the following holds:  

(i) ÂY(c  d)  min{ÂY((c  h)  d), ÂY(h)}; 

(ii) ĈY(c  d)  min{ĈY((c  h)  d), ĈY(h)}; 

(iii) ÊY(c  d)  max {ÊY((c  h)  d), ÊY(h); 

(iv) ĎY(c  d)  max {ĎY((c  h)  d), ĎY(h); 

(v) ÛY(c  d)  max {ÛY((c  h)  d), ÛY(h)}, where c, d W. 

By the structure [(W, Y), , 0], we denotes the PN-Q-algebra Y over W. 

Theorem 3.1. If {Yi : i} be the collection of PN-Q-algebra’s of W, then, ⋂ Yii   is also a 

PN-Q-algebra of W. 

Proof. Assume that {Yi : i} be a family of PN-Q-algebras of W. It is clear that, ⋂ Yii  = {(c, ÂYi
(c), 

ĈYi
(c), ÊYi

(c), ĎYi
(c), ÛYi

(c)) : cW}. 

Now,  

ÂYi
(c  d) = {ÂYi

(c  d): i} 

            {min{ÂYi
((c  h)  d), ÂYi

(h)}} 

            = min{ÂYi
((c  h)  d), ÂYi

(h)}} 

 ÂYi
(c  d)  min{ÂYi

((c  h)  d), ÂYi
(h)}}. 

Now,  
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ĈYi
(c  d) = {ĈYi

(c  d): i} 

            {min{ĈYi
((c  h)  d), ĈYi

(h)}} 

            = min{ĈYi
((c  h)  d), ĈYi

(h)}} 

 ĈYi
(c  d)  min{ĈYi

((c  h)  d), ĈYi
(h)}}. 

Now, 

ÊYi
(c  d) = {ÊYi

(c  d): i} 

            {min{ÊYi
((c  h)  d), ÊYi

(h)}} 

            = min{ÊYi
((c  h)  d), ÊYi

(h)}} 

 ÊYi
(c  d)  min{ÊYi

((c  h)  d), ÊYi
(h)}}. 

Now, 

ĎYi
(c  d) = {ĎYi

(c  d): i} 

            {min{ĎYi
((c  h)  d), ĎYi

(h)}} 

            = min{ĎYi
((c  h)  d), ĎYi

(h)}} 

 ĎYi
(c  d)  min{ĎYi

((c  h)  d), ĎYi
(h)}}. 

Now, 

ÛYi
(c  d) = {ÛYi

(c  d): i} 

            {min{ÛYi
((c  h)  d), ÛYi

(h)}} 

            = min{ÛYi
((c  h)  d), ÛYi

(h)}} 

 ÛYi
(c  d)  min{ÛYi

((c  h)  d), ÛYi
(h)}}.  

Therefore, ⋂ Yii  is also a PN-Q-algebra of W. 

Definition 3.2. Suppose that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a pentapartitioned 

neutrosophic set over W. Then, Y is said to be a pentapartitioned neutrosophic Q-sub-algebra 

(PN-Q-sub-algebra) if and only if the following holds:  

(i) ÂY(c  d)  min{ÂY(c), ÂY(d)}; 

(ii) ĈY(c  d)  min{ĈY(c), ĈY(d)}; 

(iii) ÊY(c  d)  max {ÊY(c), ÊY(d)}; 

(iv) ĎY(c  d)  max {ĎY(c), ĎY(d)}; 

(v) ÛY(c  d)  max {ÛY(c), ÛY(d)}; where c, d W. 

Theorem 3.2. Let Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-sub-algebra of a 

Q-algebra W. Then, the following holds: 

(i) ÂY(0) ÂY(c), for all c W; 

(ii) ĈY(0) ĈY(c), for all c W; 

(iii) ÊY(0) ÊY(c), for all c W; 

(iv) ĎY(0) ĎY(c), foĈr all c W; 

(v) ÛY(0) ÛY(c), for all c W. 

Proof. Assume that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-sub-algebra of a 

Q-algebra W. Hence, ÂY(c  d)  min{ÂY(c), ÂY(d)}, ĈY(c  d)  min{ĈY(c), ĈY(d)}, ÊY(c  d)  max 

{ÊY(c), ÊY(d)}, ĎY(c  d)  max {ĎY(c), ĎY(d)}, ÛY(c  d)  max {ÛY(c), ÛY(d)}, for all c, d W. 

Now we have, 

ÂY(0) = ÂY(c  c)  
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  min{ÂY(c), ÂY(c)}  

 = ÂY(c) 

 ÂY(0)  ÂY(c), for all cW. 

ĈY(0) = ĈY(c  c)  

  min{ĈY(c), ĈY(c)}  

 = ĈY(c) 

 ĈY(0)  ĈY(c), for all cW. 

ÊY(0) = ÊY(c  c) 

    max {ÊY(c), ÊY(d)} 

     = ÊY(c) 

 ÊY(0)  ÊY(c), for all cW. 

ĎY(0) = ĎY(c  c) 

    max {ĎY(c), ĎY(d)} 

     = ĎY(c) 

 ĎY(0)  ĎY(c), for all cW. 

ÛY(0) = ÛY(c  c) 

    max {ÛY(c), ÛY(d)} 

     = ÛY(c) 

 ÛY(0)  ÛY(c), for all cW. 

Definition 3.3. A pentapartitioned neutrosophic set Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} 

over a Q-algebra W is said to be a pentapartitioned neutrosophic Q-ideal (PN-Q-ideal) if and only if 

the following inequalities holds: 

(i) ÂY(0) ÂY(c) & ÂY(c  d)  min{ÂY((c  h)  d), ÂY(h)}, for all c, d, hW; 

(ii) ĈY(0) ĈY(c) & ĈY(c  d)  min{ĈY((c  h)  d), ĈY(h)}, for all c, d, hW; 

(iii) ÊY(0) ÊY(c) & ÊY(c  d)  max {ÊY((c  h)  d), ÊY(h)}, for all c, d, hW; 

(iv) ĎY(0) ĎY(c) & ĎY(c  d)  max {ĎY((c  h)  d), ĎY(h)}, for all c, d, hW; 

(v) ÛY(0) ÛY(c) & ÛY(c  d)  max {ÛY((c  h)  d), ÛY(h)}, for all c, d, hW. 

Remark 3.1. Every PN-Q-ideal of a Q-algebra W is also a PN-Q-sub-algebra. 

Theorem 3.3. Suppose that {Di : i} be a family of PN-Q-ideals of Q-algebra W. Then, ⋂ Dii  is 

also a PN-Q-ideal of Q-algebra W. 

Proof. Let {Di : i} be a family of PN-Q-ideals of Q-algebra W. Therefore, 

(i) ÂDi
(0)  ÂDi

(c) & ÂDi
(c  d)  min {ÂDi

((c  h)  d), ÂDi
(h)}, for all c, d, hW and i; 

(ii) ĈDi
(0)  ĈDi

(c) & ĈDi
(c  d)  min {ĈDi

((c  h)  d), ĈDi
(h)}, for all c, d, hW and i; 

(iii) ÊDi
(0) ÊDi

(c) & ÊDi
(c  d)  max {ÊDi

((c  h)  d), ÊDi
(h)}, for all c, d, hW and i; 

(iv) ĎDi
(0) ĎDi

(c) & ĎDi
(c  d)  max {ĎDi

((c  h)  d), ĎDi
(h)}, for all c, d, hW and i; 

(v) ÛDi
(0) ÛDi

(c) & ÛDi
(c  d)  max {ÛDi

((c  h)  d), ÛDi
(h)}, for all c, d, hW and i. 

Clearly, ⋂ Dii  = {< c, ÂDi
(c), ĈDi

(c), ÊDi
(c), ĎDi

(c), ÛDi
(c) > : c W}. 

Now, we have 

ÂDi
(0)  ÂDi

(c), for all c W and i 

 ÂDi
(0)  ÂDi

(c). 
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ĈDi
(0)  ĈDi

(c), for all c W and i 

 ĈDi
(0)  ĈDi

(c). 

ÊDi
(0) ÊDi

(c), for all c W and i 

 ÊDi
(0) ÊDi

(c). 

ĎDi
(0) ĎDi

(c), for all c W and i 

 ĎDi
(0) ĎDi

(c). 

ÛDi
(0) ÛDi

(c), for all c W and i 

ÛDi
(0) ÛDi

(c). 

Further, we have 

ÂDi
(c  d)  min {ÂDi

((c  h)  d), ÂDi
(h)}, for all c, d, hW and i. 

ÂDi
(c  d)  min {ÂDi

((c  h)  d), ÂDi
(h)} 

   = min {ÂDi
((c  h)  d), ÂDi

(h)} 

ÂDi
(c  d)  min {ÂDi

((c  h)  d), ÂDi
(h)}. 

ĈDi
(c  d)  min {ĈDi

((c  h)  d), ĈDi
(h)}, for all c, d, hW and i. 

ĈDi
(c  d)  min {ĈDi

((c  h)  d), ĈDi
(h)} 

   = min {ĈDi
((c  h)  d), ĈDi

(h)} 

ĈDi
(c  d)  min {ĈDi

((c  h)  d), ĈDi
(h)}. 

ÊDi
(c  d)  max {ÊDi

((c  h)  d), ÊDi
(h)}, for all c, d, hW and i. 

 ÊDi
(c  d)  max {ÊDi

((c  h)  d), ÊDi
(h)} 

   = max {ÊDi
((c  h)  d), ÊDi

(h)} 

 ÊDi
(c  d)  max {ÊDi

((c  h)  d), ÊDi
(h)}. 

ĎDi
(c  d)  max {ĎDi

((c  h)  d), ĎDi
(h)}, for all c, d, hW and i. 

 ĎDi
(c  d)  max {ĎDi

((c  h)  d), ĎDi
(h)} 

   = max {ĎDi
((c  h)  d), ĎDi

(h)} 

 ĎDi
(c  d)  max {ĎDi

((c  h)  d), ĎDi
(h)}. 

ÛDi
(c  d)  max {ÛDi

((c  h)  d), ÛDi
(h)}, for all c, d, hW and i. 

 ÛDi
(c  d)  max {ÛDi

((c  h)  d), ÛDi
(h)} 

   = max {ÛDi
((c  h)  d), ÛDi

(h)} 

 ÛDi
(c  d)  max {ÛDi

((c  h)  d), ÛDi
(h)}. 

Therefore, ⋂ Dii  is a PN-Q-ideal of Q-algebra W. 

Corollary 3.1. Assume that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal of a 

Q-algebra W. Then, Y is a neutrosophic BCK-ideal of the BCK-algebra W. 

Theorem 3.4. Assume that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal over a 

Q-algebra W. If c, h, d  W such that c  h  d, then ÂY(c)  min {ÂY(h), ÂY(d)}, ĈY(c)  min {ĈY(h), 

ĈY(d)}, ÊY(c)  max {ÊY(h), ÊY(d)}, ĎY(c)  max {ĎY(h), ĎY(d)} and ÛY(c)  max {ÛY(h), ÛY(d)}.  

Proof. Let Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal over a Q-algebra W. 

Suppose that c, h, d W such that c * h  d. Therefore, (c  h)  d = 0.  

Now, we have 

ÂY(c) = ÂY(c  0)  min {ÂY((c  h)  0), ÂY(h)} 

    = min {ÂY((c  h)), ÂY(h)} 

      min {min {ÂY((c  d)  h), ÂY(d)}, ÂY(h)} 
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     = min {ÂY((c  h)  d), ÂY(d), ÂY(h)} 

     = min {ÂY(0), ÂY(d), ÂY(h)} 

     = min {ÂY(h), ÂY(d)} 

 ÂY(c)  min { ÂY(h), ÂY(d)}. 

ĈY(c) = ĈY(c  0)  min {ĈY((c  h)  0), ĈY(h)} 

    = min {ĈY((c  h)), ĈY(h)} 

      min {min {ĈY((c  d)  h), ĈY(d)}, ĈY(h)} 

     = min {ĈY((c  h)  d), ĈY(d), ĈY(h)} 

     = min {ĈY(0), ĈY(d), ĈY(h)} 

     = min {ĈY(h), ĈY(d)} 

 ĈY(c)  min { ĈY(h), ĈY(d)}. 

ÊY(c) = ÊY(c  0)  max { ÊY((c  h)  0), ÊY(h)} 

    = max { ÊY((c  h)), ÊY(h)} 

      max { max{ ÊY((c  d)  h), ÊY(d)}, ÊY(h)} 

     = max{ ÊY((c  h)  d), ÊY(d), ÊY(h)} 

     = max{ ÊY(0), ÊY(d), ÊY(h)} 

     = max{ ÊY(h), ÊY(d)} 

 ÊY(c)  max{ ÊY(h), ÊY(d)}. 

ĎY(c) = ĎY(c  0)  max { ĎY((c  h)  0), ĎY(h)} 

    = max { ĎY((c  h)), ĎY(h)} 

      max { max{ ĎY((c  d)  h), ĎY(d)}, ĎY(h)} 

     = max{ ĎY((c  h)  d), ĎY(d), ĎY(h)} 

     = max{ ĎY(0), ĎY(d), ĎY(h)} 

     = max{ ĎY(h), ĎY(d)} 

 ĎY(c)  max{ ĎY(h), ĎY(d)}. 

Further, we have 

ÛY(c) = ÛY(c  0)  max { ÛY((c  h)  0), ÛY(h)} 

    = max { ÛY((c  h)), ÛY(h)} 

      max { max{ ÛY((c  d)  h), ÛY(d)}, ÛY(h)} 

     = max { ÛY((c  h)  d), ÛY(d), ÛY(h)} 

     = max { ÛY(0), ÛY(d), ÛY(h)} 

     = max { ÛY(h), ÛY(d)} 

 ÛY(c)  max {ÛY(h), ÛY(d)}. 

Theorem 3.5. Let Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal over a Q-algebra W. 

If c, h W such that c  h, then ÂY(c)  ÂY(h), ĈY(c)  ĈY(h), ÊY(c)  ÊY(h), ĎY(c)  ĎY(h) and ÛY(c)  

ÛY(h). 

Proof. Assume that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal over a Q-algebra 

W. Suppose c, h be two elements of W such that c  h. Therefore, c  h=0.  

Now, we have 

ÂY(c) = ÂY(c  0)  min {ÂY((c  h)  0), ÂY(h)} 

    = min {ÂY((c  h)), ÂY(h)} 
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    = min {ÂY(0), ÂY(h)} 

    = ÂY(h) 

 ÂY(c)  ÂY(h). 

ĈY(c) = ĈY(c  0)  min {ĈY((c  h)  0), ĈY(h)} 

    = min {ĈY((c  h)), ĈY(h)} 

    = min {ĈY(0), ĈY(h)} 

    = ĈY(h) 

 ĈY(c)  ĈY(h). 

ÊY(c) = ÊY(c  0)  max { ÊY((c  h)  0), ÊY(h)} 

    = max { ÊY((c  h)), ÊY(h)} 

    = max { ÊY(0), ÊY(h)} 

    = ÊY(h) 

 ÊY(c)  ÊY(h). 

ĎY(c) = ĎY(c  0)  max { ĎY((c  h)  0), ĎY(h)} 

    = max { ĎY((c  h)), ĎY(h)} 

    = max { ĎY(0), ĎY(h)} 

    = ĎY(h) 

 ĎY(c)  ĎY(h). 

ÛY(c) = ÛY(c  0)  max {ÛY((c  h)  0), ÛY(h)} 

    = max {ÛY((c  h)), ÛY(h)} 

    = max {ÛY(0), ÛY(h)} 

    = ÛY(h) 

 ÛY(c)  ÛY(h). 

Theorem 3.6. If Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} is a PN-Q-sub-algebra over a 

Q-algebra W, then the sets -ÂY = {c: c W, ÂY(c) }, -ĈY = {c: c W, ĈY(c) }, -ÊY = {c: c W, 

ÊY(c) }, -ĎY = {c: c W, ĎY(c) } and -ÛY = {c: c W, ÛY(c) } are the Q-sub-algebra of W. 

Proof. Suppose that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-sub-algebra over a 

Q-algebra W. Therefore, 

(i) ÂY(c  d)  min{ÂY(c), ÂY(d)}; 

(ii) ĈY(c  d)  min{ĈY(c), ĈY(d)}; 

(iii) ÊY(c  d)  max {ÊY(c), ÊY(d)}; 

(iv) ĎY(c  d)  max {ĎY(c), ĎY(d)}; 

(v) ÛY(c  d)  max {ÛY(c), ÛY(d)}; where c, d W. 

Let c, d -ÂY. This implies, ÂY(c) , ÂY(d) . 

Therefore, ÂY(c  d)  min {ÂY(c), ÂY(d)}  min{ , } . 

Hence, -ÂY = {c: c W, ÂY(c) } is a Q-sub-algebra of W. 

Let c, d -ĈY. This implies, ĈY(c) , ĈY(d) . 

Therefore, ĈY(c  d)  min {ĈY(c), ĈY(d)}  min{ , } . 

Hence, -ĈY = {c: c W, ĈY(c) } is a Q-sub-algebra of W. 

Let c, d -ÊY. This implies, ÊY(c)  , ÊY(d)  . 

Therefore, ÊY(c  d)  max {ÊY(c), ÊY(d)}  max{, }  . 
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Hence, -ÊY = {c: c W, ÊY(c) } is a Q-sub-algebra of W. 

Let c, d -ĎY. This implies, ĎY(c)  , ĎY(d)  . 

Therefore, ĎY(c  d)  max {ĎY(c), ĎY(d)}  max{, }  . 

Hence, -ĎY = {c: c W, ĎY(c) } is a Q-sub-algebra of W. 

Let c, d -ÛY. This implies, ÛY(c)  , ÛY(d)  . 

Therefore, ÛY(c  d)  max {ÛY(c), ÛY(d)}  max{ , }  . 

Hence, -ÛY = {c: c W, ÛY(c) } is a Q-sub-algebra of W. 

Theorem 3.7. Suppose that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal of W, then 

the sets W(Â)={cW: ÂY(c)=ÂY(0)}, W(Ĉ)={cW: ĈY(c)=ĈY(0)}, W(Ê)={cW: ÊY(c)= ÊY(0)}, W(Ď)={cW: 

ĎY(c)= ĎY(0)}, and W(Û)={cW: ÛY(c)= ÛY(0)} are Q-ideals of W. 

Proof. Suppose that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal of W. Therefore, 

(i) ÂY(0) ÂY(c) & ÂY(c  d)  min{ÂY((c  h)  d), ÂY(h)}, for all c, d, hW; 

(ii) ĈY(0) ĈY(c) & ĈY(c  d)  min{ĈY((c  h)  d), ĈY(h)}, for all c, d, hW; 

(iii) ÊY(0) ÊY(c) & ÊY(c  d)  max {ÊY((c  h)  d), ÊY(h)}, for all c, d, hW; 

(iv) ĎY(0) ĎY(c) & ĎY(c  d)  max {ĎY((c  h)  d), ĎY(h)}, for all c, d, hW; 

(v) ÛY(0) ÛY(c) & ÛY(c  d)  max {ÛY((c  h)  d), ÛY(h)}, for all c, d, hW. 

Since, ÂY(0)=ÂY(0), so 0  W(Â). 

Since, ĈY(0)= ĈY(0), so 0  W(Ĉ). 

Since, ÊY(0)= ÊY(0), so 0  W(Ê). 

Since, ĎY(0)= ĎY(0), so 0  W(Ď). 

Since, ÛY(0)= ÛY(0), so 0  W(Û). 

Let (h  d)  eW(Â) and dW(Â). Therefore, ÂY((h  d)  e)=ÂY(0) and ÂY(d)=ÂY(0). 

It is clear that ÂY(0) ÂY(h  e)                                                                   (1) 

Now, we have 

ÂY(h  e)  min{ÂY((h  d)  e), ÂY(d)}= min { ÂY(0), ÂY(0)}= ÂY(0) 

 ÂY(h  e)  ÂY(0)                                                                             (2) 

From (1) and (2), we get 

ÂY(h  e) = ÂY(0). 

This implies, h  e W(Â). Therefore, the set W(Â)={cW: ÂY(c)=ÂY(0)} is a Q-ideal of W. 

Similarly, it can be shown that, the sets W(Ĉ)={cW: ĈY(c)= ĈY(0)}, W(Ê)={cW: ÊY(c)= ÊY(0)}, 

W(Ď)={cW: ĎY(c)= ĎY(0)} and W(Û)={cW: ÛY(c)= ÛY(0)} are Q-ideals of W. 

Theorem 3.8. Assume that Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W}  be a PN-Q-ideal of 

Q-algebra W. Then, the fuzzy sets {(c, ÂY(c)): cW}, {(c, ĈY(c)): cW}, {(c,1- ÊY(c)): cW}, {(c,1- ĎY(c)): 

cW}, {(c,1- ÛY(c)): cW} are fuzzy Q-ideals of W. 

Proof. Let Y = {(c, ÂY(c), ĈY(c), ÊY(c), ĎY(c), ÛY(c)) : c W} be a PN-Q-ideal of a Q-algebra W. 

Therefore, 

(i) ÂY(0)  ÂY(c) & ÂY(c  d)  min{ÂY((c  h)  d), ÂY(h)}, for all c, d, hW; 

(ii) ĈY(0)  ĈY(c) & ĈY(c  d)  min{ĈY((c  h)  d), ĈY(h)}, for all c, d, hW; 

(iii) ÊY(0)  ÊY(c) & ÊY(c  d)  max {ÊY((c  h)  d), ÊY(h)}, for all c, d, hW; 

(iv) ĎY(0)  ĎY(c) & ĎY(c  d)  max {ĎY((c  h)  d), ĎY(h)}, for all c, d, hW; 

(v) ÛY(0)  ÛY(c) & ÛY(c  d)  max {ÛY((c  h)  d), ÛY(h)}, for all c, d, hW. 
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It is clear that, ÂY(0)  ÂY(c) & ÂY(c  d)  min{ÂY((c  h)  d), ÂY(h)}, for all c, d, hW. Therefore, the 

fuzzy set {(c, ÂY(c)): cW} is a fuzzy Q-ideal of W.  

It is clear that, ĈY(0)  ĈY(c) & ĈY(c  d)  min{ĈY((c  h)  d), ĈY(h)}, for all c, d, hW. Therefore, the 

fuzzy set {(c, ĈY(c)): cW} is a fuzzy Q-ideal of W.  

Now, for all c, d, hW,  

ÊY(c  d)  max {ÊY((c  h)  d), ÊY(h)}  1- ÊY(c)  min{1- ÊY((c  h)  d), 1-ÊY(h)} 

and ÊY(0)  ÊY(c)  1- ÊY(0)  1- ÊY(c). 

Therefore, the fuzzy set {(c,1-ÊY(c)): cW} is a fuzzy Q-ideal of W. 

Now, for all c, d, hW,  

ĎY(c  d)  max {ĎY((c  h)  d), ĎY(h)}  1- ĎY(c)  min{1- ĎY((c  h)  d), 1-ĎY(h)} 

and ĎY(0)  ĎY(c)  1- ĎY(0)  1- ĎY(c). 

Therefore, the fuzzy set {(c,1-ĎY(c)): cW} is a fuzzy Q-ideal of W. 

Further, for all c, d, hW,  

ÛY(c  d)  max { ÛY((c  h)  d), ÛY(h)}  1-ÛY(c)  min {1- ÛY((c  h)  d), 1-ÛY(h)} 

and ÛY(0)  ÛY(c)  1- ÛY(0)  1- ÛY(c). 

Therefore, the fuzzy set {(c, 1- ÛY(c)): cW} is a fuzzy Q-ideal of W. 

 

4. Conclusions: 

In this paper, we have established the notion of PN-Q-ideals of PN-Q-algebra. By defining 

PN-Q-ideals, we have formulated some results on PN-Q-algebra from the point of view of 

neutrosophic set. It is just the beginning of the concept of PN-Q-algebra. In the future, we hope that 

based on the notions of PN-Q-ideals many new investigations can be done. 
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Abstract: Management business has successfully forced enterprises to rebuild its process and 

adopt technology that help in integrating all process across different departments, analysis 

information in real-time, improve decision-making. ERP is a key information system for these 

purposes. There are many criteria in choice ERPS based on enterprise and application. Hence, 

there are many consulting firms with huge number of experts and technicians in carrying out 

analysis, evaluation ERPs and supporting IT-department in enterprises in selecting suitable 

ERPS. As many systems are semi-similar in features or semi-suitable for specific organization 

which leads to confusing decision making. Hence, using Multi-criteria decision method 

(MCDM) is essential. Using decision-making tools doesn’t mean missing data or information 

about what decision is made for. But sometimes more information creates a confusing 

decision as in this case-study. The case-study covers two main folds; it provides proposed 

criteria of ERPS adoption and studies their weights, then decision making process that is 

established by AHP, FAHP and Neutrosophic-AHP. It compares between the results of these 

approaches and measures the priority/weight effect of adding sub-criteria. This study 

provides a comparative analysis of AHP, FAHP and Neutrosophic-AHP. This paper 

contributes in emphasize the accuracy of Neutrosophic set in decision making. It also 

emphasizes on importance of using multi-criteria (criteria and factors) in designing decision 

model special in information system that have many factors for one aspect. The paper also 

contribute in ERPS field by providing criteria that help decision maker board in adopting 

ERPS cares on enterprise's culture, vision and business processes. 

Keywords: ERPS, AHP, Fuzzy-AHP, Neutrosophic-AHP and MCMD. 

 

1. Introduction 

The basic idea of an Enterprise Recourse Planning (ERP) platform is based on one of 

software engineering’s trends. It is "produce applications that help developers reduce the number of 

lines of code which are written by the developer until they reach the zero line of code point” [1]. This 

evolution in software engineering leads the Enterprise Recourse Planning system (ERPS) to 

appear and grow. ERP architecture varies with the evolution of technology. As ERP is one of 

information system type, and information management is a critical element in any system 
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whatever its activities [2]. Further, ERP is "business process management software that allows an 

organization to use a system of integrated applications to manage the business and automate many 

back office functions” [1]. In the last two decades, technical development has pushed 

enterprises, whatever its size to rethink their process management with respect to the new 

dynamics and changing in business environment, customer demands rising and market 

competition. The implementing an ERPs become a critical and essential step must be adopted 

by many businesses to help in organizing and optimizing the way they do business [3–6][7].  

Enterprise architecture must have business elements, their relationship to each other and 

environments and principles that governing its design and evolution. Where the 

requirements of enterprises almost change based on customers, competitors and strategic 

targets. So its architecture reflects that. Because ERPS is a software solution for enterprise 

architecture and needs, so ERPS’s architecture also developed to serve that. Many enterprises 

migrate their ERPS's architecture form monolith to service-oriented architecture (SOA) or to 

Microservices (MSA), or changed from SOA to MSA. Each architecture has characteristics that 

do not only reflect on ERPS‘s performance, but also in the enterprise repetition between 

competitors, business and enterprise targets. Thereby, the selection of architecture is not only 

based on its excellent.  

The choice of ERP’s vendor is not an easy mission. Thereby, decision support system 

(DSS) and decision making system (DMS) highlight their importance. DSS uses the analytical 

model and database to support semi-structured business decision that is made by the 

decision maker, while DMS analyzes alternatives based on factors to make a 

recommendation/decision instead of human. Multi-criteria decision making (MCDM) studies 

quantitative and qualitative characteristics of alternatives, and then assigning values to 

intangible and tangible aspects of decisions, and estimating decision based on better or worst 

calculated options. Models of decision making that are supported by the decision-making 

community are TOPSIS, MAUT, MAVT, ELECTRE, BWM, VIKOR, PROMETHEE, AHP and 

ANP [8], [9]. Analytic hierarchy process (AHP) is a broadly utilized tool for MCDM. It has 

been generally used in complex decision because of its high flexibility [10–14]. 

Criteria for adopting an ERP system and studying the consistency of these criteria are 

related to study a qualification of adopting a decision. This paper focuses on study factors 

that effect of adopting ERPS and related to make decision about architecture of system 

software.  The paper proves the accuracy of using Neutrosophic-set in decision rather than 

Saaty and Fuzzy sets although Fuzzy and Neutrosophic are semi-close. Further, the paper 

proves that consistency of decision when supported with decision model uses factors and 

criteria rather than model uses only criteria. Thereby, the paper addressed these proves by a 

case study. The case study is handled in three main parts; analysis available alternatives by 

SWOT analysis then make a decision by using applying two models are illustrated in figures 

1 and 2, finally testing consistency of decision and criteria by three different scale sets for 

AHP. This study is addressed in an empirical case study. Analysis part provides a 

comparison between the most professional platform solutions in ERP market; Odoo and 

Oracle e-Business Suite (EBS). They have same system architecture; SOA. The reason of 

choice these ERP systems are regarded to ERP industry, where Odoo is justified as the best 

open source ERP, and EBS is the main licensing ERP. These studies are visualized in SWOT 
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analysis. Eventually, Odoo is excelling Oracle e-Business Suite in some features and Oracle 

does. The final choice of adopting one of them refers now to enterprise criteria and culture. 

So, case study proposes critical criteria for purchasing an ERP system based on non-profit, 

governmental enterprise with multi purposes, stakeholders and beneficiaries. This paper 

chooses AHP because it is one of methods that used in the selection decision. The paper 

applies AHP and its improved versions like FAHP and Neutrosophic approaches to grantee 

accuracy and consistency decision after declaring the technical features and measuring their 

relative values. As Neutrosophic is a development of Intuitionistic Fuzzy Sets (IFS) that 

outline precise and improving understanding of uncertainty [15]. The study recommends 

using it for the decision’s consistency and accuracy. 

This paper helps decision maker in enterprises and researches in decision making 

because of comparative analysis that is provided and proposed criteria of adopting ERPS. 

The proposed criteria of adopting ERPS are produced in section 3, while the comparative 

analysis is addressed by a case study in section 4. Further, studding the consistency of criteria 

that used in this decision by three scale sets; Saaty, Fuzzy and Neutrosophic sets with AHP, 

also weights of alternatives (decision) are provided in decision section 5.     

2. Literature review 

Critical success factors (CSF) are defined as ‘An area where an organization must perform 

well if it is to succeed’. That means these factors enable enterprises to achieve its goals. CSF 

targets things that affect quality, customer satisfaction, increase revenues, decrease cost and 

market share. Effective performance measures helps in monitoring performance to detect 

whether it is meeting enterprise’s goals, how well system is doing, degree of customer’s 

satisfaction, and finally orient enterprise to take action that improve performance and 

efficiency [16]. The measurement is observation and quantification, while evaluation is a 

paired measurement with an observation of what would be desired, and comparison is 

putting two evaluations against each other [17]. Although performance measurement and 

evaluation are ensuring the successful implementation of information systems, also ERP 

model consists of data models, Critical Success Factor (CSF) models and phase models [18]. 

Evaluation ERP solutions in post-implementation phase is under-research [19].  

In [8], [20] previewed some researches that discussed the relation between criteria of ERP 

selection and enterprise’s size, and concluded that the size does not significantly affect 

criteria selection, but only on the judgment importance assigned in comparisons. For 

example, flexibility and supplier support are two first selection criteria in large-sized 

enterprise, however cost and adoptability are the most important criteria for small-medium 

sized enterprises. [18] Mapped the critical success factors of ERP successful implementation 

articles since 2002 until 2016 and classified all these factors into four main classes: 

Organization-related, Customization of ERP, Project-related, and Individual-related. [21] 

Studied different roles and participations of ERP’s users with factors that effect on their 

missions via a comparison between four companies with different industrial fields used ERP 

to solve problems but unfortunately, they gained new problems. [22] Mentioned what CSF 

means, and all different CSF's factors from 2003 to 2010. In [23] handles the classification of 

ERP implementation strategies (organization, technology and people), the context and 

conceptual model of ERP system implementation and separate between them.  



Neutrosophic Sets and Systems, Vol. 41, 2021                                                                                                                     67 

 
Amany A.Slamaa, Haitham A. El-Ghareeb and Ahmed Aboelfetouh,  Comparative analysis of AHP, FAHP and 

Neutrosophic-AHP based on multi-criteria for adopting ERPS 

 

All these models are not handled criteria and factors for selecting ERPS that fit 

enterprise's culture and strategic targets. Section 3 addressed this gap by proposing these 

criteria and studying their consistencies in section 4 by real case study in industry field. 

the selection an ERP system is a nightmare for software consultant, system architect and 

enterprise managers (chief executive officer (CEO), chief financial officer (CFO), chief human 

resources officer (CHRO), general manager (GM), and marketing manager) due to its 

importance. Decision making is selecting the most suitable among multiple and convergent 

alternatives keeping in sight the heterogeneous decision criterion, objectives and priorities of 

decision maker [24]. Decision making is very important at strategic-level management. 

Therefore, Difficulty of decision making is a motivation for developing many approaches and 

tools not only to support a decision but also making it. Multi-criteria decision making 

(MCDM) aims to provide a model for decision problems by capturing and addressing both 

qualitative and quantitative characteristics of alternatives, then assigning numerical values to 

intangible aspects inherent to decisions, and estimating better or worst options that have 

difficult cost and benefits relationships.  

In [8] use AHP to measure nine criteria for small-size enterprise are concluded from 

seven selection criteria models. In [25] used AHP with four criteria and 12subcriteria for 

assessing the suitability of the existing waste landfill in Zanjan, Iran. It combines AHP and 

Geographic information system to build suitability assessment model. This model is 

recommended to use in reevaluating the suitability of any old operating reservoir such as 

heavy industrial tanks, oil reservoirs, landfills.  [26], [9] Used the criteria of updated DeLone 

& McLean of success IS model, apply hybrid MCDM process (AHP and TOPSIS) on it to 

detect that service quality is a best criterion (with its sub-criteria: on time delivery, knowledge 

and competency, error network, availability, access, rate delay and reliability) for two 

different IS in banking and construction industry sector. [19] after listed evaluation models 

from 1999 to 2011 it modified to updated D&M model in 2004, it proposed 23 criteria of ERP 

in post-implementation and 111 experts ranked them with important, essential, important but 

not essential.  [27] Studies the correlation between the results of fuzzy-ANP and classical-

ANP for software security assessment and proves that they are highly correlated. That was a 

motivation to apply hybrid fuzzy-ANP-TOPSIS method to get better results in decision 

problems in case of the uncertain and imprecise information. In spite of fuzzy-ANP-TOPSIS 

results, but this study recommended that “for software security assessment issue, as it 

complex and dynamic task faced by both developers and users, there may be better MCDM 

symmetrical techniques rather than Hybrid fuzzy-ANP-TOSIS”. 

Fuzzy sets were used with MCDM methods like in AHP to reduce uncertainty.  

However, it does not solve this kind of problems in decision making. Saaty and et al. dose not 

support fuzzy-AHP because AHP is fuzzy by itself. Neutrosophy is the origin of 

Neutrosophic which is care neutral (indeterminate/unknown) part as in philosophy. Its 

components are T, I, F. they are representing the membership (truth), indeterminacy 

(intermediate) and non-membership (false) values respectively. Each element in 

Neutrosophic set has three components which are considers a subset, contrary all other types 

of sets as in fuzzy set, its three component are numbers [28]. Neutrosophic set is more general 

than other set as fuzzy and thereby Saaty set. Neutrosophic set is more reliable in judgment 

and pairwise comparison for criteria and alternative especial in Multi-Criteria Group 



Neutrosophic Sets and Systems, Vol. 41, 2021                                                                                                                     68 

 
Amany A.Slamaa, Haitham A. El-Ghareeb and Ahmed Aboelfetouh,  Comparative analysis of AHP, FAHP and 

Neutrosophic-AHP based on multi-criteria for adopting ERPS 

 

Decision Making (MCGDM). Neutrosophic is more suitable for dealing with high degree 

of imprecision and incomplete information [14]. Neutrosophic set provides accurate values in 

decision rather than Saaty and fuzzy sets [8], [9], [29], [30].  

3. A Proposed decision model of adopting ERPS 

‘Which ERP system is enterprise purchase?’ This question is synonym to adopting an 

ERP system decision. Where there are many ERP’s vendors with semi-different features. The 

proposed criteria of ERPS selection form is illustrated in figure 1. the proposed criteria form 

for purchasing ERP system that combines all desired features and nature of purchasing 

system process are: 1- trust vendor, 2- Support different Technical platform (on-premises, on-

cloud, mobility, OS (Windows & Linux)), 3- Vendor package (deployment, recovery, training 

staff, maintenance and customization), 4- Low Total costs (ownership licenses, 

service/support, implementation, training staff cost, deployment, maintenance, consultancy 

and customization), 5- Upper management support, 6- Accuracy, 7- Availability, 8- Risk 

management and security, 9- Support different language ( Arabic and English is essential), 

10- Database independency. 

These criteria are ranked by experts. Experts are IT-staff, academic researchers, project 

management manager, external technicians and key-users in different enterprises. It designed 

based on the results of previous questionnaire, where the average of criterion’s importance is 

calculated, and then criteria with average value less than 80% is eliminated. Essential vector is 

numbered with 8/10, more important but not essential is numbered with 5/10 and important 

is numbered with 3/10. The high ratio 80% is detected because selecting ERPS that supports 

its culture, vision and strategic goal is not easy mission. Aforementioned, Neutrosophic 

excels on fuzzy and saaty, thereby the Neutrosophic-AHP is suggested to use in making 

decision of adopting ERPS to grantee an accurate decision. Steps of Neutrosophic-AHP are 

illustrated in figure 1. 

https://www.sciencedirect.com/topics/engineering/imprecision
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Figure 1 flowchart of recommended set (Neutrosophic Set) for proposed model 

To prove the accuracy of proposed decision model of adopting ERPS with Neutrosophic-

AHP and consistency of these criteria, the next section provides case study for applying a 

proposed decision model with ten criteria and 15 factors by AHP, FAHP and Neutrosophic-

AHP. Briefly, the case study provides a comparative analysis and discusses an accuracy level 

of decision for using Neutrosophic-AHP and factors for criterion. 

Steps of applying AHP  [12–14] are briefly previewed in figure 2. They are  

1- Set problem in a hierarchical form 

2- Estimate the pairwise comparison matrix 

3- Estimate normalize pairwise comparison criteria matrix: By Get summation of each 

column∑ 𝑎𝑖𝑗
𝑛
𝑗=1 . Then, divide each value in a pairwise comparison matrix to previous 

summation, final equation is: 𝐶
𝑖𝑗= 

𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

    (1) 

4- Estimate weight criteria matrix: By: calculate average value for each row 

 𝑊𝑖 =  
∑ 𝐶𝑖𝑗

𝑛
𝑗=1

𝑛
     (2) 

5- Confirm values of weight criteria is standard by estimate consistency index (CI), 

consistency ratio (CR) By: Estimate consistency from following equation 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦
𝑖𝑗

=  
∑ (𝑊𝑖1 × 𝑎𝑖𝑗)

𝑛
𝑗=1

𝑊𝑖1
, Then,    (3) 

calculate 𝜆𝑚𝑎𝑥 =  
∑ 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑖𝑗

𝑛
,     (4) 
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CI = 
𝜆𝑚𝑎𝑥−𝑛

(𝑛−1)
,       (5) 

CR = CI / RI  where RI is random consistency index value that  detected based on a random 

index’s table [29], [32] 

6- Repeat same steps 2, 3, 4 5 for each alternative based on each criteria to get priority 

weight for alternative and confirm from its consistency by estimating CR. By: 

Estimate pairwise comparison matrix with same Saaty scale table, and normalized 

pairwise matrix, then criteria/priority weight, Estimate 𝜆𝑚𝑎𝑥, CI and CR.  

7- Make a decision By: Calculate decision weight by the summation of Product criteria 

weight matrix with alternative priority weight matrix according to the following 

equation:  

𝐷𝑖𝑣 = ∑ 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑊𝑒𝑖𝑔ℎ𝑡
𝑖
 ×  𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑊𝑒𝑖𝑔ℎ𝑡

𝑖𝑗

𝑗
𝑖=1   (6) 

The biggest value of decision weight is the most suitable alternative for these criteria.  

 

Figure 2 flowchart of AHP steps 

Further, Steps of using FAHP  [10], [11], [33] are 

1- The first step is the same step in AHP except using a Fuzzy triangular scale table as in 

table 1. 



Neutrosophic Sets and Systems, Vol. 41, 2021                                                                                                                     71 

 
Amany A.Slamaa, Haitham A. El-Ghareeb and Ahmed Aboelfetouh,  Comparative analysis of AHP, FAHP and 

Neutrosophic-AHP based on multi-criteria for adopting ERPS 

 

2- Estimate the pairwise comparison matrix , By: (Note: based on our criteria i and j = 10, 

matrix size= 10×10), use the same rule in step 2 in AHP except replace crisp values with 

fuzzy set values [10] 

𝑎`𝑖𝑗 = (1,1,1) when i=j    (7) 

𝑎𝑖𝑗 = 𝑓𝑢𝑧𝑧𝑦 𝑠𝑒𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑓𝑢𝑧𝑧𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑡𝑎𝑏𝑙𝑒 (𝐿, 𝑚, 𝑢) when i≠j 

𝑎`𝑗𝑖 =  
1

𝑎𝑖𝑗
     (8) 

After calculating the average of evaluation values for three judgments and apply rules of 𝑎`𝑖𝑗, 

Hence, the pairwise comparison matrix in fuzzy form is created. 

3- Estimate criteria weight matrix, By: Calculate geometric means for value as following 

equation: 

ŕ =  ∏ á𝑖𝑗
𝑛
𝑗=1       (9) 

then, calculate the fuzzy weight by equation: 

W`i = r`i ⊗ (𝑟`1 ⊕ r`2 ⊕….⊕ r`n)  (10) 

And, calculate a crisp weight by equation 

𝑊𝑖 =  
∑ 𝐿𝑤𝑖, 𝑚𝑤𝑖 , 𝑢 𝑤𝑖

𝑛⁄    (11) 

Also, check the weight is normalized or not by summation all weights, if equal one it is true, 

else it false. 

4- Estimate weight alternative matrix for each criteria, By: the repeat same steps in 2& 3 

for alternatives after converting crisp values of table in step 6 in AHP. 

5- Estimate decision, By: Calculate decision weight by the summation of Product criteria 

weight matrix with alternative priority weight matrix according to the following 

equation:  

𝐷𝑖𝑣 = ∑ 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑊𝑒𝑖𝑔ℎ𝑡
𝑖
 ×  𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑊𝑒𝑖𝑔ℎ𝑡

𝑖𝑗

𝑗
𝑖=1    (12) 

The biggest value of decision weight is the most suitable alternative for these criteria. These 

steps are summarized in figure 3. 
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Figure 3 flowchart of FAHP steps 

While steps of Neutrosophic-AHP [14], [15], [34]  are illustrated briefly in figure 1. They are 

1- The first step in AHP and FAHP is also shared with this approach, except using a 

triangular Neutrosophic scale in table 1. 

2- Estimate the pairwise comparison matrix in crisp value, By: [34]   (Note: based on 

our criteria i and j = 10, matrix size= 10×10), use the same rule in step 2 in AHP except 

replace values with Neutrosophic set values in table 1.  

=< (1,1,1), 0.5, 0.5, 0.5 > when i=j        (13) 

𝑡ℎ𝑒𝑠𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑓𝑢𝑧𝑧𝑦 𝑠𝑒𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑓𝑢𝑧𝑧𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑡𝑎𝑏𝑙𝑒 (𝐿, 𝑚, 𝑢) , and T is the 

truth-membership, I is indeterminacy, and F is falsity membership functions of Neutrosophic 

set. So, pairwise-comparison matrix with Neutrosophic values is created. 

To convert values of Neutrosophic form to crisp value , use the following equation: 

             𝑠(𝑟
𝑗𝑖)

=  |(𝑙𝑖𝑗  ×  𝑚𝑖𝑗  ×  𝑢𝑖𝑗)
 
𝑇𝑖𝑗 + 𝐼𝑖𝑗 + 𝐹𝑖𝑗

9 |        when i ≠ j       (14) 

After calculating the average of evaluation values for three judgments and applying rules 

of𝑎`𝑖𝑗, hence, pairwise comparison matrix in crisp values is created. 

3- Estimate criteria weight matrix, By: Calculate weight matrix as the following 

equations: 

(Calculate each column, then divide the previous crisp value by each summation column) 

 𝑊𝑖
𝑚 =  

𝑊𝑖

∑ 𝑊𝑖
𝑚
𝑖=1

  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … 𝑚 

Then, (calculate row average to get final criteria weight) 
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 𝑊𝑖 =  
∑ (𝑋𝑖𝑗)𝑚

𝑗=1

𝑛
 i= 1, 2, … m; j= 1,2 3 …n    (15) 

Then calculate the total summation of weight, when it equals to 1 that means they are 

normalization of weights. After that, check consistency of weights by calculating 

consistence index (CI) and consistence Ratio (CR). 

4- Estimate weight alternative matrix for each criteria, By:  repeat same steps in 2& 3 

for alternatives after converting crisp values of table in step 6 in AHP, the pairwise-

comparison matrix with Neutrosophic values is created. 

5- Estimate decision, By: Calculate decision weight by the summation of Product 

criteria weight matrix with alternative priority weight matrix according to the 

following equation:  

𝐷𝑖𝑣 = ∑ 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑊𝑒𝑖𝑔ℎ𝑡
𝑖
 ×  𝑃𝑒𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑊𝑒𝑖𝑔ℎ𝑡

𝑖𝑗

𝑗
𝑖=1    (16) 

The biggest value of decision weight is the most suitable alternative for these criteria.  

All equations, that are used in previous steps of AHP, FAHP and Neutrosophic-AHP, are 

listed in mentioned references.  

4. An empirical application for a proposed model - Case study 

‘ISLAH Charitable Foundation’ is a non-profit distributed enterprise in EGYPT, it starts 

building its management information systems. The ERP market is studied to select one fit its 

culture (non-profit and social organization), its vision and multiply-purposes.  

Based on these criteria, Odoo13 and oracle e-business suite (EBS) are candidates. Because 

Odoo is an open source suite of integrated business applications with most popular open 

source ERP rank in 2016. While Oracle E-Business Suite is an integrated business applications 

enable organizations to improve decision making, and increase corporate performance. To 

detect which one of them is suitable. The trade-off is considered as a decision analysis and a 

pre-step of making a decision. The decision analysis is represented in SWOT analysis for both 

as declared in appendix A [36-43]. Unfortunately, this analysis caused confusion. More 

information and more data do not mean making a decision, but support decision-making and 

sometimes decision maker’s confusion as in this case. That was a motivation for using 

decision-making tools and put structured steps for making a consistent and accuracy 

decision. 

Analytic Hierarchy Process (AHP) is proposed to select ERP system, where it is used 

in many applications in project management, risk estimation, evaluation of knowledge 

management tools and ERPs selection [31]. To get accurate and consistent decision, the 

trusted decision is measured by AHP, Fuzzy AHP (FAHP) and Neutrosophic-AHP with three 

different scale sets that are declared in table 1 and table 2 provides random consistency index 

that used in consistency calculation. These approaches structure the decision problem into 

objective, alternatives and criteria. Regarding to the case study, the objective is purchasing a 

suitable ERPS, alternatives are Odoo 13 system and Oracle E-business Suite and ten criteria 

that are declared in previous form in section 4.1. Section 4.2 provides a comparative analysis 

for AHP, FAHP and Neutrosophic-AHP with using multi-criteria; ten criteria and 15 factors 

(sub-criteria). These sections study accuracy decisions with three different sets, and with 
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using multi-criteria instead of only criteria. Also these sections proves consistence of adopting 

criteria in proposed decision model. Further, these sections discuss the proposed 

recommendation of using Neutrosophic-AHP in proposed decision model. 

Table 1: three Scale Set for AHP, FAHP and Neutrosophic – combined from [10], [15], [32] 

Saaty 

Scale 
Explanation 

Fuzzy 

triangular 

scale 

Neutrosophic triangular 

scale 

1 Equally significant (1, 1, 1) <<1,1,1>; 0.50, 0.50, 0.50> 

3 slightly significant (2, 3, 4) <<2, 3, 4>; 0.30, 0.75, 0.70> 

5 String significant (4, 5,6) <<4, 5, 6>; 0.80, 0.15, 0.20> 

7 Very strong significant (6, 7, 8) <<6, 7, 8>; 0.90, 0.10, 0.10> 

9 absolutely significant (9, 9, 0) <<9, 9, 0>; 1.00, 0.00, 0.00> 

2  (1, 2, 3) <<1, 2, 3,>; 0.40, 0.60, 0.65> 

4  (3, 4, 5) <<3, 4, 5>; 0.35, 0.60, 0.40> 

6 Sporadic values between two (5, 6, 7) <<5, 6, 7>; 0.70, 0.25, 0.30> 

8 Close scale (7, 8, 9) <<7, 8, 9>;  0.85, 0.10, 0.15> 

Table 2:  part of Random consistency index that listed in [29] 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI (random 

index) 

0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56 1.58 1.59 

4.1 Making decision by AHP, fuzzy-AHP (FAHP) and Neutrosophic-AHP: 

The decision problem is visualized in hieratical form, as in figure 4 that represents 

goals, alternatives and criteria at levels. The decision with Saaty set and AHP approach 

recommended Odoo 13 rather than EBS.  
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Figure 4 Hierarchical model of purchasing decision for AHP with 10 criteria only 

Because of the complexity and uncertainty of real decision-making problems, decision makers 

often find that it’s more realistic to assign linguistic variables to judgments rather than fixed 

values. Hence, presenting data using fuzzy numbers is more appropriate instead of crisp 

numbers [31]. Hence fuzzy-AHP is an improved version of AHP.  

There are many methods to conclude priority vector such as the extent analysis 

method (EAM), tolerance deviation, entropy concepts, Lambda-Max method, eigenvector 

method, fuzzy preference programming and Fuzzy LinPreRa. The most widely applied and 

popular is EAM but unfortunately weights from a fuzzy comparison matrix cannot be 

estimated correctly. This paper uses geometric means to estimate priority vector (fuzzy 

weight) because it is more accurate and consistency ratio in EAM are produced after the 

evaluation process, this led decision makers to find it difficult to ensure continuous 

comparison of decisions. In addition to it requires n(n-1)/2 of pairwise comparisons [11], [31].  

After applying steps of decision making by using Neutrosophic-set, the decision of 

using Neutrosophic-AHP is semi-agrees with FAHP, but there is high gap between AHP and 

both FAHP and Neutrosophic-AHP. Weights of using Odoo by AHP, FAHP and 

Neutrosophic-AHP are 27%, 40%, 46% respectively. While for EBS with same order of 

different set of AHP are 63%, 60% and 54%. Thereby, the decision stills confuses. 

4.2 Decision by using multi-criteria and AHP, fuzzy-AHP (FAHP) and Neutrosophic-AHP 

In the previous section, decision is estimated by AHP, FAHP and Neutrosophic-AHP 

for ten criteria, this section estimates decisions by same three scale set and AHP approach, 

but with sub-criteria for some of the criteria as a method to measure the effect of using sub-
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criteria in the decision. Here, the hierarchy of decision is at four levels; where both levels 

three and four for criteria and its sub respectively. Infrastructure platform and operating 

system are sub-criteria for ‘support different technical platform’ criteria. Continuous 

deployment, recovery, training staff, maintenance and continuous integration are sub-criteria 

for ‘vendor package’ criteria. Ownership licenses, services, implementation, consultancy, 

deployment and customization are sub-criteria for ‘low total cost’ criteria. Support different 

language has Arabic and English sub-criteria. Hence, the hierarchy of purchasing decision 

with criteria and sub-criteria are visualized in below figure 5.  

Same steps of Steps of AHP, FAHP and Neutrosophic-AHP approaches in section 4.1 are 

applied in respectively to calculate decision. The final equations 6, 12 and 16 are applied to 

get values of recommendation for both alternatives. The steps are same for three approaches 

as declared in figures 1, 2 and 3 but the equations are different because of used scale set. 

Thereby, equations 13, 14 and 15 for in Neutrosophic-AHP are different on equations 7, 8 and 

9 for FAHP and equations 1, 2 and 3 for AHP.  

Decision's Weights of using Odoo system by AHP, FAHP and Neutrosophic-AHP are 

46%, 44% and 45% in respective. While for EBS are 54%,  56% and 55% in respective. Values 

of these decisions are more realistic than are listed in section 4.1. This proves that, using 

multi-criteria (criteria and its factors) make decision more accurate and realistic. 

 The weights of decision with Neutrosophic-AHP with criteria model and multi-

criteria model is very approximate rather than in AHP and FAHP for two cases. A decision 

with Neutrosophic-AHP in 10 criteria case and 10 criteria and 15 sub-criteria are 46% and 45% 

for Odoo, while for EBS are 54% and 55%. However, a decision with FAHP in 10 criteria case 

and 10 criteria and 15 sub-criteria are 60% and 44% for Odoo, while for EBS are 40% and 56%. 

Furthermore, a decision with AHP in 10 criteria case and 10 criteria and 15 sub-criteria are 

27% and 46%, while for EBS are 63% and 54%. That proves that using Neutrosophic-AHP 

provide accuracy and consistency decision rather that AHP and FAHP.  



Neutrosophic Sets and Systems, Vol. 41, 2021                                                                                                                     77 

 
Amany A.Slamaa, Haitham A. El-Ghareeb and Ahmed Aboelfetouh,  Comparative analysis of AHP, FAHP and 

Neutrosophic-AHP based on multi-criteria for adopting ERPS 

 

 

Figure 5 a hierarchy model of purchasing ERP system decision with 10 criteria and 15 factors (sub-

criteria) 

5. Results and discussion: 

5.1 Choosing optimal method of MCDM  

Firstly, from these three approaches’ estimations, AHP ranked Odoo decision with 

0.63 while EBS ranked with 0.27. Also, FAHP recommend Odoo system with 0.54 value while 

EBS ranked with 0.46 value. Neutrosophic-AHP get a decision on purchasing Odoo system 

0.56 while the decision of purchasing EBS system gets 0.44 It is noted that the values of 

ranking Odoo system by three approaches is higher than EBS rank. Hence, the decision is 

purchasing Odoo system. 

The weights of decision with Neutrosophic-AHP with criteria model and multi-

criteria model is very approximate rather than in AHP and FAHP for two cases. A decision 

with Neutrosophic-AHP in 10 criteria case and 10 criteria and 15 sub-criteria are 46% and 45% 

for Odoo, while for EBS are 54% and 55%. However, a decision with FAHP in 10 criteria case 

and 10 criteria and 15 sub-criteria are 60% and 44% for Odoo, while for EBS are 40% and 56%. 

Furthermore, a decision with AHP in 10 criteria case and 10 criteria and 15 sub-criteria are 
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27% and 46%, while for EBS are 63% and 54%. That proves that using Neutrosophic-AHP 

provide accuracy and consistency decision rather that AHP and FAHP. 

Secondly, three approaches that are used in selection decision provide same decision 

with different recommendation values. These results have different preference distributions 

despite having the same initial input from same decision makers and all used approaches 

agreed on the same goal. The different Scale set value of AHP method is the reason to 

different values for each alternative. To answer question “Which one of AHP, FAHP or 

Neutrosophic-AHP is accurate approach?” there are three opinions. (1) One of them is ‘CI 

and CR measures are used to prove the consistency of decision maker preferences [12]’, but 

CI and CR already estimated in each approach for sure that criteria’s weights and 

alternatives’ weights are consistent, so the decision for all approach is consistent. (2) Another 

answer is “different judgment scales are influencing the results and decisions [12]”. This case 

study, using different scale set values, i.e. Saaty scale, triangular scale and Neutrosophic scale 

and they effects on stability of decision's weights in case of comparing between three values 

of AHP, FAHP and  Neutrosophic-AHP for two alternatives. Decisions with 

recommendations round 63%, 54% and 56% for Odoo and 27%, 46%, and 44% for EBS with 

small disparity. (3) Another answer is ‘using the Spearman’s correlation coefficient index [13], 

[35]‘. A Spearman’s coefficient for the case study is estimated by using weights for criteria 

and alternatives, then ascending them order, set ranks and apply coefficient equation: 𝜌 =

 
6 ∑ 𝑑𝑖

2

𝑛( 𝑛2−1)
 (where n in case study =10). For AHP, Spearman’s coefficient for Odoo and EBS is 

same value, it equals to 0.984. For Fuzzy-AHP, Spearman’s coefficient for Odoo equals to 

0.975 while for EBS equals to 0.972. They are very close, where 0.003 is the disparity between 

two decisions in the same method. For Neutrosophic-AHP, Spearman’s coefficient for Odoo 

equals to 0.95 while for EBS equals to 0.18. Based on values of Spearman’s coefficient that are 

estimated for three methods; Neutrosophic set is more accurate than AHP and FAHP, but 

same coefficient not prove that AHP has same accuracy that FAHP has, and that conflict with 

many literatures that documented other that. All these correlation coefficient values are 

limited in the closed period [0.7, 1], that means that a strong direct correlation for all.  Also, it 

provides values are very close for a different approach. For example, 0.012 is the difference 

value between an Odoo decision by AHP and FAHP. The final answer of which scale set is 

accurate rather other, this case study proved is ‘Neutrosophic-set is the most accurate, therefore, 

Neutrosophic-AHP is more accurate and consistence rather than AHP and fuzzy-AHP'. 

5.2 Effect of using sub-criteria on decision's accuracy: 

Priority Criteria and decision consistency between criteria’s levels: 

Basically, Criteria weights for criterion based its sub-criteria are calculated by average 

weights of sub-criteria, the next table previews difference value that main criteria get before 

and after estimating weights of its sub. (The importance of criteria is calculated by the 

average of its sub-criteria. The importance of criterion that has only two sub-criteria does not 

give a real value as it is seen in table 3). 

Table 3 weights of criteria that have sub-criteria (factors) 

Criteria Weight Weight Weight Weight Weight score Weight score 
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that have 

sub criteria 

score by 

AHP 

(without 

sub-

criteria) 

score by 

AHP 

(with sub- 

criteria) 

score by 

FAHP 

(without 

sub- 

criteria) 

score by 

FAHP 

(with 

sub) 

by 

Neutrosophic-

AHP 

(without sub) 

by 

Neutrosophic-

AHP 

(with sub) 

Support 

different 

technical 

platform 

18% 50% 17% 50% 15% 50% 

Vendor 

package 
21% 20% 20% 20% 14% 20% 

Low total 

cost 
9% 17% 9% 16% 9% 17% 

Support 

different 

language 

3% 50% 3% 50% 6% 50% 

In comparison criteria’s rank and its importance, decision score between using one 

level of criteria and two levels of them (sub-criteria), to see the number of criteria’s level effect 

on decision’s quality, below tables 4 and 5 also figures 6:9 show that how factors of criterion 

adjust weight criteria and its consistency. Tables 4 and 5 preview how the importance of 

criteria is changed when sub-criteria (factors) are used in decision model. That shows the 

effect of sub-criteria on criterion's weight and therefore decision. Table 4 lists the criteria with 

its weight and rank between whole proposed criteria. The weight's criterion regards its 

weight. While table 5 shows how same criterion's importance is different when used factors 

for it. This difference reflects of alternatives' weights and final decisions 

Table 4 importance and rank of 10 criteria 

Criteria 
AHP FAHP Neutrosophic-AHP 

importance Rank importance Rank importance Rank 

Trust vendor 17% 3 18% 2 14% 2 

Support different Technical platform 18% 2 17% 3 15% 1 

Vendor package 21% 1 20% 1 14% 2 

Low total costs 9% 5 9% 5 9% 5 

Upper management support 8% 6 8% 6 9% 5 

accuracy 8% 6 9% 5 10% 4 

Availability 10% 4 10% 4 11% 3 

Risk management and security 3% 7 4% 7 6% 6 

Support different language 3% 7 3% 8 6% 6 

Database independency 2% 8 3% 8 5% 7 

 

Table 5 importance of criteria that have sub-criteria for AHP, FAHP and Neutrosophic-AHP 

Criteria and its sub-criteria 

AHP FAHP Neutrosophic-AHP 

Applying 

model 

without 

factors 

Applying 

model 

with 

factors 

Applying 

model 

without 

factors 

Applying 

model 

with 

factors 

Applying 

model 

without 

factors 

Applying 

model 

with 

factors 

Support different Technical 

platform 
18% 50% 17% 50% 15% 50% 
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• Infrastructure 

platform 
 88%  87%  67% 

• Operating system  13%  22%  33% 

Vendor package 21% 20% 20% 20% 14% 20% 

• Continuous 

deployment 
 26%  22%  24% 

• Recovery  31%  40%  25% 

• Training staff  19%  11%  17% 

• Maintenance  11%  11%  15% 

• Continuous 

integration 
 14%  16%  19% 

Low total cost 9% 17% 9% 16% 9% 17% 

• Ownership licenses  25%  31%  23% 

• Services  4%  2%  11% 

• Implementation  9%  7%  13% 

• Consultancy  8%  8%  12% 

• deployment  20%  20%  22% 

• Customization  34%  30%  19% 

Support different language 3% 50% 3% 50% 6% 50% 

• Arabic  90%  97%  50% 

• English  10%  3%  50% 

 

 

Figure 6 Criteria's Importance 
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Figure 7 Criteria and sub-criteria importance 

 

Figure 8 Criteria's Rank for model in section 4.1(criteria only) 

 

Figure 9 Criteria's Rank for model in section 4.2 (criteria and factors) 

Consistency index confirms on the consistency of criteria and further on the decision, 

where it is the index of the consistency of judgments across all pairwise comparisons. The 
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consistency of main criterion that has sub-criteria is less than consistency of criteria without 

its sub as listed in table 3. 

Table 3 consistency of main criteria with and without its sub-criteria (factors) 

Criteria that have sub criteria consistency by 

AHP 

(without factors) 

consistency by AHP 

(with factors) 

Support different technical platform 13.19 2 

Vendor package 12.88 4.96 

Low total cost 11.12 6.02 

Support different language 10.68 2 

The other consistency of criteria that have not sub criteria are the same and are listed in table 

4 

Table 4 consistency of criteria that have not sub criteria 

Sub-criteria Consistency 

by AHP 

Sub-criteria Consistency 

by AHP 

criteria Consistency 

by AHP 

Infrastructure 

platform 

1 Service/support 1.005 Trusted vendor 11.9 

Operating system 1 Implementation 0.691 upper management 

support 

11.26 

Continuous 

deployment 

1.08 Consultancy 1.24 Accuracy 11.39 

Recovery 0.88 Deployment 1.06 Availability 11.91 

Training staff 1.24 Customization 0.88 Risk management and 

security 

11.48 

Maintenance 0.95 Arabic 1 Database 

independency 

11.36 

Continuous 

integration 

0.79 English 1  

Ownership licenses 1.12  

The selecting ERP system decision based on 10 criteria regards to approximate rank 

of decision based on 25 criteria (10 criteria and 15 sub-criteria). Decision score based on these 

criteria for each method is listed in below table 5 and in following figures 10and 11. 

Table 5 decision score with three scale sets 

systems AHP 

AHP 

(with 

factors) 

FAHP 

FAHP 

(with 

factors) 

Neutrosophic-

AHP 

Neutrosophic-AHP 

(with factors) 

Odoo 63% 60% 54% 54% 56% 55% 

EBS 27% 40% 46% 46% 44% 45% 
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Figure 10 decisions for two alternatives systems based on two models  

 

 

Figure 11 rank decision of Odoo and EBS selection with and without sub-criteria 

6. Conclusion 

The comparison chart allows enterprises to take an in-depth look at whether different 

software packages can meet their technical and functional requirements. Comparison Report 

allows buyers of business software to assess functions, features, capabilities, downside of the 

software solutions, but it does not help in decision making. On analysis stage, the SWOT 

analysis and comparisons may be not enough for detect which system is suitable as in case 

study, but it creates flog and confusion environment. In this inconsistency decision the Multi 

criteria decision making (MCDM) is solved. This paper applies three methods of it; AHP, 

FAHP and Neutrosophic-AHP, firstly, with 10 criteria and secondly, with 25 criteria (adding 

15 sub criteria). Three approaches ranked two alternatives ERPS. The paper provides a 

10 criteria 10 criteria &
15factors

Decision for Odoo ERPS

AHP FAHP Neutosophic-AHP

10 criteria 10 criteria &
15factors

Decision for EBS ERPS

AHP FAHP Neutosophic-AHP
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comparative analysis for AHP, FAHP and Neutrosophic-AHP. Although many researches 

handle criteria of evaluating ERP but purchasing ERP almost is not found. The paper 

proposes criteria of adopting ERPS. Furthermore, the paper studies consistency of these 

criteria.  

The paper studies accuracy of decision with AHP, FAHP, and Neutrosophic-AHP. 

This study compares making decision of adopting ERPS by these three based on 10 criteria, 

an based on 10 criteria and 15 sub-criteria. This study also analyzes criteria and factors by 

calculating their weights based on two alternatives' properties and characteristics. The paper 

also studies the accuracy of decision by comparing the consistency of using multi-criteria and 

criteria for decision model.  

The paper proves that Neutrosophic-AHP is the most accuracy rather than AHP and 

FAHP. Also it shows effect of using criteria and its factors in decision's accuracy. The third 

contribution, the comparative analysis that is addressed in paper tries to fill gap between 

industrial and academic fields by real empirical application.  
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Appendix A 

Table A SWOT analysis for Odoo and EBS 

Odoo Oracle e-business suite 

Strength 

• Flexibility to tailor the 

system for enterprises needs 

• The free version of it, 

consider an announcement 

and increase availability in 

the ERP market, marketing 

for the commercial version. 

• High modular: easy to add 

more module 

• Customize created modules. 

• Lower cost 

• Open source 

• Free educational version 

• Easy to integrate with 

external systems 

• Commercial edition in SaaS 

version 

• Has 900+ partners over 1176 

countries with 

4000000+users. 

Weakness 

• Documentation needs to 

improve. 

• Odoo does not has business 

analytics, product design, 

SCM, and asset management 

Commercial version is not for 

small enterprises 

Strength 

• Its company has more than 

130,000 employees and 

developers working with 

Oracle 

• Oracle Company (owner) has 

market dominance in many 

technical products such as 

Oracle Database, Enterprise 

Manager, Fusion Middleware, 

servers, workstations, storage 

etc. 

• Has the ability to integrate 

with different modules. 

• Is an extremely powerful, 

robust, that meet the needs of 

virtually any business 

• Support their products with 

update, continues release 

• It offers services like SAAS, 

PAAS, consulting, financing 

etc. 

• Oracle has its presence in 100+ 

countries that share in EBS 

using over them. 

Weakness 

• because its effected role in 

technical market, Oracle has 

had to face many lawsuits and 

controversies which affected 

its brand image 

• competition means limited 

growth in market share 

• its user interface is not friendly 

• not user-friendly enough than 

some other platforms 

particularly for small 

businesses 

• The default tax module and 

sales modules found on EBS is 

often not adequate, leading 

companies to have their own 

custom modules built. 

• There are also many modules 

for the platform, that work, 

but do not work as well as 

they do on other systems 
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Opportunities 

• Continuous developing 

thanks to open source 

nature and partners. 

• Cooperation with 

governmental organizations 

helps it to grow its business. 

• Large enterprises such as 

Toyota and Hyundai turned 

to using Odoo is a 

motivation to cooperate 

with more. 

• Odoo can work towards 

tapping the huge internet, 

different infrastructures (PC, 

Mobile, VM, Cloud) and 

grow-up of data analysis 

science 

• Many add on, modules, 

features add easily without 

additional cost  

• Its popularity increase 

Threats 

• Strong Competition from 

commercial ERP vendors 

such as Oracle, SAP etc. 

• Competition from open 

source ERP vendors 

 

Opportunities 

• Because Oracle is a trusted 

vendor in many technology as 

database, that will be reflected 

on EBS's reputation. 

• More brand visibility and 

announcement can highlight 

EBS 

• Cooperation with 

governmental organizations  

•  (PC, Mobile, VM, Cloud) and 

grow-up of data analysis 

science 

Threats 

• There are strong top 

competitors such as: SAP, 

Microsoft, HP Hewlett-

Packard and IBM. 

• Competition from Open 

source vendors such as Odoo. 

• Because EBS is spread over the 

world, market instability may 

reduce its profits. 

• Increasing the competition 

may be decrease EBS's market 

dominance 
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Abstract: In many real-life situations, decision-making units (DMUs)—such as production 

processes or manufacturing or service systems—involve data related to inputs and outputs that are 

volatile, imprecise, or even missing. This makes it difficult to measure these DMUs’ efficiency. In 

this context, a data envelopment analysis (DEA) is a powerful methodology to facilitate this 

measurement, but this is also sensitive to data: any noise or error in the data measurement can easily 

cause non-applicable or insignificant results. The neutrosophic theory has demonstrated its 

superiority over other approaches and theories in handling this type of data, and especially in its 

capability to consider indeterminate data. However, in the DEA context, the use of this theory 

remains limited to a few theoretical works. In order to filling this gap, the present paper aims to 

highlight the neutrosophic DEA in a real-life application. Two different neutrosophic approaches, 

or namely, the ranking and parametric approaches, are adjusted then applied to measure and 

evaluate the efficiency of 32 regional hospitals in Tunisia. These results allow a comparison of these 

two approaches, but more importantly, they reveal the desired efficiency measurement that permits 

inefficient hospitals’ necessary actions. Consequently, indeterminate inputs and outputs are no 

longer a handicap in using the DEA. 

Keywords: data envelopment analysis; indeterminate data; neutrosophic sets; hospital efficiency 

 

 

1. Introduction 

All organizations, whether governmental or private, need an accurate performance assessment 

for development, growth, and sustainability. In fact, in today’s competitive environment, these 

organizations face pressure to convert inputs into outputs as cheaply as possible (at a given level of 

quality and quantity). This pressure encourages them to be efficient. Precisely, in the public sector, 

where the usual disciplines of a competitive market are absent, one of the key roles of government is 

to provide public goods and services. So that, identifying efficient providers can enhance efficiency 

by allowing the recognition and spread of good practice.   

In seeking to evaluate the technical efficiency of a set of decision-making units (DMUs), Charnes 

et al. [1] proposed the data envelopment analysis (DEA) methodology. Subsequently, this technique 

has been used in a variety of models and applications, or in more than 4,000 publications as noted by 

Emrouznejad et al. [2]. In presence of several inputs and outputs, the DEA essentially uses linear 

programming to find a best-practice frontier for efficient DMUs that envelops all other inefficient 

DMUs. This methodology is especially popular because it does not require any specified production 

function, and can simultaneously consider many inputs and outputs.  

The original DEA methodology fundamentally assumes that inputs and outputs are measured 

with crisp, positive values on a ratio scale, and all the required data are available. As its name 

mailto:walid.abdelfattah@nbu.edu.sa
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indicates, this methodology is highly sensitive to data: any noise or error in data measurement can 

easily cause non-applicable or insignificant results. Therefore, a key to the DEA’s success involves 

accurately measuring all factors, including inputs and outputs. However, the data related to inputs 

and outputs in many real-life situations—such as in production processes or manufacturing or 

service systems—are volatile, imprecise, or even missing. Therefore, it is desirable to use theories and 

methods that can handle this kind of data.    

Among many approaches, such as: (1) stochastic methods; Cooper et al. [3] treated the topic of 

stochastic characterizations of efficiency and inefficiency in DEA using chance constrained 

programming formulations and constructs centered on congestion as one form of inefficiency. 

Khodabakhshi et al. [4] developed an input-oriented super-efficiency measure in stochastic data 

envelopment analysis. (2) interval DEA models; Entani and Tanaka [5] presented a method in order 

to improve the efficiency interval of a DMU by adjusting its given inputs and outputs. Smirlis et al. 

[6] introduced an approach based on interval DEA that allows the evaluation of the units with data. 

Jahanshahloo et al. [7]], developed an interval DEA model to obtain an efficiency interval consisting 

of evaluations from both the optimistic and the pessimistic viewpoints. (3) fuzzy theory; introduced 

by Zadeh [8], it has been mostly applied to handle imprecise, uncertain, or incomplete data in DEAs. 

Sengupta [9] is the first who explored the use of fuzzy set-theory in the context of data envelopment 

analysis. Kao and Liu [10] presented a procedure to measure the efficiencies of DMUs with fuzzy 

observations. authors transformed a fuzzy DEA model to a family of conventional crisp DEA models 

by applying the 𝛼-cut approach. Wang et al. [11] proposed two new fuzzy DEA models constructed 

from the perspective of fuzzy arithmetic to deal with fuzziness in input and output data in DEA. 

Zerafat et al. [12] introduced the concept of ‘‘local 𝛼  -level’’ to develop a multi-objective linear 

programming to measure the DEA efficiency of DMUs under uncertainty. Agarwal [13] proposed a 

fuzzy DEA model based on  𝛼-cut approach to deal with the efficiency measuring and ranking 

problem. Kumar [14] applied fuzzy data envelopment analysis in assessing the productivity of banks. 

According to Hatami-Marbini et al. [15], DEA approaches using fuzzy theory can be classified into 

four primary categories, while Emrouznejad et al. [16] presented a taxonomy of the fuzzy DEA 

methods, with a classification scheme that includes six categories.  

Although the fuzzy set theory has been introduced as a powerful tool to quantify vague data, a 

key inadequacy exists in these past methodologies. A critical problem is that fuzziness is insufficient 

to consider the degree of information certainty when handling real data. Smarandache [18] recently 

introduced the neutrosophic theory as a generalization of fuzzy theory. As this can handle vague, 

imprecise, incomplete, as well as indeterminate data, the neutrosophic theory is considered closer to 

human thinking due to its better simulation of human decision-making processes by considering 

indeterminate data. In fact, each element of a neutrosophic set has truth, indeterminacy, and falsity 

membership functions. Since Smarandache’s introduction of the neutrosophic set concept, many 

different sets have been proposed, with the single value neutrosophic set introduced by Wang et al. 

[19] as the most popular. Single-valued neutrosophic numbers present a special case involving single-

valued neutrosophic sets, and are important in neutrosophic, multi-attribute decision-making 

problems because they effectively describe an ill-known quantity (Deli and Şubaş, [20]). 

The neutrosophic set theory has since been applied in many mathematical programming and 

multi-criteria decision-making methods, such as the following: linear programming [Abdel-Nasser 

et al. [21], Abdel-Basset [22]], non-linear programming (Ye et al. [23]), the analytic hierarchy process 

(Abdel-Basset et al. [24]), goal programming [Pramanik [25], Pramanik and Banerjee [26]], analytic 

hierarchy process combined with preference ranking organization method for enrichment 

evaluations type II method (Abdel-Basset et al. [27]), and the technique for order preference by 

similarity to an ideal solution (Biswas et al. [27]), among others. Abdel-Nasser and Hagar [28] also 

present some earlier works using multi-criteria decision-making methods in a neutrosophic 

environment. Further, the concept of neutrosophic sets and its extensions have been applied in a 

variety of fields, including computer science (Ali and Smarandache, [29]), mathematics (Salama and 

Alblowi, [30]), and medicine (Abdel-Basset et al. [31]). 
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In the DEA context, few studies to the best of our knowledge have addressed neutrosophic data. 

Edalatpanah [32] presented a brief DEA model with neutrosophic inputs and outputs, and suggested 

that the score function developed by Despotis and Smirlis [33] be used to transform the model into a 

crisp DEA model and solve it using any conventional method. Abdelfattah [34] also presented a DEA 

model with all neutrosophic inputs and outputs; the author solved this model by developing a 

parametric approach based on what he called the “degrees of variation” in a neutrosophic number. 

However, these two studies are only theoretical, and have not applied their neutrosophic DEA 

models to real examples to further demonstrate the importance of this research axis. Therefore, this 

paper aims to highlight the neutrosophic DEA approach in a real-life application through an 

efficiency evaluation of Tunisian regional hospitals with indeterminate data. 

The remainder of the paper is organized as follows: Section 2 introduces the neutrosophic DEA 

model and the two approaches that will follow for its resolution. Section 3 presents the main body of 

the paper and its data, data adjustment, results, and analysis related to the application case. Section 

4 provides a summary and the research’s final conclusions. 

2. Methodology  

2.1. Neutrosophic DEA model 

Charnes et al. [1] developed the first DEA model to measure the relative efficiency of a set of 

homogenous DMUs under the assumption of constant returns to scale. First, let 𝑥𝑖𝑗  and 𝑦𝑟𝑗 denote 

the inputs and outputs of a DMU  𝑗 , respectively, with 𝑚  inputs,  𝑠  outputs, and  𝑛  DMUs. The 

output-oriented DEA model measuring the efficiency of a given DMU 𝑘 is: 

𝑀𝑖𝑛 𝐸𝑘 = ∑ 𝑣𝑖𝑥𝑖𝑘

𝑚

𝑖=1

/ ∑ 𝑢𝑟𝑦𝑟𝑘

𝑠

𝑟=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

/ ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

≥ 1, 𝑗 = 1, 2, … , 𝑛; 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀ 𝑟,  

 

(1) 

where 𝑢𝑟 indicates the weight assigned to the output 𝑟, and 𝑣𝑖  is the weight assigned to the 

input 𝑖.  

Model (1) is a fractional programming model converted into linear programming, as follows: 

𝑀𝑖𝑛 𝐸𝑘 = ∑ 𝑣𝑖𝑥𝑖𝑘

𝑚

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑢𝑟𝑦𝑟𝑘

𝑠

𝑟=1

= 1 

∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

− ∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

≥ 0, 𝑗 = 1, 2, … , 𝑛; 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀ 𝑟, 𝑖 

 

(2) 

If any of this model’s observation data related to inputs and/or outputs is imprecise, uncertain, 

or indeterminate, then the efficiency of the DMU 𝑘 will be misleading. Additionally, if this DMU lies 

on the efficient production function, it will reflect a doubtful reference unit for the other inefficient 

DMUs. A powerful approach to address this kind of problem involves relying on the neutrosophic 

set theory.  
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Assuming inputs and outputs are neutrosophic, they can be represented by triangular 

neutrosophic numbers, while the variables  𝑢𝑟  and  𝑣𝑖  are real numbers; thus, Model (2) will be 

written as follows: 

𝑀𝑖𝑛 𝐸̃𝑘 = ∑ 𝑣𝑖𝑥̃𝑖𝑘

𝑚

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑢𝑟𝑦̃𝑟𝑘

𝑠

𝑟=1

= 1 

∑ 𝑢𝑟𝑦̃𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑥̃𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1, 2, … , 𝑛; 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀ 𝑟, 𝑖 

 

(3) 

where 𝑥̃𝑖𝑗  and 𝑦̃𝑟𝑗 are triangular neutrosophic numbers, such that: 

𝑥̃𝑖𝑗 = 〈(𝑥𝑖𝑗1, 𝑥𝑖𝑗2 , 𝑥𝑖𝑗3), 𝑡𝑥̃𝑖𝑗
, 𝑑𝑥𝑖𝑗

, 𝑓𝑥̃𝑖𝑗
〉 

𝑦̃𝑟𝑗 = 〈(𝑦𝑟𝑗1, 𝑦𝑟𝑗2, 𝑦𝑟𝑗3), 𝑡𝑦̃𝑟𝑗
, 𝑑𝑦̃𝑟𝑗

, 𝑓𝑦̃𝑟𝑗
〉 

 

where 𝑥𝑖𝑗1 , 𝑥𝑖𝑗2 , and  𝑥𝑖𝑗3  denote the lower bound, median value, and upper bound of  𝑥̃𝑖𝑗 , 

respectively;  𝑡𝑥𝑖𝑗
, 𝑑𝑥𝑖𝑗

,  and  𝑓𝑥𝑖𝑗
 indicate the degrees of truth, indeterminacy, and falsity for 𝑥̃𝑖𝑗 , 

respectively. Subsequently, 𝑦̃𝑟𝑗 is defined in a similar manner.  

 

As Model (3) is a neutrosophic DEA model that cannot be solved using typical techniques, the 

author suggests using the following approaches while introducing some modifications that make 

them applicable in the proposed model.  

2.2. Ranking approach 

As a first alternative, we consider the approach from work by Abdel-Basset et al. [22], which was 

specifically developed to address neutrosophic linear programming models. This method suggests 

that each trapezoidal neutrosophic number 𝑎̃ be converted into its equivalent crisp value using the 

following ranking function: 

𝑅 = (
𝑎𝑙 + 𝑎𝑢 + 2(𝑎𝑚1 + 𝑎𝑚2)

2
) + (𝑡𝑎̃ − 𝑑𝑎̃ − 𝑓𝑎̃) (4) 

Note that 𝑎̃ = 〈(𝑎𝑙 , 𝑎𝑚1 , 𝑎𝑚2, 𝑎𝑢), 𝑡𝑎̃, 𝑑𝑎̃ , 𝑓𝑎̃〉  is a trapezoidal neutrosophic number, 

where  𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2, and  𝑎𝑢  are the lower bound, first and second median values, and the upper 

bound of 𝑎̃, respectively; 𝑡𝑎̃, 𝑑𝑎̃, and 𝑓𝑎̃ are the degrees of truth, indeterminacy, and falsity for the 

trapezoidal number; and (𝑡𝑎̃ − 𝑑𝑎̃ − 𝑓𝑎̃) indicates the degree of confirmation.   

 

As the DEA model can be transformed as shown into a linear programming model, we can apply 

this ranking function to solve Model (3). Accordingly, the input and output values in this work 

should be triangular neutrosophic numbers, and thus, we propose the following ranking function: 

 

= (
𝑎𝑙 + 2𝑎 + 𝑎𝑢

4
) + (𝑡𝑎̃ − 𝑑𝑎̃ − 𝑓𝑎̃) (5) 

 

Applying this ranking function to Model (3) obtains the following crisp explicit model; standard 

methods are then used to calculate the optimal solution: 

𝑀𝑖𝑛 𝐸̃𝑘 = ∑ 𝑣𝑖[
1

4⁄ (𝑥𝑖𝑘1 + 2𝑥𝑖𝑘2 + 𝑥𝑖𝑘3) + (𝑡𝑥̃𝑖𝑘
− 𝑑𝑥𝑖𝑘

− 𝑓𝑥𝑖𝑘
)]

𝑚

𝑖=1

 (6) 
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑢𝑟[1
4⁄ (𝑦𝑟𝑘1 + 2𝑦𝑟𝑘2 + 𝑦𝑟𝑘3) + (𝑡𝑦̃𝑟𝑘

− 𝑑𝑦̃𝑟𝑘
− 𝑓𝑦̃𝑟𝑘

)]

𝑠

𝑟=1

= 1 

∑ 𝑢𝑟 [1
4⁄ (𝑦𝑟𝑗1 + 2𝑦𝑟𝑗2 + 𝑦𝑟𝑗3) + (𝑡𝑦̃𝑟𝑗

− 𝑑𝑦̃𝑟𝑗
− 𝑓𝑦̃𝑟𝑗

)]

𝑠

𝑟=1

− ∑ 𝑣𝑖 [1
4⁄ (𝑥𝑖𝑗1 + 2𝑥𝑖𝑗2 + 𝑥𝑖𝑗3) + (𝑡𝑥𝑖𝑗

− 𝑑𝑥𝑖𝑗
− 𝑓𝑥̃𝑖𝑗

)]

𝑚

𝑖=1

≤ 0, 𝑗 = 1, 2, … , 𝑛; 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀ 𝑟, 𝑖 

 

2.3. Parametric approach 

All input and output data in Model (3) should be triangular neutrosophic numbers. Unlike the 

ranking approach, Abdelfattah’s [34] proposed parametric approach consists of transforming these 

data into intervals rather than crisp values by considering the decision-makers’ levels of acceptance, 

indeterminacy, and rejection toward the data. This approach essentially determines the degrees of 

variation for every single neutrosophic input or output, given by the following equation:   

𝜃𝑎̃ =
1

4
[

𝛼

𝑡𝑎̃

+ 2
(1 − 𝛽)

1 − 𝑑𝑎̃

+
(1 − 𝛾)

1 − 𝑓𝑎̃

] ;    𝜃𝑎̃ ∈ [0, 1]; (7) 

 

where 𝑡𝑎̃, 𝑑𝑎̃, and 𝑓𝑎̃ indicate the degrees of truth, indeterminacy, and falsity for the triangular 

neutrosophic number  𝑎̃, respectively; 𝛼 denotes the minimal degree of acceptance, or 𝛼 ∈ [0, 𝑡𝑎̃]; 𝛽 

denotes the maximal degree of indeterminacy, or 𝛽 ∈ [𝑑𝑎̃ , 1]; and 𝛾 denotes the maximal degree of 

rejection, or 𝛾 ∈ [𝑓𝑎̃ , 1].  

Input and output values are then converted into their equivalent intervals with the following 

equation:  

𝑎̃ = [𝑎𝑙 , 𝑎𝑢] = [𝑎1 + (𝑎2 − 𝑎1)𝜃𝑎̃ , 𝑎3 − (𝑎3 − 𝑎2)𝜃𝑎̃] (8) 

where 𝑎1, 𝑎2, and 𝑎3 are the lower bound, median value, and upper bound of 𝑎̃, respectively. 

According to this approach, Model (3) can then be transformed into two sub-models. Note that 

Abdelfattah [34] adopted an input-oriented DEA model, while this paper adopts an output-oriented 

DEA model, as its application will require. Thus, Model (3) is transformed into the following two 

sub-models (9a) and (9b), representing the most favorable (maximal) efficiency and the least 

favorable (minimal) efficiency, respectively:  

𝑀𝑖𝑛 (𝐸𝑘)𝜃
𝑢 = ∑ 𝑣𝑖[𝑥𝑖𝑘1 + (𝑥𝑖𝑘2 − 𝑥𝑖𝑘1)𝜃𝑥𝑖𝑘

]

𝑚

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑢𝑟[𝑦𝑟𝑘3 − (𝑦𝑟𝑘3 − 𝑦𝑟𝑘2)𝜃𝑦̃𝑟𝑘
]

𝑠

𝑟=1

= 1; 

∑ 𝑣𝑖[𝑥𝑖𝑘1 + (𝑥𝑖𝑘2 − 𝑥𝑖𝑘1)𝜃𝑥𝑖𝑘
]

𝑚

𝑖=1

− ∑ 𝑢𝑟[𝑦𝑟𝑘3 − (𝑦𝑟𝑘3 − 𝑦𝑟𝑘2)𝜃𝑦̃𝑟𝑘
]

𝑠

𝑟=1

≥ 0; 

∑ 𝑣𝑖 [𝑥𝑖𝑗3 − (𝑥𝑖𝑗3 − 𝑥𝑖𝑗2)𝜃𝑥𝑖𝑗
]

𝑚

𝑖=1

− ∑ 𝑢𝑟[𝑦𝑟𝑗1 + (𝑦𝑟𝑗2 − 𝑦𝑟𝑗1)𝜃𝑦̃𝑟𝑗
]

𝑠

𝑟=1

≥ 0, 𝑗 = 1, 2, … , 𝑛, 𝑗 ≠ 𝑘; 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀ 𝑟, 𝑖 

 

(9 a) 
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𝑀𝑖𝑛 (𝐸𝑘)𝜃
𝑙 = ∑ 𝑣𝑖[𝑥𝑖𝑘3 − (𝑥𝑖𝑘3 − 𝑥𝑖𝑘2)𝜃𝑥𝑖𝑘

]

𝑚

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ 𝑢𝑟[𝑦𝑟𝑘1 + (𝑦𝑟𝑘2 − 𝑦𝑟𝑘1)𝜃𝑦̃𝑟𝑘
]

𝑠

𝑟=1

= 1 

∑ 𝑣𝑖[𝑥𝑖𝑘3 − (𝑥𝑖𝑘3 − 𝑥𝑖𝑘2)𝜃𝑥𝑖𝑘
]

𝑚

𝑖=1

− ∑ 𝑢𝑟[𝑦𝑟𝑘1 + (𝑦𝑟𝑘2 − 𝑦𝑟𝑘1)𝜃𝑦̃𝑟𝑘
]

𝑠

𝑟=1

≥ 0 

∑ 𝑣𝑖 [𝑥𝑖𝑗1 + (𝑥𝑖𝑗2 − 𝑥𝑖𝑗1)𝜃𝑥𝑖𝑗
]

𝑚

𝑖=1

− ∑ 𝑢𝑟[𝑦𝑟𝑗3 − (𝑦𝑟𝑗3 − 𝑦𝑟𝑗2)𝜃𝑦̃𝑟𝑗
]

𝑠

𝑟=1

≥ 0, 𝑗 = 1, 2, … , 𝑛, 𝑗 ≠ 𝑘 

𝑢𝑟 , 𝑣𝑖 ≥ 0, ∀ 𝑟, 𝑖 

 

(9 b) 

 

𝜃𝑥𝑖𝑗
=

1

4
[

𝛼

𝑡𝑥𝑖𝑗

+ 2
(1 − 𝛽)

1 − 𝑑𝑥𝑖𝑗

+
(1 − 𝛾)

1 − 𝑓𝑥̃𝑖𝑗

] ;  𝜃𝑦̃𝑟𝑗
=

1

4
[

𝛼

𝑡𝑦̃𝑟𝑗

+ 2
(1 − 𝛽)

1 − 𝑑𝑦̃𝑟𝑗

+
(1 − 𝛾)

1 − 𝑓𝑦̃𝑟𝑗

] 

𝛼 ∈ [0, 𝑚𝑖𝑛 {𝑡𝑥𝑖𝑗
, 𝑡𝑦̃𝑟𝑗

}] ;  𝛽 ∈ [𝑚𝑎𝑥 {𝑑𝑥𝑖𝑗
, 𝑑𝑦̃𝑟𝑗

} , 1] ;  𝛾 ∈ [𝑚𝑎𝑥 {𝑓𝑥𝑖𝑗
, 𝑓𝑦̃𝑟𝑗

} , 1] 

 

After a decision-maker sets specific values of  𝛼 , 𝛽 , and 𝛾—representing his or her minimal 

degree of acceptance, maximal degree of indeterminacy, and maximal degree of rejection, 

respectively—Models (9a) and (9b) will yield bounded intervals of efficiency scores [(𝐸𝑘)𝜃𝑖

𝑙 , (𝐸𝑘)𝜃𝑖

𝑢 ] 

for all evaluated DMUs.  

3. An Application to Evaluate the Efficiency of Regional Hospitals in Tunisia  

Providing suitable healthcare services is key for every society’s well-being. Tunisia considers the 

health sector as a national priority, and invested 7% of its 2014 gross domestic product in its 

healthcare industry.1 This percentage is higher than the minimum 5% threshold recommended by 

the World Health Organization, and is equivalent to that of upper-middle-income countries. 

Tunisia’s public health facilities are classified according to their mission, equipment, technical level, 

and territorial competence, categorized as: basic health centers, district hospitals, regional hospitals, 

and university hospital centers.  

As this paper is only concerned with regional hospitals, we attempt to measure their ability to 

efficiently use minimum resources (inputs) to produce suitable healthcare services (outputs) using 

the DEA. Literature has similarly applied the DEA in this type of efficiency measurement; 

specifically, Kohl et al. [35] provide a noteworthy review of this issue. As some observations are not 

available and others are not “precise,” this paper applies the concept of indeterminacy, and therefore, 

the approaches described in the previous section.  

3.1. Data 

This study evaluates all 32 regional hospitals in Tunisia, with data collected from the Ministry 

of Public Health’s 2015 health map.2 

The selection of inputs and outputs to be considered is typically a subject of debate. For example, 

Ozcan [36] suggested that inputs include beds, a weighted service-mix, full-time equivalents, and 

operations expenses, and that outputs include case-mix-adjusted admissions and outpatient visits. 

Azreena et al. [37] systematically reviewed hospitals’ inputs and outputs in measuring efficiency 

                                                 
1 https://www.who.int/countries/tun/en visited on 15-July-2019 

2 http://www.santetunisie.rns.tn/images/docs/anis/stat/cartesanitaire2015.pdf visited and downloaded on 18-July-2019 

 

https://www.who.int/countries/tun/en
http://www.santetunisie.rns.tn/images/docs/anis/stat/cartesanitaire2015.pdf


Neutrosophic Sets and Systems, Vol. 41, 2021    95  

 

 

Walid Abdelfattah, Neutrosophic Data Envelopment Analysis: An Application to Regional Hospitals in Tunisia 

using a DEA. Regarding this issue, Dyson et al. [38] stated that using significant numbers of inputs 

and outputs does not necessarily garner better results. These authors posit that the most important 

factor is the number of DMUs, as there should always be more than 2 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 +

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡𝑠). This study respects this rule, as three outputs and only one input are considered 

for the 32 regional hospitals, as follows: 

 

Type  Name Explanation 

Input  Operating Budget (OB) The hospital’s annual expenses, coming from: 

- The state’s budget in terms of salaries 

- Contributions from the public health insurance fund (CNAM)  

- Net revenues 

Output 1 Admissions The admissions of hospitalized patients at a hospital for a given period. 

As hospital statistics do not distinguish between the number of 

admissions and the number of entries, the same patient can be re-

hospitalized for the considered period and generate several entries. 

Output 2 Outpatient Visits The number of times that a patient is not hospitalized overnight, but visits 

the hospital for diagnosis or treatment. 

Output 3 Emergency Visits The number of cases calling for immediate action as registered by the 

hospital’s emergency room/department. 

 

Tables 1 and 2 present the data regarding the considered inputs and outputs, respectively.    

Table 1. Input data: 2015 operating budget of Tunisian regional hospitals (in TND) 

DMU  DMU Name: Hospital Salaries CNAM 
Net 

Revenue 
Total OB 

1 Mahmoud El Matri de l’Ariana 200,000 1,796,390 707,249 2,703,639 

2 Khair-Eddine 500,000 1,333,887 233,547 2,067,434 

3 Hôpital Ben Arous 100,000 3,611,455 1,529,633 5,241,088 

4 Menzel Bourguiba * 7,236,055 1,567,819 8,803,874 

5 Nabeul 200,000 2,331,000 1,138,213 3,669,213 

6 Menzel Témime 0 3,907,115 1,191,333 5,098,448 

7 Zaghouan 200,000 2,656,103 864,525 3,720,628 

8 Jendouba 500,000 4,393,450 1,334,386 6,227,836 

9 Tabarka * * 1,400,000 1,400,000 

10 Béja 400,000 5,873,920 1,078,012 7,351,932 

11 Medjez El Bab 400,000 1,568,142 426,514 2,394,656 

12 M’hamed Bourguiba du Kef 401,000 5,654,441 1,008,723 7,064,164 

13 Siliana 0 4,869,819 925,074 5,794,893 

14 Kasserine 1,000,000 5,270,338 1,890,662 8,161,000 

15 M’Saken 200,000 1,586,683 1,020,266 2,806,949 

16 Moknine 200,000 2,717,575 688,340 3,605,915 

17 Haj Ali Soua de Ksar Hellal 0 2,025,418 1,053,743 3,079,161 

18 Kerkennah 0 2,551,472 269,535 2,821,007 
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19 Jebeniana 300,000 1,576,958 608,216 2,485,174 

20 Mahres 200,000 1,377,638 529,700 2,107,338 

21 Houcine Bouzaiene de Gafsa 400,000 3,200,000 922,708 4,522,708 

22 Metlaoui 100,000 2,216,796 337,818 2,654,614 

23 Tozeur 100,000 4,032,146 564,305 4,696,451 

24 Sidi Bouzid 0 6,208,290 1,387,163 7,595,453 

25 Mohamed Ben Sassi de Gabès 700,000 8,249,323 2,380,640 11,329,963 

26 Kébili 300,000 4,365,460 901,949 5,567,409 

27 Habib Bourguiba de Médenine 0 2,884,710 1,754,319 4,639,029 

28 Sadok Mokadem de Jerba 0 4,967,925 1,569,452 6,537,377 

29 Zarzis 0 2,858,210 1,028,585 3,886,795 

30 Ben Guerdenne 300,000 2,016,560 822,980 3,139,540 

31 Tataouine 500,000 2,473,696 870,845 3,844,541 

32 Nefta 0 548,000 560,978 1,108,978 

Minimum (missing values and zeros are not 

included) 
100,000 548,000   

Maximum (missing values are not included) 1,000,000 8,249,323   

Median (missing values and zeros are not 

included) 
300,000 2,858,210   

Median-minimum 200,000 2,310,210   

Maximum-medium 700,000 5,391,113     

Table 2. Output data 

DMU DMU Name: Hospital Admissions 
Outpatient 

Visits 

Emergency 

Visits 

1 Mahmoud El Matri de l’Ariana 4,544 58,233 26,500 

2 Khair-Eddine 607 59,349 31,623 

3 Hôpital Ben Arous 10,162 96,391 72,402 

4 Menzel Bourguiba 11,720 64,402 71,357 

5 Nabeul 10,845 22,203 62,534 

6 Menzel Témime 10,105 36,757 73,075 

7 Zaghouan 6,933 44,853 54,254 

8 Jendouba 15,238 80,248 98,661 

9 Tabarka 2,229 10,500 40,073 

10 Béja 11,115 54,742 66,014 

11 Medjez El Bab 2,479 29,175 38,695 

12 M’hamed Bourguiba du Kef 11,812 64,752 84,222 

13 Siliana 13,460 73,979 56,981 

14 Kasserine 27,006 61,565 115,607 

15 M’Saken 2,459 60,712 76,092 

16 Moknine 4,432 38,672 52,532 

17 Haj Ali Soua de Ksar Hellal 3,353 34,494 73,422 

18 Kerkennah 2,205 1,557 16,190 
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19 Jebeniana 3,483 33,232 42,993 

20 Mahres 2,722 34,609 26,950 

21 Houcine Bouzaiene de Gafsa 15,400 72,357 143,696 

22 Metlaoui 3,121 31,753 29,854 

23 Tozeur 7,598 25,308 45,724 

24 Sidi Bouzid 15,040 76,156 70,796 

25 Mohamed Ben Sassi de Gabès 26,509 101,642 123,141 

26 Kébili 11,608 33,938 48,268 

27 Habib Bourguiba de Médenine 14,005 60,539 67,476 

28 Sadok Mokadem de Jerba 18,010 33,846 58,814 

29 Zarzis 11,070 26,095 39,655 

30 Ben Guerdenne 6,344 30,529 44,110 

31 Tataouine 8,498 24,537 42,080 

32 Nefta 935 13,256 21,890 

 

3.2. De-neutrosophizing the input data 

Table 1 reveals that salary values are missing as related to the Menzel Bourguiba (DMU 4) and 

Tabarka (DMU 9) hospitals. Further, the latter exhibits another missing value related to the annual 

amount received from the CNAM public insurance fund. Additionally, the same table indicates that 

various hospitals—represented by DMUs 6, 13, 17, 18, 24, 27, 28, 29, and 32—recorded zero amounts 

for annual salaries. This data cannot be correct, as a government can delay remunerations in certain 

difficult circumstances, but cannot refuse to give salaries for an entire year. Hence, the OB 

information is incomplete, imprecise, and subsequently indeterminate, and contrary to the outputs 

noted in Table 2 as crisp values, the input OB for each of the previously mentioned DMUs will be 

treated as neutrosophic data. 

By choosing to represent the neutrosophic data as triangular neutrosophic numbers, the lower 

bounds, median values, and upper bounds should be set. As they are not available, we calculate them 

as follows: 

The lower bounds are the same as the obtained total values in Table 1: 

𝑂𝐵𝑙 = 𝑆𝑎𝑙𝑎𝑟𝑖𝑒𝑠 + 𝐶𝑁𝐴𝑀 + 𝑁𝑒𝑡 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 

The median value is: 

𝑂𝐵𝑚 = 𝑂𝐵𝑙 + (𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚) 

The upper bound is: 

𝑂𝐵𝑢 = 𝑂𝐵𝑙 + (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑚𝑒𝑑𝑖𝑎𝑛) 

 

Table 3 presents all obtained values of these bounds for the considered DMUs. Further, the same 

table presents the degrees of truth, indeterminacy, and falsity—or 𝑡𝑂𝐵̃, 𝑑𝑂𝐵̃, and 𝑓𝑂𝐵̃, respectively—

that decision-maker(s) should give subjectively. 

Table 3. Bounds; degrees of truth, indeterminacy, and falsity; and input data degrees of variation  

DMU 
 𝑶𝑩̃ =< (𝑶𝑩𝒍, 𝑶𝑩𝒎, 𝑶𝑩𝒖), 𝒕𝑶𝑩̃, 𝒅𝑶𝑩̃, 𝒇𝑶𝑩̃ > 

  

  

  

  

  

 Degrees of Variation 

𝑂𝐵𝑙  𝑂𝐵𝑚 𝑂𝐵𝑢  𝑡𝑂𝐵̃ 𝑑𝑂𝐵̃  𝑓𝑂𝐵̃  (0; 1; 1) (0,7; 0,3; 0,4) (0,4; 0,6; 0,7) 

4 8,803,874 9,003,874 9,503,874 0.9 0.1 0.3  0 0.798 0.440 

6 5,098,448 5,298,448 5,798,448 0.8 0.2 0.2  0 0.844 0.469 

9 1,400,000 3,910,210 7,491,113 0.7 0.3 0.4  0 1 0.554 
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13 5,794,893 5,994,893 6,494,893 0.8 0.2 0.2  0 0.844 0.469 

17 3,079,161 3,279,161 3,779,161 0.8 0.2 0.2  0 0.844 0.469 

18 2,821,007 3,021,007 3,521,007 0.8 0.2 0.2  0 0.844 0.469 

24 7,595,453 7,795,453 8,295,453 0.8 0.2 0.2  0 0.844 0.469 

27 4,639,029 4,839,029 5,339,029 0.8 0.2 0.2  0 0.844 0.469 

28 6,537,377 6,737,377 7,237,377 0.8 0.2 0.2  0 0.844 0.469 

29 3,886,795 4,086,795 4,586,795 0.8 0.2 0.2  0 0.844 0.469 

32 1,108,978 1,308,978 1,808,978 0.8 0.2 0.2  0 0.844 0.469 

 

The ranking approach can be now applied. However, the degrees of variation for the obtained 

neutrosophic numbers should be calculated for the parametric approach, and it is only sufficient to 

set a single value each for 𝛼 ∈ [0, 0.7] ,  𝛽 ∈ [0.3, 1] , and  𝛾 ∈ [0.4, 1] . We respect these ranges by 

choosing to consider three different values in the triplet (𝛼, 𝛽, 𝛾). This will yield superior in-depth 

analyses and interpretations of the obtained efficiencies.  

Table 3 displays the obtained degrees of variation, and easily reveals that all degrees of variation 

for  (𝛼, 𝛽, 𝛾) = (0; 1; 1)  equal zero. This parallels the definition of degrees of variation given by 

Abdelfattah [34], in which this degree is null when decision-maker chooses to set the degree of 

acceptance at its minimum (𝛼 = 0) and the degrees of indeterminacy and rejection at their maximum 

(𝛽 = 1  and  𝛾 = 1). The opposite case is also verified; in fact, DMU 9 has a recorded degree of 

variation that equals 1 when the decision-maker sets the acceptance degree at its maximum (𝛼 = 0.7) 

and the degrees of indeterminacy and rejection at their minimum (𝛽 = 0.3 and 𝛾 = 0.4). Only this 

DMU has a degree of variation that equals 1 because this is the only one with the same time 𝑡𝑂𝐵̃ =

0.7, 𝑑𝑂𝐵̃ = 0.3, and 𝑓𝑂𝐵̃ = 0.4.  

Once the degrees of variation are set, the parametric approach can be applied to convert 

triangular neutrosophic values related to the input OB into their corresponding interval ranges. The 

ranking approach does not need these degrees of variation, as it relies only on the availability of the 

bounds and degrees of truth, indeterminacy, and falsity. Table 4 illustrates the intervals and crisp 

values of inputs yielded through the parametric and ranking approaches, respectively.  

Table 4. De-neutrosophized input data 

DMU 
Parametric Approach Ranking 

Approach (0; 1; 1) (0,7; 0,3; 0,4) (0,4; 0,6; 0,7) 

4 [8,803,874; 9,503,874] [8,963,398; 9,105,064] [8,891,969; 9,283,636] 9,078,875 

6 [5,098,448; 5,798,448] [5,267,198; 5,376,573] [5,192,198; 5,564,073] 5,373,448 

9 [1,400,000; 7,491,113] 3,910,210 [2,789,581; 5,508,827] 4,177,883 

13 [5,794,893; 6,494,893] [5,963,643; 6,073,018] [5,888,643; 6,260,518] 6,069,893 

17 [3,079,161; 3,779,161] [3,247,911; 3,357,286] [3,172,911; 3,544,786] 3,354,161 

18 [2,821,007; 3,521,007] [2,989,757; 3,099,132] [2,914,757; 3,286,632] 3,096,007 

24 [7,595,453; 8,295,453] [7,764,203; 7,873,578] [7,689,203; 8,061,078] 7,870,453 

27 [4,639,029; 5,339,029] [4,807,779; 4,917,154] [4,732,779; 5,104,654] 4,914,029 

28 [6,537,377; 7,237,377] [6,706,127; 6,815,502] [6,631,127; 7,003,002] 6,812,377 

29 [3,886,795; 4,586,795] [4,055,545; 4,164,920] [3,980,545; 4,352,420] 4,161,795 

32 [1,108,978; 1,808,978] [1,277,728; 1,387,103] [1,202,728; 1,574,603] 1,383,978 

 

Table 4 demonstrates that the largest-interval input values are obtained when (𝛼, 𝛽, 𝛾) = (0, 1, 1), 

and the smallest intervals are obtained when (𝛼, 𝛽, 𝛾) = (0,7; 0,3; 0,4). Moreover, all input values 

obtained using the ranking approach are included in their corresponding intervals obtained by the 
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parametric approach, except for DMU 9, when  (𝛼, 𝛽, 𝛾) = (0,7; 0,3; 0,4) . This is a favorable sign, 

indicating that the efficiency intervals and scores yielded using the two approaches will likely be very 

close. 

3.3. Results 

Table 5 provides the results from applying Models (6), (9a), and (9b) to obtain efficiency scores 

for Tunisia’s 32 regional hospitals. 

Table 5. Efficiency scores of Tunisian regional hospitals using the two approaches 

DMU 

Parametric Approach   
Ranking 

Approach 

Scores Ranking 

Index 
Rank 

 
Scores Rank 

(0; 1; 1)  (0,7; 0,3; 0,4)  (0,4; 0,6; 0,7)    

1 0.950 0.950 0.950 0.952 5  0.950 5 

2 1.000 1.000 1.000 1.000 1  1.000 1 

3 0.880 0.880 0.880 0.884 6  0.880 6 

4 [0.395, 0.426] [0.412, 0.419] [0.404, 0.422] 0.336 31  0.414 30 

5 0.868 0.868 0.868 0.872 7  0.868 7 

6 [0.512, 0.582] [0.552, 0.563] [0.533, 0.572] 0.516 24  0.552 24 

7 0.658 0.658 0.658 0.643 16  0.658 16 

8 0.765 0.765 0.765 0.764 11  0.765 11 

9 [0.168, 0.901] 0.323 [0.229, 0.452] 0.348 30  0.302 31 

10 0.455 0.455 0.455 0.389 29  0.455 29 

11 0.594 0.594 0.594 0.567 21  0.594 21 

12 0.535 0.535 0.535 0.493 27  0.535 26 

13 [0.664, 0.744] [0.710, 0.723] [0.688, 0.732] 0.695 13  0.710 13 

14 0.972 0.972 0.972 0.974 4  0.972 4 

15 1.000 1.000 1.000 1.000 1  1.000 1 

16 0.538 0.538 0.538 0.497 26  0.538 25 

17 [0.611, 0.750] [0.688, 0.712] [0.652, 0.728] 0.669 15  0.689 14 

18 [0.184, 0.230] [0.209, 0.217] [0.197, 0.222] 0.040 32  0.209 32 

19 0.654 0.654 0.654 0.639 17  0.654 17 

20 0.726 0.726 0.726 0.720 12  0.726 12 

21 1.000 1.000 1.000 1.000 1  1.000 1 

22 0.561 0.561 0.561 0.525 23  0.561 23 

23 0.475 0.475 0.475 0.415 28  0.475 28 

24 [0.555, 0.606] [0.584, 0.593] [0.571, 0.598] 0.554 22  0.585 22 

25 0.687 0.687 0.687 0.677 14  0.687 15 

26 0.612 0.612 0.612 0.589 19  0.612 19 

27 [0.770, 0.887] [0.836, 0.855] [0.806, 0.869] 0.820 8  0.837 8 

28 [0.731, 0.809] [0.776, 0.789] [0.755, 0.798] 0.765 9  0.776 10 

29 [0.709, 0.836] [0.781, 0.802] [0.747, 0.817] 0.764 10  0.781 9 

30 0.601 0.601 0.601 0.575 20  0.601 20 

31 0.649 0.649 0.649 0.633 18  0.649 18 



Neutrosophic Sets and Systems, Vol. 41, 2021    100  

 

 

Walid Abdelfattah, Neutrosophic Data Envelopment Analysis: An Application to Regional Hospitals in Tunisia 

32 [0.404, 0.658] [0.526, 0.571] [0.464, 0.607] 0.503 25   0.528 27 

 

Table 5 reveals that the two applied approaches act only on DMUs with neutrosophic data, as 

all other DMUs have the same unchanged efficiency scores, with no loss of information for these 

latter DMUs. Further, these DMUs have exactly the same crisp efficiency score whether yielded using 

the ranking approach or using the parametric approach for the three considered values of (𝛼, 𝛽, 𝛾).  

Another inference from Table 5 is that the efficiency scores for all DMUs with neutrosophic input 

values obtained using the ranking approach include elements of their corresponding interval 

efficiency scores obtained using the parametric approach. Additionally, the largest efficiency 

intervals bound by the highest, best efficiencies and lowest, worst efficiencies are obtained when the 

acceptance degree 𝛼 is at its minimum and the degrees of indeterminacy and falsity 𝛽 and 𝛾 are at 

their maximum (0, 1, 1). In contrast, the smallest efficiency intervals bound by the lowest, best and 

highest, worst efficiencies are obtained when the acceptance degree 𝛼 is at its maximum and the 

degrees of indeterminacy and falsity 𝛽  and  𝛾  are at their minimum (0.7, 0.3, 0.4) . Another 

noteworthy observation is that the efficiency score yielded by the ranking approach is equal or  

nearly equal to the lower value of the interval efficiency scores yielded by the parametric approach 

when (𝛼, 𝛽, 𝛾) = (0,7; 0,3; 0,4).  

On the one hand, the hospitals’ best efficiency scores—equal to 1—were achieved by hospitals 

represented by DMUs 2, 15, and 21. Although these hospitals exhibited relatively small OBs (Table 

1), they successfully recorded important numbers, and especially in outpatient and emergency visits 

(Table 2). On the other hand, the worst efficiency scores were associated with the Kerkennah hospital, 

represented by DMU 18, with lowest and highest efficiency scores of 0.184 and 0.230 using the 

parametric approach, respectively. This hospital also had an efficiency score of 0.209 using the 

ranking approach, and ranked last according to both approaches. Although it has a relatively small 

OB (Table 4), in terms of this hospital’s outputs, it also has relatively few admissions, outpatient visits, 

and emergency visits (Table 2). Logically, the region is characterized as a small island, which may be 

among the causes of these results. This research considers Chen and Klein’s [39] ranking index in 

ranking DMUs using the parametric approach. 

Although the Mohamed Ben Sassi de Gabès hospital (DMU 25) has generated important records 

in terms of output, we found it ranked only in the middle, or specifically, 14th and 15th according to 

the parametric and ranking approaches, respectively, with the same efficiency score of 0.687. This can 

be explained by the hospital’s important OB values, and this can also be partially applied to the 

Menzel Bourguiba (DMU 4) and Kasserine hospitals (DMU 14). 

3.4. Efficiency improvement 

Measuring efficiency is a mean rather than a goal, as the ultimate objective involves finding a 

way to improve efficiency among inefficient DMUs. Among the DEA’s strengths is that it conveys 

how much an inefficient DMU should reduce the quantity of its inputs and/or increase the quantity 

of its outputs to be relatively more efficient than other DMUs. One way of achieving this involves 

using a dual model. This study determines the possible improvements that inefficient hospitals can 

make by using the dual of model (6) obtained by using the ranking approach. This is chosen because 

only one dual model should be solved rather than two when using the parametric approach; further, 

the two approaches have yielded nearly the same efficiency scores and DMU rankings. The explicit 

dual model is as follows: 

𝑀𝑎𝑥 𝜙 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
(10) 
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𝜙[1
4⁄ (𝑦𝑟𝑘1 + 2𝑦𝑟𝑘2 + 𝑦𝑟𝑘3) + (𝑡𝑦̃𝑟𝑘

− 𝑑𝑦̃𝑟𝑘
− 𝑓𝑦̃𝑟𝑘

)]

− ∑ 𝜆𝑗 [1
4⁄ (𝑦𝑟𝑗1 + 2𝑦𝑟𝑗2 + 𝑦𝑟𝑗3) + (𝑡𝑦̃𝑟𝑗

− 𝑑𝑦̃𝑟𝑗
− 𝑓𝑦̃𝑟𝑗

)]

𝑛

𝑗=1

≤ 0, 𝑟 = 1, 2, … , 𝑠; 

∑ 𝜆𝑗 [1
4⁄ (𝑥𝑖𝑗1 + 2𝑥𝑖𝑗2 + 𝑥𝑖𝑗3) + (𝑡𝑥̃𝑖𝑗

− 𝑑𝑥̃𝑖𝑗
− 𝑓𝑥𝑖𝑗

)]

𝑛

𝑗=1

− 1
4⁄ (𝑥𝑖𝑘1 + 2𝑥𝑖𝑘2 + 𝑥𝑖𝑘3)

− (𝑡𝑥𝑖𝑘
− 𝑑𝑥𝑖𝑘

− 𝑓𝑥𝑖𝑘
) ≤ 0, 𝑖 = 1, 2, … , 𝑚; 

𝜆𝑗 ≥ 0, 𝑗 = 1, 2, … , 𝑛; 

In this model,  𝜙  is scalar, such that  𝜙−1  represents the proportional increase that will be 

simultaneously applied to all outputs of the 𝑘𝑡ℎ DMU to make it efficient. Thus, the value of 𝜙−1 

obtained from resolving this model defines the efficiency score of the 𝑘𝑡ℎ DMU. If (𝜙 = 1), this DMU 

is considered efficient, and inefficient otherwise (𝜙 > 1); 𝜙−1 ∈ [0, 1]. 

The previous Section 3.3 measured the 32 regional hospitals’ efficiency scores. Only three 

hospitals—represented by DMUs 2, 15, and 21—were found to be efficient, such that while 

maintaining their current input and output values, these hospitals can be considered as references 

for the other inefficient hospital facilities. Table 6 lists the target values of outputs for the 29 inefficient 

hospitals; in other words, this table provides the possible output adjustments that these latter facilities 

can apply to achieve perfect efficiency.  

Table 6. Target values of outputs for inefficient DMUs to achieve perfect efficiency 

DMU DMU Name: Hospital 
DMU of  

Reference 
Benchmark  

Target Value 

Admissions 
Outpatient 

Visits 

Emergency 

Visits 

1 Mahmoud El Matri de l'Ariana 2; 21 (0.69; 0.28) 4,784 61,314 62,486 

3 Hôpital Ben Arous 2; 21 (0.98; 0.71) 11,551 109,563 133,183 

4 Menzel Bourguiba 2; 21 (0.40; 1.82) 28,343 155,748 274,843 

5 Nabeul 21 (0.81) 12,494 58,702 116,579 

6 Menzel Témime 21 (1.19) 18,297 85,968 170,726 

7 Zaghouan 2; 21 (0.33; 0.67) 10,543 68,208 106,955 

8 Jendouba 2; 21 (0.20; 1.29) 19,918 104,896 191,053 

9 Tabarka 21 (0.92) 14,226 66,840 132,740 

10 Béja 2; 21 (0.10; 1.58) 24,404 120,192 230,253 

11 Medjez El Bab 2; 15; 21 (0.16; 0.41; 0.20) 4,173 49,113 65,139 

12 M'hamed Bourguiba du Kef 2; 21 (0.31; 1.42) 22,084 121,062 214,013 

13 Siliana 2; 21 (0.27; 1.22) 18,947 104,138 183,740 

14 Kasserine 21 (1.80) 27,789 130,565 259,292 

16 Moknine 2; 15; 21 (0.43; 0.18; 0.49) 8,232 71,830 97,573 

17 Haj Ali Soua de Ksar Hellal 21 (0.74) 11,421 53,662 106,569 

18 Kerkennah 21 (0.68) 10,542 49,532 98,367 

19 Jebeniana 2; 15; 21 (0.34; 0.14; 0.31) 5,322 50,776 65,690 

20 Mahres 2; 21 (0.53; 0.22) 3,752 47,699 48,823 

22 Metlaoui 2; 21 (0.54; 0.34) 5,568 56,647 65,961 
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23 Tozeur 21 (1.04) 15,992 75,137 149,216 

24 Sidi Bouzid 2; 21 (0.17; 1.66) 25,730 130,284 244,398 

25 Mohamed Ben Sassi de Gabès 21 (2.51) 38,579 181,264 359,977 

26 Kébili 21 (1.23) 18,957 89,071 176,888 

27 Habib Bourguiba de Médenine 21 (1.09) 16,732 78,618 156,129 

28 Sadok Mokadem de Jerba 21 (1.51) 23,196 108,989 216,444 

29 Zarzis 21 (0.92) 14,171 66,583 132,229 

30 Ben Guerdenne 2; 21 (0.02; 0.68) 10,554 50,787 99,026 

31 Tataouine 21 (0.85) 13,091 61,507 122,149 

32 Nefta 15; 21 (0.19; 0.19) 3,370 25,130 41,497 

 

For example, let us consider the Jendouba hospital, represented by DMU 8. Its efficiency score 

obtained by using the ranking approach is 0.765 (Table 5). This hospital can become efficient by 

achieving the following: 19,918 admissions, rather than 15,238; 104,896 outpatient visits, rather than 

80,248; and 191,053 emergency visits, rather than 98,661 (for current and target values, refer to Tables 

2 and 6, respectively). At this point, it should be noted that it is not logical to force people to visit a 

given hospital to make it efficient. However, an inefficient hospital can be asked to do its best to 

accommodate more patients based on its actual capacity to do so, given its amount of resources 

(inputs).    

Table 6 also provides the reference hospitals that each inefficient hospital is compared with in 

calculating their efficiency scores, in addition to their respective possible benchmarks. Let us again 

consider the Jendouba hospital (DMU 8): its reference hospitals are the Khair-Eddine (DMU 2) and 

Houcine Bouzaiene de Gafsa hospitals (DMU 21), with a respective benchmark of (0.69; 0.28). Thus, 

we have: 

∑ 𝑦𝑟8
∗

3

𝑟=1

= 0.69 × ∑ 𝑦𝑟2

3

𝑟=1

+ 0.28 × ∑ 𝑦𝑟21

3

𝑟=1

 (11) 

where ∑ 𝑦𝑟8
∗3

𝑟=1  denotes the total target output of DMU 8, ∑ 𝑦𝑟2
3
𝑟=1  is the total current output of 

DMU 2, and ∑ 𝑦𝑟21
3
𝑟=1  is the total current output of DMU 21. 

4. Conclusions  

One requirement in using the DEA methodology to measure efficiency is that all input and 

output data from each DMU should be available in advance with their crisp values; otherwise, classic 

DEA models are inapplicable. Many approaches have been developed to handle these types of 

problems, such as stochastic methods, interval DEA models, and fuzzy theory. However, these 

approaches do not consider the information’s degree of sureness, and the neutrosophic theory 

demonstrates its power at this moment. In fact, in addition to addressing vague, imprecise, and 

incomplete data, this theory can also treat indeterminate data.  

In the DEA context, only two theoretical works by Edalatpanah [32] and Abdelfattah [34] have 

handled neutrosophic inputs and outputs. In this paper, however, a real application that consists in 

measuring and evaluating the efficiency of 32 regional hospitals in Tunisia in a neutrosophic 

environment. It was demonstrated that neutrosophic DEA can also handle real-world applications.  

Two approaches were used: First, the ranking approach as inspired by Abdel-Basset et al. [22] 

was suggested specifically to solve linear programming models with trapezoidal neutrosophic 

coefficients. Consequently, a DEA model can be transformed into a linear program; this paper used 

this approach as a primary alternative given that a trapezoidal neutrosophic number can be reduced 

to a triangular neutrosophic number. Second, Abdelfattah’s [34] parametric approach was used, 

although this paper used an output-oriented DEA model rather than one that is input-oriented. The 

two approaches are then compared. 
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 In terms of their use reveals that the ranking approach is certainly easier, as it does not need the 

calculation of variation degrees and relies only on the availability of bounds and truth, 

indeterminacy, and falsity degrees.  

 In term of results, the parametric approach is favored, as this approach better interprets the 

obtained results by providing efficiency scores in ranges bound by the best and worst efficiency 

scores that a DMU cannot exceed.  

 The two approaches act only on DMUs with neutrosophic data; both offer close efficiency scores 

for these DMUs, or specifically, efficiency scores obtained through the ranking approach are 

included in the corresponding efficiency intervals obtained through the parametric approach.  

 The two approaches give exactly the same efficiency scores for DMUs with crisp data. 

From a theoretical perspective, the two approaches applied in this paper measure DMUs’ 

efficiency regardless of the proportion of neutrosophic data. However, such data should be 

minimized to allow managers to more confidently make their decisions. Moreover, as degrees of 

truth, indeterminacy, and falsity are subjectively provided, they should be carefully selected.  

One noteworthy topic for further research could involve improving one of the existing 

neutrosophic approaches to solve other DEA models, such as the network DEA. Another adaptation 

could incorporate another statistical method to better estimate missing and doubtful data bounds’ 

values. Further, a post-analysis of the estimate data could be performed based on obtained efficiency 

scores and the applied DEA model’s adopted orientation.    

The DEA method has already demonstrated its power in practice. With the generalization of 

fuzziness to include neutrosophic logic, this methodology gains the additional capability to evaluate 

DMUs’ performance in terms of their efficiency in real-life applications.     
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Abstract: In this paper, we firstly defined a relation in the set of neutrosophic integers Z[I]  and 

proved that this relation is an equivalence relation. Thus we obtained a partition of Z[I] . Secondly 

we investigated the ordering relation in Z[I]  and we have seen that Z[I]  is not a totally ordered 

set. We also gave some relations of positive and negative neutrosophic integers and ordering in 

Z[I] . In the last part of the paper, we introduced the factorial of a positive neutrosophic integer. 

Keywords: Neutrosophic integers; ordering in neutrosophic integers; factorial of a neutrosophic 

integer. 

 

 

1. Introduction 

Neutrosophy concept is presented by Smarandache to deal with indeterminacy in nature and 

science [1]. Neutrosophy has a lot of  important applications in many fields and hundreds of studies 

have been done in these fields. One of these fields is neutrosophic number theory.  Neutrosophic 

number theory is a mathematical way to deal with the properties of neutrosophic integers. 

Neutrosophic number theory was introduced in [2]. In [2], some properties of neutrosophic integers 

were introduced as division theorem, the form of primes in Z[I] . 

In this study, it is obtained a partition of the set Z[I]  by an equivalence relation. Then it is 

investigated the ordering relation in Z[I]  and have seen that Z[I]  is not a totally ordered set, also 

given some relations of positive and negative neutrosophic integers and ordering in Z[I] . In the last 

part of the paper, we introduced the factorial of a positive neutrosophic integer. 

2. Preliminaries  

In the following, we give some elemantary definitions and results for emphasis. 

Definition 2.1 [3] Let (R; ,.)  be a ring and I be an indeterminate element which satisfies 2I I.  

The set R[I] {a bI : a,b R}    is called a neutrosophic ring generated by I and R under the binary 

operations of  R. 

For example; Z[I] {a bI : a,b Z}    is a neutrosophic ring generated by I and Z where Z is integers 

ring. Z[I]  is called neutrosophic integers ring. 

Definition 2.2 [4] Let R[I] {a bI : a,b R}    be the field of neutrosophic real numbers where R is 

the field of real numbers. For a bI,c dI R[I]   , 

mailto:e-mail@e-mail.com
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a bI c dI a c,a b c d        . 

Theorem 2.1 [4] The relation defined in Definition 2.2 is a partial order relation.  

According to Definition 2.2, we are able to define positive neutrosophic real numbers as follows: 

0 0 0a bI a ,a b .       

3. Ordering in Neutrosophic Integers  

Definition 3.1  Let a bI,c dI Z[I]   . If a b c d   , then the neutrosophic integers a bI  and 

c dI  are said to be equivalent and denoted by a bI c dI.   Then we write this with 

symbolically:  

a bI c dI a b c d      . 

Example 3.1 Since 1 1 2 2    , we have 1 2 2I I    and since 2 3 1 2   , we have 2 3I  is 

not equivalent to 1 2I . 

Theorem 3.1 The relation " "  is an equivalence relation. 

Proof. It can be proved easily. 

The relation " "  the separates the set Z[I]  into equivalence classes. The equivalence class of any 

a bI Z[I]   denoted by a bI  and 

 a bI x yI : x yI Z[I],x yI a bI       . 

If we match a bI Z[I]   to the point (a,b)  on the cartesian plane, then the equivalence class 

a bI  is the set of the points (x,y)  where x,y Z  on the line x y a b   . 

Example 3.2 

 

 

 

0 0 0 0

0

2 2 1 0 0 1 2 2

I x yI : x yI Z[I],x yI I

x yI : x,y Z,x y

..., I, I, I, I, I,... .

      

    

       

 

0 0 0I   is the set of the points (x,y)  where x,y Z  on the line 0x y  .  

 

 

 

1 0 0

1

2 3 1 2 0 1 0 2

1I x yI : x yI Z[I],x yI I

x yI : x, y Z,x y

..., I, I, I, I, I,... .

      

    

       

 

1 0 1I   is the set of the points (x,y)  where x,y Z  on the line 1x y  .  

If we define the set  D a bI : a bI Z[I]    , then    2 1 0 1 2D , , , , , , , ,... m : m Z .     For 

m,n Z  and m n , we see that m n   and 
m Z

m Z[I].


  Then it is also obvious that the set 

D is a partition of Z[I] . 

Definition 2.2 is valid for Z[I] . Let’s rewrite it for topic integrity: 

Definition 3.2 Let  a bI,c dI Z[I]   . If a c  and a b c d   , we say that the neutrosophic 

integer a bI  is less than or equal to c dI  and denoted by a bI c dI.    Shortly, we write: 

a bI c dI a c,a b c d        . 
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Note that the relation " "  is an partially ordering relation. Hence the set Z[I]  is a partially 

ordered set according to  the relation " "  but it is not an totally ordered set. Because, every 

element of Z[I]  can not be compared. For example; 1 2I  and 1 3I   are incomparable. That is, 

1 2I  1 3I   and 1 3I   1 2I .  

Example 3.3 The set of x yI Z[I]   which satisfy 1 I x yI    on the cartesian plane is drawn 

below:  

 

Figure 1. The set of x yI Z[I]   which satisfy 1 I x yI    on the cartesian plane. 

Corollary 2.1 Let a bI Z[I]  .  

0 0 0

0 0 0

i) a bI a and a b ,

ii) a bI a and a b .

     

     
 

Proof. The first relation was given in [4]. (i) and (ii) can be proven using the Definition 3.2. 

If we match a bI Z[I]   to the point (a,b)  on the cartesian plane, we can show the regions of 

positive and negative  neutrosophic integers: 

 

Figure 2. Positive and negative neutrosophic integers on cartesian plane. 
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We denote the set of positive neutrosophic integers by Z[I] .  We know that the set Z[I]  is 

not totally ordered set. We  can see that 1 1 2I    and 1 2 2I    but 1 I  and 2 I  are 

incomparable. 0 0I  is the smallest element of the set  0 0Z[I] I   . But the set Z[I]  has 

not smallest element. 

The subsemilattice of the set  0 0Z[I] I    is given the following figure: 

 

Figure 3. The subsemilattice of the set  0 0Z[I] I   . 

Theorem 3.2  Let x a bI,y c dI Z[I]     . Then x y  if and only if there exists an u Z[I]  

such that 0u   and x u y.   

Proof. Suppose that there exists an u Z[I]  such that 0u   and x u y.   Then, if 

1 2
u u u I  , we get 

1
0u   and 

1 2
0u u  . Also since x u y  , we have 

1 2
a bI u u I c dI.      So 

1
a u c   and 

2
b u d   or 

1
u c a   and 

2
u d b.   Since 

1
0u  , we get c a 0 or a c.    Also since 

1 2
0u u  , we have 0c a d b     or 

a b c d   . Hence since a c  and a b c d   , we see that x y . Conversely, let x y . 

Then a b c d   . Hence we have a c  and a b c d   in Z. Then if we say 
1

c a u   and 

2
d b u  , we see that  

1
0u   and 

1 2
0u u  . Then we have 

1 2
u u u I Z[I]    and u 0 .  

      

1 2x u a bI u u I

a bI c a (d b)I

c dI

y.

    

     

 

  

Example 3.4 We know that -3+ 2I 2 + I . Then -3 + 2I + 5 - I = 2 + I  and 5 0I  .  

Theorem 3.3 Let 
1 2 1 2 1 2 1 2

x x x I y I z z z I and u u u I Z,y y , [I]         . Then  

(i) x y x z y z     , 

(ii) x y and z u x z y u      , 

(iii) 0x y and z xz yz    , 
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(iv) x y and z 0 xz yz    , 

Proof.  (i) Since 1 1 2 2 1 1 2 2x z x z (x z )I and y z y z (y z )I          , we have  

1 2 1 2

1 1 1 2 1 2

1 1 1 1 1 2 1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

x y x x I y y I

x y and x x y y in Z

x z y z and x x z z y y z z for z ,z Z

x z (x z )I y z (y z )I

x z y z.

    

    

           

       

   

   

(ii) Since 1 1 2 2 1 1 2 2x z x z (x z )I and y z y u (y u )I          , we have 

1 2 1 2 1 2 1 2

1 1 1 2 1 2 1 1 1 2 1 2

1 1 1 1 1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

x y and z u x x I y y I and z z I u u I

x y ,x x y y ,z u and z z u u

x z y u ,x x z z y y u u

x z (x z )I y u (y u )I

x z y u.

        

        

          

       

   

 

(iii) Let 1 2z z z I 0.  
 
Then 1z 0 and 1 2z z 0.  Since 1 1 1 2 2 1 2 2xz x z (x z x z x z )I     and 

1 1 1 2 2 1 2 2yz y z (y z y z y z )I    , we have 

1 2 1 2

1 1 1 2 1 2

1 1 1 1 1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

x y x x I y y I

x y ,x x y y

x z y z and (x x )(z z ) (y y )(z z )

x z y z and x z x z x z x z y z y z y z y z

x z (x z x z x z )I y z (y z y z y z )I

xz yz.

    

    

      

        

       

 

  

iv) Let 1 2z z z I 0.  
 
Then 1 1 2z 0 and z z 0.    Since 1 1 1 2 2 1 2 2xz x z (x z x z x z )I     and 

1 1 1 2 2 1 2 2yz y z (y z y z y z )I    , we have,  

1 2 1 2

1 1 1 2 1 2

1 1 1 1 1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2

x y x x I y y I

x y ,x x y y

x z y z and (x x )(z z ) (y y )(z z )

x z y z and x z x z x z x z y z y z y z y z

x z (x z x z x z )I y z (y z y z y z )I

xz yz.

    

    

      

        

       

 

 

4. Factorial of a Positive Neutrosophic Number 

It is known that n! n.(n 1)...2.1   for a n Z and 0! 1.   This is the product of all integers 

less than or equal to n on the positive real axis of the coordinate system.  

Now we want to extend the factorial concept in Z   to Z[I] . For n Z , we have 

n n 0I Z[I].    The we can write (n 0I)! (n 0I).(n 1 0I)...(2 0I).(1 0I)       . The numbers 

n 0I,n 1 0I,...2 0I,1 0I      are some positive neutrosophic integers less than or equal to 

n 0I .  If we match these numbers  to the points (n,0),(n 1,0),...,(2,0),(1,0) , we see that 

they are on the half line y 0.x 0  .  

Now we take 5 5I Z[I].   Then the numbers 5 5I,4 4I,3 3I,2 2I,1 I      are some positive 

neutrosophic integers less than or equal to 5 5I .  If we match these numbers  to the points  
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(5,5),(4,4),(3,3),(2,2),(1,1) , we see that they are on the half line y x . We can write  

5

5

(5 5I)! (5 5I)(4 4I)(3 3I)(2 2I)(1 I)

5.4.3.2.1.(1 I)

5!(1 I)

      

 

 

  

Now we construct (12 16I)!  similarly. The points (12,16),(9,12),(6,8),(3,4)  are on the half line 

16 4
y x x

12 3
  . The corresponding neutrosophic integers 12 16I,9 12I,6 8I,3 4I     are less than 

or equal to 12 16I . So we can write  

4

4

(12 16I)! (12 16I)(9 12I)(6 8I)(3 4I)

4.3.2.1.(3 4I)

4!(3 4I)

     

 

 

 

Now we are ready to define the factorial of a positive neutrosophic integer: 

Definition 4.1 Let a bI Z[I]  . Then  

d
a b

(a bI)! d! I
d d

 
   

 
 

where d gcd{a,b}  (gcd:greatest common divisor).  

Example 4.1  

i) 

5
5 0

5! (5 0I)! 5! I 5! 0I
5 5

 
      

 
 since  gcd{5,0} 5 .  

ii) 

5
0 5

(0 5I)! 5! I 0 5!I
5 5

 
     

 
 since gcd{0,5} 5 . 

iii) 

3

39 3
(9 3I)! 3! I 3!(3 I)

3 3

 
     

 
  since  gcd 9, 3 3  . 

The following Theorem and its proof were given for the neutrosophic n square matrices in [5, 

Theorem 3.6].    

Theorem 4.1 Let a bI Z[I]  .  Then, 

   
n n n na bI a (a b) a I       

for n Z . 

Proof.  We use induction on n. For n=1, the above equality is true. Suppose that the claim is true for 

n-1. That is,    
n 1 n 1 n 1 n 1a bI a (a b) a I
        . Then we have 

 

   

 

n n 1

n 1 n 1 n 1

n n 1 n 1 n n 1 n 1

a bI (a bI) (a bI)

a (a b) a I a bI

a a b (a b) a a (a b) b a b I



  

   

   

    

       
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 
 

n n 1 n

n n n

a (a b) (a b) a I

a (a b) a I

    

   
 

Therefore Theorem is true. 

Corollary 4.1 Let a bI Z[I] .   Then 

d d d
a a b a

(a bI)! d! I
d d d d

        
           
         

  

where d gcd{a,b} . 

Proof. It is clear by Definition 4.1 and Theorem 4.1. 

5. Conclusions 

In this paper, it is obtained a partition of the set Z[I]  by an equivalence relation. Then, it is 

investigated the ordering relation in Z[I]  and have seen that Z[I]  is not a totally ordered set, also 

given some relations of positive and negative neutrosophic integers and ordering in Z[I] . In the last 

part of the paper, we introduced the factorial of a positive neutrosophic integer. In our future 

studies, we intend to continue to examine the properties of Z[I] .  
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Abstract: The green supply chain (GSC) plays a vital role for companies and organizations. Though 

there are several risks thread GSC Hence, these risks need to be ranked for companies. So, the goal 

of this study ranking these risks under a neutrosophic environment due to this problem contains 

uncertain information. So, this study proposed a multi-criteria decision making (MCDM) for dealing 

with conflicting criteria and used MCDM methods. This study introduces an integrated model with 

Stepwise Weight Assessment Ratio Analysis (SWARA) and visekriterijumsko kompromisno 

rangiranje (VIKOR). The SWARA method is used to calculate the weights of criteria and the VIKOR 

method is used to rank the risks of GSC based on six main criteria and twenty sub-criteria with ten 

risks (alternatives). Then the proposed model was evaluated by a numerical example. Finally, the 

sensitivity analysis is conducted.  

 

Keywords: Green Supply Chain (GSC), Neutrosophic, SWARA, VIKOR, Risks, SVNSs 

________________________________________________________________________________________ 

 

1. Introduction  

  

 Green Supply Chain (GSC) introduces several benefits and advantages to companies like 

increasing the financial power and enable companies to share their market strongly by improving the 

capacity of the environment and reduce the negative impact of environmental[1]. The gaining 

advantage competitive and keep it is a vital role for the company in performing the creativities green 

in GSC[2, 3]. The success of establishments in the supply chain becomes more difficult[4].  

 

 There are several risks when performing the initiatives green in GSC[5]. Reduce cost and 

increase customer satisfaction are the goals for improving performance in the supply chain[6]. The 

risks of GSC make many problems in operations and reduce GSC performance[7]. There are many 

problems that may result from risks of GSC like negative impact of environmental, issues of quality, 

failure in operations, reduce performance, and disarray of supply materials[8]. So, these risks are 

necessary to analysis and ranking for companies for adoption the initiatives green in GSC.     
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 The analysis and rank risks in GSC contain vague, inconsistent, and uncertain information[7]. 

To overcome this uncertainty and vague information some studies proposed fuzzy sets. They used 

linguistic terms for their assessment. But the fuzzy set cannot deal with indeterminacy [9]. So, this 

study proposed the neutrosophic set to overcome this uncertainty information. The neutrosophic set 

is generalized to fuzzy sets. It is contained with truth, indeterminacy, and false (T.I,F). The 

neutrosophic sets are proposed in several fields like manufacturing, healthcare and others [10-12]. In 

this paper proposed he single valued neutrosophic sets (SVNSs). The SVNSs is a subset of 

neutrosophic sets. It work with three value (T,I,F).      

 

 The GSC contains many conflict criteria. So, use multi-criteria decision-making (MCDM) to deal 

with this problem. This study proposed two MCDM methods. First, the SWARA method to calculate 

the weights of criteria. The SWARA has two advantages first, the criteria are compensatory. Second, 

the criteria are independent of each other. Then the VIKOR method is applied to rank the risks of 

GSC [13]. The VIKOR method is used to solve problems with conflicting criteria [14]. This paper used 

the VIKOR method for ranking the risks of GSC.  

 

 The rest of this paper is organized as follows: the literature review is presented in section 2. 

Section 3 introduces the methodology of this paper. Section 4 introduces the numerical example to 

validate the methodology. The sensitivity analysis is presented in section 5. Finally, section 6 

introduces the conclusion of this paper.     

 

2. Literature Review  

 

 There are several works to evaluate and analyze the risks of GSC[15, 16]. For instance Allen 

H.Hu et al.[17] used the analysis of effects and failures mode to rank and analysis the risks of the 

green component to with the European Union in compliance. They used the fuzzy AHP to calculate 

the weights of four criteria. Then the risks are ranked for each green component. Zhen-kun Yang and 

Jian Li [18] are ranked the risks of GSC and describe the operations of GSC. They used the fuzzy AHP 

to calcite the weights of the criteria and then rank the risks of GSC. The aim of their study to introduce 

the risk control of organization and reliability for selection of supply chain.  

 

Dan-li Du et al. [19] used the gray theory for assessing the risks manufacturing of GSC. The aim 

of their study that provides stability of running the GSC and evade risks appearing. Li Qianlei [20] 

used the systematic analysis to recognize the risks of products of agriculture GSC and introduce 

measures risks management for agriculture products GSC. Xiaojun Wang et al. [7] proposed two 

phase fuzzy AHP for evaluation risks of GSC.  
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 This problem contains uncertain information[21]. Wei Wang et al. [22] discuss the demand 

uncertainty in the GSC. Kuo-Jui Wu et al. [23] discuss uncertainty for exploring decisive factors in 

GSC practice. They used the fuzzy DEMATEL to overcome this uncertainty. To overcome this 

uncertainty information proposed single-valued neutrosophic sets. M.Abdel-Baset et al. [24] 

proposed single-valued neutrosophic sets to assess the GSC management practices. The risks of GSC 

contain different conflicting criteria so, the MCDM is proposed to deal with these criteria. [25] 

Morteza Yazdani proposed an integrated MCDM for GSC. Hsiu Mei Wong Chen et al. [26] proposed 

the fuzzy MCDM methods for GS selection.  

 

This study proposed the SWARA method for calculating the weights of criteria. Serap Akcan 

and Mehmet Ali Taş [27] proposed the SWARA method for green supplier assessment to decrease 

environmental risk factors. Selçuk Perçin [28] proposed a fuzzy SWARA method for outsourcing 

provider selection. After calculating the weights of criteria then needs to rank the risks of GSC. The 

VIKOR method is used to rank the risks of GSC. Reza Rostamzadeh et al. [29] proposed the fuzzy 

VIKOR method for assessment GSC management practices. Xiaolu Zhang and Xiaoming Xing [30] 

introduce the VIKOR method for assessing the GSC initiatives.   

 

From the literature review, no research takes into consideration the indeterminacy value. So, in 

this study introduce the SVNSs to overcome this uncertain information. Then the SWARA and 

VIKOR methods are not used in previous research with this problem. So, the SWARA is used to 

calcite the weights of criteria and the VIKOR method to rank the risks of GSC.  

 

3. Methodology  

 

 The methodology of this study is proposed for ranking the risks of GSC, which it contains from 

two main stages. The first stage collects criteria and risks dimension and proposed the SWARA 

method to calculate the weights of criteria. The second stage proposed the VIKOR method to rank 

the risks of GSC.  

 

3.1. SWARA Method 

  

This method is used to calculate the weights of criteria. It is a relatively simple use. Fig 1. Show 

the SWARA steps. The steps of SWARA is organized as follow [13]: 
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Fig 1. The steps of the SWARA method 

 

Step 1. Start with the opinions of three experts and decision-makers with the linguistic terms in 

Table 1.  

Step 2. Convert the value of single-valued neutrosophic numbers (SVNNs) into crisp value by 

using the following score function  

s(Pm
D) =  

2+ Tm
D  − Im

D − Fm
D

3
                                                                 (1) 

  Tm
D, Im

D , Fm
D  Presents truth, indeterminacy, and falsity of the SVNNs and D refers to decision-

makers  

Step 3. Aggregate the crisp value to obtain one value by using the following equation 

𝑃𝑚 =
∑ 𝑃𝑚

𝐷
𝐷=1

𝐷
                                                                         (2)  

Step 4. Calculate the coefficient (C) by using the following equation  

𝐶𝑚 = {
1, 𝑚 = 1

𝑃𝑚+1, 𝑚 > 1
 𝑚 = 1,2,3, … . 𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎                                    (3)  

Step 5. Calculate the initial weight by using the following equation 

𝐴𝑚 = {
1, 𝑚 = 1

𝐴𝑚−1

𝐶𝑚
, 𝑚 > 1  𝑚 = 1,2,3, … . 𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎                                    (4)  

Step 6. Compute the relative weight of criteria by using the following equation  

𝑊𝑚 =
𝐴𝑚

∑ 𝐴𝑚
𝑛
𝑚=1

                                                                         (5)  

 

3.2 VIKOR Method  

Start with 
opinions of 

three experts

Covert the 
value of SVNSs 
into crisp value

Aggregate the 
crisp value

Calculate the 
coefficient (C) 

Calculate the 
initial weight

Compute the 
relative weight 

of criteria 
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The VIKOR method is used to rank the risks of GSC Fig 2. Show the steps of the VIKOR method. 

The steps of the VIKOR method is organized as follow [31]:  

 

Fig 2. The steps of the VIKOR method 

 

Step 7. Start with building the decision matrix between the criteria and alternatives (risks) by 

opinions of experts with the linguistic term in Table 1 by using the following equation. Then 

convert the SVNNs to the crisp value by Eq. (1). Then combine the decision matrix into one matrix 

by using Eq. (2). 

PD = [

P11
D  ⋯ P1y

D  

⋮ ⋱ ⋮
Pm1

D  ⋯ Pmy
D  

]   𝑚 = 1,2,3, … 𝑛 ; 𝑦 = 1,2,3, … 𝑥                                              

(6)                                                                                             

 

Step 8. Calculate the best and worst solution for positive and negative criteria 

Best solution 𝑃𝑚
+ =  (𝑃𝑚𝑦)𝑚𝑎𝑥   for positive criteria 𝑃𝑚

+ =  (𝑃𝑚𝑦)𝑚𝑖𝑛 for negative criteria      (7) 

Worst solution 𝑃𝑚
− = (𝑃𝑚𝑦)𝑚𝑖𝑛  for positive criteria 𝑃𝑚

− = (𝑃𝑚𝑦)𝑚𝑎𝑥 for negative criteria     (8)                    

 

Step 9. Calculate the value of 𝑔𝑚 , ℎ𝑚 by using the following equation  

𝑔𝑚 =  ∑ (𝑊𝑦 ∗
𝑃𝑚

+ −𝑃𝑚𝑦

𝑃𝑚
+ −𝑃𝑚

− )𝑥
𝑦=1                                                                                         (9) 

ℎ𝑚 =  max
𝑦

(𝑊𝑦 ∗
𝑃𝑚

+ −𝑃𝑚𝑦

𝑃𝑚
+ −𝑃𝑚

− )                                                                                       (10) 

Step 10. Calculate the value of 𝑍𝑚 by using the following equation 

 𝑍𝑚 = 𝑓 ∗  
𝑔𝑚−𝑔∗

𝑔−−𝑔∗ + (1 − 𝑓) ∗
ℎ𝑚−ℎ∗

ℎ−−ℎ∗                                                      (11) 

Start with build 
the decision 

matrix

Calculate the 
best and worst 

solution

Calculate the 
value of 𝑔𝑚,ℎ𝑚

Calculate the 
value of 𝑧𝑚

Rank the risks 
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Where 𝑔∗ = min 𝑔𝑚 , 𝑔− = max 𝑔𝑚 , ℎ∗ = min ℎ𝑚 , ℎ− = max ℎ𝑚 and  𝑓 is recognized as a weight 

for the strategy of maximum group utility, whereas (1 − 𝑓) is the weight of the separate remorse. 

Usually, the value of f is set as 0.5. Though, 𝑓 can set any value from 0 to 1. 

Step 11. Rank the risks according to ascending value of 𝑍𝑚 

 

Fig 3. The criteria and risks (alternatives) of GSC 

 

4. Numerical Example and discussion  

 

 The criteria and risks of GSC are extracted from the literature review. Fig 3. shows the criteria 

and alternatives of this problem. Firstly, the weights of criteria are obtained from section 3.1 by the 

SWARA method. This problem introduces the three decision-makers and the value of SVNNs is 

presented in Table 1. The SVNNs contain from (T,I,F). After taking the opinions of experts the three 

value (T,I,F) is converted to one value by score function by Eq. (1). Then aggregate the three values 

of three decision-makers into one value by using Eq. (2). Then the coefficient value is obtained by 

using Eq. (3). Then the initial weight is obtained by using Eq. (4). Then the weights of main and sub-

criteria are obtained by using Eq. (5) in Table 2.  

 

 The weights of main criteria found that the operational risks are the highest value with 0.369 and 

demand risks is the lowest weight with value 0.04. The weights of sub-criteria found that the green 
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technology level is the height weight with value 0.1617 and failures of getting keeping design risks is 

the lowest weight value 0.00655. Fig 4. Show the weights of the main criteria. Fig 5. Show the weights 

of sub-criteria. 

 

 

Fig 4. The weights of main criteria. 

 

 

Fig 5. The weights of sub criteria.  

 

Table 1. SVNSs scale. 

Linguistic Term Single valued neutrosophic numbers (SVNNs) 
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Very Wicked <0.15,0.8,0.8> 

Wicked <0.25,0.7,0.7> 

Medium Wicked <0.35,0.6,0.6> 

Medium <0.45,0.5,0.45> 

Medium Moral <0.6,0.4,0.35> 

Moral <0.75,0.35,0.25> 

Very Moral <0.85,0.2,0.2> 

 

Table 2. The weights of main and sub criteria. 

Main Criteria Weights Sub Criteria Weights 

 

C1 0.369 

 

 

C11 0.161754 

C12 0.103247 

C13 0.061742 

C14 0.042257 

 

C2 

0.252 

C21 0.066624 

C22 0.025625 

C23 0.010752 

 

C3 

0.169 

 

C31 0.145019 

C32 0.070173 

C33 0.027164 

C34 0.009644 

 

C4 

0.103 

C41 0.10184 

C42 0.040736 

C43 0.019872 

C44 0.006551 

C5 

0.067 

C51 0.02644 

C52 0.01356 

 

C6 

0.04 

C61 0.039717 

C62 0.019219 

C63 0.008064 

                                                                        

 Applying the VIKOR method for ranking the risks of GSC. Start with building the decision 

matrix between criteria and risks with the SVNNs in Table 1 by opinions of three experts by Eq. (6). 

Then covert the SVNNs to the crisp value by using Eq. (1). Then combine the three decision matrix 

into one matrix by using Eq. (2) in Table 3. Then the best and worst solution is obtaining by using 

Eqs. (7,8) , the procurement criteria are the negative criteria and the rest of the criteria is positive 

criteria. The value of  𝑔𝑚 , ℎ𝑚 is obtained by Eqs. (9,10) in Table 4. Then the value of 𝑍𝑚 is obtained 

by using Eq. (11) in Table 4. Finally, the risks of GSC is ranking according to ascending order of 𝑍𝑚 

in Table 4.   

 

 As result of VIKOR, the R7 is the highest rank and the R3 is the lowest rank. Fig 6. Show the 

rank of risks by VIKOR method. 
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Fig 6. The rank of Risks GSC 

                       

Table 3. The decision matrix between criteria and alternatives. 

Criteria/Risks C11 C12 C13 C14 C21 C22 C23 C31 C32 C33 

R1 0.6055 0.4277 0.2833 0.6778 0.6778 0.6055 0.6778 0.6444 0.427 0.283 

R2 0.6444 0.7833 0.5 0.6778 0.7500 0.6055 0.6055 0.7500 0.427 0.5 

R3 0.3555 0.4277 0.5333 0.5722 0.6444 0.5 0.6055 0.5333 0.427 0.783 

R4 0.2833 0.7833 0.7833 0.4277 0.7500 0.6778 0.5333 0.4611 0.677 0.783 

R5 0.7833 0.6055 0.6055 0.5 0.4277 0.4277 0.7500 0.5722 0.750 0.711 

R6 0.711 0.677 0.2833 0.283 0.5333 0.427 0.355 0.283 0.572 0.750 

R7 0.816 0.750 0.6055 0.750 0.7500 0.750 0.355 0.638 0.427 0.783 

R8 0.677 0.427 0.7833 0.2833 0.7500 0.533 0.716 0.783 0.750 0.283 

R9 0.677 0.572 0.5 0.5722 0.3555 0.750 0.711 0.572 0.5 0.355 

R10 0.716 0.283 0.4277 0.7830 0.7167 0.816 0.283 0.427 0.355 0.750 

           

 C34 C41 C42 C43 C44 C51 C52 C61 C62 C63 

R1 0.644 0.605 0.461 0.750 0.355 0.783 0.750 0.427 0.605 0.750 

R2 0.783 0.427 0.355 0.677 0.533 0.644 0.355 0.283 0.605 0.572 

R3 0.533 0.750 0.605 0.716 0.5 0.5 0.711 0.605 0.5 0.638 

R4 0.605 0.283 0.783 0.5 0.750 0.283 0.750 0.572 0.750 0.638 

R5 0.572 0.605 0.644 0.283 0.783 0.427 0.427 0.750 0.783 0.572 

R6 0.355 0.283 0.283 0.283 0.533 0.716 0.283 0.750 0.427 0.533 

R7 0.283 0.716 0.750 0.355 0.783 0.750 0.427 0.572 0.644 0.783 

0
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12
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Series 1
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R8 0.355 0.750 0.355 0.427 0.750 0.5 0.427 0.711 0.355 0.2833 

R9 0.750 0.716 0.572 0.750 0.750 0.605 0.716 0.605 0.605 0.2833 

R10 0.427 0.461 0.605 0.750 0.572 0.783 0.644 0.5 0.750 0.7167 

 

Table 4. The value of 𝑔𝑚 , ℎ𝑚, 𝑧𝑚 and rank of risks 

Risks 𝑔𝑚 ℎ𝑚 𝑧𝑚 Rank 

R1 0.46789 0.07342 0.400352 5 

R2 0.38739 0.070318 0.287022 7 

R3 0.50237 0.139849 0.760587 3 

R4 0.47686 0.161754 0.834264 2 

R5 0.33777 0.061229 0.182796 9 

R6 0.61233 0.145019 0.919877 1 

R7 0.20363 0.057324 0.000001 10 

R8 0.30981 0.07342 0.206966 8 

R9 0.4121 0.066624 0.299557 6 

R10 0.47943 0.103247 0.557282 4 

 

5. Sensitivity Analysis 

 The weights of criteria affect the rank of risks. So, this paper introduces seven scenarios for 

changing the weights of criteria in Table 5. Then the weights of sub-criteria are changed in Table 6. 

Fig 7. shows the rank of risks under different scenarios.  

The next step combines the rank with different scenarios into one rank. First, the highest rank 

takes 10 points and the next take 9 points, and so on [31]. Then calculate the total points. Table 7. 

Show the aggregation rank under different scenarios. Fig 8. shows the Final rank under different 

scenarios. 

Fig 7. The rank of risks under seven scenarios 
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Fig 8. The Aggregation rank risks under different scenarios 

 

Table 5. Seven scenarios of weights changes 

Scenarios Operational Financial Supply Production Recovery Government Demand 

Scenario 1 1/6 1/6 1/6 1/6 1/6 1/6 

Scenario 2 0.5 0.1 0.1 0.1 0.1 0.1 

Scenario 3 0.1 0.5 0.1 0.1 0.1 0.1 

Scenario 4 0.1 0.1 0.5 0.1 0.1 0.1 

Scenario 5 0.1 0.1 0.1 0.5 0.1 0.1 

Scenario 6 0.1 0.1 0.1 0.1 0.5 0.1 

Scenario 7 0.1 0.1 0.1 0.1 0.1 0.5 

 

Table 6. Seven scenarios of sub criteria weights 

Criteria Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 

C11 0.219178 0.043836 0.043836 0.043836 0.043836 0.043836 0.219178 

C12 0.139901 0.02798 0.02798 0.02798 0.02798 0.02798 0.139901 

C13 0.083661 0.016732 0.016732 0.016732 0.016732 0.016732 0.083661 

C14 0.057259 0.011452 0.011452 0.011452 0.011452 0.011452 0.057259 

C21 0.064683 0.323416 0.064683 0.064683 0.064683 0.064683 0.064683 

C22 0.024878 0.124391 0.024878 0.024878 0.024878 0.024878 0.024878 

C23 0.010439 0.052193 0.010439 0.010439 0.010439 0.010439 0.010439 

C31 0.057547 0.057547 0.287737 0.057547 0.057547 0.057547 0.057547 

C32 0.027846 0.027846 0.139232 0.027846 0.027846 0.027846 0.027846 

C33 0.010779 0.010779 0.053897 0.010779 0.010779 0.010779 0.010779 
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C34 0.003827 0.003827 0.019135 0.003827 0.003827 0.003827 0.003827 

C41 0.060261 0.060261 0.060261 0.301303 0.060261 0.060261 0.060261 

C42 0.024104 0.024104 0.024104 0.120521 0.024104 0.024104 0.024104 

C43 0.011759 0.011759 0.011759 0.058794 0.011759 0.011759 0.011759 

C44 0.003876 0.003876 0.003876 0.019382 0.003876 0.003876 0.003876 

C51 0.066101 0.066101 0.066101 0.066101 0.330503 0.066101 0.066101 

C52 0.033899 0.033899 0.033899 0.033899 0.169497 0.033899 0.033899 

C61 0.05928 0.05928 0.05928 0.05928 0.05928 0.296398 0.05928 

C62 0.028685 0.028685 0.028685 0.028685 0.028685 0.143423 0.028685 

C63 0.012036 0.012036 0.012036 0.012036 0.012036 0.060178 0.012036 

 

Table 7. The aggregation rank under different scenarios 

Risks Total Points Rank 

R1 42 3 

R2 34 8 

R3 35 7 

R4 25 9 

R5 41 4 

R6 16 10 

R7 66 1 

R8 48 2 

R9 38 6 

R10 40 5 

6. Conclusions 

 GSC plays a vital part in enhancement the ecological performance of companies. But the GSC 

has many risks. So, these risks need to rank for companies and organizations. This work proposed a 

hybrid neutrosophic MCDM for ranking the risks of GSC using SWARA and VIKOR methods under 

a neutrosophic environment. The SVNSs are proposed to overcome the uncertainty of information. 

The SWARA is used to calculate the weights of criteria and the VIKOR method is used to rank the 

risks of GSC. The proposed methodology is tested by a numerical example with twenty criteria and 

ten risks (alternatives).  

The main contributions in this study proposed a neutrosophic environment to deal with 

indeterminacy value due to no previous study deal with the indeterminacy value. The SWARA and 

VIKOR method not used in previous research. In the future study, used other MCDM methods like 

PRPMETHEE II and ELECTRE.  
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Abstract: In the current paper, particular acheivments of single-valued neutrosophic continuity on a single-

valued neutrosophic topological space (𝔗̃, 𝜏̃𝛾̃, 𝜏̃𝜂̃ , 𝜏̃𝜇̃) are introduced. Some necessary implications between 

them are illustrated. The theories of r-single-valued neutrosophic compact, r-single-valued neutrosophic ideal 

compact, r-single-valued neutrosophic quasi H-closed and r-single-valued neutrosophic compact modulo an 

single-valued neutrosophic ideal ℐ̃ are presented and investigated. 

Keywords: single-valued neutrosophic (almost; weakly) continuous mapping; single-valued neutrosophic 

ideal (compact; quasi H-closed) and r-single-valued neutrosophic compact modulo. 

 

1. Introduction 

Using a fuzzy ideal ℐ̃ defined on a fuzzy topological space (FTS) (𝔗̃, 𝜏̃), a fuzzy ideal topological space 

(FITS) (𝔗̃, 𝜏̃, ℐ̃) is generated. It is a way of generalizing so many notions and results in (𝔗̃, 𝜏̃). The main definition 

of fuzzy topology that is related to the results in this article was established by 𝑆̆ostak in [1]. The notion of fuzzy 

ideal was created in [2]. Tripathy et al. in [3 - 6] introduced different valuble research studies on (FITS) and gave 

several forms of fuzzy continuities. Saber and others [7 - 11] have considered several r-fuzzy compactnesses in 

(FITS) (𝔗̃, 𝜏̃, ℐ̃) and several types of fuzzy continuity. 

     Smarandache established the idea of the neutrosophic sets [12] in 1998. In terms of neutrosophic sets, there 

are a membership score (𝛾̃), an indeterminacy score (𝜂) and a non-membership score (𝜇) and a neutrosophic 

value is in the form (𝛾̃, 𝜂,𝜇). In other meaning, in explaining an event or finding of a solution to a problem, a 

condition is handled according to its truth, not truth and resolution. Hence, the study of neutrosophic sets and 

neutrosophic logic are useful for decision-making applications in neutrosophic theories and led to too many 

researches and studies in the field as in [12-25]. It also gives the opportunity to others to establish some 

approaches in decision-making for neutrosophic theory as in [26-31]. Wang et al, [32] and Kim et al, [33] 

presented the theory of the neutrosophoic equivalence relation single-valued. Single-valued neutrosophic 

mailto:f.alsharari@mu.edu.sa


Neutrosophic Sets and Systems, Vol. 41, 2021     128  

 

 

F. Alsharari et. al.; Compactness on Single-Valued Neutrosophic Ideal Topological Spaces  

 

ideal (𝒮𝒱𝒩ℐ) aspects in single-valued neutrosophic topological spaces (𝒮𝒱𝒩𝒯𝒮), have been introduced and 

considered by several authors from diverse viewpoints such as in [34-37].  

In this research, we foreground the idea of r-single-valued neutrosophic (compact, ideal compact and quasi 

H-closed) in (𝒮𝒱𝒩𝒯𝒮) in the sense of S̆ostak. We are working on getting some of its important characteristics 

and results. Moreover, we investigate some properties of single-valued neutrosophic continuous 

mappings. Finally, some fascinating application of neutrosophic topology in reverse logistics arises 

could be found as in Abdel-Baset paper articles and others [38-41]. 

2. Preliminaries 

Definition 2.1 [22] Suppose that 𝔗̃ is a non-empty set. We mean by a neutrosophic set (briefly, 𝒩𝒮) 𝐴 the objects 

having the form 

𝒮 = {〈𝜔, 𝛾̃𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ 𝔗̃}. 

 

Anywhere 𝜇𝒮 , 𝜂𝒮  𝑎𝑛𝑑 𝛾̃𝒮  indicate the degree of non-membership, the degree of indeterminacy, and the degree 

of membership, respectively of any element 𝜔 ∈ 𝔗̃ to the set 𝒮. 

 

Definition 2.2 [32] Suppose that 𝔗̃ is a universal set. For ∀𝜔 ∈ 𝔗̃, 0 ≤ 𝛾̃𝒮(𝜔) + 𝜂𝒮(𝜔) + 𝜇𝒮(𝜔) ≤ 3 , by the 

meanings 𝛾̃𝒮: 𝒮 → [0.1], 𝜂𝒮 : 𝒮 → [0.1] and 𝜇𝒮: 𝒮 → [0.1], a single-valued neutrosophic set (briefly, 𝒮𝒱𝒩𝒮) on 

𝔗̃ is defined by 

𝒮 = {〈𝜔, 𝛾̃𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ 𝔗̃}. 

 

Now, 𝜇𝒮  , 𝜂𝒮  and 𝛾̃𝒮  are the degrees of falsity, indeterminacy and trueness of 𝜔 ∈ 𝔗̃, respectively. We will 

convey the set of all 𝒮𝒱𝒩𝒮s  in 𝒮 as 𝐼𝔗̃.  

 

Definition 2.3 [32] The accompaniment of a 𝒮𝒱𝒩𝒮 𝒮 is indicated by 𝒮𝑐 and is cleared by  

 

 𝛾̃𝒮𝑐(𝜔) = 𝜇𝒮(𝜔),    𝜂𝒮𝑐(𝜔) = 1 − 𝜂𝒮(𝜔) 𝑎𝑛𝑑  𝜇𝒮𝑐(𝜔) = 𝛾̃𝒮(𝜔). 

for any 𝜔 ∈ 𝔗̃, 

 

Definition 2.4 [41] Let 𝒮, ℰ ∈ 𝐼𝔗̃. Then,   

1. 𝒮 ⊆ ℰ, if, for every 𝜔 ∈ 𝔗̃, 

𝛾̃𝒮(𝜔) ≤ 𝛾̃ℰ(𝜔), 𝜂𝒮(𝜔) ≥ 𝜂ℰ(𝜔), 𝜇𝒮(𝜔) ≥ 𝜇ℰ(𝜔)   

2. 𝒮 = ℰ if 𝒮 ⊆ ℰ and 𝒮 ⊇ ℰ.  

3. 0̃ = 〈0,1,1〉 and 1̃ = 〈1,0,0〉 

 

Definition 2.5 [42] Let 𝒮, ℰ ∈ 𝐼𝔗̃. Then,   

1. 𝒮 ∩ ℰ is a 𝒮𝒱𝒩𝒮 in 𝔗̃ defined as:  

𝒮 ∩ ℰ = (𝛾̃𝒮 ∩ 𝛾̃ℰ ,  𝜂𝒮 ∪ 𝜂ℰ , 𝜇𝒮 ∪ 𝜇ℰ). 

 Where, (𝜇𝒮 ∪ 𝜇ℰ)(𝜔) = 𝜇𝒮(𝜔) ∪ 𝜇ℰ(𝜔) and (𝛾̃𝒮 ∩ 𝛾̃ℰ)(𝜔) = 𝛾̃𝒮(𝜔) ∩ 𝛾̃ℰ(𝜔), for all 𝜔 ∈ 𝔗̃, 

 

1. 𝒮 ∪ ℰ is an 𝒮𝒱𝒩𝒮 on 𝔗̃ defined as:  
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𝒮 ∪ ℰ = (𝛾̃𝒮 ∪ 𝛾̃ℰ , 𝜂𝒮 ∩ 𝜂ℰ , 𝜇𝒮 ∩ 𝜇ℰ). 

 

Definition 2.6 [21]  Suppose that 𝔗̃ is a nonempty set and 𝒮 ∈ 𝐼𝔗̃ is having the form 𝒮 = {〈𝜔, 𝛾̃𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ 𝔗̃} 

on 𝔗̃. Then,   

1. (⋂𝐽∈△ 𝒮𝑗)(𝜔) = (⋂𝑗∈△ 𝛾̃𝒮𝑗(𝜔),    ⋃𝑗∈△ 𝜂𝒮𝑗(𝜔),    ⋃𝑗∈△ 𝜇𝒮𝑗(𝜔)), 

2. (⋃𝑗∈△ 𝒮𝑗)(𝜔) = (⋃𝑗∈△ 𝛾̃𝒮𝑗(𝜔), ⋂𝑗∈△ 𝜂𝒮𝑗(𝜔), ⋂𝑗∈△ 𝜇𝒮𝑗(𝜔)). 

 

Definition 2.7 [34] Let 𝑠, 𝑡, 𝑘 ∈ 𝐼0 and 𝑠 + 𝑡 + 𝑘 ≤ 3. A single-valued neutrosophic point (𝒮𝒱𝒩𝒫) 𝑥𝑠,𝑡,𝑘 of 𝔗̃ is 

the 𝒮𝒱𝒩𝒮 in 𝐼𝔗̃ for every 𝜔 ∈ 𝒮, defined by  

𝑥𝑠,𝑡,𝑘(𝜔) = {
(𝑠, 𝑡, 𝑘),    𝑖𝑓  𝑥 = 𝜔,
(0,1,1),    𝑖𝑓  𝑥 = 𝜔.

 

  A 𝒮𝒱𝒩𝒫 𝑥𝑠,𝑡,𝑘 is supposed to belong to a 𝒮𝒱𝒩𝒮 𝒮 = {〈𝜔, 𝛾̃𝒮 , 𝜂𝒮 , 𝜇𝒮〉: 𝜔 ∈ 𝔗̃} ∈ 𝐼
𝔗̃, (notion: 𝑥𝑠.𝑡.𝑝 ∈ 𝒮 iff 𝑠 <

𝛾̃𝒮 , 𝑡 ≥ 𝜂𝒮  and 𝑘 ≥ 𝜇𝒮 ), and the set off all 𝒮𝒱𝒩𝒫  in 𝔗̃ indicated by 𝒮𝒱𝒩𝒫(𝔗̃).  𝑥𝑠,𝑡,𝑘 ∈ 𝒮𝒱𝒩𝒫(𝔗̃) quasi-

coincident with a 𝒮𝒱𝒩S 𝒮 ∈ 𝐼𝔗̃ denoted by 𝑥𝑠,𝑡,𝑘𝑞𝒮, if 

𝑠 + 𝛾̃𝒮 > 1, 𝑡 + 𝜂𝒮 ≤ 1 , 𝑘 + 𝜇𝒮 ≤ 1. 

 For every 𝒮, ℰ ∈ 𝐼𝔗̃ 𝒮 is quasi-coincident with ℰ indicated by 𝒮qℰ, if there exists 𝑥𝑠,𝑡,𝑘 ∈ 𝐼
𝔗̃ s.t  

𝛾̃ℰ + 𝛾̃𝒮 > 1, 𝜂 ℰ + 𝜂𝒮 ≤ 1 and 𝜇 ℰ + 𝜇𝒮 ≤ 1. 

 

Definition 2.8 [25] Let 𝜏̃𝛾̃, 𝜏̃𝜂̃ , 𝜏̃𝜇̃: 𝐼𝔗̃ → 𝐼 be mappings satisfying the following conditions:   

1. 𝜏̃𝛾̃(0) = 𝜏̃𝛾̃(1) = 1 and 𝜏̃𝜂̃(0) = 𝜏̃𝜂̃(1) = 𝜏̃𝜇̃(0) = 𝜏̃𝜇̃(1) = 0,  

2. 𝜏𝛾̃(𝒮 ∩ ℰ) ≥ 𝜏̃𝛾̃(𝒮) ∩ 𝜏̃𝛾̃(ℰ),  𝜏̃𝜂̃(𝒮 ∩ ℰ) ≤ 𝜏𝜂̃(𝒮) ∪ 𝜏̃𝜂̃(ℰ) and  𝜏̃𝜇̃(𝒮 ∩ ℰ) ≤ 𝜏̃𝜇̃(𝒮) ∪ 𝜏̃𝜇̃(ℰ), for every 

𝒮, ℰ ∈ 𝐼𝔗̃,  

3. 𝜏̃𝛾̃(∪𝑗∈Γ 𝒮𝑗) ≥∩𝑗∈Γ 𝜏̃
𝛾̃(𝒮𝑗),  𝜏̃𝜂̃(∪𝑖∈Γ 𝒮𝑗) ≤∪𝑗∈Γ 𝜏

𝜂̃(𝒮𝑗) and 𝜏̃𝜇̃(∪𝑗∈Γ 𝒮𝑗) ≤∪𝑗∈Γ 𝜏̃
𝜇̃(𝒮𝑗), for every {𝒮𝑗 , 𝑗 ∈

Γ} ∈ 𝐼𝔗̃.  

Then (𝜏̃𝛾̃, 𝜏̃𝜂̃ , 𝜏̃𝜇̃)  is called single valued neutrosophic topology 𝒮𝒱𝒩𝒯 . Usually, we will write 𝜏̃𝛾̃𝜂̃𝜇̃  for 

(𝜏̃𝛾̃, 𝜏̃𝜂̃ , 𝜏̃𝜇̃) and it will cause no indistinctness. 

 

Definition 2.9 [34] Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩𝒯𝒮. Then, for all 𝒮 ∈ 𝐼𝔗̃ and 𝑟 ∈ 𝐼0, the single valued neutrosophic 

)closure and interior( of 𝒮 are define by:  

𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮. 𝑟) =⋂{ℰ ∈ 𝐼𝔗̃:  𝒮 ≤ ℰ , 𝜏̃𝛾̃(ℰ𝑐) ≥ 𝑟, 𝜏̃𝜂̃(ℰ𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(ℰ𝑐) ≤ 1 − 𝑟} 

𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮. 𝑟) =⋃{ℰ ∈ 𝐼𝔗̃:  𝒮 ≥ ℰ , 𝜏̃𝛾̃(ℰ) ≥ 𝑟, 𝜏̃𝜂̃(ℰ) ≤ 1 − 𝑟, 𝜏̃𝜇̃(ℰ) ≤ 1 − 𝑟}. 

 

Definition 2.10 [34] A mapping ℐ̃𝛾̃, ℐ̃𝜂̃ , ℐ̃𝜇̃: 𝐼𝔗̃ → 𝐼 is said to be 𝒮𝒱𝒩ℐ on 𝔗̃ if it satisfies the next three conditions 

for 𝒮, ℰ ∈ 𝐼𝔗̃: 

1. ℐ̃𝜂̃(0̃) = ℐ̃𝜇̃(0̃) = 0, ℐ̃𝛾̃(0̃) = 1, 

2. If 𝒮 ≤ ℰ then ℐ̃𝜂̃(ℰ) ≥ ℐ̃𝜂̃(𝒮), ℐ̃𝜇̃(ℰ) ≥ ℐ̃𝜇̃(𝒮) and ℐ̃𝛾̃(ℰ) ≤ ℐ̃𝛾̃(𝒮). 

3. ℐ̃𝜂̃(𝒮 ∪ ℰ) ≤ ℐ̃𝜂̃(ℰ) ∪ ℐ̃𝜂̃(ℰ), ℐ̃𝜇̃(𝒮 ∪ ℰ) ≤ ℐ̃𝜇̃(𝒮) ∪ ℐ̃𝜇̃(ℰ) and ℐ̃𝛾̃(𝒮 ∪ ℰ) ≥ ℐ̃𝛾̃(𝒮) ∩ ℐ̃𝛾̃(ℰ).  

Then, (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is said to be a single-valued neutrosophic ideal topological space (𝒮𝒱𝒩ℐ𝒯𝒮). 
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Definition 2.12 [36] A mapping 𝑓: (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) → (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

) from an 𝒮𝒱𝒩𝒯𝒮 (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) into another 𝒮𝒱𝒩𝒯𝒮  

(𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

)  is said to be single-valued neutrosophic continuous (briefly, 𝒮𝒱𝒩 -continuous) if and only if    

𝜏̃2
𝛾̃
(𝒮) ≤ 𝜏̃1

𝛾̃
(𝑓−1(𝒮)), 𝜏̃2

𝜂̃
(𝒮) ≥ 𝜏̃1

𝜂̃
(𝑓−1(𝒮)) and 𝜏̃2

𝜇̃
(𝒮) ≥ 𝜏̃1

𝜇̃
(𝑓−1(𝒮)), for every 𝒮 ∈ 𝐼𝔗̃2. 

3. Single-Valued Neutrosophic (almost , weakly) Continuous Mappings  

This section is dedicated to present the concepts of the single-valued neutrosophic (almost and weakly) 

mappings (briefly 𝒮𝒱𝒩 −  almost continuous, 𝒮𝒱𝒩 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) mappings, respectively. It is also 

devoted to mark out the concepts of single-valued neutrosophic ( preopen , regular-open ) sets (briefly, 𝑟 −

𝑆𝑉𝑁𝑃𝑂, 𝑟 − 𝑆𝑉𝑁𝑅𝑂) sets, respectively.  

 

Definition 3.1. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩𝒯𝒮 and 𝑟 ∈ 𝐼0. Then, 𝒮 ∈ 𝐼𝔗̃ is said to be: 

1. 𝑟 − 𝑆𝑉𝑁𝑃𝑂 𝑠𝑒𝑡 iff 𝒮 ≤ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, 𝑟), 𝑟),  

2. 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set if 𝒮 = 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, 𝑟), 𝑟).  

The complement of 𝑟 − 𝑆𝑉𝑁𝑃𝑂 (resp, 𝑟 − 𝑆𝑉𝑁𝑅𝑂) are said to be 𝑟 − 𝑆𝑉𝑁𝑃𝐶 (resp, 𝑟 − 𝑆𝑉𝑁𝑅𝐶), respectively. 

 

Remark 3.2. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩𝒯𝒮 and 𝑟 ∈ 𝐼0, if 𝒮 is an 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set, then 𝒮 is 𝑟 − 𝑆𝑉𝑁𝑃𝑂.  

 

Example 3.3. Let 𝔗̃ = {𝑎, 𝑏}. Define ℰ1, ℰ2 ∈ 𝐼
𝔗̃ as follows:  

ℰ1 = 〈(0 ∙ 5, 0.4,0 ∙ 5), (0 ∙ 5,0.4, 0 ∙ 5), (0 ∙ 5,0.5, 0 ∙ 5)〉, ℰ2 = 〈(0 ∙ 4, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5. 0 ∙ 5, .4)〉. 

Define 𝜏̃𝛾̃𝜂̃𝜇̃ ∶  𝐼𝔗̃ → 𝐼 as follows:  

𝜏̃𝛾̃(𝒮) =

{
 
 

 
 
1,   𝑖𝑓 𝒮 = 0̃,                 

1,   𝑖𝑓 𝒮 = 1̃,                 
1

2
,   𝑖𝑓 𝒮 = ℰ1,              

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

  𝜏̃𝜂̃(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,                           

0,   𝑖𝑓 𝒮 = 1̃,                          
1

2
,   𝑖𝑓 𝒮 = {ℰ1, ℰ2},              

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

 

𝜏̃𝜂̃(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,                           

0,   𝑖𝑓 𝒮 = 1̃,                          
1

2
,   𝑖𝑓 𝒮 = {ℰ1, ℰ2},              

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     

        

Let, ℰ3 = {〈𝜔, (0 ∙ 5,0.5, 0 ∙ 1), (0 ∙ 6,0.3, 0 ∙ 1), (0 ∙ 6,0.3, 0 ∙ 1)〉: 𝜔 ∈ 𝔗̃} . Then, ℰ3  is 
1

2
− 𝑆𝑉𝑁𝑃𝑂  set but it is not 

1

2
− 𝑆𝑉𝑁𝑅𝑂 set because, ℰ3 ≠ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃ (𝐶𝜏̃𝛾̃𝜂̃𝜇̃ (ℰ3,

1

2
) ,

1

2
) = 1̃.   

 

Lemma 3.4. Let 𝒮 be an 𝒮𝒱𝒩𝒮 in an 𝒮𝒱𝒩𝒯𝒮  (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃). Then, for each 𝑟 ∈ 𝐼0.   

1. If 𝒮 is 𝑟 −  𝑆𝑉𝑁𝑅𝑂 set (resp, 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡), then [𝜏̃𝛾̃(𝒮) ≥ 𝑟, 𝜏̃𝜂̃(𝒮) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮) ≤ 1 − 𝑟] (resp, 

[𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟]),  

2. 𝒮 is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set if and only if 𝒮𝑐 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set.   

 

 Proof. Follows directly from Definition 3.1.    

     

 Lemma 3.5. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩𝒯𝒮. Then,   

1. the union of two 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets is 𝑟 − 𝑆𝑉𝑁𝑅𝐶, 

2. the intersection of two 𝑟 − 𝑆𝑉𝑁𝑅𝑂 sets, is 𝑟 − 𝑆𝑉𝑁𝑅𝑂.  



Neutrosophic Sets and Systems, Vol. 41, 2021     131  

 

 

F. Alsharari et. al.; Compactness on Single-Valued Neutrosophic Ideal Topological Spaces  

 

 

Proof. (1) Let 𝒮, ℰ be any two 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets. By Lemma 3.4, [𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟] and 

[𝜏̃𝛾̃(ℰ𝑐) ≥ 𝑟,𝜏̃𝜂̃(ℰ𝑐) ≤ 1 − 𝑟,   𝜏̃𝜇̃(ℰ𝑐) ≤ 1 − 𝑟]. Then,  

𝜏̃∗𝛾̃(𝒮 ∪ ℰ ) ≥ 𝜏̃∗𝛾̃(𝒮) ∩ 𝜏̃∗𝛾̃(ℰ ), 𝜏̃∗𝜂̃(𝒮 ∪ ℰ ) ≤ 𝜏̃∗𝜂̃(𝒮) ∪ 𝜏̃∗𝜂̃(ℰ ),  𝜏̃∗𝜇̃(𝒮 ∪ ℰ ) ≤ 𝜏̃∗𝜇̃(𝒮) ∪ 𝜏̃∗𝜇̃(ℰ ), 

 but 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 ∪ ℰ , r) ≤ 𝒮 ∪ ℰ, this suggests that 

𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 ∪ ℰ , r), r) ≤ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 ∪ ℰ, 𝑟) = 𝒮 ∪ ℰ. 

Now,  

𝒮 = 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r), r) ≤ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 ∪ ℰ , r), r), 

and  

ℰ = 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(ℰ, r), r) ≤ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 ∪ ℰ , r), r). 

Thus, 𝒮 ∪ ℰ ≤ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 ∪ ℰ , r), r). So, 𝒮 ∪ ℰ = 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 ∪ ℰ , r), r). Hence, 𝒮 ∪ ℰ 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set.  

  (2) It can be ascertained by the same method. 

 

Theorem 3.6. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩𝒯𝒮, Then, 

1. If 𝒮 ∈ 𝐼𝔗̃ s.t, 𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟, then, 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 , r) is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set, 

2. If 𝒮 ∈ 𝐼𝔗̃ s.t, 𝜏̃𝛾̃(𝒮) ≥ 𝑟, 𝜏̃𝜂̃(𝒮) ≤ 1 − 𝑟 and 𝜏̃𝜇̃(𝒮) ≤ 1 − 𝑟 , then, 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮 , r) is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set. 

 

Proof. (1) Suppose that 𝒮 ∈ 𝐼𝔗̃ such that, 𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟. Clearly,  

𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r) ≤ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r), r), 

this denotes that, 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r) ≤ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r), r), 𝑟). Now, since, 

𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟, 

 then 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r), r) ≤ 𝒮; therefore,  

𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r) ≥ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r), r), 𝑟). 

Then, 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r) = 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r), r), 𝑟). Hence, 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮, r) is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set. 

  (2) Similar to the proof of (1). 

 

Definition 3.7. A mapping 𝑓: (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) → (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

)  from an 𝒮𝒱𝒩𝒯𝒮 (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

)  into another 𝒮𝒱𝒩𝒯𝒮      

(𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

) is called: 

1. 𝑆𝑉𝑁 −  𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 iff 𝜏̃1
𝛾̃
(𝑓−1(𝒮)) ≥ r, 𝜏̃1

𝜂̃
(𝑓−1(𝒮)) ≤ 1 − 𝑟, 𝜏̃1

𝜇̃
(𝑓−1(𝒮)) ≤ 1 − r, for each 𝑟 −

𝑆𝑉𝑁𝑅𝑂 set 𝒮 of 𝔗̃2, 

2. 𝑆𝑉𝑁 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  iff 𝜏̃2
𝛾̃(𝒮) ≥ r , 𝜏̃2

𝜂̃(𝒮) ≤ 1 − 𝑟  and 𝜏̃2
𝜇̃(𝒮) ≤ 1 − r , implies 𝜏̃1

𝛾̃
(𝑓−1(𝒮)) ≥ r , 

𝜏̃1
𝜂̃
(𝑓−1(𝒮)) ≤ 1 − 𝑟, 𝜏̃1

𝜇̃
(𝑓−1(𝒮)) ≤ 1 − r, , for each 𝒮 ∈ 𝐼𝔗̃2. 

 

Remark 3.8. From Definition 3.7, it is clear that the next implications are correct for 𝑟 ∈ 𝐼0:  

 

𝑆𝑉𝑁 −  𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

⇑ 

𝑆𝑉𝑁 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

⇓ 

𝑆𝑉𝑁 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

However, the one-sided suggestions are not correct in general, as presented by the next example. 
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Example 3.9. Suppose that 𝔗̃ = {𝑎, 𝑏, 𝑐}. Define ℰ1, ℰ2 ∈ 𝐼
𝔗̃ as follows:  

ℰ1 = 〈(0 ∙ 5, 0.4,0 ∙ 5), (0 ∙ 5,0.4, 0 ∙ 5), (0 ∙ 5,0.5, 0 ∙ 5)〉, ℰ2 = 〈(0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 5, .4)〉, 

ℰ3 = 〈(0 ∙ 3, 0.6,0 ∙ 5), (0 ∙ 3, 0.6,0 ∙ 5), 0 ∙ 3, 0.6,0 ∙ 5〉,   ℰ4 = 〈(0 ∙ 4, 0 ∙ 4,0.4), (0 ∙ 5, 0 ∙ 4,0.4), (0 ∙ 5. 0 ∙ 5, .4)〉. 

We difine an 𝜏̃1
𝛾̃𝜂̃𝜇̃

, 𝜏̃2
𝛾̃𝜂̃𝜇̃

∶  𝐼𝔗̃ → 𝐼 as follows:  

𝜏̃1
𝛾̃(𝒮) =

{
 
 

 
 1,   𝑖𝑓 𝒮 = 0̃,                 

1,   𝑖𝑓 𝒮 = 1̃,                 
1

2
,   𝑖𝑓 𝒮 = ℰ2,              

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

               𝜏̃2
𝛾̃(𝒮) =

{
 
 

 
 1,   𝑖𝑓 𝒮 = 0̃,                          

1,   𝑖𝑓 𝒮 = 1̃,                           
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ4},              

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

      

𝜏̃1
𝜂̃(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,                          

0,   𝑖𝑓 𝒮 = 1̃,                            
1

2
,   𝑖𝑓 𝒮 = {ℰ1, ℰ2},              

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

       𝜏̃2
𝜂̃(𝒮) =

{
 
 

 
 
0,   𝑖𝑓 𝒮 = 0̃,                          

0,   𝑖𝑓 𝒮 = 1̃,                           
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ4},              

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

 

  𝜏̃1
𝜇̃(𝒮) =

{
 
 

 
 0,   𝑖𝑓 𝒮 = 0̃,                          

0,   𝑖𝑓 𝒮 = 1̃,                           
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ3},              

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

       𝜏̃2
𝜇̃(𝒮) =

{
 
 

 
 0,   𝑖𝑓 𝒮 = 0̃,                          

0,   𝑖𝑓 𝒮 = 1̃,                           
1

2
,   𝑖𝑓 𝒮 = {ℰ2, ℰ4},              

1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

        

Then, the identity mapping, 𝑓: (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) → (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

)  is 𝒮𝒱𝒩 −  almost continuous , but it is not 𝒮𝒱𝒩 −

 continuou. Since, 𝜏̃2
𝛾̃(ℰ4) =

1

2
 and ℰ4 is not 

1

2
− 𝑆𝑉𝑁𝑂 set in 𝔗̃1, because, 𝜏̃1

𝛾̃
(𝑓−1(ℰ4)) = 0 ≱

1

2
, 𝜏̃1

𝜂̃
(𝑓−1(ℰ4)) =

1 ≰
1

2
 and 𝜏̃1

𝜇̃
(𝑓−1(ℰ4)) = 1 ≱

1

2
. Hence, [ 𝜏̃2

𝛾̃(ℰ4) =
1

2
≰ 0 = 𝜏̃1

𝛾̃
(𝑓−1(ℰ4)) , 𝜏̃2

𝜂̃(ℰ4) =
1

2
≱ 1 = 𝜏̃1

𝜂̃
(𝑓−1(ℰ4)) , 

𝜏̃2
𝜇̃(ℰ4)

1

2
≱ 1 = 𝜏̃1

𝜇̃
(𝑓−1(ℰ4))].  

Theorem 3.10. Let 𝑓: (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) → (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

) be a mapping from an 𝒮𝒱𝒩𝒯𝒮 (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) into another 𝒮𝒱𝒩𝒯𝒮 

(𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

). Then the next statements are equivalent: 

1. 𝑓 is 𝒮𝒱𝒩 −  almost continuous, 

2. 𝜏̃1
𝛾̃
((𝑓−1(𝒮))

𝑐
) ≥ r, 𝜏̃1

𝜂̃
((𝑓−1(𝒮))

𝑐
) ≤ 1 − 𝑟, 𝜏̃1

𝜇̃
((𝑓−1(𝒮))

𝑐
) ≤ 1 − r, for any 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set 𝒮 of 𝔗̃2, 

3. 𝑓−1(𝒮) ≤ 𝑖𝑛𝑡
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮, r), r)), 𝑟) , for any 𝒮  of 𝔗̃2  such that 𝜏̃2

𝛾̃(𝒮) ≥ r , 𝜏̃2
𝜂̃(𝒮) ≤ 1 − 𝑟 

and 𝜏̃2
𝜇̃(𝒮) ≤ 1 − r,  

4. 𝐶
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮, r), r)), 𝑟) ≤ 𝑓−1(𝒮), for any 𝒮 of 𝔗̃2 such that 𝜏̃2

𝛾̃(𝒮) ≥ r, 𝜏̃2
𝜂̃(𝒮) ≤ 1 − 𝑟 and 

𝜏̃2
𝜇̃(𝒮) ≤ 1 − r. 

 

Proof. (1)⇒(2). Let 𝒮 be an 𝑟 − 𝑆𝑉𝑁𝑅𝐶 set of 𝔗̃2 Then by Lemma 3.4, 𝒮c is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set in 𝔗̃2. By (1), 

we obtain 

𝜏̃1
𝛾̃(𝑓−1(𝒮𝑐)) = 𝜏̃1

𝛾̃((𝑓−1(𝒮))𝑐) ≥ 𝑟,    𝜏̃1
𝜂̃(𝑓−1(𝒮𝑐)) = 𝜏̃1

𝜂̃((𝑓−1(𝒮))𝑐) ≤ 1 − 𝑟, 

𝜏̃1
𝜇̃(𝑓−1(𝒮𝑐)) = 𝜏̃1

𝜇̃((𝑓−1(𝒮))𝑐) ≤ 1 − 𝑟. 

(2)⇒(1). It is analogous to the proof of (1)⇒(2).    

(1)⇒(3). Since, [ 𝜏̃2
𝛾̃(𝒮) ≥ 𝑟 , 𝜏̃2

𝜂̃(𝒮) ≤ 1 − 𝑟 , 𝜏̃2
𝜇̃(𝒮) ≤ 1 − 𝑟], then, 𝒮 = 𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮, 𝑟) ≤ 𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮, 𝑟), 𝑟) , 

and hence, f−1(𝒮) = f−1(int
τ̃2
γ̃η̃μ̃(C

τ̃2
γ̃η̃μ̃(𝒮, r), r)), since 



Neutrosophic Sets and Systems, Vol. 41, 2021     133  

 

 

F. Alsharari et. al.; Compactness on Single-Valued Neutrosophic Ideal Topological Spaces  

 

𝜏̃2
𝛾̃
([𝐶

𝜏̃2
𝛾̃(𝒮, 𝑟)]𝑐) ≥ 𝑟 ,   𝜏̃2

𝜂̃
([𝐶

𝜏̃2
𝜂̃(𝒮, 𝑟)]𝑐) ≤ 1 − 𝑟 ,   𝜏̃2

𝜇̃
([𝐶

𝜏̃2
𝜇̃(𝒮, 𝑟)]𝑐) ≤ 1 − 𝑟 , 

then by Theorem 3.6 𝑖𝑛𝑡
𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮, 𝑟), 𝑟) is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set. So, 

𝜏̃1
𝛾̃
(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝛾̃(𝐶

𝜏̃2
𝛾̃(𝒮, 𝑟), 𝑟))) ≥ 𝑟, 𝜏̃1

𝜂̃
(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜂̃(𝐶

𝜏̃2
𝜂̃(𝒮, 𝑟), 𝑟))) ≤ 1 − 𝑟, 𝜏̃1

𝜇̃
(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜇̃(𝐶

𝜏̃2
𝜇̃(𝒮, 𝑟), 𝑟))) ≤ 1 − 𝑟. 

Therefore, 𝑓−1(𝒮) ≤  𝑓−1(𝑖𝑛𝑡
𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃(𝒮, 𝑟), 𝑟)) = 𝑖𝑛𝑡

𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮, 𝑟), 𝑟)).  

(3)⇒(1). Let 𝒮 be an 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set of 𝔗̃2. Then, we get  

 

𝑓−1(𝒮) ≤ 𝑖𝑛𝑡
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮, r), r)), 𝑟) = 𝑖𝑛𝑡

𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝒮), r); 

 

this suggests that, 𝑓−1(𝒮) = 𝑖𝑛𝑡
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝒮), r), then  

𝜏̃1
𝛾̃(𝑓−1(𝒮)) = 𝜏̃1

𝛾̃
(𝑖𝑛𝑡

𝜏̃1
𝛾̃(𝑓−1(𝒮), r)) ≥ 𝑟,    𝜏̃1

𝜂̃(𝑓−1(𝒮)) = 𝜏̃1
𝜂̃
(𝑖𝑛𝑡

𝜏̃1
𝜂̃(𝑓−1(𝒮), r)) ≤ 1 − 𝑟, 

𝜏̃1
𝜇̃(𝑓−1(𝒮)) = 𝜏̃1

𝜇̃
(𝑖𝑛𝑡

𝜏̃1
𝜇̃(𝑓−1(𝒮), r)) ≤ 1 − 𝑟. 

Therefore, 𝑓 is 𝒮𝒱𝒩 −  𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

 (2)⇔(4). Can be proved similarly. 

 

Theorem 3.11. Let 𝑓: (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) → (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

) be a map from an 𝒮𝒱𝒩𝒯𝒮 (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

) into another 𝒮𝒱𝒩𝒯𝒮 (𝔗̃2,

𝜏̃2
𝛾̃𝜂̃𝜇̃

). Then the following are equivalent: 

1. 𝑓 is 𝒮𝒱𝒩 −  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 

2. 𝑓(𝐶
𝜏̃1
𝛾̃𝜂̃ 𝜇̃(𝒮, r)) ≤  𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝑓(𝒮), r) for each 𝒮 ∈ 𝐼𝔗̃1 

Proof. (1) ⇒ (2). : Let 𝒮 ∈ 𝐼𝔗̃1. Then,  

𝑓−1(𝐶
𝜏̃2
𝛾̃𝜂̃𝜇̃(𝑓(𝒮), r))) = 𝑓−1 [⋂{ℰ ∈ 𝐼𝔗̃2: 𝜏̃2

𝛾̃(ℰ𝑐) ≥ 𝑟, 𝜏̃2
𝜂̃(ℰ𝑐) ≤ 1 − 𝑟, 𝜏̃2

𝜇̃(ℰ𝑐) ≤ 1 − 𝑟, ℰ ≥ 𝑓(𝒮)}] 

≥ 𝑓−1 [⋂{ℰ ∈ 𝐼𝔗̃2: 𝜏̃1
𝛾̃
(𝑓−1(ℰ𝑐)) ≥ 𝑟, 𝜏̃1

𝜂̃(𝑓−1(ℰ𝑐)) ≤ 1 − 𝑟, 𝜏̃1
𝜇̃(𝑓−1(ℰ𝑐)) ≤ 1 − 𝑟, ℰ ≥ 𝑓(𝒮)}]                    

≥ 𝑓−1 [⋂{ℰ ∈ 𝐼𝔗̃2: 𝜏̃1
𝛾̃
((𝑓−1(ℰ))

𝑐
) ≥ 𝑟, 𝜏̃1

𝜂̃
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, 𝜏̃1

𝜇̃
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, ℰ ≥ 𝑓(𝒮)}]     

 ≥⋂{𝑓−1(ℰ) ∈ 𝐼𝔗̃1: 𝜏̃1
𝛾̃
((𝑓−1(ℰ))

𝑐
) ≥ 𝑟, 𝜏̃1

𝜂̃
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, 𝜏̃1

𝜇̃
((𝑓−1(ℰ))

𝑐
) ≤ 1 − 𝑟, 𝑓−1(ℰ) ≥ 𝒮}

≥⋂{𝒟 ∈ 𝐼𝔗̃1: 𝜏̃1
𝛾̃(𝒟𝑐) ≥ 𝑟, 𝜏̃1

𝜂̃(𝒟𝑐) ≤ 1 − 𝑟, 𝜏̃1
𝜇̃(𝒟𝑐) ≤ 1 − 𝑟,    𝒟 ≥ 𝒮} = 𝐶

𝜏̃1
𝛾̃𝜂̃𝜇̃(𝒮, r).    

Hence, 𝑓(𝐶
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝒮, r)) ≤ 𝑓(𝑓−1(𝐶

𝜏̃2
𝛾̃𝜂 ̃𝜇̃(𝑓(𝒮), r))) ≤ 𝐶

𝜏̃2
𝛾̃𝜂̃ 𝜇̃(𝑓(𝒮), r). 

(2)⇒(1). It is similar to that of (1)⇒(2). 

 

Corollary 3.12. Let 𝑓: 𝔗̃1 → 𝔗̃2 be an 𝒮𝒱𝒩 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping with respect to the 𝒮𝒱𝒩𝒯s 𝜏̃1
𝛾̃𝜂̃𝜇̃

 and 𝜏̃2
𝛾̃𝜂̃𝜇̃

 

respectively. Then , for each 𝒮 ∈ 𝐼𝔗̃1, 𝑓(𝐶
𝜏̃1
𝛾̃𝜂̃ 𝜇̃(𝒮, r)) ≤  𝐶

𝜏̃2
𝛾 ̃𝜂̃ 𝜇̃(𝑓(𝒮), r). 

 

Theorem 3.13. Let 𝑓: 𝔗̃1 → 𝔗̃2 be an 𝒮𝒱𝒩 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping with respect to the 𝒮𝒱𝒩𝒯 𝜏̃1
𝛾̃𝜂̃𝜇̃

 and 𝜏̃2
𝛾̃𝜂̃𝜇̃

, 

respectively. Then , for any 𝒮 ∈ 𝐼𝔗̃2, 𝐶
𝜏̃1
𝛾 ̃ 𝜂̃𝜇̃(𝑓−1(𝒮), r)) ≤  𝑓−1(𝐶

𝜏̃2
𝛾̃𝜂 ̃𝜇̃(𝒮), r)). 

 

Proof. Let 𝒮 ∈ 𝐼𝔗̃2. We get from Theorem 3.12, 𝐶
𝜏̃1
𝛾̃𝜂̃ 𝜇̃(𝑓−1(𝒮), r)) ≤ 𝑓−1(𝑓(𝐶

𝜏̃1
𝛾̃𝜂 ̃𝜇̃(𝑓−1(𝒮), r)) ≤   𝑓−1(𝐶

𝜏̃2
𝛾̃𝜂 ̃𝜇̃(𝒮, r)). 
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Hence, 𝐶
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝒮), r)) ≤   𝑓−1(𝐶

𝜏̃2
𝛾̃ 𝜂̃𝜇̃(𝒮, r)), for every 𝒮 ∈ 𝐼𝔗̃2. 

4. Compactness on Single-Valued Neutrosophic Ideal Topological Spaces  

This section aims to establish new notions of r-single-valued neutrosophic aspects called (compact, ideal 

compact, ideal quasi H-closed, compact modulo an single-valued neutrosophic ideal) (briefly, 𝑟 − 𝒮𝒱𝒩 −

𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡) in 𝒮𝒱𝒩ℐ𝒯𝒮.  

 

Definition 4.1. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ) be an 𝒮𝒱𝒩𝒯𝒮  and 𝑟 ∈ 𝐼0 . Then 𝔗̃ is called 𝑟 − 𝒮𝒱𝒩 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 iff for every 

family {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃

𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , there exists a finite 

subset Γ0 ⊆ Γ such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ0 .  

 

Definition 4.2. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0. Then,  

(1)  𝔗̃  is called 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  (resp., 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑 ) iff every family,         

{𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , there exists a finite 

subse Γ0 ⊆ Γ  such that ℐ̃𝛾̃([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟,   ℐ̃𝜂̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 (resp., 

ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟). 

(2) 𝔗̃ is called 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − compact if for any  𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟,  𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟 and every 

family {ℰ𝑗 ∈ 𝐼
𝔗̃: 𝜏̃ 𝛾̃(ℰ𝑗) ≥ 𝑟,  𝜏̃

𝜂̃(ℰ𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a 

finite subse Γ0 ⊆ Γ  such that ℐ̃𝛾̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟 , ℐ̃𝜂̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(ℰ𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ,  

ℐ̃𝜇̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗𝑗∈Γ0 , 𝑟)]
𝑐
) ≤ 1 − 𝑟. 

 

Definition 4.3. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝒮 ∈ 𝐼𝔗̃. Then 𝒮 is called 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 iff every 

family {ℰ𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(ℰ𝑗) ≥ 𝑟,  𝜏̃𝜂̃(ℰ𝑗) ≤ 1 − 𝑟 , 𝜏̃

𝜇̃(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a finite 

subse Γ0 ⊆ Γ such that ℐ̃𝛾̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟,  ℐ̃𝜇̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. 

 

Theorem 4.4. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0. Then,   

(1) 𝑟 − 𝒮𝒱𝒩 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  ⇒ 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 

(2) 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 ⇒ 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 

(3) 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 ⇒ 𝑟 − 𝑆𝑉𝑁𝐼 −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑.  

 

Proof. (1) For every family {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃

𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . 

By r − 𝒮𝒱𝒩 − compactness  of 𝔗̃ , there exists a finite subse Γ0 ⊆ Γ  such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ0 . Now, since 

[⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
= 0̃, we have ℐ̃𝛾̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃𝜂̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. 

  

(2) For every 𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟,  𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟 and evrey family {ℰ𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(ℰ𝑗) ≥ 𝑟, 𝜏̃

𝜂̃(ℰ𝑗) ≤ 1 −

𝑟 , 𝜏̃𝜇̃(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ . By r − 𝒮𝒱𝒩ℐ − compactness of 𝒮 , there exists a finite subse 

Γ0 ⊆ Γ  such that ℐ̃𝛾̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟 , ℐ̃𝜂̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 , ℐ̃𝜇̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 . Since,     

𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
≥ 𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
, we have  

ℐ̃𝛾̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 , ℐ̃𝜇̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 
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Hence, 𝔗̃ is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

 

(3) Let {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃

𝜇̃(𝒮𝑗) ≤ 1 − 𝑟: 𝑗 ∈ Γ}  be a family such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . By       

𝑟 − 𝒮𝒱𝒩ℐ − compactness  of (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)̃ , there exists a finite subfamily Γ0 ⊆ Γ such that ℐ̃𝛾̃([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, 

 ℐ̃𝜂̃([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. Since, [⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
≥ [⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
,  we have 

ℐ̃𝛾̃ ([⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≥ 𝑟,  ℐ̃𝜂̃ ([⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃̃ ([⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟 

Hence, 𝔗̃ is 𝑟 − 𝑆𝑉𝑁𝐼 −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑. 

 

Theorem 4.5. The next statements are equivalent in an 𝒮𝒱𝒩ℐ𝒯𝒮 (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃):  

(1) 𝔗̃ is r − 𝒮𝒱𝒩ℐ − compact,  

(2) For any family {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  with ⋂ 𝒮𝑗𝑗∈Γ = 0̃, there 

exists a finite subset Γ0 ⊆ Γ with ℐ̃𝛾̃(⋂ 𝒮𝑗𝑗∈Γ0 ) ≥ 𝑟,  ℐ̃𝜂̃(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟,  ℐ̃𝜇̃(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟. 

 

Proof. (1)⇒(2). For each family {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ} with ⋂ 𝒮𝑗𝑗∈Γ = 0̃. 

Then, ⋃ 𝒮𝑗
𝑐

𝑗∈Γ = 1̃. By 𝑟 − 𝒮𝒱𝒩ℐ − compactness  of (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) , there exists a finite subse Γ0 ⊆ Γ such that 

ℐ̃𝛾̃([⋃ 𝒮𝑗
𝑐

𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃([⋃ 𝒮𝑗

𝑐
𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃̃([⋃ 𝒮𝑗

𝑐
𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, this implies that, 

ℐ̃𝛾̃ (⋂ 𝒮𝑗
𝑗∈Γ0

) ≥ 𝑟, ℐ̃𝜂̃ (⋂ 𝒮𝑗
𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃𝜇̃̃ (⋂ 𝒮𝑗
𝑗∈Γ0

) ≤ 1 − 𝑟. 

(2)⇒(1). Let {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃

𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} be a family such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . Then, 

⋂ 𝒮𝑗
𝑐

𝑗∈Γ = 0̃ , by (2), there exists a finite subse Γ0 ⊆ Γ  such that ℐ̃𝛾̃(⋂ 𝒮𝑗
𝑐

𝑗∈Γ0 ) ≥ 𝑟 , ℐ̃𝜂̃(⋂ 𝒮𝑗
𝑐

𝑗∈Γ0 ) ≤ 1 − 𝑟 , 

ℐ̃𝜇̃(⋂ 𝒮𝑗
𝑐

𝑗∈Γ0 ) ≤ 1 − 𝑟  this implies that ℐ̃𝛾̃([⋃ 𝒮𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟 , ℐ̃𝜂̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 ,  ℐ̃𝜇̃̃([⋃ 𝒮𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 . 

Therefore (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)  is 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡.  

 

Remark 4.6. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)  be an 𝒮𝒱𝒩ℐ𝒯𝒮. The simplest 𝒮𝒱𝒩ℐ on 𝔗̃ is ℐ̃0
𝛾̃𝜂̃𝜇̃

: 𝐼𝔗̃ ⟶ 𝐼, where  

ℐ̃0
𝛾̃(𝒮) = {

1, 𝑖𝑓  𝒮 = 0̃      
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

      ℐ̃0
𝜂̃(𝒮) = {

0, 𝑖𝑓  𝒮 = 0̃      
1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

         ℐ̃0
𝜇̃(𝒮) = {

0, 𝑖𝑓  𝒮 = 0̃      
1,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

If ℐ̃𝛾̃𝜂̃𝜇̃ = ℐ̃0
𝛾̃𝜂̃𝜇̃

 then 𝑟 − 𝒮𝒱𝒩 − compact and 𝑟 − 𝒮𝒱𝒩ℐ − compact are equivalent 

 

Definition 4.7. An 𝒮𝒱𝒩𝒯𝒮 (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃) is said to be r-single-valued neutrosophic regular (𝑟 − 𝒮𝒱𝒩 − regular) iff 

for every 𝜏̃𝛾̃(𝒮) ≥ 𝑟, 𝜏̃𝜂̃(𝒮) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮) ≤ 1 − 𝑟 and 𝑟 ∈ 𝐼0, 

𝒮 =⋃{ℰ ∈  𝐼𝔗̃: 𝜏̃𝛾̃(ℰ) ≥ 𝑟,  𝜏̃𝜂̃(ℰ) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(ℰ) ≤ 1 − 𝑟, 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ, r) = 𝒮}. 

 

Theorem 4.8. Let (𝔗̃, 𝜏̃ 𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)  be an 𝑟 − 𝒮𝒱𝒩ℐ −  quasi H − closed  and 𝑟 − 𝒮𝒱𝒩 − regular . Then 

(𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩ℐ − compact. 

 

Proof.  For every family {𝒮 ∈ 𝐼𝔗̃: 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃
𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . By 

𝑟 − 𝒮𝒱𝒩 − regularity of (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃),  for any 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃𝜂̃(𝒮𝑗) ≤ 1 − 𝑟, 𝜏̃𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, we have 
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𝒮𝑗 = ⋃ {𝒮𝑗∆:   𝜏̃
𝛾̃(𝒮𝑗∆) ≥ 𝑟,  𝜏̃𝜂̃(𝒮𝑗∆) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑗∆) ≤ 1 − 𝑟, 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗∆ , r) ≤ 𝒮𝑗}

𝑗∆∈∆𝑗

. 

Thus, ⋃ (⋃ 𝒮𝑗∆𝑗∆∈∆𝑗 ) = 1̃𝑗∈Γ . Since (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩ℐ- quasi H-closed, there exists a finite subset 𝐾 × ∆𝐾 

such that  

ℐ̃𝛾̃ ([⋃( ⋃ 𝐶𝜏̃𝛾̃(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≥ 𝑟,  ℐ̃𝜂̃ ([⋃( ⋃ 𝐶𝜏̃𝜂̃(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃̃ ([⋃( ⋃ 𝐶𝜏̃𝜇̃(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟.   

For each 𝑘 ∈ 𝐾, since ⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑘∆ , 𝑟𝑘∆∈∆𝑘 ) ≤ 𝒮𝑘. It implies that [⋃ (⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑘∆ , 𝑟𝑘∆∈∆𝑘 ))𝑘∈𝐾 ]
𝑐
≥ [⋃  𝒮𝑘𝑘∈𝐾 ]𝑐 . Thus, 

ℐ̃𝛾̃ ([⋃  𝒮𝑘
𝑘∈𝐾

]

𝑐

) ≥ ℐ̃𝛾̃ ([⋃( ⋃ 𝐶𝜏̃𝛾̃(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ ([⋃  𝒮𝑘
𝑘∈𝐾

]

𝑐

) ≤ ℐ̃𝜂̃ ([⋃( ⋃ 𝐶𝜏̃𝜂̃(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟 

  

ℐ̃𝜇̃̃ ([⋃  𝒮𝑘
𝑘∈𝐾

]

𝑐

) ≤ ℐ̃𝜇̃̃ ([⋃( ⋃ 𝐶𝜏̃𝜂̃(𝒮𝑘∆ , 𝑟

𝑘∆∈∆𝑘

))

𝑘∈𝐾

]

𝑐

) ≤ 1 − 𝑟. 

Hence, (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩ℐ − compact. 

 

Definition 4.9. A family {𝒮𝑗}𝒋∈Γ in 𝔗̃ has the finite intersection property (𝑰 − 𝑭𝑰𝑷) iff the intersection of no 

finite sub-family Γ0 ⊆ Γ s.t ℐ̃𝛾̃(⋂ 𝒮𝑗𝑗∈Γ0 ) ≥ 𝑟, ℐ̃𝜂̃(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟, ℐ̃𝜇̃̃(⋂ 𝒮𝑗𝑗∈Γ0 ) ≤ 1 − 𝑟. 

 

Theorem 4.10. An 𝒮𝒱𝒩ℐ𝒯𝒮  (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)  is r − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 , iff every family {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,

 𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  having the finite intersection property (𝑰 − 𝑭𝑰𝑷)  has a non-empty 

intersection.  

 

Proof.  Obvious. 

  

Theorem 4.11. Suppose that (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)  is an 𝒮𝒱𝒩ℐ𝒯𝒮 , 𝒮  is 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 . Then for every 

collection {ℰ𝑗 ∈ 𝐼
𝔗̃:  ℰ𝑗 ≤ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟), 𝑗 ∈ Γ} with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a finite subset Γ0 ⊆ Γ s.t, 

ℐ̃𝛾̃ (𝒮 ∩ [⋃ 𝑖𝑛𝑡𝜏̃𝛾̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ [⋃ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝜂̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 

ℐ̃𝜇̃ (𝒮 ∩ [⋃ 𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Proof. Let {ℰ𝑗 ∈ 𝐼
𝔗̃:  ℰ𝑗 ≤ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟), 𝑗 ∈ Γ} with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ .Then, 𝒮 ≤ ⋃ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ ,  

[𝜏̃𝛾̃ (𝑖𝑛𝑡𝜏̃𝛾̃(𝐶𝜏̃𝛾̃(ℰ𝑗 , 𝑟), 𝑟)) ≥ 𝑟,  𝜏̃𝜂̃ (𝑖𝑛𝑡𝜏̃𝜂̃(𝐶𝜏̃𝜂̃(ℰ𝑗 , 𝑟), 𝑟)) ≤ 1 − 𝑟 , 𝜏̃𝜇̃ (𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)) ≤ 1 − 𝑟] . By r − 𝒮𝒱𝒩ℐ 

−𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 of 𝒮, there exists a finite subset Γ0 ⊆ Γ s.t,  

ℐ̃𝛾̃ (𝒮 ∩ [⋃ 𝑖𝑛𝑡𝜏̃𝛾̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ [⋃ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝜂̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟 
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ℐ̃𝜇̃ (𝒮 ∩ [⋃ 𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1− 𝑟. 

Definition 4.12. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩𝒯𝒮 and 𝒮 ∈ 𝐼𝔗̃. Then 𝒮 is called r-single-valued neutrosophic locally 

closed iff 𝒮 = ℰ ∩ 𝒟 where [𝜏̃𝛾̃(ℰ) ≥ 𝑟,  𝜏̃𝜂̃(ℰ) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(ℰ) ≤ 1 − 𝑟], [𝜏̃𝛾̃(𝒟𝑐) ≥ 𝑟,  𝜏̃𝜂̃(𝒟𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒟𝑐) ≤

1 − 𝑟].  

 

Lemma 4.13. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃)  be an 𝒮𝒱𝒩𝒯𝒮  and 𝒮 ∈ 𝐼𝔗̃ . Then 𝜏̃𝛾̃(𝒮) ≥ 𝑟, 𝜏̃𝜂̃(𝒮) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮) ≤ 1 − 𝑟  iff 𝒮 

both r-single-valued neutrosophic locally closed and 𝑟 − 𝑆𝑉𝑁𝑃𝑂 set.  

 

Proof.  It is trivial. 

 

Lemma 4.14. If 𝒮  is 𝑟 − 𝒮𝒱𝒩ℐ − compact, then for every collection {ℰ𝑗 ∈ 𝐼
𝔗̃:  ℰ𝑗 𝑖𝑠  𝑏𝑜𝑡ℎ 𝑟 − 𝑆𝑉𝑁𝑃𝑂 𝑎𝑛𝑑 𝑟 −

𝑠𝑖𝑛𝑔𝑙𝑒 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑛𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑙𝑜𝑐𝑎𝑙𝑙𝑦 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡𝑠, 𝑗 ∈ Γ}  with  𝒮 ≤ ⋃ (ℰ𝑗)𝑗∈Γ , there exists a finite subfamily  

Γ0 ⊆ Γ such that ℐ̃𝛾̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃(𝒮 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. 

 

Proof. Follows from Lemma 4.13.  

 

Theorem 4.15. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩ℐ𝒯𝒮 , 𝒮1  and 𝒮2  are r − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 . Then, 𝒮 ∪ ℰ  is r −

𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 subset relative to 𝔗̃. 

 

Proof. Let {ℰ𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(ℰ𝑗) ≥ 𝑟,  𝜏̃

𝜂̃(ℰ𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} be a family such that 𝒮1 ∪ 𝒮2 ≤ ⋃ ℰ𝑗𝑗∈Γ . 

Then 𝒮1 ≤ ⋃ ℰ𝑗𝑗∈Γ  and  𝒮2 ≤ ⋃ ℰ𝑗𝑗∈Γ . Since 𝒮1  and 𝒮2  are 𝑟 − 𝒮𝒱𝒩ℐ − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 , there exists a finite subset 

Γ0 ⊆ Γ such that  

ℐ̃𝛾̃ (𝒮𝑘 ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮𝑘 ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (𝒮𝑘 ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟,  

for 𝑘 = 1,2, since (𝒮1 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]
𝑐
) ∪ (𝒮2 ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) = (𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
. Then,  

ℐ̃𝛾̃ ((𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≥ 𝑟,         ℐ̃𝜂̃((𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃ ((𝒮1 ∪ 𝒮2) ∩ [⋃ ℰ𝑗
𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

This shown that (𝒮1 ∪ 𝒮2) is 𝑟 − 𝒮𝒱𝒩ℐ − compact. 

Theorem 4.16. Suppose (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩ℐ𝒯𝒮, 𝑟 ∈ 𝐼0. Then the next statements are equivalent:   

(1) (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 

(2) For every collection {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,   𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} with ⋂ 𝒮𝑗𝑗∈Γ = 0̃, 

there exists Γ0 ⊆ Γ  such that ℐ̃𝛾̃(⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟 , ℐ̃𝜂̃(⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟 , 

ℐ̃𝜇̃(⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟, 

(3) ⋂ 𝒮𝑗𝑗∈Γ ≠ 0̃ , holds for any collection {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,   𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} 

such that {𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟): 𝜏̃
𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,   𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} has the 𝑰 − 𝑭𝑰𝑷, 

(4) For any collection {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝒮𝑗  is 𝑟 − 𝑆𝑉𝑁𝑅𝑂 𝑠𝑒𝑡𝑠,   𝑗 ∈ Γ} such taht ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , there exists Γ0 ⊆ Γ 

such that ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟,  ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟,  ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, 
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(5) For every collection {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝒮𝑗 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡,   𝑗 ∈ Γ}  such taht ⋂ 𝒮𝑗𝑗∈Γ = 0̃ , there exists Γ0 ⊆ Γ 

such that ℐ̃𝛾̃(⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟, ℐ̃𝜂̃(⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟, ℐ̃𝜇̃(⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟, 

(6) ⋂ 𝒮𝑗𝑗∈Γ ≠ 0̃ , holds for every collection {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝒮𝑗 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡,   𝑗 ∈ Γ}  such taht 

{𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟):  𝒮𝑗 is 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡,   𝑗 ∈ Γ} has the 𝑰 − 𝑭𝑰𝑷.  

 

Proof. (1)⇒(2). Let {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,   𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} be a family with ⋂ 𝒮𝑗𝑗∈Γ = 0̃. 

Then, ⋃ 𝒮𝑗
𝑐

𝑗∈Γ = 1̃ . Since, (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)  is 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑 , there exists Γ0 ⊆ Γ  such that 

ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟 , ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 , ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 . Since, 

[⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
= ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 , we have  

ℐ̃𝛾̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃𝜂̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

  (2)⇒(1). Let {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,  𝜏̃

𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  be a family s.t ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . Then, 

⋂ 𝒮𝑗
𝑐

𝑗∈Γ = 0̃ and by hypothesis, there exists Γ0 ⊆ Γ s.t, ℐ̃𝛾̃(⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟, ℐ̃𝜂̃(⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗

𝑐 , 𝑟)𝑗∈Γ0 ) ≤ 1 −

𝑟, ℐ̃𝜇̃(⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟. Since, ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗

𝑐 , 𝑟)𝑗∈Γ0 = [⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
, 

ℐ̃𝛾̃ ([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ ([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃ ([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Thus, (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩ℐ- quasi H-closed, 

  (1) ⇒ (3). For any family {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,   𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  such that 

{𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟):  𝜏̃
𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,   𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  has the 𝑰 − 𝑭𝑰𝑷 . If ⋂ 𝒮𝑗𝑗∈Γ = 0̃ , then 

⋃ 𝒮𝑗
𝑐 = 1̃𝑗∈Γ . Since (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩ℐ- quasi H-closed, there exists a finite subset Γ0 ⊆ Γ such that  

ℐ̃𝛾̃ ([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ ([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃ ([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, [⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
= ⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 , we have   

ℐ̃𝛾̃ (⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃𝜂̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

Which is a contradiction. 

  (3)⇒ (1). For any family {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟, 𝜏̃

𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(𝒮𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ}  such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ , 

with the property that for no finite Γ0 ⊆ Γ such that ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟,  

  ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≤ 1 − 𝑟.  Since, 

[⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

= ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑐 , 𝑟)

𝑗∈Γ0

. 

The family {𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑐 , 𝑟): 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟,   𝜏̃

𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 ,    𝜏̃
𝜇̃(𝒮𝑗) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  has the 𝑰 − 𝑭𝑰𝑷 .By (3). 

⋂ 𝒮𝑗
𝑐

𝑗∈Γ ≠ 0̃, Then, ⋃ 𝒮𝑗 ≠ 1̃𝑗∈Γ . It is a contradiction. 

  (1)⇒(4). Let {𝒮𝑗} 𝑗∈Γ be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 set such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . Then, ⋃ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟), r) = 1̃𝑗∈Γ , 

since, 𝜏̃𝛾̃(𝑖𝑛𝑡𝜏̃𝛾̃(𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟), r)) ≥ 𝑟,  𝜏̃
𝜂̃(𝑖𝑛𝑡𝜏̃𝜂̃(𝐶𝜏̃𝜂̃(𝒮𝑗 , 𝑟), r)) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝜇̃(𝒮𝑗 , 𝑟), r)) ≤ 1 − 𝑟  and 𝔗̃  is 𝑟 −

𝒮𝒱𝒩ℐ- quasi H-closed, there exists a finite subset Γ0 ⊆ Γ such that  



Neutrosophic Sets and Systems, Vol. 41, 2021     139  

 

 

F. Alsharari et. al.; Compactness on Single-Valued Neutrosophic Ideal Topological Spaces  

 

ℐ̃𝛾̃ ([⋃ 𝐶𝜏̃𝛾̃(𝑖𝑛𝑡𝜏̃𝛾̃(𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟), r), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ ([⋃ 𝐶𝜏̃𝜂̃ (𝑖𝑛𝑡𝜏̃𝜂̃(𝐶𝜏̃𝜂̃(𝒮𝑗 , 𝑟), r))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃𝜇̃ ([⋃ 𝐶𝜏̃𝜇̃(𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝜇̃(𝒮𝑗 , 𝑟), r), 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, for 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟, 𝜏̃
𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃

𝜇̃(𝒮𝑗) ≤ 1 − 𝑟  we have 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟), r), 𝑟) = 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟) . 

Hence, ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. 

  (4)⇒(5). Let {𝒮𝑗 ∈ 𝐼
𝔗̃:   𝑗 ∈ Γ} be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets such that ⋂ 𝒮𝑗𝑗∈Γ = 0̃. Then, ⋃ 𝒮𝑗

𝑐
𝑗∈Γ = 1̃, and 

{𝒮𝑗
𝑐 ∈ 𝐼𝔗̃:   𝑗 ∈ Γ}  is a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 sets . By (4), there will be a finite subset Γ0 ⊆ Γ  such that 

ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, Thus,  

ℐ̃𝛾̃ (⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃𝜂̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

  (5)⇒(1). Let {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟, 𝜏̃

𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(𝒮𝑗) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  be a family such that ⋃ 𝒮𝑗 = 1̃𝑗∈Γ . 

Then, ⋃ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟), r)𝑗∈Γ = 1̃ . Thus, ⋂ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑐 , 𝑟), r)𝑗∈Γ = 0̃  and 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗

𝑐 , 𝑟), r)  is   

𝑟 − 𝑆𝑉𝑁𝑅𝐶. For the hypothesis, there exists Γ0 ⊆ Γ such that 

ℐ̃𝛾̃ (⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(𝐶𝜏̃𝛾̃(𝑖𝑛𝑡𝜏̃𝛾̃(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃𝜂̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(𝐶𝜏̃𝜂̃(𝑖𝑛𝑡𝜏̃𝜂̃(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, 

ℐ̃𝜇̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝜇̃(𝑖𝑛𝑡𝜏̃𝜇̃(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟 

Since, for 𝜏̃𝛾̃(𝒮𝑗) ≥ 𝑟, 𝜏̃
𝜂̃(𝒮𝑗) ≤ 1 − 𝑟 , 𝜏̃

𝜇̃(𝒮𝑗) ≤ 1 − 𝑟  we have 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟), r), 𝑟) = 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟) , 

and hence, ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗
𝑐 , 𝑟), r), 𝑟)𝑗∈Γ0 = [⋃ 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]𝑐 . Therefore, ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, 

ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]
𝑐
) ≤ 1 − 𝑟 , ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ). Hence, (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃)  is 𝑟 − 𝒮𝒱𝒩ℐ −

 𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 

  (6)⇔(4) is proved similarly like (3)⇔(1). 

 

Theorem 4.17.  Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0, Then the next statements are equivalent:   

(1) (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩ℐ −  𝑞𝑢𝑎𝑠𝑖 𝐻 − 𝑐𝑙𝑜𝑠𝑒𝑑, 

(2) For any family {𝒮𝑗 ∈ 𝐼
𝔗̃: 𝒮𝑗 ≤ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝒮𝑗 , r), r)} with ⋃ 𝒮𝑗𝑗∈Γ = 1̃, there exists a finite subset Γ0 ⊆ Γ 

such that ℐ̃𝛾̃([⋃ 𝐶𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃([⋃ 𝐶𝜏̃𝜂̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ,  ℐ̃𝜇̃([⋃ 𝐶𝜏̃𝜇̃(𝒮𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟), 

(3) For any family {𝒮𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(𝒮𝑗

𝑐) ≥ 𝑟,   𝜏̃𝜂̃(𝒮𝑗
𝑐) ≤ 1 − 𝑟 ,    𝜏̃𝜇̃(𝒮𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} such that ⋂ 𝒮𝑗𝑗∈Γ = 0̃, 

there exists a finite subset Γ0 ⊆ Γ such that ℐ̃𝛾̃(⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟, ℐ̃𝜂̃(⋂ 𝑖𝑛𝑡 𝜏̃𝜂̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟 , 

 ℐ̃𝜇̃(⋂ 𝑖𝑛𝑡 𝜏̃𝜇̃(𝒮𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟). 

 

Proof. Obvious. 

 

 

Theorem 4.18. Let (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) be an 𝒮𝒱𝒩ℐ𝒯𝒮 and 𝑟 ∈ 𝐼0, Then the next statements are equivalent:    
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(1) (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡, 

(2) For each family {ℰ𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(ℰ𝑗

𝑐) ≥ 𝑟, 𝜏̃𝜂̃(ℰ𝑗
𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(ℰ𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ} and every  𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟,  

𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟  with ⋂ ℰ𝑗𝑗∈Γ 𝑞̅𝒮 , there exists a finite subset Γ0 ⊆ Γ  such that      

ℐ̃𝛾̃(𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ) ≥ 𝑟,   ℐ̃𝜂̃(𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟, ℐ̃𝜇̃(𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ) ≤ 1 − 𝑟. 

(3) ⋂ ℰ𝑗𝑗∈Γ 𝑞𝒮  holds for each family {ℰ𝑗 ∈ 𝐼
𝔗̃:  𝜏̃𝛾̃(ℰ𝑗

𝑐) ≥ 𝑟, 𝜏̃𝜂̃(ℰ𝑗
𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(ℰ𝑗

𝑐) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  and 

any  𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟 with {𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟) q𝒮,  𝑗 ∈ Γ} has the 𝑰 − 𝑭𝑰𝑷, 

(4) For each family {ℰ𝑗 ∈ 𝐼
𝔗̃: ℰ𝑗 𝑖𝑠 𝑟 − 𝑆𝑉𝑁𝑅𝑂 , 𝑗 ∈ Γ} and any 𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟. 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 

with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ , there exists a finite subset Γ0 ⊆ Γ such that,  

ℐ̃𝛾̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(ℰ𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗
𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟. 

(5) For each family {ℰ𝑗 ∈ 𝐼
𝔗̃: ℰ𝑗 is r − 𝑆𝑉𝑁𝑅𝐶,   𝑗 ∈ Γ} and any  𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 , 

with ⋂ ℰ𝑗𝑗∈Γ 𝑞̅𝒮, there exists Γ0 ⊆ Γ such that, 

ℐ̃𝛾̃ (⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

∩ 𝒮) ≥ 𝑟, ℐ̃𝜂̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(ℰ𝑗 , 𝑟) ∩ 𝒮

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(ℰ𝑗 , 𝑟) ∩ 𝒮

𝑗∈Γ0

) ≤ 1 − 𝑟, 

(6) ⋂ ℰ𝑗𝑗∈Γ 𝑞𝒮 holds for each family {ℰ𝑗 ∈ 𝐼
𝔗̃: ℰ𝑗 𝑖𝑠 𝑟 − 𝑆𝑉𝑁𝑅𝐶,   𝑗 ∈ Γ} and any 𝜏̃ 𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟, 

𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟 such taht {𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟) ∩ 𝒮:  𝑗 ∈ Γ} has the  𝑰 − 𝑭𝑰𝑷.  

  

Proof. (1)⇒(2). Let {ℰ𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(ℰ𝑗

𝑐) ≥ 𝑟, 𝜏̃𝜂̃(ℰ𝑗
𝑐) ≤ 1 − 𝑟 , 𝜏̃𝜇̃(ℰ𝑗

𝑐) ≤ 1 − 𝑟, 𝑗 ∈ Γ}and 𝜏̃ 𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 

with ⋂ ℰ𝑗𝑗∈Γ 𝑞̅𝒮 . Then, 𝛾̃⋂ ℰ𝑗𝑗∈Γ
+ 𝛾̃𝒮 ≤ 1 , 𝜂⋂ ℰ𝑗𝑗∈Γ

+ 𝜂𝒮 ≥ 1 , 𝜇⋂ ℰ𝑗𝑗∈Γ
+ 𝜇𝒮 ≥ 1 . It implies that 𝒮 ≤ ⋃ ℰ𝑗

𝑐
𝑗∈Γ . By    

𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  of (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃), there exists a finite subset Γ0 ⊆ Γ such that, 

ℐ̃𝛾̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗
𝑐 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(ℰ𝑗
𝑐

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗
𝑐

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟. 

 Since, 𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗
𝑐

𝑗∈Γ0 , 𝑟)]
𝑐
= 𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 . Then  

ℐ̃𝛾̃ (𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

  (2)⇒(3). It is trivial. 

  (3) ⇒ (1). Let {ℰ𝑗 ∈ 𝐼
𝔗̃: 𝜏̃𝛾̃(ℰ𝑗) ≥ 𝑟, 𝜏̃

𝜂̃(ℰ𝑗) ≤ 1 − 𝑟 , 𝜏̃
𝜇̃(ℰ𝑗) ≤ 1 − 𝑟,   𝑗 ∈ Γ}  be a family and 𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟 , 

 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 ,  𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟  such that 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ  with property that for no finite subfamily Γ0  of Γ      

one has, ℐ̃𝛾̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(ℰ𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 . 

Since, 𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
= ⋂ {𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗

𝑐 , 𝑟)𝑗∈Γ0 ∩ 𝒮 , the family {⋂ {𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗
𝑐 , 𝑟)𝑗∈Γ ∩ 𝒮 ,  𝑗 ∈ Γ}  has the   

𝑰 − 𝑭𝑰𝑷, By (3), ⋂ ℰ𝑗
𝑐

𝑗∈Γ 𝑞𝒮 implies that ⋃ ℰ𝑗𝑗∈Γ ≤ 𝒮. It is a contradiction. 

  (1)⇒(4). Let {ℰ𝑗 ∈ 𝐼
𝔗̃:   𝑗 ∈ Γ} be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 𝑠𝑒𝑡𝑠 and  𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 

with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ . Then, 𝒮 ≤ ⋃ 𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ . By 𝑟 − 𝒮𝒱𝒩𝐶(ℐ) − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  of (𝔗̃, 𝜏̃𝛾̃𝜂̃𝜇̃, ℐ̃𝛾̃𝜂̃𝜇̃) , 

there exists a finite subset Γ0 ⊆ Γ such that,  

ℐ̃𝛾̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟), 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(𝑖𝑛𝑡𝜏̃𝜂̃(𝐶𝜏̃𝜂̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟, 
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ℐ̃𝜇̃ (𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(𝑖𝑛𝑡𝜏̃𝜇̃(𝐶𝜏̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)

𝑗∈Γ0

, 𝑟)]

𝑐

) ≤ 1 − 𝑟 

Since, for 𝜏̃𝛾̃(ℰ𝑗) ≥ 𝑟, 𝜏̃
𝜂̃(ℰ𝑗) ≤ 1 − 𝑟 , 𝜏̃

𝜇̃(ℰ𝑗) ≤ 1 − 𝑟, 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), r), 𝑟) = 𝐶𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟). Therefore, 

ℐ̃𝛾̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]
𝑐
) ≥ 𝑟, ℐ̃𝜂̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃𝜇̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗 ,𝑗∈Γ0 𝑟)]

𝑐
) ≤ 1 − 𝑟. 

  (4)⇒(1). It is trivial. 

  (4)⇒(5). Let {ℰ𝑗}𝑗∈Γ be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝐶 sets and every 𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 such 

that ⋂ ℰ𝑗𝑗∈Γ 𝑞̅𝒮. Then, 𝒮 ≤ ⋃ ℰ𝑗
𝑐

𝑗∈Γ  and {ℰ𝑗
𝑐 ∈ 𝐼𝔗̃:  𝑗 ∈ Γ} be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝑂 sets. By (4), there exists a 

finite subset Γ0 ⊆ Γ  such that ℐ̃𝛾̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝛾̃(ℰ𝑗
𝑐 , 𝑟)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃𝜂̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜂̃(ℰ𝑗

𝑐
𝑗∈Γ0 , 𝑟)]

𝑐
) ≤ 1 − 𝑟 ,       

 ℐ̃𝜇̃(𝒮 ∩ [⋃ 𝐶𝜏̃𝜇̃(ℰ𝑗
𝑐

𝑗∈Γ0 , 𝑟)]
𝑐
) ≤ 1 − 𝑟 implies that  

ℐ̃𝛾̃ (𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≥ 𝑟, ℐ̃𝜂̃ (𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟, ℐ̃𝜇̃ (𝒮 ∩ ⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

) ≤ 1 − 𝑟. 

  (5)⇒(6). Let {ℰ𝑗}𝑗∈Γ   be a family of 𝑟 − 𝑆𝑉𝑁𝑅𝐶 𝑠𝑒𝑡𝑠 and every 𝜏̃𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃𝜇̃(𝒮𝑐) ≤ 1 − 𝑟, 𝜏̃𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 

such taht {𝑖𝑛𝑡𝜏̃𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟) ∩ 𝒮:  𝑗 ∈ Γ} has the  𝑰 − 𝑭𝑰𝑷. If ⋂ ℰ𝑗𝑗∈Γ 𝑞̅𝒮 . By (5), there exists a finite subset Γ0 ⊆ Γ 

such that ℐ̃𝛾̃(⋂ 𝑖𝑛𝑡𝜏̃𝛾̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ∩ 𝒮) ≥ 𝑟, ℐ̃𝜂̃(⋂ 𝑖𝑛𝑡𝜏̃𝜂̃(ℰ𝑗 , 𝑟) ∩ 𝒮𝑗∈Γ0 ) ≤ 1 − 𝑟,  ℐ̃𝜇̃(⋂ 𝑖𝑛𝑡𝜏̃𝜇̃(ℰ𝑗 , 𝑟) ∩ 𝒮𝑗∈Γ0 ) ≤ 1 − 𝑟. It 

is a contradiction. 

  (6)⇒(4). It is trivial.  

 

Theorem 4.19. Let (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

, ℐ̃1
𝛾̃𝜂̃𝜇̃

) , (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

, ℐ̃2
𝛾̃𝜂̃𝜇̃

)  be two 𝒮𝒱𝒩ℐ𝒯𝒮′𝑠  and 𝑓: 𝔗̃1 ⟶ 𝔗̃2  a surjective  𝒮𝒱𝒩 - 

continuous. If (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

, ℐ̃1
𝛾̃𝜂̃𝜇̃

)  is 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and ℐ̃1
𝛾̃
(𝒮) ≤ ℐ̃2

𝛾̃
(𝑓(𝒮)) , ℐ̃1

𝜂̃
(𝒮) ≥ ℐ̃2

𝜂̃
(𝑓(𝒮)) , ℐ̃1

𝜇̃
(𝒮) ≥

ℐ̃2
𝜇̃
(𝑓(𝒮)). Then, (𝔗̃2, 𝜏̃2

𝛾̃𝜂̃𝜇̃
, ℐ̃2
𝛾̃𝜂̃𝜇̃

) is 𝑟 − 𝒮𝒱𝒩ℐ2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

   

Proof. Let {ℰ𝑗 ∈ 𝐼
𝔗̃: 𝜏̃2

𝛾̃
(ℰ𝑗) ≥ 𝑟, 𝜏̃2

𝜂̃
(ℰ𝑗) ≤ 1 − 𝑟 , 𝜏̃2

𝜇̃
(ℰ𝑗) ≤ 1 − 𝑟, 𝑗 ∈ Γ} be a family such that ⋃ ℰ𝑗 = 1̃𝑗∈Γ . Then, 

⋃ 𝑓−1(ℰ𝑗) = 1̃𝑗∈Γ . Since, 𝑓  is 𝒮𝒱𝒩 −  𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 , for each 𝑗 ∈ Γ , 𝜏̃1
𝛾̃
(𝑓−1(ℰ𝑗)) ≥ 𝑟, 𝜏̃1

𝜂̃
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟 , 

𝜏̃1
𝜇̃
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟 . By 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠  of (𝔗̃1, 𝜏̃1

𝛾̃𝜂̃𝜇̃
, ℐ̃1
𝛾̃𝜂̃𝜇̃

), there exists a finite Γ0 ⊆ Γ such that 

ℐ̃1
𝛾̃
([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) ≥ 𝑟 , ℐ̃1

𝜂̃
([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 , ℐ̃1

𝜇̃
([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟 . Since ℐ̃1

𝛾̃
(𝒮) ≤ ℐ̃2

𝛾̃
(𝑓(𝒮)) , 

ℐ̃1
𝜂̃
(𝒮) ≥ ℐ̃2

𝜂̃
(𝑓(𝒮)), ℐ̃1

𝜇̃
(𝒮) ≥ ℐ̃2

𝜇̃
(𝑓(𝒮)), for 𝑗 ∈ Γ0 , ℐ̃2

𝛾̃
(𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
)) ≥ 𝑟 , ℐ̃2

𝜂̃
(𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
)) ≤ 1 − 𝑟 , 

ℐ̃2
𝜇̃
(𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
)) ≤ 1 − 𝑟. From the surjectively of 𝑓 we obtain 𝑓([⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ0 ]

𝑐
) = [⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
. Hence, 

ℐ̃2
𝛾̃
([⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≥ 𝑟, ℐ̃2

𝜂̃
([⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟, ℐ̃2

𝜇̃
([⋃ ℰ𝑗𝑗∈Γ0 ]

𝑐
) ≤ 1 − 𝑟. Thus, (𝔗̃2, 𝜏̃2

𝛾̃𝜂̃𝜇̃
, ℐ̃2
𝛾̃𝜂̃𝜇̃

)  is 𝑟 − 𝒮𝒱𝒩ℐ2 −

𝑐𝑜𝑚𝑝𝑎𝑐𝑡.  

 

Theorem 4.20. Let (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

, ℐ̃1
𝛾̃𝜂̃𝜇̃

) , (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

, ℐ̃2
𝛾̃𝜂̃𝜇̃

)  be two 𝒮𝒱𝒩ℐ𝒯𝒮′𝑠  and 𝑓: 𝔗̃1 ⟶ 𝔗̃2  a surjective  𝒮𝒱𝒩 - 

continuous. If (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

, ℐ̃1
𝛾̃𝜂̃𝜇̃

) is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ)1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and ℐ̃1
𝛾̃
(𝒮) ≤ ℐ̃2

𝛾̃
(𝑓(𝒮)), ℐ̃1

𝜂̃
(𝒮) ≥ ℐ̃2

𝜂̃
(𝑓(𝒮)), ℐ̃1

𝜇̃
(𝒮) ≥

ℐ̃2
𝜇̃
(𝑓(𝒮)). Then, (𝔗̃2, 𝜏̃2

𝛾̃𝜂̃𝜇̃
, ℐ̃2
𝛾̃𝜂̃𝜇̃

) is 𝑟 − 𝒮𝒱𝒩𝐶(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡. 

 

Proof. Let 𝜏̃2
𝛾̃(𝒮) ≥ 𝑟, 𝜏̃2

𝜂̃(𝒮) ≤ 1 − 𝑟 , 𝜏̃2
𝜇̃(𝒮) ≤ 1 − 𝑟  and every family {ℰ𝑗 ∈ 𝐼

𝔗̃: 𝜏̃2
𝛾̃
(ℰ𝑗) ≥ 𝑟 ,  𝜏̃2

𝜂̃
(ℰ𝑗) ≤ 1 − 𝑟} 

with 𝒮 ≤ ⋃ ℰ𝑗𝑗∈Γ . Then, 𝑓−1(𝒮) ≤ ⋃ 𝑓−1(ℰ𝑗)𝑗∈Γ . Since, 𝑓 is 𝒮𝒱𝒩- continuous for each 𝑗 ∈ Γ, 𝜏̃1
𝛾̃
(𝑓−1(ℰ𝑗)) ≥ 𝑟,

𝜏̃1
𝜂̃
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟, 𝜏̃1

𝜇̃
(𝑓−1(ℰ𝑗)) ≤ 1 − 𝑟. By 𝑟 − 𝒮𝒱𝒩𝐶(ℐ)1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 of (𝔗̃1, 𝜏̃1

𝛾̃𝜂̃𝜇̃
, ℐ̃1
𝛾̃𝜂̃𝜇̃

), there exists a 

finite Γ0 ⊆ Γ such that 
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ℐ̃1
𝛾̃
(𝑓−1(𝒮) ∩ [⋃ 𝐶

𝜏̃1
𝛾̃(𝑓−1(ℰ𝑗), r)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃1
𝜂̃
(𝑓−1(𝒮) ∩ [⋃ 𝐶

𝜏̃1
𝜂̃(𝑓−1(ℰ𝑗), r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃1
𝜇̃
(𝑓−1(𝒮) ∩ [⋃ 𝐶

𝜏̃1
𝜇̃(𝑓−1(ℰ𝑗), r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, 𝑓  is 𝒮𝒱𝒩 - continuous mapping, 𝐶
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(𝒮𝑗 , r) ≤ 𝑓

−1(𝐶
𝜏̃2
𝛾̃𝜂̃𝜇̃(𝒮𝑗 , r))  for every 𝒮 ∈ 𝐼𝔗̃2 . Therefore, 

𝑓−1(𝒮) ∩ [⋃ 𝐶
𝜏̃1
𝛾̃𝜂̃𝜇̃(𝑓−1(ℰ𝑗 , r)𝑗∈Γ0 ]

𝑐
= 𝑓−1(𝒮) ∩ [⋃ 𝑓−1(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(ℰ𝑗 , r))𝑗∈Γ0 ]

𝑐
. Hence, 

ℐ̃1
𝛾̃
(𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1(𝐶

𝜏̃2
𝛾̃(𝒮, r))

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃1
𝜂̃
(𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1(𝐶

𝜏̃2
𝜂̃(𝒮, r))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃1
𝜇̃
(𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1(𝐶

𝜏̃2
𝜇̃(𝒮, r))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since, ℐ̃1
𝛾̃
(𝒮) ≤ ℐ̃2

𝛾̃
(𝑓(𝒮)), ℐ̃1

𝜂̃
(𝒮) ≥ ℐ̃2

𝜂̃
(𝑓(𝒮)), ℐ̃1

𝜇̃
(𝒮) ≥ ℐ̃2

𝜇̃
(𝑓(𝒮)), for each 𝑗 ∈ Γ0 we have,  

ℐ̃2
𝛾̃
(𝑓[𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1 (𝐶

𝜏̃2
𝛾̃(𝒮, r))

𝑗∈Γ0

]

𝑐

]) ≥ 𝑟, ℐ̃2
𝜂̃
(𝑓[𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1 (𝐶

𝜏̃2
𝜂̃(𝒮, r))

𝑗∈Γ0

]

𝑐

]) ≤ 1 − 𝑟, 

ℐ̃2
𝜇̃
(𝑓[𝑓−1(𝒮𝑗) ∩ [⋃ 𝑓−1 (𝐶

𝜏̃2
𝜇̃(𝒮, r))

𝑗∈Γ0

]

𝑐

]) ≤ 1 − 𝑟. 

Since, 𝑓 is surjective,  

ℐ̃2
𝛾̃
(𝒮𝑗 ∩ [⋃ 𝐶

𝜏̃2
𝛾̃(𝒮, r)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃2
𝜂̃
(𝒮𝑗 ∩ [⋃ 𝐶

𝜏̃2
𝜂̃(𝒮, r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, ℐ̃2
𝜇̃
(𝒮𝑗 ∩ [⋃ 𝐶

𝜏̃2
𝜇̃(𝒮, r)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Thus, (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

, ℐ̃2
𝛾̃𝜂̃𝜇̃

) is 𝑟 − 𝒮𝒱𝒩(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡.  

 

Theorem 4.21. The image of an 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 under a surjective 𝒮𝒱𝒩 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping 

and ℐ̃1
𝛾̃
(𝒮) ≤ ℐ̃2

𝛾̃
(𝑓(𝒮)), ℐ̃1

𝜂̃
(𝒮) ≥ ℐ̃2

𝜂̃
(𝑓(𝒮)), ℐ̃1

𝜇̃
(𝒮) ≥ ℐ̃2

𝜇̃
(𝑓(𝒮)) is  𝑟 − 𝒮𝒱𝒩𝐶(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡.  

 

Proof. Let 𝒮 ∈ I𝔗̃1 be an 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  in (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

, ℐ̃1
𝛾̃𝜂̃𝜇̃

)  and 𝑓: (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

, ℐ̃1
𝛾̃𝜂̃𝜇̃

) → (𝔗̃2, 𝜏̃2
𝛾̃𝜂̃𝜇̃

, ℐ̃2
𝛾̃𝜂̃𝜇̃

)     

a surjective 𝒮𝒱𝒩 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. If 𝜏̃2
𝛾̃(𝒮𝑐) ≥ 𝑟, 𝜏̃2

𝜂̃(𝒮𝑐) ≤ 1 − 𝑟 , 𝜏̃2
𝜇̃(𝒮𝑐) ≤ 1 − 𝑟 and each family {ℰ𝑗 ∈ 𝐼

𝔗̃:  

𝜏̃2
𝛾̃
(ℰ𝑗) ≥ 𝑟, 𝜏̃2

𝜂̃
(ℰ𝑗) ≤ 1 − 𝑟 , 𝜏̃2

𝜇̃
(ℰ𝑗) ≤ 1 − 𝑟}  with 𝑓(𝒮) ≤ ⋃ ℰ𝑗𝑗∈Γ , then 𝑓(𝒮) ≤ ⋃ 𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ  and 

since for 𝑗 ∈ Γ,  

𝑖𝑛𝑡
𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝑖𝑛𝑡

𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟), 𝑟), r) = 𝑖𝑛𝑡𝜏̃2

𝛾̃𝜂̃𝜇̃(𝐶
𝜏̃2
𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟). 

 

By 𝒮𝒱𝒩 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 of 𝑓 we have 𝒮 ≤ ⋃ 𝑓−1(𝑖𝑛𝑡
𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟)𝑗∈Γ ) and  

𝜏̃1
𝛾̃
(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝛾̃(𝐶

𝜏̃2
𝛾̃(ℰ𝑗 , 𝑟), 𝑟))) ≥ 𝑟, 𝜏̃2

𝜂̃
(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜂̃(𝐶

𝜏̃2
𝜂̃(ℰ𝑗 , 𝑟), 𝑟))) ≤ 1 − 𝑟, 
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 𝜏̃1
𝜇̃
(𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜇̃(𝐶

𝜏̃2
𝜇̃(ℰ𝑗 , 𝑟), 𝑟))) ≤ 1 − 𝑟.  

By  𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 of 𝒮 in (𝔗̃1, 𝜏̃1
𝛾̃𝜂̃𝜇̃

, ℐ̃1
𝛾̃𝜂̃𝜇̃

), there exists a finite Γ0 ⊆ Γ such that 

ℐ̃1
𝛾̃
(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝛾̃(𝐶

𝜏̃2
𝛾̃(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃1
𝜂̃
(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜂̃(𝐶

𝜏̃2
𝜂̃(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃1
𝜇̃
(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜇̃(𝐶

𝜏̃2
𝜇̃(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

Since ℐ̃1
𝛾̃
(𝒮) ≤ ℐ̃2

𝛾̃
(𝑓(𝒮)), ℐ̃1

𝜂̃
(𝒮) ≥ ℐ̃2

𝜂̃
(𝑓(𝒮)), ℐ̃1

𝜇̃
(𝒮) ≥ ℐ̃2

𝜇̃
(𝑓(𝒮)), we have  

ℐ̃2
𝛾̃
(𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝛾̃(𝐶

𝜏̃2
𝛾̃(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

)) ≥ 𝑟, ℐ̃2
𝜂̃
(𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜂̃(𝐶

𝜏̃2
𝜂̃(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

)) ≤ 1 − 𝑟, 

ℐ̃2
𝜇̃
(𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡

𝜏̃2
𝜇̃(𝐶

𝜏̃2
𝜇̃(ℰ𝑗 , 𝑟), 𝑟))

𝑗∈Γ0

]

𝑐

)) ≤ 1 − 𝑟. 

By surjectively of 𝑓, 𝑓(𝒮𝑗 ∩ [⋃ 𝑓−1(𝑖𝑛𝑡
𝜏̃2
𝛾̃𝜂̃𝜇̃(𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟), 𝑟))𝑗∈Γ0 ]

𝑐
) = 𝑓(𝒮𝑗) ∩ [⋃ (𝐶

𝜏̃2
𝛾̃𝜂̃𝜇̃(ℰ𝑗 , 𝑟)𝑗∈Γ0 ]

𝑐
. Thus,  

ℐ̃2
𝛾̃
(𝑓(𝒮𝑗) ∩ [⋃(𝐶

𝜏̃2
𝛾̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≥ 𝑟, ℐ̃2
𝜂̃
(𝑓(𝒮𝑗) ∩ [⋃(𝐶

𝜏̃2
𝜂̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟, 

ℐ̃2
𝜇̃
(𝑓(𝒮𝑗) ∩ [⋃(𝐶

𝜏̃2
𝜇̃(ℰ𝑗 , 𝑟)

𝑗∈Γ0

]

𝑐

) ≤ 1 − 𝑟. 

and hence, 𝑓(𝒮) is  r − 𝒮𝒱𝒩𝐶(ℐ)2 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡.  

 

Theorem 4.22. The image of an 𝑟 − 𝒮𝒱𝒩ℐ1 − 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 under a surjective 𝒮𝒱𝒩 −𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 mapping 

and ℐ̃1
𝛾̃
(𝒮) ≤ ℐ̃2

𝛾̃
(𝑓(𝒮)), ℐ̃1

𝜂̃
(𝒮) ≥ ℐ̃2

𝜂̃
(𝑓(𝒮)), ℐ̃1

𝜇̃
(𝒮) ≥ ℐ̃2

𝜇̃
(𝑓(𝒮)), is  𝑟 − 𝒮𝒱𝒩ℐ2 −quasi H-closed. 

 

Proof. Similar to proof of Theorem 4.21. 

 

5.  Conclusions 

    In the current research paper, we found some results of single-valued neutrosophic continuous mappings 

called almost continuous and weakly continuous. These instances are kinds of some generalizations of fuzzy 

continuity in view of the definition of 𝑆̃ostak. We brought counterexamples whenever such properties fail to be 

preserved. We also introduced and studied several kinds of r-single-valued neutrosophic compactness defined 

on the single-valued neutrosophic ideal topological spaces. 
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Abstract: In this industrial era the innovation of industrial machines had a significant impact on 

industrial evaluation which minimize manpower, time consumption for product making, material 

wastage. Heavy usage of machines leads to the occurrence of some faults in it. Such damaged parts 

of each machine have been identified to overhaul which is defined as a set called neutro-prime set 

under its topological structure. Some related properties of such space have been proved and some 

are disproved with counterexamples. Also, the idea of interior and closure dealt with this space 

with few basic properties. This article provides a decision-making process to identify the best fit of 

those damages under a neutrosophic environment and the priority is given to the heavily damaged 

machine. We also use step by step algorithm and formulae to compute machine values. Our 

objective is to demonstrate that our proposed algorithm can calculate key measurements for fault 

diagnostic in machines as well as to provide fair and reliable forecasted outcomes.       

Keywords: Neutro-prime sets; neutro-prime topological spaces; neutro-prime interior; neutro- 

prime closure; neutro-prime absolute complement; decision making. 

 

 

1. Introduction 

Throughout history, the relation between humans and machines became most important in 

moral, ethical, social, economic, and the environment. Machines have confirmed to grasp the key to 

further developments we humans so extremely need. In the process of doing so, a machine whether 

or not in continuous use will get damaged and worn-out. In our daily life, we need to reduce the risk 

of its expensive cost, bad maintenance, and repair parts.  

The principles of three autonomous membership degrees such as truth, falsity, and 

indeterminacy, committed to each element of a set which categorized to neutrosophic set (NS) as 

instigated by (1998) Smarandache [20, 21], which is an explanation of a fuzzy set (FS) defined by 

(1965) Zadeh [33], and intuitionistic fuzzy set (IFS) generated by (1986) Atanassov [32]. It is an active 

organization that hypothesizes the notion of all other sets introduced before. It goes out to be a 

treasured mathematical implement to observe unformed, damaged, indistinct facts. In recent years 

many researchers have further expanded and developed the theory and application of NSs [1, 2, 3, 5, 

6, 14, 16-19]. Also, (2017) Smarandache [22] originated a new trend set called plithogenic set and 

others developed [4, 9, 12, 15]. 

mailto:sindhu.mp@
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Topology plays a vital role among many sets such as FS, NS, soft sets (SS), neutrosophic soft set 

(NSS), etc., These types of sets are extended by different researchers [7, 10, 11, 13, 23-27, 29, 30, 31] 

and its application in decision making (DM) problems [8]. Chinnadurai and Sindhu [28] introduced 

the notion of prime sets (PSs) and prime-topological spaces (PTSs) (2020), as one of the mathematical 

utensils for dealing with the subsets of the universe set.    

The major achievements of this research are: 

 Initiating a neutrosophic environment on prime sets under a topological space. 

 Demonstrating the decision-making problem for analyzing the amount of damage in machines. 

 An outcome of the proposed algorithm fits in a better way with the number of faults in 

machines by diagnosis the set values. 

 

To overcome the disadvantages of machines, solving algorithms are presented in this study. A 

decision-making process delivers to identify the best fit of those damages under a neutrosophic 

environment and the priority is given to the heavily damaged machine with the use of step by step 

algorithm and formulae to compute machine values. The main tool used to find the faults in 

machines are complement and absolute complements of the specified set. 

 The structure of this study is as follows: Some significant definitions interrelated to the study 

are presented in part 2. Part 3 introduces the definition of neutro-prime sets, neutro-prime 

topological spaces, neutro-prime interior and neutro-prime closure with fundamental properties, 

and related examples. Part 4 explains the DM problem to repair the sample machines with some 

damages. The algorithm and formulae are presented to find the final result. Finally, the 

contributions of this study are concluded with future works in part 5. 

2. Preliminaries  

In this part, some essential definitions connected to this work are pointed. 

 

Definition 2.1 Let W be a non-empty set and Ww . A NS D in W is characterized by a 

truth-membership function DT , an indeterminacy-membership function DI , and a 

false-membership function DF  which are subsets of [0, 1] and is defined as 

  WwwFwIwTwD DDD  :)(),(),(, ,  

where  

3)(sup)(sup)(sup0  wFwIwT DDD . 

 

Definition 2.2 Let NS(W) denote the family of all NSs over W and )(WNSn  . Then   is called a 

neutrosophic topology (NT) on W if it satisfies the following conditions 

 (i) nnn 1,0 , where null NS  Wwwn  :)1,0,0,0  and an absolute NS  Wwwn  :)0,1,1,1 . 

 (ii) the intersection of any finite number of members of n  belongs to n . 

(iii) the union of any collection of members of n  belongs to n . 

Then the pair (W, n ) is called a NTS. 

Every member of n  is called n -open neutrosophic set ( n - ONS). An NS is called n -closed ( n - 

CNS) if and only if its complement is n - ONS. 

 

Definition 2.3 Let D be a NS over W. Then the complement of is denoted by D  and defined by 

 WwwTwIwFwD DDD  :)(),(1),(,  . 

Clearly,   DD 
 . 

 



Neutrosophic Sets and Systems, Vol. 41, 2021     148  

 

 

Chinnadurai V, Sindhu M P and Bharathivelan K, An Introduction to Neutro-Prime Topology and Decision Making 

Problem 

Definition 2.4 Let (W, ) be a topological space (TS), where W is the universe and   is a topology. 

Let K be a proper nonempty subset of W. Let D be a  -open set, where WD , . Then the prime set 

(PS) over W is denoted by   and defined by    DKKW :,, . 

 

Definition 2.5 Let (W, ) be a TS. Then p  is called a prime topology (PT) if it satisfies the following 

conditions 

(i) pW  ,  . 

(ii) the intersection of any finite number of members of p  belongs to p . 

(iii) the union of any collection of members of p  belongs to p . 

Then the pair (W, p ) is called a prime topological space (PTS). 

Every member of p  is called p -prime open set ( p - POS). The complement of every p - POS of 

W is called the p -prime closed set ( p - PCS) of W and this collection is denoted by 
p . 

 

Example 2.6 Let  321 ,, wwwW   with topology  }{,, 1wW  . 

Clearly, (W, ) is a TS over W. 

Then 

 },{},,{},{,, 31211 wwwwwWp   = PS(W) 

and its members are p - POSs. 

Thus (W, p ) is a PTS over W. 

Then 

  }{},{},,{,, 2332 wwwwWp  


 

and its members are p - PCSs, whose complements are p - POSs. 

 

Definition 2.7 Let W be a set of universe and Wwi  where Ii . Let D be a NS over W. Then the 

subset of NS (sub-NS) D is denoted as )( WD  and defined as  

      .)(),(min,)(),(max,)(),(max),,(,)(),(),(,)( jDiDjDiDjDiDjiiDiDiDiD wFwFwIwIwTwTwwwFwIwTwW 

where Iji ,  and ji  . 

Clearly, ),(),( ijji wwww  . 

 

Example 2.8 Let  321 ,, wwwW   be a set of features of the washing machine, where 1w = energy 

efficiency, 2w = capacity, 3w =price. Let D be a NS over W, defined as 

 3.,1.,4.,,9.,7.,2.,,4.,5.,7., 321 wwwD  . 

Then the sub-NS D is 

 .3.,7.,4.),,(,3.,5.,7.),,(,4.,7.,7.),,(,3.,1.,4.,,9.,7.,2.,,4.,5.,7.,)( 323121321 wwwwwwwwwWD 

 

Definition 2.9 Let W be a set of universe and Wwi  where Ii . Let V be any proper nonempty 

subset of W, say }{ iw  and },{ ji ww . Let D be a NS over W. Then the subset of NS D with respect to 

iw  (sub-NS
iwD ) and ji ww ,  (sub-NS

ji wwD , ) are denoted as )( iD w  and ),,( jiD ww  and defined 

as 

     
)0(),0(),0(),,(,)0(),0(),0(,

,)(),(min,)(),(max,)(),(max),,(,)(),(),(,)(

nDnRnDlknRnRnDk

jDiDjDiDjDiDjiiDiDiDiiD

FITwwFITw

wFwFwIwIwTwTwwwFwIwTww 

where Ii , }{iIj  , },{, jiIlk   and lk    
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and 


     
     

      )(),(min,)(),(max,)(),(max),,(

,)(),(min,)(),(max,)(),(max),,(

,)(),(min,)(),(max,)(),(max),,(

,)0(),0(),0(,,)(),(),(,,)(),(),(,),(

kDjDkDjDkDjDkj

kDiDkDiDkDiDki

jDiDjDiDjDiDji

nDnDnDkjDjDjDjiDiDiDijiD

wFwFwIwIwTwTww

wFwFwIwIwTwTww

wFwFwIwIwTwTww

FITwwFwIwTwwFwIwTwww 

 

where Ikji ,,  and kji  , respectively. 

 

Example 2.10 Let  321 ,, wwwW  . Let D and F be two NSs over W and are defined as follows 

  2.,5.,6.,,3.,7.,4.,,8.,2.,1., 321 wwwD 
 

and 

  1.,6.,7.,,1.,8.,9.,,3.,5.,6., 321 wwwF  . 

Then sub-NS
32 , wwD  and sub-NS

2wF are defined as 

  2.,7.,6.,,2.,5.,6.,,3.,7.,4.,,2.,5.,6.,,3.,7.,4.,,1,0,0,),( 3,23,12,132132 wwwwwwwwD   and 

  1.,8.,9.,,1,0,0,,1.,8.,9.,,1,0,0,,1.,8.,9.,,1,0,0,)( 3,23,12,13212 wwwwwwwF  , respectively. 

3. Neutro-Prime Topology  

In this part, the new type of set is initiated as neutro-prime sets and defined its topological 

space as neutro-prime topological spaces. Some of its basic properties are examined with illustrative 

examples. 

 

Definition 3.1 Let (W, n ) be a neutrosophic topological space (NTS), where W is the universe and 

n  is a neutrosophic topology (NT). Let D be a n -open neutrosophic set, where WD , . Let V be 

any proper nonempty subset of W. Then  

    VVVVD Dp :)()( ,  

for all proper nonempty subset V of W. 

Thus the elements belongs to )(VDp  are said to be neutro-prime sets (NPSs) over W and denoted 

by )( VD . 

 

Example 3.2 Let  321 ,, wwwW   be a set of features of the washing machine, where 1w = energy 

efficiency, 2w = capacity, 3w =price. Let D be a NS over W, defined as 

 3.,1.,4.,,9.,7.,2.,,4.,5.,7., 321 wwwD  . 

Then NPS  

 ),(),,(),()( 323133 wwwwwwD DDDp   , 

where 

 3.,7.,4.),,(,3.,5.,7.),,(,1,0,0),,(,3.,1.,4.,,1,0,0,,1,0,0,)( 3231213213 wwwwwwwwwwD  , 

   3.,7.,4.),,(,3.,5.,7.),,(,4.,7.,7.),,(,3.,1.,4.,,1,0,0,,4.,5.,7.,, 32312132131 wwwwwwwwwwwD 

 and 

   .3.,7.,4.),,(,3.,5.,7.),,(,4.,7.,7.),,(,3.,1.,4.,,9.,7.,2.,,1,0,0,, 32312132132 wwwwwwwwwwwD 

 

Definition 3.3 Let W be a set of the universe and V be any proper nonempty subset of the W. Then 

the null NPS is denoted as np0  and defined as 

 VVFVIVTV RRRnp  :1)(,0)(,0)(,0 . 
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Definition 3.4 Let W be a set of the universe and V be any proper nonempty subset of the W. Then 

the absolute NPS is denoted as np1  and defined as 

 VVFVIVTV RRRnp  :0)(,1)(,1)(,1 . 

 

Definition 3.5 Let )( 1


VD and )( 2


VD  be two NPSs over W. Then their union is denoted as 

)()()( 2121




 VVV DDD    and is defined as 

      )(),(min,)(),(max,)(),(max,)( 2121212121





  VFVFVIVIVTVTVV RRRRRRD . 

 

Definition 3.6 Let )( 1


VD and )( 2


VD  be two NPSs over W. Then their intersection is denoted as 

)()()( 2121




 VVV DDD    and is defined as 

      )(),(max,)(),(min,)(),(min,)( 2121212121





  VFVFVIVIVTVTVV RRRRRRD . 

 

Definition 3.7 Let )( VD  be a NPS over W. Then its complement is denoted as )( VD  and is 

defined as  

 )(),(1),(,)(   VFVIVTVV DDDD . 

Clearly, the complement of )( VD  equals )( VD . i.e.,    )()(  

 VV DD  . 

 

Definition 3.8 Let )( 1


VD  and )( 2


VD  be two NPSs over W. Then )( 1


VD  is said to be a 

neutro-prime subset of )( 2


VD  if  

)()( 21


 VTVT RR , )()( 21


 ITIT RR , )()( 21


 VFVF RR .  

It is denoted by )()( 21


 VV DD  . 

Also )( 1


VD  is said to be neutro-prime equal to )( 2


VD  if )( 1


VD  is a neutro-prime subset of 

)( 2


VD  and )( 2


VD  is a neutro-prime subset of )( 1


VD . It is denoted by )()( 21


 VV DD  . 

 

Proposition 3.9 Let )( 1


VD , )( 2


VD and )( 3


VD  be NPSs over W. Then, 

(i) )(0)( 11


 VV DnpD   . 

(ii) npnpD V 11)( 1 
  . 

(iii)     )()()()()()( 321321


 VVVVVV DDDDDD   . 

(iv)      )()()()()()()( 3121321


 VVVVVVV DDDDDDD   . 

Proof. Straightforward. 

 

Proposition 3.10 Let )( 1


VD , )( 2


VD and )( 3


VD  be NPSs over W. Then, 

(i) npnpD V 00)( 1 
  . 

(ii) )(1)( 11


 VV DnpD   . 

(iii) 
    )()()()()()( 321321


 VVVVVV DDDDDD   . 

(iv) 
     )()()()()()()( 3121321


 VVVVVVV DDDDDDD   . 

Proof. Straightforward. 
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Proposition 3.11 Let )( 1


VD  and )( 2


VD  be two NPSs over W. Then, 

(i)   )()()()( 2121 
 

VVVV DDDD   . 

(ii)   )()()()( 2121 
 

VVVV DDDD   . 

Proof. Straightforward. 

 

Proposition 3.12 Let )( 1


VD , )( 2


VD  and )( 1


VF  be NPSs over W for NSs D and F. Then, 

(i) )()( 11


 VVFD FD  . 

(ii) )()()( 2121


 VVVV DDD   . 

(iii) )()()( 121


 VVV DDD    and )()()( 221


 VVV DDD   .   

(iv) )()()( 121


 VVV DDD    and )()()( 221


 VVV DDD   . 

(v) )()()()( 2121 


VVVV DDDD  . 

Proof. Straightforward. 

 

Definition 3.13 Let (W, n ) be a NTS. Let NPS(W) be the collection of NPSs )( VD  over W and D 

be a n -open neutrosophic set (ONS), where WD , . Then )(WNPSnp   is called a 

neutro-prime topology (NPT) if it satisfies the following conditions 

(i) npnpnp 1,0  . 

(ii) the union of any collection of members of np  belongs to np . 

(iii) the intersection of any finite number of members of np  belongs to np . 

Then the pair (W, np ) is said to be a neutro-prime topological space (NPTS). 

Every member of np  is said to be a np -neutro-prime open set ( np - NPOS). The complement of 

every np - NPOS of W is said to be a np -neutro-prime closed set ( np - NPCS) of W and this 

collection is denoted by 
np . 

 

Example 3.14 Let  321 ,, wwwW   and  FDnnn ,,1,0  where D and F are NSs over W and are 

defined as follows 

  2.,5.,6.,,3.,7.,4.,,8.,2.,1., 321 wwwD 
 

and 

  1.,6.,7.,,1.,8.,9.,,3.,5.,6., 321 wwwF  . 

Thus (W, n ) is a NTS over W. 

Here NPSs are 

 ),(),,(),,(),(),(),( 3231213131 wwwwwwwwwwD DDDDDp   , 

where 

 1,0,0),,(,2.,5.,6.),,(,3.,7.,4.),,(,1,0,0,,1,0,0,,8.,2.,1.,)( 3231213211 wwwwwwwwwwD  , 

 2.,7.,6.),,(,2.,5.,6.),,(,1,0,0),,(,2.,5.,6.,,1,0,0,,1,0,0,)( 3231213213 wwwwwwwwwwD  , 

 2.,7.,6.),,(,2.,5.,6.),,(,3.,7.,4.),,(,1,0,0,,3.,7.,4.,,8.,2.,1.,),( 32312132121 wwwwwwwwwwwD  , 

 2.,7.,6.),,(,2.,5.,6.),,(,3.,7.,4.),,(,2.,5.,6.,,1,0,0,,8.,2.,1.,),( 32312132131 wwwwwwwwwwwD  , 

 2.,7.,6.),,(,2.,5.,6.),,(,3.,7.,4.),,(,2.,5.,6.,,3.,7.,4.,,1,0,0,),( 32312132132 wwwwwwwwwwwD  , 

and 

 ),(),,(),()( 322122 wwwwwwF FFFp   , 

where 

 1.,8.,9.),,(,1,0,0),,(,1.,8.,9.),,(,1,0,0,,1.,8.,9.,,1,0,0,)( 3231213212 wwwwwwwwwwF  , 
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 1.,8.,9.),,(,1.,6.,7.),,(,1.,8.,9.),,(,1,0,0,,1.,8.,9.,,3.,5.,6.,),( 32312132121 wwwwwwwwwwwF  , 

 1.,8.,9.),,(,1.,6.,7.),,(,1.,8.,9.),,(,1.,6.,7.,,1.,8.,9.,,1,0,0,),( 32312132132 wwwwwwwwwwwF  . 

Then  

 ),(),,(,1,0 2121 wwww FDnpnpnp    is a NPT. 

Thus (W, np ) is a NPTS over W. 

Also, the complement of the NPT np  is 

 ),(,),(,1,0 2121 


wwww FDnpnpnp  , 

where 

 6.,3.,2.),,(,6.,5.,2.),,(,4.,3.,3.),,(,0,1,1,,4.,3.,3.,,1.,8.,8.,),( 32312132121 wwwwwwwwwwwD   

and

 9.,2.,1.),,(,7.,4.,1.),,(,9.,2.,1.),,(,0,1,1,,9.,2.,1.,,6.,5.,3.,),( 32312132121 wwwwwwwwwwwF  . 

 

Remark 3.15 The collection of NPS )(VDp  can generate one or more NPT, which is illustrated in 

the following example.  

 

Example 3.16 Consider Example 3.14. 

Here  

 ),(),,(,1,01 2121 wwww FDnpnpnp    and 

 ),(),,(,1,02 3232 wwww FDnpnpnp    are NPTs 

Thus (W, np1 ) and (W, np2 ) are NPTSs over W. 

Also, the complement of the NPTs np1  and np2  are 

 ),(,),(,1,01 2121 


wwww FDnpnpnp   and 

 ),(,),(,1,02 3232 


wwww FDnpnpnp   , respectively, 

where 

 6.,3.,2.),,(,6.,5.,2.),,(,4.,3.,3.),,(,0,1,1,,4.,3.,3.,,1.,8.,8.,),( 32312132121 wwwwwwwwwwwD   

 9.,2.,1.),,(,7.,4.,1.),,(,9.,2.,1.),,(,0,1,1,,9.,2.,1.,,6.,5.,3.,),( 32312132121 wwwwwwwwwwwF   

and  

 6.,3.,2.),,(,6.,5.,2.),,(,4.,3.,3.),,(,6.,5.,2.,,4.,3.,3.,,0,1,1,),( 32312132132 wwwwwwwwwwwD   

 9.,2.,1.),,(,7.,4.,1.),,(,9.,2.,1.),,(,7.,4.,1.,,9.,2.,1.,,0,1,1,),( 32312132132 wwwwwwwwwwwF  . 

 

Definition 3.17 A NPT np  is said to be a neutro-prime discrete topology if )(WNPSnp   for all 

the subsets of W. 

 

Definition 3.18 A NPT np  is said to be a neutro-prime indiscrete topology if np  contains only 

np0  and np1 . 

 

Proposition 3.19 Let (W, np1 ) and (W, np2 ) be two NPTSs over W and let 

 npnpnpnp DWNPSD  21:)(21   . Then npnp  21   is also a NPT over W.  

Proof. Let (W, np1 ) and (W, np2 ) be two NPTSs over W. 

(i) npnpnpnp  211,0  . 

(ii) Let npnpDD  21, 21  . 

Then npDD 1, 21   and npDD 2, 21  . 
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npDD 121    and npDD 221  . 

npnpDD  2121   . 

(iii) Let  iD npnpi ,21   . 

Then npiD 1  and npiD 2 , i . 

np
i

iD 1


  and np
i

iD 2


 , i . 

npnp
i

iD  21  


. 

Thus npnp  21   is also a NPT over W. 

 

Remark 3.20 The union of two NPTs need not be a NPT. The following example illustrates this 

remark. 

 

Example 3.21 Consider Example 3.14. 

Here NPTs are 

 ),(),,(,1,01 2121 wwww FDnpnpnp   , 

where 

 2.,7.,6.),,(,2.,5.,6.),,(,3.,7.,4.),,(,1,0,0,,3.,7.,4.,,8.,2.,1.,),( 32312132121 wwwwwwwwwwwD  , 

 1.,8.,9.),,(,1.,6.,7.),,(,1.,8.,9.),,(,1,0,0,,1.,8.,9.,,3.,5.,6.,),( 32312132121 wwwwwwwwwwwF   

and  

 ),(),,(,1,02 3232 wwww FDnpnpnp   ,  

where 

 2.,7.,6.),,(,2.,5.,6.),,(,3.,7.,4.),,(,2.,5.,6.,,3.,7.,4.,,1,0,0,),( 32312132132 wwwwwwwwwwwD  , 

 1.,8.,9.),,(,1.,6.,7.),,(,1.,8.,9.),,(,1.,6.,7.,,1.,8.,9.,,1,0,0,),( 32312132132 wwwwwwwwwwwF  . 

Thus (W, np1 ) and (W, np2 ) are NPTSs over W. 

Clearly, 

  ),(),,(),,(),,(,1,021 32322121 wwwwwwww FDFDnpnpnpnp   . 

Then   

 2.,7.,6.),,(,2.,5.,6.),,(,3.,7.,4.),,(,1,0,0,,3.,7.,4.,,1,0,0,

),(),(

323121321

3221

wwwwwwwww

wwww DD



 
 

Thus npnp  21   is not a NPTS, since npnpDD wwww  21),(),( 3221   . 

Hence the union of two NPTs need not be a NPT. 

 

Proposition 3.22 Let )( 1


VD  and )( 2


VD  be two np -NPOSs over W. Then 

(i)   )()()()( 2121 
 

VVVV DDDD   . 

(ii)   )()()()( 2121 
 

VVVV DDDD   . 

Proof. Straightforward. 

 

Definition 3.23 Let (W, np ) be a NPTS over W. Let )( VD  be any NPSs over W. Then the 

neutro-prime interior of )( VD  is denoted by  )(int VDnp   and defined by  

    )()()(:)()(int   VUandUUV DDnpDDDnp    

Clearly, it is the union of all np -NPOSs contained in )( VD .  
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Definition 3.24 Let (W, np ) be a NPTS over W. Let )( VD  be any NPSs over W. Then the 

neutro-prime closure of )( VD  is denoted by  )( Vcl Dnp   and defined by  

    )()()(:)()(   VUandUUVcl DDnpDDDnp    

Clearly, it is the intersection of all 
np -NPCSs containing )( VD .  

 

Example 3.25 Let  321 ,, wwwW   and  DCBAnnn ,,,,1,0  where A, B, C, and D are NSs over W 

and are defined as follows 

  6.,4.,2.,,6.,5.,4.,,3.,2.,1., 321 wwwA , 

 3.,2.,1.,,2.,8.,7.,,6.,5.,4., 321 wwwB  , 

 6.,2.,1.,,6.,5.,4.,,6.,2.,1., 321 wwwC   and 

 3.,4.,2.,,2.,8.,7.,,3.,5.,4., 321 wwwD  . 

Here DBA  , DDA  , ACA  , DDB  , BCB  , DCD  and ABA  , 

ADA  , CCA  , BDB  , CCB  , CCD  . 

Then A, B, C, and D are n - ONSs over W. 

Thus (W, n ) is a NTS over W. 

Here NPSs are 

 ),(),,(),()( 322122 wwwwwwA AAAp   , 

where 

 6.,5.,4.),,(,1,0,0),,(,3.,5.,4.),,(,1,0,0,,6.,5.,4.,,1,0,0,)( 3231213212 wwwwwwwwwwA  , 

 6.,5.,4.),,(,3.,4.,2.),,(,3.,5.,4.),,(,1,0,0,,6.,5.,4.,,3.,2.,1.,),( 32312132121 wwwwwwwwwwwA  , 

 6.,5.,4.),,(,3.,4.,2.),,(,3.,5.,4.),,(,6.,4.,2.,,6.,5.,4.,,1,0,0,),( 32312132132 wwwwwwwwwwwA  ; 

 

 ),(),,(),()( 312111 wwwwwwB BBBp   , 

where 

 1,0,0),,(,3.,5.,4.),,(,2.,8.,7.),,(,1,0,0,,1,0,0,,6.,5.,4.,)( 3231213211 wwwwwwwwwwB  , 

 2.,8.,7.),,(,3.,5.,4.),,(,2.,8.,7.),,(,1,0,0,,2.,8.,7.,,6.,5.,4.,),( 32312132121 wwwwwwwwwwwB 

 2.,8.,7.),,(,3.,5.,4.),,(,2.,8.,7.),,(,3.,2.,1.,,1,0,0,,6.,5.,4.,),( 32312132131 wwwwwwwwwwwB  ; 

 

 ),(),,(),,(),(),(),( 3231213131 wwwwwwwwwwC CCCCCp   , 

where 

 1,0,0),,(,6.,2.,1.),,(,6.,5.,4.),,(,1,0,0,,1,0,0,,6.,2.,1.,)( 3231213211 wwwwwwwwwwC  , 

 6.,5.,4.),,(,6.,2.,1.),,(,1,0,0),,(,6.,2.,1.,,1,0,0,,1,0,0,)( 3231213213 wwwwwwwwwwC  , 

 6.,5.,4.),,(,3.,2.,1.),,(,6.,5.,4.),,(,1,0,0,,6.,5.,4.,,6.,2.,1.,),( 32312132121 wwwwwwwwwwwC  , 

 6.,5.,4.),,(,3.,2.,1.),,(,6.,5.,4.),,(,6.,2.,1.,,1,0,0,,6.,2.,1.,),( 32312132131 wwwwwwwwwwwC  , 

 6.,5.,4.),,(,3.,2.,1.),,(,6.,5.,4.),,(,6.,2.,1,,6.,5.,4.,,1,0,0.,),( 32312132132 wwwwwwwwwwwC  ; 

 

 ),(),,(),()( 323133 wwwwwwD DDDp   , 

where 

 2.,8.,7.),,(,3.,5.,4.),,(,1,0,0),,(,3.,4.,2.,,1,0,0,,1,0,0,)( 3231213213 wwwwwwwwwwD  , 

 2.,8.,7.),,(,3.,5.,4.),,(,2.,8.,7.),,(,3.,4.,2.,,1,0,0,,3.,5.,4.,),( 32312132131 wwwwwwwwwwwD  , 

 2.,8.,7.),,(,3.,5.,4.),,(,2.,8.,7.),,(,3.,4.,2.,,2.,8.,7.,,1,0,0,),( 32312132132 wwwwwwwwwwwD  . 

Then  

 )(),(,1,0 11 ww CBnpnpnp    is a NPT. 
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Thus (W, np ) is a NPTS over W. 

Also, the complement of the NPT np  is 

 )(,)(,1,0 11 


ww CBnpnpnp  , 

where 

 0,1,1),,(,4.,5.,3.),,(,7.,2.,2.),,(,0,1,1,,0,1,1,,4.,5.,6.,)( 3231213211 wwwwwwwwwwB   

and 

 0,1,1),,(,1.,8.,6.),,(,4.,5.,6.),,(,0,1,1,,0,1,1,,1.,8.,6.,)( 3231213211 wwwwwwwwwwC  . 

 

Consider a NPS for NS B, 

 2.,8.,7.),,(,3.,5.,4.),,(,2.,8.,7.),,(,3.,2.,1.,,1,0,0,,6.,5.,4.,),( 32312132131 wwwwwwwwwwwB  . 

Clearly,  

 )(,0),( 131 www BnpB   . 

Thus 

    )()(0),(int 1131 wwww BBnpBnp    . 

Also, 

 npB ww 1),( 31  . 

Thus 

    npBnp wwcl 1),( 31  . 

Consider a NPS for NS C, 

 6.,5.,4.),,(,6.,2.,1.),,(,1,0,0),,(,6.,2.,1.,,1,0,0,,1,0,0,)( 3231213213 wwwwwwwwwwC  . 

Clearly,  

 npC w 0)( 3  . 

Thus 

    npCnp w 0)(int 3  . 

Also, 

 )(,1)( 13  ww CnpC  . 

Thus 

    )()(1)( 113  wwwcl CCnpCnp   . 

 

Theorem 3.26 Let (W, np ) be a NPTS over W. Let )( 1


VD  and )( 1


VF  be NPSs over W for NSs D 

and F. Then  

(i)   )()(int 11


 VV DDnp   and  )(int 1


VDnp   is the largest np -NPOS. 

(ii) FD        )(int)(int 11


 VV FnpDnp  . 

(iii)  )(int 1


VDnp   is an np -NPOS. 

(iv) )( 1


VD  is a np -NPOS iff   )()(int 11


 VV DDnp  . 

(v)     )(int)(intint 11


 VV DnpDnpnp  . 

(vi)   npnpnp 00int   and   npnpnp 11int  . 

(vii)      )(int)(int)()(int 1111


 VVVV FnpDnpFDnp   . 

(viii)      )(int)(int)()(int 1111


 VVVV FnpDnpFDnp   . 

Proof. Follows from Definition 3.23. 
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Theorem 3.27 Let (W, np ) be a NPTS over W. Let )( 1


VD  and )( 1


VF  be NPSs over W for NSs D 

and F. Then  

(i)  )()( 11


 VclV DnpD   and  )( 1


Vcl Dnp   is the smallest np -NPCS. 

(ii) FD        )()( 11


 VclVcl FnpDnp  . 

(iii)  )( 1


Vcl Dnp   is an np -NPCS. 

(iv) )( 1


VD  is a np -NPCS iff   )()( 11


 VVcl DDnp  . 

(v)     )()( 11


 VclVclcl DnpDnpnp  . 

(vi)   npnpnpcl 00   and   npnpnpcl 11  . 

(vii)      )()()()( 1111


 VclVclVVcl FnpDnpFDnp   . 

(viii)      )()()()( 1111


 VclVclVVcl FnpDnpFDnp   . 

Proof. Follows from Definition 3.24. 

 

Theorem 3.28 Let (W, np ) be a NPTS over W. Let )( VD  be a NPS over W for a NS D. Then  

(i)     )()(int 1 
 

VclV DnpDnp  . 

(ii)     )(int)( 1 
 

VVcl DnpDnp  . 

Proof. Follows from Definitions 3.23 and 3.24. 

4. Decision Making in NPTS 

In this section, the real-life application dealt to repair the sample machines with some damages. 

To repair it, priority is given to the high damaged machine. The solving techniques are given in the 

algorithm and formulae for evaluation are given. Some examples are considered to decide on these 

DM problems. 

 

Definition 4.1 Let )( VD  be a np -NPOS over W of a NPTS (W, np ). Then the neutro-prime 

absolute complement of )( VD  is denoted as  )(
~

VD  and defined as    )(
~

)(
~   VWV DD  . 

 

Thus the collection of  )(
~

VD  is denoted as np~  and defined as   )(
~

,1,0~  VDnpnpnp  . The 

elements belong to  )(
~

VD  are said to be neutro-prime absolute open sets (NPAOSs) over (W, np ) 

and the complement of NPOSs are said to be neutro-prime absolute closed sets (NPACSs) over 

(W, np ) and denote the collection by 
np~ .  

 

Example 4.2 Let  321 ,, wwwW   and  Dnnn ,1,0  where D is a NS over W and are defined as 

follows 

 1.,8.,7.,,1.,5.,6.,,6.,4.,9., 321 wwwD  . 

Thus (W, n ) is a NTS over W. 

Then NPS  

 ),(),,(),()( 323133 wwwwwwD DDDp   , 

where 

 1.,8.,7.),,(,1.,8.,9.),,(,1,0,0),,(,1.,8.,7.,,1,0,0,,1,0,0,)( 3231213213 wwwwwwwwwwD  , 

 1.,8.,7.),,(,1.,8.,9.),,(,1.,5.,9.),,(,1.,8.,7.,,1,0,0,,6.,4.,9.,),( 32312132131 wwwwwwwwwwwD   

and 
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 1.,8.,7.),,(,1.,8.,9.),,(,1.,5.,9.),,(,1.,8.,7.,,1.,5.,6.,,1,0,0,),( 32312132132 wwwwwwwwwwwD  . 

Then  

 ),(,1,0 31 wwDnpnpnp    is a NPT. 

Thus (W, np ) is a NPTS over W. 

Also, the complement of the NPT np  is 

 ),(,1,0 31 


wwDnpnpnp  , 

where 

 7.,2.,1.),,(,9.,2.,1.),,(,9.,5.,1.),,(,7.,2.,1.,,0,1,1,,9.,6.,6.,),( 32312132131 wwwwwwwwwwwD  . 

 

Then NPAOSs over (W, np ) is 

     )(
~

,1,0),(
~

,1,0~
231 www DnpnpDnpnpnp   ,  

where 

   .1.,8.,7.),,(,1,0,0),,(,1.,5.,9.),,(,1,0,0,,1.,5.,6.,,1,0,0,)(
~

),(
~

323121321231 wwwwwwwwwwww DD  

 

Also, NPACSs over (W, np ) is 

  


),(
~

,1,0~
31 wwDnpnpnp    

where 

   .7.,2.,1.),,(,0,1,1),,(,9.,5.,1.),,(,0,1,1,,6.,5.,1.,,0,1,1,)(
~

),(
~

323121321231 wwwwwwwwwwww DD 
 

 

Definition 4.3 Let W be a set of universe and Ww . Let D be a NS over W and U be any proper 

non-empty subset of W. Let )(UD  be a np -NPOS over W of a NFTS (W, np ).  

Then the value of D with respect to U is denoted by Val[D(U)] and is calculated by the formula 

     

           















 

























2

)()(
~

1
2

)(
~

)()()(
~

)]([ i
iD

i
iD

i
iD

i
iD

i
iD

i
iD UIUIUFUTUFUT

UDVal , (4.3.1) 

where 

  
i

iD UT )( ,   
i

iD UI )( and   
i

iD UF )( are the sum of all truth, indeterminacy and falsity values of 

)( UD  respectively, and 

  
i

iR UT )(
~

,   
i

iR UI )(
~

and   
i

iD UF )(
~

are the sum of all truth, indeterminacy, and falsity values of 

 )(
~

UD   respectively. 

 

Then the grand value of D is denoted by GV[D] and is calculated by the formula 

                                   
i

iUDValDGV )]([][ , for all i. (4.3.2) 

Algorithm 

Step 1: List the set of machines for the sample. 

Step 2: List some of its damaged parts as the universe W, where Ww . 
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Step 3: Go through the damages of the machines. 

Step 4: Define each machines as NSs, say M.  

Step 5: Collect these NSs which defines a NT n  and so (W, n ) is a NTS. 

Step 6: Define NPSs for each NS with respect to their damaged parts, say )(UM , where U is a 

proper non-empty subset of W.  

Step 7: Define all possible NPTs np  and npM U  )( , where U is a proper non-empty singleton 

subset of W.  

Step 8: Define NPTSs (W, np ) for all possible NPTs np . 

Step 9: Find the complement and neutro-prime absolute complement of each NPTs. 

Step 10: Calculate Val[M(U)] for all M with respect to some U, by using the formula 4.3.1. 

Step 11: Tabulate all the estimated values of Val[M(U)]. 

Step 12: Calculate GV[M] for all M, by using the formula 4.3.2. 

Step 13: Tabulate all the estimated values of GV[M]. 

Step 14: Select the highest value among all the GV[M].  

Step 15: If two or more GV[M] are similar for a particular U, replace that U with some other 

damaged parts and repeat the process. 

Step 16: End the process, till getting a unique GV[M]. 

 

Example 4.4 Consider the problem that a technician came to repair damaged machines. Let MI, MII, 

MIII, and MIV be sample machines whose damages to be repaired. Let  321 ,, pppW   be some 

parts of each damaged machine, where 1p –part 1, 2p –part 1 and 3p –part 3. Here the technician 

gives priority to the high damaged machine and to repair it initially. 

1. Let MI, MII, MIII, and MIV be sample machines whose damages to be repaired. 

2. Let  321 ,, pppW   be the universe, where 1p –part 1, 2p –part 2, and 3p –part 3. 

3. The technician goes through the damages on each machine. 

4. Define MI, MII, MIII, and MIV as NSs. 

 4.,3.,5.,,4.,5.,4.,,3.,6.,7., 321 pppMI  ,    

  7.,2.,2.,,4.,8.,6.,,1.,3.,6., 321 pppMII  ,    

 4.,3.,5.,,4.,8.,6.,,1.,6.,7., 321 pppMIII    and   

 7.,2.,2.,,4.,5.,4.,,3.,3.,6., 321 pppMIV  . 

5. Thus  MIVMIIIMIIMInnn ,,,,1,0
 
is a NT and so (W, n ) is a NTS. 

6. Define NPSs for each NS with respect to their damaged parts as follows: 

 

 ),(),,(),,(),(),(),( 3231213131 ppppppppppMI MIMIMIMIMIp   , 

where 

 1,0,0),,(,3.,6.,7.),,(,3.,6.,7.),,(,1,0,0,,1,0,0,,3.,6.,7.,)( 3231213211 ppppppppppMI  , 
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 4.,5.,5.),,(,3.,6.,7.),,(,1,0,0),,(,4.,3.,5.,,1,0,0,,1,0,0,)( 3231213213 ppppppppppMI  , 

 4.,5.,5.),,(,3.,6.,7.),,(,3.,6.,7.),,(,1,0,0,,4.,5.,4.,,3.,6.,7.,),( 32312132121 pppppppppppMI  , 

 4.,5.,5.),,(,3.,6.,7.),,(,3.,6.,7.),,(,4.,3.,5.,,1,0,0,,3.,6.,7.,),( 32312132131 pppppppppppMI  , 

 4.,5.,5.),,(,3.,6.,7.),,(,3.,6.,7.),,(,4.,3.,5.,,4.,5.,4.,,1,0,0,),( 32312132132 pppppppppppMI  ; 

 

 ),(),,(),()( 322122 ppppppMII MIIMIIMIIp   , 

where 

 4.,8.,6.),,(,1,0,0),,(,1.,8.,6.),,(,1,0,0,,4.,8.,6.,,1,0,0,)( 3231213212 ppppppppppMII  , 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,1,0,0,,4.,8.,6.,,1.,3.,6.,),( 32312132121 pppppppppppMII  , 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,7.,2.,2.,,4.,8.,6.,,1,0,0,),( 32312132132 pppppppppppMII  ; 

 

 ),(),,(),,(),(),(),( 3231212121 ppppppppppMIII MIIIMIIIMIIIMIIIMIIIp   , 

where 

 1,0,0),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,1,0,0,,1.,6.,7.,)( 3231213211 ppppppppppMIII  , 

 4.,8.,6.),,(,1,0,0),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1,0,0,)( 3231213212 ppppppppppMIII  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1.,6.,7.,),( 32312132121 pppppppppppMIII  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,1,0,0,,1.,6.,7.,),( 32312132131 pppppppppppMIII  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,4.,8.,6.,,1,0,0,),( 32312132132 pppppppppppMIII   

and 

 

 ),(),,(),()( 312111 ppppppMIV MIVMIVMIVp   , 

where 

 1,0,0),,(,3.,3.,6.),,(,3.,5.,6.),,(,1,0,0,,1,0,0,,3.,3.,6.,)( 3231213211 ppppppppppMIV  , 

 4.,5.,4.),,(,3.,3.,6.),,(,3.,5.,6.),,(,1,0,0,,4.,5.,4.,,3.,3.,6.,),( 32312132121 pppppppppppMIV  , 

 4.,5.,4.),,(,3.,3.,6.),,(,3.,5.,6.),,(,7.,2.,2.,,1,0,0,,3.,3.,6.,),( 32312132131 pppppppppppMIV  . 

 

7. The possible NPTs for all proper non-empty singleton subset of W are defined as follows:   

 )(),(),(,1,01 111 ppp MIVMIIIMInpnpnp    , 

 )(),(,1,02 22 pp MIIIMIInpnpnp    and 

 )(,1,03 3pMInpnpnp   . 

8. Thus (W, np1 ), (W, np2 ) and (W, np3 ) are NPTSs over W. 

9. The complement and neutro-prime absolute complement of NPT np1  are as follows, 

 )(,)(,)(,1,01 111 


ppp MIVMIIIMInpnpnp  , 

where 

 0,1,1),,(,7.,4.,3.),,(,7.,4.,3.),,(,0,1,1,,0,1,1,,7.,4.,3.,)( 3231213211 ppppppppppMI   

 0,1,1),,(,7.,4.,1.),,(,7.,2.,1.),,(,0,1,1,,0,1,1,,7.,4.,1.,)( 3231213211 ppppppppppMIII   

 0,1,1),,(,6.,7.,3.),,(,6.,5.,3.),,(,0,1,1,,0,1,1,,6.,7.,3.,)( 3231213211 ppppppppppMIV   

and 

 ),(
~

),,(
~

),,(
~

,1,0~1 323232 pppppp MIVMIIIMInpnpnp   , 

where 

 4.,5.,5.),,(,3.,6.,7.),,(,3.,6.,7.),,(,4.,3.,5.,,4.,5.,4.,,1,0,0,),(
~

32312132132 pppppppppppMI   

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,4.,8.,6.,,1,0,0,),(
~

32312132132 pppppppppppMIII   
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 4.,5.,4.),,(,3.,3.,6.),,(,3.,5.,6.),,(,7.,2.,2.,,4.,5.,4.,,1,0,0,),(
~

32312132132 pppppppppppMIV  . 

 

The complement and neutro-prime absolute complement of NPT np2  are as follows, 

 )(,)(,1,02 22 


pp MIIIMIInpnpnp  , 

where 

 6.,2.,4.),,(,0,1,1),,(,6.,2.,1.),,(,0,1,1,,6.,2.,4.,,0,1,1,)( 3231213212 ppppppppppMII   

 6.,2.,4.),,(,0,1,1),,(,7.,2.,1.),,(,0,1,1,,6.,2.,4.,,0,1,1,)( 3231213212 ppppppppppMIII   

and 

 ),(
~

),,(
~

,1,0~2 3131 pppp MIIIMIInpnpnp   , 

where 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,7.,2.,2.,,1,0,0,,1.,3.,6.,),(
~

32312132131 pppppppppppMII   

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,1,0,0,,1.,6.,7.,),(
~

32312132131 pppppppppppMIII  . 

 

The complement and neutro-prime absolute complement of NPT np3  are as follows, 

 )(,1,03 3 


pMInpnpnp  , 

where 

 5.,5.,4.),,(,7.,4.,3.),,(,0,1,1),,(,5.,7.,4.,,0,1,1,,0,1,1,)( 3231213213 ppppppppppMI   

and 

 ),(
~

,1,0~3 21 ppMInpnpnp   , 

where 

 4.,5.,5.),,(,3.,6.,7.),,(,3.,6.,7.),,(,1,0,0,,4.,5.,4.,,3.,6.,7.,),(
~

32312132121 pppppppppppMI  . 

 

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper 

non-empty singleton subset of W.  

i.e. Val[MI(pi)], Val[MII(pi)], Val[MIII(pi)] and Val[MIV(pi)], for i = 1, 2, 3. 

11. These estimated values are tabulated in the following table. 

Table 4.4.1. Value Table 

 p1 p2 p3 

MI 2.025 0 3.645 

MII 0 2.3 0 

MIII 1.59 3.6425 0 

MIV 1.35 0 1.59 

 

12. By using the formula 4.3.2, evaluated the grand values of all machines.  

i.e. GV[MI], GV[MII], GV[MIII], and GV[MIV]. 

13. These estimated values are tabulated in the following table. 

Table 4.4.2. Grand Value Table 

 p1 p2 p3 GV 

MI 2.025 0 3.645 5.67 

MII 0 2.3 0 2.3 

MIII 1.59 3.6425 0 5.2325 

MIV 1.35 0 1.59 1.35 
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14. Thus GV[MI] is the highest value. 

Hence the technician gives priority to repairing the damaged machine MI. 

 

Example 4.5 Consider the problem explained in Example 4.4. 

1. Let MI, MII, and MIII be sample machines whose damages to be repaired. 

2. Let  321 ,, pppW   be the universe, where 1p –part 1, 2p –part 2, and 3p –part 3. 

3. The technician goes through the damages on each machine. 

4. Define MI, MII, and MIII as NSs. 

 1.,6.,7.,,4.,8.,6.,,1.,6.,7., 321 pppMI  ,    

  7.,2.,2.,,4.,8.,6.,,1.,3.,6., 321 pppMII   and   

 1.,6.,7.,,4.,8.,6.,,1.,6.,7., 321 pppMIII   .  

5. Thus  MIIIMIIMInnn ,,,1,0
 
is a NT and so (W, n ) is a NTS. 

6. Define NPSs for each NS with respect to their damaged parts as follows: 

 

 ),(),,(),()( 323133 ppppppMI MIMIMIp   , 

where 

 1.,8.,7.),,(,1.,6.,7.),,(,1,0,0),,(,1.,6.,7.,,1,0,0,,1,0,0,)( 3231213213 ppppppppppMI  , 

 1.,8.,7.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1.,6.,7.,,1,0,0,,1.,6.,7.,),( 32312132131 pppppppppppMI  , 

 1.,8.,7.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1.,6.,7.,),( 32312132132 pppppppppppMI  ; 

 

 ),(),,(),()( 322122 ppppppMII MIIMIIMIIp   , 

where 

 4.,8.,6.),,(,1,0,0),,(,1.,8.,6.),,(,1,0,0,,4.,8.,6.,,1,0,0,)( 3231213212 ppppppppppMII  , 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,1,0,0,,4.,8.,6.,,1.,3.,6.,),( 32312132121 pppppppppppMII  , 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,7.,2.,2.,,4.,8.,6.,,1,0,0,),( 32312132132 pppppppppppMII   

and 

 

 ),(),,(),()( 312111 ppppppMIII MIIIMIIIMIIIp   , 

where 

 1,0,0),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,1,0,0,,1.,6.,7.,)( 3231213211 ppppppppppMIII  , 

 1.,8.,7.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1.,6.,7.,),( 32312132121 pppppppppppMIII  , 

 1.,8.,7.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1.,6.,7.,,1,0,0,,1.,6.,7.,),( 32312132131 pppppppppppMIII  , 

 

7. The possible NPTs for all proper non-empty singleton subset of W are defined as follows:   

 )(,1,01 1pMIIInpnpnp    , 

 )(,1,02 2pMIInpnpnp    and 

 )(,1,03 3pMInpnpnp   . 

8. Thus (W, np1 ), (W, np2 ) and (W, np3 ) are NPTSs over W. 

9. The complement and neutro-prime absolute complement of NPT np1  are as follows, 

 )(,1,01 1 


pMIIInpnpnp  , 
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where 

 0,1,1),,(,7.,4.,1.),,(,7.,2.,1.),,(,0,1,1,,0,1,1,,7.,4.,1.,)( 3231213211 ppppppppppMIII   

and 

 ),(
~

,1,0~1 32  ppMIIInpnpnp  , 

where 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,4.,8.,6.,,1,0,0,),(
~

32312132132 pppppppppppMIII  . 

 

The complement and neutro-prime absolute complement of NPT np2  are as follows, 

 )(,1,02 2 


pMIInpnpnp  , 

where 

 6.,2.,4.),,(,0,1,1),,(,6.,2.,1.),,(,0,1,1,,6.,2.,4.,,0,1,1,)( 3231213212 ppppppppppMII   

and 

 ),(
~

,1,0~2 31 ppMIInpnpnp   , 

where 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,7.,2.,2.,,1,0,0,,1.,3.,6.,),(
~

32312132131 pppppppppppMII  . 

 

The complement and neutro-prime absolute complement of NPT np3  are as follows, 

 )(,1,03 3 


pMInpnpnp  , 

where 

 7.,2.,1.),,(,7.,4.,1.),,(,0,1,1),,(,7.,4.,1.,,0,1,1,,0,1,1,)( 3231213213 ppppppppppMI   

and 

 ),(
~

,1,0~3 21 ppMInpnpnp   , 

where 

 1.,8.,7.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1.,6.,7.,),(
~

32312132121 pppppppppppMI  . 

 

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper 

non-empty singleton subset of W.  

i.e. Val[MI(pi)], Val[MII(pi)] and Val[MIII(pi)], for i = 1, 2, 3. 

11. These estimated values are tabulated in the following table. 

Table 4.5.1. Value Table 

 p1 p2 p3 

MI 0 0 3.92 

MII 0 2.3 0 

MIII 3.92 0 0 

 

12. By using the formula 4.3.2, evaluated the grand values of all machines.  

i.e. GV[MI], GV[MII] and GV[MIII]. 

13. These estimated values are tabulated in the following table. 

Table 4.5.2. Grand Value Table 

 p1 p2 p3 GV 

MI 0 0 3.92 3.92 

MII 0 2.3 0 2.3 

MIII 3.92 0 0 3.92 
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14. Thus both GV[MI] and GV[MIII] are the highest value. 

15. In this situation, replace part 3 ( 3p ) with some other damaged part, say 4p , and repeat the 

process. 

1. Let MI, MII, and MIII be sample machines whose damages to be repaired. 

2. Let  421 ,, pppW   be the universe, where 1p –part 1, 2p –part 2, and 4p –part 4. 

3. The technician goes through the damages on each machine. 

4. Define MI, MII, and MIII as NSs. 

 4.,3.,5.,,4.,8.,6.,,1.,6.,7., 421 pppMI  ,    

  6.,3.,4.,,4.,8.,6.,,1.,3.,6., 421 pppMII   and   

 4.,3.,5.,,4.,8.,6.,,1.,6.,7., 421 pppMIII   .  

5. Thus  MIIIMIIMInnn ,,,1,0
 
is a NT and so (W, n ) is a NTS. 

6. Define NPSs for each NS with respect to their damaged parts as follows: 

 

 ),(),,(),()( 424144 ppppppMI MIMIMIp   , 

where 

 4.,8.,6.),,(,1.,6.,7.),,(,1,0,0),,(,4.,3.,5.,,1,0,0,,1,0,0,)( 4241214214 ppppppppppMI  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,1,0,0,,1.,6.,7.,),( 42412142141 pppppppppppMI  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,4.,8.,6.,,1,0,0,),( 42412142142 pppppppppppMI  ; 

 

 ),(),,(),()( 422122 ppppppMII MIIMIIMIIp   ,  

where 

 4.,8.,6.),,(,1,0,0),,(,1.,8.,6.),,(,1,0,0,,4.,8.,6.,,1,0,0,)( 4241214212 ppppppppppMII  , 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,1,0,0,,4.,8.,6.,,1.,3.,6.,),( 42412142121 pppppppppppMII  , 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,6.,3.,4.,,4.,8.,6.,,1,0,0,),( 42412142142 pppppppppppMII   

and 

 

 ),(),,(),,(),(),(),( 4241212121 ppppppppppMIII MIIIMIIIMIIIMIIIMIIIp   , 

where 

 1,0,0),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,1,0,0,,1.,6.,7.,)( 4241214211 ppppppppppMIII  , 

 4.,8.,6.),,(,1,0,0),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1,0,0,)( 4241214212 ppppppppppMIII  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1.,6.,7.,),( 42412142121 pppppppppppMIII  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,1,0,0,,1.,6.,7.,),( 42412142141 pppppppppppMIII  , 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,4.,8.,6.,,1,0,0,),( 42412142142 pppppppppppMIII   

 

7. The possible NPTs for all proper non-empty singleton subset of W are defined as follows:   

 )(,1,01 1pMIIInpnpnp    , 

 )(),(,1,02 22 pp MIIIMIInpnpnp    and 

 )(,1,03 4pMInpnpnp   . 

8. Thus (W, np1 ), (W, np2 ) and (W, np3 ) are NPTSs over W. 
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9. The complement and neutro-prime absolute complement of NPT np1  are as follows, 

 )(,1,01 1 


pMIIInpnpnp  , 

where 

 0,1,1),,(,7.,4.,1.),,(,7.,2.,1.),,(,0,1,1,,0,1,1,,7.,4.,1.,)( 4241214211 ppppppppppMIII   

and 

 ),(
~

,1,0~1 42  ppMIIInpnpnp  , 

where 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,4.,8.,6.,,1,0,0,),(
~

42412142142 pppppppppppMIII  . 

The complement and neutro-prime absolute complement of NPT np2  are as follows, 

 )(,)(,1,02 22 


pp MIIIMIInpnpnp  , 

where 

 6.,2.,4.),,(,0,1,1),,(,6.,2.,1.),,(,0,1,1,,6.,2.,4.,,0,1,1,)( 4241214212 ppppppppppMII   

 6.,2.,4.),,(,0,1,1),,(,7.,2.,1.),,(,0,1,1,,6.,2.,4.,,0,1,1,)( 4241214212 ppppppppppMIII   

and 

 ),(
~

),(
~

,1,0~2 4141 pppp MIIIMIInpnpnp   , 

where 

 4.,8.,6.),,(,1.,3.,6.),,(,1.,8.,6.),,(,7.,2.,2.,,1,0,0,,1.,3.,6.,),(
~

42412142141 pppppppppppMII   

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,4.,3.,5.,,1,0,0,,1.,6.,7.,),(
~

42412142141 pppppppppppMIII  . 

 

The complement and neutro-prime absolute complement of NPT np3  are as follows, 

 )(,1,03 4 


pMInpnpnp  , 

where 

 6.,2.,4.),,(,7.,4.,1.),,(,0,1,1),,(,5.,7.,4.,,0,1,1,,0,1,1,)( 4241214214 ppppppppppMI   

and 

 ),(
~

,1,0~3 21 ppMInpnpnp   , 

where 

 4.,8.,6.),,(,1.,6.,7.),,(,1.,8.,7.),,(,1,0,0,,4.,8.,6.,,1.,6.,7.,),(
~

42412142121 pppppppppppMI  . 

 

10. By using the formula 4.3.1, evaluated the values of all machines with respect to each proper 

non-empty singleton subset of W.  

i.e. Val[MI(pi)], Val[MII(pi)] and Val[MIII(pi)], for i = 1, 2, 3. 

11. These estimated values are tabulated in the following table. 

Table 4.5.3. Value Table 

 p1 p2 p4 

MI 0 0 4.8675 

MII 0 2.665 0 

MIII 1.59 3.6425 0 

 

12. By using the formula 4.3.2, evaluated the grand values of all machines.  

i.e. GV[MI], GV[MII] and GV[MIII]. 
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13. These estimated values are tabulated in the following table. 

Table 4.5.4. Grand Value Table 

 p1 p2 p4 GV 

MI 0 0 4.8675 4.8675 

MII 0 2.665 0 2.665 

MIII 1.59 3.6425 0 5.2325 

 

14. Thus GV[MIII] is the highest value. 

Hence the technician gives priority to repairing the damaged machine MIII. 

5. Conclusions  

The major contribution of this work is initiating a neutrosophic environment on prime sets 

under a topological space. Some related properties of NPTSs have been proved and some are 

disproved with counterexamples. Also, the idea of interior and closure dealt with such space with 

few basic properties. The novelty of this study is to merge two different poles. The decision-making 

problem is demonstrated with an example to analyze the number of faults in industrial machines. 

Sample machines are represented as NSs and their damages are represented as NPSs under its 

topological space. The values of fault machines are detected by finding the complement and absolute 

complement of each NPS. The various values of faults are taken as different subsets, for analysis. The 

proposed algorithm analyzes through the NPSs and finds the best suitable set values which indicate 

the heavy damage in machines. The lower fault machines are neglected by decision-making 

problems.  

The primary results of this study are: 

 Prime set is studied under the environment of neutrosophic. 

 Related properties are stated with proof and also disproved in counter examples. 

 The intersection of two NPTs is a NPT but not for its union. 

 Demonstrating the decision-making problem of analyzing the number of damages in machines. 

 The complement and absolute complement of NPSs are evaluated to find the best fit of fault by 

diagnosis the machines. 

  

In the future, this set may develop more genetic algorithms to predict multi-criteria DM 

problems. Many more sets like soft sets, rough sets, crisp sets, etc., can be developed on NPTSs. 

More ideas may be claimed and investigated to achieve a deeper understanding of the economic and 

social consequences of robotization. 
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Abstract: The purpose of this work is to understand the ranking order of the neutrosophic sets, 

where the uncertain or ambiguous information/data is stored in the terms of three independent 

variables i.e., degree of truthfulness, degree of indeterminacy, and degree of falseness. There exist 

many ranking tools in decision-making (DM) like score function (SF) and accuracy function (AF) 

that help to rank the single-valued neutrosophic set (SVNS) and the interval-valued neutrosophic 

set (IVNS) to make a better choice among all the available alternatives. An intensive study about all 

the existing score functions and an accuracy function reveals that the existing ranking method for 

SVNS and IVNS in DM problems holds for certain kinds of neutrosophic information and has its 

limitations. To validate these observations some well-defined examples are chosen, illustrating that 

the existing score functions and accuracy functions are like special cases for certain kinds of 

neutrosophic data. Since nothing in this world is an ultimate truth, hence this existing gap is a real 

motivation to come up with a more efficient SF and AF that would rank SVNS and IVNS in the 

real-life problems to make a better selection among all the available alternatives in DM problems in 

an efficient way. Hence, a new SF and AF have been proposed and multi-criteria decision-making 

(MCDM) method is developed based on these proposed SF and AF. Furthermore, a real-life 

problem from our immediate surroundings is taken and solved successfully, and also a 

comparative analysis of the solutions for the existing problems is made in detail.   

Keywords: Accuracy function (AF), average operators, IVNS, multi-criteria decision-making 

(MCDM), score function (SF), SVNS. 

 

1. Introduction 

Humans among all the living beings have evolved most intelligently since their existence and the 

reason behind it is a proper and timely DM in their environment. In this computer age, the scientific 

world is in continuous motion and whatever is new today is old in another hour, and the 

information or statistical data available is not always crisp, definite, constant, determinate, and 
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consistent. Thus to deal with such kind of firsthand information, a new theory was evolved in 1965 

by a great philosopher Zadeh, who had a farsighted vision and a penetrating understanding of the 

known and unknown data. He has come up with his intriguing theory of sets claiming that in 

real-life uncertainty is the only thing that is certain in life and named it as a fuzzy set (FS) [1] which 

deals with the concept of belongingness. This theory was reluctantly accepted in that period (i.e. in 

and around 1965) which tells that the available data is not always a real-value but it beholds the 

hand of uncertainty together and the study of this uncertainty or vagueness would be able to bring a 

huge revolution in the coming time with the real-life MCDM and MADM problems [2, 3]. After the 

acceptance of this theory of fuzzy sets, later with time, the scientific and intellectual world 

developed a keen interest in this concept of fuzziness, and then onwards various and wide 

extensions of fuzzy sets are propounded like- Atanassov proposed an intuitionistic fuzzy set (IFS) [4] 

who considered together both the concept of the degree of belongingness and the degree of 

non-belongingness. Since it is not always possible to evaluate any information in an exact value so, 

to define such data sometimes it is expressed in the interval, thus IFS was later expanded by 

Atanassov and Gargov to an interval-valued intuitionistic fuzzy set (IVIFS) [5]. Yager developed a 

Pythagorean fuzzy set (PFS) [6-8] which was extended by Zhang to an interval-valued Pythagorean 

fuzzy set (IVPFS) [9]. Smarandache introduced another extension of the FS as neutrosophic sets 

[10-12] which was more like a philosophical approach stating that together with membership and 

non-membership there is also an existence of one more component and he named it as 

indeterminacy such that, all these three values are independent of each other. IFS did not tell or 

explain indeterminate or inconsistent sets of information and hence neutrosophic set (NS) was able 

to handle such indeterminate data in a more efficient way. To apply this philosophy of NS into the 

real-world application Wang et al. [13, 14] proposed the concept of SVNSs and IVNSs along with 

their operators and properties respectively. 

Since FS theory and its extensions lagged to deal with indeterminacy and inconsistent set of data 

therefore neutrosophic sets have successfully overcome these fuzzy drawbacks. A lot of exploration 

has been made till now in the area of SVNSs and IVNSs like neutrosophic sets are successfully 

applied in fuzzy linear optimization by using an important DM technique as linear programming by 

various researchers say Hezam et al. [15], Abdel-Basset et al. [16-17], Pramanik [18], Ye [19], Nafei et 

al. [20], Khatter [21], Bera et al. [22], Basumatary et al. [23], etc. Cubic fuzzy sets (CFSs) are 

introduced by YB Jun et al. [24] and, then YB Jun et al. [25] and M. Alia et al. [26] have extended CFSs 

to the neutrosophic environment and proposed neutrosophic cubic fuzzy sets (NCFSs) along with 

some of their basic operations. Recently, Ajay et al. [27] proposed aggregation operators on NCFSs. 

JC Kely [28] in 1963 introduced bitopological spaces which were extended in other fuzzy 

environments by many other researchers like Kandil et al. [29], Lee et al. [30] and Mwchahary et al. 

[31] recently proposed the concept and the propositions of neutrosophic bitopological spaces. 

Abdel-Basset et al. [32] proposed a method using quality function deployment (QFD) and 

plithogenic aggregation operations, and also, Abdel-Basset and Rehab [33] proposed a methodology 

based on plithogenic MCDM approach, utilizing both, techniques for order preference by similarity 

to ideal solution (TOPSIS) and criteria importance through inter-criteria correlation (CRITIC) 
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techniques and applied in the study of telecommunications equipment categories. Lately, Nabeeh et 

al. [34] have contributed a lot in decision-making problems undertaken in the neutrosophic field like 

they have developed a neutrosophic MCDM framework to deal with inconsistent data related to 

environmental problems. Nabeeh et al. [35] have used integrated neutrosophic and TOSIS to deal 

with the personnel selection process. Nabeeh et al. [36] have applied the neutrosophic analytical 

hierarchy process (AHP) of the internet of things (IoT) in enterprises to estimate influential factors. 

Abdel-Basset et al. [37] proposed a hybrid combination of AHP and neutrosophic theory to deal with 

the uncertainty of IoT-based enterprises. 

DM is a procedure that helps in selecting the best possible alternative among the set of feasible 

solutions. Since the world is in continuous motion, the societal structure is growing every second, 

and we need to make decisions under all these factors i.e., peer pressure, the vagueness of the 

imprecise data, limited funds, high-risk factor, environmental factors, biases, etc. which influences 

the DM of a decision-maker. There influencing factors are directly or indirectly associated with the 

unpredictability of the set of data which could be indeterminate, inconsistent, or uncertain, etc., 

occurring in different fields of life like economics, engineering, medical sciences, computer sciences, 

management sciences, psychology, meteorology, sociology, decision making. Since neutrosophic 

sets are quite efficient in dealing with indeterminate and inconsistent sets of data hence, many 

researchers in literature [15-42] have applied neutrosophic sets in real-life applications and can 

provide a more satisfactory solution to  real-world applications like telecommunication, supply 

chain management, environment, personnel selection, enterprises, signal processing, pattern 

recognition, medical diagnosis, social sciences, engineering, management sciences, artificial 

intelligence, robotics, computer networks, DM, etc. MCDM helps the decision-maker to make his 

preferences by taking care of each criterion of the available alternatives, rank them by using some 

MCDM tools, and choose the best among the available alternatives.  

This paper is the outcome of a deep study that has been made to understand the various existing 

ranking orders like SF and AF of the extensions of fuzzy sets like IFS [43-45], PFS [6-8], IVPFS [46-54], 

NS [17, 55-65], trapezoidal interval-valued neutrosophic numbers [66], etc., by the various 

researchers. After a rigorous analysis, it has been observed that the existing SF and AF [67, 68] for 

comparing single-valued neutrosophic sets (SVNSs) and the interval-valued neutrosophic sets 

(IVNSs) are more efficient for some special cases of SVNSs and IVNSs. Some well-defined 

counter-examples are chosen where the rating value of uncertainty is taken as SVNSs and IVNSs to 

claim that, the existing SF and AF rank these SVNSs and IVNSs correctly only to a certain limit. 

Hence to fulfill all the restrictions of the existing SF and AF, there is a need to propose a new SF and 

AF which would act as a helpful tool in the real-world DM problems. Taking this notion as an 

inspiration, an effort is made to suggest a new SF and AF for efficiently comparing SVNSs and 

IVNSs. Furthermore, based on these proposed SF and AF, an MCDM method is developed to solve 

the real-life applications and to validate these proposed SF and AF, the exact result of the real-life 

problem taken from our immediate surroundings is solved successfully in which the preference 

rating values are expressed by SVNSs and IVNSs and also, a detailed comparative analysis of the 

solutions with the existing approaches is presented respectively.  
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This paper is presented in the following manner: Section 2 - preliminaries; Section 3 - proposed 

SF and AF for SVNSs and IVNSs; Section 4 - MCDM method is proposed; Section 5 - real-life 

problem considered and solved; Section 6 - discussion and a comparative analysis of the obtained 

solutions; Section 7 – managerial insights; Section 8-conclusions. 

 2. Preliminaries - SVNSs, IVNSs and its SF and AF 

This section states some requisites while dealing with SVNSs and IVNSs in the real-life 

application for the DM process. 

Definition 2.1 [1] A set Ã = {〈x, μÃ(x)〉 | x ∈ X, 0 ≤ μÃ(x) ≤ 1}, defined on the universal set X, is said 

to be an FS, where μÃ(x) represents the degree of membership of the element x in Ã. 

Definition 2.2 [10] A set  ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X, 0− ≤ TÃN(x) ≤ 1+, 0− ≤ IÃN(x) ≤

1+, 0− ≤ FÃN ≤ 1+, TÃN(x) + IÃN(x) + FÃN(x) ≤ 3+}, defined on the universal set X, is said to be an 

NS, where, TÃN(x), IÃN(x), and FÃN(x) represents the degree of truth-membership, the degree of 

indeterminacy-membership and degree of falsity-membership respectively of the element x in ÃN 

as a real standard or real non-standard subsets of ]0−, 1+[.  

Definition 2.3 [13] A set  ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X, 0 ≤ TÃN(x) ≤ 1, 0 ≤ IÃN(x) ≤ 1, 0 ≤

FÃN ≤ 1, TÃN(x) +  IÃN(x) + FÃN(x) ≤ 3}, defined on the universal set X, is said to be an SVNS, 

where, TÃN(x), IÃN(x) , and FÃN(x)  represents the degree of truth-membership, the degree of 

indeterminacy-membership and degree of falsity-membership respectively of the element x in ÃN. 

For convenience, we may write the single-valued neutrosophic number (SVNN) as ÃN  =  〈α, β, γ〉. 

Definition 2.4 [14] A set ÃN  = {〈x, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)], [F

ÃN
L (x), F

ÃN
U (x)]〉|x ∈ X, 0 ≤

T
ÃN
L (x) ≤ T

ÃN
U (x) ≤ 1, 0 ≤ I

ÃN
L (x) ≤ I

ÃN
U (x) ≤ 1, 0 ≤ F

ÃN
L (x) ≤ F

ÃN
U (x) ≤ 1, T

ÃN
U (x) + I

ÃN
U (x) + F

ÃN
U (x) ≤

3 }, defined on the universal set X, is said to be an IVNS, where, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)] 

and [F
ÃN
L (x), F

ÃN
U (x)] represents the intervals of the degree of truth-membership, the degree of 

indeterminacy-membership and the degree of falsity-membership respectively of the element x in 

ÃN . For convenience, we may write interval-valued neutrosophic number (IVNN) as ÃN  =

 〈[α1, α2)], [β1, β2], [γ1, γ2]〉. 

Definition 2.5 [67] Average operator for SVNSs:  

Since ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X}  is an SVNS, then let Ãk
N(k = 1,2, … , n)  be n 

numbers of SVNSs.  

 (i) Weighted arithmetic average operator (WAM) for SVNSs is defined as 

AOWA = (Ã1
N, Ã2

N, … , Ãn
N) = ∑ wkÃk

Nn
k=1   

= (1 − ∏ (1 − TÃk
N(x))

wk
n
k=1 , ∏ (IÃk

N(x))
wk

n
k=1 , ∏ (FÃk

N(x))
wk

n
k=1 )       (1) 

where wk  denotes the weight vector of SVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.     

 (ii) Weighted geometric average operator (WGM) for SVNSs is defined as 

AOWG = (Ã1
N, Ã2

N, … , Ãn
N) = ∏ wkÃk

Nn
k=1   

= (∏ (TÃk
N(x))

wk
n
k=1 , 1 − ∏ (1 − IÃk

N(x))
wk

n
k=1 , 1 − ∏ (1 − FÃk

N(x))
wk

n
k=1 )     (2) 
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where wk  denotes the weight vector of SVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.     

Definition 2.6 [67] Average operator for IVNSs:  

Since ÃN  = {〈x, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)], [F

ÃN
L (x), F

ÃN
U (x)]〉|x ∈ X}  is an IVNS, then let 

Ãk
N(k = 1,2, … , n) be n numbers of IVNSs.  

 (i) Weighted arithmetic average operator (WAM) for IVNSs is defined as 

AOWA = (Ã1
N, Ã2

N, … , Ãn
N) = ∑ wkÃk

Nn
k=1  = ([1 − ∏ (1 − T

ÃN
L (x))

wkn
k=1 , 1 − ∏ (1 −n

k=1

T
ÃN
U (x))

wk
] , [∏ (I

ÃN
L (x))

wkn
k=1 , ∏ (I

ÃN
U (x))

wkn
k=1 ]  , [∏ (F

ÃN
L (x))

wkn
k=1 , ∏ (F

ÃN
U (x))

wkn
k=1 ])    

                  (3) 

 where wk  denotes the weight vector of IVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.    

 (ii)  Weighted geometric average operator (WGM) for IVNSs is defined as 

AOWG = (Ã1
N, Ã2

N, … , Ãn
N) = ∏ wkÃk

Nn
k=1   

= ([∏ (T
ÃN
L (x))

wkn
k=1 , ∏ (T

ÃN
U (x))

wkn
k=1 ] , [1 − ∏ (1 − I

ÃN
L (x))

wkn
k=1 , 1 − ∏ (1 −n

k=1

 I
ÃN
U (x))

wk
] , [1 − ∏ (1 − F

ÃN
L (x))

wkn
k=1 , 1 − ∏ (1 −  F

ÃN
U (x))

wkn
k=1 ])      (4) 

where wk  denotes the weight vector of IVNSs Ãk
N(k = 1,2, … , n)  and satisfies the 

conditions such that wk ∈ [0,1] and ∑ wk
n
k=1 = 1.     

SF and AF are defined as a metric method for ranking SVNSs and IVNSs which clearly and 

precisely order the available alternatives and helps in choosing the best alternative among all the 

present alternatives.  

Definition 2.7 SF and AF for ranking SVNS 

Let ÃN  = {〈x, TÃN(x), IÃN(x), FÃN(x)〉|x ∈ X} be an SVNS, then SF and AF for SVNS is defined as, 

 (i) Existing SVNS SF [67] is defined as 

 σS(ÃN) =
1+T

ÃN−2I
ÃN−F

ÃN

2
,              where σS(ÃN) ∈ [0,1].    (5) 

 (ii) Existing SVNS AF [67] is defined as 

 σA(ÃN) = TÃN − IÃN(1 − TÃN) − FÃN(1 − IÃN),   where σA(ÃN) ∈ [−1,1].    (6) 

 (iii)  Existing SVNS SF [68] is defined as 

 τS(ÃN) =
1+(T

ÃN−2I
ÃN−F

ÃN)(2−T
ÃN−F

ÃN)

2
,         where τS(ÃN) ∈ [0,1].    (7) 

 (iv)  Existing SVNS AF [68] is defined as 

 τA(ÃN) = TÃN − 2IÃN − FÃN ,        where τA(ÃN) ∈ [−1,1].     (8) 

Definition 2.8 SF and AF for ranking IVNS  

Let ÃN  = {〈x, [T
ÃN
L (x), T

ÃN
U (x)], [I

ÃN
L (x), I

ÃN
U (x)], [F

ÃN
L (x), F

ÃN
U (x)]〉|x ∈ X} be an IVNS, then SF and 

AF for IVNS is defined as, 

 (i) Existing IVNS SF [67] is defined as 
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χS(ÃN) =
2+T

ÃN
L +T

ÃN
U −2I

ÃN
L −2I

ÃN
U −F

ÃN
L −F

ÃN
U

4
,     where χS(ÃN) ∈ [0,1].   (9) 

 (ii) Existing IVNS AF [67] is defined as 

 χA(ÃN) =
1

2
(T

ÃN
L + T

ÃN
U − I

ÃN
U (1 − T

ÃN
U ) − I

ÃN
L (1 − T

ÃN
L ) − F

ÃN
U (1 − I

ÃN
L ) − F

ÃN
L (1 − I

ÃN
U )), 

where χA(ÃN) ∈ [−1,1].              (10) 

 

 (iii) Existing IVNS SF [68] is defined as 

ψS(ÃN) =
4+(T

ÃN
L +T

ÃN
U −2I

ÃN
L −2I

ÃN
U −F

ÃN
L −F

ÃN
U )(4−T

ÃN
L −T

ÃN
U −F

ÃN
L −F

ÃN
U )

8
, where ψS(ÃN) ∈ [0,1]. (11) 

3. Proposed SF and AF for SVNSs and IVNSs 

This section of the paper suggests a new SF and AF to obtain the correct ranking order of all the 

available alternatives of SVNSs and IVNSs and helps to choose the best alternative among all.  

3.1 Proposed SF and AF for SVNSs 

3.1.1 Proposed SF for SVNSs 

Let 𝐴̃𝑁  = {〈𝑥, 𝑇𝐴𝑁(𝑥), 𝐼𝐴𝑁(𝑥), 𝐹𝐴𝑁(𝑥)〉|𝑥 ∈ 𝑋} be an SVNS, then an SF in terms of the degree of 

truth-membership, the degree of indeterminacy-membership and the degree of falsity-membership 

respectively for SVNS, is defined by: 

𝜑𝑆(𝐴̃𝑁) =
1+(𝑇

𝐴̃𝑁−2𝐼
𝐴̃𝑁−𝐹

𝐴̃𝑁)

2 (2−𝑇
𝐴̃𝑁−𝐹

𝐴̃𝑁)
,   𝑤ℎ𝑒𝑟𝑒 𝜑𝑆(𝐴̃𝑁) ∈ [0,1] 𝑎𝑛𝑑 𝑇𝐴𝑁 + 𝐹𝐴𝑁 ≠ 2.        (12) 

Clearly, it is observed that if 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, then 𝜑𝑆(𝐴̃𝑁) = 𝜎𝑆(𝐴̃𝑁), therefore 𝑇𝐴𝑁 + 𝐹𝐴𝑁 ≠ 1. 

To validate the claim of the proposed SF (Eq. (12)), some well-defined SVNNs are chosen and 

evaluated. Let us consider the following examples. 

Example 1. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of SF using Eq. 

(12) among 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.6, 0.3, 0.0〉 and 𝐴̃2

𝑁 = 〈0.2, 0.1, 0.0〉, then 𝐴̃1
𝑁 > 𝐴̃2

𝑁 in accordance with proposed 

SF (Eq. (12)). 

 (ii)  Let 𝐴̃1
𝑁 = 〈0.6,0.2,0.2〉  and 𝐴̃2

𝑁 = 〈0.3,0.1,0.1〉  , then 𝐴̃1
𝑁 > 𝐴̃2

𝑁  in accordance with 

proposed SF (Eq. (12)).  

 (iii)  Let 𝐴̃1
𝑁 = 〈0.1,0.0,0.1〉  and 𝐴̃2

𝑁 = 〈0.3,0.0,0.3〉  , then 𝐴̃2
𝑁 > 𝐴̃1

𝑁  in accordance with 

proposed SF (Eq. (12)). 

 

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of Example 1, a systematic tabular representation of the function values of various 

metric methods is presented in Table 1. 
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Table 1. SF (𝝋𝑺(𝑨̃𝑵)) values in comparison with various existing metric methods 

 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝈𝑨(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.6, 0.3, 0.0〉 

𝐴̃2
𝑁 = 〈0.2, 0.1, 0.0〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.48 

0.12 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.4545 

0.2777 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

𝐴̃1
𝑁 = 〈0.6, 0.2, 0.2〉 

𝐴̃2
𝑁 = 〈0.3, 0.1, 0.1〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.36 

0.14 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.4166 

0.3125 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

𝐴̃1
𝑁 = 〈0.1, 0.0, 0.1〉 

𝐴̃2
𝑁 = 〈0.3, 0.0, 0.1〉 

(Adopted from [61]) 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝑨̃𝟏
𝑵 = 𝑨̃𝟐

𝑵 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.0 

0.0 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.2777 

0.3571 

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵 

 From Table 1, it is expressed that there may exist several ranking methods for SVNNs which can 

rank the alternatives, 𝐴̃1
𝑁, 𝐴̃2

𝑁 , and suggest which of the alternative is better among both. It has been 

observed that sometimes, the existing metric methods [67, 68] may or may not fail to rank, but the 

proposed SF (Eq. (12)) is providing desirable results respectively. Hence, it claims the validity of 

the proposed SF (Eq. (12)), stating that it is reasonable. 

  3.1.2 Proposed AF for SVNSs  

It is observed that there may exist several SVNNs where, 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, then sometimes the 

proposed SF, Eq. (12) may or may not be able to rank the SVNNs desirably. Some of SVNNs 𝐴̃1
𝑁 

and 𝐴̃2
𝑁, exhibiting such nature are considered as follows: 

Example 2. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of SF using Eq. 

(12) among 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.6, 0.1, 0.4〉 and 𝐴̃2

𝑁 = 〈0.8, 0.3, 0.2〉, then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 in accordance with proposed 

SF (Eq. (12)). While it is obvious that A1 ≠ A2. 

 (ii)  Let 𝐴̃1
𝑁 = 〈0.9,0.4,0.1〉 and 𝐴̃2

𝑁 = 〈0.7,0.2,0.3〉, then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 in accordance with proposed 

SF (Eq. (12)). While it is obvious that 𝐴1 ≠ 𝐴2. 

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of Example 2, a systematic tabular representation of the function values of various 

metric methods is presented below in Table 2.  

Table 2. SF (𝝋𝑺(𝑨̃𝑵)) value of some special SVNNs using various existing methods 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.6, 0.1, 0.4〉 

𝐴̃2
𝑁 = 〈0.8, 0.3, 0.2〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝑨̃𝟏
𝑵 = 𝑨̃𝟐

𝑵  

𝐴̃1
𝑁 = 〈0.9,0.4,0.1〉 

𝐴̃2
𝑁 = 〈0.7, 0.2, 0.3〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝑨̃𝟏
𝑵 = 𝑨̃𝟐

𝑵  
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  From Table 2, it is observed that if there exist SVNNs where, 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, then sometimes 

may or may not the proposed SF, Eq. (12) lacks in providing a desirable solution.  

  Thus, to overcome this restriction, there is a need to find a new function that would be helpful to 

rank such alternatives 𝐴̃1
𝑁 and 𝐴̃2

𝑁 appropriately. Hence, a novel AF is proposed as follows: 

𝜑𝐴(𝐴̃𝑁) = 1 − 𝐼𝐴𝑁 − 2𝐹𝐴𝑁,                    (13) 

𝑤ℎ𝑒𝑟𝑒 𝜑𝐴(𝐴̃𝑁) ∈ [−1, 1], 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, and 𝐼𝐴𝑁 ≠ 0.  

  To validate the claim of the proposed AF (Eq. (13)), Example 2 is considered again and 

evaluated using the proposed AF (Eq. (13)) as follows:  

 (i) For Example 2 (i), where Ã1
N = 〈0.6, 0.1, 0.4〉  and Ã2

N = 〈0.8, 0.3, 0.2〉 , then Ã2
N > Ã1

N  in 

accordance with the proposed AF (Eq. (13)). 

 (ii) For Example 2 (ii), where 𝐴̃1
𝑁 = 〈0.9, 0.4, 0.1〉  and 𝐴̃2

𝑁 = 〈0.7, 0.2, 0.3〉 , then 𝐴̃1
𝑁 > 𝐴̃2

𝑁  in 

accordance with proposed AF (Eq. (13)). 

  For a deliberate comparison among various existing metric methods for finding the correct 

ranking order of Example 2, a systematic tabular representation is presented in Table 3. 

Table 3. AF (𝝋𝑨(𝑨̃𝑵)) values in comparison with various metric methods 

 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 𝝋𝑨(𝑨̃𝑵) 𝝈𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.6,0.1,0.4〉 

𝐴̃2
𝑁 = 〈0.8,0.3,0.2〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.1  

0.3  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2  

0.6  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

𝐴̃1
𝑁 = 〈0.9,0.4,0.1〉 

𝐴̃2
𝑁 = 〈0.7,0.2,0.3〉 

 

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.0  

0.0  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.5  

0.5  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  

0.4  

0.2  

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵  

0.8  

0.4  

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵  

 

From Table 3, it is expressed that if there exist some SVNNs, exhibiting some peculiar behavior, 

then it can be ranked accordingly by using Eq. (13), and hence it produces desirable results and 

helps in selecting a better alternative among available SVNNs. Hence, it claims the validity of the 

proposed AF (Eq. (13)), stating that it is reasonable.  

Furthermore, it is observed that, if any of the necessary condition of AF (Eq. (13)) is violated 

i.e.,  

 (i) 𝑇𝐴𝑁 + 𝐹𝐴𝑁 = 1, or 

 (ii)  𝐼𝐴𝑁 ≠ 0,  

then the proposed AF (Eq. (13)), may or may not give a desirable result. Let us consider the 

following examples: 

Example 3. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of AF using Eq. 

(13) among these two SVNNs 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.1,0.0,0.9〉  and 𝐴̃2

𝑁 = 〈0.5,0.0,0.9〉 , then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = −0.8  in accordance with 

proposed AF (Eq. (13)) . While, it is obvious that 𝐴1 ≠ 𝐴2 , but we can see that the 

necessary conditions of AF, Eq. (13) are violated. 
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 (ii)  Let 𝐴̃1
𝑁 = 〈0.1,0.0,0.4〉  and 𝐴̃2

𝑁 = 〈0.7,0.2,0.3〉 , then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = 0.2  in accordance with 

proposed AF (Eq. (13)) . While, it is obvious that 𝐴1 ≠ 𝐴2 , but we can see that the 

necessary conditions of AF, Eq. (13) are violated. 

  Therefore, if we are using AF, Eq. (13), to obtain a reasonable solution then the must condition 

of AF, Eq. (13) should be necessarily followed. To validate this claim and to understand more 

precisely, let us consider some other example as follows: 

Example 4. Let 𝐴̃1
𝑁 = 〈𝑇𝐴1

𝑁(𝑥), 𝐼𝐴1
𝑁(𝑥), 𝐹𝐴1

𝑁(𝑥)〉,  and 𝐴̃2
𝑁 = 〈𝑇𝐴2

𝑁(𝑥), 𝐼𝐴2
𝑁(𝑥), 𝐹𝐴2

𝑁(𝑥)〉  be any two 

SVNNs, then the desirable alternative is selected according to the obtained value of AF using Eq. 

(13) among these two SVNNs 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈0.7, 0.2, 0.3〉 and 𝐴̃2

𝑁 = 〈0.6, 0.0, 0.4〉 be any two SVNNs, then on applying AF Eq. 

(13), the obtained values of 𝐴̃1
𝑁 and 𝐴̃2

𝑁 are 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = 0.2 respectively. 

 (ii)   Let 𝐴̃1
𝑁 = 〈0.7, 0.2, 0.3〉  and 𝐴̃2

𝑁 = 〈0.6, 0.000001, 0.4〉  be any two SVNNs, then on 

applying AF Eq. (13), the obtained values of 𝐴̃1
𝑁  = 0.2 and 𝐴̃2

𝑁 = 0.1999999 respectively. 

 Thus, we observe that in SVNN 𝐴̃2
𝑁 = 〈0.6, 0.0, 0.4〉, of Example 4 (i), 𝐼𝐴2

𝑁(𝑥) = 0.0, the must 

condition of AF Eq. (13) i.e., 𝐼𝐴2
𝑁 ≠ 0, is violated, whereas in, SVNN 𝐴̃2

𝑁 = 〈0.6, 0.000001, 0.4〉 of 

Example 4 (ii), 𝐼𝐴2
𝑁  is nearly zero but is strictly not zero, i.e., 𝐼𝐴2

𝑁 = 0.0000001 ≠ 0, therefore, when 

AF Eq. (13) is applied on 𝐴̃2
𝑁 = 〈0.6, 0.0, 0.4〉 of Example 4 (i), the obtained value of 𝐴̃2

𝑁 is 𝐴̃2
𝑁 =

0.2, and when AF Eq. (13) is applied on 𝐴̃2
𝑁 = 〈0.6, 0.000001, 0.4〉 of Example 4 (ii), the obtained 

value of 𝐴̃2
𝑁 is 𝐴̃2

𝑁 = 0.1999999. Hence, we conclude that in Example 4 (i) alternatives 𝐴̃1
𝑁 and 𝐴̃2

𝑁 

are equal i.e., 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = 0.2 while in Example 4 (ii) alternatives 𝐴̃1
𝑁 is greater than 𝐴̃2

𝑁 i.e.,  𝐴̃1
𝑁 >

𝐴̃2
𝑁 . 

 Therefore, we conclude from the above Example 3 and Example 4 that there may or may not 

exist several such SVNNs violating the must condition of the proposed AF, then Eq. (13) may or 

may not give an appropriate result. To handle such cases where the must condition for AF, Eq. (13) 

are not satisfied, then we can find the solution of such SVNNs from the AF, Eq. (6) of the literature 

[67] which can handle such special SVNNs in a better way.    

 Hence, it is claimed that the proposed AF Eq. (13) is simple but has restrictions in handling 

some special SVNNs, then such SVNNs can be ranked more appropriately by using the various 

other existing metric methods [67, 68], and the proposed SF Eq. (12) respectively. To validate the 

claim, Example 3 has been evaluated by using various other existing metric methods [67, 68], the 

proposed SF Eq. (12), and we conclude that in both the SVNSs, i.e., Example 3(i) and Example 3(ii), 

the desirable solution is 𝐴̃2
𝑁.  

Thus, the detailed comparative analysis of Example 3 has been made using various other 

existing metric methods [67, 68] and the proposed SF Eq. (12), as shown below in Table 4.  

Table 4. SF and AF values of various existing metric methods 

 

SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝈𝑨(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝉𝑨(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 𝝋𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈0.1,0.0,0.9〉 

𝐴̃2
𝑁 = 〈0.5,0.0,0.9〉 

 

0.1  

0.3  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.8  

−0.4  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.1  

0.38  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.8  

−0.4  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.1  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.8  

−0.8  

𝐴̃1
𝑁 = 𝐴̃2

𝑁  
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𝐴̃1
𝑁 = 〈0.1,0.0,0.4〉 

𝐴̃2
𝑁 = 〈0.7,0.2,0.3〉 

0.35  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

−0.3  

0.4  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2750  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵 

−0.3  

0.0  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2333  

0.5  

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵  

0.2  

0.2  

𝐴̃2
𝑁 = 𝐴̃1

𝑁  

  

 Hence, based on the existing metric methods [67, 68] for comparing any two SVNSs 𝐴̃1
𝑁 =

〈𝑇𝐴1
𝑁(𝑥), 𝐼𝐴1

𝑁(𝑥), 𝐹𝐴1
𝑁(𝑥)〉  and 𝐴̃2

𝑁 = 〈𝑇𝐴2
𝑁(𝑥), 𝐼𝐴2

𝑁(𝑥), 𝐹𝐴2
𝑁(𝑥)〉  using SF 𝜑𝑆(𝐴̃𝑁)  and AF 𝜑𝐴(𝐴̃𝑁) , a 

comparison method can be defined as follows: 

➢ If 𝜑𝑆(𝐴̃1
𝑁) > 𝜑𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

➢ If 𝜑𝑆(𝐴̃1
𝑁) < 𝜑𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

➢ If 𝜑𝑆(𝐴̃1
𝑁) = 𝜑𝑆(𝐴̃2

𝑁) then check 𝜑𝐴(𝐴̃𝑁) in the next step. 

✓ If 𝜑𝐴(𝐴̃1
𝑁) > 𝜑𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

✓ If 𝜑𝐴(𝐴̃1
𝑁) < 𝜑𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

✓ If 𝜑𝐴(𝐴̃1
𝑁) = 𝜑𝐴(𝐴̃2

𝑁) implies 𝐴̃1
𝑁 = 𝐴̃2

𝑁 for special SVNNs, then check 𝜎𝐴(𝐴̃𝑁) in 

the next step. 

• If 𝜎𝐴(𝐴̃1
𝑁) > 𝜎𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

• If 𝜎𝐴(𝐴̃1
𝑁) < 𝜎𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

• If 𝜎𝐴(𝐴̃1
𝑁) = 𝜎𝐴(𝐴̃2

𝑁) implies 𝐴̃1
𝑁 = 𝐴̃2

𝑁 . 

Thus, the proposed SF, Eq. (12) and the proposed AF, Eq. (13) can handle most of the SVNNs 

concerning its conditions and hence, are helpful in the DM process in a far better manner, and can 

give answers where the existing methods were having trouble in deriving the conclusions. 

To validate the claim of the proposed SF, Eq. (12) and the proposed AF, Eq. (13), a detailed 

analysis of its properties are presented as follows: 

Property 3.1. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 the value of the proposed SF 𝜑𝑆(𝐴̃𝑁), Eq. (12) 

lies between [0,1] i.e., 𝜑𝑆(𝐴̃𝑁)  ∈ [0,1]. 

Property 3.2. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 or SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 (for convenience), if 

𝛼 + 𝛾 = 2, then on using proposed SF, Eq. (12) no conclusion can be drawn. 

Proof: Let us consider an example given below: 

Let 𝐴̃𝑁  =  〈1, 0.7, 1〉 be any SVNN, where 𝛼 + 𝛾 = 2, then from the proposed SF, Eq. (12), we 

have 

𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−(𝛼+𝛾))
=

1+(1−2(0.7)−1)

2 (2−1−1)
=

1−1.4

0
= ∞. 

Since 𝜑𝑆(𝐴̃𝑁)  ∈ [0,1], hence, no conclusion can be drawn. Thus, for any SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉, 

SF 𝜑𝑆(𝐴̃𝑁) holds if 𝛼 + 𝛾 ≠ 2 

Property 3.3. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 or SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 (for convenience), if 

𝛼 + 𝛾 = 1, then proposed SF, Eq. (12) reduces to SF, Eq. (5) i.e., 𝜑𝑆(𝐴̃𝑁) = 𝜎𝑆(𝐴̃𝑁). 

Proof: Let 𝛼 + 𝛾 = 1, then from the proposed SF, Eq. (12), we have 

𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−(𝛼+𝛾))
=

1+(𝛼−2(𝛽)−𝛾)

2 (2−1)
=

1+(𝛼−2(𝛽)−𝛾)

2 
= 𝜎𝑆(𝐴̃𝑁).  
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Property 3.4. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉 or SVNN 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 (for convenience), the 

proposed SF, Eq. (12) is having a relationship with existing SF,𝜎𝑆(𝐴̃𝑁), and existing AF,𝜏𝐴(𝐴̃𝑁) as 

follows: 

 (i) 𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−𝛼−𝛾)
=

𝜎𝑆(𝐴𝑁)

 (2−𝛼−𝛾)
  

 (ii)  𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−𝛾)

2 (2−𝛼−𝛾)
=

1+𝜏𝐴(𝐴𝑁)

2 (2−𝛼−𝛾)
.  

Property 3.5. One property: If SVNN 𝐴̃𝑁  =  〈1,0,0〉, then 𝜑𝑆(𝐴̃𝑁) = 1, i.e., the maximum value of 

SVNN 𝐴̃𝑁 is 1. 

Proof: Let 𝐴̃𝑁  =  〈1,0,0〉 be any SVNN, then from Eq. (12), we have 

 𝜑𝑆(𝐴̃𝑁) =
1+(1−2(0)−0)

2 (2−1−0)
 = 1.  

Property 3.6. Zero property: If SVNN 𝐴̃𝑁  =  〈0,0,1〉, then 𝜑𝑆(𝐴̃𝑁) = 0, i.e., the minimum value of 

SVNN 𝐴̃𝑁 is 0. 

Proof: Let 𝐴̃𝑁  =  〈0,0,1〉 be any SVNN, then from Eq. (12), we have 

 𝜑𝑆(𝐴̃𝑁) =
1+(0−2(0)−1)

2 (2−0−0)
 = 0.  

Property 3.7. For any subset of SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉  or 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉  (for 

convenience), the value of 𝜑𝑆(𝐴̃𝑁) = 𝛼 − 𝛽, if 𝛼 + 𝛾 = 1. 

Proof: Let 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 be any subset of SVNS and 𝛼 + 𝛾 = 1.  

 (i)  Let 𝐴̃𝑁 = 〈𝛼, 𝛽, 1 − 𝛼〉, then from Eq. (12), we have   

𝜑𝑆(𝐴̃𝑁) =
1+(𝛼−2(𝛽)−(1−𝛼))

2 (2−𝛼−(1−𝛼))
  =

1+(2𝛼−2𝛽−1)

2
= 𝛼 − 𝛽.  

 (ii)  Let 𝐴̃𝑁 = 〈1 − 𝛾, 𝛽, 𝛾〉, then from Eq. (12), we have 

𝜑𝑆(𝐴̃𝑁) =
1+((1−𝛾)−2𝛽−𝛾)

2 (2−(1−𝛾)−𝛾)
  =

1+(1−2𝛽−2𝛾)

2
=

2(1−𝛽−𝛾)

2
= 𝛼 − 𝛽.  

Property 3.8. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉, the value of the proposed AF 𝜑𝐴(𝐴̃𝑁), Eq. (13) 

lies between [−1,1] i.e., 𝜑𝐴(𝐴̃𝑁) ∈ [−1,1], provided 𝛼 + 𝛾 = 1, and 𝛽 ≠ 0. 

Property 3.9. For SVNS 𝐴̃𝑁  =  〈𝑇̃𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹̃𝑁(𝑥)〉  or 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉  (for convenience), the 

proposed AF, 𝜑𝐴(𝐴̃𝑁) = 1 − 𝛽 − 2𝛾, is having a relation with SF Eq. (5) and AF, Eq. (6) as follows: 

i.e., 𝜑𝐴(𝐴̃𝑁) = 1 − (𝜎𝐴 − 𝜎𝑆) − 3𝛾 provided 𝛼 + 𝛾 = 1, and 𝛽 ≠ 0. 

Proof: Let 𝐴̃𝑁  =  〈𝛼, 𝛽, 𝛾〉 be any SVNS, and 𝛼 + 𝛾 = 1, 𝛽 ≠ 0, then we have 

𝜑𝐴(𝐴̃𝑁) = 1 − (𝜎𝐴 − 𝜎𝑆) − 3𝛾  

= 1 − {(𝛼 − 𝛽(1 − 𝛼) − 𝛾(1 − 𝛽)) − (
1+𝛼−2𝛽−𝛾

2
)} − 3𝛾  

= 1 − {(𝛼 − 𝛽 + 𝛼𝛽 − 𝛾 + 𝛽𝛾) − (
1+1−𝛾−2𝛽−𝛾

2
)} − 3𝛾  

= 1 − {(1 − 𝛾 − 𝛽 + (1 − 𝛾)𝛽 − 𝛾 + 𝛽𝛾) − (
2−2𝛾−2𝛽

2
)} − 3𝛾  

= 1 − {(1 − 𝛾 − 𝛽 + 𝛽 − 𝛽𝛾 − 𝛾 + 𝛽𝛾) − (1 − 𝛾 − 𝛽)} − 3𝛾  

= 1 − (−𝛾 + 𝛽) − 3𝛾  
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= 1 − 𝛽 − 2𝛾. 

3.2 Proposed SF for IVNSs 

Let 𝐴̃𝑁  = {〈𝑥, [𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉|𝑥 ∈ 𝑋} be an IVNS, then a new 

SF in terms of the degree of truth-membership, the degree of indeterminacy-membership, and the 

degree of falsity-membership respectively for IVNS are defined by: 

𝜔𝑆(𝐴̃𝑁) =
2+(𝑇

𝐴̃𝑁
𝐿 +𝑇

𝐴̃𝑁
𝑈 −2𝐼

𝐴̃𝑁
𝐿 −2𝐼

𝐴̃𝑁
𝑈 −𝐹

𝐴̃𝑁
𝐿 −𝐹

𝐴̃𝑁
𝑈 )

2 (4−𝑇
𝐴̃𝑁
𝐿 −𝑇

𝐴̃𝑁
𝑈 −𝐹

𝐴̃𝑁
𝐿 −𝐹

𝐴̃𝑁
𝑈 )

            (14) 

𝑤ℎ𝑒𝑟𝑒 𝜔𝑆(𝐴̃𝑁) ∈ [0,1] 𝑎𝑛𝑑 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 ≠ 4, as 0 ≤ T

ÃN
L (x) ≤ T

ÃN
U (x) ≤ 1, 0 ≤ F

ÃN
L (x) ≤

F
ÃN
U (x) ≤ 1.                               

Clearly, it is observed that if 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 = 2, then 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁). 

To validate the claim of the proposed SF (Eq. (14)), some well-defined IVNNs are chosen and 

evaluated. Let us consider the following examples. 

Example 5. Let 𝐴̃1
𝑁 = 〈[𝑇

𝐴1
𝑁

𝐿 (𝑥), 𝑇
𝐴1

𝑁
𝑈 (𝑥)] , [𝐼

𝐴1
𝑁

𝐿 (𝑥), 𝐼
𝐴1

𝑁
𝑈 (𝑥)] , [𝐹

𝐴1
𝑁

𝐿 (𝑥), 𝐹
𝐴1

𝑁
𝑈 (𝑥)]〉  and 𝐴̃2

𝑁 =

〈[𝑇
𝐴2

𝑁
𝐿 (𝑥), 𝑇

𝐴2
𝑁

𝑈 (𝑥)] , [𝐼
𝐴2

𝑁
𝐿 (𝑥), 𝐼

𝐴2
𝑁

𝑈 (𝑥)] , [𝐹
𝐴2

𝑁
𝐿 (𝑥), 𝐹

𝐴2
𝑁

𝑈 (𝑥)]〉 be any two IVNNs, then the desirable alternative 

is selected according to the obtained value of SF using Eq. (14) among 𝐴̃1
𝑁 and 𝐴̃2

𝑁. 

 (i) Let 𝐴̃1
𝑁 = 〈[0.4,0.5], [0.1,0.2], [0.1,0.2]〉 and 𝐴̃2

𝑁 = 〈[0.48,0.52], [0.0,0.2], [0.2,0.4]〉 then 𝐴̃2
𝑁 > 𝐴̃1

𝑁 

in accordance with proposed SF (Eq. (14)). 

 (ii) Let 𝐴̃1
𝑁 = 〈[0.4,0.6], [0.125,0.125], [0.1,0.4]〉  and 𝐴̃2

𝑁 = 〈[0.23,0.67], [0.1125,0.1125], [0.05,0.4]〉 

then 𝐴̃1
𝑁 > 𝐴̃2

𝑁 in accordance with proposed SF (Eq. (14)).  

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of Example 5, a systematic tabular representation of the function values of various 

metric methods is presented in Table 5. 

Table 5. SF (𝝎𝑺(𝑨̃𝑵)) values in comparison with various existing metric methods 

IVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 𝝌𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈[0.4,0.5], [0.1,0.2], [0.1,0.2]〉 

𝐴̃2
𝑁 = 〈[0.48,0.52], [0.0,0.2], [0.2,0.4]〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.3571 

0.4167 

𝑨̃𝟐
𝑵 > 𝑨̃𝟏

𝑵 

0.24 

0.27 

𝐴̃2
𝑁 > 𝐴̃1

𝑁 

𝐴̃1
𝑁 = 〈[0.4,0.6], [0.125,0.125], [0.1,0.4]〉 

𝐴̃2
𝑁 = 〈[0.23,0.67], [0.1125,0.1125], [0.05,0.4]〉 

 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.5 

0.5 

𝐴̃1
𝑁 = 𝐴̃2

𝑁 

0.4 

0.3774 

𝑨̃𝟏
𝑵 > 𝑨̃𝟐

𝑵 

0.2188 

0.1885 

𝐴̃1
𝑁 > 𝐴̃2

𝑁 

 

From Table 5, it is expressed that there may exist several ranking methods for IVNNs which can 

rank the alternatives, 𝐴̃1
𝑁, 𝐴̃2

𝑁 , and suggest which of the alternative is better among both. It has been 

observed that sometimes, the existing metric methods [67, 68] may or may not fail to rank, but the 

proposed SF (Eq. (14)) is providing desirable results. Hence, it claims the validity of the proposed 

SF (Eq. (14)), stating that it is reasonable.   
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  Also, it is observed that there may exist several IVNNs where, 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 = 2, then 

the proposed SF, Eq. (14) reduces to the existing SF (Eq. (9)) [67]. Some of IVNNs exhibiting such 

nature are considered as follows: 

Example 6. Let 𝐴̃𝑁 = 〈[0.22, 0.78], [0.1, 0.3], [0.3, 0.7]〉 , then 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁) = 0.3000  in 

accordance with obtained value of SF on using (Eq. (14)) and (Eq. (9)). 

Example 7. Let 𝐴̃𝑁 = 〈[0.45, 0.55], [0.1, 0.2], [0.4, 0.6]〉 , then 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁) = 0.3500  in 

accordance with obtained value of SF on using (Eq. (14)) and (Eq. (9)). 

For a deliberate comparison among various existing metric methods, for finding the correct 

score value of Example 6 and Example 7, a systematic tabular representation of the function values 

of various metric methods is presented in Table 6. 

Table 6. Function values of some special IVNNs using various existing methods 

 

IVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 𝝌𝑨(𝑨̃𝑵) 

𝐴̃𝑁 = 〈[0.22, 0.78], [0.1, 0.3], [0.3, 0.7]〉 0.3000 0.3000 0.3000 0.0080 

𝐴̃𝑁 = 〈[0.45, 0.55], [0.1, 0.2], [0.4, 0.6]〉 0.3500 0.3500 0.3500 −0.0025 

 

  Also, it is observed that there may exist several IVNNs where, 𝑇
𝐴𝑁
𝐿 + 𝑇

𝐴𝑁
𝑈 + 𝐹

𝐴𝑁
𝐿 + 𝐹

𝐴𝑁
𝑈 = 4, then 

the proposed score functions Eq. (14), have its limitation. Let us consider an example of IVNNs 

exhibiting such nature as follows:  

Example 8. Let 𝐴̃1
𝑁 = 〈[1, 1], [0.2, 0.7], [1, 1]〉 and 𝐴̃2

𝑁 = 〈[1, 1], [0.5, 0.9], [1, 1]〉 be any two IVNNs, 

then 𝐴̃1
𝑁 = 𝐴̃2

𝑁 = ∞  on using the proposed SF, Eq. (14), since it is violating the must condition for 

the proposed SF Eq. (14) hence, no conclusion can be drawn. 

 Furthermore, on analysis, it is observed that the existing AF 𝜒𝐴(𝐴̃𝑁) , (Eq. (10) )  [67] is 

successful in giving a desirable solution for such IVNNs, where sometimes all the existing [67, 68] 

and the proposed SF i.e., Eq. (9) , Eq. (11)  and Eq. (14)  may or may not be able to give an 

appropriate solution. To validate the claim, above stated Example 8 is evaluated using AF 𝜒𝐴(𝐴̃𝑁), 

(Eq. (10) ) [67]  which states that, 𝐴̃2
𝑁 > 𝐴̃1

𝑁  i.e., 𝐴̃2
𝑁  is the best alternative among 𝐴̃2

𝑁 and 𝐴̃1
𝑁  as 

shown in Table 7. 

For a deliberate comparison among various existing metric methods, for finding the correct 

ranking order of some special SVNN concerning an existing AF 𝜒𝐴(𝐴̃𝑁) , (Eq. (10) )  [67], is 

presented in Table 7 as follows: 

Table 7. Function values of some special IVNNs using various existing metric methods 

 

IVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 𝝌𝑨(𝑨̃𝑵) 

𝐴̃1
𝑁 = 〈[1, 1], [0.2, 0.7], [1, 1]〉 

𝐴̃2
𝑁 = 〈[1, 1], [0.5, 0.9], [1, 1]〉 

0.05 

−0.2 

(𝛼𝑆(𝐴̃𝑁) ∉ [0, 1]) 

0.5 

0.5 

∞ 

∞ 

−0.05 

0.7 
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 Thus, from Table 7, it is concluded that there may or may not exists several such SVNNs for 

which sometimes all the existing [67, 68] and the proposed SF i.e., Eq. (9), Eq. (11) and Eq. (14) 

may not suggest an appropriate solution among 𝐴̃1
𝑁 and 𝐴̃2

𝑁 but the existing AF 𝜒𝐴(𝐴̃𝑁), (Eq. (10) ) 

[67] is successful in providing a satisfactory solution so far. 

 Hence, based on the existing metric methods [67, 68] for comparing any two IVNSs 𝐴̃1
𝑁 =

〈[𝑇
𝐴1

𝑁
𝐿 (𝑥), 𝑇

𝐴1
𝑁

𝑈 (𝑥)] , [𝐼
𝐴1

𝑁
𝐿 (𝑥), 𝐼

𝐴1
𝑁

𝑈 (𝑥)] , [𝐹
𝐴1

𝑁
𝐿 (𝑥), 𝐹

𝐴1
𝑁

𝑈 (𝑥)]〉  and 𝐴̃2
𝑁 =

〈[𝑇
𝐴2

𝑁
𝐿 (𝑥), 𝑇

𝐴2
𝑁

𝑈 (𝑥)] , [𝐼
𝐴2

𝑁
𝐿 (𝑥), 𝐼

𝐴2
𝑁

𝑈 (𝑥)] , [𝐹
𝐴2

𝑁
𝐿 (𝑥), 𝐹

𝐴2
𝑁

𝑈 (𝑥)]〉 using SF and AF, a comparison method can be 

defined as follows: 

➢ If 𝜔𝑆(𝐴̃1
𝑁) > 𝜔𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

➢ If 𝜔𝑆(𝐴̃1
𝑁) < 𝜔𝑆(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

➢ If 𝜔𝑆(𝐴̃1
𝑁) = 𝜔𝑆(𝐴̃2

𝑁) or no conclusion can be drawn, then check 𝜒𝐴(𝐴̃𝑁) in the next step. 

• If 𝜒𝐴(𝐴̃1
𝑁) > 𝜒𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 > 𝐴̃2

𝑁. 

• If 𝜒𝐴(𝐴̃1
𝑁) < 𝜒𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 < 𝐴̃2

𝑁. 

• If 𝜒𝐴(𝐴̃1
𝑁) = 𝜒𝐴(𝐴̃2

𝑁) then 𝐴̃1
𝑁 = 𝐴̃2

𝑁. 

Thus, the proposed SF, Eq. (14) can handle most of the IVNNs along with its conditions and 

hence, is helpful in the DM process in a much better way, also can give answers where the existing 

methods were not leading the solution to anywhere. 

To validate the claim of the proposed SF, Eq. (14), a detailed analysis of its properties are 

presented as follows: 

Property 3.10. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉 the value of the 

proposed SF 𝜔𝑆(𝐴̃𝑁), Eq. (14) lies between [0,1] i.e., 𝜔𝑆(𝐴̃𝑁)  ∈ [0,1]. 

Property 3.11. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉  or 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉 (for convenience), if 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 4, then on using proposed SF, 

Eq. (14) no conclusion can be drawn. 

Proof: Let us consider an example given below: 

Let 𝐴̃𝑁  =  〈〈[1, 1], [0.25, 0.571], [1, 1]〉〉 be any IVNN, where 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 4, then from 

the proposed SF, Eq. (14), we have 

𝜔𝑆(𝐴̃𝑁) =
2+(1+1−2(0.25)−2(0.571)−1−1)

2 (4−1−1−1−1)
=

2+(−1.6420)

0
=

0.3580

0
= ∞.  

Since 𝜔𝑆(𝐴̃𝑁)  ∈ [0,1] , hence, no conclusion can be drawn. Thus, for any IVNN 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉, SF 𝜔𝑆(𝐴̃𝑁) holds if 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 ≠ 4. 

Property 3.12. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉  or 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉 (for convenience), if 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 2, , then proposed SF, Eq. (14) 

reduces to SF, Eq. (9) i.e., 𝜔𝑆(𝐴̃𝑁) = 𝜒𝑆(𝐴̃𝑁). 

Proof: Let 𝛼1 + 𝛼2 + 𝛾1 + 𝛾2 = 2, then from the proposed SF, Eq. (14), we have 

𝜔𝑆(𝐴̃𝑁) =
2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

2 (4−𝛼1−𝛼2−𝛾1−𝛾2)
=

2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

2 (4−(𝛼1+𝛼2+𝛾1+𝛾2))
=

2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

2 (4−2)
  

=
2+(𝛼1+𝛼2−2𝛽1−𝛽2−𝛾1−𝛾2)

4
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= 𝜒𝑆(𝐴̃𝑁).  

Property 3.13. For IVNS 𝐴̃𝑁 = 〈[𝑇
𝐴𝑁
𝐿 (𝑥), 𝑇

𝐴𝑁
𝑈 (𝑥)], [𝐼

𝐴𝑁
𝐿 (𝑥), 𝐼

𝐴𝑁
𝑈 (𝑥)], [𝐹

𝐴̃𝑁
𝐿 (𝑥), 𝐹

𝐴𝑁
𝑈 (𝑥)]〉  or 𝐴̃𝑁  =

 〈[𝛼1, 𝛼2)], [𝛽1, 𝛽2], [𝛾1, 𝛾2]〉 (for convenience), the proposed SF 𝜔𝑆(𝐴̃𝑁), Eq. (14) is having a relation 

with SF 𝜒𝑆(𝐴̃𝑁), Eq. (9) as follows: i.e., 𝜔𝑆(𝐴̃𝑁) =
𝜒𝑆

(4−𝛼1−𝛼2−𝛾1−𝛾2)
. 

Property 3.14. One property: If IVNN 𝐴̃𝑁  =  〈[1, 1], [0, 0], [0,0]〉, then 𝜔𝑆(𝐴̃𝑁) = 1, i.e., the maximum 

value of IVNN 𝐴̃𝑁 is 1. 

Proof: Let 𝐴̃𝑁  =  〈[1, 1], [0, 0], [0,0]〉 be any IVNN, then from Eq. (14), we have 

 𝜔𝑆(𝐴̃𝑁) =
2+(1+1−0−0−0−0)

2 (4−1−1−0−0)
=

4

4
= 1.  

Property 3.15. Zero property: If IVNN 𝐴̃𝑁  =  〈[0, 0], [0, 0], [1,1]〉, then 𝜔𝑆(𝐴̃𝑁) = 0, i.e., the minimum 

value of IVNN 𝐴̃𝑁 is 0. 

Proof: Let 𝐴̃𝑁  =  〈[0, 0], [0, 0], [1,1]〉 be any IVNN, then from Eq. (14), we have 

 𝜔𝑆(𝐴̃𝑁) =
2+(0+0−0−0−1−1)

2 (4−0−0−1−1)
=

0

4
= 0.  

4. MCDM method based on proposed SF and AF under neutrosophic environment  

 In this section MCDM method is proposed for both SVNSs and IVNSs using proposed SF and 

proposed AF, which is pictorially presented in Figure 1. 

4.1. MCDM method based on proposed SF and AF under SVNSs 

 Let us consider an MCDM problem having 𝑚 number of alternatives i.e., 𝐴̃𝑁 = {𝐴̃1
𝑁 , 𝐴̃2

𝑁 , … , 𝐴̃𝑚
𝑁 } 

which are evaluated on 𝑛 number of criteria i.e., 𝐺̃𝑁 = {𝐺̃1
𝑁 , 𝐺̃2

𝑁 , … , 𝐺̃𝑛
𝑁}. Suppose that the weight 

allotted to each criterion by the decision-maker is 𝑤𝑗 ∈ [0,1]  and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Also, the 

characteristics of an alternatives 𝐴̃𝑖
𝑁(𝑖 = 1,2, … , 𝑚)  per criterion 𝐺̃𝑗

𝑁(𝑗 = 1,2, … , 𝑛)  can be 

represented by an SVNS i.e., 𝐴̃𝑖
𝑁  = {〈𝐺̃𝑗

𝑁 , 𝑇𝐴𝑖
𝑁(𝐺̃𝑗

𝑁), 𝐼𝐴𝑖
𝑁(𝐺̃𝑗

𝑁), 𝐹𝐴𝑖
𝑁(𝐺̃𝑗

𝑁)〉 |𝐺̃𝑗
𝑁 ∈ 𝐺̃𝑁}, where 𝑇𝐴𝑖

𝑁(𝐺̃𝑗
𝑁) +

 𝐼𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) + 𝐹𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≤ 3  and 𝑇𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≥ 0, 𝐼𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≥ 0, 𝐹𝐴𝑖
𝑁(𝐺̃𝑗

𝑁) ≥ 0 , for all 𝑖 = 1 𝑡𝑜 𝑚  and 𝑗 =

1 𝑡𝑜 𝑛, for convenience it is denoted as Ψ𝑖𝑗 = 〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗〉. The single-valued neutrosophic decision 

matrix (SVNDM) derived from the collected single-valued neutrosophic data available for 𝑚 

number of alternatives with respect to 𝑛 number of the criterion is represented as 

 

𝐷 = (Ψ𝑖𝑗)
𝑚×𝑛

= (〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗  〉)
𝑚×𝑛 

i.e., 

 

 

(Ψ𝑖𝑗)
𝑚×𝑛

=       

𝐴1

𝐴2

⋮
𝐴𝑚

[

〈𝛼11, 𝛽11, 𝛾11〉 〈𝛼12, 𝛽12, 𝛾12〉

〈𝛼21, 𝛽21, 𝛾21〉 〈𝛼22, 𝛽22, 𝛾22〉
⋮ ⋮

〈𝛼𝑚1, 𝛽𝑚1, 𝛾𝑚1〉 〈𝛼𝑚2, 𝛽𝑚2, 𝛾𝑚2〉

    

⋯ 〈𝛼1𝑛, 𝛽1𝑛 , 𝛾1𝑛〉

⋯ 〈𝛼2𝑛, 𝛽2𝑛 , 𝛾2𝑛〉
⋱ ⋮
⋯ 〈𝛼𝑚𝑛 , 𝛽𝑚𝑛 , 𝛾𝑚𝑛〉

].  

 

For evaluating the MCDM problem for SVNSs we need a step-wise procedure which is 

summarized as follows: 

Step 1: Check that all the criteria of the SVNDM, 𝐷 are of the same type or not.  

𝐺1 𝐺2 𝐺𝑛 
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Case (i)    If all the criteria are of the same type then go to Step 2. 

Case (ii) If some criteria are of benefit type and others are of cost types then normalize the 

SVNDM by transforming the cost criterion into benefit criterion, in the following manner: If the 

𝑝𝑡ℎ criterion is cost criterion then replace all the elements 〈𝛼𝑖𝑝, 𝛽𝑖𝑝 , 𝛾𝑖𝑝 〉 of the 𝑝𝑡ℎ column of 

the decision matrix,  𝐷 with 〈𝛾𝑖𝑝, 1 − 𝛽𝑖𝑝, 𝛼𝑖𝑝 〉. 

Step 2: Evaluate the SVNSs Ψ𝑖𝑗  for each 𝐴̃𝑖
𝑁 into an SVNN Ψ𝑖 using WAM, Eq. (1), or the WGM, 

Eq. (2).  

Step 3: After aggregating (by applying either of the approaches i.e., WAM or WGM) according to 

Step 2, now obtain the crisp value of  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) by using SF 𝜑𝑆(𝐴̃𝑁), Eq. (12)  or AF 

𝜑𝐴(𝐴̃𝑁), Eq. (13). 

Step 4: After Step 3, rank all the alternatives as per the obtained value of 𝜑𝑆(𝐴̃𝑁) or 𝜑𝐴(𝐴̃𝑁) and 

choose the best alternative. 

4.2. MCDM method based on proposed SF and AF under IVNSs 

 Let us consider an MCDM problem having 𝑚 number of alternatives i.e., 𝐴̃𝑁 = {𝐴̃1
𝑁 , 𝐴̃2

𝑁 , … , 𝐴̃𝑚
𝑁 } 

which are evaluated on 𝑛 number of criteria i.e., 𝐺̃𝑁 = {𝐺̃1
𝑁 , 𝐺̃2

𝑁 , … , 𝐺̃𝑛
𝑁}. Suppose that the weight 

allotted to each criterion by the decision-maker is 𝑤𝑗 ∈ [0,1]  and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Also, the 

characteristics of an alternatives 𝐴̃𝑖
𝑁(𝑖 = 1,2, … , 𝑚)  as per criterion 𝐺̃𝑗

𝑁(𝑗 = 1,2, … , 𝑛)  can be 

represented by an IVNS i.e., 𝐴̃𝑖
𝑁  =

{〈𝐺̃𝑗
𝑁 , [𝑇

𝐴𝑖
𝑁

𝐿 (𝐺̃𝑗
𝑁), 𝑇

𝐴𝑖
𝑁

𝑈 (𝐺̃𝑗
𝑁)] , [𝐼

𝐴𝑖
𝑁

𝐿 (𝐺̃𝑗
𝑁), 𝐼

𝐴𝑖
𝑁

𝑈 (𝐺̃𝑗
𝑁)] , [𝐹

𝐴𝑖
𝑁

𝐿 (𝐺̃𝑗
𝑁), 𝐹

𝐴𝑖
𝑁

𝑈 (𝐺̃𝑗
𝑁)]〉 |𝐺̃𝑗

𝑁 ∈ 𝐺̃𝑁} , where 𝑇
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) +

𝐼
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) + 𝐹
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 3  and 0 ≤ 𝑇
𝐴𝑖

𝑁
𝐿 (𝐺̃𝑗

𝑁) ≤ 𝑇
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 1, 0 ≤ 𝐼
𝐴𝑖

𝑁
𝐿 (𝐺̃𝑗

𝑁) ≤ 𝐼
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 1, 0 ≤

𝐹
𝐴𝑖

𝑁
𝐿 (𝐺̃𝑗

𝑁) ≤ 𝐹
𝐴𝑖

𝑁
𝑈 (𝐺̃𝑗

𝑁) ≤ 1, for all 𝑖 = 1 𝑡𝑜 𝑚 and 𝑗 = 1 𝑡𝑜 𝑛, for convenience it is denoted as Ψ𝑖𝑗 =

〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗〉 =  〈[𝛼𝑖𝑗
𝐿 , 𝛼𝑖𝑗

𝑈)], [𝛽𝑖𝑗
𝐿 , 𝛽𝑖𝑗

𝑈 ], [𝛾𝑖𝑗
𝐿 , 𝛾𝑖𝑗

𝑈]〉 . The interval-valued neutrosophic decision-matrix 

(IVNDM) derived from the collected interval-valued neutrosophic data available for 𝑚 number of 

alternatives for 𝑛 number of the criterion is represented as 

 

𝐷 = (Ψ𝑖𝑗)
𝑚×𝑛

= (〈𝛼𝑖𝑗 , 𝛽𝑖𝑗 , 𝛾𝑖𝑗  〉)
𝑚×𝑛 

= (〈[𝛼𝑖𝑗
𝐿 , 𝛼𝑖𝑗

𝑈)], [𝛽𝑖𝑗
𝐿 , 𝛽𝑖𝑗

𝑈  ], [𝛾𝑖𝑗
𝐿 , 𝛾𝑖𝑗

𝑈]〉)
𝑚×𝑛 

i.e., 

 

(Ψ𝑖𝑗)
𝑚×𝑛

=       

𝐴1

𝐴2

⋮
𝐴𝑚

[

〈𝛼11, 𝛽11, 𝛾11〉 〈𝛼12, 𝛽12, 𝛾12〉

〈𝛼21, 𝛽21, 𝛾21〉 〈𝛼22, 𝛽22, 𝛾22〉
⋮ ⋮

〈𝛼𝑚1, 𝛽𝑚1, 𝛾𝑚1〉 〈𝛼𝑚2, 𝛽𝑚2, 𝛾𝑚2〉

    

⋯ 〈𝛼1𝑛, 𝛽1𝑛 , 𝛾1𝑛〉

⋯ 〈𝛼2𝑛, 𝛽2𝑛 , 𝛾2𝑛〉
⋱ ⋮
⋯ 〈𝛼𝑚𝑛 , 𝛽𝑚𝑛 , 𝛾𝑚𝑛〉

].  

 

For evaluating the MCDM problem for IVNSs we need a step-wise procedure which is 

summarized as follows: 

Step 1: Check that all the criteria of the IVNDM, 𝐷 are of the same type or not.  

Case (i)    If all the criteria are of the same type then go to Step 2. 

Case (ii) If some criteria are of benefit types and others are of cost types then normalize the 

IVNDM by transforming the cost criterion into benefit criterion, in the following manner: If the 

𝐺1 𝐺2 𝐺𝑛 
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𝑝𝑡ℎ criterion is of cost type then replace all the elements 〈𝛼𝑖𝑝 , 𝛽𝑖𝑝, 𝛾𝑖𝑝  〉 of the 𝑝𝑡ℎ column of the 

decision matrix,  𝐷 with 〈𝛾𝑖𝑝 , 1 − 𝛽𝑖𝑝 , 𝛼𝑖𝑝  〉. 

Step 2: Evaluate the IVNSs Ψ𝑖𝑗  for each 𝐴̃𝑖
𝑁 into an IVNN Ψ𝑖 using WAM, Eq. (3) or the WGM, 

Eq. (4).  

Step 3: After aggregating (by applying either of the approaches i.e., WAM or WGM) according to 

Step 2, now obtain the crisp value of  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) by using SF 𝜔𝑆(𝐴̃𝑁), Eq. (14)  or AF 

𝜒𝐴(𝐴̃𝑁), Eq. (10). 

Step 4: After Step 3, rank all the alternatives as per the obtained value of 𝜔𝑆(𝐴̃𝑁) or 𝜒𝐴(𝐴̃𝑁) and 

choose the best alternative.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The flowchart of the proposed MCDM method  

5. Real-world problem on SVNSs and IVNSs 

In this section, a very common example is taken from a real-life which helps in validating the 

proposed approach. 

Start the process 

 

Set the goal, criteria and alternatives 

 

Check that all the criteria of the Neutrosophic DM, are of the same type or not 

 
If all are of same type then go to next Step, if not then normalize the  Neutrosophic DM 

 

Evaluate the SVNSs/IVNSs Ψij for each Ãi
N into an SVNN/IVNN Ψi using WAM or the WGM 

SVNNs IVNNs 

Rank all alternatives as per value of  𝜑𝑆(𝐴̃𝑁) or 𝜑𝐴(𝐴̃𝑁) 𝑜𝑟 𝜔𝑆(𝐴̃𝑁) or 𝜒𝐴(𝐴̃𝑁) and choose the best 

alternative. 

Obtain the crisp value of  Ψi (i = 1,2, … , m) by 

using SF φS(ÃN) or AF φA(ÃN) 

 

Obtain the crisp value of  Ψi (i = 1,2, … , m) by 

using SF ωS(ÃN) or AF χA(ÃN) 

 

END 

Collect the data and construct Neutrosophic DM of m-alternatives with respect to n-criterion 
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Example 5.1. Consider an MCDM problem of selecting a pre-school for the first time, by the parents 

of a kindergarten child. To make the best selection, parents have collected the data in terms of the 

neutrosophic set (SVNSs or IVNSs) of 05 possible pre-schools, as per their liking, which are their 

prospective alternatives 𝐴̃𝑁 = {𝐴̃1
𝑁 , 𝐴̃2

𝑁, 𝐴̃3
𝑁 ,  𝐴̃4

𝑁 ,  𝐴̃5
𝑁}  respectively. The data of these 05  possible 

alternatives are based on 03 different criteria 𝐺̃𝑁 = {𝐺̃1
𝑁 ,  𝐺̃2

𝑁 , 𝐺̃3
𝑁} where 𝐺̃1

𝑁 represents “near to the 

house, and safety of the child”, 𝐺̃2
𝑁 represents “fee, infrastructure, and rapport” and 𝐺̃3

𝑁 represents 

“teaching methods in terms of effective learning concerning, cognitive, conative, affective, and 

physical activity” and the weight vectors are chosen for each criterion is 𝑤𝑗 = (
1

3
,

1

3
,

1

3
)

𝑇

. Thus, when 

these five schools w.r.t the above-stated criteria are assessed by the parents (decision-maker), using 

the above-mentioned procedure stated in Section 4.1 and Section 4.2 as represented pictorially in 

Figure 2, the best alternative is obtained.  

 

 

Figure 2. A Framework of Proposed MCDM approach for a real-life problem 

 

5.1 Real-world problem on SVNSs  

On applying the procedure mentioned in Section 4.1 on Example 5.1, where the collected data by 

the decision-maker is in terms of SVNSs, the best solution is derived as follows:  

Step 1: Using the Step 1 of Section 4.1, the obtained SVNDM, 𝐷  as per the collected SVNS 

information is presented in Table 8. 
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Table 8. SVNDM 

 𝐺̃1
𝑁 𝐺̃2

𝑁 𝐺̃3
𝑁 

𝐴̃1
𝑁 〈0.6,0.3,0.0〉 〈0.6,0.1,0.4〉 〈0.4,0.3,0.8〉 

𝐴̃2
𝑁 〈0.2,0.1,0.0〉 〈0.8,0.3,0.2〉 〈0.9,0.2,0.6〉 

𝐴̃3
𝑁 〈0.4,0.2,0.3〉 〈0.4,0.2,0.3〉 〈0.2,0.2,0.5〉 

𝐴̃4
𝑁 〈0.3,0.2,0.3〉 〈0.5,0.2,0.3〉 〈0.5,0.3,0.2〉 

𝐴̃5
𝑁 〈0.7,0.0,0.1〉 〈0.6,0.1,0.2〉 〈0.4,0.3,0.2〉 

 

Step 2: Using the Step 2 of Section 4.1, the obtained aggregated SVNN Ψ𝑖, for SVNSs Ψ𝑖𝑗 , for each 

𝐴̃𝑖
𝑁 using WAM, Eq. (1) and the WGM, Eq. (2) are shown in Table 9.  

 

Table 9. SVNN using 𝑨𝑶𝑾𝑨 and 𝑨𝑶𝑾𝑮 

 𝐴𝑂𝑊𝐴 𝐴𝑂𝑊𝐺  

Ψ1 〈 0.5421, 0.2080, 0.0〉 〈0.5241, 0.2388, 0.5068〉 

Ψ2 〈 0.7480, 0.1817, 0.0〉 〈0.5241, 0.2042, 0.3160〉 

Ψ3 〈0.3396, 0.2, 0.3557〉 〈0.3175, 0.2, 0.3743〉 

Ψ4 〈0.4407, 0.2289, 0.2621〉 〈0.4217, 0.2348, 0.2681〉 

Ψ5 〈0.5840, 0.0, 0.1587〉 〈0.5518, 0.1427, 0.1680〉 

 

Step 3: After Step 2, using the Step 3 of Section 4.1, the score value, 𝜑𝑆 for each Ψ𝑖 (𝑖 = 1,2, … , 𝑚) 

are obtained by using Eq. (12) as follows:  

Approach 1 (Using WAM). Aggregated SVNN Ψ𝑖  (𝑖 = 1,2, … , 𝑚)  on using, WAM Eq. (1) , the 

obtained score values 𝜑𝑆(𝐴̃𝑖
𝑁) are as follows: 

𝜑𝑆(Ψ1) = 0.3862, 𝜑𝑆(Ψ2) = 0.5530, 𝜑𝑆(Ψ3) = 0.2238, 𝜑𝑆(Ψ4) = 0.2778, 𝜑𝑆(Ψ5) = 0.5668. 

Approach 2 (Using WGM). Aggregated SVNN  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) on using, WGM Eq. (2) , the 

obtained score values 𝜑𝑆(𝐴̃𝑖
𝑁) are as follows: 

𝜑𝑆(Ψ1) = 0.2785, 𝜑𝑆(Ψ2) = 0.3448, 𝜑𝑆(Ψ3) = 0.2076, 𝜑𝑆(Ψ4) = 0.2610, 𝜑𝑆(Ψ5) = 0.4290. 

Step 4: According to the obtained values of SF in Step 3, the following results are deduced, i.e.,  

 (i) For approach 1, the obtained ranking order of the alternatives is 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 > 𝐴̃4

𝑁 > 𝐴̃3
𝑁, 

hence, 𝐴̃5
𝑁  is the best alternative according to the obtained score value 𝜑𝑆(𝐴̃𝑁) for each Ψ𝑖 

(𝑖 = 1,2, … , 𝑚). 

 (ii)  For approach 2, the obtained ranking order of the alternatives is 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 > 𝐴̃4

𝑁 >

𝐴̃3
𝑁, hence, 𝐴̃5

𝑁  is the best alternative according to the obtained score value 𝜑𝑆(𝐴̃𝑁) for each 

Ψ𝑖 (𝑖 = 1,2, … , 𝑚). 

Furthermore, to validate the above results obtained from the proposed method 𝜑𝑆(𝐴̃𝑁), a 

detailed comparative analysis of given data in Table 9 is done with the existing methods 𝜎𝑆(𝐴̃𝑁) 

[67], and 𝜏𝑆(𝐴̃𝑁) [68], and the obtained values of their respective score functions are represented in 

Table 10 and Table 11, on applying both the approaches of aggregation i.e., WAM and WGM 

respectively.    
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According to the obtained values of the SF on using the existing methods 𝜎𝑆(𝐴̃𝑁) [67], 𝜏𝑆(𝐴̃𝑁) 

[68], and the proposed method 𝜑𝑆(𝐴̃𝑁) for WAM, the obtained ranking order of all the alternatives 

is the same, i.e., 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 > 𝐴̃4

𝑁 > 𝐴̃3
𝑁, as shown in Table 10, hence we conclude that 𝐴̃5

𝑁  is the 

best alternative.  

Table 10. Comparative analysis of SF of various methods for WAM 

 

 
SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝜑𝑆(Ψ1) 〈 0.5421, 0.2080, 0.0〉 0.5631 0.5919 0.3862 

𝜑𝑆(Ψ2) 〈 0.7480, 0.1817, 0.0〉 0.6923 0.7408 0.5530 

𝜑𝑆(Ψ3) 〈0.3396, 0.2, 0.3557〉 0.2919 0.2286 0.2238 

𝜑𝑆(Ψ4) 〈0.4407, 0.2289, 0.2621〉 0.3604 0.3189 0.2778 

𝜑𝑆(Ψ5) 〈0.5840, 0.0, 0.1587〉 𝟎. 𝟕𝟏𝟐𝟕 𝟎. 𝟕𝟔𝟕𝟒 𝟎. 𝟓𝟔𝟔𝟖 

Ranking 

order 

 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

 

Similarly, according to the obtained values of the SF on using the existing methods 𝜎𝑆(𝐴̃𝑁) [67], 

𝜏𝑆(𝐴̃𝑁) [68] and the proposed method 𝜑𝑆(𝐴̃𝑁) for WGM, the obtained ranking order of the best and 

the second-best alternatives is the same as shown in Table 11, thus we conclude that 𝐴̃5
𝑁  is the best 

alternative.  

Table 11. Comparative analysis of SF of various methods for WGM 

 
SVNNs 𝝈𝑺(𝑨̃𝑵) 𝝉𝑺(𝑨̃𝑵) 𝝋𝑺(𝑨̃𝑵) 

𝜑𝑆(Ψ1) 〈 0.5241, 0.2388, 0.5068〉 0.2699 0.2770 0.2785 

𝜑𝑆(Ψ2) 〈 0.5241, 0.2042, 0.3160〉 0.3999 0.3838 0.3448 

𝜑𝑆(Ψ3) 〈0.3175, 0.2, 0.3743〉 0.2716 0.2012 0.2076 

𝜑𝑆(Ψ4) 〈0.4217, 0.2348, 0.2681〉 0.3420 0.2930 0.2610 

𝜑𝑆(Ψ5) 〈0.5518, 0.1427, 0.1680〉 𝟎. 𝟓𝟒𝟗𝟐 𝟎. 𝟓𝟔𝟑𝟎 𝟎. 𝟒𝟐𝟗𝟎 

Ranking 

order 

 𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃4
𝑁 >

𝐴̃3
𝑁 > 𝐴̃1

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃4
𝑁 >

𝐴̃1
𝑁 > 𝐴̃3

𝑁  

𝐴̃5
𝑁 > 𝐴̃2

𝑁 > 𝐴̃1
𝑁 >

𝐴̃4
𝑁 > 𝐴̃3

𝑁  

 

Hence, we can conclude that the proposed score function 𝜑𝑆(𝐴̃𝑁) is justified and is giving 

reasonable results on applying in real-world applications. 
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5.2 Real-world problem on IVNSs  

On applying the procedure mentioned in Section 4.2 on Example 5.1, where the rating value of 

the collected data by the decision-maker is in terms of IVNSs, the best solution is derived as follows:  

Step 1: Using the Step 1 of Section 4.2, the obtained IVNDM, 𝐷  as per the collected IVNS 

information is presented in Table 12. 

 

Table 12. IVNDM 

 𝐺̃1
𝑁 𝐺̃2

𝑁 𝐺̃3
𝑁 

𝐴̃1
𝑁 〈[0.1, 0.5], [0.1, 0.2], [0, 0]〉  〈[0.1, 0.5], [0, 0.1], [0.2, 0.2]〉  〈[0.1, 0.3], [0.1, 0.2], [0.3, 0.5]〉  

𝐴̃2
𝑁 〈[0.1, 0.1], [0.05, 0.95], [0,0]〉  〈[0.1, 0.7], [0.1, 0.2], [0.5, 0.15]〉  〈[0.1, 0.8], [0.1, 0.1], [0.3, 0.3]〉  

𝐴̃3
𝑁 〈[0.1, 0.3], [0.1, 0.1], [0.15,0.15]〉  〈[0.1, 0.3], [0.1, 0.1], [0, 0.3]〉  〈[0.1, 0.1], [0.1, 0.1], [0.2, 0.3]〉  

𝐴̃4
𝑁 〈[0.11, 0.19], [0.05, 0.15], [0, 0.27]〉  〈[0.1, 0.4], [0.1, 0.1], [0.15, 0.15]〉  〈[0.1, 0.4], [0.1, 0.2], [0.05, 0.15]〉  

𝐴̃5
𝑁 〈[0.1, 0.6], [0, 0], [0.02, .08]〉  〈[0.1, 0.5], [0, 0.1], [0.1, 0.1]〉  〈[0.1, 0.3], [0.1, 0.2], [0.1, 0.1]〉  

 

Step 2: Using the Step 2 of Section 4.2, the obtained aggregated IVNN Ψ𝑖, for IVNSs Ψ𝑖𝑗 , for each 𝐴̃𝑖
𝑁 

using WAM, Eq. (3) and the WGM, Eq. (4) are shown in Table 13.  

 

Table 13. IVNN using 𝑨𝑶𝑾𝑨 and 𝑨𝑶𝑾𝑮 

 𝐴𝑂𝑊𝐴 𝐴𝑂𝑊𝐺  

Ψ1 〈[0.1, 0.4407], [0, 0.1587], [0,0]〉 〈[0.1, 0.4217], [0.0678, 0.1680], [0.1757, 0.2632]〉 

Ψ2 〈[0.1, 0.6220], [0.0794, 0.2668], [0,0]〉 〈[0.1, 0.3826], [0.0836, 0.6698], [0.1271, 0.1589]〉 

Ψ3 〈[0.1, 0.2388], [0.1, 0.1], [0, 0.2381]〉 〈[0.1, 0.2080], [0.1, 0.1], [0.1206, 0.2532]〉 

Ψ4 
〈
[0.1033, 0.3369], [0.0794, 0.1442],

[0, 0.1825]
〉 〈

[0.1032, 0.3121], [0.0836, 0.1510],
[0.0688, 0.1920]

〉 

Ψ5 〈[0.1, 0.4808], [0, 0], [0.0585, 0.0928]〉 〈[0.1, 0.4481], [0.0345, 0.1037], [0.0741, 0.0934]〉 

 

Step 3: After Step 2, using the Step 3 of Section 4.2, the score value, 𝜔𝑆(𝐴̃𝑁) for each Ψ𝑖  (𝑖 =

1,2, … , 𝑚) are obtained by using Eq. (14) as follows:  

Approach 1 (Using WAM). Aggregated IVNN  Ψ𝑖  (𝑖 = 1,2, … , 𝑚) on using, WAM Eq. (3) , the 

obtained score values 𝜔𝑆(𝐴̃𝑖
𝑁) are as follows:  

𝜔𝑆(Ψ1) = 0.3214, 𝜔𝑆(Ψ2) = 0.3096, 𝜔𝑆(Ψ3) = 0.2484, 𝜔𝑆(Ψ4) = 0.2680, 𝜔𝑆(Ψ5) = 0.3717. 

Approach 2 (Using WGM). Aggregated IVNN  Ψ𝑖  (𝑖 = 1,2, … , 𝑚)  on using, WGM Eq. (4) , the 

obtained score values 𝜔𝑆(𝐴̃𝑖
𝑁) are as follows: 

𝜔𝑆(Ψ1) = 0.2651, 𝜔𝑆(Ψ2) = 0.1067, 𝜔𝑆(Ψ3) = 0.2312, 𝜔𝑆(Ψ4) = 0.2535, 𝜔𝑆(Ψ5) = 0.3203. 

Step 4: According to the obtained values of SF in Step 3, the following results are deduced, i.e.,  

 (i) For approach 1, the obtained ranking order of the alternatives is  

𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁 > 𝐴̃4

𝑁 > 𝐴̃3
𝑁 , hence, 𝐴̃5

𝑁  is the best alternative according to the obtained score 

value 𝜔𝑆(𝐴̃𝑁) for each Ψ𝑖 (𝑖 = 1,2, … , 𝑚). 
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 (ii)  For approach 2, the obtained ranking order of the alternatives is 𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃4
𝑁 > 𝐴̃3

𝑁 >

𝐴̃2
𝑁 hence 𝐴̃5

𝑁  is the best alternative according to the obtained score value 𝜔𝑆(𝐴̃𝑁) for each 

Ψ𝑖 (𝑖 = 1,2, … , 𝑚). 

Furthermore, to validate the above-obtained results from the proposed method 𝜔𝑆(𝐴̃𝑁), a 

detailed comparative analysis of given data in Table 13 is done with the existing methods 𝜒𝑆(𝐴̃𝑁) 

[67], 𝜓𝑆(𝐴̃𝑁) [68], and the obtained values of their respective score functions are represented in 

Table 14 and Table 15, on applying both the approaches of aggregation i.e., WAM and WGM 

respectively.    

According to the obtained values of the SF on using the existing methods 𝜒𝑆(𝐴̃𝑁) [67], 𝜓𝑆(𝐴̃𝑁) 

[68] and the proposed method 𝜔𝑆(𝐴̃𝑁) for WAM, the obtained ranking order of the first three 

alternatives is the same, i.e., 𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁, as shown in Table 14, we conclude that 𝐴̃5

𝑁  is the best 

alternative.  

Table 14. Comparative analysis of SF of various methods for WAM 

 

 
SVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 

𝜔𝑆(Ψ1) 〈[0.1, 0.4407], [0, 0.1587], [0,0]〉 0.5558 0.5966 0.3214 

𝜔𝑆(Ψ2) 〈[0.1, 0.6220], [0.0794, 0.2668], [0,0]〉 0.5074 0.5121 0.3096 

𝜔𝑆(Ψ3) 〈[0.1, 0.2388], [0.1, 0.1], [0, 0.2381]〉 0.4252 0.3719 0.2484 

𝜔𝑆(Ψ4) 
〈
[0.1033, 0.3369], [0.0794, 0.1442],

[0, 0.1825]
〉 

0.4526 0.4200 0.2680 

𝜔𝑆(Ψ5) 〈[0.1, 0.4808], [0, 0], [0.0585, 0.0928]〉 𝟎. 𝟔𝟎𝟕𝟒 𝟎. 𝟔𝟕𝟓𝟒 𝟎. 𝟑𝟕𝟏𝟕 

 Ranking order 𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁

> 𝐴̃4
𝑁 > 𝐴̃3

𝑁 

𝐴̃5
𝑁 > 𝐴̃1

𝑁

> 𝐴̃2
𝑁 > 𝐴̃4

𝑁

> 𝐴̃3
𝑁 

𝐴̃5
𝑁 > 𝐴̃1

𝑁 > 𝐴̃2
𝑁

> 𝐴̃4
𝑁 > 𝐴̃3

𝑁 

 

Similarly, according to the obtained values of the SF on using the existing methods 𝜒𝑆(𝐴̃𝑁) 

[67], 𝜓𝑆(𝐴̃𝑁) [68] and the proposed method 𝜔𝑆(𝐴̃𝑁) for WGM, the obtained ranking order suggests 

that 𝐴̃5
𝑁  is the best alternative by all the existing and the proposed method, as shown below in 

Table 15, hence, we conclude that 𝐴̃5
𝑁  is the best alternative.  

Table 15. Comparative analysis of SF of various methods for WGM 

 
SVNNs 𝝌𝑺(𝑨̃𝑵) 𝝍𝑺(𝑨̃𝑵) 𝝎𝑺(𝑨̃𝑵) 

𝜔𝑆(Ψ1) 〈[0.1, 0.4217], [0.0678, 0.1680], [0.1757, 0.2632]〉 0.4028 0.3523 0.2651 

𝜔𝑆(Ψ2) 〈[0.1, 0.3826], [0.0836, 0.6698], [0.1271, 0.1589]〉 0.1724 −0.0292 0.1067 

𝜔𝑆(Ψ3) 〈[0.1, 0.2080], [0.1, 0.1], [0.1206, 0.2532]〉 0.3836 0.3068 0.2312 
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𝜔𝑆(Ψ4) 
〈
[0.1032, 0.3121], [0.0836, 0.1510],

[0.0688, 0.1920]
〉 

0.4213 0.3692 0.2535 

𝜔𝑆(Ψ5) 〈[0.1, 0.4481], [0.0345, 0.1037], [0.0741, 0.0934]〉 𝟎. 𝟓𝟐𝟔𝟏 𝟎. 𝟓𝟒𝟐𝟖 𝟎. 𝟑𝟐𝟎𝟑 

 Ranking order 𝐴̃5
𝑁 > 𝐴̃4

𝑁

> 𝐴̃1
𝑁 > 𝐴̃3

𝑁

> 𝐴̃2
𝑁 

𝐴̃5
𝑁 > 𝐴̃4

𝑁

> 𝐴̃1
𝑁 > 𝐴̃3

𝑁

> 𝐴̃2
𝑁 

𝐴̃5
𝑁 > 𝐴̃1

𝑁

> 𝐴̃4
𝑁

> 𝐴̃3
𝑁

> 𝐴̃2
𝑁 

 

Hence, we can conclude that the proposed score function 𝜔𝑆(𝐴̃𝑁) is justified and is giving 

reasonable results on applying in real-world applications. 

6. Discussion and Comparative Analysis  

In this section, the SVNSs and IVNSs from the existing literature [67-69] are considered and 

solved by the existing and the proposed method, and the obtained solutions are presented in Table 

16 given below. The obtained Table 16 argues well that the proposed methods are giving the same or 

the better results for all the considered problems reasonably and also it highlights, that the existing 

methods [67, 68] are behaving well for some particular SVNSs or IVNSs but fails under certain 

restrictions, then to deal with such SVNSs or IVNSs the proposed approaches works well and a 

desirable conclusion can be drawn respectively. Hence, it is claimed that the proposed SF and AF are 

better to evaluate MCDM problems and can be easily applied in solving real-life problems.   

 

Table 16. A comparative analysis of SVNSs and IVNSs with various existing metric methods 

 

SVNNs 

 𝛔𝐒(𝐀̃𝐍) 𝛔𝐀(𝐀̃𝐍) 𝛕𝐒(𝐀̃𝐍) 𝛕𝐀(𝐀̃𝐍) 𝛗𝐒(𝐀̃𝐍) 𝛗𝐀(𝐀̃𝐍) 

Ã1
N = 〈0.5,0.2,0.6〉 

Ã2
N = 〈0.6,0.4,0.2〉 

(Adopted from 

[67]) 

0.25  

0.3  

Ã2
N > Ã1

N  

−0.08  

0.32  

Ã2
N > Ã1

N  

0.2750  

0.2600  

Ã1
N > Ã2

N  

−0.5  

−0.4  

Ã2
N > Ã1

N 

0.2778  

0.25  

Ã1
N > Ã2

N  

−0.4  

0.2  

Ã2
N > Ã1

N  

Ã1
N = 〈0.5,0.2,0.6〉 

Ã2
N = 〈0.2,0.2,0.3〉 

(Adopted from 

[68]) 

0.25  

0.25  

Ã1
N = Ã2

N   

−0.08  

−0.2  

Ã1
N > Ã2

N  

0.2750  

0.1250  

Ã1
N > Ã2

N  

−0.5  

−0.5  

Ã1
N = Ã2

N 

0.2778  

0.1667  

Ã1
N > Ã2

N  

−0.4  

0.2  

Ã2
N > Ã1

N  

Ã1
N = 〈0.5,0.0,0.2〉 

Ã2
N = 〈0.4,0.0,0.1〉 

(Adopted from 

[68]) 

0.65  

0.65  

Ã1
N = Ã2

N  

0.3  

0.3  

Ã1
N = Ã2

N  

0.6950  

0.7250  

Ã2
N > Ã1

N  

0.3  

0.3  

Ã1
N = Ã2

N  

0.5  

0.433  

Ã1
N > Ã2

N  

0.6  

0.8  

Ã2
N > Ã1

N  

Ã1
N = 〈0.8,0.1,0.6〉 

Ã2
N = 〈0.8,0.2,0.4〉 

0.5  0.24  0.5  0.0  0.8333  −0.3  
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(Adopted from 

[69]) 

0.5  

Ã1
N = Ã2

N  

0.44  

Ã2
N > Ã1

N  

0.5  

Ã1
N = Ã2

N  

0.0  

Ã1
N = Ã2

N  

0.625  

Ã1
N > Ã2

N  

0.0  

Ã2
N > Ã1

N  

Ã1
N = 〈0.1,0.0,0.1〉 

Ã2
N = 〈0.3,0.0,0.3〉 

(Adopted from 

[69]) 

0.5  

0.5  

Ã1
N = Ã2

N  

0.0  

0.0  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.0  

0.0  

Ã1
N = Ã2

N  

0.2778  

0.3571  

Ã2
N > Ã1

N  

0.8  

0.4  

Ã1
N > Ã2

N  

IVNNs 

 𝛘𝐒(𝐀̃𝐍) 𝛙𝐒(𝐀̃𝐍) 𝛚𝐒(𝐀̃𝐍) 𝛘𝐀(𝐀̃𝐍) 

Ã1
N = 〈[0.6,0 .4], [0.3, 0.1], [0.1, 0.3]〉   

Ã2
N = 〈[0.1, 0.6], [0.2, 0.3], [0.1, 0.4]〉  

(Adopted from [67]) 

0.45  

0.3  

Ã1
N > Ã2

N  

0.4375  

0.22  

Ã1
N > Ã2

N  

0.3462  

0.2143  

Ã1
N > Ã2

N  

0.26  

0.005  

Ã1
N > Ã2

N  

Ã1
N = 〈[0.4,0 .6], [0.2, 0.3], [0.5, 0.7]〉  

Ã2
N = 〈[0.2, 0.7], [0.1, 0.2], [0.1, 0.3]〉  

(Adopted from [68])  

0.2  

0.4750  

Ã2
N > Ã1

N  

0.23  

0.4663  

Ã2
N > Ã1

N  

0.2222  

0.3519  

Ã2
N > Ã1

N  

−0.0750  

0.2050  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .7], [0.05, 0.15], [0.1, 0.3]〉  

Ã2
N = 〈[0.2, 0.8], [0.05, 0.15], [0.2, 0.4]〉  

(Adopted from [69])   

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.2857  

0.4167  

Ã2
N > Ã1

N  

0.17  

0.19  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .7], [0.1, 0.1], [0.1, 0.3]〉  

Ã2
N = 〈[0.2, 0.8], [0.1, 0.1], [0.2, 0.4]〉  

(Adopted from [69])  

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.3571  

0.4167  

Ã2
N > Ã1

N  

0.16  

0.18  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .7], [0.0, 0.2], [0.1, 0.3]〉  

Ã2
N = 〈[0.2, 0.8], [0.0, 0.2], [0.2, 0.4]〉  

(Adopted from [69])  

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.3571  

0.4167  

Ã2
N > Ã1

N  

0.18  

0.2  

Ã2
N > Ã1

N  

Ã1
N = 〈[0.1,0 .2], [0.0, 0.0], [0.1, 0.2]〉  

Ã2
N = 〈[0.4, 0.5], [0.0, 0.0], [0.4, 0.5]〉  

(Adopted from [69])  

0.5  

0.5  

Ã1
N = Ã2

N  

0.5  

0.5  

Ã1
N = Ã2

N  

0.2941  

0.4545  

Ã2
N > Ã1

N  

0.0  

0.0  

Ã1
N = Ã2

N  

 

7. Managerial insights 

The study adopted DM when multiple criteria are involved and the decision-maker is supposed 

to find the best alternative among all the present alternatives on the basis of their corresponding 

criteria. The data involved indeterminacy and inconsistent sets of information, since neutrosophic 

sets deal with such data in the best possible manner, so the neutrosophic environment has been 

chosen to deal with the real-life problem. On using the proposed MCDM methodology all the 

available alternatives are evaluated under the neutrosophic environment, by the proposed SF and 

AF which lead to the best option available in the alternative based on their criteria. The application 

of the proposed MCDM methodology based on SF and AF provides a judicious solution to the 

decision-maker by considering all the available information in real-world applications in 

comparison to all the existing metric methods. Hence, the proposed MCDM methodology is more 

reliable in terms of its derived solutions.   
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8. Conclusions 

In this paper, a new SF and AF for SVNSs and IVNSs are proposed, also, an MCDM method is 

developed based on the new ranking tools for SVNSs and IVNSs. In the proposed MCDM method, 

the score value of the aggregated SVNSs or IVNSs is obtained by applying the proposed SF or AF. 

According to the obtained results on applying the proposed SF or AF, the alternatives are ordered 

and the most desirable alternative i.e., the alternative with the highest value of SF or AF is chosen in 

the DM problem. To illustrate the efficiency and the validity of the proposed SF and AF for SVNSs 

and IVNSs a real-life application is solved successfully and the obtained results sync completely 

with the existing methods [67, 68]. Since neutrosophic sets are efficient enough to consider 

indeterminate and inconsistent information/data, hence, our proposed method would play an 

effective role in dealing with MCDM problems in several real-life applications like personnel 

selection, enterprises, signal processing, pattern recognition, medical diagnosis, engineering, 

management, DM, etc. having indeterminacy and inconsistent set of data. The only limitations of the 

proposed method would be that the data must be analyzed properly and all the restrictions should 

be followed in order to derive an accurate solution to the problem on applying the proposed SF and 

AF. Moreover, neutrosophic sets are still being in their prime have a lot to reveal concerning real-life 

applications. In the future, these proposed SF and AF for SVNSs and IVNSs will be expanded and 

will be generalized to the other domains of the neutrosophic sets like-refined neutrosophic sets, 

neutrosophic soft sets, neutrosophic cubic fuzzy sets, and their applications. 
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Abstract: Neutrosophy has gained an exponential fame in recent years among researchers and 

academician especially when there is a need to deal with different and difficult situations. Out of 

several neutrosophy-sets related concepts, the researchers have used neutrosophic cognitive maps 

for identifying the hidden and indeterminate factors that can influence a particular situation or can 

significantly affect any problems which involve making decisions. In our study, we have used 

neutrosophic cognitive maps to explore the factors which can lead to health deterioration. The 

present method not only illustrates the way neutrosophic cognitive maps can be used but also 

suggest ways which can help the masses in finding out the health affecting factors and to control it. 

It is believed that the proposed method can be helpful for analyzing many such a situation and can 

set a benchmark in using soft computing for healthcare. 

Keywords: neutrosophy sets, neutrosophic logic, neutrosophic cognitive maps, healthcare  

 

 

1. Introduction 

Neutrosophic logic was devised by Florentine Smarandache [1]. Neutrosophic set is more general 

and complex concept, can be considered as an extended fuzzy logic wherein indeterminacy factor is 

also included. This particular feature makes neutrosophy more robust and applicable in various 

domain of real life. The idea of neutrosophic logic presents a necessary part in solving everyday 

problems. It is a logic in which each proposition is considered to have the percentage of truth, 

indeterminacy and falsity in subsets T, I, F respectively where T, I, F are neutrosophic components. 

In this logic instead of only numbers, we use subsets of T, I and F which are estimated by 

non-standard subsets. A neutrosophic directed graph representing the causal relationship between 

concepts like policies, events etc. as nodes and causalities indeterminate as edges are called 

neutrosophic cognitive maps [2]. 

In this paper, we used these neutrosophic cognitive maps on the factors which affect health overall. 

The current generation has seen a rapid increase in health deterioration cases [3]. Due to this, health 

in general, has been affected drastically. The health of people is influenced by various factors. The 

climate also plays a major role in determining whether a person is healthy or not. The factors that 

have a vital effect on health include our locality, heredity, our resources and literacy, and our 

relations with friends and family. There are few other factors like accessibility and use of healthcare 

co-operations which have a relatively lesser effect on health. 

Some other factors that are supposed to be indeterminate are physical exercises, inadequate 

drainage systems [4]. Neutrosophic cognitive maps are used to depict this condition mathematically 
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as to how these indeterminate factors have an effect on health. A health improvement approach is 

represented using neutrosophic cognitive maps in this article. 

A neutrosophic set has the capacity of being a general framework for interpreting uncertainty in 

data sets. It contributes to overcoming the limitations of uncertainty and inconsistency that circles 

environment and affect the judgment of the decision maker [5]. Hence, neutrosophic logic not only 

handles the misinterpretations of decision-makers but also the environmental factors of uncertainty 

circumstances [6]. 

We can also consolidate multiple decision makers’ aspects to accomplish the ideal prospects by 

managing the confliction and biasness between them [7]. Mohamed Abdel-Basset in his research 

used neutrosophic theory effectively to solve transition complexities of enterprises based on IOT [8]. 

Section 2 and Section 3 illustrates the background concepts of neutrosophic cognitive maps (NCM) 

and factors that can influence health of individuals, whereas in Section 4 NCM based approach to 

identify the various indeterminate factors which can influence human health is discussed which is 

followed by discussion and conclusion sections respectively. 

2. Background 

Healthcare is defined as efforts made to maintain or cure physical, mental, or emotional well-being 

especially by trained and authorized specialists. According to WHO, health is not merely the 

absence of disease, but it is a state of complete fitness. Lately, we have witnessed a massive increase 

in health deterioration overall [9]. This has led to the worsening of mental and physical health 

progressively over time. There are many factors which merge to affect the health of people and 

societies. The conditions and environment determine whether people are healthy or not. In general, 

factors like our locality, the climate’ nature, genetics, revenue, literacy level, and connections with 

family and friends have significant impacts on one’s health, on the other hand the more generally 

viewed factors like access and health care services usage oftentimes have less of an impact. Factors 

such as physical exercises, inadequate drainage systems are neglected by researchers as they are 

assumed to be indeterminate. To explain how this indeterminate affect health, we represent this 

situation mathematically using Neutrosophic Cognitive Maps (NCM). It illustrates the extent of 

dependencies of factors affecting health. In our study, we propose a health improvement approach 

using neutrosophic cognitive maps. In [4] Florentin Smarandache explains a logic in which each 

proposition is estimated to have the percentage of truth in a subset T, the percentage of 

indeterminacy in a subset I, and the percentage of falsity in a subset F is called Neutrosophic Logic. 

This logic is also considered as the generalized form of Intuitionistic fuzzy logic [10]. According to 

Charles Ashbacher [11] incomplete information on a variable, proposition or event one has T + I + F 

<1 in intuitionistic logic. We use NCM's as in [12] describes the efficiency of NCM technique vs 

Fuzzy Cognitive Maps (FCM) in situation analysis to deal with the unpredictability and 

indeterminacy. 

3. Factors affecting health 

 

3.1 Air Pollution 

 

Air Pollution is regarded as being instrumental in bringing complications in the health of the 

individual. It has been clearly observed that there has been a massive increase in mortality rate and 

hospital admissions that are associated with respiratory diseases which is further related to exposure 

of human body to harmful air borne participate matter and ozone [1]. This leads to deteriorating 

effects on human health which can be both short-term and long-term. It has wide range of effects 
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which may include minor respiratory irritations, heart disease, lung cancer and other lung diseases 

etc. [2]. And bad health also causes air pollution in some instances like usage of the ambulance for 

patient convenience so, both health and air pollution are bi-directional [13]. 

 

3.2 Family Genetics  

 

The knowledge of our genetic structure and other associated characteristics can help us in many 

ways. There are numerous diseases which are passed on from one generation to another, so 

members of the family have a potential risk to develop some diseases which have been in their 

ancestors as well which is mainly due to the fact that highly penetrant genetic mutations are 

transmitted through generations. These diseases include cardiovascular diseases, diabetes and 

several cancers as well [14]. 

 

3.3 Unhygienic Livelihood 

 

Poor hygiene is the reason for transmission and spread of disease as it becomes home of several 

bacteria and viruses. It reduces human wellbeing, social and economic development. On the 

contrary, maintaining good hygiene and sanitation results in good impact on health and help in 

reducing diseases like diarrhea [15].  

 

In slum areas, generally large population lives with less facilities available like no proper sanitation 

facilities and limited supply of water and the hygiene is not maintained in those areas which results 

in severe health problems [16]. The hygienic and sanitary condition of many fish retail markets are 

very poor that may have an adverse effect on fish retailer’s health [17]. 

 

3.4 Impure Water 

 

Contamination of water can occur anywhere in lakes, rivers, wells to modern water tanks that 

supplies water to the citizens homes. More than 500,000 deaths recorded every year due to 

contaminated drinking water. 

 

According to World Health Organization more than one third wealth of Sub Saharan African poor 

people is spent on waterborne diseases like Diarrhea, Malaria and worm infections. In countries 

which are not yet developed fully are having problem with contaminated supply of drinking water 

with bacteria, which results in several diseases [10]. Water quality should be checked on a regular 

basis so that it will not impact the health of people. 

 

3.5 Junk Food 

 

Food without nutrition can be called as junk, most of them are good at taste but bad for the health of 

an individual as some of them contains beverages like salt, oils and large amount of sugar. It can be 

fried, burgers soft drinks and some packaged food. They contain high calories due to that the body 

cannot intake nutritious food with vitamins and minerals. 

 

According to food institutes analytical data, millennials solely spend 15 percent of their budgets on 

dining out. In contrast to some 40 years back people now spend half of their food budget on eating in 

restaurants. A couple of years back only 38 percent of food budget were spending on eating outside 

home. 

 



Neutrosophic Sets and Systems, Vol. 41, 2021    201  

 

 

 

Shakil, Mohammed Talha Alam, Syed Ubaid, Shahab Saquib Sohail, and M. Afshar Alam, A Neutrosophic Cognitive Map 

Based Approach to Explore the Health Deterioration Factors 

The increased prevalence of cardiovascular risk and other diseases like obesity and diabetes is a 

result of changing food habits i.e., consuming junk food [18]. Similarly, due to bad health i.e., 

contagious disease food will also get affected so the process is vice versa [19]. 

 

3.6 Smoking and Alcohol Consumption 

 

Dr Stanley Chia said cigarettes contain four thousand plus syntheses and 400 toxic substances that 

involve carbon monoxide, tar, DDT, arsenic and formaldehyde. On the other hand, heavy alcohol 

consumption also leads to numerous critical health diseases. Over drinking can begin instant 

difficulties like nausea and vomiting, alcohol poisoning, blurred eyesight, impaired judgment and 

acute intoxication. 

 

Furthermore, the combined consumption of cigarettes and alcohol is hazardous for the brain. 

Scientists showed neural harm in particular brain areas due to mutual use of tobacco and alcohol. 

For a man who inhaled more than 25 cigarettes every day had a higher danger of diabetes of 1.94 

collated to non-smokers. And the man who absorbed 30.0-49.9 g of alcohol diurnal had a relevant 

risk for diabetes of 0.61 [20]. 

 

3.7 Inadequate Drainage System 

 

According to WHO, significant environmental health step to reduce disease is decreased monsoon 

water and household wastewater. The unmanaged drainage system of rainwater gives putrid pools 

that provide replication places for viruses. Environmental hygiene standards are not perfect in 

developing countries and it is also a global concern which helps in the extent of disease. Outcomes 

propose that drainage and sewerage might be a vital effect on diarrhea, nutritional status, and for 

intestinal nematode, health impact was most effective [21].  

 

Risky hygiene methods have big impacts on people’s health. 297000 children are dying annually 

from diarrheal because of bad sanitation, unsafe drinking water, and poor hygiene [22]. 

 

3.8 Physical Exercise 

 

Exercise gives strength to our heart and enhances our blood transmission. The extended 

bloodstream and boosts the levels of oxygen in the human body. It also benefits heart hazards like 

coronary artery disease, heart attack, and high cholesterol.  

 

Average physical exercise improves the cardiovascular system and also helps in an overcome from a 

physical disorder such as osteoporosis, renal disease, and diabetes. Now research showed us 

physical exercise has benefits for psychological health as well. And the most significant effect of 

exercise is on cognition. It also deals with neurodegenerative diseases like AD etc. and also reduces 

the risk of depression [23]. 

 

Better quality of life is joined with physical activity and exercise [24]. With the help of physical 

activity, exercise capacity and body fitness are improved which may give many health profits 

[25-27]. 
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Figure 1: Factors affecting health 

 

4. Neutrosophic Cognitive Map Based Approach to Identify Causes for Heath Deterioration  

 

A Neutrosophic Cognitive Map is a graph in which direct edges represents relationship or 

indeterminates, dotted edges represent indeterminacy and concepts represented by nodes [28, 29].  

Assume, (Ci) &amp; (Cj) indicate nodes of the neutrosophic graph. The edge directed from (Ci) to 

(Cj) is the connection of both the nodes that indicate the causality of (Ci) on (Cj).  

 

All the edges in the map are assigned with a weight in the set {-1, 0, 1, I}. Maps with the weight of the 

edge {-1, 0,1, I} are described as simple Neutrosophic Cognitive Maps [3, 30]. 

 

Assume C1, C2, C3, .......…, Cn are nodes of the graph, so the matrix N(E) is defined as N(E) = (eij), 

where (eij) is weight of (CiCj) directed edge, where eij H {- 1, 0, 1, I} in this neutrosophic cognitive 

map, N(E) is the neutrosophic adjacency matrix. 

 

Now here we present a situation through a graphical model as shown in figure (2). We take various 

factors in India which have a vital role in health deterioration. Indeterminacy plays a critical role in 

practical living as affirmed by W.B. Vasantha Kandasamy [4, 31]. Hence, in this condition, when data 

under analysis include indeterminate concepts, we are unable to form mathematical expression by 

any other method except NCMs because NCM shows the importance of indeterminacy in the 

situation. An inadequate drainage system leads to unhygienic livelihood as well as affects the purity 

of water. Here inadequate drainage system is an indeterminate factor. To show the dependency of 

this indeterminate factor on health deterioration we use Neutrosophic Cognitive Maps. 

Indeterminacy is represented in figure (1) [32]. 
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Dotted lines depict the indeterminate connection among the nodes. 

 

 

 
Figure 2: Indeterminate factor affecting health 

 

Let us consider the following nodes: 

 

F1 → Air pollution 

F2 → Family Genetics 

F3→ Unhygienic Livelihood 

F4→ Impure Water 

F5 → Junk Food 

F6 → Smoking &Alcohol Consumption 

F7 → Inadequate Drainage System 

F8 → Physical Exercise 

F9→ Health Deterioration 
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Figure 3: Symbolic representation of NCM model 

 

 

Neutrosophic Cognitive Maps (NCM) express the presence or absence of relationships among 

concepts and show indeterminate relations among the concepts as shown above. Further, we 

describe the Neutrosophic Augmented Matrix F(M) in Figure 4. 

 

0   0   0   0   0   0   0   0   1 

0   0   0   0   0   0   0   0   1 

0   0   0   0   0   0   I    0   1 

0   0   0   0   0   0   0   0   1 

0   0   0   0   0   0   0   0   1 

0   0   0   0   0   0   0   0   1 

                                 0   0   I   I   0   0   0   0   0 

0   0   0   0   0   0   0   0  -1 

1   1   1   1   1   1   1  -1   0 

 

Figure4: Related connection matrix to the graph in Figure3. 
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Assume we consider the state vector (The detail of state vector assumption is given in [4]) to be Y1 

i.e.:  

Y1 = (0 0 0 0 0 0 0 0 1) 

 

Now, we see how it affects F(M). After thresholding and updating the following resultant vector is 

incurred. 

 

Y1F(M) = (1 1 1 1 1 1 0 -1 1) → (1 1 1 1 1 1 0 0 1) = Y2 

Y2F(M) = (1 1 1 1 1 1 I -1 6) → (1 1 1 1 1 1 I 0 1) = Y3 

Y3F(M) = (1 1 1+I 1+I 1 1 I -1 6) →( 1 1 1 1 1 1 I 0 1) = Y3  

 

The symbol `→` signifies the thresholder and updated resultant vector. This depicts that health gets 

affected by air pollution, family genetics, unhygienic livelihood, impure water, junk food, smoking 

& alcohol consumption and the factor inadequate drainage system is indeterminate to health 

deterioration. 

 

5. Discussion 

 

In this paper, we have stated factors which affect health like air pollution, impure water, etc. To 

analyze the dependency of each factor including indeterminate factors like inadequate drainage 

system we have formulated a mathematical expression. 

(1 1 1 1 1 1 I 0 1) = Y3 

 

If we examined these dependencies without mathematical expression, then we would have to set up 

huge labs and perform extensive researches. To overcome this, we use a soft computing approach 

which makes this interpretation very simple.  

 

In our problem, we can employ two approaches of soft computing: Fuzzy Cognitive Maps (FCM) 

and Neutrosophic Cognitive Maps (NCM). We haven't used FCM here as in [12] because it has not 

been successful to associate the indeterminate relations among concepts. NCM is used as it not only 

represents presence or absence of relationships within concepts but also represents indeterminate 

relations among the concepts [33, 34]. The research in the literature has stated mostly 5-7 factors, 

whereas we have identified one more factor, in other words approximately 14% coverage has been 

increased. 

 

6. Conclusion 

In this paper, we have tried to come up with a soft computing-based technique to better investigate 

the factors which could influence the health of a person significantly but has not been addressed 

adequately in the literature. Some of the factors which affect health are indeterminate but they are 

essential for measuring health deterioration. We have used a powerful tool, neutrosophic logic that 

applies over those indeterminate factors which are important but are not affecting health 

deterioration directly. We have got an increased 14% coverage of the indeterminate factors which 

can help in making people aware of these so that the masses can get benefits. 
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In the future, neutrosophy can be applied in various fields namely, expert systems, soft computing 

techniques in e-commerce and e-learning, reliability theory, image segmentation, robotics etc. which 

will enhance them eventually. It can also be used widely in situational analysis. Neutrosophy paved 

its way into research because the universe is filled with indeterminacy. This logic can ease 

researchers and developers in building algorithms involved in decision making wherein 

indeterminate factors can be taken into consideration [35, 36]. 
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Abstract: This research is an extension of classical statistics distribution theory as the theory did not 

deal with the problems having ambiguity, impreciseness, or indeterminacy. An important life-time 

distribution called Beta distribution from classical statistics is proposed by considering the 

indeterminate environment and named the new proposed distribution as neutrosophic beta 

distribution. Various distributional properties like mean, variance, moment generating function, r-th 

moment order statistics that includes smallest order statistics, largest order statistics, joint order 

statistics, and median order statistics are derived. The parameters of the proposed distribution are 

estimated via maximum likelihood method. Proposed distribution is applied on two real data sets 

and goodness of fit is assessed through AIC and BIC criteria’s. The estimates of the proposed 

distribution suggested a better fit than the classical form of Beta distribution and recommended to use 

when the data in the interval form follows a Beta distribution and have some sort of indeterminacy.  

Keywords: Neutrosophy, Fuzzy Logic, Probability distributions, Neutrosophic distributions, Beta 

Distribution. 

1. Introduction 

The real world is full of ambiguity, unclear, uncertain situations, and problems and a particular 

value cannot be assigned to the characteristics of the statistics in such an imprecise situation [1]. In 

such situations, classical probability fails to provide accurate results [2]. In recent times, several 

developments have been made to model such imprecise situations by considering fuzzy logic and 

neutrosophy [3-6].  Smarandache [7] proposed neutrosophic statistics that deal with indeterminacy or 

some part unclear aspect present in the data. He introduced the concept of neutrosophic logic in 1995 

by representing the components as T, I, F that represents a true part, undetermined part, and 

falsehood. Several researchers have contributed to the theory of neutrosophic statistics both 

methodologically and applied form e.g., Alhabib [8] design the time-series theory under 

indeterminacy, Aslam et al. [9-14] extended the theory of control charts and sampling plans under 

indeterminacy environment and presented several neutrosophic control charts and sampling plans, 

[1, 15, 16] applied the neutrosophic theory in engineering problems. Various researchers have been 

done in terms of neutrosophic probability distributions to calculate indeterminacy in real-life 

problems and produced better results in comparison to classical statistics. Alhasan and Smarandache 

[17] proposed Neutrosophic Weibull distribution in terms of neutrosophic statistics. This distribution 

gives more space in the applied area due to its wide applicability in classical statistics that helps in 

solving more problems that have been ignored in classical statistics under indeterminacy. 
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Neutrosophic Uniform, Neutrosophic exponential, and Neutrosophic Poisson have been developed 

and solved numerically [5, 18]. Normal distribution and binomial distribution in terms of 

neutrosophy are explored in detail through many examples by [19]. Aslam and Ahtisham [2] 

proposed the neutrosophic form of Raleigh distribution. In this research, we proposed an important 

life-time Beta distribution in the form of neutrosophy and extended the applications of the classical 

beta distribution when the data is in interval form and has some form of indeterminacy.  Several 

properties are explored under the newly proposed distribution and explained the applications with 

the help of simulated and real-life data examples.   

2. Neutrosophic Form 

In classical data, there is the crisp value or specific values to deal with but in neutrosophic 

statistics, data can be in any form because indeterminacy can occur in any form and it depends upon 

the type of problem we are solving. The form of Neutrosophic number in terms of extension of 

classical statistics has a standard form and is shown as follow: 

X = a + i 

where, a = determined/known part of the data and, i = uncertain/ indeterminacy part of the data. a 

and i can be any real number. µ𝑁  ∈  [µ𝐿 , µ𝑈] 

3. Some existing neutrosophic continuous probability distributions 

The followings are the extended classical distributions with a neutrosophic logic in literature: 

3.1 Neutrosophic Weibull Distribution 

  The probability density function of  neutrosophic Weibull distribution is: 

fN(X) =  
βN

αN
XβN−1e

−(
X

αN
)

βN

,   X > 0, αN > 0 , βN > 0      (1) 

3.2 Neutrosophic Gamma Distribution 

  The probability density function of the neutrosophic Gamma distribution is: 

f(tN) =  
bN

aN

𝚪𝑎𝑁
tN

aN−1e−bNtN;   𝑡𝑁 , 𝑏𝑁 , 𝑎𝑁 > 0      (2) 

3.3 Neutrosophic Exponential Distribution 

The probability density function of the neutrosophic exponential distribution is: 

fN(x) =  λNe−xλN  ; x>0 , λ𝑁 > 0       (3) 

3.4 Neutrosophic Normal Distribution 

Probability density function of  neutrosophic normal distribution is: 

XN~NN(μN, σ2
N) =  

1

σN√2π
exp (−

(x−μN)2

2σ2
N

); X, µ𝑁, σ𝑁 > 0    (4) 

4. Neutrosophic Beta Distribution 

A neutrosophic Beta Distribution (N-Beta) of a continuous variable X can or cannot be a classical 

beta distribution of X, having or not having its mean or parameters imprecise or unclear. Consider X 
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as the classical random variable which has a neutrosophic beta distribution having neutrosophic 

parameters 𝛼𝑁 , 𝛽𝑁  i.e. X→N-beta (𝑥; 𝛼𝑁 , 𝛽𝑁), then pdf is as follow: 

𝑓𝑁(𝑋) =  
𝑋𝛼𝑁−1(1−𝑋)𝛽𝑁−1

𝛽(𝛼𝑁,𝛽𝑁)
             𝑤ℎ𝑒𝑟𝑒 𝑋 > 0     (5) 

𝛼𝑁 , 𝛽𝑁 are the neutrosophic shape parameters. 

    with cdf  

FN(X)  =  Ix(αN, βN) =  
β(X,αN,βN)

β(αN,βN)
           (6) 

5. Mathematical Properties  

Various properties of neutrosophic beta distribution for the r.v X→N-beta (𝑥; 𝛼𝑁 , 𝛽𝑁) have been 

derived and the results are shown as follow: 

Mean: EN(X) =  
αN

αN+βN
         (7) 

Variance: VN(X) =
αNβN

(αN+ βN+1)(αN+βN)2       (8) 

R-th Moment: EN(X𝑟) =  ∏
(αN+i)

(αN+ βN+𝑖)

𝑟−1
𝑖=0          (9) 

Moment Generating Function: EN(e𝑡𝑥) = ∑
𝑡𝑘αN

(𝑘)

𝑘! (αN+ βN)(𝑘)
∞
𝑘=0     (10) 

Hazard Rate Function: ℎ𝑁(𝑋) =
𝑋𝛼𝑁−1(1−𝑋)𝛽𝑁−1

β(αN,βN)−β(X,αN,βN)
     (11) 

Survival Function: 𝑆𝑁(𝑋) = 1 −
β(X,αN,βN)

β(αN,βN)
      (12) 

R-th Order Statistics: Let 𝑋1, 𝑋2, … , 𝑋𝑟  be the random sample from N-beta and let 𝑋(1), 𝑋(2), … , 𝑋(𝑟) be 

the corresponding order statistics.  𝑅𝑡ℎ order statistics of neutrosophic beta distribution can be given 

as: 

𝑓𝑁𝑟,𝑛
(𝑥) =  

1

𝐵(𝑟,𝑛−𝑟+1)
 [

𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑟−1

[1 −
𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑛−𝑟

      ∗  
𝑋𝛼𝑁−1(1−𝑋)𝛽𝑁−1

𝛽(𝛼𝑁,𝛽𝑁)
   (13) 

Smallest Order Statistics: 𝑓𝑁1:𝑛
(𝑥) = 𝑛𝑁 [1 −

𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑛−1

∗
𝑋𝛼𝑁−1(1−𝑋)𝛽𝑁−1

𝛽(𝛼𝑁,𝛽𝑁)
   (14) 

Largest Order Statistics: 𝑓𝑁𝑛:𝑛
(𝑥) = 𝑛𝑁 [

𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑛−1

∗  
𝑋𝛼𝑁−1(1−𝑋)𝛽𝑁−1

𝛽(𝛼𝑁,𝛽𝑁)
   (15) 

Joint Order Statistics:  

𝑓𝑁𝑚+1:𝑛
(𝑥) =  

 𝑛𝑁!

(𝑖−1)! (𝑛𝑁−𝑗)!(𝑖−𝑗−1)!
∗

𝑋𝛼𝑁−1(1−𝑋)𝛽𝑁−1

𝛽(𝛼𝑁,𝛽𝑁)
∗

𝑌𝛼𝑁−1(1−𝑌)𝛽𝑁−1

𝛽(𝛼𝑁,𝛽𝑁)
∗ [

𝛽(𝑌,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
−

𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑗−𝑖−1

[1 −

𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

 𝑛𝑁−𝑗

   ∗  [
𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑖−1

         (16) 

Median Order Statistics:  

𝑓𝑁𝑚+1:𝑛
(𝑥) =  

(2𝑚+1)!

𝑚!𝑛𝑁!
[

𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑚

[1 −
𝛽(𝑋,𝛼𝑁,𝛽𝑁)

𝛽(𝛼𝑁,𝛽𝑁)
]

𝑚

 ∗    
𝑋𝛼𝑁−1(1−𝑋)𝛽𝑁−1

𝛽(𝛼𝑁,𝛽𝑁)
   (17) 
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6. Parameter Estimation 

In this section, the parameters of neutrosophic beta distribution has been calculated through the 

maximum likelihood method. Estimated parameters are given below: 

𝜕𝑙𝑛𝐿

𝜕αN
=  ∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1 −

𝑛.𝜕 ln[β(αN,βN)]

𝜕αN
= 0       (18) 

𝜕𝑙𝑛𝐿

𝜕βN
=  ∑ ln (1 − 𝑥𝑖)

𝑛
𝑖=1 − 𝑛.

𝜕 ln[β(αN,βN)]

𝜕βN
= 0      (19) 

Theoretical estimation of parameters is not possible but they can be estimated mathematical 

simulation.  

7. APPLICATIONS 

In this section parameters of the proposed distribution will be estimated with the help of real-life 

data examples and the goodness of fit of the proposed distribution will be assessed by using the AIC 

and BIC criterias. 

Case Study 1: Data has been taken from [19] and related to the exceedances of “flood peaks (in m 3/s) 

of the Wheaton river near Carcross in Yukon Territory, Canada”. Parameters of the neutrosophic beta 

distribution are calculated by the MLE method and to see the performance of this model goodness of 

fit is calculated. We assumed beta as a neutrosophic parameter and alpha as a classical parameter. For 

comparison purposes classical beta distribution will also be used. The results are as follow: 

Table 1. Parameter estimation and goodness of fit of N-Beta (αN, βN). 

Distribution MLE Estimates 
AIC BIC 

𝜶̂ 𝜷̂ 

N-beta 0.8597 [1.9450,1.276] [278.608, 83.8750] [362.965, 53.9857] 

Beta 0.9096 1.316 398.437 446.587 

It can be seen that in terms of neutrosophy, neutrosophic statistics is more accurate to give results in 

terms of impreciseness instead of ignoring impreciseness and uncertainty. Hence we can say that the 

proposed neutrosophic Beta distribution is more accurate than the classical beta distribution when the 

data is in interval form and contains some sort of indeterminacy. 

Case Study 2: Another real-life application has been done on data of automobiles that have been 

taken from an automobile manufacturing company in Korea. Twenty eight uncertain data 

observations have been taken [20]. Parameters of the neutrosophic Beta distribution are calculated by 

the MLE method and to see the performance of this model goodness of fit AIC, BIC method is used. 

We assumed beta as a neutrosophic parameter and alpha are taken as a classical parameter. For 

comparison purpose, classical beta distribution is used. The results are as follow: 

 

From the results presented in TABLE 2, it can be seen that the proposed neutrosophic Beta 

distribution is more accurate as compared to classical distribution.  
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Table 2. Parameter estimation and goodness of fit of automobile data for N-Beta (αN, βN). 

Distribution MLE Estimates 
AIC BIC 

𝜶̂ 𝜷̂ 

N-beta 1.6386 [2.8437,0.8561] [728.068, 96.1830] [658.7123, 49.1298] 

Beta 3.6587 9.5462 898.3621 846.8352 

 

 

8. CONCLUSION 

A generalization of the classical beta distribution has been proposed in the form of neutrosophic 

beta distribution by considering the interval form of the data occurring in many real-life situations. 

we derived several properties of the proposed distribution that include the measure of location, 

measure of spread R-th moment, survival function, hazard rate function, and common forms of order 

statistics. Neutrosophic beta distribution is applied to two real-life data sets to see if they behave well 

as compared to classical beta distribution and found better. We conclude that in real life situations 

having some sort of uncertainty, and indeterminacy in it and follow the beta distribution than in such 

situation our proposed form of the beta distribution will perform better and provide more realistic 

results by coping the indeterminacy of the data.  
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Abstract. The primary focus of this manuscript comprises three sections. Initially, we discuss the notion

of an interval-valued intuitionistic neutrosophic soft set. We impose an intuitionistic condition between the

membership grades of truth and falsity such that their supremum sum does not exceed unity. Similarly, for

indeterminacy, the membership grade is in interval from the closed interval [0, 1]. Hence in this case, the

supremum sum of membership grades of truth, indeterminacy, and falsity does not exceed two. We present

the notion of necessity, possibility, concentration, and dilation operators and establish some of its properties.

Second, we define the similarity measure between two interval-valued intuitionistic neutrosophic soft sets. Also,

we discuss its superiority by comparing it with existing methods. Finally, we develop an algorithm and illustrate

with an example of diagnosing psychiatric disorders. Even though the similarity measure plays a vital role in

diagnosing psychiatric disorders, existing methods deal hardly in diagnosing psychiatric disorders. By nature,

most of the psychiatric disorder behaviors are ambivalence. Hence, it is vital to capture the membership

grades by using interval-valued intuitionistic neutrosophic soft set. In this manuscript, we provide a solution in

diagnosing psychiatric disorders, and the proposed similarity measure is valuable and compatible in diagnosing

psychiatric disorders in any neutrosophic environment.

Keywords: neutrosophic set, intuitionistic neutrosophic set; similarity measures; decision making.

—————————————————————————————————————————-

1. Introduction

Zadeh [35] coined the notion of a fuzzy set (FS) to the world. In FS theory, the membership

grade of each element in a set is specified by a real number from the closed interval of [0, 1].

Later, Atanassov [3] defined the notion of an intuitionistic FS (IFS) as an extension of FS. In

IFS theory, the elements are assumed to posses both membership and non-membership grades

with the condition that their sum does not exceed unity. Also, Atanassov [5] established some
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properties of IFS. Both FS and IFS theories have significant roles in handling decision-making

problems. But in today’s decision-making scenarios, the primary focus of the decision-makers

(DMs) is to select the best option under different precise or imprecise criteria. DMs may fall

short of adequate level of knowledge of the problem in cognitive terms and therefore have

difficulty in selecting the right object. This difficulty is overcome by the use of the notion

of neutrosophic set (NS), which is characterized by the grades of truth, indeterminacy and

falsity membership for each element of the set. Smarandache [27] presented the concept of NS.

DMs applied this concept widely to show the importance of truth, indeterminacy, and falsity

information on which humans handle the decisions. Wang et al. [30] defined the concept of

single-valued NS (SVNS) with the restricted conditions for the membership grades to facilitate

the real-life applications and to overcome the constraints faced in neutrosophic theory. We cite

some recent developments of IFS, NS theories, and also on similarity measures (SMs) below.

Beg and Tabasam [7] introduced the concept of comparative linguistic expression based on

hesitant IFSs. Anita et al. [2] developed an application to solve multi-criteria decision-making

(MCDM) problems using interval-valued IFS of root type. Jianming et al. [22] defined the

concepts of weighted aggregation operators in neutrosophic cubic sets (NCSs) and provided

applications in MCDM. Majid Khan et al. [24] presented the notions of algebraic and Einstein

operators on NCSs and developed an MCDM application based on these operators. Hashim

et al. [20] introduced SMs in neutrosophic bipolar FS with a purpose to build a children’s

hospital with the help of the HOPE foundation. Chinnadurai et al. [15] presented the concept

of unique ranking by using the parameters in a neutrosophic environment. Chinnadurai and

Bobin [16] used prospect theory in real-life applications to solve MCDM problems. Saranya

et al. [25] introduced an application for finding the similarity value of any two NSs in the

neutrosophic environment by using programming language. Broumi and Smarandache [9]

developed SMs using Hausdorff distance. Liu et al. [23] introduced the concept of SMs using

Euclidean distance. Chahhtterjee et al. [13] presented various concepts of SMs in neutrosophic

environment. Shahzadi et al. [26] diagnosed the medical symptoms using SVNSs. Hamidi and

Borumand [19] developed the concept of neutrosophic graphs to analyze the sensor networks.

Smarandache [28] studied the concept of soul in psychology by using neutrosophic theory.

Christianto and Smarandache [17] reviewed the concept of cultural psychology as one of the

seven applications using neutrosophic logic. Chicaiza et al. [14] studied the concept of emo-

tional intelligence of the students using neutrosophic psychology. Abdel-Basset et al. [1] used

cosine SMs in bipolar and interval-valued bipolar SVNS to diagnose bipolar disorder behaviors.

The domination of NS and SVNS in psychology is clear from the above-cited works. Hence,

in this research, we enlighten the concept of neutrosophic theory in the field of psychology.

In general, the psychotherapist considers that each person holds a mental structure called the

V. Chinnadurai and A. Bobin, Interval Valued Intuitionistic Neutrosophic Soft Set and its
Application
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self, which acts as an origin of personality. Winnicott [33] introduced the concept of true self

and false self. He applied the thought of true-self to sense out the individual’s aliveness or

conceiving real. True-self is always be in part or hidden completely. The notion of false-self

acts as a defense mechanism to protect the true-self by hibernating it. He explained that

the behavior of a person in society is a gentle and self-conscious attitude because of the de-

fense mechanism of false-self. In brief, we can establish the separation of true and false self

on a continuum between the normal and the pathological behaviors. There always exists a

doubtful amount of unconscious substance that pertains to the whole of the self. The above

statements explain the need for an intuitionistic neutrosophic set (INS) to deal with this new

concept. We cite the literature review of INS and its role in decision making below. Bhowmik

and Pal [8] presented the concept of INS and studied its properties. Broumi and Smaran-

dache [10] defined the concept of intuitionistic neutrosophic soft set (INSS) and established

some of its properties. Both INS and INSS have a significant role in handling decision-making

problems. They defined the restricted conditions as i) the minimum of membership grades

between truth and indeterminacy to be less than or equal to 0.5, ii) the minimum of member-

ship grades between truth and falsity to be less than or equal to 0.5, and iii) the minimum

of membership grades between falsity and indeterminacy to be less than or equal to 0.5, such

that the sum of membership grades of truth, indeterminacy, and falsity cannot exceed two.

Let us consider an example N = 〈0.4, 0.7, 0.6〉. Now according to INS definition, we have

min {0.4, 0.6} < 0.5, min {0.4, 0.7} < 0.5 and min {0.6, 0.7} ≮ 0.5 but satisfies the condition

0 < 0.4 + 0.7 + 0.6 < 2. It is evident that the given example is not an INS. However, the DM

may have a situation where the membership grades of falsity and indeterminacy are greater

than 0.5. Similarly, let us consider another example N = 〈0.7, 0.8, 0.3〉. According to INS def-

inition, we have min {0.7, 0.3} < 0.5, min {0.8, 0.3} < 0.5 and min {0.7, 0.8} ≮ 0.5 but satisfies

the condition 0 < 0.7+0.8+0.3 < 2. It is clear that the given example is not an INS. However,

the DM may have a situation where the membership grades of truth and falsity are greater

than 0.5. Therefore DM may have some constraints while handling these information in INS

environment. Now, when the membership grades are in interval as well the membership grades

of true and false are a continuum and the membership grade of indeterminacy is independent,

it becomes a challenge to input the grades during decision-making with the help of INS and

INSS. Hence, it is very clear that there is a need for a new INS with simplified conditions. So,

we introduce an interval-valued INS (IVINS) and interval-valued INSS (IVINSS) to effectively

handle the decision-making problems.

One of the purpose of this study is to bring out the importance of IVINSS when experts

provide membership grades in truth, indeterminacy, and falsity in a restricted environment.

In recent years, human beings face many decisions-making problems in multiple fields and
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analyzing the psychiatric disorder of the subject is one of them. Similarly, SM plays a signif-

icant factor in diagnosing psychiatric disorders, but hardly no existing methods deal with it.

Therefore, it is necessary to provide a working model for determining the same. DMs look

for many novel extensions of the NS to compete with other working models. So, we propose

a new extension of NS and a model for diagnosing the psychiatric disorders using SM, which

provides an advantage for the DMs to make well-defined decisions.

The manuscript enfolds the following sections. Section 2 provides a glimpse of existing

definitions. Section 3 introduces the concept of IVINSS and some basic definitions related to

IVINSS. Section 4 and 5 deal with the necessity, possibility, and two new operators (± and

∓) with their properties. Section 6 explains the concept of Nǫ, Nǫ,ρ and Iǫ,ρ operators on

IVINSS. Section 7 provides insight on concentration and dilation operators on SINSS. Section

8 highlights the concept of SM with a new definition and also with a comparison study to

show the importance of the proposed method. Section 9 wraps up with a conclusion.

2. Preliminaries

We discuss some essential definitions required for this study. Let us consider the following

notations throughout this manuscript unless otherwise specified . Let V represent universe

and v ∈ V , Q be a set of parameters, S ⊆ Q, C[0,1] denotes the set of all closed sub intervals

of [0,1] and IN be the set of all IVINS over V .

Definition 2.1. [6] An interval-valued IFS (IVIFS) is a set of the form F =

{〈v, αF (v), γF (v)〉}, where αF (v) : V → C[0, 1] and γF (v) : V → C[0, 1] are the interval-

valued membership and non-membership grades respectively. The lower and upper ends of

αF (v) and γF (v) are denoted by αF (v), αF (v) and γ
F
(v), γF (v), where 0 ≤ αF (v)+γF (v) ≤ 1

and αF (v), γF (v) ≥ 0.

Definition 2.2. [31] An interval-valued NS (IVNS) is a set of the form N =

{v, 〈αN (v), βN (v), γN (v)〉}, where αN (v) : V → C[0, 1], βN (v) : V → C[0, 1] and γN (v) :

V → C[0, 1] are the interval-valued membership of truth, indeterminacy and falsity respec-

tively. The lower and upper limits of αN (v), βN (v) and γN (v) are denoted by αN (v), αN (v),

β
N
(v), βN (v), and γ

N
(v), γN (v), where 0 ≤ αN (v) + βN (v) + γN (v) ≤ 3.

3. Interval-valued intuitionistic neutrosophic soft set

We present the notion of IVINSS and investigate some of its properties. We generalize the

operations and properties on IVINSS by the concepts discussed in [3] and [21].

Definition 3.1. An IVINS in V is a set of the form I = {〈v, αI(v), βI(v), γI(v)〉}, where

αI(v) : V → C[0, 1], βI(v) : V → C[0, 1] and γI(v) : V → C[0, 1]. αI(v), βI(v) and γI(v) are
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closed sub intervals of [0,1], representing the membership grades of truth, indeterminacy and

falsity of the element v ∈ V . The lower and upper ends of αI(v), βI(v) and γI(v) are denoted,

respectively by αI(v), αI(v), βI
(v), βI(v), and γ

I
(v), γI(v), where 0 ≤ αI(v) + γI(v) ≤ 1

and αI(v), βI
(v), γ

I
(v) ≥ 0, 0 ≤ αI(v) + βI(v) + γI(v) ≤ 2, ∀ v ∈ V .

Example 3.2. Let V = {v1, v2, v3} be a non-empty set. Then an IVINS on V can be repre-

sented as,

I =
{

〈v1, [0.3, 0.4], [0.7, 0.8], [0.1, 0.2]〉 , 〈v2, [0.4, 0.5], [0.8, 0.9], [0.2, 0.3]〉 ,

〈v3, [0.6, 0.7], [0.2, 0.3], [0.2, 0.3]〉
}

.

Definition 3.3. A pair (Ω,S) is called IVINSS over V , where Ω : S → IN . Thus for any

parameter q ∈ S, Ω(q) is an IVINSS.

Example 3.4. Let V = {v1, v2, v3} represent clients with cognitive disorders and S =

{q1, q2, q3} represent symptoms which stand for inability of motor coordination (IMC), loss

of memory (LM) and identity confusion (IC) respectively. An IVINSS (Ω,S) is a collection of

subsets of V , given by a psychiatrist based on the description in Table 1.

Table 1. Shows client with cognitive disorders in IVINSS (Ω,S) form.

V IMC(q1) LM(q2) IC(q3)

v1 〈[0.2, 0.4], [0.4, 0.5], [0.4, 0.5]〉 〈[0.3, 0.4], [0.5, 0.6], [0.3, 0.5]〉 〈[0.2, 0.3], [0.5, 0.8], [0.6, 0.7]〉

v2 〈[0.4, 0.6], [0.3, 0.5], [0.1, 0.2]〉 〈[0.7, 0.8], [0.2, 0.5], [0.1, 0.2]〉 〈[0.6, 0.7], [0.7, 0.8], [0.1, 0.2]〉

v3 〈[0.6, 0.7], [0.2, 0.7], [0.1, 0.2]〉 〈[0.1, 0.3], [0.6, 0.7], [0.5, 0.6]〉 〈[0.2, 0.3], [0.7, 0.8], [0.4, 0.5]〉

Definition 3.5. Let (Ω1,S1) and (Ω2,S2) be two IVINSS over V . Then,

(i) (Ω1,S1) OR (Ω2,S2) is an IVINSS represented as (Ω1,S1)∨ (Ω2,S2) = (Ω∨,S1×S2), where

Ω∨(q1, q2) =Ω1(q1) ∪ Ω2(q2), ∀ (q1, q2) ∈ S1 × S2.

Ω∨(q1, q2) =
〈

[∨(αΩ1(q1)(v), αΩ2(q2)(v)),∨(αΩ1(q1)(v), αΩ2(q2)(v))],

[∨(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∨(βΩ1(q1)(v), βΩ2(q2)(v))],

[∧(γ
Ω1(q1)

(v), γ
Ω2(q2)

(v)),∧(αΩ1(q1)(v), αΩ2(q2)(v))],
〉

, ∀ (q1, q2) ∈ S1 × S2.

(ii) (Ω1,S1) AND (Ω2,S2) is an IVINSS represented as (Ω1,S1) ∧ (Ω2,S2) = (Ω∧,S1 × S2),

where Ω∧(q1, q2) =Ω1(q1) ∩ Ω2(q2), ∀ (q1, q2) ∈ S1 × S2.

Ω∧(q1, q2) =
〈

[∧(αΩ1(q1)(v), αΩ2(q2)(v)),∧(αΩ1(q1)(v), αΩ2(q2)(v))],

[∧(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∧(βΩ1(q1)(v), βΩ2(q2)(v))],

[∨(γ
Ω1(q1)

(v), γ
Ω2(q2)

(v)),∨(γΩ1(q1)(v), γΩ2(q2)(v))]
〉

, ∀ (q1, q2) ∈ S1 × S2.
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Definition 3.6. Let (Ω1,S1) and (Ω2,S2) be two IVINSS over V . Then,

(i) (Ω1,S1) union (Ω2,S2) is an IVINSS represented as (Ω1,S1) ⋒ (Ω2,S2) = (Ω⋒,S⋒), where

S⋒ = S1 ∪ S2 and ∀ q ∈ S⋒,

Ω⋒(q) =











































{〈

v, (αΩ1(q)(v), βΩ1(q)(v), γΩ1(q)(v))
〉

; if q ∈ S1 − S2

}

,
{〈

v, (αΩ2(q)(v), βΩ2(q)(v), γΩ2(q)(v))
〉

; if q ∈ S2 − S1

}

,
{〈

v, [∨(αΩ1(q)(v), αΩ2(q)(v)),∨(αΩ1(q)(v), αΩ2(q)(v))],

[∨(β
Ω1(q)

(v), β
Ω2(q)

(v)),∨(βΩ1(q)(v), βΩ2(q)(v))],

[∧(γ
Ω1(q)

(v), γ
Ω2(q)

(v)),∧(γΩ1(q)(v), γΩ2(q)(v))]
〉

; if q ∈ S1 ∩ S2

}

.

(ii) (Ω1,S1) intersection (Ω2,S2) is an IVINSS represented as (Ω1,S1) ⋓ (Ω2,S2) = (Ω⋓,S⋓),

where S⋓ = S1 ∪ S2 and ∀ q ∈ S⋓,

Ω⋓(q) =











































{〈

v, (αΩ1(q)(v), βΩ1(q)(v), γΩ1(q)(v))
〉

; if q ∈ S1 − S2

}

,
{〈

v, (αΩ2(q)(v), βΩ2(q)(v), γΩ2(q)(v))
〉

; if q ∈ S2 − S1

}

,
{〈

v, [∧(αΩ1(q)(v), αΩ2(q)(v)),∧(αΩ1(q)(v), αΩ2(q)(v))],

[∧(β
Ω1(q)

(v), β
Ω2(q)

(v)),∧(βΩ1(q)(v), βΩ2(q)(v))],

[∨(γ
Ω1(q)

(v), γ
Ω2(q)

(v)),∨(γΩ1(q)(v), γΩ2(q)(v))]
〉

; if q ∈ S1 ∩ S2

}

.

Definition 3.7. The complement of an IVINSS (Ω,S) is represented as,

(Ω,S)c =
{〈

v, γΩ(q)(v), [(1− βΩ(q)(v)), (1− β
Ω(q)

(v))], αΩ(q)(v)
〉

; and q ∈ S
}

.

Theorem 3.8. Let (Ω1,S1) and (Ω2,S2) be two IVINSS over V. Then,

(i)
(

(Ω1,S1) ∨ (Ω2,S2)
)c

= (Ω1,S1)
c ∧ (Ω2,S2)

c;

(ii)
(

(Ω1,S1) ∧ (Ω2,S2)
)c

= (Ω1,S1)
c ∨ (Ω2,S2)

c.

Proof. We give the proof of (i), and proof of (ii) is analogous.

(i) (Ω1,S1) ∨ (Ω2,S2) = (Ω∨,S1 × S2).
(

(Ω1,S1) ∨ (Ω2,S2)
)c

= (Ω∨,S1 × S2)
c.

Ωc
∨(q1, q2) =

〈

[∧(γ
Ω1(q1)

(v), γ
Ω2(q2)

(v)),∧(γΩ1(q1)(v), γΩ2(q2)(v))],

[∧((1− βΩ1(q1)(v)), (1− βΩ2(q2)(v))),∧((1− β
Ω1(q1)

(v)), (1− β
Ω2(q2)

(v)))],

[∨(αΩ1(q1)(v), αΩ2(q2)(v)),∨(αΩ1(q1)(v), αΩ2(q2)(v))]
〉

, ∀ (q1, q2) ∈ S1 × S2.

and (Ω1,S1)
c ∧ (Ω2,S2)

c = (Ω∧,S1 × S2).

Ω∧(q1, q2) =
〈

[∧(γ
Ω1(q1)

(v), γ
Ω2(q2)

(v)),∧(γΩ1(q1)(v), γΩ2(q2)(v))],

[∧((1− βΩ1(q1)(v)), (1− βΩ2(q2)(v))),∧((1− β
Ω1(q1)

(v)), (1− β
Ω2(q2)

(v)))],

[∨(αΩ1(q1)(v), αΩ2(q2)(v)),∨(αΩ1(q1)(v), αΩ2(q2)(v))]
〉

, ∀ (q1, q2) ∈ S1 × S2.
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Thus
(

(Ω1,S1) ∨ (Ω2,S2)
)c

= (Ω1,S1)
c ∧ (Ω2,S2)

c.

Definition 3.9. Let S1,S2 ⊆ Q. (Ω1,S1) is an interval-valued intuitionistic neutrosophic soft

subset (IVINSSS) of (Ω2,S2) represented as (Ω1,S1) ⋐ (Ω2,S2) if and only if (iff)

(i) S1 ⊆ S2;

(ii)Ω1(q) is an IVINSSS of Ω2(q) that is for all q ∈ S1,

αΩ1(q)(v) ≤ αΩ2(q)(v), αΩ1(q)(v) ≤ αΩ2(q)(v); βΩ1(q)
(v) ≤ β

Ω2(q)
(v) ,

βΩ1(q)(v) ≤ βΩ2(q)(v) , γΩ1(q)
(v) ≥ γ

Ω2(q)
(v) and γΩ1(q)(v) ≥ γΩ2(q)(v).

Also, (Ω2,S2) is called an interval-valued intuitionistic neutrosophic soft superset of (Ω1,S1)

and represented as (Ω2,S2) ⋑ (Ω1,S1).

Definition 3.10. If (Ω1,S1) and (Ω2,S2) are two IVINSS, then (Ω1,S1) = (Ω2,S2) iff

(Ω1,S1) ⋐ (Ω2,S2) and (Ω2,S2) ⋐ (Ω1,S1).

4. Necessity (⊕) and possibility (⊖) operators on IVINSS

We provide the definition of ⊕ and ⊖ operators on IVINSS and its properties. We generalize

these operations and some properties on IVINSS using the concepts discussed in [3] and [21].

Definition 4.1. If (Ω,S) is an IVINSS over V and Ω : S → IN , then,

(i) the necessity operator (⊕) is represented as,

⊕(Ω,S) =
{〈

v, α⊕Ω(q)(v), β⊕Ω(q)(v), γ⊕Ω(q)(v)
〉

; q ∈ S
}

.

Here, α⊕Ω(q)(v) = [αΩ(q)(v), αΩ(q)(v)], β⊕Ω(q)(v) = [β
Ω(q)

(v), βΩ(q)(v)] and

γ⊕Ω(q)(v) = [(1−αΩ(q)(v)), (1−αΩ(q)(v))], are the membership grades of truth, indeterminacy

and falsity for the object v on the parameter q.

(ii) the possibility operator (⊖) is represented as,

⊖(Ω,S) =
{〈

v, α⊖Ω(q)(v), β⊖Ω(q)(v), γ⊖Ψ(q)(v)
〉

; q ∈ S
}

.

Here, α⊖Ω(q)(v) = [(1− γΩ(q)(v)), (1− γ
Ω(q)

(v))], β⊖Ω(q)(v) = [β
Ω(q)

(v), βΩ(q)(v)] and

γ⊖Ω(q)(v) = [γ
Ω(q)

(v), γΩ(q)(v)], are the membership grades of truth, indeterminacy and falsity

for the object v on the parameter q.

Example 4.2. (i) The IVINSS ⊕(Ω,S) for Example 3.4 is shown in Table 2.

Table 2. Shows client with cognitive disorders using ⊕ operator.

V IMC(q1) LM(q2) IC(q3)

v1 〈[0.2, 0.4], [0.4, 0.5], [0.6, 0.8]〉 〈[0.3, 0.4], [0.5, 0.6], [0.6, 0.7]〉 〈[0.2, 0.3], [0.5, 0.8], [0.7, 0.8]〉

v2 〈[0.4, 0.6], [0.3, 0.5], [0.4, 0.6]〉 〈[0.7, 0.8], [0.2, 0.5], [0.2, 0.3]〉 〈[0.6, 0.7], [0.7, 0.8], [0.3, 0.4]〉

v3 〈[0.6, 0.7], [0.2, 0.7], [0.3, 0.4]〉 〈[0.1, 0.3], [0.6, 0.7], [0.7, 0.9]〉 〈[0.2, 0.3], [0.7, 0.8], [0.7, 0.8]〉
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Table 3. Shows client with cognitive disorders using ⊖ operator.

V IMC(q1) LM(q2) IC(q3)

v1 〈[0.5, 0.6], [0.4, 0.5], [0.4, 0.5]〉 〈[0.5, 0.7], [0.5, 0.6], [0.3, 0.5]〉 〈[0.3, 0.4], [0.5, 0.8], [0.6, 0.7]〉

v2 〈[0.8, 0.9], [0.3, 0.5], [0.1, 0.2]〉 〈[0.8, 0.9], [0.2, 0.5], [0.1, 0.2]〉 〈[0.8, 0.9], [0.7, 0.8], [0.1, 0.2]〉

v3 〈[0.8, 0.9], [0.2, 0.7], [0.1, 0.2]〉 〈[0.4, 0.5], [0.6, 0.7], [0.5, 0.6]〉 〈[0.5, 0.6], [0.7, 0.8], [0.4, 0.5]〉

(ii) The IVINSS ⊖(Ω,S) for Example 3.4 is shown in Table 3.

Theorem 4.3. Let (Ω1,S1) and (Ω2,S2) be two IVINSS over V. Then,

(i) ⊕ ((Ω1,S1) ⋒ (Ω2,S2)) = ⊕(Ω1,S1) ⋒⊕(Ω2,S2);

(ii) ⊕ ((Ω1,S1) ⋓ (Ω2,S2)) = ⊕(Ω1,S1) ⋓⊕(Ω2,S2);

(iii) ⊕⊕ (Ω1,S1)= ⊕(Ω1,S1).

Proof. We present the proof of (i), and proof of (ii) is analogous.

(i) Let (Ω1,S1) ⋒ (Ω2,S2) = (Ω⋒,S⋒), where S⋒ = S1 ∪ S2, ∀ q ∈ S⋒.

Consider,

⊕Ψ⋒(q)

=























































{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)],

[(1− αΩ1(q)(v)), (1− αΩ1(q)(v))]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [βΩ2(q)
(v), βΩ2(q)(v)],

[(1− αΩ2(q)(v)), (1− αΩ2(q)(v))]
〉

; if q ∈ S2 − S1

}

,
{〈

v,∨(αΩ1(q)(v), αΩ2(q)(v)),∨(βΩ1(q)(v), βΩ2(q)(v)),

[(1− ∨(αΩ1(q)(v), αΩ2(q)(v))), (1− ∨(αΩ1(q)(v), αΩ2(q)(v)))]
〉

; if q ∈ S1 ∩ S2

}

.

=







































































{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)],

[(1− αΩ1(q)(v)), (1− αΩ1(q)(v))]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [βΩ2(q)
(v), βΩ2(q)(v)],

[(1− αΩ2(q)(v)), (1− αΩ2(q)(v))]
〉

; if q ∈ S2 − S1

}

,
{〈

v,∨(αΩ1(q)(v), αΩ2(q)(v)),∨(βΩ1(q)(v), βΩ2(q)(v)),

[∧((1− αΩ1(q)(v)), (1− αΩ2(q)(v))),∧((1− αΩ1(q)(v)), (1− αΩ2(q)(v)))]
〉

;

if q ∈ S1 ∩ S2

}

.

We know that,

⊕(Ω1,S1) =
{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)],

[(1− αΩ1(q)(v)), (1− αΩ1(q)(v))]
〉

; q ∈ S1

}

,

⊕(Ω2,S2) =
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [βΩ2(q)
(v), βΩ2(q)(v)],

[(1− αΩ2(q)(v)), (1− αΩ2(q)(v))]
〉

; q ∈ S2

}

,
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Let ⊕(Ω1,S1) ⋒⊕(Ω2,S2) = (Ω⊕⋒,S⊕⋒),where S⊕⋒ = S1 ∪ S2.

For q ∈ S⊕⋒,

Ω⊕⋒(q)

=







































































{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)],

[(1− αΩ1(q)(v)), (1− αΩ1(q)(v))]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [βΩ2(q)
(v), βΩ2(q)(v)],

[(1− αΩ2(q)(v)), (1− αΩ2(q)(v))]
〉

; if q ∈ S2 − S1

}

,
{〈

v,∨(αΩ1(q)(v), αΩ2(q)(v)),∨(βΩ1(q)(v), βΩ2(q)(v)),

[∧((1− αΩ1(q)(v)), (1− αΩ2(q)(v))),∧((1− αΩ1(q)(v)), (1− αΩ2(q)(v)))]
〉

;

if q ∈ S1 ∩ S2

}

.

Thus ⊕ ((Ω1,S1) ⋒ (Ω2,S2)) = ⊕(Ω1,S1) ⋒⊕(Ω2,S2).

(iii) ⊕⊕ (Ω1,S1)

= ⊕
{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)], [(1− αΩ1(q)(v)), (1− αΩ1(q)(v))]

〉

; q ∈ S1

}

=
{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)], [(1− αΩ1(q)(v)), (1− αΩ1(q)(v))]

〉

; q ∈ S1

}

= ⊕ (Ω1,S1).

Theorem 4.4. Let (Ω1,S1) and (Ω2,S2) be two IVINSS over V. Then,

(i) ⊖ ((Ω1,S1) ⋒ (Ω2,S2)) = ⊖(Ω1,S1) ⋒⊖(Ω2,S2);

(ii) ⊖ ((Ω1,S1) ⋓ (Ω2,S2)) = ⊖(Ω1,S1) ⋓⊖(Ω2,S2);

(iii) ⊖⊖ (Ω1,S1)= ⊖(Ω1,S1).

Proof. We give the proof of (i), and proof of (ii) is analogous.

(i) Let (Ω1,S1) ⋒ (Ω2,S2) = (Ω⋒,S⋒), where S⋒ = S1 ∪ S2, ∀ q ∈ S⋒.

Consider, ⊖Ψ⋒(q)

=



























































{〈

v, [(1− γΩ1(q)(v)), (1− γ
Ω1(q)

(v))], [β
Ω1(q)

(v), βΩ1(q)(v)],

[γ
Ω1(q)

(v), γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [(1− γΩ2(q)(v)), (1− γ
Ω2(q)

(v))], [βΩ2(q)(v), βΩ2(q)(v)]

[γΩ2(q)(v), γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v, [(1− ∧(γΩ1(q)(v), γΩ2(q)(v))), (1− ∧(γ
Ω1(q)

(v), γΩ2(q)(v)))],

∧(βΩ1(q)(v), βΩ2(q)(v)),∧(γΩ1(q)(v), γΩ2(q)(v))
〉

; if q ∈ S1 ∩ S2

}

.
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=



























































{〈

v, [(1− γΩ1(q)(v)), (1− γ
Ω1(q)

(v))], [β
Ω1(q)

(v), βΩ1(q)(v)],

[γ
Ω1(q)

(v), γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [(1− γΩ2(q)(v)), (1− γ
Ω2(q)

(v))], [βΩ2(q)(v), βΩ2(q)(v)]

[γΩ2(q)(v), γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v, [∨((1− γΩ1(q)(v)), (1− γΩ2(q)(v))),∨((1− γ
Ω1(q)

(v)), (1− γΩ2(q)(v)))],

∨(βΩ1(q)(v), βΩ2(q)(v)),∧(γΩ1(q)(v), γΩ2(q)(v))
〉

; if q ∈ S1 ∩ S2

}

.

We know that,

⊖(Ω1,S1) =
{〈

v, [(1− γΩ1(q)(v)), (1− γ
Ω1(q)

(v))], [β
Ω1(q)

(v), βΩ1(q)(v)],

[γ
Ω1(q)

(v), γΩ1(q)(v)]
〉

; q ∈ S1

}

,

⊖(Ω2,S2) =
{〈

v, [(1− γΩ2(q)(v)), (1− γ
Ω2(q)

(v))], [β
Ω2(q)

(v), βΩ2(q)(v)],

[γ
Ω2(q)

(v), γΩ(q)(v)]
〉

; q ∈ S2

}

,

Let ⊖(Ω1,S1) ⋒⊖(Ω2,S2) = (Ω⊖⋒,S⊖⋒),where S⊖⋒ = S1 ∪ S2.

For q ∈ S⊖⋒,

Ω⊖⋒(q)

=



























































{〈

v, [(1− γΩ1(q)(v)), (1− γ
Ω1(q)

(v))], [β
Ω1(q)

(v), βΩ1(q)(v)],

[γ
Ω1(q)

(v), γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [(1− γΩ2(q)(v)), (1− γ
Ω2(q)

(v))], [βΩ2(q)(v), βΩ2(q)(v)]

[γΩ2(q)(v), γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v, [∨((1− γΩ1(q)(v)), (1− γΩ2(q)(v))),∨((1− γ
Ω1(q)

(v)), (1− γΩ2(q)(v)))],

∨(βΩ1(q)(v), βΩ2(q)(v)),∧(γΩ1(q)(v), γΩ2(q)(v))
〉

; if q ∈ S1 ∩ S2

}

.

Thus ⊖ ((Ω1,S1) ⋒ (Ω2,S2)) = ⊖(Ω1,S1) ⋒⊖(Ω2,S2).

(iii) ⊖⊖ (Ω1,S1)

= ⊖
{〈

v, [(1− γΩ1(q)(v)), (1− γ
Ω1(q)

(v))], [β
Ω1(q)

(v), βΩ1(q)(v)], [γΩ1(q)
(v), γΩ1(q)(v)]

〉

; q ∈ S1

}

=
{〈

v, [(1− γΩ1(q)(v)), (1− γ
Ω1(q)

(v))], [β
Ω1(q)

(v), βΩ1(q)(v)], [γΩ1(q)
(v), γΩ1(q)(v)]

〉

; q ∈ S1

}

=⊖ (Ω1,S1).

Theorem 4.5. Let (Ω,S) be an IVINSS over V. Then,

(i) ⊖⊕ (Ω,S) = ⊕(Ω,S);

(ii) ⊕⊖ (Ω,S) = ⊖(Ω,S).
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Proof. (i)⊖⊕ (Ω,S)

=
{〈

v, [(1− (1− αΩ(q)(v)), (1− (1− αΩ(q)(v))], [βΩ(q)
(v), βΩ(q)(v)],

[(1− αΩ(q)(v)), (1− αΩ(q)(v))]
〉

; q ∈ S
}

=
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[(1− αΩ(q)(v)), (1− αΩ(q)(v))]
〉

; q ∈ S
}

=⊕ (Ω,S).

(ii) ⊕⊖ (Ω,S)

=
{〈

v, [(1− γΩ(q)(v)), (1− γ
Ω(q)

(v))], [β
Ω(q)

(v), βΩ(q)(v)],

[(1− (1− γ
Ω(q)

(v)), (1− (1− γΩ(q)(v))]
〉

; q ∈ S
}

=
{〈

v, [(1− γΩ(q)(v)), (1− γ
Ω(q)

(v))], [β
Ω(q)

(v), βΩ(q)(v)],

[γ
Ω(q)

(v), γΩ(q)(v)]
〉

; q ∈ S
}

=⊖ (Ω,S).

Theorem 4.6. Let (Ω1,S1) and (Ω2,S2) be two IVINSS over V. Then,

(i) ⊕ ((Ω1,S1) ∧ (Ω2,S2)) = ⊕(Ω1,S1) ∧ ⊕(Ω2,S2);

(ii) ⊕ ((Ω1,S1) ∨ (Ω2,S2)) = ⊕(Ω1,S1) ∨ ⊕(Ω2,S2);

(iii) ⊖ ((Ω1,S1) ∧ (Ω2,S2)) = ⊖(Ω1,S1) ∧ ⊕(Ω2,S2);

(iv) ⊖ ((Ω1,S1) ∨ (Ω2,S2)) = ⊖(Ω1,S1) ∨ ⊕(Ω2,S2).

Proof. We present the proofs of (i) and (iii), and proofs of (ii) and (iv) are analogous.

(i) ⊕ ((Ω1,S1) ∧ (Ω2,S2))

=
{〈

v, [∧(αΩ1(q1)(v), αΩ2(q2)(v)),∧(αΩ1(q1)(v), αΩ2(q2)(v))],

[∧(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∧(βΩ1(q1)(v), βΩ2(q2)(v))],

[(1− ∧(αΩ1(q1)(v), αΩ2(q2)(v))), (1− ∧(αΩ1(q1)(v), αΩ2(q2)(v)))], ∀(q1, q2) ∈ S1 × S2

}

.

=
{〈

v, [∧(αΩ1(q1)(v), αΩ2(q2)(v)),∧(αΩ1(q1)(v), αΩ2(q2)(v))],

[∧(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∧(βΩ1(q1)(v), βΩ2(q2)(v))], [∨((1− αΩ1(q1)(v)), (1− αΩ2(q2)(v))),

∨ ((1− αΩ1(q1)(v)), (1− αΩ2(q2)(v)))], ∀(q1, q2) ∈ S1 × S2

}

.

Also,

⊕(Ω1,S1) =
{〈

v, [αΩ1(q1)(v), αΩ1(q1)(v)], [βΩ1(q1)
(v), βΩ1(q1)(v)],

[(1− αΩ1(q1)(v)), (1− αΩ1(q1)(v))]
〉

; q1 ∈ S1

}

,
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⊕(Ω2,S2) =
{〈

v, [αΩ2(q2)(v), αΩ2(q2)(v)], [βΩ2(q2)
(v), βΩ2(q2)(v)],

[(1− αΩ2(q2)(v)), (1− αΩ2(q2)(v))]
〉

; q2 ∈ S2

}

.

Therefore, we have

⊕(Ω1,S1) ∧ ⊕(Ω2,S2)

=
{〈

v, [∧(αΩ1(q1)(v), αΩ2(q2)(v)),∧(αΩ1(q1)(v), αΩ2(q2)(v))],

[∧(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∧(βΩ1(q1)(v), βΩ2(q2)(v))], [∨((1− αΩ1(q1)(v)), (1− αΩ2(q2)(v))),

∨ ((1− αΩ1(q1)(v)), (1− αΩ2(q2)(v)))], ∀(q1, q2) ∈ S1 × S2

}

.

= ⊕ ((Ω1,S1) ∧ (Ω2,S2)) .

(iii) ⊖ ((Ω1,S1) ∧ (Ω2,S2))

=
{〈

v, [(1− ∨(γΩ1(q1)(v), γΩ2(q2)(v)), (1− ∨(γ
Ω1(q1)

(v), αΩ2(q2)(v))],

[∨(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∨(βΩ1(q1)(v), βΩ2(q2)(v))],

[∨(γ
Ω1(q1)

(v)), γ
Ω2(q2)

(v)),∨(γΩ1(q1)(v), γΩ2(q2)(v))], ∀(q1, q2) ∈ S1 × S2

}

.

=
{〈

v, [∧((1− γΩ1(q1)(v), (1− γΩ2(q2)(v))),∧((1− γ
Ω1(q1)

(v)), (1− γ
Ω2(q2)

(v)))],

[∨(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∨(βΩ1(q1)(v), βΩ2(q2)(v))],

[∨(γ
Ω1(q1)

(v), γ
Ω2(q2)

(v)),∨(γΩ1(q1)(v), γΩ2(q2)(v))], ∀(q1, q2) ∈ S1 × S2

}

.

Also,

⊖(Ω1,S1) =
{〈

v, [(1− γΩ1(q1)(v)), (1− γ
Ω1(q1)

(v))],

[β
Ω1(q1)

(v), βΩ1(q1)(v)], [γΩ1(q1)
(v), γΩ1(q1)(v)]

〉

; q1 ∈ S1

}

,

⊖(Ω2,S2) =
{〈

v, [(1− γΩ2(q2)(v)), (1− γ
Ω2(q2)

(v))],

[β
Ω2(q2)

(v), βΩ2(q2)(v)], [γΩ2(q2)
(v), γΩ2(q2)(v)]

〉

; q2 ∈ S2

}

.

Therefore, we have

⊖(Ω1,S1) ∧ ⊖(Ω2,S2)

=
{〈

v, [∧((1− γΩ1(q1)(v)), (1− γΩ2(q2)(v)),∧((1− γ
Ω1(q1)

(v)), (1− γ
Ω2(q2)

(v))],

[∨(β
Ω1(q1)

(v), β
Ω2(q2)

(v)),∨(βΩ1(q1)(v), βΩ2(q2)(v))],

[∨(γ
Ω1(q1)

(v)), γ
Ω2(q2)

(v)),∨(γΩ1(q1)(v), γΩ2(q2)(v)))], ∀(q1, q2) ∈ S1 × S2

}

.

= ⊖ ((Ω1,S1) ∧ (Ω2,S2)) .
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5. ± and ∓ operators on IVINSS

We provide the definition of two new operators (± and ∓) on IVINSS and discuss some of

their properties. We generalize these operations and properties on IVINSS using the concepts

given in [5].

Definition 5.1. Let (Ω1,S1) and (Ω2,S2) be two IVINSS over V . Then,

(i) the operator ± is represented as (Ω1,S1) ± (Ω2,S2) = (Ω±,S±), where S± = S1 ∪ S2. ∀

q ∈ S±,

Ω±(q)

=







































{〈

v, [αΩ1(q)(v) + αΩ1(q)(v)], [βΩ1(q)
(v) + βΩ1(q)(v)], [γΩ1(q)

(v) + γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v) + αΩ2(q)(v)], [βΩ2(q)
(v) + βΩ2(q)(v)], [γΩ2(q)

(v) + γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v,

[

αΩ1(q)
(v)+αΩ2(q)

(v)

2 ,
αΩ1(q)

(v)+αΩ2(q)
(v)

2

]

,

[

β
Ω1(q)

(v)+β
Ω2(q)

(v)

2 ,
βΩ1(q)

(v)+βΩ2(q)
(v)

2

]

,
[

γ
Ω1(q)

(v)+γ
Ω2(q)

(v)

2 ,
γΩ1(q)

(v)+γΩ2(q)
(v)

2

]〉

; if q ∈ S1 ∩ S2

}

.

(ii) the operator ∓ is represented as (Ω1,S1) ∓ (Ω2,S2) = (Ω∓,S∓), where S∓ = S1 ∪ S2. ∀

q ∈ S∓,

Ω∓(q)

=







































{〈

v, [αΩ1(q)(v) + αΩ1(q)(v)], [βΩ1(q)
(v) + βΩ1(q)(v)], [γΩ1(q)

(v) + γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v) + αΩ2(q)(v)], [βΩ2(q)
(v) + βΩ2(q)(v)], [γΩ2(q)

(v) + γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v,

[

2αΩ1(q)
(v).αΩ2(q)

(v)

αΩ1(q)
(v)+αΩ2(q)

(v) ,
2αΩ1(q)

(v).αΩ2(q)
(v)

αΩ1(q)
(v)+αΩ2(q)

(v)

]

,

[

β
Ω1(q)

(v)+β
Ω2(q)

(v)

2 ,
βΩ1(q)

(v)+βΩ2(q)
(v)

2

]

,
[

2γ
Ω1(q)

(v).γ
Ω2(q)

(v)

γ
Ω1(q)

(v)+γ
Ω2(q)

(v) ,
2γ̄Ω1(q)

(v).γΩ2(q)
(v)

γΩ1(q)
(v)+γΩ2(q)

(v)

]〉

; if q ∈ S1 ∩ S2

}

.

Example 5.2. Consider that a psychiatrist has conducted two counseling sessions for the

clients. Assume the psychiatrist has given the values in the IVINSS form for the first session

(Ω1,S1), as in Table 1 and for the second session (Ω2,S2) in Table 4. Now we calculate the

combined results of the two sessions using (Ω1,S1)± (Ω2,S2), (Ω1,S1)∓ (Ω2,S2) and present

the results in Table 5 and 6 respectively.

Table 4. Shows client with cognitive disorders in IVINSS (Ω2,S2) form.

V IMC(q1) LM(q2) IC(q3)

v1 〈[0.1, 0.3], [0.6, 0.7], [0.2, 0.3]〉 〈[0.2, 0.3], [0.7, 0.8], [0.4, 0.6]〉 〈[0.3, 0.4], [0.70.9], [0.4, 0.5]〉

v2 〈[0.3, 0.5], [0.5, 0.8], [0.2, 0.4]〉 〈[0.6, 0.7], [0.5, 0.6], [0.2, 0.3]〉 〈[0.5, 0.6], [0.30.5], [0.2, 0.3]〉

v3 〈[0.5, 0.6], [0.6, 0.9], [0.3, 0.4]〉 〈[0.2, 0.4], [0.9, 1.0], [0.3, 0.4]〉 〈[0.1, 0.2], [0.20.4], [0.3, 0.4]〉

(i) The IVINSS (Ω1,S1)± (Ω2,S2) is shown in Table 5.

(ii) The IVINSS (Ω1,S1)∓ (Ω2,S2) is given in Table 6.
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Table 5. Representation of clients with cognitive disorders in IVINSS

(Ω1,S1)± (Ω2,S2) form.

V IMC(q1) LM(q2) IC(q3)

v1 〈[0.15, 0.35], [0.50, 0.60], [0.30, 0.40]〉 〈[0.25, 0.35], [0.60, 0.70], [0.35, 0.55]〉 〈[0.25, 0.35], [0.60, 0.85], [0.50, 0.60]〉

v2 〈[0.35, 0.55], [0.40, 0.65], [0.15, 0.30]〉 〈[0.65, 0.75], [0.35, 0.55], [0.15, 0.25]〉 〈[0.55, 0.65], [0.50, 0.65], [0.15, 0.25]〉

v3 〈[0.55, 0.65], [0.40, 0.80], [0.20, 0.30]〉 〈[0.15, 0.35], [0.75, 0.85], [0.40, 0.50]〉 〈[0.15, 0.25], [0.45, 0.60], [0.35, 0.45]〉

Table 6. Shows clients with cognitive disorders in IVINSS (Ω1,S1)∓ (Ω2,S2) form.

U IMC(q1) LM(q2) IC(q3)

v1 〈[0.13, 0.34], [0.50, 0.60], [0.26, 0.37]〉 〈[0.24, 0.34], [0.60, 0.70], [0.34, 0.54]〉 〈[0.24, 0.34], [0.60, 0.85], [0.48, 0.58]〉

v2 〈[0.34, 0.54], [0.40, 0.65], [0.13, 0.26]〉 〈[0.64, 0.74], [0.35, 0.55], [0.13, 0.24]〉 〈[0.54, 0.64], [0.50, 0.65], [0.13, 0.24]〉

v3 〈[0.54, 0.64], [0.40, 0.80], [0.15, 0.26]〉 〈[0.13, 0.34], [0.75, 0.85], [0.37, 0.48]〉 〈[0.13, 0.24], [0.45, 0.60], [0.34, 0.44]〉

Proposition 5.3. Let (Ω1,S1) and (Ω2,S2) be non-empty over V. Then,

(i) (Ω1,S1)± (Ω2,S2) = (Ω2,S2)± (Ω1,S1);

(ii) [(Ω1,S1)
c ± (Ω2,S2)

c]c = (Ω1,S1)± (Ω1,S1).

Proof. (i) Proof straightforward.

(ii) Let

(Ω1,S1) =
{〈

v, [αΩ1(q)(v) + αΩ1(q)(v)], [βΩ1(q)
(v) + βΩ1(q)(v)], [γΩ1(q)

(v) + γΩ1(q)(v)]
〉

; q ∈ S1

}

,

and

(Ω2,S2) =
{〈

v, [αΩ2(q)(v) + αΩ2(q)(v)], [βΩ2(q)
(v) + βΩ2(q)(v)], [γΩ2(q)

(v) + γΩ2(q)(v)]
〉

; q ∈ S2

}

be two IVINSS.

Then, [(Ω1,S1)
c ± (Ω2,S2)

c]

=































































{〈

v, [γ
Ω1(q)

(v), γΩ1(q)(v)], [(1− βΩ1(q)(v)), (1− β
Ω1(q)

(v))],

[αΩ1(q)(v), αΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [γ
Ω2(q)

(v), γΩ2(q)(v)], [(1− βΩ2(q)(v)), (1− β
Ω2(q)

(v))],

[αΩ2(q)(v), αΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v,

[

γ
Ω1(q)

(v)+γ
Ω2(q)

(v)

2 ,
γΩ1(q)

(v)+γΩ2(q)
(v)

2

]

,

[

(1−β
Ω1(q)

(v))+(1−β
Ω2(q)

(v))

2 ,

(1−βΩ1(q)
(v))+(1−βΩ2(q)

(v)

2

]

,

[

αΩ1(q)
(v)+αΩ2(q)

(v)

2 ,
αΩ1(q)

(v)+αΩ2(q)
(v)

2

]〉

; if q ∈ S1 ∩ S2

}

.
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Now consider, [(Ω1,S1)
c ± (Ω2,S2)

c]c

=



































































{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [(1− βΩ1(q)(v)), (1− β
Ω1(q)

(v))],

[γ
Ω1(q)

(v), γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [(1− βΩ2(q)(v)), (1− β
Ω2(q)

(v))],

[γ
Ω2(q)

(v), γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v,

[

αΩ1(q)
(v)+αΩ2(q)

(v)

2 ,
αΩ1(q)

(v)+αΩ2(q)
(v)

2

][

(1−β
Ω1(q)

(v))+(1−β
Ω2(q)

(v))

2 ,

(1−βΩ1(q)
(v))+(1−βΩ2(q)

(v)

2

]

,

[

γ
Ω1(q)

(v)+γ
Ω2(q)

(v)

2 ,
γΩ1(q)

(v)+γΩ2(q)
(v)

2

]〉

; if q ∈ S1 ∩ S2

}

.

Hence [(Ω1,S1)
c ± (Ω2,S2)

c]c = (Ω1,S1)± (Ω2,S2).

Proposition 5.4. Let (Ω1,S1) and (Ω2,S2) be non-empty over V. Then,

(i) (Ω1,S1)∓ (Ω2,S2) = (Ω2,S2)∓ (Ω1,S1);

(ii) [(Ω1,S1)
c ∓ (Ω2,S2)

c]c = (Ω1,S1)∓ (Ω1,S1).

Proof. (i) Consider, (Ω1,S1)∓ (Ω2,S2)

=







































{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)], [γΩ1(q)

(v), γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [βΩ2(q)
(v), βΩ2(q)(v)], [γΩ2(q)

(v), γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,

{

〈

v,

[

2αΩ1(q)
(v).αΩ2(q)

(v)

αΩ1(q)
(v)+αΩ2(q)

(v) ,
2ᾱΩ1(q)

(v).αΩ2(q)
(v)

αΩ1(q)
(v)+αΩ2(q)

(v)

]

,

[

β
Ω1(q)

(v)+β
Ω2(q)

(v)

2 ,
βΩ1(q)

(v)+βΩ2(q)
(v)

2

]

,
[

2γ
Ω1(q)

(v).γ
Ω2(q)

(v)

γ
Ω1(q)

(v)+γ
Ω2(q)

(v) ,
2γ̄Ω1(q)

(v).γΩ2(q)
(v)

γΩ1(q)
(v)+γΩ2(q)

(v)

]〉

; if q ∈ S1 ∩ S2

}

.

=







































{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)], [γΩ1(q)

(v), γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [βΩ2(q)
(v), βΩ2(q)(v)], [γΩ2(q)

(v), γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,

{

〈

v,

[

2αΩ2(q)
(v).αΩ1(q)

(v)

αΩ2(q)
(v)+αΩ1(q)

(v) ,
2ᾱΩ2(q)

(v).αΩ1(q)
(v)

αΩ2(q)
(v)+αΩ1(q)

(v)

]

,

[

β
Ω2(q)

(v)+β
Ω1(q)

(v)

2 ,
βΩ2(q)

(v)+βΩ1(q)
(v)

2

]

,
[

2γ
Ω2(q)

(v).γ
Ω1(q)

(v)

γ
Ω2(q)

(v)+γ
Ω1(q)

(v) ,
2γ̄Ω2(q)

(v).γΩ1(q)
(v)

γΩ2(q)
(v)+γΩ1(q)

(v)

]〉

; if q ∈ S1 ∩ S2

}

.

Hence (Ω1,S1)∓ (Ω2,S2) = (Ω2,S2)∓ (Ω1,S1).

(ii) Consider, (Ω1,S1)
c ∓ (Ω2,S2)

c

=































































{〈

v, [γ
Ω1(q)

(v), γΩ1(q)(v)], [(1− βΩ1(q)(v)), (1− β
Ω1(q)

(v))],

[αΩ1(q)(v), αΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [γ
Ω2(q)

(v), γΩ2(q)(v)], [(1− βΩ2(q)(v)), (1− β
Ω2(q)

(v))],

[αΩ2(q)(v), αΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v,

[

2γ
Ω1(q)

(v).γ
Ω2(q)

(v)

γ
Ω1(q)

(v)+γ
Ω2(q)

(v) ,
2γ̄Ω1(q)

(v).γΩ2(q)
(v)

γΩ1(q)
(v)+γΩ2(q)

(v)

]

,

[

(1−β
Ω1(q)

(v))+(1−β
Ω2(q)

(v))

2 ,

(1−βΩ1(q)
(v))+(1−βΩ2(q)

(v)

2

]

,

[

2αΩ1(q)
(v).αΩ2(q)

(v)

αΩ1(q)
(v)+αΩ2(q)

(v) ,
2ᾱΩ1(q)

(v).αΩ2(q)
(v)

αΩ1(q)
(v)+αΩ2(q)

(v)

]〉

; if q ∈ S1 ∩ S2

}

.
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Then, [(Ω1,S1)
c ∓ (Ω2,S2)

c]c

=



































































{〈

v, [αΩ1(q)(v), αΩ1(q)(v)], [βΩ1(q)
(v), βΩ1(q)(v)],

[γ
Ω1(q)

(v), γΩ1(q)(v)]
〉

; if q ∈ S1 − S2

}

,
{〈

v, [αΩ2(q)(v), αΩ2(q)(v)], [βΩ2(q)
(v), βΩ2(q)(v)],

[γ
Ω2(q)

(v), γΩ2(q)(v)]
〉

; if q ∈ S2 − S1

}

,
{〈

v,

[

2αΩ1(q)
(v).αΩ2(q)

(v)

αΩ1(q)
(v)+αΩ2(q)

(v) ,
2ᾱΩ1(q)

(v).αΩ2(q)
(v)

αΩ1(q)
(v)+αΩ2(q)

(v)

]

,

[

(1−β
Ω1(q)

(v))+(1−β
Ω2(q)

(v))

2 ,

(1−βΩ1(q)
(v))+(1−βΩ2(q)

(v)

2

]

,

[

2γ
Ω1(q)

(v).γ
Ω2(q)

(v)

γ
Ω1(q)

(v)+γ
Ω2(q)

(v) ,
2γ̄Ω1(q)

(v).γΩ2(q)
(v)

γΩ1(q)
(v)+γΩ2(q)

(v)

]〉

; if q ∈ S1 ∩ S2

}

.

Hence [(Ω1,S1)
c ∓ (Ω2,S2)

c]c = (Ω1,S1)∓ (Ω2,S2).

6. Nǫ, Nǫ,ρ and Iǫ,ρ operators on IVINSS

In this section, we define the operators Nǫ, Nǫ,ρ and Iǫ,ρ on IVINSS and discuss some of

their properties in detail. We generalize these operations and properties on IVINSS by the

concepts discussed in [4].

Definition 6.1. Let ǫ ∈ [0, 1]. Then the operator Nǫ(Ω,S) is represented as,

Nǫ(Ω,S)

=
{〈

v, [αΩ(q)(v) + ǫ(1− αΩ(q)(v)− γ
Ω(q)

(v)), αΩ(q)(v) + ǫ(1− αΩ(q)(v)− γΩ(q)(v))],

[β
Ω(q)

(v), βΩ(q)(v)], [γΩ(q)(v) + (1− ǫ)(1− αΩ(q)(v)− γΩ(q)(v)),

γ
Ω(q)

(v) + (1− ǫ)(1− αΩ(q)(v)− γ
Ω(q)

(v))]
〉

; q ∈ S
}

.

=
{〈

v, [αΩ(q)(v) + ǫ(πΩ(q)(v)), αΩ(q)(v) + ǫ(πΩ(q)(v))],

[β
Ω(q)

(v), βΩ(q)(v)], [γΩ(q)(v) + (1− ǫ)(πΩ(q)(v)),

γ
Ω(q)

(v) + (1− ǫ)(πΩ(q)(v))]
〉

; q ∈ S
}

,

where πΩ(q)(v) = (1− αΩ(q)(v)− γ
Ω(q)

(v))and πΩ(q)(v) = (1− αΩ(q)(v)− γΩ(q)(v)).

Proposition 6.2. Let ǫ, ρ ∈ [0, 1] and ǫ ≤ ρ. Then for every IVINSS (Ω,S) the following

hold:

(i) Nǫ(Ω,S) ⋐ Nρ(Ω,S);

(ii) N0(Ω,S) = ⊕(Ω,S);

(iii) N1(Ω,S) = ⊖(Ω,S).
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Proof. (i) Nǫ(Ω,S)

=
{〈

v, [αΩ(q)(v) + ǫ(πΩ(q)(v)), αΩ(q)(v) + ǫ(πΩ(q)(v))], [βΩ(q)
(v), βΩ(q)(v)],

[γΩ(q)(v) + (1− ǫ)(πΩ(q)(v)), γΩ(q)
(v) + (1− ǫ)(πΩ(q)(v))]

〉

; q ∈ S
}

, and

Nρ(Ω,S)

=
{〈

v, [αΩ(q)(v) + ρ(πΩ(q)(v)), αΩ(q)(v) + ρ(πΩ(q)(v))], [βΩ(q)
(v), βΩ(q)(v)],

[γΩ(q)(v) + (1− ρ)(πΩ(q)(v)), γΩ(q)
(v) + (1− ρ)(πΩ(q)(v))]

〉

; q ∈ S
}

.

Since ǫ ≤ ρ, we have

(αΩ(q)(v) + ǫ(πΩ(q)(v)) ≤ (αΩ(q)(v) + ρ(πΩ(q)(v)).

Also, (1− ǫ) ≥ (1− ρ), we have

(γΩ(q)(v) + (1− ǫ)(πΩ(q)(v)) ≥ (γΩ(q)(v) + (1− ρ)(πΩ(q)(v)).

Hence Nǫ(Ω,S) ⋐ Nρ(Ω,S).

(ii) Consider, ǫ = 0

N0(Ω,S)

=
{〈

v, [αΩ(q)(v) + 0, αΩ(q)(v) + 0], [β
Ω(q)

(v), βΩ(q)(v)], [(γΩ(q)
(v) + 1.(πΩ(q)(v))),

(γΩ(q)(v) + 1.(πΩ(q)(v)))]
〉

; q ∈ S
}

=
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [(1− αΩ(q)(v)), (1− αΩ(q)(v))]

〉

; q ∈ S
}

= ⊕ (Ω,S).

Hence N0(Ω,S) = ⊕(Ω,S).

(iii) Consider, ǫ = 1

N1(Ω,S)

=
{〈

v, [(αΩ(q)(v) + πΩ(q)(v)), (αΩ(q)(v) + πΩ(q)(v))], [βΩ(q)
(v), βΩ(q)(v)],

[γ
Ω(q)

(v) + 0, γΩ(q)(v) + 0]
〉

; q ∈ S
}

=
{〈

v, [(1− γΩ(q)(v)), (1− γ
Ω(q)

(v))], [β
Ω(q)

(v), βΩ(q)(v)], [γΩ(q)
(v), γΩ(q)(v)]

〉

; q ∈ S
}

= ⊕ (Ω,S).

Hence N1(Ω,S) = ⊖(Ω,S).

Remark 6.3. The operator Nǫ is an extension of ⊕ and ⊖ operators.
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Definition 6.4. Let ǫ, ρ ∈ [0, 1] and ǫ + ρ ≤ 1. Then the operator Nǫ,ρ(Ω,S) is represented

as,

Nǫ,ρ(Ω,S)

=
{〈

v, [αΩ(q)(v) + ǫ(πΩ(q)(v)), αΩ(q)(v) + ǫ(πΩ(q)(v))],

[β
Ω(q)

(v), βΩ(q)(v)], [γΩ(q)
(v) + ρ(πΩ(q)(v)), γΩ(q)(v) + ρ(πΩ(q)(v)]

〉

; q ∈ S
}

,

where πΩ(q)(v) = (1− αΩ(q)(v)− γ
Ω(q)

(v))and πΩ(q)(v) = (1− αΩ(q)(v)− γΩ(q)(v)).

Theorem 6.5. Let ǫ, ρ, σ ∈ [0, 1] and ǫ+ ρ ≤ 1. Then for every IVINSS (Ω,S) the following

hold:

(i) Nǫ,ρ(Ω,S) is an IVINSS;

(ii) If 0 ≤ σ ≤ ǫ then Nσ,ρ(Ω,S) ⋐ Nǫ,ρ(Ω,S);

(iii) If 0 ≤ σ ≤ ρ then Nǫ,ρ(Ω,S) ⋐ Nǫ,σ(Ω,S);

(iv) Nǫ(Ω,S) = Nǫ,(1−ǫ)(Ω,S);

(v) ⊕(Ω,S) = N0,1(Ω,S);

(vi) ⊖(Ω,S) = N1,0(Ω,S);

(vii) (Nǫ,ρ(Ω,S)
c)c = (Nρ,ǫ(Ω,S)).

Proof. (i) Consider,

αΩ(q)(v) + ǫ(πΩ(q)(v))

2
+ βΩ(q)(v) +

γΩ(q)(v) + ρ(πΩ(q)(v))

2

=
αΩ(q)(v) + γΩ(q)(v)

2
+ βΩ(q)(v) + (ǫ+ ρ)

(πΩ(q)(v))

2

≤
αΩ(q)(v) + γΩ(q)(v)

2
+ βΩ(q)(v) +

(1− αΩ(q)(v)− γΩ(q)(v)

2

≤
1

2
+ 1 < 2, since ǫ+ ρ ≤ 1 and βΩ(q)(v) ≤ 1

Hence Nǫ,ρ(Ω,S) is an IVINSS.

(ii) Consider,

Nσ,ρ(Ω,S) =
{〈

v, [αΩ(q)(v) + σ(πΩ(q)(v)), αΩ(q)(v) + σ(πΩ(q)(v))], [βΩ(q)
(v), βΩ(q)(v)],

[γ
Ω(q)

(v) + ρ(πΩ(q)(v)), γΩ(q)(v) + ρ(πΩ(q)(v)]
〉

; q ∈ S
}

Nǫ,ρ(Ω,S) =
{〈

v, [αΩ(q)(v) + ǫ(πΩ(q)(v)), αΩ(q)(v) + ǫ(πΩ(q)(v))], [βΩ(q)
(v), βΩ(q)(v)],

[γ
Ω(q)

(v) + ρ(πΩ(q)(v)), γΩ(q)(v) + ρ(πΩ(q)(v)]
〉

; q ∈ S
}

Now, αΩ(q)(v) + σ(πΩ(q)(v)) ≤ αΩ(q)(v) + ǫ(πΩ(q)(v)), since σ ≤ ǫ

Similarly, αΩ(q)(v) + σ(πΩ(q)(v)) ≤ αΩ(q)(v) + ǫ(πΩ(q)(v)).

Hence Nσ,ρ(Ω,S) ⋐ Nǫ,ρ(Ω,S).

(iii) Similar to proof (ii).
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(iv) Consider,

Nǫ,1−ǫ(Ω,S) =
{〈

v, [αΩ(q)(v) + ǫ(πΩ(q)(v)), αΩ(q)(v) + ǫ(πΩ(q)(v))], [βΩ(q)
(v), βΩ(q)(v)],

[γ
Ω(q)

(v) + (1− ǫ)(πΩ(q)(v)), γΩ(q)(v) + (1− ǫ)(πΩ(q)(v)]
〉

; q ∈ S
}

=Nǫ(Ω,S).

Hence Nǫ(Ω,S) = Nǫ,(1−ǫ)(Ω,S).

(v) Let ǫ = 0 and ρ = 1,

N0,1(Ω,S) =
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [γΩ(q)

(v) + πΩ(q)(v),

γΩ(q)(v) + πΩ(q)(v)]
〉

; q ∈ S
}

=
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [(1− αΩ(q)(v)),

(1− αΩ(q)(v)]
〉

; q ∈ S
}

=⊕ (Ω,S).

Hence ⊕(Ω,S) = N0,1(Ω,S).

(vi)Let α = 1 and β = 0,

N1,0(Ω,S) =
{〈

v, [αΩ(q)(v) + πΩ(q)(v), αΩ(q)(v) + πΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[γ
Ω(q)

(v), γΩ(q)(v)]
〉

; q ∈ S
}

=
{〈

v, [(1− γΩ(q)(v)), (1− γ
Ω(q)

(v))], [β
Ω(q)

(v), βΩ(q)(v)], [γΩ(q)
(v),

γΩ(q)(v)]
〉

; q ∈ S
}

=⊖ (Ω,S).

Hence ⊖(Ω,S) = N1,0(Ω,S).

(vii) Consider,

Nǫ,ρ(Ω,S)
c =

{〈

v, [γ
Ω(q)

(v) + ǫ(πΩ(q)(v)), γΩ(q)(v) + ǫ(πΩ(q)(v))],

[β
Ω(q)

(v), βΩ(q)(v)], [αΩ(q)(v) + ρ(πΩ(q)(v)), αΩ(q)(v) + ρ(πΩ(q)(v)]
〉

; q ∈ S
}

(Nǫ,ρ(Ω,S)
c)c =

{〈

v, [αΩ(q)(v) + ρ(πΩ(q)(v)), αΩ(q)(v) + ρ(πΩ(q)(v)],

[β
Ω(q)

(v), βΩ(q)(v)], [γΩ(q)
(v) + ǫ(πΩ(q)(v)), γΩ(q)(v) + ǫ(πΩ(q)(v))]

〉

; q ∈ S
}

=(Nρ,ǫ(Ω,S)).

Hence (Nǫ,ρ(Ω,S)
c)c = (Nρ,ǫ(Ω,S)).

Remark 6.6. If ǫ+ ρ = 1, then Nǫ,ρ(Ω,S) = Nǫ(Ω,S).

Definition 6.7. Let ǫ, ρ ∈ [0, 1] and ǫ+ ρ ≤ 1. Then the operator Iǫ,ρ(Ω,S) is represented as,

Iǫ,ρ(Ω,S) =
{〈

v, [ǫ.αΩ(q)(v), ǫ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [ρ.γΩ(q)

(v), ρ.γΩ(q)(v)]
〉

; q ∈ S
}
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Theorem 6.8. Let ǫ, ρ, γ ∈ [0, 1]. Then for every IVINSS (Ω,S) the following hold:

(i) Iǫ,ρ(Ω,S) is an IVINSS;

(ii) If ǫ ≤ σ then Iǫ,ρ(Ω,S) ⋐ Iσ,ρ(Ω,S);

(iii) If ρ ≤ σ then Iǫ,ρ(Ω,S) ⊃ Iǫ,σ(Ω,S);

(iv) If δ ∈ [0, 1] then Iǫ,ρ(Iσ,δ(Ω,S)) = Iǫσ,ρδ(Ω,S) = Iσ,δ(Iǫ,ρ(Ω,S));

(v)(Iǫ,ρ(Ω,S)
c)c = (Iρ,ǫ(Ω,S)).

Proof. (i) Proof straightforward.

(ii) Consider,

Iǫ,ρ(Ω,S) =
{〈

v, [ǫ.αΩ(q)(v), ǫ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [ρ.γΩ(q)

(v), ρ.γΩ(q)(v)]
〉

; q ∈ S
}

,

Iσ,ρ(Ω,S) =
{〈

v, [σ.αΩ(q)(v), σ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [ρ.γΩ(q)

(v), ρ.γΩ(q)(v)]
〉

; q ∈ S
}

.

Since ǫ ≤ σ, ǫ.αΩ(q)(v) ≤ σ.αΩ(q)(v) and ǫ.αΩ(q)(v) ≤ σ.αΩ(q)(v).

Hence Iǫ,ρ(Ω,S) ⋐ Iσ,ρ(Ω,S).

(iii) Consider,

Iǫ,ρ(Ω,S) =
{〈

v, [ǫ.αΩ(q)(v), ǫ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [ρ.γΩ(q)

(v), ρ.γΩ(q)(v)]
〉

; q ∈ S
}

,

Iǫ,σ(Ω,S) =
{〈

v, [ǫ.αΩ(q)(v), ǫ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [σ.γΩ(q)

(v), σ.γΩ(q)(v)]
〉

; q ∈ S
}

.

Since, ρ ≤ σ, ρ.γ
Ω(q)

(v) ≤ σ.γ
Ω(q)

(v) and ρ.γΩ(q)(v) ≤ σ.γΩ(q)(v).

Hence Iǫ,ρ(Ω,S) ⊃ Iǫ,ρ(Ω,S).

(iv) Consider,

Iǫ,ρ(Iσ,δ(Ω,S)) =
{〈

v, [ǫσ.αΩ(q)(v), ǫσ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[ρδ.γ
Ω(q)

(v), ρδ.γΩ(q)(v)]
〉

; q ∈ S
}

,

=Iǫσ,ρδ(Ω,S).

Iσ,δ(Iǫ,ρ(Ω,S)) =
{〈

v, [σǫ.αΩ(q)(v), σǫ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[δρ.γ
Ω(q)

(v), δρ.γΩ(q)(v)]
〉

; q ∈ S
}

,

=
{〈

v, [ǫσ.αΩ(q)(v), ǫσ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[ρδ.γ
Ω(q)

(v), ρδ.γΩ(q)(v)]
〉

; q ∈ S
}

,

=Iǫσ,ρδ(Ω,S)).
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Hence Iǫ,ρ(Iσ,δ(Ω,S)) = Iǫσ,ρδ(Ω,S) = Iσ,δ(Iǫ,ρ(Ω,S)).

(v) Consider,

(Ω,S)c =
{〈

v, [γ
Ω(q)

(v), γΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [αΩ(q)(v), αΩ(q)(v)]

〉

; q ∈ S
}

,

Iǫ,ρ(Ω,S)
c =

{〈

v, [ǫ.γ
Ω(q)

(v), ǫ.γΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [ρ.αΩ(q)(v), ρ.αΩ(q)(v)]

〉

; q ∈ S
}

,

(Iǫ,ρ(Ω,S)
c)c =

{〈

v, [ρ.αΩ(q)(v), ρ.αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [ǫ.γΩ(q)

(v), ǫ.γΩ(q)(v)]
〉

; q ∈ S
}

,

=Iρ,ǫ(Ω,S).

Hence (Iǫ,ρ(Ω,S)
c)c = Iρ,ǫ(Ω,S).

7. Concentration (CO) and dilation (DO) operators on IVINSS

We provide the definition of (CO) and (DO) on IVINSS and discuss their properties in

detail. We generalize these operations and properties on IVINSS by the concepts discussed

in [32], [18] and [2].

Definition 7.1. Let (Ω,S) be an IVINSS over V . Then,

(i) the CO of (Ω,S) is represented as,

C(Ω,S) =
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[1− (1− γ
Ω(q)

(v))2, 1− (1− γΩ(q)(v))
2]
〉

; q ∈ S
}

;

(ii) the DO of (Ω,S) is represented as,

D(Ω,S) =
{〈

v, [(αΩ(q)(v))
1
2 , (αΩ(q)(v))

1
2 ], [β

Ω(q)
(v), βΩ(q)(v)],

[1− (1− γ
Ω(q)

(v))
1
4 , 1− (1− γΩ(q)(v))

1
4 ]
〉

; q ∈ S
}

;

Proposition 7.2. Let V denote a non-empty set and (Ω,S) be an IVINSS over V.

(i) If [πΩ(q)(v), πΩ(q)(v)] = [0,0], then [πCΩ(q)(v), πCΩ(q)(v)] = [0,0] iff [αΩ(q)(v), αΩ(q)(v)] =

[0,0] or [αΩ(q)(v), αΩ(q)(v)] = [1,1] ;

(ii) ⊕[C(Ω,S)] = C[⊕(Ω,S)] iff [αΩ(q)(v), αΩ(q)(v)] = [0,0] or [αΩ(q)(v), αΩ(q)(v)] = [1,1] ;

(iii) ⊖[C(Ω,S)] = C[⊖(Ω,S)] iff [γ
Ω(q)

(v), γΩ(q)(v)] = [0,0] or [γ
Ω(q)

(v), γΩ(q)(v)] = [1,1] .

Proof. (i) If [πΩ(q)(v), πΩ(q)(v)] = [0,0]

⇒ 1− αΩ(q)(v)− γ
Ω(q)

(v) = 0 and 1− αΩ(q)(v)− γΩ(q)(v) = 0
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⇒ αΩ(q)(v) + γ
Ω(q)

(v) = 1 and αΩ(q)(v) + γΩ(q)(v) = 1

C(Ω,S) =
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[1− (1− γ
Ω(q)

(v))2, 1− (1− γΩ(q)(v))
2]
〉

; q ∈ S
}

.

=
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)],

[1− (αΩ(q)(v))
2, 1− (αΩ(q)(v))

2]
〉

; q ∈ S
}

.

If πCΩ(q)(v) = 0 ⇔ 1− αΩ(q)(v)− (1− (αΩ(q)(v))
2) = 0.

Then αΩ(q)(v)(αΩ(q)(v)− 1) = 0 ⇔ αΩ(q)(v) = 0 or αΩ(q)(v) = 1.

Similarly, αΩ(q)(v) = 0 or αΩ(q)(v) = 1.

(ii) We know that, ⊕[C(Ω,S)]

=
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [(1− αΩ(q)(v)), (1− αΩ(q)(v))]

〉

; q ∈ S
}

(1)

Also,

C[⊕(Ω,S)]

=
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [1− (1− (1− αΩ(q)(v)))

2,

1− (1− (1− αΩ(q)(v)))
2]
〉

; q ∈ S
}

=
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [1− (αΩ(q)(v))

2, 1− (αΩ(q)(v))
2]
〉

; q ∈ S
}

.

(2)

From (1) and (2), we conclude that

⊕[C(Ω,S)] = C[⊕(Ω,S)] ⇔ 1− αΩ(q)(v) = 1− (αΩ(q)(v))
2

⇔ αΩ(q)(v)(αΩ(q)(v)− 1) = 0

⇔ αΩ(q)(v) = 0 or αΩ(q)(v) = 1.

Similarly, αΩ(q)(v) = 0 or αΩ(q)(v) = 1 .

(iii) Proof is similar to (ii).

Proposition 7.3. Let V denote a non-empty set and (Ω,S) be an IVINSS over V.

(i) If [πΩ(q)(v), πΩ(q)(v)] = [0,0], then [πDΩ(q)(v), πCΩ(q)(v)] = [0,0] iff [αΩ(q)(v), αΩ(q)(v)] =

[0,0] or [αΩ(q)(v), αΩ(q)(v)] = [1,1] ;

(ii) ⊕[D(Ω,S)] = D[⊕(Ω,S)] iff [αΩ(q)(v), αΩ(q)(v)] = [0,0] or [αΩ(q)(v), αΩ(q)(v)] = [1,1] ;

(iii) ⊖[D(Ω,S)] = D[⊖(Ω,S)] iff [γ
Ω(q)

(v), γΩ(q)(v)] = [0,0] or [γ
Ω(q)

(v), γΩ(q)(v)] = [1,1] .

Proof. (i) If [πΩ(q)(v), πΩ(q)(v)] = [0,0]

⇒ 1− αΩ(q)(v)− γ
Ω(q)

(v) = 0 and 1− αΩ(q)(v)− γΩ(q)(v) = 0
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⇒ αΩ(q)(v) + γ
Ω(q)

(v) = 1 and αΩ(q)(v) + γΩ(q)(v) = 1

D(Ω,S) =
{〈

v, [(αΩ(q)(v))
1
2 , (αΩ(q)(v))

1
2 ], [β

Ω(q)
(v), βΩ(q)(v)],

[1− (1− γ
Ω(q)

(v))
1
4 , 1− (1− γΩ(q)(v))

1
4 ]
〉

; q ∈ S
}

=
{〈

v, [(αΩ(q)(v))
1
2 , (αΩ(q)(v))

1
2 ], [β

Ω(q)
(v), βΩ(q)(v)],

[1− (αΩ(q)(v))
1
4 , 1− (αΩ(q)(v))

1
4 ]
〉

; q ∈ S
}

.

If πDΩ(q)(v) = 0 ⇔ 1− (αΩ(q)(v))
1
2 − 1 + (αΩ(q)(v))

1
4 = 0 ⇔ (αΩ(q)(v))

1
4 = (αΩ(q)(v))

1
2 .

Then αΩ(q)(v)(αΩ(q)(v)− 1) = 0 ⇔ αΩ(q)(v) = 0 or αΩ(q)(v) = 1.

Similarly, αΩ(q)(v)= 0 or αΩ(q)(v) = 1.

(ii) We know that,

⊕[D(Ω,S)] =
{〈

v, [(αΩ(q)(v))
1
2 , (αΩ(q)(v))

1
2 ], [β

Ω(q)
(v), βΩ(q)(v)],

[1− (αΩ(q)(v))
1
2 , 1− (αΩ(q)(v))

1
2 ]
〉

; q ∈ S
}

.
(3)

Also,

D[⊕(Ω,S)] =
{〈

v, [(αΩ(q)(v))
1
2 , (αΩ(q)(v))

1
2 ], [β

Ω(q)
(v), βΩ(q)(v)],

[1− (1− (1− αΩ(q)(v)))
1
4 , 1− (1− (1− αΩ(q)(v)))

1
4
〉

; q ∈ S
}

=
{〈

v, [(αΩ(q)(v))
1
2 , (αΩ(q)(v))

1
2 ], [β

Ω(q)
(v), βΩ(q)(v)],

[1− (αΩ(q)(v))
1
4 , 1− (αΩ(q)(v))

1
4 ]
〉

; q ∈ S
}

.

(4)

From (3) and (4), we conclude that

⊕[D(Ω,S)] = D[⊕(Ω,S)] ⇔ 1− (αΩ(q)(v))
1
2 = 1− (αΩ(q)(v))

1
4 .

⇔ αΩ(q)(v)(1− αΩ(q)(v)) = 0.

⇔ αΩ(q)(v) = 0 or αΩ(q)(v) = 1.

Similarly, αΩ(q)(v) = 0 or αΩ(q)(v) = 1.

(iii) Proof is similar to (ii).

Proposition 7.4. For any IVINSS (Ω,S), C(Ω,S) ⋐ (Ω,S) ⋐ D(Ω,S).

Proof. Consider,

(Ω,S) =
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [γΩ(q)

(v), γΩ(q)(v)]
〉

; q ∈ S
}

.

C(Ω,S) =
{〈

v, [αΩ(q)(v), αΩ(q)(v)], [βΩ(q)
(v), βΩ(q)(v)], [1− (1− γ

Ω(q)
(v))2,

1− (1− γΩ(q)(v))
2]
〉

; q ∈ S
}

;
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Since, γ
Ω(q)

(v), γΩ(q)(v) ∈ [0, 1], (1− (1− γ
Ω(q)

(v))2) ≥ γ
Ω(q)

(v)and

(1− (1− γΩ(q)(v))
2) ≥ γΩ(q)(v).

Hence C(Ω,S) ⋐ (Ω,S). (5)

D(Ω,S) =
{〈

v, [(αΩ(q)(v))
1
2 , (αΩ(q)(v))

1
2 ], [β

Ω(q)
(v), βΩ(q)(v)],

[1− (1− γ
Ω(q)

(v))
1
4 , 1− (1− γΩ(q)(v))

1
4 ]
〉

; q ∈ S
}

.

Since, αΩ(q)(v), αΩ(q)(v), γΩ(q)
(v), γΩ(q)(v) ∈ [0, 1],

αΩ(q)(v) ≤ (αΩ(q)(v))
1
2 , αΩ(q)(v) ≤ (αΩ(q)(v))

1
2 , γ

Ω(q)
(v) ≥ (1− (1− γ

Ω(q)
(v))

1
4 ) and

γΩ(q)(v) ≥ (1− (1− γΩ(q)(v))
1
4 ).

Hence (Ω,S) ⋐ D(Ω,S). (6)

From (5) and (6), we get C(Ω,S) ⋐ (Ω,S) ⋐ D(Ω,S).

8. Similarity measures between IVINSS

We provide a new similarity measure (SM) between IVINSS and explain its use with an

application. We illustrate the working model with an algorithm and examples. Also, we bring

out the importance of the proposed SM by comparing with existing SMs.

Definition 8.1. Let V = {v1, v2, ..., vn} represent the universe and S = {q1, q2, ....qm} rep-

resent the parameters. Then the SM between IVINSSs (Ω1,S) and (Ω2,S) is represented

as,

SM 〈(Ω1,S), (Ω2,S)〉

= 1−
1

4m

m
∑

i=1

n
∑

j=1

[

|αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|

2 + αΩ1(qi)
(vj) + αΩ2(qi)

(vj)
+

|αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|

2 + αΩ1(qi)
(vj) + αΩ2(qi)

(vj)
+

|β
Ω1(qi)

(vj)− β
Ω2(qi)

(vj)|

2 + β
Ω1(qi)

(vj) + β
Ω2(qi)

(vj)
+

|βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|

2 + βΩ1(qi)
(vj) + βΩ2(qi)

(vj)
+

|γ
Ω1(qi)

(vj)− γ
Ω2(qi)

(vj)|

2 + γ
Ω1(qi)

(vj) + γ
Ω2(qi)

(vj)
+

|γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|

2 + γΩ1(qi)
(vj) + γΩ2(qi)

(vj)
+

∣

∣

∣

∣

(αΩ1(qi)
(vj)− γ

Ω1(qi)
(vj))

2
−

(αΩ2(qi)
(vj)− γ

Ω2(qi)
(vj))

2

∣

∣

∣

∣

+

∣

∣

∣

∣

(αΩ1(qi)
(vj)− γΩ1(qi)

(vj))

2
−

(αΩ2(qi)
(vj)− γΩ2(qi)

(vj))

2

∣

∣

∣

∣

]

.

8.1. Comparison analysis with existing SMs

In this section, we analyze some existing SMs on IVINSS. DMs apply SM to identify the

most similar pattern between the precise and imprecise values. The framework of existing

measures are given below.
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(i) SY (Ω1,Ω2) [11]

= 1−
1

n

n
∑

i=1

wj

[

|αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|+ |αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|+ |β
Ω1(qi)

(vj)− β
Ω2(qi)

(vj)|

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|+ |γ
Ω1(qi)

(vj)− γ
Ω2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|

]

.

(ii) SC(Ω1,Ω2) [11]

= 1−
1

n

n
∑

i=1

(α̃Ω1(qi)
(vj))(α̃Ω2(qi)

(vj)) + (β̃Ω1(qi)
(vj))(β̃Ω2(qi)

(vj)) + (γ̃Ω1(qi)
(vj))(γ̃Ω1(qi)

(vj))

(
√

(α̃Ω1(qi)
(vj))2 + (β̃Ω1(qi)

(vj))2 + (γ̃Ω1(qi)
(vj))2)(

√

(α̃Ω2(qi)
(vj))2 + (β̃Ω2(qi)

(vj))2 + (γ̃Ω2(qi)
(vj))2)

,

where α̃Ω1(qi)
(vj) = αΩ1(qi)

(vj) + αΩ1(qi)
(vj), α̃Ω2(qi)

(vj) = αΩ2(qi)
(vj) + αΩ2(qi)

(vj),

β̃Ω1(qi)
(vj) = β

Ω1(qi)
(vj) + βΩ1(qi)

(vj), β̃Ω2(qi)
(vj) = β

Ω2(qi)
(vj) + βΩ2(qi)

(vj),

γ̃Ω1(qi)
(vj) = γ

Ω1(qi)
(vj) + γΩ1(qi)

(vj) and γ̃Ω2(qi)
(vj) = γ

Ω2(qi)
(vj) + γΩ2(qi)

(vj).

(iii) ST (Ω1,Ω2) [12]

=

n
∑

i=1

(min(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +min(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +min(β
Ω1(qi)

(vj), βΩ2(qi)
(vj))

+min(βΩ1(qi)
(vj), βΩ2(qi)

(vj)) +min(γ
Ω1(qi)

(vj), γΩ2(qi)
(vj)) +min(γΩ1(qi)

(vj), γΩ2(qi)
(vj))

)

n
∑

i=1

(max(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +max(αΩ1(qi)
(vj), αΩ2(qi)

(vj)) +max(β
Ω1(qi)

(vj), βΩ2(qi)
(vj))

+max(βΩ1(qi)
(vj), βΩ2(qi)

(vj)) +max(γ
Ω1(qi)

(vj), γΩ2(qi)
(vj)) +max(γΩ1(qi)

(vj), γΩ2(qi)
(vj))

)

,

(iv) SH(Ω1,Ω2) [12]

=
1

6

n
∑

i=1

wj

[

|αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|+ |αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|+ |β
Ω1(qi)

(vj)− β
Ω2(qi)

(vj)|

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|+ |γ
Ω1(qi)

(vj)− γ
Ω2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|

]

.

(v) SE(Ω1,Ω2) [12]

=

( n
∑

i=1

wj

[

|αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|
2 + |αΩ1(qi)

(vj)− αΩ2(qi)
(vj)|

2 + |β
Ω1(qi)

(vj)− β
Ω2(qi)

(vj)|
2

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|
2 + |γ

Ω1(qi)
(vj)− γ

Ω2(qi)
(vj)|

2 + |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|
2

]) 1

2

.

(vi) SC1
(Ω1,Ω2) [34]

=
1

n

n
∑

i=1

Cos

[

π

12

(

|αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|+ |αΩ1(qi)
(vj)− αΩ2(qi)

(vj)|+ |β
Ω1(qi)

(vj)− β
Ω2(qi)

(vj)|

+ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)|+ |γ
Ω1(qi)

(vj)− γ
Ω2(qi)

(vj)|+ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|

)]

.

(vii) SC2
(Ω1,Ω2) [34]

=
1

n

n
∑

i=1

Cos

[

π

4

(

|αΩ1(qi)
(vj)− αΩ2(qi)

(vj)| ∨ |β
Ω1(qi)

(vj)− β
Ω2(qi)

(vj)| ∨ |γ
Ω1(qi)

(vj)− γ
Ω2(qi)

(vj)|

+ |αΩ1(qi)
(vj)− αΩ2(qi)

(vj)| ∨ |βΩ1(qi)
(vj)− βΩ2(qi)

(vj)| ∨ |γΩ1(qi)
(vj)− γΩ2(qi)

(vj)|

)]

.

Example 8.2. Consider the following values, as in Table 7. Table 8 shows the superiority

of the proposed SM than the existing SMs. It illustrates that the proposed SM can identify

similar patterns (refer third column) even when the existing SMs have some limitations (refer

first column). For computation purpose, let us consider wj=1 for SY (Ω1,Ω2) and SH(Ω1,Ω2).

V. Chinnadurai and A. Bobin, Interval Valued Intuitionistic Neutrosophic Soft Set and its
Application

Neutrosophic Sets and Systems, Vol. 41, 2021



240

Table 7. Shows precise and imprecise values.

Precise value Imprecise values

Ω = 〈[0.20, 0.30], [0.50, 0.60], [0.30, 0.50]〉 Ω1 = 〈[0.60, 0.70], [0.50, 0.60], [0.10, 0.20]〉,

Ω2 = 〈[0.50, 0.60], [0.40, 0.50], [0.10, 0.20]〉.

Ω = 〈[0.60, 0.70], [0.70, 0.80], [0.20, 0.30]〉 Ω1 = 〈[0.50, 0.60], [0.30, 0.60], [0.10, 0.20]〉,

Ω2 = 〈[0.60, 0.70], [0.40, 0.50], [0.20, 0.30]〉.

Ω = 〈[0.40, 0.50], [0.80, 0.90], [0.30, 0.40]〉 Ω1 = 〈[0.50, 0.60], [0.50, 0.60], [0.20, 0.30]〉,

Ω2 = 〈[0.30, 0.40], [0.40, 0.50], [0.30, [0.40]〉.

Ω = 〈[0.69, 0.75], [0.75, 0.85], [0.15, 0.25]〉 Ω1 = 〈[0.55, 0.65], [0.55, 0.66], [0.21, 0.29]〉,

Ω2 = 〈[0.58, 0.69], [0.57, 0.68], [0.22, 0.29]〉.

Ω = 〈[0.69, 0.75], [0.75, 0.85], [0.15, 0.25]〉 Ω1 = 〈[0.55, 0.65], [0.54, 0.66], [0.21, 0.29]〉,

Ω2 = 〈[0.58, 0.69], [0.46, 0.68], [0.22, 0.29]〉.

Ω = 〈[0.20, 0.30], [0.50, 0.60], [0.30, 0.50]〉 Ω1 = 〈[0.40, 0.50], [0.40, 0.50], [0.10, 0.20]〉,

Ω2 = 〈[0.50, 0.60], [0.50, 0.60], [0.20, 0.30]〉.

Table 8. Analysis of existing SMs.

Existing SMs Proposed SMs Similar pattern

SY (Ω,Ω1) = SY (Ω,Ω2) = 0.7833, SM (Ω,Ω1) = 0.7198, SM (Ω,Ω2) = 0.7435

SH(Ω,Ω1) = SH(Ω,Ω2) = 0.2166, SM (Ω,Ω2) > SM (Ω,Ω1) ⇒ Ω2 Ω2

SC1
(Ω,Ω1) = SC1

(Ω,Ω2) = 0.9426.

SC2
(Ω,Ω1) = SC2

(Ω,Ω2) = 0.9877 SM (Ω,Ω1) = 0.9154, SM (Ω,Ω2) = 0.9530

SM (Ω,Ω2) > SM (Ω,Ω1) ⇒ Ω2 Ω2

SY (Ω,Ω1) = SY (Ω,Ω2) = 0.8333, SM (Ω,Ω1) = 0.8698, SM (Ω,Ω2) = 0.8964

SH(Ω,Ω1) = SH(Ω,Ω2) = 0.1666, SM (Ω,Ω2) > SM (Ω,Ω1) ⇒ Ω2 Ω2

SC1
(Ω,Ω1) = SC1

(Ω,Ω2) = 0.9659.

SC(Ω,Ω1) = SC(Ω,Ω2) = 0.9937 SM (Ω,Ω1) = 0.9003, SM (Ω,Ω2) = 0.8702

SM (Ω,Ω1) > SM (Ω,Ω2) ⇒ Ω1 Ω1

ST (Ω,Ω1) = ST (Ω,Ω2) = 0.800 SM (Ω,Ω1) = 0.8995, SM (Ω,Ω2) = 0.8611

SM (Ω,Ω1) > SM (Ω,Ω2) ⇒ Ω1 Ω1

SE(Ω,Ω1) = SE(Ω,Ω2) = 0.1957 SM (Ω,Ω1) = 0.7851, SM (Ω,Ω2) = 0.8060

SM (Ω,Ω2) > SM (Ω,Ω1) ⇒ Ω2 Ω2

Theorem 8.3. Let (Ω1,S) and (Ω2,S) be two IVINSS over V. Then,

(i) 0 ≤ SM ((Ω1,S), (Ω2,S)) ≤ 1;

(ii) SM ((Ω1,S), (Ω2,S)) = SM ((Ω2,S), (Ω1,S));

(iii) SM ((Ω1,S), (Ω2,S)) = 1 iff (Ω1,S) = (Ω2,S).

Proof. Proof straightforward
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8.2. Diagnosing psychiatric disorder for people with COVID-19

In this section, we present an application on diagnosing psychiatric disorder for people with

COVID-19 using IVINSS. Let us consider the SM between two IVINSS over different universes

with the same set of parameters. We use this to analyze the psychiatric disorder problem. We

have proposed an algorithm and illustrated the technique with a suitable example.

8.3. Description of the problem

Let V = {v1, v2, ..., vn} represent universe and S = {q1, q2, ..., qm} represent the parameters.

Also, let the precise values (Ω,S) describe the elements of the universe in IVINSS form given

by the psychiatrist for each stage. Let the psychiatrist define the norms to identify the levels

(low or moderate or high) associated with psychiatric disorder as in Table 10. Let (Ωi,S),

(i = 1, 2, ..., t) denote the imprecise values. Each (Ωi,S) is in IVINSS form representing the

alternatives based on the observations on the subject by the psychiatrist made in relation to

each element of the universe and for each element of the parameter set. Now the problem is

to identify the level associated with (Ωi,S) to the precise information (Ω,S).

8.4. A new method to diagnose psychiatric disorder

Let’s assume that (Ω,S) and (Ωi,S) represent the precise and imprecise values, respectively

in IVINSS form. By using Definition 7.1, the psychiatrist identifies the SM value associated

with (Ωi,S) (i = 1, 2, ..., t) to the precise information (Ω,S). Now, the psychiatrist compares

the obtained SM value with the norms (Table 10) and interprets on the level of psychiatric

disorder for each subject.

8.5. Algorithm for diagnosing psychiatric disorder

An algorithm is given below for diagnosing psychiatric disorder based on SM between

IVINSS.

Step 1: Construct the precise values (Ω,S) and the norms based on the evaluation of

psychiatrist for diagnosing psychiatric disorder.

Step 2: Construct the imprecise values (Ωi,S), (i = 1, 2, ..., t) by observing the behavior of the

subjects.

Step 3: Compute the SM between (Ω,S) and (Ωi,S).

Step 4: Compare the calculated SM value between (Ω,S) and (Ωi,S) with the norms.

Step 5: Identify the level associated with each subject to diagnose the psychiatric disorder.

Example 8.4. Let V = {o1, o2, o3} represent the sessions conducted by a psychiatrist. Let

C1, C2 and C3 represent the subjects and S = {q1, q2, q3, q4, q5} represent the parameters, q1 =
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feeling sad or low, q2 = confused thinking, q3 = extreme mood changes, q4 = excessive fears or

worries and q5 = sleeping problems. The psychiatrist has to diagnose the psychiatric disorder

based on the norms associated with each subject.

Step 1. Construct the precise values (Ω,S) as in Table 9 and the norms as in Table 10

based on the evaluation of psychiatrist for diagnosing psychiatric disorder.

Table 9. Representation of precise values (Ω,S) in IVINSS form for each session.

V o1 o2 o3

q1 〈[0.6, 0.7], [0.7, 0.8], [0.1, 0.2]〉 〈[0.7, 0.8], [0.7, 0.8], [0.1, 0.2]〉 〈[0.6, 0.7], [0.8, 0.9], [0.1, 0.2]〉

q2 〈[0.5, 0.6], [0.8, 0.9], [0.2, 0.3]〉 〈[0.7, 0.8], [0.8, 0.9], [0.1, 0.2]〉 〈[0.5, 0.6], [0.9, 1.0], [0.2, 0.3]〉

q3 〈[0.4, 0.5], [0.7, 0.8], [0.3, 0.4]〉 〈[0.2, 0.3], [0.9, 1.0], [0.4, 0.5]〉 〈[0.4, 0.5], [0.8, 0.9], [0.4, 0.5]〉

q4 〈[0.3, 0.4], [0.6, 0.7], [0.4, 0.5]〉 〈[0.4, 0.5], [0.7, 0.8], [0.3, 0.4]〉 〈[0.6, 0.7], [0.8, 0.9], [0.1, 0.2]〉

q5 〈[0.2, 0.3], [0.5, 0.6], [0.4, 0.5]〉 〈[0.5, 0.6], [0.7, 0.8], [0.1, 0.2]〉 〈[0.4, 0.5], [0.9, 1.0], [0.1, 0.3]〉

Table 10. Norms for NPD.

Range of SM values Levels of psychiatric disorder

0.00 ≤ SM 〈(Ω,S), (Ωi,S)〉 < 0.40 Low

0.40 ≤ SM 〈(Ω,S), (Ωi,S)〉 < 0.75 Moderate

0.75 ≤ SM 〈(Ω,S), (Ωi,S)〉 ≤ 1.00 High

Step 2. Now construct the imprecise values (Ωi,S), (i = 1, 2, ..., t) by observing the behav-

ior of the subjects C1, C2 and C3 respectively, as in Table 11, 12 and 13.

Table 11. Representation of imprecise values (Ω1,S) for the first subject in

SINSS form for each session.

V o1 o2 o3

q1 〈[0.8, 0.9], [0.7, 0.8], [0.0, 0.1]〉 〈[0.2, 0.3], [0.4, 0.5], [0.1, 0.2]〉 〈[0.1, 0.2], [0.7, 0.8], [0.1, 0.2]〉

q2 〈[0.7, 0.8], [0.6, 0.7], [0.1, 0.2]〉 〈[0.1, 0.2], [0.3, 0.4], [0.2, 0.3]〉 〈[0.2, 0.3], [0.8, 0.9], [0.1, 0.2]〉

q3 〈[0.6, 0.7], [0.8, 0.9], [0.2, 0.3]〉 〈[0.3, 0.4], [0.5, 0.6], [0.3, 0.4]〉 〈[0.3, 0.4], [0.9, 1.0], [0.4, 0.5]〉

q4 〈[0.6, 0.7], [0.7, 0.8], [0.1, 0.2]〉 〈[0.2, 0.4], [0.2, 0.3], [0.4, 0.5]〉 〈[0.2, 0.3], [0.9, 1.0], [0.2, 0.3]〉

q5 〈[0.6, 0.7], [0.9, 1.0], [0.2, 0.3]〉 〈[0.1, 0.3], [0.4, 0.5], [0.1, 0.2]〉 〈[0.1, 0.3], [0.8, 0.9], [0.3, 0.4]〉

Step 3. By using Definition 7.1, calculate the SM 〈(Ω,S), (Ωi,S)〉.

The values are as below:

SM 〈(Ω,S), (Ω1,S)〉 = 0.396, SM 〈(Ω,S), (Ω2,S)〉 = 0.663, SM 〈(Ω,S), (Ω3,S)〉 = 0.772.

Step 4. Now compare the calculated values of SM 〈(Ω,S), (Ωi,S)〉 with Table 10.

The level of psychiatric disorder for the first subject shows low, for the second average and

the third high.

Step 5. We can conclude from the above observation that the psychiatrist to start the next

set of treatment sessions for the subjects C2 and C3 to lower the level of psychiatric disorder.
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Table 12. Representation of imprecise values (Ω2,S) for the second subject

in SINSS form for each session.

V o1 o2 o3

q1 〈[0.2, 0.3], [0.7, 0.8], [0.2, 0.3]〉 〈[0.7, 0.8], [0.8, 0.9], [0.1, 0.2]〉 〈[0.7, 0.8], [0.7, 0.8], [0.1, 0.2]〉

q2 〈[0.4, 0.5], [0.8, 0.9], [0.1, 0.2]〉 〈[0.5, 0.6], [0.9, 1.0], [0.2, 0.3]〉 〈[0.4, 0.5], [0.8, 0.9], [0.1, 0.2]〉

q3 〈[0.4, 0.5], [0.9, 1.0], [0.4, 0.5]〉 〈[0.4, 0.5], [0.8, 0.9], [0.3, 0.4]〉 〈[0.3, 0.4], [0.9, 1.0], [0.4, 0.5]〉

q4 〈[0.6, 0.7], [0.7, 0.8], [0.1, 0.2]〉 〈[0.3, 0.4], [0.9, 1.0], [0.4, 0.5]〉 〈[0.6, 0.7], [0.9, 1.0], [0.2, 0.3]〉

q5 〈[0.5, 0.6], [0.7, 0.8], [0.2, 0.3]〉 〈[0.2, 0.3], [0.8, 0.9], [0.1, 0.2]〉 〈[0.5, 0.6], [0.8, 0.9], [0.3, 0.4]〉

Table 13. Representation of imprecise values (Ω3,S) for the third subject in

SINSS form for each session.

V o1 o2 o3

q1 〈[0.7, 0.8], [0.7, 0.8], [0.1, 0.2]〉 〈[0.7, 0.8], [0.8, 0.9], [0.1, 0.2]〉 〈[0.7, 0.8], [0.8, 0.9], [0.1, 0.2]〉

q2 〈[0.4, 0.5], [0.8, 0.9], [0.1, 0.2]〉 〈[0.6, 0.7], [0.9, 1.0], [0.1, 0.2]〉 〈[0.5, 0.6], [0.7, 0.8], [0.2, 0.3]〉

q3 〈[0.2, 0.3], [0.6, 0.7], [0.2, 0.3]〉 〈[0.1, 0.3], [0.8, 0.9], [0.2, 0.3]〉 〈[0.1, 0.2], [0.7, 0.8], [0.1, 0.3]〉

q4 〈[0.4, 0.5], [0.7, 0.8], [0.1, 0.2]〉 〈[0.4, 0.5], [0.9, 1.0], [0.1, 0.2]〉 〈[0.6, 0.7], [0.9, 1.0], [0.1, 0.2]〉

q5 〈[0.1, 0.2], [0.8, 0.9], [0.2, 0.3]〉 〈[0.3, 0.4], [0.8, 0.9], [0.1, 0.2]〉 〈[0.5, 0.6], [0.8, 0.9], [0.2, 0.3]〉

9. Conclusion

In this manuscript, we outline the notions of IVINS, IVINSS, and establish some of their

properties. Also, we show the effectiveness of the proposed SM by comparing it with existing

SMs. In today’s complicated psychiatric disorder behaviors, SM plays a significant role in

diagnosing the same. So, we propose a diagnosing method based on the SM for diagnosing

psychiatric disorder with IVINSSs. In this method, we predict the psychiatric behavior of the

subjects represented in the IVINSS form. We can apply this concept to other hybrid sets for

diagnosing psychiatric disorders. Our future study would be the applications of neutrosophics

in sociology [29].
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Abstract. In this paper, we study the pairwise Pythagorean Neutrosophic (for shortly,Pairwise PN) bitopo-

logical spaces (with T and F are dependent neutrosophic components). We also study the pairwise PN P-spaces

and the conditions under which PN bitopological spaces become pairwise PN P-spaces are investigated.
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—————————————————————————————————————————-

1. Introduction

Fuzzy sets were introduced by Zadeh [17] and he discussed only membership function. The

fuzzy topology concept was first introduced by C.L.Chang [3] in 1968.After the extensions of

fuzzy set theory Atanassov [1] generalized this concept and introduced a new concept called

intuitionistic fuzzy set (IFS). Yager [13] familiarized the model of Pythagorean fuzzy set.

However, in the some practical problems, the sum of membership degree and non-membership

degree to which an alternative satisfying attribute provided by decision maker(DM) may be

bigger than 1, but their square sum is less than or equal to 1.

IFS was failed to deal with indeterminate and inconsistent information which exist in

beliefs system, therefore, Smarandache [9] in 1995 introduced new concept known as neu-

trosophic set(NS) which generalizes fuzzy sets and intuitionistic fuzzy sets and so on. A

neutrosophic set includes truth membership, falsity membership and indeterminacy member-

ship. In 2006, F.Smarandache[9] introduced, for the first time, the degree of dependence (and

consequently the degree of independence) between the components of the fuzzy set, and also

between the components of the neutrosophic set. In 2016, the refined neutrosophic set was

R.Jansi,K.Mohana, Pairwise Pythagorean Neutrosophic [PN] P-spaces (with T and F are dependent neutro-

sophic components)
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generalized to the degree of dependence or independence of subcomponents [10]. In neutro-

sophic set [10], if truth membership and falsity membership are dependent and indeterminacy

is independent.Sometimes in real life, we face many problems which cannot be handled by

using neutrosophic for example when TA(x) + IA(x) + FA(x) > 2. Pythagorean neutrosophic

sets [PN-sets]with T and F are dependent neutrosophic components [PNS] of condition is as

their square sum does not exceeds 2.Jansi and Mohana[6]was studied about PN-sets.In 2003,

A.K.Mishra [8] introduced the concept of P-spaces.The concept of P-spaces in fuzzy setting

was defined by G.Balasubramanian[11].Almost P-spaces in classical topology was introduced

by R.Levy[7] .

In this paper we study the pairwise PN P-spaces.Also we studied the conditions under

which PN bitopological spaces become pairwise PN P-spaces are investigated.

2. preliminaries

Definition 2.1. (Pythagorean Fuzzy Set)[14] Let X be a non-empty set. A PF set A is

an object of the form A = {(x, PA(x), QA(x)) : x ∈ X} where the function PA : X → [0, 1] and

QA : X → [0, 1] denote respectively the degree of membership and degree of non-membership

of each element x ∈ X to the set P, and 0 ≤ (PA(x))2 + (QA(x))2 ≤ 1 for each x ∈ X.

Definition 2.2. [10] Let X be a non-empty set. A neutrosophic set A on X is an object of

the form: A = {(x, PA(x), QA(x), RA(x)) : x ∈ X}, Where PA(x), QA(x), RA(x) ∈ [0, 1],0 ≤
PA(x) + QA(x) + RA(x) ≤ 2,for all x in X. PA(x) is the degree of membership, QA(x) is the

degree of inderminancy and RA(x) is the degree of non-membership. Here PA(x) and RA(x)

are dependent components and QA(x) is an independent components.

Definition 2.3. [6] (Pythagorean neutrosophic [PN]-sets (with T and F are de-

pendent neutrosophic components))[13] Let X be a non-empty set. PN-set A =

{(X,PA(x), QA(x), RA(x) : x ∈ X} where PA : X → [0, 1], QA : X → [0, 1] and RA : X → [0, 1]

are the mappings such that 0 ≤ P 2
A(x)+Q2

A(x)+R2
A(x) ≤ 2 and PA(x) denote the membership

degree,QA(x) denote the Indeterminacy and RA(x) denote the non-membership degree.Here

PA and RA are dependent neutrosophic components and QA is an independent components.

Definition 2.4. [6] Let A = (PA, QA, RA) and B = (PB, QB, RB) be two PNSs,then their

operations are defined as follows:

(1)A ⊆ B if and if PA(x) ≤ PB(x), QA(x) ≥ QB(x), RA(x) ≥ RB(x)

(2) A = B if and only if A ⊆ B and B ⊆ A
(3) A ∪B = {(x,max(PA, PB),min(QA, QB),min(RA, RB) : x ∈ X}
(4)A ∩B = {(x,min(PA, PB),max(QA, QB),max(RA, RB) : x ∈ X}
(5)AC = {(x,RA, 1−QA, PA) : x ∈ X}.
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3. Pairwise Pythagorean Neutrosophic [Pairwise PN] P-Spaces(with T and

F are dependent neutrosophic components)

Definition 3.1. A Pythagorean neutrosophic (with T and F are dependent neutrosophic com-

ponents) topology (PNT in Short) on X is a family PNτ of PNs in X satisfying the following

axioms:

(1) 0X , 1X ∈ PNτ

(2)G1 ∩G2 ∈ PNτ, for any G1, G2 ∈ PNτ

(3) ∪Gi ∈ PNτ for any family {Gi/i ∈ J} ⊆ PNτ .

In this case the pair (X,PNτ) is called a Pythagorean neutrosophic sets with T and F are

dependent neutrosophic components topological space (PNTS in Short) and any BPFTS in

PNτ is known as a Pythagorean neutrosophic sets with T and F are dependent neutrosophic

components open set (PNOS in Short) in X.

The Complement Ac of a PNOS A in a PNTS (X,PNτ) is called a Pythagorean

neutrosophic sets with T and F are dependent neutrosophic components closed set (PNCS in

Short) in X.

Definition 3.2. Let (X,PNτ) be a PNTS and be a PN in X. Then the PN interior and

closure of a PN closure are defined by

PNint(A) = ∪{G/GisaPNOSinXandG ⊆ A}

PNcl(A) = ∩{K/KisaPNCSinXandA ⊆ K}.

Note that for any PN A in (X,PNτ), we have (PNcl(A))c = PNint(Ac) and (PNint(A))c =

PNcl(Ac).

Definition 3.3. A set X on which are defined two (arbitrary)PN topologies PNτ1 and PNτ2

is called PN bitopological spaces and denoted by (X,PNτ1, PNτ2).

We shall write PNintPNτi(A) and PNclPNτi(A) to mean respectively the PN interior and PN

closure of PN set A with respect to the PN topology PNτi in (X,PNτ1, PNτ2).
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Definition 3.4. A PN A in a PN bitopological space (X,PNτ1, PNτ2) is called a pairwise PN

open set if A ∈ PNτi(i = 1, 2).The complement of pairwise PN open set in (X,PNτ1, PNτ2)

is called a pairwise PN closed set.

Definition 3.5. A PN A in a PN bitopological space (X,PNτ1, PNτ2) is called a

pairwise PN dense set if PNclPNτ1PNclPNτ2(A) = PNclPNτ2PNclPNτ1(A) = 1X in

PNclPNτ1PNclPNτ2(A).

Definition 3.6. A PN A in a PN bitopological space (X,PNτ1, PNτ2) is called pair-

wise PN nowhere dense if PNintPNτ1PNclPNτ2(A) = PNintPNτ2PNclPNτ1(A) = 0X in

PNintPNτ1PNclPNτ2(A).

Definition 3.7. Let (X,PNτ1, PNτ2) be a PN bitopological space.A PN A in

(X,PNτ1, PNτ2) is called a pairwise PN first category set if A =
⋃∞
i=1(Ai), where (λi)’s are

pairwise PN nowhere dense sets in (X,PNτ1, PNτ2).Any other PN set in (X,PNτ1, PNτ2)

is said to be a pairwise PN second category set in (X,PNτ1, PNτ2).

Definition 3.8. If A is a pairwise PN first category set in a PN bitopological space

(X,PNτ1, PNτ2), then the PN Ac is called a pairwise PN residual set in (X,PNτ1, PNτ2).

Definition 3.9. A PN A in a PN bitopological space (X,PNτ1, PNτ2) is called pairwise PN

Fσ-set in (X,PNτ1, PNτ2) if A =
⋃∞
i=1(Ai) where (Ai)

c ∈ PNτi.

Definition 3.10. A PN A in a PN bitopological space (X,PNτ1, PNτ2) is called pairwise

PN Gδ-set in (X,PNτ1, PNτ2) if A =
⋂∞
i=1(Ai) where Ai ∈ PNτi .

Definition 3.11. A PN bitopological space (X,PNτ1, PNτ2) is called pairwise PN first cat-

egory space if the PN set 1X is a pairwise PN first category set in (X,PNτ1, PNτ2).That is,

1X =
⋃∞
i=1(Ai), where Ai’s are pairwise PN nowhere dense sets in (X,PNτ1, PNτ2).

Otherwise (X,PNτ1, PNτ2) will be called a pairwise PN second category space.

Definition 3.12. A PN bitopological space (X,PNτ1, PNτ2) is called a pairwise PN Baire if

PNintPNτi(
⋃∞
k=1(Ak))

= 0X , (i = 1, 2), where Ak’s are pairwise PN nowhere dense sets in (X,PNτ1, PNτ2).

Definition 3.13. A PN bitopological space (X,PNτ1, PNτ2) is called a pairwise PN P-

space if every non-zero pairwise PN Gδ-set in (X,PNτ1, PNτ2) is a pairwise open set in

(X,PNτ1, PNτ2).That is, if A =
⋂∞
k=1(Ak),where (Ak)

′s are pairwise PN open sets in

(X,PNτ1, PNτ2), then A is a pairwise PN open set in (X,PNτ1, PNτ2).

Proposition 3.14. If A is a pairwise PN Fσ-set in a pairwise PN P-space

(X,PNτ1, PNτ2),then A is a pairwise PN closed set in (X,PNτ1, PNτ2).
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Proof. Let A be a pairwise PN Fσ-set in (X,PNτ1, PNτ2).Then Ac is a pairwise PN Gδ-set

in (X,PNτ1, PNτ2).Since (X,PNτ1, PNτ2) is a pairwise PN P-space, the pairwise PN Gδ-set

(Ac) is a pairwise PN open set in (X,PNτ1, PNτ2).

Hence A is a pairwise PN closed sets in (X,PNτ1, PNτ2).

Proposition 3.15. If the PN bitopological space (X,PNτ1, PNτ2) is a pairwise PN P-space,

then PNclPNτi(
⋂∞
k=1(Ak)) =

⋃∞
k=1 PNclPNτi(Ak), (i = 1, 2) where Ak’s are pairwise PN

closed sets in (X,PNτ1, PNτ2).

Proof. Let the PN sets (Ak)’s (k = 1 to ∞) be pairwise PN closed sets in (X,PNτ1, PNτ2).

Then, PNclPNτi(Ak), (i = 1, 2) in (X,PNτ1, PNτ2).Let A =
⋃∞
k=1(Ak).Then, A is a pairwise

PN Fσ-set in (X,PNτ1, PNτ2).Since (X,PNτ1, PNτ2) is a pairwise PN P-space, by proposi-

tion 3.12, A is a pairwise PN closed sets in (X,PNτ1, PNτ2).

Then, PNclPNτi(A) = A(i = 1, 2).

Now PNclPNτi(
⋃∞
k=1(Ak)) =

⋃∞
k=1(Ak) =

⋃∞
k=1 PNclPNtaui(Ak)

and hence PNclAi(
⋃∞
k=1(Ak)) =

⋃∞
k=1 PNclPNτi(Ak), where (Ak)’s are pairwise PN closed

sets in (X,PNτ1, PNτ2).

Proposition 3.16. If the PN bitopological space (X,PNτ1, PNτ2) is a pairwise PN P-space,

then PNintPNτi(
⋂∞
k=1(Ak)) =

⋂∞
k=1 PNintPNτi(Ak) where (Ak)’s are pairwise PN open sets

in (X,PNτ1, PNτ2).

Proof. Let the PN sets (Ak)’s (k = 1to∞) be pairwise PN open sets in (X,PNτ1, PNτ2).

Then,(Ak)
c’s (k = 1to∞) be pairwise PN closed sets in (X,PNτ1, PNτ2).

Since (X,PNτ1, PNτ2) is a pairwise PN P-space, by proposition 3.13,

PNclPNτi(
⋃∞
k=1(Ak)

c) =
⋃∞
k=1 PNclPNτi(Ak)

c in (X,PNτ1, PNτ2).

Then, by definition 3.2, PNclPNτi(
⋂∞
k=1(Ak)

c) = (
⋃∞
k=1(PNintPNτi(Ak)))

cand

hence (PNintPNτi(
⋂∞
k=1(Ak))

c = (
⋂∞
k=1 PNintPNτi(Ak))

c.

Therefore PNintPNτi(
⋂∞
k=1(Ak) =

⋂∞
k=1(Ak)) where (Ak)’s are pairwise PN open sets in

(X,PNτ1, PNτ2).

Example 3.17. Let X = {a, b}.The PN sets A1, A2 and A3 are defined on X as follows:

A1={(x,(0.2,0.3),(0.4,0.4),(0.7,0.6))}
A2={(x,(0.8,0.6),(0.3,0.5),(0.4,0.1))}
A3={(x,(0.2,0.1),(0.6,0.5),(0.9,0.7))}
A4={(x,(0.6,0.2),(0.3,0.4),(0.5,0.5))}
Author(s), Paper’s title
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Then, PNτ1={0X , A1, A2, A3, A1 ∪A2, A1 ∪A3, A2 ∪A3, A1 ∩A2, A1 ∩A3, A2 ∩A3, A1 ∪ (A2 ∩
A3), A3 ∩ (A1 ∪A2), A2 ∪ (A1 ∩A3), A1 ∪A2 ∪A3, 1X} and

PNτ2={0X , A1, A3, A4, A1 ∪ A3, A1 ∪ A4, A3 ∪ A4, A1 ∩ A3, A3 ∩ A4, A1 ∪ (A3 ∩ A4), A4 ∩
(A1 ∪ A3), A3 ∪ (A1 ∩ A4), A1 ∪ A3 ∪ A4, 1X}are PN topology on X.Now the PN sets

A1, A3, A1∪A3, A1∩A2, A1∩A3, A1∪(A2∩A3), A1∩A4, A3∩A4, A1∪(A3∩A4), A3∩(A1∪A4)

are pairwise PN open sets in (X,PNτ1, PNτ2).Now the PN sets

α = A1 ∩ (A1 ∩ A2) ∩ (A3 ∩ (A1 ∪ A2)) ∩ (A1 ∪ (A3 ∩ A4)) and γ = (A1 ∪ A3) ∩ (A1 ∪ (A3 ∩
A4)) ∩ (A3 ∩ (A1 ∪A4)) are pairwise PN Gδ-sets in (X,PNτ1, PNτ2) and α ∈ PNτi(i = 1, 2)

and γ ∈ PNτi(i = 1, 2) shows that the PN bitopological space (X,PNτ1, PNτ2) is a pairwise

PN P-space.

Definition 3.18. A PN bitopological space (X,PNτ1, PNτ2) is called a pairwise PN sub-

maximal space if each pairwise PN dense set in (X,PNτ1, PNτ2) is a pairwise PN open

set in (X,PNτ1, PNτ2).That is, if A is a pairwise PN dense in a PN bitopological space

(X,PNτ1, PNτ2), then A ∈ PNτi(i = 1, 2).

Proposition 3.19. If (Ai)
′s(i = 1to∞) be pairwise PN dense sets in (X,PNτ1, PNτ2).

Since (X,PNτ1, PNτ2) is a pairwise PN submaximal space and pairwise PN P-space

(X,PNτ1, PNτ2), then
⋂∞
i=1(Ai) is a pairwise PN Gδ-set in (X,PNτ1, PNτ2).

Proof. Let (Ai)’s (i = 1to∞) be pairwise PN dense sets in (X,PNτ1, PNτ2).Since

(X,PNτ1, PNτ2) is a submaximal space, (Ai)’s are pairwise PN open sets in

(X,PNτ1, PNτ2).Then,
⋂∞
i=1(Ai) is a pairwise PN Gδ-set in (X,PNτ1, PNτ2).

Since the PN bitopologcal space (X,PNτ1, PNτ2) is a pairwise PN P-space,
⋂∞
i=1(Ai) is a

pairwise PN open set in (X,PNτ1, PNτ2).

Proposition 3.20. If each pairwise PN Gδ-set is a pairwise PN dense set in a pairwise PN

submaximal space (X,PNτ1, PNτ2), then (X,PNτ1, PNτ2) is a pairwise PN P-space.

Proof. Let A be a pairwise PN Gδ-set in (X,PNτ1, PNτ2).By hypothesis, A is a pairwise PN

dense set in (X,PNτ1, PNτ2).Since (X,PNτ1, PNτ2) is a pairwise PN submaximal space,the

pairwise PN dense set A is a pairwise PN open set in (X,PNτ1, PNτ2).Hence the pairwise

Gδ-set in (X,PNτ1, PNτ2) is a pairwise PN open set in (X,PNτ1, PNτ2).Thus the PN bitopo-

logical space (X,PNτ1, PNτ2) is a pairwise PN P-space.

Proposition 3.21. If PNintPNτiPNintPNτj (A) = 0X , (i, j = 1, 2andi 6= j) where A is a

pairwise PN Fσ-set in a pairwise PN submaximal space (X,PNτ1, PNτ2),

then (X,PNτ1, PNτ2) is a pairwise PN P-space.
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Proof. Let A be a pairwise PN Gδ-set in (X,PNτ1, PNτ2).Then, Ac is a pairwise PN Fσ-set

in (X,PNτ1, PNτ2).

By hypothesis,

PNintPNτiPNintPNτj (A
c) = 0X , (i, j = 1, 2andi 6= j) in (X,PNτ1, PNτ2).

This implies that (PNclPNτiPNclPNτj (A))c = 0X and thus

PNclPNτiPNclPNτj (A) = 1X .

Hence A is a pairwise PN dense set in (X,PNτ1, PNτ2).Since (X,PNτ1, PNτ2) is a pair-

wise PN submaximal space, the pairwise PN dense set A is a pairwise PN open set in

(X,PNτ1, PNτ2).Hence the pairwise PN Gδ-set A in (X,PNτ1, PNτ2) is a pairwise PN open

set in (X,PNτ1, PNτ2).Therefore (X,PNτ1, PNτ2) is a pairwise PN P-space.

Proposition 3.22. If each pairwise PN Fσ-set is a pairwise PN nowhere dense set in a pairwise

PN submaximal space (X,PNτ1, PNτ2), then (X,PNτ1, PNτ2) is a PN P-space.

Proof. Let A be a pairwise PN Fσ-set in a pairwise PN submaximal space (X,PNτ1, PNτ2)

such that PNintPNτiPNclPNτj (A) = 0X , (i, j = 1, 2andi 6= j).

But PNintPNτi(A) ⊆ PNintPNτiPNclPNτj (A), implies that

PNintPNτi(A) ⊆ 0X .

That is, PNintPNτi(A) = 0X .

Then, PNintPNτiPNintPNτj (A) = PNintPNτi(A) = 0X , (i, j = 1, 2andi 6= j).

Thus, PNintPNτiPNintPNτj (A) = 0X , for a pairwise PN Fσ-set A in a pairwise PN submax-

imal space (X,PNτ1, PNτ2).

Then, by proposition 3.18, the PN bitopological space (X,PNτ1, PNτ2) is a pairwise PN

P-space.

Proposition 3.23. If PNclPNτiPNintPNτj (A) = 1X , (i, j = 1, 2andi 6= j) for each pairwise

Gσ-set A in a pairwise PN submaximal space (X,PNτ1, PNτ2),then (X,PNτ1, PNτ2) is a

pairwise PN P-space.

Proof. Let A be a pairwise PN Fσ-set in the PN bitopological space (X,PNτ1, PNτ2).

Then Ac is a pairwise PN Gδ-set in (X,PNτ1, PNτ2).

By hypothesis,

PNclPNτiPNintPNτj (A
c) = 1X , (i, j = 1, 2andi 6= j) in (X,PNτ1, PNτ2).

This implies that (PNintPNτiPNclPNτj (A))c = 1X in (X,PNτ1, PNτ2) and

hence PNintPNτiPNclPNτj (A) = 0X in (X,PNτ1, PNτ2).

Then A is a pairwise PN nowhere dense set in (X,PNτ1, PNτ2).Thus, the pairwise

PN Fσ-set A is a pairwise PN nowhere dense set in a pairwise PN submaximal space
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(X,PNτ1, PNτ2).Hence, by proposition 3.19, the PN bitopological space (X,PNτ1, PNτ2)

is a pairwise PN P-space.

Proposition 3.24. If A is a pairwise PN residual set in a pairwise PN submaximal space

(X,PNτ1, PNτ2), then A is a pairwise PN Gδ-set in (X,PNτ1, PNτ2).

Proof. Let A be a pairwise PN residual set in a pairwise PN submaximal space

(X,PNτ1, PNτ2).Then, Ac is a pairwise PN first category set in (X,PNτ1, PNτ2) and

hence Ac =
⋃∞
k=1(Ak), where the PN (Ak)’s are pairwise PN nowhere dense sets in

(X,PNτ1, PNτ2).Since (Ak)’s are pairwise PN nowhere dense sets in (X,PNτ1, PNτ2),

PNintPNτiPNclPNτj (Ak) = 0X , (i, j = 1, 2andi 6= j).

But PNintPNτi(Ak) ⊆ PNintPNτiPNclPNτj (Ak),
implies that PNintPNτi(AK) ⊆ 0X .That is, PNintPNτi(Ak) = 0X .

Thus, PNintPNτiPNintPNτj (Ak) = 0X in (X,PNτ1, PNτ2).

Then, PNclPNτiPNclPNτj ((Ak)
c) = (PNintPNτiPNintPNτj (Ak))

c = 1X .

Hence (Ak)
c’s are pairwise PN dense sets in (X,PNτ1, PNτ2).Since (X,PNτ1, PNτ2) is a

pairwise PN submaximal space, the pairwise PN dense sets (Ak)
c’s are pairwise PN open sets

in (X,PNτ1, PNτ2).

Then, Ak)’s are pairwise PN closed sets in (X,PNτ1, PNτ2).Hence Ac =
⋃∞
k=1(Ak), where

the PN (Ak)’s are pairwise PN closed sets in (X,PNτ1, PNτ2),implies that Ac is a pairwise

PN Fσ-set in (X,PNτ1, PNτ2).Therefore A is a pairwise PN Gδ-set in (X,PNτ1, PNτ2).

Proposition 3.25. If A is a pairwise PN residual set in a pairwise PN submaximal and

pairwise PN P-space (X,PNτ1, PNτ2), then A is a pairwise PN open set in (X,PNτ1, PNτ2).

Proof. Let A be a pairwise PN residual set in a pairwise PN submaximal space

(X,PNτ1, PNτ2).Since the PN bitopological space (X,PNτ1, PNτ2) is a PN submaximal

space, by proposition 3.21,

A is a pairwise PN Gδ-set in (X,PNτ1, PNτ2).

Since (X,PNτ1, PNτ2) is a pairwise PN P-space, the pairwise PN Gδ-set A is a pairwise

PN open set in (X,PNτ1, PNτ2).Therefore, the pairwise PN residual set A in a pairwise

PN submaximal and pairwise PN P-space (X,PNτ1, PNτ2) is a pairwise PN open set in

(X,PNτ1, PNτ2).

Proposition 3.26. If A is a pairwise PN nowhere dense set in a pairwise submaximal space

(X,PNτ1, PNτ2), then A is a pairwise PN closed set in (X,PNτ1, PNτ2).
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Proof. Let A be a pairwise PN nowhere dense set in the bitopological space (X,PNτ1, PNτ2).

Then, PNintPNτiPNclPNτj (A) = 0X , (i, j = 1, 2andi 6= j).

But, PNintPNτi(A) ⊆ PNintPNτiPNclPNτj (A), implies that PNintPNτi(A) ⊆ 0X .

That is, PNintPNτi(A) = 0X .

Thus, PNintPNτiPNintPNτj (A) = 0X ,in (X,PNτ1, PNτ2).

Then, PNclPNτiPNclPNτj (A
c) = (PNintPNτiPNintPNτj (A))c = 1X .

Hence Ac is a pairwise PN dense set in (X,PNτ1, PNτ2).

Since (X,PNτ1, PNτ2) is a pairwise PN submaximal space, the pairwise PN dense set Ac

is a pairwise PN open set in (X,PNτ1, PNτ2).Thus, A is a pairwise PN closed set in

(X,PNτ1, PNτ2).

Proposition 3.27. If (Ak)’s (k = 1to∞) are pairwise PN nowhere dense sets in a pairwise

PN submaximal and pairwise PN P-space (X,PNτ1, PNτ2) such that
⋃∞
k=1(Ak) 6= 1X , then

PNclPNτi(
⋃∞
k=1(Ak)) =

⋃∞
k=1(Ak) in (X,PNτ1, PNτ2).

Proof. Let (Ak)’s (k = 1to∞) be pairwise PN nowhere dense sets in (X,PNτ1, PNτ2).

Since the PN bitopological space (X,PNτ1, PNτ2) is a pairwise PN submaximal space, by

proposition 3.23, (Ak)’s are pairwise PN closed sets in (X,PNτ1, PNτ2) and hence (Ak)
c’s are

pairwise PN open sets in (X,PNτ1, PNτ2).

Let A =
⋂∞
k=1(Ak)

c.Then, A is a non-zero pairwise PN Gδ-set in (X,PNτ1, PNτ2).(For, if

A = 0X , then
⋂∞
k=1(Ak)

c = 0X , will imply that
⋃∞
k=1(Ak) = 1X , which is a contradiction to

the hypothesis).Since (X,PNτ1, PNτ2) is a pairwise PN P-space, the pairwise PN Gδ-set A

is a pairwise PN open set in (X,PNτ1, PNτ2) and hence, PNintPNτi(A) = A.

This implies that PNintPNτi(
⋂∞
k=1(Ak)

c) =
⋂∞
k=1(Ak)

c.

Then, (PNclPNτi(
⋃∞
k=1(Ak))

c = (
⋃∞
k=1(Ak))

c in (X,PNτ1, PNτ2).

Hence PNclPNτi(
⋃∞
k=1(Ak) =

⋃∞
k=1(Ak) in (X,PNτ1, PNτ2).

Proposition 3.28. If A is a pairwise PN first category set in a pairwise PN submaximal and

pairwise PN P-space (X,PNτ1, PNτ2), then A is a pairwise PN closed set in (X,PNτ1, PNτ2).

Proof. Let A( 6= 1X) be a pairwise PN first category set in (X,PNτ1, PNτ2).Then, A =⋃∞
k=1(Ak), where (Ak)’s are pairwise PN nowhere dense sets in (X,PNτ1, PNτ2).

Since the PN bitopological space (X,PNτ1, PNτ2) is a pairwise PN submaximal and pairwise

PN P-space, by proposition 3.24, we have

PNclPNτi(
⋃∞
k=1(Ak)) =

⋃∞
k=1(Ak) in (X,PNτ1, PNτ2) and hence

PNclPNτi(A) = A.Thus the pairwise PN first category set A is a pairwise PN closed set in

(X,PNτ1, PNτ2).
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Theorem 3.29. Let (X,PNτ1, PNτ2) be a PN bitopological space .Then the following are

equivalent:

(i) (X,PNτ1, PNτ2) is a pairwise PN Baire space

(ii) PNintPNτi(A) = 0X , (i = 1, 2),for each pairwise PN first category set A in

(X,PNτ1, PNτ2).

(iii) PNclPNτi(A) = 1X , (i = 1, 2),for each pairwise PN residual set A in

(X,PNτ1, PNτ2).

Proof. (i) ⇒ (ii) Let A be a pairwise PN first category set in (X,PNτ1, PNτ2).

Then A =
⋃∞
k=1(Ak), where Ai’s are pairwise PN nowhere dense sets in (X,PNτ1, PNτ2).

Now PNintPNτi(A) = PNintPNτi(
⋃∞
k=1(Ak)) = 0X , (i = 1, 2), (since (X,PNτ1, PNτ2) is a

pairwise PN Baire space).

Therefore PNintPNτi(A) = 0X , where Ak’s are pairwise PN nowhere dense sets in

(X,PNτ1, PNτ2).

(ii) ⇒ (iii).Let B be a pairwise PN residual set in (X,PNτ1, PNτ2).

Then Bc is a pairwise PN first category set in (X,PNτ1, PNτ2).

By hypothesis, PNintPNτi(B
c) = 0X , (i = 1, 2),

which implies that (PNclPNτi(B))c = 0X .

Hence PNclPNτi(B) = 1X , (i = 1, 2).

(iii)⇒ (i).Let A be a pairwise PN first category set in (X,PNτ1, PNτ2).Then A =
⋃∞
k=1(Ak),

where Ak’s are pairwise PN nowhere dense sets in (X,PNτ1, PNτ2).

Now nA is a pairwise PN first category set in (X,PNτ1, PNτ2) implies that Ac is a pairwise

PN residual set in (X,PNτ1, PNτ2).

By hypothesis, we have PNclPNτi(A
c) = 1X , (i = 1, 2),

which implies that (PNintPNτi(A))c = 0X , (i = 1, 2).

Then PNintPNτi(A) = 1X .That is, PNintPNτi(
⋃∞
k=1(Ak)) = 0X , where Ak’s are pairwise PN

nowhere dense sets in (X,PNτ1, PNτ2).

Hence the PN bitopological space (X,PNτ1, PNτ2) is a pairwise PN Baire space.

Proposition 3.30. If the PN bitopological space PNintPNτi(A) = 0X , (i = 1, 2),for each

pairwise PN first category set A in (X,PNτ1, PNτ2) is a pairwise PN Baire space and pairwise

PN submaximal space, then each pairwise PN first category set is a pairwise PN nowhere

dense set in PNintPNτi(A) = 0X , (i = 1, 2),for each pairwise PN first category set A in

(X,PNτ1, PNτ2).
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Proof. Let A be a pairwise PN first category set in (X,PNτ1, PNτ2).Since the PN bitopologi-

cal space (X,PNτ1, PNτ2) is a pairwise PN submaximal and pairwise PN P-space, by proposi-

tion 3.25 , A is a pairwise PN closed set in (X,PNτ1, PNτ2).Then PNclPNτi(A) = A, (i = 1, 2)

in (X,PNτ1, PNτ2).

Also since (X,PNτ1, PNτ2) is a pairwise PN Baire space, by Theorem 3.26,

PNintPNτi(A) = 0X , (i = 1, 2), for the pairwise PN first category set A in (X,PNτ1, PNτ2).

Now PNintPNτiPNclPNτj (A) = PNintPNτi(A) = 0X , )i = 1, 2).

Therefore, the pairwise PN first category set A is a pairwise PN nowhere dense set in

(X,PNτ1, PNτ2).

Proposition 3.31. If A is a pairwise PN residual set in a pairwise PN submaximal, pairwise

PN Baire and pairwise PN P-space (X,PNτ1, PNτ2),

then A is a pairwise PN open and pairwise PN dense set in (X,PNτ1, PNτ2).

Proof. Let A be a pairwise PN residual set in (X,PNτ1, PNτ2).

Since (X,PNτ1, PNτ2) is a pairewise PN submaximal and pairwise PN P-space, by proposition

3.25, A is a pairwise PN open set in (X,PNτ1, PNτ2).Also since (X,PNτ1, PNτ2) is a pairwise

PN Baire space, by Theorem 3.26,

PNclPNτi(A) = 1X , (i = 1, 2), for the pairwise PN residual set A in (X,PNτ1, PNτ2) and

hence A is a pairwise PN open and a pairewise PN dense set in (X,PNτ1, PNτ2).
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—————————————————————————————————————————-

1. Introduction

After the introduction of the fuzzy set by Zadeh [11], several researchers conducted exper-

iments on the generalizations of the notion of a fuzzy set. The concept of the intuitionistic

fuzzy set was introduced by Atanassov [1,2] as a generalization of the fuzzy set. Jun et al. [4,5]

considered the fuzzification of interior ideals in semigroups and the notion of an intuitionistic

fuzzy interior ideal of a semigroup S, and its properties were investigated. Kuroki [8] discussed

some properties of fuzzy ideals and fuzzy bi-ideals in the semigroup. Jun et al. [6] considered

the fuzzification of (1,2)-ideals in semigroups and investigated its properties. Yager [9, 10]

introduced the Pythagorean fuzzy set as a generalization of the fuzzy set. After its existence,

several researchers also studied the properties of fuzzy ideals of the semigroup. Yager and

Abbasov [37] initiated the notion of Pythagorean fuzzy set and this concept could be consid-

ered as a successful generalization of intuitionistic fuzzy sets. The main difference between

intuitionistic fuzzy sets and Pythagorean fuzzy sets is that, in the latter case, the sum of

membership and non-membership grades is greater than 1, however, the sum of their squares

belongs to the unit interval [0,1]. Analogously, in this novel pattern, the associated uncertainty

of membership grade and non-membership grade can be explained in a valuable method that

than of intuitionistic fuzzy set. Gun et al. [7] introduced the new concept of spherical fuzzy
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set and discuss the new operations. Smarandache [13] introduced the new concept of neutro-

sophic set. Khan et.al [12] introduced the Neutrosophic N-Structures and their application

in semigroups. The neutrosophic theories have received greater attention in recent years [14]-

[32]. Abdel-Basset et al. [33] proposed a new hybrid multi-criteria decision-making (MCDM)

using Analytical Hierarchy Process(AHP) and Preference Ranking Organization Method for

Enrichment Evaluations (PROMETHEE)-II approach for optimal offshore wind power station

location selection. Abdel-Basset et al. [34] Provided a neutrosophic PROMETHEE technique

for MCDM problems to describe fuzzy information efficiently. Abdel-Basset et al. [35] discussed

how smart internet of things technology can assist medical staff in monitoring the spread of

COVID-19. Abdel-Basset et al. [36] studied a comprehensive evaluation of the sustainability

of hydrogen production options through the use of a MCDM model.

In this paper, we discuss the properties of Pythagorean neutrosophic ideals in semigroups.

2. Preliminaries

Definition 2.1. [3] Let S be a semigroup. M and N be subsets of S, the product of M and 
N is defined as MN = {mn ∈ S | m ∈ M and n ∈ N} A non- empty subset M of S is called 

a sub-semigroup of S if MM ⊆ M . A non-empty subset M of S is called a left (resp. right) 

ideal of S if SM ⊆ M (resp.MS ⊆ M). A is called a two sided ideal of S if it is both a left 

ideal and right ideal of S. A sub- semigroup M of S is called a bi-ideal of S if MSM ⊆ M . A 

sub-semigroup M of S is called a (1,2) ideal of S if MSM2 ⊆ M . A semigroup S is said to be 

(2,2)- regular if m ∈ m2Sm2 for any m ∈ S. A semigroup S is called regular if for each element 

m ∈ S there exists x ∈ S such that m = mxm. A semigroup S is said to be completely regular 

if, for any m ∈ S, there exists x ∈ S such that m = mxm and mx = xm. For a semigroup 

S, is completely regular if and only if(iff) S is a union of groups iff S is (2,2)-regular. By a 
fuzzy set µ in a non-empty set S we mean a function µ : S → [0, 1], and the complement of µ, 

denoted by µ, is the fuzzy set in S given by µ(x) = 1 − µ(x) for all x ∈ S.

Definition 2.2. [9] Let X be a universe of discourse, A Pythagorean fuzzy set (PFS) 
P = {z, ϑp(x), ωp(x)/z ∈ X} where ϑ : X → [0, 1] and ω : X → [0, 1] represent the degree of 

membership and non-membership of the object z ∈ X to the set P subset to the condition 

0 ≤ (ϑp(z))2 + (ωp(z))
2 ≤ 1 for all z ∈ X. For the sake of simplicity a PFS is denoted as 

P = (ϑp(z), ωp(z)).

Definition 2.3. [13] Let X be a universe of discourse, A Neutrosophic set (NS) N = 
{z, ϑN (z), ωN (z), ψN (z)/z ∈ X} where ϑ : X → [0, 1], ω : X → [0, 1] and ψ : X → [0, 1] 

represent the degree of truth membership, indeterminacy-membership and false-membership of 
the object z ∈ X to the set N subset to the condition 0 ≤ (ϑN (z))+(ωN (z))+(ψN (z))≤ 3 for all z 

∈ X. For the sake of simplicity a NS is denoted as N = (ϑN (z), ωN (z), ψN (z)).

Neutrosophic Sets and Systems, Vol. 41, 2021 259

V. Chinnadurai and A.Arulselvam, Pythagorean Neutrosophic Ideals in Semigroups



3. Pythagorean neutrosophic set

Definition 3.1. Let X be a universe of discourse, A Pythagorean neutrosophic set (PNS)

PN = {z, µp(z), ζp(z), ψp(z)/z ∈ X} where µ : X → [0, 1], ζ : X → [0, 1] and ψ : X → [0, 1]

represent the degree of membership, non-membership and inderminancy of the object z ∈ X

to the set PN subset to the condition 0 ≤ (µp(z))
2+(ζp(z))

2+(ψp(z))
2 ≤ 2 for all z ∈ X. For

the sake of simplicity a PNS is denoted as PN = (µp(z), ζp(z), ψp(z)).

Definition 3.2. Let X be a nonempty set and I the unit interval [0, 1]. A Pythagorean

neutrosophic set with neutrosophic components [PNS] PN1 and PN2 of the form PN1 =

(z, µp1(z), ζp1(z), ψp1(z)/z ∈ X) and PN2 = (z, µp2(z), ζp2(z), ψp2(z)/z ∈ X). Then

1)P c
N = (z, ψp1(z), ζp1(z), µp1(z)/z ∈ X)

2)PN1 ∪ PN2 = {z,max(µP1(z), µP2(z)),max(ζP1(z), ζP2(z)),min(ψP1(z), ψP2(z))/z ∈ X}
3)PN1 ∩ PN2 = {z,min(µP1(z), µP2(z)),min(ζP1(z), ζP2(z)),max(ψP1(z), ψP2(z))/z ∈ X}

4. Pythagorean neutrosophic ideals in semigroups

In this section, let S denote a semigroup unless otherwise specified. We discuss the details

of Pythagorean neutrosophic ideals in semigroups.

Definition 4.1. A Pythagorean neutrosophic (PNS) PN = (µp, ζp, ψp) in S is called an

Pythagorean neutrosophic sub-semigroup of S, if

(i) µp(x1x2) ≤ max {µp(x1), µp(x2)}
(ii) ζp(x1x2) ≥ max {ζp(x1), ζp(x2)}
(iii) ψp(x1x2) ≤ max {ψp(x1), ψp(x2)} for all x1, x2 ∈ S.

Definition 4.2. A PNS P = (µp, ζp, ψp) in S is called an Pythagorean neutrosophic left ideal

of S, if

(i) µp(x1x2) ≤ µp(x2)

(ii) ζp(x1x2) ≥ ζp(x2)

(iii) ψp(x1x2) ≤ ψp(x2) for all x1, x2 ∈ S.

A Pythagorean neutrosophic right ideal of S is defined in an analogous way.An PNS

PN = (µp, ζp, ψp) in S is called an Pythagorean neutrosophic ideal of S, if it is both a

Pythagorean neutrosophic left and Pythagorean neutrosophic right ideal of S.It is clear that

any Pythagorean neutrosophic left(resp. right) ideal of S is a Pythagorean neutrosophic sub-

semigroup of S.

Definition 4.3. A Pythagorean neutrosophic sub-semigroup PN = (µp, ζp, ψp) of S is called

an Pythagorean neutrosophic bi-ideal(PNBI) of S.

(i) µp(x1ux2) ≤ max {µp(x1), µp(x2)}
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(ii) ζp(x1ux2) ≥ max {ζp(x1), ζp(x2)}
(ii) ψp(x1ux2) ≤ max {ψp(x1), ψp(x2)} for all u, x1, x2 ∈ S.

Theorem 4.4. If {Pi}i∈I is a family of PNBI of S, then ∩Pi is an PNBI of S. Where

∩Pi = (∨µpi ,∨ζpi ,∨ψpi) and ∨µpi = sup {µpi(x1)|i ∈ I, x1 ∈ S},
∨ζpi = sup {ζpi(x1)|i ∈ I, x1 ∈ S}, ∨ψpi = sup {ψpi(x1)|i ∈ I, x1 ∈ S}.

Proof. Let x1, x2 ∈ S. Then we have

∨µpi(x1x2) ≤ ∨{max {µpi(x1), µpi(x2)}}
= max {max {µpi(x1), µpi(x2)}}
= max {max {µpi(x1)} ,max {µpi(x2)}}
= max {∨µpi(x1),∨µpi(x2)}

∨ζpi(x1x2) ≥ ∨{max {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1)} ,max {ζpi(x2)}}
= max {∧ζpi(x1),∧ζpi(x2)}

∨ψpi(x1x2) ≤ ∨{max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1)} ,max {ψpi(x2)}}
= max {∨ψpi(x1),∨ψpi(x2)}.

Hence ∩Pi is an Pythagorean neutrosophic sub-semigroup of S.

Next for u, x1, x2 ∈ S, we obtain

∨µpi(x1ux2) ≤ ∨{min {µpi(x1), µpi(x2)}}
= max {max {µpi(x1), µpi(x2)}}
= max {max {µpi(x1)} ,max {µpi(x2)}}
= max {∨µpi(x1),∨µpi(x2)}

∨ζpi(x1ux2) ≥ ∨{min {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1)} ,max {ζpi(x2)}}
= max {∨ζpi(x1),∨ζpi(x2)}

∨ψpi(x1ux2) ≤ ∨{max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1)} ,max {ψpi(x2)}}
= max {∨ψpi(x1),∨ψpi(x2)}.

Hence ∩Pi is an PNBI of S.

This completes the proof.
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Theorem 4.5. Every Pythagorean neutrosophic left(right) ideal of S is an Pythagorean neu-

trosophic bi-ideal of S.

Proof. Let PN = (µp, ζp, ψp) is a Pythagorean neutrosophic left ideal of S and u, x1, x2 ∈ S.

Then

µp(x1ux2) = µp(x1ux2)

≤ µp(x2)

µp(x1ux2) ≤ max{µp(x1, µp(x2))}
ζp(x1ux2) = ζp(x1ux2)

≥ ζp(x2)

ζp(x1ux2) ≥ max{ζp(x1, ζp(x2))}
ψp(x1ux2) = ψp(x1ux2)

≤ ψp(x2)

ψp(x1ux2) ≤ max{ψp(x1, ψp(x2))}
Thus PN = (µp, ζp, ψp) is PNBI of S.

The right case is provided in an analogous way.

Theorem 4.6. Every Pythagorean neutrosophic bi-ideal of a group S is constant.

Proof. Let PN = (µp, ζp, ψp) be an PNBI of a group S and let x1 be any element of S.

Then

µp(x1) = µp(ex1e)

≤ max{µp(e), µp(e)}
= µp(e)

= µp(ee)

= µp(x1x
−1
1 )(x−1

1 x1)

= µp(x1(x
−1
1 x−1

1 )x1)

≤ max{µp(x1, µp(x1))}
= µp(x1)

ζp(x1) = ζp(ex1e)

≥ max{ζp(e), ζp(e)}
= ζp(e)

= ζp(ee)

= ζp(x1x
−1
1 )(x−1

1 x1)

= ζp(x1(x
−1
1 x−1

1 )x1)

≥ max{ζp(x1, ζp(x1))}
= ζp(x1)

and
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ψp(x1) = ψp(ex1e)

≤ max{ψp(e), ψp(e)}
= ψp(e)

= ψp(ee)

= ψp(x1x
−1
1 )(x−1

1 x1)

= ψp(x1(x
−1
1 x−1

1 )x1)

≤ max{ψp(x1, ψp(x1))}
= ψp(x1).

Where e is the identity of S. It follows that µp(x1) = µp(e), ζp(x1) = ζp(e) and ψp(x1) = ψp(e)

which means that PN = (µp, ζp, ψp) is constant.

Theorem 4.7. If an PNS PN = (µp, ζp, ψp) in S is an PNBI of S, then so is �PN =(
µp, ζp, ψp

)
.

Proof. It is sufficient to show that ψp satisfies the conditions in Definition 3.1 and Definition

3.4. For any u, x1, x2 ∈ S, we have

ψp(x1x2) = 1− ψp(x1x2)

≤ 1−min {ψp(x1), ψp(x2)}
= max {1− ψp(x1), 1− ψp(x2)}
= max

{
ψp(x1), ψp(x2)

}
and

ψp(x1ux2) = 1− ψp(x1ux2)

≤ 1−min {ψp(x1), ψp(x2)}
= max {1− ψp(x1), 1− ψp(x2)}
= max

{
ψp(x1), ψp(x2)

}
.

Therefore �PN is an PNBI of S.

Definition 4.8. A Pythagorean neutrosophic sub-semigroup PN = (µp, ζp, ψp) of S is called

a Pythagorean neutrosophic (1,2) ideal of S. If

(i) µp(x1u(x2x3)) ≤ max {µp(x1), µp(x2), µp(x3)}
(ii) ζp(x1u(x2x3)) ≥ max {ζp(x1), ζp(x2), ζp(x3)}
(iii) ψp(x1u(x2x3)) ≤ max {ψp(x1), ψp(x2), ψp(x3)} u, x1, x2, x3 ∈ S.

Theorem 4.9. Every PNBI is a Pythagorean neutrosophic (1,2) ideal of S.

Proof. Let PNS PN = (µp, ζp, ψp) be an PNBI of S and let u, x1, x2, x3 ∈ S.

Then

µp(x1u(x2x3)) = µp((x1ux2)x3)
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≤ max {µp(x1ux2), µp(x3)}
≤ max {max {µp(x1), µp(x2)} , µp(x3)}
= max {µp(x1), µp(x2), µp(x3)}

ζp(x1u(x2x3)) = ζp((x1ux2)x3)

≥ max {ζp(x1ux2), ζp(x3)}
≥ max {max {ζp(x1), ζp(x2)} , ζp(x3)}
= max {ζp(x1), ζp(x2), ζp(x3)}

and

ψp(x1u(x2x3)) = ψp((x1ux2)x3)

≤ max {ψp(x1ux2), ψp(x3)}
≤ max {max {ψp(x1), ψp(x2)} , ψp(x3)}
= max {ψp(x1), ψp(x2), ψp(x3)}.

Hence PN = (µp, ζp, ψp) is a Pythagorean neutrosophic (1,2) ideal of S.

To consider the converse of theorem next theorem, we need to strengthen the condition of

a semigroup S.

Theorem 4.10. If S is a regular semigroup, then every Pythagorean neutrosophic (1,2) ideal

of S is an PNBI of S.

Proof. Assume that a semigroup S is regular and let PN = (µp, ζp, ψp) be an Pythagorean

neutrosophic (1,2) ideal of S. Let u, x1, x2, x3 ∈ S. Since S is regular, we have x1u ∈
(x1Sx1)S ⊆ x1Sx1, which implies that x1u = x1Sx1 for some s ∈ S.

Thus

µp(x1ux2) = µp((x1sx1)x2)

= µp(x1s(x1x2))

≤ max {µp(x1), µp(x1), µp(x2)}
= max {µp(x1), µp(x2)}

ζp(x1ux2) = ζp((x1sx1)x2)

= ζp(x1s(x1x2))

≥ max {ζp(x1), ζp(x1), ζp(x2)}
= max {ζp(x1), ζp(x2)}

and

ψp(x1ux2) = ψp((x1sx1)x2)

= ψp(x1s(x1x2))

≤ max {ψp(x1), ψp(x1), ψp(x2)}
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= max {ψp(x1), ψp(x2)}.
Therefore PN = (ζp, ψp) is PNBI of S.

Theorem 4.11. A PNS PN = (µp, ζp, ψp) is an PNBI of S if and only if µp, ζp and ψp are

FBI of S.

Proof. Let PN = (µp, ζp, ψp) be an PNBI of S. Then clearly µp is a FBI of S. Let u, x1, x2 ∈ S.

Then

ψp(x1x2) = 1− ψp(x1x2)

≥ 1−max {ψp(x1), ψp(x2)}
= min {(1− ψp(x1)), (1− ψp(x2))}
= min

{
ψp(x1), ψp(x2)

}
ψp(x1ux2) = 1− ψp(x1ux2)

≥ 1−max {ψp(x1), ψp(x2)}
= min {(1− ψp(x1)), (1− ψp(x2))}
= min

{
ψp(x1), ψp(x2)

}
.

Hence ψp is a fuzzy bi-ideal of S.

Conversely, suppose that ζp and ψp are FBI of S. Let u, x1, x2 ∈ S.

Then

1− ψp(x1x2) = ψp(x1x2)

≤ min
{
ψp(x1), ψp(x2)

}
= min {(1− ψp(x1)), (1− ψp(x2))}
= max {ψp(x1), ψp(x2)}

1− ψp(x1ux2) = ψp(x1ux2)

≥ min
{
ψp(x1), ψp(x2)

}
= 1−max {ψp(x1), ψp(x2)}.

Which implies that ψp(x1x2) ≤ max {ψp(x1), ψp(x2)} and ψp(x1ux2) ≤ max {ψp(x1), ψp(x2)}
This completes the proof.

Definition 4.12. A PNS PN = (µp, ζp, ψp) in S is called an Pythagorean neutrosophic interior

ideal(PNII) of S if it satisfies

(i) µp(x1ux2) ≤ µp(u)

(ii) ζp(x1ux2) ≥ ζp(u)

(iii) ψp(x1ux2) ≤ ψp(u) u, x1, x2 ∈ S.

Theorem 4.13. If {Pi}i∈I is a family of PNII of S, then ∩Pi is a PNII of S. Where ∩Pi =

(∨µpi ,∨ζpi ,∨ψpi) and ∨µpi(x1) = sup {µpi(x1)|i ∈ I, x1 ∈ S},
∨ζpi(x1) = sup {ζpi(x1)|i ∈ I, x1 ∈ S}, ∨ψpi(x1) = sup {ψpi(x1)|i ∈ I, x1 ∈ S}.
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Proof. Let u, x1, x2 ∈ S.

Then

∨µpi(x1x2) ≤ max {max {µpi(x1), µpi(x2)}}
= (∨µpi(x1)) ∨ (∨µpi(x2))

∨ζpi(x1x2) ≥ max {max {ζpi(x1), ζpi(x2)}}
= (∨ζpi(x1)) ∨ (∨ζpi(x2))

and

∨ψpi(x1x2) ≤ max {max {ψpi(x1), ψpi(x2)}}
= (∨ψpi(x1)) ∨ (∨ψpi(x2))

∨µpi(x1ux2) ≤ ∨µpi(u)
∨ζpi(x1ux2) ≥ ∨ζpi(u)
and

∨ψpi(x1ux2) ≤ ∨ψpi(u).

Hence ∩Pi is an PNII of S.

Definition 4.14. Let PN = (µp, ζp, ψp) is a PNS of S and let α ∈ [0, 1] then the sets.

µp,α = {x1 ∈ S : µp(x1)α}, ζp,α = {x1 ∈ S : ζp(x1)α} and ψp,α = {x1 ∈ S : ψp(x1)α} are called

a µp-level α-cut, ζp-level α-cut and ψp-level α-cut of K respectively.

Theorem 4.15. If an PNS PN = (µp, ζp, ψp) in S is an PNII of S, then the µ-level α-

cut µp,α, ζ-level α-cut ζp,αand ψ-level α-cut ψp,α of PN are interior ideal of S, for every

α ∈ Im(µp) ∩ Im(ζp) ∩ Im(ψp) ⊆ [0, 1].

Proof. Let α ∈ Im(µp) ∩ Im(ζp) ∩ Im(ψp) ⊆ [0, 1].

let x1, x2 ∈ µp,α then µp(x1) ≤ α and µp(x2) ≤ α. It follows from that

µp(x1x2) ≤ µp(x1) ∨ µp(x2) ≤ α. So that x1, x2 ∈ µp,α.

If x1, x2 ∈ ζp,α then ζp(x1) ≥ α and ζp(x2) ≥ α. It follows from that.

ζp(x1x2) ≥ ζp(x1) ∨ ζp(x2) ≥ α. So that x1, x2 ∈ ζp,α.

If x1, x2 ∈ ψp,α, then ψp(x1) ≤ α and ψp(x2) ≤ α and so ψp(x1x2) ≤ ψp(x1) ∨ ψp(x2) ≤ α,

that is x1, x2 ∈ ψp,α.

Hence µp,α, ζp,α and ψp,α are sub-semigroup of S. Now let x1x2 ∈ S and u ∈ µp,α. Then

µp(x1ux2) ≤ µp(u) ≤ α and so x1ux2 ∈ µp,α.

If u ∈ ζp,α. Then ζp(x1ux2) ≥ ζp(u) ≥ α and so x1ux2 ∈ ζp,α.

If u ∈ ψp,α. Then ψp(x1ux2) ≤ ψp(u) ≤ α thus x1ux2 ∈ ψp,α.

Therefore µp,α,ζp,α and ψp,α are interior ideal of S.

Theorem 4.16. A PNS PN = (µp, ζp, ψp) is and PNII of S if and only if µp, ζp, ψp are fuzzy

interior ideal (FII) of S.
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Proof. Let PN = (µp, ζp, ψp) be an PNII of S. Then clearly µp is FII of S. Let u, x1, x2 ∈ S.

Then

ψp(x1x2) = 1− ψp(x1x2)

≥ 1− (ψp(x1)) ∨ ψp(x2)

= (1− ψp(x1)) ∧ (1− ψp(x2))

= ψk(x1) ∧ ψp(x2)

ψp(x1ux2) = 1− ψp(x1ux2)

≥ 1− (ψp(u))

= ψp(u)

ψk is a FII of S.

Conversely.

Suppose that ζp and ψp are FII of S. Let u, x1, x2 ∈ S.

1− ψp(x1x2) = ψp(x1x2)

≥ ψp(x1) ∧ ψp(x2)

= (1− ψp(x1)) ∧ (1− ψp(x2))

= 1− ψp(x1) ∨ ψp(x2)

= 1− ψp(x1ux2) = ψp(x1ux2)

≥ ψp(u) = 1− ψp(u)

which implies ψp(x1x2) ≤ ψp(x1) ∨ ψp(x2)

and

ψp(x1ux2) ≤ ψp(u)

This completes the proof.

5. Conclusions

In this paper Pythagorean neutrosophic sub-semigroup, Pythagorean neutrosophic

left(resp.right) ideal, Pythagorean neutrosophic ideal, Pythagorean neutrosophic bi-ideal,

Pythagorean neutrosophic interior ideal and investigated some properties.
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Abstract. In this paper, the notion of simplified neutrosophic multiplicative refined set (aka, simplified neutrosophic

multiplicative multi-set) is introduced and some basic operational relations are investigated. The correlation coefficient

is one of the most frequently used tools to provide the strength of relationship between two fuzzy/neutrosophic (refined)

sets. Two different methods are proposed to calculate the correlation coefficients between two simplified neutrosophic

multiplicative refined sets. Further, the effectiveness of these methods is demonstrated by dealing with the medical

pattern recognition problem under the simplified neutrosophic multiplicative refined set environment.

Keywords: Neutrosophic sets; Simplified neutrosophic multiplicative sets; Simplified neutrosophic multiplicative refined

sets; Simplified neutrosophic multiplicative multi-sets; Correlation coefficient; Pattern recognition

—————————————————————————————————————————-

1. Introduction

Most of the problems of real-life involve uncertainty or unknown data, and traditional mathematical

tools cannot deal with such problems. The fuzzy sets (FSs), originated by Zadeh [48], is a useful tool

to cope with vagueness and ambiguity. In 1986, Atanassov [6] initiated the theory of intuitionistic

fuzzy sets (IFSs) extending the FSs. In the following years, many authors studied the the fuzzy set

extensions [9,19,20,30,40] and their matrix representations [23,25,27–29]. However, the FSs and their

extensions failed to cope with indeterminate and inconsistent information which exist in beliefs system,

therefore, Smarandache [36] proposed new concept named neutrosophic set (NS) which generalizes the

FSs and IFSs. Later, Wang et al. [42] and Ye [46] introduced specific descriptions of NSs known as

single-valued neutrosophic set (SVNS) and simplified neutrosophic set (SNS), motivated from a practi-

cal point of view and can be used in real scientific and engineering applications. These theories of NSs

have proven useful in the different fields such as medical diagnosis [3,16], decision making [1–5,15,21,26]

and so on. In 1995, Smarandache put forward that in some cases the degrees of truth-membership,

indeterminacy-membership and falsity-membership in the structure of (single-valued/simplified) NS

can be not only in the interval [0,1] but also less than 0 or greater than 1, and presented some real

world arguments supporting this assertion. Based on this idea, he introduced the concepts of neutro-

sophic oversets (when some neutrosophic components are > 1), neutrosophic undersets (when some

neutrosophic component is < 0), and neutrosophic offsets (when some neutrosophic components are
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off the interval [0,1], i.e. some neutrosophic components > 1 and some neutrosophic components < 0)

and studied their fundamentals [35,37,38].

The multi-set theory was introduced by Yager [45] as generalization of the set theory and then the

multi-set was improved by Calude et al. [8]. Occasionally, several authors made a number of general-

izations of the multi-set theory. Sebastian and Ramakrishnan [33] described a multi fuzzy set (mFS)

which is a generalization of the multi-set. In [11,34], the authors presented an extension of the notion

of mFS to an intuitionstic fuzzy set which was termed to be an intuitionstic fuzzy multi-sets (IFmS).

As the concepts of mFS and IFmS failed to deal with indeterminacy, Smarandache [39] extended

the classical neutrosophic logic to n-valued refined neutrosophic logic, by refining each neutrosophic

component. Meanwhile, Ye and Ye [47] proposed the concept of neutrosophic multi-set (NmS) (aka,

neutrosophic refined set (NRS)) and investigated their characteristic properties. Deli et al. [10] studied

some aspects of NRSs such as intersection, union, convex and strongly convex in a new way. In recent

years, many seminal articles on the NmSs/NRSs have been published [7, 22,41].

In spite of the fact that the FSs, IFSs and NSs are effective mathematical tools for dealing with un-

certainties, these sets use the 0-1 scale, which is distributed symmetrically and uniformly. But, there

are real-life issues that need to be scaled as unsymmetrically and non-uniformly. The grading system

of universities is the most obvious example of such situations [17]. In dealing with such problems that

need to be scaled unsymmetrically and non-uniformly while assigning the variable grades, Saaty [31]

proposed the 1-9 scale (or 1
9 − 9 scale) as a useful tool. These different scales lead to the modelling

of multiplicative preference relation [32]. In 2013, Xia et al. [44] proposed the idea of intuitionistic

multiplicative sets (IMSs) and the intuitionistic multiplicative preference relations (IMPRs). Further,

they gave a comparison between 0.1-0.9 and 1
9 − 9 scales as in Table 1.

Table 1. The comparison between 0.1-0.9 and 1
9 − 9 scales [44]

1
9
− 9 scale 0.1-0.9 scale Meaning

1
9

0.1 Extremely not preferrred
1
7

0.2 Very strongly not preferrred
1
5

0.3 Strongly not preferrred
1
3

0.4 Moderately not preferrred

1 0.5 Equally preferrred

3 0.6 Moderately preferrred

5 0.7 Strongly preferrred

7 0.8 Very strongly preferrred

9 0.9 Extremely preferrred

Other values between 1
9
and 9 Other values between 0 and 1 Intermediate values used to present compromise

Recently, the theoretical aspects of IMSs and IMPRs have been studied in detail [12–14, 18, 43]. In

2019, Köseog̃lu et al. [24] put forward that the IMSs cannot handle real-life problems, which include the

indeterminate information in addition to the truth-membership information and falsity-membership in-

formation of IMS. To eradicate this restriction, they introduced the concepts of simplified neutrosophic

multiplicative set (SNMS) and simplified neutrosophic multiplicative preference relations (SNMPRs).
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Moreover, they gave several formulas for measuring the distance between two SNMSs.

There are two main objectives underlying this study. The first is to initiate the theory of simplified

neutrosophic multiplicative refined set (SNMRS) (aka, simplified neutrosophic multiplicative multi-

set). Obviously, the concept of SNMRS is a generalization of IMSs and SNMSs. The second is to

propose novel correlation coefficients to numerically determine the relationship between two SNMRSs.

By using the proposed correlation coefficients, the ranking of all alternatives (objects) can be achieved.

The layout of rest of this paper is presented as follows: In Section 2, the concepts of NSs, SNSs

and SNMSs are given. In Section 3, the SNMRSs are conceptualized and their fundamentals such

as subset, complement, intersection, union and aggregation operators are studied. In Section 4, the

conceptual approaches of correlation coefficients between two SNMRSs are proposed and their charac-

teristic properties are discussed. In Section 5, an example are given to validate the proposed correlation

measures and the comparative analysis is presented to demonstrate their effectiveness. In Section 6,

the conclusion of this study is summarized.

2. Preliminaries

In this section, some basic concepts of neutrosophic sets, simplified neutrosophic sets and simplified

neutrosophic multiplicative sets are recalled.

Let E be a space of points (object) with a generic element denoted by ε.

Definition 2.1. ( [36]) A neutrosophic set (NS)N in E is characterized by a truth-membership function

tN : E →]0−, 1+[, an indeterminacy-membership function ıN : E →]0−, 1+[, and a falsity-membership

function fN : E →]0−, 1+[. tN (ε), ıN (ε) and fN (ε) are real standard or non-standard subsets of ]0−, 1+[.

There is no restriction on the sum of tN (ε), ıN (ε) and fN (ε), so 0− ≤ sup tN (ε)+sup ıN (ε)+sup fN (ε) ≤
3+ for ε ∈ E .

However, Wang et al. [42] and Ye [46] stated the difficulty of using the NSs of non-standard intervals

in practice, and introduced the simplified neutrosophic sets as follows.

Definition 2.2. ( [46]) An NS N is characterized by a truth-membership function tN : E → [0, 1], an

indeterminacy-membership function ıN : E → [0, 1], and a falsity-membership function fN : E → [0, 1].

tN (ε), ıN (ε) and fN (ε) are singleton subintervals/subsets in the standard interval [0, 1], then it is

termed to be a simplified neutrosophic set (SNS) and described as

N = {(ε, ⟨tN (ε), ıN (ε), fN (ε)⟩) : ε ∈ E} (1)

This kind of NS is is named a single-valued neutrosophic set (SVNS) by Wang et al. [42]. Throughout

this paper, we will use the term ”simplified neutrosophic set (SNS)”.

Definition 2.3. ( [39,47]) A simplified neutrosophic refined set (SNRS) Ñ can be defined as follows:

Ñ = {(ε, ⟨(t1Ñ (ε), t2Ñ (ε), ..., tq
Ñ
(ε)), (ı1Ñ (ε), ı2Ñ (ε), ..., ıq

Ñ
(ε)), (f1Ñ (ε), f2Ñ (ε), ..., f q

Ñ
(ε))⟩) : ε ∈ E} (2)

where
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t1
Ñ
, t2

Ñ
, ..., tq

Ñ
: E → [0, 1], ı1

Ñ
, ı2

Ñ
, ..., ıq

Ñ
: E → [0, 1], and f1

Ñ
, f2

Ñ
, ..., f q

Ñ
: E → [0, 1]

such that

0− ≤ sup ti
Ñ
(ε) + sup ıi

Ñ
(ε) + sup f i

Ñ
(ε) ≤ 3+ ∀i ∈ Iq = {1, 2, ..., q}.

for each ε ∈ E . Further, the truth-membership sequence (t1
Ñ
(ε), t2

Ñ
(ε), ..., tq

Ñ
(ε)) may

be in decreasing/increasing order, and the corresponding indeterminacy-membership sequence

(ı1
Ñ
(ε), ı2

Ñ
(ε), ..., ıq

Ñ
(ε)) and falsity-membership sequence (f1

Ñ
(ε), f2

Ñ
(ε), ..., f q

Ñ
(ε)). Also, q is termed

to be the dimension of SNMS Ñ .

Note 1. In the literature, SNRSs are also referred to as simplified neutrosophic multisets (SNmSs).

Definition 2.4. ( [24]) A simplified neutrosophic multiplicative set (SNMS) M in E is defined as

M = {(ε, ⟨ζM(ε), ηM(ε), ϑM(ε)⟩) : ε ∈ E}, (3)

which assigns to each element ε a truth-membership information ζM(ε), an indeterminacy-membership

information ηM(ε), and a falsity-membership information ϑM(ε) with conditions

1

9
≤ ζM(ε), ηM(ε), ϑM(ε) ≤ 9 and 0 < ζM(ε)ϑM(ε) ≤ 1. (4)

for each ε ∈ E .

Note 1. In 1995, Smarandache put forward that in some cases the degrees of truth-membership,

indeterminacy-membership and falsity-membership in the structure of (single-valued/simplified) NS

can be not only in the interval [0,1] but also greater than 1. Thus, he described the truth-membership

function, indeterminacy-membership function and falsity-membership function as tN , ıN , fN : E →
[0,Ω] where 0 < 1 < Ω and Ω is named overlimit. He called this extended type of (single-

valued/simplified) NSs as neutrosophic overset [37, 38]. It is noted that the SNMSs are particular

case of the neutrosophic oversets.

3. Simplified Neutrosophic Multiplicative Refined Sets

In this section, we initiate the theory of simplified neutrosophic multiplicative refined sets. Also, we

derive some basic operations on simplified neutrosophic multiplicative refined sets and study the related

properties.

Definition 3.1. Let E be a space of points (object) with a generic element denoted by ε. A simplified

neutrosophic multiplicative refined set (SNMRS) M̃ in E is defined as

M̃ = {(ε, ⟨(ζ1M̃(ε), ζ2M̃(ε), ..., ζq
M̃
(ε)), (η1M̃(ε), η2M̃(ε), ..., ηq

M̃
(ε)), (ϑ1M̃(ε), ϑ2M̃(ε), ..., ϑq

M̃
(ε))⟩) : ε ∈ E}

= {⟨ε, (ζiM̃(ε))i∈Iq , (η
i
M̃(ε))i∈Iq , (ϑ

i
M̃(ε))i∈Iq⟩ : ε ∈ E} (5)

which assigns to each element ε a sequence of truth-membership information ζi
M̃
(ε) (i = 1, 2, ..., q), a

sequence of indeterminacy-membership information ηi
M̃
(ε) (i = 1, 2, ..., q), and a sequence of falsity-

membership information ϑi
M̃
(ε) (i = 1, 2, ..., q) with conditions

1

9
≤ ζiM̃(ε), ηiM̃(ε), ϑiM̃(ε) ≤ 9 and 0 < ζiM̃(ε)ϑiM̃(ε) ≤ 1 ∀i ∈ Iq (6)
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for each ε ∈ E . Further, the truth-membership sequence (ζi
M̃
(ε))i∈Iq = (ζ1

M̃
(ε), ζ2

M̃
(ε), ..., ζq

M̃
(ε))

may be in decreasing/increasing order, and the corresponding indeterminacy-membership se-

quence (ηi
M̃
(ε))i∈Iq = (η1

M̃
(ε), ζ2

M̃
(ε), ..., ζq

M̃
(ε)) and falsity-membership sequence (ϑi

M̃
(ε))i∈Iq =

(ϑ1
M̃
(ε), ϑ2

M̃
(ε), ..., ϑq

M̃
(ε)). Also, q is termed to be the dimension of SNMRS M̃. For convenience,

any element of M̃ can be represented as ψ = ⟨(ζi
M̃
)i∈Iq , (η

i
M̃
)i∈Iq , (ϑ

i
M̃
)i∈Iq)⟩ and it is said to be a

simplified neutrosophic multiplicative refined number (SNMRN).

From now on, SNMRS(E , q) denotes the collection of all q-dimension SNMRSs in E .

Example 3.2. Assume that E = {ε1, ε2, ε3, ε4} is the universal set where all the elements represent

some drugs suitable for different infections such as bronchitis, sinusitis, skin infections and ear infec-

tions. We can easily categorize these drugs according to their side effects. Thus, the (3-dimension)

SNMRS is given as follows:

M̃ =

{
(ε1, ⟨(14 , 1, 4), (1,

1
5 ,

1
2), (3,

2
5 ,

1
4)⟩), (ε2, ⟨(1, 3, 5), (

1
2 ,

1
4 , 2), (1,

1
4 ,

1
5)⟩),

(ε3, ⟨(19 ,
1
6 ,

1
2), (9, 1,

1
5), (2, 1,

1
2)⟩), (ε4, ⟨(

5
4 , 4, 5), (

1
4 , 4, 5), (

1
5 ,

1
5 ,

1
9)⟩)

}
.

Consider (ε1, ⟨(14 , 1, 4), (1,
1
5 ,

1
2), (3,

2
5 ,

1
4)⟩) ∈ M̃. Then, (14 , 1, 4) means the sequence of truth-

membership information (scaled between 1
9 and 9) of side effects of drug ε1. The sequences of

indeterminacy-membership information and falsity-membership information of ε1 can be interpreted

similarly.

Definition 3.3. Let M̃,M̃1,M̃2 ∈ SNMRS(E , q).

(a): If for each ε ∈ E ,

ζiM̃1
(ε) ≤ ζiM̃2

(ε), ηiM̃1
(ε) ≥ ηiM̃2

(ε), ϑiM̃1
(ε) ≥ ϑiM̃2

(ε) ∀i ∈ Iq

then M̃1 is an SNMR subset of M̃2, denoted by M̃1 ⊆ M̃2.

(b): If for each ε ∈ E ,

ζiM̃1
(ε) = ζiM̃2

(ε), ηiM̃1
(ε) = ηiM̃2

(ε), ϑiM̃1
(ε) = ϑiM̃2

(ε) ∀i ∈ Iq

then the SNMRSs M̃1 and M̃2 are equal, denoted by M̃1 = M̃2. That is, M̃1 = M̃2 iff

M̃1 ⊆ M̃2 and M̃2 ⊆ M̃1.

(c): The complement of M̃, is denoted and defined as

M̃c = {(ε, ⟨(ϑiM̃(ε))i∈Iq , (
1

ηi
M̃
(ε)

)i∈Iq , (ζ
i
M̃(ε))i∈Iq⟩) : ε ∈ E}.

where ( 1
ηi
M̃

(ε)
)i∈Iq represents the sequence ( 1

η1
M̃

(ε)
, 1
η2
M̃

(ε)
, ..., 1

ηq
M̃

(ε)
)

(d): The intersection of M̃1 and M̃2, denoted by M̃1 ∩ M̃2, is described as

M̃1 ∩ M̃2 =


 ε,

⟨ (
min{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq ,(

max{ηi
M̃1

(ε), ηi
M̃2

(ε)}
)
i∈Iq ,(

max{ϑi
M̃1

(ε), ϑi
M̃2

(ε)}
)
i∈Iq

⟩  : ε ∈ E

 .
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(e): The union of M̃1 and M̃2, denoted by M̃1 ∪ M̃2, is described as

M̃1 ∪ M̃2 =


 ε,

⟨ (
max{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq ,(

min{ηi
M̃1

(ε), ηi
M̃2

(ε)}
)
i∈Iq ,(

min{ϑi
M̃1

(ε), ϑi
M̃2

(ε)}
)
i∈Iq

⟩  : ε ∈ E

 .

For the sequences of truth-membership information in definitions of intersection and union of SNMRSs,(
min{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

= (min{ζ1
M̃1

(ε), ζ1
M̃2

(ε)},min{ζ2
M̃1

(ε), ζ2
M̃2

(ε)}, ...,min{ζq
M̃1

(ε), ζq
M̃2

(ε)}) and(
max{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

= (max{ζ1
M̃1

(ε), ζ1
M̃2

(ε)},max{ζ2
M̃1

(ε), ζ2
M̃2

(ε)}, ...,max{ζq
M̃1

(ε), ζq
M̃2

(ε)}). It can

be considered similar matches for the indeterminacy-membership information and falsity-membership

information in Definition 3.3 (d) and (e).

Theorem 3.4. Let M̃1,M̃2,M̃3 ∈ SNMRS(E , q).

(i): If M̃1 ⋆ M̃2 and M̃2 ⋆ M̃3 then M̃1 ⋆ M̃3 for each ⋆ ∈ {⊆,=}.
(ii): If M̃1 ⋆ M̃2 then (M̃1 • M̃3) ⋆ (M̃2 • M̃3) for each ⋆ ∈ {⊆,=} and • ∈ {∩,∪}.
(iii): M̃1 • M̃2 = M̃2 • M̃1 for each • ∈ {∩,∪}.
(iv): M̃1 • (M̃2 • M̃3) = (M̃1 • M̃2) • M̃3 for each • ∈ {∩,∪}.
(v): M̃1 • (M̃2�M̃3) = (M̃1 • M̃2)�(M̃1 • M̃3) for each •,� ∈ {∩,∪}.
(vi): (M̃1 • M̃2)

c = M̃c
1�M̃c

2 for each •,� ∈ {∩,∪} and • ̸= �.

Proof. Let us prove the properties (vi) for • = ∩ and � = ∪.
(iv): From Definition 3.3 (c) and (d), we can write

(M̃1 ∩ M̃2)
c =



 ε,

⟨ (
max{ϑi

M̃1
(ε), ϑi

M̃2
(ε)}

)
i∈Iq

,(
1

max{ηi
M̃1

(ε),ηi
M̃2

(ε)}

)
i∈Iq

,(
min{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

⟩  : ε ∈ E

 (7)

For the right side of the equality, we can write

M̃c
k = {⟨ε, (ϑiM̃k

(ε))i∈Iq , (
1

ηi
M̃k

(ε)
)i∈Iq , (ζ

i
M̃k

(ε))i∈Iq⟩ : ε ∈ E}.

for k = 1, 2 and so

M̃c
1 ∪ M̃c

2 =



 ε,

⟨ (
max{ϑi

M̃1
(ε), ϑi

M̃2
(ε)}

)
i∈Iq

,(
min{ 1

ηi
M̃1

(ε)
, 1
ηi
M̃2

(ε)
}
)
i∈Iq

,(
max{ζi

M̃1
(ε), ζi

M̃2
(ε)}

)
i∈Iq

⟩  : ε ∈ E

 (8)

Since ηi
M̃1

(ε), ηi
M̃2

(ε) ∈ [19 , 9] for all i ∈ Iq, the equality 1
max{ηi

M̃1
(ε),ηi

M̃2
(ε)} = min{ 1

ηi
M̃1

(ε)
, 1
ηi
M̃2

(ε)
} is

valid. So, from the Eqs. (7) and (8), we deduce that (M̃1 ∩ M̃2)
c = M̃c

1 ∪ M̃c
2. Proceeding with

similar calculations, it can be demonstrated that (M̃1 ∪ M̃2)
c = M̃c

1 ∩ M̃c
2.

By using similar techniques, the properties (i)-(v) can be proved, therefore they are omitted.
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Definition 3.5. For ψ = ⟨(ζi)i∈Iq , (ηi)i∈Iq , (ϑi)i∈Iq)⟩, the score, accuracy and certainty functions of ψ

are described respectively as follows:

fS(ψ) =
1

q

∑
i∈Iq

ζi

ηiϑi
(9)

fA(ψ) =
1

q

∑
i∈Iq

ζiϑi (10)

and

fC(ψ) =
1

q

∑
i∈Iq

ζi (11)

To compare two SNMRNs ψ1 and ψ2, the steps detailed below can be followed:

(1): if fS(ψ1) > fS(ψ2) then ψ1 ≻ ψ2,

(2): if fS(ψ1) < fS(ψ2) then ψ1 ≺ ψ2,

(3): if fS(ψ1) = fS(ψ2) then

(i): if fA(ψ1) > fA(ψ2) then ψ1 ≻ ψ2,

(ii): if fA(ψ1) < fA(ψ2) then ψ1 ≺ ψ2,

(iii): if fA(ψ1) = fA(ψ2) then

(a): if fC(ψ1) > fC(ψ2) then ψ1 ≻ ψ2,

(b): if fC(ψ1) < fC(ψ2) then ψ1 ≺ ψ2,

(c): if fC(ψ1) = fC(ψ2) then ψ1 = ψ2.

Example 3.6. If we take ψ1 = ⟨(14 ,
1
2 , 1), (3,

3
4 , 3), (1, 1,

1
2)⟩ and ψ2 = ⟨(12 , 1, 1), (

3
4 , 3, 3), (1,

1
2 ,

1
4)⟩ then

we get fS(ψ1) = fS(ψ2) =
17
36 . Since the score values of ψ1 and ψ2 are equal, by using the accuracy

function, we obtain fA(ψ1) = fA(ψ2) = 5
12 . By considering the certainty function, we calculate as

fC(ψ1) =
17
12 and fC(ψ2) =

3
4 . Thus, we have ψ1 ≻ ψ2 since fC(ψ1) > fC(ψ2).

Definition 3.7. Let ψ = ⟨(ζi)i∈Iq , (ηi)i∈Iq , (ϑi)i∈Iq)⟩, ψ1 = ⟨(ζi1)i∈Iq , (ηi1)i∈Iq , (ϑi1)i∈Iq)⟩ and ψ2 =

⟨(ζi2)i∈Iq , (ηi2)i∈Iq , (ϑi2)i∈Iq)⟩ be three SNMRNs and ω > 0 be a real number. Then, some operational

laws of SNMRNs are described as follows.

(a):

ψ1 ⊕ ψ2 =
⟨ ( (1+2ζi1)(1+2ζi2)−1

2

)
i∈Iq ,

( 2ηi1η
i
2

(2+ηi1)(2+ηi2)−ηi1η
i
2

)
i∈Iq ,

( 2ϑi
1ϑ

i
2

(2+ϑi
1)(2+ϑi

2)−ϑi
1ϑ

i
2

)
i∈Iq

⟩
.

(b):

ψ1 ⊗ ψ2 =
⟨ ( 2ζi1ζ

i
2

(2+ζi1)(2+ζi2)−ζi1ζ
i
2

)
i∈Iq ,

( (1+2ηi1)(1+2ηi2)−1
2

)
i∈Iq ,

( (1+2ϑi
1)(1+2ϑi

2)−1
2

)
i∈Iq

⟩
.

(c):

ωψ =
⟨ ( (1+2ζi)ω−1

2

)
i∈Iq ,

( 2(ηi)ω

(2+ηi)ω−(ηi)ω

)
i∈Iq ,

( 2(ϑi)ω

(2+ϑi)ω−(ϑi)ω

)
i∈Iq

⟩
.

(d):

ψω =
⟨ ( 2(ζi)ω

(2+ζi)ω−(ζi)ω

)
i∈Iq ,

( (1+2ηi)ω−1
2

)
i∈Iq ,

( (1+2ϑi)ω−1
2

)
i∈Iq

⟩
.
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(e):

ψc =
⟨ (

ϑi
)
i∈Iq ,

(
1
ηi

)
i∈Iq ,

(
ζi
)
i∈Iq

⟩
.

Example 3.8. We consider ψ1 and ψ2 given in Example 3.6. Then, we obtain

ψ1 ⊕ ψ2 =

⟨ ( (1+2× 1
4
)(1+2× 1

2
)−1

2 ,
(1+2× 1

2
)(1+2×1)−1

2 , (1+2×1)(1+2×1)−1
2

)
,( 2×3× 3

4

(2+3)(2+ 3
4
)−3× 3

4

,
2× 3

4
×3

(2+ 3
4
)(2+3)− 3

4
×3
, 2×3×3
(2+3)(2+3)−3×3

)
,(

2×1×1
(2+1)(2+1)−1×1 ,

2×1× 1
2

(2+1)(2+ 1
1
)−1× 1

2

,
2× 1

2
× 1

4

(2+ 1
2
)(2+ 1

4
)− 1

2
× 1

4

)
⟩

= ⟨(1, 5
2
, 4), (

9

23
,
9

23
,
9

8
), (

1

4
,
1

7
,
1

22
)⟩

and

ψc
1 = ⟨(1, 1, 1

2
), (

1

3
,
4

3
,
1

3
), (

1

4
,
1

2
, 1)⟩.

Theorem 3.9. Let ψ = ⟨(ζi)i∈Iq , (ηi)i∈Iq , (ϑi)i∈Iq)⟩, ψ1 = ⟨(ζi1)i∈Iq , (ηi1)i∈Iq , (ϑi1)i∈Iq)⟩ and ψ2 =

⟨(ζi2)i∈Iq , (ηi2)i∈Iq , (ϑi2)i∈Iq)⟩ be three SNMRNs and ω, ω1, ω2 > 0 be real numbers, then the following

properties are valid.

(i): ψ1 • ψ2 = ψ2 • ψ1 for each • ∈ {⊕,⊗}.
(ii): ω(ψ1 ⊕ ψ2) = ωψ1 ⊕ ωψ2.

(iii): (ψ1 ⊗ ψ2)
ω = ψω

1 ⊗ ψω
2 .

(iv): ω1ψ ⊕ ω2ψ = (ω1 + ω2)ψ.

(v): ψω1 ⊗ ψω2 = ψω1+ω2.

(vi): (ψ1 • ψ2)
c = ψc

1�ψc
2 for each •,� ∈ {⊕,⊗} and • ̸= �.

Proof. Considering Definition 3.7, they can be achieved with simple calculations and so omitted.

4. Correlation Coefficients for SNMRSs

In this section, we propose some types of correlation coefficients for the SNMRSs, which can be applied

to real-life problems.

Suppose that M̃1 = {⟨εj , (ζiM̃1
(εj))i∈Iq , (η

i
M̃1

(εj))i∈Iq , (ϑ
i
M̃1

(εj))i∈Iq⟩ : εj ∈ E} and M̃2 =

{⟨εj , (ζiM̃2
(εj))i∈Iq , (η

i
M̃2

(εj))i∈Iq , (ϑ
i
M̃2

(εj))i∈Iq⟩ : εj ∈ E} be any two q-dimension SNMRSs in the

universal set E = {εj : j = 1, 2, ...,m} where ζi
M̃1

(εj), η
i
M̃1

(εj), ϑ
i
M̃1

(εj), ζ
i
M̃2

(εj), η
i
M̃2

(εj), ϑ
i
M̃2

(εj) ∈
[19 , 9], 0 < ζi

M̃1
(εj)ϑ

i
M̃1

(εj) ≤ 1 and 0 < ζi
M̃2

(εj)ϑ
i
M̃2

(εj) ≤ 1 (i = 1, 2, ..., q) for each εj ∈ E . The

informational energies of SNMRSs M̃1 and M̃2 are defined as

T(M̃1) =
1

q

∑
i∈Iq

m∑
j=1

( ζiM1
(εj)

2(1 + ζiM1
(εj))

+
ηiM1

(εj)

2(1 + ηiM1
(εj))

+
ϑiM1

(εj)

2(1 + ϑiM1
(εj))

)
(12)

and

T(M̃2) =
1

q

∑
i∈Iq

m∑
j=1

( ζiM2
(εj)

2(1 + ζiM2
(εj))

+
ηiM2

(εj)

2(1 + ηiM2
(εj))

+
ϑiM2

(εj)

2(1 + ϑiM2
(εj))

)
(13)
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The correlation of the SNMRSs M̃1 and M̃2 is described as

C(M̃1,M̃2) =
1

q

∑
i∈Iq

m∑
j=1


2ζiM1

(εj)ζ
i
M2

(εj)

(2+ζiM1
(εj))(2+ζiM2

(εj))−ζiM1
(εj)ζiM2

(εj)

+
2ηiM1

(εj)η
i
M2

(εj)

(2+ηiM1
(εj))(2+ηiM2

(εj))−ηiM1
(εj)ηiM2

(εj)

+
2ϑi

M1
(εj)ϑ

i
M2

(εj)

(2+ϑi
M1

(εj))(2+ϑi
M2

(εj))−ϑi
M1

(εj)ϑi
M2

(εj)

 (14)

It is clear that the Eq. (14) has the following axioms.

(1) C(M̃1,M̃1) = T(M̃1).

(2) C(M̃1,M̃2) = C(M̃2,M̃1).

The correlation coefficients between two SNMRs M̃1 and M̃2 are defined as follows.

Definition 4.1. Let M̃1,M̃2 ∈ SNMRS(E , q). Then, the (type-1) correlation coefficient between

M̃1 and M̃2 is denoted and defined as

κ1(M1,M2) =
C(M̃1,M̃2)√
T(M̃1) · T(M̃2)

=

1
q

∑
i∈Iq

m∑
j=1


2ζiM1

(εj)ζ
i
M2

(εj)

(2+ζiM1
(εj))(2+ζiM2

(εj))−ζiM1
(εj)ζiM2

(εj)

+
2ηiM1

(εj)η
i
M2

(εj)

(2+ηiM1
(εj))(2+ηiM2

(εj))−ηiM1
(εj)ηiM2

(εj)

+
2ϑi

M1
(εj)ϑ

i
M2

(εj)

(2+ϑi
M1

(εj))(2+ϑi
M2

(εj))−ϑi
M1

(εj)ϑi
M2

(εj)


√√√√√√√√√√

1
q

∑
i∈Iq

m∑
j=1


ζiM1

(εj)

2(1+ζiM1
(εj))

+
ηiM1

(εj)

2(1+ηiM1
(εj))

+
ϑi
M1

(εj)

2(1+ϑi
M1

(εj))

×

√√√√√√√√√√
1
q

∑
i∈Iq

m∑
j=1


ζiM2

(εj)

2(1+ζiM2
(εj))

+
ηiM2

(εj)

2(1+ηiM2
(εj))

+
ϑi
M2

(εj)

2(1+ϑi
M2

(εj))



(15)

Theorem 4.2. Let M̃1,M̃2 ∈ SNMRS(E , q). For the (type-1) correlation coefficient between M̃1

and M̃2, the following properties are satisfied.

(i): M̃1 = M̃2 ⇒ κ1(M1,M2) = 1.

(ii): κ1(M1,M2) = κ1(M2,M1).

(iii): 1
9 ≤ κ1(M1,M2) ≤ 9.

Proof. The proofs of (i) and (ii) are obvious from the Eq. (15). Let us prove the assertion (iii).

(iii): Let M̃1,M̃2 ∈ SNMRS(E , q). Since for each εj ∈ E ,

1

9
≤ ζiM1

(εj) ≤ 9 ∀i ∈ Iq (16)

it implies that

1

20
≤ 1

2(1 + ζiM1
(εj))

≤ 9

20
∀i ∈ Iq (17)
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Hence, we obtain

(ζiM1
(εj))

2

20
≤

(ζiM1
(εj))

2

2(1 + ζiM1
(εj))

≤
9(ζiM1

(εj))
2

20
∀i ∈ Iq (18)

for each εj ∈ E . Likewise, for the indeterminacy-membership and falsity-membership, we obtain the

following inequalities:

(ηiM1
(εj))

2

20
≤

(ηiM1
(εj))

2

2(1 + ηiM1
(εj))

≤
9(ηiM1

(εj))
2

20
∀i ∈ Iq (19)

and

(ϑiM1
(εj))

2

20
≤

(ϑiM1
(εj))

2

2(1 + ϑiM1
(εj))

≤
9(ϑiM1

(εj))
2

20
∀i ∈ Iq (20)

for each εj ∈ E . By adding Eqs. (18), (19) and (20), we have

(ζiM1
(εj))

2 + (ηiM1
(εj))

2 + (ϑiM1
(εj))

2

20
≤

(ζiM1
(εj))

2

2(1 + ζiM1
(εj))

+
(ηiM1

(εj))
2

2(1 + ηiM1
(εj))

+
(ϑiM1

(εj))
2

2(1 + ϑiM1
(εj))

≤
9((ζiM1

(εj))
2 + (ηiM1

(εj))
2 + (ϑiM1

(εj))
2)

20
∀i ∈ Iq (21)

for each εj ∈ E . By using Eq. (12), we have the following inequality for informational energy of

SNMRS M1.

1

20q

∑
i∈Iq

m∑
j=1

 (ζiM1
(εj))

2

+(ηiM1
(εj))

2

+(ϑiM1
(εj))

2

 ≤ T(M̃1) ≤
9

20q

∑
i∈Iq

m∑
j=1

 (ζiM1
(εj))

2

+(ηiM1
(εj))

2

+(ϑiM1
(εj))

2

 (22)

Similarly, we can obtain the following inequality for informational energy of SNMRS M2.

1

20q

∑
i∈Iq

m∑
j=1

 (ζiM2
(εj))

2

+(ηiM2
(εj))

2

+(ϑiM2
(εj))

2

 ≤ T(M̃2) ≤
9

20q

∑
i∈Iq

m∑
j=1

 (ζiM2
(εj))

2

+(ηiM2
(εj))

2

+(ϑiM2
(εj))

2

 (23)

On the other hand, we can easily deduce that

ζiM1
(εj)ζ

i
M2

(εj)

20
≤

2ζiM1
(εj)ζ

i
M2

(εj)

(2 + ζiM1
(εj))(2 + ζiM2

(εj))− ζiM1
(εj)ζiM2

(εj)
≤

9ζiM1
(εj)ζ

i
M2

(εj)

20
∀i ∈ Iq (24)

for each εj ∈ E , and so

1

20q

∑
i∈Iq

m∑
j=1

ζiM1
(εj)ζ

i
M2

(εj) ≤
1

20q

∑
i∈Iq

m∑
j=1

2ζiM1
(εj)ζ

i
M2

(εj)

(2 + ζiM1
(εj))(2 + ζiM2

(εj))− ζiM1
(εj)ζiM2

(εj)

≤ 9

20q

∑
i∈Iq

m∑
j=1

ζiM1
(εj)ζ

i
M2

(εj) (25)
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Likewise, for the indeterminacy-membership and falsity-membership, the following results can be ob-

tained:

1

20q

∑
i∈Iq

m∑
j=1

ηiM1
(εj)η

i
M2

(εj) ≤
1

20q

∑
i∈Iq

m∑
j=1

2ηiM1
(εj)η

i
M2

(εj)

(2 + ηiM1
(εj))(2 + ηiM2

(εj))− ηiM1
(εj)ηiM2

(εj)

≤ 9

20q

∑
i∈Iq

m∑
j=1

ηiM1
(εj)η

i
M2

(εj) (26)

and

1

20q

∑
i∈Iq

m∑
j=1

ϑiM1
(εj)ϑ

i
M2

(εj) ≤
1

20q

∑
i∈Iq

m∑
j=1

2ϑiM1
(εj)ϑ

i
M2

(εj)

(2 + ϑiM1
(εj))(2 + ϑiM2

(εj))− ϑiM1
(εj)ϑiM2

(εj)

≤ 9

20q

∑
i∈Iq

m∑
j=1

ϑiM1
(εj)ϑ

i
M2

(εj) (27)

So, by using Eq. (15), we obtain

1
20q ξ

9
20q (

√
µ×

√
ν)

≤ κ1(M1,M2) ≤
9

20q ξ
1

20q (
√
µ×

√
ν)

(28)

and so

1

9

ξ
√
µ×

√
ν
≤ κ1(M1,M2) ≤ 9

ξ
√
µ×

√
ν

(29)

where

ξ =
∑
i∈Iq

m∑
j=1


ζiM1

(εj)ζ
i
M2

(εj)

+ηiM1
(εj)η

i
M2

(εj)

+ϑiM1
(εj)ϑ

i
M2

(εj)

 , µ =
∑
i∈Iq

m∑
j=1


(ζiM1

(εj))
2

+(ηiM1
(εj))

2

+(ϑiM1
(εj))

2

 , ν =
∑
i∈Iq

m∑
j=1


(ζiM2

(εj))
2

+(ηiM2
(εj))

2

+(ϑiM2
(εj))

2


Thus, we conclude that 1

9 ≤ κ1(M1,M2) ≤ 9.

Definition 4.3. Let M̃1,M̃2 ∈ SNMRS(E , q). Then, the (type-2) correlation coefficient between

M̃1 and M̃2 is denoted and defined as

κ2(M1,M2) =
C(M̃1,M̃2)

max{T(M̃1),T(M̃2)}

=

1
q

∑
i∈Iq

m∑
j=1


2ζiM1

(εj)ζ
i
M2

(εj)

(2+ζiM1
(εj))(2+ζiM2

(εj))−ζiM1
(εj)ζiM2

(εj)

+
2ηiM1

(εj)η
i
M2

(εj)

(2+ηiM1
(εj))(2+ηiM2

(εj))−ηiM1
(εj)ηiM2

(εj)

+
2ϑi

M1
(εj)ϑ

i
M2

(εj)

(2+ϑi
M1

(εj))(2+ϑi
M2

(εj))−ϑi
M1

(εj)ϑi
M2

(εj)



max


1
q

∑
i∈Iq

m∑
j=1


ζiM1

(εj)

2(1+ζiM1
(εj))

+
ηiM1

(εj)

2(1+ηiM1
(εj))

+
ϑi
M1

(εj)

2(1+ϑi
M1

(εj))

 , 1q
∑
i∈Iq

m∑
j=1


ζiM2

(εj)

2(1+ζiM2
(εj))

+
ηiM2

(εj)

2(1+ηiM2
(εj))

+
ϑi
M2

(εj)

2(1+ϑi
M2

(εj))





(30)
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Theorem 4.4. Let M̃1,M̃2 ∈ SNMRS(E , q). For the (type-2) correlation coefficient between M̃1

and M̃2, the following properties are valid.

(i): M̃1 = M̃2 ⇒ κ2(M1,M2) = 1.

(ii): κ2(M1,M2) = κ2(M2,M1).

(iii): 1
9 ≤ κ2(M1,M2) ≤ 9.

Proof. They can be demonstrated similar to the proof of Theorem 4.2.

5. An Application of Correlation Coefficients of SNMRSs in Medical Pattern Recognition

In order to demonstrate the application of the proposed correlation coefficients, we consider the fol-

lowing medical pattern recognition problem under the SNMRS environment.

Example 5.1. Scientists divided coronaviruses into four sub-groupings, called alpha, beta, gamma and

delta. Five of beta viruses can infect people: OC43, HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2

(COVID-19). Specially, we focus on three dangerous types of beta viruses: (1) MERS-CoV, (2) SARS-

CoV and (3) SARS-CoV-2. We consider the patterns of MERS-CoV, SARS-CoV and SARS-CoV-2

based on the symptoms which are specified by experts as sequences of truth-membership information,

indeterminacy-membership information and falsity-membership information (they are scaled between
1
9 and 9) as a result of investigation and experiments. Suppose that the patterns of MERS-CoV,

SARS-CoV and SARS-CoV-2 for the symptoms ε1, ε2 and ε3 (i.e., E = {ε1, ε2, ε3}) are given as follows

respectively.

P1 =


(ε1, ⟨(2, 4, 5, 7, 8), (35 , 1, 2,

5
2 , 6), (

1
3 ,

1
6 ,

1
5 ,

1
8 ,

1
9)⟩),

(ε2, ⟨(29 ,
1
2 , 1, 3, 4), (

1
4 , 2,

3
4 , 1, 5), (

1
8 , 1,

1
3 ,

1
5 ,

1
7)⟩),

(ε3, ⟨(19 ,
1
3 ,

1
2 , 1, 4), (

1
5 , 7,

2
3 ,

1
5 ,

1
2), (9, 3, 2, 1,

1
6)⟩)

 ,

P2 =


(ε1, ⟨(18 ,

1
2 , 2, 3, 7), (3,

1
2 , 1,

1
5 ,

1
7), (8, 1,

1
6 ,

1
7 ,

1
6)⟩),

(ε2, ⟨(13 ,
1
2 , 1, 4, 6), (

1
3 ,

1
4 ,

1
8 , 2,

1
3), (6, 2,

1
2 ,

1
4 ,

1
6)⟩),

(ε3, ⟨(13 ,
1
2 , 2, 3, 9), (6,

1
2 ,

1
3 , 4,

1
7), (1, 2,

1
4 ,

1
5 ,

1
9)⟩)


and

P3 =


(ε1, ⟨(1, 4, 5, 6, 9), (12 ,

1
5 ,

1
8 , 2, 1), (

1
3 ,

1
4 ,

1
5 ,

1
7 ,

1
9)⟩),

(ε2, ⟨(12 , 2, 3, 5, 8), (
1
4 ,

1
9 , 1, 3, 2), (

1
6 ,

1
2 ,

1
4 ,

1
7 ,

1
8)⟩),

(ε3, ⟨(13 ,
1
2 , 1, 2, 3), (

1
4 ,

1
7 , 1,

1
2 , 1), (2, 2,

1
6 ,

1
6 ,

1
9)⟩)

 .

Experts (or doctors) often come across slightly different versions (i.e., unknown patterns) of viruses:

MERS-CoV, SARS-CoV and SARS-CoV-2. Suppose that an expert come across an unknown pattern

P which will be reorganized as an SNMRS in E , where

P =


(ε1, ⟨(2, 4, 5, 7, 9), (13 ,

1
5 ,

1
8 , 2, 2), (

1
2 ,

1
4 ,

1
6 ,

1
7 ,

1
9)⟩),

(ε2, ⟨(14 ,
1
2 , 3, 4, 9), (

1
2 ,

1
9 , 1, 3, 4), (

1
4 ,

1
2 ,

1
4 ,

1
6 ,

1
9)⟩),

(ε3, ⟨(15 ,
1
3 , 1, 2, 4), (

1
4 ,

1
8 , 1,

1
2 , 1), (1, 2,

1
6 ,

1
6 ,

1
9)⟩)

 .
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The motivation of this problem is to classify the pattern P in one of the classes P1,P2 and P3. For

this purpose, the correlation coefficients κ1 and κ2 described in Eqs. (4.1) and (4.3) can be used.

By calculating the the (type-1) correlation coefficients between P and Pk (k = 1, 2, 3), we can get

κ1(P1,P) = 2.507027, κ1(P2,P) = 2.078367 and κ1(P3,P) = 2.727818

As a result of (type-1) correlation coefficients, the ranking of P1, P2 and P3 is obtained as P2 ≺ P1 ≺ P3,

and thus it is most convenient to classify the pattern P with the pattern P3 (SARS-CoV-2).

Similarly, by using Eq. (4.3), we have the following (type-2) correlation coefficients between P and Pk

(k = 1, 2, 3)

κ2(P1,P) = 2.365829, κ2(P2,P) = 2.032161 and κ2(P3,P) = 2.718598

Consequently, the ranking of these three patterns is P2 ≺ P1 ≺ P3, and therefore it is most convenient

to classify the pattern P with the pattern P3.

Comparison and Discussion: In 2018, Garg [14] proposed new correlation coefficients for IMSs and

presented their applications in handling decision making. For Examples 1, 2 and 3 in Section 4 of [14],

if we assume the 1-dimension simplified neutrosophic multiplicative refined value (i.e., simplified neu-

trosophic multiplicative value) ⟨ρ, 1, σ⟩ instead of the priority value ⟨ρ, σ⟩ of alternative under the IMS

environment then the proposed (type-1 and type-2) correlation coefficients (in this paper) can be ap-

plied to these problems and the comparison results in Table 2 are obtained.

Table 2. Results of comparing the proposed ones with the correlation coefficients of IMSs

Problems Ranking for correlation coefficients of IMSs Ranking for correlation coefficients of SNMRSs

Example 1 in [14]

K1(X4, X
∗) > K1(X1, X

∗) >

K1(X3,X
∗) > K1(X2,X

∗)

κ1(X4, X
∗) > κ1(X1, X

∗) >

κ1(X3,X
∗) > κ1(X2, X

∗)

K2(X4, X
∗) > K2(X1, X

∗) >

K2(X3,X
∗) > K2(X2,X

∗)

κ2(X4, X
∗) > κ2(X1, X

∗) >

κ2(X3,X
∗) > κ2(X2, X

∗)

Example 2 in [14]
K1(C2, P ) > K1(C1, P ) > K1(C3, P ) κ1(C2, P ) > κ1(C1, P ) > κ1(C3, P )

K2(C2, P ) > K2(C1, P ) > K2(C3, P ) κ2(C2, P ) > κ2(C1, P ) > κ2(C3, P )

Example 3 in [14]

K1(P,Q2) > K1(P,Q1) >

K1(P,Q5) > K1(P,Q3) > K1(P,Q4)

κ1(P,Q2) > κ1(P,Q1) >

κ1(P,Q5) > κ1(P,Q3) > κ1(P,Q4)

K2(P,Q2) > K2(P,Q5) >

K2(P,Q1) > K2(P,Q3) > K2(P,Q4)

κ2(P,Q2) > κ2(P,Q5) >

κ2(P,Q1) > κ2(P,Q3) > κ2(P,Q4)

In 2016, Broumi and Deli [7] studied the correlation measure of (simplified) neutrosophic refined sets

and applied them to the problems of medical diagnosis and pattern recognition. For Examples 4.1

and 4.2 in Section 4 of [7], considering the matches between 0 − 1 and 1
9 − 9 scales given in Table 1

in the Introduction for the priority value ⟨(T 1, T 2, ..., T p), (I1, I2, ..., Ip), (F 1, F 2, ..., F p)⟩ of alternative
under the (simplified) NRS environment, we can apply the proposed (type-1 and type-2) correlation

coefficients to these problems and the comparison results are presented in Table 3.
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Table 3. Results of comparing the proposed ones with the correlation coefficients of NRSs

Problems Ranking for correlation coefficient of NRSs Ranking for correlation coefficients of SNMRSs

Example 4.1 in [7]

ρNRS(P1, D2) > ρNRS(P1, D3) >

ρNRS(P1, D4) > ρNRS(P1, D1)

κ1(P1, D2) > κ1(P1, D3) >

κ1(P1, D4) > κ1(P1, D1)

ρNRS(P2, D3) > ρNRS(P2, D2) >

ρNRS(P2, D1) > ρNRS(P2, D4)

κ1(P2, D3) > κ1(P2, D2) >

κ1(P2, D1) > κ1(P2, D4)

ρNRS(P3, D3) > ρNRS(P3, D2) >

ρNRS(P3, D4) > ρNRS(P3, D1)

κ1(P3, D3) > κ1(P3, D2) >

κ1(P3, D4) > κ1(P3, D1)

Example 4.2 in [7]ρNRS(Pat.I, Pat.III) > ρNRS(Pat.II, Pat.III)
κ1(Pat.I, Pat.III) > κ1(Pat.II, Pat.III)

κ2(Pat.I, Pat.III) > κ2(Pat.II, Pat.III)

Consequently, we can say that the correlation coefficients of SNMRSs are generalized forms of correla-

tion coefficients of both IMSs and NRSs (by considering Table 1 in the Introduction). These support

that the range of application areas of the proposed correlation coefficients is quite wide and therefore

advantageous in many situations.

6. Conclusions

In this paper, we have established a new extension of SNMS named as SNMRS which is more efficient

and flexible structure to deal with ambiguity. The space for SNMRSs is larger than those of IMSs and

SNMSs. We have founded some significant results in the framework of SNMRS. We have presented

new correlation coefficients under the SNMRS environment and their application in medical pattern

recognition. We hope that the findings in this study will be helpful for researchers handling with var-

ious real-life problems that involve uncertainties. Further, the proposed approaches may be extended

in new directions including information fusion, aggregation and measures. The next research will aim

to explore the real-life applications related to the concepts based on the extensions of SNMRSs.
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Abstract:
In this paper, we discuss aggregation operators for single-valued neutrosophic N -soft numbers. Further, we develop single-

valued neutrosophic N -soft TOPSIS method based on single-valued neutrosophic N -soft aggregate operators in order to cumulate
the decisions of all experts according to the worth of experts’ opinion and parameters related to each alternative. For the final
decision, we use revised closeness index depending upon the distance measures of alternatives from single-valued neutrosophic
N -soft positive ideal solution and single-valued neutrosophic N -soft negative ideal solution. A numerical example is described
to illustrate the importance of the proposed method. A comparison of single-valued neutrosophic N -soft TOPSIS method with
single-valued neutrosophic TOPSIS method ensures the significance and trustworthiness of the proposed model.

Keywords: N -soft set, single-valued neutrosophic N -soft sets, TOPSIS method, MAGDM.

1 Introduction
In many field of life, the evaluation process is certainly switch from binary evaluation ({0, 1}) to non-binary evaluation ({0, 1, . . . , N − 1}), that
is, we are using the system of 5-stars, 4-stars or 3-stars instead of yes or no, in many disciplines of mathematical social sciences. Keeping in view
the importance of ranking system, Fatima et al. [7] introduced N -soft sets and decision making methods to handle problems basis on non-binary
evaluations. Apparently, N -soft set is an extension of soft set presented by Molodtsov [4], described all type of parametrization, while in N -soft
sets grades are assigned to the parameters that actually representing the level of alternatives with respect to the attributes. Further, Akram et al.
[28, 30] extended the concept of N -soft sets to fuzzy N -soft sets and intuitionistic fuzzy N -soft sets (IFNSfS). The intuitionistic fuzzy N -soft
set is describing the level of alternatives as well as the degree of membership and non-membership with their sum less than equal to zero. The
Pythagorean fuzzy set (PFS) was firstly presented by Yager [39] in which squares sum of degree of membership and non-membership should not
exceed one. Zhang [21] introduced the notion of Pythagorean fuzzy N -soft sets (PFNSfS).
Human decision nature has indeterminacy within the judgments of yes or no that is actually prescribed the indecision for the related object. Since
the PFSs and IFSs are not able to handle such part of decision nature independently, with limited range. Therefore, PFS and IFS will not be
applicable. This is the origin of neutrosophic sets (NSs) presented by Smarandache [13] in 1999. Later on, Wang et al. [20] developed the
concept of single-valued neutrosophic sets (SVNSs) to deal real life scientific problems having indeterminate information.Moreover, Singh [35, 36]
presented theory of three-way and multi-granular based n-valued neutrosophic logics introduced by Smarandache [15] in 2014. On the other hand,
Maji [34] and Jana et al. [2] combined the concept of soft sets with NSs and SVNSs, respectively. Many researchers work on TOPSIS method, like
Chen [3], Chu and Kysely [41] and Alguliyev [38] extended the TOPSIS method in fuzzy environment for solving multi-attribute group decision
making problems. Moreover, Gupta et al. [33] and Shen et al. [12] introduced the extended version of intuitionistic fuzzy TOPSIS method. Akram
et al. [31, 29] developed a theoretical description for the Pythagorean fuzzy TOPSIS method. Similarly, and also motivated by SVNSs , Sahin and
Yigider [40] used a single-valued neutrosophic-TOPSIS method to find the best supplier for production industry. Riaz et al. [32] being inspired by
N -soft sets, presented a model of neutrosophic N -soft sets (NNSfSs) with TOPSIS method that used relations and composition for evaluating
the NNSf positive ideal solution and negative ideal solution. They used similarity measures and choice function for solving MADM problem in
medical diagnosis. In this paper, we discuss aggregation operators for single-valued neutrosophic N -soft numbers. Further, we develop single-
valued neutrosophic N -soft TOPSIS method based on single-valued neutrosophic N -soft aggregate operators in order to cumulate the decisions of
all experts according to the worth of experts’ opinion and parameters related to each alternative. For the final decision, we use revised closeness
index depending upon the distance measures of alternatives from single-valued neutrosophic N -soft positive ideal solution and single-valued
neutrosophic N -soft negative ideal solution. A numerical example is described to illustrate the importance of the proposed method.
The rest of the paper is organized as follows: In Section 2, we represent the concept of SV NNSfS with related example. In Section 3, we
define SV NNSfN with some properties and operations, like score function, accuracy function, comparison between two SV NNSfNs, sum and
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product of SV NNSfNs, inclusively. Section 4, describes intellectual basics for the SV NNSfS-TOPSIS method for solving real life problems
within an algorithm. Section 5, presenting a MAGDM problem, which is sorted out using SV NNSfS-TOPSIS. In Section 6, we compare the
proposed model with the SVN-TOPSIS method. In Section 7 we give conclusions about the paper and future directions for research.

Definition 1. [13] Let Y be non-empty set. A neutrosophic set (NS) ρ over the universe of discourse Y is defined as:

ρ = 〈y, βρ(y), γρ(y), δρ(y) : y ∈ Y 〉,

where, βρ(y), γρ(y) and δρ(y) are degree of satisfaction, degree of indeterminacy and degree of dissatisfaction, respectively, belongs to non-
standard interval ]−0, 1+[, for every y ∈ Y.

Definition 2. [20] Let Y be non-empty set. A single-valued neutrosophic set (SV NS) ρ over the universe of discourse Y is defined as:

ρ = 〈y, βρ(y), γρ(y), δρ(y) : y ∈ Y 〉,

where, βρ(y), γρ(y) and δρ(y) ∈ [0, 1]. For every y ∈ Y, βρ(y), γρ(y) and δρ(y), the degree of the satisfaction, degree of indeterminacy and
degree of dissatisfaction, respectively, without any restriction on βρ(y), γρ(y) and δρ(y) or we can say that for all y ∈ Y,

0 ≤ βρ(y) + γρ(y) + δρ(y) ≤ 3.

The triplet (βρ(y), γρ(y), δρ(y)) is called single-valued neutrosophic number (SV NN).

Definition 3. [4] Let X be a non-empty set and E ⊆ A, A be a set of parameters. A pair (k, E) is called soft set SfS over X denoted as:

(k, E) = {〈ei,k(e)〉 : ∀ei ∈ E},

if k : E → P (X), where P (X) represents the family of all subsets of X.

Definition 4. Let X be a non-empty set and E ⊆ A, A be a set of parameters. A pair (Υ, E) is called single-valued neutrosophic soft set
(SV NSfS) over X, if Υ : E → P(X) is a mapping, which is denoted as:

Υ(ei) = {〈xj , (βij , γij , δij)〉 : xj ∈ X},

where, P(X) represents the family of all SVNSs over X and βij , γij , δij , which belongs to unit closed interval, are satisfying the condition

0 ≤ βij + γij + δij ≤ 3, ∀xj ∈ X.

Definition 5. [7] Let X be a non-empty set and E ⊆ A, A be a set of parameters. Let O = {0, 1, 2, . . . , N − 1} be a set of ordered grades with
N ∈ {2, 3, . . .}. A triple (H,E,N) is called N -soft set (NSfS) over X if H : E → 2U×G is a mapping , with the property that for each ei ∈ E
and xj ∈ X there exist a unique (xj , o

j
i ) ∈ X ×O such that (xj , o

j
i ) ∈ H(ej), xj ∈ X, oji ∈ O.

2 Single-valued neutrosophic N -soft numbers
Definition 6. Let X be a non-empty set and E ⊆ A, A be a set of parameters. Let O = {0, 1, 2, . . . , N − 1} be a set of ordered grades with
N ∈ {2, 3, . . .}. Let H : E → 2X×O be an NSfS on X, and T : E → P(SV NN), be a mapping, that P(SV NN) denotes the collection
of single-valued neutrosophic numbers of X, then a triple (HT , E,N) is called a single-valued neutrosophic N -soft set (SV NNSfS) on X, if
HT : E → (2X×O × P(SV NN)) is a mapping, which is defined as:

HT (ei) = {〈(H(ei), T (ei))〉 : ei ∈ E,H(ei) ∈ 2W×G, T (ei)× P(SV NN)},
= {〈((xj , oji ), (βei(xj), γei(xj), δei(xj)))〉},
= {〈((xj , oji ), (βij , γij , δij))〉},

where, oji denotes the level of attribute for the element xj and βij , γij , δij ∈ [0, 1], satisfying the condition

0 ≤ βij + γij + βij ≤ 3, for all xj belongs to X.
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Example 1. Mr. and Mrs. Bean decided to gift their child a bicycle on his 17th birthday because he needed a conveyance to go to college. For
this purpose, they visited plenty of websites online, among these websites they found a website named as “Cycling weekly”. This website provided
ratings of bicycles according to the parameters filtered by Mr. and Mrs. Bean. For the selection of a best bicycle based on ratings, we will use
SV NNSfS.
Let X = {x1 = Merida Mission Road 7000-E, x2 = Bianchi Infinity XE Ultegra Disc, x3 = Strider 12, x4 = Scott Iddict RC Pro, x5 =
Willier Cento 10 SL } be the set of five bicycles and the set of parameters be E = {e1 = Framework (stiffness and comfort frame), e2 = weight,
e3 = Shape and quality, e4 = Cost price }. Following the ratings of bicycles according to the parameters, a 6-soft set is organized in Table 1, where

Five checkmarks means ‘Infinitely Good’,

Four checkmarks means ‘Extremely Good’,

Three checkmarks means ‘Good’,

Two checkmarks means ‘Bad’,

One checkmarks means ‘Extremely Bad’,

Big dot means ‘Infinitely Bad’

This level assessment by checkmarks can be represented by numbers as O = {0, 1, 2, 3, 4, 5}, where

0 means “ • ” ,

1 means “X”,

2 means “XX”,

3 means “XXX”,

4 means “XXXX”.

5 means “XXXXX”.

Table 1: Evaluation data provided by the Website
X/E e1 e2 e3 e4
x1 X X XXX XXX
x2 XX • XXX XXXX
x3 XXXX XXX XXXX XXXXX
x4 XXXXX XXXX XXXXX XXX
x5 XXX XX XXXXX XXXX

Table 2 can be adopted as natural convention of 5-soft set model.

Table 2: A 6-soft set
X/E e1 e2 e3 e4
x1 1 1 3 3
x2 2 0 3 4
x3 4 3 4 5
x4 5 4 5 3
x5 3 2 5 4

In coalition with the Definition 6, we describe for example (x3, o32 = 3) ∈ H(e2) and (x5, o54 = 4) ∈ H(e4). This form of data is enough when
it is extracted from real data, however, when there is ambiguity in the data and experts wants to describe the viewpoint of customers based on
their satisfaction, hesitancy and dissatisfaction then we SV NNSfSs are appropriate which provide us information, how these grades are given
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to bicycles. The evaluation of bicycles follow this grading criteria;

when oji = 0, − 1.000 ≤ ST < − 0.787,

when oji = 1, − 0.787 ≤ ST < − 0.400,

when oji = 2, − 0.400 ≤ ST < 0.000,

when oji = 3, 0.000 ≤ ST < 0.400,

when oji = 4, 0.400 ≤ ST < 0.787,

when oji = 5, 0.787 ≤ ST < 1.000.

According to above grading criteria, we can obtain Table 3.

Table 3: Grading criteria
oji/T Satisfaction degree Indeterminacy degree Dissatisfaction degree

grades βij γij δij
oji = 0 [0.00, 0.15] [0, 0.450) [0.90, 1.00)

oji = 1 [0.15, 0.30) (0, 0.020) (0.70, 0.90)

oji = 2 [0.30, 0.50) [0, 0.140) (0.50, 0.70]

oji = 3 [0.50, 0.70) (0, 0.070] [0.30, 0.50]

oji = 4 (0.70, 0.90] [0, 0.070) [0.15, 0.30)

oji = 5 (0.90, 1.00] [0, 0.017) [0.00, 0.15)

Using Table 3 and Definition 6, a SV N6SfS that is also arranged in Table 4, is defined as:

(βe1 , γe1 , δe1) = {((x1, 1), (0.160, 0.300, 0.870)), ((x2, 2), (0.320, 0.015, 0.600)),

((x3, 4), (0.750, 0.012, 0.170)), ((x4, 5), (0.950, 0.011, 0.120)),

((x5, 3), (0.550, 0.030, 0.420))} ∈ SV NNSfS,
(βe2 , γe2 , δe2) = {((x1, 1), (0.270, 0.017, 0.710)), ((x2, 0), (0.120, 0.300, 0.950)),

((x3, 3), (0.560, 0.012, 0.380)), ((x4, 4), (0.870, 0.025, 0.230)),

((x5, 2), (0.400, 0.120, 0.620))} ∈ SV NNSfS,
(βe3 , γe3 , δe3) = {((x1, 3), (0.520, 0.020, 0.350)), ((x2, 3), (0.650, 0.010, 0.370)),

((x3, 4), (0.760, 0.033, 0.210)), ((x4, 5), (0.970, 0.013, 0.040)),

((x5, 5), (0.920, 0.014, 0.14))} ∈ SV NNSfS,

(βe4 , γe4 , δe4) = {((x1, 3), (0.550, 0.030, 0.360)), ((x2, 4), (0.750, 0.032, 0.200)), (1)

((x3, 5), (0.910, 0.016, 0.140)), ((x4, 3), (0.660, 0.017, 0.360)), (2)

((x5, 4), (0.780, 0.040, 0.290))} ∈ SV NNSfS. (3)

(4)

Definition 7. Let HT (ei) = {〈((xj , oji ), (βij , γij , δij))〉} be a SV NNSfS. Then the single-valued neutrosophic N -soft number (SV NNSfN)
is defined as:

ρij = (oji , (βij , γij , δij)),

where βij , γij and δij , belong to unit interval, are the degree of membership, indeterminacy and non-membership, respectively.

Remark 8. We see that:

1. For N = 2, SV NNSfS becomes single-valued neutrosophic soft set.

2. When |E| = 1, SV NNSfS becomes single-valued neutrosophic set.
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Table 4: A SV N6SfS (HT , E, 6)
(HT , E, 6) e1 e2 e3 e4

x1 (1, (0.160, 0.300, 0.870)) (1, (0.270, 0.017, 0.710)) (3, (0.520, 0.020, 0.350)) (3, (0.550, 0.030, 0.360))
x2 (2, (0.320, 0.015, 0.600)) (0, (0.120, 0.300, 0.950)) (3, (0.650, 0.010, 0.370)) (4, (0.750, 0.032, 0.200))
x3 (4, (0.750, 0.012, 0.170)) (3, (0.560, 0.012, 0.380)) (4, (0.760, 0.033, 0.210)) (5, (0.910, 0.016, 0.140))
x4 (5, (0.950, 0.011, 0.120)) (4, (0.870, 0.025, 0.230)) (5, (0.970, 0.013, 0.040)) (3, (0.660, 0.017, 0.360))
x5 (3, (0.550, 0.030, 0.420)) (2, (0.400, 0.120, 0.620)) (5, (0.920, 0.014, 0.140)) (4, (0.780, 0.040, 0.290))

Definition 9. Consider a SV NNSfN ρij = (oji , (βij , γij , δij)). The score function Sc(ρij) is defined as:

Sc(ρij) = (
oji

N − 1
) + βij − γij − δij ,

where Sc(ρ) ∈ [−2, 2]. The accuracy function Ac(ρij) is defined as:

Ac(ρij) = (
oji

N − 1
) + βij + γij + δij ,

where Ac(ρ) ∈ [0, 4], respectively.

Definition 10. Let ρij = (oji , (βij , γij , δij)) and
ρkj = (ojk, (βkj , γkj , δkj)), be two SV NNSfNs.

1. If Sc(ρij) < Sc(ρkj), then ρij < ρkj ,

2. If Sc(ρij) > Sc(ρkj), then ρij > ρkj ,

3. If Sc(ρij) = Sc(ρkj), then

(i) Ac(ρij) < Ac(ρkj), then ρij < ρkj ,

(ii) Ac(ρij) > Ac(ρkj), then ρij > ρkj ,

(iii) Ac(ρij) = Ac(ρkj), then ρij ∼ ρkj .

Definition 11. Let ρij = (oji , (βij , γij , δij))
and ρkj = (ojk, (βkj , γkj , δkj)) be two SV NNSfNs and ζ > 0. The operations for SV NNSfNs can be defined as:

ρij ∪ ρkj =
(

max(oji , o
j
k), (max(βij , βkj),min(γij , γkj),min(δij , δkj))

)
,

ρij ∩ ρkj =
(

min(oji , o
j
k), (min(βij , βkj),max(γij , γkj),max(δij , δkj))

)
,

ζρij =
(
oji , 1− (1− βij)ζ , γζij , δ

ζ
ij

)
,

ρζij =
(
oji , β

ζ
ij , 1− (1− γij)ζ , 1− (1− δij)ζ

)
,

ρij
⊕

ρkj =
(

max(oji , o
j
k), βij + βkj − βijβkj , γijγkj , δijδkj

)
,

ρij
⊗

ρkj =
(

min(oji , o
j
k), βijβkj , γij + γkj − γijγkj , δij + δkj − δijδkj

)
.

Definition 12. Let ρij = (oji , (βij , γij , δij))
and ρkj = (ojk, (βkj , γkj , δkj)) be any two SV NNSfNs, then the following properties hold:

1. ρij
⊕
ρkj = ρkj

⊕
ρij ,

2. ρij
⊗
ρkj = ρkj

⊗
ρij ,

3. ζρij
⊕
ζρkj = ζ(ρkj

⊕
ρij), ζ > 0,

4. ζ1ρij
⊕
ζ1ρij = (ζ1 + ζ2)ρij , ζ1, ζ2 > 0,

5. ρζij
⊗
ρζkj = (ρkj

⊗
ρij)

ζ , ζ > 0,

6. ρζ1ij
⊗
ρζ1ij = ρ

(ζ1+ζ2)
ij . ζ1, ζ2 > 0.
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Proof. 1. ρij
⊕
ρkj

=
(

max(oji , o
j
k), βij + βkj − βijβkj , γijγkj , δijδkj

)
,

=
(

max(ojk, o
j
i ), βkj + βij − βkjβij , γkjγij , δkjδij

)
,

= ρkj
⊕

ρij .

2. ρij
⊗
ρkj

=
(

min(oji , o
j
k), βijβij , γij + γkj − γijγkj , δij + δkj − δijδkj

)
=

(
min(ojk, o

j
i ), βkjβij , γkj + γij − γkjγij , δkj + δij − δkjδij

)
= ρkj

⊗
ρij .

3. ζρij
⊕
ζρkj

=
(
oji , [1− (1− βij)ζ ], γζij , δ

ζ
ij)
⊕

(ojk, [1− (1− βkj)ζ ], γζkj , δ
ζ
kj

)
=

(
max(oji , o

j
k), [1− (1− βij)ζ ] + [1− (1− βkj)ζ ]− [1− (1− βij)ζ ][1− (1− βkj)ζ ], γζijγ

ζ
kj , δ

ζ
ijδ

ζ
kj

)
=

(
max(oji , o

j
k), [1− (1− βij + βkj − βijβkj)ζ ], (γijγkj)ζ , (δijδkj)ζ

)
= ζ(max(oji , o

j
k), βij + βkj − βijβkj , γijγkj , δijδkj)

= ζ
(
ρij
⊕

ρkj
)
.

4. ζ1ρij
⊕
ζ1ρij

=
(
oji , 1− (1− βij)ζ1 , γζ1ij , δ

ζ1
ij )
⊕

(oji , 1− (1− βij)ζ2 , γζ2ij , δ
ζ2
ij

)
=

(
max(oji , o

j
i ), [1− (1− βij)ζ1 ] + [1− (1− βij)ζ2 ]− [1− (1− βij)ζ1 ][1− (1− βij)ζ2 ], γζ1ij γ

ζ2
ij , δ

ζ1
ij δ

ζ2
ij

)
=

(
oji , 1− (1− βij)ζ1+ζ2 , γζ1+ζ2ij , δζ1+ζ2ij

)
= (ζ1 + ζ2)ρij .

5. ρζij
⊗
ρζkj

=
(
oji , β

ζ
ij , [1− (1− γij)ζ ], [1− (1− δij)ζ ])

⊗
(ojk, β

ζ
kj , [1− (1− γkj)ζ ], [1− (1− δkj)ζ ]

)
=

(
min(oji , o

j
k), βζijβ

ζ
kj , [1− (1− γij)ζ ] + [1− (1− γkj)ζ ]− [1− (1− γij)ζ ][1− (1− γkj)ζ ]

, [1− (1− δij)ζ ] + [1− (1− δkj)ζ ]− [1− (1− δij)ζ ][1− (1− δkj)ζ ]
)
.

=
(

min(oji , o
j
k), (βijβkj)

ζ , [1− (1− γij + γkj − γijγkj)ζ ], [1− (1− γij + γkj − γijγkj)ζ ]
)

= (ρkj
⊗

ρij)
ζ .

6. ρζ1ij
⊗
ρζ1ij

M. A. Ashraf, M. A. Butt, Extension of TOPSIS method under single-valued neutrosophic N -soft environment.



Neutrosophic Sets and Systems, Vol. 41, 2021 292

=
(
oji , β

ζ1
ij , [1− (1− γij)ζ1 ], [1− (1− δij)ζ1 ])

⊗
(ojk, β

ζ2
ij , [1− (1− γij)ζ2 ], [1− (1− δij)ζ2 ]

)
=

(
min(oji , o

j
i ), β

ζ1
ij β

ζ2
ij , [1− (1− γij)ζ1 ] + [1− (1− γij)ζ2 ]− [1− (1− γij)ζ1 ][1− (1− γij)ζ2 ]

, [1− (1− δij)ζ1 ] + [1− (1− δij)ζ2 ]− [1− (1− δij)ζ1 ][1− (1− δij)ζ2 ]
)

=
(
oji , β

(ζ1+ζ2)
ij , [1− (1− γij)(ζ1+ζ2)], [1− (1− δij)(ζ1+ζ2)]

)
= ρ

(ζ1+ζ2
ij .

Definition 13. Let ρij = ρij = (oji , (βij , γij , δij))

(i = 1, 2, . . . , l) be a collection of SV NNSfNs and θi be the weight vectors (WV ) of ρij with θi > 0 and
l∑
i=1

θi = 1. The single-valued

neutrosophic N -soft weighted average operator
(SV NNSfWA) is a mapping SV NNSfWA : Bl → B, where B is the set of SV NNSfNs, defined as follows:

SV NNSfWA(ρ1j , ρ2j , . . . , ρlj) =

l⊕
i=1

(θiρij) (5)

=
(

l
max
i=1

(oji ), 1−Πl
i=1(1− βij)θi ,Πl

i=1(γij)
θi ,Πl

i=1(δij)
θi
)
. (6)

Definition 14. Let ρij = ρij = (oji , (βij , γij , δij))

(i = 1, 2, . . . , l) be a collection of SV NNSfNs and θi be the weight vectors (WV ) of ρij with θi > 0 and
l∑
i=1

θi = 1. The single-valued

neutrosophic N -soft ordered weighted average operator (SV NNSfOWA) is a mapping SV NNSfOWA :
Bl → B, where B is the set of SV NNSfNs, defined as follows:

SV NNSfOWA(ρ1j , ρ2j , . . . , ρlj) =
(
θ1ρφ(1j)

⊕
θ2ρφ(2j)

⊕
. . .
⊕

θlρφ(lj)

)
=

(
l

max
i=1

(oji ), 1−Πl
i=1(1− βφ(1j))θi ,Πl

i=1(γφ(1j))
θi ,Πl

i=1(δφ(1j))
θi
)
,

where, (φ(1j), φ(2j), . . . , φ(lj)) is a permutation of
(1j, 2j, . . . , lj) such that ρφ(ij) ≥ ρφ(kj), for all i < k, (i, k = 1, 2, . . . , l) and (j = 1, 2, . . . ,m).

Definition 15. Let ρij = ρij = (oji , (βij , γij , δij))

(i = 1, 2, . . . , l) be a collection of SV NNSfNs and θi be the weight vectors (WV ) of ρij with θi > 0 and
l∑
i=1

θi = 1. The single-valued

neutrosophicN -soft weighted geometric operator (SV NNSfWG) is a mapping SV NNSfWG : Bl → B, where B is the set of SV NNSfNs,
defined as follows:

SV NNSfWG(ρ1j , ρ2j , . . . , ρlj) =

l⊗
i=1

(ρij)
θi (7)

=

(
l

min
i=1

(oji ),Π
l
i=1(βij)

θi , 1−Πl
i=1(1− γij)θi , 1−Πl

i=1(1− δij)θi
)
. (8)

Definition 16. Let ρij = ρij = (oji , (βij , γij , δij)) (i = 1, 2, . . . , l) be a collection of SV NNSfNs and θi be the weight vectors (WV ) of

ρij with θi > 0 and
l∑
i=1

θi = 1. The single-valued neutrosophic N -soft ordered weighted geometric operator (SV NNSfOWG) is a mapping

SV NNSfOWG : Bl → B, where B is the set of SV NNSfNs, defined as follows:
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SV NNSfOWG(ρ1j , ρ2j , . . . , ρlj) =
(
ρφ(1j)θ1

⊗
ρφ(2j)θ2

⊗
. . .
⊗

ρφ(lj)θl

)
=

(
l

min
i=1

(oji ),Π
l
i=1(βφ(1j))

θi , 1−Πl
i=1(1− γφ(1j))θi , 1−Πl

i=1(1− δφ(1j))θi
)
,

where, (φ(1j), φ(2j), . . . , φ(lj)) is a permutation of (1j, 2j, . . . , lj) such that ρφ(ij) ≥ ρφ(kj), for all i < k, (i, k = 1, 2, . . . , l) and (j =
1, 2, . . . ,m).

3 Single-valued neutrosophic N -soft TOPSIS method
In this section, we extend TOPSIS method to the environment of SV NNSfSs that will be used to find out an alternative that is nearest to
the positive ideal solution (PIS) and farthest from the negative ideal solution (NIS) as the feasible solution of MAGDM problem. Let E =
{E1, E2, E3, . . . , Em} denote the set of attributes decided by the experts D̃1, D̃2, D̃3, . . . , D̃p, for the alternatives X = {X1, X2, X3, . . . , Xq},

according to the MAGDM problems. The experts decisions weighted through the weight vector θ = (θ1, θ2, θ3, . . . , θp)
T with

p∑
r=1

θ = 1, where

θr ∈ [0, 1]. The step by step procedure for SV NNSf -TOPSIS method is as follows:

3.1 Formulation of decision matrices of each experts
Each expert assigns ranking, corresponding to each linguistic term, to the alternatives after thoroughly observing the attributes and MAGDM
problem. The ranking provided by the experts is actually denoting NSfS related to each expert. According to the proficiencies of the MAGDM
problem, grading criteria defined by the experts according to which SV NNSfN is assigned toNSfS, that is associated with each expert. Further,
a single-valued neutrosophic N -soft decision matrix (SV NNSfDM) G(r) = (G

(r)
ij )j×i, is assembled by rth expert D̃r. So p SV NNSfDMs,

G(1), G(2), . . . , G(p), are formed as follows:

G(r) =


(o11

(r)
, β

(r)
11 , γ

(r)
11 , δ

(r)
11 ) (o12

(r)
, β

(r)
12 , γ

(r)
12 , δ

(r)
12 ) . . . (o1m

(r)
, β

(r)
1m, γ

(r)
1m, δ

(r)
1m)

(o21
(r)
, β

(r)
21 , γ

(r)
21 , δ

(r)
21 ) (o22

(r)
, β

(r)
22 , γ

(r)
22 , δ

(r)
22 ) . . . (o2m

(r)
, β

(r)
2m, γ

(r)
2m, δ

(r)
2m)

...
...

. . .
...

(oq1
(r), β

(r)
q1 , γ

(r)
q1 , δ

(r)
q1 ) (oq2

(r), β
(r)
q2 , γ

(r)
q2 , δ

(r)
q2 ) . . . (oqm

(r), β
(r)
qm, γ

(r)
qm, δ

(r)
qm)

 ,

where, G(r)
ij = ((oji )

(r), β
(r)
ij , γ

(r)
ij , δ

(r)
ij ), j = {1, 2, 3, . . . , q}, i = {1, 2, 3, . . . ,m} and r = {1, 2, 3, . . . , p}.

3.2 Formulation of aggregated single-valued neutrosophic N -soft decision matrix
The SV NNSfWA operator or SV NNSfWG operator, given in Equations 5 and 7, are used to summarize the SV NNSfDMs related to each
expert, known as aggregated single-valued neutrosophic N -soft decision matrix (ASV NNSfDM), is calculated as follows:

G = SV NNSfWA(G
(1)
ij , G

(2)
ij , . . . , G

(r)
ij );

or
G = SV NNSfWG(G

(1)
ij , G

(2)
ij , . . . , G

(r)
ij );

The ASV NNfSDM denoted as:

G =


(o11, β11, γ11, δ11) (o12, β12, γ12, δ12) . . . (o1m, β1m, γ1m, δ1m)
(o21, β21, γ21, δ21) (o22, β22, γ22, δ22) . . . (o2m, β2m, γ2m, δ2m)

...
...

. . .
...

(oq1, βq1, γq1, δq1) (oq2, βq2, γq2, δq2) . . . (oqm, βqm, γqm, δqm)

 .

3.3 Calculation for weight vector of attributes
The value and importance of the attributes variate according to the MAGDM problem. The experts assigned rank to each attribute as weigh-
tage, keeping in view the expertise of the alternatives in the MAGDM problem. Using grading criteria, SV NNSfN assigned to each rank,
i.e., µ(r)

i = (o
(r)
i , β

(r)
i , γ

(r)
i , δ

(r)
i ) be the weight of ith attribute given by the rth expert in the decision maker panel. The weight vector µ =

(µ1, µ2, . . . , µm)T = (oi, βi, γi, δi) is accumulated, by using the SV NNSfWA operator or SV NNSfWG operator given in Equations 5 and
7, as follows:

µi = SV NNSfWA(µ
(r)
1 , µ

(r)
2 , . . . , µ(r)

m );
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or
µi = SV NNSfWG(µ

(r)
1 , µ

(r)
2 , . . . , µ(r)

m ).

3.4 Formulation of aggregated weighted single-valued neutrosophic N -soft decision matrix
The ASV NNfSDM and the weightage µi corresponding to each attribute Ei are used to calculate the aggregated weighted single-valued neu-
trosophic N -soft decision matrix
(AWSV NNSfDM) as follows:

G̃ = G
⊗

µi

= (min((oji ), oi), βijβi, γij + γi − γijγi, δij + γi − γijγi)
= (õji , β̃ij , γ̃ij , δ̃ij).

So that the AWSV NNSfDM is:

G̃ =


(õ11, β̃11, γ̃11, δ̃11) (õ12, β̃12, γ̃12, δ̃12) . . . (õ1m, β̃1m, γ̃1m, δ̃1m)

(õ21, β̃21, γ̃21, δ̃21) (õ22, β̃22, γ̃22, δ̃22) . . . (õ2m, β̃2m, γ̃2m, δ̃2m)
...

...
. . .

...
(õq1, β̃q1, γ̃q1, δ̃q1) (õq2, β̃q2, γ̃q2, δ̃q2) . . . (õqm, β̃qm, γ̃qm, δ̃qm)

 .

3.5 Formulation of single-valued neutrosophic N -soft ideal solution
The score value and the accuracy value are used to evaluate the single-valued neutrosophic positive ideal solution SV NNfS-PIS and single-valued
neutrosophic N -soft negative ideal solution SV NNSf -NIS on the basis of cost-type attributes and benefit-type attributes. Let Ac and Ab be the
collection of cost-type attributes and benefit-type attributes, respectively, that are chosen according to the nature of the MAGDM problem. Now,
relative to the attribute Ei the SV NNSf -PIS can be calculated as follows:

Gi =


q

max
j=1
G̃ij , if Ei ∈ Ab,

q

min
j=1
G̃ij , if Ei ∈ Ac,

(9)

and the SV NNSf -NIS is computed as:

Gi =


q

max
j=1
G̃ij , if Ei ∈ Ac,

q

min
j=1
G̃ij , if Ei ∈ Ab.

(10)

The SV NNSf -PIS and SV NNSf -NIS are denoted as: Gi = (oi, βi, γi, δi), andGi = (oi, βi, γi, δi), respectively.

3.6 Evaluation of normalized Euclidean distance
To find out best solution, we have to identify the nearest and farthest alternative from the SV NNSf -PIS and SV NNSf -NIS, respectively.
For this purpose, we computed normalized Euclidean distance of SV NNSf -PIS and SV NNSf -NIS from each alternative, simultaneously, as
follows:

d(Gi, Xj) =
( 1

4i

m∑
i=1

[
((

oi
N − 1

)− (
õji

N − 1
))2 + (βi − β̃ij)

2 + (γi − γ̃ij)
2 + (δi − δ̃ij)2

])
.

The normalized Euclidean distance between the SV NNSf -NIS and any of the alternative Xj , can be evaluated as follows:

d(Gi, Xj) =
( 1

4i

m∑
i=1

[
((

oi
N − 1

)− (
õji

N − 1
))2 + (β

i
− β̃ij)2 + (γ

i
− γ̃ij)2 + (δi − δ̃ij)

2
])
.

3.7 Computation of revised closeness index
We have to use some ranking index to compare the alternatives as we have alternatives having maximum distance from SV NNSf -PIS as well as
the minimum distance from SV NNSf -NIS. Therefore, the revised closeness index modified by Gundogdu and Kahraman [11] for the selection
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of optimal solution is as follows:

ψ(Xj) =
d(Gi, Xj)

min
j
d(Gi, Xj)

− d(Gi, Xj)

max
j
d(Gi, Xj)

, (11)

where, i = 1, 2, . . . ,m.
Clearly, the closed index in Equation 14, generates zero or negative outputs, therefore we prefer this modified relation given in Equation 11 for
SV NNSf -TOPSIS method as it gives zero or positive results.

3.8 Order of alternatives
The alternatives are arranged in ascending order with respect to the revised closeness index and the alternative with lowest value is considered as
the most suitable solution of the MAGDM problem.
The algorithm and the flowchart of the proposed SV NNSf -TOPSIS method is given in Algorithm 1. For solving a MAGDM problem, the Algo-
rithm 1 is given as:

Algorithm 1: Steps to deal MAGDM problem by
SV NNf -TOPSIS method

1. Input:
X : Set of alternatives,
E : Set of attributes,
θ : WV for experts D̃r,
NSfS : (H,E,N) with O = {0, 1, 2, 3, . . . , N − 1}, N ∈ {1, 2, 3, . . .},

2. Construct the SV NNSfDM G(r), corresponding to each ordered grade for the element Xj .

3. Evaluate the ASV NNSfDM using equation

Gij =

(
p

max
r=1

(oji )
(r), 1−

p∏
r=1

(1− (β
(r)
ij ))θr ,

p∏
r=1

(γ
(r)
ij )θr ,

p∏
r=1

(δ
(r)
ij )θr

)
.

4. Calculating the weight vector µ = (µ1, µ2, . . . , µm)T for attributes as follows:

µi =

(
p

max
r=1

(o
(r)
i ), 1−

p∏
r=1

(1− (β
(r)
i ))θr ,

p∏
r=1

(γ
(r)
i )θr ,

p∏
r=1

(δ
(r)
i )θr

)
.

5. Compute the AWSV NNSfDM using ASV NNSfDM and the weight vector of attributes µi, as follows:

G̃ = (min((oji ), oi), βijβi, γij + γi − γijγi, δij + δi − δijδi).

6. Identify the SV NNSf PIS and SV NNSf NIS, using Equations (9) and (10).

7. Compute the normalized Euclidean distance of CSV NNSf PIS and CSV NNSf NIS from each alternative, respectively.

8. Calculate the revised closeness index.

9. Rank the alternatives in ascending order with respect to the revised closeness index.

Output: The alternative with least revised closeness index
will be the decision.

4 Application
In this section, we solve a multi-attribute group decision making (MADM) problem using SV NNSf − TOPSIS method for the selection of
branch manager in Quiqup company(courier company), UAE.

4.1 Selection for the post of branch manager in Quiqup company, UAE
The courier companies are serving as a bridge between the sellers and the customers that enhance the M-Commerce which is a shopping online
through smartphone. M-Commerce has enabled us to have a lot of free time that we can sell or buy anything, anytime within a seconds and through
courier companies. In UAE, the online shopping arena has been making tremendous growth in the past 10-years. For this purpose there are so
many companies in UAE, one of them is Quiqup company in which courier drivers are specifically appointed for placing orders at the right place
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where the branch manager has to look after the overall records of the couriers. For the post of branch manager, three decision makers shortlisted
five courier drivers for further evaluations. The experts D̃1, D̃2andD̃3 analyzed courier drivers, named as {X1 = Bahzad,X2 = Naqash,X3 =
Zakwan,X4 = Soreach,X5 = Waqas}, on the basis of the following parameters {E1 = Experience, X2 = Education, X3 = courier services
, X4 = Fines and Expenditures, X5 = Behaviour }. The weight vector for the experts is θ = (0.4, 0.3, 0.3)T according to this MAGDM problem.

Step 1: According to these attributes each expert model 6-soft set in Table 5, where,

Five stars means ‘Infinitely Good’,

Four stars means ‘Extremely Good’,

Three stars means ‘Good’,

Two stars means ‘Bad’,

One stars means ‘Extremely Bad’,

Big dot means ‘Infinitely Bad’

Table 3 represents the grading criteria, used for assigning the SV NNSfN corresponding to each rank by the expert D̃1, D̃2 and D̃3

arranged in Tables 6, 7 and 8, respectively.

Table 5: Experts’ opinion related to parameters
Parameters Alternatives D̃1 D̃2, D̃3

E1 X1 ∗ ∗ = 2 ∗ ∗ ∗ = 3 ∗ = 1
X2 ∗ = 1 ∗ ∗ = 2 ∗ ∗ = 2
X3 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ = 4
X4 ∗ ∗ = 2 ∗ ∗ ∗ = 3 ∗ ∗ ∗ = 3
X5 • = 0 ∗ = 1 ∗ ∗ = 2

E2 X1 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ = 3
X2 ∗ = 1 • = 0 ∗ = 1
X3 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ ∗ = 5
X4 ∗ ∗ ∗ = 3 ∗ = 1 • = 0
X5 ∗ ∗ = 2 ∗ = 1 ∗ ∗ = 2

E3 X1 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ ∗ = 5
X2 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4
X3 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗∗ = 4
X4 ∗ = 1 ∗ ∗ ∗ = 3 ∗ ∗ ∗ = 3
X5 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3

E4 X1 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ ∗ = 5
X2 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ ∗ = 5
X3 ∗ ∗ ∗ = 3 ∗ ∗ = 2 ∗ ∗ ∗ ∗ = 4
X4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ ∗∗ = 4
X5 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4

E5 X1 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4
X2 ∗ ∗ = 2 ∗ ∗ = 2 ∗ ∗ = 2
X3 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ ∗ = 5 ∗ ∗ ∗ ∗ ∗ = 5
X4 ∗ ∗ ∗ = 3 ∗ ∗ ∗ = 3 ∗ ∗ ∗ = 3
X5 ∗ = 1 ∗ = 1 ∗ = 1

Table 6: SV NNSfDM of expert D̃1

(H
(1)
J , E, 6) E1 E2 E3 E4 E5

X1 (2, (0.410, 0.125, 0.610)) (4, (0.710, 0.030, 0.250)) (3, (0.690, 0.068, 0.480)) (4, (0.720, 0.040, 0.260)) (4, (0.730, 0.050, 0.270))
X2 (1, (0.290, 0.018, 0.810)) (1, (0.280, 0.017, 0.790)) (4, (0.740, 0.060, 0.220)) (4, (0.750, 0.550, 0.170)) (2, (0.460, 0.132, 0.160))
X3 (5, (0.980, 0.010, 0.020)) (4, (0.870, 0.012, 0.160)) (5, (0.970, 0.015, 0.016)) (3, (0.680, 0.0350, 0.410)) (5, (0.990, 0.010, 0.014))
X4 (2, (0.430, 0.129, 0.630)) (3, (0.660, 0.036, 0.430)) (1, (0.270, 0.016, 0.780)) (4, (0.760, 0.057, 0.180)) (3, (0.670, 0.034, 0.420))
X5 (0, (0.500, 0.300, 0.800)) (2, (0.420, 0.127, 0.620)) (3, (0.650, 0.037, 0.440)) (5, (0.910, 0.016, 0.140)) (1, (0.260, 0.015, 0.770))

Step 2: The ASV NNSfDM formulated by aggregation formula defined in Algorithm 1(3). The accumulated opinions of all experts is shown in
Table 9.

Step 3: According to the MAGDM problem, experts assigned ratings to parameters to explain their significance related to each alternatives.
Further, the ratings are replaced by SV NNSfNs, shown in Table 10, and the weight vector µ cumulated using Algorithm 1(step 4) is
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Table 7: SV NNSfDM of expert D̃2

(H
(2)
J , E, 6) E1 E2 E3 E4 E5

X1 (3, (0.640, 0.038, 0.450)) (5, (0.950, 0.015, 0.130)) (4, (0.780, 0.058, 0.190)) (3, (0.630, 0.039, 0.460)) (4, (0.790, 0.059, 0.210))
X2 (2, (0.440, 0.130, 0.640)) (0, (0.510, 0.310, 0.810)) (3, (0.620, 0.040, 0.470)) (5, (0.920, 0.016, 0.140)) (2, (0.470, 0.133, 0.670))
X3 (5, (0.980, 0.011, 0.009)) (5, (0.995, 0.008, 0.007)) (5, (0.975, 0.007, 0.006)) (2, (0.450, 0.131, 0.650)) (5, (0.960, 0.004, 0.040))
X4 (3, (0.610, 0.041, 0.480)) (1, (0.250, 0.014, 0.760)) (3, (0.620, 0.042, 0.490)) (3, (0.630, 0.043, 0.350)) (3, (0.640, 0.044, 0.360))
X5 (1, (0.240, 0.013, 0.750)) (1, (0.230, 0.012, 0.740)) (4, (0.810, 0.061, 0.220)) (4, (0.820, 0.062, 0.230)) (1, (0.220, 0.011, 0.730))

Table 8: SV NNSfDM of expert D̃3

(H
(3)
J , E, 6) E1 E2 E3 E4 E5

X1 (1, (0.210, 0.010, 0.720)) (3, (0.510, 0.045, 0.370)) (5, (0.915, 0.013, 0.120)) (5, (0.925, 0.014, 0.100)) (4, (0.830, 0.064, 0.250))
X2 (2, (0.490, 0.135, 0.550)) (1, (0.200, 0.009, 0.710)) (4, (0.820, 0.063, 0.240)) (5, (0.930, 0.010, 0.110)) (2, (0.480, 0.134, 0.680))
X3 (4, (0.710, 0.015, 0.165)) (5, (0.970, 0.005, 0.006)) (4, (0.840, 0.065, 0.260)) (4, (0.850, 0.066, 0.270)) (5, (0.983, 0.005, 0.050))
X4 (3, (0.520, 0.046, 0.380)) (0, (0.520, 0.320, 0.820)) (3, (0.530, 0.047, 0.390)) (4, (0.860, 0.067, 0.280)) (3, (0.540, 0.048, 0.290))
X5 (2, (0.350, 0.136, 0.560)) (2, (0.360, 0.137, 0.570)) (3, (0.550, 0.049, 0.330)) (4, (0.870, 0.068, 0.290)) (1, (0.190, 0.008, 0.700))

Table 9: Aggregated single-valued neutrosophic N -soft decision matrix
G E1 E2 E3 E4 E5

X1 (3, (0.466, 0.043, 0.572)) (5, (0.821, 0.026, 0.219)) (5, (0.801, 0.042, 0.245)) (5, (0.778, 0.030, 0.250)) (4, (0.780, 0.056, 0.242))
X2 (2, (0.398, 0.060, 0.677)) (1, (0.354, 0.040, 0.776)) (4, (0.729, 0.052, 0.293)) (5, (0.878, 0.058, 0.142)) (2, (0.468, 0.132, 0.668))
X3 (5, (0.964, 0.011, 0.026)) (5, (0.971, 0.008, 0.024)) (5, (0.957, 0.016, 0.022)) (4, (0.680, 0.065, 0.434)) (5, (0.981, 0.006, 0.028))
X4 (3, (0.522, 0.066, 0.504)) (3, (0.511, 0.044, 0.616)) (3, (0.480, 0.029, 0.557)) (4, (0.756, 0.054, 0.254)) (3, (0.630, 0.040, 0.362))
X5 (2, (0.379, 0.082, 0.715)) (2, (0.344, 0.056, 0.646)) (4, (0.699, 0.047, 0.321)) (5, (0.874, 0.036, 0.200)) (1, (0.229, 0.011, 0.738))

given as follows:

µ =


(5, (0.932, 0.027, 0.204))
(3, (0.815, 0.037, 0.541))
(4, (0.914, 0.026, 0.266))
(4, (0.525, 0.047, 0.499))
(5, (0.657, 0.035, 0.278))

 .

Table 10: Ratings of experts about parameters
E1 E2 E3 E4 E5

D̃1 (4, (0.820, 0.040, 0.250)) (3, (0.600, 0.020, 0.40)) (4, (0.800, 0.025, 0.200)) (1, (0.200, 0.040, 0.850)) (2, (0.350, 0.100, 0.600))

D̃2 (5, (0.920, 0.010, 0.550)) (2, (0.370, 0.090, 0.550)) (3, (0.660, 0.030, 0.410)) (4, (0.760, 0.030, 0.220)) (4, (0.750, 0.020, 0.210))

D̃3 (3, (0.680, 0.061, 0.041)) (1, (0.270, 0.030, 0.554)) (4, (0.770, 0.025, 0.230)) (2, (0.360, 0.120, 0.670)) (5, (0.950, 0.015, 0.127))

Step 4: We usedG and weight vector µ of parameters for availing the AWSV NNSfDM summarized in Table 11.

Table 11: Aggregated weighted single-valued neutrosophic N -soft decision matrix
G E1 E2 E3 E4 E5

X1 (3, (0.430, 0.068, 0.659)) (3, (0.699, 0.062, 0.641)) (4, (0.732, 0.066, 0.446)) (4, (0.408, 0.076, 0.624)) (4, (0.512, 0.089, 0.452))
X2 (2, (0.367, 0.085, 0.742)) (1, (0.288, 0.075, 0.897)) (4, (0.666, 0.076, 0.481)) (4, (0.460, 0.102, 0.570)) (2, (0.307, 0.162, 0.760))
X3 (5, (0.890, 0.038, 0.224)) (3, (0.791, 0.044, 0.552)) (4, (0.874, 0.042, 0.282)) (4, (0.460, 0.108, 0.716)) (5, (0.644, 0.040, 0.298))
X4 (3, (0.481, 0.091, 0.605)) (3, (0.416, 0.079, 0.824)) (3, (0.438, 0.054, 0.674)) (4, (0.396, 0.098, 0.626)) (3, (0.414, 0.074, 0.539))
X5 (2, (0.350, 0.106, 0.773)) (2, (0.280, 0.090, 0.838)) (4, (0.638, 0.072, 0.502)) (4, (0.458, 0.081, 0.599)) (1, (0.150, 0.046, 0.810))

Step 5: The parameters experiences, customer services, education and behaviour are benefit-type parameters while the fines and expenditures is
cost-type parameter .Keeping in view the nature of parameters and applying Equation 9 and 10 SV NNSf -PIS and SV NNSf -NIS are
evaluated, arranged in Table 12.
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Table 12: SV NNSf -PIS and CSV NNSf -NIS
Attribute CSV NNSf -PIS SV NNSf -NIS

z1 (5, (0.890, 0.038, 0.224)) (2, (0.350, 0.106, 0.773))
z2 (3, (0.791, 0.044, 0.552)) (1, (0.288, 0.075, 0.897))
z3 (4, (0.874, 0.042, 0.282)) (3, (0.438, 0.054, 0.674))
z4 (4, (0.460, 0.108, 0.716)) (4, (0.460, 0.102, 0.570))
z5 (5, (0.644, 0.040, 0.298)) (1, (0.150, 0.046, 0.810))

Step 6: The normalized Euclidean distance, from each alternative to SV NNSf -PIS and SV NNSf -NIS, is given in Table 13.

Table 13: Normalized Euclidean distance from ideal solution
Alternative d(Gk, Xj) d(Gk, Xj)

X1 0.0361 0.0640
X2 0.1122 0.0390
X3 0.0005 0.1540
X4 0.0679 0.0302
X5 0.1327 0.0070

Step 7: The revised closeness index of each alternative is calculated by utilizing Equation 11, given in Table 14.

Table 14: Revised closeness index of each alternative
Alternative ψ(Xj)

X1 6.8044
X2 22.186
X3 0
X4 13.3838
X5 26.4945

Step 8: SinceX3 has minimum revised closeness index, therefore Zakwan is the most suitable courier driver for branch manager post. The ranking
of alternatives is shown in Table 15.

Table 15: Ranking according to the revised closeness index
Alternative X1 X2 X3 X4 X5

Ranking 2 4 1 3 5

5 Comparison
In this section, we solve the MAGDM problem “selection for the post of branch manager in Quiqup company, UAE” using single-valued neutro-
sophic TOPSIS method, proposed by Sahi and Yigider. [40], to demonstrate the significance of the proposed model. The solution by single-valued
neutrosophic TOPSIS method is as follows:

Step 1 The linguistic term corresponding to each rank asses by the experts, are same as given in Table 5. To apply the SVN-TOPSIS method the
grading part is excluded from the SV NNSfN and SVNNs are assigning by each expert D̃1, D̃2 and D̃3, are arranged in Tables 16,17 and
18, respectively, according to the grading criteria define in Table 3.

Step 2 Using the weight vector of experts θ = (0.4, 0.3, 0.3)T and single-valued neutrosophic weighted average (SV NWA) operator [40], we
can calculate the aggregated single-valued neutrosophic decision matrix (ASV NDM), whose entries are evaluated by the formula defined
as follows:

Gij =

(
1−

p∏
r=1

(1− (β
(r)
ij ))θr ,

p∏
r=1

(γ
(r)
ij )θr ,

p∏
r=1

(δ
(r)
ij )θr

)
.
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Table 16: SV NDM of expert D̃1

E1 E2 E3 E4 E5

X1 (0.410, 0.125, 0.610) (0.710, 0.030, 0.250) (0.690, 0.068, 0.480) (0.720, 0.040, 0.260) (0.730, 0.050, 0.270)
X2 (0.290, 0.018, 0.810) (0.280, 0.017, 0.790) (0.740, 0.060, 0.220) (0.750, 0.550, 0.170) (0.460, 0.132, 0.160)
X3 (0.980, 0.010, 0.020) (0.870, 0.012, 0.160) (0.970, 0.015, 0.016) (0.680, 0.035, 0.410) (0.990, 0.010, 0.014)
X4 (0.430, 0.129, 0.630) (0.660, 0.036, 0.430) (0.270, 0.016, 0.780) (0.760, 0.057, 0.180) (0.670, 0.034, 0.420)
X5 (0.500, 0.300, 0.800) (0.420, 0.127, 0.620) (0.650, 0.037, 0.440) (0.910, 0.016, 0.140) (0.260, 0.015, 0.770)

Table 17: SV NDM of expert D̃2

E1 E2 E3 E4 E5

X1 (0.640, 0.038, 0.450) (0.950, 0.015, 0.130) (0.780, 0.058, 0.190) (0.630, 0.039, 0.460) (0.790, 0.059, 0.210)
X2 (0.440, 0.130, 0.640) (0.510, 0.310, 0.810) (0.620, 0.040, 0.470) (0.920, 0.016, 0.140) (0.470, 0.133, 0.670)
X3 (0.980, 0.011, 0.009) (0.995, 0.008, 0.007) (0.975, 0.007, 0.006) (0.450, 0.131, 0.650) (0.960, 0.004, 0.040)
X4 (0.610, 0.041, 0.480) (0.250, 0.014, 0.760) (0.620, 0.042, 0.490) (0.630, 0.043, 0.350) (0.640, 0.044, 0.360)
X5 (0.240, 0.013, 0.750) (0.230, 0.012, 0.740) (0.810, 0.061, 0.220) (0.820, 0.062, 0.230) (0.220, 0.011, 0.730)

Table 18: SV NDM of expert D̃3

E1 E2 E3 E4 E5

X1 (0.210, 0.010, 0.720) (0.510, 0.045, 0.370) (0.915, 0.013, 0.120) (0.925, 0.014, 0.100) (0.830, 0.064, 0.250)
X2 (0.490, 0.135, 0.550) (0.200, 0.009, 0.710) (0.820, 0.063, 0.240) (0.930, 0.010, 0.110) (0.480, 0.134, 0.680)
X3 (0.710, 0.015, 0.165) (0.970, 0.005, 0.006) (0.840, 0.065, 0.260) (0.850, 0.066, 0.270) (0.983, 0.005, 0.050)
X4 (0.520, 0.046, 0.380) (0.520, 0.320, 0.820) (0.530, 0.047, 0.390) (0.860, 0.067, 0.280) (0.540, 0.048, 0.290)
X5 (0.350, 0.136, 0.560) (0.360, 0.137, 0.570) (0.550, 0.049, 0.330) (0.870, 0.068, 0.290) (0.190, 0.008, 0.700)

The ASV NDM is arranged in Table 19.

Table 19: Aggregated single-valued neutrosophic decision matrix
G E1 E2 E3 E4 E5

X1 (0.466, 0.043, 0.572) (0.821, 0.026, 0.219) (0.801, 0.042, 0.245) (0.778, 0.030, 0.250) (0.780, 0.056, 0.242)
X2 (0.398, 0.060, 0.677) (0.354, 0.040, 0.776) (0.729, 0.052, 0.293) (0.878, 0.058, 0.142) (0.468, 0.132, 0.668)
X3 (0.964, 0.011, 0.026) (0.971, 0.008, 0.024) (0.957, 0.016, 0.022) (0.680, 0.065, 0.434)) (0.981, 0.006, 0.028)
X4 (0.522, 0.066, 0.504) (0.511, 0.044, 0.616) (0.480, 0.029, 0.557) (0.756, 0.054, 0.254) (0.630, 0.040, 0.362)
X5 (0.379, 0.082, 0.715) (0.344, 0.056, 0.646) (0.699, 0.047, 0.321) (0.874, 0.036, 0.200) (0.229, 0.011, 0.738)

Step 3 The experts opinion about the importance of attributes are given in Table 20. The experts opinion are combined using (SV NWA) operator
[40], to formulate the weight vector µ for the attributes, defined as follows:

Gij =

(
1−

p∏
r=1

(1− (β
(r)
ij ))θr ,

p∏
r=1

(γ
(r)
ij )θr ,

p∏
r=1

(δ
(r)
ij )θr

)
.

Thus we have,

µ =


(0.932, 0.027, 0.204)
(0.815, 0.037, 0.541)
(0.914, 0.026, 0.266)
(0.525, 0.047, 0.499)
(0.657, 0.035, 0.278)

 .

Step 4 The aggregated weighted single-valued neutrosophic decision matrix (AWSVNDM) arranged in Table 21, where the entries of AWSVNDM
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Table 20: Ratings of experts about parameters in single-valued neutrosophic environment
E1 E2 E3 E4 E5

D̃1 (0.820, 0.040, 0.250) (0.600, 0.020, 0.400) (0.800, 0.025, 0.200) (0.200, 0.040, 0.850) (0.350, 0.100, 0.600)

D̃2 (0.920, 0.010, 0.550) (0.370, 0.090, 0.550) (0.660, 0.030, 0.410) (0.760, 0.030, 0.220) (0.750, 0.020, 0.210)

D̃3 (0.680, 0.061, 0.041) (0.270, 0.030, 0.554) (0.770, 0.025, 0.230) (0.360, 0.120, 0.670) (0.950, 0.015, 0.127)

are calculated using the formula:

G̃ = (βijβi, γij + γi − γijγi, δij + δi − δijδi).

Table 21: Aggregated weighted single-valued neutrosophic decision matrix
G E1 E2 E3 E4 E5

X1 (0.430, 0.068, 0.659) (0.699, 0.062, 0.641) (0.732, 0.066, 0.446) (0.408, 0.076, 0.624) (0.512, 0.089, 0.452)
X2 (0.367, 0.085, 0.742) (0.288, 0.075, 0.897) (0.666, 0.076, 0.481) (0.460, 0.102, 0.570) (0.307, 0.162, 0.760)
X3 (0.890, 0.038, 0.224) (0.791, 0.044, 0.552) (0.874, 0.042, 0.282) (0.460, 0.108, 0.716) (0.644, 0.040, 0.298)
X4 (0.481, 0.091, 0.605) (0.416, 0.079, 0.824) (0.438, 0.054, 0.674) (0.396, 0.098, 0.626) (0.414, 0.074, 0.539)
X5 (0.350, 0.106, 0.773) (0.280, 0.090, 0.838) (0.638, 0.072, 0.502) (0.458, 0.081, 0.599) (0.150, 0.046, 0.810)

Step 5 To evaluate the single-valued neutrosophic positive ideal solution (SVN-PIS) and negative ideal solution (SVN-NIS) are to be calculated
by the formula:

Gi =

 (max
j
β̃ij ,min

j
γ̃ij ,min

j
δ̃ij), if Ei ∈ Ab,

(min
j
β̃ij ,max

j
γ̃ij ,max

j
δ̃ij), if Ei ∈ Ac,

and

Gi =

 (max
j
β̃ij ,min

j
γ̃ij ,min

j
δ̃ij), if Ei ∈ Ac,

(min
j
β̃ij ,max

j
γ̃ij ,max

j
δ̃ij), if Ei ∈ Ab,

So that, the SVN-PIS and SVN-NIS found given in Table 22.

Table 22: SVN-PIS and SVN-NIS
Parameters SVN-PIS SVN-NIS

E1 (0.802, 0.038, 0.028) (0.340, 0.106, 0.703)
E2 (0.452, 0.052, 0.554) (0.166, 0.184, 0.848)
E3 (0.720, 0.034, 0.260) (0.370, 0.042, 0.591)
E4 (0.458, 0.089, 0.634) (0.458, 0.250, 0.541)
E5 (0.426, 0.032, 0.758) (0.786, 0.046, 0.271)

Step 6 The Euclidean distance of each alternative from SVN-PIS and SVN-NIS, evaluated by Equations 12 and 13, respectively, is given in Table
23.

dE(Gi, Xj) =

√√√√(1

3

m∑
i=1

[
(βi − β̃ij)

2 + (γi − γ̃ij)
2 + (δi − δ̃ij)2

])
. (12)

and

dE(Gi, Xj) =

√√√√(1

3

m∑
i=1

[
(β
i
− β̃ij)2 + (γ

i
− γ̃ij)2 + (δi − δ̃ij)

2
])
. (13)
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Table 23: single-valued neutrosophic Euclidean distance
Alternative d(Gk, Xj) d(Gk, Xj)

X1 0.4159 0.4830
X2 0.6753 0.2120
X3 0.0369 0.7092
X4 0.5759 0.2898
X5 0.7239 0.1084

Step 7: The revised closeness index of each alternative, evaluated by Equations 14, is tabulated in Table 24 and the ratings are tabulated in Table
25 in descending order, according to which X3 is the best choice for the post of branch manager in Quiqup company, UAE.

ψ(Xj) =
d(Gi, Xj)

d(Gi, Xj) + d(Gi, Xj)
(14)

where, i = 1, 2, . . . ,m.

Table 24: Revised closeness index of each alternative
Alternative ψ(Xj)

X1 0.5373
X2 0.23900
X3 0.9505
X4 0.3347
X5 0.1302

Table 25: Ranking in single-valued neutrosophic environment
Alternative X1 X2 X3 X4 X5

Ranking 2 4 1 3 5

5.1 Discussion
1. We conclude that the comparison of the proposed SV NNSf -TOPSIS method with the existing technique SVN-TOPSIS method results

the same courier driver for the post of branch manager as well as the order of ranking of the remaining alternatives remain same, given in
Table 26.
The accuracy and reliability of the outcomes in comparison proves the superiority of the the proposed method from the SV N methods.

Table 26: Comparison
Method Ranking Best

candidate
SVN-TOPSIS [40] X3 > X1 > X4 > X2 > X5 X3

SV NNSf -TOPSIS X3 > X1 > X4 > X2 > X5 X3

(Proposed)

2. The SV NNSf -TOPSIS method has ability to handle MAGDM problems under the framework of IFNSfS and PFNSfS but these
models have no capacity to deal the hesitancy opinion of human nature independently.

3. The existing models, specifically the generalized model SVNSs are impotent to handle modern problems described by parameterized rating
systems but our model has potential to grip such type of modern problems.

4. By substituting N = 2, we switch from SV NNSf environment to SV NSf environment so that the SV NNSf -TOPSIS method could be
applied to the SV NSf environment in a satisfactory manners.
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6 Conclusion
In this paper, we have mainly contributed in TOPSIS method precisely for group decision making under the most generalized environment of
SV NNSfSs. The SV NNSf -TOPSIS method is an advanced technique to evaluate the optimal alternative nearest to SV NNSf -PIS and farthest
from SV NNSf -NIS. For the extension of TOPSIS method, we have presented the aggregate operators to assess the SV NNSf aggregated and
weighted aggregated decision matrix that are further used to spot the SV NNSf -PIS and SV NNSf -NIS heeding the benefit and cost type
parameters. We have defined normalized Euclidian distance for SV NNSfNs so that we can evaluate the revised closeness index regarding to
each alternative. We have illustrated practical examples of the MAGDM problem that is the selection of the branch manager post in Quiqup
company, UAE, to intimate the application of the proposed method and have performed the comparison with SVN-TOPSIS technique that signify
the legitimacy of the proposed method. For future direction, we can apply the presented method to solve many other MAGDM problems like for
designer selection or management system. We can develop theory for the following techniques under the SV NNSf -framework: (1) AHP method
(2) VIKOR method.
Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.
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