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Abstract: The wind turbine selection problem is important for countries under change of climate and global 

warming. The importance wind turbine has increased due to toward countries used the renewable energy. 

The information of selection wind turbines is often vague and imprecise. Therefore, this paper develops a 

methodology for wind turbines selection problem based on neutrosophic information. Bipolar 

neutrosophic sets (BNSs) is a very common tool for performing potentially uncertain information provided 

by experts and decision makers. So, the BNSs is a useful for dealing with uncertain complex situations. The 

wind turbine is contain the different and conflict criteria. Thus, the concept of multi-criteria decision 

making (MCDM) is used. This paper used MCDM method for selection wind turbine problem. First. Used 

the entropy weight to calculate the weights of criteria. Then the Weighted sum method (WSM), 

visekriterijumsko kompromisno rangiranje (VIKOR), Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS), Evaluation based on Distance from Average Solution (EDAS) are used to select 

best turbine. The case study in Egypt is provided. The comparative analysis is done to test the reliability of 

the proposed methodology. Finally the sensitivity analysis is performed. 

 

Keywords: Wind Turbine Selection, MCDM, Entropy Weight, TOPSIS, EDAS, WSM, VICKOR 

 

1. Introduction 

Every day the global warming and change of climate are increased in the world. Consequence this, 

the awareness of the world are increased toward saving the ecosphere and going to use the fossil fuel [1].  

The countries that depend on the energy from fossil fuel are converting to a renewable energy. In recent 

years, a new resources of energy is explored due to diminution of fossil fuel. There are many sources of 

renewable energy for instance, wind, wave, solar and others. 
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To beat the global warming, the wind energy is introduced as one of many plans[2]. Every day the 

value of wind energy is increasing so, several states and countries are gain money by using the wind power 

[3]. By the sun and unbalance abhorring of the land and sea with variance of pressure the wind energy is 

produced. In recent years, with quick growth, the substitute of the traditional energy systems is the wind 

energy[4]. The most vital parts of theses energy system are wind turbines. The energy of electricity is 

produced in wind turbines by converting energy of motion of wind. So, choice the wind turbines is a critical 

work and must be precise for long term processes.  

   

Many countries is seeking to build the wind farms due to have many advantages like creating 

many jobs through increasing the attract investment by deployment the economic, the security of energy 

is increased, the quality of air is enhanced, the emissions of co2 is reduced, the dependence on the using 

imported fuel is decreased and the prices of power will stable. There are three costs are incurred by wind 

farms to produce electricity. These costs are include: capital costs that contain the building power plant 

costs, the costs of running that contain the costs of operations and maintenance of the wind farm and the 

costs of financing that include the costs of running and constructing the wind farm. The cost of capital is 

very great. The choice best wind turbine is a high weight as a wind turbine cost make up the mainstream 

of the total cost for wind farm project. The selection an appropriate wind turbine that include many of 

problems such as effective and efficient wind farm development, maximum energy output and efficient 

wind farm design. So in this paper take into considerations these factors.    

 

In the previous studies, the researchers are proposed many of techniques for selection wind 

turbines problem for instance heuristics, Meta heuristics and models of probability [5]. Though, these 

approaches have many confines and disadvantages[6]. The decision model has limitations, one of these 

limitations it is simple due to has one criterion[7]. Though, the problem of choice wind turbines has several 

different conflict criteria[8]. So, the multi criteria decision making (MCDM) is the best solution to this 

problem. The methods of MCDM is a preferable with numerous criteria of wind turbines and each criterion 

is conflict with other[9].  

 

The criteria of wind turbines find in many units and scale. But must put all criteria in one unit with 

less magnitude[6]. MCDM approaches are used with the fuzzy theory to overcome this difficulties[10]. 

Using the fuzzy theory with the truth and false value[11]. But the fuzzy has limitations that not take into 
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considerations the indeterminacy value although fuzzy sets has many generations such as intuitionistic 

fuzzy sets and hesitant fuzzy sets [12]. To overcome these limitations the neutrosophic set is presented. 

Neutrosophic sets is generalization of fuzzy sets and introduced by. Florentin Smarandache [13, 14]. 

Neutrosophic sets is used in many fields like industry, healthcare and others [15]. It has truth, false and 

indeterminacy value. In this work use the MCDM methods with neutrosophic numbers to select the best 

wind turbines.  

 

To select best wind turbines, needs a regular approaches due to this selection is a complex and 

difficult but it is vital and essential to wind farms. So, needs in this work to evolve approaches and methods 

to this problem to aid Egypt to build a new wind farm in government red sea and introduce best wind 

turbines for designing.    

 

In this work, the criteria is collected from the literature and the weights of criteria is computed by 

entropy weight method[16]. The entropy weight method is not used in previous research with wind 

turbines. Experts and decision makers build the decision matrix between criteria and alternative by using 

linguistic term of neutrosophic number.  

 

To rank the wind turbines the MCDM methods are proposed. In this paper proposed WSM, 

VIKOR, TOPSIS and EDAS methods with the bipolar neutrosophic numbers (BNNs) to select best 

alternative (turbine). The WSM is the simplest additive weighted method. It is most commonly used 

MCDM methods. It used in this paper to rank the wind turbine. The VIKOR method is a commonly MCDM 

method. It used to solve the problems of decision making with different and conflicting criteria. this method 

is used to rank the wind turbines. The TOPSIS method is a common MCDM methods. It is used to select 

best alternatives. This method solve the MCDM problems in different areas. It used in this paper to rank 

the wind turbines. The EDAS method is an effective and efficient to solve the problems with conflicting 

criteria. It used to rank the wind turbines. 

 

With this kind of problem these four methods are not used before with other. So in this work 

integrate the entropy weight, WSM, VIKOR, TOPSIS and EDAS with the BNNs as an innovation to select 

best wind turbines to help the government of Egypt to build a new wind farm in the government red sea. 

This a MCDM model is used to rank the wind turbine by taking into account different criteria and turbines.  

 



Neutrosophic Sets and Systems, Vol. 42, 2021                                                                                                                                         4                 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
Ahmed Abdel-Monem and Amal Abdel Gawad, A hybrid Model Using MCDM Methods and Bipolar Neutrosophic Sets for Select 

Optimal Wind Turbine: Case Study in Egypt 

The rest of this paper was organized as follow: The literature review is presented in section 2. Section 

3 presented the methodology of this paper. The case study is presented in section 4. The comparative 

analysis is performed in section 5. In section 6 the sensitivity analysis. Finally the conclusions of this study 

is presented in section 7.    

 

2. Review of Literature 

The position and importance of wind turbines is increased due to the several number of needs and 

usage of wind energy. Researcher have many works in technical structure and design the wind turbines 

due to it is the vital part to produce the wind energy [17]. Although, the works in selection wind turbines 

problem are relatively insufficient [18-20]  

 

Rosales et al. compare wind turbines based on the energy cost using two variables hub height and 

total efficiency due to number of non-experts choose the wind turbines based on the commercial offers. 

The main drawbacks in their work dataset that signifies only a subclass of the total population of 

commercialized horizontal axis wind turbines [21]. Sedaghata et al. discuss a new strategy for the wind 

turbines selection problem. They depend on three variables the capacity, annual production of energy and 

electricity cost. The main results found that wind turbines with lower rated power will reduce the cost of 

electricity and wind turbines with greater rated power will produce greater capacity and annual 

production of energy. The main drawbacks of their study not used many of criteria they depend only three 

criteria [22] . 

 

The selection wind turbine problem is contain the uncertainty information. So proposed the fuzzy 

theory to deal with uncertainty. Pang et al. proposed in their study fuzzy theory to overcome the 

uncertainty and vague information [23]. But the fuzzy theory has limitations. The main limitations of fuzzy 

theory not deal with indeterminacy value. So, the neutrosophic sets is proposed in this study to overcome 

the uncertainty information. The main advantage of neutrosophic sets that deal with the indeterminacy 

value. It has three value truth, indeterminacy and false [24]. The neutrosophic sets has many 

generalizations like Bipolar Neutrosophic Sets (BNSs). Abdel-Basset et al. proposed the BNSs for 

professional selection problem [25]. Broumi et al. proposed the BNSs for shortest path problem. [26] Based 

on this, no previous study used the BNSs for selection wind turbine problem. So in this paper proposed the 

BNSs for overcome the uncertainty information in selection wind turbine problem. Using concept the 

MCDM for dealing with different and conflict criteria.  
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The studies in wind turbines selections using MCDM methods is relatively few[9]. The analytical 

hierarchy process (AHP) approach is the commonly used in wind turbines selection problem[3, 20]. The 

AHP method has many advantage as build the pairwise comparison and check the consistency to test 

consistent the opinions of the decision makers. Also it has disadvantage as biased pairwise and complexity. 

In this study used the entropy weight method to calculate the weights of criteria. It is not used before in 

the previous study with the selection wind turbines problem. But used into another fields. Wang et al. used 

the entropy weight method with the Pythagorean fuzzy for valuation the express quality of service. The 

main limitation in their study that not into consideration the indeterminacy value [27]. Zeng et al. used the 

entropy weight method to sustainable supplier selection with single value neutrosophic sets [28]. Xiao et 

al. used the entropy weight method with fuzzy theory for assessment the urban taxi-carpooling matching 

schemes [29]. So in this study used the entropy weight method to calculate the weights of criteria due to 

has many advantage as deal with uncertainty, compute the degree of confusion and less entropy value can 

produce more of information. 

 

There are many MCDM methods to calculate the best alternatives (wind turbines). WSM is one of 

the simplest and mostly widely used MCDM methods.  Rehman and Khan used the WSM for selection best 

wind turbine. They used five criteria and eighteen turbines. They used the C++ program to perform 

simulation [1]. Yörükoğlu and Aydın used the MULTIMOORA method to select wind turbines[17].   

 

VIKOR method is used to solve decision making problems with conflict and different units of 

criteria. The main advantage from this method that focus on the basic information as result this, reduce the 

computational complexity [30]. VIKOR method is not used in previous selection wind turbine problem. 

Abdel-Basset et al. used the VIKOR method for assessment the performance financial of manufacturing 

industries [31]. Li et al. used the VIKOR method for selection machine tool [32].  Krishankumar et al. used 

the VIKOR method for problem of personnel selection [33].  

 

TOPSIS method is a common MCDM methods. It is used for calculate the best alternatives. It is 

used for solving MCDM problems in several areas. The main concept of TOPSIS is that the highest 

alternative rank should have the lower distance from the positive ideal solution [34]. The TOPSIS method 

is used in wind turbine selection problem. Supciller et al. used the TOPSIS method for determine the best 

wind turbine with case study in Turkey. They used the single value neutrosophic set with twenty one 
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criteria [24]. Ahmet et al. used the AHP-TOPSIS to with hesitant fuzzy for assessment wind turbines. The 

main limitation sin their study that is not take into considerations the indeterminacy value [3].  

 

EDAS method is also a MCDM methods. It is used for solving decision making problems and 

determine the best alternatives. It is easy and useful for applying to different conflicting criteria. The main 

rule for this method that is the best alternative is computed by shortness distance from the average 

solutions [34]. Supciller et al. used the EDAS method to select best turbine for a case study in Turkey [24]. 

Kahraman et al. used the EDAS method with the Intuitionistic fuzzy for selection solid waste disposal site 

problem [35].  

 

So in this work discuss many of criteria that conflict with others for wind turbines selection 

problem. Used the entropy weight method to calculate the weights of criteria for the first time in this 

problem. Used the WSM, VIKOR, TOPSIS and EDAS to select best turbine. The VIKOR method is used the 

first time in selection wind turbine problem.  

 

 

Fig 1. The framework for this study 
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Fig 2. The methodology for this paper 

 

3. Methodology 

This paper introduced the integrate BNSs with a MCDM entropy weight method for selection best 

wind turbine to build a new farm in Egypt. The entropy weight method is used to determine the weights 

of all criteria. Then used the WSM, VICKOR, TOPSIS and EDAS to rank the wind turbines. Then the best 

wind turbine is recommended. Fig 1. Show the framework for this study. .Fig 2. Show the methodology for 

this study. The steps of methodology is presented as follow: 

 

3.1 Bipolar Neutrosophic Sets (BNSs) 

In this sub section, suggested linguistic information of BNNs and the functions of score, accuracy and 

certainty. Bipolar Neutrosophic sets are suggested to solve the MCDM problems. BNNs are consist from 

Truth (𝑇+, 𝑇−), Indeterminacy (𝐼+, 𝐼−) and False (𝐹+, 𝐹−) where 𝑇+, 𝐼+, 𝐹+ [0,1] are positive and 

𝑇−, 𝐼−, 𝐹− → [0,1] are negative. Table 1 show the Linguistic variable and scale of BNNs. Where Very 

perfect (linguistic term) is the highest value and very Bad (linguistic term) is the lowest value.   The score, 

accuracy and certainty functions are shown in the following Eqs. (1, 2, 3)[25]: 
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𝑅̃(𝐶1̃) = (𝑇1
+ + 1 − 𝐼1

+ − 𝐹1
+ + 1 + 𝑇1

− − 𝐼1
− − 𝐹1

−)/6                                                                                    (1)               

𝐶̃(𝐶1̃) = (𝑇1
+ − 𝐹1

+ + 𝑇1
− − 𝐹1

−)                                                                                                      (2)                                                                                                       

𝐸̃(𝐶1̃) = (𝑇1
+ + 𝐹1

−)                                                                                                                      (3)   

The steps of BNSs is presented as follow:  

 

Step 1. Build the hierarchy problem.  

 

The main goal form this study that select best wind turbine. Then collect the main and sub criteria, 

where 𝑢 refers to the criteria (u =  1, 2, 3, 4, . . . . … x) and 𝑥 refers to number of criteria. Then determine wind 

turbines (Alternatives), where 𝑣 refers to turbines (v =  1,2,3, , … … y) and 𝑦 refers to number of turbines.     

 

Step 2. Ask decision makers and experts to evaluate turbines with different criteria.  

 

Building the decision matrix between criteria turbines with the opinions of experts by using scale 

of BNNs in Table 1 by Eq. (4). Then Deneutrosophic the BNNs by Eq. (1) to obtain one value instead of six 

value. Then aggregate the decision matrix of opinions experts into one matrix by Eqs (5, 6). 

PD = [
P11

D  ⋯ P1u
D  

⋮ ⋱ ⋮
Pv1

D  ⋯ Pvu
D  

]                                                                                                                 (4) 

Where, D indicates to number of experts. 

𝑃𝑥𝑦 =
∑ 𝑃𝑢𝑣

𝐷
𝐷=1

𝐷
                                                                                                                               (5) 

P = [

P11 ⋯ P1x

⋮ ⋱ ⋮
Py1 ⋯ Pvu

]                                                                                                                    (6)   

  

 

3.2 Proposed The MCDM Methods 

 

The following steps for entropy, WSM, VIKOR, TOPSIS and EDAS methods. 

 

3.2.1 Entropy Weight Method 
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Entropy weight method is used to determine the weights of criteria. The following steps show the 

entropy weight[36]: 

 

Step 3. Normalize the decision matrix 

 

 Start with the decision matrix with aggregated the opinion of experts. Then normalize the 

aggregation decision matrix using Eq. (7).  

𝑁𝑥𝑦 =
Pxy

∑ Pxy
𝑣
𝑦=1

                                                                                                                                     (7) 

Step 4. Compute entropy 

 The entropy is computed by the multiply the ln of normalized decision matrix by normalized 

decision matrix then compute the summation of it. Finally multiply this summation by the negative L

 by using Eq. (8): 

𝑂𝑥 =  −L ∑ 𝑁𝑥𝑦 ln 𝑁𝑥𝑦
𝑣
𝑦=1                                                                                                                                    (8)                                                                                                             

Where L = 1/ln (𝑦) 

Step 5. Calculate the weights of criteria using Eq. (9) 

𝑊𝑥 =
1−𝑂𝑥

∑ (1−𝑂𝑥)𝑢
𝑦=1

                                                                                                                             (9) 

 

3.2.2 Weighted Sum Model (WSM) 

 

Step 6. Normalize the decision matrix[36] 

 Start with the aggregation decision matrix and multiply each weight by the value of decision matrix 

and then obtain the normalization matrix by using Eq. (10). Then ranking the turbines descanting according 

to normalize value 

𝑍𝑥 =  ∑ 𝑊𝑥𝑃𝑥𝑦
𝑢
𝑦=1                                                                                                                                (10)                                                                                                                          

 

3.2.3 VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) 

 

VIKOR method is used to rank turbines with different conflict criteria. The following steps of 

VIKOR method [36]. 
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Step 7. Determine the beneficial-ideal solution (𝐵+) and non-beneficial-ideal solution (𝐵−) using Eqs. (11, 

12) 

𝐵𝑥
+ = max

𝑥
𝑃𝑥𝑦  for Positive criteria and      𝐵𝑥

+ = min
𝑥

𝑃𝑥𝑦  for negative criteria                        (11)       

𝐵𝑥
− = min

𝑥
𝑃𝑥𝑦        for Positive criteria and      𝐵𝑥

− = max
𝑥

𝑃𝑥𝑦  for negative criteria                   (12)                                                                                                                                                                           

Step 8. Calculate the 𝑆𝑥  𝑎𝑛𝑑 𝑅𝑥 values using Eqs. (13, 14) 

Sx = ∑ (𝑊𝑦 ∗
𝐵𝑥

+− 𝑃𝑥𝑦

𝐵𝑥
+−𝐵𝑥

− )𝑣
𝑦=1                                                                                                                   (13)                                                                                         

Rx =  max
𝑦

(𝑊𝑦 ∗
𝐵𝑥

+− 𝑃𝑥𝑦

𝐵𝑥
+−𝐵𝑥

− )                                                                                                              (14)    

Step 9.  Calculate the 𝑄𝑥 value using Eq. (15). Then rank the turbines ascending to value of 𝑄𝑥. 

𝑄𝑥 = ℎ (
Sx−min

𝑥
Sx

max
𝑥

Sx−min
𝑥

Sx
) + (1 − ℎ) (

Rx−min
𝑥

Rx

max
𝑥

Rx−min
𝑥

Rx
)                                                                       (15) 

Value of h refers to highest group utility of strategy weight and (1-h) refers to individual regret of 

weight. Usually, the value of h is equal to 0.5 and the value of h can be range from 0 to 1.  

 

4.2.3 Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) 

 

The steps of TOPSIS method is presented as follow[36]: 

Step 10. Normalize the decision matrix 

 Start with the aggregation decision matrix between criteria and turbines. Then normalize the 

decision matrix using Eq. (16) 

𝑁𝑥𝑦 =
𝑃𝑥𝑦

√∑ 𝑃𝑥𝑦
2𝑣

𝑦=1

                                                                                                                             (16)                                                                                                               

Step 11. Determine the weighted normalized decision matrix 

 Multiply the weights of criteria by the normalize decision matrix to calculate the weighted 

normalized decision matrix using Eq. (17).  

𝐼𝑥𝑦 =  𝑁𝑥𝑦𝑊𝑦                                                                                                                                  (17)                                                                                                   

Step 12. Compute the beneficial ideal solution (𝑓+) and non-beneficial ideal solution (𝑓−) using Eqs. (18, 

19) 

𝑓𝑥
+ = max

𝑥
𝑃𝑥𝑦  for Positive criteria and      𝑓𝑥

+ = min
𝑥

𝑃𝑥𝑦  for negative criteria                        (18)       

𝑓𝑥
− = min

𝑥
𝑃𝑥𝑦        for Positive criteria and      𝑓𝑥

− = max
𝑥

𝑃𝑥𝑦  for negative criteria                   (19)                                                                                                                                                                           

Step 13. Compute the distance of each turbines from beneficial and non-beneficial ideal solution by using 

Eqs. (20, 21) 
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𝐴𝑦
+ = ∑ (𝐼𝑥𝑦 − 𝑓𝑥

+)2𝑢
𝑥                    for positive criteria                                                                              (20)                                                                            

𝐴𝑦
− = ∑ (𝐼𝑥𝑦 − 𝑓𝑥

−)2𝑢
𝑥                   for cost criteria                                                                                      (21)     

Step 14. Compute the coefficient of closeness  

 From the distance of each turbine, calculate the value of closeness coefficient using Eq. (22). Then 

rank turbine according the descending order of value closeness coefficient.  

Gy =
𝐴𝑦

−

𝐴𝑦
++𝐴𝑦

−                                                                                                                                      (22)   

 

4.2.4 Evaluation based on Distance from Average Solution (EDAS) 

 

The steps of EDAS method is presented as follow[24]:  

 

Step 11. Compute the average solution  

 Start with the aggregation decision matrix. Then compute the average solution by divide the value 

of decision matrix by the number of turbines using Eq. (23) 

𝑣𝑔y =
∑ 𝑃𝑥𝑦

𝑏
𝑥=1

𝑏
                                                                                                                                (23)      

 Step 11. From the average solution compute the positive distance for positive and cost criteria using Eqs. 

(24,25) 

Pos𝑥𝑦
+ =    

max (0,(𝑝𝑥𝑦−𝑣𝑔y))

𝑣𝑔y
                 For positive criteria                                                                                (24)     

 Pos𝑥𝑦
− =    

max (0,(𝑣𝑔y − 𝑝𝑥𝑦))

𝑣𝑔y
            For cost criteria                                                                                      (25)     

Step 17. From the average solution compute the negative distance for positive and cost criteria using Eqs. 

(26,27) 

Neg𝑥𝑦
+ =    

max (0,(𝑣𝑔y−𝑝𝑥𝑦))

𝑣𝑔y
                 For positive criteria                                                                                (26)     

 Neg𝑥𝑦
− =    

max (0,(  𝑝𝑥𝑦− 𝑣𝑔y))

𝑣𝑔y
              For cost criteria                                                                                      (27)     

Step 18. Compute the weighted sum of positive distance 

 From the positive distance for positive and negative criteria multiply the weight of criteria by the 

positive distance and compute the sum of this multiplication using Eqs. (28, 29) 

𝑊𝑠𝑝𝑑𝑥 = ∑ 𝑊𝑦
𝑣
𝑦=1 Posxy                                                                                                           (28)  

𝑊𝑠𝑛𝑑𝑥 = ∑ 𝑊𝑦
𝑣
𝑦=1 Negxy                                                                                                           (29)           

Step 19. Compute the normalize values of 𝑊𝑠𝑝𝑑 and 𝑊𝑠𝑛𝑑 using Eqs. (30,31) 
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𝑁𝑤𝑠𝑝𝑑𝑥 =
𝑊𝑠𝑝𝑑𝑥

max (𝑊𝑠𝑝𝑑𝑥)
                                                                                                                       (30) 

𝑁𝑤𝑠𝑛𝑑𝑥 = 1 −
𝑊𝑠𝑛𝑑𝑥

max (𝑊𝑠𝑛𝑑𝑥)
                                                                                                                    (31) 

Step 20. Compute the normalize values of 𝑁𝑤𝑠𝑝𝑑𝑥 and 𝑁𝑤𝑠𝑛𝑑𝑥 

 After compute the value of 𝑛𝑜𝑟𝑥 rank turbines according descending order of value 𝑛𝑜𝑟𝑥 using Eq. 

(32) 

𝑛𝑜𝑟𝑥 = 0.5 ∗ (𝑁𝑤𝑠𝑝𝑑𝑥 + 𝑁𝑤𝑠𝑛𝑑𝑥  )                                                                                          (32)                                                

 

 
Fig 3. The structure between criteria, sub criteria and turbines 

  

4. Case Study 

 

Egypt vision in 2030 depend on decreasing using the fossil fuels and increasing using the renewable 

energy. One of the important renewable energy is wind turbine. The choice the wind turbines is the 

important issue. So in this study choice the best wind turbine to help Egypt vision to build different wind 

farms.  
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Start this study by collect a collection of decision makers and experts. This collection includes of four 

people working in companies of renewable energy in Egypt. Two of this group working as a manger on 

renewable energy. The other two experts working as mechanical engineering. Two of them have a PHD 

degree in engineering and others have a master degree in engineering. The all of these experts and decision 

makers have a weighty degree in expertise. All these decision makers have the same weight of degree. 

Making interview with these decision makers for recognizing the criteria and alternatives with their 

opinions.  

 

        Making into considerations the different types of wind turbines. The fifteen alternatives (wind 

turbines) are selected. T1 V164-9.5MW, T2 SG 8.0-167 DD, T3 GW154 6.7MW, T4 Senvion 6.2M152, T5 GE 

Haliade 150-6MW, T6 Ming Yang SCD 6.0, T7 Doosan WindS500,T8 Hitachi HTW5.2-136, T9 H151-5.0MW, 

T10 AD 5-135, T11 E-126 7.580, T12 Haliade-X, T13 SG 11.0-193 DD Flex, T14 D10000-185, T15 V164-10.0. The 

criteria and sub criteria are identified and collected based on the survey of literature. The opinions of 

decision makers and experts is presented based on the BNSs. Fig 3 show the criteria, sub criteria and 

alternatives for this study. The criteria is divided to positive and negative (cost) criteria. The F11, F21, F22, F23, 

F34, F42, F43 criteria are negative and the rest of criteria are positive.   

 

The entropy weight method is used to compute the weights of criteria. Then used the WSM, VIKOR, 

TOPSIS and EDAS methods are used to rank the turbines (alternatives).  

 

4.1 Computing the weights of criteria by entropy weight method 

 

The group of decision makers and experts assets the criteria to compute the importance of the criteria 

by entropy weight method. First the linguistic term is introduced to four decision makers to build the 

decision matrix. Then, replace the linguistic term by BNNs in Table 1. The opinions of four experts is used 

to build the decision matrix by using Eq. (4). Then, convert the BNNs into the crisp value (one value instead 

of six value of BNNs) by using Eq. (1). Hence, have the four decision matrix so, need to aggregate it into 

one matrix by using Eqs. (5,6) in Table 2.  

 

The steps of entropy weight method is applied in next stage. Start with the aggregated decision matrix 

between the criteria and turbines (alternatives). First normalize the aggregated decision matrix by using 
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Eq. (7). Then, compute the entropy by using Eq. (8). Finally the weights of main and sub criteria is computed 

by using Eq. (8).  In Table 3.the ranking and weights of main and sub criteria. 

  

The results of entropy weight show the importance of the criteria and sub criteria between other. The 

Machine feature (F1) is the highest important main criteria equal 0.42302 then Technological (F3) is after 

machine feature with value 0.19949 then, importance of Monetary criteria (F4) is lower than technological 

criteria, then the Habitat criteria (F2) is the lowest criteria in four main criteria.  

 

The results of sub criteria show that the operation and maintenance cost (F43) with value 0.08431 is the 

highest weight in sub criteria and the technical development (F16) with value 0.02093 is the lowest weight 

in sub criteria. 

Table 1. Scale of BNSs. 

 

 

Table 2. The aggregated decision matrix between criteria and turbines (alternatives) 

Criteria/turbines F11 F12 F13 F14 F15 F16 F17 F18 F19 F110 F111 

T1 0.683 0.500 0.383 0.683 0.683 0.833 0.500 0.683 0.500 0.500 0.683 
T2 0.833 0.833 0.683 0.500 0.683 0.833 0.383 0.683 0.683 0.500 0.833 
T3 0.683 0.383 0.833 0.683 0.500 0.833 0.383 0.833 0.683 0.683 0.833 
T4 0.383 0.683 0.833 0.383 0.683 0.683 0.167 0.833 0.833 0.833 0.833 
T5 0.683 0.833 0.383 0.683 0.383 0.683 0.683 0.683 0.833 0.833 0.683 
T6 0.833 0.683 0.383 0.383 0.383 0.500 0.383 0.383 0.683 0.683 0.383 
T7 0.833 0.833 0.167 0.683 0.833 0.683 0.167 0.833 0.383 0.833 0.167 
T8 0.833 0.383 0.683 0.383 0.833 0.383 0.683 0.683 0.683 0.383 0.383 
T9 0.833 0.167 0.683 0.683 0.383 0.833 0.833 0.683 0.500 0.167 0.833 
T10 0.683 0.383 0.383 0.683 0.683 0.833 0.383 0.383 0.500 0.683 0.683 
T11 0.833 0.683 0.683 0.833 0.383 0.683 0.167 0.500 0.683 0.833 0.383 
T12 0.833 0.683 0.383 0.683 0.833 0.383 0.383 0.500 0.833 0.383 0.500 
T13 0.683 0.833 0.167 0.383 0.683 0.683 0.833 0.833 0.683 0.383 0.500 
T14 0.683 0.383 0.683 0.833 0.383 0.167 0.683 0.683 0.683 0.683 0.683 
T15 0.683 0.383 0.683 0.383 0.683 0.833 0.383 0.833 0.833 0.683 0.683 

Criteria/turbines F21 F22 F23 F24 F31 F32 F33 F34 F41 F42 F43 

T1 0.500 0.500 0.683 0.500 0.833 0.683 0.500 0.383 0.683 0.500 0.500 
T2 0.500 0.383 0.833 0.500 0.683 0.833 0.383 0.500 0.683 0.683 0.383 
T3 0.683 0.383 0.683 0.683 0.383 0.833 0.383 0.167 0.833 0.683 0.383 

Linguistic term BNNs 

Linguistic Variable 

Very Bad 

Bad  

Medium 

Perfect 

Very Perfect 

T1+,I1+,F1+, T1-,I1-,F1- 

<0.1,0.9,0.8, -0.8,-0.3,-0.1> 

<0.3,0.5,0.7, -0.6,-0.4,-0.4> 

<0.45,0.45,0.5, -0.45,-0.5.-0.45> 

<0.7,0.3,0.4, -0.3,-0.6,-0.8> 

<0.9,0.1,0.2, -0.2,-0.7,-0.9> 
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T4 0.383 0.833 0.683 0.683 0.167 0.683 0.167 0.683 0.833 0.383 0.167 
T5 0.167 0.683 0.383 0.833 0.383 0.383 0.683 0.833 0.500 0.167 0.167 
T6 0.383 0.383 0.383 0.833 0.683 0.383 0.683 0.683 0.500 0.383 0.683 
T7 0.683 0.833 0.167 0.833 0.683 0.167 0.683 0.683 0.833 0.683 0.683 
T8 0.683 0.383 0.167 0.683 0.500 0.383 0.833 0.500 0.383 0.833 0.833 
T9 0.683 0.683 0.683 0.683 0.500 0.683 0.833 0.500 0.167 0.833 0.833 
T10 0.833 0.383 0.683 0.500 0.683 0.683 0.500 0.683 0.683 0.500 0.833 
T11 0.383 0.833 0.500 0.500 0.683 0.833 0.500 0.683 0.683 0.500 0.383 
T12 0.383 0.683 0.500 0.383 0.167 0.833 0.500 0.833 0.833 0.683 0.383 
T13 0.500 0.383 0.683 0.167 0.383 0.683 0.683 0.383 0.500 0.683 0.167 
T14 0.500 0.833 0.833 0.383 0.500 0.683 0.683 0.167 0.500 0.833 0.167 
T15 0.683 0.683 0.683 0.683 0.683 0.167 0.833 0.500 0.683 0.683 0.683 

 

 

Table 3. Final weights and ranking for the main and sub-criteria. 

Main criteria Weights Rank Sub-criteria  Weights Rank 

Machine Feature F1 

 

 

 

1 

Energy Loss F11 

 

0.021954 

1 

 Operations of Wind Turbine F12 0.049721 8 

 Available of Maintenance F13 0.030774 21 

 Turbine Efficiency F14 0.042039 15 

0.423017 Available of auxiliary parts F15 0.031543 20 

 Technical Development F16 0.020927 22 

 Power Ratio F17 0.052603 6 

 Hub height F18 0.041303 16 

 Turbine speed F19 0.039383 17 

 Rate of Usage F110 0.049055 9 

  Rotor Diameter F111 0.043716 14 

Environmental/Habitat 

F2 

 

 

4 

Area use F21 

 

0.048228 10 

0.18805 Fuss/ air and water pollution F22 0.03899 19 

 Environmental/Habitat Impact F23 0.053389 5 

 Beautifulness F24 0.047438 11 

Technological F3 

 

2 

Gratification of Supplier F31 

 

0.062704 3 

0.199494 Capacity of System Integration F32 0.039025 18 

 Capacity development of Supplier F33 0.051427 7 

 Time of Allocation F34 0.046337 12 

Monetary F4 

 

3 

Profit F41 

 

0.06014 4 

0.189444 Capacity and Investment Cost F42 0.044995 13 

 Operation and Maintenance Cost F43 0.084309 2 

 

4.2 Rank Turbines 

 

The wind turbines is ranked by the SWM, VIKOR, TOPSIS, EDAS methods. First Apply the WSM 

method.  
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The WSM is applied to rank wind turbines. Start with the aggregated decision matrix in Table 2. 

Then applied Eq. (10) to obtain final rank by multiply the weights of criteria by the value of aggregated 

decision matrix. The rank wind turbines by WSM method is presented in Table 4. 

            The results of WSM method show that T9 is the highest rank with value 0.6126 and T6 is the lowest 

rank with value 0.50064. 

 

Table 4. The rank of turbines by WSM method 

Turbines/Rank Values Rank Total Points 

T1 0.594988 T9 12 

T2 0.564966 T7 8 

T3 0.580817 T10 10 

T4 0.538728 T1 3 

T5 0.555143 T15 6 

T6 0.500635 T3 1 

T7 0.603511 T13 14 

T8 0.557474 T2 7 

T9 0.612693 T8 15 

T10 0.600935 T5 13 

T11 0.549546 T11 5 

T12 0.541628 T12 4 

T13 0.571428 T4 9 

T14 0.502519 T14 2 

T15 0.592822 T6 11 

 

 

The second method (VIKOR) is applied to rank the turbines. First start with the aggregated decision 

matrix in Table 2. Then compute the beneficial-ideal solution (𝐵+) and non-beneficial-ideal solution (𝐵−) 

for positive and negative criteria by using Eqs. (11,12). Then the value of 𝑆𝑥 is computed by using Eq. (13). 

Then compute the value of  𝑅𝑥 by using Eq. (14). Finally applying Eq. (15) to compute the value of 𝑄𝑥. Based 

on this, the rank of turbines is ordered ascending by value of 𝑄𝑥 . Table 5 presented the values of 𝑆𝑥 , 𝑅𝑥, 𝑄𝑥 

and ranking of turbines.  

 

The results from applying the VIKOR method show that the T2 is the highest rank with value 

0.12725 and the T9 is the lowest rank with value 1. 

   

Table 5. The values of 𝑆𝑥 , 𝑅𝑥 , 𝑄𝑥  and rank of turbines by VIKOR method 

Turbines/Rank 𝑆𝑥 𝑅𝑥 𝑄𝑥 Rank Total Points 

T1 0.54934 0.066592 0.698403 T2 4 

T2 0.40505 0.047397 0.127254 T5 15 
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T3 0.451533 0.04898 0.250675 T4 11 

T4 0.353708 0.062704 0.215514 T7 13 

T5 0.426901 0.046337 0.161515 T3 14 

T6 0.443595 0.073311 0.553539 T14 7 

T7 0.454352 0.047653 0.239425 T13 12 

T8 0.489558 0.07881 0.727372 T11 3 

T9 0.580291 0.084309 1 T6 1 

T10 0.533824 0.07209 0.736572 T12 2 

T11 0.515349 0.052603 0.4392 T15 8 

T12 0.513857 0.062704 0.568914 T1 6 

T13 0.46983 0.053389 0.349105 T8 9 

T14 0.461978 0.051427 0.305942 T10 10 

T15 0.548904 0.066592 0.697443 T9 5 

 

 

The third method (TOPSIS) is applied to rank turbines. Start with the combined decision matrix in 

Table 2. Then compute the normalized decision matrix by using Eq. (16). From the normalized decision 

matrix the Eq. (17) is applied to compute the weighted normalized decision matrix. Then compute the value 

of beneficial-ideal solution and non-beneficial-ideal solution for positive and negative criteria by using Eqs. 

(18,19). Then Applying Eqs. (20,21) to compute the distance of each turbine from beneficial and non-

beneficial for positive and negative criteria. Finally Applying Eq. (22) for the compute the value of 

coefficient closeness 𝐺𝑦 . The rank of turbines is computed descending by the value of  𝐺𝑦 . In Table 6 the 

values of 𝐴𝑦
+, 𝐴𝑦

−𝐺𝑦 and rank of turbines is presented.  

 

The results of TOPSIS method show that the T2 is the highest rank with value 0.6248 and T9 is the lowest 

rank with value 0.4185.    

  

Table 6. The values of 𝐴𝑦
+, 𝐴𝑦

−𝐺𝑦 rank of turbines by TOPSIS method 

Turbines/Rank 𝐴𝑦
+ 𝐴𝑦

− 𝐺𝑦 Rank Total Points 

T1 0.031261 0.027524 0.468217 T2 4 

T2 0.021399 0.035644 0.624863 T4 15 

T3 0.023555 0.032831 0.582246 T5 12 

T4 0.025083 0.037006 0.596013 T3 14 

T5 0.023556 0.034485 0.594151 T14 13 

T6 0.029447 0.031434 0.516321 T7 8 

T7 0.026516 0.031088 0.539692 T11 10 

T8 0.03366 0.027441 0.449111 T6 2 

T9 0.036287 0.026118 0.418525 T13 1 

T10 0.031895 0.028337 0.470463 T12 5 

T11 0.028071 0.030586 0.521442 T10 9 
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T12 0.02889 0.028215 0.494095 T1 6 

T13 0.02753 0.029085 0.513738 T15 7 

T14 0.025255 0.033744 0.571948 T8 11 

T15 0.030396 0.025705 0.458189 T9 3 

 

 

The fourth method (EDAS) is applied to obtain the rank of turbines. First start with aggregated decision 

matrix in Table 2. Then compute the average solution by using Eq. (23). Then compute the positive distance 

for positive and negative criteria by using Eqs. (24,25). Then compute the negative distance for positive and 

negative criteria by using Eqs. (26,27). Then compute the weighted sum of positive distance and negative 

distance by using Eqs. (28,29). Then compute the normalize value for weighted sum of positive (𝑁𝑊𝑆𝑃𝑑𝑥) 

and negative distance (𝑁𝑊𝑆𝑛𝑑𝑥) by using Eqs. (30,31) in Table 7. Finally compute the normalized value 

(𝑁𝑜𝑟𝑥) for   (𝑁𝑊𝑆𝑃𝑑𝑥 , 𝑁𝑊𝑆𝑛𝑑𝑥) by using Eqs. (32,33) in Table 7. The final rank is computed based on 

descending value of 𝑁𝑜𝑟𝑥 in Table 7.  

  

The results of EDAS method show that the T4 is the highest rank with value 0.612422 and the T3 is the 

lowest rank with value 0.4435.  

 

Table 7. The values of 𝑁𝑊𝑆𝑃𝑑𝑥 , 𝑁𝑊𝑆𝑛𝑑𝑥 , 𝑁𝑜𝑟𝑥   and rank of turbines by EDAS method 

Turbines/Rank 𝑁𝑊𝑆𝑃𝑑𝑥 𝑁𝑊𝑆𝑛𝑑𝑥 𝑁𝑜𝑟𝑥  Rank Total Points 

T1 0.44604 0.778805 0.612422 T4 8 

T2 0.788992 0.445451 0.617222 T9 10 

T3 0.510227 0.376734 0.44348 T8 1 

T4 1 0.559512 0.779756 T6 15 

T5 0.707808 0.501764 0.604786 T11 7 

T6 0.70301 0.660142 0.681576 T2 12 

T7 0.584757 0.534367 0.559562 T10 5 

T8 0.607156 0.816269 0.711713 T1 13 

T9 0.454275 1 0.727137 T5 14 

T10 0.463 0.763534 0.613267 T14 9 

T11 0.525765 0.716991 0.621378 T7 11 

T12 0.402231 0.611706 0.506969 T12 4 

T13 0.485332 0.508127 0.49673 T13 3 

T14 0.599665 0.532189 0.565927 T15 6 

T15 0.270496 0.62297 0.446733 T3 2 
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 Finally is this section make combination rank for four methods by total points. The concept of total 

points is applied as if the T1 is the highest rank take 15 points and lowest rank take 1 points and so on. Table 

8. Show the combined rank of four methods[36]. 

 

 The results of combined four method show that the T2 is the highest rank with highest total points 

and T12 is the lowest rank with lowest total points 

  

Table 8. The combined rank of four methods. 

Turbines/Rank Total Points Rank 

T1 28 T2 

T2 48 T4 

T3 34 T7 

T4 45 T5 

T5 40 T3 

T6 28 T11 

T7 41 T9 

T8 25 T10 

T9 31 T14 

T10 29 T1 

T11 33 T6 

T12 20 T13 

T13 28 T8 

T14 29 T15 

T15 21 T12 

 

5. Comparative analysis  

 

In this section making the comparative analysis to test the reliability of this proposed methodology. 

Making two comparative analysis with SVNSs and Hesitant Fuzzy sets as follow:  

 

5.1 Comparison by Single Valued Neutrosophic Sets  

Aliye Ayca Supciller and Fatih Toprak[24] used SWARA, TOPSIS and EDAS methods to select best 

wind turbines. The SWARA method is used to calculate the weights of criteria. So, make comparison 

between SWARA and entropy weight method (method in this study).  

 

The results of SWARA show that the F1 = 0.4029, F2 = 0.12241, F3 = 0.30441, F4 = 0.17069. Table 9. 

Show the weights of main criteria and Table 10. Show the weights of sub criteria by the entropy weight and 
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SWARA method. Results show that, in main criteria the highest weight by SWARA method is F1 and the 

lowest weight is F2, the highest weight by entropy weight method is F1 and the lowest weight is F2. In sub 

criteria the highest weights by SWARA is F16 and lowest weights is F6 and highest weight by entropy is F22 

and the lowest weight is F6.  

 

In ranking the turbine, make comparison between SVNSs TOPSIS and EDAS with BNSs TOPSIS, 

WSM, VIKOR and EDAS methods. By using the weights of SWARA and entropy weight methods the 

turbines is ranked. Table 11. Show the ranking by comparison study. Results show that, In SVNSs TOPSIS 

the T2 is the highest rank and T9 is the lowest rank. In SVNSs EDAS method, T4 the highest rank and T13 is 

the lowest rank. In BNSs WSM method T9 is the highest rank and T6 is the lowest rank. In BNSs TOPSIS the 

highest rank is T2 and the lowest rank is T9. In BNSs VIKOR the T2 is the highest rank and T9 is the lowest 

rank. In BNSs T4 is the highest rank and T3 is the lowest rank.  

 

Table 9. The weights of main criteria by entropy and SWARA methods. 

Criteria/Rank SWARA  Rank by SWARA 

method 

Entropy 

weight 

Rank by the entropy 

weight 

F1 0.40249 F1 0.423017 F1 

F2 0.12241 F3 0.188045 F3 

F3 0.30441 F4 0.199494 F4 

F4 0.17069 F2 0.189444 F2 

 

Table 10. The rank weights of sub criteria by SWARA and entropy weight methods 

Criteria/Rank SWARA Rank of 

SWARA 

Entropy 

weight 

Rank of entropy 

weight 

F11 0.002027 F16 0.021954 F22 

F12 0.098079 F7 0.049721 F16 

F13 0.003187 F22 0.030774 F20 

F14 0.022589 F2 0.042039 F14 

F15 0.005242 F14 0.031543 F7 

F16 0.001137 F10 0.020927 F18 

F17 0.150387 F18 0.052603 F2 

F18 0.012434 F20 0.041303 F10 

F19 0.009173 F11 0.039383 F12 

F10 0.061087 F12 0.049055 F15 

F11 0.037147 F19 0.043716 F19 

F21 0.031047 F4 0.048228 F21 

F22 0.004184 F21 0.03899 F11 

F23 0.077627 F17 0.053389 F4 

F24 0.009553 F8 0.047438 F8 

F31 0.200746 F15 0.062704 F9 

F32 0.014744 F9 0.039025 F17 



Neutrosophic Sets and Systems, Vol. 42, 2021                                                                                                                                         21                 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
Ahmed Abdel-Monem and Amal Abdel Gawad, A hybrid Model Using MCDM Methods and Bipolar Neutrosophic Sets for Select 

Optimal Wind Turbine: Case Study in Egypt 

F33 0.059922 F5 0.051427 F13 

F34 0.028996 F13 0.046337 F5 

F41 0.038642 F3 0.06014 F3 

F42 0.018698 F1 0.044995 F1 

F43 0.113353 F6 0.084309 F6 

 

Table 11. The rank of turbines by this study methods and SVNSs TOPSIS and EDAS methods. 

Turbines/Rank SVNSs 

TOPSIS 

SVNSs 

EDAS 

BNSs 

 WSM 

BNSs 

TOPSIS 

BNSs 

VIKOR 

BNSs  

EDAS  

T1 T2 T4 T9 T2 T2 T4 

T2 T4 T10 T7 T4 T5 T9 

T3 T5 T8 T10 T5 T4 T8 

T4 T14 T9 T1 T3 T7 T6 

T5 T3 T11 T15 T14 T3 T11 

T6 T11 T6 T3 T7 T14 T2 

T7 T7 T12 T13 T11 T13 T10 

T8 T6 T1 T2 T6 T11 T1 

T9 T13 T5 T8 T13 T6 T5 

T10 T12 T2 T5 T12 T12 T14 

T11 T1 T14 T11 T10 T15 T7 

T12 T10 T7 T12 T1 T1 T12 

T13 T8 T15 T4 T15 T8 T13 

T14 T15 T3 T14 T8 T10 T15 

T15 T9 T13 T6 T9 T9 T3 

 

5.2 Comparison by Hesitant Fuzzy AHP and TOPSIS  [3]  

 

Making a comparison between Hesitant Fuzzy AHP-TOPSIS with this study. First Applying the AHP 

method to calculate the weights of main and sub criteria. Table 12. Show the comparison weights between 

AHP and entropy weight method. The results of comparison weight of main criteria show that, the highest 

weight by AHP method is F1 and F2 is the lowest weight. In entropy weight, the F1 is the highest weight 

and F2 is the lowest weight. The weights of sub criteria is computed and ranked in Table 13. In AHP method 

the F20 is the highest weigh in sub criteria and F15 is the lowest weight. In entropy weight the F22 is the 

highest weight and F6 is the lowest weight.  

 

After comparison with the weights of criteria, the turbines is ranked. Comparison by the Hesitant 

Fuzzy TOPSIS and BNSs WSM, TOPSIS, VIKOR and EDAS. The Rank of turbines is computed in Table 14. 

In Hesitant Fuzzy TOPSIS show that T4 is the highest rank and T9 is the lowest rank.   

 

Table 12. The weights of main criteria by entropy weight and AHP methods. 
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Criteria/Rank AHP  Rank by AHP method Entropy 

weight 

Rank by the entropy 

weight 

F1 0.355425 F1 0.423017 F1 

F2 0.131329 F3 0.188045 F3 

F3 0.270759 F4 0.199494 F4 

F4 0.242487 F2 0.189444 F2 

 

Table 13. The rank weights of sub criteria by AHP and entropy weight methods 

Criteria/Rank AHP Rank of 

AHP 

Entropy 

weight 

Rank of entropy 

weight 

F11 0.04962 F20 0.021954 F22 

F12 0.045957 F16 0.049721 F16 

F13 0.035905 F19 0.030774 F20 

F14 0.035779 F21 0.042039 F14 

F15 0.030804 F18 0.031543 F7 

F16 0.030648 F17 0.020927 F18 

F17 0.029155 F22 0.052603 F2 

F18 0.026058 F1 0.041303 F10 

F19 0.024442 F12 0.039383 F12 

F10 0.023972 F2 0.049055 F15 

F11 0.023085 F3 0.043716 F19 

F21 0.048331 F4 0.048228 F21 

F22 0.029932 F14 0.03899 F11 

F23 0.031933 F5 0.053389 F4 

F24 0.021132 F6 0.047438 F8 

F31 0.099028 F13 0.062704 F9 

F32 0.053956 F7 0.039025 F17 

F33 0.056504 F8 0.051427 F13 

F34 0.06127 F9 0.046337 F5 

F41 0.131909 F10 0.06014 F3 

F42 0.057006 F11 0.044995 F1 

F43 0.053572 F15 0.084309 F6 

 

Table 14. The rank of turbines by this study methods and Hesitant Fuzzy TOPSIS 

Turbines/Rank Hesitant 

Fuzzy 

TOPSIS 

BNSs 

 WSM 

BNSs 

TOPSIS 

BNSs 

VIKOR 

BNSs  

EDAS  

T1 T4 T9 T2 T2 T4 

T2 T2 T7 T4 T5 T9 

T3 T5 T10 T5 T4 T8 

T4 T7 T1 T3 T7 T6 

T5 T3 T15 T14 T3 T11 

T6 T11 T3 T7 T14 T2 

T7 T14 T13 T11 T13 T10 

T8 T12 T2 T6 T11 T1 

T9 T13 T8 T13 T6 T5 

T10 T15 T5 T12 T12 T14 
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T11 T6 T11 T10 T15 T7 

T12 T10 T12 T1 T1 T12 

T13 T1 T4 T15 T8 T13 

T14 T8 T14 T8 T10 T15 

T15 T9 T6 T9 T9 T3 

 

 

6. Sensitivity analysis  

The change criteria weights can affect rank. So needs to change weights of criteria to assess the 

rank of turbines. In this paper proposed five cases weights changes in Table 15[36]. In case 1 proposed 

equally weights important for four main criteria. The next cases based on the machine feature, 

environmental, technological and monetary criteria. The weights of criteria in these cases obtained by 

divide the weight of criteria by number of criteria (four criteria). Table 16 show the rank of turbines under 

different cases and methods.  

 

In WSM method, In case 1, the T9 is the highest turbine rank and T14 is the lowest turbine rank. In 

case 2, T9 is the highest turbine rank and T6 is the lowest turbine rank. In case 3, T9 is the highest turbine 

rank and T6 is the lowest turbine rank. In case 4, T9 is the highest turbine rank and T14 is the lowest turbine 

rank. In case 5, T10 is the highest turbine rank and T14 is the lowest turbine rank. 

 

In VIKOR method, In case 1, the T5 is the highest turbine rank and T9 is the lowest turbine rank. In 

case 2, T4 is the highest turbine rank and T9 is the lowest turbine rank. In case 3, T6 is the highest turbine 

rank and T1 is the lowest turbine rank. In case 4, T13 is the highest turbine rank and T12 is the lowest turbine 

rank. In case 5, T4 is the highest turbine rank and T5 is the lowest turbine rank. 

 

In TOPSIS method, In case 1, the T5 is the highest turbine rank and T9 is the lowest turbine rank. In 

case 2, T2 is the highest turbine rank and T9 is the lowest turbine rank. In case 3, T5 is the highest turbine 

rank and T1 is the lowest turbine rank. In case 4, T13 is the highest turbine rank and T12 is the lowest turbine 

rank. In case 5, T4 is the highest turbine rank and T9 is the lowest turbine rank. 

 

In EDAS method, In case 1, the T4 is the highest turbine rank and T15 is the lowest turbine rank. In 

case 2, T4 is the highest turbine rank and T3 is the lowest turbine rank. In case 3, T6 is the highest turbine 

rank and T15 is the lowest turbine rank. In case 4, T4 is the highest turbine rank and T3 is the lowest turbine 

rank. In case 5, T4 is the highest turbine rank and T12 is the lowest turbine rank. 
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Due to the MCDM methods have different rank results. So, proposed the combination method to 

aggregate the turbines rank. If there are h alternative, the highest rank takes h points and second rank takes 

h-1 points, third rank takes h-2 points and so on. The turbines is the highest points takes the best 

turbines[36]. Table 17 show the combination rank.   

 

Table 15. The five case of change weight.  

Turbines/Rank Machine 

Feature  

Environmen

tal/Habitat 

Technologica

l  

Monetar

y 

Case 1 Equal important  0.25 0.25 0.25 0.25 

Case 2  Machine Feature 0.5 0.1667 0.1667 0.1667 

Case 3 Environmental/Habitat 0.1667 0.5 0.1667 0.1667 

Case 4 Technological 0.1667 0.1667 0.5 0.1667 

Case 5 Monetary 0.1667 0.1667 0.1667 0.5 

 

Table 16. The rank of turbines by five cases of weights. 

WSM VIKOR TOPSIS EDAS  

Ca

se 

1 

Ca

se 

2 

Ca

se 

3 

Ca

se 

4 

Ca

se 

5 

Ca

se 

1 

Ca

se 

2 

Ca

se 

3 

Ca

se 

4 

Ca

se 

5 

Ca

se 

1 

Ca

se 

2 

Ca

se 

3 

Ca

se 

4 

Ca

se 

5 

Ca

se 

1 

Ca

se 

2 

Ca

se 

3 

Ca

se 

4 

Ca

se 

5 

T9 T9 T9 T9 T10 T5 T4 T6 

T1

3 T4 T5 T2 T5 

T1

3 T4 T4 T4 T6 T4 T4 

T10 T7 T15 T10 T9 T2 T2 T5 T3 T5 T2 T4 T6 T3 T5 T9 T9 T4 T6 T9 

T15 T10 T7 T1 T15 T4 T5 T4 T6 T3 T4 T5 T4 T6 T3 T6 T8 T9 T8 T8 

T7 T1 T10 T15 T1 T3 T3 T2 T7 
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Table 17. The combination rank for five case weights. 

WSM VIKOR TOPSIS EDAS 

T9 T5 T5 T4 

T10 T4 T2 T9 

T15 T2 T4 T6 

T7 T3 T3 T8 

T1 T7 T7 T5 

T3 T6 T14 T1 

T13 T13 T6 T11 

T5 T14 T11 T2 

T8 T11 T13 T14 

T11 T12 T10 T10 

T2 T8 T12 T7 

T12 T15 T1 T12 

T4 T10 T8 T13 

T6 T1 T15 T3 

T14 T9 T9 T15 

 

 

7. Conclusions  

Many countries go toward using the renewable energy instead of using fossil fuel in recent years. 

The wind energy is a source of renewable energy. So, increasing the importance of selection the best wind 

turbine. In this paper discuss the selection best wind turbine for Egypt to build a new farm in the 

government red sea. First the criteria is collected from the literature review. The opinions of experts and 

decision makers are collected. The twenty two sub criteria and four main criteria is collected. The fifteen 

turbines were determined. The weights of criteria is computed by the entropy weight method. The turbines 

were ranked by the WSM, VIKOR, TOPSIS and EDAS methods with bipolar neutrosophic sets. Base on the 

results show that the T2 is the highest rank and T12 is the lowest rank.  

 

The future work can apply another MCDM methods for this problem.  

Conflict of interest 

The authors declare that there is no conflict of interest in the research.  

 

Funding 

This research has no funding source. 

 



Neutrosophic Sets and Systems, Vol. 42, 2021                                                                                                                                         26                 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
Ahmed Abdel-Monem and Amal Abdel Gawad, A hybrid Model Using MCDM Methods and Bipolar Neutrosophic Sets for Select 

Optimal Wind Turbine: Case Study in Egypt 

Ethical approval 

This article does not contain any studies with human participants or animals performed by any of the 

authors. 

 

 
References            

[1] Rehman, S. and S.A. Khan, Multi-criteria wind turbine selection using weighted sum approach. International 

Journal of Advanced Computer Science and Applications, 2017. 8(6): p. 128-132. 

[2] Gamboa, G. and G. Munda, The problem of windfarm location: A social multi-criteria evaluation framework. Energy 

policy, 2007. 35(3): p. 1564-1583. 

[3] Beskese, A., et al., Wind turbine evaluation using the hesitant fuzzy AHP-TOPSIS method with a case in Turkey. 

Journal of Intelligent & Fuzzy Systems, 2020. 38(1): p. 997-1011. 

[4] Lee, A.H., H.H. Chen, and H.-Y. Kang, Multi-criteria decision making on strategic selection of wind farms. 

Renewable Energy, 2009. 34(1): p. 120-126. 

[5] Neto, J.X.V., et al., Wind turbine blade geometry design based on multi-objective optimization using metaheuristics. 

Energy, 2018. 162: p. 645-658. 

[6] Rehman, S. and S.A. Khan, Fuzzy logic based multi-criteria wind turbine selection strategy—A case study of Qassim, 

Saudi Arabia. Energies, 2016. 9(11): p. 872. 

[7] Kaya, T. and C. Kahraman, Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP 

methodology: The case of Istanbul. Energy, 2010. 35(6): p. 2517-2527. 

[8] Rehman, S. and S.A. Khan, Goal Programming-Based Two-Tier Multi-Criteria Decision-Making Approach for Wind 

Turbine Selection. Applied Artificial Intelligence, 2019. 33(1): p. 27-53. 

[9] Shirgholami, Z., S.N. Zangeneh, and M. Bortolini, Decision system to support the practitioners in the wind farm 

design: A case study for Iran mainland. Sustainable Energy Technologies and Assessments, 2016. 16: p. 1-10. 

[10] Çolak, M. and İ. Kaya, Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A 

real case application for Turkey. Renewable and sustainable energy reviews, 2017. 80: p. 840-853. 

[11] Qu, F., et al., Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy 

logic. Applied Energy, 2020. 262: p. 114469. 

[12] Madi, E.N., J.M. Garibaldi, and C. Wagner. An exploration of issues and limitations in current methods of TOPSIS 

and fuzzy TOPSIS. in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2016. IEEE. 

[13] Smarandache, F., A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic 

probability: neutrsophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. 2005: Infinite Study. 

[14] Faizi, S., et al., Decision making with uncertainty using hesitant fuzzy sets. International Journal of Fuzzy Systems, 

2018. 20(1): p. 93-103. 

[15] Junaid, M., et al., A neutrosophic ahp and topsis framework for supply chain risk assessment in automotive industry of 

Pakistan. Sustainability, 2020. 12(1): p. 154. 

[16] Cui, Y., et al., Water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved the 

entropy weight method. Entropy, 2018. 20(5): p. 359. 

[17] Yörükoğlu, M. and S. Aydın, Wind turbine selection by using MULTIMOORA method. Energy Systems, 2020: p. 

1-14. 

[18] Kongprasit, S., J. Waewsak, and T. Chaichana, Wind turbine and local acceptance in Southern Thailand. Energy 

Procedia, 2017. 138: p. 380-385. 

[19] Sarja, J. and V. Halonen, Wind turbine selection criteria: A customer perspective. Journal of Energy and Power 

Engineering, 2013. 7(9): p. 1795. 

[20] Şağbanşua, L. and F. Balo, Multi-criteria decision making for 1.5 MW wind turbine selection. Procedia computer 

science, 2017. 111: p. 413-419. 

[21] Arias-Rosales, A. and G. Osorio-Gómez, Wind turbine selection method based on the statistical analysis of nominal 

specifications for estimating the cost of energy. Applied Energy, 2018. 228: p. 980-998. 

[22] Sedaghat, A., et al., A new strategy for wind turbine selection using optimization based on rated wind speed. Energy 

Procedia, 2019. 160: p. 582-589. 

[23] Pang, N., et al., Selection of Wind Turbine Based on Fuzzy Analytic Network Process: A Case Study in China. 

Sustainability, 2021. 13(4): p. 1792. 



Neutrosophic Sets and Systems, Vol. 42, 2021                                                                                                                                         27                 

_____________________________________________________________________________________ 

_____________________________________________________________________________________ 
Ahmed Abdel-Monem and Amal Abdel Gawad, A hybrid Model Using MCDM Methods and Bipolar Neutrosophic Sets for Select 

Optimal Wind Turbine: Case Study in Egypt 

[24] Supciller, A.A. and F. Toprak, Selection of wind turbines with multi-criteria decision making techniques involving 

neutrosophic numbers: A case from Turkey. Energy, 2020. 207: p. 118237. 

[25] Abdel-Basset, M., et al., A bipolar neutrosophic multi criteria decision making framework for professional selection. 

Applied Sciences, 2020. 10(4): p. 1202. 

[26] Broumi, S., et al. Shortest path problem under bipolar neutrosphic setting. in Applied Mechanics and Materials. 2017. 

Trans Tech Publ. 

[27] Wang, L., H. Garg, and N. Li, Pythagorean fuzzy interactive Hamacher power aggregation operators for assessment 

of express service quality with entropy weight. Soft Computing, 2021. 25(2): p. 973-993. 

[28] Zeng, S., et al., A multi‐criteria sustainable supplier selection framework based on neutrosophic fuzzy data and entropy 

weighting. Sustainable Development, 2020. 28(5): p. 1431-1440. 

[29] Xiao, Q., et al., Evaluation of urban taxi-carpooling matching schemes based on entropy weight fuzzy matter-element. 

Applied Soft Computing, 2019. 81: p. 105493. 

[30] Manna, S., T.M. Basu, and S.K. Mondal, A soft set based VIKOR approach for some decision-making problems under 

complex neutrosophic environment. Engineering Applications of Artificial Intelligence, 2020. 89: p. 103432. 

[31] Abdel-Basset, M., et al., An integrated plithogenic MCDM approach for financial performance evaluation of 

manufacturing industries. Risk Management, 2020. 22(3): p. 192-218. 

[32] Li, H., et al., A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and 

later defuzzification VIKOR. Applied Soft Computing, 2020. 91: p. 106207. 

[33] Krishankumar, R., et al., A novel extension to VIKOR method under intuitionistic fuzzy context for solving personnel 

selection problem. Soft Computing, 2020. 24(2): p. 1063-1081. 

[34] Keshavarz Ghorabaee, M., et al., Multi-criteria inventory classification using a new method of evaluation based on 

distance from average solution (EDAS). Informatica, 2015. 26(3): p. 435-451. 

[35] Kahraman, C., et al., Intuitionistic fuzzy EDAS method: an application to solid waste disposal site selection. Journal 

of Environmental Engineering and Landscape Management, 2017. 25(1): p. 1-12. 

[36] Lee, H.-C. and C.-T. Chang, Comparative analysis of MCDM methods for ranking renewable energy sources in 

Taiwan. Renewable and Sustainable Energy Reviews, 2018. 92: p. 883-896. 

  

 

 

 

Received: Jan. 3, 2021.  Accepted: April 10, 2021. 

 

 

 

 
 

 



                                    Neutrosophic Sets and Systems, Vol. 42, 2021 
University of New Mexico  

A.Bakali, S. Broumi, D. Nagarajan , M. Talea, M.Lathamaheswari, J. Kavikumar, Graphical Representation of 

Type-2 Neutrosophic sets 

Graphical Representation of Type-2 Neutrosophic sets 

             A.Bakali1, S. Broumi2,*, D. Nagarajan3 , M. Talea4, M.Lathamaheswari5, J. Kavikumar6  

1Ecole Royale Navale-Boulevard Sour Jdid, B.P 16303 Casablanca, Morocco; assiabakali@yahoo.fr 

2,4 Laboratory of Information Processing Faculty of Science Ben M’Sik, University Hassan II, Casablanca, 

Morocco; broumisaid78@gmail.com, taleamohamed@yahoo.fr 

3,5Department of Mathematics, Hindustan Institute of Technology & Science, Chennai-603 103, India; 

dnrmsu2002@yahoo.com, lathamax@gmail.com 

6Department of Mathematics and Statistics, Faculty of Applied Science and Technology, 

Universiti Tun Hussein Onn, Malaysia; kavi@uthm.edu.my 

Abstract: Neutrosophic set is the universality of the fuzzy and intuitionistic fuzzy sets.  If the value 

of grade of membership contains uncertainty then that problems or situations can be dealt by type-2 

fuzzy and intuitionistic fuzzy sets. It is not possible to work in enigmatic and uncertain situations 

and indeterminate situations as well. This present study introduces, graphical representation of type-2 

neutrosophic set (T2NS) to deal the level of uncertainty in truth, indeterminate and false part of the 

information from footprint of uncertainty (FOU). This graphical representation helps as a learning 

strategy of type-2 neutrosophic sets. Also discussed the advantage of T2NS. 

Keywords: Type 2 neutrosophic number; graphical representation; score and accuracy function 

1. Introduction 

Fuzzy set (FS) [32] is an extension of the conventional set where the elements have membership 

degrees. It encounters the uncertainty, partial truth and vagueness of each and every element in the 

set.  FS is also called as type-1 FS. Since it has crisp membership values take from [0, 1], it is unable 

to deal more uncertainties generally exist in the real world problems. To sort out this issue type-2 

fuzzy sets have been introduced to deal more uncertainties as its membership values itself a fuzzy 

number with a unique dimension called footprint of uncertainty (FOU). FOU tells about the level of 

uncertainty of the problem by giving more degrees of freedom and it is the fundamental difference 

between the type-1 and type-2 FSs.  

Structure of the rule is same in these two types but the output is different. An expert can decide 

the membership value in type-1 fuzzy exactly where for type-2 fuzzy it is not instead expert will 

provide interval based membership values.  Defuzzification is the method for getting crisp outputs 
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from type-2 fuzzy sets and gives the flexibilities in decision-making. In this way, type-2 fuzzy sets 

have the capability of dealing uncertainty in high level by providing missing components, which is 

very useful in decision-making. 

Atanassov[5] stated that intuitionistic fuzzy sets (IFSs) are the generalization of FSs by adding 

degree of non-membership of the elements in the set. It provides the theoretical support to handle 

the hesitation information provided by the people in judging questions. In addition, it looks more 

precisely to uncertainty analysis and afford the chance of having precise model using existing 

observation and intelligence. Both these types are soft methods and hence directed to soft computing 

and approximate reasoning [23]. Type-2 IFSs more successful by enhancing the ability of dealing with 

more uncertainties as T2FSs with extra component non-membership. T2FSs and T2IFSs have a broad 

range of practical applications. 

Impreciseness in real world problems has become an advantageous modeling field for FSs and 

its generalization.  Many efforts have been made to employ the approach of these sets for reducing 

the impreciseness from such problems [24].  Dubois et al.[15]inferred that some of the experts have 

disputed that demanding precision in grades of membership of the elements of the sets may sound 

sarcastic.  Though it is a challenged one automatically, it leads to interval valued fuzzy sets. In the 

fields of engineering, economics intervals were used to produce the values of quantities due to 

uncertainty. Bustince et al.[13] mentioned that, all the above mentioned types are only because of 

uncertainty of human knowledge representation. 

Though FSs and IFSs scope with the dealing of uncertainty in real world problems, they are 

unable to deal indeterminacy of the information or data. Hence, neutrosophic set introduced by 

Smarandache [27]. Then its special cases like single valued and interval valued neutrosophic sets 

have been introduced to deal more uncertainty of the problem by dealing more indeterminacy of the 

information and data provided by the experts or people according to the questionnaire provided 

[7,33]. 

The remaining part of the paper is organized as follows. In section 2, review of literature 

has been given. In section 3, basic concepts of type-2 neutrosophic set have been presented. In section 

4, numerical validation is done for the concepts using type-2 neutrosophic sets. In section 5, graphical 

representation of type-2 neutrosophic set is presented. In section 6, advantages of T2NS are 

presented. In section 7, we conclude the work with the future direction. 

2-Review of Literature 

Atanassov [2] introduced the concept of intuitionistic fuzzy sets. Atanassov [4] described the 

theory of intuitionistic fuzzy concept. Atanassov [4] introduced the geometric interpretation, discrete 
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norm, graph concepts under IFS environment. Zhao and Xia [33] proposed the concept of IFS under 

type-2 setting. Coung et al [14] defined some operations of IFS. Jana [21] proposed arithmetic 

operations on type-2 IFS and used the proposed concepts in transportation problem. Singh and Garg 

[29] proposed distance measure between IFSs and applied in a decision-making problem. Anusuya 

and Sathya [2] solved shortest path problem (SPP) using the complement of a type-2 fuzzy number.  

Anusuya and Sathya [1] proposed a new approach for solving SPP under type-2 fuzzy environment. 

Lee and Lee [25] solved SPP using type-2 fuzzy weighted graph. Basset et al [26] proposed a novel 

methodology for supplier selection using TOPSIS approach.    

Kumar and Pandey [24] made a discussion Qwitching Type-2 fuzzy sets and IFS in an 

application of medical diagnosis. Khatibi and Montazer [23] analyzed the performance of medical 

pattern recognition using IFS and FS. Dubois et al[15]discussed about the difficulties of using the 

terminologies of FS theory. Bustince et al [13] presented a wider view on the relationship of interval 

type-2 fuzzy sets and interval valued FSs.    

Smarandache [27] introduced the concept of neutrosophy and its probability, logic and set. 

Smarandache [28] introduced neutrosophic theory, its logic and set to solve the problem with 

indeterminacy. Wang et al [30] introduced single valued neutrosophic set (SVNS) as the special case 

of neutrosophic set (NS). Wang et al [31] introduced interval valued NSs and applied in the field 

computing technology. Broumi and Smarandache [6] proposed cosine similarity measure of interval 

valued NSs. Broumi et al [11] introduced interval valued neutrosophic sets and its operations. 

Broumi et al [8] solved minimum spanning tree problem under interval valued bipolar 

neutrosophic setting. Broumi et al [9] solve SPP using single valued neutrosophic graphs. Broumi et 

al[10]analyzed SPP using trapezoidal NS. Broumi et al [11] introduced N-valued interval NSs and 

applied in medical diagnosis problem. Nagarajan et al [17] have done edge detection on DICOM 

Image using triangular norms under type-2 fuzzy. Nagarajan et al [18] have done image extraction 

using the concept of type-2 fuzzy.  

Nagarajan et al. [19] introduced interval type2 fuzzy logic washing machine. Nagarajan et al 

[20], proposed fuzzy optimization techniques based on hidden Markov model using interval type-2 

fuzzy parameters. Broumi et al [12] solved SPP using triangular and trapezoidal interval NSs. 
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Nagarajan et al [16] analyzed traffic control management using interval type-2 FSs and interval 

neutrosophic sets and their aggregation operators. Also proposed a new score function for interval 

neutrosophic numbers. Karaaslan and Hunu [22] introduced type-2 single valued neutrosophic sets 

and solved multicriteria group decision-making problem based on TOPSIS method under type-2 

single valued neutrosophic environment.   

Though many concepts and types have been introduced, type-2 neutrosophic set with truth, 

indeterminacy and falsity components as the subparts for all the three components truth, 

indeterminacy and falsity is yet to be studied. Hence the scope and aim of this paper.  

3-Preliminaries 

We introduce several basic concepts of T2NN and operations on T2NN.  

Definition of type 2 neutrosophic number [26] 

Let Ȥ be the limited universe of discourse and F[0, 1] be the set of all triangular neutrosophic 

numbers on F[0, 1].A type 2 neutrosophic number set (T2NNS) ̃  in Ȥ is represented by  ̃ = 

{〈ȥ, T̃̃ (ȥ), Ĩ̃(ȥ), F̃̃ (ȥ)| ȥ ∈ Ȥ〉} , where T̃̃ (ȥ) ∶ Ȥ → F[0, 1], Ĩ̃(ȥ) ∶ Ȥ → F[0, 1], F̃̃(ȥ) ∶ Ȥ → F[0, 1] . A 

type 2 neutrosophic number set (T2NNS) T̃̃(ȥ) = (TT̃
(ȥ), TĨ

(ȥ), TF̃
(ȥ)) , ̃̃ (ȥ) 

=(IT̃
(ȥ), IĨ

(ȥ), IF̃
(ȥ)), F̃̃(ȥ) =(FT̃

(ȥ), FĨ
(ȥ), FF̃

(ȥ)), respectively, denote the truth, indeterminacy, 

and falsity memberships of ȥ  in ̃  and for every ȥ ∈ Ȥ : 0 ≤  T̃̃ (ȥ)3 + ̃̃ (ȥ)3 + F̃̃ (ȥ)3 ≤ 3 ; for 

convenience, we consider that 

̃  = ⟨(TT̃
(ȥ), TĨ

(ȥ), TF̃
(ȥ)) , (IT̃

(ȥ), IĨ
(ȥ), IF̃

(ȥ)) , (FT̃
(ȥ), FĨ

(ȥ), FF̃
(ȥ))⟩  as a type 2 

neutrosophic number. 

Definition 2[26] 

Suppose ̃
1= ⟨(TT̃ 1

(ȥ), TĨ 1
(ȥ), TF̃ 1

(ȥ)) , (IT̃ 1
(ȥ), IĨ 1

(ȥ), IF̃ 1
(ȥ)) , (FT̃ 1

(ȥ), FĨ 1
(ȥ), FF̃ 1

(ȥ))⟩ 

and ̃
2  = ⟨(TT̃ 2

(ȥ), TĨ 2
(ȥ), TF̃ 2

(ȥ)) , (IT̃ 2
(ȥ), IĨ 2

(ȥ), IF̃ 2
(ȥ)) , (FT̃ 2

(ȥ), FĨ 2
(ȥ), FF̃ 2

(ȥ))⟩ are two 
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U

T2NNS in the set real numbers. Then the procedures are defined as follows:  

̃
1 ⊕ Ũ2 = 

(
U U U U U U U U

U U U U

(TT̃ 1
(ȥ) + TT̃ 2

(ȥ) −  TT̃ 1
(ȥ). TT̃ 2

(ȥ)) , (TĨ 1
(ȥ) + TĨ 2

(ȥ) −  TĨ 1
(ȥ). TĨ 2

(ȥ)) ,

(TF̃ 1
(ȥ) + TF̃ 2

(ȥ) −  TF̃ 1
(ȥ). TF̃ 2

(ȥ))
) ,

U U U U U U

U U U U U U

                         

U

U U U U U U

(IT̃ 1
(ȥ). IT̃ 2

(ȥ),  IĨ 1
(ȥ). II ̃ 2

(ȥ), IF̃ 1
(ȥ). IF̃ 2

(ȥ)) ,

(FT̃ 1
(ȥ). FT̃ 2

(ȥ),  FĨ 1
(ȥ). FĨ 2

(ȥ), FF̃ 1
(ȥ). FF̃ 2

(ȥ))

                                              (1)                            

̃
1 ⊗ Ũ2 = 

((TT̃ 1
(ȥ). TT̃ 2

(ȥ),  TĨ 1
(ȥ). TĨ 2

(ȥ), TF̃ 1
(ȥ). TF̃ 2

(ȥ))) ,

(
U U U U U U U U

U U U U

(IT̃ 1
(ȥ) + IT̃ 2

(ȥ) −  IT̃ 1
(ȥ). IT̃ 2

(ȥ)) , (IĨ 1
(ȥ) + IĨ 2

(ȥ) − IĨ 1
(ȥ). IĨ 2

(ȥ)) ,

(IF̃ 1
(ȥ) +  IF̃ 2

(ȥ) −  IF̃ 1
(ȥ). IF̃ 2

(ȥ))
)

(
U U U U U U U U

U U U U

(FT̃ 1
(ȥ) + FT̃ 2

(ȥ) − FT̃ 1
(ȥ). FT̃ 2

(ȥ)) , (FĨ 1
(ȥ) + FĨ 2

(ȥ) −  FĨ 1
(ȥ). FĨ 2

(ȥ)) ,

(FF̃ 1
(ȥ) +  FF̃ 2

(ȥ) −  FF̃ 1
(ȥ). FF̃ 2

(ȥ))
)

                                                                                                                                                      

(2) 

δŨ  =

  
U U U

U U

  (1 − (1 − TT̃ 1
(ȥ))δ, 1 − (1 −  TĨ 1

(ȥ))δ, 1 − (1 − TF̃ 1
(ȥ))δ) ,

((IT̃ 1
(ȥ))

δ

, (IĨ 1
(ȥ))

δ

U
, (IF̃ 1

(ȥ))
δ

) ,

U
((FT̃ 1

(ȥ))
δ

U
, (FĨ 1

(ȥ))
δ

U
, (FF̃ 1

(ȥ))
δ

)

               for  δ > 0      

(3) 
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Ũδ =     

U
((TT̃ 1

(ȥ))
δ

U
, (TĨ 1

(ȥ))
δ

U
, (TF̃ 1

(ȥ))
δ

) ,

U
(1 − (1 − IT̃ 1

(ȥ))
δ

,
U

1 − (1 − IĨ 1
(ȥ))

δ

U
, 1 − (1 − IF̃ 1

(ȥ))
δ

) ,

U
(1 − (1 − FT̃ 1

(ȥ))
δ

,
U

1 − (1 − FĨ 1
(ȥ))

δ

U
, 1 − (1 − FF̃ 1

(ȥ))
δ

)

for δ > 0                                                                                                                                  

(4) 

U U U U

U U

U U U U U

U
U U U U U U U U U

U

The procedures defined in definition 2 satisfy the following properties:  

̃
1 ⊕ Ũ2  =  ̃

2 ⊕ Ũ1 , ̃
1 ⊗ Ũ2    =  ̃

2 ⊗ Ũ1; 

δ(̃
1 ⊕ Ũ2) = δŨ1 ⊕ δŨ2 , (Ũ1 ⊗ Ũ2)δ =  ̃

1
δ

⊗ Ũ2
δ
 for  δ > 0,    and 

δ1
̃

1 ⊕ δ2
̃

1 = (δ1 + δ2)̃
1,    ̃

1
δ1 ⊕ Ũ1

δ2   =  ̃
1

(δ1+ δ2)
 for δ1, δ2>0. 

Definition 3 [26] 

Suppose that ̃
1= ⟨(TT̃ 1

(ȥ), TĨ 1
(ȥ), TF̃ 1

(ȥ)) , (IT̃ 1
(ȥ), IĨ 1

(ȥ), IF̃ 1
(ȥ)) , (FT̃ 1

(ȥ), FĨ 1
(ȥ), FF̃ 1

(ȥ))⟩ 

are T2NNS in the set of real numbers, the score function S(Ũ1) of ̃
1 is defined as follows: 

S(Ũ1)  = 
U U U U U U U

1

12
⟨8 + (TT̃ 1

(ȥ) + 2 (TĨ 1
(ȥ)) +  TF̃ 1

(ȥ)) −  (IT̃ 1
(ȥ) + 2 (IĨ 1

(ȥ)) +  IF̃ 1
(ȥ)) − (FT̃ 1

(ȥ) +

U U
2 (FĨ 1

(ȥ)) +  FF̃ 1
(ȥ))⟩                                                                                                                                    (5) 

A(Ũ1) = 

U U U U U U

1

4
⟨(TT̃ 1

(ȥ) + 2 (TĨ 1
(ȥ)) + TF̃ 1

(ȥ)) − (FT̃ 1
(ȥ) + 2 (FĨ 1

(ȥ)) +  FF̃ 1
(ȥ))⟩                                    

(6) 

U
U U U U U U U U U

U
U U U U U U U U U

Definition 4 [26]. 

Suppose that ̃
1= ⟨(TT̃ 1

(ȥ), TĨ 1
(ȥ), TF̃ 1

(ȥ)) , (IT̃ 1
(ȥ), IĨ 1

(ȥ), IF̃ 1
(ȥ)) , (FT̃ 1

(ȥ), FĨ 1
(ȥ), FF̃ 1

(ȥ))⟩ 

and ̃
2 = ⟨(TT̃ 2

(ȥ), TĨ 2
(ȥ), TF̃ 2

(ȥ)) , (IT̃ 2
(ȥ), IĨ 2

(ȥ), IF̃ 2
(ȥ)) , (FT̃ 2

(ȥ), FĨ 2
(ȥ), FF̃ 2

(ȥ))⟩are two 

T2NNS in the set of real numbers. Suppose that S(Ũi) and A(Ũi) are the score and accuracy 
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U

U U U U U U

A A U U U U

U U

A A U U U U

U U

U
U U U U U U U U U

U
U U U U U U U U U

U U

functions of T2NNS ̃
i(i = 1, 2), then the order relations are defined as follows: 

If S̃(Ũ1)>S̃(Ũ2) , then ̃
1 is greater than ̃

2, that is ̃
1 is superior to ̃

2, denoted by ̃
1>̃

2 ; 

If S̃(Ũ1) = S̃(Ũ2), ̃(Ũ1)>̃(Ũ2) )then ̃
1 is superior than ̃

2, that is ̃
1 is superior to ̃

2, 

denoted by ̃
1 >̃

2; 

If S̃(Ũ1) = S̃(Ũ2), ̃(Ũ1)  =  ̃(Ũ2) ) then ̃
1 is equal to ̃

2, that is ̃
1 is indifferent to ̃

2, 

denoted by ̃
1=̃

2; 

4-Numreical examples 

In this section, numerical examples are given for validating the concepts.  

Example 1. Consider two T2NNS in the group of real numbers: 

̃
1= ⟨(TT̃ 1

(ȥ), TĨ 1
(ȥ), TF̃ 1

(ȥ)) , (IT̃ 1
(ȥ), IĨ 1

(ȥ), IF̃ 1
(ȥ)) , (FT̃ 1

(ȥ), FĨ 1
(ȥ), FF̃ 1

(ȥ))⟩ and 

̃
2 = ⟨(TT̃ 2

(ȥ), TĨ 2
(ȥ), TF̃ 2

(ȥ)) , (IT̃ 2
(ȥ), IĨ 2

(ȥ), IF̃ 2
(ȥ)) , (FT̃ 2

(ȥ), FĨ 2
(ȥ), FF̃ 2

(ȥ))⟩ 

̃
1 = ⟨(0.65, 0.70, 0.75), (0.20, 0.15, 0.30), (0.15, 0.20, 0.10)⟩,   ̃2 =

⟨(0.45, 0.40, 0.55), (0.35, 0.45, 0.30), (0.25, 0.35, 0.40)⟩. 

From score function, we get the following outcomes:  

Score value of S̃(Ũ1) =(8 + (2.8 − 0.8 − .065)) 12⁄ = 0.78, and S̃(Ũ2) = 

(8 + (1.8 − 1.55 − 1.35)) 12⁄ = 0.58; 

Accuracy value of A(Ũ1)= (2.8 − 0.65) 4⁄ = 0.54, and A(Ũ2)  = (1.8 − 1.35) 4⁄ = 0.11; it’s 

U

U

obvious that A1>A2 . 

Example 2.  Consider two T2NNS in the set of real numbers: ̃
1 = 

⟨(0.50, 0.20, 0.35), (0.30, 0.45, 0.30), (0.10, 0.25, 0.35)⟩, ̃
2 = 

⟨(0.15, 0.60, 0.20), (0.35, 0.20, 0.30), (0.45, 0.35, 0.20)⟩.From Eqs. (5) and (6), we obtain the following 
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results:  

Score value of S̃(Ũ1) = (8 + (1.25 − 1.5 − 0.95)) 12⁄ = 0.57, and S̃(Ũ2) = 

(8 + (1.55 − 1.05 − 1.35)) 12⁄ = 0.60; 

Accuracy value of A(Ũ1)  =(1.25 − 0.95) 4⁄ = 0.075, and A(Ũ2)  = (1.55 − 1.35) 12⁄ = 0.05;  

it’s obvious that A2>A1 . 

5-Graphical Representation of T2NS  

Here, graphical representation of type-2 neutrosophic set is introduced (Figure 1). The method of 

analyzing numerical data is called graphical representation. It exposes the relation between data and 

the concept in a diagram. Here we present the graphical representation of type-2 neutrosophic sets 

which is useful to exhibit the relation of truth, indeterminacy and falsity of the data and concept. This 

representation is a learning system of T2NS. Here footprint of uncertainty (FOU) for truth, 

indeterminacy and falsity represents the level of uncertainty exist. 

x

  ,UT x   ,UI x  UF x

Indeterminacy 

Truth 

Falsity 

FOU(Falsity)

FOU(Truth)

FOU(Indeterminacy)

Figure 1. Graphical Representation of Type-2 Neutrosophic Set (T2NS) 

ȥ((TT , TI , TF), (IT , II , IF), (FT , FI, FF)) is a Type-2 Neutrosophic Number, which means that each 

neutrosophic component T, I, and F is split into its truth, indeterminacy, and falsehood subparts. The 

procedure of splitting may be executed recurrently, as many times as needed, obtaining a general 

Type-n Neutrosophic Number, for any integer ɳ ≥2.  
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6- Advantage of Type-2 neutrosophic set 

Problems entailing linguistic variables and uncertainty can be deal with efficiently by type-2 fuzzy 

sets and type-2 intuitionistic fuzzy sets. But modeling the problems which involve incompatible or 

inconsistant information is very challenging one by these sets.  Also, in a neutrosophic set, the 

membership functions of the three functions namely truth, indeterminacy and falsity are not 

uncertain. So it is not able to deal with the information which is of the form of word and sentences in 

artificial languages called linguistic variables as this variable reduces the overall computational 

complexity of any real world problem. Since FOU represents the level of uncertainty exist, T2NS has 

more capability of reducing uncertainty and indeterminacy of the data in real world problems than 

other sets. Also, in T2FS, truth, indeterminacy and falsity membership functions are independent of 

each other and they may be can considered as fuzzy sets and therefore assigning different linguistic 

variables is possible. Hence, the advantage of T2NS. 

7-Conclusion 

Neutrosophic logic and sets are the one, which deals uncertainty of the real world problems in an 

optimized way due its unique capability of handling indeterminacy of the problem. Since type-2 

neutrosophic logic can deal more uncertainties using primary and secondary membership functions 

shortest path problem can be solved in with accurate result. In this paper, graphical representation 

of T2NS has been introduced and the advantage T2NS has been discussed. In future, this work may 

be extended to different sets. 
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Abstract: The development of smart cities has been gaining attention not only in India but across 

borders. The development of these cities is supposed to bring India as a smart India in the global 

market. With all odds in favor; these projects are not gaining their expected on-time results. This has 

motivated us to think that there are loopholes that are putting hindrance to smart cities development. 

The aim of this study is to identify and prioritize mathematically the key barriers using the 

neutrosophic PESTEL analysis technique. An extensive literature survey of the problem provides a lot 

of factors which are categorized in six main factors such as social, political, legal, ethical and 

technological factors. Present work using neutrosophic PESTEL analysis finds that social and political 

factors with 93% and 83% are the key barriers to the development of smart cities in India. Other factors 

such as Technological and economic factors come at second position securing percentage 75% and 60% 

respectively. Environmental and legal factors come at last securing 49% and 43% respectively. The 

research’s main focus is to identify and prioritize quantitatively the most important barriers which 

come into smart cities development in India. This research in many ways would aid the Government 

agencies and policymakers to prioritize the key barriers at an early stage so that the development may 

take place as expected and get completed within the stipulated time frame.  

Keywords: Smart Cities, Fuzzy Logic, Fuzzy Cognitive Maps, Neutrosophic Logic, Neutrosophic 

Cognitive Maps, PESTEL Analysis, Machine Learning. 

 

1. Introduction 

The development of smart cities is gaining much attention all over the globe in the last 20 years [1-

3]. A smart city in this context can be defined as a city with technological advancements and 

modernized territory. These cities are capable of dealing with issues like social, economic and technical 

in such a way that these could lead to superior infrastructure and services [4-8]. With the advent of 

information & technology together with the policies of the Indian government, these projects seem to 

get completed in near future. In India people are heading from rural to urbanization at faster rate. This 

rate is expected to expand the cities to 600 million by 2030. A study by [9] has predicted that at least 200 

million people would move from rural areas to urban areas within 15 years from now. According to 

United Nations Population Fund (UNFPA) [10], a substantial share of population will move from rural 

to urban areas by 2050. This movement of population is not normal as it would lead to population 

nearly equal to existing populations of some prominent counties like the United Kingdom (UK), 

Germany and France taken together. This shift from rural areas to urban areas is how ever slow in 

India. According to census 2011 this is only 31.5% of total population in India. The reason behind this 

may be insufficient government policies together with managing the urban dynamics.  

The issue of development of smart cities in India is undertaken as an initiative to improve the 

quality of life and providing basic necessities to its people [11-12]. However, these cities need a totally 

different perspective for its development in India. The need of the hour is faster development of these 
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cities but it is not achieved despite so much of planning and initiatives. The development of these cities 

generate a lot of problems which can be physical problems like pollution, resource management, traffic, 

digitization of data and many more [13-14]. There is also lack of strategic planning pertaining to smart 

cities development [15]. The projects related to smart cities in India are not getting completed at an 

expected time despite lot of resources and planning. Moreover these projects are taking longer to get 

completed without serving the objectives of the project. These loopholes in carrying out these projects 

have motivated us to identify barriers to the development of smart cities in India. Also, the need of 

these cities are getting increased at faster rate than its development in India. These reasons serve as 

primary cause for taking current research at present time.  

The current work is grouped in following sections, Section 2 explains well the materials and 

methods required to understand the work carried out in present research. Section 3 of Results exposes 

the application of Neutrosophic PESTEL analysis in identifying the key barriers in the development of 

smart cities in India. This section shows how the situation is modelled in current work using various 

methods together with giving detailed description of results obtained.  Section 4 concludes the paper 

with more emphasis on future work. 

2. Material and Methods 

Now, let us understand neutrosophy which is further combined with PESTEL analysis in the 

present work. Neutrosophic theory was proposed by Florentin Smarandache [18] which is popular 

theory for the treatment of uncertainties. It helps in generalizing crisp fuzzy sets and theories by 

introducing some concepts such as neutrosophic sets and neutrosophic logic [18]. When PESTEL 

technique is used together with neutrosophic logic it becomes neutrosophic PESTEL analysis as used 

in [19]. The study carried out in [19] is related to food industry where authors have tried to identify 

factors that affect Food Industry using this technique. The current study uses the technique of PESTEL 

analysis in determining the key barriers for smart cities development in India. The technique based on 

neutrosophic cognitive maps permits us to analyze specific topics mathematically using neutrosophic 

sets and systems. The approach is based on expressive technique with a quantitative strategy. Since this 

PESTEL analysis is combined with neutrosophy therefore it is required to understand certain concepts 

which are needed in order to carry out the mathematical work. For this let understand the concept of 

neutrosophic logic presented by Florentin Smarandache [20]. The latest developments could easily be 

referred from the work done in [40-44]. 

 

Definition1. Let N = {(T, I, F): T, I, F ∈ (0,1)} be a neutrosophic set. Let m: P → N be a propositional 

relation into N, i.e., for every p ∈ P there is association with a value in N, as mentioned in Equation 

1,expressing that p is F% false, I% indeterminate and T% true.  
m(p) = (T, I, F)                            (1) 

Hence, the generalization of fuzzy logic is termed as neutrosophic logic, based on the notion of 

neutrosophy [18] [21] 

 

Definition2. A Neutrosophic matrix is a matrix=  [aij]ij
where i = 1,2,3, … … . . , m  and  

j = 1,2,3, … … . . , n such that each aij ∈ K (I) where K (I) is a neutrosophic ring [22] Now let understand 

this neutrosophic matrix by an example. Suppose each element of matrix is represented by a + bI where 

a and b are real numbers and I is a factor of indeterminacy. 

 

For Example: 

 

(
−1 I 5I

I 4 7
) (

I 9I 6
0 I 0

−4 7 5
) =  (

−21I 27I −6 + 25I
−28 + I 49 + 13I 35 + 6I

) 
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Definition 3. A graph is called a neutrosophic graph if there exists an indeterminate node or an 

indeterminate edge where aij = 0 it means there is no connection between  nodes i and j, aij = 1 means 

there is a connection between  nodes i and j and aij = I means that connection is indeterminate 

(unknown). 

 

Definition 4. A Neutrosophic Cognitive Map is a directed graph [23] with nodes as events or policies 

and causalities or relationship as determinate &indeterminate edges. The determinate edge or 

unbroken edge between two concepts shows that the relationship is certain and known whereas on the 

other hand the indeterminate or dotted edge between the concepts shows that the relationship is not 

certain or may be unknown. The below graph shows an example of neutrosophic graph in which the 

edge between node v4 and v1 is termed as determinate and edge between v1 and v5 is termed as 

indeterminate. This is represented in Figure 1.

 

 
 

Figure 2 Example of Neutrosophic Cognitive Map 

In order to include an indeterminate framework in the PESTEL analysis Neutrosophic 

Cognitive Maps (NCMs) are used extensively in this research. Neutrosophic Cognitive Maps (NCMs) 

are regarded as generalization of Fuzzy Cognitive Maps (FCMs). Fuzzy Cognitive Maps with their 

possible applications are well explained in [24]. The nodes in FCMs represent events or variables which 

are modelled to ascertain the possible relationship among them. The arcs among the nodes shows the 

relationship among nodes which could be positive or negative. These relationships are termed as causal 

where ‘+1’ indicates the positivity and ‘-1’ indicates the negativity of relation. Though FCMs are very 

much effective in modelling any situation but it lacks on certain grounds like it could not model 

uncertain, indeterminate and not known relations. To the rescue Neutrosophic Cognitive Maps (NCMs) 

are introduced in [18] [22] [31] are a way different from fuzzy cognitive maps (FCMs). FCMs do not 

include the notion of indeterminacy in them which is always present is neutrosophic cognitive mapping 

making it more efficient and accurate.  

Below shown framework in Figure 2 presents a way to analyze factors for identifying and 

characterizing barriers to smart cities development in India with a model called PESTEL.

 

 
 

Figure 3 Framework for obtaining characteristics in every factor being analyzed by PESTEL model

The analysis using PESTEL has gained popularity since its mention in [17]. The term PESTEL was 

coined in the book titled “Exploring Corporate Strategy” by Johnson and Scholes. PESTEL analysis is a 

technique that strategically tries to identify the external environment that influences the factors such as 

political, economic, social, technological, environmental and legal.  The factors obtained are later 

integrated corresponding to analysis of PESTEL and then modelled using Neutrosophic Cognitive 

Maps (NCMs). This modelling provides for quantitative analysis of characteristics under consideration 

which correspond to analysis of factors. Further a neutrosophic adjacency matrix is formulated. By 
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taking into consideration the adjacency matrix and their absolute weights the static analysis is applied. 

When it is talked about static analysis in neutrosophy or neutrosophic cognitive maps [26] the special 

types of numbers called neutrosophic numbers like "𝑎 + 𝑏𝐼" are taken in considerations where "𝑎" and 

"𝑏" are real numbers and "𝐼" is called indetermination [27]. This not only deals with neutrosiphication 

but also de- neutrosiphication. This is well proposed in [28] by Salmeron and Smarandache where 𝐼 ∈

(0,1) and takes the value which is minimum or maximum. For static analysis of factors some measures 

are the need of the hour. The measures which are used extensively in proposed model are described 

below by equations 2-6. These measures are based on the absolute values of adjacency matrix [25]. 

These measures are used in further calculations for PESTEL analysis. Now let understand each one by 

one: 

Definition 5. Out-degree in any graph represents the strength of outgoing relationship of a variable. It 

is described as sum of all elements of a row in corresponding neutrosophic adjacency matrix. It is 

represented in equation numbered 2. 

Outdegree (node) =  ∑ |cij|

n

i=1

,     
(2) 

Definition 6. In-degree in any graph represents the incoming relations from a variable. It is described as 

sum of all column elements in corresponding neutrosophic adjacency matrix. It is represented in 

equation numbered 3. 

Indegree (node) =  ∑ |cij |

n

i=1

, 
(3) 

Definition 7. Total degree or total centrality can be expressed as the sum of in-degree and out-degree. 

Equation 4 gives its mathematical notation. 

 
Total Degree =  Indegree (node) +  Outdegree (node), 

 

(4) 

Finally using equations 5 and 6 the averages of extreme values is calculated which is mostly used to 

obtain single value used in calculation [29]. This value is used in our case study for recognition of the 

features or characteristics. 

 

∂([a, b]) =
a+b

2
 , (5) 

 

 Then, 

A > 𝐵 ↔  
a+b

2
>

c+d

2
 , (6) 

 

3. Results and Discussion 

Initially the barriers are identified by doing extensive literature survey and taking experts opinion 

in this regard [16]. The experts are from academia, industry and public-private organizations. This 

study takes into account all types of barriers to smart cities development in India; which are mentioned 

in the related literature. The number of sub-factors under each category is same in order to maintain 

the homogeneity of calculation. Later these are grouped in six categories namely social, political, legal, 

ethical and technological for ease of carrying out effective analysis. These sub-factors and factors when 

summarized can be illustrated as follows: 

 Political Factors: These factors are crucial to be considered is this regard since all policies and 

financial aid is being issued from government agencies. These sub-factors within this could be lack 

of trust between governed and the government together with lack of developing a common 

information system model as given in [33-34]. 
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 Economic Factors: These factors are of utmost importance since all companies whether national, 

international directly get affected by these factors. The sub-factors within this may be the cost of 

high infrastructure together with training & skill development as mentioned in [35]. 

 Social Factors: The present work deals with the barriers to smart cities development in India. This 

has direct association with demographic changes which are happening all around the globe [30]. 

Social factors includes sub-factors such as lack of citizen’s participation together with low 

consciousness of the community.   

 Technological Factors: It is also an important factor that should be taken into consideration since this 

factor has direct implication on the quality of services which are required for development of smart 

cities. The sub factors here are lack of technological knowledge, privacy and security issues as 

mentioned in [36-37]. 

 Environmental Factors: The sustainability consideration is one of factor that is always taken in mind 

when such projects are undertaken. The sub-factors under Environmental factors are lacking 

ecological view in behavior and lack of sustainability considerations [33] [38]. 

 Legal & Ethical Factors: These factors mainly include cultural issues and issues in openness of data 

[35] [39].  Figure 3 below gives the grouping of sub-factors in six different main factors.

 
 

Figure 4 PESTEL hierarchical model for identifying key barriers to smart cities development in India. 

Since, all above mentioned factors which are analyzed using PESTEL technique are always linguistic. 

Therefore in order to analyses them, these factors need to be quantified so to obtain higher 

interpretability. In order to quantify all the linguistic terms the technique of neutrosophic cognitive 

maps [31] is used. Now taking in account all the factors which are being considered in this study for 

analyzing the barriers to smart cities development in India, the NCM is formed. Later this cognitive 

mapping is used to form the neutrosophic adjacency matrix which forms the basis of all our further 

calculations. This adjacency matrix is represented in Table 1 below.

 
Table 1 Neutrosophic Adjacency Matrix 

Variables  P1 P2 EC1 EC2 S1 S2 T1 T2 EL1 EL2 L1 L2 

P1 0 0 0 -0.37 0 0 0 0 0 0 0 0 

P2 0 0 0 0 0 0 0.31 0 0 0 0 0 

EC1 0 0 0 0 0 0 0 0 0 0 0 0 

EC2 0 0 0 0 0 0 0 0.37 0 0 0 0 

S1 0.49 I 0 0 0 0 0.37 0 0 0 0 0 

S2 0 0 0 0 I 0 0 0 0 0 0 0 
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T1 0 0 0 0 0 0 0 0 0 0 0 0 

T2 0 0 0 0.46 0 0 0 0 0 0 0 0 

EL1 0 0 0 0 0 0 0 0 0.31 0 0 0 

EL2 0 0 0 0 0 0 0 0 0 0 0 0 

L1 0 0 0 0 0 0 0 0 0 0.37 0 0 

L2 0 0 0 0 0 0 0 0 0 0 0 0.25 

 

 

Now for static analysis of factors the measures of centrality are calculated. The calculation 

which is required for calculating the measures of centrality is done using equations 2, 3 and 4. These 

measures of centrality are based on in-degree and out-degree measures. Table 2 below shows the 

measures of centrality. 

 
Table 2 Measures of centrality, out-degree, and in-degree 

Node Id Od Total degree 

P1 0.49 0.37 0.86 

P2 I 0.31 I+0.31 

EC1 0 0 0 

EC2 0.83 0.37 1.20 

S1 I I+0.86 2I+0.86 

S2 0 I I 

T1 0.68 0 0.68 

T2 0.37 0.46 0.83 

EL1 0.31 0.31 0.62 

EL2 0.37 0 0.37 

L1 0 0.37 0.37 

L2 0.25 0.25 0.50 

 

3.1 Results

The results are obtained after the process of de-neutrosophication. This may be referred from 

Salmeron and Smarandache’s work in [25]. ‘I’ is replaced by minimum and maximum values in the 

range (0, 1). The results which are obtained in Table 2 above are being converted to intervals if it 

contains a value which is indeterminate i.e. ‘I’. Further the de-neutrosiphication function which is 

represented using symbol ∂ is applied according to equation number 5. The value of ∂ forms the basis 

for setting up orders of preferences of the barriers which put hindrance to the smart cities development 

in India. It is represented in Table 3. 

 
Table 3 Total degree, de-neutrosophicated and ordinal number of every variable

Variable Final Value  𝛛 (Vi) Order of Preference 

P1 0.86 0.86 3 

P2 [0.31, 1.31] 0.81 5 

EC1 0 0 10 

EC2 1.20 1.20 2 

S1 [0.86, 1.86] 1.36 1 

S2 [0, 1] 0.50 8 

T1 0.68 0.68 6 

T2 0.83 0.83 4 

EL1 0.62 0.62 7 
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EL2 0.37 0.37 9 

L1 0.37 0.37 9 

L2 0.50 0.50 8 

 

According to neutrosophic PESTEL analysis the results obtained are as followsS1 > 𝐸𝐶2 >

𝑃1 > 𝑇2 > 𝑃2 > 𝑇1 > 𝐸𝐿1 > 𝐿2 > 𝐿1 > 𝐸𝐶1. The symbol ‘>’ indicates the preference of the factor over 

the other. This shows the comparison among sub-factors indicating at ground level the importance of 

each sub-factor. But if comparison is needed taking in consideration all the factors the average of sub-

factors corresponding to particular factor is taken. Later this average is converted in percentage and the 

results are shown using following pie chart in Figure 4. 

 

Figure 5 Neutrosophic PESTEL Analysis by Factors 

Now overall PESTEL analysis of the factors is done. The results obtained indicate that social factors 

and political factors are the key barriers to the smart cities development in India contributing for 93% 

and 83% respectively. Technological and economic factors come at second position contributing 75% 

and 60% respectively. Environmental and legal factors come at last securing 49% and 43% respectively. 

 

4. Conclusion 

The present work seeks to find out the key barriers linked to smart cities development in India 

using neutrosophic PESTEL technique. The present work contributes to existing research in the related 

field by providing more realistic modelling of the situation using Neutrosophy which as per our 

knowledge is not applied in this regard earlier. This work is the need of the hour since there are many 

projects of the Government, for the development of smart cities, but these are not attaining their 

expected on-time results due to some uncertain reasons. In the present work, a comprehensive 

literature review through various literature surveys has disclosed various factors and sub-factors 

putting hindrance in such projects. Since PESTEL analysis deals with political, economic, social, 

technological, environmental and legal factors, these sub- factors are grouped in six key barriers. These 

barriers are modelled using neutrosophic cognitive maps for quantitative analysis and later 

neutrosophic adjacency matrix is formulated. Further, a comprehensive static analysis is done in order 

to identify and prioritize the key barriers. The findings of current research are mentioned below: 

 The social and political factors contributing 93% and 83% respectively are the key barriers to 

the development of smart cities in India. 
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 Technological and economic factors come at second position contributing 75% and 60% 

respectively as a barrier.  

 Environmental and legal factors come at last securing 49% and 43% respectively.  

The present works also demonstrate that neutrosophic PESTEL analysis can be applied to more 

complex problems. Future work in this regard includes implementing and designing machine learning 

algorithms for carrying out the simulation using neutrosophic theories. Earlier proposed algorithms in 

machine learning for PESTEL analysis might be combined with neutrosophic approaches so that the 

output obtained could be validated with more optimized results.
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Abstract: Neutrosophic sets deals with inconsistent, indeterminate and imprecise datas. The concept 

of Neutrosophic Metric Space (NMS) uses the idea of continuous t- norm and continuous t - conorm 

in intuitionistic fuzzy metric spaces. In this paper, we introduce the definition of subcompatible 

maps of types (J-1 and J-2). We extend the structure of weak non-Archimedian with the help of 

subcompatible maps of types (J-1 and J-2) in NMS. Finally, we obtain common fixed point theorems 

for four subcompatible maps of type (J-1) in weak non-Archimedean NMS. 

 

Keywords: Weak non-Archimedean, NMS, Compatible map, Sub compatible, Subcompatible maps 

of types (J-1) and (J-2). 

_______________________________________________________________________________________ 

 

1. Introduction  

 Fuzzy set was presented by Zadeh [22] as a class of elements with a grade of membership. 

Kramosil and Michalek [8] defined new notion called Fuzzy Metric Space (FMS). Later, many 

authors have examined the concept of fuzzy metric in various aspects.  In 2013, Muthuraj and 

Pandiselvi [17] introduced the concept of compatible mappings of type (P-1) andtype (P-2) in 

generalized fuzzy metric spaces and obtains common fixed point theorems are obtained 

forcompatible maps of type (P-1) and type (P- 2).  Since then, many authors have obtained fixed 

point results in fuzzy metric space using these compatible notions.   

Atanassov [1] introduced and studied the notion of intuitionistic fuzzy set by generalizing 

the notion of fuzzy set.  Park [9] defined the notion of intuitionistic fuzzy metric space as a 
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generalization of fuzzy metric space.  In 1998, Smarandache [14-16] characterized the new concept 

called neutrosophic logic and neutrosophic set and explored many results in it. In the idea of 

neutrosophic sets, there is T degree of membership, I degree of indeterminacy and F degree of non-

membership. Baset et al. [2] Explored the neutrosophic applications in dif and only iferent fields 

such as model for sustainable supply chain risk management, resource levelling problem in 

construction projects, Decision Making.  

In 2019, Kirisci et al [9] defined NMS as a generalization of IFMS and brings about fixed 

point theorems in complete NMS.  Erduran et.al.[13] introduced the concept of weak non-

Archimedean intuitionistic fuzzy metric space and proved a common fixed point theorem for a pair 

of generalized (φ, Ψ) – contractive mappings.  Later Jeyaraman at el [19,20] proved Fixed point 

results in non-Archimedean generalized intuitionistic fuzzy metric spaces.  In 2020, Sowndrarajan 

Jeyaraman and Florentin Smarandache [18] proved some fixed point results for contraction theorems 

in neutrosophic metric spaces. 

 In this paper, we introduce the definition of sub compatible maps and sub compatible maps 

of types (J-1) and (J-2) in weak non-Archimedean NMS and give some examples and relationship 

between these definitions. We extend the structure of weak non-Archimedian with the help of  

subcompatible maps of types (J-1 and J-2) in NMS. Thereafter, we prove common fixed point 

theorems for four subcompatible maps of type (J-1) in weak non-Archimedean NMS. 

 

2. Preliminaries 

Definition: 2.1 

 A binary operation * : [0, 1] x [0, 1] → [0, 1] is a continuous t-norm [CTN] if it satisfies the 

following conditions : 

(i) * is commutative and associative, 

(ii)  * is continuous, 

(iii)  𝜀1*1 = 𝜀1 for all  𝜀1∈ [0, 1], 

(iv)  𝜀1* 𝜀2  ≤ 𝜀3*𝜀4  whenever  𝜀1 ≤ 𝜀3 and  𝜀2  ≤ 𝜀4  , for each 𝜀1, 𝜀2, 𝜀3, 𝜀4∈ [0, 1]. 

 

Definition: 2.2 

 A binary operation ⋄ : [0, 1] x [0, 1] → [0, 1] is a continuous t-conorm [CTC] if it satisfies the 

following conditions: 

(i) ⋄ is commutative and associative, 

(ii)  ⋄ is continuous, 

(iii)  𝜀1⋄ 0 = 𝜀1 for all 𝜀1∈ [0, 1], 

(iv)  𝜀1⋄ 𝜀2  ≤ 𝜀3⋄ 𝜀4  whenever  𝜀1 ≤ 𝜀3 and  𝜀2  ≤ 𝜀4  , for each 𝜀1, 𝜀2, 𝜀3 and 𝜀4 ∈ [0, 1]. 

 

Definition: 2.3 

 A 6-tuple (Σ, Ξ, Θ, Υ,∗,⋄) is said to be an NMS (shortly NMS), if Σ is an arbitrary non empty 

set, ∗ is a neutrosophic CTN, ⋄ is a neutrosophic CTC and Ξ, Θ 𝑎𝑛𝑑 Υ are neutrosophic on Σ3 × ℝ+ 

satisfying the following conditions:   

For all 𝜁, 𝜂, 𝛿,𝜔 ∈ Σ, 𝜆 ∈  ℝ+. 

1. 0 ≤ Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 1; 0 ≤ Θ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 1; 0 ≤ Υ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 1; 

2. Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) + Θ ( 𝜁, 𝜂, 𝛿, 𝜆) + Υ ( 𝜁, 𝜂, 𝛿, 𝜆) ≤ 3; 

3. Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 1  if and only if  𝜁 =  𝜂 =  𝛿; 

4. Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = Ξ ( 𝜌 ( 𝜁, 𝜂, 𝛿, 𝜆)), when 𝜌 is the permutation function; 

5. Ξ ( 𝜁, 𝜂, 𝜔, 𝜆)∗ Ξ ( 𝜔, 𝛿, 𝛿, 𝜇) ≤ Ξ ( 𝜁, 𝜂, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0; 

http://fs.unm.edu/NSS2/index.php/111/article/view/753
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6. Ξ ( 𝜁, 𝜂, 𝛿, .) : [ 0, ∞ ) → [ 0 , 1] is neutrosophic continuous ; 

7. lim
𝜆→∞

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 1   for all  𝜆 > 0;  

8. Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0  if and only if  𝜁 =  𝜂 =  𝛿; 

9. Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = Θ ( 𝜌 ( 𝜁, 𝜂, 𝛿, 𝜆)), when 𝜌 is the permutation function; 

10. Θ ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Θ ( 𝜔, 𝛿, 𝛿, 𝜇) ≥ Θ ( 𝜁, 𝜂, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0; 

11. Θ ( 𝜁, 𝜂, 𝛿, .) : [ 0, ∞ ) → [ 0 , 1] is neutrosophic continuous; 

12. lim
𝜆→∞

Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0   for all  𝜆 > 0; 

13. Υ  ( 𝜁, 𝜂, 𝛿, 𝜆) = 0  if and only if  𝜁 =  𝜂 =  𝛿; 

14. Υ  ( 𝜁, 𝜂, 𝛿, 𝜆) = Υ  ( 𝜌 ( 𝜁, 𝜂, 𝛿, 𝜆)), when 𝜌 is the permutation function; 

15. Υ ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Υ  ( 𝜔, 𝛿, 𝛿, 𝜇) ≥ Υ  ( 𝜁, 𝜂, 𝛿, 𝜆 + 𝜇), for all 𝜆 , 𝜇> 0; 

16. Υ( 𝜁, 𝜂, 𝛿, .) : [ 0, ∞ ) → [ 0 , 1] is neutrosophic continuous; 

17. lim
𝜆→∞

Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0   for all  𝜆 > 0; 

18. If 𝜆 > 0 then Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 0;  Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 1;  Υ  ( 𝜁, 𝜂, 𝛿, 𝜆) = 1.  

Then, ( Ξ, Θ, Υ) is called an NMS on Σ . The functions Ξ, Θ 𝑎𝑛𝑑 Υ denote degree of closedness, 

neturalness and non-closedness between 𝜁, 𝜂 𝑎𝑛𝑑  𝛿 with respect to 𝜆 respectively. 

 

Example: 2.4 

 Let (Σ, D) be a metric space. Define 𝜔 ∗ 𝜏 = min { 𝜔 , 𝜏} and  𝜔 ⋄ 𝜏 = max { 𝜔, 𝜏} and   

Ξ, Θ, Υ : Σ3 × ℝ+→[ 0, 1] defined by, we define 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 
𝜆

𝜆 + 𝐷 (𝜁,𝜂,𝛿 )
 ; Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

𝐷 (𝜁,𝜂,𝛿 )

𝜆 + 𝐷 (𝜁,𝜂,𝛿 )
 ; Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

𝐷 (𝜁,𝜂,𝛿 )

𝜆 
   for all 𝜁, 𝜂, 𝛿 ∈  Σ and 

𝜆 > 0.  Then (Σ, Ξ, Θ, Υ,∗,⋄) is called NMS induced by a metric D the standard neutrosophic metric. 

Remark: 2.5  

 In NMSΞ ( 𝜁, 𝜂, 𝛿, 𝜆, .) is non-decreasing, Θ ( 𝜁, 𝜂, 𝛿, .) is non-increasing and Υ ( 𝜁, 𝜂, 𝛿, .) is 

decreasing for all 𝜁, 𝜂, 𝛿 ∈  Σ. 

In the above definition, if the triangular inequality (v), (x) and (xv) are replaced by the 

following: 

   Ξ ( 𝜁, 𝜂, 𝛿, max{ 𝜆, 𝜇})≥Ξ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ∗ Ξ (  𝜔,𝛿, 𝛿, 𝜇), 

   Θ ( 𝜁, 𝜂, 𝛿, min{ 𝜆, 𝜇}) ≤Θ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Θ (  𝜔,𝛿, 𝛿, 𝜇), 

   Υ ( 𝜁, 𝜂, 𝛿, min{ 𝜆, 𝜇 }) ≤Υ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Υ (  𝜔,𝛿, 𝛿, 𝜇) 

or equivalently  

   Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) ≥Ξ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ∗ Ξ (  𝜔,𝛿, 𝛿, 𝜆), 

   Θ ( 𝜁, 𝜂, 𝛿,  𝜆 ) ≤Θ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Θ (  𝜔,𝛿, 𝛿, 𝜆), 

   Υ ( 𝜁, 𝜂, 𝛿,  𝜆 ) ≤Υ ( 𝜁, 𝜂, 𝜔, 𝜆 ) ⋄ Υ (  𝜔,𝛿, 𝛿, 𝜆). 

Then (Σ, Ξ, Θ, Υ,∗,⋄) is called non-Archimedean NMS.  It is easy to check that the triangle inequality 

(NA) implies (5), (10) and (15), that is, every non-Archimedean NMS is itself an NMS. 

 

Example:2.6 

 Let Σ be a non-empty set with at least two elements.  Define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) by:  If we define 

the neutrosophic set (Σ, Ξ, Θ, Υ) by  Ξ ( 𝜁, 𝜁,𝜁, 𝜆) = 1,Θ ( 𝜁, 𝜁,𝜁, 𝜆)  = 0 and Υ ( 𝜁, 𝜁,𝜁, 𝜆)  = 0  for all 𝜁 ∈

 Σ and 𝜆 > 0, and  Ξ ( 𝜁, 𝜂, 𝛿, 𝜆 ) = 0, Θ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 1 and Υ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 1, for 𝜁 ≠ 𝜂 ≠ 𝛿 and 0 <𝜆≤ 1, 

and  Ξ ( 𝜁, 𝜂, 𝛿, 𝜆 ) = 1, Θ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 0  and Υ ( 𝜁, 𝜂, 𝛿,  𝜆 ) = 0, for 𝜁 ≠ 𝜂 ≠𝛿  and 𝜆 > 1.  Then (Σ, Ξ, Θ, Υ,∗

,⋄) is a non-Archimedean NMS with arbitrary ∗ is a neutrosophic CTN, ⋄ is a neutrosophic CTC. 

Clearly (Σ, Ξ, Θ, Υ,∗,⋄) is also an NMS. 

 

Definition:2.7 
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  In Definition 2.3, if the triangular inequality (v), (x) and (xv) are replaced by the following: 

 Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) ≥ max { Ξ ( 𝜁, 𝜂, 𝜔, 𝜆) ∗ Ξ (𝜔, 𝛿, 𝛿, , 𝜆/2), Ξ ( 𝜁, 𝜂,𝜔, 𝜆/2) ∗ Ξ(𝜔, 𝛿, 𝛿, 𝜆)}, 

Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  ≤ min { Θ ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Θ (𝜔, 𝛿, 𝛿, , 𝜆/2  ), Θ  ( 𝜁, 𝜂,𝜔, 𝜆 /2) ⋄ Θ(𝜔, 𝛿, 𝛿, 𝜆)}, 

Υ ( 𝜁, 𝜂, 𝛿, 𝜆)   ≤  min { Υ( 𝜁, 𝜂, 𝜔, 𝜆) ⋄ Υ (𝜔, 𝛿, 𝛿, , 𝜆/2  ), Υ  ( 𝜁, 𝜂,𝜔, 𝜆 /2) ⋄ Υ(𝜔, 𝛿, 𝛿, 𝜆)}, 

for all Ξ, Θ, Υ ∈  Σ and 𝜆 > 0, then (Σ, Ξ, Θ, Υ,∗,⋄)is said to be a Weak Non- Archimedean (WNA) NMS. 

 Obviously, every non-Archimedean NMS is itself a weak non-Archimedean NMS. 

The inequality (WNA) does not imply that Ξ ( 𝜁, 𝜂, 𝛿, 𝜆, .) is non-decreasing , Θ ( 𝜁, 𝜂, 𝛿,  .) is non-

increasing and Υ(𝜁, 𝜂, 𝛿, .) is decreasing.   Thus, a weak non-Archimedean NMS is not necessarily an 

NMS. 

 

 

Example: 2.8 

 Let Σ= [0, ∞) and define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by  

   Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
1,     𝜁 = 𝜂 = 𝛿
𝜆

𝜆 +1
,    𝜁 ≠ 𝜂 ≠ 𝛿

  ,  

   Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿
1

𝜆+1
,    𝜁 ≠ 𝜂 ≠ 𝛿

 , 

   Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿

𝜆 + 1,    𝜁 ≠ 𝜂 ≠ 𝛿
 , 

for all 𝜆 > 0. (Σ, Ξ, Θ, Υ,∗,⋄)is a weak non-Archimedean NMS with 𝜔 ∗ 𝜏 =  𝜔𝜏 and 𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 − 𝜔𝜏}  

for every 𝜔 , 𝜏 ∈ [0, 1]. 

 

Definition: 2.9 

 Let Γ and Ω  be maps from an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ).  Then the mappings are said to be 

compatible if 

    lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, and 

    lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΓ𝜁n,ΩΓ𝜁n, 𝜆) = 0, 

for all 𝜆 >0, whenever {𝜁n} is a sequence in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

 

Definition: 2.10 

 Let Γ and Ω be self mappings of an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ). Then the mappings are                            

said to be compatible of type (J-1), if 

    lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, and 

    lim
𝑛→∞

Υ (ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, 

for all 𝜆 >0, whenever {𝜁n} is a sequence in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

 

Definition: 2.11 

 Let Γ and Ω be self mappings of an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ). Then the mappings are                           

said to be compatible of type (J-2), if 

    lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, and 
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    lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

for all 𝜆 >0, whenever {𝜁n} is a sequence in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

 

Definition:2.12 

 Let Γ and Ω be maps from an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ) into itself.  The maps Γ and Ω are                      

said to be Occasionally Weakly Compatible (OWC) if and only if there is a point 𝜁Σ  which                    

is a coincidence point of Γ and Ωat which Γ and Ω commute i.e., there is a point 𝜁Σ such that               

Γ𝜁 = Ω𝜁 and ΓΩ𝜁 = ΩΓ𝜁. 

 

Definition:2.13 

 Let Γ and Ω be maps from an NMS ( Σ, Ξ, Θ, Υ,∗,⋄ ).  The maps Γ and Ω  are said to be 

reciprocally continuous if lim
𝑛→∞

ΓΩ𝜁n =Γ𝜁, lim
𝑛→∞

ΩΓ𝜁n, =Ω𝜁, whenever {𝜁n} is a sequence in Σ such that 

lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 for some 𝜁 Σ. 

 

3. Types Of Subcompatible Maps In Weak Non-Archimedean NMS. 

 

Definition:3.1  

 Let (Σ, Ξ, Θ, Υ,∗,⋄ ) be a weak non-Archimedean NMS.  Self- maps Γ and Ω on Σ are said to be 

subsequently continuous if there exists a sequence {𝜁n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n= 𝜁, 𝜁 Σ and 

satisfy  lim
𝑛→∞

Γ𝒮𝜁n =Γ𝜁, lim
𝑛→∞

ΩΓ𝜁n, =Ω𝜁. 

 Clearly, if Γ and Ωare continuous or reciprocally continuous, then they are subsequentially 

continuous, but converse is not true in general. 

 

Example: 3.2 

 Let Σ = [0, ∞) and define, for all 𝜆 > 0,  Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by  

 

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
1,     𝜁 = 𝜂 = 𝛿,
𝜆

𝜆 +1
,    𝜁 ≠ 𝜂 ≠ 𝛿,

 

 

Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,
1

𝜆+1
,    𝜁 ≠ 𝜂 ≠ 𝛿,

 

 

Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,

𝜆 + 1,    𝜁 ≠ 𝜂 ≠ 𝛿.
 

 

Then (Σ, Ξ, Θ, Υ,∗,⋄) is a weak non-Archimedean NMS with  𝜔 ∗ 𝜏 =  𝜔𝜏 and  𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 −

𝜔𝜏}  for every 𝜔 , 𝜏 ∈ [0, 1].  Define Γ and Ωas follows: 

Γ𝜁 = {
2,    𝜁 < 3
𝜁,    𝜁 ≥ 3

 , Ω𝜁 = {
2𝜁 − 4,    𝜁 ≤ 3,
3,               𝜁 > 3.

 

Clearly Γ and Ω are discontinuous at 𝜁 = 3.  Let { 𝜁n} be a sequence in Σ defined by 𝜁n = 3 - 
1

𝑛
 for n = 1, 

2 …, then  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 2, 2  Σ and lim
𝑛→∞

ΓΩ𝜁n = 2 = Γ(2), lim
𝑛→∞

ΩΓ𝜁n =0 = Ω(2).  Therefore, Γ and Ω 

are subsequentially continuous.  Now, let { 𝜁n} be a sequence in Σ defined by 𝜁n = 3+ 
1

𝑛
 for n = 1,2,…,  

then  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 3, 3 Σ and lim
𝑛→∞

ΩΓ𝜁n =3 ≠ 2 = Ω(3). Hence  Γ and Ω are not reciprocally 

continuous. 
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Definition: 3.3 

 Let ( Σ, Ξ, Θ, Υ,∗,⋄ )be a weak non-Archimedean NMS.  Self- maps Γ and Ω on Σ  are                     

said to be subcompatible if and only if there exist a sequence { 𝜁 n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 

𝜁, 𝜁 Σ and satisfies 

 

    lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, and 

    lim
𝑛→∞

Υ(ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0. 

 

It is easy to see that two owc maps are subcompatible, however the converse is not true in 

general.  It is also interesting to see the following one-way implication: 

 

Commuting ⇒ Weakly commuting ⇒ Compatibility ⇒ Weak compatibility ⇒ OWC⇒ Sub 

compatibility. 

 

Definition:3.4 

 Let (Σ, Ξ, Θ, Υ,∗,⋄)be a weak non-Archimedean NMS.  Self- maps Γ and Ωon Σ are said to be 

subcompatible of type (J-1) if there exists a sequence {𝜁n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁, 𝜁 Σ and 

satisfies 

    lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0,  

    lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)= 1, 

    lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0, and, 

    lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0. 

 

Clearly, if Γ and Ω are compatible of type (J-1), then they are subcompatible of type (J-1), but 

converse is not true in general.  

 

Example: 3.5 

 Let Σ = [0, ∞).  Define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by  

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = 
𝜆

𝜆+|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|
, Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|

𝜆+|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|
 and Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = 

|𝜁−𝜂|+|𝜂−𝛿|+|𝛿−𝜁|

𝜆
 

for all 𝜆  > 0.  Then, ( Σ, Ξ, Θ, Υ,∗,⋄ ) is a weak non-Archimedean NMS with 𝜔 ∗ 𝜏  =  𝜔𝜏  and                             

𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 − 𝜔𝜏} for every 𝜔 , 𝜏 ∈ [0, 1].  

Define Γ and Ω as follows: 

Γx = {
𝜁2 + 1,    𝜁 < 1
2𝜁 − 1,    𝜁 ≥ 1

 ,  Ω𝜁 = {
𝜁 + 1,                 𝜁 < 1
3𝜁 − 2,               𝜁 ≥ 1

 . 

Let { 𝜁n} be a sequence in Σ defined by 𝜁n = 1 + 
1

𝑛
, for n = 1, 2…, then lim

𝑛→∞
Γ𝜁n = lim

𝑛→∞
Ω𝜁n = 1, 

1Σ and  

ΓΩ𝜁n = Γ (1 +
3

𝑛
) = 2(1 +

3

𝑛
)-1 =1+ (

6

𝑛
), 

ΩΓ𝜁n =Ω (1 +
2

𝑛
) = 3(1 +

2

𝑛
)-2 =1+ (

6

𝑛
), 
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ΓΓ𝜁n =Γ (1 +
2

𝑛
) = 2(1 +

2

𝑛
)-1 =1+ (

4

𝑛
), 

 ΩΩ𝜁n = Ω (1 +
3

𝑛
) = 3(1 +

3

𝑛
)-2 =1+ (

9

𝑛
). 

Therefore, 

   lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

   lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0, and 

   lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

And, 

   lim
𝑛→∞

Ξ(ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)= 1, 

   lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, and 

   lim
𝑛→∞

Υ(ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0.   

That is, Γ and Ω are subcompatible of type (J-1) but if we consider a sequence 𝜁n = 1- 
1

 𝑛
 for        

n = 1,2,…, then  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n  = 2, 2 ∈ Σ and   

 ΓΩ𝜁n = Γ (2 −
1

𝑛
) = 2(2 −

1

𝑛
)-1 =3- (

2

𝑛
), ΩΓ𝜁n = Ω ((1 −

1

𝑛
)

2

 + 1)= 3((1 −
1

𝑛
)

2

+ 1)-2, 

 ΓΓ𝜁n = Γ ((1 −
1

𝑛
)

2

 + 1) = Γ (1 −
2

𝑛
+  

1

𝑛2) = (1 −
2

𝑛
+  

1

𝑛2)
2

+ 1, 

 ΩΩ𝜁n =Ω (2 −
1

𝑛
) = 3(2 −

1

𝑛
)-2 =4 - (

3

𝑛
). 

Therefore, 

    lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≠ 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≠ 0, 

    lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≠ 0, 

    lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ≠ 1, 

    lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ≠ 0, and 

    lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ≠ 0.  

That is, Γ and Ω are not compatible of type (J-1). 

 

Definition: 3.6 

 Let ( Σ, Ξ, Θ, Υ,∗,⋄ )be a weak non-Archimedean NMS.  Self- maps Γ and Ω on Σ                                

are said to be subcompatible of type (J-1)  if and only if there exist a sequence { 𝜁n} in Σ such that                       

lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁, 𝜁 Σ and satisfies 

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0.   

 Clearly, if Γ and Ω are compatible of type (J-2), then they are subcompatible of type (J-2), but 

converse is not true in general.  

 

Example: 3.7 

 Let Σ = [0, ∞) and define Ξ ( 𝜁, 𝜂, 𝛿, 𝜆);  Θ ( 𝜁, 𝜂, 𝛿, 𝜆)  and Υ ( 𝜁, 𝜂, 𝛿, 𝜆)  by  

Ξ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
1,     𝜁 = 𝜂 = 𝛿,
𝜆

𝜆 +1
,    𝜁 ≠ 𝜂 ≠ 𝛿,
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Θ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,
1

𝜆+1
,    𝜁 ≠ 𝜂 ≠ 𝛿,

 

Υ ( 𝜁, 𝜂, 𝛿, 𝜆) = {
0,     𝜁 = 𝜂 = 𝛿,

𝜆 + 1,    𝜁 ≠ 𝜂 ≠ 𝛿.
 

Then, ( Σ, Ξ, Θ, Υ,∗,⋄ ) is a weak non-Archimedean NMS with 𝜔 ∗ 𝜏  = 𝜔𝜏  and                                      

𝜔 ⋄ 𝜏 = { 𝜔 + 𝜏 − 𝜔𝜏}  for every 𝜔 , 𝜏 ∈ [0, 1].  Define Γ and Ωas follows: 

Γ𝜁 = 𝜁2,  Ω𝜁 = {
𝜁 + 2,       𝜁 ∈ [0,4] ∪ (5, ∞)

𝜁 + 12,             𝜁 ∈ (4,5]  .
 

Let { 𝜁n} be a sequence in Σ defined by 𝜁n = 2+ 
1

𝑛
   for n = 1,2…, then lim

𝑛→∞
Γ𝜁n=  lim

𝑛→∞
Ω𝜁n= 4,        

and ΓΓ𝜁n = Γ ((2 +
1

𝑛
)

2

) =  (2 +
1

𝑛
)

4

, ΩΩ𝜁n = Ω (4 +
1

𝑛
) = 4+ 

1

𝑛
 + 12 = 16 + 

1

𝑛
. 

Therefore, 

   lim
𝑛→∞

Ξ (ΓΓn, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

   lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)= 0, and 

   lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

That is, Γ and Ω are subcompatible of type (J-2) but if we consider  a sequence 𝜁n = 2- 
1

𝑛
 for     

n = 1, 2,…,  then  lim
𝑛→∞

Γ 𝜁n=  lim
𝑛→∞

Ω𝜁n=  4 and ΓΓ𝜁n = Γ ((2 −
1

𝑛
)

2

) =  (2 −
1

𝑛
)

4

, ΩΩ𝜁n =Ω (4 −
1

𝑛
) = 4- 

1

𝑛
 + 2 

= 6 - 
1

𝑛
 . 

Therefore, 

   lim
𝑛→∞

Ξ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) ≠ 1, 

   lim
𝑛→∞

Θ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) ≠ 0, and 

   lim
𝑛→∞

Υ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) ≠ 0. 

That is, Γ and Ω are not compatible of type (J-2). 

 

Preposition: 3.8 

 Let (Σ, Ξ, Θ, Υ,∗,⋄) be a weak non-Archimedean NMS and Γ, Ω: Σ → Σ are subsequentially 

continuous mappings.  Γ and Ω are subcompatible maps if and only if they are not subcompatible of 

type (J-1).                             

Proof: 

 Suppose Γ and Ω are subcompatible, then there exists a sequence {  𝜁  n} in Σ such that       

lim
𝑛→∞

 Γ𝜁n = lim
𝑛→∞

Ω𝜁n= 𝜁 , 𝜁 Σ and satisfying 

    lim
𝑛→∞

Ξ ( ΓΩ𝜁 n, ΩΓ n, ΩΓ n, 𝜆) = 1,  

    lim
𝑛→∞

Θ( ΓΩ𝜁n, ΩΓ n, ΩΓ n, 𝜆) = 0, and 

    lim
𝑛→∞

Υ( ΓΩ𝜁 n, ΩΓ n, ΩΓ n, 𝜆) = 0. 

Since Γ and Ωare subsequentially continuous, we have 

lim
𝑛→∞

ΓΩ𝜁 n= Γ𝜁=  lim
𝑛→∞

ΓΓ𝜁n,  lim
𝑛→∞

ΩΓ𝜁n= Ω𝜁=  lim
𝑛→∞

ΩΩ𝜁n. 

Thus, from the inequality (WNA), for all 𝜆 > 0, 

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ Ξ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ∗ Ξ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Θ(ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ⋄ Θ(ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Υ(ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ⋄ Υ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

and it follows that 

Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ 1 ∗ 1 = 1, 
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Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0, 

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0. 

That is, for all 𝜆 > 0, 

    lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0, 

    lim
𝑛→∞

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0. 

By the same way,  

    lim
𝑛→∞

 Ξ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 1, 

    lim
𝑛→∞

Θ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Υ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0. 

Consequently, Γ and Ω are subcompatible of type (J-1). 

 

Conversely, suppose that Γ and Ω are subcompatible of type (J-1), then there exists a 

sequence {𝜁n} in Σ such that  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n = 𝜁 , 𝜁 Σ and satisfying 

  lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, lim
𝑛→∞

Θ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0 and  

  lim
𝑛→∞

Υ(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 0, lim
𝑛→∞

 Ξ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 1, 

  lim
𝑛→∞

Θ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0 and lim
𝑛→∞

Υ(ΩΓ𝜁n,ΓΓ𝜁n, ΓΓ𝜁 n, 𝜆) = 0. 

 

Since Γ and Ω are subsequentially continuous, we have 

  lim
𝑛→∞

ΓΩ𝜁n= Γ𝜁=  lim
𝑛→∞

ΓΓ𝜁n,  lim
𝑛→∞

ΩΓ𝜁n= Ω𝜁=  lim
𝑛→∞

ΩΩ𝜁n. 

 

Now, from the inequality (WNA), for all 𝜆 > 0,  

 Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)   ≥ Ξ (ΓΩ𝜁 n, ΩΩ𝜁  n,ΩΩ𝜁n, 𝜆) ∗ Ξ (ΩΩ𝜁  n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2), 

 Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ Θ(ΓΩ𝜁 n, ΩΩ𝜁  n,ΩΩ𝜁n, 𝜆) ⋄  Θ (ΩΩ𝜁  n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2), 

 Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ Υ(ΓΩ𝜁 n, ΩΩ𝜁  n,ΩΩ𝜁n, 𝜆) ⋄  Υ (ΩΩ𝜁  n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2),    

and, it follows that, 

   lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≥ 1 ∗1 = 1, 

   lim
𝑛→∞

Θ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ 0 ⋄ 0 = 0, 

   lim
𝑛→∞

Υ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ 0 ⋄  0 = 0, 

which implies that 

   lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

   lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, 

   lim
𝑛→∞

Υ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0.  

 Therefore, Γ and Ω are subcompatible.   

 

Preposition: 3.9 

 Let (Σ, Ξ, Θ, Υ,∗,⋄) be a weak non-Archimedean NMS and Γ,Ω : Σ → Σ are subsequentially 

continuous mappings.   Γ and Ω are subcompatible maps if and only if they are not subcompatible 

of type (J-2). 

Proof: 

 Suppose Γ and Ω are subcompatible, then there exists a sequence {  𝜁 n} in Σ  such that                         

lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝛿, 𝛿 Σ and satisfy  
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lim
𝑛→∞

Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, lim
𝑛→∞

Θ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, and lim
𝑛→∞

Υ (ΓΩ𝜁 n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0. 

 Since Γ and Ω are subsequentially continuous, we have 

lim
𝑛→∞

 ΓΩ𝜁 n=  Γ𝜁 =  lim
𝑛→∞

 ΓΓ𝜁n,  lim
𝑛→∞

ΩΓ𝜁n=Ω𝜁 =  lim
𝑛→∞

ΩΩ𝜁n. 

 Thus, from the inequality (WNA), 

  Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)   ≥ Ξ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆)   ∗ Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2) 

    ≥ Ξ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁 n, 𝜆)∗  Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2)∗ 

       Ξ(ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/4), 

  Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)   ≤  Θ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆)  ⋄ Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2) 

                                             ≤  Θ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄  Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) ⋄ 

       Θ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆/4) and 

  Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)   ≤  Υ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆)  ⋄ Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2) 

                                             ≤  Υ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄  Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) ⋄ 

       Υ (ΩΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/4), 

for all 𝜆 > 0, and, it follows that, for all 𝜆 > 0, 

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ 1 ∗ 1 = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≤ 0 ⋄ 0 = 0, 

which implies that, 

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁  n, 𝜆) = 0. 

Consequently, Γ and Ω  are subcompatible of type (J-2).  Conversely, suppose that Γ and Ω are 

subcompatible of type (J-2), then there exists a sequence {𝜁n} in Σ such that lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝜁, 𝜁 Σ 

and satisfying 

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

Now, from the inequality (WNA), we have 

 

  Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≥ Ξ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)   ∗ Ξ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

                            ≥ Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ∗  Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

      * Ξ (ΩΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /4), 

  Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≤ Θ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  ⋄ Θ(ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

                          ≤ Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ⋄  Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

      ⋄ Θ (ΩΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /4) and 

  Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≤ Υ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  ⋄ Υ(ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

                            ≤ Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ⋄  Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΓ𝜁n, 𝜆 /2) 

                                                        ⋄ Υ (ΩΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆 /4), 

and, it follows that, for all 𝜆 > 0, 

    lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≥ 1 ∗ 1∗ 1 = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  ≤ 0 ⋄ 0 ⋄ 0 = 0, 

    lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) ≤ 0 ⋄ 0 ⋄ 0 = 0, 
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which implies that 

    lim
𝑛→∞

 Ξ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆) = 0, 

     lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆)  = 0. 

 Therefore, Γ and Ω are subcompatible.  

 

Preposition: 3.10  

 Let (Σ, Ξ, Θ, Υ,∗,⋄) be a weak non-Archimedean NMS and Γ, Ω: Σ → Σ are subsequentially 

continuous mappings.  Γ and Ω  are subcompatible maps of type (J-1) if and only if they are 

subcompatible of type (J-2). 

Proof: 

 Suppose Γ and Ωare subcompatible of type (J-1), then there exists a sequence { 𝜁n} in Σ such 

that  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝜁, 𝜁 Σ and satisfy 

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, and, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Ξ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0, and, 

    lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0. 

 Since Γ and Ω are subsequentially continuous, we have 

   lim
𝑛→∞

ΓΩ𝜁 n= Γ𝜁=  lim
𝑛→∞

ΓΓ𝜁n, lim
𝑛→∞

ΩΓ𝜁n= Ω𝜁=  lim
𝑛→∞

ΩΩ𝜁n. 

 Thus, from the inequality (WNA), 

 Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ Ξ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ∗ Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

 Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Θ (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄ Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

 Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Υ  (ΓΓ𝜁n, ΓΩ𝜁n, ΓΩ𝜁n, 𝜆) ⋄ Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆/2), 

and, it follows that 

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≥ 1 ∗ 1 = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ 0 ⋄ 0 = 0, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≤ 0⋄ 0 = 0, 

which implies that 

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n,ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

Therefore, Γ and Ωare subcompatible of type (J-2). 

 Conversely, suppose that Γ and Ω are subcompatible of type (J-2), then there exists a 

sequence { 𝜁n} in Σ such that  lim
𝑛→∞

Γ𝜁n = lim
𝑛→∞

Ω𝜁n =𝜁, 𝜁 Σ  and satisfying 

     

    lim
𝑛→∞

Ξ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 1, 

    lim
𝑛→∞

Θ (ΓΓ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Υ (ΓΓ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

 Now, from the inequality (WNA), we have 
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Ξ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≥ Ξ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ∗ Ξ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆/2), 

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Θ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ⋄ Θ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆/2), 

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤ Υ (ΓΩ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) ⋄ Υ (ΓΓ𝜁n, ΩΓ𝜁n, ΩΓ𝜁n, 𝜆/2), 

and, it follows that 

    lim
𝑛→∞

(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≥ 1∗ 1 = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) ≤ 0 ⋄ 0 = 0, 

    lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  ≤  0 ⋄ 0 = 0, 

which implies that, for all 𝜆> 0, 

    lim
𝑛→∞

(ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆)  = 1, 

    lim
𝑛→∞

Θ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0, 

    lim
𝑛→∞

Υ (ΓΩ𝜁n, ΩΩ𝜁n, ΩΩ𝜁n, 𝜆) = 0. 

 By the same way, we obtain that 

    lim
𝑛→∞

(ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 1, 

    lim
𝑛→∞

Θ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆)  = 0, 

    lim
𝑛→∞

Υ (ΩΓ𝜁n, ΓΓ𝜁n, ΓΓ𝜁n, 𝜆) = 0. 

 Therefore, Γ and Ω are subcompatible of type (J-1). 

 

4. Main Theorems 

Theorem: 4.1 

 Let Γ, Λ, Ω and Η be self-maps of a weak non-Archimedean NMS (Σ, Ξ, Θ, Υ,∗,⋄) and let the 

pairs (Γ, Ω) and (Λ, Η) are subcompatible maps of type(J-1) and subsequentially continuous.  

 Ξ (Γζ, Λη, Λη, λ) ≥ 𝜓 (min {Ξ (Ωζ, Ηη, Ηη, λ), Ξ (Γζ, Ωζ, Ωζ, λ), Ξ (Λη, Ηη, Ηη, λ),  

    
1

2
[Ξ (Λη, Ωζ, Ωζ, λ) + Ξ (Γζ, Ηη, Ηη, λ)]})                  (4.1.1) 

 Θ(Γζ, Λη, Λη, λ)  ≤  𝜙(max {Θ(Ωζ, Ηη, Ηη,  λ) , Θ(Γζ, Ωζ, Ωζ,  λ), Θ (Λη, Ηη, Ηη,  λ),  

    
1

2
[Θ (Λη, Ωζ, Ωζ, λ) + Θ (Γζ, Ηη, Ηη, λ)]})                  (4.1.2) 

 Υ(Γζ, Λη, Λη, λ)  ≤  𝜑 (max {Υ (Ωζ, Ηη, Ηη,  λ) , Υ(Γζ, Ωζ, Ωζ,  λ), Υ (Λη, Ηη, Ηη,  λ),  

    
1

2
[Υ (Λη, Ωζ, Ωζ, λ) + Υ (Γζ, Ηη, Ηη, λ)]})                  (4.1.3) 

for all ζ, η ∈ Σ,  λ> 0, where  𝜓 , 𝜙, 𝜑  : [0,1] → [0,1] are continuous functions such that 𝜓(s) > s,           

𝜙(s)  <s  and 𝜑(s) < s for each s ∈ (0,1).  Then Γ, Λ, Ω and Η have a unique common fixed point in Σ. 

Proof 

Since the pairs (Γ, Ω) and (Λ, Η) are subcompatible maps of type (J-1) and subsequentially 

continuous, then there exist two sequences {ζn} and {ηn} in Σ such that  lim
𝑛→∞

Γζn =  lim
𝑛→∞

Ωζn =  δ, δ∈ Σ 

and satisfy  

  lim
𝑛→∞

Ξ (ΓΩζn, ΩΩζn, ΩΩζn, λ) = Ξ(Γδ, Ωδ, Ωδ, λ) = 1, 

  lim
𝑛→∞

Θ (ΓΩζn, ΩΩζn, ΩΩζn, λ) = Θ(Γδ, Ωδ, Ωδ, λ) = 0, 

  lim
𝑛→∞

Υ (ΓΩζn, ΩΩζn, ΩΩζn, λ) = Υ(Γδ, Ωδ, Ωδ, λ) = 0, 

  lim
𝑛→∞

Ξ (ΩΓζn, ΓΓζn, ΓΓζn, λ) = Ξ(Ωδ, Γδ, Γδ, λ) = 1,  

  lim
𝑛→∞

Θ (ΩΓζn, ΓΓζn, ΓΓζn, λ) = Θ (Ωδ, Γδ, Γδ, λ) = 0, 

  lim
𝑛→∞

Υ (ΩΓζn, ΓΓζn, ΓΓζn, λ) = Υ(Ωδ, Γδ, Γδ, λ) =0. 

lim
𝑛→∞

Λζn=  lim
𝑛→∞

Ηζn= 𝜔, ω∈ Σ, and 

  lim
𝑛→∞

Ξ (ΛΗηn, ΗΗηn, ΗΗηn, λ) = Ξ(Λω, Ηω, Ηω, λ) = 1,  
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  lim
𝑛→∞

Θ (ΛΗηn, ΗΗηn, ΗΗηn, λ) = Θ (Λω, Ηω, Ηω, λ) = 0, 

  lim
𝑛→∞

Υ (ΛΗηn, ΗΗηn, ΗΗηn, λ) = Υ(Λω, Ηω, Ηω, λ) = 0, 

  lim
𝑛→∞

Ξ (ΗΛηn, ΛΛηn, ΛΛηn, λ) = Ξ(Ηω, Λω, Λω, λ) = 1,  

  lim
𝑛→∞

Θ (ΗΛηn, ΛΛηn, ΛΛηn, λ) = Θ (Ηω, Λω, Λω, λ) = 0, 

  lim
𝑛→∞

Υ (ΗΛηn, ΛΛηn, ΛΛηn, λ) = Υ (Ηω, Λω, Λω, λ) = 0. 

 Therefore, Γδ = Ωδ and Λω = Ηω, that is δ is a coincidence point of Γ and Ω, ω is a coincidence 

point of  Λ and Η.Now, we prove that δ = ω.  By using (3.1) for ζ = ζn and η = ηn, we get                        

Ξ(Γζn, Ληn, Ληn, λ)  ≥ 𝜓  (min {Ξ(Ωζn, Ηηn, Ηηn, λ), Ξ(Γζn, Ωζn, Ωζn, λ), Ξ (Ληn, Ηηn, Ηηn, λ),                 

    
1

2
[Ξ (Ληn, Ωζn, Ωζn, λ) + Ξ (Γζn, Ηηn, Ηηn, λ)]}), 

Θ (Γζn, Ληn, Ληn, λ)  ≤  𝜙 (max {Θ (Ωζn, Ηηn, Ηηn, λ) , Θ(Γζn, Ωζn, Ωζn, λ), Θ (Ληn, Ηηn, Ηηn, λ),       

    
1

2
[Θ (Ληn, Ωζn, Ωζn, λ) + Θ (Γζn, Ηηn, Ηηn, λ)]}). 

Υ(Γζn, Ληn, Ληn, λ)  ≤  𝜑(max {Υ(Ωζn, Ηηn, Ηηn, λ) , Υ(Γζn, Ωζn, Ωζn, λ), Υ  (Ληn, Ηηn, Ηηn, λ),                

    
1

2
[Υ (Ληn, Ωζn, Ωζn, λ) + Υ (Γζn, Ηηn, Ηηn, λ)]}). 

 Taking the limit n → ∞, we have 

Ξ (δ, ω, ω, λ) ≥ 𝜓 (min { Ξ (δ, ω, ω, λ), Ξ (δ, δ, δ, λ) , Ξ (ω, ω, ω, λ), 
1

2
 [Ξ (ω, δ, δ, λ) + Ξ (δ, ω, ω, λ)]}), 

Θ (δ, ω, ω, λ) ≤ 𝜙 (max { Θ(δ, ω, ω, λ), Θ (δ, δ, δ, λ) , Θ (ω, ω, ω,  λ), 
1

2
 [Θ (ω, δ, δ, λ) + Θ (δ, ω, ω, λ)]}), 

Υ(δ, ω, ω, λ) ≤ 𝜑 (max { Υ(δ, ω, ω, λ), Υ(δ, δ, δ, λ), Υ(ω, ω, ω, λ), 
1

2
 [Υ(ω, δ, δ, λ) + Υ(δ, ω, ω, λ)]}), 

that  is, 

   Ξ (δ., ω, ω, λ) ≥ 𝜓 (Ξ (δ, ω, ω, λ)) > Ξ (δ, ω, ω, λ), 

   Θ (δ., ω, ω, λ) ≤ 𝜙 (Θ (δ, ω, ω, λ)) < Θ (δ, ω, ω, λ), 

   Υ (δ., ω, ω, λ) ≤ 𝜑 (Υ (δ, ω, ω,  λ)) < Υ (δ, ω, ω, λ), 

which yield δ = ω. 

 Again using (3.1) for ζ = δ and η = ηn, we obtain 

 Ξ (Γδ, Ληn, Ληn, λ) ≥ 𝜓 (min {Ξ (Ωδ, Ηηn, Ηηn, λ), Ξ (Γδ, Ωδ, Ωδ, λ), Ξ (Ληn, Ηηn, Ηηn, λ), 

    
1

2
[Ξ (Ληn, Ωδ, Ωδ, λ) + Ξ (Γδ, Ηηn, Ηηn, λ)]}), 

 Θ {Γδ, Ληn, Ληn, λ) ≤  𝜙 (max {Θ (Ωδ, Ηηn, Ηηn, λ), Θ (Γδ, Ωδ, Ωδ, λ), Θ (Ληn, Ηηn, Ηηn, λ), 

    
1

2
[Θ (Ληn, Ωδ, Ωδ, λ) + Θ (Γδ, Ηηn, Ηηn, λ)]}). 

 Υ{Γδ, Ληn, Ληn, λ) ≤ 𝜑(max {Υ(Ωδ, Ηηn, Ηηn, λ), Υ(Γδ, Ωδ, Ωδ, λ), Υ(Ληn, Ηηn, Ηηn, λ), 

    
1

2
[Υ(Ληn, Ωδ, Ωδ, λ) + Υ (Γδ, Ηηn, Ηηn, λ)]}). 

 Taking the limit as n → ∞, we have,  

 Ξ(Γδ, ω, ω, λ)  ≥ 𝜓 (min {Ξ(Ωδ, ω, ω, λ), Ξ(Γδ, Ωδ, Ωδ,  λ), Ξ (ω, ω, ω, λ), 

    
1

2
[Ξ (ω, Ωδ, Ωδ, λ) + Ξ (Γδ, ω, ω, λ)]}), 

 Θ(Γδ, ω, ω, λ)  ≤ 𝜙 (max {Θ(Ωδ, ω, ω, λ), Θ(Γδ, Ωδ, Ωδ, λ), Θ (ω, ω, ω, λ), 

    
1

2
[Θ (ω, Ωδ, Ωδ, λ) + Θ (Γδ, ω, ω, λ)]}),   

 Υ(Γδ, ω, ω, λ)  ≤ 𝜑 (max {Υ(Ωδ, ω, ω,  λ), Υ(Γδ, Ωδ, Ωδ,  λ), Υ (ω, ω, ω,  λ), 

    
1

2
[Υ (ω, Ωδ, Ωδ, λ) + Υ (Γδ, ω, ω, λ)]}). 

 That is,     

   Ξ(Γδ, ω, ω, λ) ≥ 𝜓 (Ξ(Γδ, ω, ω, λ)) >  Ξ(Γδ, ω, ω, λ), 

   Θ(Γδ, ω, ω, λ) ≤  𝜙 (Θ(Γδ, ω, ω, λ)) < Θ(Γδ, ω, ω, λ), 

   Υ(Γδ, ω, ω, λ) ≤  𝜑 (Υ(Γδ, ω, ω, λ)) < Υ(Γδ, ω, ω, λ). 

which yield Γδ = ω = δ. 

 Therefore δ = ω is a common fixed point of Γ, Λ, Ω and Η. 
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 For uniqueness, suppose that there exist another fixed point u of Γ, Λ, Ω and Η. 

 Then from (3.1), we have 

Ξ(Γδ, Λu, Λu, λ)  ≥ 𝜓(min {Ξ(Ωδ, Ηu, Ηu, λ) , Ξ(Γδ, Ωδ, Ωδ, λ), Ξ (Λu, Ηu, Ηu, λ), 

                                        
1

2
[Ξ (Λu, Ωδ, Ωδ, λ) + Ξ (Γδ, Ηu, Ηu, λ)]}) 

     = 𝜓 (min {Ξ(Γδ, Λu, Λu, λ), 1 ,  Ξ (Γδ, Λu, Λu,  λ), 

            
1

2
[Ξ (Λu, Γδ, Γδ, λ) + Ξ (Γδ, Λu, Λu, λ)]}) 

     = 𝜓 (Ξ(Γδ, Λu, Λu,  λ) 

  > Ξ (Γδ, Λu, Λu,  λ), 

 

Θ (Γδ, Λu, Λu,  λ)  ≤  𝜙 (max {Θ(Ωδ, Ηu, Ηu, λ) , Θ(Γδ, Ωδ, Ωδ, λ), Θ (Λu, Ηu, Ηu, λ), 

                                                  
1

2
[Θ (Λu, Ωδ, Ωδ, λ) + Θ (Γδ, Ηu, Ηu, λ)]}) 

                                = 𝜙 (max {Θ(Γδ, Λu, Λu, λ), 0, Θ (Γδ, Λu, Λu, λ),  

                                                      
1

2
[Θ (Λu, Γδ, Γδ, λ) + Θ (Γδ, Λu, Λu, λ)]}) 

                                =  𝜙 (Θ(Γδ, Λu, Λu, λ) 

                                < Θ (Γδ, Λu, Λu, λ), 

 

Υ (Γδ, Λu, Λu, λ)  ≤  𝜑 (max {Υ(Ωδ, Ηu, Ηu, λ) , Υ(Γδ, Ωδ, Ωδ, λ), Υ (Λu, Ηu, Ηu, λ),  
1

2
[Υ (Λu, Ωδ, Ωδ, λ) + Υ (Γδ, Ηu, Ηu, λ)]}) 

                               = 𝜑 (max {Υ(Γδ, Λu, Λu, λ), 0,  Υ (Γδ, Λu, Λu, λ), 

          
1

2
[Υ (Λu, Γδ, Γδ, λ) + Υ (Γδ, Λu, Λu, λ)]})  

                                =  𝜑 (Υ(Γδ, Λu, Λu, λ) 

                                < Υ(Γδ, Λu, Λu, λ), 

which yield δ = u.  Therefore, uniqueness follows. 

 

 If we put Ω = Η in Theorem 3.1, we get the following result. 

 

Corollary: 4.2 

 Let Γ, Λ, and Ω be self-maps of a weak non-Archimedean NMS (Σ, Ξ, Θ, Υ,∗,⋄) and let the pairs 

(Γ, Ω) and (Λ, Ω) are subcompatible maps of type (J-1) and subsequentially continuous.  If  

 

 Ξ(Γζ, Λη, Λη, λ)  ≥ 𝜓 (min {Ξ(Ωζ, Ωη, Ωη, λ) , Ξ(Γζ, Ωζ, Ωζ, λ), Ξ (Λη, Ωη, Ωη, λ), 

    
1

2
[Ξ (Λη, Ωζ, Ωζ, λ) + Ξ (Γζ, Ωη, Ωη, λ)]})                  (4.2.1) 

 Θ(Γζ, Λη, Λη, λ)  ≤  𝜙 (max {Θ(Ωζ, Ωη, Ωη, λ) , Θ(Γζ, Ωζ, Ωζ, λ), Θ (Λη, Ωη, Ωη, λ), 

    
1

2
[Θ (Λη, Ωζ, Ωζ, λ) + Θ (Γζ, Ωη, Ωη, λ)]})                  (4.2.2) 

 Υ(Γζ, Λη, Λη, λ)  ≤  𝜑 (max {Υ(Ωζ, Ωη, Ωη, λ) , Υ(Γζ, Ωζ, Ωζ, λ), Υ (Λη, Ωη, Ωη, λ), 

    
1

2
[Υ (Λη, Ωζ, Ωζ, λ) + Υ (Γζ, Ωη, Ωη, λ)]})                  (4.2.3) 

 

for all ζ, η ∈ Σ,  λ> 0, where  𝜓, 𝜙, 𝜑 : [0,1] → [0,1] are continuous functions such that 𝜓(s) > s,             

φ(s)  < s  and 𝜑(s)  < s  for each s ∈ (0,1).  Then Γ, Λ and Ω have a unique common fixed point in Σ. 

 

 If we put Γ = Λ and Ω = Η in Theorem 4.1, we get the following result. 

 

Corollary: 4.3  
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 Let Γand Ω be self-maps of a weak non-Archimedean NMS (Σ, Ξ, Θ, Υ,∗,⋄) and let the pairs  

(Γ, Ω)  is  subcompatible maps of type (J-1) and subsequentially continuous.  If 

Ξ(Γζ, Γη, Γη, λ)  ≥ 𝜓 (min {Ξ(Ωζ, Ωη, Ωη, λ) , Ξ(Γζ, Ωζ, Ωζ, λ), Ξ (Γη, Ωη, Ωη, λ), 

  
1

2
[Ξ (Γη, Ωζ, Ωζ, λ) + Ξ (Γζ, Ωη, Ωη, λ)]}),                  (4.3.1) 

Θ(Γζ, Γη, Γη, λ)  ≤  𝜙  (max {Θ(Ωζ, Ωη, Ωη, λ) , Θ(Γζ, Ωζ, Ωζ, λ), Θ (Γη, Ωη, Ωη, λ), 

  
1

2
[Θ (Γη, Ωζ, Ωζ, λ) + Θ (Γζ, Ωη, Ωη, λ)]}),                 (4.3.2) 

Υ(Γζ, Γη, Γη, λ)  ≤  𝜑  (max {Υ(Ωζ, Ωη, Ωη, λ) , Υ(Γζ, Ωζ, Ωζ, λ), Υ (Γη, Ωη, Ωη, λ), 

  
1

2
[Υ (Γη, Ωζ, Ωζ, λ) + Υ (Γζ, Ωη, Ωη, λ)]}),                  (4.3.3) 

for all ζ, η ∈ Σ,  λ> 0, where  𝜓, 𝜙, 𝜑  : [0,1] → [0,1] are continuous functions such that 𝜓 (s) > s,          

φ(s)  < s  and 𝜑 (s)  < s  for each s ∈ (0,1).  Then Γ and Ω have a unique common fixed point in Σ. 

 

5. Conclusion 

  In this work, we obtained new structure of weak non-Archimedian with the help of  

subcompatible maps of types (J-1) and (J-2) in NMS.  Also, we proved common fixed point theorems 

for four subcompatible maps of type (J-1) in weak non-Archimedean NMS. 
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Abstract: The aim of this paper is to introduce the new concept of Neutrosophic Pythagorean soft set 

with T and F as dependent components and have also discussed some of its properties.  
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1. Introduction 

The fuzzy set was introduced by Zadeh [19] in 1965. In 1968, Chang [4] defined the concept of 

fuzzy topological space and generalized some basic notions of topology. Intuitionistic fuzzy set was 

introduced by Atanassov [2,3] in 1983.The concept of Neutrosophic set was introduced by F. 

Smarandache which is a mathematical tool for handling problems involving imprecise, 

indeterminancy and inconsistent data. 

In 2018 Smarandache [16] generalized the gvlSoft Set to the Hyper Soft Set by transforming the 

classical uni-argument function F into a multi-argument function: 

 In 2016, F. Smarandache [13] introduced for the first time the degree of dependence between the 

components of fuzzy set and neutrosophic sets. The main idea of Neutrosophic sets is to characterize 

each value statement in a 3D – Neutrosophic space, where each dimension of the space represents 

respectively the truth membership, falsity membership and the indeterminacy, when two 

components T and F are dependent and I is independent then T+I+F≤ 2. 

Pabitra kumar Maji had combined the Neutrosophic set with soft sets and introduced a new 

mathematical model   Neutrosophic soft set. I.Arockiarani [2] introduced the new concept of fuzzy 

neutrosophic soft set. Yager introduced pythagorean fuzzy sets. R. Jhansi [6]   introduced the 

concept of Pythagorean Neutrosophic set with T and F as dependent components.  

In this we have to introduce the concept of neutrosophic pythagorean soft set with truth membership 

and false membership as dependent components and the indeterminacy as independent component 

and establish some of its properties.  
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2.Preliminaries 

 

Definition:2.1[13] 

Let U be a universe. A Neutrosophic set A on U can be defined as follows: 

 

Where   

Here,  is the degree of membership,   is the degree of indeterminancy and  is the 

degree of non-membership. 

 

Definition:2.2[6] 

Let U be a universe. A Pythagorean neutrosophic set with T and F are dependent neutrosophic 

components A on U is an object of the form  

 

Where   

Here,  is the degree of membership,   is the degree of inderminancy and  is the 

degree of non-membership. 

re, and are dependent components and  is an independent component. 

 

Definition:2.3[2] 

Let U be the initial universe set and E be set of parameters. Consider a non-empty set A on E, Let 

P(U) denote the set of all neutrosophic sets of U. The collection (F, A) is termed to be neutrosophic 

soft set over U, where F is a mapping given by F: A  P(U). 

 

3.Neutrosophic Pythagorean Soft Set (NPSS or NPS Set) 

 

Definition:3.1 

Let U be the initial universe set and E be set of parameters. Consider a non-empty set A on E, Let 

P(U) denote the set of all neutrosophic pythagorean sets of U. The collection (F, A) is termed to be 

neutrosophic pythagorean soft set over U, where F is a mapping given by F: A  P(U). 

Definition:3.2 

A neutrosophic pythagorean soft set A is contained in another neutrosophic pythagorean soft set B 

(i.e) A  if  ,  and  
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Definition:3.3 

The complement of a neutrosophic pythagorean soft set (F, A) Denoted by  and is defined   

as  

(x)=   

 

Definition:3.4 

Let U be a non-empty set, A =  and 

 B =  are neutrosophic pythagorean soft (NPS) sets. Then 

A B =   

A B =  

 

Definition:3.5 

A neutrosophic pythagorean soft set (F, A) over the universe U is said to be empty neutrosophic 

pythagorean soft set with respect to the parameter A if =1,  It 

is denoted by   

 

Definition:3.6  

A neutrosophic pythagorean soft set (F, A) over the universe U is said to be universe neutrosophic 

pythagorean soft set with respect to the parameter A if =0,  It 

is denoted by   

Remark:  =  and  =  

Definition:3.7 

 

Let A and B be two neutrosophic pythagorean soft sets then A\B may be defined as  

A\B =  

Definition:3.8 

FE is called neutrosophic pythagorean soft set over U if F(e) = for any We denote it by  
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 is called relative null neutrosophic pythagorean soft set over U if F(e) = for any We 

denote it by  

Obviously =   and  =  

 

Definition:3.9 

The complement of a neutrosophic pythagorean soft set (F, A) can also be defined as   

 =  for all . 

Note: We denote  by U in the proofs of proposition. 

 

Definition:3.10 

If (F, A) and (G, B) be two neutrosophic pythagorean soft set then “(F, A) AND (G, B)” is a denoted 

by (F, A) (G, B) and is defined by (F, A)  (G, B) = (H, A B) 

where H (a, b) = F(a) G(b)  and  where  is the operation intersection of NPS set. 

 

Definition:3.11 

If (F, A) and (G, B) be two neutrosophic pythagorean soft set then “(F, A) OR (G, B)” is a denoted by 

(F, A) (G, B) and is defined by (F, A)  (G, B) = (K, A B) 

where K (a, b) = F(a) G(b)  and  where  is the operation union of NPS set. 

 

Theorem :3.12 

Let (F, A) and (G, B) be NPS set in  .Then the following are true. 

(i) (F, A)  (G, A) iff (F, A)  (G, A) = (F, A) 

(ii) (F, A)  (G, A) iff (F, A)  (G, A) = (F, A) 

Proof: 

(i)Suppose that (F, A)  (G, A), then F(e) G(e) for all e  A. Let (F, A) (G, A) = (H, A).  

 Since H(e) = F(e)  G(e) =F(e) for all e  A, by definition (H, A) = (F, A).  
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Consider (F, A) (G, A) = (F, A). Let (F, A) (G, A) = (H, A). Since H(e) = F(e)  G(e) =F(e) for all 

e  A, we know that F(e)  G(e) for all e  A. Hence (F, A)  (G, A). 

(ii)The proof is similar to (i). 

 

Theorem :3.13 

Let (F, A), (G, A), (H, A), and (S, A) be NPS set in  .Then the following are true. 

(i) If (F, A)  (G, A) =  , then (F, A)  (G, A  

(ii) If (F, A)  (G, A) and (G, A)  (H, A) then (F, A)  (H, A) 

(iii) If (F, A)  (G, A) and (H, A)  (S, A) then (F, A)  (H, A)  (G, A)  (S, A) 

(iv) (F, A)   (G, A) iff (G, A  (F, A  

Proof:  

(i)Suppose that (F, A)  (G, A) = Then F(e)  G(e) = . So, F(e)  U\G(e)=  for all e  A. 

therefore we have (F, A)  (G, A  

Proof of (ii) and (iii) are obvious. 

(iv) (F, A)  (G, A)  F(e)  G(e) for all e  A. 

             (G(e)  (F(e)  for all e  A.                                                                                 

           (G, A  (F, A  

Definition:3.14 

Let I be an arbitrary index {(Fi, A)  be a subfamily of NPSS(U)A.  

(i)The union of these NPSS is the NPSS (H, A) where H(e) =  for each e  

= (H, A) 

(ii)The intersection of these NPSS is the NPSS (M, A) where M(e) =  for each e  

= (M, A) 
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Theorem:3.15 

Let I be an arbitrary index set and {(Fi, A) be a subfamily of NPSS(U)A. Then 

(i)  =  

(ii)  =  

Proof: 

(i)  = (H, A) C, By definition HC(e) =UE\H(e) = UE\ =  

for all e . On the other hand, (K, A).  

By definition, K(e)= =  for all e . 

(ii) It is obvious. 

 

Note: We denote  and  

 

Theorem:3.16 

(i) ( ,A  = (U, A) 

(ii) (U, A  = (  

Proof: 

Let (   A) = (F, A) 

Then  e  A, 

F(e) =  

       = {(x,0,0,1)  

Now, ( ,A  = ( ,A  

Then  e  A, 

(F(e)  =  

       =  
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       ={(x1,1,0)  = U 

Thus ( ,A  = (U, A) 

(i) Proof is similar to (i) 

Theorem:3.17 

(i) (F, A)  ( , A) = (F, A) 

(ii) (F, A)  ( , A) = (U, A) 

Proof: 

(i) (F, A) = {e,  e  A 

      ( , A) = {e, (x,0,0,1):  U} e  A 

 (F, A)  ( , A) = {e,  e  A 

                          = {e,  e  A 

                          = (F, A) 

(ii) Proof is similar to (i). 

 

Theorem:3.18 

(i) (F, A)  ( , A) = ( , A)  

(ii) (F, A)  ( , A) = (F, A) 

Proof: 

(i) (F, A) = {e,  e  A 

      ( , A) = {e, (x,0,0,1):  U} e  A 

(F, A)  ( , A) = {e,  e  A 

                          = {e,  e  A 

                          = ( , A) 

(ii) Proof is similar to (i). 

 

Theorem:3.19 
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(i) (F, A)  ( , B) = (F, A) iff B A 

(ii) (F, A)  ( , B) = (U, A) iff A  

Proof: 

(i) We have for (F, A) 

F(e) = {  e  A 

    Also let ( , B) = (G, B) then  

G(e) = {(x, 0,0,1):  U} e  B 

Let (F, A)  ( , B) = (F, A)  ( , B) = (H, C) where C = B and for all  

H(e) may be defined as  

 

 

=  

=  

Let B A 

Then H (e) =  

                   = F(e)  

Conversely Let  

Then A = A  B  

(ii) Proof is similar to (i) 

 

Theorem:3.20 

(i) (F, A)  ( , B) = ( , A B)  
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(ii) (F, A)  ( , B) = (F, A B)  

Proof:  

(i)  We have for (F, A) 

F(e) = {  e  A 

    Also let ( , B) = (G, B) then  

G(e) = {(x, 0,0,1):  U} e  B  

Let (F, A)  ( ,B) = (F, A) (G, B) = (H, C) where C = A B and e  C 

H(e) =  

     =  {   

     = {   

     = (G, B) = ( , B) 

Thus (F, A)  ( , B) = ( , B) = ( , A B) 

(ii) Proof is similar to (i). 

 

Theorem:3.21 

(i) ((F, A)  ( , B)) C (F, A) C  (G, Bj) C 

(ii) (F, A) C  (G, B) C ((F, A)  ( , B)) C 

Proof:  

Let (F, A) (G, B) = (H, C) Where C = A B and  e  C 

H(e) may be defined as  

 

Thus (F,A) (G,B))C = (H,C)C Where C = A B and  e  C 

(H(e)) C =  
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            =

 

Again (F, A) C  (G, B) C = (I, J) say J = A B and  e  J 

I(e) =  

            =

 

So, C  J  e  J, (H(e) I(e) 

Thus (F, A) (G, B)) C   (F, A) C  (G, B) C 

(ii) Let (F, A) (G, B) = (H, C) Where C = A B and  e  C 

H(e) = F(e) G(e) 

     =  

 Thus ((F, A) (G, B)) C = (H, CC Where C = A B and  e  C 

(H(e)) C = C 

        =  

Again (F, A) C  (G, B) C = (I, J) say where J= A  B and  e  J 

I(e) = (F(e)) C G(e)) C 

        =  

 We see that C = J and  e  J, I(e) (H(e)) C        

Thus (F, A) C  (G, B) C ((F, A)  ( , B)) C 
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Theorem :3.22 

Let (F, A) and (G, A) are two neutrosophic pythagorean soft sets over the same universe U. We have 

the following 

(i) ((F, A)  ( , A)) C = (F, A) C   (G, A) C 

(ii) ((F, A)  ( , A)) C = (F, A) C  (G, A) C  

Proof:   

(i) Let (F, A)  (G, A) = (H, A)  e  A 

H(e) = F(e) G(e)  

     = } 

Thus (F, A)  (G, A))C = (H, A)C  e  A 

(H(e)) C = (F(e) G(e)) C 

       = }C 

       =  

Again (F, A) C  ( , A) C = (I, A) where  

I(e) = (F(e)) C G(e)) C 

     = } 

     =  

Thus ((F, A)  ( , A)) C   = (F, A) C   (G, A) C 

(ii)  Let (F, A)  (G, A) = (H, A)  e  A 

H(e) = F(e) G(e)  

     = }  e  A 

Thus (F, A)  (G, A)) C = (H, A) C  

(H(e)) C = (F(e) G(e)) C 
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 }C      =

 

Again (F, A) C  ( , A) C = (I, A) where  

I(e) = (F(e)) C G(e)) C 

    = } 

    =  

Thus ((F, A)  ( , A)) C = (F, A) C   (G, A) C 

 

Theorem:3.23 

Let (F, A) and (G, A) are two neutrosophic pythagorean soft sets over the same universe U. We have 

the following 

(i) ((F, A)  ( , A)) C = (F, A) C   (G, A) C 

(ii) ((F, A)  ( , A)) C = (F, A) C  (G, A) C  

Proof: 

Let (F, A)  (G, B) = (H, A B) where H (a, b) =F(a) G(b)  and  where  is the 

operation intersection of NPSS. 

Thus H (a, b) = F(a) G(b) 

              = } 

((F, A)  (G, B)) C = (H, A B) C   

Thus (H (a, b)) C= C 

                       =

} 

 Let (F, A) C   (G, A) C = (R, A B) where R (a, b) =(F(a)) C G(b)) C  and  where 

 is the operation union of NPSS. 
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R (a, b) = } 

        = } 

Hence ((F, A)  ( , A)) C = (F, A) C   (G, A) C 

Similarly, we can prove (ii) 

 

 

Funding: “This research received no external funding” 

 

Conclusion 

In this paper, I have defined the concept of neutrosophic pythagorean soft sets with dependent 

components by combining the concept of neutrosophic pythagorean set and neutrosophic set. Then 

we have discussed the properties of union, intersection and complement of neutrosophic 

pythagorean soft set. This may helpful in future study of generalized neutrosophic pythagorean 

soft set in neutrosophic pythagorean soft topological spaces. This may lead to the new properties of 

separation axioms in neutrosophic pythagorean soft topological space. 
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Abstract: The development of galaxy images classification automated schemes is necessary to 

identify, classify, and study the evolution and formation of galaxies in our universe as it is one of the 

main challenges faced by astronomers today. Scientists can also build a deeper understanding of 

galaxies evolution and formation by classifying them into various classes. This paper proposed a 

robust novel hybrid automated intelligent algorithm based on neutrosophic techniques (NTs) and 

machine learning techniques for classifying the galaxy morphological astronomical images into 

various types of galaxies images (Hubble types) based on its features into three main classes; 

Elliptical, Spiral and Irregular. A nine classifiers performance was assessed based on the machine 

learning (ML) techniques by using  a combination of a sets of morphic features (MFs); obtained from 

image analysis and principal component analysis (PCA) features. The results indicated that; the 

classifier which called, multilayer perceptron (MLP) gives the better results for the features set 

consisting of nine MFs and 24 PCs features among all tested cases; Mean squared error (MSE) = 0.0021; 

Normalized mean squared error (NMSE)= 0.0371; Correlation coefficient (r) = 0.9889, and the Error = 

0.7751 with an accuracy 99.2249 %. Then, to improve the system efficiency; the neutrosophic 

techniques were applied in combination with the classifier that gave the best results in the previous 

step on the same extracted features to get a three robust component namely; membership, 

indeterminacy and non-membership components to fed to the neural network. The results showed 

that; the combination between the NTs and MLP classifier for (MFs with 4PCs) gives the best results; 

MSE = 0.0001; NMSE = 0.0009; r = 0.9997, and Error = 0.4212 with an accuracy about 99.5788 % in total 

for all chosen sets of features. The results showed the high performance of the proposed method 

comparing with other methods. The experimental results are performed based on a sample from 

(EFIGI) catalog. 

 

Keywords: Galaxy classification, image processing, Multi-Layer Perceptron, Neutrosophic Techniques, 

Machine Learning Techniques. 
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1. Introduction 

Galaxies are the areas where hydrogen transforms into luminous stars and celestial bodies that 

are gravitationally bound, they have different sizes, colors and shapes, it consisting of dust, gas and 

billions of nuclear-powered stars that also contain most chemical elements [1]. One of the most 

important problems for astronomers is the galaxies classification, as it can provide significant 

information about the evolution and origin of the universe. It is becoming an essential trouble due to 

the fact of astrophysicists often use vast information databases either to check present theories, or to 

structure a new inference to clarify the physical processes that control nature of the universe, galaxies 

and the star formation [2]. The morphological classification of galaxies is a system used to classify 

galaxies based on their appearance and their external structure by astronomers. The system created 

by Sir Edwin Hubble in 1936 is the most frequent classification scheme; as he divides galaxies into 

three main classes in accordance of their visual appearance, namely; (i) Elliptical  galaxies:  are without 

features objects, smooth, denoted by letter E followed by integer n (E0, E3, E5, and E7); (ii) Spiral 

galaxies: have structures like the disk and are distinguished by a flat disk contains stars in the central 

bulge and on the spiral arms. The usual spirals are indicated by letter S and located at the upper half 

(S0, Sa, Sb, Sc, and Sd). The lower half of spiral galaxies denoted by SB (SBa, SBb, and SBc) knowen 

as barred spiral galaxies; and (iii) Irregular galaxies: that has very irregular shapes without galactic 

bulges or the spiral arms of spiral galaxies are indicated by letter I (Im, and Ibm ) as shown in Figure 

1 [3]. This scheme is also referred to as the “Hubble Tuning Fork”. This classification updated by 

another classification scheme called De Vaucouleurs scheme in 1959, to obtain the Revised Hubble 

System (RHS). In 1958 Morgan proposed further scheme and in 1960 Van Den Berghin proposed 

another one. NASA also provided a universal classification, called the revised morphological types 

[4].  

Wide catalogs have been used by astronomers over recent decades to research the fundamental 

physics of the universe and test theories [5]. One of the most successful modern data collection 

projects in astronomy is Sloan Digital Sky Survey (SDSS), which uses a dedicated 2.5-m wide-angle 

optical telescope for spectroscopic surveys and multi-filter imaging, its data collection began in 2000 

and in its final data release, it covered most of the sky area [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Galaxies used to be manually classified into classes based on their visual characteristics in the 

past, however as the present-day sky surveys include images of millions of galaxies, it is found that 

implementing classification algorithms can assist in solving this issue. Advances in algorithms and 

computational tools have begun to allow galaxy morphology automated analysis by analyzing its 

Figure 1. Hubble Galaxy Classification Scheme (Hubble 1936) [3].  
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internal structure in the past few years. Other attempts have been made to implement the artificial 

neural networks using the raw pixel data as well as the image-extracted features as inputs to the 

artificial neural networks. To solve classical artificial intelligence issues, several deep learning 

algorithms have been used. All of these algorithms are a branch of machine learning techniques. 

 In recent years, many machine learning algorithms have played a significant role in finding 

solutions with classification problems, such as;  Abd Elfattah et al. [7], presented Artificial Neural 

Network algorithms together with features extraction algorithms based on invariant moment. They 

have used self-organized feature maps SOFMs and time lag recurrent network TLRNs. The results 

showed that using SOFMs classifier have better results about 98.49 % in combination with invariant 

moments for feature extraction than using TLRNs classifier in combination with invariant moments 

about 97.29 %. Ferrari et al. [8], proposed linear discriminant analysis (LDA) to automatically classify 

galaxies images by measured the parameters of galaxy morphology, including asymmetry, 

concentration, the Gini coefficient, smoothness, entropy, spirality and moment with accuracy of more 

than 90%. Dieleman et al. [9], developed a rotation invariant convolutional neural network (CNN) 

algorithm. The achieved accuracy was approximately 99%.  

Polsterer et al. [10], proposed an unsupervised method, called parallelized rotation/flipping 

invariant kohonen (PINK) maps to classify a number of galaxy images by extracting a set of features. 

This approach is focused on an enhancement of self-organizing maps with invariant similarity 

measure flipping and intensive rotation. Also, it is used an environment of a multi-core CPU/GPU. 

Selim et al. [6], presented a supervised machine learning algorithm for classifying galaxy images from 

the Zsoltfrei catalog based on Non-Negative matrix factorization method. The accuracy was about 

approximately 93% compared to other manually classified methods. Selim et al. [4], presented a new 

supervised machine learning algorithm for classifying galaxy images automatically from the EFIGI 

catalog based on the nonnegative matrix factorization method. The algorithm was used a dataset of 

700 images (a large dataset) and 110 images (a small dataset). The results showed that the achieved 

accuracy was about 92% for large dataset and 93% for small dataset.  

Aniyan et al. [11], developed a convolutional neural network (CNN) approach and 3 binary 

classifiers, using images from the Fanaroff–Riley (FRI and FRII) class and bent-tailed radio galaxies. 

The results showed that the precision is at 91%, 75% and 95% for FRI, FRII and bent-tailed radio 

galaxies classes, while the recall is at 91% and at 79% for each (FRI, FRIIs) and the bent-tailed class 

respectively. Khalifa et al. [12], proposed a CNN and a SoftMax classifier model using a sample from 

the EFIGI catalogue. The accuracy result was about 97.272%. Khalifa et al. [13], developed a deep 

convolutional neural network algorithm for galaxy images classification using EFIGI catalogue with 

an accuracy about 97.772%. Abd Elaziz et al. [1], proposed a new algorithm depending on the 

machine learning techniques using feature selection method called, artificial bee colony based on 

gegenbauer orthogonal moments using a sample from the EFIGI catalog. The achieved accuracy was 

about 94.63%. Zhu et al. [5], proposed a Residual Networks (ResNets) variant along with 

convolutional neural networks (CNNs) for classification of galaxy morphology. The achieved 

accuracy was about 95.2083%. 

It is clear that prior researchers obtained successful results to some degree from the above 

researches. By using a new approach in the current work, the performance rate is very high by using 

a combination between neutrosophic techniques and machine learning based classifiers. This paper's 

contributions are summarized as follows: 

• Building a novel hybrid automated algorithm to classify galaxies images in an efficient 

manner. 

• Through these proposed tools, the galaxy classification process would decrease the system's 

complexity while achieving higher efficiencies needed to classify astronomical objects. 
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• Astronomers will be gaining a better understanding about the evolution of galaxies and to 

test many theories about the universe. In addition, they will be able to make use of the 

addition of this information to these catalogues of galaxies. 

• Several research students will be able to use these methods in discovering new astronomical 

objects and use it in their projects. 

• There can additionally be extension to these projects through classifying the galaxies 

morphology into extra than three classes. 

• The excited people can add more objects of astronomical for classification, such as nebulae, 

stars, etc. 

The paper is organized as follows: Section 2 presents the basic concepts of galaxy classification 

techniques. Section 3 presents the proposed approach for galaxies classification and its phases. 

Section 4 presents the experimental result and discussion. Finally, section 5 addresses conclusion (last 

section). 

2. Galaxy Classification Techniques 

The main objective of classification is to measure the structural characteristics of the galaxies or 

to distinguish between different types of these galaxies. The challenge is to create a robust automated 

intelligent algorithm that generates a high-performance classification which more efficient, simple, 

fast rating and produces higher results. There are different types of classifiers based on artificial 

neural networks (ANNs), nine of them were used and evaluated based on a set of selected features. 

We also utilized a mix between two different techniques, neutrosophic and machine learning 

techniques as described in the next section. 

2.1 Multilayer Perceptron (MLP) 

MLP is a feed forward network with layers usually trained on fixed back propagation. These 

networks have used into a myriad of applications that require classification of fixed patterns. Its 

advantages, is that any continuous and logical function can be represented as long as hidden units 

are suitable with using the appropriate activation function. In addition, it is simple in use, and it can 

round whatever output or input map [14]. MLP includes; input layer, more than a hidden layer that 

able to generate more efficient results and the output layer. The approach for updating weights 

known as back propagation in ANNs to gain the accuracy, it is aims to produce results with the least 

number of errors. The error is only seen at the output layer and that error is disseminated back again 

to preceding layers of neural network. Finally, the new weights are up to date and repetition followed 

again. Since the error size is large at the output layer, the same ratio of error is propagated again to 

the preceding layer [15].  

2.2 Modular Neural Network (MNN) 

MNN are a special category of MLP. It using multiple parallel MLPs, these networks process 

inputs and then reassemble the results. This helps to build inside the topology a certain structure, 

which enhances job specialization in each subunit (sub-module). Modular networks have no full 

connection between their layers, unlike MLP standard networks. Therefore, for the same size 

network, fewer weights are needed. This helps to decrease the number of necessary training models 

and accelerate training times. There are lots of methods to divide MLP in modules. It is not clear how 

the modular structure is best structured using the data [16].  

2.3 Generalized Feed-Forward (GFF) 

GFF networks are a generalization for MLP so that connections can leap over one or extra layers. 

MLP could in theory, solve any issue by the generalized forward feeding networks. However, in 
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practice, GFF networks addresses the issue more effectively. So, MLP takes more training cycles of 

hundreds of times than the GFF network comprising the same number of processing components 

[17].  

2.4 Principal Component Analysis (PCA) Network 

PCA networks combine supervised and unsupervised learning within the same structure. It is 

an unsupervised linear procedure finds major components and a set of uncorrelated features from 

the input. The nonlinear classification of these components is supervised by MLP [18]. 

2.5 Jordan/Elman Network (JEN) 

JEN expand multi-layered perception of context units, which are processing elements which 

remember previous operation. Network context units offer the ability to extract the time information 

from the data. The output of the network is copied by the Jordan network, while the first hidden 

processing elements actions, are transmitted to the contextual units in the Elman network. There are 

also networks that feed the final hidden layer to the context units and the input [19].  

2.6 Self-Organized Maps (SOMs) 

    SOMs networks convert the arbitrary dimension of the input into a topological (neighborhood 

preservation) restriction of a one- or two-dimensional discrete map. The main benefit of this network 

is the clustering provided by the SOM, which uses a self-organizing mechanism to reduce the input 

space to representative features. Then the input space basic structure is preserved, while the space 

dimensions are reduced. The feature maps are calculated by using unsupervised learning called 

Kohonen method. SOM output may be used as inputs to a supervised neural network used in 

classification like the network of MLP [20]. 

2.7 Radial Basis Function (RBF) Networks 

RBF are a non-linear and hybrid networks that normally including one hidden layer of 

processing elements. Instead of the sigmoidal functions used by MLPs, the RBF layer using Gaussian 

transfer functions. The learning process of these networks is far quicker than MLPs. Gaussian’s 

widths and centers are set by rules of non-supervised learning, and supervised learning is carried out 

on the output layer. All the network weights may be analytically determined if the net of generalized 

regression (GRNN) probabilistic (PNN) is selected. During this case, by definition, the cluster centers 

number and the model’s number is equivalent, and the same variance is given to all of them [21]. 

2.8 Recurrent Networks (RNs) 

RNs are the latest technology in classifying the time pattern of non-linear time series, 

identification of the system and prediction. Recurrent networks actually have two types: (i) partially 

recurrent net begin with a fully recurrent network, then it adding a feed forward connection which 

bypasses the recurrent portion and treating it effectively as a state memory and (ii) fully recurrent 

net that feedback the hidden layer to themselves. RNs may have a memory with an unlimited depth, 

and therefore they are finding the relationships both by the instantaneous space of input and through 

time [22]. 

2.9 Time Lagged Recurrent Networks (TLRNs) 

TLRN are a multilayered perceptron networks with systems of memory of short-term. In real-

world, many data consist of information in its time structure, that is, how data adjustments over time. 

However, most neural networks are fixed classifiers in purely. Time lagged recurrent networks are 
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the latest technology in classifying the time pattern of non-linear time series, identification of the 

system and prediction [23]. 

3. The Proposed Architecture 

The proposed architecture framework for classification of galaxy images is presented in details 

in Figure 2. It includes four basic phases, (i) Preprocessing phase, followed by (ii) Feature extraction 

phase, (iii) Neutrosophic techniques phase, then (iv) Machine learning and Classification phase. In 

this section, these four phases are defined in details with the involved steps, the features and the 

characteristics of each phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Image Preprocessing Phase 

Before extracting any features from the images, the pre-processing phase is necessary to enhance 

the images and also before applying the machine learning algorithm. Also, the dataset that collected 

is often of various sizes, colors, noise, positioning, etc. The image processing goal is to create fixed 

images, all of which are equal in color, noise elimination and size before feeding the images to the 

neural network [24].  

Figure 2. Visualizes The Proposed Architecture Galaxy Classification Framework.  
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3.2 Feature extraction phase 

    The extraction of features leads to some shift in the original features by performing 

transformations and combinations to create other more effective features by extracting the features 

from the entered data to improve the accuracy of learning models. This stage decreases data 

dimensions by removing redundant data and thus maintaining the most prominent features, as it 

improving the speed of training and inference. In generally, the features extraction is used to indicate 

the creation of linear sets of continuous features with a fine discriminatory force among categories 

[25].  In this paper, nine sets of morphic features (MFs) in addition to a set of principal components 

(PCs); (4, 8, 16 and 24) were extracted from the galaxy images, to get the efficient and the most salient 

features from the chosen database images. 

3.2.1 Principal Component Analysis (PCA) Features 

PCA is a statistical second order method which converts a number of associated variables into a 

smaller number of unassociated variables known as PCs. In general, principal component analysis is 

used to minimize the data set dimensions with maintaining as much information as possible. The 

data can be represented through a few base vectors instead of using all the covariance matrix PCs 

[26, 27]. In this paper, PCs were extracted from the whole training set; in which every image was 

expressed as a row vector. After that, every image coefficient was transformed into a collection of 

features and this is the new galaxy information representation. 

3.2.2 Morphological Features (MFs) 

MFs are based on the visual characteristics of the galaxy such as: (i) Minor axis: the minor ellipse 

axis length in pixels, which has the same natural central second moment as the area, (ii) Major axis: 

the major ellipse axis length in pixels, which has the same natural central second moment as the area; 

(iii) Orientation: expresses areas which can be described as having one dimension locally, in terms of 

edges or lines for example; (iv) Area: the real pixel count in the area; (v) Bounding box: shows the 

square with the smallest scale in which all points are located inside; (vi) Eccentricity: represents the 

degree to which the image of the galaxy deviates from being circular; (vii) Centroid: represents all 

straight lines intersection that divide the image into two equal-moment parts informally around the 

line, which is the average of all image points; (viii) Extrema: expresses the minimum value or the 

maximum value which takes in a point either in its entirety within the function domain; or within a 

particular neighborhood; and (ix) Convex area: represents the line segment that connects any two 

points within the shape, which are fully contained in the figure. 

3.3 Neutrosophic Techniques (NTs) Phase 

NTs are the techniques, which uses neutrosophic sets and the principles of neutrosophic logic 

for the classification. NTs includes a neutrosophic simple rule-based method such as: if X and Y then 

Z, to solve the problem rather than trying to model a mathematical similar system of fuzzy approach 

[28]. The architecture of the neutrosophic inference classification system using fuzzy approach is 

based on the fuzzy inference method principles of Mamdani [29]. The neutrosophic classification 

system block diagram is illustrated in Figure 3. The values of the neutrosophic components T, I and 

F are independent of each other. Thus, three components were constructed using MATLAB's fuzzy 

logic toolbox: one for the truth component of neutrosophic, the second for the component of 

indeterminacy and the third for the component of falsity. A correlation is drawn between the 

membership functions of these components in order to capture the input and output truthfulness, 

indeterminacy and falsity, although the operation of neutrosophic components are independent from 

each other [30]. 
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The NRCS is a Neutrosophic Rule-based Classification System where neutrosophic logic is used 

as a method to represent various types of knowledge about the existing issue, and also to model 

relationships and interactions between their variables that exist [31]. Figure 4, illustrates the general 

structure of NRCSs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let U be a universal set while W is a collection of bright pixels units, where W is a sub-set in U. 

The neutrosophic pixels sets (𝑃𝑁𝑆) of images are defined by, three degrees; 𝑇, 𝐼 and 𝐹. The degree 

of membership can be defined as 𝑇, the degree of indeterminacy can be defined as 𝐼, and the degree 

of non-membership can be defined as 𝐹 . A pixel P in the image is defined as 𝑃 (𝑇, 𝐼, 𝐹) which 

belonging to W with true in bright pixels (t%), indeterminate (i%) and false (f%), where t differs in 𝑇 

and i differs in 𝐼 and f differs in 𝐹. The 𝑝 (𝑖, 𝑗) pixel in domain of the image turns into: 

 

𝑁𝐷𝑃𝑁𝑠(𝑖, 𝑗) = {𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)}                                                     (1) 

 

Figure 3. Block Diagram for The Neutrosophic Components [30]. 

Figure 4. Basic Structure of a Neutrosophic Rule-Based Classifier System [31]. 

 



Neutrosophic Sets and Systems, Vol. 42, 2021                                                                          87 

 

 

A. A. Abd El-Khalek; A. T. Khalil; M. A. Abo El-Soud; I. Yasser. A Robust Machine Learning Algorithm for Cosmic 

Galaxy Images Classification Using Neutrosophic Score Features. 

Where𝑁𝐷𝑃𝑁𝑠(𝑖, 𝑗) is the neutrosophic domain for image pixels,  𝑇(𝑖, 𝑗) belongs to white group, 

𝐼(𝑖, 𝑗) belongs to indeterminate group and 𝐹(𝑖, 𝑗) belongs to non-white group. Which can be 

described as [32]: 

 

𝑃𝑁𝑆(𝑖, 𝑗) =  {𝑇(𝑖, 𝑗), 𝐼(𝑖, 𝑗), 𝐹(𝑖, 𝑗)}                                                     (2) 

 

𝑇(𝑖, 𝑗) =
𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅ − 𝑔̅𝑚𝑖𝑛

𝑔̅𝑚𝑎𝑥 − 𝑔̅𝑚𝑖𝑛
                                                            (3) 

 

𝐼(𝑖, 𝑗) = 1 −
𝐻𝑜(𝑖, 𝑗) − 𝐻𝑜

𝐻𝑜𝑚𝑎𝑥
− 𝐻𝑜𝑚𝑖𝑛

                                                     (4) 

 

𝐹(𝑖, 𝑗) = 1 −  𝑇(𝑖, 𝑗)                                                              (5) 

 

𝐻𝑜(𝑖, 𝑗) = 𝑎𝑏𝑠(𝑔(𝑖, 𝑗)) − 𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅                                                    (6) 

 

Where 𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅  is the local mean value of window size pixels, and 𝐻𝑜(𝑖, 𝑗) can be described as 

the homogeneity value of 𝑇 at(𝑖, 𝑗), which represented with using the absolute value of the various 

between the intensity  𝑔(𝑖, 𝑗) and the local mean value 𝑔(𝑖, 𝐽)̅̅ ̅̅ ̅̅ ̅̅ . 

The neutrosophic set fundamental concepts are presented by Smarandache in [33, 34] and 

Salama et al. in [35-38]. In 2014, Salama et al. [39] implemented and designed an object-oriented 

programming [OOP] to deal with the operations of the neutrosophic data. 

After extracting the features using MFs and PCA techniques, the neutrosophic techniques were 

used to extract three important and efficient components for every morphic and principal component 

feature which correlated with the most important variables for the algorithm of classification. The 

steps in this stage are given below, as shown in Figure 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Neutrosophic Galaxy Images Architecture. 
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• Firstly, we extracted the most efficient and outstanding features to represent each image 

content within the database. 

• Secondly, using the neutrosophic techniques, the data features have been converted from 

classic mode that helps with the classification process and therefore, we can make a better 

choice and arrange all alternatives according to three functions namely; membership, 

indeterminacy, and non-membership components. 

• Hence, the database of neutrosophic features of galaxy images was obtained. 

• finally, the three components were used to fed to the neural network to get more efficient 

and accurate result. 

3.4 Machine learning and Classification Phase 

In the machine learning and classification phase; Firstly, nine classifiers are used based on the 

ML techniques to conduct the learning method from the extracted features without using NTs as 

follows, Multilayer Perceptron (MLP), Modular Neural Network (MNN), Generalized Feed-Forward 

(GFF), Principal Component Analysis (PCA) Network, Jordan/Elman Network (JEN), Self-Organized 

Maps (SOMs), Radial Basis Function (RBF) Networks, Recurrent Networks (RNs), and Time Lagged 

Recurrent Networks (TLRNs). Algorithm 1, illustrates pseudo-code for the first proposed algorithm. 

 

 

 

Algorithm 1: First Proposed Galaxy Classification Algorithm Pseudo Code 

Begin 
1) Converting every image from the RGB to gray scale image. 
2) Defining the galaxy limits considering it as a nebulous object. 
3) Locating the exact position of the galaxy by the position of the center of the spheroid 

bulge.  
4) Choosing a suitable window size for eliminating the noise through property of preserving 

the edges. 
5) Measuring galaxy intensity region and building a complete map for the background to 

subtract it from the initial image.  
6) Subtracting outside objects and bright stars from outside the galaxy bulge.  
7) Rotating each galaxy image into a horizontal position. 
8) Cropping the galaxy body from the image. 
9) Centering the galaxy body to seem uniform. 
10) Extracting the visual characteristics of each galaxy (Morphological features). 
11) Computing the input data dimensions. 
12) Assuming a galaxy image vector set (n= 255); every (n) vector has the identical length (K). 
13) Making an n^2dimensional vector for every image. 
14) Establishing the PCA analysis input by arranging galaxy images in a big matrix. 
15) Creating the n dimensional matrix for every galaxy images type. 
16) Applying the PCA algorithm, to transform these vectors to a new vector for every case of 

the galaxies images vectors. 
17) Computing the mean for every type of the galaxy vector, then subtract it from every data 

value. 
18) Computing the input data matrix covariance matrix (C). 
19) Calculating the covariance matrix by choosing the largest eigenvalues (K) and the 

eigenvector, where (K << N). 
20) Obtaining the new feature vector of eigenvectors of principal components. 
21) Extracting the final data computed, i.e., the new data set. 
22) Introducing the new extracted features to the ANNs based classifiers to conduct the 

learning Method. 
23) Obtaining the classified galaxy images into three types of galaxies. 

End  



Neutrosophic Sets and Systems, Vol. 42, 2021                                                                          89 

 

 

A. A. Abd El-Khalek; A. T. Khalil; M. A. Abo El-Soud; I. Yasser. A Robust Machine Learning Algorithm for Cosmic 

Galaxy Images Classification Using Neutrosophic Score Features. 

Then, after seeing the results we using a combination between neutrosophic techniques and 

machine learning based classifier including the best classifier which gave the best results in the first 

algorithm classification phase and it was the multilayer perceptron (MLP) classifier. After extracting 

the neutrosophic three components (membership, indeterminacy and non-membership) for each 

principal component and morphic feature in order to get more efficient and accurate result, the three 

components were fed to the MLP classifier, and then compared with other methods, which indicated 

that our method has performed better in classifying the images of galaxies to one of three types from 

the obtained database. Algorithm 2, illustrates pseudo-Code for the second proposed algorithm. 

While Figure 6 represents the MLP classifier structure model, with an illustration of the number of 

input layers, hidden layers, and the output layers that were used for small set of images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experimental Results and Discussion 

4.1 Data set Collection  

In this research, the used images were collected from the EFIGI catalog [40], the database 

contains a sample of all kinds of Hubble galaxies. EFIGI database are usually used in astronomical 

study as a benchmark, as the images are distinguished by good quality and high resolution. The 

catalog integrates data from standard catalogs and surveys such as (NASA Extragalactic Database, 

Value-Added Galaxy Catalogue, HyperLeda, Sloan Digital Sky Survey, and the Principal Galaxy 

Catalogue) [12]. Also, types of Hubble galaxies, such as the Elliptical, Spiral, and Irregular galaxies, 

were chosen according to the images captured availability. The images sizes differ in height and 

Algorithm 2: Second Proposed Galaxy Classification Algorithm Pseudo Code 

Begin 

1) Extracting the neutrosophic three components for each principal component and 
morphic feature. 

2) Introducing the extracted three components of features to the ANNs classifier to 
conduct the learning Method. 

3) Obtaining the classified galaxy images into three types of galaxies with highly efficient 
results. 

End  

Figure 6. The MLP Classifier Structure Model 
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width. The galaxies types and the number of training and testing images for every type of galaxy are 

shown in Table (1), while Figure 7 displays three samples from the galaxy images forms. 

 

Table 1. Number of galaxy type images in each set (data, training, and testing). 

Galaxy Type Data Set Training Set Testing Set 

Elliptical 150 105 45 

Spiral 130 100 30 

Irregular 110 85 25 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Performance measures  

Performance measures can be characterized as a logical and mathematical structure used for 

calculating how near the actual results are to what was projected or predicted. The performance 

measures are used to compare the predictions of the trained model with the actual data from the set 

of test data in machine learning regression experiments. These metrics results can directly affect the 

process of decision-making for choosing the types of machine learning algorithms [41]. In order to 

assess the efficiency of the classification approach, five various performance indices metrics have 

been used: (i) Mean-Square Error (MSE); (ii) Normalized Mean Square Error (NMSE); (iii) Correlation 

Coefficient (R); (iv) Error Percentage; and (v) Accuracy. They are described as follows: 

4.2.1 Mean squared error (MSE) 

MSE calculates the average of the squares of the errors, i.e., the average squared difference 

among the values included in the estimator and the calculated quantity's actual values. MSE is a 

function of risk, as it Corresponding to the squared error loss' expected value. If 𝑃𝑖𝑗 is n predictions 

vector, and  𝑇𝑖  is the real values vector. MSE is calculated for the predictor as within the equation 

(7) [2]: 

𝑀𝑆𝐸 =  
∑ (𝑃𝑖𝑗

𝑛
𝐽=0 − 𝑇𝑗)2

𝑛
                                                                 (7) 

where 𝑃𝑖𝑗 is the predicted value outside of 𝑛 sample cases or fitness cases measured through case 𝑖 for fitness 

case 𝑗, while the 𝑇𝑗 is the goal value of fitness case 𝑗. 

 

(a) 

Figure 7. Samples of EFIGI Catalog (a) Elliptical type, (b) Spiral type, (c) Irregular type 

(c) (b) 
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4.2.2 Normalized mean squared error (NMSE) 

NMSE is estimated the total deviations as described in the equation (8) between expected and 

measured values [2]: 

𝑁𝑀𝑆𝐸 =  ∑(𝑃𝑖𝑗 − 𝑇𝑗)
2

(𝑛 × 𝑃 × 𝑇)

𝑛

𝐽=0

,                                                    (8) 

 𝑃 =  ∑ 𝑃𝑖𝑗 𝑛⁄  𝑎𝑛𝑑 𝑃 = ∑ 𝑇𝑗 𝑛⁄
𝑛

𝑗=1

𝑛

𝑖=1
 

 

where 𝑃𝑖𝑗 is the predicted value outside of 𝑛 sample cases or fitness cases measured through case 𝑖 for 

fitness case 𝑗, while the 𝑇𝑗 is the goal value of fitness case 𝑗. 

 

4.2.3 Correlation coefficient (𝑟) 

𝑟 is the quantity which gives for the original image, the quality of the suitable least squares. The 

correlation coefficient is given as in equation (9) for two data sets 𝑥, 𝑦 as follow [42]: 

𝑟 =  
𝑐𝑜𝑣(𝑥. 𝑦)

𝜎𝑥 ×  𝜎𝑦
                                                                    (9) 

where 𝑐𝑜𝑣(𝑥. 𝑦) is the covariance of 𝑥 and 𝑦, while 𝜎𝑥 and 𝜎𝑦 are the image (𝑥 and 𝑦) standard 

deviation. 

4.2.4 Error percentage (Error %) 

The percentage of error is determined by subtract the value that accepted from the value that 

calculated [42]. 

 

4.2.5 Accuracy 

Accuracy is a qualitative performance characteristic, expressing the closeness of agreement 

between a measurement result and the value of the measurand. 𝑦𝑖 is the corresponding true value 

of the predicted value and 𝑦𝑖̂ is the predicted value of the 𝑖 − 𝑡ℎ sample. Then, the fraction of 

right predictions over 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is defined as [5]:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦𝑖 , 𝑦𝑖̂)  =  
1 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ 1(𝑦𝑖̂ − 𝑦𝑖)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

                                       (10) 

4.3 Results and discussion 

The proposed system was trained using 390 images, with two hidden layers, and 1000 epochs, 

also was implemented by using (MATLAB 2017b) software package with a specific CPU and run in 

64bit windows support environment. All tests were performed using a server with core i5 Intel 

processor 2.60 GHz, and Ram with 4.00 GB.  
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     In the image preprocessing phase, each image converted from the color image that contains 

three matrices to a gray scale image containing one matrix in order for the system to be fast and more 

efficient, every image of galaxy is converted as follows: (i) Eliminating the image noise by removing 

outside objects and bright stars by converting image to black and white (binarize image) and isolating 

the perimeter of the biggest object for more accurate images, (ii) Rotating every image into a 

horizontal position in order to have higher performance for the classifier, (iii) Cropping the galaxy 

body to delete those irrelevant elements from the background and selecting the image bright part, 

and (iv) Centering the galaxy object to seem uniform for more efficient extraction of features. (v) 

Resizing the image to a standard size (212 × 212) for mnimizing the origenal data dimentions. As 

seen in figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The images were transformed using 4, 8, 16 and 24 element PC vector bases in the dataset as five 

sets of features have been organized: (i) MFs only; (ii) MFs along with 4 PCs, (iii) MFs along with 8 

PCs, (iv) MFs along with 16 PCs, and (v) MFs along with 24 PCs. There is no need to extract even 

more PCs because the findings indicate no apparent difference with the usage of PCs greater than 24 

PC. The all-tested classifiers performance, was assessed using various performance measures; MSE, 

NMSE, r, Error, and Accuracy. Figure 8. to Figure 12. shows the results of the nine ANN classifiers 

ratings discussed. The results showed the following; the MLP-based classifier using MFs only; gives 

 (g) 

 (a)  (b)  (c) 

 (e)  (f)  (d) 

Figure 8. Spiral Galaxy (a) Raw Image, (b) Gray Scale Image, (c) Binarize Image, (d) Image without Noise, (e) 

Rotated Image, (f) Cropped Image, (g) Centered Image and (h) Resized Image. 

 (h) 
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lower result from all selected features sets about; MSE = 0.1611; NMSE = 0.6011; R = 0.6131, and the 

Error = 4.7111 with an accuracy 95.2889% but when using the MFs with 24 PCs, the classifier 

performance give higher result from all chosen features sets about; MSE = 0.0021; NMSE= 0.0371; r = 

0.9889, and the Error = 0.7751 with achieving an accuracy of 99.2249 % (figure 9. a., b.). 

 The MNN-based classifier using MFs only gives lower result from all selected features sets 

about; MSE = 0.2051; NMSE = 0.6991; r = 0.5901, and the Error = 5.8110 with an accuracy 94.189 % but 

when using the MFs with 24 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1113; NMSE = 0.2605; r =0.7926, and the Error = 2.1432 with an accuracy 

97.8568 % (figure 9. c., d.). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The GFF-based classifier using MFs only gives lower result from all selected features sets about; 

MSE = 0.1551; NMSE = 0.5791; r = 0.7031, and the Error = 4.6011 with an accuracy 95.3989 % but when 

using the MFs with 24 PCs, the classifier performance gives higher result from all chosen features 

sets about; MSE = 0.0119; NMSE = 0.0459; r = 0.9817, and the Error = 1.0211 with an accuracy 98.9789% 

(figure 10. a., b.). 
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Figure 9. MLP Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and MNN 

Classification Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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The PCA-based classifier using MFs with 24 PCs gives lower result from all selected features 

sets about; MSE = 0.1640; NMSE = 0.6413; r = 0.3897, and the Error = 6.4533 with an accuracy 93.5467 

% but when using the MFs with 4 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1635; NMSE = 0.6412; r = 0.6246, and the Error = 5.4536 with an accuracy 

94.5464% (figure 10. c., d.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The JEN-based classifier using MFs only gives lower result from all selected features sets about; 

MSE = 0.1131; NMSE = 0.3582; r = 0.8523, and the Error = 3.7112 with an accuracy 96.2888 % but when 

using the MFs with 24 PCs, the classifier performance gives higher result from all chosen features 

sets about; MSE = 0.0136; NMSE = 0.0205; r=0.9872, and the Error = 0.9664 with an accuracy 99.0336% 

(figure 11. a., b.). 

The SOMs-based classifier using MFs only gives lower result from all selected features sets 

about; MSE = 0.1235; NMSE = 0.5383; r = 0.6830, and the Error = 4.6557 with an accuracy 95.3443 % 

but when using the MFs with 16 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1367; NMSE = 0.3541; r = 0.6247, and the Error = 3.1382 with an accuracy 

96.8618 % (figure 11. c., d.). 
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 Figure 10. GFF Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and PCA Classification 

Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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The RBF-based classifier using MFs with 24 PCs gives lower result from all selected features sets 

about; MSE = 0.2632; NMSE = 0.8682; r = 0.1233, and the Error = 9.2390 with an accuracy 90.761% but 

when using the MFs only, the classifier performance gives higher result from all chosen features sets 

about; MSE = 0.1234; NMSE = 0.5381; r= 0.6832, and the Error = 4.6578 (figure 12. a., b.) with an 

accuracy 95.3422%. 
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Figure 11. JEN Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and SOMs Classification 

Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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Figure 12. RBF Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy. 



Neutrosophic Sets and Systems, Vol. 42, 2021                                                                          96 

 

 

A. A. Abd El-Khalek; A. T. Khalil; M. A. Abo El-Soud; I. Yasser. A Robust Machine Learning Algorithm for Cosmic 

Galaxy Images Classification Using Neutrosophic Score Features. 

The RN-based classifier using MFs with 4 PCs gives lower result from all selected features sets 

about; MSE = 0.1998; NMSE = 0.6539; r = 0.5235, and the Error = 5.3830 with an accuracy 94.617% but 

when using the MFs with 24 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.1509; NMSE = 0.3397; r = 0.8257, and the Error = 2.4287 with an accuracy 

97.5713% (figure 13. a., b.).  

The TLRN-based classifier using MFs with 8 PCs gives lower result from all selected features 

sets about; MSE = 0.1999; NMSE = 0.5739; r = 0.5920, and the Error = 7.0739 with an accuracy 92.9261 

% but when using the MFs with 16 PCs, the classifier performance gives higher result from all chosen 

features sets about; MSE = 0.0321; NMSE = 0.156; r = 0.9201, and the Error = 1.986 with an accuracy 

98.014% (figure 13. c., d.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the above results, it has been found that the MLP-based classifier gives the best 

results for all sets of chosen features among all tested ML classifiers while, the RBF-based classifier 

gives the worst results. 

 

Then, we applied the NTs in combination with the best classifier that give the best results 

through all tested ML classifiers (MLP). The NTs were applied on the chosen features to get a three 

Figure 13. RN Classification Results; (a) MSE, NMSE, r and Error, (b) Accuracy, and TLRN Classification 

Results; (c) MSE, NMSE, r and Error, (d) Accuracy.  
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efficient component. Figure 14. shows the neutrosophic components (NCs) graph; membership, 

indeterminacy, and non-membership for the MFs along with PCs features in the neutrosophic 

environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From above results, it has been found that, the MLP classifier of (MFs with 24 PCs) features gives 

the best results without using NTs through all tested cases for all sets of chosen features but when 

applied the NTs on the all tested cases for all sets of features and fed to the neural network, the results 

showed that; using NTs of (MFs with 4PCs) in combination with classifier of MLP gives better result 

than using the classifier of MLP with the other sets of features; MSE = 0.0001; NMSE = 0.0009; r = 

0.9997, and Error = 0.4212 with total accuracy 99.5788 % as summarized in Table (2). The proposed 

system advantage is depending on a small features number that have been tested for classification, 

i.e., only MFs with 4PCs, and this reduces system complexity and saves time while getting higher 

efficiency in the classification process. This indicates, that a small set of features is enough to classify 

images of galaxy using the NTs. Additionally, there is no need to extract even more 4 PCs with using 

NTs because the results indicate no obvious difference with the use of PCs more than 4pc. 

 

Table 2. Performance measures* of the proposed algorithm.  

Performance 

Measures 

NCs for 

MFs 

NCs for 

MFs + 4 PCs 

NCs for MFs 

+ 8 PCs 

NCs for MFs 

+ 16 PCs 

NCs for MFs 

+ 24 PCs 

MSE 0.0015 0.0001 0.0012 0.0014 0.0021 

NMSE 0.0112 0.0009 0.0011 0.0013 0.0032 

r 0.8984 0.9997 0.8988 0.9956 0.9950 

Error  2.6875 0.4212 1.1743 1.4889 0.4257 

Accuracy % 97.3125 99.5788 98.8257 98.5111 99.5743 
* NCs: neutrosophic components, MFs: morphological features; PCs: principal components; MSE: Mean squared 

error; NMSE: normalized mean squared error; and r: correlation coefficient 
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Figure 15. represents the comparative results between the proposed system and other related 

works, which shows that the proposed method has high performance results for classifying galaxy 

images outperforms those of other related works. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed algorithm achieved accuracy with 99.5788% at the testing process. Comparing 

with other related works, the proposed system improved the accuracy by 6.5788%, 1.0888%, 9.5788%, 

11.5788%, 1.8068%, 4.3705%, 5.8788%, 7.5788%, and 3.1788% comparing with [6], [7], [8], [11], [13], 

[19], [43], [44], and [45], respectively. Overall, the proposed architecture provides high efficiency in 

addition has a high level of reliability and achieves advanced performance. 

5. Conclusions  

       Modern sky surveys like, upcoming Large Synoptic Survey Telescope (LSST), Dark Energy 

Surveys (DES), and COSMOS surveys continue to generate more data, so, the classification of galaxies 

is one of the most important research topics and studies over the years. The main concern of research 

was the Hubble classification, as it allowed galaxies to be classified into one of three types based on 

their morphological features: Elliptical, Spiral, and Irregular. In this paper, a novel automated 

intelligent system for galaxy images classification into various galaxies types, which combines neural 

networks and their variants, machine learning algorithms and neutrosophic techniques to build more 

intelligent classification system was introduced. The obtained results showed that the use of MFs 

along with 4PCs for feature extraction in combination with NTs and the classifier of MLP gives better 

results compared to other methods as the testing accuracy was about 99.5788% in total and the 

performance measures; MSE = 0.0001; NMSE = 0.0009; r = 0.9997, and Error = 0.4212. In addition, we 

found that a small set of features is enough to classify images of galaxy and this necessary for 

reducing system complexity and saving time while getting higher efficiency in the process of 

classification. The results also illustrate the challenge of using the classification system on the 

irregular galaxies category. Since the category includes galaxies with no definite form that do not 

Figure 15. Comparative Accuracy Results for Galaxies Classification Comparing with Other Related 

Works. 
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follow the criteria of any of the other categories, the category within the set of features is difficult to 

classify and less diagnostic. Therefore, it is confused with other objects frequently. In upcoming 

surveys; our algorithm can be applied to a large-scale galaxy classification.   
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Abstract: As far world history is concerned, human being faced many problems like world war, 

terrorist attack, bomb blasters, natural disasters and so on. But all these problems are visible and 

were able to come across in few months or years. Nowadays situation is entirely different from the 

past world history, because all the worlds are fighting with an invisible enemy called Novel 

Corono virus disease (Covid-19). If we compare with other diseases like Swine flu, Ebola virus this 

disease is very infectious and the death rate is also severe all around the world. The covid-19 

pandemic has affected everyone both physically, mentally and changed our life style. Almost all 

the countries are suffering from this disease and the countries are struggling to control from this 

epidemic. Researchers in all the disciplines are exploring ways to control this disease and trying to 

find a vaccine. So this is a correct situation to mathematically analyze the disease covid-19 like 

symptoms, spreading way and precaution method using Fuzzy cognitive maps and Neutrosophic 

cognitive maps. Both the methods work on expert’s opinion. Since medical field involves 

uncertainty and indeterminacy, we have chosen fuzzy set and neutrosophic sets for our study. 

Keywords: Fuzzy cognitive maps, Neutrosophic cognitive maps, Covid-19, Symptoms, Prediction. 

 

 

1. Introduction 

Each and every human in the universe is looking back to the ever seen killing disease covid-19. 

All the peoples are living with fear because of severity in spreading and increasing in death rate. 

This virus was first detected in Wuhan, one of the cities in China in late December 2019 and rapidly 
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spread in more than 100 countries within few months. It has been declared as a Pandemic by WHO 

in March 2020. As a precaution, all the countries have declared lock down, working class have been 

working from home, people are advised to maintain social distance in the public place, continuous 

hand washing using sanitizer after returning from public place, compulsory wearing mask, avoiding 

unnecessary outing, online classes for students and so on. But still control of this disease is a 

challenge. So far there is no prescribed medicine to cure this disease. Various researches is actively 

going on to study the nature of the virus and to find a vaccine.  

On the other hand, all the countries are experiencing an economic downturn because of 

continuous lockdown. Small merchants, farmers, building contractors and migrant workers are 

having a hard time. After hundred years, the world is facing a very big disaster because of disease.  

So we have to put more effort to save from this destruction. As a part of this we have to first create 

awareness about this disease to the society. To create awareness in the sense this study helps to 

analysis this disease using fuzzy technique and an extension of fuzzy, called neutrosophic theory. 

The question is whether this fuzzy techniques is suitable for our study?. The answer is the crisp 

value ‘yes’. Since, for any kind of prediction of (new deadly) diseases or to identify, in the beginning 

stage there is no crisp answer in the medical field. i.e we cannot say ‘yes’ or ‘no’ for the disease 

during the first examination of the patient. The physician is always in the fuzzy state, because of the 

complexity of the human body, common or similar symptoms for many disease. We can also say it is 

indeterminant (extension of fuzzy) to identify the disease for the physician. The doctor wants many 

parameters like patients medical history, laboratory results, physical examination of the patient 

body and so on to diagnose the disease. So in comparison to the crisp set, fuzzy set gives gradual 

membership and also some concepts in the medical term are indeterminant, so it is suitable to use 

Fuzzy Cognitive Maps (FCMs) and Neutrosophic Cognitive Maps (NCMs) for our study. 

This work is constructed as follows: The motivation and background is given in section-2. 

Necessary basic concepts needed for this study is discussed in section-3. In section-4 analysis of 

Covid-19 using FCMs and NCMs is presented and the conclusion of the proposed work is given in 

section-4. 

2. Motivation and Background 

Decision making in the medical field involves uncertainty and indeterminancy and this 

motivate us to apply FCMs and NCMs in this work. In the literature FCMs and NCMs are widely 

applied in many fields, including medical. We will review few here.  To study the uncertainty, the 

concept of fuzzy set was introduced by Zadeh [40]. In 1965, Bart Kosko [20] introduced FCMs as a 
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combination of fuzzy logic and cognitive maps. To analysis the indeterminacy Florentin 

Smarandache and Vasantha Kandasamy [35] proposed the new technique called NCMs as an 

extension of FCMS. As a new approach, for diagnosing process of meniscus injury Antigoni et al.[5] 

used evolutionary type of FCMs called Dynamic Fuzzy Cognitive Knowledge Networks. In another 

study to identify pulmonary disease Evangelia et al. [14] applied time dependent FCMs. Gaurav[16] 

combined two techniques namely NCMs and Genetic algorithm for medical diagnosis.  

    Neutrosophic environment is more suitable to handle indeterminate situation in medical 

diagnosis. So, we chosen NCMs for the proposed study.  Neutrosophic sets are applied for the 

analysis of medical imaging. For instance, Abdel-Basset et al.[1] used Plithogenic set as a 

generalization of neutrosophic set for the identification of Covid-19 using primary symptoms and 

CT scans. Neutrosophic sets are widely applied in various fields for decision making [2, 25, 26, 27]. 

    For decision making in medical field, Albert William et al.[3] applied FCMs to identify the 

symptoms of breast cancer. For diagnosing Rheumatoid Arthristis (RAs) Chitra et al. [11] applied 

Gene selection and Dynamic Neutrosophic Cognitive Map with Bat Algorithm (DNCM-BA). 

Deepika et al. [12] used neutrosophic sets for medical image identification. For medical diagnosis 

research, Mumtuz Ali et al. [24] applied algebraic neutrosophic measures, Chao Zhang et al. [8] used 

single valued neutrosophic probabilistic rough multisets, Masooma et al.[22] proposed m-polar 

neutrosophic topology and shawkat [34] introduces n-valued refined neutrosophic soft sets. 

Nowadays most of the people in the globe are affected by diabetes. To identify risk factors caused by 

diabetes AshrafulAlam [6] used FCMs and Muhammad Aslam et al. [23] applied neutrosophic 

statistic. Nivetha [29 ] used decagonal linguistic neutrosophic FCMs to analysis the risk factors of life 

style disease. In another study, Vasantha Kandasamy et al. [35] applied FCMs by taking concepts as 

symptoms and disease. For medical decision support, FCMs are applied in [39,40]. 

FCM architecture is proposed for obstetrics by Chrysostomos [10]. In another application 

Amirkani at el. [4] Studied taxonomy, methods and applications of FCMs in medicine. For tracking 

urinary infection Douli et al. [13] applied FCMs using 25 clinical and 13 diagnosis concepts. As a new 

application Neil et al. [28] introduces FCMs in nursing research. Combining with non-linear 

Hebbian learning algorithm FCMs can be used for prediction of stroke by Khodadadi et al. [19]. In 

another study, Papageorgiou et al. [31] applied the concept of FCMs to analysis the risk factor 

caused by familial breast cancer. To analysis the symptoms of migraine Merlyn Margaret [21] used 

Induced FCMs.  

For medical diagnosis Innocent et al. [18] applied various fuzzy methods like clustering, fuzzy 

set aggregation and type-2 fuzzy sets. For the treatment of fuzzy disease, fuzzy prototypes used by 
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Ruben et al. [32]. In another study for decision making in medical diagnosis Palash et al.[30] used an 

advanced distance measures on intuitionistic fuzzy sets. To diagnose the rare disease , applications 

in medicine using fuzzy logic and fuzzy logic inference is given in [9,15,36,38]. Type-2 fuzzy sets is 

used to diagnosis the common disease by Besime et al.[7]. Sundaresan et al. [37] proposed fuzzy 

membership matrix to identify the different treatment stages in medical diagnosis. Hamidi et al. [17] 

used the application of Neutro-BCK algebra for the study in covid-19 among country wise. 

     From this review of literature FCMs and NCMs are widely applied in many medical field and 

this is another motivation for the current work. 

3. Basic things needed for the study 

3.1 Definition 

A fuzzy weighted directed graph involving concepts like policies, events etc as nodes and the 

link connecting them represent the casual relationship between the concepts is a FCM. If the nodes 

of the FCM are fuzzy sets then the nodes are fuzzy nodes. NCM is differ from FCM only when the 

relation between the concepts is indeterminant and it is denoted by ′𝐼′. 

3.2 Definition 

 An FCMs is said to be simple if the edge weights are taken from the set{−𝟏, 𝟎, 𝟏} and for simple 

NCMs it is from {−𝟏, 𝟎, 𝟏, 𝑰}. 

3.3Definition 

Let (𝑪𝟏, 𝑪𝟐, … , 𝑪𝒏) be the concepts of the FCMs. Using this concept the directed graph is drawn with 

edge weight 𝒆𝒊𝒋 ∈ {−𝟏, 𝟎, 𝟏} . Here 𝒆𝒊𝒋 = 𝟏 means positive casuality between the concepts. In 

otherwayincrease(or decrease) to the corresponding increase(or decrease) in the other and vice-versa 

for 𝒆𝒊𝒋 = −𝟏. If the concepts has no relation indicates𝒆𝒊𝒋 = 𝟎. Define the adjacency matrix 𝑬 = (𝒆𝒊𝒋) 

where 𝒆𝒊𝒋 is the weight of the corresponding edge ′𝑪𝒊𝑪𝒋′. This adjacency matrix also known as the 

connection matrix of the FCMs. Similarly for NCMs using the same concepts of FCMs we can draw 

the directed graph with edge weight 𝒆𝒊𝒋 ∈ {−𝟏, 𝟎, 𝟏, 𝑰}. Here the adjacency matrix is denoted by 

𝑵(𝑬) = (𝒆𝒊𝒋). If 𝒆𝒊𝒋 = ′𝑰′means the relation between the concepts is indeterminate and it is denoted 

by dotted line in the directed graph. The adjacency matrix 𝑵(𝑬)  is called the neutrosophic 

adjacency matrix of the NCMs. 
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3.4 Definition 

Let (𝑪𝟏, 𝑪𝟐, … , 𝑪𝒏)  be the concepts of the FCMs(NCMs).The instantaneous state vector 𝑨 =

(𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏) where 𝒂𝒊 ∈ {𝟎, 𝟏, 𝑰} represent the ON-OFF-INDETERMINATE position of the node. 

If 𝒂𝒊 = 𝟎 means OFF, 𝒂𝒊 = 𝟏 means ON and 𝒂𝒊 = 𝑰 means indeterminate for 𝒊 = 𝟏, 𝟐, 𝟑, . . , 𝒏. 

3.5 Definition 

If the edges form a directed cycle then FCMs (NCMs) is said to be cyclic, otherwise acyclic.  An 

FCMs (NCMs) with cycles is said to have a feedback. If the FCMs (NCMs) has a feedback, then the 

FCMs (NCMs) is called a dynamical system. 

3.6 Definition 

Let 𝑪𝟏𝑪𝟐, 𝑪𝟐𝑪𝟑, … 𝑪𝒎𝑪𝒏(for 𝒎 ≠ 𝒏) be a cycle. We will say that the dynamical system goes round 

and round, if the concept ′𝑪𝒊′ is ON and if the causality passes through the edges of the cycle and 

again causes ′𝑪𝒊′. This is true for any ′𝑪𝒊
′ for 𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏. The hidden pattern is the equilibrium 

state of the dynamical system. If the equilibrium state is a unique state vector, then it is fixed point or 

limit cycle. This is applicable for both FCMs and NCMs. 

3.1.1 The pseudo code for the proposed method 

1. Collect the concepts or nodes for the covid-19 problem. 

2. Construct the directed graph, neutrosophic directed graph and the corresponding adjacency 

matrix 𝑬 and 𝑵(𝑬)through experts (Doctors) opinion. 

3. Take any concept 𝑪𝒊(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏) in ON state. 

4. To find the hidden pattern of 𝑪𝒊(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏), the instaneous input vector 𝑨𝟏 = (𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏) 

is defined by assigning 𝒂𝟏 = 𝟏for 𝒊 = 𝟏 and other 𝒂𝒊
′𝒔 = 𝟎 if the concept 𝑪𝟏  is switch ON and 

similarly for other concepts. 

5. Multiply 𝑨𝟏 with 𝑬 and 𝑵(𝑬), we get another row vector namely (𝒃𝟏, 𝒃𝟐, … , 𝒃𝒏). Here the new 

operation is introduced called threshold operation and it is denoted by the symbol ′ →′. This 

operation is done by putting 𝒃𝒊=1 to the corresponding ON state concept 𝑪𝒊(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏) and 0 

for remaining 𝒃𝒊. After this updation we will get another vector called 𝑨𝟐. 
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6. Multiply 𝑨𝟐 with 𝑬 and 𝑵(𝑬) and repeat the same procedure to reach the fixed point. Similarly 

we follow the same procedure to find the hidden pattern and indeterminacy for all the concepts of 

the disease covid-19. Both FCMs and NCMs will function mainly on expert’s opinion. To avoid 

biasness,  it is necessary to consider more than one experts. 

4. Reasons and Secure from Novel Coronavirus (covid-19) using FCMs and NCMs 

This work concentrates on reasons, transmission mode and precaution method of the coronavirus 

(Covid-19) using FCMs and NCMs. The different concepts considered for this analysis is identified 

and is given in the Table-1. 

                       Table-1 Concepts considered for the proposed work 

   Concepts           Explanation 

𝑪𝟏 Fever with cold, cough and 

difficulty in breathing 

       𝑪𝟐 No symptoms 

𝑪𝟑 Maintaining social distance, 

wearing mask and continuous 

hand wash. 

𝑪𝟒 High blood pressure, diabetes, 

tuberculosis, cancer patient, 

elder people who are violating 

𝑪𝟑. 

𝑪𝟓 Travelling history 

𝑪𝟔 Possibility of Covid-19. 

𝑪𝟕 High risk factor for getting 

Covid-19. 

𝑪𝟖 Prevention measures from 

Covid-19. 

 

   We are taken the above eight main concepts for this study. First we work on FCMs .In Figure 1 we 

give the directed graph and the connection square matrix 𝑬 according to first experts opinion. 
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Figure-1 Directed graph given by the first expert for the analysis of covid-19. 

The connection matrix 𝑬 is given by 
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Case-1 First we consider the concept 𝐶6 i.e the possibility of covid-19. Take 𝐴1 = (0,0,0,0,0,1,0,0) 

the effect of 𝐴1 on 𝐸 is given by  

𝐴1𝐸 = (1,1,0,0,0,0,0,0) 

        → (1,1,0,0,0,1,0,0) 

                                            = 𝐴2.                                                (2) 

𝐴2𝐸 = (1,1,0,0,0,2,0,0) 

        → (1,1,0,0,0,1,0,0) 

                                             = 𝐴3.                                                (3) 

                                       Here 𝐴2 = 𝐴3. 

Case-2 Next we consider the concept 𝐶7  i.e High risk for getting covid-19. Take 𝐴1 =

(0,0,0,0,0,1,0,0) the effect of 𝐴1 on 𝐸 is given by  
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𝐴1𝐸 = (0,0,0,1,1,0,0,0) 

       → (0,0,0,1,1,0,1,0) 

                                                                                     = 𝐴2.                                                                                                    (4) 

𝐴2𝐸 = (0,0,0,1,1,1,2,0) 

→ (0,0,0,1,1,1,1,0) 

                                                                                       = 𝐴3.                                                                                                (5) 

𝐴3𝐸 = (1,1,0,1,1,1,2,0) 

          → (1,1,0,1,1,1,1,0) 

                                              = 𝐴4.                                               (6) 

𝐴4𝐸 = (1,1,0,1,1,3,2,0) 

        → (1,1,0,1,1,1,1,0) 

                                                                                      = 𝐴5.                                                (7)                                                                                     

                                       Here 𝐴4 = 𝐴5. 

Case-3 Now we consider the concept 𝐶3  i.e Maintaining social distance,wearing mask and 

continuous hand wash i.e Take 𝐴1 = (0,0,1,0,0,0,0,0) the effect of 𝐴1 on 𝐸 is given by  

𝐴1𝐸 = (0,0,0,0,0,0,0,1) 

      → (0,0,1,0,0,0,0,1) 

                                           = 𝐴2.                                                (8) 

𝐴2𝐸 = (0,0,1,0,0,0,0,1) 

        → (0,0,1,0,0,0,0,1) 

                                                                                    = 𝐴3.                                                  (9) 

                                      Here 𝐴2 = 𝐴3. 

Case-4 Finally we consider the concept 𝐶8.i.e the prevention method from covid-19. Take 𝐴1 =

(0,0,0,0,0,0,0,1) the effect of 𝐴1 on 𝐸 is given by 

𝐴1𝐸 = (0,0,1,0,0,0,0,0) 

        → (0,0,1,0,0,0,0,1) 

                                           =A2                                                (10) 
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𝐴2𝐸 = (0,0,1,0,0,0,0,1) 

        → (0,0,1,0,0,0,0,1) 

                                           =A3                                                (11) 

                                      Here 𝐴2 = 𝐴3 

Now the first expert is allow to give the answers concerning the indeterminacy of the concepts. The 

corresponding neutrosophic graph is given in Figure-2. 

                                

Figure-2 Neutrosophic directed graph given by the first expert for the analysis of covid-19. 

The neutrosophic adjacency matrix 𝑁(𝑬) is given by  
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Case-1First we consider the concept 𝐶6 i.e the possibility of covid-19. Take 𝐴1 = (0,0,0,0,0,1,0,0) the 

effect of 𝐴1 on 𝐸 is given by 

 

𝐴1𝑁(𝐸) = (1, 𝐼, 0, 𝐼, 𝐼, 0,0,0) 

               → (1, 𝐼, 0, 𝐼, 𝐼, 1,0,0) 

                                            =A2                                               (13)                                    
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A2𝑁(𝐸) = (1, 𝐼, 0, 𝐼, 𝐼, 1 + 3𝐼2, 2𝐼, 0) 

→ (1, 𝐼, 0, 𝐼, 𝐼, 1,2𝐼, 0). 

                                   = 𝐴3.                                                  (14) 

𝐴3𝑁(𝐸) = (1, 𝐼, 0,3𝐼, 2𝐼, 1 + 3𝐼2, 2𝐼, 0) 

→ (1, 𝐼, 0, 𝐼, 𝐼, 1,2𝐼, 0). 

                                     = 𝐴4.                                                (15) 

                                 Here 𝐴3 = 𝐴4. 

Next we construct the FCMs based on the second expert with the same set of attributes. we give the 

directed graph in Figure-3 and the connection square matrix 𝐄 according to second experts opinion. 

                                 

Figure-3 Directed graph given by the second expert for the analysis of covid-19. 

The corresponding connection matrix 𝑬 is given by  

                              87654321 CCCCCCCC  
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Case-1 we consider the concept 𝐶6 i.e the possibility of covid-19. Take 𝐴1 = (0,0,0,0,0,1,0,0) the 

effect of 𝐴1 on 𝐸 is given by  
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𝐴1𝐸 = (1,1,0,0,1,0,0,0) 

       → (1,1,0,0,1,1,0,0) 

                                                 =𝐴2                                               (17) 

𝐴2𝐸 = (1,1,0,0,1,3,1,0) 

     → (1,1,0,0,1,1,1,0) 

                                       = 𝐴3.                                               (18) 

                                  𝐴3𝐸 = (1,1,0,1,2,3,1,0)                                                                                

→ (1,1,0,1,1,1,1,0) 

                                    = 𝐴4.                                                 (19) 

𝐴4𝐸 = (1,1,0,1,2,3,2,0) 

→ (1,1,0,1,1,1,1,0) 

                                   = 𝐴5.                                                  (20) 

                                 Here 𝐴4 = 𝐴5. 

Now the second expert is allow to give the options concerning the indeterminacy of the concepts. 

The corresponding neutrosophic graph is given in Figure-4. 

                            

Figure-4 Neutrosophic directed graph given by the second expert for the analysis of covid-19. 

The neutrosophic adjacency matrix 𝑁(𝑬) is given by  

                                87654321 CCCCCCCC  
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Case-1 Again we consider the concept 𝐶6 i.e the possibility of covid-19. Take 𝐴1 = (0,0,0,0,0,1,0,0) 

the effect of 𝐴1 on 𝐸 is given by  

𝐴1𝑁(𝐸) = (1, 𝐼, 0, 𝐼, 𝐼, 0,0,0) 

                                            → (1, 𝐼, 0, 𝐼, 𝐼, 1,0,0) 

                                             =A2                                              (22)                                    

A2𝑁(𝐸) = (1, 𝐼, 0,2𝐼, 𝐼, 1,2𝐼, 0) 

                                       → (1, 𝐼, 0,2𝐼, 𝐼, 1,2𝐼, 0). 

                                      = 𝐴3.                                               (23) 

𝐴3𝑁(𝐸) = (1, 𝐼, 0,3𝐼, 3𝐼, 1,3𝐼, 0) 

                                      → (1, 𝐼, 0,3𝐼, 3𝐼, 1,3𝐼, 0) 

                                      = 𝐴4.                                               (24) 

                                  Here 𝐴3 = 𝐴4. 

 

 

5. Conclusion 

          FCMs and NCMs play a very important role in medical field because it involves 

uncertainty and indeterminacy. This study uses both the techniques for the analysis of covid-19 and 

we reached many important solutions. First, the results for the various attributes for this covid-19 

based on FCMs is discussed. 

          According to first expert from case-1, the possibility of covid-19 mainly because of fever 

with cold, cough and difficulty in breathing and no symptoms. From case-2, persons having fever 
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with cold, cough and difficulty in breathing, without any symptoms, persons having disease 

mentioned in 𝐶4 violating the precaution methods, travelling from countries to countries are all 

have to get possibility of getting and high risk of getting this disease. Maintaining social distance, 

wearing mask and continuous hand washing are the main precaution method and vice-versa for this 

disease from case-3 and case-4. From the second expert is concern, except the concepts 𝐶3 and 𝐶8 

all are main reasons for the possibilities of this disease. Next, we see the indeterminant factor 

regarding this disease using NCMs. 

              As far NCMs is concern we are getting the same fixed points for both the experts. 

Persons having no symptoms, high blood pressure, diabetes, tuberculosis, cancer patients, older 

people who are not following any precaution method mentioned in 𝐶3,travelling history persons are 

indeterminant factors for the physician to decide for the possibility and the high risk of getting of 

this covid-19. The results of this study is suitably matches the current world situation of this disease 

and we have to strictly follow the precautions mentioned in 𝐶3  to prevent from this invisible 

disease.  The proposed study mathematically analyze the disease using fuzzy and neutrosophic 

techniques, and it is very useful to all to know the root cause of the epidemic as well as the 

procedures to be followed to protect from this disease. In future this research can be extended using 

various fuzzy techniques. 
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Abstract:  Queueing theory is an important technique to study and evaluate the performance of 

system. Queueing theory is applied in many applications such as logistics, finance, emergency 

services and project management, etc.  In this research we apply neutrosophic philosophy in 

queueing theory. We deal with  several queue models such as M/M/1 queue, M/M/s queue and 

M/M/1/b queue. We illustrate, solve, and find the performance measures of M/M/1, M/M/s, and 

M/M/1/b crisp queue models via examples with exact arrival rate and service rate. Queueing models 

affect by many factors such as arrival rate, service rate, number of servers, etc. These factors are not 

constantly expressed by accurate times; hence we express the parameters of queueing system by the 

neutrosophic. We express arriving rates and serving rates by neutrosophic values. We also illustrate, 

solve, and find the performance measures of NM/NM/1, NM/NM/s, and NM/NM/1/b neutrosophic 

queue models via examples. We concluded that the performance measures of neutrosophic queue 

models is more accurate than crisp queue models. 

Keywords: Neutrosophic Set, Queueing Theory, Poisson Process, Exponential Distribution. 

 

 

 

1. Introduction 

   In 1909 Erlang developed queueing theory for modeling waiting lines and developing effectual 

systems that decrease waiting times of customers and makes it conceivable to serve more customers 

and growth profits of organizations.  
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   In classical queueing theory the statement of well determined knowledge of queueing system's 

parameters such as arrival, service and departure rate are important and it is often imprecise in reality 

[1,2].  

   

For dealing with problems of classical queueing theory, many researchers presented queueing 

theory in fuzzy environment to deal with uncertainty in parameters of queueing systems as in [3,4].  

   

Since fuzzy and intuitionistic fuzzy theories does not represent reality efficiently and fails to 

simulate human thinking, Smarandache in 1995 presented neutrosophic logic. Neutrosophic logic is 

a generalization of fuzzy and intuitionistic fuzzy logic [5,6,7,8]. Neutrosophic logic able to deal with 

indeterminacy of data besides considering truth and falsity degrees. So, presenting queueing theory 

in neutrosophic environment makes decisions more competent [3,9,10,11,12,13,14,16]. 

   In Neutrosophic set truth, indeterminacy, and falsity degrees are real values ranges from] 0−, 1+[ 

with no restriction on the sum. For simplifying application of neutrosophic set in real cases, a single 

valued neutrosophic set is presented [15].  

    

Now we can say that neutrosophic queueing theory has imprecise values of parameters. For 

example, let 𝜆 which is the arrival rate in the form 𝜆𝑁 =  𝜆 +  𝐼 and 𝜇 which is the service rate in the 

form 𝜇𝑁 =  𝜇 +  𝐼, where 𝐼 determines the indeterminant part of the given values.  

   

In this research we show the important role of neutrosophic theory [9,10] to deal with vague 

parameters of some queueing models that is: (NM/NM/1) :(FCFS/∞/∞) queue, (NM/NM/s) 

:(FCFS/∞/∞) queue and (NM/NM/1) :(FCFS/∞/b) queue, and we prove the applicability and 

superiority of neutrosophic performance via solving various examples. 

    

The remaining parts of this research consist of the following: In Section 2, we briefly discussed the 

queueing theory preliminaries. Section 3 discusses the fundamental steps of the neutrosophic 

queueing theory. In section 4, real case studies are solved for showing important role of neutrosophic 

in queueing theory. Section 5 presents the conclusion, findings and offers future work suggestions. 
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2. Queueing Theory Preliminaries  

   In this section the major preliminaries and concepts of single server waiting line model and multi-

server waiting line model are presented. 

   The structure of waiting line systems presented in Figure 1. 

Fig.1. The structures of waiting line system 

2.1 Single Server Waiting Line Model 

2.1.1 (M/M/1) :(FCFS/∞/∞) [ 3,16 ]

    The waiting line model considers the elementary in server, queue, and stage. There assumptions 

on this model are as follows: 

1. The customers do not leave the queue and their population is infinite. 

2. The arrival of customer are specified by a Poisson distribution with a mean arrival rate 𝜆, so the 

time between the arrival of consecutive customers is specified by an exponential distribution with an 

average of 1/ 𝜆 . 

3. The service rate of customer is specified by a Poisson distribution with a mean service rate of 𝜇 , 

so the service time of customer is defined by an exponential distribution with an average of 1/ 𝜇 . 

4. The customers are served according to first-come, first-served. 
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We can calculate the operating features of a waiting line system using the following formulas: 

𝜆 = mean arrival rate of customers                         

𝜇 = mean service rate 

𝜌 =
𝜆

𝜇
= average utilization of system                                                           (1)               

𝐿𝑆 =  
𝜆

𝜇 − 𝜆
= average number of customers in the system                                       (2)                    

𝐿𝑄 = 𝜌 𝐿= average number of customers waiting in line                                         (3)                  

𝑊𝑆= 
1

𝜇 − 𝜆
= average time customers spent in the system                                         (4)                 

𝑊𝑄=  𝜌  𝑊𝑆= average time customers spent waiting in line                                      (5)                  

𝑃𝑛 = (1 − 𝑃)𝑃
𝑛 = the probability that 𝑛 customers are in the service system at a given time    (6) 

2.1.2 (M/M/1) :(FCFS/∞/b) [3, 16 ]   

   The interarrival times and serving times are specified in this model according to exponential 

distribution, there is one server for customers. The customers are served according to FCFS policy, the 

calling source is infinite and system size is finite by b including the one being served.  

  The performance measures of the system are as follows: 

P(k) =
ρk(1−ρ)

(1−ρb+1)
                                                                                (7)                                                                                                                     

 𝐿𝑄 = 
𝜌2[ 1−𝑏𝜌𝑏−1+(𝑏−1)𝜌𝑏 ]

 (1−𝜌)(1−𝜌𝑏+1)
                                                                      (8)                                                                                                      

 𝐿𝑠 =  𝐿𝑄 + 𝐸𝑓𝑓ρ   ;    𝐸𝑓𝑓ρ =
𝐸𝑓𝑓 𝜆

𝜇
    , 𝐸𝑓𝑓 𝜆 =  𝜆(1 − 𝑝(𝑏))                                    (9)                                                        

 𝑊𝑄 =
𝐿𝑄

𝐸𝑓𝑓 𝜆
                                                                                    (10)                                                                                                                              

 𝑊𝑆 =
𝐿𝑆

𝐸𝑓𝑓 𝜆
                                                                                                                                                                                        (11)                    

2.2 Multi-Server Waiting Line Model (M/M/s) :(FCFS/∞/∞) [3,16]

The assumptions on this model are described as follows: 

1. The customers come from a single line. 

2. The customers are served by the first server available.  
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3. There are s identical servers, the service time of each server is specified by exponential distribution 

and the mean service time is expressed by 1/ 𝜇. We can describe the operating features using the 

following formulas: 

𝑠 = the number of servers in the system 

𝜌 =
𝜆

𝑠𝜇
= the average utilization of system                                                      (12)                

𝑝0 = [∑
(𝜆 𝜇⁄ )

𝑛

𝑛!
+

(𝜆 𝜇⁄ )
𝑠

𝑠!

𝑠−1
𝑛=0  (

1

1−𝜌
)]

−1

                                                                                                                                                (13)                  

= the probability that no customers are in the system 

 𝐿𝑄 = 
𝑝0(

𝜆
𝜇⁄ )
𝑠
𝜌

𝑠! (1−𝜌 )2
= the average number of customers waiting in line                              (14)                                          

𝑊𝑄 =  
 𝐿𝑄

 𝜆
= the average time spent waiting in line                                            (15)                                                                    

 𝑊𝑆 = 𝑊𝑄 + 
1

𝜇
= the average time spent in the system, including service                       (16)                  

 𝐿𝑆  =  𝜆 W = the average number of customers in the service system                          (17)                     

𝑃𝑛 =

{
 

 
(𝜆 𝜇⁄ )

𝑛

𝑛!
𝑝0                𝑓𝑜𝑟 𝑛 ≤ 𝑠                  

(𝜆 𝜇⁄ )
𝑛

𝑠!𝑠𝑛−𝑠
𝑝0                𝑓𝑜𝑟 𝑛 > 𝑠                  

                                                                                                             (18)                     

= the probability that 𝑛 customers are in the system at a given time 

3. Neutrosophic Queueing Theory Preliminaries 

   In this section the major preliminaries and concepts of neutrosophic queues are presented. 

3.1 Neutrosophic Queue 

   Neutrosophic queue is a queueing system in which queueing parameters such as average rate of 

customers entering the queueing system (𝜆), and average rate of customers being served (𝜇) are 

neutrosophic numbers [3,16]. 
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In neutrosophic queueing 𝜆 is denoted by 𝜆𝑁 = [𝜆
𝐿, 𝜆𝑈]and 𝜇 is denoted by 𝜇𝑁 = [𝜇

𝐿, 𝜇𝑈]. Then, the 

neutrosophic traffic intensity if we have s servers is denoted by 

𝜌𝑁 =
𝜆𝑁

𝑠𝜇𝑁
=

[𝜆𝐿,𝜆𝑈]

𝑠[𝜇𝐿,𝜇𝑈]
 .                                                                           (19)                                                                                                               

                                                                 

                                                                 

                                                                   

3.2 Arithmetic Operations of Interval Values 

Let [𝑐1, 𝑑1], [𝑐2, 𝑑2] be two Intervals where 𝑐1, 𝑐2, 𝑑1, 𝑑2 ∈ ℝ and for practical cases set 𝑐1 > 0, 𝑐2 >

0, 𝑑1 > 0, 𝑑2 > 0 then: 

[𝑐1, 𝑑1] + [𝑐2, 𝑑2] = [𝑐1 + 𝑐2, 𝑑1 + 𝑑2]                                                   (20)                   

[𝑐1, 𝑑1] − [𝑐2, 𝑑2] = [𝑐1 − 𝑑2, 𝑑1 − 𝑐2]                                                   (21)                   

[𝑐1, 𝑑1] ∗ [𝑐2, 𝑑2] = [𝑐1𝑐2, 𝑑1𝑑2]                                                         (22)                          

[𝑐1, 𝑑1]/[𝑐2, 𝑑2] = [𝑐1, 𝑑1] ∗
1

[𝑐2,𝑑2]
= [

𝑐1

𝑑2
,
𝑑1

𝑐2
]                                                     (23)                                                                       

3.3 (NM/NM/1) :(FCFS/∞/∞) Queue [16]

   After replacing crisp parameters by neutrosophic parameters, the neutrosophic probability that 

arriving customer will find 𝑘 customers in queue are as follows: 

𝑁𝑃(𝑘) = (1 − 𝜌𝑁)𝜌𝑁 
𝑘; 𝑘 = 0,1, … 

𝑁𝑃(𝑘) = (1 − [
𝜆𝐿

𝜇𝑈
,
𝜆𝑢

𝜇𝐿
]) [

𝜆𝐿

𝜇𝑢
,
𝜆𝑈

𝜇𝐿
]

𝑘

; 𝑘 = 0,1, … 

𝑁𝑃(𝑘) = [1 −
𝜆𝑈

𝜇𝐿
, 1 −

𝜆𝐿

𝜇𝑈
] [(

𝜆𝐿

𝜇𝑈
)

𝑘

, (
𝜆𝑈

𝜇𝐿
)

𝑘

] ; 𝑘 = 0,1, … 

𝑁𝑃(𝑘) = [(1 −
𝜆𝑈

𝜇𝐿
) (

𝜆𝐿

𝜇𝑈
)
𝑘

, (1 −
𝜆𝐿

𝜇𝑈
) (

𝜆𝑈

𝜇𝐿
)
𝑘

                                                  ] ; 𝑘 = 0,1, …                                         (24)                      

The performance measures of the system are as follows: 
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• Neutrosophic expected number of customers in system: 

𝑁𝐿𝑠= 𝜌𝑁 (1 − 𝜌𝑁)⁄ , then 

        𝑁𝐿𝑠 = [

𝜆𝐿

𝜇𝑈

1−
𝜆𝐿

𝜇𝑈

,

𝜆𝑢

𝜇𝐿

1−
𝜆𝑈

𝜇𝐿

                                                                                                 ]                                                                  (25)                         

• Neutrosophic expected number of customers in queue: 

𝑁𝐿𝑄= 𝜌𝑁
2 (1 − 𝜌𝑁)⁄ , then 

        𝑁𝐿𝑄 = [
(
𝜆𝐿

𝜇𝑈
)

2

1−
𝜆𝐿

𝜇𝑈

,
(
𝜆𝑈

𝜇𝐿
)

2

1−
𝜆𝑈

𝜇𝐿

                                                                                                  ]                                                                 (26)                          

• Neutrosophic expected waiting time in system: 

N𝑊𝑠 = 
1

𝜇𝑁 − 𝜆𝑁
  , then 

        𝑁𝑊𝑠 = [
1

𝜇𝑈−𝜆𝐿
,

1

𝜇𝐿−𝜆𝑈
]                                                                (27)                                                                                                                

• Neutrosophic expected waiting time in queue: 

 𝑁𝑊𝑄  =  𝜌𝑁 (𝜇𝑁  − 𝜆𝑁)⁄ , then 

                𝑁𝑊𝑄 = [

𝜆𝐿

𝜇𝑈

𝜇𝑈−𝜆𝐿
,

𝜆𝑈

𝜇𝐿

𝜇𝐿−𝜆𝑈
]                                                              (28)                                                                                                                    

3.4 (NM/NM/s) :(FCFS/∞/∞) Queue [16]

   NM/NM/s queue is the same as NM/NM/1 queue except that in NM/NM/s customers are being 

served by s parallel homogeneous servers according to FCFS policy.  

The neutrosophic probability that K customers in the queue will be: 
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𝑁𝑃(𝑘) = {

(𝑠𝜌𝑁)
𝑘

𝑘!
𝑁𝑃(0); 𝑘 < 𝑠

𝜌𝑁 
𝑘𝑠𝑠

𝑠!
𝑁𝑃(0); 𝑘 ≥ 𝑠

 𝑁𝑃(𝑘) =

{
 
 

 
 (𝑠[

𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
])

𝑘

𝑘!
𝑁𝑃(0); 𝑘 < 𝑠

[
𝜆𝐿

𝜇𝑙
,
𝜆𝑈

𝜇𝐿
]

𝑘

𝑠𝑠

𝑠!
𝑁𝑃(0); 𝑘 ≥ 𝑠

                                                            (29)                                                                                                      

Where: 𝑁𝑃(0) = (∑  𝑠−1
𝑛=0  

(𝑠𝜌𝑁)
𝑛

𝑛!
+

(𝑠𝜌𝑁)
𝑠

𝑠!
⋅

1

1−𝜌𝑁
)
−1

   

𝑁𝑃(0) = (∑𝑛=0
𝑠−1  

(𝑠[
𝜆𝐿

𝜇
,
𝜆𝑢

𝜇𝐿
])

𝑛

𝑛!
+

(𝑠[
𝜆𝐿

𝜇𝑢
,
𝜆𝑢

𝜇𝐿
])

𝑠

𝑠!
⋅

1

1−[
𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
]
)

−1

OR 

𝑁𝑃(0) = [∑
(
𝜆𝑁

𝜇𝑁
⁄ )

𝑛

𝑛!
+

(
𝜆𝑁

𝜇𝑁
⁄ )

𝑠

𝑠!

𝑠−1
𝑛=0  (

1

1−𝜌𝑁
)]

−1

                                                                               (30) 

The neutrosophic performance measures will be as follows: 

•  The average number of customers waiting in line: 

𝑁𝐿𝑄 =
𝑁𝑃(0)(

𝜆𝑁
𝜇𝑁

)
𝑆
𝜌𝑁

𝑆!(1−𝜌𝑁)
2                                                                                                                                    (31)                         

• The average waiting time of customer in line: 

 𝑁𝑊𝑄 =
𝑁𝐿𝑄

𝜆𝑁
                                                                                                                                                           (32)                        

• The average waiting time of customer in the system: 

 𝑁𝑊𝑆 = 𝑁𝑊𝑄 +
1

𝜇𝑁
                                                                  (33)                                                                                                 

                                                             

• The average number of customers in the system: 

𝑁𝐿𝑠 =  𝜆𝑁𝑁𝑊𝑆                                                                    (34)                    

3.5 (NM/NM/1) :(FCFS/∞/b) Queue [16]

   In this model the interarrival times and serving times are specified according to neutrosophic 

exponential distribution, there is one server for customers. The customers are served according to 

FCFS policy, the calling source is infinite and system size is finite by b including the one being served.  

The neutrosophic probability that K customer in the queue will be: 
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𝑁𝑃(𝑘) =
𝜌𝑁 

𝑘(1 − 𝜌𝑁)

(1 − 𝜌𝑁 
𝑏+1)

; 𝑘 = 0. . 𝑏 

𝑁𝑃(𝑘) =
[
𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
]

𝑘

(1−[
𝜆𝐿

𝜇𝐿
,
𝜆𝑈

𝜇𝐿
])

(1−[
𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
]
𝑏+1

)

; 𝑘 = 0. . 𝑏                                                             (35)                                                                                                      

The performance measures will be then as follows: 

• The average number of customers waiting in line: 

    𝑁𝐿𝑄 =
𝜌𝑁 

2[1−𝑏𝜌𝑁 
𝑏−1+(𝑏−1)𝜌𝑁 

𝑏]

(1−𝜌𝑁)(1−𝜌𝑁 
𝑏+1)

 , then 

   𝑁𝐿𝑄 =
[
𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
]

2

[1−𝑏[
𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
]

𝑏−1

+(𝑏−1)[
𝜆𝐿

𝜇𝑈
,
𝜆𝜈

𝜇𝐿
]

𝑏

]

[1−
𝜆𝑈

𝜇𝐿
,1−

𝜆𝐿

𝜇𝑈
](1−[

𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
]
𝑏+1

)

                                                     (36)                                                                                  

• The average number of customers in the system: 

𝑁𝐿𝑆 = 𝑁𝐿𝑄 + 𝐸𝑓𝑓𝜌𝑁,                                                                 (37)                                                                                                            

        𝐸𝑓𝑓 𝜌𝑁 =
𝐸𝑓𝑓𝜆𝑁

𝜇𝑁
, 𝐸𝑓𝑓𝜆𝑁 = 𝜆𝑁(1 − 𝑁𝑃(𝑏))                                             (38)                                                                    

        𝐸𝑓𝑓 𝜆𝑁 = [𝜆L, 𝜆𝑈](1 − 𝑁𝑃(𝑏))                                                        (39)                                                                                          

• The average waiting time of customer in line: 

𝑁𝑊𝑄 =
1

𝐸𝑓𝑓𝜆𝑁
𝑁𝐿𝑄                                                                    (40)                                                                                                                        

• The average waiting time of customer in the system: 

𝑁𝑊𝑆 =
1

𝐸𝑓𝑓𝜆𝑁
𝑁𝐿𝑆                                                                    (41)                                                                                                                             

The methodology for solving neutrosophic queueing models presented in Figure 2. 
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Fig.2. The methodology for solving neutrosophic queueing models 

 

4. Case Studies 

   In this section various case studies on crisp and neutrosophic queues are presented and solved. 

4.1 Example on ((M/M/1) :(FCFS/∞/∞) Crisp Queue Model  

The computer lab at State University helps the students by help desk. The students stand in front of 

the desk to wait for help. Students are served according to priority rule first-come, first-served. 

Students arrive according to Poisson process with a mean arrival rate 15 students per hour. Students 

are served by service rate exponentially distributed with an average 20 students per hour. Find the 

performance measures of the system. 

 

(a) The average utilization of the system 

(b) The average number of students in the system 

(c) The average number of students waiting in queue 

(d) The average waiting time in the system 

(e) The average waiting time in queue 
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Crisp solution 

(a) By using Eq. (1), the average utilization is as follows: 𝜌 =
15

20
 = 0.75, or 75%. 

(b) By using Eq.(2), the average number of students in the system is as follows: 𝐿𝑠  =  
15

20− 15
= 3 

students 

(c) By using Eq.(3), the average number of students waiting in queue: 𝐿𝑄 = 0.75 × 3 =2.25 students 

(d) By using Eq.(4), the average waiting time in the system:  𝑊𝑠 = 
1

20 − 15
= 0.2 hours, or 12 minutes 

(e) By using Eq.(5), the average waiting time in queue:  𝑊𝑄 = 0.75 × 0.2 = 0.15 hours, or 9 minutes 

 

4.2 Example on (NM/NM/1) :(FCFS/∞/∞) Neutrosophic Queue Model 

The computer lab at State University helps the students by help desk. The students stand in front of 

the desk to wait for help. Students are served according to priority rule first-come, first-served. 

Students arrive according to Poisson process with a mean arrival rate between 14 and 16 students per 

hour. Students are served by service rate exponentially distributed with an average 19 and 21 

students per hour. Find the performance measures of the system. 

(a) The average utilization of the system 

(b) The average number of students in the system 

(c) The average number of students waiting in queue 

(d) The average waiting time in the system 

(e) The average waiting time in queue 

 

Neutrosophic solution 

 

𝜆𝑁 = [ 14,16] students per hour. 

𝜇𝑁 = [19,21] students per hour. 

a) Average utilization: 𝜌𝑁 =
𝜆𝑁

𝜇𝑁
=

[ 14,16]

[19,21] 
 = [0.66, 0.84]. We can say the efficiency of the system  

ranges between 0.66 and 0.84 and 0.75  (crisp value) ∈ [0.66,0.84]. 

b) By using Eq.(25), the average number of students in the system: 𝑁𝐿𝑠 =  
[0.66 ,0.84]

(1− [0.66 ,0.84])
=

 
[0.66 ,0.84]

[0.16 ,0.34]
= [1.94 , 5.25]. Which means that expected number of students in system  ranges 

between 1.94  and 5.25 and 3 (crisp value)  ∈ [1.94 , 5.25]. 
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c) By using Eq. (26), the average number of students in queue:  𝑁𝐿𝑄 = 
[0.66 ,0.84]2

(1− [0.66 ,0.84])
 = 

 
[0.4356 ,0.7056]

[0.16 ,0.34]
= [1.28, 4.41]. Which means that expected number of students in queue ranges 

between 1.28  and 4.41 and 2.25 (crisp value)  ∈ [1.28 , 4.41].  

d) By using Eq. (27), the average waiting time in the system: N𝑊𝑠 = 
1

[3 ,7]
 = [0.14,0.33]. 

         Which means that mean waiting time in system ranges between 8.4 mins and 19.8 mins and       

12 mins (crisp value)  ∈ [8.4 , 19.8]. 

    e) By using Eq. (28), the average waiting time a student in queue:  𝑁𝑊𝑄  =   
[0.66 ,0.84]

[3,7]
  =  

[0.09, 0.28]. Which means that mean waiting time in queue ranges between 5.4 mins and 16.8 

mins and 9 mins (crisp value) ∈ [5.4  , 16.8]. 

 

4.3 Example on ((M/M/s) :(FCFS/∞/∞) Crisp Queue Model  

State University has intended to maximize the number of assignments. Instead of a single person 

working at the help desk, the university planned to have three servers. The students will arrive at a 

rate of 45 per hour, according to a poison distribution. The service rate for each of the three servers is 

18 students per hour with exponential service times. Find the following performance measures of the 

system. 

 

(a) The average utilization of the help desk 

(b) The average number of students in the queue 

(c) The average waiting time in the queue  

(d) The average waiting time in the system 

(e) The average number of students in the system 

 

Crisp solution 

(a) Average utilization: 𝜌 =
𝜆

𝑠𝜇
=

45

3×18
= = 0.833, or 83.3% 

(b) The average number of students in the queue: 

Firstly, we find the probability that there are no students in the system using Eq. (13) as follows: 

         𝑝0 =[ 
(45 18⁄ )

0

0!
+ 

(45 18⁄ )
1

1!
+

(45 18⁄ )
2

2!
+ (

(45 18⁄ )
3

3!
 (

1

1−0.833
))]

−1

  

             = 
1

22.215
 = 0.045, or 4.5% of having no students in the system 
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             By using Eq. (14), the average number of students in the queue is as follows: 

 𝐿𝑄 = 
0.045(45/18)3 × 0.833

3! × (1 − 0.833)2
=

0.5857

0.1673
= 3.5 students  

(c) By using Eq. (15), the average waiting time in the queue:  𝑊𝑞 =
3.5

45
= 0.078 hour, or 4.68 minutes 

(d) By using Eq. (16), the average waiting time in the system: 𝑊𝑠 =0.078 + 
1

18
 = 0.134 hour, or 8.04 

minutes 

(e) By using Eq. (17), the average number of students in the system: 𝐿𝑠 =  45(0.134) =

 6.03 students 

 

4.4 Example on (NM/NM/s) :(FCFS/∞/∞) Neutrosophic Queue Model  

 

State University has intended to maximize the number of assignments. Instead of a single person 

working at the help desk, the university planned to have three servers. The students will arrive at a 

rate of [44, 46] students per hour, according to Poisson distribution. The service rate for each of the 

three servers is [17,19] students per hour with exponential service times. Find the following 

performance measures of the system. 

(a) The average utilization of the help desk 

(b) The average number of students in the queue 

(c) The average waiting time in the queue 

(d) The average waiting time in the system 

(e) The average number of students in the system 

 

Neutrosophic solution 

𝜆𝑁 = [ 44,46] students per hour. 

𝜇𝑁 = [17,19] students per hour. 

a) Average utilization: 𝜌𝑁 =
𝜆𝑁

𝑠𝜇𝑁
=

[ 44,46]

3[17,19] 
=

[ 44,46]

[51,57]
 = [0.77,0.90].We can say that the efficiency of 

the system  ranges between .0.77 and 0.9 and 0.83 (crisp value)  ∈ [0.77 , 0.90]. 

b) The average number of students in the queue:  

Firstly, we find the probability that there are no students in the system using Eq. (30) as 

follows: 

          𝑁𝑃(0) =  [ 
([2.3,2.7])0

0!
+ 

([2.3,2.7])1

1!
+

([2.3,2.7])2

2!
+ (

([2.3,2.7])3

3!
 (

1

1−[0.77,0.9]
))]

−1
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       =[[5.9,7.3] + (
[12.16,19.8]

6
 (

1

[0.1,0.23]
))]

−1

 

       =[[5.9 , 7.3] + ([2.02 , 3.3][4.3 , 10])]
−1

 

       = [0.024, 0.068] and we can say that the probability that we will find no student in the system 

ranges between .0.0.024 and 0.068 and 0.045 (crisp value) ∈ [ 0.024, 0.68].   

 By using Eq. (31), the average number of students waiting in line is as follows:   

 𝑁𝐿𝑄= 
[0.024,0.068] ([2.3,2.7])3[0.77,0.9]

3! ([0.1,0.23])2
 = [0.69, 20]. 

Which means that expected number of students in queue ranges between 0.69 and 20 and 3.5 (crisp 

value) ∈ [ 0.069, 20].   

 

(c) By using Eq. (32), the average waiting time in the queue is as follows: 

 

 𝑁𝑊𝑄 =   
[0.69 ,   20]

[44 ,46]
= [0.015 , 0.45] hour = [0.9 , 27] minutes which means that mean waiting time in 

queue ranges between 0.9 mins and 27 mins and 4.68 (crisp value) ∈ [0.9 , 27]minutes.  

 (d) By using Eq. (33), the average waiting time in the system is as follows: 

 

 𝑁𝑊𝑆 =[0.015,0.45] +  
1

[17,19]
 = [0.06,0.5] hour = [3.6,30] minutes which means that mean waiting time 

in system ranges between 3.6 mins and 30 mins and 8.04 (crisp value) ∈ [3.6,30] minutes.  

 (e) By using Eq. (34), the average number of students in the system is as follows: 

𝑁𝐿𝑠= [44,46] [0.06,0.5] = [2.64,23] students, which means that expected number of students in system 

ranges between 2.64 and 23 and 6.03 (crisp value) ∈ [2.64,23].  

  

4.5 Example on (M/M/1) :(FCFS/∞/b) Crisp Queue Model 

The packets of wireless access gateway arrive at a mean rate of 125 packets per second, they are 

buffered until they can be transmitted. The gateway takes 500 seconds to transmit a packet. The 

gateway currently has 13 places (including the packet being transmitted) and packets that arrive 

when the buffer is full are lost. Find the probability that a new packet is going to be lost, then find the 

performance measures of the system. 
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Crisp solution 

 

By using Eq. (1), 𝜌 =
125

500
= 0.25 

Then, by using Eq. (7) the probability that a new packet is going to be lost is as follows: 

P(k) =
(0.25)13(0.75)

1 − (0.25)14
= 1.12 × 10−8 

The performance measures of the system are as follows: 

(a) By using Eq. (8), the average number of packets waiting in the queue is as follows: 

 𝐿𝑄 =
(0.25)2[ 1−13(0.25)12+ 12 (0.25)13]

0.75 [1− (0.25)14]
= 0.0834  

(b) By using Eq. (9), the average number of packets in the system is as follows: 

         𝐸𝑓𝑓 𝜆 =  125(1 − 1.12 × 10−8) = 124.9 

        𝐸𝑓𝑓ρ =
124.9

500
= 0.249 

       Hence   𝐿𝑠 = 0.0834 + 0.249 = 0.3324  

(a) By using Eq. (10), the average waiting time in the queue is as follows: 

 

       𝑊𝑄 =
0.0834

124.9
 =0.00066 seconds 

 

(b) By using Eq. (11), the average waiting time in the system is as follows: 

 

          𝑊𝑆 =
0.3324

124.9
= 0.00266 seconds 

 

4.6 Example on (NM/NM/1) :(FCFS/∞/b) Neutrosophic Queue Model 

 

The packets of wireless access gateway arrive at a mean rate of [124,126] packets per second, and 

they are buffered until they can be transmitted. The gateway takes [499,501] seconds to transmit a 

packet. The gateway currently has 13 places (including the packet being transmitted) and packets 

that arrive when the buffer is full are lost. Calculate the probability that a new packet is going to be 

lost. Find the performance measures of the system. 
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Neutrosophic solution 

 

𝜆𝑁 = [ 124,126] packets per second. 

𝜇𝑁 = [499,501] packets per second. 

𝜌𝑁 =
𝜆𝑁

𝜇𝑁
=

[ 124,126] 

[499,501]
= [0.247,0.252] and 0.25  (crisp value) ∈ [0.247 , 0.252].  

By using Eq. (35), the probability that a new packet is going to be lost is as follows: 

NP(k) =
[0.247 ,0.252]13(1−[0.247 ,0.252])

(1−[0.247 ,0.252]14)
= [95 × 10−10, 124 × 10−10]  

and 1.12 × 10−8  (crisp value) ∈ [95 × 10−10, 124 × 10−10] 

The performance measures of the system are as follows: 

(a) By using Eq. (36), the average number of packets waiting in line is as follows: 

 

𝑁𝐿𝑄 =
[0.247 ,0.252]2[ 1−13[0.247 ,0.252]12+ 12 [0.247 ,0.252]13]

(1−[0.247 ,0.252])(1−[0.247 ,0.252]14)
=

[0.060,0.0629]

[0.747,0.752]
  = [0.079,0.084]    

Means that average number of waiting packets will be between 0.079 and 0.084 and 

0.0834 (crisp value)  ∈ [0.079,0.084]. 

 

(b) By using Eq. (37), Eq. (38), and Eq. (39), the average number of packets in the system is as 

follows: 

       𝐸𝑓𝑓 𝜆𝑁 = [124,126][1 − (95 × 10−10, 124 × 10−10)] =

        [124,126][0.99999998,0.99999999] = [123.9,125.9] 

       𝐸𝑓𝑓ρ =
[123.9,125.9]

[499,501]
= [0.2473,0.2523] 

Hence,  𝑁𝐿𝑠 = [0.079,0.084] + [0.2473,0.2523] = [0.3263,0.3363]  

Means that average number of packets in the system will be between 0.3263 and 0.3363 and 

0.3324 (crisp value) ∈  [0.3263,0.3363]. 

 

(c) By using Eq. (40), the average waiting time in the queue is as follows: 

  𝑁𝑊𝑄 = 
[0.079,0.084]

[123.9,125.9]
 = [0.00062,0.00067] seconds and 0.00066 (crisp value) ∈[0.00062,0.00067]. 
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(d) By using Eq. (41), the average waiting time in the system is as follows: 

 

𝑁𝑊𝑆 = 
[0.3263,0.3363]

[123.9,125.9]
= [0.0025,0.0027] seconds and 0.0026 (crisp value) ∈ [0.0025,0.0027]. 

 

5. Conclusions and Future Directions 

   We concluded that the neutrosophic queueing theory is better than the crisp queueing theory 

when we deal with imprecise data. We have presented three types of queues in neutrosophic 

environment: (NM/NM/1) :(FCFS/∞/∞) queue, (NM/NM/s) :(FCFS/∞/∞) queue and (NM/NM/1) 

:(FCFS/∞/b) queue. We evaluate the neutrosophic performance measures for three queueing models 

according to crisp and neutrosophic queueing models. Neutrosophic queueing models gives better 

results than crisp queueing models. 

   In the future we can study other types of queueing systems in neutrosophic environment. We can 

also use triangular and trapezoidal neutrosophic numbers in various queueing theory models. Also, 

various types of neutrosophic sets such as single, interval and bipolar neutrosophic sets will apply in 

our future research in queueing theory.   
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Abstract: The development of wind energy projects (WEP) have been encouraged, since the last 

decade. Therefore, WEP grows exponentially, which makes wind energy the trend of energy 

production for many countries. The success of wind energy project relies on the choice of the 

appropriate site for wind power plant, often decided by the application of Multi Criteria Decision 

Making (MCDM). The MCDM methodologies for location selection have a range of shortcomings: 

(1) the incomplete use of knowledge, (2) the lack of evidence in the decision-making process; and 

(3) the problem of ignoring the interaction between parameters. This paper presents a new 

framework for the location selection of wind power stations, based on the incorporating of 

geographic information system (GIS) and analytical network process (ANP) through neutrosophic 

environment to cover MCDM's shortcoming. First, an assessment model is built for wind farm site 

selection. Then, in the specialist committee decision, the bipolar neutrosophic set is used to express 

missing knowledge. In addition, we take the relationship problem into account by collecting the 

opinions of experts. Finally, the GIS is used to determine the wind farm potential zones. The 

suggested framework for the identification of wind farm sites is validated by the use of a case study 

from Egypt. 

Keywords: WEP, neutrosophic, MCDM, GIS 

 

 

1. Introduction 

Electricity consumption is directly growing with time in accordance: urban, technical 

development, civilians, and agricultural expansion. Energy production is depended mainly on fossil 

fuels, which: is decreased by time (unsustainable), as well as the high-cost extraction, directly 

reflected in consumers, and environment pollution effects. 

The electricity power importance and its resources, led to the increased interest in alternative 

and renewable energy resources. Wind is one of the sustainable power resources. Wind power be 
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provided as ample oil fuel, contributes the preservation of the environment, as well as facilitate 

development in remote area. Wind Energy Location (WEL) is one of the most important factors of 

wind power production projects, WPL is cornerstone of wind power efficiency and generation cost, 

as well as to the environmental impacts. Therefore, WEL determination is a vital issue that must be 

analyzed in depth in order to be effective technically, economically, environmentally, and society. 

WEL is affected by many factors, these factors must be carefully and systematically identified for 

making a decision of the holistic approach. Because of the difficulty of trade-off among the alternative 

available factors and criteria has been the focus of using decision support tools. this paper adopted 

Multi-Criteria Decision Making (MCDM) approach for WEL determination.  

MCDM is one of the operational research sub-disciplines that specifically assesses different 

competing criteria in decision making1[1]. Although the decision-making preferences must be used 

to classify the solutions, there is no uniquely appropriate solutions to such problems. Better informed 

decision-making is assisted by proper structuring and consistent consideration of various parameters 

for complex problems. MCDM methods demonstrated success in the assessment process in several 

problem-solving domains. 

While the MCDM methods offer an efficient basis for the selection of the ideal location for 

renewable energy plant with contradictory and multiple criteria, the decision to choose a WEL still 

has several restrictions. One of challenges is the general uncertainty of determining the selection as 

the decision takes place before the wind farm is set up, so due to the complexities and location-specific 

variables, it is often difficult to exactly predict or evaluate correct assessment details. In addition, the 

reported opinions of experts appear to be uncertain to a large extent, and the level of satisfaction 

cannot be calculated in an accurate way. Therefore, in an incomplete and imperfect knowledge 

atmosphere, the site selection decision is made.  

The analytic network process (ANP) is one of the best ways to solve dependency and feedback 

issues between criteria and sub-criteria in decision-making problems under the assumption that they 

are independent or show self-relation. As there are several complicated interdependencies among 

the criteria used, there's many ambiguous (non-deterministic) sub-criteria and their connections, the 

bipolar neutrosophic set-Analytic Network process (BNS -ANP) appears to be an effective tool for 

determining the best wind farm locations.  

There are many factors involved in the wind farm site-selection process, such as social-economic, 

spatial, ecological and environmental considerations. The Multi-Criteria Decision-Making Approach 

(MCDM) is efficient in solving dynamic and contradictory multi-layer problems (e.g., benefits, 

drawbacks, costs, rewards) and is ideal for providing graded decision alternatives to site selection 

[2]. On the other hand, the Geographic Information System (GIS) instrument, as a powerful method 

for gathering." preserving, handling, measuring, evaluating, manipulating and mapping geographic 

information, could play a critical role in the possible evaluation and site selection of wind resources 

on the basis of its capacity to provide indicator databases and visualized map [3-5].  

The integration of MCDM and GIS has also been broadly applicable to site selection analysis. 

Example studies cover onshore wind farm site selection [3, 6-8]. And Various MCDM techniques are 

possible to account for the complexity of decision-making under uncertain circumstances and 

imprecise, especially in the wind farm site selection field. For example, the integration of GIS and the 

weighted linear combination (WLC) technique was investigated by Gorsevski et al [9] to produce the 

suitability index of each site under the map layer for Northwest Ohio onshore wind farms.  

Sánchez-Lozano et al. [10] First removed unsuitable areas on the basis of relevant legal 

limitations and consideration of such criteria, and then identified ideal locations for power generation 

facilities in the Spanish region of Murcia using the ELECTRE-TRI system based on GIS. S. Ali et al. 

[11] suggested a combined approach to GIS and MCDM to identify the best location for the placement 

of wind farms. G. Villacreses et al. [2] introduced a GIS with MCDM techniques to determine the 

optimal site for the construction of wind farms in Ecuador, selecting as the most appropriate location 

in the Andean zone of Ecuador. Diez-Rodrı́guez et al. [12] developed a methodology for future use 
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in strategic environmental assessment through the application of a technical Group-Spatial Decision 

Support system (GSDSS) that incorporates information and methods of collective intelligence, 

complexity theory and geo-prospective.  

In order to deal with onshore wind farm site selection, The Analytic Hierarchy Process (AHP) 

and GIS were combined by S. Ali et al. [3] to classify the ideal sites in Songkhla Province, Thailand 

for utility-scale onshore wind farms. Gigović et al. [13] developed a model based on the combination 

of GIS, Decision Making Trial and Assessment Laboratory (DEMATEL), ANP, and Multi-Attributive 

Boundary Approximation Area Comparison (MABAC), to decide the sites for the construction of 

wind farms in the province of Vojvodina, Serbia. a fuzzy TOPSIS and Complex Proportional 

Assessment (COPRAS) model was proposed to select appropriate wind farm locations by Dhiman 

and Deb [14]. 

To deal with uncertainty and imprecision Zadeh first proposed the concept of fuzzy sets (FSs) 

and intuitionistic fuzzy sets (IFs) [15] and [16] respectively. In view of the fact that uncertainties are 

correlated with the weight determination of the proposed evaluation indicators and their scores 

relevant to all candidate locations, the fixed values are not adequate to characterize the characteristics 

of the indicators. As a result, uncertain MCDM approaches have appeared in the field of site selection 

for wind farms. For example, Ayodele et al. [17] suggested a type-2 fuzzy AHP GIS-based model to 

decide the appropriate wind farms in Nigeria, where fuzzy sets were used to describe the 

inconsistency, vagueness and uncertainties of the decision-making process. Y. Wu et al. [18] Firstly, 

used intuitionist fuzzy numbers and fuzzy measures to represent the intuitive preferences of the 

experts and to rate the degrees of importance between criteria. Finally, the acceptability of alternate 

locations for the wind farm project in China was assessed. In addition, in the context of Southeastern 

Spain [6], the Southeastern Corridor of Pakistan [19] and Vietnam [20], fuzzy AHP and fuzzy TOPSIS 

have also been shown to be successful in sustainable site selection for onshore wind farms.  

Fuzzy focuses only on the membership function (degree of truth) and does not take into account 

the degree of non-membership (degree of falsehood) and indeterminacy, so fail to represent 

indeterminacy and uncertainty. Smarandache [21] subsequently developed the neutrosophic set 

concept, which can deal with indeterminacy. Compared to the fuzzy set and the intuitionistic fuzzy 

sets, which are unable to deal with indeterminacy effectively.  Neutrosophic set (NS) is the 

generalization of (FSs) and (IFs). numerous types of MCDM approaches are incorporate by 

neutrosophic set. Neutrosophic sets have many benefits when compared with (FS) and (IFs). 

Consequently, it is extensively studied by many researchers [22-26]. 

This paper presents an assessment model for wind farm location selections based on bipolar 

neutrosophic set (BNS) that can handle vagueness, indeterminacy and improve reliability. BNS is 

applied with ANP method and GIS to add to the field of wind power station literature. After that, an 

empirical case study has been considered to illustrate the applicability of this proposed approach.  

The remainder of this paper is planned as follows: Section 2 describes the study area. Section 3 

describes the bipolar neutrosophic numbers background theory. Section 4 describes Materials and 

methods. Section 5 presents results and discussion, followed by Section 6 which contains concluding 

remarks. 

2. Study Area 

Sinai is a 61,000 km2 triangular peninsula in northeastern Egypt that connects the vast 

continental land masses of Africa and Asia between latitudes 27° 43' and 31° 19' North and longitudes 

32° 19' and 34° 54' East. The peninsula is located between the gulfs of Aqaba and Suez and is bounded 

to the north by the Mediterranean Sea as shown in Fig. (la). It is split into two administrative regions, 

with north Sinai covering approximately 27,564 km2 and south Sinai covering approximately 31,272. 

Km2. The Peninsula also covers portions of three governorates; namely Ismailia, Suez, and Port Saied 

Governorates. Desert plains, sand dunes and sea shores, plateaus and mountainous areas are 

included in the geographical geography Digital Elevation Model (DEM) of the Sinai Peninsula is 
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shown in Fig. (1b). With a shoreline reaching 205 km, the Mediterranean Sea borders the Peninsula 

from the north.  

  

(a) (b) 

Figure 1. (a) Administrative Boundary, (b) Digital Elevation Model of the Sinai Peninsula. 

3. Bipolar Neutrosophic Set (BNS) 

Bipolarity is described as the human mind's propensity to reason and make decisions based on 

positive and negative consequences. Positive statements express what is probable, satisfactory, 

permissible, expected, or considered suitable. Negative statements, on the other hand, convey what 

is impossible, forbidden, or rejected [27]. In this section, some important definitions of bipolar 

neutrosophic numbers (BNNs) are introduced [28]. 

Definition 3.1 A BNS 𝐴  in 𝑋  is defined as an object of the form 𝐴 =

{〈𝑥, 𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥), 𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥)〉: 𝑥 ∈ 𝑋}  where 𝑇+, 𝐼+, 𝐹+: 𝑋 → [1,0]  and 𝑇−, 𝐼−, 𝐹−: 𝑋 →

[−1,0]. The positive membership degree 𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥) represent the truth membership, the 

indeterminacy membership, and the falsity membership of 𝑥 ∈ 𝐴, respectively. And the negative 

membership degree 𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥)  represent the truth membership, the indeterminacy 

membership, and the falsity membership of 𝑥 ∈ 𝐴. 

Definition 3.2 Suppose that 𝑎̃1 = 〈𝑇1
+, 𝐼1

+, 𝐹1
+, 𝑇1

−, 𝐼1
−, 𝐹1

−〉 and 𝑎̃2 = 〈𝑇2
+, 𝐼2

+, 𝐹2
+, 𝑇2

−, 𝐼2
−, 𝐹2

−〉 be tow 
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Definition 3.3 Suppose that 𝑎̃1 = 〈𝑇1
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+, 𝐹1
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−, 𝐼1

−, 𝐹1
−〉 be a Bipolar Neutrosophic Number. 

Then, the score function 𝑆(𝑎̃1), accuracy function 𝐴(𝑎̃1) and certainty function 𝐶(𝑎̃1) of a Bipolar 

Neutrosophic Number can be defined as follows: 
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4. Materials and Methods  

This section describes the proposed framework and the used data sets with its resources. The 

framework is an integration among BNS, ANP, and GIS (BAG). 

4.1 Data Set 

Table (1) summarizes the researcher’s data set that were collected from numerous resources 

including governmental agencies, open sources, and related literature. GIS and remote sensing 

technology have been used in combination to process, Integrate, and analyze spatial data. The 

software used for this study are ArcGIS 10.3 and Global Mapper v17.1 to make them usable in the 

wind farm site selection model. The weights of the criteria were generated using the Bipolar 

neutrosophic set (BNS) and Analytic Network Process (ANP), the mathematical model implemented 

in Microsoft Excel. 

Table 1. Data Sources Used in the Study. 

Format Data Set Source 

Raster 

Digital Elevation Model. United States Geological Survey Earth Explorer. 

Wind Speeds and Directions. 

National Authority for Remote Sensing and Space 

Sciences, Egyptian Metrological Authority, The Global 

Wind Atlas, NASA Power Data Access Viewer. 

Land Cover. Food and Agriculture Organization AFRICOVER Data 

Birds Flyway. Bird Life International 

Vector 

Roads, Urban Areas, Water 

Surfaces, Airports, Power Lines. 
Egyptian Survey Authority 

Protected Areas. Egyptian Environmental Affairs Agency 

4.2 BAG Framework Description 

BAG utilizes GIS capabilities in geospatial data management and MCDM versatility to merge 

accurate data (e.g., slope, land usage, elevation, etc.) with value-based data (e.g., specialists views, 

standards, surveys, etc.) in a neutrosophic framework for the selection of suitable locations for wind 

farms. the BAG framework is comprising the following stages as shown in Fig ( .2.)  
 



Neutrosophic Sets and Systems, Vol. 42, 2021    141  

 

 

Amany Mohamed El-hosiny, Haitham El-Ghareeb, Bahaa Taher Shabana  and Ahmed AbouElfetouh, Sustainable Energy 

Production’s Spatial Determination Framework, Based on Multi Criteria Decision Making and Geographic Information 

System Under Neutrosophic Environment: A Case Study in Egypt     

 
Figure 2. BAG Framework. 

Stage 1: preliminary study, Data acquisition and Pre-Processing  

This stage involves definition of goal/problem, determination and identification of the 

constraints and evaluation criteria, and analysis of generally suitable sites.  

Stage 2: Restricted area identification  

Due to residential areas, water bodies, natural reserves or protected areas, it is deemed 

impractical to install such a system in such an environment. The definition of that area helps the 

definition of the area of usable zones for the construction of a wind farm system to be eliminated. 

First, certain areas are excluded which, due to factual factors and legal requirements, may be deemed 

to be unsuitable for locating wind farms. Buffer zones, i.e., minimal lengths, across these regions are 

also excluded in some cases under Egyptian legislation.  

The procedure of exclusion is applied in ArcGIS. The BUFFER tool is used to build a buffer zone 

around a specified type of field. In a next step all feature datasets are transformed into a raster dataset. 

then, Based on Boolean logic, the criteria are assigned a true or false value by the IS NULL and CON 

tools. All restricted areas are marked as false and therefore obtain a value score of 0. After that, 

"multiply' all restrictions. Finally, the exclusion area map will show the technically available 

maximum land for wind energy development in the study area. 

Stage 3: Criteria Standardization 

Although each criteria attribute has its measuring scale, standardization is used to perform 

transformation of attributes into a common suitability. that produces transformed attributes in a 

common reference rate scale. For example, the criteria attributes for each sub-model were 

transformed from the original values to a common suitability scale ranged from 1-10 (10 means more 

favorable, and zero means unsuitable pixels). 

Stage 4: Analysis, and assessment  

After exclusionary areas were identified and excluded from the all area of Study area, the 

potential suitable area for wind farm construction is the remainder area. This potentially suitable area 

must be evaluated to select the preferred sites. In this study, we used ArcGIS spatial analyst which 
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provides affluence set of spatial analysis and modeling tools and functions for both raster and vector 

data. The analytical capabilities of Spatial Analyst facilitate spatial manipulation and generate data 

based on spatial analysis and displaying the results of spatial analysis. Here are described the GIS 

analytical procedures that have been applied individually or used in sequence within ArcGIS to 

evaluate the initial suitability for wind farm construction: 

1. Euclidian distance analysis: Euclidian distance tool describes each cells relationship to a source 

based on the straight-line distance. The output of this tool is raster map . 

2. Reclassify analysis: Provide a variety of methods that allow you to reclassify or change input 

cells to alternative values. 

Stage 5: Bipolar Neutrosophic ANP application  

In main nine steps, Bipolar Neutrosophic ANP can be summed up as follows : 

Step 1. Model Builder: Building a model and transforming an issue into a network structure 

concept. There must be an accessible transformation of a problem into a logical structure, such as a 

network. The problem is transformed into a network system at this step, where all aspects can contact 

with each other. 

Step 2. Experts Determination: A process to select a committee of experts including scholars and 

professionals in relevant fields such as social sciences, energy, environmental protection and 

economy. It is important to take into account the diverse perspectives of experts based on their 

background and areas of expertise. 

Step 3. Linguistic Evaluation: Experts suggest their linguistic expressions for assessing the 

relative importance of criteria. 

Step 4. BNS Transformation: Transforms the linguistic expressions to Bipolar neutrosophic 

numbers. For criteria weights, the linguistic expressions are as shown in Table (2).  

Table 2. Bipolar Neutrosophic Scale for Comparison Matrix [28]. 

Linguistic Expressions 
Bipolar Neutrosophic Numbers Scale 

〈𝑻+(𝒙), 𝑰+(𝒙), 𝑭+(𝒙), 𝑻−(𝒙), 𝑰−(𝒙), 𝑭−(𝒙)〉 

Absolutely Influential (AI) 〈(0.9,0.1,0.1) , (−0.4, −0.8, −0.9)〉 

Very Highly Influential (VHI) 〈(0.8,0.5,0.5) , (−0.3, −0.8, −0.8)〉 

Equally Influential (EI) 〈(0.5,0.5,0.5) , (−0.5, −0.5, −0.5)〉 

Influential (I) 〈(0.4,0.2,0.7) , (−0.5, −0.2, −0.1)〉 

Almost Influential (ALI) 〈(0.1,0.8,0.7) , (−0.9, −0.2, −0.1)〉 
 
Step 5. Deneutrosophication: Determine the score value of linguistic terms for each factor, Using 

the Eq. (5) for converting bipolar neutrosophic numbers into crisp values. 

Step 6. Pair-wise Comparisons Constructions: Constructing a pair-wise relation of all the 

decision-making variables and estimate the criteria priority . Decision elements for each group are 

compared pairwise, equivalent to the pair-wise comparison conducted in AHP. Groups themselves 

are also evaluated on the basis of their position and influence on the achievement of the goals and on 

the interdependencies between each group's criteria. Through the eigenvector, the impact of criteria 

on each other can be presented . 

Step 7. Generate a Super Matrix: In order to achieve overall objectives in an interconnected 

environment, Vectors of internal importance must be inserted into unique columns of the matrix 

which is called the super matrix. It is essentially a partition matrix that displays the relations among 

two groups in a system. The hierarchy’s super matrix can be defined as: 

𝑊ℎ = [
0 0 0

𝑊21 0 0
0 𝑊32 𝐼

] (8) 
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Where in this super matrix, 𝑊21is a vector that demonstrates the impacts of the target on criteria, 

𝑊32 demonstrates the impacts of criteria on alternatives, and 𝐼 represents the unit matrix. If the 

parameters for inner relations are used, the hierarchy model will be transformed to network model. 

Criteria interactions are by inserting 𝑊22 into the 𝑊ℎ super matrix to be the 𝑊𝑛 matrix. 

𝑊𝑛 = [
0 0 0

𝑊21 𝑊22 0
0 𝑊32 𝐼

] (9) 

Step 8. Constructing the weighted super matrix:  This matrix is known as the initial super 

matrix. For obtaining the unweighted super matrix the inner priorities vectors, matrices and elements 

replaced in the initial super matrix. By multiplying the unweighted super matrix values in the group 

matrix, the weighted super matrix is obtained. Then, Using Eq. (10) in the final stage for calculating 

the limited super matrix. 

lim
𝑘→∞

𝑊𝑘 (10) 

Step 9. Choosing the right choice: In the limited super matrix, the alternatives final weight 

obtaining from the alternative’s column. An alternative is regarded to be the right choice when 

becoming the greatest weight in this matrix. In the proposed technique, Bipolar neutrosophic ANP 

can be applied for determining the weights of the criteria. After that, the weights of the criteria can 

be used in ARCGIS to determine alternatives. 

Stage 5: Aggregation of the Criteria: 

It is important to aggregate the criteria after calculating of the clusters/criteria weights. WLC is 

used in the requirements aggregation process. Each standardized criteria map (each cell within each 

map) is multiplied by the weight of its criteria and the results are then summed. To integrate the 

assessment (factors) criteria as per the WLC process, the following mathematical expression was 

used: 

𝑆 = ∑ 𝑊𝑖𝑋𝑖  (11) 

Where 𝑆  is suitability, 𝑊𝑖  is the normalized value of the weight of factor 𝑖 , and 𝑋𝑖  is the 

criterion score of factor 𝑖. 

In the next stage, the required locations need to be segregated by removing the cells from the 

suitability map with the highest values for showing the position of wind farms. By integrating the 

arithmetic operations and queries in the GIS application, the cells are filtered then identifying wind 

farm installation sites. 

5. Results and Discussions 

In accordance with recent developments and political developments in Egypt over the past few 

years, and in line with the trend of the State in promoting the use of renewable energies in most 

industrial, agricultural, tourism and other applications, nevertheless the issue of selecting wind farm 

site still prominent. Decision making process on choosing the best site is a big issue for MCDM. In 

this research, the solution to the problem has been achieved in an environment of ambiguity 

(fuzziness) and uncertainty by merging the Bipolar Neutrosophic, ANP, and GIS in the following 

steps : 

Step 1: preliminary study, Data acquisition and Pre-Processing  

In this research, we used a data-set that included climatic, topographic, hydrologic, and 

geological factor. Based on several literatures, case studies concerning wind farm site selection and 

local conditions, different criteria were reviewed and eleven criteria were selected to evaluate the 

suitable sites for wind farms, criteria have been classified into three main groups because groups play 

an important role in the ANP method; natural, environmental and socio-economic factors. These 

were the most important criteria for selecting suitable sites. 
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1. Natural factors 

Includes wind speed, Elevation, Slope, Aspect direction, and wind direction. Wind speed is a 

critical factor to generate wind turbine's electricity. To order to produce wind energy, wind speed 

above certain rates is vital [7]. The height has an impact on the technical capability of installing a 

wind-turbine and maximizes construction and maintenance costs, the high-altitude sites (above 1500 

m.a.sl) or near cliffs are usually not appropriate for installing wind turbines [29-31]. Sloping grounds 

are considered to be less suitable for wind turbine improvement, which increases the cost of building 

and maintaining turbines dramatically [7, 32]. Terrain location should be taken into account, as the 

ideal factor. Aspect relative to the direction of the wind [33], and wind turbines are located through 

the prevailing wind direction to be effective. 

2. Environmental factors  

Include Proximity to airports, distance to environmental interest areas; and land cover/land use 

of ground surface. The distance between airports and wind turbines affects the safety of flights, 

therefore, the location of the for airports factor should be taken into account. Moreover, Wind 

turbines may interfere with radio transmissions, radar and microwave signals due to their heights 

hence the need to site them away from airports [34]. when deciding where turbines should be 

installed, the wind turbine effect on environmental interest areas (protected areas, bird migration 

flyway) should be taken into account [35,36]. Moreover, the possibility of floods happening near wind 

farms during the winter should be taking into account as a crucial factor affects the functionality of 

the turbines, and in order to prevent damage to the turbine components, wind turbine fins are 

lowered and disconnected. And all the mechanical parts of wind power turbines have to be kept 

away from the water. One of the most important factors for energy investments is land use/land 

cover. Wind farms should be installed in the area in which they negligibly interfere with existing land 

use outside protected areas, artificial surfaces, wetlands, aquatic and forest areas [33].  

3. Socio-economic factors 

Include Proximity to power grid, Proximity to cities, distance to roads. In order to reduce the 

costs associated with the construction of wind farms and to reduce electric transport costs generated 

in the national energy distribution system, wind farms should be located in the vicinity of the current 

transmission grids [33]. One of the key technical considerations, therefore, is the need to shorten the 

distance between wind-turbines -as the source of renewable energy- and the existing national energy 

network. The wind farm must be located far from the cities and villages to achieve the protection and 

lower noise interference [33]. Distance to roads has an impact on the expenses of installing and 

maintaining wind turbines, but due to safety reasons, the location of wind turbines should be 

properly positioned at a set distance from roads and railways [33].  

After that, all maps taken as GIS layers for the whole area of Sinai Peninsula and projected into 

WGS_1984_UTM_Zone_36N of the Universal Transverse Mercator System (UTM) of projected 

coordinates. Then all vector data sets were converted to raster data set. Clip or mask the data set with 

study area boundary, and ensuring that all cell size equal 30 × 30. 

Step 2: Identification and Exclusion of restricted areas. 

Table (3) shows the exclusionary criteria and buffer zones for potential wind farms. Based on a 

predefined criterion, the restrictive method uses the Boolean logic approach to define the possibility 

of locating a wind farm. Logical math tools represent the right conditions as 1 for the area with a 

probability of being a wind farm location and false conditions as 0 for an area with an impediment 

for wind farm locating. 

Table 3. The List of Exclusionary Criteria and Corresponding Buffer Distance. 

Criteria Exclusionary Criteria Buffer Zones 

Natural 
Elevation >2000 m 

Slope >15% 
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Wind Speed <5 

Scio-Economic 

Roads 0-500 m 

Power Lines 0-500 m 

Urban Areas 0-2500 m 

Environmental 
Land Cover / Land Use Water Bodies, Urban Areas. 

Protected Areas 0-2000 m 
 
Step 3: Criteria standardization to a common scale.  

For our research, we used the simplest formula for linear standardization which is called the 

maximum score procedure. The formula divides each raw criterion value by the maximum criterion 

value as shown in Eq. (12). 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥 (12) 

Where 𝑥𝑖𝑗
′  is the standardized score for the 𝑖𝑡ℎ decision alternative and the 𝑗𝑡ℎ criterion, 𝑥𝑖𝑗  is 

the raw data value, and 𝑥𝑗
𝑚𝑎𝑥 is the maximum score for the 𝑗𝑡ℎ criterion. 

Step 4: Analysis, and assessment.  

Euclidian distance function (multiple buffers) in ArcGIS Spatial Analyst was used to calculate 

the distance from transmission power lines; urban areas; roads; and protected areas. Then, reclassify 

analysis function in ArcGIS Spatial Analyst was used to reclassify the study area into classes. The 

complete classification has been presented in Table (4). Fig. (3) shows an example for the reclassified 

maps. 

Table 4. Criteria Suitability Classes. 

Suitability 

Rating 
Classes Slope Elevation Wind Speed D.F. Roads 

3 Most Suitable 0 - 2.5 0 - 50 10.8 - 16.2 0 - 2627 

2 Suitable 2.5 - 5 50 - 100 7.6 - 10.8 2627 - 7342 

1 Less Suitable 5 - 15 100 - 600 4.4 - 7.6 7342 - 30981 

0 Not Suitable > 15 > 600 2.4 - 4.4 30981 - 58219 

Suitability 

Rating 
Classes 

D.F. Power 

Lines 

D.F. Urban 

Areas 

Land Cover / 

Land Use 

Protected 

Areas 

3 Most Suitable 0 - 6557 0 - 4922 Bare Land > 2000 m 

2 Suitable 6557 - 15953 4922 - 12639 - - 

1 Less Suitable 15953 - 48713 12639 - 43710 - - 

0 Not Suitable 48713 - 76364 43710 - 73454 Sabkha - 
 

Step 5: Constructing the structure of the problem . 

The general criteria and sub-criteria for selections are mentioned in Table (5). Fig. (2) presented 

a schematic diagram of the problem. 

Step 6: Determine a committee of decision makers. 

Step 7: Use linguistic variables to express the opinion of specialists Using the scales mentioned 

previously in Table (2). 

Step 8: Determine the inner-relationship among the sub-criteria, as in Table (6). 
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Table 5. Criteria for Wind Farm Selection. 

Criteria Sub-Criteria 

Natural (𝑐1) 

 

Slope (𝑐11) 

Wind Direction (𝑐12) 

Wind Speed (𝑐13) 

Elevation (𝑐14) 

Aspect (𝑐15) 

Scio-Economic (𝑐2) 

D.F. Roads (𝑐21) 

D.F. Power Lines (𝑐22) 

D.F. Urban Areas (𝑐23) 

Environmental (𝑐3) 
Land Cover / Land Use (𝑐31) 

Protected Areas (𝑐32) 
 

Table 6. Sub-criteria Dependencies. 

Sub-Criteria Rely on Sub-Criteria Rely on 

𝑐11 (𝑐12, 𝑐22, 𝑐31 ) 𝑐21 (𝑐22, 𝑐23, 𝑐31, 𝑐32) 

𝑐12 (𝑐11, 𝑐21, 𝑐32) 𝑐22 (𝑐11, 𝑐13, 𝑐15) 

𝑐13 (𝑐12, 𝑐21, 𝑐22, 𝑐23) 𝑐23 (𝑐11, 𝑐13, 𝑐15, 𝑐21) 

𝑐14 (𝑐13, 𝑐21, 𝑐32) 𝑐31 (𝑐21, 𝑐23, 𝑐32) 

𝑐15 (𝑐11, 𝑐13, 𝑐22) 𝑐32 (𝑐14, 𝑐21, 𝑐31) 

Step 9: constructing the pairwise comparison matrix between the main criteria as follows : 

 Construct 𝑊21 as presented in Table (7). 

 Replace the linguistic scale by Bipolar Neutrosophic numbers by using Table (2). 

 De-neutrosophication of the Bipolar neutrosophic numbers to crisp values as presented in 

table (8) using Eq. (5). 

 Check the consistency by computing the CR of the comparison matrices with less or equal 

0.1. 

 Calculated the interdependences for sub-criteria as Demonstrated in Tables (9-18). 

 Constructed the 𝑊22 matrix as presented in Table (19). 

 Constructed the weight matrix and calculate the weight of criteria using 𝑊𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑊21 ×

𝑊22, as shown in Table (19). 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 3. Reclassified Factors Maps for: (a) Wind Speeds; (b) Slope; (c) Elevation; (d) Roads; (e) Power Lines; (f) 

Urban Areas. 

 

Table 7. Pairwise Comparison for 𝑊21. 

𝑾𝟐𝟏 𝒄𝟏𝟏 𝒄𝟏𝟐 𝒄𝟏𝟑 𝒄𝟏𝟒 𝒄𝟏𝟓 𝒄𝟐𝟏 𝒄𝟐𝟐 𝒄𝟐𝟑 𝒄𝟑𝟏 𝒄𝟑𝟐 

𝒄𝟏𝟏 EI 1/I ALI 1/AI AI AI 1/ALI VHI 1/EI EI 

𝒄𝟏𝟐 I EI 1/VHI 1/ALI 1/VHI ALI 1/AI ALI VHI 1/VHI 

𝒄𝟏𝟑 1/ALI VHI EI AI 1/AI AI EI AI EI ALI 

𝒄𝟏𝟒 AI ALI 1/AI EI ALI ALI AI 1/ALI 1/ALI ALI 
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𝒄𝟏𝟓 1/AI VHI AI 1/ALI EI VHI AI 1/I 1/AI 1/AI 

𝒄𝟐𝟏 1/AI 1/ALI 1/AI 1/ALI 1/VHI EI 1/AI EI AI VHI 

𝒄𝟐𝟐 ALI AI 1/EI 1/AI 1/AI AI EI AI 1/EI ALI 

𝒄𝟐𝟑 1/VHI 1/ALI 1/AI ALI I 1/EI 1/AI EI AI 1/AI 

𝒄𝟑𝟏 EI 1/VHI 1/EI ALI AI 1/AI EI 1/AI EI ALI 

𝒄𝟑𝟐 1/EI VHI 1/ALI 1/ALI AI 1/VHI 1/ALI AI 1/ALI EI 

 

 

Table 8. 𝑊21 De-neutrosophication Matrix. 

𝑾𝟐𝟏 𝒄𝟏𝟏 𝒄𝟏𝟐 𝒄𝟏𝟑 𝒄𝟏𝟒 𝒄𝟏𝟓 𝒄𝟐𝟏 𝒄𝟐𝟐 𝒄𝟐𝟑 𝒄𝟑𝟏 𝒄𝟑𝟐 𝑾𝟐𝟏Weight 

𝒄𝟏𝟏 0.5 2.609 0.167 1.2 0.833 0.833 6 0.683 2 0.5 0.096 

𝒄𝟏𝟐 0.383 0.5 1.463 6 1.463 0.167 1.2 0.167 0.683 1.463 0.088 

𝒄𝟏𝟑 6 0.683 0.5 0.833 1.2 0.833 0.5 0.833 0.5 0.167 0.088 

𝒄𝟏𝟒 0.833 0.167 1.2 0.5 0.167 0.167 0.833 6 6 0.167 0.098 

𝒄𝟏𝟓 1.2 0.683 0.833 6 0.5 0.683 0.833 2.609 1.2 1.2 0.100 

𝒄𝟐𝟏 1.2 6 1.2 6 1.463 0.5 1.2 0.5 0.833 0.683 0.115 

𝒄𝟐𝟐 0.167 0.833 2 1.2 1.2 0.833 0.5 0.833 2 0.167 0.066 

𝒄𝟐𝟑 1.463 6 1.2 0.167 0.383 2 1.2 0.5 0.833 1.2 0.109 

𝒄𝟑𝟏 0.5 1.463 2 0.167 0.833 1.2 0.5 1.2 0.5 0.167 0.063 

𝒄𝟑𝟐 2 0.683 6 6 0.833 1.463 6 0.833 6 0.5 0.176 
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Table 9. Interdependencies Matrix of Factor 𝐶11. 

𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟐𝟐 𝑪𝟑𝟏 𝑾𝟐𝟐 

𝑪𝟏𝟐 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 1/〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 0.217 

𝑪𝟐𝟐 1/〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 0.447 

𝑪𝟑𝟏 〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.337 

 

Table 10. Interdependencies Matrix of Factor 𝐶12. 

𝐂𝟏𝟐 𝑪𝟏𝟏 𝑪𝟐𝟏 𝑪𝟑𝟐 𝑾𝟐𝟐 

𝑪𝟏𝟏 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 1/〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 0.458 

𝑪𝟐𝟏 1/〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.288 

𝑪𝟑𝟐 〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 1/〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.254 

 

Table 11. Interdependencies Matrix of Factor 𝐶13. 

𝑪𝟏𝟑 𝑪𝟏𝟐 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑  𝑾𝟐𝟐 

𝑪𝟏𝟐 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 1/〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉  0.162 

𝑪𝟐𝟏 1/〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈1/0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉  0.312 

𝑪𝟐𝟐 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉  0.269 

𝑪𝟐𝟑 〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 1/〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉  0.256 
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Table 12. Interdependencies Matrix of Factor 𝐶14. 

𝑪𝟏𝟒 𝑪𝟏𝟑 𝑪𝟐𝟏 𝑪𝟑𝟐 𝑾𝟐𝟐 

𝑪𝟏𝟑 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 0.467 

𝑪𝟐𝟏 〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 0.227 

𝑪𝟑𝟐 1/〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.306 

 

Table 13. Interdependencies Matrix of Factor 𝐶15. 

𝐂𝟏𝟓 𝑪𝟏𝟏 𝑪𝟏𝟑 𝑪𝟐𝟐 𝑾𝟐𝟐 

𝑪𝟏𝟏 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 0.386 

𝑪𝟏𝟑 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 0.283 

𝑪𝟐𝟐 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.331 

 

Table 14. Interdependencies Matrix of Factor 𝐶21. 

𝐂𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑 𝑪𝟑𝟏 𝑪𝟑𝟐  𝑾𝟐𝟐 

𝑪𝟐𝟐 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉  0.182 

𝑪𝟐𝟑 1/〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉  0.313 

𝑪𝟑𝟏 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉  0.247 

𝑪𝟑𝟐 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 1/〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉  0.258 
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Table 15. Interdependencies Matrix of Factor 𝐶22. 

𝐂𝟐𝟐 𝑪𝟏𝟏 𝑪𝟏𝟑 𝐂𝟏𝟓 𝑾𝟐𝟐 

𝑪𝟏𝟏 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 1/〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 0.217 

𝑪𝟏𝟑 1/〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 0.447 

𝐂𝟏𝟓 〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.337 

 

Table 16. Interdependencies Matrix of Factor 𝐶23. 

𝐂𝟐𝟑 𝑪𝟏𝟏 𝑪𝟏𝟑 𝐂𝟏𝟓 𝐂𝟐𝟏  𝑾𝟐𝟐 

𝑪𝟏𝟏 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉  0.182 

𝑪𝟏𝟑 1/〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉  0.313 

𝐂𝟏𝟓 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉  0.247 

𝐂𝟐𝟏 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 1/〈0.4,0.2,0.7, −0.5, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉  0.258 

 

Table 17. Interdependencies Matrix of Factor 𝐶31. 

𝑪𝟑𝟏 𝐂𝟐𝟏 𝑪𝟐𝟑 𝑪𝟑𝟐 𝑾𝟐𝟐 

𝐂𝟐𝟏 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 0.467 

𝑪𝟐𝟑 〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 0.227 

𝑪𝟑𝟐 1/〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.306 
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Table 18. Interdependencies Matrix of Factor 𝐶32. 

𝑪𝟑𝟐 𝑪𝟏𝟒 𝐂𝟐𝟏 𝑪𝟑𝟏 𝑾𝟐𝟐 

𝑪𝟏𝟒 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 0.467 

𝐂𝟐𝟏 〈0.1,0.8,0.7, −0.9, −0.2, −0.1〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 1/〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 0.227 

𝑪𝟑𝟏 1/〈0.9,0.1,0.1, −0.4, −0.8, −0.9〉 〈0.8,0.5,0.5, −0.3, −0.8, −0.8〉 〈0.5,0.5,0.5, −0.5, −0.5, −0.5〉 0.306 

  

Table 19. ANP Final Weight for Criteria. 

𝑾𝟐𝟐 𝑾𝟏𝟏 𝑾𝟏𝟐 𝑾𝟏𝟑 𝑾𝟏𝟒 𝑾𝟏𝟓 𝑾𝟐𝟏 𝑾𝟐𝟐 𝑾𝟐𝟑 𝑾𝟑𝟏 𝑾𝟑𝟐 

 

𝑾𝟐𝟏 

 

Total Criteria 

Weight (𝑾𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂) 

𝑾𝟏𝟏 0 0.458 0 0 0.386 0 0.217 0.182 0 0 0.096 0.113 

𝑾𝟏𝟐 0.217 0 0.162 0 0 0 0 0 0 0 0.088 0.035 

𝑾𝟏𝟑 0 0 0 0.467 0.283 0 0.447 0.313 0 0 0.088 0.138 

𝑾𝟏𝟒 0 0 0 0 0 0 0 0 0 0.467 0.098 0.082 

𝑾𝟏𝟓 0 0 0 0 0 0 0.337 0.247 0 0 0.100 0.049 

𝑾𝟐𝟏 0 0.288 0.312 0.227 0 0 0 0.258 0.467 0.227 0.115 0.173 

𝑾𝟐𝟐 0.447 0 0.269 0 0.331 0.182 0 0 0 0 0.066 0.121 

𝑾𝟐𝟑 0 0 0.256 0 0 0.313 0 0 0.227 0 0.109 0.073 

𝑾𝟑𝟏 0.337 0 0 0 0 0.247 0 0 0 0.306 0.063 0.115 

𝑾𝟑𝟐 0 0.254 0 0.306 0 0.258 0 0 0.306 0 0.176 0.101 
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Step 10: Aggregation of the Criteria:  

The weighted overlay in ArcGIS was used to combine the different geospatial layers for the 

modelling criteria. The study area's final suitability scores were calculated by reclassifying the 

weighted overlay scores into four classes, with the areas corresponding to the exclusionary areas 

being graded as "not-suitable". As seen in fig. (4). 

 

 
Figure 4. Suitability Maps of the Wind Farms. 

6. Conclusion 

This paper introduces a new model for mapping potential wind energy zones in Sinai Peninsula 

in Egypt that combines remote sensing data and a spatial decision support model. we use bipolar 

neutrosophic numbers to explain the values of attributes to accommodate the shortage of judgement 

knowledge . 

The selection of suitable sites for wind farms in Sinai Peninsula is based on a number of 

interrelated factors of geography, climate and land use-land cover. For studying such factors, remote 

sensing (ASTER) and GIS techniques were used and a Spatial Multicriteria Decision Making (SMDM) 

model was designed. 

The creation of a spatial decision model resulted from the incorporation of interpreted data 

obtained from a series of layers regarding natural and environmental characteristics, as well as Scio-

economic. The research resulted in a suitability index map with various suitable zones for grid-

connected wind power plant construction. 
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 It is concluded that Spatial Multicriteria Decision Making model managed to solve the site 

selection problem and fulfill the objective of the study. It considered the most effective criteria, i.e., 

natural, environmental and Scio-economic, and their relative importance in the decision making. In 

addition, to accommodate missing details, the bipolar neutrosophic set is included in the specialist 

committee judgement. Such decisions support tool studied need more attention from both 

researchers and decision makers. 

 

Funding: This research received no external funding 

Conflicts of Interest: The authors declare no conflict of interest 

References 

 

[1]  A. Kumar, B. Sah, A. R. Singh, Y. Deng, X. He, P. Kumar and R. C. Bansal, "A review of multi criteria decision 

making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, 

vol. 69, p. 596–609, 2017.  

[2]  G. Villacreses, G. Gaona, J. Martı́nez-Gómez and D. J. Jijón, "Wind farms suitability location using geographical 

information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental 

Ecuador," Renewable energy, vol. 109, p. 275–286, 2017.  

[3]  S. Ali, J. Taweekun, K. Techato, J. Waewsak and S. Gyawali, "GIS based site suitability assessment for wind and 

solar farms in Songkhla, Thailand," Renewable Energy, vol. 132, p. 1360–1372, 2019.  

[4]  S. M. Bina, S. Jalilinasrabady, H. Fujii and H. Farabi-Asl, "A comprehensive approach for wind power plant potential 

assessment, application to northwestern Iran," Energy, vol. 164, p. 344–358, 2018.  

[5]  L. Castro-Santos, G. P. Garcia, T. Simões and A. Estanqueiro, "Planning of the installation of offshore renewable 

energies: A GIS approach of the Portuguese roadmap," Renewable Energy, vol. 132, p. 1251–1262, 2019.  

[6]  J. M. Sánchez-Lozano, M. S. Garcı́a-Cascales and M. T. Lamata, "GIS-based onshore wind farm site selection using 

Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, vol. 

171, p. 86–102, 2016.  

[7]  T. Höfer, Y. Sunak, H. Siddique and R. Madlener, "Wind farm siting using a spatial Analytic Hierarchy Process 

approach: A case study of the Städteregion Aachen," Applied energy, vol. 163, p. 222–243, 2016.  

[8]  S. Değirmenci, F. Bingöl and S. C. Sofuoglu, "MCDM analysis of wind energy in Turkey: decision making based on 

environmental impact," Environmental Science and Pollution Research, vol. 25, p. 19753–19766, 2018.  

[9]  P. V. Gorsevski, S. C. Cathcart, G. Mirzaei, M. M. Jamali, X. Ye and E. Gomezdelcampo, "A group-based spatial 

decision support system for wind farm site selection in Northwest Ohio," Energy Policy, vol. 55, p. 374–385, 2013.  

[10]  J. M. Sánchez-Lozano, M. S. Garcı́a-Cascales and M. T. Lamata, "Identification and selection of potential sites for 

onshore wind farms development in Region of Murcia, Spain," Energy, vol. 73, p. 311–324, 2014.  

[11]  S. Ali, S.-M. Lee and C.-M. Jang, "Determination of the most optimal on-shore wind farm site location using a GIS-

MCDM methodology: Evaluating the case of South Korea," Energies, vol. 10, p. 2072, 2017.  



Neutrosophic Sets and Systems, Vol. 42, 2021    155  

 

 

Amany Mohamed El-hosiny, Haitham El-Ghareeb, Bahaa Taher Shabana  and Ahmed AbouElfetouh, Sustainable Energy 

Production’s Spatial Determination Framework, Based on Multi Criteria Decision Making and Geographic Information 

System Under Neutrosophic Environment: A Case Study in Egypt     

[12]  J. J. Diez-Rodrı́guez, T. B. Fischer and S. Di Zio, "Introducing a group spatial decision support system for use in 

strategic environmental assessment of onshore wind farm development in Mexico," Journal of Cleaner Production, 

vol. 220, p. 1239–1254, 2019.  

[13]  L. Gigović, D. Pamučar, D. Božanić and S. Ljubojević, "Application of the GIS-DANP-MABAC multi-criteria model 

for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable energy, vol. 103, p. 501–

521, 2017.  

[14]  H. S. Dhiman and D. Deb, "Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind 

farms," Energy, vol. 202, p. 117755, 2020.  

[15]  L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.  

[16]  K. T. Atanassov, "Intuitionistic fuzzy sets," Fuzzy Sets and Systems, vol. 20, pp. 87-96, 1986.  

[17]  T. R. Ayodele, A. S. O. Ogunjuyigbe, O. Odigie and J. L. Munda, "A multi-criteria GIS based model for wind farm 

site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, vol. 

228, p. 1853–1869, 2018.  

[18]  Y. Wu, S. Geng, H. Xu and H. Zhang, "Study of decision framework of wind farm project plan selection under 

intuitionistic fuzzy set and fuzzy measure environment," Energy Conversion and Management, vol. 87, p. 274–284, 

2014.  

[19]  Y. A. Solangi, Q. Tan, M. W. A. Khan, N. H. Mirjat and I. Ahmed, "The selection of wind power project location in 

the Southeastern Corridor of Pakistan: A factor analysis, AHP, and fuzzy-TOPSIS application," Energies, vol. 11, p. 

1940, 2018.  

[20]  C.-N. Wang, Y.-F. Huang, Y.-C. Chai, V. T. Nguyen and others, "A multi-criteria decision making (MCDM) for 

renewable energy plants location selection in Vietnam under a fuzzy environment," Applied Sciences, vol. 8, p. 2069, 

2018.  

[21]  F. Smarandache, "A unifying field in Logics: Neutrosophic Logic.," in Philosophy, American Research Press, 1999, 

p. 1–141. 

[22]  A. Kharal, "A neutrosophic multi-criteria decision making method," New Mathematics and Natural Computation, 

vol. 10, p. 143–162, 2014.  

[23]  P. Liu and Y. Wang, "Multiple attribute decision-making method based on single-valued neutrosophic normalized 

weighted Bonferroni mean," Neural Computing and Applications, vol. 25, p. 2001–2010, 2014.  

[24]  J.-j. Peng, J.-q. Wang, J. Wang, H.-y. Zhang and X.-h. Chen, "Simplified neutrosophic sets and their applications in 

multi-criteria group decision-making problems," International journal of systems science, vol. 47, p. 2342–2358, 

2016.  

[25]  J. Ye, "Single valued neutrosophic cross-entropy for multicriteria decision making problems," Applied Mathematical 

Modelling, vol. 38, p. 1170–1175, 2014.  



Neutrosophic Sets and Systems, Vol. 42, 2021    156  

 

 

Amany Mohamed El-hosiny, Haitham El-Ghareeb, Bahaa Taher Shabana  and Ahmed AbouElfetouh, Sustainable Energy 

Production’s Spatial Determination Framework, Based on Multi Criteria Decision Making and Geographic Information 

System Under Neutrosophic Environment: A Case Study in Egypt     

[26]  J. Ye, "Trapezoidal neutrosophic set and its application to multiple attribute decision-making," Neural Computing 

and Applications, vol. 26, p. 1157–1166, 2015.  

[27]  P. Bosc and O. Pivert, "On a fuzzy bipolar relational algebra," Information Sciences, vol. 219, p. 1–16, 2013.  

[28]  M. Abdel-Basset, A. Gamal, L. H. Son, F. Smarandache and others, "A bipolar neutrosophic multi criteria decision 

making framework for professional selection," Applied Sciences, vol. 10, p. 1202, 2020. 

[29]  D. Latinopoulos and K. Kechagia, "A GIS-based multi-criteria evaluation for wind farm site selection. A regional 

scale application in Greece," Renewable Energy, vol. 78, p. 550–560, 2015.  

[30]  K. B. Atici, A. B. Simsek, A. Ulucan and M. U. Tosun, "A GIS-based Multiple Criteria Decision Analysis approach 

for wind power plant site selection," Utilities Policy, vol. 37, p. 86–96, 2015.  

[31]  V. Gass, J. Schmidt, F. Strauss and E. Schmid, "Assessing the economic wind power potential in Austria," Energy 

policy, vol. 53, p. 323–330, 2013.  

[32]  Y. Noorollahi, H. Yousefi and M. Mohammadi, "Multi-criteria decision support system for wind farm site selection 

using GIS," Sustainable Energy Technologies and Assessments, vol. 13, p. 38–50, 2016.  

[33]  R. Van Haaren and V. Fthenakis, "GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): 

Evaluating the case for New York State," Renewable and sustainable energy reviews, vol. 15, p. 3332–3340, 2011.  

[34]  D. Pamučar, L. Gigović, Z. Bajić and M. Janošević, "Location selection for wind farms using GIS multi-criteria hybrid 

model: An approach based on fuzzy and rough numbers," Sustainability, vol. 9, p. 1315, 2017.  

[35]  P. E. Baffoe and D. Sarpong, "Selecting suitable sites for wind energy development in Ghana," Ghana Mining 

Journal, vol. 16, p. 8–20, 2016.  

[36]  D. G. Vagiona and M. Kamilakis, "Sustainable site selection for offshore wind farms in the South Aegean—Greece," 

Sustainability, vol. 10, p. 749, 2018.  

 

  

 

Received: Jan. 7, 2021.  Accepted: April 1, 2021. 

 

 



Neutrosophic Sets and Systems, Vol. 42, 2021 
University of New Mexico 

Abdulaziz Ali Murayr, Khalid Hameed Alharbi, Hanin Mubarak Aloufi, Voluntary Risk disclosure Assessment in The 

Corporate Board Structure under uncertainty: A Case Study of Saudi Arabian Companies 

Voluntary Risk disclosure Assessment in The Corporate Board 

Structure under uncertainty: A Case Study of Saudi Arabian 

Companies 

Abdulaziz Ali Murayr1, Khalid Hameed Alharbi2, Hanin Mubarak Aloufi3 

                                           1.2 Victoria University, Business school, Melbourne, Australia
1Email: murayr.a@outlook.com ; 2Email: alharbi.khalid.h@gmail.com;3Email: hanin.m.aloufi@gmail.com 

 

   *Correspondence: murayr.a@outlook.com 

Abstract: The global crisis of financial and corporate scandals of governance have run to calls for well 

voluntary risk disclosure. Firms limit this disclosure of voluntary by the proprietary cost theory to 

evade the risk of opposing actions. So, this paper investigates and assessment voluntary risk 

disclosure in the corporate board structure. These voluntary risk disclosures contain the conflict and 

multiple criteria. So the concept of multi-criteria decision-making (MCDM) is used to overcome this 

problem. The neutrosophic sets are used to deal with uncertain information. This paper used the 

Analytic Network Process (ANP) and Decision-making trial and evaluation laboratory (DEMATEL) 

methods to assess voluntary risk disclosure. The ANP is used to calculate the weights of criteria. 

DEMATEL method is used to assess and show the impact of voluntary risk disclosure. This research 

uses Saudi Arabian companies as a case study. 

Keywords: ANP; DEMATEL; SVNSs; Neutrosophic Sets; voluntary risk disclosure.  

________________________________________________________________________________________ 

1. Introduction 

Mandatory disclosure is known as the corporates are needed to disclosure minimum level of 

information according to standards of accepted account. Mandatory disclosure includes related 

information about the company's performance and results of financial reporting[1]. To make an 

economic and financial decision, attaining the appropriate information is very important for many 
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stakeholders[2, 3]. Annually in companies, the financial reporting is published as a source of 

information for internal and externals stakeholders. Financial reporting consider as a tool of 

communication for moving information of non-financial and financial to attention stakeholders[3].          

 Corporates have become more attention to possible risks that can affect the performance of 

systems and sustainability in the last years due to the global crisis of finance [4]. By the review of the 

literature, the stakeholders obtain a little information about risks that might affect corporates. So, the 

investors, shareholders, and stakeholders are pressure corporates to obtain and disclose risks to help 

them to lessen the uncertainty in decisions and to do better management in potential risks[5]. This 

needs more and more information than the standards generally accepted. This is known as voluntary 

disclosure, which means reporting information of financial and non-financial related operations of 

corporates, this gives more information and explanations beyond the framework set by regulations. 

Eng and Mak state that “voluntary disclosure is measured by the amount and detail of non-

mandatory information that is contained in the management discussion and analysis in the annual 

report”[6]. While mandatory disclosure regulations ensure access to basic information, voluntary 

disclosures should be augmented by companies[7]. The level of voluntary disclosure depends on the 

attitude of board members towards voluntary disclosure and the benefits and costs involved[8]. So, 

the voluntary disclosure information helps the users and producers for the development of the 

accounting standards and policies[2]. Mandatory voluntary risk disclosure includes risk information 

disclosed by companies as specified in the International Financial Reporting Standards (IFRS) and 

Saudi GAAP. Voluntary disclosure of risk is any other risk information that appears in the narrative 

sections of the annual corporate reports. Both of these risk types are measured by the number of risk 

information sentences used in the accounting literature. 

 Reporting of risks is important in corporate disclosure practices due to offers information and 

details that related to corporate investment options [9]. The previous studies found deficiencies in 

the disclosure of risk and vague in corporate annual reports[10]. The voluntary risk disclosure is 

known as “the inclusion of information about managers’ estimates, judgments, reliance on market-

based accounting policies such as impairment, derivative hedging, financial instruments, and fair 

value as well as the disclosure of concentrated operations, non-financial information about 
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corporations’ plans, recruiting strategy, and other operational, economic, political and financial 

risks”[11]. So, voluntary risk disclosure is important for helping corporates to overcome 

uncertainties.      

The capital market of Saudi Arabian is still in the stage of development with efforts to enhance 

its performance compared to the global capital market[12]. Moreover, though it is one of the major 

global oil sources, the Saudi government is investing heavily to diversify the economy by 

incorporating other industries including the tourism and entertainment sectors[13]. This will attract 

investors in local and global companies. So, the Saudi Government needs to include that corporates 

disclose enough information about their performance, risk vague and uncertainty. Hence, voluntary 

risk disclosure becomes more significant for the stability and profitability of Saudi corporates. 

There are several theories that have been employed by researchers to examine how corporate 

board structure might influence the performance of companies. The current research employs agency 

theory to study the correlation between corporate board structure and level of voluntary risk 

disclosure in the Saudi context. Agency theory has been used by many studies to link corporate 

governance and voluntary risk disclosure. This theory posits that a corporate comprises of the agent 

and the principal. Agency theory can reduce agency loss. Agency theory advocates for the frequency 

of board meetings to characterize an active board of directors. Boards of directors that meet 

frequently are likely to result in risk reporting. Agency theory suggests that autonomous directors 

have no management role in the corporate, hence information concealment is minimized. Agency 

theory provides that presence of autonomous directors yields quality financial reports that are factual 

hence credible. Agency theory suggests that the characterization of corporate boards in terms of age, 

size, autonomy, and diversity does impact on the practice of voluntary risk disclosure 

The voluntary risk disclosure more uncertain and vague information. So, this study proposed 

the neutrosophic sets to overcome this problem. The neutrosophic sets are generalized from fuzzy 

sets. Fuzzy sets cannot deal perfectly with uncertainty because not take into consideration the 

indeterminacy value[14]. This study proposed the single-valued neutrosophic sets (SVNSs). It is a 

subset of neutrosophic sets. It includes the Truth, Indeterminacy, False values (T,I,F)[15].     
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 This kind of information includes multiple conflict criteria. So, proposed the concept of MCDM 

for overcoming it[16]. The MCDM method is used for assessing voluntary risk disclosure. The ANP 

method is used to obtaining the weights of criteria[17]. The DEMETAL is used to show impact and 

assessment the voluntary risk disclosure[18].     

The main contributions in this work, assessment and show the impact of voluntary risk 

disclosure by using the neutrosophic sets to overcome uncertainty information, which not used in 

previous research, the ANP and DEMATAL are used as an MCDM method for assessing the 

voluntary risk disclosure not used in previous research and proposed a case study in Saudi Arabian 

companies.  

The rest in this paper is organized as follow: section 2 present the review of the literature. Section 

3 introduces the methodology. The case study is presented in section 4. The analysis of VRD is 

presented in section 5. Finally, section 5 introduces the conclusions of this work.   

 

2. Review of Literature  

 Voluntary risk disclosure is an important process for corporates due to the decrease issue of 

inconsistent information. The benefits of voluntary risk disclosure that help in relieve issues between 

director’s boards and stakeholders. Can decrease problems by enough information disclosing risks 

and uncertainties, hence the investors can acquire more and more confidence in corporate due to 

symmetry and consistent information[19].        

Elshandidy & Neri study the impact of corporate governance on voluntary risk disclosure 

practices in the UK and Italy and also study the influence of those practices on market fluidity[20]. 

The results have many influences on organizers and investors in both the UK and Italy. Al-Maghzom 

et al. scout corporate governance and the demographic feature of top management teams as the 

determinants of voluntary risk disclosure practices in listed banks [10]. They make a case study in all 

Saudi Arabian banks from 2009 to 2013. The results of their study show that outer ownership, gender, 

audit committee meetings, profitability, the board size, and volume are primary determinants of 

voluntary risk disclosure practices in Saudi listed banks. Al-Janadi et al. measure and contrast the 

standard of voluntary disclosure practices in Saudi Arabia and the UAE by using a modified 
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voluntary disclosure index[21]. Their results found that the level of voluntary disclosure is low and 

decreases for most of the items of social and ecological information. Al-Maghzom & Abdullah 

address the current hole in the disclosure literature by investigating voluntary risk disclosure in a 

developing economy (Saudi Arabia)[22]. Habbash et al. determine the voluntary disclosure level in 

Saudi Arabia and identify the main drivers of voluntary disclosure in Saudi Arabia[23].  

The neutrosophic sets are used to overcome the uncertainty in voluntary risk disclosure. 

Karabašević et al. used the neutrosophic sets to select the e-commerce development strategies[24]. 

Dung et al. use the interval neutrosophic sets for personnel selection[25]. Broumi et al. SVNSs to 

shortest path problem[26]. Akram et al used the SVNSs for the physician selection problem[27]. The 

MCDM is used in this paper to deal with conflict criteria. ANP and DEMATEL are MCDM methods. 

Yang et al. used the ANP method for calculating the weights of criteria for a novel cluster 

weighted[17]. Abdel-Baset et al. used the ANP method for achieving sustainable supplier 

selection[28]. The DEMATEL method is used to determine the degrees of impact of these criteria. 

Han & Deng are used the fuzzy DEMATEL method to identify the critical success factors[29]. Abdel-

Basset et al. used the neutrosophic with DEMATEL method for developing supplier selection 

criteria[30]. Mao et al. used the DEMATEL method handling dependent evidence [31].                

The review of the literature found that no study used the ANP and DEMATEL method for 

voluntary risk disclosure and no study used the neutrosophic sets with this kind of problem. So, this 

study proposed the hybrid ANP and DEMATEL method for impact and assessment of the risk 

closure in companies for Saudi Arabian.  
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Fig 1. Research Methodology for this paper 

3. Methodology 

 This methodology integrates the ANP and DEMATEL MCDM method under a neutrosophic 

environment for voluntary risk disclosure. This methodology has two-stage. In the first stage 

proposed the SVNSs and ANP method. ANP is used to calculate the weights of criteria. The second 

stage is used to show the impact and assessment of the voluntary risk disclosure. Fig 1. Show the 

research methodology.    

3.1 First Stage ANP Method 

 ANP is a common MCDM method. It is modified on the AHP method. The main benefits of ANP 

consider dependency between elements of the problem. ANP is used to calculate the weights of 

criteria.  

 Words are described semantic better than numbers. This paper used the SVNSs as a linguistic 

variable. Table 1. present the single-valued neutrosophic numbers (SVNNs) and linguistic 

variables[15]. The steps of the ANP method are organized as follows [28]: Fig 2. Show the steps of the 

ANP method.  

Step 1: Select a group of decision-makers and experts  

Step 2: Collect the criteria from the review of the literature.  

Impact Voluntary Risk 
Disclosure

ANP and 
DEMATEL 
method

Criteria of 
problem

Neutrosophic 
sets
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Step 3: Build the structure of the problem.  

Step 4: Build the pairwise comparison matrix between criteria by using Eq. (1)   

PT = [
P11

T  ⋯ P1b
T  

⋮ ⋱ ⋮
Pa1

T  ⋯ Pab
T  

]                                                                  (1) 

Where T presents the decision-makers.  

Step 5: Obtaining the crisp value.  

 After building the pairwise comparison matrix need to convert the three values (T,I,F) with one 

value by applying the score function by using Eq. (2) 

S(Pkl
T) =  

2+ Tkl
T  − Ikl

T − Fkl
T

3
                                                                (2) 

 Where, Tkl
T  −  Ikl

T −  Fkl
T  presents truth, indeterminacy, and falsity of the SVNSs. 

Step 6: Combine the pairwise comparison matrix 

 After obtaining the crisp value (one value) need to combine the opinions of decision-

makers into one value by using Eq. (3).  

𝑃𝑘𝑙 =
∑ 𝑃𝑘𝑙

𝑇
𝑇=1

𝑇
                                                                        (3) 

Step 7: Build the combined pairwise comparison matrix. 

 After combined the opinions of decision-makers build the combined matrix by using Eq. 

(4) 

P = [
P11 ⋯ P1l

⋮ ⋱ ⋮
Pk1 ⋯ Pkl

]                                                                   (4) 

Step 8: Calculate the weights of criteria 

 The weights of criteria are computed by computing the eigenvector which will be used in the 

building of the supermatrix of interdependences. 

Step 9: Compute the weights of sub-criteria. 

 The weights of sub-criteria are computed by multiplying the weights of the interdependences 

matrix by the weights of local weight which was obtained by comparison matrix of opinions decision-

makers.   
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Fig 2. The steps of the ANP method 

 

3.2. The Second Stage DEMATEL Method 

 The DEMATEL method is used for assessing voluntary risk disclosure and shows the impact of 

criteria. DEMATEL is an MCDM method. It is used to solve complex problems. The following steps 

of the DEMATAL method as follows [30]:  

Step 10: Build the direct relation matrix.   

 By using the combined pairwise matrix in step 7 the direct relation matrix is built.  

Step 11: Normalize the direct relation matrix.  

 The normalized direct relation matrix is computed by using Eqs. (5,6) 

 

N =  
1

max
1≤a≤b

∑ Pkl
l
b=1

                                                                     (5) 

M = N x P                                                                           (6) 

Step 12: Calculate the total relation matrix.  

 The total relation matrix is computed by using software Matlab to attain the identity matrix by 

using Eq. (7).  

R = M(𝐼 − M)−1                                                                      (7)  

Collect criteria, select 
experts, build the 
comparison pairwise 
matrix, obtain the crisp 
value and build 
aggregated 
comparison matrix

Calculate the weights 
of criteria 

Calculate the weights 
of sub criteria
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Step 13: Attaining the sum of rows and columns.  

 The sum of rows and columns is obtained as X and Y respectively. Then calculate X+Y and X-Y 

Step 14: Drawing the cause and effect diagram.  

 The cause diagram presents in Horizontal the value of X+Y and Vertically X-Y.    

 

Fig 3. Show the steps of the DEMATEL method             

Build the 
direct 
relation 
matrix
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Fig 4. The criteria of this study 

                                                                                                                                   

4. Case Study 

This study is made on companies of Saudi Arabian. The hybrid model was applied to voluntary 

risk disclosure. The target population of the study was all companies listed on the Saudi Stock 

Exchange, called Tadawul. Given the aim of this research, the sample included financial and non-

financial companies. Financial institutions included banks, whereas non-financial institutions 

included all other listed companies. Since there are only 11 listed banks, all of them were selected and 

included 30 in the study. Also, out of 160 listed non-financial companies, 14 non-financial companies 

were randomly selected.   
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This study used the three decision-makers and experts to assess the criteria by their opinions. 

The criteria are determined from the review of the literature. The seven criteria are used in this 

research. Fig 4. Show the main criteria of this work. The five factors are proposed to show impact of 

board composition in the (voluntary risk disclosure) VRD. The five factor include: Gender F1, 

Independent directors F2, Board qualification F3, Audit Committee meetings F4, Board size F5.  

First by using the linguistic term in Table 1. the pairwise comparison matrix is built by opinions 

of experts by using Eq. (1). Then replace the linguistic term with SVNNs. Then convert the SVNNs 

into crisp value by score function by using Eq. (2). Then aggregate the crisp value to obtain one value 

instead of three values of three matrices by using Eq. (3). Then build the combined pairwise 

comparison matrix by using Eq. (4) to obtain one matrix. Table 2. Show the combined pairwise 

comparison matrix from main criteria. Tables 3 to 9 show the interdependency matrix for the main 

criteria. Table 10 shows the comparative for impact criteria. Fig 5. Show the weights of criteria. The 

weights of the criteria show that C7 Operational Risk is the highest risk by the ANP method and C1 

Reputation Risk is the lowest risk. The rank risks in Table 11.  

 

Fig 5. The weights of the criteria 

Table 1. SVNSs scale. 

Linguistic Term  SVNNs 

Very Immoral <0.25,0.7,0.7> 

Immoral <0.35,0.6,0.6> 

Medium <0.45,0.5,0.45> 

0
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Honest <0.75,0.35,0.25> 

Very Honest <0.85,0.2,0.2> 

 

Table 2. The combined pairwise comparison of criteria and local weight. 

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.783367 0.527767 0.672233 0.750033 0.494433 0.494433 0.087967 

C2 1.281388 0.5 0.6389 0.7167 0.494433 0.672233 0.750033 0.103278 

C3 2.147428 1.742882 0.5 0.8167 0.494433 0.750033 0.3833 0.12385 

C4 1.281388 1.22444 1.22444 0.5 0.750033 0.527767 0.750033 0.121667 

C5 2.608923 2.204376 2.204376 1.338336 0.5 0.672233 0.783367 0.184447 

C6 1.281388 1.338336 1.338336 2.147428 1.685934 0.5 0.783367 0.179213 

C7 2.204376 1.338336 2.608923 1.338336 1.281388 1.281388 0.5 0.199578 

 

Table 3. Interdependency matrix of the criteria related to C1 Reputation Risk. 

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.8167 0.605567 0.6389 0.750033 0.605567 0.3833 0.085857 

C2 1.22444 0.5 0.672233 0.605567 0.750033 0.494433 0.7167 0.100001 

C3 1.79983 1.685934 0.5 0.783367 0.6389 0.750033 0.672233 0.127074 

C4 2.147428 1.395284 1.281388 0.5 0.672233 0.6389 0.8167 0.139085 

C5 1.338336 1.742882 1.742882 1.685934 0.5 0.672233 0.7167 0.159205 

C6 1.395284 2.204376 1.338336 1.742882 1.685934 0.5 0.3833 0.171669 

C7 2.608923 1.395284 1.685934 1.22444 1.395284 2.608923 0.5 0.217109 

 

Table 4. Interdependency matrix of the criteria related to C2 Compliance Risk. 

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.6389 0.6389 0.6389 0.6389 0.8167 0.8167 0.097589 

C2 1.742882 0.5 0.6389 0.6389 0.6389 0.750033 0.7167 0.107704 

C3 1.742882 1.742882 0.5 0.8167 0.6389 0.3833 0.527767 0.112032 
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C4 1.281388 1.22444 1.22444 0.5 0.3833 0.750033 0.527767 0.10576 

C5 1.79983 1.742882 1.742882 2.608923 0.5 0.672233 0.7167 0.170402 

C6 2.147428 2.608923 2.608923 1.338336 1.685934 0.5 0.3833 0.193487 

C7 1.22444 1.395284 2.147428 2.147428 1.395284 2.608923 0.5 0.213027 

 

Table 5. Interdependency matrix of the criteria related to C3 Commodity. 

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.7167 0.527767 0.6389 0.527767 0.605567 0.527767 0.084499 

C2 1.395284 0.5 0.750033 0.527767 0.750033 0.783367 0.7167 0.1109 

C3 2.147428 1.338336 0.5 0.8167 0.6389 0.527767 0.527767 0.118158 

C4 1.685934 1.22444 1.22444 0.5 0.494433 0.494433 0.672233 0.11665 

C5 1.79983 1.742882 1.742882 2.204376 0.5 0.8167 0.7167 0.173688 

C6 1.685934 2.147428 2.147428 2.204376 1.22444 0.5 0.8167 0.197791 

C7 2.147428 1.395284 2.147428 1.685934 1.395284 1.22444 0.5 0.198313 

  

Table 6. Interdependency matrix of the criteria related to C4 Sustainability Risk. 

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.750033 0.672233 0.750033 0.672233 0.605567 0.527767 0.093228 

C2 1.338336 0.5 0.750033 0.6389 0.6389 0.783367 0.7167 0.109671 

C3 1.685934 1.338336 0.5 0.783367 0.6389 0.605567 0.783367 0.122658 

C4 1.685934 1.281388 1.281388 0.5 0.494433 0.494433 0.672233 0.120819 

C5 2.204376 1.742882 1.742882 2.204376 0.5 0.783367 0.7167 0.180828 

C6 1.338336 1.79983 1.79983 2.204376 1.281388 0.5 0.8167 0.18619 

C7 2.147428 1.395284 1.281388 1.685934 1.395284 1.22444 0.5 0.186606 

 

Table 7. Interdependency matrix of the main criteria related to C5 Technological Risk. 

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.750033 0.6389 0.6389 0.783367 0.527767 0.527767 0.0899 
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C2 1.338336 0.5 0.527767 0.6389 0.6389 0.783367 0.7167 0.104511 

C3 1.742882 2.147428 0.5 0.783367 0.6389 0.6389 0.6389 0.130527 

C4 1.685934 1.281388 1.281388 0.5 0.3833 0.605567 0.6389 0.118516 

C5 1.685934 1.742882 1.742882 2.608923 0.5 0.783367 0.7167 0.177868 

C6 1.281388 1.742882 1.742882 1.79983 1.281388 0.5 0.527767 0.165805 

C7 2.147428 1.395284 1.742882 1.742882 1.395284 2.147428 0.5 0.212873 

  

Table 8. Interdependency matrix of the main criteria related to C6 Strategic Risk.  

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.8167 0.605567 0.6389 0.750033 0.605567 0.672233 0.097709 

C2 1.22444 0.5 0.672233 0.6389 0.750033 0.494433 0.7167 0.103149 

C3 1.79983 1.685934 0.5 0.783367 0.6389 0.750033 0.783367 0.136629 

C4 1.685934 1.281388 1.281388 0.5 0.672233 0.6389 0.527767 0.12808 

C5 1.338336 1.742882 1.742882 1.685934 0.5 0.783367 0.605567 0.162535 

C6 1.338336 1.338336 1.338336 1.742882 1.281388 0.5 0.672233 0.161323 

C7 1.685934 1.395284 1.281388 2.147428 1.79983 1.685934 0.5 0.210576 

 

Table 9. Interdependency matrix of the main criteria related to C7 Operational Risk.  

Criteria C1 C2 C3 C4 C5  C6 C7 Local Weight 

C1 0.5 0.8167 0.605567 0.6389 0.750033 0.605567 0.527767 0.094102 

C2 1.22444 0.5 0.672233 0.6389 0.750033 0.494433 0.7167 0.103519 

C3 1.79983 1.685934 0.5 0.783367 0.6389 0.750033 0.672233 0.133783 

C4 1.685934 1.281388 1.281388 0.5 0.672233 0.6389 0.494433 0.126593 

C5 1.338336 1.742882 1.742882 1.685934 0.5 0.783367 0.605567 0.162214 

C6 1.338336 1.338336 1.338336 1.742882 1.281388 0.5 0.8167 0.165547 

C7 2.147428 1.395284 1.685934 2.204376 1.79983 1.22444 0.5 0.214242 

 

Table 10.The comparative impact of seven criteria and rank of risks. 
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Criteria Weights of criteria Rank 

C1 0.092312 7 

C2 0.105421 6 

C3 0.127567 4 

C4 0.122383 5 

C5 0.169425 3 

C6 0.174767 2 

C7 0.208124 1 

 

The results of the DEMATEL method discuss as follow. First, build the direct relation matrix in step 

7. Then applying Eqs. (5,6) for normalizing the direct relation matrix. Table 11. Present the normalized 

matrix for the criteria. Then use the Matlab code for obtaining the total relation matrix in Table 12. 

Then the sum of rows and columns in Table 13. The results of the cause diagram show that C3 

Commodity risk had the greatest impact and Operational risk C7 had a lesser impact. Fig 6. Show the 

cause diagram.     

 

 

Fig 6. The cause diagram by DEMATEL method.  
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 Table 11. The normalized decision matrix for main criteria. 

Criteria C1 C2 C3 C4 C5 C6 C7 

C1 0.052476 0.082215 0.05539 0.070552 0.078717 0.051891 0.051891 

C2 0.134483 0.052476 0.067053 0.075218 0.051891 0.070552 0.078717 

C3 0.225375 0.182917 0.052476 0.085714 0.051891 0.078717 0.040228 

C4 0.134483 0.128506 0.128506 0.052476 0.078717 0.05539 0.078717 

C5 0.273809 0.231352 0.231352 0.14046 0.052476 0.070552 0.082215 

C6 0.134483 0.14046 0.14046 0.225375 0.176941 0.052476 0.082215 

C7 0.231352 0.14046 0.273809 0.14046 0.134483 0.134483 0.052476 

 

Table 12. The total relation matrix. 

Main Criteria C1 C2 C3 C4 C5 C6 C7 

C1 -0.02384 0.0216 -0.00471 0.022175 0.041601 0.019845 0.021454 

C2 0.053234 -0.01624 -0.00057 0.017843 0.003389 0.032477 0.044792 

C3 0.131494 0.105464 -0.02012 0.016379 -0.00687 0.032037 -0.00757 

  0.026911 0.043409 0.051409 -0.01504 0.026146 0.007276 0.037166 

C5 0.114421 0.102734 0.125921 0.04172 -0.03044 -0.00443 0.015003 

C6 -0.02795 0.007524 0.016442 0.133228 0.10441 -0.01425 0.017613 

C7 0.052674 -0.01144 0.154788 0.026163 0.045809 0.059633 -0.01752 

 

Table 13. The sum of rows and columns. 

Main Criteria X Y X-Y X+Y 

C1 0.098121 0.326936 -0.22882 0.425057 

C2 0.13493 0.350779 -0.21585 0.485709 

C3 0.25081 0.395666 -0.14486 0.646476 

C4 0.177274 0.399102 -0.22183 0.576376 

C5 0.36493 0.623001 -0.25807 0.987931 

C6 0.237016 0.685854 -0.44884 0.922871 
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C7 0.310103 1.078739 -0.76864 1.388841 

 

 The results of board composition show the weights of six factors. The Board size F5 is the highest 

weights in the five factors with value 0.245594, then the Audit Committee meetings F4 with value 

0.210658, then Independent directors F3 = 0.21379, then Board qualification F2= 0.17068, then the 

lowest factor is Gender F1=0.15277. Table 14. Show the decision matrix between criteria and others. 

Table 15 show the weights and rank of six factors.     

 

 With the DEMATEL method show that the F5 board size has high impact on VRD and the F1 

Gender has lowest impact on VRD. Table 16. Show the sum or rows and columns and rank of impact 

on VRD. Fig 7. Show the cause diagram of board composition.        

 

Fig 7. Cause Diagram of Six Factors of board composition.   

 

Table 14. The combined pairwise comparison of six factors. 

Criteria F1 F2 F3 F4 F5 

F1 0.5 0.783367 0.750033 0.8167 0.7167 

F2 1.281388 0.5 0.6389 0.7167 0.783367 

F3 1.338336 1.742882 0.5 0.8167 0.750033 

F4 1.281388 1.22444 1.22444 0.5 0.750033 

F5 1.281388 1.338336 1.338336 1.338336 0.5 
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 Table 15.The weights and rank of six factor of board composition on VRD. 

Six Factors Weights of Six Factors Rank 

F1 0.159277 5 

F2 0.17068 4 

F3 0.21379 2 

F4 0.210658 3 

F5 0.245594 1 

 

Table 16. The sum of rows and columns of board composition for six factor.  

Six Factors X Y X-Y X+Y 

F1 2.949194 4.543471 -1.59428 7.492665 

F2 3.160792 4.398073 -1.23728 7.558866 

F3 4.024743 3.525234 0.499509 7.549977 

F4 3.97023 3.363355 0.606875 7.333585 

F5 4.626848 2.901674 1.725174 7.528522 

 

 

5. Analysis of VRD 

 

The dependent variable for the study was voluntary risk disclosure. A disclosure index, which 

is coded as VRD, was developed based on a seven criteria. The regression equation that was used to 

test the hypothesis was of the form: 

𝑉𝑅𝐷 = 𝛽0 + 𝛽1𝐵𝑆𝐼𝑍𝐸 + 𝛽2𝐵𝑄𝑈𝐴𝐿 + 𝛽3𝐼𝑁𝐷𝐸𝑃 + 𝛽4𝐴𝐶𝑀𝐸𝐸𝑇 + 𝛽5𝐺𝐸𝑁𝐷𝐸𝑅 + 𝛽6𝐼𝐹𝑅𝑆 + 𝑒 

Where 

VRD: Voluntary risk disclosure, 

BSIZE: Board size, 

BQUAL: Board qualification 

INDEP: Independent directors 

ACMEET: Audit committee meetings 

GENDER: Number of females on the board 

IFRS: International Financial Reporting Standards 

 

The outputs of the multiple regression analysis indicate the regression model was statistically 

significant: F (5, 74) 3.542 and p < 0.05. The R2 was 0.193, which means that 19.3% of the variance in 
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the level of voluntary risk disclosure was explained by the five independent variables. Independent 

variables has an impact on the voluntary risk disclosure practices by the Saudi listed corporates. 

 

6. Conclusions  

This paper study the voluntary risk disclosure in companies of Saudi Arabian. This paper 

proposes seven criteria. The neutrosophic sets are used to deal with uncertainty. The MCDM method 

is used in this paper like ANP and DEMATEL methods. ANP is used to calculate the weights of main 

and sub-criteria. DEMATEL method is used to assess and show the impact of voluntary risk 

disclosure. The main results show that the Operational risks are the highest impact and reputation 

risk is the lowest impact. Future work can use other MCDM methods like TOPSIS and VIKOR.  
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Abstract. The introducing of NeutroAlgebra by Smarandache opened the door for researchers to define many

related new concepts. NeutroOrderedAlgebra was one of these new related definitions. The aim of this paper

is to study productional NeutroOrderedSemigroup. In this regard, we firstly present many examples and study

subsets of productional NeutroOrderedSemigroups. Then, we find sufficient conditions for the productional

NeutroSemigroup to be a NeutroOrderedSemigroup. Finally, we find sufficient conditions for subsets of the

productional NeutroOrderedSemigroup to be NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and Neu-

troOrderedFilters.

Keywords: NeutroSemigroup, NeutrosOrderedSemigroup, NeutroOrderedIdeal, NeutroOrderedFilter, Produc-

tional NeutroOrderedSemigroup.

—————————————————————————————————————————-

1. Introduction

Smarandache [1–3] introduced NeutroAlgebra as a generalization of the known Algebra.

It is known that in an Algebra, operations are well defined and axioms are always true whereas

for NeutroAlgebra, operations and axioms are partially true, partially indeterminate, and par-

tially false. The latter is considered as an extension of Partial Algebra where operations and

axioms are partially true and partially false. Many researchers worked on special types of Neu-

troAlgebras by applying them to different types of algebraic structures such as semigroups,

groups, rings, BE-Algebras, CI-Algebras, BCK-Algebras, etc. For more details about Neu-

troStructures, the reader may see [4–8]. l order on it that satisfies the monotone property, we

get an Ordered Algebra (as illustrated in Figure 1). And starting with a partial order on a
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Figure 1. Ordered Algebra

NeutroAlgebra, we get a NeutroStructure. The latter if it satisfies the conditions of Neutro-

Order, it becomes a NeutroOrderedAlgebra (as illustrated in Figure 2). In [9], the authors

Figure 2. NeutroOrderedAlgebra

defined NeutroOrderedAlgebra and applied it to semigroups by studying NeutroOrderedSemi-

groups and their subsets such as NeutrosOrderedSubSemigroups, NeutroOrderedIdeals, and

NeutroOrderedFilters.

Our paper is concerned about Cartesian product of NeutroOrderedSemigroups and the re-

mainder part of it is as follows: In Section 2, we present some definitions and examples related

to NeutroOrderedSemigroups. In Section 3, we define productional NeutroOrderedSemigroup

and find sufficient conditions for the Cartesian product of NeutroSemigroups and semigroups

to be NeutroOrderedSemigroups. Finally in Section 4, we find sufficient conditions for subsets

of the productional NeutroOrderedSemigroup to be NeutroOrderedSubSemigroups, Neutro-

OrderedIdeals, and NeutroOrderedFilters.

2. NeutroOrderedSemigroups

In this section, we present some definitions and examples about NeutroOrderedSemi-

groups, introduced and studied by the authors in [9], that are used throughout the paper.

Definition 2.1. [10] Let (S, ·) be a semigroup (“·” is an associative and a binary closed

operation) and “≤” a partial order on S. Then (S, ·,≤) is an ordered semigroup if for every

x ≤ y ∈ S, z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.
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Definition 2.2. [10] Let (S, ·,≤) be an ordered semigroup and ∅ 6= M ⊆ S. Then

(1) M is an ordered subsemigroup of S if (M, ·,≤) is an ordered semigroup and (x] ⊆ M

for all x ∈M . i.e., if y ≤ x then y ∈M .

(2) M is an ordered left ideal of S if M is an ordered subsemigroup of S and for all x ∈M ,

r ∈ S, we have rx ∈M .

(3) M is an ordered right ideal of S if M is an ordered subsemigroup of S and for all

x ∈M , r ∈ S, we have xr ∈M .

(4) M is an ordered ideal of S if M is both: an ordered left ideal of S and an ordered right

ideal of S.

(5) M is an ordered filter of S if (M, ·) is a semigroup and for all x, y ∈ S with x · y ∈M ,

we have x, y ∈M and [y) ⊆M for all y ∈M . i.e., if y ∈M with y ≤ x then x ∈M .

For more details about semigroup theory and ordered algebraic structures, we refer to

[10,11].

Definition 2.3. [2] Let A be any non-empty set and “·” be an operation on A. Then “·” is

called a NeutroOperation on A if the following conditions hold.

(1) There exist x, y ∈ A with x · y ∈ A. (This condition is called degree of truth, “T”.)

(2) There exist x, y ∈ A with x · y /∈ A. (This condition is called degree of falsity, “F”.)

(3) There exist x, y ∈ A with x · y is indeterminate in A. (This condition is called degree

of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical binary closed operation,

and from (0, 0, 1) that represents the AntiOperation.

Definition 2.4. [2] Let A be any non-empty set and “·” be an operation on A. Then “·” is

called a NeutroAssociative on A if there exist x, y, z, a, b, c, e, f, g ∈ A satisfying the following

conditions.

(1) x · (y · z) = (x · y) · z; (This condition is called degree of truth, “T”.)

(2) a · (b · c) 6= (a · b) · c; (This condition is called degree of falsity, “F”.)

(3) e · (f · g) is indeterminate or (e · f) · g is indeterminate or we can not find if e · (f · g)

and (e · f) · g are equal. (This condition is called degree of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical associative axiom, and

from (0, 0, 1) that represents the AntiAssociativeAxiom.

Definition 2.5. [2] Let A be any non-empty set and “·” be an operation on A. Then (A, ·)
is called a NeutroSemigroup if “·” is either a NeutroOperation or NeutroAssociative.
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Definition 2.6. [9] Let (S, ·) be a NeutroSemigroup and “≤” be a partial order (reflexive, anti-

symmetric, and transitive) on S. Then (S, ·,≤) is a NeutroOrderedSemigroup if the following

conditions hold.

(1) There exist x ≤ y ∈ S with x 6= y such that z · x ≤ z · y and x · z ≤ y · z for all z ∈ S.

(This condition is called degree of truth, “T”.)

(2) There exist x ≤ y ∈ S and z ∈ S such that z · x � z · y or x · z � y · z. (This condition

is called degree of falsity, “F”.)

(3) There exist x ≤ y ∈ S and z ∈ S such that z ·x or z ·y or x ·z or y ·z are indeterminate,

or the relation between z · x and z · y, or the relation between x · z and y · z are

indeterminate. (This condition is called degree of indeterminacy, “I”.)

Where (T, I, F ) is different from (1, 0, 0) that represents the classical Ordered Semigroup, and

from (0, 0, 1) that represents the AntiOrderedSemigroup.

Definition 2.7. [9] Let (S, ·,≤) be a NeutroOrderedSemigroup . If “≤” is a total order on

A then A is called NeutroTotalOrderedSemigroup.

Example 2.8. [9] Let S1 = {s, a,m} and (S1, ·1) be defined by the following table.

·1 s a m

s s m s

a m a m

m m m m

By defining the total order

≤1= {(m,m), (m, s), (m, a), (s, s), (s, a), (a, a)}

on S1, we get that (S1, ·1,≤1) is a NeutroTotalOrderedSemigroup.

Example 2.9. Let S2 = {0, 1, 2, 3} and (S2, ·′2) be defined by the following table.

·′2 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 3 2

3 0 1 3 2

By defining the partial order

≤′
2= {(0, 0), (0, 1), (0, 2), (1, 1), (2, 2), (3, 3)}

on S2, we get that (S2, ·′2,≤′
2) is a NeutroOrderedSemigroup.
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Example 2.10. [9] Let S3 = {0, 1, 2, 3, 4} and (S3, ·3) be defined by the following table.

·3 0 1 2 3 4

0 0 0 0 3 0

1 0 1 2 1 1

2 0 4 2 3 3

3 0 4 2 3 3

4 0 0 0 4 0

By defining the partial order

≤3= {(0, 0), (0, 1), (0, 3), (0, 4), (1, 1), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)}

on S3, we get that (S3, ·3,≤3) is a NeutroOrderedSemigroup.

Example 2.11. Let Z be the set of integers and define “?” on Z as follows: x ? y = xy − 2

for all x, y ∈ Z. We define the partial order “≤?” on Z as −2 ≤? x for all x ∈ Z and for

a, b ≥ −2, a ≤? b is equivalent to a ≤ b and for a, b < −2, a ≤? b is equivalent to a ≥ b. In

this way, we get −2 ≤? −1 ≤? 0 ≤? 1 ≤? . . . and −2 ≤? −3 ≤? −4 ≤? . . .. Then (Z, ?,≤?) is a

NeutroOrderedSemigroup.

Definition 2.12. [9] Let (S, ·,≤) be a NeutroOrderedSemigroup and ∅ 6= M ⊆ S. Then

(1) M is a NeutroOrderedSubSemigroup of S if (M, ·,≤) is a NeutroOrderedSemigroup and

there exist x ∈M with (x] = {y ∈ S : y ≤ x} ⊆M .

(2) M is a NeutroOrderedLeftIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that r · x ∈M for all r ∈ S.

(3) M is a NeutroOrderedRightIdeal of S if M is a NeutroOrderedSubSemigroup of S and

there exists x ∈M such that x · r ∈M for all r ∈ S
(4) M is a NeutroOrderedIdeal of S if M is a NeutroOrderedSubSemigroup of S and there

exists x ∈M such that r · x ∈M and x · r ∈M for all r ∈ S.

(5) M is a NeutroOrderedFilter of S if (M, ·,≤) is a NeutroOrderedSemigroup and there

exists x ∈ S such that for all y, z ∈ S with x · y ∈M and z · x ∈M , we have y, z ∈M
and there exists y ∈M [y) = {x ∈ S : y ≤ x} ⊆M .

Definition 2.13. [9] Let (A, ?,≤A) and (B,~,≤B) be NeutroOrderedSemigroups and φ :

A→ B be a function. Then

(1) φ is called NeutroOrderedHomomorphism if φ(x ? y) = φ(x) ~ φ(y) for some x, y ∈ A
and there exist a ≤A b ∈ A with a 6= b such that φ(a) ≤B φ(b).

(2) φ is called NeutroOrderedIsomomorphism if φ is a bijective NeutroOrderedHomomor-

phism.
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(3) φ is called NeutroOrderedStrongHomomorphism if φ(x?y) = φ(x)~φ(y) for all x, y ∈ A
and a ≤A b ∈ A is equivalent to φ(a) ≤B φ(b) ∈ B.

(4) φ is called NeutroOrderedStrongIsomomorphism if φ is a bijective NeutroOrdered-

StrongHomomorphism.

Example 2.14. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example 2.10.

Then I = {0, 1, 2} is both: a NeutroOrderedLefttIdeal and a NeutroOrderedRightIdeal of S3.

Example 2.15. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Then I = {−2,−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of Z.

Example 2.16. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Then F = {−2,−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of Z.

3. Productional NeutroOrderedSemigroups

Let (Aα,≤α) be a partial ordered set for all α ∈ Γ. We define “≤” on
∏
α∈ΓAα as follows:

For all (xα), (yα) ∈
∏
α∈ΓAα,

(xα) ≤ (yα)⇐⇒ xα ≤α yα for all α ∈ Γ.

One can easily see that (
∏
α∈ΓAα,≤) is a partial ordered set.

Let Aα be any non-empty set for all α ∈ Γ and “·α” be an operation on Aα. We define “·”
on

∏
α∈ΓAα as follows: For all (xα), (yα) ∈

∏
α∈ΓAα, (xα) · (yα) = (xα ·α yα).

Throughout the paper, we write NOS instead of NeutroOrderedSemigroup.

Theorem 3.1. Let (G1,≤1), (G2,≤2) be partially ordered sets with operations ·1, ·2 respec-

tively. Then (G1 ×G2, ·,≤) is an NOS if one of the following statements is true.

(1) G1 and G2 are NeutroSemigroups with at least one of them is an NOS.

(2) One of G1, G2 is an NOS and the other is a semigroup.

Proof. Without loss of generality, let G1 be an NOS. We prove 1. and 2. is done similarly. We

have three cases for “·1” and “·2”: Case “·1” is a NeutroOperation, Case “·2” is a NeutroOp-

eration, and Case “·1” and “·2” are NeutroAssociative.

Case “·1” is a NeutroOperation. There exist x1, y1, a1, b1 ∈ G1 such that x1 ·1 y1 ∈ G1

and a1 ·1 b1 /∈ G1 or x1 ·1 y1 is indeterminate in G1. Since G2 is a NeutroSemigroup, it follows

that there exist x2, y2 ∈ G2 6= ∅ such that x2 ·2 y2 ∈ G2 or x2 ·2 y2 is indeterminate in G2 (If

no such elements exist then G2 will be an AntiSemigroup.). Then (x1, x2) · (y1, y2) ∈ G1 ×G2

and (a1, x2) · (b1, y2) /∈ G1×G2 or (x1, x2) · (y1, y2) is indeterminate in G1×G2. Thus “·” is a

NeutroOperation.

Case “·2” is a NeutroOperation. This case can be done in a similar way to Case “·1” is a
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NeutroOperation.

Case “·1” and “·2” are NeutroAssociative. There exist x1, y1, z1, a1, b1, c1 ∈ G1 and

x2, y2, z2, a2, b2, c2 ∈ G2 such that

x1 ·1 (y1 ·1 z1) = (x1 ·1 y1) ·1 z1 , a1 ·1 (b1 ·1 c1) 6= (a1 ·1 b1) ·1 c1,

x2 ·2 (y2 ·2 z2) = (x2 ·2 y2) ·2 z2 , and a2 ·2 (b2 ·2 c2) 6= (a2 ·2 b2) ·2 c2.

The latter implies that

(x1, x2) · ((y1, y2) · (z1, z2)) = ((x1, x2) · (y1, y2)) · (z1, z2)

and

(a1, a2) · ((b1, b2) · (c1, c2)) = ((a1, a2) · (b1, b2)) · (c1, c2).

Thus, “·” is NeutroAssociative.

Having “≤1” a NeutroOrder on G1 implies that:

(1) There exist x ≤1 y ∈ G1 with x 6= y such that z ·1 x ≤1 z ·1 y and x ·1 z ≤1 y ·1 z for all

z ∈ G1.

(2) There exist x ≤1 y ∈ G1 and z ∈ G1 such that z ·1 x � z ·1 y or x ·1 z � y ·1 z.
(3) There exist x ≤1 y ∈ G1 and z ∈ G1 such that z ·1 x or z ·1 y or x ·1 z or y ·1 z are

indeterminate, or the relation between z ·1 x and z ·1 y, or the relation between x ·1 z
and y ·1 z are indeterminate.

Where (T, I, F ) is different from (1, 0, 0) and from (0, 0, 1).

Having b ≤2 b for all b ∈ G2 implies that:

By (1), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 with (x, b) 6= (y, b). For all (z, a) ∈
G1 × G2, we have either a ·2 b ∈ G2 or a ·2 b /∈ G2 or a ·2 b is indeterminate in G2. Similarly

for b ·2 a. The latter implies that (z, a) · (x, b) ≤ (z, a) · (y, b) and (x, b) · (z, a) ≤ (y, b) · (z, a)

or (z, a) · (x, b) ≤ (z, a) · (y, b) is indeterminate in G1 × G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is

indeterminate in G1 ×G2.

By (2), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 and (z, a) ∈ G1 × G2 such that

(z, a) · (x, b) � (z, a) · (y, b) or (x, b) · (z, a) � (y, b) · (z, a) or (z, a) · (x, b) ≤ (z, a) · (y, b) is

indeterminate in G1 ×G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is indeterminate in G1 ×G2.

By (3), we get that there exist (x, b) ≤ (y, b) ∈ G1 × G2 and (z, a) ∈ G1 × G2 such that

(z, a) · (x, b) ≤ (z, a) · (y, b) is indeterminate in G1 × G2 or (x, b) · (z, a) ≤ (y, b) · (z, a) is

indeterminate in G1 × G2 or (z, a) · (x, b) is indeterminate in G1 × G2 or (x, b) · (z, a) is

indeterminate in G1 ×G2. Therefore, (G1 ×G2, ·,≤) is an NOS.

Theorem 3.1 implies that G1 ×G2 is an NOS if either G1, G2 are both NOS, G1 is an NOS

and G2 is a NeutroSemigroup, G1 is an NOS and G2 is a semigroup (or odered semigroup),
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G1 is a NeutroSemigroup and G2 is an NOS, or G1 is a semigroup (or ordered semigroup) and

G2 is an NOS.

We present a generalization of Theorem 3.1.

Theorem 3.2. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ.

Then (
∏
α∈ΓGα, ·,≤) is an NOS if there exist α0 ∈ Γ such that (Gα0 , ·α0 ,≤α0) is an NOS and

(Gα, ·α) is a semigroup or NeutroSemigroup for all α ∈ Γ− {α0}.

Notation 1. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ. If

(
∏
α∈ΓGα, ·,≤) is an NOS then we call it the productional NOS.

Proposition 3.3. Let (G1, ·1,≤1) and (G2, ·2,≤2) be NeutroTotalOrderedSemigroups with

|G1|, |G2| ≥ 2. Then (G1 ×G2, ·,≤) is not a NeutroTotalOrderedSemigroup.

Proof. Since (G1, ·1,≤1) and (G2, ·2,≤2) are NeutroTotalOrderedSemigroups with |G1| ≥ 2

and |G2| ≥ 2, it follows that there exist a ≤1 b ∈ G1, c ≤2 d ∈ G2 with a 6= b and c 6= d.

One can easily see that (a, d) � (b, c) ∈ G1 × G2 and (b, c) � (a, d) ∈ G1 × G2. Therefore,

(G1 ×G2, ·,≤) is not a NeutroTotalOrderedSemigroup.

Corollary 3.4. Let (Gα, ·α,≤α) be NeutroTotalOrderedSemigroups for all α ∈ Γ with

|Gα0 |, |Gα1 | ≥ 2 for α0 6= α1 ∈ Γ. Then (
∏
α∈ΓGα, ·,≤) is not a NeutroTotalOrderedSemi-

group.

Proof. The proof follows from Proposition 3.3.

Example 3.5. Let S1 = {s, a,m}, (S1, ·1,≤1) be the NOS presented in Example 2.8, and

“≤′
1” be the trivial order on S1. Theorem 3.1 asserts that Cartesian product (S1 × S1, ·,≤)

resulting from (S1, ·1,≤1) and (S1, ·1,≤′
1) is an NOS of order 9.

Example 3.6. Let S1 = {s, a,m}, (S1, ·1,≤1) be the NOS presented in Example 2.8, and

(R, ·s,≤u) be the semigroup of real numbers under standard multiplication and usual order.

Theorem 3.1 asserts that Cartesian product (R× S1, ·,≤) is an NOS of infinite order.

Example 3.7. Let S1 = {s, a,m} and (S1, ·1,≤1) be the NOS presented in Example 2.8.

Theorem 3.2 asserts that (S1 × S1 × S1, ·,≤) is an NOS of order 27. Moreover, by means of

Proposition 3.3, (S1 × S1 × S1, ·,≤) is not a NeutroTotalOrderedSemigroup.

Example 3.8. Let (Z, ?,≤?) be the NOS presented in Example 2.11 and (Zn,�,≤t) be the

semigroup under standard multiplication of integers modulo n and “≤t” is defined as follows.

For all x, y ∈ Zn with 0 ≤ x, y ≤ n− 1,

x ≤t y ⇐⇒ x ≤ y ∈ Z.
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Then (Zn × Z, ·,≤) is an NOS.

Proposition 3.9. Let (Gα,≤α) be a partially ordered set with operation “·α” for all α ∈ Γ

and (Gα0 , ·α0 ,≤α0) be an NOS for some α0 ∈ Γ. Then φ : (
∏
α∈ΓGα, ·,≤) → Gα0 with

φ((xα)) = xα0 is a NeutroOrderedHomomorphism.

Proof. The proof is straightforward.

Remark 3.10. If |Γ| ≥ 2 and there exist α 6= α0 ∈ Γ with |Gα| ≥ 2 then the NeutroOrdered-

Homomorphism φ in Proposition 3.9 is not a NeutroOrderedIsomorphism.

Remark 3.11. If |Γ| ≥ 2 and there exist α 6= α0 ∈ Γ with |Gα| ≥ 2 then Gα0 �s
∏
α∈ΓGα.

This is clear as there exist no bijective function from Gα0 to
∏
α∈ΓGα.

Proposition 3.12. There are infinite non-isomorphic NOS.

Proof. Let (G, ·G,≤G) be an NOS with |G| ≥ 2, Γ ⊆ R, and |Γ| ≥ 2. Theorem 3.2 asserts that

(
∏
α∈ΓG, ·,≤) is an NOS for every Γ ⊆ R. For all Γ1,Γ2 ⊆ R with |Γ1| 6= |Γ2|, Remark 3.11

asserts that
∏
α∈Γ1

G �s
∏
α∈Γ2

G. Therefore, there are infinite non-isomorphic NOS.

Example 3.13. Let (Z, ?,≤?) be the NOS presented in Example 2.11. Then for every n ∈ N,

we have (
∏n
i=1 Z, ·,≤) is an NOS. Moreover, we have infinite such non-isomorphic NOS.

Theorem 3.14. Let (Gα, ·α,≤α) and (G′
α, ·′α,≤′

α) be NOS for all α ∈ Γ. Then the following

statements hold.

(1) If there is a NeutroOrderedHomomorphism from Gα to G′
α for all α ∈ Γ then there is

a NeutroOrderedHomomorphism from (
∏
α∈ΓGα, ·,≤) to (

∏
α∈ΓG

′
α, ·′,≤′).

(2) If there is a NeutroOrderedStrongHomomorphism from Gα to G′
α for all α ∈

Γ then there is a NeutroOrderedStrongHomomorphism from (
∏
α∈ΓGα, ·,≤) to

(
∏
α∈ΓG

′
α, ·′,≤′).

(3) If Gα ∼= G′
α for all α ∈ Γ then (

∏
α∈ΓGα, ·,≤) ∼= (

∏
α∈ΓG

′
α, ·′,≤′).

(4) If Gα ∼=s G
′
α for all α ∈ Γ then (

∏
α∈ΓGα, ·,≤) ∼=s (

∏
α∈ΓG

′
α, ·′,≤′).

Proof. We prove 1. and the proof of 2., 3., and 4. are done similarly. Let φα : Gα → G′
α

be a NeutroOrderedHomomorphism and define φ :
∏
α∈ΓGα →

∏
α∈ΓG

′
α as follows: For all

(xα) ∈
∏
α∈ΓGα,

φ((xα)) = (φα(xα)).

one can easily see that φ is a NeutroOrderedHomomorphism.
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4. Subsets of productional NeutroOrderedSemigroups

In this section, we find some sufficient conditions for subsets of the productional NOS to be

NeutroOrderedSubSemigroups, NeutroOrderedIdeals, and NeutroOrderedFilters. Moreover,

we present some related examples.

Proposition 4.1. Let (Aα,≤α) be a partial ordered set for all α ∈ Γ and (xα) ∈
∏
α∈ΓAα.

Then ((xα)] =
∏
α∈Γ(xα].

Proof. Let (yα) ∈ ((xα)]. Then (yα) ≤ (xα). The latter implies that yα ≤α xα for all α ∈ Γ and

hence, yα ∈ (xα] for all α ∈ Γ. We get now that (yα) ∈
∏
α∈Γ(xα]. Thus, ((xα)] ⊆

∏
α∈Γ(xα].

Similarly, we can prove that
∏
α∈Γ(xα] ⊆ ((xα)].

Proposition 4.2. Let (Aα,≤α) be a partial ordered set for all α ∈ Γ and (xα) ∈
∏
α∈ΓAα.

Then [(xα)) =
∏
α∈Γ[xα).

Proof. The proof is similar to that of Proposition 4.1.

Theorem 4.3. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Sα is a NeutroOrderedSubSemi-

group of Gα for all α ∈ Γ then
∏
α∈Γ Sα is a NeutroOrderedSubSemigroup of

∏
α∈ΓGα.

Proof. For all α ∈ Γ, we have Sα an NOS (as it is NeutroOrderedSubSemigroup of Gα).

Theorem 3.2 asserts that
∏
α∈Γ Sα is an NOS. Since Sα is a NeutroOrderedSubSemigroup of

Gα for every α ∈ Γ, it follows that for every α ∈ Γ there exist xα ∈ Sα with (xα] ⊆ Sα.

Using Proposition 4.1, we get that there exist (xα) ∈
∏
α∈Γ Sα such that ((xα)] =

∏
α∈Γ(xα] ⊆∏

α∈Γ Sα. Therefore,
∏
α∈Γ Sα is a NeutroOrderedSubSemigroup of

∏
α∈ΓGα.

Corollary 4.4. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such

that Sα0 is a NeutroOrderedSubSemigroup of Gα0 then
∏
α∈Γ,α<α0

Gα × Sα0 ×
∏
α∈Γ,α>α0

is a

NeutroOrderedSubSemigroup of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.3 and having Gα a NeutroOrderedSubSemigroup of

itself.

Theorem 4.5. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedLeftIdeal

of Gα for all α ∈ Γ then
∏
α∈Γ Iα is a NeutroOrderedLeftIdeal of

∏
α∈ΓGα.
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Proof. Having every NeutroOrderedLeftIdeal a NeutroOrderedSubSemigroup and that Iα is a

NeutroOrderedLeftIdeal of Gα for all α ∈ Γ implies, by means of Theorem 4.3, that
∏
α∈Γ Iα is

a NeutroOrderedSubSemigroup of
∏
α∈ΓGα. Since Iα is a NeutroOrderedLeftIdeal of Gα for all

α ∈ Γ, it follows that for every α ∈ Γ there exist xα ∈ Iα such that rα ·αxα ∈ Iα for all rα ∈ Gα.

The latter implies that there exist (xα) ∈
∏
α∈Γ Iα such that (rα) · (xα) = (rα ·α xα) ∈

∏
α∈Γ Iα

for all (rα) ∈
∏
α∈ΓGα. Therefore,

∏
α∈Γ Iα is a NeutroOrderedLeftIdeal of

∏
α∈ΓGα.

Corollary 4.6. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedLeftIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that rα ·αxα ∈ Gα
for all rα ∈ Gα then

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedLeftIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.5 and having Gα a NeutroOrderedLeftIdeal of itself.

Theorem 4.7. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedRightIdeal

of Gα for all α ∈ Γ then
∏
α∈Γ Iα is a NeutroOrderedRightIdeal of

∏
α∈ΓGα.

Proof. The proof is similar to that of Theorem 4.5.

Corollary 4.8. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedRightIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that xα·αrα ∈ Gα
for all rα ∈ Gαthen

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedRightIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.7 and having Gα a NeutroOrderedRightIdeal of

itself.

Theorem 4.9. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Iα is a NeutroOrderedIdeal of Gα

for all α ∈ Γ then
∏
α∈Γ Sα is a NeutroOrderedIdeal of

∏
α∈ΓGα.

Proof. The proof is similar to that of Theorem 4.5.

Corollary 4.10. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Iα0

is a NeutroOrderedIdeal of Gα0 and for α 6= α0 there exist xα ∈ Gα such that rα ·αxα, xα ·αrα ∈
Gα for all rα ∈ Gα then

∏
α∈Γ,α<α0

Gα×Iα0×
∏
α∈Γ,α>α0

is a NeutroOrderedIdeal of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.9 and having Gα a NeutroOrderedIdeal of itself.
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Example 4.11. Let (S3, ·3,≤3) be the NeutroOrderedSemigroup presented in Example

2.10. Example 2.14 asserts that I = {0, 1, 2} is both: a NeutroOrderedLefttIdeal and

a NeutroOrderedRightIdeal of S3. Theorem 4.5 and Theorem 4.7 imply that I × I =

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} is both: a NeutroOrderedLefttIdeal

and a NeutroOrderedRightIdeal of S3 × S3. Moreover, I × S3 and S3 × I are both: Neutro-

OrderedLefttIdeals and NeutroOrderedRightIdeals of S3 × S3.

Example 4.12. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Example 2.15 asserts that I = {−2,−1, 0, 1,−2,−3,−4, . . .} is a NeutroOrderedIdeal of Z.

Theorem 4.9 asserts that I × I × I is NeutroOrderedIdeal of Z× Z× Z.

Theorem 4.13. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If Fα is a NeutroOrderedFilter of

Gα for all α ∈ Γ then
∏
α∈Γ Fα is a NeutroOrderedFilter of

∏
α∈ΓGα.

Proof. For all α ∈ Γ, we have Fα an NOS (as it is NeutroOrderedFilter of Gα). Theorem 3.2

asserts that
∏
α∈Γ Sα is an NOS. Having Fα is a NeutroOrderedFilter of Gα for all α ∈ Γ implies

that for every α ∈ Γ there exist xα ∈ Fα such that for all yα, zα ∈ Fα, xα ·α yα ∈ Fα and zα ·α
xα ∈ Fα imply that yα, zα ∈ Fα. We get now that there exist (xα) ∈

∏
α∈Γ Fα such that for all

(yα), (zα) ∈
∏
α∈Γ Fα, (xα) ·(yα) = (xα ·αyα) ∈

∏
α∈Γ Fα and (zα) ·(xα) = (zα ·αxα) ∈

∏
α∈Γ Fα

imply that (yα), (zα) ∈
∏
α∈Γ Fα. Since Fα is a NeutroOrderedFilter of Gα for every α ∈ Γ,

it follows that for every α ∈ Γ there exist xα ∈ Fα with [xα) ⊆ Fα. Using Proposition 4.2,

we get that there exist (xα) ∈
∏
α∈Γ Fα such that [(xα)) =

∏
α∈Γ[xα) ⊆

∏
α∈Γ Fα. Therefore,∏

α∈Γ Fα is a NeutroOrderedFilter of
∏
α∈ΓGα.

Corollary 4.14. Let (Gα, ·α,≤α) be an NOS for all α ∈ Γ. If there exists α0 ∈ Γ such that Fα0

is a NeutroOrderedFilter of Gα0 then
∏
α∈Γ,α<α0

Gα×Fα0×
∏
α∈Γ,α>α0

is a NeutroOrderedFilter

of
∏
α∈ΓGα.

Proof. The proof follows from Theorem 4.13 and having Gα a NeutroOrderedFilter of itself.

Example 4.15. Let (Z, ?,≤?) be the NeutroOrderedSemigroup presented in Example 2.11.

Example 2.16 asserts that F = {−2,−1, 0, 1, 2, 3, 4, . . .} is a NeutroOrderedFilter of Z. Theo-

rem 4.13 implies that F × F × F × F is a NeutroOrderedFilter of Z× Z× Z× Z. Moreover,

Z× Z× F × Z is a NeutroOrderedFilter of Z× Z× Z× Z.

5. Conclusion

The class of NeutroAlgebras is very large. This paper considered NeutroOrderedSemi-

groups (introduced by the authors in [9]) as a subclass of NeutroAlgebras. Results related to

productional NOS and its subsets were investigated and some examples were elaborated.
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For future work, it will be interesting to investigate the following.

(1) Find necessary conditions for the productional NeutroSemigroup to be NeutroOrdered-

Semigroup.

(2) Check the possibility of introducing the quotient NeutroOrderedSemigroup and inves-

tigate its properties.

(3) Study other types of productional NetroOrderedStructures.
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Abstract. Many researchers have created some models based on soft set, to solve problems in decision making

and medical diagnosis, but most of these models deal only with one expert. This causes a problem with the

users, especially with those who use questionnaires in their work and studies. Therefore we present a new

model i.e. Hypersoft Expert Set which not only addresses this limitation of soft-like models by emphasizing the

opinion of all experts but also resolves the inadequacy of soft set for disjoint attribute-valued sets corresponding

to distinct attributes. In this study, the existing concept of soft expert set is generalized to hypersoft expert set

which is more flexible and useful. Some fundamental properties (i.e. subset, not set and equal set), results (i.e.

commutative, associative, distributive and D’ Morgan Laws) and set-theoretic operations (i.e. complement,

union intersection AND, and OR ) are discussed. An algorithm is proposed to solve decision-making problems

and applied to recruitment process for hiring ”right person for the right job”.

Keywords: Soft Set; Soft Expert Set; Hypersoft Set; Hypersoft Expert Set.

—————————————————————————————————————————-

1. Introduction

Soft set presented by Molodtsov [1] is considered as a new parameterized family of subsets

of the universe of discourse, which addresses the inadequacy of fuzzy-like structures for param-

eterization tools. It has helped the researcher (experts) to solve efficiently the decision-making

problems involving some sort of uncertainty. Many researchers [2]- [13]studied and broadened

this concept and applied to different fields. The gluing concept of soft set with expert system

initiated by Alkhazaleh et al. [15] to emphasize the due status of the opinions of all experts

regarding taking any decision in decision-making system. Al-Quran et al. [16] proposed neu-

trosophic vague soft expert set theory, Alkhazaleh et al. [17] characterized fuzzy soft expert set
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and its application. Bashir et al. [18, 19] presented possibility fuzzy soft expert set and fuzzy

parameterized soft expert set. Sahin et al. [20] investigated neutrosophic soft expert sets. Al-

hazaymeh et al. [21,22] studied mapping on generalized vague soft expert set and generalized

vague soft expert set. Alhazaymeh et al. [23] explained the application of generalized vague

soft expert set in decision making. Hassan et al. [24] reviewed Q-neutrosophic soft expert

set and its application in decision making. Uluay et al. [25] studied generalized neutrosophic

soft expert set for multiple-criteria decision-making. Al-Qudah et al. [26] explained bipolar

fuzzy soft expert set and its application in decision making. Al-Qudah et al. [27] investigated

complex multi-fuzzy soft expert set and its application. Al-Quran et al. [28] presented the com-

plex neutrosophic soft expert set and its application in decision making. Pramanik et al. [29]

studied the topsis for single valued neutrosophic soft expert set based multi-attribute decision

making problems. Abu Qamar et al. [30] investigated the generalized Q-neutrosophic soft ex-

pert set for decision under uncertainty. Adam et al. [31] characterized the multi Q-fuzzy soft

expert set and its application. Ulucay et al. [32] presented the time-neutrosophic soft expert

sets and its decision making problem. Al-Quran et al. [33] studied fuzzy parameterised single

valued neutrosophic soft expert set theory and its application in decision making. Hazaymeh

et al. [34] researched generalized fuzzy soft expert set.

There are many real life scenarios when we are to deal with disjoint attribute-valued set for

distinct attributes. In 2018, Smarandache [35] addressed this inadequacy of soft with the

development of new structure hypersoft set by replacing single attribute-valued function to

multi-attribute valued function. In 2020, Saeed et al. [36, 37] extended the concept and dis-

cussed the fundamentals of hypersoft set such as hypersoft subset, complement, not hypersoft

set, aggregation operators along with hypersoft set relation, sub relation,complement relation,

function, matrices and operations on hypersoft matrices. In the same year, Mujahid et al. [38]

discussed hypersoft points in different fuzzy-like envorinments. In 2020, Rahman et al. [39]

defined complex hypersoft set and developed the hybrids of hypersoft set with complex fuzzy

set, complex intuitionistic fuzzy set and complex neutrosophic set respectively. They also

discussed their fundamentals i.e. subset, equal sets, null set, absolute set etc. and theoretic

operations i.e. complement, union, intersection etc. In 2020, Rahman et al. [40] conceptualized

convexity cum concavity on hypersoft set and presented its pictorial versions with illustrative

examples.

Dealing with disjoint attribute-valued sets is of great importance and it is vital for sensible

decisions in decision-making techniques. Results will be varied and be considered inclined

and odd on ignoring such kind of sets. Therefore, it is the need of the literature to adequate

the exiting literature of soft and expert set for multi-attribute function. Having motivation

from [15] and [35–38], new notions of hypersoft expert set are developed and an application is
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discussed in decision making through proposed method. The pattern of rest of the paper is:

section 2 reviews the notions of soft sets, soft expert set, hypersoft set and relevant definitions

used in the proposed work. Section 3, presents notions of hypersoft expert set with properties.

Section 4, demonstrates an application of this concept in a decision-making problem. Section

5, concludes the paper.

1.1. Motivation

The novelty of hypersoft expert set (HSE-set) is as:

• it is the extension of soft set and soft expert set,

• it tackles all the hindrances of soft set and soft expert set for dealing with further

partitions of attributes into attribute-valued sets,

• it facilitates the decision-makers to have decisions for uncertain scenarios without en-

countering with any inclined situation.

2. Preliminaries

In this section, some basic definitions and terms regarding the main study, are presented

from the literature.

Definition 2.1. [1]

Let P (Ω) denote power set of Ω(universe of discourse) and F be a collection of parameters

defining Ω. A soft set ΨM is defined by mapping

ΨM : F → P (Ω)

Definition 2.2. [3]

The union of two soft sets (Ψ1, A1) and (Ψ2, A2) over Ω is the soft set (Ψ3, A3) ; A3
.
= A1∪A2,

and ∀ ξ ∈ A3,

Ψ3(ξ) =


Ψ1(ξ)

Ψ2(ξ)

Ψ1(ξ) ∪ Ψ2(ξ)

; ξ ∈ A1 −A2

; ξ ∈ A2 −A1

; ξ ∈ A1 ∩A2

Definition 2.3. [14]

The extended intersection of two soft sets (Ψ1, A1) and (Ψ2, A2) with Ω is the soft set (Ψ3, A3)

while A3
.
= A1 ∪A2, ; ξ ∈ A3,

Ψ3(ξ) =


Ψ1(ξ)

Ψ2(ξ)

Ψ1(ξ) ∪ Ψ2(ξ)

; ξ ∈ A1 −A2

; ξ ∈ A2 −A1

; ξ ∈ A1 ∩A2
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Definition 2.4. [15]

Assume that Y be a set of specialists (operators) and Ö be a set of conclusions, T = F ×Y ×Ö
with S ⊆ T where Ω denotes the universe , F a set of parameters.

A pair(ΦH , S) is known as a soft expert set over Ω, where ΨH is a mapping given by

ΦH : S → P (Ω)

Definition 2.5. [15]

A (Φ1, S) ⊆ (Φ2, P ) over Ω, if

(i) S ⊆ P,
(ii) ∀ α ∈ P,Φ2(α) ⊆ Φ1(α).

While (Φ2, P ) is known as a soft expert superset of (Φ1, S).

Definition 2.6. [19]

Let h1, h2, h3, ....., hm, for m ≥ 1 , be m distinct attributes, whose corresponding attribute

values are respectively the sets H1, H2, H3, . ...,Hm, with Hi ∩ Hj = ∅, for i 6= j, and i, j ∈
{1, 2, 3, ...,m}. Then the pair (Ψ, G), where G = H1×H2×H3× . ...×Hm and Ψ : G→ P (Ω)

is called a hypersoft Set over Ω.

3. Hypersoft Expert set (HSE-Set)

In this section, the fundamentals of hypersoft expert set are established and its basic

properties, laws and operations are generalized

Definition 3.1. Hypersoft Expert set (HSE-Set)

A pair(Ψ, S) is known as a hypersoft expert set over Ω, where

Ψ : S → P (Ω)

where

• S ⊆ T = G×D × C

• G = G1 × G2 × G3 × .... × Gn where G1, G2, G3, ..., Gn are disjoint attributive sets

corresponding to n distinct attributes g1, g2, g3, ..., gn

• D be a set of specialists (operators)

• C be a set of conclusions

For simplicity, C = {0 = disagree, 1 = agree}.
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Example 3.2. Suppose that an organization manufactured modern kinds of its brands and

intends to proceed the assessment of certain specialists about concerning these products. Let

Ω = {v1, v2, v3, v4} be a set of products and

G1 = {g11, g12}
G2 = {g21, g22}
G3 = {g31, g32}
be disjoint attributive sets for distinct attributes g1= simple to use, g2= nature, g3= modest.

Now G = G1 ×G2 ×G3

G =

 a1 = (g11, g21, g31), a2 = (g11, g21, g32), a3 = (g11, g22, g31), a4 = (g11, g22, g32),

a5 = (g12, g21, g31), a6 = (g12, g21, g32), a7 = (g12, g22, g31), a8 = (g12, g22, g32)


Now T = G×D × C

T =



(a1, s, 0), (a1, s, 1), (a1, t, 0), (a1, t, 1), (a1, u, 0), (a1, u, 1),

(a2, s, 0), (a2, s, 1), (a2, t, 0), (a2, t, 1), (a2, u, 0), (a2, u, 1),

(a3, s, 0), (a3, s, 1), (a3, t, 0), (a3, t, 1), (a3, u, 0), (a3, u, 1),

(a4, s, 0), (a4, s, 1), (a4, t, 0), (a4, t, 1), (a4, u, 0), (a4, u, 1),

(a5, s, 0), (a5, s, 1), (a5, t, 0), (a5, t, 1), (a5, u, 0), (a5, u, 1),

(a6, s, 0), (a6, s, 1), (a6, t, 0), (a6, t, 1), (a6, u, 0), (a6, u, 1),

(a7, s, 0), (a7, s, 1), (a7, t, 0), (a7, t, 1), (a7, u, 0), (a7, u, 1),

(a8, s, 0), (a8, s, 1), (a8, t, 0), (a8, t, 1), (a8, u, 0), (a8, u, 1)


let

S =


(a1, s, 0), (a1, s, 1), (a1, t, 0), (a1, t, 1), (a1, u, 0), (a1, u, 1),

(a3, s, 0), (a3, s, 1), (a3, t, 0), (a3, t, 1), (a3, u, 0), (a3, u, 1),

(a5, s, 0), (a5, s, 1), (a5, t, 0), (a5, t, 1), (a5, u, 0), (a5, u, 1),


be a subset of T and D = {s, t, u} be a set of specialists.

Assume that the organization has appropriated a survey to three specialists to settle the choices

on the organization’s products, and we get the accompanying:

Ψ1 = Ψ(a1, s, 1) = {v1, v2, v4},
Ψ2 = Ψ(a1, t, 1) = {v3, v4},
Ψ3 = Ψ(a1, u, 1) = {v3, v4},
Ψ4 = Ψ(a3, s, 1) = {v4},
Ψ5 = Ψ(a3, t, 1) = {v1, v3},
Ψ6 = Ψ(a3, u, 1) = {v1, v2, v4},
Ψ7 = Ψ(a5, s, 1) = {v3, v4},
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Ψ8 = Ψ(a5, t, 1) = {v1, v2},
Ψ9 = Ψ(a5, u, 1) = {v4},
Ψ10 = Ψ(a1, s, 0) = {v3},
Ψ11 = Ψ(a1, t, 0) = {v2, v3},
Ψ12 = Ψ(a1, u, 0) = {v1, v2},
Ψ13 = Ψ(a3, s, 0) = {v1, v2, v3},
Ψ14 = Ψ(a3, t, 0) = {v2, v4},
Ψ15 = Ψ(a3, u, 0) = {v3},
Ψ16 = Ψ(a5, s, 0) = {v1, v2},
Ψ17 = Ψ(a5, t, 0) = {v3, v4},
Ψ18 = Ψ(a5, u, 0) = {v1, v2, v3},
The hypersoft expert set is

(Ψ,S) =



((a1, s, 1), {v1, v2, v4}) , ((a1, t, 1), {v1, v4}) , ((a1, u, 1), {v3, v4}) ,
((a3, s, 1), {v4}) , ((a3, t, 1), {v1, v3}) , ((a3, u, 1), {v1, v2, v4}) ,
((a5, s, 1), {v3, v4}) , ((a5, t, 1), {v1, v2}) , ((a5, u, 1), {v4}) ,
((a1, s, 0), {v3}) , ((a1, t, 0), {v2, v3}) , ((a1, u, 0), {v1, v2}) ,
((a3, s, 0), {v1, v2, v3}) , ((a3, t, 0), {v2, v4}) , ((a3, u, 0), {v3})
((a5, s, 0), {v1, v2}) , ((a5, t, 0), {v3, v4}) , ((a5, u, 0), {v1, v2, v3})


Note that in this example the first specialist, s, ”agrees” that the ”simple to use” products

are v1, v2, and v4. The subsequent specialist t, ”agrees” that the ”simple to use” products are

v1 and v4, and the third specialist, u, ”agrees” that the ”simple to use” products are v3 and

v4. See here every one of specialists ”agree” that product v4 is ”anything but simple to use.”

Definition 3.3. Hypersoft Expert subset

A hypersoft expert set (Ψ1, S) is said to be hypersoft expert subset of (Ψ2, R) over Ω, if

(i) S ⊆ R,
(ii) ∀ α ∈ S,Ψ1(α) ⊆ Ψ2(α).

and denoted by (Ψ1, S) ⊆ (Ψ2, R). Similarly (Ψ2, R) is said to be hypersoft expert superset of

(Ψ1, S).

Example 3.4. Considering Example 3.2, Suppose

A1 =
{

(a1, s, 1), (a3, s, 0), (a1, t, 1), (a3, t, 1), (a3, t, 0), (a1, u, 0), (a3, u, 1)
}

A2 =
{

(a1, s, 1), (a3, s, 0), (a3, s, 1), (a1, t, 1), (a3, t, 1), (a5, t, 0), (a3, t, 0), (a1, u, 0), (a3, u, 1), (a5, u, 1)
}
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It is clear thatA1 ⊂ A2. Suppose (Ψ1, A1) and (Ψ2, A2) be defined as following

(Ψ1,A1) =


((a1, s, 1), {v1, v2}) , ((a1, t, 1), {v1}) ,
((a3, t, 1), {v1, v3}) , ((a3, u, 1), {v1, v2}) ,
((a1, u, 0), {v1}) , ((a3, s, 0), {v1, v2}) ,
((a3, t, 0), {v2, v4})



(Ψ2,A2) =



((a1, s, 1), {v1, v2, v4}) , ((a1, t, 1), {v1, v4}) ,
((a3, s, 1), {v4}) , ((a3, t, 1), {v1, v3}) ,
((a5, u, 1), {v4}) , ((a3, u, 1), {v1, v2, v4}) ,
((a1, u, 0), {v1, v2}) , ((a5, t, 0), {v3, v4}) ,
((a3, s, 0), {v1, v2, v3}) , ((a3, t, 0), {v2, v4})


which implies that (Ψ1, A1) ⊆ (Ψ2, A2).

Definition 3.5. Two hypersoft expert sets (Ψ1, A1) and (Ψ2, A2) over Ω are said to be equal

if (Ψ1, A1) is a hypersoft expert subset of (Ψ2, A2) and (Ψ2, A2) is a hypersoft expert subset

of (Ψ1, A1).

Definition 3.6. Let G be a set as defined in definition 3.1 and D , a set of experts. The NOT

set of T = G×D × C denoted by ∼ T , is defined by ∼ T = {(∼ gi, dj , ck)∀i, j, k} where ∼ gi

is not gi.

Definition 3.7. The complement of a hypersoft expert set (Ψ, S), denoted by (Ψ, S)c, is

defined by (Ψ, S)c = (Ψc,∼ S) while Ψc : ∼ S → P (Ω) is a mapping given by Ψc(β) =

Ω−Ψ(∼ β), where β ∈∼ S.

Example 3.8. Taking complement of hypersoft expert set determined in 3.2, we have

(Ψ,S)c =



((∼ a1, s, 1), {v3}) , ((∼ a1, t, 1), {v2, v3}) , ((∼ a1, u, 1), {v1, v2}) ,
((∼ a3, s, 1), {v1, v2, v3}) , ((∼ a3, t, 1), {v2, v4}) , ((∼ a3, u, 1), {v1, v2, v4}) ,
((∼ a5, s, 1), {v1, v2}) , ((∼ a5, t, 1), {v3, v4}) , ((∼ a5, u, 1), {v1, v2, v3}) ,
((∼ a1, s, 0), {v1, v2, v4}) , ((∼ a1, t, 0), {v1, v4}) , ((∼ a1, u, 0), {v1, v2}) ,
((∼ a3, s, 0), {v4}) , ((∼ a3, t, 0), {v1, v3}) , ((∼ (a3, u, 0), {v3})
((∼ a5, s, 0), {v3, v4}) , ((∼ a5, t, 0), {v1, v3}, ) , ((∼ a5, u, 0), {v4})


Definition 3.9. An agree-hypersoft expert set (Ψ, S)ag over Ω, is a hypersoft expert subset

of (Ψ, S) and is characterized as

(Ψ, S)ag = {Ψag(β) : β ∈ G×D × {1}}.
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Example 3.10. Finding agree-hypersoft expert set determined in 3.2, we get

(Ψ,S) =


((a1, s, 1), {v1, v2, v4}) , ((a1, t, 1), {v1, v4}) , ((a1, u, 1), {v3, v4}) ,
((a3, s, 1), {v4}) , ((a3, t, 1), {v1, v3}) , ((a3, u, 1), {v1, v2, v4}) ,
((a5, s, 1), {v3, v4}) , ((a5, t, 1), {v1, v2}) , ((a5, u, 1), {v4})


Definition 3.11. A disagree-hypersoft expert set (Ψ, S)dag over Ω, is a hypersoft expert subset

of (Ψ, S) and is characterized as

(Ψ, S)dag = {Ψdag(β) : β ∈ G×D × {0}}.

Example 3.12. Getting disagree-hypersoft expert set determined in 3.2,

(Ψ, S) =


((a1, s, 0), {v3}, ) , ((a1, t, 0), {v2, v3}) , ((a1, u, 0), {v1, v2}) ,
((a3, s, 0), {v1, v2, v3}) , ((a3, t, 0), {v2, v4}) , ((a3, u, 0), {v3})
((a5, s, 0), {v1, v2}) , ((a5, t, 0), {v3, v4}) , ((a5, u, 0), {v1, v2, v3})


Proposition 3.13. If (Ψ, S) is a hypersoft expert set over Ω, then

(1). ((Ψ, S)c)c = (Ψ, S)

(2). (Ψ, S)cag = (Ψ, S)dag

(3). (Ψ, S)cdag = (Ψ, S)ag

Definition 3.14. The union of (Ψ1, S) and (Ψ2, R) over Ω is (Ψ3, L) with L = S ∪R, defined

as

Ψ3(β) =


S(β)

R(β)

S(β) ∪ R(β)

; β ∈ S −R
; β ∈ R− S
; β ∈ S ∩R

Example 3.15. Taking into consideration the concept of example 3.2, consider the following

two sets

A1 =
{

(a1, s, 1), (a3, s, 0), (a3, s, 1), (a1, t, 1), (a3, t, 1), (a5, t, 0), (a3, t, 0), (a1, u, 0), (a3, u, 1), (a5, u, 1)
}

A2 =
{

(a1, s, 1), (a3, s, 0), (a3, s, 1), (a1, t, 1), (a3, t, 1), (a5, t, 0), (a3, t, 0), (a1, u, 0), (a3, u, 1)
}

Suppose (Ψ1, A1) and (Ψ2, A2) over Ω are two hypersoft expert sets such that

(Ψ1,A1) =


((a1, s, 1), {v1, v2}) , ((a1, t, 1), {v1}) , ((a3, t, 1), {v1, v3}) ,
((a3, u, 1), {v1, v2}) , ((a1, u, 0), {v1}) , ((a3, s, 0), {v1, v2}) ,
((a3, t, 0), {v2, v4})


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(Ψ2,A2) =



((a1, s, 1), {v1, v2, v4}) , ((a1, t, 1), {v1, v4}) ,
((a3, s, 1), {v4}) , ((a3, t, 1), {v1, v3}) ,
((a5, u, 1), {v4}) , (((a3, u, 1), {v1, v2, v4})
((a1, u, 0), {v1, v2}) , ((a5, t, 0), {v3, v4}) ,
((a3, s, 0), {v1, v2, v3}) , ((a3, t, 0), {v2, v4})


Then (Ψ1, A1) ∪ (Ψ2, A2) = (Ψ3, A3)

(Ψ3,A3) =



((a1, s, 1), {v1, v2, v4}) , ((a1, t, 1), {v1, v4}) ,
((a3, s, 1), {v4}) , ((a3, t, 1), {v1, v3}) ,
((a5, u, 1), {v4}) , ((a3, u, 1), {v1, v2, v4}) ,
((a1, u, 0), {v1, v2}) , ((a5, t, 0), {v3, v4}) ,
((a3, s, 0), {v1, v2, v3}) , ((a3, t, 0), {v2, v4})



Proposition 3.16. If (Ψ1, A1),(Ψ2, A2) and (Ψ3, A3) are three hypersoft expert sets over Ω,

then

(1). (Ψ1, A1) ∪ (Ψ2, A2) = (Ψ2, A2) ∪ (Ψ1, A1)

(2). ((Ψ1, A1) ∪ (Ψ2, A2)) ∪ (Ψ3, A3) = (Ψ1, A1) ∪ ((Ψ2, A2) ∪ (Ψ3, A3))

Definition 3.17. The intersection of (Ψ1, S) and (Ψ2, R) over Ω is (Ψ3, L) with L = S ∩ R,
defined as

Ψ3(β) =


S(β)

R(β)

S(β) ∩ R(β)

; β ∈ S −R
; β ∈ R− S
; β ∈ S ∩R

Example 3.18. Taking into consideration the concept of example 3.2, consider the following

two sets

A1 =
{

(a1, s, 1), (a3, s, 0), (a3, s, 1), (a1, t, 1), (a3, t, 1), (a5, t, 0), (a3, t, 0), (a1, u, 0), (a3, u, 1), (a5, u, 1)
}

A2 =
{

(a1, s, 1), (a3, s, 0), (a3, s, 1), (a1, t, 1), (a3, t, 1), (a5, t, 0), (a3, t, 0), (a1, u, 0), (a3, u, 1)
}

Suppose (Ψ1, A1) and (Ψ2, A2) over Ω are two hypersoft expert sets such that

(Ψ1,A1) =


((a1, s, 1), {v1, v2}) , ((a1, t, 1), {v1}) , ((a3, t, 1), {v1, v3}) ,
((a3, u, 1), {v1, v2}) , ((a1, u, 0), {v1}) , ((a3, s, 0), {v1, v2}) ,
((a3, t, 0), {v2, v4})


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(Ψ2,A2) =



((a1, s, 1), {v1, v2, v4}) , ((a1, t, 1), {v1, v4}) ,
((a3, s, 1), {v4}) , ((a3, t, 1), {v1, v3}, ) ,
((a5, u, 1), {v4}) , (((a3, u, 1), {v1, v2, v4})
((a1, u, 0), {v1, v2}) , ((a5, t, 0), {v3, v4}) ,
((a3, s, 0), {v1, v2, v3}) , ((a3, t, 0), {v2, v4})


Then (Ψ1, A1) ∩ (Ψ2, A2) = (Ψ3, A3)

(Ψ1,A1) =


((a1, s, 1), {v1, v2}) , ((a1, t, 1), {v1}) ,
((a3, t, 1), {v1, v3}) , ((a3, u, 1), {v1, v2}) ,
((a1, u, 0), {v1}) , ((a3, s, 0), {v1, v2}) ,
((a3, t, 0), {v2, v4})



Proposition 3.19. If (Ψ1, A1),(Ψ2, A2) and (Ψ3, A3) are three hypersoft expert sets over Ω,

then

(1). (Ψ1, A1) ∩ (Ψ2, A2) = (Ψ2, A2) ∩ (Ψ1, A1)

(2). ((Ψ1, A1) ∩ (Ψ2, A2)) ∩ (Ψ3, A3) = (Ψ1, A1) ∩ ((Ψ2, A2) ∩ (Ψ3, A3))

Proposition 3.20. If (Ψ1, A1),(Ψ2, A2) and (Ψ3, A3) are three hypersoft expert sets over Ω,

then

(1). (Ψ1, A1) ∪ ((Ψ2, A2) ∩ (Ψ3, A3)) = ((Ψ1, A1) ∪ ((Ψ2, A2)) ∩ ((Ψ1, A1) ∪ (Ψ3, A3))

(2). (Ψ1, A1) ∩ ((Ψ2, A2) ∪ (Ψ3, A3)) = ((Ψ1, A1) ∩ ((Ψ2, A2)) ∪ ((Ψ1, A1) ∩ (Ψ3, A3))

Definition 3.21. If (Ψ1, A1) and (Ψ2, A2) are two hypersoft expert sets over Ω then (Ψ1, A1)

AND (Ψ2, A2) denoted by (Ψ1, A1) ∧ (Ψ2, A2) is defined by

(Ψ1, A1) ∧ (Ψ2, A2) = (Ψ3, A1 ×A2),

while Ψ3(β, γ) = Ψ1(β) ∩Ψ2(γ),∀(β, γ) ∈ A1 ×A2.

Example 3.22. Taking into consideration the concept of example 3.2, let two sets

A1 =
{

(a1, s, 1), (a1, t, 1), (a3, s, 1), (a3, s, 0)
}

A2 =
{

(a1, s, 1), (a3, s, 0), (a3, s, 1)
}
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Suppose (Ψ1, A1) and (Ψ2, A2) over Ω are two hypersoft expert sets such that

(Ψ1,A1) =

{
((a1, s, 1), {v1, v2}) , ((a1, t, 1), {v1}) ,
((a3, s, 1), {v4}) , ((a3, s, 0), {v1, v2}) ,

}

(Ψ2,A2) =
{

((a1, s, 1), {v1, v2, v4}) , ((a3, s, 0), {v1, v2, v3}) ,
}

Then (Ψ1, A1) ∧ (Ψ2, A2) = (Ψ3, A1 ×A2),

(Ψ3,A1 ×A2) =


(((a1, s, 1), (a1, s, 1)), {v1, v2}), (((a1, s, 1), (a3,



Proposition 3.25. If (Ψ1, A1),(Ψ2, A2) and (Ψ3, A3) are three hypersoft expert sets over Ω,

then

(1). ((Ψ1, A1) ∧ (Ψ2, A2))
c = ((Ψ1, A1))

c ∨ ((Ψ2, A2))
c

(2). ((Ψ1, A1) ∨ (Ψ2, A2))
c = ((Ψ1, A1))

c ∧ ((Ψ2, A2))
c

Proposition 3.26. If (Ψ1, A1),(Ψ2, A2) and (Ψ3, A3) are three hypersoft expert sets over Ω,

then

(1). ((Ψ1, A1) ∧ (Ψ2, A2)) ∧ (Ψ3, A3) = (Ψ1, A1) ∧ ((Ψ2, A2) ∧ (Ψ3, A3))

(2). ((Ψ1, A1) ∨ (Ψ2, A2)) ∨ (Ψ3, A3) = (Ψ1, A1) ∨ ((Ψ2, A2) ∨ (Ψ3, A3))

(3). (Ψ1, A1) ∨ ((Ψ2, A2) ∧ (Ψ3, A3) = ((Ψ1, A1) ∨ ((Ψ2, A2)) ∧ ((Ψ1, A1) ∨ (Ψ3, A3))

(4). (Ψ1, A1) ∧ ((Ψ2, A2) ∨ (Ψ3, A3)) = ((Ψ1, A1) ∧ ((Ψ2, A2)) ∨ ((Ψ1, A1) ∧ (Ψ3, A3))

4. An Applications to Hypersoft expert set

In this section, an application of hypersoft expert set theory in a decision making problem,

is presented.

Statement of the problem

A manufacturing company advertises a ”job opportunity” to fill its a vacant position. Its main

slogan is ”the right person for the right post”. Eight applications received from the suitable

candidates and company wants to complete this hiring process through through the selection

board of some experts with some prescribed attributes.

Proposed Algorithm

The following algorithm may be followed by the company to fill the position.

(1). Construct hypersoft soft expert set (Ψ,K),

(2). Determine an agree-hypersoft expert set and a aisagree-hypersoft expert set,

(3). Compute di=
∑

i cij for agree-hypersoft expert set,

(4). Determine fi= i cij for disagree-hypersoft expert set,
∑

(5). Determine gj = dj − fj for agree-hypersoft expert set,

(6). Compute n, for which pn= max pj for agree-hypersoft expert set,

Step-1

Let eight candidates form the universe of discourse Ω = {c1, c2, c3, c4, c5, c6, c7, c8} and X =

{E1, E2, E3} be a set of experts (committee members) for this recruitment process. The fol-

lowing are the attribute-valued sets for prescribed attributes:

H1 = Qualification = {h1, h2}
H2 = Experience = {h3, h4}
H3 = ComputerKnowledge = {h5, h6}
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H4 = Confidence = {h7, h8}
H5 = Skills = {h9, h10}
and then

H = H1 ×H2 ×H3 ×H4 ×H5

H =



(h1, h3, h5, h7, h9), (h1, h3, h5, h7, h10), (h1, h3, h5, h8, h9), (h1, h3, h5, h8, h10), (h1, h3, h6, h7, h9),

(h1, h3, h6, h7, h10), (h1, h3, h6, h8, h9), (h1, h3, h6, h8, h10), (h1, h4, h5, h7, h9), (h1, h4, h5, h7, h10),

(h1, h4, h5, h8, h9), (h1, h4, h5, h8, h10), (h1, h4, h6, h7, h9), (h1, h4, h6, h7, h10), (h1, h4, h6, h8, h9),

(h1, h4, h6, h8, h10), (h2, h3, h5, h7, h9), (h2, h3, h5, h7, h10), (h2, h3, h5, h8, h9), (h2, h3, h5, h8, h10),

(h2, h3, h6, h7, h9), (h2, h3, h6, h7, h10), (h2, h3, h6, h8, h9), (h2, h3, h6, h8, h10), (h2, h4, h5, h7, h9),

(h2, h4, h5, h7, h10), (h2, h4, h5, h8, h9), (h2, h4, h5, h8, h10), (h2, h4, h6, h7, h9), (h2, h4, h6, h7, h10),

(h2, h4, h6, h8, h9), (h2, h4, h6, h8, h10)


and now take K ⊆ H as

K = {a1 = (h1, h3, h5, h7, h9), a2 = (h1, h3, h6, h7, h10), a3 = (h1, h4, h6, h8, h9), a4 =

(h2, h3, h6, h8, h9), a5 = (h2, h4, h6, h7, h10)}
and

(Ψ,K) =



((a1, E1, 1) = {c1, c2, c4, c7, c8}), ((a1, E2, 1) = {c1, c4, c5, c8}) ,
((a1, E3, 1) = {c1, c3, c4, c5, c6, c7, c8}) ,
((a2, E1, 1) = {c3, c5, c8}), ((a2, E2, 1) = {c1, c3, c4, c5, c6, c8}) ,
((a2, E3, 1) = {c1, c2, c4, c7, c8}) ,
((a3, E1, 1) = {c3, c4, c5, c7}), ((a3, E2, 1) = {c1, c2, c5, c8}) ,
((a3, E3, 1) = {c1, c7, c8}) ,
((a4, E1, 1) = {c1, c7, c8}), ((a4, E2, 1) = {c5, c1, c4, c8}) ,
((a4, E3, 1) = {c1, c6, c7, c8}) ,
((a5, E1, 1) = {c1, c3, c4, c5, c7, c8}), ((a5, E2, 1) = {c1, c4, c5, c8}) ,
((a5, E3, 1) = {c1, c3, c4, c5, c7, c8}) ,
((a1, E1, 0) = {c3, c5, c6}), ((a1, E2, 0) = {c2, c3, c6, c7}) ,
((a1, E3, 0) = {c2, c5}) ,
((a2, E1, 0) = {c1, c2, c4, c5, c6, c7}), ((a2, E2, 0) = {c2, c7}) ,
((a2, E3, 0) = {c2, c3, c4, c5, c6}) ,
((a3, E1, 0) = {c1, c2, c6, c8}), ((a3, E2, 0) = {c3, c4, c6, c7}) ,
((a3, E3, 0) = {c2, c3, c4, c5, c7}) ,
((a4, E1, 0) = {c2, c3, c3, c4, c5, c7}), ((a4, E2, 0) = {c2, c3, c6, c7}) ,
((a4, E3, 0) = {c2, c3, c4, c5}) ,
((a5, E1, 0) = {c4, c6, c7}), ((a5, E2, 0) = {c2, c3, c6, c7}) ,
((a5, E3, 0) = {c2, c4, c6})


is a hypersoft expert set.

Step-2

Table 1 presents an agree-hypersoft expert set and table 2 presents a disagree-hypersoft expert
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Table 1. Agree-hypersoft expert set

v c1 c2 c3 c4 c5 c6 c8 c7

(a1, E1) X X × X × × X X

(a2, E1) × × X × X × × X

(a3, E1) × × X X X × X ×
(a4, E1) X × × × X × X X

(a5, E1) X X X × X × × X

(a1, E2) X × × X × × × X

(a2, E2) X × X X X X × X

(a3, E2) × × X X X × X ×
(a4, E2) X × × X X × × X

(a5, E2) X × × X X × × X

(a1, E3) X × X X × X X X

(a2, E3) X X × X × × X X

(a3, E3) X × × × × × X X

(a4, E3) X × × × × X X X

(a5, E3) X × X × X × X X

dj =
∑

i cij d1 = 12 d2 = 3 d3 = 7 d4 = 9 d5 = 9 d6 = 3 d7 = 9 d8 = 13

set respectively, such that if ci ∈ F1(β) then cij = X = 1 otherwise cij = × = 0, and if

ci ∈ F0(β)

then cij = X = 1 otherwise cij = × = 0 where cij are the entries in tables 1 and 2.

Step-(3-6)

Table 3 presents di= i cij for agree-hypersoft expert set, fi=
∑

i cij for disagree-hypersoft
∑

expert set, gj = dj − fj for agree-hypersoft expert set, and n, for which pn= max pj for agree-

hypersoft expert set.

Decision

As g8 is maximum, so candidate c8 is preferred to be selected for the said post. Then max

g8, so the committee will choose candidate 8 for the job.

5. Conclusions

Insufficiency of soft set and expert set for multi-attribute function (attribute-valued sets) is

addressed with the development and characterization of novel hybrid structure i.e. hypersoft

expert set, in this study. Moreover

(1) The fundamentals of hypersoft expert set (HSE-Set) are established and the basic

properties of HSE-Set like subset, superset, equal sets, not set, agree HSE-Set and

disagree HSE-Set are described with examples.
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Table 2. Disagree-hypersoft expert set

V c1 c2 c3 c4 c5 c6 c7 c8

(a1, E1) × × X × × X × ×
(a2, E1) X X × X × X X ×
(a3, E1) X X × × × X × X

(a4, E1) × X X X X X × ×
(a5, E1) × × × X × X X ×
(a1, E2) × X X × × X X ×
(a2, E2) × X × × × × X ×
(a3, E2) X X × × × X × X

(a4, E2) × X X × × X X ×
(a5, E2) × X X × × X X ×
(a1, E3) × X × × X × × ×
(a2, E3) × × X × X X × ×
(a3, E3) × X X X X X × ×
(a4, E3) × X X X X × × ×
(a5, E3) × X × X × X × ×
fi=

∑
i cij f1 = 3 f2 = 12 f3 = 8 f4 = 6 f5 = 5 f6 = 12 f7 = 6 f8 = 2

Table 3. Optimal

di=
∑

i cij fi=
∑

i cij gj = dj − fj
d1 = 12 f1 = 3 g1 = 9

d2 = 3 f2 = 12 g2 = −9

d3 = 7 f3 = 8 g3 = −1

d4 = 9 f4 = 6 g4 = 3

d5 = 9 f5 = 5 g5 = 4

d6 = 3 f6 = 12 g6 = −9

d7 = 9 f7 = 6 g7 = 3

d8 = 13 f8 = 2 g8 = 11

(2) The essential set-theoretic operations on HSE-Set like complement, union, intersec-

tion, OR and AND operations are established and some laws such as commutative,

associative and De Morgan are presented with suitable examples.

(3) A decision-making application regarding recruitment process is presented with the help

of proposed algorithm.

(4) A daily life based example is discussed for the understanding of decision making pro-

cess.

(5) Future work may include the extension of the presented work for other hypersoft-like

hybrids i.e. fuzzy, intuitionistic fuzzy, interval-valued fuzzy, pythagorean fuzzy etc.
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—————————————————————————————————————————

1. Introduction

Fuzzy Sets(FSs) was presented by Zadeh [22] as a class of elements with a grade of member-

ship. Kramosil and Michalek [10] defined new notion called Fuzzy Metric Space (FMS). George

and Veeramani [6] redefined the concept of FMS with the assistance of triangular norms. Af-

terward, numerous researchers have analyzed the characteristics of FMS and proved many

fixed point results. FMS has wide range of applications in applied science fields such as fixed

point theory, decision making, medical imaging and signal processing. In 1986, Atanassov [1]

defined Intuitionistic Fuzzy Sets(IFSs) by adding non - membership to FSs. Park [15] de-

fined Intuitionistic Fuzzy Metric Space (IFMS) from the concept of IFSs and given some fixed

point results. Fixed point theorems related to FMS and IFMS given by Alaca et al [2] and

numerous researchers [5,12,17]. In 1998, Smarandache [20] characterized the new idea called

neutrosophic set. In general the notion of fuzzy set and IFS deal with degree of membership
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and non - membership respectively. Neutrosophic set is a generalized state of Fuzzy and Intu-

itionistic Fuzzy Set by incorporating degree of indeterminacy. In addition, several researchers

contributed significantly to develop the neutrosophic theory. Recently, Baset et al. [3, 4] ex-

plored the neutrosophic applications in different fields such as model for sustainable supply

chain risk management, resource levelling problem in construction projects, Decision Making,

financial performance and evaluation of manufacturing industries. In 2019, Kirisci et al [11]

defined neutrosophic metric space as a generalization of IFMS and brings about fixed point

theorems in complete neutrosophic metric space. In 2020, Sowndrarajan and Jeyaraman et

al [21] proved some fixed point results in neutrosophic metric spaces.

In this paper, we define the concept of weakly commuting and R-weakly commuting mappings

in the setting of neutrosophic metric space and prove common fixed point theorems with the

help of Pant’s theorem. [14].

2. Preliminaries

Definition 2.1 [20] Let Σ be a non-empty fixed set. A Neutrosophic Set (NS for short) N

in Σ is an object having the form N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} where the functions

ξN (a), %N (a) and νN (a) represent the degree of membership, degree of indeterminacy and the

degree of non-membership respectively of each element a ∈ N to the set Σ.

A neutrosophic set N = {〈a, ξN (a), %N (a), νN (a)〉 : a ∈ Σ} is expressed as an ordered triple

N = 〈a, ξN (a), %N (a), νN (a)〉 in Σ. In NS, there is no restriction on (ξN (a), %N (a), νN (a)) other

than they are subsets of ]−0, 1+[.

Triangular Norms (TNs) were initiated by menger. Triangular Co norms(TCs) knowns as dual

operations of triangular norms.

Definition 2.2 [7] A binary operation ? : [0, 1] × [0, 1] → [0, 1] is called continuous t - norm

(CTN) if it satisfies the following conditions;

For all ζ1, ζ2, ζ3, ζ4 ∈ [0, 1]

(i) ζ1 ? 1 = ζ1;

(ii) If ζ1 ≤ ζ3 and ζ2 ≤ ζ4 then ζ1 ? ζ2 ≤ ζ3 ? ζ4;
(iii) ? is continuous;

(iv) ? is commutative and associative.

Definition 2.3 [7] A binary operation � : [0, 1]× [0, 1]→ [0, 1] is called continuous t - co norm

(CTC) if it satisfies the following conditions;

For all ζ1, ζ2, ζ3, ζ4 ∈ [0, 1]

(i) ζ1 � 0 = ζ1;
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(ii) If ζ1 ≤ ζ3 and ζ2 ≤ ζ4 then ζ1 � ζ2 ≤ ζ3 � ζ4;
(iii) � is continuous;

(iv) � is commutative and associative.

Remark 2.4 [11] From the definitions of CTN and CTC, we note that if we take

0 < ζ1, ζ2 < 1 for ζ1 < ζ2 then there exist 0 < ζ3, ζ4 < 1 such that ζ1 ?ζ3 ≥ ζ2 and ζ1 ≥ ζ2 �ζ4.
Further we choose ζ5 ∈ (0, 1) then there exists ζ6, ζ7 ∈ (0, 1) such that ζ6 ? ζ6 ≥ ζ5 and

ζ7 � ζ7 ≤ ζ5.

3. Neutrosophic Metric Spaces

In this section, we apply neutrosophic theory to generalize the intuitionistic fuzzy metric

space. we also discuss some properties and examples in it.

Definition 3.1 [21] A 6 - tuple (Σ,Ξ,Θ,Υ, ?, �)is called Neutrosophic Metric Space(NMS), if

Σ is an arbitrary non empty set, ? is a neutrosophic CTN and � is a neutrosophic CTC and

Ξ,Θ,Υ are neutrosophic sets on Σ2 × R+ satisfying the following conditions:

For all ζ, η, ω ∈ Σ, λ ∈ R+

(i) 0 ≤ Ξ(ζ, η, λ) ≤ 1; 0 ≤ Θ(ζ, η, λ) ≤ 1; 0 ≤ Υ(ζ, η, λ) ≤ 1;

(ii) Ξ(ζ, η, λ) + Θ(ζ, η, λ) + Υ(ζ, η, λ) ≤ 3;

(iii) Ξ(ζ, η, λ) = 1 if and only if ζ = η ;

(iv) Ξ(ζ, η, λ) = Ξ(η, ζ, λ) for λ > 0;

(v) Ξ(ζ, η, λ) ? Ξ(η, ζ, µ) ≤ Ξ(ζ, ω, λ+ µ), for all λ, µ > 0;

(vi) Ξ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(vii) limλ→∞Ξ(ζ, η, λ) = 1 for all λ > 0;

(viii) Θ(ζ, η, λ) = 0 if and only if ζ = η ;

(ix) Θ(ζ, η, λ) = Θ(η, ζ, λ) for λ > 0;

(x) Θ(ζ, η, λ) �Θ(ζ, ω, µ) ≥ Θ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xi) Θ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xii) limλ→∞Θ(ζ, η, λ) = 0 for all λ > 0;

(xiii) Υ(ζ, η, λ) = 0 if and only if ζ = η;

(xiv) Υ(ζ, η, λ) = Υ(η, ζ, λ) for λ > 0;

(xv) Υ(ζ, η, λ) �Υ(ζ, ω, µ) ≥ Υ(ζ, ω, λ+ µ), for all λ, µ > 0;

(xvi) Υ(ζ, η, .) : [0,∞)→ [0, 1] is neutrosophic continuous ;

(xvii) limλ→∞Υ(ζ, η, λ) = 0 for all λ > 0;

(xviii) If λ > 0 then Ξ(ζ, η, λ) = 0,Θ(ζ, η, λ) = 1,Υ(ζ, η, λ) = 1.

Then (Ξ,Θ,Υ) is called Neutrosophic Metric on Σ. The functons Ξ,Θ and Υ denote degree of

closedness, neturalness and non - closedness between ζ and η with respect to λ respectively.
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Example 3.2 [21] Let (Σ, d) be a metric space. Define ζ?η = min{ζ, η} and ζ�η = max{ζ, η},
and Ξ,Θ,Υ : Σ2 × R+ → [0, 1] defined by

Ξ(ζ, η, λ) =
λ

λ+ d(ζ, η)
; Θ(ζ, η, λ) =

d(ζ, η)

λ+ d(ζ, η)
; Υ(ζ, η, λ) =

d(ζ, η)

λ

for all ζ, η ∈ Σ and λ > 0. Then (Σ,Ξ,Θ,Υ, ?, �) is called neutrosophic metric space induced

by a metric d the standard neutrosophic metric.

Remark 3.3 [11] In neutrosophic metric space Ξ is non - decreasing , Θ is a non - increasing,

Υ is decreasing function for all ζ, η ∈ Σ.

Definition 3.4 Let (Σ,Ξ,Θ,Υ, ?, �) be neutrosophic metric space . Then

(a) {ζn} in Σ is converging to a point ζ ∈ Σ if for each λ > 0

limn→∞Ξ(ζn, ζ, λ) = 1; limn→∞Θ(ζn, ζ, λ) = 0; limn→∞Υ(ζn, ζ, λ) = 0.

(b) ζn in Σ is called a Cauchy if for each ε > 0 and λ > 0 there exist N ∈ N such that

Ξ(ζn+p, ζn, λ) = 1 ; Θ(ζn+p, ζn, λ) = 0 ; Υ(ζn+p, ζn, λ) = 0.

(c) (Σ,Ξ,Θ,Υ, ?, �) is said to be complete neutrosophic metric space if every Cauchy

sequence is convergence in it.

4. Main Results

In this section, we present some interesting concepts such as weakly commuting and R-

weakly commuting as an extensive work from Banach’s contraction principle with suitable

examples.

Theorem 4.1 Let (Σ,Ξ,Θ,Υ, ?, �) be a complete neutrosophic metric space. Let ϕ, % : Σ→ Σ

be functions satisfying the following conditions:

(i) ϕ(Σ) ⊆ %(Σ);

(ii) % is continuous;

(iii) there exists 0 ≤ k ≤ 1 such that, for all ζ, η, ω ∈ Σ

Ξ(ϕ(ζ), ϕ(η), kλ) ≥ Ξ(%(ζ), %(η), λ),

Θ(ϕ(ζ), ϕ(η), kλ) ≤ Θ(%(ζ), %(η), λ),

Υ(ϕ(ζ), ϕ(η), kλ) ≤ Υ(%(ζ), %(η), λ).

Then % and ϕ have a unique common unique fixed point in Σ provided % and ϕ commute on

Σ.

Proof: Let ζ0 ∈ Σ, from (i) we can get ζ1 such that %(ζ1) = ϕ(ζ0). By mathematical induction,

we define ζn in Σ such that %(ζn) = ϕ(ζn−1). Again by induction
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Ξ(%(ζn), %(ζn+1), λ) = Ξ(ϕ(ζn−1), ϕ(ζn), λ) ≥ Ξ(%(ζn−1), %(ζn),
λ

k
) · · · ≥ Ξ(%(ζ0), %(ζ1),

λ

kn
),

Θ(%(ζn), %(ζn+1), λ) = Θ(ϕ(ζn−1), ϕ(ζn), λ) ≤ Θ(%(ζn−1), %(ζn),
λ

k
) · · · ≤ Θ(%(ζ0), %(ζ1),

λ

kn
),

Υ(%(ζn), %(ζn+1), λ) = Υ(ϕ(ζn−1), ϕ(ζn), λ) ≤ Υ(%(ζn−1), %(ζn),
λ

k
) · · · ≤ Υ(%(ζ0), %(ζ1),

λ

kn
),

for all n > 0 and λ > 0. Thus, for any non-negative integer p, we have

Ξ(%(ζn), %(ζn+p), λ) ≥ Ξ%(ζn), %(ζn+1),
λ

k
) ? · · ·(p−times) · · · ? Ξ(%(ζn+p−1), %(ζn+p),

λ

k
)

≥ Ξ(%(ζ0), %(ζ1),
λ

pkn
) ? · · ·(p−times) · · · ? Ξ(%(ζ0), %(ζ1),

λ

pkn+p−1
),

Θ(%(ζn), %(ζn+p), λ) ≤ Θ(%(ζn), %(ζn+1),
λ

k
) � · · ·(p−times) · · · �Θ(%(ζn+p−1), %(ζn+p),

λ

k
)

≤ Θ(%(ζ0), %(ζ1),
λ

pkn
) � · · ·(p−times) · · · �Θ(%(ζ0), %(ζ1),

λ

pkn+p−1
),

Υ(%(ζn), %(ζn+p), λ) ≤ Υ(%(ζn), %(ζn+1),
λ

k
) � · · ·(p−times) · · · �Υ(%(ζn+p−1), %(ζn+p),

λ

k
)

≤ Υ(%(ζ0), %(ζ1),
λ

pkn
) � · · ·(p−times) · · · �Υ(%(ζ0), %(ζ1),

λ

pkn+p−1
).

by conditions (vii), (xii) and (xvii) of definition (3.1), we get

limn→∞Ξ(%(ζ0), %(ζ1),
λ

pkn
) = 1,

limn→∞Θ(%(ζ0), %(ζ1),
λ

pkn
) = 0,

limn→∞Υ(%(ζ0), %(ζ1),
λ

pkn
) = 0.

It follows that

limn→∞Ξ(%(ζn), %(ζn+p), λ) ≥ 1 ? · · ·(p−times) · · · ? 1 = 1,

limn→∞Θ(%(ζn), %(ζn+p), λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0,

limn→∞Υ(%(ζn), %(ζn+p), λ) ≤ 0 � · · ·(p−times) · · · � 0 = 0.

Since Σ is complete NMS, {%(ζn)} is a Cauchy sequence that converges to a point η and

ϕ(ζn−1) = %(ζn) converges to the same point η. From (iii), it is shown that continuity of %

implies continuity of ϕ. Hence, {ϕ(%(ζn))} converges to ϕ(η). However, % and ϕ are commute

on Σ, ϕ(%(ζn)) = %(ϕ(ζn)) and so %(ϕ(ζn)) converges to %(η). Thus %(η) = ϕ(η), which implies

%(%(η)) = %(ϕ(η)). Thus, we get
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Ξ(ϕ(η), ϕ(ϕ(η)), λ) ≥ Ξ(%(η), %(ϕ(η)),
λ

k
)

≥ Ξ(ϕ(η), ϕ(ϕ(η)),
λ

k
)

≥ · · ·

≥ Ξ(ϕ(η), ϕ(ϕ(η)),
λ

kn
),

Θ(ϕ(η), ϕ(ϕ(η)), λ) ≤ Θ(%(η), %(ϕ(η)),
λ

k
)

≤ Θ(ϕ(η), ϕ(ϕ(η)),
λ

k
)

≤ · · ·

≤ Θ(ϕ(η), ϕ(ϕ(η)),
λ

kn
),

Υ(ϕ(η), ϕ(ϕ(η)), λ) ≤ Υ(%(η), %(ϕ(η)),
λ

k
)

≤ Υ(ϕ(η), ϕ(ϕ(η)),
λ

k
)

≤ · · ·

≤ Υ(ϕ(η)), ϕ(ϕ(η)),
λ

kn
).

Therefore from the definition of (3.1), it follows that ϕ(η) = ϕ(ϕ(η)). Thus ϕ(η) = ϕ(ϕ(η)) =

%(ϕ(η)). Hence ϕ(η) is a common fixed point of the mappings % and ϕ.

To prove uniqueness, let us assume η and ω are two fixed points of % and ϕ, then

1 ≥ Ξ(ζ, ω, λ) = Ξ(ϕ(η), ϕ(ω), λ) ≥ Ξ(%(ζ), %(ω),
λ

k
)

= Ξ(η, ω,
λ

k
) ≥ · · · ≥ Ξ(ζ, ω,

λ

kn
),

0 ≤ Θ(ζ, ω, λ) = Θ(ϕ(η), ϕ(ω), λ) ≤ Θ(%(ζ), %(ω),
λ

k
)

= Θ(η, ω,
λ

k
) ≤ · · · ≤ Θ(ζ, ω,

λ

kn
),

0 ≤ Υ(ζ, ω, λ) = Υ(ϕ(η), ϕ(ω), λ) ≤ Υ(%(ζ), %(ω),
λ

k
)

= Υ(η, ω,
λ

k
) ≤ · · · ≤ Υ(ζ, ω,

λ

kn
).

From the definition(3.1), we get

lim
n→∞

Ξ(η, ω,
λ

kn
) = 1, lim

n→∞
Θ(η, ω,

λ

kn
) = 0, lim

n→∞
Υ(η, ω,

λ

kn
) = 0.

It follows that

1 ≥ Ξ(η, ω, λ) ≥ 1, 0 ≤ Θ(η, ω, λ) ≤ 0, 0 ≤ Υ(η, ω, λ) ≤ 0,

which states that η = ω. Hence, we obtain a unique common fixed point of both ϕ and %.
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Example 4.2 Let Σ = { 1n ;n ∈ N} with the standard metric d(ζ, η) = |ζ − η|. For all ζ, η ∈ Σ

and λ ∈ [0,∞), define

Ξ(ζ, η, λ) =

0, if λ = 0

λ
λ+d(ζ,η) , if λ > 0

Θ(ζ, η, λ) =

1 if λ = 0

d(ζ,η)
kλ+d(ζ,η) if k > 0, λ > 0

Υ(ζ, η, λ) =
d(ζ, η)

λ
if λ > 0.

for all ζ, η ∈ Σ and λ > 0. Then (Σ,Ξ,Θ,Υ, ?, �) is called complete neutrosophic metric space

on Σ, Here ? is defined by ζ ? η = ζη and � is defined as ζ � η = min{1, ζ + η}. Define

ϕ(ζ) = ζ
9 ; %(ζ) = ζ

3 . Clearly ϕ(Σ) ⊆ %(Σ), Also for k = 1
3 , we get

Ξ(ϕ(ζ), ϕ(η),
λ

3
) =

λ
3

λ
3 + d(ϕ(ζ), ϕ(η))

≥ λ

λ+ d(ζ,η)
3

= Ξ(%(ζ), %(η), λ),

Similarly, we get

Θ(ϕ(ζ), ϕ(η),
λ

3
) ≤ Θ(%(ζ)%(η), λ),

Υ(ϕ(ζ), ϕ(η),
λ

3
) ≤ Υ(%(ζ), %(η), λ).

Hence the conditions in Theorem (4.1) are satisfied and so % and ϕ have common fixed point

0.

Definition 4.3 [18] Let % and ϕ be two self mappings from neutrosophic metric space

(Σ,Ξ,Θ,Υ, ?, �) into itself. The mappings % and ϕ is called weakly commuting if for all

ζ ∈ Σ

Ξ(%ϕ(ζ)) ≥ Ξ(ϕ%(ζ)), Θ(%ϕ(ζ)) ≤ Θ(ϕ%(ζ)), Υ(%ϕ(ζ)) ≤ Υ(ϕ%(ζ)).

Definition 4.4 Let % and ϕ be two self mappings from neutrosophic metric space

(Σ,Ξ,Θ,Υ, ?, �) into itself. The mappings % and ϕ is called R-weakly commuting if there

exist a positive real number R such that for all ζ ∈ Σ.

Ξ(%ϕ(ζ), ϕ%(ζ), λ) ≥ Ξ(ϕ(ζ), %(ζ),
λ

R
),

Θ(%ϕ(ζ), ϕ%(ζ), λ) ≤ Θ(ϕ(ζ), %(ζ),
λ

R
),

Υ(%ϕ(ζ), ϕ%(ζ), λ) ≤ Υ(ϕ(ζ), %(ζ),
λ

R
).

Remark 4.5 In Neutrosophic metric spaces, Weak commutativity implies R-weak commuta-

tivity, but weak commutativity can be derived from R-weakly commuting only when R ≤ 1.
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Example 4.6 Let Σ = R be set of all real numbers. ? and � defined by a ? b = ab, a � b =

min{1, a+ b}, define d(ζ, η) = |ζ − η|

Ξ(ζ, η, λ) =

(
exp

(
d(ζ, η)

λ

))−1
,

Θ(ζ, η, λ) =

exp

(
d(ζ,η)
λ

)
− 1

exp

(
d(ζ,η)
λ

) ,

Υ(ζ, η, λ) = exp

(
d(ζ, η)

λ

)
.

for all ζ, η ∈ Σ and λ > 0. Then (Σ,Ξ,Θ,Υ, ?, �) is a neutrosophic metric space. We define

%(ζ) = 2ζ − 1 and g(ζ) = ζ2. Then , we have

Ξ(%ϕ(ζ), ϕ%(η), λ) =

(
exp

(
2
d(ζ, η)2

λ

))−1
,

Θ(%ϕ(ζ), ϕ%(η), λ) =

exp

(
2d(ζ,η)

2

λ

)
− 1

exp

(
2d(ζ,η)

2

λ

) ,

Υ(%ϕ(ζ), ϕ%(η), λ) = exp

(
2
d(ζ, η)2

λ

)
.

Also, we have,

Ξ(%(ζ), ϕ(η),
λ

2
) =

(
exp

(
2
d(ζ, η)2

λ

))−1
,

Θ(%(ζ), ϕ(η),
λ

2
) =

exp

(
2d(ζ,η)

2

λ

)
− 1

exp

(
2d(ζ,η)

2

λ

) ,

Υ(%(ζ), ϕ(η),
λ

2
) = exp

(
2
d(ζ, η)2

λ

)
.

Therefore, the self mappings % and ϕ are R-weakly commuting only for R = 2, but converse

is not true since the exponential function is non-decreasing.

Now, we define R-weakly commuting on Σ and prove the neutrosophic version of Pant’s theo-

rem.

Definition 4.7 Let (Σ,Ξ,Θ,Υ, ?, �) is a neutrosophic metric space and % and ϕ be R-weakly

commuting self-mappings of Σ satisfying the following condition:

Ξ(%(ζ), %(η), λ) ≥ r Ξ(ϕ(ζ), ϕ(η), λ)

Θ(%(ζ), %(η), λ) ≤ r Θ(ϕ(ζ), ϕ(η), λ)

Υ(%(ζ), %(η), λ) ≤ r Υ(ϕ(ζ), ϕ(η), λ)
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for all ζ, η ∈ Σ. where r : R+ → R+ is a continuous function such that r(λ) < λ for all λ > 0.

By hypothesis of theorem, % and ϕ have a unique common fixed point in Σ.

Now, we prove the neutrosophic version of Pant’s theorem.

Theorem 4.8 Let (Σ,Ξ,Θ,Υ, ?, �) is a complete neutrosophic metric space and % and ϕ be

R-weakly commuting self-mappings of Σ satisfying the following condition:

(i) ϕ(Σ) ⊆ %(Σ);

(ii) % or ϕ is continuous;

(iii) There exists 0 ≤ λ ≤ 1 such that, for all ζ, η, ω ∈ Σ

Ξ(%(ζ), %(η), λ) ≥ γ(Ξ(ϕ(ζ), ϕ(η), λ)),

Θ(%(ζ), %(η), λ) ≤ γ′(Θ(ϕ(ζ), ϕ(η), λ)),

Υ(%(ζ), %(η), λ) ≤ γ′′(Υ(ϕ(ζ), ϕ(η), λ)),

where γ, γ
′
and γ

′′
: [0 1]→ [0 1] are continuous function such that γ(λ) > λ, γ

′
(λ) < λ

and γ
′′
(λ) < λ.

(iv) If the sequence {ζn} and {ηn} in Σ are such that, for all ζ, η ∈ Σ and λ > 0,

limn→∞ζn = ζ and limn→∞ηn = η implies,

limn→∞Ξ(ζn, ηn, λ) = Ξ(ζ, η, λ),

limn→∞Θ(ζn, ηn, λ) = Θ(ζ, η, λ),

limn→∞Υ(ζn, ηn, λ) = Υ(ζ, η, λ).

Then % and ϕ have a unique common unique fixed point in Σ.

Proof. Let ζ0 be an arbitrary point in Σ. By the condition (i), Let ζ1 ∈ Σ such that %(ζ0) =

ϕ(ζ1). So we choose ζn+1 such that %(ζn) = ϕ(ζn+1) for all n ≥ 0. Then, for all λ > 0,

Ξ(%(ζn), %(ζn+1), λ) ≥ γ(Ξ(ϕ(ζn), ϕ(ζn+1), λ))

= γ(Ξ(%(ζn−1), %(ζn), λ)

> Ξ(%(ζn−1), %(ζn), λ) (4.8.1)

Θ(%(ζn), %(ζn+1), λ) ≤ γ′(Θ(ϕ(ζn), ϕ(ζn+1), λ))

= γ
′
(Θ(%(ζn−1), %(ζn), λ)

< Θ(%(ζn−1), %(ζn), λ) (4.8.2)

Υ(%(ζn), %(ζn+1), λ) ≤ γ′′(Υ(ϕ(ζn), ϕ(ζn+1), λ))

= γ
′′
(Υ(%(ζn−1), %(ζn), λ)

< Υ(%(ζn−1), %(ζn), λ) (4.8.3)

since γ(λ) > λ, γ
′
(λ) < λ and γ

′′
(λ) < λ for all 0 < λ < 1. Thus
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{Ξ(%(ζn), %(ζn+1), λ)} is an increasing sequence of positive real numbers in [0, 1] and

{Θ(%(ζn), %(ζn+1), λ)}, {Υ(%(ζn), %(ζn+1), λ)} is a decreasing sequence of positive real num-

ber in [0, 1]. Therefore, they converge to the limits S ≤ 1, S
′
< 0 and S

′′
< 0, respectively.

Now, we claim that S = 1, S
′

= 0 and S
′′

= 0. For, let S < 1. Letting n → ∞ in (4.8.1), we

have S ≥ γ(S) > S, which is a contradiction and so S = 1. Similarly, let S
′
> 0 and S

′′
> 0.

Letting n→∞ in (4.8.2) and (4.8.3), we have S
′ ≥ γ(S

′
) > S

′
and S

′′ ≥ γ(S
′′
) > S

′′
. which

is a contradiction and so S
′

= 0 and S
′′

= 0.

Now for any positive integer p and λ > 0, we get

Ξ(%(ζn), %(ζn+p), λ) ≥ Ξ(%(ζn), %(ζn+1),
λ

p
) ? · · · ? Ξ(%(ζn+p−1), %(ζn+p),

λ

p
)

≥ Ξ(%(ζn), %(ζn+1),
λ

p
) ? · · · ? Ξ(%(ζn), %(ζn+1),

λ

p
),

Θ(%(ζn), %(ζn+p), λ) ≤ Θ(%(ζn), %(ζn+1),
λ

p
) � · · · �Θ(%(ζn+p−1), %(ζn+p),

λ

p
)

≤ Θ(%(ζn), %(ζn+1),
λ

p
) � · · · �Θ(%(ζn), %(ζn+1),

λ

p
),

Υ(%(ζn), %(ζn+p), λ) ≤ Υ(%(ζn), %(ζn+1),
λ

p
) � · · · �Υ(%(ζn+p−1), %(ζn+p),

λ

p
)

≤ Υ(%(ζn), %(ζn+1),
λ

p
) � · · · �Υ(%(ζn), %(ζn+1),

λ

p
).

Since, we have

limn→∞Ξ(%(ζn), %(ζn+1),
λ

p
) = 1,

limn→∞Θ(%(ζn), %(ζn+1),
λ

p
) = 0,

limn→∞Υ(%(ζn), %(ζn+1),
λ

p
) = 0.

It follows that

limn→∞Ξ(%(ζn), %(ζn+p),
λ

p
) ≥ 1 ? · · · ? 1 ≥ 1,

limn→∞Θ(%(ζn), %(ζn+p),
λ

p
) ≤ 0 � · · · � ≤ 0,

limn→∞Υ(%(ζn), %(ζn+p),
λ

p
) ≤ 0 � · · · � ≤ 0.

Thus, by definition (3.4), {%(ζn)} is a Cauchy sequence and by the completeness of Σ,

{%(ζn)}converges to a point ω ∈ Σ. Also, {ϕ(ζn)} converges to the point ω.

Suppose that, by (ii) the mapping % is continuous. Then limn→∞%%(ζn) = %(ω) and

limn→∞%ϕ(ζn) = %(ω). Further, since % and ϕ are R-weakly commuting, we have
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Ξ(%ϕ(ζn), ϕ%(ζn), λ) ≥ Ξ(%(ζn), ϕ(ζn),
λ

R
),

Θ(ϕ%(ζn), %ϕ(ζn), λ) ≤ Θ(%(ζn), ϕ(ζn),
λ

R
),

Υ(ϕ%(ζn), %ϕ(ζn), λ) ≤ Υ(%(ζn), ϕ(ζn),
λ

R
).

Letting n→∞ by the definition of NMS, we have limn→∞ϕ%(ζn) = %(ω.)
Now, we show that ω = %(ω). Suppose ω 6= %(ω). Then there exists λ > 0 such that

Ξ(ω, %(ω), λ) < 1, Θ(ω, %(ω), λ) > 1, Υ(ω, %(ω), λ) > 1.

By (iii), we have

Ξ(%(ζn), %%(ζn), λ) ≥ γ(Ξ(ϕ(ζn), ϕ%(ζn), λ)),

Θ(%(ζn), %%(ζn), λ) ≤ γ′(Θ(ϕ(ζn), ϕ%(ζn), λ)),

Υ(%(ζn), %%(ζn), λ) ≤ γ′′(Υ(ϕ(ζn), ϕ%(ζn), λ)).

Letting n→∞ in the above inequalities, we get

Ξ(ω, %(ω), λ) ≥ γ(Ξ(ω, %(ω), λ)) > Ξ(ω, %(ω), λ),

Θ(ω, %(ω), λ) ≤ γ′(Θ(ω, %(ω), λ)) < Θ(ω, %(ω), λ),

Υ(ω, %(ω), λ) ≤ γ′′(Υ(ω, %(ω), λ)) < Υ(ω, %(ω), λ).

Which are contradiction. Therefore, ω = %(ω). By condition (i), we can find a point ω1 ∈ Σ

such that ω = %(ω) = ϕ(ω1). Now, it follows that,

Ξ(%%(ζn), %(ζ1), λ) ≥ γ(Ξ(ϕ%(ζn), ϕ(ζ1), λ)),

Θ(%%(ζn), %(ζ1), λ) ≤ γ′(Θ(ϕ%(ζn), ϕ(ζ1), λ)),

Υ(%%(ζn), %(ζ1), λ) ≤ γ′′(Υ(ϕ%(ζn), ϕ(ζ1), λ)).

Letting n→∞ in the above inequalities, we have

Ξ(%(ω), %(ω1), λ) ≥ γ(Ξ(%(ω), ϕ(ω1), λ)) = 1,

Θ(%(ω), %(ω1), λ) ≤ γ′(Θ(%(ω), ϕ(ω1), λ)) = 0,

Υ(%(ω), %(ω1), λ) ≤ γ′′(Υ(%(ω), ϕ(ω1), λ)) = 0.

which implies that %(ω) = %(ω1) since γ(λ) = 1, γ
′
(λ) = 0 and γ

′′
(λ) = 0 for λ = 1. So, we

get ω = %(ω) = %(ω1) = ϕ(ω1). For any λ > 0,

Ξ(%(ζ), ϕ(ζ), λ) = Ξ(%ϕ(ζ1), ϕ%(ζ1), λ)) ≥ Ξ(%(ζ1), ϕ(ζ)1),
λ

R
) = 1,

Θ(%(ζ), ϕ(ζ), λ) = Θ(%ϕ(ζ1), ϕ%(ζ1), λ)) ≤ Θ(%(ζ1), ϕ(ζ)1),
λ

R
) = 0,

Υ(%(ζ), ϕ(ζ), λ) = Υ(%ϕ(ζ1), ϕ%(ζ1), λ)) ≤ Υ(%(ζ1), ϕ(ζ)1),
λ

R
) = 0.

Which again implies that %(ω) = ϕ(ω). Hence ω is a common fixed point of % and ϕ. Next,
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we prove the uniqueness, let η (η 6= ω) be another common fixed point of % and ϕ. Then there

exists λ > 0 such that,Ξ(ω, η, λ) < 1,Θ(ω, η, λ) > 0,Υ(ω, η, λ) > 0 and

Ξ(ω, η, λ) = Ξ(%(ζ), ϕ(ζ), λ) ≥ γ(Ξ(ϕ(ω), ϕ(η), λ)) = γ(Ξ(ω, η, λ) > Ξ(ω, η, λ),

Θ(ω, η, λ) = Θ(%(ζ), ϕ(ζ), λ) ≤ γ′(Θ(ϕ(ω), ϕ(η), λ)) = γ
′
(Θ(ω, η, λ) < Θ(ω, η, λ),

Υ(ω, η, λ) = Υ(%(ζ), ϕ(ζ), λ) ≤ γ′′(Υ(ϕ(ω), ϕ(η), λ)) = γ
′′
(Υ(ω, η, λ) < Υ(ω, η, λ).

Which is a contradiction. Since γ(λ) > λ, γ
′
(λ) < λ and γ

′′
(λ) < λ for any 0 < λ < 1.

Therefore η = ω. Hence η is the only common fixed point of % and ϕ. Hence Proved.

Now, we prove an example to validate the above theorem.

Example 4.9 Let Σ = { 1n ;n ∈ N} ∪ {0} with metric d defined by d(ζ, η) = |ζ − η| . For all

ζ, η ∈ Σ and λ ∈ (0,∞), define

Ξ(ζ, η, λ) =
λ

λ+ |ζ − η|
; Θ(ζ, η, λ) =

|ζ − η|
λ+ |ζ − η|

; Υ(ζ, η, λ) =
|ζ − η|
λ

Clearly (Σ,Ξ,Θ,Υ, ?, �) is a complete neutrosophic metric space on Σ. Here ? is defined by

ζ ? η = ζη and � is defined as ζ � η = min{1, ζ + η}.
Define

%(ζ) = 1, ϕ(ζ) =

1, if ζ is a rational number

0, if ζ is an irrational number.

It is evident that % ⊂ ϕ, also % is continuous and ϕ is discontinuous. Define a function

γ : [0, 1]→ [0, 1] by γ(λ) =
√
λ for any 0 < λ < 1 and γ(λ) = 1 for λ = 1, γ

′
: [0, 1]→ [0, 1] by

γ
′
(λ) = λ2 for any 0 < λ < 1 and γ

′
(λ) = 0, for λ = 0. Next, we define γ

′′
: [0, 1] → [0, 1] by

γ
′′
(λ) = λ2 for any 0 < λ < 1 and γ

′′
(λ) = 0, for λ = 0. Then γ(λ) > λ γ

′
(λ) < λ γ

′′
(λ) < λ

for any 0 < λ < 1 , we have

Ξ(%(ζ), %(η), λ) ≥ γΞ(ϕ(ζ), ϕ(η), λ),

Θ(%(ζ), %(η), λ) ≤ γ′Θ(ϕ(ζ), ϕ(η), λ),

Υ(%(ζ), %(η), λ) ≤ γ′′Υ(ϕ(ζ), ϕ(η), λ).

for all ζ, η ∈ Σ. Also % and ϕ are R- weakly commuting. Thus, all the conditions of Theorem

(4.8) are satisfied and so % and ϕ have 1 as a common fixed point.

Conclusion: In this manuscript, we explored new results in the notion of neutrosophic metric

spaces (NMS) due to Kirisci, Simsek. We first formulated the definition of weakly commuting

and R-weakly commuting mappings in NMS and proved the neutrosophic version of Pant’s

theorem. Also, we have given some examples to validate our results.
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Abstract. In this study, a neutrosophic N−subalgebra and a level set of a neutrosophic N−structure are

defined on Sheffer stroke Hilbert algebras. By determining a subalgebra on Sheffer stroke Hilbert algebras, it is

proved that the level set of neutrosophic N−subalgebras on this algebra is its subalgebra and vice versa. It is

stated that the family of all neutrosophic N−subalgebras of a Sheffer stroke Hilbert algebra forms a complete

distributive lattice. Finally, a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra is described and some

of properties are given. Also, it is shown that every neutrosophic N−ideal of a Sheffer stroke Hilbert algebra

is its neutrosophic N−subalgebra but the inverse is generally not valid.

Keywords: Sheffer stroke (Hilbert algebra); ideal; neutrosophic N−subalgebra; neutrosophic N−ideal.

—————————————————————————————————————————-

1. Introduction

The Sheffer operation (or, Sheffer stroke) was originally introduced by H. M. Sheffer [29].

Because Sheffer stroke, which is also called NAND operator, is one of the two operators that

can be used by itself without any other logical operators, to construct a logical system, any

axiom of the system is restated by only this operation.. Thus, it is easy to control some

properties of the new constructed system. Since the axioms of Boolean algebra, which is an

algebraic counterpart of the well-known classical propositional calculi, can be written by only

using the Sheffer operation [21], it causes that the Sheffer stroke is applied to many algebraic

structures such as orthoimplication algebras [1], ortholattices [8], Sheffer stroke non-associative

MV-algebras [9] and its filters [24], Sheffer stroke BL-algebras and (fuzzy) filters [25], Sheffer

stroke UP-algebras [26] and Sheffer stroke BG-algebras [27]. Besides, Hilbert algebras, which

were introduced by Henkin and Skolem [12], are algebraic parts of the propositional logic
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including the implication operator and the constant element 1 [28]. Also,these algebras are

dual to positive implicative BCK-algebras [10], [13, 14]. Specially, Busneag and Diego widely

studied on Hilbert algebras and the related notions [4–6] and [11]. Recently, Oner et al.

presented Hilbert algebras with Sheffer operation and its (fuzzy) filters [22]- [23].

On the other side, Atanassov introduced the degree of nonmembership(or falsehood (f)) and

intuitionistic fuzzy sets [2] which are generalizations of fuzzy sets [33] with the degree of mem-

bership (or truth (t)). Then Smarandache introduced the degree of indeteminacy/neutrality

and neutrosophic sets which are generalizations of intuitionistic fuzzy sets with the degrees of

membership and nonmembership [30,31]. In a sence, there exist three functions called member-

ship (t), indeteminacy (i) and nonmembership (f) functions in neutrosophic sets. Particularly,

Jun et al. applied neutrospohic sets to BCK/BCI-algebras and semigroups [3,7,15–20,32,34].

We give general definitions and notions of Sheffer stroke Hilbert algebras, N−functions and

neutrosophic N−structures defined by these functions on a nonempty universe X. Then a

neutrosophic N−subalgebra and a (α, β, γ)−level set are defined by means of N−functions

on Sheffer stroke Hilbert algebras. After describing a subalgebra of Sheffer stroke Hilbert

algebras, we show that the (α, β, γ)−level set of a neutrosophic N−subalgebra defined by its

N−functions on this algebra is its subalgebra and the inverse is also valid. Also, it is proved

that the family of all neutrosophic N−subalgebras of a Sheffer stroke Hilbert algebra forms

a complete distributive lattice. Some properties of neutrosophic N−subalgebras of a Sheffer

stroke Hilbert algebra are investigated. Moreover, a neutrosophic N−ideal of a Sheffer stroke

Hilbert algebra is defined by means of N−functions and it is demonstrated that N−functions

which define a neutrosophicN−ideal of a Sheffer stroke Hilbert algebra are order-preserving. It

is stated that (α, β, γ)−level set of a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra

is its ideal and the inverse holds. Besides, some features of a neutrosophic N−ideal of a

Sheffer stroke Hilbert algebra are presented and it is shown that every neutrosophic N−ideal

of a Sheffer stroke Hilbert algebra is its neutrosophic N−subalgebra but the inverse is not

valid in general. Finally, new subsets of a Sheffer stroke Hilbert algebra are determined by

N−functions on the algebra and it is shown that these subsets are ideals of a Sheffer stroke

Hilbert algebra for its neutrosophic N−ideal. However, the validity of the inverse is satisfied

under the special conditions.

2. Preliminaries

In this section, basic definitions and notions about Sheffer stroke Hilbert algebras and

neutrosophic N−structures.

Definition 2.1. [8] Let H = 〈H, |〉 be a groupoid. The operation | is said to be a Sheffer

stroke operation if it satisfies the following conditions:
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(S1) x|y = y|x,
(S2) (x|x)|(x|y) = x,

(S3) x|((y|z)|(y|z)) = ((x|y)|(x|y))|z,
(S4) (x|((x|x)|(y|y)))|(x|((x|x)|(y|y))) = x.

Definition 2.2. [22] A Sheffer stroke Hilbert algebra is a structure 〈H, |〉 of type (2), in which

H is a non-empty set and | is a Sheffer stroke operation on H such that the following identities

are satisfied for all x, y, z ∈ H:

(SHa1) (x|((y|(z|z))|(y|(z|z))))|(((x|(y|y))|((x|(z|z))|(x|(z|z))))|((x|(y|y))|((x|(z|z))|(x|(z|
z))))) = x|(x|x),

(SHa2) If x|(y|y) = y|(x|x) = x|(x|x) then x = y.

Lemma 2.3. [22] Let 〈H, |〉 be a Sheffer Stroke Hilbert algebra. Then the following identities

hold for all x ∈ H:

(i) x|(x|x) = 1,

(ii) x|(1|1) = 1,

(iii) 1|(x|x) = x.

Lemma 2.4. [22] Let 〈H, |〉 be a Sheffer stroke Hilbert algebra. Then the relation x ≤ y iff

x|(y|y) = 1 is a partial order on H, that will be called natural ordering on H. With respect to

this ordering, 1 is the largest element of H.

If a Sheffer stroke Hilbert algebra 〈H, |〉 has the least element 0, then a unary operation ∗

can be defined by x∗ = x|(0|0), for all x in H [22].

Lemma 2.5. [22] Let 〈H, |〉 be a Sheffer stroke Hilbert algebra with 0. Then the followings

hold, for all x ∈ H

(i) 0|0 = 1 and 1|1 = 0,

(ii) 1∗ = 0 and 0∗ = 1,

(iii) x|1 = x|x,
(iv) x∗ = x|x,
(v) x|0 = 1,

(vi) (x∗)∗ = x,

(vii) x|x∗ = 1.

Definition 2.6. [22] A non-empty subset I of H is called an ideal if

(SSHI1) 0 ∈ I,

(SSHI2) (x|(y|y))|(x|(y|y)) ∈ I and y ∈ I imply x ∈ I for all x, y ∈ H.

Theorem 2.7. [22] Let I be a subset of H such that 0 ∈ I. Then I is an ideal of H if and

only if x ≤ y and y ∈ I imply x ∈ I for all x ∈ H.
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Definition 2.8. [15] F(X, [−1, 0]) denotes the collection of functions from a set X to [−1, 0]

and a element of F(X, [−1, 0]) is called a negative-valued function from X to [−1, 0] (briefly,

N−function on X). An N−structure refers to an ordered pair (X, f) of X and N−function

f on X.

Definition 2.9. [20] A neutrosophic N−structure over a nonempty universe X is defined by

XN :=
X

(TN , IN , FN )
= { x

(TN (x), IN (x), FN (x))
: x ∈ X},

where TN , IN and FN are N−function on X, called the negative truth membership function,

the negative indeterminacy membership function and the negative falsity membership function,

respectively.

Every neutrosophic N−structure XN over X satisfies the condition

(∀x ∈ X)(−3 ≤ TN (x) + IN (x) + FN (x) ≤ 0).

Definition 2.10. [16] Let XN be a neutrosophic N−structure on a set X and α, β, γ be any

elements of [−1, 0] such that −3 ≤ α+ β + γ ≤ 0. Consider the following sets:

TαN := {x ∈ X : TN (x) ≤ α},

IβN := {x ∈ X : IN (x) ≥ β}

and

F γN := {x ∈ X : FN (x) ≤ γ}.

The set

XN (α, β, γ) := {x ∈ X : TN (x) ≤ α, IN (x) ≥ β and TN (x) ≤ γ}

is called the (α, β, γ)−level set of XN . Moreover, XN (α, β, γ) = TαN ∩ I
β
N ∩ F

γ
N .

Consider sets

Xwt
N := {x ∈ X : TN (x) ≤ TN (wt),

Xwi
N := {x ∈ X : IN (x) ≥ IN (wi)

and

X
wf

N := {x ∈ X : FN (x) ≤ FN (wf ),

for any wt, wi, wf ∈ X. Obviously, wt ∈ Xwt
N , wi ∈ Xwi

N and wf ∈ X
wf

N [16].
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3. Neutrosophic N−structures

In this section, we present neutrosophic N−subalgebras and neutrosophic N−ideals on

Sheffer stroke Hilbert algebras. Unless otherwise specified, H states a Sheffer stroke Hilbert

algebra.

Definition 3.1. A neutrosophic N−subalgebra HN on a Sheffer stroke Hilbert algebra H is

called a neutrosophic N−structure of H satisfying the conditions

TN ((x(y|y))|(x(y|y))) ≤
∨
{TN (x), TN (y)},

IN ((x(y|y))|(x(y|y))) ≥
∧
{IN (x), IN (y)}

and

FN ((x(y|y))|(x(y|y))) ≤
∨
{FN (x), FN (y)},

for all x, y ∈ H.

Example 3.2. Consider a Sheffer stroke Hilbert algebra 〈H, |〉, where the set H = {0, p, q, 1}
and the Sheffer operation | on H has the Cayley table as below [22]:

Table 1

| 1 p q 0

1 0 q p 1

p q q 1 1

q p 1 p 1

0 1 1 1 1

A neutrosophic N−structure HN = { 0

(−0.81,−0.13,−0.47)
,

p

(−0.69,−0.32,−0.35)
,

q

(−0.69,−0.32,−0.35)
,

1

(−0.56,−0.99,−0.42)
} on H is a neutrosophic N−subalgebra of H.

Definition 3.3. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra

H and α, β, γ be any elements of [−1, 0] such that −3 ≤ α+ β + γ ≤ 0. For the sets

TαN := {x ∈ H : TN (x) ≤ α},

IβN := {x ∈ H : IN (x) ≥ β}

and

F γN := {x ∈ H : FN (x) ≤ γ},

the set

HN (α, β, γ) := {x ∈ H : TN (x) ≤ α, IN (x) ≥ β and FN (x) ≤ γ}

is called the (α, β, γ)−level set of HN . Also, HN (α, β, γ) = TαN ∩ I
β
N ∩ F

γ
N .
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Definition 3.4. A nonempty subset G of a Sheffer stroke Hilbert algebra H is called a sub-

algebra of H if (x|(y|y))|(x|(y|y)) ∈ G, for all x, y ∈ G.

Example 3.5. Consider the Sheffer stroke Hilbert algebra H in Example 3.2. Then {0, 1} is

a subalgebra of H.

Theorem 3.6. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra H

and α, β, γ be any elements of [−1, 0] such that −3 ≤ α+ β + γ ≤ 0. If HN is a neutrosophic

N−subalgebra of H, then the nonempty (α, β, γ)−level set of HN is a subalgebra of H.

Proof. Let HN be a neutrosophic N−subalgebra of H and x, y be any elements of HN (α, β, γ).

Then TN (x) ≤ α, IN (x) ≥ β, FN (x) ≤ γ and TN (y) ≤ α, IN (y) ≥ β, FN (y) ≤ γ. Thus, it is

obtained that

TN ((x(y|y))|(x(y|y))) ≤
∨
{TN (x), TN (y)} ≤ α,

IN ((x(y|y))|(x(y|y))) ≥
∧
{IN (x), IN (y)} ≥ β

and

FN ((x(y|y))|(x(y|y))) ≤
∨
{FN (x), FN (y)} ≤ γ,

for all x, y ∈ H. So, (x|(y|y))|(x|(y|y)) ∈ HN (α, β, γ) which means that HN (α, β, γ) is a

subalgebra of H.

Theorem 3.7. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra H

and TαN , I
β
N and F γN be subalgebras of H, for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0.

Then HN is a neutrosophic N−subalgebra of H.

Proof. Let TαN , I
β
N and F γN be subalgebras of H, for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β +

γ ≤ 0. Suppose that x and y be any elements of H such that a = TN ((x(y|y))|(x(y|y))) >∨
{TN (x), TN (y)} = b. Then b < α1 < a where α1 =

1

2
(a + b) ∈ [−1, 0). Thus, x, y ∈

Tα1
N but (x(y|y))|(x(y|y)) /∈ Tα1

N which is a contradiction. Hence, TN ((x(y|y))|(x(y|y))) ≤∨
{TN (x), TN (y)}, for all x, y ∈ H.

Assume that x and y be any elements of H such that u = IN ((x(y|y))|(x(y|y))) <∧
{IN (x), IN (y)} = v. Then u < β1 < v in which β1 =

1

2
(u + v) ∈ [−1, 0). So,

x, y ∈ Iβ1N while (x(y|y))|(x(y|y)) /∈ Iβ1N which is a contradiction. Thus, IN ((x(y|y))|(x(y|y))) ≥∧
{IN (x), IN (y)}, for all x, y ∈ H.

Suppose that x and y be any elements of H such that m = FN ((x(y|y))|(x(y|y))) >∨
{FN (x), FN (y)} = n. Then n < γ1 < m where γ1 =

1

2
(m + n) ∈ [−1, 0). Hence, x, y ∈ F γ1N

but (x(y|y))|(x(y|y)) /∈ F γ1N which is a contradiction. Therefore, FN ((x(y|y))|(x(y|y))) ≤∨
{FN (x), FN (y)}, for all x, y ∈ H.

Thereby, HN is a neutrosophic N−subalgebra of H.
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Theorem 3.8. Let {HNi : i ∈ N} be a family of all neutrosophic N−subalgebras of a Sheffer

stroke Hilbert algebra H. Then {HNi : i ∈ N} forms a complete distributive lattice.

Proof. Let G be a nonempty subset of {HNi : i ∈ N}. Since HNi is a neutrosophic

N−subalgebra of H, for all HNi ∈ G, it satisfies

TN ((x(y|y))|(x(y|y))) ≤
∨
{TN (x), TN (y)},

IN ((x(y|y))|(x(y|y))) ≥
∧
{IN (x), IN (y)}

and

FN ((x(y|y))|(x(y|y))) ≤
∨
{FN (x), FN (y)},

for all x, y ∈ H. Then
⋂
G satisfies these inequalities, which means that

⋂
G is a neutrosophic

N−subalgebra of H.

Let P be a family of all neutrosophic N−subalgebras of H containing
⋃
{HNi : i ∈ N}.

Then
⋂
P is a neutrosophic N−subalgebra of H.

If
∧
i∈NHNi =

⋂
i∈NHNi and

∨
i∈NHNi =

⋂
P , then ({HNi : i ∈ N},

∨
,
∧

) is a complete

lattice. Also, it is distibutive by the definitions of
∨

and
∧

.

Proposition 3.9. If a neutrosophic N−structure HN on a Sheffer stroke Hilbert algebra H is

a neutrosophic N−subalgebra of H, then TN (0) ≤ TN (x), IN (0) ≥ IN (x) and FN (0) ≤ FN (x),

for all x ∈ H.

Proof. By substituting [y := 0] in the inequalities in Definition 3.1, we have from Lemma 2.3

(i) and Lemma 2.5 (i) that

TN (0) = TN (1|1) = TN ((x(x|x))|(x(x|x))) ≤
∨
{TN (x), TN (x)} = TN (x),

IN (0) = IN (1|1) = IN ((x(x|x))|(x(x|x))) ≥
∧
{IN (x), IN (x)} = IN (x)

and

FN (0) = FN (1|1) = FN ((x(x|x))|(x(x|x))) ≤
∨
{FN (x), FN (x)} = FN (x),

for all x ∈ H.

The inverse of Proposition 3.9 is generally not true.

Example 3.10. Consider the Sheffer stroke Hilbert algebra H in Example 3.2. Then a

neutrosophic N−structure

HN = { 0

(−1, 0,−1)
,

p

(−0.2,−0.2,−0.2)
,

q

(−0.3,−0.3,−0.3)
,

1

(−0.4,−0.4,−0.4)
}

on H is not a neutrosophic N−subalgebra of H since

TN ((1(q|q))|(1(q|q))) = TN (p) = −0.2 > −0.3 =
∨
{−0.3,−0.4} =

∨
{TN (1), TN (q)}.
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Lemma 3.11. Let HN be a neutrosophic N−subalgebra of a Sheffer stroke Hilbert algebra H.

If there exists a sequence {an} in H such that limn−→∞ TN (an) = −1 = limn−→∞ FN (an) and

limn−→∞ IN (an) = 0, then TN (0) = −1 = FN (0) and IN (0) = 0.

Proof. Let HN be a neutrosophic N−subalgebra of a Sheffer stroke Hilbert algebra H. Assume

that there exists a sequence {an} in H such that limn−→∞ TN (an) = −1 = limn−→∞ FN (an)

and limn−→∞ IN (an) = 0. Since TN (0) ≤ TN (an), IN (0) ≥ IN (an) and FN (0) ≤ FN (an), for

every n ∈ Z+ from Proposition 3.9, it follows that

−1 = lim
n−→∞

−1 ≤ lim
n−→∞

TN (0) = TN (0) ≤ lim
n−→∞

TN (an) = −1,

0 = lim
n−→∞

0 ≥ lim
n−→∞

IN (0) = IN (0) ≥ lim
n−→∞

IN (an) = 0

and

−1 = lim
n−→∞

−1 ≤ lim
n−→∞

FN (0) = FN (0) ≤ lim
n−→∞

FN (an) = −1.

Hence, TN (0) = −1 = FN (0) and IN (0) = 0.

Proposition 3.12. Every neutrosophic N−subalgebra HN of a Sheffer stroke Hilbert algebra

H satisfies

TN ((x(y|y))|(x(y|y))) ≤ TN (y),

IN ((x(y|y))|(x(y|y))) ≥ IN (y)

and

FN ((x(y|y))|(x(y|y))) ≤ FN (y),

for all x, y ∈ H if and only if TN , IN and FN are constant.

Proof. (⇒) Since

TN (x) = TN ((x|x)|(x|x))

= TN ((1|((x|x)|(x|x)))|(1|((x|x)|(x|x))))

= TN ((x|1)|(x|1))

= TN ((x|(0|0))|(x|(0|0)))

≤ TN (0),

and similarly, IN (0) ≤ IN (x), FN (x) ≤ FN (0) from (S1), (S2), Lemma 2.3 (iii) and Lemma 2.5

(i), we have from Proposition 3.9 that TN (x) = TN (0), IN (x) = IN (0) and FN (x) = FN (0),

for all x ∈ X.

(⇐) It is obvious by the fact that HN is a neutrosophic N−subalgebra of H and TN , IN

and FN are constant.
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Definition 3.13. A neutrosophic N−structure HN on H is called a neutrosophic N−ideal of

H if

TN (0) ≤ TN (x) ≤
∨
{TN ((x|(y|y))|(x|(y|y))), TN (y)},

IN (0) ≥ IN (x) ≥
∧
{IN ((x|(y|y))|(x|(y|y))), IN (y)}

and

FN (0) ≤ FN (x) ≤
∨
{FN ((x|(y|y))|(x|(y|y))), FN (y)},

for all x, y ∈ H.

Example 3.14. Consider the Sheffer stroke Hilbert algebra H in Example 3.2. Then a

neutrosophic N−structure

HN = { 0

(−1, 0,−0.21)
,

p

(−1, 0,−0.21)
,

q

(−0.71,−0.55,−0.11)
,

1

(−0.71,−0.55,−0.11)
}

on H is a neutrosophic N−ideal of H.

Proposition 3.15. Let HN be a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra H.

Then x ≤ y implies TN (x) ≤ TN (y), IN (x) ≥ IN (y) and FN (x) ≤ FN (y), for all x, y ∈ H.

Proof. Let HN be a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra H and x ≤ y.

Then x|(y|y) = 1 from Lemma 2.4, and so, (x|(y|y))|(x|(y|y)) = 1|1 = 0 from Lemma 2.5 (i).

Thus,

TN (x) ≤
∨
{TN ((x|(y|y))|(x|(y|y))), TN (y)} =

∨
{TN (0), TN (y)} = TN (y)

IN (x) ≥
∧
{IN ((x|(y|y))|(x|(y|y))), IN (y)} =

∧
{IN (0), IN (y)} = IN (y)

and

FN (x) ≤
∨
{FN ((x|(y|y))|(x|(y|y))), FN (y)} =

∨
{FN (0), FN (y)} = FN (y).

The inverse of Proposition 3.15 does not hold in general.

Example 3.16. Consider the neutrosophic N−ideal of H in Example 3.14. Then p � q when

TN (p) = −1 ≤ −0.71 = TN (q).

Lemma 3.17. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra H

and α, β, γ be any elements of [−1, 0] such that −3 ≤ α+ β + γ ≤ 0. If HN is a neutrosophic

N−ideal of H, then the nonempty set HN (α, β, γ) is an ideal of H.
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Proof. Let HN be a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra H and

HN (α, β, γ) 6= ∅, for any α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Since TN (0) ≤
TN (x) ≤ α, IN (0) ≥ IN (x) ≥ β and FN (0) ≤ FN (x) ≤ γ, for any x ∈ HN (α, β, γ), we have

0 ∈ HN (α, β, γ). Let (x|(y|y))|(x|(y|y)), y ∈ HN (α, β, γ). Then TN ((x|(y|y))|(x|(y|y))) ≤ α,

IN ((x|(y|y))|(x|(y|y))) ≥ β, FN ((x|(y|y))|(x|(y|y))) ≤ γ, TN (y) ≤ α, IN (y) ≥ β and

FN (y) ≤ γ. Since

TN (x) ≤
∨
{TN ((x|(y|y))|(x|(y|y))), TN (y)} ≤

∨
{α, α} = α,

IN (x) ≥
∧
{IN ((x|(y|y))|(x|(y|y))), IN (y)} ≥

∧
{β, β} = β

and

FN (x) ≤
∨
{FN ((x|(y|y))|(x|(y|y))), FN (y)} ≤

∨
{γ, γ} = γ,

for all x, y ∈ H, we get x ∈ HN (α, β, γ) which means that HN (α, β, γ) is an ideal of H.

Lemma 3.18. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra H

and TαN , I
β
N , F

γ
N be ideals of H, for all α, β, γ ∈ [−1, 0] with −3 ≤ α+ β + γ ≤ 0. Then HN is

a neutrosophic N−ideal of H.

Proof. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra H and

TαN , I
β
N , F

γ
N be ideals of H, for all α, β, γ ∈ [−1, 0] with −3 ≤ α + β + γ ≤ 0. Suppose that

x0, y0 and z0 be any elements of H such that TN (0) > TN (x0), IN (0) < IN (y0) and FN (0) >

FN (z0). If α =
1

2
(TN (0) + TN (x0)), β =

1

2
(IN (0) + IN (y0)) and γ =

1

2
(FN (0) + FN (z0)), for

α, β, γ ∈ [−1, 0), then TN (0) > α > TN (x0), IN (0) < β < IN (y0) and FN (0) > γ > FN (z0)

which imply that 0 /∈ TαN , 0 /∈ IβN and 0 /∈ F γN , respectively. This contradicts with (SSHI1).

So, TN (0) ≤ TN (x), IN (0) ≥ IN (x) and FN (0) ≤ FN (x), for all x ∈ H. Assume that

x1, x2, x3, y1, y2 and y3 be any elements of H such that

a1 = TN (x1) >
∨
{TN ((x1|(y1|y1))|(x1|(y1|y1))), TN (y1)} = b1,

a2 = IN (x2) <
∧
{IN ((x2|(y2|y2))|(x2|(y2|y2))), IN (y2)} = b2

and

a3 = FN (x3) >
∨
{FN ((x3|(y3|y3))|(x3|(y3|y3))), FN (y3)} = b3.

If α
′

=
1

2
(a1 + b1), β

′
=

1

2
(a2 + b2) and γ

′
=

1

2
(a3 + b3), then b1 < α

′
< a1, a2 < β

′
< b2 and

b3 < γ
′
< a3. Thus, (x1|(y1|y1))|(x1|(y1|y1)), y1 ∈ Tα

′

N , (x2|(y2|y2))|(x2|(y2|y2)), y2 ∈ Iβ
′

N and

(x3|(y3|y3))|(x3|(y3|y3)), y3 ∈ F γ
′

N , and so, x1 ∈ Tα
′

N , x2 ∈ Iβ
′

N and x3 ∈ F γ
′

N which contradicts

with the assumption. Therefore,

TN (x) ≤
∨
{TN ((x|(y|y))|(x|(y|y))), TN (y)},

Tahsin Oner, Tugce Katican and Arsham Borumand Saeid, Neutrosophic N−structures on
Sheffer stroke Hilbert algebras

Neutrosophic Sets and Systems, Vol. 42, 2021                                                                               230



IN (x) ≥
∧
{IN ((x|(y|y))|(x|(y|y))), IN (y)}

and

FN (x) ≤
∨
{FN ((x|(y|y))|(x|(y|y))), FN (y)},

for all x, y ∈ H. Thereby, HN is a neutrosophic N−ideal of H.

Lemma 3.19. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra H.

Then HN is a neutrosophic N−ideal of H if and only if (x|(y|y))|(x|(y|y)) ≤ z implies

TN (x) ≤
∨
{TN (y), TN (z)},

IN (x) ≥
∧
{IN (y), IN (z)}

and

FN (x) ≤
∨
{FN (y), FN (z)},

for all x, y, z ∈ H.

Proof. (⇒) Let HN be a neutrosophic N−ideal of H and (x|(y|y))|(x|(y|y)) ≤ z. Then

(((x|(y|y))|(x|(y|y)))|(z|z))|(((x|(y|y))|(x|(y|y)))|(z|z)) = 1|1 = 0 from Lemma 2.4 and Lemma

2.5 (i). Since

TN ((x|(y|y))|(x|(y|y))) ≤
∨
{TN ((((x|(y|y))|(x|(y|y)))|(z|z))|

(((x|(y|y))|(x|(y|y)))|(z|z))), TN (z)}
=

∨
{TN (0), TN (z)}

= TN (z),

IN ((x|(y|y))|(x|(y|y))) ≥
∧
{IN ((((x|(y|y))|(x|(y|y)))|(z|z))|

(((x|(y|y))|(x|(y|y)))|(z|z))), IN (z)}
=

∧
{IN (0), IN (z)}

= IN (z)

and
FN ((x|(y|y))|(x|(y|y))) ≤

∨
{FN ((((x|(y|y))|(x|(y|y)))|(z|z))|

(((x|(y|y))|(x|(y|y)))|(z|z))), FN (z)}
=

∨
{FN (0), FN (z)}

= FN (z),

we have

TN (x) ≤
∨
{TN ((x|(y|y))|(x|(y|y))), TN (y)} ≤

∨
{TN (y), TN (z)},

IN (x) ≥
∧
{IN ((x|(y|y))|(x|(y|y))), IN (y)} ≥

∧
{IN (y), IN (z)}

and

FN (x) ≤
∨
{FN ((x|(y|y))|(x|(y|y))), FN (y)} ≤

∨
{FN (y), FN (z)},

for all x, y, z ∈ H.
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(⇐) Let HN be a neutrosophic N−structure on H such that (x|(y|y))|(x|(y|y)) ≤ z implies

TN (x) ≤
∨
{TN (y), TN (z)},

IN (x) ≥
∧
{IN (y), IN (z)}

and

FN (x) ≤
∨
{FN (y), FN (z)},

for all x, y, z ∈ H. Since (0|(x|x))|(0|(x|x)) = ((x|x)|(1|1))|((x|x)|(1|1)) = 1|1 = 0 ≤ z

from (S1), Lemma 2.3 (ii) and Lemma 2.5 (i), we get TN (0) ≤ TN (x), IN (0) ≥ IN (x) and

FN (0) ≤ FN (x), for all x ∈ H. Since

((x|(x|(y|y)))|(x|(x|(y|y))))|(y|y) = (x|(y|y))|((x|(y|y))|(x|(y|y))) = 1

from (S1), (S3) and Lemma 2.3 (i), it follows from Lemma 2.4 that (x|(x|(y|y)))|(x|(x|(y|y))) ≤
y. Since (x|(((x|(y|y))|(x|(y|y)))|((x|(y|y))|(x|(y|y)))))|(x|(((x|(y|y))|(x|(y|y)))|((x|(y|y))|(x
|(y|y))))) = (x|(x|(y|y)))|(x|(x|(y|y))) ≤ y from (S2), it is obtained that

TN (x) ≤
∨
{TN ((x|(y|y))|(x|(y|y))), TN (y)},

IN (x) ≥
∧
{IN ((x|(y|y))|(x|(y|y))), IN (y)}

and

FN (x) ≤
∨
{FN ((x|(y|y))|(x|(y|y))), FN (y)},

for all x, y, z ∈ H. Thus, HN is a neutrosophic N−ideal of H.

Theorem 3.20. Every neutrosophic N−ideal of a Sheffer stroke Hilbert algebra H is a neu-

trosophic N−subalgebra of H.

Proof. Let HN be a neutrosophic N−ideal of H. Then it follows from (S1), (S3), Lemma 2.3

(i)-(ii), Lemma 2.5 (i) and Definition 3.13 that

TN ((x|(y|y))|(x|(y|y))) ≤
∨
{TN ((((x|(y|y))|(x|(y|y)))|(x|x))|

(((x|(y|y))|(x|(y|y)))|(x|x))), TN (x)}
=

∨
{TN (((y|y)|((x|(x|x))|(x|(x|x))))|

((y|y)|((x|(x|x))|(x|(x|x))))), TN (x)}
=

∨
{TN (((y|y)|(1|1))|((y|y)|(1|1))), TN (x)}

=
∨
{TN (1|1), TN (x)}

=
∨
{TN (0), TN (x)}

= TN (x)

≤
∨
{TN (x), TN (y)},

and similarly,

IN ((x|(y|y))|(x|(y|y))) ≥
∧
{IN (x), IN (y)},
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FN ((x|(y|y))|(x|(y|y))) ≤
∨
{FN (x), FN (y)},

for all x, y ∈ H. Hence, HN is a neutrosophic N−subalgebra of H.

The inverse of Theorem 3.20 is mostly not true.

Example 3.21. The neutrosophic N−subalgebra HN of H in Example 3.2 is not a neu-

trosophic N−ideal of H since TN (1) = −0.56 > −0.69 = TN (p) =
∨
{TN (p), TN (q)} =∨

{TN ((1|(q|q))|(1|(q|q))), TN (q)}.

Definition 3.22. Let H be a Sheffer stroke Hilbert algebra. We define

Hxt
N := {x ∈ H : TN (x) ≤ TN (xt)},

Hxi
N := {x ∈ H : IN (x) ≥ IN (xi)}

and

H
xf
N := {x ∈ H : FN (x) ≤ FN (xf )},

for all xt, xi, xf ∈ H. Obviously, xt ∈ Hxt
N , xi ∈ H

xi
N and xf ∈ H

xf
N .

Example 3.23. Consider the Sheffer stroke Hilbert algebra H in Example 3.2. Let TN (0) =

−0.11, TN (p) = −0.14, TN (q) = −0.17, TN (1) = −0.2, IN (0) = −0.12, IN (p) = −0.15, IN (q) =

−0.13, IN (1) = −0.21, FN (0) = −0.22, FN (p) = −0.19, FN (q) = −0.2, FN (1) = −0.23, xt =

1, xi = p and xf = q. Then

Hxt
N = {x ∈ H : TN (x) ≤ TN (1)} = {1},

Hxi
N = {x ∈ H : IN (x) ≥ IN (p)} = {0, p, q}

and

H
xf
N = {x ∈ H : FN (x) ≤ FN (q)} = {0, q, 1}.

Theorem 3.24. Let xt, xi and xf be any elements of a Sheffer stroke Hilbert algebra H. If

HN is a neutrosophic N−ideal of H, then Hxt
N , H

xi
N and H

xf
N are ideals of H.

Proof. Let HN be a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra H. Since

TN (0) ≤ TN (xt), IN (0) ≥ IN (xi) and FN (0) ≤ FN (xf ), for any xt, xi, xf ∈ H, it fol-

lows that 0 ∈ Hxt
N , 0 ∈ Hxi

N and 0 ∈ H
xf
N . Let (x1|(y1|y1))|(x1|(y1|y1)), y1 ∈ Hxt

N ,

(x2|(y2|y2))|(x2|(y2|y2)), y2 ∈ Hxi
N and (x3|(y3|y3))|(x3|(y3|y3)), y3 ∈ H

xf
N . Then TN ((x1|(y1|

y1))|(x1|(y1|y1))) ≤ TN (xt), TN (y1) ≤ TN (xt), IN ((x2|(y2|y2))|(x2|(y2|y2))) ≥ IN (xi),

IN (y2) ≥ IN (xi) and FN ((x3|(y3|y3))|(x3|(y3|y3))) ≤ FN (xf ), FN (y3) ≤ FN (xf ). Since

TN (x1) ≤
∨
{TN ((x1|(y1|y1))|(x1|(y1|y1))), TN (y1)} ≤ TN (xt),

IN (x2) ≥
∧
{IN ((x2|(y2|y2))|(x2|(y2|y2))), IN (y2)} ≥ IN (xi)
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and

FN (x3) ≤
∨
{FN ((x3|(y3|y3))|(x3|(y3|y3))), FN (y3)} ≤ FN (xf ),

we get x1 ∈ Hxt
N , x2 ∈ Hxi

N and x3 ∈ H
xf
N . Therefore, Hxt

N , Hxi
N and H

xf
N are ideals of H.

Example 3.25. Consider the Sheffer stroke Hilbert algebra H in Example 3.2. For a neutro-

sophic N−ideal

HN = { 0

(−0.69,−0.1,−0.41)
,

p

(−0.57,−0.27,−0.38)
,

q

(−0.69,−0.1,−0.41)
,

1

(−0.57,−0.27,−0.38)
}

of H, xt = p and xi = xf = q ∈ H, the subsets

Hxt
N = {x ∈ H : TN (x) ≤ TN (p)} = H,

Hxi
N = {x ∈ H : IN (x) ≥ IN (q)} = {0, q}

and

H
xf
N = {x ∈ H : FN (x) ≤ FN (q)} = {0, q}

of H are ideals of H.

Theorem 3.26. Let xt, xi and xf be any elements of a Sheffer stroke Hilbert algebra H and

HN be a neutrosophic N−structure on H.

(1) If Hxt
N , H

xi
N and H

xf
N are ideals of H, then the following condition is satisfied:

TN (x) ≥
∨
{TN ((y|(z|z))(y|(z|z))), TN (z)} ⇒ TN (x) ≥ TN (y),

IN (x) ≤
∧
{IN ((y|(z|z))(y|(z|z))), IN (z)} ⇒ IN (x) ≤ IN (y) and

FN (x) ≥
∨
{FN ((y|(z|z))(y|(z|z))), FN (z)} ⇒ FN (x) ≥ FN (y),

(1)

for all x, y, z ∈ H.

(2) If HN satisfies the condition (1) and

TN (0) ≤ TN (x), IN (0) ≥ IN (x) and FN (0) ≤ FN (x), for all x ∈ H, (2)

then Hxt
N , H

xi
N and H

xf
N are ideals of H, for all xt ∈ T−1N , xi ∈ I−1N and xf ∈ F−1N .

Proof. Let HN be a neutrosophic N−structure on a Sheffer stroke Hilbert algebra H.

(1) Hxt
N , H

xi
N and H

xf
N are ideals of H, for any xt, xi, xf ∈ H, and x, y, z be

any elements of H such that TN (x) ≥
∨
{TN ((y|(z|z))(y|(z|z))), TN (z)}, IN (x) ≤∨

{IN ((y|(z|z))(y|(z|z))), IN (z)} and FN (x) ≥
∨
{FN ((y|(z|z))(y|(z|z))), FN (z)}. Then

(y|(z|z))(y|(z|z))), z ∈ Hxt
N ∩ H

xi
N ∩ H

xf
N where xt = xi = xf = x. So, it is obtained from
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(SSHI2) that y ∈ Hxt
N ∩ H

xi
N ∩ H

xf
N where xt = xi = xf = x. Thus, TN (x) ≥ TN (y),

IN (x) ≤ IN (y) and FN (x) ≥ FN (y).

(2) Let xt ∈ T−1N , xi ∈ I−1N and xf ∈ F−1N and HN be a neutrosophic N−structure

on H satisfying the conditions (1) and (2). Then 0 ∈ Hxt
N , 0 ∈ Hxi

N and 0 ∈ H
xf
N

from the condition (2). Let (x1|(y1|y1))|(x1|(y1|y1)), y1 ∈ Hxt
N , (x2|(y2|y2))|(x2|(y2|y2)), y2 ∈

Hxi
N and (x3|(y3|y3))|(x3|(y3|y3)), y3 ∈ H

xf
N . Thus, TN ((x1|(y1|y1))|(x1|(y1|y1))) ≤

TN (xt), TN (y1) ≤ TN (xt), IN ((x2|(y2|y2))|(x2|(y2|y2))) ≥ IN (xi), IN (y2) ≥ IN (xi) and

FN ((x3|(y3|y3))|(x3|(y3|y3))) ≤ FN (xf ), FN (y3) ≤ FN (xf ). Since∨
{TN ((x1|(y1|y1))|(x1|(y1|y1))), TN (y1)} ≤ TN (xt),

∧
{IN ((x2|(y2|y2))|(x2|(y2|y2))), IN (y2)} ≥ IN (xi)

and ∨
{FN ((x3|(y3|y3))|(x3|(y3|y3))), FN (y3)} ≤ FN (xf ),

we have from the condition (1) that TN (x1) ≤ TN (xt), IN (x2) ≥ IN (xi) and FN (x3) ≤ FN (xf )

which imply that x1 ∈ Hxt
N , x2 ∈ Hxi

N and x3 ∈ H
xf
N . Thereby, Hxt

N , Hxi
N and H

xf
N are ideals

of H.

Example 3.27. Consider the Sheffer stroke Hilbert algebra H in Example 3.2. Let TN (0) =

TN (q) = −0.997, TN (p) = TN (1) = 0, IN (0) = IN (q) = −0.08, IN (p) = IN (1) = −1, FN (0) =

FN (q) = −0.8, FN (p) = FN (1) = −0.7. Then the ideals Hxt
N = {0, q}, Hxi

N = {0} and H
xf
N = H

of H satisfy the condition (1), for xt = q, xi = 0 and xf = p ∈ H.

Also, let

HN = { 0

(−0.7,−0.13,−0.6)
,

p

(−0.7,−0.13,−0.6)
,

q

(−0.41,−0.87,−0.52)
,

1

(−0.41,−0.87,−0.52)
}

be a neutrosophic N−structure on H satisfyinh the conditions (1) and (2). For xt = p, xi = 1

and xf = q ∈ H, the subsets

Hxt
N = {x ∈ H : TN (x) ≤ TN (p)} = {0, p},

Hxi
N = {x ∈ H : IN (x) ≥ IN (1)} = H

and

H
xf
N = {x ∈ H : FN (x) ≤ FN (q)} = H

of H are ideals of H.
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4. Conclusion

In this study, we have studied neutrosophic N−structures defined by N−functions on Shef-

fer stroke Hilbert algebras. By giving basic definitions and notions about Sheffer stroke Hilbert

algebras and neutrosophic N−structures defined by N−functions on a nonempty universe

X, a neutrosophic N−subalgebra and a (α, β, γ)−level set of a neutrosophic N−structure

are described by N−functions on Sheffer stroke Hilbert algebras. It is proved that the

(α, β, γ)−level set of a neutrosophic N−subalgebra defined by the N−functions on this alge-

bra is its subalgebra and also the inverse is valid. We show that the family of all neutrosophic

N−subalgebras of a Sheffer stroke Hilbert algebra forms a complete distributive lattice. Be-

sides, it is demonstrated that every neutrosophic N−subalgebra of a Sheffer stroke Hilbert

algebra satisfies TN (0) ≤ TN (x), IN (0) ≥ IN (x) and FN (0) ≤ FN (x), for all x ∈ H but a neu-

trosophic N−structure of a Sheffer stroke Hilbert algebra satisfying the property is mostly not

its neutrosophic N−subalgebra. Also, it is comprehensively examined the statement which

N−functions defining a neutrosophic N−subalgebra of a Sheffer stroke Hilbert algebra are

constant. After describing a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra by

means of N−functions, we demonstrate that N−functions defining a neutrosophic N−ideal

of the algebra are order-preserving whereas the inverse does not hold in general. In fact,

(α, β, γ)−level set of a neutrosophic N−ideal of a Sheffer stroke Hilbert algebra is its ideal

and vice versa. we present that a lemma is equivalent to the definition of the neutrosophic

N−ideal of a Sheffer stroke Hilbert algebra, and that every neutrosophic N−ideal of a Shef-

fer stroke Hilbert algebra is its neutrosophic N−subalgebra but the inverse does not usually

hold. Moreover, new three subsets Hxt
N , H

xi
N and H

xf
N of a Sheffer stroke Hilbert algebra are

described by N−functions and certain elements xt, xi and xf of the algebra. It is proved

that these subsets are ideals of a Sheffer stroke Hilbert algebra for its neutrosophic N−ideal

defined by the N−functions. A neutrosophic N−structure on a Sheffer stroke Hilbert algebra

is generally not the N−ideal in the case which these subsets are its ideals.

In the future works, we wish to study on plithogenic sets of Sheffer stroke Hilbert algebras

and neutrosophic structures of other Sheffer stroke algebras.
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Abstract. The idea of statistical convergence was introduced by Fast [H. Fast, Sur la convergence statistique,

Colloq. Math. 2 (1951) 241–244] afterwards studied by many authors. In [J.A. Fridy, C. Orhan, Lacunary

statistical convergence, Pacific J. Math. 160 (1993) 43–51],Fridy and Orhan proposed the concept of lacunary

statistical convergence. In present paper, we introduce lacunary statistically convergent in neutrosophic normed

space (brifly, NNS). We define the concept of lacunary statistical Cauchy sequence in NNS and derive the rela-

tion between statistical completness and completeness in NNS . We give some basic properties of these concepts.

Keywords: NNS, t-norm,t-conorm, Statistical convergence,Lacunary statistical convergence,Lacunary statis-

tical Cauchy and Lacunary statistical completeness.

—————————————————————————————————————————-

1. Introduction

Zadeh [6] was the first who introduced the theory of fuzzy sets. It has a very influential

impact on all the scientific fields and is quite necessary for the real- life situations. Atanassov

[9] generalized the concepts of fuzzy sets, known as intuitionistic fuzzy sets. One of the

dominant problems in fuzzy topology is to obtain an appropriate hypothesis of the fuzzy

metric space. Moreover, Park [2] used George and Veeramani’s [1] thought of applying t-

norm and t-conorm to fuzzy metric spaces for defining intuitionistic fuzzy metric spaces and

studying its fundamental features. After a while, Smarandache [10] introduced the notion of

neutrosophic sets (NS), which is a different kind of the notion of the classical set theory.by

adding an intermediate membership function. This set is a formal setting trying to measure

the truth, indeterminacy, and falsehood. Smarandache [16] further studied the differences

between intuitionistic fuzzy set and neutrosophic set and the corresponding relations between

these two sets. The basic differences are as follows:
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(i) Neutrosophic set can distinguish between relative truth = 1 and absolute truth = 1+.

This has application in philosophy. For this reason, the unitary standard interval [0, 1] used

in intuitionistic fuzzy set has been extended to the unitary non-standard interval ]−0, 1+[ in

neutrosophic set.

(ii) In neutrosophic set, there is no condition on T (truth), H(indeterminacy) and

F(falsehood) other than they are subsets of ]−0, 1+[, therefore:

−0 ≤ inf T + infH+ inf F ≤ sup T + supH+ supF ≤ 3+.

(iii) In neutrosophic set, the components T (truth), H(indeterminacy) and F (falsehood) can

also be non-standard subsets included in the unitary non-standard interval ]−0, 1+[, not only

standard subsets, included in the unitary standard interval [0, 1] as in intuitionistic fuzzy logic.

Neutrosophic sets are more effective and flexible because it handles, besides independent

components, also partially dependent and partially independent components, while intuitionis-

tic fuzzy sets cannot deal with these. Further, Smarandache [17–19] investigated neutroalgebra

which is generalization of partial algebra , neutroalgebraic structures and antialgebraic struc-

tures. Moreover, Bera and Mahapatra [11] defined neutrosophic soft linear spaces (NSLSs).

In [11] neutrosophic norm, Cauchy sequence in NSNLS, the convexity of NSNLS, metric in

NSNLS were studied. There has been much progress in the study of neutrosophic theory in

different fields by various authors.

Fast [13] proposed the concept of statistical convergence and later on studied by many

researchers. Friday and Orhan [15] have investigated the theory of lacunary statistical con-

vergence. Later on, the concepts of statistical convergence of double sequences have been

analyzed in IFNS by Mursaleen and Mohiuddin [12]. Quite recently, Kirisci and Simsek [7]

introduced the notion of neutrosophic normed space and statistical convergence. Since neu-

trosophic normed space is a natural generalization of IFNS and statistical convergence.

In the present paper we will study lacunary statistical convergence and lacunary statistical

Cauchy in neutrosophic normed space. we will the study the concept of statistical completeness

which would provide a ordinary framework to study the completeness of neutrosophic normed

space. We outline the present work as follows. In Section 2, we recall some basic definitions

related to the neutrosophic normed space.In Section 3, in this paper we porposed lacunary

statistical convergence in NNS and prove our main results. Finally, Section 4 is devoted to

introduce a recent concept, i.e. (lacunary) statistical completeness and find its relation with

completeness of NNS.
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2. Preliminaries

Throughtout this article, N will denote the set of natural numbers. Using definitions of

continuous t-norm and continuous t-conorm (see [14]), Kirisci and Simsek [7] proposed the

notion of NNS which is defined as follows:

Definition 2.1. [14] Given an operation ? : [0, 1]× [0, 1] −→ [0, 1] then it is called continuous

t-norm if it satisfies the following conditions:

(a) ? is associative and commutative,

(b) ? is continuous,

(c) c ? 1 = c for all c ∈ [0, 1],

(d) c ? d ≤ f ? g whenever c ≤ f and d ≤ g for each c, d, f, g ∈ [0, 1].

Definition 2.2. [14] Given an operation � : [0, 1]× [0, 1] −→ [0, 1] then it is called continuous

t-conorm if it satisfies the following conditions:

(a) � is associative and commutative,

(b) � is continuous,

(c) c � 0 = c for all c ∈ [0, 1],

(d) c � d ≤ f � g whenever c ≤ f and d ≤ g for each c, d, f, g ∈ [0, 1].

From above definitions, we note that if we choose 0 < e1, e2 < 1 with e1 > e2, then there

exist 0 < e3, e4 < 1 such that e1 ∗ e3 ≥ e2, e1 ≥ e4 � e2. Further, if we choose e5 ∈ (0, 1), then

there exist e6, e7 ∈ (0, 1) such that e6 ∗ e6 ≥ e5 and e7 � e7 ≤ e5.

Definition 2.3. [5] The intuitionistic fuzzy set A which is a subset of non-empty set X is an

ordered triplet defined by

A = {< x, T (x), F(x) >: x ∈ X},

where T (x),F(x) : X → [0, 1] represent the degree of membership and degree of nonmember-

ship respectively in such a way that

0 ≤ T (x) + F(x) ≤ 1

Also, 1 − T (x) − F(x) is called degree of hesitancy. The intuitionistic fuzzy components

T (x),F(x) and degree of hesitancy are dependent on each other.

Definition 2.4. [10] Let A be a subset of non-empty set X. Then,

ANS = {< x, T (x), I(x),F(x) >: x ∈ X},

where T (x), I(x),F(x) : X → [0, 1] represent the degree of truth-membership, degree of

indeterminacy-membership, and degree of false-nonmembership respectively in such a way
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that

0 ≤ T (x) + I(x) + F(x) ≤ 3.

The neutrosophic components T (x), I(x) and F(x) are independent of each other.

Definition 2.5. [20,21] The complement of an interval neutrosophic set P is denoted by P−

and is defined by

TP−(x) = FP (x);

infHP−(x) = 1− supHP (x); supHP−(x) = 1− infHP (x);

FP−(x) = TP (x); ∀ x ∈ X.

Definition 2.6. [8] Let P and R be two neutrosophic sets in a non-empty set X.Then,

(a) P ⊂ R ⇐⇒ TP (x) ≤ TR(x),HP (x) ≤ HR(x),FP (x) ≥ FR(x) ∀ x ∈ X
(b) P = R ⇐⇒ TP (x) = TR(x),HP (x) = HR(x),FP (x) = FR(x) ∀ x ∈ X
(c) P ∩R = {〈x,min(TP (x), TR(x)),min(HP (x),HR(x)),min(FP (x),FR(x))〉 | x ∈ X}
(d) P ∪R = {〈x,max(TP (x), TR(x)),max(HP (x),HR(x)),max(FP (x),FR(x))〉 | x ∈ X}
(e) P c = {〈x,FP (x), 1−HR(x)), TP (x)〉 | x ∈ X}
(f) P\R = {〈x, TP (x) minFR(x),HP (x) min 1−HR(x),FP (x) max TR(x)〉 | x ∈ X}.

Definition 2.7. [7] Let U be a vector space and N = {< v, T (v),H(v),F(v) >: v ∈ U} be

a normed space(NS) such that T (v),H(v),F(v) : U × R+ → [0, 1]. Let ∗ and � be continuous

t-norm and t-conorm respectively. If the subsequent conditions holds, then the four-tuple

(U,N , ∗, �) is called neutrosophic normed space (NNS): For all v, w ∈ U and η, s > 0 and for

each a 6= 0,

(1) 0 ≤ T (u, η) ≤ 1, 0 ≤ H(v, η) ≤ 1, 0 ≤ F(v, η) ≤ 1

(2) T (v, η) +H(v, η) + F(v, η) ≤ 3, (η ∈ R+)

(3) T (v, tη) = 1 (for η > 0) if and only if v = 0,

(4) T (cv, η) = T (v, η|c|) for each c 6= 0,

(5) T (v, η) ∗ T (w, s) ≤ T (v + w, η + s),

(6) T (v, .) is continuous non-decreasing function,
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(7) lim
η→∞

T (v, η) = 1

(8) H(v, η) = 0 (for η > 0) if and only if v = 0,

(9) H(cv, η) = H(v, η|c|) for each c 6= 0,

(10) H(v, η) ∗ H(v, s) ≥ H(v + w, η + s),

(11) H(v, .) is continuous non-increasing function,

(12) lim
η→∞

H(v, η) = 1

(13) F(v, η) = 0 (for η > 0) if and only if v = 0,

(14) F(cv, η) = F(v, η|c|) for each c 6= 0,

(15) F(v, η) ∗ F(v, T ) ≥ F(v + w, η + s),

(16) F(v, .) is continuous non-increasing function,

(17) lim
η→∞

F(v, η) = 1

(18) If η ≤ 0, then T (v, η) = 0,H(v, η) = 1 and F(v, η) = 1.

In this case, N = (T ,H,F) is said to be neutrosophic norm (NN).

Example 2.8. [7] Let (U, ‖.‖) be a normed space. Given the operations ∗ and � in such a

way that: v ∗ w = vw, v � w = v + w − vw. For η > ‖v‖ and η > 0

T (v, η) =
η

η + ‖v‖
,H(v, η) =

‖v‖
η + ‖v‖

and F(v, η) =
‖v‖
η

(1)

for all v, w ∈ U . If we take η ≤ ‖v‖, then T (v, η) = 0,H(v, η) = 1 and F(v, η) = 1. Then

(U,N , ∗, �) is NNS in such a way that N : U × R+ → [0, 1].

Example 2.9. Let (U = R, ‖.‖) be a normed space where ‖x‖ = |x| ∀ x ∈ R. Give the

operations ∗ and � in such a way that: v∗w = min{v, w} and v�w = max{v, w}.∀ v, w ∈ [0, 1]

and Define,

T (v, η) =
η

η + k‖v‖
,H(v, t) =

k‖v‖
η + ‖v‖

and F(v, η) =
k‖v‖
η

(2)

where k > 0 Then A = {(v, η), T (v, η),H(v, η),F(v, η) : (v, η) ∈ U × R+} is a NNS on U
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Definition 2.10. [7] Let (U,N , ∗, �) be a NNS. Then, the sequence (an) is said to be con-

vergent to ξ ∈ X with respect to the NN (T ,H,F) if for each ε, η > 0, there exists N ∈ N, in

such a manner that

T (an − ξ, η) > 1− ε,H(an − ξ, η) < ε and F(an − ξ, η) < ε (3)

for all n ≥ N , i.e.,

lim
n→∞

T (an − ξ, η) = 1, lim
n→∞

H(an − ξ, η) = 0 and lim
n→∞

F(an − ξ, η) = 0.

In such case, we denote N − lim an = ξ.

Definition 2.11. [7] Let (U,N , ∗, �) be a NNS. Then, the sequence (un) is known as Cauchy

sequence with respect to the NN (T ,H,F) if for each ε, η > 0, there exists N ∈ N, in such a

manner that

T (an − am, η) > 1− ε,H(an − am, η) < ε and F(an − am, η) < ε (4)

for all n,m ≥ N .

Definition 2.12. [15]

A lacunary sequence is an increasing integer sequence θ = {nr} such that n0 = 0 and hr =

nr − nr−1 → ∞ as r → ∞. The intervals determined by θ will be denoted by Ir = (nr−1, nr]

and the ratio nr
nr−1

will be abbreviated as qr. Let K ⊆ N. The number

δθ(K) =
1

hr
| {n ∈ Ir : n ∈ K} |

is called θ-density of K, provided the limit exists.

Definition 2.13. [15] Let θ be a lacunary sequence. A sequence a = {an} of numbers is said

to be lacunary statistically convergent (briefly Sθ- convergent) to the number ξ if for every

ε > 0, the set K(ε) has θ-density zero, where

K(ε) = {a ∈ Ir : |an − ξ| ≥ ε}.

In this case we write Sθ − lim a = ξ.

3. Lacunary Statistical convergence in NNS

In this section, we introduce lacunary statistical convergence in NNS. First, we define the

subsequent definition

Definition 3.1. Let (U,N , ∗, �) be NNS. A sequence (an) is called Lacunary statistical con-

vergent with respect to NN (T ,H,F), if there exist ξ ∈ U such that, the set{
n ∈ N : T (an − ξ, η) ≤ 1− ε or H(an − ξ, η) ≥ ε,F(an − ξ, η) ≥ ε

}
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has density zero, for every ε, η > 0 or equivalently,

lim
n

1

n
| {n ∈ N : T (an − ξ, η) ≤ 1− ε or H(an − ξ, η) ≥ ε,F(an − ξ, η) ≥ ε} | = 0.

We write Nθ − lim a = ξ.

Using the above definition and properties of θ-density, we have the subsequent lemma.

Lemma 3.2. Let (U,N , ∗, �) be a NNS and θ be a lacunary sequence . Then, for each ε, η > 0,

the subsequent statements are equivalent:

(1) Nθ − limx = ξ

(2) δθ

(
{n ∈ N : T (an − ξ, t) ≤ 1− ε,H(an − ξ, η) ≥ ε,F(an − ξ, η) ≥ ε}

)
= 0

(3) δθ

(
{n ∈ N : T (an − ξ, η) > 1− ε,H(an − ξ, η) < ε and F(an − ξ, η) < ε}

)
= 1.

(4) δθ

(
{n ∈ N : T (an − ξ, η) > 1 − ε}

)
= δθ

(
{n ∈ N : H(an − ξ, η) < ε}

)
=

δθ

(
{n ∈ N : F(an − ξ, η) < ε}

)
= 1

(5) Nθ − lim T (an − ξ, η) = 1, Nθ − limH(an − ξ, η) = 0 and

Nθ − limF(an − ξ, η) = 0.

Theorem 3.3. Let θ be a lacunary sequence and (U,N , ∗, �) be a NNS. If a sequence a = (an)

is lacunary statistically convergent with respect to NN (T ,H,F) then Nθ− limit is unique.

Proof. Consider, Nθ − lim a = ξ1, Nθ − lim a = ξ2 and ξ1 6= ξ2. Given ε > 0, α > 0 and

(1− α) ∗ (1− α) > 1− ε and α � α < ε Then, for any η > 0, define the following sets as:

WT ,1(α, η) = {k ∈ N : T (an − ξ1,
η

2
) ≤ 1− α}

WT ,2(α, η) = {n ∈ N : T (an − ξ2,
η

2
) ≤ 1− α}

WH,1(α, η) = {n ∈ N : H(an − ξ1,
η

2
) ≥ α}

WH,2(α, η) = {n ∈ N : H(an − ξ2,
η

2
) ≥ α}

WF ,1(α, η) = {n ∈ N : F(an − ξ1,
η

2
) ≥ α}
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WF ,2(α, η) = {n ∈ N : F(an − ξ2,
t

2
) ≥ α}

Since Nθ − lim a = ξ1, then using Lemma 3.2, for every η > 0, we have

δθ(WT ,1(ε, η)) = δθ(WH,1(ε, η)) = δθ(WF ,1(ε, η)) = 0 (5)

Furthermore, using Nθ − lim a = ξ2, for all η > 0, we get

δθ(WT ,2(ε, η)) = δθ(WH,2(ε, η)) = δθ(WF ,2(ε, η)) = 0. (6)

Now let

W (ε, η) = {(WT ,1(ε, η)∪WT ,1(ε, η))}∩{(WH,1(ε, η)∪WH,1(ε, η))}∩{(WF ,1(ε, η)∪WF ,1(ε, η))}

Then observe that δθ(W (ε, η)) = 0 which implies δθ(N\W (ε, η)) = 1 if k ∈ N\W (ε, η), then

we have three possible cases.

(a) ({n ∈ N\WT ,1(ε, η) ∪WT ,1(ε, η)})

(b) ({n ∈ N\WH,1(ε, η) ∪WH,1(ε, η)})

(c) ({n ∈ N\WF ,1(ε, η) ∪WF ,1(ε, η)}).

Therefore, one obtain

T (ξ1 − ξ2, η) = T (an − ξ1, η2 ) ∗ T (an − ξ2, η2 ) > (1− α) ∗ (1− α).

Since (1− α) ∗ (1− α) > 1− ε.
It follows that T (ξ1 − ξ2, η) > 1− ε.
Since ε > 0 was arbitrary, we get T (ξ1 − ξ2, η) = 1 for all η > 0, which gives ξ1 = ξ2.

Contrarily (b), if n ∈ N\WH,1(ε, η) ∪WH,1(ε, η). Then,

H(ξ1 − ξ2, η) ≤ H(an − ξ1, η2 ) � H(an − ξ2, η2 ) < α � α
Now, utilizing the fact that α � α < ε, it can be easily seen that

H(ξ1 − ξ2, η) < ε.

So, H(ξ1 − ξ2, η) = 0 for all η > 0, implies ξ1 = ξ2.

and if n ∈ N\WF ,1(ε, η) ∪WF ,1(ε, η).Then

F(ξ1 − ξ2, η) ≤ F(an − ξ1, η2 ) � F(an − ξ2, η2 ) < α � α
Since α � α < ε, it follows that.

F(ξ1 − ξ2, η) < ε. we have

F(ξ1 − ξ2, η) = 0 for all η > 0, which implies ξ1 = ξ2.

Therefore, in all cases, we conclude that Nθ− limit is unique.
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Theorem 3.4. Let θ be a lacunary sequence and (U,N , ∗, �) be an NNS. If N − lim a = ξ

then Nθ − lim a = ξ. but converse need not be true.

Proof. Let lim a = ξ. Then for each ε, η > 0, there is a number n0 ∈ N such that

T (an − ξ, η) > 1− ε, H(an − ξ, η) < ε and F(an − ξ, η) < ε for all n ≥ n0.
Hence, the set

{n ∈ N : T (an − ξ, η) ≤ 1− ε or H(an − ξ, η) ≥ ε, T (an − ξ, η) ≥ ε} (7)

has at most finitely many terms. Since each and every finite subset of N has density zero and

hence

δθ({n ∈ N : T (an − ξ, η) ≤ 1− ε or �H(an − ξ, η) ≥ ε,F(an − ξ, η) ≥ ε}) = 0. (8)

Therefore, Nθ − lim a = ξ.

For converse, we construct the following example:

Example 3.5. Let (U, ‖.‖) be a NS. Consider U = R and for all v, w ∈ [0, 1], define v∗w = vw

and v � w = min{v + w, 1}. Take

T (v, η) =
η

η + ‖v‖
,H(v, η) =

‖v‖
η + ‖v‖

,F(v, t) =
‖v‖
η

for all η > 0. Then (U,N , ∗, �) be NNS. Define a sequence a = (an) by,

an =

{
n, if nr − [

√
hr] + 1 ≤ n ≤ nr, r ∈ N

0, otherwise.
(9)

Consider

Kr(ε, η) = {n ≤ Ir : T (an, η) ≤ 1− ε or H(an, η) ≥ ε,F(an, η) ≥ ε}

for every ε ∈ (0, 1) and for any η > 0. Then, we have

Kr(ε, η) = {n ≤ Ir :
η

η + ‖v‖
≤ 1− ε or

‖v‖
η + ‖v‖

≥ ε, ‖v‖
η
≥ ε}

= {n ≤ Ir : ‖v‖ ≥ ηε

1− ε
or ‖v‖ ≥ ηε}

⊆ {n ≤ Ir : an = n}

Thus,
1

hr
| {n ∈ Ir : n ∈ Kr(ε, η)} |≤

√
hr
hr
→ 0 as r →∞.

Therefore,

Nθ − lim
k
an = 0.

But the sequence a = {an} is not convergent to 0.
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Theorem 3.6. Let (U,N , ∗, �) be an NNS. Then for any lacunary sequence θ, Nθ− lim an = ξ

iff there exists a increasing index sequence K = {k1 < k2 < . . . } ⊆ N while δθ(N) = 1, then

N − lim
j
anj = ξ.

Proof. Let Nθ − lim an = ξ. For any η > 0 and α = 1, 2, 3, . . .

W (α, η) =
{
n ≤ k : T (an − ξ, η) > 1− 1

α
and H(an − ξ, η) <

1

α
, F(an − ξ, η) <

1

α

}
and

Q(α, η) =
{
n ≤ k : T (an − ξ, η) ≤ 1− 1

α
or H(an − ξ, η) ≥ 1

α
, F(an − ξ, η) ≥ 1

α

}
Then, δθ(Q(α, η)) = 0, since Nθ − lim an = ξ. Further, for η > 0 and α = 1, 2, 3, . . .

W (α, η) ⊃W (α+ 1, η)

and so,

δθ(W (α, η)) = 1. (10)

Now, we imply that for n ∈W (α, η), lim an = ξ. Assume that lim an 6= ξ for some n ∈W (α, η).

Then, there is β > 0 and a +ve integer N such that T (an − ξ, η) ≤ 1 − β or H(an − ξ, η) ≥
β,F(an−ξ, η) ≥ β for all n ≥ N . Let T (an−ξ, η) > 1−β or H(an−ξ, η) < β,F(an−ξ, η) < β

for all n > N . Hence

lim
k

1

k

∣∣{n ≤ N : T (an − ξ, η) > 1− β and H(an − ξ, η) < β,F(an − ξ, η) < β}
∣∣ = 0.

Since β > 1
α , we obtain δθ(W (α, η)) = 0, which contradicts equation (10). that’s why,

Nθ − lim an = ξ.

Conversely, assume that there exists an increasing index sequence K = {k1 < k2 < . . . } ⊆ N
while δθ(K) = 1, then lim

k
xnk

= ξ i.e., there exists a K ∈ N such that T (an − ξ, η) >

1− α,H(an − ξ, η) < α,F(an − ξ, η) < α for every α > 0 and η > 0. In that case

Qθ(α, η) =
{
n ∈ N : T (an − ξ, η) ≤ 1− α and H(an − ξ, η) ≥ α,F(an − ξ, η) ≥ α

}
⊆ N− {kN+1, kN+2, . . . }.

Therefore δθ(Q(α, η)) ≤ 1− 1 = 0. Hence Nθ − lim an = ξ.
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4. Lacunary statistical Completeness in NNS

Definition 4.1. Let (U,N , ∗, �) be an NNS and θ be any lacunary sequence. The sequence

(an) is called Lacunary statistically Cauchy with respect to Neutrosophic norm(NN) in NNS

U , if there exists M = M(ε), for every ε > 0 and η > 0 such that, the set

δθ

({
n ∈ N : T (an − aM , η) ≤ 1− ε or H(an − aM , η) ≥ ε,F(an − aM , η) ≥ ε

})
= 0.

Theorem 4.2. Let (U,N , ∗, �) be an NNS and θ be any lacunary sequence. If a sequence

{an} is Nθ-statistically convergent, then it is Nθ-statistically Cauchy with respect to the NN

(T ,H,F).

Proof. Let a sequence a = {an} is a lacunary statistically convergent in NNS U . We obtained

(1− ε) ∗ (1− ε) > 1− α and ε � ε < α for a given ε > 0 and choose α > 0. Then, we get

δθ (W (ε, η)) = δθ

(
{n ∈ N : T (an − ξ,

η

2
) ≤ 1− ε or

H(an − ξ,
η

2
) ≥ ε,F(an − ξ,

η

2
) ≥ ε}

)
= 0.

(11)

and so

δθ

(
W c(ε, η)

)
= δθ

(
{n ∈ N : T (an − ξ,

η

2
) > 1− ε or

H(an − ξ,
η

2
) < ε,F(an − ξ,

η

2
) < ε}

)
= 1

for η > 0. Let p ∈W c(ε, η) then

T (an − ξ,
η

2
) > 1− ε and H(an − ξ,

η

2
) < ε,F(an − ξ,

η

2
) < ε.

Let

Q(ε, η) = {n ∈ N : T (an − am, η) ≤ 1− α or H(an − am, η) ≥ α,F(an − am, η) ≥ α}

Now, we have to show that Q(ε, η) ⊂W (ε, η). Let q ∈ Q(ε, η) \W (ε, η). Then

T (aq − an, η) ≤ 1− α and T (aq − ξ,
η

2
) > 1− ε,

in particular T (aq − ξ, η2 ) > 1− ε. At the same time,

1− α ≥ T (aq − an, η) ≥ T (uq − ξ,
η

2
) ∗ T (an − ξ,

η

2
) > (1− ε) ∗ (1− ε) > 1− α

which is impossible. Moreover,

H(aq − an, η) ≥ α and H(aq − ξ,
η

2
) < α

in a similar way, H(an − ξ, η2 ) < ε. Then,

α ≤ H(aq − an, η) ≤ H(aq − ξ,
η

2
) � H(an − ξ,

η

2
) < ε � ε < α
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which is impossible. Similarly,

F(aq − an, η) ≥ α and F(aq − ξ,
η

2
) < α

in particular F(an − ξ, t2) < ε. Then,

α ≤ F(aq − an, η) ≤ F(aq − ξ,
η

2
) � F(an − ξ,

η

2
) < ε � ε < α

which is impossible. suppose we consider, Q(ε, η) ⊂W (ε, t).

Then, by (11) δθ

(
Q(ε, η)

)
= 0. Hence, sequence (an) is Nθ-Statistical Cauchy with respect to

NN (T ,H,F).

Definition 4.3. The NNS (U,N , ?, �) is called statistically (Nθ) complete, if every statisti-

cally (Nθ),respectively) Cauchy sequence with respect to NN (U,N , ?, �) is statistically Nθ,
respectively) convergent with respect to NN (T ,H,F).

Theorem 4.4. Let (U,N , ∗, �) be a NNS and θ be any lacunary sequence. Then every sequence

a = (an) in U is Nθ−complete but not complete in general.

Proof. Let (an) be Nθ−statistical Cauchy but not Nθ−statistical convergent in NNS. Choose

α > 0. We get (1− ε) ∗ (1− ε) > 1− α and ε � ε < α, for a given ε > 0 and η > 0. Since (an)

is not Nθ- statistical convergent in NNS.

T (an − aM , η) ≥ T (an − ξ,
η

2
) ∗ T (aM − ξ,

η

2
) > (1− ε) ∗ (1− ε) > 1− α

H(an − aM , η) ≤ H(an − ξ,
η

2
) � H(aM − ξ,

η

2
) < ε � ε < α

F(an − aM , η) ≤ F(un − ξ,
η

2
) � F(an − ξ,

η

2
) < ε � ε < α

For,

W (ε, α) = {n ∈ N, Ban−aM (ε) ≤ 1− α}

Since δθ

(
WC(ε, α)) = 0 and so δθ

(
W (ε, α)) = 1 which is in disagreement, since (an) was

Nθ− statistical Cauchy in NNS. So that (an) must be Nθ−statistical convergent in NNS.

consequently, entire NNS is Nθ−statistically complete.

Example 4.5. [3] Consider, U = (0, 1] and

T (u, η) =
η

η + |v|
,H(v, η) =

|v|
η + |v|

,F(u, η) =
|v|
η

for all v ∈ U . Then (U,N , ∗, �,∧,∨) where min = ∧ and max = ∨ is NNS but it‘s incomplete,

since the sequence ( 1
m) is Cauchy with respect to (T ,H,F) but not convergent with regarding

to the present (T ,H,F).
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5. Conclusions

Since every standard norm defines an neutrosophic norm, our results are more general than

the corresponding results in [4].The statistical convergence is a generalization of the usual

convergence. Furthermore, definition provides a new techniques to investigate the completeness

in the sense of statistical convergence. These are illustrated by suitable examples. Their related

properties and structural characteristics have been discussed.
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—————————————————————————————————————————-

1. Introduction

The classical set theory [3, 8] evolves through various extensions as it laid a foundation for

modern mathematics. The especially notable extension is the concept of fuzzy sets [9, 22]

which introduced graded identity in set theory. This significant feature of assigning graded

membership polarized the researchers to come out with numerous analysis and applications

over kinds of fuzzy metric spaces.

In 1983, Atanassov [1] made an excitement with the introduction of Intutionstic Fuzzy Sets

by adding the idea of nonmembership grade to fuzzy set theory. Since then numerous work

have been done to bring out new results and to extend existing concepts over intuitionistic

fuzzy setting.
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In the year 1995, Florentin Smarandache [17–19] introduced Neutrosophy, an extension

of intuitionistic fuzzy set, which claims that between an idea and its opposite, there is a

continuum-power spectrum of neutralities. As neutrosophy adds neutralities to intuitionistic

fuzzy sets, it inspired the research community and the field is currently growing fruitfully with

so many investigations, analysis, computing techniques and applications [4–7,11,13,15,20].

In the meanwhile, Mustafa and Sims [14] defined the following generalized metric space.

Definition 1.1. [14]Let A be a nonempty set. G : A3 → (−∞,+∞) is called a Generalized

Metric (Shortly, G-metric) on A if for all µ, ρ, υ, γ ∈ A,

(G1) G(µ, µ, ρ) > 0 if µ 6= ρ,

(G2) G(µ, ρ, υ) = 0 if and only if µ = ρ = υ

(G3) G(µ, µ, ρ) ≤ G(µ, ρ, υ) if ρ 6= υ

(G4) G(µ, ρ, υ) is symmetry in all three variables.

(G5) G(µ, ρ, υ) ≤ G(µ, γ, γ) +G(γ, ρ, υ)

The pair (A, G) is called generalized metric space.

This space was then used by Sun and Yang [21] to bring out the notion of generalized

fuzzy metric space. Mohiuddine and Alotaibi [12] used it to introduce intuitionistic fuzzy

metric space. As a consequence, numerous terms and definitions are introduced along with

related results in these settings. Notable among them is the concept of common fixed point,

coupled coincidence point and mixed h-monotone property that are given by Bhaskar and

Lakshmikantham [2] and Lakshmikantham and Ciric [10].

Definition 1.2. [2]Let A be a set with partial order ≤. The mapping G : A × A −→ A is

said to have the mixed monotone property if the following conditions hold.

(i) µ1, µ2 ∈ A, µ1 ≤ µ2 implies G(µ1, ρ) ≤ G(µ2, ρ) for all ρ ∈ A;

(ii) ρ1, ρ2 ∈ A, ρ1 ≤ ρ2 implies G(µ, ρ1) ≤ G(µ, ρ2) for all µ ∈ A.

Definition 1.3. [2](µ, ρ) ∈ A×A is a coupled fixed point of G : A×A −→ A if G(µ, ρ) = µ

and G(ρ, µ) = ρ.

Definition 1.4. [10]Let A be a set with partial order ≤. The mappings G : A × A −→ A
and h : A → A have mixed h-monotone property if the following conditions hold.

(i) µ1, µ2 ∈ A, h(µ1) ≤ h(µ2) implies G(µ1, ρ) ≤ G(µ2, ρ) for all ρ ∈ A;

(ii) ρ1, ρ2 ∈ A, h(ρ1) ≤ h(ρ2) implies G(µ, ρ1) ≤ G(µ, ρ2) for all µ ∈ A.

Definition 1.5. [10](µ, ρ) ∈ A × A is a coupled coincidence point of G : A × A −→ A and

h : A → A if G(µ, ρ) = h(µ) and G(ρ, µ) = h(ρ).
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In this scenario, we present here the notion of J-Neutrosophy Metric Space. We propose

coincidence point results for compatible, coupled mappings that are having a kind of mixed

monotone property in the newly defined space with a partial order.

2. J-Neutrosophic Metric Space

Let us start with the definitions of following binary operations which will be the main frame

in defining the J-Neutrosophic Metric Space.

Definition 2.1. [16] A binary operation � : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm

(Shortly, CTN) if

(i) � is commutative, associative and continuous,

(ii) t� 1 = t for all t ∈ [0, 1]

(iii) t� s ≤ u� v whenever t ≤ u and s ≤ v, and s, t, u, v ∈ [0, 1].

Definition 2.2. [16] A binary operation � : [0, 1]× [0, 1] is a continuous t-conorm (Shortly,

CTCN) if

(i) � is commutative, associative and continuous

(ii) t� 0 = t for all t ∈ [0, 1]

(iii) t� s ≤ u� v whenever t ≤ u and s ≤ v, and s, t, u, v ∈ [0, 1].

The following definition defines the new space, namely, J-Neutrosophic Metric Space.

Definition 2.3. Consider a nonempty set A, a CTN �, two CTCNs �, ⊗ and fuzzy sets

J, S, F on A3 × [0, 1]. A 7-tuple (A, J, S, F,�,�,⊗) is called a J-Neutrosophic Metric Space

(Shortly, JNMS) if for each µ, ρ, υ, γ ∈ A and t > 0,

(JN1) J(µ, ρ, υ, t) + S(µ, ρ, υ, t) + F (µ, ρ, µ, t) ≤ 3,

(JN2) J(µ, ρ, υ, t) > 0,

(JN3) J(µ, ρ, υ, t) is symmetry in µ, ρ and υ,

(JN4) J(µ, µ, ρ, t) ≥ J(µ, ρ, υ, t) if ρ 6= υ,

(JN5) J(µ, ρ, υ, t) = 1 if and only if µ = ρ = υ,

(JN6) J(µ, ρ, υ, t+ s) ≥ J(µ, γ, γ, t)� J(γ, ρ, υ, s),

(JN7) J(µ, ρ, υ, t) is continuous with respect to t,

(JN8) J is nondecreasing on [0,+∞],

limq→+∞ J(µ, ρ, υ) = 1, limq→0 J(µ, ρ, υ) = 0,

(JN9) S(µ, ρ, υ, t) < 1,

(JN10) S(µ, ρ, υ, t) is symmetry in µ, ρ and υ,

(JN11) S(µ, µ, ρ, t) ≤ S(µ, ρ, υ, t) if ρ 6= υ,

(JN12) S(µ, ρ, υ, t) = 0 if and only if µ = ρ = υ,

(JN13) S(µ, ρ, υ, t+ s) ≤ S(µ, γ, γ, t)� S(γ, ρ, υ, s),
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(JN14) S(µ, ρ, υ, t) is continuous with respect to t,

(JN15) S is nonincreasing on [0,+∞]

limq→+∞ S(µ, ρ, υ) = 0, limq→0 S(µ, ρ, υ) = 1

(JN16) F (µ, ρ, υ, t) < 1,

(JN17) F (µ, ρ, υ, t) is symmetry in µ, ρ and υ,

(JN18) F (µ, µ, ρ, t) ≤ F (µ, ρ, υ, t) if ρ 6= υ,

(JN19) F (µ, ρ, υ, t) = 0 if and only if µ = ρ = υ,

(JN20) F (µ, ρ, υ, t+ s) ≤ F (µ, γ, γ, t)⊗ F (γ, ρ, υ, s),

(JN21) F (µ, ρ, υ, t) is continuous with respect to t.

(JN22) F is nonincreasing on [0,+∞],

limq→+∞ F (µ, ρ, υ) = 0, limq→0 F (µ, ρ, υ) = 1.

The triplet (J, S, F ) is called J-Neutrosophic Metric on A.

Remark 2.4. J(µ, ρ, υ, t), S(µ, ρ, υ, t) and F (µ, ρ, υ, t) represent, respectively, the degree of

nearness, the degree of non-nearness and the degree of indeterminacy between µ, ρ and υ with

respect to t.

Example 2.5. Let (A, G) be a generalized metric space. Define the fuzzy sets J, S, F by

J(µ, ρ, υ, t) =
t

t+G(µ, ρ, υ)
,

S(µ, ρ, υ, t) =
G(µ, ρ, υ)

t+G(µ, ρ, υ)
and

F (µ, ρ, υ, t) =
G(µ, ρ, υ)

t
for all µ, ρ, υ ∈ A

Define �, � and ⊗ by a � b = ab, a � b = min{a + b, 1} and a ⊗ b = max{a, b}. Then

(A, J, S, F,�,�,⊗) is a JNMS.

Definition 2.6. Consider a JNMS (A, J, S, F,�,�,⊗). Let µ ∈ A, r ∈ (0, 1) and t > 0. The

JN-open ball B(µ, r, t) with centre at µ and radius r is defined by

B(µ, r, t) = {ρ ∈ A : J(µ, µ, ρ) > 1− r, S(µ, µ, ρ) < r, F (µ, µ, ρ) < r}.

Remark 2.7. The above definition leads to the following facts.

(1) Every JN-open ball is an open set.

(2) Every JNMS is Hausdorff.

It follows from the above remark that the collection {B(µ, r, t) : µ ∈ A, r ∈ (0, 1), t > 0}
forms a base for the JN-metric topology on A and this topology coincides with the metric

topology arising from the generalized metric.

Definition 2.8. A sequence {µq} in a JNMS (A, J, S, F,�,�,⊗) is JN-Convergent to x if it

converges to x in the JN-metric topology.
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Remark 2.9. If (A, J, S, F,�,�,⊗) is a JNMS, {µq} is a sequence in A and µ ∈ A, then the

following are equivalent:

(1) {µq} is JN-convergent to µ.

(2) dG(µq, µ) −→ 0 as n −→ +∞.

(3) J(µq, µq, µ, t) −→ 1, S(µq, µq, µ, t) −→ 0, F (µq, µq, µ, t) −→ 0 as n −→ +∞.

(4) J(µq, µ, µ, t) −→ 1, S(µq, µ, µ, t) −→ 0, F (µq, µ, µ, t) −→ 0 as n −→ +∞.

(5) J(µq, µm, µ, t) −→ 1, S(µq, µm, µ, t) −→ 0, F (µq, µm, µ, t) −→ 0 as n −→ +∞.

Definition 2.10. A sequence {µq} in a JNMS (A, J, S, F,�,�,⊗) is JN-Cauchy if for every

ε > 0 and t > 0 there exists N ∈ N such that J(µq, µm, µl, t) > 1 − ε, S(µq, µm, µl, t) < ε,

F (µq, µm, µl, t) < ε for all n,m, l ∈ N. A JNMS is said to be JN-Complete if every JN-Cauchy

sequence is JN-convergent.

Definition 2.11. A JNMS (A, J, S, F,�,�,⊗) is said to be regular if the following conditions

hold:

(i) If a nondecreasing sequence µq in A JN-converges to µ, then µq ≤ µ for all n.

(ii) If a nonincreasing sequence µq in A JN-converges to µ, then µq ≥ µ for all n.

Definition 2.12. Let (A, J, S, F,�,�,⊗) be a JNMS. The mappings G : A × A −→ A and

h : A −→ A are said to be JN-Compatible if for all t > 0,

lim
q→∞

J(hG(µq, ρq), hG(µq, ρq),G(hxq, hρq), t) = 1,

lim
q→∞

S(hG(µq, ρq), hG(µq, ρq),G(hxq, hρq), t) = 0,

lim
q→∞

F (hG(µq, ρq), hG(µq, ρq),G(hxq, hρq), t) = 0,

lim
q→∞

J(hG(ρq, µq), hG(ρq, µq),G(hyq, hµq), t) = 1,

lim
q→∞

S(hG(ρq, µq), hG(ρq, µq),G(hyq, hµq), t) = 0 and

lim
q→+∞

F (hG(ρq, µq), hG(ρq, µq),G(hyq, hµq), t) = 0,

where {µq} and {ρq} are sequences in A such that limq→+∞ G(µq, ρq) = limq→+∞ hµq = µ

and limq→+∞ G(ρq, µq) = limq→+∞ hρq = ρ for some µ, ρ ∈ A.

To continue the work, we need to define the family Θ of strictly increasing, upper semi-

continuous functions θ : [0,+∞)→ [0,∞) in which θ(0) = {0}, θ(t) < t and
∑+∞

q=1 θ
n(t) < +∞

for all t > 0.
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Definition 2.13. Let (A, J, S, F,�,�,⊗) be a JNMS. The mapping G : A×A −→ A is said

to be self θJN−coupled if there exists θ ∈ Θ such that

J(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) ≥
{
J(µ, µ, γ, t)� J(µ, µ,G(µ, ρ), t)

� J(γ, γ,G(γ, σ), t)
}
,

S(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) ≤
{
S(µ, µ, γ, t)� S(µ, µ,G(µ, ρ), t)

� S(γ, γ,G(γ, σ), t),

F (G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) ≤
{
F (µ, µ, γ, t)⊗ F (µ, µ,G(µ, ρ), t)

⊗ F (γ, γ,G(γ, σ), t)
}
,

for all µ, ρ, γ, σ ∈ A and t > 0 with µ ≤ γ, ρ ≥ σ or µ ≥ γ, ρ ≤ σ.

Definition 2.14. Let (A, J, S, F,�,�,⊗) be a JNMS. The mappings G : A × A −→ A and

h : A −→ A are said to be θJN−coupled if there exists θ ∈ Θ such that

J(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) ≥
{
J(h(µ), h(µ), u, t)� J(h(µ), h(µ), F (µ, ρ), t)

� J(h(γ), h(γ), F (γ, σ), t)
}
,

S(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) ≤
{
S(h(µ), h(µ), γ, t)� S(h(µ), h(µ),G(µ, ρ), t)

⊗ S(h(γ), h(γ),G(γ, σ), t)
}
,

F (G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) ≤
{
F (h(µ), h(µ), γ, t)⊗ F (h(µ), h(µ),G(µ, ρ), t)

� F (h(γ), h(γ),G(γ, σ), t)
}
,

for all µ, ρ, γ, σ ∈ A and t > 0 with h(µ) ≤ h(γ), h(ρ) ≥ h(σ) or h(µ) ≥ h(γ), h(ρ) ≤ h(σ).

Lemma 2.15. Let (A, J, S, F,�,�,⊗) be a JNMS and

Λκ(µ, ρ, υ) = inf{t > 0 : J(µ, ρ, υ, t) > 1− κ, S(µ, ρ, υ, t) < κ,F (µ, ρ, υ, t) < κ}

for all µ, ρ, υ ∈ A, κ ∈(0,1] and t > 0. Then for each κ ∈(0,1], there exists µ ∈(0,1] such that

Λκ(µ1, µ1, µq) ≤ q=1 Λµ(µq, µq, µq+1)
∑n−1

Proof. For κ ∈(0,1], choose µ ∈(0,1] such that �(n−1)(1−µ) > 1−κ, �(n−1)µ < κ, ⊗(n−1)µ < κ.

Let ε > 0. Then

J(µ1, µ1, µq,Λµ(µq, µq, µq+1) + (n− 1)ε)

≥ J(µ1, µ1, µ2,Λµ(µ1, µ1, µ2) + ε)� · · · � J(µq−1, µq−1, µq,Λµ(µq−1, µq−1, µq) + ε)

> �(n−1)(1− µ)

> 1− κ
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S(µ1, µ1, µq,Λµ(µq, µq, µq+1) + (n− 1)ε)

≤ S(µ1, µ1, µ2,Λµ(µ1, µ1, µ2) + ε)� · · · � S(µq−1, µq−1, µq,Λµ(µq−1, µq−1, µq) + ε)

< �(n−1)µ

< κ

F (µ1, µ1, µq,Λµ(µq, µq, µq+1) + (n− 1)ε)

≤ S(µ1, µ1, µ2,Λµ(µ1, µ1, µ2) + ε)⊗ · · · ⊗ S(µq−1, µq−1, µq,Λµ(µq−1, µq−1, µq) + ε)

< ⊗(n−1)µ

< κ

Therefore, we have Λµ(µ1, µ1, µq) ≤ Λµ(µ1, µ1, µ2) + · · · + Λµ(µq−1, µq−1, µq) + (n − 1)ε. As

ε > 0 is arbitrary, Λµ(µ1, µ1, µq) ≤ Λµ(µ1, µ1, µ2) + · · ·+ Λµ(µq−1, µq−1, µq).

Lemma 2.16. A sequence {µq} in a JNMS (A, J, S, F,�,�,⊗) is JN-Cauchy if for some

θ ∈ Θ,

J(µq, µq, µq+1, θ(t)) ≥ J(µq−1, µq−1, µq, t)� J(µq, µq, µq+1, t),

S(µq, µq, µq+1, θ(t)) ≤ S(µq−1, µq−1, µq, t)� S(µq, µq, µq+1, t),

F (µq, µq, µq+1, θ(t)) ≤ F (µq−1, µq−1, µq, t)⊗ F (µq, µq, µq+1, t),

for all t > 0.

Proof. Denote Λµ(µq−1, µq−1, µq) by aq. For given ε > 0 and each aq, we can find mq > aq

such that θ(mq) < θ(aq) + ε. Now,

J(µq, µq, µq+1,mq) > 1− κ,

S(µq, µq, µq+1,mq) < κ,

F (µq, µq, µq+1,mq) < κ.

Take Mq = max{mq,mq+1}, then

J(µq, µq, µq+1, θ(Mq)) ≥ J(µq−1, µq−1, µq,Mq)� J(µq, µq, µq+1,Mq)

≥ J(µq−1, µq−1, µq,mq)� J(µq, µq, µq+1,mq+1)

> 1− κ.

S(µq, µq, µq+1, θ(Mq)) ≤ S(µq−1, µq−1, µq,Mq)� S(µq, µq, µq+1,Mq)

≤ S(µq−1, µq−1, µq,mq)� S(µq, µq, µq+1,mq+1)

< κ.
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F (µq, µq, µq+1, θ(Mq)) ≤ F (µq−1, µq−1, µq,Mq ⊗ F (µq, µq, µq+1,Mq)

≤ F (µq−1, µq−1, µq,mq)⊗ F (µq, µq, µq+1,mq+1)

< κ.

From Lemma 2.15,

Λκ(µq, µq, µq+1) ≤ θ(Mq) = max{θ(mq), θ(mq+1)} ≤ max{θ(aq), θ(aq+1)}+ ε.

From the choice of ε, aq+1 ≤ max{θ(aq), θ(aq+1)}. Hence, for ε > 0, we can find n0 for which

J(µq, µq, µm, ε) > 1 − κ, S(µq, µq, µm, ε) < κ and F (µq, µq, µm, ε) < κ for all n,m ≥ n0.

Therefore {µq} is a JN-Cauchy sequence.

3. Main Results

The following theorem exhibits the existence of coupled coincidence point of two continuous,

compatible functions G : A × A → A and h : A → A where G has the mixed h-monotone

property.

Theorem 3.1. Consider a complete JNMS (A, J, S, F,�,�,⊗) where A is a partially ordered

set. Consider the mappings G : A×A → A and h : A → A where

(a) G(A×A) ⊆ h(A),

(b) G and h are continuous,

(c) G and h are compatible,

(d) G has mixed h-monotone property,

(e) G and h are θJN−coupled for some θ ∈ Θ.

If there exist µ0, ρ0 ∈ A for which h(µ0) ≤ G(µ0, ρ0) and h(ρ0) ≥ G(ρ0, µ0), then G and h have

a coupled coincidence point.

Proof. Define sequences {µq} and {ρq} by h(µq+1) = G(µq, ρq) and h(ρq+1) = G(ρq, µq), n ≥ 0.

Let us prove by induction that

h(µq) ≤ h(µq+1), h(ρq) ≥ h(ρq+1) for all n ≥ 0. (1)

The choice of µ0, ρ0 gives that h(µ0) ≤ h(µ1), h(ρ0) ≥ h(ρ1). Suppose (1) is true for n = m.

Then by the mixed h-monotone property of G, we have that

h(µq+1) = G(µq, ρq) ≤ G(µq+1, ρq), h(ρq+1) = G(ρq, µq) ≥ G(ρq+1, µq)

which gives that

h(µq+2) = G(µq+1, ρq+1) ≥ G(µq+1, ρq), h(ρq+2) = G(ρq+1, µq+1) ≤ G(ρq+1, µq).
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Hence h(µq+1) ≤ h(µq+2), h(ρq+1) ≥ h(ρq+2) and 1 follows.

If µ = µq−1, ρ = ρq−1, γ = µq, σ = ρq, then from (e) and (1), we have that

J(G(µq−1, ρq−1),G(µq−1, ρq−1),G(µq, ρq), θ(t)) ≥
{
J(h(µq−1), h(µq−1), h(µq), t)

�J(h(µq−1), h(µq−1),G(µq−1, ρq−1), t)� J(h(µq), h(µq),G(µq, ρq), t)
}
,

S(G(µq−1, ρq−1),G(µq−1, ρq−1),G(µq, ρq), θ(t)) ≤
{
S(h(µq−1), h(µq−1), h(µq), t)

�S(h(µq−1), h(µq−1),G(µq−1, ρq−1), t)� S(h(µq), h(µq),G(µq, ρq), t)
}
,

F (G(µq−1, ρq−1),G(µq−1, ρq−1),G(µq, ρq), θ(t)) ≤
{
J(h(µq−1), h(µq−1), h(µq), t)

⊗F (h(µq−1), h(µq−1), F (µq−1, ρq−1), t)⊗ F (h(µq), h(µq),G(µq, ρq), t)
}
.

These inequalities imply that

J(h(µq), h(µq), h(µq+1), θ(t)) ≥
{
J(h(µq−1), h(µq−1), h(µq), t)� J(h(µq−1), h(µq−1), h(µq), t)

� J(h(µq), h(µq), h(µq+1), t)
}

= J(h(µq−1), h(µq−1), h(µq), t)� J(h(µq), h(µq), h(µq+1), t).

S(h(µq), h(µq), h(µq+1), θ(t)) ≤
{
S(h(µq−1), h(µq−1), h(µq), t)� S(h(µq−1), h(µq−1), h(µq), t)

� S(h(µq), h(µq), h(µq+1), t)
}

= S(h(µq−1), h(µq−1), h(µq), t)� S(h(µq), h(µq), h(µq+1), t).

F (h(µq), h(µq), h(µq+1), θ(t)) ≤
{
F (h(µq−1), h(µq−1), h(µq), t)⊗ F (h(µq−1), h(µq−1), h(µq), t)

⊗ F (h(µq), h(µq), h(µq+1), t)
}

= F (h(µq−1), h(µq−1), h(µq), t)⊗ F (h(µq), h(µq), h(µq+1), t).

By lemma 2.16, {h(µq)} is JN-Cauchy.

If x = ρq, y = µq, u = ρq−1, v = µq−1, (1) gives that

J(G(ρq−1, µq−1),G(ρq−1, µq−1),G(ρq, µq), θ(t)) ≥
{
J(h(ρq−1), h(ρq−1), h(ρq), t)

� J(h(ρq−1), h(ρq−1),G(ρq−1, µq−1), t)

� J(h(ρq), h(ρq),G(ρq, µq), t)
}
.

S(G(ρq−1, µq−1),G(ρq−1, µq−1),G(ρq, µq), θ(t)) ≤
{
S(h(ρq−1), h(ρq−1), h(ρq), t)

� S(h(ρq−1), h(ρq−1),G(ρq−1, µq−1), t)

� S(h(ρq), h(ρq),G(ρq, µq), t)
}
.
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F (G(ρq−1, µq−1),G(ρq−1, µq−1),G(ρq, µq), θ(t)) ≤
{
F (h(ρq−1), h(ρq−1), h(ρq), t)

⊗ F (h(ρq−1), h(ρq−1),G(ρq−1, µq−1), t)

⊗ F (h(ρq), h(ρq),G(ρq, µq), t)
}
.

These inequalities give that

J(h(ρq), h(ρq), h(ρq+1), θ(t)) ≥
{
J(h(ρq−1), h(ρq−1), h(ρq), t)� J(h(ρq−1), h(ρq−1), h(ρq), t)

� J(h(ρq), h(ρq), h(ρq+1), t)
}

= J(h(ρq−1), h(ρq−1), h(ρq), t)� J(h(ρq), h(ρq), h(ρq+1), t).

S(h(ρq), h(ρq), h(ρq+1), θ(t)) ≤
{
S(h(ρq−1), h(ρq−1), h(ρq), t)� S(h(ρq−1), h(ρq−1), h(ρq), t)

� S(h(ρq), h(ρq), h(ρq+1), t)
}

= S(h(ρq−1), h(ρq−1), h(ρq), t)� S(h(ρq), h(ρq), h(ρq+1), t).

F (h(ρq), h(ρq), h(ρq+1), θ(t)) ≤
{
F (h(ρq−1), h(ρq−1), h(ρq), t)⊗ F (h(ρq−1), h(ρq−1), h(ρq), t)

⊗ F (h(ρq), h(ρq), h(ρq+1), t)
}

= F (h(ρq−1), h(ρq−1), h(ρq), t)⊗ F (h(ρq), h(ρq), h(ρq+1), t).

By lemma 2.16 {h(µq)} is JN-Cauchy.

The completeness of A gives µ, ρ ∈ A such that

lim
q→+∞

G(µq, ρq) = lim
q→+∞

h(µq) = µ, lim
q→+∞

G(ρq, µq) = lim
q→+∞

h(ρq) = ρ.

G and h are JN-compatible. Hence, for all t > 0, we have that

lim
q→+∞

J(h(G(µq, ρq)), h(G(µq, ρq)),G(h(µq), h(ρq)), t) = 1,

lim
q→+∞

S(h(G(µq, ρq)), h(G(µq, ρq)),G(h(µq), h(ρq)), t) = 0,

lim
q→+∞

F (h(G(µq, ρq)), h(G(µq, ρq)),G(h(µq), h(ρq)), t) = 0,

lim
q→+∞

J(h(G(ρq, µq)), h(G(ρq, µq)),G(h(ρq), h(µq)), t) = 1,

lim
q→+∞

S(h(G(ρq, µq)), h(G(ρq, µq)),G(h(ρq), h(µq)), t) = 0,

lim
q→+∞

F (h(G(ρq, µq)), h(G(ρq, µq)),G(h(ρq), h(µq)), t) = 0.
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Since G and h are continuous, we have, for all t > 0, that

J(h(µ), h(µ),G(µ, ρ), t) = 1, J(h(ρ), h(ρ),G(ρ, µ), t) = 1

S(h(µ), h(µ),G(µ, ρ), t) = 0, S(h(ρ), h(ρ),G(ρ, µ), t) = 0

F (h(µ), h(µ),G(µ, ρ), t) = 0, F (h(ρ), h(ρ),G(ρ, µ), t) = 0.

Thus we can conclude that G(µ, ρ) = h(µ) and G(ρ, µ) = h(ρ).

In theorem 3.1, if we take A to be regular, then G need not be continuous to get the results.

The next theorem proves the same.

Theorem 3.2. Consider a complete JNMS (A, J, S, F,�,�,⊗) where A is regular and par-

tially ordered. Consider the mappings G : A×A → A and h : A → A where

(a) G(A×A) ⊆ h(A),

(b) h is continuous,

(c) G and h are compatible,

(d) G and h are θJN − coupled,

(e) G and h are θJN−coupled for some θ ∈ Θ.

If there exist µ0, ρ0 ∈ A for which h(µ0) ≤ G(µ0, ρ0) and h(ρ0) ≥ F (ρ0, µ0), then G and h have

a coupled coincidence point.

Proof. Since A is regular, h(µq) ≤ µ and h(ρq) ≥ ρ, where µq)→ µ, ρq)→ ρ as q → +∞.

As G and h are compatible and h is continuous,

lim
q→+∞

h(h(µq)) = h(µ) = lim
q→+∞

h(G(µq, ρq)) = lim
q→+∞

G(h(µq), h(ρq)),

lim
q→+∞

h(h(ρq)) = h(ρ) = lim
q→+∞

h(G(ρq, µq)) = lim
q→+∞

G(h(ρq), h(µq)).

For all 0 ≤ k < 1, we have that

J(h(µ), h(µ),G(µ, ρ), θ(t)) ≥
{
J(h(µ), h(µ), h(h(µq+1), θ(t)− θ(kt))

� J(h(h(µq+1), h(h(µq+1),G(µ, ρ), θ(kt))
}

S(h(µ), h(µ), F (µ, ρ), θ(t)) ≤
{
S(h(µ), h(µ), h(h(µq+1), θ(t)− θ(kt))

� S(h(h(µq+1), h(h(µq+1),G(µ, ρ), θ(kt))
}

F (h(µ), h(µ),G(µ, ρ), θ(t)) ≤
{
F (h(µ), h(µ), h(h(µq+1), θ(t)− θ(kt))

⊗ F (h(h(µq+1), h(h(µq+1),G(µ, ρ), θ(kt))
}
.
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Letting n→ +∞ in the above inequalities, we get that

J(h(µ), h(µ),G(µ, ρ).θ(t)) ≥ lim
q→+∞

{
J(h(µ), h(µ), h(h(µq+1), θ(t)− θ(kt))

� J(h(h(µq+1), h(h(µq+1),G(µ, ρ), θ(kt))
}

≥ lim
q→+∞

J(G(h(µq), h(ρq)),G(h(µq), h(ρq)),G(µ, ρ), θ(kt)),

S(h(µ), h(µ),G(µ, ρ).θ(t)) ≤ lim
q→+∞

{
S(h(µ), h(µ), h(h(µq+1), θ(t)− θ(kt))

� S(h(h(µq+1), h(h(µq+1),G(µ, ρ), θ(kt))
}

≤ lim
q→+∞

S(G(h(µq), h(ρq)),G(h(µq), h(ρq)), F (µ, ρ), θ(kt)),

F (h(µ), h(µ),G(µ, ρ).θ(t)) ≤ lim
q→+∞

{
J(h(µ), h(µ), h(h(µq+1), θ(t)− θ(kt))

⊗ F (h(h(µq+1), h(h(µq+1),G(µ, ρ), θ(kt))
}

≤ lim
q→+∞

F (G(h(µq), h(ρq)),G(h(µq), h(ρq)),G(µ, ρ), θ(kt)).

Since G and h are θJN−coupled, from the above inequalities, we obtain that

J(h(µ), h(µ),G(µ, ρ).θ(t)) ≥
{
J(h(h(µq), h(h(µq), h(µ), kt)� J(h(h(µq), h(h(µq),G(h(µq), h(ρq)), kt)

� J(h(µ), h(µ),G(µ, ρ), kt)
}

≥ J(h(µ), h(µ),G(µ, ρ), kt),

S(h(µ), h(µ),G(µ, ρ).θ(t)) ≥
{
S(h(h(µq), h(h(µq), h(µ), kt)� S(h(h(µq), h(h(µq),G(h(µq), h(ρq)), kt)

� S(h(µ), h(µ),G(µ, ρ), kt)
}

≥ S(h(µ), h(µ),G(µ, ρ), kt),

F (h(µ), h(µ),G(µ, ρ).θ(t)) ≥
{
F (h(h(µq), h(h(µq), h(µ), kt)⊗ F (h(h(µq), h(h(µq),G(h(µq), h(ρq)), kt)

⊗ F (h(µ), h(µ),G(µ, ρ), kt)
}

≥ F (h(µ), h(µ),G(µ, ρ), kt)

Allowing k tending to 1, we obtain that G(µ, ρ) = h(µ). In a similar way, we can obtain that

G(ρ, µ) = h(ρ).

If we take h to be the identity mapping in the above theorems, then it leads to the following

corollary.

Corollary 3.3. Consider a complete JNMS (A, J, S, F,�,�,⊗) where A is a partially ordered

set. Let G : A×A → A and h : A → A. Assume that

(a) either A is regular or G is continuous,

(b) h is continuous,
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(c) G has mixed monotone property,

(d) G is self θJN−coupled for some θ ∈ Θ.

If there exist µ0, ρ0 ∈ A for which h(µ0) ≤ G(µ0, ρ0) and h(ρ0) ≥ G(ρ0, µ0), then G has a

coupled fixed point.

Example 3.4. Consider the JNMS (A, J, S, F,�,�,⊗) as in Example 2.5 where A = [0, 1] is

with natural ordering and G(µ, ρ, υ) =| µ − ρ | + | ρ − υ | + | υ − µ | for all µ, ρ,∈ A. Let

θ(t) = 2t
8 , for t ∈ [0,+∞). Let us consider the functions G : A × A → A and h : A → A

defined by

G(µ, ρ) =


µ3−2ρ3

8 , if µ ≥ ρ,

0 otherwise,

h(µ) = µ3.

Consider sequences {µq} and {ρq} in A such that

lim
q→+∞

G(µq, ρq) = lim
q→+∞

h(µq) and lim
q→+∞

G(ρq, µq) = lim
q→+∞

h(ρq).

It is then obvious that all these limit values must be zero. Let us show that G and h are

compatible.

J(h(G(µq, ρq)), h(G(µq, ρq)),G(h(µq), h(ρq)), t) = J(h(
µ3q − 2ρ3q

8
)), h(

µ3q − 2ρ3q
8

),G(µ3q, ρ
3
q), t)

= J((
µ3q − 2ρ3q

8
)3, (

µ3q − 2ρ3q
8

)3,
µ9q − 2ρ9q

8
, t)

=
t

t+ 2 | (µ
3
q−2ρ3q
8 )3 − µ9q−2ρ9q

8 |

→ 1 as n→ +∞.

S(h(G(µq, ρq)), h(G(µq, ρq)),G(h(µq), h(ρq)), t) = S(h(
µ3q − 2ρ3q

8
)), h(

µ3q − 2ρ3q
8

),G(µ3q, ρ
3
q), t)

= S((
µ3q − 2ρ3q

8
)3, (

µ3q − 2ρ3q
8

)3,
µ9q − 2ρ9q

8
, t)

=
2 | (µ

3
q−2ρ3q
8 )3 − µ9q−2ρ9q

8 |

t+ 2 | (µ
3
q−2ρ3q
8 )3 − µ9q−2ρ9q

8 |

→ 0 as n→ +∞.
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F (h(G(µq, ρq)), h(G(µq, ρq)),G(h(µq), h(ρq)), t) = F (h(
µ3q − 2ρ3q

8
)), h(

µ3q − 2ρ3q
8

),G(µ3q, ρ
3
q), t)

= F ((
µ3q − 2ρ3q

8
)3, (

µ3q − 2ρ3q
8

)3,
µ9q − 2ρ9q

8
, t)

=
2 | (µ

3
q−2ρ3q
8 )3 − µ9q−2ρ9q

8 |
t

→ 0 as n→ +∞.

In a similar way, we can deduce that

J(h(G(ρq, µq)), h(G(ρq, µq)),G(h(ρq), h(µq)), t)→ 1,

S(h(G(ρq, µq)), h(G(ρq, µq)),G(h(ρq), h(µq)), t)→ 0,

F (h(G(ρq, µq)), h(G(ρq, µq)),G(h(ρq), h(µq)), t)→ 0.

Therefore G and h are compatible. Take µ0 = 0, ρ0 = αandµ, ρ, in A such that h(µ0) =

G(µ0, ρ0), h(ρ0) = G(ρ0, µ0) and h(µ) ≤ h(γ), h(ρ) ≥ h(σ). Let us consider the following cases

to verify 3.1(e).

case(i) µ ≥ ρ, γ ≥ σ.

J(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = J(
µ3 − 2ρ3

8
,
µ3 − 2ρ3

8
,
γ3 − 2σ3

8
,
2t

8
)

=
t

t+ | (µ3 − 2ρ3)− (γ3 − 2σ3) |

≥ t

t+ 2 | γ3 − γ3−2σ3

8 |

≥ J(h(γ), h(γ),G(γ, σ), t)

≥
{
J(h(µ), h(µ), h(γ), t)� J(h(µ), h(µ),G(µ, ρ), t)

� J(h(γ), h(γ),G(γ, σ), t)
}
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S(G(µ, ρ),G(µ, ρ), F (γ, σ), θ(t)) = S(
µ3 − 2ρ3

8
,
µ3 − 2ρ3

8
,
γ3 − 2σ3

8
,
2t

8
)

=
| (µ3 − 2ρ3)− (γ3 − 2σ3) |

t+ | (µ3 − 2ρ3)− (γ3 − 2σ3) |

≤
2 | γ3 − γ3−2σ3

8 |
t+ 2 | γ3 − γ3−2σ3

8 |

≤ S(h(γ), h(γ),G(γ, σ), t)

≤
{
S(h(µ), h(µ), h(γ), t)� S(h(µ), h(µ),G(µ, ρ), t)

� S(h(γ), h(γ),G(γ, σ), t)
}

F (G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = F (
µ3 − 2ρ3

8
,
µ3 − 2ρho3

8
,
γ3 − 2σ3

8
,
2t

8
)

=
| (µ3 − 2ρ3)− (γ3 − 2σ3) |

t

≤
2 | γ3 − γ3−2σ3

8 |
t

≤ F (h(γ), h(γ),G(γ, σ), t)

≤
{
F (h(µ), h(µ), h(γ), t)⊗ F (h(µ), h(µ),G(µ, ρ), t)

⊗ F (h(γ), h(γ),G(γ, σ), t)
}

case(ii) µ < ρ, γ ≥ σ.

J(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = J(0, 0,
γ3 − 2σ3

8
,
2t

8
)

=
t

t+ | γ3−2σ3

8 |
≥ t

t+ 8 | µ3 − γ3 |

≥ J(h(γ), h(γ),G(γ, σ), t)

≥
{
J(h(µ), h(µ), h(γ), t)� J(h(µ), h(µ),G(µ, ρ), t)

� J(h(γ), h(γ),G(γ, σ), t)
}

S(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = S(0, 0,
γ3 − 2σ3

8
,
2t

8
)

=
| γ

3−2σ3

8 |
t+ | γ3−2σ3

8 |

≤ 8 | µ3 − γ3 |
t+ 8 | µ3 − γ3 |

≤ S(h(γ), h(γ),G(γ, σ), t)

≤
{
S(h(µ), h(µ), h(γ), t)� S(h(µ), h(µ),G(µ, ρ), t)

� S(h(γ), h(γ),G(γ, σ), t)
}

Suganthi M, Jeyaraman M, A Generalized Neutrosophic Metric Space and Coupled Coincidence Point Results

Neutrosophic Sets and Systems, Vol. 42, 2021                                                                                267



F (G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = F (0, 0,
γ3 − 2σ3

8
,
2t

8
)

=
| γ

3−2σ3

8 |
t

≤ 8 | µ3 − γ3 |
t

≤ F (h(γ), h(γ),G(γ, σ), t)

≤
{
F (h(µ), h(µ), h(γ), t)F (h(µ), h(µ),G(µ, ρ), t)

⊗ F (h(γ), h(γ),G(γ, σ), t)
}

case(iii) µ < ρ, γ < σ.

This case is obvious, since we have that

J(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = 1,

S(G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = 0,

F (G(µ, ρ),G(µ, ρ),G(γ, σ), θ(t)) = 0.

We have thus shown that G and h fit into the theorem 3.1. Therefore G and h must have a

coupled coincidence point and it is the point (0, 0).

4. Conclusion

This work built a generalized neutrosophic metric space, called J-Neutrosophic metric space,

based on the concept of neutrosophy. We proved coupled coincidence point results for JN-

compatible mappings satisfying certain conditions. As the space introduced here considers the

indeterminacy along with the degree of nearness and the degree of non-nearness and general-

izes the ideas of intuitionistic sets, fuzzy sets, classical sets, paraconsistent sets and dialetheist

sets, this work has the scope of further extension and analysis.
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Abstract. This research article presents a new concept, ”Neutrosophic N -topological ordered space”. Also we

define some of the separation axioms, weakly neutrosophic N ς-T2-ordered space and Neutrosophic N ς-regularly

ordered space in Neutrosophic N -topological ordered space. Besides giving some of the innovative properties

of these spaces.

Keywords: Neutrosophic N ς-T1-ordered space, Neutrosophic N ς-T2-ordered space, Weakly neutrosophic N ς-

T2-ordered space, Almost Neutrosophic N ς-T2-ordered space and Neutrosophic N ς-regularly ordered space.

—————————————————————————————————————————-

1. Introduction

L.A. Zadeh introduced the concept of fuzzy sets [14]. The theory of fuzzy topological

spaces was developed by Chang [3] . The study of intutionistic fuzzy set was established by

Atanassov [1] in 1983. In [4], the another notion called intutionistic fuzzy topological space was

found by Coker. F. Smarandache originated the concepts of neutrosophy and neutrosophic set

( [12], [13]). The concept of neutrosophic crisp set and neutrosophic crisp topological space were

introduced by A.A. Salama and S.A. Alblowi [11]. Leopoldo Nachbin [9] initiated the study of

topological ordered spaces in 1965. Lellis Thivagar et al. [6] have proposed the concept of N-

topological space. Recently we found the new concept called N -topological ordered spaces [5].

In this paper, we investigate the concept called Neutrosophic N -topological Ordered Space.

And also, we establish some of the Separation Axioms and its characterizations.
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2. Preliminaries

Definition 2.1. [8] Let X be a non-empty set, τ1, τ2, ....., τN be N-arbitrary topologies defined

on X and let the collection Nτ be defined by

Nτ =
{

S ⊆ X : S = (∪Ni=1Ai)
⋃

(∩Ni=1Bi), Ai, Bi ∈ τi
}

satisfying the following axioms:

(i) X, ∅ ∈ Nτ .

(ii)
⋃

∞

i=1 Si ∈ Nτ for all Si ∈ Nτ .

(iii)
⋂n

i=1 Si ∈ Nτ for all Si ∈ Nτ .

Then the pair (X,Nτ) is called a N -topological space on X and the elements of the collection

Nτ are known as Nτ -open sets on X. A subset A of X is called Nτ -closed on X if the

complement of A is Nτ -open on X. The set of all Nτ -open sets on X and the set of all

Nτ -closed sets on X are respectively, denoted by NτO(X) and NτC(X).

Definition 2.2. [5] An N -topological Space (X,N τ) equipped with a partial order relation

≤ (that is, Reflexive, Transitive and Antisymmetric) is called an N -topological Ordered

Space (X,N τ,≤).

Definition 2.3. [12] Let X be a non-empty fixed set. A neutrosophic set A is an object

having the form A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} where µA(x), σA(x), γA(x) which

represents the degree of membership function, the degree of indeterminacy and the degree

of non-membership function respectively of each element x ∈ X to the set A. Also −0 ≤

µA(x) + σA(x) + γA(x) ≤ 3+ for all x ∈ X.

Remark 2.4. [12, 13] (1) A neutrosophic set A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X} can be

identified to an ordered triple set 〈µA, σA, γA〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µA, σA, γA〉 for the neutrosophic

set A = {〈x, µA(x), σA(x), γA(x)〉 : x ∈ X}

Definition 2.5. [10] Let {Ai, i ∈ J} be an arbitrary family of neutrosophic sets in X. Then

(a) ∩Ai = {〈x,∧µAi
(x),∧σAi

(x),∨γAi
(x)〉 : x ∈ X};

(b) ∪Ai = {〈x,∨µAi
(x),∨σAi

(x),∧γAi
(x)〉 : x ∈ X}

Definition 2.6. [10]

0N = {〈x, 0, 0, 1〉 : x ∈ X} and 1N = {〈x, 1, 1, 0〉 : x ∈ X}

Definition 2.7. [6] A neutrosophic N-topology on a non-empty set X is a family Nnτ of

neutrosophic sets in X satisfying the following axioms:

(i) 0N , 1N ∈ Nnτ

(ii) ∪∞i=1Ai ∈ Nnτ for all Ai ∈ Nnτ
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(iii) ∩ni=1Ai ∈ Nnτ for all Ai ∈ Nnτ .

Then the pair (X,Nnτ) is called neutrosophic N-topological space and each neutrosophic set

in Nnτ is called neutrosophic Nnτ -open set. The complement of neutrosophic Nnτ -open set

is called neutrosophic Nnτ -closed set.

Definition 2.8. [6] Let (X,Nnτ) be a neutrosophic N-topological space on X and A be a

neutrosophic set on X, then Nnint(A) and Nncl(A) are respectively defined as

(i) Nnint(A) = ∪{G : G ⊆ A and G is a Nnτ − opensetinX}

(ii) Nncl(A) = ∩{F : A ⊆ F and F is a Nnτ − closedsetinX}

Definition 2.9. [10] A neutrosophic set A = 〈x, µA, σA, γA〉 in a neutrosophic topological

space (X,T) is said to be a neutrosophic neighbourhood of a neutrosophic point xr,t,s ∈ X, if

there exists a neutrosophic open set B = 〈x, µB, σB, γB〉 with xr,t,s ⊆ B ⊆ A.

Notation 1. [10] We denote neutrosophic neighbourhood A of a in X by neutrosophic neigh-

bourhood A of a neutrosophic point ar,t,s for a ∈ X

Definition 2.10. [10] A neutrosophic set A = 〈x, µA, σA, γA〉 in a partially ordered set (X,≤)

is said to be

(i) an increasing neutrosophic set if x ≤ y implies A(x) ⊆ A(y). That is, µA(x) ≤

µA(y), σA(x) ≤ σA(y) and γA(x) ≥ γA(y).

(ii) a decreasing neutrosophic set if x ≤ y implies A(x) ⊇ A(y). That is, µA(x) ≥

µA(y), σA(x) ≥ σA(y) and γA(x) ≤ γA(y).

Definition 2.11. A neutrosophic set A is called neutrosophic N ς-clopen set if it is both

neutrosophic N ς-open set and neutrosophic N ς-closed set.

3. Neutrosophic N -topological Ordered Space

In this paper, we define the notation of Neutrosophic N -Topological Space as Neutrosophic

N -TS, partial order relation as por and also Neutrosophic N -topological Ordered Space as

Neutrosophic N -TOS. We found some results of Neutrosophic N -topological Ordered Spaces

like Neutrosophic N ς-T1-ordered space, Neutrosophic N ς-T2-ordered space, weakly Neutro-

sophic N ς-T2-ordered space, almost Neutrosophic N ς-T2-ordered space and Neutrosophic N ς-

T3-ordered space.

Definition 3.1. A neutrosophic N -TS (X,Nnς) equipped with a por ≤ is called Neutrosophic

N -TOS (X,Nnς,≤).

Definition 3.2. For every u, v ∈ X such that u � v (i.e., u is not related to v) in X, if

there exists a decreasing neutrosophic N ς-open set G containing v such that u /∈ G , then

neutrosophic N -TOS (X,Nnς,≤) is called upper neutrosophic N ς-T1-ordered space.
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Definition 3.3. For every u, v ∈ X such that u � v (i.e., u is not related to v) in X, if

there exists an increasing neutrosophic N ς-open set H containing u such that v /∈ H , then

neutrosophic N -TOS (X,Nnς,≤) is called lower neutrosophic N ς-T1-ordered space.

Definition 3.4. (X,Nnς,≤) is said to be neutrosophic N ς-T1-ordered space if it is both lower

and upper neutrosophic N ς-T1-ordered space.

Example 3.5. Let X = {a, b, c} with a por ≤. For N = 2, let the neutrosophic

sets be U = {x, (0.2, 0.2, 0.4), (0.3, 0.3, 0.1), (0.6, 0.6, 0.2)} and V = {x, (0.4, 0.4, 0.4),

(0.4, 0.4, 0.3), (0.4, 0.4, 0.3)}. Then U ∪ V = {(x, (0.4, 0.4, 0.4) , (0.4, 0.4, 0.3) , (0.4, 0.4, 0.3))}

and U ∩ V = {(x, (0.2, 0.2, 0.4) , (0.3, 0.3, 0.1) , (0.6, 0.6, 0.2))}. Considering ς1 = {0N , 1N , U}

and ς2 = {0N , 1N , V }, then 2ςO(X) = {0N , 1N , U, V, U ∩ V, U ∪ V } which is a neu-

trosophic bitopology on X. Then (X, 2nς,≤) is a neutrosophic bi-topological ordered

space. Let a(0.15,0.2,0.4) and b(0.15,0.15,0.25) be any two neutrosophic points on X. For

a(0.15,0.2,0.4) � b(0.15,0.15,0.25), there exists an increasing neutrosophic 2ς-neighbourhood

U of a(0.15,0.2,0.4) such that U is not a neutrosophic 2ς-neighbourhood of b(0.15,0.15,0.25).

Therefore, (X, 2nς,≤) is a lower neutrosophic 2ς-T1-ordered space. Similarly, we can

do for upper neutrosophic 2ς-T1-ordered space. For N = 3, define the neutro-

sophic sets U = {x, (0.3, 0.3, 0.5) , (0.5, 0.5, 0.3) , (0.7, 0.7, 0.2)}, V = {x, (0.6, 0.6, 0.5) ,

(0.6, 0.6, 0.5) , (0.6, 0.6, 0.5)}. Then U ∪ V = {(x, (0.6, 0.6, 0.5) , (0.6, 0.6, 0.5) , (0.6, 0.6, 0.5))}

and U ∩ V = {(x, (0.3, 0.3, 0.5) , (0.5, 0.5, 0.3) , (0.7, 0.7, 0.2))}. Considering ς1 = {0N , 1N , U},

ς2 = {0N , 1N , V } and ς3 = {0N , 1N}, then 3ςO(X) = {0N , 1N , U, V, U ∩ V, U ∪ V } which

is a neutrosophic tritopology on X. Then (X, 3nς,≤) is neutrosophic tri-topological ordered

space. Let a(0.25,0.3,0.5),b(0.25,0.25,0.35) ∈ X such that a(0.25,0.3,0.5) � b(0.25,0.25,0.35). Then there

exists an increasing neutrosophic 3ς-neighbourhood U of a(0.25,0.3,0.5) such that U is not a neu-

trosophic 3ς-neighbourhood of b(0.25,0.25,0.35). Therefore, (X, 3nς,≤) is a lower neutrosophic

3ς-T1-ordered space. Similarly, we can do for upper neutrosophic 3ς-T1-ordered space.

Theorem 3.6. For a neutrosophic N -TOS (X,Nnς,≤), the following are equivalent:

(i) X is a lower(respectively upper) neutrosophic N ς-T1-ordered space.

(ii) For each u, v ∈ X such that u � v, there exists an increasing(respectively decreas-

ing) neutrosophic N ς-open set G = 〈x, µG, σG, γG〉 containing u(respectively v) such that

r � v(respectively u � r) for all r ∈ G.

Proof. Now we prove the theorem only for lower neutrosophic N ς-T1-ordered space.

(i) ⇒ (ii): Let u � v. By hypothesis, there exists an increasing neutrosophic N ς-open set

G containing u such that v /∈ G. If r ∈ G and r ≤ v, then v ∈ G, a contradiction. Therefore,

r � v for all r ∈ G.
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(ii) ⇒ (i): Let u, v ∈ X such that u � v. Therefore there exists an increasing neutrosophic

N ς-open set G containing u such that r � v for all r ∈ G. Then i(G) is an increasing

neutrosophic N ς-open set of u such that v /∈ i(G). This implies that X is a lower neutrosophic

N ς-T1-ordered space. Similar proof holds for upper neutrosophic N ς-T1-ordered space.

Theorem 3.7. If (X,Nnς,≤) is a lower(respectively upper) neutrosophic N ς-T1-ordered space

and Nnς ⊆ Nnς
∗, then (X,Nnς

∗,≤) is a lower(respectively upper) neutrosophic N ς-T1-ordered

space.

Proof. Let (X,Nnς,≤) be a lower neutrosophic N ς-T1-ordered space. Then if u, v ∈ X such

that u � v, there exists an increasing neutrosophic N ς-open set U = 〈x, µU , σU , γU 〉 of u such

that U is not a neutropsophic N ς-open set of v. Since Nnς ⊆ Nnς
∗, therefore if u, v ∈ X such

that u � v, there exists an increasing neutrosophic N ς∗-open set U∗ of u such that U∗ is not

a neutrosophic N ς∗-open set of v. Thus (X,Nnς
∗,≤) is a lower neutrosophic N ς-T1-ordered

space. Similarly, we can prove for upper neutrosophic N ς-T1-ordered space.

Definition 3.8. For each pair of elements u � v in X, there exists neutrosophic N ς-open

sets G = 〈x, µG, σG, γG〉 and H = 〈x, µH , σH , γH〉 such that G is an increasing neutrosophic

N ς-neighbourhood of u, H is a decreasing neutrosophic N ς-neighbourhood of v and G∩H =

0N , then (X,Nnς,≤) is defined to be neutrosophic N ς-T2-ordered space.

Theorem 3.9. For a neutrosophic N -TOS (X,Nnς,≤), the following are equivalent:

(i) X is a neutrosophic N ς-T2-ordered space.

(ii) For each pair u, v ∈ X such that u � v, there exists neutrosophic N ς-open sets G =

〈x, µG, σG, γG〉 and H = 〈x, µH , σH , γH〉 such that u ∈ G, v ∈ H and s ∈ G, t ∈ H together

imply that s � t.

(iii) The graph of the partial order of X is a neutrosophic N ς∗-closed where N ς∗ is the

product topology for X ×X.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (i): Let u, v ∈ X with u � v, there exists neutrosophic N ς-open sets G and H

satisfying the properties in (ii). Since i(G) is an increasing neutrosophic N ς-open set and

d(H) is a decreasing neutrosophic N ς-open set, we have i(G) ∩ d(H) = 0N . Suppose if

w ∈ i(G) ∩ d(H), there exists s ∈ G such that s ≤ w and there exists t ∈ H such that

w ≤ t. Then s ≤ t, a contradiction. Therefore i(G) ∩ d(H) = 0N . Hence X is neutrosophic

N ς-T2-ordered space.

(i) ⇒ (iii): Let G be the graph of the partial order of X and (s, t) ∈ Nnς
∗-cl(G) and

(s, t) /∈ G. Then s � t and therefore there exists an increasing neutrosophic N ς-open set A of
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s and a decreasing neutrosophic N ς-open set B of t such that A ∩ B = 0N . A × B being a

neutrosophic N ς∗-open set of (s, t), (A × B) ∩ G = 0N . Thus (s, t) ∈ A × B. It follows that

(s, s) ∈ A which implies s ≤ t. Since A is an increasing neutrosophic N ς-open set, t ∈ A.

Then A ∩ B 6= 0N , a contradiction. Therefore, (s, t) /∈ Nnς
∗-cl(G) and consequently, G is

neutrosophic N ς∗-closed.

(iii) ⇒ (i): Suppose s � t. Then (s, s) /∈ G where G is the graph of the partial order of

X. Since G is neutrosophic N ς∗-closed, there exists neutrosophic N ς∗-open sets S and T such

that (s, t) ∈ S × T and (S × T ) ∩ G = 0N . Let S∗ = i(S) and T ∗ = d(T ). Then S∗ is an

increasing neutrosophic N ς-open set of s, T
∗

is a decreasing neutrosophic N ς-open set of t.

Also S∗ ∩ T ∗ = 0N , because suppose if r ∈ S∗ ∩ T ∗, then there exists p ∈ S, q ∈ T such that

p ≤ r ≤ q which implies p ≤ q. So (p, q) ∈ (S × T ) ∩ G, a contradiction. Therefore, S∗ ∩ T ∗

must be empty. Hence X is neutrosophic N ς-T2-ordered space.

Theorem 3.10. A neutrosophic N -TOS (X,Nnς,≤) is a neutrosophic N ς-T2-ordered space

if and only if for each r ∈ X, there exists an increasing(respectively decreasing) neutrosophic

N ς-clopen subset of X containing r.

Proof. If X is neutrosophic N ς-T2-ordered space and let H ⊆ X, then H is the required

increasing (respectively decreasing) neutrosophic N ς-clopen subset of X for all r ∈ X. Con-

versely, let us assume r � s in X. By hypothesis, there exists an increasing(respectively

decreasing) neutrosophic N ς-clopen subset H in X containing r. If s ∈ H, then there is

nothing to prove. If s /∈ H, then X \H is a decreasing neutrosophic N ς-clopen subset of X

containing s. Also H ∩X \H = ∅. Hence (X,Nnς,≤) is a neutrosophic N ς-T2-ordered space.

4. Weakly Neutrosophic N ς-T2-Ordered and Almost Neutrosophic N ς-T2-Ordered

Space

Definition 4.1. A neutrosophic N -TOS is said to be weakly neutrosophic N ς-T2-ordered

space if for given v < u(that is v ≤ u and v 6= u), there exists neutrosophic N ς-open sets G =

〈x, µG, σG, γG〉 and H = 〈x, µH , σH , γH〉 containing u and v respectively such that r ∈ G and

s ∈ H together imply that s < r.

Definition 4.2. A neutrosophic N -TOS is said to be an almost neutrosophic N ς-T2-ordered

space if for given u ‖ v, there exists neutrosophic N ς-open sets G = 〈x, µG, σG, γG〉 and H =

〈x, µH , σH , γH〉 containing u and v respectively such that r ∈ G and s ∈ H together imply

that r ‖ s.
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Theorem 4.3. A neutrosophic N -TOS (X,Nnς,≤) is a neutrosophic N ς-T2-ordered space if

and only if it is weakly neutrosophic N ς-T2-ordered and almost neutrosophic N ς-T2-ordered

space.

Proof. Let (X,Nnς,≤) be a neutrosophic N ς-T2-ordered space. Then it is weakly neutrosophic

N ς-T2-ordered space. Let u ‖ v. Then u � v and v � u. Since X is neutrosophic N ς-T2-

ordered and u � v, then there exists neutrosophic N ς-open sets G and H containing u and

v respectively such that r ∈ G and s ∈ H together imply that r � s. Since v � u, there

exists neutrosophic N ς-open sets H∗ of vand G∗ of u such that s ∈ H∗ and r ∈ G∗ together

imply that s � r. Thus G ∩G∗ is a neutrosophic N ς-open set containing u and H ∩H∗ is a

neutrosophic N ς-open set containing v such that r ∈ G∩G∗, s ∈ H ∩H∗ together imply that

r ‖ s. Hence X is almost neutrosophic N ς-T2-ordered space.

Conversely, if u � v, then either v < u or v � u. If v < u and since X is weakly neutrosophic

N ς-T2-ordered space, then there exists neutrosophic N ς-open sets G and H containing u and

v respectively such that r ∈ G, s ∈ H implies that s < r, that is r � s. If v � u, then obviously

u ‖ v. And since X is almost neutrosophic N ς-T2-ordered space, for given u ‖ v, there exists

neutrosophic N ς-open sets G∗ and H∗ containing u and v respectively such that r ∈ G∗ and

s ∈ H∗ together imply that r ‖ s. Therefore (X,Nnς,≤) is a neutrosophic N ς-T2-ordered

space.

5. Neutrosophic N ς-Regularly Ordered Space

Definition 5.1. Let (X,Nnς,≤) be a neutrosophic N -TOS. If for each decreasing(respectively

increasing) neutrosophic N ς-closed subset W in X and for each s /∈W , there exists a neutro-

sophic N ς-neighbourhood G of s and a neutrosophic N ς-neighbourhood H of W such that G is

increasing(respectively decreasing), H is decreasing(respectively increasing) and G∩H = 0N ,

then (X,Nnς,≤) is said to be lower(respectively upper) neutrosophic N ς-regularly ordered

space.

Definition 5.2. (X,Nnς,≤) is said to be neutrosophic N ς-regularly ordered space if it is both

lower and upper neutrosophic N ς-regularly ordered space.

Definition 5.3. A neutrosophic N ς-T1-ordered neutrosophic N ς-regularly ordered space is

called N ς-T3-ordered space.

Theorem 5.4. Every neutrosophic N ς-T1-ordered space, lower or upper neutrosophic N ς-

regularly ordered space is neutrosophic N ς-T2-ordered space.
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Proof. Let X be a neutrosophic N ς-T1-ordered space, lower neutrosophic N ς-regularly ordered

space and let u � v. Since X is neutrosophic N ς-T1-ordered space, [←, v] is neutrosophic N ς-

closed. Also [←, v] is a decreasing neutrosophic set. Since u /∈ [←, v], there exists an increasing

neutrosophic N ς-neighbourhood G of u and a decreasing neutrosophic N ς-neighbourhood H

of [←, v] such that G ∩ H = 0N . Since v ∈ [←, v] ⊆ H, X is a neutrosophic N ς-T2-ordered

space.

6. Conclusions

In this paper, we defined a new concept ”Neutrosophic N -Topological Ordered Spaces”.

some characterisitics of separation axioms N ς-Ti-ordered space (i = 0, 1, 2, 3) dealing with

neutrosophic were studied here. In our future work, we deal with neutrosophic N ς-Ti-ordered

space (i=4,5) and its characteristics in Neutrosophic N -Topological Ordered Spaces.
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Abstract: In this paper we establish the notion of complex single-valued neutrosophic N -soft set. It improves the traits of three
general models, namely, single-valued neutrosophic sets, single-valued neutrosophic soft sets and single-valued neutrosophic N -
soft sets, in such way that it makes two dimensional ambiguous information and parameterized grading evaluation compatible.
We explain the modeling abilities of complex single-valued neutrosophic N -soft sets and investigate some of their fundamental
properties. Moreover, the intended approach hinges on rational attributes to support the choice of the most suitable solution. The
proposed method is explicated through an example from the islamic banking industry. We also perform a comparative analysis with
respect to the neutrosophic TOPSIS method.

Keywords: Complex single-valued neutrosophic set, N -soft set, TOPSIS method, MAGDM.

1 Introduction
A fascinating research article by Smarandache [29] has attracted the attention of many researchers since 1998. Neutrosophic sets (NSs) had
been born that year. They are based on formal logic that contemplates the nature, origin, and scope of objectivities with their relations for
numerous intellectual spectra. The neutrosophic theory comprises probability, set theory, logics, and statistics. As such it copes with real life events
characterized by degree of satisfaction, dissatisfaction and indeterminacy. It is therefore acknowledged to provide a generalization of both classic
set, fuzzy set, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and Pythagorean fuzzy sets [38, 17, 33]. Neutrosophic-inspired sets
are classified into many subclasses like interval-valued neutrosophic sets, single-valued neutrosophic sets (SVNSs), and the subclass known as
simplified neutrosophic set. The SVNSs were introduced by Wang and Smarandache [31, 30]. They can be characterized by three real valued
functions whose values are taken from the unit closed interval [0, 1], therefore it is more convenient and applicable in many areas of science and
engineering. After Wang and Smarandache, the single-valued neutrosophic environment has been scrutinized extensively. For example, Ye [34]
provided a correlation coefficient between SVNSs which became a useful tool for decision making, and Akram and Luqman [6] illustrated the
concept of SVNSs with the flavor of hypergraphs.
Another breakthrough was Ramot et al. [26] who extended the 1-dimensional fuzzy perspective [38] to 2-dimensional phenomena. The resulting
model was called complex fuzzy sets. This new perspective prompted many authors to adapt existing models to the complex spirit. Thus complex
intuitionistic fuzzy sets [15] and complex Pythagorean fuzzy sets [37], which are precisely related to multi-attribute decision making (MAGDM)
phenomena, were soon developed.
The two aforementioned expressions of vagueness were made compatible by Ali and Smarandache [13]. These authors put forward the notion of
complex neutrosophic set under the influence of both neutrosophic sets [29] and complex fuzzy sets [26].
In MAGDM problems, the opinions of people are not invariably expressed through binary evaluations. It is often easier to bring up decisions using
non-binary evaluations, specifically in the case of qualitative information such as the perceived performance of banking industry, people’s morality,
hospital assistance, etc. Hence, Fatimah et al. [21] firstly presented N -soft sets and applied them on decision making methods based on non-binary
evaluations. N -soft sets extended the scope of soft sets [25] whose foundation is that any alternative can be characterized by a selected list of
attributes. Many real examples were given [11, 21]. Stimulated from the novel concept of N -soft set, Akram et al. [5] solved decision making
problems using the hybrid combination of fuzzy set with N -soft set that improves the performance of fuzzy soft sets [10]. Further, Akram et al.
[9] presented the novel idea of intuitionistic fuzzy N -soft sets (IFNSfSs), Pythagorean fuzzy N -soft sets (PFNSfSs) have been introduced
by Zhang [39] in 2020, and recently the multi-fuzzy N -soft set model has been presented alongside its applications to decision-making [22]. This
proves that N -soft sets are a trendy topic and that the model is amenable to hybridization from many standpoints including rough set theory [11]
and hesitancy [4] in addition to the ideas discussed above.
The theoretical models called neutrosophic soft sets (NSfSs) and single-valued neutrosophic soft sets (SVNSfSs) were put forward by Maji
[40] and Jana et al. [23], respectively. The parametrized nature of the attributes that characterizes soft set theory is combined with neutrosophic
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information and the possibilities of these new models are discussed in detail. Ashraf and Butt [16] and Riaz et al. [27] first established a theoretical
model for neutrosophic N -soft sets (NNSfSs). They made applications to business and the medical field supported by the TOPSIS method,
respectively. Moreover, Sahin et al. [28] used the framework of (SVNSfSs) for the development of a TOPSIS method which helped to find
the most suitable supplier for a production industry. In 2015, Ye [36] introduced single-valued neutrosophic linguistic numbers (SVNLNs) as
an extension of intuitionistic linguistic numbers and further set theoretical description for single-valued neutrosophic linguistic-TOPSIS method.
More recently, Akram et al. [7, 8] have presented new decision making methods.
In this manuscript we present a quite general model known as complex single-valued neutrosophic N -soft set (CSVNSfS). It describes the
possibility that the parameterized nature of the universe may be complex single-valued neutrosophic, which comprises functions for satisfaction
degree, hesitancy degree and dissatisfaction degree whose values are taken from the complex unit circle. The hesitancy degree and ordered grades
endow the CSVNSfS with excellent qualities, so much so that this model dominates over the existing CNSs,NNSfSs and SVNSs.
The motivation for this paper depends upon the following elements:

1. The NNSfSs and IFNSfSs have the ability to express situations including an indeterminacy part with ordered grades, but they are not
designed to deal with two dimensional ambiguity in the parametric information.

2. Moreover, SVNSs and CNSs can tackle the hesitancy degree in human judgment with periodic terms, but they cannot assist us in the
decision making problems based on non-binary evaluations or ranking systems.

3. These limitations encouraged us to present the idea of CSVNSfS which competently handles the phase term of 2-dimensional problems
with ordered grades, indeterminacy, hesitancy and incomplete figures in their decisions.

The practical contribution of this article is the formalization of the CSVNSfS-TOPSIS technique for solving MAGDM problems that require the
use of CSVNSf information. For this purpose, we define some basic notions and the CSVNSfSSs and CSVNSf averaging and geometric
operators. These operators allow us to combine the decisions according to the performance of the alternatives and the weightage of the relevant
attributes and experts. We also define score and accuracy function sof CSVNSfNs for the sake of CSVNSf -PIS and CSVNSf -NIS. Finally,
we can sort out the alternatives using a revised closeness index whose values are totally based upon the normalized Euclidean distance.
The authenticity of the presented technique is verified by a numerical example that concerns the monitoring performance of the Islamic banking
industry on the basis of the CAMELS rating system. Moreover, a comparison of the proposed model with the SVN -TOPSIS method substantiates
the accuracy and reliability of the results and of our novel technique. For further useful notions related to N -soft sets not discussed in the paper,
the readers are referred to [1, 2, 12]
The arrangement of this paper is as follows. Section 2 contains some basic definitions related to the proposed model. In Section 3 we describe
the main features of the presented theory with some operations and properties. Section 4 presents the score function, accuracy function and
some aggregation operators related to CSVNNSfNs. Section 5, gives a brief description for the CSVNNSf -TOPSIS method with a specific
algorithm. Section 6, models a MAGDM problem and applies the proposed technique to find a solution. Section 7 comprises the comparison
analysis with the CSVN -TOPSIS method. In Section 8, we come to the conclusion with some ideas for future research works.

2 Preliminaries
Definition 1. [29] A neutrosophic set (NS) Ψ on a universe of discourse U has the form:

Ψ = 〈u,TΨ(u), IΨ(u),FΨ(u) : u ∈ U〉,

where, TΨ(u), IΨ(u) and FΨ(u) are degree of satisfaction, degree of indeterminacy and degree of dissatisfaction, respectively, belongs to non-
standard interval ]−0, 1+[, for every u ∈ U.

Definition 2. [31] A single-valued neutrosophic set (SVNS) Ψ on a universe of discourse U has the form

Ψ = 〈u,TΨ(u), IΨ(u),FΨ(u) : u ∈ U〉,

where TΨ(u), IΨ(u), FΨ(u) : U → [0, 1] are the degree of truthness, degree of hesitancy and degree of falsity, respectively, without any condition
on the sum of TΨ(u), IΨ(u) and FΨ(u) for all u ∈ U. The triplet (TΨ, IΨ,FΨ) is called single-valued neutrosophic number (SVNN).

Definition 3. [13] A complex single-valued neutrosophic set (CSVNS) Ψ, on the universe U is defined as:

Ψ = 〈u,TΨ(u), IΨ(u),FΨ(u) : u ∈ U〉,

where TΨ(u) = pΨ(u)ei2πtΨ(u), IΨ(u) = qΨ(u)ei2πωΨ(u) and FΨ(u) = rΨ(u)ei2πfΨ(u), denote the degree of truthness, degree of hesitancy
and degree of falsity, respectively, without any conditions on the sum of amplitude terms pΨ(u), qΨ(u), rΨ(u) : U → [0, 1] or the phase terms
tΨ(u), ωΨ(u), fΨ(u) : U → [0, 1] for all u ∈ U. The triplet (pΨ(u)ei2πtΨ(u), qΨ(u)ei2πωΨ(u), rΨ(u)ei2πfΨ(u)) is called complex single-valued
neutrosophic number (CSVNN).

Definition 4. [25] Let U be a non-empty set and K be a set of parameters and Y ⊆ K. A soft set SfS over U is a pair (Φ, Y ), where
Φ : K → P (U) is a set-valued function defined as:

(Φ, Y ) = {〈yw,Φ(yw)〉|yw ∈ Y,Φ(yw) ∈ P (U)}.
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Definition 5. Let U be a non-empty set and K be a set of parameters and Y ⊆ K. A complex single-valued neutrosophic soft set CSVNSfS
over U is a pair (Φ, Y ), where Φ : K → P(CSVNS) is a set-valued function defined as:

(Φ, Y ) = {〈yw,Φ(yw)〉|yw ∈ Y,Φ(yw) ∈ P(CSVNS)}
= {〈yw, (us, (Tws, Iws,Fws))〉}
= {〈yw, (us, (pwsei2πtws , qwsei2πωws , rwsei2πfws))〉},

where P(CSVNS) is the collection of all subsets of CSVNSs over the non-empty set U and pws, tws, qws, ωws, rws, fws ∈ [0, 1].

Definition 6. [21]Let U be a non-empty set and K be a set of parameters and Y ⊆ K. Let H = {0, 1, 2, . . . , N − 1} be a set of ordered grades
with N ∈ {2, 3, . . .}. A triple (Φ, Y,N) is called N -soft set (NSfS) over U if Φ is a mapping define as Φ : Y → 2U×H , that is there exist a
unique pair (us, h

s
w) ∈ U×H such that (us, h

s
w) ∈ Φ(yw), where us ∈ U, hsw ∈ H.

3 Complex single-valued neutrosophic N -soft sets
Definition 7. Let U be a non-empty set and K be a set of parameters with Y ⊆ K. Let H = {0, 1, 2, . . . , N − 1} be a set of ordered grades with
N ∈ {2, 3, . . .}. A triple (ΦΨ, Y,N) is called a complex single-valued neutrosophic N -soft set (CSVNNSfS) on Y, if (Φ, Y,N) is an NSfS
on U, and ΦΨ : Y → 2U×H ×CSVNN is a mapping, which is defined as:

ΦΨ(yw) = {〈(Φ(yw),Ψ(yw))〉 : yw ∈ Y },
= {〈((us, hsw), (Tws, Iws,Fws))〉},
= {〈((us, hsw), (pwse

i2πtws , qwse
i2πωws , rwse

i2πfws))〉},

where Φ : Y → 2U×H , Ψ : Y → CSVNN, and CSVNN denotes the collection of all complex single-valued neutrosophic numbers of U, hsw
denotes the rank of parameter for the alternative yw and pws, tws, qws, ωws, rws, fws ∈ [0, 1], with no conditions on their sum.

Example 1. Let U = {U1 = Emirates, U2 = Eithad Airways, U3 = Turkish airlines, U4 = Flynas } be the set of airlines from Pakistan to Turkey
and Y = {Y1 = Price , Y2 = Entertainment, Y3 = luxuries, Y4 = Safety } be the characteristics which are experienced by the passengers and
then passengers assigned ratings to these airlines. These ratings are aggregated by the experts and form a 6-soft set given Table 1, where

0 means ‘very Bad’

1 means ‘Bad’

2 means ‘Ok’

3 means ‘Good’

4 means ‘Great’

5 means ‘Excellent’

Table 1: 6-soft set evaluated by experts
Y/U U1 U2 U3 U4

Y1 3 5 0 1
Y2 1 4 2 0
Y3 2 1 4 3
Y4 5 0 1 2

For handling the alternatives with fuzziness property related to parameters, we need CSVNNSfSs. Therefore, authorities defined grading
criteria, given in Table 2, for the evaluation of airlines under the environment of CSVNNSfSs, where Table 2 is evaluated from the following
criteria:

when hsw = 0, − 4.00 ≤ S(Ψ) < − 3.30,

when hsw = 1, − 3.30 ≤ S(Ψ) < − 2.20,

when hsw = 2, − 2.20 ≤ S(Ψ) < − 1.00,

when hsw = 3, − 1.00 ≤ S(Ψ) < 0.20,

when hsw = 4, 0.20 ≤ S(Ψ) < 1.20,

when hsw = 5, 1.20 ≤ S(Ψ) ≤ 2.000.
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Table 2: Grading criteria for CSVN6SS
hwz /J degree of truthness degree of indeterminacy degree of falsity
grades pw 2πtw qw 2πωw rw 2πfw
hsw = 0 [0.00, 0.15) [0.0, 0.3π) (0.90, 1.00] [1.8π, 2.0π] (0.90, 1.00] [1.8π, 2.0π]
hsw = 1 [0.15, 0.30) [0.3π, 0.6π) (0.70, 0.90] [1.4π, 1.8π) (0.70, 0.90] [1.4π, 1.8π)
hsw = 2 [0.30, 0.50) [0.6π, 1.0π) (0.50, 0.70] [1.0π, 1.4π) (0.50, 0.70] [1.0π, 1.4π)
hsw = 3 [0.50, 0.70) [1.0π, 1.4π) (0.30, 0.50] [0.6π, 1.0π) (0.30, 0.50] [0.6π, 1.0π)
hsw = 4 [0.70, 0.90) [1.4π, 1.8π) (0.15, 0.30] [0.3π, 0.6π) (0.15, 0.30] [0.3π, 0.6π)
hsw = 5 [0.90, 1.00] [1.8π, 2π] [0.00, 0.15] [0.0, 0.3π) [0.00, 0.15] [0.0, 0.3π)

Using the prescribed information, the CSVN6SfS, shown in 3, is defined as:

ΦΨ(Y1) = {((U1, 3), (0.60ei1.26π, 0.35ei0.68π, 0.4ei0.84π)), ((U2, 5), (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)),

((U3, 0), (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)), ((U4, 1), (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))},

ΦΨ(Y2) = {((U1, 1), (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)), ((U2, 4), (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)),

((U3, 2), (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)), ((U4, 0), (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))},

ΦΨ(Y3) = {((U1, 2), (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)), ((U2, 1), (0.2ei0.42π, 0.76ei1.54π, 0.78ei1.58π)),

((U3, 4), (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)), ((U4, 3), (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))},

ΦΨ(Y4) = {((U1, 5), (0.98ei1.94π, 0.01ei0.04π, 0.1e0.24iπ)), ((U2, 0), (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)),

((U3, 1), (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)), ((U4, 2), (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))}.

Table 3: The CSVN6SfS (ΦΨ, Y, 6)
(ΦΨ, Y, 6) U1 U2 U3 U4

Y1 (3, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (5, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (0, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (1, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (1, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (4, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (2, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (0, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (2, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (1, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (4, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (3, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (5, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (0, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (1, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (2, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

Definition 8. A CSVNSfS(ΦΨ, Y,N) over a non-empty set U is said to be efficient where (Φ, Y,N) is an NSfS, if ΦΨ(yw) = 〈(us, N −
1), 1, 0, 0〉 for some yw ∈ Y, us ∈ U.

Example 2. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. From Table 3, it is clear that Example 1 is not efficient.

Definition 9. Let (ΦΨ, Y,N1) and (χA, C,N2) be two CSVNSfSs on a universe of discourse U. Then, they are said to be equal if and only if
Φ = χ, Ψ = A, Y = C and N1 = N2.

Definition 10. Let (ΦΨ, Y,N) be a CSVNSfS on U. The weak complement of CSVNSfS is defined as the weak complement of the N -soft
set (Φ, Y,N), that is, any N -soft set such that Φc(yw) ∩ Φ(yw) = ∅ for all yw ∈ Y. The weak complement of CSVNSfS of (ΦΨ, Y,N) is
represented as (ΦcΨ, Y,N).

Example 3. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. The weak complement (ΦcΨ, Y,N) is given in Table 4.

Table 4: A weak complement of the CSVN6SfS (ΦΨ, Y, 6)
(ΦcΨ, Y, 6) U1 U2 U3 U4

Y1 (5, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (4, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (1, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (3, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (4, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (1, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (3, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (5, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (4, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (3, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (0, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (5, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (0, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (2, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (3, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (3, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

M. Akram, M. Shabir, A. Ashraf, Complex neutrosophic N -soft sets: A new model with applications.



Neutrosophic Sets and Systems, Vol. 42, 2021 282

Table 6: The complex single-valued neutrosophic complement (ΦΦc , Y,N) of the CSVN6SfS
(ΦΨc , Y, 6) U1 U2 U3 U4

Y1 (3, (0.40ei0.84π, 0.65ei1.32π, 0.60ei1.26π)) (5, (0.12ei0.26π, 0.95ei1.88π, 0.95ei1.92π)) (0, (0.97ei1.96π, 1.05ei1.92π, 0.06ei0.14π)) (1, (0.24ei0.50π, 0.14ei0.24π, 0.87ei1.72π))
Y2 (1, (0.81ei1.66π, 0.25ei0.52π, 0.17ei0.40π)) (4, (0.25ei0.48π, 0.88ei1.58π, 0.81ei1.66π)) (2, (0.54ei1.10π, 0.42ei0.08π, 0.36ei0.74π)) (0, (0.98e1.98π, 0.04ei0.06π, 0.08ei0.20π))
Y3 (2, (0.52ei1.06π, 0.45ei0.88π, 0.32ei0.70π)) (1, (0.78ei1.58π, 0.24ei0.46π, 0.20ei0.42π)) (4, (0.20ei0.38π, 0.83ei1.64π, 0.75ei1.52π)) (3, (0.48e0.94π, 0.59ei1.16π, 0.69ei1.36π))
Y4 (5, (0.10e0.24iπ, 0.09ei1.96π, 0.98ei1.94π)) (0, (0.93e1.88iπ, 0.09ei0.16π, 0.03ei0.10π)) (1, (0.83ei1.68π, 0.21ei0.40π, 0.21ei0.46π)) (2, (0.55ei1.12π, 0.41ei0.80π, 0.38ei0.78π))

Definition 11. Let (ΦΨ, Y,N) be a CSVNNSfS onU. The Strong complement of CSVNNSfS, denoted as (Φ
′
Ψ, Y,N), is defined as:

Φ
′
(yw) =

{
hsw − 1, if hsw = (N − 1)− hsw,
(N − 1)− hsw, otherwise,

for all yw ∈ Y and us ∈ U, satisfying the condition (ΦΨ, Y,N) ∩ (Φ
′
Ψ, Y,N) = ∅.

Example 4. Let (ΦΨ, Y, 6) be CSVN6SfS, then the strong complement (Φ
′
Ψ, Y, 6) of Example 1 is given in Table 5 such that (ΦΨ, Y, 6) ∩

(Φ
′
Ψ, Y, 6) = ∅.

Table 5: Strong complement of (ΦΨ, Y, 6)
(ΦΨ, Y, 6) U1 U2 U3 U4

Y1 (2, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (0, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (5, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (4, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (4, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (1, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (3, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (5, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (3, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (4, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (1, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (2, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (0, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (5, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (4, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (3, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

Proposition 12. A strong complement of CSVNNSfS is also a weak complement but week complement may or may not be strong complement.

Proof. The proof is straight forward from the definitions of strong complement and weak complement.

Definition 13. Let (ΦΨ, Y,N) be a CSVNSfS on U. The complex single-valued neutrosophic complement of CSVNSfS is denoted as
(ΦΨc , Y,N) and is defined as

ΦΨc(yw) = 〈(us, hsw, (Fws, 1− Iws,Tws))〉 = 〈(us, hsw, (rwsei2πfws , (1− qws)ei2π(1−ωws), pwse
i2πtws))〉.

Example 5. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. The complex single-valued neutrosophic complement (ΦΨc , Y,N), is given in
Table 6.

Definition 14. Let (ΦΨ, Y,N) be a CSVNSfS on U. (F cJc , Z,N) is referred to as a weak complex single-valued neutrosophic complement
of ((ΦΨ)c, Y,N) if and only if (ΦcΨ, Y,N) is a weak complement and (ΦΨc , Y,N) is a complex single-valued neutrosophic complement of
(ΦΨ, Y,N).

Example 6. Let (ΦΨ, Y, 6) be CSVN6SfS, as in Example 1. The weak complex single-valued neutrosophic complement (ΦcΦc , Y,N), is given
in Table 7.

Table 7: The weak complex single-valued neutrosophic complement (Φc
Ψc , Y, 6) of the CSVN6SfS

(ΦcΨc , Y, 6) U1 U2 U3 U4

Y1 (5, (0.40ei0.84π, 0.65ei1.32π, 0.60ei1.26π)) (4, (0.12ei0.26π, 0.95ei1.88π, 0.95ei1.92π)) (1, (0.97ei1.96π, 1.05ei1.92π, 0.06ei0.14π)) (3, (0.24ei0.50π, 0.14ei0.24π, 0.87ei1.72π))
Y2 (4, (0.81ei1.66π, 0.25ei0.52π, 0.17ei0.40π)) (1, (0.25ei0.48π, 0.88ei1.58π, 0.81ei1.66π)) (3, (0.54ei1.10π, 0.42ei0.08π, 0.36ei0.74π)) (5, (0.98e1.98π, 0.04ei0.06π, 0.08ei0.20π))
Y3 (4, (0.52ei1.06π, 0.45ei0.88π, 0.32ei0.70π)) (3, (0.78ei1.58π, 0.24ei0.46π, 0.20ei0.42π)) (0, (0.20ei0.38π, 0.83ei1.64π, 0.75ei1.52π)) (5, (0.48e0.94π, 0.59ei1.16π, 0.69ei1.36π))
Y4 (0, (0.10e0.24iπ, 0.09ei1.96π, 0.98ei1.94π)) (2, (0.93e1.88iπ, 0.09ei0.16π, 0.03ei0.10π)) (3, (0.83ei1.68π, 0.21ei0.40π, 0.21ei0.46π)) (3, (0.55ei1.12π, 0.41ei0.80π, 0.38ei0.78π))

Definition 15. Let (ΦΨ, Y,N) be a CSVNNSfS on U, then the strong complex single-valued neutrosophic complement ((ΦΨ)
′
, Y,N) is de-

fined as a strong complement (Φ
′
Ψ, Y,N) and a complex single-valued neutrosophic complement (ΦΨc , Y,N) of (ΦΨ, Y,N), defined as:

Φ
′
Ψc(yw) = {

(hsw − 1, (rwse
i2πfws , (1− qws)ei2π(1−ωws), pwse

i2πtws)) if hsw = (N − 1)− hsw,
((N − 1)− hsw, (rwsei2πfws , (1− qws)ei2π(1−ωws), pwse

i2πtws)) otherwise,

for all yw ∈ Y and us ∈ U.
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Example 7. Let (ΦΨ, Y, 6) be CSVN6SfS onU, then the strong single-valued neutrosophic complement (Φ
′
Ψc , Y,N), of (ΦΨ, Y, 6) arranged

in Table 3, is calculated in Table 8.

Table 8: Strong single-valued neutrosophic complement of (ΦΨ, Y, 6)
(Φ

′

Ψc , Y, 6) U1 U2 U3 U4

Y1 (2, (0.40ei0.84π, 0.65ei1.32π, 0.60ei1.26π)) (0, (0.12ei0.26π, 0.95ei1.88π, 0.95ei1.92π)) (5, (0.97ei1.96π, 1.05ei1.92π, 0.06ei0.14π)) (4, (0.24ei0.50π, 0.14ei0.24π, 0.87ei1.72π))
Y2 (4, (0.81ei1.66π, 0.25ei0.52π, 0.17ei0.40π)) (1, (0.25ei0.48π, 0.88ei1.58π, 0.81ei1.66π)) (3, (0.54ei1.10π, 0.42ei0.08π, 0.36ei0.74π)) (5, (0.98e1.98π, 0.04ei0.06π, 0.08ei0.20π))
Y3 (3, (0.52ei1.06π, 0.45ei0.88π, 0.32ei0.70π)) (4, (0.78ei1.58π, 0.24ei0.46π, 0.20ei0.42π)) (1, (0.20ei0.38π, 0.83ei1.64π, 0.75ei1.52π)) (2, (0.48e0.94π, 0.59ei1.16π, 0.69ei1.36π))
Y4 (0, (0.10e0.24iπ, 0.09ei1.96π, 0.98ei1.94π)) (5, (0.93e1.88iπ, 0.09ei0.16π, 0.03ei0.10π)) (4, (0.83ei1.68π, 0.21ei0.40π, 0.21ei0.46π)) (3, (0.55ei1.12π, 0.41ei0.80π, 0.38ei0.78π))

Proposition 16. Let ((ΦΨ)c, Y,N) and ((ΦΨ)
′
, Y,N) be weak and strong complex single-valued neutrosophic complement of CSVNNSfS

(ΦΨ, Y,N), then

1 ((Φc)cΨ, Y,N) 6= (ΦΨ, Y,N),

2 (((ΦΨ)c)c, Y,N) 6= (ΦΨ, Y,N),

3 ((Φ
′
)
′
Ψ, Y,N)

{
= (ΦΨ, Y,N) if N is even
6= (ΦΨ, Y,N) if N is odd.

}
.

4 ([(ΦΨ)
′
]
′
, Y,N)

{
= (ΦΨ, Y,N) if N is even
6= (ΦΨ, Y,N) if N is odd.

}
.

Proof. The proof is straight forward from the definitions.

Definition 17. LetU be a non-empty set and (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS onU, respectively, their restricted
intersection is defined as (LM , G,O) = (ΦΨ, Y,N1)∩̂(χA, C,N2), with LM = ΦΨ∩̂χA, G = Y ∩ C, O = min(N1, N2), i.e., ∀xw ∈ G,
us ∈ U we have

LM (xw) = 〈(hsw, (Tws, Iws,Fws))〉,
= 〈(min(h1s

w , h
2s
w ),min(T1

ws,T2
ws),max(I1ws, I2ws),max(F1

ws,F2
ws))〉,

= 〈(min(h1s
w , h

2s
w ),min(p1

ws, p
2
ws)e

i2πmin(t1ws,t
2
ws),max(q1

ws, q
2
ws)e

i2πmax(ω1
ws,ω

2
ws),max(r1

ws, r
2
ws)e

i2πmax(f1
ws,f

2
ws))〉,

where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws))

= (h2s
w , (p

2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Table 9: The CSF5SfS(χA, C, 5)
U1 U2 U5

Y1 (0, (0.12ei0.23π, 0.91ei1.84π, 0.96ei1.96π)) (1, (0.21ei0.42π, 0.77ei1.50π, 0.82ei1.66π)) (0, (0.05ei0.14π, 0.87ei1.72π, 0.88ei1.80π))
Y2 (2, (0.42ei0.82π, 0.51ei1.04π, 0.56ei1.10π)) (4, (0.88ei1.78π, 0.09ei0.16π, 0.06ei0.10π)) (4, (0.90ei1.84π, 0.11ei0.20π, 0.14ei0.26π))
Y3 (3, (0.81ei1.64π, 0.17ei0.36π, 0.19ei0.40π)) (3, (0.83ei1.68π, 0.27ei0.56π, 0.30ei0.58π)) (1, (0.26ei0.48π, 0.72ei1.42π, 0.75ei1.52π))
Y4 (4, (0.95ei1.80π, 0.012ei0.02π, 0.10e0.22iπ)) (3, (0.70ei1.42π, 0.26ei0.54π, 0.31e0.64iπ)) (2, (0.49ei1.02π, 0.61ei1.24π, 0.59ei1.16π))

Example 8. The restricted intersection (LM , G,O) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 10.

Table 10: The restricted intersection (LM , G, 5)
(LM , G, 56) U1 U2

Y1 (0, (0.12ei0.23π, 0.91ei1.84π, 0.96ei1.96π)) (1, (0.21ei0.42π, 0.77ei1.50π, 0.82ei1.66π))
Y2 (1, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (4, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π))
Y3 (2, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (1, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π))
Y4 (4, (0.95ei1.80π, 0.012ei0.02π, 0.10e0.22iπ)) (0, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ))

Definition 18. Let (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS on U, respectively, their extended intersection is defined as
(DQ, T,S) = (ΦΨ, Y,N1)∩̌(χA, C,N2), with DQ = ΦΨ∩̌χA, T = Y ∪ C, S = max(N1, N2), that is, ∀xw ∈ T and us ∈ U, we have

DQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − C,

(h2s
w , (T2

ws, I2ws,F2
ws)), if xw ∈ C − Y ,(

min(h1s
w , h

2s
w ),min(p1

ws, p
2
ws)e

i2πmin(t1ws,t
2
ws),max(q1

ws, q
2
ws)e

i2πmax(ω1
ws,ω

2
ws),max(r1

ws, r
2
ws)e

i2πmax(f1
ws,f

2
ws)
)
, if xw ∈ C ∩ Y
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where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws)) = (h2s

w

, (p2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Example 9. The extended intersection (DQ, T, 6) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 11.

Table 11: The extended intersection(DQ, T,S)
(DQ, T,S) U1 U2 U3 U4

Y1 (0, (0.12ei0.23π, 0.91ei1.84π, 0.96ei1.96π)) (1, (0.21ei0.42π, 0.77ei1.50π, 0.82ei1.66π)) (0, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (1, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (1, (0.17ei0.40π, 0.75ei1.48π, 0.81ei1.66π)) (4, (0.81ei1.66π, 0.22ei0.42π, 0.25ei0.48π)) (2, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (0, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (2, (0.32ei0.70π, 0.55ei1.12π, 0.52ei1.06π)) (1, (0.20ei0.42π, 0.76ei1.54π, 0.78ei1.58π)) (4, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (3, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (4, (0.95ei1.80π, 0.012ei0.02π, 0.10e0.22iπ)) (0, (0.03ei0.10π, 0.91ei1.84π, 0.93e1.88iπ)) (1, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (2, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

U5

Y1 (0, (0.05ei0.14π, 0.87ei1.72π, 0.88ei1.80π))
Y2 (4, (0.90ei1.84π, 0.11ei0.20π, 0.14ei0.26π))
Y3 (1, (0.26ei0.48π, 0.72ei1.42π, 0.75ei1.52π))
Y4 (2, (0.49ei1.02π, 0.61ei1.24π, 0.59ei1.16π))

Definition 19. LetU be a non-empty set and (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS onU, respectively, their restricted
union is defined as (LM,G,O) = (ΦΨ, Y,N1)∪̂(χA, C,N2), with LM = ΦΨ∪̂χA, G = Y ∩ C, O = max(N1, N2), i.e., ∀xw ∈ G, us ∈ U we
have

LM(xw) = 〈(hsw, (Tws, Iws,Fws))〉,
= 〈(min(h1s

w , h
2s
w ),min(T1

ws,T2
ws),max(I1ws, I2ws),max(F1

ws,F2
ws))〉,

= 〈(max(h1s
w , h

2s
w ),max(p1

ws, p
2
ws)e

i2πmax(t1ws,t
2
ws),min(q1

ws, q
2
ws)e

i2πmin(ω1
ws,ω

2
ws),min(r1

ws, r
2
ws)e

i2πmin(f1
ws,f

2
ws))〉,

where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws))

= (h2s
w , (p

2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Example 10. The restricted union (LM , G,O) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 12.

Table 12: Restricted union (LM,G,O)
(LM,G,O) U1 U2

Y1 (3, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (5, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π))
Y2 (2, (0.42ei0.82π, 0.51ei1.04π, 0.56ei1.10π)) (4, (0.88ei1.78π, 0.09ei0.16π, 0.06ei0.10π))
Y3 (3, (0.81ei1.64π, 0.17ei0.36π, 0.19ei0.40π)) (3, (0.83ei1.68π, 0.27ei0.56π, 0.30ei0.58π))
Y4 (5, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (3, (0.70ei1.42π, 0.26ei0.54π, 0.31e0.64iπ))

Definition 20. Let (ΦΨ, Y,N1) and (χA, C,N2) be CSVN1SfS and CSVN2SfS on U, respectively, their extended union is defined as
(PQ, T ,B) = (ΦΨ, Y,N1)∪̌(χA, C,N2), with PQ = ΦΨ∪̌χA, T = Y ∪ C,B = max(N1, N2), that is, ∀xw ∈ T and us ∈ U, we have

PQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − C,

(h2s
w , (T2

ws, I2ws,F2
ws)), if xw ∈ C − Y ,(

max(h1s
w , h

2s
w ),max(p1

ws, p
2
ws)e

i2πmax(t1ws,t
2
ws),min(q1

ws, q
2
ws)e

i2πmin(ω1
ws,ω

2
ws),min(r1

ws, r
2
ws)e

i2πmin(f1
ws,f

2
ws)
)
, if xw ∈ C ∩ Y

where (h1s
w , (T1

ws, I1ws,F1
ws)) = (h1s

w , (p
1
wse

i2πt1ws , q1
wse

i2πω1
ws , r1

wse
i2πf1

ws)) ∈ ΦΨ and (h2s
w , (T2

ws, I2ws,F2
ws)) = (h2s

w

, (p2
wse

i2πt2ws , q2
wse

i2πω2
ws , r2

wse
i2πf2

ws)) ∈ χA.

Example 11. The extended union (LM , G,O) of (ΦΨ, Y, 6) and (χA, C, 5), given in Table 3 and Table 9, arranged in 13.
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Table 13: Extended union (PQ, T ,B)
(PQ, T ,B) U1 U2 U3 U4

Y1 (3, (0.60ei1.26π, 0.35ei0.68π, 0.40ei0.84π)) (5, (0.95ei1.92π, 0.05ei0.12π, 0.12ei0.26π)) (0, (0.06ei0.14π, 0.95ei1.92π, 0.97ei1.96π)) (1, (0.24ei0.50π, 0.86ei1.70π, 0.87ei1.72π))
Y2 (2, (0.42ei0.82π, 0.51ei1.04π, 0.56ei1.10π)) (4, (0.88ei1.78π, 0.09ei0.16π, 0.06ei0.10π)) (2, (0.36ei0.74π, 0.58ei1.18π, 0.54ei1.10π)) (0, (0.08ei0.20π, 0.96ei1.94π, 0.98e1.98π))
Y3 (3, (0.81ei1.64π, 0.17ei0.36π, 0.19ei0.40π)) (3, (0.83ei1.68π, 0.27ei0.56π, 0.30ei0.58π)) (4, (0.75ei1.52π, 0.17ei0.36π, 0.20ei0.38π)) (3, (0.69ei1.36π, 0.41ei0.84π, 0.48e0.94π))
Y4 (5, (0.98ei1.94π, 0.01ei0.04π, 0.10e0.24iπ)) (3, (0.70ei1.42π, 0.26ei0.54π, 0.31e0.64iπ)) (1, (0.21ei0.46π, 0.79ei1.60π, 0.83ei1.68π)) (2, (0.38ei0.78π, 0.59ei1.20π, 0.55ei1.12π))

U5

Y1 (0, (0.05ei0.14π, 0.87ei1.72π, 0.88ei1.80π))
Y2 (4, (0.90ei1.84π, 0.11ei0.20π, 0.14ei0.26π))
Y3 (1, (0.26ei0.48π, 0.72ei1.42π, 0.75ei1.52π))
Y4 (2, (0.49ei1.02π, 0.61ei1.24π, 0.59ei1.16π))

Now we discuss some properties and their proofs.

Theorem 21. Let (ΦΨ, Y,N1) be a CSVNNSfS over a non-empty setU. Then,

1 (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

2 (ΦΨ, Y,N1)∩̂(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

3 (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

4 (ΦΨ, Y,N1)∪̂(ΦΨ, Y,N1) = (ΦΨ, Y,N1)

Proof. 1.
R.H.S = (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1), (1)

where the extended intersection of two CSVNNSfSs is calculated as:

(DQ, T,S) = (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1), (2)

with T = Y ∪ Y, S = max(N1, N1) and

DQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws))), if xw ∈ Y ∩ Y.

Case 1 : If xw ∈ Y − Y = ∅,
DQ(xw) = ΦΨ(xw). (3)

Case 2 : If xw ∈ Y − Y = ∅,
DQ(xw) = ΦΨ(xw). (4)

Case 3 : If xw ∈ Y ∩ Y = Y,

DQ(xw) = (min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw). (5)

From Equations 2, 3, 4 and 5, (DQ, T,S) = (ΦΨ, Y,N1) and further Eq.1 implies (ΦΨ, Y,N1)∩̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1).

2.
R.H.S = (ΦΨ, Y,N1)∩̂(ΦΨ, Y,N1), (6)

where the restricted intersection of two CSVNNSfSs is calculated as:

(LM , G,O) = (ΦΨ, Y,N1)∩̂(ΦΨ, Y,N1), (7)

with G = Y ∩ Y = Y, O = min(N1, N1) = N1 and

LM (xw) = (min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw), (8)

clearly, from Equations 6, 7 and 8, we get the required result.

3.
R.H.S = (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1), (9)
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where the extended union of two CSVNNSfSs is calculated as:

(PQ, T ,B) = (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1), (10)

with T = Y ∪ Y,B = max(N1, N1) and

PQ(xw) =


(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − Y ,

(max(h1s
w , h

1s
w ), (max(T1

ws,T1
ws),min(I1ws, I1ws),min(F1

ws,F1
ws))), if xw ∈ Y ∩ Y.

Case 1 : If xw ∈ Y − Y = ∅,
PQ(xw) = ΦΨ(xw). (11)

Case 2 : If xw ∈ Y − Y = ∅,
PQ(xw) = ΦΨ(xw). (12)

Case 3 : If xw ∈ Y ∩ Y = Y,

PQ(xw) = (max(h1s
w , h

1s
w ), (max(T1

ws,T1
ws),min(I1ws, I1ws),min(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw). (13)

From Equations 9, 10, 11, 12 and 13, we get (ΦΨ, Y,N1)∪̌(ΦΨ, Y,N1) = (ΦΨ, Y,N1).

4.
R.H.S = (ΦΨ, Y,N1)∪̂(ΦΨ, Y,N1), (14)

where the restricted union of two CSVNNSfSs is calculated as:

(LM,G,O) = (ΦΨ, Y,N1)∪̂(ΦΨ, Y,N1), (15)

with G = Y ∩ Y = Y, O = max(N1, N1) = N1 and

LM(xw) = (max(h1s
w , h

1s
w ), (max(T1

ws,T1
ws),min(I1ws, I1ws),min(F1

ws,F1
ws))),

= (h1s
w , (T1

ws, I1ws,F1
ws)),

= ΦΨ(xw), (16)

clearly, from Equations 14, 15 and 16, we get the required result.

Theorem 22. Let (ΦΨ, Y,N1) and (χA, C,N2) be CSVNN1SfS and CSVNN2SfS, respectively, over the same universeU, then the absorp-
tion properties hold:

1. ((ΦΨ, Y,N1)∪̌(χA, C,N2))∩̂(ΦΨ, E,N1) = (ΦΨ, Y,N1)

2. (ΦΨ, Y,N1)∪̌((χA, C,N2)∩̂(ΦΨ, E,N1)) = (ΦΨ, Y,N1)

3. ((ΦΨ, Y,N1)∩̂(χA, C,N2))∪̌(ΦΨ, E,N1) = (ΦΨ, Y,N1)

4. (ΦΨ, Y,N1)∩̂((χA, C,N2)∪̌(ΦΨ, E,N1)) = (ΦΨ, Y,N1)

Proof. 1. Let the extended union of CSVNN1SfS (ΦΨ, Y,N1) and CSVNN2SfS (χA, C,N2), be

(PQ, T ,B) = (ΦΨ, Y,N1)∪̌(χA, C,N2),

with T = Y ∪ C,B = max(N1, N2) and
PQ(xw) = (hsw, (Tws, Iws,Fws)) =

(h1s
w , (T1

ws, I1ws,F1
ws)), if xw ∈ Y − C,

(h2s
w , (T

2
ws, I

2
ws,F

2
ws)), if xw ∈ C − Y ,

(max(h1s
w , h

2s
w ), (max(T1

ws,T
2
ws),min(I1ws, I2ws),min(F1

ws,F
2
ws))), if xw ∈ Y ∩ C.

(17)

Now, consider the restricted intersection of (PQ, T ,B) and (ΦΨ, Y,N1), that is defined as

(LM , G,O) = (PQ, T ,B)∩̂(ΦΨ, Y,N1),

with G = T ∩ Y, O = min(B, N1) = N1 and

LM (xw) = (min(hsw, h
1s
w ), (min(Tws,T1

ws),max(Iws, I1ws),max(Fws,F1
ws))), (18)
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for all xw ∈ G = Y ∩ C, so that xw ∈W, xw ∈ C. If xw ∈W, then there are three cases.

Case 1: if xw ∈ Y − C, using Equations 17 and 18, we get,

LM (xw) = (min(h1s
w , h

1s
w ), (min(T1

ws,T1
ws),max(I1ws, I1ws),max(F1

ws,F1
ws)))

= (h1s
w ,T1

ws,F1
ws)

= ΦΨ(xw) (19)

Case 2: if xw ∈ C − Y, since xw ∈ G = Y ∩ C implies xw ∈ Y, therefore, this case is omitted.

Case 3: if xw ∈ C ∩ Y, using Equations 17 and 18, we get,

LM (xw) = (min(max(h1s
w , h

2s
w ), h1s

w ), (min(max(T1
ws,T2

ws),T1
ws),max(min(I1ws,T2

ws), I1ws),max(min(F1
ws,T2

ws),F1
ws)))

= (h1s
w ,T1

ws,F1
ws)

= ΦΨ(xw) (20)

Thus from Equations 19 and 20, we get ((ΦΨ, E,N1)∪̌(χA, C,N2))∩̂(ΦΨ, E,N1) = (ΦΨ, E,N1).

2. proofs of 2, 3 and 4 are same as above.

Theorem 23. Let (ΦΨ, Y,N1), (χA, C,N2) and (Υκ, %,N3) be any three CSVNN1SfS, CSVNN2SfS, and CSVNN3SfS, and over the
same universeU, then the following properties hold:

1 (ΦΨ, Y,N1)∪̌(χA, C,N2) = (χA, C,N2)∪̌(ΦΨ, Y,N1),

2 (ΦΨ, Y,N1)∪̂(χA, C,N2) = (χA, C,N2)∪̂(ΦΨ, Y,N1),

3 (ΦΨ, Y,N1)∩̌(χA, C,N2) = (χA, C,N2)∩̌(ΦΨ, Y,N1),

4 (ΦΨ, Y,N1)∩̂(χA, C,N2) = (χA, C,N2)∩̂(ΦΨ, Y,N1),

5 ((ΦΨ, Y,N1)∪̌(χA, C,N2))∪̌(Υκ, %,N3) = (ΦΨ, Y,N1)∪̌(((χA, C,N2))∪̌(Υκ, %,N3)),

6 ((ΦΨ, Y,N1)∪̂(χA, C,N2))∪̂(Υκ, %,N3) = (ΦΨ, Y,N1)∪̂(((χA, C,N2))∪̂(Υκ, %,N3)),

7 ((ΦΨ, Y,N1)∩̌(χA, C,N2))∩̌(Υκ, %,N3) = (ΦΨ, Y,N1)∩̌(((χA, C,N2))∩̌(Υκ, %,N3)),

8 ((ΦΨ, Y,N1)∩̂(χA, C,N2))∩̂(Υκ, %,N3) = (ΦΨ, Y,N1)∩̂(((χA, C,N2))∩̂(Υκ, %,N3)),

9 (ΦΨ, Y,N1)∪̌((χA, C,N2)∩̂(Υκ, %,N3)) = ((ΦΨ, Y,N1)∪̌(χA, C,N2))∩̂((ΦΨ, Y,N1)∪̌(Υκ, %,N3)),

10 (ΦΨ, Y,N1)∩̌((χA, C,N2)∪̂(Υκ, %,N3)) = ((ΦΨ, Y,N1)∩̌(χA, C,N2))∪̂((ΦΨ, Y,N1)∪̌(Υκ, %,N3)),

11 (ΦΨ, Y,N1)∪̂((χA, C,N2)∩̌(Υκ, %,N3)) = ((ΦΨ, Y,N1)∪̂(χA, C,N2))∩̌((ΦΨ, Y,N1)∪̂(Υκ, %,N3)),

12 (ΦΨ, Y,N1)∩̂((χA, C,N2)∪̌(Υκ, %,N3)) = ((ΦΨ, Y,N1)∩̂(χA, C,N2))∪̌((ΦΨ, Y,N1)∩̂(Υκ, %,N3)).

4 Complex single-valued neutrosophic N -soft number
Definition 24. Let ΦΨ(yw) = ((us, h

s
w), (pwse

i2πtws , qwse
i2πωws , rwse

i2πfws)) be a CSVNNSfS. Then the complex single-valued neutro-
sophic N -soft number (CSVNNSfN) is defined as:

αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws),

Definition 25. Consider a CCSVNNSfN αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws). The score function S(αws) is:

S(αws) =
hsw

N − 1
+ (pws − qws − rws) + [tws − ωws − fws], (21)

where S(αws) ∈ [−4, 3]. The accuracy function A(αws) is:

A(αws) =
hsw

N − 1
+ (pws + qws + rws) + [tws + ωws + fws] (22)

where A(αws) ∈ [0, 7], respectively.

Definition 26. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) and αls = (hsl , plse

i2πtls , qlse
i2πωls , rlse

i2πfls) be two CSVNNSfNs
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1. If Sαws < Sαls , then αws ≺ αls (αws is inferior to αls),

2. If Sαws = Sαls , then

i Aαws < Aαls , then αws ≺ αls (αws is inferior to αls),

ii Aαws = Aαls , then αws ∼ αls (αws is equivalent to αls).

Definition 27. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) and αls = (hsl , plse

i2πtls , qlse
i2πωls , rlse

i2πfls) be two CSVNNSfNs
and β > 0. Some operation for CSVNNSfNs are

βαws =
(
hsw, [1− (1− pws)β ]ei2π[1−(1−tws)β ], qβwse

i2πωβws , rβwse
i2πfβws

)
,

αβws =
(
hsw, p

β
wse

i2πtβws , [1− (1− qws)β ]ei2π[1−(1−ωws)β ], [1− (1− rws)β ]ei2π[1−(1−fws)β ]
)
,

αws ⊕ αls =
(

max(hsw, h
s
l ), (pws + pls − pwspls)ei2π(tws+tls−twstls), (qwsqls)e

i2π(ωwsωls), (rwsrls)e
i2π(fwsfls)

)
,

αws ⊗ αls =
(

min(hsw, h
s
l ), (pwspls)e

i2π(twstls), (qws + qls − qwsqls)ei2π(ωws+ωls−ωwsωls), (rws + rls − rwsrls)ei2π(fws+fls−fwsfls)
)
.

Definition 28. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) and αls = (hsl , plse

i2πtls , qlse
i2πωls , rlse

i2πfls) be two CSVNNSfNs
and β > 0, then the following properties hold:

1. αws ⊕ αls = αls ⊕ αws,
2. αws ⊗ αls = αls ⊗ αws,
3. βαws ⊕ βαls = β(αls ⊕ αws), β > 0,

4. β1αws ⊕ β1αws = (β1 + β2)αws, β1, β2 > 0,

5. αβws ⊗ αβls = (αls ⊗ αws)β , β > 0,

6. αβ1
ws ⊗ αβ1

ws = α
(β1+β2)
ws . β1, β2 > 0.

Proof. 1.

αws ⊕ αls =
(

max(hsw, h
s
l ), (pws + pls − pwspls)ei2π(tws+tls−twstls), (qwsqls)e

i2π(ωwsωls), (rwsrls)e
i2π(fwsfls)

)
,

=
(

max(hsl , h
s
w), (pls + pws − plspws)ei2π(tls+tws−tlstws), (qlsqws)e

i2π(ωlsωws), (rlsrws)e
i2π(flsfws)

)
,

= αls ⊕ αws.

2.

αws ⊗ αls =
(

min(hsw, h
s
l ), (pwspls)e

i2π(twstls), (qws + qls − qwsqls)ei2π(ωws+ωls−ωwsωls), (rws + rls − rwsrls)ei2π(fws+fls−fwsfls)
)

=
(

min(hsl , h
s
w), (plspws)e

i2π(tlstws), (qls + qws − qlsqws)ei2π(ωls+ωws−ωlsωws), (rls + rws − rlsrws)ei2π(fls+fws−flsfws)
)

= αls ⊗ αws.

3.

βαws ⊕ βαls =
(
hsw, [1− (1− pws)β ]ei2π[1−(1−tws)β ], qβwse

i2πωβws , rβwse
i2πfβws)⊕ (hsl , [1− (1− pls)β ]ei2π[1−(1−tls)β ],

qβlse
i2πω

β
ls , rβlse

i2πf
β
ls

)
=
(

max(hsw, h
s
l ), ([1− (1− pws)β ] + [1− (1− pls)β ]− [1− (1− pws)β ][1− (1− pls)β ])

ei2π([1−(1−tws)β ]+[1−(1−tls)β ]−[1−(1−tws)β ][1−(1−tls)β ]), (qβwsq
β
ls)e

i2π(ωβwsω
β
ls

), (rβwsr
β
ls)e

i2π(qβwsq
β
ls

)
)

=
(

max(hsw, h
s
l ), [1− (1− pws + pls − pwspls)β ]ei2π[1−(1−tws+tls−twstls)β ], (qwsqls)

βei2π(ωwsωls)β ,

(rwsrls)
βei2π(fwsfls)β

)
= β

(
max(hsw, h

s
l ), (pws + pls − pwspls)e2π(pws+pls−pwspls), (qwsqls)e

2π(ωwsωls), (rwsrls)e
2π(fwsfls)

)
= β (αws ⊕ αls) .

Similarly, we can prove 4, 5 and 6.
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Definition 29. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (w = 1, 2, . . . , k) be a collection of CSVNNSfNs and νw be the weight

vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The complex single-valued neutrosophic N -soft weighted average operator (CSVNNSfWA) is a

mapping CSVNNSfWA : J k → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfWA(α1s, α2s, . . . , αls) = (ν1α1s ⊕ ν2α2s ⊕ . . .⊕ νkαks)

=
(

k
max
w=1

(hsw), [1−Πk
w=1(1− pws)νw ]ei2π[1−Πk

w=1(1− tws)νw ], [Πk
w=1(qws)

νw ]ei2π[Πk
w=1(ωws)

νw ], [Πk
w=1(rws)

νw ]ei2π[Πk
w=1(fws)

νw ]
)
.

Definition 30. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (w = 1, 2, . . . , k) be a collection of CSVNNSfNs and νw be the

weight vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The complex single-valued neutrosophic N -soft ordered weighted average operator

(CSVNNSfOWA) is a mapping CSVNNSfOWA : J k → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfOWA(α1s, α2s, . . . , αls)

=
(
ν1α%(1s) ⊕ ν2α%(2s) ⊕ . . .⊕ νkα%(ks)

)
=
(

k
max
w=1

(hs%(w)), [1−Πk
w=1(1− p%(ws))νw ]ei2π[1−Πk

w=1(1− t%(ws))νw ], [Πk
w=1(q%(ws))

νw ]ei2π[Πk
w=1(ω%(ws))

νw ],

[Πk
w=1(r%(ws))

νw ]ei2π[Πk
w=1(f%(ws))

νw ]
)
.

where, %(ws) is a permutation ordered by α%(ws) ≥ αφ(vs), for all w < v, (w, v = 1, 2, . . . , k) and (s = 1, 2, . . . , t).

Definition 31. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (i = 1, 2, . . . , l) be a collection of CSVNNSfNs and νw be the weight

vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The single-valued neutrosophic N -soft weighted geometric operator (CSVNNSfWG) is a

mapping CSVNNSfWG : J k → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfWG(α1s, α2s, . . . , αks) = (αν11s ⊗ α
ν2
2s ⊗ . . .⊗ α

νk
ks)

=
( k

min
w=1

(hsw), [Πk
w=1(pws)

νw ]e[Πk
w=1(tws)

νw ], [1−Πk
w=1(1− qws)νw ]e[1−Πk

w=1(1− ωws)νw ], [1−Πk
w=1(1− rws)νw ]e[Πk

w=1(1− fws)νw ]
)
.

Definition 32. Let αws = (hsw, pwse
i2πtws , qwse

i2πωws , rwse
i2πfws) (i = 1, 2, . . . , l) be a collection of CSVNNSfNs and νw be the weight

vectors of αws with νw > 0 and
k∑

w=1

νw = 1. The single-valued neutrosophic N -soft ordered weighted geometric operator (CSVNNSfOWG)

is a mapping CSVNNSfOWG : JK → J , where J is the set of CSVNNSfNs, defined as follows:

CSVNNSfOWG(α1s, α2s, . . . , αks)

=
(
α%(1s)ν1 ⊗ α%(2s)ν2 ⊗ . . .⊗ α%(ks)νk

)
=
( l

min
i=1

(hs%(w)), [Πk
w=1(p%(ws))

νw ]ei2π[Πk
w=1(t%(ws))

νw ], [1−Πk
w=1(1− q%(ws))νw ]ei2π[1−Πk

w=1(1− ω%(ws))νw ],

[1−Πk
w=1(1− r%(ws))νw ]ei2π[1−Πk

w=1(1− q%(ws))νw ]
)
,

where, %(ws) is a permutation ordered by α%(ws) ≥ αφ(vs), for all w < v, (w, v = 1, 2, . . . , k) and (s = 1, 2, . . . , t).

5 Complex single-valued neutrosophic N -soft TOPSIS method
In this section, we developed methodology for TOPSIS method under the framework of CSVNNSfSs for solving multi-attribute group decision
making (MAGDM) problem. For the optimal solution of the MADM problem, TOPSIS method specifically used ideal solutions of that problem.
Consider a MAGDM problem with U = {U1,U2,U3, . . . ,Ut} and Y = {Y1, Y2, Y3, . . . , Yk} be the set of alternative and attributes decided
by the experts Z̃1, Z̃2, Z̃3, . . . , Z̃f , where the experts weight vector for this MAGDM problem is ν = (ν1, ν2, ν3, . . . , νk)T . The procedure for
CSVNNSf -TOPSIS method is as follows:

5.1 Organizing the complex single-valued neutrosophic N -soft decision matrix
After studied the MADM problem properly, decision makers use rating system for assigning rank to each alternative, parallel to each semantic term,
relative to the attributes that indeed form a NSfS. Further, decision making panel associate CSVNNSfN corresponding to each rank (ordered
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grade) by defining grading criteria related to the aptitude of the MADM problem. Therefore, a complex single-valued neutrosophicN -soft decision
matrix (CSVNNSfDM)H = (H

(j)
ws)(s×w) is organized as follow:

H
(j)

=


(h1

1
(j)
, T(j)

11 , I
(j)
11 , F

(j)
11 ) (h1

2
(j)
, T(j)

12 , I
(j)
12 , F

(j)
12 ) . . . (h1

k
(j)
, T(j)

1k
, I(j)

1k
, F(j)

1k
)

(h2
1
(j)
, T(j)

21 , I
(j)
21 , F

(j)
21 ) (h2

2
(j)
, T(j)

22 , I
(j)
22 , F

(j)
22 ) . . . (h2

m
(j)
, T(j)

2k
, I(j)

2k
, F(j)

2k
)

.

.

.
.
.
.

. . .
.
.
.

(ht1
(j)
, T(j)
t1 , I

(j)
t1 , F

(j)
t1 ) (ht2

(j)
, T(j)
t2 , I

(j)
t2 , F

(j)
t2 ) . . . (htk

(j)
, T(j)
tk
, I(j)
tk
, F(j)
tk

)

 ,

where, H(j)
ws = ((hji )

(j),T(j)
ws, I(j)ws,F(j)

ws) = (hsw, p
(j)
wse

i2πt
(j)
ws , q

(j)
wse

i2πω
(j)
ws , r

(j)
wse

i2πf
(j)
ws ), s = {1, 2, 3, . . . , t}, j = {1, 2, 3, . . . , f}, and w =

{1, 2, 3, . . . , k}.

5.2 Aggregated complex single-valued neutrosophic N -soft decision matrix
As the decision makers (experts) are not equally weighted in MAGDM problems, therefore by utilizing the weightage of each expert decided by the
panel we cumulate the decision of all experts and get aggregated complex single-valued neutrosophicN -soft decision matrix (ACSVNNSfDM).
The CSVNNSfWA operator or CSVNNSfWG operator are precisely used to commulate the CSVNNSfDM (H) as follows:

Hws = CSVNNSfWA(H(1)
ws ,H

(2)
ws , . . . ,H

(f)
ws );

(OR) = CSVNNSfWG(H(1)
ws ,H

(2)
ws , . . . ,H

(f)
ws );

where,Hws = (h1
1,Tws, Iws,Fws) = (hsw, pwse

i2πtws , qwse
i2πωws , rwse

i2πfws).
The ACSVNNfSDM denoted as:

H =


(h1

1, T11, I11, F11) (h1
2, T12, I12, F12) . . . (h1

k, T1k, I1k, F1k)

(h2
1, T21, I21, F21) (h2

2, T22, I22, F22) . . . (h2
k, T2k, I2k, F2k)

.

.

.
.
.
.

. . .
.
.
.

(hs1, Ts1, Is1, Fs1) (h
q
2, Ts2, Is2, Fs2) . . . (hsk, Tsk, Isk, Fsk)

 .

5.3 Weights for parameters
To highlight the influence of the parameters in the MAGDM problem, experts judged each parameter and assign grades as the weight of the
parameter. Further, CSVNNSfNs are associated to each grade using the grading criteria finalized by the panel. Let θ(j)

w = (h
(j)
w ,T(j)

w , I(j)w ,F(j)
w )

be the weight of wth parameter given by the jth expert in the MAGDM problem. Let θ = (θ1, θ2, . . . , θk)T = (hw,Tw, Iw,Fw) be the weight
vector of attributes that is summarized, by CSVNNSfWA operator or CSVNNSfWG operator, as follows:

θw = CSVNNSfWA(θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
k );

(OR) = CSVNNSfWG(θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
k ).

where, θw = (h1,Tw, Iw,Fw) = (hw, pwe
i2πtw , qwe

i2πωw , rwe
i2πfw ).

5.4 Aggregated weighted complex single-valued neutrosophic N -soft decision matrix
The ACSVNNfSDM H is used within the weight vector (θ1, θ2, . . . , θk)T of parameter for the formulation of aggregated weighted single-
valued neutrosophic N -soft decision matrix (AWCSVNNSfDM). The calculations for are performed as follows:

H̄ws = Hws ⊗ θw
= (min((hsw), hw), (TwsTw), (Iws + Iw − IwsIw), (Fws + Fi − FwsFW ))

=

(
min(hsw, hw), pwspwe

i2πtwstw , (qws + qw − qwsqw)ei2π[ωws+ωws−ωwsωw ], (rws + rw − rwsrw)ei2π[fws+fws−fwsfw ]

)
= (h̄sw, T̄ws, Īws, F̄ws)

= (h̄sw, p̄wse
i2πt̄ws , q̄wse

i2πω̄ws , r̄wse
i2πf̄ws).
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The AWCSVNNSfDM is:

H̄ws =


(h̄1

1, T̄11, Ī11, F̄11) (h̄1
2, T̄12, Ī12, F̄12) . . . (h̄1

k, T̄1k, Ī1k, F̄1k)

(h̄2
1, T̄21, Ī21, F̄21) (h̄2

2, T̄22, Ī22, F̄22) . . . (h̄2
k, T̄2k, Ī2k, F̄2k)

.

.

.
.
.
.

. . .
.
.
.

(h̄s1, T̄s1, Īs1, F̄s1) (h̄s2, T̄s2, Īs2, F̄s2) . . . (h̄
q
k
, T̄sk, Īsk, F̄sk)

 .

5.5 Complex single-valued neutrosophic N -soft ideal solutions
Let BT be the collection of benefit-type criteria and CT be the collection of cost-type criteria opted from the number of parameters, keeping
in view the expertise of the given problem. Using these collection we are able to evaluate the complex single-valued neutrosophic positive ideal
solution CSVNNfS-PIS and complex single-valued neutrosophic N -soft negative ideal solution CSVNNSf -NIS of the MAGDM problem.
The CSVNNSf -PIS, related to the parameter Yw, is defined as:

H̄PIS
w =


s

max
j=1

H̄ws, if Yw ∈ BT,
s

min
j=1

H̄ws, if Yw ∈ CT,

and the CSVNNSf -NIS is defined as:

H̄NIS
w =


s

max
j=1

H̄ws, if Yw ∈ CT,
s

min
j=1

H̄ws, if Yw ∈ BT.

The CSVNNSf -PIS and CSVNNSf -NIS are denoted as: H̄PIS
w = (ḣw, ṗwe

i2πṫw , q̇we
i2πω̇w , ṙwe

i2πḟw )., and
H̄NIS
w = (ḧw, p̈we

i2πẗw , q̈we
i2πω̈w , r̈we

i2πf̈w ), respectively.

5.6 Formulation of normalized Euclidean distance
For evaluating the alternatives distance from the ideal solution, we can used similarity measures or distance measure. Moreover, from distance
measures we used the normalized Euclidean distance. The normalized Euclidean distance of any of the alternativeUs from the CSVNNSf -PIS
is defined as:

d(H̄PIS
w ,Us) =

( 1

7w

k∑
w=1

[(
ḣw

N − 1
)− (

h̄sw
N − 1

)2 + (ṗw − p̄ws)2 + (q̇w − q̄ws)2 + (ṙw − r̄ws)2 + (ṫw − t̄ws)2+

(ω̇w − ω̄ws)2 + (ḟw − f̄ws)2]
)

(23)

The normalized Euclidean distance between the CSVNNSf -NIS and any of the alternativeUs, can be evaluated as follows:

d(H̄NIS
w ,Us) =

( 1

7w

k∑
w=1

[(
ḧw

N − 1
)− (

h̄sw
N − 1

)2 + (p̈w − p̄ws)2 + (q̈w − q̄ws)2 + (r̈w − r̄ws)2 + (ẗw − t̄ws)2+

(ω̈w − ω̄ws)2 + (f̈w − f̄ws)2]
)

(24)

5.7 Revised closeness index
In TOPSIS method, at last we left with two values related to the alternative that prescribed the distance of that particular alternative from
CSVNNSf -PIS and CSVNNSf -NIS. Therefore, revised closeness index is utilized for the choice of right solution. The revised closeness
index Λ(Us) is calculated as:

Λ(Us) =
d(H̄PIS

w ,Us)

min
s
d(H̄PIS

w ,Us)
− d(H̄NIS

w ,Us)

max
s
d(H̄NIS

w ,Us)
, (25)

where, s = 1, 2, . . . , t.
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5.8 Identify dominant alternative
For the evaluation of dominant alternative with respect to their performance in MAGDM problem, revised closeness index related to each alternative
arranged in ascending order. So that the alternative with least revised closeness index will be the required one.
For solving a MAGDM problem, the Algorithm 1 is given as:

Algorithm 1: Steps to deal MAGDM problem by CSV NNf -TOPSIS method

1. Input:
U : Set of alternatives,
Y : Set of attributes,
ν : Weight vector for experts Z̃j ,
NSfS : (ΦΨ, Y,N) with H = {0, 1, 2, 3, . . . , N − 1}, N ∈ {1, 2, 3, . . .},

2. Construct the CSV NNSfDM H(j), using the input data.

3. Evaluate the ACSV NNSfDM as follows:

Hws =
(

f
max
j=1

(hsw)(j), [1−Πf
j=1(1− p(j)

ws)
νw ]ei2π[1−Πf

j=1(1− t(j)ws)νw ], [Πf
j=1(q(j)

ws)νw ]ei2π[Πf
j=1(ω(j)

ws)νw ],

[Πf
j=1(r(j)

ws)
νw ]ei2π[Πf

j=1(f (j)
ws )νw ]

)
.

4. Calculating the weight vector θ = (θ1, θ2, . . . , θk)T for parameters as:

θw =
(

f
max
j=1

(hw)(j), [1−Πf
j=1(1− p(j)

w )νw ]ei2π[1−Πf
j=1(1− t(j)w )νw ], [Πf

j=1(q(j)
w )νw ]ei2π[Πf

j=1(ω(j)
w )νw ],

[Πf
j=1(r(j)

w )νw ]ei2π[Πf
j=1(f (j)

w )νw ]
)
.

5. Compute the AWCSV NNSfDM using ACSV NNSfDM and the weight vector of attributes θw, as follows:

H̄ws =

(
min(hsw, hw), pwspwe

i2πtwstw , (qws + qw − qwsqw)ei2π[ωws+ωws−ωwsωw ], (rws + rw − rwsrw)ei2π[fws+fws−fwsfw ]

)
.

6. Evaluate the CSV NNSf PIS and CSV NNSf NIS.

7. Evaluate the normalized Euclidean distance d(H̄PIS
w ,Us) and d(H̄NIS

w ,Us)

8. Evaluate the revised closeness index Λ(Us) .

9. Arranged revised closeness index in ascending order.

Output: Choose the alternative with minimum revised closeness index.

6 Application
In this section, we solve a MAGDM problem using CSVNNSf − TOPSIS method for analyzing the performance of Islamic banks in Pakistan
with CAMELS rating system.

6.1 Monitoring performance of Islamic banking industry on the basis of CAMELS rating system.
The banks are more closely monitored other than any field of economy because of their constitution and important role in the economy of the
country. Analyzing the banking system create more assurance and reliability in making both short and long term decisions, that in return give on
to healthier business in the country. In banking industry, one of the flourishing institute is Islamic banking that follow the rules of Islamic Shariah
and promote the Islamic principles to the transaction of financial banking. The evaluation of financial performance of Islamic banking in Pakistan
using the CAMELS model and TOPSIS method is necessary for higher level of efficiency that further help to set a benchmark for the country. In
this MAGDM problem, following Islamic banks are considered as alternatives:

U1 : Bank Albarka(BA)

U2 : Bank Islamic (BIL)

U3 : Dubai Islamic Bank (DIB)
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U4 : Muslim Commercial Bank (MCB)

U5 : Meezan Bank (MBL)

For this MAGDM problem, decision making panel consists of three experts Z̃1, Z̃2, Z̃3 that collected data from the official websites of the banks
according to the CAMELS model. CAMELS model is generally apply to analyze the performance of the banks on the basis of five different
attributes described as follow:

Y1 : Capital adequacy: Experts rank the capital adequacy by checking the factors of growth plan and capacity to control financial risk and loan.

Y2 : Asset quality: In this attribute the banking stability is measure whenever the bank faced loss of values of the assets.

Y3 : Management: Experts rate this attribute by measuring the efficiency of banks while dealing with daily activities.

Y4 : Earning capacity: This attribute includes the existing assets, earnings and growth of the banks, as well as to remain competitive in economy.

Y5 : Liquidity: This attribute examine on the basis of the availability of adequate funds by converting assets into the cash.

We solve this MAGDM problem by following the CSVNNSf -TOPSIS method.

Step 1: According to these attributes each expert model 5-soft set in Table14 where

0 means ‘Bad’

1 means ‘Ok’

2 means ‘Good’

3 means ‘Great’

4 means ‘Excellent’

Table 14: Initial rating by decision making experts
Parameters Alternatives Z̃1 Z̃2, Z̃3

Y1 U1 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ = 2
U2 ∗ ∗ ∗ ∗ = 4 ∗ = 1 ∗ ∗ ∗ = 3
U3 ∗ ∗ ∗ = 3 ∗ ∗ = 2 ∗ = 1
U4 ∗ ∗ ∗ = 3 ∗ = 1 ∗ ∗ ∗ = 3
U5 ∗ ∗ ∗ ∗ = 4 • = 0 ∗ = 1

Y2 U1 ∗ ∗ ∗ = 3 ∗ ∗ = 2 ∗ ∗ ∗ = 3
U2 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4
U3 ∗ ∗ ∗ ∗ = 4 • = 0 ∗ ∗ = 2
U4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4
U5 ∗ ∗ ∗ ∗ = 4 ∗ = 1 ∗ ∗ = 2

Y3 U1 • = 0 ∗ = 1 ∗ ∗ = 2
U2 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3
U3 • = 0 ∗ ∗ = 2 ∗ = 1
U4 • = 0 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4
U5 • = 0 • = 0 ∗ = 1

Y4 U1 • = 0 ∗ = 1 • = 0
U2 • = 0 ∗ ∗ ∗ = 3 ∗ ∗ = 2
U3 ∗ = 1 ∗ ∗ = 2 ∗ ∗ ∗ = 3
U4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3
U5 • = 0 • = 0 ∗ = 1

Y5 U1 ∗ ∗ = 2 • = 0 ∗ = 1
U2 ∗ ∗ ∗ = 3 ∗ ∗ = 2 ∗ = 1
U3 ∗ ∗ ∗ = 3 ∗ ∗ ∗ ∗ = 4 ∗ ∗ = 2
U4 ∗ ∗ ∗ ∗ = 4 ∗ ∗ ∗ = 3 ∗ ∗ = 2
U5 • = 0 ∗ = 1 • = 0

To assign CSVNNSfS to each rank in Table 14, experts defined grading criteria given in Table 15 and Tables 16, 17, 18 representing the
decision of the experts Z̃1, Z̃2, Z̃3, respectively.
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Table 15: Grading criteria for CSVN5SS
hwz /J degree of truthness degree of indeterminacy degree of falsity
grades pw 2πtw qw 2πωw rw 2πfw
hsw = 0 [0.00, 0.15) [0.0, 0.3π) (0.85, 1.00] (1.7π, 2.0π] (0.85, 1.00] (1.7π, 2.0π]
hsw = 1 [0.15, 0.35) [0.3π, 0.7π) (0.65, 0.85] (1.3π, 1.7π] (0.65, 0.85] (1.3π, 1.7π]
hsw = 2 [0.35, 0.65) [0.7π, 1.3π) (0.35, 0.65] (0.7π, 1.3π] (0.35, 0.65] (0.7π, 1.3π]
hsw = 3 [0.65, 0.85) [1.3π, 1.7π) (0.15, 0.35] (0.3π, 0.7π] (0.15, 0.35] (0.3π, 0.7π]
hsw = 4 [0.85, 1.00) [1.7π, 2.0π) [0.00, 0.15) [0.0, 0.3π) [0.00, 0.15) (0.0, 0.3π]

Table 16: CSVNDM related to expert Z̃1,
Y1 Y2 Y3 Y4

U1 (4, (0.86ei1.76π, 0.08ei0.14π, 0.07ei0.12π)) (3, (0.71ei1.46π, 0.31ei0.64π, 0.29ei0.60π)) (0, (0.11ei0.26π, 0.91ei1.84π, 0.93ei1.88π)) (0, (0.12ei0.28π, 0.87ei1.72π, 0.86ei1.74π))
U2 (4, (0.87ei1.78π, 0.09ei0.16π, 0.08ei0.14π)) (3, (0.66ei1.36π, 0.27ei0.56π, 0.31ei0.60π)) (4, (0.89ei1.74π, 0.04ei0.10π, 0.11ei0.24π)) (0, (0.13ei0.28π, 0.87ei1.72π, 0.86e1.74π))
U3 (3, (0.69ei1.42π, 0.19ei0.40π, 0.22ei0.46π)) (4, (0.88ei1.72π, 0.06ei0.14π, 0.10ei0.18π)) (0, (0.14ei0.26π, 0.88ei1.74π, 0.89ei1.76π)) (1, (0.34ei0.64π, 0.66ei1.32π, 0.67e1.36π))
U4 (3, (0.82ei1.78π, 0.18ei0.38π, 0.21e0.44iπ)) (4, (0.91ei1.86π, 0.02ei0.02π, 0.03e0.08iπ)) (0, (0.13ei0.28π, 0.88ei1.74π, 0.86ei1.74π)) (4, (0.93ei1.90π, 0.04ei0.06π, 0.01ei0.04π))
U5 (4, (0.87ei1.78π, 0.13ei0.28π, 0.12e0.26iπ)) (4, (0.90ei1.84π, 0.07ei0.12π, 0.10e0.22iπ)) (0, (0.02ei0.08π, 0.95ei1.72π, 0.97ei1.78π)) (0, (0.03ei0.02π, 0.96ei1.90π, 0.98ei1.70π))

Y5

U1 (2, (0.61ei1.18π, 0.41ei0.84π, 0.43ei0.88π))
U2 (3, (0.67ei1.38π, 0.25ei0.48π, 0.23ei0.44π))
U3 (3, (0.71ei1.44π, 0.24ei0.50π, 0.27ei0.52π))
U4 (4, (0.96ei1.94π, 0.05ei0.08π, 0.03ei0.04π))
U5 (0, (0.05ei0.06π, 0.95ei1.84π, 0.94e1.86iπ))

Table 17: CSVNDM related to expert Z̃2,
Y1 Y2 Y3 Y4

U1 (3, (0.72ei1.46π, 0.32ei0.66π, 0.66ei0.68π)) (2, (0.41ei0.86π, 0.51ei1.04π, 0.61ei1.24π)) (1, (0.16ei0.36π, 0.69ei1.40π, 0.72ei1.46π)) (1, (0.17ei0.28π, 0.75ei1.52π, 0.77ei1.56π))
U2 (1, (0.19ei0.42π, 0.72ei1.46π, 0.75ei1.52π)) (4, (0.93ei1.82π, 0.12ei0.26π, 0.13ei0.28π)) (4, (0.88ei1.74π, 0.08ei0.18π, 0.10ei0.22π)) (3, (0.73ei0.75π, 0.23ei0.48π, 0.20e0.38π))
U3 (2, (0.45ei0.94π, 0.46ei0.94π, 0.56ei1.04π)) (0, (0.09ei0.14π, 0.87ei1.76π, 0.86ei1.74π)) (2, (0.58ei1.20π, 0.37ei0.74π, 0.39ei0.80π)) (2, (0.59ei1.22π, 0.53ei1.08π, 0.44e0.86π))
U4 (1, (0.32ei0.68π, 0.67ei1.38π, 0.69e1.36iπ)) (3, (0.84ei1.66π, 0.16ei0.34π, 0.17e0.36iπ)) (3, (0.83ei1.62π, 0.18ei0.38π, 0.19ei0.40π)) (4, (0.98ei1.98π, 0.10ei0.16π, 0.01ei0.04π))
U5 (0, (0.11ei0.26π, 0.90ei1.82π, 0.91e1.84iπ)) (1, (0.22ei0.46π, 0.81ei1.64π, 0.84e1.66iπ)) (0, (0.08ei0.20π, 0.91ei1.80π, 0.92ei1.82π)) (0, (0.07ei0.18π, 0.87ei1.72π, 0.88ei1.74π))

Y5

U1 (0, (0.06ei0.08π, 0.91ei1.84π, 0.92ei1.86π))
U2 (2, (0.64ei1.26π, 0.36ei0.74π, 0.37ei0.76π))
U3 (4, (0.92ei1.82π, 0.05ei0.08π, 0.12ei0.22π))
U4 (3, (0.81ei1.02π, 0.20ei0.42π, 0.19ei0.26π))
U5 (1, (0.23ei0.48π, 0.83ei1.68π, 0.82e1.66iπ))

Table 18: CSVNDM related to expert Z̃3,
Y1 Y2 Y3 Y4

U1 (2, (0.62ei1.20π, 0.36ei1.74π, 0.39ei0.80π)) (3, (0.70ei1.36π, 0.26ei1.50π, 0.28ei1.58π)) (2, (0.59e1.22π, 0.43i0.88π, 0.42ei0.86π)) (0, (0.86ei1.74π, 0.02ei0.02π, 0.03ei0.04π))
U2 (3, (0.81ei1.66π, 0.20ei0.28π, 0.18ei0.28π)) (4, (0.95ei1.88π, 0.05ei0.08π, 0.07ei0.16π)) (3, (0.80ei1.64π, 0.21ei0.40π, 0.22ei0.46π)) (2, (0.62ei1.28π, 0.36ei0.74π, 0.38e0.78π))
U3 (1, (0.31ei0.66π, 0.68ei1.38π, 0.69ei1.40π)) (2, (0.60ei1.22π, 0.41ei0.80π, 0.42ei0.84π)) (1, (0.29ei0.62π, 0.70ei1.42π, 0.72ei1.46π)) (3, (0.79ei1.62π, 0.23ei0.44π, 0.20e0.42π))
U4 (3, (0.84ei1.72π, 0.17ei0.32π, 0.16e0.34iπ)) (4, (0.96ei1.96π, 0.03ei0.08π, 0.02e0.06iπ)) (4, (0.98ei1.93π, 0.04ei0.06π, 0.03ei0.04π)) (3, (0.82ei1.68π, 0.18ei0.34π, 0.19ei0.36π))
U5 (1, (0.27ei0.38π, 0.74ei1.46π, 0.73e1.50iπ)) (2, (0.57ei1.10π, 0.45ei0.92π, 0.47e0.96iπ)) (1, (0.25ei0.34π, 0.76ei1.54π, 0.78ei1.58π)) (1, (0.23ei0.50π, 0.79ei1.60π, 0.81ei1.64π))

Y5

U1 (1, (0.31ei0.64π, 0.69ei1.36π, 0.68ei1.38π))
U2 (1, (0.34ei0.64π, 0.66ei1.34π, 0.67ei1.38π))
U3 (2, (0.61ei1.26π, 0.39ei0.80π, 0.40ei0.82π))
U4 (2, (0.63ei1.22π, 0.38ei0.74π, 0.37ei0.72π))
U5 (0, (0.30ei0.58π, 0.95ei1.92π, 0.96e1.94iπ))

Step 2: The decision of all experts cumulated using the CSVNNSfWA operator with ν = (0.33, 0.40, 0.27)T be the weight vector for the
experts so that we get ACSVNNSfDM summarized in Table 19.
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Table 19: Aggregated complex single-valued neutrosophic N -soft decision matrix
Y1 Y2 Y3

U1 (4, (0.0680ei0.1440π, 0.9139ei1.8191π, 0.9096ei1.8092π)) (3, (0.0430ei0.0920π, 0.9591ei1.9208π, 0.9568ei1.91598π)) (2, (0.0041ei0.0098π, 0.9966ei1.9940π, 0.9974ei1.9956π))
U2 (4, (0.0710ei0.1520π, 0.9177ei1.8278π, 0.9139ei1.81914π)) (4, (0.0380ei0.95569π, 0.9544ei1.9114π, 0.9591ei1.9159π)) (4, (0.0760ei0.1400π, 0.8916ei1.7974π, 0.92434ei1.8544π))
U3 (3, (0.0040ei0.0860π, 0.9425ei1.8885π, 0.9474ei1.8979π)) (4, (0.0720ei0.1360π, 0.9045ei1.8192π, 0.9212ei1.8355π)) (2, (0.0053ei0.0098π, 0.9954ei1.9900π, 0.9958ei1.9909π))
U4 (3, (0.0590ei0.1260π, 0.9407ei1.8850π, 0.9458ei1.8949π)) (4, (0.0820ei0.0180π, 0.8698ei1.6972π, 0.8825ei1.7832π)) (4, (0.0050ei0.0108π, 0.9954ei1.9901π, 0.9946ei1.9901π))
U5 (4, (0.070ei0.1520π, 0.9323ei1.8597π, 0.9272ei1.8597π)) (4, (0.0780ei0.1720π, 0.9096ei1.8092π, 0.9212ei1.8486π)) (1, (0.0007ei0.0028π, 0.9982ei1.9970π, 0.9989ei1.9986π))

Y4 Y5

U1 (1, (0.0045ei0.0108π, 0.9977ei1.9948π, 0.9970ei1.9932π)) (2, (0.0330ei0.0624π, 0.9687ei1.9391π, 0.9704ei1.9423π))
U2 (3, (0.0050ei0.0106π, 0.9950ei1.9892π, 0.9946ei1.9900π)) (2, (0.0387ei0.0817π, 0.9517ei1.9008π, 0.9489ei1.8949π))
U3 (3, (0.0146ei0.0272π, 0.9853ei1.9716π, 0.9858ei1.9726π)) (4, (0.0432ei0.0887π, 0.9517ei1.9008π, 0.9544ei1.9062π))
U4 (4, (0.0904ei0.2024π, 0.8916ei1.7650π, 0.8486ei1.7397π)) (4, (0.1084ei0.2349π, 0.8987ei1.7832π, 0.8825ei1.7832π))
U5 (1, (0.0010ei0.0007π, 0.9985ei1.9962π, 0.9992ei1.9978π)) (1, (0.0182ei0.00216π, 0.9982ei1.9955π, 0.9978ei1.9948π))

Step 3: In CAMELS model each attribute has its own worth and value that continuously change as the time passing out, therefore experts rank
them and then assigned CSVNNSfNs accordingly. We summarized the weights of the experts related to the attributes, are arranged in
Table 20, using the CSVNNSfWA operator and get the weight vector θ, given as:

χ =


(2, (0.0079ei0.0168π, 0.9893ei1.9794π, 0.9902e1.9814iπ))
(4, (0.0387ei0.0794π, 0.9388ei1.8814π, 0.9425e1.8884iπ))
(4, (0.0820ei0.1720π, 0.9298ei1.8544π, 0.9243e1.8424iπ))
(3, (0.0408ei0.0804π, 0.9458ei1.8948π, 0.9489e1.9008iπ))
(3, (0.0180ei0.0372π, 0.9642ei1.9304π, 0.9842e1.9672iπ))



Table 20: Weights for attributes from experts
Z̃1 Z̃2 Z̃3

Y1 (1, (0.20ei0.42π, 0.74ei1.50π, 0.76ei1.54π)) (2, (0.42ei0.86π, 0.38ei0.778π, 0.62ei1.22π)) (0, (0.09ei0.24π, 0.92ei1.86π, 0.95ei1.88π))
Y2 (3, (0.67ei1.36π, 0.17ei0.36π, 0.19ei0.40π)) (4, (0.93ei1.88π, 0.09ei0.16π, 0.14ei0.26π)) (1, (0.18ei0.38π, 0.70ei1.42π, 0.72ei1.46π))
Y3 (4, (0.91ei1.84π, 0.13ei0.24π, 0.11ei0.20π)) (1, (0.16ei0.34π, 0.66ei1.37π, 0.68ei1.38π)) (2, (0.44ei0.90π, 0.40ei0.82π, 0.60ei1.18π))
Y4 (3, (0.69ei1.40π, 0.21ei0.44π, 0.23ei0.48π)) (3, (0.71ei1.42π, 0.25ei0.52π, 0.27ei0.56π)) (3, (0.75ei1.53π, 0.31ei0.64π, 0.33ei0.68π))
Y5 (2, (0.40ei0.82π, 0.36ei0.74π, 0.64ei1.26π)) (3, (0.73ei1.48π, 0.29ei0.60π, 0.30ei0.62π)) (3, (0.77ei1.56π, 0.31ei0.60π, 0.26ei0.50π))

Step 4: The weight vector θ and ACSVNNSfDM are encapsulated using the CSVNNSfWG operator into AWCSVNNSfDM, compile
in Table 21.

Table 21: Aggregated weighted complex single-valued neutrosophic N -soft decision matrix
Y1 Y2 Y3

U1 (2, (0.00053ei0.00120π, 0.99900ei1.99812π, 0.99911ei1.99822π)) (3, (0.00016ei0.00036π, 0.99749ei1.99528π, 0.99751ei1.9953π)) (2, (0.00032ei0.00084π, 0.99976ei1.99956π, 0.99980ei1.99964π))
U2 (2, (0.00055ei0.00126π, 0.99912ei1.99822π, 0.99916ei1.99832π)) (4, (0.00014ei0.00032π, 0.99720ei1.99474π, 0.99764ei1.99530π)) (4, (0.00062ei0.00120π, 0.99239ei1.98524π, 0.99427ei1.98852π))
U3 (2, (0.00031ei0.00072π, 0.99938ei1.99884π, 0.99948ei1.99906π)) (4, (0.00028ei0.00052π, 0.99416ei1.98868π, 0.99546ei1.9908π)) (2, (0.00043ei0.00084π, 0.99968ei1.99926π, 0.99968ei1.99928π))
U4 (2, (0.00046ei0.00104π, 0.99936ei1.99880π, 0.99946ei1.99902π)) (4, (0.00032ei0.00072π, 0.99203ei1.98928π, 0.99324ei1.9879π)) (4, (0.00041ei0.00092π, 0.99968ei1.99926π, 0.99959ei1.99920π))
U5 (2, (0.00055ei0.00128π, 0.99927ei1.99856π, 0.99928ei1.99868π)) (4, (0.00030ei0.00068π, 0.994466ei1.98868π, 0.99546ei1.9916π)) (1, (0.00057ei0.00024π, 0.99987ei1.99978π, 0.99990ei1.99980π))

Y4 Y5

U1 (1, (0.00018ei0.00044π, 0.99987ei1.99972π, 0.99984ei1.99964π)) (2, (0.00059ei0.00116π, 0.99880ei1.99786π, 0.99953ei1.99904π))
U2 (3, (0.00020ei0.00044π, 0.99973ei1.99942π, 0.99972ei1.99948π)) (3, (0.00069ei0.00152π, 0.99827ei1.99652π, 0.99919ei1.99826π))
U3 (3, (0.00059ei0.00114π, 0.99920ei1.99850π, 0.99927ei1.99986π)) (3, (0.00077ei0.00164π, 0.99827ei1.99654π, 0.99927ei1.9984π))
U4 (3, (0.00368ei0.00850π, 0.99412ei1.98760π, 0.99220ei1.98680π)) (3, (0.00195ei0.00436π, 0.99637ei1.99242π, 0.99814ei1.99644π))
U5 (1, (0.00004ei0.00002π, 0.99990ei1.99980π, 1.00000ei1.99980π)) (1, (0.00032ei0.00068π, 0.99990ei1.99980π, 0.99990ei2.00000π))

Step 5 The groundwork of the TOPSIS method that differentiate it from others is to evaluate the PIS and NIS that help to find out optimal solution
using the tool of distance measure. The criteria evaluated for this MAGDM problem based on CAMELS model and all are related to
benefit-type criteria. Therefore, the CSVNNSf -PIS and CSVNNSf -NIS, taking into account the nature of the attributes, are arranged
in Table 22.

Table 22: CSVNNSf -PIS and CSVNNSf -NIS
Us H̄PIS

w H̄NIS
w

U1 (2, (0.00055ei0.00126π, 0.99912ei1.99822π, 0.99916ei1.99832π)) (2, (0.00031ei0.00072π, 0.99938ei1.99880π, 0.99948ei1.99906π))
U2 (4, (0.00032ei0.00072π, 0.99203ei1.98928π, 0.99324ei1.98790π)) (3, (0.00016ei0.00036π, 0.99749ei1.99528π, 0.99751ei1.99530π))
U3 (4, (0.00062ei0.00120π, 0.99239ei0.03400π, 0.99427ei1.98852π)) (1, (0.00570ei0.00024π, 0.99987ei1.99970π, 0.99989e1.99980π))
U4 (3, (0.00368ei0.00850π, 0.99412ei1.98760π, 0.99220e1.98680π)) (1, (0.00004ei0.00002π, 0.99990ei1.99980π, 1.00000e1.99980π))
U5 (2, (0.00195ei0.00436π, 0.99637ei1.99242π, 0.99814ei1.99644π)) (1, (0.00032ei0.00068π, 0.99990ei1.99980π, 0.99990ei2.0000π))
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Step 6 For distance measure, normalized Euclidean distance is used that precisely evaluate the distance between the alternatives and the ideal
solutions, simultaneously. Table 23 describe the distance of each alternative from CSVNNSf -PIS and CSVNNSf -NIS, respectively.

Table 23: Distance measures of alternatives from ideal solution
Us d(H̄PIS

w ,Us) d(H̄NIS
w ,Us)

U1 0.133746 0.059764
U2 0.005061 0.179298
U3 0.084647 0.13363
U4 0.003998 0.1793085
U5 0.174320 0.042260

Step 7: Revised closeness index is used for ranking the alternatives having the properties of closeness and far-away from the ideal solution at a
time. The numeric values of revised closeness index calculated in Table ??

Table 24: Index of alternatives
Us Λ(Us)

U1 33.1199
U2 0.26594
U3 20.4343
U4 0.00000
U5 43.3661

Step 8: Clearly, from the values of revised closeness index we can easily highlight the bank with best performance that is actually theU4 = MCB
opting as best performer in Pakistan, where, the ascending order of the values of revised closeness index describe the ranks of the banks on
the basis of the CAMELS model and TOPSIS method, shown in Table 25

Table 25: Ranking of alternatives
Alternative U1 U2 U3 U4 U5

Ranking 4 2 3 1 5

7 Comparison
To prove the versatility of the CSVNNSf -TOPSIS method we compare the proposed method with SVN -TOPSIS method [28] by solving the
describe MAGDM problem of “Monitoring performance of Islamic banking industry on the basis of CAMELS rating syste” by SVN-TOPSIS
method[28]. The evaluation of the problem by SVN-TOPSIS method [28] is as follows:

Step 1 For the implication of SVN-TOPSIS method on the proposed MAGDM problem we have to exclude the grading part as well as reduce
the periodic terms to zero in the CSVNNSfN, so that experts Z̃1, Z̃2, Z̃3 assigned SVNs to each rank given in Tables 26, 27 and 28,
respectively.

Table 26: SVNDM related to expert Z̃1,
Y1 Y2 Y3 Y4 Y5

U1 (0.86, 0.08, 0.07) (0.71, 0.31, 0.29) (0.11, 0.91, 0.93) (0.12, 0.87, 0.86) (0.61, 0.41, 0.43)
U2 (0.87, 0.09, 0.08) (0.66, 0.27, 0.31) (0.89, 0.04, 0.11) (0.13, 0.87, 0.86) (0.67, 0.25, 0.23)
U3 (0.69, 0.19, 0.22) (0.88, 0.06, 0.10) (0.14, 0.88, 0.89) (0.34, 0.66, 0.67) (0.71, 0.24e, 0.27)
U4 (0.82, 0.18, 0.21) (0.91, 0.02, 0.03) (0.13, 0.88, 0.86) (0.93, 0.04, 0.01) (0.96, 0.05, 0.03)
U5 (0.87, 0.13, 0.12) (0.90, 0.07, 0.10) (0.02, 0.95, 0.97) (0.03, 0.96, 0.98) (0.05, 0.95, 0.94)
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Table 27: SVNDM related to expert Z̃2,
Y1 Y2 Y3 Y4

U1 (0.72, 0.32, 0.66) (0.41, 0.51, 0.61) (0.16, 0.69, 0.72) (0.17, 0.75, 0.77) (0.06, 0.91, 0.92)
U2 (0.19, 0.72, 0.75) (0.93, 0.12, 0.13) (0.88, 0.08, 0.10) (0.73, 0.23, 0.20) (0.64, 0.36, 0.37)
U3 (0.45, 0.46, 0.56) (0.09, 0.87, 0.86) (0.58, 0.37, 0.39) (0.59, 0.53, 0.44) (0.92, 0.05, 0.12)
U4 (0.32, 0.67, 0.69) (0.84, 0.16, 0.17) (0.83, 0.18, 0.19) (0.98, 0.10, 0.01) (0.81, 0.20, 0.19)
U5 (0.11, 0.90, 0.91) (0.22, 0.81, 0.84) (0.08, 0.91, 0.92) (0.07, 0.87, 0.88) (0.23, 0.83, 0.82)

Table 28: SVNDM related to expert Z̃3,
Y1 Y2 Y3 Y4 Y5

U1 (0.62, 0.36, 0.39) (0.70, 0.26, 0.28) (0.59, 0.43, 0.42) (0.86, 0.02, 0.03) (0.31, 0.69, 0.68)
U2 (0.81, 0.20, 0.18) (0.95, 0.05, 0.07) (0.80, 0.21, 0.22) (0.62, 0.36, 0.38) (0.34, 0.66, 0.67)
U3 (0.31, 0.68, 0.69) (0.60, 0.41, 0.42) (0.29, 0.70, 0.72) (0.79, 0.23, 0.20) (0.61, 0.39, 0.40)
U4 (0.84, 0.17, 0.16) (0.96, 0.03, 0.02) (0.98, 0.04, 0.03) (0.82, 0.18, 0.19) (0.63, 0.38, 0.37)
U5 (0.27, 0.74, 0.73) (0.57, 0.45, 0.47) (0.25, 0.76, 0.78) (0.23, 0.79, 0.81) (0.30, 0.95, 0.96)

Step 2 The weights of experts ν = (0.33, 0.40, 0.27)T and averaging operator [28], we can cumulate the aggregated single-valued neutrosophic
decision matrix (ASVNDM), as follows:

Hws =
(

[1−Πf
j=1(1− p(j)

ws)
νw ], [Πf

j=1(q(j)
ws)νw ], [Πf

j=1(r(j)
ws)

νw ]
)
.

The ASV NDM is arranged in Table 29.

Table 29: ASVNDM
Y1 Y2 Y3 Y4 Y5

U1 (0.0680, 0.9139, 0.9096) (0.0430, 0.9591, 0.9568) (0.0041, 0.9966, 0.9974) (0.0045, 0.9977, 0.9970) (0.0330, 0.9687, 0.9704)
U2 (0.0710, 0.9177, 0.9139) (0.0380, 0.9544, 0.9591) (0.0760, 0.8916, 0.92434) (0.0050, 0.9950, 0.9946) (0.0387, 0.9517, 0.9489)
U3 (0.0040, 0.9425, 0.9474) (0.0720, 0.9045, 0.9212) (0.0053, 0.9954, 0.9958) (0.0146, 0.9853, 0.9858) (0.0432, 0.9517, 0.9544)
U4 (0.0590, 0.9407, 0.9458) (0.0820, 0.8698, 0.8825) (0.0050, 0.9954, 0.9946) (0.0904, 0.8916, 0.8486) (0.1084, 0.8987, 0.8825)
U5 (0.070, 0.9323, 0.9272) (0.0780, 0.9096, 0.9212) (0.0007, 0.9982, 0.9989) (0.0010, 0.9985, 0.9992) (0.0182, 0.9982, 0.9978)

Step 3 The weights for attributes are calculated, by summarizing the experts opinion about the nature of attributes given in Table 30, as follows:

θw =
(

[1−Πf
j=1(1− p(j)

w )νw ], [Πf
j=1(q(j)

w )νw ], [Πf
j=1(r(j)

w )νw ]
)
.

Thus we have,

θ =


(0.0079, 0.9893, 0.9902)
(0.0387, 0.9388, 0.9425)
(0.0820, 0.9298, 0.9243)
(0.0408, 0.9458, 0.9489)
(0.0180, 0.9642, 0.9842)

 .
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Table 30: Weights for attributes from experts
Z̃1 Z̃2 Z̃3

Y1 (0.20, 0.74, 0.76) (0.42, 0.38, 0.62) (0.09, 0.92, 0.95)
Y2 (0.67, 0.17, 0.19) (0.93, 0.09, 0.14) (0.18, 0.70, 0.72)
Y3 (0.91, 0.13, 0.11) (0.16, 0.66, 0.68) (0.44, 0.40, 0.60)
Y4 (0.69, 0.21, 0.23) (0.71, 0.25, 0.27) (0.75, 0.31, 0.33)
Y5 (0.40, 0.36, 0.64) (0.73, 0.29, 0.30) (0.77, 0.31, 0.26)

Step 4 The aggregated weighted single-valued neutrosophic decision matrix(AWSVNDM), shown in Table 31, calculated as:

H̄ws =

(
pwspw, (qws + qw − qwsqw), (rws + rw − rwsrw)

)
.

Table 31: AWSVNDM
Y1 Y2 Y3 Y4 Y5

U1 (0.00053, 0.99900, 0.99911) (0.00016, 0.99749, 0.99751) (0.00032, 0.99976, 0.99980) (0.00018, 0.99987, 0.99984) (0.00059, 0.99880, 0.99953)
U2 (0.00055, 0.99912, 0.99916) (0.00014, 0.99720, 0.99764) (0.00062, 0.99239, 0.99427) (0.00020, 0.99973, 0.99972) (0.00069, 0.99827, 0.99919)
U3 (0.00031, 0.99938, 0.99948) (0.00028, 0.99416, 0.99546) (0.00043, 0.99968, 0.99968) (0.00059, 0.99920, 0.99927) (0.00077, 0.99827, 0.99927)
U4 (0.00046, 0.99936, 0.99946) (0.00032, 0.99203, 0.99324) (0.00041, 0.99968, 0.99959) (0.00368, 0.99412, 0.99220) (0.00195, 0.99637, 0.99814)
U5 (0.00055, 0.99927, 0.99928) (0.00030, 0.994466, 0.99546) (0.00057, 0.99987, 0.99990) (0.00004, 0.99990, 1.00000) (0.00032, 0.99990, 0.99990)

Step 5 Keeping in view the nature of data, Equation 26 and 27 is used for the evaluation of the single-valued neutrosophic positive ideal solution
and negative ideal solution arranged in Table 32.

H̄PIS
w =

{
(max

s
T̄ws,min

s
Īws,min

s
F̄ws), if Yw ∈ BT,

(min
s

T̄ws,max
s

Īws,max
s

F̄ws), if Yw ∈ CT,
(26)

and

H̄NIS
w =

{
(min
s

T̄ws,max
s

Īws,max
s

F̄ws), if Yw ∈ BT,

(max
s

T̄ws,min
s

Īws,min
s

F̄ws), if Yw ∈ CT,
(27)

Table 32: SVN -PIS and SVN -NIS
U1 (0.00055, 0.99900, 0.99911) (0.00031, 0.99938, 0.99948)
U2 (0.00032, 0.99203, 0.99324) (0.00014, 0.99749, 0.99764)
U3 (0.00062, 0.99239, 0.99427) (0.00033, 0.99987, 0.99990)
U4 (0.00368, 0.99412, 0.99220) (0.00004, 0.99990, 1.00000)
U5 (0.00195, 0.99637, 0.99814) (0.00032, 0.99990, 0.99990)

Step 6 To measure distance of alternatives from PIS and NIS, Euclidean distance used. The calculated values are given in Table 33

Table 33: Distance measures of alternatives from ideal solution
Us d(H̄PIS

w ,Us) d(H̄NIS
w ,Us)

U1 0.00935 0.00078
U2 0.00762 0.00660
U3 0.00810 0.00260
U4 0.00500 0.00763
U5 0.00890 0.00210
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Step 7 The revised closeness index calculated using Equation 28 , is tabulated in Table 34 and the ranks evaluated through the index values are
arranged in Table 35 in descending order, according to whichU4 is the best performer.

Λ(Us) =
d(H̄NIS

w ,Us)

d(H̄PIS
w ,Us) + d(H̄NIS

w ,Us)
, (28)

where, s = 1, 2, . . . , k.

Table 34: Revised closeness index of each alternative
Alternative Λ(Us)

U1 0.0769
U2 0.4641
U3 0.2429
U4 0.6041
U5 0.1900

Table 35: Ranking in single-valued neutrosophic environment
Alternative U1 U2 U3 U4 U5

Ranking 5 2 3 1 1

7.1 Discussion
1. The comparison of the CSVNNSf -TOPSIS method with the existing SVN-TOPSIS method have same findings for the Islamic bank as

best performer in Pakistan but the consequences relevant to the ranks of other banks have no analogy given in Table 36.

Table 36: Comparison
Model Ranks Best Performer

SVN -TOPSIS [28] U4 > U2 > U3 > U5 > U1 U4

CSVNNSf -TOPSIS(Proposed) U4 > U2 > U3 > U1 > U5 U4

2. The expertise of the presented methodology CSVNNSf -TOPSIS method to manipulate the indeterminacy degree and two dimensional
information in the MAGDM problems by using the frame of CSVNNSfSs.

3. The presented methodology of CSVNNSf -TOPSIS method has potential to operate the problems of IFNSfSs, being the generalization
of the IFSs.

4. The presented model has proficiency to overcome the latest problems characterized by parameterized ordered evaluation system but the
existing methods have no grip on such problems.

5. By employing N = 2 and periodic terms equal to zero, we switch from CSVNNNSf environment to single-valued environment so that
the CSVNNSf -TOPSIS method could sensibly handled the daily life problems under single-valued environment.

8 Conclusion
In this paper we have merged the idea of single-valued neutrosophic set withN -soft sets, and in doing so, we have initiated the idea ofCSVNNSfSs.
These sets combine the 2-dimensional single-valued neutrosophic nature of the attributes with parameterized ordered grades which demonstrates
their superiority over FNSfS, IFNSfS andNNSfS. A MAGDM model of TOPSIS method is extended to handle the real life problems under
the frame of CSVNNSfSs in which the ordered grades are assigned to each alternative as initial evaluation that are further characterized by
CSVNNSfNs. The PIS and NIS in CSVNNSf -TOPSIS method have been determined by the score function which has been further employed
to quantify the distance measures and the closeness index that sort the alternatives from highest to lowest rank. An example from the banking in-
dustry and the comparison with single-valued neutrosophic TOPSIS method have clarified the accuracy and superiority of the presented technique.
The new model and method pioneer a promising avenue for research in the decision making arena that we have only hinted at in this paper. More-
over, the proposed CSVNNSf -TOPSIS method does not evaluate the relative importance of the normalized Euclidean distances. Therefore we
will work for the extension of the VIKOR method under a CSVNNSf environment, which might be more credible and trustworthy.
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Abstract:
Women with heart disease during pregnancy are at higher risk, which can harm the fetus. This risk can be reduced if we

diagnose and treat it early. The decision-making system is very helpful in such situations. Many clinical decision-making systems
have been proposed, but they are too complicated for medical experts to understand and adapt. Here, we develop a new neutrosophic
model for early diagnosis and explain it using explainable artificial techniques. Our model is taking eight symptoms and signs
as inputs and determines the diagnosis, type of treatment, and prognosis. Age, obesity, smoking, family pathological history,
personal pathological history, electrocardiogram, ultrasound, and functional class are the inputs of this model. Six diagnoses can
be made- obstruction at existing, obstruction at entry, rhythm disorder, conduction disorders, congenital diseases, genetic diseases.
The types of treatments are- pregnancy interruption, diuretic treatment, anti-arrhythmic treatment, treatment with beta-blockers
and anticoagulants treatment. The prognosis is- eutectic delivery, dystocic delivery, the child with complications, child without
complications, mother with complications, and mother without complications. The main parts of this system are neutrosophication,
knowledge base, inference engine, de-neutrosophication, and explainability. To present the entire execution of the proposed system,
we design an algorithm and compute its time complexity to demonstrate the working of the entire system. We compared the results
of different methods to gain confidence in our model.

Keywords: Neutrosophic sets, decision-making, heart diseases, algorithm, explainable articial intelligence.

1 Introduction
In medical, computer-aided medical diagnosing applications facilitates doctors to take decisions swiftly. Many models and applications have been
designed for this purpose but the major drawback of such models is their complexity and a lot of mathematical work. Their complex models make
it difficult for doctors to adopt. Explainable artificial intelligence (XAI) is an approach that makes such a model understandable for doctors and
they feel comfortable adopting them. XAI also helps doctors to check the accuracy of the decisions as well.

The medical data is very much sensitive and contains a lot of ambiguities because each doctor has his own opinion, and using these opinions
it becomes difficult to take one exact decision. In such environments, fuzzy logic plays an important role to make human-like decisions among
multiple decisions. The concept of fuzzy sets was introduced by Zadeh in 1965 after that many extensions of fuzzy sets were proposed, intuitionistic
fuzzy is also one of them which works with membership and non-membership [1]. But the restriction on sum of membership and non-membership
restricts the selection of membership and nonmembership values.

In 1995, Smarandache introduced a novel branch of philosophy known as neutrosophy to eliminate this issue [2]. Neutrosophy is the essence
of the neutrosophic set (NS) and neutrosophic logic (NL). NS concurrently considers true membership, falsity membership, and indeterminacy
membership, which are more effective and consistent as compare to fuzzy systems and intuitionistic fuzzy systems. The single-valued neutrosophic
set (SVNS) is an extension of the NS [3]-[4]. There are many applications of fuzzy and its extensions are discussed in literature, some of them are
[5]-[11].

Abdel-Basset et al. proposed a novel neutrosophic multi-criteria decision-making (MCDM) model that used the neutrosophic analytical network
process (ANP), and the TOPSIS method for deciding on the election of an appropriate candidate for job [12]. They using this MCDM technique
selection of Chief executive officer (CEO) vacancy. The proposed MCDM procedure combined quantitative and qualitative information for person-
nel selection.
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In 2019, Hashmi et al. proposed a new concept of m-polar neutrosophic set (MPNS) and topological structure on m-polar neutrosophic set by
fusing polar fuzzy set (MPFS) and neutrosophic set [13]. They proposed a score function for the estimate of m-polar neutrosophic numbers
(MPNNs). m-polar neutrosophic topology is established and defined the interior, exterior, and frontier for m-polar neutrosophic sets (MPNs).

In 2020, Pamucar et al. introduced a neutrosophic decision-making model for the selection of supplier [14]. Their target was to decrease the
risk and disruptions to the supply chain and to preserve the stability of the supply-chain system. Also, the unpredictable situations in a supply chain
force decisionmakers and authorities to choose a fuzzybased evaluation platform to guarantee safe and secure outcomes. They proposed a new
weight aggregator that uses a pairwise comparison.

In 2020, Pamucar et al. evaluated and prioritized the energy storage technology alternatives (methods) by considering technical cost, and en-
vironmental and social criteria. They proposed a hybrid trapezoidal neutrosophic fuzzy numbers based Dombi weighted geometric averaging
operator and MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) model [15]. They employed a case study in Romania is carried out to
illustrate the applicability of the proposed model.

In 2020, Chakraborty et al. suggested the notion of cylindrical neutrosophic single-valued numbers from a different perspective and aspects to
obtained its true result [16]. This concept is based on score and accuracy functions that are used to convert fuzzy numbers into a crisp number
to make decisions on different problems. This technique was applied to real-life examples like networking and obtain the result that it is a better
choice for decision making instead of neutrosophic numbers when falsity and indeterminacy function are dependent. The technique introduced in
this paper is helpful in engineering and science-related field for diagnosis purposes.

In 2020, Aslan et al. presented the notion of neutrosociology [17]. It is a more effective way to find out uncertainties in social theories as it
is impossible to find out with classical maths. The researchers used similarity measures of single-valued neutrosophic numbers for sociology-
related decision-making problems. By using neutrosophic numbers and sets related to other social theories, new similarity measures introduced,
and checked the appropriateness of these formulas.

In 2020, Tan et al. proposed a multi-attribute decision-making method for the decision-making problems where the attribute weight is unknown.
Using information of entropy evaluation is performed [18]. They defined new formulas of single-valued neutrosophic similarities and single-valued
neutrosophic entropy. Moreover, the connection between them is also discussed. Karabasevic et al. introduced a unique type of the TOPSIS method
applicable for the use of single-valued neutrosophic sets [19]. The motivations of this study are described below:

1. Women with heart disease during pregnancy are at higher risk, which can have a negative effect on the fetus.

2. Medical data may contain unclear information. Using such data may lead to a wrong diagnosis if not managed efficiently.

3. Modern decision-making systems are very much complicated, and due to non-transparency, it becomes difficult for medical professionals
to adopt them.

Our contributions to this research are as follows:

1. We developed a novel decision-making model to facilitate doctors to early predict diagnosis, type of treatment, and prognosis.

2. Single-valued neutrosophic sets are used for decision-making because they are very close to human reasoning. SVNS focuses on the degree
of truth, the degree of indeterminacy, and the degree of falsity simultaneously. Also, there is no restriction on its sum of membership and
non-membership.

3. We combine the theory of explainable AI to form our system adaptable for medical experts. The degree of explanation is estimated using
causability. Explainable AI and causability AI systems support building the trust of medical experts.

4. We have designed an algorithm to explain the entire functioning of the model, as well as to measure its time complexity.

5. We compared our results with the rest of the techniques.

The rest of this article has been designed subsequently: Section 2 concisely reconsiders essential concepts of neutrosophic sets, explainable AI, and
causability measures. Section 3 reviews the explainable neutrosophic clinical decision-making systems for the treatment of pregnant women with
heart diseases. Section 4 offers a case study to present the effectiveness of the system. Section 5 matches the values of the proposed model with
other theories. Section 6 ends this article and presents possible future research directions.

2 Preliminaries
This part recalls some of the preparatory notions that require to be read to completely benefit from this study.

2.1. Explainability [20]: In artificial intelligence (AI), explainability is the extent to which the internal mechanism of the algorithm can be
explained in humans terms. Two explainable models have been found in the literature; the post-hoc explainability, and ante-hoc explaining models.
The scope of the post-hoc model is local, in which it explains only the specific component of the algorithm, not the complete system. Its examples
are LIME and BETA models. Whereas, the ante-hoc system are interpretable by design. Its examples are linear regression, decision trees, and
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fuzzy inference systems.

2.2. Causability [20]: Causability measures the quality of explainable. This means that the provided explanation is how much effective and
understandable to humans.

2.3. Single-valued neutrosophic set (SVNS) [3]: Let A be a sample space. A SVNS B on a non-empty set A is described by a truth mem-
bership function TB : A→ [0, 1], indeterminacy membership function IB : A→ [0, 1] and a falsity membership function FB : A→ [0, 1]. Thus,
B = {< w, TB(w), IB(w), FB(w) > |w ∈ A}. There is no restraint on the sum of TB(w), IB(w) and FB(w) for all w ∈ A.

2.4. Neutrosophic logic [21]: Neutrosophic logic (NL) was bestowed by Smarandache as an extension of fuzzy logic, intuitionistic logic, and
para-consistent logic. This logic contains three basic parts, that is, truth membership, indeterminacy membership, and falsity membership.

2.5. Single-valued neutrosophic number [22]: Let V be a SVNN which is defined as V = ([(u1, v1, w1, x1); ρ], [(u2, v2, w2, x2);σ], [(u3, v3, w3, x3);ω])
where ρ, σ, ω ∈ [0, 1], the truth membership function (µV ) : R → [0, ρ], indeterminacy membership function (νV ) : R → [σ, 1], and falsity
membership function (λV ) : R→ [ω, 1] are represented as follows:

µV (w) =


µAl(w), if u1 ≤ w ≤ v1,
ρ, if v1 ≤ w ≤ w1,

µAu(w), if w1 ≤ w ≤ x1,
0, otherwise.

νV (w) =


νAl(w), if u2 ≤ w ≤ v2,
σ, if v2 ≤ w ≤ w2,

νAu(w), if w2 ≤ w ≤ x2,
1, otherwise.

λV (w) =


λAl(w), if u3 ≤ w ≤ v3,
ω, if v3 ≤ w ≤ w3,

λAu(w), if w3 ≤ w ≤ x3,
1, otherwise.

2.6. Operations of SVNS [3]: Let A be a space of points and V1 and V2 are the two SVNSs and V3 contains their result.

Intersection: The intersection of V1 and V2 is represented as follows:

TV3(w) = min(TV1(w), TV2(w)),
IV3(w) = max(IV1(w), IV2(w)),
FV3(w) = max(FV1(w), FV2(w)),

for all w in A.

Union: The union of V1 and V2 is represented as follows:

TV3(w) = max(TV1(w), TV2(w)),
IV3(w) = min(IV1(w), IV2(w)),
FV3(w) = min(FV1(w), FV2(w)),

for all w in A.

2.7. Major factors :

There are following major factors that can increase the risks during pregnancy.

Age (S1): The length of time that a person has lived or a thing has existed.

Obesity (S2): Obesity is a complicated condition including an unnecessary volume of body fat.

Smoking (S3): Smoking is a habit of gasping smoke of tobacco or a drug.
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Family pathological history (S4): Pathology includes investigating the cause of sickness, how it occurs, the impact of the sickness on cells,
and the consequence of the sickness. If this sickness comes from family, then it is called family pathological history.

Personal pathological history (S6): If the sufferer itself has an own record of sickness.

Electrocardiogram (S7): An electrocardiogram shows the electrical signals in your heart.

Ultrasound (S8): An ultrasound scan is a medical examination that employs high-frequency sound waves to take live pictures from the inside
of your body.

Functional class (S9) [23]:The World Health Organisation (WHO) functional class system was designed to determine the rigor of somebodys
manifestations and how they influence day-to-day actions.

2.8 Diagnosis:

Obstruction at exit (OEX) [24]: It is a procedure used to deliver babies who have airway compression due to certain blockage.

Obstruction at entry (OEN) [24]: In pregnancy obstruction at entry is rare and is most generally created by adhesions from past abdominal
surgery.

Rhythm disorders (RD) [25]: A biological cycle present in the human body gets upset when the sleep-wake cycle dis-coordinate with the
environment and hinder a daily routine.

Conduction disorder (CD) [26]:The heart relies on electrical signals that originate the heartbeat in rhythm, when certain signals obstruct it
results in conduction disorder.

Congenital disease (CD) [27]: A medical condition present in babies by birth occurs during the fetal stage of development or is acquired from
parents or produced by environmental factors. It is also known as birth defects.

Genetic disease (GD) [27]: A change in DNA sequence from normal sequence results in Genetic disorder. It can be produced in the whole
body or a particular part of the body by a mutation in one gene, mutation in multiple genes, or change in the sequence of genes.

2.9 Treatments:

Pregnancy interruption (PI) [28]: Discontinued Pregnancy is recognized as Pregnancy interruption. It can either be done artificially called
abortion or naturally due to fetal aberration.

Diuretic treatment (DT) [29]: These are medications cause a net impairment of sodium and water in urine. It is also called water pills.

Anti-arrhythmic treatment (AAT) [29]: These medications are used when the heart rate goes fast or have an extra heart beat. This condi-
tion is called tachycardia. This pill helps to restore the regular beat of the heart.

Treatment with beta-blockers (TBB): These medicines are used to decrease high blood pressure by opening up the nerves and arteries to re-
cover blood flow.

Anticoagulants treatment (ACT) [29]: This medicine is utilized to block blood clots and also stopping them from growing big. It also de-
creases the risks of heart attack and strokes.

Eutectic delivery (ED) [30]: Delivery performs mixing certain drugs.

Dystocic delivery (PD) [30]: Slow cervix dilation during delivery.

Mother with complication (MC): Any health problems a mother ought during or before pregnancy such as blood pressure, anemia, infections,
etc.

The following matrices show the relation connecting symptoms and diagnosis. treatment, and prognosis. The following matrices help to ex-
amine the correctness of the nal diagnosis, treatment, and prognosis.
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OEX OEN RD CDS CD GD



A (0.9, 0.2, 0.3) (0.2, 0.2, 0.4) (0.8, 0.3, 0.2) (0.9, 0.2, 0.3) (0.9, 0.1, 0.3) (0.9, 0.2, 0.3)
OB (0.2, 0.6, 0.4) (0.3, 0.5, 0.6) (0.9, 0.2, 0.3) (0.8, 0.2, 0.1) (0.9, 0.2, 0.2) (0.8, 0.2, 0.3)
TAB (0.9, 0.1, 0.3) (0.8, 0.1, 0.2) (0.9, 0.2, 0.3) (0.9, 0.2, 0.3) (0.8, 0.1, 0.2) (0.2, 0.1, 0.4)
FPH (0.2, 0.2, 0.3) (0.2, 0.4, 0.1) (0.2, 0.1, 0.1) (0.3, 0.6, 0.5) (0.2, 0.8, 0.1) (0.8, 0.2, 0.3)
PPH (0.9, 0.1, 0.2) (0.8, 0.2, 0.3) (0.9, 0.2, 0.3) (0.9, 0.2, 0.2) (0.2, 0.5, 0.5) (0.9, 0.2, 0.3)
ECG (0.8, 0.2, 0.3) (0.7, 0.2, 0.3) (0.2, 0.2, 0.4) (0.2, 0.5, 0.6) (0.9, 0.2, 0.2) (0.3, 0.8, 0.6)
ECO (0.7, 0.2, 0.2) (0.8, 0.2, 0.3) (0.2, 0.8, 0.5) (0.9, 0.2, 0.2) (0.8, 0.2, 0.3) (0.2, 0.1, 0.5)
FC (0.9, 0.2, 0.1) (0.9, 0.2, 0.3) (0.9, 0.2, 0.3) (0.9, 0.1, 0.3) (0.9, 0.2, 0.2) (0.8, 0.2, 0.3)

,

P I DT AAT TBB ACT



A (0.9, 0.2, 0.3) (0.2, 0.1, 0.5) (0.9, 0.4, 0.3) (0.8, 0.2, 0.3) (0.7, 0.1, 0.1)
OB (0.8, 0.4, 0.2) (0.2, 0.1, 0.5) (0.7, 0.3, 0.3) (0.9, 0.2, 0.3) (0.9, 0.2, 0.3)
TAB (0.2, 0.2, 0.5) (0.2, 0.3, 0.4) (0.2, 0.1, 0.5) (0.9, 0.2, 0.3) (0.9, 0.2, 0.3)
FPH (0.2, 0.1, 0.5) (0.3, 0.1, 0.5) (0.2, 0.5, 0.5) (0.2, 0.4, 0.5) (0.7, 0.2, 0.3)
PPH (0.9, 0.2, 0.3) (0.9, 0.2, 0.3) (0.2, 0.1, 0.5) (0.8, 0.4, 0.2) (0.9, 0.2, 0.3)
ECG (0.2, 0.4, 0.1) (0.2, 0.1, 0.2) (0.8, 0.2, 0.3) (0.7, 0.2, 0.3) (0.9, 0.2, 0.3)
ECO (0.8, 0.1, 0.3) (0.9, 0.2, 0.3) (0.9, 0.2, 0.3) (0.2, 0.1, 0.3) (0.1, 0.1, 0.2)
FC (0.7, 0.2, 0.3) (0.9, 0.2, 0.3) (0.8, 0.2, 0.3) (0.9, 0.2, 0.3) (0.9, 0.2, 0.1)

,

ED PD CHC NOCHC MC NOMC



A (0.1, 0.1, 0.2) (0.9, 0.2, 0.3) (0.1, 0.1, 0.2) (0.1, 0.3, 0.2) (0.7, 0.2, 0.3) (0.7, 0.2, 0.2)
OB (0.9, 0.2, 0.3) (0.9, 0.2, 0.3) (0.3, 0.1, 0.2) (0.1, 0.1, 0.2) (0.9, 0.2, 0.3) (0.9, 0.1, 0.2)
TAB (0.1, 0.1, 0.2) (0.3, 0.1, 0.2) (0.8, 0.2, 0.3) (0.3, 0.1, 0.2) (0.9, 0.2, 0.3) (0.1, 0.1, 0.2)
FPH (0.1, 0.1, 0.2) (0.2, 0.1, 0.2) (0.9, 0.2, 0.2) (0.9, 0.2, 0.3) (0.1, 0.1, 0.2) (0.7, 0.2, 0.3)
PPH (0.9, 0.2, 0.4) (0.9, 0.2, 0.3) (0.9, 0.2, 0.3) (0.7, 0.2, 0.3) (0.8, 0.2, 0.3) (0.9, 0.2, 0.3)
ECG (0.9, 0.2, 0.2) (0.1, 0.1, 0.2) (0.3, 0.1, 0.2) (0.1, 0.1, 0.2) (0.1, 0.1, 0.2) (0.3, 0.1, 0.2)
ECO (0.7, 0.2, 0.3) (0.9, 0.2, 0.3) (0.7, 0.2, 0.3) (0.9, 0.2, 0.3) (0.1, 0.1, 0.2) (0.8, 0.2, 0.3)
FC (0.7, 0.2, 0.3) (0.9, 0.2, 0.3) (0.8, 0.2, 0.2) (0.9, 0.2, 0.1) (0.9, 0.5, 0.3) (0.9, 0.2, 0.3)

.

3 Explainable single-valued neutrosophic medical decision-making system for the
treatment of pregnant women with cardiac diseases

Let’s understand the complete working of the decision-making system for the treatment of pregnant women with cardiac problems. We use SVNN
for diagnosing, treatment and prognosis. To make this system simple and transparent, we used XAI methods. These methods help to explain the
entire working of a particular module. The causality helps to determine the effectiveness of the explanation. Also, We devise an algorithm and
calculates its time complexity.

3.1 Basic structure of explainable single-valued neutrosophic medical decision-making system

The proposed system consists of five main parts. The first part is neutrosophication which contains truth membership, indeterminacy memberships,
and falsity membership of each input variable. Section parts is a knowledge base that contains all possible rules of the systems. The third part
is the inference engine which contains active decision-making rules. The fourth part is de-neutrosophication which contains truth memberships,
indeterminacy memberships, and falsity memberships of the output variable. The fifth part is explainability which is integrated with each part of
the systems to explain its working. Figure 1 presents the block diagram of the prescribed system.
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Figure 1: Block Diagram

3.2 Algorithm
The algorithm of the introduced model is as follows:

Algorithm 1 Steps to diagnosis, determine type of treatment, and prognosis by applying single-valued neutrosophic
logic.

1: Inputs: Take inputs values from user: Age (A), obesity (OB), smoking (TAB), family pathological history (FPH),
personal pathological history (PPH), electrocardiogram (ECG), ultrasound (ECO), and functional class (FC).

2: Define truth membership functions, indeterminacy membership functions, and falsity membership functions of each
input and output variables.

3: Use these functions to determine degree of truth, degree of indeterminacy, and degree of falsity of each input variable
against provided input values in step 1. This process is called neutrosophication process.

4: Defines rules of the system and determine firing strength of each rule using following formulas:
T (w) = min(µA(w), µOB(w), µTAB(w), µFPH(w), µPPH(w), µECG(w), µECO(w), µFC(w)).
I(w) = max(νA(w), νOB(w), νTAB(w), νFPH(w), νPPH(w), νECG(w), νECO(w), νFC(w)).
F (w) = max(λA(w), λOB(w), λTAB(w), λFPH(w), λPPH(w), λECG(w)λECO(w), λFC(w)).

5: Use following de-neutrosophication formula to determine the values of each diagnosis, type of treatment, and prog-
nosis. [22]:

V = (p+ 2q + r + s+ 2t+ u+ v + 2w + x)/12,

where, (p, q, r) are three points of truth membership, (s, t, u) are three points of indeterminacy membership, and
(v, w, x) are three points of falsity membership.

6: Determine the final values of diagnosis, treatment, and prognosis.
7: Obtained the highest values among all values.
8: Output: The maximum value will be the final decision of diagnosis, treatment, and prognosis.

Neutrosophication

(i). Start Time Complexity

(ii). Create three linked lists to store values of truth MFs, indeterminacy
MFs, and falsity MFs.
DF, IF, FF= null; 1

(iii). Create pointers
ptr1= DF; ptr2=IF; ptr3=FF 1

(iv). for(n=1 to numbers of functions) n

(v). newDF.data=truth value of nth MF n-1

(vi). ptr1.link=newDF n-1

(vii). newIF.data=indeterminacy value of nth MF n-1
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(viii). ptr2.link=newIF n-1

(ix). newFF.data=falsity value of nth MF n-1

(x). ptr3.link=newFF n-1

(xi). end for

(xii). End Time complexity= O(n)

Inference Engine

(i). Start

(ii). Create three linked lists to store values of rules
Truth, Indeterminacy, Falsity= null; 1

(iii). Create pointers
ptr1= Truth; ptr2=Indeterminacy; ptr3=Falsity 1

(iv). for(n=1 to numbers of rules) n

(v). newTruth=minimum of truth MFs n-1

(vi). ptr1.link=newTruth n-1

(vii). newInd=maximum of indeterminacy MFs n-1

(viii). ptr2.link=newInd n-1

(ix). newFalsity= maximum falsity MFs n-1

(x). ptr3.ink=newFalsity n-1

(xi). end for

(xii). for(n=1 to numbers of rules) n

(xiii). Truth-value= min from truth values n-1

(xiv). Indeterminacy-value=max if indeterminacy values n-1

(xv). Falsity-value= max of falsity values n-1

(xvi). end for

(xvii). End Time complexity= O(n)

Defuzzification

(i). Start

(ii). for(n=1 to numbers of diagnosis) n

(iii). for(k=1 to numbers of output functions) n(n-1)

(iv). W1[n][k]=(p+2q+r+s+2t+u+v+2w+x)/12 (n-1)(n-2)

(v). V1[n]=take max from W1[n][k] (n-1)(n-2)

(vi). end for

(vii). end for

(viii). for(n=1 to number of treatments) n

(ix). for(k=1 to number of output functions) n(n-1)

(x). W2[n][k]=(p+2q+r+s+2t+u+v+2w+x)/12 (n-1)(n-2)

(xi). V2[n]=take max from W2[n][k] (n-1)(n-2)

(xii). end for
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(xiii). end for

(xiv). for(n=1 to number of prognosis) n

(xv). for(k=1 to number of output functions) n(n-1)

(xvi). W3[n][k]=(p+2q+r+s+2t+u+v+2w+x)/12 (n-1)(n-2)

(xvii). V3[n]=take max from W3[n][k] (n-1)(n-2)

(xviii). end for

(xix). end for

(xx). for(n=1 to number of diagnosis) n

(xxi). Diagnosis=take max from V1[n] n-1

(xxii). end for

(xxiii). for(n=1 to no. of treatment) n

(xxiv). Treatment=take max from V2[n] n-1

(xxv). end for

(xxvi). for(n=1 to no. of prognosis) n

(xxvii). Prognosis=take max from V3[n] n-1

(xxviii). end for

(xxix). End Time complexity= O(n2)

Let’s compute the total time taken by this algorithm. Line 1 takes constant time. Neutrosophication is O(n) time process, therefore, line 2 takes
O(n) time. The inference engine is O(n) time process, therefore, line 3 takes O(n) time. The de-neutrosophication process takes O(n2) time, so,
line 4 takes O(n2). Lines 5, line 6, and line 7 take constant time. Hence, the overall time complexity of Algorithm 1 is O(n2).

3.3 Working of explainable neutrosophic clinical decision-making system for pregnant women with
heart diseases

Our model is taking eight symptoms as inputs and computes the values of diagnosis, treatment, and prognosis. Table 1 shows the scale of each
variable.

Table 1: Scale of input variables
Sr. no. Symptoms Scale

S1 Age-A (year/s) 0-100
S2 Obesity-OB 0-100
S3 Smoking-TAB 1/2
S4 Family pathological history-FPH 1/2
S5 Personal pathological history-PPH 1/2
S6 Electrocardiogram-ECG 0-100
S7 Ultrasound-ECO 0-100
S8 Functional class-FC 0-100

The scale is divided into three types of MFs. The plot of each symptom is depicted in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure
7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14.
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Figure 2: Age-truth MFs

Figure 3: Age-indeterminacy MFs

Figure 4: Age-falsity MFs

Figure 5: Obesity-truth MFs

Figure 6: Obesity-indeterminacy MFs
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Figure 7: Obesity- falsity MFs

Figure 8: Smoking, personal and family pathological history- truth MFs

Figure 9: Electrocardiogram-truth MFs

Figure 10: Electrocardiogram-indeterminacy MFs

Figure 11: Electrocardiogram-falsity MFs
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Figure 12: Function class-truth MFs

Figure 13: Function class- indeterminacy MFs

Figure 14: Function class-falsity MFs

The mathematical equations of truth MFs, indeterminacy MFs, and falsity MFs of age are as follows:

µyoung(w) =


30− w

30
, if w ∈ [0− 30],

0, otherwise.

µmiddle−age(w) =


w − 20

30
, if w ∈ [20− 50],

80− w
30

, if w ∈ [50− 80],

0, otherwise.

µold(w) =


w − 70

30
, if w ∈ [70− 100],

0, otherwise.

νyoung(w) =


w − 5

30
, if w ∈ [5− 35],

1, otherwise.

νmiddle−age(w) =


55− w

30
, if w ∈ [25− 55],

w − 55

30
, if w ∈ [55− 85],

1, otherwise.

νold(w) =


100− w

25
, if w ∈ [75− 100],

1, otherwise.

λyoung(w) =


w − 3

27
, if w ∈ [3− 30],

1, otherwise.

λmiddle−age(w) =


50− w

27
, if w ∈ [23− 50],

w − 50

25
, if w ∈ [50− 75],

1, otherwise.

λold(w) =


100− w

27
, if w ∈ [73− 100],

1, otherwise.

The mathematical equations of truth MFs, indeterminacy MFs, and falsity MFs of obesity are as follows:
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µhealthy(w) =


50− w
50− 0

, if w ∈ [0− 50],

0, otherwise.

µover−weight(w) =


w − 25

25
, if w ∈ [25− 50],

75− w
25

, if w ∈ [50− 75],

0, otherwise.

µobese(w) =


w − 65

35
, if w ∈ [65− 100],

0, otherwise.

νhealthy(w) =


w − 10

50
, if w ∈ [10− 60],

1, otherwise.

νover−weight(w) =


70− w

20
, if w ∈ [50− 70],

w − 70

20
, if w ∈ [70− 90],

1, otherwise.

νobese(w) =


100− w

25
, if w ∈ [75− 100],

1, otherwise.

λhealthy(w) =


w − 5

50
, if w ∈ [5− 55],

1, otherwise.

λover−weight(w) =


60− w

15
, if w ∈ [45− 60],

w − 60

25
, if w ∈ [60− 85],

1, otherwise.

λobese(w) =


100− w

20
, if w ∈ [80− 100],

1, otherwise.

The mathematical equations of truth MFs, indeterminacy MFs, and falsity MFs of smoking, personal pathological history and family pathological
history are as follows:

µyes(w) = 1. µno(w) = 1.
νyes(w) = 0. νno(w) = 0.
λyes(w) = 0. λno(w) = 0.
The mathematical form of degree of membership, degree of indeterminacy, and degree of falsity of electrocardiogram are as follows:

µlow(w) =


33.33− w
33.33− 0

, if w ∈ [0− 33.33],

0, otherwise.

µmedium(w) =


w − 16.67

16.67
, if w ∈ [16.67− 33.33],

50− w
16.67

, if w ∈ [33.33− 50],

0, otherwise.

µhigh(w) =


w − 43.33

23.33
, if w ∈ [43.33− 66.67],

0, otherwise.

νlow(w) =


w − 6.67

33.33
, if w ∈ [6.67− 40],

1, otherwise.

νmedium(w) =


46.67− w

13.33
, if w ∈ [33.33− 46.67],

w − 46.67

13.33
, if w ∈ [46.67− 60],

1, otherwise.

νhigh(w) =


66.67− w

16.67
, if w ∈ [50− 66.67],

1, otherwise.

λlow(w) =


w − 3.33

33.33
, if w ∈ [3.33− 36.67],

1, otherwise.

λmedium(w) =


40− w

10
, if w ∈ [30− 40],

w − 40

16.67
, if w ∈ [40− 56.67],

1, otherwise.

λhigh(w) =


66.67− w

13.33
, if w ∈ [53.33− 66.67],

1, otherwise.

The mathematical form of degree of membership, degree of indeterminacy, and degree of falsity of ultrasound are as follows:
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µlow(w) =


33.33− w
33.33− 0

, if w ∈ [0− 33.33],

0, otherwise.

µmedium(w) =


w − 16.67

16.67
, if w ∈ [16.67− 33.33],

50− w
16.67

, if w ∈ [33.33− 50],

0, otherwise.

µhigh(w) =


w − 43.33

23.33
, if w ∈ [43.33− 66.67],

0, otherwise.

νlow(w) =


w − 6.67

33.33
, if w ∈ [6.67− 40],

1, otherwise.

νmedium(w) =


46.67− w

13.33
, if w ∈ [33.33− 46.67],

w − 46.67

13.33
, if w ∈ [46.67− 60],

1, otherwise.

νhigh(w) =


66.67− w

16.67
, if w ∈ [50− 66.67],

1, otherwise.

λlow(w) =


w − 3.33

33.33
, if w ∈ [3.33− 36.67],

1, otherwise.

λmedium(w) =


40− w

10
, if w ∈ [30− 40],

w − 40

16.67
, if w ∈ [40− 56.67],

1, otherwise.

λhigh(w) =


66.67− w

13.33
, if w ∈ [53.33− 66.67],

1, otherwise.

The mathematical equations of truth MFs, indeterminacy MFs, and falsity MFs functional class are as follows:

µclass−1(w) =


33.33− w

33.33
, if w ∈ [0− 33.33],

0, otherwise.

µclass−2(w) =


w − 33.33

33.33
, if w ∈ [0− 33.33],

66.67− w
33.33

, if w ∈ [33.33− 66.67],

0, otherwise.

µclass−3(w) =


w − 33.33

33.33
, if w ∈ [33.33− 66.67],

100− w
33.33

, if w ∈ [66.67− 100],

0, otherwise.

µclass−4(w) =


w − 66.67

33.33
, if w ∈ [66.67− 100],

0, otherwise.

νclass−1(w) =


w − 0

26.67
, if w ∈ [0− 26.67],

1, otherwise.

νclass−2(w) =


50− w

30
, if w ∈ [20− 50],

w − 50

26.67
, if w ∈ [50− 76.67],

1, otherwise.

νclass−3(w) =


83.33− w

43.33
, if w ∈ [40− 83.33],

w − 83.33

16.67
, if w ∈ [83.33− 100],

1, otherwise.

νclass−4(w) =


100− w

20
, if w ∈ [80− 100],

1, otherwise.

λclass−1(w) =


w − 10

23.33
, if w ∈ [10− 33.33],

1, otherwise.

λclass−2(w) =


50− w

20
, if w ∈ [30− 50],

w − 50

23.33
, if w ∈ [50− 73.33],

1, otherwise.

λclass−3(w) =


76.67− w

36.67
, if w ∈ [40− 76.67],

w − 76.67

23.33
, if w ∈ [76.67− 100],

1, otherwise.

λclass−4(w) =


100− w

30
, if w ∈ [70− 100],

1, otherwise.

3.3.1 Ante-hoc explanation
In this section, we dene mathematical equations of truth MFs, indeterminacy MFs, and falsity MFs. These equations help to convert crisp input into
linguistics values. We also draw the plots of each input variable. The value of these functions extends between 0 to 1. The value of each linguistic
variable is the output of the neutrosophication module.

3.4 Inference engine
The inference engine is the main part of the system which contains the firing strength of all active rules. There are 330 rules in the system, some of
them are written here:
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R1−IF (age=middle-age, obesity=obese, smoking=yes, personal pathological history=yes, family pathological history=no, electrocardiogram/heart-
beat=low, ultrasound=no-complications, functional class=class-3) THEN (obstruction at exist=medium, obstruction at entry=low, rhythm disor-
der=high, conduction disorders=medium, congenital diseases=medium, genetic diseases=medium) AND (pregnancy interruption=low, diuretic
treatment=low, anti-arrhythmic treatment=low, treatment with beta blockers=high and anticoagulants treatment=medium) AND (eutectic deliv-
ery=low, dystocic delivery=low, child with complications=medium, child without complications=low, mother with complications=high, mother
without complications=medium).

R2−IF (age=middle-age, obesity=overweight, smoking=yes, personal pathological history=no, family pathological history=yes, electrocardiogram/heart-
beat=low, ultrasound=complications, functional class=class-2) THEN (obstruction at exist=low, obstruction at entry=low, rhythm disorder=low,
conduction disorders=low, congenital diseases=medium, genetic diseases=high) AND (pregnancy interruption=low, diuretic treatment=low, anti-
arrhythmic treatment=low, treatment with beta blockers=medium and anticoagulants treatment=high) AND (eutectic delivery=low, dystocic de-
livery=low, child with complications=high, child without complications=low, mother with complications=medium, mother without complica-
tions=low).

R3 − IF (age=old, obesity=obese, smoking=no, personal pathological history=no, family pathological history=yes, electrocardiogram/heart-
beat=high, ultrasound=complications functional class=class-4) THEN (obstruction at exist=high, obstruction at entry=medium, rhythm disor-
der=low, conduction disorders=low, congenital diseases=low, genetic diseases=low) AND (pregnancy interruption=low, diuretic treatment=low,
anti-arrhythmic treatment=high, treatment with beta blockers=medium and anticoagulants treatment=low) AND (eutectic delivery=low, dystocic
delivery=high, child with complications=medium, child without complications=low, mother with complications=medium, mother without compli-
cations=low).

R4− IF (age=young, obesity=healthy, smoking=yes, personal pathological history=yes, family pathological history=no, electrocardiogram/heart-
beat=high, ultrasound=complications, functional class=class-3) THEN (obstruction at exist=medium, obstruction at entry=high, rhythm disor-
der=low, conduction disorders=low, congenital diseases=low, genetic diseases=low) AND (pregnancy interruption=medium, diuretic treatment=high,
anti-arrhythmic treatment=low, treatment with beta blockers=low and anticoagulants treatment=low) AND (eutectic delivery=low, dystocic de-
livery=low, child with complications=high, child without complications=low, mother with complications=medium, mother without complica-
tions=low).

3.4.1 Ante-hoc Explanation

The knowledgebase is a vital part of our system. It contains all possible rules which are highlighted against the provided inputs. These rules are
IF-THEN statements, which describe how to associate inputs with desired outputs. This module receives input from the neutrosophication module
and the knowledge base, it is determined that which rules are currently triggered, and their firing strength is computed in the inference engine. To
compute the firing strengths of rules, we take the minimum value out of all values of truth memberships, the maximum value of all indeterminacy
membership functions, and the maximum value of all falsity membership functions.

3.5 De-Neutrosophication

The last phase of our system is de-neutrosophication We used de-neutrosophication formula to covert linguistic values into crisp values discussed
in [22].

V=(p+2q+r+s+2t+u+v+2w+x)/12,

where, (p,q,r) are the points of truth MF, (s,t,u) are the points of indeterminacy MF, and (v,w,x) are the points of falsity MFs. The plots of truth
MFs, indeterminacy MFs, and falsity MFs for output parameter are depicted in Figure 15, Figure 16, and Figure 17.

Figure 15: Diagnosis, treatment, prognosis-truth MFs
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Figure 16: Diagnosis, treatment, prognosis- indeterminacy MFs

Figure 17: Diagnosis, treatment, prognosis- falsity MFs

The mathematical equation of truth MFs, indeterminacy MFs, and falsity MFs of outputs are as follows:

µlow(w) =


33.33− w
33.33− 0

, if w ∈ [0− 33.33],

0, otherwise.

µmedium(w) =


w − 16.67

16.67
, if w ∈ [16.67− 33.33],

50− w
16.67

, if w ∈ [33.33− 50],

0, otherwise.

µhigh(w) =


w − 43.33

23.33
, if w ∈ [43.33− 66.67],

0, otherwise.

νlow(w) =


w − 6.67

33.33
, if w ∈ [6.67− 40],

1, otherwise.

νmedium(w) =


46.67− w

13.33
, if w ∈ [33.33− 46.67],

w − 46.67

13.33
, if w ∈ [46.67− 60],

1, otherwise.

νhigh(w) =


66.67− w

16.67
, if w ∈ [50− 66.67],

1, otherwise.

λlow(w) =


w − 3.33

33.33
, if w ∈ [3.33− 36.67],

1, otherwise.

λmedium(w) =


40− w

10
, if w ∈ [30− 40],

w − 40

16.67
, if w ∈ [40− 56.67],

1, otherwise.

λhigh(w) =


66.67− w

13.33
, if w ∈ [53.33− 66.67],

1, otherwise.

3.5.1 Ante-hoc Explanation

De-neutrosophication is the last phase of our model. The input of part is the weight of active rules. It contains truth MFs, indeterminacy MFs, and
falsity MFs of each output variable. It converts linguistic values to crisp values by using de-neutrosophication formulas. Its crisp values help to
determine diagnosis, treatment, and prognosis.

4 Case study
This section demonstrate a numerical example of our system to explain its entire working to the readers. For this purpose, consider an input: (age,
obesity, smoking, personal pathological history, family pathological history, electrocardiogram/heart-beat, ultrasound, functional class)=(40, 75, 2,
2, 1, 16.67, 16.6, 76.67). Lets see the execution of each module of the proposed system.
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4.1 Neutrosophication

The first step is neutrosophication. We obtained the following linguistic values against the provided inputs.

Age(40)= (µyng, µm−a, µol)=(0,0.67,0), (νyng, νm−a, νol)=(1,0.5,1), (λyng , λm−a, λol)=(1,0.37,1).

Obesity(75)= (µhealthy, µover−weight, µobese) =(1,1,0.29), (νhealthy, νover−weight, νobese) =(1,0.25,1), (λmale, λfemale) =(1,0.6,1).

Smoking(2)= (µy, µn) =(1,0), (νy, νn) =(0,1), (λy, λn) =(0,1).

Personal pathological history(2)= (µy, µn) =(1,0), (νy, νn) =(0,1), (λy, λn) =(0,1).

Family pathological history(1)= (µy, µn) =(0,1), (νy, νn) =(1,0), (λy, λn) =(1,0).

Electrocardiogram(16.67)= (µlo, µmed, µhi) =(0.5,0,0), (νlo, νmed, νhi) =(0.3,1,1), (λlo, λmed, λhi) =(0.4,1,1).

Ultrasound(16.67)= (µlo, µmed, µhi) =(0.5,0,0), (νlo, νmed, νhi) =(0.3,1,1), (λlo, λmed, λhi) =(0.4,1,1).

Function class(76.67)= (µc1, µc2, µc3), µc4 =(0,0,0.7,0.3), (νc1, νc2, νc3, νc4) =(1,1,0.15,1), (λc1, λc2, λc3, λc4) =(1,1,1,0.78).

4.1.1 Explanation

In this module, we take exemplary values of inputs to understand the complete working of the proposed model. We passed the input values from
truth MFs, indeterminacy MFs, and falsity MFs of each input and find out the degree of each function. The degree of each function can lies between
0 to 1.

4.2 Inference Engine

The next phase is the inference engine. Let’s pass linguistic values to the inference engine to get the active rules. R1 − IF (age=middle-
age, obesity=over-weight, smoking=yes, personal pathological history=yes, family pathological history=no, electrocardiogram/heart-beat=low,
ultrasound=no-complications, functional class=class-3) THEN (obstruction at exist=medium, obstruction at entry=high, rhythm disorder=low,
conduction disorders=low, congenital diseases=low, genetic diseases=low) AND (pregnancy interruption=medium, diuretic treatment=high, anti-
arrhythmic treatment=low, treatment with beta blockers=low and anticoagulants treatment=low) AND (eutectic delivery=low, dystocic deliv-
ery=low, child with complications=high, child without complications=low, mother with complications=medium, mother without complications=low).

R2−IF (age=middle-age, obesity=over-weight, smoking=yes, personal pathological history=yes, family pathological history=no, electrocardiogram/heart-
beat=low, ultrasound=no-complications, functional class=class-4) THEN (obstruction at exist=medium, obstruction at entry=medium, rhythm
disorder=medium, conduction disorders=low, congenital diseases=low, genetic diseases=low) AND (pregnancy interruption=medium, diuretic
treatment=high, anti-arrhythmic treatment=low, treatment with beta blockers=low and anticoagulants treatment=low) AND (eutectic delivery=low,
dystocic delivery=low, child with complications=medium, child without complications=low, mother with complications=low, mother without com-
plications=low).

R3−IF (age=middle-age, obesity=obese, smoking=yes, personal pathological history=yes, family pathological history=no, electrocardiogram/heart-
beat=low, ultrasound=no-complications, functional class=class-3) THEN (obstruction at exist=low, obstruction at entry=high, rhythm disor-
der=low, conduction disorders=low, congenital diseases=low, genetic diseases=low) AND (pregnancy interruption=low, diuretic treatment=high,
anti-arrhythmic treatment=low, treatment with beta blockers=low and anticoagulants treatment=low) AND (eutectic delivery=low, dystocic de-
livery=low, child with complications=high, child without complications=low, mother with complications=medium, mother without complica-
tions=low).

R4−IF (age=middle-age, obesity=obese, smoking=yes, personal pathological history=yes, family pathological history=no, electrocardiogram/heart-
beat=low, ultrasound=no-complications, functional class=class-4) THEN (obstruction at exist=medium, obstruction at entry=high, rhythm disor-
der=low, conduction disorders=medium, congenital diseases=low, genetic diseases=low) AND (pregnancy interruption=medium, diuretic treat-
ment=medium, anti-arrhythmic treatment=low, treatment with beta blockers=low and anticoagulants treatment=low) AND (eutectic delivery=low,
dystocic delivery=low, child with complications=high, child without complications=low, mother with complications=medium, mother without
complications=low).

The output generated from inference engine is shown in Table 2. The abbreviations used in the table are as follows: MA=middle-age, OB=obese,
OW=over-weight, Y=yes, N=no, L=low, C1=class-1, C2-class-2, C3=class-3, and C4=class-4.
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Table 2: Active rules in inference engine
Input R60 R61 R62 R63

A MA(0.67, 0.5 ,0.37) MA (0.67, 0.5 ,0.37) MA (0.67, 0.5, 0.37) MA(0.67, 0.5 ,0.37)
OB OW(1, 0.25, 0.6 ) OW(1, 0.25, 0.6) OB(0.29, 0.25, 0.6) OB(0.29, 0.25, 0.6)

TAB Y(1, 0 ,0) Y(1, 0, 0) Y(1, 0, 0) Y(1, 0, 0)
FPH N(1, 0, 0) N(1 ,0, 0) N(1, 0, 0) N(1 ,0 ,0)
PPH Y(1 ,0 ,0) Y (1, 0, 0) Y(1, 0, 0) Y(1 ,0 ,0)
ECG L(0.5, 0.3, 0.4) L (0.5, 0.3 ,0.4) L(0.5, 0.3 ,0.4) L(0.5, 0.3 ,0.4)
ECO L (0.5, 0.3 ,0.4) L(0.5, 0.3, 0.4) L (0.5, 0.3, 0.4) L(0.5, 0.3 ,0.4)
FC C3(0.7, 0.15, 1) C4(0.3, 1 ,0.78) C3(0.7, 0.15, 1) C4(0.3, 1, 0.78)

(min,max,max) (0.5 ,0.5, 1) ( 0.3, 1, 0.78) ( 0.29, 0.5, 1) ( 0.29, 1, 0.78)

4.2.1 Explanation

The linguistic values obtained from the neutrosophication section are passed to the inference engine. Inference engine gets all rules from the
knowledge base and against these linguistic values determines the active rules and computes their firing strengths. In our example, R60, R61, R62,
and R63 are fired.

4.3 De-neutrosophication
The last phase of the proposed model is de-neutrosophication to get the final findings. Let’s see the de-neutrosophication process and determines
the final findings.

OEX:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

OEN:

high =
2 + 2× 3 + 3 + 1.9 + 2× 3 + 3 + 2.2 + 2× 3 + 3

12
,

high = 2.8.

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

RD:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

CDS:
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low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

CD:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

GD

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

The maximum value is of OEN. Now we will perform de-neutrosophication for treatment using de-neutrosophication method proposed in [22]:

PI:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

DT

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

high =
2 + 2× 3 + 3 + 1.9 + 2× 3 + 3 + 2.2 + 2× 3 + 3

12
,

high = 2.8.

AAT:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

TBB:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

ACT:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,
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low = 0.341.

The maximum value is of DT. Now we will perform de-neutrosophication for prognosis using de-neutrosophication method proposed in [22]:

ED:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

PD:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

CHC

high =
2 + 2× 3 + 3 + 1.9 + 2× 3 + 3 + 2.2 + 2× 3 + 3

12
,

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

high = 2.8.

NOCHC:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

MC:

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

medium =
0.5 + 2× 1.5 + 2.5 + 0.4 + 2× 1.2 + 2.4 + 1.6 + 2× 1.4 + 2.6

12
,

medium = 1.57.

NOMC

low =
0 + 2× 0 + 1 + 0.2 + 2× 0.2 + 1.2 + 0.1 + 2× 0.1 + 1.1

12
,

low = 0.341.

The maximum value is of CHC.

4.3.1 Explanation

The final step of the proposed model is de-neutrosophication. Here, we used a de-neutrosophication formula to obtain the value of each diagnosis,
treatment, and prognosis. The among all values of diagnosis, we pick the maximum value which is considered as the final decision about the
diagnosis. The same procedure is adopted for treatment and prognosis.
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4.4 Three-layered causal hierarchy

Now we will determine the quality of our explanation using Peral et al method [31]-[32]:

Level 1: Association- How many considered symptoms and signs relate to the particularized diagnosis, treatment, and prognosis? This inquiry
is investigated by medical specialists and decided that all the specified symptoms and signs are almost associated with diagnosis, treatment, and
prognosis.
Level 2: Intervention- What will happen if the doctor adopted the recommended method will the patient get diagnosed earlier? According to the
specialists, the recommended model encourages doctors to diagnose, treatment, and prognosis pregnant women at the earliest.
Level 3: Counterfactuals- Was the diagnosis, treatment, and prognosis that influences the specified symptoms? After analyzing the outcomes of
diagnosis, treatment, and prognosis with symptoms, it is inferred that diagnosis, treatment, and prognosis cause most of the signs. The diagnosis,
treatment, and prognosis are firmly linked with specified symptoms.

5 Comparison Analysis

This segment presents a contrastive examination of the outcomes achieved from our model and with the present decision-making methods using
different data sets [22], [6]-[7]. In the research, various schemes of decision-making are presented. Here we analyzed fuzzy soft sets and fuzzy
cognitive maps to analyze the recommended model. We have considered eighteen data sets for testing purposes. The outcomes achieved by these
techniques are quite alike to the final findings as we obtained from our method. All approaches recognized the similar diagnosis, treatment, and
prognosis. The terminal values achieved by these models are reviewed in Figure 18, Figure 19, and Figure 20.

Figure 18: Diagnosis-Comparison Analysis

Figure 19: Treatment-Comparison Analysis
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Figure 20: Prognosis-Comparison analysis

After comparing, we conclude that the proposed system is the best alternative to the existing model which offers explainability part as well.

6 Conclusion and future directions
This study presented a novel explainable single-valued neutrosophic decision-making model for the treatment of pregnant women with cardiac dis-
eases. To make this system more effective and understandable to medical experts, we used XAI techniques and measures the quality of explanation
as well. The principal contributions and advantages of our research are as follows:

1. Our methods help medical specialists to early diagnosis, identify the type of treatment, and prognosis so that prudent actions can be brought
timely. The system considered eight parameters as inputs and computes the value of each diagnosis, type of treatment, and prognosis. The
proposed system consists of five main parts, neutrosophication, knowledge base, inference engine, de-neutrosophication, and explainability.

2. In this study ante-hoc explanation is used to make the systems more understandable to the medical experts, and its quality is also measured.

3. To demonstrate the working of the system we devise an algorithm and computed its time complexity as well.

4. Also, a comparative analysis is performed to get the precision of the system and concluded that all decision-making methods highlighted
the same diagnosis, treatment, and prognosis.

The recommended model can be applied in many other problems where we need to decide uncertain situations. Examples of such problems are
diagnosis and treatment of cancers and other diseases, irrigation in agriculture, any industrial decision-making problems, and many more.
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Abstract: The coronavirus (COVID-19), from its propagation and virulence, has constituted the 

second global pandemic of the XXI century, claiming humanity, lives worldwide, in high scales, 

being Ecuador one of the affected countries and Guayas Canton with the highest morbidity and 

mortality, reasons why it has generated a social distancing as preventive measures. Present work 

aimed at the survey and intervention of health and educational problems manifested by parents and 

students with disability in regular education in District 09D17 of Milagro. For the first time, 

neutrosophic sets have been used to analyze interviews as a qualitative research tool. This paper is 

the first step of research that points out the uncertainties arising in qualitative data analysis. Among 

its main achievements are the change of behavior of the intervened families towards healthier 

lifestyles in the area of nutrition, psycho-pedagogical and social care, preparation for the life of these 

students, as well as the level of organization of students and researchers, teamwork, the use of 

communicational and digital tools to reach an improvement in the quality of life of these children.  

Keywords: Transtheoretical model, Health education, Virtual education, Families of students with 

disability, adaptive behavior. Neutrosophy, SVN, sentiment analysis, neutrosophic research 

method. 

 

 

1. Introduction 

At a global level, the current society is going through a health crisis known to all: COVID-19, in which 

health systems face an arduous task as a result of the high morbimortality resulting from the 

pandemic, therefore, a group of actions are taken in most countries, imposing restrictions in general 

that contribute to reducing the transmission of the virus, and among these, it begins to experiment in 

the educational field a different social learning modality, being virtual education the hope of 

improving quality of life of the population[1]. 

In this current context, parents of families and students with Special Educational Needs (SEN in 

Spanish) [2]associated or not to disability (Intellectual and developmental, Physical, Sensory, Mental, 

constitute a population group of high vulnerability, from chronic diseases generated first by the 

ageing of parents, along with unfavorable lifestyles and then those acquired in their children as part 

of the manifest disabilities, which reveal difficulties in the quality of health. 

In addition to this analysis, difficulties in accessing information are observed, which causes digital 

exclusion[3] in the educational field, the lack of knowledge of support systems for the education of 
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their children, family isolation, chaos, translated into hopelessness, in this new role that they must 

assume from their homes towards their children and access to health services. In this sense, the 

educational inclusion of these students in virtual mode becomes a severe problem for the family and 

the educational institution because they try to support them from their place. However, it requires a 

personalized approach, which does not consistently achieve its purpose, as this feeling is reflected 

with high prevalence in social networks; on the other hand, it was seen in statistics of the Milagros 

canton the increase of health problems in this population mentioned above. 

With these elements, the group of researchers and students of the Special Education career decide to 

conduct a study that leads to improving the health and quality of inclusive education of these 

students, in conditions of isolation of the population, through training to parents, to create practical 

attitudes and try to raise awareness in this vulnerable group the incorporation of healthier lifestyles 

that includes: hygiene, nutrition, sports and creative activities, relating social, environmental and 

economic factors by using health education, through the Transtheoretical model and based on 

neutrosophic research method.  

2. Neutrosophy in sentiment analysis basic concepts  

Neutrosophy is a mathematical theory developed by Romanian Scholar Florentin Smarandache to 

deal with indetermination[4]. It has been the base for developing new methods to deal with 

indeterminate and inconsistent information as neutrosophic sets neutrosophic logic and, especially, 

in decision-making problems [5]. The truth value in the neutrosophic set is as follow[6]: 

Let be 𝑵 = {(𝑻, 𝑰, 𝑭): 𝑻, 𝑰, 𝑭 ⊆ [𝟎, 𝟏]}𝒏 , be a neutrosophic evaluation of a mapping of a group of 

formulas propositional to 𝑵, and for each sentence 𝒑 : 

𝒗(𝒑) = (𝑻, 𝑰, 𝑭)          (1) 

To facilitate the practical application in real-world problems[7], the use of Single-Value neutrosophic  

Sets (SVNS) was proposed, through which it is likely to use linguistic terms to obtain greater 

interpretability of the results[8].  

Let X be a universe of discourse, an SVNS A over X has the following form[9]: 

𝑨 =  {〈𝒙, 𝒖𝒂(𝒙), 𝒓𝒂(𝒙), 𝒗𝒂(𝒙)〉: 𝒙 ∈ 𝑿}        (2) 

Where 

𝒖𝒂(𝒙): 𝑿 → [𝟎, 𝟏], 𝒓𝒂(𝒙): 𝑿 → [𝟎, 𝟏] 𝒚 𝒗𝒂(𝒙): 𝑿 → [𝟎, 𝟏]   

with 

𝟎 ≤ 𝒖𝒂(𝒙), 𝒓𝒂(𝒙), 𝒗𝒂(𝒙) ≤ 𝟑, ∀ 𝒙 ∈ 𝑿 

The intervals 𝒖𝒂(𝒙), 𝒓𝒂(𝒙) 𝐲 𝒗𝒂(𝒙) denote the memberships related to true, indeterminate and false 

from x in A, respectively[10]. For convenience reasons, a Single Value Neutrosophic Number (SVN) 

is  expressed as A = (a, b, c), where a, b, c ∈ [0.1] and 0 ≤ a + b + c ≤ 3. 

Let A = (a, b, c) be a single valued neutrosophic number, a score function S related to a single valued 

neutrosophic value, based on the truth-membership degree, indeterminacy-membership degree and 

falsity membership degree is defined by[11]: 

         (4) 
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The score function for single-valued neutrosophic sets is proposed to make the distinction between 

numbers.  

In social sciences, a primary research methodology such as one-on-one interviews constitutes a 

widely used technique to derive meaningful insights and draw broad conclusions[12]. Once 

transcribed, these interviews help in providing qualitative analyses. However, such analyses are 

subjective and draw heavily from the unconscious biases of the authors or researchers. That apart, 

the learning from every new interview diminishes at a high rate and is not an efficient use of the 

researchers' valuable time. Neutrosophy, which features the concept of indeterminacy, has not been 

widely used in sentiment analysis of interviews. Neutrosophic sets are used for sentiment analysis of 

interviews as a qualitative research tool[13]. This study is the first step of research that points out the 

uncertainties in the discursive analysis[14]. 

2. Materials and Methods (proposed work with more details)  

The population was represented by 197 families of students with Special Educational Needs to 

be Associated with disability of District 09D17 Milagro, according to a database provided by the 

Inclusion Support Unit (UDAI), of which 150 families were surveyed, as part of the Hermeneutic 

interpretative analysis in the 1st stage known as Structuring and coding of the research, to obtain the 

guiding categories of the study (Health in inclusive education), which in turn facilitated the 

emergence of the sensitizing categories, to delimit the object of study and establish the comprehensive 

analysis of the connections revealed and interpret its results in the research.  

With this sample, two instruments were applied at the beginning and in the first evaluative cut to 

parents about their family member with SEN associated or not to disability: a closed interview that 

contemplated: General data of their child (age, sex, weight, height, body mass index (BMI), problems 

of families and their participation in the education of their children), the second which measure the 

development of adaptive behaviour skills of students with Special Educational Needs (SEN), 

including indicators structured in the following categories: communication, hygiene and health, 

home life, social skills, use of community services, self-direction, self-care and safety, leisure and free 

time, and functional academic skills, under the leadership of researchers and students of the Special 

Education career.  

The neutrosophic research method was used for sentiment analysis on interviews[15]. 

The Neutrosophic Research Method is a generalization of Hegel's dialectic. It suggests 

that scientific and humanistic research will advance via studying not only the opposite ideas but the 

neutral ideas related to them as well in order to have a broad picture of the whole problem to 

solve[16]. 

3. Results  

A pipeline using Orange Data mining[17]  to analyze sentiment in interviews was developed. The 

sentiment analysis component predicts sentiment for each document in a corpus.  
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Figure 1. Orange pipeline 

A group of 5 interviews were used, and as sentiment analysis, the VADER (Valence Aware Dictionary 

for Sentiment Reasoning text sentiment analysis) model is used [18]. VADER is sensitive to both 

polarity (positive/negative) and intensity (strength) of emotion.  For convenience, a Single Value 

Neutrosophic Number (SVNS) in sentiment analysis is expressed as A = (pos, net, neg), where pos, 

net, and neg positive are positive, neutral and negative composite scores, respectively(Table 1).  

Table 1. SVN number associated in interviews. 

Case SVN number 

Case1 (0.052,0.909,0.04)  

Case 2 (0.336,0.622,0.042)  

Case 3 (0.044,0.814,0.142)  

Case 4 (0,1,0)  

Case 5 (0.075,0.746,0.179) 

Scores of every interview were calculated using a feature contractor component  

 

Figure 2. Score calculation with feature contractor component   

 

The calculation results using Eq 4 as de-neutrification method [19] are shown in Figure 3. 
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Figure 3. Score calculation  

The methods show and sentiment score for every interview, that score function allow to rank single-

valued neutrosophic numbers and gives a single numerical value.  The researcher exploited a written 

interview transcript rich with observations and insights and quantified it using neutrosophy in 

conjunction with other research methods. 

The highest scores are evidenced in the sensitizing categories Adaptive behaviour skills represented 

by leisure and free time with 12.43%, Social skills with 11.64% and main problems of families with 

11.51%, while the relative values with the lowest scores are Health conditions with 1.35%, and Special 

Educational Needs to be associated or not with disability with 1.65%, which is coherent with the 

current reality, taking into account the deficiencies in the preparation of the family in the educational 

intervention of their children. 

Within the adaptive behavioral skills of students with SEN associated or not to a disability, those 

indicators corresponding to leisure and free time skills and the development of social skills stand out 

because these areas in the initial state were depressed, constituting a causality of family conflicts, so 

they have been worked intensively, Although radical changes in the final state are not appreciated 

from their condition, both have evidenced reversed improvements in the other sensitizing categories 

studied, including the strengthening of family communication within and towards other families, a 

fundamental element of impact in terms of results. 

Another of the statistical tools applied was the calculation of the emergency index[19], and upon 

studying the results, it was found that the highest incidence was due to the following: 

· Main problems of families in the initial stage: indicators such as the following prevailed: parents' 

lack of knowledge of the developmental condition of their children and the support systems they 

need, generating disorientation, apathy, feeling of exclusion in the educational context, helplessness 

in educating their children (stress maintained in 100%, malnutrition due to obesity nine students 

(Morbid in 8 and 1 student Moderate), epilepsy, emotional disturbances, low self-esteem, insecurity 

in the work they do, low tolerance to the frustration of mistakes in parents and children, rejection of 

school, sadness, grief for the loss of family members with the pandemic, on the other hand, shows 

various disabilities with great diversity in terms of levels of development (age). 

Although intellectual and developmental disabilities prevailed with more than 20% and adolescence 

as a complex stage within the development, although childhood was represented, all this determined 



Neutrosophic Sets and Systems, Vol. 42, 2021 329  

 

 

Marylin Figueroa Cruz, María Elena Ron Vargas, Kerly Angela Álvarez Cadena, Diana Carolina Ortiz Delgado, Studying 

health and inclusive education: sentiment analysis using neutrosophy as a research tool 

the design of the training system and the innovative and Educommunication activities articulated in 

the educational process in the initial stage.  

In the final state, encouraging results were observed in the change of behavior of the families and the 

degree of training that they have acquired in carrying out activities with their children, especially 

those related to the management of technological and Educommunication tools, degree of acceptance 

towards their children, greater tolerance and resilience in the current historical context and 

consequently less frustration. 

· Involvement of parents in their children's education: in this category, the evidence shows that, 

in the initial state, family actions were insufficient towards the education of their children, hostility, 

covert rejection, domestic violence (verbal and physical) prevailed, translated into the need to deepen 

in areas of conflicts and how to achieve peaceful coexistence in their family, evasion of the role that 

corresponded to them in the education of their children, resistance to change, no involvement in the 

educational processes of their children, therefore their participation as a family is focused on feeding, 

protecting, caring for their children and the formation of some values, as part of their cultural 

function, the rest was characterized by complaints towards the state and absence of activities that 

propitiate support systems in each of the students within the educational process, primarily those 

support actions directed to the use of virtual technological tools. 

In the final state, each of the families has evolved according to their condition and reality, from each 

workshop given, coupled with various communication tools used, along with the specialized 

accompaniment of specialists in Pediatric Medicine, Psychology, Special Pedagogy, Technology, 

Sports in the various activities articulated to the workshops applied in each module with the 

following topics: 1st Module: Main problems of families and students with SEN associated with 

disability, 2nd Module: Support systems for educational inclusion and the 3rd Module: Curricular 

adaptations in virtual education and the family, together with the work carried out in a personalized 

way by researchers and students of the Special Education career in the pedagogical reinforcement 

applied in the 3rd module. 

· The development of Adaptive Behavioral Skills in the initial state: were contemplated in the 

type: Communication, Hygiene and health, Homelife, Social skills, Use of community services, Self-

direction, Self-care and safety, leisure and free time, Functional academic skills, each of them, were 

structured in an essential group of evaluative indicators, articulated at the time of evaluation to three 

categories (always, sometimes and never), this type of evaluation allowed catching the slightest 

result, a fundamental element that focused on observing the evolution of the process optimistically. 

In the final stage of the study, the educational practice and the statistical tools presented above reveal 

the participation of each of these skills in 100% of the schoolchildren studied in more or less 

development, with those of the Communicative, Hygiene and health, Social skills, Self-care, Leisure 

and free time type standing out above the others due to their complexity and importance in the 

adaptation to the social environment, which was strengthened by the increased work of the family 

as the main protagonist of this historical context.  

An essential element that stood out is the guiding role played by the reflections of each of the 

workshops applied by the specialists, systematically uploaded to the Blog, elaborated as an 

Educomunicasional tool for this project, the research group and the career of Special Education and 

how parents have been involved spontaneously in all this work, characterized by dialogue and active 

participation, high self-esteem of families who already consider themselves part of this educational 

process, which has led to the transformation of the modes of action and the improvement of healthier 

lifestyles. 
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4. Results  

It is possible to evidence precisely the total dependence that exists between the guiding category 

(Health in educational inclusion) and the initial and final state of the sensitizing categories, in 

particular: the states of health, problematic of families before the role of educational care of their 

children with SEN associated or not to disability and the development of adaptive behaviour skills 

in preparation for the life of these schoolchildren as described by [20]. 

It is appropriate to highlight how social and emotional learning has gained greater prominence in the 

results of this study and demonstrates the postulates of the Social Learning Theory [21], pointing to 

the importance of this learning according to the guiding principles: Attention, retention, reproduction 

and motivation of the knowledge learned through observation and imitation of the closest people of 

these students, tinged by the emotional learning that is performed by identifying the expressions, 

and emotions that this knowledge brings to their routine life.  

The digital inclusion of this population group (students with SEN associated with disability and their 

families) contributes significantly to the improvement of inclusive education and constitutes a 

gateway to work within the family, which should continue to be studied. 

Its limitations remain to continue generating dynamics that systematically strengthen these aspects 

mentioned above, even outside this pandemic stage.  

.This study is the first step of research that points out the uncertainties solving in discursive analysis.  

Results show the practical applicability of the proposal ease of use and interpretation by experts 

Conclusions (  

1. The Transtheoretical model applied in health education in the study has been represented by the 

interactivity, negotiation and active participation of each of the acting groups based on a 

relationship of respect, which has been the cornerstone in the action of the project, 

strengthening family and social communication in general and their change of healthier 

lifestyles.  

2. The social and emotional learning facilitated by parents strengthens the development of 

adaptive behavior skills, generating active and coherent participation of these students, 

strengthening their inclusive education. 

3. The continuity of training for parents should be continued, not with the intention that they 

assume the role of a specialist, but rather taking advantage of their role as a family so that 

they can incorporate new tools that stimulate their actions, sensitization towards working 

with their children in an assertive family environment, permeated with love, respect and 

understanding. 

4. This study is the first step of research that points out the uncertainties in discursive analysis 

using a qualitative research approach in line with the Smarandache proposal. Datamining 

tool Orange was adapted to the neutrosophic environment.  

5. Future work will concentrate on multi-refined neutrosophic set (MRNS)  in interview 

sentiment analysis.  
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Email: carlosgranadosortiz@outlook.es

2 Mathematics, Physical and Natural Sciences Division, The University of New Mexico, Gallup, USA.

Email: adhital@unm.edu

Abstract. In this paper, we define and study the notion of statistically convergent and statistically Cauchy

double sequences in neutrosophic normed spaces. Moreover, we give the double statistically Cauchy sequence in

neutrosophic normed space and present the double statistically completeness in connection with a neutrosophic

normed space.

Keywords:Nuetrosophic normed spaces, statistical double convergence.
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1. Introduction

The concept of fuzzy set was originally introduced by Zadeh [20] in 1965. The fuzzy theory

has become an area of active research for the last fifty years. It has a wide range of applications

in the field of science and engineering, population dynamics [1], chaos control [5], computer

programming [8], nonlinear dynamical systems [9], fuzzy physics [13] and more. Taking into

account the concept of fuzzy set, Smarandache [16] introduced the notion of Neutrosophic set

(NS) which is a new version of the idea of the classical set. The first world publication related

to the concept of neutrosophy was published in 1998 and included in the literature [17].

On the other hand, Kaleva and Seikkala [10] defined the fuzzy metric spaces (FMS) as a

distance between two points to be a non-negative fuzzy number. after that, In [6] some ba-

sic properties of FMS were studied and the Baire Category Theorem for FMS was proved.

Furthermore, some properties such as separability, countability are given and Uniform Limit

Theorem is proved in [7]. Consequently, FMS has used in the applied sciences such as fixed
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point theory, image and signal processing, medical imaging, decisionmaking and more. Af-

ter defined of the intuitionistic fuzzy set (IFS), it was used in all areas where FS theory

was studied. Park [15] introduced IF metric space (IFMS), that is a generalization of FMS.

Then, Park used George and Veeramani’s [6] work for applying t-norm and t-conorm to FMS

meanwhile defining IFMS and studying its basic properties. Moreover, Bera and Mahapatra

introduced the neutrosophic soft linear spaces (NSLS) [3]. Later, neutrosophic soft normed

linear spaces(NSNLS) was defined by Bera and Mahapatra [2]. Besides, In [2], neutrosophic

norm, Cauchy sequence in NSNLS, convexity of NSNLS, metric in NSNLS were defined and

studied. Recently, Kirisci and Simsek [11] in 2020, introduced and studied the notion of sta-

tistical convergence in a neutrosophic normed spaces. Besides, they showed some interesting

results.

In this paper, we extend the notion of statistical convergence on neutrosophic normed spaces

by using double sequences. Moreover, we prove some of its properties and characterizations.

This paper is organized as follows: In the second section, we procure some well-known notions

and definitions which are useful for the developing of this paper. In the third part, we define

and study the notion of statistical convergence of double sequences on neutrosophic normed

spaces (NNS). And the fourth section, we put a a conclusion in which we discuss about the

results showed in section 3 and some future studies.

2. Preliminaries

The notion of statistical convergence was defined by Fast [7] and Steinhaus [18] indepen-

dently and later this notion was studied by various authors.

Let K be a subset of N, then the asymptotic density of K, denoted by d(K) is defined as

follows:

d(K) = lim
n

1

n
|k ≤ n : k ∈ K}|,

where the vertical bars denote the cardinality of the enclosed set. A number sequence x = (xk)

is said to be statistically convergent to the number L if for each ε > 0, the set d(ε) = {k ≤ n :

|xk − L| > ε} has asymptotic density zero. Then, taking into account that notion, Mursaleen

and Edely [14] defined the notion of statistical convergence of double sequences. Let K ⊂ N×N
be two-dimensional set of positive integers and let K(m,n) be the numbers of (j, k) in K such

that j ≤ n and k ≤ n. Then, the two-dimensional analogue of natural density can be defined

as follows:

The lower asymptotic density of the set K ⊂ N× N is defined as:

d2(K) = lim
m,n

inf
K(m,n)

mn

In case that the sequence (K(m,n)/mn) has a limit in Pringsheim’s sense then we say that

K has a double density and is defined as:
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lim
m,n

K(m,n)

mn
= δ2(K).

Statistical convergence for double sequence x = (xkj) of real which was defined by [14] as:

A real double sequence x = (xkj) is said to be statistically convergent to the number L if for

each ε > 0, the set {(j, k), j ≤ m, k ≤ n : |xkj − L| ≥ ε}, has a double natural density zero. In

this case, we write S2-limxjk = L.

On the other hand, Triangular norms (t-norms) (TN) were initiated by Menger [13]. In

the problem of computing the distance between two elements in space, Menger offered using

probability distributions instead of using numbers for distance. TNs are used to generalize

with the probability distribution of triangle inequality in metric space conditions. Triangular

conorms (t-conorms) (TC) know as dual operations of TNs. TNs and TCs are very significant

for fuzzy operations(intersections and unions).

Definition 2.1. ( [13] ) Give an operation ◦ : [0, 1] × [0, 1] → [0, 1]. If the operation ◦ is

satisfying the following conditions:

(1) s ◦ 1 = s,

(2) If s ≤ u and t ≤ v, then s ◦ t ≤ u ◦ v,

(3) ◦ is continuous,

(4) ◦ is continuous and associative.

Then, it is called that the operation ◦ is continuous TN, for s, t, u, v ∈ [0, 1].

Definition 2.2. ( [13]) Give an operation • : [0, 1] × [0, 1] → [0, 1]. If the operation • is

satisfying the following conditions:

(1) s • 0 = s,

(2) If s ≤ u and t ≤ v, then s • t ≤ u • v,

(3) • is continuous,

(4) • is continuous and associative.

Then, it is called that the operation • is continuous TC, for s, t, u, v ∈ [0, 1].

Remark 2.3. [11]) From the above definitions, we can see that if we take 0 < ε1, ε2 < 1 for

ε1 > ε2, then there exist 0 < ε3, ε4 < 0, 1 such that ε1 ◦ ε3 ≥ ε2, ε1 ≥ ε4 • ε2. Moreover, if we

take ε5 ∈ (0, 1), then there exist ε6, ε7 ∈ (0, 1) such that ε6 ◦ ε6 ≥ ε5 and ε7 • ε7 ≤ ε5.

Definition 2.4. ( [12]) Take F be an arbitrary set, N = {< u,Q(u),W (u), E(u) >: u ∈ F} be

a NS (neutrosophic set) such that N : F×F×R+ → [0, 1]. Let ◦ and • show the continuous TN

and continuous TC, respectively. If the following conditions are satisfied, then the four-tuple

(F,N, ◦, •) is called neutrosophic metric space (NMS):

(1) 0 ≤ Q(u, v, λ) ≤ 1, 0 ≤W (u, v, λ) ≤ 1, 0 ≤ E(u, v, λ) ≤ 1 for all λ ∈ R+,

(2) Q(u, v, λ) +W (u, v, λ) + E(u, v, λ) ≤ 3, forλ ∈ R+,
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(3) Q(u, v, λ) = 1, for λ > 0 if and only if u = v,

(4) Q(u, v, λ) = Q(v, u, λ), for λ > 0,

(5) Q(u, v, λ) ◦Q(v, y, µ) ≤ Q(u, y, λ+ µ), for all µ, λ > 0,

(6) Q(u, v, .) : [0,∞)→ [0, 1] is continuous,

(7) limλ→∞Q(u, v, λ) = 1, for all λ > 0,

(8) W (u, v, λ) = 0, for λ > 0 if and only if u = v,

(9) W (u, v, λ) = W (v, u, λ), for λ > 0,

(10) W (u, v, λ) •W (v, y, µ) ≥W (u, y, λ+ µ), for all µ, λ > 0,

(11) W (u, v, .) : [0,∞)→ [0, 1] is continuous,

(12) limλ→∞W (u, v, λ) = 1, for all λ > 0,

(13) E(u, v, λ) = 0, for λ > 0 if and only if u = v,

(14) E(u, v, λ) = E(v, u, λ), for λ > 0,

(15) E(u, v, λ) • E(v, y, µ) ≥ E(u, y, λ+ µ), for all µ, λ > 0,

(16) W (u, v, .) : [0,∞)→ [0, 1] is continuous,

(17) limλ→∞E(u, v, λ) = 1, for all λ > 0,

(18) if λ ≥ 0, then Q(u, v, λ) = 0, W (u, v, λ) = 1 and E(u, v, λ) = 1.

For all u, v, y ∈ F . Then, N = (Q,W,E) is called Neutrosophic metric (NM) on F .

The notion of neutrosophic normed space (NNS) was defined by [11], as well as, the definition

statistical convergence with respect to NNS was given.

Definition 2.5. ( [11])Take F as a vector space N = {< u,G(u), B(u), Y (u) >: u ∈ F} be

a normed space (NS) such that N : F × R+ → [0, 1]. Let ◦ and • show the continuous TN

and continuous TC, respectively. If the following contritions are satisfied, then the four-tuple

V = (F,N, ◦, •) is called NNS, for all u, v ∈ F , λ, µ > 0 and for each σ 6= 0:

(1) 0 ≤ G(u, λ) ≤ 1, 0 ≤ B(u, λ) ≤ 1, 0 ≤ Y (u, λ) ≤ 1 for all λ ∈ R+,

(2) G(u, λ) +B(u, λ) + Y (u, λ) ≤ 3, forλ ∈ R+,

(3) G(u, λ) = 1, for λ > 0 if and only if u = 0,

(4) G(σu, λ) = G(u,
λ

|σ|
),

(5) G(u, µ) ◦G(v, λ) ≤ G(u+ v, λ+ µ),

(6) G(u, .) is continuous non-decreasing function,

(7) limλ→∞G(u, λ) = 1,

(8) B(u, λ) = 0, for λ > 0 if and only if u = 0,

(9) B(σu, λ) = B(u,
λ

|σ|
),

(10) B(u, µ) •B(v, λ) ≥ B(u+ v, λ+ µ),

(11) B(u, .) is continuous non-increasing function,

(12) limλ→∞B(u, λ) = 0,
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(13) Y (u, λ) = 0, for λ > 0 if and only if u = 0,

(14) Y (σu, λ) = Y (u,
λ

|σ|
),

(15) Y (u, µ) • Y (v, λ) ≥ Y (u+ v, λ+ µ),

(16) Y (u, .) is continuous non-increasing function,

(17) limλ→∞ Y (u, λ) = 0,

(18) if λ ≤ 0, then G(u, λ) = 0, B(u, λ) = 1 and Y (u, λ) = 1.

Then, N = (G,B, Y ) is called neutrosophic norm (NN).

Example 2.6. ( [11]) Let (F, ‖.‖) be a NS. Give the operations ◦ and • as TN u ◦ v = uv; TC

u • v = u+ v − uv. For λ > ‖u‖,

G(u, λ) =
λ

λ+ ‖u‖
, B(u, λ) =

‖u‖
λ+ ‖u‖

, Y (u, λ) =
‖u‖
λ

,

for all u, v ∈ F and λ > 0. If we take λ ≤ ‖u‖, then G(u, λ) = 0, B(u, λ) = 1 and

Y (u, λ) = 1. Then, (F,N, ◦, •) is NNS such that N : F ×R+ → [0, 1].

Definition 2.7. ( [11]) Let V be a NNS and (xk) be a sequence in V such that 0 < ε < 1 and

λ > 0. Then, (xk) converges to x if and only if there exists n0 ∈ N such that G(xk−x, λ) > 1−ε,
B(xk − x, λ) < ε and Y (xk − x, λ) < ε. That is lim

k→∞
G(xk − x, λ) = 1, lim

k→∞
B(xk − x, λ) = 0

and lim
k→∞

Y (xk − x, λ) = 0 as λ > 0. In this case, the sequence (xk) is said to be a convergent

sequence in V . The convergent in NNS is denoted by N -limxk = L.

Definition 2.8. ( [11]) Let V be a NNS, the sequence (xk) in V where 0 < ε < 1 and

λ > 0. Then, the sequence (xk) is Cauchy in a NNS V if there is a n0 ∈ N such that

G(xk − xq, λ) > 1− ε, B(xk − xq, λ) < ε and Y (xk − xq, λ) < ε for k, q ≥ n0.

Definition 2.9. ( [11]) Let V be a NNS. For λ > 0, u ∈ F and 0 < ε < 1,

O(u, ε, λ) = {vinF : G(u− v, λ) > 1− ε, B(u− v, λ) < ε, Y (u− v, λ) < ε}

is called open ball (OB)with center u and radius ε.

Definition 2.10. ( [11]) The set A ⊂ F is called neutrosophic-bounded (NB)in NNS V , if

there exist λ > 0, and ε ∈ (0, 1) such that G(u, λ) > 1 − ε, B(u, λ) < ε and Y (u, λ) < ε for

each u ∈ A.

3. Statistical convergence of double sequences on NNS

In this section, we define and study the notion of statistical double convergence in a Neu-

trosophic normed space

Definition 3.1. Let V be a NNS and (xkj) be a double sequence in V such that 0 < ε < 1

and λ > 0. Then, (xkj) converges to x if and only if there exists n0 ∈ N such that G(xkj −
x, λ) > 1 − ε, B(xkj − x, λ) < ε and Y (xkj − x, λ) < ε. That is lim

k,j→∞
G(xkj − x, λ) = 1,
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lim
k,j→∞

B(xkj − x, λ) = 0 and lim
k,j→∞

Y (xkj − x, λ) = 0 as λ > 0. In this case, the double

sequence (xkj) is said to be a double convergent sequence in V . The double convergent in

NNS is denoted by N2-limxkj = L.

Theorem 3.2. Let V be a NNS and (xkj) be a double sequence in V . Then, the following

statements hold:

(1) If (xkj) in V is convergent, then the limit point is unique.

(2) In V , if lim
k,j→∞

xkj = x and lim
k,j→∞

ykj = y, then lim
k,j→∞

xkj + ykj = x+ y.

(3) in V , if lim
k,j→∞

xkj = x and α 6= 0, then lim
k,j→∞

αxkj = αx.

Proof : Since the proof of this Theorem is straightforward, we omitted it.

Definition 3.3. Let V be a NNS, the double sequence (xkj) in V where 0 < ε < 1 and

λ > 0. Then, the double sequence (xkj) is Cauchy in a NNS V if there is a n0 ∈ N such that

G(xkj − xqw, λ) > 1 − ε, B(xkj − xqw, λ) < ε and Y (xkj − xqw, λ) < ε for k, j, q, w ≥ n0. A

NNS V is called complete if and only if every double Cauchy sequence (xkj) is convergent to

x in a NNS V .

Example 3.4. Consider G,B and Y from Example 2.6 . Then, V is a NNS. Besides,

lim
k,j,q,w→∞

λ

λ+ ‖xkj − xqw‖
= 1, lim

k,j,q,w→∞

‖xkj − xqw‖
λ+ ‖xkj − xqw‖

= 0, lim
k,j,q,w→∞

‖xkj − xqw‖
λ

= 0,

That is

lim
k,j,q,w→∞

G(xkj − xqw, λ) = 1, lim
k,j,q,w→∞

B(xkj − xqw, λ) = 0 , lim
k,j,q,w→∞

Y (xkj − xqw, λ) = 0.

Therefore, we can say that the double sequence (xkj) is a double Cauchy sequence in NNS

V .

Remark 3.5. It is clear that every double convergent sequence in V is a double Cauchy

sequence. But the inverse of this expression is not be true.

Theorem 3.6. Let V be a NNS and (xkj) be a double sequence in V . Then, the following

statements hold:

(1) If for u, v ∈ [0, 1], we choose the continuous TN u ◦ v = min{u, v} and the continuous

TC u • v = max{u, v} , then every double Cauchy sequence is bounded in NNS V .

(2) Let the double sequences (xnmj) and (ykj) be double Cauchy and the double sequence

(αkj) is scalars in NNS V . Then, the double sequences (xkj + ykj) and (αkjxkj) are

also double Cauchy in NNS V .

(3) V is a complete NNS, if every double Cauchy sequence has a double convergent subse-

quence in NNS V .

Proof : The proof of this Theorem is followd by the definitions of NNS, G;B;Y ,double

Cauchy sequence in V and completeness.
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Definition 3.7. Let V a NNS. A double sequence (xkj) is said to be statistical convergence

with respect to neutrosophic normed (DSC-NN), if there exist L ∈ F such that the set

Kε2 = {k ≤ n, j ≤ m : G(xkj − L, λ) ≤ 1− ε or B(xkj − L, λ) ≥ ε, Y (xkj − L, λ) ≥ ε}

or equivalently

Kε2 = {k ≤ n, j ≤ m : G(xkj − L, λ) > 1− ε or B(xkj − L, λ) < ε, Y (xkj − L, λ) < ε}.

has double neutrosophic density (DND) zero, for every ε > 0 and λ > 0. That is d(Kε2) = 0

or equivalently,

lim
n,m

1

nm
|{k ≤ n, j ≤ m : G(xkj − L, λ) ≤ 1− ε or B(xkj − L, λ) ≥ ε, Y (xkj − L, λ) ≥ ε}| = 0

Therefore, we write SN2-limxkj = L or xkj → L(SN2). The set of DSC-NN will be denoted

by SN2 . If L = 0, then we will write S0
N2

.

Lemma 3.8. Let V be a NNS. Then, the following statements are equivalent, for every ε > 0

and λ > 0:

(1) SN2-limxkj = L.

(2) lim
n,m

1

nm
|{k ≤ n, j ≤ m : G(xkj − L, λ) ≤ 1 − ε}| = lim

n,m

1

nm
|{B(xkj − L, λ) ≥ ε}| =

lim
n,m

1

nm
|{Y (xkj − L, λ) ≥ ε}| = 0.

(3) lim
n,m

1

nm
|{k ≤ n, j ≤ m : G(xkj − L, λ) < 1− ε and B(xkj − L, λ) < ε, Y (xkj − L, λ) <

ε}| = 1.

(4) lim
n,m

1

nm
|{k ≤ n, j ≤ m : G(xkj − L, λ) > 1 − ε}| = lim

n,m

1

nm
|{k ≤ n, j ≤ m : B(xkj −

L, λ) < ε}| = lim
n,m

1

nm
|{k ≤ n, j ≤ m : Y (xkj − L, λ) < ε}| = 1.

(5) S2-limG(xkj − L, λ) = 1, and S2-limB(xkj − L, λ) = 0, S2-limY (xkj − L, λ) = 0.

Proof : The poof of this Lemma is followed by the Definitions 3.7 and the notions showed

in Section 2 .

Theorem 3.9. Let V a NNS. If (xkj) is DSC-NN, then SN2-limxkj = L is unique.

Proof : Consider that SN2-limxkj = L1 and SN2-limxkj = L2 for L1 6= L2. Now, take

ε > 0. Then, for a given µ > 0, (1 − ε) ◦ (1 − ε) > 1 − µ and ε • ε < µ. For any λ > 0. Let’s

write the following sets:

KG1(ε, λ) := {k ≤ n, j ≤ m : G(xkj − L1,
λ

2
) ≤ 1− ε},

KG2(ε, λ) := {k ≤ n, j ≤ m : G(xkj − L2,
λ

2
) ≤ 1− ε}

KB1(ε, λ) := {k ≤ n, j ≤ m : B(xkj − L1,
λ

2
) ≤ 1− ε},

KB2(ε, λ) := {k ≤ n, j ≤ m : B(xkj − L2,
λ

2
) ≤ 1− ε}

KY1(ε, λ) := {k ≤ n, j ≤ m : Y (xkj − L1,
λ

2
) ≤ 1− ε},
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KY2(ε, λ) := {k ≤ n, j ≤ m : Y (xkj − L2,
λ

2
) ≤ 1− ε}

Since that SN2-limxkj = L1. Then, by the Lemma 3.8 , for all λ > 0,

d(KG1(µ, λ)) = d(KB1(µ, λ)) = d(KY1(µ, λ)) = 0

Moreover, since we have SN2-limxkj = L2, by the Lemma 3.8 , for λ > 0,

d(KG2(µ, λ)) = d(KB2(µ, λ)) = d(KY2(µ, λ)) = 0

Now, let

KN2(µ, λ) := {KG1(µ, λ) ∪KG2(µ, λ)} ∩ {KB1(µ, λ) ∪KB2(µ, λ)} ∩ {KY1(µ, λ) ∪KY2(µ, λ)}.

Then, we can see that d(KN2(µ, λ)) = 0 which implies d(N−KN2(µ, λ)) = 1. Then, we have

the following possible situations, when we take (k, j) ∈ N−KN2(µ, λ):

(1) (k, j) ∈ N− (KG1(µ, λ) ∪KG2(µ, λ)),

(2) (k, j) ∈ N− (KB1(µ, λ) ∪KB2(µ, λ)),

(3) (k, j) ∈ N− (KY1(µ, λ) ∪KY2(µ, λ)).

First at all, consider (1). Then, we have

G(L1 − L2, λ) ≥ G(xkj − L1,
λ

2
) ◦G(xkj − L2,

λ

2
) > 1− ε ◦ (1− ε)

And then, since (1− ε) ◦ (1− ε) > 1− µ,

G(L1 − L2, λ) > 1− µ (1)

By 1 , for all λ > 0, we have that G(L1 − L2, λ) = 1, where µ > 0 is arbitrary. This is,

L1 = L2.

Secondly, for (2), if we choose (k, j) ∈ N− (KB1(µ, λ) ∪KB2(µ, λ)), then we can write

B(L1 − L2, λ) ≤ B(xkj − L1,
λ

2
) •B(xkj − L2,

λ

2
) < ε • ε

Using ε • ε < µ, we can see that B(L1−L2, λ) < µ. For all λ > 0, we get B(L1−L2, λ) = 0,

where µ > 0 is arbitrary. Therefore, L1 = L2.

Finally, in the same way, for the situation (3), if we choose (k, j) ∈ N − (KY1(µ, λ) ∪
KY2(µ, λ)), then we can write

Y (L1 − L2, λ) ≤ Y (xkj − L1,
λ

2
) • Y (xkj − L2,

λ

2
) < ε • ε

Using ε • ε < µ, we can see that Y (L1−L2, λ) < µ. For all λ > 0, we get Y (L1−L2, λ) = 0,

where µ > 0 is arbitrary. Therefore, L1 = L2. And this step ends the proof.

Theorem 3.10. If N2-limxkj = L for a NNS V . Then, SN2-limxkj = L.
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Proof : Let N2-limxkj = L. Then, for every ε > 0 and λ > 0, there exist a number n0 ∈ N
such that G(xkj − L, λ) > 1 − ε and B(xkj − L, λ) < ε, Y (xkj − L, λ) < ε, for all k, j ≥ n0.

Hence, the set

{k ≤ n, j ≤ m : G(xkj − L, λ) ≤ 1− ε or B(xkj − L, λ) ≥ ε, Y (xkj − L, λ) ≥ ε}

has at most finitely many terms. Therefore, since every finite subset of N has double density

zero,

lim
n,m

1

nm
|{k ≤ n, j ≤ m : G(xkj − L, λ) ≤ 1− ε or B(xkj − L, λ ≥ ε, Y (xkj − L, λ) ≥ ε}| = 0

And this ends the proof.

Theorem 3.11. Let V be a NNS. SN2-limxkj = L if and only if there exists an increas-

ing index double sequence L2 = {l1, ...ln, ...; l1, ..., lm, ...} ⊂ N × N, while d(L2) = 1, N2-

lim
n,m→∞

xlnm = L.

Proof : Suppose that SGN2
-limxkj = L. For any λ > 0 and µ = 1, 2, ...,

PN2(µ, λ) = {k ≤ n, j ≤ m : G(xkj − L, λ) > 1− 1

µ
and B(xkj − L, λ) <

1

µ
,

Y (xkj − L, λ) <
1

µ
}

and

RN2(µ, λ) = {k ≤ n, j ≤ m : G(xkj −L, λ) ≤ 1− 1

µ
or B(xkj −L, λ) ≥ 1

µ
, Y (xkj −L, λ) ≥ 1

µ
}.

Then, d(RN2(µ, λ)) = 0, since SN2-limxkj = L. Besides, for λ > 0 and µ = 1, 2, ...,

d(PGN2
(µ, λ)) = 1 (2)

Now, we will prove that for (k, j) ∈ PN2(µ, λ), N2-limxkj = L. Consider that N2-limxkj 6=
L, for some (k, j) ∈ PN2(µ, λ). Then, there is ρ > 0 and a positive integer n0 such that

G(xkj − L, λ) ≤ 1 − ρ or B(xkj − L, λ) ≥ ρ, Y (xkj − L, λ) ≥ ρ, for all k, j ≥ n0. Now, let

G(xkj − L, λ) > 1− ρ and B(xkj − L, λ) < ρ, Y (xkj − L, λ) < ρ for all k < n; j < m. Hence,

lim
n,m

1

nm
|{k ≤ n, j ≤ m : G(xkj − L, λ) > 1− ρ and B(xkj − L, λ) < ρ, Y (xkj − L, λ) < ρ}| = 0

Since ρ >
1

µ
, we have that d(PN2(µ, λ)) = 0, which contradicts 2 . Therefore, N2-

limxkj = L.

Now, let’s assume that there exists a subset L2 = {l1, ..., ln, ...; l1, ..., lm, ...} ⊂ N × N such

that d(J2) = 1 and N2-displaystyle limn,m→∞ xlnm = L, this means that there exits n0 ∈ N
such that G(xkj − L, λ) > 1 − µ and B(xkj − L, λ) < µ, Y (xkj − L, λ) < µ, for every µ > 0

and λ > 0. In that case,

RN2(µ, λ) := {k ≤ n, j ≤ m : G(xkj − L, λ) ≤ 1− µ or B(xkj − L, λ) ≥ µ, Y (xkj − L, λ) ≥ µ}
⊆ N× N− {ln+1, ln+2, ....; lm+1, lm+2, ...}
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Therefore, d(RN2(µ, λ)) ≤ 1− 1 = 0. Hence, SN2-limxkj = L.

Now, we show some results that we obtained on double statistical Cauchy sequences in NNS.

Definition 3.12. The double sequence (xkj) is said to be statistically Cauchy with respect

to NN (DSCa-NN) in a NNS V , if there exit N = N(ε) and M = M(ε), for every ε > 0 and

λ > 0 such that

KCε := {k ≤ n, j ≤ m : G(xkj − xNM , λ) ≤ 1− ε or B(xkj − xNM , λ) ≥ ε,
Y (xkj − xNM , λ) ≥ ε}

has DND zero. That is d(KCε) = 0.

Theorem 3.13. If a double sequence (xkj) is DSC-NN in a NNS V . Then, it is DSCa-NN.

Proof : Let (xkj) be DSC-NN. We have that (1 − ε) ◦ (1 − ε) > 1 − µ and ε • ε < µ, for a

given ε > 0, take µ > 0. Then, we have

d(A(ε, µ)) = d({k ≤ n, j ≤ m : G(xkj−L,
λ

2
) ≤ 1−ε or B(xkj−L,

λ

2
) ≥ ε, Y (xkj−L,

λ

2
) ≥ ε})

(3)

thus

d(Ac(ε, λ)) = d({k ≤ n, j ≤ m : G(xkj − L,
λ

2
) > 1− ε and B(xkj − L,

λ

2
) < ε,

Y (xkj − L,
λ

2
) < ε}) = 1

for λ > 0. Let q, w ∈ Ac(ε, λ). Then,

G(xqw − L, λ) > 1− ε and B(xqw − L, λ) < ε, Y (xqw − L, λ) < ε.

Let

B(ε, λ) = {k ≤ n, j ≤ m : G(xkj − xqw, λ) ≤ 1− µ or B(xkj − xqw, λ) ≥ µ,

Y (xkj − xqw, λ) ≥ µ}.

We claim that B(ε, λ) ⊂ A(ε, λ). Let a, s ∈ B(ε, λ)−A(ε, λ). Then,

G(xas − xqw, λ) ≤ 1− µ and G(xas − L,
λ

2
) > 1− µ,

in particular G(Xqw − L, λ) > 1− ε. Then,

1− µ ≥ G(xas − xqw, λ) ≥ G(xas − L,
λ

2
) ◦G(xqw − L,

λ

2
) > (1− ε) ◦ (1− ε) > 1− µ,

this is not possible. Furthermore,

B(xas − xqw, λ) ≥ µ and B(xas − L,
λ

2
) < µ,

in particular B(xqw − L,
λ

2
) < ε. Then,

µ ≤ B(xas − xqw, λ) ≤ B(xas − L,
λ

2
) ◦B(xqw − L,

λ

2
) < ε • ε < µ,
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and, this is not possible. Similarly,

Y (xas − xqw, λ) ≥ µ and Y (xas − L,
λ

2
) < µ,

in particular Y (xqw − L,
λ

2
) < ε. Then,

µ ≤ Y (xas − xqw, λ) ≤ Y (xas − L,
λ

2
) ◦ Y (xqw − L,

λ

2
) < ε • ε < µ,

and, this is not possible. In this case, B(ε, λ) ⊂ A(ε, λ). Then, by 3, d(ε, λ) = 0 and (xkj)

is DSCa-NN.

Definition 3.14. Let V be a NNS. Then, V is called double statistically complete (DSC-NN),

if for every DSCa-NN is DSC-NN.

Theorem 3.15. Every NNS V is (DSC-NN)-Complete.

Proof : Let (xkj) be DSCa-NN but bot DSC-NN. Take µ > 0. We have (1− ε) ◦ (1− ε) >
(1− µ) and ε • ε < µ, for a given ε > 0 and λ > 0, since (xkj) is not DSC-NN,

G(xkj − xNM , λ) ≥ G(xkj − L,
λ

2
) ◦G(xNM − L,

λ

2
) > (1− ε) ◦ (1− ε) > 1− µ,

B(xkj − xNM , λ) ≤ B(xkj − L,
λ

2
) •B(xNM − L,

λ

2
) < ε • ε < µ,

Y (xkj − xNM , λ) ≤ Y (xkj − L,
λ

2
) • Y (xNM − L,

λ

2
) < ε • ε < µ

For

T (ε, λ) = {k ≤ N, j ≤M : Bxkj−xNM (ε) ≤ 1− µ},

d(T c(ε, λ)) = 0 and hence d(T (ε, λ)) = 1, and this is a contradiction, since (xkj) is DSCa-

NN. Therefore, (xkj) must be DSC-NN. In consequence, every NNS is (DSC-NN)-complete.

Lemma 3.16. Let V be a NNS. Then, for any double sequence (xkj) ∈ F , the following

conditions are equivalent:

(1) (xkj) is DSC-NN.

(2) (xkj) is DSCa-NN.

(3) NNS V is (DSC-NN)-complete.

(4) There exits an increasing double index sequence L2 = (jnm) of natural numbers such

that d(L2) = 1 and the double subsequence (xjnm) is a DSCa-NN.

Proof : The proof is followed directly by the Theorems 3.11 , 3.13 and 3.15 .

4. Conclusion

The purpose of this paper was to define and study the notion of double statistical conver-

gence in neutrosophic normed space. We established some of their properties and we gave

some examples associated to this notion. Furthermore, statistical Cauchy double sequence

and statistically double completeness for neutrosophic norm were defined. For future work,
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we suggest studying these notions on spaces of sequences of functions in neutrosophic normed

spaces. Besides, it would be interesting to see whether these properties are satisfied on triple

sequences.
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