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Abstract: A Plithogenic Logical proposition P is a proposition that is characterized by many degrees of 

truth-values with respect to many corresponding attribute-values (or random variables) that 

characterize P. Each degree of truth-value may be classical, fuzzy, intuitionistic fuzzy, neutrosophic, or 

other fuzzy extension type logic. At the end, a cumulative truth of P is computed. 

Keywords: neutrosophic logic, plithogenic logic, plithogenic multi-variate analysis, cumulative truth, 

plithogenic logic application 

1. Introduction

We recall the Plithogenic Logic and explain it in detail by showing a practical application. 

A Plithogenic Logical proposition P is a proposition that is characterized by many degrees of truth-

values with respect to many corresponding attribute-values (or random variables) that characterize P.  

It is a pluri-logic. 

We denote it by P(V1, V2, …, Vn), for n ≥ 1, where V1, V2, …, Vn are the random variables that 

determine, each of them in some degree, the truth-value of P. 

The variables may be independent one by one, or may have some degree of dependence among 

some of them. The degrees of independence and dependence of variables determine the plithogenic 

logic conjunctive operator to be used in the computing of the cumulative truth of P. 

The random variables may be: classical, fuzzy, intuitionistic fuzzy, indeterminate, neutrosophic, 

and other types of fuzzy extensions. 

P(V1) = t1 or the truth-value of the proposition P with respect to the random variable V1. 

P(V2) = t2 or the truth-value of the proposition P with respect to the random variable V2. 

… 

And so on, P(Vn) = tn or the truth-value of the proposition P with respect to the random variable 

Vn. 

The variables V1, V2, …, Vn are described by various types of probability distributions, P(V1), P(V2), 

…, P(Vn). The whole proposition P is, therefore, characterized by n probability distributions, or n sub-

truth-values. By combining all of them, we get a cumulative truth-value of the logical proposition P. 

Plithogenic Logic / Set / Probability and Statistics  were introduced by Smarandache [1] in 2017 

and he further on (2018 -2020) developed them [2-6]. 

They were applied in many fields by various authors [7-27]. 

The Plithogenic MultiVariate Analysis used in the Set theory, Probability, and Statistics is now 

used in Logic, giving birth to the Plithogenic Logic. 

Plithogenic MultiVariate Analysis is a generalization of the classical MultiVariate Analysis. 

2. Classification of the Plithogenic Logics

Depending on the real-values of t1, t2, …, tn, we have: 
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2.1. Plithogenic Boolean (or Classical) Logic 

It occurs when the degrees of truths t1, t2, …, tn ∈ {0,1}, where 0 = false, and 1 = true. 

2.2. Plithogenic Fuzzy Logic 

When the degrees of truths t1, t2, …, tn are included in [0,1], and at least one of them is included in 

(0, 1), in order to distinguish it from the previous Plithogenic Boolean Logic. 

Herein, we have: 

2.2.1. Single-Valued Plithogenic Fuzzy Logic, if the degrees of truths t1, t2, …, tn are single (crisp) 

numbers in [0, 1]. 

2.2.2. Subset-Valued (such as Interval-Valued, Hesitant-Valued, etc.) Plithogenic Fuzzy Logic, when 

the degrees of truths  t1, t2, …, tn are subsets (intervals, hesitant subsets, etc.) of [0, 1]. 

2.3. Plithogenic Intuitionistic Fuzzy Logic 

When P(Vj) = (tj, fj), when tj, fj are included in [0,1], 1 ≤ j ≤ n, where tj is the degree of truth, and fj is 

the degree of falsehood of the proposition P, with respect to the variable Vj. 

In the same way, we have: 

2.3.1. Single-Valued Plithogenic Intuitionistic Fuzzy Logic, when all degrees of truths and 

falsehoods are single-valued (crisp) numbers in [0, 1]. 

2.3.2. Subset-Valued Plithogenic Intuitionistic Fuzzy Logic, when all degrees of truths and 

falsehoods are subset-values included in [0, 1]. 

2.4. Plithogenic Indeterminate Logic 

When the probability distributions of the random variables V1, V2, …, Vn are indeterminate 

(neutrosophic) functions, i.e. functions with vague or unclear arguments and/or values. 

2.5. Plithogenic Neutrosophic Logic 

When P(Vj) = (tj, ij, fj), with tj, ij, fj included in [0,1], 1 ≤ j ≤ n, where tj, ij, fj are the degrees of truth, 

indeterminacy, and falsehood respectively of the proposition P with respect to the random variable Vj. 

Similarly, we have: 

2.5.1. Single-Valued Plithogenic Neutrosophic Logic, when all degrees of truths, indeterminacies, 

and falsehoods are single-valued (crisp) numbers in [0, 1]. 

2.5.2. Subset-Valued Plithogenic Neutrosophic Logic, when all degrees of truths, indeterminacies, 

and falsehoods are subset-values included in [0, 1]. 

2.6. Plithogenic (other fuzzy extensions) Logic 

Where other fuzzy extensions are, as of today: Pythagorean Fuzzy, Picture Fuzzy, Fermatean 

Fuzzy, Spherical Fuzzy, q-Rung Orthopair Fuzzy, Refined Neutrosophic Logic, and refined any other 

fuzzy-extension logic, etc. 

2.7. Plithogenic Hybrid Logic 

When P(V1), P(V2), …, P(Vn) are mixed types of the above probability distributions. 

3. Applications
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3.1. Pluri-Truth Variables 

In our everyday life, we rarely have a “simple truth”, we mostly deal with “complex truths”. 

For example: 

 You like somebody for something, but dislike him for another thing;

 Or, you like somebody for something in a degree, and for another thing in a different

degree;

 Similarly, for hating somebody for something in a degree, and for another thing in a

different degree.

An egalitarian society (or system) does not exist in fact in our real world. It is too rigid. The 

individuals are different, and act differently. 

Therefore, in our world, we deal with a “plitho-logic” (plitho means, in Greek, many, pluri-) or 

“complex logic”. And this is best characterized by the Plithogenic Logic. 

3.2. Types of Random Truth-Variables 

The truth depends on many parameters (random variables), not only on a single one, and at the 

end we need to compute the cumulative truth (truth of all truths). 

The random variables may be classical (with crisp/exact values), but often in our world they are 

vague, unclear, only partially known, with indeterminate data. 

3.3. Weights of the Truth-Variables 

Some truth may weight more than another truth. 

For example, you may like somebody for something more than you dislike him/her for another 

thing. 

Or the opposite, you may dislike somebody for something more than you like him/her for 

another thing. 

3.4. Degrees of Subjectivity of the Truth Variables 

In the soft sciences, such as: sociology, political science, psychology, linguistics, etc., or in the 

culture, literature, art, theatre, dance, there exists a significant degree of subjectivity in measuring the 

truth. It is not beautiful what is beautiful, but it is beautiful what I like myself, says a Romanian proverb. 

4. Generalizations

Plithogenic Logic is a generalization of all previous logics: Boolean, Fuzzy, Intuitionistic Fuzzy, 

Neutrosophic Logic, and all other fuzzy-extension logics. 

It is a MultiVariate Logic, whose truth variables may be in any type of the above logics. 

5. Example

Let us consider an ordinary proposition P, defined as below: 

P = John loves his city 

and let’s calculate its complex truth-value. 

Of course, lots of attributes (truth-variables) may characterize a city (some of them unknown, 

other partially known, or approximately known). A complete spectrum of attributes to study is 

unreachable. 

For the sake of simplicity, we consider the below five propositions as 100% independent two by 

two. 

In this example we only chose a few variables Vj, for 1 ≤ j ≤ 5: 

V1 : low / high percentage of COVID-19 virus infected inhabitants; 

V2 : nonviolent / violent; 

V3 : crowded / uncrowded; 
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V4 : clean / dirty; 

V5 : quiet / noisy, 

A more accurate representation of the proposition P is P(V1, V2, V3, V4, V5). 

With respect to each variable Vj, the P(Vj) included in [0, 1] has, in general, different truth-values, 

for 1 ≤ j ≤ 5. 

Suppose John prefer his city to have (or to be): low percentage of COVID-19 infected inhabitants, 

non-violent, uncrowded, clean, and quiet. 

P(Vj) is the degree in which John loves the city with respect to the way the variable Vj 

characterizes it. 

5.1. Plithogenic Boolean (Classical) Logic 

P(V1) = 1 

P(V2) = 0 

P(V3) = 1 

P(V4) = 0 

P(V5) = 1 

Therefore P(V1, V2, V3, V4, V5) = (1, 0, 1, 0, 1), or John loves his city in the following ways: 

 in a degree of 100% with respect to variable V1;

 in a degree of 0% with respect to variable V2;

 in a degree of 100% with respect to variable V3;

 in a degree of 0% with respect to variable V4;

 in a degree of 100% with respect to variable V5.

The cumulative truth-value will be, in the classical way, the classical conjunction (∧𝑐), where c 

stands for classical: 

1 ∧𝑐 0 ∧𝑐 1 ∧𝑐 0 ∧𝑐 1 = 0, 

or John likes his city in a cumulative classical degree of 0%! 

The classical logic is rough, therefore more refined logics give a better accuracy, as follows. 

5.2. Plithogenic Fuzzy Logic 

The 100% or 0% truth-variables may not exactly fit John’s preferences, but they may be close. 

For example: 

P(V1, V2, V3, V4, V5) = (0.95, 0.15, 0.80, 0.25, 0.85), 

which means that John loves his city: 

 in a degree of 95% with respect to variable V1;

 in a degree of 15% with respect to variable V2;

 in a degree of 80% with respect to variable V3;

 in a degree of 25% with respect to variable V4;

 in a degree of 85% with respect to variable V5.

Using the fuzzy conjunction (∧𝐹) min operator, we get: 

0.95 ∧𝐹 0.15 ∧𝐹 0.80 ∧𝐹 0.25 ∧𝐹 0.85 = min{0.95, 0.15, 0.80, 0.25, 0.85} = 0.15 

or John likes his city in a cumulative fuzzy degree of 15%. 

5.3. Plithogenic Intuitionistic Fuzzy Logic 

P(V1, V2, V3, V4, V5) = ( (0.80, 0.20), (0.15, 0.70), (0.92, 0.05), (0.10, 0.75), (0.83, 0.07) ), 

which means that John loves his city in a degree of 80%, and dislikes it a degree of 20%, and so 

on with respect to the other variables. 

Using the intuitionistic fuzzy conjunction ( ∧𝐼𝐹 ) min/max operator in order to get the 

cummulative truth-value, one has: 

(0.80, 0.20) ∧𝐼𝐹 (0.15, 0.70) ∧𝐼𝐹 (0.92, 0.05) ∧𝐼𝐹 (0.10, 0.75) ∧𝐼𝐹 (0.83, 0.07) = 

= (min{0.80, 0.15, 0.92, 0.10, 0.83}, max{0.20, 0.70, 0.05, 0.75, 0.07}) = (0.10, 0.75), 
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or John likes and dislikes his city in a cumulative intuitionistic fuzzy degree of 10%, and 

respectively 75%. 

5.4. Plithogenic Indeterminate Logic 

P(V1, V2, V3, V4, V5) = (0.80 or 0.90, [0.10, 0.15], [0.60, unknown], > 0.13, 0.79), 

which means that John loves his city:  

 in a degree of 80% or 90% (he is not sure about) with respect to variable V1;

 in a degree between 10% or 15% with respect to variable V2;

 in a degree of 60% or greater with respect to variable V3;

 in a degree greater than 13% ( i.e. in the interval (0.13, 1] ) with respect to variable V4;

 in a degree of 79% with respect to variable V5.

Therefore, the variables provide indeterminate (unclear, vague) values. 

Applying the indeterminate conjunction (∧𝐼) min operator, we get: 

min{(0.80 or 0.90), [0.10, 0.15], [0.60, unknown), (0.13, 1], 0.79}= 0.10. 

5.5. Plithogenic Neutrosophic Logic 

P(V1, V2, V3, V4, V5) = ( (0.86, 0.12, 0.54), (0.18, 0.44, 0.72), (0.90, 0.05, 0.05), (0.09, 0.14, 0.82), 

(0.82, 0.09, 0.14) ), 

which means that John loves the city in a degree of 86%, the degree of indeterminate love is 12%, 

and the degree of dislike is 54% with respect to the variable V1, and similarly with respect to the other 

variables. 

Again, using the neutrosophic conjunction (∧𝑁) min/max/max operator in order to obtain the 

cumulative truth-value, one gets: 

(0.86, 0.12, 0.54) ∧𝑁 (0.18, 0.44, 0.72) ∧𝑁 (0.90, 0.05, 0.05) ∧𝑁 (0.09, 0.14, 0.82) 

∧𝑁 (0.82, 0.09, 0.14) = (min{0.86, 0.18, 0.90, 0.09, 0.82}, max{0.12, 0.44, 0.05, 0.14, 0.09}, 

max{0.54, 0.72, 0.05, 0.82, 0.14}) = (0.09, 0.44, 0.82), 

or John loves, is not sure (indeterminate), and dislikes his city with a cumulative neutrosophic 

degree of 9%, 44%, and 82% respectively. 

5. Future Research

To construct the plithogenic aggregation operators (such as: intersection, union, negation, 

implication, etc.) of the variables V1, V2, …, Vn all together (cumulative aggregation), in the cases 

when variables Vi and Vj have some degree of dependence dij  and degree of independence 1- dij, with 

dij ∈ [0, 1], for all i, j ∈ {1, 2, …, n}, and n ≥2. 

6. Conclusions

We showed in this paper that the Plithogenic Logic is the largest possible logic of today. Since 

we live in a world full of indeterminacy and conflicting data, we have to deal, instead of a simple truth 

with a complex truth, where the last one is a cumulative truth resulted from the plithogenic 

aggregation of many truth-value random variables that characterize an item (or event). 

Funding: This research received no external funding. 
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Abstract. Medical diagnosis is a disease identification process that matches symptoms with diseases based

on the symptoms of target patient. In this process, it is necessary to establish a similarity relation between

symptoms and diseases so as to determine the correct diagnosis. Similarity measure theory is a beneficial

way that is used to model this relationship mathematically under vary environment. In the literature, various

similarity measures have been constructed in single-valued neutrosophic set setting. However, these similarity

measures ignores the interaction between symptoms. To overcome this deficiency, we propose four new similarity

measures by using the Choquet integral under single-valued neutrosophic environment that take into account

both period and the interaction between symptoms. Moreover, we take advantage of the concept of 2-additivity

to reduce the computational effort to obtain multi-period medical diagnosis results. We implement them to

a multi-period medical diagnosis example existing in the literature. We also compare our results with some

previous ones and we analyze the consistency of the results via some statistical methods.

Keywords: Single-valued neutrosophic set; similarity measure; Choquet integral; medical diagnosis

—————————————————————————————————————————-

1. Introduction

Neutrosophic set theory was proposed by Smarandache [18] from a philosophical perspec-

tive as a generalisation of the concept of fuzzy set (FS) and intuitionistic fuzzy set (IFS). A

neutrosophic set (NS) is characterized by a truth membership function T , an indeterminacy

membership function I and a falsity membership function F and each membership degree is a

real standard or non-standard subset of the non-standard unit interval ]−0, 1+[. Besides, there
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is no restraint on the sum of the membership functions. The concept has various generaliza-

tions such as single-valued neutrosophic set (SVNS) [24], interval neutrosophic set (INS) [25],

neutrosophic cubic set [9] and single-valued neutrosophic linguistic set [30].

In this paper, we focus on two multi-period medical diagnosis (MPMD) applications in

SVNS setting. MPMD is a process of decision making on a disease which evaluates the effect

of symptoms on the target patients according to several different periods. The most important

factor that discriminates this process from other medical diagnosis processes is the presentation

of the solution algorithm by paying attention to the period variable. The symptoms of the

target patients or the effects of the symptoms on the target patients may change, as period

progresses. A medical diagnosis includes a lot of incoherent and incomplete data because of the

patient’s imprecise data and the indeterminate information of the symptoms of the diseases.

To solve the medical diagnosis problems in case of uncertainty, some solution methods have

been proposed in the literature [1,4,11,15,17,26]. One of these methods is the determination

of the disease of the target patient with the help of the similarity measures.

A similarity measure plays an important role to specify the degree of similarity between

two sets such as FSs, IFSs and NSs. Similarity measures are frequently used to figure out

medical diagnosis problems under neutrosophic environment [3, 28, 29]. The target patients

and possible diseases are represented by SVNSs according to symptoms and the most accurate

diagnosis is obtained by establishing a similarity between the target patients and the symptoms

of the possible diseases. In a MPMD problem, period variable is also added to the problem.

For example, Ye and Fu [27] proposed tangent similarity measures for SVNSs and apply them

to a MPMD problem. Later, Chou et al. [7] introduced new similarity measures for SVNSs

and applied them to the same MPMD problem. However, these similarity measures ignore the

interaction between symptoms. A symptom may occur as a result of another symptom. In

such a case, an interaction is valid between these symptoms. To overcome this deficiency, we

propose new similarity measures for SVNSs based on the Choquet integral that considers the

interaction between symptoms.

The concept of Choquet integral [6] was presented by Gustave Choquet in 1953 as a non-

linear continuous aggregation operator. A Choquet integral is characterized with a fuzzy

measure [19] which is able to model interaction between elements of a set or between criteria

in real life problems. Actually, the concept is an enlargement of the Lebesgue integral and

a non-additive extension of the weighted arithmetic mean. Although, a fuzzy integral has

more complicated structure due to the lack of additivity in contrast to the additive integrals

such as Lebesgue integral, use of a fuzzy measure and a fuzzy integral is more effective in the

aggregation. In [16], it is shown that the Choquet integral performs substantially more orders

than the weighted arithmetic mean and that the difference gets larger when the number of the
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elements of the set gets larger. Moreover, it has been proved in [12] that when the number

of the element of the finite set increases, the probability of getting more optimal ranking in

the Choquet integral increases compared to the weighted arithmetic mean. Actually, fuzzy

measures and fuzzy integrals let us to take the preferences into account that are not contained

in the weights in the weighted arithmetic mean [23]. The notion of fuzzy measure is defined

on the power set. As a result, the process of fuzzy measure identification is complicated for

a set with a large number of elements due to the exponential increase in the number of the

subsets. To facilitate this situation, researchers have proposed various methods and many

authors studied various fuzzy measure identification methods (see, e.g., [10, 20, 21]). One of

these methods is the concept of k-additive fuzzy measure proposed by Grabisch [8]. Whenever

a fuzzy measure is k-additive, the notion of Choquet integral is expressed with the help of

Möbius transform of the fuzzy measure. Moreover, the Möbius transform of a fuzzy measure

corresponds to the correlation coefficients that indicate the direction and strength of the linear

relationship between two or more random variables in probability theory and statistics. Thus,

thanks to the k-additivity, the effort of fuzzy measure calculation can be reduced.

In this paper, we focus on constructing four new similarity measures based on the Choquet

integral with respect to a 2-additive fuzzy measure under single-valued neutrosophic environ-

ment. Then, we give a MPMD method. We apply this method to a MPMD problem to

demonstrate the effectiveness of the proposed method. The remainder of this paper is set out

as follows. In Section 2, we recall the concept of SVNS. Then, we recall the MPMD methods

of Ye and Fu [27] and Chou et al. [7]. In Section 3, the concepts of fuzzy measure, Möbius

transform of a fuzzy measure and the concept of 2-additive fuzzy measure, the concept of

Choquet integral with respect to a 2- additive fuzzy measure are recalled. In Section 4, we

propose four similarity measures based on Choquet integral with respect to 2- additive fuzzy

measure for SVNSs. Then, we propose the promised MPMD method. In Section 5, to indicate

the effectiveness of the proposed method, we apply it to a MPMD problem from the literature.

Then, the results of the problem are compared with some previous ones. Moreover, we give a

consistency analysis of the results with Spearman’s rank correlation coefficients. In Section 6,

we give a conclusion.

2. The Concept of SVNS and Some Existing MPMD Methods

The concept of NS is a helpful mathematical tool that models uncertainty and inconsistent

data. However, the set theoretical operators such as intersection, union and inclusion cannot be

defined on the non-standard unit interval. Therefore, it is not easy to perform the applications

of NSs. To come through this hassle, Wang et al. [24] presented the notion of SVNS.
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Definition 2.1. [24] Let X be a universal set. A SVNS Ã1 of X is given with

Ã1 =
{〈
ξ, TÃ1

(ξ), IÃ1
(ξ), FÃ1

(ξ)
〉

: ξ ∈ X
}

(1)

where TÃ1
, IÃ1

and FÃ1
are functions from X to closed interval [0, 1]. The values TÃ1

(ξ), IÃ1
(ξ)

and FÃ1
(ξ) indicate the truth , the indeterminacy and the falsity membership degrees of the

element ξ to the set Ã1, respectively. Clearly, the sum of the three values satisfies the condition

0 ≤ TÃ1
(ξ) + IÃ1

(ξ) + FÃ1
(ξ) ≤ 3. Moreover, the triplet

〈
TÃ1

(ξ), IÃ1
(ξ), FÃ1

(ξ)
〉

is called a

single-valued neutrosophic value (SVNV).

Ye and Fu [27] proposed similarity measures T1 and T2 between SVNSs based on arithmetic

mean and applied the similarity measure T2 to a MPMD problem. Let X = {ξ1, ..., ξm} be

a set of symptoms, let T = {t1, ..., tq} be a set of periods and let D = {D1, ..., Dn} be a set

of diseases. For a patient Ps with assorted symptoms, Cj(tk) denotes the SVNV between a

patient and jth symptom ξj for j = 1, ...,m in the kth period tk for k = 1, ..., q (see, Table 2

in [27]). It is represented as Cj(tk) = 〈Tj(tk), Ij(tk), Fj(tk)〉 in the form of a SVNV. Apparently,

if q = 1, the MPMD problem is generally a single period medical diagnosis problem. Moreover,

Cij denotes the SVNV between the jth symptom ξj for j = 1, ...,m and the ith noted disease

Di for i = 1, ..., n (see, Table 3 in [27]). It is represented as Cij = 〈Tij , Iij , Fij〉 in the form of

a SVNV.

Let weights of the symptoms be 0 ≤ w1, ..., wm ≤ 1 with
m∑
j=1

wi = 1 and the weights of the

periods be 0 ≤ ω(t1), ..., ω(tq) ≤ 1 with

q∑
k=1

ω(tk) = 1. The MPMD method is constructed

as follows: Firstly, the similarity measure between a patient Ps and the noted disease Di for

i = 1, ..., n in each period tk for k = 1, ..., q is calculated with the help of the weighted version

of similarity T2 with the following:

Twi(Ps, tk) := 1−
m∑
j=1

wj tan
[ π

12
(|Tj(tk)− Tij |+ |Ij(tk)− Iij |+ |Fj(tk)− Fij |)

]
. (2)

Then, the weighted aggregation value M(Ps, Di) for i = 1, ..., n is obtained with the following:

M(Ps, Di) :=

q∑
k=1

ω(tk)Twi(Ps, tk). (3)

Finally, the weighted values with respect to Di for i = 1, ..., n are put in order and the highest

value is determined as the most appropriate choice.

Chou et al. [7] constructed a MPMD method for SVNSs by motivating from Ye and Fu’s

working [27]. They proposed two weighted similarity measures Mw1 and Mw2. Then, this two
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similarity measures are used in the same MPMD with the help of the same algorithm of Ye

and Fu [27].

In this study, our aims are to express new similarity measures, motivating by [7] and [27]

with the help of the 2-additive Choquet integral that pays attention to the interaction between

the symptoms and to propose a MPMD method.

3. Some Basic Concepts of Fuzzy Measure Theory and Choquet Integral

The basis of Choquet integral is inherently fuzzy measure. Therefore, we recall the concept of

fuzzy measure.

Definition 3.1. Let X be a non-emty set and let P (X) be the power set of X. If

i) σ(∅) = 0,

ii) σ(X) = 1,

iii) A1 ⊆ A2 implies σ(A1) ≤ σ(A2) (monotonicity),

then the set function σ : P (X)→ [0, 1] is called a fuzzy measure on X [6].

There exist 2n =

n∑
k=0

(
n

k

)
coefficients to be determined on the power set of a set with n

elements. For this reason, the process of determining a fuzzy measure over a set with excess

number of elements is quite difficult. Thus, Grabisch introduced a crucial kind of fuzzy measure

which is named k-additive fuzzy measure to facilitate the process of determining a fuzzy

measure on set with large elements [8]. For instance, if k = 2, it is enough to determine the

fuzzy measure of n(n− 1)/2 subsets so as to specify the whole fuzzy measure (see, [8]).

Definition 3.2. The Möbius transform of a set function σ on X is a set function m : P (X)→
R defined by

m(A1) :=
∑

A2⊂A1

(−1)|A1\A2|σ(A2). (4)

A fuzzy measure σ is expressed as:

σ(A1) =
∑

A2⊂A1

m(A2) (5)

for all A1 ∈ P (X) [5] whenever its Möbius transform m is given. As a result, the Möbius

transform over singletons is equal to the fuzzy measure itself.

Definition 3.3. Let X be a finite set and let σ be a fuzzy measure on X. σ is said to be

2-additive if its Möbius transform m satisfies m(A1) = 0 for all A1 ⊂ X such that |A1| > 2

and there exist at least one subset A1 ⊂ X with |A1| = 2 such that m(A1) 6= 0 [8] .
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The following important theorem gives some properties of the Möbius transform corresponding

to a fuzzy measure and they can be used in the fuzzy measure identification process.

Theorem 3.4. [5] Let X be a finite set and let σ : P (X) → R be a function. σ is a fuzzy

measure on X if and only if its Möbius transform m satisfies

i) m(∅) = 0,

ii)
∑
A1⊂X

m(A1) = 1,

iii)
∑

ξ∈A2⊂A1

m(A2) ≥ 0, for all A1 ⊂ X and for all ξ ∈ A1.

Another crucial notion that is related to the fuzzy measure theory is the concept of interaction

index (see, e.g., [8]). The following theorem gives the relationship between the interaction

index and the Möbius transform of a fuzzy measure.

Theorem 3.5. [8] Let X be a finite set and let m be the Möbius transform of a fuzzy measure

on X. The interaction index I satisfies

I(A1) =

|X\A1|∑
k=0

1

k + 1

∑
A2⊂X\A1

|A2|=k

m(A1 ∪A2) (6)

for any A1 ⊂ X.

From Theorem 3.5, we have

I(A1) =

{
m(A1), |A1| = 2

0, |A1| > 2
(7)

whenever the fuzzy measure is 2-additive [8]. Interaction between at most two criteria can

exist whenever the fuzzy measure is 2-additive. That is, there is no interaction between more

than two criteria when σ is 2-additive.

Let X = {ξ1, ..., ξn} be a finite set and let Iij := I( {ξi, ξj} ).

(1) If Iij > 0, then there is a positive interaction between the criteria ξi and ξj , and when

they come together, their severity increases.

(2) If Iij < 0, then there is negative interaction between the criteria ξi and ξj , and one of

the criteria is more redundant. When these two criteria come together, their severity

decreases.

(3) If Iij = 0, then there is no interaction between the criteria ξi and ξj and they are

independent from each other.

Definition 3.6. Let X = {ξ1, ..., ξn} be a finite set and let σ be a fuzzy measure on X. The

Choquet integral [6] of a function f : X → [0, 1] with respect to σ is defined by
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(C)

∫
X

f dσ :=

n∑
k=1

(
f(ξ(k))− f(ξ(k−1))

)
σ(E(k)), (8)

where the sequence
{
ξ(k)
}n
k=0

is the permutation of the sequence {ξk}nk=0 such that 0 :=

f(ξ(0)) ≤ f(ξ(1)) ≤ f(ξ(2)) ≤ ... ≤ f(ξ(n)) and E(k) :=
{
ξ(k), ξ(k+1), ..., ξ(n)

}
.

If the fuzzy measure is 2-additive Definition 3.6 is equivalent to following expressions:

(C2−add.)

∫
X

f dσ =:
∑
ξi∈X

mi f(ξi) +
∑

{ξi,ξj}⊆X

mij min(f(ξi), f(ξj)) (9)

where m is the Möbius transform of a 2-additive fuzzy measure σ on X and mi := m( {ξi} ),

mij := m( {ξi, ξj} ) [13,14].

From (7) and (9), we see that interaction indices are enough to calculate the Choquet

integral with respect to a 2-additive fuzzy measure. Therefore, in Section 5 we use interaction

indices.

4. 2-ADDITIVE CHOQUET SIMILARITY MEASURES FOR SVNSs

In this section, we propose four new similarity measures for SVNSs by using a 2-additive

Choquet integral and we give some propositions associated with these similarity measures.

Moreover, the proposed similarity measures are integrated into a MPMD method with the

help of the Choquet integral. Motivating by [7] and [27], now we define the following similarity

measures.

Definition 4.1. Let X = {ξ1, ..., ξn} be a finite set, let Ã1 and Ã2 be two SVNSs of X and

let σ be a 2-additive fuzzy measure on X. Two 2-additive Choquet similarity measures are

given with

W
(C2−add.,σ)
T1

(Ã1, Ã2) := 1− (C2−add.)

∫
X

f
(1)

Ã1,Ã2
dσ (10)

W
(C2−add.,σ)
T2

(Ã1, Ã2) := 1− (C2−add.)

∫
X

f
(2)

Ã1,Ã2
dσ (11)

where

f
(1)

Ã1,Ã2
(ξj) := max

(∣∣∣TÃ1
(ξj)− TÃ2

(ξj)
∣∣∣ , ∣∣∣IÃ1

(ξj)− IÃ2
(ξj)

∣∣∣ , ∣∣∣FÃ1
(ξj)− FÃ2

(ξj)
∣∣∣) , (12)

f
(2)

Ã1,Ã2
(ξj) :=

∣∣∣TÃ1
(ξj)− TÃ2

(ξj)
∣∣∣+
∣∣∣IÃ1

(ξj)− IÃ2
(ξj)

∣∣∣+
∣∣∣FÃ1

(ξj)− FÃ2
(ξj)

∣∣∣
3

, (13)
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for j = 1, ..., n.

Definition 4.2. Let X = {ξ1, ..., ξn} be a finite set, let Ã1 and Ã2 be two SVNSs of X and

let σ be a 2-additive fuzzy measure on X. Two 2-additive Choquet similarity measures are

given with

W
(C2−add.,σ)
T3

(Ã1, Ã2) := 1− (C2−add.)

∫
X

f
(3)

Ã1,Ã2
dσ (14)

W
(C2−add.,σ)
T4

(Ã1, Ã2) := 1− (C2−add.)

∫
X

f
(4)

Ã1,Ã2
dσ (15)

where

f
(3)

Ã1,Ã2
(ξj) := tan

[π
4

max
(∣∣∣TÃ1

(ξj)− TÃ2
(ξj)

∣∣∣ , ∣∣∣IÃ1
(ξj)− IÃ2

(ξj)
∣∣∣ , ∣∣∣FÃ1

(ξj)− FÃ2
(ξj)

∣∣∣)] ,
(16)

and

f
(4)

Ã1,Ã2
(ξj) := tan

[ π
12

(∣∣∣TÃ1
(ξj)− TÃ2

(ξj)
∣∣∣+
∣∣∣IÃ1

(ξj)− IÃ2
(ξj)

∣∣∣+
∣∣∣FÃ1

(ξj)− FÃ2
(ξj)

∣∣∣)] ,
(17)

for j = 1, ..., n.

Note here that, if we consider additive measures, then we obtain the similarity measures

of [7] and [27].

Proposition 4.3. Let X be a finite set and let Ã1 and Ã2 be two SVNSs in X. The 2-additive

Choquet similarity measure W
(C2−add.,σ)
Ti

for i = 1, 2, 3, 4 satisfies the following properties:

(P1) 0 ≤W (C2−add.,σ)
Ti

(Ã1, Ã2) ≤ 1;

(P2) W
(C2−add.,σ)
Ti

(Ã1, Ã2) = W
(C2−add.,σ)
Ti

(Ã2, Ã1);

(P3) Ã1 = Ã2 if and only if W
(C2−add.,σ)
Ti

(Ã1, Ã2) = 1,

(P4) If Ã3 is a SVNS on X and Ã1 ⊆ Ã2 ⊆ Ã3, then

W
(C2−add.,σ)
Ti

(Ã1, Ã3) ≤W
(C2−add.,σ)
Ti

(Ã1, Ã2)

and

W
(C2−add.,σ)
Ti

(Ã1, Ã3) ≤W
(C2−add.,σ)
Ti

(Ã2, Ã3).
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Proof. (P1) Since T, I, F : X → [0, 1], we have
∣∣∣TÃ1

(ξj)− TÃ2
(ξj)

∣∣∣ ,∣∣∣IÃ1
(ξj)− IÃ2

(ξj)
∣∣∣ , ∣∣∣FÃ1

(ξj)− FÃ2
(ξj)

∣∣∣ ∈ [0, 1]. So, we obtain f
(1)

Ã1,Ã2
(ξj), f

(2)

Ã1,Ã2
(ξj) ∈ [0, 1],

for j = 1, ..., n. Moreover, since the value of the tangent function is within [0, 1] when

ξ ∈ [0, π/4], we obtain f
(3)

Ã1,Ã2
(ξj), f

(4)

Ã1,Ã2
(ξj) ∈ [0, 1] for j = 1, ..., n. As the Choquet in-

tegral is monotone, we have 0 ≤W (C2−add.,σ)
Ti

(Ã1, Ã2) ≤ 1, for i = 1, 2, 3, 4.

(P2) Since f
(k)

Ã1,Ã2
(ξj) = f

(k)

Ã2,Ã1
(ξj) for any j = 1, ..., n and k = 1, 2, 3, 4, the proof is trivial.

(P3) If Ã1 = Ã2, then TÃ1
(ξj) = TÃ2

(ξj), IÃ1
(ξj) = IÃ2

(ξj) and FÃ1
(ξj) = FÃ2

(ξj)

for j = 1, ..., n. Then, we have f
(k)

Ã1,Ã2
(ξj) = 0 for k = 1, 2, 3, 4 . Therefore,

we obtain that W
(C2−add.,σ)
Ti

(Ã1, Ã2) = 1 for i = 1, 2, 3, 4. Conversely, assume that

W
(C2−add.,σ)
Ti

(Ã1, Ã2) = 1, for i = 1, 2, 3, 4. This implies f
(k)
A,B(ξj) = 0, for k = 1, 2, 3, 4. Thus,

we obtain
∣∣∣TÃ1

(ξi)− TÃ2
(ξi)
∣∣∣ = 0,

∣∣∣IÃ1
(ξi)− IÃ2

(ξi)
∣∣∣ = 0 and

∣∣∣FÃ1
(ξi)− FÃ2

(ξi)
∣∣∣ = 0, and

tan 0 = 0. Therefore, we have TÃ1
(ξj) = TÃ2

(ξj), IÃ1
(ξj) = IÃ2

(ξj) and FÃ1
(ξj) = FÃ2

(ξj), for

j = 1, ..., n. Hence, Ã1 = Ã2.

(P4) If Ã1 ⊆ Ã2 ⊆ Ã3 then TÃ1
(ξj) ≤ TÃ2

(ξj) ≤ TÃ3
(ξj), IÃ1

(ξj) ≥ IÃ2
(ξj) ≥ IÃ3

(ξj) and

FÃ1
(ξj) ≥ FÃ2

(ξj) ≥ FÃ3
(ξi), for all j = 1, ..., n. Thus, we have

∣∣∣TÃ1
(ξj)− TÃ2

(ξj)
∣∣∣ ≤ ∣∣∣TÃ1

(ξj)− TÃ3
(ξj)

∣∣∣ , ∣∣∣TÃ2
(ξj)− TÃ3

(ξj)
∣∣∣ ≤ ∣∣∣TÃ1

(ξj)− TÃ3
(ξj)

∣∣∣ ,∣∣∣IÃ1
(ξj)− IÃ2

(ξj)
∣∣∣ ≤ ∣∣∣IÃ1

(ξj)− IÃ3
(ξj)

∣∣∣ , ∣∣∣IÃ2
(ξj)− IÃ3

(ξj)
∣∣∣ ≤ ∣∣∣IÃ1

(ξj)− IÃ3
(ξj)

∣∣∣ ,∣∣∣FÃ1
(ξj)− FÃ2

(ξj)
∣∣∣ ≤ ∣∣∣FÃ1

(ξj)− FÃ3
(ξj)

∣∣∣ , ∣∣∣FÃ2
(ξj)− FÃ3

(ξj)
∣∣∣ ≤ ∣∣∣FÃ1

(ξj)− FÃ3
(ξj)

∣∣∣ .
So, we obtain f

(k)

Ã1,Ã2
(ξj) ≤ f (k)Ã1,Ã3

(ξj) and f
(k)

Ã2,Ã3
(ξj) ≤ f (k)Ã1,Ã3

(ξj), for k = 1, 2. Moreover, since

the tangent function is increasing within the interval [0, π/4], we obtain f
(k)

Ã1,Ã2
(ξj) ≤ f (k)Ã1,Ã3

(ξj)

and f
(k)

Ã1,Ã2
(ξi) ≤ f

(k)

Ã1,Ã3
(ξi), for k = 3, 4. Therefore, from monotonicity of the Choquet

integral and definition of proposed similarity measures, we have W
(C2−add.,σ)
Ti

(Ã1, Ã3) ≤
W

(C2−add.,σ)
Ti

(Ã1, Ã2) and W
(C2−add.,σ)
Ti

(Ã1, Ã3) ≤ W
(C2−add.,σ)
Ti

(Ã2, Ã3), for i = 1, 2, 3, 4. Hence,

the proof is completed.

Remark 4.4. In the proof of Proposition 4.3 we assume that 0 < σ(A) < 1 where A 6= ∅, X,

which is consistent with the nature of the decision making.

Note that, the proposed similarity measures take into account the interaction between symp-

toms thanks to Choquet integral. If we consider an additive measure instead of a fuzzy mea-

sure, then the similarity measures proposed in Definition 4.1 and 4.2 reduced to the weighted

similarity measures in [7, 27].

Now, we construct a MPMD method by using proposed 2-additive Choquet similarity mea-

sures.
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Step1: Let X = {ξ1, ..., ξm} be a set of symptoms. In this step, we will use the Möbius

transform to construct a 2-additive fuzzy measure. We assume that the weights of the criteria

are given and each weight is considered as the fuzzy measure of the corresponding singleton

(criteria). The fuzzy measure σ will be constructed with the help of interaction indices (see

Subsection 5.1).

Step2: Let T = {t1, ..., tq} be a set of periods and let D = {D1, ..., Dn} be the set of diseases.

For a patient Ps with various symptoms, SVNV between a patient and jth symptom ξj for

j = 1, ...,m in the kth period tk for k = 1, ..., q is indicated with
〈
T
(tk)
s (ξj), I

(tk)
s (ξj), F

(tk)
s (ξj)

〉
.

Moreover, the SVNV between the jth symptom ξj for j = 1, ...,m and the ith noted disease

Di for i = 1, ..., n is indicated 〈TDi(ξj), IDi(ξj), FDi(ξj)〉. The similarity measures between

a patient Ps and the noted disease Di for i = 1, ..., n in each period tk for k = 1, ..., q are

calculated by using following formulas:

W
(C2−add.,σ)
Tl

(tk) := 1− (C2−add.)

∫
X

f
(l)
Ps,Di

(ξj) dσ (18)

for l = 1, 2, 3, 4 where

f
(1)
Ps,Di

(ξj) := max
(∣∣∣T (tk)

s (ξj)− TDi(ξj)
∣∣∣ , ∣∣∣I(tk)s (ξj)− IDi(ξj)

∣∣∣ , ∣∣∣F (tk)
s (ξj)− FDi(ξj)

∣∣∣) , (19)

f
(2)
Ps,Di

(ξj) :=

∣∣∣T (tk)
s (ξj)− TDi(ξj)

∣∣∣+
∣∣∣I(tk)s (ξj)− IDi(ξj)

∣∣∣+
∣∣∣F (tk)
s (ξj)− FDi(ξj)

∣∣∣
3

, (20)

f
(3)
Ps,Di

(ξj) := tan
[π

4
max

(∣∣∣T (tk)
s (ξj)− TDi(ξj)

∣∣∣ , ∣∣∣I(tk)s (ξj)− IDi(ξj)
∣∣∣ , ∣∣∣F (tk)

s (ξj)− FDi(ξj)
∣∣∣)] ,
(21)

f (4)(ξj) := tan
[ π

12

(∣∣∣T (tk)
s (ξj)− TDi(ξj)

∣∣∣+
∣∣∣I(tk)s (ξj)− IDi(ξj)

∣∣∣+
∣∣∣F (tk)
s (ξj)− FDi(ξj)

∣∣∣)] .
(22)

Step3: We assume that a fuzzy measure η is given on the set of periods. We aggregate

similarities obtained in Step 2 with respect to periods by using Choquet integral. We obtain

the aggregated value M
(C,η)
fl

(Ps, Di) for each l = 1, 2, 3, 4 by the following formula:

M
(C,η)
fl

(Ps, Di) := (C)

∫
X

W
(C2−add.,σ)
Tl

dη :=

q∑
k=1

(
W

(C2−add.,σ)
Tl

(t(k))−W
(C2−add.,σ)
Tl

(t(k−1))
)
η(E(k)),

(23)
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where the sequence
{
t(k)
}q
k=0

is a new permutation of the sequence {tk}qk=0 such that

0 := W
(C2−add.,σ)
Tl

(t(0)) ≤ W
(C2−add.,σ)
Tl

(t(1)) ≤ ... ≤ W
(C2−add.,σ)
Tl

(t(q)) and E(k) :={
t(k), t(k+1), ..., t(q)

}
.

Step4: We rank all the weighted measures of M
(C,η)
fl

(Ps, Di) for i = 1, ..., n in a descending

order and give a proper diagnosis relative to the maximum weighted measure value.

5. MULTI-PERIOD MEDICAL DIAGNOSIS PROBLEM

In this section, we implement the proposed method to a MPMD problem from the literature.

Then we compare our results with those obtained by Chou et al. [7] and Ye and Fu [27].

5.1. Illustrative Example

Example 5.1. Let us consider the set of symptoms and diagnoses as follows, respectively:

S =
{
ξ1(Temperature), ξ2(Headache), ξ3(Stomach pain), ξ4(Cough), ξ5(Chest pain)

}
D =

{
D1(Viral fever), D2(Malaria), D3(Typhoid), D4(Gastritis), D5(Stenocardia)

}
.

Each diagnosis Di, i = 1, 2, 3, 4, 5, is given as a SVNSs (see, Table 4 of [27]) and the patients

P1, P2, P3 and P4 that have all the symptoms are represented with respect to t1, t2 and t3

periods as SVNV (see, Table 5 of [27]).

So as to use the proposed Choquet integral based method, let us construct a 2-additive fuzzy

measure σ. For this purpose, the weight of all criteria is taken equally. We use the Möbius

transform to determine the fuzzy measures of the remaining two element subsets. We also

know that whenever measure is 2-additive, the Möbius transform of subsets of two elements is

equal to the interaction index (see Equation 7). As the sum of the Möbius transforms (fuzzy

measures) of singletons is equal to 1 we have from (ii) of Theorem 3.4 that the sum of Möbius

transforms of subsets of two elements should be equal to zero.

Now considering interaction of the symptoms we assign Möbius transforms (interaction

indices) to the sets of two elements (see, Table 1).

Table 1. Möbius Representation of σ

m({ξ1, ξ2}) = −0.06 m({ξ1, ξ3}) = 0 m({ξ1, ξ4}) = −0.12

m({ξ1, ξ5}) = 0 m({ξ2, ξ3}) = 0 m({ξ2, ξ4}) = 0

m({ξ2, ξ5}) = 0.08 m({ξ3, ξ4}) = 0 m({ξ3, ξ5}) = 0.09

m({ξ4, ξ5}) = 0.01
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For example, since there is a redundancy between the symptoms ξ1, ξ2 we assign a negative

value for I1,2 = m1,2.

Now, we calculate the similarity between patients and diseases with respect to given symp-

toms:

Figure 1. W
(C2−add.,σ)
T1

for given patients with respect to periods

The results in Figure 1 show that for the P1, similarity increase with viral fever, typhoid,

gastritis and stenocardia. For the P2 patient, the similarity of the symptoms with viral fever

decreases, while the similarity with malaria increases. For the P3, all diseases fluctuate over

period. For the P4, similarity decrease with viral fever, malaria, gastritis while increases with

stenocardia.

The results in Figure 2 show that for the P1, similarity increases with typhoid. Other

diseases fluctuate over period For the P2 patient, the similarity of the symptoms with viral

fever and gastritis decreases, while the similarity with malaria increases. For the P3, similarity

decrease with malaria, typhoid. Other diseases fluctuate over period. For the P4, similarity

decrease with viral fever while fluctuating other disease over period.

The results in Figure 3 show that for the P1, similarity increases with typhoid. Other

diseases fluctuate over period For the P2 patient, the similarity of the symptoms with viral

fever and gastritis decreases, while the similarity with malaria increases. For the P3, similarity

Murat Olgun, Ezgı̇ Türkarslan, Mehmet Ünver, Jun Ye, 2-Additive Choquet Similarity
Measures For Multi-Period Medical Diagnosis in Single-Valued Neutrosophic Set Setting

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                                   19



Figure 2. W
(C2−add.,σ)
T2

for given patients with respect to periods

Figure 3. W
(C2−add.,σ)
T4

for given patients with respect to periods

decrease with viral fever and malaria, typhoid. Other diseases fluctuate over period. For P4,

similarity decreases with viral fever while increases with gastritis.
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For the sake of completeness, we show the calculation of the similarity between P1 and D1

with respect to W
(C2−add.,σ)
T4

and t1:

f (4)(ξ1) = tan
[ π

12
(|0.8− 0.4|+ |0.6− 0.6|+ |0.5− 0|)

]
= 0.2400,

f (4)(ξ2) = tan
[ π

12
(|0.5− 0.3|+ |0.4− 0.2|+ |0.3− 0.5|)

]
= 0.1583,

f (4)(ξ3) = tan
[ π

12
(|0.2− 0.1|+ |0.1− 0.3|+ |0.3− 0.7|)

]
= 0.1853,

f (4)(ξ4) = tan
[ π

12
(|0.7− 0.4|+ |0.6− 0.3|+ |0.3− 0.3|)

]
= 0.1583,

f (4)(ξ5) = tan
[ π

12
(|0.4− 0.1|+ |0.3− 0.2|+ |0.2− 0.7|)

]
= 0.2400.

and

W
(C2−add.,σ)

T4
(t1) = 1−


m({ξ1})× f (4)(ξ1) +m({ξ2})× f (4)(ξ2) +m({ξ3})× f (4)(ξ3)

+m({ξ4})× f (4)(ξ4) +m({ξ5})× f (4)(ξ5) +m({ξ1, ξ2})×min(f (4)(ξ1), f (4)(ξ2))

+m({ξ1, ξ4})×min(f (4)(ξ1), f (4)(ξ4)) +m({ξ2, ξ5})×min(f (4)(ξ2), f (4)(ξ5))

+m({ξ3, ξ5})×min(f (4)(ξ3), f (4)(ξ5)) +m({ξ4, ξ5})×min(f (4)(ξ4), f (4)(ξ5))



= 1− (0.2(0.2400 + 0.1583 + 0.1853 + 0.1583 + 0.2400)− 0.06×min(0.2400, 0.1583)

−0.12×min(0.2400, 0.1583) + 0.08×min(0.1583, 0.2400) + 0.09×min(0.1853, 0.2400)

+0.01×min(0.1583, 0.2400)) = 0.8012.

We also show the aggregation of the similarities forW
(C2−add.,σ)
T4

with respect to periods for P1

and D1. Consider the following fuzzy measure η on T = {t1, t2, t3} given as follows: η({t1}) =

0.25, η({t2}) = 0.35, η({t3}) = 0.40, η({t1, t2}) = 0.45, η({t1, t3}) = 0.95, η({t2, t3}) = 0.45,

η({t1, t2, t3}) = 1. The fuzzy measure of singletons is taken as the weights of the singletons

proposed in [7] and [27]. It is also thought that the synergy is greater between the initial

period and the end period .

For D1 disease, W
(C2−add.,σ)
T4

(t2) ≤W
(C2−add.,σ)
T4

(t1) ≤W
(C2−add.,σ)
T4

(t3) and so

M
(C,η)
f4

(P1, D1) =(C)

∫
X

W
(C2−add.,σ)
T4

dη =
3∑

k=1

(
W

(C2−add.,σ)
T4

(t(k))−W
(C2−add.,σ)
T4

(t(k−1))
)
η(E(k))

=W
(C2−add.,σ)
T4

(t2) + (W
(C2−add.,σ)
T4

(t1)−W
(C2−add.,σ)
T4

(t2))η({t1, t3})

+(W
(C2−add.,σ)
T4

(t3)−W
(C2−add.,σ)
T4

(t1))η({t3})

=0.7941 + (0.8012− 0.7941)× 0.95 + (0.8367− 0.8012)× 0.40 = 0.8150.

We can see from Table 2 that other results except for M
(C,η)
f4

(P3, Di) are consistent with pre-

vious studies. This difference is due to the consideration of the interaction between symptoms

in the proposed MPMD method.
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Table 2. Evaluation Scores for SVNSs

Aggregation

Values

D1 D2 D3 D4 D5 Diagnosis

Mw1(P1, Di) 0.6730 0.5990 0.6560 0.5260 0.5270 viral fever

Mw1(P2, Di) 0.7970 0.8730 0.6780 0.5510 0.5330 malaria

Mw1(P3, Di) 0.5860 0.5040 0.5540 0.5300 0.4520 viral fever

Mw1(P4, Di) 0.5210 0.4750 0.5640 0.6020 0.8910 stenocardia

The results Mw2(P1, Di) 0.7770 0.7323 0.7483 0.6810 0.6510 viral fever

of [7] Mw2(P2, Di) 0.8683 0.9250 0.7897 0.6883 0.6670 malaria

Mw2(P3, Di) 0.7573 0.6983 0.6960 0.7133 0.6573 viral fever

Mw2(P4, Di) 0.6917 0.6617 0.7170 0.7577 0.9443 stenocardia

M(P1, Di) 0.8183 0.7852 0.7966 0.7427 0.7167 viral fever

The results M(P2, Di) 0.8985 0.9409 0.8315 0.7451 0.7220 malaria

of [27] M(P3, Di) 0.8058 0.7554 0.7738 0.7701 0.7230 viral fever

M(P4, Di) 0.7491 0.7214 0.7692 0.8036 0.9562 stenocardia

M
(C,η)
f1

(P1, Di) 0.6454 0.5500 0.6060 0.5168 0.5045 viral fewer

M
(C,η)
f1

(P2, Di) 0.4797 0.8465 0.7159 0.5451 0.5647 malaria

M
(C,η)
f1

(P3, Di) 0.5356 0.4576 0.5234 0.5282 0.4717 viral fever

M
(C,η)
f1

(P4, Di) 0.5551 0.5115 0.5095 0.5325 0.8778 stenocardia

M
(C,η)
f2

(P1, Di) 0.7678 0.7150 0.7524 0.6950 0.6832 viral fever

The results M
(C,η)
f2

(P2, Di) 0.8951 0.9140 0.8057 0.7263 0.7099 malaria

of proposed M
(C,η)
f2

(P3, Di) 0.7186 0.6691 0.7024 0.7176 0.6661 viral fever

Choquet M
(C,η)
f2

(P4, Di) 0.7075 0.7026 0.7069 0.7157 0.9381 stenocardia

integral M
(C,η)
f4

(P1, Di) 0.8150 0.7728 0.8005 0.7543 0.7436 viral fever

methods M
(C,η)
f4

(P2, Di) 0.9064 0.9322 0.8446 0.7756 0.7628 malaria

M
(C,η)
f4

(P3, Di) 0.7692 0.7328 0.7602 0.7738 0.7302 gastritis

M
(C,η)
f4

(P4, Di) 0.7616 0.7557 0.7605 0.7504 0.9514 stenocardia

5.2. Ranking Analysis with Spearman’s Rank Correlation Coefficient

In this subsection, we use the Spearman’s correlation coefficients to analyze the ranking

differences between the obtained results. The Spearman’s rank correlation coefficient, denoted

by ρ, is shown below and the results of the test are presented in Table 3 and 4:

ρ =: 1− 6

n(n2 − 1)

n∑
i=1

d2i (24)

where n is the number of results and di is difference between rankings of results obtained.
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Table 3. Spearman’s Rank Correlations between M and M
(C,η)
fi

for i = 1, 2, 4

Patients Similarity Measures Correlation Value Consistency Ranking

M
(C,η)
f1

1.0 1

P1 M
(C,η)
f2

1.0 1

M
(C,η)
f4

1.0 1

M
(C,η)
f2

1.0 1

P2 M
(C,η)
f4

1.0 1

M
(C,η)
f1

0.3 2

M
(C,η)
f2

0.9 1

P3 M
(C,η)
f1

0.8 2

M
(C,η)
f4

0.7 3

M
(C,η)
f2

0.9 1

P4 M
(C,η)
f1

0.5 2

M
(C,η)
f4

0.3 3

Table 4. Spearman’s Rank Correlations between M
(C,η)
fi

and Mw1 and Mw2 ,

for i = 1, 2, 4

Patients Similarity Correlation Consistency Similarity Correlation Consistency

Measures Value Ranking Measures Value Ranking

M
(C,η)
f1

0.9 1 M
(C,η)
f1

1.0 1

P1 M
(C,η)
f2

0.9 1 M
(C,η)
f2

1.0 1

M
(C,η)
f4

0.9 1 M
(C,η)
f4

1.0 1

M
(C,η)
f2

1.0 1 M
(C,η)
f2

1.0 1

P2 M
(C,η)
f4

1.0 1 M
(C,η)
f4

1.0 1

M
(C,η)
f1

0.3 2 M
(C,η)
f1

0.3 2

M
(C,η)
f2

0.9 1 M
(C,η)
f2

0.9 1

P3 M
(C,η)
f1

0.8 2 M
(C,η)
f4

0.8 2

M
(C,η)
f4

0.7 3 M
(C,η)
f1

0.7 3

M
(C,η)
f2

0.9 1 M
(C,η)
f2

0.9 1

P4 M
(C,η)
f1

0.5 2 M
(C,η)
f1

0.5 2

M
(C,η)
f4

0.3 3 M
(C,η)
f4

0.3 3

6. Conclusion

In this paper, we focus on increasing the sensitivity of some existing fuzzy measures by

taking into account the interaction between symptoms with the help of the Choquet integral.

For this purpose, we propose four new similarity measures based on the Choquet integral
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for SVNSs, both by providing the opportunity to evaluate more symptoms with the help

of 2-additivity, and taking into account the interaction between symptoms. We adapted the

proposed similarity measures to a MPMD problem that exists in the literature and we compare

the results with some existing results. The most of the obtained results are consistent with

past results. The consistency between these results is showed with the Spearman’s correlation

coefficients. Inconsistent result may occur because of the novelty of the proposed relatively

sensitive method.

Conflicts of Interest: ”The authors declare no conflict of interest.”

References

1. Amato, F.; Lopez, R.; A., Pena- Mendez, E. M.; Vanhara, P.; Hampl, A.; Havel, J. Artificial neural networks

in medical diagnosis. J. Appl. Biomed. 2013, 11(2), 47-58.

2. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Set Syst. 1986, 20(1),87–96.

3. Broumi, S.; Smarandache, F. Several similarity measures ofneutrosophic sets. Neutrosophic Sets Syst. 2013,

1(10), 54–62.

4. Castro, A.P.; Fernandez-Blanco, E.; Pazos, A.; Munteanu, C. R. Automatic assessment of Alzheimer’s

disease diagnosis based on deep learning techniques. Comput. Biol. Med. 2020, 120.

5. Chateauneuf, A.; Jaffray, J. Y. Some characterizations of lower probabilities and other monotone capacities
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Abstract. The neutrosophic graph is a new version of graph theory that has recently been proposed as an

extension of fuzzy graph and intuitionistic fuzzy graph that provides more precision compatibility and flexibil-

ity than a fuzzy graph and an intuitionistic fuzzy graph in structuring and modelling many real-life problems.

The aim of this paper is to offer for the first time the new concepts of neutrosophic highly strong arc, neutro-

sophic special dominating set, neutrosophic special domination numbers, neutrosophic special cobondage set

and neutrosophic special cobondage numbers in the neutrosophic graph, as well as expressing some of relation

and results of them and reduce the effect of adding a neutrosophic highly strong arc on neutrosophic special

domination number parameter in a neutrosophic graph. Finally, an application related to decision making based

on agents affecting the performance of the organization is provided.

Keywords: Neutrosophic graph, neutrosophic special dominating set, neutrosophic special domination num-

ber, neutrosophic special cobondage set, neutrosophic special cobondage number.)

—————————————————————————————————————————-

1. Introduction

The concept of neutrosophic sets (NSs) was offered by Smarandache [22] as a of the fuzzy

sets [27], intuitionistic fuzzy sets [3], interval valued fuzzy set [26] and interval-valued intuition-

istic fuzzy sets [4] theories. The neutrosophic set is a powerful mathematical tool for dealing

with incomplete, indeterminate and inconsistent information in real world. The neutrosophic

sets are characterized by a truth-membership function T , an indeterminacy-membership func-

tion I and a falsitymembership function F independently, which are within the real standard

or nonstandard unit interval ]−0, 1+[. Graph theory has now become a major branch of applied

mathematics and it is generally regarded as a branch of combinatorics. Graph is a widely used

tool for solving combinatorial problems in different areas such as geometry, algebra, number
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theory, topology, optimization and computer science. If one has uncertainty regarding either

the set of nodes or arcs, or both, the model becomes a fuzzy graph. But, if the relations

betwixt nodes (or nodes) in problems are indeterminate, the fuzzy graphs and their extensions

fail. For this purpose, Smarandache [23,24] given two main categories of neutrosophic graphs.

In another study, Satham Hussain, Jahir Hussain and Smarandache [21] proposed the no-

tion of domination in neutrosophic soft graphs. By considering the above-mentioned studies,

the present paper seek to offer the concepts of neutrosophic special dominating set, neu-

trosophic special domination numbers, neutrosophic special cobondage set and neutrosophic

special cobondage numbers in neutrosophic graphs.

2. Preliminaries

A fuzzy graph G = (φ, ψ) on simple graph G∗ = (V,E) is a pair of functions φ : V → [0, 1]

and ψ : E→ [0, 1] where, for each zw ∈ E, ψ(zw) � min{φ(z), φ(w)}.

Definition 2.1. [22] If V is a space of points (objects) with general elements in V symbolized

by z, then the neutrosophic set H is an object having the form

H = {〈z : TH(z), IH(z), FH(z)〉 , z ∈ V} ,

where the functions T, I, F : V→]−0, 1+[ describe respectively, the truth-membership function,

the indeterminacy-membership function and the falsity-membership function of the element

z ∈ V to the set H with the condition

−0 ≤ TH(z) + IH(z) + FH(z) ≤ 3+,

the functions TH(z), IH(z) and FH(z) are real standard or nonstandard subsets of ]−0, 1+[.

Definition 2.2. [8] A neutrosophic graph on simple graph G∗ = (V,E) is symbolized by

G = (K,L), where K = (TK , IK , FK) such that TK , IK , FK : V→ [0, 1] with the condition

0 ≤ TK(z) + IK(z) + FK(z) ≤ 3,

for all z ∈ V and L = (TL, IL, FL) where TL, IL, FL : E→ [0, 1] with conditions

TL(zw) ≤ TK(z) ∧ TK(w),

IL(zw) ≥ IK(z) ∨ IK(w),

FL(zw) ≥ FK(z) ∨ FK(w),

and 0 ≤ TL(zw) + IL(zw) + FL(zw) ≤ 3 for all zw ∈ E.
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Definition 2.3. [10] Put G = (K,L) be a neutrosophic graph on simple graph G∗ = (V,E)

and u, v ∈ V. Then,

(i) T-strength of connectedness betwixt u and v is

T∞L (uv) = sup{Tn
L (uv)

∣∣n = 1, 2, · · · ,m},

and

Tn
L (uv) = min

{
TL(uz1), TL(z1z2), · · · , TL(zn−1v)

∣∣u, z1, · · · , zn−1, v ∈ V, n = 1, 2, · · · ,m
}
.

(ii) I-strength of connectedness betwixt u and v is

I∞L (uv) = inf{InL(uv)
∣∣n = 1, 2, · · · ,m},

and

IkL(uv) = max
{
IL(uz1), IL(z1z2), · · · , IL(zn−1v)

∣∣u, z1, · · · , zn−1, v ∈ V, n = 1, 2, · · · ,m
}
.

(iii) F-strength of connectedness betwixt u and v is

F∞L (uv) = inf{Fn
L (uv)

∣∣n = 1, 2, · · · ,m},

and

Fn
L (uv) = max{FL(uz1), FL(z1z2), · · · , FL(zn−1v)

∣∣u, z1, · · · , zn−1, v ∈ V, n = 1, 2, · · · ,m}.

Definition 2.4. [10] Put G = (K,L) be a neutrosophic graph on simple graph G∗ = (V,E).

An arc zw ∈ E said to be a neutrosophic strong arc if

TL(zw) ≥ T∞L (zw) , IL(zw) ≤ I∞L (zw) and IL(zw) ≤ I∞L (zw).

Notation 1. From now on, in this paper we put G = (K,L) be a neutrosophic graph on simple

graph G∗ = (V,E) and symbolized by NG.

3. Study of neutrosophic special dominating set by addition of neutrosophic highly

strong arcs

In this part, we describe the notions of neutrosophic highly strong arc, neutrosophic slightly

isolated node, neutrosophic special dominating set, neutrosophic special domination numbers,

neutrosophic slightly independent set and neutrosophic slightly independent numbers on neu-

trosophic graphs and we investigate some related results. Also we discuss about neutrosophic

special domination of neutrosophic graph by adding a neutrosophic highly strong arc to this

neutrosophic graph.
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Definition 3.1. Put G = (K,L) be a NG. Then,

(i) the neutrosophic order of G is given by,

|V| =
∑
vi∈V

(
3 + TK(vi)− (IK(vi) + FK(vi))

2

)
,

(ii) the neutrosophic size of G is given by,

|E| =
∑

vivj∈E

(
3 + TL(vivj)− (IL(vivj) + FL(vivj))

2

)
,

(iii) the neutrosophic cardinality of G is given by,

|G| = |V|+ |E|,

(iv) for each U ⊂ V, the neutrosophic node cardinality of U is symbolized by O(U) and given

by,

O(U) =
∑
vi∈U

(
3 + TK(vi)− (IK(vi) + FK(vi))

2

)
,

(v) for each F ⊂ E, the neutrosophic arc cardinality of F is symbolized by S(F ) and given by,

S(F ) =
∑

vivj∈F

(
3 + TL(vivj)− (IL(vivj) + FL(vivj))

2

)
.

Definition 3.2. An arc e = zw in G is called a neutrosophic highly strong arc (NHStA), if

TL(zw) > T∞L (zw) , IL(zw) < I∞L (zw) , FL(zw) < F∞L (zw).

Definition 3.3. The neutrosophic highly strong neighborhood of z ∈ V is symbolized by

Nhs(z) and given as follows:

Nhs(z) = {w ∈ V | zw is a highly strong arc in G}.

Example 3.4. Investigate a NG G as Figure 1. Then, u1u3 and u3u4 are NHStAs and it is

clear that Nhs(u3) = {u1, u4} and Nhs(u1) = Nhs(u4) = {u3}.

Definition 3.5. Put G be a NG on simple graph G∗ = (V,E) and z, w ∈ V. Then:

(i) we say that z specially dominate w in G, if there is a NHStA betwixt z and w.

(ii) S ⊂ V said to be a neutrosophic special dominating set (NSpDS) inG, if for each w ∈ V \ S,

there is z ∈ S where z specially dominates w.

(iii) A NSpDS S in G said to be a minimal neutrosophic special dominating set if no proper

subset of S is a neutrosophic special dominating set.

(iv) Minimum neutrosophic node cardinality amongst all minimal NSpDSs of G said to be
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Figure 1. NG G.

lower neutrosophic special domination number of G and is symbolized by (nsdn)V(G).

(v) Maximum neutrosophic node cardinality amongst all minimal NSpDSs of G said to be

upper neutrosophic special domination number of G and is symbolized by (NSDN)V(G).

(vi) The neutrosophic special domination number of G is symbolized by NS∆N(G) and given

by

NS∆N(G) =
(nsdn)V(G) + (NSDN)V(G)

2
.

Theorem 3.6. A NSpDS D of a neutrosophic graph G is a minimal NSpDS iff for each node

z ∈ D, one of the following conditions hold.

(i) Nhs(z) ∩D = ∅,
(ii) there is a node w ∈ V \D where Nhs(w) ∩D = {z}.

Proof. Suppose that D is a minimal NSpDS of G. Then, for each node z ∈ D, D \ {z} is

not a NSpDS. Thus there is w ∈ V \ (D \ {z}) that is not specially dominated by any node in

D \ {z}. If w = z, then w is not a neutrosophic strong neighbor of any node in D. If w 6= z,

then w is not specially dominated by D \ {z}, but is specially dominated by D.

Conversely, consider that D is a NSpDS and for each node z ∈ D, one of the two conditions

hold. Suppose D is not a minimal NSpDS. Then there is a node z ∈ D where D \ {z} is a

NSpDS. Then z is a neutrosophic highly strong neighbor to at least one node in D \ {z}, and

so (i) does not true. Also, every node w in V \D is a neutrosophic highly strong neighbor to

at least one node in D \ {z}. Thus (ii) does not true, that is a contradiction. Therefore, D is

a minimal NSpDS.

Example 3.7. Investigate a NGG as Figure 2. Then, D1 = {u1, u3, u4}, D2 = {u2, u4, u5} and

D3 = {u3, u4, u5} are minimal NSpDSs and clearly (nsdn)V(G) = 1.55 and (NSDN)V(G) =
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Figure 2. NG G.

2.8 and so,

NS∆N(G) =
1.55 + 2.8

2
= 2.175.

Definition 3.8. A node z ∈ V of a NG G is called a neutrosophic slightly isolated node

(NSlIN) if does not specially dominate any other node of G and Nhs(z) = ∅.

Example 3.9. Investigate the NG G as Figure 1. Then, u2 is a NSlIN in G.

If in graph G∗ = (V,E) we add an arc e to E, then we denote it by Ee = E ∪ {e} and

G∗e = (V,Ee). Moreover, if neutrosophic graph G = (K,L) on G∗ extened on G∗e, then we

symbolized it by Ge = (Ke, Le).

Notation 2. If arc e in NG Ge is a NHStA, then we denote Ghs
e = (Khs

e , Lhs
e ) insteade of

Ge = (Ke, Le).

Theorem 3.10. Put e = zw be an additional NHStA in G∗e. Then

(i) NS∆N(Ghs
e ) ≤ NS∆N(G).

(ii) 0 ≤ NS∆N(G)−NS∆N(Ghs
e ) ≤ max{O({z}), O({w})}.

Proof. (i) Suppose that D is a minimal NSpDS of G and e = zw be an additional NHStA in

G∗. If z or w is a NSlIN, then D \ {z} or D \ {w} is a minimal NSpDS in Gs
e. Otherwise,

D is a minimal NSpDS in Gs
e. Hence, (nsdn)V(Ghs

e ) ≤ (nsdn)V(G) and (NSDN)V(Ghs
e ) ≤

(NSDN)V(G). Therefore, NS∆N(Ghs
e ) ≤ NS∆N(G).

(ii) By the proof of (i), we have:

0 ≤ (nsdn)V(G)− (nsdn)V(Ghs
e ) ≤ max{O({z}), O({w})},

and

0 ≤ (NSDN)V(G)− (NSDN)V(Ghs
e ) ≤ max{O({z}), O({w})}.
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Then,

0 ≤ NS∆N(G)−NS∆N(Ghs
e ) ≤ max{O({z}), O({w})}.

Theorem 3.11. Put G be a NG and e be an additional arc in G∗e. Then e is a NHStA in Ge

iff there exist nodes z and w where z−w neutrosophic path of Ge that includes e is the unique

strongest neutrosophic path betwixt two nodes z and w.

Proof. Put e = xy be a NHStA in Ge. Then,

TL(zw) > T∞L (zw), IL(zw) < I∞L (zw), FL(zw) < F∞L (zw).

If we let z = x and w = y, then the proof is clear.

Conversely, if there exist nodes z, w where z − w neutrosophic path Pe of Ge that includes

e = xy is the unique strongest neutrosophic path betwixt two nodes z and w, then for each

x− y neutrosophic path P without arc e = xy in G, we have:

TL(zw) > TP (zw), IL(zw) < IP (zw), FL(zw) < FP (zw).

Hence,

TL(zw) > T∞L (zw) , IL(zw) < I∞L (zw) , FL(zw) < F∞L (zw).

Therefore, e = xy is a NHStA in Ge.

Definition 3.12. An arc e in a NG G said to be a/an

(i) T-bridge if deleting e reduces the T-strength of connectedness betwixt some pair of nodes.

(ii) I-bridge if deleting e increases the I-strength of connectedness betwixt some pair of nodes.

(iii) F-bridge if deleting e increases the F-strength of connectedness betwixt some pair of

nodes.

(iv) neutrosophic bridge if it is a T-bridge, I-bridge and F-bridge.

Theorem 3.13. An arc e = zw in G∗ is a NHStA iff e = zw is a neutrosophic bridge in G.

Proof. Put e = zw be a NHStA in Ge. Then,

TL(zw) > T∞L (zw), IL(zw) < I∞L (zw), FL(zw) < F∞L (zw).

It is clear that e = zw is the unique strongest neutrosophic path betwixt z and w. Thus,

deleting e = zw reduces the T-strength and also increases I-strength and F-strength of con-

nectedness betwixt z and w. Therefore e = zw is a neutrosophic bridge in G.

Conversely, if we let e = zw as a neutrosophic bridge in G, then the proof is clear.

S. Banitalebi, R. A. Borzooei, Neutrosophic special dominating set in neutrosophic graphs

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                                 32



Example 3.14. Investigate the NG G as Figure 2. Then, e1 = u1u2, e2 = u1u5 and e3 = u2u3

are NHStAs and so neutrosophic bridges in G.

Definition 3.15. Put G be a NG. Then:

(i) Two nodes z, w ∈ V are called neutrosophic slightly independent if there is not any NHStA

betwixt them.

(ii) S ⊂ V is called a neutrosophic slightly independent set (NSlIS) in G if for each z, w ∈ S,

TL(uv) ≤ T∞L (zw), IL(zw) ≥ I∞L (zw) and FL(zw) ≥ F∞L (zw).

(iii) A NSlIS S in G is called a maximal NSlIS if for each node w ∈ V \ S, the set S ∪ {w} is

not NSlIS.

(iv) Minimum neutrosophic node cardinality amongst all maximal NSlISs said to be lower

neutrosophic slightly independent number of G and is symbolized by (ni)V(G).

(v) Maximum neutrosophic node cardinality amongst all maximal NSlISs said to be upper

neutrosophic slightly independent number of G and is symbolized by (NI)V(G).

(vi) The neutrosophic slightly independent number of G is symbolized by NI(G) and given

as follows,

NI(G) =
(ni)V(G) + (NI)V(G)

2
.

Theorem 3.16. Every maximal NSlIS in G is a minimal NSpDS.

Proof. Assume that M is a maximal NSlIS in G. Then any node v ∈ V \M is a NHSN to at

least one node in M . Hence, M is a NSpDS in G. On the other hand, for each node d ∈ M ,

Nhs(d)∩D = ∅. Therefore, by Theorem 3.6, M is a minimal neutrosophic special dominating

set.

Example 3.17. In Figure 2, D3 = {u3, u4, u5} is a maximal NSlIS and so minimal NSpDS in

G.

Theorem 3.18. Put e be an additional NHStA in G∗e. Then NI(Ghs
e ) ≤ NI(G).

Proof. Straightforward

4. Neutrosophic special cobondage numbers of a NG.

In this part, we offer the concepts of neutrosophic special cobondage set and neutrosophic

special cobondage numbers on NGs and investigated some related results.

Definition 4.1. (i) The neutrosophic special cobondage set (NSpCS) of a NG G is the set C

of additional NHStAs to G, that reduces the neutrosophic special domination number, i.e,

NS∆N(GC) < NS∆N(G).
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(ii) A NSpCS C of G said to be a minimal NSpCS if no proper subset of C is a NSpCS.

(iii) Minimum neutrosophic arc cardinality amongst all minimal NSpCSs of G said to be lower

neutrosophic special cobondage number of G and symbolized by (nsbn)E(G).

(iv) Maximum neutrosophic arc cardinality amongst all minimal NSpCSs of G said to be upper

neutrosophic special cobondage number of G and symbolized by (NSBN)E(G).

Example 4.2. Investigate a NG G as Figure 3. Obviously D∗1 = {a, d} and D∗2 = {b, c} are

Figure 3. NG G.

the minimal NSpDSs of G ((ndn)V(G) = 1.83, (NDN)V(G) = 2.67 and N∆N(G) = 2.25

). In this case, by adding e4 = (0.5, 0.4, 0.5), the set D1 = {c, d} is a minimal NSpDS with

the neutrosophic node cardinality of 1.8. Then, by adding e5 as bd = (0.3, 0.2, 0.6), the set

D2 = {d} is a minimal NSpDS with the neutrosophic node cardinality of 0.83, so x2 = {e5}
is a minimal NSpCS, and by adding e6 as ac = (0.6, 0.4, 0.3), the set D3 = {a} is a minimal

NSpDS with the neutrosophic node cardinality of 1. Thus, x3 = {e6} is a minimal NSpCS and

so (nbn)E(G) and (NBN)E(G) are 0.83 and 0.97, respectively.

Theorem 4.3. If a NG G has a NSlIN w, then

(nsbn)E(G) ≤ O({v}).

Proof. Put w be a NSlIN of G. Then w belongs to every minimal NSpDS D of G. If z ∈
D \ {w} and e is an NHStA betwixt w and z, then, D \ {w} is a minimal NSpDS of Ghs

e

and (nsdn)V(Ghs
e ) < (nsdn)V(G). Thus, NS∆N(Ghs

e ) < NS∆N(G). Also, we have TL(e) ≤
TK(w), IL(e) ≥ IK(w) and FL(e) ≥ FK(w). Hence,

S(e) ≤
(

3 + TK(w)− (IK(w) + FK(w))

2

)
,
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and so

(nsbn)E(G) = S(e) ≤
(

3 + TK(w)− (IK(w) + FK(w))

2

)
= O({w}).

Theorem 4.4. If G has not a NSlIN and e = zw is a NHStA and Nhs(z) = w, Nhs(w) = z,

then

(nsbn)E(G) ≤ O({z}) +O({w}).

Proof. If e = zw is a NHStA in G where Nhs(z) = w, Nhs(w) = z, then one of z or w belongs

to every minimal NSpDS D of G. Put z ∈ D and t ∈ D \ {z}. By adding the NHStAs

e1 = (zt) and e2 = (wt), the set D \{z} is a minimal NSpDS of GC , where C = {e1, e2}. Thus

NS∆N(GC) < NS∆N(G). Therefore,

(nsbn)E(G) = S(C) ≤
(

3 + TK(z)− (IK(z) + FK(z))

2

)
+

(
3 + TK(w)− (IK(w) + FK(w))

2

)
= O({z}) +O({w}).

5. Application

NG models have recently been used to model many real-life problems in several different

fields of engineering and science. In this study, we present the idea of NSpDS in NG theory.

The NSpDS in the neutrophic network can be used to solve many real problems.

5.1. Decision making in gray conditions betwixt certainty and uncertainty

NG models are one of the efficient models in various fields of modeling because they show

more flexibility than various fuzzy graph models in dealing with real-life problems. Controlling

and ensuring the compliance of decisions in various dimensions of the organization with the

desired performance and predetermined performance standards despite the gray conditions

betwixt certainty and uncertainty, is one of the main tasks of the leaders of an organization

and plays an significant role in increasing the productivity and effectiveness of the organi-

zation. Therefore, proper management and modeling and optimization of an organization’s

success plan based on the agents affecting the performance of the organization in the gray

conditions betwixt certainty and uncertainty is one of the significant issues considered by the

leaders of an organization. The set of agents affecting the performance of an organization in

gray conditions betwixt certainty and uncertainty can be considered as a NG. We describe the

T -strength, I-strength and F -strength values in each node and arc (path) as follows. For each
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z, w ∈ V and zw ∈ E, we have:

TK(z): The weight of the direct effectiveness of agent z on the performance of the organization

in gray conditions.

IK(z): The weight of the ineffectiveness of agent z on the performance of the organization in

gray conditions.

FK(z): The weight of the indirect effectiveness of agent z on the performance of the organiza-

tion in gray conditions.

TL(zw): The weight of direct impact zw on the performance of the organization in gray con-

ditions.

IL(zw): The weight of the ineffectiveness zw on the performance of the organization in gray

conditions.

FL(zw): The weight of indirect impact zw on the performance of the organization in gray

conditions.

In this case, the following relations seem logical:

TL(zw) ≤ TK(z) ∧ TK(w), IL(zw) ≥ IK(z) ∨ IK(w), FL(zw) ≥ FK(z) ∨ FK(w).

The relationship betwixt z and w is effective when the xy is a NHStA. Thus, the NSpDS of this

graph includes agents that other agents are specialiy dominated by at least one of the elements

(agents) of this set. In fact, the NSpDS provides an opportunity for managers and leaders of

the organization to focus on the agents of the NSpDS and align decisions with these agents

instead of observing and controlling a large number of decision agents in gray conditions. This

helps organizational leaders and managers make the best decisions with the utmost confidence

in a short period of time. For example, Figure 4, displays the graph of agents affecting the

performance of an organization, in which the set of {u2, u4, u7} is a minimal NSpDS (with

minimum neutrosophic node cardinality 4.35). In other words, instead of controlling the 7

agents, only agents u2, u4, u7 can be controlled and observed and be relatively sure about

desirable performance in the decision-making process. It is worth noting that some factors

such as common computational indices betwixt two agents, dependent calculation formula,

and relationship betwixt the variables of calculating the indices of the agents play significant

role in creating an effective relation betwixt the agents. For instance, in Figure 4, illustrates

the optimal effective weight of the agent graph(S(F ) where F is the set of all NHStAs of G)

is 6.8 on desirable performance achievement.

Now, if possible, the optimal normal weight of the agent graph on desirable performance

achievement can be increased by reinforcing the relation betwixt the agents, which leads to

increased accuracy and confidence in the decision-making process and decreasing the neutro-

sophic node cardinality of the NSpDS. For instance, as shown in Figure 5, the NSpDS of agents

decreases to the set {u2, u4} when establishing an effective relationship is possible betwixt u2

S. Banitalebi, R. A. Borzooei, Neutrosophic special dominating set in neutrosophic graphs

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                                 36



Figure 4. Neutrosophic graph G.

and u7 agents with coordinates (0.4, 0.2, 0.5), while the optimal effective weight of graph up-

grades to 8.15.

Figure 5. D and D′.

Neutrosophic special dominating set O(D) Optimal effective weight

D = {u2, u4, u7} 4.35 6.8

D
′

= {u2, u4} 2.85 8.15

6. Conclusion

Many practical problems of interest can be illustrated with graphs. In general, graph the-

ory has a wide range of applications in various fields. The notion of domination in graph
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is very important in both theoretical developments and applications. In this paper, for the

first time the notions of neutrosophic special dominating set, neutrosophic special domination

numbers, neutrosophic special cobondage set and neutrosophic special cobondage numbers in

a NG are presented. Finally, by using the concept of neutrosophic special dominating set

and the reduction effect of an additional neutrosophic highly strong arc on the neutrosophic

special domination number parameter, a model for optimizing the neutrosophic special dom-

ination parameter was presented. In future works, we have a decision to study the concepts

of neutrosophic special n-dominating set and inverse neutrosophic special dominating set in a

NG.
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Abstract: Number theory is concerned with properties of integers and Diophantine equations. The 

objective of this paper is dedicated to introduce the basic concepts in refined neutrosophic number 

theory such as division, divisors, congruencies, and Pell's equation in the refined neutrosophic ring 

of integers Z(𝐼1, 𝐼2). Also, algorithms to solve refined neutrosophic linear congruencies and refined 

neutrosophic Pell's equation will be presented and discussed. 

Keywords: refined neutrosophic integer, refined Pell's equation, neutrosophic congruence , 

neutrosophic Diophantine equation. 

_______________________________________________________________________________________ 

1. Introduction 

Neutrosophy is a new kind of generalized logic proposed by F.Smarandache [12,36]. It becomes a 

useful tool in many areas of science such as number theory [16], solving equations [19], and medical 

studies [11,15,21]. Also, we find many applications of neutrosophic structures in statistics [14], 

optimization [8], and decision making [7]. 

On the other hand, the theory of neutrosophic rings began in [4], where Smarandache and 

Kandasamy defined concepts such neutrosophic ideals and homomorphisms. These notions were 

handled widely by Agboola, et.al in [5,6,10]. Where homomorphisms and AH-substructures were 

studied [3,13,17]. More and more application of neutrosophic sets and their generalizations can be 

found in [25-35]. 
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Recently, there is an arising interesting by the number theoretical concepts in neutrosophic ring of 

integers, where Ceven et.al defined and studied division and primes in Z(I) [2], Sankari et.al solved 

the linear Diophantine equations in Z(I) and Z(𝐼1, 𝐼2) [16]. Also, in [1], we find algorithms to solve 

neutrosophic Pell's equation and neutrosophic linear congruencies. In addition, Euler's famous 

theorem was proved in Z(I). 

In this work, we extend the study to the case of refined neutrosophic ring of integers, where we 

determine algorithms and conditions for division, congruencies, and Pell's equation. In addition, we 

prove that there are no primes in Z(𝐼1, 𝐼2). 

2. Preliminaries 

Definition 2.1: [4] 

Let R be a ring, I be the indeterminacy with property 𝐼2 = 𝐼 , then the neutrosophic ring  is defined 

as follows: 

𝑅(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅}. 

Definition 2.2: [4] 

Let R(I) be a neutrosophic ring, it is called commutative if and only if 𝑥𝑦 = 𝑦𝑥∀ 𝑥, 𝑦 ∈ 𝑅(𝐼).. 

Definition 2.3: [5] 

The element I can be split  into two indeterminacies 𝐼1 , 𝐼2 with conditions: 

I1
2 = I1 , 𝐼2

2 = 𝐼2 , 𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1. 

Definition 2.4: [5] 

If X is a set then X(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2): 𝑎 , 𝑏 , 𝑐 ∈ 𝑋 } is called the refined neutrosophic set generated 

by X , 𝐼1, 𝐼2. 

Definition 2.5: [5] 

Let (R,+,×) be a ring, (R(𝐼1, 𝐼2) , + ,×) is called a refined neutrosophic ring generated by R ,𝐼1, 𝐼2. 

Example 2.6: [6] 

The refined neutrosophic ring of integers is 𝑍(𝐼1, I2)={(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑍}. 

Definition 2.7: [20] 

Pell's equation is the Diophantine equation with form 𝑋2 − 𝐷𝑌2 = 𝑁; 𝐷, 𝑁 ∈ 𝑍. 

Theorem 2.8: [20] 
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If the equation 𝑋2 − 𝐷𝑌2 = 1 has a solution, then 𝐷 > 0 𝑎𝑛𝑑 𝐷 is square free. 

Theorem 2.9: [20] 

𝑍[√𝑑1] is an integral domain. 

Theorem 2.10: [2] 

Let Z(I)= {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍} the neutrosophic ring of integers. Then primes in Z(I) have one of the 

following forms: 

 𝑥 = ±𝑝 + (±1 ± 𝑝)𝐼 𝑜𝑟 𝑥 = ±1 + (±𝑝 ± 1)𝐼; 𝑝 𝑖𝑠 𝑎𝑛𝑦 𝑝𝑟𝑖𝑚𝑒 𝑖𝑛 𝑍. 

Definition 2.11: [16] 

Let 𝑍(𝐼) = {𝑎 + 𝑏𝐼;  𝑎, 𝑏 ∈ 𝑍}  be the neutrosophic ring of integers. The neutrosophic linear 

Diophantine equation with two variables is defined as follows: 

𝐴𝑋 + 𝐵𝑌 = 𝐶; 𝐴, 𝐵, 𝐶 ∈ 𝑍(𝐼). 

Theorem 2.12: [16] 

Let 𝑍(𝐼) = {𝑎 + 𝑏𝐼;  𝑎, 𝑏 ∈ 𝑍}  be the neutrosophic ring of integers. The neutrosophic linear 

Diophantine equation  𝐴𝑋 + 𝐵𝑌 = 𝐶  with two variables 𝑋 = 𝑥1 + 𝑥2𝐼, 𝑌 = 𝑦1 + 𝑦2𝐼, where 

𝐴 = 𝑎1 + 𝑎2𝐼, 𝐵 = 𝑏1 + 𝑏2𝐼 is equivalent to the following two classical Diophantine equations: 

(1) 𝑎1𝑥1 + 𝑏1𝑦1 = 𝑐1. 

(2)(𝑎1 + 𝑎2)(𝑥1 + 𝑥2) + (𝑏1 + 𝑏2)(𝑦1 + 𝑦2) = 𝑐1 + 𝑐2. 

Definition 2.13: [16] 

Let 𝑍(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2);  𝑎, 𝑏, 𝑐 ∈ 𝑍} be the refined neutrosophic ring of integers. The refined 

neutrosophic linear Diophantine equation with two variables is defined as follows: 

𝐴𝑋 + 𝐵𝑌 = 𝐶; 𝐴, 𝐵, 𝐶 ∈ 𝑍(𝐼1, 𝐼2). 

Theorem 2.14: [16] 

Let 𝑍(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2);  𝑎, 𝑏, 𝑐 ∈ 𝑍} be the refined neutrosophic ring of integers, 

𝐴𝑋 + 𝐵𝑌 = 𝐶; 𝐴, 𝐵, 𝐶 ∈ 𝑍(𝐼1, 𝐼2) be a refined neutrosophic linear Diophantine equation, where 

𝑋 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑌 = (𝑦0 , 𝑦1𝐼1, 𝑦2𝐼2), 𝐴 = (𝑎0, 𝑎1𝐼1, 𝑎2𝐼2), 

𝐵 = (𝑏0, 𝑏1𝐼1, 𝑏2𝐼2), 𝐶 = (𝑐0, 𝑐1𝐼1, 𝑐2𝐼2) . Then 𝐴𝑋 + 𝐵𝑌 = 𝐶  is equivalent to the following three 

Diophantine equations: 

(1) 𝑎0𝑥0 + 𝑏0𝑦0 = 𝑐0. 
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(2)(𝑎0 + 𝑎2)(𝑥0 + 𝑥2) + (𝑏0 + 𝑏2)(𝑦0 + 𝑦2) = 𝑐0 + 𝑐2. 

(3)(𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2) + (𝑏0 + 𝑏1 + 𝑏2)(𝑦0 + 𝑦1 + 𝑦2) = 𝑐0 + 𝑐1 + 𝑐2. 

3. Refined neutrosophic number theory 

Definition 3.1: (Division) 

Let Z(𝐼1 , 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2);  𝑎, 𝑏, 𝑐 ∈ 𝑍} the refined neutrosophic ring of integers. For any 𝑥, 𝑦 ∈

Z(𝐼1, 𝐼2), we say that 𝑥|𝑦 if there is 𝑟 ∈ Z(𝐼1, 𝐼2); 𝑟. 𝑥 = 𝑦. 

Theorem 3.2: (Form of division in Z(𝐼1, 𝐼2)) 

Let Z(𝐼1 , 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2);  𝑎, 𝑏, 𝑐 ∈ 𝑍} the refined neutrosophic ring of integers, 𝑥 =

(𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑦 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2) be two arbitrary elements in Z(𝐼1, 𝐼2). Then 𝑥|𝑦 if and only if 

𝑥0|𝑦0 , 𝑥0 + 𝑥2|𝑦0 + 𝑦2 , 𝑥0 + 𝑥1 + 𝑥2|𝑦0 + 𝑦1 + 𝑦2. 

Proof: 

Suppose that 𝑥|𝑦 in Z(𝐼1, 𝐼2), then there is 𝑟 = (𝑟0, 𝑟1𝐼1, 𝑟2𝐼2) ∈ Z(𝐼1, 𝐼2) such that 𝑟. 𝑥 = 𝑦(*). 

By easy computing to equation (*) we get the following equivalent equations: 

(a) 𝑟0𝑥0 = 𝑦0, i.e.𝑥0|𝑦0. 

(b) 𝑟0𝑥2 + 𝑟2𝑥2 + 𝑟2𝑥0 = 𝑦2. 

(c) 𝑟0𝑥1 + 𝑟2𝑥1 + 𝑟1𝑥0 + 𝑟1𝑥1 + 𝑟1𝑥2 = 𝑦1. 

By adding equation (a) to (b) we get (**) (𝑟0 + 𝑟2)(𝑥0 + 𝑥2) = 𝑦0 + 𝑦2, 𝑖. 𝑒. 𝑥0 + 𝑥2|𝑦0 + 𝑦2. 

Now, we add equation (**) to (c) to get (𝑟0 + 𝑟1 + 𝑟2)(𝑥0 + 𝑥1 + 𝑥2) = 𝑦0 + 𝑦1 + 𝑦2 , 𝑖. 𝑒. 

𝑥0 + 𝑥1 + 𝑥2|𝑦0 + 𝑦1 + 𝑦2. 

For the converse, we assume that  𝑥0|𝑦0, 𝑥0 + 𝑥2|𝑦0 + 𝑦2, 𝑥0 + 𝑥1 + 𝑥2|𝑦0 + 𝑦1 + 𝑦2.  

There are 

𝑎, 𝑏, 𝑐 ∈ 𝑍;  𝑎𝑥0 = 𝑦0, 𝑏(𝑥0 + 𝑥2) = 𝑦0 + 𝑦2, 𝑐(𝑥0 + 𝑥1 + 𝑥2) = 𝑦0 + 𝑦1 + 𝑦2. 

 We put 

𝑟0 = 𝑎, 𝑟2 = 𝑏 − 𝑎, 𝑟1 = 𝑐 − 𝑏.  

Now, we get 𝑟 = (𝑟0, 𝑟1𝐼1, 𝑟2𝐼2) ∈ 𝑍(𝐼1, 𝐼2), 𝑎𝑛𝑑𝑟. 𝑥 = 𝑦, 

 hence 𝑥|𝑦. 

Definition 3.3: (Congruence) 
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Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑦 = (𝑦0 , 𝑦1𝐼1, 𝑦2𝐼2), 𝑧 = (𝑧0, 𝑧1𝐼1, 𝑧2𝐼2) be three elements in 𝑍(𝐼1, 𝐼2). We say 

that 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧) if and only if 𝑧|𝑥 − 𝑦. 

We say that 𝑧 = gcd (𝑥, 𝑦) if and only if 𝑧|𝑥 𝑎𝑛𝑑 𝑧|𝑦, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐|𝑥 𝑎𝑛𝑑 𝑐|𝑦, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑐|𝑧. 

𝑥, 𝑦 are called relatively prime in Z(I) if and only if gcd(𝑥, 𝑦) = (1,0,0). 

Theorem 3.4: (Form of congruencies in 𝑍(𝐼1, 𝐼2)) 

Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑦 = (𝑦0 , 𝑦1𝐼1, 𝑦2𝐼2), 𝑧 = (𝑧0, 𝑧1𝐼1, 𝑧2𝐼2) be three elements in 𝑍(𝐼1, 𝐼2). Then 𝑥 ≡

𝑦(𝑚𝑜𝑑𝑧) if and only if 

𝑥0 ≡ 𝑦0(𝑚𝑜𝑑𝑧0), 𝑥0 + 𝑥2 ≡ 𝑦0 + 𝑦2(𝑚𝑜𝑑𝑧0 + 𝑧2), 𝑥0 + 𝑥1 + 𝑥2 ≡ 𝑦0 + 𝑦1 + 𝑦2(𝑚𝑜𝑑𝑧0 + 𝑧1 + 𝑧2). 

Proof: 

We assume that 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧), then 𝑧|𝑥 − 𝑦. By Theorem 3.2, we find that 𝑧0|𝑥0 − 𝑦0, (𝑧0 + 𝑧2)|(𝑥0 +

𝑥2) − (𝑦0 + 𝑦2), (𝑧0 + 𝑧1 + 𝑧2)|(𝑥0 + 𝑥1 + 𝑥2) − (𝑦0 + 𝑦1 + 𝑦2), thus 

𝑥0 ≡ 𝑦0(𝑚𝑜𝑑𝑧0), 𝑥0 + 𝑥2 ≡ 𝑦0 + 𝑦2(𝑚𝑜𝑑𝑧0 + 𝑧2), 𝑥0 + 𝑥1 + 𝑥2 ≡ 𝑦0 + 𝑦1 + 𝑦2(𝑚𝑜𝑑𝑧0 + 𝑧1 + 𝑧2). 

 The converse is trivial. 

Example 3.5: 

(1, 𝐼1, 2𝐼2) ≡ (3, −𝐼1, 0)(𝑚𝑜𝑑(2, −𝐼1, 𝐼2)), that is because 

1 ≡ 3(𝑚𝑜𝑑2), 1 + 2 = 3 ≡ (3 + 0)(𝑚𝑜𝑑 3), 1 + 1 + 2 = 4 ≡ (3 − 1 + 0)(𝑚𝑜𝑑2 ). 

Theorem 3.6: (Form of GCD) 

Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑦 = (𝑦0 , 𝑦1𝐼1, 𝑦2𝐼2)be two elements in 𝑍(𝐼1, 𝐼2). Then 

r = gcd(𝑥, 𝑦) = (𝑚, 𝑛𝐼1, 𝑡𝐼2); 𝑚 = gcd(𝑥0, 𝑦0) , 𝑚 + 𝑛 + 𝑡 = gcd(𝑥0 + 𝑥1 + 𝑥2, 𝑦0 + 𝑦1 + 𝑦2) , 𝑚 + 𝑡 =

gcd (𝑥0 + 𝑥2, 𝑦0 + 𝑦2). 

Proof: 

It is clear that 𝑟|𝑥 𝑎𝑛𝑑 𝑟|𝑦. Let 𝑧 = (𝑧0, 𝑧1𝐼1, 𝑧2𝐼2) be a common divisor of 𝑥 𝑎𝑛𝑑 𝑦, then 

(a) 𝑧0|𝑥0, 𝑧0|𝑦0, hence 𝑧0|𝑚. 

(b) 𝑧0 + 𝑧2|𝑥0 + 𝑥2𝑎𝑛𝑑𝑧0 + 𝑧2|𝑦0 + 𝑦2, hence 𝑧0 + 𝑧2|𝑚 + 𝑡. 

(c) 𝑧0 + 𝑧1 + 𝑧2|𝑥0 + 𝑥1 + 𝑥2𝑎𝑛𝑑𝑧0 + 𝑧1 + 𝑧2|𝑦0 + 𝑦1 + 𝑦2, hence 𝑧0 + 𝑧1 + 𝑧2|𝑚 + 𝑛+𝑡. 
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According to the previous discussion, we get 𝑧|𝑟. Thus r = gcd(𝑥, 𝑦) = (𝑚, 𝑛𝐼1, 𝑡𝐼2). 

Example 3.7: 

Let 𝑥 = (2, −𝐼1, 3𝐼2), 𝑦 = (1,3𝐼1, 𝐼2), then gcd(𝑥, 𝑦) = (1,0,0).  

Theorem 3.8: (Euclidian division theorem in 𝑍(𝐼1, 𝐼2)) 

Let 𝑥 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑦 = (𝑦0 , 𝑦1𝐼1, 𝑦2𝐼2)be two elements in 𝑍(𝐼1, 𝐼2). 

 There are two corresponding elements 𝑞 = (𝑞0, 𝑞1𝐼1, 𝑞2𝐼2), 𝑟 = (𝑟0, 𝑟1𝐼1, 𝑟2𝐼2) ∈ 𝑍(𝐼1, 𝐼2); 𝑥 = 𝑞𝑦 + 𝑟. 

Proof: 

By classical division in Z, we can find 𝑠0, 𝑝0, 𝑠1, 𝑝1, 𝑠2, 𝑝2such that 

𝑥0 = 𝑦0𝑠0 + 𝑝0, (𝑥0 + 𝑥2) = 𝑠2(𝑦0 + 𝑦2) + 𝑝2, (𝑥0 + 𝑥1 + 𝑥2) = 𝑠1(𝑦0 + 𝑦1 + 𝑦2) + 𝑝1. 

By putting 𝑞0 = 𝑠0, 𝑞1 = 𝑠1 − 𝑠2, 𝑞2 = 𝑠2 − 𝑠0, 𝑟0 = 𝑝0, 𝑟1 = 𝑝1 − 𝑝2, 𝑟2 = 𝑝2 − 𝑝0, we get 

𝑥 = 𝑞𝑦 + 𝑟. 

Example 3.9: 

Consider 𝑥 = (2, 𝐼1, −𝐼2), 𝑦 = (1,2𝐼1, 2𝐼2), then we have 𝑞 = (2,0, −2𝐼2), 𝑟 = (0, 𝐼1, 𝐼2), where 

𝑥 = 𝑞𝑦 + 𝑟. 

Remark 3.10: (Solvability of a linear congruence in 𝑍(𝐼1, 𝐼2) 

To solve a linear congruence 𝑥 ≡ 𝑦(𝑚𝑜𝑑𝑧). We should take its corresponding equivalent linear 

congruencies according to Theorem 3.4. Then we can find its solution easily. 

Example 3.11: 

Consider the following refined neutrosophic linear congruence 

𝑥 ≡ (2,3𝐼1, 𝐼2)(𝑚𝑜𝑑(1, 𝐼1, 4𝐼2)). 

 The equivalent system of congruencies is 

𝑥0 ≡ 2(𝑚𝑜𝑑 1)(𝐼), 𝑥0 + 𝑥2 ≡ 3(𝑚𝑜𝑑 5)(𝐼𝐼), 𝑥0 + 𝑥1 + 𝑥2 ≡ 6(𝑚𝑜𝑑 6)(𝐼𝐼𝐼). 

The congruence (I) has a solution 𝑥0 = 1. (II) has a solution 𝑥0 + 𝑥2 = 3, ℎ𝑒𝑛𝑐𝑒𝑥2 = 2. 

(III) has a solution 𝑥0 + 𝑥1 + 𝑥2 = 6, ℎ𝑒𝑛𝑐𝑒𝑥1 = 3. Thus the solution of the refined neutrosophic 

linear congruence is 𝑥 = (1,3𝐼1, 2𝐼2). It is easy to check that (1, 𝐼1, 4𝐼2)|[(1,3𝐼1, 2𝐼2) − (2,3𝐼1 , 𝐼2)]. 

Definition 3.12: 
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We define 𝑝 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) to be a refined neutrosophic prime integer if and only if 𝑝 is not divided 

by any other neutrosophic integer different from (1,0,0) and p. 

Remark 3.13: 

Definition 3.12 is different from the definition of prime elements in a ring, where p is called prime 

element if it has the following property: 

If 𝑝 = 𝑟𝑞 , then 𝑟 𝑜𝑟 𝑞must be a unit. 

Theorem 3.14: 

𝑍(𝐼1, 𝐼2) has no refined neutrosophic primes. 

Proof: 

Let 𝑝 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) be any refined neutrosophic integer different from (1,2𝐼1, −2𝐼2), we have: 

𝑟 = (1,2𝐼1, −2𝐼2)is a divisor of p, that is because 1|𝑎, 1 − 2|𝑎 + 𝑐, 1 + 2 − 2|𝑎 + 𝑏 + 𝑐, which is 

different from (1,0,0) and p. Hence p can not be a refined neutrosophic prime. 

If p=(1,2𝐼1, −2𝐼2), we have (1, −2𝐼1, 0) as a divisor different from p and (1,0,0), thus there are no 

refined neutrosophic primes. 

The question about the structure of prime elements in the refined neutrosophic ring of integers is 

still open. It depends on the structure of the group of units in the refined neutrosophic ring of 

integers. 

Definition 3.16. (Linear Combination in 𝑍(𝐼 1 , 𝐼 2 )) 

Let u,v be non-zero refined neutrosophic integers. Then any refined neutrosophic integer that 

can be written in the form 𝑢𝑥 +  𝑣𝑦 where 𝑥, 𝑦 ∈  𝑍(𝐼 1 , 𝐼 2 ) is called a linear combination of u 

and v. 

Example 3.17: 

 Let (2,2𝐼1 ,8𝐼2 ),(8,3𝐼1 ,7𝐼2) ∈ Z(I 1 ,I 2 ), we can find refined neutrosophic 

integers in 𝑍(𝐼 1 , 𝐼 2 ) that can be written as a linear combination of (2,2𝐼1 ,8𝐼2 ), and (8,3𝐼1 ,7𝐼2). 

To see this , Let 𝐴(𝐼 1 , 𝐼 2 ) be the set of all linear combinations of (2,2𝐼1 ,8𝐼2 ), and (8,3𝐼1 ,7𝐼2). 

Then 

A(I 1 ,I 2 ) = (2,2𝐼1 ,8𝐼2 )(𝑥0 ,𝑥1𝐼1 ,𝑥2𝐼2 ) + (8,3𝐼1 ,7𝐼2)( 𝑦0 ,𝑦1𝐼1 ,𝑦2𝐼2 )} 

where (𝑥0 ,𝑥1𝐼1 ,𝑥2𝐼2),( 𝑦0 ,𝑦1𝐼1 ,𝑦2𝐼2 ) ∈ 𝑍(𝐼 1 , 𝐼 2 ). 
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Now, let (𝑚0 ,𝑚1𝐼1 ,𝑚2𝐼2) = (2,2𝐼1 ,8𝐼2)( 𝑥0 ,𝑥1𝐼1 ,𝑥2𝐼2 ) + (8,3𝐼1 ,7𝐼2)( 𝑦0 ,𝑦1𝐼1 ,𝑦2𝐼2) for some 

(𝑥0 ,𝑥1𝐼1 ,𝑥2𝐼2 ) and (𝑦0 ,𝑦1𝐼1 ,𝑦2𝐼2 ). 

Since 

gcd((2,2𝐼1 ,8𝐼2),( 8,3𝐼1 ,7𝐼2)) = (2, 𝐼1,3 𝐼2). 

Then 

(𝑚0 ,𝑚1𝐼1 ,𝑚2𝐼2 ) = (2,2I 1 ,8I 2 )( 𝑥0 ,𝑥1𝐼1 ,𝑥2𝐼2 ) + (8,3I 1 ,7I 2 )( 𝑦0 ,𝑦1𝐼1 ,𝑦2𝐼2) 

= (2, 𝐼1,3 𝐼2)[(1,0𝐼1 ,𝐼2 )( 𝑥0 ,𝑥1𝐼1 ,𝑥2𝐼2) + (4,0𝐼1 ,−𝐼2)( 𝑦0 ,𝑦1𝐼1 ,𝑦2𝐼2)]. 

We see that (2, 𝐼1,3 𝐼2)|( 𝑚0 ,𝑚1𝐼1 ,𝑚2𝐼2), whatever the values of (𝑥0 ,𝑥1𝐼1 ,𝑥2𝐼2) and 

(𝑦0 ,𝑦1𝐼1 ,𝑦2𝐼2 ). 

Hence, (2, 𝐼1,3 𝐼2)|( 𝑚0 ,𝑚1𝐼1 ,𝑚2𝐼2) for all (𝑚0 ,𝑚1𝐼1 ,𝑚2𝐼2) ∈ 𝐴(𝐼 1 , 𝐼 2 ). Thus, every member 

of 𝐴(𝐼 1 , 𝐼 2 ) is a multiple of (2, 𝐼1,3 𝐼2). 

This observation is recorded in the following theorem. 

Theorem 3.15: 

Let u = (𝑎0 ,𝑎1𝐼1 ,𝑎2𝐼2 ),v = (𝑏0 ,𝑏1𝐼1 ,𝑏2𝐼2) and w = (𝑔0 ,𝑔1𝐼1 ,𝑔2𝐼2) be non- 

zero refined neutrosophic integers and let 𝑤 =  𝑔𝑐𝑑(𝑢, 𝑣). Then every linear combination of u 

and v is a multiple of w. That is, 

𝑤|𝑢𝑝 +  𝑣𝑞, 

for all p = (𝑝0 ,𝑝1𝐼1 ,𝑝2𝐼2),q = (𝑞0 ,𝑞1𝐼1 ,𝑞2𝐼2 ) ∈ 𝑍(𝐼 1 , 𝐼 2 ). 

Proof: 

The proof is similar to the classical case. 

4. Refined neutrosophic Pell's equation 

Definition 4.1: 

Let 𝑍(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑍} be the refined neutrosophic ring of integers. Refined 

Neutrosophic Pell's equation is defined as follows: 

𝑋2 − 𝐷𝑌2 = 𝐶; 𝑋 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑌 = (𝑦0 , 𝑦1𝐼1, 𝑦2𝐼2), 𝐷 = (𝑑0, 𝑑1𝐼1, 𝑑2𝐼2), 𝐶 = (𝑐0, 𝑐1𝐼1, 𝑐2𝐼2). 

Where 𝑐𝑖 , 𝑑𝑖 , 𝑥𝑖 , 𝑦𝑖 ∈ 𝑍. 

Theorem 4.2: 
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 Let 𝑍(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑍} be the refined neutrosophic ring of integers, 𝑋2 − 𝐷𝑌2 = 𝐶 

be a refined neutrosophic Pell's equation. Then it is equivalent to the following three classical Pell's 

equations: 

(a) 𝑥0
2 − 𝑑0𝑦0

2 = 𝑐0. 

(b) (𝑥0 + 𝑥2)2 − (𝑑0 + 𝑑2)(𝑦0 + 𝑦2)2 = 𝑐0 + 𝑐2. 

(c) (𝑥0 + 𝑥1 + 𝑥2)2 − (𝑑0 + 𝑑1 + 𝑑2)(𝑦0 + 𝑦1 + 𝑦2)2 = 𝑐0 + 𝑐1 + 𝑐2. 

Proof: 

We compute: 

𝑋2 = (𝑥0
2, [𝑥0𝑥1 + 𝑥1𝑥0 + 𝑥1𝑥1 + 𝑥1𝑥2 + 𝑥1𝑥2]𝐼1, [𝑥0𝑥2 + 𝑥2𝑥2 + 𝑥2𝑥0]𝐼2)= 

(𝑥0
2, [𝑥1

2 + 2𝑥0𝑥1 + 2𝑥1𝑥2]𝐼1, [𝑥2
2 + 2𝑥0𝑥2]𝐼2), 

𝐷𝑌2 = (𝑑0, 𝑑1𝐼1, 𝑑2𝐼2). (𝑦0
2, [𝑦1

2 + 2𝑦0𝑦1 + 2𝑦1𝑦2]𝐼1, [𝑦2
2 + 2𝑦0𝑦2]𝐼2)= 

(𝑑0𝑦0
2, [𝑑0𝑦1

2 + 2𝑑0𝑦0𝑦1 + 2𝑑0𝑦1𝑦2 + 𝑑1𝑦0
2 + 𝑑1𝑦1

2 + 2𝑑1𝑦0𝑦1 + 2𝑑1𝑦1𝑦2 + 𝑑1𝑦2
2 + 2𝑑1𝑦0𝑦2 +

𝑑2𝑦1
2 + 2𝑑2𝑦0𝑦1 + 2𝑑2𝑦1𝑦2]𝐼1, [𝑑0𝑦2

2 + 2𝑑0𝑦0𝑦2 + 𝑑2𝑦0
2 + 𝑑2𝑦2

2 + 2𝑑2𝑦0𝑦2]𝐼2). 

Now we have: 

𝑥0
2 − 𝑑0𝑦0

2 = 𝑐0. (Equation (a)). 

(*)𝑥2
2 + 2𝑥0𝑥2 − (𝑑0𝑦2

2 + 2𝑑0𝑦0𝑦2 + 𝑑2𝑦0
2 + 𝑑2𝑦2

2 + 2𝑑2𝑦0𝑦2) = 𝑐2. 

(**)𝑥1
2 + 2𝑥0𝑥1 + 2𝑥1𝑥2 − ( 𝑑0𝑦1

2 + 2𝑑0𝑦0𝑦1 + 2𝑑0𝑦1𝑦2 + 𝑑1𝑦0
2 + 𝑑1𝑦1

2 + 2𝑑1𝑦0𝑦1 + 2𝑑1𝑦1𝑦2 +

𝑑1𝑦2
2 + 2𝑑1𝑦0𝑦2 + 𝑑2𝑦1

2 + 2𝑑2𝑦0𝑦1 + 2𝑑2𝑦1𝑦2) = 𝑐1. 

By adding (a) to (*) we get: 

(𝑥0 + 𝑥2)2 − (𝑑0 + 𝑑2)(𝑦0 + 𝑦2)2 = 𝑐0 + 𝑐2. (Equation (b)). 

By adding (b) to (**) we get: 

(𝑥0 + 𝑥1 + 𝑥2)2 − (𝑑0 + 𝑑1 + 𝑑2)(𝑦0 + 𝑦1 + 𝑦2)2 = 𝑐0 + 𝑐1 + 𝑐2. 

The converse is clear. 

Remark 4.3: 

To solve a refined neutrosophic Pell's equation, follow these steps: 

(1) Write the equivalent system of classical Pell's equations. 

(2) Solve equation (a). 

(3) Solve (b). 
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(4) Solve (c). 

(5) Compute 𝑥2, 𝑦2, and then 𝑥1, 𝑦1. 

Example 4.5: 

Consider the following refined neutrosophic Pell's equation 𝑋2 − (2,0, 𝐼2)𝑌2 = (1, −6𝐼1, 3𝐼2). 

The equivalent system is: 

(a) 𝑥0
2 − 2𝑦0

2 = 1. 

(b)(𝑥0 + 𝑥2)2 − 3(𝑦0 + 𝑦2)2 = 4. 

(c) (𝑥0 + 𝑥1 + 𝑥2)2 − 3(𝑦0 + 𝑦1 + 𝑦2)2 = −2. 

Equation (a) has a solution 𝑥0 = 3, 𝑦0 = 2. Equation (b) has a solution 𝑦0 + 𝑦2 = 2, 𝑥0 + 𝑥2 = 4. 

Equation (c) has a solution 𝑥0 + 𝑥1 + 𝑥2 = 5, 𝑦0 + 𝑦1 + 𝑦2 = 3. Thus 𝑦2 = 0, 𝑥2 = 1, 𝑦1 = 1, 𝑥1 = 1, so 

𝑋 = (3, 𝐼1, 𝐼2), 𝑌 = (2, 𝐼1, 0). 

5. Open questions 

There are many open problems come to light according to this research. This section is devoted to 

present some important questions in the refined neutrosophic number theory. 

Problem 1: Determine the form of prime elements in 𝑍(𝐼1, 𝐼2). 

Problem 2: Define Euler's function in 𝑍(𝐼1, 𝐼2). Is Euler's Theorem still true in the case of refined 

neutrosophic integers. 

Problem 3: Find an easy algorithm to solve a refined neutrosophic non linear congruence in a similar 

way to refined neutrosophic Pell's equation. 

Problem 4: Find the form of the fundamental theorem in arithmetic in  𝑍(𝐼1, 𝐼2). 

4. Conclusions 

In this article, we have established the basic theory of refined neutrosophic integers. Many important 

concepts and conditions about division, gcd, and congruencies in 𝑍(𝐼1, 𝐼2). Also, refined 

neutrosophic Pell's equation was studied and we gave an algorithm to solve this kind of non linear 

Diophantine equations. 

We have listed four open new problems concerning the refined neutrosophic number theory, their 

solution may lead to a big progression in neutrosophic number theory. 
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Abstract: The focus of this paper is to introduce the notion of quadripartitioned neutrosophic 

topology (Q-NT) on quadripartitioned neutrosophic sets (Q-NS). In this paper, we define 

quadripartitioned neutrosophic closure, quadripartitioned neutrosophic interior operator of Q-NSs 

in quadripartitioned neutrosophic topological space (Q-NTS) and investigate several properties of 

them. Again, we introduce quadripartitioned neutrosophic semi-open (Q-NSO) set, 

quadripartitioned neutrosophic pre-open (Q-NPO) set, quadripartitioned neutrosophic b-open 

(Q-N-b-O) set, and quadripartitioned neutrosophic -open (Q-N-O) set in Q-NTSs. Further, we 

furnish some suitable examples and prove some basic results on Q-NTS. 

 

Keywords: Quadripartitioned Neutrosophic Set; Q-NT; Q-NTS; Quadripartitioned-Neutrosophic Closure; 

Quadripartitioned-Neutrosophic Closure; Q-NPO; Q-N-O. 

________________________________________________________________________________________ 

1. Introduction: In the year 2005, Smarandache [20] extended the concept of intuitionistic fuzzy set 

by introducing the notion of neutrosophic set (NS). Later on, many researchers use NS in their 

theoretical and practical research. In the year 2016, Chatterjee et. al. [4] grounded the idea of 

quadripartitioned neutrosophic set and defined several similarity measures between two 

quadripartitioned neutrosophic sets. The idea of neutrosophic topological space (NTS) was 

presented by Salama and Alblowi [18] in the year 2012. The neutrosophic semi-open mappings are 

studied by Arokiarani et. al. [2]. Afterwards, Iswaraya and Bageerathi [11] studied the concept of 

neutrosophic semi-open sets and neutrosophic semi-closed sets. Pushpalatha and Nandhini [15] 

grounded the idea of neutrosophic generalized closed sets in NTSs. The notion of neutrosophic 

b-open sets in NTSs was presented by Ebenanjar et al. [10]. Rao and Srinivasa [17] grounded the 

concept of pre open set and pre closed set via neutrosophic topological spaces. Thereafter, 

Maheswari et. al. [13] studied the neutrosophic generalized b-closed sets in NTSs. In the year 2019, 

Mohammed Ali Jaffer and Ramesh [14] studied the concept of neutrosophic generalized pre-regular 

mailto:sumandas18842@gmail.com
mailto:sumandas18843@gmail.com
mailto:rakhal.mathematics@tripurauniv.in
mailto:rakhaldas95@gmail.com
mailto:rakhaldas95@gmail.com
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closed sets. The generalized neutrosophic b-open sets in NTSs was introduced by Das and Pramanik 

[6]. Das and Pramanik [7] also defined the neutrosophic -open sets and neutrosophic -continuous 

mappings via NTSs. Recently, Ramesh [16] presented the notion of Ngpr homomorphism via 

neutrosophic topological spaces. In this study, we introduce the notion of Q-NT and present the 

concept of quadripartitioned neutrosophic closure and quadripartitioned neutrosophic interior 

operator in Q-NTSs. It is just the beginning of a new notion. In the future, based on these notions and 

various open sets on Q-NTSs, many new investigations (compectness, paracompectness, separation 

axioms) can be easily done. Also, the researchers can use the quadripartitioned neutrosophic 

topological operators in the area of multi criteria decision making problems.   

 

Research Gap: No investigation on Q-NTSs has been reported in the recent literature. 

Motivation: To reduce the gap of research, we present the notion of Q-NTSs. 

The remaining part of this paper has been splited into following four sections: 

In section-2, we recall some relevant definitions, properties, results of NSs, Q-NSs. Section-3 is on the 

notion of quadripartitioned neutrosophic topological spaces. In this section, we give some basic 

definitions, theorems, and propositions on Q-NTSs. In section-4, we conclude our work done in this 

paper and stating the future scope of research.   

 

2. Some Relevant Definitions: 

Definition 2.1. [4] Assume that  be a fixed set. Then, a quadripartitioned neutrosophic set (Q-NS) P 

over  is defined by: 

P = {(q, TP(q), CP(q), GP(q), FP(q)): q}, where TP(q), CP(q), GP(q), and FP(q) (∈ [0,1]) are the truth, 

contradiction, ignorance, and falsity membership values of q. So, 0TP(q)+CP(q)+GP(q)+FP(q) 4. 

Example 2.1. Suppose ={u, v}. Then, P= {(u,0.5,0.6,0.3,0.6), (v,0.9,0.3,0.4,0.2)} is a Q-NS over . 

Definition 2.2. [4] The absolute Q-NS (1QN) and the null Q-NS (0QN) over  are defined as follows: 

(i) 1QN = {(q, 1, 1, 0, 0): q}; 

(ii) 0QN = {(q, 0, 0, 1, 1): q}. 

Example 2.2. Suppose that ={u, v}. Then, 1QN  = {(u,1, 1, 0, 0), (v, 1, 1, 0, 0)} and 0QN = {(u,0, 0, 1, 1), (v, 

0, 0, 1, 1)}. 

Remark 2.1. Suppose that R be a Q-NS over . Then, 0QN  R  1QN. 

Definition 2.3.[4] Suppose that X = {(q, TX(q), CX(q), GX(q), FX(q)): q} and Y = {(q, TY(q), CY(q), GY(q), 

FY(q)): q} be two Q-NSs over . Then, X  Y  TX(q) TY(q), CX(q) CY(q), GX(q) GY(q), FX(q) FY(q), 

for all q. 

Example 2.3. Assume that ={u, v}. Suppose that X={(u,0.5,0.3,0.6,0.7), (v,0.2,0.4,0.8,0.8)} and 

Y={(u,0.3,0.3,0.8,0.8), (v,0.2,0.3,0.9,1.0)} be two Q-NSs over . Then, YX. 

Definition 2.4.[4] Suppose that X = {(q, TX(q), CX(q), GX(q), FX(q)): q} and Y = {(q, TY(q), CY(q), GY(q), 

FY(q)): q} be two Q-NSs over . Then, the union of X and Y is X  Y = {(q, max {TX(q), TY(q)}, max 

{CX(q), CY(q)}, min {GX(q), GX(q)}, min {FX(q), FX(q)}): q}. 

Example 2.4. Assume that X and Y be two Q-NSs over ={u, v} as shown in Example 2.3. Then, 

XY= {(u,0.5,0.3,0.6,0.7), (v,0.2,0.4,0.8,0.8)}. 
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Definition 2.5.[4] Suppose that X ={(q, TX(q), CX(q), GX(q), FX(q)): q} and Y = {(q, TY(q), CY(q), GY(q), 

FY(q)): q} be two Q-NSs over . Then, the complement of X is Xc ={(q, FX(q), GX(q), CX(q), TX(q)): 

q}. 

Example 2.5. Suppose that ={u, v} and X={(u,0.8,0.8,0.5,1.0), (v,1.0,0.5,0.3,0.8)} be a Q-NS over . 

Then, Xc={(u,1.0,0.5,0.8,0.8), (v,0.8,0.3,0.5,1.0)}. 

Definition 2.6.[4] Suppose that X={(q, TX(q), CX(q), GX(q), FX(q)): q} and Y = {(q, TY(q), CY(q), GY(q), 

FY(q)): q} be two Q-NSs over . Then, the intersection of X and Y is XY={(q, min {TX(q), TY(q)}, 

min {CX(q), CY(q)}, max {GX(q), GX(q)}, max {FX(q), FX(q)}): q}. 

Example 2.6. Assume that X and Y be two Q-NSs over ={u, v} as shown in Example 2.3. Then, 

XY={(u,0.3,0.3, 0.8,0.8), (v,0.2,0.3,0.9, 1.0)}. 

 

3. Quadripartitioned Neutrosophic Topology: 

Definition 3.1. Let  be a fixed set. A collection  of some Q-NSs over  is called a Q-NT on , if the 

following conditions holds: 

(i) 1QN, 0QN  ; 

(ii) M1  M2  whenever M1, M2  ; 

(iii) ∪Mi , whenever {Mi: i}  . 

Then, (,) is called a Q-NTS. Every element of  are called a quadripartitioned neutrosophic open 

set (Q-NOS). If M, then Mc is called a quadripartitioned neutrosophic closed set (Q-NCS). 

Remark 3.1. In every Q-NTS, 0QN and 1QN are both Q-NOS and Q-NCS. 

Example 3.1. Let  = {u, v}. Assume that M = {(u,0.9,0.5,0.7,1.0), (v,0.3,0.1,0.5,0.7): u, v  } and N = 

{(u,0.9,0.7,0.1,0.9), (v,0.4,0.6,0.1,0.2): u, v } be two Q-NSs over . Then,  ={0QN, 1QN, M, N} forms a 

Q-NT on . 

The quadripartitioned-neutrosophic interior and quadripartitioned-neutrosophic closure of a 

Q-NS in a Q-NTS are defined as follows: 

Definition 3.2. Let us consider a quadripartitioned neutrosophic subset X of a Q-NTS (,). Then, 

the quadripartitioned-neutrosophic closure (Q-Ncl) of X is the intersection of all Q-NCSs containing 

X and the quadripartitioned-neutrosophic interior (Q-Nint) of X is the union of all Q-NOSs contained 

in X, i.e. 

Q-Ncl(X) = {Z : X ⊆ Z and Z is a Q-NCS in (,)}; 

Q-Nint(X) = {Y : Y  X and Y is a Q-NOS in (,)}. 

Remark 3.2. It is clear that Q-Ncl(X) is the smallest Q-NCS in (,) that contains X and Q-Nint(X) is 

the largest Q-NOS in (,) which is contained in X. 

Theorem 3.1. If T and R be any two quadripartitioned neutrosophic subsets of a Q-NTS (,), then  

(i) Q-Nint(T)  T  Q-Ncl(T); 

(ii)T  R  Q-Ncl(T)  Q-Ncl(R); 

(iii)T  R  Q-Nint(T)  Q-Nint(R); 

(iv)T is an N*-OS iff Q-Nint(T) = T; 

(v)T is an N*-CS iff Q-Ncl(T) =T. 

Proof. (i) From the previous definition, we have Q-Nint(T) = {R: R is a Q-NOS in (,) and R T}.  
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Since, each R  T, so {R: R is a Q-NOS in (,) and R T} T, i.e. Q-Nint(T)T. 

Again, Q-Ncl(T) = {Z: Z is a Q-NCS in (,) and T  Z}. Since, each Z  T, so {Z: Z is a Q-NCS in 

(,) and T  Z}  T, i.e. Q-Ncl(T)  T. 

Therefore, Q-Nint(T)  T  Q-Ncl(T).  

(ii) Assume that T and R be any two quadripartitioned neutrosophic subsets of a Q-NTS (,) such 

that T  R.  

Now, Q-Ncl(T) = {Z: Z is a Q-NCS in (,) and T  Z} 

  {Z: Z is a Q-NCS in (,) and R  Z} [since T  R] 

       = Q-Ncl(R) 

 Q-Ncl(T) Q-Ncl(R). 

Therefore, T  R  Q-Ncl(T) Q-Ncl(R). 

(iii) Assume that T and R be any two quadripartitioned neutrosophic subsets of a Q-NTS (,) such 

that T  R.  

Now, Q-Nint(T) = {Z: Z is a Q-NOS in (,) and Z  T} 

                           {Z: Z is a Q-NOS in (,) and Z  R}           [since T R] 

                      = Q-Nint(R) 

 Q-Nint(T) Q-Nint(R). 

Therefore, T R  Q-Nint(T) Q-Nint(R). 

(iv) Assume that T be a Q-NOS in a Q-NTS (,). Now, Q-Nint(T) = {Z: Z is a Q-NOS in (,) and Z 

T}. Since, T is a Q-NOS in (,), so T is the largest Q-NOS, which is contained in T. Therefore, {Z: 

Z is a Q-NOS in (,) and Z T} = T. This implies, Q-Nint(T) =T. 

(v) Assume that T be a Q-NCS in a Q-NTS (,). Now, Q-Ncl(T) = {Z : Z is a Q-NCS in (,) and 

TZ}. Since, T is a Q-NCS in (,), so T is the smallest Q-NCS, which contains T. Therefore, {Z: Z is 

a Q-NCS in (,) and TZ} = T. This implies, Q-Ncl(T) = T. 

Theorem 3.2. Let E be a quadripartitioned neutrosophic subset of a Q-NTS (,). Then, 

(i) (Q-Nint(E))c= Q-Ncl(Ec); 

(ii) (Q-Ncl(E))c= Q-Nint(Ec). 

Proof. (i) Suppose that (,) be a Q-NTS and E={(w, TE(w), CE(w), GE(w), FE(w)): w} be a 

quadripartitioned neutrosophic subset of . Now, Q-Nint(E)= {Zi: i and Zi is a Q-NOS in (,) 

such that ZiE} = {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝐹𝑍𝑖

(w)): w }, where for all i and Zi is a Q-NOS 

in (,) such that ZiE. This implies, (Q-Nint(E))c={(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝐹𝑍𝑖

(w)): w }. 

Since, 𝑇𝑍𝑖
(w)𝑇𝐸 (w), 𝐶𝑍𝑖

(w)𝐶𝐸 (w), 𝐺𝑍𝑖
(w)𝐺𝐸 (w), 𝐹𝑍𝑖

(w)𝐹𝐸 (w), for each i and w , so 

Q-Ncl(Ec)= {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝐹𝑍𝑖

(w)): w}} = {Zi: i and Zi is a Q-NCS in (,) such 

that EcZi}. Therefore, (Q-Nint(E))c = Q-Ncl(Ec). 

(ii) Suppose that (,) be a Q-NTS and E={(w, TE(w), CE(w), GE(w), FE(w)): w} be a 

quadripartitioned neutrosophic subset of . Now, Q-Ncl(E)= {Zi: i and Zi is a Q-NCS in (,) 

such that Zi E}={(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝐹𝑍𝑖

(w)): w}, where for all i and Zi is a Q-NCS in 

(,) such that Zi   E. This implies, (Q-Ncl(E))c={(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝐹𝑍𝑖

(w)): w}. Since, 

𝑇𝑍𝑖
(w)𝑇𝐸(w), 𝐶𝑍𝑖

(w)𝐶𝐸(w), 𝐺𝑍𝑖
(𝑤)𝐺𝐸(w), 𝐹𝑍𝑖

(w)𝐹𝐸(w), for each i and w, so Q-Nint(Ec)= 
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{(w,𝑇𝑍𝑖
(w),𝐶𝑍𝑖

(w),𝐺𝑍𝑖
(w),𝐹𝑍𝑖

(w)): w}={Zi: i and Zi is a Q-NOS in (,) such that Zi  Ec}. 

Therefore, (Q-Ncl(E))c = Q-Nint(Ec). 

Definition 3.3. Suppose that (,) be a Q-NTS. Then, a Q-NS W over  is called a  

(i) quadripartitioned neutrosophic semi-open (Q-NSO) set iff W  Q-Ncl(Q-Nint(W)); 

(ii) quadripartitioned neutrosophic pre-open (Q-NPO) set iff W  Q-Nint(Q-Ncl(W)). 

The complement of Q-NSO sets and Q-NPO sets are called Q-NSC sets and Q-NPC sets respectively. 

Theorem 3.3. Suppose that (,) be a Q-NTS. If W and M are two Q-NSO sets, then WM is also a 

Q-NSO set. 

Proof. Suppose that (,) be a Q-NTS. Let W, M be two Q-NSO sets in (,). Therefore, 

WQ-Ncl(Q-Nint(W))                                                                            (1) 

and MQ-Ncl(Q-Nint(M))                                                                        (2) 

From (1) and (2), we have 

WM Q-Ncl(Q-Nint(W)) Q-Ncl(Q-Nint(M)) = Q-Ncl(Q-Nint(W)  Q-Nint(Y))  Q-Ncl(Q-Nint(W  M)). 

This implies, WM  Q-Ncl(Q-Nint(W  M)). Therefore, WM is a Q-NSO set in (,). 

Theorem 3.4. Suppose that (,) be a Q-NTS. If W is a Q-NOS, then W is also a Q-NSO set. 

Proof. Suppose that (,) be a Q-NTS and W be a Q-NOS. Therefore, W=Q-Nint(W). It is known that 

WQ-Ncl(W). This implies, WQ-Ncl(Q-Nint(W)). Therefore, W is a Q-NSO set. 

Theorem 3.5. Suppose that (,) be a Q-NTS. If W and M are two Q-NPO sets, then WM is also a 

Q-NPO set. 

Proof. Suppose that (,) be a Q-NTS. Let W, M be two Q-NPO sets in (,). Therefore, 

W Q-Nint(Q-Ncl(W))                                                                            (3) 

and M Q-Nint(Q-Ncl(M))                                                                        (4) 

From (3) and (4), we have, 

WM  Q-Nint(Q-Ncl(W))Q-Nint(Q-Ncl(M))  Q-Nint(Q-Ncl(W)Q-Ncl(M)) = Q-Nint(Q-Ncl(WM)). 

This implies, WM Q-Nint(Q-Ncl(W  M)). Therefore, WM is a Q-NPO set in (,). 

Theorem 3.6. Assume that (,) be a Q-NTS. If W is a Q-NOS, then W is also a Q-NPO set. 

Proof. Suppose that (,) be a Q-NTS and W be a Q-NOS in (,). So W=Q-Nint(W). It is known that 

WQ-Ncl(W). This implies, Q-Nint(W)  Q-Nint(Q-Ncl(W)) i.e. W =Q-Nint(W)  Q-Nint(Q-Ncl(W)). Hence, 

W Q-Nint(Q-Ncl(W)). Therefore, W is a Q-NPO set.    

Definition 3.4. Let us assume that (,) be a Q-NTS. Then W, a Q-NS over  is called a 

quadripartitioned neutrosophic -open (Q-N-O) set if and only if WQ-Nint(Q-Ncl(Q-Nint(W))).  

Remark 3.3. (i) The complement of a Q-N-O set is called a quadripartitioned neutrosophic -closed 

(Q-N-C) set. 

(ii) In a Q-NTS (,), every Q-NOS is a Q-N-O set. 

(iii) In a Q-NTS (,), every Q-NCS is a Q-N-C set. 

Theorem 3.7. In a Q-NTS (,), 

(i) every Q-N-O set is a Q-NPO set; 

(ii) every Q-N-O set is a Q-NSO set. 

Proof. (i) Suppose that W be a Q-N-O set in a Q-NTS (,). Therefore, W Q-Nint(Q-Ncl(Q-Nint(W))). 

It is known that, Q-Nint(W)W. This implies, Q-Ncl(Q-Nint(W))Q-Ncl(W). Therefore, 
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Q-Nint(Q-Ncl(Q-Nint (W)))Q-Nint(Q-Ncl(W). This implies, WQ-Nint(Q-Ncl(W). Therefore, W is a 

Q-NPO set. Hence, every Q-N-O set is a Q-NPO set. 

(ii) Suppose that W be a Q-N-O set in a Q-NTS (,). So, W Q-Nint(Q-Ncl(Q-Nint(W))). It is known 

that, Q-Nint(Q-Ncl(Q-Nint(W)))Q-Ncl(Q-Nint(W)). This implies, WQ-Ncl(Q-Nint(W)). Therefore, W is a 

Q-NSO set. Hence, every Q-N-O set is a Q-NSO set. 

Definition 3.5. Suppose that (,) be a Q-NTS. Then W, a Q-NS over  is called a quadripartitioned 

neutrosophic b-open (Q-N-b-O) set if and only if WQ-Nint(Q-Ncl(W))Q-Ncl(Q-Nint(W)). A 

quadripartitioned neutrosophic set W is called a quadripartitioned neutrosophic b-closed (Q-N-b-C) 

set if and only if Wc is a Q-N-b-O set. 

Remark 3.4. A Q-NS W over  is called a Q-N-b-C set if and only if 

Q-Nint(Q-Ncl(W))Q-Ncl(Q-Nint(W))W. 

Theorem 3.8. Suppose that (,) be a Q-NTS. If W, M be two Q-N-b-O sets in (,), then WM is 

also a Q-N-b-O set.  

Proof. Suppose that (,) be a Q-NTS. Let W, M be two Q-N-b-O sets in (,). So 

W Q-Nint(Q-Ncl(W))  Q-Ncl(Q-Nint(W)),                                                         (5) 

and M Q-Nint(Q-Ncl(M))  Q-Ncl(Q-Nint(M)).                                                    (6) 

We know that, W WM and M WM. This implies, 

Q-Ncl(Q-Nint(W)) Q-Ncl(Q-Nint(WM)),                                                         (7) 

Q-Nint(Q-Ncl(W)) Q-Nint(Q-Ncl(WM)),                                                         (8) 

Q-Ncl(Q-Nint(M)) Q-Ncl(Q-Nint(WM)),                                                          (9) 

Q-Nint(Q-Ncl(M)) Q-Nint(Q-Ncl(WM)).                                                        (10) 

From Eq. (5) and Eq. (6), we have, 

WM Q-Ncl(Q-Nint(W))  Q-Nint(Q-Ncl(W))  Q-Ncl(Q-Nint(M))  Q-Nint(Q-Ncl(M)) 

         Q-Ncl(Q-Nint(WM))  Q-Nint(Q-Ncl(WM))  Q-Ncl(Q-Nint(WM))  Q-Nint(Q-Ncl(WM)) 

                                                                           [ by eqs (7), (8), (9), (10)] 

          = Q-Ncl(Q-Nint(WM))  Q-Nint(Q-Ncl(WM)). 

This implies, WM Q-Ncl(Q-Nint(WM))  Q-Nint(Q-Ncl(WM)). Hence, WM is a Q-N-b-O set. 

Theorem 3.9. Suppose that (,) be a Q-NTS. If W, M be two Q-N-b-C sets in (,), then WM is 

also a Q-N-b-C set.    

Proof. Suppose that (,) be a Q-NTS. Let W, M be two Q-N-b-C sets in (,). So, 

Q-Nint(Q-Ncl(W))  Q-Ncl(Q-Nint(W))  W                                                       (11) 

and Q-Nint(Q-Ncl(M))  Q-Ncl(Q-Nint(M))  M                                                   (12) 

We know that, WM⊆W and WM⊆M. This implies, 

Q-Ncl(Q-Nint(WM)) ⊆ Q-Ncl(Q-Nint(W))                                                        (13) 

Q-Nint(Q-Ncl(WM)) ⊆ Q-Nint(Q-Ncl(W))                                                        (14) 

Q-Ncl(Q-Nint(WM)) ⊆ Q-Ncl(Q-Nint(M))                                                        (15) 

Q-Nint(Q-Ncl(WM)) ⊆ Q-Nint(Q-Ncl(M))                                                        (16) 

From Eq. (11) and Eq. (12), we have 

WM  Q-Nint(Q-Ncl(W))  Q-Ncl(Q-Nint(W))  Q-Nint(Q-Ncl(M))  Q-Ncl(Q-Nint(M)) 

         Q-Nint(Q-Ncl(WM))  Q-Ncl(Q-Nint(WM))  Q-Nint(Q-Ncl(WM))  Q-Ncl(Q-Nint(WM)) 
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                                                                [ by using eqs. (13), (14), (15) & (16)] 

             = Q-Nint(Q-Ncl(WM))  Q-Ncl(Q-Nint(WM)). 

This implies, WM⊇ Q-Ncl(Q-Nint(WM))  Q-Nint(Q-Ncl(WM)). Hence, WM is a Q-N-b-C set in 

(,). 

Theorem 3.10. In a Q-NTS (,), every Q-NPO set is a Q-N-b-O set.  

Proof. Let W be a Q-NPO set in a Q-NTS (,). So, WQ-Nint(Q-Ncl(W)). This implies, W 

Q-Nint(Q-Ncl(W)) ∪ Q-Ncl(Q-Nint(W)). Therefore, W is a Q-N-b-O set. Hence, every Q-NPO set is a 

Q-N-b-O set. 

Theorem 3.11. In a Q-NTS (,), every Q-NSO set is a Q-N-b-O set.  

Proof. Let W be a Q-NSO set in a Q-NTS (,). Therefore, WQ-Ncl(Q-Nint(W)). This implies, W 

Q-Ncl(Q-Nint(W))Q-Nint(Q-Ncl(W)). Therefore, W is a Q-N-b-O set. Hence, every Q-NSO set is a 

Q-N-b-O set. 

 

4. Conclusion: In this article, we introduce topology on Q-NSs. We study different types of open sets 

like Q-NPO set, Q-NSO set, Q-N-O set, and Q-N-b-O set, etc. By defining Q-NPO set, Q-NSO set, 

Q-N-b-O set, and Q-N-O set, we formulate some theorems, remarks on quadripartitioned 

neutrosophic topological space. Further, few illustrative examples are given. In the future, based on 

these notions and various open sets on Q-NTSs, many new investigations (compectness, 

para-compectness, conectedness, separation axioms) can be easily done. Also, the quadripartitioned 

neutrosophic topological operators can be used in the area of multi criteria decision making 

problems. 
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Abstract: If R(I) is a neutrosophic ring, then every subset of R(I) has the form 𝑀 = 𝑃 + 𝑆𝐼, where P,S 

are subsets of the classical ring R. The objective of this paper is to determine the necessary and 

sufficient condition on classical subsets P and S which makes M an ideal in R(I). The main result is 

proving that every classical ideal in a neutrosophic ring must be an AH-ideal and determining the 

form of maximal and minimal ideals in R(I). Also, a similar discussion of the case of refined 

neutrosophic rings will be presented. 

Keywords: Neutrosophic ring, refined neutrosophic ring, maximal ideal, minimal ideal, AH-ideal. 

_______________________________________________________________________________________ 

1. Introduction 

Neutrosophy is a generalized view on intuitionistic fuzzy logic, it is considered as a new 

generalization of fuzzy ideas. The concept of neutrosophic set was built over the idea of dividing 

logical degrees into truth, falsity, and indeterminacy. This concept has an interesting effect in the 

study of optimization [16], computer science [18,22], decision making [15], and medical studies 

[19,21]. More applications of neutrosophy in many areas can be found in [33,34,35,36,37]. 

In the field of pure mathematics, we find many applications such as neutrosophic spaces [9,11,30], 

modules [4], groups [26], and rings [3,28,29]. 

The concept of neutrosophic ring was proposed by Smarandache and Kandasamy in [24], where 

they defined neutrosophic ring, neutrosophic ideal and neutrosophic isomorphism. Recently, many 

interesting results about neutrosophic rings were discussed [1,,3,20,14]. 

A neutrosophic ideal is an ideal by classical meaning i.e. it is a subset N from R(I) with the following 

properties: (N,+) is a subgroup of (𝑅(𝐼), +), and 𝑟. 𝑥 ∈ 𝑁 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑁 𝑎𝑛𝑑 𝑟 ∈ 𝑅(𝐼). 

AH-ideals are subsets 𝑁 = 𝑃 + 𝑄𝐼, where P,Q are two classical ideals in the classical ring R [1]. 

mailto:mohammadabobala777@gmail.com
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In [1], we find that AH-ideals are not supposed to be neutrosophic ideals, the converse is still 

unknown. A general study of AH-ideals and their relationships with Kothe's conjecture can be 

found in [31].  

Through the first section of  this paper, we present a characterization theorem of classical 

neutrosophic ideals in  a neutrosophic ring R(I). We prove that each neutrosophic ideal must be an 

AH-ideal. In addition, we determine the necessary and sufficient condition for any subset 𝑀 = 𝑃 +

𝑆𝐼 to be a neutrosophic ideal only using classical properties of P and S. 

On the other hand, Agboola et.al presented a generalization of neutrosophic sets by splitting the 

degree of indeterminacy I into two degrees of indeterminacy 𝐼1, 𝐼2  . This idea was used widely in 

algebra by studying refined neutrosophic rings [6,7], and n-refined neutrosophic rings and modules 

[12,13,25]. 

AH-ideals in refined neutrosophic rings were defined in [2], as subsets with form (𝑃, 𝑄𝐼1, 𝑆𝐼2), where 

𝑃, 𝑄, 𝑆 are classical ideals in the ring R. According to [2], refined neutrosophic AH-ideals are not 

supposed to be ideals by classical meaning. In the second section of this work, we prove a 

characterization theorem of refined neutrosophic subsets to be classical refined ideals by depending 

on classical properties of P,Q,S only. This theorem ensures that each refined neutrosophic classical 

ideal must be a refined neutrosophic AH-ideal. 

The main results of this work is to describe the structure of all non trivial maximal or minimal ideals 

in neutrosophic and refined neutrosophic rings. 

This work is an extension of efforts to classify maximal and minimal ideals in neutrosophic rings in 

[38]. 

All rings through this paper are considered with unity 1. 

Motivation 

Our motivation is to close an important research gap by determining all maximal and minimal ideals 

and their forms in neutrosophic rings, and refined neutrosophic rings. 

2.Preliminaries 

Definition 2.1: [24] 

Let R be a ring, I be the indeterminacy with property 𝐼2 = 𝐼 , then the neutrosophic ring  is defined 

as follows: 
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𝑅(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅}. 

Neutrosophic ring can be considered as an extension of classical ring by adding an indeterminacy 

element to R. 

Definition 2.2 : [24] 

Let R(I) be a neutrosophic ring, it is called commutative if and only if 𝑥𝑦 = 𝑦𝑥∀ 𝑥, 𝑦 ∈ 𝑅(𝐼).. 

Definition 2.3: [24] 

Let R(I) be a neutrosophic ring, a non-empty subset P of R(I) is called a neutrosophic ideal if 

.(a) P is a neutrosophic subring of R(I) 

(b) 𝑟𝑥 ∈ 𝑃 𝑓𝑜𝑟 𝑒𝑥𝑒𝑟𝑦 𝑥 ∈ 𝑃 𝑎𝑛𝑑 𝑟 ∈ 𝑅(𝐼). 

Definition 2.4: [1] 

Let R(I) be a neutrosophic ring and 𝑃 = 𝑃0 + 𝑃1𝐼 = {𝑎0 + 𝑎1𝐼 ;  𝑎0 ∈ 𝑃0 , 𝑎1 ∈ 𝑃1}. 

(a)We say that P is an AH-ideal if 𝑃0, 𝑃1 are ideals in the ring R. 

(b)We say that P is an AHS-ideal if 𝑃0 = 𝑃1. 

(c) 𝑇he AH-ideal P is called null if 𝑃0, 𝑃1 ∈ {𝑅 , 𝑂 }. 

Theorem 2.5: [1] 

Let R(I) be a neutrosophic ring and 𝑃 = 𝑃0 + 𝑃1𝐼 be an AH-ideal, then P is not a neutrosophic ideal 

in general by the classical meaning. 

Definition 2.6: [6] 

The element I can be split  into two indeterminacies 𝐼1 , 𝐼2 with conditions: 

I1
2 = I1 , 𝐼2

2 = 𝐼2 , 𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1. 

Definition 2.7: [6] 

If X is a set then X(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2): 𝑎 , 𝑏 , 𝑐 ∈ 𝑋 } is called the refined neutrosophic set generated 

by X , 𝐼1, 𝐼2. 

Definition 2.8: [2] 

Let (R,+,×) be a ring, (R(𝐼1, 𝐼2) , + ,×) is called a 2-refined neutrosophic ring generated by R ,𝐼1, 𝐼2. 

Example 2.9: [6] 

The refined neutrosophic ring of integers is 𝑍(𝐼1, I2)={(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑍}. 

Definition 2.10: [2] 
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Let (R(𝐼1, 𝐼2) , + , . ) be a refined neutrosophic ring and 𝑃0, 𝑃1, 𝑃2 be ideals in the ring R then the set 

𝑃 = (𝑃0, 𝑃1𝐼1, 𝑃2𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2): 𝑎 ∈ 𝑃0, 𝑏 ∈ 𝑃1, 𝑐 ∈ 𝑃2} is called a refined neutrosophic AH-ideal. 

If 𝑃0 = 𝑃1 = 𝑃2 then P is called a refined neutrosophic AHS-ideal. 

3. Ideals in Neutrosophic rings 

Remark 3.1: 

Since every neutrosophic ring R(I) can be understood as 𝑅(𝐼) = 𝑅 + 𝑅𝐼 = (𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅}, 

Then each subset of R(I) has the form 𝑀 = 𝑃 + 𝑆𝐼; P,S are two subsets of R. We call P the real part, S 

the neutrosophic part of M. 

An important question arises here. This question is: 

When M is a neutrosophic ideal of R(I)?. In other words, what conditions on the real part P and 

neutrosophic part S which make M be an ideal?. 

The following theorem clarifies the necessary and sufficient condition to answer the previous 

question. 

Theorem 3.2: 

Let R(I) be a neutrosophic ring, 𝑀 = 𝑃 + 𝑆𝐼 be any subset of R(I), then 

M is a neutrosophic ideal if and only if the following conditions are true: 

(a) P is an ideal on R. 

(b) P is contained in S. 

(c) S is an ideal of R. 

Proof: 

Firstly, we assume that (a),(b), and (c) are true, we have: 

(𝑀, +) is a subgroup of (𝑅(𝐼), +), that is because if 𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼 ∈ 𝑀; 𝑎, 𝑐 ∈ 𝑃, 𝑏, 𝑑 ∈ 𝑆, we find 

(𝑎 + 𝑏𝐼) − (𝑐 + 𝑑𝐼) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝐼 ∈ 𝑀; 𝑎 − 𝑐 ∈ 𝑃, 𝑏 − 𝑑 ∈ 𝑆.. 

Now, suppose that  𝑎 + 𝑏𝐼 ∈ 𝑀 𝑎𝑛𝑑 𝑟 = 𝑚 + 𝑛𝐼 ∈ 𝑅(𝐼), we have 

𝑟. (𝑎 + 𝑏𝐼) = 𝑚. 𝑎 + 𝐼[𝑚. 𝑏 + 𝑛. 𝑏 + 𝑛. 𝑎], by the assumption, we regard that 𝑚. 𝑏 + 𝑛. 𝑏 ∈ 𝑆, 𝑎𝑛𝑑 𝑛. 𝑎 ∈

𝑃 ≤ 𝑆, thus 𝑟. (𝑎 + 𝑏𝐼) = 𝑚. 𝑎 + 𝐼[𝑚. 𝑏 + 𝑛. 𝑏 + 𝑛. 𝑎] ∈ 𝑃 + 𝑆𝐼 = 𝑀, which means that M is a 

neutrosophic ideal of R(I). 
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Conversely, we suppose that 𝑀 = 𝑃 + 𝑆𝐼 is a neutrosophic ideal of R(I). Let 𝑎, 𝑐 be two arbitrary 

elements in P, and 𝑏, 𝑑 be two arbitrary elements in S, we have 𝑎 + 𝑏𝐼, 𝑐 + 𝑑𝐼 ∈ 𝑀, by using the 

assumption we have M as an ideal, hence (𝑎 + 𝑏𝐼) − (𝑐 + 𝑑𝐼) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝐼 ∈ 𝑀 = 𝑃 + 𝑆𝐼, 

thus 

𝑎 − 𝑐 ∈ 𝑃, 𝑎𝑛𝑑 𝑏 − 𝑑 ∈ 𝑆, thus (𝑃, +), (𝑆, +) are two subgroups of (𝑅, +). 

For every 𝑟 ∈ 𝑅, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑟 = 𝑟 + 0𝐼 ∈ 𝑅(𝐼), 𝑎𝑛𝑑 𝑟. (𝑎 + 𝑏𝐼) = 𝑟. 𝑎 + 𝑟. 𝑏𝐼 ∈ 𝑀 = 𝑃 + 𝑆𝐼, thus 

𝑟. 𝑎 ∈ 𝑃, 𝑟. 𝑏 ∈ 𝑆, this means that 𝑃, 𝑆 are ideals in the classical ring R. 

Now, we prove that P is contained in S. We have (1 − 𝐼) ∈ 𝑅(𝐼), that is because R(I) has a unity 1. On 

the other hand, we can write (1 − 𝐼)(𝑎 + 𝑏𝐼) = (𝑎 − 𝑎𝐼) ∈ 𝑀 = 𝑃 + 𝑆𝐼, and that is because M is an 

ideal of R(I), hence −𝑎 ∈ 𝑆, thus 𝑎 ∈ 𝑆, by regarding that 𝑎 is an arbitrary element of P, we get that 

𝑃 ≤ 𝑆. 

The previous theorem ensures that each ideal is an AH-ideal, since P,S are supposed to be classical 

ideals of R. 

Example 3.3: 

Let 𝑅 = 𝑍 be the ring of integers, 𝑅(𝐼) = 𝑍(𝐼) = {𝑎 + 𝑏𝐼;  𝑎, 𝑏 ∈ 𝑍} be the corresponding 

neutrosophic ring, we have: 

(a) 𝑃 =< 2 >, 𝑄 =< 4 >, 𝑆 =< 3 >, are three ideals of R, with 𝑄 ≤ 𝑃. 

(b) 𝑀 = 𝑄 + 𝑃𝐼 = {4𝑚 + 2𝑛𝐼; 𝑚, 𝑛 ∈ 𝑍} is an ideal of R(I). 

(c) 𝑁 = 𝑃 + 𝑆𝐼 = {2𝑚 + 3𝑛𝐼; 𝑚, 𝑛 ∈ 𝑍} is not a neutrosophic ideal, that is because 𝑃 is not contained 

in S. 

Example 3.4: 

Let 𝑅 = 𝑍8 be the ring of integers modulo 8. 𝑅(𝐼) = {𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍8}, be the corresponding 

neutrosophic ring. Consider the set 𝑀 = {0,4,2𝐼, 4𝐼, 6𝐼, 4 + 2𝐼, 4 + 6𝐼, 4 + 4𝐼}. We have M as an ideal 

of R(I), that is because 𝑀 =< 4 > +< 2 > 𝐼 𝑎𝑛𝑑 < 4 >≤< 2 >. 

Theorem 3.5: 

The following theorem determines the form of maximal ideals in R(I). 

Let R(I) be a neutrosophic ring, 𝑀 = 𝑃 + 𝑆𝐼 be an  ideal of R(I), then M is maximal if and only if P is 

maximal in R with 𝑆 = 𝑅 or 𝑀 = 𝑅(𝐼). 
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Proof: 

Suppose that M is maximal of R(I), let 𝑁 = 𝑉 + 𝑊𝐼 be any ideal of R(I) with the property 𝑀 ≤ 𝑁, 

then 𝑃 ≤ 𝑉 and 𝑆 ≤ 𝑊, by the assumption of the maximality of M, we find that 𝑁 = 𝑀 𝑜𝑟 𝑁 =

𝑅(𝐼), this implies that 

(𝑉 = 𝑃 𝑤𝑖𝑡ℎ 𝑊 = 𝑅)𝑜𝑟 (𝑉 = 𝑊 = 𝑅), which means that P is maximal in R or 𝑃 = 𝑅. On the other 

hand 𝑃 ≤ 𝑆 and P is maximal, thus 𝑆 = 𝑃 𝑜𝑟 𝑆 = 𝑅. Since 𝑃 + 𝑆𝐼 ≤ 𝑃 + 𝑅𝐼, hence the only non 

trivial maximal ideal is 𝑀 = 𝑃 + 𝑅𝐼, with P as a maximal ideal in R. 

The converse is clear. 

Theorem 3.6: 

The following theorem describes minimal ideals in R(I). 

Let R(I) be a neutrosophic ring, 𝑀 = 𝑃 + 𝑆𝐼 be an  ideal of R(I), then M is minimal if and only if S is 

minimal in R and 𝑃 = {0}. 

Proof: 

Suppose that M is minimal of R(I), let 𝑁 = 𝑉 + 𝑊𝐼 be any ideal of R(I) with the property 𝑁 ≤ 𝑀, 

then 𝑉 ≤ 𝑃 and 𝑊 ≤ 𝑆, by the assumption of the minimality of M, we find that 𝑁 = 𝑀 𝑜𝑟 𝑁 = {0}, 

this implies that 

(𝑉 = 𝑃 𝑤𝑖𝑡ℎ 𝑊 = 𝑆)𝑜𝑟 (𝑊 = 𝑁 = {0}), which means that 𝑃, 𝑆 are minimal in R. On the other hand 

𝑃 ≤ 𝑆 and S is minimal, thus 𝑆 = 𝑃 𝑜𝑟 𝑃 = {0}. Since 𝑆𝐼 is a sub-ideal of P+SI, hence 𝑃 = {0}.  

The converse is clear. 

Remark 3.7: 

According to Theorem 5.1 and Theorem 6.1, we get a full description of the structure of maximal and 

minimal ideals in the neutrosophic ring R(I).  

(a) Non trivial Maximal ideals in R(I) has the form {P+RI}, where P is maximal in R. 

(b) Non trivial minimal ideals have the form {{0}+SI} where S is minimal in R. 

Example 3.8: 

Let Z(I) be the neutrosophic ring of integers, non trivial maximal ideals in Z(I) are 

 {< 𝑝 > +𝑍𝐼}, where p is any prime number. 

4. Ideals in refined neutrosophic rings 
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Remark 4.1: 

Since every refined neutrosophic ring R(𝐼1, 𝐼2) can be understood as 𝑅(𝐼1, 𝐼2) = (𝑅, 𝑅𝐼1, 𝑅𝐼2) =

{(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑅}, 

Then each subset of 𝑅(𝐼1, 𝐼2) has the form 𝑀 = (𝑃, 𝑄𝐼1, 𝑆𝐼2); 𝑃, 𝑄, 𝑆 are two subsets of R. 

An important question arises here. This question is: 

When M is a refined neutrosophic ideal of 𝑅(𝐼1, 𝐼2)?. In other words, what conditions on 𝑃, 𝑄, 𝑆 

which make M an ideal?. 

The following theorem clarifies the necessary and sufficient condition to answer the previous 

question. 

Theorem 4.2: 

Consider the following: 

𝑅(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑅} be a refined neutrosophic ring, 𝑀 = (𝑃, 𝑄𝐼1, 𝑆𝐼2) be a subset of  

𝑅(𝐼1, 𝐼2) 

. M is an ideal of 𝑅(𝐼1, 𝐼2) if and only if 

(a) P, Q, S are ideals on R  

(b)𝑃 ≤ 𝑆 ≤ 𝑄. 

Proof: 

Suppose that M is an ideal, then we have for every 𝑎, 𝑚 ∈ 𝑃𝑎𝑛𝑑 𝑏, 𝑛 ∈ 𝑄 𝑎𝑛𝑑 𝑐, 𝑡 ∈ 𝑆,  

𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2), 𝑦 = (𝑚, 𝑛𝐼1, 𝑡𝐼2), are two elements of 𝑅(𝐼1, 𝐼2). 

𝑥 − 𝑦 = (𝑎 − 𝑚, [𝑏 − 𝑛]𝐼1, [𝑐 − 𝑡]𝐼2) ∈ 𝑀, 𝑡ℎ𝑢𝑠 𝑎 − 𝑚 ∈ 𝑃, 𝑏 − 𝑛 ∈ 𝑄, 𝑐 − 𝑡 ∈

𝑆, ℎ𝑒𝑛𝑐𝑒(P, +), (Q, +), (S, +) are subgroups of (𝑅, +). 

For every 𝑟 ∈ 𝑅, 𝑤𝑒 ℎ𝑎𝑣𝑒 (𝑟, 0,0) ∈ 𝑅(𝐼1, 𝐼2)𝑎𝑛𝑑(𝑟, 0,0). (𝑎, 𝑏𝐼1 , 𝑐𝐼2) = (𝑟. 𝑎, 𝑟. 𝑏𝐼1, 𝑟. 𝑐𝐼2) ∈ 𝑀, thus 

𝑟. 𝑎 ∈ 𝑃, 𝑟. 𝑏 ∈ 𝑄, 𝑟. 𝑐 ∈ 𝑆, thus 𝑃, 𝑄, 𝑆 are ideals of R. 

On the other hand, we have (1,0, −𝐼2) ∈ 𝑅(𝐼1, 𝐼2), 𝑡ℎ𝑢𝑠 (1,0, −𝐼2). (𝑎, 𝑏𝐼1, 𝑐𝐼2) = (𝑎, 0, −𝑎𝐼2) ∈

𝑀, ℎ𝑒𝑛𝑐𝑒 − 𝑎 ∈ 𝑆 𝑎𝑛𝑑 𝑃 ≤ 𝑆, that is because 𝑎 is an arbitrary element in P. 

Also, (1, −𝐼1, 0) ∈ 𝑅(𝐼1, 𝐼2), 𝑡ℎ𝑢𝑠 (1, −𝐼1, 0 ). (0, 𝑏𝐼1, 𝑐𝐼2) = (0, −𝑐𝐼1, 𝑐𝐼2) ∈ 𝑀, ℎ𝑒𝑛𝑐𝑒 − 𝑐 ∈ 𝑄 𝑎𝑛𝑑 𝑆 ≤ 𝑄. 

That is because 𝑐 is an arbitrary element in S. 

For the converse, we suppose that (a) and (b) are true, we have (M,+) as a subgroup of  𝑅(𝐼1, 𝐼2) . 
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Let 𝑟 = (𝑚, 𝑛𝐼1, 𝑡𝐼2) ∈ 𝑅(𝐼1, 𝐼2)𝑎𝑛𝑑𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) ∈ 𝑀, we have 

𝑟. 𝑥 = (𝑚. 𝑎, [𝑚. 𝑏 + 𝑛. 𝑎 + 𝑛. 𝑏 + 𝑛. 𝑐 + 𝑡. 𝑏]𝐼1, [𝑚. 𝑐 + 𝑡. 𝑎 + 𝑡. 𝑐]𝐼2), it is clear that 

𝑚. 𝑐 + 𝑡. 𝑐 ∈ 𝑆, 𝑡. 𝑎 ∈ 𝑃 ≤ 𝑆, 𝑡ℎ𝑢𝑠 𝑚. 𝑎 + 𝑡. 𝑎 + 𝑡. 𝑐 ∈ 𝑆. Also, 

𝑚. 𝑏 + 𝑛. 𝑏 + 𝑡. 𝑏 ∈ 𝑄, 𝑎𝑛𝑑 𝑛. 𝑎 + 𝑛. 𝑐 ∈ 𝑆 ≤ 𝑄, 𝑡ℎ𝑢𝑠 𝑚. 𝑏 + 𝑛. 𝑎 + 𝑛. 𝑏 + 𝑛. 𝑐 + 𝑡. 𝑏 ∈ 𝑄. This implies that 

𝑟. 𝑥 ∈ 𝑀, hence M is an ideal. 

Example 4.3: 

Let 𝑍(𝐼1, 𝐼2) be the refined neutrosophic ring of integers, we have 

(< 8 >, < 2 > 𝐼1, < 4 > 𝐼2) = {(8𝑎, 2𝑏𝐼1, 4𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑍} is an ideal in 𝑍(𝐼1, 𝐼2) . That is because 

< 8 >≤< 4 >≤< 2 >. 

Example 4.4: 

Let 𝑍20(𝐼1, 𝐼2) be the refined neutrosophic ring of integers modulo 20, we have 

(0, < 5 > 𝐼1, < 10 > 𝐼2) =

{(0,0,0), (0,5𝐼1, 0), (0,5𝐼1, 10𝐼2), (0,10𝐼1, 0), (0,10𝐼1, 10𝐼2), (0,15𝐼1, 0), (0,15𝐼1, 10𝐼2), (0,0,10𝐼2}. 

Theorem 4.5: 

Consider the following: 

𝑅(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑅} be a refined neutrosophic ring, 𝑀 = (𝑃, 𝑄𝐼1, 𝑆𝐼2) be any non 

trivial maximal ideal of  𝑅(𝐼1, 𝐼2) 

 M has the following form: 

(𝑃, 𝑅𝐼1, 𝑅𝐼2). Where P is any maximal ideal of R. 

Proof: 

We assume that M is a maximal ideal, and 𝑁 = (𝑋, 𝑌𝐼1, 𝑍𝐼2) 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑅(𝐼1, 𝐼2) 𝑤𝑖𝑡ℎ 𝑀 ≤ 𝑁, hence 

𝑀 = 𝑁 𝑜𝑟 𝑁 = 𝑅(𝐼1, 𝐼2), we have 𝑃 = 𝑋, 𝑄 = 𝑌, 𝑆 = 𝑍, or 𝑋 = 𝑌 = 𝑍 = 𝑅. This implies that 𝑃, 𝑆, 𝑄 

should be maximal; but we have that 

𝑃 ≤ 𝑆 ≤ 𝑄, hence (𝑅 = 𝑆, 𝑄 = 𝑅; 𝑃 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑖𝑛 𝑅). 

The converse is clear. 

Theorem 4.6: 

Consider the following: 
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𝑅(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2); 𝑎, 𝑏, 𝑐 ∈ 𝑅} be a refined neutrosophic ring, 𝑀 = (𝑃, 𝑄𝐼1, 𝑆𝐼2) be any non 

trivial minimal ideal of  𝑅(𝐼1, 𝐼2) 

 M has the following form: 

(0, 𝑃𝐼1, 0). Where P is any minimal ideal of R. 

Proof: 

The proof is similar to Theorem 5.2. 

Example 4.7: 

(a) Consider 𝑍8(𝐼1, 𝐼2)  the refined neutrosophic ring of integers modulo 8, we have < 4 >= {0,4} is 

a minimal ideal of 𝑍8. Hence (0, < 4 > 𝐼1, 0) = {(0,0,0), (0,4𝐼1, 0)}  is a minimal ideal of 𝑍8(𝐼1, 𝐼2). 

(b) < 𝟐 >= {𝟐, 𝟒, 𝟔, 𝟎} is maximal in 𝒁𝟖 . Hence (< 𝟐 >, 𝒁𝟖𝑰𝟏, 𝒁𝟖𝑰𝟐) = {(𝒂, 𝒃𝑰𝟏, 𝒄𝑰𝟐); 𝒂 ∈< 𝟐 >

𝒂𝒏𝒅 𝒃, 𝒄 ∈ 𝒁𝟖} is maximal in 𝒁𝟖(𝑰𝟏, 𝑰𝟐)  

4. Conclusions 

In this article, we have studied algebraic ideals in neutrosophic rings and refined neutrosophic rings, 

where we proved that every ideal in a neutrosophic or refined neutrosophic ring with unity must be 

an AH-ideal. Also, we have determined the structure of all maximal and minimal ideals in any 

neutrosophic ring and any refined neutrosophic ring with unity. In addition, many examples were 

built to clarify the validity of this work. 

As a future research direction, we aim to classify neutrosophic factors and refined neutrosophic 

factors. 
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Abstract: Entropy measure is an important tool in measuring uncertain information and plays a 

vital role in solving Multi Criteria Decision Making (MCDM). At present, various entropy measures 

in literature are developed to measure the degree of fuzziness. However, they could not be used to 

deal with interval neutrosophic vague set (INVS) environment. In this study, two kinds of entropy 

measures are proposed as the extension of the entropy measure of single valued neutrosophic set 

(SVNS). First, we construct the axiomatic definition of INVS and propose a new formula for the 

entropy measure of INVS. Based on this measure, we develop two multi criteria decision making 

methods. Subsequently, an illustrative example of investment problems under INVS is given to 

demonstrate the proposed entropy measures. Finally, a comparative analysis is presented to 

illustrate the rationality and effectiveness of the proposed entropy measures. 

Keywords: decision making ; fuzzy set theory; neutrosophic set theory; interval neutrosophic vague 

set theory; entropy measure; uncertainty. 

 

 

1. Introduction 

Different types of uncertainties arise in real life problems and many complex systems such as 

information fusion systems, medical diagnosis, decision making, and image processing. The issue of 

uncertainties in decision making recently become increasingly important since the appearance of 

classical mathematics. Hence, entropy measure notation has been introduced for measuring fuzzy 

information. Fuzziness, a characteristic of incomplete information, arises from the lack of crisp 

distinction between the elements belonging and not belonging to a set. Shanon and Weaver [1], [2] 

first proposed an entropy measure known as Shanon entropy. In 1968, Zadeh [3] extended the axiom 

of Shanon entropy to fuzzy entropy based on the fuzzy subset with respect to the concerned 

probability distribution. Later, Luca and Termimi [4] presented a formal definition of fuzzy entropy 

and defined several axioms. In addition, Sander [5] introduced Shanon fuzzy entropy measure and 

proved sharpness, valuation and general additivity and all properties of the fuzzy entropy. To 

investigate a more comprehensive entropy, Xie and Bedrosian [6] focused on the total fuzzy entropy. 

To counter the disadvantages of the total fuzzy entropy, Pal and Pal [7] introduced the objective 

measure in hybrid entropy used to get proper defuzzification of a certain fuzzy set. Shi and Yuan [8] 

suggested interval entropy, interval similarity measure, interval distance measure and interval 
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inclusion measure of fuzzy set. As for the intuitionistic fuzzy sets (IFS) and their generalization by 

Attanasov [9], Burillo and Bustince [10] developed an intuitionistic fuzzy entropy measure and 

defined an axiomatic definition. Szmidt and Kacprzyk [11] suggested a new entropy measure that is 

based on a geometric representation of the intuitionistic fuzzy sets (IFS). Wei et al. [12] proposed 

entropy measures for interval-valued intuitionistic fuzzy sets (IVIFSs) and applied them in the case 

study of pattern recognition. Garg [13] developed an entropy measure under IVIFSs and used the 

proposed measure in solving MCDM with unknown attribute weights. Meanwhile, Rashid et al. [14] 

constructed the concept of entropy measure distance based on IVIFSs. All the above related entropy 

researches were dealt with under uncertain and fuzzy information. However, fuzzy sets cannot be 

dealt with indeterministic and inconsistent information. 

Considering this limitation, Smarandache [15] proposed a neutrosophic set (NS) which is the three 

components of truth, indeterminacy, and falsity degrees and that can be denoted as T,I,F  

respectively. NS is characterized independently and the ranges of functions T,I,F are in form of real 

standard and the nonstandard interval 0,1
− +   which cannot be used in real applications. 

Therefore, Wang et al. [16] proposed single valued neutrosophic set (SVNS) where the truth-

membership degree, indeterminacy-membership degree, and falsity-membership degree in form of 

real standard interval. Later, Wang [17] introduced interval neutrosophic set (INS) as an extension of 

SVNS whose values are interval rather than real numbers. Alkhazaleh [18], introduced a 

neutrosophic vague set (NV) by incorporating the features of SVNS and vague set [19]. Besides that, 

he also defined several operators for NV and proved related properties. NV has played a significant 

role in the uncertain information system. In certain NV sets, the degree of truth, falsity, and 

indeterminacy of a given statement cannot be strictly described in real-world contexts, but it is 

instead denoted by several possible interval values. To overcome this problem, Hashim et al. [20] 

introduced an interval neutrosophic vague set (INVS) by upgrading the membership functions in 

several interval membership degrees. The advantage of INVS is that it can deal with more uncertain 

information than NV on similar decision situations. In light of its significance, many scholars have 

worked to improve the concept of neutrosophic in decision making [21]–[28].  

The recent rapid developments of NS and its generalization have heightened the need for measuring 

the fuzziness degree under NS setting. Therefore, Majumdar and Samanta [29] proposed the entropy 

and distance measures under SVNS. They defined the formula for entropy measure and proved 

related properties. Later, Wu et al. [30] suggested an entropy that overcomes the limitations in 

Majumdar and Samanta’s entropy. They suggested a better concept of complement of SVNS where 

( ) ( ) ( ) C

A A A
A F x ,1 I x ,T x x X= −  instead of ( ) A A A

A 1 T (x),1 I (x),1 F (x) x X= − − −  .  Later, Garg  

[31] suggested SVNS entropy of order α. For various parameter values, the suggested entropy is more 

stable and scalable. In addition, Abu Qamar and Hassan [32] proposed several entropy, distance, and 

similarity measures for Q-Neutrosophic soft sets and applied this measure in medical diagnosis and 

decision making problems. The ranking method used in this example is based on the smallest entropy 

value. In 2020, Thao and Smarandache [33], proposed a new entropy measure based similarity 

measure under SVNS. They claimed that the proposed entropy by Majumdar and Samanta did not 

satisfy the axiomatic definition where it contradicts with the value of entropy in [0,1] . Hence, they 

proposed two entropy measures based on the intuitionistic fuzzy set entropy. Ye and Du [34] 

established some distances, similarity, and entropy measures and studied its relationship. They also 

compared the proposed entropy measure with existing entropy measures. Aydogdu and Sahin [35] 

defined two entropy measures for SVNS and INS. Based on this measure, they proposed a decision 

making problems under SVNS and INS. Quek et al. [36] proposed a new formula for the entropy 

measure under plithogenic sets. Very recently, Ye [37] suggested entropy measures based on 
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trigonometric functions under simplified neutrosophic sets. In addition, he proposed a new ranking 

method of entropy values by considering positive and negative arguments.  

Entropy measure also is a well-known approach for generating the weight in MCDM. Biswas et al. 

[38] used entropy proposed by [29] to measure the weight of criteria and applied it in grey relational 

analysis (GRA). Also, Thao and Smarandache [39] proposed complex proportional assessment 

(COPRAS) with weight calculated based on the proposed entropy. Besides that, Barukab et al. [40] 

proposed entropy measure under spherical fuzzy information to calculate unknown weights 

information and applied it in the technique for order performance by similarity to ideal solution 

(TOPSIS) method. Ye [41] proposed entropy weights-based correlation coefficients of IVIFS and used 

it to solve decision making problems with unknown information on criteria weights. Until now, there 

is no entropy measures under the INVS environment. A summary of the previous researcher’s 

contribution is presented in Table 1. 

In this paper, we introduce the INVS entropy measure that is extended from the concept of SVNS 

entropy in [29], [33]. This measure will resolve the limitation of the entropy proposed by Majumdar 

and Samanta that has been claimed as invalid by Thao and Smarandache [33]. The illustration of the 

limitation in [29], [33] is discussed in Subsection 3.1 and 3.2. These are the motivations that driven us 

to investigate a more appropriate concept of entropy measure under the INVS environment. To do 

so, the rest of this paper is organized as follows: Section 2 presents the definition of INVS and its 

relation on INVS. In Section 3, we introduce two types of entropy of INVS, propose its formula and 

prove related properties. The illustrative example based on the proposed entropy of INVS and 

comparative analysis are presented in Section 4 and the conclusion is presented in Section 5. 

Table 1: Summary of contribution under neutrosophic environment 

Author Year Set Contributions Gaps 

Majumdar 

and Samanta 

[29] 

2014 SVNS • Introduce similarity and 

entropy of a 

neutrosophic set  

 

• Did not satisfy the 

axiomatic definition for 

the proposed entropy 

measure. 

Garg [31] 2016 SVNS • Single-valued 

neutrosophic entropy of 

order α 

• Consider the pair of 

their membership 

functions as well as 

hesitation degree 

between them. 

• Ranking methods of 

entropy values are not 

always reasonable 

Wu et al. [30] 2018 SVNS • Introduce similarity 

measure and cross-

entropy of single-

valued neutrosophic 

sets 

• Did not consider the 

standard definition of 

a complement of 

SVNS 

Abu Qamar 

and 

Hassan[32] 

2018 Q-

neutrosophic 

soft set 

• Introduce entropy, 

distance, and similarity 

measure 

• Ranking methods of 

entropy values are not 

always reasonable 
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Thao and 

Smarandache 

[33] 

2019 SVNS • Introduce entropy-

based similarity 

measures of single 

valued neutrosophic 

sets 

• A natural extension of 

the concept of entropy 

measure of fuzzy sets 

and IFS 

 

• Ranking methods of 

entropy values are not 

always reasonable 

Quek et al. 

[36] 

2020 Plithogenic 

sets 

• Introduce Entropy 

Measures for Plithogenic 

Sets 

• This entropy is limited 

when applied to the 

Plithogenic set. Due to 

the complexity and 

novelty of Plitogenic 

sets. 

Ye [37] 2021 Simplified 

neutrosophic 

sets 

• Entropy measures based 

on trigonometric 

functions 

 

• Only considers the 

positive and negative 

arguments regarding 

the entropy values for 

different alternatives. 

2. Preliminaries 

In this section, we review some basic concepts related to INVS, which will be used in the rest of the 

paper. 

Definition 2.1:[20] Let X  be a universe discourse and an INVS A  is written as follows: 

( ) ( ) ( ) ( ) ( ) ( ) L U L U L U

A A A A A A
A = x, T x ,T x , I x , I x , F x ,F x > x X                       (1) 

Whose truth membership, indeterminacy membership, and falsity membership functions are defined 

as: 

( )
L

L L
AT x T ,T− + =  

, ( )U U U

A
T x T ,T− + =   , ( )L L L

A
I x I ,I− + =   , ( )U U U

A
I x I ,I− + =    and 

( )L L L

A
F x F ,F− + =   , ( )U U U

A
F x F ,F− + =                         (2)                                                                               

 The symbols L  and U  denote the lower and upper of the intervals in which 

 

                  L LT 1 F+ −= − , L LF 1 T+ −= −  
− += −U UF 1 T , − += −U UT 1 F  

and satisfying             L U L U L U0 T T I I F F 4− − − − − − + + + + +                (3) 
L U L U L U0 T T I I F F 4+ + + + + + + + + + +                (4) 
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Definition 2.2 [20] Let ( ) ( ) ( ) ( ) ( ) ( ) L U L U L U

A A A A A AA = x, T x ,T x , I x ,I x , F x ,F x > x X      
          

 and 

( ) ( ) ( ) ( ) ( ) ( ) L U L U L U

B B B B B BB = x, T x ,T x , I x ,I x , F x ,F x > x X      
          

be two INVSs. Then the relation of 

INVS is defined as follows: 

i. A = B  if and only if A = B if ( ) ( )L L

A B
T x T x= , ( ) ( )U U

A B
T x T x= , ( ) ( )L L

A B
I x I x=

( ) ( )U U

A B
I x I x= , ( ) ( )L L

A B
F x F x= and ( ) ( )U U

A B
F x F x= . 

ii. A B if and only if ( ) ( )L L

A B
T x T x , ( ) ( )U U

A B
T x T x , ( ) ( )L L

A B
I x I x , ( ) ( )U U

A B
I x I x ,

( ) ( )L L

A B
F x F x and ( ) ( )U U

A B
F x F x  

iii. A ( )B C  =  

( ) ( ) ( )L L L L L

C A B A B
T x ( ) T ,T , ( ) T ,T− − + + =    

 
, ( ) ( ) ( )U U U U U

C A B A B
T x ( ) T ,T , ( ) T ,T− − + + =    

 
,

( ) ( ) ( )L L L L L

C A B A B
I x ( ) I ,I , ( ) I ,I− − + + =    

 
, ( ) ( ) ( )U U U U U

C A B A B
I x ( ) I ,I , ( ) I ,I− − + + =    

 
,

( ) ( ) ( )L L L L L

C A B A B
F x ( ) F ,F , ( ) F ,F− − + + =    

 
, ( ) ( ) ( )U U U U U

C A B A B
F x ( ) F ,F , ( ) F ,F− − + + =    

 
 

 

iv. CA  

( ) ( )
C

L L L

A A
T x 1 T ,1 T+ − = − − 

, ( ) ( )
C

U U U

A A
T x 1 T ,1 T+ − = − − 

, 

( ) ( )
C

L L L

A A
I x 1 I ,1 I+ − = − − 

, ( ) ( )
C

U U U

A A
I x 1 I ,1 I+ − = − − 

, 

( ) ( )
C

L L L

A A
F x 1 F ,1 F+ − = − − 

, ( ) ( )
C

U U U

A A
F x 1 F ,1 F+ − = − − 

 

3. The entropy of INVS  

In this section, we introduce two entropy to measure the fuzziness degree of INVS information. The 

entropy of INVS is defined by two formulas which are based on interval approximation and INVS 

entropy generalized from the existing entropy of SVNS by Majumdar and Samantha [29]. We first 

give the axiomatic definition of INVS entropy. 

The definition is derived to satisfy several conditions need in INVS entropy, as shown below: 

(i) The entropy will be null when the set is a crisp set, 

(ii) The entropy will be maximum if the set is completely INVS, 

(iii) The INVS entropy and its complement is equal, and 

(iv) If the degree of lower and upper approximation for truth membership, indeterminacy 

membership and falsity membership of each element decreases, the sum will do as well, 

and therefore this set becomes fuzzier and consequently the entropy should increase. 
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In light of the conditions stated above, the axiomatic definition of INVS entropy is defined as follows:  

Definition 3.1: Let INVS(X) be a set of all INVSs on (X)  and E : INVS(X) 0,1→     satisfying all 

following properties: 

(E0) (Nonenegativity)  0 E(A) 1   

(E1)  (Minimality) ( )E A 0= if A is a crisp set i.e 

L L

A i A i
T (x ),T (x ) 1,1− +  =     , U U

A i A i
T (x ),T (x ) 1,1− +  =     , L L

A i A i
I (x ),I (x ) 0,0− +  =     , 

U U

A i A i
I (x ),I (x ) 0,0− +  =     ,  L L

A i A i
F (x ),F (x ) 0,0− +  =     , L L

A i A i
F (x ),F (x ) 0,0− +  =      or  

L L

A i A i
T (x ),T (x ) 0,0− +  =     , U U

A i A i
T (x ),T (x ) 0,0− +  =     , L L

A i A i
I (x ),I (x ) 0,0− +  =     , 

U U

A i A i
I (x ),I (x ) 0,0− +  =     , L L

A i A i
F (x ),F (x ) 1,1− +  =     , L L

A i A i
F (x ),F (x ) 1,1− +  =     for all 

i
x X   

(E2) (Maximality) ( )E A 1= if L L

A i A i
T (x ),T (x ) 0.5,0.5− +  =     , U U

A i A i
T (x ),T (x ) 0.5,0.5− +  =     , 

L L

A i A i
I (x ),I (x ) 0.5,0.5− +  =     , U U

A i A i
I (x ),I (x ) 0.5,0.5− +  =     , L L

A i A i
F (x ),F (x ) 0.5,0.5− +  =     , 

U U

A i A i
F (x ),F (x ) 0.5,0.5− +  =      for all 

i
x X  

(E3) (Symmetric) ( ) CE A E(A )=  for all A INVS(X) , 

(E4) (Resolution) E(A) E(B) if , i.e, 

L L

A i B i
T (x ) T (x )− − , L L

A i B i
T (x ) T (x )+ + , U U

A i B i
T (x ) T (x )− − , U U

A i B i
T (x ) T (x )+ + ; 

L L

A i B i
I (x ) I (x )− − , L L

A i B i
I (x ) I (x )+ + , U U

A i B i
I (x ) I (x )− − , U U

A i B i
I (x ) I (x )+ + ; 

L L

A i B i
F (x ) F (x )− − , L L

A i B i
F (x ) F (x )+ + , U U

A i B i
I (x ) I (x )− − , U U

A i B i
F (x ) F (x )+ + . 

Now, we define the INVS entropy based on interval approximation ( )INVS
E


 and entropy ( )INVS

E  

generalized from SVNS entropy in Subsection 3.1 and 3.2. The notations and descriptions are used in 

the proposed entropy measures are presented in Table 2. The proposed entropy should satisfy the 

axiomatic Definition 3.1. 
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Table 2: Some notations and descriptions 

Notation Description 

X , x  Universal set, element of X  

T,I,F  Truth, indeterminacy and false membership functions 

( ) ( )L U

A A
T x ,T x 
   Truth interval valued with respect to upper bound and lower bound. 

( )
L

L L
AT x T ,T− + =  

 Truth lower interval valued functions with respect to the beginning of 

interval and end of the interval.   

( )U U U

A
T x T ,T− + =    Truth upper interval valued functions with respect to the beginning of 

interval and end of the interval.   

( )L L L

A
I x I ,I− + =    Indeterminacy lower interval valued functions with respect to the 

beginning of interval and end of the interval.   

( )U U U

A
I x I ,I− + =    Indeterminacy upper interval valued functions with respect to the 

beginning of interval and end of the interval.   

( )L L L

A
F x F ,F− + =    Falsity lower interval valued functions with respect to the beginning of 

interval and end of the interval.   

( )U U U

A
F x F ,F− + =    Falsity lower interval valued functions with respect to the beginning of 

interval and end of the interval.   

i
x  Element set of criteria in the universe X  

INVS
E


 INVS entropy based on interval approximation 

INVS
E  INVS entropy generalized from SVNS entropy 

 

3.1.  INVS entropy based on interval approximation 

In this subsection, a new concept of INVS entropy is generated from the entropy measure proposed 

by Thao and Smarandache [33]. This measure can deal only with SVNS set. Moreover, this entropy 

used the concept of natural extension of the concept of entropy measure of fuzzy sets and IFS. The 

SVNS entropy measure is defined as follows: 

 

C
n

A i A i A i iA

T
i 1

T (x ) 0.5 F (x ) 0.5 I (x ) 0.5 I (x ) 0.51
E (A) 1

n 2=

− + − + − + −
= −       (5) 

 
By using this measure, we presented a new concept of the INVS entropy based on interval 

approximation denoted as
INVS

E


. The interval approximation represents the average possible 

membership degree of truth, indeterminate, and falsity of element x . Definition of INVS entropy 

measure is presented as follows: 

 

Definition 3.1.1: The entropy of the interval neutrosophic vague sets denoted as 
INVS

E (A)


and 

defined by 

n

INVS INVS i
i 1

1
E (A) 1 E (A)(x )

2n 
=

= −   

where  
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c c c c

L L U U L L U Un
A i A i A i A i A i A i A i A i

INVS i
i 1

L L U UL L U U
i i i iA i A i A i A i A A A A

T (x ) T (x ) T (x ) T (x ) F (x ) F (x ) F (x ) F (x )
E (A)(x ) 0.5 0.5

4 4

I (x ) I (x ) I (x ) I (x )I (x ) I (x ) I (x ) I (x )
0.5 0.5

4 4

− + − + − + − +


=

− + − +− + − +

+ + + + + +
= − + − +

+ + ++ + +
− + −


 

for all i 1,2, ,n=                        (6)                                                                                                                                                                     

 

Theorem 1. 
INVS

E (A)


as defined in Definition 3.1.1 is entropy for INVSs 

Now, we show that 
INVS

E (A)


satisfies all properties given in Definition 3.1. 

 

Proof:  

(E1)  if A is a crisp set then L L

A i A i
T (x ),T (x ) 1,1− +  =     , U U

A i A i
T (x ),T (x ) 1,1− +  =     , 

L L

A i A i
I (x ),I (x ) 0,0− +  =     , U U

A i A i
I (x ),I (x ) 0,0− +  =     , L L

A i A i
F (x ),F (x ) 0,0− +  =     ,

U U

A i A i
F (x ),F (x ) 0,0− +  =      or L L

A i A i
T (x ),T (x ) 0,0− +  =     , U U

A i A i
T (x ),T (x ) 0,0− +  =     , 

L L

A i A i
I (x ),I (x ) 0,0− +  =     , U U

A i A i
I (x ),I (x ) 0,0− +  =     , L L

A i A i
F (x ),F (x ) 1,1− +  =     , U U

A i A i
F (x ),F (x ) 1,1− +  =    

for all 
i

x X we have  

INVS i

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
E (A)(x ) 0.5 0.5 0.5 0.5 2

4 4 4 4

+ + + + + + + + + + + +
= − + − + − + − =  

It implies that, ( )INVS

1
E (A) 1 2 0

2(1)
= − =  or 

INVS i

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
E (A)(x ) 0.5 0.5 0.5 0.5 2

4 4 4 4

+ + + + + + + + + + + +
= − + − + − + − =

 

It implies that, ( )INVS

1
E (A) 1 2 0

2(1)
= − =  

Therefore, the INVS entropy will be null 
INVS

(E (A) 0)= when the set is a crisp set. 

 (E2) L L

A i A i
T (x ),T (x ) 0.5,0.5− +  =     , U U

A i A i
T (x ),T (x ) 0.5,0.5− +  =     , L L

A i A i
I (x ),I (x ) 0.5,0.5− +  =     ,

U U

A i A i
I (x ),I (x ) 0.5,0.5− +  =     , L L

A i A i
F (x ),F (x ) 0.5,0.5− +  =     and U U

A i A i
F (x ),F (x ) 0.5,0.5− +  =      

INVS i

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
E (A)(x ) 0.5 0.5 0.5

4 4 4

0.5 0.5 0.5 0.5
0.5 0

4



+ + + + + + + + +
= − + − + − +

+ + +
− =

 

It implies that 

( )INVS

1
E (A) 1 0 1

2(1)
= − =  

Therefore, the entropy will be maximum 
INVS

(E (A) 1)=  if the set is completely INVS. 
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(E3) 
( ) ( ) ( ) ( )L L U U

n
A i A i A i A i

INVS
i 1

1 T (x ) 1 T (x ) 1 T (x ) 1 T (x )1
E (A) 1 0.5

2n 4

+ − + −


=

− + − + − + −
= − − +  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )c c c c

L L U U

A i A i A i A i

L L U U

A i A i A i A i

L L U U

i i i iA A A A

1 F (x ) 1 F (x ) 1 F (x ) 1 F (x )
0.5

4

1 I (x ) 1 I (x ) 1 I (x ) 1 I (x )
0.5

4

1 I (x ) 1 I (x ) 1 I (x ) 1 I (x )
0.5

4

+ − + −

+ − + −

+ − + −

− + − + − + −
− +

− + − + − + −
− +

− + − + − + −
−

 

( ) ( )

( ) ( )c c c c

L L U U L L U U
n

A i A i A i A i A i A i A i A i

i 1

L L U U L L U U

A i A i A i A i i i i iA A A A

4 T (x ) T (x ) T (x ) T (x ) 4 F (x ) F (x ) F (x ) F (x )1
1 0.5 0.5

2n 4 4

4 I (x ) I (x ) I (x ) I (x ) 4 I (x ) I (x ) I (x ) I (x )
0.5 0.5

4 4

+ − + − − + − +

=

− + − + − + − +

− + + + − + + +
= − − + − +

− + + + − + + +
− + −



 

( ) ( )

( ) ( )c c c c

L L U U L L U U
n

A i A i A i A i A i A i A i A i

i 1

L L U U L L U U

A i A i A i A i i i i iA A A A

4 T (x ) T (x ) T (x ) T (x ) 0.5(4) 4 F (x ) F (x ) F (x ) F (x ) 0.5(4)1
1

2n 4 4

4 I (x ) I (x ) I (x ) I (x ) 0.5(4) 4 I (x ) I (x ) I (x ) I (x ) 0.5(4)

4 4

+ − + − − + − +

=

− + − + − + − +

− + + + − − + + + −
= − + +

− + + + − − + + + −
+



 

( ) ( )

( ) ( )c c c c

L L U U L L U U
n

A i A i A i A i A i A i A i A i

i 1

L L U U L L U U

A i A i A i A i i i i iA A A A

2 T (x ) T (x ) T (x ) T (x ) 2 F (x ) F (x ) F (x ) F (x )1
1

2n 4 4

2 I (x ) I (x ) I (x ) I (x ) 2 I (x ) I (x ) I (x ) I (x )

4 4

+ − + − − + − +

=

− + − + − + − +

− + + + − + + +
= − + +

− + + + − + + +
+



 

c c c c

L L U U L L U Un
A i A i A i A i A i A i A i A i

i 1

L L U UL L U U
i i i i cA i A i A i A i A A A A

INVS

T (x ) T (x ) T (x ) T (x ) F (x ) F (x ) F (x ) F (x )1
1 0.5 0.5

2n 4 4

I (x ) I (x ) I (x ) I (x )I (x ) I (x ) I (x ) I (x )
0.5 0.5 E (A )

4 4

+ − + − − + − +

=

− + − +− + − +



+ + + + + +
= − − + − +

+ + ++ + +
− + − =



 

Therefore, INVS entropy and its complement is equal; c

INVS INVS
E (A) E (A )
 

= for all A INVS(X)  

 

(E4) we have 
INVS INVS

E (A) E (B)  if L L

A i B i
T (x ) T (x )− − , L L

A i B i
T (x ) T (x )+ + , U U

A i B i
T (x ) T (x )− − , 

U U

A i B i
T (x ) T (x )+ + , L L

A i B i
I (x ) I (x )− − , L L

A i B i
I (x ) I (x )+ + , U U

A i B i
I (x ) I (x )− − , U U

A i B i
I (x ) I (x )+ + ;

L L

A i B i
F (x ) F (x )− − , L L

A i B i
F (x ) F (x )+ + , U U

A i B i
I (x ) I (x )− − , U U

A i B i
F (x ) F (x )+ + for 

i
x X  ; 

Then we obtain the following relation: 
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a)  
L L U U L L U U

A i A i A i A i B i B i B i B i
T (x ) T (x ) T (x ) T (x ) T (x ) T (x ) T (x ) T (x )

0.5 0.5
4 4

− + − + − + − ++ + + + + +
−  −  

b)  
L L U U L L U U

A i A i A i A i B i B i B i B i
I (x ) I (x ) I (x ) I (x ) I (x ) I (x ) I (x ) I (x )

0.5 0.5
4 4

− + − + − + − ++ + + + + +
−  −  

c) 
L L U U L L U U

A i A i A i A i B i B i B i B i
F (x ) F (x ) F (x ) F (x ) F (x ) F (x ) F (x ) F (x )

0.5 0.5
4 4

− + − + − + − ++ + + + + +
−  −  

d) 
c c c c c c c c

L L U U L L U U

i i i i i i i iA A A A A A A A
I (x ) I (x ) I (x ) I (x ) I (x ) I (x ) I (x ) I (x )

0.5 0.5
4 4

− + − + − + − ++ + + + + +
−  −  

Combining a), b), c), and d) we obtain 

c c c c

L L U U L L U Un
A i A i A i A i A i A i A i A i

INVS
i 1

L L U UL L U U
i i i iA i A i A i A i A A A A

n
B

i 1

T (x ) T (x ) T (x ) T (x ) F (x ) F (x ) F (x ) F (x )1
E (A) 1 0.5 0.5

2n 4 4

I (x ) I (x ) I (x ) I (x )I (x ) I (x ) I (x ) I (x )
0.5 0.5

4 4

T1
1

2n

− + − + − + − +


=

− + − +− + − +

=

+ + + + + +
= − − + − +

+ + ++ + +
− + − 

−





c c c c

L L U U L L U U

i B i B i B i B i B i B i B i

L L U UL L U U
i i i iB i B i B i B i B B B B

(x ) T (x ) T (x ) T (x ) F (x ) F (x ) F (x ) F (x )
0.5 0.5

4 4

I (x ) I (x ) I (x ) I (x )I (x ) I (x ) I (x ) I (x )
0.5 0.5

4 4

− + − + − + − +

− + − +− + − +

+ + + + + +
− + − +

+ + ++ + +
− + −

 

That is 
INVS INVS

E (A) E (B)
 

 . Thus, the property (E4) is satisfied. 

The proof is completed. 

Apart from INVS based on interval approximation, we also have the INVS entropy based on SVNS 

entropy. This definition is given as follows. 

3.2.  INVS entropy generalized from SVNS entropy 

In this subsection, we developed another approach to measure the degree of fuzziness of an INVS. It 

is generalized from SVNS entropy proposed by Majumdar and Samanta [29]. The SVNS entropy is 

defined as follows: 

( ) ( ) ( ) ( )C

n

MM A i A i A i iA
i 1

1
E (A) 1 T x F x I x I x

n =

 = − + −            (7)                             

The SVNS entropy meets the principle of entropy measure. But, Thao and Smarandache [29] claimed 

in some conditions such as when ( ) A x,0.8,0.0.7= on  X x= then we substitute in the SVNS 

entropy ( )MM

1
E (A) 1 0.8 0.7 0 1 0.5 0,1

1
= − + − = −    .  

Therefore, to overcome this limitation we improved to 
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( ) ( ) ( ) ( )C

n

MM A i A i A i iA
i 1

1
E (A) 1 T x F x I x I x

2n =

 = − + −  . So we have,

( )MM

1
E (A) 1 0.8 0.7 0 1 0.75 0,1

2
= − + − =    .  

For convenient and suitability of the INVS entropy, Equation 6 is simplified using the complement 

definition CA
I 1 I(x)= −  as follows: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

n

MM A i A i A i A i
i 1

n

A i A i A i
i 1

1
E (A) 1 T x F x I x 1 I x

2n

1
1 T x F x 2 I x 1

2n

=

=

 = − + − − 

 = − + − 




        (8) 

 

Based on the SVNS entropy we generalized the entropy formula under the INVS environment. The 

INVS entropy based on SVNS entropy denoted as 
INVS

E (A)  is defined as follows: 

 

Definition 3.2.1: An entropy 
INVS

E (A) on interval neutrosophic vague sets is a function 

E : INVS(X) 0,1→    satisfying given condition in Definition 3.1. Then 

n

INVS INVS i
i 1

1
E (A) 1 E (A)(x )

2n =

= −   

where  

L L L Ln n
L LA i A i A i A i

INVS i A i A i
i 1 i 1

U U U U
U UA i A i A i A i
A i A i

T (x ) T (x ) F (x ) F (x )
E (A)(x ) I (x ) I (x ) 1

2 2

T (x ) T (x ) F (x ) F (x )
I (x ) I (x ) 1

2 2

− + − +

− +

= =

− + − +

− +

 + +
= −  + −  

 

 + + 
+ −  + −  

 

 
                               

for all i 1,2, ,n=                 (9) 

 

Theorem 2. 
INVS

E (A) as specified in Definition 3.2.1 is entropy for INVS 

To show that 
INVS

E (A) is a valid measure, we must show that it satisfies the axioms mentioned in 

Definition 3.1. 

 

Proof 

(E1)  if A is a crisp set then L L

A i A i
T (x ),T (x ) 1,1− +  =     , U U

A i A i
T (x ),T (x ) 1,1− +  =     , 

L L

A i A i
I (x ),I (x ) 0,0− +  =     , U U

A i A i
I (x ),I (x ) 0,0− +  =     , L L

A i A i
F (x ),F (x ) 0,0− +  =     ,

U U

A i A i
F (x ),F (x ) 0,0− +  =      or L L

A i A i
T (x ),T (x ) 0,0− +  =     , U U

A i A i
T (x ),T (x ) 0,0− +  =     , 

L L

A i A i
I (x ),I (x ) 0,0− +  =     , U U

A i A i
I (x ),I (x ) 0,0− +  =     , L L

A i A i
F (x ),F (x ) 1,1− +  =     , U U

A i A i
F (x ),F (x ) 1,1− +  =    

for all 
i

x X we have  



Neutrosophic Sets and Systems, Vol. 45, 2021     85  

 

 

Hazwani Hashim, Lazim Abdullah, Ashraf Al-Quran, Azzah Awang, Entropy Measure for Interval Neutrosophic Vague Sets 

and Their Application in Decision Making   

 

INVS i

1 1 0 0 1 1 0 0
E (A)(x ) 0 0 1 0 0 1 2

2 2 2 2

   + + + +
= −  + − + −  + − =   
   

 

It implies that, ( )INVS

1
E (A) 1 2 0

2(1)
= − =  or 

INVS i

0 0 1 1 0 0 1 1
E (A)(x ) 0 0 1 0 0 1 2

2 2 2 2

   + + + +
= −  + − + −  + − =   
   

 

It implies that, ( )INVS

1
E (A) 1 2 0

2(1)
= − =  

Therefore, the INVS entropy will be null 
INVS

(E (A) 0)= when the set is a crisp set. 

(E2) L L

A i A i
T (x ),T (x ) 0.5,0.5− +  =     , U U

A i A i
T (x ),T (x ) 0.5,0.5− +  =     , L L

A i A i
I (x ),I (x ) 0.5,0.5− +  =     ,

U U

A i A i
I (x ),I (x ) 0.5,0.5− +  =     , L L

A i A i
F (x ),F (x ) 0.5,0.5− +  =     and U U

A i A i
F (x ),F (x ) 0.5,0.5− +  =      for all 

i
x X  

INVS i

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
E (A)(x ) 0.5 0.5 1 0.5 0.5 1 0

2 2 2 2

   + + + +
= −  + − + −  + − =   
   

 

It implies that, ( )INVS

1
E (A) 1 0 1

2(1)
= − =  

Therefore, the entropy will be maximum 
INVS

(E (A) 1)=  if the set is completely INVS. 

(E3)

( ) ( ) ( ) ( )
( ) ( )

L L L L

A i A i A i A i L L

INVS A i A i

1 T (x ) 1 T (x ) 1 F (x ) 1 F (x )1
E (A) 1 1 I (x ) 1 I (x ) 1

2n 2 2

+ − + −

+ −

 − + − − + − = − −  − + − −
  

( ) ( ) ( ) ( )
( ) ( )

U U U U

A i A i A i A i U U

A i A i

1 T (x ) 1 T (x ) 1 F (x ) 1 F (x )
1 I (x ) 1 I (x ) 1

2 2

+ − + −

+ −

 − + − − + −  + −  − + − − 
  

 

=
L L L L

L LA i A i A i A i
A i A i

2 2 T (x ) T (x ) F (x ) F (x )1
1 2 I (x ) I (x ) 1

2n 2

+ − + −

+ −
 − − − + +

−  − − − +  
 

 

U U U U
U UA i A i A i A i
A i A i

2 2 T (x ) T (x ) F (x ) F (x )
2 I (x ) I (x ) 1

2

+ − + −

+ −
 − − − + + 

 − − −  
 

 

L L L L
L LA i A i A i A i
A i A i

T (x ) T (x ) F (x ) F (x )1
1 1 I (x ) I (x )

2n 2

+ − + −

+ −
 − − + +

= −  − − +  
 

 

U U U U
U UA i A i A i A i
A i A i

T (x ) T (x ) F (x ) F (x )
1 I (x ) I (x )

2

+ − + −

+ −
 − − + + 

 − −  
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L L L L
L LA i A i A i A i
A i A i

T (x ) T (x ) F (x ) F (x )1
1 I (x ) I (x ) 1

2n 2

+ − + −

+ −
 + − −

= −  + − +  
 

 

U U U U
U UA i A i A i A i
A i A i

T (x ) T (x ) F (x ) F (x )
I (x ) I (x ) 1

2

+ − + −

+ −
 + − − 

 + −  
 

 

( )L L L L

A i A i A i A i L L

A i A i

T (x ) T (x ) F (x ) F (x )1
1 I (x ) I (x ) 1

2n 2

+ − + −

+ −

 + − + = −  + − +
  

 

( ) ( )U U U U

A i A i A i A i U U c

A i A i INVS

T (x ) T (x ) F (x ) F (x )
I (x ) I (x ) 1 E (A )

2

+ − + −

+ −

 + − +   + − =
  

 

Therefore, INVS entropy and its complement is equal; c

INVS INVS
E (A) E (A )= for all A INVS(X)  

(E4) we have 
INVS INVS

E (A) E (B)  if L L

A i B i
T (x ) T (x )− − , L L

A i B i
T (x ) T (x )+ + , U U

A i B i
T (x ) T (x )− − , 

U U

A i B i
T (x ) T (x )+ + , L L

A i B i
I (x ) I (x )− − , L L

A i B i
I (x ) I (x )+ + , U U

A i B i
I (x ) I (x )− − , U U

A i B i
I (x ) I (x )+ + ;

L L

A i B i
F (x ) F (x )− − , L L

A i B i
F (x ) F (x )+ + , U U

A i B i
I (x ) I (x )− − , U U

A i B i
F (x ) F (x )+ + for 

i
x X  ; 

Then we obtain the following relation: 

a) 
L L L L L L L L

A i A i A i A i B i B i B i B i
T (x ) T (x ) F (x ) F (x ) T (x ) T (x ) F (x ) F (x )

2 2 2 2

− + − + − + − ++ + + +
−  − ,

U U U U U U U U

A i A i A i A i B i B i B i B i
T (x ) T (x ) F (x ) F (x ) T (x ) T (x ) F (x ) F (x )

2 2 2 2

− + − + − + − ++ + + +
−  −  

b) L L L L

A i A i B i B i
I (x ) I (x ) 1 I (x ) I (x ) 1− + − ++ −  + −  

U U U U

A i A i B i B i
I (x ) I (x ) 1 I (x ) I (x ) 1− + − ++ −  + −  

Combining a) and b) 

L L L Ln
L LA i A i A i A i

INVS A i A i
i 1

U U U U
U UA i A i A i A i
A i A i

L L L Ln
B i B i B i B

i 1

T (x ) T (x ) F (x ) F (x )1
1 E I (x ) I (x ) 1

2n 2 2

T (x ) T (x ) F (x ) F (x )
I (x ) I (x ) 1

2 2

T (x ) T (x ) F (x ) F (1
1

2n 2

− + − +

− +

=

− + − +

− +

− + − +

=

 + +
− −  + −  

 

 + + 
+ −  + −   

 

+ +
− −



 L Li
A i A i

U U U U
U UB i B i B i B i
B i B i

x )
I (x ) I (x ) 1

2

T (x ) T (x ) F (x ) F (x )
I (x ) I (x ) 1

2 2

− +

− + − +

− +

 
 + − +  

 

 + + 
−  + −  
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That is 
INVS INVS

E (A) E (B) . Thus, the property (E4) is satisfied. 

The proof is completed. 

The proposed entropy is further embedded into a MCDM. 

 

4. MCDM problem based on proposed entropy 

In this section, the proposed entropy measures are applied in MCDM problems. Measuring 

uncertainty is important in decision making problems, the DMs will obtain significant preference and 

priority to avoid losing out in the selection process. Based on the proposed entropy measures, when 

the entropy value is smaller, then DMs can provide more valuable knowledge from this alternative. 

As a result, the alternative with the lowest entropy value should be considered as a priority.  

 

Consider the set of different alternatives denoted as  1 2 m
A A ,A , ,A= and set of criteria is denoted 

by  1 2 n
C C ,C , ,C=  in INVS environment and the algorithm to evaluate the best alternative is 

presented as follows: 

 

Step 1: Construction of decision making matrix 

 

Organize each 
i

A alternatives under criteria 
j

C according to the DM’s preferences in the form of 

INVS environment as follows 

( )ij m n
D x


= where      L L U U L L U U L L U U

ij ij ij ij ij ij ij ij ij ij ij ij ij
x T ,T , T ,T , I ,I , I ,I , F ,F , F ,F− + − + − + − + − + − +           =

           

L U L U L U0 T T I I F F 4− − − − − − + + + + +   and L U L U L U0 T T I I F F 4+ + + + + + + + + + +  . 
L L

ij ij
T ,T− + 
 

 represents the degree that alternative 
i

A  relatively satisfies the criteria 
j

C , U U

ij ij
T ,T− + 
 

 

represents the degree that alternative 
i

A absolutely satisfies the criteria 
j

C , L L

ij ij
I ,I− + 
 

 represents 

the degree relatively indeterminant the criteria 
j

C , U U

ij ij
I ,I− + 
 

 represents the degree absolutely 

indeterminant the criteria 
j

C , L L

ij ij
F ,F− + 
 

 represents the degree that alternative 
i

A relatively 

doesn’t satisfies the criteria 
j

C  and U U

ij ij
F ,F− + 
 

 represents the degree that alternative 
i

A absolutely 

doesn’t satisfies the criteria 
j

C . Therefore, a decision matrix D  is arranged as follows: 

 

 

 

 

( )ij m n
D x


= =  

 
1 2 n

C C C  

1

2

m

A

A

A

 

11 12 1n

21 22 2n

m1 m2 mn

x x x

x x x

x x x

 
 
 
 
 
  

 

 

Where 
ij

x is      L L U U L L U U L L U U

ij ij ij ij ij ij ij ij ij ij ij ij ij
x T ,T , T ,T , I ,I , I ,I , F ,F , F ,F− + − + − + − + − + − +           =
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Step 2: Transform the INVS decision matrix ( )ij m n
D x


= into the normalized INVS decision matrix 

denoted as ( )ij m n
D x


= where 

c

ij

ij

ij

x ; j B
x

x ; j C

 
= 



         (10) 

     c L L U U L L U U L L U U

ij ij ij ij ij ij ij ij ij ij ij ij ij
x 1 T ,1 T , 1 T ,1 T , 1 I ,1 I , 1 I ,1 I , 1 F ,1 F , 1 F ,1 F+ − + − + − + − + − + −           = − − − − − − − − − − − −

           
 

is complement of      L L U U L L U U L L U U

ij ij ij ij ij ij ij ij ij ij ij ij ij
x T ,T , T ,T , I ,I , I ,I , F ,F , F ,F− + − + − + − + − + − +           =

           
. 

Step 3: Calculate the entropy  

n

INVS INVS i
i 1

1
E (A) 1 E (A)(x )

2n 
=

= −                 (11) 

 

or 

n

INVS INVS i
i 1

1
E (A) 1 E (A)(x )

2n =

= −             (12)              

 

Step 4: Select the best option 
i

A  for i 1,2, ,m= based on smallest entropy. 

4.1.  Illustrative example 

In this section, the proposed entropy measure is applied to the case study of investment decisions 

adapted from [31]. There is a DM with four potential investment options namely 
1

A  is a food 

company, 
2

A  is a transport company, 
3

A  is an electronic company, and 
4

A  is a tire company. The 

DM makes a choice based on three criteria, 
1

C  is growth analysis, 
2

C  is risk analysis, 
3

C  is an 

environment impact analysis. We begin by using the INVS entropy based on interval approximation

( )INVS
E


. 

 

Method 1: Using INVS entropy based on interval approximation ( )INVS
E


. 

Step 1: The linguistic evaluation consists of  1 2 3 4
A A ,A ,A ,A= with respect to criteria 

 1 2 3
C C ,C ,C=  are obtained from the expert evaluation. The INVS decision matrix denoted as 

( )ij m n
D x


= is represented as follows: 

  



Neutrosophic Sets and Systems, Vol. 45, 2021     89  

 

 

Hazwani Hashim, Lazim Abdullah, Ashraf Al-Quran, Azzah Awang, Entropy Measure for Interval Neutrosophic Vague Sets 

and Their Application in Decision Making   

 

  
1

C  
2

C  
3

C  

1
A  0.5,0.7 , 0.6,0.8

0.2,0.3 , 0.3,0.4

0.3,0.5 , 0.2,0.4

      

      

      

 

0.5,0.6 , 0.4,0.9

0.1,0.2 , 0.3,0.4

0.4,0.5 , 0.1,0.6

      

      

      

 

0.7,0.8 , 0.5,0.8

0.1,0.2 , 0.3,0.4

0.2,0.3 , 0.2,0.5

      

      

      

 

2
A  0.4,0.7 , 0.6,0.9

0.2,0.3 , 0.4,0.5

0.3,0.6 , 0.1,0.4

      

      

      

 

0.3,0.6 , 0.1,0.5

0.2,0.4 , 0.4,0.5

0.4,0.7 , 0.5,0.9

      

      

      

 

0.6,0.7 , 0.5,0.9

0.3,0.4 , 0.4,0.5

0.3,0.4 , 0.1,0.5

      

      

      

 

3
A  0.4,0.9 , 0.7,0.9

0.3,0.4 , 0.4,0.5

0.1,0.6 , 0.1,0.3

      

      

      

 

0.5,0.7 , 0.5,0.9

0.1,0.2 , 0.2,0.3

0.3,0.5 , 0.1,0.5

      

      

      

 

0.5,0.6 , 0.4,0.7

0.1,0.2 , 0.2,0.3

0.4,0.5 , 0.3,0.6

      

      

      

 

4
A  0.6,0.8 , 0.5,0.9

0.1,0.2 , 0.3,0.5

0.2,0.4 , 0.1,0.5

      

      

      

 

0.2,0.5 , 0.1,0.4

0.2,0.3 , 0.3,0.4

0.5,0.6 , 0.6,0.9

      

      

      

 

0.4,0.8 , 0.5,0.9

0.3,0.4 , 0.4,0.5

0.2,0.6 , 0.1,0.5

      

      

      

 

 

Step 2: since the criteria 
1

C is the benefit criteria and 
2

C , 
3

C  are cost criteria, so the INVS decision 

matrix is transformed into the normalized INVS decision matrix using Equation 10. 

 

  
1

C  
2

C  
3

C  

1
A  0.3,0.5 , 0.2,0.4

0.7,0.8 , 0.6,0.7

0.5,0.7 , 0.6,0.8

      

      

      

 

0.5,0.6 , 0.4,0.9

0.1,0.2 , 0.3,0.4

0.4,0.5 , 0.1,0.6

      

      

      

 

0.7,0.8 , 0.5,0.8

0.1,0.2 , 0.3,0.4

0.2,0.3 , 0.2,0.5

      

      

      

 

2
A  0.3,0.6 , 0.1,0.4

0.7,0.8 , 0.5,0.6

0.4,0.7 , 0.6,0.9

      

      

      

 

0.3,0.6 , 0.1,0.5

0.2,0.4 , 0.4,0.5

0.4,0.7 , 0.5,0.9

      

      

      

 

0.6,0.7 , 0.5,0.9

0.3,0.4 , 0.4,0.5

0.3,0.4 , 0.1,0.5

      

      

      

 

3
A  0.1,0.6 , 0.1,0.3

0.6,0.7 , 0.5,0.6

0.4,0.9 , 0.7,0.9

      

      

      

 

0.5,0.7 , 0.5,0.9

0.1,0.2 , 0.2,0.3

0.3,0.5 , 0.1,0.5

      

      

      

 

0.5,0.6 , 0.4,0.7

0.1,0.2 , 0.2,0.3

0.4,0.5 , 0.3,0.6

      

      

      

 

4
A  0.2,0.4 , 0.1,0.5

0.8,0.9 , 0.5,0.7

0.6,0.8 , 0.5,0.9

      

      

      

 

0.2,0.5 , 0.1,0.4

0.2,0.3 , 0.3,0.4

0.5,0.6 , 0.6,0.9

      

      

      

 

0.4,0.8 , 0.5,0.9

0.3,0.4 , 0.4,0.5

0.2,0.6 , 0.1,0.5

      

      

      

 

 

Step 3: Calculate the aggregated entropy measure for all the alternative  1 2 3 4
A A ,A ,A ,A=  

By equation 11, we calculate for i 1, j 1= = , then 

0.3 0.5 0.2 0.4 0.5 0.7 0.6 0.8 0.7 0.8 0.6 0.7
0.5 0.5 0.5

4 4 4

0.2 0.3 0.3 0.4
0.5 0.7

4

+ + + + + + + + +
= − + − + −

+ + +
+ − =
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Therefore; 

1
A :  

3

INVS
i 1

E (A) 0.7 0.7 0.9 2.3


=

= + + =  and 
INVS

1
E (A) 1 (2.3) 0.6167

6
= − =  and the rest of entropy 

measure for 
2 3 4

A ,A ,A are calculated similarly and presented as follows: 

2 3 4
A 0.7250,A 0.6250,A 0.65= = =  

Step 4: Based on the smallest entropy values, we conclude that the ranking of given alternatives is as 

follows: 

1 3 4 2
A A A A  

Since 
1

A is the less uncertainty information. Therefore, the best option to invest is in a food company.  

Method 2: Using INVS entropy generalized based on SVNS entropy ( )INVS
E . 

Step 1: Similar to Step 1 of Method 1. 

Step 2: Similar to Step 2 of Method 1. 

Step 3: Calculate the aggregated entropy measure for all the alternative  1 2 3 4
A A ,A ,A ,A=  

By equation 12, we calculate for i 1, j 1= = , then 

0.3 0.5 0.5 0.7 0.2 0.4 0.6 0.8
0.7 0.8 1 0.6 0.7 1 0.22

2 2 2 2

    + + + + 
= −  + − + −  + − =    
     

. Hence,  

1
A :  

3

INVS
i 1

E (A) 0.22 0.16 0.44 0.82
=

= + + =  and 
INVS

1
E (A) 1 (0.82) 0.8633

6
= − =  and the rest of 

entropy measure for 
2 3 4

A ,A ,A are calculated similarly and presented as follows: 

2 3 4
A 0.9463,A 0.8983,A 0.8817= = =  

Step 4: Based on the smallest entropy values, we conclude that the ranking of given alternatives is as 

follows: 

Since 
1

A is the less uncertainty information, we conclude that the ranking of given alternatives is as 

follows: 

1 3 4 2
A A A A  

Since the smallest entropy value is
1

A . Therefore, the best option to invest is in a food company.  
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According to the findings, investing in a food company is the best option based on the proposed 

entropy. Both entropy measure produce different fuzziness degree but the ranking of alternatives is 

similar which could assist DMs to choose the best alternative. The ranking of four alternatives using 

proposed entropy measures is presented in Figure 1. 

 

 

Figure 1: Ranking of the four alternatives using ( )INVS
E


and ( )INVS

E  

4.2.  Comparison analysis and discussion 

Based on the illustrative example in [31] and the computational procedures in section 4, the 

proposed entropy measures are compared with two existing entropy measures under the INVS 

environment. The proposed entropy measures are denoted as 
INVS

E


 and 
INVS

E are based on interval 

approximation and existing SVNS entropy, respectively. The existing entropy measures by 

Majumdar and Samanta 
MM

E [29], and entropy measures by Ali E


[35] are incorporated in this 

comparative analysis. Table 1 represents the ranking results based on entropy values. 

 

Table 3: The comparison with other entropy measures 

Entropy measure Aggregated entropy measure

( )i
A i 1,2,3,4=  

Ranking 

Proposed entropy 
INVS

E


 
1

A 0.6167= ,
2

A 0.6250=

3
A 0.7250= ,

4
A 0.65=  

1 3 4 2
A A A A  

Proposed entropy 
INVS

E  
1

A 0.863= ,
2

A 0.9463=

3
A 0.8983= ,

4
A 0.8817=  

1 4 3 2
A A A A  

Entropy 
MM

E [33] 
1

A 0.7267= ,
2

A 0.8967=

3
A 0.7967= ,

4
A 0.7633=  

1 4 3 2
A A A A  

Entropy  E

[35] 

1
A 0.4474= ,

2
A 0.5690=

3
A 0.4567= ,

4
A 0.4860=  

1 3 4 2
A A A A  
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The following conclusions are drawn from a comparison of different entropy measures: 

 

• The ranking result of our proposed entropy is almost consistent with the existing entropy in 

the literature. The smallest entropy value is 
1

A  meanwhile the largest entropy value is
2

A  

• The entropy measures show a similar ranking of alternatives with different fuzziness degree. 

• The proposed entropy measures are reliable in measuring the degree of fuzziness in terms of 

the INVS data set. 

• The fuzziness degree in the proposed entropy measures may assist DMs to choose the most 

significant alternative based on the lowest fuzziness degree. 

• The new entropy measures resolve the arguments claimed by Thao and Smarandache [33] 

towards the entropy measures proposed by Majumdar and Samanta. 

• The suggested entropy measure can address the same decision making problem as existing 

entropy measures. 

• The proposed entropy measures can take into account the incompleteness and vagueness 

environments and may assist to better understand the degree of fuzziness in terms of the 

INVS data set. 

 

5. Conclusions  

In this paper, we have presented two entropy measures of INVS and some desirable properties 

corresponding to these entropies including nonnegativity, minimality, maximality, symmetric and 

resolution have been proved. Based on the extension of SVNS entropy, we define the concept of INVS 

entropy by including some improvements. Specifically, the improved entropy measures resolve the 

arguments claimed in [33]. In addition, this entropy measures can measure the degree of fuzziness in 

terms of INVS environment. Then, the proposed entropies are applied in a MCDM problem, in which 

the alternatives on criteria are represented in the INVS environment. Subsequently, an illustrative 

example was presented to illustrate the application of the proposed MCDM. Finally, a comparative 

analysis with other entropy measures is presented. 

The advantages of proposed entropy are in form of INVS where truth, indeterminacy, and falsity 

are defined by several membership degree and also complement the NV and INS in representing 

uncertain, indeterminate, and inconsistent information. The result shows that the proposed entropy 

measures are reliable in measuring the degree of fuzziness. Measuring uncertainty information is 

important in decision making, the least value of fuzziness degree will assist DMs to make effective 

decisions to prevent loss. The suggested entropy measures may be used to assess uncertainty 

information in other decision making problems such as selection of renewable energy, waste water 

treatment, and supplier selection. The limitation of the study is the idea to generalize entropy 

measure may be utilized for the interval concept only.  

In the future, the proposed entropy measures can be extended further based on exponential 

entropy, symmetric entropy, and trigonometric functions. Under the INVS environment, we shall 

propose other information measures such as similarity and cross-entropy. Besides that, the proposed 

entropy measures may be used to measure the weight of criteria and DMs in MCDM. 

 

Funding: This research received no extra funding 

Conflicts of Interest: The authors declare no conflict of interest 

 

 

 

  



Neutrosophic Sets and Systems, Vol. 45, 2021     93  

 

 

Hazwani Hashim, Lazim Abdullah, Ashraf Al-Quran, Azzah Awang, Entropy Measure for Interval Neutrosophic Vague Sets 

and Their Application in Decision Making   

 

References 

1. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. 

2. Shannon, C.E., & Weaver, W. The Mathematical Theory of Communications. 1949. The University of Illinois 

Press: Urbana, IL, USA. 

3. Zadeh, L.A. Probability Measures of Fuzzy Events. J. Math. Anal. Appl.,. 1968, 23(2), 421-427. 

4. De Luca, A. & Termini, S. A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory. 

Inf. Control,. 1972 ,20(4), 301–312. 

5. Sander, W. On Measure of Fuzziness. Fuzzy Sets Syst. 1989, 29, 49–55. 

6. Xie, W.X.&Bedrosian, S.D. An Information Measure for Fuzzy Sets. IEEE Trans. Syst. Man Cybern.,. 1984, 

SMC-14(1), 151–156, 1984. 

7. Pal, N.R. & Pal, S.K. Higher Order Fuzzy Entropy and Hybrid Entropy of a Set. Inf. Sci. (Ny).,. 1992 ,61(3), 

211–231. 

8. Shi, Y., & Yuan, X. (2015). Interval Entropy of Fuzzy Sets and The Application to Fuzzy Multiple Attribute 

Decision Making. Mathematical Problems in Engineering. 2015, 2015, 1-21. 

9. Atanassov, K.T. Intuitionistic Fuzzy Sets. Fuzzy sets syst. 1986, 20(1), 87–96. 

10. Burillo, P. & Bustince, H. Entropy on Intuitionistic Fuzzy Sets and on Interval-Valued Fuzzy Sets. Fuzzy 

Sets Syst. 1996, 78(3), 305–316.  

11. Szmidt, E. & Kacprzyk, J. Entropy for Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 2001, 118(3), 467–477. 

12. Wei, C.P., Wang, P. & Zhang, Y.Z. Entropy, Similarity Measure of Interval-Valued Intuitionistic Fuzzy Sets 

and Their Applications. Inf. Sci. (Ny). 2011, 181(19), 4273–4286. 

13. Garg, H. Generalized Intuitionitsic Fuzzy Entropy-Based Approach for Solving Multi-Attribute Decision 

Making. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2017, 89,129-139. 

14. Rashid, T., Faizi, S., & Zafar,S. Distance Based Entropy Measure of Interval-Valued Intuitionistic Fuzzy Sets 

and Its Application in Multicriteria Decision Making. Adv. Fuzzy Syst. 2018, 2018,1-10. 

15. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic. RehobothAmerican Res. Press. 1998, 

1–141. 

16. Wang, H., Smarandache, F., Zhang, Y. & Sunderraman, R. Single Valued Neutrosophic Set. Multispace and 

Multistructure. 2010. 4, 410–413. 

17. Wang, H., Smarandache, F., Zhang Y. Q., & Sunderrman, R. Interval Neutrosophic Sets and Logic: Theory 

and Applications in Computing. in Hexis, Phoenix. 2005. 

18. Alkhazaleh, S., Neutrosophic Vague Set Theory. Crit. Rev. 2015, X (July), 29-39. 

19. Gau, W. L. & Buehrer, D. J. Vague Sets. IEEE Trans. Syst. Man. Cybern. 1993, 23 (2), 610–614. 

20. Hashim, H., Abdullah, L., & Al-Quran. A. Interval Neutrosophic Vague Sets. Neutrosophic Sets and System. 

2019, 25, 66-75. 



Neutrosophic Sets and Systems, Vol. 45, 2021     94  

 

 

Hazwani Hashim, Lazim Abdullah, Ashraf Al-Quran, Azzah Awang, Entropy Measure for Interval Neutrosophic Vague Sets 

and Their Application in Decision Making   

 

21. Al-Quran, & Hassan, A. Neutrosophic Vague Soft Set and Its applications. Malaysian J. Math. Sci. 2017, 

11(2), 141–163. 

22. Al-Quran, A., & Hassan, N. Neutrosophic Vague Soft Expert Set Theory. Artic. J. Intell. Fuzzy Syst. 2016, 

30(6), 3691–3702. 

23. Awang, A., Ali, M., & Abdullah, L. Hesitant Bipolar-Valued Neutrosophic Set: Formulation, Theory and 

Application. IEEE Access. 2019, 7, 176099–176114. 

24. Liu, P. & Shi, L. Some Neutrosophic Uncertain Linguistic Number Heronian Mean Operators and Their 

Application to Multi-Attribute Group Decision Making. Neural Comput. Appl. 2017, 28(5), 1079–1093. 

25. Awang, A., Aizam, N.A.H., Ab Ghani, A.T., Othman, M., & Abdullah, L. A Normalized Weighted 

Bonferroni Mean Aggregation Operator Considering Shapley Fuzzy Measure Under Interval-valued 

Neutrosophic Environment for Decision-Making,. Int. J. Fuzzy Syst. 2020 , 22(1), 321–336. 

26. Tian, C., Peng, J. J., Zhang, Z. Q., Goh, M., & Wang, J. Q. A Multi-Criteria Decision-Making Method Based 

on Single-Valued Neutrosophic Partitioned Heronian Mean Operator. Mathematics. 2020, 8(7), 1189. 

27. Yang, H., Wang, X. & Qin, K. New Similarity and Entropy Measures of Interval Neutrosophic Sets with 

Applications in Multi-Attribute Decision-Making. Symmetry. 2019, 11(3), 370. 

28. Al-Quran, A. & Hassan, N. Fuzzy Parameterized Single Valued Neutrosophic Soft Expert Set Theory and 

Its Application in Decision Making. Int. J. Applied Decision Sciences. 2016. 9, 212-227. 

29. Majumdar, P. & Samanta, S.K. On Similarity and Entropy of Neutrosophic Sets. J. Intell. Fuzzy Syst. 2014, 

26(3), 1245–1252.  

30. Wu, H., Yuan, Y., Wei, L. & Pei, L. On Entropy, Similarity Measure and Cross-Entropy of Single-Valued 

Neutrosophic Sets and Their Application in Multi-Attribute Decision Making. Soft Comput. 2018, 22(22), 

7367–7376. 

31. Garg, N. H and Garg, H. On Single-Valued Neutrosophic Entropy of Order α. Neutrosophic Set and System. 

2016, 14, 21–28. 

32. Abu Qamar, M. & Hassan, N. Entropy, Measures of Distance and Similarity of Q-neutrosophic Soft Sets 

and Some Applications. Entropy. 2018, 20(9), 672. 

33. Thao, N.X., & Smarandache, F. Apply New Entropy Based Similarity Measures of Single Valued 

Neutrosophic Sets to Select Supplier Material,” J. Intell. Fuzzy Syst. 2020, 39(1), 1005–1019. 

34. Ye, J., & Du, S. Some distances, similarity and entropy measures for interval-valued neutrosophic sets and 

their relationship. International Journal of Machine Learning and Cybernetics. 2019, 10(2), 347-355. 

35. Aydoğdu. A., & Şahin, R.  New Entropy Measures Based on Neutrosophic Set and Their Applications to 

Multi-Criteria Decision Making. J. Nat. Appl. Sci. 2019, 23(1), 40–45. 

36. Quek, S. G., Selvachandran, G., Smarandache, F., Vimala, J., Le, S. H., Bui, Q. T., & Gerogiannis, V.C. 

Entropy Measures for Plithogenic Sets and Applications in Multi-Attribute Decision Making. Mathematics. 

2020, 8(6), 965. 

37. Ye., Entropy Measures of Simplified Neutrosophic Sets and Their Decision-Making Approach with Positive 

and Negative Arguments. J. Manag. Anal. 2021, 1–15. 



Neutrosophic Sets and Systems, Vol. 45, 2021     95  

 

 

Hazwani Hashim, Lazim Abdullah, Ashraf Al-Quran, Azzah Awang, Entropy Measure for Interval Neutrosophic Vague Sets 

and Their Application in Decision Making   

 

38. Biswas, P. Pramanik, S. & Giri, B.C. Entropy Based Grey Relational Analysis Method for Multi-Attribute 

Decision Making Under Single Valued Neutrosophic Assessments,” Neutrosophic Sets Syst. 2014 , 2, 105–

113. 

39. Thao, N. X., & Smarandache, F. A New Fuzzy Entropy on Pythagorean Fuzzy Sets. J. Intell. Fuzzy Syst. 2019, 

37(1), 1065–1074. 

40. Barukab, O., Abdullah, S., Ashraf, S., Arif, M. & Khan, S.A. A New Approach to Fuzzy TOPSIS Method 

Based on Entropy Measure Under Spherical Fuzzy Information. Entropy. 2019. 21(12), 1231. 

41. Ye, J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of 

interval-valued intuitionistic fuzzy sets. Applied Mathematical Modelling. 2010, 34(12), 3864-3870. 

 

 

Received: June 8, 2021.  Accepted: August 26, 2021 

 

 



                                    Neutrosophic Sets and Systems, Vol. 45, 2021 
University of New Mexico  

 

Mohd Anas Wajid and Aasim Zafar, Multimodal Fusion: A Review, Taxonomy, Open Challenges, Research Roadmap and 

Future Directions. 

    

 

Multimodal Fusion: A Review, Taxonomy, Open Challenges, 
Research Roadmap and Future Directions 

Mohd Anas Wajid1, Aasim Zafar2 

1 Department of Computer Science, Aligarh Muslim University, Aligarh, 202002; anaswajid.bbk@gmail.com 
2 Department of Computer Science, Aligarh Muslim University, Aligarh, 202002; aasimzafar@gmail.com 

 

Abstract: The present work collects a plethora of previous research work in the field of multimodal 

fusion which despite a lot of research could not handle the imperfections. These imperfections could 

be at any stage initiating from the imperfections in data and its sources to imperfections in fusion 

strategies. Further, the work explores various applications of Neutrosophy in the field of handling 

imperfections along with description of previous work in this regard. These applications include the 

one which addresses the notion of imperfection and uncertainty among multimodal data which is 

being collected for fusion. In this way, the present work tries to incorporate neutrosophic logic and 

its applications in the field of computer vision including multimodal data fusion and information 

systems. It is assumed that if the notion of uncertainty is included in multimodal research, the 

development of newer algorithms for solving the problems of imperfections in multimodal systems 

will provide impetus to the existing research in this field.  

Keywords: Multimodal Data; Multimodal Fusion; Imperfections; Fuzzy Logic; Neutrosophic Logic; 

Machine Learning. 

 

 

1. Introduction 

The present world is witnessing a change where the user is not only a consumer of information 

but a great producer of it. Earlier website owners were the main source of information production 

but in the current scenario, the social web has taken its position. This rapid development in the field 

of the web is termed Web 2.0.  The repositories of multimedia content (Flicker, YouTube, Picasa and 

Twitter etc.) over the web is increasing at a faster pace than ever before. This plethora of content over 

the web as well as on personal computers has raised the issue of its effective storage, organization, 

indexing and retrieval. This multimedia content (image or video) has a multimodal (visual, textual) 

nature. These multimodalities are of utmost importance since the information conveyed by pixels 

covers only visual content which is totally different from tag information. These modalities must be 

combined in such a way that it gives more of the information needed on time. In order to combine 

the above-mentioned modalities it is important to consider the process of information fusion. This 

process at the initial level is carried forward in different ways. These may be data fusion (low level), 

feature fusion (intermediate level) and decision fusion (high level). When multiple sources of raw 

data are combined in such a way that the new source is more informative and synthetic than the 
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previous two, it is called data fusion. Feature fusion combines features extracted from different 

sources into a single stand-alone feature vector. Decision fusion is clearly based on classifiers when 

aid in giving unbiased and accurate results. One of the main characteristics of the fusion process is 

imperfection as explained by Bloch [2001]. These imperfections are the main reason for the fusion 

process to be carried out more effectively [22]. These imperfections could mainly be imprecision, 

uncertainty and incompleteness. These imperfections occur at a different level of fusion. In this paper 

we have reviewed work on multimodal fusion, also we have reviewed work on neutrosophic 

technologies which could be employed in the field of multimodal fusion and systems. The following 

figure shows the workflow: 

 

 
 

Figure 1 Block diagram for the process of research being adopted in the present manuscript 

1.1 Background: 

Multimodal fusion has been attaining exponential attention in multimodal information access 

and retrieval tasks and this has been well studied by Kludas and Marchand-Maillet [2011]; 

Souvannavong et al. [2005]; Marchand-Maillet et al. [2010] and Niaz and M´erialdo [2013] [23-26]. 

The facts related to this can be found in the study done by Atrey et al. [2010] [27]. The imperfections 

in textual modality are partially considered in the context of multimodal systems. Most of the state-

of-the-art approaches which address the notion of textual imperfections always do so using relevancy 

e.g. imperfections in tags. The incompleteness issue has been well identified in the literature by Liu 

et al. [2009]; Tang et al. [2009] [28-29]; Wang et al. [2010] [40] but work on imprecision and uncertainty 

is left far behind e.g. noisy tags.  Imperfection in different modalities has been studied by Bloch [2003] 

[41]. Though various research work has been done in the field of multimodal fusion but very little 

has focused on handling imperfections. Handling imperfections does not appear their primary goal 

while performing multimodal fusion tasks. Below Table 1 shows the work in above-mentioned field 

using different principles by various researchers around the globe. 
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Table 1 A Summary of the state-of-the-art approaches for Multimodal Fusion 

S No. Work Principle Handling 

Imperfections 

1.  Romberg et al.  

(2012) 

 

Probabilistic latent semantic analysis on tags co-

occurrence matrix. 

No 

2.  Zhang et al.(2012) 

 

Semantic BOW based on the Tag-to-Tag similarity 

 

The       

incomplete 

data problem. 

3.  Xioufis et al. (2011) 

. 

Binary BOW representation with feature selection No 

4.  Kawanabe et al. (2011) 

 

 

Binary BOW representing the presence/absence of 

tags with random walks over tags. 

The 

incomplete 

data problem. 

5.  Guillaumin et al. 

(2010) 

 

Binary BOW representation representing the 

presence/absence of tags. 

No 

6.  Liu et al. (2013) 

 

Histogram of Textual Concepts based on the Tag-

to-Concept similarity 

The 

incomplete 

data problem. 

7.  Nagel et al. (2011) 

 

BOW based on the tf-idf values of tags. No 

8.  Li et al. (2010) 

 

Compare Tag and annotation concepts expansion 

vectors. 

No 

9.  Gao et al. (2010) 

 

Probability based on the tag-concept co-

occurrence. 

No 

10.  Wang et al. (2010) 

 

Semantic Fields based on the tag-concept co-

occurrence. 

No 

11.  S. Poria et al. (2015) 

 

Aggregate semantic and affective information 

associated with data 

No 

12.  S. Poria et al. (2015) 

 

Decision level data fusion No 

13.  S. Poria et al. (2016) 

 

Deep neural network & multiple kernel learning 

classifier 

No 

14.  Minghai Chen et al. 

(2017) 

 

Modality fusion at word level  No 
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15.  Kyung-Min Kim et al.  

(2018) 

 

Residual learning fusion No 

16.  Feiran Huang et al. 

2019 

internal correlation among features (textual & 

visual)for joint sentiment classification 

No 

 

Above mentioned approaches whether related to early fusion, late fusion or transmedia fusion, do 

not tackle the problem of imperfections at the feature level. Now after defining the imperfections or 

uncertainties at various levels of fusion, let us understand from Table 2 what are the terms being used 

to describe these data/information imperfections by prominent researchers in their work. 

 

Table 2 A summary of terms used to describe tag imperfections in Multimodal Fusion 

S No. Work Imperfections terms used 

1.  Jin et al. (2005) 

 

Noisy 

2.  Weinberger et al. (2008) 

 

Ambiguous 

3.  Xu et al. (2009) 

 

Ambiguous 

4.  Wang et al. (2010) 

 

Incomplete, Ambiguous 

5.  Liu et al. (2009) 

 

Incomplete, Imprecise, Noisy 

6.  Kennedy et al. (2009) 

 

Unreliable, Noisy 

7.  Tang et al. (2009) 

 

Incorrect, Noisy, Incomplete 

8.  Liu et al. (2010) 

 

Incomplete, Biased, Incorrect 

9.  Zhu et al. (2010) 

 

Noisy 

10.  Yang et al. (2011) 

 

Ambiguous, Noisy 

11.  Wu et al. (2012) Inconsistent, Noisy, Incomplete, 

Unreliable 

12.  Valentin Vielzeuf et al. (2017) 

 

Noisy 

13.  Natalia Neverova et al. (2014) Uncertain, Noisy 
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14.  A. Tamrakar (2012) 

 

Noisy 

15.  Kyung-Min Kim et al.  (2018) 

 

Ambiguous 

16.  Feiran Huan et al.  (2019) 

 

Inconsistent, Noisy, Incomplete, 

17.  Yagya Raj Pandeya and Joonwhoan Lee 

(2019) 

Lack of labelling 

 

The motivation behind carrying out present work is the negligence of research community 

towards addressing the problem of imprecision in data, which is used in designing multimodal 

systems. This imprecision arises due to dependence of classifiers on incomplete and uncertain data 

that leads to an imprecise decision function. This also happens when scores produced by different 

classifiers are combined, fusion faces the problem of imperfection. These imperfections could lead to 

imperfections in machine learning algorithms at the decision level. To achieve our goal we have 

described various work done by researchers in multimodal fusion at each stage i.e. early fusion, late 

fusion and transmedia fusion. We have also explained the terms that are used for showing 

imperfections and imprecision in data by various researchers. Further, we have explained the 

neutrosophic theory which provides a way to deal with uncertainty, imprecision and imperfections, 

with a detailed description of work carried out using this theory to address the imperfections at 

various levels. Our aim is to acknowledge the problem of uncertainty and imprecision in multimodal 

fusion tasks and introduce new researchers working in the concerned field to the notion of 

Neutrosophy and its applications in handling imperfections in multimodal fusion.  

The taxonomy of research challenges and opportunities in multimodal fusion together with 

potential research challenges are summarized and highlighted in this article. The main objectives of 

this work include: 

 To identify the problem of imperfections in multimodal fusion. Interpreting existing research 

conducted in this domain. 

 To interpret current studies conducted in this area of research. 

 To identify a research gap in the field that needs to be further investigated by the researchers 

in the field. 

 To identify and introduce new researchers with the concept of neutrosophy and its 

applications in multimodal fusion. 

 To identify roadmap that requires investigation in future by concerned researchers in the field 

of multimodal information systems. 

The rest of the paper is divided into five sections, Section 2 explains research conducted in the 

field of multimodal fusion, including early fusion, late fusion and transmedia fusion. It also explains 

the problem of imperfection encountered in multimodal fusion. Section 3 introduces new researchers 

working in the field of multimodal information access and retrieval with the concept called 

Neutrosophy. It also describes the current research conducted in the field of neutrosophy which 
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could be employed in multimodal systems for handling imperfections. Section 4 summarizes and 

highlights the future research roadmap to multimodal fusion using Neutrosophy. Section 5 concludes 

the work. 

2. Taxonomy of open issues and challenges in multimodal fusion approaches:   

Multimodal fusion is one of the important steps in multimodal information access and retrieval. 

The accuracy of the framework depends on fusion strategies being adopted. Researchers dealing with 

multimodal fusion mainly use three strategies namely; 

1. Early Fusion  

2. Late Fusion  

3. Transmedia Fusion 

These strategies are well explained with their working principle in the work carried out by Mohd 

Anas Wajid and Aasim Zafar [2019] [83]. The above-mentioned fusion strategies could easily be 

understood by the following diagram. 

 

 
Figure 2 A summary of Fusion Approaches for Multimodal Fusion 

2.1 Early Fusion:  

The early fusion strategy has been adopted by a number of researchers around the globe. Though 

effective in many ways, it does not address the issue of imperfections while handling the data.  Some 

of the prominent work using early fusion are explained below and later compared in the table on the 

basis of their fusion methodology being adopted.  
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Li et al. [2009] have used simple concatenation of visual aspects together with textual aspects of 

data for fusion [42]. Duygulu et al. [2002] have employed the correlation concept using an estimation 

maximization algorithm (EM). This is used for attaching words to the segmented image regions after 

the training phase is over. The model proposed is called the translation model [43]. 

Barnard et al. [2003] on one hand studied the joint distribution among the textual modality and 

the segmented image modality and on the other hand, used it to convert it in likelihood function 

between text and segmented image region [44].  

According to Blei and Jordan [2003] Probabilistic Latent Semantic Analysis (pLSA) and Latent 

Dirichlet Allocation (LDA) can be used for correspondence between textual modality and the 

corresponding image modality. The model proposed by them is estimated using the EM algorithm 

[45].  

Monay and Gatica-Perez [2003] in a similar fashion have used pLSA over the concatenated set 

of visual and textual modalities. The balance between the two modalities limits the size of visual 

representation [46]. A pLSA based model proposed by Lienhart et al. [2009] is again used to retrieve 

information in multimodal retrieval systems [47].  

A. Tamrakar et al. [2012] have used BoW descriptors within Support Vector Machine (SVM). 

This is done for event detection and for this they have used many early and late fusion strategies [66]. 

Minghai Chen et al. [2017] have done multimodal fusion at the word level. They have emphasized 

Temporal Attention Layer for predicting sentiments in sentimental analysis. They have also 

described the noise that is present in data of different modality [39].  

L. Morency et al. [2011] have proved the effectiveness of using different modalities for sentiment 

analysis. Though they have shown how the internet could be a source of information while using 

different modalities like audio, video and text but they have failed to address the imperfections 

present in data while carrying out the multimodal fusion [48].  

How the error in sentiment classification is reduced while taking into consideration the 

combination of different modalities is studied by V. Pérez-Rosas [2013]. In their study authors have 

stressed that while using a single modality the error is 10% high as compared to using various 

modalities together [49]. A recent development in sentimental analysis and emotion recognition has 

been recorded by S. Poria et al. [2016]. Here authors have performed Emotion recognition and 

sentiment analysis using convolution MKL and SVM based approach [50].  

The following table shows the work done by prominent researchers in the field of information 

retrieval using the early fusion strategy. Though all the approaches have their significance in fusing 

multimodal data yet they fail on the grounds of handling imperfections in data.  
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Table 3 A Summary of Approaches Based on Early Fusion 

S No. Work Fusion Method   Handling 

Imperfections 

Fusion 

Level 

1.  Li et al. (2009) 

 

concatenation of 

textual & visual modality 

No  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Early 

Fusion 

 

 

 

 

 

2.  Duygulu et al. (2002) 

 

Assigning words to segmented 

image regions using translation 

model. 

No 

3.  Barnard et al. (2003) 

 

joint distribution 

of text and segmented image 

No 

4.  Blei and Jordan (2003) 

 

LDA on visual and textual 

modality. 

No 

5.  Monay and Gatica-Perez 

(2003) 

pLSA for concatenating visual 

and textual features. 

. 

No 

6.  Lienhart et al. (2009) 

 

Multimodal pLSA multilayer 

model. 

No 

7.  Chandrika and Jawahar 

(2010) 

 

Multimodal pLSA No 

8.  Nikolopoulos et al. (2013) 

 

High Order pLSA. No 

9.  Wang et al. (2009) 

 

Visual tag dictionary using 

GMM. 

No 

10.  A. Tamrakar (2012) 

 

Event detection using BoW 

descriptors within SVM. 

No 

11.  Minghai Chen et al. (2017) 

 

Gated Multimodal Embedding 

LSTM with Temporal 

Attention 

No 

12.  L. Morency et al. (2011) Tri-model sentiment analysis 

using Gaussian mixtures and 

HMM 

No 

13.  V. Pérez-Rosas et al. (2013) 

 

BoW and OpenEAR an open 

source software with SVM 

No 

14.  S. Poria (2016) Emotion recognition using 

convolution MKL based 

approach  

No 
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2.2 Late Fusion:   

Now we describe multimodal fusion that is based on late fusion strategy. There exist a plethora 

of work using this strategy but they are all based on different methodologies which are discussed 

further.  

Xioufis et al. [2011] in their approach worked in a different fashion. They introduced a 

multimodal fusion strategy based on late fusion. Their approach is totally based on predictions 

obtained by the classifiers from visual features. These predictions obtained from visual modality are 

averaged. Further, these are averaged with the predictions obtained from textual modality [82]. 

Wang et al. [2009a] worked in line with SVM where the scores from different classifiers are fed 

to SVM. The authors proposed to build two classifiers one for text modality and the other for visual 

modality. A third classifier is introduced to combine the confidence of the previous two and give final 

predictions [56]. 

Guillaumin et al. [2010] work with MKL framework which is considered to be a success for the 

feature fusion method. In the first step, their proposed semi-supervised method exploits both textual 

and visual features for learning a classifier. Later MKL framework is employed to predict text 

modality based on the visual content provided [33].  

Kawanabe et al. [2011] have used a similar approach however it differs from the use of MKL. It 

deploys trained SVMs and uniform kernel weights and gives results approximately the same as MKL 

method [58]. Zhang et al. [2012a] have used the same method for combining kernels learned on 

textual and visual features [31]. 

Gao et al. [2010] have adopted a technique based on feature selection using Grouping Based 

Precision & Recall-Aided (GBPRA) in classifier combination which enriches the performance of 

classification [60]. Liu et al. [2011] have used Dempster’s rule for combining classifiers predictions to 

achieve the best classification results [62]. Liu et al. (2013) worked on a fusion scheme termed 

Selective Weighted Late Fusion (SWLF). It works towards enhancing the mean average precision by 

selectively choosing the weights which in turn enhances the optimization [61].  

Daeha Kim et al. (2017) have worked towards classifying human emotions using multimodal 

signals and neural networks. Though the data which they have used comprises of landmark, audio 

and image having various imperfections at fusion level but these are not been handled [63]. Moving 

towards a similar goal of emotion recognition, Valentin Vielzeuf et al. (2017) have explored several 

multimodal fusion strategies. They have used a supervised classifier to know emotion labels and later 

proposed 2D and 3D Convolution Neural Network approaches for better face descriptors [64].  

Natalia Neverova et al. (2014) have worked towards gestures identification giving more stress 

on modality initialization and later on their fusion using late fusion strategy [65]. The work to use 

late fusion with dual attention mechanism has been mentioned by Kyung-Min Kim et al. (2018). This 
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approach is utilized in proposing an architecture that could be utilized in designing effective 

Question-Answering (Q & A) systems [67].  

Feiran Huan et al. (2019) have proposed a Deep Multimodal Attentive Fusion (DMAF), for 

sentimental analysis using data from social media platforms. Authors have used late fusion strategy 

for an effective fusion of modalities like image and text but when it comes to handling imperfections 

their approach seems to be lacking on this ground [68].  The work done by Escalante et al. [2008] is 

totally based on predictions obtained from classifiers. These are learned on textual and visual 

modalities and later combined in a linear way [54].  

Getting inspired by the music-video combination, Yagya Raj Pandeya and Joonwhoan Lee (2019) 

have prepared a dataset that could be effectively utilized for sentiment analysis. In their approach, 

they have extracted features of music and video separately, later characterized using long short-term 

memory (LSTM) and for evaluating the emotions various machine learning algorithms are used [69].  

Though all approaches have shown remarkable results in terms of the fusion of different modalities 

however they all lack on similar grounds i.e. handling imperfections. The Table 4 presents a summary 

of work using late fusion strategy compared on the basis of fusion method adopted.  

Table 4 A Summary of Approaches Based on Late Fusion 

S No. Work Fusion Method Handling 

Imperfections 

Fusion 

Level 

1.  Escalante et al. (2008) Prediction by different classifier 

is combined. 

No  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  Xioufis et al. (2011) 

 

Average rule used for late fusion. No 

3.  Wang et al. (2009) Predicted features are 

concatenated and SVM classifier 

is used. 

No 

4.  Guillaumin et al. (2010) 

 

Multiple Kernel Learning. No 

5.  Kawanabe et al. (2011) 

 

Multiple Kernel Learning. No 

6.  Zhang et al. (2012) 

 

Multiple Kernel Learning. No 

7.  Gao et al. (2010) Feature selection using Grouping 

Based Precision & Recall-Aided 

(GBPRA). 

No 

8.  Liu et al. (2013) 

 

Late fusion using selective weight  No 
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9.  Liu et al. (2011) Classifier predictions combined 

using Dempster’s rule  

Yes  

 

Late 

Fusion 

10.  Daeha Kim et al. (2017) Semi supervised learning and 

neural network 

No 

11.  Valentin Vielzeuf et al. 

(2017) 

 

Temporal multimodal fusion No 

12.  Natalia Neverova et al. 

(2014) 

 

Multi-scale deep learning and 

localization 

No 

13.  A. Tamrakar (2012) BoW descriptors within SVM. No 

14.  Kyung-Min Kim et al.  

(2018) 

 

Residual learning fusion No 

15.  Feiran Huan et al.  

(2019) 

Internal correlation among 

features (textual & visual)for 

joint sentiment classification 

No 

16.  Yagya Raj Pandeya and 

Joonwhoan Lee (2019) 

Pre-trained 

neural networks 

No 

 

2.3 Transmedia Fusion:  

Transmedia fusion is also referred to as intermediate fusion or cross-media fusion. The basic 

notion of its functioning is to use visual features to accumulate image modality (Visually Nearest 

Neighbor) and later switch to the textual modality to collect features from the neighbors. All the 

approaches towards achieving transmedia fusion are listed in Table 5. It also mentions the fusion 

method being employed by the researchers. Though the results of the work are fully satisfying the 

goal of transmedia fusion; it does not handle imperfections present in different data modalities. 

 

Table 5 A Summary of Approaches Based on Transmedia Fusion 

S No. Work Fusion Method Handling 

Imperfections 

Fusion 

Level 

1.  Makadia et al. 

(2008) 

 

Nearest neighbors using Joint 

Equal Contribution. 

No  

 

 

 

Transmedia 

Fusion 

2.  Torralba et al. 

(2008) 

 

Grasping texts from neighbors. No 

https://ejournal.um.edu.my/index.php/MJCS/article/view/26902
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3.  Guillaumin et al. 

(2009) 

 

Metric learning for text 

propagation. 

No 

4.  Li et al. (2009) Votes are accumulated for tag 

relevance 

No 

5.  Feiran Huan et al. 

(2019) 

internal correlation among features 

(textual & visual) for joint 

sentiment classification 

No 

6.  Daeha Kim et al. 

(2017) 

 

Neural networks based on 

multimodal signals 

No  

7.  Valentin Vielzeuf 

et al. (2017) 

 

Supervised classifier based on 

audio-visual signals 

No  

8.  Natalia Neverova 

et al. (2014) 

Gesture detection using 

multimodal and multiscale deep 

learning 

No  

9.  A. Tamrakar (2012) using BoW descriptors within an 

SVM approach for event detection 

No  

 

3. Taxonomy of Research Work Handling Imperfections Using Neutrosophy:  

Neutrosophic logic has gained alarming attention since its inception. At present is has left no 

areas of research untouched. Researchers all around the globe are employing its tools and techniques 

for the computation of uncertainty and imprecision which was a problem since time immemorial [57] 

[85-87]. But with the advent of neutrosophic sets and theory, the days are not far for computational 

intelligence to achieve its verge with the address of uncertainty and indeterminacy in machine 

learning algorithms and models. This theory was proposed by Florentin Smarandache [2005] which 

is extensively used since then for handling imperfections at various levels in mathematics and 

computer science. It is also referred to as Smarandache’s logic [84]. It states that a proposition could 

have values in the range of [T, I, F] where T refers to membership degrees of truth, I refers to 

membership degrees indeterminacy and F refers to membership degrees falsity. Bouzina Salah (2016) 

have compared operational fuzzy logic to that of neutrosophic logic. The authors have shown how 

in fuzzy logic the membership of truth and falsity gets changed into truth, falsity and indeterminacy 

in neutrosophic logic. The authors argue that how a change in principle changes the whole system of 

working [10]. 

Now we describe some of the work performed by researchers using neutrosophic sets and 

systems. These works show that if we employ their strategy at an early stage in multimodal fusion 

https://ejournal.um.edu.my/index.php/MJCS/article/view/26902
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then the problem of imperfections could easily be handled while carrying out this task. This would 

also enable us to remove imperfections in machine learning algorithms which in turn will not be 

transmitted to the modelling stage and our information access and retrieval will be more quick and 

accurate. Now let us understand how this work is carried out and what are strategies being followed 

by the researchers. 

Ned Vito Quevedo Arnaiz et al. [2020] have proposed a method for dealing with unlabeled data. 

Their approach involves the usage of neutrosophic sets and systems. The treatment of unlabeled data 

is done by developing unsupervised Neutrosophic K-means algorithm. Their work is motivated due 

to the increasing amount of unlabeled data over the internet. The authors have taken data for 

experiments from a stored dataset of the City of Riobamba to show the effectiveness of their 

methodology [1]. 

Mouhammad Bakro et al. (2020) in their paper have adopted a neutrosophic approach to digital 

images. The elements of image modality are represented in the neutrosophic domain by dividing 

points of the image matrix into neutrosophic sets. The authors have also studied various methods 

and metrics for calculating similarity and dissimilarity between image modality. The authors have 

claimed that their approach would enable researchers in searching inside images and videos [2]. 

Abhijit Saha et al. (2020) have addressed the problem of incomplete data using neutrosophic soft 

sets taking in account various suitable examples. The authors have explained the inconsistent and 

consistent association among various parameters followed by definitions such as consistent 

association degree, consistent association number between the parameters, inconsistent association 

number between the parameters and inconsistent association degree to measure these associations. 

They have also proposed a data filling algorithm and proved its feasibility and validity [3]. 

Carmen Verónica Valenzuela-Chicaiza, et al. (2020) have done an analysis of emotional 

intelligence using Neutrosophic psychology. The experiment is carried out using 245 randomly 

selected students at the Autonomous University of Los Andes [4].  

Ridvan Sahin (2014) have worked in achieving a Hierarchical clustering algorithm based on 

neutrosophy. This is achieved by extending algorithms proposed for Intuitionistic Fuzzy Set (IFS) 

and Interval Valued Intuitionistic Fuzzy Set (IVIFS) to Single Valued Neutrosophic Set (SVNS) and 

Interval Neutrosophic Set (INS). They have extended the algorithm for classifying neutrosophic data 

to show its effectiveness and applicability [5]. 

Yaman Akbulut et al. (2017) have worked towards enhancing the classification performance of 

k-Nearest Neighbour (k-NN) by the introduction of Neutrosophy. The authors have introduced 

Neutrosophic-k-NN. The authors have tested their approach on various datasets and have found 

good classification results as compared to k-NN [19]. Wen Ju et al. (2013) have introduced the 

Neutrosophic Support Vector Machine (N-SVM) [20]. 

https://ejournal.um.edu.my/index.php/MJCS/article/view/26902
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A. A. Salama (2014) have done significant work in the domain of image processing by employing 

Neutrosophy in the field. They have proposed techniques to address imperfectly defined image 

modality. The authors have also worked towards similarity metrics for neutrosophic sets like 

Hamming distance and Euclidian distance. Possible applications to image processing are also 

touched upon [6]. The authors in the same year have worked extensively to introduce the researchers 

with neutrosophic linear regression and correlation [7]. 

Anjan Mukherjee et al. (2015) has studied Neutrosophy and its application in the field of pattern 

recognition. The authors have proposed a weighted similarity measure between two neutrosophic 

soft sets and verified its application in recognizing patterns in computer vision problems by taking 

some suitable examples [8]. 

A. A. Salama et al. (2016) have represented image modality features in the neutrosophic domain. 

For this purpose authors have stressed on textual modality. The authors have used these features 

extensively in training the model so that it could easily be used in image processing tasks [9]. 

Nguyen Xuan Thao et al. (2017) in their work mentioned various applications of Soft Computing. 

The authors have introduced a new concept of Support Neutrosophic Set (SNS) which is a 

combination of fuzzy set and neutrosophic set. They have also described the operations of these sets 

together with their properties [11]. 

Okpako Abugor Ejaita et al. (2017) have studied the uncertainties in medical diagnosis. Authors 

have stressed how negligence of uncertainty at the initial stage of diagnosis could lead to fatal 

problems in patients at a later stage. To overcome these authors have introduced a framework based 

on Neutrosophic Neural Network for diagnosis of confusable disease [12].  

A. A. Salama et al. (2018) have worked towards enhancing the quality of image modality. For 

this reason authors have converted the image in the neutrosophic domain so that their contrast could 

be enhanced. This approach to the neutrosophic grayscale image domain would enable image 

processing to yield good results while performing information retrieval [13]. To achieve the same 

goal Ming Zhang et al. (2010) have proposed an image segmentation approach based on Neutrosophy 

[16]. Abdulkadir Sengur and Yanhui Guo (2011) have done colour, texture image segmentation based 

on neutrosophic set and wavelet transform [17].  

D. Vitalio Ponce Ruiz et al. (2019) have introduced a new concept of linguistic modelling in 

Neutrosophy. This is done to remove the uncertainty which seems to be a big hurdle while modelling 

linguistic terms while performing information retrieval. The modelling is performed using LOWA 

operator. Their work seems to be a milestone achieved for modelling linguistic modality in 

multimodal systems [14]. 

Elyas Rashno et al. (2019) have worked towards recognizing noisy speech. Their approach of 

recognition employs Convolution Neural network (CNN) model based on Neutrosophy. They have 
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proposed Neutrosophic Convolution Neural Network (NCNN) claiming that this would ease the 

task of classification [18]. 

G. Jayaparthasarathy et al. (2019) have discussed various applications of Neutrosophy in data 

mining. To illustrate their objective, authors have taken the medical domain as their field of research 

[15]. A survey of machine learning in neutrosophic environment is presented by Azeddine 

Elhassouny et al. (2019) [59]. 

Kritika Mishra et al. (2020) have performed sentiment analysis using neutrosophy. Their 

proposed framework works with audio files and calculates their Single-Valued Neutrosophic Sets 

(SVNS) and clusters them into positive-neutral-negative.  Later, obtained results from the above 

tasks are combined with sentiment analysis results obtained from textual files of the same audio file. 

Their approach seems to yield good results [21]. Table 6 presents a summary of work using 

neutrosophy giving more stress on author’s contribution in the field for handling imperfections. 

Table 6 A Summary of Research Work for Handling Imperfections Using Neutrosophy 

S No. Author & Year Primary Contribution Handling 

Imperfections 

1.  Ned Vito Quevedo Arnaiz 

et al. (2020) 

Developing Neutrosophic K-

means based method for 

treatment of unlabelled data. 

 

      Yes 

2.  Mouhammad Bakro et al. 

(2020) 

 Neutrosophic 

representation of digital 

image. 

 Points of digital picture 

matrix converted into 

neutrosophic sets. 

 

      Yes 

3.  Abhijit Saha et al. (2020)  Described neutrosophic 

soft sets having incomplete 

data. 

 Described consistent and 

inconsistent association 

between parameters. 

      Yes 

4.  Carmen Verónica 

Valenzuela-Chicaiza, et al. 

(2020) 

Classical statistical inference 

tools for emotional intelligence. 

 

      Yes 
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5.  Ridvan Sahin (2014) Hierarchical clustering 

algorithm based on 

Neutrosophy. 

      Yes 

6.  A. A. Salama et al. (2014) Image modality processing 

using Neutrosophy. 

 

      Yes 

7.  A. Salama et al. (2014) Introduced neutrosophic 

simple regression and 

correlation. 

 

      Yes 

8.  Anjan Mukherjee et al. 

(2015) 

 Application of 

Neutrosophy in pattern 

recognition. 

 Proposed weighted 

similarity measure between 

two neutrosophic soft sets. 

      Yes 

9.  A. A. Salama et al. (2016) 

 

Representing features of image 

modality in neutrosophic 

domain. 

 

      Yes 

10.  Bouzina, Salah (2016) Compared fuzzy logic with 

neutrosophic logic. 

 

      Yes 

11.  Nguyen Xuan Thao et al. 

(2017) 

Introduces Support 

Neutrosophic Set (SNS). 

 

      Yes 

12.  Okpako Abugor Ejaita et al. 

(2017) 

 Addressed uncertainties in 

medical diagnosis using 

Neutrosophy. 

 Introduced a framework 

based on Neutrosophic 

Neural Network. 

      Yes 

13.  A. A. Salama et al. (2018) Introduced an approach to 

grayscale image in 

neutrosophic domain. 

 

      Yes 
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14.  D. Vitalio Ponce Ruiz et al. 

(2019) 

 Treatment of uncertainty 

while retrieving 

information. 

 Linguistic modelling using 

Neutrosophy. 

      Yes 

15.  G. Jayaparthasarathy et al. 

(2019) 

Applications of Neutrosophy in 

data mining. 

 

      Yes 

16.  Azeddine Elhassouny et al. 

(2019) 

Presented a survey of machine 

learning in neutrosophic 

environment. 

 

      Yes 

17.  Ming Zhang et al. (2010) A neutrosophic approach to 

image segmentation.  

 

      Yes 

18.  Abdulkadir Sengur 

&Yanhui Guo (2011)  

Color, texture image 

segmentation based on 

neutrosophic set and wavelet 

transform. 

 

      Yes 

19.  Elyas Rashno et al. (2019)  Worked to recognize noisy 

speech. 

 A Convolution Neural 

Network model based on 

Neutrosophy. 

      Yes 

20.  Yaman Akbulut et al. (2017)  Enhanced classification 

performance of k-NN by 

the introduction of 

Neutrosophy. 

 Introduced Neutrosophic-

k-NN. 

      Yes 

21.  Wen Ju et al. (2013) Introduced Neutrosophic 

Support Vector Machine. 

 

      Yes 

22.  Kritika Mishra et al. (2020) Sentiment analysis using 

Neutrosophy. 

      Yes 
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4. Future Research Trends and Directions for Handling Imperfections in Multimodal Fusion: 

Based on our literature investigation and analysis of more than 80 articles, various research 

trends, research directions, and potential research topics are drawn for handling imperfections in 

multimodal fusion research and development. Though the direct handling of imperfection at the 

fusion stage will not yield fruitful results, we recommend handling imperfections at each stage 

starting from selecting data sources and collection of data in different modalities to fusing the features 

together. The procedure involved in this is summarized in the following Figure 3. 

 
Figure 3 Potential Trends and Future Directions for Multimodal Fusion Research and Development Using 

Neutrosophy 

5. Conclusion 

The plethora of digital data over the internet has surged the need of on-time accurate 

information using various intelligent information systems. This need has enabled researchers to 

design multimodal information systems which mainly depend on multimodal fusion. As the data 

which is collected for modelling these systems is in no way free from imperfections so is the 

multimodal fusion which deals with such data. The motivation behind the current study is to 

introduce researchers working in this field of multimodal fusion with the notion of indeterminacy, 

uncertainty and imprecision (imperfections) present in existing approaches. This work also enables 

researchers to understand the field of Neutrosophic Sets and Systems by illustrating various work 

which are conducted using this theory to handle imperfections. The present works clearly mention 

how the imperfections could be handled using neutrosophy in multimodal systems. Though the work 

has explained well the applicability of neutrosophy in multimodal information access and retrieval 

systems for handling imperfections, it has not implemented the concepts in present work. The future 
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work in this regard would include the use of neutrosophic logic, neutrosophic algorithms and 

converting modalities in the neutrosophic domain so that multimodal fusion is achieved addressing 

the notion of imperfection. If this work is performed as explained in present paper, it would enable 

the design of multimodal systems more effectively so that it could be used in other areas such as 

medical diagnosis, financial market information, robotics, security, information fusion system, expert 

system and bioinformatics. 
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Abstract:  

The main focus of this study is to present the notions of pentapartitioned neutrosophic topological 

space. We introduce the notions of closure and interior operator of pentapartitioned neutrosophic 

sets in pentapartitioned neutrosophic topological space, and investigate some of their basic 

properties. Further, we define pentapartitioned neutrosophic pre-open (in short P-NPO) set, 

pentapartitioned neutrosophic semi-open (in short P-NSO) set, pentapartitioned neutrosophic 

b-open (in short P-N-b-O) set and pentapartitioned neutrosophic -open (in short P-N-O) set via 

pentapartitioned neutrosophic topological spaces. By defining P-NPO set, P-NSO set, P-N-b-O set, 

P-N-O set, we furnish some suitable examples and formulate some basic results on 

pentapartitioned neutrosophic topological spaces. 

 

Keywords: Neutrosophic Set; Pentapartitioned Neutrosophic Set; P-NPO; P-NSO; P-N-b-O; P-N-O. 

 

 

1. Introduction: In the year 1998, Smarandache [30] introduced the notions of Neutrosophic Set (in 

short N-S) by extending the notions of Fuzzy Set [33] and Intuitionistic Fuzzy Set [4]. Later on, the 

notions of Neutrosophic Topological Space (in short N-T-S) was grounded by Salama and Alblowi 

[29] in the year 2012. Thereafter, Arokiarani et al. [3] defined the notions of neutrosophic semi-open 

functions. In the year 2016, Iswaraya and Bageerathi [19] presented the concept of neutrosophic 

semi-open set and neutrosophic semi-closed set via N-T-Ss. Later on, Dhavaseelan and Jafari [17] 

introduced the idea of generalized neutrosophic closed sets. The notions of neutrosophic generalized 

closed sets via N-T-Ss was studied by Pushpalatha and Nandhini [27]. The idea of neutrosophic 

b-open sets in N-T-Ss was presented by Ebenanjar et al. [18]. Thereafter, Maheswari et al. [22] 

presented the concept of neutrosophic generalized b-closed sets via N-T-Ss. In the year 2019, the 

concept of generalized neutrosophic b-open set via N-T-Ss was studied by Das and Pramanik [10]. 

Das and Pramanik [11] also grounded the notion of neutrosophic -open sets and neutrosophic 

-continuous mappings via N-T-Ss. Afterwards, Das and Pramanik [12] presented the notions of 

mailto:1suman.mathematics@tripurauniv.in
mailto:sumandas18842@gmail.com
mailto:tripathybc@yahoo.com


Neutrosophic Sets and Systems, Vol. 45, 2021 122  

 

 

Suman Das, Binod Chandra Tripathy, Pentapartitioned Neutrosophic Topological Space. 
 

neutrosophic simply soft open set via neutrosophic soft topological spaces. Das and Tripathy [16] 

introduced and studied the neutrosophic simply b-open set via N-T-S. Recently, Das et al. [7] applied 

the concept of topology on Quadripartitioned N-Ss [5] and introduced the notions of 

Quadripartitioned N-T-S. 

In the year 2020, Mallick and Pramanik [23] grounded the notions of Pentapatitioned 

Neutrosophic Set (in short P-N-S) by extending the notions of N-S and Quadripartitioned N-S. The 

main focus of this article is to procure the notions of Pentapartitioned Neutrosophic Topological 

Space (in short Pentapartitioned N-T-S) and study several properties of them. 

 

Research Gap: No investigation on pentapartitioned neutrosophic topological space has been 

reported in the recent literature. 

Motivation: To reduce the research gap, we procure the notion of pentapartitioned neutrosophic 

topological space. 

 

The remaining part of this article has been split into the following sections: 

In section-2, we recall some relevant definitions and results on N-S, N-T-S, and P-N-S. In 

section-3, we present the notions of Pentapartitioned N-T-S and formulate some results on it. In 

section-4, we conclude the work done in this paper. 

 

2. Preliminaries and Definitions: 

In this section, we give some some basic definitions and results those are relevant to the main 

results of this article. 

Definition 2.1. [23] Let W be a universe of discourse. Then P, a P-N-S over W is defined by: 

P = {(q,TP(q),CP(q),GP(q),UP(q),FP(q)): qW}, where TP(q), CP(q), GP(q), UP(q), FP(q) ([0, 1]) are the truth 

membership, contradiction membership, ignorance membership, unknown membership, and falsity 

membership values of qW. So, 0  TP(q) + CP(q) + GP(q) + UP(q) + FP(q)  5, for all qW. 

Definition 2.2. [23] The absolute P-N-S (1PN) and the null P-N-S (0PN) over a fixed set W are defined 

as follows: 

(i) 1PN = {(q,1,1,0,0,0): qW}; 

(ii) 0PN = {(q,0,0,1,1,1): qW}. 

The absolute P-N-S 1PN and the null P-N-S 0PN have other seven types of representations. They are 

given below: 

1PN = {(q,1,1,0,0,1): qW}; 

1PN = {(q,1,1,0,1,0): qW}; 

1PN = {(q,1,1,1,0,0): qW}; 

1PN = {(q,1,1,0,1,1): qW}; 

1PN = {(q,1,1,1,0,1): qW}; 

1PN = {(q,1,1,1,1,0): qW}; 
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1PN = {(q,1,1,1,1,1): qW}; 

0PN = {(q,0,0,1,1,0): qW}; 

0PN = {(q,0,0,1,0,1): qW}; 

0PN = {(q,0,0,0,1,1): qW}; 

0PN = {(q,0,0,1,0,0): qW}; 

0PN = {(q,0,0,0,1,0): qW}; 

0PN = {(q,0,0,0,0,1): qW}; 

0PN = {(q,0,0,0,0,0): qW}. 

Remark 2.1. Throughout this article we shall use 1PN = {(q,1,1,0,0,0): qW} and 0PN = {(q,0,0,1,1,1): 

qW}, since the complement of 1PN needs to be 0PN and the complement of 0PN needs to be 1PN. But for 

any combination of 1PN and 0PN from the other seven types of combination, it does not hold. 

Clearly, 0PN  X  1PN, for any P-N-S X over W. 

Definition 2.3. [23] Let X = {(q,TX(q),CX(q),GX(q),UX(q),FX(q)): qW} and Y = {(q,TY(q),CY(q),GY(q),UY(q), 

FY(q)): qW} be two P-N-Ss over a fixed set W. Then, X  Y if and only if TX(q)  TY(q), CX(q)  CY(q), 

GX(q)  GY(q), UX(q)  UY(q), FX(q)  FY(q), for all qW. 

Example 2.1. Let W = {m1, m2}. Consider two P-NSs X = {(m1,0.4,0.3,0.7,0.7,0.8), (m2,0.2,0.5,0.8,0.7,0.8)} 

and Y = {(m1,0.7,0.5,0.5,0.5,0.4), (m2,0.8,0.7,0.5,0.5,0.5)} over W. Then, X  Y. 

Definition 2.4. [23] Let X = {(q,TX(q),CX(q),GX(q),UX(q),FX(q)): qW} and Y = {(q,TY(q),CY(q),GY(q),UY(q), 

FY(q)): qW} be two P-N-Ss over a fixed set W. Then, the intersection of X and Y is defined by 

XY = {(q, min{TX(q),TY(q)}, min{CX(q),CY(q)}, max{GX(q),GX(q)}, max{UX(q),UX(q)}, max{FX(q),FX(q)}): 

qW}. 

Example 2.2. Let W = {m1, m2}. Consider two P-N-Ss X = {(m1,0.6,0.5,0.6,0.7,0.5), (m2,0.8,0.5,0.6,0.7,0.8)} 

and Y = {(m1,0.7,0.6,0.5,0.5,0.2), (m2,0.9,0.7,0.4,0.3,0.8)} over W. Then, intersection of X and Y is XY = 

{(m1,0.6,0.5,0.6,0.7,0.5), (m2,0.8,0.5,0.6,0.7,0.8)}. 

Definition 2.5. [23] Let X = {(q,TX(q),CX(q),GX(q),UX(q),FX(q)): qW} and Y = {(q,TY(q),CY(q),GY(q),UY(q), 

FY(q)): qW} be two P-N-Ss over a fixed set W. Then, the union of X and Y is defined by 

XY = {(q, max{TX(q),TY(q)}, max{CX(q),CY(q)}, min{GX(q),GX(q)}, min{UX(q),UX(q)}, min{FX(q),FX(q)}): 

qW}. 

Example 2.3. Let W = {m1, m2}. Consider two P-N-Ss X = {(m1,0.5,0.5,0.4,0.7,0.6), (m2,0.7,0.5,0.7,0.8,0.4)} 

and Y = {(m1,0.8,0.5,0.7,0.8,0.9), (m2,1.0,0.8,0.7,0.6,0.5)} over W. Then, XY = {(m1,0.8,0.5,0.4,0.7,0.6), 

(m2,1.0,0.8,0.7,0.6,0.4)}. 

Definition 2.6. [23] Suppose that X = {(q,TX(q),CX(q),GX(q),UX(q),FX(q)): qW} be a P-N-S over W. 

Then, the complement of X is defined by Xc = {(q,FX(q),UX(q),1-GX(q),CX(q),TX(q)): qW}. 

Example 2.4. Let W = {m1, m2}. Consider a P-N-S X = {(m1,0.7,0.8,0.6,0.8,1.0), (m2,1.0,0.9,0.5,0.4,0.8)} be 

a P-NS over W. Then, the complement of X is Xc = {(m1,1.0,0.8,0.4,0.8,0.7), (m2,0.8,0.4,0.5,0.9,1.0)}. 

 

Now, we define the complement of a P-N-S in another way, which was given below: 



Neutrosophic Sets and Systems, Vol. 45, 2021 124  

 

 

Suman Das, Binod Chandra Tripathy, Pentapartitioned Neutrosophic Topological Space. 
 

Definition 2.7. Let X = {(q,TX(q),CX(q),GX(q),UX(q),FX(q)): qW} be a P-N-S over a fixed set W. Then, 

the complement of X i.e. Xc is defined by 

Xc = {(q,1-TX(q),1-CX(q),1-GX(q),1-UX(q),1-FX(q)): qW}. 

Example 2.5. Let W = {m1, m2}. Let X = {(m1,0.5,0.8,0.4,0.7,0.5), (m2,0.5,0.4,0.5,0.8,0.7)} be a P-N-S over 

W. Then, Xc = {(m1,0.5,0.2,0.6,0.3,0.5), (m2,0.5,0.6,0.5,0.2,0.3)}. 

 

3. Pentapartitioned Neutrosophic Topology: 

In this section, we procure the notions of pentapartitioned neutrosophic topology on P-N-Ss. 

Then, we introduce the interior and closure of a P-N-S from the point of view of pentapartitioned 

N-T-S, and prove some results on them. 

Definition 3.1. Let W be a fixed set. Then, a set  of P-N-Ss over W is called a Pentapartitioned 

Neutrosophic Topology (in short Pentapartitioned N-T) on W, if the following three conditions hold: 

(i) 0PN, 1PN ; 

(ii) Y1, Y2   Y1Y2 ; 

(iii) {Yi: i}   Yi. 

Then, the pair (W,) is called a Pentapartitioned Neutrosophic Topological Space (in short 

Pentapartitioned N-T-S). Each element of  is called a pentapartitioned neutrosophic open sets (in 

short P-NOS). If Y, then Yc is called a pentapartitioned neutrosophic closed set (in short P-NCS). 

Example 3.1. Let X, Y and Z be three P-N-Ss over a fixed set W={p, q, r} such that: 

X = {(p,0.7,0.4,0.6,0.7,0.5), (q,0.5,0.6,0.4,0.5,0.1), (r,0.9,0.5,0.3,0.6,0.7): p, q, rW}; 

Y = {(p,0.6,0.4,0.7,0.8,0.9), (q,0.5,0.4,0.6,0.8,0.3), (r,0.4,0.4,0.7,0.7,0.8): p, q, rW}; 

Z = {(p,0.5,0.3,0.8,0.8,1.0), (q,0.4,0.3,0.8,0.9,0.4), (r,0.3,0.4,0.8,0.7,1.0): p, q, rW}. 

Then, the collection ={0PN, 1PN, X, Y, Z} forms a Pentapartitioned N-T on W. 

Remark 3.1. In a Pentapartitioned N-T-S (W,), the null P-N-S (0PN) and the absolute P-N-S (1PN) are 

both P-NOS and P-NCS in (W,). 

The pentapartitioned neutrosophic interior and pentapartitioned neutrosophic closure of a P-N-S 

are defined as follows: 

Definition 3.2. Let (W,) be a Pentapartitioned N-T-S. Let X be a P-N-S over W. Then, the 

pentapartitioned neutrosophic interior (in short P-Nint) of X is the union of all P-NOSs contained in X 

and the pentapartitioned neutrosophic closure (in short P-Ncl) of X is the intersection of all P-NCSs 

containing X, i.e. 

P-Nint(X) = {Y: YX and Y is a P-NOS in (W,)}, 

and P-Ncl(X) = {Z: XZ and Z is a P-NCS in (W,)}. 

Remark 3.2. It is clearly seen that P-Nint(X) is the largest P-NOS in (W,), which is contained in X and 

P-Ncl(X) is the smallest P-NCS in (W,) that contains X. 

Theorem 3.1. Let (W,) be a Pentapartitioned N-T-S. Let Q and R be any two P-N-Ss over W. Then, 

the following holds: 
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(i) P-Nint(Q)  Q  P-Ncl(Q); 

(ii) Q  R  P-Ncl(Q)  P-Ncl(R); 

(iii) Q  R  P-Nint(Q)  P-Nint(R); 

(iv) P-Ncl(QR) = P-Ncl(Q)  P-Ncl(R); 

(v) P-Ncl(QR)  P-Ncl(Q)  P-Ncl(R); 

(vi) P-Nint(QR)  P-Nint(Q)  P-Nint(R); 

(vii) P-Nint(QR)  P-Nint(Q)  P-Nint(R). 

Proof. (i) From definition 3.2., we have P-Nint(Q) = {R: R is a P-NOS in (W,) and RQ}. Since, each 

RQ, so {R: R is a P-NOS in (W,) and RQ}  Q, i.e. P-Nint(Q)Q. 

Again, P-Ncl(Q) = {Z: Z is a P-NCS in (W,) and QZ}. Since, each ZQ, so {Z: Z is a P-NCS in 

(W,) and QZ}  Q, i.e. P-Ncl(Q)Q. 

Therefore, P-Nint(Q)QP-Ncl(Q). 

(ii) Let (W,) be a Pentapartitioned N-T-S. Let Q and R be any two P-N-Ss over W such that QR. 

Now, P-Ncl(Q) = {Z: Z is a P-NCS in (W,) and QZ} 

                 {Z: Z is a P-NCS in (W,) and RZ} [Since QR] 

                  = P-Ncl(R) 

 P-Ncl(Q)  P-Ncl(R). 

Therefore, QR  P-Ncl(Q)P-Ncl(R). 

(iii) Let (W,) be a Pentapartitioned N-T-S. Let Q and R be any two P-N-Ss over W such that QR. 

Now, P-Nint(Q) = {Z: Z is a P-NOS in (W,) and ZQ} 

                  {Z: Z is a P-NOS in (W,) and ZR}           [Since QR] 

                   = P-Nint(R) 

 P-Nint(Q)  P-Nint(R). 

Therefore, QR  P-Nint(Q)P-Nint(R). 

(iv) Let Q and R be two pentapartitioned neutrosophic subsets of a Pentapartitioned N-T-S (W,). It 

is known that QQR and RQR. 

Now, Q  QR 

 P-Ncl(Q)  P-Ncl(QR); 

and R  QR 

 P-Ncl(R)  P-Ncl(QR). 

Therefore, P-Ncl(Q)P-Ncl(R)  P-Ncl(QR)                                                      (1) 

We have, QP-Ncl(Q), RP-Ncl(R). Therefore, QR  P-Ncl(Q)P-Ncl(R). Further, it is known that 

P-Ncl(Q)P-Ncl(R) is a P-NCS in (W,). It is clear that, P-Ncl(Q)P-Ncl(R) is a P-NCS in (W,), which 

contains QR. But it is known that P-Ncl(QR) is the smallest P-NCS in (W,), which contains QR. 

Therefore, P-Ncl(QR)  P-Ncl(Q)P-Ncl(R)                                                      (2) 

From eq. (1) and eq. (2), we have P-Ncl(QR) = P-Ncl(Q)P-Ncl(R). 
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(v) Let Q and R be two pentapartitioned neutrosophic subsets of a P-NTS (W,). It is known that 

QRQ, QRR. 

Now, QRQ 

 P-Ncl(QR)  P-Ncl(Q); 

and QRR 

 P-Ncl(QR)  P-Ncl(R). 

Therefore, P-Ncl(QR)  P-Ncl(Q)P-Ncl(R). 

(vi) Let Q and R be two pentapartitioned neutrosophic subsets of a Pentapartitioned N-T-S (W,). It 

is known that QQR and RQR. 

Thus, we get 

QQR 

 P-Nint(Q)  P-Nint(QR); 

and RQR 

 P-Nint(R)  P-Nint(QR). 

Therefore, P-Nint(Q)P-Nint(R)  P-Nint(QR). 

(vii) Let Q and R be two pentapartitioned neutrosophic subsets of a Pentapartitioned N-T-S (W,). It 

is known that QRQ, QRR. 

Now, QRQ 

 P-Nint(QR)  P-Nint(Q); 

and QRR 

 P-Nint(QR)  P-Nint(R). 

Therefore, P-Nint(QR)  P-Nint(Q)P-Nint(R). 

Theorem 3.2. Let Q be a pentapartitioned neutrosophic subset of a Pentapartitioned N-T-S (W,). 

Then, the following holds: 

(i) (P-Nint(Q))c = P-Ncl(Qc); 

(ii) (P-Ncl(Q))c = P-Nint(Qc). 

Proof. (i) Let (W,) be a Pentapartitioned N-T-S and Q = {(w, TQ(w), CQ(w), GQ(w), UQ(w), FQ(w)): 

wW} be a pentapartitioned neutrosophic subset of W.  

We have,  

P-Nint(Q) = {Zi : i and Zi is a P-NOS in (W,) such that Zi  Q} 

          = {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝑈𝑍𝑖

(w), 𝐹𝑍𝑖
(w)) : w W}, where for all i and Zi is a 

P-NOS in (W,) such that ZiQ. 

This implies, (P-Nint(Q))c = {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝑈𝑍𝑖

(w), 𝐹𝑍𝑖
(w)): wW}.  

Since, 𝑇𝑍𝑖
(w)  𝑇𝐸(w), 𝐶𝑍𝑖

(w)  𝐶𝐸(w), 𝐺𝑍𝑖
(w)  𝐺𝐸(w), 𝑈𝑍𝑖

(w)  𝑈𝐸(w), 𝐹𝑍𝑖
(w)  𝐹𝐸(w), for each 

i and wW, so P-Ncl(Qc) = {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝑈𝑍𝑖

(w), 𝐹𝑍𝑖
(w)): wW}} = {Zi: i and 

Zi is a P-NCS in (W,) such that QcZi}. Therefore, (P-Nint(Q))c = P-Ncl(Qc). 
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(ii) Let (W,) be a Pentapartitioned N-T-S and Q = {(w, TQ(w), CQ(w), GQ(w), UQ(w), FQ(w)): wW} be a 

pentapartitioned neutrosophic subset of W.  

We have, 

P-Ncl(Q) = {Zi: i and Zi is a P-NCS in (W,) such that Zi Q} 

         = {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝑈𝑍𝑖

(w), 𝐹𝑍𝑖
(w)): wW}, where Zi is a P-NCS in (W,) such 

that Zi  Q, for all i.  

This implies, (P-Ncl(Q))c = {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝑈𝑍𝑖

(w), 𝐹𝑍𝑖
(w)): wW}.  

Since 𝑇𝑍𝑖
(w)  𝑇𝐸(w), 𝐶𝑍𝑖

(w)  𝐶𝐸(w), 𝐺𝑍𝑖
(𝑤)  𝐺𝐸(w), 𝑈𝑍𝑖

(𝑤)  𝑈𝐸(w), 𝐹𝑍𝑖
(w)  𝐹𝐸(w), for 

each i and wW, so P-Nint(Qc) = {(w, 𝑇𝑍𝑖
(w), 𝐶𝑍𝑖

(w), 𝐺𝑍𝑖
(w), 𝑈𝑍𝑖

(w), 𝐹𝑍𝑖
(w)): wW} = {Zi: i 

and Zi is a P-NOS in (W,) such that Zi  Qc}. Therefore, (P-Ncl(Q))c = P-Nint(Qc). 

Theorem 3.3. Let X be a pentapartitioned neutrosophic subset of a Pentapartitioned N-T-S (W,). 

Then, the following holds: 

(i) Q is a P-NOS if and only if P-Nint(Q) = Q; 

(ii)Q is a P-NOS if and only if P-Ncl(Q) =Q. 

Proof. (i) Let Q be a P-NOS in a Pentapartitioned N-T-S (W,). Now, P-Nint(Q) = {Z: Z is a P-NOS in 

(W,) and Z Q}. Since, Q is a P-NOS in (W,), so Q is the largest P-NOS, which is contained in Q. 

This implies, {Z: Z is a P-NOS in (W,) and Z Q} = Q. Therefore, P-Nint(Q) = Q. 

(ii) Let Q be a P-NCS in a Pentapartitioned N-T-S (W,). Now, P-Ncl(Q) = {Z : Z is a P-NCS in (W,) 

and QZ}. Since, Q is a P-NCS in (W,), so Q is the smallest P-NCS, which contains Q. This implies, 

{Z: Z is a P-NCS in (W,) and QZ} = Q. Therefore, P-Ncl(Q) = Q. 

Definition 3.3. Let (W,) be a Pentapartitioned N-T-S. Then X, a P-N-S over W is called a 

(i) pentapartitioned neutrosophic semi-open (P-NSO) set if and only if X  P-Ncl(P-Nint(X)); 

(ii) pentapartitioned neutrosophic pre-open (P-NPO) set if and only if X  P-Nint(P-Ncl(X). 

Remark 3.3. The complement of P-NSO set and P-NPO set in a Pentapartitioned N-T-S (W,) are 

called pentapartitioned neutrosophic semi-closed (in short P-NSC) set and pentapartitioned 

neutrosophic pre-closed (in short P-NPC) set respectively. 

Theorem 3.4. Let (W,) be a Pentapartitioned N-T-S. Then, 

(i) every P-NOS is a P-NSO set. 

(ii) every P-NOS is a P-NPO set. 

Proof. (i) Let (W,) be a Pentapartitioned N-T-S. Let X be a P-NOS. Therefore, X=P-Nint(X). It is 

known that XP-Ncl(X). This implies, XP-Ncl(P-Nint(X)). Therefore, X is a P-NSO set in (W,). 

(ii) Let (W,) be a Pentapartitioned N-T-S. Let X be a P-NOS. Therefore, X=P-Nint(X). It is known that, 

XP-Ncl(X). This implies, P-Nint(X)P-Nint(P-Ncl(X)) i.e. X = P-Nint(X)  P-Nint(P-Ncl(X)). Therefore, X  

P-Nint(P-Ncl(X)). Hence, X is a P-NPO set in (W,). 

Remark 3.4. The converse of the previous theorem may not be true in general. This follows from the 

following example. 



Neutrosophic Sets and Systems, Vol. 45, 2021 128  

 

 

Suman Das, Binod Chandra Tripathy, Pentapartitioned Neutrosophic Topological Space. 
 

Example 3.2. Let (W,) be a Pentapartitioned N-T-S, where ={0PN, 1PN, {(a,0.3,0.4,0.5,0.4,0.3), 

(b,0.4,0.3,0.7,0.3,0.4)}, {(a,0.4,0.6,0.4,0.4,0.1), (b,0.5,0.4,0.5,0.1,0.3)}}. Then,  

(i) Q={(a,0.6,0.6,0.3,0.4,0.1), (b,0.9,0.8,0.4,0.1,0.2)} is a P-NSO set but it is not a P-NOS in (W,). 

(ii) P={(a,0.3,0.7,0.2,0.9,0.2), (b,0.3,0.7,0.5,0.4,0.3)} is a P-NPO set but it is not a P-NOS in (W,). 

Theorem 3.5. In a Pentapartitioned N-T-S (W,), the union of two P-NSO sets is a P-NSO set. 

Proof. Let X and Y be two P-NSO sets in a Pentapartitioned N-T-S (W,). Therefore, 

XP-Ncl(P-Nint(X))                                                                              (3) 

and YP-Ncl(P-Nint(Y))                                                                          (4) 

From eq. (3) and eq. (4), we have 

XY  P-Ncl(P-Nint(X))P-Ncl(P-Nint(Y)) 

        = P-Ncl(P-Nint(X)P-Nint(Y)) 

           P-Ncl(P-Nint(XY)). 

Therefore, XY  P-Ncl(P-Nint(XY)). Hence, XY is a P-NSO set in (W,). 

Theorem 3.6. In a Pentapartitioned N-T-S (W,), the union of two P-NPO sets is also a P-NPO set. 

Proof. Let X and Y be two P-NPO sets in a Pentapartitioned N-T-S (W,). Therefore, 

XP-Nint(P-Ncl(X))                                                                             (5) 

and YP-Nint(P-Ncl(Y))                                                                          (6) 

From eq. (5) and eq. (6), we have, 

XY P-Nint(P-Ncl(X))P-Nint(P-Ncl(Y)) 

       P-Nint(P-Ncl(X)P-Ncl(Y)) 

        = P-Nint(P-Ncl(XY)). 

Therefore, XY  P-Nint(P-Ncl(XY)). Hence, XY is a P-NPO set in (W,). 

Definition 3.4. Let (W,) be a Pentapartitioned N-T-S. Then, a P-N-S X over W is called a 

pentapartitioned neutrosophic -open (in short P-N-O) set if and only if XP-Nint(P-Ncl(P-Nint(X))).    

The complement of a P-N-O set is called a pentapartitioned neutrosophic -closed (in short 

P-N-C) set. 

Proposition 3.1. In a Pentapartitioned N-T-S (W,), every P-NOS is a P-N-O set. 

Remark 3.5. The converse of the above proposition may not be true in general, which follows from 

the following example. 

Example 3.3. Let us consider a Pentapartitioned N-T-S (W,) as shown in Example 3.2. Clearly, the 

pentapartitioned neutrosophic set Q={(a,0.6,0.6,0.3,0.4,0.1), (b,0.9,0.8,0.4,0.1,0.2)} is a P-N-O set but it 

is not a P-NOS in (W,). 

Theorem 3.7. In a Pentapartitioned N-T-S (W,), every P-N-O set is a P-NSO set. 

Proof. Let X be a P-N-O set in (W,). Therefore, XP-Nint(P-Ncl(P-Nint (X))). It is known that 

P-Nint(P-Ncl(P-Nint(X)))  P-Ncl(P-Nint(X)). Thus we have, XP-Ncl(P-Nint(X)). Hence, X is a P-NSO set. 

Therefore, every P-N-O set is a P-NSO set. 
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Remark 3.6. The converse of the above example may not be true in general. This follows from the 

following example. 

Example 3.4. Let (W,) be a Pentapartitioned N-T-S, where ={0PN, 1PN, {(a,0.5,0.6,0.5,0.7,0.8), 

(b,0.5,0.5,0.5,0.5,0.6)}, {(a,0.4,0.4,0.8,0.8,0.8), (b,0.5,0.5,0.8,0.8,0.8)}}. Then, it can be easily verified that 

A={(a,0.6,0.6,0.3,0.3,0.3), (b,0.5,0.5,0.4,0.4,0.4)} is a P-NSO set in (W,), but it is not a P-N-O set in 

(W,). 

Theorem 3.8. In a Pentapartitioned N-T-S (W,), every P-N-O set is a P-NPO set. 

Proof. Let (W,) be a Pentapartitioned N-T-S. Let X be a P-N-O set in (W,). Therefore,                       

XP-Nint(P-Ncl(P-Nint(X))). It is known that P-Nint(X)X. This implies, P-Ncl(P-Nint(X))P-Ncl(X). 

Which implies P-Nint(P-Ncl(P-Nint(X)))  P-Nint(P-Ncl(X). Therefore, XP-Nint(P-Ncl(X). Hence, X is a 

P-NPO set. Therefore, every P-N-O set is a P-NPO set in (W,). 

Remark 3.7. The converse of the above example may not be true in general. This follows from the 

following example. 

Example 3.5. Let us consider a Pentapartitioned N-T-S (W,) as shown in Example 3.2. Then, the 

pentapartitioned neutrosophic set P={(a,0.3,0.7,0.2,0.9,0.2), (b,0.3,0.7,0.5,0.4,0.3)} is a P-NPO set in 

(W,) but it is not a P-N-O set in (W,). 

Definition 3.5. Let (W,) be a P-NTS. Then, a P-NS X over W is called a pentapartitioned 

neutrosophic b-open (in short P-N-b-O) set if and only if X  P-Nint(P-Ncl(X))  P-Ncl(P-Nint(X)). 

Remark 3.8. A pentapartitioned neutrosophic set X is called a pentapartitioned neutrosophic 

b-closed (in short P-N-b-C) set iff Xc is a P-N-b-O set i.e. if P-Nint(P-Ncl(X))P-Ncl(P-Nint(X))  X. 

Theorem 3.9. In a P-NTS (W,), every P-NPO (P-NSO) set is a P-N-b-O set. 

Proof. Suppose that X be a P-NPO set in a P-NTS (W,). Therefore, X  P-Nint(P-Ncl(X)). This implies, 

X  P-Nint(P-Ncl(X))  P-Ncl(P-Nint(X)). Hence, X is a P-N-b-O set. Therefore, every P-NPO set is a 

P-N-b-O set. 

Similarly, it can be shown that every P-NSO set is a P-N-b-O set. 

Theorem 3.10. The union of two P-N-b-O sets in a P-NTS (W,) is a P-N-b-O set. 

Proof. Let X and Y be two P-N-b-O sets in a P-NTS (W,).  

Therefore, X  P-Nint(P-Ncl(X))  P-Ncl(P-Nint(X))                                                 (7) 

and Y  P-Nint(P-Ncl(Y))  P-Ncl(P-Nint(Y))                                                        (8) 

It is known that, X  XY and Y  XY. 

Now, X  XY  

 P-Nint(X)  P-Nint(A∪B) 

P-Ncl(P-Nint(X))  P-Ncl(P-Nint(XY))                                                          (9) 

and X  XY 

 P-Ncl(X)  P-Ncl(A∪B) 

P-Nint(P-Ncl(X))  P-Nint(P-Ncl(XY))                                                         (10) 

Similarly, it can be shown that 
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P-Ncl(P-Nint(Y))  P-Ncl(P-Nint(XY))                                                            (11) 

P-Nint(P-Ncl(Y))  P-Nint(P-Ncl(XY))                                                            (12) 

From eq. (7) and eq. (8) we have, 

XY  P-Ncl(P-Nint(X))  P-Nint(P-Ncl(X))  P-Ncl(P-Nint(Y))  P-Nint(P-Ncl(Y)) 

   P-Ncl(P-Nint(XY))  P-Nint(P-Ncl(XY))  P-Ncl(P-Nint(XY))  P-Nint(P-Ncl(XY)) 

[ by eqs (9), (10), (11), & (12)] 

        = P-Ncl(P-Nint(XY))  P-Nint(P-Ncl(XY)) 

 XY  P-Ncl(P-Nint(XY))  P-Nint(P-Ncl(XY)). 

Therefore, XY is a P-N-b-O set. 

Hence, the union of two P-N-b-O sets is a P-N-b-O set. 

Theorem 3.11. In a P-NTS (W,), the intersection of two P-N-b-C sets is a P-N-b-C set. 

Proof. Let (W,) be a P-NTS. Let X and Y be two P-N-b-C sets in (W,). Therefore, 

P-Nint(P-Ncl(X))  P-Ncl(P-Nint(X))  X                                                          (13) 

and P-Nint(P-Ncl(Y))  P-Ncl(P-Nint(Y))  Y                                                       (14) 

Since, XY ⊆ X and XY ⊆ Y, so we get 

P-Nint(XY) ⊆ P-Nint(X)  P-Ncl(P-Nint(XY)) ⊆ P-Ncl(P-Nint(X));                                 (15) 

P-Ncl(XY) ⊆ P-Ncl(X)  P-Nint(P-Ncl(XY)) ⊆ P-Nint(P-Ncl(X))                              (16) 

P-Nint(XY) ⊆ P-Nint(Y)  P-Ncl(P-Nint(XY)) ⊆ P-Ncl(P-Nint(Y))                                  (17) 

and P-Ncl(XY) ⊆ P-Ncl(Y)  P-Nint(P-Ncl(XY)) ⊆ P-Nint(P-Ncl(Y))                              (18) 

From eq. (13) and eq. (14) we get, 

XY  P-Nint(P-Ncl(X))  P-Ncl(P-Nint(X))  P-Nint(P-Ncl(Y))  P-Ncl(P-Nint(Y)) 

        P-Nint(P-Ncl(XY))  P-Ncl(P-Nint(XY))  P-Nint(P-Ncl(XY))  P-Ncl(P-Nint(XY)) 

[by eqs (15), (16), (17) & (18)] 

         = P-Nint(P-Ncl(X∩Y))  P-Ncl(P-Nint(XY)) 

 XY ⊇ P-Ncl(P-Nint(XY))  P-Nint(P-Ncl(XY)). 

Hence, XY is a P-N-b-C set in (W,). 

Therefore, the intersection of two P-N-b-C sets is again a P-N-b-C set. 

 

4. Conclusion: In this study, we present the notions of pentapartitioned neutrosophic topological 

space and studied different types of open sets namely P-NPO set, P-NSO set, P-N-b-O set, and 

P-N-O set. By defining P-NPO set, P-NSO set, P-N-b-O set and P-N-O set, we formulate some 

results on Pentapartitioned N-T-Ss in the form of Theorems, Propositions, etc. We provide few 

illustrative counter examples where the results fail. We hope that, in the future, based on these 

notions and various open sets on Pentapartitioned N-T-S, many new investigation / research can be 

done. Further, the notion of pentapartitioned neutrosophic topological space can be used in area of 

decision making, data mining, etc. 
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Abstract: The purpose of this .research is, to define a fuzzy neutrosophic points in fuzzy neutrosophic. 

topological space namely [FNPs]. Also, we have study some new types of points in separation axioms Ti, where 

i= 0,1,2 with some new construction based of fuzzy neutrosophic topological spaces as extension of Fatimah et 

al. work [1]. Then, we investigate many theorems and examples to present and discuss. 

Keywords: fuzzy neutrosophic point; fuzzy neutrosophic topology; separation axioms. 

 

 

1. Introduction  

The concept of neutrosophic set theory introduced by Smarandache [ 2] and get the introduction of the 

term neutrosophic. components,(𝑇,𝐼,𝐹,) which refers to the membership, non-membership and between them 

the indeterminacy values . Then, Salama et al..[3,4] study some .basic concepts and theire operations, of the 

neutrosophic.crisp set for building. new branches. of neutrosophic. mathematic. Then, many authors studied 

and presented the term of neutrosophic set theory and some of its applications in their works, 

(see[5,6,7,8,9,10]).  

 Recently, many concepts of neutrosophic topological spaces have been extended in fuzzy neutrosophic 

topological spaces by the authors (see [11-20]). In this work, we put some basic concepts of the neutrosophic. 

set, with their operations, and because, of their .useful and wide applications to solve many problems, we used 

these concepts of fuzzy neutrosophic sets as generalized of Ahmed et al. study [21] to define new types of 

neutrosophic points based of our space, also our interest is to study separation axioms T0, T1, T2 with new 

construction as extension of Fatimah et al. work [1] in fuzzy neutrosophic topological spaces by definitions, 

propositions and counter examples so in this paper, several types of fuzzy neutrosophic points in separation 

axioms via fuzzy neutrosophic topological spaces are going to be studied. Finally, we used the new concepts 

and definitions to examine the relationship between them in details.   
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2. Preliminaries: 

In this part of our research, we will refer to some definitions and operations which are useful in our 

study.  
Definition 2.1 [9]: "Let XNbe a non-empty fixed set. The fuzzy neutrosophic set (FNS), SN is an object 

having the form SN  < x, μSN
(x), σSN

(x), vSN
(x) >: x XN where the functions μSN

, σSN
, vSN

: XN → [0, 

1] denote the degree of membership function (namely μSN
(x)), the degree of indeterminacy function (namely 

σSN
(x)) and the degree of non-membership function (namely vSN

(x))  respectively  of  each  element  x 

XNto  the  set SN  and  0 ≤ μSN
(x) + σSN

(x) + vSN
(x) ≤  3, for each x XN." 

  

Remark 2.2 [15]: "FNS µN = {˂ u, λµN(u), σµN(u), VµN(u) ˃: u ∈U} can be identified to an ordered triple ˂ u, 

λµN, σµN, VµN ˃ in [0,1] on U." 

 

Definition 2.3 [9]: "Fuzzy neutrosophic topology (FNT) on a non-empty set XNis a family 𝜏 of fuzzy 

neutrosophic subsets in XNsatisfying the following axioms. 

i. 0𝑁, 1𝑁∈ 𝜏, 

ii. SN1
 ∧ SN2

∈ 𝜏 for any SN1
, SN2

∈ 𝜏, 

iii. ∨ SNj
∈ 𝜏, ∀ {SNj

: j∈ J} ⊆ 𝜏. 

In this case the pair (XN, 𝜏) is called fuzzy neutrosophic topological space (FNTS). The elements of 𝜏 

are called fuzzy neutrosophic -open sets (FN-open set). The complement of FN-open set in the FNTS (XN, 𝜏) 

is called fuzzy neutrosophic-closed set (FN-closed set)." 

 

Definition 2.4 [9]: "Let S = ⟨μS(x) , σS(x) , γS(x) > be a NS on XN, then the complement of the set S (Sc, for 

short ) maybe defined as three kinds of complements: 

(C1) Sc = {< x,1 − μS(x),1 − γS(x) >: x ∈ XN}, 

(C2) Sc = {<x, γS(x), σS(x), μS(x) >: x ∈ XN}, 

(C3) Sc={< x, γS(x),1 − σS(x), μS(x) >:x ∈ XN}." 

 

Definition 2.5 [10]: "Let XN be a non-empty set and two NS𝑠  S with M in the form S =<

μS(x), σS(x),γS(x) > , M =  < μM(x), σM(x) ,γM(x) >, then we may consider two possible definitions for 

subsets (S ⊆ M) may be defined as : 

(1) S ⊆ M ⇔ μS(x) ≤ μM(x) , γS(x) ≥ γM(x)and, σS(x) ≤ σM(x)  ∀x ∈ XN, 

(2) S ⊆ M ⇔ μS(x) ≤ μM(x), γS(x) ≥ γM(x) and σS(x) ≥ σM(x)∀x ∈ XN." 

Proposition 2.6 [10]: "For any neutrosophic set S the following are holds: 

(1)   0N ⊆ S ,   0N ⊆ 0N , 

(2)    S ⊆ 1N  , 1N ⊆ 1N." 

Also, the intersection can be written as S ∧ M and may be defined by: 

(I1) S ∧ M =<x,μS(x) ∧ μM(x), σS(x) ∧  σM(x), γS(x) ∨  γM(x) >, 

(I2) S ∧ M =<x,μS(x) ∧ μM(x), σS(x) ∨ σM(x), γS(x) ∨  γM(x) >. 

Finally, the union can be written as S ∨ M may be defined by: 
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(U1) S ∨ M =<x,μS(x) ∨ μM(x), σS(x) ∨ σM(x), γS(x) ∧  γM(x) >, 

(U2) S ∨ M =<x,μS(x) ∨ μM(x), σS(x) ∧ σM(x), γS(x) ∧ γM(x) >.  

 

3. Some New Separation Axioms in Fuzzy Neutrosophic Topological Spaces 

In this section, we present Ti- separation axioms where I = 0,1,2 based of fuzzy neutrosophic topological 

spaces and  introduced it after giving some definitions of as follows:                                                                          

Definition 3.1: The object having the from S =  ⟨S1 , S2 , S3⟩  is called: 

1. A fuzzy neutrosophic set of Type 1 [FNS/Type1 ] if satisfying  

S1 ∧ S2 = 0, S1  ∧ S3 = 0  and S2  ∧  S3 = 0, 

2. A fuzzy neutrosophic set of Type 2 [FNS/Type2 ] if satisfying  

S1 ∧ S2 = 0, S1  ∧ S3 = 0  and S2  ∧  S3 = 0 , S1 ∨ S2  ∨ S3 = 1, 

3. A fuzzy neutrosophic set of Type 3 [FNS/Type3 ] if satisfying  

  S1 ∧ S2  ∧ S3 = 0 ,  S1 ∨  S2  ∨ S3 = 1. 

Example 3.2: Let XN = {a}, then: 

1.  S =< 0.5, 0, 0 > is a FNS in XN,  

Type 1:  S1  ∧ S2 = 0.5 ∧ 0 = 0, S1 ∧ S3 = 0.5 ∧ 0 = 0, S2  ∧ S3 = 0 

Therefore FNS is FN1. 

2. S =< 1,0,0 >   is an (FNS) in XN,  

Type 2 : S1  ∧ S2 = 1 ∧ 0 = 0,  S1 ∧ S3 = 1 ∧ 0 = 0, S2  ∧ S3 = 0   

S1 ∨ S2 ∨ S3 = 1  

Therefore FNS is FN2. 

3. S =< 0.8, 1, 0 >  is an (FNS) in XN. 

Type 3 :  S1  ∧ S2 ∧ S3 = 0  , S1 ∨ S2 ∨ S3 = 1. 

Therefore FNS is FN3. 

Remark 3.3: For the FNS we have: 

1. Every FN2 is FN1, 

2. Every FN2 is FN3. 
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The proof is directly.  

The converse of Remark 3.3 is not true as it shown in the next example. 

Example 3.4: Let XN ={a},  then: 

1.  S =< 0.5,0,0 >   is an (FNS) in XN,  

Type 1:  S1  ∧ S2 = 0.5 ∧ 0 = 0, S1 ∧ S3 = 0.5 ∧ 0 = 0, S2  ∧ S3 = 0. 

Therefore FNS is FN1 but is not FN2. 

2. S =< 0.8, 1, 0 > is an (FNS) in XN. 

Type 3 :  S1  ∧ S2 ∧ S3 = 0  , S1 ∨ S2 ∨ S3 = 1. 

Therefore FNS is FN1 but is not FN2. 

Definition 3.5: Types of  FNSs 0N and 1N  in XN can defined as follows : 

1. 0N  may be defined in many ways as a FNS as four ways: 

1. Type 1 : 0N = < 0,0,1 >, 

2. Type 2 : 0N = < 0,1,1 >,  

3. Type 3 : 0N = < 0,1,0 >, 

4. Type 4 : 0N = < 0,0,0 >.  

2. 1N may be defined in many ways as a FNS as: 

1. Type 1 : 1N = < 1,0,0 >, 

2. Type 2 : 1N = < 1,1,0 >, 

3. Type 3 : 1N = < 1,0,1 > , 

4. Type 4 : 1N = < 1,1,1 >.  

Definition 3.6: Let XN be a non - empty set and the FNSs α and β in form α = < α1 , α2 , α3 >, β = <

β1, β2, β3 >, then we may consider two possible definitions for subsets α ⊆ β, may be defined in two ways :  

1. α ⊆ β ⟺  α1 ⊆ β1, α2 ⊆ β2 and α3 ⊆ β3 , 

2. α ⊆ β ⟺  α1 ⊆ β1, β2 ⊆ α2 and β3 ⊆ α3. 

Definition 3.7: For all x ,y, z belonging to a non – empty set XN, the fuzzy neutrosophic points related to x ,y, z 

are defined as follows:  

1. xN1
=< {x},0,0 >, is called a fuzzy neutrosophic point (FNPN1

 ) in XN,  

2. yN2
=< 0, {y},0 >, is called a fuzzy neutrosophic point (FNPN2

 ) in XN, 

3. zN3
=< 0,0, {z} >, is called a fuzzy neutrosophic point (FNPN3

 ) in XN.  
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The set of all fuzzy neutrosophic points (FNPN1
, FNPN2

 , FNPN3
 ) is denoted by FNPN.  

Definition 3.8: Let XN be anon - empty set and x, y, z ∈  XN. Then the fuzzy neutrosophic point: 

1. xN1
 is belonging to the fuzzy neutrosophic set S = < S1 , S2 ,S3 >, denoted by xN1

∈ S , if x ∈ S1 

where in xN1
does not belong to the fuzzy neutrosophic set S denoted by xN1

∉ S  , if xN1
 ∉ S1, 

2. yN2
 is belonging to the fuzzy neutrosophic set S = < S1 , S2 ,S3 > , denoted by yN2

∈ S , if y ∈ S2  

in contrast  yN2
does not belong to the fuzzy neutrosophic set S denoted by yN2

∉ S  , if  yN2
∉ S2, 

3. zN3
 is belonging to the fuzzy neutrosophic set S = < S1 , S2 ,S3 > , denoted by zN3

∈ S , if z ∈ S3  

in contrast  zN3
does not belong to the fuzzy neutrosophic set S denoted by zN3

∉ S  , if  zN3
∉ S3. 

Definition 3.9: Let (XN, τ) be a FNTS, Then XN is called:  

1- FN1 T0 -space for every two different points from XN  are xN1
, yN1

there exists two fuzzy  

neutrosophic open set S ,M inXN such that xN1
∈ S , yN1

∉ S and xN1
∉ M , yN1

∈ M, 

2- F N2 T0 -space for every two different points from XN  are xN2
, yN2

there exists two fuzzy  

neutrosophic open set S ,M inXN such that xN2
∈ S , yN2

∉ S and xN2
∉ M , yN2

∈ M, 

3-  FN3 T0 -space for every two different points from XN  are xN3
, yN3

there exists two fuzzy  

neutrosophic open set S, M inXN such that xN3
∈ S , yN3

∉ S and xN3
∉ M, yN3

∈ M. 

Example 3.10: Let XN =  {a,b,c} and τ = {0N, 1N,S}, 

1. If S = {<  
a

0.8,0,0
>, <    

b

0 ,0 ,0 
>,<  

c

0 ,0,0 
>}. 

So, xN1
 = {<  

a

0.8,0,0
>, <    

b

0 ,0 ,0 
>,<  

c

0 ,0,0 
>} ≠ yN1

= {<  
a

0.7,0,0
>, <    

b

0 ,0 ,0 
>, <  

c

0 ,0,0 
>} ∈ XN. 

There is a FNOS in (XN, τ)  say xN1
= {<  

a

0.8,0,0
>, <    

b

0 ,0 ,0 
>, <  

c

0 ,0,0 
>} ∈ S but yN1

=  {<  
a

0.7,0,0
>, <

   
b

0 ,0 ,0 
>, <  

c

0 ,0,0 
>} ∉ S. 

 Therefore, (XN, τ) is FN1 T0 -space .  

2. If   S = {<  
a

1 ,1,0
 > , <    

b

0,1 ,0
> , <   

c

0 ,1,0
> }.So, xN2

= {<  
a

1 ,1,0
 > , <    

b

1,0 ,0
>, <   

c

0 ,1,0
>} ≠ 

 yN2
= {<  

a

0 ,1,0
 > , <    

b

0,1 ,0
>, <   

c

0 ,1,0
>} ∈ XN . There is a FNOS in ( XN , τ)  say  xN2

= {<

 
a

1 ,1,0
 > , <    

b

1,0 ,0
>, <   

c

0 ,1,0
>}  ∈ S  but, yN2

= {<  
a

0 ,1,0
 > , <    

b

0,1 ,0
>, <   

c

0 ,1,0
>} ∉ S. 

Therefore, (XN, τ) is FN2 T0 -space  
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3. If  S = {<
a

1 ,0.9 ,0
>,<   

b

0 ,0,1 
>,<   

c

0 ,0,1 
>}. 

So, xN3
= {<  

a

0 ,0,1
>,<   

b

0 ,0,1
>,<

c

0 ,0.9 ,1
,>} ≠ yN3

= {<  
a

0 ,0,1
>,<   

b

0 ,0,1
>,<

c

0.6 ,1,0 
>} ∈ XN.  

There is a FNOS in (XN, τ)  say, xN3
= {<  

a

0 ,0,1
>,<   

b

0 ,0,1
>,<

c

0 ,0.9 ,1
,>}  ∈ S  but, yN3

= {<  
a

0 ,0,1
>,<

  
b

0 ,0,1
>,<

c

0.6 ,1,0 
>} ∉ S. Therefore, (XN, τ) is FN3 T0 -space .  

Definition 3.11: Suppose that (XN, τ) is a FNTS, Then XN is called:  

1- FN1 T1 -space for every two different points from XN  are xN1
, yN1

there exists two fuzzy 

neutrosophic open set S ,M inXN such that xN1
∈ S , yN1

∉ S and xN1
∉ M , yN1

∈ M, 

2- FN2 T1 -space for every two different points from XN  are xN2
, yN2

there exists two fuzzy  

neutrosophic open set S ,M inXN such that xN2
∈ S , yN2

∉ S and xN2
∉ M , yN2

∈ M, 

3- F N3 T1 -space for every two different points from XN  are xN3
, yN3

there exists two fuzzy  

neutrosophic open set S ,M inXN such that xN3
∈ S , yN3

∉ S and xN3
∉ M , yN3

∈ M. 

Example 3.12: Let XN =  {a,𝑏,𝑐}, τ = {0N, 1N,𝑆,𝑀,S∧ 𝑀,𝑆 ∨ 𝑀},Then. 

1. If S = {<
a

0.5 ,0 ,0
>,<   

b

0 ,0 ,0
>,<  

c

0 ,0 ,0
>}and 

  M = {<
a

0.3 ,0 ,0
>,<   

b

0 ,0 ,0
>,<  

c

0 ,0 ,0
>}. 

So, xN1
= {<

a

0.5 ,0 ,0
>, <   

b

0 ,0 ,0
>, <  

c

0 ,0 ,0
>} ≠  yN1

= {<
a

0 ,0.3 ,0
>,<   

b

0 ,0 ,0
>,<  

c

0 ,0 ,0
>}∈ XN. 

There is a FNOS in (XN, τ), say xN1
= {<

a

0.5 ,0 ,0
>, <   

b

0 ,0 ,0
>, <  

c

0 ,0 ,0
>} ∈ S, xN1

= {<
a

0.5 ,0 ,0
>, <   

b

0 ,0 ,0
>

, <  
c

0 ,0 ,0
>} ∉ M  and  yN1

= {<
a

0 ,0.3 ,0
> , <   

b

0 ,0 ,0
> , <  

c

0 ,0 ,0
>} ∈ M ,   yN1

= {<
a

0 ,0.3 ,0
> , <   

b

0 ,0 ,0
> , <

 
c

0 ,0 ,0
>} ∉ S . Therefore, (XN, τ) is FN1 T1 -space. 

2. If S = {<
a

1,1,0 
 >,<    

b

0,1 ,0 
>,<    

c

0,1 ,0 
>}, and 

M = {<
a

0,0,0 
 >,<    

b

0,1 ,0 
>,<    

c

0,1 ,0 
>} 
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So,  xN2
= {<

a

0,1,0 
 >,<    

b

1,1 ,0 
>,<    

c

0,1 ,0 
>} ≠ yN2

= {<
a

0,1,0 
 >,<    

b

0,0 ,0 
>,<    

c

0,1 ,0 
>} ∈ XN 

There is a FNOS in ( XN, τ) ,  say xN2
= {<

a

0,1,0 
 > , <    

b

1,1 ,0 
> , <    

c

0,1 ,0 
>} ∈ S , xN2

= {<
a

0,1,0 
 > , <

   
b

1,1 ,0 
>,<    

c

0,1 ,0 
>} ∉ M .and yN2

= {<
a

0,1,0 
 >,<    

b

0,0 ,0 
>,<    

c

0,1 ,0 
>} 

∈ M,yN2
= {<

a

0,1,0 
 >,<    

b

0,0 ,0 
>,<    

c

0,1 ,0 
>} ∉ S. Therefore, (XN, τ) is FN2 T1 -space .  

3. If S = {<
a

1 ,0.2 ,0
 >,<  

b

0,0,1
>,<

c

0,0,1
>} and 

 M = {<
a

0 ,0.7 ,1 
>, <  

b

0 ,0 ,1
>,<

c

0,0 ,1
>} 

S∧ 𝑀 = {<
a

0 ,0.2 ,0
 >,<

b

0,0,1
>,<

c

0,0,1
>} 

S∨ 𝑀={<
a

1 ,0.7 ,1
 >,<  

b

0,0,1
>,<

c

0,0,1
>}.  

So, xN3
= {<  

a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.2 ,1
>} ≠     yN3 = {<  

a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.7 ,1
>} ∈ XN 

There is a FNOS in (XN, τ) say,  xN3
= {<  

a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.2 ,1
>} ∈ S,xN3

= {<  
a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.2 ,1
>} ∉ M  and  yN3 = {<  

a

0 ,0,1 
> , < ,  

b

0 ,0 ,1
> , <

c

0 ,0.7 ,1
>} ∈ M ,  yN3 = {<  

a

0 ,0,1 
> , < ,  

b

0 ,0 ,1
> , <

c

0 ,0.7 ,1
>} ∉ S. Therefore, (XN, τ)  is FN3 T1  -space .  

Definition 3.13: Suppose that (XN, τ) is a FNTS. Then XN is called:  

1- FN1 T2 -space for every two different points from XN  are xN1
, yN1

there exists two fuzzy  

neutrosophic open set S,M inXN such that xN1
∈ S , yN1

∉ S and xN1
∉ M, yN1

∈ M with S ∧ M =<

0,0,0 >, 

2- FN2 T2 -space for every two different points from XN  are xN2
, yN2

there exists two fuzzy  

neutrosophic open set S ,M inXN such that xN2
∈ S, yN2

∉ S and xN2
∉ M , yN2

∈ M with S ∧ M =<

0,1,0 >, 

3- FN3 T2 -space for every two different points from XN  are xN3
, yN3

there exists two fuzzy  

neutrosophic open set S ,M inXN such that xN3
∈ S , yN3

∉ S and xN3
∉ M, yN3

∈ M with S ∧ M =

< 0,0,1 >. 
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Example 3.14: Let XN =  {a,𝑏,𝑐}, τ = {0N, 1N,𝑆,𝑀,S∨ 𝑀},Then.  

1. If  S = {<
a

0.6 ,0,0
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}, and 

           M = {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}  

       S∨ 𝑀 = {<
a

0,6 ,0.8 ,0 
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}. 

  So, S ∧ M =< 0,0,0 > 

 Let xN1
= {<

a

0.6 ,0,0
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>} ≠ yN1

= {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>} ∈ XN 

There is a FNOS in (XN, τ), say, xN1
= {<

a

0.6 ,0,0
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}  ∈ S, xN1

= {<
a

0.6 ,0,0
>,<  

b

0 ,0,0
 > 

,<  
c

0 ,0,0
>} ∉ M andyN1

= {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>} ∈ M,yN1

= {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>

} ∉ S. Therefore, (XN, τ) is N1 T2 -space .  

2. If S = {<  
a

1 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>}and  

             M = {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>} 

So, S ∧ M =< 0,1,0 > 

Then, xN2
= {<  

a

0 ,1,0 
>,<  

b

1 ,1,,0
>, <

c

0 ,1,,0
>} ≠ yN2

= {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>} ∈ XN 

There is a FNOS in( XN, τ) ,  say  xN2
= {<  

a

0 ,1,0 
> , <  

b

1 ,1,,0
> , <

c

0 ,1,,0
>} ∈ S ,  xN2

= {<  
a

0
,

b

1
,

c

0
>, <

 
a

1
 ,

b

1
,

c

0
>, <  

a

0
,

b

1
,

c

0
>} ∉ M and yN2

= {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>} ∈ M,yN2

= {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, 

<
c

0 ,1,,0
>} ∉ S . Therefore, (XN, τ) is FN2 T2 -space .  

3. If S = {<  
a

1 ,0.9 ,0
>,<  

b

0,0 ,1
>,<  

c

0,0 ,1
>}, and 

  M = {<  
a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

0,0 ,1
>} 
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S∨ 𝑀 = {<  
a

1 ,0.9 ,1
>,<  

b

0,0 ,1
>,<  

c

0,0 ,1
>} 

So, S ∧ M =< 0,0,1 > 

Then,xN3
= {<  

a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

1,0.9 ,1
>} ≠  yN3

= {<  
a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

0,0 ,1
>} ∈ XN 

There is a FNOS in ( XN, τ)  say, xN3
= {<  

a

0,0 ,1
> , <

b

0,0 ,1
> , <  

c

1,0.9 ,1
>}  ∈ S ,  xN3

= {<  
a

0,0 ,1
> , <

b

0,0 ,1
> ,<  

c

1,0.9 ,1
>}  ∉ M  andyN3

= {<  
a

0,0 ,1
> , <

b

0,0 ,1
> ,<  

c

0,0 ,1
>} ∈ M ,   yN3

= {<  
a

0,0 ,1
> , <

b

0,0 ,1
> ,<

 
c

0,0 ,1
>} ∉ S. Therefore, (XN, τ) is FN3 T2-space .  

Note : Veereswari Y. [11] defined and construct several FNTSs as in the next definition so, we used it to study 

some new kinds of separation axioms with some relations and examples.  

Definition 3.15 [11]: Let (XN , τ) be a FNTS on XN  Then ,we can also construct several FNTSs on XN in the 

following ways:  

1- τ0.1 = {[ ]S: S ∈ τ}, where [ ]S =< x , μS (x), σS(x), 1 − μS (x) >= 

 FS =< S1, S2, S1
c >,  

2- τ0.2 = {< > S: S ∈ τ}, where < > S =< x,1 − VS (x), σS(x), VS (x) > =  

 SE=< S3
c, S2, S3 >.  

Now, we defined and construct two new FNTSs from the FNTS (XN , τ) as the next definition. 

Definition 3.16: Let (XN , τ) be a FNTS such that τ is not indiscrete such that τ = {0N,1N}  ∨ { Si, i ∈ J}. Then 

we can construct two (FNTSs) on XN as follows:  

1- τ1 = {0N,1N}  ∨ { S1 },  

2- τ2 = {0N,1N}  ∨ { S2 }.  

Example 3.17: Let XN =  {a,𝑏,𝑐}, τ = {0N, 1N,𝑆, 𝑀, 𝑆 ∨ 𝑀 },Then. 

1. If  S = {<
a

0.6 ,0,0
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}, and 

           M = {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}  

       S∨ 𝑀 = {<
a

0,6 ,0.8 ,0 
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}. 
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  So, S ∧ M =< 0,0,0 > 

 τ1 = {0N,1N}  ∨ {0.6,0,0} ∨ { 0,0.8,0}  

τ1 = {0N,1N, {0.6,0,0}, { 0,0.8,0}}. 

τ2 = {0N,1N}  ∨ { S2 } ∨ { M2 } 

τ2 = {0N,1N} ∨ { 0,0,0} ∨ {0,0,0} 

τ2 = {0N,1N, { 0,0,0}, {0,0,0}}. 

Let xN1
= {<

a

0.6 ,0,0
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>} ≠ yN1

= {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>} ∈ XN 

There is a FNOS in (XN, τ) say, xN1
= {<

a

0.6 ,0,0
>,<  

b

0 ,0,0
 > ,<  

c

0 ,0,0
>}  ∈ S, xN1

= {<
a

0.6 ,0,0
>,<  

b

0 ,0,0
 > 

,<  
c

0 ,0,0
>} ∉ M andyN1

= {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>} ∈ M,yN1

= {<
a

0 ,0.8 ,0 
>,<

b

0 ,0,0
 > ,<  

c

0 ,0,0
>

} ∉ S. Therefore, (XN, τ) is FN1 T2 -space .  

2. If S = {<  
a

1 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>}and  

             M = {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>} 

So, S ∧ M =< 0,1,0 > 

 τ1 = {0N,1N}  ∨ { S1 } ∨ { M1 } 

τ1= {0N,1N}  ∨ {1,1,0} ∨ { 0,1,0} 

 τ1 = {0N,1N, {1,0,0}, { 0,1,0}}. 

τ2 = {0N,1N}  ∨ { S2 } ∨ { M2 } 

τ2 = {0N,1N} ∨ { 0,1,0} ∨ {0,1,0} 

τ2 = {0N,1N, { 0,1,0}, {0,1,0}}. 

If xN2
= {<  

a

0 ,1,0 
>,<  

b

1 ,1,,0
>, <

c

0 ,1,,0
>} ≠ yN2

= {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>} ∈ XN 
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There is a FNOS in ( XN, τ) say,  xN2
= {<  

a

0 ,1,0 
> , <  

b

1 ,1,,0
> , <

c

0 ,1,,0
>} ∈ S ,  xN2

= {<  
a

0
,

b

1
,

c

0
>, <

 
a

1
 ,

b

1
,

c

0
>, <  

a

0
,

b

1
,

c

0
>} ∉ M and yN2

= {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, <

c

0 ,1,,0
>} ∈ M,yN2

= {<  
a

0 ,1,0 
>,<  

b

0 ,1,,0
>, 

<
c

0 ,1,,0
>} ∉ S . Therefore, (XN, τ) is FN2 T2 -space .  

3. If S = {<  
a

1 ,0.9 ,0
>,<  

b

0,0 ,1
>,<  

c

0,0 ,1
>}, and 

  M = {<  
a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

0,0 ,1
>} 

S∨ 𝑀 = {<  
a

1 ,0.9 ,1
>,<  

b

0,0 ,1
>,<  

c

0,0 ,1
>} 

So, S ∧ M = < 0,0,1 > and ,τ1 = {0N,1N}  ∨ { S1 } ∨ { M1 }. 

τ1 = {0N,1N}  ∨ {1,0.9,1} ∨ { 0,0,1}  

τ1 = {0N,1N, {1,0.9,1}, { 0,0,0}}, 

τ2 = {0N,1N}  ∨ { S2 } ∨ { M2 } 

τ2 = {0N,1N} ∨ { 0,0,1} ∨ {0,0,1} 

τ2 = {0N,1N, { 0,0,1}, {0,0,1}}. 

If we put, xN3
= {<  

a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

1,0.9 ,1
>} ≠  yN3

= {<  
a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

0,0 ,1
>} ∈ XN 

There is a FNOS in (XN, τ) say, xN3
= {<  

a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

1,0.9 ,1
>}  ∈ S, 

 xN3
= {<  

a

0,0 ,1
>, <

b

0,0 ,1
> ,<  

c

1,0.9 ,1
>}  ∉ M  andyN3

= {<  
a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

0,0 ,1
>} ∈ M ,  yN3

= {<

 
a

0,0 ,1
>, <

b

0,0 ,1
>,<  

c

0,0 ,1
>} ∉ S. Therefore, (XN, τ) is FN3 T2 -space .  

Definition 3.18: A FNTS (XN , τ) is called: 

1. FNT0-space if (XN , τ) is FN1T0-space, FN2T0-space and FN3T0-space. 

2. FNT1-space if (XN , τ) is FN1T1-space, FN2T1-space and FN3T1-space. 

3. FNT2-space if (XN , τ) is FN 2T0-space, FN2T2-space and FN3T2-space. 
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The next theorem gave the relations between the FNT1-space and the new defined construction τ0.1 and τ1.                                                 

Theorem 3.19: Let (XN, τ) be a FNTS, then the following are equivalent:  

(i)- (XN, τ) is a FN T1 -space, 

(ii)- (XN, τ0.1) is a FN T1 -space, 

(iii)- (XN, τ1) is a FN T1 -space. 

Proof.    (i) ⟹ (ii) Let xN, yN ∈ XN such that xN ≠  yN then there exist. 

UxN
= < S1, S2, S3 > and VyN

= < M1,M2, M3 >,  such that  

xN ∈ UxN
, if xN ∈ S1 and yN ∈ VyN

, if yN ∈ M1 

Since FUxN
= < S1, S2, S1

c > and FVyN
= < M1, M2, M1

c >. 

Then, xN ∈ S1 and xN ∉ S1
c , So xN ∈ FUxN

 , xN ∉ FVyN
⟹  xN ∉ M1 or  xN ∈ M1

c. 

Now if xN ∉ M1 , then  xN ∈ M1
c. 

Therefore, xN ∉ FVyN
. If  xN ∈ M1

c ,then xN ∉ M1
c and since M1 ∧ M1

c = 0N.  

So, xN ∈ M1
c ,Thus xN ∉ FVyN

.  

Similarly; yN ∈ VyN
 and  xN ∉ FVyN

. Therefore, (XN, τ0.1) is a FN T1 -space . 

(ii) ⟹ (iii): Suppose that xN, yN ∈ XN such that xN ≠  yN, then there exist.               

 FUxN
= < S1, S2, S1

c > and FVyN
= < M1, M2, M1

c >in τ0.1. 

Where:  UxN
= < S1, S2, S3 > and VyN

= < M1,M2, M3 > in τ. 

such that xN ∈ FUxN
, yN ∈ FVyN

, xN ∉ FVyN
 and yN ∉  FUxN

. 

Thus , xN ∈ S1and not in M1 and  yNin M1not in S1, there  (XN, τ1) is a FN T1 -space.   

(iii) ⟹ (i) Let  xN, yN ∈ XN such that xN ≠  yN then, there exist, xN ∈ S1 and xN ∉ M1 with yN ∈  

M1,  yN ∉ S1, where S1and M1 are in τ1.  

Put, UxN
= < S1, S2, S3 > and VyN

= < M1,M2, M3 >. 

So, UxN
and VyN

are in τ  and satisfy T1 . Therefore, (XN, τ) is a FNT1 -space. 
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Example 3.20: Let XN =  {a,𝑏,𝑐}, τ = {0N, 1N,𝑆,𝑀,S∨ 𝑀, S ∧ 𝑀 },Then. 

 S = {<
a

1,0.4 ,0 
>,<   

b

0 ,0,1 
>,<  

c

0 ,0,1 
>},and  

  M = {<
a

0 ,0.5 ,1 
>,<   

b

0 ,0,1 
>,<  

c

0 ,0,1 
>} 

S∨ 𝑀 = {<
a

1 ,0.5 ,1
>,<   

b

0 ,0,1 
>,<  

c

0 ,0,1 
>} 

S∧ 𝑀 = {<
a

0,0.4 ,0
>,<   

b

0 ,0,1 
>,<  

c

0 ,0,1 
>} 

If xN3
= {<   

a

0 ,0,1 
>,<  

b

0 ,0,1 
>,<

c

1,0.4 ,0 
>} ≠ yN3

=  {<   
a

0 ,0,1 
>,<  

b

0 ,0,1 
>,<

c

0,0.5 ,1 
>} ∈ XN. 

For the set S, τ0.1 = {<
a

1,0.4 ,0 
>,<   

b

0 ,0,1 
>,<  

c

0,0,6,1
>}. 

For the set M, τ0.1 = {<
a

0 ,0.5 ,1 
>,<   

b

0 ,0,1 
>,<  

c

1,0.5 ,0
>}. 

Then, for τ  we have τ0.1 = {0N ,  1N ,  <
a

1,0.4 ,0 
> , <   

b

0 ,0,1 
> , <  

c

0,0,6,1
> , <

a

0 ,0.5 ,1 
> , <   

b

0 ,0,1 
> , <

 
c

1,0.5 ,0
>}and 

 τ1 = {0N,1N}  ∨ { S1 } ∨ { M1 } = {0N,1N}  ∨ {1,0.4,0} ∨ { 0,0.5,1}    

That is τ1 = {0N,1N, {1,0.4,0}, { 0,0.5,1}}.  

Then, There is a FNOS in XN  say, xN3
= {<   

a

0 ,0,1 
>,<  

b

0 ,0,1 
>,<

c

1,0.4 ,0 
>}   ∈ S , xN3

= {<   
a

0 ,0,1 
>,<

 
b

0 ,0,1 
> , <

c

1,0.4 ,0 
>}  ∉ M  and yN3

=  {<   
a

0 ,0,1 
> , <  

b

0 ,0,1 
> , <

c

0,0.5 ,1 
>}  ∈ M ,  yN3

=  {<   
a

0 ,0,1 
> , <

 
b

0 ,0,1 
>,<

c

0,0.5 ,1 
>} ∉ S.  Therefore, (XN, τ) is FN3 T2 -space . 

The next theorem gave the relations between the FNT1-space and the new defined construction τ0.2 and τ2.                                                   

Theorem 3.21: Let (XN, τ) be a FN T1 -space, then:  

(i)- (XN, τ0.2) is a FN T1–space, 
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(ii)- (XN, τ2) is a FN T1 –space. 

Proof.  (i)  Let (XN, τ) be a FNT1 -space and Let  xN, yN be any elements in XN such that  xN ≠  yN then 

there exists  UxN
= < S1, S2, S3 >and VyN

= < M1,M2, M3 >, such that xN ∈ UxN
, yN ∈ VyN

, xN ∉ VyN
 and 

yN ∉  UxN
. 

Thus xN ∈ UxN
if  xN ∈  S1 , xN ∉ S3 and yN ∈  M1, yN ∉ M3. 

Also, xN ∉ M1, yN ∉ S1. 

Since SUxN
= < S3

c,S2, S3 > and SVyN
= < M3

c,M2, M3 >. Then xN ∉ S3 , so xN ∈ S3
c and yN ∈ M3

c.  

Thus xN ∈ SUxN
 and yN ∈  SVyN

. 

Similarly, we can show xN ∉  SVyN
 and yN ∉  SUxN

. 

Therefore, (XN, τ0.2) is a FN T1 -space. 

 (ii) Suppose that  xN, yN ∈  XN such that xN ≠  yN then, there exists SUxN
= < S3

c,S2, S3 > and SVyN
= <

M3
c,M2, M3 > in τ0.2. So, there exist UxN

= < S1, S2, S3 >and VyN
= < M1,M2, M3 > in τ such that xN ∈

SUxN
, yN ∈  SVyN

 , xN ∉  SVyN
 and yN ∉  SUxN

.  

Thus xN ∈ S3 and not in M3 and  yN ∈ M3  not in S3. 

Therefore, (XN, τ2) is a  FN T1-space . 

Remark 3.22:The converse of Theorem 3.21 is not true in general .The following examples show these cases . 

Example 3.23: Let XN =  {a,𝑏,𝑐},and Let τ = {0N, 1N,𝑆,𝑀, S∧ 𝑀, S∨ 𝑀 },where 

S = {< (
a

1 ,0.7 ,0 
),( 

b

1,0.5 ,0
),( 

c

1 ,0.8 ,0
) >}, and M = {< (

a

1 ,0.7 ,0 
),(  

b

1,0,0
),( 

c

1,0.4 ,0
) >}, 

S∧ 𝑀 = {< (
a

1 ,0.7 ,0 
), (  

b

1,0,0
),( 

c

1 ,0.8 ,0
) >}, and  S∨ 𝑀 = {< (

a

1 ,0.7 ,0 
),( 

b

1,0.5 ,0
),( 

c

1,0.4 ,0
) >} 

1. For the set S, τ0.2 = {< > S: S ∈ τ}, where < > S =< x, 1 − VS (x), σS(x), VS (x) > 

                                =< (
a

0,0.2 ,1
), ( 

b

1,0.5 ,0
), ( 

c

1 ,0.8 ,0
) >, and  

2. For the set M,  τ0.2 = {< > M: M ∈ τ}, where < > M =< x, 1 − VM (x), σM(x), VM (x) >  

                      =< (
a

0 ,0.6,1
),(  

b

1,0,0
),( 

c

1,0.4 ,0
) > 
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Then, for τ we have τ0.2 = {0N, 1N,(
a

0,0.2 ,1
), ( 

b

1,0.5 ,0
), ( 

c

1 ,0.8 ,0
), (

a

0 ,0.6,1
),(  

b

1,0,0
),( 

c

1,0.4 ,0
)}. 

Also, τ2 = {0N,1N} ∨ { S2 } ∨ { M2 } 

      = {0N,1N}  ∨ {(
b

1,0.5 ,0
)} ∨ {( 

b

1,0,0
)}. 

Remark 3.24: For the FNTS (XN , τ) we have: 

1. Every FNT2-space is FNT1-space. 

2. Every FNT1-space is FNT0-space. 

 The proof is directly from definitions 3.9, 3.11 and 3.13.  

The converse of Remark 3.24 is not true as it shown in the next example. 

Example 3.25: Let XN =  {a,b,c}, τ = {0N, 1N,S}, 

1. If S = {<  
a

0.8,0,0
>, <    

b

0 ,0 ,0 
>,<  

c

0 ,0,0 
>}. 

So, xN1
 = {<  

a

0.8,0,0
>, <    

b

0 ,0 ,0 
>,<  

c

0 ,0,0 
>} ≠ yN1

= {<  
a

0.7,0,0
>, <    

b

0 ,0 ,0 
>, <  

c

0 ,0,0 
>} ∈ XN. 

There is a FNOS in (XN, τ) say xN1
= {<  

a

0.8,0,0
>, <    

b

0 ,0 ,0 
>, <  

c

0 ,0,0 
>} ∈ S but yN1

=  {<  
a

0.7,0,0
>, <

   
b

0 ,0 ,0 
>, <  

c

0 ,0,0 
>} ∉ S. 

 Therefore, (XN, τ) is FN1 T0 –space but is not FN1 T1 –space and not FN1T2 –space. 

2. If   S = {<  
a

1 ,1,0
 > ,<    

b

0,1 ,0
>,<   

c

0 ,1,0
>}. 

So, xN2
= {<  

a

1 ,1,0
 > , <    

b

1,0 ,0
>, <   

c

0 ,1,0
>} ≠  yN2

= {<  
a

0 ,1,0
 > , <    

b

0,1 ,0
>, <   

c

0 ,1,0
>} ∈ XN. There is 

a FNOS in XN  say  xN2
= {<  

a

1 ,1,0
 > , <    

b

1,0 ,0
>, <   

c

0 ,1,0
>}  ∈ S  but, yN2

= {<  
a

0 ,1,0
 > , <    

b

0,1 ,0
>, <

  
c

0 ,1,0
>} ∉ S. 

Therefore, (XN, τ) is FN2 T0 -space but, is not FN2 T1 –space and not FN2T2 –space. 
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3. If  S = {<
a

1 ,0.9 ,0
>,<   

b

0 ,0,1 
>,<   

c

0 ,0,1 
>}. 

So, xN3
= {<  

a

0 ,0,1
>,<   

b

0 ,0,1
>,<

c

0 ,0.9 ,1
,>} ≠ yN3

= {<  
a

0 ,0,1
>,<   

b

0 ,0,1
>,<

c

0.6 ,1,0 
>} ∈ XN.  

There is a FNOTS in (XN, τ) say, xN3
= {<  

a

0 ,0,1
>,<   

b

0 ,0,1
>,<

c

0 ,0.9 ,1
,>}  ∈ S  but, yN3

= {<  
a

0 ,0,1
>,<

  
b

0 ,0,1
>,<

c

0.6 ,1,0 
>} ∉ S.  

Therefore, (XN, τ) is FN3 T0 -space but is not FN3 T1 -space and not FN3 T2 -space. 

Example 3.26: Let XN =  {a,𝑏,𝑐}, τ = {0N, 1N,𝑆,𝑀,S∧ 𝑀,𝑆 ∨ 𝑀},Then. 

1. If S = {<
a

0.5 ,0 ,0
>,<   

b

0 ,0 ,0
>,<  

c

0 ,0 ,0
>}and 

  M = {<
a

0.3 ,0 ,0
>,<   

b

0 ,0 ,0
>,<  

c

0 ,0 ,0
>}. 

So, xN1
= {<

a

0.5 ,0 ,0
>, <   

b

0 ,0 ,0
>, <  

c

0 ,0 ,0
>} ≠  yN1

= {<
a

0 ,0.3 ,0
>,<   

b

0 ,0 ,0
>,<  

c

0 ,0 ,0
>}∈ XN. 

There is a FNOS in ( XN, τ)   say xN1
= {<

a

0.5 ,0 ,0
>, <   

b

0 ,0 ,0
>, <  

c

0 ,0 ,0
>} ∈ S ,  xN1

= {<
a

0.5 ,0 ,0
>, <

  
b

0 ,0 ,0
>, <  

c

0 ,0 ,0
>} ∉ M  and  yN1

= {<
a

0 ,0.3 ,0
> , <   

b

0 ,0 ,0
> , <  

c

0 ,0 ,0
>} ∈ M ,   yN1

= {<
a

0 ,0.3 ,0
> , <

  
b

0 ,0 ,0
>,<  

c

0 ,0 ,0
>} ∉ S. Therefore, (XN, τ) is FN1 T1 –space but is not FN1 T2 -space. 

2. If S = {<
a

1,1,0 
 >,<    

b

0,1 ,0 
>,<    

c

0,1 ,0 
>}, and 

M = {<
a

0,0,0 
 >,<    

b

0,1 ,0 
>,<    

c

0,1 ,0 
>} 

So,  xN2
= {<

a

0,1,0 
 >,<    

b

1,1 ,0 
>,<    

c

0,1 ,0 
>} ≠ yN2

= {<
a

0,1,0 
 >,<    

b

0,0 ,0 
>,<    

c

0,1 ,0 
>} ∈ XN 

There is a FNOS in ( XN, τ)  say xN2
= {<

a

0,1,0 
 > , <    

b

1,1 ,0 
> , <    

c

0,1 ,0 
>} ∈ S , xN2

= {<
a

0,1,0 
 > , <

   
b

1,1 ,0 
>,<    

c

0,1 ,0 
>} ∉ M .and yN2

= {<
a

0,1,0 
 >,<    

b

0,0 ,0 
>,<    

c

0,1 ,0 
>} 
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∈ M,yN2
= {<

a

0,1,0 
 >,<    

b

0,0 ,0 
>,<    

c

0,1 ,0 
>} ∉ S.  

  Therefore, (XN, τ) is FN2 T1 -space but is not FN2 T2 -space.  

3. If S = {<
a

1 ,0.2 ,0
 >,<  

b

0,0,1
>,<

c

0,0,1
>} and 

 M = {<
a

0 ,0.7 ,1 
>, <  

b

0 ,0 ,1
>,<

c

0,0 ,1
>} 

S∧ 𝑀 = {<
a

0 ,0.2 ,0
 >,<

b

0,0,1
>,<

c

0,0,1
>} 

S∨ 𝑀={<
a

1 ,0.7 ,1
 >,<  

b

0,0,1
>,<

c

0,0,1
>}.  

So, xN3
= {<  

a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.2 ,1
>} ≠     yN3 = {<  

a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.7 ,1
>} ∈ XN 

There is a FNOS in (XN, τ) say,  xN3
= {<  

a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.2 ,1
>} ∈ S,xN3

= {<  
a

0 ,0,1 
>,<, 

b

0 ,0 ,1
>,<

c

0 ,0.2 ,1
>} ∉ M  and  yN3 = {<  

a

0 ,0,1 
> , < ,  

b

0 ,0 ,1
> , <

c

0 ,0.7 ,1
>} ∈ M ,  yN3 = {<  

a

0 ,0,1 
> , < ,  

b

0 ,0 ,1
> , <

c

0 ,0.7 ,1
>} ∉ S. Therefore, (XN, τ)  is FN3 T1  -space  but is not FN3 T2 . 

4. Conclusions  

In this research, the new type of fuzzy neutrosophic separation axioms has been defined in the fuzzy 

neutrosophic topological spaces by several new types of points and new constructions was studied. And many 

useful examples are presented to clear the newconcepts introduced. Also, proof  some new theorems and 

characterizations relations among the new concepts and the other type are going to be found. 
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Abstract: In the wider problem-solving process, decision-making requires knowledge to choose 

the possible and optimum solution in the real time. Decision making become further complicated if 

the available criteria are more. In this research work our intend is to study the behaviour of 

Multi-Dimensional Single valued Plithogenic Neutrosophic Sets(MSVPNS) used in multi criteria 

decision making with multi values of attributes. We also introduce a novel method to find the 

optimum solution of Single valued Plithogenic Neutrosophic Sets(SVPNS) with its operators. We 

apply this concept in the field of agriculture which deals with multi values of attribute and obtain a 

fruitful result for practising agriculture in a successful way. 

Keywords: Decision making, Multi criteria decision making, Neutrosophic set, Plithogenic set, 

Plithogenic Neutrosophic set. 

________________________________________________________________________________________ 

1. Introduction 

Decision-making process may be termed as the investigation, identification and choice of 

alternatives, the most appropriate option for the perseverance. It is generally called a cognitive 

analysis, since it involves conceptual and logical reasoning. There are some strategies in 

decision-making that are worth exploring, but there is little interest in the number of different 

alternatives, rather than in describing all possible solutions and select the one with the greatest 

likelihood of success, or the one that best matches the specific target or purpose.  

Decision-making is a process that eliminates uncertainty to a significant degree. In most 

decisions, uncertainty is minimized rather than removed. Just in a few cases decisions are taken with 

absolute certainty. This means that most decisions require a certain amount of risk. 

If there is no uncertainty, so there is no decision; only since you have to act and assume a 

determined conclusion. Decisions decide the progress of the project, and often there are tough times 

when they seem not to be as straightforward as we assume they are tougher. 

Zadeh [14] brought a successful revolution by introducing a new theory of sets (i.e.) Fuzzy sets 

(FS) in the area of problem solving world and mathematics. Fuzzy sets accept the view that the 
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knowledge available in the real world is not always definite or crisp, but keeps the hand of 

uncertainty and the analysis of this uncertainty will aid a great deal in the decision making process. 

Atanassov [2] coined Intuitionistic fuzzy set (IFS) to manage vagueness which is an extension of 

the FS. IFS allocates both membership and non-membership degree for each component with the 

constraint that the addition of these two evaluations is less than or equal to unity. IFS plays a major 

role in resolving vagueness or uncertainty in decision making. 

Smarandache [7] proposed Neutrosophic sets (NSs), a generalization of FS and IFS.NSs is highly 

supportive for dealing with insufficient, indefinite, and varying data that occurs in the the real 

world. NSs are characterized by functions of truth (T), indeterminacy (I) and falsity (F) membership 

functions. This concept is very essential in decision making process since indeterminacy is clearly 

enumerated and the truth, indeterminacy, and falsity membership functions are independent. 

Smarandache [6] introduced the Plithogenic set (PS) as a generalization of neutrosophy in 2017. 

The components of PS are represented by one or many number of attributes and each of it have 

numerous values. Each values of attribute have its appurtenance degree for the component x (say) to 

the PS (say P) with reference to certain constraints. For the first time, Smarandache introduced the 

dissimilarity degree between each value of attribute and the predominant value of attribute which 

results in getting the enhanced accurateness for the plithogenic aggregation operators. 

In this research work, we study how the single valued plithogenic neutrosophic set used in multi 

criteria decision making with multi values of attributes. 

Section 1 gives the brief introduction with the organisation of the paper. Section 2 deals with the 

preliminary concepts. In this section we give the basic definitions, important results that is needed 

for our research work. Section 3 explains uni attribute value SVPNS with their operators. Section 4 is 

an extension of section 3 which is our proposed concept dealing with MSVPNS with their 

aggregation operators. Section 5 gives an algorithm for computing the optimum solution for 

numerical data. Section 6 explains the application of the constructed algorithm in the field of 

agriculture. Section 7 gives the results and discussions of the numerical problem and Section 8 

concludes the present research work with the future work. 

2. Preliminaries  

Definition 2.1 [14] Let J be a universal set and the fuzzy set  JjjjF f  |)(,   is termed by 

a belonging degree f as ]1,0[: Jf . 

Definition 2.2 [2] Let H be a non-void set. The set  HhhB BB   ,,  is called an 

intuitionistic fuzzy set (in short, IFS) of H where the function ]1,0[: HB , ]1,0[: HB  

represents the belonging degree (say )(hB ) and non- belonging degree (say )(hB ) of each 

component Hh to the set B and satisfies the constraint that .1)()(0  hh BB   

Definition 2.3 [9] Let H be a non-void set. The set  HhnB BBB   ,,,  is called a 

neutrosophic set (say NS) of H where the function ]1,0[: HB , ]1,0[: HB  and ]1,0[: HB  
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represents the belonging degree (say )(hB ), neutral degree (say )(hB ), and non- belonging degree 

(say )(hB )of each component Hh to the set B and satisfies the limitation that 

.3)()()(0  hhh BBB   

 

Definition 2.4 [6] Plithogenic set (PS) is a generalization of a crisp set, a fuzzy set (FS), an 

intuitionistic fuzzy set (IFS) and a neutrosophic set (NS), while these four categories are represented 

by a particular values of attribute (appurtenance): single value (belonging)-for a crisp set and a FS, 

two values (belonging, non-belonging)-for an IFS, or triple values (belonging, non-belonging and 

indeterminacy) for NS. 

In general, PS is a set whose members are determined by a set of elements with four or more 

values of attributes. 

 

Definition 2.5 [6] Let Z be the universal set. A non-void set 1},,...,{ 21  sB s of 

uni-dimensional parameters and B attributes is known as the values of attribute continuum of 

the PS. A given value whose range of all probable values is the non-void set U, is any finite discrete 

set  suuuU s 1},,...,,{ 21
, or infinitely countable set },,...,,{ 21  uuuU or infinitely uncountable 

set ]...[,[,,] whereyxyxU   where U can be any open, quasi-open or closed interval from the set of 

real numbers of another universal set. 

 

Definition 2.6 [10] Let R be a non-void subset of U, where R is the collection of the values of all 

attributes that the researchers need for their application. Every component y is described by the 

values of all attributes in .1},,...,{ 21  mrrrR m  

 

Definition 2.7 [11] Generally there is a predominant values of attribute (DAV) within the value 

set R of the attribute, which is defined by the researchers upon their application. Predominant value 

is the most significant value of the attribute in which the researchers are involved. There are 

situations where such DAV may not be taken into consideration or does not exist, or several 

predominant (essential) values of attributes may exist when various methods would be applied. 

 

Definition 2.8 [10] Each values of attribute Rr   has its respective appurtenance 

degree ),( ryd of the element y to the set P, with reference to some given criteria. The appurtenance 

degree can be: a fuzzy or intuitionistic fuzzy or neutrosophic to the plithogenic set. Therefore the 

values of attribute appurtenance degree function is )]1,0[(:, TXWXdXx  , so ),( ryd  is a 

subset of T]1,0[ , where )]1,0[( TX  is the power set of the T]1,0[ , where T=1 for FS, T=2 for IFS or T = 

3 for NS. 

 

Definition 2.9 [6] Let the cardinal 1|| R . Let ]1,0[:  RRC  be the values of attribute 

dissimilarity degree function between any two values of attributes 
1r and 

2r   represented by 

),( 21 rrC which satisfies the following conditions 
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(i) 0),( 21 rrC , the dissimilarity degree among the same values of attribute is zero; 

(ii) ),(),( 1221 rrCrrC  commutativity. 

 

Remarks 

1. The degree of dissimilarity is often determined between uni-dimensional values of 

attributes. We divide multi-dimensional value of attribute into its equivalent uni-dimensional values 

of attribute.  

2. The dissimilarity function of the values of attribute allows the plithogenic operators and 

the relationship of plithogenic partial order to achieve a precise result.  

3. In every domain where the PS is used in connection with the application, the values of 

attribute dissimilarity degree function is designed to solve. If the aggregation is overlooked, it still 

works, but the result will lose exactness. 

 

Definition 2.10 [6] Plithogenic aggregation operators 

The degree of dissimilarity for the values of attribute is calculated between each values of 

attribute with reference to the DAV represented by 
dr . Most of the plithogenic aggregation 

operators (Intersection, Union, Partial orders) are linear combination of the fuzzy norm  (symbolized 

by f ) and fuzzy conorm  (symbolized by f ). 

If one imposes the norm  on DAV represented by
dr , and the dissimilarity between 

dr  and 

2r is ),( 2rrC d
, then onto values of attribute 

2r one imposes 

),(),(),()],(1[ 2222 rrrrCrrrrC dconormddnormd    

or by using notations 

)(),()()],(1[ 2,22,2 rrrrCrrrrC dfddfd  . 

Likewise if one imposes the conorm on DAV represented by
dr , and the dissimilarity between 

dr  and 

2r is ),( 2rrC d
, then onto values of attribute 

2r one imposes 

)(),(),()],(1[ 2,222 rrrrCrrrrC dnormddconormd    

or by using notations 

)(),(),()],(1[ 2,222 rrrrCrrrrC dfddfd  . 

3. One Attribute Single valued Plithogenic Neutrosophic set (OASVPNS) 

The attribute is   = “appurtenance” 

The set of values of attributes R= {belonging, indeterminacy, non-belonging}, whose cardinal 

 |R| = 3;  

The DAV = belonging; 

The values of attribute appurtenance degree function:  

 1,0: RPd , ]1,0[),(],1,0[),(],1,0[),(  belongingnonydacyindeterminydbelongingyd  

with ;3),()mindet,(),(0  belongingnonydacyerinydbelongingyd  

and the values of attribute dissimilarity degree function: 
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],1,0[: RRC  

,0,()(),(  belongingnonbelongingnonCrminacyacy,indeteindeterminCbelongingbelongingC

 

,0),( belongingnonbelongingC  

,
2

1
),(),(  acyindeterminbelongingnoncacyindeterminbelongingC  

which means that for the SVPNS aggregation operators (Intersection, Union, Complement etc.), if 

one imposes the norm on belonging function, then one has to impose the conorm on non-belonging 

(and mutually), while on indeterminacy one imposes the average of norm  and conorm . 

 

3.1 OASVPNS operators 

 

Let us consider the single valued plithogenic neutrosophic degree of appurtenance of values of 

attribute r  of x  to the set P with reference to some given criteria:  

3
321

3
321 ]1,0[),,()(]1,0[),,()(    rdandrd NN  

3.1.1 OASVPNS Intersection 

)),(
2

1
,(),,(),,( 33222211321321  PffPP   

3.1.2 OASVPNS Union 

)),(
2

1
,(),,(),,( 33222211321321  PffPP   

3.1.3 OASVPNS Negation 

.,)1,,1(),,(

),1,(),,(

),,(),,(

321321

123321

123321

etcP

P

P













 

3.1.4 OASVPNS Inclusions (Partial orders) 

(i) Simple Neutrosophic Inclusion 

332211321321 ,,),,(),,(   ifN  

(ii) Complete Neutrosophic Inclusion 

332211321321 ,5.0,),,(),,(   ifP  

3.1.5 OASVPNS Equality 

  (i) Simple Neutrosophic equality 

),,(),,(),,(),,(),,(),,( 321321321321321321  NNN andif   

  (ii) Complete Neutrosophic equality 

),,(),,(),,(),,(),,(),,( 321321321321321321  PPP andif   

4. Proposed Multi-Dimensional Single valued Plithogenic Neutrosophic set (MSVPNS) 
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Consider a universal set E and EBA , be two single valued plithogenic neutrosophic sets. 

Let nn   21][ be an n-dimensional attribute for 1n , and every attribute i , 

,1 ni  has 1iv values: 

},...,{ 21 iiviii rrrR   

An element Px is characterized by :21 valuesvvvv n    

}.1,...1,1},,...,{

},...,...{*},...,{*},...,{},...,{

22112211

1

2122222111121121

nnnnjjj

m

i
mmrmmvrviivii

vjvjvjrrr

rrrrrrrrrrrrR






 

Let 
3]1,0[),(  ikikiD CrrC  be the neutrosophic degree of dissimilarity between the attribute i  

predominant value (represented by )iDr  and other attribute i value (represented by )ikr  

for ,1 ni  and ivk 1 . And ikC  as a part of the unit interval [0, 1], may be a subset, or an 

interval, or a hesitant set, or a single number etc. 

We break up the n dimensional attribute into n uni dimensional attribute. And when applying 

the plithogenic aggregation operators onto an n-uple ),...,(
2211 nnjjj rrr , we independently apply 

the norm , conorm  or a linear combination of its n- components: 
nnjjj rrr ,...,

2211  

Let 
3])1,0([:  iA RPd for each ,1 ni  be the appurtenance neutrosophic degree function, 

whereas ])1,0([ is the power set of the unit interval [0, 1], i.e. all subsets of [0, 1].  

Upon the values of attribute degree function, the norm , conorm  and their linear combinations are 

adjusted to the neutrosophic sets. 

Consequently
3])1,0([:  iB RPd  

4.1 Multi-Dimensional Single valued Plithogenic Neutrosophic set operators (MSVPNS) 

Let us consider the notations for two n-uple PSVNS denoted by 

and)},(),...,(),...,({ 1 nAiAAA wxdwxdwxdx 

 
          )},(),...,(),...,({ 1 nBiBBB wxdwxdwxdx   

4.1.1 MSVPNS Intersection and Union 

Let idw  be the attribute i predominant value and iw be any of the attribute 

i value, },...,2,1{ ni  

niwxdwxdwwCwxdwxdwwCxx iBfidAiidiBfidAiidBpA  1]),(),([),(]),(),([)),(1{(

niwxdwxdwwCwxdwxdwwCxx iBfidAiidiBfidAiidBpA  1]),(),([),(]),(),([)),(1{(
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4.1.2 MSVPNS Negation 

Without loss of generality, we assume the values of attribute dissimilarity degrees are 

),(),...,,(),...,( 11 nndiidd wwCwwCwwC . 

The plithogenic neutrosophic element values of attributes are },...,,...,{ 1 ni www .The values of 

attributes appurtenance degree: )},(),...,(),...,({ 1 nAiAA wxdwxdwxd . Then the plithogenic 

neutrosophic complement (negation) is  

)(),...,(),...,(),,(1),...,,(1),...,(1 111 ninndiidd wantiwantiwantiwwCwwCwwC   
Or 

{ Apx ),()(,(),...,,()(,(),...,,()(,( 11 nAnAiAiAAA wxdwantixdwxdwantixdwxdwantixd   

where ,1),( niwanti i  is the attribute i contradictory value of iw or 

)],(1[))(,( iidiid wwCwantiwC   

4.1.3 MSVPNS Partial order 

Consider a partial order relation BpA xx  on 3])1,0([  

    if and only if  

niallforwwCforwxdwwCwxd

wwCforwxdwwCwxd

iidiBiidiA

iidiBiidiA





1]1,5.0[)(),,())(1(),(

and5.0)(0),,())(1(),(

,,

,,
 

4.1.4 MSVPNS Equality 

Consider a relation of total order has been represented on 3])1,0([ then 

.ApBBpABpA xxandxxiffxx   

 

5. Proposed Method to find the optimal solutions of MSVPNS 

Step 1: Classify the problem with the attributes and its corresponding values of attribute. 

Step 2: The cardinal number can be found as per the multi attribute dimension (say ‘m’) and 

denote it by mR  and find mr  

Step 3: Split the multi-dimensional attribute into its equivalent uni-dimensional attribute and 

compute the dissimilarity degree. Also Dissimilarity degree between two different attributes are 

zero. 

Step 4: Choose the predominant values of attribute for each corresponding uni-dimensional 

attribute. 

Step 5: Calculate the SVPNS intersection for n attribute which is given by  

(i) for interior degrees of dissimilarity 

)1],),(
2

1
,[)1,,,()1),,,(( 33222211321321 mimimi ipiifiifiipiiiipiii  

  (ii) 
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miwxdwxdwwCwxdwxdwwCxx iBfidAiidiBfidAiidBpA  1]),(),([),(]),(),([)),(1{(

 

Select the optimal representation of x from the intersection of 
BA xandx  

 

Note. Here we have used the intersection operator. But the option is free for the reader to collaborate 

with other operators (union, complement, partial order and equality) of their choice. 

6. Application 

In this section, we give a numerical example to find the optimum solution of Multi Single valued 

Plithogenic Neutrosophic Set which has 40 values of attribute.  

Let P be a plithogenic neutrosophic set representing the factors needed for agriculture. 

According to the experts A and B, Px be the type of agriculture characterized by 3 attributes 

(Soil, Water, Crops) that has to be evaluated  

Soil - whose values of attributes are {sandy, clay, loamy, Red, Black} = 54321 ,,,, sssss  

Water- whose values of attributes are {Rain-fed farming, Irrigation} = 21 , ww  

Crops- whose values of attributes are {Food, cash, plantation, Horticulture} =  4321 ,,, tttt . 

The multi attribute of dimension 3 is, 

  41,21,51,,,3  kjiallfortwsR kji  

The cardinal of 4042533 RisR . 

The predominant values of attributes are 
111 ,, tws respectively for every uni-dimensional attribute 

correspondingly. 

The uni- dimensional attribute dissimilarity degrees are: 

 
4

1
, 21 ssc ,  

4

2
, 31 ssc ,  

4

3
, 41 ssc ,   1, 51 ssc  

  1, 21 wwc  

 
3

1
, 21 ttc ,  

3

2
, 31 ttc ,   1, 41 ttc . 

Let us use  abbabafuzzyandabbafuzzy fconormfnorm    
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Tri-dimensional SVPNS Intersection  

 

Let   41,21,51,,,  kjiallfortwsxdx kjiAA  

and   41,21,51,,,  kjiallfortwsxdx kjiBB  

Then 

}41]),(),([),(]),(),([)),(1(

;21]),(),([),(]),(),([)),(1(

;51]),(),([),(]),(),([)),(1{(

),,(),,(









ktxdtxdttctxdtxdttc

jwxdwxdwwcwxdwxdwwc

isxdsxdsscsxdsxdssc

twsxtwsx

kBfkDAkkDkBfkDAkkD

jBfjDAjjDjBfjDAjjD

iBfiDAiiDiBfiDAiiD

kjiBpkjiA

 

Let us have 

])2.0,1.0,8.0()(),5.0,1.0,6.0()(),4.0,3.0,2.0()([

)]7.0,5.0,2.0()(,)3.0,2.0,5.0()(),3.0,5.0,1.0()([

321

321





tdwdsdx

andtdwdsdx

BBBB

AAAA
 

We take only 3-values of attribute: ),,( 321 tws for the other 39 3-values of attributes follow the 

same procedure. 

 

  )4.0,3.0,2.0(3.0,5.0,1.0),(),(

)2.0,1.0,8.0()7.0,5.0,2.0();5.0,1.0,6.0()3.0,2.0,5.0();4.0,3.0,2.0(3.0,5.0,1.0

11 pB
N

pA
N

pppBPA

sxdsxd

where

xx





 

First use the interior ‘n’ degree of dissimilarity among the ‘n’ components T, I and F (i.e.) 0, ½, 1. 

 

)12.0,4.0,2.0(

)]4.03.0(0)4.03.0)(01(),3.05.03.05.0(
2

1
),2.01.0.(0)2.01.0)(01[(

)4.03.0)],3.05.0()3.05.0[(
2

1
,2.01.0()4.0,3.0,2.0(3.0,5.0,1.0







ffppff

pffpp

 

Similarly   )15.0,15.0,8.0()5.0,1.0,6.0(3.0,2.0,5.0),(),( 22  pB
N

pA
N wxdwxd  and also 
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  )34.0,03.0,61.0()2.0,1.0,8.0(7.0,5.0,2.0),(),( 33  pB
N

pA
N txdtxd  

Hence ))34.0,03.0,61.0();15.0,15.0,8.0();12.0,4.0,2.0((),,( 321  twsxx BpA . 

We need to intersect the MSVPNS of the experts A and B to obtain the optimal representation 

of x . 

7. Results and Discussions 

Based on the Expert’s (A and B) data the optimal condition for the given scenario is obtained at 

425 , tandws  with the values 

))7.0,5.0,8.0();5.0,4.0,8.0();5.0,2.0,8.0((),,( 424  twsxx BpA  

Therefore, black soil with irrigation water to cultivate horticulture is the best method for the 

factors needed for agriculture. 

The above procedure is more generalized as it uses MSVPNS which deals with more attributes 

simultaneously. The beauty of this method is its ease as the researcher need not to manage with 

complex lengthy computation based operators. Also this method has a practical approach of using 

broad spectrum that can engage modifications according to the necessity of the provided 

environment. We can generalize the model of this method in plithogenic neutrosophic 

environments that can manage difficulties of the physical world. 

8. Conclusion and Future Work 

In this research work, we studied the application of multi-dimensional single valued plithogenic 

neutrosophic set in MCDM problems specifically in the field of agriculture. We apply the concept in 

the research areas which dealing with multi values of attributes. Thus the plithogenic aggregation 

operators gives the optimal solutions for the plithogenic neutrosophic environment. In future we can 

extend the concept to interval valued plithogenic neutrosophic sets which may help abundantly in 

the areas related with decision making. 
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Abstract: The main objective of this article is to introduce the notion of interval neutrosophic soft matrix 

(IVNS-Matrix), which is an extension of the neutrosophic soft matrix and reveals various types of IVNS-Matrix 

along with different algebraic operations on them. A new method has been proposed to solve interval 

neutrosophic soft set based real-life group decision making problem effectively by introducing 

IVNSM-Algorithm. Finally, this algorithm has been applied in medical science for disease diagnosis. 

Keywords: Interval neutrosophic matrix; IVNSM-Algorithm; Choice Matrix;  Decision making. 

1. Introduction 

Our life is surrounded by an aura of uncertainties or ambiguities or vagueness. So, when we are going to solve 

various real-life problems, which contain uncertainties, then we realize that such types of problems cannot be 

handled by traditional mathematical tools. Because in such cases we do not analyze data appropriately, as we do 

in case of precise and deterministic data. So, there is a problem in real decision making. The introduction of 

fuzzy set theory [1] by Zadeh (1965) handled the vague concept to some extent by introducing the membership 

function. The membership function determines the degree of belongingness of each element in a set and the 

membership value lies in the interval [0, 1]. Fuzzy set theory has been used extensively in different fields. In the 

fuzzy set theory, there is no scope of considering non-membership value as we find that the concept of 

non-membership value is equally as important as membership value. Practically also we used to find the dual 

character of an object. So, to make a balance in the characteristic of an object, an intuitionistic fuzzy set [2] was  

introduced by Atanassov (1986) where, for every membership function there corresponds a non-membership 

function and both belong to the interval [0, 1] and their sum cannot exceed one. Membership or 

non-membership value only assign a single real value. But sometimes the concept of uncertainty cannot be 

defined by a single real value. For that purpose interval-valued fuzzy set [3] was introduced(1987). Due to more 

complexity in the environment of uncertainty and for the dire need of an hour, many other theoretical concepts 

and the properties, whose base is the fuzzy set, have been introduced. Some of them are given in [4-6 ]. 

According to the nature of the problem domain, we will decide which tool is suitable for us to handle a 

particular problem. 

Zadeh’s fuzzy set theory is the most appropriate theory to deal with uncertainty with the help of the 

membership function. But in 1999, Molodtsov [7] observed some limitations of the fuzzy set theory. In fuzzy 
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set theory, a concept is handled by a membership function. But we should not impose only one way to define a 

membership function.The nature of a membership function is extremely individual. For example, to define the 

attractiveness of a house it is difficult to define a membership function. If one considers the membership degree 

as 0.6 then everyone may understand this in his or her own manner. For instance, Mr., X may understand that 

the house is highly attractive. Again Mr., Y may understand that it is very highly attractive. So there is a 

possibility of information loss in each particular case. Molodtsov said that the reason behind these limitations is 

the inadequacy of the parametrization of the theory. Then, to overcome this drawback he initiated the idea of 

soft set theory in the parametric form which is free from the above difficulties. In soft set theory, to define an 

object, no need to introduce a membership function. It is the more general form to represent the concept of 

vagueness parametrically. As we know that, because of the amalgamation of two or more concept together, 

gives a better shape and it provides more flexibility to handle various uncertain problems which we face in our 

day to day life, that’s why by embedding the idea of the soft set and other sets, some major contributions are 

developed in [8-13]. 

The concept of indeterminacy or neutrality is common in real life. For example, when there is a fight between 

two players there are other people surrounding them who do not support neither of the two players. In the real 

decision-making problem, the concept of indeterminacy is very important. There are various types of 

indeterminacy involved in real-world problems. To eradicate such difficulty, Smarandache(2005) introduced 

the notion of Neutrosophic set in[14]. With an aid of a neutrosophic set, we deal with uncertainty, 

incompleteness ,and indeterminacy involving  a pragmatic problem. It has been used successfully in various 

fields such as Sociology, Economics, Logic, Artificial intelligence, Machine learning, Optimization problem, 

Game theory ,etc. Some extensions of the neutrosophic set have been discussed in [15-21]. 

Matrices play a significant role in representing, manipulating ,and modeling such a large number of data 

because of their compact form. In the field of computer science, mainly in Data Science, there is an abundant 

use of Matrix. The classical matrix theory cannot solve the problems based on uncertainty. Matrix 

representation of the fuzzy soft set is initiated by Yang et al. in [22] and it is successfully used in 

decision-making problems in [23]. Some other extensions are intuitionistic fuzzy soft matrix[24-25], 

interval-valued fuzzy soft matrix[26], interval-valued intuitionistic fuzzy soft matrix and its application in 

medical diagnosis[27],  interval-valued neutrosophic matrix[28] ,etc. Cagman et al. (2010), in [29], defined 

soft matrices and their operations and construct a decision-making method that can be used successfully to the 

problems that contain uncertainty. Also, in [30-31], Wang et al. discussed single-valued neutrosophic sets and 

interval neutrosophic sets respectively, Deli, in [32], used interval-valued neutrosophic soft sets in decision 

making, Smarandache[33] proposed the extension of the soft set by introducing hypersoft set, pilthogenic 

hypersoft set. 

 

Group decision-making leads to improve outcomes and it involves two or more people. It occurs when 

individuals collectively make a selection from the alternatives. Group decisions are subject to factors such as 

social influence, peer pressure ,and group dynamics. It interacts and collaborated to reach a collective decision. 

In the proposed study we have used the concept of the neutrosophic set because it helps to study the higher 

degree of uncertainty, present in various real-life problems, in an effective manner. As compared to other 

mathematical tools namely, fuzzy set, intuitionistic fuzzy set, interval-valued fuzzy set ,etc., the neutrosophic 

set is a more flexible and more general form to handle uncertain concepts. For more clarity, we know that the 
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neutrosophic set has three components namely , , [0,1]T I F  and each component has its own importance and 

they are independent of each other, which makes it superior to the other existing mathematical tools of 

vagueness. For example, if we consider the component 0I  in the neutrosophic set, then also it has the 

potential to tackle complete or incomplete or paraconsistent or conflicting information. We also added intervals 

with neutrosophic sets to address the issues where the components used in the neutrosophic sets cannot be 

expressed by a single real value. In interval neutrosophic set , , ([0,1])T I F Int , where ([0,1])Int denotes the 

set of all subsets of [0,1] . Moreover, with an aid of a matrix with an interval neutrosophic set, we made our 

calculation speedy and it helps to store big data in a computer easily. Some recent works based on neutrosophic 

set discussed in [34-37]. 

 

In [38], the concept of the neutrosophic soft matrix has been used in a group decision making problem. In our 

work, we have extended the earlier concept by introducing the notion of interval neutrosophic soft matrix and its 

types with concrete examples. We also introduce the choice matrix associated with interval neutrosophic soft 

set. An IVNSM-Algorithm has been proposed to solve real-life group decision making problem. Finally, with 

the help of an application, the IVNSM-algorithm has been successfully executed. 

2. Preliminaries 

Here we recall some basic definitions with examples that are appropriate as far as the article is concerned. 

2.1 Definition[7]  

Let X  be an initial universe and E  be a set of parameters. Let  P X  denotes power set of X and A E . 

Then the pair  ,F E
A

 is called a soft set over X , where 
A

F  is a mapping given by  :F E P X
A

 . 

A soft set is a parameterized family of subsets of the universe .X  

2.2 Definition [14] 

  Let   X be a universe of discourse,with a generic element in X denoted by x, the neutrosophic(NS) set A is 

defined as  

   

      : , , , ,A A AA x x x x x X     

Where the functions , , : 0,1X        define respectively the degree of membership (or Truth), the 

degree of indeterminacy (neutrality), and the degree of non-membership (Falsehood) of the element x X  to 

the set A  with the condition  

     0 3A A Ax x x        

If t (0.4,0.1,0.5) belongs to, then it means that 40% A  belongs to A , 50% does not belong to A and 10% is 

undecidable(not known exactly). If there is no indeterminacy involve in set A , then it reduces to an 

intuitionistic fuzzy set. Therefore, a neutrosophic set can be an intuitionistic fuzzy set. 

2.3 Definition [30] 

Let X be a universe of discourse with a generic element x. A single-valued neutrosophic set A  is characterized 

by a truth-membership function  T x
A , falsity-membership function  F x

A  and the 
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indeterminacy-membership function  I x
A  and it is denoted by A = {x,< 

 T x
A ,  I x

A ,  F x
A >: x X }, where  T x

A ,  I x
A ,  F x

A  [0,1] subject to the condition 

0  T x
A +  I x

A +  F x
A  3. 

Throughout our discussion we use the concept of single-valued  neutrosophic set as it has a definite range. 

2.4 Definition [31] 

Let U be a space of points (objects), with a generic element   u . An interval-valued neutrosophic set 

(IVN-set) A in U is characterized by a truth-membership function T
A , an indeterminacy-membership 

function I
A  ,and a falsity-membership function F

A . For each point Uu ;T
A , I

A  and F
A  [0,1] . 

Thus, an IVN-sets over U can be represented by the set of  

      , , / :A T u I u F u u u U
A A A

   

Here,       , ,T u I u F u
A A A

is called interval-valued neutrosophic number for all Uu and all 

interval-valued neutrosophic numbers over U will be denoted   by ( )IVN U . 

2.4.1 Example 

  Let  ,
1 2

U u u be the universe of discourse and A be an interval-valued neutrosophic set inU . Then A  

can be expressed as follows: 

            0.5, 0.7 , 0.5, 0.6 , 0.5, 0.7 / , 0.4, 0.6 , 0.7, 0.8 , 0.3, 0.6 /
1 2

A u u
 

2.5 Definition [32] 

  Let  , , ,...,
1 2 3

U c c c cm  be a Universal set and E  be the set of parameters given 

by  1 2 3, , ,..., nE e e e e . Let A E  and  ,F A  be a interval-valued neutrosophic soft set over U ,where 

F is a mapping given by F:A
UI ,where 

UI denotes the the collection of all interval-valued neutrosophic 

subsets of .U Then the interval-valued neutrosophic  soft set can be expressed  in a matrix form as follows: 

 

or ˆ
ijA a    1,2,......, ; 1,2,.......,i m j n   

            
 

, , , , ,

[0,0],[1,1],[1,1]

l u l u l u
T c T c I c I c F c F c if e Aj i j i j i j i j i j i j

aij
if e Aj






      
      




 

ˆ
m n ij m n

A a
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   ,l u

j i j iT c T c   represents the truth-membership value of ic  in the interval-valued neutrosophic set 

 jeF    ,l u

j i j iI c I c    represents the indeterminacy-membership value of ic  in the interval-valued 

neutrosophic set  jF e  and    ,l u

j i j iF c F c    represents the falsity-membership value of ic  in the 

interval-valued neutrosophic set  jF e  with the condition   u

j iT c +  u

j iI c +  u

j iF c  3. 

2.5.1 Example 

Let {c ,c }
1 2

U  be a set of cars under consideration and E is a set of parameters which is a neutrosophic 

word. Let E = 1{e  value, 2e mileage, 3e  safety, 4e  performance, 5e  looks, 6e  sit capacity} 

We give an interval valued neutrosophic soft sets(ivn-soft sets) overU  as follows: 

k =

             
             
             
     

, 0.2,0.9 , 0.3,0.6 , 0.4,0.7 / , 0.1,0.7 , 0.2,0.8 , 0.4,0.5 / ,1 1 2

, 0.4,0.8 , 0.3,0.7 , 0.5,0.8 / , 0.3,0.9 , 0.1,0.8 , 0.4,0.7 / ,2 1 2

, 0.0,0.6 , 0.5,0.6 , 0.3,0.7 / , 0.5,0.7 , 0.8,0.9 , 0.4,0.7 / ,3 1 2

, 0.3,0.6 , 0.5,0.8 , 0.6,0.9 /4 1

e u u

e u u

e u u

e u        
             

, 0.5,0.8 , 0.6,0.8 , 0.1,0.8 / ,2

, 0.2,0.9 , 0.1,0.5 , 0.4,0.9 / , 0.6,0.8 , 0.1,0.8 , 0.2,0.5 /5 1 2

u

e u u

 
 
 
 
 
 
 
 
 
 
 
  

 

The tabular representation of ivn-soft set k is as follows: 

 

U  1c                                                                                  2c  

1e  

2e  

3e  

4e  

5e  

     0.2,0.9 , 0.3,0.6 , 0.4,0.7                             0.1,0.7 , 0.2,0.8 , 0.4,0.5  

     0.1,0.7 , 0.2,0.8 , 0.4,0.5                              0.3,0.9 , 0.1,0.8 , 0.4,0.7  

     0.0,0.6 , 0.5,0.6 , 0.3,0.7                             0.5,0.7 , 0.8,0.9 , 0.4,0.7  

     0.3,0.6 , 0.5,0.8 , 0.6,0.9                              0.5,0.8 , 0.6,0.8 , 0.1,0.8  

     0.2,0.9 , 0.1,0.5 , 0.4,0.9                              0.6,0.8 , 0.1,0.8 , 0.2,0.5  

 

                       Table 1: Tabular representation of the ivn-soft set k  

2.6 Definition [29] 

Let  ,
A

F E be a soft set over U. Then a subset of U E  is uniquely defined by  

    , : ,R u e e A u F eA A   , which is called a relation form of  ,
A

F E . Now the characteristic function of 

RA  is written by, 
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 1, ,

: 0,1 ,
0, ,

u e RAU ER RA A u e RA

 


  
    

Let  , , ..........,1 2U u u um ,  , e , .........., e1 2e nE  , then RA can be presented by a table as in the following form 

 

 

 

 1e  2e  ………….. en  

1u   1 1,u eRA
   1 2,u eRA

  …………….  1 , nu eRA
  

2u   2 1,u eRA
   2 2,u eRA

  ……………  2 , nu eRA
  

  ………. …………… …………… …………… …………. 

um   1,mu eRA
   2,mu eRA

  …………….  ,m nu eRA
  

  

                             Table 2 Tabular representation of R
A of the soft set ( , )F E

A
 

If  ,i ju eij RA
a  , we can define a matrix 

11 12 1

21 22 2

1 2

a a a n

a a a naij m n

a a amnm m




 
 

    
 
 

 

Which is called a soft matrix of the order m n  corresponding to the soft set  ,
A

F E over U . A soft set 

 ,
A

F E is uniquely characterized by the matrix aij m n
   . Therefore we shall identify any soft set with its soft 

matrix and use these two concepts as interchangeable. 

3. Some Notions of Interval Neutrosophic Soft Matrix Theory  

3.1 Definition  

Let ( , )F E
A


 be an interval neutrosophic soft set (here soft set in the sense of Cagman and Enginglu) over U , 

where : U

AF E IVN  , here 
UIVN denotes the set of all interval neutrosophic sets over ,U then a subset 

of U E is uniquely defined by  

AR
=   ,e : , Au e A u F   



Neutrosophic Sets and Systems, Vol. 45, 2021     168  

 

 

A New Approach to Group Decision Making Problem in Medical Diagnosis using Interval Neutrosophic Soft Matrix 

The relation AR
is described by the truth-membership function : [0,1]AT U E  , 

indeterminacy-membership function : [0,1],AI U E  and the falsity-membership 

function : [0,1]AF U E  . 

Suppose U = 1 2{ , ,......, }mu u u and E = 1 2{e ,e ,......,e }m , then the relation set AR
can be expressed in the 

following matrix form 

 

 

                   1e                2e  ……………

………. 

                    me   

1u  , , , , ,
11 11 11 11 11 11

l u l u l u
T T I I F F          

 
, , , , ,

12 12 12 12 12 12

l u l u l u
T T I I F F            ……………

……… 

, , , , ,
1 1 1 1 1 1

l u l u l u
T T I I F F

m m m m m m
            

2u  , , , , ,
21 21 21 21 21 21

l u l u l u
T T I I F F            , , , , ,22 22 22 22 22 22

l u l u l u
T T I I F F            ……………

……… 

, , , , ,2 2 2 2 2 2

l u l u l u
T T I I F Fm m m m m m
            

……

.. 

……………………… ………………………. ……………

……… 

………………… 

mu  , , , , ,
1 1 1 1 1 1

l u l u l u
T T I I F F
m m m m m m

          

 

, , , , ,2 2 2 2 2 2

l u l u l u
T T I I F Fm m m m m m
          

 

……………

………. 

, , , , ,
l u l u l u

T T I I F Fmm mm mm mm mm mm
          

 

                                     Table3   Tabular representation of AR
of 

UIVN  

The above matrix representation is useful for computer storage of such a big expression in concise form so that 

we can retrieve it very easily and it is handy for doing different algebraic operations under certain condition. 

 

3.2 Definition  

An interval neutrosophic soft matrix is said to be a null or void interval neutrosophic soft matrix if all the entries 

of AR
are      0,0 , 0,0 , 1,1 and it is denoted by

 . 

 

3.3 Definition  

An interval neutrosophic soft matrix is said to be a complete interval neutrosophic soft matrix if all the entries of 

AR
are      1,1 , 0,0 , 0,0 and it is denoted by


. 

3.4 Definition 

Let 
 be an interval neutrosophic soft matrix. Then the transpose of 

  is obtained by interchanging its 

rows and columns and it is denoted by  
t

 .  

3.5 Definition 
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Let 
  and 

 be two interval neutrosophic soft matrices of the same order. Then 
 is said to be a 

interval neutrosophic soft sub matrix of 
 if for every elements of 

 their corresponds another element in 

 such that
l l

A BT T , 
u u

A BT T ; 
l l

A BI I ,
u u

A BI I  and 
l l

A BF F ,
u u

A BF F  and it is denoted by 

   . 

3.6 Definition 

Let 
  and 

 be two interval neutrosophic soft matrices of the same order. Then their sum is denoted by 
    and it is defined as  

   =        max , , max , , , , min , , min ,
2 2

l l u u
I I I Il l u u l l u uB BA AT T T T F F F FB B B BA A A A

  
    
       

We can extend it for more than two matrices. 

3.7 Definition 

Let 
  and 

 be two interval neutrosophic soft matrices of the same order. Then their sum is denoted by 

 ϴ
  and it is defined as  

 ϴ
 =        min , , min , , , , max , , max ,

2 2

l l u u
I I I Il l u u l l u uB BA AT T T T F F F FB B B BA A A A

  
    
     

 

 

3.8 Definition 

Let 
  and 

 be two interval neutrosophic soft matrices of the same order. Then the product of 
 and 

  exist if the number of column in 
 is equal to the number of rows in 

  and it is denoted by  
    and it is defined as  

    

=

min max , ,

max min , , max min , , max min , , min max , ,

min max ,

l l
F F

A Bj j
l l u u l l u u

T T T T I I I I
A B A B A B A Bj j j j j j j j

u u
F F

A Bj j

  
   

                 
                     

                 
   

  

 
    
       
 





 

3.9 Definition 

Let 
 be an interval neutrosophic soft matrix. Then the complement of 

  is obtained by interchanging the 

truth-membership and falsity-membership intervals, without altering the indeterminacy-membership interval of 

all the elements of 
 and it is denoted by   

c
 .  

3.10 Definition 

A square interval neutrosophic soft matrix 
 is said to be a diagonal interval neutrosophic soft matrix if all of 

its non-diagonal elements are      0,0 , 0,0 , 1,1 . 

3.11 Definition 
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Let 
 be a square interval neutrosophic soft matrix of order m n , where m=n. Then the Trace of 

 is 

denoted by ( )tr X 
 and it is defined as  

( )tr X 

 

=             max( , max( max( , max( min( , min(l u l u l u

j i j i j i j i j i j iT c T c I c I c F c F c           . 

3.12 Definition 

Let X 
 be a choice matrix corresponding to a square interval neutrosophic soft matrix

 . The elements 
*

ijx  

of X 
are defined as follows 

   

   

1,1 0,0 0,0 , where both the entries are the entries of the choice parameters of the decision-makers

*x = 0,0 0,0 1,1 , where atleast one of the parameters be not under choiceij







Choice matrices depend upon the number of decision makers. To get a clear idea about choice matrices, we 

consider the following algorithm and apply this algorithm in example 4.1

 

4.  Construction of IVNSM-algorithm for decision making and its application  

For solving a real decision making problem we consider the following steps: 

Step 1: Input the interval neutrosophic soft set over the set of attributes and construct interval neutrosophic soft 

matrix. 

Step 2: Compute the product interval neutrosophic soft matrices by multiplying the given interval neutrosophic 

soft matrix with the combined choice matrices as per the rule of multiplication of interval neutrosophic soft 

matrices. 

Step 3: Calculate the sum of all the product interval neutrosophic soft matrices as per the rule of matrix addition 

of interval neutrosophic soft matrices. 

Step 4: Construct the lower-value matrix and the upper-value matrix corresponding to the resultant matrix. 

Step 5: Compute the value matrices corresponding to the lower-value matrix and the upper-value matrix. 

Step 6: Find the row sum of the value matrices. 

Step 7: By adding the corresponding elements of the row sum of the value matrices, we obtain the weight of 

each object. Among these, the highest weight becomes the optimal choice object. If more than one object having 

the highest weight then any one of them may be chosen as the optimal choice object. 

 

To understand  IVNSM-algorithm properly, we have the following example. 

4.1 Example 

Suppose Mr., Debnath wants to buy a house and for that purpose, he appointed three brokers to inspect and 

report the house. According to their report, he will choose the house which fulfills the optimality criteria i.e the 
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best option he affords. But the problem is that each broker has its own point of view and the owner has come to  

one decision. Keeping it in mind we consider the following problem: 

 

Let U = 1 2 3 4, , ,h h h h be the set of four houses under consideration and E= {good location, cheap, green 

surrounding, costly}= 1 2 3 4,e ,e ,ee be the set of parameters. The set of brokers is denoted by B= {Mrs., 

Rama, Mr., Advik, Mrs., Shewly}. 

Now, let us construct the interval neutrosophic soft set ( , )F E
A


 which describes the attractiveness of the 

houses and it is given by 

 

 1 2 3 4

1 2

/ [0.4,0.7][0.5,0.8][0.5,0.7] , / [0.5,0.6][0.3,0.5][0.4,0.6] , / [0.2,0.5][0.4,0.6][0.6,0.7] , / [0.3,0.5][0.4,0.6][0.5,0.8]

/ [0.3,0.6][0.7,0.9][0.6,0.8] , / [0.1,
,A

good location of houses h h h h

cheap house h h
F E






 3 4

1 2 3

0.3][0.3,0.6][0.5,0.7] , / [0.3,0.4][0.5,0.7][0.8,0.9] , / [0.4,0.5][0.2,0.4][0.3,0.6]

/ [0.6,0.9][0.1,0.2][0.6,0.7] , / [0.3,0.4][0.2,0.4][0.5,0.6] , / [0.3,0.4][0.6,0.7][0.3,0.

h h

houses at green surroundings h h h  

 

4

1 2 3 4

5] , / [0.4,0.5][0.3,0.5][0.7,0.8]

cos / [0.2,0.5][0.5,0.7][0.4,0.6] , / [0.3,0.6][0.4,0.6][0.5,0.7] , / [0.1,0.3][0.3,0.5][0.7,0.8] , / [0.4,0.5][0.4,0.6][0.6,0.8]

h

tly house h h h h

 
 
  
 
 
 

  

 

The matrix representation of the set ( , )F E
A


 is given by 

[0.4, 0.7][0.5, 0.8][0.5, 0.7] [0.3, 0.6][0.7, 0.9][0.6, 0.8] [0.6, 0.9][0.1, 0.2][0.6, 0.7] [0.2, 0.5][0.5, 0.7][0.4, 0.6]

[0.5, 0.6][0.3, 0.5][0.4, 0.6] [0.1, 0.3][0.3, 0.6][0.5, 0.7] [0.3, 0.4][0.2, 0.4][0.5, 0.6] [0.3, 0.6]
M 

[0.4, 0.6][0.5, 0.7]

[0.2, 0.5][0.4, 0.6][0.6, 0.7] [0.3, 0.4][0.5, 0.7][0.8, 0.9] [0.3, 0.4][0.6, 0.7][0.3, 0.5] [0.1, 0.3][0.3, 0.5][0.7, 0.8]

[0.3, 0.5][0.4, 0.6][0.5, 0.8] [0.4, 0.5][0.2, 0.4][0.3, 0.6] [0.4, 0.5][0.3, 0.5][0.7, 0.8] [0.4, 0.5][0.4, 0.6][0.6, 0.8]

 
 
 
 
 
 

 

 

Suppose the choice parameter sets of Mrs., Rama, Mr., Advik ,and Mrs., Shewly are 

respectively 2 3 4{ , , }X e e e , 1 3 4{ , , }Y e e e and 1 2 4{ , , }Z e e e and all these are the subsets of E. 

By the definition of the choice matrix, we consider the separate choice matrices of Mrs., Rama, Mr., Advik and 

Mrs. Shewly are  given by, 

 

 

 

               

               

               

               

0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1

0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0*

0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0

0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0

x ij X
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1,1 0, 0 0, 0 0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0

0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1*

0, 0 0, 0 1,1 0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0

1,1 0, 0 0, 0 0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0

x ij Y


 
 
 
 
 
 
 

 

 

and  

               

               

               

               

1,1 0, 0 0, 0 1,1 0, 0 0, 0 0, 0 0, 0 1,1 1,1 0, 0 0, 0

1,1 0, 0 0, 0 1,1 0, 0 0, 0 0, 0 0, 0 1,1 1,1 0, 0 0, 0*

0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1

1,1 0, 0 0, 0 1,1 0, 0 0, 0 0, 0 0, 0 1,1 1,1 0, 0 0, 0

x ij Z


 
 
 
 
 
 
 

 

Now combined choice matrix of Mrs. Rama and   Mr. Advik , i.e the matrix in which they come to one 

decision  

 

 

               

               

               

               

*

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,0

0,0 0,0 1,1 0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,0

ij
X Y

x


 
 
 
 
 
 
 
 

 

Similarly, we can find another two combined choice matrices given by  

 

               

               

               

               

*

1,1 0,0 0,0 0,0 0,0 1,1 0,0 0,0 1,1 1,1 0,0 0,0

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

1,1 0,0 0,0 0,0 0,0 1,1 0,0 0,0 1,1 1,1 0,0 0,0

ij
Y Z

x


 
 
 
 
 
 
 
 

 

and  

               

               

               

               

*

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0

ij
Z X

x


 
 
 
 
 
 
 
   

Next, we consider another three choice matrices which predict that when any of the two brokers are agree with 

their decision then the third broker also agrees. They can be presented in the following form 

 
 

               

               

               

               

*

,

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

1,1 0,0 0,0 1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0

1,1 0,0 0,0 1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0

ij
X Y Z

x
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*

,

0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0

ij
Y Z X

x


 
 
 
 
 
 
 
 

 

and 

 
 

               

               

               

               

*

,

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,0

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,0

ij
Z X Y

x


 
 
 
 
 
 
 
 

 

By the definition 3.8, we find the following products : 

 
 

*

,

[0.4, 0.7][0.5, 0.8][0.5, 0.7] [0.3, 0.6][0.7, 0.9][0.6, 0.8] [0.6, 0.9][0.1, 0.2][0.6, 0.7] [0.2, 0.5][0.5, 0.7][0.4, 0.6]

[0.5, 0.6][0.3, 0.5][0.4, 0.6] [0.1, 0.3][0.3, 0.6][0.5, 0.7] [0.3, 0.4][0.2, 0.4][0.5, 0.6

M xij X Y Z
 



] [0.3, 0.6][0.4, 0.6][0.5, 0.7]

[0.2, 0.5][0.4, 0.6][0.6, 0.7] [0.3, 0.4][0.5, 0.7][0.8, 0.9] [0.3, 0.4][0.6, 0.7][0.3, 0.5] [0.1, 0.3][0.3, 0.5][0.7, 0.8]

[0.3, 0.5][0.4, 0.6][0.5, 0.8] [0.4, 0.5][0.2, 0.4][0.3, 0.6] [0.4, 0.5][

               

               

               

              

0.3, 0.5][0.7, 0.8] [0.4, 0.5][0.4, 0.6][0.6, 0.8]

0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1

0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1

1,1 0, 0 0, 0 1,1 0, 0 0, 0 0, 0 0, 0 1,1 1,1 0, 0 0, 0

1,1 0, 0 0, 0 1,1 0, 0 0, 0 0, 0 0, 0 1,1 1,1 0, 0 0,



 
 
 
 
 
 

 

               

               

   

0

0.6, 0.9 0.0, 0.2 0.4, 0.6 0.6, 0.9 0.0, 0.2 0.4, 0.6 0.0, 0.0 0.0, 0.2 1,1 0.6, 0.9 0.0, 0.2 0.4, 0.6

0.3, 0.6 0.0, 0.4 0.5, 0.6 0.3, 0.6 0.0, 0.4 0.5, 0.6 0.0, 0.0 0.0, 0.4 1,1 0.3, 0.6 0.0, 0.4 0.5, 0.6

0.3, 0.4 0.0, 0.5 0.3, 0.5 0.3


 
 
 
 
 
 
 

           

               

, 0.4 0.0, 0.5 0.3, 0.5 0.0, 0.0 0.0, 0.5 1,1 0.3, 0.4 0.0, 0.5 0.8, 0.9

0.4, 0.5 0.0, 0.4 0.6, 0.8 0.4, 0.5 0.0, 0.4 0.6, 0.8 0.0, 0.0 0.0, 0.4 1,1 0.4, 0.5 0.0, 0.4 0.6, 0.8
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*

,

[0.4, 0.7][0.5, 0.8][0.5, 0.7] [0.3, 0.6][0.7, 0.9][0.6, 0.8] [0.6, 0.9][0.1, 0.2][0.6, 0.7] [0.2, 0.5][0.5, 0.7][0.4, 0.6]

[0.5, 0.6][0.3, 0.5][0.4, 0.6] [0.1, 0.3][0.3, 0.6][0.5, 0.7] [0.3, 0.4][0.2, 0.4][0.5, 0.6

M xij Y Z X
 



] [0.3, 0.6][0.4, 0.6][0.5, 0.7]

[0.2, 0.5][0.4, 0.6][0.6, 0.7] [0.3, 0.4][0.5, 0.7][0.8, 0.9] [0.3, 0.4][0.6, 0.7][0.3, 0.5] [0.1, 0.3][0.3, 0.5][0.7, 0.8]

[0.3, 0.5][0.4, 0.6][0.5, 0.8] [0.4, 0.5][0.2, 0.4][0.3, 0.6] [0.4, 0.5][

               

               

               

              

0.3, 0.5][0.7, 0.8] [0.4, 0.5][0.4, 0.6][0.6, 0.8]

0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0

0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1

0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1

0, 0 0, 0 1,1 1,1 0, 0 0, 0 1,1 0, 0 0, 0 1,1 0, 0 0,



 
 
 
 
 
 

 

               

               

     

0

0.0, 0.0 0.0, 0.2 1,1 0.4, 0.7 0.0, 0.2 0.4, 0.6 0.4, 0.7 0.0, 0.2 0.4, 0.6 0.4, 0.7 0.0, 0.2 0.4, 0.6

0.0, 0.0 0.0, 0.4 1,1 0.5, 0.6 0.0, 0.4 0.4, 0.6 0.5, 0.6 0.0, 0.4 0.4, 0.6 0.5, 0.6 0.0, 0.4 0.4, 0.6

0.0, 0.0 0.0, 0.5 1,1 0.2, 0.5


 
 
 
 
 
 
 

          

               

0.0, 0.5 0.6, 0.7 0.2, 0.5 0.0, 0.5 0.6, 0.7 0.2, 0.5 0.0, 0.5 0.6, 0.7

0.0, 0.0 0.0, 0.4 1,1 0.4, 0.5 0.0, 0.4 0.5, 0.8 0.4, 0.5 0.0, 0.4 0.5, 0.8 0.4, 0.5 0.0, 0.4 0.5, 0.8
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*

,

[0.4, 0.7][0.5, 0.8][0.5, 0.7] [0.3, 0.6][0.7, 0.9][0.6, 0.8] [0.6, 0.9][0.1, 0.2][0.6, 0.7] [0.2, 0.5][0.5, 0.7][0.4, 0.6]

[0.5, 0.6][0.3, 0.5][0.4, 0.6] [0.1, 0.3][0.3, 0.6][0.5, 0.7] [0.3, 0.4][0.2, 0.4][0.5, 0.6

M xij Z X Y
 



] [0.3, 0.6][0.4, 0.6][0.5, 0.7]

[0.2, 0.5][0.4, 0.6][0.6, 0.7] [0.3, 0.4][0.5, 0.7][0.8, 0.9] [0.3, 0.4][0.6, 0.7][0.3, 0.5] [0.1, 0.3][0.3, 0.5][0.7, 0.8]

[0.3, 0.5][0.4, 0.6][0.5, 0.8] [0.4, 0.5][0.2, 0.4][0.3, 0.6] [0.4, 0.5][

               

               

               

              

0.3, 0.5][0.7, 0.8] [0.4, 0.5][0.4, 0.6][0.6, 0.8]

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,0

0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1 0,0 0,0 1,1

1,1 0,0 0,0 0,0 0,0 1,1 1,1 0,0 0,0 1,1 0,0 0,



 
 
 
 
 
 

 

               

               

   

0.3, 0.6 0.0, 0.2 0.4, 0.6 0.0, 0.0 0.0, 0.2 1,1 0.3, 0.6 0.0, 0.2 0.4, 0.6 0.3, 0.6 0.0, 0.2 0.4, 0.6

0.3, 0.6 0.0, 0.4 0.5, 0.7 0.0, 0.0 0.0, 0.4 1,1 0.3, 0.6 0.0, 0.4 0.5, 0.7 0.3, 0.6 0.0, 0.4 0.5, 0.7

0.3, 0.4 0.0, 0.5 0.7, 0.8 0

0



 
 
 
 
 
 
 
 

           

               

.0, 0.0 0.0, 0.5 1,1 0.3, 0.4 0.0, 0.5 0.7, 0.8 0.3, 0.4 0.0, 0.5 0.7, 0.8

0.4, 0.5 0.0, 0.4 0.3, 0.6 0.0, 0.0 0.0, 0.4 1,1 0.4, 0.5 0.0, 0.4 0.3, 0.6 0.4, 0.5 0.0, 0.4 0.3, 0.6

 
 
 
 
 
  

By the definition of 3.6, we take the sum of all the product matrices and obtain 

 
 

 
 

 
 

* * *

, , ,
M x M x M xij ij ijX Y Z Y Z X Z X Y

  
  

     
      

     
 

 

=

               

               

      

0.6, 0.9 0.0, 0.2 0.4, 0.6 0.6, 0.9 0.0, 0.2 0.4, 0.6 0.0, 0.0 0.0, 0.2 1,1 0.6, 0.9 0.0, 0.2 0.4, 0.6

0.3, 0.6 0.0, 0.4 0.5, 0.6 0.3, 0.6 0.0, 0.4 0.5, 0.6 0.0, 0.0 0.0, 0.4 1,1 0.3, 0.6 0.0, 0.4 0.5, 0.6

0.3, 0.4 0.0, 0.5 0.3, 0.5 0.3, 0.4 0.0, 0.5 0.3, 0         

               

.5 0.0, 0.0 0.0, 0.5 1,1 0.3, 0.4 0.0, 0.5 0.8, 0.9

0.4, 0.5 0.0, 0.4 0.6, 0.8 0.4, 0.5 0.0, 0.4 0.6, 0.8 0.0, 0.0 0.0, 0.4 1,1 0.4, 0.5 0.0, 0.4 0.6, 0.8
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0.0, 0.0 0.0, 0.2 1,1 0.4, 0.7 0.0, 0.2 0.4, 0.6 0.4, 0.7 0.0, 0.2 0.4, 0.6 0.4, 0.7 0.0, 0.2 0.4, 0.6

0.0, 0.0 0.0, 0.4 1,1 0.5, 0.6 0.0, 0.4 0.4, 0.6 0.5, 0.6 0.0, 0.4 0.4, 0.6 0.5, 0.6 0.0, 0.4 0.4, 0.6

0.0, 0.0 0.0, 0.5 1,1 0.2, 0.5 0.0, 0.5 0.6, 0.7 0.       

               

           

2, 0.5 0.0, 0.5 0.6, 0.7 0.2, 0.5 0.0, 0.5 0.6, 0.7

0.0, 0.0 0.0, 0.4 1,1 0.4, 0.5 0.0, 0.4 0.5, 0.8 0.4, 0.5 0.0, 0.4 0.5, 0.8 0.4, 0.5 0.0, 0.4 0.5, 0.8

0.3, 0.6 0.0, 0.2 0.4, 0.6 0.0, 0.0 0.0, 0.2 1,1 0.3, 0.6 0.0, 0.2 0.4, 0.6 0.3, 0.



 
 
 
 
 
  

   

               

               

   

6 0.0, 0.2 0.4, 0.6

0.3, 0.6 0.0, 0.4 0.5, 0.7 0.0, 0.0 0.0, 0.4 1,1 0.3, 0.6 0.0, 0.4 0.5, 0.7 0.3, 0.6 0.0, 0.4 0.5, 0.7

0.3, 0.4 0.0, 0.5 0.7, 0.8 0.0, 0.0 0.0, 0.5 1,1 0.3, 0.4 0.0, 0.5 0.7, 0.8 0.3, 0.4 0.0, 0.5 0.7, 0.8

0.4, 0.5 0.0, 0.4 0.3, 0.6 0.0,           

               

       

0.6,0.9 0.0,0.3 0.4,0.6 0.6,0.9 0.0,0.3 0.4,0.6 0.4,0.7 0.0,0.3 0.4,0.6 0.6,0.9 0.0,0.3 0.4,0.6

0.3,0.6 0.0,0.6 0.5,0.6 0.5,0.6 0.0,0.6 0.4,0.6 0.5,

0.0 0.0, 0.4 1,1 0.4, 0.5 0.0, 0.4 0.3, 0.6 0.4, 0.5 0.0, 0.4 0.3, 0.6



 
 
 
 
 
  

       
               
             

0.6 0.0,0.6 0.4,0.6 0.5,0.6 0.0,0.6 0.4,0.6

0.3,0.4 0.0,0.75 0.3,0.5 0.3,0.5 0.0,0.75 0.3,0.5 0.3,0.5 0.0,0.75 0.6,0.7 0.3,0.5 0.0,0.75 0.6,0.7

0.4,0.5 0.0,0.6 0.3,0.6 0.4,0.5 0.0,0.6 0.5,0.8 0.4,0.5 0.0,0.6 0.3,0.6 0.4,0.5 0.0,  0.6 0.3,0.6

 
 
 
 
 
 
 

 

 

Let 

S=

               

               
     

0.6,0.9 0.0,0.3 0.4,0.6 0.6,0.9 0.0,0.3 0.4,0.6 0.4,0.7 0.0,0.3 0.4,0.6 0.6,0.9 0.0,0.3 0.4,0.6

0.3,0.6 0.0,0.6 0.5,0.6 0.5,0.6 0.0,0.6 0.4,0.6 0.5,0.6 0.0,0.6 0.4,0.6 0.5,0.6 0.0,0.6 0.4,0.6

0.3,0.4 0.0,0.75 0.3,0.5 0.3,0.5 0.0          
               

,0.75 0.3,0.5 0.3,0.5 0.0,0.75 0.6,0.7 0.3,0.5 0.0,0.75 0.6,0.7

0.4,0.5 0.0,0.6 0.3,0.6 0.4,0.5 0.0,0.6 0.5,0.8 0.4,0.5 0.0,0.6 0.3,0.6 0.4,0.5 0.0,0.6 0.3,0.6

 
 
 
 
 
 
 

 

Taking all the lower limits and all the upper limits separately of each entry of S we construct another two 

matrices, given by  

0.6,0.0,0.4 0.6,0.0,0.4 0.4,0.0,0.4 0.6,0.0,0.4

0.3,0.0,0.5 0.5,0.0,0.4 0.5,0.0,0.4 0.5,0.0,0.4

0.3,0.0,0.3 0.3,0.0,0.3 0.3,0.0,0.6 0.3,0.0,0.6

0.4,0.0,0.3 0.4,0.0,0.5 0.4,0.0,0.3 0.4,0.0,0.3

l
S

 
 
 

  
 
  

 

and 

0.9,0.3,0.6 0.9,0.3,0.6 0.7,0.3,0.6 0.9,0.3,0.6

0.6,0.6,0.6 0.6,0.6,0.6 0.6,0.6,0.6 0.6,0.6,0.6

0.4,0.75,0.5 0.5,0.75,0.5 0.5,0.75,0.7 0.5,0.75,0.7

0.5,0.6,0.6 0.5,0.6,0.8 0.5,0.6,0.6 0.5,0.6,0.6

u
S

 
 
 

  
 
  

 

 Compute the value matrices corresponding to 
l

S and 
u

S are 

0.2 0.2 0.0 0.2

0.2 0.1 0.1 0.1
( )

0.0 0.0 0.3 0.3

0.1 0.1 0.1 0.1

lV S
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0.6 0.6 0.4 0.6

0.6 0.6 0.6 0.6
( )

0.65 0.75 0.55 0.55

0.5 0.3 0.5 0.5

uV S

 
 
 
 
 
 

 

0.6

0.1
( )

0.6

0.2

l

Row

V S

 
 
  
 
 
 

 and 

2.2

2.4
( )

2.5

1.8

u

Row

V S

 
 
  
 
 
 

 

 1 0.6 2.2 2.8W h     

 2 0.1 2.4 2.5W h     

 3 0.6 2.5 1.9W h      

 4 0.2 1.8 2.0W h     

Among all the values above, 1h  has the highest weight. So, Mr., Debnath will prefer to buy the house 1h .  

5. Application in medical science  

In medical science, one symptom is related to various diseases. For instance, the symptom fever is related to 

different diseases including typhoid, peptic ulcer, food poisoning ,etc. So, proper disease diagnosis is a very 

difficult task. For medical diagnosis problems, we consider the following example. 

Suppose Mr. X is suffering from a fever having the symptoms of body pain , breathing difficulty, headache ,and 

cough and the possible diseases, as per experts advice, relating to the proposed symptoms are viral 

fever,dengue,food poisoning ,and diptheria. But all experts should come to a common decision so that it helps to 

diagnose the patient. For this, we consider the set of four diseases U {viral fever, dengue, food poisoning, 

diphtheria}, as a universal set and some related symptoms of these four diseases E  {body pain, breathing 

difficulty, headache, cough, }, as a set of parameters and a set of doctors D= { 1d , 2d , 3d },called a set of 

decision makers or experts or doctors. In reference to example 4.2, if we compare the set of houses as a set of 

diseases , set of parameters as a set of symptoms , set of decision makers as a set of doctors and then by using 

this information we construct interval neutrosophic soft set frame work, by considering the same data set 

proposed in section 4.1. Then, with the help of IVNSM-algoritm, proposed in section 4, we come to the 

conclusion that Mr. X is suffering from viral fever. The main advantage of using IVNSM-algoritm is that it 

helps the doctors to diagnose the correct disese and so it prevents the wrong treatment of the patient and it saves 

time as well. In case no such conclusion can be drawn with the given information then we need to reassess all 

the symptoms with the help of expert and then repeat all the steps proposed in IVNSM-algorithm. 
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6. Conclusions  

In this paper, we have studied the various concept of interval neutrosophic soft set, which is an extension of 

neutrosophic soft set. We also introduce the choice matrices, which are associated with the interval 

neutrosophic soft sets. An algorithm, called IVNSM-algorithm, has been introduced for real decision making 

problem with the help of a group of decision makers. Finally, it has been discussed, how we use the 

IVNSM-algorithm in medical diagnosis problem. 

  

7. Future Scope 

 In our work , we do not consider the information ‘time duration’ of the symptom or attribute though it has its 

own significance together with the belongingness or non-belongingness or indeterminacy level of a symptom 

for proper diagnosis of a patient. Which may be cover up by introducing complex interval neutrosophic soft set. 

Also, instead of introducing a soft set, we introduce a hypersoft set, pilthogenic hypersoft set, introduced by 

Smarandache(2018) in [33], to extend the concept used in this paper. 
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Abstract. The importance of the theory of neutrosophy is due to its connections with several fields of sciences,

engineering, and technology. So, the aim of this paper is to relate neutrosophy with some algebraic structures

mainly the ordered semigroups. In this regard, we define single valued neutrosophic sets in ordered semigroups.

More precisely, we study single valued neutrosophic ideals of ordered semigroups and single valued neutrosophic
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1. Introduction

The neutrosophic set is a generalization of intuitionistic fuzzy set which in return is a

generalization of fuzzy set. Fuzzy set was introduced by Zadeh [18] in 1965 where he considered

that every element in a certain set has a degree of membership (truth value) in the unit interval

[0,1]. Then in 1986, Atanassov [5] introduced intuitionistic fuzzy set as a generalization of the

fuzzy set where he considered that every element in the set has a degree of membership (truth

value) and degree of non-membership (falsityhood value). Later in 1998, Smarandache [15]

generalized these two concepts and introduced the neutrosophic sets where he considered that

each element has a truth value (T), falsity value (F) and indeterminacy value (I).
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Neutrosophy is considered as a connection of mathematics with philosophy where it studies

the idea in a philosophical way. It is applicable in psychology, sociology, decision making,

engineering, information technology, probability and statistics, etc. It proposes any idea and

studies its origin, nature, scope and interactions with ideational spectra and reveals that

the world is full of indeterminacy. It considers the idea studied as < A >, its opposite as <

Anti−A >, its negation as < Non−A > and its spectrum of neutralities as < Neut−A >. For

details about neutrosophy, we refer to [15–17]. The new topic of neutrosophy had grabbed the

attention of many algebraists and as a result, neutrosophic algebraic structures was introduced.

For details about neutrosophic algebraic structures, we refer to [2,3,12–14]. Recently, a relation

between neutrosophy and ordered algebraic structures was defined [1, 4].

In 2020, Al-Tahan el al. [1] defined single valued neutrosophic sets in ordered groupoids and

investigated the various properties of single valued neutrosophic ideals in it. In this paper, we

study the relation between neutrosophy and ordered semigroups and it is organized as follows:

After a brief introduction about neutrosophy, Section 2 presents some preliminaries about

some algebraic structures such as semigroups and ordered semigroups and give some concepts

about neutrosophy. Section 3 presents some definitions, properties and examples about single

valued neutrosophic ideals in ordered semigroups. Finally, Section 5 presents single valued

neutrosophic bi-ideals in ordered semigroups and provides some related important theorems

and examples.

2. Preliminaries

In this section, we present some definitions, concepts and examples related to (ordered)

semigroups, neutrosophy, and single valued neutrosophic sets that are used throughout the

paper.

2.1. Semigroups and ordered semigroups

Definition 2.1. [7] Let S be a non-empty set of elements and ? be a binary operation defined

on S. Then S is said to be semigroup if it is binary closed and the associative property holds.

In other words, for every x, y and z in the set S, (x ? y) ? z = x ? (y ? z).

Example 2.2. Let Z be the set of integers, then (Z, ·), where “·” is the usual multiplication,

is a semigroup.

Remark 2.3. (1) A semigroup is an associative groupoid.

(2) Every semigroup is a groupoid but not every groupoid is a semigroup.

(3) A semigroup with identity is called a monoid.
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Definition 2.4. [11] Let (S, ?) be a semigroup. Then a subset A of S is called a subsemigroup

if (A, ?) is a semigroup.

Remark 2.5. To prove that a non-empty subset A of a semigroup (S, ?) is a subsemigroup,

it suffices to show that A ? A ⊆ A.

Example 2.6. Let (Z,+) be the semigroup of integers under standard addition. Then (N,+),

the set of non-negative integers under standard addition, is a subsemigroup of (Z,+).

Definition 2.7. [11] Let (S, ?) be a semigroup and A ⊆ S a subsemigroup of S. Then A is

called a:

(1) Right ideal if A ? S ⊆ A,

(2) Left ideal if S ? A ⊆ A,

(3) Ideal if it is both right and left ideal of S,

(4) Bi-ideal if A ? S ? A ⊆ S.

Example 2.8. Let (Z, ·) be the semigroup of integers under standard multiplication and let

I = nZ = {nq|q ∈ Z}. Then I is both right and left ideal of (Z, ·). Hence, it is an ideal of

(Z, ·).

Definition 2.9. [6] Let G be a non-empty set of elements. A partial order is a binary relation

“≤” over a set G such that ≤ is reflexive, antisymmetric, and transitive.

In other words, for all a, b, c ∈ G,≤ satisfies:

(1) a ≤ a,

(2) If a ≤ b and b ≤ a then a = b,

(3) If a ≤ b and b ≤ c then a ≤ c.

Definition 2.10. [6] A total order is a binary relation “≤” over a set G such that ≤ is a

partial order and every two elements in G are comparable.

In other words, for all x, y ∈ G, x ≤ y or y ≤ x.

Definition 2.11. [8] Let (S, ·) be a semigroup and “≤” be a partial order on S. Then (S, ·,≤)

is said to be an ordered semigroup if for all z ∈ S the following condition holds

if x ≤ y then z · x ≤ z · y and x · z ≤ y · z for all x, y ∈ S.

Remark 2.12. Every ordered semigroup is an ordered groupoid. But the converse is not true.

Example 2.13. The set defined in Example 2.2 is an ordered semigroup under the partial

order “≤” which is for every x, y ∈ Z, x ≤ y if and only if x = y.

This order is called trivial order.

Definition 2.14. [8] Let (S, ·,≤) be an ordered semigroup and A ⊆ S. Then
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(A] = {x ∈ S|x ≤ a for some a ∈ A}.

Remark 2.15. If (S, ·,≤) is an ordered semigroup and A ⊆ S then A ⊆ (A].

Definition 2.16. [8] Let (S, ·,≤) be an ordered semigroup and A ⊆ S, then A is called:

(1) Left ideal of S if S ·A ⊆ A and (A] ⊆ A,

(2) Right ideal of S if A · S ⊆ A and (A] ⊆ A,

(3) Ideal if it is both right and left ideal,

(4) Bi-ideal if A · S ·A ⊆ A and (A] ⊆ A.

Example 2.17. Let S = {a, b, c, d} and let (S, ?) be the semigroup defined by the following

table:

? a b c d

a d d d d

b d d d d

c d d d d

d d d d a

And let ≤ be defined as:

≤= {(a, a), (b, b), (b, c), (c, c), (d, d)}.

Then (S, ?,≤) is an ordered semigroup. Now, let I = {a, b, d}, then I is a right and left ideal

of the ordered semigroup (S, ?,≤). Hence I is an ideal of (S, ?).

2.2. Neutrosophy and single valued neutrosophic sets

Definition 2.18. [15] Neutrosophy is a new branch of philosophy which studies the origin,

nature, scope and interactions of neutralities with ideational spectra.

It considers:

• Any idea, proposition, theory or event by < A >,

• Its opposite by < Anti−A >,

• Its negation by < Non−A >,

• Its of spectrum of neutralities in between them by < Neut−A >.

Remark 2.19. In the theory of neutrosophy, every idea < A > has a truth membership value

(T ), false membership value (F ) and indeterminacy membership value (I).

Definition 2.20. [15] Let X be a non-empty space of elements (objects). A single valued

neutrosophic set(SVNS) A on X is characterized by its truth-membership function (TA), its
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indeterminacy-membership function (IA), and its falsity-membership function (FA) where for

each element x ∈ X, 0 ≤ TA(x), IA(x), FA(x) ≤ 1.

Remark 2.21. Let X be a non-empty space of elements (objects). A single valued neutro-

sophic set(SVNS) A on X is defined by NA(x) = (TA(x), IA(x), FA(x)) for all x ∈ X.

Definition 2.22. [1] Let X be a non empty set of elements and A and B be two single valued

neutrosophic sets over X defined as follows:

A = { x
(TA(x),IA(x),FA(x))

|x ∈ X} and B = { x
(TB(x),IB(x),FB(x)) |x ∈ X}

Then

• A ∩ B, which is the intersection of A and B, is a single valued neutrosophic set over

X defined as follows:

A ∩B = { x
(TA∩B(x),IA∩B(x),FA∩B(x)) |x ∈ X}

where TA∩B(x) = TA(x) ∧ TB(x), IA∩B(x) = IA(x) ∧ IB(x) and FA∩B(x) = FA(x) ∨
FB(x) for all x ∈ X.

• A∪B, which is the union of A and B, is a single valued neutrosophic set over X defined

as follows:

A ∪B = { x
(TA∪B(x),IA∪B(x),FA∪B(x)) |x ∈ X}

where TA∪B(x) = TA(x) ∨ TB(x), IA∪B(x) = IA(x) ∨ IB(x) and FA∪B(x) = FA(x) ∧
FB(x) for all x ∈ X.

3. Single valued neutrosophic ideals in ordered semigroups

Inspired by the work in [9] done by Khan et al. related to fuzzy ideals in ordered

semigroups and by the definition of single valued neutrosophic sets in ordered groupoids [1], we

consider single valued neutrosophic sets in ordered semigroups. More precisely, we define single

valued neutrosophic left ideals, single valued neutrosophic right ideals, study their properties,

and provide some examples.

Definition 3.1. Let (S, ·,≤) be an ordered semigroup and A be a single valued neutrosophic

set over S. Then A is a single valued neutrosophic subsemigroup of S if for all x, y ∈ S, the

following conditions hold:

(1) TA(x · y) ≥ TA(x) ∧ TA(y),

(2) IA(x · y) ≥ IA(x) ∧ IA(y),

(3) FA(x · y) ≤ FA(x) ∨ FA(y),

(4) If x ≤ y then TA(x) ≥ TA(y), IA(x) ≥ IA(y) and FA(x) ≤ FA(y).
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Definition 3.2. Let (S, ·,≤) be an ordered semigroup and A be a single valued neutrosophic

set over S. Then A is a single valued neutrosophic left ideal of S if for all x, y ∈ S, the following

conditions hold:

(1) TA(x · y) ≥ TA(y),

(2) IA(x · y) ≥ IA(y),

(3) FA(x · y) ≤ FA(y),

(4) If x ≤ y then TA(x) ≥ TA(y), IA(x) ≥ IA(y) and FA(x) ≤ FA(y).

Definition 3.3. Let (S, ·,≤) be an ordered semigroup and A be a single valued neutrosophic

set over S. Then A is a single valued neutrosophic right ideal of S if for all x, y ∈ S, the

following conditions hold:

(1) TA(x · y) ≥ TA(x),

(2) IA(x · y) ≥ IA(x),

(3) FA(x · y) ≤ FA(x),

(4) If x ≤ y then TA(x) ≥ TA(y), IA(x) ≥ IA(y) and FA(x) ≤ FA(y).

Definition 3.4. Let (S, ·,≤) be an ordered semigroup and A be a single valued neutrosophic

set over S. Then A is said to be a single valued neutrosophic ideal of S if it is both single

valued neutrosophic right and left ideal of S.

Remark 3.5. Let (S, ·,≤) be a commutative semigroup and A be a single valued neutrosophic

right ( left ) ideal of S. Then A is a single valued neutrosophic ideal of S.

Remark 3.6. Let (S, ·,≤) be a commutative semigroup and α, β, γ ∈ [0, 1]. Then

A = { x
(α,β,γ) |x ∈ S}

is a single valued neutrosophic ideal of S and it is called the trivial single valued neutro-

sophic ideal of S.

Example 3.7. Let S = {1, 2, 3, 4} and (S, ·) be defined by the following table:

· 1 2 3 4

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

Let “ ≤ ” be the partial order on S defined as follows:

{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 3), (3, 4)}

H.AlAkara,M.Al-Tahan,J.Vimala,SomeResultsonSingleValuedNeutrosophic

Bi-ideals in Ordered Semigroups

1

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                                186



Then (S, .,≤) is an ordered semigroup since “·” is binary closed and associative, and “≤”

satisfies the monotone property (i.e. for all x, y ∈ S, x ≤ y and for all z ∈ S, x · z = z · x =

1 ≤ 1 = y · z = z · y).

Let A be an SVNS on S defined by NA as follows

NA(1) = (0.9, 0.8, 0.1), NA(2) = (0.7, 0.6, 0.2), NA(3) = (0.6, 0.6, 0.2) and

NA(4) = (0.5, 0.4, 0.5).

Then A is a single valued neutrosophic ideal of S since for all x, y ∈ S, we have

TA(x · y) = TA(1) = 0.9 ≥ TA(x) ∨ TA(y);

IA(x · y) = IA(1) = 0.8 ≥ IA(x) ∨ IA(y);

FA(x · y) = FA(1) = 0.1 ≤ FA(x) ∧ FA(y);

Moreover, 1 ≤ 2 ≤ 3 ≤ 4 implies that TA(1) ≥ TA(2) ≥ TA(3) ≥ TA(4), IA(1) ≥ IA(2) ≥
IA(3) ≥ IA(4), and FA(1) ≤ FA(2) ≤ FA(3) ≤ FA(4).

Proposition 3.8. Let (S, ·,≤) be an ordered semigroup with identity “e” and A be a single

valued neutrosophic set over S. Then A is a single valued neutrosophic left(right) ideal of S if

and only if A is the trivial single valued neutrosophic ideal of S.

Proof. The proof is similar to the case in ordered groupoids [1].

Example 3.9. The only single valued neutrosophic right(left) ideal of the semigroup of non-

negative integers under addition is the trivial single valued neutrosophic set.

Lemma 3.10. Let (S, ·,≤) be an ordered semigroup and Aα a single valued neutrosophic left

ideal, right ideal or subsemigroup of S. Then
⋂
αAα which is the intersection of Aα for all α

is a single valued neutrosophic left ideal, right ideal or subsemigroup of S.

Proof. Let Aα be a single valued neutrosophic left ideal of S. Then for all x, y ∈ S,

TAα(x · y) ≥ TAα(y), IAα(x · y) ≥ IAα(y), FAα(x · y) ≤ FAα(y) for all α. This latter im-

plies that

T⋂
α Aα

(x · y) = infα TAα(x · y) ≥ infα TAα(y) = T⋂
α Aα

(y) ;

I⋂
α Aα

(x · y) = infα IAα(x · y) ≥ infα IAα(y) = I⋂
α Aα

(y) ;

F⋂
α Aα

(x · y) = supα FAα(x · y) ≤ supα FAα(y) = F⋂
α Aα

(y) .

Let x ≤ y. Then TAα(x) ≥ TAα(y), IAα(x) ≥ IAα(y), FAα(x) ≤ FAα(y). So,

T⋂
α Aα

(x) = infα TAα(x) ≥ infα TAα(y) = T⋂
α Aα

(y);

I⋂
α Aα

(x) = infα IAα(x) ≥ infα IAα(y) = I⋂
α Aα

(y);

and F⋂
α Aα

(x) = supα FAα(x) ≤ supα FAα(y) = F⋂
α Aα

(y).

Therefore,
⋂
αAα is a single valued neutrosophic left ideal of S. Similarly, we can prove that
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the intersection of single valued neutrosophic right ideals or subsemigroups of S is a single

valued neutrosophic right ideal of S.

Remark 3.11. Let (S, ·,≤) be an ordered semigroup and Aα a single valued neutrosophic

subsemigroup of S. Then
⋃
αAα is not necessarily a single valued neutrosophic subsemigroup

of S.

Example 3.12. Let (N,+,≤) be the ordered semigroup of natural numbers under standard

addition and trivial order and let A and B be single valued neutrosophic sets on N defined as

follows:

NA(x) =

(0.9, 0.7, 0.2) if x is divisible by 5 ;

(0.4, 0.3, 0.4) otherwise.

NB(x) =

(0.9, 0.7, 0.2) if x is divisible by 7 ;

(0.4, 0.3, 0.4) otherwise.

Then A and B are single valued neutrosophic subsemigroups of N. But A ∪ B is not a single

valued neutrosophic subsemigroup of N since NA∪B(5 + 7) = NA∪B(12) = (0.4, 0.3, 0.4) so we

will have that TA∪B(5 + 7) = NA∪B(12) = 0.4 � NA∪B(5) ∧NA∪B(7) = 0.9.

Example 3.13. Let (S, ·,≤) be the ordered semigroup defined in Example 3.7. Let A and B

be the single valued neutrosophic sets on S defined by NA and NB respectively as follows:

NA(1) = (0.9, 0.8, 0.1), NA(2) = (0.7, 0.6, 0.2), NA(3) = (0.6, 0.6, 0.2), NA(4) = (0.5, 0.4, 0.5);

NB(1) = (0.9, 0.8, 0.1), NB(2) = (0.8, 0.7, 0.2), NB(3) = (0.7, 0.6, 0.3), NB(4) = (0.6, 0.4, 0.6);

It is clear that A and B are single valued neutrosophic subsemigroups of S. Also A ∪ B and

A ∩B, defined by NA∪B and NA∩B respectively as follows.

NA∪B(1) = (0.9, 0.8, 0.1), NA∪B(2) = (0.8, 0.7, 0.2), NA∪B(3) = (0.7, 0.6, 0.2),

NA∪B(4) = (0.6, 0.4, 0.5);

NA∩B(1) = (0.9, 0.8, 0.1), NA∩B(2) = (0.7, 0.6, 0.2), NA∩B(3) = (0.6, 0.6, 0.3),

NA∩B(4) = (0.5, 0.4, 0.6);

are also single valued neutrosophic subsemigoups of S.

Lemma 3.14. Let (S, ·,≤) be an ordered semigroup and Aα a single valued neutrosophic ideal

of S. Then
⋂
αAα is a single valued neutrosophic ideal of S.

Proof. Let Aα be a single valued neutrosophic ideal of S. Then Aα is both, a single valued

neutrosophic right and left ideal of S. So, by Lemma 3.10,
⋂
αAα is both, a single valued

neutrosophic right and left ideal of S. Therefore
⋂
αAα is a single valued neutrsophic ideal of

S.
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Lemma 3.15. Let (S, ·,≤) be an ordered semigroup and Aα a single valued neutrosophic ideal

of S. Then
⋃
αAα is a single valued neutrosophic ideal of S.

Proof. The proof is similar to that of ordered groupoids [1].

Example 3.16. Let (S, ?,≤) be an ordered semigroup where (S, ?) is defined by the following

table:

? 1 2 3

1 1 1 1

2 1 1 3

3 1 3 1

and ≤= {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)}. And let A and B be single valued neutrosophic sets

over S defined by NA and NB respectively as follows:

NA(1) = (0.9, 0.8, 0.1), NA(2) = (0.6, 0.6, 0.3), NA(3) = (0.4, 0.5, 0.3);

NB(1) = (0.9, 0.8, 0.1), NB(2) = (0.8, 0.5, 0.5), NB(3) = (0.6, 0.5, 0.3).

It is clear that A and B are single valued neutrosophic ideals of S. Then A ∩ B and A ∪ B
defined by NA∩B and NA∪B respectively as follows:

NA∩B(1) = (0.9, 0.8, 0.1), NA∩B(2) = (0.6, 0.5, 0.5), NA∩B(2) = (0.4, 0.5, 0.3);

NA∪B(1) = (0.9, 0.8, 0.1), NA∪B(2) = (0.8, 0.6, 0.3), NA∪B(2) = (0.6, 0.5, 0.3)

are also single valued neutrosophic ideals of S.

Definition 3.17. Let (S1, ·1,≤1) and (S2, ·2,≤2) be two ordered semigroups, then (S1×S2, ·,≤
) is an ordered semigroup where (x, y) · (z, w) = (x ·1 z, y ·2 w) and (x, y) ≤ (z, w) if and only

if x ≤1 z and y ≤2 w.

Definition 3.18. Let (S1, ·1,≤1) and (S2, ·2,≤2) be two ordered semigroups, and let A and

B be two single valued neutrosophic sets over S1 × S2 defined as follows:

NA×B(x, y) = (TA×B(x, y), IA×B(x, y), FA×B(x, y))

where TA×B(x, y) = TA(x) ∧ TB(y), IA×B(x, y) = IA(x) ∧ IB(y) and FA×B(x, y) = FA(x) ∨
FB(y).

Theorem 3.19. Let (S1, ·1,≤1) and (S2, ·2,≤2) be two ordered semigroups, and let A and B

be two single valued neutrosophic right (left) ideal of S1 and S2 respectively. Then A×B is a

single valued neutrosophic right (left) ideal of S1 × S2.

Proof. Let A and B be single valued neutrosophic left ideal of S1 and S2 respectively. Then

for all x1, y1 ∈ S1 and x2, y2 ∈ S2, we have:
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(1) TA(x1 · y1) ≥ TA(y1) and TB(x2 · y2) ≥ TB(y2);

(2) IA(x1 · y1) ≥ IA(y1) and IB(x2 · y2) ≥ IB(y2);

(3) FA(x1 · y1) ≤ FA(y1) and FB(x2 · y2) ≤ FB(y2);

(4) If (x1, x2) ≤ (y1, y2). This latter implies that TA(x1) ≥ TA(y1), TB(x2) ≥ TB(y2),

IA(x1) ≥ IA(y1), IB(x2) ≥ IB(y2), FA(x1) ≤ FA(y1) and FB(x2) ≤ FB(y2).

We get that, TA×B((x1, x2) · (y1, y2)) = TA×B(x1 · y1, x2 · y2) = TA(x1 · y1) ∧ TB(x2 · y2) ≥
TA(y1) ∧ TB(y2) ≥ TA×B(y1, y2),

IA×B((x1, x2) · (y1, y2)) = IA×B(x1 · y1, x2 · y2) = IA(x1 · y1) ∧ IB(x2 · y2) ≥ IA(y1) ∧ IB(y2) ≥
IA×B(y1, y2),

FA×B((x1, x2) · (y1, y2)) = FA×B(x1 ·y1, x2 ·y2) = FA(x1 ·y1)∨FB(x2 ·y2) ≤ FA(y1)∨FB(y2) ≤
FA×B(y1, y2),

and if (x1, x2) ≤ (y1, y2), then x1 ≤1 y1 and x2 ≤2 y2, so easily we can see that TA×B(x1, x2) ≥
TA×B(y1, y2), IA×B(x1, x2) ≥ IA×B(y1, y2), and FA×B(x1, x2) ≤ FA×B(y1, y2).

Therefore, A×B is a single valued neutrosophic left ideal of S1 × S2.
Similarly, we can prove the case of single valued neutrosophic right ideal.

4. Single valued neutrosophic bi-ideals in ordered semigroups

In this section, we define single valued neutrosophic bi-ideals in ordered semigroups,

study some of their properties, and provide several examples. The results of this section can

be considered as a generalization of fuzzy bi-ideals in ordered semigroups [10].

Definition 4.1. Let (S, ·,≤) be an ordered semigroup and A be a single valued neutrosophic

set over S. Then A is said to be a single valued neutrosophic bi-ideal of S if it is a single valued

neutrosophic subsemigroup of S and if for all x, y, z ∈ S, NA(x · y · z) ≥ NA(x) ∧ NA(y)(i.e.

TA(x · y · z) ≥ TA(x) ∧ TA(y), IA(x · y · z) ≥ IA(x) ∧ IA(y) and FA(x · y · z) ≤ FA(x) ∨ FA(y)).

Theorem 4.2. Let (S, ·,≤) be an ordered semigroup and A be a single valued neutrosophic

left(right) ideal over S . Then A is a single valued neutrosophic bi-ideal of S.

Proof. Let A be a single valued neutrosophic left ideal of S, then A is a single valued neu-

trosophic subsemigroup and TA(x · y) ≥ TA(y), IA(x · y) ≥ IA(y), FA(x · y) ≤ FA(y) and if

x ≤ y, TA(x) ≥ TA(y), IA(x) ≥ IA(y), FA(x) ≤ FA(y).

Let x, y, z ∈ S. Then TA(x · y · z) ≥ TA(y · z) ≥ TA(z) ≥ TA(x) ∧ TA(z);

IA(x · y · z) ≥ IA(y · z) ≥ IA(z) ≥ IA(x) ∧ IA(z), and FA(x · y · z) ≤ FA(y · z) ≤ FA(z) ≤
FA(x) ∨ FA(z)

Therefore, A is a single valued neutrosophic bi-ideal of S.
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Remark 4.3. Not every single valued neutrosophic bi-ideal is a single valued neutrosophic

left or right ideal.

Example 4.4. Let (S, ·) be an ordered semigroup defined by the following table:

· a b c

a a a a

b a a c

c a c a

Let “ ≤ ” be defined as follows: ≤= {(a, a), (a, b), (a, c), (b, b), (c, c)} and A be an SVNS on S

defined by: NA(a) = (0.9, 0.8, 0.1), NA(b) = (0.8, 0.5, 0.4) and NA(c) = (0.7, 0.6, 0.2). Then A

is SVN bi-ideal of S but it is neither SVN right nor left ideal of S since TA(b · c) = TA(c · b) =

TA(c) � TA(b).

Theorem 4.5. Let (S, ·,≤) be an ordered semigroup and Aα a single valued neutrosophic

bi-ideal of S. Then
⋂
αAα is a single valued neutrosophic bi-ideal of S.

Proof. Let Aα be a single valued neutrosophic bi-ideal of S for all α. Then Aα is a single valued

neutrosophic subsemigroup of S. Hence by Lemma 3.10
⋂
αAα is a single valued neutrosophic

subsemigroup of S.

Also, we have that TAα(x · y · z) ≥ TAα(x) ∧ TAα(z), IAα(x · y · z) ≥ IAα(x) ∧ IAα(z) and

FAα(x · y · z) ≤ FAα(x) ∨ FAα(z). This latter implies that

T⋂
α Aα

(x · y · z) = infα TAα(x · y · z) ≥ infα{TAα(x) ∧ TAα(z)} = infα TAα(x) ∧ infα TAα(z) =

T⋂
α Aα

(x) ∧ T⋂
α Aα

(z);

I⋂
α Aα

(x · y · z) = infα IAα(x · y · z) ≥ infα{IAα(x) ∧ IAα(z)} = infα IAα(x) ∧ infα IAα(z) =

I⋂
α Aα

(x) ∧ I⋂
α Aα

(z);

F⋂
α Aα

(x ·y · z) = supα FAα(x ·y · z) ≤ supα{FAα(x)∨FAα(z)} = supα FAα(x)∨ supα FAα(z) =

F⋂
α Aα

(x) ∨ F⋂
α Aα

(z).

Therefore,
⋂
αAα is a single valued neutrosophic bi-ideal of S.

Theorem 4.6. Let (S1, ·1,≤1) and (S2, ·2,≤2) be two ordered semigroups, and let A and B

be two single valued neutrosophic bi-ideals of S1 and S2 respectively. Then A × B is a single

valued neutrosophic bi-ideals of S1 × S2.

Proof. Let A and B be single valued neutrosophic bi-ideals of S1 and S2 respectively. Then

for all x1, y1, z1 ∈ S1, x2, y2, z2 ∈ S2 , A and B are single valued neutrosophic bi-ideals of

S, TA(x1 · y1 · z1) ≥ TA(x1) ∧ TA(z1), TB(x2 · y2 · z2) ≥ TB(x2) ∧ TB(z2), IA(x1 · y1 · z1) ≥
IA(x1) ∧ IA(z1), IB(x2 · y2 · z2) ≥ IB(x2) ∧ IB(z2), FA(x1 · y1 · z1) ≤ FA(x1) ∨ FA(z1) and
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FB(x2 · y2 · z2) ≤ FB(x2) ∨ FB(z2).

So, we get that

TA×B((x1, x2).(y1, y2).(z1, z2)) = TA×B(x1 ·y1 ·z1, x2 ·y2 ·z2) = TA(x1 ·y1 ·z1)∧TB(x2 ·y2 ·z2) ≥
TA(x1) ∧ TA(z1) ∧ TB(x2) ∧ TB(z2) = TA×B(x1, x2) ∧ TA×B(z1, z2);

IA×B((x1, x2) · (y1, y2).(z1, z2)) = IA×B(x1 ·y1 ·z1, x2 ·y2 ·z2) = IA(x1 ·y1 ·z1)∧ IB(x2 ·y2 ·z2) ≥
IA(x1) ∧ IA(z1) ∧ IB(x2) ∧ IB(z2) = IA×B(x1, x2) ∧ IA×B(z1, z2);

FA×B((x1, x2).(y1, y2).(z1, z2)) = FA×B(x1 ·y1 ·z1, x2 ·y2 ·z2) = FA(x1 ·y1] ·z1)∨FB(x2 ·y2 ·z2) ≤
FA(x1) ∨ FA(z1) ∨ FB(x2) ∨ FB(z2) = FA×B(x1, x2) ∨ FA×B(z1, z2).

And as A and B are single valued neutrosophic subsemigroup of S1 and S2 respectively. Then

by Theorem 3.19, we get that A×B is a single valued neutrosophic subsemigroup of S1 × S2.

Example 4.7. Let (S, ?) be the semigroup defined by the following table:

? 0 1 2

0 0 0 0

1 0 1 2

2 0 1 2

and let “ ≤ ” be defined as follows: ≤= {(0, 0), (0, 1), (2, 2), (2, 1), (0, 2)}. Then (S, ?,≤) is

an ordered semigroup. Let A be an SVNS on S defined by NA as follows:

NA(0) = (0.9, 0.3, 0.1), NA(1) = (0.9, 0.2, 0.2) and NA(2) = (0.9, 0.2, 0.2).

Then A is a single valued neutrosophic ideal of S since

TA(0 ? 0) = TA(0) = 0.9 ≥ TA(0) ∨ TA(0) = 0.9;

TA(0 ? 1) = TA(0) = 0.9 ≥ TA(0) ∨ TA(1) = 0.9;

TA(0 ? 2) = TA(0) = 0.9 ≥ TA(0) ∨ TA(2) = 0.9;

TA(1 ? 0) = TA(0) = 0.9 ≥ TA(1) ∨ TA(0) = 0.9;

TA(1 ? 1) = TA(1) = 0.9 ≥ TA(1) ∨ TA(1) = 0.9;

TA(1 ? 2) = TA(2) = 0.9 ≥ TA(1) ∨ TA(2) = 0.9;

TA(2 ? 0) = TA(0) = 0.9 ≥ TA(2) ∨ TA(0) = 0.9;

TA(2 ? 1) = TA(1) = 0.9 ≥ TA(2) ∨ TA(1) = 0.9;

TA(2 ? 2) = TA(2) = 0.9 ≥ TA(2) ∨ TA(2) = 0.9;

IA(0 ? 0) = TA(0) = 0.3 ≥ IA(0) ∨ IA(0) = 0.3;

IA(0 ? 1) = IA(0) = 0.3 ≥ IA(0) ∨ IA(1) = 0.3;

IA(0 ? 2) = IA(0) = 0.3 ≥ IA(0) ∨ TA(2) = 0.3;

IA(1 ? 0) = IA(0) = 0.3 ≥ IA(1) ∨ IA(0) = 0.3;

IA(1 ? 1) = IA(1) = 0.2 ≥ IA(1) ∨ IA(1) = 0.2;
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IA(1 ? 2) = IA(2) = 0.2 ≥ IA(1) ∨ IA(2) = 0.2;

IA(2 ? 0) = IA(0) = 0.3 ≥ IA(2) ∨ IA(0) = 0.3;

IA(2 ? 1) = IA(1) = 0.2 ≥ IA(2) ∨ IA(1) = 0.2;

IA(2 ? 2) = IA(2) = 0.2 ≥ IA(2) ∨ IA(2) = 0.2;

FA(0 ? 0) = FA(0) = 0.1 ≤ FA(0) ∧ FA(0) = 0.1;

FA(0 ? 1) = FA(0) = 0.1 ≤ FA(0) ∧ FA(1) = 0.1;

FA(0 ? 2) = FA(0) = 0.1 ≤ FA(0) ∧ FA(2) = 0.1;

FA(1 ? 0) = FA(0) = 0.1 ≤ FA(1) ∧ FA(0) = 0.1;

FA(1 ? 1) = FA(1) = 0.2 ≤ FA(1) ∧ FA(1) = 0.2;

FA(1 ? 2) = FA(2) = 0.2 ≤ FA(1) ∧ FA(2) = 0.2;

FA(2 ? 0) = FA(0) = 0.1 ≤ TA(2) ∧ FA(0) = 0.2;

FA(2 ? 1) = FA(1) = 0.2 ≤ FA(2) ∧ FA(1) = 0.2;

FA(2 ? 2) = FA(2) = 0.2 ≤ FA(2) ∧ FA(2) = 0.2.

Moreover, 0 ≤ 1 ≤ 2 implies that TA(0) ≥ TA(1) ≥ TA(2), IA(0) ≥ IA(1) ≥ IA(2) and

FA(0) ≤ FA(1) ≤ FA(2).

Therefore, A is a single valued neutrosophic ideal of S.

Example 4.8. Let (S, ?,≤) be the semigroup defined in Example 4.7 and B a single valued

neutrosophic set over S defined by NB as follows

NB(0) = (0.9, 0.2, 0.1), NB(1) = (0.8, 0.1, 0.3) and NB(2) = (0.7, 0.1, 0.4).

Then B is a single valued neutrosophic left ideal of S since

TB(0 ? 0) = TB(0) = 0.9 ≥ TB(0) = 0.9;

TB(0 ? 1) = TB(0) = 0.9 ≥ TB(1) = 0.8;

TB(0 ? 2) = TB(0) = 0.9 ≥ TB(2) = 0.7;

TB(1 ? 0) = TB(0) = 0.9 ≥ TB(0) = 0.9;

TB(1 ? 1) = TB(1) = 0.8 ≥ TB(1) = 0.8;

TB(1 ? 2) = TB(2) = 0.7 ≥ TB(2) = 0.7;

TB(2 ? 0) = TB(0) = 0.9 ≥ TB(0) = 0.9;

TB(2 ? 1) = TB(1) = 0.8 ≥ TB(1) = 0.8;

TB(2 ? 2) = TB(2) = 0.7 ≥ TB(2) = 0.7;

IB(0 ? 0) = TB(0) = 0.2 ≥ IB(0) = 0.2;

IB(0 ? 1) = IB(0) = 0.2 ≥ IB(1) = 0.1;

IB(0 ? 2) = IB(0) = 0.2 ≥ IB(2) = 0.1;

IB(1 ? 0) = IB(0) = 0.2 ≥ IB(0) = 0.2;

IB(1 ? 1) = IB(1) = 0.1 ≥ IB(1) = 0.1;

IB(1 ? 2) = IB(2) = 0.1 ≥ IB(2) = 0.1;
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IB(2 ? 0) = IB(0) = 0.2 ≥ IB(0) = 0.2;

IB(2 ? 1) = IB(1) = 0.1 ≥ IB(1) = 0.1;

IB(2 ? 2) = IB(2) = 0.1 ≥ IB(2) = 0.1;

FB(0 ? 0) = FB(0) = 0.1 ≤ FB(0) = 0.1;

FB(0 ? 1) = FB(0) = 0.1 ≤ FB(1) = 0.3;

FB(0 ? 2) = FB(0) = 0.1 ≤ FB(2) = 0.4;

FB(1 ? 0) = FB(0) = 0.1 ≤ FB(0) = 0.1;

FB(1 ? 1) = FB(1) = 0.3 ≤ FB(1) = 0.3;

FB(1 ? 2) = FB(2) = 0.4 ≤ FB(2) = 0.4;

FB(2 ? 0) = FB(0) = 0.1 ≤ FB(0) = 0.1;

FB(2 ? 1) = FB(1) = 0.3 ≤ FB(1) = 0.3;

FB(2 ? 2) = FB(2) = 0.4 ≤ FB(2) = 0.4.

Moreover, 0 ≤ 1 ≤ 2 implies that TB(0) ≥ TB(1) ≥ TB(2), IB(0) ≥ IB(1) ≥ IB(2) and

FB(0) ≤ FB(1) ≤ FB(2).

Moreover, since B is an SVN left ideal of S, it follows by Theorem 4.2 that B is a single valued

neutrosophic bi-ideal of S.

Example 4.9. Let M2(N) be the set of 2×2 matrices (i.e. M2(N) = {

(
a b

c d

)
; a, b, c, d ∈ N}).

And let A be an SVNS on M2(N) defined by NA as follows

NA(X) =

(0.8, 0.4, 0.2) if X ∈ I;

(0.6, 0.3, 0.5) if X /∈ I.

where I = {

(
k 0

0 0

)
; k ∈ N}.

Then A is neither a single valued neutrosophic left ideal nor single valued neutrosophic right

ideal of M2(N). Moreover, it is a single valued neutrosophic bi-ideal of M2(N).

Proof. First we show that A is neither a single valued neutrosophic right ideal nor a single

valued neutrosophic left ideal of M2(N).

Let X =

(
1 0

0 0

)
∈ I and Y =

(
2 2

2 2

)
/∈ I

So, we have, X.Y =

(
1 0

0 0

)
.

(
2 2

2 2

)
=

(
2 2

0 0

)
/∈ I.

Then NA(X.Y ) = (0.6, 0.3, 0.5). But TA(X.Y ) = 0.6 � TA(X) = 0.8. So, A is not an SVN

right ideal of M2(N).

Also we have, Y.X =

(
2 2

2 2

)
.

(
1 0

0 0

)
=

(
2 0

2 0

)
/∈ I.

Then NA(Y.X) = (0.6, 0.3, 0.5). But TA(Y.X) = 0.6 � TA(X) = 0.8. So, A is not an SVN left
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ideal of M2(N).

Next, we show that A is a single valued neutrosophic subsemigroup of M2(N).

Let X,Y ∈M2(N). We consider the following cases.

• Case X,Y ∈ I, then we have NA(X) = NA(Y ) = (0.8, 0.4, 0.2). Then X.Y ∈ I, then

NA(X.Y ) = (0.8, 0.4, 0.2).

So, easily we can see that, TA(X.Y ) = 0.8 ≥ TA(X) ∧ TA(Y ) = 0.8, IA(X.Y ) = 0.4 ≥
IA(X) ∧ IA(Y ) = 0.4, FA(X.Y ) = 0.2 ≤ FA(X) ∨ FA(Y ) = 0.2, and if X ≤ Y , then

TA(X) = 0.8 ≥ TA(Y ) = 0.8, IA(X) = 0.4 ≥ IA(Y ) = 0.4 and FA(X) = 0.2 ≤
FA(Y ) = 0.2.

• Case X,Y /∈ I, then we have NA(X) = NA(Y ) = (0.6, 0.3, 0.5). So, easily we can see

that, TA(X.Y ) ≥ 0.6 = TA(X)∧ TA(Y ), IA(X.Y ) ≥ 0.3 = IA(X)∧ IA(Y ), FA(X.Y ) ≤
0.5 = FA(X) ∨ FA(Y ).

• Case X ∈ I, Y /∈ I, then we have NA(X) = (0.8, 0.4, 0.2) and NA(Y ) = (0.6, 0.3, 0.5).

So, easily we can see that, TA(X.Y ) ≥ 0.6 = TA(X) ∧ TA(Y ), IA(X.Y ) ≥ 0.3 =

IA(X) ∧ IA(Y ), FA(X.Y ) ≤ 0.5 = FA(X) ∨ FA(Y ).

Therefore, A is an SVN subsemigroup of M2(N).

Simple computations show that A is an SVN bi-ideal of M2(N).

5. Conclusion

This paper dealt with single valued neutrosophic sets in ordered semigroups where several

concepts about single valued neutrosophic ideals and single valued neutrosophic bi-ideals were

defined and studied with several examples. The results in this paper are generalization of

fuzzy ideals (bi-ideals) in ordered semigroups.

For future research, it will be interesting to discuss single valued neutrosophic sets in other

ordered algebraic structures.
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Abstract. Game theory is commonly used in competitive situations because of its significance in decision-

making. Different types of fuzzy sets can handle uncertainty in matrix games. Neutrosophic set theory plays a

vital role in analyzing complexity, ambiguity, incompleteness, and inconsistency in real-world problems. This

study develops a novel approach to solve neutrosophic matrix games using linear programming problems with

single-valued triangular neutrosophic numbers as pay-offs. This paper establishes some theoretical aspects of

game theory in a neutrosophic environment. A numerical example verifies the theoretical results using the

traditional simplex approach to achieve the strategy and value of the game. The proposed work is useful to

model and solve conflict situations in decision-making problems with partial knowledge as data in a simple

manner.

Keywords: Matrix game; Neutrosophic set; Single valued triangular neutrosophic number; Neutrosophic

matrix game

—————————————————————————————————————————-

1. Introduction

Real-world conflict scenarios are often investigated using game theory. It is difficult to col-

lect the right data from decision-makers in today’s situations. Fuzzy set theory is based on

unreliable information and vagueness due to a lack of some pieces of information and accurate

data. Previous research investigated complexity in game theory using fuzzy sets, intuitionistic

fuzzy sets, and rough fuzzy sets. The concept of neutrosophic set theory in games is new at the

moment, and it is a common research subject all over the world for dealing with competitive

situations.

Neumann and Morgenstern [1] established the notion of game theory. Although, the classical
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game theory has exact data and factual information about the players. In uncertain situ-

ations, the notion of the fuzzy set theory proposed by Zadeh [2] is applied to many fields.

Campus [5] introduced a model based on a linear programming approach to interpreting fuzzy

matrix games. Sakawa and Nishizaki [6,10] investigated max-min solution methods for multi-

objective conflict resolution problems. Bector et al. [11,12] determined the matrix games with

fuzzy goals and fuzzy payoffs. The concept of dual linear programming approach employed

by Vijay et al. [13]. Several researchers [14, 15, 25, 27, 37] developed fuzzy matrix games. To

determine the uncertainty about non-membership degrees Atanassov [4,8] inducted intuition-

istic fuzzy set theory. Further, intuitionistic fuzzy concept applied by [16–19, 21–24, 26, 38] to

study game-theoretic models using linear programming approach. After that, Intuitionistic

fuzzy sets were extended to interval-valued intuitionistic fuzzy sets and hesitant fuzzy sets.

Kumar and Garg [28] suggested the TOPSIS method under interval-valued intuitionistic fuzzy

environment. Xue et al. [45] applied the Ambika method to determine the matrix games with

hesitant fuzzy knowledge and investigated the counter-terrorism problem. A methodology

based on the linear programming approach was applied to solve the matrix games with trian-

gular dual hesitant fuzzy numbers as payoffs by Yang and Song [39].

The intuitionistic fuzzy sets can not successfully deal in the circumstances of good, unac-

ceptable, and uncertain decision-making problems. Therefore a novel theory was necessary.

Smarandache [7, 9] filled the gap and introduced the concept of neutrosophic set theory,

which deals with incomplete, inconsistent, and indeterminate situations. Single valued neu-

trosophic sets as an extension of neutrosophic sets were presented by Wang et al. [20]. A

de-neutrosophication idea for linear and non-linear generalized triangular neutrosophic num-

bers was performed by Chakraborty et al. [30]. The concept of neutrosophic set and number

has been successfully applied by Abdel-basset et al. [31–33], and developed methods for sus-

tainable supplier selection problems. [34–36] investigated decision making models based on

neutrosophic sets. A similar study of neutrosophic sets and numbers was provided by Broumi

et al. [29]. Khalil et al. [40] suggested a new idea for the single-valued neutrosophic fuzzy soft

set. Neutrosophic soft, rough topology and its applications to multicriteria decision-making

problems were proposed by Riaz et al. [41]. Based on the neutrosophic fuzzy approach, an

economical production quantity model was suggested by De et al. [42] for imperfect produc-

tion processes under game. Du et al. [44] in neutrosophic Z-numbers conditions investigated a

multicriteria decision-making approach. In contemporary situations to handle the conflicting

political circumstances, a neutrosophic model for non-cooperative games was inducted by Arias

et al. [43] using single-valued triangular neutrosophic numbers. Bhaumik et al. [46] introduced

a new ranking approach to solve bi-matrix games based on (α, β, γ) -cut set of a single-valued

triangular neutrosophic number.
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Game theory is widely used in competitive scenarios due to its importance in decision-making.

In real-world problems, the concept of neutrosophic set theory is useful for analyzing com-

plexity, uncertainty, incompleteness, and inconsistency. In matrix games with single-valued

triangular neutrosophic numbers as pay-offs, we developed a novel approach focused on linear

programming using de-neutrosophication as values and ambiguities. The standard simplex

approach is used to accomplish the strategy and value of the game for the individual player

by providing a numerical representation. The proposed work is capable of quickly resolving

conflict situations in decision-making problems using partial information as data.

The main novelties of this work are pointed as:

• A new class of matrix game, namely neutrosophic matrix game, is defined under partial

informative situations.

• A mathematical model of neutrosophic matrix game is developed.

• Values and ambiguities are derived for single-valued triangular neutrosophic numbers,

and some new theorems are provided.

• The theoretical results are verified by a numerical example arising in conflict situations

in decision-making problems with partial knowledge as data.

The research paper is designed as: Section 2 contains preliminaries and definitions. Values

and ambiguities are determined in Section 3. Section 4 deals with value index and ambiguity

index. Section 5 describes a mathematical model of a matrix game. A numerical example is

demonstrated in Section 6. Section 7 concludes the results of the paper.

2. Preliminaries and definitions

In this section we recall some basic definitions and notations which are useful throughout

the paper.

Definition 2.1. Let X = {X1, X2, X3, . . . , Xn} be the universal set. A neutrosophic set Ã

in the universal set X, is characterized by its truth membership function µÃ, indeterminacy

membership function πÃ and falsity membership function νÃ which associates with Xi ∈ X to

a real number in the interval [0, 1] and defined as

Ã = {
〈
Xi, µÃ(Xi), πÃ(Xi), νÃ(Xi)

〉
|Xi ∈ X}. (1)

Definition 2.2. A single valued triangular neutrosophic number defined on the set of real

numbers is a neutrosophic set, denoted by ÃTNN = 〈(ξ, η, ζ) ;σ, ρ, τ〉 whose truth membership,
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indeterminacy membership and falsity membership functions respectively are given as follows:

µÃTNN (x) =



(x−ξ)σ
(η−ξ) ; ξ ≤ x ≤ η
σ ;x = η

(ζ−x)σ
(ζ−η) ; η ≤ x ≤ ζ

0 ; otherwise

(2)

πÃTNN (x) =



(η−x)+ρ(x−ξ)
(η−ξ) ; ξ ≤ x ≤ η
ρ ;x = η

(x−η)+ρ(ζ−x)
(ζ−η) ; η ≤ x ≤ ζ

1 ; otherwise

(3)

νÃTNN (x) =



(η−x)+τ(x−ξ)
(η−ξ) ; ξ ≤ x ≤ η
τ ;x = η

(x−η)+τ(ζ−x)
(ζ−η) ; η ≤ x ≤ ζ

1 ; otherwise

(4)

where 0 ≤ σ ≤ 1, 0 ≤ ρ ≤ 1, 0 ≤ τ ≤ 1 and 0 ≤ σ + ρ + τ ≤ 3. σ represents the maximum

degree of truth membership, ρ represents the minimum degree of indeterminacy membership

and τ represents the minimum degree of falsity membership.

Definition 2.3. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be

two single valued triangular neutrosophic numbers and λ be a real number, then some arith-

metical operations are stipulated as follows:

• Addition

ÃTNN + B̃TNN = 〈(ξ1 + ξ2, η1 + η2, ζ1 + ζ2) ; min (σ1, σ2) ,max (ρ1, ρ2) ,max (τ1, τ2)〉 . (5)

• Symmetric Image

−ÃTNN = 〈(−ζ1,−η1,−ξ1) ;σ1, ρ1, τ1〉 . (6)

• Subtraction

ÃTNN − B̃TNN = 〈(ξ1 − ζ2, η1 − η2, ζ1 − ξ2) ; min (σ1, σ2) ,max (ρ1, ρ2) ,max (τ1, τ2)〉 . (7)

• Multiplication

ÃTNN × B̃TNN = 〈(ξ1ξ2, η1η2, ζ1ζ2) ; min (σ1, σ2) ,max (ρ1, ρ2) ,max (τ1, τ2)〉 . (8)

• Scalar Product

λÃTNN =

{
〈(λξ1, λη1, λζ1) ;σ1, ρ1, τ1〉 ;λ > 0

〈(λζ1, λη1, λξ1) ;σ1, ρ1, τ1〉 ;λ < 0
(9)
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Definition 2.4. The (α, β, γ)- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNN(α,β,γ) and defined as

ÃTNN(α,β,γ) ={x|µÃTNN (x) ≥ α, πÃTNN (x) ≤ β, νÃTNN (x) ≤ γ}. (10)

where 0 ≤ α ≤ σ, ρ ≤ β ≤ 1, τ ≤ γ ≤ 1 and 0 ≤ α+ β + γ ≤ 3.

Definition 2.5. The α- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNNα =[
LÃTNNα

, RÃTNNα

]
and defined as

ÃTNNα ={x|µÃTNN (x) ≥ α}

=
[
LÃTNNα

, RÃTNNα

]
=

[
ξ +

α (η − ξ)
σ

, ζ − α (ζ − η)

σ

]
.

(11)

Definition 2.6. The β- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNNβ =[
LÃTNNβ

, RÃTNNβ

]
and defined as

ÃTNNβ ={x|πÃTNN (x) ≤ β}

=
[
LÃTNNβ

, RÃTNNβ

]
=

[
(1− β) η + (β − ρ) ξ

(1− ρ)
,
(1− β) η + (β − ρ) ζ

(1− ρ)

]
.

(12)

Definition 2.7. The γ- cut of a single valued triangular neutrosophic number ÃTNN =

〈(ξ, η, ζ) ;σ, ρ, τ〉 is a closed crisp interval of real numbers denoted by ÃTNNγ =[
LÃTNNγ

, RÃTNNγ

]
and defined as

ÃTNNγ ={x|νÃTNN (x) ≤ γ}

=
[
LÃTNNγ

, RÃTNNγ

]
=

[
(1− γ) η + (γ − τ) ξ

(1− τ)
,
(1− γ) η + (γ − τ) ζ

(1− τ)

]
.

(13)

Theorem 2.8. Let ÃTNN = 〈(ξ, η, ζ) ;σ, ρ, τ〉 be any single valued triangular neutrosophic

number then for any α ∈ [0, σ], β ∈ [ρ, 1] and γ ∈ [τ, 1] the following equality hold

ÃTNN(α,β,γ) = ÃTNNα ∩ ÃTNNβ ∩ ÃTNNγ .

3. Values and ambiguities for the membership functions of ÃTNN

Let ÃTNNα , ÃTNNβ and ÃTNNγ be the α-cut, β-cut and γ-cut of a single valued triangular

neutrosophic number ÃTNN respectively, then the values and ambiguities for different mem-

bership functions of ÃTNN are defined as follows:
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Value of the true membership function:

Vµ(ÃTNN ) =

∫ σ

0

(
LÃTNNα

+RÃTNNα

)
2

φ (α) dα. (14)

Value of the indeterminacy membership function:

Vπ(ÃTNN ) =

∫ 1

ρ

(
LÃTNNβ

+RÃTNNβ

)
2

ψ (β) dβ. (15)

Value of the falsity membership function:

Vν(ÃTNN ) =

∫ 1

τ

(
LÃTNNγ

+RÃTNNγ

)
2

χ (γ) dγ. (16)

Ambiguity of the true membership function:

Ambµ(ÃTNN ) =

∫ σ

0

(
RÃTNNα

− LÃTNNα

)
φ (α) dα. (17)

Ambiguity of the indeterminacy membership function:

Ambπ(ÃTNN ) =

∫ 1

ρ

(
RÃTNNβ

− LÃTNNβ

)
ψ (β) dβ. (18)

Ambiguity of the falsity membership function:

Ambν(ÃTNN ) =

∫ 1

τ

(
RÃTNNγ

− LÃTNNγ

)
χ (γ) dγ. (19)

Here φ (α) is a nonnegative increasing function defined on [0, σ] with φ (0) = 0 and∫ σ
0 φ (α) dα = σ. ψ (β) is a nonnegative decreasing function defined on [ρ, 1] with ψ (1) = 0

and
∫ 1
ρ ψ (β) dβ = 1 − ρ and χ (γ) is a nonnegative decreasing function defined on [τ, 1] with

χ (1) = 0 and
∫ 1
τ χ (γ) dγ = 1− τ .

According to the equations (11), (14) and suitable nonnegative functions φ (α), ψ (β) and χ (γ)

as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the value of true membership function

of ÃTNN is

Vµ(ÃTNN ) =

∫ σ

0

α
(
ξ + α(η−ξ)

σ + ζ − α(ζ−η)
σ

)
σ

dα

=
1

σ2

∫ σ

0
[σ (ξ + ζ) + α (2η − ξ − ζ)]αdα

=
1

σ2

[
σ3 (ξ + ζ)

2
+
σ3 (2η − ξ − ζ)

3

]
=

(ξ + 4η + ζ)σ

6
.

(20)

According to the equations (12), (15) and suitable nonnegative functions φ (α), ψ (β) and

χ (γ) as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the value of indeterminacy
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membership function of ÃTNN is

Vπ(ÃTNN ) =

∫ 1

ρ

(1− β)
(
(1−β)η+(β−ρ)ξ

(1−ρ) + (1−β)η+(β−ρ)ζ
(1−ρ)

)
(1− ρ)

dβ

=
1

(1− ρ)2

∫ 1

ρ
[2η (1− β) + (β − ρ) (ξ + ζ)] (1− β) dβ

=
1

(1− ρ)2

∫ 1

ρ

[
(1− β)2 (2η − ξ − ζ) + (1− ρ) (ξ + ζ) (1− β)

]
dβ

=
1

(1− ρ)2

[
(1− ρ)3 (2η − ξ − ζ)

3
+

(1− ρ)3 (ξ + ζ)

2

]

=
(ξ + 4η + ζ) (1− ρ)

6
.

(21)

According to the equations (13), (16) and suitable nonnegative functions φ (α), ψ (β) and

χ (γ) as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the value of falsity membership

function of ÃTNN is

Vν(ÃTNN ) =

∫ 1

τ

(1− γ)
(
(1−γ)η+(γ−τ)ξ

(1−τ) + (1−γ)η+(γ−τ)ζ
(1−τ)

)
(1− τ)

dγ

=
1

(1− τ)2

∫ 1

τ
[2η (1− γ) + (γ − τ) (ξ + ζ)] (1− γ) dγ

=
1

(1− τ)2

∫ 1

τ

[
(1− γ)2 (2η − ξ − ζ) + (1− τ) (ξ + ζ) (1− γ)

]
dγ

=
1

(1− τ)2

[
(1− τ)3 (2η − ξ − ζ)

3
+

(1− τ)3 (ξ + ζ)

2

]

=
(ξ + 4η + ζ) (1− τ)

6
.

(22)

According to the equations (11), (17) and suitable nonnegative functions φ (α), ψ (β) and χ (γ)

as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the ambiguity of true membership

function of ÃTNN is

Ambµ(ÃTNN ) =

∫ σ

0

2α
(
ζ − α(ζ−η)

σ − ξ − α(η−ξ)
σ +

)
σ

dα

=
1

σ2

∫ σ

0
2α (ζ − ξ) (σ − α) dα

=
2

σ2
(ζ − ξ)σ3

(
1

2
− 1

3

)
=

(ζ − ξ)σ
3

.

(23)

According to the equations (12), (18) and suitable nonnegative functions φ (α), ψ (β) and

χ (γ) as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the ambiguity of indeterminacy
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membership function of ÃTNN is

Ambπ(ÃTNN ) =

∫ 1

ρ

2 (1− β)
[
(1−β)η+(β−ρ)ζ

(1−ρ) − (1−β)η+(β−ρ)ξ
(1−ρ)

]
(1− ρ)

dβ

=
2

(1− ρ)2

∫ 1

ρ
(β − ρ) (ζ − ξ) (1− β) dβ

=
2 (ζ − ξ)
(1− ρ)2

∫ 1

ρ

[
(1− ρ) (1− β)− (1− β)2

]
dβ

=
2 (ζ − ξ) (1− ρ)3

(1− ρ)2

(
1

2
− 1

3

)
=

(ζ − ξ) (1− ρ)

3
.

(24)

According to the equations (13), (19) and suitable nonnegative functions φ (α), ψ (β) and χ (γ)

as φ (α) = 2α
σ , ψ (β) = 2(1−β)

(1−ρ) and χ (γ) = 2(1−γ)
(1−τ) . Then the ambiguity of falsity membership

function of ÃTNN is

Ambν(ÃTNN ) =

∫ 1

τ

2 (1− γ)
[
(1−γ)η+(γ−τ)ζ

(1−τ) − (1−γ)η+(γ−τ)ξ
(1−τ)

]
(1− τ)

dγ

=
2

(1− τ)2

∫ 1

τ
(γ − τ) (ζ − ξ) (1− γ) dγ

=
2 (ζ − ξ)
(1− τ)2

∫ 1

τ

[
(1− τ) (1− γ)− (1− γ)2

]
dγ

=
2 (ζ − ξ) (1− τ)3

(1− τ)2

(
1

2
− 1

3

)
=

(ζ − ξ) (1− τ)

3
.

(25)

Theorem 3.1. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be
two single valued triangular neutrosophic numbers with σ1 = σ2, ρ1 = ρ2 and τ1 = τ2 then the

following equalities hold

(1) Vµ

(
ÃTNN + B̃TNN

)
= Vµ

(
ÃTNN

)
+ Vµ

(
B̃TNN

)
.

(2) Vπ

(
ÃTNN + B̃TNN

)
= Vπ

(
ÃTNN

)
+ Vπ

(
B̃TNN

)
.

(3) Vν

(
ÃTNN + B̃TNN

)
= Vν

(
ÃTNN

)
+ Vν

(
B̃TNN

)
.

Proof. Using Definition 2.3 and according to the given statement, we have

ÃTNN + B̃TNN = 〈(ξ1 + ξ2, η1 + η2, ζ1 + ζ2) ;σ1, ρ1, τ1〉 .

Thus by the definition of value of true membership function, we obtain

Vµ

(
ÃTNN + B̃TNN

)
=

[(ξ1 + ξ2) + 4 (η1 + η2) + (ζ1 + ζ2)]σ1
6

=
(ξ1 + 4η1 + ζ1)σ1

6
+

(ξ2 + 4η2 + ζ2)σ2
6
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Therefore,

Vµ

(
ÃTNN + B̃TNN

)
=Vµ

(
ÃTNN

)
+ Vµ

(
B̃TNN

)
.

In a similar manner the remaining results of the theorem can also be proved.

Theorem 3.2. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be
two single valued triangular neutrosophic numbers with σ1 = σ2, ρ1 = ρ2 and τ1 = τ2 then the

following equalities hold

(1) Ambµ

(
ÃTNN + B̃TNN

)
= Ambµ

(
ÃTNN

)
+Ambµ

(
B̃TNN

)
.

(2) Ambπ

(
ÃTNN + B̃TNN

)
= Ambπ

(
ÃTNN

)
+Ambπ

(
B̃TNN

)
.

(3) Ambν

(
ÃTNN + B̃TNN

)
= Ambν

(
ÃTNN

)
+Ambν

(
B̃TNN

)
.

Proof. Using Definition 2.3 and according to the given statement, we have

ÃTNN + B̃TNN = 〈(ξ1 + ξ2, η1 + η2, ζ1 + ζ2) ;σ1, ρ1, τ1〉 .

Thus by the definition of ambiguity of true membership function, we obtain

Ambµ

(
ÃTNN + B̃TNN

)
=

[(ζ1 + ζ2)− (ξ1 + ξ2)]σ1
3

=
(ζ1 − ξ1)σ1

3
+

(ζ2 − ξ2)σ2
3

Therefore,

Ambµ

(
ÃTNN + B̃TNN

)
=Ambµ

(
ÃTNN

)
+Ambµ

(
B̃TNN

)
.

In a similar manner the remaining results of the theorem can also be proved.

4. Value index and ambiguity index of ÃTNN

Let ÃTNN = 〈(ξ, η, ζ) ;σ, ρ, τ〉 be a single valued triangular neutrosophic number then the

value index and the ambiguity index for ÃTNN are defined as follows:

(1) Value Index:

V
(
ÃTNN , λ

)
=Vπ(ÃTNN ) + Vµ(ÃTNN ) + λ

[
Vν(ÃTNN )− Vµ(ÃTNN )

]
. (26)

(2) Ambiguity Index:

A
(
ÃTNN , λ

)
=Ambπ(ÃTNN ) +Ambν(ÃTNN )− λ

[
Ambν(ÃTNN )−Ambµ(ÃTNN )

]
. (27)

which are continuous non decreasing and non increasing functions of the parameter λ respec-

tively. Here λ ∈ [0, 1] represents the decision maker’s preference informations. λ ∈ [0, 12)

represents that the decision maker prefer uncertainty or negative feeling. λ ∈ (12 , 1] represents

that the decision maker prefer certainty or positive feeling. λ = 1
2 represents that the decision

maker is indifferent between positive and negative feeling.
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Theorem 4.1. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be
two single valued triangular neutrosophic numbers with σ1 = σ2, ρ1 = ρ2 and τ1 = τ2 then the

following equalities hold

(1) V
(
ÃTNFN + B̃TNN , λ

)
= V

(
ÃTNN , λ

)
+ V

(
B̃TNN , λ

)
.

(2) A
(
ÃTNN + B̃TNN , λ

)
= A

(
ÃTNN , λ

)
+A

(
B̃TNN , λ

)
.

Proof. According to equation (26), we can write

V
(
ÃTNN + B̃TNN , λ

)
=Vπ

(
ÃTNN + B̃TNN

)
+ Vµ

(
ÃTNN + B̃TNN

)
+ λ

[
Vν

(
ÃTNN + B̃TNN

)
− Vµ

(
ÃTNN + B̃TNN

)]
.

Using Theorem 3.2, we obtain

V
(
ÃTNN + B̃TNN , λ

)
=Vπ

(
ÃTNN

)
+ Vπ

(
B̃TNN

)
+ Vµ

(
ÃTNN

)
+ Vµ

(
B̃TNN

)
+ λ

[
Vν

(
ÃTNN

)
+ Vν

(
B̃TNN

)
− Vµ

(
ÃTNN

)
− Vµ

(
B̃TNN

)]
=
[
Vπ

(
ÃTNN

)
+ Vµ

(
ÃTNN

)
+ λ

(
Vν

(
ÃTNN

)
− Vµ

(
ÃTNN

))]
+
[
Vπ

(
B̃TNN

)
+ Vµ

(
B̃TNN

)
+ λ

(
Vν

(
B̃TNN

)
− Vµ

(
B̃TNN

))]
=V

(
ÃTNN , λ

)
+ V

(
B̃TNN , λ

)
.

This completes the first part of the theorem.

Now, according to equation (27), we can write

A
(
ÃTNN + B̃TNN , λ

)
=Ambπ

(
ÃTNN + B̃TNN

)
+Ambν

(
ÃTNN + B̃TNN

)
− λ

[
Ambν

(
ÃTNN + B̃TNN

)
−Ambµ

(
ÃTNN + B̃TNN

)]
.

Using Theorem 3.3, we have

A
(
ÃTNN + B̃TNN , λ

)
= Ambπ

(
ÃTNN

)
+Ambπ

(
B̃TNN

)
+Ambν

(
ÃTNN

)
+Ambν

(
B̃TNN

)
− λ

[
Ambν

(
ÃTNN

)
+Ambν

(
B̃TNN

)
−Ambµ

(
ÃTNN

)
−Ambµ

(
B̃TNN

)]
=
[
Ambπ

(
ÃTNN

)
+Ambν

(
ÃTNN

)
− λ

(
Ambν

(
ÃTNN

)
−Ambµ

(
ÃTNN

))]
+
[
Ambπ

(
B̃TNN

)
+Ambν

(
B̃TNN

)
− λ

(
Ambν

(
B̃TNN

)
−Ambµ

(
B̃TNN

))]
= A

(
ÃTNN , λ

)
+A

(
B̃TNN , λ

)
.

This completes the second part of the theorem.

Remark 4.2. It is easily seen that the value index and the ambiguity index are nonnega-

tive for a nonnegative single valued triangular neutrosophic number, i.e., V
(
ÃTNN , λ

)
≥ 0
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and A
(
ÃTNN , λ

)
≥ 0. Also the value index should be maximized and the ambiguity index

should be minimized, furthermore as a summarized result we can easily seen that the rela-

tions maxV
(
ÃTNN , λ

)
= Vπ(ÃTNN ) + Vν(ÃTNN ) and minA

(
ÃTNN , λ

)
= Ambπ(ÃTNN ) +

Ambµ(ÃTNN ) holds.

Remark 4.3. If we assume that the decision maker is indifferent between the certainty and

uncertainty, i.e., λ = 1
2 , then the value index and ambiguity index are given by

V

(
ÃTNN ,

1

2

)
≡ V

(
ÃTNN

)
=Vπ(ÃTNN ) +

1

2

[
Vµ(ÃTNN ) + Vν(ÃTNN )

]
. (28)

A

(
ÃTNN ,

1

2

)
≡ A

(
ÃTNN

)
=Ambπ(ÃTNN ) +

1

2

[
Ambµ(ÃTNN ) +Ambν(ÃTNN )

]
. (29)

Theorem 4.4. Let ÃTNN = 〈(ξ1, η1, ζ1) ;σ1, ρ1, τ1〉 and B̃TNN = 〈(ξ2, η2, ζ2) ;σ2, ρ2, τ2〉 be two
single valued triangular neutrosophic numbers and λ1, λ2 be any two nonnegative real numbers

then the following equalities hold

(1) Vµ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (σ1, σ2)

[
λ1

Vµ(ÃTNN)
σ1

+ λ2
Vµ(B̃TNN)

σ2

]
.

(2) Vπ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− ρ1, 1− ρ2)

[
λ1

Vπ(ÃTNN)
(1−ρ1) + λ2

Vπ(B̃TNN)
(1−ρ2)

]
.

(3) Vν

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− τ1, 1− τ2)

[
λ1

Vν(ÃTNN)
(1−τ1) + λ2

Vν(B̃TNN)
(1−τ2)

]
.

(4) Ambµ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (σ1, σ2)

[
λ1

Ambµ(ÃTNN)
σ1

+ λ2
Ambµ(B̃TNN)

σ2

]
.

(5) Ambπ

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− ρ1, 1− ρ2)

[
λ1

Ambπ(ÃTNN)
(1−ρ1) + λ2

Ambπ(B̃TNN)
(1−ρ2)

]
.

(6) Ambν

(
λ1Ã

TNN + λ2B̃
TNN

)
= min (1− τ1, 1− τ2)

[
λ1

Ambν(ÃTNN)
(1−τ1) + λ2

Ambν(B̃TNN)
(1−τ2)

]
.

Proof. The above results can be easily proven by using Definition 2.3 and the equations (20)

to (25).

4.1. De-neutrosophication

Let N (R) be the set of all single valued triangular neutrosophic numbers defined on the set

of real numbers, then a linear de-neutrosophication function F : N (R)→ R for single valued

triangular neutrosophic numbers in terms of value index and ambiguity index can be defined

as follows

F
(
ÃTNN

)
=V

(
ÃTNN

)
−A

(
ÃTNN

)
. (30)
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5. Mathematical model of a matrix game

A two person zero sum matrix game played by a maximizing player (as player I) and a

minimizing player (as player II) having the pure strategy i = {1, 2, . . . ,m} and j = {1, 2, . . . , n}
respectively is denoted by [aij ]m×n. Here aij is the pay-off value for the player I and its opposite

is the pay-off value for player II, when they choose the strategies i and j respectively such that

there exists the saddle point of the game. If the matrix game [aij ]m×n has no saddle point,

i.e., max
i
{min

j
{aij}} 6= min

j
{max

i
{aij}}, then to solve such matrix games we adopt the mixed

strategy sets S1 and S2 for the player I and II respectively, as S1 = {X = (x1, x2, . . . , xm) ∈
Rm : xi ≥ 0,∀i = 1, 2, . . .m, and

∑m
i=1 xi = 1} and S2 = {Y = (y1, y2, . . . , yn) ∈ Rn : yj ≥

0,∀j = 1, 2, . . . n, and
∑n

j=1 yj = 1}.

5.1. Mathematical model of a neutrosophic matrix game

The maximin and minimax principal for matrix games states that the player I choose such a

strategy which maximize his minimum expected gain and the player II choose such a strategy

which minimizes his maximum expected loss, thus for the neutrosophic matrix game, we have

as

For player I
max
xi
{min{

∑m
i=1 ã

TNN
i1 xi,

∑m
i=1 ã

TNN
i2 xi, . . . ,

∑m
i=1 ã

TNN
in xi}}

s.t.,
∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(31)

For player II
min
yj
{max{

∑n
j=1 ã

TNN
1j yj ,

∑n
j=1 ã

TNN
2j yj , . . . ,

∑n
j=1 ã

TNN
mj yj}}

s.t.,
∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(32)

Now, let min{
∑m

i=1 ã
TNN
i1 xi,

∑m
i=1 ã

TNN
i2 xi, . . . ,

∑m
i=1 ã

TNN
in xi} = ũTNN be the expected mini-

mum gain for player I and max{
∑n

j=1 ã
TNN
1j yj ,

∑n
j=1 ã

TNN
2j yj , . . . ,

∑n
j=1 ã

TNN
mj yj} = ṽTNN be

the expected maximum loss for player II. Then the problems (31) and (32) can be written as

For player I 

max ũTNN

s.t.,
∑m

i=1 ã
TNN
i1 xi � ũTNN∑m

i=1 ã
TNN
i2 xi � ũTNN

. . .∑m
i=1 ã

TNN
in xi � ũTNN∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(33)
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For player II 

min ṽTNN

s.t.,
∑n

j=1 ã
TNN
1j yj � ṽTNN∑n

j=1 ã
TNN
2j yj � ṽTNN

. . .∑n
j=1 ã

TNN
mj yj � ṽTNN∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(34)

Here ũTNN = 〈(u1, u2, u3) ;σ, ρ, τ〉 and ṽTNN = 〈(v1, v2, v3) ;σ′, ρ′, τ ′〉 are the single valued

triangular neutrosophic numbers as expected minimum gain and expected maximum loss re-

spectively. And � and � denotes the neutrosophic versions of the order relation ≥ and ≤ on

the set of real numbers and has linguistic interpretation as ‘essentially greater than or equal’

and ‘essentially less than or equal’ respectively. The problems (33) and (34) are known as

the neutrosophic linear programming problems for the player I and II respectively and can be

written in the standard form as

For player I 
max ũTNN

s.t.,
∑m

i=1 ã
TNN
ij xi � ũTNN , ∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(35)

For player II 
min ṽTNN

s.t.,
∑n

j=1 ã
TNN
ij yj � ṽTNN ,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0, ∀j = 1, 2, . . . , n

(36)

Now, utilizing the de-neutrosophication function F : N (R)→ R defined by the equation (30),

the above neutrosophic linear programming problems (35) and (36) can be transformed into

the crisp linear programming problems for the player I and II respectively as follows

For player I


maxF

(
ũTNN

)
s.t., F

(∑m
i=1 ã

TNN
ij xi

)
≥ F

(
ũTNN

)
,∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0,∀i = 1, 2, . . . ,m

(37)
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For Player II 
minF

(
ṽTNN

)
s.t., F

(∑n
j=1 ã

TNN
ij yj

)
≤ F

(
ṽTNN

)
,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(38)

Using equations (28) to (30) the above crisp linear programming problems (37) and (38) for

player I and II respectively, can be written as

For player I

maxVπ(ũTNN ) + 1
2

[
Vµ(ũTNN ) + Vν(ũTNN )

]
−Ambπ(ũTNN )

−1
2

[
Ambµ(ũTNN ) +Ambν(ũTNN )

]
s.t., Vπ(

∑m
i=1 ã

TNN
ij xi) + 1

2

[
Vµ(
∑m

i=1 ã
TNN
ij xi) + Vν(

∑m
i=1 ã

TNN
ij xi)

]
−Ambπ(

∑m
i=1 ã

TNN
ij xi)− 1

2

[
Ambµ(

∑m
i=1 ã

TNN
ij xi) +Ambν(

∑m
i=1 ã

TNN
ij xi)

]
≥ Vπ(ũTNN ) + 1

2

[
Vµ(ũTNN ) + Vν(ũTNN )

]
−Ambπ(ũTNN )

−1
2

[
Ambµ(ũTNN ) +Ambν(ũTNN )

]
,∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(39)

For player II

minVπ(ṽTNN ) + 1
2

[
Vµ(ṽTNN ) + Vν(ṽTNN )

]
−Ambπ(ṽTNN )

−1
2

[
Ambµ(ṽTNN ) +Ambν(ṽTNN )

]
s.t., Vπ(

∑n
j=1 ã

TNN
ij yj) + 1

2

[
Vµ(
∑n

j=1 ã
TNN
ij yj) + Vν(

∑n
j=1 ã

TNN
ij yj)

]
−Ambπ(

∑n
j=1 ã

TNN
ij yj)− 1

2

[
Ambµ(

∑n
j=1 ã

TNN
ij yj) +Ambν(

∑n
j=1 ã

TNN
ij yj)

]
≤ Vπ(ṽTNN ) + 1

2

[
Vµ(ṽTNN ) + Vν(ṽTNN )

]
−Ambπ(ṽTNN )

−1
2

[
Ambµ(ṽTNN ) +Ambν(ṽTNN )

]
, ∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(40)

The problems (39) and (40) can also be reformed as

For player I

maxVπ(ũTNN )−Ambπ(ũTNN )

+1
2

[
Vµ(ũTNN )−Ambµ(ũTNN ) + Vν(ũTNN )−Ambν(ũTNN )

]
s.t., Vπ(

∑m
i=1 ã

TNN
ij xi)−Ambπ(

∑m
i=1 ã

TNN
ij xi)

+1
2

[
Vµ(
∑m

i=1 ã
TNN
ij xi)−Ambµ(

∑m
i=1 ã

TNN
ij xi)

]
+1

2

[
Vν(
∑m

i=1 ã
TNN
ij xi)−Ambν(

∑m
i=1 ã

TNN
ij xi)

]
≥ Vπ(ũTNN )−Ambπ(ũTNN )

+1
2

[
Vµ(ũTNN )−Ambµ(ũTNN ) + Vν(ũTNN )−Ambν(ũTNN )

]
, ∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(41)
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For player II

minVπ(ṽTNN )−Ambπ(ṽTNN )

+1
2

[
Vµ(ṽTNN )−Ambµ(ṽTNN ) + Vν(ṽTNN )−Ambν(ṽTNN )

]
s.t., Vπ(

∑n
j=1 ã

TNN
ij yj)−Ambπ(

∑n
j=1 ã

TNN
ij yj)

+1
2

[
Vµ(
∑n

j=1 ã
TNN
ij yj)−Ambµ(

∑n
j=1 ã

TNN
ij yj)

]
+1

2

[
Vν(
∑n

j=1 ã
TNN
ij yj)−Ambν(

∑n
j=1 ã

TNN
ij yj)

]
≤ Vπ(ṽTNN )−Ambπ(ṽTNN )

+1
2

[
Vµ(ṽTNN )−Ambµ(ṽTNN ) + Vν(ṽTNN )−Ambν(ṽTNN )

]
,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0, ∀j = 1, 2, . . . , n

(42)

The problems (41) and (42) further can be written in the following manner by using the

expected minimum gain and expected maximum loss ũTNN = 〈(u1, u2, u3) ;σ, ρ, τ〉 and

ṽTNN = 〈(v1, v2, v3) ;σ′, ρ′, τ ′〉 as

For player I

max (u1+4u2+u3)(1−ρ)
6 − (u3−u1)(1−ρ)

3

+1
2

[
(u1+4u2+u3)σ

6 − (u3−u1)σ
3 + (u1+4u2+u3)(1−τ)

6 − (u3−u1)(1−τ)
3

]
s.t.,min

i
(1− ρij)

(∑m
i=1

Vπ(ãTNNij )xi
(1−ρij) −

∑m
i=1

Ambπ(ãTNNij )xi
(1−ρij)

)
+

min
i

(σij)

2

(∑m
i=1

Vµ(ãTNNij )xi
(σij)

−
∑m

i=1

Ambµ(ãTNNij )xi
(σij)

)
+

min
i

(1−τij)
2

(∑m
i=1

Vν(ãTNNij )xi
(1−τij) −

∑m
i=1

Ambν(ãTNNij )xi
(1−τij)

)
≥ (u1+4u2+u3)(1−ρ)

6 − (u3−u1)(1−ρ)
3

+1
2

[
(u1+4u2+u3)σ

6 − (u3−u1)σ
3 + (u1+4u2+u3)(1−τ)

6 − (u3−u1)(1−τ)
3

]
,∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0,∀i = 1, 2, . . . ,m

(43)

For player II

min (v1+4v2+v3)(1−ρ′)
6 − (v3−v1)(1−ρ′)

3

+1
2

[
(v1+4v2+v3)σ′

6 − (v3−v1)σ′
3 + (v1+4v2+v3)(1−τ ′)

6 − (v3−v1)(1−τ ′)
3

]
s.t.,min

j
(1− ρij ′)

(∑n
j=1

Vπ(ãTNNij )yj
(1−ρij ′) −

∑n
j=1

Ambπ(ãTNNij )yj
(1−ρij ′)

)
+

min
j

(σij
′)

2

(∑n
j=1

Vµ(ãTNNij )yj
(σij ′)

−
∑n

j=1

Ambµ(ãTNNij )yj
(σij ′)

)
+

min
j

(1−τij ′)

2

(∑n
j=1

Vν(ãTNNij )yj
(1−τij ′) −

∑n
j=1

Ambν(ãTNNij )yj
(1−τij ′)

)
≤ (v1+4v2+v3)(1−ρ′)

6 − (v3−v1)(1−ρ′)
3

+1
2

[
(v1+4v2+v3)σ′

6 − (v3−v1)σ′
3 + (v1+4v2+v3)(1−τ ′)

6 − (v3−v1)(1−τ ′)
3

]
,∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0,∀j = 1, 2, . . . , n

(44)
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For convenience, let
(u1 + 4u2 + u3)σ

6
− (u3 − u1)σ

3
= L1 (45)

(u1 + 4u2 + u3) (1− ρ)

6
− (u3 − u1) (1− ρ)

3
= M1 (46)

(u1 + 4u2 + u3) (1− τ)

6
− (u3 − u1) (1− τ)

3
= N1 (47)

(v1 + 4v2 + v3)σ
′

6
− (v3 − v1)σ′

3
= L2 (48)

(v1 + 4v2 + v3) (1− ρij ′)
6

− (v3 − v1) (1− ρij ′)
3

= M2 (49)

(v1 + 4v2 + v3) (1− τij ′)
6

− (v3 − v1) (1− τij ′)
3

= N2 (50)

Then the problems (43) and (44) reduces as

For player I

max 1
2L1 +M1 + 1

2N1

s.t.,min
i

(1− ρij)
(∑m

i=1

Vπ(ãTNNij )xi
(1−ρij) −

∑m
i=1

Ambπ(ãTNNij )xi
(1−ρij)

)
+

min
i

(σij)

2

(∑m
i=1

Vµ(ãTNNij )xi
(σij)

−
∑m

i=1

Ambµ(ãTNNij )xi
(σij)

)
+

min
i

(1−τij)
2

(∑m
i=1

Vν(ãTNNij )xi
(1−τij) −

∑m
i=1

Ambν(ãTNNij )xi
(1−τij)

)
≥ 1

2L1 +M1 + 1
2N1, ∀j = 1, 2, . . . , n∑m

i=1 xi = 1

and;xi ≥ 0, ∀i = 1, 2, . . . ,m

(51)

For player II

min 1
2L2 +M2 + 1

2N2

s.t.,min
j

(1− ρij ′)
(∑n

j=1

Vπ(ãTNNij )yj
(1−ρij ′) −

∑n
j=1

Ambπ(ãTNNij )yj
(1−ρij ′)

)
+

min
j

(σij
′)

2

(∑n
j=1

Vµ(ãTNNij )yj
(σij ′)

−
∑n

j=1

Ambµ(ãTNNij )yj
(σij ′)

)
+

min
j

(1−τij ′)

2

(∑n
j=1

Vν(ãTNNij )yj
(1−τij ′) −

∑n
j=1

Ambν(ãTNNij )yj
(1−τij ′)

)
≤ 1

2L2 +M2 + 1
2N2, ∀i = 1, 2, . . . ,m∑n

j=1 yj = 1

and; yj ≥ 0, ∀j = 1, 2, . . . , n

(52)

6. Numerical example

Consider a two person zero sum matrix game whose pay-offS are single valued triangular

neutrosophic numbers as follows

ÃTNN =

[
ãTNN11 ãTNN12

ãTNN21 ãTNN22

]
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Here ãTNN11 = 〈(175, 180, 190) ; 0.6, 0.4, 0.2〉, ãTNN12 = 〈(150, 156, 158) ; 0.6, 0.35, 0.1〉, ãTNN21 =

〈(80, 90, 100) ; 0.9, 0.5, 0.1〉, ãTNN22 = 〈(175, 180, 190) ; 0.6, 0.4, 0.2〉. According to the problems

(51) and (52) as explained in the mathematical procedure for a two person zero sum neutro-

sophic matrix game, we have

For player I

max 1
2L1 +M1 + 1

2N1

s.t.,min (1− ρ11, 1− ρ21)
(
Vπ(ãTNN11 )x1

(1−ρ11) +
Vπ(ãTNN21 )x2

(1−ρ21) − Ambπ(ãTNN11 )x1
(1−ρ11) − Ambπ(ãTNN21 )x2

(1−ρ21)

)
+min(σ11,σ21)

2

(
Vµ(ãTNN11 )x1

(σ11)
+

Vµ(ãTNN21 )x2
(σ21)

− Ambµ(ãTNN11 )x1
(σ11)

− Ambµ(ãTNN21 )x2
(σ21)

)
+min(1−τ11,1−τ21)

2

(
Vν(ãTNN11 )x1

(1−τ11) +
Vν(ãTNN21 )x2

(1−τ21) − Ambν(ãTNN11 )x1
(1−τ11) − Ambν(ãTNN21 )x2

(1−τ21)

)
≥ 1

2L1 +M1 + 1
2N1

min (1− ρ12, 1− ρ22)
(
Vπ(ãTNN12 )x1

(1−ρ12) +
Vπ(ãTNN22 )x2

(1−ρ22) − Ambπ(ãTNN12 )x1
(1−ρ12) − Ambπ(ãTNN22 )x2

(1−ρ22)

)
+min(σ12,σ22)

2

(
Vµ(ãTNN12 )x1

(σ12)
+

Vµ(ãTNN22 )x2
(σ22)

− Ambµ(ãTNN12 )x1
(σ12)

− Ambµ(ãTNN22 )x2
(σ22)

)
+min(1−τ12,1−τ22)

2

(
Vν(ãTNN12 )x1

(1−τ12) +
Vν(ãTNN22 )x2

(1−τ22) − Ambν(ãTNN12 )x1
(1−τ12) − Ambν(ãTNN22 )x2

(1−τ22)

)
≥ 1

2L1 +M1 + 1
2N1

x1 + x2 = 1

and;x1, x2, L1,M1, N1 ≥ 0

For player II

min 1
2L2 +M2 + 1

2N2

s.t.,min (1− ρ11′, 1− ρ12′)
(
Vπ(ãTNN11 )y1
(1−ρ11′) +

Vπ(ãTNN12 )y2
(1−ρ12′) − Ambπ(ãTNN11 )y1

(1−ρ11′) − Ambπ(ãTNN12 )y2
(1−ρ12′)

)
+min(σ11′,σ12′)

2

(
Vµ(ãTNN11 )y1

(σ11′)
+

Vµ(ãTNN12 )y2
(σ12′)

− Ambµ(ãTNN11 )y1
(σ11′)

− Ambµ(ãTNN12 )y2
(σ12′)

)
+min(1−τ11′,1−τ12′)

2

(
Vν(ãTNN11 )y1

(1−τ11′) +
Vν(ãTNN12 )y2

(1−τ12′) − Ambν(ãTNN11 )y1
(1−τ11′) − Ambν(ãTNN12 )y2

(1−τ12′)

)
≤ 1

2L2 +M2 + 1
2N2

min (1− ρ21′, 1− ρ22′)
(
Vπ(ãTNN21 )y1
(1−ρ21′) +

Vπ(ãTNN22 )y2
(1−ρ22′) − Ambπ(ãTNN21 )y1

(1−ρ21′) − Ambπ(ãTNN22 )y2
(1−ρ22′)

)
+min(σ21′,σ22′)

2

(
Vµ(ãTNN21 )y1

(σ21′)
+

Vµ(ãTNN22 )y2
(σ22′)

− Ambµ(ãTNN21 )y1
(σ21′)

− Ambµ(ãTNN22 )y2
(σ22′)

)
+min(1−τ21′,1−τ22′)

2

(
Vν(ãTNN21 )y1

(1−τ21′) +
Vν(ãTNN22 )y2

(1−τ22′) − Ambν(ãTNN21 )y1
(1−τ21′) − Ambν(ãTNN22 )y2

(1−τ22′)

)
≤ 1

2L2 +M2 + 1
2N2

y1 + y2 = 1

and; y1, y2, L2,M2, N2 ≥ 0

Hence, we obtain

For player I 

max 1
2L1 +M1 + 1

2N1

s.t., 211x1 + 100x2 ≥ 0.5L1 +M1 + 0.5N1

198.4667x1 + 228.5833x2 ≥ 0.5L1 +M1 + 0.5N1

x1 + x2 = 1

and;x1, x2, L1,M1, N1 ≥ 0

V. Jangid and G. Kumar, Matrix Games with Single-Valued Triangular Neutrosophic
Numbers as Pay-offs

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                               213



For player II 

min 1
2L2 +M2 + 1

2N2

s.t., 228.5833y1 + 198.4667y2 ≤ 0.5L2 +M2 + 0.5N2

100y1 + 211y2 ≤ 0.5L2 +M2 + 0.5N2

y1 + y2 = 1

and; y1, y2, L2,M2, N2 ≥ 0

Using standard simplex method we obtain that the optimal strategies for the player

I and II are X = (0.9112, 0.0888)T and Y = (0.0888, 0.9112)T respectively. The min-

imum expected gain as single valued triangular neutrosophic number for player I is

〈(152.2200, 158.1312, 160.8416) ; 0.6, 0.4, 0.2〉, while the maximum expected loss as single valued

triangular neutrosophic number for player II is 〈(166.5640, 172.0080, 180.0080) ; 0.6, 0.5, 0.2〉,
when they choose the optimal strategies as X = (0.9112, 0.0888)T and Y = (0.0888, 0.9112)T

respectively.

7. Conclusion

We have investigated a two-person zero-sum matrix game in a neutrosophic environ-

ment with single-valued triangular neutrosophic numbers as pay-offs. A ranking or de-

neutrosophication, based on value and ambiguity index using α- cut, β- cut, and γ- cut is

developed. A pair of neutrosophic linear programming problems estimated by the max-min

approach of optimality of the two-person zero-sum matrix game is converted into another pair

of crisp linear programming problems. Strategies and values of the matrix game are obtained

by providing a numerical example.

The primary results of this study are pointed as:

• The relative properties and cut sets are developed for single-valued triangular neutro-

sophic numbers.

• Expressions for values and ambiguities are derived for single-valued triangular neutro-

sophic numbers.

• Related theorems for value and ambiguity indices are stated and proved.

• De-neutrosophication concept based on value and ambiguity index is derived.

• Established a mathematical model corresponding to neutrosophic matrix game.

• A numerical example is provided and verified to illustrate the theoretical establish-

ments.

In the future, we can extend the recommended method for different types of neutrosophic

numbers as an interval-valued neutrosophic number, bipolar neutrosophic number, and single-

valued trapezoidal neutrosophic numbers.
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Abstract: The main purpose of the paper is to introduce the notion of complex interval neutrosophic soft set 

(CIVNSS) theory, which is the generalization of the soft set, fuzzy soft set, interval-valued fuzzy soft set, 

interval neutrosophic soft set, etc. to describe the uncertain time-periodic phenomena in the form of an interval. 

After that, some important properties, and operations on CIVNSSs have been discussed. Also, we study the 

similarity measures on CIVNSSs. Then, an algorithm has been constructed by using the CIVNSS aggregate 

operator. Finally, to show the impact of CIVNSS in solving real decision-making problems, an example, which 

is suitable to the current theory, is chosen, which ensures the effectiveness of the proposed theory in group 

decision-making problem. 

Keywords: Fuzzy set; soft set; complex fuzzy soft set; complex neutrosophic soft set; aggregate operator. 

1. Introduction 

Complex interval neutrosophic soft set (CIVNSS) is a new kind of soft set where the truth-membership 

function, indeterminacy-membership function, and the falsity-membership function are replaced by 

complex-valued functions in the form of an interval. It is the new way to handle parametric data in which 

time-phase plays an important role to describe the incomplete, indeterminate, inconsistent, or contradictory 

information systematically. The main feature in CIVNSS is the presence of phase and its membership in the 

form of an interval. In the group decision-making problem, researchers realized that the time period is an 

important factor along with the membership value so that decision-makers can make the real decision and it is 

more reliable and more acceptable than the other existing theories in which there is no scope of considering 

time-period. So, this new concept provides more scope for the decision-makers to make the real decisions with 

more feasibility.  

In a crisp set, there are only two choices for the belongingness of an object, and, for this, we use two bits i.e., if 

an object belongs to a set, we assign 1, and for not belongs to we assign 0 for that particular object. There is no 

other option regarding the belongingness of an object. But due to the uncertainty involved in real life, we cannot 
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restrict ourselves with only two values. This leads to the introduction of the fuzzy set theory, by Zadeh [1] in 

1965. By fuzzy set theory, we represent the uncertainty with the help of a membership function. Later on, we 

realize that the non-membership value is also equally as important as the membership value to design the 

vagueness. So, Atanassov[2] introduced another mathematical tool known as the intuitionistic fuzzy set. In an 

intuitionistic fuzzy set, each object has membership value as well as non-membership value and they depend on 

each other. Researchers use the concept of fuzzy set theory in different application areas and introduce new 

theories and results. Later on, the fuzzy set has been extended by introducing an interval-valued intuitionistic 

fuzzy set [3], an interval-valued fuzzy set [4], a Pythagorean fuzzy set and its application [5], multi fuzzy set[6] 

,etc.  

In the fuzzy set theory, the vague concept is handled by a membership function and its nature is extremely 

individual. In reality, to measure the uncertainty there exist different possibilities so, setting up a membership 

function is a difficult task. For example, to represent the concept of ‘middle-aged person’ we define the 

membership function via a triangular form and a trapezoidal form of fuzzy membership function by setting up 

the age limit in different ways. So, there is a problem to choose the best criteria fit for the middle-aged person. 

So, there is a chance of getting different membership values for a single person. This difficulty of membership 

function has been removed by introducing a soft set by Russian mathematician Molodtsov[7] in 1999. Soft set 

theory handled uncertainty or vagueness differently by using the notion of parameterization. In soft set theory, 

to define an object, no need to introduce a membership function. It can be applied in different fields including 

game theory, social science, medical science, operation research, decision-making, pattern recognition, algebra, 

etc. Parameters may not be always crisp, but maybe in fuzzy words so, such types of vagueness demand several 

kinds of extensions of soft set theory which leads to the introduction of rough soft sets and fuzzy soft sets [8], 

fuzzy soft set theory, and its application [9], intuitionistic fuzzy parameterized soft set theory and its decision 

making [10], bipolar soft sets [11], hypersoft set[12] ,etc. 

Incomplete information can be handled by the intuitionistic fuzzy set. But it cannot represent the indeterminacy 

involve in the data. So, there is a demand for another tool that is capable of representing incomplete, 

indeterminate, and uncertain information in an organized manner. This purpose is solved by introducing the 

neutrosophic set proposed by Smarandache [13]. The nature of indeterminacy is different as it depends on the 

problem so, researchers use this concept in various ways to tackle different essence of indeterminacy present in 

real life. Neutrosophic set is the extension of fuzzy set, intuitionistic fuzzy set, interval-valued fuzzy set, and 

interval-valued intuitionistic fuzzy set. For scientific implementation, we use a single-valued neutrosophic set 

introduced by Wang et al. [14]. The neutrosophic set has several extensions and applications among which 

some significant works are neutrosophic soft set [15], aggregate operators of neutrosophic hypersoft sets[16], 

rough neutrosophic sets[17], interval neutrosophic sets[18], interval neutrosophic tangent similarity measure 

based MADM strategy[19], bipolar neutrosophic sets and their application[20] , neutrosophic refined sets in 

medical diagnosis[21], distance-based similarity measure for refined neutrosophic sets and its application[22], 

an approach of TOPSIS technique for developing supplier selection under type-2 neutrosophic number[23], an 

integrated neutrosophic ANP and VIKOR method for supplier selection[24], neutrosophic approach for 

evaluation of the green supply chain management[25], group decision making model based on neutrosophic sets 

for heart disease diagnosis[26], bipolar neutrosophic multi-criteria decision making framework for professional 

selection[27], a novel intelligent medical decision support model based on soft computing IoT[28] etc. 
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But in all the above discussions, there is one information gap. To make it clear we consider an example. In a 

medical diagnosis problem, one person may have a variety of symptoms or attributes, or criteria. But in that 

case, we do not consider the information ‘time duration of the symptom’ though, it is also necessary information 

and should be considered together with the information’s, ‘belongingness level of a symptom’ or 

‘non-belongingness level of a symptom’ or ‘indeterminacy level of a symptom’ for proper diagnosis of a 

patient. To cover up such problem complex fuzzy set [29], complex fuzzy soft set [30-31], complex 

intuitionistic fuzzy soft set [32], complex fuzzy logic [33], interval-valued complex fuzzy soft sets [34], 

complex neutrosophic set [35], complex neutrosophic soft set [36],etc. are introduced. 

 

Ramot et al. introduced complex fuzzy sets (CFSs) to ensure the accurate time-periodic representation of the 

fuzziness behavior of the attributes to generalize the membership structure. The problems that are intrinsic in 

CFSs can be handled with the help of complex intuitionistic fuzzy soft sets (CIFSSs) and complex vague soft 

sets(CVSSs). Selvachandran et al. generalize the CFS model by introducing the interval-valued complex fuzzy 

soft set(IV-CFSS). By combining the complex fuzzy sets and neutrosophic sets, Ali et al. developed complex 

neutrosophic sets (CNSs). In 2018, Ali et al. [37] formulate an interval complex neutrosophic set (ICNS) and 

apply it in decision making. To handle the parametric data, Broumi et al. [36] introduced complex neutrosophic 

soft sets (CNSSs). 

The main objective of this paper is to introduce the notion of complex interval neutrosophic soft sets 

(CIVNSSs). CIVNSSs are formed by combining the interval-valued fuzzy sets (IV-FSs) and the complex 

neutrosophic soft sets (CNSSs). CIVNSS is the extension of CNSS. The main objective behind the modeling of 

CIVNSS is to provide a more general framework for time-periodic phenomena to ensure a more accurate 

representation of uncertainty of three-dimensional information about the problem parameters and an 

interval-based truth-membership, falsity-membership, and indeterminacy-membership structure. Moreover, we 

study some operations and distance measures on CIVNSSs. Finally, we use complex interval neutrosophic set 

aggregate operators to solve real-life problems in real decision-making. 

The main motivation behind the introduction of complex interval neutrosophic soft set has been furnished 

below point wise: 

• A soft set has been introduced to tackle parametric data in which the attributes associated with the 

parameter attain only the values 0 or 1. 

• To overcome the issues which cannot be explained by a soft set, a fuzzy soft set is introduced where an 

attribute can take any values that belong to the unit closed interval [0, 1]. 

•  The fuzzy soft set has been further extended by introducing an interval-valued fuzzy soft set and 

intuitionistic fuzzy soft set. In interval-valued fuzzy soft set, a decision-maker may take the 

membership value as a subset of [0,1] and in the intuitionistic fuzzy soft set, a decision-maker has a 

scope to assign non-membership value along with the non-membership value with the condition that 

their sum cannot exceed 1. 

• Interval-valued fuzzy soft set and the intuitionistic fuzzy soft set has been extended further by 

introducing interval-valued intuitionistic fuzzy soft set where the value of an attribute can be 

represented by a pairwise interval in which the first interval is for membership degree and the second 
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interval for the non-membership degree with the condition that the sum of their supremum cannot 

exceed 1. 

• A neutrosophic soft set has been introduced in which every attribute has three membership values and 

each belongs to the interval [0,1]. 

• Interval neutrosophic soft set has been introduced to extend the notion of the neutrosophic soft set 

where each membership value is a subset of [0,1]. 

• Sometimes time-period is an issue while solving decision making problem in real-world and such 

problem cannot be solved by soft set, fuzzy soft set, intuitionistic fuzzy soft set, interval-valued fuzzy 

soft set, neutrosophic soft set, interval-neutrosophic soft set ,etc. To eradicate such an issue, a complex 

interval neutrosophic soft set has been introduced in the present literature. So, complex interval 

neutrosophic soft set can be viewed as follows: 

soft set   fuzzy soft set  intuitionistic fuzzy soft set / interval-valued fuzzy soft set  interval-valued 

intuitionistic fuzzy soft set   neutrosophic soft set  interval neutrosophic soft set   complex interval 

neutrosophic soft set.   

 

The paper is organized in the following manner: 

In section 2, we give a brief literature review that is relevant to the subsequent sections. In section 3, some 

operations on CIVNSSs have been proposed. In section 4, similarity measures on CIVNSSs have been 

discussed. In section 5, aggregation of CIVNSSs has been discussed. In section 6, an algorithm has been 

constructed by using CIVNSS aggregate operators. In section 7, an application of the proposed algorithm has 

been suggested. Finally, the paper is concluded in section 8. 

 

2. Literature Review 

2.1 Definition (Zadeh, 1965) Let X be a set of the universe. A fuzzy set on X can be defined as a set of 

ordered pairs of the form given by, 

( )( )* { , : }AA x x x X=  , where A denotes the membership function, and : [0,1]A X → . 

2.2 Definition (Molodtsov, 1999) Let X be the initial universe set and E be the set of parameters and 

( )P X denotes the power set of X . Then the pair ( , )F A is called a soft set over X , where A E , and 

: ( )F A P X→ . 

2.3 Definition (Atanassov, 1986) Let X be a fixed set and A be a subset of X . Then an intuitionistic fuzzy 

set on X can be defined as a set of an ordered triplet of the form given by, 



Neutrosophic Sets and Systems, Vol.45, 2021     222  

 

 

Somen Debnath, Impact of Complex Interval Neutrosophic Soft Set Theory in Decision making By Using Aggregate 

Operator 

 

( ) ( )( )* { , , : }A AA x x x x X =  , where 
A  and A denote the membership function and 

non-membership function respectively such that  , : [0,1]A A X  → ,and ( ) ( )0 1A Ax x  +  . 

2.4 Definition (Bustince, 2010) An interval-valued fuzzy set 
*A on a universe X is a mapping such that, 

*A : [0,1]X Int→ , where [0,1]Int denotes the set of all closed subintervals of [0,1] and the membership 

of an element x X is defined as ( ) ( ) ( )[ , ]l u

X X Xx x x  = .  

2.5 Definition (Cagman et al., 2011) Let U be an initial universe and E be a set of parameters which are in 

fuzzy words. Then the pair ,F E
 
 
 

is called a fuzzy soft set (FSS) over U if ( ):F E P U→ , where 

( )P U denotes the set of all fuzzy subsets overU . 

2.6 Definition (Smarandache, 2005) Let U be an initial universe. A neutrosophic set N is an object having 

the form ( ) ( ) ( ) , , , :N x T x I x F x x U
N N N

=  , where the functions , , : ] 0,1 [T I F U − +→ , denote the 

truth, indeterminacy, and falsity membership functions, respectively and they must satisfy the condition, 

( ) ( ) ( )0 3
N N N

T x I x F x− + + +  . For practical application, it is difficult to apply. So we define its 

special form, called single-valued neutrosophic set (SVNS). 

2.7 Definition (Wang et al., 2010) Let U denotes the space of objects with generic elements x U . Then, an 

SVNS on U is denoted by N


and it is defined as N


= ( ) ( ) ( ), , , :x T x I x F x x U
N N N

  
 
 
 

, where 

, , : [0,1]T I F U → . 

2.8 Definition  (Ramot et al., 2002) A complex fuzzy set(CFS) 
*C  over a universal set U is defined by 

taking complex fuzzy-valued membership degree ( )( )x to each of the elements of U where, 

( )x = ( ) ( )ib x
a x e 

 , 1i  − , x U  . 
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( ) [0,1]a x  is called the amplitude part and ( ) [0,2 ]b x  is called the phase part in the complex 

fuzzy-valued membership degree ( )x of x . 

2.9 Definition ( Thirunavukarasu et al., 2017) A complex fuzzy soft set (CFSS) over a universal set U is 

defined as an ordered pair ,F E
 

 
 

where, F


is a mapping defined as, ( ):F E P U
 

→ ; ( )P U


denotes the 

set of all complex fuzzy subsets of the setU . 

Let,  1 2, ,....., mU x x x= be the set of the universe and  1 2, ,....., nE e e e= be the set of complex 

fuzzy-valued parameters then, a complex fuzzy soft set ,F E
 

 
 

can be defined as follows 

( ), , :j j jF E e F e e E
     

=      
    

 ,where ( )  1 1 2 2/ , / ,......., / :j j j m sj jF e x x x x x x e E


=    

sjx
 
is a complex fuzzy evaluation of an alternative sx over a parameter je as, 

sjiu

sj sjx p e= , where 

[0,1]sjp  is the amplitude part and [0,2 ]sju  is the periodic part; 1,2,......,s m= and 

1,2,......, nj = . So, CFSS is a combination of a soft set (SS) with CFS by taking all the parameters in the 

complex fuzzy sense in a soft set. 

2.10 Definition (Broumi et al., 2017) Let U be an initial universe and E be a set of parameters, A E  , and 

A be a complex neutrosophic set over U for all x U . Then, a complex neutrosophic soft set (CNSS) 

A over U is defined as a mapping : ( )A E CN U → , where ( )CN U denotes the set of complex 

neutrosophic sets in U  and it is defined as 

( )( ) ( ) , : , ( )A A Ax x x E x CN U  =   ,  

Where ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), ,A A Ai x i x i x

A A A Ax x e x e x e
  

   = , , , [0,1]A A A    , and 

, , (0,2 ].A A A     
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2.11 Definition Let U be an initial universe and E be a set of parameters, A E  , and 

*

A be a complex 

interval neutrosophic set over U for all x U . Then, a complex interval neutrosophic soft set (CIVNSS) 

*

A over U is defined as a mapping 

*
: ( )E CIVN UA → , where ( )CIVN U denotes the set of complex 

interval neutrosophic sets in U  and it is defined as 

( ) ( )
* * *

, : , ( )x x x E x CIVN UA A A  =  
  
  
  

,  

Where 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
*

, ,A A Ai x i x i x

A A A Ax x e x e x e
  

   = , , , [0,1]A A A    ,

( ) ( ) ( ),l u

A A Ax x x   =   , ( ) ( ) ( ),l u

A A Ax x x   =   , ( ) ( ) ( ),l u

A A Ax x x   =   and 

, , (0,2 ]A A A     

For more clarity we consider the following example: 

2.11.1 Example Let,  1 2 3 4, , ,U x x x x= be the set of developing countries under consideration, E be a set 

of parameters that signifies a country’s time-dependent population indicators,  and  1 2 3, ,A e e e E=  , 

where the parameters stand for  1e =birth rate, 2e =death rate ,and 3e =immigration rate. Then we define the 

CIVNSs as follows 

( )

           

           

0.6 0.8 0.4 0.4 0.230.3, 0.4 , 0.5, 0.6 , 0.3, 0.5 0.5, 0.8 , 0.3, 0.4 , 0.25, 0.55
, ,

1 2*

1 2 4 5
0.4 0.4 0.53 3 40.2, 0.5 , 0.1, 0.2 , 0.6, 0.7 0.6, 0.7 , 0.45, 0.65 , 0.7, 0.8

,

3 4

ii i i i i
e e e e e e

x x

eA
i i ii i i

e e e e e e

x x


    


  

  

=
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( )

           

           

2
0.1 0.6 0.2 0.53 30.25, 0.75 , 0.4, 0.6 , 0.8, 0.9 0.1, 0.3 , 0.35, 0.65 , 0.6, 0.7

, ,

1 2*

2 2 4 2 3
0.5 0.453 3 3 40.3, 0.5 , 0.1, 0.3 , 0.6, 0.8 0.4, 0.6 , 0.65, 0.75 , 0.25, 0.45

,

3 4

i ii i i i
e e e e e e

x x

eA
i i i i i i

e e e e e e

x x

 
   


   

 

=

 
 
 
 
 
 












 

( )

           

           

6 4

3

4

5 3
0.3 0.2 0.1 0.4

0.25, 0.35 , 0.4, 0.6 , 0.3, 0.5 0.45, 0.65 , 0.3, 0.6 , 0.65, 0.85
, ,

1 2*

2 3
0.3 0.3 0.63 30.7, 0.8 , 0.2, 0.3 , 0.8, 0.9 0.5, 0.6 , 0.35, 0.65 , 0.6, 0.7

,

3 4

i ii i i i
e e e e e e

x x

eA
i i ii i i

e e e e e e

x x

 
   


  

  

=

 
 
 
 
 
 










Then the complex interval neutrosophic soft set 
*

A can be written as a collection of complex interval 

neutrosophic sets of the form 

( ) ( ) ( )
*

2 3, ,

* * *

1A e e eA A A  
 

=  
 

 

2.12 Definition Let us consider the two CIVNSSs over the set of the universe U as follows: 

( ) ( )
* * *

, : , ( )A A Ax x x E x CIVN U  
  

=    
  

,  

Where 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
*

, ,A A Ai x i x i x

A A A Ax x e x e x e
  

   = , , , [0,1]A A A    ,

( ) ( ) ( ),l u

A A Ax x x   =   , ( ) ( ) ( ),l u

A A Ax x x   =   , ( ) ( ) ( ),l u

A A Ax x x   =   and 

, , (0,2 ]A A A     

and ( ) ( )
* * *

, : , ( )B B Bx x x E x CIVN U  
  

=    
  

,  

where 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )
*

, ,B B Bi x i x i x

B B B Bx x e x e x e
  

   = , , , [0,1]B B B    ,

( ) ( ) ( ),l u

B B Bx x x   =   , ( ) ( ) ( ),l u

B B Bx x x   =   , ( ) ( ) ( ),l u

B B Bx x x   =   and 

, , (0,2 ]B B B   
 

Then we consider the following: 

(i) 
*

A is said to be an empty CIVNSS, denoted by 
*

A 
, if ( )

*

A x = , for all x U . 

(ii)
*

A is said to be an absolute  CIVNSS, denoted by 
*

UA , if ( )
*

A x U = , for all x U . 

(iii)
*

A is said to be a normal  CIVNSS, denoted by 
*

NA , if 

( )  1,1A x = , ( )  1,1A x = , ( )  1,1A x = and , , 2 ,A A A   =  for all x U . 

(iv) 
*

A is said to be a CIVNS-subset of 
*

B , denoted by 
*

A 
*

B , if for all x U , ( ) ( )
* *

A Be e  , 

that is the following conditions are satisfied: 

( ) ( )A Be e  , ( ) ( )A Be e  , ( ) ( )A Bx x   

,and ( ) ( )A Be e  , ( ) ( )A Be e  , ( ) ( )A Be e  .  

(v) 
*

A is said to be equal to 
*

B , denoted by 
*

A =
*

B , if for all x U , ( ) ( )
* *

A Be e = , that is the 

following conditions are satisfied: 

( ) ( )A Be e = , ( ) ( )A Be e = , ( ) ( )A Bx x =  

,and ( ) ( )A Be e = , ( ) ( )A Be e = , ( ) ( )A Be e =  

3. Operations on Complex Interval Neutrosophic Soft Sets 

In this section, we discuss different sorts of set-theoretic operations on CIVNSSs. 

Let 
*

A  and 
*

B be two CIVNSSs over the common universal setU . Then we define the following operations: 

3.1 Definition Complement of 
*

A is denoted by
*

c

A
 
 
 

 and it is defined as: 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
*

(2 ) (2 ) (2 )
, 1 ,A A A

c

i x i x i x

A A A Ax x e x e x e
     

   
− − − 

= − 
 

 

It is to be noted that
 ( ) ( )

* *
cc

x xA A =
  
     

  

3.2 Definition  

 Let , 

( ) ( )
* * *

, : , ( ) , andA A Ax x x E x CIVN U  
  

=    
  

( ) ( )
* * *

, : , ( )B B Bx x x E x CIVN U  
  

=    
  

 

be two IVNSSs over the common universe U . Then, their union is denoted by 
* *

A B  and is defined as: 

*

C =
* *

A B  = ( ) ( )
* *

, :x x x x UA B = 
  
  
  

, where C A B=   

( )

( )

( )

( ) ( )

*
,

* *
,

* *
,

x x if e A B
A

e x x if e B Ac B

x x x if e A BBA



 

 

 −

=  −

 


  
  
  
  
  

 
 
 
 
 

 

Where  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ), ( ) ( )

* * ( )
( ) ( ), ( ) ( )

( )
( ) ( ), ( ) ( )

i x xl l u u BAx x x x eB BA A

i x xl l u u BAx x x x x x eB B BA A A

i x xl l u u BAx x x x eB BA A

 
   

 
     

 
   


 


=  


 

  
  
 
   

 
  
  

 

3.3Definition  
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Let , 

( ) ( )
* * *

, : , ( )A A Ax x x E x CIVN U  
  

=    
  

and 

( ) ( )
* * *

, : , ( )B B Bx x x E x CIVN U  
  

=    
  

 

be two IVNSSs over the common universe U . Then, their intersection is denoted by 
* *

A B  and is defined 

as: 

*

C =
* *

A B  = ( ) ( )
* *

, :A Bx x x x U 
  

=   
  

, where C A B=   

( )

( )

( )

( ) ( )

*
,

* *
,

* *
,

x x if e A B
A

e x x if e B Ac B

x x x if e A BBA



 

 

 −

=  −

 


  
  
  
  
  

 
 
 
 
 

 

Where  

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ), ( ) ( )

* * ( )
( ) ( ), ( ) ( )

( )
( ) ( ), ( ) ( )

i x xl l u u BAx x x x eB BA A

i x xl l u u BAx x x x x x eB B BA A A

i x xl l u u BAx x x x eB BA A

 
   

 
     

 
   


 


=  


 

  
  
 
   

 
  
  

 

4. Similarity measure of complex interval neutrosophic soft sets 

Nowadays the concept of similarity measure has been used in almost all scientific disciplines. The Similarity 

measure of two objects determines the degree of closeness or the degree of sameness between them. In many 

different fields like pattern recognition, decision-making, disease diagnosis, etc. it has been used quite 

successfully. 
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Now considering  1 2 3, , ,....., mU x x x x= be the set of the universe and  1 2 3, , ,....., nE e e e e= be the set 

of parameters where they are used in complex interval neutrosophic sense. Then, a mapping 

( ) ( )      ( ): 0,1 , 0,1 , 0,1 ,CIVNSS CIVNSSU U   → where ( )CIVNSS U denotes the set of all complex 

interval neutrosophic soft set over the universe U , is said to be a similarity measure if it satisfies the following 

conditions: 

For all , , , , ,P E Q E R E
     

     
     

( )CIVNSS U  

(i)      ( )
*

, , , 0,1 , 0,1 , 0,1S P E Q E
    

    
    

 

(ii) 
*

, , ,S P E Q E
    
    
    

=
*

, , ,S Q E P E
    
    
    

 

 (iii) 

*

, , ,S P E Q E
    
    
    

= ( )1,1,1  ,P E
 
 
 

= ,Q E
 
 
 

 

(iv) If ,P E
 
 
 

 ,Q E
 
 
 

 ,R E
 
 
 

then, 
*

, , ,S P E Q E
    
    
    


*

, , ,S P E R E
    
    
      

, and 
*

, , ,S Q E R E
    
    
    


*

, , ,S P E R E
    
    
    

 

4.1 Ratio Similarity measure of two complex interval neutrosophic soft sets 

Let ,F E
 

 
 

and ,G E
 

 
 

be two complex interval neutrosophic soft sets over U as follows: 

( ) ( ), , : , / , , : ,
F F F
s s sj j j

j j j

i i iF F F

j j j j s s s s j sF E e F e e E e x p e q e r e e E x U
  

         
=   =         

       

and 

( ) ( ), , : , / , , : ,
G G G
s s sj j j

j j j

i i iG G G

j j j j s s s s j sG E e G e e E e x p e q e r e e E x U
  

         
=   =         
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Where 
j

F

sp ,
j

F

sq ,
j

F

sr [0,1] are the amplitude parts of the truth-membership, indeterminacy-membership 

,and falsity-membership values respectively and 
F

s j
 ,

F

s j
 ,

F

s j
 [0,2 ] are the respective phase parts of the 

evaluation of an alternative sx concerning for to the parameter je over the CIVNSS ,F E
 

 
 

. Similarly, we 

can write for ,G E
 

 
 

. 

Since in every evaluation there exist two decision information to each membership value, one is amplitude part 

another one is phase part. So, to measure the similarity degree between the two CIVNSSs 

,F E
 

 
 

and ,G E
 

 
 

, we have measured one similarity for the amplitude part and phase part individually and 

then added them for deriving the total similarity. 

4.2 Definition  

The ratio similarity between ,F E
 

 
 

and is denoted by and is defined, , , ,RG E S F E G E
         

      
      

by the following equation: 

, , ,RS F E G E
      

    
    

=

( ) ( )
1

1

,
n

Rj j j

j

n

jj

w S F e G e

w

  

=

=

 
 
 
 
 




  

Where  
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( ) ( ),R j jS F e G e
  

 
 
 
 
 

=

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
1

1

max min , ,min , max min , ,min , min max , ,max ,

min , min , min , min , max , max ,

F G F G F G F G F G F G

j j j j j j j j j j j j

F G F G F G F G F G F G

j j j j j j j j j j j j

n
l l u u l l u u l l u u

s s s s s s s s s s s s

j

n l l u u l l u u l l u u

s s s s s s s s s s s sj

p p p p q q q q r r r r

p p p p q q q q r r r r

=

=

+ +

+ + + + +





 

,and  1 2, ,........, nw w w w= are the weights of the parameters and each [0,1]jw  . 

If , 
1

1
n

jj
w

=
= , then the above equation takes the form as, 

( ) ( )
1

, , , ,
n

RR j j j

j

S F E G E w S F e G e
     

=

 
     

=      
      

 

  

5. Aggregation of complex interval neutrosophic soft sets 

Let,  1 2, ,....., mU u u u= be the set of alternatives and  1 2, ,....., nE e e e= be the set of parameters which 

are in complex interval neutrosophic sense. Consider K-CIVNSSs 
1 2, , , ,......, ,kF E F E F E

       
     
     

from 

( )CIVN U (set of all CIVNSSs overU . Then the mapping  

( ) ( ) ( ) ( ): ..........CIVN CIVN CIVN CIVNB U U U U   


   → satisfies the following properties: 

(a)
1 2

11 1 1

, , , ,........, , ,kB F E F E F E F E
           

=                 
, where 

1

,F E
 

 
 

is the absolute complex 

interval  neutrosophic soft set over U . 

(b)
1 2

00 0 0

, , , ,........, , ,kB F E F E F E F E
           

=                 
, where 

0

,F E
 

 
 

is the null complex interval 

neutrosophic soft set overU . 
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(c) If, for all 1,2,3,....,i k= , , ,i iF E G E
    

   
   

then,  

1 2 1 2, , , ,........, , , , , ,........, ,k kB F E F E F E B G E G E G E
                    

              
              

, where  

1 2, , , ,........, ,kG E G E G E
       

     
     

be another k-CIVNSSs over U . 

(d) The aggregate operator satisfies the inequality 

1 2, , , , ,........, , ,kF E B F E F E F E F E
    
− +

          
           

          
, where ,F E


− 

 
 

is the 

worst(min-min-max-valued for amplitude part and min-valued for phase part) CIVNSS and ,F E

+ 

 
 

is the 

best(max-max-min-valued for amplitude part and max-valued for phase part)CIVNSS over k-CIVNSSs. 

Now we consider the following tables for better understanding: 

Table1  for absolute CIVNSS
1

,F E
 

 
 

 

 
1e  2e  ……………. 

ne  

1x     ( ) 21,1 1,1 1,1 ie 
    ( ) 21,1 1,1 1,1 ie 

 ………………    ( ) 21,1 1,1 1,1 ie 
 

2x     ( ) 21,1 1,1 1,1 ie 
    ( ) 21,1 1,1 1,1 ie 

 ……………    ( ) 21,1 1,1 1,1 ie 
 

…………. …………. ………………… …………….  

mx     ( ) 21,1 1,1 1,1 ie 
    ( ) 21,1 1,1 1,1 ie 

 …………………    ( ) 21,1 1,1 1,1 ie 
 

                                    Table1. Absolute CIVNSS
1

,F E
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Table2  for null CIVNSS
0

,F E
 

 
 

 

 
1e  2e  ……………. 

ne  

1x     ( ) 00,0 0,0 0,0 ie 

 

   ( ) 00,0 0,0 0,0 ie 

 

………………    ( ) 00,0 0,0 0,0 ie 

 

2x     ( ) 00,0 0,0 0,0 ie 

 

   ( ) 00,0 0,0 0,0 ie 

 

……………    ( ) 00,0 0,0 0,0 ie 

 

…………

. 

…………. ………………… …………….  

mx     ( ) 00,0 0,0 0,0 ie 

 

   ( ) 00,0 0,0 0,0 ie 

 

………………

… 

   ( ) 00,0 0,0 0,0 ie 

 

                                 Table2. Null CIVNSS
1

,F E
 

 
 

 

Table 3 for K-CIVNSSs 

 
1e  2e  ……

… 

ne   

1x  
1 1
11 11

1
11

11 11 11 11

11 11

, , , ,

,

i il u l u

il u

p p e q q e

r r e

 



        
    

 
1 1
12 12

1
12

12 12 12 12

12 12

, , , ,

,

i il u l u

il u

p p e q q e

r r e

 



        
    

 

……

… 

1 1
1 1

1
1

1 1 1 1

1 1

, , , ,

,

n n

n

i il u l u

n n n n

il u

n n

p p e q q e

r r e

 



        
    

 

2x  
2 2
21 21

2
21

21 21 21 21

21 21

, , , ,

,

i il u l u

il u

p p e q q e

r r e

 



        
    

 
2 2
22 22

2
22

22 22 22 22

22 22

, , , ,

,

i il u l u

il u

p p e q q e

r r e

 



        
    

 

……

… 

2 2
2 2

2
2

2 2 2 2

2 2

, , , ,

,

n n

n

i il u l u

n n n n

il u

n n

p p e q q e

r r e

 



        
    

 

……. …………. ………………… ……

… 

…………… 
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mx  1 1

1

1 1 1 1

1 1

, , , ,

,

k k
m m

k
m

i il u l u

m m m m

il u

m m

p p e q q e

r r e

 



        
    

 
2 2

2

2 2 2 2

2 2

, , , ,

,

k k
m m

k
m

i il u l u

m m m m

il u

m m

p p e q q e

r r e

 



        
    

 

……. , , , ,

,

k k
mn mn

k
mn

i il u l u

mn mn mn mn

il u

mn mn

p p e q q e

r r e

 



        
    

 

                                                    

                                       Table3. K- CIVNSSs 

Table4 for the best CIVNSS ,F E

+ 

 
   

 

 
1e  … 

ne   

1x

 

1 2max( , ,...., )1 2 1 2 11 11 11max( , , ...., ), max( , , ...., ) e ,11 11 11 11 11 11
1 2max( , ,...., )1 2 1 2 11 11 11max( , , ...., ), max( , , ...., ) e ,11 11 11 11 11 11

1 2
min( , , ...., ),11 11 11

kil l lk u u uk
p p p p p p

kil l lk u u uk
q q q q q q

l l lk
r r r

  

  

  

  
1 2max( , ,...., )1 2 11 11 11min( , , ...., ) e11 11 11

kiu u uk
r r r

  
  

 
…. 1 2max( , ,...., )1 2 1 2 1 1 1

max( , , ...., ), max( , , ...., ) e ,1 1 1 1 1 1
1 2max( , ,...., )1 2 1 2 1 1 1

max( , , ...., ), max( , , ...., ) e ,1 1 1 1 1 1

1 2
min( , , ...., ),1 1 1

kil l lk u u uk n n n
p p p p p pn n n n n n

kil l lk u u uk n n n
q q q q q qn n n n n n

l l lk
r r rn n n

  

  

  

  
1 2max( , ,...., )1 2 1 1 1

min( , , ...., ) e1 1 1

kiu u uk n n n
r r rn n n

  
  

 

2x

 

1 2max( , ,...., )1 2 1 2 21 21 21max( , , ...., ), max( , , ...., ) e ,21 21 21 21 21 21
1 2max( , ,...., )1 2 1 2 21 21 21max( , , ...., ), max( , , ...., ) e ,21 21 21 21 21 21

1 2
min( , , ...., ),21 21 21

kil l lk u u uk
p p p p p p

kil l lk u u uk
q q q q q q

l l lk
r r r

  

  

  

  
1 2max( , ,...., )1 2 21 21 21

min( , , ...., ) e21 21 21

kiu u uk
r r r

  
  

 …. 1 2max( , ,...., )1 2 1 2 2 2 2
max( , , ...., ), max( , , ...., ) e ,2 2 2 2 2 2

1 2max( , ,...., )1 2 1 2 2 2 2
max( , , ...., ), max( , , ...., ) e ,2 2 2 2 2 2

1 2
min( , , ...., ),2 2 2

kil l lk u u uk n n n
p p p p p pn n n n n n

kil l lk u u uk n n n
q q q q q qn n n n n n

l l lk
r r rn n n

  

  

  

  
1 2max( , ,...., )1 2 2 2 2

min( , , ...., ) e2 2 2

kiu u uk n n n
r r rn n n

  
  

 

…  …  

mx

 

1 2
max( , ,...., )1 2 1 2 1 1 1

max( , , ...., ), max( , , ...., ) e ,
1 1 1 1 1 1

1 2
max( , ,...., )1 2 1 2 1 1 1

max( , , ...., ), max( , , ...., ) e ,
1 1 1 1 1 1

1 2
min( , , ...., ),

1 1 1

k
il l lk u u uk m m m

p p p p p p
m m m m m m

k
il l lk u u uk m m m

q q q q q q
m m m m m m

l l lk
r r r
m m m

  

  

  

  
1 2

max( , ,...., )1 2 1 1 1
min( , , ...., ) e

1 1 1

k
iu u uk m m m

r r r
m m m

  
  

 
….

. 

1 2max( , ,...., )1 2 1 2
max( , , ...., ), max( , , ...., ) e ,

1 2max( , ,...., )1 2 1 2
max( , , ...., ), max( , , ...., ) e ,

1 2
min( , , ...., ),

kil l lk u u uk mn mn mn
p p p p p pmn mn mn mn mn mn

kil l lk u u uk mn mn mn
q q q q q qmn mn mn mn mn mn

l l lk
r r rmn mn mn

  

  

  

  
1 2max( , ,...., )1 2

min( , , ...., ) emn

kiu u uk mn mn mn
r r rmn mn

    

 

 

                            Table4. Best CIVNSS ,F E

+ 

 
 

 

Table5 for the worst CIVNSS ,F E

− 
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1e  … 

ne   

1x

 

1 2min( , ,...., )1 2 1 2 11 11 11min( , , ...., ), min( , , ...., ) e ,11 11 11 11 11 11
1 2min( , ,...., )1 2 1 2 11 11 11min( , , ...., ), min( , , ...., ) e ,11 11 11 11 11 11

1 2
max( , , ...., ),11 11 11

kil l lk u u uk
p p p p p p

kil l lk u u uk
q q q q q q

l l lk
r r r

  

  

  

  
1 2min( , ,...., )1 2 11 11 11

max( , , ...., ) e11 11 11

kiu u uk
r r r

  
  

 …. 1 2min( , ,...., )1 2 1 2 1 1 1
min( , , ...., ), min( , , ...., ) e ,1 1 1 1 1 1

1 2min( , ,...., )1 2 1 2 1 1 1
min( , , ...., ), min( , , ...., ) e ,1 1 1 1 1 1

1 2
max( , , ...., ),1 1 1

kil l lk u u uk n n n
p p p p p pn n n n n n

kil l lk u u uk n n n
q q q q q qn n n n n n

l l lk
r r rn n n

  

  

  

  
1 2min( , ,...., )1 2 1 1 1

max( , , ...., ) e1 1 1

kiu u uk n n n
r r rn n n

  
  

 

2x

 

1 2min( , ,...., )1 2 1 2 21 21 21min( , , ...., ), min( , , ...., ) e ,21 21 21 21 21 21
1 2min( , ,...., )1 2 1 2 21 21 21min( , , ...., ), min( , , ...., ) e ,21 21 21 21 21 21

1 2
max( , , ...., ),21 21 21

kil l lk u u uk
p p p p p p

kil l lk u u uk
q q q q q q

l l lk
r r r

  

  

  

  
1 2min( , ,...., )1 2 21 21 21

max( , , ...., ) e21 21 21

kiu u uk
r r r

  
  

 …. 1 2min( , ,...., )1 2 1 2 2 2 2
min( , , ...., ), min( , , ...., ) e ,2 2 2 2 2 2

1 2min( , ,...., )1 2 1 2 2 2 2
min( , , ...., ), min( , , ...., ) e ,2 2 2 2 2 2

1 2
max( , , ...., ),2 2 2

kil l lk u u uk n n n
p p p p p pn n n n n n

kil l lk u u uk n n n
q q q q q qn n n n n n

l l lk
r r rn n n

  

  

  

  
1 2min( , ,...., )1 2 2 2 2

max( , , ...., ) e2 2 2

kiu u uk n n n
r r rn n n

  
  

 

…  …  

mx

 

1 2
min( , ,...., )1 2 1 2 1 1 1

min( , , ...., ), min( , , ...., ) e ,
1 1 1 1 1 1

1 2
min( , ,...., )1 2 1 2 1 1 1

min( , , ...., ), min( , , ...., ) e ,
1 1 1 1 1 1

1 2
max( , , ...., ),

1 1 1

k
il l lk u u uk m m m

p p p p p p
m m m m m m

k
il l lk u u uk m m m

q q q q q q
m m m m m m

l l lk
r r r
m m m

  

  

  

  
1 2

min( , ,...., )1 2 1 1 1
max( , , ...., ) e

1 1 1

k
iu u uk m m m

r r r
m m m

  
  

 
….

. 

1 2min( , ,...., )1 2 1 2
min( , , ...., ), min( , , ...., ) e ,

1 2min( , ,...., )1 2 1 2
min( , , ...., ), min( , , ...., ) e ,

1 2
max( , , ...., ),

kil l lk u u uk mn mn mn
p p p p p pmn mn mn mn mn mn

kil l lk u u uk mn mn mn
q q q q q qmn mn mn mn mn mn

l l lk
r r rmn mn mn

  

  

  

  
1 2min( , ,...., )1 2

max( , , ...., ) emn

kiu u uk mn mn mn
r r rmn mn

    

 

 

                                Table5. Worst CIVNSS ,F E

− 

 
 

 

5.1 Complex interval neutrosophic soft geometric mean aggregation operator 

Aggregation of some CIVNSSs produces a CIVNSS. We have introduced the geometric mean aggregation of 

CIVNSSs. 

Let 
1 2, , , ,........, ,kF E F E F E
       

     
     

be k-CIVNSSs over a universe U and 

 1 2, ,........, kw w w w= be k real numbers such that [0,1],iw  and
1

1
k

ii
w

=
= . Then, the complex 

interval neutrosophic soft geometric aggregation of k-CIVNSSs is denoted by,  

( ) 1 2

1 2, ,....., , , , ,........, , ,k
GM kB w w w F E F E F E

         
      
      

and is defined as follows: 
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( ) 1 2

1 2, ,....., , , , ,........, ,k
GM kB w w w F E F E F E

         
      
      

= ,F E
 

 
 

 

=  

( ) ( ) ( )
1 1 1

, : ,
i

i i i
s s sj j j

j j j j j j

s
j j sw

k k k
i i iui li ui li ui li

s s s s s s

i i i

x
e e E x U

p p e q q e r r e
  

= = =

   
   
   

     
       − − −       
       
  

 

We have the following properties: 

(a) ( ) 1 2

1 2

1 1 1

, ,....., , , , ,........, ,k
GM kB w w w F E F E F E

         
       
      

=

1

,F E
 

 
  , 1

where ,F E
 

 
    

denotes the absolute complex interval neutrosophic soft set over the universe U . 

(b) ( ) 1 2

1 2

0 0 0

, ,....., , , , ,........, ,k
GM kB w w w F E F E F E

         
       
      

=

0

,F E
 

 
  , 0

where ,F E
 

 
    

denotes the null complex interval neutrosophic soft set over the universe U . 

(c) If, for all 1,2,....,i k= , , ,i iF E G E
    

   
   

then  

 

where 
1 2

, , , , ........, ,
k

G E G E G E

      
    

     
be another set of K-CIVNSSs over U . 

(d) ( ), ,
1 2

, , ....., , , , , ........, ,1 2F E F E
k

B w w w F E F E F EGM k

 
− +

   
   
   

 


     
     
      

. 

6. Construction of an algorithm by using complex interval neutrosophic soft sets aggregate operator 

( ) ( ) ;
1 2 1 2

, , ....., , , , , ........, , , , ....., , , , , ........, ,1 2 1 2
k k

B w w w F E F E F E B w w w G E G E G EGM GMk k
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In this section, a step-wise method is described by using complex interval neutrosophic soft sets aggregate 

operators and it is useful and effective to deal with real-life decision-making problems.  

Step1: Input a set of m alternatives  1 2, ,....., mU u u u= that have been defined by k-experts 

 1 2, ,....., kD d d d= concerning for to n complex interval neutrosophic parameters  1 2, ,....., nE e e e= . 

Step2: Opinions of K-experts have been described by K-CIVNSSs 

1 2, , , ,......, ,kF E F E F E
       

     
     

defined as 

( ) ( ), , : , / , , : ,
F F F
s s sj j j

j j j

il il ill l F l F l F

j j j j s s s s j sF E e F e e E e x p e q e r e e E x U
  

         
=   =         

         

Where 
j

l F

sp ,
j

l F

sq ,
j

l F

sr [0,1] are the amplitude parts of the truth-membership, indeterminacy-membership 

,and falsity-membership values respectively and 
l F

s j
 ,

l F

s j
 ,

l F

s j
 [0,2 ] are the respective phase parts of the 

evaluation of an alternative sx concerning for to the parameter je over the CIVNSS ,F E
 

 
 

.  

Step3: Construct the best ,F E

+ 

 
 

and the worst ,F E

− 

 
 

CIVNSS over K-CIVNSSs. 

Step4: Evaluate the approximate index ( )l lP d of an expert ld is given by,  

( )

, , ,

, , , , , ,

l

l l

l l

S F E F E

P d

S F E F E S F E F E

 
+

    
+ −

    
    
    =

          
+          

          

, where S


indicates similarity measure. 

Step5: Measure the nearness index ( )l lC d of an expert ld is given by,  

( )

/

/ /, 1

, , ,

1

l l

k

l l l l l

S F E F E

C d
l



 =

   
          =

+
  

Step6: Derive the preference rate ( )ld of an expert ld as, 
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( )
( ) ( )( )
( ) ( )( )

1

l l l l

l k

l l l ll

P d C d
d

P d C d


=


=


, where  denotes the linear product. 

Step7: Construct the collective CIVNSS ,F E
 

 
 

from K-CIVNSSs which is derived by using complex interval 

neutrosophic soft geometric mean aggregation operators as follows: 

( ) 1 2

1 2, ,....., , , , ,........, ,k
GM kB w w w F E F E F E

         
      
        

Step8: Determined the combined weight of a parameter je as follows: 

( ) ( )( )
( ) ( )( )( )

* #

* #

1

1

1

j j

j n

j jj

w w
W

w w

 

 
=

 −
=

 −
, where ( )* 1 21

........ k

j j j jw w w w
k

=    ;  

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

/ /

/ /

1

2 2 2 2

1,
#

1

2 2 2 2

1 1,

1

21

( 1)
1

2

j j j j j j j j j

j j j j j j j j j

k u l u l u l

s s s s s s s s sS S S

j

k k u l u l u l

s s s s s s s s sj S S S

p p q q r r

w
k k

p p q q r r

  

  

= 

= = 

  
− + − + −  

  = 
−

  
− + − + −  

  



 

 

,and  is the influence parameter such that  0,1 . 

Since, experts came from different environments along with different specialization, judgment powers, and 

knowledge, so they may impose different weights on the associated parameters. If 

 1 2 3, , ,.....,l l l l l

nw w w w w= be the associated weights of the parameters given by an expert ld such that 

1
1

n l

jj
w

=
=  ,and  0,1l

jw  . 

Step9: Select the best alternative by determining the upper-alternative X
 
 
 

and the lower-alternative ( )X as 

follows: 
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( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1 2 2 2
.......1 1 1 1 1 1 2 2 2 2 2 2

, :

, , ,
i i ij j j

j

i i i i i iu l u l u l u l u l u lj j j j j j
p p e q q e r r e p p e q q e r r ej j j j j j j j j j j j

X e e Ejj i i iu l u l u lmj mj mj
p p e q q e r r emj mj mj mj mj mj

e Pe Qe Re
  

     

  

−  −  − −  −  −

=  

−  −  −

=

  
  
    

  

: je E

  
   
   
  
    

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1 2 2 2
.......1 1 1 1 1 1 2 2 2 2 2 2

, :

, , ,

i i i i i iu l j u l j u l j u l j u l j u l j
p p e q q e r r e p p e q q e r r ej j j j j j j j j j j j

X e e Ejj i i iu l mj u l mj u l mj
p p e q q e r r emj mj mj mj mj mj

ii ij
j je Pe Qe Rej

     

  

 

−  −  − −  −  −

=  

−  −  −

=

  
  
  
  

  

: e Ej

  
  
   
  
  
  
    

 

 

Step10: Determine the separation level of X
 
 
 

and ( )X as follows: 

1 1 1 1 1 1

1 1 1 1 1 1

2 2

2 2

2 2 2

2

1 1 1 1

2

2 2

2 2 2

1

2 2

l u l u l u

s s s s s s

s s s s s s

l u

s ss
s s

p p q q r r
w p q r

p px
D w p

nX

     

 

           + + +            − −  − −  − − +                                     

   +
=  − −   

  
  

2 2 2 2

2 2 2 2

2 2 2

2 2

2

2

2 2

.................
2 2

n n n n

n n

l u l u

s s s s

s s s s

l u l u

s s s s

n n s s n

q q r r
q r

p p q q
w p q

   

 

         + +            − −  − − +                               

   + + 
 +  − −  −       

1

2

2 2

2

n n

n n n n

l u

s s

s s n s s

r r
r   

  
  
  
  
  
  
  
  
  
        +         −  − −                            

 

 

1 1 1 1 1 1

1 1 1
1 11

2 2

2

2 2 2

2

1
11 1

2

2
2

2 2 2

1

2 2

l u l u l u

s s s s s s

s s s
s ss

l u

s ss
s

p p q q r r
w p q r

p px
D w p

nX

     

 

           + + +            − −  − −  − − +                                   

 
 + 
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2 2 2 2

2 2
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2 2 2
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2

2
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Step11: Obtain the ranking index of an alternative sx by using the formula 

( ) ; 1,2,...,

s

s

s s

x
D

X
R x s m

x x
D D

X X

 
 
 
 = =

 
   

+    
  
 

 

The alternative having a maximum ranking index R will be selected as the best or optimal alternative for this 

multi-expert decision-making. If more than one alternative has the same maximum ranking index, then, we will 

select any one of them as an optimal solution. 

7. An application on a financial problem 

A trader wants to set up a car manufacturing company and the set of alternatives 

 1 2 3 4 5 6, , , , ,U u u u u u u= represent a set of six cars among which he or she has to choose any one of the 

alternatives which fulfilled all the pre-assigned criteria. Selection of any one of the alternatives influenced by 

the set of parameters  1 2 3 4 5, , , ,E e e e e e= . Here, the parameters stand for land, labor, capital, 

entrepreneurship, and raw material cost respectively. Now, a set of four experts denoted by 

 1 2 3 4, , ,D d d d d= have been assigned for monitoring the parameters to reach a common decision about 

which a car manufacturing company is more likely to choose which have these parametric characters. Here, the 

belongingness level of a parameter has been taken through the amplitude part (interval form due to the more 

complexity involved in the problem which has neutrosophic nature) and the time duration of a parameter has 

been taken through the phase part. All the data has been collected by the decision-makers on 20 consecutive 

days. To express this data in the interval  0,2 , 2 has been taken here instead of 20 days. 
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About of on this idea and by using the algorithm discussed in section6, the trader will be able to choose the best 

alternatives and it is possible when all the decision-makers come to a common solution and it is possible due to 

the aggregate operators used in the said algorithm. The calculation part is left for the readers as an exercise. 

8. Conclusions 

In this article, we first give the basic definition of complex interval neutrosophic soft sets and some basic 

operations on them. We then discuss similarity measures on complex interval neutrosophic soft sets and their 

aggregation. An algorithm has been introduced by using complex interval neutrosophic soft sets aggregate 

operators. To apply the algorithm to the decision-making problem we give an application that shows the 

algorithm can be successfully applied in financial problems. In the future, there is a scope to extend the notion 

of complex interval neutrosophic soft set by introducing hypersoft set introduced by Smarandache [12] in 2018. 

Also, the comlex interval neutrosophic soft set may be applied comprehensively in different fields such as 

engineering, medical science, finance, game theory, computer science, decision-making,etc.   
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Abstract. In the theory of uncertainty and approximation neutrosophy plays a significant role. Neutrosophy

is tool emerged on standard or non-standard to measured the mathematical model of uncertainty, vagueness,

ambiguity etc. In light of these major issues, the paper outlines of Neutrosophic Set, Single Valued Neutrosophic

Set, Triangular Single Valued Neutrosophic Number and Trapezoidal Single Valued Neutrosophic Number. It

also propose Neutrosophic Differential Equation and shown its solution in different conditions. Thereafter min-

ing safety model via Single Valued neutrosophic number be epitomized. At last a mathematical experiment is

done to exhibit its reality and use fullness of this Number.

Keywords: neutrosophic set(NS); single valued neutrosophic set(SVNS); triangular single valued neutrosophic

number(TSVNNs); trapezoidal single valued neutrosophic number(TrSVNNs); neutrosophic differential equa-

tion(NDE); mining safety model

—————————————————————————————————————————-

1. Introduction

NS highlights the origin and nature of neutralise in different fields which is the generalization

of classical set, fuzzy set(FS), intuitionistic fuzzy set(IFS) etc. Gradually varying value is used

in FS theory rather than precise or sharp value. In 1965 [1], a famous paper was published

by Prof. L.A. Zadeh as ”Fuzzy sets” in ”Information and Control” that provided some new

mathematical tool which enable us to described and handle dubious or unclear notions. FS

theory, only shows membership degree and do not provide any idea about non-membership

degree. In reality, this linguistic statement don’t fulfill the logical statement. When choosing

the membership degree there may exist some types of doubtfulness or absence of information

are present while defining the membership. Due to this doubtfulness, an idea of IFS as gen-

eralization of FS was introduced by Atanassov in 1983 [2]. IFS consider both membership

Neutrosophic Sets and Systems, Vol. 45, 2021



and non-membership function. IFS only pick up incomplete information. In 2003 [3], A new

concept, say, NS was innovated by Smarandache. It deals with the study of origin, nature

and scope of neutralise, as well as their interaction with different idealism spectra. NS is the

generalization of CS, FS, IFS and so on. A NS can be distinguish by a truth membership

function ’µT ’, an indeterminacy membership function ’νI ’, and a falsity membership function

’σF ’. In NS: µT , νI and σF are not dependent, which is useful in situations such as information

fusion. In NS µT , νI , σF being the real standard or non standard subset of −]0, 1[+,moreover

in SNVS, µT , νI , σF be the subset of [0,1]. From philosophical point of view, NS generalised

the above mentioned sets but from scientific or engineering point of view, need to be defined.

Else it’s difficult to apply in many real application.

It is much noticed that when modeling some problems related to physical science and engineer-

ing, where the parameters are unknown but performed in an interval. Before, the application

of interval arithmetic managed such circumstances, where mathematical calculation is done

on intervals to get the estimate of target quantities in respective intervals. Fuzzy arithmetic is

the generalization of the intervals arithmetic. As the principle definition of FS which approve

gradation of membership for an element of the Universal set. So the situation of the modeling

based on fuzzy arithmetic is awaited to publish more realistically. There are several types of

fuzzy number are exist. These are applied in Decision-making problem and so on [4]. But it

is not efficient for any application where the knowledge about membership degree is lacking.

Latter generalization it to intuitionistic fuzzy number [5] were developed. In these paper we

define several types of neutrosophic numbers and their cuts.

In the field of science & engineering, differentiation takes on an evidential role. Many problems

stand up with uncertain or imprecise parameters. Due to this naiveness, we bear upon the dif-

ferential equation with imprecise parameters. Fuzzy differential equation [6] has been proposed

to model this uncertainty. However, it consider only membership value. Later, intuitionistic

fuzzy differential [7] equation was founded with degree of membership and non-membership

function. However, the term indeterminacy is absent in the above logic’s. Hence, neutrosophic

differential eqaution(NDE) [8–10] was developed to model indeterminacy. In this paper, a

mining safety model describe [11], this model consist of three differential equations, those dif-

ferential equations describe via Single Valued Neutrosophic Number(SVNNs). The solution of

the equation is describe later.

In reality, the collected data, in many situations, it was observed that is insufficient and

transmit some misinformation. As a result, the solution obtained from these data suffers with
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insufficiency and inconsistency. In these situations, the neutrosophic sets offer better result.

We have designed the paper in the following way: Section-2 gives some preliminaries con-

cept and definition. Section-3 contains definition of NDE. Section-4 contains solution of NDE

with numerical example. Section-5 contains Mining Safety model. Section-6 contains Mining

safety model formulation. Section-7 described solution mode of the model. Section-8 contains

numerical experiment and consequently, conclusions are discussed in Section-9. The references

are shown in Section-10.

2. Preliminaries

2.1. Definition of NS [12]

Let U be a Universal set. A NS ÃNS of U be defined by ÃNS = 〈(u;µT (u), νI(u), σF (u)) : u ∈
U〉 where µT (u), νI(u), σF (u) be outlined as the truth membership, indeterminacy membership,

falsity membership grade of u in ÃNS which are real standard or non-standard subsets of

−]0, 1[+ & µT (u) + νI(u) + σF (u) 6 3+.

2.2. Definition of SVNS [12]

Let U be a Universal set. A SVNS ÃNe of U be defined by ÃNe = 〈(u;µT (u), νI(u), σF (u)) :

u ∈ U〉 where µT (u), νI(u), σF (u) be outlined as the truth membership, indeterminacy member-

ship, falsity membership grade of u in ÃNe which are subset of [0, 1] & µT (u)+νI(u)+σF (u) 6 3.

2.3. Definition of TSVNNs [8]

A TSVNNs is denoted by ÃNe = 〈a′1, a′2, a′3;wµ, wν , wσ〉 whose truth, indeterminacy and

falsity membership functions are defined by

µT (u) =



(
u−a′1
a′2−a′1

)wµ when a′1 6 u 6 a′2

wµ when u = a′2

(
a′3−u
a′3−a′2

)wµ when a′2 6 u 6 a′3

0 when u 6 a′1 or u > a′3

νI(u) =



(a′2−u)+(u−a′1)wν

a′2−a′1
when a′1 6 u 6 a′2

wν when u = a′2
(u−a′2)+(a′3−u)wν

a′3−a′2
when a′2 6 u 6 a′3

1 when u 6 a′1 or u > a′3
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σF (u) =



(a′2−u)+(u−a′1)wσ

a′2−a′1
when a′1 6 u 6 a′2

wσ when u = a′2
(u−a′2)+(a′3−u)wσ

a′3−a′2
when a′2 6 u 6 a′3

1 when u 6 a′1 or u > a′3
where µT (u) + νI(u) + σF (u) 6 3 & wµ ∈ (0, 1], wν , wσ ∈ [0, 1).

2.4. Definition of TrSVNNs [9]

A TrSVNNs is denoted by ÃNe = 〈a′1, a′2, a′3, a′4;wµ, wν , wσ〉 whose truth, indeterminacy and

falsity membership functions are defined by

µT (u) =



(
u−a′1
a′2−a′1

)wµ when a′1 6 u 6 a′2

wµ when a′2 6 u 6 a′3

(
a′4−u
a′4−a′3

)wµ when a′3 6 u 6 a′4

0 when u 6 a′1 or u > a′4

νI(u) =



(a′2−u)+(u−a′1)wν

a′2−a′1
when a′1 6 u 6 a′2

wν when a′2 6 u 6 a′3
(u−a′3)+(a′4−u)wν

a′4−a′3
when a′3 6 u 6 a′4

1 when u 6 a′1 or u > a′4

σF (u) =



(a′2−u)+(u−a′1)wσ

a′2−a′1
when a′1 6 u 6 a′2

wσ when a′2 6 u 6 a′3
(u−a′3)+(a′4−u)wσ

a′4−a′3
when a′3 6 u 6 a′4

1 when u 6 a′1 or u > a′4
where µT (u) + νI(u) + σF (u) 6 3 & wµ ∈ (0, 1], wν , wσ ∈ [0, 1).

2.5. Cut Set [8]

Let ÃNe be any SVNS, then (r, β, γ)-cut of SVNS is denoted by ÃNe(r, β, γ)and it is defined

by ÃNe(r, β, γ)=〈u ∈ U : µT (u) > r, νI(u) 6 β, σF (u) 6 γ; 0 < r 6 1, 0 6 β < 1, 0 6 γ < 1〉.

2.6. Operation Using SVNNs: [13]

Consider two TSVNNs, ÃNe=〈a′1, a′2, a′3;wµ, wν , wσ〉; B̃Ne=〈b′1, b′2, b′3;uµ, uν , uσ〉, the follow-

ing operation are:
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• Addition:

ÃNe+B̃Ne = 〈[(a′1 + b′1, a
′
2 + b′2, a

′
3 + b′3);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉

• Substraction:

ÃNe-B̃Ne = 〈[(a′1 − b′3, a
′
2 − b′2, a

′
3 − b′1);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉

• Multiplication:

ÃNe.B̃Ne = 〈[(a′1b′1, a′2b′2, a′3b′3);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉
• Division:
ÃNe

B̃Ne
=〈[(a

′
1

b′3
,
a′2
b′2
,
a′3
b′1

);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉

Where ∧ = Min,∨ = Max

3. Definition of NDE: [8]

Consider an Ordinary differential equation
dY
dt

= KY, t ∈ [0,∞) with initial condition(IC)

Y(t0) = Y0. The above ODE is called NDE if any one of the following three cases hold:

(i) K̃Ne is SVNNs & Y0 is Crisp number.

(ii) K is Crisp number & Ỹ0
Ne

is SVNNs.

(iii) Both K̃Ne & Ỹ0
Ne

are SVNNs.

Let the classical solution [14] be ỸNe(t) and its Cut be

Y(t, r, β, γ)=〈[Y1(t, r),Y2(t, r)], [Y′1(t, β),Y′2(t, β)], [Y′′1(t, γ),Y′′2(t, γ)]〉.

The solution is strong if

(i)
dY1(t, r)

dr
> 0 ,

dY2(t, r)

dr
< 0 ∀ r ∈ (0, 1], Y1(t, 1) 6 Y2(t, 1)

(ii)
dY′1(t, β)

dβ
< 0 ,

dY′2(t, β)

dβ
> 0 ∀ β ∈ [0, 1), Y′1(t, 0) 6 Y′2(t, 0)

(iii)
dY′′1(t, γ)

dγ
< 0 ,

dY′′2(t, γ)

dγ
> 0 ∀ γ ∈ [0, 1), Y′′1(t, 0) 6 Y′′2(t, 0)

Otherwise the solution is weak solution.

4. Solution of NDE

(i) K̃Ne is SVNNs & Y0 is Crisp number.

Case 1 When Sign of K̃Ne is positive.

Therefore required solutions are

Y1(t, r) = Y0e
K1(r)(t−t0); Y2(t, r) = Y0e

K2(r)(t−t0)

Y′1(t, β) = Y0e
K′

1(β)(t−t0); Y′2(t, β) = Y0e
K′

2(β)(t−t0)

Y′′1(t, γ) = Y0e
K′′

1 (γ)(t−t0); Y′′2(t, γ) = Y0e
K′′

2 (γ)(t−t0)
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Case 2 When Sign of K̃Ne is negative.

Therefore required solutions are

Y1(t, r) =
Y0

2
[(1 +

√
K2(r)

K1(r)
)e−
√

K1(r)K2(r)(t−t0) + (1−

√
K2(r)

K1(r)
)e
√

K1(r)K2(r)(t−t0)]

Y2(t, r) =
Y0

2
[(

√
K1(r)

K2(r)
+ 1)e−

√
K1(r)K2(r)(t−t0) − (

√
K1(r)

K2(r)
− 1)e

√
K1(r)K2(r)(t−t0)]

Y′1(t, β) =
Y0

2
[(1 +

√
K′2(β)

K′1(β)
)e−
√

K′
1(β)K′

2(β)(t−t0) + (1−

√
K′2(β)

K′1(β)
)e
√

K′
1(β)K′

2(β)(t−t0)]

Y′2(t, β) =
Y0

2
[(

√
K′1(β)

K′2(β)
+ 1)e−

√
K′

1(β)K′
2(β)(t−t0) − (

√
K′1(β)

K′2(β)
− 1)e

√
K′

1(β)K′
2(β)(t−t0)]

Y′′1(t, γ) =
Y0

2
[(1 +

√
K′′2(γ)

K′′1(γ)
)e−
√

K′′
1 (γ)K′′

2 (γ)(t−t0) + (1−

√
K′′2(γ)

K′′1(γ)
)e
√

K′′
1 (γ)K′′

2 (γ)(t−t0)]

Y′′2(t, γ) =
Y0

2
[(

√
K′′1(γ)

K′′2(γ)
+ 1)e−

√
K′′

1 (γ)K′′
2 (γ)(t−t0) − (

√
K′′1(γ)

K′′2(γ)
− 1)e

√
K′′

1 (γ)K′′
2 (γ)(t−t0)]

Where 〈[K1(r),K2(r)], [K′1(β),K′2(β)], [K′′1(γ),K′′2(γ)]〉 is the cut set of K̃Ne. Solutions are

strong or week if it satisfies the condition of NDE.

Similarly, we can get the solution of other two cases.

Numerical Example: Let us consider NDE
dY
dt

= KY, with IC ỸNe(0) =

〈3, 4, 5; 0.8, 0.2, 0.3〉, K =
1

3
.

Solution: Required (r, β, γ)-cut solution at t = 2 we get Y1(t, r) = [3 + 1.25r]e

2

3 ;

Y2(t, r) = [5− 1.25r]e

2

3 ; Y′1(t, β) = [
3.4− β

0.8
]e

2

3 ; Y′2(t, β) = [
3 + β

0.8
]e

2

3 ; Y′′1(t, γ) = [
3.1− γ

0.7
]e

2

3 ;

Y′′2(t, γ) = [
2.5 + γ

0.7
]e

2

3 .

When we take t = 2 and for different values of r, β, γ the solution is given in Table 1. The

graphical interpretation of the table is also shown in the form of membership function in the

Figure. 1.

5. Mining Safety Model

The miming industry has played an important role in development in the human civiliza-

tion. Extraction of minerals from the underground system of work has involved a considerable

amount of risks like roof fall over the workplace, inundation of the workplace due to the in-

flux of water from the old working, explosion, influx of poisonous gases in the workplace, etc.

Similarly, the opencast system of work has involved chances of runway of dumpers, sliding of

benches in the workplace, striking by the fly rocks blasting, etc. These phenomenon’s not only
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r, β, γ Y1(t, r) Y2(t, r) Y′1(t, β) Y′2(t, β) Y′′1(t, γ) Y′′2(t, γ)

0 5.8432 9.7387 8.2778 7.3040 8.6257 6.9561

0.1 6.0866 9.4952 8.0344 7.5474 8.3474 7.2344

0.2 6.3301 9.2517 7.7909 7.7909 8.0692 7.5127

0.3 6.5736 9.0083 7.5475 8.0344 7.7909 7.7909

0.4 6.8171 8.7648 7.3040 8.2779 7.5127 8.0692

0.5 7.0605 8.5213 7.0605 8.5213 7.2344 8.3474

0.6 7.3040 8.2779 6.8171 8.7648 6.9562 8.6257

0.7 7.5475 8.0344 6.5736 9.0082 6.6779 8.9039

0.8 7.7909 7.7909 6.3301 9.2517 6.3997 9.1822

0.9 8.0344 7.5475 6.0867 9.4952 6.1214 9.4604

1.0 8.2779 7.3040 5.8432 9.7387 5.8432 9.7387

Table 1. Solution for t = 2
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Figure 1. Membership Function Graph (at t=2).

causes injury to the workmen, sometimes lead to fatal. Improper used and malfunctioning

mining equipment or system also results an accident.

The system fails safely is denoted by λ1 and system fails unsafely is denoted by λ2 for the

mining safety model used here. Either λ1 or λ2 or both λ1 and λ2 are imprecise in nature.

Our main interest in this paper are given below:
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• Formulate Mining Safety model.

• Observe solution of the model in Crisp environment.

• Observe solution of the mining model in three ways:

(i) when λ1 is SVNNs and λ2 is crisp number.

(ii) when λ1 is crisp number and λ2 is SVNNs.

(iii) both λ1 and λ2 are SVNNs.

• Observe cut value in table form of the solution of the mining model in each of the cases

mention above and show its graphical representation.

5.1. Acceptation

(I) All events are not dependent to one another.

(II) The probability of progression from one condition to another is Ψδt; δt indicates finite

time interval, Ψ indicate the progression rate from one condition to another.

(III) (Ψδt)(Ψδt)→ 0.

(IV) P{η(δt) > 2} = o(δt), where η(δt) be the number of event that occur in δt.

(V) P{η(δt) = 1} = Ψδt + o(δt), where Ψ > 0.

(VI) limδt→0
o(δt)
δt = 0.

5.2. Input data

t= time.

λ1= mining system safe failure rate.

λ2= mining system unsafe failure rate.

5.3. Output data

P0(t)= Probability of Mining system operating normally.

P1(t)= Probability of Mining system failed safely.

P2(t)= Probability of Mining system failed unsafely.
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5.4. Modulator

t time.

δt finite time intervall.

P0(t + δt) operating probability in state 0 at time t + δt.

P1(t + δt) safe fail probability in state 1 at time t + δt.

P2(t + δt) unsafe fail probability in state 2 at time t + δt.

j=0 state operating normal.

j=1 state fail safe.

j=2 state fail unsafe.

Pj(t) probability in state j at time t.

λ1δt safe fail probability in finite time interval δt

λ2δt unsafe fail probability in δt

(1 - λ1δt) no safe fail probability in δt

(1 - λ1δt) no unsafe fail probability in δt

6. Model Formulation

Consider a mining system, the state space diagram is shown in Figure-2.
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Figure 2. Mining system state space diagram

From Fig.2,we get following three equations

P0(t + δt) = P0(t)(1− λ1δt)(1− λ2δt) (1)

P1(t + δt) = P1(t)(1− o(δt)) + P0(t)λ1δt (2)

P2(t + δt) = P2(t)(1− o(δt)) + P0(t)λ2δt (3)

From (1), (2), (3) we get

∴
dP0(t)
dt

= −(λ1 + λ2)P0(t) (4)

dP1(t)
dt

= λ1P0(t) (5)

dP2(t)
dt

= λ2P0(t) (6)

with IC: Pj(0) = 1 for j=0 & Pj(0) = 0 for j=1,2.

7. Solution mode

7.1. Crisp Solution:

Input data: Both λ1 and λ2 are Crisp number..

Output data: We get the values of P0(t), P1(t), P2(t).

7.2. Neutrosophic Solution:

Input data: Three cases arise

Case-1: λ̃1
Ne

=〈a′1, a′2, a′3;wµ, wν , wσ〉 & λ2 is Crisp number.

Case-2: λ1 is Crisp number & λ̃2
Ne

=〈b′1, b′2, b′3;uµ, uν , uσ〉

Case-3: λ̃1
Ne

=〈a′1, a′2, a′3;wµ, wν , wσ〉 & λ̃2
Ne

=〈b′1, b′2, b′3;uµ, uν , uσ〉
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Output data:

Let, ˜P0(t)
Ne

, ˜P1(t)
Ne

, ˜P2(t)
Ne

be the solution of the modified model with Cut

P0(t, r, β, γ)=〈[P01(t, r),P02(t, r)], [P ′01(t, β),P ′02(t, β)], [P ′′01(t, γ),P ′′02(t, γ)]〉

P1(t, r, β, γ)=〈[P11(t, r),P12(t, r)], [P ′11(t, β),P ′12(t, β)], [P ′′11(t, γ),P ′′12(t, γ)]〉

P2(t, r, β, γ)=〈[P21(t, r),P22(t, r)], [P ′21(t, β),P ′22(t, β)], [P ′′21(t, γ),P ′′22(t, γ)]〉

Solution is strong or weak if it satisfies the condition of NDE.

8. Numerical Experiment

8.1. Crisp Solution

Input data: λ1 = 0.009;λ2 = 0.001; t=20-h.

Output: P2(20)=0.018127

8.2. NS Solution

Case: 1

Input data: λ̃1
Ne

=〈0.007, 0.009, 0.011; 0.5, 0.3, 0.2〉;λ2 = 0.001; t=20-h.

Output: When we take the value t=20-h the output of λNe1 is TSVNNs & λ2 is crisp number

are shown in Table-2 and the corresponding membership function shown in Figure-3.

Case: 2

Input data: λ1=0.009; λ̃2
Ne

= 〈0.0007, 0.001, 0.0013; 0.7, 0.5, 0.4〉; t=20-h.

Output: When we take the value t=20-h the output of λ1 is Crisp number and λ̃2
Ne

is

TSVNNs are shown in Table-3 and the corresponding membership function shown in Figure-

4.

Case: 3
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r, β, γ P21(t, r) P22(t, r) P ′21(t, β) P ′22(t, β) P ′′21(t, γ) P ′′22(t, γ)

0 0.017721 0.018523 0.018298 0.017954 0.018227 0.018026

0.1 0.017803 0.018445 0.018241 0.018012 0.018177 0.018077

0.2 0.017884 0.018366 0.018184 0.018070 0.018127 0.018127

0.3 0.017966 0.018287 0.018127 0.018127 0.018077 0.018177

0.4 0.018046 0.018207 0.018070 0.018184 0.018026 0.018227

0.5 0.018127 0.018127 0.018012 0.018241 0.017976 0.018277

0.6 0.018207 0.018046 0.017954 0.018298 0.017925 0.018329

0.7 0.018287 0.017965 0.017896 0.018355 0.017874 0.018376

0.8 0.018366 0.017884 0.017838 0.018411 0.017823 0.018425

0.9 0.018445 0.017803 0.017780 0.018467 0.017772 0.018474

1.0 0.018523 0.017721 0.017721 0.018523 0.017721 0.018523

Table 2. λ̃1
Ne

is TSVNNs & λ2 is Crisp number.

r, β, γ P21(t, r) P22(t, r) P ′21(t, β) P ′22(t, β) P ′′21(t, γ) P ′′22(t, γ)

0 0.012647 0.023643 0.023643 0.012647 0.021800 0.014470

0.1 0.013427 0.022853 0.022537 0.013740 0.020881 0.015382

0.2 0.014209 0.022063 0.021432 0.014834 0.019962 0.016296

0.3 0.014991 0.021275 0.020329 0.015930 0.019044 0.017211

0.4 0.015774 0.020487 0.019227 0.017028 0.018127 0.018127

0.5 0.016557 0.019699 0.018127 0.018127 0.017211 0.019044

0.6 0.017342 0.018913 0.017028 0.019227 0.016296 0.019962

0.7 0.018127 0.018127 0.015930 0.020329 0.015382 0.020881

0.8 0.018913 0.017342 0.014834 0.021432 0.014470 0.021800

0.9 0.019699 0.016557 0.013740 0.022537 0.013558 0.022721

1.0 0.020487 0.015774 0.012647 0.023643 0.012647 0.023643

Table 3. λ1 is Crisp number & λ̃2
Ne

is TSVNNs

Input data:

λ̃1
Ne

=〈0.007, 0.009, 0.011; 0.5, 0.3, 0.2〉; λ̃2
Ne

= 〈0.0007, 0.001, 0.0013; 0.7, 0.5, 0.4〉; t=20-h.

Output: When we take the value t=20-h the output of λ̃1
Ne

& λ̃2
Ne

are TSVNNs are shown

in Table-4 and the corresponding membership function shown in Figure-5.

From the table values and graph, we see that

P1(t, r) is increasing function and

P2(t, r) is decreasing function, whereas
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r, β, γ P21(t, r) P22(t, r) P ′21(t, β) P ′22(t, β) P ′′21(t, γ) P ′′22(t, γ)

0 0.012361 0.024156 0.024156 0.012361 0.022118 0.014253

0.1 0.013188 0.023247 0.022930 0.013493 0.021109 0.015210

0.2 0.014023 0.022345 0.021714 0.014635 0.020108 0.016175

0.3 0.014866 0.021449 0.020508 0.015788 0.019165 0.017147

0.4 0.015715 0.020561 0.019312 0.016952 0.018127 0.018127

0.5 0.016573 0.019681 0.018127 0.018127 0.017147 0.019114

0.6 0.017438 0.018807 0.016952 0.019312 0.016175 0.020108

0.7 0.018310 0.017941 0.015788 0.020508 0.015210 0.021109

0.8 0.019190 0.017083 0.014635 0.021714 0.014253 0.022118

0.9 0.020077 0.016232 0.013493 0.022930 0.013303 0.023134

1.0 0.020971 0.015388 0.012361 0.024156 0.012361 0.024156

Table 4. Both λ̃1
Ne

& λ̃2
Ne

are TSVNNs
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Figure 5. Membership Function Graph (at t=20).

P ′1(t, β), P ′′1 (t, γ) are decreasing functions and

P ′2(t, β), P ′′2 (t, γ) are increasing functions. Hence, the solution is strong solution.

Debapriya Mondal1, Suklal Tudu2, Gopal Chandra Roy 3 and Tapan Kumar Roy4, A Model
Describing the Neutrosophic Differential Equation and Its Application On Mine Safety

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                              258



9. Conclusion

• NS is a hot research topic and can be applied for solving the mathematical model of

uncertainty, vagueness, ambiguity, etc.

• The mining safety model described in this paper with two parameters which satisfies the

condition of NDE has got strong solutions.

• The solutions of the three differential equations of the mining safety model have been de-

scribed via TSVNNs.

• The paper has also proposed numerical experiment and graphical representation of truth,

indeterminacy and falsity membership function.

This will promote the future study of trapezoidal single valued neutrosophic numbers.
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Abstract. In this study we introduce the concept of rough bipolar interval neutrosophic sets which is a combi-

nation of rough sets and bipolar interval neutrosophi sets. Also we define union, complement, intersection and

some interesting properties of this set.
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—————————————————————————————————————————-

1. Introduction

The notion of fuzzy set theory studied by Zadeh [9] in 1965 to deal with uncertainty. This

theory has been applied in many real life applications to handle uncertainty. After Zadeh [10]

introduced interval valued fuzzy sets. Attanasov [1] extended the fuzzy sets to intutionistic

fuzzy set. In 1998, Smarandache [7] studied the concept of neutrosohic set. Lee [6] introduced

the concept of bipolar fuzzy sets, as an extension of fuzzy sets. In bipolar fuzzy sets the

degree of membership is extended from [0, 1]to [−1, 1]. In a bipolar fuzzy set, if the degree of

membership of an element is zero, then we say the element is unrelated to the corresponding

property, the membership degree (0,1] of an element specifies that the element somewhat

satisfies the property, and the membership degree [-1,0) of an element implies that the element

somewhat satisfies the implicit counter property. In 2014, Broumi et al. [2] , [3] presented the

concept of rough neutrosophic set to deal indeterminacy in more flexible way. The rough set

theory familiarized by Pawlak is an excellent mathematical tool for the analysis of uncertain,

inconsistency and vague description of objects. Deli et al. [4] defined bipolar neutrosophic

set and showed numerical example for multi-criteria decision making problem. Gong et al. [5]
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introduced interval valued rough fuzzy set. Subha et al. [8] applied interval valued rough fuzzy

sets in many real life applications.

2. Preliminaries

For basic concepts related to this paper refer [1], [2], [3], [4], [5], [6], [7], [9] , [10].

3. Rough Bipolar Interval Neutrosophic sets

Let H be the universe and R be an equivalence relation on H. Let I be a bipolar interval

neutrosophic set in H. Then the lower and upper approximation of I in (H,R) is defined by

L(I) =
{〈

x, L(apI), L(bpI), L(cpI), L(anI ), L(bnI ), L(cnI )
〉
, x ∈ H

}
U(I) =

{〈
x, U(apI), U(bpI), U(cpI), U(anI ), U(bnI ), U(cnI )

〉
, x ∈ H

}
where

L(apI)(x) =
∧

z∈[x]R
ap(z), L(bpI)(x) =

∨
z∈[x]R

bp(z), L(cpI)(x) =
∨

z∈[x]R
cp(z)

L(anI )(x) =
∧

z∈[x]R
an(z), L(bnI )(x) =

∨
z∈[x]R

bn(z), L(cnI )(x) =
∨

z∈[x]R
cn(z)

U(apI)(x) =
∨

z∈[x]R
ap(z), U(bpI)(x) =

∧
z∈[x]R

bp(z), U(cpI)(x) =
∧

z∈[x]R
cp(z)

U(anI )(x) =
∨

z∈[x]R
an(z), U(bnI )(x) =

∧
z∈[x]R

bn(z), U(cnI )(x) =
∧

z∈[x]R
cn(z) for all x ∈ H.

Then R(I) = (L(I), U(I)) is called a rough bipolar interval neutrosophic set in (H,R). Here

L(I) and U(I) are also bipolar interval neutrosophic sets.

Example 3.1. Let H = {i, j, k, l,m} be the universe. Let I be the bipolar interval neutro-

sophic set defined by,

i = ([0.60, 0.70], [0.40, 0.50], [0.10, 0.20], [−0.90,−0.80], [−0.70,−0.60], [−0.30,−0.20])

j = ([0.40, 0.50], [0.10, 0.20], [0.01, 0.20], [−0.70,−0.50], [−0.40,−0.30], [−0.80,−0.70])

k = ([0.50, 0.40], [0.10, 0.30], [0.60, 0.70], [−0.60,−0.50], [−0.30,−0.20], [−0.70,−0.60])

l = ([0.65, 0.75], [0.58, 0.68], [0.51, 0.61], [−0.85,−0.75], [−0.81,−0.71], [−0.68,−0.58])

m = ([0.81, 0.91], [0.62, 0.72], [0.34, 0.44], [−0.85,−0.75], [−0.65,−0.55], [−0.30,−0.20])

Then the equivalence classes of H are defined by {{i, j,m} , {k, l}}. The lower approximation

of I is

L(apI)(x) = {(i, [.40, .50]), (j, [.40, .50]), (k, [.50, .40]), (l, [.50, .40]), (m, [.40, .50])}
L(bpI)(x) = {(i, [.62, .72]), (j, [.62, .72]), (k, [.58, .68]), (l, [.58, .48]), (m, [.62, .72])}
L(cpI)(x) = {(i, [.34, .44]), (j, [.34, .44]), (k, [.60, .70]), (l, [.60, .70]), (m, [.34, .44])}
L(anI )(x) =

{(i, [−.90,−.80]), (j, [−.90,−.80]), (k, [−.85,−.75]), (l, [−.85,−.75]), (m, [−.90,−.80])}
L(bnI )(x) =

{(i, [−.40,−.30]), (j, [−.40,−.30]), (k, [−.30,−.20]), (l, [−.30,−.20]), (m, [−.40,−.30])}
L(cnI )(x) =
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{(i, [−.30,−.20]), (j, [−.30,−.20]), (k, [−.68,−.58]), (l, [−.68,−.58]), (m, [−.30,−.20])}
Also

U(apI)(x) = {(i, [.81, .91]), (j, [.81, .91]), (k, [.65, .75]), (l, [.65, .75]), (m, [.81, .91])}
U(bpI)(x) = {(i, [.10, .20]), (j, [.10, .20]), (k, [.10, .30]), (l, [.10, .30]), (m, [.10, .20])}
U(cpI)(x) = {(i, [.01, .20]), (j, [.01, .20]), (k, [.51, .61]), (l, [.51, .61]), (m, [.01, .20])}
U(anI )(x) =

{(i, [−.70,−.50]), (j, [−.70,−.50]), (k, [−.60,−.50]), (l, [−.60,−.50]), (m, [−.70,−.50])}
U(bnI )(x) =

{(i, [−.70,−.60]), (j, [−.70,−.60]), (k, [−.81,−.71]), (l, [−.81,−.71]), (m, [−.70,−.60])}
U(cnI )(x) =

{(i, [−.80,−.70]), (j, [−.80,−.70]), (k, [−.70,−.60]), (l, [−.70,−.60]), (m, [−.80,−.70])}

Example 3.2. Let H = {p, q, r, s, t} be the universe. Let j be the bipolar interval neutro-

sophic set defined by,

p = ([0.50, 0.60], [0.20, 0.30], [0.10, 0.20], [−0.80,−0.70], [−0.70,−0.50], [−0.30,−0.20])

q = ([0.30, 0.50], [0.10, 0.20], [0.03, 0.40], [−0.70,−0.60], [−0.50,−0.40], [−0.90,−0.80])

r = ([0.40, 0.30], [0.01, 0.30], [0.50, 0.40], [−0.70,−0.50], [−0.80,−0.60], [−0.70,−0.50])

s = ([0.71, 0.81], [0.52, 0.62], [0.44, 0.54], [−0.75,−0.65], [−0.45,−0.35], [−0.14,−0.01])

t = ([0.50, 0.60], [0.40, 0.50], [0.60, 0.80], [−0.85,−0.75], [−0.71,−0.61], [−0.58,−0.40])

Then the equivalence classes of H are defined by {{p, q, t} , {r, s}}. The lower approximation

of I is

L(apI)(x) = {(p, [.30, .50]), (q, [.30, .50]), (r, [.40, .30]), (s, [.40, .30]), (t, [.30, .50])}
L(bpI)(x) = {(p, [.40, .50]), (q, [.40, .50]), (r, [.52, .62]), (s, [.52, .62]), (t, [.40, .50])}
L(cpI)(x) = {(p, [.60, .80]), (q, [.60, .80]), (r, [.50, .54]), (s, [.50, .54]), (t, [.60, .80])}
L(anI )(x) =

{(p, [−.85,−.75]), (q, [−.84,−.75]), (r, [−.75,−.65]), (s, [−.75,−.65]), (t, [−.85,−.75])}
L(bnI )(x) =

{(p, [−.50,−.40]), (q, [−.50,−.40]), (r, [−.45,−.35]), (s, [−.45,−.35]), (m, [−.50,−.40])}
L(cnI )(x) =

{(p, [−.30,−.20]), (q, [−.30,−.20]), (r, [−.14,−.01]), (s, [−.14,−.01]), (t, [−.30,−.20])}
Also

U(apI)(x) = {(p, [.50, .60]), (q, [.50, .60]), (r, [.71, .81]), (s, [.71, .81]), (t, [.50, .60])}
U(bpI)(x) = {(p, [.10, .20]), (q, [.10, .20]), (r, [.01, .30]), (s, [.01, .30]), (t, [.10, .20])}
U(cpI)(x) = {(p, [.03, .20]), (q, [.03, .20]), (r, [.44, .40]), (s, [.44, .40]), (t, [.03, .20])}
U(anI )(x) =

{(p, [−.70,−.60]), (q, [−.70,−.60]), (r, [−.70,−.50]), (s, [−.70,−.50]), (t, [−.70,−.60])}
V. S. Subha , P. Dhanalakshmi , Some operations on rough bipolar interval neutrosophic sets

Neutrosophic Sets and Systems, Vol. 45, 2021                                                                                263



U(bnI )(x) =

{(p, [−.71,−.61]), (q, [−.71,−.61]), (r, [−.80,−.60]), (s, [−.80,−.60]), (t, [−.71,−.61])}
U(cnI )(x) =

{(p, [−.90,−.80]), (q, [−.90,−.80]), (r, [−.70,−.50]), (s, [−.70,−.50]), (t, [−.90,−.80])}

Definition 3.3. Let R(I) and R(J) be two rough bipolar interval neutrosophic sets.

Then for all l ∈ H R(I) ⊆ R(J) ⇔ L(apI)(l) ≤ U(apJ)(l), L(bpI)(l) ≤ U(bpJ)(l) , L(cpI)(l) ≥
U(bpJ)(l) and L(anI )(l) ≥ U(anJ)(l), L(bnI )(l) ≥ U(bnJ)(l), L(cnI )(l) ≤ U(bnJ)(l).

Definition 3.4. Union of two rough bipolar interval neutrosophic sets R(I) and R(J), is

defined as

L(I) ∪ L(J)(l) = max
(
L(apI)(l), L(apJ)(l)

)
,
L(bpI )(l)+L(bpJ )(l)

2 ,min
(
L(cpI)(l), L(cpJ)(l)

)
,

min (L(anI )(l), L(anJ)(l)) ,
L(bnI )(l)+L(bnJ )(l)

2 ,max (L(cnI )(l), L(cnJ)(l))

U(I) ∪ U(J)(l) = max
(
U(apI)(l), U(apJ)(l)

)
,
U(bpI )(l)+U(bpJ )(l)

2 ,min
(
U(cpI)(l), U(cpJ)(l)

)
,

min (U(anI )(l), U(anJ)(l)) ,
U(bnI )(l)+U(bnJ )(l)

2 ,max (U(cnI )(l), U(cnJ)(l))

for every l ∈ H.

Example 3.5. Consider two rough bipolar interval neutrosophic sets as in Example 3.1 and

3.2 then

L(I) ∪ L(J) =



i, [.40..50], [.51, .61], [.34, .44], [−.90,−.80], [−.45,−.35], [−.30,−.20]

j, [.40..50], [.51, .61], [.34, .44], [−.90,−.80], [−.45,−.35], [−.30,−.20]

k, [.50, .40], [.55, .65], [.50, .54], [−.85,−.75], [−.38,−.28], [−.14,−.01]

l, [.50, .40], [.55, .65], [.50, .54], [−.85,−.75], [−.38,−.28], [−.14,−.01]

m, [.40..50], [.51, .61], [.34, .44], [−.90,−.80], [−.45,−.35], [−.30,−.20]

also

U(I) ∪ U(J) =



i, [.81, .91], [.10, .20], [.01, .20], [−.70,−.60], [−.71,−.61], [−.90,−.80]

j, [.81, .91], [.10, .20], [.01, .20], [−.70,−.60], [−.71,−.61], [−.90,−.80]

k, [.71, .81], [.16, .30], [.51, .61], [−.60,−.50], [−.81,−.66], [−.70,−.50]

l, [.71, .81], [.16, .30], [.51, .61], [−.60,−.50], [−.81,−.66], [−.70,−.50]

m, [.81, .91], [.10, .20], [.01, .20], [−.70,−.60], [−.71,−.61], [−.90,−.80]

Definition 3.6. Intersection of two rough bipolar interval neutrosophic sets I and J , is defined

as

L(I) ∩ L(J)(l) = min
(
L(apI)(l), L(apJ)(l)

)
,
L(bpI )(l)+L(bpJ )(l)

2 ,max
(
L(cpI)(l), L(cpJ)(l)

)
,

max (L(anI )(l), L(anJ)(l)) ,
L(bnI )(l)+L(bnJ )(l)

2 ,min (L(cnI )(l), L(cnJ)(l))

U(I) ∩ U(J)(l) = min
(
U(apI)(l), U(apJ)(l)

)
,
U(bpI )(l)+U(bpJ )(l)

2 ,max
(
U(cpI)(l), U(cpJ)(l)

)
,
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max (U(anI )(l), U(anJ)(l)) ,
U(bnI )(l)+U(bnJ )(l)

2 ,min (U(cnI )(l), U(cnJ)(l))

for every l ∈ H.

Example 3.7. Consider two rough bipolar interval neutrosophic sets as in Example 3.1 and

3.2 then

L(I) ∩ L(J) =



i, [.30..50], [.51, .61], [.60, .80], [−.85,−.75], [−.45,−.35], [−.30,−.20]

j, [.30..50], [.51, .61], [.60, .80], [−.85,−.75], [−.45,−.35], [−.30,−.20]

k, [.40, .30], [.55, .65], [.60, .70], [−.75,−.65], [−.38,−.28], [−.68,−.58]

l, [.40, .30], [.55, .65], [.60, .70], [−.75,−.65], [−.38,−.28], [−.68,−.58]

m, [.30..50], [.51, .61], [.60, .80], [−.85,−.75], [−.45,−.35], [−.30,−.20]

also

U(I) ∩ U(J) =



i, [.50, .60], [.10, .20], [.03, .20], [−.70,−.50], [−.71,−.61], [−.90,−.80]

j, [.50, .60], [.10, .20], [.03, .20], [−.70,−.50], [−.71,−.61], [−.90,−.80]

k, [.65, .75], [.14, .30], [.51, .61], [−.60,−.50], [−.81,−.66], [−.70,−.60]

l, [.65, .75], [.14, .30], [.51, .61], [−.60,−.50], [−.81,−.66], [−.70,−.60]

m, [.50, .60], [.10, .20], [.03, .20], [−.70,−.50], [−.71,−.61], [−.90,−.80]

Definition 3.8. The complement of a rough bipolar interval neutrosophic set R(I) is defined

as R(I)c = (L(I)c, U(I)c) where L(I)cand U(I)c are the lower and upper approximations of

R(I)c.

L(apI)c(l) = 1− L(apI)(l), L(bpI)c(l) = 1− L(bpI)(l) and L(cpI)c(l) = 1− L(cpI)(l)

L(anI )c(l) = −1− L(apI)(l), L(bnI )c(l) = −1− L(bpI)(l) and L(cnI )c(l) = −1− L(cpI)(l).

Also, U(apI)c(l) = 1− U(apI)(l), U(bpI)c(l) = 1− U(bpI)(l) and U(cpI)c(l) = 1− U(cpI)(l)

U(anI )c(l) = −1− U(apI)(l), U(bnI )c(l) = −1− U(bpI)(l) and U(cnI )c(l) = −1− U(cpI)(l).

for all l ∈ H.

Definition 3.9. If R(I) and R(J) are two rough bipolar interval neutrosophic sets in H, then

(1) R(I) = R(J)⇔ L(I) = L(J), U(I) = U(J)

(2) R(I) ⊆ R(J)⇔ L(I) ⊆ L(J), U(I) ⊆ U(J)

(3) R(I) ∪R(J)⇔ 〈L(I) ∪ L(J), U(I) ∪ U(J)〉
(4) R(I) ∩R(J)⇔ 〈L(I) ∩ L(J), U(I) ∩ U(J)〉
(5) R(I) + R(J)⇔ 〈L(I) + L(J), U(I) + U(J)〉
(6) R(I) ◦R(J)⇔ 〈L(I) ◦ L(J), U(I) ◦ U(J)〉

Proposition 3.10. Let I and J are rough bipolar interval neutrosophic sets in (H,R) then
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(1) Ic(Ic) = I

(2) L(I) ⊆ U(I)

(3) (L(I) ∪ L(J))c = L(I)c ∩ L(J)c

(4) (L(I) ∩ L(J))c = L(I)c ∪ L(J)c

(5) (U(I) ∪ U(J))c = U(I)c ∩ U(J)c

(6) (U(I) ∩ U(J))c = U(I)c ∪ U(J)c

Proposition 3.11. If R(I) and R(J) are rough bipolar interval neutrosophic sets then

(1) (R(I) ∪R(J))c = (R(I))c ∩ (R(J))c

(2) (R(I) ∩R(J))c = (R(I))c ∪ (R(J))c

Proposition 3.12. If I and J are bipolar interval neutrosophic sets such that I ⊆ J implies

R(I) ⊆ R(J)

(1) R(I ∪ J) ⊇ R(I) ∪R(J)

(2) R(I ∩ J) ⊇ R(I) ∩R(J)

Proof : Let l ∈ H then

L(anI∪J)(l) =
∧

z∈[l]R
anI∪J(z)

=
∧

z∈[l]R
max {anI , anJ}

≥ max

{ ∧
z∈[l]R

anI ,
∧

z∈[l]R
anJ

}
= max {L(anI ), L(anJ)}
= L(anI ) ∪ L(anJ)

for all l ∈ H.

Similarly we can prove L(bnI∪J)(l) ≤ L(bnI ) ∪ L(bnJ)

L(cnI∪J)(l) ≤ L(cnI ) ∪ L(cnJ)

L(apI∪J)(l) ≤ L(apI) ∪ L(apJ)

L(bpI∪J)(l) ≥ L(bpI) ∪ L(bpJ)

L(cpI∪J)(l) ≥ L(cpI) ∪ L(cpJ)

Hence, L(I ∪ J) ⊇ L(I) ∪ L(J)

4. Conclusions

In this paper we introduce the notion of rough bipolar interval neutrosophic

set. We also study some properties of this set and prove some propositions. The

rough bipolar interval neutrosophic set is a combination of rough bipolar set and

interval neutrosophic set. The proposed concept can be used in many aplications

such as decision making problem, recognition pattern etc.
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Abstract. Mapping is a fundamental mathematical concept that is used in many elementary areas of science

and mathematics and has numerous applications. The core purpose of this study is to provide a theoretical and

analytical approach for carving out a basic structure of composite mappings on the classes of Fuzzy Hypersoft

(FHS) sets. It is a comprehensive study of existing concepts regarding mappings on fuzzy soft, soft and hesitant

fuzzy soft classes through characterizing of composite mappings on FHS classes. Moreover, certain generalized

properties of mappings on FHS classes like FHS images and FHS inverse images, are established. Some related

results are verified with the help of illustrative examples.

Keywords: Fuzzy soft, Soft classes, Hesitant fuzzy soft classes, Composite mappings, Fuzzy hypersoft set.

—————————————————————————————————————————-

1. Introduction

In 1965, Zadeh introduced the theory of fuzzy sets [24]. It has been utilized in different de-

cision making problem [20]- [21]- [22]. There are some theories, theory of likelihood, theory

of intuitionistic fuzzy sets [2], [5], theory of vague sets [10], the theory of interval mathemat-

ics [2], [11], and theory of rough sets [13] which can be considered as scientific apparatuses

for dealing with uncertainties and ambiguous. Despite that, every one of these speculations

has their innate challenges as brought up in [12]. The main reason behind these troubles is

potentially the inadequacy of the parametrization device of the hypothesis.

Therefore, Molodtsov [12] started the idea of a soft set (SS) as a numerical device for deal-

ing with uncertainties which are liberated from the above challenges (We know about the SS

characterized by Pawlak [14], which is an alternate idea and helpful to understand some other

kind of issues).
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Karaaslan [8] introduced soft class and its pertinent activities. Athar et al. [3], [4] intro-

duced the concept of mappings on fuzzy soft classes and mappings on soft classes in 2009 and

2011 individually. They considered the properties of the soft image and soft inverse image.

They also characterized the properties of fuzzy SS, fuzzy S-image, fuzzy S-inverse image of

fuzzy S-sets and supported them with examples. Manash et al. [7] gave the idea of composite

mappings on hesitant fuzzy soft classes in 2016 and discussed some interesting properties of

this idea.

In a diversity of real-life applications, the attributes should be further sub-partitioned into

attribute values for more clear understanding. Samarandache [9] fulfilled this need and de-

veloped the concept of the HSS as a generalization of the SS. He opened numerous fields in

this way of thinking and generalized SS to the hyper-soft set by changing the planning F into

a multi-contention function. At that point, he made the differentiation between the sorts of

initial universes, crisp, fuzzy, intuitionistic fuzzy, neutrosophic, and plithogenic respectively.

Thus, he also showed that a HS set can be crisp, fuzzy, intuitionistic fuzzy, neutrosophic and

plithogenic respectively. Saeed et al. [19, 25] explained some basic concepts like HS subset,

HS complement, not HS set, absolute set, union, intersection, AND, OR, restricted union,

extended intersection, relevant complement, restricted difference, restricted symmetric differ-

ence, HS set relation, sub relation, complement relation, HS representation in matrices form,

and different operations on matrices. Saeed et al. [23] characterized mapping under a hypersoft

set environment, then some of its essential properties like HS images, HS inverse images were

also discussed.

The core purpose of this study is to provide a theoretical and analytical approach for carving

out a basic structure of composite mappings on the classes of FHS sets. It is an comprehensive

study of existing concepts regarding mappings on fuzzy soft, soft classes and hesitant fuzzy

soft classes through characterizing of composite mappings on FHS classes. Moreover, certain

generalized properties of mappings on FHS classes like FHS images and FHS inverse images,

are established. Some related results are proved with the help of illustrative examples. The

ordering of the following portion is working out as follows.

In Section 2, some pivotal regarding fuzzy set, SS, fuzzy soft class, soft class, hypersoft set, and

fuzzy hypersoft set (FHSS) are re-imagined. In Section 3, composite mappings on FHS classes,

FHS image, FHS inverse image, and its relevant theorems with their essential properties are

considered. In the last section, some concluding remarks are described.
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1.1. Motivation

In a diversity of real-life applications, the attributes should be further sub-partitioned into

attribute values for more clear understanding. Samarandache [9] fulfilled this need and de-

veloped the concept of the FHSS as a generalization of the fuzzy soft set. Now, It will be a

question that how do we define composite mappings for FHSS classes? FHSS set is significan-

t? To answers these questions and getting inspiration from the above writing, it is relevant

to broaden the idea of mappings for those sets managing disjoint arrangements of attributed

values, i.e FHSS. In this investigation, an extension is made in existing theories with respect to

mappings on fuzzy soft, soft classes and hesitant fuzzy soft classes by characterizing composite

mappings on FHS classes. The striking component of composite mappings on FHS classes is

that it can mirror the interrelationship between the multi-input contentions. Moreover, certain

generalized properties of mappings on FHS classes like FHS images and FHS inverse images,

are established. Some related results are proved with the help of illustrative examples.

2. Preliminaries

Throughout the following, let L = F1 × F2 × F3 × ... × Fn, M = F ′1 × F ′2 × F ′3 × ... × F ′n,

N = F ′′1 × F ′′2 × F ′′3 × ... × F ′′n , O = F ′′′1 × F ′′′2 × F ′′′3 × ... × F ′′′n , α = (α1, α2, α3, ..., αn) and

β = (β1, β2, β3, ..., βn).

Definition 2.1. [21] The fuzzy set X = {(x, ξX(x))|x ∈ X} such that

ξX : X → [0, 1]

where ξX(x) describes the membership percentage of x ∈ X.

Definition 2.2. [12] A pair (F,A) is said to be soft set over X, where F is a mapping given

as

F : A→ P (X)

On the other way, a SS is the parameterized family of subsets of the universe X. In other

words, a soft set over X is a parameterized family of subsets of the universe. For ε ∈ A. F (ε)

may be considered as the set of ε approximate elements of the soft set (F,A).

Definition 2.3. [6] Let X be an initial universe, indexed class of fuzzy sets {fi : fi : X →
[0, 1]), i = 1, 2, ..., n} is called a fuzzy class.

Definition 2.4. [1] Let X be a universe and E a set of attributes. Then the pair (X,E)

denotes the collection of all fuzzy soft sets on X with attributes from E and is called a fuzzy

soft class.
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Definition 2.5. [9] Let a1, a2, a3, · · · , an be the distinct attributes whose corresponding

attribute values belongs to the sets F1, F2, F3, · · · , Fn respectively, where Fi ∩ Fj = Φ for

i 6= j. A pair (Υ, L) is called a hypersoft set over the universal set X, where Υ is the mapping

given by Υ : L −→ P (X).

For more definition see [15–19].

Definition 2.6. [19] Suppose X and F (X) be the universal set and all fuzzy subsets of X

respectively. Let a1, a2, a3, · · · , an be the distinct attributes whose corresponding attribute

values belongs to the sets F1, F2, F3, ..., Fn respectively, where Fi ∩ Fj = Φ for i 6= j and i, j

∈ {1, 2, 3, ..., n}. Then the FHSS is the pair (ΣL, L) over X defined by a map ΣL : L→ F (X).

3. Main results

Definition 3.1. Suppose X and F (X) be the universal set and all fuzzy subsets of X

respectively, let a1, a2, a3, · · · , an be the distinct attributes whose corresponding attribute

values belongs to the sets F1, F2, F3, · · · , Fn respectively, where Fi ∩ Fj = Φ for i 6= j,

let z = {ςi : i = 1, 2, ..., n} be a collection of decision makers. Indexed class of FHSS

{ϑςi : ϑςi : L→ F (X), ςi ∈ z}, is said to be fuzzy hypersoft class and it can be symbolized in

such a form ϑz. If for any ςi ∈ z, ϑςi = Φ, the FHSS ϑςi 6∈ ϑz.

Example 3.2. Let X = {a = Holstein, b = Angus, c = Charolais } be the set of cow categories.

Peter decide to purchase a cow for milk to get vitamin B12 and iodine of doctor instruction.

They visit Bos tarus (a Europeon Cattle) to buy such cow which fulfills his requirements. Let

a1 = vision and hearing, a2 = Cost, a3 = Colour, distinct attributes whose attribute values

belong to the sets F1, F2, F3. Let F1 = {f1 = Excellent peripheral vision, f2 = Low peripheral

vision }, F2 = {f3 =High, f4 = Low}, F3 = {f5 = White } and let z = {ς1, ς1, ς1} be a set of

decision makers. If we consider FHS sets given as

ϑς1 =

{
((f1, f3, f5), {0.5/a, 0.7/b}), ((f1, f4, f5), {0.1/c}),
((f2, f3, f5), {0.4/b, 0.2/c}), ((f2, f4, f5), {0.02/b})

}

ϑς2 =

{
((f1, f3, f5), {0.05/b, 0.006/c}), ((f1, f4, f5), {0.08/a}),
((f2, f3, f5), {0.55/a, 0.75/c}), ((f2, f4, f5), {0.52/b})

}

ϑς3 =

{
(f1, f3, f5){0.008/c, 0.25/a}), ((f1, f4, f5), {0.12/b}),
((f2, f3, f5), {0.05/b, 0.64/c}), ((f2, f4, f5), {0.28/c})

}
and

gς1 =

{
((f1, f3, f5), {0.87/a}), ((f1, f4, f5), {0.23/a}),
((f2, f3, f5), {0.09/c, 0.54/a}), ((f2, f4, f5), {0.53/a})

}

gς2 =

{
((f1, f3, f5), {0.05/c}), ((f1, f4, f5), {0.34/b}),
((f2, f3, f5), {0.32/b, 0.27/c}), ((f2, f4, f5), {0.08/c})

}
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gς3 =

{
((f1, f3, f5), {0.27/b}), ((f1, f4, f5), {0.52/b}),
((f2, f3, f5), {0.37/a, 0.38/c}), ((f2, f4, f5), {0.001/a})

}

Then FHS classes can be written as {ϑς1 , ϑς2 , ϑς3}, {gς1 , gς2 , gς3}.

Figure 1. Representation of Fuzzy Hypersoft Mapping

Definition 3.3. Let (X,L) and (Y,M) be classes of FHS sets over X and Y with attributes

from L and M respectively. Let ω : X → Y and υ : L → M be mappings. Then a

FHS mappings χ = (ω, υ) : (X,L) → (Y,M) is defined as follows, for a FHSS PA in

(X,L), χ(PA) is a FHSS in (Y,M) obtained as follows, for β ∈ υ(L) ⊆ M and y ∈ Y ,

χ(PA)(β)(y) = ∪α∈υ−1(β)∩A, s∈ω−1(y)(α)µsχ(PA) is called a fuzzy hypersoft image of a FHSS

PA. Hence (PA, χ(PA)) ∈ χ, where PA ⊆ (X,L), χ(PA) ⊆ (Y,M). For more detail see fig 1.
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Definition 3.4. If χ : (X,L) → (Y,M) be a FHS mapping, then FHS class (X,L) is called

the domain of χ and the FHS class GB ∈ (Y,M) : GB = χ(HA), for some HA ∈ (X,L) is

called the range of χ. The FHS class (Y,M) is called co-domain of χ.

Definition 3.5. Let χ = (ω, υ) : (X,L) → (Y,M) be a FHS mapping and GB a FHSS in

(Y,M), where ω : X → Y , υ : L → M and B ⊆ M . Then χ−1(GB) is a FHSS in (X,L)

defined as follows, for α ∈ υ−1(B) ⊆ L and x ∈ X, χ−1(GB)(α)(x) = (υ(α))µp(x)χ
−1(GB) is

called a FHS inverse image of GB. For more detail see fig 2

Figure 2. Representation of Fuzzy Hypersoft Inverse Mapping

Example 3.6. Let X = {a = Holstein, b = Angus, c = Charolais } and Y = {x = Murrah,

y = Siamese, z = Surti } be the two universal sets of Cows and Buffalo categories respectively.

Peter plans his dairy farm business and wants to understand the difference between a strategy

and a tactic. For this purpose, he creates the relationship between these two types of cattle

categories which is helpful regrading his dairy farm business. Let a1 = vision and hearing

, a2 = Cost, a3 = Colour, and b1 = appearance, b2 = colour, b3 = price be the two types

of distinct attributes whose corresponding attribute values belong to the sets F1, F2, F3 and

F ′1, F
′
2, F

′
3 respectively. Let F1 = {f1 = Excellent peripheral vision, f2 = Low peripheral vision

}, F2 = {f3 =High }, F3 = {f4 = White, f5 = brown }. Similarly, F ′1 = {f ′1 = Good,

f ′2 = massive }, F ′2 = {f ′3 = black }, F ′3 = {f ′4 = low price } and (X,L), (Y,M) be two
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classes of FHS sets, where L = F1 × F2 × F3 and M = F ′1 × F ′2 × F ′3. Let ω : X → Y ,

υ : F1 × F2 × F3 → F ′1 × F ′2 × F ′3 be mappings as follows

ω(a) = y, ω(b) = x, ω(c) = y and

υ(f1, f3, f4) = (f ′2, f
′
3, f
′
4), υ(f1, f3, f5) = (f ′1, f

′
3, f
′
4),

υ(f2, f3, f4) = (f ′2, f
′
3, f
′
4), υ(f2, f3, f5) = (f ′1, f

′
3, f
′
4).

Consider a FHSS PA in (X,L) as

PA =



{
(f1, f3, f4) = {< a, {0.5, 0.3} >,
< b, {0.9, 0.3, 0.5} >,< c, {0.3} >

}
,{

(f1, f3, f5) = {< a, {0.3, 0.9} >,
< b, {0.5, 0.1} >,< c, {0.1} >}

}


Then the FHS image of PA under χ = (ω, υ) : (X,L)→ (Y,M) is obtained as

χ(PA)(f1′ , f3′ , f4′)(x) = ∪α∈υ−1(f1′ ,f3′ ,f4′ )∩A,s∈ω−1(x)(α)µs = ∪α∈(f1,f3,f5)∩A,s∈b(α)µs

= (f1, f3, f5)µb = {0.5, 0.1},
χ(PA)(f1′ , f3′ , f4′)(y) = {0.3, 0.9},
χ(PA)(f1′ , f3′ , f4′)(z) = {0}
χ(PA)(f2′ , f3′ , f4′)(x) = {0.9, 0.3, 0.5}
χ(PA)(f2′ , f3′ , f4′)(y) = {0.3, 0.5}
χ(PA)(f2′ , f3′ , f4′)(z) = {0}

χ(PA) =



{
(f ′1, f

′
3, f
′
4) = {< x, {0.5, 0.1} >,

< y, {0.3, 0.9} >,< z, {0} >

}
,{

(f ′2, f
′
3, f
′
4) = {< x, {0.9, 0.3, 0.5} >,

< y, {0.3, 0.5} >,< z, {0} >}

}


Again consider a FHSS P ′B in (Y,M) as

P ′B =



{
(f ′1, f

′
3, f
′
4) = {< x, {0.3, 0.4} >,

< y, {0.4, 0.5, 0.1} >,< z, {0.9, 0.3} >

}
,{

(f ′2, f
′
3, f
′
4) = {< x, {0.4, 0.5} >,

< y, {0.9, 0.3} >,< z, {0.5, 0.4} >}

}


Therefore,

χ−1(P ′B)(f1, f3, f4)(a) = υ((f1, f3, f4))µω(a)

= (f ′2, f
′
3, f
′
4)µω(a) = (f ′2, f

′
3, f
′
4)µy = {0.9, 0.3}

χ−1(P ′B)(f1, f3, f4)(b) = {0.4, 0.5}
χ−1(P ′B)(f1, f3, f4)(c) = {0.9, 0.3}
χ−1(P ′B)(f1, f3, f5)(a) = {0.4, 0.5, 0.1}
χ−1(P ′B)(f1, f3, f5)(b) = {0.3, 0.4}
χ−1(P ′B)(f1, f3, f5)(c) = {0.4, 0.5, 0.1}
χ−1(P ′B)(f2, f3, f4)(a) = {0.9, 0.3}
χ−1(P ′B)(f2, f3, f4)(b) = {0.4, 0.5}
χ−1(P ′B)(f2, f3, f4)(c) = {0.9, 0.3}
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χ−1(P ′B)(f2, f3, f5)(a) = {0.4, 0.5, 0.1}
χ−1(P ′B)(f2, f3, f5)(b) = {0.3, 0.4}
χ−1(P ′B)(f2, f3, f5)(c) = {0.4, 0.5, 0.1}

Similarly,

χ−1(P ′B) =



{
{(f1, f3, f4) = {< a, {0.9, 0.3} >,
< b, {0.4, 0.5} >,< c, {0.9, 0.3} >}

}
,{

{(f1, f3, f5) = {< a, {0.4, 0.5, 0.1} >,
< b, {0.3, 0.4} >,< c, {0.4, 0.5, 0.1} >}

}
,{

{(f2, f3, f4) = {< a, {0.9, 0.3} >,
< b, {0.4, 0.5} >,< c, {0.9, 0.3} >}

}
,{

{(f2, f3, f5) = {< a, {0.4, 0.5, 0.1} >,
< b, {0.3, 0.4} >,< c, {0.4, 0.5, 0.1} >}

}



.

In case of χ : (X,L) → (Y,M), Peter should purchase those buffalo having attribute values

(f1 = Excellent peripheral vision,f3 = High,f4 = White) or can purchase those cow having

this attributes values (f ′1 = Good, f ′3 = black,f ′4 = low price ) because both of the categories

are interrelated and fulfills the requirements individually. For more clarity see 3.

Figure 3. Representation of Fuzzy Hypersoft Mapping

Similarly, for inverse FHSS see fig 4.
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Figure 4. Representation of Fuzzy Hypersoft Inverse Mapping

Definition 3.7. Let χ = (ω, υ) be a FHS mapping of a FHS class (X,L) into a FHS class

(Y,M). Then

(1) χ is said to be a one-one (or injection) FHS mapping if for both ω : X → Y and

υ : L→M are one-one.

(2) χ is said to be a onto (or surjection) FHS mapping if for both ω : X → Y and

υ : L→M are onto.

If χ is both one-one and onto then χ is called a one-one onto (or bijective) correspondence of

FHS mapping.

Theorem 3.8. Let χ = (ω, υ) : (X,L) → (X,M) and φ = (m,n) : (X,L) → (X,M) are two

FHS mappings. Then χ and φ are equal if and only if ω = m and υ = n.

Proof. Obvious.

Theorem 3.9. Two FHS mappings χ and φ of a FHS class (X,L) into a FHS class (Y,M)

are equal if and only if χ(PA) = φ(PA), for all PA ∈ (X,L).

Proof. Let χ = (ω, υ) : (X,L) → (X,M) and φ = (m,n) : (X,L) → (X,M) are two FHS

mappings. Since ω and υ are equal, this implies ω = m and υ = n, let β ∈ υ(L) ⊆ M

and y ∈ Y , χ(PA)(β)(y) = ∪α∈υ−1(β)∩A, s∈ω−1(y)(α)µs = ∪α∈n−1(β)∩A, s∈m−1(y)(α)µs. Hence

χ(PA) = φ(PA).

Conversely,

let χ(PA) = φ(PA), for all PA ∈ (X,L), let (P,Q) ∈ χ, where P ∈ (X,L) and Q ∈ (Y,M).
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Therefore Q = χ(P ) = φ(P ), this gives (P,Q) ∈ φ. Therefore χ ⊆ φ. Similarly, it can be

proved that φ ⊆ χ. Hence φ = χ.

Definition 3.10. If χ = (ω, υ) : (X,L) → (Y,M) and φ = (m,n) : (Y,M) → (Z,N) are

two FHS mappings, then their composite φoχ is a FHS mapping of (X,L) into (Z,N) such

that for every PA ∈ (X,L), (φoχ)(PA) = φ(χ(PA)). We defined as for β ∈ n(M) ⊆ N and

y ∈ Z, φ(χ(PA))(β)(y) = ∪α∈n−1(β)∩χ(A), s∈m−1(y)(α)µs. For more detail see fig 5.

Figure 5. Representation of Composite Fuzzy Hypersoft Mapping

Example 3.11. From 3.6, consider the FHS mapping φ = (m,n) : (Y,M) → (Z,N) in such

a way m(x) = h2,m(y) = h3,m(z) = h2,

and

n(f ′1, f
′
3, f
′
4) = (f ′′1 , f

′′
2 , f

′′
3 ),

n(f ′2, f
′
3, f
′
4) = (f ′′1 , f

′′
2 , f

′′
4 )

where Z = {h1, h2, h3}, N = F ′′1 × F ′′2 × F ′′3 = {(f ′′1 , f ′′2 , f ′′3 ), (f ′′1 , f
′′
2 , f

′′
4 )}. Therefore

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
3 )(h1) = ∪α∈n−1(f ′′1 ,f

′′
2 ,f
′′
3 )∩A, s∈m−1(h1)(α)µs

= ∪α∈(f ′1,f
′
3,f
′
4)∩χ(A), s∈Φ(α)µs = (f ′1, f

′
3, f
′
4)µΦ = {0},

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
3 )(h2) = {0.3, 0.4, 0.9},
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φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
3 )(h3) = {0.4, 0.5, 0.1},

So,

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
4 )(h1) = {0}

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
4 )(h2) = {0.4, 0.5},

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
4 )(h3) = {0.9, 0.3}

(φoχ)(PA) = φ(χ(PA) =



{
(f ′′1, f

′′
2, f
′′

4) = {< h1, {0} >,
< h2, {0.3, 0.4, 0.9} >,< h3, {0.4, 0.5, 0.1} >

}
{

(f ′′1, f
′′

2, f
′′

4) = {< h1, {0} >,
< h2, {0.4, 0.5} >,< h3, {0.9, 0.3} >

}


Theorem 3.12. Let χ = (ω, υ) : (X,L)→ (Y,M) and φ = (m,n) : (Y,M)→ (Z,N) are two

FHS mappings.Then

(1) if χ and φ are one-one then so is φoχ.

(2) if φ and χ are onto then so is χoφ.

(3) if χ and φ are both bijections then so is φoχ.

Example 3.13. Fom 3.6, 3.11, let ω(a) = z, ω(b) = x, ω(c) = y,

υ(f1, f3, f4) = (f ′2, f
′
3, f
′
5),

υ(f1, f3, f5) = (f ′1, f
′
3, f
′
4)

and

m(x) = h2,m(y) = h3,m(z) = h1

n(f ′1, f
′
3, f
′
4) = (f ′′1 , f

′′
2 , f

′′
3 ),

n(f ′2, f
′
3, f
′
4) = (f ′′1 , f

′′
2 , f

′′
4 ).

Also we consider a FHSSPA in (X,L) as

PA =



{(f1, f3, f4) =


< a, {0.5, 0.3} >,
< b, {0.9, 0.3, 0.5} >,
< c, {0.3} >

 ,

{(f1, f3, f5) =


< a, {0.3, 0.9} >,
< b, {0.5, 0.1} >,
< c, {0.1} >}




Then the FHS image of PA under χ = (ω, υ) : (X,L)→ (Y,M) is obtained as

χ(PA)(f ′1, f
′
3, f
′
4)(x) = ∪α∈υ−1(f ′1,f

′
3,f
′
4)∩A, s∈ω−1(x)(α)µs

= ∪α∈(f1,f3,f5)∩A, s∈b(α)µs = (f1, f3, f5)µb = {0.5, 0.1},

χ(PA)(f ′1, f
′
3, f
′
4)(y) = {0.1},

χ(PA)(f ′1, f
′
3, f
′
4)(z) = {0.3, 0.9},
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χ(PA)(f ′2, f
′
3, f
′
4)(x) = {0.9, 0.3, 0.5},

χ(PA)(f ′2, f
′
3, f
′
4)(y) = {0.5, 0.3},

χ(PA)(f ′2, f
′
3, f
′
4)(z) = {0.3}

χ(PA) =



(f ′1, f
′
3, f
′
4) =


< x, {0.5, 0.1} >,
< y, {0.1} >,
< z, {0.3, 0.9} >


 ,

(f ′2, f
′
3, f
′
5) =


< x, {0.9, 0.3, 0.5} >,
< y, {0.3, 0.5} >,
< z, {0.3} >





Again,

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
3 )(h1) = ∪α∈n−1(f ′′1 ,f

′′
2 ,f
′′
3 )∩A, s∈m−1(h1)(α)µs

= ∪α∈(f ′1,f
′
3,f
′
4)∩χ(A), s∈z(α)µs = (f ′1, f

′
3, f
′
4)µz = {0.9, 0.3},

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
3 )(h2) = {0.5, 0.1},

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
3 )(h3) = {0.1},

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
4 )(h1) = {0.3},

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
4 )(h2) = {0.9, 0.3, 0.5},

φ(χ(PA))(f ′′1 , f
′′
2 , f

′′
4 )(h3) = {0.3, 0.5},

(φoχ)(PA) = φ(χ(PA) =



{
(f ′′1, f

′′
2, f
′′

4) = {< h1, {0.9, 0.3} >,
< h2, {0.5, 0.1} >,< h3, {0.1} >

}
{

(f ′′1, f
′′

2, f
′′

4) = {< h1, {0.3} >,
< h2, {0.9, 0.3, 0.5} >,< h3, {0.3, 0.5} >

}


Therefore, from above example we see that, if χ and φ are one-one then so is φoχ. Similarly,

for onto as well as bijections.

Theorem 3.14. Let us consider three FHS mappings χ : (X,L) → (Y,M) , φ : (Y,M) →
(Z,N) and ϕ : (Z,N)→ (A,O) . Then ϕo(φoχ) = (ϕoφ)oχ.

Proof. Let PA ∈ (X,L), now from definition we have, [ϕo(φoχ)](PA) = (ϕoφ)oχ(PA)] =

ϕ[φ(χ(PA))], also [(ϕoφ)oχ](PA) = (ϕoφ)(χ(PA)) = ϕ[φ(χ(PA))]. Hence ϕo(φoχ) = (ϕoφ)oχ.

Theorem 3.15. A FHS mapping χ : (X,L) → (Y,M) is said to be many one FHS mapping

if two (or more than two) FHS sets in (X,L) have the same FHS image in (Y,M).
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Example 3.16. From example 3.6, consider the FHSS QA ∈ (X,L),

QA =



(f1, f3, f4) =


< a, {0.5, 0.1} >,
< b, {0.9, 0.3, 0.5} >,
< c, {0.3} >


 ,

(f1, f3, f5) =


< a, {0.3, 0.9} >,
< b, {0.5, 0.1} >,
< c, {0.1} >





Then the FHS image of PA under χ = (ω, υ) : (X,L)→ (Y,M) can be written as

χ(QA) =



(f ′1, f
′
3, f
′
4) =


{< x, {0.5, 0.1} >,
< y, {0.3, 0.9} >,
< z, {0} >}


 ,

(f ′2, f
′
3, f
′
5) =


< x, {0.9, 0.3, 0.5} >,
< y, {0.3, 0.5} >,
< z, {0} >





Therefore χ(PA) = χ(QA). Hence χ is many one FHS mapping.

Definition 3.17. Let i = (ω, υ) : (X,L) → (X,L) be a FHS mapping, where ω : X → X

and υ : L → L. Then χ is said to be a FHS identity mapping if both ω and υ are identity

mappings.

Remark 3.18. i = (ω, υ) : (X,L) → (X,L) be a FHS identity mapping, then i(PA) = PA,

where PA ∈ (X,L).

Definition 3.19. Let χ = (ω, υ) : (X,L) → (Y,M) be a FHS mapping and let i = (ω, υ) :

(X,L) → (X,L) and j = (r, t) : (Y,M) → (Y,M) are FHS identity mappings then χoi = χ

and joχ = χ.

Example 3.20. Consider the following example, we consider PA from example 3.6 and con-

sider the FHS mappings i = (ω, υ) : (X,L)→ (X,L), where ω : X → X and υ : L→ L, such

that ω(a) = a, ω(b) = b, ω(c) = c, and

υ(f1, f3, f4) = (f1, f3, f4), υ(f1, f3, f5) = (f1, f3, f5)

υ(f2, f3, f4) = (f2, f3, f4), υ(f2, f3, f5) = (f2, f3, f4)

Therefore,

i(PA)(f1, f3, f4)(a) = ∪α∈υ−1(f1,f3,f4)∩A,s∈ω−1(a)(α)µs

∪α∈(f1,f3,f4),s∈{a}(α)µs = (f1, f3, f4)µa = {0.5, 0.1}

i(PA)(f1, f3, f4)(b) = {0.9, 0.3, 0.5},

i(PA)(f1, f3, f4)(c) = {0.3},
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So,

i(PA)(f1, f3, f5)(a) = {0.3, 0.9},

i(PA)(f1, f3, f5)(b) = {0.5, 0.1},

i(PA)(f1, f3, f5)(c) = {0.1}

we get,

i(PA) =



(f1, f3, f4) =


< a, {0.5, 0.3} >,
< b, {0.9, 0.3, 0.5} >,
< c, {0.3} >


 ,

(f1, f3, f5) =


< a, {0.3, 0.9} >,
< b, {0.5, 0.1} >,
< c, {0.1} >





Hence i(PA) = PA ⇒ χ(i(PA)) = χ(PA)⇒ (χoi)(PA) = χ(PA)⇒ χoi = χ.

Similarly, we get χ(PA) ∈ (X,L) and j(χ(PA)) = (χ(PA))⇒ (joχ)(PA) = χ(PA).

Hence joχ = χ.

Definition 3.21. A one-one onto FHS mapping χ = (ω, υ) : (X,L) → (Y,M) is called FHS

invertable mapping. Its FHS inverse mapping is denoted by χ−1 = (ω−1, υ−1) : (Y,M) →
(X,L).

Remark 3.22. In a FHS invertable mapping χ : (X,L) → (Y,M), for PA ∈ (X,L), PB ∈
(Y,M), χ−1(PB) = PA, whenever χ(PA) = PB.

Example 3.23. We consider χ(LA) = PB (see 3.13). Therefore,

χ−1(PB)(f1, f3, f4)(a) = (υ(f1, f3, f4)µω(a) = (f ′1, f
′
3, f
′
4)µz = {0.3, 0.9}

χ−1(PB)(f1, f3, f4)(b) = {0.5, 0.1},

χ−1(PB)(f1, f3, f4)(c) = {0.1},

So,

χ−1(PB)(f1, f3, f5)(a) = {0.3},

χ−1(PB)(f1, f3, f5)(b) = {0.9, 0.3, 0.5},

χ−1(PB)(f1, f3, f5)(c) = {0.3, 0.5}
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we get,

χ−1(PB) =



(f1, f3, f4) =


< a, {0.9, 0.3} >,
< b, {0.5, 0.1} >,
< c, {0.1} >


 ,

(f1, f3, f5) =


< a, {0.3} >,
< b, {0.9, 0.3, 0.5} >,
< c, {0.3, 0.5, } >





Hence, χ−1(PB) = LA.

Theorem 3.24. Let χ : (X,L) → (Y,M) be a FHS invertable mapping. Therefore its FHS

inverse mapping is unique.

Proof. Let χ−1 and φ−1 are two FHS inverse mappings of χ. Therefore, χ−1(PB) = PA,

whenever χ(PA) = PB, PA ∈ (X,L), PB ∈ (Y,M), and φ−1(PB) = HA, whenever φ(HA) =

PB, HA ∈ (X,L), PB ∈ (Y,M). Thus χ(PA) = φ(HA). Since χ is one-one, therefore PA = HA.

Hence χ−1(PB) = φ−1(PB) i.e χ−1 = φ−1.

3.1. Theorem

Let χ : (X,L) → (Y,M) and φ : (Y,M) → (Z,N) are two one-one onto FHS mappings.

If χ−1 : (Y,M) → (X,L) and φ−1 : (Z,N) → (Y,M) are FHS inverse mappings of χ and

φ, respectively, then the inverse of the mapping φoχ : (X,L) → (Z,N) is the FHS mapping

χ−1oφ−1 : (Z,N)→ (X,L). For more detail see fig 6

Proof. Obvious.

Theorem 3.25. A FHS mapping χ : (X,L)→ (Y,M) is invertable if and only if there exists

a FHS inverse mapping χ−1 : (Y,M)→ (X,L) such that χ−1oχ = i
(X,L)

and χoχ−1 = i
(Y,M)

,

where i
(X,L)

and i
(Y,M)

is FHS identity mapping on (X,L) and (Y,M), respectively.

Proof. Let χ : (X,L) → (Y,M) be a FHS invertable mapping. Therfore, by definition we

have χ−1(PB) = PA, whenever χ(PA) = PB, PA ∈ (X,L), PB ∈ (Y,M). Since (χ−1oχ)(PA) =

χ−1(χ(PA)) = χ−1(PB) = PA. Therefore, χ−1oχ = i
(X,L)

. Similarly, we prove that χoχ−1 =

i
(Y,M)

.

Theorem 3.26. If χ : (X,L) → (Y,M) and φ : (Y,M) → (Z,N) are two one-one onto FHS

mapping then (φoχ)−1 = χ−1oφ−1.

Proof. Since χ and φ are one-one onto FHS mapping, then there exists χ−1 : (Y,M)→ (X,L)

and φ−1 : (Z,N) → (Y,M) such that χ−1(PB) = PA, whenever χ(PA) = PB, PA ∈
(X,L), PB ∈ (Y,M), and φ−1(HC) = PB, whenever φ(PB) = HC , HC ∈ (Z,N), PB ∈ (Y,M).

Therefore, (φoχ)(PA) = φ[χ(PA)] = φ(PB) = HC . As φoχ is one-one onto, therefore
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Figure 6. Representation of Composite Fuzzy Hypersoft Inverse Mapping

(φoχ)−1 exists such that (φoχ)(PA) = HC ⇒ (φoχ)−1(HC) = PA. Also (φ−1oφ−1)(HC) =

χ−1[φ−1(HC)] = χ−1(PB) = PA. Hence (φoχ)−1(HC) = (χ−1oφ−1)(HC) ⇒ (φoχ)−1 =

χ−1oφ−1.

4. Conclusion

A basic structure of composite mapping of FHS classes is established along with generalization

of certain properties and results. It is very helpful for solving problems involving uncertainty

and vagueness. In the future, we will expand our exploration in the domain of Neutrosophic

Hypersoft Set, Plithogenic Crisp Hypersoft Set, Plithogenic Fuzzy Hypersoft Set, Plithogenic

Intuitionistic Fuzzy Hypersoft Set, Plithogenic Neutrosophic Hypersoft Set, complex Intuition-

istic Fuzzy Hypersoft Set, complex Neutrosophic Hypersoft Set, and their hybrid structures.

We will apply them in medical imaging issues, pattern recognition, recommender frameworks,

social, the monetary framework estimated thinking, image processing, and game theory.
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Abstract: Developments of systems in healthcare and medical sector have greatly influenced the way 

we shape our life. Several successful techniques, algorithms and systems have been proposed to solve 

small version of the change state of each drug according to specific patient. Traditional algorithms 

and techniques are faced by many difficulties such as (Large Scale, Continuous change of both drug 

set and patient state, and lack of information). In this study, we propose a methodology for Drug 

Products Selection - DPS according to every patient individually based on a real data set of US drug 

bank. A Best Worst Method (BWM), Multi-Attributive Border Approximation Area Comparison 

(MABAC). And Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE 

II) are suggested as a systematic procedure for assessing drug products under the canopy of 

Neutrosophic theory. Bipolar Neutrosophic Linguistic Numbers (BNLNs) handles the ambiguity, 

and uncertainty by bipolar Neutrosophic scale, BWM calculates the significance weights of 

assessment criteria, MABAC as an accurate method assesses drug products, and PROMETHEE II 

presents effectiveness arrangements of the possible alternatives. A case of 7 real drug products of a 

real patient against 7 criteria are assessed by 3 doctors to measure the accuracy of the suggested 

methodology. 

 

Keywords: Drug Product Selection; Neutrosophic Sets; Bipolar; BWM; MABAC; PROMETHEE II 

 

 

1. Introduction 

According to data from Food & Drug Administration of US government – FDA [1], a patient may 

face some serious situations which led to a sensitivity of some drug product’s component, and 

gradients and of course no one needs to reach out that level of high sensitivity issues when comes to 

the front because of validation failure. The importance of the validation process before taking a drug 

product costs nothing compared to the treatment, the one needs when a sensitivity issue comes. The 

same happens about drug products and their interactions on a patient that has already been taking a 

set of some other drugs’ products. A Drug-Drug Interaction – DDI, and Food-Drug Interaction - FDI 

lead to serious issues the one may avoid because of validation process. According to a 2007 report on 

medication safety issued by the Institute for Safe Medication Practices, close to 40 percent of the U.S. 

population receive prescriptions for four or more medications. And the rate of adverse drug reactions 

increases dramatically after a patient is on four or more medications [2]. While using a real up-to-
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date data set of drug bank [3] of US, it is important to analyze a real patient profiles with reviewing 

their historical records to validate and solve the mysterious and uncertainty of adding one more drug 

product to their daily routine. 

A health-care service provided for doctors, and patients together to prevent or minimize Medical 

Errors – MEs that harm patients [4]. Measuring how a drug product affect a patient is a critical process 

which requires a validation. Not only a general validation but it should focus on every patient’s 

situation. Validation on both sides, drug product level and patient level with avoiding any data 

limitation. Not all drug products the one may take are descripted by a specialist or a doctor, there are 

many over-the-counter - OTC drug products which a patient can buy and add it manually to his daily 

drug products set as a valid medicine [5]. The importance of the validation process must be available 

to both doctors as specialists, and public.  

The importance of applying such methodology not limited to doctors and patients but also includes 

pharmacists. In US, state pharmacy Drug Product Selection – DPS laws allow pharmacists to more 

easily switch prescriptions from brand-to-generic drugs [6]. Since the objective of the healthcare 

improved applications is to make it simpler for patients to remain linked to their providers, and for 

their providers to transfer responsible, value-founded care to their populations [7]. Validation 

process is the basic concept to transform the healthcare daily actions from novelty to actuality [8]. 

Five different real cases are reviewed and validated their newly added drug products to their current 

drug product set with respect of 7 criteria (sex, age, preferred dosage form, sensitivity, DDI, FDI, and 

price). 

The Drug Product Selection – DPS is a problem of Multi-Criteria Decision Making (MCDM) with 

multiple criteria, alternatives, and decision makers as it can be described according to various 

criterions rather quantitative or qualitative. Multiple methodologies were illustrated and evaluated 

the Drug Product Selection – DPS [9,10]. In this study, a proposed methodology of Best Worst Method 

(BWM), Multi-Attributive Border Approximation Area Comparison (MABAC), and Preference 

Ranking Organization Method for Enrichment Evaluations (PROMETHEE II) are suggested as an 

effective integration in multi-criteria decision for assessing the Drug Product Selection – DPS. The 

Drug Product Selection – DPS challenges of ambiguity, inconsistent information, imprecision, and 

uncertainty are handled with linguistic variables parameterized by bipolar Neutrosophic scale. 

Hence, the hybrid methodology of Bipolar Neutrosophic Linguistic Numbers (BNLNs) of BWM 

[11,12] is suggested to calculate the significance weights of assessment criteria, and MABAC as an 

accurate method is presented to assess Drug Product Selection – DPS [13]. In addition to consider the 

qualitative criteria compensation in Drug Product Selection – DPS in MABAC in order to overcome 

drawbacks PROMETHEE II of non-compensation to reinforce the serving effectiveness arrangements 

of the possible alternatives of drug products. An experiential case including 7 assessment criteria, 

assessed against 7 products of different drugs’ components to prove validity of the suggested 

methodology. 

The article is planned as follows: Section 2 presents the literature review. Section 3 presents the hybrid 

methodology of decision making for selecting appropriate drug product under specific conditions 

using Neutrosophic theory by the integration of the BWM, MABAC and PROMETHEE II. Section 4 

presents a case study to validate the proposed model and achieve to a final efficient rank. Section 5 

summarizes the aim of the proposed study and the future work. 

2. Materials and Methods  

2.1. Related Studies and Materials 

A review of literature will be displayed about the Drug Product Selection – DPS assessment of 

selecting the appropriate drug product. BWM and its extended BNLNs are applied to various areas, 

from manufacturing to drug product selection [14]. Although plenty of papers have been published 
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in these areas [15-17], there are few contributions applied to the evaluation of drug product selection 

– DPS against multiple criteria all together. The MABAC been extended under various fuzzy 

environments [18]. E.g. combined interval fuzzy rough sets with the MABAC method to rank the 

firefighting chopper [19]. Hence, to beat limitations of MABAC method the concept of PROMETHE 

II has been presented. Many of studies have been enhanced the PROMETHEE II method to solve 

decision making issues under ambiguous contexts [20]. In [21], presented the PROMETHEE II 

method under hesitant fuzzy linguistic circumstances to choose green logistic suppliers. Due to 

conditions of uncertainty and incomplete information, a novel PROMETHEE II method is proposed 

to solve decision making issues under probability multi-valued Neutrosophic situation [22]. Usually, 

it is hard for DMs to straight allocate the weight values of assessment criteria in advance. [16] 

presented a novel weights calculation method, the BWM approach. In [23], combined the BWM 

method with grey system to calculate the weights of criteria. In [24], the BWM method enhanced with 

applying hesitant fuzzy numbers to explain criteria relative significance grades. In real life situations 

decisions, alternatives, criterions are taken in conditions of ambiguity, vagueness, inconsistent 

information, qualitative information, imprecision, subjectivity and uncertainty. The Bipolar 

Neutrosophic is used to enhance MCDM [25]. LNNs based on descriptive expressions to describe the 

judgments of decision makers, criterions, and alternatives is used widely in different MCDM domain 

e.g. IoT [26,27], medical [28,29], supply chain management [30, 31]. We propose to build a hybrid 

methodology of BNLNs based on BWM, MABAC, and PROMETHEE II. 

2.2. Methodology 

 We propose a hybrid methodology for assessment of Drug Product Selection – DPS according 

to specific conditions of individual patient through a given historical record based on BNLNs. A 

descriptive BNLNs is associated with traditional BWM for prioritizing the problem’s criterion. The 

uncertainty of a drug product against criteria may be presented and hence; we propose MABAC for 

handling the complexity and uncertainty. Then we evaluate the results of each drug product and 

solve the non-compensation using PROMETHEE II. Combining the mentioned methods together 

enabled us to build a robust and hybrid methodology using BWM, MABAC and PROMETHEE II in 

a row. Illustred in Figure 1.  

Criteria for Drug Product Selection - DPS 

 Calculate weights of criteria 

BWM 

 Evaluate drug products against criteria 

MABAC 

 Evaluate drug products against criteria 

PROMETHEE II 

Figure 1. Proposed Approach Conceptualization 



Neutrosophic Sets and Systems, Vol. 45, 202    289  

 

 

Muhammad Edmerdash, Waleed Khedr, Ehab Rushdy, An Efficient Framework for Drug Product Selection – DPS 

according to BWM, MABAC, PROMETHEE II 

 

A hybrid decision making framework has been designed and built on the integration by extending 

BWM, MABAC, PROMETHEE II methods to priorities the drug products that have no conflicts, or 

have less effect on the patient according to his/her historical records with respect of a patient 

preferred drug product form as well. The drug products evaluation goes through a (13) connected 

process and the drug product that achieves the requirements and meets the expectation is the best 

choice and suggested by the system for its compatibility against the selection criterions. The 

evaluation process is analyzed and compared against a real data of both patients and drug data set. 

The Steps of the proposed bipolar Neutrosophic with BWM, MABAC, PROMETHEE II and the 

connected process of selecting a compatible drug product is modeled in Figure 2. and illustrated in 

details as following:  

Figure 2. Hybrid Decision Making Framework 

1. Construct original decision making matrix 

2. Convert BNLNs into crisp value 

3. Standardize the hybrid assessment matrix 

Phase (I) 
Obtain Assessment Matrix 

4. Select the best and worst criteria  

5. Acquire the linguistic Best-to-Others vector 

6. Obtain the linguistic Others-to-Worst vector 

7. Acquire criteria weights 

Phase (II) 
Calculate the Criteria Weights Based on Extended BWM 

8. Calculate the weighted normalized assessment matrix 

9. Determine the border approximation area vector 

10. Obtain the difference matrix 

Phase (III) 
Build the Difference Matrix Based on MABAC method 

11. Compute the full preference degree 

12. Calculate the positive and negative flows of alternatives 

13. Attain the final ranking results of alternatives 

Phase (IV) 
Get Ranking Results based on PROMETHEE II 



Neutrosophic Sets and Systems, Vol. 45, 202    290  

 

 

Muhammad Edmerdash, Waleed Khedr, Ehab Rushdy, An Efficient Framework for Drug Product Selection – DPS 

according to BWM, MABAC, PROMETHEE II 

 

Phase (I): Obtain Assessment Information 

The goal from this phase is to obtain the assessment information: 

Step 1: Construct original decision-maker assessment matrix 

The linguistic term - LTS provided by decision makers using descriptive expressions such 

as: (Extremely important, Very important, Midst important, Perfect, Approximately similar, Poor, 

Midst poor, Very poor, Extremely poor. The BNLNS is an extension of fuzzy set, bipolar fuzzy set, 

intuitionistic fuzzy set, LTS, and Neutrosophic sets is introduced by [35]. Bipolar Neutrosophic is [𝑇+, 

𝐼+, 𝐹+, 𝑇−, 𝐼−, 𝐹−] where 𝑇+, 𝐼+, 𝐹+ range in [1,0] and 𝑇−, 𝐼−, 𝐹− range in [-1,0]. 𝑇+, 𝐼+, 𝐹+ is the positive 

membership degree indicating the truth membership, indeterminacy membership and falsity 

membership and 𝑇−, 𝐼−, 𝐹− is the negative membership degree indicates the truth membership, 

indeterminacy membership, and falsity membership. E.g. [0.3, 0.2, 0.6, -0.2, -0.1, -0.5] is a bipolar 

Neutrosophic number. 

For BNLNS qualitive criteria values can be calculated by decision makers under a predefined 

the LTS. Then, an initial hybrid decision making matrix is built as [26] 

𝐺𝐷 =  
𝐻1
⋮
𝐻0

 

𝐶1 … 𝐶𝑝

[

𝑏11
𝐷 ⋯ 𝑏1𝑝

𝐷

⋮ ⋱ ⋮
𝑏01
𝐷 ⋯ 𝑏0𝑝

𝐷
]
 (1) 

Where 𝑏𝑠𝑟
𝐷  is a BNLNS, representing the assessment result of alternative 𝐻𝑠  (𝑠 = 1,2, … 𝑜) with 

respect to criterion 𝐶𝑟(𝑟 = 1,2, … 𝑝) and 𝐷 = 1,2,3 represent number of decision maker. 

Step 2: Convert BNLNs into crisp value using score function mentioned as [28] 

𝑠(𝑏𝑜𝑝)  =  (
1

6
) ∗  (𝑇+ + 1 − 𝐼+ + 1 − 𝐹+ +  1 + 𝑇− − 𝐼− − 𝐹−) (2) 

Step 3: Standardize the hybrid assessment matrix. 

Normalize the positive and negative criteria of the decision matrix as follows: 

For crisp value, the assessment data 𝑏𝑠𝑟(𝑠 = 1,2, … … 𝑜, 𝑟 = 1,2, … … 𝑝) can be normalized with [13]: 

𝑁𝑠𝑟 = 

{
 
 

 
 

𝑏𝑠𝑟 − min
𝑟
(𝑏𝑠𝑟)

max
𝑟
(𝑏𝑠𝑟) − min

𝑟
(𝑏𝑠𝑟)

,            𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

max
𝑟
(𝑏𝑠𝑟) − 𝑏𝑠𝑟

max
𝑟
(𝑏𝑠𝑟) − min

𝑟
(𝑏𝑠𝑟)

,               𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙  

 (3) 

Then, a normalized hybrid assessment matrix is formed as 

𝑁 =  
𝐻1
⋮
𝐻0

 

𝐶1 … 𝐶𝑝

[

𝑁11 ⋯ 𝑁1𝑝
⋮ ⋱ ⋮
𝑁𝑜1 ⋯ 𝑁𝑜𝑝

]
 (4) 

Where 𝑁𝑠𝑟  shows the normalized value of the decision matrix of Sth alternative in Rth criteria. 

Phase (II): Calculate the Criteria Weights Based on Extended BWM 

In this study, the BWM is extended with LTS to obtain the weights of criteria given linguistic 

expressions. 
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Step 4: Select the best and the worst criteria 

When calculated the assessment criteria {𝐶1 … 𝐶𝑝}, decision makers need to choose the best 

(namely, the most significant) criterion, denoted as 𝐶𝐵. Meanwhile the worst (namely, the least 

significant) criterion should be selected and represented as 𝐶𝑊. 

Step 5: Acquire the linguistic Best-to-Others vector 

Make pairwise comparison between the most important criterion 𝐶𝐵 and the other criteria, 

then a linguistic Best to-Others vector is obtained with [11]: 

𝐿𝐶𝐵 = (𝐶𝐵1, 𝐶𝐵2 … … … …. 𝐶𝐵𝑝) (5) 

Where 𝐶𝐵𝑟 is a linguistic term within a certain LTS, representing the preference degree of the best 

criterion 𝐶𝐵 over criterion 𝑐𝑟 (𝑟 = 1,2, … 𝑝) In specific, 𝐶𝐵𝐵 = 1. 

Step 6: Obtain the linguistic Others-to-Worst vector 

Similarly, make pairwise comparison between the other criteria and the worst criterion 𝐶𝑊, 

then a linguistic Others-to-Worst vector is obtained with [11]: 

𝐿𝐶𝑊 = (𝐶1𝑊, 𝐶2𝑊 … … 𝐶𝑝𝑊) (6) 

Where 𝐶𝑟𝑊 is a linguistic term within a certain LTS, representing the preference degree of criterion 

𝑐𝑟 (𝑟 = 1,2, … 𝑝) over the worst criterion 𝐶𝑊 in precise, 𝐶𝑊𝑊 = 1. 

Step 7: Acquire the weights of criteria 

The goal from this step to obtain optimal weights of criteria so that the BWM is extended with 

crisp number for nonlinear programming model as mentioned [11]: 

 min ε is subject to 

{

𝑤𝐵
𝑤𝑟

− 𝐶𝐵𝑟 |  ≤  𝜀 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑟 

𝑤𝑟
𝑤𝑊

− 𝐶𝑟𝑊 |  ≤  𝜀 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑟
 (7) 

Where wr is the weight of criterion Cr, wB is the weight of the best criteria CB and, wW is the weight of 

the worst criteria CW. when solving model (7) the weight of wr and optimal consistency index ε can 

be computed. 

Phase (III): Build the Difference Matrix Based on MABAC method 

Build difference matrix built on the idea of MABAC method. 

Step 8: Calculate the weighted normalized assessment matrix 

Given the normalized values of assessment and the weights of criteria. The weighted 

normalized values of each criterion are got as follow [13]: 

�̂�𝑠𝑟 = (𝑤𝑟 + 𝑁𝑠𝑟 ∗ 𝑤𝑟, 𝑠 = 1,2, … 𝑜, 𝑟 = 1,2, … p 𝑝 (8) 

Where 𝑤𝑟 is a weight of criteria r and 𝑁𝑠𝑟 is a normalized value of s and r. 

Step 9: Determine the border approximation area vector 

The border approximation area vector X is computed as [13]: 

𝑋𝑟 = 
1

𝑝
 ∑ �̂�sr𝑝

𝑠=1   𝑠 = 1,2, … 𝑜, 𝑟 = 1,2, … 𝑝 (9) 

By calculating the values of the border approximation area matrix, a [0 × 1] matrix is obtained. 
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Step 10: Obtain the difference matrix 

The difference degree between the border approximation area 𝑋𝑟 and each element �̂�𝑠𝑟  in the 

weighted normalized assessment matrix can be calculated with [13]: 

𝑆𝑠𝑟 = �̂�𝑠𝑟 − 𝑋𝑟 𝑝 (10) 

Hence, the difference matrix S = (Ssr)oxp is accomplished. 

Phase (IV): Get the Ranking Results Based on PROMETHEE II 

Attain the rank of hospitals based on PROMETHEE II method 

Step 11: Compute the full preference degree 

Compute the alternative difference of 𝑠𝑡ℎ alternative with respect to other alternative. the 

preference function is used in this study as follows [32]: 

𝑃𝑟(𝐻𝑠, 𝐻𝑡) =  {
0                             𝑖𝑓 𝑆𝑠𝑟 − 𝑆𝑡𝑟  ≤ 0
𝑆𝑠𝑟 − 𝑆𝑡𝑟             𝑖𝑓 𝑆𝑠𝑟 − 𝑆𝑡𝑟  > 0

 , 𝑠, 𝑡 = 1, 2, … 𝑜  (11) 

Then the aggregated preference function can be computed as: 

𝑃(𝐻𝑠, 𝐻𝑡) =∑ 𝑊𝑟 ∗ 
𝑜

𝑝
𝑃𝑟(𝐻𝑠, 𝐻𝑡) ∑ 𝑊𝑟

𝑜

𝑝
⁄  (12) 

Step 12: Calculate the positive and negative flows of alternatives 

The positive flow (namely, the outgoing flow) 𝜓+(𝐻𝑖) [32]: 

𝜓+(𝐻𝑖) =  
1

𝑛 − 1
 ∑ 𝑃(𝐻𝑠, 𝐻𝑡)

𝑜

𝑡=1,𝑡≠𝑠
 𝑠 = 1,2, … 𝑜 (13) 

The negative flow (namely, the entering flow) 𝜓−(𝐻𝑖) [32]: 

𝜓−(𝐻𝑖) =  
1

𝑛 − 1
 ∑ 𝑃(𝐻𝑡, 𝐻𝑠)

𝑜

𝑡=1,𝑡≠𝑠
 𝑠 = 1,2, … 𝑜 (14) 

Step 13: Attain the final ranking result of alternatives 

The net outranking 𝜓(𝐻𝑖) of alternative 𝐻𝑖 [32]: 

𝜓(𝐻𝑖) = 𝜓+(𝐻𝑖) − 𝜓−(𝐻𝑖) 𝑠 = 1,2, … 𝑜 (15) 

Hence, the final ranking order can be achieved according to the net outranking flow value of each 

alternative. The larger the value of 𝜓(𝐻𝑖), the better the alternative 𝐻𝑖 . 

3. Results  

A case of selecting the appropriate drug product according to real information about patients 

and drug bank data set is presented to verify the applicability of the integrated method. (5) different 

real cases (p1, p2, p3, p4, and p5) are reviewed and validated their newly added drug products to 

their current drug products set with respect to (7) categories: patient sex, drug age-restricted, patient’s 

preferred drug form, Drug-Drug Interactions - DDI, Food-Drug Interactions - FDI, patient sensitivity-

list against drugs, and price of a drug product. 

 Selected patients are real and suffer from the same symptoms, fatigue and are followed up from 

the Cardiology Department of Zagazig University Hospital - Governmental Hospital - with each of 

them differs in health status and patient history. 

The gathered data is real in both sides, Patients’ profiles are real cases and the drugs information 

come from a DRUG BANK which provides up-to-date information regarding drugs and all 
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information needed to apply our study. Some information is hidden under the policy and privacy of 

sharing patient’s data like name, age, and sex. The sample data of patient 1 (p1) required by the 

algorithm is mentioned in Table 1. Full patient’s data, and drug products list are listed in Appendix 

(A). we refer to drugs and its products by their Drug Bank IDs. 

Table 1. Sample data of patients 

 Name** Age** Sex** Form list Sensitivity list Current drug list 

P1 - - - 

Tablet 

Capsule 

Injection 

DB00758 

DB01069 
DB00199 

** hidden data due to privacy 

The hybrid method aims to provide the best-suitable drug product selection for patients. Our 

system studies every patient state carefully, putting the historical records into consideration so that 

it plays the role of an evaluator for every newly added drug into a patient drug list. The suggested 

approach integrates the BWM, MABAC, and PROMETHEE II with BNLNs in order to assess drug 

selection.  

The main criteria and sub-criteria of drug selection service are selected by evaluating the 

historical records and preferred data provided through a patient profile to the requested added drug. 

Therefore, the study considers 2 main criteria and 7 sub-criteria as shown in Figure 3, and described 

in Table 2; 

Figure 3. Structure for Drug Product Selection service. 

Table 2. Drug Product Selection criteria 

Factor Criteria Description 

Drug based 

C1 Drug-Drug Interaction - DDI 

C2 Food-Drug Interaction – FDI 

C3 Price 

Patient based 

C4 Sensitivity list 

C5 Preferred Form 

C6 Age 

C7 Sex + Condition 

Drug Product Selection - DPS 

 Drug-Drug Interaction – DDI 
 Food-Drug Interaction – FDI 
 Price 

Patient based Drug based 

 Sensitivity List 
 Preferred Dosage form 
 Age 
 Sex + Condition (Pregnant) 
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In phase 1. Experts make assessment with respect to the evaluation criteria in Table 2. As criteria C1 

to C7 are qualitative factors, evaluation information of these subjective criteria is by means of BNLNs. 

However, 6 criteria belong to non-beneficial type, their scopes are different. Only preferred Form 

criteria is a beneficial criterion.  

Step 1: Construct an original decision maker assessment matrix 

Calculate the suitable LTS for weights of criteria and alternatives with respect to every 

criterion. Each LTS is extended by bipolar Neutrosophic sets to be BNLNs as mentioned in table (3). 

The BNLNs is described as follows [28]: Extremely important = [0.9, 0.1, 0.0, 0.0, -0.8, -0.9] Where the 

first three numbers present the positive membership degree. (𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥)) 0.9, 0.1 and 0.0, such 

that 𝑇+(𝑥) the truth degree in positive membership. 𝐼+(𝑥) the indeterminacy degree and 𝐹+(𝑥) the falsity 

degree. The last three numbers present the negative membership degree. (𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥)) 0.0, -0.8, 

and -0.9, 𝑇−(𝑥) the truth degree in negative membership, such that 𝐼−(𝑥) the indeterminacy degree and 

𝐹−(𝑥) the falsity degree. 

Table 3. Bipolar Neutrosophic numbers scale 

LTS 
Bipolar Neutrosophic numbers scale 

[𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥), 𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥)] 
Crisp Value 

Extremely high [0.9,0.1,0.0,0.0, -0.8, -0.9] 0.92 

Very high [1.0,0.0,0.1, -0.3, -0.8, -0.9] 0.73 

Midst high [1.0,0.0,0.1, -0.3, -0.8, -0.9] 0.72 

High [0.7,0.6,0.5, -0.2, -0.5, -0.6] 0.58 

Approximately Similar [0.5,0.2,0.3, -0.3, -0.1, -0.3] 0.52 

Low [0.2,0.3,0.4, -0.8, -0.6, -0.4] 0.45 

Midst low [0.4,0.4,0.3, -0.5, -0.2, -0.1] 0.42 

Very low [0.3,0.1,0.9, -0.4, -0.2, -0.1] 0.36 

Extremely low [0.1,0.9,0.8, -0.9, -0.2, -0.1] 0.13 

Step 2: Convert BNLNs into crisp value using score function 

Convert BNLNs to crisp value in Table 3. by using score function in Eq. 2. 

Table 4., and Table 5. represent the assessments for the original decision maker and the system 

sequentially using Eq. 1. 

Table 4. Original decision making matrix 

 C1* C2** C3*** C4* C5**** C6***** C7***** 

D1 T 0 9.23 T tablet - - 

D2 T 0 14.78 F tablet - - 

D3 T 4 5.28 F capsule - - 

D4 T 1 3.84 T injection - - 

D5 T 0 143.5 F injection - - 

D6 F 1 2.61 F tablet - - 

D7 F 0 144 F injection - - 

*DDI, and Sensitivity: T is given Extremely high, where F is given Extremely low. 

** FDI: system converts (0) very low, (1-2) low, (3:5) high, and (+5) very high. 
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*** Price: system converts (-10 USD) very low, (+10: 25 USD) low, (+25: 50 USD) high, (+50 USD) very high. 

**** FORM: given values for every patient and prioritize (very high, high, very low) as the same list order. 

***** Age, and Sex: excluded for privacy and policy terms. 

Table 5. Assessment of DPS by the system 

 C1 C2 C3 C4 C5 C6 C7 

D1 0.92 0.36 0.36 0.92 0.73 - - 

D2 0.92 0.36 0.45 0.13 0.73 - - 

D3 0.92 0.58 0.36 0.13 0.58 - - 

D4 0.92 0.45 0.36 0.92 0.36 - - 

D5 0.92 0.36 0.73 0.13 0.36 - - 

D6 0.13 0.45 0.36 0.13 0.73 - - 

D7 0.13 0.36 0.73 0.13 0.36 - - 

Step 3: Standardize the hybrid assessment matrix 

Normalize the decision matrix, given the positive or negative type of the criteria using Eq. 3, 

the normalized values of the decision matrix using Eq. 4 are shown as in Table 6. 

Table 6. Normalized values of the decision matrix 

 C1 C2 C3 C4 C5 C6 C7 

D1 0 1 1 0 1 - - 

D2 0 1 0.76 1 1 - - 

D3 0 0 1 1 0.59 - - 

D4 0 0.59 1 0 0 - - 

D5 0 1 0 1 0 - - 

D6 1 0.59 1 1 1 - - 

D7 1 1 0 1 0 - - 

max 0.92 0.58 0.73 0.92 0.73 - - 

min 0.13 0.36 0.36 0.13 0.36 - - 

In Phase 2. The goal from this phase determine the weights of criteria based on evaluation of decision 

maker. Use BWM to calculate weights of criteria. 

Step 4: Select the best and the worst criteria 

At the beginning C4 is the best criteria and the C7 is the worst criteria. 

Step 5: Acquire the linguistic Best-to-Others vector 

Construct pairwise comparison vector for the best criteria using Eq. 5 in Table 7. 

Table 7. Pairwise comparison vector for the best criterion 

 C1 C2 C3 C4 C5 C6 C7 

C4 

very low low high same high ext. high ext. high 

2 4 6 1 6 9 9 

0.36 0.45 0.58 1 0.58 0.92 0.92 

Step 6: Obtain the linguistic Others-to-Worst vector 

Construct pairwise comparison vector for the worst criteria using Eq. 6 in Table 8. 
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Table 8. Pairwise comparison vector for the worst criterion 

 C7 

C1 very high 8 0.73 

C2 midst high 7 0.72 

C3 Approx. similar 5 0.52 

C4 ext. high 9 0.92 

C5 high 6 0.58 

C6 midst low 3 0.42 

C7 same 1 1 

Step 7: Acquire the weights of criteria 

By applying best to others and worst to others using Eq. 7 the weights are computed in Table 

9. Figure 4 shows priority of criteria. The consistency ratio ksi = 0.1049 which indicates a desirable 

consistency.  

Table 9. Criteria weights based on BWM 

Criteria C1 C2 C3 C4 C5 C6 C7 

Weights 0.2447 0.1223 0.0816 0.3845 0.0816 0.0544 0.0311 

 

Figure 4. Priority weights of criteria 

In Phase 3.  

Build the difference matrix based on MABAC method: 

Step 8: Calculate the weighted normalized assessment matrix 

Construct the weighted normalized decision matrix using Eq. 8. E.g. the weighted 
normalized values of the first criteria are as follows: 

�̂�11= 𝑤1 + 𝑁11 ∗ 𝑤1 = 0.2447 ∗ (0 + 0.2447) = 0.2447 

�̂�21 = 𝑤1 + 𝑁21 ∗ 𝑤1 = 0.2447 ∗ (0 + 0.2447) = 0.2447 

.. 

�̂�71 = 𝑤1 + 𝑁71 ∗ 𝑤1 = 0.2447 ∗ (1 + 0.2447) = 0.4893 

The other weighted normalized values of the criteria are calculated in Table 10. 
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Table 10. Values of the weighted normalized decision matrix 

 C1 C2 C3 C4 C5 C6 C7 

D1 0.2447 0.2447 0.1631 0.384 0.1631 - - 

D2 0.2447 0.2447 0.1433 0.7689 0.1631 - - 

D3 0.2447 0.1223 0.1631 0.7689 0.1300 - - 

D4 0.2447 0.1946 0.1631 0.384 0.0816 - - 

D5 0.2447 0.2447 0.0816 0.7689 0.0816 - - 

D6 0.4893 0.1946 0.1631 0.7689 0.1631 - - 

D7 0.4893 0.2447 0.0816 0.7689 0.0816 - - 

Step 9: Determine the border approximation area vector 

Compute the border approximate area matrix using Eq. 9. The amounts of the border approximate 

area matrix are as shown in Table 11. Figure 5. a scatter chart shows the amount of the border 

approximate area. 

Table 11. Approximation area amounts 

Criteria C1 C2 C3 C4 C5 C6 C7 

Approximation 

area 
0.3146 0.2129 0.1370 0.6591 0.1234 0.0000 0.0000 

 

Figure 5. Amount of border approximation area of criteria 

Step 10: Obtain the difference matrix 

Compute The distance from the border approximate area using Eq. 10. The distance of each 

alternative from the border approximate area, is shown in 

Table 12.  
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Table 12. Distance from the border approximate area 

 C1 C2 C3 C4 C5 C6 C7 

D1 -0.070 0.032 0.026 -0.275 0.040 - - 

D2 -0.070 0.032 0.006 0.110 0.040 - - 

D3 -0.070 -0.091 0.026 0.110 0.007 - - 

D4 -0.070 -0.018 0.026 -0.275 -0.042 - - 

D5 -0.070 0.032 -0.055 0.110 -0.042 - - 

D6 0.175 -0.018 0.026 0.110 0.040 - - 

D7 0.175 0.032 -0.055 0.110 -0.042 - - 

In phase 4:  

Get the ranking results based on PROMETHEE II. 

Step 11: Compute the full preference degree 

Calculate the evaluative differences of 𝑠th alternative with respect to other alternatives. 

Compute the preference function using Eq. 11. Calculate the aggregated preference function using 

Eq. 12 in Table 13. 

Table 13. Preference values and aggregated preference values 

 C1 C2 C3 C4 C5 C6 C7 Aggregated Pref. 

D12 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.0016178 

D13 0.000 0.122 0.000 0.000 0.033 0.000 0.000 0.0176610 

D14 0.000 0.050 0.000 0.000 0.082 0.000 0.000 0.0127729 

..         

D21 0.000 0.000 0.000 0.384 0.000 0.000 0.000 0.1478141 

D23 0.000 0.122 0.000 0.000 0.033 0.000 0.000 0.0176610 

D24 0.000 0.050 0.000 0.384 0.082 0.000 0.000 0.1605870 

..         

D76 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.0061219 

*Full calculation in Appendix B. 

Step 12: Calculate the positive and negative flows of alternatives 

Calculate the positive and negative flows of alternatives using Eq. 13 Eq. 14. Calculate the 

net outranking flow of each alternative using Eq. 15. Indicates that 𝜓(D6) > 𝜓(D7) > 𝜓(D2) > 𝜓(D5) > 

𝜓(D3) > 𝜓(D1) > 𝜓(D4). Table 14. shows all the calculations’ results. 

Table 14. Positive, negative, and net flow of alternatives 

 D1 D2 D3 D4 D5 D6 D7 𝜓+(𝐻𝑖) 𝜓−(𝐻𝑖) Net Flow 

D1 0.0000 0.0016 0.0177 0.0128 0.0133 0.0061 0.0133 0.0648 0.8588 -0.7940 

D2 0.1478 0.0000 0.0177 0.1606 0.0117 0.0061 0.0117 0.3556 0.1262 0.2294 

D3 0.1478 0.0016 0.0000 0.1518 0.0106 0.0000 0.0106 0.3224 0.2054 0.1171 

D4 0.0000 0.0016 0.0088 0.0000 0.0067 0.0000 0.0067 0.0238 0.9072 -0.8834 

D5 0.1478 0.0000 0.0150 0.1539 0.0000 0.0061 0.0000 0.3228 0.1753 0.1476 

D6 0.2077 0.0615 0.0714 0.2143 0.0732 0.0000 0.0133 0.6413 0.0245 0.6168 

D7 0.2077 0.0599 0.0748 0.2138 0.0599 0.0061 0.0000 0.6221 0.0555 0.5666 
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Step 13: Attain the final ranking result of alternatives 

Determine the ranking of all the considered alternatives in Table 15 depending on the values 

of net flow calculated in the previous step. The ranking order is D6 ≻ D7 ≻ D2 ≻ D5 ≻ D3 ≻ D1 ≻ D4. Hence, 

the best drug product alternative is D6. Figure 6. shows the order of drug products against p1 profile 

resulted from our methodology and compared to real doctors’ recommendations. 

Table 15. Priority of Alternatives - ranking 

Alternatives Rank-SYS Doctor-1 Doctor-2 Doctor-3 

D1 6 6 6 6 

D2 3 4 3 4 

D3 5 3 5 5 

D4 7 7 7 7 

D5 4 5 4 3 

D6 1 1 2 1 

D7 2 2 1 2 

 

Figure 6. Alternatives order – final rank 

Figure 6. shows the difference in drug products order as a result from the methodology and other 

doctors. We can notice that they all avoid products that p1 has a sensitivity against while the products 

that p1 has nothing against come in first 2 places. From this point of view. The most affected criterion 

is sensitivity then DDI, and we must validate any newly added drug product against sensitivity and 

DDI into our daily drug products list if exist.  

4. Applications 

The study presents a hybrid methodology of extended BNLNs with Neutrosophic set of BWM, 

MABAC, and PROMETHEE II to facilitate the Drug Products Selection – DPS process among set of 

alternatives drug products to prioritize them against every patient’s case individually. The real data 

of both drugs products and patient’s profiles are gathered and assessed by the Neutrosophic BWM, 
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MABAC, and PROMETHEE II to evaluate the alternatives products effectively and present a 

reference of sorted products according to the patient profile. We discuss the outcomes with real 

doctors after studying every patient’s profile carefully and we found the recommended sort is slightly 

different while taking all the aspects, and criteria into deep study. They are matching the basic 

concept of excluding drug products that a patient has sensitivity against so it comes in the tail while, 

drug products that has no conflict against the criteria present in the head and drug products that 

have any criteria calculations present in the middle. The study presents that the most significant 

criteria that affect the results is the patient’s sensitivity of some drugs. It should be prevented or set 

out of the scope of the resulting rank. In real life, a process of selecting a drug product should be 

validated against every patient’s condition using our methodology so that a drug product with no 

conflicts, preferred dosage form, and price is recommended. 

5. Conclusions  

The study shows the effectiveness of using a system in aim to validate a drug product among 

same category products. The real data used present a strong point to measure with a real results 

assessed by real doctors on real patients. The accuracy presented is accepted and we are planning to 

integrating other advanced methods to enhance the accuracy of such results. The future work 

includes updated algorithm that excludes and alerts the drug products against sensitivity and 

handles multiple drugs of patient’s current drugs list – CDL that present DDI to the newly added 

drug product. The future algorithm may use another applicable methodology like TOPSIS and 

present the comparative studies that might affect the accuracy of resulting rank. 
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Appendix A. Drug products, and patients’ profiles analysis 

Table A1 Drug products data 

 Drug Name 
Drug 

Bank ID 

Product 

Name 

Dosage 

Form 
Strength Route Country 

D1 Clopidogrel DB00758 Plavix 
Tablet, film 

coated 
75 mg/1 Oral US 

D2 Ticagrelor DB08816 Brilinta Tablet 90 mg/1 Oral US 

D3 Ciclosporin DB00091 Cyclosporine Capsule 100 mg/1 Oral US 

D4 Promethazine DB01069 Phenergan Injection 
25 

mg/1mL 

Intramuscular; 

Intravenous 
US 

D5 Voriconazole DB00582 Voriconazole 

Injection, 

powder, for 

solution 

10 

mg/1mL 
Intravenous US 

D6 Ticlopidine DB00208 Ticlid 
Tablet, film 

coated 
250 mg/1 Oral US 

D7 Floxuridine DB00322 Floxuridine 

Injection, 

powder, 

lyophilized, 

for solution 

100 

mg/1mL 
Intra-arterial US 

All products of the same category, meshID = D065688 

Table A2 Patients’ profiles analysis 

 Name** Age** Sex** Form list Sensitivity list Current drug list 

P1 - - - 

Tablet 
DB00758 

DB01069 

DB00199 

 
Capsule 

Injection 

P2 - - - 

Injection 

DB00758 DB06777 Capsule 

Tablet 

P3 - - - 

Capsule 

- 
DB01238 

DB01595 
Tablet 

Injection 

P4 - - - 

Injection 

- DB06779 Capsule 

Tablet 

P5 - - - 

Injection 
DB01069 

DB08816 
DB01032 Capsule 

Tablet 

** hidden data due to privacy 
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Appendix B. Preference, and aggregated preference values 

Table B1 Preference values and aggregated preference values 

 C1 C2 C3 C4 C5 C6 C7 Aggregated Pref. 

D12 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.0016178 

D13 0.000 0.122 0.000 0.000 0.033 0.000 0.000 0.0176610 

D14 0.000 0.050 0.000 0.000 0.082 0.000 0.000 0.0127729 

D15 0.000 0.000 0.082 0.000 0.082 0.000 0.000 0.0133019 

D16 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.0061219 

D17 0.000 0.000 0.082 0.000 0.082 0.000 0.000 0.0133019 

D21 0.000 0.000 0.000 0.384 0.000 0.000 0.000 0.1478141 

D23 0.000 0.122 0.000 0.000 0.033 0.000 0.000 0.0176610 

D24 0.000 0.050 0.000 0.384 0.082 0.000 0.000 0.1605870 

D25 0.000 0.000 0.062 0.000 0.082 0.000 0.000 0.0116841 

D26 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.0061219 

D27 0.000 0.000 0.062 0.000 0.082 0.000 0.000 0.0116841 

D31 0.000 0.000 0.000 0.384 0.000 0.000 0.000 0.1478141 

D32 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.0016178 

D34 0.000 0.000 0.000 0.384 0.048 0.000 0.000 0.1517687 

D35 0.000 0.000 0.082 0.000 0.048 0.000 0.000 0.0106056 

D36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000000 

D37 0.000 0.000 0.082 0.000 0.048 0.000 0.000 0.0106056 

D41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000000 

D42 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.0016178 

D43 0.000 0.072 0.000 0.000 0.000 0.000 0.000 0.0088427 

D45 0.000 0.000 0.082 0.000 0.000 0.000 0.000 0.0066510 

D46 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000000 

D47 0.000 0.000 0.082 0.000 0.000 0.000 0.000 0.0066510 

D51 0.000 0.000 0.000 0.384 0.000 0.000 0.000 0.1478141 

D52 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000000 

D53 0.000 0.122 0.000 0.000 0.000 0.000 0.000 0.0149647 

D54 0.000 0.050 0.000 0.384 0.000 0.000 0.000 0.1539360 

D56 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.0061219 

D57 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000000 

D61 0.245 0.000 0.000 0.384 0.000 0.000 0.000 0.2076727 

D62 0.245 0.000 0.020 0.000 0.000 0.000 0.000 0.0614764 

D63 0.245 0.072 0.000 0.000 0.033 0.000 0.000 0.0713977 

D64 0.245 0.000 0.000 0.384 0.082 0.000 0.000 0.2143237 

D65 0.245 0.000 0.082 0.000 0.082 0.000 0.000 0.0731605 

D67 0.000 0.000 0.082 0.000 0.082 0.000 0.000 0.0133019 

D71 0.245 0.000 0.000 0.384 0.000 0.000 0.000 0.2076727 
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D72 0.245 0.000 0.000 0.000 0.000 0.000 0.000 0.0598586 

D73 0.245 0.122 0.000 0.000 0.000 0.000 0.000 0.0748233 

D74 0.245 0.050 0.000 0.384 0.000 0.000 0.000 0.2137946 

D75 0.245 0.000 0.000 0.000 0.000 0.000 0.000 0.0598586 

D76 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.0061219 
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Abstract: The purpose of this article is to study the neutrosophic integrals by parts, all cases in which 

we can apply integration by parts are discussed, including solve the repeated and non-terminating 

functions like the product of trigonometric and exponential using rotary integrals. In addition, the 

Tabular method has been introduced in the computation of neutrosophic integrals, where the Tabular 

method is considered to be easier than the neutrosophic integrals by Parts method in finding the 

neutrosophic integrals. Where detailed examples were given to clarify each case. 

 

Keywords: neutrosophic integrals by parts; tabular method; indeterminacy. 

 

 

1. Introduction 

           As an alternative to the existing logics, Smarandache proposed the Neutrosophic Logic to 

represent a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, 

unknown, incompleteness, inconsistency, redundancy, contradiction, where the concept of 

neutrosophy is a new branch of philosophy introduced by Smarandache [3-13]. He presented the 

definition of the standard form of neutrosophic real number and conditions for the division of two 

neutrosophic real numbers to exist, he defined the standard form of neutrosophic complex number, 

and found root index  n ≥ 2 of a neutrosophic real and complex number [2-4], studying the concept 

of the Neutrosophic probability [3-5], the Neutrosophic statistics [4][6], and professor Smarandache 

entered the concept of preliminary calculus of the differential and integral calculus, where he 

introduced for the first time the notions of neutrosophic mereo-limit, mereo-continuity, 

mereoderivative, and mereo-integral [1-8]. Madeleine Al- Taha presented results on single valued 

neutrosophic (weak) polygroups [9]. Edalatpanah proposed a new direct algorithm to solve the 

neutrosophic linear programming where the variables and right-

hand side represented with triangular neutrosophic numbers [10]. Chakraborty used pentagonal 

neutrosophic number in networking problem, and Shortest Path Problem [11-12]. Y.Alhasan studied 

the concepts of neutrosophic complex numbers, the general exponential form of a neutrosophic complex, and 

the neutrosophic integrals and integration methods [7-14-24]. On the other hand, M.Abdel-Basset presented 

study in the science of neutrosophic about an approach of TOPSIS technique for developing supplier selection 

with group decision making under type-2 neutrosophic number [15]. Also, neutrosophic sets played an 
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important role in applied science such as health care, industry, and optimization [16-17-18-19]. 

Recently, there are increasing efforts to study the neutrosophic generalized structures and spaces 

such as refined neutrosophic modules, spaces, equations, and rings [21-22-23]. 

     Integration is important in human life, and one of its most important applications is the 

calculation of area, size and arc length. In our reality we find things that cannot be precisely defined, 

and that contain an indeterminacy part. 

     Paper consists of 5 sections. In 1th section, provides an introduction, in which neutrosophic 

science review has given. In 2th section, some definitions and examples of neutrosophic real number 

neutrosophic indefinite integral and are discussed. The 3th section frames neutrosophic integration 

by parts, in which three cases were discussed, including solve the repeated and non-terminating 

functions like the product of trigonometric and exponential using rotary integrals. The 4th section 

The 4th section introduces the Tabular method to find the integrals by parts in the stats 1 and 2. In 

5th section, a conclusion to the paper is given. 

 

2. Preliminaries 

2.1. Neutrosophic integration by substitution method [24] 

Definition2.1.1 

Let  𝑓: 𝐷𝑓 ⊆ 𝑅 → 𝑅𝑓 ∪ {𝐼}, to evaluate ∫ 𝑓(𝑥)𝑑𝑥 

Put: 𝑥 = 𝑔(𝑢)     ⇒    𝑑𝑥 = �́�(𝑢)𝑑𝑢  

By substitution, we get: 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑢)�́�(𝑢)𝑑𝑢 

then we can directly integral it. 

 

Theorme2.1.1:  

If ∫ 𝑓(𝑥, 𝐼)𝑑𝑥 = 𝜑(𝑥, 𝐼)  𝑡ℎ𝑒𝑛, 

 ∫ 𝑓((𝑎 + 𝑏𝐼)𝑥 + 𝑐 + 𝑑𝐼)) 𝑑𝑥 = (
1

𝑎
−

𝑏

𝑎(𝑎 + 𝑏)
𝐼) 𝜑((𝑎 + 𝑏𝐼)𝑥 + 𝑐 + 𝑑𝐼)) + 𝐶  

where 𝐶  is an indeterminate real constant, 𝑎 ≠ 0 , 𝑎 ≠ −𝑏 𝑎𝑛𝑑 𝑏, 𝑐, 𝑑 are real numbers, while 𝐼 = 

indeterminacy. 

 

Theorme2.1.2:  
Let   𝑓: 𝐷𝑓 ⊆ 𝑅 → 𝑅𝑓 ∪ {𝐼} then: 

 

∫
�́�(𝑥, 𝐼)

𝑓(𝑥, 𝐼)
𝑑𝑥 = 𝑙𝑛|𝑓(𝑥, 𝐼)| + 𝐶 

where 𝐶  is an indeterminate real constant (i.e. constant of the form  𝑎 + 𝑏𝐼,  where 𝑎, 𝑏  are real 

numbers, while 𝐼 = indeterminacy). 

 

Theorme2.1.3:  
Let   𝑓: 𝐷𝑓 ⊆ 𝑅 → 𝑅𝑓 ∪ {𝐼}, then: 

 

∫
�́�(𝑥, 𝐼)

√𝑓(𝑥, 𝐼)
𝑑𝑥 = 2√𝑓(𝑥, 𝐼) + 𝐶 

where 𝐶  is an indeterminate real constant (i.e. constant of the form  𝑎 + 𝑏𝐼,  where 𝑎, 𝑏  are real 

numbers, while 𝐼 = indeterminacy). 
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Theorme2.1.4:  
𝑓: 𝐷𝑓 ⊆ 𝑅 → 𝑅𝑓 ∪ {𝐼}, then: 

 

∫[𝑓(𝑥, 𝐼)]𝑛�́�(𝑥) 𝑑𝑥 =
[𝑓(𝑥, 𝐼)]𝑛+1

𝑛 + 1
+ 𝐶 

Where 𝑛 is any rational number. 𝐶 is an indeterminate real constant (i.e. constant of the form 𝑎 +

𝑏𝐼, where 𝑎, 𝑏 are real numbers, while 𝐼 = indeterminacy). 

2.2. Integrating products of neutrosophic trigonometric function [24] 

I. ∫ sin𝑚(𝑎 + 𝑏𝐼)𝑥 cos𝑛(𝑎 + 𝑏𝐼)𝑥  𝑑𝑥 , where 𝑚 and 𝑛 are positive integers. 

To find this integral, we can distinguish the following two cases: 

 

 Case 𝑛 𝑖𝑠 odd: 

 Split of cos(𝑎 + 𝑏𝐼)𝑥 

 Apply cos2(𝑎 + 𝑏𝐼)𝑥 = 1 − sin2(𝑎 + 𝑏𝐼)𝑥 

 We substitution 𝑢 = sin(𝑎 + 𝑏𝐼)𝑥 

 Case 𝑚 𝑖𝑠 odd: 

 Split of sin(𝑎 + 𝑏𝐼)𝑥 

 Apply sin2(𝑎 + 𝑏𝐼)𝑥 = 1 − cos2(𝑎 + 𝑏𝐼)𝑥 

 We substitution 𝑢 = cos(𝑎 + 𝑏𝐼)𝑥 

II. ∫ tan𝑚(𝑎 + 𝑏𝐼)𝑥 sec𝑛(𝑎 + 𝑏𝐼)𝑥  𝑑𝑥 , where 𝑚 and 𝑛 are positive integers. 

To find this integral, we can distinguish the following cases: 

 

 Case 𝑛 𝑖𝑠 even: 

 Split of sec2(𝑎 + 𝑏𝐼)𝑥 

 Apply sec2(𝑎 + 𝑏𝐼)𝑥 = 1 + tan2(𝑎 + 𝑏𝐼)𝑥 

 We substitution 𝑢 = tan(𝑎 + 𝑏𝐼)𝑥 

 Case 𝑚 𝑖𝑠 odd: 

 Split of sec(𝑎 + 𝑏𝐼)𝑥 tan(𝑎 + 𝑏𝐼)𝑥  

 Apply tan2(𝑎 + 𝑏𝐼)𝑥 = ses2(𝑎 + 𝑏𝐼)𝑥 − 1 

 We substitution 𝑢 = ses(𝑎 + 𝑏𝐼)𝑥 

 Case 𝑚 even and 𝑛 odd: 

 Apply tan2(𝑎 + 𝑏𝐼)𝑥 = ses2(𝑎 + 𝑏𝐼)𝑥 − 1 

 We substitution 𝑢 = ses(𝑎 + 𝑏𝐼)𝑥 or 𝑢 = tan(𝑎 + 𝑏𝐼)𝑥, depending on the 

case. 

III. ∫ cot𝑚(𝑎 + 𝑏𝐼)𝑥 csc𝑛(𝑎 + 𝑏𝐼)𝑥  𝑑𝑥 , where 𝑚 and 𝑛 are positive integers. 

To find this integral, we can distinguish the following cases: 

 

 Case 𝑛 𝑖𝑠 even: 

 Split of csc2(𝑎 + 𝑏𝐼)𝑥 

 Apply csc2(𝑎 + 𝑏𝐼)𝑥 = 1 + cot2(𝑎 + 𝑏𝐼)𝑥 

 We substitution 𝑢 = cot(𝑎 + 𝑏𝐼)𝑥 

 Case 𝑚 𝑖𝑠 odd: 
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 Split of csc(𝑎 + 𝑏𝐼)𝑥 cot(𝑎 + 𝑏𝐼)𝑥  

 Apply cot2(𝑎 + 𝑏𝐼)𝑥 = csc2(𝑎 + 𝑏𝐼)𝑥 − 1 

 We substitution 𝑢 = csc(𝑎 + 𝑏𝐼)𝑥 

 Case 𝑚 even and 𝑛 odd: 

 Apply cot2(𝑎 + 𝑏𝐼)𝑥 = csc2(𝑎 + 𝑏𝐼)𝑥 − 1 

 We substitution 𝑢 = csc(𝑎 + 𝑏𝐼)𝑥 or 𝑢 = cot(𝑎 + 𝑏𝐼)𝑥, depending on the 

case. 

2.3. Neutrosophic trigonometric identities [24] 

1) 𝑠𝑖𝑛(𝑎 + 𝑏𝐼)𝑥 cos(𝑐 + 𝑑𝐼) 𝑥 =
1

2
 [sin(𝑎 + 𝑏𝐼 + 𝑐 + 𝑑𝐼) + sin(𝑎 + 𝑏𝐼 − 𝑐 − 𝑑𝐼)] 

 

2) 𝑐𝑜𝑠(𝑎 + 𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼) 𝑥 =
1

2
 [sin(𝑎 + 𝑏𝐼 + 𝑐 + 𝑑𝐼) − sin(𝑎 + 𝑏𝐼 − 𝑐 − 𝑑𝐼)] 

 

3) 𝑐𝑜𝑠(𝑎 + 𝑏𝐼)𝑥 cos(𝑐 + 𝑑𝐼) 𝑥 =
1

2
 [cos(𝑎 + 𝑏𝐼 + 𝑐 + 𝑑𝐼) + cos(𝑎 + 𝑏𝐼 − 𝑐 − 𝑑𝐼)] 

 

4) 𝑠𝑖𝑛(𝑎 + 𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼) 𝑥 =
−1

2
 [cos(𝑎 + 𝑏𝐼 + 𝑐 + 𝑑𝐼) − cos(𝑎 + 𝑏𝐼 − 𝑐 − 𝑑𝐼)] 

Where 𝑎 ≠ 𝑐 (𝑛𝑜𝑡 𝑧𝑒𝑟𝑜) 𝑎𝑛𝑑 𝑏, 𝑑 are real numbers, while 𝐼 = indeterminacy. 

3. Neutrosophic integration by parts  

There are integrals that cannot be evaluated by direct integration methods or by substitution, so in 

this current section we present a powerful tool called neutrosophic integration by parts. We have 

observed that every differentiation rule gives rise to a corresponding itegration rule. So, let: 

 
 𝑓: 𝐷𝑓 ⊆ 𝑅 → 𝑅𝑓 ∪ {𝐼} and 𝑔: 𝐷𝑔 ⊆ 𝑅 → 𝑅𝑔 ∪ {𝐼} 

 

then, for the product rule: 
𝑑

𝑑𝑥
[𝑓(𝑥) 𝑔(𝑥)] = �́�(𝑥)𝑔(𝑥) + 𝑓(𝑥)�́�(𝑥) 

integrating both sides of this equation gives us: 

∫
𝑑

𝑑𝑥
[𝑓(𝑥) 𝑔(𝑥)] 𝑑𝑥 = ∫ �́�(𝑥)𝑔(𝑥)  𝑑𝑥 + ∫ 𝑓(𝑥)�́�(𝑥) 𝑑𝑥 

 

∫ 𝑓(𝑥)�́�(𝑥) 𝑑𝑥 = 𝑓(𝑥) 𝑔(𝑥) − ∫ �́�(𝑥)𝑔(𝑥)  𝑑𝑥 

 

it is usually convenient to write this using the notation: 

 

 𝑢 = 𝑓(𝑥)    ⟹      𝑑𝑢 = �́�(𝑥) 𝑑𝑥 

 

   𝑣 = 𝑔(𝑥)    ⟹      𝑑𝑣 = �́�(𝑥) 𝑑𝑥 

 

so the neutrosophic integration by parts algorithm becomes 

 

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 

There are three cases of the neutrosophic integration by parts: 

 state1: neutrosophic integration from the form: 
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∫(𝑎 + 𝑏𝐼)𝑥𝑛 𝑒(𝑐+𝑑𝐼)𝑥  𝑑𝑥  

Where 𝑐 ≠ 0 𝑎𝑛𝑑 𝑐 ≠ −𝑑 

To find this integral, we do the following: 

Put 𝑢 = (𝑎 + 𝑏𝐼)𝑥𝑛         ⟹      𝑑𝑢 = 𝑛(𝑎 + 𝑏𝐼)𝑥𝑛−1 𝑑𝑥 

 

   𝑑𝑣 = 𝑒(𝑐+𝑑𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
1

𝑐+𝑑𝐼
𝑒(𝑐+𝑑𝐼)𝑥 

Then apply: 

                

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 We get: 

           

∫(𝑎 + 𝑏𝐼)𝑥𝑛 𝑒(𝑐+𝑑𝐼)𝑥 𝑑𝑥 = (
𝑎

𝑐
+

cb − ad

c(c + d)
. 𝐼) (𝑥𝑛𝑒(𝑐+𝑑𝐼)𝑥 − ∫ 𝑛𝑥𝑛−1 𝑒(𝑐+𝑑𝐼)𝑥𝑑𝑥) + 𝐶 

 

We find the required integral by repeated the integration. 

where 𝐶  is an indeterminate real constant (i.e. constant of the form  𝑒 + 𝑘𝐼,  where 𝑒, 𝑘  are real 

numbers, while 𝐼 = indeterminacy). 

 

 

Example3.1 

Find:  

∫(3 + 2𝐼)𝑥 𝑒(2+4𝐼)𝑥 𝑑𝑥 

Solution: 

                  𝑢 = (3 + 2𝐼)𝑥     ⟹       𝑑𝑢 = (3 + 2𝐼)𝑑𝑥         

 

                     𝑑𝑣 = 𝑒(2+4𝐼)𝑥 𝑑𝑥  ⟹       𝑣 =
1

2+4𝐼
 𝑒(2+4𝐼)𝑥     

Then apply: 

                

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

We get: 

 

∫(3 + 2𝐼)𝑥 𝑒(2+4𝐼)𝑥 𝑑𝑥 = (
3

2
+

4 − 12

12
. 𝐼) (𝑥𝑒(2+4𝐼)𝑥 − ∫ 𝑒(2+4𝐼)𝑥 𝑑𝑥) 

 

= (
3

2
−

8

12
. 𝐼) (𝑥𝑒(2+4𝐼)𝑥 −

1

2 + 4𝐼
𝑒(2+4𝐼)𝑥) 

 

= (
3

2
−

2

3
. 𝐼) (𝑥 −

1

2
+

1

3
𝐼) 𝑒(2+4𝐼)𝑥 + 𝐶 

 state2: neutrosophic integration from the form: 

 

∫(𝑎 + 𝑏𝐼)𝑥𝑛 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥     𝑜𝑟    ∫(𝑎 + 𝑏𝐼)𝑥𝑛 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥  

Where 𝑐 ≠ 0 𝑎𝑛𝑑 𝑐 ≠ −𝑑 

To find the first integral, we do the following: 

 

     Put 𝑢 = (𝑎 + 𝑏𝐼)𝑥𝑛         ⟹      𝑑𝑢 = 𝑛(𝑎 + 𝑏𝐼)𝑥𝑛−1 𝑑𝑥 

 

   𝑑𝑣 = sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
−1

𝑐+𝑑𝐼
cos(𝑐 + 𝑑𝐼)𝑥 
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Then apply: 

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 We get: 

           

∫(𝑎 + 𝑏𝐼)𝑥𝑛 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥

= (
𝑎

𝑐
+

cb − ad

c(c + d)
. 𝐼) (−𝑥𝑛sin(𝑐 + 𝑑𝐼)𝑥 + ∫ 𝑛𝑥𝑛−1 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥) + 𝐶 

 

We find the required integral by repeated the integration. By the same method we evaluate 

the second integral: 

∫(𝑎 + 𝑏𝐼)𝑥𝑛 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

Example3.2 

Find:  

∫(1 + 𝐼)𝑥  sin(2 − 3𝐼)𝑥 𝑑𝑥 

Solution: 

𝑢 = (1 + 𝐼)𝑥      ⟹       𝑑𝑢 = (1 + 𝐼)𝑑𝑥         

 

              𝑑𝑣 =  sin(2 − 3𝐼)𝑥 𝑑𝑥  ⟹       𝑣 =
−1

2−3𝐼
  cos(2 − 3𝐼)𝑥     

Then apply: 

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

    We get: 

 

∫(1 + 𝐼)𝑥 sin(2 − 3𝐼)𝑥  𝑑𝑥 = (
1

2
+

−3 − 2

−2
. 𝐼) (−𝑥 cos(2 − 3𝐼)𝑥 + ∫  cos(2 − 3𝐼)𝑥 𝑑𝑥) 

 

= (
3

2
+

1

2
. 𝐼) (−𝑥 cos(2 − 3𝐼)𝑥 +

1

2 − 3𝐼
 sin(2 − 3𝐼)𝑥) 

 

= (
3

2
+

1

2
. 𝐼) (−𝑥 cos(2 − 3𝐼)𝑥 + (

1

2
−

3

2
𝐼) sin(2 − 3𝐼)𝑥) + 𝐶 

 

 state3: neutrosophic integration from the form: 

 

∫  𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥     𝑜𝑟    ∫  𝑒(𝑎+𝑏𝐼)𝑥 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥  

 

Where 𝑐 ≠ 0 𝑎𝑛𝑑 𝑐 ≠ −𝑑 

To find the first integral, we do the following: 

 

  Put        𝑢 = 𝑒(𝑎+𝑏𝐼)𝑥       ⟹      𝑑𝑢 = (𝑎 + 𝑏𝐼)𝑒(𝑎+𝑏𝐼)𝑥 𝑑𝑥 

 

   𝑑𝑣 = sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
−1

𝑐+𝑑𝐼
cos(𝑐 + 𝑑𝐼)𝑥 

 

Then apply:      

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 We get: 

           

∫  𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 
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= (
−1

𝑐 + 𝑑𝐼
) 𝑒(𝑎+𝑏𝐼)𝑥cos(𝑐 + 𝑑𝐼)𝑥 + (

𝑎 + 𝑏𝐼

𝑐 + 𝑑𝐼
) ∫ 𝑒(𝑎+𝑏𝐼)𝑥 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥   (∗) 

 

 By using integration by parts again to evaluate:  

 

∫ 𝑒(𝑎+𝑏𝐼)𝑥 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

 

       Put 𝑢 = 𝑒(𝑎+𝑏𝐼)𝑥         ⟹      𝑑𝑢 = (𝑎 + 𝑏𝐼)𝑒(𝑎+𝑏𝐼)𝑥 𝑑𝑥 

 

   𝑑𝑣 = cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
1

𝑐+𝑑𝐼
sin(𝑐 + 𝑑𝐼)𝑥 

 

We get: 

           

∫  𝑒(𝑎+𝑏𝐼)𝑥 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

= (
−1

𝑐 + 𝑑𝐼
) 𝑒(𝑎+𝑏𝐼)𝑥sin(𝑐 + 𝑑𝐼)𝑥 + (

𝑎 + 𝑏𝐼

𝑐 + 𝑑𝐼
) ∫ 𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

 

By substitution in (∗): 

 

∫  𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

= (
−1

𝑐 + 𝑑𝐼
) 𝑒(𝑎+𝑏𝐼)𝑥cos(𝑐 + 𝑑𝐼)𝑥

+ (
𝑎 + 𝑏𝐼

𝑐 + 𝑑𝐼
) ((

−1

𝑐 + 𝑑𝐼
) 𝑒(𝑎+𝑏𝐼)𝑥sin(𝑐 + 𝑑𝐼)𝑥 + (

𝑎 + 𝑏𝐼

𝑐 + 𝑑𝐼
) ∫ 𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥) 

 

= (
−1

𝑐 + 𝑑𝐼
) 𝑒(𝑎+𝑏𝐼)𝑥cos(𝑐 + 𝑑𝐼)𝑥− (

𝑎 + 𝑏𝐼

(𝑐 + 𝑑𝐼)2
) 𝑒(𝑎+𝑏𝐼)𝑥sin(𝑐 + 𝑑𝐼)𝑥

+ (
𝑎 + 𝑏𝐼

𝑐 + 𝑑𝐼
)

2

∫ 𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

 

⟹  (1 − (
𝑎 + 𝑏𝐼

𝑐 + 𝑑𝐼
)

2

) ∫ 𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥

= (
−1

𝑐 + 𝑑𝐼
) 𝑒(𝑎+𝑏𝐼)𝑥cos(𝑐 + 𝑑𝐼)𝑥− (

𝑎 + 𝑏𝐼

(𝑐 + 𝑑𝐼)2
) 𝑒(𝑎+𝑏𝐼)𝑥sin(𝑐 + 𝑑𝐼)𝑥 

 

⟹  ∫ 𝑒(𝑎+𝑏𝐼)𝑥 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥

= (
(𝑐 + 𝑑𝐼)2

(𝑐 + 𝑑𝐼)2 − (𝑎 + 𝑏𝐼)2
) ((

−1

𝑐 + 𝑑𝐼
) 𝑒(𝑎+𝑏𝐼)𝑥cos(𝑐 + 𝑑𝐼)𝑥− (

𝑎 + 𝑏𝐼

(𝑐 + 𝑑𝐼)2
) 𝑒(𝑎+𝑏𝐼)𝑥sin(𝑐

+ 𝑑𝐼)𝑥 + 𝐶) 

 

By the same method we evaluate the second integral: 

∫  𝑒(𝑎+𝑏𝐼)𝑥 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

 

Example3.2 

Find:  

∫  𝑒(1+𝐼)𝑥 cos(2 + 𝐼)𝑥 𝑑𝑥 

Solution: 
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Put 𝑢 = 𝑒(1+𝐼)𝑥         ⟹      𝑑𝑢 = (1 + 𝐼)𝑒(1+𝐼)𝑥 𝑑𝑥 

 

   𝑑𝑣 = cos(2 + 𝐼)𝑥𝑑𝑥        ⟹         𝑣 =
1

2+𝐼
sin(2 + 𝐼)𝑥 

 

T hen apply:      

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 We get: 

           

∫   𝑒(1+𝐼)𝑥 cos(2 + 𝐼)𝑥 𝑑𝑥 

=
1

2 + 𝐼
𝑒(1+𝐼)𝑥sin(2 + 𝐼)𝑥 − (

1 + 𝐼

2 + 𝐼
) ∫  𝑒(1+𝐼)𝑥  sin(2 + 𝐼)𝑥  𝑑𝑥   (∗) 

 

 By using integration by parts again to evaluate:  

∫  𝑒(1+𝐼)𝑥 sin(2 + 𝐼)𝑥  𝑑𝑥 

 

       Put 𝑢 = 𝑒(1+𝐼)𝑥         ⟹      𝑑𝑢 = (1 + 𝐼)𝑒(1+𝐼)𝑥 𝑑𝑥 

 

   𝑑𝑣 = sin(2 + 𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
−1

2+𝐼
cos(2 + 𝐼)𝑥 

We get: 

           

∫  𝑒(1+𝐼)𝑥 sin(2 + 𝐼)𝑥 𝑑𝑥 

=
−1

2 + 𝐼
𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 + (

1 + 𝐼

2 + 𝐼
) ∫ 𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 𝑑𝑥  

 

By substitution in (∗): 

 

∫   𝑒(1+𝐼)𝑥 cos(2 + 𝐼)𝑥 𝑑𝑥 

=
1

2 + 𝐼
𝑒(1+𝐼)𝑥sin(2 + 𝐼)𝑥

− (
1 + 𝐼

2 + 𝐼
) (

−1

2 + 𝐼
𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 + (

1 + 𝐼

2 + 𝐼
) ∫ 𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 𝑑𝑥 ) 

 

=
1

2 + 𝐼
𝑒(1+𝐼)𝑥sin(2 + 𝐼)𝑥 +

1 + 𝐼

(2 + 𝐼)2
𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 − (

1 + 𝐼

2 + 𝐼
)

2

∫ 𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 𝑑𝑥 

 

⟹ (1 + (
1 + 𝐼

2 + 𝐼
)

2

) ∫ 𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 𝑑𝑥 =
1

2 + 𝐼
𝑒(1+𝐼)𝑥sin(2 + 𝐼)𝑥 +

1 + 𝐼

4 + 5𝐼
𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 

 

⟹ ∫ 𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥 𝑑𝑥 = (
4 + 5𝐼

5 + 8𝐼
) (

1

2 + 𝐼
𝑒(1+𝐼)𝑥sin(2 + 𝐼)𝑥 +

1 + 𝐼

4 + 5𝐼
𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥) 

 

= (
4

5
−

7

65
𝐼) ((

1

2
−

1

6
𝐼) 𝑒(1+𝐼)𝑥sin(2 + 𝐼)𝑥 + (

1

4
−

1

36
𝐼) 𝑒(1+𝐼)𝑥cos(2 + 𝐼)𝑥) + 𝐶 

 

 state3: neutrosophic integration from the form: 

 

∫(𝑎 + 𝑏𝐼)𝑥𝑛 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥     𝑜𝑟    ∫(𝑎 + 𝑏𝐼)𝑥𝑛 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥  

Where 𝑐 ≠ 0 𝑎𝑛𝑑 𝑐 ≠ −𝑑 
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To find the first integral, we do the following: 

 

    Put 𝑢 = (𝑎 + 𝑏𝐼)𝑥𝑛         ⟹      𝑑𝑢 = 𝑛(𝑎 + 𝑏𝐼)𝑥𝑛−1 𝑑𝑥 

 

   𝑑𝑣 = sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
−1

𝑐+𝑑𝐼
cos(𝑐 + 𝑑𝐼)𝑥 

Then apply: 

                

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 We get: 

           

∫(𝑎 + 𝑏𝐼)𝑥𝑛 sin(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥

= (
𝑎

𝑐
+

cb − ad

c(c + d)
. 𝐼) (−𝑥𝑛sin(𝑐 + 𝑑𝐼)𝑥 + ∫ 𝑛𝑥𝑛−1 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥) + 𝐶 

 

We find the required integral by repeated the integration. By the same method we evaluate 

the second integral: 

∫(𝑎 + 𝑏𝐼)𝑥𝑛 cos(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 

Example3.3 

Find:  

∫(1 + 𝐼)𝑥  sin(2 − 3𝐼)𝑥 𝑑𝑥 

Solution: 

𝑢 = (1 + 𝐼)𝑥         ⟹       𝑑𝑢 = (1 + 𝐼)𝑑𝑥         

 

                𝑑𝑣 =  sin(2 − 3𝐼)𝑥 𝑑𝑥  ⟹       𝑣 =
−1

2−3𝐼
  cos(2 − 3𝐼)𝑥     

Then apply: 

                

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

   We get: 

 

∫(1 + 𝐼)𝑥 sin(2 − 3𝐼)𝑥  𝑑𝑥 = (
1

2
+

−3 − 2

−2
. 𝐼) (−𝑥 cos(2 − 3𝐼)𝑥 + ∫  cos(2 − 3𝐼)𝑥 𝑑𝑥) 

 

= (
3

2
+

1

2
. 𝐼) (−𝑥 cos(2 − 3𝐼)𝑥 +

1

2 − 3𝐼
 sin(2 − 3𝐼)𝑥) 

 

= (
3

2
+

1

2
. 𝐼) (−𝑥 cos(2 − 3𝐼)𝑥(𝑐 + 𝑑𝐼)𝑥 + (

1

2
−

3

2
𝐼) sin(2 − 3𝐼)𝑥) + 𝐶 

 

 state4: neutrosophic integration from the form: 

 

∫(𝑎 + 𝑏𝐼)𝑥𝑛 ln (𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 ,   𝑛 ≠ 1     

 

To find the first integral, we do the following: 

Put 𝑢 = 𝑙𝑛(𝑐 + 𝑑𝐼)𝑥       ⟹      𝑑𝑢 =
1

𝑥
 𝑑𝑥 

 



Neutrosophic Sets and Systems, Vol. 45, 2021     315  

 

 

Yaser Ahmad Alhasan, The neutrosophic integrals by parts  

   𝑑𝑣 = (𝑎 + 𝑏𝐼)𝑥𝑛 𝑑𝑥    ⟹       𝑣 =
𝑎+𝑏𝐼

𝑛+1
𝑥𝑛+1 

Then apply: 

                

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 We get: 

           

∫(𝑎 + 𝑏𝐼)𝑥𝑛 𝑙𝑛(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 =
𝑎 + 𝑏𝐼

𝑛 + 1
𝑥𝑛+1 ln|(𝑐 + 𝑑𝐼)|𝑥 + ∫

𝑎 + 𝑏𝐼

𝑛 + 1
𝑥𝑛 𝑑𝑥 

 

=
𝑎 + 𝑏𝐼

𝑛 + 1
𝑥𝑛+1 ln(𝑐 + 𝑑𝐼)𝑥 +

𝑎 + 𝑏𝐼

(𝑛 + 1)2
𝑥𝑛+1 + 𝐶 

Example3.4 

Find:  

∫(7 + 4𝐼)𝑥  𝑙𝑛(6 + 3𝐼)𝑥 𝑑𝑥 

Solution: 

 

 Put 𝑢 = 𝑙𝑛(6 + 3𝐼)𝑥        ⟹      𝑑𝑢 =
1

𝑥
 𝑑𝑥 

 

   𝑑𝑣 = (7 + 4𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
7+4𝐼

2
𝑥2 

Then apply: 

                

∫ 𝑢 𝑑𝑣 = 𝑢. 𝑣 − ∫ 𝑣 𝑑𝑢 

 We get: 

           

∫(7 + 4𝐼)𝑥  𝑙𝑛 (6 + 3𝐼)𝑥 𝑑𝑥 =
7 + 4𝐼

2
𝑥2𝑙𝑛(6 + 3𝐼)𝑥 −

7 + 4𝐼

2
∫ 𝑥 𝑑𝑥 

=
7 + 4𝐼

2
𝑥2𝑙𝑛(6 + 3𝐼)𝑥 −

7 + 4𝐼

2

𝑥2

2
 

 

= (
7

2
+ 2𝐼) (𝑥2𝑙𝑛(6 + 3𝐼)𝑥 −

𝑥2

2
) + 𝐶 

Remark: 

To find the following integrals: 

∫(𝑎 + 𝑏𝐼)𝑥𝑛 𝑠𝑖𝑛−1(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥 ,   ∫(𝑎 + 𝑏𝐼)𝑥𝑛 𝑐𝑜𝑠−1(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥,  

∫(𝑎 + 𝑏𝐼)𝑥𝑛 𝑡𝑎𝑛−1(𝑐 + 𝑑𝐼)𝑥 𝑑𝑥   𝑛 ≠ 1     

We are following the same state4, whereas: 

 

Put  

𝑢 =  𝑠𝑖𝑛−1(𝑐 + 𝑑𝐼)𝑥  𝑜𝑟  𝑐𝑜𝑠−1(𝑐 + 𝑑𝐼)𝑥  𝑜𝑟   𝑡𝑎𝑛−1(𝑐 + 𝑑𝐼)𝑥,       𝑎𝑛𝑑  𝑑𝑣 = (𝑎 + 𝑏𝐼)𝑥𝑛 𝑑𝑥        

 

Example3.5 

Find:  

∫(4 + 𝐼)𝑥 𝑡𝑎𝑛−1(2 + 5𝐼)𝑥 𝑑𝑥 

Solution: 

 

Put 

𝑢 =  𝑡𝑎𝑛−1(2 + 5𝐼)𝑥        ⟹      𝑑𝑢 =
2 + 5𝐼

1 + (2 + 5𝐼)2𝑥2
 𝑑𝑥 
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𝑑𝑣 = (4 + 𝐼)𝑥 𝑑𝑥        ⟹         𝑣 =
4 + 𝐼

2
𝑥2 

We get: 

           

∫(4 + 𝐼)𝑥 𝑡𝑎𝑛−1(2 + 5𝐼)𝑥 𝑑𝑥 =
4 + 𝐼

2
𝑥2 𝑡𝑎𝑛−1(2 + 5𝐼)𝑥 −

8 + 27𝐼

2
∫

𝑥2

1 + (4 + 45𝐼)𝑥2
 𝑑𝑥 

 

=
4 + 𝐼

2
𝑥2 𝑡𝑎𝑛−1(2 + 5𝐼)𝑥 −

8 + 27𝐼

2
∫ (

1

4 + 45𝐼
−

1

4 + 45𝐼
 

1

1 + (4 + 45𝐼)𝑥2
)  𝑑𝑥 

 

=
4 + 𝐼

2
𝑥2 𝑡𝑎𝑛−1(2 + 5𝐼)𝑥 −

8 + 27𝐼

2
(

1

4 + 45𝐼
𝑥 −

2 + 5𝐼

4 + 45𝐼
  𝑡𝑎𝑛−1(2 + 5𝐼)𝑥) + 𝐶 

 

= (2 +
1

2
𝐼) 𝑥2 𝑡𝑎𝑛−1(2 + 5𝐼)𝑥 −

8 + 27𝐼

2
((

1

4
−

45

196
) 𝑥 − (

2

4
−

70

196
𝐼)  𝑡𝑎𝑛−1(2 + 5𝐼)𝑥) + 𝐶 

4.Tabular method to find the integrals by parts in the stats 1 and 2  

 Differentiate the polynomial function, and we repeat that until we get to zero. 

 Integral the second function, and repeat that until we get to the zero that we got from 

the differentiation. 

 Arrange the products of the derivatives in one column, and the products of the 

integrals in another column corresponding to it. 

 Draw an arrow from each entry in the first column to the entry that is one row down 

in the second column. 

 Label the arrows with alternating + and − signs, starting with a +. 

 For each arrow, form the product of the expressions at its tip and tail and then 

multiply that product by + or − in accordance with the sign on the arrow. 

 

Example4.1 

Find the following integral by using tabular method: 

∫((3 + 𝐼)𝑥2 + 2𝑥) 𝑒(2−4𝐼)𝑥  𝑑𝑥 

Solution: 

derivation integration 

(+) (3 + 𝐼)𝑥2 + 2𝑥 

 

𝑒(2−4𝐼)𝑥 

(−)  (3 + 𝐼)𝑥 + 2 

 

1

2 − 4𝐼
𝑒(2−4𝐼)𝑥 

(+) (3 + 𝐼) 

 

1

4
𝑒(2−4𝐼)𝑥 

0 

 

1

8 − 16𝐼
𝑒(2−4𝐼)𝑥 

 

Hence:  

∫((3 + 𝐼)𝑥2 + 2𝑥) 𝑒(2−4𝐼)𝑥 𝑑𝑥

= ((3 + 𝐼)𝑥2 + 2𝑥)
1

2 − 4𝐼
𝑒(2−4𝐼)𝑥 − ((3 + 𝐼)𝑥 + 2) 

1

2
𝑒(2−4𝐼)𝑥 +

3 + 𝐼

8 − 16𝐼
𝑒(2−4𝐼)𝑥 
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= ((3 + 𝐼)𝑥2 + 2𝑥) (
1

2
− 𝐼) 𝑒(2−4𝐼)𝑥 − ((3 + 𝐼)𝑥 + 2) 

1

4
𝑒(2−4𝐼)𝑥 + (

3

8
−

5

8
) 𝑒(2−4𝐼)𝑥 + 𝐶 

 

Example4.2 

Find the following integral by using tabular method: 

∫((3 + 𝐼)𝑥2 + 2𝑥) 𝑐𝑜𝑠(2 − 4𝐼)𝑥 𝑑𝑥 

Solution: 

derivation integration 

(+) (3 + 𝐼)𝑥2 + 2𝑥 

 

𝑐𝑜𝑠(2 − 4𝐼)𝑥 

(−)  (3 + 𝐼)𝑥 + 2 

 

1

2 − 4𝐼
𝑠𝑖𝑛(2 − 4𝐼)𝑥 

(+) (3 + 𝐼) 

 

−1

4
𝑐𝑜𝑠(2 − 4𝐼)𝑥 

0 

 

−1

8 − 16𝐼
𝑠𝑖𝑛(2 − 4𝐼)𝑥 

 

Hence:  

 

∫((3 + 𝐼)𝑥2 + 2𝑥) 𝑒(2−4𝐼)𝑥 𝑑𝑥

= ((3 + 𝐼)𝑥2 + 2𝑥)
1

2 − 4𝐼
𝑒(2−4𝐼)𝑥 − ((3 + 𝐼)𝑥 + 2) 

1

2
𝑒(2−4𝐼)𝑥 −

3 − 𝐼

8 − 16𝐼
𝑒(2−4𝐼)𝑥 

 

= ((3 + 𝐼)𝑥2 + 2𝑥) (
1

2
− 𝐼) 𝑠𝑖𝑛(2 − 4𝐼)𝑥 + ((3 + 𝐼)𝑥 + 2) 

1

4
𝑐𝑜𝑠(2 − 4𝐼)𝑥 − (

3

8
−

5

8
) 𝑠𝑖𝑛(2 − 4𝐼)𝑥 + 𝐶 

5. Conclusions  

      Integrals are important in our life, as they facilitate many mathematical operations in our 

reality, and this is what led us to study the neutrosophic integrals by parts, and the tabular method, 

which is considered easier than the neutrosophic integrals by parts for some neutrosophic integrals. 

This paper is considered an introduction to the applications in neutrosophic integrals. 

 

 

Acknowledgments: This publication was supported by the Deanship of Scientific Research at Prince 

Sattam bin Abdulaziz University, Alkharj, Saudi Arabia. 

 

References 

[1] Smarandache, F., "Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic      

Probability", Sitech-Education Publisher, Craiova – Columbus, 2013.  

 

[2] Smarandache, F., "Finite Neutrosophic Complex Numbers, by W. B. Vasantha Kandasamy", Zip Publisher, 

Columbus, Ohio, USA, pp.1-16, 2011. 

 

[3] Smarandache, F., "Neutrosophy. / Neutrosophic Probability, Set, and Logic, American Research Press", 

Rehoboth, USA, 1998. 

 

[4] Smarandache, F., "Introduction to Neutrosophic statistics", Sitech-Education Publisher, pp.34-44, 2014. 

 



Neutrosophic Sets and Systems, Vol. 45, 2021     318  

 

 

Yaser Ahmad Alhasan, The neutrosophic integrals by parts  

[5] Smarandache, F., "A Unifying Field in Logics: Neutrosophic Logic", Preface by Charles Le, American 

Research Press, Rehoboth, 1999, 2000. Second edition of the Proceedings of the First International Conference 

on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, University of 

New Mexico, Gallup, 2001.  

 

[6] Smarandache, F., "Proceedings of the First International Conference on Neutrosophy", Neutrosophic Set, 

Neutrosophic Probability and Statistics, University of New Mexico, 2001. 

 

[7] Alhasan,Y. "Concepts of Neutrosophic Complex Numbers", International Journal of Neutrosophic Science,  

Volume 8 , Issue 1, pp. 9-18, 2020. 

[8] Smarandache, F., "Neutrosophic Precalculus and Neutrosophic Calculus", book, 2015. 

 

[9] Al- Tahan, M., "Some Results on Single Valued Neutrosophic (Weak) Polygroups", International Journal 

of Neutrosophic Science, Volume 2, Issue 1, pp. 38-46, 2020. 

 

[10] Edalatpanah. S., "A Direct Model for Triangular Neutrosophic Linear Programming", International Journal 

of Neutrosophic Science, Volume 1, Issue 1, pp. 19-28, 2020. 

 

[11] Chakraborty, A., "A New Score Function of Pentagonal Neutrosophic Number and its Application in 

Networking Problem", International Journal of Neutrosophic Science, Volume 1, Issue 1, pp. 40-51, 2020. 

 

[12] Chakraborty, A., "Application of Pentagonal Neutrosophic Number in Shortest Path Problem", 

International Journal of Neutrosophic Science, Volume 3, Issue 1, pp. 21-28, 2020. 

 

[13] Smarandache, F., "Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy", 

Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA 2002. 

 

[14] Alhasan,Y., "The General Exponential form of a Neutrosophic Complex Number", International Journal 

of Neutrosophic Science, Volume 11, Issue 2, pp. 100-107, 2020. 

[15] Abdel-Basset, M., "An approach of TOPSIS technique for developing supplier selection with group 

decision making under type-2 neutrosophic number", Applied Soft Computing, pp.438-452, 2019. 

 

[16] Abdel-Baset, M., Chang, V., Gamal, A., Smarandache, F., "An integrated neutrosophic ANP and VIKOR 

method for achieving sustainable supplier selection: A case study in importing field", Comput. Ind, pp.94–110, 

2019.  

 

[17] Abdel-Basst, M., Mohamed, R., Elhoseny, M., "<?  covid19?> A model for the effective COVID-19 

identification in uncertainty environment using primary symptoms and CT scans." Health Informatics Journal, 

2020. 

 

[18] Abdel-Basset, M., Gamal, A., Son, L. H., Smarandache, F., “A Bipolar Neutrosophic Multi Criteria 

Decision Making Framework for Professional Selection”. Applied Sciences, 2020. 

 

[19] Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., Smarandache, F., “Solving the supply 

chain problem using the best-worst method based on a novel Plithogenic model”. InOptimization Theory Based 

on Neutrosophic and Plithogenic Sets. Academic Press, pp.1–19, 2020.  

 

[20].Abdel-Basset, M., "An integrated plithogenic MCDM approach for financial performance evaluation of 

manufacturing industries."Risk Management pp.1–19, 2020. 

 

[21] Abobala, M., "On Some Special Substructures of Neutrosophic Rings and Their Properties", International 

Journal of Neutrosophic Science, Vol 4, pp72-81, 2020. 

 



Neutrosophic Sets and Systems, Vol. 45, 2021     319  

 

 

Yaser Ahmad Alhasan, The neutrosophic integrals by parts  

[22] Abobala, M., "A Study of AH-Substructures in n-Refined Neutrosophic Vector Spaces", International 

Journal of Neutrosophic Science", Vol. 9, pp.74-85, 2020. 

 

[23] Hatip, A., and Abobala, M., "AH-Substructures In Strong Refined Neutrosophic Modules", International 

Journal of Neutrosophic Science, Vol. 9, pp. 110-116, 2020. 

 

[24] Alhasan,Y., "The neutrosophic integrals and integration methods", Neutrosophic Sets and Systems, 

Volume 43, pp. 290-301, 2021. 

 

Received: May 8, 2021.  Accepted: August 18, 2021 



 Neutrosophic Sets and Systems, Vol. 45, 2021 

 University of New Mexico 

 

M. Abdel-Basset, E. Badr, Sh. Nada, S. Ali, A. Elrokh. Solving Neutrosophic linear Programming Problems Using Exterior Point 

Simplex Algorithm 

 

Solving Neutrosophic Linear Programming Problems Using Exterior 
Point Simplex Algorithm 

Elsayed Badr1,2 , Shokry Nada3, Saeed Ali4 and Ashraf Elrokh5 

1 Scientific Computing Department, Faculty of Computers and Informatics, Benha University, Benha, Egypt,   
alsayed.badr@fci.bu.edu.eg 

2 Higher Technological Institute, 10th of Ramadan City, Egypt. sayed.badr@hti.edu.eg 
3,4,5Mathematics and Computer Science Department, Faculty of Science Menoufia University 

*  Correspondence: alsayed.badr@fci.bu.edu.eg; 

Abstract: In this manuscript, three contributions are proposed. First contribution is proposing a good 

evaluation between the fuzzy and neutrosophic approaches using a novel fuzzy-neutrosophic transfer. 

Second contribution is introducing a general framework for solving the neutrosphic linear programming 

problems using the advantages of the method of Abdel-Basset et al. and the advantages of Singh et al.'s 

method. Third contribution is proposing a new neutrosophic exterior point simplex algorithm NEPSA 

and its fuzzy version FEPSA. NEPSA has two paths to get optimal solutions. One path consists of basic 

not feasible solutions but the other path is feasible. Finally, the numerical examples and results analysis 

show that NEPSA more than accurate FEPSA. 

Keywords: Fuzzy Linear Programming; Ranking Function; Trapezoidal Fuzzy Number; Trapezoidal 

Neutrosophic Number; Exterior Point Simplex Algorithm. 

1. Introduction 

               Fuzzy sets were introduced by Zadeh [20] to handle vague and imprecise information. But also 

fuzzy set does not represent vague and imprecise information efficiently, because it considers only the 

truthiness function. After then, Atanassov [3] introduced the concept of intuitionistic fuzzy set to handle 

vague and imprecise information, by considering both the truth and falsity function. But also 

intuitionistic fuzzy set does not simulate human decision making process. Because the proper decision is 

fundamentally a problem of arranging and explicate facts the concept of neutrosophic set theory was 

presented by Smarandache, to handle vague, imprecise and inconsistent information [9,10,11,12]. 

Neutrosophic set theory simulates decision-making process of humans, by considering all aspects of 

decision-making process. Neutrosophic set is a popularization of fuzzy and intuitionistic fuzzy sets; each 

element of set had a truth, indeterminacy and falsity membership function. So, neutrosophic set can 

assimilate inaccurate, vague and maladjusted information efficiently and effectively [18, 19]. 

            The first EPSA was developed by Paparrizos  for the assignment problem [27]. Later, Paparrizos  

generalized EPSA to the general LP [28]. Primal-dual versions of the algorithm are discussed in [29,30]. 

From the geometry of EPSA, In particular, EPSA proved to be up to ten times faster than simplex 

algorithm on randomly generated optimal LPs of medium size.  

            EPSA constructs two paths to the optimal solution. One path consists of basic but not feasible 

solutions; so this is an “exterior path”. The second path is feasible. It consists of line segments, the 

endpoints of which lie on the boundary of the feasible region. EPSA relies on the idea that making steps 

mailto:alsayed.badr@fci.bu.edu.eg
mailto:sayed.badr@hti.edu.eg
mailto:alsayed.badr@fci.bu.edu.eg
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in directions that are linear combinations of attractive descent directions which can lead to faster 

practical convergence than that achievable by simplex algorithm. Although EPSA outperforms clearly 

the original simplex algorithm (on randomly generated dense and sparse LPs) it has two computational 

disadvantages. Firstly, it is difficult to construct “good moving directions”. We use the term “good 

moving direction” loosely. A good moving direction is a direction that makes the algorithm efficient in 

practice. Geometrically a good moving direction is a direction that comes close to the optimal solution. In 

fact the two paths depend on the initial feasible segment (direction) and the initial feasible vertex. 

Secondly, there is no known way of moving into the interior of the feasible region. This movement will 

provide more flexibility in the search for computationally good directions. 

             Badr et al [8] proposed a new method to solve the fuzzy linear programming problem. It is called 

fuzzy exterior point simplex algorithm (FEPSA). It constructs two ways to get the optimal solution. One 

path consists of basic not feasible solutions. The second way is feasible. 

            For more details about the linear programming, the reader can refer to [13,5,4,6]. On the other 

hand, for more details about the fuzzy linear programming, the reader is referred to [7]. Finally, for more 

details about the neutrosophic linear programming, the reader may refer to [2,14,15,16,17,24,25,26,31]. 

            The remaining parts of this research are organized as follows: In sect. 2, we introduce the basic 

concepts of fuzzy and neutrosophic sets and a new technique which converts the fuzzy representation to 

the neutrosophic representation. The fuzzy rank functions and it corresponding neutrosophic rank 

functions are proposed in Sec. 3. In Sec. 4, we propose Singh et al.'s modifications [32] and the proposed 

modification for primal neutrosophic simplex method and a new neutrosophic exterior point simplex 

algorithm NEPSA. In Sec. 5, we propose two numerical examples that show the importance of the 

proposed modification for primal neutrosophic simplex method and they show the superiority of the 

proposed algorithm NEPSA. Finally, we introduce the future work and conclusions in Sec. 6. 

 

2. Preliminaries 

In this section, we introduce three subsections. First one is representation of the fuzzy numbers. 

Second is the representation of the neutrosophic numbers. Finally, we show that how to move from fuzzy 

representation to neutrosophic representation. In other words, how do to convert the fuzzy numbers to 

neutrosophic numbers. 

2.1 Fuzzy Representation 

We review the fundamental notions of fuzzy set theory, initiated by Bellman and Zadeh [20]. 

2.1.1 Definition: A convex fuzzy set Ã on ℝ is a fuzzy number if the following conditions hold: 

 Its membership function is piecewise continuous. 

 There exist three intervals [a, b], [b, c], [c, d] such that 
a

 is increasing on [a, b], equal to 1 

on [b, c], decreasing on [c, d] and equal to 0 elsewhere. 

2.1.2 Definition: Let �̃� = (𝑎𝐿 , 𝑎𝑈 , 𝛼, 𝛽)  denote the trapezoidal fuzzy number, where (𝑎𝐿 − 𝛼, 𝑎𝑈 + 𝛽) is the  

                              support of ã and [𝑎𝐿 , 𝑎𝑈] its core. 

Remark 1: We denote the set of all trapezoidal fuzzy numbers by F(ℝ). 
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Figure 1. Truth membership function of trapezoidal fuzzy numbers 

We next define arithmetic on trapezoidal fuzzy numbers. Let �̃� = (𝑎𝐿 , 𝑎𝑈 , 𝛼, 𝛽) and �̃� = (𝑏𝐿 , 𝑏𝑈, 𝛾, 𝜃)be two 

trapezoidal fuzzy numbers. Define: 

𝑥�̃� = (𝑥𝑎𝐿 , 𝑥𝑎𝑈, 𝑥𝛼, 𝑥𝛽) ∶   𝑥 > 0,  𝑥 ∈ ℝ; 

 𝑥�̃� = (𝑥𝑎𝑈, 𝑥𝑎𝐿 , −𝑥𝛽,−𝑥𝛼): 𝑥 < 0, 𝑥 ∈ ℝ;   

�̃�+�̃�=(𝑎𝐿 , 𝑎𝑈, 𝛼, 𝛽)+ (𝑏𝐿 , 𝑏𝑈, 𝛾, 𝜃) = [𝑎𝐿 + 𝑏𝐿 , 𝑎𝑈 + 𝑏𝑈, 𝛼 + 𝛾, 𝛽 + 𝜃] 

We point out that the arithmetic on trapezoidal fuzzy numbers follows the Extension Principle which is 

discussed in [22]. 

2.2 Neutrosophic Representation 

In this subsection, some of basic definitions in the neutrosophic set theory are introduced: 

2.2.1 Definition [1]: A single-valued neutrosophic set N which is a subset of X is defined as  follows:  

𝑁 = {< 𝑥, 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) >: 𝑥 ∈ 𝑋}where X is a universe of discourse, 𝑇𝑁(𝑥): 𝑋 → [0,1] 

,  𝐼𝑁(𝑥): 𝑋 → [0,1] and  𝐹𝑁(𝑥): 𝑋 → [0,1] with 0 ≤ 𝑇𝑁(𝑥) + 𝐼𝑁(𝑥) + 𝐹𝑁(𝑥) ≤ 3 for all𝑥 ∈ 𝑋, 

𝑇𝑁(𝑥), 𝐼𝑁(𝑥) and 𝐹𝑁(𝑥)represent truth membership, indeterminacy membership and 

falsity membership degrees of x to N. 

2.2.2 Definition [1]: The trapezoidal neutrosophic number �̃� is a neutrosophic set in R with the following  

truth, indeterminacy and falsity membership functions: 

                           𝑇𝐴(𝑥) =

{
 
 

 
 

𝛼�̃�(𝑥−𝑎 )

𝑎2−𝑎1
: 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛼𝐴    : 𝑎2 ≤ 𝑥 ≤ 𝑎3

𝛼𝐴(
𝑥−𝑎3

𝑎4−𝑎3
) : 𝑎3 ≤ 𝑥 ≤ 𝑎4

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    𝐼𝐴(𝑥) =

{
 
 

 
 

(𝑎2−𝑥+𝜃�̃�(𝑥−𝑎1
′ )

𝑎2−𝑎1
′ : 𝑎1

′ ≤ 𝑥 ≤ 𝑎2 

𝜃𝐴          : 𝑎2 ≤ 𝑥 ≤ 𝑎3
(𝑥−𝑎3+𝜃�̃�(𝑎4

′−𝑥)

𝑎4
′−𝑎3

: 𝑎3 ≤ 𝑥 ≤ 𝑎4
′

1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝐹𝐴(𝑥) =

{
  
 

  
 
(𝑎2 − 𝑥 + 𝛽𝐴(𝑥 − 𝑎1

"))

𝑎2 − 𝑎1
"

: 𝑎1
" ≤ 𝑥 ≤ 𝑎2 

𝛽𝐴         : 𝑎2 ≤ 𝑥 ≤ 𝑎3
(𝑥 − 𝑎3 + 𝛽𝐴(𝑎4

" − 𝑥))

𝑎4
" − 𝑎3

 : 𝑎3 ≤ 𝑥 ≤ 𝑎4
"

1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝛼𝐴, 𝜃𝐴 and 𝛽𝐴 represent the maximum degree of truthiness, minimum degree of indeterminacy and 

minimum degree of falsity, respectively, 𝛼𝐴, 𝜃𝐴 and 𝛽𝐴 ∈ [0,1]. The membership functions of trapezoidal 

neutrosophic number are shown in Fig. 2. It is clear that𝑎1
" < 𝑎1 < 𝑎1

′ < 𝑎2 < 𝑎3 < 𝑎4
′ < 𝑎4 < 𝑎4

" . 

Remark 2: Here 𝑇𝐴(𝑥) increases with a constant rate for [a1, a2] and decreases with a constant rate for [a3, 

a4]. 𝐹𝐴(𝑥)decreases with a constant rate for [𝑎1
′′, a2] and increases with a constant rate for [a3, 𝑎4

′′]. 

𝐼𝐴(𝑥)increases and decreases with a constant rate for [𝑎1
′ , a2] simultaneously,  and it decreases and 

increases with a constant rate for [a3, 𝑎4
′ ] simultaneously. 

Remark 3: If 𝑎2 − 𝑎1 = 𝑎4 − 𝑎3 the trapezoidal neutrosophic number is called the symmetric trapezoidal 

neutrosophic number. 

2.2.3 Definition [1]: Let  �̃� =   < 𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > and  �̃� =   < 𝑏1, 𝑏2, 𝑏3, 𝑏4; 𝛼�̃�, 𝜃�̃�, 𝛽�̃� > are two  

     trapezoidal neutrosophic numbers, then the mathematical operations are presented as follows: 

                                  �̃� + �̃� =   < (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3, 𝑎4 + 𝑏4); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃�̃� ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 > 

                                 �̃� − �̃� =   < (𝑎1 − 𝑏4, 𝑎2 − 𝑏3, 𝑎3 − 𝑏2, 𝑎4 − 𝑏1); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 > 

                                 �̃�−1 =   < (
1

𝑎4
,
1

𝑎3
,
1

𝑎2
,
1

𝑎1
); 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > where(�̃� ≠ 0) 

                                λÃ = {
< 𝜆𝑎1, 𝜆𝑎2, 𝜆𝑎3, 𝜆𝑎4; 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > :  𝜆 > 0
< 𝜆𝑎4, 𝜆𝑎3, 𝜆𝑎2, 𝜆𝑎1; 𝛼𝐴, 𝜃𝐴, 𝛽𝐴 > :  𝜆 < 0

 

                                �̃��̃� = {

< (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 >   if (𝑎4 > 0, 𝑏4 > 0) 

< (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 >   if (𝑎4 < 0, 𝑏4 > 0) 

< (𝑎4𝑏4, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1); 𝛼𝐴 ∧ 𝛼𝐴, 𝜃𝐴 ∨ 𝜃𝐴, 𝛽𝐴 ∨ 𝛽𝐴 >   if (𝑎4 < 0, 𝑏4 < 0)

 

                              
�̃�

�̃�
=

{
 
 

 
 < (

𝑎1

𝑏4
,
𝑎2

𝑏3
,
𝑎3

𝑏2
,
𝑎4

𝑏1
); 𝛼�̃� ∧ 𝛼�̃�, 𝜃�̃� ∨ 𝜃�̃�, 𝛽�̃� ∨ 𝛽�̃� >   if (𝑎4 > 0, 𝑏4 > 0) 

< (
𝑎4

𝑏4
,
𝑎3

𝑏3
,
𝑎2

𝑏2
,
𝑎1

𝑏1
); 𝛼�̃� ∧ 𝛼�̃�, 𝜃�̃� ∨ 𝜃�̃�, 𝛽�̃� ∨ 𝛽�̃� >   if (𝑎4 < 0, 𝑏4 > 0) 

< (
𝑎4

𝑏1
,
𝑎3

𝑏2
,
𝑎2

𝑏3
,
𝑎1

𝑏4
); 𝛼�̃� ∧ 𝛼�̃�, 𝜃�̃� ∨ 𝜃�̃�, 𝛽�̃� ∨ 𝛽�̃� >   if (𝑎4 < 0, 𝑏4 < 0)
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Figure 2. Truth, indeterminacy and falsity membership functions of trapezoidal neutrosophic numbers 

2.3 Fuzzy-Neutrosophic Transformation 

              The main goal of this subsection is to explain how to convert fuzzy numbers representation into 

neutrosophic numbers representation. This transformation is used for simplicity and fair comparison 

between them. It is known that there are many rank functions for ordering the fuzzy and neutrosophic 

numbers. We emphasize using the same function for both fuzzy numbers and neutrosophic numbers to 

obtain a fair comparison between them. Here we also explain how to apply this technique. 

             From Figure 1 and Figure 2 we can illustrate the following relations between the two 

representations: 

𝑎1 = 𝑎2 − 𝛼, 𝑎2 = 𝑎
𝐿, 𝑎3 = 𝑎𝑈 and 𝑎4 = 𝑎3 + 𝛽                                                   (1) 

Assuming that the rank function is used for ordering the fuzzy numbers as follows: 

𝑅(�̃�) = 𝑎𝑙 + 𝑎𝑢 +
𝛽−𝛼

2
                                                                                                 (2) 

From relations (1) we express the rank function to be used for ordering the neutrosophic numbers as 

follows: 

𝑅(�̃�) =
1

2
∑ �̃�𝑖
4
𝑖=1 + (𝑇�̃� − 𝐼�̃� − 𝐹�̃�)                                                                              (3) 

From (1), we can convert fuzzy numbers representation into neutrosophic numbers representation. On 

the other hand from (2) and (3), we can use the same function for both fuzzy numbers and neutrosophic 

numbers to obtain a fair comparison between them. 

3. Rank Functions 

              Assuming that 𝑇𝐴 = 1 , 𝐼𝐴 = 0 , �̃�𝐴 = 0 ,then the TrNN  �̃� =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 > will be 

transformed into a trapezoidal fuzzy number �̃� =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > and hence, in this case: 

 The expression 𝑅(�̃�) =
1

2
∑ 𝑎𝑖
4
𝑗=1 + (𝑇�̃� − 𝐼�̃� − 𝐹�̃�)  is equivalent to the expression  

       𝑅(�̃�) =
1

2
∑ 𝑎𝑖
4
𝑗=1 + 1 

Furthermore, it well be known that if 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 then the trapezoidal fuzzy number �̃� =<

𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > will be transformed into a real number A = (a, a, a, a; 1, 0, 0) and hence, in this case: 

 The expression 𝑅(�̃�) =
1

2
∑ 𝑎𝑖
4
𝑗=1 + (𝑇�̃� − 𝐼�̃� − 𝐹�̃�)  is equivalent to the expression       

 𝑅(𝐴) = 2𝑎 + 1 ≠ 𝑎 
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Table 1.The rank function and it corresponding neutrosophic rank function 

No Fuzzy Rank Function 
Corresponding Neutrosophic Rank 

Function 

Rank function of 

constraints 

1 
𝑅(�̃�)

= (𝑎𝑙 + 𝑎𝑢 +
𝛽 − 𝛼

2
) 

𝑅(�̃�) =
1

2
∑𝑎𝑖

4

𝑗=1

+ (𝑇�̃� − 𝐼�̃� − 𝐹�̃�) 
 

𝑅(𝑎) = 2𝑎 + 1 

2 𝑅(�̃�) = (
𝑎𝑙 + 𝑎𝑢

2
) 𝑅(�̃�) = (

𝑎2 + 𝑎3
2

) + (𝑇�̃� − 𝐼�̃� − 𝐹�̃�) 
 

𝑅(𝑎) = 𝑎 + 1 

3 
𝑅(�̃�)

= (
𝑎𝑙 + 𝑎𝑢

2
+
𝛽 − 𝛼

4
) 

𝑅(�̃�) =
1

4
∑𝑎𝑖

4

𝑗=1

+ (𝑇�̃� − 𝐼�̃� − 𝐹�̃�) 
 

𝑅(𝑎) = 𝑎 + 1 

 

4. Algorithms 

           In this section; we first present Singh et al.'s modifications [32] and the proposed modification 

about the mathematical incorrect  assumptions, considered by Abdel-Basset et al. [1] in their proposed 

method to convert from neutrosophic numbers into real numbers. Second, we propose a new Exterior 

point simplex algorithm. Finally, we develop this algorithm in order to solve linear programming 

with neutrosophic numbers. 

4.1. General Framework for Solving Neutrosphic Linear Programming Problems 

 

           The main objective of this section is to remove the confusion among readers regarding the 

contributions of Abdel-Basset et al. and the contributions of Singh et al. In this paper, we present a 

general framework for solving neotrosophic linear programming problems using the advantages of the 

method of Abdel-Basset et al. and the advantages of Singh et al.'s method.  

           In 2019, Abdel-Basset et al. [1] presented a simple and effective model for solving neutrosophic 

linear programming problems supported by a set of numerous examples and a comparison between their 

approaches presented and solving these examples using the fuzzy method. Consequently, Abdel-Basset 

et al were able to prove the effectiveness of his approach in solving neutrosophic linear programming 

problems. On the other hand, Singh et al, 2019 [32] introduced modifications to Abdel-Basset model. 

These modifications summarized in how neutrosophic numbers are converted into real numbers. 

           In order to illustrate the method of each of them in solving neutrosophic linear programming 

problems, we assume the general form of neutrosophic linear programming problems as follows: 

𝑚𝑎𝑥 \  𝑚𝑖𝑛  [�̃� = ∑ 𝑐�̃�𝑥𝑗
𝑛
𝑗=1 ] 

          s. t. 

 ∑ ãijxj  ≤ , ≥ , = b̃j  ,   i = 1,2, …… ,m;
n
j=1   𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

Model (1) illustrates the method of Abdel-Basset et al in converting neutrosophic numbers into deterministic 

numbers (in the objective function) 

𝑚𝑎𝑥 \  𝑚𝑖𝑛  [𝑅(�̃�) = ∑ 𝑅(�̃�𝑗)𝑥𝑗
𝑛
𝑗=1 ] 

While model (2) illustrates the method of Singh et al. in converting neutrosophic numbers into deterministic 

numbers (in the objective function) 

𝑚𝑎𝑥 \  𝑚𝑖𝑛  [𝑅(�̃�) = 𝑅(∑ �̃�𝑗𝑥𝑗
𝑛
𝑗=1 ] 
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   In fact, there is a complete match between the method presented by Abdel-Basset et al and the 

method presented by Singh et al. In the case of converting fuzzy numbers to real numbers because 

𝑅(�̃�1⊕ �̃�2) = 𝑅(�̃�1) + 𝑅(�̃�2) where �̃�1 𝑎𝑛𝑑 �̃�2 are fuzzy numbers.  

             On the other hand, when converting neutrosophic numbers to real numbers, the proposed 

method presented by Singh et al. is more accurate than the method suggested by Abdel-Basset et al. 

mathematically, because 𝑅(�̃�1⊕ �̃�2) ≠ 𝑅(�̃�1) + 𝑅(�̃�2) where �̃�1𝑎𝑛𝑑�̃�2  are neutrosophic numbers.  

 

Lemma 1: Let �̃�1 𝑎𝑛𝑑 �̃�2 are fuzzy numbers then 𝑹(�̃�𝟏⊕ �̃�𝟐) = 𝑹(�̃�𝟏) + 𝑹(�̃�𝟐)   

 

Proof: 

Suppose that �̃�1 = (𝑎1
𝑙 , 𝑎1

𝑢 , ∝1, 𝛽1) and  �̃�2 = (𝑎2
𝑙 , 𝑎2

𝑢 , ∝2, 𝛽2) are two Trapezoidal fuzzy numbers as shown 

in Figure 1, and the used rank function is defined as follows:  𝑅(�̃�) =
𝑎𝐿+𝑎𝑈

2
 + 

𝛽−𝛼

4
 

𝑅(�̃�1⊕ �̃�2)= R ((𝑎1
𝑙 + 𝑎2

𝑙 ), ( 𝑎1
𝑢 + 𝑎2

𝑢), ( ∝1 +∝2), (𝛽1 + 𝛽2)) =  
 𝑎1
𝑙+𝑎2

𝑙+ 𝑎1
𝑢+𝑎2

𝑢

2
 +   

 𝛽1+𝛽2− ∝1−∝2

4
      (4) 

While, 

𝑅(�̃�1) + 𝑅(�̃�2) = 
𝑎1
𝑙 +𝑎1

𝑢

2
 + 

𝛽1 +∝1

4
 + 

𝑎2
𝑙 +𝑎2

𝑢

2
 + 

𝛽2 +∝2

4
   =   

 𝑎1
𝑙+𝑎2

𝑙+ 𝑎1
𝑢+𝑎2

𝑢

2
 +   

 𝛽1+𝛽2− ∝1−∝2

4
                         (5) 

It is obvious from (4) and (5) that𝑅(�̃�1⊕ �̃�2) = 𝑅(�̃�1) + 𝑅(�̃�2)                                   

 

Lemma 2: Let Ã 𝑎𝑛𝑑 B̃ are neutrosophic numbers then 𝑹(�̃� ⊕ �̃�) ≠ 𝑹(�̃�) + 𝑹(�̃�)   

 

Proof: 

Suppose that Ã = (a1, a2, a3, a4, TÃ, IÃ, FÃ) and B̃ = (b1, b2, b3, b4, TB̃, IB̃, FB̃) are two Trapezoidal 

neutrosophic numbers as shown in Fig. 2 and the used rank function is defined as follows:      

R(Ã) =
a1 + a4 + 2 (a2 + a3)

2
 

R(Ã ⊕ B̃) = 𝑅 ((a1 + b1), ( a2 + b2), ( a3 + b3), (a4 + b4); min {TÃ, TB̃}, max {IÃ, IB̃}, max {FÃ, FB̃} 

=  
 a1+b1+ a4+b4+2(a2+b2+a3+b3)

2
 + min {TÃ, TB̃} - max {IÃ, IB̃} - max {FÃ, FB̃})             (6) 

On the other hand, 

R(Ã) + R(B̃)  = 
a1+a4+2 (a2+a3)

2
   +(TÃ − IÃ − FÃ) + 

b1+b4+2 (b2+b3)

2
  + (TB̃ − IB̃ − FB̃)   

=  
 a1+b1+ a4+b4+2(a2+b2+a3+b3)

2
 + min {TÃ, TB̃} - max {IÃ, IB̃} - max {FÃ, FB̃})            (7) 

It is obvious from (6) and (7) that     R(Ã ⊕ B̃) ≠ R(Ã) + R(B̃)                        

Remark 4: 

Other considerations were not discussed by Singh et al. such as:  

1. Abdel-Basset et al. [1] used the rank function for the maximization problems of NLP, and 

used another rank function for the minimization problems, which means that he used the 

two rank functions in his proposed model. 
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2. Abdel-Basset et al [1], compared his proposed model with other models, using different rank 

functions, thus the comparison is unfair. 

Section 2.3 addressed these considerations by finding a relationship between the representation of fuzzy 

numbers and the representation of neutrosophic numbers. 

Now, we can introduce a general framework for solving the linear programming problems using 

neutrosophic numbers as follows: 

Step 1: neutrosophic or uncertain information is generally processed by transforming into an accurate or 

crisp number by using the same ranking function for maximization and minimization problem for both 

fuzzy numbers and neutrosophic numbers to obtain a fair comparison between them using the method 

suggested by Singh et al. [32]. 

All parameters are represented by trapezoidal neutrosophic numbers, except variables are exemplified 

only by real values. 

𝑚𝑎𝑥  \  𝑚𝑖𝑛[∑ = 𝑐�̃�𝑥𝑗
𝑛
𝑗=1 ] 

s. t. 

∑ãijxj  ≤ , ≥ , = b̃j    

n

j=1

 

i = 1,2, …… ,m;  𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛        (8) 

     

The Equation (8) can be transformed into Exact crisp linear programming problem                           

          

𝑀𝑎𝑥 /𝑀𝑖𝑛 [∑𝑅(�̃�𝑗𝑥𝑗)

𝑛

𝑗=1

−∑𝑇𝑐�̃�𝑥𝑗

𝑛

𝑗=1

+∑𝐼𝑐�̃�𝑥𝑗

𝑛

𝑗=1

+∑𝐹𝑐�̃�𝑥𝑗 +

𝑛

𝑗=1

min
1≤𝑗≤𝑛

{𝑇𝑐�̃�𝑥𝑗} −  max1≤𝑗≤𝑛
{𝐼𝑐̃𝑗𝑥𝑗} − max

1≤𝑗≤𝑛
{𝐹𝑐�̃�𝑥𝑗}] 

s. t. 

(∑𝑅(ãij)xj) + 1 ≤ , ≥ , = R(b̃j)  ,   i = 1,2, …… ,m;

n

j=1

 

  xj ≥ 0 , j = 1,2, …… , n.  (2)  

This transformation can happen at the beginning of the decision process, or in the middle or final stage. 

Step 2: Let �̃� = (a1, a2, a3, a4, TÃ, IÃ, FÃ) be a trapezoidal neutrosophic number, where  a1, a2, a3, a4; are 

lower bound, first, second median value and upper bound for trapezoidal neutrosophic number, 

respectively. Also TÃ, IÃ, FÃ are the truth, indeterminacy and falsity degree of trapezoidal neutrosophic 

number. Ranking function for this trapezoidal neutrosophic number is as follows: 

𝑅(�̃�) =
a1+a4+2 (a2+a3)

2
+ Confirmation degree 

Mathematically, this function can be written as follows: 

𝑅(�̃�) =
a1+a4+2 (a2+a3)

2
 + (TÃ − IÃ − FÃ) 
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Step 3: Solve the crisp model using the standard method and obtain the optimal solution of problem 

 

  Table 2.Singh et al.'s modifications. 

no NLPP- (Type) NLPP- (Form) Exact Crisp LPP 

1 

The coefficients of the 

objective function are 

represented by 

trapezoidal 

neutrosophic 

numbers 

𝑚𝑎𝑥\min   z =  [∑ �̃�𝑗𝑥𝑗
𝑛
𝑗=1 ]    

s. t       
  ∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , =

𝑛
𝑗=1

𝑏𝑗   ,       𝑖 = 1,2, …… ,𝑚;  𝑥𝑗 ≥

0 , 𝑗 = 1,2, …… , 𝑛. 

𝑀𝑎𝑥 /𝑀𝑖𝑛 𝑧 = [∑𝑅(�̃�𝑗𝑥𝑗)

𝑛

𝑗=1

−∑𝑇𝑐�̃�𝑥𝑗

𝑛

𝑗=1

+∑𝐼𝑐̃𝑗𝑥𝑗

𝑛

𝑗=1

+∑𝐹𝑐�̃�𝑥𝑗 +

𝑛

𝑗=1

min
1≤𝑗≤𝑛

{𝑇𝑐�̃�𝑥𝑗} −  max1≤𝑗≤𝑛
{𝐼𝑐̃𝑗𝑥𝑗}

− max
1≤𝑗≤𝑛

{𝐹𝑐�̃�𝑥𝑗}] 

𝑠. 𝑡.   ∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , = 𝑏𝑗   ,   𝑖 = 1,2, …… ,𝑚;
𝑛
𝑗=1      𝑥𝑗 ≥ 0 ,

𝑗 = 1,2, …… , 𝑛. 

2 

The coefficients of 

constraints variables 

and right hand side 

are represented by 

trapezoidal 

neutrosophic 

numbers 

 

max\  min  z = [∑ cjxj
n
j=1 ] 

s. t. 
∑ �̃�𝑖𝑗𝑥𝑗  ≤ , ≥ , = �̃�𝑗   ,    𝑖 =
𝑛
𝑗=1

1,2, …… ,𝑚;       𝑥𝑗 ≥ 0 , 𝑗 =

1,2, …… , 𝑛. 

 

Max / min z = ∑ cjxj
n
j=1  

s. 𝑡.     [∑ R(ãijxj)
n
j=1 − ∑ Tãijxj

n
j=1 + ∑ Iãijxj

n
j=1 +

∑ Fãijxj +
n
j=1 min

1≤j≤n
{Tãijxj} − max

1≤j≤n
{Iãijxj} − max1≤j≤n

{Fãijxj}] ≤

,≥,= R(b̃i) 
𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

3 

All parameters are 

represented by 

trapezoidal 

neutrosophic 

numbers, except 

variables are 

exemplified only by 

real values 

𝑚𝑎𝑥  \  min 𝑧 = [∑ �̃�𝑗𝑥𝑗
𝑛
𝑗=1 ] 

s. t. 
∑ ãijxj  ≤ , ≥ , = b̃j  ,   i =
n
j=1

1,2, …… ,m;  𝑥𝑗 ≥ 0 , 𝑗 =

1,2, …… , 𝑛. 

𝑀𝑎𝑥 /𝑀𝑖𝑛 𝑧 = [∑𝑅(�̃�𝑗𝑥𝑗)

𝑛

𝑗=1

−∑𝑇𝑐�̃�𝑥𝑗

𝑛

𝑗=1

+∑𝐼𝑐̃𝑗𝑥𝑗

𝑛

𝑗=1

+∑𝐹𝑐�̃�𝑥𝑗 +

𝑛

𝑗=1

min
1≤𝑗≤𝑛

{𝑇𝑐�̃�𝑥𝑗} −  max1≤𝑗≤𝑛
{𝐼𝑐̃𝑗𝑥𝑗}

− max
1≤𝑗≤𝑛

{𝐹𝑐�̃�𝑥𝑗}] 

s. t. 

(∑𝑅(ãij)xj) + 1 ≤ , ≥ , = R(b̃j)  ,   i = 1,2, …… ,m;

n

j=1

 

xj ≥ 0 , j = 1,2, …… , n. 

4 

The coefficients of 

objective function 

and constraints 

variables are 

represented by real 

numbers and right 

hand side are 

represented by 

trapezoidal 

neutrosophic 

numbers 

 

max\  min z =  [∑ cjxj
n
j=1 ] 

                          s. t.               
        ∑ a𝑖𝑗𝑥𝑗  ≤ , ≥ , =

𝑛
𝑗=1

�̃�𝑗   ,   𝑖 =          1,2, …… ,𝑚;       

         𝑥𝑗 ≥ 0 ,

𝑗 = 1,2, …… , 𝑛. 

 

Max / min ∑ cjxj
n
j=1  

s. 𝑡. 

R [∑(aijxj)

n

j=1

] ≤, ≥,= R(b̃i) 

𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

 

 
Remark 5: If 𝑅(𝑎) = 𝑎 + 1 and the coefficients of the objective function & constraints variables are real, 

then the fuzzy   linear programming problem is equivalent to the neutrosophic linear programming 

problem. 
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 NLPP: neutrosophic linear programming problem. 

4.2 A novel neutrosophic Exterior Point Simplex Algorithm (NEPSA) 

      Badr et al [8] proposed a fuzzy exterior point simplex algorithm (FEPSA) for solving the linear 

programming problems with fuzzy numbers. In this section, we propose a new algorithm which solves 

linear programming with neutrosophic numbers (Neutrosophic exterior point simplex algorithm 

NEPSA). 

Neutrosophic Exterior Point Simplex Algorithm (NEPSA) 

Step0: (Initialization) 

 Transfer fuzzy numbers into neutrosophic numbers (see  section 3) 

 Apply the general framework (see section 4) 

 Start with a feasible basic point and construct the corresponding tableau exterior 

simplex. 

Step1: (Test of termination) 

             Find the set𝐽− = {𝑗: �̃�0𝑗 <
𝑅
0̃}. If  𝐽− = 𝛷, STOP. The problem is optimal. 

            Otherwise, calculate �̃�00 = ∑ �̃�𝑖𝑗𝑗∈𝐽−
 and  𝑎𝑖0 =∑ 𝑎𝑖𝑗𝑗∈𝐽−

 where i = 1, 2, . . ., m 

Step2: (Choice of entering variable) 

            Find the set  𝐼+ = {𝑖: 𝑎𝑖0 > 0}. If𝐼+ = 𝛷, STOP. The problem is unbounded. 

            Otherwise, determine the index of  entering variable r from the relation : 

𝑏𝑟
𝑎𝑟0

= 𝑚𝑖𝑛 {
𝑏𝑗

𝑎𝑟0
: 𝑖 ∈ 𝐼+} 

Step3: (Choice of leaving variable) 

            Put 𝐽+ = {𝑗: �̃�0𝑗 > 0̃} and calculate  

𝜃1 =
− �̃�0𝑘
𝑎𝑟𝑘

= 𝑚𝑖𝑛 {
− �̃�0𝑗
𝑎𝑟𝑗

: 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} 

𝜃2 =
− �̃�0𝑙
𝑎𝑟𝑙

= 𝑚𝑖𝑛 {
− �̃�0𝑗
𝑎𝑟𝑗

: 𝑗 ∈ 𝐽+, 𝑎𝑟𝑗 < 0} 

   Find the index of the leaving variable s, if 𝜃1 ≤ 𝜃2 put s = k otherwise s = l. 

Step4: (Pivoting) 

            Form the next tableau by the pivoting variable ars and go to Step1 

 

 
5. Numerical Examples and Results Analysis 

               In this section, two benchmark examples (P1 and P2) are proposed to compare between the 

proposed algorithm NEPSA and its fuzzy version FEPSA. 
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Table 3. Special fuzzy linear programming from different references 

Problem 

No. 
Problem object function and constrained Reference 

P1 

𝑀𝑎𝑥 �̃� = (2,4,2,6)𝑥1 + (2,6,1,3)𝑥2 + (1,3,1,3)𝑥3 
s. t 
𝑥1 + 𝑥2 + 2𝑥3 ≤ 2 
2𝑥1 + 3𝑥2 + 4𝑥3 ≤ 3 
6𝑥1 + 6𝑥2 + 2𝑥3 ≤ 8 

                         𝑥1, 𝑥2, 𝑥3 ≥ 0 

[8] 

P2 

𝑀𝑎𝑥 �̃� = (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 
s. t. 

12𝑥1 + 13𝑥2 + 12𝑥3 ≤ (475,505,6,6) 
14𝑥1 +                13𝑥3 ≤ (460,480,8,8) 
 12𝑥1 + 15𝑥2 ≤ (465,495,5,5) 

𝑥1, 𝑥2, 𝑥3 ≥ 0 

 

[21] 

 

5.1 Example 1 (P1) [8] : 

 

Consider the following linear programming problem 
𝑀𝑎𝑥 �̃� = (2,4,2,6)𝑥1 + (2,6,1,3)𝑥2 + (1,3,1,3)𝑥3 
s. t 
          𝑥1 + 𝑥2 + 2𝑥3 ≤ 2 
          2𝑥1 + 3𝑥2 + 4𝑥3 ≤ 3 
         6𝑥1 + 6𝑥2 + 2𝑥3 ≤ 8 
                  𝑥1, 𝑥2, 𝑥3 ≥ 0 

First: We will convert the fuzzy numbers into neutrosophic numbers  

Then, using the following rank function: 

𝑅(�̌�) =
1

2
∑�̃�𝑖

4

𝑖=1

+ (𝑇�̃� − 𝐼�̃� − 𝐹�̃�) 

𝑅(𝑎) = 2𝑎 + 1 
𝑀𝑎𝑥 𝑧 = 𝑅[(0,2,4,10)]𝑥1 + 𝑅[(1,2,6,9)]𝑥2 + 𝑅[(0,1,3,6)]𝑥3 
s. t. 
        𝑥1 + 𝑥2 + 2𝑥3 ≤ 2 
        2𝑥1 + 3𝑥2 + 4𝑥3 ≤ 3 
        6𝑥1 + 6𝑥2 + 2𝑥3 ≤ 8 
              𝑥1, 𝑥2, 𝑥3 ≥ 0 

Putting the last formula into the standard form, we have: 

 
𝑀𝑎𝑥 𝑧 = 9𝑥1 + 10𝑥2 + 6𝑥3 
s. t. 
        𝑥1 + 𝑥2 + 2𝑥3 + 𝑥4 = 2 
        2𝑥1 + 3𝑥2 + 4𝑥3 + 𝑥5 = 3 
        6𝑥1 + 6𝑥2 + 2𝑥3 + 𝑥6 = 8 
          𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0 

 

 



Neutrosophic Sets and Systems, Vol. 45, 2021  331  

 

 
 

M Abdel-Basset, E. Badr, Sh. Nada, S. Ali, A. Elrokh. Solving Neutrosophic linear Programming Problems Using Exterior Point 

Simplex Algorithm 

 

Step (0): we construct the initial tableau of exterior simplex:  

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −9 −10 −6 0 0 0 2 

𝒙𝟒 4 1 1 2 1 0 0 2 

𝒙𝟓 9 2 3 4 0 1 0 3 
𝒙𝟔 14 6 6 2 0 0 1 8 

 

Step (1): J- = {j: a0j  <   0} = {1, 2, 3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1, 2, 3}   the problem is not unbounded  
𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

, 
𝑏2
𝑎20

 ,  
𝑏3
𝑎30

}   = 𝑚𝑖𝑛  {
2

4
,
3

9
,
8

14
}   =

3

9
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥5 

Step (3): J+ = {j: a0j 
R
  0} =   

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎0𝑙

𝑎21
,
−𝑎02

𝑎22
,
−𝑎03

𝑎23
} = 𝑚𝑖𝑛  {

9

2
,
10

3
,
6

4
 } =

6

4
 ⇒ 𝑘 = 3  

Then, the entering variable is 𝑥3 

𝜃2 =
𝑅

−𝑎0𝑙

𝑎𝑟𝑙
=
𝑅
𝑚𝑖𝑛 {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗 ∈  𝐽+ , 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛{𝛷} = ∞ ⇒ 𝜃1 < 𝜃2 ⇒ s = k = 3 , the pivot element is a23  

Step (4): the next tableau by pivot element:  

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −6 −11

2
 

0 0 3

2
 

0 13

2
 

𝒙𝟒 −1

2
 

0 −1

2
 

0 1 −1

2
 

0 1

2
 

𝒙𝟑 5

4
 

1

2
 

3

4
 

1 0 1

4
 

0 3

4
 

𝒙𝟔 19

2
 

5 9

2
 

0 0 −1

2
 

1 13

2
 

Step (1): J- = {j: a0j  <   0} = {1, 2}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {2, 3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏2
𝑎20

 ,  
𝑏3
𝑎30

}   = 𝑚𝑖𝑛  {
3

5
,
13

19
}   =

3

5
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥3 

Step (3): J+ = {j: a0j 
R
  0} = {5} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎01

𝑎21
,
−𝑎02

𝑎22
}   =  𝑚𝑖𝑛  {12,

22

3
} =

22

3
 ⇒ 𝑘 = 2  

Then, the entering variable is 𝑥2 

𝜃2  =
𝑅

 
−𝑎0𝑙

𝑎𝑟𝑙
  =
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0}   ⇒  𝜃2  = 𝑚𝑖𝑛 {𝛷}  =  ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 2 , the pivot element 

is a22  
Step (4): the next tableau by pivot element:  
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  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −7

3
 

0 22

3
 

0 10

3
 

0 12 

𝒙𝟒 1

3
 

1

3
 

0 2

3
 

1 −1

3
 

0 1 

𝒙𝟐 2

3
 

2

3
 

1 4

3
 

0 1

3
 

0 1 

𝒙𝟔 2 2 0 −6 0 −2 1 2 

Step (1): J- = {j: a0j  <   0} = {1}  ∅ the algorithm does not stop. 

Step (2): I+ = {i: ai0 > 0} = {1,2, 3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

,
𝑏2
𝑎20

 ,  
𝑏3
𝑎30

}   = 𝑚𝑖𝑛  {3,
3

2
, 1}   = 1  ⇒  𝑟 = 3 

 

Then, the leaving variable is 𝑥6 

Step (3): J+ = {j: a0j 
R
  0} = {3,5} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎01

𝑎31
} =   𝑚𝑖𝑛  {

7

6
}  ⇒ 𝑘 = 1  

Then, the entering variable is 𝑥1 

𝜃2  =
𝑅

 
−𝑎0𝑙

𝑎𝑟𝑙
  =
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0}   ⇒  𝜃2  = 𝑚𝑖𝑛 {𝛷}  =  ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 1 , the pivot element 

is a31  

Step (4): the next tableau by pivot element:  

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  0 0 1

3
 

0 1 7

6
 

43

3
 

𝒙𝟒  0 0 5

3
 

1 0 −1

6
 

2

3
 

𝒙𝟐  0 1 10

3
 

0 1 −1

3
 

1

3
 

𝒙𝟏  1 0 −3 0 −1 1

2
 

1 

Step (1): J- : {𝑗: 𝑎0𝑗    <
𝑅
0 }    =   𝛷  ,  the algorithm stops . 

The solution is: 𝑧 =
43

3
 , 𝑥1 = 1, 𝑥2 =

1

3
, 𝑥3 = 0 

 
Table 4. A comparison between fuzzy EPSA &  Neutrosophic EPSA 

 FEPSA[7] NEPSA 

𝑰𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒏𝒐. 3 3 
𝒁 11 14.33 
𝒙𝟏 1 1 
𝒙𝟐 1

3
 

1

3
 

𝒙𝟑 0 0 

In Table 4, we make a comparison between FEPSA and NEPSA. It is clear that the neutrosophic approach 

NEPSA is more accurate than the fuzzy approach FEPSA according to the value of objective function. The 
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value of objective function of NEPSA is 14.33 while FEPSA has 11 where the type of this problem is 

maximization. From Table 4, we deduce that NEPSA is more accurate than FEPSA. 

5.1 Case study (𝑷𝟐) [21]: 
      A company produces three products P1, P2 and P3. These products are processed on three different machines 

M1, M2 and M3. The time required to manufacture one unit of each product and the daily capacity of the machines 

are given below: 

                    Time per unit(minutes)  

Machines 𝒑𝟏 𝒑𝟐 𝒑𝟑 Machine Capacity (min/day) 

M1 

M2 

M3 

12 

14 

12 

13 

- 

15 

12 

13 

- 

490 

470 

480 

           Note that the time availability can vary from day to day due to break down of machines, overtime 

work etc. Finally the profit for each product can also vary due to variations in price. At the same time the 

company wants to keep the profit somewhat close to 14 for P1, 13 for P2 and 16 for P3. The company 

wants to determine the range of each product to be produced per day to maximize its profit. It is assumed 

that all the amounts produced are consumed in the market. 

          Since the profit from each product and the time availability on each machine are uncertain, the 

number of units to be produced on each product will also be uncertain. So we will model the problem as 

a fuzzy linear programming problem. We use symmetric trapezoidal fuzzy numbers for each uncertain 

value. Profit for P1 which is close to 14 is modelled as [13, 15, 2, 2]. Similarly the other parameters are also 

modelled as symmetric trapezoidal fuzzy numbers taking into account the nature of the problem and 

other requirements. So we formulate the given fuzzy linear programming problem as: 

𝑀𝑎𝑥 �̃� = (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 
𝑠. 𝑡. 

12𝑥1 + 13𝑥2 + 12𝑥3 ≤ (475,505,6,6) 
14𝑥1 +                13𝑥3 ≤ (460,480,8,8) 

                                                       12𝑥1 + 15𝑥2 ≤ (465,495,5,5) 
                                                                   𝑥1, 𝑥2, 𝑥3 ≥ 0 

5.1.1 Solving case study using fuzzy exterior point simplex method 

 
Putting the formula into the standard form, we have: 
𝑀𝑎𝑥 �̃� = (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 
s. t. 

                              12𝑥1 + 13𝑥2 + 12𝑥3 + 𝑥4 = (475,505,6,6) 
                14𝑥1 + 13𝑥3 + 𝑥5 = (460,480,8,8) 

                              12𝑥1 + 15𝑥2 + 𝑥6 = (465,495,5,5) 
                          𝑥1, 𝑥2, 𝑥3 ≥ 0 

Step (0): we construct the initial tableau of fuzzy exterior simplex:  

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −(13,15,2,2) −(12,14,3,3) −(15,17,2,2) 0̃ 0̃ 0̃ 0̃ 

𝒙𝟒 37 12 13 12 1 0 0 (475,505,6,6) 

𝒙𝟓 27 14 0 13 0 1 0 (460,480,8,8) 
𝒙𝟔 27 12 15 0 0 0 1 (465,495,5,5) 

Step (1):  J- = {j: a0j  }0
R
  = {1, 2,3}  ∅ the algorithm does not stop.  
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Step (2):  I+ = {i: ai0 > 0} = {1, 2,3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
= 𝑚𝑖𝑛 {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+} = 𝑚𝑖𝑛 {
𝑏1
𝑎10

, 
𝑏2
𝑎20

,
𝑏3
𝑎30

 } = 𝑚𝑖𝑛  {
𝑅(475,505,6,6)

37
,
𝑅(460,480,8,8)

27
,
𝑅(465,495,5,5)

27
}  

=
490

37
  ⇒  𝑟 = 1 

Then, the leaving variable is 𝑥4 

Step (3): J+ = {j: a0j 
R
  0} =   

𝜃1 =
−𝑎0𝑘

𝑎𝑟𝑘
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
= 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} = 𝑚𝑖𝑛 {

−𝑎0𝑙

𝑎11
,
−𝑎02

𝑎12
,
−𝑎03

𝑎13
} = 𝑚𝑖𝑛 {

𝑅(13,15,2,2)

12
,
𝑅(12,14,3,3)

13
,
𝑅(15,17,2,2)

12
} =

13

13
= 1 ⇒ 𝑘 = 2  

Then, the entering variable is 𝑥2 

𝜃2 =
−𝑎0𝑙

𝑎𝑟𝑙
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗 ∈ 𝐽+, 𝑎𝑟𝑗 < 0} ⇒  𝜃2 = 𝑚𝑖𝑛 {𝛷} =  ∞ ⇒ 𝜃1 < 𝜃2 ⇒ s = k = 2 , the pivot element is a12  

Step (4): the next tableau by pivot element: 

 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  
(
−25

13
,
−27

13
,
10

13
,
10

13
) 
0 

(
−51

13
,
−53

13
,
10

13
,
10

13
) (

12

13
,
14

13
,
3

13
,
3

13
) 

0̃ 0̃ (475,505,6,6) 

𝒙𝟐 24

13
 

12

13
 

1 12

13
 

1

13
 

0 0 
(
475

13
,
505

13
,
6

13
,
6

13
) 

𝒙𝟓 27 14 0 13 0 1 0 (460,480,8,8) 

𝒙𝟔 −204

13
 

−24

13
 

0 −180

13
 

15

13
 

0 1 
(
−1080

13
,
−1140

13
,
−25

13
,
−25

13
) 

Step (1): J- = {j: a0j  }0
R
  = {1,3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1,2}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
= 𝑚𝑖𝑛 {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+} = 𝑚𝑖𝑛 {
𝑏1
𝑎10

, 
𝑏2
𝑎20

} = 𝑚𝑖𝑛 {
𝑅(
475
13

,
505
13

,
6
13
,
6
13
)

24
13

,
𝑅(460,480,8,8)

27
}

= 𝑚𝑖𝑛 {
245

12
,
470

27
}=
470

27
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥5 

Step (3):  J+ = {j: a0j 
R
  0} = {4,5} 

𝜃1 =
−𝑎0𝑘

𝑎𝑟𝑘
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
= 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} = 𝑚𝑖𝑛 {

−𝑎03

𝑎23
} = 𝑚𝑖𝑛 {

𝑅(
389

182
,
391

182
,
−5

91
,
−5

91
)

13

14

} =
30

13
⇒ 𝑘 = 3  

Then, the entering variable is 𝑥3 

𝜃2 =
−𝑎0𝑙

𝑎𝑟𝑙
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {𝛷} = ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 3 , the pivot element is a23  
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Step (4): the next tableau by pivot element: 

 
 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛 
(
389

169
,
391

169
,
−10

169
,
−10

169
) 
0 0 

(
12

13
,
14

13
,
3

13
,
3

13
) (

51

169
,
53

169
,
−10

169
,
−10

169
) 
0̃ 

(
8015

13
,
8485

13
,
110

13
,
110

13
) 

𝒙𝟐 −12

169
 

1 0 1

14
 

−12

169
 

0 
(
655

169
,
805

169
,
−18

169
,
−18

169
) 

𝒙𝟑 14

13
 

0 1 0 1

13
 

0 
(
460

13
,
480

13
,
8

13
,
8

13
) 

𝒙𝟔 2208

169
 

0 0 −15

13
 

180

169
 

1 
(
481320

1183
,
501060

1183
,
1115

169
,
1115

169
) 

 

The solution is: 𝑧 = 634.6 , 𝑥1 = 0, 𝑥2 =
731

169
, 𝑥3 =

471

13
 

 

5.1.2 Solving case study using neutrosophic exterior point simplex method 

First: We will convert the fuzzy numbers into neutrosophic numbers  

Then, using the following rank function: 

𝑅(�̌�) =
𝑎2 + 𝑎3
2

+ (𝑇�̃� − 𝐼�̃� − 𝐹�̃�) 

𝑅(𝑎) = 𝑎 + 1 
𝑀𝑎𝑥 �̃� = 𝑅[(13,15,2,2)]𝑥1 + 𝑅[(12,14,3,3)]𝑥2 + 𝑅[(15,17,2,2)]𝑥3 
s. t. 

12𝑥1 + 13𝑥2 + 12𝑥3 ≤ 𝑅[(475,505,6,6)] 
14𝑥1 +                13𝑥3 ≤ 𝑅[(460,480,8,8)] 

12𝑥1 + 15𝑥2 ≤ 𝑅[(465,495,5,5)] 
𝑥1, 𝑥2, 𝑥3 ≥ 0 

Putting the last formula into the standard form, we have: 
𝑀𝑎𝑥 𝑧 = 15𝑥1 + 14𝑥2 + 17𝑥3 − 2 
s. t. 

          12𝑥1 + 13𝑥2 + 12𝑥3 + 𝑥4 = 491 
         14𝑥1 + 13𝑥3 + 𝑥5 = 471 
         12𝑥1 + 15𝑥2 + 𝑥6 = 481 
            𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

Step (0): we construct the initial tableau of exterior simplex:  

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −15 −14 −17 0 0 0 2 

𝒙𝟒 37 12 13 12 1 0 0 491 

𝒙𝟓 27 14 0 13 0 1 0 471 
𝒙𝟔 27 12 15 0 0 0 1 481 

Step (1): J- = {j: a0j  <   0} = {1, 2,3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1, 2,3}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  = 𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   = 𝑚𝑖𝑛  {
𝑏1
𝑎10

, 
𝑏2
𝑎20

,
𝑏3
𝑎30

 } = 𝑚𝑖𝑛  {
491

37
,
471

27
,
481

27
}   =

491

37
  ⇒  𝑟 = 1 

Then, the leaving variable is 𝑥4 

Step (3): J+ = {j: a0j 
R
  0} =   

𝜃1 =
−𝑎0𝑘

𝑎𝑟𝑘
= 𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
= 𝑗 ∈ 𝐽−, 𝑎𝑟𝑗 > 0} = 𝑚𝑖𝑛 {

−𝑎0𝑙

𝑎11
,
−𝑎02

𝑎12
,
−𝑎03

𝑎13
} = 𝑚𝑖𝑛 {

15

12
,
14

13
,
17

12
} =

14

13
 ⇒ 𝑘 = 2  
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Then, the entering variable is 𝑥2 

𝜃2 =
−𝑎0𝑙

𝑎𝑟𝑙
= 𝑚𝑖  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {𝛷}  = ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 2 , the pivot element is a12  

Step (4): the next tableau by pivot element:  

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  −27

13
 
0 −53

13
 

14

13
 

0 0 6900

13
 

𝒙𝟐 24

13
 

12

13
 

1 12

13
 

1

13
 

0 0 491

13
 

𝒙𝟓 27 14 0 13 0 1 0 471 
𝒙𝟔 −204

13
 
−24

13
 
0 −180

13
 
−15

13
 
0 1 −1112

13
 

Step (1): J- = {j: a0j  <   0} = {1,3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1,2}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

 ,  
𝑏2
𝑎20

}   = 𝑚𝑖𝑛  {
491

24
,
471

27
}   =

471

27
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥5 

Step (3): J+ = {j: a0j 
R
  0} = {4} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎01

𝑎21
,
−𝑎03

𝑎23
}   =  𝑚𝑖𝑛  {

27

182
,
53

169
} =

27

182
 ⇒ 𝑘 = 1  

Then, the entering variable is 𝑥2 

𝜃2 =
𝑅

 
−𝑎0𝑙

𝑎𝑟𝑙
  =
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {∅} = ∞ ⇒ 𝜃1 < 𝜃2 ⇒ s = k = 1 , the pivot element is a21  

Step (4): the next tableau by pivot element: 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  0 0 −391

182
 

14

13
 

27

182
 
0 8409

14
 

𝒙𝟐 6

91
 

0 1 6

91
 

1

13
 

−6

91
 

0 47

7
 

𝒙𝟏 13

14
 

1 0 13

14
 

0 1

14
 

0 471

14
 

𝒙𝟔 −1104

91
 
0 0 −1104

91
 
−15

13
 
12

91
 

1 −164

7
 

Step (1): J- = {j: a0j  <   0} = {3}  ∅ the algorithm does not stop.  

Step (2): I+ = {i: ai0 > 0} = {1,2}   the problem is not unbounded  

𝑏𝑟

𝑎𝑟0
  =  𝑚𝑖𝑛  {

𝑏𝑖
𝑎𝑖0

, 𝑖  ∈  𝐼+}   =  𝑚𝑖𝑛  {
𝑏1
𝑎10

 ,  
𝑏2
𝑎20

}   = 𝑚𝑖𝑛  {
611

6
,
471

13
}   =

471

13
  ⇒  𝑟 = 2 

Then, the leaving variable is 𝑥1 

Step (3): J+ = {j: a0j 
R
  0} = {4,5} 

𝜃1  =   
−𝑎0𝑘

𝑎𝑟𝑘
   = 𝑚𝑖𝑛   {

−𝑎0𝑗

𝑎𝑟𝑗
   = 𝑗  ∈  𝐽−, 𝑎𝑟𝑗 > 0}   =   𝑚𝑖𝑛  {

−𝑎03

𝑎23
}   =  𝑚𝑖𝑛  {

391

169
} = 2.3 ⇒ 𝑘 = 3  

Then, the entering variable is 𝑥3 

𝜃2 =
𝑅

−𝑎0𝑙

𝑎𝑟𝑙
=
𝑅
𝑚𝑖𝑛  {

−𝑎0𝑗

𝑎𝑟𝑗
: 𝑗  ∈  𝐽+, 𝑎𝑟𝑗 < 0} ⇒ 𝜃2 = 𝑚𝑖𝑛 {∅}  = ∞ ⇒ 𝜃1 < 𝜃2  ⇒ s = k = 3 , the pivot element is a23  
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Step (4): the next tableau by pivot element: 

  𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝑹.𝑯. 𝑺 

𝒛  391

169
 

0 0 14

13
 

53

169
 

0 114663

169
 

𝒙𝟐  −12

169
 

1 0 1

13
 

−12

169
 
0 731

169
 

𝒙𝟑  14

13
 

0 1 0 1

13
 

0 471

13
 

𝒙𝟔  2208

169
 
0 0 −15

13
 
180

169
 

1 70324

169
 

Step (1): J- : {𝑗: 𝑎0𝑗    <
𝑅
0 }    =   𝛷  ,  the algorithm stops . 

The solution is: 𝑧 = 678.4 , 𝑥1 = 0, 𝑥2 =
731

169
, 𝑥3 =

471

13
 

Table 5. A comparison between Fuzzy EPSA & Neutrosophic EPSA 

 FEPSA NEPSA 

𝑰𝒕𝒆𝒓. 𝒏𝒐. 3 3 

𝐙 634.6 678.4 

𝐱𝟏 0 0 

𝐱𝟐 730

169
 

731

169
 

𝐱𝟑 470

13
 

471

13
 

 

In Table 5, we make a comparison between FEPSA and NEPSA. It is clear that the neutrosophic approach 

NEPSA is more accurate than the fuzzy approach FEPSA according to the value of objective function. The 

value of objective function of NEPSA is 678.4 while FEPSA has 634.6 where the type of this problem is 

maximization. From Table 5, we deduce that NEPSA is more accurate than FEPSA. 

6. Conclusion 

Three contributions were proposed. First contribution was proposing a good evaluation between the 

fuzzy and neutrosophic approaches using a novel fuzzy-neutrosophic transfer. Second contribution was 

introducing a general framework for solving the neutrosphic linear programming problems using the 

advantages of the method of Abdel-Basset et al. and the advantages of Singh et al.'s method. Third 

contribution was proposing a new neutrosophic exterior point simplex algorithm NEPSA and its fuzzy 

version FEPSA. NEPSA has two paths to get optimal solutions. One path consists of basic not feasible 

solutions but the other path is feasible. Finally, the numerical examples and results analysis showed that 

NEPSA more than accurate FEPSA. 
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Abstract. Uninorm generalizes the notion of t-norm and t-conorm in fuzzy logic theory. They are three increasing, 

commutative and associate operators having one neutral element. However, such specific value identifies the kind 
of operator it is; t-norms have the 1 as neutral element, t-conorms have the 0 and uninorms have every number lying 

between 0 and 1. Uninorms have been applied as aggregators in many fields of Artificial Intelligence and Decision 
Making. This theory has also been extended to the framework of interval-valued fuzzy sets, intuitionistic fuzzy sets, 

interval-valued intuitionistic fuzzy sets and L-fuzzy sets. This paper aims to explore neutrosophic uninorms. We 

demonstrate that it is possible to define uninorms operators from neutrosophic logic. Additionally, we define neu-
trosophic implicators induced by neutrosophic uninorms. The combination of both, Neutrosophy and uninorms, 

enriches the applicability of uninorms operators due to the possibility of incorporating indeterminancy as part of the 
Neutrosophy contribution. 

Keywords: neutrosophic uninorm, uninorm, neutrosophic logic, neutrosophic implicator.

1 Introduction 

Uninorms generalize the concepts of t-norm and t-conorm in fuzzy set theory, see [17]. Uninorm operators 

fulfill commutativity, associativity, increasing monotonicity and the existence of a neutral element e, in the same 

way that t-norm and t-conorm do, see [21]. When e is 1, the uninorm is a t-norm, when e is 0, it is a t-conorm. The 
generalization consists in widening to [0, 1] the range of values where the neutral element can lie. 

Uninorms are not only used to extend theoretically the other aforementioned fuzzy operators, furthermore we 
can find in literature many fields where they are applied as aggregators, for example, in expert systems, image 

processing, neural networks, classifiers, among others, see [4, 10, 13, 16, 19, 22, 27]. Moreover, there exists a 

fuzzy implicator theory based on uninorms, [7]. 
G. Deschrijver and E. Kerre in [15], extend fuzzy uninorms concepts to interval-valued fuzzy sets, intuitionistic 

fuzzy sets, interval-valued intuitionistic fuzzy sets and L-fuzzy sets, see [5-6, 14, 18]. They proved in [14], that 
these four kind of fuzzy sets are isomorphic each another, therefore, it is sufficient to prove uninorm properties in 

the framework of the L*-fuzzy set theory. 
On the other hand, “Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of 

neutralities, as well as their interactions with different ideational spectra”, [23-24, 26]. The novelty of this theory 

is that it includes for the first time the notion of indeterminacy in fuzzy set theory, that is to say, this approach 
admits the membership and non membership of elements or objects to a set, akin to intuitionistic fuzzy set theory 

does, as well as a third function which represents indeterminacy. This theory acknowledges that ignorance, con-
tradiction, paradox and other knowledge representation conditions, which are often considered undesirable from 

the classic logic viewpoint, also should be taken into account. 

Neutrosophy has been applied in wide-ranging kinds of areas, e.g., image processing, decision making, clus-
tering, among others. This is due to the nature of this theory, which allows representing and calculating with 

indeterminacies. 
This paper is devoted to introducing neutrosophic uninorms or N-uninorms, for generalizing uninorm operators 

to the neutrosopic framework. It is worthily to remark that N-uninorms are used to denote neutrosophic uninorms, 
not n-uninorms, see [2]. To our knowledge, this seems to be the first approach to neutrosophic uninorms. In neu-

trosophic logic, neutrosophic norms generalize t-norms and neutrosophic conorms generalize t-conorms, hence, 

N-uninorms extend fuzzy uninorms, uninorms on L*-fuzzy sets, n-norms and n-conorms. 
N-uninorms could replace fuzzy uninorms in the mathematical models where usually the latter one are 
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employed, because this new approach keeps the advantages of uninorms as an esteemed aggregator, which is here 
improved with the appropriateness of neutrosophy to deal with human reasoning, knowledge representation, 

vagueness and uncertainty, when indeterminacy is present.  

The present paper is organized as follows; the preliminary definitions and results necessaries to develop our 
work will be given in Section 2. Section 3 is dedicated to exposing the N-uninorm theory, including N-uninorm 

implicators. Finally, Section 4 draws the conclusions. 

2 Preliminaries 

This section is devoted to exposing the preliminary definitions and results necessaries to develop the proposed 
theory of N-uninorms. The first subsection is dedicated to summarizing the basic definitions and results on 

uninorms. In the second one we recall the definition and aspects concerning neutrosophic logic theory. 

2.1 Basic notions of uninorm theory 

Definition 2.1. A uninorm is a commutative, associative and increasing mapping U: [0, 1]2 → [0, 1], where 

there exists 𝑒 ∈ [0, 1], called neutral element, such that ∀x ∈ [0, 1], U(𝑒, x) = x, [17]. 
If e = 1, U is a t-norm and if e = 0, U is a t-conorm. 

Deschrijver and Kerre in [15] extend this definition to the framework of interval-valued fuzzy sets, intuition-

istic fuzzy sets, interval-valued intuitionistic fuzzy sets and L-fuzzy sets, which are pairwise isomorphics, there-

fore they restrict their theory to the set L∗ = {(x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}. 

Let us recall two well-known algebraic definitions that we explicitly write for the sake of being self-contained. 
They are namely, Partially Ordered Set or poset and Lattice, [1, 9, 20]. 

Definition 2.2. A Partially Ordered Set or poset is a pair (P, ), where P is a set and  is a binary relation over 

P, which satisfies for every x, y, z  P, the three following conditions: 
1. xx (Reflexive). 

2. If  xy and yx, then x = y (Antisymmetry). 
3. If xy and yz, then xz (Transitivity). 

An upper bound of X, XP, is an element aP, such that xX it holds xa. Equivalently, a lower bound is 

an element bP, such that xX, bx. The supremum of X is the least upper bound and the infimum is the greater 
lower bound. 

Definition 2.3. A lattice (L, L) is a poset, where every pair of elements x and y in L have an infimum or 
‘meet’, denoted by xy and a supremum or ‘join’ denoted by xy. 

L is a complete lattice if every of its subsets has an infimum and a supremum in L. 

The lattice (L∗, ≤L∗) is defined by the following poset: 

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1  and x2 ≥ y2  , ∀(x1, x2), (y1, y2) ∈ L∗. The units of L∗are 0L∗ = (0, 1) and 

1L∗ = (1, 0). See that x =  (x1, x2) and y = (y1, y2) can be incomparable with regard to ≤L∗, where either x1 <
y1  and x2 < y2  , or x1 > y1  and x2 > y2  . It is denoted by x ∥L∗ y. 

Evidently, (x1, x2) ≥L∗ (y1, y2) if and only if (y1, y2) ≤L∗ (x1, x2). If (x1, x2) ≤L∗ (y1, y2) and 

(x1, x2) ≥L∗ (y1, y2) then (x1, x2) =L∗ (y1, y2). 

Formally, the uninorm on L* is defined as follows: 

Definition 2.4. A uninorm on L* is a commutative, associative and increasing mapping 𝐔: L∗2 → L∗, where 

there exists 𝑒 ∈ L∗, called neutral element, such that ∀x ∈ L∗, 𝐔(𝑒, x) = x, [15]. 

Here, if 𝑒 =  1L∗, U defines a t-norm on L∗and if 𝑒 =  0L∗, it is a t-conorm on L∗. Nevertheless, the most in-

teresting cases of uninorms are those where e satisfies 0L∗ <L∗ 𝑒 <L∗ 1L∗. 

In [15] we can find properties and their demonstrations concerning uninorms on L* that generalize the proper-

ties of fuzzy uninorms, including those of the uninorm-based R-implicators and S-implicators. Further, we shall 
guide the exposition of N-uninorms theory through the theory developed in that paper. Our goal is to prove that 

N-uninorms extend uninorms on L*. 

2.2 Basic notions of neutrosophic logic 

Definition 2.5. Given X, a universe of discourse containing elements or objects. A is a neutrosophic set ([25-

26]) if it has the form: A =  {(x: TA(x), IA(x), FA(x)), x ∈ X}, where TA(x), IA(x), FA(x) ⊆] 0− , 1+[, i.e., they are 

three functions over either the standard or nonstandard subsets of ] 0− , 1+[. TA(x) represents the degree of mem-

bership of x to A, IA(x) represents its degree of indeterminacy and FA(x) its degree of non-membership. They do 

not satisfy any restriction, i.e., ∀x ∈ X, 0− ≤ inf TA(x) + inf IA(x) + inf FA(x) ≤ sup TA(x) + sup IA(x) +
sup FA(x) ≤ 3+. 
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Another particular definition is that of Single-valued Neutrosophic set, which is formally defined as follows: 

Definition 2.6. Given X, a universe of discourse which contains elements or objects. A is a single-valued 

neutrosophic set (SVNS) [25] if it has the form: A =  {(x: TA(x), IA(x), FA(x)), x ∈ X}, where 

TA(x), IA(x), FA(x) ∈ [0, 1]. TA(x) represents the degree of membership of x to A, IA(x) represents its degree of 

indeterminacy and FA(x) its degree of non-membership. ∀x ∈ X, 0 ≤ TA(x) +  IA(x) +  FA(x) ≤ 3. 

See that SVNS is derived from the definition of neutrosophic sets. In the present paper we prefer to use the 
former one. 

In neutrosophic set theory a lattice can be defined as follows:  

Given the universe of discourse X and x(Tx, Ix, Fx), y(Ty, Iy, Fy) two SVNS, we say that x≤Ny if and only if 

Tx ≤ Ty, Ix ≥ Iy and Fx ≥ Fy, (X, ≤N) is a poset. Whereas, (L, ˄, ˅) is a lattice, because it is a triple direct prod-

uct of lattices, see [9]. x ∧ y = (min{Tx, Ty} , max{Ix, Iy} , max{Fx, Fy}) and x ∨ y = (max{Tx, Ty} ,

min{Ix, Iy} , min{Fx, Fy}). Moreover, it is easy to prove that it is complete. 

Let us remark that this definition is valid for interval-valued neutrosophic sets, when we substitute their oper-

ators by interval-valued operators. 

See also that there exist two special elements, viz., ON = (0, 1, 1) and 1N = (1, 0, 0), which are the infimum 
and the supremum respectively, of every SVNS with regard to ≤N. 

Given two neutrosophic sets, A and B, three basic operations over them are the following [25]: 

1. A ∩ B = A ∧ B (Conjunction). 

2. A ∪ B = A ∨ B (Disjunction). 

3. A̅ = (FA, 1 − IA, TA) (Complement). 

Definition 2.7. A neutrosophic norm or n-norm Nn [25], is a mapping Nn: (] 0− , 1+[×] 0− , 1+[×

] 0− , 1+[)2 →] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, such that Nn (x(Tx, Ix, Fx), y(Ty, Iy, Fy)) =

 (NnT(x, y), NnI(x, y), NnF(x, y)), where NnT means the degree of membership, NnI the degree of indeterminacy 

and NnF the degree of non-membership of the conjunction of both, x and y. 

For every x, y and z belonging to the universe of discourse, Nn must satisfy the following axioms: 

1. Nn (x,0N) = 0N and Nn (x,1N) = x (Boundary conditions). 

2. Nn (x,y) = Nn (y,x) (Commutativity). 
3. If x≤Ny, then Nn (x,z) ≤N Nn (y,z) (Monotonicity). 

4. Nn (Nn (x,y), z) = Nn (x, Nn (y,z)) (Associativity). 

Definition 2.8. A neutrosophic conorm or n-conorm Nc [25], is a mapping Nc: (] 0− , 1+[×] 0− , 1+[×

] 0− , 1+[)2 →] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, such that Nc (x(Tx, Ix, Fx), y(Ty, Iy, Fy)) =

 (NcT(x, y), NcI(x, y), NcF(x, y)), where NcT means the degree of membership, NcI the degree of indeterminacy 

and NcF the degree of non-membership of the disjunction of x with y. 

For every x, y and z belonging to the universe of discourse, Nc must satisfy the following axioms: 
1. Nc (x,0N) = x and Nc (x,1N) = 1N (Boundary conditions). 

2. Nc (x,y) = Nc (y,x) (Commutativity). 
3. If x≤Ny, then Nc (x,z) ≤N Nc (y,z) (Monotonicity). 

4. Nc (Nc (x,y),z) = Nc (x, Nc (y,z)) (Associativity). 

According to [8] a Singled-valued neutrosophic negator is defined as follows: 

Definition 2.9. a singled-valued neutrosophic negator is a decreasing unary neutrosophic operator 

NN: [0, 1]3 ⟶ [0, 1]3, satisfying the following boundary conditions: 
1. NN(0N) = 1N. 

2. NN(1N) = 0N. 

It is called involutive if and only if NN(NN(x)) = x for every x ∈ [0, 1]3. 

In the following, we show the neutrosophic negators that we shall consider hereunder, extracted from the lit-

erature, see [25]. Given a SVNS A(TA, IA, FA), we have: 

1. NN((TA, IA, FA)) = (1 − TA, 1 − IA, 1 − FA), NN((TA, IA, FA)) = (1 − TA, IA, 1 − FA), 

NN((TA, IA, FA)) = (FA, IA, TA)and NN((TA, IA, FA)) = (FA, 1 − IA, TA) (Involutive negators). 

2. NN((TA, IA, FA)) = (FA,
FA+ IA+TA

3
, TA) and NN((TA, IA, FA)) = (1 − TA,

FA+ IA+TA

3
, 1 − FA) (Non-invo-

lutive negators). 
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In literature, we found neutrosophic implicators, which extend only the notion of S-implications [11]. More-

over, we did not find a general definition on neutrosophic implications except in [8]. In the following, we con-

clude this section with such definition and properties. 

Definition 2.10. A singled-valued neutrosophic implicator is an operator IN: [0, 1]3 × [0, 1]3 → [0, 1]3 

which satisfies the following conditions, for all x, x′, y, y′ ∈ [0, 1]3: 

1. If x′ ≤N x, then IN(x, y) ≤N IN(x′, y). 
2. If y ≤N y′, then IN(x, y) ≤N IN(x, y′). 

3. IN(0N, 0N) =  IN(0N, 1N) =  IN(1N, 1N) = 1N. 

4. IN(1N, 0N) = 0N. 

Herein we use the term neutrosophic implicator or n-implicator to mean singled-valued neutrosophic 

implicator. 

It can satisfy the following properties for every x, y, z ∈ [0, 1]3 : 

1. IN(1N, x) =  x (Neutrality principle) 

2. IN(x, y) =  IN(NIN(y), NIN(x)), where NIN(x) = IN(x, 0N )  is an n-negator (Contrapositivity). 

3. IN(x, IN(y, z)) =  IN(y, IN(x, z)) (Interchangeability principle). 

4. x ≤N y if and only if IN(x, y) = 1N (Confinement principle). 

5. IN is a continuous mapping (Continuity). 

3 Neutrosophic uninorms 

This section is the core of the present paper, because here we explain the neutrosophic uninorm theory. We 
start defining this concept formally. 

3.1 N-uninorms 

Definition 3.1. A neutrosophic uninorm or N-uninorm UN, is a commutative, increasing and associative 

mapping, 𝐔N: (] 0− , 1+[×] 0− , 1+[×] 0− , 1+[)2 →] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, such that: 

𝐔N (x(Tx, Ix, Fx), y(Ty, Iy, Fy)) =  (𝐔NT(x, y), 𝐔NI(x, y), 𝐔NF(x, y)), where UNT means the degree of member-

ship, UNI the degree of indeterminacy and UNF the degree of non-membership of both, x and y. Additionally, 

there exists a neutral element 𝑒 ∈] 0− , 1+[×] 0− , 1+[×] 0− , 1+[, where ∀x ∈] 0− , 1+[×] 0− , 1+[×] 0− , 1+[,  
𝐔N(𝑒, x) = x. 

Remark 3.1. See that Def. 3.1, extends Def. 2.4 in two ways, according to the differences between L* fuzzy 
sets and neutrosophic sets. First, UN includes the third function representing indeterminacy and secondly, there not 

exists constraints in the relationship among T, I and F. In addition, Def. 3.1 extends Def. 2.7 when 𝑒 =  1N  and 
Def 2.8., when 𝑒 =  0N . 

Remark 3.2. For the sake of simplicity, we shall develop the theory only for singled-valued neutrosophic 
uninorms. 

A trivial consequence of Def. 3.1 is that the neutral element is unique, which is a uninorm property in Def. 2.1 

and Def. 2.4. 
In the following, we explore the formulas of N-uninorms related to those corresponding to n-norms and n-

conorms. For this end, first we need to describe two kinds of sets, namely, E1 = {x ∈ [0, 1]3: x ≤N 𝑒} and E2 =
{x ∈ [0, 1]3 ∶ x ≥N 𝑒}. 

Lemma 3.1. Let 𝑒 ∈]0, 1] × [0, 1[× [0, 1[. The mapping ϕe: [0, 1]3 → [0, 1]3, defined by: 

ϕe(x) = (𝑒1x1, x2 + 𝑒2(1 − x2), x3 + 𝑒3(1 − x3))  (1) 

for every x ∈ [0, 1]3 is an increasing bijection from [0, 1]3 to E1 and ϕe
−1 is increasing as well. 

Proof. To prove ϕe is injective, let x, y ∈ [0, 1]3 and suppose ϕe(x) = ϕe(y).Then, clearly the equation 

(𝑒1x1, x2 + 𝑒2(1 − x2), x3 + 𝑒3(1 − x3)) =  (𝑒1y1, y2 + 𝑒2(1 − y2), y3 + 𝑒3(1 − y3)) is fulfilled only if x = y, 

and the injection is proved, also taking into account that we excluded the cases 𝑒1 = 0, 𝑒2 = 1 and 𝑒3 = 1. 

Let us take any y ∈ E1 and define x = (x1, x2, x3), such that x1 =
y1

𝑒1
, x2 =

y2−𝑒2

1−𝑒2
 and x3 =

y3−𝑒3

1−𝑒3
. Then, 

ϕe(x) = y and x1, x2, x3 ∈ [0, 1], which can be proved applying y ≤N 𝑒. Therefore, ϕe is surjective and evi-

dently it is increasing. The equation of the inverse is the following: 

ϕe
−1(x) =  (

x1

𝑒1
,
x2 − 𝑒2

1 − 𝑒2
,
x3 − 𝑒3

1 − 𝑒3
) (2) 
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Lemma 3.2. Let 𝑒 ∈ [0, 1[×]0, 1] ×]0, 1]. The mapping ψe: [0, 1]3 → [0, 1]3, defined by: 

ψe(x) = (𝑒1+x1 − 𝑒1x1, 𝑒2x2, 𝑒3x3) (3) 

for every x ∈ [0, 1]3 is an increasing bijection from [0, 1]3 to E2 as well as ψe
−1 is increasing. 

Proof. This lemma can be proved similarly to the proof carried out in the Lemma 3.1. The equation of the 

inverse is as follows:  

ψe
−1(x) = (

x1 − 𝑒1

1 − 𝑒1
,
x2

𝑒2
,
x3

𝑒3
) (4) 

 

Theorem 3.3. Given UN an N-uninorm with neutral element 𝑒 ∈]0, 1[3. Then the following two conditions 

are satisfied: 

i. The mapping Nn,𝐔N
: [0, 1]3 × [0, 1]3 → [0, 1]3 defined for all x, y ∈ [0, 1]3 by the equation: 

Nn,𝐔N
(x, y) = ϕe

−1 (𝐔N(ϕe(x), ϕe(y)))  (5) 

is an n-norm. 

ii. The mapping Nc,𝐔N
: [0, 1]3 × [0, 1]3 → [0, 1]3 defined for all x, y ∈ [0, 1]3 by the equation: 

Nc,𝐔N
(x, y) = ψe

−1 (𝐔N(ψe(x), ψe(y)))  (6) 

is an n-conorm. 

Proof. This theorem is a consequence of Lemmas 3.1 and 3.2. 

Remark 3.3. Some cases of e were excluded in Lemmas 3.1, 3.2 and Theorem 3.3, for instance, 𝑒 =
(0, β, γ), where 0 ≤ β, γ ≤ 1 in Lemma 3.1. It is easy to prove that when e is one of them, there not exist any 

increasing bijection from [0, 1]3 to E1 or E2, because  E1 or E2 have one constant component, and therefore they 

only depend on at most two components, however, [0, 1]3 depends on three, and that contradicts the injection. 

For example, if 𝑒 = (0, β, γ), then E1 = {0} × [β, 1] × [γ, 1], and there not exists a bijective mapping from 

[0, 1]3 to E1. 

Corollary 3.4. Given UN an N-uninorm with neutral element 𝑒 ∈]0, 1[3. Then the following two conditions 

are satisfied: 

i. For every x, y ∈ E1, 𝐔N(x, y) = ϕe (Nn,𝐔N
(ϕe

−1(x), ϕe
−1(y))). 

ii. For every x, y ∈ E2, 𝐔N(x, y) = ψe (Nc,𝐔N
(ψe

−1(x), ψe
−1(y))). 

Proof. The proof is obtained immediately from Theorem 3.3. 

Remark 3.4. See that Theorem 3.3 and Corollary 3.4 mean that we can define N-uninorms from n-norms 

and n-conorms, and vice versa. 

Remark 3.5. Comparing the precedent issues with their similar ones appeared in [15], we can find few dif-

ferences and numerous similarities. Indeed, so far we have proved that N-uninorms extend the approach to struc-

tures of uninorms on L* fuzzy sets, which is valid to interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-

valued intuitionistic fuzzy sets and Goguen’s L-fuzzy sets. 

Definition 3.2. We say that Nn(x, y) is an Archimedean n-norm respect to <N if for every x ∈ [0, 1]3it satis-

fies: Nn(x, x) <N x. 

Definition 3.3. We say that Nc(x, y) is an Archimedean n-conorm respect to <N if for every x ∈ [0, 1]3it sat-

isfies: Nc(x, x) >N x. 

Definition 3.4. UN(x,y) is an Archimedean N-uninorm respect to <N if it satisfies the following conditions: 

1. 𝐔N(x, x) <N x for every 0 <N x <N 𝑒. 

2. 𝐔N(x, x) >N x for every 𝑒 <N x <N 1N. 

Proposition 3.5. Given UN an N-uninorm with neutral element 𝑒 ∈]0, 1[3. It is Archimedean if and only if 

the n-norm and n-conorm defined in Eq. 5 and 6, respectively, are Archimedean. 

Proof Let 0 <N x <N 𝑒, and 𝐔N(x, y) an Archimedean N-uninorm, i.e., 𝐔N(x, x) <N x, then taking into ac-

count that ϕe and ϕe
−1 are increasing bijections, we have Nn,𝐔N

(x, x) =

ϕe
−1 (𝐔N(ϕe(x), ϕe(x))) <N ϕe

−1(ϕe(x)) = x. Equivalently, it is easy to prove that Nn,𝐔N
(x, x) <N x implies 

𝐔N(x, x) <N x. The proof for the n-conorm is similar. 
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Proposition 3.6. Given UN an N-uninorm with neutral element e, and x, y ∈ [0, 1]3 are two elements such 

that either x ≤N 𝑒 ≤N y or y ≤N 𝑒 ≤N x, then the following two inequalities hold: 

min (x, y) ≤N 𝐔N(x, y) ≤N max (x, y). 

Proof. Without loss of generality, suppose x ≤N 𝑒 ≤N y, then because of the monotonicity of the N-un-

inorms 𝐔N(x, y) ≤N 𝐔N(𝑒, y) = y = max (x, y)  and 𝐔N(x, 𝑦) ≥N 𝐔N(x, 𝑒) = x = min (x, y). 

The proposition above means that there exists a domain where 𝐔N is compensatory with regard to ≤N. 

Let us note that there exists other sets where x ∥≤N
y or x ∥≤N

𝑒. 

Example 3.1. Two examples of N-uninorms are the following: 

Recalling the well-known weakest and strongest fuzzy uninorms, respectively, defined as follows: 

U𝑒1
(x1, y1): = {

0                       if 0 ≤ x1, y1 < 𝑒1  

max{x1, y1}    if 𝑒1 ≤ x1, y1 ≤ 1

min{x1, y1}    otherwise
 and U̅𝑒1

(x1, y1): = {

min{x1, y1}   if 0 ≤ x1, y1 ≤ 𝑒1  
1                      if 𝑒1 < x1, y1 ≤ 1

max{x1, y1}   otherwise
 

For every x1, y1 ∈ [0, 1] and 𝑒1 ∈ ]0, 1[. 
Let us define two N-uninorms as follows: for every x, y ∈ [0, 1]3 and 𝑒 ∈ [0, 1]3is the neutral element: 

𝐔𝑒(x, y): = (U𝑒1
(x1, y1), U̅𝑒2

(x2, y2), U̅𝑒3
(x3, y3)) (7) 

and 

�̅�𝑒(x, y): = (U̅𝑒1
(x1, y1), U𝑒2

(x2, y2), U𝑒3
(x3, y3)) (8) 

Both 𝐔𝑒(x, y) and �̅�𝑒(x, y), are N-uninorms, because every one of the components are uninorms, thus, they 

are commutative, associative and increasing. The neutral element components are formed by the neutral ele-

ments of every individual uninorm. 

Moreover, 𝐔𝑒(x, y) is a conjunctive N-uninorm and �̅�𝑒(x, y) is a disjunctive N-uninorm, i.e., 𝐔𝑒(0N, 1N) =

 0N and �̅�𝑒(0N, 1N) = 1N. 

See that 𝐔𝑒(x, y) = (U𝑒1
(x1, y1), U𝑒2

(x2, y2), U𝑒3
(x3, y3)) is also an N-uninorm, nevertheless, it is neither 

conjunctive nor disjunctive, 𝐔𝑒(0N, 1N) =  (0,0,0). 

Definition 3.5. An N-uninorm UN is said to be t-representable if there exist three fuzzy uninorms, 

U𝑒1
(x1, y1), U𝑒2

(x2, y2) and U𝑒3
(x3, y3), such that for all x = (x1, x2, x3) and y = (y1, y2, y3) it has the form 

𝐔N(x, y) = (U𝑒1
(x1, y1), U𝑒2

(x2, y2), U𝑒3
(x3, y3)) . 

Proposition 3.7. Let UN be an N-uninorm with neutral element e and x ∈ [0, 1]3, then the following proper-

ties hold:  

i. 𝐔N(0N, 0N) =  0N and 𝐔N(1N, 1N) =  1N. 

ii. If 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}, we have 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x), for every x ∈ [0, 1]3. 

iii. If 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}, then either 𝐔N(0N, 1N) =  0N or 𝐔N(0N, 1N) =  1N or 𝐔N(0N, 1N) ∥≤N
𝑒. 

Proof. 

i. See that 𝐔N(𝑒, 0N) =  0N, 𝐔N(𝑒, 1N) =  1N and apply the increasing axiom of N-uninorm. 

ii. If x ≤N 𝑒  then because 𝐔N  is increasing, we have 𝐔N(0N, x) ≤N 𝐔N(0N, 𝑒) = 0N , thus, 

𝐔N(0N, x) = 0N and 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, x), 1N). Because of the commutativity and the asso-

ciativity, 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x). 

If x ≥N 𝑒  then 𝐔N(1N, x) ≥N 𝐔N(1N, 𝑒) = 1N  and therefore, 𝐔N(1N, x) = 1N . 𝐔N(0N, 1N) =

𝐔N(0N, 𝐔N(1N, x)), and finally due to the commutativity and associativity, we obtain 𝐔N(0N, 1N) =

𝐔N(𝐔N(0N, 1N), x). 

If  x ∥≤N
𝑒 then  x ∧ 𝑒 ≤N x ≤N x ∨ 𝑒. We have x ∧ 𝑒 ≤N 𝑒 and 𝑒 ≤N x ∨ 𝑒, thus according to the 

precedent results 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x ∧ 𝑒) = 𝐔N(𝐔N(0N, 1N), x ∨ 𝑒). Applying the in-

creasing axiom of N-uninorms we obtain 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), x) . 

iii. Suppose 𝐔N(0N, 1N) ∦≤N
𝑒, that implies either 𝐔N(0N, 1N) ≤N 𝑒 or 𝑒 ≤N 𝐔N(0N, 1N). 

If 𝐔N(0N, 1N) ≤N 𝑒, then 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), 0N) = 0N , according to ii. 

If 𝐔N(0N, 1N) ≥N 𝑒, then 𝐔N(0N, 1N) = 𝐔N(𝐔N(0N, 1N), 1N) = 1N , according to ii. 

Let us note that the precedent issues are similar to the ones obtained in [15]. 

3.2 Implicators induced by N-uninorms 
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This subsection is dedicated to explore the notion of n-implicators induced by N-uninorms. First of all we 

define the concept of neutrosophic R-implicator, which is new in this framework, at least in the scope of our 

knowledge. 

Definition 3.6. A neutrosophic R- implicator or n-R-implicator is an n-implicator defined as follows: 

Given Nn an n-norm, for every x, y ∈ [0, 1]3, RIN(x, y) =  sup{t ∈ [0, 1]3: Nn(x, t) ≤N y}. 

Let us note that this definition extends both, the definition of fuzzy R-implicator, see [7], and that of L* fuzzy 

implicator, [15]. As well as others appeared in [3, 12]. 

Indeed, it is an actual n-implicator. Taking into account the properties of  ≤N, and the increasing property of 

n-norms with regard to ≤N, we have that RIN(x,∙) is decreasing and RIN(∙, y) is increasing. Additionally, the sat-

isfaction of the boundary conditions by RIN can be verified straightforwardly. 

Example 3.2. Let a = (0.6, 0.2, 0.4), b = (0.7, 0.1, 0.3) and c = (0.5, 0.3, 0.5) be three SVNS. Observe 

that c ≤N a ≤N b. Consider the n-norm, Nn−min(x, y) = (min{Tx, Ty}, max{Ix, Iy}, max{Fx, Fy}). 

Then, RIN(a, b) = 1N , RIN(a, c) = (0.5, 0.3, 0.5), RIN(b, a) = (0.6, 0.2, 0.4) and RIN(c, a) = 1N. See that 

RIN(a, c) ≤N RIN(a, b) and RIN(b, a) ≤N RIN(c, a). 

Proposition 3.8. Let RIN be an n-R-implicator induced by the n-norm Nn, then the two following properties 

hold: 

i. RIN(1N, y) = y for every y ∈ [0, 1]3 (Neutrality principle). 

ii. RIN(x, x) = 1N for every x ∈ [0, 1]3 (Identity principle). 

iii.  x, y ∈ [0, 1]3 and x ≤N y if and only if RIN(x, y) = 1N (Confinement principle). 

Proof. 

i. For y ∈ [0, 1]3, we have RIN(1N, y) =  sup{t ∈ [0, 1]3: Nn(1N, t) = t ≤N y} = y. 

ii. For x ∈ [0, 1]3, we have RIN(x, x) =  sup{t ∈ [0, 1]3: Nn(x, t) ≤N x} = 1N, because Nn is increasing 

and Nn(x, 1N) = x. 

iii. For x, y ∈ [0, 1]3 and x ≤N y, taking into account the inequalities Nn(x, t) ≤N Nn(x, 1N) = x ≤N y for 

every t ∈ [0, 1]3, we have RIN(x, y) =  1N. On the other hand, RIN(x, y) = 1N evidently implies x ≤N y, 

from the definition. 

Theorem 3.9. Let UN be an N-uninorm with neutral element 𝑒 ∈]0, 1[3. Let us establish the mapping 

RI𝐔N
: [0, 1]3 × [0, 1]3 → [0, 1]3 defined as follows: 

RI𝐔N
(x, y) =  sup{t ∈ [0, 1]3: 𝐔N(x, t) ≤N y} for every x, y ∈ [0, 1]3. 

It is an n-implicator if and only if there exists x̃ >N 0N such that every x ≥N x̃ satisfies 𝐔N(0N, x) = 0N . 
Proof. It is easy to verify that RI𝐔N

(x,∙) is decreasing and RI𝐔N
(∙, y) is increasing. 

On the other hand, RI𝐔N
(0N, 1N) =  RI𝐔N

(1N, 1N) = 1N , because 𝐔N is increasing and 1N is the supremum. 

See that for every t ∈ [0, 1]3, 𝐔N(1N, t) ≥N 𝐔N(𝑒, t) = t, then 𝐔N(1N, t) >N 0N if and only if t >N 0N, 

therefore RI𝐔N
(1N, 0N) = 0N. 

Additionally, if there exists x̃ >N 0N such that every x ≥N x̃ satisfies 𝐔N(0N, x) = 0N, then because 𝐔N is 

increasing and 1N is the supremum of that set, 𝐔N(0N, 1N) = 0N and RI𝐔N
(0N, 0N) =  1N. 

Remark 3.6. The Theorem 3.9 is valid when 𝐔N is a conjuctive N-uninorm. 

Example 3.3. Given again a = (0.6, 0.2, 0.4), b = (0.7, 0.1, 0.3) and c = (0.5, 0.3, 0.5), three SVNS, 

as in Example 3.2. Let us consider 𝐔𝑒 of the Example 3.1, where 𝑒 = (0.5, 0.5, 0.5). Recall that 𝐔𝑒(0N, 1N) =

0N. Then, RI𝐔𝑒
(a, b) = (0.7, 0.1, 0.3), RI𝐔𝑒

(a, c) = (0.5, 0.5, 0.5), RI𝐔𝑒
(b, a) = (0.5, 0.5, 0.5) and RI𝐔𝑒

(c, a) =

(0.6, 0.2, 0.4). 

Proposition 3.10. Given 𝐔N an N-uninorm with 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}. Then, RI𝐔N
(𝑒, x) = x, for every x ∈

[0, 1]3. 

Proof. Let us fix x ∈ [0, 1]3, RI𝐔N
(𝑒, x) = sup{t ∈ [0, 1]3: 𝐔N(𝑒, t) = t ≤N x} = x. 

Proposition 3.11. Given 𝐔N an N-uninorm with 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}. RI𝐔N
(x, 1N) = 1N, for every x ∈

[0, 1]3 (Right boundary condition). 

Proof. Taking into account 𝐔N is increasing and 1N is the supremum of the elements of the lattice, then, 

RI𝐔N
(x, 1N) = sup{t ∈ [0, 1]3: 𝐔N(x, t) ≤N 1N} = 1N . 

Proposition 3.12. Given 𝐔N an N-uninorm with 𝑒 ∈ [0, 1]3 ∖ {0N, 1N}. If it is contrapositive respect to a ne-

gator NN, which satisfies NN(𝑒) = 𝑒, then NN(x) = NNI𝐔N
(x) = RI𝐔N

(x, 𝑒) for every x ∈ [0, 1]3and NNI𝐔N
is in-

volutive. 

Proof. Reproduce the similar proof in [15] adapted to N-uninorms. 
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Proposition 3.13. Given 𝐔N an N-uninorm and NN an n-negator. The mapping SI𝐔N
(x, y) = 𝐔N(NN(x), y) is 

an n-implicator if and only if 𝐔N is disjunctive. 

Proof. Reproduce the similar proof in [15] adapted to N-uninorms. 

Example 3.4. Revisiting Examples 3.2 and 3.3, where a = (0.6, 0.2, 0.4), b = (0.7, 0.1, 0.3) and c =

(0.5, 0.3, 0.5). Now we consider the n-negator NN((Tx, Ix, Fx)) = (Fx, Ix, Tx) and from the Example 

3.1, �̅�𝑒(x, y) with 𝑒 = (0.5, 0.5, 0.5). There, we proved it is disjunctive. 

Then, we have SI�̅�𝑒
(a, b) = (0.7, 0, 0.3) , SI�̅�𝑒

(a, c) = (0.4, 0, 0.6), SI�̅�𝑒
(b, a) = (0.6, 0, 0.4) and 

SI�̅�𝑒
(c, a) = (0.6, 0, 0.4). 

Proposition 3.14. Given 𝐔N an N-uninorm and NN an n-negator. The mapping SI𝐔N
 satisfies the Inter-

changeability Principle: 

SI𝐔N
(x, SI𝐔N

(y, z)) =  SI𝐔N
(y, SI𝐔N

(x, z)) for every x, y, z ∈ [0, 1]3. 

Proof. It is proved by using the commutativity and associativity of N-uninorms. 

Conclusion 

The proposed paper was devoted to define and study a new operator called neutrosophic uninorm or N-uninorm. 

We demonstrated that it is possible to extend the notion of uninorm to the framework of neutrosophy logic theory. 
In addition, we defined new neutrosophic implicators induced by N-uninorms. Moreover, we introduced a new 

neutrosophic implicator which generalizes the fuzzy notion of R-implicator. The importance of this new theory is 

that the appreciated quality of fuzzy uninorms as aggregators is enriched with the capacity of neutrosophy to deal 
with indeterminacy. 

References 

[1] J. C. Abbott and G. Birkhoff. Trends in lattice theory.Van Nostrand Reinhold Company, New York, 1970. 

[2] P. Akella, Structure of n-uninorms. Fuzzy Sets and Systems, 158 (2007), p. 1631–1651. 

[3] C. Alcalde, A. Burusco, and R. Fuentes-González, A constructive method for the definition of interval-valued fuzzy im-

plication operators. Fuzzy Sets and Systems, 153 (2005), p. 211–227. 

[4] S. Alonso, E. Herrera-Viedma, F. Chiclana, and F. Herrera, A web based consensus support system for group decision 

making problems and incomplete preferences. Information Sciences , 180 (2010), p. 4477–4495. 

[5] K. T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20 (1986), p. 87-96. 

[6] K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31 (1989), p. 343-349. 

[7] M. Baczynski and B. Jayaram. Fuzzy Implications, Springer-Verlag, Berlin Heidelberg. 

[8] Y.-L. Bao, H.-L. Yang, and S.-G. Li, On characterization of (I,N)-single valued neutrosophic rough approximation oper-

ators. Soft Computing (2018) , p.1-20. 

[9] G. Birkhoff. Lattice Theory, American Mathematical Society, Providence, Rhode Island, 1940. 

[10] F. Bordignon and F. Gomide, Uninorm based evolving neural networks and approximation capabilities, Neurocomputing, 

127 (2014), p. 13–20. 

[11] S. Broumi and F. Smarandache, On Neutrosophic Implications. Neutrosophic Sets and Systems, 2 (2014), p. 9-17. 

[12] H. Bustince, E. Barreneche, and V. Mohedano, Intuitionistic fuzzy implication operators-an expression and main proper-

ties. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12 (2004) ,  p. 387-406. 

[13] B. D. Baets and J. Fodor, Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. 

Fuzzy Sets and Systems, 104 (1999), p. 133-136. 

[14] G. Deschrijver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems, 

133 (2003), p. 227–235. 

[15] G. Deschrijver and E. E. Kerre, Uninorms in L*-fuzzy set theory. Fuzzy Sets and Systems, 148 (2004), p.243–262. 

[16] J. Fodor, I. J. Rudas, and B. Bede, Uninorms and Absorbing Norms with Applications to Image Processing, In: proc. 4th 

Serbian-Hungarian Joint Symposium on Intelligent Systems, Subotica, Serbia, 2006, pp. 59-72. 

[17] J. C. Fodor, R. R. Yager, and A. Rybalov, Structure of uninorms. International Journal of Uncertainty, Fuzziness and 

Knowledge-Based Systems, 5(1997), p. 411-427. 

[18] J. A. Goguen, L-Fuzzy Sets. Journal of Mathematical Analysis and Applications, 18 (1967), 145-174.  

[19] M. G. Hidalgo, A. M. Torres, D. Ruiz-Aguilera, and J. Torrens-Sastre, Image Analysis Applications of Morphological 

Operators based on Uninorms, In: proc. IFSA/EUSFLAT Conf., eds. Lisbon, Portugal, 2009, pp. 630-635. 

[20] V. G. Kaburlasos, Towards a Unified Modeling and Knowledge-Representation based on Lattice Theory, Springer-Verlag, 

Berlin Heidelberg, 2006. 

[21] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Springer Science+Business Media, Dordrecht, 2000. 

[22] K. Saastamoinen. and J. Sampo, On General Class of Parameterized 3π− Uninorm Based Comparison, Wseas. Transac-

tions on Mathematics 3 (2004), p. 482-486. 

[23] F. Smarandache, Symbolic neutrosophic theory, Infinite Study, 2015. 

[24] F. Smarandache, Neutrosophic Axiomatic System. Critical Review, 10 (2015), p. 5-28. 



Neutrosophic Sets and Systems, Vol. 45, 2021    

 

Erick González-Caballero, Maikel Leyva-Vázquez, and Florentin Smarandache, On neutrosophic uninorms 

348 

[25] F. Smarandache, Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Alge-

bras. And Applications, Pons Publishing House, Brussels, 2017. 

[26] H. Wang, F. Smarandache, Y.-Q. Zhang, and R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Appli-

cations in Computing, Hexis, Arizona, 2005. 

[27] R. R. Yager and V. Kreinovich, Universal approximation theorem for uninorm-based fuzzy systems modelling. Fuzzy 

Sets and Systems, 140 (2003),  p. 331-339. 

 

 

Received: May 1, 2021.  Accepted: August 30, 2021 



University of New Mexico

On Refined Neutrosophic Hyperrings

M.A. Ibrahim1, A.A.A. Agboola2, Z.H. Ibrahim 3 and E.O. Adeleke4

1Department of Mathematics, Federal University of Agriculture, PMB 2240, Abeokuta, Nigeria;

muritalaibrahim40@gmail.com

2Department of Mathematics, Federal University of Agriculture, PMB 2240, Abeokuta, Nigeria;

agboolaaaa@funaab.edu.ng

3Department of Mathematics and Statistics, Auburn University, Alabama, 36849, U.S.A; 3zzh0051@auburn.edu

4Department of Mathematics, Federal University of Agriculture, PMB 2240, Abeokuta, Nigeria; yemi376@yahoo.com

Correspondence: agboolaaaa@funaab.edu.ng

Abstract. This paper presents the refinement of a type of neutrosophic hyperring in which +′ and ·′ are hyperopraetions

and studied some of its properties. Several interesting results and examples are presented.

K̋eywords: .

Neutrosophic, neutrosophic hyperring, neutrosophic hypersubring, refined neutrosophic hyperring, re-

fined neutrosophic hypersubhyperring , refined neutrosophic hyperring homomorphism. ——————

———————————————————————————————————-

1. Introduction

In a general sense the triple (R,+, ·) is an hyperring if the hyperoperations + and · are such that

(R,+) is a hypergroup, (R, ·) is semihypergroup and · is distributive with respect to +. These struc-

tures are essentially rings with approximately modified axioms. Different notions of hyperrings have

been investigated by researchers in the field of algebraic hyperstructures. For example, Krasner in [20]

introduced a type of hyperring in which ′′+′′ is an hyperoperation and ′′·′′ is a binary operation. This

type of hyperring is referred to as a Krasner hyperring. In [24] a type of hyperring called multiplicatve

hyperring was introduced by Rota. In this hyperring ′′+′′ is considered as an ordinary addition and ′′·′′

as an hyperoperation. The type of hyperring in which ′′+′′ and ′′·′′ were hyperoperations was studied

by De Salvo in [14]. These classes of hyperrings were further studied by Barghi [12] , Asokkumar and

Velrajan [9–11] .

In 1995, Smarandache generalized fuzzy logic/set and intuitionistic fuzzy logic/set by introducing a new

branch of philosophy called Neutrosophy, which studies the origin, nature and scope of neutralities, as

well as their interactions with different ideational spectra. In neutrosophic logic, each proposition has

a degree of truth (T ), a degree of indeterminancy (I) and a degree of falsity (F ), where T, I, F are

M.A. Ibrahim, A.A.A. Agboola, Z.H. Ibrahim and E.O. Adeleke, On Refined Neutrosophic Hyperrings
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standard or non-standard subsets of ]−0, 1+ [ as can be seen in [22,23] . Ever since the introduction of

this theory, several neutrosophic structures have been introduced, some of which includes; neutrosophic

group, neutrosophic rings, neutrosophic modules, neutrosophic hypergroups, neutrosophic hyperrings,

neutrosophic loops and many more. Smarandache in [22] introduced the concept of refined neutro-

sophic logic and neutrosophic set which is basically the splitting of the components < T, I, F > into

subcomponents of the form < T1, T2, · · · , Tp; I1, I2, · · · , Ir;F1, F2, · · · , Fs > . This concept inspired

the work of Agboola in [5] where he introduced refined neutrosophic algebraic structures. A lot of

results have been published on the refinement of some of the known neutrosophic algebraic struc-

tures/hyperstructures ever since the work of Agboola. A comprehensive review of refined neutrosophic

structures/hyperstrutures, can be found in [1, 2, 8, 15–19] .

In this paper, the refinement of neutrosophic hyperring is studied and several interesting results and

examples are presented.

2. Preliminaries

In this section, we will give some definitions, examples and results that will be used in the sequel.

Definition 2.1. [13] Let H be a non-empty set and ◦ : H ×H −→ P ∗(H) be a hyperoperation. The

couple (H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of H and x ∈ H, we

define

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

Definition 2.2. [13] Let H be a non-empty set and let + be a hyperoperation on H. The couple

(H,+) is called a canonical hypergroup if the following conditions hold:

(1) x+ y = y + x, for all x, y ∈ H,

(2) x+ (y + z) = (x+ y) + z, for all x, y, z ∈ H,

(3) there exists a neutral element 0 ∈ H such that x+ 0 = {x} = 0 + x, for all x ∈ H,

(4) for every x ∈ H, there exists a unique element −x ∈ H such that 0 ∈ x+ (−x) ∩ (−x) + x,

(5) z ∈ x + y implies y ∈ −x + z and x ∈ z − y, for all x, y, z ∈ H. A nonempty subset A of H is

called a subcanonical hypergroup if A is a canonical hypergroup under the same hyperaddition

as that of H that is, for every a, b ∈ A, a− b ∈ A. If in addition a+A− a ⊆ A for all a ∈ H, A

is said to be normal.

Definition 2.3. A hyperring is a triple (R,+, ·) satisfying the following axioms:

(1) (R,+) is a canonical hypergroup.

(2) (R, ·) is a semihypergroup such that x · 0 = 0 · x = 0 for all x ∈ R, that is, 0 is a bilaterally

absorbing element,

(3) For all x, y, z ∈ R,

(a) x · (y + z) = x · y + x · z and
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(b) (x+y) ·z = x ·z+y ·z. That is, the hyperoperation . is distributive over the hyperoperation

+.

Definition 2.4. Let (R,+, ·) be a hyperring and let A be a nonempty subset of R. A is said to be a

subhyperring of R if (A,+, ·) is itself a hyperring.

Definition 2.5. Let A be a subhyperring of a hyperring R. Then,

(1) A is called a left hyperideal of R if r · a ⊆ A for all r ∈ R, a ∈ A.

(2) A is called a right hyperideal of R if a · r ⊆ A for all r ∈ R, a ∈ A. A is called a hyperideal of

R if A is both left and right hyperideal of R.

Definition 2.6. Let A be a hyperideal of a hyperring R. A is said to be normal in R if r+A− r ⊆ A

for all r ∈ R.

It will be assumed that I splits into two sub-indeterminacies I1 [contradiction (true (T ) and false

(F ))] and I2 [ignorance (true (T ) or false (F ))]. With the properties that:

I1I1 = I2
1 = I1,

I2I2 = I2
2 = I2 and

I1I2 = I2I1 = I1.

Definition 2.7. [4] If ∗ : X(I1, I2)×X(I1, I2) 7→ X(I1, I2) is a binary operation defined on X(I1, I2),

then the couple (X(I1, I2), ∗) is called a refined neutrosophic algebraic structure and it is named ac-

cording to the laws (axioms) satisfied by ∗.

Definition 2.8. [4] Let (X(I1, I2),+, ·) be any refined neutrosophic algebraic structure where + and

. are ordinary addition and multiplication respectively.

For any two elements (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2), we define

(a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

(a, bI1, cI2) · (d, eI1, fI2) = (ad, (ae+ bd+ be+ bf + ce)I1, (af + cd+ cf)I2).

Definition 2.9. [4] If + and . are ordinary addition and multiplication, Ik with k = 1, 2 have the

following properties:

(1) Ik + Ik + · · ·+ Ik = nIk.

(2) Ik + (−Ik) = 0.

(3) Ik · Ik · · · · Ik = Ink = Ik for all positive integers n > 1.

(4) 0 · Ik = 0.

(5) I−1
k is undefined and therefore does not exist.
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Definition 2.10. [4] Let (G, ∗) be any group. The couple (G(I1, I2), ∗) is called a refined neutrosophic

group generated by G, I1 and I2. (G(I1, I2), ∗) is said to be commutative if for all x, y ∈ G(I1, I2), we

have x ∗ y = y ∗ x. Otherwise, we call (G(I1, I2), ∗) a non -commutative refined neutrosophic group.

Definition 2.11. [4] If (X(I1, I2), ∗) and (Y (I1, I2), ∗′) are two refined neutrosophic algebraic struc-

tures, the mapping

φ : (X(I1, I2), ∗) −→ (Y (I1, I2), ∗′)

is called a neutrosophic homomorphism if the following conditions hold:

(1) φ((a, bI1, cI2) ∗ (d, eI1, fI2)) = φ((a, bI1, cI2)) ∗′ φ((d, eI1, fI2)).

(2) φ(Ik) = Ik for all (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2) and k = 1, 2.

Example 2.12. [4] Let Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2)(0, I1, I2), (1, I1, 0),

(1, 0, I2), (1, I1, I2)}. Then (Z2(I1, I2),+) is a commutative refined neutrosophic group of integers mod-

ulo 2. Generally for a positive integer n ≥ 2, (Zn(I1, I2),+) is a finite commutative refined neutro-

sophic group of integers modulo n.

Example 2.13. [4] Let (G(I1, I2), ∗) and and (H(I1, I2), ∗′) be two refined neutrosophic groups.

Let φ : G(I1, I2) × H(I1, I2) → G(I1, I2) be a mapping defined by φ(x, y) = x and let ψ :

G(I1, I2) × H(I1, I2) → H(I1, I2) be a mapping defined by ψ(x, y) = y. Then φ and ψ are refined

neutrosophic group homomorphisms.

Definition 2.14. [6] Let (H,+) be any canonical hypergroup and let I be an indeterminate.

Let H(I) =< H ∪ I >= {(a, bI) : a, b ∈ H} be a set generated by H and I. The hyperstructure

(H(I),+) is called a neutrosophic canonical hypergroup . For all (a, bI), (c, dI) ∈ H(I) with b 6= 0

or d 6= 0, we define (a, bI) + (c, dI) = {(x, yI) : x ∈ a + c, y ∈ a + d ∪ b + c ∪ b + d}. An element

I ∈ H(I) is represented by (0, I) in H(I) and any element x ∈ H is represented by (x, 0) in H(I). For

any nonempty subset A(I) of H(I), we define −A(I) = {−(a, bI) = (−a,−bI) : a, b ∈ H}.

Definition 2.15. [6] Let (H(I),+) be a neutrosophic canonical hypergroup .

(1) A nonempty subset A(I) of H(I) is called a neutrosophic subcanonical hypergroup of H(I) if

(A(I),+) is itself a neutrosophic canonical hypergroup . It is essential that A(I) must contain

a proper subset which is a subcanonical hypergroup of H.

If A(I) does not contain a proper subset which is a subcanonical hypergroup of H, then it is

called a pseudo neutrosophic subcanonical hypergroup of H(I).

(2) If A(I) is a neutrosophic subcanonical hypergroup (pseudo neutrosophic subcanonical hyper-

group), A(I) is said to be normal in H(I) if for all (a, bI) ∈ H(I), (a, bI)+A(I)−(a, bI) ⊆ A(I).

Definition 2.16. [6] Let (R,+, ·) be any hyperring and let I be an indeterminate. The hyperstructure

(R(I),+, ·) generated by R and I, that is, R(I) =< R ∪ I >, is called a neutrosophic hyperring. For
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all (a, bI), (c, dI) ∈ R(I) with b 6= 0 or d 6= 0, we define

(a, bI) · (c, dI) = {(x, yI) : x ∈ a · c, y ∈ a · d ∪ b · c ∪ b · d}.

Definition 2.17. [6] Let (R(I),+, ·) be a neutrosophic hyperring and let A(I) be a nonempty subset of

R(I). A(I) is called a neutrosophic subhyperring of R(I) if (A(I),+, ·) is itself a neutrosophic hyperring

. It is essential that A(I) must contain a proper subset which is a hyperring. Otherwise, A(I) is called

a pseudo neutrosophic subhyperring of R(I).

Definition 2.18. [6] Let (R(I),+, ·) be a neutrosophic hyperring and let A(I) be a neutrosophic

subhyperring of R(I).

(1) A(I) is called a left neutrosophic hyperideal if (r, sI) · (a, bI) ⊆ A(I) for all (r, sI) ∈ R(I) and

(a, bI) ∈ A(I).

(2) A(I) is called a right neutrosophic hyperideal if (a, bI) · (r, sI) ⊆ A(I) for all (r, sI) ∈ R(I) and

(a, bI) ∈ A(I).

(3) A(I) is called a neutrosophic hyperideal if A(I) is both a left and right neutrosophic hyperideal

.

A neutrosophic hyperideal A(I) of R(I) is said to be normal in R(I) if for all (r, sI) ∈ R(I)

(r, sI) +A(I)− (r, sI) ⊆ A(I).

Definition 2.19. [6] Let (R1(I),+, ·) and (R2(I),+, ·) be two neutrosophic hyperring and let φ :

R1(I) −→ R2(I) be a mapping from R1(I) into R2(I).

(1) φ is called a homomorphism if :

(a) φ is a hyperring homomorphism,

(b) φ((0, I)) = (0, I).

(2) φ is called a good or strong homomorphism if:

(a) φ is a good or strong hyperring homomorphism,

(b) φ((0, I)) = (0, I).

(3) φ is called an isomorphism (strong isomorphism) if φ is a bijective homomorphism (strong

homomorphism).

3. Formulation of a refined neutrosophic hyperrings

In this section, we study and present the development of refined neutrosophic hyperring

(R(I1, I2),+, ·) generated by R, I1 and I2 where the operations ′′+′′ and ′′·′′ are hyperoperations.

i.e.,

+, · : R(I1, I2)×R(I1, I2) −→ 2R(I1,I2).

For all (a, bI1, cI2), (d, eI1, fI2) ∈ R(I1, I2) with a, b, c, d, e, f ∈ R, we define

(a, bI1, cI2) + (d, eI1, fI2) = {(p, qI1, rI2) : p ∈ a+ d, q ∈ (b+ e), r ∈ (c+ f)},
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(a, bI1, cI2) · (d, eI1, fI2) = {(p, qI1, rI2) : p ∈ ad, q ∈ ae+ bd+ be+ bf + ce, r ∈ af + cd+ cf}.

Definition 3.1. A refined neutrosophic hyperring is a tripple (R(I1, I2),+, ·) satisfying the following

axioms:

(1) (R(I1, I2),+) is a refined neutrosophic canonical hypergroup .

(2) (R(I1, I2), ·) is a refined neutrosophic semihypergroup.

(3) For all (a, bI1, cI2), (d, eI1, fI2), (g, hI1, jI2) ∈ R(I1, I2),

(a) (a, bI1, cI2)·((d, eI1, fI2)+(g, hI1, jI2)) = (a, bI1, cI2)·(d, eI1, fI2)+(a, bI1, cI2)·(g, hI1, jI2)

and

(b) ((d, eI1, fI2) + (g, hI1, jI2)) · (a, bI1, cI2) = (d, eI1, fI2) · (a, bI1, cI2) + (g, hI1, jI2) ·

(a, bI1, cI2).

Definition 3.2. Let (R(I1, I2),+, ·) be a refined neutrosophic hyperring. A non-empty subset M(I1, I2)

of R(I1, I2) is called a refined neutrosophic subhyperring of R(I1, I2) if (M(I1, I2),+, ·) is itself a

neutrosophic hyperring. It is essential that M(I1, I2) must contain a proper subset which is a hyperring.

Otherwise, M(I1, I2) is called a refined pseudo neutrosophic subhyperring of R(I1, I2).

Definition 3.3. Let R(I1, I2) be a refined neutrosophic hyperring. The refined neutrosophic subhy-

perring M(I1, I2) is said to be normal in R(I1, I2) if and only if (a, bI1, cI2) +M(I1, I2)− (a, bI1, cI2) ⊆

M(I1, I2) for all (a, bI1, cI2) ∈ R(I1, I2).

Definition 3.4. Let (R(I1, I2)),+, ·) be a refined neutrosophic hyperring and let M(I1, I2) be a refined

neutrosophic subhyperring of R(I1, I2). (M(I1, I2),+, ·) is a left(right) refined neutrosophic hyperideal

of R(I1, I2) if x · m ∈ M(I1, I2)[m · x ∈ M(I1, I2)] for all x = (a, bI1, cI2) ∈ R(I1, I2) and m =

(p, qI1, sI2) ∈ M(I1, I2). M(I1, I2) is a refined neutrosophic hyperideal if M(I1, I2) is both left and

right refined neutrosophic hyperideal.

Remark 3.5. It should be noted that a refined neutrosophic hyperideal H(I1, I2) of a refined neutro-

sophic hyperring R(I1, I2) is normal in R(I1, I2) only if hyperideal H is normal in hyperring R.

Proposition 3.6. Let (R(I1, I2),+, ·) be any refined neutrosophic hyperring. (R(I1, I2),+, ·) is a hy-

perring.

Proof. (1) That (R(I1, I2),+) is a canonical hypergroup follows from Proposition 2.3 in [19].
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(2) We show that (R(I1, I2), ·) is a semihypergroup.

x · (y · z) = (a, bI1, cI2) · ((d, eI1, fI2) · (g, hI1, kI2))

= (a, bI1, cI2) · ((dg, (dh+ eg + eh+ ek + fh)I1, (dk + fg + fk)I2)

= (a(dg), (a(dh) + a(eg) + a(eh) + a(ek) + a(fh) + b(dg) + b(dh) + b(eg) + b(eh)

+b(ek) + b(fh) + b(dk) + b(fg) + b(fk) + c(dh) + c(eg) + c(eh) + c(ek) + c(fh))I1,

(a(dk) + a(fg) + a(fk) + c(dg) + c(dk) + c(fg) + c(fk))I2)

= (ad)g, ((aI1, ((ad)k + (af)g + (af)k + (cd)g + (cd)k + (cf)g + (cf)k)I2)

= ((a, bI1, cI2) · (d, eI1, fI2)) · (g, hI1, kI2)

= (x · y) · z.
Accordingly, (R(I1, I2), ·) is a semihypergroup. Also, for all (a, bI1, cI2) ∈ R(I1, I2),

(a, bI1, cI2) · (0, 0I1, 0I2) = {(x, yI1, zI2) : x ∈ a ·0, y ∈ a ·0+b ·0+c ·0, z ∈ a ·0+c ·0} = {(0, 0I1, 0I2)}.

Similarly, it can be shown that (0, 0I1, 0I2) · (a, bI1, cI2) = {(0, 0I1, 0I2)}. Hence, (0, 0I1, 0I2) is

a bilaterally absorbing element.

(3) For the distributivity of · over +.

Let a = (x, yI1, zI2), b = (u, vI1, sI2), c = (k,mI1, nI2) be arbitrary elements in R(I1, I2) with

x, y, z, u, v, s, k,m, n ∈ R.
a · (b+ c) = a · {(h1, h2I1, h3I2) : h1 ∈ u+ k, h2 ∈ v +m,h3 ∈ s+ n}

= {(x, yI1, zI2) · (h1, h2I1, h3I2) : h1 ∈ u+ k, h2 ∈ v +m,h3 ∈ s+ n}
= {(p1, p2I1, p3I2) : p1 ∈ xh1, p2 ∈ xh2 + yh1 + yh2 + yh3 + zh2, p3 ∈ xh3 + zh1 + zh3}
= {(p1, p2I1, p3I2) : p1 ∈ xu+ xk, p2 ∈ xv + xm+ yu+ yk + yv + ym+ ys+ yn+

zv + zm, p3 ∈ xs+ xn+ zu+ zk + zs+ zn}.
Now if we take p1 = t1 + t′1, p2 = t2 + t′2, p3 = t3 + t′3, then we have

a · (b+ c) = {(t1 + t′1, (t2 + t′2)I1, (t3 + t′3)I2) : t1 + t′1 ∈ xu+ xk,

t2 + t′2 ∈ xv + xm+ yu+ yk + yv + ym+ ys+ yn+ zv + zm,

t3 + t′3 ∈ xs+ xn+ zu+ zk + zs+ zn}
= {(t1, t2I1, t3I2) : t1 ∈ xu, t2 ∈ xv + yu+ yv + ys+ zv, t3 ∈ xs+ zu+ zs}+
{(t′1, t′2I1, t′3I2) : t′1 ∈ xk, t′2 ∈ xm+ yk + ym+ yn+ zm, t′3 ∈ xn+ zk + zn}

= (x, yI1, zI2) · (u, vI1, sI2) + (x, yI1, zI2) · (k,mI1, nI2)

= a · b+ a · c.
Similarly, we can show that (b+ c) · a = b · a+ c · a. Therefore · is distributive over +.

Hence R(I1, I2) is a hyperring.

Example 3.7. Let R(I1, I2) = {a1 = (s, sI1, sI2), a2 = (s, sI1, tI2), a3 = (s, tI1, sI2),

a4 = (s, tI1, tI2), b1 = (t, tI1, tI2), b2 = (t, tI1, sI2), b3 = (t, sI1, tI2), b4 = (t, sI1, sI2)} be a refined

neutrosophic set and let + be the hyperoperation on R(I1, I2) defined as in the tables below. Let

a = {a1, a2, a3, a4} and b = {b1, b2, b3, b4}.

It is clear from Table 1 and 2 that (R(I1, I2),+, ·) is a refined neutrosophic hyperring.
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Table 1. Cayley table for the binary operation ” + ”

+ a1 a2 a3 a4 b1 b2 b3 b4

a1 a1 a2 a3 a4 b1 b2 b3 b4

a2 a2

{
a1

a2

}
a4

{
a3

a4

} {
b1

b2

}
b1

{
b3

b4

}
b3

a3 a3 a4

{
a1

a3

} {
a2

a4

} {
b1

b3

} {
b2

b4

}
b1 b2

a4 a4

{
a3

a4

} {
a2

a4

}
a b

{
b1

b3

} {
b1

b2

}
b1

b1 b1

{
b1

b2

} {
b1

b3

}
b R(I1, I2)


a2

a4

b1

b3




a3

a4

b1

b2


{

a4

b1

}

b2 b2 b1

{
b2

b4

} {
b1

b3

} 
a2

a4

b1

b3




a1

a3

b2

b4


{

a4

b1

} {
a3

b2

}

b3 b3

{
b3

b4

}
b1

{
b1

b2

} 
a3

a4

b1

b2


{

a4

b1

} 
a1

a2

b3

b4


{

a2

b3

}

b4 b4 b3 b2 b1

{
a4

b1

} {
a3

b2

} {
a2

b3

} {
a1

b4

}

Proposition 3.8. Let (R(I1, I2),+1, ·1) be a refined neutrosophic hyperring and let (K,+2, ·2) be a

hyperring. Define for all (x1, k1), (x2, k2) ∈ R(I1, I2)×K the hyperoperations ′′+′′ and ′′·′′ by

(x1, k1) + (x2, k2) = {(x3, k3) : x3 ∈ x1 +1 x2, k3 ∈ k1 +2 k2}

and

(x1, k1) · (x2, k2) = {(x3, k3) : x3 ∈ x1 ·1 x2, k3 ∈ k1 ·2 k2}.

Then (R(I1, I2)×K,+, ·) is a refined neutrosophic hyperring.

Proof. (1) That (R(I1, I2)×K,+) is a canonical hypergroup follows from the proof of Proposition

2.6 in [19] .

(2) We shall show that (R(I1, I2)×K, ·) is a refined neutrosophic semihypergroup.

Let (r1, k1), (r2, k2), (r3, k3) ∈ R(I1, I2)×K where r = (a, bI1, cI2).

(r1, k1) · ((r2, k2) · (r3, k3)) =

((a1, b1I1, c1I2), k1) · [((a2, b2I1, c2I2), k2) · ((a3, b3I1, c3I2), k3)]

= ((a1, b1I1, c1I2), k1) · {((p, qI1, sI2), k4) : p ∈ a2 ·1 a3,

q ∈ a2 ·1 b3 +1 b2 ·1 a3 +1 b2 ·1 b3 +1 b2 ·1 c3 +1 c2 ·1 b3, s ∈ a2 ·1 c3 +1 c2 ·1 a3 +1 c2 ·1 c3, k4 ∈ k2 ·2 k3}

= {((x, yI1, zI2), k5) : x ∈ a1 ·1 p,
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Table 2. Cayley table for the binary operation ′′·′′

· a1 a2 a3 a4 b1 b2 b3 b4

a1 a1 a1 a1 a1 a1 a1 a1 a1

a2 a1

{
a1

a2

} {
a1

a3

}
a a a

{
a1

a2

} {
a1

a2

}

a3 a1

{
a1

a3

} {
a1

a3

} {
a1

a3

} {
a1

a3

} {
a1

a3

} {
a1

a3

} {
a1

a3

}

a4 a1 a

{
a1

a3

}
a a a a a

b1 a1 a

{
a1

a3

}
a R(I1, I2) R(I1, I2) R(I1, I2) R(I1, I2)

b2 a1 a

{
a1

a3

}
a R(I1, I2)


a1

a3

b2

b4

 R(I1, I2)


a1

a3

b2

b4


b3 a1

{
a1

a2

} {
a1

a3

}
a R(I1, I2) R(I1, I2)


a1

a2

b3

b4




a1

a2

b3

b4


b4 a1

{
a1

a2

} {
a1

a3

}
a R(I1, I2)


a1

a3

b2

b4




a1

a2

b3

b4


{

a1

b4

}

y ∈ a1 ·1 q +1 b1 ·1 p+1 b1 ·1 q +1 b1 ·1 s+1 c1 ·1 q, z ∈ a1 ·1 s+1 c1 ·1 p+1 c1 ·1 s, k5 ∈ k1 ·2 k4}

= {((x, yI1, zI2), k5) : x ∈ a1 ·1 (a2 ·1 a3),

y ∈ a1 ·1 (a2 ·1 b3 +1 b2 ·1 a3 +1 b2 ·1 b3 +1 b2 ·1 c3 +1 c2 ·1 b3) +1 b1 ·1 (a2 ·1 a3) +1 b1 ·1 (a2 ·1 b3 +1

b2 ·1 a3 +1 b2 ·1 b3 +1 b2 ·1 c3 +1 c2 ·1 b3) +1 b1 ·1 (a2 ·1 c3 +1 c2 ·1 a3 +1 c2 ·1 c3) +1 c1 ·1 (a2 ·1 b3 +1

b2 ·1 a3 +1 b2 ·1 b3 +1 b2 ·1 c3 +1 c2 ·1 b3),

z ∈ a1 ·1 (a2 ·1 c3 +1 c2 ·1 a3 +1 c2 ·1 c3) +1 c1 ·1 (a2 ·1 a3) +1 c1 ·1 (a2 ·1 c3 +1 c2 ·1 a3 +1 c2 ·1 c3),

k5 ∈ k1 ·2 (k2 ·2 k3)}

= {((x, yI1, zI2), k5) : x ∈ a1 ·1 a2 ·1 a3,

y ∈ a1 ·1 a2 ·1 b3 +1 a1 ·1 b2 ·1 a3 +1 a1 ·1 b2 ·1 b3 +1 a1 ·1 b2 ·1 c3 +1 a1 ·1 c2 ·1 b3 +1 b1 ·1 a2 ·1 a3 +1

b1 ·1 a2 ·1 b3 +1 b1 ·1 b2 ·1 a3 +1 b1 ·1 b2 ·1 b3 +1 b1 ·1 b2 ·1 c3 +1 b1 ·1 c2 ·1 b3 +1 b1 ·1 a2 ·1 c3 +1 b1 ·1
c2 ·1 a3 +1 b1 ·1 c2 ·1 c3 +1 c1 ·1 a2 ·1 b3 +1 c1 ·1 b2 ·1 a3 +1 c1 ·1 b2 ·1 b3 +1 b2 ·1 c3 +1 c2 ·1 b3,

z ∈ a1·1a2·1c3+1a1·1c2·1a3+1a1·1c2·1c3+1c1·1a2·a3+1c1·1a2·1c3+1c1·1c2·1a3+1c1·1c2·1c3, k5 ∈

k1 ·2 k2 ·2 k3}

= {((x, yI1, zI2), k5) : x ∈ (a1 ·1 a2) ·1 a3,

y ∈ (a1 ·1 a2) ·1 b3 +1 (a1 ·1 b2 +1 b1 ·1 a2 +1 b1 ·1 b2 +1 b1 ·1 c2 +1 c1 ·1 b2) ·1 a3 +1 (a1 ·1 b2 +1 b1 ·1
a2 +1 b1 ·1 b2 +1 b1 ·1 c2 +1 c1 ·1 b2) ·1 b3 +1 (a1 ·1 b2 +1 b1 ·1 a2 +1 b1 ·1 b2 +1 b1 ·1 c2 +1 c1 ·1 b2) ·1
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c3 +1 (a1c2 +1 c1a2 +1 c1c2) ·1 b3,

z ∈ (a1 ·1 a2) ·1 c3 +1 (a1 ·1 c2 +1 c1 ·1 a2 +1 c1 ·1 c2) ·1 a3 +1 (a1 ·1 c2 +1 c1 ·1 a2 +1 c1 ·1 c2) ·1 c3, k5 ∈

(k1 ·2 k2) ·2 k3}

= {((m,nI1, hI2), k) : m ∈ a1 ·1 a2, n ∈ a1 ·1 b2 +1 b1 ·1 a2 +1 b1 ·1 b2 +1 b1 ·1 c2 +1 c1 ·1 b2, h ∈

a1c2 +1 c1a2 +1 c1c2, k ∈ k1 ·2 k2} · ((a3, b3I1, c3I2), k3)

= [((a1, b1I1, c1I2), k1) · ((a2, b2I1, c2I2), k2)] · ((a3, b3I1, c3I2))

= ((r1, k1) · (r2, k2)) · (r3, k3).

Accordingly, (R(I1, I2)×K, ·) is a refined neutrosophic semihypergroup.

Also, for all ((a, bI1, cI2), k) ∈ R(I1, I2)×K,
((a, bI1, cI2), k) · ((0, 0I1, 0I2), 0) = {((x, yI1, zI2), k1) : x ∈ a ·1 0, y ∈ a ·1 0 +1 b ·1 0 +1 c ·1 0,

z ∈ a ·1 0 +1 c · 0, k1 ∈ k ·2 0}
= {((0, 0I1, 0I2), 0)}.

Similarly, it can be shown that ((0, 0I1, 0I2), 0) · ((a, bI1, cI2), k) = {((0, 0I1, 0I2), 0)}.

Hence, ((0, 0I1, 0I2), 0) is a bilaterally absorbing element.

(3) For the distributivity of · over +.

Let a = ((x, yI1, zI2), t1), b = ((u, vI1, sI2), t2), c = ((k,mI1, nI2), t3) be arbitrary elements in

R(I1, I2)×K with x, y, z, u, v, s, k,m, n ∈ R and t1, t2, t3 ∈ K.
a · (b+ c) = a · {((h1, h2I1, h3I2), t4) : h1 ∈ u+1 k, h2 ∈ v +1 m,h3 ∈ s+1 n, t4 ∈ t2 +2 t3}

= {((x, yI1, zI2), t1) · ((h1, h2I1, h3I2), t4) : h1 ∈ u+1 k, h2 ∈ v +1 m,h3 ∈ s+1 n,

t4 ∈ t2 +2 t3}
= {((p1, p2I1, p3I2), t5) : p1 ∈ x ·1 h1, p2 ∈ x ·1 h2 +1 y ·1 h1 +1 y ·1 h2 +1 y ·1 h3

+1z ·1 h2, p3 ∈ x ·1 h3 +1 z ·1 h1 +1 z ·1 h3, t5 ∈ t1 ·2 t4}
= {((p1, p2I1, p3I2), t5) : p1 ∈ x ·1 u+1 x ·1 k,

p2 ∈ x ·1 v +1 x ·1 m+1 y ·1 u+1 y ·1 k +1 y ·1 v +1 y ·1 m+1 y ·1 s+1 y ·1 n+1

z ·1 v +1 z ·1 m, p3 ∈ x ·1 s+1 x ·1 n+1 z ·1 u+1 z ·1 k +1 z ·1 s+1 z ·1 n,
t5 ∈ t1 ·2 t2 +2 t1 ·2 t3}.

Now if we take p1 = g1 +1 g
′
1, p2 = g2 +1 g

′
2, p3 = g3 +1 g

′
3, t5 = h1 +2 h

′
1 then we have

a · (b+ c) = {((g1 +1 g
′
1, (g2 +1 g

′
2)I1, (g3 +1 g

′
3)I2), (h1 +2 h

′
1)) : g1 +1 g

′
1 ∈ x ·1 u+1 x ·1 k,

g2 +1 g
′
2 ∈ x ·1 v +1 x ·1 m+1 y ·1 u+1 y ·1 k +1 y ·1 v +1 y ·1 m+1 y ·1 s+1 y ·1 n+1

z ·1 v +1 z ·1 m, g3 +1 g
′
3 ∈ x ·1 s+1 x ·1 n+1 z ·1 u+1 z ·1 k +1 z ·1 s+1 z ·1 n,

h1 +2 h
′
1 ∈ t1 ·2 t2 +2 t1 ·2 t3}

= {((g1, g2I1, g3I2), h1) : g1 ∈ x ·1 u, g2 ∈ x ·1 v +1 y ·1 u+1 y ·1 v +1 y ·1 s+1 z ·1 v,
g3 ∈ x ·1 s+1 z ·1 u+1 z ·1 s, h1 ∈ t1 ·2 t2} +

{((g′1, g′2I1, g′3I2), h′1) : g′1 ∈ x ·1 k, g′2 ∈ x ·1 m+1 y ·1 k +1 y ·1 m+1 y ·1 n+1 z ·1 m,
g′3 ∈ x ·1 n+1 z ·1 k +1 z ·1 n, h′1 ∈ t1 ·2 t3}

= a · b+ a · c.
Similarly, we can show that (b+ c) · a = b · a+ c · a.

Therefore · is distributive over +. Hence (R(I1, I2),×K,+, ·) is a refined neutrosophic Hyperring.
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Proposition 3.9. Let (R(I1, I2),+1, ·1) and (K(I1, I2),+2, ·2) be any two refined neutrosophic hyper-

ring. Define for all (x1, k1), (x2, k2) ∈ R(I1, I2)×K(I1, I2) the hyperoperations ′′+′′ and ′′·′′ by

(x1, k1) + (x2, k2) = {(x3, k3) : x3 ∈ x1 +1 x2, k3 ∈ k1 +2 k2}

and

(x1, k1) · (x2, k2) = {(x3, k3) : x3 ∈ x1 ·1 x2, k3 ∈ k1 ·2 k2}.

Then (R(I1, I2)×K(I1, I2),+, ·) is a refined neutrosophic hyperring.

Proof. The proof is similar to the proof of Proposition 3.8.

Lemma 3.10. Let R(I1, I2) be a refined neutrosophic hyperring. A non-empty subset M(I1, I2) of

R(I1, I2) is a left(right) refined neutrosophic hyperideal if and only if for m1 = (p1, q1I1, s1I1),m2 =

(p2, q2I1, s2I1) ∈M(I1, I2) and x = (a, bI1, cI2) ∈ R(I1, I2)

(1) m1 −m2 ⊆M(I1, I2),

(2) x ·m1 ∈M(I1, I2) [m1 · x ∈M(I1, I2)].

Definition 3.11. Let H(I1, I2) and J(I1, I2) be any two nonempty subsets of a refined neutrosophic

hyperring R(I1, I2).

(1) The sum H(I1, I2) + J(I1, I2) = {(x, yI1, zI2) : x ∈ x1 + x2, y ∈ y1 + y2, z ∈ z1 + z2}.

For some x1, y1, z1 ∈ H, x2, y2, z2 ∈ J.

(2) The product

H(I1, I2)J(I1, I2) = {(x, yI1, zI2) : (x, yI1, zI2) ∈
n∑

i=1

(ai, biI1, ciI2) · (di, eiI1, fiI1), n ∈ Z+}.

Proposition 3.12. Let R(I1, I2) be a refined neutrosophic hyperring. Let H(I1, I2) and J(I1, I2) be

refined neutrosophic hyperideals of R(I1, I2) then :

(1) H(I1, I2) + J(I1, I2) is a refined neutrosophic hyperideal.

(2) H(I1, I2)J(I1, I2) is a refined neutrosophic hyperideal.

Proof. (1) Let x = (a, bI1, cI2), y = (d, eI1, fI2) ∈ H(I1, I2) + J(I1, I2) and let r = (g, hI1, kI2) ∈

R(I1, I2).

(i) x− y = (a, bI1, cI2)− (d, eI1, fI2) = (a, bI1, cI2) + (−d,−eI1,−fI2)

= {(p, qI1, rI2) : p ∈ a+ (−d), q ∈ b+ (−e), r ∈ c+ (−f)}
= {(p1 + p2, (q1 + q2)I1, (r1 + r2)I2) : p1 + p2 ∈ (a1 + a2) + (−d1 + (−d2)),

q1 + q2 ∈ (b1 + b2) + (−e1 + (−e2)), r1 + r2 ∈ (c1 + c2) + (−f1 + (−f2))}
= {(p1, q1I1, r1I2) : p1 ∈ a1 + (−d1), q1 ∈ b1 + (−e1), r1 ∈ c1 + (−f1)}+
{(p2, q2I1, r2I2) : p2 ∈ a2 + (−d2), q2 ∈ b2 + (−e2), r2 ∈ c2 + (−f2)}

= {(p1, q1I1, r1I2) : p1 ∈ a1 − d1, q1 ∈ b1 − e1, r1 ∈ c1 − f1}+
{(p2, q2I1, r2I2) : p2 ∈ a2 − d2, q2 ∈ b2 − e2, r2 ∈ c2 − f2}

= (x1 − y1) + (x2 − y2)

⊆ H(I1, I2) + J(I1, I2).
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(ii) r · x = (g, hI1, kI2) · (a, bI1, cI2)

= {(u, vI1,mI2) : u ∈ ga, v ∈ gb+ ha+ hb+ hc+ kb, m ∈ gc+ ka+ kc}
= {(u1 + u2, (v1 + v2)I1, (m1 +m2)I2) : u1 + u2 ∈ g(a1 + a2),

v1 + v2 ∈ g(b1 + b2) + h(a1 + a2) + h(b1 + b2) + h(c1 + c2) + k(b1 + b2),

m1 +m2 ∈ g(c1 + c2) + k(a1 + a2) + k(c1 + c2)}
= {(u1, v1I1,m1I2) : u1 ∈ ga1, v1 ∈ gb1 + ha1 + hb1 + hc1 + kb1,m ∈ gc1 + ka1 + kc1}+
{(u2, v2I1,m2I2) : u2 ∈ ga2, v2 ∈ gb2 + ha2 + hb2 + hc2 + kb2,m2 ∈ gc2 + ka2 + kc2}

= r · x1 + r · x2

⊆ H(I1, I2) + J(I1, I2).

(iii) x · r = (a, bI1, cI2) · (g, hI1, kI2)

= {(u, vI1,mI2) : u ∈ ag, v ∈ ah+ bg + bh+ bk + ch, m ∈ ak + cg + ck}
= {(u1 + u2, (v1 + v2)I1, (m1 +m2)I2) : u1 + u2 ∈ (a1 + a2)g,

v1 + v2 ∈ (a1 + a2)h+ (b1 + b2)g + (b1 + b2)h+ (b1 + b2)k + (c1 + c2)h,

m1 +m2 ∈ (a1 + a2)k + (c1 + c2)g + (c1 + c2)k}
= {(u1, v1I1,m1I2) : u1 ∈ a1g, v1 ∈ a1h+ b1g + b1h+ b1k + c1h,m1 ∈ a1k + c1g + c1k}+
{(u2, v2I1,m2I2) : u2 ∈ a2g, v2 ∈ a2h+ b2g + b2h+ b2k + c2h,m2 ∈ a2k + c2g + c2k}

= x1 · r + x2 · r
⊆ H(I1, I2) + J(I1, I2).

(2) Let x = (a, bI1, cI2), y = (d, eI1, fI2) ∈ H(I1, I2)J(I1, I2) and let r = (g, hI1, kI2) ∈ R(I1, I2).

Here

(a, bI1, cI2) ∈
n∑

i=1

(ai, biI, ciI) · (a′i, b′iI1, c′iI2) and (d, eI1, fI2) ∈
n∑

i=1

(di, eiI1, fiI2) · (d′i, e′iI1, f ′iI2).

For (ai, biI1, ciI2), (di, eiI1, fiI2) ∈ H(I1, I2), (a′i, b
′
iI1, c

′
iI2), (d′i, e

′
iI1, f

′
iI2) ∈ J(I1, I2),

ai, bi, ci, di, ei, fi ∈ H and a′i, b
′
i, c
′
i, d
′
i, e
′
i, f
′
i ∈ J.

So we have

a ∈
n∑

i=1

aia
′
i, b ∈

n∑
i=1

(aib
′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i), c ∈

n∑
i=1

(aic
′
i + cia

′
i + cic

′
i)

and

d ∈
n∑

i=1

did
′
i, e ∈

n∑
i=1

(die
′
i + eid

′
i + eie

′
i + eif

′
i + fie

′
i), f ∈

n∑
i=1

(dif
′
i + fid

′
i + fif

′
i).

(i) x− y = (a, bI1, cI2)− (d, eI1, fI2) = (a, bI1, cI2) + (−d,−eI1,−fI2)

= {(u, vI1,mI2) : u ∈ a− d, v ∈ b− e, m ∈ c− f}
= {(u, vI1,mI2) : u ∈

∑n
i=1 aia

′
i −

∑n
i=1 did

′
i,

v ∈
∑n

i=1(aib
′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i)−

∑n
i=1(die

′
i + eid

′
i + eie

′
i + eif

′
i + fie

′
i),

m ∈
∑n

i=1(aic
′
i + cia

′
i + cic

′
i)−

∑n
i=1(dif

′
i + fid

′
i + fif

′
i)}

= {(u, vI1,mI2) : u ∈
∑n

i=1(aia
′
i + (−did′i)),

v ∈
∑n

i=1(aib
′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i + (−die′i) + (−eid′i) + (−eie′i) + (−eif ′i)

+(−fie′i)), m ∈
∑n

i=1(aic
′
i + cia

′
i + cic

′
i + (−dif ′i) + (−fid′i) + (−fif ′i))}

⊆ H(I1, I2)J(I1, I2).
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(ii) r · x = (g, hI1, kI2) · (a, bI1, cI2)

= {(u, vI1,mI2) : u ∈ ga, v ∈ gb+ ha+ hb+ hc+ kb, m ∈ gc+ ka+ kc}
= {(u, vI1,mI2) : u ∈ g

∑n
i=1 aia

′
i,

v ∈ g
∑n

i=1(aib
′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i) + h

∑n
i=1 aia

′
i+

h
∑n

i=1(aib
′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i) + h

∑n
i=1(aic

′
i + cia

′
i + cic

′
i)+

k
∑n

i=1(aib
′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i),

m ∈ g
∑n

i=1(aic
′
i + cia

′
i + cic

′
i) + k

∑n
i=1 aia

′
i + k

∑n
i=1(aic

′
i + cia

′
i + cic

′
i)}

= {(u, vI1,mI2) : u ∈
∑n

i=1 gaia
′
i,

v ∈
∑n

i=1(gaib
′
i + gbia

′
i + gbib

′
i + gbic

′
i + gcib

′
i + haia

′
i + haib

′
i + hbia

′
i + hbib

′
i+

hbic
′
i + hcib

′
i + haic

′
i + hcia

′
i + hcic

′
i + kaib

′
i + kbia

′
i + kbib

′
i + kbic

′
i + kcib

′
i),

m ∈
∑n

i=1(gaic
′
i + gcia

′
i + gcic

′
i + kaia

′
i + kaic

′
i + kcia

′
i + kcic

′
i)}

⊆ H(I1, I2)J(I1, I2).

(ii) x · r = (a, bI1, cI2) · (g, hI1, kI2)

= {(u, vI1,mI2) : u ∈ ag, v ∈ ah+ bg + bh+ bk + ch, m ∈ ak + cg + ck}
= {(u, vI1,mI2) : u ∈

∑n
i=1 aia

′
ig,

v ∈
∑n

i=1 aia
′
ih+

∑n
i=1(aib

′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i)g+∑n

i=1(aib
′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i)h+

∑n
i=1(aib

′
i + bia

′
i + bib

′
i + bic

′
i + cib

′
i)k+∑n

i=1(aic
′
i + cia

′
i + cic

′
i)h,

m ∈
∑n

i=1 aia
′
ik +

∑n
i=1(aic

′
i + cia

′
i + cic

′
i)g +

∑n
i=1(aic

′
i + cia

′
i + cic

′
i)k}

= {(u, vI1,mI2) : u ∈
∑n

i=1 aia
′
ig,

v ∈
∑n

i=1(aia
′
ih+ aib

′
ig + bia

′
ig + bib

′
ig + bic

′
ig + cib

′
ig + aib

′
ih+ bia

′
ih+ bib

′
ih+

bic
′
ih+ cib

′
ih+ aib

′
ik + bia

′
ik + bib

′
ik + bic

′
ik + cib

′
ik + aic

′
ih+ cia

′
ih+ cic

′
ih),

m ∈
∑n

i=1(aia
′
ik + aic

′
ig + cia

′
ig + cic

′
ig + aic

′
ik + cia

′
ik + cic

′
ik)}

⊆ H(I1, I2)J(I1, I2).

Hence H(I1, I2)J(I1, I2) is a refined neutrosophic hyperideal of R(I1, I2).

Proposition 3.13. Let R(I1, I2) be a refined neutrosophic hyperrings and Ji(I1, I2)i∈Λ be a family of

refined neutrosophic hyperideals of R(I1, I2), then
⋂

i∈Λ Ji(I1, I2) is a refined neutrosophic hyperideal of

R(I1, I2).

Proof. The proof is the same as the proof in classical case.

Proposition 3.14. Let H(I1, I2) and J(I1, I2) be a refined neutrosophic hyperideals of a refined neu-

trosophic hyperring R(I1, I2) such that J(I1, I2) is normal in R(I1, I2). Then

(1) H(I1, I2) ∩ J(I1, I2) is a normal refined neutrosophic hyperideal of H(I1, I2).

(2) J(I1, I2) is a normal refined neutrosophic hyperideal of H(I1, I2) + J(I1, I2).

Proof. (1) That H(I1, I2)∩ J(I1, I2) is a refined neutrosophic hyperideal of H(I1, I2) can be easily

established. So, it remains to show that H(I1, I2) ∩ J(I1, I2) is normal in H(I1, I2).
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Let x = (a, bI1, cI2) ∈ H(I1, I2) ∩ J(I1, I2), h = (u, vI1, tI2) ∈ H(I1, I2) with a, b, c ∈ H ∩ J

and u, v, t ∈ H. Then

h+H(I1, I2) ∩ J(I1, I2)− h = h+ x− h for x ∈ H(I1, I2) ∩ J(I1, I2)

= (u, vI1, tI2) + (a, bI1, cI2)− (u, vI1, tI2)

= {(p, qI1, rI2) : p ∈ u+ a− u, q ∈ v + b− v, r ∈ t+ c− t}
= {(p, qI1, rI2) : p ∈ u+ (H ∩ J)− u, q ∈ v + (H ∩ J)− v,

r ∈ t+ (H ∩ J)− t}
= {(p, qI1, rI2) : p ∈ u+ (H ∩ J)− u ⊆ H ∩ J,

q ∈ v + (H ∩ J)− v ⊆ H ∩ J, r ∈ t+ (H ∩ J)− t ⊆ H ∩ J}
= {(p, qI1, rI2) : p ∈ H ∩ J, q ∈ H ∩ J, r ∈ H ∩ J}
⊆ H(I1, I2) ∩ J(I1, I2).

Accordingly, H(I1, I2) ∩ J(I1, I2) is a normal refined neutrosophic hyperideal of H(I1, I2).

(2) That J(I1, I2) is a refined neutrosophic hyperideal of H(I1, I2) + J(I1, I2) can be easily es-

tablished. So, it remains to show that J(I1, I2) is normal in H(I1, I2) + J(I1, I2). Let x =

(a, bI1, cI2) ∈ J(I1, I2), h = (u, vI1, tI2) = (u1+u2, (v1+v2)I1, (t1+t2)I2) ∈ H(I1, I2)+J(I1, I2)

with a, b, c, u2, v2, t2 ∈ J and u1, v1, t2 ∈ H. Then

h+ J(I1, I2)− h = h+ x− h for x ∈ J(I1, I2)

= (u, vI1, tI2) + (a, bI1, cI2)− (u, vI1, tI2)

= ((u1 + u2), (v1 + v2)I1, (t1 + t2)I2) + (a, bI1, cI2)

−((u1 + u2), (v1 + v2)I1, (t1 + t2)I2)

= {(p, qI1, rI2) : p ∈ (u1 + u2) + a− (u1 + u2), q ∈ (v1 + v2) + b− (v1 + v2),

r ∈ (t1 + t2) + c− (t1 + t2)

= {(p, qI1, rI2) : p ∈ (u1 + u2) + J − (u1 + u2), q ∈ (v1 + v2) + J − (v1 + v2),

r ∈ (t1 + t2) + J − (t1 + t2)}
= {(p, qI1, rI2) : p ∈ u1 + (u2 + J − u2)− u1, q ∈ v1 + (v2 + J − v2)− v1,

r ∈ t1 + (t2 + J − t2)− t1}
⊆ {(p, qI1, rI2) : p ∈ u1 + J − u1, q ∈ v1 + J − v1, r ∈ t1 + J − t1}
= {(p, qI1, rI2) : p ∈ u1 + J − u1 ⊆ J, q ∈ v1 + J − v1 ⊆ J, r ∈ t1 + J − t1 ⊆ J}
= {(p, qI1, rI2) : p ∈ J, q ∈ J, r ∈ J}
⊆ J(I1, I2).

Accordingly, J(I1, I2) is a normal refined neutrosophic hyperideal of H(I1, I2) + J(I1, I2).

Let R(I1, I2) be a refined neutrosophic hyperring, and let H(I1, I2) be a refined neutrosophic hy-

perideal of R(I1, I2). Since H(I1, I2) is a refined neutrosophic subcanonical hypergroup of R(I1, I2), if

(R/H,+) is a canonical hypergroup then

R(I1, I2)/H(I1, I2) = {(̄x, yI1, zI2) : (x, yI1, zI2) ∈ R(I1, I2)}
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is a refined neutrosophic canonical hypergroup under the hyperaddition +′ defined for

r1 +H(I1, I2), r2 +H(I1, I2) ∈ R(I1, I2)/H(I1, I2) with r1 = (x1, y1I1, ziI2), r2 = (x2, y2I1, z2I2), by

r1 +H(I1, I2) +′ r2 +H(I1, I2) = (r1 +′ r2) +H(I1, I2).

Define on R(I1, I2)/H(I1, I2) a hypermultiplication ·′ by

r1 +H(I1, I2) ·′ r2 +H(I1, I2) = (r1r2) +H(I1, I2).

It can be shown that (R(I1, I2)/H(I1, I2),+′, ·′) is a refined neutrosophic hyperring if (R/H,+, ·) is a

hyperring.

Definition 3.15. Let (R(I1, I2),+1, ·1) and (P (I1, I2),+2, ·2) be any two refined neutrosophic hyper-

grings and let

φ : R(I1, I2) −→ P (I1, I2)

be a mapping from R(I1, I2) into P (I1, I2).

(1) φ is called a refined neutrosophic hyperring homomorphism if:

(a) φ is hyperring homomorphism,

(b) φ(Ik) = Ik for k = 1, 2.

(2) φ is called a good refined neutrosophic hyperring homomorphism if:

(a) φ is good hyperring homomorphism,

(b) φ(Ik) = Ik for k = 1, 2.

(3) φ is called a refined neutrosophic hyperring isomorphism if φ is a refined neutrosophic hyperring

homomorphism and φ−1 is also a refined neutrosophic hyperring homomorphism.

Definition 3.16. Let φ : R(I1, I2) −→ P (I1, I2) be a refined neutrosophic hyperring homomorphism

from a refined neutrosophic hyperring R(I1, I2) into a refined neutrosophic hyperring P (I1, I2).

(1) The Kerφ = {(u, vI1, wI2) ∈ R(I1, I2) : φ((u, vI1, wI2)) = (0, 0I1, 0I2)}.

(2) The Imφ = {φ((u, vI1, wI2)) : (u, vI1, wI2) ∈ R(I1, I2)}.

Proposition 3.17. Let φ : R(I1, I2) −→ P (I1, I2) be a refined neutrosophic homomorphism.

(1) The kernel of φ is not a neutrosophic subhyperring of R(I1, I2).

(2) The kernel of φ is not a neutrosophic hyper ideal of R(I1, I2).

(3) The image of φ is a neutrosophic subhyperring of P (I1, I2).

Proof. (1) It follows easily from 1 of definition 3.16.

(2) It follows from the Proof of 1.

(3) The proof is similar to the proof in classical case.

It can be shown that kerφ is just a subhyperrings of R(I1, I2).
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4. Conclusions

This paper studied the refinement of a type of neutrosophic hyperrings in which ′′+′′ and ′′·′′ are

hyperoperations and presented their basic properties. It was established that every refined neutrosophic

hyperring is a hyperring. It was also shown that the kernel of a refined neutrosophic hyperring homo-

morphism is not a refined neutrosophic hyperideal but the image is a refined neutrosophic subhyperring.
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Abstract: In this article, we present the notion of neutrosophic tri-topological space as a 

generalization of neutrosophic bi-topological space. Besides, we study the different types of open sets 

and closed sets namely neutrosophic tri-open sets, neutrosophic tri-closed sets, neutrosophic tri-semi-

open sets, neutrosophic tri-pre-closed sets, etc. via neutrosophic tri-topological spaces. Further, we 

investigate several properties, and prove some propositions, theorems on neutrosophic tri-

topological spaces. 

 

Keywords: Tri-open set; Tri-closed set; Tri-semi-open set; Tri-pre-open set; Neutrosophic crisp tri-

topology; Neutrosophic tri-topology. 

 

1. Introduction 

 

The concept of Neutrosophic Set (NS) was grounded by Smarandache [1] by extending the concept 

of  Fuzzy Set 2[] and intuitionistic FS [3]. The notion of Neutrosophic Topological Space (NTS) was 

developed by Salama and Alblowi [4] in 2012. Afterwards, Arokiarani et al. [5] studied the 

neutrosophic semi-open functions and established a relation between them. Iswaraya and Bageerathi 

[6] introduced the notion of neutrosophic semi-closed set and neutrosophic semi-open set via NTSs. 

Later on, Dhavaseelan, and Jafari [7] introduced the generalized neutrosophic closed sets. Thereafter, 

Pushpalatha and Nandhini [8] studied the neutrosophic generalized closed sets in NTS. Shanthi et al. 

[9] introduced the concept of neutrosophic generalized semi closed sets in NTS. Ebenanjar et al. [10] 

presented the neutrosophic b-open sets in NTS. Maheswari et al. [11] introduced the concept of 

neutrosophic generalized b-closed sets in NTS. Afterwards, the concept of generalized neutrosophic 

b-open set via NTS was introduced by Das and Pramanik [12] in 2020. Thereafter, the concept of 

neutrosophic Φ-open sets and neutrosophic Φ-continuous functions was presented by Das and 

Pramanik [13].  

Email: suman.mathematics@tripurauniv.in
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The notion of neutrosophic crisp topology on neutrosophic crisp set was introduced by Salama 

and Alblowi [14]. Later on, the notion of neutrosophic crisp tri-topological space was introduced by 

Al-Hamido and Gharibah [15] in 2018.  

 

In 1963, Kelly [16] introduced the notion of bi-topological space. Thereafter, the concept of 

neutrosophic bi-topological space was presented by Ozturk and Ozkan [17] in 2019. Later on, Das 

and Tripathy [18] introduced the pairwise neutrosophic b-open sets via neutrosophic bi-topological 

spaces. Recently, Tripathy and Das [19] studied the concept of pairwise neutrosophic b-continuous 

functions via neutrosophic bi-topological spaces. 

So, we received enough motivation to do research on neutrosophic tri-topological space to extend 

the concept of neutrosophic bi-topological space. 

In this study, we procure the notion of neutrosophic tri-topological space as a generalization of 

the neutrosophic bi-topological space. Besides, we introduce the different types of open sets and 

closed sets namely, neutrosophic tri-open sets, neutrosophic tri-closed sets, neutrosophic tri-semi-

open sets, neutrosophic tri-pre-closed sets, etc. via neutrosophic tri-topological spaces. Further, we 

investigate several properties of these kinds of neutrosophic tri-open sets. 

Research Gap: No investigation on neutrosophic tri-topological space has been reported in the 

recent literature. 

Motivation: To reduce the research gap, we present the notion and different properties of 

neutrosophic tri-topological space. 

 

The remaining part of this article is divided into the following sections: 

Section-2 is on preliminaries and definitions. In this section, we give some definitions and 

theorems, which are relevant to this article. In section-3, we present the notion of neutrosophic tri-

topology and neutrosophic tri-topological space and also we give proofs of some theorems on 

neutrosophic tri-topological space. In section-4, we give the concluding remarks of the work done in 

the present article. 

 

Throughout this article, we use the following short terms for the clarity of the presentation. 

 

 

 

 

 

 

 

 

 

 

 

Short Terms 

Neutrosophic Set NS 

Neutrosophic Topology NT 

Neutrosophic Topological Space NTS 

Neutrosophic Open Set N-O-S 

Neutrosophic Closed Set N-O-S 

Neutrosophic Semi-Open NSO 

Neutrosophic Pre-Open NPO 

Neutrosophic Bi-Topological Space NBTS 

Neutrosophic Tri-Topological Space  N-Tri-TS 
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2. Some Relevant Definitions: 

Definition 2.1.[1] A neutrosophic set L over a universe of discourse Ψ is defined as follows: 

L={(n, TL(n), IL(n), FL(n)): nΨ}, 

where TL(n), IL(n), FL(n) (]-0,1+[) are respectively denotes the truth, indeterminacy and falsity 

membership values of nΨ, and so -0 TL(n) + IL(n) + FL(n)  3+ for all nΨ. 

Definition 2.2.[1] The neutrosophic null set (0N) and neutrosophic whole set (1N) over a universe of 

discourse Ψ are defined as follows: 

(i) 0N ={(n,0,0,1): nΨ}; 

(ii) 1N ={(n,1,0,0): nΨ}. 

Obviously, 0N  1N. 

Definition 2.3.[20] Assume that Ψ be a universe of discourse. Then, a neutrosophic crisp set Q is 

defined by Q={Q1, Q2, Q3}, where Qi (i=1,2,3) is a subset of Ψ such that Qi  Qj = (i, j= 1,2,3 and ij) 

Definition 2.4.[4] Assume that Ψ be a universe of discourse, and  be a set of some NSs over Ψ. 

Then,  is called a Neutrosophic Topology (NT) on Ψ if the following axioms hold: 

(i) 0N, 1N  ; 

(ii) X1, X2  X1X2 ; 

(iii) {Xi : i}    Xi . 

The pair (Ψ, ) is said to be an NTS. If X, then X is called a neutrosophic-open-set (N-O-S) and 

its complement Xc is called a neutrosophic-closed-set (N-C-S). 

Definition 2.5.[17] Assume that (Ψ, 1) and (Ψ, 2) be any two different NTSs. Then, we can call the 

triplet (Ψ, 1, 2) as a Neutrosophic Bi-Topological Space (NBTS). 

Definition 2.6.[17] Assume that (Ψ, 1, 2) be an NBTS. Then, a neutrosophic subset X of Ψ is said to 

be a pairwise neutrosophic open set in (Ψ, 1, 2) if there exists an N-O-S T1 in (Ψ, 1) and an N-O-S T2 

in (Ψ, 2) such that X = T1T2. 

Theorem 3.1.[18] Let (Ψ, 1, 2) be an NBTS. Then, a neutrosophic subset X of Ψ is called as 

(i) ij –neutrosophic-semi-open if and only if X⊆ 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗
(𝑋); 

(ii) ij –neutrosophic-pre-open if and only if X⊆ 𝑁𝑖𝑛𝑡
𝑗
𝑁𝑐𝑙

𝑖 (𝑋); 

(iii) ij –neutrosophic-b-open if and only if X⊆ 𝑁𝑐𝑙
𝑖 𝑁𝑖𝑛𝑡

𝑗
(𝑋) ∪ 𝑁𝑖𝑛𝑡

𝑗
𝑁𝑐𝑙

𝑖 (𝑋). 

Theorem 3.2.[18] Assume that (Ψ, 1, 2) be an NBTS. Then, every ij-neutrosophic-pre-open (ij-

neutrosophic-semi-open) set is a ij-neutrosophic-b-open. 

Definition 2.7.[18] Assume that (Ψ, 1, 2) be an NBTS. Then X, an NS over Ψ is said to be a 

(i) pairwise ij-neutrosophic-semi-open set (pairwise ij-neutrosophic-pre-open set) in an NBTS (Ψ, 1, 

2) if and only if X=TK, where T is a ij-neutrosophic-semi-open set (ij-neutrosophic-pre-open set) 

and K is a ji-neutrosophic-semi-open set (ji-neutrosophic-pre-open set) in (Ψ, 1, 2). 

(ii) pairwise ij-neutrosophic-b-open set in an NBTS (Ψ, 1, 2) if X=TK, where T is a ij-neutrosophic- 

b-open set and K is a ji-neutrosophic-b-open set in (Ψ, 1, 2). 

Neutrosophic Tri-Open Set N-tri-OS 

Neutrosophic Tri-Closed Set N-tri-CS 
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Theorem 3.3.[18] Assume that (Ψ, 1, 2) be an NBTS. If X is a pairwise ij-neutrosophic-semi open 

(pairwise ij-neutrosophic-pre-open) set, then it is also a pairwise ij-neutrosophic-b-open set. 

Theorem 3.4.[18] In an NBTS (Ψ, 1, 2), the union of any two pairwise ij-neutrosophic-b-open sets is 

a pairwise ij-neutrosophic-b-open set. 

Definition 2.8.[15] Assume that 1, 2 and 3 be any three neutrosophic crisp topology on a universe 

of discourse W. Then, (W, 1, 2, 3) is called a neutrosophic crisp tri-topological space. 

 

3. Neutrosophic Tri-Topological Space: 

In this section, we introduce the notion of neutrosophic tri-topological space, and formulate 

several results on it. 

Definition 3.1. Suppose that (Ψ, 1), (Ψ, 2) and (Ψ, 3) be any three different NTSs. Then, the structure 

(Ψ, 1, 2, 3) is called a neutrosophic tri-topological space (N-Tri-TS). 

Example 3.1. Let Ψ={u, v, w} be a universe of discourse. Let X1, X2, Y1, Y2, Y3, Z1 and Z2 be seven NSs 

over Ψ such that: 

X1={(u,0.9,0.3,0.7), (v,0.5,0.6,0.8), (w,0.3,0.5,0.2)}; 

X2={(u,0.7,0.4,0.7), (v,0.5,0.9,0.9), (w,0.1,0.8,0.4)}; 

Y1= {(u,0.9,0.3,0.7), (v,0.5,0.6,0.8), (w,0.3,0.5,0.2)}; 

Y2= {(u,1.0,0.2,0.5), (v,0.9,0.5,0.8), (w,0.5,0.2,0.1)}; 

Y3= {(u,1.0,0.2,0.3), (v,1.0,0.1,0.8), (w,0.9,0.1,0.1)}; 

Z1= {(u,0.5,0.2,0.5), (v,0.9,0.4,0.3), (w,0.7,0.2,0.5)}; 

Z2= {(u,0.4,0.5,0.6), (v,0.5,0.6,0.4), (w,0.7,0.6,0.6)}; 

Then, clearly 1={0N, 1N, X1, X2}, 2={0N, 1N, Y1, Y2, Y3} and 3={0N, 1N, Z1, Z2} are three different NTs on 

Ψ. So, (Ψ, 1, 2, 3) is a neutrosophic tri-topological space. 

Definition 3.2. Assume that (Ψ , 1, 2, 3) be an N-Tri-TS. Then R, an NS over Ψ  is called a 

neutrosophic tri-open set (N-tri-OS) if R123. A neutrosophic set R is called a neutrosophic tri-

closed set (N-Tri-CS) if and only if Rc is an N-Tri-OS in (Ψ, 1, 2, 3). 

Remark 3.1. The collection of all neutrosophic tri-open sets and neutrosophic tri-closed sets in (Ψ, 1, 

2, 3) are denoted by N-Tri-O(Ψ) and N-Tri-C(Ψ) respectively. 

Theorem 3.1. Every N-O-S in (Ψ, i), i=1,2,3 is a neutrosophic tri-open set in (Ψ, 1, 2, 3). 

Proof. Assume that W be an N-O-S in (Ψ, i), i=1,2,3. Therefore, Wi, i=1,2,3. This implies, W 

⋃ 𝑖𝑖{1,2,3} . Hence, W is a neutrosophic tri-open set in (Ψ, 1, 2, 3). Therefore, every N-O-S in (Ψ, i), i 

=1,2,3 is a neutrosophic tri-open set in (Ψ, 1, 2, 3). 

Example 3.2. Let us consider an N-Tri-TS (Ψ , 1, 2, 3) as shown in Example 3.1. Then, the 

neutrosophic open sets X1, X2 (in (Ψ, 1)), Y1, Y2, Y3 (in (Ψ, 2)), Z1, Z2 (in (Ψ, 3)) are neutrosophic tri-

open sets in (Ψ, 1, 2, 3). 

Remark 3.2. In an N-Tri-TS (Ψ, 1, 2, 3), the union of two neutrosophic tri-open sets may not be a 

neutrosophic tri-open set. This follows from the following example. 

Example 3.3. Consider the N-Tri-TS (Ψ, 1, 2, 3) which has been shown in Example 3.1. Then, clearly 

Y3 and Z1 are two neutrosophic tri-open sets in (Ψ, 1, 2, 3). But their union Y3Z1={(u,1.0,0.2,0.3), 
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(v,1.0,0.1,0.3), (w,0.9,0.1,0.1)} is not a neutrosophic tri-open set, because Y3Z1⋃ 𝑖𝑖{1,2,3} . Hence, the 

union of two neutrosophic tri-open sets may not be a neutrosophic tri-open set. 

Remark 3.3. In an N-Tri-TS (Ψ, 1, 2, 3), the intersection of two neutrosophic tri-open sets may not 

be a neutrosophic tri-open set. This follows from the following example. 

Example 3.4. Consider the N-Tri-TS (Ψ, 1, 2, 3) which is shown in Example 3.1. Then, clearly X1 and 

Z2 are two neutrosophic tri-open sets in (Ψ , 1, 2, 3). But their union X1Z2={(u,0.4,0.5,0.7), 

(v,0.5,0.6,0.8), (w,0.3,0.6,0.6)} is not a neutrosophic tri-open set, because X1Z2⋃ 𝑖𝑖{1,2,3} . Hence, the 

intersection of two neutrosophic tri-open sets may not be a neutrosophic tri-open set. 

Theorem 3.2. Every N-C-S in (Ψ, i) (i=1,2,3) is a neutrosophic tri-closed set in (Ψ, 1, 2, 3). 

Proof. Assume that W be an N-C-S in (Ψ, i). So Wc is an N-O-S in (Ψ, i) (i=1,2,3). Therefore, Wci, 

i=1,2,3. This implies, Wc⋃ 𝑖𝑖{1,2,3} . This implies, Wc is a neutrosophic tri-open set in (Ψ, 1, 2, 3). 

Therefore, W is a neutrosophic tri-closed set in (Ψ, 1, 2, 3). Hence, every N-C-S in (Ψ, i), i=1,2,3 is a 

neutrosophic tri-open set in (Ψ, 1, 2, 3). 

Example 3.5. Suppose that (Ψ, 1, 2, 3) be an N-Tri-TS as shown in Example 3.1. Clearly, X1c = 

{(u,0.1,0.7,0.3), (v,0.5,0.4,0.2), (w,0.7,0.5,0.8)} , X2c = {(u,0.3,0.6,0.3), (v,0.5,0.1,0.1), (w,0.9,0.2,0.6)} are 

NCSs in (Ψ, 1), Y1c = {(u,0.1,0.7,0.3), (v,0.1,0.5,0.2), (w,0.5,0.8,0.9)},  Y2c = {(u,0.0,0.8,0.5), (v,0.1,0.5,0.2), 

(w,0.5,0.8,0.9)}, Y3c = {(u,0.0,0.8,0.7), (v,0.0,0.9,0.2), (w,0.1,0.9,0.9)} are NCSs in (Ψ , 2), and Z1c = 

{(u,0.5,0.8,0.5), (v,0.1,0.6,0.7), (w,0.3,0.8,0.5)}, Z2c = {(u,0.6,0.5,0.4), (v,0.5,0.4,0.6), (w,0.3,0.4,0.4)} are 

NCSs in (Ψ, 3). Therefore, X1, X2 are NOSs in (Ψ, 1), Y1, Y2, Y3 are NOSs in (Ψ, 2), and Z1, Z2 are NOSs 

in (Ψ, 3). By Example 3.2, X1, X2, Y1, Y2, Y3, Z1 and Z2 are neutrosophic tri-open sets in (Ψ, 1, 2, 3). 

Therefore, by definition 3.2, X1c, X2c, Y1c, Y2c, Y3c, Z1c and Z2c are neutrosophic tri-closed sets in (Ψ, 1, 

2, 3). 

Definition 3.3. In an N-Tri-TS (Ψ, 1, 2, 3), an NS G over Ψ is called a neutrosophic tri-semi-open 

set if G is a neutrosophic semi open set in at least one of three NTSs (Ψ, 1), (Ψ, 2), and (Ψ, 3). 

Example 3.6. Consider the N-Tri-TS ( Ψ , 1, 2, 3) which is shown in Example 3.1. Then, 

W={(u,1.0,0.2,0.5), (v,0.7,0.5,0.7), (w,0.9,0.8,0.3)} is a neutrosophic tri-semi-open set in (Ψ, 1, 2, 3), 

because W is a neutrosophic semi open set in (Ψ, 1). 

Definition 3.4. In an N-Tri-TS (Ψ, 1, 2, 3), a neutrosophic set G over Ψ is called a neutrosophic tri-

pre-open set if G is a neutrosophic pre-open set in at least one of three NTSs (Ψ, 1), (Ψ, 2) and (Ψ, 3). 

Example 3.7. Consider the N-Tri-TS ( Ψ , 1, 2, 3) which is shown in Example 3.1. Then, 

W={(u,0.5,0.3,0.2), (v,0.6,0.3,0.2), (w,0.8,0.4,0.2)} is a neutrosophic tri-pre-open set in (Ψ, 1, 2, 3), 

because W is a neutrosophic pre- open set in (Ψ, 1). 

Definition 3.5. In an N-Tri-TS (Ψ, 1, 2, 3), an NS G over Ψ is called a neutrosophic tri-b-open set if 

G is a neutrosophic b-open set in at least one of three NTSs (Ψ, 1), (Ψ, 2), and (Ψ, 3). 

Example 3.8. Consider the N-Tri-TS ( Ψ , 1, 2, 3) which is shown in Example 3.1. Then, 

W={(u,0.9,0.3,0.6), (v,0.8,0.6,0.4), (w,0.9,0.9,0.9)} is a neutrosophic tri-b-open set in (Ψ, 1, 2, 3), because 

W is a neutrosophic b-open set in (Ψ, 1). 

Remark 3.4. Assume that (Ψ, 1, 2, 3) be an N-Tri-TS. Let 1,2,3= 1 2 3. Then, 1,2,3 may not be a 

neutrosophic topology on Ψ in general. This follows from the following example. 
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Example 3.9. Suppose that (Ψ, 1, 2, 3) is a neutrosophic tri-topological space, where 1={0N, 1N, 

{(u,0.6,0.3,0.6), (v,0.5,0.4,0.5), (w,0.8,0.5,0.8)}, {(u,0.7,0.1,0.4), (v,0.9,0.3,0.3), (w,0.9,0.1,0.5)}}, 2={0N, 1N, 

{(u,1.0,0.3,0.8), (v,0.8,0.4,0.7), (w,0.8,0.6,0.8)}, {(u,0.8,0.4,0.9), (v,0.5,0.5,1.0), (w,0.5,0.8,1.0)}}, 3={0N, 1N, 

{(u,0.5,0.2,0.5), (v,0.9,0.4,0.3), (w,0.7,0.2,0.5)}, {(u,0.4,0.5,0.6), (v,0.5,0.6,0.4), (w,0.7,0.6,0.6)}} are three 

different NTs on Ψ. Clearly, {(u,0.7,0.1,0.4), (v,0.9,0.3,0.3), (w,0.9,0.1,0.5)} and {(u,0.8,0.4,0.9), (v,0.5, 

0.5,1.0), (w,0.5,0.8,1.0)} Î 1,2,3, but their intersection {(u,0.7,0.4,0.9), (v,0.5,0.5,1.0), (w,0.5,0.8,1.0)} Ï  

1,2,3. Hence, 1,2,3 does not form a topology on Ψ. 

Definition 3.6. Assume that (Ψ, 1, 2, 3) is an N-Tri-TS. Then R, an NS over Ψ is said to be a 

neutrosophic tri-t-open set in (Ψ, 1, 2, 3) if and only if there exist neutrosophic open sets R1 in 1, R2 

in 2, and R3 in 3 such that R = R1R2R3. 

Example 3.10. Consider the N-Tri-TS (Ψ, 1, 2, 3) as shown in Example 3.7. Then, W={(u,1.0,0.2,0.5), 

(v,0.9,0.4,0.3), (w,0.8,0.2,0.5)} is a neutrosophic tri-t-open set, since there exist NOSs R1={(u,0.6,0.3,0.6), 

(v,0.5,0.4,0.5), (w,0.8,0.5,0.8)} in 1, R2={(u,1.0,0.3,0.8), (v,0.8,0.4,0.7), (w,0.8,0.6,0.8)} in 2, and 

R3={(u,0.5,0.2,0.5), (v,0.9,0.4,0.3), (w,0.7,0.2,0.5)} in 3 such that W= R1 R2R3. 

Remark 3.5. In an N-Tri-TS (Ψ, 1, 2, 3), an NS G is called a neutrosophic tri-t-closed set if and only 

if  Gc is a neutrosophic tri-t-open set in (Ψ, 1, 2, 3). 

Theorem 3.3. Assume that (Ψ, 1, 2, 3) be an N-Tri-TS. 

(i) The neutrosophic null set (0N) and the neutrosophic whole set (1N) are always a neutrosophic tri-t-

open set in (Ψ, 1, 2, 3); 

(ii) Every NOS in (Ψ, 1), (Ψ, 2) and (Ψ, 3) are neutrosophic tri-t-open sets in (Ψ, 1, 2, 3); 

(iii) Every NCS in (Ψ, 1), (Ψ, 2) and (Ψ, 3) are neutrosophic tri-t-closed sets in (Ψ, 1, 2, 3). 

Proof. (i) We can write the neutrosophic null set (0N) as 0N = WMN, where W = 0N, M = 0N, N = 0N 

are NOSs in (Ψ, 1), (Ψ, 2) and (Ψ, 3) respectively. Hence, 0N is a neutrosophic tri-t-open set in (Ψ, 1, 

2, 3). 

Similarly, we can write the neutrosophic whole set (1N) as 1N = WMN, where W=1N, M =1N, N =1N 

are NOSs in (Ψ, 1), (Ψ, 2) and (Ψ, 3) respectively. Hence, 1N is a neutrosophic tri-t-open set in (Ψ, 1, 

2, 3). 

(ii) Suppose that W be an NOS in (Ψ, 1). Now, we can write W = W0N0N. Therefore, there exist 

NOSs W, 0N, 0N in (Ψ, 1), (Ψ, 2) and (Ψ, 3) respectively such that W = W0N0N. Hence, W is a 

neutrosophic tri-t-open set in (Ψ, 1, 2, 3). 

Suppose that W be an NOS in (Ψ, 2). Now, we can write W = 0NW0N. Therefore, there exist NOSs 

0N, W, 0N in (Ψ, 1), (Ψ, 2) and (Ψ, 3) respectively such that W = 0NW0N. Hence, W is a neutrosophic 

tri-t-open set in (Ψ, 1, 2, 3). 

Suppose that W be an NOS in (Ψ, 3). Now, we can write W = 0N0NW. Therefore, there exist NOSs  

0N, 0N, W in (Ψ, 1), (Ψ, 2), and (Ψ, 3) respectively such that W = 0N0NW. Hence, W is a neutrosophic 

tri-t-open set in (Ψ, 1, 2, 3). 

(iii) Suppose that W be an NCS in (Ψ, 1). So Wc is an NOS in (Ψ, 1). By the second part of this theorem, 

Wc is a neutrosophic tri-t-open set in (Ψ, 1, 2, 3). Hence, W is a neutrosophic tri-t-closed set in (Ψ, 1, 

2, 3). 
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Suppose that W be an NCS in (Ψ, 2). So Wc is an NOS in (Ψ, 2). By the second part of this theorem, 

Wc is a neutrosophic tri-t-open set in (Ψ, 1, 2, 3). Hence, W is a neutrosophic tri-t-closed set in (Ψ, 1, 

2, 3). 

Suppose that W be an NCS in (Ψ, 3). So Wc is an NOS in (Ψ, 3). By the second part of this theorem, 

Wc is a neutrosophic tri-t-open set in (Ψ, 1, 2, 3). Hence, W is a neutrosophic tri-t-closed set in (Ψ, 1, 

2, 3). 

Theorem 3.4. In an N-Tri-TS (Ψ , 1, 2, 3), the union of two neutrosophic tri-t-open sets is a 

neutrosophic tri-t-open set. 

Proof. Assume that X and Y are any two neutrosophic tri-t-open sets in an N-Tri-TS (Ψ, 1, 2, 3). So 

there exist NOSs X1, Y1 in (Ψ, 1), X2, Y2 in (Ψ, 2), and X3, Y3 in (Ψ, 3), such that X = X1X2X3 and Y 

= Y1Y2Y3. Now XY = (X1X2X3)  (Y1Y2Y3) = (X1Y1)  (X2Y2)  (X3Y3). Since X1, Y1 are 

NOSs in (Ψ, 1), so X1 Y1 is an NOS in (Ψ, 1). Since X2, Y2 are NOSs in (Ψ, 2), so X2 Y2 is an NOS 

in (Ψ, 2). Since X3, Y3 are NOSs in (Ψ, 3), so X3Y3 is an NOS in (Ψ, 3). Therefore, XY is a 

neutrosophic tri-t-open set in (Ψ, 1, 2, 3). 

Remark 3.6. In an N-Tri-TS (Ψ, 1, 2, 3), the intersection of any two neutrosophic tri-t-open sets may 

not be a neutrosophic tri-t-open set. 

Definition 3.7. Assume that (Ψ, 1, 2, 3) be an N-Tri-TS. Then Q, an NS over Ψ is said to be a 

neutrosophic tri-t-semi-open set in (Ψ, 1, 2, 3) if and only if there exists a neutrosophic semi open 

sets Q1 in (W, 1), Q2 in (W, 2), and Q3 in (W, 3) such that Q=Q1Q2Q3. 

Theorem 3.5. In an N-Tri-TS (Ψ, 1, 2, 3), every neutrosophic tri-semi-open set is a neutrosophic tri-

t-semi-open set. 

Proof. Assume that X be a neutrosophic tri-semi-open set in an N-Tri-TS (Ψ, 1, 2, 3). So, X must be 

an NSO set in at least one of the NTS (Ψ, 1), (Ψ, 2), (Ψ, 3). So, there will be seven cases. 

Case-1: X is an NSO set in (Ψ, 1); 

Case-2: X is an NSO set in (Ψ, 2); 

Case-3: X is an NSO set in (Ψ, 3); 

Case-4: X is an NSO set in (Ψ, 1), and (Ψ, 2); 

Case-5: X is an NSO set in (Ψ, 1), and (Ψ, 3); 

Case-6: X is an NSO set in (Ψ, 2), and (Ψ, 3); 

Case-7: X is an NSO set in (Ψ, 1), (Ψ, 2), and (Ψ, 3). 

In case-1, we can express, X = X0N0N, that is X is the union of NSO sets X (in (W, 1)), 0N (in (W, 2)), 

and 0N (in (W, 3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ, 1, 2, 3). 

In case-2, we can express, X = 0NX0N, that is X is the union of NSO sets 0N (in (W, 1)), X (in (W, 2)), 

and 0N (in (W, 3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ, 1, 2, 3). 

In case-3, we can express, X = 0N0NX, that is X is the union of NSO sets 0N (in (W, 1)), 0N (in (W, 

2)), and X (in (W,3)). Therefore, X is a neutrosophic tri-t-semi-open set in ((Ψ, 1, 2, 3). 

In case-4, we can express, X = XX0N, that is X is the union of NSO sets X (in (W, 1)), X (in (W, 2)), 

and 0N (in (W, 3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ, 1, 2, 3). 

In case-5, we can express, X = X0NX, that is X is the union of NSO sets X (in (W, 1)), 0N (in (W, 2)), 

and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ, 1, 2, 3). 
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In case-6, we can express, X = 0NXX, that is X is the union of NSO sets 0N (in (W, 1)), X (in (W, 2)), 

and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ, 1, 2, 3). 

In case-7, we can express, X = XXX, that is X is the union of NSO sets X (in (W, 1)), X (in (W, 2)), 

and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-semi-open set in (Ψ, 1, 2, 3). 

Hence, every neutrosophic tri-semi-open set is a neutrosophic tri-t-semi-open set. 

Definition 3.8. Assume that (Ψ, 1, 2, 3) be an N-Tri-TS. Then Q, an NS over Ψ is said to be a 

neutrosophic tri-t-pre-open set in (Ψ, 1, 2, 3) iff there exist a neutrosophic-pre-open sets Q1 in 1, Q2 

in 2, and Q3 in 3 such that Q = Q1Q2Q3. 

Theorem 3.6. In an N-Tri-TS (Ψ, 1, 2, 3), every neutrosophic tri-pre-open set is a neutrosophic tri-t-

pre-open set. 

Proof. Assume that X is a neutrosophic tri-pre-open set in an N-Tri-TS (Ψ, 1, 2, 3). So, X must be an 

NPO set in at least one of the NTS (Ψ, 1), (Ψ, 2), (Ψ, 3). So, there will be seven cases. 

Case-1: X is an NPO set in (Ψ, 1); 

Case-2: X is an NPO set in (Ψ, 2); 

Case-3: X is an NPO set in (Ψ, 3); 

Case-4: X is an NPO set in (Ψ, 1), and (Ψ, 2); 

Case-5: X is an NPO set in (Ψ, 1), and (Ψ, 3); 

Case-6: X is an NPO set in (Ψ, 2), and (Ψ, 3); 

Case-7: X is an NPO set in (Ψ, 1), (Ψ, 2), and (Ψ, 3). 

In case-1, we can express, X = X0N0N, that is X is the union of NPO sets X (in (W, 1)), 0N (in (W, 

2)), and 0N (in (W, 3)). Therefore, X is a neutrosophic tri-t-pre-open set in (Ψ, 1, 2, 3). 

In case-2, we can express, X = 0NX0N, that is X is the union of NPO sets 0N (in (W, 1)), X (in (W, 

2)), and 0N (in (W, 3)). Therefore, X is a neutrosophic tri-t-pre-open set in (Ψ, 1, 2, 3). 

In case-3, we can express, X = 0N0N X, that is X is the union of NPO sets 0N (in (W, 1)), 0N (in (W, 

2)), and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-pre-open set in (Ψ, 1, 2, 3). 

In case-4, we can express, X = XX0N, that is X is the union of NPO sets X (in (W, 1)), X (in (W, 2)), 

and 0N (in (W, 3)). Therefore, X is a neutrosophic tri-t-pre-open set in (Ψ,1,2,3). 

In case-5, we can express, X = X0NX, that is X is the union of NPO sets X (in (W, 1)), 0N (in (W, 2)), 

and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-pre-open set in (Ψ, 1, 2, 3). 

In case-6, we can express, X = 0NXX, that is X is the union of NPO sets 0N (in (W, 1)), X (in (W, 2)), 

and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-pre-open set in (Ψ, 1, 2, 3). 

In case-7, we can express, X = XXX, that is X is the union of NPO sets X (in (W, 1)), X (in (W, 2)), 

and X (in (W, 3)) . Therefore, X is a neutrosophic tri-t-pre-open set in (Ψ, 1, 2, 3). 

Hence, every neutrosophic tri-pre-open set is a neutrosophic tri-t-pre-open set. 

Definition 3.9. Assume that (Ψ, 1, 2, 3) is an N-Tri-TS. Then Q, an NS over Ψ is said to be a 

neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3) if and only if there exist three neutrosophic-b-open sets, 

namely Q1 in 1, Q2 in 2, and Q3 in 3 such that Q =Q1Q2Q3. 

Theorem 3.7. In an N-Tri-TS (Ψ, 1, 2, 3), every neutrosophic tri-b-open set is a neutrosophic tri-t-b-

open set. 
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Proof. Assume that X be a neutrosophic tri-b-open set in an N-Tri-TS (Ψ, 1, 2, 3). So, X must be a 

neutrosophic b-open set in at least one of the NTS (Ψ, 1), (Ψ, 2), (Ψ, 3). So there will be seven cases. 

Case-1: X is a neutrosophic b-open set in (Ψ, 1); 

Case-2: X is a neutrosophic b-open set in (Ψ, 2); 

Case-3: X is a neutrosophic b-open set in (Ψ, 3); 

Case-4: X is a neutrosophic b-open set in (Ψ, 1), and (Ψ, 2); 

Case-5: X is a neutrosophic b-open set in (Ψ, 1), and (Ψ, 3); 

Case-6: X is a neutrosophic b-open set in (Ψ, 2), and (Ψ, 3); 

Case-7: X is a neutrosophic b-open set in (Ψ, 1), (Ψ, 2), and (Ψ, 3). 

In case-1, we can express, X = X0N 0N, that is X is the union of neutrosophic b-open sets X (in (W, 

1)), 0N (in (W, 2)), and 0N (in (W, 3)) . Therefore, X is a neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3). 

In case-2, we can express, X = 0NX0N, that is X is the union of neutrosophic b-open sets 0N (in (W, 

1)), X (in (W, 2)), and 0N (in (W, 3)). Therefore, X is a neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3). 

In case-3, we can express, X = 0N0NX, that is X is the union of neutrosophic b-open sets 0N (in (W, 

1)), 0N (in (W, 2)), and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3). 

In case-4, we can express, X = XX0N, that is X is the union of neutrosophic b-open sets X (in (W, 

1)), X (in (W, 2)), and 0N (in (W, 3)) . Therefore, X is a neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3). 

In case-5, we can express, X = X0NX, that is X is the union of neutrosophic b-open sets X (in (W, 

1)), 0N (in (W, 2)), and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3). 

In case-6, we can express, X = 0NXX, that is X is the union of neutrosophic b-open sets 0N (in (W, 

1)), X (in (W, 2)), and X (in (W, 3)). Therefore, X is a neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3). 

In case-7, we can express, X = XX X, that is X is the union of neutrosophic b-open sets X (in (W, 

1)), X (in (W, 2)), and X (in (W, 3)) . Therefore, X is a neutrosophic tri-t-b-open set in (Ψ, 1, 2, 3). 

Hence, every neutrosophic tri-b-open set is a neutrosophic tri-t-b-open set. 

Definition 3.10. Assume that (Ψ, 1, 2, 3) be an N-Tri-TS. Let X be an NS over Ψ. The neutrosophic 

tri-t-interior (N-tri-tint) and neutrosophic tri-t-closure (N-tri-tcl) of X is defined as follows: 

N-tri-tint(X)= {Y: Y is a neutrosophic tri-t-open set and YX}; 

N-tri-tcl(X)= {Y: Y is a neutrosophic tri-t-closed set and XY}. 

It is clearly observed that N-tri-tint(X) is the largest neutrosophic tri-t-open set which is contained 

in X and N-tri-tcl(X) is the smallest neutrosophic tri-t-closed set which contains X. 

Theorem 3.8. Let (Ψ, 1, 2, 3) be an N-Tri-TS. Let X and Y be two neutrosophic sets over Ψ. Then, 

(i) N-tri-tint(X)  X; 

(ii) X  Y  N-tri-tint(X)  N-tri-tint(Y); 

(iii) If X is a neutrosophic tri-t-open set, then N-tri-tint(X)=X; 

(iv) N-tri-tint(0N)=0N, and N-tri-tint(1N)=1N. 

Proof.  

(i) From the definition 3.10, we see that N-tri-tint(X) = {B: B is a neutrosophic tri-t-open set and BX}. 

Since BX, so {B: B is a neutrosophic tri-t-open set and BX}  X. Therefore, N-tri-tint(X)  X. 

(ii) Suppose that X and Y are two neutrosophic sets over Ψ such that X  Y. Then, 

N-tri-tint(X) 
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= {B: B is a neutrosophic tri-t-open set and B  X}; 

 {B: B is a neutrosophic tri-t-open set and BY}    [since X  Y] 

= N-tri-tint(Y) 

 N-tri-tint(X)  N-tri-tint(Y). 

Therefore, X  Y  N-tri-tint(X)  N-tri-tint(Y). 

(iii) Assume that X be a neutrosophic tri-t-open set in an N-Tri-TS (Ψ, 1, 2, 3). Now,              N-

tri-tint(X) = {B: B is a neutrosophic tri-t-open set and B  X}. Since X is a neutrosophic tri-t-open set 

in (Ψ, 1, 2, 3), so X is the largest neutrosophic tri-t-open set in (Ψ, 1, 2, 3), which is contained in X. 

Hence {B: B is a neutrosophic tri-t-open set and B  X} = X. Therefore, N-tri-tint(X) = X. 

(iv) We know that 0N, and 1N are neutrosophic tri-t-open sets in (Ψ, 1, 2, 3), so by the third part of 

this theorem, we have N-tri-tint(0N) = 0N, N-tri-tint(1N) = 1N. 

Theorem 3.9. Let (Ψ, 1, 2, 3) be an N-Tri-TS. Let X and Y be two neutrosophic sets over Ψ. Then, 

(i) X  N-tri-tcl(X); 

(ii) X  Y  N-tri-tcl(X)  N-tri-tcl(Y); 

(iii) X is a neutrosophic tri-t-closed set iff N-tri-tcl(X) =X; 

(iv) N-tri-tcl(0N)=0N, and N-tri-tcl(1N)=1N; 

Proof. (i) From the definition 3.10, we see that N-tri-tcl(X)= {B: B is a neutrosophic tri-t-closed set 

and X  B}. Since each X  B, so X  {B: B is a neutrosophic tri-t-closed set and X  B}. Therefore, 

X  N-tri-tcl(X). 

(ii) Suppose that X and Y are two neutrosophic sets over Ψ such that X  Y. Then, 

N-tri-tcl(X) 

= {B: B is a neutrosophic tri-t-closed set and X  B}. 

 {B: B is a neutrosophic tri-t-closed set and Y  B}    [since XY] 

= N-tri-tcl(Y). 

Therefore, X  Y  N-tri-tcl(X)  N-tri-tcl(Y). 

(iii) Assume that X be a neutrosophic tri-t-closed set in (Ψ, 1, 2, 3). Now, N-tri-tcl(X) = {B: B is a 

neutrosophic tri-t-closed set and X  B}. Since X is a neutrosophic tri-t-closed set in (Ψ, 1, 2, 3), so X 

is the smallest neutrosophic tri-t-closed set in (Ψ, 1, 2, 3), which contains X. Therefore, {B: B is a 

neutrosophic tri-t-closed set and X  B} = X. Therefore, N-tri-tcl(X) = X. 

(iv) It is known that, 0N and 1N are neutrosophic tri-t-closed sets in (Ψ, 1, 2, 3). So, by the third part 

of this theorem, we have N-tri-tcl(0N) = 0N, N-tri-tcl(1N) = 1N. 

Theorem 3.11. Let (Ψ, 1, 2, 3) be an N-Tri-TS. Let X be an NS over Ψ. Then, i-Nint(X) = N-tri-tint(X). 

Proof. Assume that X be a neutrosophic subset of an N-Tri-TS (Ψ, 1, 2, 3). Now, i-Nint(X) = {Y: Y 

is an NOS in (Ψ, i) and YX}. Since Y is an NOS in (Ψ, i), so by second part of Theorem 3.3., Y is a 

neutrosophic tri-t-open set in (Ψ, 1, 2, 3).  

Therefore, i-Nint(X)  

= {Y: Y is an NOS in (Ψ, i) and YX}  

= {Y: Y is a neutrosophic tri-t-open set in (Ψ, 1, 2, 3), and YX}  

= N-tri-tint(X).  

Hence, in an N-Tri-TS (Ψ, 1, 2, 3), i-Nint(X) = N-tri-tint(X) for any neutrosophic set X. 
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Theorem 3.12. Let (Ψ, 1, 2, 3) be an N-Tri-TS. Let X be an NS over Ψ. Then, i-Ncl(X)  N-tri-tcl(X). 

Proof. Assume that X be a neutrosophic subset of an N-Tri-TS (Ψ, 1, 2, 3). Now, i-Ncl(X) = {Y: Y is 

an NCS in (Ψ, i) and XY}. Since Y is an NCS in (Ψ, i), so by third part of Theorem 3.3., Y is a 

neutrosophic tri-t-closed set in (Ψ, 1, 2, 3).  

Therefore, i-Ncl(X)  

= {Y: Y is an NCS in (Ψ, i) and XY}  

= {Y: Y is a neutrosophic tri-t-closed set in (Ψ, 1, 2, 3) and XY}  

= N-tri-tcl(X).  

Hence, i-Ncl(X) = N-tri-tcl(X), for any neutrosophic subset X of (Ψ, 1, 2, 3). 

 

4. Conclusions  

In this study, we introduce the notion neutrosophic tri-topological spaces. Also, we establish some 

of their basic properties. By defining neutrosophic tri-topology and neutrosophic tri-topological 

space, we present well described examples and proofs of some theorems on neutrosophic tri-

topological spaces. 
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Abstract: Deep learning can successfully extract data features based on dealing greatly with non-

linear problems. Deep learning has the highest performance in medical image analysis and 

diagnosis. Additionally, deep learning performance is affected by insufficient medical image data 

such as fuzziness or incompleteness. The neutrosophic approach can enhance deep learning 

performance with its great dealing with inconsistency and ambiguity information in medical data. 

This survey investigates the various ways in which deep learning is enhanced with neutrosophic 

systems and provides an overview and concept on each other. The hybrid techniques are classified 

based on different medical image modalities in different medical image processing stages such as 

preprocessing, segmentation, classification, and clustering. Finally, future works are also explored. 

In this study the highest accuracy was achieved by hybridization between neutrosophic and LASTM 

to classify the cardio views. While the highest capability to precisely detect those with the disease 

(sensitivity) is achieved by integration between neutrosophic, convolution neural network and 

support vector machine. Best specificity was obtained by neutrosophic and LSTM. 

Keywords: Medical image; Neutrosophic; Deep learning; denoising; classification; segmentation; 

clustering; image modalities. 

 

 

1. Introduction 

Recently, rapid diagnosis, and treatment of diseases becomes a major area in computer science 

using different medical image modalities such as computed tomography (CT), magnetic resonance 

imaging (MRI), Microscopic image analysis (MIA), ultrasound (US), and X-ray [1]. Usually, 

radiologists and physicians perform the interpretation of a medical image. However, Computer-

aided systems can help human experts and doctors from potential fatigue and individual variations 

in pathology reading. Deep learning (DL) and neutrosophic techniques can help to improve the rate 

of computational medical image analysis [2]. 

In the last few decades, many automatic analysis systems have been implemented from scanned 

and loaded medical images. Between the 1970s and 1990s, low-level pixel and mathematical 

processing (edge detection, region growing, fitting lines) were the main techniques for doing medical 

image analysis. It was common in that period there are same as if-then-else statements in expert 

systems. Haugeland, 1985 named these systems GOFAI (good old-fashioned artificial intelligence) 

like rule-based image processing systems [3, 4]. 

Supervised learning (SL) develops systems using training data at the end of the 1990s. These 

systems become more and more common in medical image analysis such as atlas approaches which 

fit new data from the training data, feature extraction, and use of statistical classifiers such as 
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computer-aided diagnosis (CAD) and active shape models. These methods have become successful 

in many medical image analysis tasks. So, systems are trained using extracted data vectors instead of 

data designed by humans. The optimal decision boundary is done using computer algorithms in high 

dimensional space. Feature extraction is a vital step in model deployment. This process is named the 

hand-crafted feature [4]. 

Logical progress is learning optimal features that represent data for a complex problem. This 

concept lies at the foundation of many DL models. So, DL techniques permit the machine to make 

data interpretation by learning complex mathematical problems. These models consist of linear 

and/or non-linear functions as input data and weighted model parameters. These functions treat 

hierarchy as a layer, so the name of DL is inspired by a larger number of such layers. Usually, Training 

data tasks such as denoising, segmentation, and classification help the computational model to learn 

its parameter. The basic idea of DL is an Artificial Neural Network (ANN) that contains multiple 

layers of neurons, while its parameters (weights) identify the parameter of the connections between 

the neurons and layers [5].  

DL uses testing data to perform the same task accurately, which makes DL more generalizable 

than other different machine learning (ML) techniques. DL learn parameter using a back-propagation 

strategy which iteratively attains the desired parameter value using the Gradient Descent technique. 

The single epoch is the terminology of update the model parameter using whole training data once. 

Usually, modern DL models are trained for hundreds of epochs before utilization [5]. 

Convolutional neural networks (CNNs) are the most popular network in DL. A CNN does a 

mathematical operation called convolution [6]. CNN was introduces to the world in handwriting 

digit recognition in LeNet [7]. After those novel approaches were implemented for effectively 

training deep networks, and improvements were produced in main computing systems. Krizhevsky 

et al. (2012) proposed the AlexNet based on CNNs which trained on ImageNet data in December 

2012 [8]. 

The medical image analysis society observes these crucial improvements. later than, other DL 

architecture has deployed recurrent neural networks (RNNs), autoencoders (AEs), restricted 

Boltzmann machines (RBMs) [9], and deep belief networks (DBN). All these contributions take 

attention to the medical image analysis community [4].  

On the other hand, many problems in medical image analysis have been shown such as 

impression and uncertainty, incomplete, fuzziness, and inconsistent, which derive from acquisition 

errors, incomplete knowledge, or stochasticity. These problems make denoising, segmentation, 

clustering, and classification are difficult operations to perform on medical image analysis [10]. So 

soft computing combined with medical applications and DL architecture to get solutions for 

unsolvable problems. Many theories can deal with ambiguous information such as para consistence 

logic theory [11], intuitionistic fuzzy set (IFS) theory [12], fuzzy set (FS) theory [13], probability theory 

[14]. One of these methods is the FS introduced by Zadeh (1965) which solves fuzziness and 

ambiguity problems that exist in medical data [15]. One disadvantage of FS that it doesn’t take 

indeterminacy in its consideration independently [16].  

Neutrosophy is a novel philosophy branch adopted by Smarandache that is a scope of 

neutralities. Neutrosophy can specify classical logic, fuzzy logic (FL), and imprecise probability. 

Human rational can deal with the ambiguity of knowledge linguistic mistakes and so neutrosophy 

can deal with this ambiguity. Usually, neutrosophy includes a neutrosophic set (NS) which can deal 
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with neutralities along with their relations. Neutrosophy has truth, falsity, and an indeterminacy 

degree, which are independent of each other [17].  

Medical data is unpredictable, partial, inaccurate, incomplete, and vague. Expert systems vary 

in inputs because of not existence of the specified policy in treatment or drug usage.  Normally, a 

large scale of information process is needed in a medical image, a significant part is unconscious and 

rapid processing and computation. Therefore, indeterminacy, irregularity, ambiguities, and 

vagueness must be solved. Intelligent diagnosis system has been observed by computer science and 

applicable mathematics field. So evolutionary neural network in breast cancer detection has been 

proposed by [18]. Also, Tan et al. [19] classified the hepatitis rule and breast cancer cases using a 

hybrid evolutionary algorithm (EA) and genetic programming (GP). 

A new neuro-fuzzy technique for  segmentation of the MRI data to brain tumor [20]. Lately, NL 

and NS have major importance in medical applications. Neutrosophic systems prove its successful 

effect than fuzzy counterparts. It can deal with major processes in medical systems such as data 

acquisition, data generation, indeterminacy, truth, and falsity. Hence, NS comprises truth, 

indeterminate, and false membership functions. In2015, Ye [21] proposed the improved cosine 

similarity measure for simplified NS (SNS) and applied it to medical diagnosis. The single-valued NS 

(SVNS) is the crucial usage set in most applications introduced by  Wang et al. [22].  

There are lots of surveys in medical image analysis discuss the use of NS in different levels of 

image analysis such as (denoising, segmentation, and classification) or using NS in different medical 

image modalities on different organs, but all of these surveys did not cover the last researchs and 

algorithms of using DL under NS theory [23], [24], [25], [26], [27], [28], [29]. Also (Elhassouny et 

al.,2019)  discuss the integration of NS and ML algorithms, but not cover the medical image analysis 

domain [30]. On the other hand, many surveys on DL in a medical image, but these studies ignore 

the dealing of inconsistency and fuzzification information in the medical image [2], [31], [4], [32]. 

 

This study aims to introduce a survey on DL algorithms in medical image processing under a 

NS theory. The following sections are arranged as follows. Section 2 provides an overview of different 

image modalities. Section 3 provides a general concept of NS and NS algorithms that are used in 

medical image processing stages such as denoising, segmentation, and classification in different 

image modalities such as MRI, CT, US, CT, and MIA. In section 4 we introduce an overview of the 

DL concept and previous work on techniques that commonly used different medical image 

processing stages. In section 5 explores hybridization between NS and DL and how this integration 

can affect the performance in medical image processing and analysis. 

 

2. Medical image modalities 

The medical image modalities help for more medical image analysis and diagnosis. Medical 

image modalities differ in characterization and applications that assist the study organs and 

diagnosis and treatment follow-up. These modalities can be categorized into five types: MIA, MRI, 

US, X-ray, CT [33]. A short discussion about these modalities is introduced in Table 1. 

Table 1. Medical Imaging Modalities. 

Medical image modalities Famous issue 

MIA Fuzziness, inconsistency, weak robustness[29]. 
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MRI Gaussian, Rician, Rayleigh[27]. 

US Gaussian, Speckle noise[27]. 

X-Ray Gaussian, Poisson[34]. 

CT 
Speckle noise, gaussian noise,  

salt and pepper noise[35]. 

2.1 Microscopic image analysis 

MIA is a good effect on converting to completely automatic analysis instead of the human 

observer. MIA Can carry a blood smear or any tissue of the human body [36]. MIA can help improve 

the diagnosis performance in various diseases. Many applications use MIA in processing techniques 

such as image enhancement, microscopic segmentation, cell classification, and White blood cell 

detection. 

2.2 Magnetic resonance imaging 

MRI is essential in non-invasive diagnosis and is one of the most commonly and reliably used 

clinical situations. The most characterization of MRI that it can pick up soft tissue such as blood 

vessels, organs in the pelvis, the abdomen of (heart, liver, kidney). These cross-sectional images are 

taken by magnets and radio waves to form a slice of the human body.  

MRI is safe for children and pregnant women because no radiation exposure also has high 

accuracy. On the other hand, MRI has a great sensitivity to a movement which affects the organs that 

involve movement. Additionally, MRI suffers from magnetic field distribution and patients cannot 

wear metallic devices such as pacemakers. Many applications of computer science using MRI such 

as tissue classification, liver diagnosis,3D tumor visualization [33]. 

2.3 Ultrasound 

The US transformed the echoes retrieving sounds into images, So the US cannot detect bone 

organs. Advantage of US is low cost, high resolution, no radiation, and widely available scan. But it 

is difficult to image lungs and bones resolution to be affected easily. A lot of applications are using 

US images such as pregnancy, breast cancer detection, liver and tumor diagnosis [33].  

2.4  X-ray image 

X-rays are considered the most and oldest imaging types. X-ray images formed using 

electromagnetic radiation. Most X-ray applications are detecting problems with the skeletal system, 

diagnose cancer via mammography, gastric concerns, and dental problems detection [27]. 

2.5  Computed tomography 

Series of Cross-sectional images are formed using x-ray sensors. So, it can detect hard tissue such 

as bones. CT has a wide scan area so it can pick up blood vessels and brain, liver. CT has an advantage 

over MRI in that it has a short time of scan with high resolution. But it has limitations in tissue 

characterization, sensitivity, high cost, and high radiation. Many applications are using the CT image 

such as covide-19 detection, chest diagnostic, brain simulation, tumor detection [33]. 

3. Neutrosophic set in medical image analysis  
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Samarandache introduced neutrosophic in 1995 which is the generalization form of fuzzy [37]. 

Neutrosophy is the fundamental of neutrosophic probability, neutrosophic statistics, neutrosophic 

logic (NL), and (NS) [37]. The NS is the general concept of the classical sets, FS, interval-valued fuzzy 

set [38], IFS  [39]. NS concept (A) in relation to its opposite (Anti-A) and the neutrality (Neut-A), 

which is not (A) nor (Anti-A). The (Neut-A) and (Anti-A) are mentioned as (Non-A). So concept (A) 

is neutralized and balanced by (Anti-A) and (Non-A) concepts [40].  

NL defines three neutrosophic components: T, I, F for truth, false, and indeterminacy 

membership degree in <A>.NL can handle the uncertainty by providing extra domain I which 

increases the efficiency of dealing with uncertainty unlike FL [41]. NL is able to perform the difference 

between relative truth and absolute truth as well as between relative falsity and absolute falsity, so 

NL component (T, I, F) can be over-flooded over 1 or under-dried 0 [23].Commonly, some definitions 

are given for the NS as follows: [40, 42] 

Definition 1. T, I and F are real standard or non-standard of ]−0,1 +[ with 

𝑠𝑢𝑝𝑇 = 𝑡_𝑠𝑢𝑝, 𝑖𝑛𝑓𝑇 = 𝑡_𝑖𝑛𝑓, 

𝑠𝑢𝑝𝐼 = 𝑖 − 𝑠𝑢𝑝, 𝑖𝑛𝑓𝐼 = 𝑖𝑖𝑛𝑓 , 𝑠𝑢𝑝𝐹 = 𝑓𝑠𝑢𝑝, 𝑖𝑛𝑓𝐹 = 𝑓𝑖𝑛𝑓𝑎𝑛𝑑𝑛𝑠𝑢𝑝 = 𝑡𝑠𝑢𝑝 + 𝑖𝑠𝑢𝑝 + 𝑓𝑠𝑢𝑝, 𝑛𝑖𝑛𝑓 = 𝑡𝑖𝑛𝑓 +⋯ 

𝑖𝑖𝑛𝑓 + 𝑓_𝑖𝑛𝑓 

Definition 2. (Neutrosophic image) for U is universe, a neutrosophic image 𝑃𝑁𝑆 is characterized by 

subsets T, I and F. A pixel P in the image is defined as P(T, I,F).Then, the pixel P(n,m) in the image 

domain is converted to NS image using the following equations: 

𝐻𝑁𝑆(𝑛,𝑚) = {T(𝑛,𝑚), I(𝑛,𝑚), F(𝑛,𝑚)} (1) 

Where T(n,m),I(n,m) and F(n,m) probabilities of white, indeterminate, non-white sets: 

𝑇(𝑛,𝑚) =
�̅�(𝑛,𝑚) − �̅�𝑚𝑖𝑛

�̅�𝑚𝑎𝑥 − �̅�𝑚𝑖𝑛

 (2) 

�̅�(𝑛,𝑚) =
1

𝑤 ∗ 𝑤
∑ ∑ 𝑔(𝑥, 𝑦)

𝑚+𝑤 2⁄

𝑦=𝑚−𝑤 2⁄

𝑛+𝑤 2⁄

𝑥=𝑛−𝑤 2⁄

 (3) 

𝐼(𝑛,𝑚) =
𝛿(𝑛,𝑚) − 𝛿𝑚𝑖𝑛

𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛

 (4) 

𝛿(𝑛,𝑚) = 𝑎𝑏𝑠(𝑔(𝑛,𝑚) − �̅�(𝑛,𝑚)) (5) 

𝐹(𝑛,𝑚) = 1 − 𝑇(𝑛,𝑚) (6) 

  

Where g(n,m) is the intensity value of the pixel (𝑛,𝑚)  , �̅�(𝑛,𝑚)  is the local mean value of 

𝑔(𝑛,𝑚),𝛿(𝑛,𝑚) is the absolute value of the difference between intensity 𝑔(𝑛,𝑚)and its local mean 

value �̅�(𝑛,𝑚) [23]. 

Definition 3. (Neutrosophic image entropy) The gray image entropy measures the distribution of 

intensities. Maximum entropy value implies for equal intensities probability and small entropy 

implies for non-uniform intensity distribution [23]. The NS image entropy defined as the summation 

of the entropies of three subsets T, I and F, which is given by: 

𝐸𝑁𝑆 = 𝐸𝑇 + 𝐸𝐼 + 𝐸𝐹 (7) 

𝐸𝑇 = − ∑ 𝑃𝑇(𝑖) ln 𝑃𝑇(𝑖)

max{𝑇}

𝑖=min{𝑇}

 

(8) 
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𝐸𝐼 = − ∑ 𝑃𝐼(𝑖) ln 𝑃𝐼(𝑖)

max{𝐼}

𝑖=min{𝐼}

 

(9) 

𝐸𝐹 = − ∑ 𝑃𝐹(𝑖) ln 𝑃𝐹(𝑖)

max{𝐹}

𝑖=𝑚𝑖𝑛{𝐹}

 

(10) 

where, 𝐸𝑇 , 𝐸𝐼and𝐸𝐹  are the entropies of sets T, I and F, respectively. Also, 𝑃𝑇(𝑖), 𝑃𝐼(𝑖), 𝑃𝐹(𝑖)  are 

the probabilities in T, I and F; respectively. Commonly, 𝐸𝑇  and  𝐸𝐹  are used to measure the 

distribution of the elements in NS, and  𝐸𝐼  is evaluated to measure the indeterminacy distribution. 

Recently NL and NS had major importance in the medical domains. Neutrosophic systems are 

noticed to be more successful than fuzzy systems. NS can deal with indeterminacy in medical 

information which makes it more generalization than FS [23]. NS provides approximate the 

connection between modern medical image analysis and fuzzy approaches. It improves performance 

in different medical systems processes such as acquisition, generation, sorting. Therefore, the NS has 

an independent (T, I, F) membership function. Lately, Ye [21] used the cosine function, SVNS, and 

interval neutrosophic cosine similarity to propose cosine similarity measures for SNSs for medical 

analysis issues. Afterward, the weighted cosine similarity measures of SNSs were used. Wang et al. 

[22] proposed a SVNS, which is the main example of  NS for most applicable applications. Research 

of NS in medical diagnosis cover many problems are in different image modalities and different tasks 

such as denoising, clustering, classification. 

3.1. Neutrosophic set in medical image denoising 

Generally, the medical image consists of noises, these noises are kind of intermediate 

information. Removing noises from the medical images is an important research area in computer 

science. Dealing with indeterminacy in images under the NS theory helping in reaching better 

performance during the image preprocessing stage [43]. Many approaches rely on NS for reducing 

salt and pepper, speckle, rician, and gaussian noise are listed in Table 2. 

In 2011 Mohan et al. [44] proposed a filter to remove noise from MRI image by converting it to 

NS domain. Then obtain the membership values of T, I, F. The γ-median filter used to decrease the 

indeterminacy entropy. This approach compared with the median filter and NLM filer and shows 

superior results. An extension for this study applies ω – wiener filter on MRI image [45]. Also, the 

same author expanded the study on nonlocal NS (NLNS) [46]. The results show superior result for ω 

– wiener with higher PSNR. 

In 2012 Koundal et al. [47] applied Kuan filter and Lee filter on US image. An extension to this 

study [48] use Gamma variation on neutrosophic domain to improve image quality. The same author 

proposed a Nakagami distribution method based on NS. The results show superior results to 

Nakagami distribution approach based on NS.  

Another contribution on RGB image in [49] aimed to  improve the quality of image based on 

NSS. Another study on NSS in [50] on liver image. the results shows higher PSNR to [50] but [49] 

improve the contrast of image more better. Another contribution improved the NLM using the 

weighted function based on NL to enhance US image. Furthermore Ashour et al. [26] introduce a 

novel method for dermoscopic image denoising based on OIF which aims to optimize the 
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indeterminacy filter using GA. Also, Nasef et al. [51] improve the dark area in skeletal image based 

on NS and SSA under multi-criteria.  

Table 2. Different medical image denoising methods using the NS theory. 

Authors Modality Data Noise 
Gray 

/RGB 

Denoising 

Method  
Metric 

Mohan et 

al. (2011) 

[44] 

MRI 

MRI brain 

(axial, 

Sagittal) 

Rician Gray γ -median 

PSNR* (Axial, 

Sagittal)= 

(19.90,19.11) 

Mohan et 

al. (2012) 

[45] 

MRI 
Axial MRI 

brain 
Rician Gray ω – wiener 

SSIM†=0.9682 

PSNR=24.08 

QILV‡=0.9882 

Koundal et 

al. (2012) 

[47] 

US Thyroid Speckle Gray 

Kuan filter 

and 

Lee filter 

SNR§ 

(Lee)=17.5375 

SNR (Kuan) 

=17.0408 

EPI¶ (Lee) = 

0.7858 

EPI 

(Kaun)=0.7599 

Mohan et 

al. (2013) 

[46] 

MRI 
Axial MRI 

brain 
Rician Gray 

nonlocal 

NS (NLNS) 

and ω – 

wiener 

PSNR=23.92 

SSIM= 0.9254 

Koundal et 

al. (2016) 

[48] 

US 
Thyroid 

image 

Synthetic 

Speckle 
Gray 

Based 

on gamma 

distributio

n 

UQI|| = 0.8606 

FSIM# =0.8790 

EPI = 0.8718 

MSSIM**=0.809

9 

VIF& = 0.3565 

Koundal et 

al.2018 [52] 
US 

Thyroid 

image 

Synthetic 

Speckle 
Gray 

Based 

on 

Nakagami 

distributio

n 

UQI = 0.8606 

EPI = 0.8813 

MSSIM=0.813

9 

VIF = 0.3771 

Shahin et al. 

(2018a) [49] 
MIA 

blood smear 

images (3327 

of different 

types of 

WBCs) 

illuminatio

n, contrast, 

and color 

balance 

problems 

RGB 

Neutrosop

hic 

similarity 

score(NSS) 

scaling 

Cost Time 

(Sec per 

image) from 

0.276 s to 0.96 

s 

Rahimizade

h et al. 

(2019) 

[53] 

US 
Different 

organs 
Speckle 

Gray 

 

Weighted 

function + 

(NLM) 

filter 

SNR in noise 

level 0.4=53.36 

SSIM for noise 

level 

0.4=0.9514 

Bharti et 

al.(2020) 

[50] 

US Liver Speckle Gray (NSS) 

PSNR= 

34.18±1.80×10-

1 
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Key of Table 2: * Peak-signal-to-noise ratio, † Structural Similarity index, ‡ Quality Index based on 

local variance, § Signal-to-noise ratio, ¶ Edge preservation index, || Universal quality index, # Visual 

information fidelity, ** Multi-scale structural similarity index metric , & Visual information fidelity 

,  &Absolute mean brightness error , ^ universal image quality index , ^^ Multi-scale structural 

similarity, ++ Mean squared error , ° The root of mean squared error   

3.2. Neutrosophic sets in medical image clustering and segmentation  

In computer vision Clustering means several grouped objects that are related in common 

members. On the other hand, segmentation in medical image separate object from the background 

so the image is separated into non-overlapping various regions. Clustering and segmentation are 

crucial processes in medical image diagnosis [23]. There are various approaches that use to segment 

and cluster the medical image using the NS theory in many medical applications as in Table 3. 

Shahin et al. [54] proposed a new method for WBC segmentation using multi-scale similarity 

measure based on NS domain. This approach is obtained on RGB public dataset. Another proposed 

on RGB image, Ashour et al. [55] proposed a segmentation method on WBC image. This approach 

aims to detect blood cell by first using canny edge detector and then circular Hough transform (CHT) 

based on NS domain. Finally, K-means detect nuclei in blood cell image. 

A study on dental image segmentation aimed to increase the accuracy in x-ray image by 

introducing a new fuzzy clustering methods based on NS orthogonal matrix [56]. Furthermore, 

AMBE&&= 

0.0326±9.87×10

-3 

EPI= 

0.9687±2.1×10-

3 

UIQI^= 

0.9757±1.17×10

-2 

MS-SSIM^^= 

0.9996±1.63×10

-4 

Ashour et 

al. 

(2019)[26] 

Dermoscop

ic 

20 randomly 

selected 

images 

(Internationa

l Skin 

Imaging 

Collaboratio

n) 

synthetic 

Gaussian 
Gray 

Optimized 

indetermin

acy filter 

(OIF) + 

genetic 

algorithm 

(GA) 

SNR=27.75 

PSNR=31.47 

MSE++=57.86 

RMSE°=7.18 

Nasef et al. 

(2020) 

[51] 

Skeletal 

scintigraph

y 

Data 

collected 

from 

Menoufia 

University 

Hospital in 

Egypt 

Dark 

regions 

Gray 

level 

Salp 

Swarm 

algorithm 

(SSA) 

under 

multi-

criteria 

Results show 

that 

implementatio

n achieves 

better 

performance 

in most 

criteria 
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Ashour et al. [57] proposed an approach on dermoscopic grayscale image based on clustering 

histogram. The histogram clustering method aims to determine the needed number of clusters in NS 

c-means. 

On breast cancer segmentation, Lotfollahi et al. [58] proposed a new method based on active 

contour to detect the tumor outline. Then the initial contour is defined depending on intensity and 

NS feature. Another study on breast cancer CT image, by first transform the CT image to NS domain. 

Then apply RGI segmentation algorithm for lesion segmentation [59]. Guo et al. [60] introduced an 

approach for Skin lesion segmentation based on  NCM and KGC. This approach shows superior 

result than using KGC only or traditional GC. 

In brain tumor segmentation Palanisamy et al. [61] introduced the integration between  NS and 

FCM and optimizing the clustering using modified PSO. Another contribution on brain tumor 

segmentation, by Singh [62] proposed a T2NS method for selecting multi adaptive threshold to 

segment brain lesions. This approach shows superior results on neutrosophic-based adaptive 

threshold. Also, Tufail et al. [63] proposed a method to extract ROI under NS domain based on 

modified s-function.  

In Parkinson's disease, Singh [64] proposed methods based on neutrosophic based adaptive 

threshold for segmentation. This approach aimed to solve two problems, first is the gray and white 

boundaries, second unclear gray regions. An expand for this work, which composed of two parts 

NEBCA for segmentation and HSV color system for better representation. 

Table 3. Different medical image segmentation/clustering methods using the NS theory. 

Authors Modality Organ 
Gray/ 

RGB 
Methods Evaluation metric 

Shahin et al. 

(2018b) 

[54] 

MIA WBC RGB 

multi-scale 

similarity 

measure 

Precision= 97.2% 

Ali et al. 

(2018) 

[56] 

x-ray Dental 
Gray 

level 

NS orthogonal 

principle 

Davies-Bouldin 

=10.562 

Simplified silhouete 

width criterion 

(SSWC)=0.941 

Visibility metric 

(VM)=484.002 

Ashour et al. 

(2018) 

[57] 

Dermoscopic skin lesion 
Gray 

level 

Histogram-

based 

clustering 

estimation 

(HBCE) and 

neutrosophic 

c-means 

(NCM) 

Accuracy= 96.3% 

Lotfollahi et 

al. (2018) 

[58] 

 

US Breast 
Gray 

level 

Active contour 

models 

True positives 

(TP)=95% 

False positives 

(FP)=6% 

Similarity scores=90% 
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. Lee et al. 

(2018) 

[59] 

CT Breast lesion 
Gray 

level 

RGI integrated 

with NS 

Dice coefficient (DC) 

=0.82 

AUC = 0.8 

Guo et al. 

(2019) 

[60] 

Dermoscopic 

images 

Skin lesion 

segmentation 

Gray 

level 

(NCM) and 

kernel graph 

cut(KGC) 

Accuracy= 97.41% 

DC = 93.27% 

Jaccard similarity 

coefficients (JAC) = 

87.78% 

Sensitivity=99.21% 

Ashour et al. 

(2019) 

[55] 

MIA WBC RGB 

Canny 

detector, 

circular 

Hough 

transform 

(CHT) and k-

means 

Accuracy=98.44% 

DC=93.10% 

JAC= 87.14% 

Sensitivity=95.08% 

Palanisamy 

et al. (2019) 

[61] 

MRI Brain tumor 
Gray 

level 

Fuzzy C-mean 

(FCM) 

clustering 

guided with a 

modified 

particle 

swarm 

optimization 

(PSO) 

Sensitivity=95.43% 

Specificity=98.58% 

JAC= 87.56% 

DC= 94.32% 

Singh 

(2020) 

[64] 

MRI 
Parkinson's 

disease 

Gray 

level 

Adaptive 

threshold and 

neutrosophic 

entropy based 

Result for testing data 

PSNR=62.99 

MSE= 0.10 

SSIM= 0.7006 

Singh 

(2020) 

[65] 

MRI 
Parkinson's 

disease 

Gray 

level 

neutrosophic-

entropy based 

clustering 

algorithm 

(NEBCA), and 

HSV color 

system. 

(Result of HSV color 

system based on 

testing set) 

standard deviation 

(SD)= 13885000 

 

total neutrosophic 

entropy information 

(TNEI) =323670 

Singh 

(2021) 

[62] 

MRI Brain tumors 
Gray 

level 

Type-2 NS 

(T2NS) 

entropy and 

multiple 

threshold 

Result of sets (Set I, 

Set II and Set III) 

JAC=97.07%, 97.92% 

,97.13% 

Correlation 

coefficients=0.9638, 

0.9698 ,0.9610 

Uniformity measures 

= 0.9624, 0.9633 and 

0.9660 
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Tufail et al. 

(2021) 

[63] 

MRI 
Detect ROI 

Brain tumor 

Gray 

level 

ROI in tumor 

images extract 

using S-

function 

Sensitivity=98%, false 

negative (FN) =1.5% 

3.3. Neutrosophic sets in medical image classification 

NS classification is achieving success because of its use of simple procedures. The NS classifier 

utilizes NL to manage the gain noise and indeterminacy. We summarized all studies in Table 4. 

Xian et al.[66] introduced neutrosophic subset and neutrosophic connectedness. This approach 

showed it’s results on breast US images with superior performance than fuzzy connectedness. 

Moreover, Gaber et al.[67] proposed a segmentation and classification approach for thermogram 

image. in segmentation, an integration between NS and FCM was introduced. In classification, a SVM 

is used to normal or abnormal regions. Another study proposed a SVM as classifier by combining 

texture and morphological features.  

Table 4. Different medical image classification methods using the NS theory. 

Author Year Modality Task Method using NS 

Xian et al.[66] (2014) US Breast Neutro-Connectedness 

Gaber et al.[67] (2015) Thermogram Breast Fast fuzzy c-means (FFCM) 

Amin et al. [68] (2016) US Breast NS score 

 

4. Deep learning in medical image analysis  

DL has great success over traditional ML algorithms. Neural networks (NN) are the key 

foundation for DL. It is implemented with more than two layers to permit non-linear operations, 

Which makes it widely used in medical image Denoising and clustering, segmentation, and 

classification phases [23]. 

Learning strategies are divided into supervised, semi-supervised, and unsupervised algorithms. 

SL has a labeled data that intends to learn the function of given data, Semi-supervised learning (SSL) 

intends to learn unlabeled data points using knowledge learned from labeled data. Unsupervised 

learning (USL) has not any label data, so its objective is to deduce the real structure present with a 

group of the data point. 

At Present, CNN and RNN are widely utilized in medical image diagnosis as (SL). On the other 

hand, the Auto-encoder (AE), Restricted boltzmann machine (RBM), and DBN are widely used as 

(USL)or (SSL). In the following Table 5. there is a brief on Different DL architectures [23]. Koundal et 

al.2018 [52]. 
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Table 5. Different DL architecture in SL, SSL, and USL 

SL 

Architecture Variants Main feature Main problem 

CNN 

LeNet 

Alexnet 

VGGnet 

Resnet 

GoogleNet 

-parameter sharing 

-spatial relationship 

Require labeled data and 

large scale of data 

RNN LSTM 
-parameter sharing 

-recurrent connections 

-Vanishing /exploding 

gradient problem 

USL or SSL 

Architecture Main features Main problem 

AE 

-Has unidirectional connection 

- Greedy strategy is implemented in each 

layer 

Require a pretrained 

phase 

RBM 
More general than DBN where all edges 

are indirect 

Cannot Optimizing 

parameters during large 

scale of data 

DBN 
Is probabilistic generative model with an 

RBM. 

High computation 

Training process results 

from initialization 

4.1. DL in medical image denoising 

One of famous medical noisy image is additive white noisy images which can be salt and pepper, 

gaussian, and poison noisy images. Also, real noisy image is considered one of denoising problem as 

it comprises blurry and false image artifacts.in the other hand, there is a need for DL technique to 

overcome the real complex and noise which results from image corruption. Sometimes the images 

consist of hybrid types of noises [69].Some of DL techniques to solve noisy image problem follows in 

Table 6. 

Table 6. DL techniques in medical image denoising. 

Ref. Method Modalities Noise 

Ma et al. 

(2018) 

[70] 

conditional Generative 

adversarial network (cGAN) 
Retinal OCT 

Speckle (Edge 

preservation) 

Meng et 

al.(2020)[71] 
CNN CT Low-dose CT imaging 

Chai et 

al.(2019)[72] 

 hierarchical deep generative 

adversarial networks (HD-

GANs)  

CT Low-dose CT imaging 

Jifara et al. 

(2019)[73] 
CNN using residual learning x-ray Poison 
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Gholizadeh-

Ansari et 

al.(2018)[74] 

CNN using residual learning CT, x-ray Low dose 

4.2. Deep learning in medical image clustering and segmentation 

Lesions and organs segmentation is an important area in DL. Some semantic segmentation 

research works have been done over various segmentation modalities and organs are shown in Table 

7. 

Table 7. DL techniques in medical segmentation. 

Authors Modality Organ Methods 

Konstantinos et al. (2017) 

[75] 
MRI brain 3D FCNN, CRF 

Zilly et al. (2017) [76] 
Retinal 

image 
Glaucoma 

Simple CNN, sequential learned to use 

boosting. 

Abdel-Basset et al. (2021) 

[77] 
CT Covid-19 

Implement FSS-2019-nCov 

architecture based on Few-shot 

learning 

Chen et al. (2021) 

[78] 
X-ray Dental 

(MSLPNet) 

multi-scale location perception 

network 

Ding et al. (2021) 

[79] 
MRI Brain 

Informed DL segmentation (FI-DL-

Seg) network 

4.3. Deep learning in medical image classification 

DL shows precedence success in image classification. CNN is the most used architecture since 

the propositions of Alexnet 2012 by [8]. Which becomes the beginning of many architectures 

depending on CNN such as GoogleNet, VGG, and Resnet. Many studies show its effort in DL in 

medical image classification shows in Table 8. 

Table 8. DL techniques in medical image classification. 

Author Year Modality Task Method  

Pinaya et al. 

[80] 
2016 

Brain 

morphography 
Schizophrenia DBN 

Fu et al. [81] 2018 Retinal Glaucoma M-Net 

Zhang et al.[82] 2019 
Different 

modalities 

Multi-

classification 

task 

Multiple DCNNs 

Wang et al. [83] 2020 CT Liver CNN 

5. Deep learning in medical image analysis using NS theory 

Some studies show results of NS integration with DL algorithms in medical images analysis with 

explores in this section and in the following Table 9. 
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Table 9: Summarization of different studies in medical image analysis using NS-based DL 

models. 

Author Organ/modality Task DL architecture 

Guo et al. 

(2019) 

[84] 

Skin lesion classification DCNN 

Özyurt et 

al.(2019) [85] 
Brain tumor 

Segmentation, 

classification 

CNN with neutrosophic expert 

maximum fuzzy (NS-CNN) sure 

entropy 

Khalifa et al. 

(2020) [86] 
X-ray Covid-19 Classification Alexnet, GoogleNet, Resnet 

Cai et al. 

(2019) [87] 

mammogram Breast 

cancer 
Classification DCNN 

Shain et al. 

(2020) 

[88] 

 

cardio location Classification CNN architectures, LSTM 

 

MDCNN is proposed by Guo et al.(2019) [84] for skin dermoscopic image classification between 

melanoma(malignant) and nevi(benign). First, Guo et al. implement DCNN architecture consists of 

convolution, ReLU (rectified linear unit), pooling, softmax, and classification layer. For speeding up 

the training phase, multiple pre-trained CNN models were applied with transfer learning (TL), where 

a neutrosophic reinforcement sample learning (NRSL) strategy is introduced in the MDCNN. 

Usually, the NRSL is not used in a single DCNN training; the NRSL is used in the model to develop 

the next DCNN samples in the MDCNN model. 

The ISIC2016 dataset was joined to assess the proposed NMDCNN model as in Figure 1. For 

every DCNN, the implemented NRSL TL-based was introduced to train each DCNN model on the 

different samples. The NSS was introduced to define the reinforced training time, which differs based 

on sample performance. This procedure was replicated for every DCNN in the MDCNN, selection 

criteria based on the previous model previous score. 

An MDCNN architecture is constructed by follow multiple networks of the same 

implementation. For Q, the total number of DCNNs samples, the MDCNN can be expressed as: 

𝑀𝐷𝐶𝑁𝑁 = {𝐶𝑁𝑁1, 𝐶𝑁𝑁2, … , 𝐶𝑁𝑁𝑞}  

Normally, every DCNN, usual training was used while the incremental learning was used to 

generate samples for the next DCNN as follows: 

𝑆𝑃𝑞+1 = {𝑆𝑃𝑞 , 𝑅𝑒𝐼𝑛𝑆𝑃𝑞}  

where 𝑆𝑃𝑞and 𝑆𝑃𝑞+1are the sample for the qth DCNN and (q+1)th DCNN, respectively, and 

𝑅𝑒𝐼𝑛𝑆𝑃𝑞 is the reinforcement sample for the (q+1)th DCNN. 

The voting scheme is used for evaluating the classification results. The results show the effect of 

the NMDCNN model on testing, training accuracies with 97.78%, 85.22% respectively. 
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(a) (b) 

Figure 1. Samples from demoscopic dataset: (A) benign (nevus) (B) malignant. 

 

Cai et al. [87] introduced an NS-DL technique to detect breast cancer in the mammogram. The 

proposed consists of five stages as in Figure 2. The test is done using data gathered from Nanfang 

Hospital (NFH), Guangzhou, China, and the publicly available [89]. 

In the coarse stage detection, the thresholding method is used for image binarization, and the 

connected component analysis classifies the binary image regions to (TP) and (FP). The DCNN1 is 

the training phase based on DCNN architecture. In Traditional DCNN, all samples are trained in 

fixed time so, adding NRSL strategy through the training phase trains samples in adaptive time.  

The Microcalcifications (MC) clustering phase done using density-based spatial clustering of 

applications with a noise (DBSCAN) algorithm which has high adaptability with noise. The second 

classifier (DCNN2) is used to train the data set while DCNN1 is only for MC detection and FP 

deduction.  

The final stage is diagnosis and testing for data to give the probability of malignancy using a 

bounding box. The results of MC detection stage 92% sensitivity and0.50 FP per image in cluster 

evaluation. After 40 epochs, training, validation, and testing accuracies are 99.87%, 95.12%, and 

93.68% respectively while, 98.03%, 93.49%, and 92.36% for comparative. Methods AUC for validation 

and testing 0.908 and 0.872 for DCNN2. 

 
Figure 2. Breast cancer detection architecture based on NS and DL. 

 

Özyurt et al.(2019) [85] classified the segmented brain tumor using hybridization between NS 

and CNN(NS-CNN). To test the proposed approach The Cancer Genome Atlas Glioblastoma 

Multiforme (TCGA-GBM) data collection in The Cancer Imaging Archive (TCIA) was used. The 

proposed (NS-EMFSE-CNN) is consists of 3 stages: segmentation, feature extraction, and 

classification as in Figure 3. 
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The first stage segments the MRI brain using the NS-EMFSE algorithm. This algorithm consists 

of three steps. In the first step, some pre-processing techniques are applied to (T1-GD sequence) MR. 

In the second step the NS- EMFSE method transform the filtered image NS image then converts it to 

a binary image. The last step is cleaning residual pixels and fill gaps in the edge image. This process 

is reviewed in Algorithm 1. 

Algorithm 1: Image Segmentation using NS-EMFSE 

1.Getting brain MRI from dataset. 

Step 1 2. Convert the image to grayscale form. 

3.Apply adaptive winner filter to gray scale image. 

4.Using NS-EMFSE method to convert filtered image into binary image. Step 2 

5.Cleannig residual pixels in binary image. 
Step 3 

6.Filling gaps. 

The finally segmented image is obtained in algorithm 2 for training and testing 

preparation 
 

 

Algorithm 2: Image preparation for training and testing 

1. Get the corresponding white colored points in the segmented image. 

2. Get the corresponding points in the original image. 

 

The second stage in NS-EMFSE-CNN is feature extraction which is done using Alexnet 

architecture based on CNN to avoid manual feature extraction. The fully connected layer (FC7) in 

Alextnet obtain 4096 features which are given to the next stage of classification as in Figure 3. 

The final stage is a classification which is done using Support vector machine (SVM) and K-

nearest neighbor (KNN) classifiers. The results show higher accuracy when using SVM classifier than 

KNN. Also shows high sensitivity for both classifiers which indicates that feature is more judicial to 

benign tumors. At the same time, specificity rates were lower which indicates that malignant tumor 

features were less notable. 

 
Figure 3. (NS-EMFSE-CNN) architecture 

Khalifa et al. [86] provided a study that shows the effect of hybrid NS and DTL on classification. 

The study work on Covid-19 x-ray dataset images. It was gathered from various websites such as the 

Italian Society of Medical, online publications, and the Radiopaedia web. The formed dataset is 

arranged into four categories normal, pneumonia bacterial, pneumonia virus, and COVID-19 with 

several images 79, 79, and 79, and 69, respectively.  

The NS-DTL model first converted the original image to the NS image So every pixel in the 

image has been divided into three subsets (T, I, F). Then applied different DTL model with DL 

strategies under specific hyperparameter for training and testing phases such as in Table 10. More 

than 36 trails had been conducting to assess the performance of the NS conversion. Four domains of 

images are tested, and they are the original images T, I, and F images such as in Figure 4. 
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Figure 4. NS/DTL model 

 

Table 10. Ns-DTL learning strategies, models and hyperparameters. 

Different training and testing strategies 

Training-Testing  

70% – 30%. 

80% – 20%. 

90% – 10%. 

Different DT models 

Resnet18 

Googlenet 

Alexnet 

Hyperparameters 

Optimizer: Adaboost  

Momentum: 0.9  

Epochs: 50  

Early stopping: 10 epochs 

Batch size: 32 

Learning Rate: 0.001 

According to the experimental results, the maximum accuracy possible in the testing accuracy 

and performance metrics such as F1Score, recall, precision was achieved by the Indeterminacy (I) NS 

domain. 

Shain et al. [88] proposed a classification framework to classify the 3-location of cardio view. The 

proposed integrated the LSTM and CNN architecture as in Figure 5. Also, the proposed use of NS to 

extract the temporal descriptor to combine the spatial and NS temporal. Then Using CNN as a pre-

trained model. Lastly, utilize LSTM to classify each echo clip into eight cardio-views. 
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Figure 5. Eight cardio-views classification system. 

Echocardiography clips consist of frames each frame has a spatial descriptor, which is converted 

to a temporal descriptor using the NS theory. Then a preprocessing stage of resizing spatial and 

temporal frames to fit the pre-trained network.  

The proposed use of both spatial and temporal descriptors for CNN feature extraction. The 

feature extraction phase is done using CNN architectures such as Alexnet, VGGNets, GoogleNet, 

Densenet, and ResNets. The next stage is feature fusion which gathers the latest information of 

cascading spatial and temporal descriptors from FC layers of both model’s streams. Finally, LSTM is 

used to classify the fused CNN features. LSTM the implementation is done using Quad-Core 2.9 GHz 

Intel i5 with 16 GB of memory, and moderate graphic processing unit NVIDIA TITAN-Xp GPU with 

12 GB RAM.  

The results show that ResNet101 achieves the highest performance in Spatial-temporal and 

fusion features with an accuracy score of 96.3% and 99.1% for cardio location classification. 

6. Conclusion and future works 

Recent progress in the deep learning research area shows a successful impact on medical image 

analysis. Deep learning performance can be improved via integration with neutrosophic systems. 

Recently, deep learning performance was affected by noise, ambiguity, or incomplete data, which are 

the major problems in medical data images.  

At the time being, many researchers aim to tackle these issues by using neutrosophic systems. 

Some studies show that the hybridization of neutrosophic theory and deep learning can enhance the 

performance of medical image analysis where data are noisy, fuzzy, incomplete, or ambiguous. 

Neutrosophic systems can be used as an essential part of deep learning models by using neutrosophic 

reinforcement sample learning to speed up the training procedure and reinforce training to the poor 

performance samples with more times according to their performance. Neutrosophic image 

transformation (T, I, F) for each pixel can increase the computational complexity, but it provides great 

resistance to noise. The availability of software platforms such as Intel MKL, AMD ROCm, and 

Nvidia CUDA can speed up deep learning processes.  
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In almost all neutrosophic sets in medical image analysis or in hybridization between 

Neutrosophic sets and deep learning, image conversion to the neutrosophic image has been carried 

using the same equations, which used in all medical image modalities, all different stages in image 

analysis, and with any deep learning architecture integration.  Every case in medical image analysis 

requires convenient define of membership function. 

At present, some research efforts show the results of deep learning and neutrosophic set 

integration. But there is an essential need to show studies in neutrosophic in deep learning parameter 

optimizing, neutrosophic with medical big data analysis, and various types of medical image 

modalities and applications. So, more comprehensive studies should be developed, such as studies 

on fuzzy neural networks. Enhancing the performance of neutrosophic deep learning models can be 

explored in the future. 
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Abstract: The purpose of this article is studying the types of system of neutrosophic linear equations, 

where the neutrosophic linear equation and the solution to the neutrosophic linear equation are 

defined. Also, finding a solution to a linear equation with two variables, the general situation of the 

solution. In addition to studying the n-variable neutrosophic linear equation and the system of 

neutrosophic homogeneous linear equations. The most important is the introduction of the concept 

of Cramer's rule to solve the system of neutrosophic linear equations. Provide enough examples for 

each case to enhance understanding. 
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1. Introduction 

           As an alternative to the existing logics, Smarandache proposed the Neutrosophic Logic to 

represent a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, 

unknown, incompleteness, inconsistency, redundancy, contradiction, where the concept of 

neutrosophy is a new branch of philosophy introduced by Smarandache [3-13]. He presented the 

definition of the standard form of neutrosophic real number and conditions for the division of two 

neutrosophic real numbers to exist, he defined the standard form of neutrosophic complex number, 

and found root index  n ≥ 2 of a neutrosophic real and complex number [2-4], studying the concept 

of the Neutrosophic probability [3-5], the Neutrosophic statistics [4][6], and professor Smarandache 

entered the concept of preliminary calculus of the differential and integral calculus, where he 

introduced for the first time the notions of neutrosophic mereo-limit, mereo-continuity, 

mereoderivative, and mereo-integral [1-8]. Madeleine Al- Taha presented results on single valued 

neutrosophic (weak) polygroups [9].Edalatpanah proposed a new direct algorithm to solve the 

neutrosophic linear programming where the variables and right-

hand side represented with triangular neutrosophic numbers [10]. Chakraborty used pentagonal 

neutrosophic number in networking problem, and Shortest Path Problem [11-12]. Y.Alhasan studied 

the concepts of neutrosophic complex numbers, the general exponential form of a neutrosophic 

complex, and the neutrosophic integrals and integration methods [7-14-17]. On the other hand, 

M.Abdel-Basset presented study in the science of neutrosophic about an approach of TOPSIS 

technique for developing supplier selection with group decision making under type-2 neutrosophic 

mailto:y.alhasan@psau.edu.sa
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number [15]. Also, neutrosophic sets played an important role in applied science such as health care, 

industry, and optimization [16]. Recently, Alhasan,Y., and Alfahal, A presented study in the 

neutrosophic differential equations that translate into linear[18]. 

      Mathematical equations are used to solve real problems in our daily life, for example, 

mathematical equations are used in electronic chips used in all modern machines and devices, such 

as washing machines and dryers, cars, airplanes, ships, cell phones, computers, space programs and 

so on. One may be surprised when he learns that there are about 2 million algorithms and 

mathematical equations in mobile and computer devices. 

     The paper consists of 5 sections. In 1th section, provides an introduction, in which neutrosophic 

science review has given. In 2th section, some definitions and examples of neutrosophic real number. 

The 3th section frames studying types of system of the neutrosophic linear equations. The 4th section 

introduces the concept of Cramer's rule to solve the system of neutrosophic linear equations. In 5th 

section, a conclusion to the paper is given. 

 

2. Preliminaries 

2.1. Neutrosophic Real Number [4] 

     Suppose that 𝑤 is a neutrosophic number, then it takes the following standard form: 𝑤 = 𝑎 +

𝑏𝐼 where  a , b are real coefficients, and I represent indeterminacy, such 0. I = 0  and I𝑛 = I, for all 

positive integers 𝑛. 

2.2. Division of neutrosophic real numbers [4] 

    Suppose that 𝑤1, 𝑤2  are two neutrosophic numbers, where 

𝑤1 = 𝑎1 + 𝑏1𝐼  , 𝑤2 = 𝑎2 + 𝑏2𝐼 

To find  (𝑎1 + 𝑏1𝐼) ÷ (𝑎2 + 𝑏2𝐼), we can write: 

        
𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
≡ 𝑥 + 𝑦𝐼   

where x and y are real unknowns. 

𝑎1 + 𝑏1𝐼 ≡ (𝑎2 + 𝑏2𝐼)(𝑥 + 𝑦𝐼) 

 

𝑎1 + 𝑏1𝐼 ≡ 𝑎2𝑥 + (𝑏2𝑥 + 𝑎2𝑦 + 𝑏2𝑦)𝐼 

by identifying the coefficients, we get 

𝑎1 = 𝑎2𝑥 

 
𝑏1 = 𝑏2𝑥 + (𝑎2 + 𝑏2)𝑦 

We obtain unique one solution only, provided that: 

              |
𝑎2 0
𝑏2 𝑎2 + 𝑏2

| ≠ 0   ⇒   𝑎2(𝑎2 + 𝑏2) ≠ 0 

 

 Hence:   𝑎2 ≠ 0    𝑎𝑛𝑑  𝑎2 ≠ −𝑏2  are the conditions for the division of two neutrosophic real 

numbers to exist. 

Then:    

𝑎1 + 𝑏1𝐼

𝑎2 + 𝑏2𝐼
=
𝑎1
𝑎2
+
𝑎2𝑏1 − 𝑎1𝑏2
𝑎2(𝑎2 + 𝑏2)

. 𝐼 

3. The neutrosophic linear equation 
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Defination3.1:  

The neutrosophic linear equation of 𝑛 variables 𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛, is each equation that takes the form:  

(𝑎1 + 𝑏1𝐼)𝑥1 + (𝑎2 + 𝑏2𝐼)𝑥2 + (𝑎3 + 𝑏3𝐼)𝑥3 +⋯+ (𝑎𝑛 + 𝑏𝑛𝐼)𝑥𝑛 = 𝑐 + 𝑑𝐼 

Where:  

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 , 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 , 𝑐, 𝑑 are real coefficients, and 𝐼 represent indeterminacy. 

We call (𝑎1 + 𝑏1𝐼), (𝑎2 + 𝑏2𝐼), (𝑎3 + 𝑏3𝐼), … , (𝑎𝑛 + 𝑏𝑛𝐼) neutrosophic coefficients of the borders of the 

equation, and 𝑐 + 𝑑𝐼 constant neutrosophic border of the equation. 

Remarks3.1: 

We call each equation of the form:  

(𝑎1 + 𝑏1𝐼)𝑥 + (𝑎2 + 𝑏2𝐼)𝑦 = 𝑐 + 𝑑𝐼 

the two-variable neutrosophic linear equation, where:  

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 , 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 , 𝑐, 𝑑 are real coefficients, and 𝐼 represent indeterminacy.  

Remarks3.2: 

We call each equation of the form:  

(𝑎1 + 𝑏1𝐼)𝑥 + (𝑎2 + 𝑏2𝐼)𝑦 + (𝑎3 + 𝑏3𝐼)𝑧 = 𝑐 + 𝑑𝐼 

the three-variable neutrosophic linear equation, where:  

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 , 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 , 𝑐, 𝑑 are real coefficients, and 𝐼 represent indeterminacy. 

Example3.1: 

 (2 + 3𝐼)𝑥 + (4 − 5𝐼)𝑦 + (−1 + 𝐼)𝑧 = 5 + 4𝐼 

 (3 − 𝐼)𝑥 + (9 − 5𝐼)𝑦 + (−1 + 𝐼)𝑧 + (3 − 2𝐼)𝑤 = 7 − 𝐼 

 (1 + 𝐼)𝑥 + (2 − 5𝐼)𝑦 = 6 − 2𝐼 

Defination3.2:  

Solution of the neutrosophic linear equation: 

(𝑎1 + 𝑏1𝐼)𝑥1 + (𝑎2 + 𝑏2𝐼)𝑥2 + (𝑎3 + 𝑏3𝐼)𝑥3 +⋯+ (𝑎𝑛 + 𝑏𝑛𝐼)𝑥𝑛 = 𝑐 + 𝑑𝐼 

is finding the values of the variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 that make its first term equal to its second term. 

where 𝑎1, 𝑎2, 𝑏1, 𝑏2 , 𝑐, 𝑑 are real coefficients. 

Example3.2: 

The equation: (1 + 𝐼)𝑥 + (2 − 5𝐼)𝑦 = 6 − 2𝐼 accepts the solution 

𝑥 = 1 − 𝐼,   𝑦 =
5

2
−
23

6
𝐼 

because fulfills the equation: 

 

𝐿1 = (1 + 𝐼)(1 − 𝐼) + (2 − 5𝐼) (
5

2
−
23

6
𝐼) = 1 − 𝐼 + 5 −

46

6
𝐼 −

25

2
𝐼 +

115

6
𝐼 = 6 − 2𝐼 = 𝐿2 

3.1 Solution of the two-variables neutrosophic linear equation 

For the neutrosophic linear equation: 

(𝑎1 + 𝑏1𝐼)𝑥 + (𝑎2 + 𝑏2𝐼)𝑦 = 𝑐 + 𝑑𝐼 

unlimited number of solutions defined by form: 

𝑆 = {(𝑥, 𝑦) ∈ 𝑅2 ∪ {𝐼}: 𝑦 = (
𝑎1
𝑎2
+
𝑎2𝑏1 − 𝑎1𝑏2
𝑎2(𝑎2 + 𝑏2)

. 𝐼) 𝑥 +
c

𝑎2
+

𝑎2d − c𝑏2
𝑎2(𝑎2 + 𝑏2)

. 𝐼} 

where 𝑎1, 𝑎2, 𝑏1, 𝑏2 , 𝑐, 𝑑 are real coefficients, 𝑎2 ≠ 0 and 𝑎2 ≠ −𝑏2 , by given a value for one of the 

two variables, we obtain a value for the other variable. 

Example3.1.1: 

Find solution of the equation: 

 (1 + 𝐼)𝑥 + (2 − 5𝐼)𝑦 = 6 − 2𝐼 
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Solution: 

𝑦 =
−(1 + 𝐼)

(2 − 5𝐼)
𝑥 +

6 − 2𝐼

(2 − 5𝐼)
 

 

𝑦 = (
−1

2
+
7

6
𝐼) 𝑥 + 3 +

13

3
𝐼 

Then the set of solutions is:  

𝑆 = {(𝑥, 𝑦) ∈ 𝑅2 ∪ {𝐼}: 𝑦 = (
−1

2
+
7

6
𝐼) 𝑥 + 3 +

13

3
𝐼} 

By given any value for the variables 𝑥, we obtain a value of the variable 𝑦. 

3.2 General situation: Solution of the n-variable neutrosophic linear equation 

 For the neutrosophic linear equation: 

(𝑎1 + 𝑏1𝐼)𝑥1 + (𝑎2 + 𝑏2𝐼)𝑥2 + (𝑎3 + 𝑏3𝐼)𝑥3 +⋯+ (𝑎𝑛 + 𝑏𝑛𝐼)𝑥𝑛 = 𝑐 + 𝑑𝐼 

unlimited number of solutions, where 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 , 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 , 𝑐, 𝑑 are real coefficients. 

4. System of the neutrosophic linear equations 

 It is a system of neutrosophic linear equations that given by the form: 

 

{
 
 

 
 

(𝑎11 + 𝑏11𝐼)𝑥1 + (𝑎12 + 𝑏12𝐼)𝑥2 + (𝑎13 + 𝑏13𝐼)𝑥3 +⋯+ (𝑎1𝑛 + 𝑏1𝑛𝐼)𝑥𝑛 = 𝑐1 + 𝑑1𝐼

(𝑎21 + 𝑏21𝐼)𝑥1 + (𝑎22 + 𝑏22𝐼)𝑥2 + (𝑎23 + 𝑏23𝐼)𝑥3 +⋯+ (𝑎2𝑛 + 𝑏2𝑛𝐼)𝑥𝑛 = 𝑐2 + 𝑑2𝐼
 . …           ….        …               ….      …  … = ⋯
.…           ….        …               ….         …   = ⋯

(𝑎m1 + 𝑏m1𝐼)𝑥1 + (𝑎m2 + 𝑏m2𝐼)𝑥2 + (𝑎m3 + 𝑏m3𝐼)𝑥3 +⋯+ (𝑎𝑚𝑛 + 𝑏𝑚𝑛𝐼)𝑥𝑛 = 𝑐𝑚 + 𝑑𝑚𝐼

 

 

Where:  

𝑎ij, 𝑏ij,  𝑐𝑗 , 𝑑𝑗 are real coefficients, 𝑖 = 1,… , 𝑛 , 𝑗 = 1, … ,𝑚, and 𝐼 represent indeterminacy.  

4.1 Solution of system of the neutrosophic linear equations 

Solution of system of the neutrosophic linear equation: 

 

{
 
 

 
 

(𝑎11 + 𝑏11𝐼)𝑥1 + (𝑎12 + 𝑏12𝐼)𝑥2 + (𝑎13 + 𝑏13𝐼)𝑥3 +⋯+ (𝑎1𝑛 + 𝑏1𝑛𝐼)𝑥𝑛 = 𝑐1 + 𝑑1𝐼

(𝑎21 + 𝑏21𝐼)𝑥1 + (𝑎22 + 𝑏22𝐼)𝑥2 + (𝑎23 + 𝑏23𝐼)𝑥3 +⋯+ (𝑎2𝑛 + 𝑏2𝑛𝐼)𝑥𝑛 = 𝑐2 + 𝑑2𝐼
 . …           ….        …               ….      …  … = ⋯
.…           ….        …               ….         …   = ⋯

(𝑎m1 + 𝑏m1𝐼)𝑥1 + (𝑎m2 + 𝑏m2𝐼)𝑥2 + (𝑎m3 + 𝑏m3𝐼)𝑥3 +⋯+ (𝑎𝑚𝑛 + 𝑏𝑚𝑛𝐼)𝑥𝑛 = 𝑐𝑚 + 𝑑𝑚𝐼

        (∗) 

 

Where:  

𝑎ij, 𝑏ij,  𝑐𝑗 , 𝑑𝑗 are real coefficients, 𝑖 = 1,… , 𝑛 , 𝑗 = 1, … ,𝑚, and 𝐼 represent indeterminacy.  

is finding the values of the variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 that fulfill each of the system equations. We call 

this solution the system solution. 

Remarks4.1.1: 

We distinguish three cases to solve the system(∗): 
1. It may have unique solution 

2. It may be impossible to solve 

3. It may have Unlimited number of solutions 

4.2 Cramer's rule to solve system of the neutrosophic linear equations 

Let the system of the neutrosophic linear equations:  
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{
 
 

 
 
(𝑎11 + 𝑏11𝐼)𝑥1 + (𝑎12 + 𝑏12𝐼)𝑥2 + (𝑎13 + 𝑏13𝐼)𝑥3 +⋯+ (𝑎1𝑛 + 𝑏1𝑛𝐼)𝑥𝑛 = 𝑐1 + 𝑑1𝐼

(𝑎21 + 𝑏21𝐼)𝑥1 + (𝑎22 + 𝑏22𝐼)𝑥2 + (𝑎23 + 𝑏23𝐼)𝑥3 +⋯+ (𝑎2𝑛 + 𝑏2𝑛𝐼)𝑥𝑛 = 𝑐2 + 𝑑2𝐼
. …           ….        …        ….         …      …  = ⋯
.…     ….        …               ….       …       …  = ⋯

(𝑎𝑛1 + 𝑏𝑛1𝐼)𝑥1 + (𝑎𝑛2 + 𝑏𝑛2𝐼)𝑥2 + (𝑎𝑛3 + 𝑏𝑛3𝐼)𝑥3 +⋯+ (𝑎𝑛𝑛 + 𝑏𝑛𝑛𝐼)𝑥𝑛 = 𝑐𝑛 + 𝑑𝑛𝐼

       (∗) 

 

with the 𝑛 variables and the 𝑛 equations, 𝐴 the neutrosophic coefficient matrix of the system, and 

suppose det(𝐴) = 𝑎 + 𝑏𝐼, We distinguish the following cases: 

1. If det(𝐴) ≠ 0 + 0𝐼 𝑜𝑟 𝑎 ≠ 0 𝑜𝑟 𝑎 ≠ −𝑏, then the system has unique solution given by the 

formula: 

𝑥𝑖 =
det( 𝑥𝑖)

det(𝐴)
 ;  𝑖 = 1,2, … , 𝑛 

Where det( 𝑥𝑖)   is the determinant produced by the determinant det(𝐴)  by replacing the column of 

constants with the 𝑖 -order column. 

2. If 𝑎 = 0 𝑜𝑟 𝑎 = −𝑏, then the system is impossible to solve. 

3. If det(𝐴) = 0 + 0𝐼, then we distinguish tow cases: 

 If one of the determinants det( 𝑥1), det( 𝑥2),… , det( 𝑥𝑛), is not equal to zero, 

then the system is impossible to solve. 

 If det( 𝑥𝑖) = 0 + 0𝐼;  𝑖 = 1,2,… , 𝑛, then the system is impossible to solve or it 

have unlimited number of solutions. 

4.2.1 Solve the system of two linear equations by two variables 

Let:  

(𝑎11 + 𝑏11𝐼)𝑥 + (𝑎12 + 𝑏12𝐼)y = 𝑐1 + 𝑑1𝐼 

(𝑎21 + 𝑏21𝐼)𝑥 + (𝑎22 + 𝑏22𝐼)y = 𝑐2 + 𝑑2𝐼 

 

𝐴 = [
𝑎11 + 𝑏11𝐼 𝑎12 + 𝑏12𝐼
𝑎21 + 𝑏21𝐼 𝑎22 + 𝑏22𝐼

] 

 

det(𝐴) = |
𝑎11 + 𝑏11𝐼 𝑎12 + 𝑏12𝐼
𝑎21 + 𝑏21𝐼 𝑎22 + 𝑏22𝐼

| = 

 

det(𝑥) = |
𝑐1 + 𝑑1𝐼 𝑎12 + 𝑏12𝐼
𝑐2 + 𝑑2𝐼 𝑎22 + 𝑏22𝐼

|    ,    det(𝑦) = |
𝑎11 + 𝑏11𝐼 𝑐1 + 𝑑1𝐼
𝑎21 + 𝑏21𝐼 𝑐2 + 𝑑2𝐼

| 

 

Suppose det(𝐴) = 𝑎 + 𝑏𝐼, We distinguish the following cases: 

1. If det(𝐴) ≠ 0 + 0𝐼 𝑜𝑟 𝑎 ≠ 0 𝑜𝑟 𝑎 ≠ −𝑏, then the system has unique solution given by the 

formulas: 

𝑥 =
det(𝑥)

det(𝐴)
    𝑎𝑛𝑑   𝑦 =

det(𝑦)

det(𝐴)
 

2. If 𝑎 = 0 𝑜𝑟 𝑎 = −𝑏, then the system is impossible to solve. 

3. If det(𝐴) = 0 + 0𝐼, then we distinguish tow cases: 

 If one of the determinants det(𝑥) , det(𝑦) , is not equal to zero, then the system is 

impossible to solve. 
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 If det( 𝑥𝑖) = 0 + 0𝐼;  𝑖 = 1,2,… , 𝑛, then the system has unlimited number of 

solutions. 

Note: To verify the solution, we substitute the value of 𝑥 and 𝑦 into one of the equations. 

 

Example4.2.1: 

Let:  

(2 + 𝐼)𝑥 + 3𝑦 = 5 + 𝐼 

(3 − 2𝐼)𝑥 + 2𝑦 = 𝐼 

Find solution of the system. 

Solution: 

𝐴 = [
2 + 𝐼 3
3 − 2𝐼 2

] 

 

det 𝐴 = |
2 + 𝐼 3
3 − 2𝐼 2

| = 4 + 2𝐼 − 9 + 6𝐼 = −5 + 8𝐼 ≠ 0 + 0𝐼 

Then the system has one solution, is: 

 

det 𝑥 = |
5 + 𝐼 3
𝐼 2

| = 10 − 𝐼   ,    det 𝑦 = |
2 + 𝐼 5 + 𝐼
3 − 2𝐼 𝐼

| = −15 + 12𝐼 

 

𝑥 =
det 𝑥

det 𝐴
=
10 − 𝐼 

−5 + 8𝐼
= −2 + 5𝐼    𝑎𝑛𝑑   𝑦 =

det 𝑦

det 𝐴
=
−15 + 12𝐼

−5 + 8𝐼
= 3 − 4𝐼 

 

(𝑥, 𝑦) = (−2 + 5𝐼 ,3 − 4𝐼) 

To verify the solution, we substitute the value of 𝑥 and 𝑦 into the first equation: 

(2 + 𝐼)𝑥 + 3𝑦 = (2 + 𝐼)(−2 + 5𝐼 ) + 3(3 − 4𝐼) 

                             = −4 − 2𝐼 + 10𝐼 + 5𝐼 + 9 − 12𝐼 = 5 + 𝐼 

Example4.2.2: 

Let:  

2𝐼𝑥 + 7𝑦 = 𝐼 

3𝐼𝑥 + 𝑦 = 2𝐼 

Find solution of the system. 

Solution: 

𝐴 = [
2𝐼 7
3𝐼 1

] 

 

det 𝐴 = |
2𝐼 7
3𝐼 1

| = 2𝐼 − 21𝐼 = 0 − 19𝐼 

This does not fulfill the condition: det 𝐴 = a + b𝐼 , a ≠ 0 and a ≠ −b 

Because:  

det 𝑥 = |
𝐼 7
2𝐼 1

| = 𝐼 − 14𝐼 = 0 − 13𝐼 

Then:  

𝑥 =
det 𝑥

det 𝐴
=
0 − 13𝐼

0 − 19𝐼
 (𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑) 

So, the system is impossible to solve. 

 

Example4.2.3: 

Let:  

(2 + 𝐼)𝑥 + 3𝑦 = 5 + 𝐼 

(3 − 2𝐼)𝑥 + 𝑦 = 𝐼 
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Find solution of the system. 

Solution: 

𝐴 = [
2 + 𝐼 3
3 − 2𝐼 1

] 

 

det 𝐴 = |
2 + 𝐼 3
3 − 2𝐼 1

| = 2 + 𝐼 − 9 + 6𝐼 = −7 + 7𝐼 

W This does not fulfill the condition: det 𝐴 = a + b𝐼  , a ≠ 0 and a ≠ −b , where: ( 𝑎 = −7, 𝑏 =

7 𝑎𝑛𝑑 𝑎 = −𝑏). 

So, the system is impossible to solve. 

 

Example4.2.4: 

Let:  

(1 + 𝐼)𝑥 + (3 − 𝐼)𝑦 = 2 − 3𝐼 

(2 + 2𝐼)𝑥 + (6 − 2𝐼)𝑦 = 4 − 6𝐼 

Find solution of the system. 

Solution: 

𝐴 = [
1 + 𝐼 3 − 𝐼
2 + 2𝐼 6 − 2𝐼

] 

 

det 𝐴 = |
1 + 𝐼 3 − 𝐼
2 + 2𝐼 6 − 2𝐼

| = 0 + 0𝐼 

 

det 𝑥 = |
2 − 3𝐼 3 − 𝐼
4 − 6𝐼 6 − 2𝐼

| = 0 + 0𝐼  ,    det 𝑦 = |
1 + 𝐼 2 − 3𝐼
2 + 2𝐼 4 − 6𝐼

| = 0 + 0𝐼 

 

As: det 𝐴 = det 𝑥 = det 𝑦 = 0 + 0𝐼, so the system has Unlimited number of solutions defined by form: 

𝑆 = {(𝑥, 𝑦) ∈ 𝑅2 ∪ {𝐼}: 𝑦 = (
1

3
+
2

3
. 𝐼) 𝑥 +

2

3
−
7

6
. 𝐼} 

By given any value for the variable 𝑥, we obtain a value of the variable 𝑦. 

4.2.2 Solve the system of three linear equations by three variables 

Let:  

(𝑎11 + 𝑏11𝐼)𝑥 + (𝑎12 + 𝑏12𝐼)y + (𝑎13 + 𝑏13𝐼)𝑧 = 𝑐1 + 𝑑1𝐼      (1) 

(𝑎21 + 𝑏21𝐼)𝑥 + (𝑎22 + 𝑏22𝐼)y + (𝑎23 + 𝑏23𝐼)𝑧 = 𝑐2 + 𝑑2𝐼     (2) 

(𝑎33 + 𝑏33𝐼)𝑥 + (𝑎33 + 𝑏33𝐼)y + (𝑎33 + 𝑏33𝐼)𝑥 = 𝑐3 + 𝑑3𝐼     (3) 

 

 

𝐴 = [

𝑎11 + 𝑏11𝐼 𝑎12 + 𝑏12𝐼 𝑎13 + 𝑏13𝐼
𝑎21 + 𝑏21𝐼 𝑎22 + 𝑏22𝐼 𝑎23 + 𝑏23𝐼
𝑎33 + 𝑏33𝐼 𝑎33 + 𝑏33𝐼 𝑎33 + 𝑏33𝐼

] 

 

det 𝐴 = |

𝑎11 + 𝑏11𝐼 𝑎12 + 𝑏12𝐼 𝑎13 + 𝑏13𝐼
𝑎21 + 𝑏21𝐼 𝑎22 + 𝑏22𝐼 𝑎23 + 𝑏23𝐼
𝑎33 + 𝑏33𝐼 𝑎33 + 𝑏33𝐼 𝑎33 + 𝑏33𝐼

| 

 

det 𝑥 = |

𝑐1 + 𝑑1𝐼 𝑎12 + 𝑏12𝐼 𝑎13 + 𝑏13𝐼
𝑐2 + 𝑑2𝐼 𝑎22 + 𝑏22𝐼 𝑎23 + 𝑏23𝐼
𝑐3 + 𝑑3𝐼 𝑎33 + 𝑏33𝐼 𝑎33 + 𝑏33𝐼

|   ,    det 𝑦 = |

𝑎11 + 𝑏11𝐼 𝑐1 + 𝑑1𝐼 𝑎13 + 𝑏13𝐼
𝑎21 + 𝑏21𝐼 𝑐2 + 𝑑2𝐼 𝑎23 + 𝑏23𝐼
𝑎33 + 𝑏33𝐼 𝑐3 + 𝑑3𝐼 𝑎33 + 𝑏33𝐼

| 

 

det 𝑧 = |

𝑎11 + 𝑏11𝐼 𝑎12 + 𝑏12𝐼 𝑐1 + 𝑑1𝐼
𝑎21 + 𝑏21𝐼 𝑎22 + 𝑏22𝐼 𝑐2 + 𝑑2𝐼
𝑎33 + 𝑏33𝐼 𝑎33 + 𝑏33𝐼 𝑐3 + 𝑑3𝐼

| 

 

We will discuss the second case of (3): 



Neutrosophic Sets and Systems, Vol. 45, 2021     409  

 

 

Yaser Ahmad Alhasan, The initial-neutrosophic value problems and its applications  

If det(𝐴) = 0 + 0𝐼 𝑎𝑛𝑑 det( 𝑥𝑖) = 0 + 0𝐼;  𝑖 = 1,2, … , 𝑛, then we are looking for the solutions of two of 

the system of equations, such as {(1), (2)}: 

 If the system {(1), (2)} is impossible to solve, then the system {(1), (2), (3)} is impossible to 

solve. 

 

 If the system {(1), (2)} has unlimited number of solutions from the form 𝑥 = 𝑔(𝑧), 𝑦 = ℎ(𝑧), 

(maybe 𝑔(𝑧) 𝑜𝑟 ℎ(𝑧) is constant), then we substitution in (3) to obtain on the equation of the 

form: 

0. 𝑧 = 𝛽;  𝛽 ∈ 𝑅 ∪ {𝐼} 

This equation is impossible to solve or it have unlimited number of solutions (According to 𝛽 value). 

 

Example4.2.5: 

Let:  

(2 + 2𝐼)𝑥 + (3 + 3𝐼)𝑦 + (−5 − 5𝐼)𝑧 = 1          (1) 

(1 + 𝐼)𝑥 + (−1 − 𝐼)𝑦 + (1 + 𝐼)𝑧 = 2                 (2) 

(5 + 5𝐼)𝑥 + (5 + 5𝐼)𝑦 + (−9 − 9𝐼)𝑧 = 4           (3) 

Find solution of the system. 

Solution: 

𝐴 = [
2 + 2𝐼 3 + 3𝐼 −5 − 5𝐼
1 + 𝐼 −1 − 𝐼 1 + 𝐼
5 + 5𝐼 5 + 5𝐼 −9 − 9𝐼

] 

 

det 𝐴 = |
2 + 2𝐼 3 + 3𝐼 −5 − 5𝐼
1 + 𝐼 −1 − 𝐼 1 + 𝐼
5 + 5𝐼 5 + 5𝐼 −9 − 9𝐼

| = 0 + 0𝐼 

 

det 𝑥 = |
1 3 + 3𝐼 −5 − 5𝐼
2 −1 − 𝐼 1 + 𝐼
4 5 + 5𝐼 −9 − 9𝐼

| = 0 + 0𝐼   ,    det 𝑦 = |
2 + 2𝐼 1 −5 − 5𝐼
1 + 𝐼 2 1 + 𝐼
5 + 5𝐼 4 −9 − 9𝐼

| = 0 + 0𝐼 

 

det 𝑧 = |
2 + 2𝐼 3 + 3𝐼 1
1 + 𝐼 −1 − 𝐼 2
5 + 5𝐼 5 + 5𝐼 4

| = 0 + 0𝐼 

As: det 𝐴 = 0 + 0𝐼 =  det 𝑥 = det 𝑦 = det 𝑧 = 0 + 0𝐼, so we are looking for a system solution {(1), (2)}, 

then: 

𝑥 =
1

5
(2𝑧 + 7 −

7

2
𝐼)   

 

𝑦 =
1

5
(7𝑧 − 3 +

3

2
𝐼)   

By substitution in (3), we get: 

(0 + 0𝐼)𝑧 = 0 + 0𝐼 

This equation has unlimited number of solutions, so the system {(1), (2), (3)} has unlimited number of 

solutions given by: 

𝑆 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3 ∪ {𝐼}: 𝑥 =
1

5
(2𝑧 + 7 −

7

2
𝐼) , 𝑦 =

1

5
(7𝑧 − 3 +

3

2
𝐼)} 

Or:  

𝑆 = {(
1

5
(2𝑧 + 7 −

7

2
𝐼) ,

1

5
(7𝑧 − 3 +

3

2
𝐼) , 𝑧) ; 𝑧 ∈ 𝑅 ∪ {𝐼}} 

 

Example4.2.6: 

Let:  

(2 + 𝐼)𝑥 + (1 + 𝐼)𝑦 + (3 − 𝐼)𝑍 = 2 + 𝐼 
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(−1 + 𝐼)𝑥 + (3 − 2𝐼)𝑦 + (1 + 3𝐼)𝑍 = 4 + 2𝐼 

(3 + 2𝐼)𝑥 + (4 − 𝐼)𝑦 + (2 − 3𝐼)𝑍 = 5 − 𝐼 

Find solution of the system. 

Solution: 

𝐴 = [
2 + 𝐼 1 + 𝐼 3 − 𝐼
−1 + 𝐼 3 − 2𝐼 1 + 3𝐼
3 + 2𝐼 4 − 𝐼 2 − 3𝐼

] 

 

det 𝐴 = |
2 + 𝐼 1 + 𝐼 3 − 𝐼
−1 + 𝐼 3 − 2𝐼 1 + 3𝐼
3 + 2𝐼 4 − 𝐼 2 − 3𝐼

| = −30 + 21𝐼 

 

det 𝑥 = |
2 + 𝐼 1 + 𝐼 3 − 𝐼
4 + 2𝐼 3 − 2𝐼 1 + 3𝐼
2 − 3𝐼 4 − 𝐼 2 − 3𝐼

| = 4 + 29𝐼   ,    det 𝑦 = |
2 + 𝐼 2 + 𝐼 3 − 𝐼
−1 + 𝐼 4 + 2𝐼 1 + 3𝐼
3 + 2𝐼 2 − 3𝐼 2 − 3𝐼

| = −35 − 31𝐼 

 

det 𝑧 = |
2 + 𝐼 1 + 𝐼 2 + 𝐼
−1 + 𝐼 3 − 2𝐼 4 + 2𝐼
3 + 2𝐼 4 − 𝐼 2 − 3𝐼

| = −11 + 14𝐼 

 

Then: 

 

   𝑥 =
det 𝑥

det 𝐴
=

4 + 29𝐼

−30 + 21𝐼
=
−2

15
− 
477

135
𝐼 

 

𝑦 =
det 𝑦

det 𝐴
=
−35 − 31𝐼

−30 + 21𝐼
=
7

6
+
37

6
𝐼  

 

𝑧 =
det 𝑧

det 𝐴
=
−11 + 14𝐼

−30 + 21𝐼
=
11

30
−
7

10
𝐼 

 

(𝑥, 𝑦, 𝑧) = (
−2

15
− 
477

135
𝐼 ,
7

6
+
37

6
𝐼,
11

30
−
7

10
𝐼) 

 

  To verify the solution, we substitute the value of 𝑥 and 𝑦 into the first equation: 

 

(2 + 𝐼)(
−2

15
− 
477

135
𝐼) + (1 + 𝐼)(

7

6
+
37

6
𝐼) + (3 − 𝐼)(

11

30
−
7

10
𝐼) = 2 + 𝐼 

Example4.2.7: 

Let:  

(2 + 𝐼)𝑥 + (1 + 𝐼)𝑦 + (3 − 𝐼)𝑧 = 1 + 𝐼                (1) 

(4 + 2𝐼)𝑥 + (2 + 2𝐼)𝑦 + (6 − 2𝐼)𝑧 = 1 + 2𝐼       (2) 

(6 + 3𝐼)𝑥 + (3 + 3𝐼)𝑦 + (9 − 3𝐼)𝑧 = −1 + 3𝐼    (3) 

Find solution of the system. 

Solution: 

𝐴 = [
2 + 𝐼 1 + 𝐼 3 − 𝐼
4 + 2𝐼 2 + 2𝐼 6 − 2𝐼
6 + 3𝐼 3 + 3𝐼 9 − 3𝐼

] 

 

det 𝐴 = |
2 + 𝐼 1 + 𝐼 3 − 𝐼
4 + 2𝐼 2 + 2𝐼 6 − 2𝐼
6 + 3𝐼 3 + 3𝐼 9 − 3𝐼

| = 0 + 0𝐼 
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det 𝑥 = |
1 + 𝐼 1 + 𝐼 3 − 𝐼
1 + 2𝐼 2 + 2𝐼 6 − 2𝐼
−1 + 3𝐼 3 + 3𝐼 9 − 3𝐼

| = 20𝐼 

 

As: det 𝐴 = 0 + 0𝐼 𝑎𝑛𝑑 det 𝑥 ≠ 0 + 0𝐼, so the system is impossible to solve. 

4.3 System of the homogeneous neutrosophic linear equations 

Defination4.3.1:  

It is a system of homogeneous neutrosophic linear equations that given by the form: 

 

{
 
 

 
 

(𝑎11 + 𝑏11𝐼)𝑥1 + (𝑎12 + 𝑏12𝐼)𝑥2 + (𝑎13 + 𝑏13𝐼)𝑥3 +⋯+ (𝑎1𝑛 + 𝑏1𝑛𝐼)𝑥𝑛 = 0 + 0𝐼

(𝑎21 + 𝑏21𝐼)𝑥1 + (𝑎22 + 𝑏22𝐼)𝑥2 + (𝑎23 + 𝑏23𝐼)𝑥3 +⋯+ (𝑎2𝑛 + 𝑏2𝑛𝐼)𝑥𝑛 = 0 + 0𝐼
. …   ….        …               ….    …         …      = ⋯
.… ….        …           ….         …     …         = ⋯

(𝑎m1 + 𝑏m1𝐼)𝑥1 + (𝑎m2 + 𝑏m2𝐼)𝑥2 + (𝑎m3 + 𝑏m3𝐼)𝑥3 +⋯+ (𝑎𝑚𝑛 + 𝑏𝑚𝑛𝐼)𝑥𝑛 = 0 + 0𝐼

 

 

Where:  

𝑎ij, 𝑏ij,  𝑐𝑗 , 𝑑𝑗 are real coefficients, 𝑖 = 1,… , 𝑛 , 𝑗 = 1, … ,𝑚, and 𝐼 represent indeterminacy.  

Remarks4.3.1: 

We distinguish two cases to solve the system of the homogeneous neutrosophic linear equations: 

1. It may have one solution 

2. It may have Unlimited number of solutions 

Hence it is always a solvable system (It is not impossible to solve). 

 

Example4.3.1: 

Let:  

(2 + 𝐼)𝑥 + (1 + 𝐼)𝑦 + (3 − 𝐼)𝑧 = 0 

(−1 + 𝐼)𝑥 + (3 − 2𝐼)𝑦 + (1 + 3𝐼)𝑧 = 0 

(3 + 2𝐼)𝑥 + (4 − 𝐼)𝑦 + (2 − 3𝐼)𝑧 = 0 

Find solution of the system. 

Solution: 

𝐴 = [
2 + 𝐼 1 + 𝐼 3 − 𝐼
−1 + 𝐼 3 − 2𝐼 1 + 3𝐼
3 + 2𝐼 4 − 𝐼 2 − 3𝐼

] 

 

det 𝐴 = |
2 + 𝐼 1 + 𝐼 3 − 𝐼
−1 + 𝐼 3 − 2𝐼 1 + 3𝐼
3 + 2𝐼 4 − 𝐼 2 − 3𝐼

| = −30 + 21𝐼 

 

det 𝑥 = |
0 1 + 𝐼 3 − 𝐼
0 3 − 2𝐼 1 + 3𝐼
0 4 − 𝐼 2 − 3𝐼

| = 0   ,    det 𝑦 = |
2 + 𝐼 0 3 − 𝐼
−1 + 𝐼 0 1 + 3𝐼
3 + 2𝐼 0 2 − 3𝐼

| = 0 

 

det 𝑧 = |
2 + 𝐼 1 + 𝐼 0
−1 + 𝐼 3 − 2𝐼 0
3 + 2𝐼 4 − 𝐼 0

| = 0 

Then: 

 

                   𝑥 =
det 𝑥

det 𝐴
= 0,  𝑦 =

det 𝑦

det 𝐴
= 0 ,  𝑧 =

det 𝑧

det 𝐴
= 0 

 

(𝑥, 𝑦, 𝑧) = (0,0,0) 
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5. Conclusions  

This study was presented based on the importance of linear equations in our lives, where we 

introduced the concept of neutrosophic linear equation and its types. In addition to the introduction 

of Cramer's rule to solve the neutrosophic system of equations. This study can be generalized and 

applied in several fields of application in our current reality, traffic as an example. 
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Abstract. Refinement of neutrosophic algebraic structure or hyperstructure allows for the splitting of the indeterminate

factor into different sub-indeterminate and gives a detailed information about the neutrosophic structure/hyperstructure

considered. This paper is concerned with the development of a refined neutrosophic canonical hypergroup from a canoni-

cal hypergroup R and sub-indeterminate I1 and I2. Several interesting results and examples are presented. The paper also

studies refined neutrosophic homomorphisms and establishes the existence of a good homomorphism between a refined

neutrosophic canonical hypergroup R(I1, I2) and a neutrosophic canonical hypergroup R(I).
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—————————————————————————————————————————-

1. Introduction

The refinement of neutrosophic components of the form < T1, T2, · · · , Tp; I1, I2, · · · ,

Ir;F1, F2, · · · , Fs > was introduced by Florentine Smarandache in [17] . The birth of this refinement

led to the extension of neutrosophic numbers a + bI into refined neutrosophic numbers of the form

(a + b1I1 + b2I2 + · · · + bnIn) where a, b1, b2, · · · , bn are real or complex numbers. The concept of

refined neutrosophic set was later studied using refined neutrosophic number and this paved way for

the introduction of refined neutrosophic algebraic structures by Agboola in [5]. Ever since he studied

and introduced this structure, several researchers in this field have studied this concept and a great

deal of results have been published. For example recently, Ibrahim et al., published in [11–14] their

results on refined neutrosophic vector spaces, refined neutrosophic hypergroup and refined neutrosophic

hypervector spaces. Also, Adeleke et al., in [1,2] studied refined neutrosophic rings, refined neutrosophic

subrings, refined neutrosophic ideals and refined neutrosophic ring homomorphisms. And in [8] Agboola
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et al., refined neutrosophic algebraic hyperstructures and presented some of its elementary properties.

For details about algebraic hyperstructure, neutrosophic structures/hyperstructure and new trends in

neutrosophic theory the readers should see [3, 6, 7, 9, 10,15,16].

2. Preliminaries

In this section, we will give some definitions, examples and results that will be used in the sequel.

Definition 2.1. [4] If ∗ : X(I1, I2)×X(I1, I2) 7→ X(I1, I2) is a binary operation defined on X(I1, I2),

then the couple (X(I1, I2), ∗) is called a refined neutrosophic algebraic structure and it is named ac-

cording to the laws (axioms) satisfied by ∗.

For the purposes of this paper, it will be assumed that I splits into two indeterminacies I1 [contra-

diction (true (T ) and false (F ))] and I2 [ignorance (true (T ) or false (F ))]. It then follows logically

that:

I1I1 = I21 = I1,

I2I2 = I22 = I2 and

I1I2 = I2I1 = I1.

Definition 2.2. [4] Let (X(I1, I2),+, ·) be any refined neutrosophic algebraic structure where + and

. are ordinary addition and multiplication respectively.

For any two elements (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2), we define

(a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

(a, bI1, cI2) · (d, eI1, fI2) = (ad, (ae+ bd+ be+ bf + ce)I1, (af + cd+ cf)I2).

Definition 2.3. [4] If + and . are ordinary addition and multiplication, Ik with k = 1, 2 have the

following properties:

(1) Ik + Ik + · · ·+ Ik = nIk.

(2) Ik + (−Ik) = 0.

(3) Ik · Ik · · · · Ik = Ink = Ik for all positive integers n > 1.

(4) 0 · Ik = 0.

(5) I−1k is undefined and therefore does not exist.

Definition 2.4. [4] Let (G, ∗) be any group. The couple (G(I1, I2), ∗) is called a refined neutrosophic

group generated by G, I1 and I2. (G(I1, I2), ∗) is said to be commutative if for all x, y ∈ G(I1, I2), we

have x ∗ y = y ∗ x. Otherwise, we call (G(I1, I2), ∗) a non -commutative refined neutrosophic group.
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Definition 2.5. [4] If (X(I1, I2), ∗) and (Y (I1, I2), ∗′) are two refined neutrosophic algebraic structures,

the mapping

φ : (X(I1, I2), ∗) −→ (Y (I1, I2), ∗′)

is called a neutrosophic homomorphism if the following conditions hold:

(1) φ((a, bI1, cI2) ∗ (d, eI1, fI2)) = φ((a, bI1, cI2)) ∗′ φ((d, eI1, fI2)).

(2) φ(Ik) = Ik for all (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2) and k = 1, 2.

Example 2.6. [4] Let Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2), (0, I1, I2), (1, I1, 0),

(1, 0, I2), (1, I1, I2)}. Then (Z2(I1, I2),+) is a commutative refined neutrosophic group of integers mod-

ulo 2. Generally for a positive integer n ≥ 2, (Zn(I1, I2),+) is a finite commutative refined neutro-

sophic group of integers modulo n.

Example 2.7. [4] Let (G(I1, I2), ∗) and and (H(I1, I2), ∗′) be two refined neutrosophic groups.

Let φ : G(I1, I2)×H(I1, I2)→ G(I1, I2) be a mapping defined by φ(x, y) = x and let

ψ : G(I1, I2) ×H(I1, I2) → H(I1, I2) be a mapping defined by ψ(x, y) = y. Then φ and ψ are refined

neutrosophic group homomorphisms.

Definition 2.8. [10] Let H be a non-empty set and ◦ : H ×H −→ P ∗(H) be a hyperoperation. The

couple (H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of H and x ∈ H, we

define

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

Definition 2.9. [10] Let H be a non-empty set and let + be a hyperoperation on H. The couple

(H,+) is called a canonical hypergroup if the following conditions hold:

(1) x+ y = y + x, for all x, y ∈ H,

(2) x+ (y + z) = (x+ y) + z, for all x, y, z ∈ H,

(3) there exists a neutral element 0 ∈ H such that x+ 0 = {x} = 0 + x, for all x ∈ H,

(4) for every x ∈ H, there exists a unique element −x ∈ H such that 0 ∈ x+ (−x) ∩ (−x) + x,

(5) z ∈ x + y implies y ∈ −x + z and x ∈ z − y, for all x, y, z ∈ H. A nonempty subset A of H is

called a subcanonical hypergroup if A is a canonical hypergroup under the same hyperaddition

as that of H that is, for every a, b ∈ A, a− b ∈ A. If in addition a+A− a ⊆ A for all a ∈ H, A

is said to be normal.

Definition 2.10. [6] Let (H,+) be any canonical hypergroup and let I be an indeterminate.

Let H(I) =< H ∪ I >= {(a, bI) : a, b ∈ H} be a set generated by H and I. The hyperstructure

(H(I),+) is called a neutrosophic canonical hypergroup . For all (a, bI), (c, dI) ∈ H(I) with b 6= 0 or

d 6= 0, we define

(a, bI) + (c, dI) = {(x, yI) : x ∈ a+ c, y ∈ a+ d ∪ b+ c ∪ b+ d}.
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An element I ∈ H(I) is represented by (0, I) in H(I) and any element x ∈ H is represented by (x, 0)

in H(I). For any nonempty subset A(I) of H(I), we define −A(I) = {−(a, bI) = (−a,−bI) : a, b ∈ H}.

Definition 2.11. [6] Let (H(I),+) be a neutrosophic canonical hypergroup .

(1) A nonempty subset A(I) of H(I) is called a neutrosophic subcanonical hypergroup of H(I) if

(A(I),+) is itself a neutrosophic canonical hypergroup . It is essential that A(I) must contain

a proper subset which is a subcanonical hypergroup of H.

If A(I) does not contain a proper subset which is a subcanonical hypergroup of H, then it is

called a pseudo neutrosophic subcanonical hypergroup of H(I).

(2) If A(I) is a neutrosophic subcanonical hypergroup (pseudo neutrosophic subcanonical hyper-

group), A(I) is said to be normal in H(I) if for all (a, bI) ∈ H(I), (a, bI)+A(I)−(a, bI) ⊆ A(I).

Definition 2.12. [6] Let (H1(I),+) and (H2(I),+) be two neutrosophic canonical hyper- groups and

let

φ : H1(I) −→ H2(I) be a mapping from H1(I) into H2(I).

(1) φ is called a homomorphism if :

(a) φ is a canonical hypergroup homomorphism,

(b) φ((0, I)) = (0, I).

(2) φ is called a good or strong homomorphism if:

(a) φ is a good or strong canonical hypergroup homomorphism,

(b) φ((0, I)) = (0, I).

(3) φ is called an isomorphism (strong isomorphism) if φ is a bijective homomorphism (strong

homomorphism).

3. Development of a refined neutrosophic canonical hypergroup

In this section, we study and present the development of refined neutrosophic canonical hypergroup

and some of their basic properties.

Definition 3.1. Let (R,+) be any canonical hypergroup. The couple (R(I1, I2),+) is a neutrosophic

canonical hypergroup generated by R, I1 and I2, where + hyperoperations. i.e.,

+ : R(I1, I2)×R(I1, I2) −→ 2R(I1,I2).

For all (a, bI1, cI2), (d, eI1, fI2) ∈ R(I1, I2) with a, b, c, d, e, f ∈ R, we define

(a, bI1, cI2) + (d, eI1, fI2) = {(p, qI1, rI2) : p ∈ a+ d, q ∈ (b+ e), r ∈ (c+ f)}.

Lemma 3.2. Let (R(I1, I2),+) be any neutrosophic canonical hypergroup. Let h1 = (u, vI1, tI2),

h2 = (m,nI1, kI2) ∈ R(I1, I2) with u, v, t,m, n, k ∈ R. For all h1, h2 ∈ R(I1, I2) we have

(1) −(−h1) = −(−u,−vI1,−tI2) = (−(−u),−(−v)I1,−(−t)I2) = (u, vI1, tI2).
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(2) (0, 0I1, 0I2) is the unique element such that for every h1 ∈ R(I1, I2), there is an element

−h1 ∈ R(I1, I2) with the property (0, 0I1, 0I2) ∈ h1 − h2.

(3) −(0, 0I1, 0I2) = (0, 0I1, 0I2).

(4) −(h1 + h2) = −h1 − h2.

Proof. The proof is similar to the proof in classical case.

Definition 3.3. Let R(I1, I2) be a refined neutrosophic canonical hypergroup and let K(I1, I2) be a

proper subset of R(I1, I2). Then

(1) K(I1, I2) is said to be a refined neutrosophic subcanonical hypergroup of R(I1, I2) if K(I1, I2)

is a refined neutrosophic canonical hypergroup. It is essential that K(I1, I2) contains a proper

subset which is a canonical hypergroup.

(2) K(I1, I2) is said to be a refined pseudo neutrosophic subcanonical hypergroup of R(I1, I2) if

K(I1, I2) is a refined neutrosophic canonical hypergroup which contains no proper subset which

is a canonical hypergroup.

Proposition 3.4. Every refined neutrosophic canonical hypergroup is a canonical hypergroup.

Proof. Let (R(I1, I2),+) be a refined neutrosophic canonical hypergroup and let x = (a, bI1, cI2), y =

(d, eI1, fI2), z = (g, hI1, kI2) ∈ R(I1, I2). Then :

(i) x+ y = (a, bI1, cI2) + (d, eI1, fI2)

= {(p, qI1, sI2) : p ∈ a+ d, q ∈ b+ e, s ∈ c+ f}
= {(p, qI1, sI2) : p ∈ d+ a, q ∈ e+ b, s ∈ f + c}
= (d, eI1, fI2) + (a, bI1, cI2)

= y + x.

(ii) (x+ y) + z = ((a, bI1, cI2) + (d, eI1, fI2)) + (g, hI1, kI2)

= {(p, qI1, sI2) : p ∈ a+ d, q ∈ b+ e, s ∈ c+ f}+ (g, hI1, kI2)

= {(p′, q′I1, s′I2) : p′ ∈ p+ g, q′ ∈ q + h, s′ ∈ s+ k}
= {(p′, q′I1, s′I2) : p′ ∈ (a+ d) + g, q′ ∈ (b+ e) + h, s′ ∈ (c+ f) + k}
= {(p′, q′I1, s′I2) : p′ ∈ a+ (d+ g), q′ ∈ b+ (e+ h), s′ ∈ c+ (f + k)}
= (a, bI1, cI2) + ((d, eI1, fI2) + (g, hI1, kI2))

= x+ (y + z).

(iii) (0, 0I1, 0I2) + (a, bI1, cI2) = {(p, qI1, tI2) : p ∈ 0 + a, q ∈ 0 + b, t ∈ 0 + c}
= {(p, qI1, tI2) : p ∈ {a}, q ∈ {b}, t ∈ {c}}
= {(a, bI1, cI2)}.
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Also, it can be shown that (a, bI1, cI2) + (0, 0I1, 0I1) = {(a, bI1, cI2)}. Hence, there exists a neutral

element (0, 0I1, 0I2) ∈ R(I1, I2).

(iv) ((a, bI1, cI2) + (−a,−bI1, cI2)) ∩ ((−a,−bI1, cI2) + (a, bI1, cI2))

= {(p, qI1, tI2) : p ∈ a+ (−a), q ∈ b+ (−b), t ∈ c+ (−c)}
∩ {(m,nI1, uI2) : m ∈ (−a) + a, n ∈ (−b) + b, u ∈ (−c) + c}

= {(p, qI1, tI2) : p ∈ {0}, q ∈ {0}, t ∈ {0}}
∩ {(m,nI1tI2) : m ∈ {0}, n ∈ {0}, t ∈ {0}}.

Then we can say that (0, 0I1, 0I2) ∈ ((a, bI1, cI2) + (−a,−bI1,−cI2))∩ ((−a,−bI1,−cI2) + (a, bI1, cI2))

and therefore, −(a, bI1, cI2) is the unique inverse of any (a, bI1, cI2) ∈ R(I1, I2).

(v) Let z ∈ x+ y, i.e (g, hI1, kI2) ∈ (a, bI1, cI2) + (d, eI1, fI2). Then

(g, hI1, kI2) ∈ {(p, qI1, tI2) : p ∈ a+ d, q ∈ b+ e, t ∈ c+ f}
= {(p, qI1, tI2) : d ∈ −a+ p, e ∈ −b+ q, f ∈ −c+ t}
= {(d, eI1, fI2) : d ∈ −a+ p, e ∈ −b+ q, f ∈ −c+ t}.

So, we have (d, eI1, fI2) ∈ −(a, bI1, cI2) + (g, hI1, kI2).

Also we can show that (a, bI1, cI2) ∈ (g, hI1, kI2)− (d, eI1, fI2). Hence, z ∈ x+ y implies that x ∈ z− y

and y ∈ −x+ z. Accordingly, R(I1, I2) is a canonical hypergroup.

Example 3.5. Let R(I1, I2) = {a1 = (s, sI1, sI2), a2 = (s, sI1, tI2), a3 = (s, tI1, sI2),

a4 = (s, tI1, tI2), b1 = (t, tI1, tI2), b2 = (t, tI1, sI2), b3 = (t, sI1, tI2), b4 = (t, sI1, sI2)} be a refined

neutrosophic set and let + be the hyperoperation on R(I1, I2) defined as in the tables below. Let

a = {a1, a2, a3, a4} and b = {b1, b2, b3, b4}.
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Table 1. Cayley table for the binary operation ” + ”

+ a1 a2 a3 a4 b1 b2 b3 b4

a1 a1 a2 a3 a4 b1 b2 b3 b4

a2 a2

{
a1

a2

}
a4

{
a3

a4

} {
b1

b2

}
b1

{
b3

b4

}
b3

a3 a3 a4

{
a1

a3

} {
a2

a4

} {
b1

b3

} {
b2

b4

}
b1 b2

a4 a4

{
a3

a4

} {
a2

a4

}
a b

{
b1

b3

} {
b1

b2

}
b1

b1 b1

{
b1

b2

} {
b1

b3

}
b R(I1, I2)


a2

a4

b1

b3




a3

a4

b1

b2


{

a4

b1

}

b2 b2 b1

{
b2

b4

} {
b1

b3

} 
a2

a4

b1

b3




a1

a3

b2

b4


{

a4

b1

} {
a3

b2

}

b3 b3

{
b3

b4

}
b1

{
b1

b2

} 
a3

a4

b1

b2


{

a4

b1

} 
a1

a2

b3

b4


{

a2

b3

}

b4 b4 b3 b2 b1

{
a4

b1

} {
a3

b2

} {
a2

b3

} {
a1

b4

}

It is clear from the table that (R(I1, I2),+) is a refined neutrosophic canonical hypergroups.

Example 3.6. Let R = {0, u, v} and define ” + ” on R as follows

Table 2. Cayley table for the hyper operation ” + ”

+ 0 u v

0 0 u v

u u {0, u} v

v v v {0, u, v}

Let R(I1, I2) = {a1 = (0, 0I1, 0I2), a2 = (0, 0I1, uI2), a3 = (0, 0I1, vI2), a4 = (0, uI1, 0I2),

a5 = (0, vI1, 0I2), a6 = (0, uI1, vI2), a7 = (0, vI1, uI2), a8 = (0, uI1, uI2), a9 = (0, vI1, vI2),

b1 = (u, uI1, uI2), b2 = (u, uI1, 0I2), b3 = (u, uI1, vI2), b4 = (u, 0I1, uI2), b5 = (u, vI1, uI2),

b6 = (u, 0I1, vI2), b7 = (u, vI1, 0I2), b8 = (u, 0I1, 0I2), b9 = (u, vI1, vI2), c1 = (v, vI1, vI2),

c2 = (v, vI1, 0I2), c3 = (v, vI1, uI2), c4 = (v, 0I1, vI2), c5 = (v, uI1, vI2), c6 = (v, 0I1, uI2),

c7 = (v, uI1, 0I2), c8 = (v, 0I1, 0I2), c9 = (v, uI1, uI2)} be a refined neutrosophic set.
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For any (x, yI1, zI1), (p, qI1, rI2) ∈ R(I1, I2) define the hyperoperation +′ by

(x, yI1, zI1) +′ (p, qI1, rI2) = {(m,nI1, sI2) : m ∈ x+ p, n ∈ y + q, s ∈ z + r}.

Then (R(I1, I2),+′) is a refined neutrosophic canonical hypergroup.

Proposition 3.7. Let (R(I1, I2),+1) be a refined neutrosophic canonical hypergroup and let (K,+2)

be a canonical hypergroup. Define for all (x1, k1), (x2, k2) ∈ R(I1, I2)×K the hyperoperation ′′+′′ by

(x1, k1) + (x2, k2) = {(x3, k3) : x3 ∈ x1 +1 x2, k3 ∈ k1 +2 k2}.

Where xi = (ai, biI1, ciI2) for i = 1, 2 · · ·n. Then (R(I1, I2)×K,+) is a refined neutrosophic canonical

hypergroup.

Proof. Let (x1, k1), (x2, k2), (x3, k3) ∈ R(I1, I2)×K for x1, x2, x3 ∈ R(I1, I2) and k1, k2, k3 ∈ K.

Then :

(1) For commutativity;

(x1, k1) + (x2, k2) = ((a1, b1I1, c1I2), k1) + ((a2, b2I1, c2I2), k2)

= {((p, qI1, sI2), k) : p ∈ a1 +1 a2, q ∈ b1 +1 b2, s ∈ c1 +1 f2, k ∈ k1 +2 k2}
= {((p, qI1, sI2), k) : p ∈ a2 +1 a1, q ∈ b2 +1 b1, s ∈ c2 +1 c1, k ∈ k2 +2 k1}
= ((a2, b2I1, c2I2), k2) + ((a1, b1I1, c1I2), k1)

= (x2, k2) + (x1, k2).

(2) For associativity;

[(x1, k1) + (x2, k2)] + (x3, k3) = [((a1, b1I1, c1I2), k1) + ((a2, b2I1, c2I2), k2)] + ((a3, b3I1, c3I2), k3)

= {((p, qI1, sI2), k) : p ∈ a1 +1 a2, q ∈ b1 +1 b2, s ∈ c1 +1 c2,

k ∈ k1 +2 k2}+ ((a3, b3I1, c3I2), k3)

= {((p′, q′I1, s′I2), k′) : p′ ∈ p+1 a3, q
′ ∈ q +1 b3, s

′ ∈ s+1 c3,

k′ ∈ k +2 k3}
= {((p′, q′I1, s′I2), k′) : p′ ∈ (a1 +1 a2) +1 a3, q

′ ∈ (b1 +1 b2) +1 b3,

s′ ∈ (c1 +1 c2) +1 c3, k
′ ∈ (k1 +2 k2) +2 k3}

= {((p′, q′I1, s′I2), k′) : p′ ∈ a1 +1 (a2 +1 a3), q′ ∈ b1 +1 (b2 +1 b3),

s′ ∈ c1 +1 (c2 +1 c3), k′ ∈ k1 +2 (k2 +2 k3)}
= ((a1, bI1, c1I2), k1) + [((a2, b2I1, c2I2), k2) + ((a3, b3I1, c3I2), k3)]

= (x1, k1) + [(x2, k2) + (x3, k3)].

(3) Existence of inverse element:

We want to show that the element ((0, 0I1, 0I2), 0k) is the neutral element in R(I1, I2) × K.

Where 0k is the neutral element in K. Now, consider

((0, 0I1, 0I2), 0K) + ((a1, b1I1, c1I2), k1) = {((p, qI1, tI2), k) : p ∈ 0 +1 a1, q ∈ 0 +1 b1, t ∈ 0 +1 c1,

k ∈ 0K +2 k1}
= {((p, qI1, tI2), k)) : p ∈ {a1}, q ∈ {b1}, t ∈ {c1}, k ∈ {k1}
= {((a1, b1I1, c1I2), k1}.

Similarly, we can show that

((a1, b1I1, c1I2), k1) + ((0, 0I1, 0I1), 0K) = {((a1, b1I1, c1I2), k1)}.
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Hence, we can conclude that there exists a neutral element ((0, 0I1, 0I2), 0K) ∈ R(I1, I2)×K.

(4) Existence of unique inverse:

We want to show that there exist a unique inverse for any ((a1, b1I1, c1I2), k1) ∈ R(I1, I2)×K.

Now, consider

[((a1, b1I1, c1I2), k1) + ((−a1,−b1I1, c1I2),−k1)] ∩ [((−a,−bI1,−cI2),−k1) + ((a1, bI1, c1I2), k1)]

= {((p, qI1, tI2), k) : p ∈ a1 +1 (−a1), q ∈ b1 +1 (−b1), t ∈ c1 +1 (−c1),

k ∈ k1 +2 (−k1)}
∩ {((m,nI1, uI2), k′) : m ∈ −a1 +1 a1, n ∈ −b1 +1 b1, u ∈ −c+1 c,

k′ ∈ −k1 +2 k1}
= {((p, qI1, tI2), k) : p ∈ {0}, q ∈ {0}, t ∈ {0}, k ∈ {0K}
∩ {((m,nI1uI2), k′) : m ∈ {0}, n ∈ {0}, u ∈ {0}, k′ ∈ {0K}.

Then we can say that

((0, 0I1, 0I2), 0K) ∈ (((a1, b1I1, c1I2), k1) +

((−a1,−b1I1,−c1I2),−k1) ∩ (((−a1,−b1I1,−c1I2),−k1) + ((a1, b1I1, c1I2), k1) and therefore,

−((a1, b1I1, c1I2), k1) is the unique inverse of any ((a1, b1I1, c1I2), k1) ∈ R(I1, I2)×K.

(5) Let (x3, k3) ∈ (x1, k1) + (x2, k2), i.e., ((a3, b3I1, c3I2), k3) ∈ ((a1, b1I1, c1I2), k1) +

((a2, b2I1, c2I2), k2). Then

((a3, b3I1, c3I2), k3) ∈ {((p, qI1, tI2), k) : p ∈ a1 +1 a2, q ∈ b1 +1 b2, t ∈ c1 +1 c2, k ∈ k1 +2 k2}
= {((p, qI1, tI2), k) : a2 ∈ −a1 +1 p, b2 ∈ −b1 +1 q, c2 ∈ −c1 +1 t,

k2 ∈ −k1 +2 k}
= {((a2, b2I1, c2I2), k2) : a2 ∈ −a1 +1 p, b2 ∈ −b1 +1 q, c2 ∈ −c1 +1 t,

k2 ∈ −k1 +2 k}.

So, we have ((a2, b2I1, c2I2), k2) ∈ −((a1, b1I1, c1I2), k1) + ((a3, b3I1, c3I2), k3).

Also, we can show that ((a1, b1I1, c1I2), k1) ∈ ((a3, b3I1, c3I2), k3)− ((a2, b2I1, c2I2), k2). Hence,

(x3, k3) ∈ (x1, k1) + (x2, k2) implies that (x1, k1) ∈ (x3, k3)− (x2, k2) and

(x2, k2) ∈ −(x1, k1) + (x3, k3).

Accordingly, R(I1, I2) is a refined neutrosophic canonical hypergroup.

Proposition 3.8. Let (R(I1, I2),+1) and (K(I1, I2),+2) be two refined neutrosophic canonical hyper-

group. Define for all (x1, k1), (x2, k2) ∈ R(I1, I2)×K(I1, I2) the hyperoperations ′′+′′ by

(x1, k1) + (x2, k2) = {(x3, k3) : x3 ∈ x1 +1 x2, k3 ∈ k1 +2 k2}.

Where xi = (ai, biI1, ciI2) and ki = (ui, viI1, siI2) for i = 1, 2 · · ·n.

Then (R(I1, I2)×K(I1, I2),+) is a refined neutrosophic canonical hypergroup.

Proof. The proof is similar to the prof of Proposition 3.7 .
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Lemma 3.9. Let R(I1, I2) be a refined neutrosophic canonical hypergroup. A non-empty subset

K(I1, I2) of R(I1, I2) is a refined neutrosophic subcanonical hypergroup if and only if for k1 =

(p1, q1I1, s1I1), k2 = (p2, q2I1, s2I1) ∈ K(I1, I2) the following conditions hold:

(1) k1 − k2 ⊆ K(I1, I2),

(2) K(I1, I2) contains a proper subset which is a canonical hypergroup.

Proposition 3.10. Let M(I1, I2) and N(I1, I2) be any two refined neutrosophic subcanonical hyper-

groups of a refined neutrosophic canonical hypergroup R(I1, I2) and let K be a subcanonical hypergroup

of R. Then,

(1) M(I1, I2) +N(I1, I2) is a refined neutrosophic subcanonical hypergroup of R(I1, I2).

(2) M(I1, I2) ∩N(I1, I2) is a refined neutrosophic subcanonical hypergroup of R(I1, I2).

(3) M(I1, I2) +K is a refined neutrosophic subcanonical hypergroup of R(I1, I2).

Proof. (1) It is clear that (0, 0I1, 0I2) ∈ M(I1, I2) + N(I1, I2) since M(I1, I2) and N(I1, I2) are

refined neutrosophic subcanonical hypergroup.

Let (x, yI1, zI2), (u, vI1wI2) ∈M(I1, I2) +N(I1, I2). Where x = x1 + x2, y = y1 + y2,

z = z1 + z2, u = u1 + u2, v = v1 + v2 and w = w1 + w2. With x1, y1, z1, u1, v1, w1 ∈ M and

x2, y2, z2, u2, v2, w2 ∈ N. Then

(x, yI1, zI2)− (u, vI1wI2) = ((x1 + x2), (y1 + y2)I1, (z1 + z2)I2)−
((u1 + u2), (v1 + v2)I1, (w1 + w2)I2)

= ((x1 + x2)− (u1 + u2), ((y1 + y2)− (v1 + v2))I1,

((z1 + z2)− (w1 + w2)I2)

= {(p, qI1, rI2) : p ∈ (x1 − u1) + (x2 − u2), q ∈ (y1 − v1) + (y2 − v2),

r ∈ (z1 − w1) + (z2 − w2)}
⊆ M(I1, I2) +N(I1, I2).

Now, since the refined neutrosophic subcanonical hypergroups M(I1, I2) and N(I1, I2) contain

a proper subset M and N respectively, which are canonical hypergroups. Then, M + N is a

canonical hypergroup which is contained in M(I1, I2) +N(I1, I2). Hence M(I1, I2) +N(I1, I2)

is a refined neutrosophic subcanonical hypergroup of R(I1, I2).

(2) The proof is similar to the proof in classical case.

(3) The proof follows the same approach as the proof of 1.

Remark 3.11. It should be noted that if M(I1, I2) is a refined pseudo neutrosophic subcanonical hy-

pergroup of a refined neutrosophic canonical hypergroup R(I1, I2) and K is a subcanonical hypergroup

of a canonical hypergroup R. Then M(I1, I2) + K is a refined neutrosophic subcanonical hypergroup

of R(I1, I2).
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Definition 3.12. Let R(I1, I2) be a refined neutrosophic canonical hypergroup. The refined neutro-

sophic subcanonical hypergroup M(I1, I2) is said to be normal in R(I1, I2) if

(a, bI1, cI2) +M(I1, I2)− (a, bI1, cI2) ⊆M(I1, I2) for all (a, bI1, cI2) ∈ R(I1, I2).

Definition 3.13. Let M(I1, I2) be a normal refined neutrosophic subcanonical hypergroup of a refined

neutrosophic canonical hypergroup R(I1, I2). The quotient R(I1, I2)/M(I1, I2) is defined by the set

{r +M(I1, I2) : r = (x, yI1, zI2) ∈ R(I1, I2)}.

Proposition 3.14. Let R(I1, I2)/M(I1, I2) = {r +M(I1, I2) : r = (x, yI1, zI2) ∈ R(I1, I2)}.

For r1 + M(I1, I2), r2 + M(I1, I2) ∈ R(I1, I2)/M(I1, I2), if r1 + M(I1, I2) ∩ r2 + M(I1, I2) 6= ∅ then

r1 +M(I1, I2) = r2 +M(I1, I2).

Proof. Let r3 ∈ r1 +M(I1, I2) ∩ r2 +M(I1, I2) i.e.,

(x3, y3I1, z3I2) ∈ (x1, y1I1, z1I2) +M(I1, I2) ∩ (x2, y2I1, z2I2) +M(I1, I2).

Obviously,

(x3, y3I1, z3I2) ∈ (x1, y1I1, z1I2) +M(I1, I2) and (x3, y3I1, z3I2) ∈ (x2, y2I1, z2I2) +M(I1, I2).

So, for m1 = (u1, v1I1, t1I2),m2 = (u2, v2I1, t2I2) ∈M(I1, I2), with u1, u2, u3, v1, v2, v3, t1, t2,

t3 ∈M, we have

(x3, y3I1, z3I2) ∈ (x1, y1I1, z1I2)+(u1, v1I1, t1I2) and (x3, y3I1, z3I2) ∈ (x2, y2I1, z2I2)+(u2, v2I1, t2I2).

(x3, y3I1, z3I2) ∈ (x1+u1, (y1+v1)I1, (z1+t1)I2) and (x3, y3I1, z3I2) ∈ (x2+u2, (y2+v2)I1, (z2+t2)I2),

=⇒ x3 ∈ x1 + u1, y3 ∈ y1 + v1, z3 ∈ z1 + t1 and x3 ∈ x2 + u2, y3 ∈ y2 + v2, z3 ∈ z2 + t2.

Since x3 ∈ x1 + u1, y3 ∈ y1 + v1, z3 ∈ z1 + t1 implies x1 ∈ x3 − u1, y1 ∈ y3 − v1, z1 ∈ z3 − t1.

Then we have

x1 ∈ x3 − u1 ⊆ (x2 + u2)− u1 = x2 + (u2 − u1) ⊆ x2 +M,

y1 ∈ y3 − v1 ⊆ (y2 + v2)− v1 = y2 + (v2 − v1) ⊆ y2 +M,

z1 ∈ z3 − t1 ⊆ (z2 + t2)− t1 = z2 + (t2 − t1) ⊆ z2 +M,

=⇒ (x1, y1I1, z1I2) ⊆ (x2, y2I1, z2I2) +M(I1, I2).

∴ (x1, y1I1, z1I2) +M(I1, I2) ⊆ (x2, y2I1, z2I2) +M(I1, I2) +M(I1, I2) = (x2, y2I1, z2I2) +M(I1, I2).

Similarly it can be shown that (x2, y2I1, z2I2) + M(I1, I2) ⊆ (x2, y2I1, z2I2) + M(I1, I2). Hence the

proof.
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Proposition 3.15. Let M(I1, I2) be a normal refined neutrosophic subcanonical hypergroup of a re-

fined neutrosophic canonical hypergroup R(I1, I2). Let R(I1, I2)/M(I1, I2) be as defined in Proposition

3.14. For all r1 +M(I1, I2), r2 +M(I1, I2) ∈ R(I1, I2)/M(I1, I2) define the hyperoperation +′ by

r1 +M(I1, I2) +′ r2 +M(I1, I2) = (r1 +′ r2) +M(I1, I2).

Then, (R(I1, I2)/M(I1, I2),+′) is a neutrosophic canonical hypergroup if R/M is a canonical hyper-

group.

Definition 3.16. Let (R(I1, I2),+1) and (M(I1, I2),+2) be any two refined neutrosophic canonical

hypergroups and let

φ : R(I1, I2) −→M(I1, I2)

be a mapping from R(I1, I2) into M(I1, I2).

(1) φ is called a refined neutrosophic canonical hypergroup homomorphism if:

(a) for all x, y of R(I1, I2), φ(x+1 y) ⊆ φ(x) +2 φ(y),

(b) φ(0, 0I1, 0I2) = (0, 0I1, 0I2),

(c) φ(Ik) = Ik for k = 1, 2.

(2) φ is called a good refined neutrosophic canonical hypergroup homomorphism if:

(a) for all x, y of R(I1, I2), φ(x+1 y) = φ(x) +2 φ(y),

(b) φ(0, 0I1, 0I2) = (0, 0I1, 0I2),

(c) φ(Ik) = Ik for k = 1, 2.

(3) φ is called a refined neutrosophic isomorphism if φ is a refined neutrosophic homomorphism

and φ−1 is also a refined neutrosophic homomorphism.

Definition 3.17. Let φ : R(I1, I2) −→ M(I1, I2) be a refined neutrosophic canonical hypergroup

homomorphism from a refined neutrosophic canonical hypergroup R(I1, I2) into a refined neutrosophic

canonical hypergroup M(I1, I2).

(1) The kernel of φ denoted by Kerφ is the set {(u, vI1, wI2) ∈ R(I1, I2) : φ((u, vI1, wI2)) =

(0, 0I1, 0I2)}.

(2) The image of φ denoted by Imφ is the set {φ((u, vI1, wI2)) : (u, vI1, wI2) ∈ R(I1, I2)}.

Proposition 3.18. Let φ : R(I1, I2) −→ M(I1, I2) be a refined neutrosophic canonical hypergroup

homomorphism from a refined neutrosophic canonical hypergroup R(I1, I2) into a refined neutrosophic

canonical hypergroup M(I1, I2).

(1) The kernel of φ is not a neutrosophic subcanonical hypergroup of R(I1, I2).

(2) The image of φ is a neutrosophic subcanonical hypergroup of M(I1, I2).

Proof. (1) It can be seen from the definition of Kernel that Kerφ is a subcanonical hypergroup and

not a neutrosophic subcanonical hypergroup.

(2) The proof is similar to the proof in classical case.
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Remark 3.19. If φ in Proposition 3.18 is a good refined neutrosophic canonical hypergroup homo-

morphism and P (I1, I2) is a normal refined neutrosophic subcanonical hypergroup of R(I1, I2) then

φ(P (I1, I2)) is normal in M(I1, I2). Also, if Q(I1, I2) is a normal refined neutrosophic subcanonical

hypergroup of M(I1, I2), then φ−1(Q(I1, I2)) is normal in R(I1, I2).

In what follows we shall establish the relationship between the refined neutrosophic canonical hyper-

groups and the parent or any neutrosophic canonical hypergroups. Since every neutrosophic (refined

neutrosophic) canonical hypergroup is a canonical hypergroup. Then, our task will be to find a classical

map ψ say, such that

ψ : R(I1, I2) −→ R(I).

And for all (u, vI1, wI2) ∈ R(I1, I2) we define ψ by

ψ((u, vI1, wI2)) = (u, (v + w)I).

Proposition 3.20. Let (R(I1, I2),+′) be a refined neutrosophic canonical hypergroup and let (R(I),+)

be a neutrosophic canonical hypergroup. The mapping ψ defined above is a good homomorphism.

Proof. It can be easily shown that ψ is well defined.

Now, for (u, vI1, wI2), (p, qI1, tI2) ∈ R(I1, I2) then

ψ((u, vI1, wI2) +′ (p, qI1, tI2)) = ψ((u+ p), (v + q)I1, (w + t)I2)

= ((u+ p), (v + q + w + t)I)

= ((u+ p), (v + w)I + (q + t)I)

= (u, (v + w)I) + (p, (q + t)I)

= ψ((u, vI1, wI2)) +′ ψ((p, qI1, tI2)).

Hence ψ is a good homomorphism.

Remark 3.21. The kernel of this map is given by

kerψ = {(u, vI1, wI2) : ψ((u, vI1, wI2)) = (0, 0I1, 0I2)}
= {(0, vI1, (−v)I2)}.

It can be shown that kerψ is a subcanonical hypergroup of R(I1, I2).

4. Conclusions

This paper studied refinement of neutrosophic canonical hypergroup and presented some of its basic

properties. Also, the existence of a good homomorphism between a refined neutrosophic canonical hy-

pergroup R(I1, I2) and a neutrosophic canonical hypergroup R(I) was established. We hope to present

and study more advance properties of refined neutrosophic canonical hypergroup and its substructures

in our future papers.
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Abstract: Neutrosophic set is a branch of neutrosophy concerned with nature, the genesis, and 

breadth of impartialities, and also their interaction with various mental spectra. Neutrosophic sets 

constitute relatively new expansions of intuitionistic fuzzy. In a short period of time, numerous 

researchers have accepted neutrosophic reasoning. Many researchers have linked neutrosophic 

science and metaheuristics in various ways over the last ten years. Metaheuristic research has 

attracted a great attention throughout the literature, which covers methodologies, apps, comparative 

analysis; due to its higher intensities and fruitful implementations. Metaheuristic algorithms are 

used to introduce the best or the optimum solutions to a lot of optimization problems due to the 

behavior of these algorithms inspired by Nature and its ability to adapt to problems, as well as the 

possibility of integrating more than one algorithm to reach the best solutions. Based on the previous 

reason, many researchers used these algorithms with neutrosophic science to present many 

platforms in the recent years, which was the motivation to introduce this survey paper.  This paper 

is introduced to cover the publications from 2010 to 2021 in order to draw a comprehensive picture 

of metaheuristic research integrated with neutrosophic theory. 

Keywords: Neutrosophic Set; Neutrosophy; Metaheuristic; Optimization 

 

 

1. Introduction 

Massive amounts of incomplete, vague, fuzzy, and inaccurate data are provided by real-world 

applications. Errors possession, lack of knowledge, or randomness can all contribute to uncertainty 

[1]. Several theories and methodologies have been proposed to deal with such ambiguous data, 

including probability theory[2], Theory of Para-consistent logic[3], Set theory with a fuzziness[4], 

and Fuzzy set theory with intuition[5]. Furthermore, such theories only can deal through one 

incorrect problem element at a time rather than the entire problem inside one paradigm; for instance, 

the fuzzy set theory can just handle imprecise and fuzzy data, not inconstant or unfinished issues in 

the same data. As a result, in attempt to settle such concerns in a unified framework, the 

neutrosophic methodology was introduced [6]. As a result, the neutrosophic methodology[6], which 

really is a philosophical subdivision incorporating philosophic awareness, set theory, intuitions, and 

probabilistic, can then be used to resolve these issues in a single framework. Neutrosophic 
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methodology is the foundation of neutrosophic logic, which indicates ambiguity and uses a new 

platform named Neut-A to tackle problems which fuzzy logic can't [7]. Fuzzy logic is typically 

known as a two-valued logic extension in which statements do not have to be true or untrue, and 

might have a truth degree in range of 0 and 1. In comparison to all other logics, neutrosophic 

reasoning and Fuzzy logic with intuition have a higher percentage of "indeterminacy". That's also 

owing to unexpected criteria which can also be concealed for some unknowingness or proposals, but 

a neutrosophic logic allows for every item (T, I, F) to be flooded (stirring) over 1, in other words be 

‘1+', or dehydrated, e.g. be ‘0', in order to distinguish among relative truth and actual truth, along 

with comparative falseness and ultimate untruth. 

Neutrosophic is considered a new area of study which investigates the origin, natural world, 

and context of impartialities, and also their ability to interact with various mental spectra, according 

to Smarandache. Traditional logic, probabilistic reasoning, and inaccurate probability are all 

specified by Neutrosophic, multiple value logic. Neutrosophic is more human-like in that it 

describes knowledge inaccuracy or linguistic inconsistency as determined by multiple observers. A 

neutrosophic set is considered a subset in neutrosophic that investigates neutrality's essence, origin, 

or context of impartialities, as well as its relationships. Each incident within neutrosophic set theory 

owns a degree of truth, falsehood, and ambiguity that must also be analyzed separately from one 

another [8].  

A neutrosophic set has recently emerged as a general, prominent, and comprehensive strategy. 

Many researchers have submitted many research papers using neutrosophic science to solve many 

problems. Looking at the recent years, we find that a link has been made between neutrosophic set 

theory and metaheuristic science so as to produce the best proposed solutions for many research 

problems. Integration between the two previous sciences has been based on the importance of 

metaheuristic. 

The concept "metaheuristic" refers to higher-level methodologies that have been proposed for 

solving a wide range of optimization issues. A number of metaheuristic algorithms have recently 

proven successful in solving critical situations. The advantage of employing such algorithms to solve 

tremendous challenges would be that they produce a desired or optimum solution in a short time, 

even for problem sizes are large scale. 
In the last twenty years, new and innovative evolutionary approaches have emerged 

successfully, despite the progress of classical metaheuristic algorithms. During this period of 

metaheuristic algorithm research, a large number of new metaheuristic algorithms inspired by 

evolutionary or behavioral processes are introduced.  

Many of metaheuristic algorithms have been used integrated with neutrosophic science to 

answer a wide range of research issues. For instance, forest fires[9], document-level sentiment 

analysis[10],image segmentation[11, 12],breast cancer detection[13, 14],  time series forecasting[15], 

Relief distribution and victim evacuation[16],modeling neutrosophic variables[17],CT image 

segmentation and two[18]… etc. 

The goal of this essay is to provide a detailed insight of the major metaheuristic algorithms that 

have been combined with neutrosophic set theory to introduce a number of efficient solutions or 

platforms to a variety of problems over the last decade, as well as a clear explanation of NS and 

metaheuristic concepts. 
The following is the structure of the survey on integration between meta- heuristics and 

neutrosophic. Sect. 2 introduces the concept and model of neutrosophic sets. Sect. 3 introduces the 

concept meta-heuristic algorithms. Sect. 4 introduces a global review on neutrosophic set 
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incorporated with metaheuristic and its applications and platforms in different models. Finally, 

Section 5 concludes with a conclusion and recommendations for the future. 

2. Theory of Information  

In the neutrosophic scientific theory, every proposal is simulated to get the rate of reality )(x
u

 , 

indeterminacy rate )(x
u
 , and negation rate )(x

u
 . The theory of neutrosophy is a broadening of 

fuzziness and intuitionistic fuzzy sets as well as rational thinking. Neutrosophic theory is gaining 

momentum as a solution to a variety of real-world problems involving ambiguity, imprecision, 

vagueness, incompleteness, inconsistency, and indeterminacy[19, 20]The neutrosophic logic is used 

to deal with information that has a lot of uncertainty and irregularity. As a result, the neutrosophic 

theory is used in a variety of fields to address issues related to indeterminacy.  To deal 

with uncertainty, we need some concepts to define the neutrosophic variable. The triple supports 

any value of a variable in a neutrosophic universe: 

)}(),(),({ xxxu
uuu

                                                                               (1) 

Where )(x
u

 denotes fact membership, )(x
u
 denotes indeterminacy membership, and )(x

u
  

denotes untruth membership. Such three aspects are self-contained and quantifiable. According to 

the neutrosophic set description[21] ,every element x  ∈ X inside set u represented in Eq. 1 is 

falling under the upcoming  constraints: 
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The following equations limit a type 1 neutrosophic fuzzy set: 
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The third classification, a neutrosophic intuitionistic set with type 2, is compelled with the upcoming 

formula: 
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In order to make certainty science an open field for working in environments of degree of truth, 

uncertainty, and error, a set of definitions of neutrosophic science is provided in the literature. 

Figure 1[9] depicts a typical neutrosophic decision-making aid. The system starts with a 

prepping process that converts traditional data from various repositories into rough set theory data 

that is then transferred via the neutrosophic platform. Aim of providing neutrosophic data ‘B,' the 

neutrosophic system applies system formula ‘U o R= B' toward a data of neutrosophic ‘U,' during 

which R considers the group of neutrosophic laws pertaining that apply to the framework so as to 

provide the data ‘B.'. In addition, o represents the intermediate representation. The wisdom of 

neutrosophic is obtained by extracting knowledge from neutrosophic data.  As a result of applying 

the decision support system procedure to neutrosophic data, the neutrosophic decision seems to be 

the ultimate destination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  a typical neutrosophic decision-making aid 

3. Overview on Meta-heuristic Algorithms 

A metaheuristic is an algorithmic structure that covers a lot of optimization issues with only a 

few tweaks to adapt to the specific problem. By studying the nature of the work of any metaheuristic 

algorithm, we find that, the harmonization of two search archetypes: the exploration and the 

exploitation is the reason for metaheuristics robust searching mechanism. Metaheuristics can be 

used with a variety of classification criteria. Consider how metaheuristics are classified according to 

the path they take, whether they use memory, what form of neighborhood exploration they use, or 
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how many existing solutions they carry from one iteration to the next. A lot of researchers 

introduced various metaheuristic categories. 

 
4. Integration of Neutrosophic Set and Met-heuristic Algorithms 

According to F Smarandache [6], neutrosophic set is basic paradigm which extrapolates with 

neutrosophic set and its variants, such as simplistic neutrosophic sets, single valued neutrosophic 

sets, fuzzy intuitionistic fuzzy sets, Interval-valued neutrosophic set, ragged neutrosophic set, 

intuitionistic neutrosophic set, interval neutrosophic set, neutrosophic soft set, neutrosophic hesitant 

fuzzy set. These variants have recently been integrated with meta-heuristic optimization algorithms 

and employed in a broad variety of topics, including computer applications, medical applications, 

image segmentation, clustering, text analysis, time series forecasting and more. 

 

4.1. Neutrosophic Set and Met-heuristic Integration on Image Segmentation 

Throughout the fields of photo processing and computer vision, accurately and efficiently 

segmenting images has always been critical. Biomedical image segmentation is a critical step in 

picture processing and style recognition that distinguishes objects from the background, 

determining the analysis' quality. The image is frequently segmented to non-overlapping pieces 

during this process. Fuzzy theory, when applied to image segmentation, retains more information 

than strict segmentation techniques. Segmenting the data can potentially be a part of different 

clusters using FCM. The indeterminacy of every object in the series, however, cannot be described or 

assessed using the traditional set techniques. As a result, fuzzy sight has been used to deal with 

uncertainty. Neutrosophic integrated with meta-heuristic has recently been a popular tool for 

dealing with this problem. 

Image segmentation algorithms can also be divided into three categories according to the 

resemblance and incompleteness of gray levels: Integrating region-based segmenting, border 

segmenting, and segmentation approaches with specialized theoretical tools algorithms. The innate 

fuzziness of images, as well as the ambiguity during segmentation, is added to the complexity of 

image segmentation. Classical segmentation methods have a hard time keeping up with modern 

demands. For example, when a single monolithic sill is also utilized to segregate the objective from 

the surroundings in the limit picture segmentation approach, the impact cannot be optimal. In 

picture segmentation of region-based, it is generally more-segmented and babble-sensitive. If the 

image segmentation method is ineffective, the segmentation process will be of poor quality. In-depth 

image segmentation research is beneficial to enhance image processing follow-up performance. In 

recent decades, numerous researchers have conducted considerable picture segmentation research; 

however there isn’t presently absolutely clear a segmentation technique which is adequate over all 

images. Numerous image segmentation methodologies have been introduced that incorporate some 

particular theories and methods, like the FCM algorithm relies on cluster analysis, as a result of the 

emergence of several concepts and approaches in numerous sectors. The initial parameters of the 

FCM algorithm are extremely sensitive, and it may be necessary to manually adjust them to estimate 

the global optimum and strengthen segmentation speed. Furthermore, the conventional FCM 

methodology is vulnerable to noise or gray - scale discontinuities because it ignores spatial 

information. The region based segmentation method only considers information such as pixel 
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intensities, image boundary, and so on, and ignores the image's inherent indeterminacy, which can 

lead to erroneous picture segmentation findings. Although, because turbulence is unavoidable 

throughout images acquired, transportation, and storage, de-noising is emerged as a key research 

for image processing.  A lot of academics have suggested many de-noising techniques. 

Benaichouche et al  [22] boosted fuzzy c-means in 3 stages for solving image segmentation 

problems. First, particle swarm optimization algorithm (PSO) was incorporated to improve the 

initialization steps of fuzzy c-means method. Second, during cluster segmentation, the Mahalanobis 

space was also employed to limit the impact of geometric pattern upon the locative gray information 

incorporation of pictures. Ultimately, the clustered mistake had been rectified via redistributing 

potentially misclassified pixels, allowing the segmentation results to be refined. Canayaz et al [11] 

presented a segmentation method which could be applied to image processing. Image segmentation 

algorithms such as the Neutrosophic Set (NS), which is used to evaluate indeterminacy information, 

and metaheuristic algorithms have become popular. Both of these methods were used in this 

research. After transforming a picture into the neutrosophic domains, that has 3 subsets (Truth, 

indeterminacy, and Falsehood), after that, image pixels’ indeterminacy is removed, and meaningful 

features of the image are acquired. Then, using T, I subset, the coefficient matrix is found, and the 

thresholds which coincide to the values optimizing the entropy objective function are dictated using 

coefficient matrices. This is accomplished using the Cricket Algorithm. The picture will be 

represented by these thresholds, and indeed the picture will be segregated as a result.  

A new bandwidth image retrieval  scheme is proposed by Rashno et al [23]. RGB images are 

first turned into two subgroups in the NS sector and then segmented for this job. Color features such 

as the dominant color descriptor (DCD), distribution, and statistical components are retrieved for 

each segment of an image. Wavelet characteristics are also retrieved from the entire image as texture 

features. A feature vector is created by combining all retrieved characteristics either from a 

fragmented or entire image. Feature vectors are offered for feature selection in ant colony 

optimization, which picks its most important features. For the final retrieval process, only a few 

features are used. 

Gehad et al [24] presented a composite segmentation strategy depending on a variant of 

watershed algorithm and Neutrosophic reasoning. Pre - processing stage, CT image translation to 

the Neutrosophic space, and post-processing are the three aspects of the proposed technique. 

Normalization and the median filter are employed in the preprocessing step so as to improve the 

clarity and brightness ratios of the hepatic CT picture while also reducing noise. Three membership 

sets transform and depict the improved CT liver picture in the Neutrosophic set domain. Finally, in 

the last phase, morphology with mathematical formula and a variant of watershed method are 

utilized to improve the generated truthful image out from the previous step and recover the liver of 

the CT image. 

Image segmentation of ultrasound breast cancer is a critical point; different studies were 

introduced to cover this area. For example, Zhang article [7] demonstrated segmenting of 

ultrasonography breast cancer imaging by defining a neutrosophic range, that is split into 3 subsets: 

T, I, and F, neutrosophic may be applied to image processing. The image is then segmented in the 

neutrosophic domain with the watershed technique. M Zhang et al [25]also introduced an approach 

for segmenting breast ultrasound pictures (BUS) using a neutrosophic approach and watershed 
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algorithm. According to M Zhang, First, a BUS picture is tied with the domain of neutrosophic. The 

image is then converted into a binary one using neutrosophic logic, and the resultant image is 

segmented using the watershed technique. The tumor is finally found in the segmental area. TS 

Umamaheswari et al [14] addressed the problem of simultaneously gene selection and robust breast 

cancer (BC) test categorization by displaying two crossbred algorithms, namely the enhanced firefly 

algorithm (EFA) and the adaptive neuro neutrosophic inference system (ANNIS), both of which 

have chosen attributes for CTC detection. It is divided into 3 distinct phases: The main phase is to 

eliminate fineness markers associated with paired cell composition separation. The second step 

proposes a new meta-heuristic method based on EFA to discern prescient features for BC prediction. 

FAs have been changed in the EFA algorithm by using the discontinuous domain as a continuous 

domain. The EFA flexibly balances research and abuse to swiftly identify the optimum solution EFA 

is a new calculation method based on the blazing lighting technique used by fireflies. In the gene 

space, the EFA can quickly determine the best or relatively close gene subset amplifying a given 

fitness work. 

Moving to histopathology, GI Sayed et al [13] presented an approach to histopathology slide 

imaging that uses neutrosophic sets (NS) and metaheuristic optimization algorithm 

called  moth-flame (MFO) to detect mitosis automatically. The suggested method is divided into 

two primary phases: candidate extraction and candidate categorization. A Gaussian filtering is 

applied to the histopathology slide image during the candidate extraction stage, and the enhanced 

picture was transferred into the NS domain. The truth subset image was then subjected to 

morphological treatments in order to improve the image and focus on mitotic cells. Several 

statistical, form, textural, and echoes were retrieved from each candidate during the candidate 

categorization step. The greatest distinguishing properties of mitotic cells were then chosen using a 

meta-heuristic MFO algorithm principle. Finally, the characteristics that were chosen were supplied 

into the classification and regression trees (CART).  

In the field of image segmentation, Nondestructive testing (NDT) is a method of detecting a flaw in 

metal without destroying it. To detect the flaw from an NDT image by using an image 

segmentation-based technique, it is a difficult task. The problem arises as a result of uncertainties in 

the NDT image pattern. The uncertainty should be addressed effectively when segmenting an NDT 

picture. S Dhar [26] described a novel technique for segmenting an NDT picture while dealing with 

uncertainties using a neutrosophic set in this paper. The NS handles the uncertainty by dividing the 

image to three subsets: truth, falsehood, and indeterminacy. Two procedures - mean and 

augmentation - are required for appropriate NS value representation. The bat algorithm is 

integrated to identify the right values of and based on statistics of the image (BA). The method 

determines the best values for and in order to adequately manage the uncertainty. In comparison to 

the most recent methods, we found the proposed method to be pretty satisfactory in terms of 

performance. 

 

4.2. Neutrosophic Set and Meta-heuristic Integration on Time –Series-Forecasting 

Recent years, various time series forecasting models were introduced based on neutrosophic 

integrated with meta-heuristic. For example, P Singh research paper [27] introduced a new method 

for forecasting time series datasets that uses a neutrosophic-quantum optimization strategy. The 
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inherited uncertainty of a time series set of data was represented in this paper using neutrosophic set 

(NS) theory, which has three memberships: truthful, ambiguity, and falsehood. The term 

"neutrosophic time series" refers to these kinds of forms of time series datasets (NTS). NTS has also 

been used to model and forecast time series dataset. The success of the NTS molding technique is 

strongly reliant on the ideal picking of the discourse space and its related periods, according to the 

findings. The paper uses the quantitative optimization algorithm called QOA and aggregates, as 

well as the NTS molding technique to tackle this problem. By picking the global optimum universe 

of speech and its accompanying periods from a collection of local optimum solution, the NTS 

molding approach performs better with QOA. A new time - series model was suggested by P Singh 

et al [15] based on neutrosophic theory and the PSO algorithm. This suggested framework started 

with a time series set of data being represented in NS utilizing three separate NS subscriptions: 

truth, indeterminacy, and falsity. This NS representation of time series was given the label 

neutrosophic time - series data (NTS). The suggested model's predicting performance was 

discovered to be strongly dependent on the optimal universe of discussion of the time series set of 

data selection. In this work, the image segmentation problem was solved using the PSO method. 

P Singh et al [28]also presented another research that focused on three primary issues with time 

series datasets: depiction of time series datasets using NS, a number of three membership degrees of 

NS combined, and predicting outcomes production. This study recommended using a 

neutrosophic-neuro-gradient technique to overcome these three domain-specific issues. The 

uncertainty associated with time series datasets was represented using NS theory. Numerous 

decision rules with the style of IF-THEN principles were generated in NTS and dubbed 

neutrosophic entropy decision rules (NEDRs). The forecasting findings were evolved using an 

ANN-based structure with NEDRs as an input. This study also used the gradient descent approach 

to reduce the disparities among of computed and targeted outcomes values in during experiment in 

order to enhance the effectiveness of the ANN and create optimal prediction performance. 

For forest fires forecasting, M Gamal et al [9]  introduced  a platform that combines 

the  measures of information theory with PSO to predict a neutrosophic parameter using empirical 

data. PSO is a meta-heuristic methodology for determining the best partitions for truth membership, 

indeterminacy, and falsity. For the wildfire temperature variable, the suggested methodology 

produced relatively similar function subsets, whereas the Fuzzy C-Mean obviously altered the 

function subsets.  Estimating actual temperature vagueness in wildfire data will help to accurately 

forecast these fires. 

 

4.3. Classifying MANET’s Attacks Based on Neutrosophic and Meta-heuristic Integration 

A mobile ad hoc network (MANET) is an ad hoc system made up of mobile wireless servers 

with no permanent telecommunications infrastructure. This platform's evolution may be more rapid 

and unpredictable.. Because of MANETs' unique characteristics, an adversary can launch several 

attacks on ad hoc networks. The most pressing concern with MANETs is security, which is critical to 

the system's overall utility. Accessibility of system administrations, privacy, and data integrity can 

all be achieved by ensuring that security concerns are addressed. MANETs are vulnerable to security 

attacks on accounts due to their characteristics such as open medium, powerful topology change, 

lack of central monitoring and management, pleasant computations, and no obvious protection 
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mechanism. The battleground for MANETs vs. the security threat has altered as a result of these 

causes. Because of such traits, MANETs are more vulnerable to attacks from within the network. 

Remote connections also render MANETs more vulnerable to attacks, making it easier for an 

attacker to break into the system and gain access to the ongoing conversation. 

Routing table overflows, flooding assault, wormhole attack, Mitm attacks, and greedy node 

misbehaving are some of the risks that MANET can face. Nodes in MANETs are vulnerable to 

intrusion and assault because they lack specified architecture and mobility. Intruder Detection 

Learning Technology is used by designers to protect a computer system from unauthorized access 

such as hackers. It is a learning challenge to use an intrusion detector to generate a classifier. The 

detectors should really have the ability to tell the difference between "abnormal" connections, also 

known as invasions or threats, and "normal" contacts.  

Elwahsh et al [29] proposed an Intelligent System for Categorizing MANETs Attacks based on 

Neutrosophic and Genetic Algorithm (GA), which is a challenging step for categorizing MANETs 

threats. This framework is relying on two phases: the first is pre-processing and the second is 

classification for network invasions. In the preprocessing step, network characteristics are formatted 

in a classifying format. The data from the KDD network [30] is transformed to take the format of 

neutrosophic (Membership, Indeterminacy, Non-membership). The genetic algorithms 

(GA) searching technique is used to find a series of neutrosophic constraints to categorize MANETs 

assaults after transforming traditional KDD data to a neutrosophic data form. The GA starting 

population is made up of individuals who were chosen at random. A neutrosophic (if-then) 

categorization rule is represented by each individual.  

H Elwahsh et al [31]proposed another method for classifying MANET’s threats using a 

composite neutrosophic intelligent system with genetic algorithm. This study presents a hybrid 

framework of Self-Organized Features Maps (SOFM) and evolutionary algorithms for MANETs 

attack inference (GA). To construct the MANET's neutrosophic conditioned parameters, the hybrid 

uses the SOFM's unsupervised learning capabilities. The neutrosophic variables, as well as the 

training set of data, are given to the GA, which uses the fitness function to discover the most suitable 

neutrosophic set of rules from a series of original sub threats. This approach is intended to identify 

unknown MANET assaults. 

 

4.4. Job Shop Scheduling Based on Neutrosophic and Meta-heuristic Integration. 

Scheduling module schedules machines work for reducing the maximum completion time 

(make span) or meeting other criteria. The flexible job-shop scheduling problem (FJSP) with routing 

flexibility seems to be more challenging, and can be thought of it as an integrated making plans and 

job shop scheduling (IPPS) problem, in which the two significant roles of process planning and 

task shop scheduling are regarded as a whole and streamlined simultaneously in order to take 

advantage of versatility in a production system. Because of their intricacy, meta-heuristic methods 

are frequently used to tackle scheduling difficulties. L Jin et al [32] presented a study on the 

modeling and optimization strategy for the  problem of IPPS with unpredictable process time. To 

describe unknown processing times, NS is initially presented. They created an enhanced 
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teaching-learning-based optimizing (TLBO) methodology to handle more resilient scheduling 

strategies owing to the complicated of the math modelThe scoring values of the unknown execution 

per each device are assessed and enhanced in the proposed optimization approach to achieve the 

most effective alternative. In [33] L Jin et al proposed a research focused  the  problem of IPPS with 

unpredictable process time in order to mitigate the inconsistency in make span in [36]. To simulate 

the unknown processing times, the innovative neutrosophic numbers are first presented. A 

mixed-integer linear programming (MILP) framework based on neutrosophic numbers is evolved; 

regarding the NP hardness and difficulty of estimating the model, the variable neighborhood search 

(VNS) embedded mimetic algorithm (MA) is formed to expedite extra efficient systems. The nominal 

make span criteria and the robustness requirement has been weighted summed in the suggested 

algorithm. 

4.5. Image Clustering Based on Neutrosophic Set and Meta-heuristic Integration 

Clustering is the division of a group of samples or items into a number of clusters with 

comparable common components. The fuzzy c-means (FCM) method is one of the most often used 

fuzzy clustering approaches. To acquire the data membership degrees in FCM, an iterative reduction 

of a cost function is done. This objective functions are subjected to a constraint for each data set, 

namely that combination of degrees of membership across bunches must equal one. The FCM 

approach, on the other hand, has some downsides, including the fact that, firstly its sensitivity to 

noise, secondly, it strives to reduce intra-cluster variance, thirdly, having a local minima, and fourth 

the outcomes are dependent on the beginning values. A group's number of noise points could be 

rather large. As a result, academics are interested in finding new approaches to address these issues. 

The NS was introduced to handle the uncertainties connected with the clustering based 

methodologies' parameters since it is a formidable strategy to cope with indeterminacy. 

Based on NS, PSO, and the fast fuzzy c-means (FFCM) approach, Anter et al [18] suggested an 

upgraded segmentation method for abdominal CT liver tumors. To reduce the noise and modify the 

image, the median filter method was used first. The abdominal CT image was then processed using 

the neutrosophic domain. The PSO algorithm developed to enhance the FFCM algorithm before 

utilizing the approach to fragment the neutrosophic image. Subsequently, using the abdominal CT, a 

segmentation image of the liver was acquired. 

 Relying on PSO and FCM, Watershed image segmentation method was proposed by Yu et al 

[34], who used a new variant of PSO algorithm to obtain the accurate clustering core. They also 

segmented a tiny section of the original image with an accurate clustering core and enhanced fitness 

function, and acquired a segmentation results for the full image. 

To tackle the drawbacks of FCM, J Zhao et al [35] introduced a technique called an Innovative 

Neutrosophic Image Segmentation Improved Fuzzy C-Means Methodology (NIS-IFCM), in which 

they first de-noise the image by transforming it into a neutrosophic image. Then the study proposed 

a new method that combines the PSO and FCM algorithms to decrease the FCM algorithm's reliance 

on the initial value introduced an innovative methodology for tackling the problem of image 

segmentation. Another study presented by F Zhao et al [36], he provided  an innovative solution for 

this problem of poor image border segmenting. The proposed study combined FCM with PSO 

algorithm to enhance the capability of global search to tackle the issue of neutrosophic image 

clustering. Hanuman et al [37]presented a hybrid FCM-PSO approach. FCM-PSO is a hybrid method 
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that combines the best aspects of FCM and PSO algorithms to solve the problem of local minima in 

FCM. 

 

4.6. Image Thresholding Based on Neutrosophic Set and Meta-heuristic Integration 

Image thresholding is a crucial step in segmenting and extracting objects from photos. In this 

area, a set of techniques have been offered. Typically, the indetermination every element in a crisp 

set, cannot usually be specified and assessed. The membership of fuzzy set N specified on universe 

A is traditionally represented by an actual number inside the traditional fuzzy set. The fuzzy sets 

methods, on the other hand, only evaluate the truthful membership that is substantiated and ignore 

the falsehood membership that is contradictory to the proof that is problematic in various situations. 

On the other hand, the NS combines the concepts of a variety of sets like the classic, interval valued 

fuzzy, fuzzy, interval valued intuitionistic fuzzy, and intuitionistic fuzzy into a single idea. In the 

NS, indeterminism is clearly measured, and truth (T), indeterminacy (I), and falsity (F) memberships 

are all independent. As a result, many experiments were conducted to increase the thresholding 

efficiency of NS. 

Based on NS and improved artificial bee colony (I-ABC) algorithms, K Hanbay et al [38] 

introduced a new synthetic aperture radar (SAR) algorithm for picture segmentation. Threshold 

value estimation is viewed in this approach as a search technique for a suitable value within a gray 

scale period. For getting the best threshold value, the I-ABC optimized procedure is provided. To 

develop an efficient and powerful fitness function for the I-ABC approach, the input SAR picture is 

translated into the domain of NS. After that, images of the neutrosophic T and I subsets are obtained. 

A co-occurrence matrices relying on neutrosophic T and I subset pictures is created, and the 

objective functions of the I-ABC algorithm is represented using a two-dimensional gray entropy 

function. Consequently, in the I-ABC algorithm, the occupied, bystanders, and scouting bees rapidly 

explore the best threshold value.  

M Nasef et al [39] introduced a study that is provided a multi-criteria adaptive strategy for  

brightening the dark parts of musculoskeletal scintigraphy images (NS) using the algorithm of Salp 

Swarm and the NS. Firstly, the task of improving the dark areas is turned into an optimization issue. 

The SSA is then used to identify the optimal enhancement for any image independently, and the 

neutrosophic algorithm is then used to calculate the similarity score for each image using adaptive 

weight coefficients produced by the SSA algorithm. 

 On the other hand, because conventional image segmentation techniques for side scan sonar 

(SSS) images are typically inefficient or inaccurate, Jianhu et al [40]work proposes a new image 

thresholding segmentation approach called SSS relying on the NS and quantitate-behaved particle 

swarm optimization (QPSO) algorithms. To begin, the image grayscale co-occurrence matrix is built 

with respect to the NS space, expressing the precise texture of the SSS picture, which can increase the 

accuracy of SSS image segmentation. The optimal two-dimensional segmentation threshold vector is 

then rapidly and precisely generated using the QPSO method, based on the two-dimensional 

maximum entropy theory, which can increases the effectiveness and reliability of SSS picture 

segmentation. Ultimately, target segmentation of SSS images with high noise levels is accomplished 

with precision and efficiency. The algorithm's efficiency is demonstrated by segmenting SSS images 

including various objectives. 
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4.7. COVID-19 Diagnosing Based on Neutrosophic set integration with metaheuristic 

COVID-19, a rapidly spreading virus, created a tremendous demand for an accurate and quick 

testing approach. The well-known RT-PCR test is expensive and unavailable throughout many 

suspect instances. SH Basha et al [41] suggests a neutrosophic framework for diagnosing COVID-19 

patients. The suggested framework consists of five phases. The speeded up robust features called 

SURF methodology is first performed for every X-ray image in order to obtain resilient invariance in 

features. Secondly, three selecting sampling techniques are used to deal with the dataset's 

imbalance. Thirdly, a neutrosophic rule-based categorization scheme is presented, which generates a 

set of rules depending on three neutrosophic quantities <T; I; F>, which represent the truthful, 

indeterminism, and falsehood degrees. Fourth, improve the classification's performance, a genetic 

algorithm is used to pick the best neutrosophic set of rules. The classification-based neutrosophic 

logic is proposed in the fifth step. 

 

4.8. Integration of Neutrosophic Set and Meta-heuristic in other fields 

Document, sentence, and aspect level sentiment analysis are the three layers of sentiment 

analysis. The text gives polarity at the document and sentence levels, respectively, on the basis of the 

entire document and sentence. The text gives positive polarity for some aspects but negative polarity 

for others at the aspect level. A Jain et al [10] proposed a composite framework, which is concerned 

with document level analysis called "Senti-NSetPSO" to evaluate large text document. 

Senti-NSetPSO consists of two binary and ternary classifiers based on PSO and Neutrosophic Set 

hybridization. This approach is appropriate for classifying large text document with a file size of 

more than 25 kilobytes. The size of the swarm is created from large text can valuable metric for 

implementing PSO convergence.  

Another topic of study is the cloud environment. A feast of research papers was just given. 

Because the cloud environment is made up of distributed resources that are used in a dynamic 

manner, it is necessary to design optimal scheduling in the cloud environment to ensure that cloud 

consumers get the quality of service they want while cloud providers make the most money. 

However, the occurrence of inefficiencies when scheduling cloud resources poses a challenge to 

typical scheduling rules. The major goal of K Gurumurthy et al [42] research was to address 

ambiguity in cloud resource scheduling by developing a neutrosophic inference system for 

prioritizing incoming tasks and optimizing resource utilization using quantum cuckoo search cache 

management. The suggested study used neutrosophic representation to express the parameters 

involved in resource scheduling with the goal of reducing response and execution time while 

increasing throughput, which benefits the cloud service provider's profitability. 

 

6. Conclusion and Future Work 

Because many real-life decision-making problems entail imprecision, imprecision, ambiguity, 

inconsistencies, incomplete data, and indeterminacy, NS, meta-heuristics, as well as logic are 

becoming more prominent as answers. The research and applications of the neutrosophic- set, logic, 

measure, and probability are referred to as neutrosophic. The neutrosophic logic (NL) has 

traditionally been used to denote a mathematical formula of ambiguity, inconsistency, ambiguity, 
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incompleteness, and redundancy inconsistency based on non-standard analysis. It is regarded as a 

framework for assessing indeterminacy, truth, and falsity. In contrast, the NS quantifies 

indeterminacy directly, while T, I, and F memberships are all independent. This property is critical 

in a variety of applications, including data fusion to merge data from many sensors and other 

biomedical diagnosis scenarios. The NS concept is an innovative mathematical technique to dealing 

with uncertainty that has a lot of potential in a lot of different ways. Recently, NS has been combined 

with meta-heuristics to create decision schemes for a variety of applications such as processes on 

images as  thresholding, clustering, segmentation and classification, medical image processing, 

cloud computing, job-shop scheduling, time series forecasting, forest fires forecasting, document 

level sentiment analysis, modeling neutrosophic variables, breast cancer detection, and other uses. 

Because no study has been done on the use of the NS and meta-heuristic integration in picture 

registration, compression, or restoration, this will be the future direction. As a result, it is 

recommended to use NS techniques in such activities rather than existing procedures. Furthermore, 

the FCM is the most clustering technique that can be coupled with the NS and meta-heuristic to 

reduce uncertainty. As a result, it is recommended that the NS and meta-heuristic be combined with 

other clustering algorithms. 
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Abstract: A single-valued neutrosophic set is one of the advanced fuzzy sets that is capable of 

handling complex real-world information satisfactorily. A development of single-valued 

neutrosophic set and fuzzy bipolar set, called a bipolar neutrosophic set, was introduced. Distance 

measures between fuzzy sets and advanced fuzzy sets are important tools in diagnostics and 

prediction problems. Sometimes they are defined without considering the condition of the inclusion 

relation on sets. In decision-making applications, this condition should be required (here it is called 

the inference of the measure). Moreover, in many cases, a distance measure capable of 

discriminating between two nearly identical objects is considered an effective measure. Motivated 

by these observations, in this paper, a new distance measure is proposed in a bipolar neutrosophic 

environment. Furthermore, an entropy measure is also developed by the similarity between two 

sets of mutual negation. Finally, an application to medical diagnosis is presented to illustrate the 

effective applicability of the proposed distance measure, where entropy values are used to 

characterize noises of different attributes. 

Keywords: neutrosophic distance; similarity measure; bipolar neutrosophic sets; entropy measure; 

medical diagnosis 

 

 

1. Introduction 

In 1965, the concept of a fuzzy set (FS) was introduced by Zadeh [1] to handle uncertainty of 

information in real-world inference systems. According to him, the degree of membership (positivity) 

of an element u  to a FS on a universe U  is one value ( )u , where     ( ) 0,1 .u The theory of FSs 

has reached a huge amount of achievements in a variety of application areas. However, in many real-

life problems, the presence of negativity cannot be ignored. In 1983, Atanassov [2] proposed the 

concept of an intuitionistic fuzzy set (IFS) by considering the membership degree ( )u  as well as 

the non-membership degree  ( )u  with the condition on their sum which is   ( ) ( ) 1u u . The 

theory and applications of IFSs have been strongly developed such as studies on logical operators [3-

5] and applications in decision making [6-10]. 

From a philosophical perspective on the existence of the field of neutrosophy, Smarandache 

considers that using IFSs to treat indeterminate and inconsistent is not satisfactory enough. In 1999, 

Smarandache [11] introduced the concept of neutrosophic set (NS). He named its three characteristic 

functions the truth membership function, the indeterminacy-membership function, and falsity-

membership function, denoted by ( )T u , ( )I u ,  and ( )F u , respectively. Their outputs are real 
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standard or nonstandard subsets of  ] 0,1 [.  From the requirement of practical applications about 

representing the featured degrees by real values, Wang et al [12] provided the definition of single-

valued neutrosophic sets (SVNSs). Cuong [13] also proposed the concept of picture fuzzy set (PFS) 

as a particular case of NSs. Some results on PFSs can be found in [14-19]. Because of the independent 

existence between the considered property and its corresponding implicit antagonist, Deli et al. [20] 

introduced the concept of bipolar neutrosophic sets (BNSs). This is a generalization of SVNSs and 

bipolar fuzzy sets [21]. In a BNS X , ( ), ( ), ( )T u I u F u  represent the characteristic degrees of an 

element u U  corresponding to X  and   ( ), ( ), ( )T u I u F u  represent characteristic degrees of u  

to some implicit counter-property corresponding to X . Some research on NSs and BNSs and their 

applications can be found in [22-36]. 

The advanced fuzzy distance measures are known as effective tools for solving decision-making 

problems [6-10, 13, 37]. Some of distance measures of SVNSs were proposed such as Hausdorff 

distance [38], Cosine similarity measures [39], and the distance measures of Ye [40], Aydoğdu [41], 

Huang [26], and Ngan et al. [42]. In 2018, Vakkas [43] et al. introduced similarity measures of BNSs 

and their application to decision-making problems. Vakkas's measure was defined without 

considering the condition of the inclusion relation on sets. In decision-making applications, this 

condition (in this paper, it is called the inference of the measure) should be required. Moreover, 

Vakkas's proposal does not imply cross-evaluation, which is necessary to distinguish the differences 

and was discussed in intuitionistic fuzzy and single-value neutrosophic environments [7,10,42]. 

Motivated by these observations, in this paper, a new distance measure set that includes cross-

evaluation and the inference of the measure is first proposed in a bipolar neutrosophic environment. 

Furthermore, an entropy measure is also developed by the similarity between two sets of mutual 

negation. Finally, an application to medical diagnosis on the UCI dataset is presented to illustrate the 

effective applicability of the proposed distance measure, where entropy values of different attribute 

sets are used to characterize their noises. 

The next sections of the paper are distributed content as follows. Some basic concepts and the 

related measure formulas are presented in Section 2. In Section 3, the proposals on the distance 

measure, the similarity measure, and the entropy measure on BNSs are introduced. In Section 4, an 

application to medical diagnosis given to show the effectiveness of the proposed distance measure. 

Finally, Section 5 shows the conclusions of the study. 

2. Preliminaries 

Definition 1. [25] A NS X  on a universe set U  is characterized by three feature functions including 

a truth-membership function, 
X

T : U  →  ] 0,1 [ , an indeterminacy-membership function, 
X

I : U  

→  ] 0,1 [ , and a falsity-membership function, 
X

F : U  →  ] 0,1 [ , where  

     0 sup ( ) sup ( ) sup ( ) 3 , .
X X X

U U U

T z I z F z z U  (1) 

Definition 2. [20] A BNS X  on U  is defined by the form as follows: 

      , ( ), ( ), ( ), ( ), ( ), ( ) |
X X X X X X

X z T z I z F z T z I z F z z U  or 

    , , , , ,
X X X X X X

X T I F T I F , (2) 

where   , , : 0,1 ,
X X X

T I F U  and      , , : 1,0 .
X X X

T I F U  

Denoted by  BNS U  the set of all BNSs on U . 

Definition 3. [20] Let 
1

X  and 
2

X  be two BNSs on U , then 
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1 2

X X  if and only if   
1 2 1 2 1 2

( ) ( ), ( ) ( ), ( ) ( ),T z T z I z I z F z F z  
1 2

( ) ( ),T z T z  
1 2

( ) ( ),I z I z  

and  
1 2

( ) ( )F z F z . 

 
1 2

X X  if and only if   
1 2 1 2 1 2

( ) ( ), ( ) ( ), ( ) ( ),T z T z I z I z F z F z     
1 2 1 2

( ) ( ), ( ) ( ),T z T z I z I z  

and  
1 2

( ) ( )F z F z . 

          , ( ),1 ( ), ( ), ( ), 1 ( ), ( ) | .cX z F z I z T z F z I z T z z U  

Definition 4. [43] A similarity measure of BNSs is a       
2

: 0,1S BNS U  mapping satisfying 

1.   
1 2

0 , 1S X X , 

2.    
1 2 2 1
, ,S X X S X X , 

3.   1 2
, 1S X X  for 

1 2
X X , where  

1 2
.,X BNS UX  

In 2018, Vakkas et al. [43] proposed a similarity measure of BNSs as follows: 

          
1 2 1 1 2 2 1 2
, , 1 , ,

V V V
S X X S X X S X X  (3) 

where     0,1 , 

 

 
 

   




     



  
 
   
 


     


 



1 2 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

1

1 1 2 2 2 2 2 2 2
1

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

2 ( ) ( ) ( ) ( ) ( ) ( )

( )

X i X i X i X i X i X i

n X i X i X i X i X i X i

V i
i

X i X i X i X i X i X i

X i X

T z T z I z I z F z F z

T z T z I z I z F z F z
S X X

T z I z F z T z I z F z

T z I       

 
 
 
 
 
 
 
      1 1 2 2 2

2 2 2 2 2( ) ( ) ( ) ( ) ( )
i X i X i X i X i

z F z T z I z F z

, 

and 

 

 
 



     





  
 
   
 


     


 



1 2 1 2 1 2

1 2 1 2 1 2

1 1 1 2 2 2

1

2 1 2
2 2 2 2 2 21

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
,

2 ( ) ( ) ( ) ( ) ( ) ( )

( )

X i X i X i X i X i X i

n X i X i X i X i X i X i

V i
i

X i X i X i X i X i X i

X i

T x T x I x I x F x F x

T x T x I x I x F x F x
S X X

T x I x F x T x I x F x

T x I     

 
 
 
 
 
 
 
      1 1 2 2 2

2 2 2 2 2( ) ( ) ( ) ( ) ( )
X i X i X i X i X i

x F x T x I x F x

. 

Note that: Vakkas’s proposal is without considering the condition related to the inclusion 

relation on sets. Some other measures are built based on the triangle inequality condition instead of 

the condition related to the inclusion relation on sets, such as the Hamming distance and the 

Euclidean distance [44, 45]. 

In 2021, by reasoning about the need for the cross-evaluation, Ngan et al. [42] defined the H-

max distance measure on SVNSs by 

  

   

    

   







     

 

 


1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 3
1

4

5

, ( ) ( ) ( ) ( ) ( ) ( )

max ( ), ( ) max ( ), ( )

max ( ), ( ) max ( ), ( )

n

HN i X i X i X i X i X i X i
i

X i X i X i X i

X i X i X i X i

d X X T z T z I z I z F z F z

T z I z I z T z

T z F z F z T z

 (4) 

where    0,1
k , 




5

1

1,
k

k

     0,1
i , 




1

1.
n

i
i
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3. H-max bipolar neutrosophic weighted measure 

Now, the provided definition of distance measures of BNSs includes the inference condition. 

Furthermore, a specific distance measure, called H-max bipolar neutrosophic weighted measure, is 

introduced based on the formula of 
HN

d  proposed by Ngan et al. [42]. 

Definition 5. For all  
1 2 3
, ,X X X BNS U  where  

1
,...,

n
U z z , then a distance measure of BNSs is 

      
2

: 0,1d BNS U  mapping satisfying 

1.    
1 2 2 1
, ,d X X d X X , 

2.   1 2
, 0d X X  if and only if 

1 2
X X , 

3. If  
1 2 3

X X X , then    
1 2 1 3
, ,d X X d X X  and    

2 3 1 3
, , .d X X d X X  

Definition 6. Let  
1 2
,X X BNS U  where  

1
,...,

n
U z z  and 

      
1 1 1 1 1 11

, ( ), ( ), ( ), ( ), ( ), ( ) |
X X X X X X

X z T z I z F z T z I z F z z U , 

      
2 2 2 2 2 22

, ( ), ( ), ( ), ( ), ( ), ( ) |
X X X X X X

X z T z I z F z T z I z F z z U . 

Then, the formula of H-max bipolar neutrosophic weighted distance measure between 
1

X  and 
2

X  

is as follows 

        
  

  
1 2 1 1 2 2 1 2
, , 1 ,

H BN H BN H BN
d X X d X X d X X , (5) 

where  

  

   

    

   








     

 

 


1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 1 2 1 2 3
1

4

5

, ( ) ( ) ( ) ( ) ( ) ( )

max ( ), ( ) max ( ), ( )

max ( ), ( ) max ( ), ( ) ,

n

H BN i X i X i X i X i X i X i
i

X i X i X i X i

X i X i X i X i

d X X T z T z I z I z F z F z

T z I z I z T z

T z F z F z T z

 

  

   

    

   





         




    

    

     

 

 


1 2 1 2 1 2

1 2 1 2

1 2 1 2

2 1 2 1 2 3
1

4

5

, ( ) ( ) ( ) ( ) ( ) ( )

min ( ), ( ) min ( ), ( )

min ( ), ( ) min ( ), ( ) ,

n

H BN i X i X i X i X i X i X i
i

X i X i X i X i

X i X i X i X i

d X X T z T z I z I z F z F z

T z I z I z T z

T z F z F z T z

 

where     , 0,1
k k , 




5

1

1,
k

k

 



5

1

1,
k

k

     , 0,1
i i

,  




1

1,
n

i
i

 and    0,1 .  

Proposition 1. 
H BN

d  satisfies the following properties for all  
1 2 3
, ,X X X BNS U . 

1.  
 

1 2
0 , 1

H BN
d X X , 

2.  


1 2
, 0

H BN
d X X  if and only if 

1 2
X X , 

3.     


1 2 2 1
, ,

H BN H BN
d X X d X X , 

4.     


1 2 1 3
, ,

H BN H BN
d X X d X X  and     


2 3 1 3
, ,

H BN H BN
d X X d X X  if  

1 2 3
X X X . 

Proof 

1. Apparently, for all 1,...,i n , 


1 2
( ) ( ) ,

X i X i
T z T z  

1 2
( ) ( ) ,

X i X i
I z I z  

1 2
( ) ( )

X i X i
F z F z     0,1 ,  
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      1 2 1 2
max ( ), ( ) max ( ), ( ) 0,1 ,

X i X i X i X i
T z I z I z T z   

   
1 2 1 2

max ( ), ( ) max ( ), ( )
X i X i X i X i

T z F z F z T z    0,1 , 

and 
           1 2 1 2 1 2

( ) ( ) , ( ) ( ) , ( ) ( ) 0,1 ,
X i X i X i X i X i X i

T z T z I z I z F z F z  

         1 2 1 2
min ( ), ( ) min ( ), ( ) 0,1 ,

X i X i X i X i
T z I z I z T z  

         1 2 1 2
min ( ), ( ) min ( ), ( ) 0,1 .

X i X i X i X i
T z F z F z T z  

Hence,  
 

1 2
0 , 1.

H BN
d X X  

2. Clearly,  

 

 



 

  


     


 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

,

, 0 , .

,

X X X X

H BN X X X X

X X X X

T T T T

d X X I I I I X X

F F F F

 

3. It can be seen that 
H BN

d  has the symmetry property. 

4. Let  
1 2 3

X X X  then for all 1,...,i n , 

   
1 2 3 1 2 3
( ) ( ) ( ), ( ) ( ) ( )

X i X i X i X i X i X i
T z T z T z I z I z I z , 

     
1 2 3 1 2 3
( ) ( ) ( ), ( ) ( ) ( )

X i X i X i X i X i X i
F z F z F z T z T z T z , 

   
1 2 3
( ) ( ) ( )

X i X i X i
I z I z I z , and    

1 2 3
( ) ( ) ( )

X i X i X i
F z F z F z . 

These lead to 

           

        

        

1 2 1 3 1 2 1 3 1 2 1 3

1 2 1 3 1 2 1 3 1 2 1 3

, , ,

, , .

X X X X X X X X X X X X

X X X X X X X X X X X X

T T T T I I I I F F F F

T T T T I I I I F F F F
 

Moreover,  

       
              

  

  

3 1 2 1 1 2 1 3

3 1 2 1 1 2 1 3

max , max , max , max , ,

min , min , min , min , ,

X X X X X X X X

X X X X X X X X

T I T I T I T I

T I T I T I T I
 

       
              

  

  

3 1 2 1 1 2 1 3

3 1 2 1 1 2 1 3

max , max , max , max , ,

min , min , min , min , .

X X X X X X X X

X X X X X X X X

T F T F T F T F

T F T F T F T F
 

Hence, 

       

              

  

  

2 1 1 2 3 1 1 3

2 1 1 2 3 1 1 3

max , max , max , max , ,

min , min , min , min , ,

X X X X X X X X

X X X X X X X X

T I T I T I T I

T I T I T I T I
 

       

              

  

  

2 1 1 2 3 1 1 3

2 1 1 2 3 1 1 3

max , max , max , max , ,

min , min , min , min , .

X X X X X X X X

X X X X X X X X

T F T F T F T F

T F T F T F T F
 

Thus,     


1 2 1 3
, ,

H BN H BN
d X X d X X .  Similarly,     


2 3 1 3
, ,

H BN H BN
d X X d X X  is proven.                                                        
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Definition 7. Let  
1 2
,X X BNS U  where  

1
,...,

n
U z z . Then, the formula of H-max bipolar 

neutrosophic weighted similarity measure between 
1

X  and 
2

X  is as follows 

    
 

1 2 1 2
, 1 , .

H BN H BN
s X X d X X  (6) 

Proposition 2. 
H BN

s  satisfies the following properties, for all  
1 2 3
, ,X X X BNS U : 

1.  
 

1 2
0 , 1,

H BN
s X X  

2.  


1 2
, 1

H BN
s X X  if and only if 

1 2
X X , 

3.    1 2 2 1
, ,

H BN H BN
s X X s X X

 
 , 

4.     


1 2 1 3
, ,

H BN H BN
s X X s X X  and     


2 3 1 3
, ,

H BN H BN
s X X s X X  if  

1 2 3
X X X . 

Remark 1. The proposed distance measure overcomes the limitations of the Hamming distance, the 

Euclidean distance [44, 45], and Vakkas's proposal [43]. Specifically, 

 The proposed measure 
H BN

d  includes cross-evaluations: 

   

   

   

   

   

   









1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

max ( ), ( ) max ( ), ( ) ,

max ( ), ( ) max ( ), ( ) ,

min ( ), ( ) min ( ), ( ) ,

min ( ), ( ) min ( ), ( ) .

X i X i X i X i

X i X i X i X i

X i X i X i X i

X i X i X i X i

T z I z I z T z

T z F z F z T z

T z I z I z T z

T z F z F z T z

 

 The proposed measure satisfies the property related to the inclusion relation, i.e., the 

property 4 in Proposition 1. 

Example 1. Let  
1
,...,

n
U z z . Put 

    
1

0 ,0.01 ,1 , 0.15 ,0 , 0.8
U U U U U U

X , 

    
2

0.79 ,0.01 ,0.61 , 0.79 ,0 , 0.61
U U U U U U

X , 

    
3

0.8 ,0 ,0.6 , 0.8 ,0 , 0.6
U U U U U U

X . 

Then,  
1 2 3
, ,X X X BNS U  and  

1 2 3
X X X . By the similarity measure of Vakkas et al. [43] and 

choosing specific values for the parameters, we have 

      
1 3 1 1 3 2 1 3

1 1
, , , ,

2 2V V V
S X X S X X S X X  

      
2 3 1 2 3 2 2 3

1 1
, , , ,

2 2V V V
S X X S X X S X X  

where, 

 
         

   

         

            
 

     


         


1 1 3 2 2 2 2 2 2

2 2 2 22 2

0 0.8 0.01 0 1 0.6 0.15 0.8 0 0.8 0.6
, 0

2 0 0.01 1 0.8 0 0.6

0.15 0 0.8 0.8 0 0.6

V
S X X , 

 
         

       

            
 

     



          



2 1 3
2 2 2 2 2 2

2 2 2 22 2

0 0.8 0.01 0 1 0.6 0.15 0.8 0 0.8 0.6
, 0

2 0 0.01 1 0.8 0 0.6

0.15 0 0.8 0.8 0 0.6

V
S X X , 
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1 2 3 2 2 2 2 2 2

2 2 2 22 2

0.79 0.8 0.01 0 0.61 0.6 0.79 0.8 0 0.61 0.6
, 0

2 0.79 0.01 0.61 0.8 0 0.6

0.79 0 0.61 0.8 0 0.6

V
S X X , 

 
         

       

            
 

     



          



2 2 3
2 2 2 2 2 2

2 2 2 22 2

0.79 0.8 0.01 0 0.61 0.6 0.79 0.8 0 0.61 0.6
, 0

2 0.79 0.01 0.61 0.8 0 0.6

0.79 0 0.61 0.8 0 0.6

V
S X X . 

The obtained calculation results are   1 3
, 0

V
S X X  and   2 3

, 0
V

S X X . 

Now, from Definition 6 and choosing specific values for the parameters, we have 

       
 

1 3 1 1 3 2 1 3

1 1
, , ,

2 2H BN H BN H BN
d X X d X X d X X , 

       
 

2 3 1 2 3 2 2 3

1 1
, , ,

2 2H BN H BN H BN
d X X d X X d X X , 

where 

  

        


     

    

1 1 3

1
, 0 0.8 0.01 0 1 0.6

5

max 0,0 max 0.01,0.8 max 0,0.6 max 1,0.8 0.482,

H BN
d X X

 

  

        


     

          

2 1 3

1
, 0.15 0.8 0 0 0.8 0.6

5

min 0.15,0 min 0, 0.8 min 0.15, 0.6 min 0.8, 0.8 0.34,

H BN
d X X

 

  

        


     

    

1 2 3

1
, 0.79 0.8 0.01 0 0.61 0.6

5

max 0.79,0 max 0.01,0.8 max 0.79,0.6 max 0.61,0.8 0.01,

H BN
d X X

 

  

        


     

          

2 2 3

1
, 0.79 0.8 0 0 0.61 0.6

5

min 0.79,0 min 0, 0.8 min 0.79, 0.6 min 0.61, 0.8 0.008.

H BN
d X X

 

Hence, 

   

    
 

 

  

  

1 3 2 3

1 3 2 3

, 0.411 , 0.009

, 0.589 , 0.991 .

H BN H BN

H BN H BN

d X X d X X

s X X s X X
 

In this case, by observation we can also see that 
2

X  and 
3

X  are almost the same. In addition, 

since  
1 2 3

X X X , it can be deduced that the difference between 
1

X  and 
3

X  is greater than the 

that between
2

X  and 
3

X .  The proposed distance measure is likely to properly represent this 

assessment and inference and overcomes the limitation of the proposal of Vakkas et al. [43]. 

Example 2. Let  
1
,...,

n
U z z . Put 

    
1

0.4 ,0 ,0.4 , 0.8 ,0 , 0.8
U U U U U U

X , 

    
2

0.5 ,0 ,0.5 , 0.7 ,0 , 0.7
U U U U U U

X , 

    
3

0.4 ,0 ,0.6 , 0.6 ,0 , 0.8
U U U U U U

X . 

Then,  
1 2 3
, ,X X X BNS U ,   1 2 2 1

, ,X X X X  and 
3 2

X X . 

The Hamming distance [44, 45] on  BNS U  can be defined as follows: 
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1 2 1 2 1 2

1 2 1 2 1 2

1 2
1

1
, ( ) ( ) ( ) ( ) ( ) ( )

6

( ) ( ) ( ) ( ) ( ) ( ) .

n

Ham X i X i X i X i X i X i
i

X i X i X i X i X i X i

d X X T z T z I z I z F z F z

T z T z I z I z F z F z

 

The Euclidean distance [44, 45] on  BNS U  can be defined as follows: 

 


     

 
     




      




1 2 1 2 1 2

1 2 1 2 1 2

2 2 2

1 2
1

1

2 2 2 2

1
, ( ) ( ) ( ) ( ) ( ) ( )

6

( ) ( ) ( ) ( ) ( ) ( ) .

n

Eucl X i X i X i X i X i X i
i

X i X i X i X i X i X i

d X X T z T z I z I z F z F z

T z T z I z I z F z F z

 

Some of the calculation results obtained are as follows: 

    
1 2 3 2

4
, ,

6Ham Ham
d X X d X X  , 

    
1 2 3 2

6
, ,

30Eucl Eucl
d X X d X X , 

    
  

1 2 3 2
, 0.06 , 0.08

H BN H BN
d X X d X X  

Clearly, in this case, because of cross-evaluations, the proposed measure can distinguish the 

difference better than two related measures. 

 

Definition 8. For     : 0,1E BNS U  mapping, if the following conditions are satisfied then E  is 

an entropy measure of BNSs. 

1. ( ) 0E X  if and only if X  or cX  is a crisp set, 

2. ( ) ( )cE X E X ; ( ) 1E X  if and only if  cX X , 

3. 
1 2

( ) ( )E X E X   if Ð
1 2

X X , i.e., if 
1 2X X

T T , 
1 2X X

F F ,  
1 2X X

T T ,  
1 2X X

F F  for 
2 2X X

T F , 

 
2 2X X

T F ,  
1 2

0.5
X X U

I I ,    
1 2

0.5
X X U

I I ; and 
1 2X X

T T , 
1 2X X

F F ,  
1 2

,
X X

T T   
1 2X X

F F  for 


2 2X X

T F ,  
2 2X X

T F  ,  
1 2

0.5
X X U

I I ,    
1 2

0.5
X X U

I I . 

Proposition 3. Let  X BNS U , where  
1
,...,

n
U z z , then 


( , )c

H BN
s X X  is an entropy measure of 

X . 

Proof. 

1. If X  be a crisp set, i.e.,          1 , 0 , 0 , 1 ,
X U X X U X X U X U

T I F T I F  or

        0 , 1 , 1 , 0
X X U X U X U X X U

T I F T I F , then, 


( , ) 0.c

H BN
s X X  Similarly, if cX  is a crisp 

set, then 


( , ) 0.c

H BN
s X X  If 


( , ) 0,c

H BN
s X X  then it's not hard to show that X  or cX  is a 

crisp set. 

2. From Proposition 2, we obtain that ( ) ( )cE X E X ; 


( , ) 1c

H BN
s X X  if and only if  .cX X  

3. Let Ð
1 2

X X , assume that 
1 2X X

T T , 
1 2X X

F F ,  
1 2X X

T T ,  
1 2X X

F F  for 
2 2X X

T F ,  
2 2X X

T F , 

 
1 2

0.5
X X U

I I ,    
1 2

0.5
X X U

I I , then 

   

  

  

1 2 2 1

1 2 2 1

,

,

X X X X

X X X X

T T F F

T T F F
 

         
1 2 2 1

max ,0.5 max ,0.5 max ,0.5 max ,0.5 ,
X U X U X U X U

T T F F  

                
1 2 2 1

min , 0.5 min , 0.5 min , 0.5 min , 0.5 ,
X U X U X U X U

T T F F   
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1 3 5 4
1

1 3 5 4
1

max ( ),0.5
, ( ) ( )

max 0.5, ( )

min ( ), 0.5
1 ( ) ( ) , 1,2.

min 0.5, ( )

t

t t

t

t

t t

t

n
X ic

H BN t t i X i X i
i

X i

n
X i

i X i X i
i

X i

T z
d X X T z F z

F z

T z
T z F z t

F z

 

Therefore,     


1 1 2 2
, ,c c

H BN H BN
d X X d X X  and then     


1 1 2 2
, , .c c

H BN H BN
s X X s X X  

Similarly, the remaining case is proved.                                                      

4. An application of the H-Max Bipolar Neutrosophic Distance Measure to medical diagnosis 

4.1. The H-BN method 

A diagnostic problem is stated as follows: 

 A medical dataset includes 

 m  records of m  corresponding patients , 1,2,...,
i

P i m , 

 n  attributes (symptoms) 
j

A ,  1,2...,j n , of a disease D , 

 k  disease classes labeled 
t

C ,  1,2,...,t k , of .D  

 The problem is to build a diagnostic system with 

 the inputs are the symptoms of a patient, 

 the output is a disease label. 

The proposed method: 

Inspired by the diagnostic method introduced in [42] by Ngan et al, the proposed method (H-

BN) includes four steps as follows. 

 Step 1. Built two relation matrices in the bipolar neutrosophic environment: 

 Matrix 1 (M1) presents the relations between the symptoms and patients (
i

P  and 
j

A  

are the ith row and the jth column of M1, respectively,  1,..., ; 1,...,i m j n ), 

 Matrix 2 (M2) shows the relations between the symptoms and the disease or the 

classification results. Specifically, M2 is a k n  matrix (
t

C  is the tth row of M2, 

1,...,t k ). 

 Step 2. Find the entropies  j
E A  of the symptoms 

j
A . 

 Step 3. Calculate the similarity  
,

H BN i t
s P C  between the symptoms of 

i
P  and the disease 

classes 
t

C , where  j
E A  is put in the weight of 

j
A . 

 Step 4. Diagnose the ith patient by finding the highest similarity value 

    


0

ˆ , ,
H BN i t H BN i t

s P C s P C ,    0
1, .t k  The output is 

0
t . 

4.2. Numeric example 

In this section, we use the data in the numerical example in [42] on 5 male patients (aged about 

30) of Indian Liver Patient Dataset (ILPD) taken from UCI. In the dataset described in Table 1, there 

are 2 diagnosis labels which are La-I (liver patient) and La-II (non-liver patient). In Table 1, the 

considered attributes (
1

A  - 
7

A ) are Alkaline Phosphotase, Alamine Aminotransferase, Aspartate 

Aminotransferase, Total Bilirubin, Direct Bilirubin, Albumin, and Albumin and Globulin Ratio. 
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Table 1. Data of 5 male patients of the ILPD dataset. 

 
1

A  
2

A  
3

A  
4

A  
5

A  
6

A  
7

A  Class 

1
P  1.3 0.4 482 102 80 3.3 0.9 La-I 

2
P  0.8 0.2 198 26 23 4 1 La-II 

3
P  0.9 0.2 518 189 17 2.3 0.7 La-I 

4
P  3.8 1.5 298 102 630 3.3 0.8 La-I 

5
P  0.8 0.2 156 12 15 3.7 1.1 La-II 

 

The steps of the proposed algorithm are implemented as follows: 

 Step 1: Input data is fuzzified by the following fuzzification functions selected by experts. 
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Figure 1. The fuzzification functions are illustrated by graphs. 

Specifically, the symptoms on patients are represented as the following BNSs. 

     

  

1 1 1 1 1 1 1

1.2,5.3 0.2,3 0.6,4 0.9,5 0.5,3.5 0.3,4.5

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z
 

     

  

2 2 2 2 2 2 2

0.4,2.3 0.1,1 0.15,1.5 0.2,2 0.2,1.2 0.3,2

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z
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3 3 3 3 3 3 3

140,486 80,250 100,400 110,450 90,300 110,420

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z
 

     

  

4 4 4 4 4 4 4

33,119 5,60 30,100 25,90 10,70 40,95

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z
 

     

  

5 5 5 5 5 5 5

33,100 10,90 23,95 33,100 10,90 23,95

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

R z L z L z R z L z L z
 

     

  

6 6 6 6 6 6 6

2.2,3.5 2,4 3,5 2.3,3.3 2.2,4.1 2.8,5.2

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

L z R z R z L z R z R z
 

     

  

7 7 7 7 7 7 7

0.5,1 0.3,1.5 0.8,2.5 0.6,1.1 0.2,1 0.7 ,2.8

( ), ( ), ( ), ( ), ( ), ( )

( ), ( ), ( ), ( ), ( ), ( )

A T z I z F z T z I z F z

L z R z R z L z R z R z
 

Two bipolar neutrosophic relation matrices M1 and M2 are placed in Tables 2 and 3. 

Table 2. The relations between the symptoms and patients are presented. 

(M1) 
1

A  
2

A  
3

A  
4

A  
5

A  
6

A  
7

A  

1
P  <0.02,0.6, 

0.8,-0.9, 

-0.3,-0.2> 

<0,0.6, 

0.8,-0.9, 

-0.2,-0.06> 

<0.9,0, 

0,0, 

-1,-1> 

<0.8,0, 

0,0, 

-1,-1> 

<0.7,0.1, 

0.2,-0.3, 

-0.9,-0.8> 

<0.1,0.6, 

0.1,-1, 

-0.4,-0.8> 

<0.2,0.5, 

0.08,-0.6, 

-0.1,-0.9> 

2
P  <0,0.7, 

0.9,-1, 

-0.1,-0.1> 

<0,0.8, 

0.9,-1, 

0,0> 

<0.1,0.3, 

0.6,-0.7, 

-0.5,-0.3> 

<0,0.6, 

1,-1, 

-0.3,0> 

<0,0.8, 

1,-1, 

-0.2,0> 

<0,1, 

0.5,-1, 

-0.05,-0.5> 

<0,0.5, 

0.1,-0.8, 

0,-0.85> 

3
P  <0,0.7, 

0.9,-1, 

-0.1,-0.1> 

<0,0.8, 

0.9,-1, 

0,0> 

<1,0, 

0,0, 

-1,-1> 

<1,0, 

0,0, 

-1,-1> 

<0,0.9, 

1,-1, 

-0.09,0> 

<0.9,0.1, 

0,0, 

-0.9,-1> 

<0.6,0.3, 

0,-0.2, 

-0.4,-1> 

4
P  <0.6,0, 

0.05,-0.3, 

-1,-0.8> 

<0.5,0, 

0,-0.3, 

-1,-0.7> 

<0.4,0, 

0.3,-0.4, 

-1,-0.6> 

<0.8,0, 

0,0, 

-1,-1> 

<1,0, 

0,0, 

-1,-1> 

<0.1,0.6, 

0.1,-1, 

-0.4,-0.8> 

<0.4,0.4, 

0,-0.4, 

-0.25,-0.95> 

5
P  <0,0.7, 

0.9,-1, 

-0.1,-0.1> 

<0,0.8, 

0.9,-1, 

0,0> 

<0.04,0.5, 

0.8,-0.9, 

-0.3,-0.1> 

<0,0.8, 

1,-1, 

-0.03,0> 

<0,0.9, 

1,-1, 

-0.06,0> 

<0,0.8, 

0.3,-1, 

-0.2,-0.6> 

<0,0.6, 

0.2,-1, 

0,-0.8> 

Table 3. The relations between the symptoms and the classification results are shown. 

(M2) 
1

A  
2

A  
3

A  
4

A  
5

A  
6

A  
7

A  

La-I <1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

<1,0,0, 

0,-1,-1> 

La-II <0,1,1, 

-1,0,0> 

<0,1,1, 

-1,0,0> 

<0,1,1, 

-1,0,0> 

<0,1,1, 

-1,0,0> 

<0,1,1, 

-1,0,0> 

<0,1,1, 

-1,0,0> 

<0,1,1, 

-1,0,0> 
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 Step 2: Finding the entropies    
  ( , ) 1 ( , )c c

j H BN j j H BN j j
E A s A A d A A  with    

i i

   
1

( , 1,...,5)
5j j

i j  and  
1

2
: 

  1
0.27E A ,    2

0.2E A ,   3
0.33E A ,     4

0.08E A , 

  5
0.13E A ,     6

0.55E A ,   7
0.68E A . 

 Step 3: Calculating the similarities  La - I


 ( ) ,( )
H BN i

S i I s P  and    La - II


  ,( )
H BN i

S i II s P  

with    
1

( , 1,...,5)
5j j

i j ,  
1

,
2

 and 
 

 
  



 


5

1

.
j

j j

j
j

E A

E A

 The obtained results 

include:             
1 2 3 4 5 6 7

0.12, 0.09, 0.15, 0.035, 0.06, 0.245, 0.3,  

    (1 ) 0.49 (1 ) 0.475,S I S II      (2 ) 0.2 (2 ) 0.75,S I S II  

    (3 ) 0.642 (3 ) 0.327,S I S II      (4 ) 0.63 (4 ) 0.33,S I S II  

    (5 ) 0.186 (5 ) 0.788.S I S II  

 Step 4. The outputs are decided as follows:  The outputs of 
1 2 3 4
, , ,P P P P , and 

5
P  are La-I, La-

II, La-I, La-I, and La-II, respectively. These decisions and the last column of Table 1 are the same. 

4.3. Experiment 

In this part, we test the proposed method on the ILPD dataset on Matlab programming with the 

evaluation criteria on accuracy is Mean Absolute Error (MAE) and the speed of the algorithms is 

measured in seconds (sec). Also on this data, Ngan et al. [8] tested 14 other diagnostic methods, 

denoted by 
1 1SK

M , 
1 2SK

M , 
1 3SK

M , 
1 4SK

M , 
2SK

M , 
WX

M , 
VS

M , 
ZJ

M , 
W

M , 
J

M , ,
SA

M
maxH

M , 

C QDM
M , and 

P QDM
M , based on the considered intuitionistic fuzzy distance measures (see Table 4). 

Table 4. MAEs and Sec of the considered methods on the ILPD dataset. 

Methods MAE Sec 

1 1SK
M  0.3195 0.6177 

1 2SK
M  0.3158 0.4427 

1 3SK
M  0.3316 0.4827 

1 4SK
M  0.2918 0.4602 

2SK
M  0.2902 0.6527 

WX
M  0.3227 0.4427 

VS
M  0.2893 0.5552 

ZJ
M  0.3096 0.5602 

W
M  0.2915 0.8452 

J
M  0.289 1.2077 

,
SA

M  0.3031 0.8102 

maxH
M  0.2848 0.51 

C QDM
M  0.2836 0.155 

P QDM
M  0.2831 0.469 
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H-BN 0.2729 0.559770 

 

In Table 4, it can be observed that the MAE value of the proposed method (H-BN), which is 

0.2729, is less (better) than those of the other algorithms on the ILPD datasets. Figure 2 shows the 

MAE values of the considered methods on the ILPD dataset, where the heights of the vertical bars 

present the MAE values of the corresponding algorithms. The heights of the H-BN method (green 

bars) are lower than those of the remaining bars, that means, it is the best algorithm in terms of 

accuracy of the considered algorithms on the ILPD dataset. We note that the computation time of our 

algorithms is very close to the computation time of the other methods. 

 

 

Figure 2. MAEs of the considered methods on the ILPD dataset. 

5. Conclusions   

In this paper, based on the H-max distance measure on IFSs and SVNSs, a new distance measure 

on BNSs is introduced to overcome the limitations of the related measures by including cross-

evaluations and satisfying the condition of inference of a distance measure. Furthermore, a bipolar 

neutrosophic entropy measure and its basic properties are presented and proven. In addition, an 

application to medical diagnosis is shown to illustrate the effective applicability of the measures. 

There, the proposed diagnostic method called H-BN, a numerical example and real experiment are 

clarified in detail. In the future, we will test the proposed diagnostic method on other real datasets 

taken from UCI. Furthermore, we will develop the distance measure for interval-valued bipolar 

neutrosophic sets. 

  

Funding: This research received no external funding. 
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Appendix  

Source code and dataset of this paper can be found at this link:  

https://sourceforge.net/projects/hbn-datasets-code/. 
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Abstract. In 2018, the study of neutrosophic triplet cosets and neutrosophic triplet quotient group of a neutro-

sophic extended triplet group was initiated with a follow up of the establishment of fundamental homomorphism

theorems for neutrosophic extended triplet group. But some lapses in these earlier results were identified and

revised through the introduction of special kind of weak commutative neutrosophic extended triplet group

(WCNETG) called perfect neutrosophic extended triplet group. Furthermore, neutro-homomorphism basic

theorem has been established for commutative neutrosophic extended triplet group. In this current work, the

generalization and extention of the above results was done by investigating neutro-homomorphism in singular

WCNETG. This was achieved with the introduction and study of some new types of NT-subgroups that are

right (left) cancellative, semi-strong, and maximally normal in a singular WCNETG. For any given non-empty

subset S and NT-subgroup H of a singular WCNETG X, some of these new NT-subgroups were shown to exist

as non-empty neutrosophic triplet normalizer, generated subset and centralizer of S, closure of H, derived subset

of X and center of X. With these, the first, second and third neutro-isomorphism and neutro-correspondence

theorems were established. This finally led to the proof of the neutro-Zassenhaus Lemma (Neutro-Butterfly

Theorem).

Keywords: Group; Neutrosophic Extended Triplet Group; Weakly Commutative Neutrosophic Extended
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1. Introduction

. After the emergence of generalized group (completely simple semigroup), which is an alge-

braic structure with deep physical background in the unified guage theory and also has direct

relation with isotopies (Adeniran et al. [1]), some other algebraic structures which general-

ize generalized groups have evolved and have been studied alongside with their applications.

Among these are neutrosophic triplet group (NTG); Smarandache and Ali [7] and Jaiyéo. lá

and Smarandache [11], neutrosophic extended triplet group (NETG); Zhang et al. [10], neu-

trosophic triplet loop (NTL); Jaiyéo. lá and Smarandache [3], Quasi neutrosophic triplet loops;

Zhang et al. [8], Jaiyéo. lá [12, 13] and generalized neutrosophic extended triplet group; Ma et

al. [14]. A summary account of these past efforts was compiled and reported by Smarandache

et al. [15].

Smarandache and Ali [7] introduced neutrosophic triplets in 2016 while Smarandache [16–19]

introduced neutrosophic extended triplets in between 2016 and 2017. The studies of neutro-

sophic extended triplet group and neutrosophic extended triplet loop became more fascinating

with the recent studies of Abel-Grassmann neutrosophic triplet group (loop) and Bol-Moufang

types of quasi neutrosophic triplet loops (Fenyves BCI-algebras) by Zhang et al. [20], Wu and

Zhang [21] and Jaiyéo. lá [12,13]. The captivating discoveries in these studies are the facts that:

(1) a groupoid is a neutrosophic extended triplet group if and only if it is a completely

regular semigroup;

(2) a groupoid is a weak commutative neutrosophic extended triplet group if and only if

it is a Clifford semigroup (a type of completely regular semigroup);

(3) there are 540 varieties of Bol-Moufang type quasi neutrosophic triplet loops.

These discoveries established that: the theory of neutrosophic extended triplet group is asso-

ciated with the theory of semigroup, the theory of weak commutative neutrosophic extended

triplet group is associated with the theory of clifford semigroup and the theory of quasi neu-

trosophic triplet loops is expansive. Shalla and Olgun [5, 6] studied neutrosophic extended

triplet group action and the Burnside’s lemma, and their direct and Semi-direct products.

We now switch to the definition of a neutrosophic extended triplet group and related struc-

tures.

Definition 1.1. (Neutrosophic Extended Triplet Set-NETS)

Let X be a set together with a binary operation ∗ defined on it. Then, X is called a

neutrosophic extended triplet set if for any x ∈ X, there exist a neutral of ‘x’ denoted by

neut(x) and an opposite of ‘x’ denoted by anti(x), with neut(x), anti(x) ∈ X such that:

x ∗ neut(x) = neut(x) ∗ x = x and x ∗ anti(x) = anti(x) ∗ x = neut(x).

T. G. Jaiyéo. lá, K. A. Olúrǒdè and B. Osoba, Some Neutrosophic Triplet Subgroup
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The elements x, neut(x) and anti(x) are collectively referred to as neutrosophic triplet, and

denote by (x, neut(x), anti(x)).

Remark 1.2. In a NETS X, for any x ∈ X, each of neut(x) and anti(x) may not be unique.

This is because, in a neutrosophic triplet set (X, ∗), an element y (resp. z) is the second

(resp. third) component of a neutrosophic triplet if there exist x, z ∈ X (x, y ∈ X) such that

x ∗ y = y ∗ x = x and x ∗ z = z ∗ x = y. Thus, (x, y, z) is the neutrosophic triplet.

Definition 1.3. (Neutrosophic Extended Triplet Group-NETG)

Let (X, ∗) be a neutrosophic extended triplet set. Then, (X, ∗) is called a neutrosophic

extended triplet group if (X, ∗) is a semigroup. If in addition, (X, ∗) obeys the commutativity

law, then (X, ∗) is called a commutative extended neutrosophic triplet group (CNETG).

Remark 1.4. In a NETG X, it was shown by Zhang et al. [9] that neut(x) is unique for each

x ∈ X. But, the same is not necessarily true for anti(x). Thus, the set of opposites for x ∈ X
is usually denoted by {anti(x)}.

Definition 1.5. (Weak Commutative Neutrosophic Extended Triplet Group-WCNETG, Def-

inition 4, Zhang et al. [9]; Singular NETG, Definition 6, Zhang et al. [10])

Let (X, ∗) be a neutrosophic extended triplet group. (X, ∗) is called a weak commutative

neutrosophic extended triplet group (WCNETG) if a ∗ neut(b) = neut(b) ∗ a for all a, b ∈ X.

A NETG is said to be singular if |{anti(x)}| = 1 for all x ∈ X.

Definition 1.6. (Neutrosophic Triplet Subgroup or NT-Subgroup)

Let (X, ∗) be a neutrosophic extended triplet group and let H ⊆ X. H is called a neutro-

sophic triplet subgroup (NTSG) of X if (H, ∗) is a neutrosophic extended triplet group and

this is expressed as H ≤ X. Furthermore, for any fixed x ∈ X, H is called x-normal NTSG of

X, written H Cx X if xy anti(x) ∈ H for all y ∈ H.

Lemma 1.7. (Proposition 2, Zhang et al. [10])

Let (X, ∗) be a neutrosophic triplet group and let H ⊆ X. H is a neutrosophic triplet

subgroup of X if and only if the following conditions are true.

(1) (H, ∗) is a groupoid;

(2) anti(x) ∈ H for all x ∈ H.

We now state some important results on singular NETG and WCNETG which are of im-

portance to this work.

Theorem 1.8. (Proposition 2, 3, Zhang et al. [9])

Let (X, ∗) be a NETG. Then (X, ∗) is a WCNETG if and only the following conditions are

true.

T. G. Jaiyéo. lá, K. A. Olúrǒdè and B. Osoba, Some Neutrosophic Triplet Subgroup
Properties and Homomorphism Theorems in Singular Weak Commutative Neutrosophic
Extended Triplet Group



Neutrosophic Sets and Systems, Vol. 45, 2021 462

(1) neut(x) ∗ neut(y) = neut(y) ∗ neut(x) for all x, y ∈ X.

(2) neut(x) ∗ neut(y) ∗ x = x ∗ neut(y) for all x, y ∈ X.

Hence, neut(x) ∗ neut(y) = neut(y ∗ x) and anti(x) ∗ anti(y) ∈ {anti(y ∗ x)} for all x, y ∈ X.

Theorem 1.9. (Theorem 6, Zhang et al. [10])

Let (X, ∗) be a singular NETG. Then

(1) neut(x) ∗ anti(x) = anti(x) ∗ neut(x) = anti(x) for all x ∈ X.

(2) anti
(
neut(x)

)
= neut(x) for all x ∈ X.

(3) anti
(
anti(x)

)
= x for all x ∈ X.

(4) neut
(
anti(x)

)
= neut(x) for all x ∈ X.

Hence, neut(x) ∗ neut(y) = neut(y ∗ x) and anti(x) ∗ anti(y) ∈ {anti(y ∗ x)} for all x, y ∈ X.

Here are two methods of constructing a WCNETG as recently described. These new con-

structions will be of judicious use for illustrations and as examples in order to justify some of

the results in this study.

Theorem 1.10. (First WCNETG, Zhang et al. [20])

Let (G1, ∗1) and (G2, ∗2) be two groups, with identity elements e1 and e2 respectively, such

that G1 ∩G2 = ∅. Let G = G1 ∪G2, and define the binary operation ∗ on G as follows:

x ∗ y =


x ∗1 y, if x, y ∈ G1;

x ∗2 y, if x, y ∈ G2;

x, if x ∈ G1, y ∈ G2;

y, if x ∈ G2, y ∈ G1

Then, (G, ∗) is a WCNETG.

Theorem 1.11. (Second WCNETG, Zhang et al. [20])

Let (G1, ∗1) and (G2, ∗2) be two groups, with identity elements e1 and e2 respectively, such

that G1 ∩G2 = ∅. Let G = G1 ∪G2, and define the binary operation ∗ on G as follows:

x ∗ y =


x ∗1 y, if x, y ∈ G1;

x ∗2 y, if x, y ∈ G2;

y, if x ∈ G1, y ∈ G2;

x, if x ∈ G2, y ∈ G1

Then, (G, ∗) is a WCNETG.

Remark 1.12. For easy reference, the WCNETG in Theorem 1.10 and WCNETG in Theo-

rem 1.11 for any chosen pairs of groups will be called first WCNETG and second WCNETG

respectively. It must be noted that both are singular WCNETGs.
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Table

1. Group

(G1, ∗1)

∗1 e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Table

2. Group

(G2, ∗2)

∗2 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 6 5 4 3

3 3 5 1 6 2 4

4 4 6 5 1 3 2

5 5 3 4 2 6 1

6 6 4 2 3 1 5

Table

3. First

WCNETG

(G, ∗) of

(G1, ∗1) and

(G2, ∗2)

∗ e a b c 1 2 3 4 5 6

e e a b c e e e e e e

a a e c b a a a a a a

b b c e a b b b b b b

c c b a e c c c c c c

1 e a b c 1 2 3 4 5 6

2 e a b c 2 1 6 5 4 3

3 e a b c 3 5 1 6 2 4

4 e a b c 4 6 5 1 3 2

5 e a b c 5 3 4 2 6 1

6 e a b c 6 4 2 3 1 5

Using the groups (G1, ∗1) and (G2, ∗2) with multiplication Table 1 and Table 2, Zhang et

al. [20] constructed a WCNETG (G, ∗) with multiplication Table 3.

Bal et al. [22] initated the study of neutrosophic triplet cosets and neutrosophic triplet

quotient group of a neutrosophic extended triplet group. This work was then followed up with

the establishment of fundamental homomorphism theorems for neutrosophic extended triplet

group by Celik et al. [23]. But, Zhang et al. [24] identified some lapses in these earlier articles

and revised the results in question by introducing special kind of WCNETG called perfect

NETG. On the other hand, Jaiyéo. lá and Smarandache [11] also established an homomorphism

for NETG which they jointly revised with some other authors in Zhang et al. [10] based on some

observations in Zhang et al. [9]. By using a neutrosophic triplet subgroup of a commutative

neutrosophic triplet group, Zhang et al. [25] established a new congruence relation, and then

constructed the quotient structure induced by neutrosophic triplet subgroup to establish the

neutro-homomorphism basic theorem.

. The aim of this current work is to generalize and extend the results in Zhang et al. [24, 25]

by investigating neutro-homomorphism in singular WCNETG. This will be done with the

introduction and study of some new types of NT-subgroups that are right (left) cancellative,

semi-strong, and maximally normal in a singular WCNETG. For any given non-empty subset

S and NT-subgroup H of a singular WCNETG X, some of these new NT-subgroups are shown

to exist as non-empty neutrosophic triplet normalizer, generated subset and centralizer of S,

T. G. Jaiyéo. lá, K. A. Olúrǒdè and B. Osoba, Some Neutrosophic Triplet Subgroup
Properties and Homomorphism Theorems in Singular Weak Commutative Neutrosophic
Extended Triplet Group



Neutrosophic Sets and Systems, Vol. 45, 2021 464

closure of H, derived subset of X and center of X. With these, the first, second and third

neutro-isomorphism and neutro-correspondence theorems are established. And finally, the

neutro-Zassenhaus Lemma is established.

2. Main Results

2.1. Some new results on first and second WCNETGs

In this subsection, we shall discuss some results associated with the first and second WC-

NETGs, introduced in Theorem 1.10 and Theorem 1.11, which shall be found useful as exam-

ples for illustrations in latter subsections.

Lemma 2.1. Let (G, ∗) be the WCNETG of the groups (G1, ∗1, e1) and (G2, ∗2, e2) in The-

orem 1.10 or Theorem 1.11. Let hi : Gi → Gi, i = 1, 2 be mappings and let h : G → G be

defined as

h(x) =

{
h1(x), if x ∈ G1;

h2(x), if x ∈ G2

(1) If hi, i = 1, 2, are endomorphisms of (Gi, ∗i, ei), i = 1, 2, then h is an neutro-

endomorphism of (G, ∗).
(2) h is a neuto-monomorphism (neutro-epimorphism) of (G, ∗) if and only if hi, i = 1, 2

are monomorphisms (epimorphisms) of (Gi, ∗i, ei), i = 1, 2.

(3) h is a neuto-automorphism of (G, ∗) if and only if hi, i = 1, 2 are automorphisms of

(Gi, ∗i, ei), i = 1, 2.

Proof. This is easy.

Lemma 2.2. Let (G, ∗) and (G, ◦) be the WCNETGs of the pair of groups (G1, ∗1) and

(G2, ∗2), and pair of groups (G1, ◦1) and (G2, ◦2) respectively in Theorem 1.10 or Theorem 1.11.

Let hi : Gi → Gi, i = 1, 2 be mappings and let h : G→ G be defined as

h(x) =

{
h1(x), if x ∈ G1;

h2(x), if x ∈ G2

(1) If hi, i = 1, 2, are homomorphisms of (Gi, ∗i), i = 1, 2 to (Gi, ◦i), i = 1, 2, then h is

a neutro-homomorphism of (G, ∗) to (G, ◦).
(2) h is a neuto-monomorphism (neutro-epimorphism) of (G, ∗) to (G, ◦) if and only if

hi, i = 1, 2 are monomorphisms (epimorphisms) of (Gi, ∗i), i = 1, 2 to (Gi, ◦i), i =

1, 2.

(3) h is a neuto-isomorphism of (G, ∗) to (G, ◦) if and only if hi, i = 1, 2 are isomorphisms

of (Gi, ∗i), i = 1, 2 to (Gi, ◦i), i = 1, 2.

(4) kerh = kerh1 ∪ kerh2 and Im(h) = Im(h1) ∪ Im(h2).

T. G. Jaiyéo. lá, K. A. Olúrǒdè and B. Osoba, Some Neutrosophic Triplet Subgroup
Properties and Homomorphism Theorems in Singular Weak Commutative Neutrosophic
Extended Triplet Group



Neutrosophic Sets and Systems, Vol. 45, 2021 465

Proof. The proof of this is a generalization of the proof of Lemma 2.1.

2.2. Some new subgroupoids and NT-subgroups of a WCNETG

We shall now introduce some new NT-subgroups of a NETG and study them in singular

WCNETG.

Definition 2.3. (Neutrosophic Triplet (Lormalizer, Mormalizer, Normalizer)-NTL, NTM,

NTN)

Let X be a NETG and let ∅ 6= S ⊆ X.

(1) The neutrosophic triplet lormalizer (NTL) of S in X is the set defined as L(S) = {x ∈
X|xS anti(x) = S}.

(2) The neutrosophic triplet mormalizer (NTM) of S in X is the set defined as M(S) =

{x ∈ X|neut(x) S = S}.
(3) The neutrosophic triplet normalizer (NTN) of S in X is the set defined as N(S) =

L(S) ∩M(S).

Lemma 2.4. Let X be a singular WCNETG and ∅ 6= S ⊆ X.

(1) If L(S) 6= ∅, then L(S) is a subgroupoid of X.

(2) If L(S) 6= ∅, then for any x ∈ L(S), neut(x) ∈ L(S)⇔ anti(x) ∈ L(S)⇔ neut(x) S =

S.

(3) If M(S) 6= ∅, then M(S) is a NT-subgroup of X.

Proof.

(1) Let x, y ∈ L(S). Then,

(xy)S anti(xy) = (xy)S anti(y)anti(x) = x
(
yS anti(y)

)
anti(x) = xS anti(x) = S.

So, xy ∈ L(S).

(2) neut(x)S anti
(
neut(x)

)
= neut(x)S neut(x) = neut(x)neut(x)S = neut(x)S while

anti(x)S anti
(
anti(x)

)
= anti(x)xS anti(x)anti

(
anti(x)

)
= neut(x)S neut

(
anti(x)

)
= neut(x)neut

(
anti(x)

)
S = neut

(
anti(x)x

)
S = neut

(
neut(x)

)
S = neut(x)S.

By these two arguments, neut(x) ∈ L(S)⇔ anti(x) ∈ L(S)⇔ neut(x) S = S.

(3) Let x, y ∈ M(S). Then, neut(xy)S = neut(y)neut(x)S = neut(y)S = S ⇒ xy ∈
M(S). If x ∈M(S), then neut

(
anti(x)

)
S = neut(x)S = S. So, going by Lemma 1.7 ,

M(S) is a NT-subgroup of X.
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Example 2.5. In the singular WCNETG (G, ∗) represented by Table 3, let S = G0 = {e, 1}.
Then, L(G0) = {1, 2, 3, 4, 5, 6} = G2 and (G2, ∗) is a subgroupoid of (G, ∗). Furthermore,

M(G0) = {1, 2, 3, 4, 5, 6} = G2 and (G2, ∗) is a NT-subgroup of (G, ∗).

Theorem 2.6. Let H and K be NT-subgroups of a singular WCNETG X. Then, HK is a

NT-subgroup of X if and only if HK = KH.

Proof. Let HK = KH and let a, b ∈ HK. Then, a = h1k1, b = h2k2 for some h1, h2 ∈ H and

k1, k2 ∈ K. So, ab = h1k1h2k2 = h1h3k3k2 = h4k4 ∈ HK where h3k3 = k1h2. Let a = hk,

then, anti(a) = anti(hk) = anti(k)anti(h) = k′h′ = h′′k′′ ∈ HK. So, HK is a NT-subgroup

of X going by Lemma 1.7.

Conversely, let HK be a NT-subgroup of X and let a ∈ KH. Then, a = kh for some k ∈ K
and h ∈ H. So, anti(a) = anti(kh) = anti(h)anti(k) = h′k′ ∈ HK ⇒ KH ⊆ HK. Let

b ∈ HK, then anti(b) ∈ HK. Thus, anti(b) = hk, h ∈ H, k ∈ K, and so b = anti
(
anti(b)

)
=

anti(hk) = anti(k)anti(h) = k′h′ ∈ KH ⇒ HK ⊆ KH. ∴ HK = KH.

Example 2.7. Consider the singular WCNETG (G, ∗) represented by Table 3.

(1) (G1, ∗1) and (G2, ∗2) are groups represented by Table 1 and Table 2 respectively. Hence,

they are NT-subgroups (G1, ∗) and (G2, ∗) of (G, ∗). Now, take H = G1 and K = G2,

then G1G2 = G1 = G2G1, and hence, Theorem 2.6 is true.

(2) G0 = {e, 1} is a NT-subgroup but not a subgroup of G. Now, take H = G0 and

K = G1, then G0G1 = G1 = G1G0, and hence, Theorem 2.6 is true.

(3) Ge2 = {e, 1, 2, 3, 4, 5, 6} is a NT-subgroup but not a subgroup of G. Now, take H = G0

and K = G2, then G0G2 = Ge2 = G2G0, and hence, Theorem 2.6 is true.

Theorem 2.8. Let X be a singular WCNETG, ∅ 6= S ⊆ X and H a NT-subgroup of X.

(1) If N(S) 6= ∅, then N(S) is a NT-subgroup of X.

(2) N(H) is the largest NT-subgroup of X in which H is a x-normal NT-subgroup.

(3) If K is a NT-subgroup of N(H), then H Cx HK.

Proof.

(1) N(S) 6= ∅ ⇔ L(S),M(S) 6= ∅. Since N(S) = L(S)∩M(S), then the fact that N(S) is

a NT-subgroup of X follows from Lemma 2.4

(2) Let H be a NT-subgroup of X. Then, hH anti(h) = H for all h ∈ H. Thus, H ⊆ N(H)

and H is a NT-subgroup of N(H). By definition, xH anti(x) = H for all x ∈ N(H).

Hence, H Cx N(H). Let K be an arbitrary NT-subgroup of X such that H Cx K.

Then, kH anti(k) = H for all k ∈ K, which implies that K ⊂ N(H). Thus, N(H) is

the largest NT-subgroup of X in which H is a x-normal NT-subgroup.
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(3) Let K be a NT-subgroup of N(H), then for all k ∈ K, kH anti(k) = H. Hence,

kH anti(k)k = Hk ⇒ kH neut(k) = Hk ⇒ k neut(k)H = Hk ⇒ kH = Hk ⇒ HK =

KH. Hence, by Theorem 2.6, KH is a NT-subgroup of N(H) and H ⊂ KH (since

neut(k) H = H, k ∈ K ⊂M(H)). Consequently, H Cx HK.

Example 2.9. By Example 2.5, with S = G0 = {e, 1}, N(G0) = L(G0) ∩ M(G0) =

{1, 2, 3, 4, 5, 6} = G2 and (G2, ∗) is a NT-subgroup of (G, ∗).

Definition 2.10. (Normal Neutrosophic Triplet Subgroup)

Let X be a NETG and let N be a NT-subgroup of X. Let neut(x)N = N for all x ∈ X,

then N is said to be a normal NT-subgroup of X if xN anti(x) ⊂ N and this represented by

N C X.

Lemma 2.11. Let X be a singular WCNETG, ∅ 6= S ⊆ X. If < S > is generated by S in X,

i.e.

< S >=

{ n∏
i=1

xi = x1x2 · · ·xn | xi ∈ S or anti(xi) ∈ S, 1 ≤ i ≤ n
}
,

then < S > is a NT-subgroup of X which contains S.

Proof. S ⊂< S >. So, < S > 6= ∅. If a, b ∈< S >, then a =
∏m
i=1 xi and b =

∏n
i=1 yi. So,

ab =
m∏
i=1

xi

n∏
i=1

yi ∈< S > and anti(a) = anti

( m∏
i=1

xi

)
=

m∏
i=1

anti
(
xm−i+1

)
∈< S >

Let Y be any NT-subgroup of X containing S; then for all x ∈ S, x ∈ Y . So, anti(x) ∈ Y ,

and Y contains all finite product
∏n
i=1 xi such that xi ∈ S or anti(xi) ∈ S, 1 ≤ i ≤ n. Hence,

< S >⊂ Y .

Theorem 2.12. Let X be a singular WCNETG and N a be NT-subgroup of X. If neut(x)N =

N for all x ∈ X, then the following are equivalent:

(1) N C X.

(2) xN anti(x) = N for all x ∈ X.

(3) xN = Nx for all x ∈ X.

(4) xNyN = (xy)N for all x, y ∈ X.

Proof.

1⇒2: Let N C X and x ∈ X. Then, xN anti(x) ⊂ N . Since anti(x) ∈ X, then

anti(x)N anti
(
anti(x)

)
⊂ N ⇒ anti(x)N x ⊂ N . Now, x(anti(x)N x)anti(x) =

(x anti(x))N(x anti(x)) = neut(x)N neut(x) = N neut(x) = neut(x)N = N . So,

N = x(anti(x)N x)anti(x) ⊂ xN anti(x) ⇒ N ⊂ xN anti(x). Hence, xN anti(x) =

N .
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2⇒3: xN anti(x) = N ⇒ Nx = (xN anti(x))x = xN anti(x)x = xN neut(x) = xN ⇒
Nx = xN .

3⇒4: xNyN = x(Ny)N = x(yN)N = (xy)NN . Now, NN ⊂ N since N is a groupoid.

On the other hand, N = e(n)N ⊂ NN for some n ∈ N . Hence, NN = N . ∴ xNyN =

(xy)N .

4⇒1: xN anti(x) = xN neut(n)anti(x) = xN anti(x)neut(n) ⊂ xN anti(x)N =

(x anti(x))N = neut(x)N = N ⇒ xN anti(x) ⊂ N ⇒ N C X.

Remark 2.13. Note that neut(x) ∈ N for all x ∈ X ⇒ neut(x)N ⊆ N but the con-

verse is not necessarily true. For example, in the first WNCETG of Table 3, neut(x)G1 =

neut(x){e, a, b, c} = G1, but neut(x) 6∈ G1 for all x ∈ G2.

Definition 2.14. (Closure of a set)

Let X be a NETG and ∅ 6= S ⊆ X and Y ≤ X. The closure of S in H will be defined by

ClH(S) = {x ∈ H|xS = S}. If H = X, then this will simply be expressed as Cl(S).

Lemma 2.15. Let X be a singular WCNETG and H a NT-subgroup of X. Then

(1) Cl(H) 6= ∅ and Cl(H) is a NT-subgroup of X.

(2) Cl(H) is a NT-subgroup of N(H).

Proof.

(1) Cl(H) 6= ∅ ∵ H ⊆ Cl(H). Let x, y ∈ Cl(H), then (xy)H = x(yH) = xH = H ⇒
xy ∈ Cl(H).

Let x ∈ Cl(H), then xH = H ⇒
(
neut(x)x

)
H = H ⇒ neut(x)(xH) = H ⇒

neut(x)H = H ⇒ neut(x) ∈ Cl(H). Furthermore, neut(x)H = H ⇒
(
anti(x)x

)
H =

H ⇒ anti(x)(xH) = H ⇒ anti(x)H = H ⇒ anti(x) ∈ Cl(H) and so, Cl(H) is a

NT-subgroup of X.

(2) Let x ∈ Cl(H), then by (1), neut(x)H = H. More so, H = neut(x)H = H neut(x) =

Hx anti(x) = H anti(x) ⇒ H = H anti(x). Thence, xH anti(x) = H anti(x) = H.

∴ Cl(H) is a NT-subgroup of N(H).

Example 2.16. For the singular WCNETG (G, ∗) in Table 3, G0 = {e, 1} ≤ G, even though

G0 is not a subgroup in (G, ∗). Cl(G0) = {1} ≤ G. Furthermore, by Example 2.9, with

H = G0 = {e, 1}, N(G0) = L(G0) ∩ M(G0) = {1, 2, 3, 4, 5, 6} = G2 and (G2, ∗) is a NT-

subgroup of (G, ∗). So, Cl(G0) ≤ (G2, ∗).

Definition 2.17. Let X be a NETG.
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(1) If ∅ 6= S ⊆ X, the set CX(S) = {x ∈ X|xs = sx ∀ s ∈ S} will be called the centralizer

of S in X.

(2) The set Z(X) = {x ∈ X|xy = yx ∀ y ∈ X} will be called the center X.

(3) Let Y ≤ X. Then, Y is called a complete NT-subgroup of X if neut(g)y ∈ Y for all

g ∈ X and y ∈ Y .

Lemma 2.18. Let X be a singular WCNETG.

(1) For any ∅ 6= S ⊆ X, CX(S) 6= ∅ and CX(S) is a complete NT-subgroup of X for which

neut(g) ∈ CX(S) for all g ∈ X. Furthermore, neut(g) ∈ Cl
(
CX(S)

)
if and only if

CX(S) ⊆ neut(g)CX(S) for all g ∈ X.

(2) CX(X) = Z(X) C X ⇔ Z(X) ⊆ neut(g)Z(X) for all g ∈ X.

Proof.

(1) Consider neut(g) ∈ X, for any g ∈ X. Observe that neut(g)s = s neut(g) for all

s ∈ S implies that neut(g) ∈ CX(S) for any g ∈ X. So, CX(S) 6= ∅. Furthermore,

neut(g)CX(S) ⊆ CX(S) for any g ∈ X. So, neut(g) ∈ Cl
(
CX(S)

)
⇔ CX(S) ⊆

neut(g)CX(S) for all g ∈ X.

Let x, y ∈ CX(S), then xs = sx and ys = sy for all s ∈ S.

(xy)s = x(ys) = x(sy) = (xs)y = (sx)y = s(xy)⇒ xy ∈ CX(S).

anti(x)s = anti(x)neut
(
anti(x)

)
s = anti(x)neut(x)s = anti(x)s neut(x) =

anti(x)sx anti(x) = anti(x)xs anti(x) = neut(x)s anti(x) = s neut(x)anti(x) =

s neut(x)anti(x)⇒ anti(x) ∈ CX(S).

So, CX(S) is a complete NT-subgroup of X.

(2) CX(X) = {x ∈ X|xg = gx ∀ g ∈ X} = Z(X). Let x ∈ Z(X) and g ∈ X, then

gx anti(g) = xg anti(g) = x neut(x) ∈ Z(X). So, CX(X) = Z(X) C X ⇔ Z(X) ⊆
neut(g)Z(X) based on 1.

Example 2.19. Consider the singular WCNETG (G, ∗) represented by Table 3.

(1) Let S = G0 = {e, 1} ≤ G. CG(G0) = G ≤ G and so, neut(g) ∈ CG(G0) for all g ∈ G.

Cl(CG(G0)) = Cl(G) = G2 ≤ G. Observe that neut(g) ∈ Cl(CG(G0)) for some g ∈ G
and so, neut(g) 6∈ Cl(CG(G0)) for all g ∈ G.

(2) Furthermore, Z(G) = {1} ∪ G1 ≤ G, Now, xZ(G) anti(x) ⊂ Z(G) for all x ∈ G.

For all x ∈ G2, note that neut(x)Z(G) = 1 · Z(G) = Z(G) but for all x ∈ G1,

neut(x)Z(G) = e · Z(G) ⊂ Z(G). So, neut(x)Z(G) 6= Z(G) for all x ∈ G. Hence,

Z(G) 6C G.

T. G. Jaiyéo. lá, K. A. Olúrǒdè and B. Osoba, Some Neutrosophic Triplet Subgroup
Properties and Homomorphism Theorems in Singular Weak Commutative Neutrosophic
Extended Triplet Group



Neutrosophic Sets and Systems, Vol. 45, 2021 470

(3) Given any group G with subgroup H and normal subgroup K, G is a WCNETG with

complete NT-subgroup H and normal NT-subgroup K.

Definition 2.20. Let X be a NETG.

(1) If neut(a)b = neut(a)c implies that b = c for all a, b ∈ X, then X is said to be

neutro-left cancellative.

(2) If b neut(a) = c neut(a) implies that b = c for all a, b ∈ X, then X is said to be

neutro-right cancellative.

(3) Let H be a NT-subgroup of X. H is said to be right self cancellative in X if xH = H

implies x ∈ H for all x ∈ X. This will sometimes be represented as H ≤rsc X.

(4) Let H be a NT-subgroup of X. H is said to be left self cancellative in X if Hx = H

implies x ∈ H for all x ∈ X. This will sometimes be represented as H ≤lsc X.

(5) Let H be a NT-subgroup of X. H is said to be a semi-strong NT-subgroup of X if

neut(x) ∈ H for all x ∈ X. This will sometimes be represented as H ≤ss X.

(6) For Y, Z ≤ X, Y will be said to be Z-neutro-solvable in X if for any x ∈ X and y ∈ Y ,

neut(x)y ∈ Z ⇒ y ∈ Z.

Remark 2.21. In a WCNETG, neutro-left cancellation and neutro-right cancellation are

equivalent. In a NETG, left self cancellation and right self cancellation are equivalent for any

given normal NT-subgroup. The use of ’semi-strong’ in Definition 2.20 is based on the use of

’strong’ in Definition 5 of [9].

Example 2.22. Consider the singular WCNETG (G, ∗) represented by Table 3.

(1) Based on Table 1 representing (G1, ∗1), (G1, ∗) is a subgroup (hence, NT-subgroup)of

(G, ∗) but G1 6≤rsc G because xG1 = G1 6⇒ x ∈ G1 for all x ∈ G. Similarly, G1 6≤lsc G.

On the hand, based on Table 2 representing (G2, ∗2), (G2, ∗) is a subgroup (hence,

NT-subgroup) of (G, ∗). Whereas, G2 ≤rsc G and G2 ≤lsc G. These difference between

G1 and G2 shows that the notions of right self cancellation and left self cancellation

NT-subgroup is peculiar in NETG and not trivial from the point of view classical

group. This is because, even though, G0 = {e, 1} is not a subgroup of G, it is right

self cancellative and left self cancellative.

(2) G1 and G2 are subgroups (hence, NT-subgroup) of (G, ∗), but they are not semi-

strong NT-subgroup of G because neut(x) 6∈ G1 for all x ∈ G2 and neut(x) 6∈ G2 for

all x ∈ G1. Thus, the concept semi-strong NT-subgroup is peculiar in NETG and not

trivial from the point of view classical group. This is because, even though G0 = {e, 1}
is not a subgroup of G, it is a semi-strong NT-subgroup of G. In addition, despite the

fact that G1
1 = {1} ∪ G1 and Ge2 = {e} ∪ G2 are not subgroups of G, G1

1 ≤ss G and

Ge2 ≤ss G.

T. G. Jaiyéo. lá, K. A. Olúrǒdè and B. Osoba, Some Neutrosophic Triplet Subgroup
Properties and Homomorphism Theorems in Singular Weak Commutative Neutrosophic
Extended Triplet Group



Neutrosophic Sets and Systems, Vol. 45, 2021 471

(3) Since G2 ≤rsc G, then it can be observed that Cl(G2) = G2.

(4) We shall now see that the notion of ’neutro solvability’ in NETG is not subgroup biased

as the case is in classical groups.

(a) Even though G0 = {e, 1} is a NT-subgroup of X and not a subgroup of X, it is

both Ge2-neutro solvable and G1
1-neutro solvable in G.

(b) G1 and G2 are subgroups of G: G2 is not G1-neutro solvable in X, but G1 is

G2-neutro solvable in G.

(c) G1
1 and Ge2 are not subgroups of G: Ge2 is not G1

1-neutro solvable in G, but G1
1 is

Ge2-neutro solvable in G.

Lemma 2.23. Let X be a NETG such that Y,Z ≤ X.

(1) Y ≤rsc X if and only if Cl(Y ) ⊆ Y .

(2) Cl(Y ) ∩ Cl(Z) ⊆ Cl(Y ∩ Z)⇔ xY ∩ xZ = x(Y ∩ Z) for all x ∈ X.

(3) Let X be a singular NETG. If any of the following is true:

(a) Y is Z-neutro-solvable in X and Z C X or Z ≤ss X or neut(x) ∈ Cl(Z) for all

x ∈ X;

(b) Z is Y -neutro-solvable in X and Y C X or Y ≤ss X or neut(x) ∈ Cl(Y ) for all

x ∈ X;

then, xY ∩ xZ = x(Y ∩ Z) for all x ∈ X and Cl(Y ) ∩ Cl(Z) ⊆ Cl(Y ∩ Z).

Proof.

(1) Let Y ≤rsc X, then for any x ∈ X, xY = Y ⇒ x ∈ Y . Let x ∈ Cl(Y ), then

xY = Y ⇒ x ∈ Y . So, Cl(Y ) ⊆ Y .

Conversely, let x ∈ Cl(Y ), then xY = Y . Since Cl(Y ) ⊆ Y , then, x ∈ Y . Thus, for

any x ∈ X, xY = Y ⇒ x ∈ Cl(Y )⇒ x ∈ Y . Thence, Cl(Y ) ⊆ Y .

(2) If Cl(Y ) ∩ Cl(Z) ⊆ Cl(Y ∩ Z), then x ∈ Cl(Y ) ∩ Cl(Z) ⇒ x ∈ Cl(Y ∩ Z). So,

x ∈ Cl(Y )⇒ xY = Y and x ∈ Cl(Z)⇒ xZ = Z for all x ∈ X and x(Y ∩ Z) = Y ∩ Z
for all x ∈ X. Thus, x(Y ∩ Z) = Y ∩ Z = xY ∩ xZ = Y ∩ Z for all x ∈ X.

Conversely, let xY ∩xZ = x(Y ∩Z) for all x ∈ X, then x ∈ Cl(Y )∩Cl(Z)⇒ Y ∩xZ =

Y ∩ Z for all x ∈ X will give x(Y ∩ Z) = Y ∩ Z for all x ∈ X ⇒ x ∈ Cl(Y ∩ Z).

Therefore, Cl(Y ) ∩ Cl(Z) ⊆ Cl(Y ∩ Z).

(3) The proof of x(Y ∩ Z) ⊆ xY ∩ xZ is routine while the proof of xY ∩ xZ ⊆ x(Y ∩ Z)

requires the conditions in (a) or (b). The last part follows from 2.

Example 2.24.

(1) As mentioned in Example 2.22, G0 = {1, e} ≤rsc X and Cl(G0) = {1} ⊂ G0.

(2) Cl(Ge2) = G2 and Cl(G1
1) = {1}, so Cl(G1

1) ∩ Cl(Ge2) = {1} = Cl(G0) = Cl
(
G1

1 ∩Ge2
)
.
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(3) By Example 2.22(2)(4): G0 = {e, 1} is both Ge2-neutro solvable and G1
1-neutro solvable

in G, and, G1
1 ≤ss G and Ge2 ≤ss G. So, xY ∩ xZ = x(Y ∩ Z) for all x ∈ X and

Cl(Y ) ∩ Cl(Z) ⊆ Cl(Y ∩ Z) for the pairings: Y = G0 and Z = G1
1; Y = G0 and

Z = Ge2.

2.3. Neutrosophic Triplet Group Homomorphism

Let X and Y be NETGs and let φ : X → Y . Then, φ is called a neutro-homomorphism

if φ(xy) = φ(x)φ(y) for all x, y ∈ X. If a neutro-homomorphism is a mono (epi), then ,

it is called a neutro-monomorphism (neutro-epimorphism). If a neutro-homomorphism is a

bijection, then , it is called a neutro-isomorphism. In such a case, X and Y are said to be

neutro-isomorphic (or simply isomorphic) and this will be written as X ∼= Y .

kerφ = {x ∈ X|φ(x) = neut(y) for some y ∈ Y } and Im(φ) = {y ∈ Y |φ(x) = y for some x ∈ X}.

Theorem 2.25. Let X be a singular WCNETG and N C X. Then

(1) X/N = {xN |x ∈ X} is a group.

(2) The mapping φ : X → X/N ↑ x 7→ xN is a neutro-epimorphism.

(3) Let NT (X) and NT (X/N) represent the set of all NTs of X and X/N respectively,

i.e.

NT (X) =
{(
x, neut(x), anti(x)

)
| x ∈ X

}
and

NT (X/N) =
{(
xN, neut(xN), anti(xN)

)
| xN ∈ X/N

}
.

Then, there exists a binary operation � on NT (X) and NT (X/N), and a mapping

α : NT (X)→ NT (X/N) such that

(a) NT (X) is a singular WCNETG and NT (X/N) is a group.

(b) α is a neutro-epimorphism if X/N is an abelian group.

(4) kerφ = Cl(N) and

kerα =
(
Cl(N), neut

(
Cl(N)

)
, anti

(
Cl(N)

))
=
(

kerφ, neut
(

kerφ
)
, anti

(
kerφ

))
.

Proof.

(1) Closure: By Theorem 2.12(4), xNyN = (xy)N for all x, y ∈ X.

Associativity: By repeated use of Theorem 2.12(4), (xNyN)zN = xN(yNzN) for

all x, y, z ∈ X.

Identity: Let neut(xN) = neut(x)N = N . Then, neut(xN)xN = neut(x)NxN =

(neut(x)x)N = xN and xN neut(xN) = xN neut(x)N = (x neut(x))N = xN .

Inverse: Let anti(xN) = anti(x)N . Then, anti(xN)xN = anti(x)NxN =

(anti(x)x)N = neut(x)N = N and xN anti(xN) = xN anti(x)N =

(x anti(x))N = neut(x)N = N .
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∴ X/N is a group.

(2) By definition, φ is onto and for all x, y ∈ X, φ(xy) = (xy)N = xNyN = φ(x)φ(y).

Thus, φ is a neutro-epimorphism.

(3) Define � on NT (X) as follows:(
x, neut(x), anti(x)

)
�
(
y, neut(y), anti(y)

)
=
(
xy, neut(y)neut(x), anti(y)anti(x)

)
.

Closure:
(
x, neut(x), anti(x)

)
�
(
y, neut(y), anti(y)

)
=
(
xy, neut(xy), anti(xy)

)
∈

NT (X).

Neutral and Opposite: Define the neutral of
(
x, neut(x), anti(x)

)
as follows:

neut
(
x, neut(x), anti(x)

)
=
(
neut(x), neut(x), neut(x)

)
. Then

neut
(
x, neut(x), anti(x)

)
=
(
neut(x), neut(neut(x)), anti(neut(x))

)
∈ NT (X).

On the other hand, define the opposite of
(
x, neut(x), anti(x)

)
as follows:

anti
(
x, neut(x), anti(x)

)
=
(
anti(x), neut(x), x

)
. Then,

anti
(
x, neut(x), anti(x)

)
=
(
anti(x), neut(anti(x)), anti(anti(x))

)
∈ NT (X). Now

LHS =
(
x, neut(x), anti(x)

)
� neut

(
x, neut(x), anti(x)

)
=
(
x, neut(x), anti(x)

)
�(

neut(x), neut(neut(x)), anti(neut(x))
)

=
(
x neut(x), neut(x neut(x)), anti(x neut(x))

)
=
(
x, neut(x), anti(x)

)
. Similarly,

RHS = neut
(
x, neut(x), anti(x)

)
�
(
x, neut(x), anti(x)

)
=
(
x, neut(x), anti(x)

)
.

LHS =
(
x, neut(x), anti(x)

)
� anti

(
x, neut(x), anti(x)

)
=
(
x, neut(x), anti(x)

)
�(

anti(x), neut(anti(x)), anti(anti(x))
)

=
(
x anti(x), neut(x anti(x)), anti(x anti(x))

)
=
(
neut(x), neut(neut(x)), anti(neut(x))

)
= neut

(
x, neut(x), anti(x)

)
. Similarly,

RHS = anti
(
x, neut(x), anti(x)

)
�
(
x, neut(x), anti(x)

)
= neut

(
x, neut(x), anti(x)

)
.

∴

((
x, neut(x), anti(x)

)
, neut

(
x, neut(x), anti(x)

)
, anti

(
x, neut(x), anti(x)

))
forms a neutrosophic triplet for

(
x, neut(x), anti(x)

)
∈ NT (X) and so, NT (X) is

a neurotrophic triplet set.

Associativity: LHS =
((
x, neut(x), anti(x)

)
�
(
y, neut(y), anti(y)

))
�(

z, neut(z), anti(z)
)

=
(
xy, neut(xy), anti(xy)

)
�
(
z, neut(z), anti(z)

)
=(

xy · z, neut(xy · z), anti(xy · z)
)
. Similarly, RHS =

(
x, neut(x), anti(x)

)
�((

y, neut(y), anti(y)
)
�
(
z, neut(z), anti(z)

))
=
(
x · yz, neut(x · yz), anti(x · yz)

)
So, NT (X) is a NETG.
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Weak Commutativity:

LHS = neut
(
x, neut(x), anti(x)

)
�
(
y, neut(y), anti(y)

)
=(

neut(x), neut(neut(x)), anti(neut(x))
)
�
(
y, neut(y), anti(y)

)
=(

neut(x)y, neut(neut(x)y), anti(neut(x)y)
)

=(
y neut(x), neut(y neut(x)), anti(y neut(x))

)
=
(
y, neut(y), anti(y)

)
�

neut
(
x, neut(x), anti(x)

)
= RHS.

Singularity: anti
(
x, neut(x), anti(x)

)
is unique for each

(
x, neut(x), anti(x)

)
∈

NT (X).

∴ NT (X) is a singular WCNETG.

(4) kerφ = {x ∈ X|φ(x) = neut(yN), yN ∈ X/N} = {x ∈ X|φ(x) = neut(y)N = N, y ∈
X} = Cl(N).

kerα =
{(
x, neut(x), anti(x)

)
∈ NT (X)|

(
x, neut(x), anti(x)

)
= neut

(
x, neut(x), anti(x)

)}
=
{(
x, neut(x), anti(x)

)
∈ NT (X)|

(
xN,N, anti(xN)

)
=
(
N,N,N

)}
=
{(
x, neut(x), anti(x)

)
∈ NT (X)|xN = N and anti(xN) = N

}
=
{(
x, neut(x), anti(x)

)
∈ NT (X)|x ∈ Cl(N) or x ∈ kerφ

}
=
(
Cl(N), neut

(
Cl(N)

)
, anti

(
Cl(N)

))
=
(

kerφ, neut
(

kerφ
)
, anti

(
kerφ

))
.

2.4. Isomorphism Theorems for Singular WCNETG

We are now ready to establish the first, second and third neutro-isomorphism theorems,

neutro-correspondence theorem and the neutro-Zassenhaus Lemma (Neutro-Butterfly Theo-

rem).

Theorem 2.26. (First Neutro-Isomorphism Theorem for Singular WCNETG)

Let X and Y be singular WCNETGs and let φ : X → Y be a a neutro-homomorphism.

(1) (a) kerφ is a complete NT-subgroup of X.

(b) kerφ Cx X for all x ∈ X.

(c) kerφ C X ⇔ kerφ ⊂ neut(x) kerφ for all x ∈ X.

(2) Im(φ) is a NT-subgroup of Y and if K is a NT-subgroup of Y , then ∅ 6= φ−1(K) is a

NT-subgroup of X.

(3) If Y is neutro-left (neutro-right) cancellative and kerφ ⊂ neut(x) kerφ for all x ∈
X, then X/ kerφ ∼= Im(φ). Hence, if in addition, φ is a neutro-epimorphism, then

X/ kerφ ∼= Y .

Proof. Let φ : X → Y be a neutro-homomorphism, then φ(xy) = φ(x)φ(y) for all x, y ∈ X.
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(1) Put y = neut(x) in φ(xy) = φ(x)φ(y) to get φ
(
x neut(x)

)
= φ(x)φ(neut(x))⇒ φ(x) =

φ(x)φ(neut(x)). Also, put y = neut(x) in φ(yx) = φ(y)φ(x) to get φ
(
neut(x)x

)
=

φ(neut(x))φ(x) ⇒ φ(x) = φ(neut(x))φ(x). Thus, φ(neut(x)) = neut(φ(x)) for all

x ∈ X. So, kerφ 6= ∅.
Let a, b ∈ kerφ, then φ(a) = neut(g) and φ(b) = neut(h) for some g, h ∈ Y . Then,

φ(ab) = φ(a)φ(b) = neut(g)neut(h) = neut(gh)⇒ ab ∈ kerφ.

Put y = anti(x) in φ(xy) = φ(x)φ(y) to get φ
(
x anti(x)

)
= φ(x)φ(anti(x)) ⇒

φ(neut(x)) = φ(x)φ(anti(x)) ⇒ neut(φ(x)) = φ(x)φ(anti(x)). Also, put y =

anti(x) in φ(yx) = φ(y)φ(x) to get φ
(
anti(x)x

)
= φ(anti(x))φ(x) ⇒ φ(neut(x)) =

φ(anti(x))φ(x)⇒ neut(φ(x)) = φ(anti(x))φ(x). Thus, φ(anti(x)) = anti(φ(x)) for all

x ∈ X.

Now, let x ∈ kerφ, then φ(x) = neut(y) for some y ∈ Y . Using the above result,

φ(anti(x)) = anti(φ(x)) = anti(neut(y)) = neut(y) ⇒ anti(x) ∈ kerφ for all x ∈ X.

Thus, kerφ is a NT-subgroup of X. Furthermore, for any g ∈ X and x ∈ kerφ,

φ
(
gx anti(g)

)
= φ(g)φ(x)φ(anti(g)) = φ(g)neut(y)anti(φ(g)) = neut(y)φ(g) anti(φ(g))

= neut(y)neut(φ(g)) = neut
(
yφ(g)

)
⇒ gx anti(g) ∈ kerφ.

Also, for any g ∈ X, φ(neut(g)) = neut
(
φ(g)

)
⇒ neut(g) ∈ kerφ. Thus, kerφ is a

complete NT-subgroup of X, kerφ Cx X for all x ∈ X and therefore, kerφ C X ⇔
kerφ ⊂ neut(x) kerφ for all g ∈ X.

(2) For any g ∈ X, φ(neut(g)) = neut
(
φ(g)

)
∈ Im(φ). So, Im(φ) 6= ∅. Let x′, y′ ∈ Im(φ),

then x′ = φ(x) and y′ = φ(y). Thus, x′ anti(y′) = φ(x)anti(φ(y)) = φ(x)φ(anti(y)) =

φ(x anti(y)) ∈ Im(φ). So, Im(φ) is a NT-subgroup of Y .

If K is a NT-subgroup of Y , then ∅ 6= φ−1(K) = {x ∈ X : φ(x) ∈ K}.
Let x, y ∈ φ−1(K), then there exist x′, y′ ∈ K such that x′ = φ(x) and y′ =

φ(y). Thus, x′ anti(y′) = φ(x)anti(φ(y)) = φ(x)φ(anti(y)) = φ(x anti(y)) ∈ K ⇒
x anti(y) ∈ φ−1(K). So, φ−1(K) is a NT-subgroup of X.

(3) Let ψ : X/ kerφ→ Im(φ) ↑ ψ
(
x kerφ

)
= φ(x) for each x ∈ X.

Well Defined: For any x, y ∈ X,

x kerφ = y kerφ⇒ anti
(
y kerφ

)
x kerφ = anti

(
y kerφ

)
y kerφ⇒(

anti(y)x
)

kerφ = kerφ⇒ anti(y)xr = s, r, s ∈ kerφ⇒ φ
(
anti(y)xr

)
= φ(s)⇒

φ
(
anti(y)x

)
φ(r) = φ(s)⇒ φ

(
anti(y)x

)
neut(r′) = neut(s′), r′, s′ ∈ Y ⇒

φ
(
anti(y)x

)
neut(r′)anti

(
neut(r′)

)
= neut(s′)anti

(
neut(r′)

)
⇒

φ
(
anti(y)x

)
neut(r′) = neut(s′)neut(r′)⇒ φ

(
anti(y)x

)
neut(r′) = neut(s′r′)⇒

anti
(
φ(y)

)
φ(x)neut(r′) = neut(s′r′)⇒ φ(y)anti

(
φ(y)

)
φ(x)neut(r′) =
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φ(y)neut(s′r′)⇒ neut
(
φ(y)

)
φ(x)neut(r′) = φ(y)neut(s′r′)⇒

φ(x)neut
(
φ(y)

)
neut(r′) = φ(y)neut(s′r′)⇒ φ(x)neut

(
φ(y)r′

)
= φ(y)neut(s′r′)

⇒ φ(x) = φ(y)⇒ ψ
(
x kerφ

)
= ψ

(
y kerφ

)
.

without out loss of generality, we take neut
(
φ(y)r′

)
= neut(s′r′) and because H

is neutro-left(or neutro-right) cancellative.

One to one:

ψ
(
x kerφ

)
= ψ

(
y kerφ

)
⇒ φ(x) = φ(y)⇒ φ(x)anti

(
φ(y)

)
= φ(y)anti

(
φ(y)

)
⇒

φ
(
x anti(y)

)
= neut

(
φ(y)

)
⇒ x anti(y) ∈ kerφ⇒ x anti(y)y ∈ y kerφ⇒

x neut(y) ∈ y kerφ⇒ x neut(y) kerφ = x kerφ ⊆ y kerφ kerφ = y kerφ⇒

x kerφ ⊆ y kerφ

Similarly, it can be shown that y kerφ ⊆ x kerφ. Thus, x kerφ = y kerφ.

Onto: This is obvious.

neutro-homomorphism:

ψ
(
x kerφ · y kerφ

)
= ψ

(
(xy) kerφ

)
= φ(xy) = φ(x)φ(y) = ψ

(
x kerφ

)
ψ
(
y kerφ

)
∴ X/ kerφ ∼= Im(φ) and if φ is a neutro-epimorphism, then X/ kerφ ∼= Y .

Example 2.27. In Lemma 2.2, consider the WCNETGs (G, ∗) and (G, ◦) of the pair of

groups (G1, ∗1, e1) and (G2, ∗2, e2), and pair of groups (G1, ◦1) and (G2, ◦2) respectively. Let

hi : (Gi, ∗i) → (Gi, ◦i), i = 1, 2 be homomorphisms, then h : (G, ∗) → (G, ◦) is a neutro-

homomorphism.

(1) Recall that kerh = kerh1 ∪ kerh2. So, kerh ≤ (G, ∗) since kerh1 and kerh2 are

subgroups of (G1, ∗1) and (G2, ∗2) respectively. We need the facts that kerhi = {g ∈
Gi|hi(g) = ei} for i = 1, 2 and {e1, e2} ≤ kerh. Let Y = kerh, then for all g ∈ G and

any y ∈ Y :

h
(
neut(g)y

)
=

{
ei ∈ kerh, if g ∈ Gi, y ∈ kerhi, i = 1, 2;

ei ∈ kerh or ej ∈ kerh, if g ∈ Gi, y ∈ kerhj , i, j ∈ {1, 2}, i 6= j

Then, neut(g)y ∈ kerh for all g ∈ G and any y ∈ Y . Whence, kerh is a complete

NT-subgroup of (G, ∗).
(2) kerh C G⇔ kerh ⊂ neut(g) kerh ∀ g ∈ G if and only if kerh ⊂ neut(g) kerh ∀ g ∈ G1

and kerh ⊂ neut(g) kerh ∀ g ∈ G2 if and only if kerh ⊂ e1 ∗ kerh ∀ g ∈ G1 and

kerh ⊂ e2 ∗ kerh.

(3) Recall that Im(h) = Im(h1)∪ Im(h2). So, Im(h) ≤ (G, ◦) since Im(h1) and Im(h2) are

subgroups of (G1, ◦1) and (G2, ◦2) respectively.
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Theorem 2.28. (Second Neutro-Isomorphism Theorem for Singular WCNETG)

Let X be a singular WCNETG with NT-subgroups H and K such that K is right self

cancellative in H, hK = Kh and neut(h) ∈ Cl(H), Cl(K) for all h ∈ H, and neut(k) ∈ Cl(K)

for all k ∈ K. Then,

(1) K C HK ≤ X.

(2) H ∩K,K C H.

(3) H/H ∩K ∼= HK/K.

Proof.

(1) hK = Kh for all h ∈ H implies that HK = KH. So, by Theorem 2.6, HK is a

NT-subgroup of X. Let hk ∈ HK, h ∈ H and k ∈ K. Then, for any k1 ∈ K,

(hk)k1 anti(hk) = h(kk1 anti(k))anti(h) = hk2 anti(h) = h anti(h)k3 = neut(h)k3 ∈
K since neut(h) ∈ Cl(K) for all h ∈ H. So, (hk)k1 anti(hk) ∈ K. Also, neut(hk)K =

neut(h)neut(k)K = neut(h)K = K. Thus, K C HK ≤ X.

(2) Let x ∈ H ∩K, then x ∈ H and x ∈ K. So, for all h ∈ H: hx anti(h) = yh anti(h) =

y neut(h) = neut(h)y ∈ K and hx anti(h) ∈ H. Furthermore, neut(h)(H ∩ K) =

neut(h)H ∩ neut(h)K = H ∩K since neut(h) ∈ Cl(H) for all h ∈ H. Consequently,

H ∩K C H.

For all k ∈ K,h ∈ H, hk anti(h) = k′h anti(h) = k′ neut(h) = neut(h)k′ ∈ K and

neut(h)K = K. Thence, K C H.

(3) Let φ : H → HK/K ↑ φ(h) = (hk)K for all h ∈ H and k ∈ K. K is rsc in H implies

that k ∈ Cl(K), and so, φ(h) = hK for all h ∈ H. So, φ is obviously well defined. By

Theorem 2.12,

φ(h1h2) = (h1h2)K = h1Kh2K = φ(h1)φ(h2) ∀ h1, h2 ∈ H.

Also, φ is onto. Thus, φ is a neutro-epimorphism. HK/K is neutro-right (neutro-left)

cancellative by Theorem 2.25(1).

kerφ = {h ∈ H|φ(h) = neut(xK) for some xK ∈ HK/K} = {h ∈ H|hK = K} =

{h ∈ H|h ∈ K} = H ∩K.

Therefore, by Theorem 2.26(3), H/H ∩K ∼= HK/K.

Remark 2.29. Theorem 2.28 can be visualized as diamond lattice structure and termed the

Diamond Neutro-Isomorphism Theorem for singular WCNETG.

Theorem 2.30. (Third Neutro-Isomorphism Theorem for Singular WCNETG)

Let X be a singular WCNETG and let H,K C X be right self cancellative in X such that

K ⊂ H. Then, (X/K)/(H/K) ∼= X/H.
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Proof. Consider the map φ : X/K → X/H ↑ φ(xK) = xH for all x ∈ X. φ is well defined

since K is right self cancellative:

xK = yH ⇒ anti
(
xK
)
xK = anti

(
xK
)
yK ⇒

(
anti(x)y

)
K = K ⇒

(
anti(x)y

)
∈ K ⇒(

anti(x)y
)
∈ H ⇒ x

(
anti(x)y

)
∈ xH ⇒

(
neut(x)y

)
∈ xH ⇒

(
neut(x)y

)
H ⊆ xHH ⇒(

y neut(x)
)
H ⊆ xH ⇒ yH ⊆ xH.

Similarly, it can be shown that xH ⊆ yH. So, xH = yH ⇒ φ(xK) = φ(yK). By Theo-

rem 2.12,

φ
(
xKyK

)
= φ

(
(xy)K

)
= (xy)H = xHyH = φ(xK)φ(yK)

and φ is surjective. Hence, φ is a neutro-homomorphism. Since H is right self cancellative,

then

kerφ = {xK ∈ X/K|φ(xK) = neut(xH) for some xH ∈ X/H} = {xK ∈ X/K|xH = H} =

{xK ∈ X/K|xH = H} = {xK ∈ X/K|x ∈ H} = H/K.

For any x ∈ H and based on the fact that K is rsc in X implies that k ∈ Cl(K),

neut(xK)H/K = K ·H/K = K{hK|h ∈ H} = {k(hK)|h ∈ H} = {k(Kh)|h ∈ H} =

{(kK)h|h ∈ H} = {Kh|h ∈ H} = {hK|h ∈ H} = H/K.

Therefore, by Theorem 2.26(3), (X/K)/(H/K) ∼= X/H.

Remark 2.31. Theorem 2.30 is termed the double quotient Neutro-Isomorphism Theorem

for singular WCNETG.

Lemma 2.32. Let X1 and X2 be singular WCNETGs and let N1 C X1, N2 C X2 such that

N1 and N2 are right self cancellative in X1 and X2 respectively. Then,
(
X1×X2)/

(
N1×N2) ∼=(

X1/N1

)
×
(
X2/N2

)
.

Proof. X1 × X2 is a singular WCNETG since X1 and X2 are singular WCNETGs. Since

N1 C X1, N2 C X2, then N1 × N2 C X1 × X2. By Theorem 2.25, X1/N1 and X2/N2 are

neutro-right (neutro-left) cancellative singular WCNETGs. Thus,
(
X1/N1

)
×
(
X2/N2

)
is a

neutro-right (neutro-left) cancellative singular WCNETG.

Let φ : X1×X2 →
(
X1/N1

)
×
(
X2/N2

)
. Based on Theorem 2.12, φ is a neutro-epimorphism

and kerφ = N1×N2 using the hypothesis that N1 and N2 are right self cancellative in X1 and

X2 respectively. For any (x1, x2) ∈ X1 ×X2,

neut((x1, x2))N1×N2 =
(
neut(x1), neut(x2)

)
N1×N2 = neut(x1)N1×neut(x2)N2 = N1×N2.
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Therefore, by Theorem 2.26(3),
(
X1 ×X2)/

(
N1 ×N2) ∼=

(
X1/N1

)
×
(
X2/N2

)
.

Corollary 2.33. Let {Xi}ni=1 be a family of singular WCNETGs and let Ni C Xi be right self

cancellative in Xi, 1 ≤ i ≤ n. Then,
∏n
i=1Xi/

∏n i = 1Ni
∼=
∏n i = 1Xi/Ni.

Proof. This is the generalization of Lemma 2.32.

Theorem 2.34. (Neutro-Correspondence Theorem for Singular WCNETGs)

Let X and Y be singular WCNETGs and let φ : X → Y be a neutro-epimorphism.

(1) G ≤ X implies φ(G) ≤ Y .

(2) H ≤ Y implies φ−1(H) ≤ X.

(3) G C X implies φ(G) C Y .

(4) H C Y implies φ−1(H) C X.

(5) G ≤rsc X and kerφ ⊂ G implies φ−1
(
φ(G)

)
= G.

(6) There is a 1-1 correspondence between the set of right self cancellative NT-subgroups

of X that contain kerφ, and the NT-subgroups of Y .

(7) Normal NT-subgroups of X correspond to normal NT-subgroups of Y .

Proof.

(1) Let G ≤ X. Then, for all a, b ∈ G, φ(a)φ(b) = φ(ab) ∈ φ(G) and anti
(
φ(a)

)
=

φ(anti(a)) ∈ φ(G). Thus, φ(G) ≤ Y .

(2) Let H ≤ Y . Then, for all a, b ∈ G, φ(ab) = φ(a)φ(b) ∈ H ⇒ ab ∈ φ−1(H) and

φ(anti(a)) = anti
(
φ(a)

)
∈ H ⇒ anti(a) ∈ φ−1(H). So, φ−1(H) ≤ X.

(3) Let G C X, then neut(x)G = G for all x ∈ X. Thus, φ
(
neut(x)

)
φ(G) =

neut
(
φ(x)

)
φ(G) = φ(G)⇒ neut(y)φ(G) = φ(G) for all y ∈ Y , where y = φ(x).

For each y ∈ Y there exists x ∈ X such that y = φ(x). Let φ(g) ∈ φ(G). Then,

yφ(g) anti(y) = φ(x)φ(g)anti
(
φ(x)

)
= φ

(
xg anti(x)

)
∈ φ(G) since xg anti(x) ∈ G.

From these two arguments, φ(G) C Y .

(4) Let H C Y . Then, neut(y)H = H for all y ∈ Y . For each y ∈ Y , there exists x ∈ X
such that y = φ(x). So,

neut
(
φ(x)

)
H = H ⇒ φ

(
neut(x)

)
φ
(
φ−1(H)

)
= H ⇒ φ

(
neut(x)φ−1(H)

)
= H ⇒

neut(x)φ−1(H) = φ−1(H).

Let g ∈ φ−1(H)⇒ φ(g) ∈ H. Let x ∈ X, then φ
(
xg anti(x)

)
= φ(x)φ(g)anti

(
φ(x)

)
∈

H since H C Y . Thus, φ
(
xg anti(g)

)
∈ H ⇒ xg anti(x) ∈ φ−1(H). Whence,

φ−1(H) C X.

T. G. Jaiyéo. lá, K. A. Olúrǒdè and B. Osoba, Some Neutrosophic Triplet Subgroup
Properties and Homomorphism Theorems in Singular Weak Commutative Neutrosophic
Extended Triplet Group



Neutrosophic Sets and Systems, Vol. 45, 2021 480

(5) Trivially, G ⊂ φ−1
(
φ(G)

)
. Let G ≤rsc X and kerφ ⊂ G.

If x ∈ φ−1
(
φ(G)

)
, then φ(x) ∈ φ(G)⇒ φ(x) = φ(g) for some g ∈ G. So,

φ(x)anti
(
φ(g)

)
= φ(g)anti

(
φ(g)

)
= neut

(
φ(g)

)
⇒ φ

(
x anti(g)

)
= neut

(
φ(g)

)
⇒

x anti(g) ∈ kerφ⇒ x anti(g) ∈ G⇒ x anti(g)g ∈ Gg ⊂ G⇒ x neut(g) ∈ G⇒ x ∈ G.

Hence, φ−1
(
φ(G)

)
⊂ G and therefore, φ−1

(
φ(G)

)
= G.

(6) Let ψ : V = {G ≤ X : kerφ ⊂ G ≤rsc X} →W = {H ≤ Y } be define as ψ(G) = φ(G).

Let H ∈ W ⇒ H ≤ Y , so that ψ(G) = H ⇒ G = φ−1(H) ∈ V i.e. kerφ ⊂ φ−1(H) ≤
G. Going by (5), φ

(
φ−1(H)

)
= H. So, ψ is surjective.

ψ(G1) = ψ(G2) ⇒ φ(G1) = φ(G2) ⇒ φ−1
(
φ(G1)

)
= φ−1

(
φ(G2)

)
⇒ G1 = G2. So,

ψ is a bijection. Therefore, there is a 1-1 correspondence between the set of right self

cancellative NT-subgroups of X containing kerφ, and the NT-subgroups of Y .

(7) This follows from (3).

Corollary 2.35. Let X be a singular WCNETG and let N C X. Given any Y ≤ X/N ,

there exists a unique G ≤rsc X such that Y = G/N . Furthermore, G C X if and only if

G/N C X/N .

Proof. By Theorem 2.25, φ : X → X/N defined by φ(x) = xN is a neutro canonical homo-

morphism. By Theorem 2.34(5),(6), there is a unique G ≤rsc X containing

kerφ = {x ∈ X|φ(x) = neut(xN)} = {x ∈ X|xN = neut(xN)} =

{x ∈ X|xN = N} = {x ∈ X|x ∈ N} = N

such that Y = φ(G) = G/N .

Furthermore, by Theorem 2.34(3), G C X ⇒ φ(G) C X/N ⇒ G/N C X/N . Conversely, by

Theorem 2.34(4), G/N C X/N ⇒ φ−1(G/N) = G C X.

Definition 2.36. Let X be a NETG.

(1) The neutral of X i.e. NEUT (X) = Xneut will be called the set of the neutrals of

elements in X: NEUT (X) = Xneut = {neut(x) : x ∈ X}.
(2) The neutral set, relative to x ∈ X i.e. NEUT (x) = Xneut

x will be the set of the neutral

of x ∈ X: NEUT (x) = Xneut
x = {neut(x)}. Note that |NEUT (x)| = 1 for al x ∈ X.

(3) A normal NT-subgroup N of X will be called a maximal normal NT-subgroup if

(a) N 6= X

(b) Y ≤rsc X and Y ⊃ N ⇒ Y = N or Y = X.
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(4) A singular NETG X will be said to be neutro-simple if X has no proper normal NT-

subgroup; i.e. X has no normal NT-subgroup except NEUT (x) for any x ∈ X or

NEUT (X) and X.

Lemma 2.37.

(1) Let X be a singular NETG, then NEUT (x) ≤ X for each x ∈ X.

(2) Let X be a singular WCNETG.

(a) NEUT (x) ≤ NEUT (X) for each x ∈ X.

(b) NEUT (X) is commutative and NEUT (X) ≤ss X.

(c) NEUT (X) C X and NEUT (X) is a NT-subgroup of any semi-strong NT-

subgroup of X.

(d) NEUT (X) is the smallest semi-strong NT-subgroup of X i.e. NEUT (X) =⋂
H≤ssX

H.

Proof. This is easy.

Corollary 2.38. Let X be a singular WCNETG and let N C X. N is a maximal normal

NT-subgroup of X if and only if X/N is neutro-simple.

Proof. Let X be a singular WCNETG and let N C X. If N is a maximal normal NT-

subgroup of X, then N 6= X and, Y ≤rsc X and Y ⊃ N ⇒ Y = N or Y = X. Thus, by

Corollary 2.35, Y C X ⇒ Y/N C X/N ⇒ N/N C X/N or X/N C X/N ⇒ {N} C X/N or

X/N C X/N ⇒ {neut(xN)|x ∈ X} or X/N C X/N ⇒ X/N is neutro-simple.

Conversely, if X/N is neutro-simple, then X/N has no normal NT-subgroup other than {N}
and X/N . Thus, going by Corollary 2.35, if Y Crsc,ss X and Y ⊃ N such that Y/N C X/N ,

then Y C X. Now, Y/N C X/N implies that Y/N = {N} = N/N or Y/N = X/N ⇒ Y = N

or Y = X. So, N is a maximal normal NT-subgroup.

Corollary 2.39. Let X be a singular WCNETG and let Y,Z be maximal normal NT-subgroups

of X such that Y,Z ≤rsc,ss X. Then

(1) Y Z Crsc,ss X.

(2) Y ∩ Z is a maximal normal NT-subgroup of Y and of Z.

Proof.

(1) By Theorem 2.12, yZ = Zy for all y ∈ Y implies that Y Z = ZY . Thus, by Theo-

rem 2.6, Y Z ≤ X. Now, since Y,Z C X, then, for all x ∈ X, y ∈ Y, z ∈ Z,

x(yz) anti(x) = x neut(x)yz anti(x) = xy neut(x)z anti(x) =
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xy anti(x)

)(
xz anti(x)

)
∈ Y Z and neut(x)Y Z = Y Z.

∴ Y,Z C Y Z C X (1)

Now, for any x ∈ X, neut(x) = neut(x)neut(x) ∈ Y Z ⇒ Y Z Css X. For all x, y ∈ X,

we already know that xY = Y is equivalent to xY = Y Y and yZ = Z is equivalent to

yZ = ZZ. So, xY Z = Y Z ⇒ xY = Y ⇒ x ∈ Y ⊂ Y Z ⇒ x ∈ Y Z. So, Y Z Crsc X.

Therefore, Y Z Crsc,ss X.

(2) Since Z is a maximal normal NT-subgroup of X, then Y Z = Z or Y Z = X. But,

Y Z = Z ⇒ Y ⊂ Z, a contradiction to the fact that Y is a maximal normal NT-

subgroup of X. Hence, Y Z = X. Similarly, since Z is a maximal normal NT-subgroup

of X, this also leads us to Y Z = X.

From Theorem 2.28, Y/Y ∩Z ∼= Y Z/Z. So, Y/Y ∩Z ∼= X/Z and Z/Y ∩Z ∼= X/Z.

Hence, by Corollary 2.38, since Y and Z are maximal normal NT-subgroups of X, then,

X/Z and X/Y are neutro-simple, whence, Y/Y ∩ Z and Z/Y ∩ Z are neutro-simple.

Thus, Y ∩ Z is a maximal normal NT-subgroup of Y and Z.

Definition 2.40. Let X be a singular NETG.

(1) A neutro-isomorphism α : X → X will be called a neutro-automorphsim of X and the

set of such mappings will be denoted by Aut(X).

(2) For any fixed g ∈ X, the mapping α : X → X defined by Ig(x) = gx anti(g) for

all x ∈ X will be called a neutro-inner mapping of X at g ∈ X and the set of such

mappings will be denoted by Inn(X).

Theorem 2.41.

(1) Let X be a singular NETG. Then, Aut(X) is a group

(2) Let X be a singular WCNETG that is neutro-right (neutro-left) cancellative.

(a) Inn(X) Crsc,ss Aut(X).

(b) Inn(X) is a subgroup of Aut(X) if and only if X is a group.

(c) If Z(X) ⊂ neut(x)Z(X) for all x ∈ X, then X/Z(X) ∼= Inn(X).

Proof.

(1) This is routine.

(2) (a) For any fixed g ∈ X and for all x, y ∈ X, the following shows that Ig is an

neutro-homomorphism.

Ig(xy) = g(xy) anti(g) = g neut(g)xy anti(g) = gx neut(g)y anti(g) =

gx anti(g)gy anti(g) = Ig(x)Ig(y).
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Ig is 1-1 based on the following arguments.

Ig(x) = Ig(y)⇒ gx anti(g) = gy anti(g)⇒ gx anti(g)g = gy anti(g)g ⇒

gx neut(g) = gy neut(g)⇒ g neut(g)x = g neut(g)y ⇒ gx = gy ⇒ anti(g)gx =

anti(g)gy ⇒ neut(g)x = neut(g)y ⇒ x = y.

Using a similar argument, it can be shown that Ig is onto. So, Inn(X) ⊆ Aut(X).

For any fixed g1, g2 ∈ X and for all x ∈ X, the following shows that Inn(X) is a

groupoid.

Ig1Ig2(x) = Ig1
(
g2x anti(g2)

)
= g1g2x anti(g2)anti(g1) = g1g2x anti

(
g1g2

)
=

Ig1g2(x)⇒ Ig1Ig2 = Ig1g2 ∈ Inn(X).

So, neut(Ig) = Ineut(g) ∈ Inn(X) for each g ∈ X. Thus, Inn(X) 6= ∅. Now,

IgIanti(g)(x) = g anti(g)x anti
(
anti(g)

)
anti(g) = neut(g)x anti

(
neut(g)

)
=

Ineut(g)(x)⇒ IgIanti(g) = Ineut(g).

Similarly, Ianti(g)Ig = Ineut(g) and so, anti
(
Ig
)

= Ianti(g) ∈ Inn(X). Hence,

Inn(X) ≤ Aut(x).

Let σ ∈ Aut(X) and let Ig ∈ Inn(X). Then,

σIgσ(x) = σ
(
gσ−1(x)anti(g)

)
= σ(g)x anti

(
σ(g)

)
=

Iσ(g)(x)⇒ σIgσ = Iσ(g) ∈ Inn(X) and IIg(x) = Ig(x)⇒ IIg(x) = Ig ∈ Inn(X).

So, Inn(X) Crsc,ss Aut(X).

(b) Inn(X) is a subgroup of Aut(X) if and only if Ineut(g) = I. Now, Ineut(g) =

I ⇒ Ineut(g)(x) = I(x) ∀ x ∈ X ⇒ neut(g)x anti(neut(g)) = x ⇒ neut(g)x =

x and x neut(g) = x⇒ neut(g) = neut(x) ∀ x, g ∈ X ⇒ X is a group. Conversely,

if X is a group, then neut(g)x anti(neut(g)) = x⇒ Ineut(g) = I. So, Inn(X) is a

subgroup of Aut(X) if and only if X is a group.

(c) Let φ : X → Aut(X) with φ(x) = Ix. For any x1, x2, x ∈ X, φ is a neutro-

homomorphism because

φ(x1x2)(x) = Ix1x2(x) = x1x2x anti(x1x2) = x1x2x anti(x2)anti(x1) =

x1Ix2(x)anti(x1) = Ix1Ix2(x)⇒ φ(x1x2) = Ix1Ix2 .

kerφ = {g ∈ X|φ(g) = I} = {g ∈ X|φ(g)(x) = x forall x ∈ X} =

{g ∈ X|φ(g)(x) = x forall x ∈ X} = {g ∈ X|gx anti(g) = x forall x ∈ X} =

{g ∈ X|gx neut(g) = xg forall x ∈ X} = {g ∈ X|gx = xg forall x ∈ X} = Z(X).
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Going by Theorem 2.26(3), X/Z(X) ∼= Inn(X).

Theorem 2.42. (Neutro-Zassenhaus’ Lemma for Singular WCNETG)

Let X be a singular WCNETG such that

B,C ≤rsc X, B0 C B, C0 C C, B0(B∩C0), C0(C∩B0) ≤rsc B∩C and B∩C0, C∩B0 ≤ Cl(B∩C).

If neut(x) ∈ Cl(B), Cl(C) for all x ∈ B ∩ C, then

B0(B ∩ C)

B0(B ∩ C0)
∼=

C0(C ∩B)

C0(C ∩B0)
.

Proof. Let K = B ∩ C and H = B0(B ∩ C0). Since B0 C B, bB0 = B0b for all b ∈ B.

So, since K ⊆ B, then kB0 = B0k for all k ∈ K. Also, C0 C C ⇒ B ∩ C0 C B ∩ C = K

since neut(b)(B ∩ C0) = neut(b)B ∩ neut(b)C0 = B ∩ C0 for all b ∈ B ∩ C = K. Hence,

k(B ∩ C0) ⊆ (B ∩ C0)k for all k ∈ K. Thus,

Hk = B0(B ∩ C0)k = B0k(B ∩ C0) = kB0(B ∩ C0) = kH ⇒ Hk = kH ∀ k ∈ K.

Let us now find HK and H ∩K. Thus, HK = KH based on the following argument.

Since B∩C0 ≤ Cl(B∩C), then (B∩C0)(B∩C) = B∩C, and so, HK = B0(B∩C0)(B∩C) =

B0(B ∩ C).

Let y ∈ H ∩K ⇒ y ∈ H and y ∈ K. Now, y ∈ H = B0(B ∩ C0) ⇒ y = b0b, b0 ∈ B0, b ∈
B ∩ C0. Let b0b = d ∈ B ∩ C = K. Then, d ∈ C. Since B ∩ C0 ⊆ C, then b ∈ C. Now,

b0b = d ⇒ b0 neut(b) = d anti(b) ∈ C ⇒ b0 ∈ C since b ∈ B ∩ C0 ⇒ b ∈ B ⇒ neut(b) ∈ B
and C is right self cancellative. Hence, b0 ∈ B0 ∩ C ⇒ b0b ∈ (B0 ∩ C)(B ∩ C0) ⇒ H ∩K ⊆
(B0 ∩ C)(B ∩ C0).

On the other hand, B0∩C ⊂ K, B∩C0 ⊂ K ⇒ (B0∩C)(B∩C0) ⊂ K. Since B0∩C ⊆ B0,

then (B0 ∩ C)(B ∩ C0) ⊂ H ∩K. Thus, H ∩K = (B0 ∩ C)(B ∩ C0).

Going by Theorem 2.28, if X is a singular WCNETG, with H,K ≤ X, H ≤rsc K and

Hk = kH, neut(k) ∈ Cl(K), Cl(H) for all k ∈ K, and neut(h) ∈ Cl(H) for all h ∈ H, then

HK/H ∼= K/H ∩K (2)

Substituting H,K,HK and H ∩K in (2) we get

B0(B ∩ C)

B0(B ∩ C0)
∼=

B ∩ C
(B0 ∩ C)(B ∩ C0)

(3)

On interchanging the roles of B and C in (3), we get

C0(C ∩B)

C0(C ∩B0)
∼=

C ∩B
(C0 ∩B)(C ∩B0)

(4)

Since B0 ∩ C,B ∩ C0 C B ∩ C, then (B0 ∩ C)(B ∩ C0) = (B ∩ C0)(B0 ∩ C). So, the right

hand sides of (3) and (4) are equal. Thus,
B0(B ∩ C)

B0(B ∩ C0)
∼=

C0(C ∩B)

C0(C ∩B0)
.
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X

B C

B0(B ∩ C) C0(B ∩ C)

B ∩ C

B0(B ∩ C0) C0(B0 ∩ C)

(B0 ∩ C)(B ∩ C0)

B C

B0 ∩ C B ∩ C0

Figure 1. The Neutro-Butterfly

Remark 2.43. In Figure 1, the quotients given by the blue lines (by pairing) are neutro-

isomorphic to each other based on (3) and (4), thus proving the Neutro Zassenhaus’ Lemma. A

black line indicates that the NT-subgroup that lie below is NT-normal in the NETG connected

to it above in the plane of the figure. Also, the red (green) line indicates that the NT-subgroup

that lie below is right self cancellative (closure-contained) respectively, in the NETG connected

to it above in the plane of the figure. We acknowledge Kannappan Sampath [4] for adapting

his LATEX codes for Zassenhaus’ Lemma for groups to generate Figure 1.

3. Conclusion

In this paper, we have been able to establish the homomorphism theorems (first, second

and third neutro-isomorphism and neutro-corresponding theorems) and some other associated

theorems (neutro-Zassenhaus Lemma) in singular WCNETG with the aid of newly introduced

NT-subgroups such as: right cancellative, semi-strong, and maximally normal NT-subgroups.

These results generalize their classical forms in group theory.
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11. Jaiyéo. lá, T.G.; Smarandache, F. Some Results on Neutrosophic Triplet Group and Their Applications.

Symmetry 2017, 10, 202. http://dx.doi.org/10.3390/sym10060202
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23. Çelik, M.; Shalla, M.M.; Olgun, N. Fundamental Homomorphism Theorems for Neutrosophic Extended

Triplet Groups. Symmetry 2018, 10, 321. http://dx.doi.org/10.3390/sym10080321

24. Zhanga, X.; Mao, X.; Smarandache, F.; Park, C.; On Homomorphism Theorem for Perfect Neutrosophic

Extended Triplet Groups. Information 2018, 9, 321. DOI:10.3390/info9090237

25. Zhanga, X.; Smarandache, F.; Ali, M; Liang, X.; Commutative Neutrosophic Triplet Group And Neutro-

Homomorphism Basic Theorem. Italian Journal Of Pure and Applied Mathematics 2018, 40, 353-375.

Received: May 25, 2021. Accepted: August 20, 2021
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