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Abstract: The roughness of the rock joints has a significant influence on the mechanical properties 
and deformation behavior of the rock masses. Due to the significant heterogeneity of the surface 
roughness of rock joints, there may be considerable variabilities, which makes it difficult to 
accurately determine the roughness. The evaluation of the anisotropic characteristics of joint 
roughness based on classical probability and statistics cannot reflect the vague, incomplete, 
imprecise, and indeterminate information of the roughness in different orientations. In this original 
study, we first propose the generalized Dice similarity measures based on neutrosophic interval 
statistical number (NISN) for evaluating the similarity of the roughness in different orientations. 
This method was applied to determine the similarity between the roughness along the sliding 
direction and each measurement direction. The research results show that this method can 
effectively determine the similarity between the roughness in different orientations. It may help 
determine the roughness along the potential sliding direction based on the roughness obtained in 
the direction with better measurement conditions. 

Keywords: neutrosophic interval probability (NIP); neutrosophic interval statistical number (NISN); 
joint roughness coefficient (JRC); similarity measure 

 
 

1. Introduction 

The joint roughness coefficient (JRC) is one of the important parameters for evaluating the shear 
strength of rock joints and the stability of rock mass [1-5]. The effect of anisotropy on surface 
roughness has been proven to be an inherent characteristic of rock joints [6]. In addition, anisotropy 
can be seen everywhere in rock engineering, and the roughness of rock joints changes directionally, 
which is a crucial source of anisotropy behavior. Du et al. [7] measured 2180 joint profiles and 
statistically analyzed the roughness coefficients. The result indicates that the roughness coefficients 
of type I fractures (joints) and type III fractures (faults) are anisotropic. The anisotropy classification 
method proposed by Belen [8] showed that the roughness has a strong anisotropy. At present, many 
studies have been proposed for investigating the anisotropy of rock joints, and the anisotropy in 
roughness was proved to have a significant effect on the anisotropic shear strength of joints [9-13]. 

To describe the complex joint morphology, it is necessary to effectively quantify the anisotropic 
characteristics of the roughness of the joint surface. Chen et al. [14] proposed a geostatistical method 
to analyze the anisotropy and scale effect of rock joints. Ge et al. [15] believed that the roughness 
evaluation results in different directions of rock joints are very different, and it is recommended to 
select reasonable parameters in practice in combination with the sliding direction or the seepage 
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direction. The anisotropy of the joint roughness is an important subject in the field of geotechnical 
engineering. In many practical situations, because the rock joints are located in different positions of 
the rock mass, and the empirical estimates obtained by experts along a certain direction are usually 
inaccurate, the potential sliding directions are different. Therefore, it is always difficult to calculate 
or provide a definite JRC value. While the neutrosophic number originally proposed by Smarandache 
[16-18] can express the incomplete and indeterminate information. It can better express the JRC with 
incomplete and uncertain information under an anisotropy environment. Recently, Ye et al. [19] 
proposed an approach to study the JRC with incomplete and indeterminate information using 
neutrosophic functions. Chen et al. [20] introduced a neutrosophic statistical method of JRC 
neutrosophic numbers for effectively analyzing the scale effect and anisotropy of JRC values, which 
was also applied by Muhammad [21] for JRC investigation. Smarandache [22] provided the interval 
function and some basic definitions of neutrosophic probability. Then, the neutrosophic interval 
statistical number (NISN) and NIP proposed by Chen et al. [23] are made up of both neutrosophic 
numbers and interval probability. However, there are few studies on the anisotropy of JRC based on 
the neutrosophy theory. 

In the field, the situation of the rock joint surface is very complicated. Taking Laxiwa 
Hydropower Station as an example [24], there are many joints filled with calcite, but only a few 
countertops are exposed. Thus, it may be very difficult to measure the roughness of rock joints along 
some orientations under some conditions. It is a good remedy to calculate the properties of the 
unknown direction through the properties of rock joints obtained in the direction with better 
measurement conditions. The similarity measurement method is an important mathematical tool to 
determine the similarity between two objects [5,25-26]. The Dice similarity measure can be effectively 
used in the evaluation of the degree of similarity between the studied objects. But this similarity 
measure has not been applied to the JRC anisotropy assessment. Therefore, this paper extends the 
generalized Dice similarity measure by NIP, which can solve the problem of not being able to 
accurately obtain the roughness along the potential sliding direction. The main advantage of the 
similarity measure method is that it can effectively handle indeterminate information in anisotropic 
environments. 

This paper is formed by the following parts. First, we will introduce the generalized Dice 
similarity measures between NISNs. Second, insight will be gained into the statistical measurement 
results of the similarity of joint roughness coefficients in different orientations by the generalized 
Dice similarity methods. Lastly, it gives conclusions and future study of this paper. These findings 
are of great significance for solving the problem that the joint roughness along the potential sliding 
direction cannot be obtained accurately on site. 

2. Neutrosophic interval probability and Neutrosophic interval statistical number  

Chen et al. (2017) defined the NIP in an interesting range [xL, xU] of all individuals in the sample. 
The form of a NIP was expressed as P = <[xL, xU], (PT, PI, PF)>, where PT, PI, PF are the true, 
indeterminate, and false probabilities belonging to the determinate, indeterminate, and failure ranges, 
respectively. For each trial data, the neutrosophic interval probability by the following equations: 

/

/

/

T T

I I

F F

P n n
P n n
P n n

 







,                                (1) 

where n is the total number of the individuals; nT is the number of samples that fall in the interval [xm – 
σ, xm + σ]; nI is the number of samples that fall in the interval [xm – 3σ, xm – σ] and (xm + σ, xm + 3σ); nF is 
the number of the rest samples. Here, xm denotes the statistical mean value and σ for standard deviation. 
The sum of true, indeterminate, and false probabilities is equal to 1.  

A NISN R, which is combined NN with the expected value of NIP (confidence level λ), could be 
expressed as follows: 
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where I denote the indeterminacy and it ranges in the robust interval [σ, σ]. 
The NISN is very suitable to express the interval value under indeterminate environments. 

3. Generalized Dice similarity measures between NISNs 

Definition 1. Let A A AR a b I   and B B BR a b I   be two neutrosophic numbers, where aA, bA, aB, 
bB≥0. A generalized Dice similarity measure between RA and RB is defined as follows: 
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The generalized Dice similarity measure should satisfy the following properties (P1-P3): 
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Definition 2. Let  1 2, , ,A A AnA R R R   and  1 2, , ,B B BnB R R R   be two sets of neutrosophic 
numbers, where Ak Ak AkR a b I   and Bk Bk BkR a b I  , and (k=1, 2, ···, n) aAj, bAj, aBj, bBj≥0. Then, the 
generalized Dice similarity measure between A and B can be calculated by 
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The generalized Dice similarity measure of two sets of neutrosophic numbers is satisfied the 
properties (P4-P5): 
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According to Definition 1, the generalized Dice similarity measure between two neutrosophic 
intervals statistical number RA and RB can be expressed as 
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           (5) 

4. Applications 

Anisotropy is one of the basic characteristics of rock joints. The degree of anisotropy of JRC 
depends on the contact condition between the upper and lower joint surfaces, which controls the 
shear strength of the rock joint in different directions and the internal hydraulic transmission 
mechanism. In this study, for the evaluation of the anisotropic characteristics of JRC, statistical 
analysis is carried out based on classical mathematical methods. In this section, we use the NISNs 
proposed by Chen et al. (2017) to express the indeterminacy of JRC and then adopt the generalized 
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Dice similarity measure method to illustrate the similarity of the statistical results of JRC in all 
directions. To verify the validity and rationality of the proposed statistical similarity analysis based 
on the NIP, we selected the calcareous slate rock joint collected from Changshan County, Zhejiang 
Province. The joint surface is hard and complete, the joint wall is dense and slightly weathered, and 
the joint surface is smooth to rough, fully meets the requirements of this statistical analysis.  

In this study, the generalized Dice similarity measure method is developed to estimate the 
similarity between the potential slip direction and the remaining directions of the structural plane, as 
described below. 

Step1. According to the NIP statistical method, NISNs are utilized to represent the JRC values 
in each direction. 

Table 1. Related value of JRC and NISNs. 

Orientation θ (°) xm σ λ R 

0 10.5425 2.2385 0.921 [10.3651,10.7199] 

15 10.0131 2.8392 0.857 [9.6084,10.4178] 

30 10.5944 2.3528 0.918 [10.4014,10.7874] 

45 9.9244 2.5120 0.884 [9.6321,10.2166] 

60 9.0253 2.4592 0.919 [8.8250,9.2255] 

75 7.9352 2.1063 0.901 [7.7260,8.1444] 

90 7.0467 2.4054 0.728 [6.3935,.6998] 

105 7.7766 2.4105 0.930 [7.6080,7.9452] 

120 9.1324 2.3250 0.937 [8.9858,9.2790] 

135 9.2258 1.9104 0.927 [9.0857,9.3659] 

150 10.4673 2.4365 0.866 [9.9325,10.6021] 

165 10.6035 2.2090 0.912 [9.9005,10.3066] 

180 9.8501 2.1439 0.906 [9.6486,10.0515] 

195 9.9383 2.2254 0.916 [9.7522,10.1245] 

210 9.5903 1.9444 0.896 [9.3872,9.7933] 

225 8.9167 1.9764 0.906 [8.7299,9.1034] 

240 7.8582 1.8456 0.921 [7.7130,8.0034] 

255 7.2166 1.9341 0.907 [7.0362,7.3970] 

270 6.8025 2.1165 0.671 [6.1059,7.4990] 

285 7.0061 1.5474 0.916 [6.8767,7.1355] 

300 8.4720 1.7448 0.923 [8.3373,8.6068] 

315 10.1428 2.4790 0.883 [9.9868,10.2988] 

330 9.8295 2.2844 0.910 [9.6230,10.0360] 

345 9.6831 2.0192 0.918 [9.5183,9.8479] 
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First, we conduct a statistical analysis of the JRC values, giving the mean value xm, the standard 
deviation σ and the confidence level λ of each orientation θ, and then using equations (1) and (2) to 
obtain the results of NISNs in each direction, which are shown in Table 1. 

Step 2. According to the generalized Dice similarity measure approach, determine the 
similarities between the potential slip direction and other directions, respectively. 

Here, we take an azimuth angle of 0° as the reference object and assume that it is the potential 
slip direction of this case. Based on the obtained NISNs data, we calculate the similarity between 0° 
orientation and other orientations by equation (5). 

Step 3. For determining the similarity between the potential slip direction and other directions, 
the range of the obtained similarity value is normalized from [0,1] to [1,1]. 

To obtain the normalized correlation coefficient k , the results of the similarity measure need 
to be changed as follows: 

min max

max min

2 k
k

  


 
 




                                   (6) 

where max  and min  represent the maximum and minimum values of similarity measure results, 
respectively. 

If the correlation coefficient k  is negative 1, it means that this direction does not have the same 
JRC statistical characteristics as the potential slip direction. However, if the correlation coefficient k  
of positive 1, the direction has the same JRC statistical characteristics as the potential slip direction. 

For example, taking the azimuth angle 0o   and 30o   as a set of data to be measured, and 
the calculation process is as follows. 

First, according to Equation (5), the generalized Dice similarity measure value is calculated as 

 

           
           

2 2

2 2 2 2

2
,

1 1 1 1
                  2

1 1 1 1

1.0000

A B
A B

A B

mA A A mB B B mA A A mB B B

mA A A mA A A mB B B mB B B

R R
D R R

R R

x x x x

x x x x

       

       






        
 

          



 

Then, obtaining the normalized correlation coefficient by using equation (6): 

min max
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0.9997

k
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For other orientations of the data, we also calculated according to the above steps, the results are 
shown in Table 2.  

It can be seen in Figure 1 that when the sample length is constant, as the orientation θ changes, 
the generalized similarity measure of JRC changes but without any special rules to follow. When the 
measurement direction is 30°, the generalized Dice similarity measure value reaches the highest value. 
While, when the measurement direction is 270°, it shows the smallest similarity. By calculating the 
variation of similarity in different directions, it can be concluded that the generalized Dice similarity 
measure value varies due to different measurement directions. In this case, for the orientations range 
within 60° to 135° and 225°to 300°, the similarity of JRC is small. When the measurement orientations 
are in the ranges of 15° to 45° and 150° to 195°, the similarity is large.  

Through the above analysis, it can be seen that JRC has a significant anisotropy, and the 
evaluation results of similarity measures obtained in different directions are quite different. Therefore, 
in practice, according to the similarity measures of JRC, the roughness along the potential slip 
direction that is difficult to measure can be predicted based on the obtained roughness in the direction 
with better exposure conditions. 
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Table 2. Table of normalized values corresponding to each orientation 

Orientation (°) D(RA, RB) 𝝌𝒌 

0 1.0000 1.0000 

15 0.9984 0.9652 

30 1.0000 0.9997 

45 0.9981 0.9582 

60 0.9880 0.7352 

75 0.9610 0.1352 

90 0.9228 0.7101 

105 0.9554 0.0128 

120 0.9898 0.7735 

135 0.9912 0.8042 

150 0.9999 0.9897 

165 0.9991 0.9799 

180 0.9977 0.9489 

195 0.9983 0.9615 

210 0.9955 0.9011 

225 0.9861 0.6929 

240 0.9583 0.0768 

255 0.9323 0.5008 

270 0.9097 1.0000 

285 0.9220 0.7290 

300 0.9766 0.4807 

315 0.9992 0.9834 

330 0.9975 0.9457 

345 0.9964 0.9201 
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Figure 1. The relationship between orientation and normalized correlation coefficient value 

5. Conclusion  

In this study, the generalized Dice measures of NISNs are presented to estimate the similarity of 
the JRC values in different orientations. A quantitative evaluation of the similarity between the 
potential slip direction and other measurement directions was made. It could be applied to predict 
the properties of the potential slip direction based on the obtained roughness in the direction with 
better exposure conditions. Compared to classic statistical methods, for the processing of JRC data, 
not only are the average value and standard deviation considered, but also the confidence level is 
introduced, so that some uncertain information can be displayed more specifically. The JRC value of 
the potential slip direction is taken as the characteristic interval of the reference scale, and the JRC 
values in the remaining directions are used as the estimated characteristic intervals. Statistical 
similarity analysis based on neutrosophic interval probability overcomes the deficiency of the 
existing exposed rock joint area is small, and the required effectiveness information cannot be 
obtained on the potential slip surface, indicating its necessity in the JRC evaluation. 

For future work, we can do more research on the anisotropy of joint surface roughness. For 
instance, we can propose more statistical analysis models and can also apply the proposed method 
to different aspects, such as extending the similarity measure to the scale effect of rock joints. 
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Abstract. The neutrosophic mathematical linear programming in its duality fashion is 

originally exhibited in this manuscript. In accordance with this concept, the relationship of the 

duality between the neutrosophic objective functions and neutrosophic constraints is given, 

three versions of linear programming related to μD(x), σD(x), and vD(x)  have been originated 

respectively, some important propositions have been discussed, two numerical examples were 

considered in the economic interpretation and in the hybrid renewable energy production.  

Keyword: Neutrosophic Linear Programming Related to μD(x) ; Neutrosophic Linear 

Programming Related to σD(x) ; Neutrosophic Linear Programming Related to vD(x) ;  

Parametric Dual Neutrosophic Linear Programming. 

1. Introduction 

      It is well known that, when the region of the feasible solution of any mathematical problem 

is convex, then the optimality will be traditionally performed. For many years the dominant 

distinction in applied mathematics between problem types has rested upon linearity, or lack 

thereof. Our assignment here is to serve more than a half-century of work in convex analysis 

that has played a fundamental role in the development of computational in every branch of 

application whether the problem is in economical fields, industrial fields, or agricultural fields 

... etc. Supposing that the problem is a neutrosophic linear programming problem and the 

established problem is taken from the economical point of view. 

In any selling product, there are three assigned statuses:  

S1- Profit situations. 
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S2- Loss situations. 

S3- Indeterminate status which there are not clear criteria enables the decision maker to 

determine getting profit nor loss. 

There are many factors that affecting on the degree of accomplishment for the above 

S1, S2, and S3 such as the season of the year, quality of the competition in each product, the 

spread of public pandemic as COVID 19… etc. 

For a wise decision, the selling product should not mark with maximum profit often 

along time, since in such a case the competition, for instance, could obtain a profit of firm’s 

policy be reducing their prices for the same articles. Therefore, and by the authors’ opinion, it 

is very important to make an adaptation for the classical linear programming or the fuzzy linear 

programming into the neutrosophic linear programming with three versions related to their 

truth, indeterminate, and falsity membership functions, this kind of programming will 

parametric classical or fuzzy linear programming into three decision factors: - 

1- The neutrosophic linear programming related to the truth membership function. 

2- The neutrosophic linear programming related to the indeterminate membership function. 

3- The neutrosophic linear programming related to the falsity membership functions. 

Bellow two comparisons between Fuzzy Linear Programming and Neutrosophic Linear 

Programming: 

1- In Fuzzy Linear Programming Problems (FLP) [1,15], as the optimal solution has 

depended on a limited number of constraints, therefore, much of the information that 

should be collected and having a good impact on the solution are absent, this is exactly 

what Neutrosophic Linear Programming (NLP) provides. 

2- Given the power of LP, one could have expected even more applications. This might 

be because LP requires many well-defined and precise data which involves high 

information costs. In real-world applications certainty, reliability, and precision of data 

are often illusory.  Being able to deal with vague and imprecise data may greatly 

contribute to the diffusion and application of LP. Neutrosophic Linear Programming 

problems have the ability to reformulate the soft linear programming problems 
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through three membership functions which are truth membership function, 

indeterminacy membership function, and falsity membership functions, while the 

Fuzzy Linear Programming deals with just one membership function. 

This essay aims to advance a new way for analyzing linear programming containing 

three different and related faces in which the same problem can be approached from three 

various corners, it is neutrosophic linear programming of three membership functions. This 

wide insight can be appeared depending upon the neutrosophic logic, this kind of problem has 

established firstly in 1995 by Florentin Smarandache [2,3], the neutrosophic logic and theory 

have widespread since the NSS journal has been released in 2013. Dozens of papers were 

issued, and new mathematical concepts have been originated, such as, neutrosophic geometric 

programming has been established and modified at 2015-2020 by Huda et al [9,10,12-14], also 

presented another concept of geometric programming with neutrosophic less than or equal 

[6,8], neutrosophic ( sleeves, Anti-sleeves, Neut-sleeves), and the neutrosophic convex set has 

been set up [11], the excluded middle law with the perspective of neutrosophic geometric 

programming [4,5,11]. 

The new type of linear programming that presented in this article will be defined in 

the triplet (𝑋 = [0,1], 𝑁(𝑋), 𝑐) corresponding to the case in which the expert- mathematician 

exactly knows his objective function, but the constraints set is of type neutrosophic linear 

programming, the upcoming preliminaries are necessary to build the mathematical structure 

of such problems. 

Call the classical linear programming problems 

𝑀𝑎𝑥       𝑓 = 𝑐𝑥
𝑠. 𝑡.         𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0
                 }                                                                                                                            (1) 

Which defined by the triplet (𝑅𝑛 , 𝑋, 𝑐), the goal of this problem is to find the optimal solution 

𝑥∗ ∈ 𝑋 ⊂ 𝑅𝑛 such that ∀ 𝑥 ∈ 𝑋: 𝑐𝑥∗ ≥ 𝑐𝑥 with 𝑋 = {𝑥 ∈ 𝑅𝑛|𝐴𝑥 ≤ 𝑏: 𝑥 ≥ 0}. 

The above classical linear programming can be redefined as a Neutrosophic Linear 

Programming (NLP) related to its truth, indeterminacy, and falsity membership functions. The 

following section contains some new definitions that coined and for the first time in this essay 

beside to some preliminaries which are necessary to build the mathematical formulas. 
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The upcoming sections of this paper have been organized as: section two contains three 

basic definitions that are necessary tools to follow up the mathematical requirements of this 

article, as well as, three new definitions were originally coined by the authors to extend the 

fuzzy linear programming to the neutrosophic linear programming. Section three was 

dedicated to two important propositions that regarded as the new mathematical vision for a 

new procedure that proves any neutrosophic linear programming related to its truth 

membership function can be regarded as the dual form for the neutrosophic linear 

programming related to its falsity membership function. In section four, two practical examples 

have been presented that assures the theoretical directions of the paper. Concluding section 

was the fifth section of this article.  

2. Basic Concepts 

2.1 Definition [16]  

A neutrosophic set D ∈ N(X) is defined as D = {< μD(x), σD(x), vD(x) >: x ∈ X} where 

μD(x), σD(x), vD(x) represent the membership function, the indeterminacy function, the non- 

membership function respectively. 

2.2 Definition [11]  

Let 𝐷 ∈ 𝑁(𝑋), ∀  (𝛼, 𝛾, 𝛽) ∈ [0,1] , written  𝐷(𝛼,𝛾,𝛽) = {𝑥: μD(x) ≥ α, σD(x) ≥ γ, vD(x) ≤ β},  𝐷(𝛼,𝛽,𝛾) 

is said to be an (𝛼, 𝛽, 𝛾) − 𝑐𝑢𝑡 set of a neutrosophic set 𝐷 . Again, 𝐷(𝛼,𝛾,𝛽)+ = {x: μD(x) >

α, σD(x) > γ, vD(x) < β}, 𝐷(𝛼,𝛾,𝛽)+ is said to be a strong  (𝛼, 𝛾, 𝛽) − 𝑐𝑢𝑡 set of a neutrosophic set 

𝐷, (𝛼, 𝛾, 𝛽) are confidence levels and 𝛼 + 𝛾 + 𝛽 ≤ 3.   

2.3 Definition [7]  

A mapping 𝐷: X → [0,1], x → μD(x), x → σD(x) , x → vD(x) is called a collection of neutrosophic 

elements, where 𝜇𝐷 a membership 𝑥 corresponding to a neutrosophic set 𝐷, σD(x) an 

indeterminacy membership 𝑥 corresponding to a neutrosophic set 𝐷, vD(x) a non-membership 

𝑥 corresponding to a neutrosophic set 𝐷. 

The upcoming definitions are essentially requirements for completing the duties of this article, 

so the authors originally coined them as follow: 
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2.4 Definition   

𝑀𝑎𝑥       𝑓 = 𝑐𝑥

𝑠. 𝑡.         𝜇(𝐴(𝑥)𝑖, 𝑏) ≥ 𝛼        𝑖 = 1,2, … ,𝑚
𝛼 ∈ [0,1] ,      𝑥 ≥ 0

                 }                                                                                 (2) 

Here 𝛼 ∈ [0,1]  is the respective 𝛼 − 𝑐𝑢𝑡 of the neutrosophic constraint set related to the truth 

membership function 𝜇 . 

The above problem has been defined in the neutrosophic triplet (𝑋, 𝑁(𝑋), 𝑐), here 𝑋 = [0,1], 𝑐 ∈

𝑁(𝑋𝑛), 𝑏 ∈ 𝑁(𝑋𝑚), 𝐴𝑚𝑛  is a matrix of neutrosophic values, where 𝑁(𝑋) = {𝑥 ∈ 𝑋𝑛; 𝑓: 𝑋𝑛 →

𝑁(𝑋𝑛)}, 𝜇 = {𝜇1, 𝜇2, … , 𝜇𝑚} is an m- vector of truth membership functions. 

2.5 Definition   

Depending upon the structure of the mathematical formula of neutrosophic linear 

programming (2), one can define a new concept named neutrosophic linear programming 

related to the falsity membership function as follow: -  

 

𝑀𝑖𝑛       𝑓 = 𝑐𝑥

𝑠. 𝑡.         𝑉(𝐴(𝑥)𝑖 , 𝑏) ≤ 𝛽        
𝛽 ∈ [0, 1],      𝑥 ≥ 0

                 }                                                                                                  (3)       

 Here 𝛽 ∈ [0, 1] is the respective 𝛽 − 𝑐𝑢𝑡 of the neutrosophic constraint set in the case of 

neutrosophic linear programming regarded to its falsity membership function. 

One can base on the intuitive idea to conclude that the inequality 𝑉(𝐴(𝑥)𝑖 , 𝑏) ≤ 𝛽 is equivalent 

to the inequality  

1 − 𝜇(𝐴(𝑥)𝑖, 𝑏) ≤ 𝛽                                                                                                                                (4) 

⇒ 1 − 𝛽 ≤ 𝜇(𝐴(𝑥)𝑖 , 𝑏)                                    

So, the inequality (4) can be rewrite as 

𝜇(𝐴(𝑥)𝑖 , 𝑏) ≥ 1 − 𝛽                                                                                                                                      (5) 
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Comparing (2) & (5), we conclude that 𝛼 ≡ 1 − 𝛽 

Note that the difference between the two problems (2) & (3) is that the problem (2) gives the 

optimal solution for the neutrosophic linear programming with respect to the truth 

membership function, while the problem (3) gives the optimal solution for the neutrosophic 

linear programming with respect to the falsity membership function.  

2.6 Definition  

It is well known for any mathematical programmer who has the tools for reformulating any 

classical mathematical programming problems into neutrosophic programming problems, that 

the neutrosophic linear programming related to its indeterminacy membership function has 

well defined when it can be defined as: 

𝑀𝑎𝑥       𝑓 = 𝑐𝑥
𝑠. 𝑡.         𝜎𝐷(𝑥) ≥ 𝛾       

      𝑥 ≥ 0

                 }                                                                                                               (6) 

Here 𝛾 ∈ [0,1] is the respective 𝛾 − 𝑐𝑢𝑡 of the neutrosophic constrain set in the case of 

neutrosophic linear programming with respect to its indeterminacy membership function. 

The problem (6) is equivalent to 

𝑀𝑎𝑥       𝑓 = 𝑐𝑥

𝑠. 𝑡.         𝜇(𝐴(𝑥)𝑖, 𝑏) ∩ 𝑉(𝐴(𝑥)𝑖, 𝑏) ≥ 𝛾
   }                                                                                                        (7) 

 

3. The Duality Approach of Neutrosophic Linear Programming  

3. 1 Proposition  

Given a neutrosophic linear programming problem (2), there always exist a 

corresponding dual problem which is exactly the neutrosophic linear programming problem 

(3), and they have the same neutrosophic solution. 

Proof  

Consider the following neutrosophic linear programming  
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𝑀𝑎𝑥       𝑓 = 𝑐𝑥

𝑠. 𝑡.         𝜇(𝐴(𝑥)𝑖, 𝑏) ≥ 𝛼        𝑖 = 1,2, … ,𝑚

𝛼 ∈ [0,1],      𝑥 ≥ 0

                 }                                                                                  (8) 

Where the m-vector of membership functions 𝜇 = {𝜇1, 𝜇2, … , 𝜇𝑚} such that 

∀𝑥 ∈ 𝑋:  𝜇𝑗(𝑥) =

{
 

 
1                                             𝑥 < 𝑏𝑗
(𝑏𝑗+𝑑𝑗)−𝑥

𝑑𝑗
         𝑏𝑗 ≤ 𝑥 ≤  𝑏𝑗 + 𝑑𝑗  

0                                     𝑥 > 𝑏𝑗 + 𝑑𝑗

                                                                               (9) 

Where the values of 𝑑𝑗 ∈ 𝑋   (𝑗 = 1,2, … ,𝑚) expressing the admissible violations of the 

economic-expert allows in the accomplishment of the neutrosophic linear constraints of (9), it 

is obvious that the neutrosophic solution of (9) is found by obtaining the optimal solution of 

the linear neutrosophic problem  

𝑀𝑎𝑥       𝑓 = 𝑐𝑥

𝑠. 𝑡.         𝜇(𝐴(𝑥), 𝑏) ≥ 𝛼 

𝛼 ∈ [0,1],      𝑥 ≥ 0

                }                                                                                           (10) 

Depending upon (9) we have    

 
𝑏+𝑑−𝐴𝑥

𝑑
≥ 𝛼 ⟺ 𝑏 + 𝑑 − 𝐴𝑥 ≥ 𝑑𝛼 ⟺ 𝐴𝑥 − 𝑏 − 𝑑 ≤ −𝑑𝛼 ⟺ 𝐴𝑥 ≤ 𝑏 + 𝑑(1 − 𝛼). 

Therefore, we have 

𝑀𝑎𝑥       𝑓 = 𝑐𝑥

𝑠. 𝑡.         𝐴𝑥 ≤ 𝑏 + 𝑑(1 − 𝛼) 

𝛼 ∈ [0,1],      𝑥 ≥ 0
                }                                                                                                    (11) 

As (11) is a classical parametric linear programming problem, its dual is given by 

𝑀𝑖𝑛 [𝑏 + 𝑑(1 − 𝛼)]𝑢

 𝑠. 𝑡.                𝑢𝐴𝑇 ≥ 𝑐
𝑢 ≥ 0,   𝛼 ∈ [0,1]

}                                                                                                                              (12) 

Let 𝑌 = {𝑢 ∈ 𝑁(𝑋𝑚)|𝑢𝐴𝑇 ≥ 𝑐,   𝑢 ≥ 0} 

So, we have 

𝑀𝑖𝑛  𝑎𝑢
𝑠. 𝑡.     𝑎 = 𝑏 + 𝑑(1 − 𝛼)

𝑢 ∈ 𝑌, 𝛼 ∈ [0,1]
}                                                                                                                     (13) 
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Consider 𝑎 as m-variable vectors and taking 𝛽 = 1 − 𝛼, this problem is equivalent to  

𝑀𝑖𝑛  𝑎𝑢
𝑠. 𝑡.     𝑎 ≤  𝑏 + 𝑑𝛽
𝑢 ∈ 𝑌, 𝛽 ∈ [0,1]

}                                                                                                                                  (14) 

Understanding the equivalence in the sense that any optimal solution of (13) is also an optimal 

solution of (14), but as   
(𝑏𝑗+𝑑𝑗)−𝑎𝑗

𝑑𝑗
 ≥ 𝛼 which implies that                       

(𝑏𝑗 + 𝑑𝑗) − 𝑎𝑗 ≥ 𝑑𝑗𝛼 ⟺ −𝑎𝑗 ≥ −(𝑏𝑗 + 𝑑𝑗) + 𝑑𝑗𝛼 ⟺ 𝑎𝑗 ≤ 𝑏𝑗 + 𝑑𝑗 − 𝑑𝑗𝛼 ⟺ 𝑎𝑗 ≤ 𝑏𝑗 + 𝑑𝑗(1 − 𝛼)

⟺ 𝑎𝑗 ≤ 𝑏𝑗 + 𝑑𝑗𝛽     𝑓𝑜𝑟 𝑗 = 1,2, … ,𝑚 

So (14) may be rewritten as  

𝑀𝑖𝑛  𝑎𝑢
𝑠. 𝑡.    𝜇𝑗(𝑎𝑗) ≥ 1 − 𝛽

𝑢 ∈ 𝑌, 𝛽 ∈ [0,1]
}                                                                                                                                  (15) 

Which implies to the following formula 

𝑀𝑖𝑛  𝑎𝑢
𝑠. 𝑡.    1 − 𝜇𝑗(𝑎𝑗) ≤ 𝛽

𝑢 ∈ 𝑌, 𝛽 ∈ [0,1]
}                                                                                                                                  (16) 

Consequently 

𝑀𝑖𝑛  𝑎𝑢
𝑠. 𝑡.    𝑉𝑗(𝑎𝑗) ≤ 𝛽

𝑢 ∈ 𝑌, 𝛽 ∈ [0,1]
}                                                                                                                                        (17) 

With 𝜇𝑗(. ) is given by (9), 𝑉𝑗(𝑎𝑗) is a non-membership function that stated in def. (2.3), 

programming (17) is exactly represented a neutrosophic linear programming with respect to 

its falsity membership function. Since, in the optimum, (11) and (12) have the same parametric 

solution, the problem (17) has the same neutrosophic solution as (8) by taking 𝛽 ≡ 1 − 𝛼.  

If we had initially started from the neutrosophic linear programming (2), we would by 

the same development, in a parallel way, have come to a neutrosophic linear programming (3) 

with the same neutrosophic solution. 

3.2 Proposition  
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Given a neutrosophic linear programming (2) or a neutrosophic linear programming 

(3), with continues and strictly monotone membership function for the economic restrictions 

(costs or benefits), there exists a dual neutrosophic linear programming (3), or a dual 

neutrosophic linear programming (2) respectively of the former in such a way that both have 

the same neutrosophic solution. 

Proof 

 Let 𝜇𝑗: 𝑋 ⟶ 𝑁(𝑋), 𝑗 = 1,2, … ,𝑚 be continuous and strictly increasing function for the 

neutrosophic linear programming problem (2). 

Given a classical linear programming with a neutrosophic inequality in its constraint 

𝑀𝑎𝑥       𝑐𝑥
𝑠. 𝑡.       𝐴𝑥 ≤ ₦   𝑏      𝑥 ≥ 0

}                                                                                                                    (18) 

Where (≤ ₦ ) is the neutrosophic version of the (less than or equal) inequality. We shall find its 

neutrosophic solution with respect to 𝜇(. ) , and for every 𝛼 ∈ [0,1] of the neutrosophic 

constraint set  

𝜇(𝐴𝑥, 𝑏) ≥ 𝛼              𝛼 ∈ [0,1] 

But according to the hypotheses as 𝜇 is continuous and strictly monotone, 𝜇−1 exists, and 

𝜇(𝐴𝑥, 𝑏) ≥ 𝛼 ⇔ 𝐴𝑥 ≤ ∅(𝛼) = 𝜇−1(𝛼), and the proof follows as in proposition (3.1). 

4 Numerical Examples: 

4.1 Example 1 

Suppose we have a neutrosophic linear programming problem with neutrosophic less than or 

equal in its constraints and as follows: 

𝑀𝑎𝑥   𝑓(𝑥1, 𝑥2) = 𝑥1 + 𝑥2
4𝑥1 − 𝑥2 ≤ ₦  10
𝑥1 + 2𝑥2 ≤ ₦  15
5𝑥1 + 2𝑥2 ≤ ₦  20

𝑥𝑖 ≥ 0 }
 
 

 
 

                                                                                                                    (19) 

With membership functions as follow: 

𝜇1(4𝑥1 − 𝑥2, 10) ≥ 𝛼 
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Here 𝑏1 = 10, if we take 𝑑1 = 5 as an admissible violation of the first constraint. 

So,  𝜇1(4𝑥1 − 2𝑥2, 10) =
(15−4𝑥1+𝑥2)

2

25
≥ 𝛼,         

 (15 − 4𝑥1 + 𝑥2)
2 ≥ 25𝛼                                                                                                                             (20) 

The optimal solution of the inequality (20) is equivalent to the optimal solution of  

15 − 4𝑥1 + 𝑥2 = 5√𝛼 , 

−4𝑥1 + 𝑥2 = 5√𝛼 − 15                                                                                                                            (21) 

Also we have, 

𝜇2(𝑥1 + 2𝑥2, 15) ≥ 𝛼 

Here 𝑏2 = 15, if we take 𝑑2 = 8 as an admissible violation of the second constraint. 

𝜇2(𝑥1 + 2𝑥2, 15) =
(23−𝑥1−2𝑥2)

2

64
≥ 𝛼, 

23 − 𝑥1 − 2𝑥2 = √64𝛼, 

−𝑥1 − 2𝑥2 = 8√𝛼 − 23 

𝑥1 + 2𝑥2 = 23 − 8√𝛼                                                                                                                             (22) 

Finally, the membership of the third constraint is 

𝜇3(5𝑥1 + 2𝑥2, 20) ≥ 𝛼 

It is obviously that 𝑏3 = 20, and if we take the admissible violation for the third constraint as 

𝑑3 = 10, so we have 

 −5𝑥1 − 2𝑥2 = 10√𝛼 − 30 ⟶  5𝑥1 + 2𝑥2 = 30 − 10√𝛼                                                                      (23)  

From (23) we have, 

 2𝑥2 = 30 − 10√𝛼 − 5𝑥1                                                                                                                       (24) 

Substitute (24) in (22), 
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𝑥1 + 30 − 10√𝛼 − 5𝑥1 = 23 − 8√𝛼  

∴  𝑥1 =
7−2√𝛼

4
                                                                                                                                          (25) 

Substitute (25) in (23) we get, 

[
5

4
(7 − 2√𝛼) + 2𝑥2 = 30 − 10√𝛼], simplify this formula by multiplying it by 4 getting the 

following formula: 

35 − 10√𝛼 + 2𝑥2 = 120 − 40√𝛼 

𝑥2 =
85−30√𝛼

8
                                                                                                                                              (26) 

Consequently, 𝛼 ∈ [0,1], 𝑥1
∗ =

7−2√𝛼

4
 , 𝑥2

∗ =
85−30√𝛼

8
 . 

Thus, 

𝑓∗(𝑥1
∗, 𝑥2

∗) =
(99 − 34√𝛼)

8
∈ [
65

8
,
99

8
] 

And the neutrosophic solution for (19) with respect to its membership function 𝜇 becomes the 

neutrosophic set 

{𝑓(𝑥), 𝜇(𝑥): 𝑓(𝑥) ∈ [
65

8
,
99

8
] , 𝜇(𝑥) = [

99−8𝑥

34
]2}                                                                                                        (27) 

On the other hand, if we solve (19) by means of its dual (i.e., the corresponding of its 

neutrosophic linear programming (3)), we should have 

𝑀𝑖𝑛 𝑤 = (10 + 5𝛽)𝑢1 + (15 + 8𝛽)𝑢2 + (20 + 10𝛽)𝑢3
𝑠. 𝑡.   4𝑢1 + 𝑢2 + 5𝑢3 ≥ 1
−𝑢1 + 2𝑢2 + 2𝑢3 ≥ 1

𝛽 ∈ [0,1],    𝑢𝑖 ≥ 0

} 

Which is equivalent to the following program 

𝑀𝑖𝑛 𝑤 = (15 − 5𝛼)𝑢1 + (23 − 8𝛼)𝑢2 + (30 − 10𝛼)𝑢3
𝑠. 𝑡.   4𝑢1 + 𝑢2 + 5𝑢3 ≥ 1
−𝑢1 + 2𝑢2 + 2𝑢3 ≥ 1

𝛼 ∈ [0,1],    𝑢𝑖 ≥ 0

} 
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Which, when solved in the same way as parametric neutrosophic linear programming problem 

(2), has an optimal solution 𝑢1 = 0, 𝑢2 =
3

8
, 𝑢3 =

1

8
. 

Therefore,  

𝑤∗ = (15 − 5𝛼)𝑢1 + (23 − 8𝛼)𝑢2 + (30 − 10𝛼)𝑢3 =
(99−34𝛼)

8
∈ [

65

8
,
99

8
] , 𝛼 ∈ [0,1], 

And the corresponding neutrosophic solution with respect to its falsity membership function 

is the neutrosophic set  

{𝑤, 𝜇(𝑥): 𝑤 ∈ [
65

8
,
99

8
] , 𝜇(𝑥) = [

99−8𝑥

34
]2}   which coincides with (27). 

4.2 Case Study (Hybrid Renewable Energy Systems in View of Neutrosophic Linear 

Programming) 

As a result of the increasing demand for renewable energy, which is an inexhaustible and 

generally inexpensive source compared to traditional energy sources such as oil, natural gas, 

and coal...etc. Recently, an urgent need has emerged to integrate renewable energy sources in 

order to build up an economical hybrid energetic system in the case where each type of energy 

is only available as of specific units. The case study that we will shed the light on it was 

appeared in the essay [17] where the authors presented the capability of estimates of annual 

power production by combining photovoltaic panels with wind turbines (PV/Wind system) 

having specific capacities to meet energy demand in a specific site with the lowest cost. The 

purpose of this paper is different from the Zaatri and Allab [17] wherein they tried to estimate 

annual power production, also they formulated their problem as standard integer linear 

programming where the objective function to be minimized is the initial capital investment and 

where the decision variables are the numbers of units which should be pure integer numbers. 

Really, in this essay we aim to adapt the same problem in a different approach using 

neutrosophic linear programming (2), so our goal in this section is to show that the extension 

of the classical linear programming in uncertainty modeling gives more analytical information 

to be studied, the field of the power production of PV/Wind system with respect to 

uncertainties is unfathomable field and there are little discussions in the literature on it. It is 

well known that the intermittency is a part of Indeterminacy which is in between: interruption 

and non- interruption, so the neutrosophic theory will be a strong tool in getting and analyzing 

the optimal solutions. 
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Let 𝑐1 = 130$ represents the unit cost of a photovoltaic panel, 𝑐2 = 100$ is the reduced cost of 

the type of wind turbine. The investment for capital cost of the hybrid system which may 

involve the number of photovoltaic panels (𝑁1), and the number of wind turbine (𝑁2). This 

capital cost which is the objective function 𝑍𝑇 has to be minimized, therefore: -  

𝑀𝑖𝑛𝑍𝑇 = 130 𝑛1 + 100 𝑛2
𝑠. 𝑡.   66 𝑛1 + 84𝑛2 ≥ 3000

𝑛2 ≥ 6
  𝑛1, 𝑛2  ≥ 0

}                                                                                                                 (28) 

The following solution depends on the neutrosophic linear programming (2), the membership 

functions related to the two constraints of the program (28) are: 

𝜇1( 66 𝑛1 + 84𝑛2, 3000) ≥ 𝛼 

𝜇2( 𝑛2, 6) ≥ 𝛼 

Where, 𝑑1 = 1500 𝑎𝑛𝑑 𝑑2 = 3 are the admissible violations of these constraints,  

𝜇1( 66 𝑛1 + 84𝑛2, 3000) =
(4500−66𝑛1−84𝑛2)

2

2250000
= 𝛼,                                                                                (29) 

𝜇2( 𝑛2, 6) =
(9−𝑛2)

2

9
= 𝛼,                                                                                                                      (30) 

The formula (29) implies to  4500 − 66𝑛1 − 84𝑛2 = 1500√𝛼, 

4500 − 1500√𝛼 = 66𝑛1 + 84𝑛2                                                                                                        (31) 

While the formula (30) implies to  

9 − 𝑛2 = 3√𝛼  → 𝑛2 = 9 − 3√𝛼,                                                                                                         (32)   

As 𝛼 ∈ [0,1] → 𝑛2 ∈ [6,9] 

Substituting (32) in (31),  4500 − 1500√𝛼 = 66𝑛1 + 84 (9 − 3√𝛼), 4500 − 1500√𝛼 = 66𝑛1 +

756 − 252√𝛼  ⟹ 66𝑛1 = 3744 − 1248 √𝛼, 

𝑛1 =
3744

66
−

1248

66
√𝛼, 𝛼 ∈ [0,1]                                                                                                         (33) 

𝑛1 ∈ [
2496

66
,
3744

66
] = [37.8, 56.7], 
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As 𝑛1 𝑎𝑛𝑑 𝑛2 should be pure integer numbers, we will approximate the interval [37.8, 56.7] ≅

[38, 57], 𝑛1 ∈ [38,57]. 

The optimal value for the objective function 𝑍𝑇 

𝑍𝑇
∗ = 130 (

3744

66
−
1248

66
√𝛼) + 100(9 − 3√𝛼) = 8274.5 − 2758.18√𝛼 

𝛼 ∈ [0,1] → 𝑍𝑇
∗ ∈ [5517$, 8275$]. 

5 Conclusion 

 In this article, the classical linear programming has been redefined for the new type of 

neutrosophic linear programming with respect to its membership function, indeterminacy 

membership function, and non-membership function, with neutrosophic less than or equal in 

its constraint. Three new definitions have been posited, and two propositions were presented 

and proved. Two numerical examples were necessary to illustrate the theoretical direction 

practically. 
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Abstract: In this paper, the concept of Neutrosophic LA-rings is introduced. Furthermore, we 

investigate their algebraic structures. We discuss various types of ideals and establish a number of 

results to better understand the characteristic behavior of Neutrosophic LA-rings. In addition, we 

investigate the properties of the Neutrosophic M-system, Neutrosophic P-system, and 

Neutrosophic I-system in order to characterize the Neutrosophic LA-ring. 

Keywords: Neutrosophic Sets; Neutrosophic LA-rings; Neutrosophic ideals; Neutrosophic 

𝑀-systems; Neutrosophic 𝑃-systems and Neutrosophic 𝐼-systems. 

 

1. Introduction 

Different researchers have defined algebraic structures which were based on the crisp set. But the 

real-life problems could not be solved by crisp set theory. The crisp set deals with yes or no only and 

it never tells about in between yes and no. In 1965, Zadeh [1] introduced a fuzzy set theory to 

address the vagueness of various real-life problems. The fuzzy sets deals with membership in 

between 0 and 1. Later, Atanassov [2] in 1986, initiated intuitionistic fuzzy set. However, these 

theories have remained unsuccessful in finding a solution to many real-life mathematical challenges. 

In 1999, Smarandache [3] gave the notion of Neutrosophic set. Nowadays, Neutrosophic set attains 

more attention of researchers due to its characteristic behavior to solve the indeterminate situations 

in the different fields of life. In 2006, Smarandache et al., [4] were the first ones who applied the 

concept of Neutrosophic sets on some algebraic structure and in their work, they introduced the 

Neutrosophic rings. Later, in 2011 Agboola et al., [5], discussed Neutrosophic rings-I. Neutrosophic 

groups and Neutrosophic sub-groups were introduced in 2012 by Agboola et al., [6]. Ali et al., [7-10] 

have used Neutrosophic set approach for different algebraic structures. In 2016, Khan et al.,[11] 

briefly discussed the characterization of Neutrosophic left almost semigroups.  

 The tremendous application of Neutrosophic sets is the main motivator for us to work in this field. 

Intuitively, Neutrosophic sets are gaining popularity among researchers. To investigate the 
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application aspect of Neutrosophic sets, readers are directed to the most recent research work of 

Abdel Basset et al., [15-19], as well as [12-14].  

LA-rings is generalized form of the commutative rings. LA-rings is non-commutative and 

non-associative algebraic structure. In recent times, a lot of research work has been done by different 

researches on this area of study. No doubt, LA-rings has a remarkable contribution in the 

development of non-associative theory in the current decade.  Shah, Rehman, Asima and many 

other researchers have done noteworthy work in this ring structure.  And they have published 

articles. The readers are referred to study [20-29] for comprehensive study of LA-rings. 

We used Neutrosophic set approach to give the notion of Neutrosophic LA-rings. This may be a 

useful contribution to the non-associative field of mathematics. It may provide a new direction for 

future researchers to extend the non-associative area of mathematics. We discussed characteristic 

properties of substructures of Neutrosophic LA-rings. We gave the concept of different type of 

Neutrosophic ideals. We defined Neutrosophic prime ideals, Neutrosophic quasi ideals and 

Neutrosophic bi-ideals and established some results.  One of the main results is: If 𝒆 the left 

identity in Neutrosophic LA-ring 𝑵(𝑳𝑹),  then 𝑵(𝑳𝑹)  is fully Neutrosophic prime iff set 

ideal(𝑵(𝑳𝑹)) becomes totally ordered under inclusion and every ideal becomes idempotent. In last 

section, we discussed the characterizations of neutrosophic LA-ring by exploring the Neutrosophic 

𝑴-system, Neutrosophic 𝑷-system and Neutrosophic 𝑰-system. It is shown that: If 𝒆  the left 

identity in 𝑵(𝑳𝑹), then a neutrosophic left ideal 𝑵(𝑳𝑰) is neutrosophic quasi-prime iff 𝑵(𝑳𝑹)\

𝑵(𝑳𝑰) is neutrosophic 𝑴-system. Also, a relation is developed between neutrosophic 𝑴-system and 

neutrosophic 𝑷-system i.e., In a neutrosophic LA-ring 𝑵(𝑳𝑹), every neutrosophic 𝑴-system is a 

neutrosophic 𝑷-system. 

2. Neutrosophic LA-rings 

As preliminary, we recall the following definitions from refrences [3], [24] and [25]. 

Definition 2.1. [24]  Let 𝑅 be a set with at least two elements and two binary operations `+' and `⋅' 

defined on 𝑅. Suppose (𝑅, +) is an LA-group and (𝑅, . ) is an LA-semigroup satisfying both left and 

right distributive laws: 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 and (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅. Then (𝑅, +, . )  

is called an LA-ring. 

Definition 2.2. [24]  Let (𝑅, +, . ) be an LA-ring. If 𝑆 is a non-empty subset of 𝑅 and 𝑆 is itself an 

LA-ring under the binary operation induced by 𝑅, then 𝑆 is called an LA-subring of 𝑅. 

Definition 2.3. [25] If 𝐴 is an LA-subring of an LA-ring (𝑅, +, . ), then 𝐴 is called a left ideal if 𝑅𝐴 ⊆

𝐴. Right ideal and two sided ideal are defined in the usual manner. 

Definition 2.4. [25] A nonempty subset 𝑆 of an LA-ring 𝑅 is called an 𝑀-system if for 𝑎, 𝑏 ∈ 𝑆, 

there exists 𝑟 in 𝑅 such that 𝑎(𝑟𝑏) ∈ 𝑆. 

Definition 2.5. [25] A nonempty subset 𝑄 of an LA-ring 𝑅 with left identity 𝑒 is called 𝑃-system if 

for all 𝑎 ∈ 𝑄, there exists 𝑟 ∈ 𝑅 such that 𝑎(𝑟𝑎) ∈ 𝑄.  

Definition 2.6. [25] A nonempty subset 𝑆 of an LA-ring 𝑅 with left identity 𝑒 is called an 𝐼-system 

if for all 𝑎, 𝑏 ∈ 𝑆, (〈𝑎〉⋂〈𝑏〉)⋂𝑆 ≠ 𝜑.   

Definition 2.7. [3] A Neurosophics set is define as  𝐴 = {〈𝑥, 𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)〉: 𝑥 ∈ 𝑋}, where 𝑋 is a 

universe of discoveries and 𝐴 is characterized by a truth-membership function 𝑇: 𝑋 → ]0−, 1+̇ [, an 

indeterminacy-membership function 𝐼: 𝑋 → ]0−, 1+̇ [  and a falsity-membership function 𝐹: 𝑋 →

]0−, 1+̇ [ and 0 ≤ 𝑇(𝑥) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3.  
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We initaiate our work with the following definition. 

Definition 2.8. If 𝑅 is a LA-ring, 𝐼 is a neutrosophic element with the property 𝐼2 = 𝐼. Then a 

non-empty set 〈𝑅 ∪ 𝐼〉  =  {𝑟 + 𝑠𝐼 ∶  𝑟, 𝑠 ∈  𝑅} under the “⊞ " and  " ⊡ " is a Neutrosophic LA- ring 

if: 

i) (〈𝑅 ∪ 𝐼〉, ⊞ ) is Left Almost group 

ii) (〈𝑅 ∪ 𝐼〉, ⊡ ) is Left Almost semigroup 

iii) ⊡ is distributive over ⊞ from both sides 

Throughout this paper we denote Neutrosophic Left Almost ring by 𝑁(𝐿𝑅). 

Example 2.9. Following are the Cayley tables (1 and 2) for an LA-ring 𝑅 =  {0, 1, 2, 3, 4, 5, 6, 7} under 

the binary operations ‘ + ’ and ‘. ’ 

Cayley Table 1 

 

+ 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 2 0 3 1 6 4 7 5 

2 1 3 0 2 5 7 4 6 

3 3 2 1 0 7 6 5 4 

4 4 5 6 7 0 1 2 3 

5 6 4 7 5 2 0 3 1 

6 5 7 4 6 1 3 0 2 

7 7 6 5 4 3 2 1 0 

                                                     

                             

 

 

 

 

 

 

Cayley Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then 𝑁(𝐿𝑅) = 〈𝑅 ∪ 𝐼〉 = {0, 1, 2, 3, 4, 5, 6, 7, 0𝐼, 1𝐼, 2𝐼, 3𝐼, 4𝐼, 5𝐼, 6𝐼, 7𝐼} becomes neutrosophic LA-ring 

under “ ⊞ " and  " ⊡ "  as defined in Cayley tables (3 and 4): 

∙ 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 4 4 0 0 4 4 0 

2 0 4 4 0 0 4 4 0 

3 0 0 0 0 0 0 0 0 

4 0 3 3 0 0 3 3 0 

5 0 7 7 0 0 7 7 0 

6 0 7 7 0 0 7 7 0 

7 0 3 3 0 0 3 3 0 
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Cayley Table 3 

 

⊞ 0 1 2 3 4 5 6 7 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 

0 0 1 2 3 4 5 6 7 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 

1 2 0 3 1 6 4 7 5 2𝐼 0𝐼 3𝐼 1𝐼 6𝐼 4𝐼 7𝐼 5𝐼 

2 1 3 0 2 5 7 4 6 1𝐼 3𝐼 0𝐼 2𝐼 5𝐼 7𝐼 4𝐼 6𝐼 

3 3 2 1 0 7 6 5 4 3𝐼 2𝐼 1𝐼 0𝐼 7𝐼 6𝐼 5𝐼 4𝐼 

4 4 5 6 7 0 1 2 3 4𝐼 5𝐼 6𝐼 7𝐼 0𝐼 1𝐼 2𝐼 3𝐼 

5 6 4 7 5 2 0 3 1 6𝐼 4𝐼 7𝐼 5𝐼 2𝐼 0𝐼 3𝐼 1𝐼 

6 5 7 4 6 1 3 0 2 5𝐼 7𝐼 4𝐼 6𝐼 1𝐼 3𝐼 0𝐼 2𝐼 

7 7 6 5 4 3 2 1 0 7𝐼 6𝐼 5𝐼 4𝐼 3𝐼 2𝐼 1𝐼 0𝐼 

0𝐼 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 

1𝐼 2𝐼 0𝐼 3𝐼 1𝐼 6𝐼 4𝐼 7𝐼 5𝐼 2𝐼 0𝐼 3𝐼 1𝐼 6𝐼 4𝐼 7𝐼 5𝐼 

2𝐼 1𝐼 3𝐼 0𝐼 2𝐼 5𝐼 7𝐼 4𝐼 6𝐼 1𝐼 3𝐼 0𝐼 2𝐼 5𝐼 7𝐼 4𝐼 6𝐼 

3𝐼 3𝐼 2𝐼 1𝐼 0𝐼 7𝐼 6𝐼 5𝐼 4𝐼 3𝐼 2𝐼 1𝐼 0𝐼 7𝐼 6𝐼 5𝐼 4𝐼 

4𝐼 4𝐼 5𝐼 6𝐼 7𝐼 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 0𝐼 1𝐼 2𝐼 3𝐼 

5𝐼 6𝐼 4𝐼 7𝐼 5𝐼 2𝐼 0𝐼 3𝐼 1𝐼 6𝐼 4𝐼 7𝐼 5𝐼 2𝐼 0𝐼 3𝐼 1𝐼 

6𝐼 5𝐼 7𝐼 4𝐼 6𝐼 1𝐼 3𝐼 0𝐼 2𝐼 5𝐼 7𝐼 4𝐼 6𝐼 1𝐼 3𝐼 0𝐼 2𝐼 

7𝐼 7𝐼 6𝐼 5𝐼 4𝐼 3𝐼 2𝐼 1𝐼 0𝐼 7𝐼 6𝐼 5𝐼 4𝐼 3𝐼 2𝐼 1𝐼 0𝐼 

 

. 

                   

 

 

 

 

 

Cayley Table 4 

 

⊡ 0 1 2 3 4 5 6 7 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 

0 0 0 0 0 0 0 0 0 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 

1 0 4 4 0 0 4 4 0 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 

2 0 4 4 0 0 4 4 0 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 

3 0 0 0 0 0 0 0 0 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 

4 0 3 3 0 0 3 3 0 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 

5 0 7 7 0 0 7 7 0 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 

6 0 7 7 0 0 7 7 0 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 

7 0 3 3 0 0 3 3 0 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 

0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 

1𝐼 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 

2𝐼 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 0𝐼 4𝐼 4𝐼 0𝐼 
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3𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 0𝐼 

4𝐼 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 

5𝐼 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 

6𝐼 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 0𝐼 7𝐼 7𝐼 0𝐼 

7𝐼 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 0𝐼 3𝐼 3𝐼 0𝐼 

 

Definition 2.10. Let 𝑁(𝐿𝑅) be a neutrosophic LA-ring under the binary operations ⊞  and  ⊡. A 

non-empty proper subset 𝑁(𝑆𝐿𝑅) of 𝑁(𝐿𝑅) is said to be a neutrosophic subLA-ring if 𝑁(𝑆𝐿𝑅) is 

itself a neutrosophic LA-ring under " ⊞ "  and  " ⊡ " defined in 𝑁(𝐿𝑅).  

Lemma 2.11. Let 𝑁(𝐿𝑅) be a Neutrosophic LA-ring. Then the proper subset 𝑁(𝑆𝐿𝑅) of 𝑁(𝐿𝑅) is a 

Neutrosophic subLA-ring iff, every (𝑟′  + 𝑠′𝐼), (𝑝′ + 𝑞′𝐼) ∈ 𝑁(𝑆𝐿𝑅)  satisfies the following 

conditions:  

(i) (𝑟′  + 𝑠′𝐼)  ⊞ (𝑝′ + 𝑞′𝐼) belongs 𝑁(𝑆𝐿𝑅) 
(ii) (𝑟′  + 𝑠′𝐼)  ⊡ (𝑝′ + 𝑞′𝐼) belongs  𝑁(𝑆𝐿𝑅) 

Proof. If 𝑁(𝑆𝐿𝑅) is neutrosophic subLA-ring, then it is clear from definition that (𝑁(𝑆𝐿𝑅),⊞ )) 

becomes LA-group as well as (𝑁(𝑆𝐿𝑅),⊡)  becomes LA-semigroup. Consequently, the closure 

property holds for 𝑁(𝑆𝐿𝑅). Hence (i) and (ii) hold. 

Conversely, suppose that (i) and (ii) is true for all (𝑟′  + 𝑠′𝐼), (𝑝′ + 𝑞′𝐼) ∈ 𝑁(𝑆𝐿𝑅). Since the binary 

operations “ ⊞ "  and  " ⊡ “ are closed, so (𝑁(𝑆𝐿𝑅), ⊞))  being the subset of 𝑁(𝐿𝑅)  will be 

LA-group, likewise (𝑁(𝑆𝐿𝑅), ⊡)) will be LA-semigroup. Moreover, inheritably ⊡ is distributive 

over ⊞ from both sides. Hence, 𝑁(𝑆𝐿𝑅) is a neutrosophic subLA-ring.  

Lemma 2.12. If {(𝑁(𝑆𝐿𝑅))i, 𝑖 ∈ 𝐽} is the collection of neutrosophic subLA-rings of 𝑁(𝐿𝑅). Then the 

intersection of this collection is either empty or again a neutrosophic subLA-ring. 

Proof.  Let {(𝑁(𝑆𝐿𝑅))i, 𝑖 ∈ 𝐽} be a collection of neutrosophic subLA-rings of 𝑁(𝐿𝑅). Assume that 

⋂ (𝑁(𝑆𝐿𝑅)) i is not empty. Let (𝑟′  + 𝑠′𝐼), (𝑝′ + 𝑞′𝐼) ∈ ⋂(𝑁(𝑆𝐿𝑅)) i. This implies (𝑟′  + 𝑠′𝐼) ∈

(𝑁(𝑆𝐿𝑅))i and (𝑝′ + 𝑞′𝐼) ∈ (𝑁(𝑆𝐿𝑅))i where 𝑖 ∈ 𝐽. Since (𝑁(𝑆𝐿𝑅))i is the collection of neutrosophic 

subLA-rings. Therefore, each (𝑁(𝑆𝐿𝑅)) i , ⊞)  will be LA-group, (𝑁(𝑆𝐿𝑅)) i , ⊡)  will be 

LA-semigroup. Also ⊡ is distributive over ⊞ from both sides. Consequently, (𝑟′  + 𝑠′𝐼)  ⊞ (𝑝′ +

𝑞′𝐼) ∈ (𝑁(𝑆𝐿𝑅)) i for all 𝑖 ∈ 𝐽  and likewise (𝑟′  + 𝑠′𝐼)  ⊡ (𝑝′ + 𝑞′𝐼) ∈ (𝑁(𝑆𝐿𝑅)) i for all 𝑖 ∈ 𝐽 . 

Therefore, (𝑟′  + 𝑠′𝐼)  ⊞  (𝑝′ + 𝑞′𝐼) and (𝑟′  + 𝑠′𝐼)  ⊡  (𝑝′ + 𝑞′𝐼) ∈ ⋂(𝑁(𝑆𝐿𝑅))i for all 𝑖 ∈ 𝐽.  

 

Definition 2.13. If 𝑒 ∈ 𝑁(𝐿𝑅), then 𝑒 is left identity if 𝑒 ⊡ 𝑁(𝐿𝑅) = 𝑁(𝐿𝑅).  

Example 2.14. The following Cayley tables (5 and 6) form a neutrosophic LA-ring 𝑁(𝐿𝑅) = 〈𝑅 ∪ 𝐼〉 =

 {0,1,2,3,4,5,6,7,8,0𝐼, 1𝐼, 2𝐼, 3𝐼, 4𝐼, 5𝐼, 6𝐼, 7𝐼, 8𝐼} and it can be easily observed that the element 7 ∈

𝑁(𝐿𝑅) is the left identity.   

Cayley Table 5 

⊞ 0 1 2 3 4 5 6 7 8 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 

0 3 4 6 8 7 2 5 1 0 3𝐼  4𝐼 6𝐼 8𝐼 7𝐼 2𝐼 5𝐼 1𝐼 0𝐼 

1 2 3 7 6 8 4 1 0 5 2𝐼 3𝐼 7𝐼 6𝐼 8𝐼 4𝐼 1𝐼 0𝐼 5𝐼 

2 1 5 3 4 2 0 8 6 7 1𝐼 5𝐼 3𝐼 4𝐼 2𝐼 0𝐼 8𝐼 6𝐼 7𝐼 

3 0 1 2 3 4 5 6 7 8 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 

4 5 0 4 2 3 1 7 8 6 5𝐼 0𝐼 4𝐼 2𝐼 3𝐼 1𝐼 7𝐼 8𝐼 6𝐼 

5 4 2 8 7 6 3 0 5 1 4𝐼 2𝐼 8𝐼 7𝐼 6𝐼 3𝐼 0𝐼 5𝐼 1𝐼 

6 7 6 0 1 5 8 3 2 4 7𝐼 6𝐼 0𝐼 1𝐼 5𝐼 8𝐼 3𝐼 2𝐼 4𝐼 

7 6 8 1 5 0 7 4 3 2 6𝐼 8𝐼 1𝐼 5𝐼 0𝐼 7𝐼 4𝐼 3𝐼 2𝐼 

8 8 7 5 0 1 6 2 4 3 8𝐼 7𝐼 5𝐼 0𝐼 1𝐼 6𝐼 2𝐼 4𝐼 3𝐼 
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0𝐼 3𝐼  4𝐼 6𝐼 8𝐼 7𝐼 2𝐼 5𝐼 1𝐼 0𝐼 3𝐼  4𝐼 6𝐼 8𝐼 7𝐼 2𝐼 5𝐼 1𝐼 0𝐼 

1𝐼 2𝐼 3𝐼 7𝐼 6𝐼 8𝐼 4𝐼 1𝐼 0𝐼 5𝐼 2𝐼 3𝐼 7𝐼 6𝐼 8𝐼 4𝐼 1𝐼 0𝐼 5𝐼 

2𝐼 1𝐼 5𝐼 3𝐼 4𝐼 2𝐼 0𝐼 8𝐼 6𝐼 7𝐼 1𝐼 5𝐼 3𝐼 4𝐼 2𝐼 0𝐼 8𝐼 6𝐼 7𝐼 

3𝐼 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 

4𝐼 5𝐼 0𝐼 4𝐼 2𝐼 3𝐼 1𝐼 7𝐼 8𝐼 6𝐼 5𝐼 0𝐼 4𝐼 2𝐼 3𝐼 1𝐼 7𝐼 8𝐼 6𝐼 

5𝐼 4𝐼 2𝐼 8𝐼 7𝐼 6𝐼 3𝐼 0𝐼 5𝐼 1𝐼 4𝐼 2𝐼 8𝐼 7𝐼 6𝐼 3𝐼 0𝐼 5𝐼 1𝐼 

6𝐼 7𝐼 6𝐼 0𝐼 1𝐼 5𝐼 8𝐼 3𝐼 2𝐼 4𝐼 7𝐼 6𝐼 0𝐼 1𝐼 5𝐼 8𝐼 3𝐼 2𝐼 4𝐼 

7𝐼 6𝐼 8𝐼 1𝐼 5𝐼 0𝐼 7𝐼 4𝐼 3𝐼 2𝐼 6𝐼 8𝐼 1𝐼 5𝐼 0𝐼 7𝐼 4𝐼 3𝐼 2𝐼 

8𝐼 8𝐼 7𝐼 5𝐼 0𝐼 1𝐼 6𝐼 2𝐼 4𝐼 3𝐼 8𝐼 7𝐼 5𝐼 0𝐼 1𝐼 6𝐼 2𝐼 4𝐼 3𝐼 

 

Cayley Table 6 

⊡ 0 1 2 3 4 5 6 7 8 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 

0 3 1 6 3 1 6 6 1 3 3𝐼 1𝐼 6𝐼 3𝐼 1𝐼 6𝐼 6𝐼 1𝐼 3𝐼 

1 0 3 0 3 8 8 3 0 8 0𝐼 3𝐼 0𝐼 3𝐼 8𝐼 8𝐼 3𝐼 0𝐼 8𝐼 

2 8 1 5 3 7 2 6 4 0 8𝐼 1𝐼 5𝐼 3𝐼 7𝐼 2𝐼 6𝐼 4𝐼 0𝐼 

3 3 3 3 3 3 3 3 3 3 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 

4 0 6 7 3 5 4 1 2 8 0𝐼 6𝐼 7𝐼 3𝐼 5𝐼 4𝐼 1𝐼 2𝐼 8𝐼 

5 8 6 4 3 2 7 1 5 0 8𝐼 6𝐼 4𝐼 3𝐼 2𝐼 7𝐼 1𝐼 5𝐼 0𝐼 

6 8 3 8 3 0 0 3 8 0 8𝐼 3𝐼 8𝐼 3𝐼 0𝐼 0𝐼 3𝐼 8𝐼 0𝐼 

7 0 1 2 3 4 5 6 7 8 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 

8 3 6 1 3 6 1 1 6 3 3𝐼 6𝐼 1𝐼 3𝐼 6𝐼 1𝐼 1𝐼 6𝐼 3𝐼 

0𝐼 3𝐼 1𝐼 6𝐼 3𝐼 1𝐼 6𝐼 6𝐼 1𝐼 3𝐼 3𝐼 1𝐼 6𝐼 3𝐼 1𝐼 6𝐼 6𝐼 1𝐼 3𝐼 

1𝐼 0𝐼 3𝐼 0𝐼 3𝐼 8𝐼 8𝐼 3𝐼 0𝐼 8𝐼 0𝐼 3𝐼 0𝐼 3𝐼 8𝐼 8𝐼 3𝐼 0𝐼 8𝐼 

2𝐼 8𝐼 1𝐼 5𝐼 3𝐼 7𝐼 2𝐼 6𝐼 4𝐼 0𝐼 8𝐼 1𝐼 5𝐼 3𝐼 7𝐼 2𝐼 6𝐼 4𝐼 0𝐼 

3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 3𝐼 

4𝐼 0𝐼 6𝐼 7𝐼 3𝐼 5𝐼 4𝐼 1𝐼 2𝐼 8𝐼 0𝐼 6𝐼 7𝐼 3𝐼 5𝐼 4𝐼 1𝐼 2𝐼 8𝐼 

5𝐼 8𝐼 6𝐼 4𝐼 3𝐼 2𝐼 7𝐼 1𝐼 5𝐼 0𝐼 8𝐼 6𝐼 4𝐼 3𝐼 2𝐼 7𝐼 1𝐼 5𝐼 0𝐼 

6𝐼 8𝐼 3𝐼 8𝐼 3𝐼 0𝐼 0𝐼 3𝐼 8𝐼 0𝐼 8𝐼 3𝐼 8𝐼 3𝐼 0𝐼 0𝐼 3𝐼 8𝐼 0𝐼 

7𝐼 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 0𝐼 1𝐼 2𝐼 3𝐼 4𝐼 5𝐼 6𝐼 7𝐼 8𝐼 

8𝐼 3𝐼 6𝐼 1𝐼 3𝐼 6𝐼 1𝐼 1𝐼 6𝐼 3𝐼 3𝐼 6𝐼 1𝐼 3𝐼 6𝐼 1𝐼 1𝐼 6𝐼 3𝐼 

 

 

3. Neutrosophic Ideals 

 

Definition 3.1. A neutrosophic subLA-ring 𝑁(𝑆𝐿𝑅) of 𝑁(𝐿𝑅) is known as a neutrosophic left ideal 

if 𝑁(𝐿𝑅) ⊡ 𝑁(𝑆𝐿𝑅) ⊆ 𝑁(𝑆𝐿𝑅). Likewise, the right ideal and two sided ideal of 𝑁(𝐿𝑅) can be easily 

defined. 

We denote neutrosophic left ideal by 𝑁(𝐿𝐼), neutrosophic right ideal by 𝑁(𝑅𝐼) and two sided 

neutrosophic ideal will be denoted by 𝑁(𝐼). 

Lemma 3.2. If 𝑒  is the left identity in neutrosophic LA-ring  𝑁(𝐿𝑅) , then 𝑁(𝑅𝐼)  will be 

neutrosophic left ideal. 

Proof. Suppose  𝑟′ + 𝑠′𝐼 ∈  𝑁(𝐿𝑅) , 𝑚′ + 𝑛′𝐼 ∈  𝑁(𝑅𝐼) . Then 𝑟′ + 𝑠′𝐼 ⊡ (𝑚′ + 𝑛′𝐼) = (𝑒 ⊡ ( 𝑟′ +

𝑠′𝐼)) ⊡ (𝑚′ + 𝑛′𝐼)=((𝑚′ + 𝑛′𝐼) ⊡(𝑟′ + 𝑠′𝐼)) ⊡ 𝑒 ∈  𝑁(𝑅𝐼). Therefore, 𝑁(𝑅𝐼) becomes a neutrosophic 

left ideal also. 

Remark 3.3. From Lemma 3.2, it is concluded a neutrosophic LA-rings having 𝑒 the left identity, the 

neutrosophic ideal means the neutrosophic right ideal. 

Proposition 3.4. Let 𝑁(𝐿𝑅) a neutrosophic LA-ring having left identity. Then: 
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(i) 𝑁(𝐿𝑅) ⊡  𝑁(𝐿𝐼) = 𝑁(𝐿𝐼), 𝑁(𝐿𝐼) neutrosophic left ideal of 𝑁(𝐿𝑅). 

(ii) 𝑁(𝑅𝐼) ⊡  𝑁(𝐿𝑅) = 𝑁(𝑅𝐼), 𝑁(𝑅𝐼) neutrosophic right ideal of 𝑁(𝐿𝑅). 

Proof. (i) By definition, if 𝑁(𝐿𝐼) is neutrosophic left ideal of 𝑁(𝐿𝑅), then 𝑁(𝐿𝑅) ⊡  𝑁(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). 

Let 𝑝′ + 𝑞′𝐼 ∈  𝑁(𝐿𝐼) . Then 𝑝′ + 𝑞′𝐼 = 𝑒 ⊡ (𝑝′ + 𝑞′𝐼)  ∈  𝑁(𝐿𝑅) ⊡  𝑁(𝐿𝐼) . Consequently,  𝑁(𝐿𝐼)  ⊆

𝑁(𝐿𝑅) ⊡  𝑁(𝐿𝐼) and hence 𝑁(𝐿𝑅) ⊡  𝑁(𝐿𝐼) = 𝑁(𝐿𝐼). 

(ii) By definition, if 𝑁(𝑅𝐼) is neutrosophic right ideal of 𝑁(𝐿𝑅), then 𝑁(𝑅𝐼) ⊡  𝑁(𝐿𝑅) ⊆ 𝑁(𝑅𝐼). Let 

𝑚′ + 𝑛′𝐼 ∈  𝑁(𝑅𝐼). Then  

𝑚′ + 𝑛′𝐼 = 𝑒 ⊡ (𝑚′ + 𝑛′𝐼) 

= (𝑒 ⊡ 𝑒) ⊡ (𝑚′ + 𝑛′𝐼) 

= ((𝑚′ + 𝑛′𝐼)  ⊡ 𝑒) ⊡ 𝑒 

                                                                  ∈ (𝑁(𝑅𝐼) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝐿𝑅) 

                                                                     ⊆ 𝑁(𝑅𝐼) ⊡ 𝑁(𝐿𝑅). 

This implies 𝑁(𝑅𝐼) ⊆ 𝑁(𝑅𝐼) ⊡ 𝑁(𝐿𝑅). Thus, 𝑁(𝑅𝐼) ⊡  𝑁(𝐿𝑅) = 𝑁(𝑅𝐼). 

 

Lemma 3.5. If 𝑒 is a left identity and 𝑁(𝑅𝐼) is the neutrosophic right ideal of 𝑁(𝐿𝑅), then (𝑁(𝑅𝐼))2 

is a neutrosophic ideal of 𝑁(𝐿𝑅). 

Proof. If an element 𝑙′ + 𝑘′𝐼 ∈ (𝑁(𝑅𝐼))
2

, then 𝑙′ + 𝑘′𝐼 = (𝑚′ + 𝑛′𝐼) ⊡  (𝑝′ + 𝑞′𝐼), where (𝑚′ + 𝑛′𝐼),

(𝑝′ + 𝑞′𝐼) ∈ 𝑁(𝑅𝐼). Let (𝑟′ + 𝑠′𝐼) be any element of 𝑁(𝐿𝑅).  

Now consider      (𝑙′ + 𝑘′𝐼) ⊡  (𝑟′ + 𝑠′𝐼) = ( (𝑚′ + 𝑛′𝐼) ⊡  (𝑝′ + 𝑞′𝐼)) ⊡ (𝑟′ + 𝑠′𝐼) 

                                                                       = ((𝑟′ + 𝑠′𝐼) ⊡ (𝑝′ + 𝑞′𝐼)) ⊡ (𝑚′ + 𝑛′𝐼) ∈ 𝑁(𝑅𝐼) ⊡ 𝑁(𝑅𝐼) 

                                                                         = (𝑁(𝑅𝐼))
2
. 

This means (𝑁(𝑅𝐼))
2
 is neutrosophic right ideal. Therefore, from Lemma 3.2, (𝑁(𝑅𝐼))

2
becomes 

neutrosophic left ideal. Thus (𝑁(𝑅𝐼))
2
 is neutrosophic ideal. 

Remark 3.6. It is interesting to note that in a neutrosophic LA-ring 𝑁(𝐿𝑅) having left identity, 

(𝑁(𝐿𝐼))
2
 becomes neutrosophic ideal, where 𝑁(𝐿𝐼) is neutrosophic ideal. 

Lemma 3.7. If 𝑁(𝐿𝑅)  is a neutrosophic LA-rings having left identity. Let 𝑁(𝐼′)  is proper 

neutrosophic ideal of 𝑁(𝐿𝑅). Then the left identity 𝑒 does not belong to 𝑁(𝐼′). 

Proof. Contrarily, let 𝑒 ∈ 𝑁(𝐼′)  and 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅). Now consider  

𝑟′ + 𝑠′𝐼 = 𝑒 ⊡ (𝑟′ + 𝑠′𝐼) 

                                                                                    ∈ 𝑁(𝐼′)  ⊡ 𝑁(𝐿𝑅) 

  ⊆ 𝑁(𝐼′) . 

This implies 𝑁(𝐿𝑅)  ⊆ 𝑁(𝐼′) . But 𝑁(𝐼′)  ⊆  𝑁(𝐿𝑅) . This means 𝑁(𝐼′)  =  𝑁(𝐿𝑅) . Hence a 

contradiction. Thus 𝑒 ∉ 𝑁(𝐼′). 

Definition 3.8. 𝑁(𝑃𝐼) is neutrosophic ideal of 𝑁(𝐿𝑅). 𝑁(𝑃𝐼) is called neutrosophic prime ideal iff 

for any neutrosophic ideals 𝑁(𝐴𝐼) and 𝑁(𝐵𝐼), 𝑁(𝐴𝐼)  ⊡ 𝑁(𝐵𝐼) ⊆ 𝑁(𝑃𝐼) then either 𝑁(𝐴𝐼) ⊆ 𝑁(𝑃𝐼) 

or 𝑁(𝐵𝐼) ⊆ 𝑁(𝑃𝐼). 𝑁(𝑃) is called neutrosophic semi-prime if 𝑁(𝐼′)2 ⊆ 𝑁(𝑃𝐼) implies that 𝑁(𝐼′)  ⊆

𝑁(𝑃𝐼), where 𝑁(𝐼′) is any neutrosophic ideal of 𝑁(𝐿𝑅). 

If each neutrosophic ideal of 𝑁(𝐿𝑅) is neutrosophic prime ideal, then 𝑁(𝐿𝑅)  is called fully 

neutrosophic prime and if all the neutrosophic ideals are neutrosophic semi-prime ideals than 

𝑁(𝐿𝑅) is called fully neutrosophic semi-prime. 

Definition 3.9. If for all neutrosophic ideals 𝑁(𝐴𝐼), 𝑁(𝐵𝐼) , either 𝑁(𝐴𝐼) ⊆ 𝑁(𝐵𝐼)  or 𝑁(𝐵𝐼) ⊆

𝑁(𝐴𝐼), then 𝑁(𝐿𝑅) is called totally ordered under inclusion. It is symbolized by a set ideal(𝑁(𝐿𝑅)). 

Theorem 3.10. If 𝑒 left identity in neutrosophic LA-rings 𝑁(𝐿𝑅), then 𝑁(𝐿𝑅) is fully neutrosophic 

prime iff set ideal(𝑁(𝐿𝑅))  becomes totally ordered under inclusion and every ideal becomes 

idempotent. 

Proof. Suppose 𝑁(𝐿𝑅) is fully neutrosophic prime and 𝑁(𝐴𝐼), 𝑁(𝐵𝐼) be any neutrosophic ideals in 

𝑁(𝐿𝑅) . Since 𝑁(𝐴𝐼) ⊡ 𝑁(𝐵𝐼) ⊆ 𝑁(𝐴𝐼) and 𝑁(𝐴𝐼) ⊡ 𝑁(𝐵𝐼) ⊆ 𝑁(𝐵𝐼),  therefore 𝑁(𝐴𝐼) ⊡ 𝑁(𝐵𝐼) ⊆
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𝑁(𝐴𝐼) ∩ 𝑁(𝐵𝐼). Since the intersection of neutrosophic prime ideals is prime. This implies that 

𝑁(𝐴𝐼) ∩ 𝑁(𝐵𝐼)  is prime and hence by definition, 𝑁(𝐴𝐼) ⊆ 𝑁(𝐴𝐼) ∩ 𝑁(𝐵𝐼)  or 𝑁(𝐵𝐼) ⊆ 𝑁(𝐴𝐼) ∩

𝑁(𝐵𝐼). This further implies that either 𝑁(𝐴𝐼) ⊆ 𝑁(𝐵𝐼) or 𝑁(𝐵𝐼) ⊆ 𝑁(𝐴𝐼). Thus set ideal(𝑁(𝐿𝑅)) is 

totally ordered under the inclusion. Assume 𝑁(𝐼′) a neutrosophic ideal of 𝑁(𝐿𝑅), where 𝑁(𝐿𝑅) is 

fully neutrosophic prime. Then from Lemma 3.5, it is proved that (𝑁(𝐼))2 is neutrosophic ideal in 

𝑁(𝐿𝑅) , therefore (𝑁(𝐼′))2 ⊆ 𝑁(𝐼′) . Also, 𝑁(𝐼′) ⊆ (𝑁(𝐼′))2 . Consequently, (𝑁(𝐼′))2 = 𝑁(𝐼′)  this 

implies 𝑁(𝐼′) is idempotent. Conversely, assume that set ideal(𝑁(𝐿𝑅)) is totally ordered under the 

inclusion and each ideal becomes idempotent. Consider 𝑁(𝑈𝐼), 𝑁(𝑉𝐼) and 𝑁(𝑊𝐼) be neutrosophic 

ideals in 𝑁(𝐿𝑅).  Let 𝑁(𝑈𝐼) ⊡ 𝑁(𝑉𝐼)  ⊆ 𝑁(𝑊𝐼) where 𝑁(𝑈𝐼) ⊆ 𝑁(𝑉𝐼). As 𝑁(𝑈𝐼) is an idempotent 

neutrosophic ideal in 𝑁(𝐿𝑅), so 𝑁(𝑈𝐼) = (𝑁(𝑈𝐼))2= 𝑁(𝑈𝐼) ⊡ 𝑁(𝑈𝐼)  ⊆  𝑁(𝑈𝐼) ⊡ 𝑁(𝑉𝐼)  ⊆ 𝑁(𝑊𝐼). 

Hence 𝑁(𝑉𝐼)  ⊆ 𝑁(𝑊𝐼). This 𝑁(𝑊𝐼) is neutrosophic prime ideal. Similarly, on the same lines it can 

be proved that 𝑁(𝑈𝐼) and 𝑁(𝑉𝐼) are prime ideals in 𝑁(𝐿𝑅). Hence 𝑁(𝐿𝑅) is fully neutrosophic 

prime. 

Definition 3.11. Let 𝑁(𝐿𝑅)  be a neutrosophic LA-ring. 𝑁(𝑄𝐼)  a non-empty subset is called 

neutrosophic quasi ideal if 𝑁(𝑄𝐼) ⊡ 𝑁(𝐿𝑅) ∩ 𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐼) ⊆  𝑁(𝑄𝐼). 

Lemma 3.12.  If 𝑁(𝐿𝑅) is neutrosophic LA-ring. Let 𝑁(𝑅𝐼), 𝑁(𝐿𝐼) be the neutrosophic right and 

left ideal respectively. Then the intersection of 𝑁(𝑅𝐼) and 𝑁(𝐿𝐼) is a neutrosophic quasi ideal in 

𝑁(𝐿𝑅). 

Proof. From the properties of neutrosophic right and left ideals it can be written that 𝑁(𝐿𝐼) ∩

𝑁(𝑅𝐼) ⊆ 𝑁(𝑅𝐼)  and 𝑁(𝐿𝐼) ∩ 𝑁(𝑅𝐼) ⊆ 𝑁(𝐿𝐼) . Also 𝑁(𝐿𝑅) ⊡ 𝑁(𝐿𝐼) ⊆ 𝑁(𝐿𝐼)  and 𝑁(𝑅𝐼) ⊡ 𝑁(𝐿𝑅) ⊆

𝑁(𝑅𝐼). Now consider, 

(𝑁(𝐿𝐼) ∩ 𝑁(𝑅𝐼)) ⊡ 𝑁(𝐿𝑅) ∩ 𝑁(𝐿𝑅)  ⊡ (𝑁(𝐿𝐼) ∩ 𝑁(𝑅𝐼)) 

                                       ⊆ 𝑁(𝑅𝐼) ⊡ 𝑁(𝐿𝑅)  ∩ 𝑁(𝐿𝑅) ⊡ 𝑁(𝐿𝐼) 

⊆ 𝑁(𝑅𝐼) ∩ 𝑁(𝐿𝐼) 

= 𝑁(𝐿𝐼) ∩ 𝑁(𝑅𝐼). 

Result proved. 

Definition 3.13. Let 𝑁(𝐿𝑅) be neutrosophic LA-rings. 𝑁(𝐵𝐼) is neutrosophic generalized bi-ideal, 

if (𝑁(𝐵𝐼) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝐵𝐼) ⊆ 𝑁(𝐵𝐼). It is important to note that if the non-empty subset of 𝑁(𝐿𝑅) 

is a neutrosophic subLA-ring then 𝑁(𝐵) is called neutrosophic bi-ideal of 𝑁(𝐿𝑅). 

Proposition 3.14. Let 𝑒 be left identity in 𝑁(𝐿𝑅). Then each idempotent neutrosophic quasi ideal 

𝑁(𝑄𝐼) becomes a neutrosophic bi-ideal in 𝑁(𝐿𝑅). 

Proof.  𝑁(𝑄𝐼) being a neutrosophic quasi ideal is a neutrosophic subLA-ring. Consider,  

                 (𝑁(𝑄𝐼) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝑄𝐼)  ⊆ (𝑁(𝑄𝐼) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝐿𝑅) 

                      = (𝑁(𝐿𝑅) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝑄𝐼) 

= 𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐼) 

Again consider, 

      (𝑁(𝑄𝐼) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝑄𝐼) ⊆ (𝑁(𝐿𝑅) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝑄𝐼) 

                    = (𝑁(𝐿𝑅) ⊡ 𝑁(𝐿𝑅)) ⊡ (𝑁(𝑄𝐼) ⊡ 𝑁(𝑄𝐼)) 

                       = (𝑁(𝑄𝐼) ⊡ 𝑁(𝑄𝐼)) ⊡ (𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐿𝑅)) 

                                                                       = 𝑁(𝑄𝐼) ⊡ 𝑁(𝐿𝑅). 
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Therefore, (𝑁(𝑄𝐼) ⊡ 𝑁(𝐿𝑅)) ⊡ 𝑁(𝑄𝐼) ⊆ (𝑁(𝑄𝐼) ⊡ 𝑁(𝐿𝑅)) ∩ (𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐼)) ⊆ 𝑁(𝑄𝐼). Hence 

proved. 

Theorem 3.15. 𝑁(𝑄𝐼′), 𝑁(𝑄𝐼′′) be neutrosophic quasi ideals in neutrosophic LA-rings 𝑁(𝐿𝑅). Then 

the intersection of 𝑁(𝑄′) ∩ 𝑁(𝑄′′) is empty or neutrosophic quasi ideal of 𝑁(𝐿𝑅). 

Proof. Consider  𝑁(𝐿𝑅)  ⊡ [𝑁(𝑄𝐼′) ∩ 𝑁(𝑄𝐼′′)] ∩ [𝑁(𝑄𝐼′) ∩ 𝑁(𝑄𝐼′′)] ⊡ 𝑁(𝐿𝑅) 

                            = [𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐼′)  ∩ 𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐼′′)] ∩ [𝑁(𝑄𝐼′) ⊡ 𝑁(𝐿𝑅) ∩  𝑁(𝑄𝐼′′) ⊡ 𝑁(𝐿𝑅)] 

                            = [𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐼′)  ∩ 𝑁(𝑄𝐼′) ⊡ 𝑁(𝐿𝑅)] ∩ [𝑁(𝐿𝑅) ⊡ 𝑁(𝑄𝐼′′) ∩  𝑁(𝑄𝐼′′) ⊡ 𝑁(𝐿𝑅)] 

                                  ⊆ 𝑁(𝑄𝐼′) ∩  𝑁(𝑄𝐼′′). 

This complete the result.  

Remark 3.16. It can be concluded from Theorem 3.15, that the intersection of neutrosophic quasi 

ideals in 𝑁(𝐿𝑅) is empty or neutrosophic quasi ideal. 

 

4. Neutrosophic Systems in Neutrosophic LA-ring  

In this section of paper, we explore Neutrosophic 𝑀 -system, Neutrosophic 𝑃 -system and 

Neutrosophic 𝐼-system in neutrosophic LA-rings.  

Definition 4.1. For 𝑚′ + 𝑛′𝐼, 𝑝′ + 𝑞′𝐼 ∈ 𝑀′, an element 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅)  and if 𝑚′ + 𝑛′𝐼 ⊡

(𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ + 𝑞′𝐼) ⊆ 𝑀′, then 𝑀′  is called a Neutrosophic 𝑀-system, where 𝑀′  is non-empty 

subset of 𝑁(𝐿𝑅). 

Example 4.2. One can easily check that in a neutrosophic LA-rings having left identity, (𝑁(𝐿𝑅),⊡)  

being a neutrosophic LA-semigroup becomes a neutrosophic 𝑀-system. 

Definition 4.3. A neutrosophic left ideal 𝑁(𝐿𝐼)  of  neutrosophic LA-rings is neutrosophic 

quasi-prime if for any neutrosophic left ideals 𝑆(𝐿𝐼) and 𝑇(𝐿𝐼), 𝑆(𝐿𝐼) ⊡ 𝑇(𝐿𝐼) ⊆ 𝑁(𝐿𝐼) gives either 

𝑆(𝐿𝐼) ⊆ 𝑁(𝐿𝐼) or 𝑇(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). While 𝑁(𝐿𝐼) is said to be a neutrosophic quasi-semiprime if for 

any neutrosophic left ideal 𝑆(𝐿𝐼), (𝑆(𝐿𝐼))2 ⊆ 𝑁(𝐿𝐼) ⇒ 𝑆(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). 

Proposition 4.4. In a neutrosophic LA-ring 𝑁(𝐿𝑅)  having left identity, following claims are 

equivalent: 

(i) 𝑁(𝐿𝐼) is a neutrosophic quasi-prime. 

(ii) 𝑆(𝐿𝐼) ⊡ 𝑇(𝐿𝐼) = 〈𝑆(𝐿𝐼) ⊡ 𝑇(𝐿𝐼)〉 ⊆ 𝑁(𝐿𝐼)  means either 𝑆(𝐿𝐼) ⊆ 𝑁(𝐿𝐼)  or 𝑇(𝐿𝐼) ⊆

𝑁(𝐿𝐼). 

(iii) If 𝑆(𝐿𝐼) ⊈ 𝑁(𝐿𝐼) and 𝑇(𝐿𝐼) ⊈ 𝑁(𝐿𝐼), then 𝑆(𝐿𝐼) ⊡ 𝑇(𝐿𝐼) ⊈ 𝑁(𝐿𝐼). 

(iv) If 𝑟′ + 𝑠′𝐼, 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝑅)  but 𝑟′ + 𝑠′𝐼, 𝑙′ + 𝑚′𝐼 ∉ 𝑁(𝐿𝐼)  then 〈𝑟′ + 𝑠′𝐼〉 ⊡

〈𝑙′ + 𝑚′𝐼〉 ⊈ 𝑁(𝐿𝐼), then either 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼) or 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝐼). 

(v) If 𝑟′ + 𝑠′𝐼, 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝑅)  such that 𝑟′ + 𝑠′𝐼 ⊡ (𝑁(𝐿𝑅) ⊡ 𝑙′ + 𝑚′𝐼) ⊆ 𝑁(𝐿𝐼),  then 

either 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼) or 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝐼).  

Proof.  (i)⟺(ii) Suppose 𝑁(𝐿𝐼) is a neutrosophic quasi-prime. Then it is quite clear from definition 

that if 𝑆(𝐿𝐼) ⊡ 𝑇(𝐿𝐼) = 〈𝑆(𝐿𝐼) ⊡ 𝑇(𝐿𝐼)〉 ⊆ 𝑁(𝐿𝐼), then either 𝑆(𝐿𝐼) ⊆ 𝑁(𝐿𝐼)or 𝑇(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). 

Converse can be proved directly. 

(ii)⟺(iii) obvious from given information. 

(i) ⟹ (iv) Assume 〈𝑟′ + 𝑠′𝐼〉 ⊡ 〈𝑙′ + 𝑚′𝐼〉 ⊆ 𝑁(𝐿𝐼),  this means 〈𝑟′ + 𝑠′𝐼〉 ⊆ 𝑁(𝐿𝐼)  or 〈𝑙′ + 𝑚′𝐼〉 ⊆

𝑁(𝐿𝐼), which further means 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼) or 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝐼). 

(iv)⟹(ii) Assume 𝑆(𝐿𝐼) ⊡ 𝑇(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). If 𝑟′ + 𝑠′𝐼 ∈ 𝑆(𝐿𝐼) and 𝑙′ + 𝑚′𝐼 ∈ 𝑇(𝐿𝐼), then 〈𝑟′ + 𝑠′𝐼〉 ⊡

〈𝑙′ + 𝑚′𝐼〉 ⊆ 𝑁(𝐿𝐼).  Thus from hypothesis 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼)  or 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝐼).  Hence either 
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𝑆(𝐿𝐼) ⊆ 𝑁(𝐿𝐼) or 𝑇(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). 

(i)⟺(iv) Assume 𝑟′ + 𝑠′𝐼 ⊡ (𝑁(𝐿𝑅) ⊡ 𝑙′ + 𝑚′′𝐼) ⊆ 𝑁(𝐿𝐼), then 𝑁(𝐿𝑅) ⊡ [𝑟′ + 𝑠′𝐼 ⊡ (𝑁(𝐿𝑅) ⊡ 𝑙′ +

𝑚′𝐼)] ⊆ 𝑁(𝐿𝑅) ⊡ 𝑁(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). Now applying medial law and paramedical law, we conclude that 

𝑁(𝐿𝑅) ⊡ [𝑟′ + 𝑠′𝐼 ⊡ (𝑁(𝐿𝑅) ⊡ 𝑙′ + 𝑚′𝐼)] = (𝑁(𝐿𝑅) ⊡ 𝑟′ + 𝑠′𝐼) ⊡ (𝑁(𝐿𝑅) ⊡ 𝑙′ + 𝑚′𝐼) ⊆ 𝑁(𝐿𝐼). As 

𝑁(𝐿𝑅) ⊡ 𝑟′ + 𝑠′𝐼 and 𝑁(𝐿𝑅) ⊡ 𝑙′ + 𝑚′𝐼 are neutrosophic left ideals, this means 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼) or 

𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝐼). Converse is trivial. 

Theorem 4.5. If 𝑒 is a left identity in 𝑁(𝐿𝑅), then a neutrosophic left ideal 𝑁(𝐿𝐼) is neutrosophic 

quasi-prime iff 𝑁(𝐿𝑅)\𝑁(𝐿𝐼) is neutrosophic 𝑀-system. 

Proof. Suppose 𝑁(𝐿𝐼)  is neutrosophic quasi-prime. Assume 𝑟′ + 𝑠′𝐼,   𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝑅)\𝑁(𝐿𝐼). 

Which means 𝑟′ + 𝑠′𝐼 ∉ 𝑁(𝐿𝐼)  and 𝑙′ + 𝑚′𝐼 ∉ 𝑁(𝐿𝐼).  Therefore by Proposition 4.4, 𝑟′ + 𝑠′𝐼 ⊡

(𝑁(𝐿𝑅) ⊡ 𝑙′ + 𝑚′𝐼) ⊈ 𝑁(𝐿𝐼).  It means there is some element (𝑝′ + 𝑞′𝐼) ∈ 𝑁(𝐿𝑅)  such that 𝑟′ +

𝑠′𝐼 ⊡ (𝑝′ + 𝑞′𝐼 ⊡ 𝑙′ + 𝑚′𝐼) ⊈ 𝑁(𝐿𝐼)  which further implies 𝑟′ + 𝑠′𝐼 ⊡ (𝑝′ + 𝑞′𝐼 ⊡ 𝑙′ + 𝑚′𝐼) ⊆

𝑁(𝐿𝑅)\𝑁(𝐿𝐼).  Therefore 𝑁(𝐿𝑅)\𝑁(𝐿𝐼)  is a neutrosophic 𝑀 -system. Conversely assume that 

𝑁(𝐿𝑅)\𝑁(𝐿𝐼)  is a neutrosophic 𝑀 -system. Let 𝑟′ + 𝑠′𝐼 ⊡ (𝑁(𝐿𝑅) ⊡ 𝑙′ + 𝑚′𝐼) ⊆ 𝑁(𝐿𝐼)  and 𝑟′ +

𝑠′𝐼 ∉ 𝑁(𝐿𝐼)  and 𝑙′ + 𝑚′𝐼 ∉ 𝑁(𝐿𝐼).  This means 𝑟′ + 𝑠′𝐼, 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝑅)\𝑁(𝐿𝐼).  As by 

hypothesis  𝑁(𝐿𝑅)\𝑁(𝐿𝐼)  is a neutrosophic 𝑀 -system, so (𝑝′ + 𝑞′𝐼) ∈ 𝑁(𝐿𝑅)  and 𝑟′ + 𝑠′𝐼 ⊡

(𝑝′ + 𝑞′𝐼 ⊡ 𝑙′ + 𝑚′𝐼) ⊆ 𝑁(𝐿𝑅)\𝑁(𝐿𝐼). This implies 𝑟′ + 𝑠′𝐼 ⊡ (𝑝′ + 𝑞′𝐼 ⊡ 𝑙′ + 𝑚′𝐼) ⊈ 𝑁(𝐿𝐼), which is 

a contradiction. Thus 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼)  or 𝑙′ + 𝑚′𝐼 ∈ 𝑁(𝐿𝐼).  Hence 𝑁(𝐿𝐼)  is neutrosophic 

quasi-prime. 

Definition 4.6. A subset 𝑃′of 𝑁(𝐿𝑅) is a neutrosophic 𝑃-system, if for any 𝑝′ + 𝑞′𝐼 ∈ 𝑃′, there is 

𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅) such that 𝑝′ + 𝑞′𝐼 ⊡ (𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ + 𝑞′𝐼) ⊆ 𝑃′. 

Proposition 4.7. In a neutrosophic LA-ring 𝑁(𝐿𝑅) having left identity, given claims are equivalent: 

(i) 𝑁(𝐿𝐼) is neutrosophic quasi-semiprime. 

(ii) (𝑆(𝐿𝐼))2 = 〈(𝑆(𝐿𝐼))2〉 ⊆ 𝑁(𝐿𝐼) implies that 𝑆(𝐿𝐼) ⊆ 𝑁(𝐿𝐼),  where 𝑆(𝐿𝐼)  is a 

neutrosophic left ideal. 

(iii) For any neutrosophic left ideal 𝑆(𝐿𝐼), if 𝑆(𝐿𝐼) ⊈ 𝑁(𝐿𝐼), then (𝑆(𝐿𝐼))2 ⊈ 𝑁(𝐿𝐼). 

(iv) For any element 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅), if 〈𝑟′ + 𝑠′𝐼〉2 ⊆ 𝑁(𝐿𝐼), then 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼). 

(v) For any element 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅), 𝑝′ + 𝑞′𝐼 ⊡ (𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ + 𝑞′𝐼) ⊆ 𝑁(𝐿𝐼) ⇒  𝑟′ + 𝑠′𝐼 ∈

𝑁(𝐿𝐼). 

Proof. (i)⟺(ii) ⟺(iii) obviously by definition true. 

(i)⟹(iv). Let 〈𝑟′ + 𝑠′𝐼〉2 ⊆ 𝑁(𝐿𝐼). From hypothesis as 𝑁(𝐿𝐼) is quasi-semiprime, so 𝑟′ + 𝑠′𝐼 ⊆ 𝑁(𝐿𝐼) 

and it means 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼). 

(i)⟹(iv). Assume (𝑆(𝐿𝐼))2 = 〈(𝑆(𝐿𝐼))2〉 ⊆ 𝑁(𝐿𝐼).  Let 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼).   Then by given condition 

〈𝑟′ + 𝑠′𝐼〉2 ⊆ 𝑁(𝐿𝐼) and it means 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝐼). Hence 𝑆(𝐿𝐼) ⊆ 𝑁(𝐿𝐼). 

(i)⟺(v) Obvious. 

Theorem 4.8. If 𝑒 is a left identity in 𝑁(𝐿𝑅), then a neutrosophic left ideal 𝑁(𝐿𝐼) is neutrosophic 

quasi-semiprime iff 𝑁(𝐿𝑅)\𝑁(𝐿𝐼) is neutrosophic 𝑃-system. 

Proof. Suppose 𝑁(𝐿𝐼) is neutrosophic quasi-semiprime. Let 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐿𝑅)\𝑁(𝐿𝐼). On contrary, 

assume that 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅) and 𝑝′ + 𝑞′𝐼 ⊡ (𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ + 𝑞′𝐼) ⊆  𝑁(𝐿𝑅)\𝑁(𝐿𝐼). This means 𝑝′ +

𝑞′𝐼 ⊡ (𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ + 𝑞′𝐼) ⊆ 𝑁(𝐿𝐼).  But as 𝑁(𝐿𝐼)  is neutrosophic quasi-semiprime, so from 

Proposition 4.4, 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐿𝐼) a contradiction arise. Therefore, 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅) and 𝑝′ + 𝑞′𝐼 ⊡

(𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ + 𝑞′𝐼) ⊆  𝑁(𝐿𝑅)\𝑁(𝐿𝐼). Thus 𝑁(𝐿𝑅)\𝑁(𝐿𝐼) is a neutrosophic 𝑃-system. Now let for 
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any element 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐿𝑅)\𝑁(𝐿𝐼),  there is 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅)  and 𝑝′ + 𝑞′𝐼 ⊡ (𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ +

𝑞′𝐼) ⊆ 𝑁(𝐿𝑅)\𝑁(𝐿𝐼). Suppose 𝑝′ + 𝑞′𝐼 ⊡ (𝑁(𝐿𝑅) ⊡ 𝑝′ + 𝑞′𝐼) ⊆ 𝑁(𝐿𝐼). This means 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅) 

and 𝑝′ + 𝑞′𝐼 ⊡ (𝑟′ + 𝑠′𝐼 ⊡ 𝑝′ + 𝑞′𝐼) ⊆  𝑁(𝐿𝑅)\𝑁(𝐿𝐼). This further means that 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐿𝐼). Thus 

by Proposition 4.7 𝑁(𝐿𝐼) is a neutrosophic quasi-semiprime. 

Lemma 4.9. In a neutrosophic LA-ring 𝑁(𝐿𝑅), every neutrosophic 𝑀-system is a neutrosophic 

𝑃-system. 

Proof. Obvious from definition. 

Definition 4.10. In a neutrosophic LA-ring 𝑁(𝐿𝑅), a neutrosophic ideal 𝑁(𝐼′) is called strongly 

irreducible iff for any neutrosophic ideals 𝑆(𝐼′) and 𝑇(𝐼′), if 𝑆(𝐼′)⋂𝑇(𝐼′) ⊆  𝑁(𝐼′) implies that either 

𝑆(𝐼′) ⊆  𝑁(𝐼′) or 𝑇(𝐼′) ⊆  𝑁(𝐼′). 

Definition 4.11. For 𝑚′ + 𝑛′𝐼, 𝑝′ + 𝑞′𝐼 ∈ 𝐼′,  if (〈𝑚 + 𝑛𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉)⋂𝐼′ ≠ ∅,  then 𝐼′  is called a 

neutrosophic 𝐼-system, where 𝐼′ is a subset of 𝑁(𝐿𝑅). 

Proposition 4.12. For neutrosophic ideal 𝑁(𝐼′)  of neutrosophic LA-ring 𝑁(𝐿𝑅),  the below 

statements are equivalent: 

(i) 𝑁(𝐼′) is strongly irreducible. 

(ii) For any elements 𝑚′ + 𝑛′𝐼, 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐿𝑅)  such that 〈𝑚′ + 𝑛′𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉 ⊆  𝑁(𝐼′) 

implies that either 𝑚′ + 𝑛′𝐼 ∈ 𝑁(𝐼′) or 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐼′). 

(iii) 𝑁(𝐿𝑅)\𝑁(𝐼′) is a neutrosophic 𝐼-system. 

Proof. (i)⟹(ii). Clear from definition. 

(ii)⟹(iii). Assume that 𝑚′ + 𝑛′𝐼, 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐿𝑅)\𝑁(𝐼′)  and let (〈𝑚′ + 𝑛′𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉)⋂𝑁(𝐿𝑅)\

𝑁(𝐼′) = ∅.  This means 〈𝑚′ + 𝑛′𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉 ⊆  𝑁(𝐼′),  hence either 𝑚′ + 𝑛′𝐼 ∈ 𝑁(𝐼′)  or 𝑝′ + 𝑞′𝐼 ∈

𝑁(𝐼′) which is a contradiction. Thus (〈𝑚′ + 𝑛′𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉)⋂𝑁(𝐿𝑅)\𝑁(𝐼′) ≠ ∅. 

(iii)⟹(i).  Let 𝑆(𝐼′) and 𝑇(𝐼′) be neutrosophic ideals such that 𝑆(𝐼′)⋂𝑇(𝐼′) ⊆  𝑁(𝐼′). Assume that 

Let 𝑆(𝐼′) and 𝑇(𝐼′)  do not contained in 𝑁(𝐼′). This means there will be elements 𝑚′ + 𝑛′𝐼 ∈

𝑆(𝐼′)\𝑁(𝐼′) and 𝑝′ + 𝑞′𝐼 ∈ 𝑇(𝐼′)\𝑁(𝐼′). This further implies that 𝑚′ + 𝑛′𝐼, 𝑝′ + 𝑞′𝐼 ∈ 𝑁(𝐿𝑅)\𝑁(𝐼′). 

Hence by hypothesis (〈𝑚′ + 𝑛′𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉)⋂𝑁(𝐿𝑅)\𝑁(𝐼′) ≠ ∅, which implies that there will be an 

element 𝑟′ + 𝑠′𝐼 ∈ 〈𝑚′ + 𝑛′𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉  such that 𝑟′ + 𝑠′𝐼 ∈ 𝑁(𝐿𝑅)\𝑁(𝐼′).  It means 𝑟′ + 𝑠′𝐼 ∈

〈𝑚′ + 𝑛′𝐼〉⋂〈𝑝′ + 𝑞′𝐼〉 ⊆ 𝑆(𝐼′)⋂𝑇(𝐼′) ⊆  𝑁(𝐼′). Which further means 𝑆(𝐼′)⋂𝑇(𝐼′) ⊈  𝑁(𝐼′). Here arise 

a contradiction, hence either 𝑆(𝐼′) ⊆  𝑁(𝐼′) or 𝑇(𝐼′) ⊆  𝑁(𝐼′). Thus 𝑁(𝐼′) is strongly irreducible. 

 

 

 

5. Conclusions   

We initiated Neutrosophic LA-rings in this research work. Which will be a first attempt to enhance 

and develop non-associative area of mathematical sciences. It will open a new gateway for the 

upcoming researchers to extend this non-associative field of mathematics.  In order to look at the 

algebraic characteristics of Neutrosophic LA-rings, we studied their ideals (Neutrosophic prime 

ideals, Neutrosophic semi-prime, Neutrosophic quasi ideals and Neutrosophic bi-ideals). We 

established number of results to study the characteristic properties of Neutrosophic LA-rings. We 

explored the characterizations of Neutrosophic LA-ring by the properties of Neutrosophic 

𝑀-system, Neutrosophic 𝑃-system and Neutrosophic 𝐼-system and established number of results. 

Also, a relation is developed between neutrosophic 𝑀-system and neutrosophic 𝑃-system. In the 
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light of our findings, we may conclude that our work is going to be a good and helpful contribution 

to the study of algebraic structures based on Neutrosophic sets. Further, we are planning to work 

out the structural study of Neutrosophic LA-rings by extending it to some theoretical applications 

in Neutrosophic fuzzy algebraic structures. Particularly, Neutrosophic soft LA-rings, Neutrosophic 

LA-semirings, Neutrosophic soft LA-semirings and related structures.  
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Abstract. This paper presents a simplified form of dual simplex algorithm for solving linear 

programming problems with fuzzy and neutrosophic numbers which supplies some great benefits 

over phase 1 of traditional dual simplex algorithm. For instance, it could start with any infeasible basis 

of linear programming problems; it doesn't need any kind of artificial variables or artificial constraints, 

so the number of variables of the proposed method is less than the number of variables in the 

traditional dual simplex algorithm, therefore;  the run time for the proposed algorithm is also faster 

than the phase 1 of traditional dual simplex algorithm, and the proposed method  overcomes the 

traditional dual simplex algorithm for both the fuzzy approach and the neutrosophic approach 

according to the iterations number. We also use numerical examples to compare between the fuzzy 

and the neutrosophic approaches, the results show that the neutrosophic approach is more accurate 

than the fuzzy approach. Furthermore, the proposed algorithm overcomes the phase 1 of traditional 

dual simplex algorithm for both the fuzzy and neutrosophic approach. 

Keywords: Fuzzy Number; Neutrosophic Number; Rank Function; Dual Artificial Variable Free 

version of Simplex Method. 

 

1. Introduction 

         Linear programming is the most frequently applied operations research technique. A linear 

programming model represents real world situations with some sets of parameters determined by 

experts and decision makers while in real world applications certainty, reliability and precision are 

often illusory concepts, therefore experts and decision makers cannot determine the exact value of 

parameters, or they may not be in a position to specify the objective functions or constraints precisely. 

By implying fuzzy and neutrosophic set theory to linear programming, which leads to fuzzy and 

neutrosophic linear programming, the so-called problems are being overcome. All of this causes us to

mailto:essamelseidy@sci.asu.edu.eg
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resort to fuzzy and neutrosophic numbers that deal with uncertain information. Neutrosophic Set (NS) [62] is a 

generalization of the fuzzy set [27] and intuitionistic fuzzy set [3]; each element of set had a truth, 

indeterminacy and falsity membership functions. So, neutrosophic set can assimilate inaccurate, vague and 

maladjusted information efficiently and effectively. 

     After the pioneering work on fuzzy linear programming by Tanaka et al. [77,71] and Zimmermann [19], 

several kinds of fuzzy linear programming problems have appeared in the literatures and different methods have 

been proposed to solve such problems [16,23,29]. One important class of these methods that has been high-lighted 

by many researches is based on comparing of fuzzy numbers using ranking functions. Based on this idea, Maleki 

et al. [23] proposed a simple method for solving fuzzy number linear programming (FNLP) problems. After that, 

many various approaches appeared that deal with the vague and imprecise information such as intuitionistic 

fuzzy set and neutrosophic set.  

      Arsham [5] introduced the simplex method without using artificial variables. First, the basic feasible variable 

set (BVS) is determined to be the empty set. Then, the non-basic variable is chosen to be the basic variable one by 

one until the BVS is full. After the problem has the complete BVS, the simplex method is performed. However, 

this method has the mistake as shown by Enge and Huhn [21] in 1998.  

     Pan [24] presented the simplex algorithm by avoiding artificial variables. The algorithm starts when the 

initial basis gives primal and dual infeasible solutions by adjusting negative reduced costs to a single positive 

value. Then, the dual solution is feasible and the dual simplex method is performed. After the optimal solution 

is found in this step, the original reduced costs are restored and the simplex method is performed. 

     Abdel-Basset et.al [1] proposed the neutrosophic simplex algorithm that solves the neutrosophic linear 

programming (NLP). They introduced a comparison between fuzzy approach and neutrosophic approach by 

using numerical examples. On the other hand, their manuscript has some incorrect assumptions. 

     Akanksha Singh et.al [25] spotted some incorrect assumptions in Abdel-Basset's manuscript [1]. They 

suggested the required modifications in Abdel-Basset’s method. On the other hand, [21] used different rank 

functions to compare between fuzzy approach and neutrosophic approach, which makes this comparison  not 

fair. Therefore, in this essay, the authors emphasis use the same rank function. 

     Elsayed Badr et.al [2] proposed a novel method that deal with initial non basic solution. This method is 

called neutrosophic two-phase method and it solves the linear programming problems with neutrosophic 

numbers. They used the same rank function when they compared between fuzzy approach and neutrosophic 

approach, which makes the comparison is fair.  

For more details about the linear programming, the reader can refer to [6,7,11-13,15]. On the other hand, for 

more details about the fuzzy linear programming, the reader is referred to [2,9,10,20]. Finally, for more details 

about the neutrosophic linear programming, the reader may refer to [8]. 

     In this paper, we apply dual artificial variable-free simplex algorithm for solving linear programming 

problems with fuzzy and neutrosophic numbers, which has several advantages, for instance, it could start 

with any infeasible basis of linear programming problem. This algorithm follows the same pivoting sequence 

as of dual simplex phase 1 without showing any explicit description of artificial variables which also makes it 

space efficient. The proposed algorithm reduces the size of the problem and reduces the execution time to 

solve the problem. Then the CPU time for the proposed method is also faster than the phase 1 of traditional 

dual simplex method. So, the proposed method can reduce the computational time. We also compare between 

the neutrosophic approach and the fuzzy approach using numerical examples.  
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 The remaining parts of this work are organized as follows: In sec. 2,  the fundament concepts of fuzzy and 

neutrosophic sets have been presented, and a new technique which converts the fuzzy representation to the 

neutrosophic representation has been proposed. Akanksha Singh et al.'s modifications [25] and a new 

neutrosophic dual artificial variable-free simplex algorithm (NDAVFSA) are proposed in Sec. 3. In Sec. 4, a 

numerical example that shows the importance of the proposed modification for primal neutrosophic simplex 

method has been introduced, and the superiority of the proposed algorithm (NDAVFSA) on the primal 

neutrosophic simplex algorithm has been shown. Finally, we introduce conclusions and the future work in Sec. 

5. 

 

2. Preliminaries 

In this section, three subsections have been introduced. First one is representation of the fuzzy numbers. 

Second, the representation of the neutrosophic numbers. Finally, we show that how do to convert the fuzzy 

numbers and neutrosophic numbers to crisp number. 

 

2.1. Fuzzy Representation 

We review the fundamental notions of fuzzy set theory, initiated by Bellman and Zadeh [22]. 

2.1.1. Definition 

 A convex fuzzy set �̃� on ℝ is a fuzzy number if the following conditions hold: 

(a) Its membership function is piecewise continuous. 

(b) There exist three intervals [a, b], [b, c], [c, d] such that 𝜇�̃� is increasing on [a, b], equal to 1 on 

[𝑏, 𝑐], decreasing on [𝑐, 𝑑] and equal to 0 elsewhere. 

2.1.2. Definition 

 Let ã = (aL, aU, α, β)  denote the trapezoidal fuzzy number, where 

(aL − α, aU + β) is the support of �̃�and [aL, aU] its core. 

Remark 1: We denote the set of all trapezoidal fuzzy numbers by F (ℝ) as shown as in figure 1. 

 

Figure 1: Truth membership function of trapezoidal fuzzy number   ã 
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2.1.3. Definition 

 Let  ã = (aL, aU, α, β) and �̃� = (bL, bU, γ, θ) be two trapezoidal fuzzy numbers, the arithmetic operation on the 

trapezoidal fuzzy number are defined as: 

xã = (xaL, xaU, xα, xβ);  x > 0, x ∈ ℝ.  

xã = (xaU, xaL, −xβ, −xα);  x < 0, x ∈ ℝ. 

ã+b̃=(aL, aU, α, β)+ (bL, bU, γ, θ)= [aL + bL, aU + bU, α + γ, β + θ] 

2.2. Neutrosophic Representation 

In this subsection, some basic definitions in the neutrosophic set theory are introduced: 

2.2.1. Definition [1] 

the trapezoidal neutrosophic number Ã is a neutrosophic set in ℝ with the following truth (T), 

indeterminacy (I) and falsity (F) membership functions as shown in figure 2: 

TÃ(x) =   

{
 
 

 
 

αÃ(x−a1)

a2−a1
: a1 ≤ x ≤ a2

αÃ    : a2 ≤ x ≤ a3

αÃ(
x−a3

a4−a3
) : a3 ≤ x ≤ a4

0    otherwise

                IÃ(x) =

{
 
 

 
 

(a2−x+θÃ(x−a1
′ )

a2−a1
′ : a1

′ ≤ x ≤ a2 

θÃ          : a2 ≤ x ≤ a3
(x−a3+θÃ(a4

′−x)

a4
′−a3

: a3 ≤ x ≤ a4
′

1         otherwise

 

FÃ(x) =

{
  
 

  
 
(a2 − x + βÃ(x − a1

" ))

a2 − a1
"

: a1
" ≤ x ≤ a2 

βÃ         : a2 ≤ x ≤ a3
(x − a3 + βÃ(a4

" − x))

a4
" − a3

 : a3 ≤ x ≤ a4
"

1         otherwise

 

where αÃ, θÃ and βÃ represent the maximum degree of truthiness, minimum degree of indeterminacy and 

minimum degree of falsity, respectively, αÃ, θÃ andβÃ ∈ [0,1] 

 

Figure 2: Truth, indeterminacy and falsity membership functions of trapezoidal neutrosophic number Ã 
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2.2.2. Definition [1] 

 the mathematical operations on two trapezoidal neutrosophic numbers. Ã =< a1, a2, a3, a4; αÃ, θÃ, βÃ >  

and  �̃� =   < b1, b2, b3, b4; αB̃, θB̃, βB̃ > are as follows: 

 

Ã + B̃ =   < (a1 + b1, a2 + b2, a3 + b3, a4 + b4); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ > 

 

Ã − B̃ =   < (a1 − b4, a2 − b3, a3 − b2, a4 − b1); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ > 

 

Ã−1 =   < (
1

a4
,
1

a3
,
1

a2
,
1

a1
); αÃ, θÃ, βÃ > where Ã ≠ 0) 

 

λÃ = {
< λa1, λa2, λa3, λa4; αÃ, θÃ, βÃ > : λ > 0

< λa4, λa3, λa2, λa1; αÃ, θÃ, βÃ > : λ < 0
 

 

�̃�𝐵 =̃

{
  
 

  
 
< (a1b1, a2b2, a3b3, a4b4); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 > 0, b4 > 0) 

< (a1b4, a2b3, a3b2, a4b1); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 < 0, b4 > 0) 

< (a4b4, a3b3, a2b2, a1b1); αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 < 0, b4 < 0)

 

Ã

B̃

{
 
 
 
 
 

 
 
 
 
 < (

a1
b4
,
a2
b3
,
a3
b2
,
a4
b1
) ; αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >  

if (a4 > 0, b4 > 0)

< (
a4
b4
,
a3
b3
,
a2
b2
,
a1
b1
) ; αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >  

if (a4 < 0, b4 > 0)
 

< (
a4
b1
,
a3
b2
,
a2
b3
,
a1
b4
) ; αÃ ∧ αÃ, θÃ ∨ θÃ, βÃ ∨ βÃ >

if (a4 < 0, b4 < 0)

 

 

2.3. Transfer from Fuzzy Representation to Neutrosophic Representation [25] 

        The goal of this section is to explain how to convert fuzzy numbers representation into neutrosophic 

numbers representation. This transformation is used for simplicity and to make the comparison fair. There are 

many types of techniques to transfer from fuzzy to neutrosophic representation such as, ranking functions 

and ∝-cut technique. 

2.3.1. Definition. 

 Ranking function is a viable approach for ordering fuzzy numbers and neutrosophic numbers. It is known 

that there are many ranking functions for ordering the fuzzy numbers and neutrosophic numbers.  

         In this subsection, we explain how to apply technique to convert from fuzzy number to neutrosophic 

number:  

From Figure 1 and Figure 2 we can illustrate the following relations between the two representations: 

                  𝑎1 = 𝑎2 − 𝛼, 𝑎2 =  𝑎
𝐿, 𝑎3 = 𝑎𝑈 𝑎𝑛𝑑 𝑎4 = 𝑎3 + 𝛽                                                         (1) 
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Assuming that the ranking function is used for ordering the fuzzy numbers as follows: 

                                   𝑅(�̃�) =
𝑎𝐿+𝑎𝑈

2
+

𝛽−𝛼

4
                                                                                          (2) 

𝛽 − 𝛼= 𝑎4 − 𝑎3 − (𝑎2 − 𝑎1) = 𝑎4 − 𝑎3−𝑎2 + 𝑎1 

𝑅(�̃�) =
𝑎2+𝑎3

2
+

𝑎4−𝑎3−𝑎2+𝑎1

4
 = 

𝑎2+𝑎3+𝑎4+𝑎1

4
 

From the relations (1) & (2) we can express the rank function is used for ordering the neutrosophic numbers as 

follows: 

                                    𝑅(�̃�) =
1

4
∑ �̃�𝑖
4
𝑖=1 + (𝑇�̃� − 𝐼�̃� − 𝐹�̃�)                                                                 (3) 

From (1), we can convert fuzzy numbers representation into neutrosophic numbers representation. On the 

other hand from (2) and (3), we can use the same function for both fuzzy numbers and neutrosophic numbers 

to obtain a fair comparison between them. 

(i) Assuming    that        𝑇𝐴 = 1,         𝐼𝐴 = 0 ,        �̃�𝐴 = 0 ,    then   the  TrNN  �̃� =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 >          

equal to number �̃� =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > and hence, in this case, 

 

           The expression 𝑅(�̃�) =
1

4
∑ 𝑎𝑖
4
𝑖=1 + (𝑇�̃� − 𝐼�̃� − 𝐹�̃�)  is equivalent to the expression  

                                                  𝑅(�̃�) =
1

4
∑ �̃�𝑖
4
𝑖=1 +  1  

(ii) Furthermore, it is well known the fact that if 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 then the trapezoidal neutrosophic 

number �̃� =< 𝑎1, 𝑎2, 𝑎3, 𝑎4; 1,0,0 > will be transformed into a real number A = (a, a, a, a; 1, 0, 0) and 

hence, in this case, the expression 𝑅(�̃�) =
1

4
∑ 𝑎𝑖
4
𝑖=1 + (𝑇�̃� − 𝐼�̃� − 𝐹�̃�)  is equivalent to the expression  

𝑅(𝐴) = 𝑎 + 1 ≠ 𝑎 

 

        The following table represents the fuzzy ranking function, and the corresponding neutrosophic  

ranking function and the corresponding real ranking function. 

 

Table 1: fuzzy ranking function into it’s corresponding neutrosophic ranking function 

Fuzzy Rank Function 
Corresponding Neutrosophic 

Rank Function 

Corresponding Real Rank 

function of constraints 

𝑅(�̃�) = (
𝑎𝑙 + 𝑎𝑢

2
+
𝛽 − 𝛼

4
) 𝑅(�̃�) =

1

4
∑𝑎𝑖

4

𝑗=1

+ (𝑇�̃� − 𝐼�̃� − 𝐹�̃�) 
 

𝑅(𝑎) = 𝑎 + 1 

 

3.  Algorithms 

 

           In this section; firstly, we present Akanksha Singh et al.'s modifications [25] and the proposed 

modification about the mathematical incorrect assumptions, considered by Abdel-Basset et al. [1] in their 

proposed method to convert from neutrosophic numbers into real numbers.  Secondly, we propose a new 

fuzzy dual artificial variable free simplex algorithm. Finally, we develop this algorithm in order to solve linear 

programming with neutrosophic numbers (neutrosophic dual artificial variable free simplex algorithm). 
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3.1. Akanksha Singh et al.'s modifications [25] 

 

The following table presents Akanksha Singh et al.'s modifications to convert from neutrosophic number to 

crisp number. 

Table 2: Akanksha Singh et al.'s modifications. 

No NLPP- (Type) NLPP- (Form) Exact Crisp LPP 

1 

The coefficients of the 

objective function are 

represented by 

trapezoidal 

neutrosophic numbers 

𝑀𝑎𝑥\Min  [∑ = �̃�𝑗𝑥𝑗
𝑛
𝑗=1 ]    

s. t       
∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , 𝑏𝑗   ,
𝑛
𝑗=1   𝑖 =

 1,2, …… ,𝑚; 𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

𝑀𝑎𝑥 /𝑀𝑖𝑛 [∑ 𝑅(�̃�𝑗𝑥𝑗)
𝑛
𝑗=1 −∑ 𝑇𝑐�̃�𝑥𝑗

𝑛
𝑗=1 + ∑ 𝐼𝑐�̃�𝑥𝑗

𝑛
𝑗=1 +

∑ 𝐹𝑐̃𝑗𝑥𝑗 +
𝑛
𝑗=1 min

1≤𝑗≤𝑛
{𝑇𝑐�̃�𝑥𝑗} −  max1≤𝑗≤𝑛

{𝐼𝑐�̃�𝑥𝑗} −

max
1≤𝑗≤𝑛

{𝐹𝑐�̃�𝑥𝑗}]  

    𝑠. 𝑡.   ∑ 𝑎𝑖𝑗𝑥𝑗  ≤ , ≥ , = 𝑏𝑗   ,   𝑖 = 1,2, …… ,𝑚;
𝑛
𝑗=1  

    𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

2 

The coefficients of 

constraints variables 

and right hand side 

are represented by 

trapezoidal 

neutrosophic 

numbers 

 

𝑀𝑎𝑥\Min  [∑ = cjxj
n
j=1 ] 

s. t. 
∑ �̃�𝑖𝑗𝑥𝑗  ≤ , ≥ , = �̃�𝑗   ,     
𝑛
𝑗=1        

𝑖 =  1,2, …… ,𝑚;    𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

 

Max / Min ∑ cjxj
n
j=1  

s. 𝑡.     [∑ R(ãijxj)
n
j=1 − ∑ Tãijxj

n
j=1 + ∑ Iãijxj

n
j=1 +

∑ Fãijxj +
n
j=1 min

1≤j≤n
{Tãijxj} − max

1≤j≤n
{Iãijxj} −

max
1≤j≤n

{Fãijxj}] ≤,≥,= R(b̃i) 

𝑥𝑗 ≥ 0 , 𝑗 = 1,2, …… , 𝑛. 

3 

 

All parameters are 

represented by 

trapezoidal 

neutrosophic 

numbers, except 

variables are 

exemplified only by 

real values 

𝑀𝑎𝑥\Min [∑ = �̃�𝑗𝑥𝑗
𝑛
𝑗=1 ] 

s. t. 
∑ ãijxj  ≤ , ≥ , = b̃j  ,   
n
j=1   

𝑖 =  1,2, …… ,𝑚; 𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

 
𝑀𝑎𝑥 /𝑀𝑖𝑛 [∑ 𝑅(�̃�𝑗𝑥𝑗)

𝑛
𝑗=1 −∑ 𝑇𝑐�̃�𝑥𝑗

𝑛
𝑗=1 + ∑ 𝐼𝑐�̃�𝑥𝑗

𝑛
𝑗=1 +

∑ 𝐹𝑐̃𝑗𝑥𝑗 +
𝑛
𝑗=1 min

1≤𝑗≤𝑛
{𝑇𝑐�̃�𝑥𝑗} −  max1≤𝑗≤𝑛

{𝐼𝑐�̃�𝑥𝑗} −

max
1≤𝑗≤𝑛

{𝐹𝑐�̃�𝑥𝑗}]  

  s. t. 
  (∑ 𝑅(ãij)xj) + 1 ≤ , ≥ , = R(b̃j)  ,   i = 1,2, …… ,m;

n
j=1  

   xj ≥ 0 , j = 1,2, …… , n. 

4 

The coefficients of 

objective function 

and constraints 

variables are 

represented by real 

numbers and right 

hand side are 

represented by 

trapezoidal 

neutrosophic 

numbers 

 

𝑀𝑎𝑥\Min   [∑ = cjxj
n
j=1 ] 

                          s. t.               
∑ aijxj  ≤ , ≥ , = b̃j  ,   
n
j=1   

𝑖 =  1,2, …… ,𝑚; 𝑥𝑗 ≥ 0 ,  

j = 1,2, …… , 𝑛. 

Max / Min ∑ cjxj
n
j=1  

s. 𝑡.   

 

  R[∑ (aijxj)
n
j=1 ] ≤,≥,= R(b̃i) 

𝑥𝑗 ≥ 0 , 𝑗 = 1,2,…… , 𝑛. 
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Remark 2:  

- If 𝑅(𝑎) = 𝑎 + 1 and the coefficients of the objective function & constraints variables are real, then the 

fuzzy   linear programming problem is equivalent to the neutrosophic linear programming problem. 

- ~ : represents the presence of neutrosophic numbers within the matrices or vectors. 

- NLPP: neutrosophic linear programming problem. 

 

3.2. A novel Neutrosophic Dual Artificial Variable Free Simplex Algorithm. 

Nayatullah et al [22] proposed a streamlined artificial variable free version of simplex algorithm 

(AVFSA) for solving the linear programming problems with real numbers. In this section, we propose a new 

algorithm which solves linear programming with neutrosophic numbers (Neutrosophic Dual Artificial 

Variable-Free Simplex Algorithm NDAVFSA). The proposed algorithm overcame traditional neutrosophic 

dual simplex algorithms. 

 

Algorithm 1: Neutrosophic Dual Artificial variable -Free Simplex Algorithm  (NDAVFSA) 

Step 0: (Initialization) 

 Converting fuzzy numbers into neutrosophic numbers according to Section 2.3.1 [25] 

 Apply Akanksha Singh et al.'s modifications according to Section 3.1 

Step 1: Let 𝐾  be a maximal subset of �̃� such that  �̃�  =  { 𝑗 ∶  𝑑0𝑗  <  0 , 𝑗 𝜖 𝑁}. If 𝐾  = φ then 𝐷(�̃�) is dual feasible. 

Exit. 

Step 2: Denote the basic variables 𝑦𝑘  by −𝑦𝑘
−and compute dual infeasibility objective vector    𝑊′(�̃�) 𝜖 𝑅�̃� such 

that  𝑤′
𝑖 = ∑ 𝑑𝑖𝑗𝑗∈𝑘 ,  𝑖 ∈  �̃� . Place 𝑤′ to the right of the dictionary 𝐷(�̃�). 

Step 3: Let �̃�  ⊆  �̃� such that �̃�  =  { 𝑖: 𝑤𝑖
′ <  0, 𝑖 ∈  �̃� }. If �̃�  =  𝜑 then 𝐷(�̃�) is dual inconsistent. Exit. 

Step 4: (Choice of entering variable)  

             Choose r ∈ �̃� such that 𝑤𝑟 
′ ≤ 𝑤𝑖  

′ ∀ 𝑖 ∈   �̃� (Ties are broken arbitrarily) 

Step 5: (Choice of leaving variable) 

             Choose 𝑘1 ∈  𝐾 and  𝑘2 ∈  𝑁 \ 𝐾 such that: 

 𝑘1= arg max {{ 
𝑑0𝑗

𝑑𝑟𝑗
⎸(𝑑0𝑗 ≤ 0, 𝑑𝑟𝑗 > 0)}, 𝑗 ∈ 𝐾 } 

𝑘2= arg max {{ 
𝑑0𝑗

𝑑𝑟𝑗
⎸(𝑑0𝑗 ≥ 0, 𝑑𝑟𝑗 < 0)}, 𝑗 ∈ 𝑁 \ 𝐾 }                         Set  �̃�: = arg max {

𝑑0𝑘1

�̃�𝑟𝑘1
 ,
𝑑0𝑘2

𝑑𝑟𝑘2
 } 

Step 6: Make a pivot on (𝑟, 𝑘) (⇒ Set �̃� ∶=  (�̃�  ∪  {𝑘})\{𝑟}, 𝑁 ∶=  (𝑁  ∪   {𝑟})\{𝑘} and update 𝐷(�̃�)        

             along with the appended 𝑤′(�̃�)). 

Step 7: If 𝑘 ∈ 𝐾, set 𝐾: = 𝐾\ {𝑘} and 𝑤𝑘
′ : = 𝑤𝑘

′+ 1, replace notation of −𝑦𝑘
− by 𝑦𝑘  

Step 8: Pivot operation 

For 𝑟 ∈  �̃�, 𝑘 ∈  𝑁 and (𝑟, 𝑘) being the position of the pivot element 𝑑𝑟𝑘 (≠ 0) of 𝐷, then one can obtain 

an updated equivalent short table 𝐷(�̃�’) with a new basis �̃�’ ∶ =  (�̃�  ∪ {𝑘})\{𝑟} and the new non-basis 

𝑁′ ∶=  (𝑁  ∪  {𝑟})\{𝑘} by performing the following operations on 𝐷(�̃�). 

𝑑′𝑟𝑘 ≔
1

𝑑𝑟𝑘
 

𝑑′𝑟𝑗 ≔
𝑑𝑟𝑗

𝑑𝑟𝑘
, 𝑗 ∈ 𝑁\{𝑘} 

𝑑′𝑖𝑘 ≔ −
𝑑𝑖𝑘
𝑑𝑟𝑘

, 𝑖 ∈ �̃�\{𝑟} 

𝑑′𝑖𝑗 ≔ 𝑑𝑖𝑗 − 𝑑𝑟𝑗 ×
𝑑𝑖𝑘
𝑑𝑟𝑘

, 𝑖 ∈ �̃�\{𝑟}, 𝑗 ∈ 𝑁\{𝑘} 
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The above replacement is known as a pivot operation on (𝑟, 𝑘). 

Step 9: If  𝐾 = 𝜑, then 𝐷(�̃�) is dual feasible. Exit. 

             Otherwise, go to step 3. 

Step 10: If phase 1 ends with an objective value equal to zero, it implies that all artificial variables have  

               attained a value zero (means all infeasibilities have been removed) and our current basis is feasible to 

the original problem, then we return to the original objective and proceed with simplex phase 2. 

Otherwise, we conclude that the problem has no solution. 

 

4. Numerical Examples and Results Analysis 

    

   In this study, we solve well-known fuzzy and neutrosophic linear programming problem that 

presented in [28] with the traditional and proposed method.  

 

 

 

 

P1 

𝑀𝑎𝑥 �̃� = (1,5,2,4)𝑥1 + (10,12,2,6)𝑥2 
   𝑠. 𝑡. 

    3𝑥1 + 10𝑥2 ≤ 10 
     𝑥1 − 𝑥2 ≥ 2 
        𝑥1, 𝑥2 ≥ 0 

 

 

        

In the upcoming two subsections, problem P1 will be solved using fuzzy & neutrosophic dual artificial 

variable-free simplex method respectively, uses the same rank function and compare between the results. 

 

4.1. Solving (𝑷𝟏)  using Fuzzy Dual Artificial Variable-Free Simplex Method 

      Putting 𝑷𝟏 in the standard dual form, we have: 

 

 

 

 

 
𝑀𝑖𝑛 �̃� = (−5,−1,4,2)𝑥1 + (−12,−10,6,2)𝑥2 
   𝑠. 𝑡. 
    3𝑥1 + 10𝑥2 + 𝑥3 = 10 
       −𝑥1 + 𝑥2              + 𝑥4 = −2 
        𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

 

 

 

 

       

D1 

By adding non-negative slack variables𝑥3, 𝑥4, the associated short table of D1 can be constructed as shown 

below. The dual variables 𝑦3, 𝑦4 have been demonstrated explicitly as it is required to observe dual variables 

too. 

        Here y is the dual objective variable. Objective coefficients (z) of primal non basic variables are the values 

of dual basic variables, and values of primal basic variables are coefficients of dual non-basic variables in dual 

objective. 

 

 

 
  𝐛                   𝐱𝟏                          𝐱𝟐        
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𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 
 0    (−5,−1,4,2)   (−12,−10,6,2)   

10       3 10

−2      −1 1

       −y1
′ −y2

′ ]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

Here k = {1, 2}, replace −𝑦𝑘
−→ 𝑦𝑘  

 

 
  𝐛                   𝐱𝟏                          𝐱𝟐                           𝐰′ 

𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 

       

0    (−5, −1,4,2)   (−12,−10,6,2)   (11,17,4,10)

10       3 ∗ 10 −13

−2      −1 1 0

       −y1
′ −y2

′

  

]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

 

Initial table: 

Here B = {3, 4} and N = {1, 2}, according to most negative dual coefficient rule k = 1, so leaving dual basic 

variable is  𝑦1  and according to artificial variable free dual minimum ratio test r = 3, the entering dual basic 

variable is ‘𝑦3‘. Perform the pivot operation on (3, 1). 

Replace −𝑦1
−→y1, k = {1, 2}\ {1} = {2},  𝑤′

1 := 𝑤′
1 + 1. 

 
                           𝐛                                 𝐱𝟑                              𝐱𝟐                                   𝐰′ 

𝐳

𝐱𝟏

𝐱𝟒
 

[
 
 
 
 
 
(5,4,6,104/3)    (−3,−5,6,80/3)   (−1, −3,4,32/3)   (−1, −3,4,32/3)

10/3       1/3 10/3 −10/3

4/3      1/3 13/3 ∗ −13/3

       y3 −y2
′

  

]
 
 
 
 
 
𝐲𝟏

𝐲𝟒
 

Iteration 2: 

Here, k = 2 and r = 4perform pivot operation on (4, 2). 

Since k 𝜖 k, replace−𝑦2
−→𝑦2; k = {2}\ {2} = {},  𝑤′

2 := 𝑤′
2 + 1.  

 
                                       𝐛                                           𝐱𝟑                                 𝐱𝟒                                   𝐰′ 

𝐳

𝐱𝟏

𝐱𝟐
 

[
 
 
 
 
 
(4,16, −3,53/13)    (7,9,20, −94/13)   (1/5,1/3, −1/3, −71/65)   0

30/13       1/13 −10/13 0

4/13      1/13 3/13 0

       y3     y4 −

  

]
 
 
 
 
 
𝐲𝟏

𝐲𝟐
 

 

Dual feasibility is achieved; the complementary dual feasible solution is  

(𝑥1, 𝑥2) = (30/13, 4/13). 

 

Resolve (𝑃1) using neutrosophic dual artificial variable-free simplex method uses the same rank function and 

we will compare between them. 

 

4.2.  Solving (𝑷𝟏) using Neutrosophic Dual Artificial Variable-Free Simplex method 
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First: We will convert the fuzzy numbers into neutrosophic numbers. Then, using the following rank function: 

𝑅(�̌�) =
1

4
∑�̃�𝑖

4

𝑖=1

+ (𝑇�̃� − 𝐼�̃� − 𝐹�̃�) 

𝑀𝑖𝑛 �̃� = 𝑅[(−1,1,5,9)]𝑥1 + 𝑅[8,10,12,18]𝑥2 
𝑠. 𝑡. 
      3𝑥1 + 10𝑥2 ≤ 10 
      𝑥1 − 𝑥2 ≥ 2 
         𝑥1, 𝑥2 ≥ 0 

 

 

 

D1 

𝑀𝑖𝑛 𝑧 = 9/2𝑥1 + 13𝑥2 − 1 
𝑠. 𝑡. 
      3𝑥1 + 10𝑥2 ≤ 10 
      𝑥1 − 𝑥2 ≥ 2 
         𝑥1, 𝑥2 ≥ 0 

 

 

 

D2 

Putting (D2) in the standard form: 
𝑀𝑖𝑛 𝑧 = 9/2𝑥1 + 13𝑥2 − 1 
𝑠. 𝑡. 
      3𝑥1 + 10𝑥2 + 𝑥3 = 10 
      −𝑥1 + 𝑥2             +𝑥4 = −2 
                   𝑥1, 𝑥2 ≥ 0 

  𝐛           𝐱𝟏         𝐱𝟐 
𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 
 0   −9/2   −13  

10       3 10

−2      −1 1

         −y1
′ −y2

′ ]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

Here k = {1, 2}, replace −𝑦𝑘
−→ 𝑦𝑘  

 𝐛            𝐱𝟏          𝐱𝟐       𝐰′ 
𝐳

𝐱𝟑

𝐱𝟒
 

[
 
 
 
 
 

  

0     −9/2   −13  35/2

10     3 10 ∗ −13

−2     −1 1 0

      −y1
′ −y2

′ ]
 
 
 
 
 
𝐲𝟑

𝐲𝟒
 

Initial table: 

Here B = {3, 4} and N = {1, 2}, according to most negative dual coefficient rule k = 2, so leaving dual basic 

variable is  𝑦2  and according to artificial variable-free dual minimum ratio test r = 3, the entering dual basic 

variable is ‘𝑦3‘. Perform the pivot operation on (3, 1). 

Replace −𝑦2
−→𝒚𝟐, k = {1, 2}\ {2} = {1},  𝑤′

2 := 𝑤′
2 + 1. 

 
                                                            𝐛          𝐱𝟏              𝐱𝟑            𝐰′ 

𝐳

𝐱𝟐

𝐱𝟒
 

[
 
 
 
 
 
13  −3/5   13/10     3/5

1     3/10 ∗ 1/10 −3/10

−3     −13/10 −1/10 13/10

       −y1
′ y3 ]

 
 
 
 
 
𝐲𝟐

𝐲𝟒
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Iteration 2: 

Here, k = 1 and r = 2 perform pivot operation on (2, 1). Since k 𝜖 k, replace−𝑥1
−→x1; k = {1}\ {1} = {}𝑤′

1 := 𝑤′
1 + 

1. 

  
𝐛         𝐱𝟏       𝐱𝟑    𝐰′ 

𝐳

𝐱𝟏

𝐱𝟒
 

[
 
 
 
 
 
15  2   3/2    0

10/3     10/3 1/3     0

4/3     13/3 1/3     0

       y1 y3 ]
 
 
 
 
 
𝐲𝟏

𝐲𝟒
 

 

Dual feasibility is achieved; the complementary dual feasible solution is 

(𝑥1,𝑥2)= (10/3, 0). 

  

𝑀𝑎𝑥 𝑧 = 9/2 𝑥1 + 13 𝑥2 − 1 =  15 −1= 14 

 

                        Table 3: A comparison between two-phase algorithm, Fuzzy and Neutrosophic DAVFSA 

 
Two-Phase Simplex 

Algorithm 

Fuzzy Dual Art 

Simplex Algorithm 

Neutrosophic Dual Art 

Simplex Algorithm 

no 

(iteration) 
5 3 3 

𝐙 11.8 11.8 14 

𝐱𝟏 30/13 30/13 10/3 

𝐱𝟐 4/13 4/13 0 

 

 In table 3, a good comparisons have been made between two-phase simplex algorithm, fuzzy dual 

artificial variable-free simplex algorithm and neutrosophic dual artificial variable-free simplex 

algorithm; we noticed that the neutrosophic approach is more accurate than the fuzzy approach. On the 

other hand, the proposed algorithm overcomes the traditional two phase simplex algorithm for both 

the fuzzy approach and the neutrosophic approach according to the iterations number. 

 

 

Conclusion 

In this work, a new algorithm (Dual Artificial Variable-Free Simplex Algorithm) has been proposed, 

which solves linear programming problems with fuzzy and neutrosophic numbers. In this algorithm, the 

artificial variables are virtually present but their presence is not revealed to the user in the form of extra 

columns in the simplex table.  It also follows the same pivoting sequence as of simplex phase 1 without 

showing any explicit description of artificial variables or artificial constraints but it could be easily seen that 

numbers of computations are noticeably reduced and the proposed algorithm overcame the traditional 

simplex algorithm for both the neutrosophic approach and the fuzzy approach according to the iterations 

number.  We also compared between the neutrosophic approach and the fuzzy approach using numerical 

examples. Finally, the numerical examples show that the neutrosophic approach is more accurate than the 
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fuzzy approach. In future work, we propose new hybrid methods such as using the cosine simplex method for 

phase 2 or using a traditional simplex algorithm for phase 2 while phase 1 uses the proposed method was 

proposed in this paper. We expect that these hybrid methods may overcome the traditional method.   
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Abstract: Supply Chain is a multi-objective decision-making problem with multiple conflicting 

objective functions related to each supply chain operation and its corresponding sub-criteria. The 

main focus of this paper is the development of a model that takes into account some important 

components of real-world supply chain planning. To do so, we proposed a supply chain model that 

involves multiple suppliers, multiple plants, multiple warehouses, and multiple distributors firms. 

This approach is designed to tackle a complex multi-site composite supply chain issue under 

uncertainty as a fuzzy multi-objective model with the primary objective to optimize the 

transportation cost and delivery time simultaneously. We have used neutrosophical set theory to 

tackle the ambiguity related to supply chain by using truth, indeterminacy and falsity membership 

functions and, finally neutrosophical compromise programming approach has been used for 

obtaining the desired solution. In order to demonstrate the efficiency of the developed models, an 

industrial design problems has been given. The findings reported is compared to other well-known 

approaches. 

Keywords: Supply Chain; Multi-objective Optimization; Neutrosophic Set. 

 

1. Introduction 

Supply Chain (SC) network optimization plays a crucial role in assessing the performance of the 

whole SC. The challenge with the SC layout consists of determining when and how to distribute 

equipment (plants, factories, distribution centres) and how to transfer material (raw materials, 

components, finished products) through the network of organizations (suppliers, producers, sellers, 

retailers and customers) to maximize overall efficiency (Nurjanni et al. [1]). SC is a network of 

factories processing raw materials, converting them into intermediate products and then finished 

products, and supplying the products via a delivery chain to customers. SC’s fundamental goal is to 

“optimize chain efficiency and provide as much benefit as possible with as little expense as 

possible”. In other words, it seeks to unite all the representatives in the SC to work together within 

the organization as a way to optimize efficiency in the SC and provide the maximum value to all 

relevant parties. If a company buys raw materials for use in the manufacture of a product, it then 

sells them to customers, which means that the organization has an SC, which it must manage 

afterwards. Companies face difficulties in seeking solutions to satisfy ever-increasing consumer 

demands and stay successful in the markets while maintaining expenses controlled. SC includes 

handling of a number of tasks related to the arranging, scheduling and monitoring of the flow of 

supplies, components and products; maintaining inventories of acquired components and 

packaging issues; reasonable and cost-effective storage of products; and, ultimately, delivering them 

mailto:a.haq@myamu.ac.in
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to the consumer (Khan et al. [2]). Effective governance of SC needs continuous enhancement at both 

the level at customer support and the internal operational efficiencies of the SC firms. In the most 

simplistic point, customer support involves reliably adequate order fill levels, strong on-time 

fulfilment levels and a relatively small number of goods returned by consumers for whatever 

reason. Internal productivity for SC companies ensures that such entities get an acceptable rate of 

return for their product and other resource expenditures (Hugos [3]). Mathematical programming 

frameworks have been commonly used to evaluate and improve SC efficiency, and it could play a 

significant role in the creation of alternatives to complex SC design. 

The neutrosophic set is considered as a generalization of the intuitionistic fuzzy set. While 

fuzzy sets use true and false for express relationship, neutrosophic sets uses three different types of 

membership functions (Smarandache [4]). The neutrosophical set has three membership functions, 

i.e., maximizing truth (belonging), indeterminacy (partly belonging) and reducing falsity 

(nonbelonging) effectively. The neutrosophical programming approach was developed and widely 

utilized in real-life applications based on the neutrosophical set. Gamal et al. [5] used neutrosophic 

set theory in supplier selection to overcome the situation when the decision makers might have 

restricted knowledge or different opinions, and to specify deterministic valuation values to 

comparison judgments. Later on, Abdel-Baset et al. [6] proposed an advanced type of neutrosophic 

technique, called type 2 neutrosophic numbers for the supplier selection problem. 

Motivated by different studies in supply chain and neutrosophic programming, which is being 

a new research area with the potential to capture the decision-makers truth, indeterminacy and 

falsity goals, we have formulated the mathematical model of supply chain under neutrosophic 

environment. The objective of this study is to offer SC with a more realistic context for achieving 

better results in the context of uncertainty. In addition, the neutrosophical compromise 

programming approach does not just focus on maximizing and minimizing the satisfaction and 

dissatisfaction of the decision makers, but also on optimizing the degree of satisfaction related to 

indeterminacy. Moreover, the developed approach is also compared with simple additive, weighted 

additive and pre-emptive goal programming approaches, to show the efficacy of the proposed 

methodology.  

This paper consists of six sections: the current segment presenting an introduction to the study 

problem. Section 2 describes relevant work on this topic. Section 3 explains the structure of the SC 

model. The technique of the solution to solving the problem is discussed in Section 4. Section 5 

describes the implementation of the theoretical model to a case study, and Section 6 concludes with 

the analysis and future directions of research in this area. 

2. Literature Review 

The literature review undertaken in the framework of this study allowed us to find out a gap in 

SC optimization. To the extent of our understanding, there is a limited number of research work 

discussing neutrosophicity utilizing a multiobjective optimization to tackle trade-offs between 

overall transportation cost and total delivery time in SC. The literature review discussing the issues 

of transportation and distribution planning constructed as a single and multiobjective model and 

solved using a complicated approach to optimization. 

Badhotiya et al. [7] tackle the issue of distribution, manufacturing and delivery planning for a 

two-echelon SC, composed of several producers that supplying to different sales locations and 

formulated it as a multi-objective model. Further ambiguity and imprecision were regarded in the 

problem, and a fuzzy multi-objective optimization technique was applied that simultaneously 

optimizes three objectives; total cost, total delivery time, and backorder amount. Rabbani et al. [8] 

considered a closed-loop SC that involved a logistics supplier for a producer, a dealer and a third 

party. Three tri-level leader-follower Stackelberg game models have been introduced to explore how 

a producer can do remanufacturing or pay a product license charge for retailers and partner with 

them in remanufacturing. Modak and Kelle  [9] identified the double-channel SC with contingent 
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stochastic consumer demand under price and distribution period, and the findings indicated that 

market volatility influences the optimal price and lead time. Sharahi et al. [10] dealt with the issue of 

location-allocation and delivery of output in an SC of three echelons. Type-II fuzzy sets theory were 

used to model uncertainty in supply, operation, and demand. Gholamian et al. [11] proposed a 

mathematical model for production planning by considering the majority of SC expenses 

parameters, such as cost of shipping, cost of inventory holding, cost of shortage, cost of processing 

and associated human costs under uncertainty of demand, and formulated it using a complex 

multi-objective model of optimization. Kristianto et al. [12] suggested a two-stage model with the 

goal of improving product distribution and transportation when adjustments have disrupted the SC 

network as a consequence of a catastrophe or market shift. They implemented the methodology of 

decomposition to transform the problem into the shortest problem of the fuzzy path. Bilgen [13] 

tackled the problem of fuzzy centralized manufacturing and delivery plans underneath a packaged 

products company’s SC network. Vagueness in the objective function and capacity restrictions is 

replicated by Zimmermann’s [14] linear membership function approach. Three separate aggregation 

operators were introduced to transform the Fuzzy model into a crisp one. 

Current neutrosophic literature shows that a limited number of authors have taken an interest 

in this framework, and this is expected to be a significant new area of research in the future. Kar et al. 

[15] proposed a neutrosophic optimization technique for a shortage-free inventory model where the 

cost of output is inversely proportional to the set-up costs and the volume of supply. A 

neutrosophical fuzzy programming method (NFPA) focused on the neutrosophic decision was 

suggested by Ahmad et al. [16] to solve the proposed SC design problem. The developed SC 

network has been built for various multi-product raw materials/parts, and multi-echelons together 

with single time horizons. To identify the activities contributing to improving the economic and 

environmental performance, Abdel-Baset et al. [17] tested green SC activities using the robust rating 

with neutrosophic set theory. The feasibility of the new approach is measured using the two 

different types of case studies, i.e., Egypt’s petroleum sector and China’s manufacturing company. 

As a technique to solve multi-criteria decision-making in green supplier selection problems, Liang et 

al. [18] suggested single-valued trapezoidal neutrosophic choice relations. In the neutrosophical 

framework, Thamaraiselvi and Santhi [19] developed the mathematical representation of a 

transportation problem. Abdel-Baset et al. [20] addressed the complexities of the issue, increasing 

awareness among healthcare sector experts, and assessing smart medical devices according to 

specific assessment requirements. In the decisionmaking process, neutrosophics with TOPSIS 

methodology was implemented to cope with the vagueness, and ambiguity, by taking into 

consideration the decision conditions in the evidence gathered by the decision-makers. Liang et al. 

[21] established a novel fuzzy-based method for assessing B2C e-commerce websites and defined 

interrelationships and prioritized orders within parameters through integrating single-valued 

neutrosophic trapezoidal numbers with DEMATEL methodology. Some recent works related to the 

use neutrosophic includes , Abdel-Basset et al. [22] suggested a novel hybrid methodology for the 

selection of the offshore wind power plant location integrating the two distinct forms of MCDM 

approaches in the neutrosophic environment. Also, by use of MCDM model, Abdel-Basset et al. [23] 

has conducted a comprehensive sustainability assessment of the hydrogen generation possibilities. 

Practical alignment of transportation and distribution planning in SC frequently requires 

trade-offs with multiple conflicting priorities that need to be balanced by the decision-maker at the 

same time. Owing to many reasons such as variability in human behavior, shifting environmental 

circumstances, and unavailability or inappropriate knowledge, these objective roles are sometimes 

fuzzy or uncertain. This study introduces a complex multi-objective programming framework to 

address the SC problem including multiple locations and different time periods, then illustrates the 

same on a real-life manufacturing problem to validate the accuracy of the developed model. The 

benefit of implementing fuzzy set theory is that it helps the decision-maker to calculate an imprecise 

expectation. 
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3. Mathematical Model 

According to Nurjanni et al. [1], SCM is “A set of approaches utilized to efficiently integrate 

suppliers, manufacturers, warehouses, and stores, so that merchandise is produced and distributed 

at the right quantities, to the right locations, and at the right time, in order to minimize system-wide 

costs while satisfying service level requirements.” Charles et al. [24] presented the 

demand-and-supply-rooted concept of ambiguity with the constrained multiobjective optimization 

framework and established a fuzzy goal programming approach to solve it. To achieve the desired 

solution, the proposed model was solved through three separate approaches, including simple 

additive goal programming, weighted goal programming, and pre-emptive goal programming 

approaches respectively. Gupta et al. [25] presented an effective goal programming methodology to 

solve the SC problem in order to concurrently reduce overall shipping costs and total production 

period related to inventory volumes, initial stock available at each source, as well as customer 

demand and usable storage capacity at each destination, and restrictions on total expenditure in an 

uncertain environment. Gupta et al. [26] presented the problem of the SC network as a bi-level 

programming problem in which the primary goal is to decide the optimum order allocation of goods 

where the requirements of the consumer and the availability for the items are elastic. Motivated by 

such studies in SC, we have formulated the multi-objective SC model and the following notations 

have been used for the model formulation which are listed below: 

The nomenclature for the notations and terms used in the design of the model is as follows: 

Indices 

i   Multiple suppliers indices, (i=1, 2, …,I); 

j   Multiple plants indices, (j=1, 2, …,J); 

k   Multiple warehouses indices, (k=1, 2, …,K); 

l   Multiple distributors indices, (l=1, 2, …,L); 

t   Objective function indices, (t=1, 2, …,T); 

Parameters 

iSCS   Supply capacity of the ith suppliers (in ’000), 

jPCP   Potential capacity of the jth plants (in’000), 

kPCW   Potential capacity of the kth warehouses (in ’000), 

lADR   Annual demand from the lth distributors (in ’000), 

ijCSP   Cost of shipping one unit from the supply suppliers i to the plant j, (in ’000), 

jkCPW Cost of producing and shipping one unit from the plant j to the warehouse k, (in ’000), 

jlCPR Cost of producing and shipping one unit from the plant j to the distributors l, (in ’000), 

klCWR  Cost of shipping one unit from the warehouse k to the distributors l, (in ’000), 

jkTPW  Delivery time of shipping one unit from the plant j to the warehouse k (in Hrs), 

jlTPR Delivery time of shipping one unit from the plant j to the distributors l (in Hrs), 

klTWR Delivery time of shipping one unit from the warehouse k to the distributors l (in Hrs), 

Decision variables 

ijW Quantity shipped from the supply suppliers i to the plant j 

jkX Quantity shipped from the plant j to the warehouse k 

jlY  Quantity shipped from the plant j to the distributors i 
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klZ Quantity shipped from the warehouse k to the distributors i 

 

The mathematical model of multi-objective SC problem formulated in the case of a 

deterministic situation by using the notations mentioned above as: 

 

The 1st objective function, which helps in the optimization of the SC shipping costs, is given by: 

Minimize 

1 1 1 1 1 1 1 1 1

I J J K J L K L

ij ij jk jk jl jl kl kli j j k j l k l
F CSP W CPW X CPR Y CWR Z

       
            

                      (1) 

The 2nd objective function, which helps in the optimization of the SC delivery time, is given by: 

Minimize  

2 1 1 1 1 1 1

J K J L K L

jk jk jl jl kl klj k j l k l
F TPW X TPR Y TWR Z

     
               (2) 

Subject to 

Constraint I is related to the overall volume of the product to be delivered from the supplier to 

the plant. 

1

J

ij ij
W SCS


                   (3) 

Constraint II is concerned with the quantity produced at the plant, which cannot surpass its 

efficiency. 

1 1

L K

jl jk jl k
Y X PCP

 
                  (4) 

Constraint III is concerned with the volume to be delivered via the various warehouses that 

cannot surpass its efficiency. 

1

L

kl kl
Z PCW


                  (5) 

Constraint IV is concerned about the volume to be delivered to the distributors, which will meet 

the demand of the consumer. 

1 1

K J

kl jl lk j
Z Y ADR

 
                  (6) 

Constraint V is concerned with the total quantity delivered to the warehouse and distributors 

from the plant, which cannot surpass the quantity of the obtained materials. 

1 1 1

I K L

ij jk jli k l
W X Y

  
                   (7) 

Constraint VI is concerned with the volume delivered to the distributors from the warehouse, 

which cannot surpass their capacity. 

1 1

J L

jk klj l
X Z

 
                   (8) 

with non-negative restriction: 

0, ,

0, ,

0, ,

0, ,

ij

jk

jl

kl

W i j

X j k

Y j l

Z k l

 

 

 

 

 

The multi-objective optimization model of SC can be mathematically formulated as follows by 

combining all the objective functions and constraints, are combined: 

Model 1 
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1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1

1

1 1

Minimize

Minimize 

Subject to

I J J K J L K L

ij ij jk jk jl jl kl kli j j k j l k l

J K J L K L

jk jk jl jl kl klj k j l k l

J

ij ij

L K

jl jk jl k

F CSP W CPW X CPR Y CWR Z

F TPW X TPR Y TWR Z

W SCS

Y X PCP

Z

       

     



 

   

  



 

       

     



 

1

1 1

1 1 1

1 1

0, ,

0, ,

0, ,

0, ,

L

kl kl

K J

kl jl lk j

I K L

ij jk jli k l

J L

jk klj l

ij

jk

jl

kl

PCW

Z Y ADR

W X Y

X Z

W i j

X j k

Y j l

Z k l



 

  

 



 

 



 

 

 

 



 

  

 

3.1 Uncertain Model 

The model formulated above has been developed when the decision-maker knows the exact 

value of each parameter being considered. Due to sudden increases in prices of raw materials, higher 

gasoline costs, higher deployment sites, fluctuating consumer behavior, rivalry amongst customer 

service policies of various firms, environmental factors, inability to supply requested goods in a 

timely manner, political and government decisions on specific taxes on purchase, development, 

delivery end-of-use stock management are the most influential factors creating uncertainty in SC. In 

the past many methods were suggested to cope with the environment of ambiguity. Zadeh’s [27] 

fuzzy sets (FS) just allow membership function and can’t accommodate certain vagueness 

parameters. In order to address this knowledge deficit, Atanassov [28] proposed an expansion to 

fuzzy sets called intuitionistic fuzzy sets (IFS). Though IFS theory can accommodate missing 

knowledge for specific real-world problems, it cannot solve all forms of ambiguity such as 

contradictory and indeterminate proof. Therefore, the neutrosophic set (NS) was developed by 

Smarandache [29] as a comprehensive composition that generalizes classical theory of all forms of 

FS. NS can handle indefinite, vague and conflicting information where the indeterminacy is 

explicitly quantified, and can separately identify the three forms of membership functions. 

Furthermore, with such assumptions of uncertainty, Model 1 with uncertain parameters could be 

reformulated as: 

Model 2 
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1 1 1 1 1 1 1 1 1

2
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1 1 1 1 1 1

1

1

~

Minimize
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Subject to

I J J K J L K L

ij jk jl klij jk jl kli j j k j l k l

J K J L K L

jljk kljk jl klj k j l k l

J

iijj

L

jl jkl
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where, the uncertain parameters 
~ ~ ~ ~ ~ ~ ~ ~

, , , , , , ,CSP CPW CPR CWR TPW TPR TWR SCS  and 
~

ADR  are 

assumed to hold the neutrosophic sets assumptions (detail see Liang et al. [18] ). Let us assumed that 

 ~ ~ ~, , 0,1
CSP CSP CSP

     and 1 2 3, ,CSP CSP CSP   such that 1 2 3CSP CSP CSP  . Then a 

single-value triangular neutrosophic number  ~ ~ ~1 2 3

~

( , , ); , ,
CSP CSP CSP

CSP CSP CSP CSP     is a 

special neutrosophic set on the real line set  , whose truth-membership, 

indeterminacy-membership, and falsity-membership functions are given as follows: 
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where  ~ ~ ~, ,
CSP CSP CSP

   denote the maximum truth-membership degree, minimum 

indeterminacy-membership degree and minimum falsity-membership degree, respectively. A 

single-valued triangular neutrosophic number  ~ ~ ~1 2 3

~

( , , ); , ,
CSP CSP CSP

CSP CSP CSP CSP    may 

express an ill-defined quantity about CSP , which is approximately equal to CSP . Then, the score 

function for the 
~

CSP  is obtained by using the equation (12), which is given below: 

~ ~ ~

~

1 2 3

1
( ) ( ) (2 ) (12)

16 CSP CSP CSP

S CSP CSP CSP CSP           

The same holds for other uncertain parameters. 

3.2 Neutrosophic Compromise Programming 

An approach to solving the multi-optimization problem has been implemented based on the NS 

principle. The neutrosophical compromise goal programming solution is based on the principle of 

NS, which consists of optimization of three membership functions such as optimizing the degree of 

truth and indeterminacy and decreasing the extent of falsity membership. Firstly, the bounds for 

each objective function have been defined to construct the three different types of membership 

functions for the formulated multi-objective SC problem. The upper t ,tU  and lower t ,tL  

values for the neutrosophical problem for case minimization have therefore been determined as: 
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Where ' and t tq q  are sensitivity variables for falsity and indeterminacy membership functions 

shall be selected by the decision-maker, and based on these sensitivity variables, the three different 

types of membership function for the neutrosophical problem can be constructed as follows: 






































































F

tt

F

tt

F

tF

t

F

t

F

tt

F

tt

F

t

I

tt

I

tt

I

tI

t

I

t

t

I

t

I

tt

I

t

T

tt

T

tt

T

tT

t

T

t

t

T

t

T

tt

T

t

UF

UFL
LU

LF

LF

UF

UFL
LU

FU

LF

UF

UFL
LU

FU

LF

                       ,1

           ,

                        ,0

                       ,0

             ,

                        ,1

                       ,0

           ,

                        ,1







 



Neutrosophic Sets and Systems, Vol. 46, 2021     58  

 

 

Ahteshamul Haq, Srikant Gupta  and Aquil Ahmed, A multi-criteria fuzzy neutrosophic decision-making model for solving 

the supply chain network problem     

 
Fig. 1. Neutrosophication Process 

Where, we trying to maximize the Truth ( )T

t and Indeterminacy ( )I

t membership functions; 

and also trying to minimize the falsity ( )F

t  membership functions. Following the optimization 

process introduced by (Bellman and Zadeh, [30]; Rizk-Allah et al., [31]; Das et al. [32]; Khan et al. 

[33]), the multi-objective SCN neutrosophical optimization model can be formulated as follows: 
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It is not easy to solve the above model (2a) with the presence of three objective functions, 

therefore with the help of auxiliary parameters, the model (2a) can be transformed into a single 

objective model, given below: 
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Model 2(b) 
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The above Model 2(b) has been used to get the compromise solution of the formulated problem. 

 

4. Numerical Illustration 

In view of demonstrating the method established, we considered the fictional scenario of 

modeling and optimizing a SC network situation, with some imprecise data being considered on it, 

described by neutrosophical triangular fuzzy numbers. We assumed a network consisting of 

multiple numbers of suppliers, multiple numbers of production plants, multiple numbers of 

warehouses and multiple numbers of distributors, in various regional areas or places. Five suppliers 

are assumed to distribute the raw resources to four manufacturing plants. The delivery network 

consists of six warehouses where, before being shipped out to eight distributors, goods are 

temporarily positioned and processed, and eventually, items are shipped out to many consumers. 

The imprecise information in Tables 1-8 are listed below: 

Table 1. Uncertain Transportation Cost from the Supplier to the Manufacturing Plant. 

Supplier Manufacturing Plant 

P_1 P_2 P_3 P_4 

S_1 ((196,199,202); 

0.3,0.4,0.5) 

((89,93,97); 

0.6,0.7,0.8) 

((146,148,150); 

0.2,0.3,0.4) 

((194,196,198); 

0.1,0.2,0.3) 

S_2 ((294,306,312); 

0.6,0.8,0.9) 

((146,148,150); 

0.2,0.3,0.4) 

((194,196,198); 

0.1,0.2,0.3) 

(((196,199,202); 

0.3,0.4,0.5) 

S_3 ((491,499,507); 

0.1,0.2,0.3) 

((119,121,123); 

0.4,0.5,0.6) 

((204,206,208); 

0.1,0.2,0.3) 

((202,205,208); 

0.3,0.4.0.5) 

S_4 ((389,394,399); 

0.7,0.8,0.9) 

((296,300,304); 

0.5,0.6,0.7) 

((239,244,249); 

0.7,0.8,0.9) 

((296,300,304); 

0.5,0.6,0.7) 

S_5 ((591,599,607); 

0.3,0.4.0.5) 

((689,691,693); 

0.3,0.4,0.5) 

((296,300,304); 

0.5,0.6,0.7) 

((339,341,345); 

0.4,0.5,0.6) 

 

Table 2. Uncertain Transportation Cost from the Plant to the Distributor. 

Plant Distributor 

D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 

 

P_1 

((296,300

,304); 

0.5,0.6,0.

7) 

((429,432,43

6); 

0.4,0.5,0.6) 

((341,344,3

47); 

0.6,0.8,0.9) 

((429,432,4

36); 

0.4,0.5,0.6) 

((204,206,2

08); 

0.1,0.2,0.3) 

((339,341,3

45); 

0.4,0.5,0.6) 

((391,394,3

96); 

0.6,0.7,0.8) 

((469,471,4

73); 

0.1,0.2,0.3) 

 

P_2 

((339,341

,345); 

0.4,0.5,0.

6) 

((491,494,49

6); 

0.2,0.3,0.4) 

((294,300,3

06); 

0.2,0.3,0.4) 

((371,374,3

78); 

0.5,0.6,0.7) 

((269,272,2

75); 

0.7,0.8,0.9) 

((371,374,3

78); 

0.5,0.6,0.7) 

((469,471,4

73); 

0.1,0.2,0.3) 

((431,435,4

39); 

0.7,0.8,0.9) 
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P_3 

((431,435

,439); 

0.7,0.8,0.

9) 

((469,472,47

5); 

0.1,0.2,0.3) 

((341,343,3

46); 

0.7,0.8,0.9) 

((339,341,3

45); 

0.4,0.5,0.6) 

((296,298,3

00); 

0.1,0.2,0.3) 

((369,371,3

24); 

0.3,0.4,0.5) 

((431,435,4

39); 

0.7,0.8,0.9) 

((469,471,4

73); 

0.1,0.2,0.3) 

 

P_4 

((489,492

,495); 

0.5,0.6,0.

7) 

((431,435,43

8); 

0.3,0.4.0.5) 

((319,321,3

24); 

0.5,0.6,0.7) 

((391,394,3

96); 

0.6,0.7,0.8) 

((319,321,3

23) 

0.3,0.4,0.5) 

((386,388,4

00); 

0.3,0.4,0.5) 

((319,321,3

23) 

0.3,0.4,0.5) 

((431,435,4

39); 

0.7,0.8,0.9) 

 

Table 3. Uncertain Transportation Cost from the Manufacturing Plant to the Warehouse. 

Plant Warehouses 

W_1 W_2 W_3 W_4 W_5 W_6 

P_1 ((296,300,304); 

0.5,0.6,0.7) 

((144,148,152); 

0.2,0.3,0.4) 

((196,199,202); 

0.3,0.4,0.5) 

((196,199,202); 

0.3,0.4,0.5) 

((121,123,125); 

0.3,0.4.0.5) 

((296,300,304); 

0.5,0.6,0.7) 

P_2 ((389,392,395); 

0.2,0.3,0.4) 

((121,123,125); 

0.3,0.4.0.5) 

((219,221,225); 

0.4,0.5,0.6) 

((241,244,247); 

0.6,0.7,0.8) 

((269,271,273); 

0.3,0.4,0.5) 

((311,313,317); 

0.4,0.5,0.6) 

P_3 ((541,545,548); 

0.7,0.8,0.9) 

((144,148,152); 

0.2,0.3,0.4) 

((196,199,202); 

0.3,0.4,0.5) 

((296,300,304); 

0.5,0.6,0.7) 

((241,244,247); 

0.6,0.7,0.8) 

((296,300,304); 

0.5,0.6,0.7) 

P_4 ((639,641,643); 

0.6,0.7,0.8) 

((341,344,347); 

0.6,0.8,0.9) 

((296,300,304); 

0.5,0.6,0.7) 

((121,123,125); 

0.3,0.4.0.5) 

((294,296,298); 

0.4,0.5,0.6) 

((301,303,307); 

0.4,0.5,0.6) 

 

 

Table 4. Uncertain Transportation Cost from the Warehouses to the Distributor. 

Ware 

house 

Distributor 

D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 

 

W_1 

((146,148,1

50); 

0.3,0.4,0.5) 

((179,182,1

83); 

0.1,0.2,0.3) 

((161,163,1

65); 

0.5,0.6,0.7) 

((169,171,1

73); 

0.3,0.4,0.5) 

((169,171,1

73); 

0.3,0.4,0.5) 

((194,196,1

98); 

0.1,0.2,0.3) 

((181,184,1

87); 

0.1,0.2,0.3) 

((164,166,16

8); 

0.1,0.2,0.3) 

 

W_2 

((109,111,1

13); 

0.2,0.3,0.4) 

((191,193,1

95); 

0.5,0.6,0.7) 

((164,166,1

68); 

0.1,0.2,0.3) 

((166,168,1

70); 

0.3,0.4,0.5) 

((179,181,1

84); 

0.2,0.4,0.5) 

((181,184,1

87); 

0.1,0.2,0.3) 

((179,181,1

84); 

0.2,0.4,0.5) 

((172,174,17

6); 

0.7,0.8,0.9) 

 

W_3 

((121,124,1

28); 

0.5,0.6,0.7) 

((189,191,1

94); 

0.3,0.4,0.5) 

((131,134,1

37); 

0.5,0.6,0.7) 

((176,179,1

83); 

0.1,0.2,0.3) 

((179,181,1

84); 

0.2,0.4,0.5) 

((181,184,1

87); 

0.1,0.2,0.3) 

((181,184,1

87); 

0.1,0.2,0.3) 

((169,171,17

3); 

0.3,0.4,0.5) 

 

W_4 

((126,129,1

32); 

0.7,0.8,0.9) 

((169,171,1

73); 

0.3,0.4,0.5) 

((136,139,1

42); 

0.1,0.2,0.3) 

((181,184,1

87); 

0.1,0.2,0.3) 

((189,191,1

94); 

0.3,0.4,0.5) 

((171,175,1

80); 

0.2,0.4,0.5) 

((179,181,1

84); 

0.2,0.4,0.5) 

((171,174,17

6); 

0.7,0.8,0.9) 

 

W_5 

((136,139,1

42); 

0.1,0.2,0.3) 

((169,171,1

73); 

0.2,0.4,0.5) 

((146,148,1

50); 

0.3,0.4,0.5) 

((179,181,1

84); 

0.2,0.4,0.5) 

((191,194,1

98); 

0.7,0.8,0.9) 

((159,161,1

64); 

0.2,0.4,0.5) 

((191,194,1

96); 

0.3,0.4,0.5) 

((169,171,17

3); 

0.3,0.4,0.5) 

 

W_6 

((169,171,1

73); 

0.3,0.4,0.5) 

((151,153,1

55); 

0.7,0.8,0.9) 

((146,148,1

50); 

0.3,0.4,0.5) 

((191,193,1

94); 

0.3,0.4,0.5) 

((194,196,1

98); 

0.1,0.2,0.3) 

((181,184,1

87); 

0.1,0.2,0.3) 

((189,191,1

94); 

0.3,0.4,0.5) 

((164,166,16

8); 

0.1,0.2,0.3) 

  

Table 5. Uncertain Delivery Time of Item from the Plant to the Distributor. 

Plant Distributor 

D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 

P_1 ((46,49,52); 

0.1,0.2,0.3) 

((64,68,72); 

0.1,0.2,0.3) 

((51,56,59); 

0.3,0.4,0.5) 

((59,61,64); 

0.1,0.2,0.3) 

((36,40,44); 

0.5,0.6,0.7) 

((46,49,52); 

0.1,0.2,0.3) 

((71,74,78); 

0.2,0.4,0.5) 

((74,88,94); 

0.4,0.5,0.6) 

P_2 ((29,33,37); 

0.7,0.8,0.9) 

((56,58,60); 

0.2,0.4,0.5) 

((39,41,45); 

0.1,0.2,0.3) 

((40,44,48); 

0.7,0.8,0.9) 

((19,21,24); 

0.4,0.5,0.6) 

((41,46,50); 

0.3,0.4,0.5) 

((64,76,1,3) 

0.7,0.8,0.9) 

((91,93,95); 

0.1,0.2,0.3) 
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P_3 ((71,74,78); 

0.2,0.4,0.5) 

((64,76,1,3) 

0.7,0.8,0.9) 

((71,74,78); 

0.2,0.4,0.5) 

((76,80,84); 

0.2,0.4,0.5) 

((56,60,62); 

0.3,0.4,0.5) 

((66,70,74); 

0.1,0.2,0.3) 

((71,74,78); 

0.2,0.4,0.5) 

((89,93,96); 

0.3,0.4,0.5) 

P_4 ((89,93,96); 

0.3,0.4,0.5) 

((91,93,95); 

0.1,0.2,0.3) 

((74,78,82); 

0.7,0.8,0.9) 

((81,83,85); 

0.7,0.8,0.9) 

((54,58,60); 

0.5,0.6,0.7) 

((66,74,78); 

0.5,0.6,0.7) 

((74,88,94); 

0.4,0.5,0.6) 

((81,83,85); 

0.7,0.8,0.9) 

 

Table 6. Uncertain Delivery Time of Item from the Manufacturing Plant to the Warehouse. 

 

Plant 

Warehouses 

W_1 W_2 W_3 W_4 W_5 W_6 

P_1 ((26,34,,42); 

0.7,0.8,0.9) 

((14,26,34); 

0.2,0.4,0.5) 

((16,24,32); 

0.1,0.2,0.3) 

((9,16,23);  

0.7,0.8,0.9) 

((26,29,34); 

0.2,0.4,0.5) 

((24,31,38); 

0.7,0.8,0.9) 

P_2 ((34,46,54); 

0.1,0.2,0.3) 

((16,24,32); 

0.1,0.2,0.3) 

((19,31,35); 

0.2,0.4,0.5) 

((26,34,,42); 

0.7,0.8,0.9) 

((24,31,35); 

0.1,0.2,0.3) 

((36,39,44); 

0.2,0.4,0.5) 

P_3 ((51,59,64); 

0.2,0.4,0.5) 

((54,66,72); 

0.7,0.8,0.9) 

((51,59,64); 

0.2,0.4,0.5) 

((54,66,72); 

0.7,0.8,0.9) 

((56,64,72); 

0.5,0.6,0.7) 

((66,74,78); 

0.5,0.6,0.7) 

P_4 ((76,80,84); 

0.2,0.4,0.5) 

((54,66,72); 

0.7,0.8,0.9) 

((29,33,37); 

0.7,0.8,0.9) 

((51,59,64); 

0.2,0.4,0.5) 

((64,68,72); 

0.1,0.2,0.3) 

((71,74,77); 

0.2,0.3,0.4) 

 

Table 7. Uncertain Delivery Time of Item from the Warehouse to the Distributor 

Warehouses Distributor 

D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 

W_1 ((16,24,28); 

0.7,0.8,0.9) 

((14,26,34); 

0.2,0.4,0.5) 

((21,29,35); 

0.2,0.4,0.5) 

((26,29,34); 

0.2,0.4,0.5) 

((21,29,35); 

0.2,0.4,0.5) 

((19,22,25); 

0.7,0.8,0.9) 

((36,40,44); 

0.5,0.6,0.7) 

((29,33,37); 

0.7,0.8,0.9) 

W_2 ((19,22,25); 

0.7,0.8,0.9) 

((16,24,28); 

0.7,0.8,0.9) 

((19,31,35); 

0.2,0.4,0.5) 

((21,24,28); 

0.1,0.2,0.3) 

((26,29,34); 

0.2,0.4,0.5) 

((26,29,34); 

0.2,0.4,0.5) 

(29,35,38); 

0.2,0.4,0.5) 

((21,24,28); 

0.1,0.2,0.3) 

W_3 ((21,29,35); 

0.2,0.4,0.5) 

((14,26,34); 

0.2,0.4,0.5) 

((21,29,35); 

0.2,0.4,0.5) 

((29,33,37); 

0.7,0.8,0.9) 

((31,34,38); 

0.7,0.8,0.9) 

((34,46,54); 

0.1,0.2,0.3) 

((41,44,48); 

0.3,0.4,0.5) 

((34,46,54); 

0.1,0.2,0.3) 

W_4 ((14,26,34); 

0.2,0.4,0.5) 

((24,31,35); 

0.1,0.2,0.3) 

((19,22,25); 

0.7,0.8,0.9) 

((24,31,35); 

0.1,0.2,0.3) 

((24,31,35); 

0.1,0.2,0.3) 

((26,29,34); 

0.2,0.4,0.5) 

((19,31,35); 

0.2,0.4,0.5) 

((21,29,35); 

0.2,0.4,0.5) 

W_5 ((16,24,28); 

0.7,0.8,0.9) 

((19,22,25); 

0.7,0.8,0.9)) 

((16,24,28); 

0.7,0.8,0.9) 

((16,24,28); 

0.7,0.8,0.9) 

((34,46,54); 

0.1,0.2,0.3) 

((34,46,54); 

0.1,0.2,0.3) 

((36,40,44); 

0.5,0.6,0.7) 

((41,44,48); 

0.3,0.4,0.5) 

W_6 ((16,24,28); 

0.7,0.8,0.9) 

((19,31,35); 

0.2,0.4,0.5) 

((14,26,34); 

0.2,0.4,0.5) 

((14,26,34); 

0.2,0.4,0.5) 

((29,33,37); 

0.7,0.8,0.9) 

((31,34,36); 

0.2,0.4,0.5) 

((41,44,48); 

0.3,0.4,0.5) 

((64,68,72); 

0.1,0.2,0.3) 

 

Table 8.  Right hand side parameters 

Fuzzy demand Fuzzy supply Fixed capacity of plant Fixed capacity of warehouse 

((180,190,200); 

0.7,0.8,0.9) 

((90,95,100); 

0.2,0.4,0.5) 

470 150 

((480,490,500); 

0.1,0.2,0.3) 

((50,55,60); 

0.3,0.4,0.5) 

300 180 

((200,210,220); 

0.2,0.4,0.5) 

((85,90,95); 

0.1,0.2,0.3) 

330 160 

((205,215,225); 

0.3,0.4,0.5) 

((65,70,75); 

0.4,0.5,0.6) 

320 200 

((290,300,310); 

0.4,0.5,0.6) 

((60,65,70); 

0.7,0.8,0.9) 

 180 

 ((105,110,115); 

0.4,0.5,0.6) 

220 

((110,115,120); 

0.5,0.6,0.7) 

 

((80,85,90); 

0.3,0.4,0.5) 
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By using all the information given in the table from 1 to 8, the multi-objective SC problem has 

been formulated. With the presence of uncertainty, the model cannot be solved directly; therefore, 

the crisp model has been obtained by using the equation (12). Before solving the formulated 

non-linear multi-objective SC model, the feasibility of the formulated is determined by using the 

LINGO software (LINGO software is a comprehensive tool designed to make building and solving 

Linear and Nonlinear (convex and non-convex) programming problem) by determining the lower 

and upper bound of both the objective functions. LINGO software includes identification of the 

infeasibility and unboundness of the formulated linear and non-linear model. The Solver Status box 

of LINGO software details the model classification (linear, non-linear or other), state of the current 

solution (whether local or global optimum, feasible or infeasible, etc.), the value of the objective 

function, the infeasibility of the model (amount constraints are violated by), and the number of 

iterations required to solve the model. 

After checking the feasibility of the model construct, the next task is to solve the formulated 

multi-objective SC model by using the neutrosophic compromise programming. Neutrosophic 

compromise programming has the key advantage over the other techniques because it helps the 

decision-makers to consider three categories of membership functions (truth degree, falsity degree 

or degree of indeterminacy) and while other techniques employed for solving a multi-objective 

model only takes one membership function dependent on both upper and lower limits of the 

objective functions. For solving the formulated problem, decision-maker first solve the multiple 

objective optimization problem by considering a single objective at a time and ignoring the others 

objectives with the given set of constraints. The solution thus obtained is consider as the idle solution 

for each of the objective functions and helps in the determination of aspiration level to each of the 

objective functions. The bounds for the two objective functions are determined as: 

The truth membership functions for the first and second objective functions are constructed as 

follows.  
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The Indeterminacy membership functions for the first and second objective functions are 

constructed as follows. 
























07.382669)( if                                         0

 ]07.382669,5.278631[)( if      
5.27863107.382669

)(07.382669

5.278631)( if                                         1

))((

1

1
1

1

11

xF

xF
xF

xF

xFI

 
























288.28004)( if                                        0

 ]288.28004,76.25273[)( if     
76.25273288.28004

)(288.28004

76.25273)( if                                        1

))((

2

2
2

2

22

xF

xF
xF

xF

xFI

 
 

The falsity membership functions for the first and second objective functions are constructed as 

follows. 
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After combining all the membership function together, the compromise solution for the 

multi-objective SC neutrosophic model is obtained as: 

 

81,110,35,88,54,109

,63,31,93,56,177,135,198,9
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After using the neutrosophic compromise programming, the total minimum transportation cost 

incurred from various multiple sources to different distributors through multiple plants and 

warehouses is 304305:60; furthermore, the minimum delivery time taken from various multiple 

sources to different distributors through multiple plants and warehouses is 25742:69. The final 

finished goods quantity to be shipped from various multiple plants to various warehouses is 368 

units; the quantity to be shipped from various multiple plants to various distributors is 296 units; the 

quantity to be shipped from various multiple warehouses to various distributors is 368 units. We 

have also compared the proposed work of neutrosophic compromise programming with other 

well-known techniques used to solve the multi-objective model. The used approach of neutrosophic 

compromise programming is based on three different types of membership functions, i.e., the degree 

of truth and indeterminacy and the extent of falsity membership that provides more flexibility in 

decision making process. To show the efficacy of the proposed work, the formulated model has been 

solved by using three different approaches namely, simple additive approach, simple weighted 

additive approach, and pre-emptive goal programming approach. The obtained result has been 

presented in below Fig. 2, shows the supremacy of the proposed work over other methods. 

 

 
Fig. 2 Result Comparison 
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After obtaining the deterministic form of each of neutrosophical triangular fuzzy number by 

using the equation number (12), and also after constructing the membership function of each of the 

objective functions (using lower and upper bound), different approaches namely, simple additive 

approach, simple weighted additive approach, and pre-emptive goal programming approach has 

been used over model (2a) for getting the compromise solution. Simple additive approach (Tiwari et 

al., [34]) is a method used to solve the problem of multi-attribute decision making. The basic concept 

simple additive approach is to find the sum of each alternative’s performance rating on all attributes; 

simple weighted additive approach (Chou et al.[35] ) is the method used in solving the problem of 

multi-attribute decision making The basic concept weighted additive approach is to find the sum of 

the weighted performance rating for each alternative on all attributes; and pre-emptive goal 

programming approach (Biswas and Pal [36] ) is a hierarchy of priority levels for the goals, so the 

primary importance is to receive first-priority attention, secondary importance receives 

second-priority attention, and so forth (if there are more than two priority levels. The results 

indicated that, these approaches failed to optimize the objective function completely, but through 

neutrosophical compromise programming approach we are able to optimize the each objective 

functions efficiently that is very important for supply chain. 

Conclusion 

There are numerous causes of uncertainty, which can arise from the demand side, production 

side, manufacturing cycle, and scheduling and distribution processes, constantly endanger the 

quality and efficacy of the SC. Uncertainty can result in shortages with bottlenecks, and can also 

impact the SC’s overall efficiency. Therefore, it is important to find the means of managing it. The 

well-known methods such as probability, fuzzy set, and multi-choices theory are not sufficient in 

certain real-world circumstances to cope with such conditions in which indeterminacy is involved. 

The main aim of this paper is to implement the novel neutrosophical compromise programming 

approach, that together optimizes the degrees of truth, indeterminacy and falsity of objectivity 

functions. The efficiency of the proposed work is also studied where the suggested approach 

produces improved results in compare to simple additive approach, simple weighted additive 

approach and a pre-emptive goal programming approach. This result demonstrates the efficiency or 

dominance on current strategies that the neutrosophic technique’s is quite adequate, explanatory, 

and a good representative of real-life situations. Therefore, it is expected that the approach 

developed would open up new opportunities in the field of multi-criteria problems and can be 

applied in other realistic field problems, such as scheduling problems, transportation problems, 

project management, capital utilization planning, traveling salesman problems, etc. 
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Abstract: In this chapter, our aim is to prove neutro-isomorphism theorems. We define the quotient 

NT quotient Module and prove the fundamental theorem of neutro-homomorphism. Also, we 

present and prove the first neutro-isomorphism theorem for neutrosopfic triplet Modules, the 

second neutro-isomorphism theorem for neutrosopfic triplet Modules, the third 

neutro-Isomorphism theorem for neutrosopfic triplet Modules and a few special cases. 

 

Keywords: NT submodule, NT R – modüle, NT quotient Module, Neutro- homomorphism, 
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________________________________________________________________________________________ 

1. Introduction 

In 1980, Smarandache presented neutrosophy, a part of philosophy. Neutrosophy, which is 

neutrosophic logic, probability depend on the set in [1]. Neutrosophic logic is the logic of some 

general concepts such as fuzzy logic presented by Zadeh in [2] and Provided by Atanassov intuitive 

fuzzy logic in [3].Fuzzy sets membership function but has an intuitive fuzzy set membership 

function and non-function and does not define membership indeterminancy. But; neutrosophic set 

includes all the functions. Many researchers have studied the concept neutrosophic theory and its 

application to issue multiple-criteria decision analysis.in [4-11]. Sahin M., and Kargın A., 

investigated NT metric space and NT normed space in [12]. Lately, Olgun at al.  introduced the 

neutrosophic module in [13]; Şahin at al. presented Neutrosophic soft lattices in [14]; soft normed 

rings in [15]; centroid single valued neutrosophic triangular number and its applications in [16]; 

centroid single valued neutrosophic number and its applications in [17].  Ji at al. searched multi – 

valued neutrosophic environments and its applications in [18]. Also, Smarandache at al. searched 

NT theory in [19] and NT groups in [20, 21]. A NT has a form <m, neut(m), anti(m)> where; neut(m) 

is neutral of “m” and anti(m) is opposite of “m”. Moreover, neut(m) is different from the classical 

unitary element and NT group is different from the classical group as well. Lately, Smarandache at 

al. investigated the NT field [22] and the NT ring [23]. Şahin at al. presented NT metric space, NT 

vector space and NT normed space in [24] and NT inner product in [25]. Smarandache at al. searched 

NT G- Module in [26]. Bal at al. searched NT cosets and quotient groups in [27]. Şahin at al. 

presented fixed point theorem for NT partial metric space and Neutrosophic triplet v – generalized 

mailto:mathcelik@gmail.com
mailto:olgun@gantep.edu.tr
mailto:olgun@gantep.edu.tr
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metric space in [28-29]. Çelik at al. searched fundamental homomorphism theorems for NETGs in 

[30] and Çelik at al. Searched neutrosophic triplet R-module in [31] 

The concept of an R – module over a ring is a general term of the notion of vector space. The basic 

structure of Abelian rings, can be more common. Because modular theory is more complicated than 

the structure of a vector space. Lately, Ai at al. defined the irreducible modules and fusion rules for 

parafermion vertex operator algebras in [32] and Creutzig at al. introduced Braided tensor categories 

of admissible modules for affine lie algebras in [33]. 

In this study, we examine the concept of NT R-Modules. So we obtain a new algebraic structures on 

NT groups and NT ring. In section 2, we give basic definitions of NT sets, NT groups, NT ring, NT 

vector space, Neutro-Monomorphism, Neutro-Epimorphism, and Neutro-Isomorphism . In section 

3, we define the quotient NT quotient Module and prove the fundamental theorem of 

neutro-homomorphism. Also, we present and prove the first neutro-isomorphism theorem for 

neutrosopfic triplet Modules, the second neutro-isomorphism theorem for neutrosopfic triplet 

Modules, the third neutro-Isomorphism theorem for neutrosopfic triplet Modules and a few special 

cases. Also, we explain the NT quotient R-module. Finally, in Chapter 4, we give some results. 

 

2. Preliminaries 

In this section, we present the basic definitions that are important for the development of the paper. 

Definition 2.1: [21] Let  be a set together with a binary operation . Then,  is called a NT set if 

for any  there exists a neutral of “ ” called  that is different from the classical 

algebraic unitary element and an opposite of “ ” called  with  and  

belonging to , such that 

, 

and 

. 

 

Definition 2.2: [21] Let  be a NT set. Then,  is called a NT group if the following 

conditions hold. 

(1) If  is well-defined, i.e., for any , one has . 

(2) If  is associative, i.e.,  for all . 
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Definition 2.3: [24] Let be a NT field, and let  be a NT set together 

with binary operations “  and “ ”. Then   is called a NT vector space if the 

following conditions hold. For all , and for all , such that 

and  [24]; 

(1) ( ; 

(2) ; 

(3) ; 

(4) ; 

(5) ; 

(6) There exists any   

Definition 2.4: [26] Let  be a NT group,  be a NT vector space on a NT field 

, and    for , . If the following conditions are satisfied, 

then   is called NT G-module. 

a) There exists ; 

b) ; 

c) . 

Definition 2.5: [23] The NT ring is a set endowed with two binary laws such that, 

a)  is a abelian NT group; which means that: 
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●  is a commutative NT with respect to the law * (i.e. if x belongs to M, then  

and , defined with respect to the law *, also belong to M) 

● The law * is well – defined, associative, and commutative on  (as in the classical sense); 

b)  is a set such that the law # on M is well-defined and associative (as in the classical sense); 

c) The law # is distributive with respect to the law * (as in the classical sense)  

 

Definition 2.6: Let (NTR, , ) be a  commutative NT ring  and let  (NTM, ) be a NT abelian 

group and  be a binary operation such that  : NTR x NTM  NTM. Then (NTM, , ) is called a 

NT R-Module on (NTR, , ) if the following conditions are satisfied. Where,  

1) p (r s) =( p r)  (p s), ∀ r, s ∈ NTM and p ∈ NTR.  

2) (p k) r = (p r) (k r), ∀ p, k ∈ NTR  and  ∀ r ∈ NTM 

3) (p k) r = p (k r),  ∀ r, s ∈ NTR  and  ∀ m ∈ NTM  

4) For all m ∈ NTM; there exists at least a c ∈ NTR such that m neut(c)= neut(c) m = m. Where, 

neut(c) is neutral element of c for  

Definition 2.7: Let (NTM, , ) be  a NT R-Module on NT ring (NTR, , ) and NTSM  NTM. 

Then (NTSM, , ) is called NT R - submodule of (NTM, , ), if (NTSM, , ) is a NT R – module 

on NT ring (NTR, , ).  

Definition 2.7: (NTM1, , 1) be a NT R-module on NT ring (NTR, , ) and (NTM2, 2, 2) be  a NT 

R-module on NT ring (NTR, , ). A mapping f: NTM1 → NTM2 is said to be NT R-module 

homomorphism when 
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 f((r 1m) 1 (s 1n)) = (r 2f(m)) 2 (s 2f(n)), for all r, s ∊ NTR and  m, n ∊ NTM1. 

Definition 2.8: Assume that (N1,∗) and (N2,◦) be two NETG’s. If a mapping f : N1 → N2 of NETG is only 

one to one (injective) f is called neutro-monomorphism. 

Definition 2.9: Let (N1,∗) and (N2,◦) be two NETG’s. If a mapping f : N1 → N2 is only onto (surjective) f 

is called neutro-epimorphism. 

Definition 2.9: Let (N1,∗) and (N2,◦) be two NETGs. If a mapping f : N1 → N2 neutro-homomorphism is 

one to one and onto f is called neutro-isomorphism. Here, N1 and N2 are called neutro-isomorphic 

and denoted as N1 ≌ N2. 

 

3. Quotient NTM and Neutro-Isomorphism  

In this chapter,  We prove neutro-isomorphism theorems. we define the quotient NTM and prove 

the fundamental theorem of neutro-homomorphism. We also prove the first neutro-isomorphism 

theorem for neutrosopfic triplet Modules, the second neutro-isomorphism theorem for neutrosopfic 

triplet Modules, the third neutro-Isomorphism theorem for neutrosopfic triplet Modules and a few 

special cases. 

Definition 3.1: Let NTM, NTM′ be neutrosopfic triplet left modules over the neutrosopfic triplet ring 

R. A map ꝺ : NTM → NTM′ is called a neutrosopfic triplet left R-module homomorphism if :  

1. ꝺ is a neutrosopfic triplet group neutro-homomorphism, that is if, for every m, n ∈ NTM we have ꝺ 

(m + n) = ꝺ (m) + ꝺ (n);  

2. For every r ∈ R and for every m ∈ M we have ꝺ (r · m) = r · ꝺ (m)  

If ꝺ : NTM → NTM′ is a neutrosopfic triplet R-module neutro-homomorphism we say that:  

i) ꝺ is a neutro-monomorphism if the map ꝺ is injective ; 

ii) ꝺ is a neutro-epimorphism if the map ꝺ is surjective ;  

iii)ꝺ is an isomorphism if the map ꝺ is bijective.  

We will say that NTM and NTM′ are neutro-isomorphic and we will write NTM ≌ NTM′ if there 

exists a neutro-isomorphism ꝺ : NTM → NTM′. Observe that, in this case, the inverse map of ꝺ, ꝺ-1 : 

NTM′ → NTM is also a module isomorphism. 

Example 3.2. Let R be a neutrosopfic triplet ring. Given an element a ∈ R the map  

ꝺa : R → R 

r → r·Ra 

is a left NTM neutro-homomorphism from RR into RR. Observe that, if  

a ≠ neut(a), then ꝺa is not a NTR neutro-homomorphism. 

 

Theorem 3.3. Let R be a NTR, let M be a NTM and let H be a neutrosophic triplet R -Submodule. We 

define a left NTM structure on the neutrosophic triplet abelian group M / H by neutrosophic triplet 

setting, for every ṙ ∈ R and for every ṁ ∈ M, ṙ ·(ṁ + H) = (ṙ ·ṁ) + H. Moreover, with respect to this 

structure, the canonical projection ꝺ H : M → M / H becomes a surjective neutrosophic triplet R 

-module homomorphism. 
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Proof. We have first to show that (1) is well defined, that is, given any  ṙ ∈ R, ṁ,m′ ∈ M such that ṁ+ 

H = ṅ+ H ( i.e. ṁ−ṅ ∈ H), we have that (ṙ · ṁ)+ H = ṙ · ṅ + H ( i.e. ṙ · ṁ − ṙ · ṅ ∈ H). But ṁ − ṅ ∈ H implies 

that ṙ · ṁ − ṙ · ṅ = ṙ ·( ṁ − ṅ) ∈ H as H is a submodule of M. Let now ḳ,ḷ ∈ R, ṁ, ṅ ∈ R. We have:  

ḳ ·[( ṁ + H) + (ṅ + H)] = ḳ ·[( ṁ + ṅ) + H] = (ḳ ·( ṁ + ṅ)) + H = (ḳ · ṁ + ḳ · ṅ) + H =  (ḳ · ṁ + H) + (ḳ · ṅ + H) = 

ḳ ·( ṁ + H) + ḳ ·( ṅ + H); 

(ḳ + ḷ)·( ṁ + H) = ((ḳ + ḷ)· ṁ) + H = (ḳ · ṁ + ḷ · ṁ) + H = (ḳ · ṁ + H) + (ḷ · ṁ + H) = ḳ ·( ṁ + H) + ḷ ·( ṁ + H); (ḳ 

· ḷ)( ṁ + H) = ((ḳ ·R ḷ) ṁ)+ H = (ḳ ·( ḷ · ṁ))+ H = ḳ ·( ḷ · ṁ + H) = ḳ ·( ḷ ·( ṁ + H)); neut(ḳ, ḷ)R ·( ṁ + H) = (neut(ḳ, 

ḷ)R · ṁ) + H = ṁ + H.  

Finally: ꝺ H (ḳ · ṁ) = ḳ · ṁ + H = ḳ ·( ṁ + H) = ḳ ·ꝺH (ṁ). 

 

Definition 3.4. Let NTM be a neutrosophic triplet left  module over a neutrosophic triplet ring R 

and let H be a neutrosophic triplet submodule of M. The neutrosophic triplet left R -module having 

the neutrosophic triplet quotient group M / H for its underlying neutrosophic triplet abelian group is 

called the neutrosophic triplet quotient module ( or a neutrosophic triplet factor module) of NTM 

modulo NTSM and is denoted by NTM/NTSM. 

 

Theorem 3.5. Let R be a neutrosophic triplet ring and let δ : NTM → NTM′ be a neutrosophic triplet 

left R-module neutro-homomorphism. If S is a NTSM of NTM contained in Ker(δ), then there exists a 

NTM neutro-homomorphism  : NTM/NTSM → NTM′ such that the diagram commutes 

 i.e.   δ = ◦ ꝺS. 

Moreover: 

1.  is unique with respect to this property;  

2. Im(δ) = Im( ) and Ker( ) = Ker(δ)/S;  

3.  is injective ⇔ S = Ker(δ).  

Proof. In view of the Fundamental Theorem for the a neutrosophic triplet quotient group there exists 

a a neutrosophic triplet group neutro-homomorphism : NTM/NTSM → NTM′  such that δ = ◦ 

ꝺS.  

Moreover: 1) such a neutrosophic triplet group neutro homomorphism is unique;  

2) Im(δ) = Im( ), Ker( ) = Ker(δ)/S;  

3) is injective ⇔ S = Ker(δ).  

Hence we only have to prove that, for every m ∈ NTM and r ∈ R: 

  (r(m + S)) = r·  (m + S). 

It is now an easy calculation to arrive at: 
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 (r·(m+S)) =  (r·m+S) =  (ꝺS (r·m)) = δ (r·m) = r· δ (x) = r·  (ꝺS (m)) = r·(m+S). 

 

 

Corollary 3.6. (First neutro-Isomorphism Theorem for NTM).  

Let R be a NTR and δ : NTM → NTM′ be a NTLM neutro-homomorphism. Then the assignment 

m + Ker(δ) → δ (m) 

defines an neutro-isomorphism of neutrosophic triplet left R-modules 

 : NTM/Ker(δ) → Im(δ) 

In particular, if δ is surjective, then   is an neutro isomorphism and  

NTM/Ker(δ) ≌ NTM′. 

 

Theorem 3.7. (Second neutro-Isomorphism Theorem for NTM)  

Let H and B be NTSM of a NTM over a NTR. Then H ∩B and H +B are neutrosophic triplet 

submodules of NTM and the assignment m + (H ∩ B) → m+ B defines an neutrosophic triplet 

R-module neutro-isomorphism from H /( H ∩ B) into H + B / B. Therefore:  

H /( H ∩ B) ≌ H + B / B 

Proof. We know that H ∩ B is a NTSM of NTM. Let r ∈ R, s ∈ H ∩B. Then rs ∈ H and rs ∈ B, as H and B 

are neutrosophic triplet submodules of NTM. Therefore r·s ∈ H ∩ B. We know that H + B is a 

neutrosophic triplet subgroup of NTM. Let r ∈ R, s ∈ H + B. Then there exist m ∈ H and n ∈ B such 

that s = m + n. Obviously rm ∈ H and rn ∈ B, and hence r·s = r·m + r·n ∈ H + B. In view of the Second 

neutro-Isomorphism Theorem for neutrosophic triplet groups, the assignment m + (H ∩ B) → m + B 

defines a neutrosophic triplet group neutro-isomorphism δ : H /( H ∩ B) → H + B / B. Let r ∈ R, m ∈ H, 

then we calculate:  

δ (r(m + (H ∩ B)) = δ (rm + (H ∩ B)) = rm + B = r(m + B) = r δ (m + (H ∩ B)). Therefore δ is a neutrosophic 

triplet left R-module neutro-isomorphism.  

 

Theorem 3.8. Let R be a NTR, δ : NTM → NTM′ be a neutrosophic triplet left R-module 

neutro-homomorphism. For every neutrosophic triplet submodule S of M containing Ker(δ) the 

assignment  

m + S → δ (m) + δ (S) defines a neutro-isomorphism  S :M/S → Im(δ)/δ(S) . Therefore  

M/S ≌ Im(δ)/δ(S). 

 

Proof. We know that the assignment m + S → δ (m) + δ(S) defines a neutrosophic triplet group 

neutro-isomorphism π = N : M/S → Im(δ)/S.  

Let r ∈ R, m ∈ S. We have :  
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π (r(m + S)) = π (rm + S) = δ (rm) + δ (S) = (r δ (m)) + δ (S) = r(δ (m) + δ(S)) = r π (m + S)  Therefore π is a 

neutrosophic triplet left R-module neutro-isomorphism. 

 

Corollary 3.9. (Third neutro-Isomorphism Theorem for NTM) 

Let H and B be neutrosophic triplet submodules of a NTM over a NTR and assume that          H ⊆ 

B.  

Then the assignment m+ B → (m + H)+H/ B. Defines a neutrosophic triplet left R-module 

neutro-isomorphism from M/H into M/H/ B /H. Therefore  

M/B ≌ M/H/ B /H. 

Proof. Apply Theorem 3.8 to ꝺH : M → M/H, recalling that ꝺH (B) = B / H. 

 

4. Conclusions 

This article mainly focused on fundamental homomorphism theorems for neutrosophic R-modules. 

We gave and proved the fundamental theorem of neutro-homomorphism, as well as first,second and 

third neutro-isomorphism theorems explained for NTM. Furthermore, we define 

neutro-monomorphism, neutro-epimorphism. By applying them to neutrosophic algebraic 

structures. We looked at it as closely related as different systems. Using the concept of the 

fundamental theorem of neutro-Homomorphism and neutro-isomorphism theorems, the 

relationship between neutrosophic algebraic structures was studied. 

 

 

Abbreviations  

NT: Neutrosophic triplet 

NTS:Neutrosophic triplet set 

NETG: Neutrosophic extended triplet group 

NTM: Neutrosophic triplet R-module 

NTSM: Neutrosophic triplet R-submodule 

NTLM: Neutrosophic triplet left R-module 
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Abstract:  The concept of Neutrosophic Pythagorean set [NPS] with dependent Neutrosophic 

Pythagorean components was introduced and discussed the relationship between dependent 

neutrosophic and neutrosophic pythagorean components. The correlation coefficient is a statistical 

measure which contributes in deciding the degree to which changes in one variable predict changes 

in another. In this article, we analyze the characteristics of neutrosophic pythagorean sets with 

improved correlation coefficients. We've also used the same approach in multiple attribute decision-

making methodologies including one with a neutrosophic pythagorean environment. Finally, we 

implemented for above technique to the problem of multiple attribute group decision making. 

Keywords: neutrosophic pythagorean sets, neutrosophic Sets, Improved correlation coefficient. 

   

 

1. Introduction 

           Fuzzy sets were introduced by Zadeh [20] in 1965 that permits the 

membership perform valued within the interval [0,1] and set theory it's an extension of 

classical pure mathematics. Fuzzy set helps to deal the thought of 

uncertainty, unclearness and impreciseness that isn't attainable within the cantorian set. 

As Associate in Nursing extension of Zadeh’s fuzzy set theory intuitionistic fuzzy set(IFS) was 

introduced by Atanassov [1] in 1986, that consists of degree of membership and degree of non 

membership and lies within the interval of [0,1]. IFS theory wide utilized in the areas of logic 

programming, decision making issues, medical diagnosis etc. 

         Florentine Smarandache [12] introduced the idea of Neutrosophic set in 1995 that provides 

the information of neutral thought by introducing the new issue referred to as uncertainty within 

the set. thus neutrosophic set was framed and it includes the parts of truth membership 

function(T), indeterminacy membership function(I), and falsity membership   function(F) severally. 

Neutrosophic sets deals with non normal interval of ]−0 1+[. Since neutrosophic set deals 

the indeterminateness effectively it plays an very important role in several applications 

mailto:stanisarulmary@gmail.com
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areas embrace info technology, decision web, electronic database systems, diagnosis, 

multicriteria higher cognitive process issues etc., 

      To method the unfinished data or imperfect data to unclearness a brand new mathematical 

approach i.e., To deal the important world issues, Wang [13](2010) introduced the idea of single 

valued neutrosophic sets(SVNS) that is additionally referred to as an extension of intuitionistic 

fuzzy sets and it became a really new hot analysis topic currently. The concept of neutrosophic 

pythagorean sets with dependent neutrosophic components was introduced by R. Jhansi and K. 

Mohana[6].  

 Further, R. Radha and A. Stanis Arul Mary[7] outlined a brand new hybrid model of 

Pentapartitioned Neutrosophic Pythagorean  sets  (PNPS)  and Quadripartioned neutrosophic 

pythagorean sets in 2021.Correlation coefficient may be a effective mathematical tool to live the 

strength of the link between 2 variables. such a lot of researchers pay the attention to the idea of 

varied correlation coefficients of the various sets like fuzzy set, IFS, SVNS, QSVNS. In 1999 D.A 

Chiang and N.P. Lin [3] projected the correlation of fuzzy sets underneath fuzzy setting. Later D.H. 

Hong [4] (2006) outlined fuzzy measures for a coefficient of correlation of fuzzy numbers below Tw 

(the weakest t-norm) based mostly fuzzy arithmetic operations. 

    Correlation coefficients plays a very important role in several universe issues like multiple 

attribute cluster higher cognitive process, cluster analysis, pattern 

recognition, diagnosis etc., therefore several authors targeted the idea of shaping correlation 

coefficients to resolve the important world issues in significantly multicriteria decision 

making strategies. Jun Ye [19] outlined the improved correlation coefficients of single valued 

neutrosophic sets and interval neutrosophic sets for multiple attribute higher cognitive process to 

beat the drawbacks of the correlation coefficients of single valued neutrosophic sets 

(SVNSs) that is outlined in [17]. 

In this paper, we have applying improved correlation coefficient on Neutrosophic Pythagorean sets 

and studied with an example. In the third section, the idea of Neutrosophic Pythagorean set was 

initiated and in fourth section, the improved correlation coefficient was applied to neutrosophic 

pythagorean sets. Finally, the decision making under improved correlation was illustrated by an 

example in the last section 

 

2 Preliminaries 

 

2.1 Definition [12] 

Let X be a universe. A Neutrosophic set A on X can be defined as follows: 

𝐴 =  {< 𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >: 𝑥 ∈ 𝑋} 

Where 𝑇𝐴  , 𝐼𝐴 , 𝐹𝐴: 𝑈 → [0,1] 𝑎𝑛𝑑 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴 (𝑥) ≤ 3 

Here, 𝑇𝐴(𝑥) is the degree of membership,  𝐼𝐴(𝑥) is the degree of inderminancy and 𝐹𝐴(𝑥) is the degree 

of non-membership. 

𝐻𝑒 re, 𝑇𝐴(𝑥) and 𝐹𝐴(𝑥) are dependent neutrosophic components and 𝐼𝐴(𝑥)  is an independent 

component. 

2.2 Definition [6] 

Let X be a universe. A  Pythagorean Neutrosophic set A with T and  F are dependent neutrosophic 

components and I as independent component for 𝐴 =  {< 𝑥, 𝑇𝐴, 𝐼𝐴, 𝐹𝐴 >: 𝑥 ∈ 𝑋}  on X is an object of the 

form   
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(𝑇𝐴)2 + (𝐼𝐴)2 + (𝐹𝐴 )
2 ≤ 2 

Here,  𝑇𝐴(𝑥)  is the truth membership, 𝐼𝐴(𝑥)  is indeterminancy membership and   𝐹𝐴(𝑥)  is the false 

membership . 

2.3 Definition [6] 

The complement of a Pythagorean Neutrosophic set 𝐴 =  {< 𝑥, 𝑇𝐴, 𝑈𝐴, 𝐹𝐴 >: 𝑟 ∈ 𝑅}  with dependent 

Neutrosophic components is  

𝐴𝐶 =  {< 𝑥, 𝐹𝐴, 𝑈𝐴 , 𝑇𝐴 >: 𝑟 ∈ 𝑅}. 

 

2.4 Definition [6] 

Let 𝐴 =  {< 𝑥, 𝑇𝐴, 𝑈𝐴, 𝐹𝐴 >: 𝑟 ∈ 𝑅} 𝑎𝑛𝑑 𝐵 =  {< 𝑥, 𝑇𝐵 , 𝑈𝐵 , 𝐹𝐵 >: 𝑟 ∈ 𝑅}  are two Pythagorean 

Neutrosophic sets with dependent Neutrosophic components on the universe R. Then the union and 

intersection of two sets can be defined by 

A ∪ 𝐵  = {max (𝑇𝐴, 𝑇𝐵), max (𝑈𝐴, 𝑈𝐵),min (𝐹𝐴, 𝐹𝐵)}, 

A ∩ 𝐵  = {min (𝑇𝐴 , 𝑇𝐵), min (𝑈𝐴, 𝑈𝐵),max (𝐹𝐴, 𝐹𝐵)}. 

 

3.Neutrosophic Pythagorean Set with Dependent Neutrosophic Pythagorean Components 

3.1 Definition  

Let R be a universe. A Neutrosophic pythagorean set A with T and F as dependent Neutrosophic 

Pythagorean components and U as independent component for A on R is an object of the form  

𝐴 =  {< 𝑥, 𝑇𝐴, 𝑈𝐴, 𝐹𝐴 >: 𝑟 ∈ 𝑅} 

Where  (𝑇𝐴)2 + (𝐹𝐴 )
2 ≤ 1 and 

 

(𝑇𝐴)2 + (𝑈𝐴)2 + (𝐹𝐴 )
2 ≤ 2 

Here, 𝑇𝐴(𝑥) is the truth membership, 𝑈𝐴(𝑥) is indeterminancy membership and  𝐹𝐴(𝑥) is the false 

membership . 

Remark: When T and F as  dependent Neutrosophic Components, then T + F ≤ 1. 

3.2 Definition 

The complement of a Neutrosophic Pythagorean set 𝐴 =  {< 𝑥, 𝑇𝐴 , 𝑈𝐴, 𝐹𝐴 >: 𝑟 ∈ 𝑅}  with 

dependent Neutrosophic Pythagorean components is  

𝐴𝐶 =  {< 𝑥, 𝐹𝐴, 1 − 𝑈𝐴 , 𝑇𝐴 >: 𝑟 ∈ 𝑅}. 

 

3.3 Definition 

Let 𝐴 =  {< 𝑥, 𝑇𝐴, 𝑈𝐴, 𝐹𝐴 >: 𝑟 ∈ 𝑅} 𝑎𝑛𝑑 𝐵 =  {< 𝑥, 𝑇𝐵 , 𝑈𝐵 , 𝐹𝐵 >: 𝑟 ∈ 𝑅}  are two Neutrosophic 

Pythagorean sets with dependent Neutrosophic Pythagorean components on the universe R. Then 

the union and intersection of two sets can be defined by 

A ∪ 𝐵  = {max (𝑇𝐴, 𝑇𝐵), min (𝑈𝐴, 𝑈𝐵),min (𝐹𝐴, 𝐹𝐵)}, 

A ∩ 𝐵  = {min (𝑇𝐴 , 𝑇𝐵), max (𝑈𝐴, 𝑈𝐵),max (𝐹𝐴, 𝐹𝐵)}. 
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3.4 Example 

Let R = {a, b} and A ={ (a, 0.4,0.3),(b,0.5,0.2)}. 

Then 𝜏 = {0,1, A} is a topology on R. Then A is a Neutrosophic Pythagorean set. 

 

3.5 Example 

Let R = {a, b} and A ={ (a, 0.7,0.7),(b,0.7,0.7)}. 

Then 𝜏 = {0,1, A} is a topology on R. Since 𝑇𝐴 + 𝐹𝐴  > 1,then A is  a Neutrosophic Pythagorean set 

with dependent neutrosophic pythagorean components but not dependent neutrosophic 

components. 

 𝐵𝑢t  (𝑇𝐴)2 + (𝑈𝐴)2 + (𝐹𝐴 )
2 ≤ 2 . Hence A is a Pythagorean Neutrosophic set. 

3.6 Example 

Let R = {a, b} and A ={ (a, 0.8,0.7),(b,0.7,0.7)}. 

Then 𝜏 = {0,1, A} is a topology on R. Since 𝑇𝐴 + 𝐹𝐴  > 1, (𝑇𝐴)2 + (𝐹𝐴 )
2 > 1,then A is  not a 

Neutrosophic Pythagorean set with dependent neutrosophic pythagorean components and  

dependent neutrosophic components. 

 𝐵𝑢t  (𝑇𝐴)2 + (𝑈𝐴)2 + (𝐹𝐴 )
2 ≤ 2 . Hence A is a Pythagorean Neutrosophic set. 

 

4. Improved Correlation Coefficients  

Based on the concept of correlation coefficient of NPS s ,we have defined the improved correlation 

coefficients of NPS s in the following section. 

 

4.1 Definition 

Let P and Q be any two NPs s in the universe of discourse R = { r1, r2 , r3 ,…, rn }, then the improved 

correlation coefficient between P and Q is defined as follows  

K (P, Q) = 
1

3𝑛
 ∑  [ 𝛼𝑘(1 − ∆𝑛

𝑘=1 T𝑘) +  +𝛾𝑘(1 − ∆𝑈𝑘) +𝜇𝑘(1 −  ∆𝐹𝑘) ] 

 

 (1)                        

Where 

 

𝛼𝑘 =  
2− ∆T𝑘− ∆T𝑚𝑎𝑥

2− ∆T𝑚𝑖𝑛−∆T𝑚𝑎𝑥
 , 

 

𝛾𝑘 =  
2− ∆U𝑘− ∆U𝑚𝑎𝑥

2− ∆U𝑚𝑖𝑛−∆U𝑚𝑎𝑥
 ,  

 

 𝜇𝑘 =  
2− ∆𝐹𝑘− ∆F𝑚𝑎𝑥

2− ∆F𝑚𝑖𝑛−∆F𝑚𝑎𝑥
 , 

 

∆T𝐾 = |TP
2(𝑟𝑘) − TQ

2(𝑟𝑘) |,  

 

∆U𝐾 = |UP
2(𝑟𝑘) − UQ

2 (𝑟𝑘) |, 

 

∆F𝐾 = |FP
2(𝑟𝑘) − FQ

2 (𝑟𝑘) |, 

 

∆T𝑚𝑖𝑛  = 𝑚𝑖𝑛𝑘|TP
2(𝑟𝑘) − TQ

2(𝑟𝑘) |, 
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∆U𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑘|UP
2(𝑟𝑘) − UQ

2 (𝑟𝑘) |, 

 

∆F𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑘|FP
2(𝑟𝑘) − FQ

2 (𝑟𝑘) |, 

 

 

∆T𝑚𝑎𝑥  = 𝑚𝑎𝑥𝑘|TP
2(𝑟𝑘) − TQ

2(𝑟𝑘) |, 

 

∆U𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑘|UP
2(𝑟𝑘) − UQ

2 (𝑟𝑘) |, 

 

∆F𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑘|FP
2(𝑟𝑘) − FQ

2 (𝑟𝑘) |, 

 

 

For any rk ∈ R and k = 1, 2, 3….. n. 

 

 

4.2 Theorem 

For any two NPS s P and Q in the universe of discourse R = { r1, r2 , r3 ,…, rn }, the improved correlation 

coefficient K(P, Q) satisfies the following properties. 

1) K (P, Q) = K (Q, P); 

2) 0 ≤ K (P, Q) ≤ 1 ; 

3) K(P, Q) = 1 iff P =Q. 

Proof 

(1) It is obvious and straightforward. 

(2) Here,  0 ≤  𝛼𝑘 ≤ 1,  0 ≤   𝛾𝑘 ≤  1,  0 ≤  𝜇𝑘 ≤ 1, 0 ≤ 1 − ∆𝑇𝑘 ≤ 1, 

0 ≤ 1 − ∆𝑈𝑘 ≤ 1, 0 ≤ 1 − ∆𝐹𝑘 ≤ 1, Therefore the following inequation satisfies 

 0 ≤ 𝛼𝑘 (1 − ∆Tk) + +𝛾𝑘(1 −  ∆𝑈𝑘) + 𝜇𝑘(1 − ∆𝐹𝑘)  ≤ 3. Hence we have  0 ≤ K (P, Q) ≤ 1 

(3) If K (P, Q) = 1, then we get 𝛼𝑘 (1 − ∆𝑇𝑘) +  𝛾𝑘(1 −  ∆𝑈𝑘) + 𝜇𝑘 (1 − ∆𝐹𝑘) = 3.  

Since 0 ≤ 𝛼𝑘 (1 − ∆𝑇𝑘) ≤ 1, 0 ≤  𝛾𝑘(1 − ∆𝑈𝑘) ≤  1 and 0 ≤  𝜇𝑘 (1 − ∆𝐹𝑘) ≤  1, there are 

𝛼𝑘 (1 − ∆𝑇𝑘) = 1, 𝛾𝑘(1 −  ∆𝑈𝑘) =  1 and 𝜇𝑘 (1 −  ∆𝐹𝑘) =  1. And also since 0 ≤ 𝛼𝑘 ≤ 1,   0 ≤  𝛾𝑘 ≤  1 

and 0 ≤  𝜇𝑘  ≤  1,0 ≤  1 − ∆𝑇𝑘  ≤  1, 0 ≤  1 − ∆𝑈𝑘  ≤  1, 0 ≤  1 −  ∆𝐹𝑘  ≤  1. We get 𝛼𝑘 = =  𝛾𝑘 =

 𝜇𝑘 = 1 and 1 −∆𝑇𝑘 = 1 − ∆𝑈𝑘 =  1 − ∆𝐹𝑘 = 1. This implies,  ∆𝑇𝑘 =  ∆𝑇𝑚𝑖𝑛 =  ∆𝑇𝑚𝑎𝑥 = 0,  ∆𝑈𝑘 =

 ∆𝑈𝑚𝑖𝑛 =  ∆𝑈𝑚𝑎𝑥 = 0, ∆𝐹𝑘 =  ∆𝐹𝑚𝑖𝑛 =  ∆𝐹𝑚𝑎𝑥 = 0. Hence 𝑇𝑃(𝑟𝑘) =  𝑇𝑄(𝑟𝑘),  𝑈𝑃(𝑟𝑘) =  𝑈𝑄(𝑟𝑘) and 

𝐹𝑃(𝑟𝑘) =  𝐹𝑄(𝑟𝑘) for any 𝑟𝑘 ∈ 𝑅 and k = 1,2,3….n.Hence P = Q. 

 Conversely, assume that P = Q, this implies  𝑇𝑃(𝑟𝑘) =  𝑇𝑄(𝑟𝑘),  𝑈𝑃(𝑟𝑘) =  𝑈𝑄(𝑟𝑘) and 𝐹𝑃(𝑟𝑘) =  𝐹𝑄(𝑟𝑘) 

for any 𝑟𝑘 ∈ 𝑅 and k = 1,2,3….n. Thus  ∆𝑇𝑘 =  ∆𝑇𝑚𝑖𝑛 =  ∆𝑇𝑚𝑎𝑥 = 0, ∆𝑈𝑘 =  ∆𝑈𝑚𝑖𝑛 =  ∆𝑈𝑚𝑎𝑥 = 0, ∆𝐹𝑘 =

 ∆𝐹𝑚𝑖𝑛 =  ∆𝐹𝑚𝑎𝑥 = 0. Hence we get K (P, Q) = 1.  

 

The improved correlation coefficient formula which is defined is correct and also satisfies these 

properties in the above theorem . When we use any constant 𝜀 > 3 in the following expressions  

𝛼𝑘 =  
ε− ∆T𝑘− ∆T𝑚𝑎𝑥

ε− ∆T𝑚𝑖𝑛−∆T𝑚𝑎𝑥
 , 

 

𝛾𝑘 =  
ε− ∆U𝑘− ∆U𝑚𝑎𝑥

ε− ∆U𝑚𝑖𝑛−∆U𝑚𝑎𝑥
 ,  

 

𝜇𝑘 =  
ε − ∆F𝑘 −  ∆F𝑚𝑎𝑥

ε − ∆𝐹𝑚𝑖𝑛 − ∆𝐹𝑚𝑎𝑥
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4.3 Example 

Let A = { r, 0,0,0,0} and B = { r, 0.4,0.2,0.5} be any two NPS s in R. Therefore by equation (1) we get 

K(A, B) =0.15 . It shows that the above defined improved correlation coefficient overcome the 

disadvantages of the correlation coefficient . 

In the following, we define a weighted correlation coefficient between NPS s since the differences in 

the elements are considered into an account, 

Let 𝑤𝑘  be the weight of each element 𝑟𝑘(k = 1,2…n), 𝑤𝑘 ∈ [0,1] and ∑ 𝑤𝑘
𝑛
𝑘=1 = 1, then the weighted 

correlation coefficient between the NPS s A and B 

𝐾𝑤(A, B) = 
1

3
 ∑  𝑤𝑘[ 𝛼𝑘(1 − ∆𝑛

𝑘=1 𝑇𝑘) + 𝛾𝑘(1 − ∆𝑈𝑘) +𝜇𝑘(1 −  ∆𝐹𝑘) ] 

(2) 

If w = (1/n,1/n,1/n,….1/n) T , then equation (2) reduces to equation (1). 𝐾𝑤(A, B) also satisfies the 

three properties in the above theorem. 

4.4 Theorem 

Let 𝑤𝑘 be the weight for each element 𝑟𝑘(k = 1,2,…n), 𝑤𝑘 ∈ [0,1] and ∑ 𝑤𝑘
𝑛
𝑘=1 = 1, then the weighted 

correlation coefficient between the NPS s A and B which is denoted by 𝐾𝑤(A, B) defined in equation 

( 3.2) satisfies the following properties. 

1) 𝐾𝑤(A, B) = 𝐾𝑤(B, A); 

2) 0 ≤  𝐾𝑤(A, B) ≤ 1; 

3) 𝐾𝑤(A, B) = 1 iff A = B. 

It is similar to prove the properties in theorem 3.1 

 

5 Decision Making using the improved correlation coefficient of NPS s  

Multiple attribute decision making (MADM) problems refers to make decisions when several 

attributes are involved in real -life problem. For example one may buy a vehicle by analysing the 

attributes which is given in tems of price, style,safety, comfort etc., 

Here we consider a multiple attribute decision making problem with  Neutrosophic pythagorean 

information and the characteristic of an alternative 𝐴𝑖(i = 1,2,…m) on an attribute 𝐶𝑗(j = 1,2…n) is 

represented by the following NPS s: 

𝐴𝑖 = {(𝐶𝑗, 𝑇𝐴𝑖
(𝐶𝑗), 𝑈𝐴𝑖

(𝐶𝑗), 𝐹𝐴𝑖
(𝐶𝑗)\ 𝐶𝑗 ∈ 𝐶, 𝑗 = 1,2, … 𝑛}, 

Where 𝑇𝐴𝑖
(𝐶𝑗), 𝑈𝐴𝑖

(𝐶𝑗), 𝐹𝐴𝑖
(𝐶𝑗) ∈ [0,1] and  

0 ≤  𝑇𝐴𝑗

2 (𝐶𝑗) + +𝑈𝐴𝑗

2 (𝐶𝑗) + 𝐹𝐴𝑗

2 (𝐶𝑗) ≤ 2 for 𝐶𝑗 ∈ 𝐶, 𝑗 = 1,2, … 𝑛 and I = 1,2,…m. 

𝑑𝑖𝑗 = (𝑡𝑖𝑗 , 𝑢𝑖𝑗 , 𝑓𝑖𝑗 )(𝑖 = 1,2, … 𝑚; 𝑗 = 1,2 … 𝑛). 



Neutrosophic Sets and Systems, Vol. 46, 2021     83  

 

 

R. Radha, A. Stanis Arul Mary, R. Prema  and Said Broumi, Neutrosophic Pythagorean Sets with Dependent Neutrosophic 

Pythagorean Components and its Improved Correlation Coefficients 

Here the values of 𝑑𝑖𝑗  are usually derived from the evaluation of an alternative 𝐴𝑖 with respect to a 

criteria 𝐶𝑗 by the expert or decision maker. Therefore we got a Neutrosophic pythagorean decision 

matrix 𝐷 = (𝑑𝑖𝑗)𝑚×𝑛. 

In the caseof ideal alternative 𝐴∗ an ideal PNP can be defined by 

 𝑑𝑗
∗ = (𝑡𝑗

∗, 𝑢𝑗
∗, 𝑓𝑗

∗) = (1, 0,0)(j = 1,2…n) in the decision making method, 

Hence the wighted correlation coefficient between an alternative 𝐴𝑖(i=1,2….m) and the ideal 

alternative 𝐴∗ is given by, 

𝐾𝑤(𝐴𝑖 , 𝐴∗) =  
1

3
∑ 𝑤𝑗[𝛼𝑘(1 −  ∆𝑡𝑖𝑗) + 𝛾𝑖𝑗(1 − ∆𝑢𝑖𝑗) + 𝜇𝑘(1 − ∆𝑓𝑖𝑗)]

𝑛

𝑗=1

 

(3) 

Where, 

𝛼𝑘=
2− ∆𝑡𝑖𝑗− ∆𝑡𝑖𝑚𝑎𝑥

2− ∆𝑡𝑖𝑚𝑖𝑛−∆𝑡𝑖𝑚𝑎𝑥
, 

𝛾𝑖𝑗 =
2− ∆𝑢𝑖𝑗− ∆𝑢𝑖𝑚𝑎𝑥

2− ∆𝑢𝑖𝑚𝑖𝑛−∆𝑢𝑖𝑚𝑎𝑥
, 

𝜇𝑘= 
2− ∆𝑓𝑖𝑗− ∆𝑓𝑖𝑚𝑎𝑥

2− ∆𝑓𝑖𝑚𝑖𝑛−∆𝑓𝑖𝑚𝑎𝑥
, 

∆𝑡𝑖𝑗 = |𝑡𝑖𝑗
2 −  𝑡𝑗

∗|, 

∆𝑢𝑖𝑗 = |𝑢𝑖𝑗
2 −  𝑢𝑗

∗|, 

∆𝑓𝑖𝑗 = |𝑓𝑖𝑗
2 −  𝑓𝑗

∗|, 

 

∆𝑡𝑖𝑚𝑖𝑛 =  𝑚𝑖𝑛𝑗  |𝑡𝑖𝑗
2 − 𝑡𝑗

∗|, 

∆𝑢𝑖𝑚𝑖𝑛 =  𝑚𝑖𝑛𝑗  |𝑢𝑖𝑗
2 −  𝑢𝑗

∗|, 

∆𝑓𝑖𝑚𝑖𝑛 =  𝑚𝑖𝑛𝑗  |𝑓𝑖𝑗
2 −  𝑓𝑗

∗|, 

∆𝑡𝑖𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗  |𝑡𝑖𝑗
2 − 𝑡𝑗

∗|, 

∆𝑢𝑖𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗  |𝑢𝑖𝑗
2 −  𝑢𝑗

∗|, 

∆𝑓𝑖𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗  |𝑓𝑖𝑗
2 −  𝑓𝑗

∗|, 

For i = 1,2….m and j = 1,2….n. 

By using the above weighted correlation coefficient We can derive the ranking order of all 

alternatives and we can choose the best one among those. 
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5.1 Example 

This section deals the example for the multiple attribute decision making problem with the given alt  

ernatives corresponds to the criteria alloted under Neutrosophic pythagorean environment 

For this example, the three potential alternatives are to be evaluated under the four different 

attributes. The types of intellectual property rights are the alternatives and the various cybercrimes 

are the attributes for this example. The three potential alternatives are 𝐴1 − copyright, 𝐴2 −patent 

right and  𝐴3 − trademark and the four diffident attributes are 𝐶1 − infringement, 𝐶2 – piracy and  

𝐶3 − cybersquatting . For the evaluation of an alternative 𝐴1  with respect to an attribute 𝐶1 , it is 

obtained from the questionnaire of a domain expert. According to the attributes we will derive the 

ranking order of all alternatives and based on this ranking order customer will select the best one. 

The weight vector of the above attributes is given by w = (0.35,0.4,0.25),Here the alternatives are to 

be evaluated under the above three attributes by the form of NPS s, In general the evaluation of an 

alternative Ai with respect to the attributes Cj (i=1,2,3,j=1,2,3) will be done by the questionnaire of a 

domain expert. In particular, while asking the opinion about an alternative A1 with respect to an 

attribute C1 , the possibility he (or) she say that the statement true is 0.4 , the statement 

indeterminacy is 0.3 and the statement false is 0.4 . It can be denoted in neutrosophic notation as 

d11 = (0.4,0.3,0.4). 

 

 

𝐴𝑖  \ 𝐶𝑗 𝐶1 𝐶2 𝐶3 

𝐴1 [0.4,0.3,0.4] [0.5.0.4,0.5] [0.4,0.1,0.4] 

𝐴2  [0.4,0.2,0.6] [0.3,0.3,0.5] [0.1,0.4,0.2] 

𝐴3 [0.3,0.4,0.4] [0.5,0.1,0.4] [0.4,0.5,0.4] 

 

 

Then by using the proposed method we will obtain the most desirable alternative. We can get 

the values of the  improved correlation coefficient Mw (Ai, A∗) (i = 1,2,3) by using Equation 

(3.3). 

Hence Mw (A1, A∗) = 0.2069, Mw (A2, A∗) = 0.17738, Mw (A3, A∗) = 0.13516. Therefore 

Thus ranking order of the three potential alternatives is A1>A2 >A3. Therefore we can say that A1 

alternative copyright have more cyber problems subsists in original literary, dramatic, musical, 

artistic, cinematographic film, sound recording and computer programme as well than the other 

alternatives of intellectual property rights. The decision making method provided in this paper is 

more judicious and more vigorous. 

6. Conclusion 

In this paper, we've outlined the improved correlation coefficient of NP sets and this is often 

applicable for a few cases ,once the correlation coefficient of NP sets  is undefined (or) unmeaningful 

and additionally studied its properties. Decision making could be a process that plays a significant 
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role in real world issues. the most method in higher cognitive process is recognizing the matter (or) 

chance and deciding to deal with it. Here we've mentioned the decision making technique using the 

improved correlation of NP sets  and in significantly an illustrative example is given in multiple 

attribute higher cognitive process issues that involves the many alternatives supported varied 

criteria. Therefore our projected improved correlation of NP sets helps to spot the foremost 

appropriate different to the client supported on the given criteria. 
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Abstract: Multi-Criteria Decision Making (MCDM) approaches are an effective tool for 

dealing with decision-making in various areas. It is a very complex and challenging task for 

computing an admittable solution with different and conflicting criteria. This work 

developed a new Measurement of Alternatives and Ranking according to the Compromise 

Solution (MARCOS) approach for English Teaching System (ETS). The main advantage of 

using this method is using a cost and profit solution for starting the formulation matrix, 

calculating the utility degree in both solutions, new way for calculation a function of utility 

and combination method, employed a large set of criteria and alternatives while keeping 

stability. ETS is very important for organizations, countries, and governments. It is a very 

critical task for assessing ETS. This paper proposed an example for using the MARCOS 

method for Assessment ETS. This example contains five main criteria, twenty-two 

sub-criteria and six alternatives for assessment ETS. The MARCOS method is employed 

under Single Valued Neutrosophic Sets (SVNSs) because the assessment ETS contains 

incomplete and uncertain information. So, SVNSs are an effective tool for overcoming this 

uncertainty. Scale from 1-5 used for evaluated criteria and alternatives by three experts and 

mailto:22044@hnzj.edu.cn
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decision-makers who have an expert in this field. This paper help organization and 

countries which want to build an ETS.   

Keywords: MARCOS, English Teaching System, SVNSs, Uncertainty. 

________________________________________________________________________________ 

1. Introduction 

 Higher education plays a vital role in the assessment English Teaching System (ETS) by 

improving the quality of training senor talent[1], [2]. Many countries that do not have an 

English mother tongue are trying to improve the education process in science and the 

English language by training students. So this goal is very important to evaluate and 

enhance the quality of English teaching with the ability of English outstanding[3], [4]. 

Assessment ETS is a very complex task due to contains many various criteria and 

alternatives like teaching system, management system, research of scientific, teachers, 

students, innovation, system integrations and mechanism of teaching, course material, 

employment, resource utilization, self-study communications skills, various methods and 

technical skills. So many researchers move toward innovation to assess the ETS by using 

various methods and functions.  

 The process of evaluation ETS contains incomplete and vague information. So, we 

propose a Single Valued Neutrosophic Sets (SVNSs) to overcome this problem through 

introduce three values truth, indeterminacy and falsity membership degrees. SVNSs used to 

handle with the incomplete, inconsistent and uncertainty information. It used is this paper to 

deal with vague information in process assessment ETS. SVNS used in scientific and 

engineering fields. Due to this problem contains multiple and conflict criteria, the 

multi-criteria decision making (MCDM) methods were used for this evaluation. We select an 

MCDM method MARCOS for evaluation ETS. MARCOS method is used for calculation 

weight of criteria and rank alternatives. It is the best method for dealing with conflict and 

complex criteria and alternatives. It builds a relationship between criteria and alternatives 
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through cost and benefit ideal solutions. Also, MARCOS is used for calculation the utility 

degree between cost and benefit ideal solutions. The main benefit of the utility function is to 

compute the position of alternatives regard cost and benefit ideal solutions. It used to present 

the anti-ideal and ideal solution and determine utility degree for two solution. It deal 

effectively with large dimension criteria and alternatives. The best alternative determined by 

nearest to benefit solution and farness of cost solution.  
 

 Stević et al.[5] used the MARCOS method for supplier selection in healthcare 

industries. They used twenty-one criteria and eight alternatives for their problem. They 

used fuzzy systems and scales from 1 to 5 to evaluate criteria and alternatives. The main 

limitations in their paper not considering the indeterminacy value in their calculations. 

They used only truth, and falsity membership degrees. 
 

 Puška et al. [6] used a MARCOS method for the selection of sustainable suppliers. They 

used fuzzy systems in their calculations. They were not consider the indeterminacy value 

in their calculations.   
  

The main contributions in this paper, we proposed a hybrid model from SVNSs and 

the MARCOS method for overcoming the uncertainty in evaluating ETS. We use six 

alternatives with five main criteria and twenty-two criteria. The indeterminacy value 

considers in calculations to overcome incomplete information. This paper help decision 

makers and government to make a best decisions in process of English teaching. This paper 

aids many countries to develop process of English teaching by providing many criteria that 

impact in this process. 

The rest of this paper presented section two for hybrid model and section three 

presented an example and results. Section 4 presented conclusions of this paper.  
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Fig 1. The methodology of this paper 

2. Framework of this paper 

 This section consists form two-part. The first part is calculating the weights of criteria, 

and the second part rank alternatives and introduce neutrosophic equations.  The 

neutrosophic sets created by Smarandache[7]–[14] . Fig 1. presented the methodology of 

this paper.  

The following definitions with SVNNs. 

Definition 1: let K1 = (T1, I1, F1) K2 = (T2, I2, F2)two single-value neutrosophic numbers (T1, I1, 

F1) present the Truth, Indeterminacy and Falsity and their operations presented as follow:  

Complement 𝐾1
∁ = (𝐹1, 1 − 𝐼1, 𝑇1)                     (1)                                  

Equality 𝐾1 = 𝐾2 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝐾1 ⊆  𝐾2 𝑎𝑛𝑑 𝐾2 ⊆ 𝐾1                               (2) 

Union 𝐾1 ∪ 𝐾2 = (𝑇1 ∨ 𝑇2, 𝐼1  ∧ 𝐼2, 𝐹1 ∧ 𝐹2)               

(3)                              

Intersection𝐾1 ∩ 𝐾2 = (𝑇1 ∧ 𝑇2, 𝐼1 ∨ 𝐼2, 𝐹1 ∨ 𝐹2)           

(4)                             

Initial Phase

•Assessment ETS

•Define group of decison makers 

•Define set of criteria and alternatives

Weights

•Define group of criteria and rank them

•Evalute criteria by the group of experts by pairwise matrix

•Compute weights of criteria 

MARCOS

•Build an intitial matrix by experts and combined it

•Build normalized and weighted normalized decision matrix 

•Compute utility degree and function utility degree and rank alternatives
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Definition 2: The following addition and multiplication the two SVNSs: 

𝐾1⨁𝐾2 = (𝑇1 + 𝑇2 −  𝑇1𝑇2, 𝐼1 𝐼2, 𝐹1𝐹2)     (5) 

𝐾1⨂𝐾2 = (𝑇1𝑇2, 𝐼1 +  𝐼2 −   𝐼1 𝐼2, 𝐹1+𝐹2−𝐹1𝐹2)      (6) 

Definition 3: The following subtraction and division 

𝐾1 ⊖ 𝐾2 = (
𝑇1−𝑇2

1−𝑇2
+  

𝐼1

𝐼2
  ,

𝐹1

𝐹2
 ) 𝑘1 >  𝑘2, 𝑇2 ≠ 0, 𝐼2 ≠ 0, 𝐹2 ≠ 0,  (7) 

𝐾1 ⊘ 𝐾2 = (
𝑇1

𝑇2
+  

𝐼1−𝐼2

1−𝐼2
  ,

𝐹1−𝐹2

1−𝐹2
) 𝑘2 >  𝑘1, 𝑇2 ≠ 0, 𝐼2 ≠ 0, 𝐹2 ≠ 0,                 (8) 

The steps of the MARCOS method are organized as follow:  

Step 1: Build an initial decision matrix between criteria and alternatives. So, define the 

number of criteria, alternatives and experts who evaluate the decision matrix—then 

combined the initial matrix that includes opinions of various experts into one decision 

matrix. Then apply score function to obtain the single value instead of three values.  

S(A) = 
2+𝑎−𝑏−𝑐

3
       (9) where a,b,c refers to Truth, Indeterminacy and Falsity value    

Step 2: Define the cost (B) and benefit (A) ideal solution in the initial matrix. This matrix 

called the extended matrix. The ideal benefit solution computed by the maximum of criteria 

value considers the best characteristics. But ideal cost solution is the opposite benefit ideal 

solution. Cost ideal solution computed by the minimum value of each criterion.  

Step 3: Build an extended normalized matrix.  

𝑛𝑜𝑟𝑚𝑥𝑦 =  
𝑆𝑥

𝐴𝑥
 for benefit criteria                                                (10) 

𝑛𝑜𝑟𝑚𝑥𝑦 =  
𝐴𝑥

𝑆𝑥
 for cost criteria                                                  (11) 

Where 𝑆𝑥  presented value of decision matrix and 𝐴𝑥  present value of benefit ideal 

solution. x refers to the number of criteria and y refers to number of alternatives  

Step 4: Build a weighted normalized decision matrix by multiplying values of the extended 

normalized matrix by the value of criteria. 

𝑄𝑥𝑦 = 𝑛𝑜𝑟𝑚𝑥𝑦 ∗ 𝐸𝑦                                                           (12) 
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Where, value of 𝐸𝑦 presented weights of criteria.  

Step 5: Compute the utility degree of alternatives for benefit and cost ideal solution.  

𝐻𝑥
+ =

𝐿𝑥

𝐿𝐴𝑥

  for benefit criteria.                                                  (13) 

𝐻𝑥
− =

𝐿𝑥

𝐿𝐵𝑥

  for cost criteria.                                                    (14) 

𝐿𝑥 = ∑ 𝑄𝑥𝑦
𝑛
𝑥=1  where 𝐿𝑥 summation values of weighted normalized decision matrix (15) 

Step 6: Compute the utility function of alternative which show relationship between best 

and cost ideal solution.   

𝑓(𝐻𝑥) =
𝐻𝑥

++𝐻𝑥
−

1+
1−𝑓(𝐻𝑥

+)

𝑓(𝐻𝑥
+)

+
1−𝐻𝑥

−

𝐻𝑥
−

                                                        (16) 

Step 6.1 The utility function for cost and benefit ideal solution can compute as: 

𝑓(𝐻)𝑥
+ =

𝐻𝑥
−

𝐻𝑥
++𝐻𝑥

−  for benefit criteria                                                   (17) 

𝑓(𝐻)𝑥
− =

𝐻𝑥
+

𝐻𝑥
++𝐻𝑥

−  for cost criteria                                                      (18) 

Step 7: Rank alternatives according to the highest value of utility function.  

 

Table 1. The five main and twenty-two sub criteria. 

Main Criteria Sub Criteria 

Student’s Learning (SL) Interest of ET (SL.1) 

Learning initiative (SL.2) 

Self-study (SL.3) 

 Ability find and solve problems (SL.4) 

Innovation (I) Intelligent educational technology (I.1) 

Excellent course (I2) 

Learning base (I3) 

System Integration (SI) Political Success (SI.1) 

Professional Compaction (SI2) 



Neutrosophic Sets and Systems, Vol. 46, 2021     

 93  

 

 

Ning Tang, Bing Li and Mohamed Elhoseny, Assessment of English Teaching Systems Using a Single-Valued Neutrosophic 

MACROS Method 

 

 

Practices and exercises (SI.3) 

 Transformation Rate (SI.4) 

 Physical achievement (SI.5) 

Management (M) Ability ET Management (M.1) 

Reward and punishment (M2) 

Resource utilization (M.3) 

Professional Teachers 

(PT) 

Cognitive comprehension (PT.1) 

Technical skills (PT.2) 

Course materials (PT.3) 

 Scientific research (PT.4) 

 Communications skills (PT.5) 

 Skilled Teachers (PT.6) 

 Teaching effect (PT.7) 

 

3. An Example and Results 

In this section, we provide an example for a MARCOS method and introduce its 

results. First, the five main criteria, twenty-two sub-criteria and six alternatives, are used 

for an example. Table 1 presents five main criteria and twenty-two sub-criteria. The criteria 

proposed in this work collected for literature review [4], [15]. Fig 2. Present the alternatives 

proposed in this work.  

 



Neutrosophic Sets and Systems, Vol. 46, 2021     

 94  

 

 

Ning Tang, Bing Li and Mohamed Elhoseny, Assessment of English Teaching Systems Using a Single-Valued Neutrosophic 

MACROS Method 

 

 

 

Fig 2. Six alternatives. 

Table 2. SVNNS 

Linguistics terms SVNNS 

Very Bad (VP) <0.30,0.75,0.70> 

Bad (P) <0.40,0.65,0.60> 

Medium (M) <0.50,0.50,0.50> 

Good (G) <0.80,0.15,0.20> 

Very Good (VG) <0.90,0.10,0.10> 

 

Three decision-makers and experts evaluated criteria and alternatives by 

Single-Valued Neutrosophic Numbers in Table 2. Where Very Bad presents the lowest rank 

and Very Moral presents the highest rank. First, experts evaluated criteria for calculating 

the weights of criteria. Table 3 presented the opinions of experts for evaluation criteria. The 

weights of criteria computed by the mean value of criteria for three criteria. Fig 3. presented 

classroo
m (A2)

Virtual 
training 

(A1)

Internet 
video 

confere
ncing 
(A3)

Interacti
ve 

videodis
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CD 
ROM 
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Computer 
managed 

instruction 
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the weights of five main criteria from Fig 3. Professional teachers are the highest weight of 

criteria, and system integration is the lowest weight of criteria.   

Values in Table 3. Obtained from applying score function of SVNSs using Eq (10).  

Table 3. Pairwise matrix for five main criteria 

 SL I SI M PT Sum 

DM1 0.8167 0.383 0.283 0.9 0.8167 3.1994 

DM2 0.383 0.9 0.383 0.283 0.8167 2.7657 

DM3 0.9 0.9 0.8167 0.383 0.9 3.8997 

       

DM1 0.255267 0.11971 0.088454 0.281303 0.255267  

DM2 0.138482 0.325415 0.138482 0.102325 0.295296  

DM3 0.230787 0.230787 0.209426 0.098213 0.230787  

Mean 0.208179 0.225304 0.145454 0.160613 0.26045  

 

 

Fig 3. Weights of main criteria 
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 Then evaluate sub-criteria by experts. Table 4-8 present the opinions of experts in 

twenty-two sub-criteria and weights of sub-criteria. Fig 4-8 present the weights of 

sub-criteria for five main criteria.  Value in Table 4-8 obtained from score function is in Eq. 

(10).    

 

Fig 4. Weights of Student’s Learning 
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Fig 5. Weights of Innovation. 

 

 

Fig 6. Weights of System Integration. 
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Fig 7. Weights of Management. 

 

 

Fig 8. Weights of professional Teachers. 
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Table 4. Pairwise matrix for Student’s Learning 

 SL1 SL2 SL3 SL4 Sum 

DM1 0.283 0.9 0.9 0.8167 2.8997 

DM2 0.283 0.283 0.383 0.8167 1.7657 

DM3 0.8167 0.8167 0.283 0.9 2.8164 

      

DM1 0.097596 0.310377 0.310377 0.28165  

DM2 0.160276 0.160276 0.216911 0.462536  

DM3 0.28998 0.28998 0.100483 0.319557  

Mean 0.182618 0.253544 0.209257 0.354581  

 

Table 5. Pairwise matrix for Innovation 

 I1 I2 I3 Sum 

DM1 0.8167 0.383 0.9 2.0997 

DM2 0.8167 0.8167 0.5 2.1334 

DM3 0.9 0.283 0.283 1.466 

     

DM1 0.38896 0.182407 0.428633  

DM2 0.382816 0.382816 0.234368  

DM3 0.613915 0.193042 0.193042  

Mean 0.461897 0.252755 0.285348  

 

Table 6. Pairwise matrix for System Integration 

 SI1 SI2 SI3 SI4 SI5 Sum 

DM1 0.9 0.283 0.5 0.9 0.8167 3.3997 
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DM2 0.8167 0.9 0.9 0.283 0.283 3.1827 

DM3 0.283 0.383 0.8167 0.8167 0.9 3.1994 

       

DM1 0.264729 0.083243 0.147072 0.264729 0.240227  

DM2 0.256606 0.282779 0.282779 0.088918 0.088918  

DM3 0.088454 0.11971 0.255267 0.255267 0.281303  

Mean 0.203263 0.16191 0.228372 0.202971 0.203483  

 

Table 7. Pairwise matrix for Management 

 M1 M2 M3 Sum 

DM1 0.9 0.283 0.383 1.566 

DM2 0.8167 0.5 0.8167 2.1334 

DM3 0.283 0.283 0.9 1.466 

     

DM1 0.574713 0.180715 0.244572  

DM2 0.382816 0.234368 0.382816  

DM3 0.193042 0.193042 0.613915  

Mean 0.383524 0.202708 0.413768  

 

Table 8. Pairwise matrix for Professional Teachers 

 PT1 PT2 PT3 PT4 PT5 PT6 PT7 Sum 

DM1 0.383 0.8167 0.383 0.8167 0.9 0.8167 0.283 4.3991 

DM2 0.283 0.8167 0.283 0.383 0.383 0.9 0.383 3.4317 

DM3 0.383 0.283 0.9 0.9 0.283 0.8167 0.9 4.4657 
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DM1 0.087063 0.185652 0.087063 0.185652 0.204587 0.185652 0.064331  

DM2 0.082466 0.237987 0.082466 0.111606 0.111606 0.262261 0.111606  

DM3 0.085765 0.063372 0.201536 0.201536 0.063372 0.182883 0.201536  

Mean 0.085098 0.162337 0.123689 0.166265 0.126522 0.210265 0.125825  

 

 Then compute the weights of global criteria by multiplying weights of main criteria by 

weights of sub-criteria. Table 9 presented the values of weights sub-criteria.  

Table 9. Global weights for sub criteria. 

 Weights 

SL.1 0.038017 

SL.2 0.052783 

SL.3 0.043563 

SL.4 0.073816 

I.1 0.104067 

I.2 0.056947 

I.3 0.06429 

SI.1 0.029565 

SI.2 0.023551 

SI.3 0.033218 

SI.4 0.029523 

SI.5 0.029597 

M.1 0.061599 

M.2 0.032558 

M.3 0.066457 

PT.1 0.022164 
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PT2 0.042281 

PT3 0.032215 

PT4 0.043304 

PT5 0.032953 

PT6 0.054764 

PT7 0.032771 

 

Then rank six alternatives according to values of the MARCOS method. First, build the 

three initial matrices that contain the opinions of three matrices with the first row presents 

the cost ideal solution, and the last row presents the ideal benefit solution. Table 10-12 

presented the opinions of three experts. Then combined three decision matrices into one 

matrix in Table 13. Then normalize the decision matrix in Table 14. Then compute the 

weighted normalized decision matrix in Table 15. Then compute the utility degree and 

function utility in Table 16. Then rank alternatives according to the highest value in 

function utility in Table 16. Fig 9 presented rank of alternatives. The classroom is the 

highest rank, and CD-ROM is the lowest rank. Values in Table 10-12 obtained through Eq. 

(10). Column A and B refers to the cost and ideal solution as mentioned in step 2. And all 

criteria are benefit.  
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Fig 9. Rank alternatives 

 

Table 10. The initial decision matrix by first expert 
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Table 11. The initial decision matrix by second expert 
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Table 12. The initial decision matrix by third expert 
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Table 13. The Combined decision matrix. 



Neutrosophic Sets and Systems, Vol. 46, 2021     

 106  

 

 

Ning Tang, Bing Li and Mohamed Elhoseny, Assessment of English Teaching Systems Using a Single-Valued Neutrosophic 

MACROS Method 

 

 

 

S
L

.1
 

S
L

.2
 

S
L

.3
 

S
L

.4
 

I.1
 

I.2
 

I.3
 

S
I.1

 

S
I.2

 

S
I.3

 

S
I.4

 

S
I.5

 

M
.1
 

M
.2
 

M
.3
 

P
T

.1
 

P
T

2 

P
T

3 

P
T

4 

P
T

5 

P
T

6 

P
T

7 

A
 

0
.2

8
3

 

0
.3

8
8

6
6

7
 

0
.2

8
3

 

0
.2

8
3

 

0
.2

8
3

 

0
.2

8
3

 

0
.2

8
3

 

0
.2

8
3

 

0
.3

4
9

6
6

7
 

0
.2

8
3

 

0
.4

2
7

6
6

7
 

0
.2

8
3

 

0
.3

5
5

3
3

3
 

0
.2

8
3

 

0
.2

8
3

 

0
.2

8
3

 

0
.2

8
3

 

0
.4

2
7

6
6

7
 

0
.2

8
3

 

0
.2

8
3

 

0
.3

8
8

6
6

7
 

0
.3

5
5

3
3

3
 

A
1 

0
.6

6
6

5
6

7
 

0
.4

9
4

2
3

3
 

0
.6

0
5

5
6

7
 

0
.7

3
8

9
 

0
.4

9
4

2
3

3
 

0
.7

6
6

6
6

7
 

0
.5

2
2

 

0
.7

1
1

1
3

3
 

0
.5

3
3

2
3

3
 

0
.6

7
2

1
3

3
 

0
.8

4
4

4
6

7
 

0
.7

3
8

9
 

0
.5

6
1

 

0
.5

3
3

2
3

3
 

0
.8

7
2

2
3

3
 

0
.6

9
9

9
 

0
.7

3
8

9
 

0
.8

7
2

2
3

3
 

0
.5

9
4

3
3

3
 

0
.4

6
1

 

0
.7

1
1

1
3

3
 

0
.7

1
1

1
3

3
 

A
2 

0
.4

2
7

6
6

7
 

0
.8

4
4

4
6

7
 

0
.8

4
4

4
6

7
 

0
.2

8
3

 

0
.9

 

0
.8

1
6

7
 

0
.8

1
6

7
 

0
.9

 

0
.9

 

0
.9

 

0
.9

 

0
.5

 

0
.5

 

0
.3

8
3

 

0
.6

3
3

3
3

3
 

0
.2

8
3

 

0
.7

1
1

1
3

3
 

0
.6

0
5

5
6

7
 

0
.2

8
3

 

0
.8

1
6

7
 

0
.5

 

0
.7

6
6

6
6

7
 

A
3 

0
.8

7
2

2
3

3
 

0
.5

 

0
.7

3
8

9
 

0
.5

9
4

3
3

3
 

0
.7

3
8

9
 

0
.4

6
0

9
 

0
.7

1
1

1
3

3
 

0
.5

 

0
.8

1
6

7
 

0
.4

6
1

 

0
.8

7
2

2
3

3
 

0
.9

 

0
.5

6
6

5
6

7
 

0
.2

8
3

 

0
.8

1
6

7
 

0
.8

7
2

2
3

3
 

0
.2

8
3

 

0
.9

 

0
.6

9
4

3
3

3
 

0
.6

9
4

3
3

3
 

0
.8

4
4

4
6

7
 

0
.5

 

A
4 

0
.6

0
5

5
6

7
 

0
.6

3
3

3
3

3
 

0
.8

1
6

7
 

0
.9

 

0
.2

8
3

 

0
.8

7
2

2
3

3
 

0
.2

8
3

 

0
.3

5
5

3
3

3
 

0
.8

1
6

7
 

0
.2

8
3

 

0
.5

 

0
.2

8
3

 

0
.6

0
5

5
6

7
 

0
.3

8
3

 

0
.3

5
5

3
3

3
 

0
.8

1
6

7
 

0
.3

8
3

 

0
.5

 

0
.5

 

0
.8

1
6

7
 

0
.9

 

0
.6

9
4

3
3

3
 

A
5 

0
.3

1
6

3
3

3
 

0
.5

 

0
.2

8
3

 

0
.5

 

0
.5

 

0
.9

 

0
.2

8
3

 

0
.2

8
3

 

0
.3

8
3

 

0
.5

 

0
.8

1
6

7
 

0
.3

8
3

 

0
.8

1
6

7
 

0
.5

 

0
.5

 

0
.9

 

0
.5

 

0
.8

1
6

7
 

0
.6

0
5

5
6

7
 

0
.2

8
3

 

0
.4

2
7

6
6

7
 

0
.9

 

A
6 

0
.3

1
6

3
3

3
 

0
.5

2
7

5
6

7
 

0
.5

2
2

 

0
.5

9
4

3
3

3
 

0
.6

6
6

5
6

7
 

0
.3

8
8

6
6

7
 

0
.5

9
4

3
3

3
 

0
.5

9
4

3
3

3
 

0
.5

6
1

 

0
.3

8
8

6
6

7
 

0
.4

2
7

6
6

7
 

0
.7

3
8

9
 

0
.4

6
0

9
 

0
.5

9
4

3
3

3
 

0
.3

1
6

3
3

3
 

0
.3

8
8

6
6

7
 

0
.7

3
8

9
 

0
.5

3
3

2
3

3
 

0
.3

1
6

3
3

3
 

0
.6

0
5

5
6

7
 

0
.5

2
7

5
6

7
 

0
.3

8
8

6
6

7
 

B
 

0
.8

7
22

33
 

0
.8

4
44

67
 

0
.9

 

0
.9

 

0
.9

 

0
.9

 

0
.8

7
22

33
 

0
.9

 

0
.9

 

0
.9

 

0
.9

 

0
.9

 

0
.8

4
44

67
 

0
.7

3
89

 

0
.8

7
22

33
 

0
.9

 

0
.8

7
22

33
 

0
.9

 

0
.9

 

0
.8

7
22

33
 

0
.9

 

0
.9

 

 

Table 14. The Normalized decision matrix. 
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Table 15. The weighted normalized decision matrix. 
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Table 16. Utility, function utility and rank alternatives. 

 𝐿𝑥 𝐻𝑥
+ 𝐻𝑥

− f( 

𝐻𝑥
+) 

f( 

𝐻𝑥
−) 

(𝑓(𝐻𝑥) Rank 

A 0.354097       

A1 0.738442 0.738442 2.085423 0.7385 0.2615 0.675859 3 

A2 0.751279 0.751279 2.121677 0.7385 0.2615 0.687609 1 

A3 0.746485 0.746485 2.108137 0.7385 0.2615 0.683221 2 

A4 0.636951 0.636951 1.798806 0.7385 0.2615 0.58297 4 
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A5 0.606483 0.606483 0.354097 0.368628 0.631372 0.291384 6 

A6 0.585865 0.585865 1.654533 0.7385 0.2615 0.536213 5 

B 1       

 

4. Conclusions 

 This paper introduces assessment ETS through an MCDM method. A new method is 

an extension of SVNSs called MARCOS. The main idea of this method proposed a 

relationship between alternatives and cost, benefit ideal solutions. Also, MARCOS is used 

for computing utility degree and function utility degree for cost and benefit ideal solution. 

Then rank alternatives through the highest value of function utility degree. ETS was 

proposed through the MARCOS method with six alternatives, five main criteria and 

twenty-two sub-criteria. Three experts and decision-makers who have experience in this 

area evaluated criteria and alternatives. In this paper, the weights of criteria and rank of 

alternatives were determined.   

From the outcome, professional teachers are the highest, and system integration is the 

lowest. While in alternatives, the CD-ROM is the lowest in alternatives, and the classroom 

is the highest in alternatives. MARCOS method is an effective tool for dealing with 

uncertain information. 
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Abstract: In this article, we procure the idea of single-valued pentapartitioned neutrosophic cosine 

similarity measure (SVPNCSM) and single-valued pentapartitioned neutrosophic weighted cosine 

similarity measure (SVPNWCSM) under the single-valued pentapartitioned neutrosophic set 

(SVPNS) environment. Besides, we formulate several interesting results on SVPNCSM and 

SVPNWCSM of similarities between two SVPNSs. Further, we present a multi-attribute 

decision-making (MADM) model under SVPNS environment using the SVPNCSM. Finally, we 

provide a numerical example to show the applicability and effectiveness of our proposed MADM 

technique. 

Keywords: Neutrosophic Set; Similarity Measure; SVPNS; COVID-19. 

________________________________________________________________________________________ 

1. Introduction: 

In 1965, Late Prof. L.A. Zadeh grounded the concept of fuzzy set theory to deal with the problems 

having uncertainty. In a fuzzy set, every element has a degree of membership lies between 0 and 1. 
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In 1986, K. Atanassov presented the idea of intuitionistic fuzzy set by generalizing fuzzy set theory. 

In an intuitionistic fuzzy set, every element has both degree of membership and non-membership 

lies between 0 and 1. Many researchers around the globe applied the notion of fuzzy set, 

intuitionistic fuzzy set and their extensions in the area of theoretical and practical research. 

Smarandache [40] introduced the idea of neutrosophic set theory by extending the idea of fuzzy set 

and intuitionistic fuzzy set theory to deal with the events which cannot be easily express by the 

degree of membership and non-membership. In an neutrosophic set, every element has three 

independent memberships values namely truth, indeterminacy, and false membership values 

respectively lies between 0 and 1. The degree of indeterminacy of a mathematical expression plays a 

vital role in every MADM problem of this real world. Afterwards, Wang et al. [43] extended the idea 

of neutrosophic set, and grounded the notion of single-valued neutrosophic set (SVNS) in the year 

2010, which is more effective in dealing with the situation having incomplete and indeterminate 

information. Till now, many mathematicians used SVNS and their extensions in several branches of 

this real world such as medical diagnosis [34, 35], fault diagnosis [46, 47], data mining [30], 

decision-making problems [5, 11-13, 15, 27-29, 32-33, 36, 48], etc.  

In the year 2020, Mallick and Pramanik [25] grounded the notion of SVPNS by splitting the 

indeterminacy membership function into three independent membership function namely 

contradiction membership function, ignorance membership function and unknown membership 

function. Afterwards, the concept of pentapartitioned neutrosophic Q-ideals of pentapartitioned 

neutrosophic Q-algebra was introduced by Das et al. [10]. In 2021, Das et al. [13] proposed a MADM 

technique using tangent Similarity Measure under SVPNS environment. Recently, Das et al. [12] 

established a MADM strategy based on grey relational analysis under the SVPNS environment. 

 

The rest of this article has been designed as follows: 

Section 2 is on the preliminaries and relevant definitions. In section 3, we introduce the concept of 

SVPNCSM and SVPNWCSM of similarities between two SVPNSs. Further, we formulate some 

theorems and propositions on SVPNCSM and SVPNWCSM under the SVPNS environment. In 

section 4, we propose a MADM technique using the SVPNWCSM under the SVPNS environment. In 

section 5, we validate the proposed MADM technique by providing a real world numerical example. 

Section 6 presents the concluding remarks of our work done in this paper. In this section, we also 

state some future scope of research in this direction. 

 

Throughout this article, we use the following short terms for the clarity of the presentation. 

Short Terms 

Single-Valued Neutrosophic Set SVNS 
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2. 

Preliminaries and Definitions: 

In the year 2020, Mallick and Pramanik [25] presented the notion of SVPNS as follows: 

Assume that U be a universe of discourse. Then L, a SVPNS over U is defined by: 

L = {(, L(), L(), L(), L(), L()): U}. 

Here, L, L, L, L and L are the truth, contradiction, ignorance, unknown, and false membership 

functions from U to the unit interval [0, 1] respectively i.e., L(), L(), L(), L(), L()  [0, 1], 

for each U. So, 0  L() + L() + L() + L() + L()  5, for each U. 

 

The absolute SVPNS (1PN) and the null SVPNS (0PN) over a fixed set U are defined as follows: 

(i) 1PN = {(, 1, 1, 0, 0, 0): U},  

(ii) 0PN = {(, 0, 0, 1, 1, 1): U}. 

 

Suppose that L = {(, L(), L(), L(), L(), L()): U} and M = {(, M(), M(), M(), M(), 

M()): U} be any two SVPNSs over U. Then, 

(i) L  M if and only if L()  M(), L()  M(), L()  M(), L()  M(), L()  

M(), for all U; 

(ii) Lc = {(, L(), L(), 1-L(), L(), L()): U};  

(iii) L  M = {(, max {L(), M()}, max {L(), M()}, min {L(), M()}, min {L(), M()}, 

min {L(), M()}): U}; 

(iv) L  M = {(, min {L(), M()}, min {L(), M()}, max {L(), M()}, max {L(), M()}, 

max {L(), M()}): U}. 

 

Suppose that L = {(p, 0.6, 0.1, 0.3, 0.4, 0.5), (q, 0.9, 0.1, 0.2, 0.2, 0.1)} and M = {(p, 0.9, 0.2, 0.2, 0.1, 0.4), (q, 

1.0, 0.3, 0.1, 0.2, 0.1)} be two SVPNSs over a universe of discourse U = {p, q}. Then, 

(i) L  M; 

(ii) Lc = {(p, 0.5, 0.4, 0.7, 0.1, 0.6), (q, 0.1, 0.2, 0.8, 0.1, 0.9)} and Mc = {(p, 0.4, 0.1, 0.8, 0.2, 0.9), (q, 0.1, 0.2, 

0.9, 0.3, 1.0)}; 

Multi-Attribute Decision Making MADM 

Single-Valued Pentapartitioned Neutrosophic Set SVPNS 

Single-Valued Pentapartitioned Neutrosophic Cosine 

Similarity Measure 

SVPNCSM 

Single-Valued Pentapartitioned Neutrosophic Weighted 

Cosine Similarity Measure 

SVPNWCSM 

Decision Matrix DM 

Positive Ideal Alternative PIA 

Accumulated Measure Function AMF 
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(iii) L  M = {(p, 0.9, 0.2, 0.2, 0.1, 0.4), (q, 1.0, 0.3, 0.1, 0.2, 0.1)}; 

(iv) L  M = {(p, 0.6, 0.1, 0.3, 0.4, 0.5), (q, 0.9, 0.1, 0.2, 0.2, 0.1)}. 

 

3. SVPNCSM and SVPNWCSM under the SVPNS Environment: 

In this section, we propose two similarity measures namely single-valued pentapartitioned 

neutrosophic cosine similarity measure (SVPNCSM) and single-valued pentapartitioned 

neutrosophic weighted cosine similarity measure (SVPNWCSM) under the SVPNS environment. 

Further, we formulate several interesting results on them under the SVPNS environment. 

Definition 3.1. Let L = {(, L(), L(), L(), L(), L()) : U} and M = {(, M(), M(), M(), 

M(), M()) : U} be two SVPNSs over a fixed set U. Then, the SVPNCSM of similarities between 

L and M is defined as follows: 

PSVPNCSM (L, M) = 1-
1

𝑛
∑ 𝑐𝑜𝑠
𝑈 [



10
[|𝐿 ()-𝑀 ()|+|𝐿 ()-𝑀 ()|+|𝐿 ()-𝑀 ()|+|𝐿 ()-𝑀 ()| 

+|𝐿()-𝑀()|]].                                                                              (1) 

Theorem 3.1. If PSVPNCSM (L, M) be the SVPNCSM of similarities between the SVPNSs L and M, then 

the following holds: 

(i) 0 ≤ PSVPNCSM (L, M) ≤ 1; 

(ii) PSVPNCSM (L, M) = PSVPNCSM (M, L); 

(iii) L = M  PSVPNCSM (L, M) = 0. 

Proof. (i) We know that, the cosine function is a monotonic decreasing function in the interval [0, 

/2]. It is also lies in the interval [0, 1]. Hence, 0 ≤ PSVPNCSM (L, M) ≤ 1. 

(ii) We have, PSVPNCSM (L, M) 

= 1-
1

𝑛
∑ 𝑐𝑜𝑠
𝑑𝑈 [



10
 [|𝐿(d)-𝑀(d)| + |𝐿(d)-𝑀(d)| + |𝐿(d)-𝑀(d)| + |𝐿(d)-𝑀(d)| + |𝐿(d)- 𝑀(d)|]] 

= 1-
1

𝑛
∑ 𝑐𝑜𝑠
𝑑𝑈 [



10
 [|𝑀(d)-𝐿(d)| + |𝑀(d)-𝐿(d)| + |𝑀(d)-𝐿(d)| + |𝑀(d)-𝐿(d)| + |𝑀(d)-𝐿(d)|]] 

= PSVPNCSM (M, L) 

Therefore, PSVPNCSM (L, M) = PSVPNCSM (M, L). 

(iii) Suppose that L and M be two SVPNSs over U such that L = M.  

Now, L = M 

 L(d)=M(d), L(d)= M(d), L(d)=M(d), L(d)=M(d), and L(d)=M(d), for all dU 

L(d)-M(d)=0, L(d)-M(d) =0,L(d)- M(d)=0, L(d)-M(d)=0 and L(d)-M(d)=0, for all dU 

Hence, PSVPNCSM (L, M) = 1- 
1

𝑛
∑ 𝑐𝑜𝑠
𝑑𝑈 (0) = 0. 

Conversely, suppose that PSVPNSSM (W, M) = 0.  

Now, PSVPNSSM (W, M) = 0 

 |L(d)-M(d)|=0,|L(d)-M(d)|=0,|L(d)-M(d)|=0, L(d)- M(d)=0,L(d)-M(d)=0, for all dU  
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 L(d)=M(d), L(d)=M(d), L(d)=M(d), L(d)=M(d), and L(d)=M(d), for all dU  

Hence, L = M. 

Theorem 3.2. If L, M and C be three SVPNSs over a fixed set U such that LMC, then PSVPNCSM (L, M) 

 PSVPNCSM (L, C) and PSVPNCSM (M, C)  PSVPNCSM (L, C). 

Proof. Suppose that L, M and C be three SVPNSs over a fixed set U such that LMC. So, L(d) ≤ 

M(d), L(d) ≤ M(d), L(d)  M(d), L(d)  M(d), L(d)  M(d), M(d) ≤ C(d), M(d) ≤ C(d), M(d)  

C(d), M(d)  C(d), M(d)  C(d), L(d) ≤ C(d), L(d) ≤ C(d), L(d)  C(d), L(d)  C(d), L(d)  

C(d), for all dU. 

Therefore, |L(d)-M(d)|≤|L(d)-C(d)|, |L(d)-M(d)|≤|L(d)-C(d)|, |L(d)-M(d)|≤|L(d)-C(d)|, 

|L(d)- M(d)|≤|L(d)-C(d)|, |L(d)- M(d)|≤|L(d)-C(d)|, for all dU. 

Therefore, PSVPNCSM (L, M) 

= 1-
1

𝑛
∑ 𝑐𝑜𝑠
𝑑𝑈 [



10
[|𝐿(𝑑)-𝑀(𝑑)|+|𝐿(𝑑)-𝑀(𝑑)|+|𝐿(𝑑)-𝑀(𝑑)|+|𝐿(𝑑)-𝑀(𝑑)| +|𝐿(𝑑)-𝑀(𝑑)|]] 

 1-
1

𝑛
∑ 𝑐𝑜𝑠
𝑑𝑈 [



10
[|𝐿(𝑑)-𝐶(𝑑)|+|𝐿(𝑑)-𝐶(𝑑)|+|𝐿(𝑑)-𝐶(𝑑)|+|𝐿(𝑑)-𝐶(𝑑)| +|𝐿(𝑑)-𝐶(𝑑)|]] 

= PSVPNCSM (L, C) 

Hence, PSVPNCSM (L, M)  PSVPNCSM (L, C). 

Further, we have |M(d)-C(d)|≤|L(d)-C(d)|, |M(d)-C(d)|≤|L(d)-C(d)|, |M(d)-C(d)|≤|L(d)- 

C(d)|, |M(d)- C(d)|≤|L(d)-C(d)|, |M(d)- C(d)|≤|L(d)-C(d)|, for all dU. 

Therefore, PSVPNCSM (M, C) 

=1-
1

𝑛
∑ 𝑐𝑜𝑠
𝑑𝑈 [



10
[|𝑀(d)-𝐶(d)|+|𝑀(d)-𝐶(d)|+|𝑀(d)-𝐶(d)|+|𝑀(d)-𝐶(d)|+|𝑀(d)-𝐶(d)|]] 

 1-
1

𝑛
∑ 𝑐𝑜𝑠
𝑑𝑈 [



10
[|𝐿(d)-𝐶(d)|+|𝐿(d)-𝐶(d)|+|𝐿(d)-𝐶(d)|+|𝐿(d)-𝐶(d)| +|𝐿(d)-𝐶(d)|]] 

= PSVPNCSM (L, C) 

Hence, PSVPNCSM (M, C)  PSVPNCSM (L, C). 

Definition 3.2. Assume that, L = {(d, L(d), L(d), L(d), L(d), L(d)) : dU} and W= {(d, W(d), W(d), 

W(d), W(d), W(d)) : dU} be two SVPNSs over a universe of discourse U. Then, the single valued 

pentapartitioned neutrosophic weighted cosine similarity measure (in short SVPNWCSM) between 

L and W is defined by: 

PSVPNWCSM (L, W) = 1-
1

𝑛
∑ 𝑤𝑑 . 𝑐𝑜𝑠

𝑑𝑈 [



10
[|𝐿(d)-𝑊(d)|+|𝐿(d)-𝑊(d)|+|𝐿(d)-𝑊(d)|+|𝐿(d)-𝑊(d)|+ 

|𝐿(d)-𝑊(d)|]],                                                                                (2) 

where, ∑ 
𝑑𝑈 𝑤𝑑  = 1. 

 

Now, we formulate the following results in view of the above theorems: 
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Proposition 3.1. Let PSVPNWCSM (L, W) be the SVPNWCSM of similarities between the SVPNSs L and 

W. Then, 

(i) 0 ≤ PSVPNWCSM (L, W) ≤ 1; 

(ii) PSVPNWCSM (L, W) = PSVPNWCSM (W, L); 

(iii) PSVPNWCSM (L, W) = 0 iff L = W. 

Proposition 3.2. If L, M and W be three SVPNSs over a universe of discourse U such that LMW, 

then PSVPNWCSM (L, M)  PSVPNWCSM (L, W) and PSVPNWCSM (M, W)  PSVPNWCSM (L, W). 

 

4. SVPNCSM Based MADM Strategy under SVPNS Environment: 

In this section, an attempt is made to propose a MADM strategy under the SVPNS environment 

using the SVPNCSM of similarities between two SVPNSs. 

Let us consider a MADM problem, where U = {U1, U2, ..., Up} and A = {A1, A2, ..., Aq} denotes the set 

of all possible alternatives and attributes respectively. Then, a decision maker can give their 

evaluation information for each alternative Ui (i = 1, 2, ........., p) with respect to the each attribute Aj     

(j = 1, 2,…..., q) by using a SVPNS. By using the decision maker’s whole evaluation information, we 

can form a decision matrix (DM). 

The steps of our proposed MADM strategy are discussed below. Figure 1 represents the flow 

chart of the proposed MADM strategy.  

Step-1: Formation of the DM by using SVPNS 

In this step, we can build a DM by using the decision maker’s evaluation information 𝑃𝑈𝑖= {(𝐴𝑗, 

𝑖𝑗(Ui, 𝐴𝑗), 𝑖𝑗(Ui, 𝐴𝑗), 𝑖𝑗(Ui, 𝐴𝑗), 𝑖𝑗(Ui, 𝐴𝑗), 𝑖𝑗(Ui, 𝐴𝑗)) : 𝐴𝑗A} for each alternative Ui (i = 1, 2, ..., 

p) with respect to the attributes 𝐴𝑗(j = 1, 2, ..., q), where (𝑖𝑗(Ui, 𝐴𝑗), 𝑖𝑗(Ui, 𝐴𝑗), 𝑖𝑗(Ui, 𝐴𝑗), 𝑖𝑗(Ui, 

𝐴𝑗), 𝑖𝑗(Ui, 𝐴𝑗)) = (Ui, 𝐴𝑗) (say) (i = 1, 2, ..., p, and j = 1, 2, ..., q) indicates the evaluation information of 

alternatives Ui (i = 1, 2, ..., p) with respect to the attribute 𝐴𝑗 (j = 1, 2, ..., q). 

The DM can be expressed as follows: 

 

 

 

 

 

 

 

 

 

Step-2: Determination of the Weights for Each Attribute 

DM 𝐴1 𝐴2 ….... …..... 𝐴𝑞 

U1 (U1, A1) (U1, A2) ........ ….... (U1, Aq) 

U2 (U2, A1) (U2, A2) …… …..... (U2, Aq) 

……

……. 

…………..

………….. 

 

…………..

………….. 

 

………

……… 

………

……… 

…………..

………….. 

 

Up (Up, A1) (Up, A2) ……… ……… (Up, Aq) 
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In every MADM strategy, the determination of weights for every attributes is an important task. 

If the information of attributes’ weight is completely unknown, then the decision maker can use the 

compromise function to calculate the weights for each attribute. 

The compromise function of 
𝑗
for each Uj is defined as follows: 


𝑗
 = ∑ 

𝑝
𝑖=1 (3 + 𝑖𝑗(Ui, Aj) +𝑖𝑗(Ui, Aj) - 𝑖𝑗(Ui, Aj) - 𝑖𝑗(Ui, Aj) - 𝑖𝑗(Ui, Aj))/5.                     (3) 

Then, the weight of the j-th attribute is defined by wj = 
𝑗

∑ 𝑗
𝑞
𝑗=1

                                    (4) 

Here, ∑ 𝑤𝑗
𝑞
𝑗=1 =1. 

 

Step-3: Selection of the Positive Ideal Alternative (PIA) 

In this step, the decision maker can form the PIA by using the maximum operator for all the 

attributes. 

The positive ideal alternative I is defined as follows: 

                                          I = (C1, C2, ………, Cq),                                     (5) 

where Cj = (max {𝑖𝑗(Ui, Aj): i=1, 2, 3, ….., p}, max {𝑖𝑗(Ui, Aj): i=1, 2, 3, ….., p}, min {𝑖𝑗(Ui, Aj): i=1, 2, 3, 

….., p}, min {𝑖𝑗(Ui, Aj): i=1, 2, 3, ….., p}, min {𝑖𝑗(Ui, Aj): i=1, 2, 3, ….., p}), j = 1, 2, …., q.            (6) 

 

Step-4: Determination of the Accumulated Measure Values 

In this step, we use an accumulated measure function (AMF) to aggregate the SVPNCSM 

corresponding to each alternative. 

The AMF is defined by 𝑃𝐴𝑀𝐹
 (Ui) = ∑ 𝑤𝑗

𝑞
𝑗=1 . PSVPNCSM ((Ui, Aj), Cj),                               (7) 

where, (Ui, Aj) = (𝑖𝑗(Ui, Aj), 𝑖𝑗(Ui, Aj), 𝑖𝑗(Ui, Aj), 𝑖𝑗(Ui, Aj), 𝑖𝑗(Ui, Aj)). 

 

Step-5: Ranking of the Alternatives 

Finally, we prepare the ranking order of alternatives based on the descending order of 

accumulated measure values. The alternative associated with the lowest accumulated measure value 

is the best suitable alternatives. 
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Figure-1: Proposed MADM-Strategy 
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5. Application of the Proposed MADM Strategy: 

In this section, we present a numerical example to show the applicability of our proposed MADM 

strategy. 

Example 5.1. “Identification of the Most Significant Risk Factor of COVID-19 in the Economy”. 

Presently, the world is under the threat of a deadly virus named Corona Virus. The COVID-19 

makes an unbelievable provocation with very serious social and economic outcomes [17]. As per the 

World Health Organization (WHO), Corona Virus disease is a pandemic [44]. On 31st December 

2019, it was reported to the World Health Organization that a number of pneumonia cases due to an 

unknown cause had happened in Wuhan city of China [45]. In January 2020 a new virus was spotted 

which was later named as the 2019 Novel Corona Virus responsible for the outbreak. In February 

2020, WHO named the Virus as Corona Virus Disease 2019 as it had appeared in 2019 [26]. This virus 

influences immediately to a person’s lungs and has symptoms similar to influenza and pneumonia 

[37]. Although it is not known correctly the process to transmit of COVID-19 from man to man, the 

method of transmission is same as other respiratory diseases [1, 36]. Environmental factors have a 

vital role in the movement of the virus [7]. Many researchers observed and established many 

techniques to cope up with medical and decision-making obstacles. Till 11th July 2021, the total 

number of confirmed case are 187,280,697 which have been reported worldwide, with 4,043,032 died 

and 171,255,731 recovered [8, 44]. The COVID-19 pandemic poses an immense threat to people’s 

health and livelihood more specifically the employment [18]. A large number of countries have 

imposed lockdown and as a result, companies cannot afford to run smoothly. According to 

UNESCO, more than 188 countries have halted schools, colleges, and universities, responsible to 

affect the educations of nearly 90% of the world’s students. The lockdown has caused the renewal of 

the environment, with the factories being closed and reduction in transportation vehicles use. 

COVID-19 improved the air quality in various parts of the world due to the imposing of lockdown 

[17]. 

Coronavirus has quickly influenced our everyday life, organizations, upset the world exchange 

and developments. Recognizable proof of the sickness at a beginning phase is essential to control the 

spread of the infection since it quickly spreads from one individual to another. The greater part of 

the nations has hindered their assembling of the items [17]. The different businesses and areas are 

influenced by the reason for this sickness; these incorporate the drugs business, sun based force area, 

the travel industry, Information and gadgets industry. This infection makes critical thump on 

impacts on the day by day life of residents, just as about the worldwide economy. So in this paper, 
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we have focused on the bad impacts of COVID-19 on economy to survive in this COVID-19 phase. 

Some factors of economy are effected by COVID-19 [24], these are (i) Slowing of the manufacturing 

of essential goods (U1), (ii) Disrupt the supply chain of products (U2), (iii) Losses in national and 

international business (U3) (iv) Poor cash flow in the market (U4) and (v) Significant slowing down in 

the revenue growth (U5). All these factors are selected from Literature review (A1), Expert survey 

(A2) and Media survey (A3). Although, all these factors are effected by COVID-19 pandemic phase 

but all factors are not equally effected. So the main objective of the present investigation is to identify 

the most significant effected economical factor affected by COVID-19 pandemic phase. For identify 

the most significant indicators we use a novel similarity measure namely SVPNCSM under SVPNS 

environment. All the factors U1, U2, U3, U4, and U5 are consider as alternatives and A1, A2 and A3 are 

consider as attribute. Figure-2 depicts the decision hierarchy of the current problem. Recently 

Majumder et al. [24] used decision making techniques for select the most significant for speeding the 

COVID-19. Majumder [23] also used PNN (Polynomial Neural Network) model for predicting 

confirmed and death cases daily. Assessing the unemployment problem was studied by Nguyen 

[31] using decision making technique. Aydin and Seker [4] proposed a MADM model to choose the 

suitable location for isolation in a hospital. Alkan and Kahraman [3] developed a model to evaluate 

the significant strategies of government against in COVID-19 period with the help of TOPSIS 

method under the q-rung orthopair fuzzy environment. Ahmad et al. [2] proposed a technique to 

identifying affected cases globally using the fuzzy cloud based COVID-19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.koreascience.or.kr/article/JAKO202034651879103.page
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Figure- 2: Decision Hierarchy of the Current Problem. 

 

 

 

 

 

 

 

 

 

 

Identification of the Most Significant Risk Factor 

of COVID-19 in Economy 

Literature Review Expert Survey Media Survey 

Attribute  

Alternative

Slowing of the 

manufacturin

g of essential 

goods 

Disrupt the 

supply chain 

of products 

Losses in 

national and 

international 

business 

Poor cash 

flow in the 

market 



Neutrosophic Sets and Systems, Vol. 46, 2021 123  

 

 

Priyanka Majumder, Suman Das, Rakhal Das, Binod Chandra Tripathy, Identification of the Most Significant 

Risk Factor of COVID-19 in Economy Using Cosine Similarity Measure under SVPNS-Environment. 

 

 

 

 

The proposed MADM strategy is presented as follows: 

By using the evaluation information for all alternatives given by the decision makers, we prepare the 

decision matrix as follows: 

Table-1: 

 

 

 

 

 

 

 

 

Now, by using eq. (3) & eq. (4), we get the weights w1 = 0.3362989, w2 = 0.3345196, and w3 = 

0.3291815. 

The positive ideal alternative I have been formed using eq. (5) & eq. (6), which was shown in Table-2. 

Table-2:  

 

 

 

Now, by using eq. (7), we calculate the accumulated measure values of each alternative U1, U2, U3, 

U4, and U5 as follows:  

𝑃𝐴𝑀𝐹
 (U1) = 0.0496014196; 

𝑃𝐴𝑀𝐹
 (U2) = 0.0040071176; 

𝑃𝐴𝑀𝐹
 (U3) = 0.0070106764; 

𝑃𝐴𝑀𝐹
 (U4) = 0.011291815; 

𝑃𝐴𝑀𝐹
 (U5) = 0.0059822066. 

Here, the order of the accumulated measure values is 𝑃𝐴𝑀𝐹
 (U1) > 𝑃𝐴𝑀𝐹

 (U4) > 𝑃𝐴𝑀𝐹
 (U3) > 𝑃𝐴𝑀𝐹

 (U5) > 

𝑃𝐴𝑀𝐹
 (U2). Therefore, the alternative U2 i.e., “disrupt the supply chain of products” is the most 

significant risk factor of COVID-19 in the economy. 

 

6. Conclusions:  

 A1 A2 A3 

U1 (0.9,0.1,0.1,0.2,0.1) (1.0,0.2,0.0,0.0,0.1) (1.0,0.0,0.1,0.2,0.2) 

U2 (0.8,0.2,0.1,0.0,0.0) (0.9,0.0,0.1,0.0,0.1) (0.8,0.1,0.0,0.1,0.1) 

U3 (1.0,0.2,0.2,0.1,0.1) (0.8,0.2,0.2,0.1,0.1) (0.9,0.3,0.2,0.1,0.0) 

U4 (0.9,0.1,0.1,0.0,0.2) (0.9,0.1,0.1,0.1,0.1) (1.0,0.0,0.1,0.2,0.1) 

U5 (1.0,0.2,0.2,0.1,0.0) (0.9,0.1,0.2,0.0,0.1) (1.0,0.2,0.2,0.2,0.0) 

 A1 A2 A3 

I (1.0,0.2,0.1,0.0,0.0) (1.0,0.2,0.0,0.0,0.1) (1.0,0.3,0.0,0.1,0.0) 
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In the article, we have established a MADM strategy based on SVPNCSM of similarities between 

two SVPNSs under the SVPNS environment. Further, we have validated our proposed MADM 

strategy by solving an illustrative real world numerical example to demonstrate the effectiveness 

and usefulness of the proposed MADM strategy. 

Further, it is hoped that, the proposed MADM strategy can also be used to deal with other 

decision-making problems such as tender selection [11], weaver selection [15], logistic center 

location selection [32, 33], medical diagnosis [34, 35], fault diagnosis [46, 47], etc. 
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Abstract:  

The correlation coefficient among the two parameters plays a significant part in statistics. Further, 

the exactness in the assessment of correlation depends upon information from the set of discourse. 

The data collected for various statistical studies is full of ambiguities. In this paper, we discuss some 

basic concepts which are helpful to build the structure of present research such as soft set, hypersoft 

set, and neutrosophic hypersoft set (NHSS). The neutrosophic hypersoft set is an extension of the 

neutrosophic soft set. In it, we establish the idea of correlation and weighted correlation coefficients 

with some desirable properties under NHSS. We also, propose a new decision-making technique 

and construct an algorithm based on developed correlation measures. Furthermore, To ensure the 

applicability of the proposed methods an illustrative example is given.  

Keywords: Hypersoft set, NHSS, correlation coefficient, weighted correlation coefficient 

 

1. Introduction 

Ambiguity plays a dynamic role in many areas of life (such as modeling, medicine, engineering, 

etc.). However, people have raised a common question, that is, how do we express and use the 

concept of uncertainty in mathematical modeling. Many researchers in the world have proposed and 

recommended different methods of using uncertainty theory. First of all, Zadeh developed the 

concept of a fuzzy set (FS) [1] to solve problems that contain uncertainty and ambiguity. In some 

cases, we must carefully consider membership as a non-membership value to correctly represent 

objects that FS cannot handle. To overcome these difficulties, Atanasov proposed the idea of 

intuitionistic fuzzy sets (IFS) [2]. Atanassov's intuitionistic fuzzy sets only deal with insufficient data 

due to membership and non-membership values, but IFS cannot deal with incompatible and 

imprecise information. Molodtsov [3] proposed a general mathematical tool to deal with uncertain, 

ambiguous, and uncertain matters, called soft set (SS). Maji et al. [4] extended the concept of SS and 

developed some operations with properties and used the established concepts for decision-making 

[5]. By combining the FS and SS Maji et al. [6] established the fuzzy soft set (FSS) and intuitionistic 

fuzzy soft set (IFSS) and studied their operations and properties [7]. Zulqarnain et al. [8] established 

the correlation coefficient for interval-valued intuitionistic fuzzy soft set and developed the TOPSIS 

approach based on their presented correlation measures. Zulqarnain et al. [9, 10] discussed the 

Pythagorean fuzzy soft sets (PFSS) and established the aggregation operator and TOPSIS technique 

to solve the MCDM problem. 

mailto:shahzad.ahmed@skt.umt.edu.pk
mailto:broumisaid78@gmail.com
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Maji [11] offered the idea of a neutrosophic soft set (NSS) with necessary operations and 

properties. The idea of the possibility NSS was developed by Karaaslan [12] and introduced a 

possibility of neutrosophic soft decision-making method to solve those problems which contain 

uncertainty based on And-product. Broumi [13] developed the generalized NSS with some 

operations and properties and used the proposed concept for decision making. To solve MCDM 

problems with PFSS, Zulqarnain et al. [14] presented the interaction aggregation operators for PFSS. 

Based on the correlation of IFS, the term CC of SVNSs [15] was introduced. In [16] the idea of 

simplified NSs introduced with some operational laws and aggregation operators such as weighted 

arithmetic and weighted geometric average operators. They constructed an MCDM method on the 

base of proposed aggregation operators. Masooma et al. [17] progressed a new concept through 

combining the multipolar fuzzy set and neutrosophic set which is known as the multipolar 

neutrosophic set, they also established various characterization and operations with examples. 

Zulqarnain et al. [18, 19] utilized the neutrosophic TOPSIS model to solve the MCDM problem and 

for the selection of suppliers in the production industry.  

Correlation performs a significant part in statistics as well as engineering. By way of correlation 

analysis, the mixture of two variables can be utilized to compute the mutuality of the two variables. 

Although probabilistic methods have been applied to various practical engineering problems, there 

are still some obstacles to probabilistic strategies. For example, the probability of this process depends 

on the large amount of data collected, which is random. However, large complex systems have many 

fuzzy uncertainties, so it is difficult to obtain accurate probability events. Therefore, due to limited 

quantitative information, results based on probability theory do not always provide useful 

information for experts. In addition, in actual applications, sometimes there is not enough data to 

correctly process standard statistical data. Due to the aforementioned obstacles, results based on 

probability theory are not always available to experts. Therefore, probabilistic methods are usually 

insufficient to resolve such inherent uncertainties in the data. Many researchers in the world have 

proposed and proposed different methods to solve problems that contain uncertainty. To measure 

the relationship between fuzzy numbers, Yu [20] established the CC of fuzzy numbers. 

Recently, Smarandache [21] extended the concept of the SS to hypersoft set (HSS) by replacing 

the single-parameter function F with a multi-parameter (sub-attribute) function defined on Cartesian 

products of n different attributes. The established HSS is more flexible than SS and is more suitable 

for the decision-making environment. He also introduced the further extension of HSS, such as crisp 

HSS, fuzzy HSS, intuitionistic fuzzy HSS, neutrosophic HSS, and plithogenic HSS. Nowadays, HSS 

theory and its extensions are developing rapidly. Many researchers have developed different 

operators and properties based on HSS and its extensions [22-36]. Abdel-Basset [37] uses a plithogenic 

set theory to resolve uncertain information and evaluate the financial performance of manufacturing. 

Then, they use VIKOR and TOPSIS methods to find the weight vector of financial ratios using the 

AHP method to achieve this goal. Abdel-basset et al. [38] recommended an efficient combination of 

plithogenic aggregation operations as well as quality feature deployment strategies. The advantage 

of this combination is that it can improve accuracy as well as assess the decision-makers. 

The following research is organized as follows: In Section 2, we review some basic definitions 

used in the following sequels, such as SS, NSS, and NHSS, etc. In Section 3, the idea of CC and WCC 

is developed with some necessary properties. An algorithm and decision-making method will be 

developed in section 4. We also used the developed approach to solve decision making problems in 

an uncertain environment. Finally, the conclusion is made in section 5. 

2. Preliminaries  

In this section, we recollect some basic definitions which are helpful to build the structure of the 

following manuscript such as soft set, hypersoft set, and neutrosophic hypersoft set. 
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Definition 2.1 [3]  

Let 𝒰 be the universal set and ℰ be the set of attributes concerning 𝒰. Let 𝒫(𝒰) be the power set 

of 𝒰 and ⩜ ⊆ ℰ. A pair (ℱ, ⩜) is called a soft set over 𝒰 and its mapping is given as 

ℱ:⩜ → 𝒫(𝒰) 

It is also defined as: 

(ℱ,⩜) = {ℱ(ℯ) ∈ 𝒫(𝒰): ℯ ∈ ℰ, ℱ(ℯ) =  ∅ 𝑖𝑓 ℯ ∉⩜} 

Definition 2.2 [21] 

Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = 𝒜  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of multi-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ. Then the pair (ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be HSS over 𝒰 and 

its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝒫(𝒰). 

It is also defined as  

(ℱ, ⩜⃛) = {�̌�, ℱ𝒜(�̌�): �̌� ∈⩜⃛, ℱ𝒜(�̌�)  ∈  𝒫(𝒰)} 

Definition 2.3 [21] 

Let 𝒰 be a universe of discourse and 𝒫(𝒰) be a power set of 𝒰 and 𝑘 = {𝑘1, 𝑘2, 𝑘3,..., 𝑘𝑛},(n ≥ 1) be 

a set of attributes and set 𝐾𝑖 a set of corresponding sub-attributes of 𝑘𝑖 respectively with 𝐾𝑖 ∩ 𝐾𝑗 = 

φ for 𝑛 ≥ 1 for each 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛} and 𝑖 ≠ 𝑗. Assume 𝐾1  × 𝐾2  × 𝐾3 × … × 𝐾𝑛  = ⩜⃛  = 

{𝑎1ℎ × 𝑎2𝑘 ×⋯× 𝑎𝑛𝑙} be a collection of sub-attributes, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 1 ≤ 𝑙 ≤ 

𝛾, and 𝛼, 𝛽, and 𝛾 ∈ ℕ and 𝑁𝑆𝒰 be a collection of all neutrosophic subsets over 𝒰. Then the pair 

(ℱ, 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛) is said to be NHSS over 𝒰 and its mapping is defined as  

ℱ: 𝐾1 × 𝐾2 × 𝐾3× … × 𝐾𝑛 = ⩜⃛ →  𝑁𝑆𝒰. 

It is also defined as  

(ℱ , ⩜⃛) = {(�̌�, ℱ⩜⃛(�̌�)): �̌� ∈⩜⃛, ℱ⩜⃛(�̌�)  ∈  𝑁𝑆
𝒰} , where ℱ⩜⃛(�̌�)  = {〈𝛿, 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), 𝛾ℱ(�̌�)(𝛿)〉: 𝛿 ∈ 𝒰} , 

where 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), and 𝛾ℱ(�̌�)(𝛿) represent the truth, indeterminacy, and falsity grades of the 

attributes such as 𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), 𝛾ℱ(�̌�)(𝛿) ∈  [0, 1], and 0 ≤ 𝜎ℱ(�̌�)(𝛿) + 𝜏ℱ(�̌�)(𝛿) + 𝛾ℱ(�̌�)(𝛿) ≤ 3. 

Simply a neutrosophic hypersoft number (NHSN) can be expressed as ℱ  = 

{(𝜎ℱ(�̌�)(𝛿), 𝜏ℱ(�̌�)(𝛿), 𝛾ℱ(�̌�)(𝛿))}, where 0 ≤ 𝜎ℱ(�̌�)(𝛿) + 𝜏ℱ(�̌�)(𝛿) + 𝛾ℱ(�̌�)(𝛿) ≤ 3. 

Example 2.4  

Consider the universe of discourse 𝒰  = {𝛿1, 𝛿2}  and 𝔏 = {ℓ1 = 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑚𝑒𝑡ℎ𝑑𝑜𝑙𝑜𝑔𝑦, ℓ2 =

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠, ℓ3 = 𝐶𝑙𝑎𝑠𝑠𝑒𝑠}  be a collection of attributes with following their corresponding attribute 

values are given as teaching methodology = 𝐿1  = {𝑎11 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑏𝑎𝑠𝑒, 𝑎12 =  𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛} , 

Subjects = 𝐿2 = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒, 𝑎23 =  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠}, and Classes = 𝐿3 = 

{𝑎31 = 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝑎32 =  𝐷𝑜𝑐𝑡𝑜𝑟𝑜𝑙}. Let ⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 be a set of attributes 

⩜⃛ = 𝐿1 × 𝐿2 × 𝐿3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22, 𝑎23} × {𝑎31, 𝑎32} 

= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32), (𝑎11, 𝑎23, 𝑎31), (𝑎11, 𝑎23, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32), (𝑎12, 𝑎23, 𝑎31), (𝑎12, 𝑎23, 𝑎32),
} 

⩜⃛ = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8, �̌�9, �̌�10, �̌�11, �̌�12} 

Then the NHSS over 𝒰 is given as follows 
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(𝓕,⩜⃛) = 

{
 
 

 
 

(�̌�𝟏, (𝜹𝟏, (. 𝟔, . 𝟑, . 𝟖)), (𝜹𝟐, (. 𝟗, . 𝟑, . 𝟓))), (�̌�𝟐, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟕)), (𝜹𝟐, (. 𝟕, . 𝟏, . 𝟓))), (�̌�𝟑, (𝜹𝟏, (. 𝟓, . 𝟐, . 𝟖)), (𝜹𝟐, (. 𝟒, . 𝟑, . 𝟒))),

 (�̌�𝟒, (𝜹𝟏, (. 𝟐, . 𝟓, . 𝟔)), (𝜹𝟐, (. 𝟓, . 𝟏, . 𝟔))) , (�̌�𝟓, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟑)), (𝜹𝟐, (. 𝟐, . 𝟑, . 𝟓))) , (�̌�𝟔, (𝜹𝟏, (. 𝟗, . 𝟔, . 𝟒)), (𝜹𝟐, (. 𝟕, . 𝟔, . 𝟖))) ,

(�̌�𝟕, (𝜹𝟏, (. 𝟔. . 𝟓, . 𝟑)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟖))), (�̌�𝟖, (𝜹𝟏, (. 𝟖, . 𝟐, . 𝟓)), (𝜹𝟐, (. 𝟔, . 𝟖, . 𝟒))), (�̌�𝟗, (𝜹𝟏, (. 𝟕, . 𝟒, . 𝟗)), (𝜹𝟐, (. 𝟕. . 𝟑, . 𝟓))),

(�̌�𝟏𝟎, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟔)), (𝜹𝟐, (. 𝟕, . 𝟐, . 𝟗))), (�̌�𝟏𝟏, (𝜹𝟏, (. 𝟖, . 𝟒, . 𝟓)), (𝜹𝟐, (. 𝟒, . 𝟐, . 𝟓))), (�̌�𝟓, (𝜹𝟏, (. 𝟕, . 𝟓, . 𝟖)), (𝜹𝟐, (. 𝟕, . 𝟓, . 𝟗))) }
 
 

 
 

 

3. Correlation Coefficient for Neutrosophic Hypersoft Set 

In this section, the concept of correlation coefficient and weighted correlation coefficient on 

NHSS has been proposed with some basic properties. 

Definition 3.1  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs defined over a universe of discourse 

𝒰. Then, the informational neutrosophic energies of (ℱ,⩜⃛) and (𝒢,⩕⃛) can be described as follows: 

Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) = ∑ ∑ ((𝜎ℱ(�̌�𝑘)(𝛿𝑖))
2

+ (𝜏ℱ(�̌�𝑘)(𝛿𝑖))
2

+ (𝛾ℱ(�̌�𝑘)(𝛿𝑖))
2

)𝑛
𝑖=1

𝑚
𝑘=1                             (1) 

Ϛ𝑵𝑯𝑺𝑺(𝓖,⩕⃛) = ∑ ∑ ((𝝈𝓖(�̌�𝒌)(𝜹𝒊))
𝟐

+ (𝝉𝓖(�̌�𝒌)(𝜹𝒊))
𝟐

+ (𝜸𝓖(�̌�𝒌)(𝜹𝒊))
𝟐

)𝒏
𝒊=𝟏

𝒎
𝒌=𝟏 .         

(2) 

Definition 3.2 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs defined over a universe of discourse 

𝒰. Then, the correlation measure between (ℱ,⩜⃛) and (𝒢,⩕⃛) can be described as follows: 

𝓒𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  

∑ ∑ (𝝈𝓕(�̌�𝒌)(𝜹𝒊) ∗ 𝝈𝓖(�̌�𝒌)(𝜹𝒊) + 𝝉𝓕(�̌�𝒌)(𝜹𝒊) ∗ 𝝉𝓖(�̌�𝒌)(𝜹𝒊) + 𝜸𝓕(�̌�𝒌)(𝜹𝒊) ∗ 𝜸𝓖(�̌�𝒌)(𝜹𝒊))
𝒏
𝒊=𝟏

𝒎
𝒌=𝟏 .      

(3) 

Proposition 3.3 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs and 𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) be a 

correlation between them, then the following properties hold. 

1. 𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) 

2. 𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛) 

Proof: The proof is trivial. 

Definition 3.4  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs, then correlation coefficient between 

them given as 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and expressed as follows: 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛)∗ √Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
                                                      (4) 

𝜹𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  

∑ ∑ (𝝈𝓕(�̌�𝒌)
(𝜹𝒊)∗𝝈𝓖(�̌�𝒌)

(𝜹𝒊)+ 𝝉𝓕(�̌�𝒌)
(𝜹𝒊)∗𝝉𝓖(�̌�𝒌)

(𝜹𝒊)+𝜸𝓕(�̌�𝒌)
(𝜹𝒊)∗𝜸𝓖(�̌�𝒌)

(𝜹𝒊))
𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

√∑ ∑ ((𝝈𝓕(�̌�𝒌)
(𝜹𝒊))

𝟐

+(𝝉𝓕(�̌�𝒌)
(𝜹𝒊))

𝟐

+(𝜸𝓕(�̌�𝒌)
(𝜹𝒊))

𝟐

)𝒏
𝒊=𝟏

𝒎
𝒌=𝟏  √∑ ∑ ((𝝈𝓖(�̌�𝒌)

(𝜹𝒊))

𝟐

+(𝝉𝓖(�̌�𝒌)
(𝜹𝒊))

𝟐

)+(𝜸𝓖(�̌�𝒌)
(𝜹𝒊))

𝟐
𝒏
𝒊=𝟏

𝒎
𝒌=𝟏

    (5) 

Proposition 3.5 

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs, then CC between them satisfies the 

following properties 
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1. 0 ≤ 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝑁𝐻𝑆𝑆((𝒢,⩕⃛), (ℱ,⩜⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(�̌�𝑘)(𝛿𝑖) = 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖) = 𝜏𝒢(�̌�𝑘)(𝛿𝑖), and 

𝛾ℱ(�̌�𝑘)(𝛿𝑖) = 𝛾𝒢(�̌�𝑘)(𝛿𝑖) then 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof 1. 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≥ 0 is trivial, here we only need to prove that 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

From equation 3, we have 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = ∑ ∑ (𝜎ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑖) +  𝜏ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑖) + 𝛾ℱ(�̌�𝑘)(𝛿𝑖) ∗
𝑛
𝑖=1

𝑚
𝑘=1

𝛾𝒢(�̌�𝑘)(𝛿𝑖)) 

= ∑ (𝜎ℱ(�̌�𝑘)(𝛿1) ∗ 𝜎𝒢(�̌�𝑘)(𝛿1) +  𝜏ℱ(�̌�𝑘)(𝛿1) ∗ 𝜏𝒢(�̌�𝑘)(𝛿1) + 𝛾ℱ(�̌�𝑘)(𝛿1) ∗ 𝛾𝒢(�̌�𝑘)(𝛿1))
𝑚
𝑘=1  

+ ∑ (𝜎ℱ(�̌�𝑘)(𝛿2) ∗ 𝜎𝒢(�̌�𝑘)(𝛿2) +  𝜏ℱ(�̌�𝑘)(𝛿2) ∗ 𝜏𝒢(�̌�𝑘)(𝛿2) + 𝛾ℱ(�̌�𝑘)(𝛿2) ∗ 𝛾𝒢(�̌�𝑘)(𝛿2))
𝑚
𝑘=1  

+ 
⋮ 
+ 

∑(𝜎ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑛) + 𝜏ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑛) + 𝛾ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑛))

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) 

= 

{
 
 

 
 (𝜎ℱ(�̌�1)(𝛿1) ∗ 𝜎𝒢(�̌�1)(𝛿1) +  𝜏ℱ(�̌�1)(𝛿1) ∗ 𝜏𝒢(�̌�1)(𝛿1) + 𝛾ℱ(�̌�1)(𝛿1) ∗ 𝛾𝒢(�̌�1)(𝛿1))

(𝜎ℱ(�̌�2)(𝛿1) ∗ 𝜎𝒢(�̌�2)(𝛿1) +  𝜏ℱ(�̌�2)(𝛿1) ∗ 𝜏𝒢(�̌�2)(𝛿1) + 𝛾ℱ(�̌�2)(𝛿1) ∗ 𝛾𝒢(�̌�2)(𝛿1))

⋮

(𝜎ℱ(�̌�𝑚)(𝛿1) ∗ 𝜎𝒢(�̌�𝑚)(𝛿1) + 𝜏ℱ(�̌�𝑚)(𝛿1) ∗ 𝜏𝒢(�̌�𝑚)(𝛿1) + 𝛾ℱ(�̌�𝑚)(𝛿1) ∗ 𝛾𝒢(�̌�𝑚)(𝛿1))}
 
 

 
 

 

+ 

{
 
 

 
 (𝜎ℱ(�̌�1)(𝛿2) ∗ 𝜎𝒢(�̌�1)(𝛿2) + 𝜏ℱ(�̌�1)(𝛿2) ∗ 𝜏𝒢(�̌�1)(𝛿2) + 𝛾ℱ(�̌�1)(𝛿2) ∗ 𝛾𝒢(�̌�1)(𝛿2)) +

(𝜎ℱ(�̌�2)(𝛿2) ∗ 𝜎𝒢(�̌�2)(𝛿2) + 𝜏ℱ(�̌�2)(𝛿2) ∗ 𝜏𝒢(�̌�2)(𝛿2) + 𝛾ℱ(�̌�2)(𝛿2) ∗ 𝛾𝒢(�̌�2)(𝛿2)) +

⋮

(𝜎ℱ(�̌�𝑚)(𝛿2) ∗ 𝜎𝒢(�̌�𝑚)(𝛿2) +  𝜏ℱ(�̌�𝑚)(𝛿2) ∗ 𝜏𝒢(�̌�𝑚)(𝛿2) + 𝛾ℱ(�̌�𝑚)(𝛿2) ∗ 𝛾𝒢(�̌�𝑚)(𝛿2))}
 
 

 
 

 

+ 
⋮ 
+ 

{
 
 

 
 (𝜎ℱ(�̌�1)(𝛿𝑛) ∗ 𝜎𝒢(�̌�1)(𝛿𝑛) +  𝜏ℱ(�̌�1)(𝛿𝑛) ∗ 𝜏𝒢(�̌�1)(𝛿𝑛) + 𝛾ℱ(�̌�1)(𝛿𝑛) ∗ 𝛾𝒢(�̌�1)(𝛿𝑛)) +

(𝜎ℱ(�̌�2)(𝛿𝑛) ∗ 𝜎𝒢(�̌�2)(𝛿𝑛) +  𝜏ℱ(�̌�2)(𝛿𝑛) ∗ 𝜏𝒢(�̌�2)(𝛿𝑛) + 𝛾ℱ(�̌�2)(𝛿𝑛) ∗ 𝛾𝒢(�̌�2)(𝛿𝑛)) +

⋮

(𝜎ℱ(�̌�𝑚)(𝛿𝑛) ∗ 𝜎𝒢(�̌�𝑚)(𝛿𝑛) + 𝜏ℱ(�̌�𝑚)(𝛿𝑛) ∗ 𝜏𝒢(�̌�𝑚)(𝛿𝑛) + 𝛾ℱ(�̌�𝑚)(𝛿𝑛) ∗ 𝛾𝒢(�̌�𝑚)(𝛿𝑛))}
 
 

 
 

 

= ∑ ((𝜎ℱ(�̌�𝑘)(𝛿1) ∗ 𝜎𝒢(�̌�𝑘)(𝛿1)) + (𝜎ℱ(�̌�𝑘)(𝛿2) ∗ 𝜎𝒢(�̌�𝑘)(𝛿2)) + ⋯+ (𝜎ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((τℱ(�̌�𝑘)(𝛿1) ∗ τ𝒢(�̌�𝑘)(𝛿1)) + (τℱ(�̌�𝑘)(𝛿2) ∗ τ𝒢(�̌�𝑘)(𝛿2)) +⋯+ (τℱ(�̌�𝑘)(𝛿𝑛) ∗ τ𝒢(�̌�𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((𝛾ℱ(�̌�𝑘)(𝛿1) ∗ 𝛾𝒢(�̌�𝑘)(𝛿1)) + (𝛾ℱ(�̌�𝑘)(𝛿2) ∗ 𝛾𝒢(�̌�𝑘)(𝛿2)) + ⋯+ (𝛾ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑛)))
m
k=1  

By using Cauchy-Schwarz inequality  
𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))

2 ≤  

∑{
((𝜎ℱ(�̌�𝑘)(𝛿1))

2

+ (𝜎ℱ(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜎ℱ(�̌�𝑘)(𝛿𝑛))
2

) + ((𝜏ℱ(�̌�𝑘)(𝛿1))
2

+ (𝜏ℱ(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜏ℱ(�̌�𝑘)(𝛿𝑛))
2

)

+ ((𝛾ℱ(�̌�𝑘)(𝛿1))
2

+ (𝛾ℱ(�̌�𝑘)(𝛿2))
2

+⋯+ (𝛾ℱ(�̌�𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

×∑{
((𝜎𝒢(�̌�𝑘)(𝛿1))

2

+ (𝜎𝒢(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜎𝒢(�̌�𝑘)(𝛿𝑛))
2

) + ((𝜏𝒢(�̌�𝑘)(𝛿1))
2

+ (𝜏𝒢(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜏𝒢(�̌�𝑘)(𝛿𝑛))
2

)

+ ((𝛾𝒢(�̌�𝑘)(𝛿1))
2

+ (𝛾𝒢(�̌�𝑘)(𝛿2))
2

+⋯+ (𝛾𝒢(�̌�𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤  
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∑∑((𝜎ℱ(�̌�𝑘)(𝛿𝑖))
2

+ (𝜏ℱ(�̌�𝑘)(𝛿𝑖))
2

+ (𝛾ℱ(�̌�𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

×∑∑((𝜎𝒢(�̌�𝑘)(𝛿𝑖))
2

+ (𝜏𝒢(�̌�𝑘)(𝛿𝑖))
2

+ (𝛾𝒢(�̌�𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛). 

Therefore, 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))
2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛). Hence, by using definition 3.4, we have   

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. So, 0 ≤ 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

Proof 2. The proof is obvious. 

Proof 3. From equation 5, we have 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (𝜎ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜎𝒢(�̌�𝑘)

(𝛿𝑖)+ 𝜏ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜏𝒢(�̌�𝑘)

(𝛿𝑖)+𝛾ℱ(�̌�𝑘)
(𝛿𝑖)∗𝛾𝒢(�̌�𝑘)

(𝛿𝑖))
𝑛
𝑖=1

𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  √∑ ∑ ((𝜎𝒢(�̌�𝑘)

(𝛿𝑖))

2

+(𝜏𝒢(�̌�𝑘)
(𝛿𝑖))

2

)+(𝛾𝒢(�̌�𝑘)
(𝛿𝑖))

2
𝑛
𝑖=1

𝑚
𝑘=1

 

As we know that  

𝜎ℱ(�̌�𝑘)(𝛿𝑖) = 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖) = 𝜏𝒢(�̌�𝑘)(𝛿𝑖), and 𝛾ℱ(�̌�𝑘)(𝛿𝑖) = 𝛾𝒢(�̌�𝑘)(𝛿𝑖) ∀ 𝑖, 𝑘. We get 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ ((𝜎ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

√∑ ∑ ((𝜎ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1  √∑ ∑ ((𝜎ℱ(�̌�𝑘)

(𝛿𝑖))

2

+(𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1

 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1 

Thus, prove the required result. 

Definition 3.6  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, their correlation coefficient is 

given as 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined as follows: 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

𝑚𝑎𝑥{Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛),Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛)}
                                                    (6) 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ ∑ (𝜎ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜎𝒢(�̌�𝑘)

(𝛿𝑖)+ 𝜏ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜏𝒢(�̌�𝑘)

(𝛿𝑖)+ 𝛾ℱ(�̌�𝑘)
(𝛿𝑖)∗𝛾𝒢(�̌�𝑘)

(𝛿𝑖))
𝑛
𝑖=1

𝑚
𝑘=1

𝑚𝑎𝑥{∑ ∑ ((𝜎ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1 ,∑ ∑ ((𝜎𝒢(�̌�𝑘)

(𝛿𝑖))

2

+(𝜏𝒢(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾𝒢(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1

𝑚
𝑘=1 } 

     (7) 

Proposition 3.7  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, CC between them satisfies the 

following properties 

1. 0 ≤ 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(�̌�𝑘)(𝛿𝑖) = 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖) = 𝜏𝒢(�̌�𝑘)(𝛿𝑖), and 

 𝛾ℱ(�̌�𝑘)(𝛿𝑖) = 𝛾𝒢(�̌�𝑘)(𝛿𝑖), then 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof 1. 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≥ 0 is trivial, here we only need to prove that 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

From equation 3, we have 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = ∑ ∑ (𝜎ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑖) +  𝜏ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑖) + 𝛾ℱ(�̌�𝑘)(𝛿𝑖) ∗

𝑛
𝑖=1

𝑚
𝑘=1

𝛾𝒢(�̌�𝑘)(𝛿𝑖)) 

= ∑ (𝜎ℱ(�̌�𝑘)(𝛿1) ∗ 𝜎𝒢(�̌�𝑘)(𝛿1) +  𝜏ℱ(�̌�𝑘)(𝛿1) ∗ 𝜏𝒢(�̌�𝑘)(𝛿1) + 𝛾ℱ(�̌�𝑘)(𝛿1) ∗ 𝛾𝒢(�̌�𝑘)(𝛿1))
𝑚
𝑘=1  

+ ∑ (𝜎ℱ(�̌�𝑘)(𝛿2) ∗ 𝜎𝒢(�̌�𝑘)(𝛿2) +  𝜏ℱ(�̌�𝑘)(𝛿2) ∗ 𝜏𝒢(�̌�𝑘)(𝛿2) + 𝛾ℱ(�̌�𝑘)(𝛿2) ∗ 𝛾𝒢(�̌�𝑘)(𝛿2))
𝑚
𝑘=1  

+ 
⋮ 
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+ 

∑(𝜎ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑛) + 𝜏ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑛) + 𝛾ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑛))

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) 

= 

{
 
 

 
 (𝜎ℱ(�̌�1)(𝛿1) ∗ 𝜎𝒢(�̌�1)(𝛿1) +  𝜏ℱ(�̌�1)(𝛿1) ∗ 𝜏𝒢(�̌�1)(𝛿1) + 𝛾ℱ(�̌�1)(𝛿1) ∗ 𝛾𝒢(�̌�1)(𝛿1))

(𝜎ℱ(�̌�2)(𝛿1) ∗ 𝜎𝒢(�̌�2)(𝛿1) +  𝜏ℱ(�̌�2)(𝛿1) ∗ 𝜏𝒢(�̌�2)(𝛿1) + 𝛾ℱ(�̌�2)(𝛿1) ∗ 𝛾𝒢(�̌�2)(𝛿1))

⋮

(𝜎ℱ(�̌�𝑚)(𝛿1) ∗ 𝜎𝒢(�̌�𝑚)(𝛿1) + 𝜏ℱ(�̌�𝑚)(𝛿1) ∗ 𝜏𝒢(�̌�𝑚)(𝛿1) + 𝛾ℱ(�̌�𝑚)(𝛿1) ∗ 𝛾𝒢(�̌�𝑚)(𝛿1))}
 
 

 
 

 

+ 

{
 
 

 
 (𝜎ℱ(�̌�1)(𝛿2) ∗ 𝜎𝒢(�̌�1)(𝛿2) + 𝜏ℱ(�̌�1)(𝛿2) ∗ 𝜏𝒢(�̌�1)(𝛿2) + 𝛾ℱ(�̌�1)(𝛿2) ∗ 𝛾𝒢(�̌�1)(𝛿2)) +

(𝜎ℱ(�̌�2)(𝛿2) ∗ 𝜎𝒢(�̌�2)(𝛿2) + 𝜏ℱ(�̌�2)(𝛿2) ∗ 𝜏𝒢(�̌�2)(𝛿2) + 𝛾ℱ(�̌�2)(𝛿2) ∗ 𝛾𝒢(�̌�2)(𝛿2)) +

⋮

(𝜎ℱ(�̌�𝑚)(𝛿2) ∗ 𝜎𝒢(�̌�𝑚)(𝛿2) +  𝜏ℱ(�̌�𝑚)(𝛿2) ∗ 𝜏𝒢(�̌�𝑚)(𝛿2) + 𝛾ℱ(�̌�𝑚)(𝛿2) ∗ 𝛾𝒢(�̌�𝑚)(𝛿2))}
 
 

 
 

 

+ 
⋮ 
+ 

{
 
 

 
 (𝜎ℱ(�̌�1)(𝛿𝑛) ∗ 𝜎𝒢(�̌�1)(𝛿𝑛) +  𝜏ℱ(�̌�1)(𝛿𝑛) ∗ 𝜏𝒢(�̌�1)(𝛿𝑛) + 𝛾ℱ(�̌�1)(𝛿𝑛) ∗ 𝛾𝒢(�̌�1)(𝛿𝑛)) +

(𝜎ℱ(�̌�2)(𝛿𝑛) ∗ 𝜎𝒢(�̌�2)(𝛿𝑛) +  𝜏ℱ(�̌�2)(𝛿𝑛) ∗ 𝜏𝒢(�̌�2)(𝛿𝑛) + 𝛾ℱ(�̌�2)(𝛿𝑛) ∗ 𝛾𝒢(�̌�2)(𝛿𝑛)) +

⋮

(𝜎ℱ(�̌�𝑚)(𝛿𝑛) ∗ 𝜎𝒢(�̌�𝑚)(𝛿𝑛) + 𝜏ℱ(�̌�𝑚)(𝛿𝑛) ∗ 𝜏𝒢(�̌�𝑚)(𝛿𝑛) + 𝛾ℱ(�̌�𝑚)(𝛿𝑛) ∗ 𝛾𝒢(�̌�𝑚)(𝛿𝑛))}
 
 

 
 

 

= ∑ ((𝜎ℱ(�̌�𝑘)(𝛿1) ∗ 𝜎𝒢(�̌�𝑘)(𝛿1)) + (𝜎ℱ(�̌�𝑘)(𝛿2) ∗ 𝜎𝒢(�̌�𝑘)(𝛿2)) + ⋯+ (𝜎ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((τℱ(�̌�𝑘)(𝛿1) ∗ τ𝒢(�̌�𝑘)(𝛿1)) + (τℱ(�̌�𝑘)(𝛿2) ∗ τ𝒢(�̌�𝑘)(𝛿2)) +⋯+ (τℱ(�̌�𝑘)(𝛿𝑛) ∗ τ𝒢(�̌�𝑘)(𝛿𝑛)))
m
k=1 +

∑ ((𝛾ℱ(�̌�𝑘)(𝛿1) ∗ 𝛾𝒢(�̌�𝑘)(𝛿1)) + (𝛾ℱ(�̌�𝑘)(𝛿2) ∗ 𝛾𝒢(�̌�𝑘)(𝛿2)) + ⋯+ (𝛾ℱ(�̌�𝑘)(𝛿𝑛) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑛)))
m
k=1  

By using Cauchy-Schwarz inequality  
𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤  

∑{
((𝜎ℱ(�̌�𝑘)(𝛿1))

2

+ (𝜎ℱ(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜎ℱ(�̌�𝑘)(𝛿𝑛))
2

) + ((𝜏ℱ(�̌�𝑘)(𝛿1))
2

+ (𝜏ℱ(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜏ℱ(�̌�𝑘)(𝛿𝑛))
2

)

+ ((𝛾ℱ(�̌�𝑘)(𝛿1))
2

+ (𝛾ℱ(�̌�𝑘)(𝛿2))
2

+⋯+ (𝛾ℱ(�̌�𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

×∑{
((𝜎𝒢(�̌�𝑘)(𝛿1))

2

+ (𝜎𝒢(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜎𝒢(�̌�𝑘)(𝛿𝑛))
2

) + ((𝜏𝒢(�̌�𝑘)(𝛿1))
2

+ (𝜏𝒢(�̌�𝑘)(𝛿2))
2

+⋯+ (𝜏𝒢(�̌�𝑘)(𝛿𝑛))
2

)

+ ((𝛾𝒢(�̌�𝑘)(𝛿1))
2

+ (𝛾𝒢(�̌�𝑘)(𝛿2))
2

+⋯+ (𝛾𝒢(�̌�𝑘)(𝛿𝑛))
2

)
}

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤  

∑∑((𝜎ℱ(�̌�𝑘)(𝛿𝑖))
2

+ (𝜏ℱ(�̌�𝑘)(𝛿𝑖))
2

+ (𝛾ℱ(�̌�𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

 

×∑∑((𝜎𝒢(�̌�𝑘)(𝛿𝑖))
2

+ (𝜏𝒢(�̌�𝑘)(𝛿𝑖))
2

+ (𝛾𝒢(�̌�𝑘)(𝛿𝑖))
2

)

𝑛

𝑖=1

𝑚

𝑘=1

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝐼𝐹𝐻𝑆𝑆(𝒢,⩕⃛). 

Therefore, 𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛))2 ≤ Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛) ×  Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛). Hence, by using definition 3.6, we have   

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. So, 0 ≤ 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1. 

Proof 2. The proof is obvious. 

Proof 3. From equation 7, we have 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) =  

∑ ∑ (𝜎ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑖) + 𝜏ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑖) + 𝛾ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑖))
𝑛
𝑖=1

𝑚
𝑘=1

𝑚𝑎𝑥 {∑ ∑ ((𝜎ℱ(�̌�𝑘)(𝛿𝑖))
2
+ (𝜏ℱ(�̌�𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(�̌�𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 , ∑ ∑ ((𝜎𝒢(�̌�𝑘)(𝛿𝑖))

2
+ (𝜏𝒢(�̌�𝑘)(𝛿𝑖))

2
+ (𝛾𝒢(�̌�𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 } 

 

As we know that  

𝜎ℱ(�̌�𝑘)(𝛿𝑖) = 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖) = 𝜏𝒢(�̌�𝑘)(𝛿𝑖), and 𝛾ℱ(�̌�𝑘)(𝛿𝑖) = 𝛾𝒢(�̌�𝑘)(𝛿𝑖) ∀ 𝑖, 𝑘. We get 
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𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) =  

∑ ∑ ((𝜎ℱ(�̌�𝑘)(𝛿𝑖))
2
+ (𝜏ℱ(�̌�𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(�̌�𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1

𝑚𝑎𝑥 {∑ ∑ ((𝜎ℱ(�̌�𝑘)(𝛿𝑖))
2
+ (𝜏ℱ(�̌�𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(�̌�𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 , ∑ ∑ ((𝜎ℱ(�̌�𝑘)(𝛿𝑖))

2
+ (𝜏ℱ(�̌�𝑘)(𝛿𝑖))

2
+ (𝛾ℱ(�̌�𝑘)(𝛿𝑖))

2
)𝑛

𝑖=1
𝑚
𝑘=1 } 

 

𝛿𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1 

Thus, prove the required result. 

Definition 3.8  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, their weighted correlation 

coefficient is given as 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined as follows: 

𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝑊𝑁𝐻𝑆𝑆(𝒢,⩕⃛)∗ √Ϛ𝑊𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
                                                 (8) 

𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ Ω𝑘(∑ γ𝑖(𝜎ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜎𝒢(�̌�𝑘)

(𝛿𝑖)+ 𝜏ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜏𝒢(�̌�𝑘)

(𝛿𝑖)+ 𝛾ℱ(�̌�𝑘)
(𝛿𝑖)∗𝛾𝒢(�̌�𝑘)

(𝛿𝑖))
𝑛
𝑖=1 )𝑚

𝑘=1

√∑ Ω𝑘(∑ γ𝑖((𝜎ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1  √∑ Ω𝑘(∑ γ𝑖((𝜎𝒢(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏𝒢(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾𝒢(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1

                                                                                                     

(9) 

Definition 3.9  

Let (ℱ,⩜⃛)  = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰}  and (𝒢,⩕⃛)  = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰}  be two NHSSs. Then, their weighted correlation 

coefficient is given as 𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) and defined as follows: 

𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

𝒞𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

𝑚𝑎𝑥{Ϛ𝑊𝑁𝐻𝑆𝑆(ℱ,⩜⃛),Ϛ𝑊𝑁𝐻𝑆𝑆(𝒢,⩕⃛)}
                                               (10) 

𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) = 

∑ Ω𝑘(∑ γ𝑖(𝜎ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜎𝒢(�̌�𝑘)

(𝛿𝑖)+ 𝜏ℱ(�̌�𝑘)
(𝛿𝑖)∗𝜏𝒢(�̌�𝑘)

(𝛿𝑖)+ 𝛾ℱ(�̌�𝑘)
(𝛿𝑖)∗𝛾𝒢(�̌�𝑘)

(𝛿𝑖))
𝑛
𝑖=1 )𝑚

𝑘=1

𝑚𝑎𝑥{∑ Ω𝑘(∑ γ𝑖((𝜎ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏ℱ(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾ℱ(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1 ,∑ ὡ𝑘(∑ Ω𝑘(∑ γ𝑖((𝜎𝒢(�̌�𝑘)
(𝛿𝑖))

2

+(𝜏𝒢(�̌�𝑘)
(𝛿𝑖))

2

+(𝛾𝒢(�̌�𝑘)
(𝛿𝑖))

2

)𝑛
𝑖=1 )𝑚

𝑘=1 )𝑚
𝑘=1 } 

                                                                                                    

(11) 

If we consider Ω  = {
1

𝑚
, 

1

𝑚
,…, 

1

𝑚
} and γ  = {

1

𝑛
, 

1

𝑛
,…, 

1

𝑛
}, then 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛))  and 

𝛿𝑊𝑁𝐻𝑆𝑆
1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) are reduced to 𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) and 𝛿𝑁𝐻𝑆𝑆

1 ((ℱ,⩜⃛), (𝒢,⩕⃛)) respectively. 

Proposition 3.10  

Let (ℱ,⩜⃛) = {(𝛿𝑖, 𝜎ℱ(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖), 𝛾ℱ(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} and (𝒢,⩕⃛) = 

{(𝛿𝑖, 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏𝒢(�̌�𝑘)(𝛿𝑖), 𝛾𝒢(�̌�𝑘)(𝛿𝑖))  ⎸𝛿𝑖 ∈  𝒰} be two NHSSs. Then, CC between them satisfies the 

following properties 

1. 0 ≤ 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) ≤ 1 

2. 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 𝛿𝑊𝑁𝐻𝑆𝑆((𝒢,⩕⃛), (ℱ,⩜⃛)) 

3. If (ℱ,⩜⃛) = (𝒢,⩕⃛), that is ∀ 𝑖, 𝑘, 𝜎ℱ(�̌�𝑘)(𝛿𝑖) = 𝜎𝒢(�̌�𝑘)(𝛿𝑖), 𝜏ℱ(�̌�𝑘)(𝛿𝑖) = 𝜏𝒢(�̌�𝑘)(𝛿𝑖), and 

 𝛾ℱ(�̌�𝑘)(𝛿𝑖) = 𝛾𝒢(�̌�𝑘)(𝛿𝑖) then 𝛿𝑊𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 1. 

Proof Similar to proposition 3.5. 

4. Application of Correlation Coefficient for Decision Making Under NHSS Environment 

In this section, we proposed the algorithm based on CC under NHSS and utilize the proposed 

approach for decision making in real-life problems. 

4.1 Algorithm for Correlation Coefficient under NHSS 
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Step 1. Pick out the set containing sub-attributes of parameters. 

Step 2. Construct the NHSS according to experts in form of NHSNs. 

Step 3. Find the informational neutrosophic energies of NHSS. 

Step 4. Calculate the correlation between NHSSs by using the following formula 

𝓒𝑵𝑯𝑺𝑺((𝓕,⩜⃛), (𝓖,⩕⃛)) =  

∑∑(𝜎ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜎𝒢(�̌�𝑘)(𝛿𝑖) + 𝜏ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝜏𝒢(�̌�𝑘)(𝛿𝑖) + 𝛾ℱ(�̌�𝑘)(𝛿𝑖) ∗ 𝛾𝒢(�̌�𝑘)(𝛿𝑖))

𝑛

𝑖=1

𝑚

𝑘=1

 

Step 5. Calculate the CC between NHSSs by using the following formula 

𝛿𝑁𝐻𝑆𝑆((ℱ,⩜⃛), (𝒢,⩕⃛)) = 
𝒞𝑁𝐻𝑆𝑆((ℱ,⩜⃛),(𝒢,⩕⃛)) 

√Ϛ𝑁𝐻𝑆𝑆(ℱ,⩜⃛)∗ √Ϛ𝑁𝐻𝑆𝑆(𝒢,⩕⃛)
  

Step 6. Choose the alternative with a maximum value of CC. 

Step 7. Analyze the ranking of the alternatives. 

A flowchart of the above-presented algorithm can be seen in figure 1. 

 

Figure 1: Flowchart for correlation coefficient under NHSS 

4.1 Problem Formulation and Application of NHSS For Decision Making 

Department of the scientific discipline of some university 𝒰 will have one scholarship for the 

position of post-doctorate. Several scholars apply to get a scholarship but referable probabilistic along 

with CGPA (cumulative grade points average), simply four scholars call for enrolled for 

undervaluation such as ℵ = {ℵ1, ℵ2, ℵ3, ℵ4} be a set of selected scholars call for the interview. The 

president of the university hires a committee of four decision-makers (DM) 𝒰 = {𝛿1, 𝛿2, 𝛿3, 𝛿4} for 

the selection post-doctoral scholar. The team of DM decides the criteria (attributes) for the selection 

of post-doctorate position such as 𝔏 = {ℓ1 = Publications, ℓ2 = Subjects, ℓ3 = IF} be a collection of 

attributes and their corresponding sub-attribute are given as Publications = ℓ1  = {𝑎11 =

𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 10, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 10}, Subjects = ℓ2  = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =  𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒}, 

and IF = ℓ3 = {𝑎31 = 45, 𝑎32 =  47}. Let 𝔏′ = ℓ1 × ℓ2 × ℓ3 be a set of sub-attributes 

𝔏′ = ℓ1 × ℓ2 × ℓ3 = {𝑎11, 𝑎12} × {𝑎21, 𝑎22} × {𝑎31, 𝑎32} 
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= {
(𝑎11, 𝑎21, 𝑎31), (𝑎11, 𝑎21, 𝑎32), (𝑎11, 𝑎22, 𝑎31), (𝑎11, 𝑎22, 𝑎32),

(𝑎12, 𝑎21, 𝑎31), (𝑎12, 𝑎21, 𝑎32), (𝑎12, 𝑎22, 𝑎31), (𝑎12, 𝑎22, 𝑎32) 
}, 𝔏′ = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8} be a set 

of all multi sub-attributes. Each DM will evaluate the ratings of each alternative in the form of NHSNs 

under the considered multi sub-attributes. The developed method to find the best alternative is as 

follows. 

4.1.1. Application of NHSS For Decision Making 

Assume ℵ  = {ℵ1, ℵ2, ℵ3, ℵ4}  be a set of alternatives who are shortlisted for interview and  𝔏 = 

{ℓ1 = Publications, ℓ2 = Subjects, ℓ3 = Qualification}  be a set of parameters for the selection of 

scholarship positions. Let the corresponding sub-attribute are given as Publications = ℓ1  = 

{𝑎11 = 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 10, 𝑎12 =  𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 10} , Subjects = ℓ2  = {𝑎21 = 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑎22 =

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 𝑆𝑐𝑖𝑒𝑛𝑐𝑒} , and IF = ℓ3  = {𝑎31 = 45, 𝑎32 =  47}. Let 𝔏′  = ℓ1  × ℓ2  × ℓ3  be a set of sub-

attributes. Development of decision matrix according to the requirement of the scientific discipline 

department in terms of NHSNs. 

Table 1. Decision Matrix of Concerning Department 

℘ �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝜹𝟏 (. 2, .5, .9) (. 5, .7, .6) (. 5, .6, .9) (. 5, .8, .7) (. 4, .7, .6) (. 8, .6, .3) (. 5, .4, .7) (. 6, .4, .8) 

𝜹𝟐 (. 5, .9, .7) (. 6, .4, .7) (. 5, .8 .2) (. 7, .4 .2) (. 9, .5, .7) (. 4, .7, .9) (. 9, .2, .5) (. 2, .8, .5) 

𝜹𝟑 (. 7, .3, .5) (. 7, .4, .2) (. 8, .2, .6) (. 7, .3, .6) (. 8, .4 .9) (. 7, .5, .8) (. 9, .6, .8) (. 6, .3, .8) 

𝜹𝟒 (. 5, .4, .7) (. 4, .7, .3) (. 6, .3, .8) (. 5, .4, .6) (. 7, .3, .5) (. 8, .3, .2) (. 5, .4, .7) (. 6, .2, .7) 

Table 2. Decision Matrix for Alternative ℵ(1) 

ℵ(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝜹𝟏 (. 3, .5, .8) (. 2, .3, .6) (. 5, .1, .3) (. 8, .6, .7) (. 5, .9, .6) (. 8, .2, .6) (. 5, .4, .1) (. 9, .3, .5) 

𝜹𝟐 (. 5, .2, .7) (. 2, .4, .6) (. 3, .8 .4) (. 7, .5 .2) (. 9, .2, .6) (. 5, .2, .4) (. 9, .2, .5) (. 8, .4, .5) 

𝜹𝟑 (. 6, .2, .4) (. 4, .7, .5) (. 5, .1, .6) (. 7, .3, .4) (. 2, .6 .9) (. 9, .3, .5) (. 2, .3, .8) (. 6, .3, .8) 

𝜹𝟒 (. 2, .4, .7) (. 7, .2, .3) (. 6, .3, .8) (. 2, .4, .6) (. 7, .3, .5) (. 9, .3, .6) (. 3, .4, .5) (. 6, .2, .7) 

Table 3. Decision Matrix for Alternative  ℵ(2) 

ℵ(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝜹𝟏 (.8,.5,.6) (.5,.4,.2) (.4,.3,.6) (.4,.8,.6) (.7,.6,.5) (.4,.1,.3) (.7,.8,.5) (.8,.4,.7) 

𝜹𝟐 (.6,.5,.2) (.5,.6,.5) (.9,.5,.8) (.6,.4,.5) (.7,.5,.8) (.7,.5,.7) (.3,.5,.9) (.6,.4,.9) 

𝜹𝟑 (.2,.5,.2) (.9,.4,.6) (.2,.5,.4) (.7,.3,.2) (.6,.4,.5) (.3,.5,.7) (.4,.6,.2) (.6,.7,.9) 

𝜹𝟒 (.5,.2,.4) (.7,.5,.9) (.6,.3,.4) (.9,.5,.1) (.3,.4,.6) (.6,.5,.2) (.9,.5,.6) (.3,.4,.3) 

Table 4. Decision Matrix for Alternative ℵ(3) 

ℵ(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝜹𝟏 (.3,.5,.2) (.8,.7,.3) (.7,.2,.9) (.9,.5,.1) (.3,.4,.6) (.1,.5,.2) (.9,.5,.1) (.7,.4,.3) 

𝜹𝟐 (.6,.7,.2) (.7,.8,.3) (.2,.4,.6) (.6,.1,.2) (.9,.5,.6) (.7,.2,.3) (.4,.7,.6) (.7,.2,.4) 

𝜹𝟑 (.3,.9,.7) (.5,.9,.1) (.7,.3,.2) (.2,.1,.2) (.7,.9,.8) (.7,.2,.1) (.7,.4,.5) (.1,.7,.9) 
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𝜹𝟒 (.7,.8,.6) (.7,.2,.5) (.7,.3,.2) (.3,.2,.7) (.4,.6,.8) (.5,.6,.2) (.7,.2,.6) (.8,.6,.9) 

Table 5. Decision Matrix for Alternative ℵ(4) 

ℵ(𝟒) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝜹𝟏 (.7,.4,.1) (.7,.3,.1) (.7,.4,.6) (.4,.9,.6) (.7,.2,.5) (.7,.3,.2) (.7,.4,.6) (.9,.4,.3) 

𝜹𝟐 (.1,.4,.5) (.6,.2,.3) (.7,.4,.3) (.6,.2,.5) (.6,.2,.1) (.5,.4,.7) (.3,.5,.1) (.6,.2,.7) 

𝜹𝟑 (.5,.4,.3) (.6,.4,.7) (.6,.2,.1) (.6,.3,.5) (.4,.7,.9) (.2,.7,.4) (.5,.3,.9) (.3,.6,.2) 

𝜹𝟒 (.4,.2,.6) (.7,.4,.3) (.5,.4,.9) (.4,.2,.3) (.4,.1,.3) (.4,.5,.2) (.1,.6,.5) (.1,.5,.2) 

 

By using Tables 1-5, compute the correlation coefficient between 𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(1)) , 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(2)) , 

𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(3)), 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(4)) by using equation 5 given as follows: 

𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(1)) = .99658, 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(2)) = .99732, 𝛿𝑁𝐻𝑆𝑆(℘, ℵ
(3)) = .99894, and 𝛿𝑁𝐻𝑆𝑆(℘, ℵ

(4)) = .99669. 

This shows that 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(3)) >  𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(2)) > 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ
(4))  > 𝛿𝐼𝑉𝑁𝐻𝑆𝑆(℘, ℵ

(1)). It can be seen 

from this ranking alternative  ℵ(3) is the most suitable alternative. Therefore  ℵ(3) is the best alternative, the 

ranking of other alternatives given as ℵ(3) > ℵ(2) > ℵ(4) > ℵ(1). Graphical results of alternatives ratings can 

be seen in figure 2. 

 

Figure 2: Alternative’s rating based on correlation coefficient under NHSS 

5. Conclusion 

 The neutrosophic hypersoft set is a novel concept that is an extension neutrosophic soft set. In 

this manuscript, we studied some basic concepts which were necessary to build the structure of the 

paper. We introduced the correlation and weighted correlation coefficient with some necessary 

properties under the NHSS environment. A decision-making approach has been developed based on 

the established correlation coefficient and presented an algorithm under NHSS. Finally, a numerical 

illustration has been described to solve the decision-making problem by using the proposed 

technique.  In the future, anyone can extend the NHSS to interval valued NHSS, aggregation 

operators, TOPSIS technique based on developed CC. 

ℵ^(1), 0.99658

ℵ^(2), 0.99732

ℵ^(3), 0.99894

ℵ^(4), 0.99669

0.995

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

ℵ^(1) ℵ^(2) ℵ^(3) ℵ^(4)

Correlation Coefficient for NHSS

ℵ^(1) ℵ^(2) ℵ^(3) ℵ^(4)



Neutrosophic Sets and Systems, Vol. 46, 2021     139  

 

 

Rana Muhammad Zulqarnain, Imran Siddique, Shahzad Ahmad, Sehrish Ayaz, Said Broumi, An Algorithm Based on 

Correlation Coefficient Under Neutrosophic hypersoft set environment with its Application for Decision-Making     

References 

1. L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965) 338–353. 

2. K. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20(1986) 87–96. 

3. D. Molodtsov, Soft Set Theory First Results, Computers & Mathematics with Applications, 37(1999) 19–31. 

4. P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers and Mathematics with Applications, 45(4–

5)(2003) 555–562. 

5. P. K. Maji, A. R. Roy, R. Biswas, An Application of Soft Sets in A Decision Making Problem, Computers 

and Mathematics with Applications, 44(2002) 1077–1083. 

6. P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (2001), 589–602. 

7. P. K. Maji, R. Biswas, A. Roy, Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (2001), 677–692. 

8. R. M. Zulqarnain, X. L. Xin, M. Saqlain, W. A. Khan, TOPSIS Method Based on the Correlation Coefficient 

of Interval-Valued Intuitionistic Fuzzy Soft Sets and Aggregation Operators with Their Application in 

Decision-Making, Journal of Mathematics. 2021, Volume 2021, 1-16. 

9. R. M. Zulqarnain, X. L. Xin, I. Siddique, W. Asghar Khan, M. A. Yousif, TOPSIS Method Based on 

Correlation Coefficient under Pythagorean Fuzzy Soft Environment and Its Application towards Green 

Supply Chain Management. Sustainability 2021, 13, 1642. https://doi.org/10.3390/su13041642. 

10. R. M. Zulqarnain, X. L. Xin, H. Garg, W. A. Khan, Aggregation operators of pythagorean fuzzy soft sets 

with their application for green supplier chain management, Journal of Intelligent and Fuzzy Systems, 

(2021) 40 (3), 5545-5563. DOI: 10.3233/JIFS-202781. 

11. P. K. Maji, Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics. 2013, 5(1), 157–168. 

12. F. Karaaslan, Possibility neutrosophic soft sets and PNS-decision making method. Applied Soft Computing 

Journal. 2016, 54, 403–414. 

13. S. Broumi, Generalized Neutrosophic Soft Set. International Journal of Computer Science, Engineering and 

Information Technology. 2013, 3(2), 17–30. 

14. R. M. Zulqarnain, X. L. Xin, H. Garg, R. Ali, (2021), Interaction aggregation operators to solve multi criteria 

decision making problem under pythagorean fuzzy soft environment. Journal of Intelligent & Fuzzy 

Systems, 41 (1), 1151-1171. 

15. H. Wang, F. Smarandache, Y. Zhang, . Single valued neutrosophic sets. Int. J. Gen. Syst, 2013, 42, 386–394. 

16. J. Ye, A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. 

Journal of Intelligent and Fuzzy Systems. 2014, 26, 2459–2466. 

17. M. R. Hashmi, M. Riaz, F. Smarandache, m-Polar Neutrosophic Topology with Applications to Multi 

criteria Decision-Making in Medical Diagnosis and Clustering Analysis. Int. J. Fuzzy Syst, 2019, Dec (2019). 

18. R. M. Zulqarnain, X. L. Xin, M. Saqlain, F. Smarandache, M. I. Ahamad, An integrated model of 

Neutrosophic TOPSIS with application in Multi-Criteria Decision-Making Problem. Neutrosophic Sets and 

Systems, 40,118-133, (2021). 

19. R. M. Zulqarnain, X. L. Xin, M. Saeed, F. Smarandache, N. Ahmad, Generalized Neutrosophic TOPSIS to 

Solve Multi-Criteria Decision-Making Problems, Neutrosophic Sets and Systems, 38, 276-292, (2020). 

20. C. Yu, Correlation of fuzzy numbers. Fuzzy Sets and Systems. 1993, 55, 303-307. 

21. F. Smarandache, 2018. Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set. 

Neutrosophic Sets and Systems, 22 (2018), 168-170. 

22. R. M. Zulqarnain, X. L. Xin, M. Saeed, Extension of TOPSIS method under intuitionistic fuzzy hypersoft 

environment based on correlation coefficient and aggregation operators to solve decision making problem, 

AIMS Mathematics, 6 (3), 2732-2755, (2021). 

23. R. M. Zulqarnain, X. L. Xin, B. Ali, S. Broumi, S. Abdal, M. I. Ahamad, Decision-Making Approach Based 

on Correlation Coefficient with its Properties Under Interval-Valued Neutrosophic hypersoft set 

environment. Neutrosophic Sets and Systems, 40,12-28, (2021). 

24. S. Gayen, F. Smarandache, S. Jha, M. K. Singh, S. Broumi, R. Kumar, (2020). Introduction to 

Plithogenic Subgroup. In Neutrosophic Graph Theory and Algorithms (pp. 213-259). IGI Global. 

25. R. M. Zulqarnain, X. L. Xin, M. Saqlain, F. Smarandache, (2020), Generalized Aggregate Operators on 

Neutrosophic Hypersoft Set, Neutrosophic Sets and Systems, 36, 271-281. 



Neutrosophic Sets and Systems, Vol. 46, 2021     140  

 

 

Rana Muhammad Zulqarnain, Imran Siddique, Shahzad Ahmad, Sehrish Ayaz, Said Broumi, An Algorithm Based on 

Correlation Coefficient Under Neutrosophic hypersoft set environment with its Application for Decision-Making     

26. R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Samad, T. Abdeljawad, Neutrosophic Hypersoft Matrices 

with Application to Solve Multiattributive Decision-Making Problems, Volume 2021, Article ID 5589874, 

1-17, https://doi.org/10.1155/2021/5589874. 

27. R. M. Zulqarnain, X. L. Xin, M. Saqlain, M. Saeed, F. Smarandache, M. I. Ahamad, Some Fundamental 

Operations on Interval Valued Neutrosophic Hypersoft Set with Their Properties. Neutrosophic Sets and 

Systems, 40,134-148, (2021). 

28. R. M. Zulqarnain, I. Siddique, R. Ali, D. Pamucar, D. Marinkovic, D. Bozanic, Robust Aggregation 

Operators for Intuitionistic Fuzzy Hyper‐soft Set With Their Application to Solve MCDM Problem, 

Entropy 2021, 23, 688. https://doi.org/10.3390/e23060688. 

29. M. Abbas, G. Murtaza, F. Smarandache, Basic operations on hypersoft sets and hypersoft point, 

Neutrosophic Sets and Systems, Vol. 35, 2020, 407-421. 

30. R. M. Zulqarnain, I. Saddique, F. Jarad, R. Ali, T. Abdeljawad, Development of TOPSIS Technique Under 

Pythagorean Fuzzy Hypersoft Environment Based on Correlation Coefficient and Its Application Towards 

the Selection of Antivirus Mask in COVID-19 Pandemic. Complexity, Volume 2021, Article ID 6634991, 27 

pages, https://doi.org/10.1155/2021/6634991. 

31. N. Martin, F. Smarandache, Introduction to Combined Plithogenic Hypersoft Sets, Neutrosophic Sets and 

Systems, Vol. 35, 2020, 503-510. 

32. N. Martin, F. Smarandache, Concentric Plithogenic Hypergraph based on Plithogenic Hypersoft sets – A 

Novel Outlook, Neutrosophic Sets and Systems, Vol. 33, 2020, 78-91. 

33. S. Alkhazaleh, Plithogenic Soft Set, Neutrosophic Sets and Systems, Vol. 33, 2020, 256-274. 

34. R. M. Zulqarnain, X. L. Xin, M. Saeed, A Development of Pythagorean fuzzy hypersoft set with basic 

operations and decision-making approach based on the correlation coefficient, Theory and Application of 

Hypersoft Set, Publisher: Pons Publishing House Brussels, 2021, 85-106. 

35. A. Samad, R. M. Zulqarnain, E. Sermutlu, R. Ali, I. Siddique, F. Jarad , T. Abdeljawad, Selection of an 

Effective Hand Sanitizer to Reduce COVID-19 Effects and Extension of TOPSIS Technique Based on 

Correlation Coefficient under Neutrosophic Hypersoft Set, Complexity, 2021, Article ID 5531830, 1-22. 

https://doi.org/10.1155/2021/5531830. 

36. R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Multi Criteria Decision Making Approach For 

Pythagorean Fuzzy Hypersoft Sets Interaction Aggregation Operators, Mathematical Problems in 

Engineering, Volume 2021, https://doi.org/10.1155/2021/9964492. 

37. M. Abdel-Basset, W. Ding, R. Mohamed, N. Metawa, An integrated plithogenic MCDM approach for 

financial performance evaluation of manufacturing industries. Risk Manag, 22(2020) 192–218. 

38. M. Abdel-Basset, R. Mohamed, A. E. N. H. Zaied, F. Smarandache, (2019). A Hybrid Plithogenic Decision-

Making Approach with Quality Function Deployment for Selecting Supply Chain Sustainability Metrics. 

Symmetry, 11(7), 903. 

 

 

 

Received: May 7, 2021. Accepted: October 3, 2021 

https://doi.org/10.1155/2021/5531830


                                    Neutrosophic Sets and Systems, Vol. 46, 2021 
University of New Mexico  

 

Suriana Alias, Daud Mohamad, Adibah Shuib, Nazhatul Sahima Mohd Yusoff, Norarida Abd Rhani and Siti Nurul Fitriah 

Mohamad, Medical Diagnosis via Distance-based Similarity Measure for Rough Neutrosophic Set 

     

 

 

Medical Diagnosis via Distance-based Similarity Measure for 
Rough Neutrosophic Set 

Suriana Alias1*, Daud Mohamad2, Adibah Shuib3,4, Nazhatul Sahima Mohd Yusoff5, Norarida Abd 

Rhani6 and Siti Nurul Fitriah Mohamad7 

1,5,6,7 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Kelantan, Bukit Ilmu, 18500 
Machang, Kelantan, Malaysia; 

suria588@uitm.edu.my; nazha237@uitm.edu.my; norarida@uitm.edu.my; fitriah@uitm.edu.my 
 

2,3Faculty of Computer and Mathematical Sciences, Kompleks Al-Khawarizmi, Universiti Teknologi MARA, 40450 Shah 
Alam, Selangor, Malaysia; 

daud@tmsk.uitm.edu.my; adibah@tmsk.uitm.edu.my 
 

4Malaysia Institute of Transport (MITRANS), Universiti Teknologi MARA (UiTM), Shah Alam, 40450 Shah Alam, Selangor, 
Malaysia. 

 
 

*Correspondence: suria588@uitm.edu.my 

 

Abstract: A rough neutrosophic set theory is a generalization of uncertainty set theory with a 

combination of upper and lower approximation and a pair of neutrosophic sets which are 

characterized by truth membership degree (T), indeterminacy membership degree (I), and falsity 

membership degree (F). This set theory is suitable for representing each criterion’s relation in 

medical diagnoses, such as the relation of disease and symptom. This paper aims to propose a model 

of medical diagnosis via a distance-based similarity measure of a rough neutrosophic set. The first 

phase for the development model involves the roughness measure between information collected 

and a lower and upper approximation of rough neutrosophic set theory. Then, it is simultaneously 

used with extended Hausdorff distance measure to get the proper medical diagnosis. The result 

shows that each patient has a chest problem that contradicts the prior diagnosis. The finding shows 

that the roughness approximation is important to get the best result in a close distance-based 

similarity measure, especially for uncertainty information.  

Keywords: Distance-based similarity measure, Medical diagnosis, Rough neutrosophic set, 

Roughness measure,  

 

 

1. Introduction 

The medical diagnosis contains lots of uncertainties and an increased volume of information. It 

becomes difficult to classify different symptoms under a single disease name. There is a possibility in 

some practical situations that each dimension has a different truth, indeterminacy, and falsity 

information. It is, therefore, important to use a more versatile method that can easily deal with 

unpredictable circumstances. Hence, a rough neutrosophic set (RNS) is a useful tool for dealing with 

uncertainty and incompleteness information for medical cases [1].  

A rough neutrosophic set (RNS) is a generalization of rough set and neutrosophic set theory. 

Pawlak [2] introduced a rough set concept as a formal tool for modelling and processing incomplete 
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information for information systems. The basic idea of the rough set is based upon the approximation 

of sets known as a lower approximation and an upper approximation of a set. Besides, the 

neutrosophic set proposed by Smarandache [3] is a generalization of a fuzzy set [4] and an 

intuitionistic fuzzy set [5]. Meanwhile, neutrosophic sets are characterized by truth membership 

function (T), indeterminacy membership function (I), and falsity membership function (F).  

Since the rough neutrosophic set (RNS) involves a pair of approximation sets, then the roughness 

measure between them gives more chances for an informed decision. The study of this roughness 

measure is still not yet explored for RNS theory. Meanwhile, the study of distance-based similarity 

measures of RNS gives many measures, each representing specific properties and behavior in real-

life decision making and pattern recognition works. Based on the relationship between distance and 

similarity measure, Pramanik et al. proposed several similarity measures: Cosine similarity measure 

[6] and Dice and Jaccard similarity measure [1]. Meanwhile, Pramanik et al. [7] used the 

Trigonometric Hamming similarity measure for multi decision-making in selecting laptops from a 

different company. Besides that, Mondal et al. [8] studied the similarity measure of RNS by 

introducing the variational coefficient for each similarity variable to solve the decision-making 

problem under-investment company option. Therefore, the application of RNS is widely explored, as 

discussed in the literature.   

In this study, the roughness approximation of the rough set by Yao [10] is used to determine the 

roughness measure between the lower and upper approximations of RNS. Then, the extended 

Hausdorff distance measure is used in the first phase of implementation via medical diagnosis. 

Simultaneously, the roughness approximation is included in this dissimilarity measure. Therefore, 

this study aims to propose the new notion of roughness approximation for medical information via 

lower and upper approximations of RNS, and to determine the closeness of distance-based similarity 

measure between symptoms and diseases versus patients and symptoms for complete medical 

finding. The result is more accurate since the roughness of information is considered for the first term 

as a lower and upper approximation of RNS. For novelty, the roughness for a lower and upper 

approximation of RNS is not yet studied by other researchers. Following from there, medical 

information related to symptoms and diseases versus patients and symptoms is discussed 

thoroughly. 

The rest of the paper is organized as follows. Section two is preliminaries for some important 

definition, while Section three introduces a new definition of the distance-based similarity measure. 

Section four presents the methodology involved in the medical diagnosis process, while Section five 

is the main implementation of medical findings. Lastly, Section six concludes the paper.  

2. Preliminaries 

This section recalled some important definitions of the rough neutrosophic set, extended 

Hausdorff distance of neutrosophic set, roughness approximation, and distance-based similarity 

measure. All the proof of the propositions may be referred to in [10 - 13].  

2.1. Rough Neutrosophic Set 

Definition 2.1.1 [11]. Let 𝑈 be a non-null set and 𝑅  be an equivalence relation on 𝑈. Let 𝐴 be 

neutrosophic set in 𝑈 with the truth membership function 𝑇𝐴, indeterminacy function 𝐼𝐴, and non-

membership function 𝐹𝐴. The lower and the upper approximations of 𝐴 in the approximation (𝑈, 𝑅) 

denoted by 𝑁(𝐴) and 𝑁(𝐴) are respectively defined as follows: 

 

𝑁(𝐴) = (〈𝑥𝑗 , 𝑇𝑁(𝐴)(𝑥𝑗), 𝐼𝑁(𝐴)(𝑥𝑗), 𝐹𝑁(𝐴)(𝑥𝑗)〉| 𝑦 ∈ [𝑥𝑗]
𝑅

, 𝑗 ∈ ℤ+, 𝑥𝑗 ∈ 𝑈), and  

𝑁(𝐴) = (〈𝑥𝑗 , 𝑇𝑁(𝐴)(𝑥𝑗), 𝐼𝑁(𝐴)(𝑥𝑗), 𝐹𝑁(𝐴)(𝑥𝑗)〉| 𝑦 ∈ [𝑥𝑗]
𝑅

, 𝑗 ∈ ℤ+, 𝑥𝑗 ∈ 𝑈) 

where; 
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𝑗 = 1, 2, … , 𝑞 is a positive integer, 𝑇𝑁(𝐴)(𝑥𝑗) = ⋀ 𝑇𝐴(𝑦𝑗)𝑦∈[𝑥𝑗]
𝑅

, 𝐼𝑁(𝐴)(𝑥𝑗) = ⋁ 𝐼𝐴(𝑦𝑗)𝑦∈[𝑥𝑗]
𝑅

,  𝐹𝑁(𝐴)(𝑥𝑗) =

⋁ 𝐹𝐴(𝑦𝑗)𝑦∈[𝑥𝑗]
𝑅

, 𝑇𝑁(𝐴)(𝑥𝑗) = ⋁ 𝑇𝐴(𝑦𝑗)𝑦∈[𝑥𝑗]
𝑅

,  𝐼𝑁(𝐴)(𝑥𝑗) = ⋀ 𝐼𝐴(𝑦𝑗)𝑦∈[𝑥𝑗]
𝑅

, and 𝐹𝑁(𝐴)(𝑥𝑗) =

⋀ 𝐹𝐴(𝑦𝑗)𝑦∈[𝑥𝑗]
𝑅

.  

 

Here ∧ and ∨ denote “min” and “max’’ operators respectively and [𝑥𝑗]
𝑅

 is the equivalence class of 

the 𝑥𝑗 . The 𝑇𝐴(𝑦𝑗), 𝐼𝐴(𝑦𝑗)and 𝐹𝐴(𝑦𝑗) are the truth membership, indeterminacy membership, and 

falsity membership of y concerning 𝐴.  

Since 𝑁(𝐴) and 𝑁(𝐴) are two neutrosophic sets in 𝑈 , thus the neutrosophic set mappings 

𝑁, 𝑁: 𝑁(𝑈) → 𝑁(𝑈)  are respectively referred to as lower and upper rough neutrosophic set 

approximation operators, while the pair of (𝑁(𝐴), 𝑁(𝐴)) is called the rough neutrosophic set in 

(𝑈, 𝑅), respectively. The rough neutrosophic set is denoted by:  

 

𝑁(𝐴) = (𝑁(𝐴), 𝑁(𝐴)) = (〈𝑥𝑗 , (
[𝑇𝑁(𝐴)(𝑥𝑗), 𝐼𝑁(𝐴)(𝑥𝑗), 𝐹𝑁(𝐴)(𝑥𝑗)],

[𝑇𝑁(𝐴)(𝑥𝑗), 𝐼𝑁(𝐴)(𝑥𝑗), 𝐹𝑁(𝐴)(𝑥𝑗)]
)〉 |𝑦 ∈ [𝑥𝑗]

𝑅
, 𝑗 ∈ ℤ+, 𝑥𝑗 ∈ 𝑈)    (1) 

 

The truth membership set [𝑇𝑁(𝐴)(𝑥𝑗), 𝑇𝑁(𝐴)(𝑥𝑗)], indeterminacy membership set [𝐼𝑁(𝐴)(𝑥𝑗), 𝐼𝑁(𝐴)(𝑥𝑗)], 

and falsity membership [𝐹𝑁(𝐴)(𝑥𝑗), 𝐹𝑁(𝐴)(𝑥𝑗)] for lower and upper approximation of RNS may be in 

decreasing or increasing order. 

 

Definition 2.1.2 [11]. If 𝑁(𝐴) is a rough neutrosophic set in (𝑈, 𝑅), the rough complement of 

𝑁(𝐴) is the rough neutrosophic set donated by ~𝑁(𝐴) = ((𝑁(𝐴))𝑐, ( 𝑁(𝐴))𝑐), where (𝑁(𝐴))𝑐 and 

( 𝑁(𝐴))𝑐 are the complements of neutrosophic set (𝑁(𝐴), 𝑁(𝐴)), respectively, given by 

 

       ~𝑁(𝐴) = ((𝑁(𝐴))𝑐 , ( 𝑁(𝐴))𝑐) = {〈𝑥𝑗 , (
[𝐹𝑁(𝐴)(𝑥𝑗), 1 − 𝐼𝑁(𝐴)(𝑥𝑗), 𝑇𝑁(𝐴)(𝑥𝑗)],

[𝐹𝑁(𝐴)(𝑥𝑗), 1 − 𝐼𝑁(𝐴)(𝑥𝑗), 𝑇𝑁(𝐴)(𝑥𝑗)]
)〉 |  𝑥𝑗 ∈ 𝑈}       (2) 

2.2. Distance-based Similarity Measure 

Definition 2.2.1 [12]. An extended Hausdorff Distance 𝑑𝑁
𝐸𝐻(𝐴, 𝐵) operator between neutrosophic set 

𝐴 and 𝐵 is defined as follows: 

 

𝑑𝑁
𝐸𝐻(𝐴, 𝐵) =

1

𝑛
∑ 𝑚𝑎𝑥{|𝑇𝐴(𝑥𝑖) − 𝑇𝐵(𝑥𝑖)|, |𝐼𝐴(𝑥𝑖) − 𝐼𝐴(𝑥𝑖)|, |𝐹𝐴(𝑥𝑖) − 𝐹𝐵(𝑥𝑖)|}𝑛

𝑖=1                    (3) 

 

Definition 2.2.2 [13]. It is well known that similarity measures can be generated from distance 

measures. Therefore, the distance-based similarity measure based on extended Hausdorff distance 

between neutrosophic set 𝐴 and 𝐵 is defined as follows: 

 

𝑆𝑁(𝐴, 𝐵) = 1 − 𝑑𝑁
𝐸𝐻(𝐴, 𝐵)                                                                   (4) 

                                                                                                     

where 𝑑𝑁
𝐸𝐻(𝐴, 𝐵) represents the extended Hausdorff distance between neutrosophic set  𝐴 and 𝐵.  

 

Proposition 1. The similarity measure 𝑆𝑁(𝐴, 𝐵) for neutrosophic set 𝐴 and 𝐵 satisfies the following 

properties: 

 (S1) 0 ≤ 𝑆𝑁(𝐴, 𝐵) ≤ 1; 

 (S2) 𝑆𝑁(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵; 

 (S3) 𝑆𝑁(𝐴, 𝐵) = 𝑆𝑁(𝐵, 𝐴);  

(S4) 𝑆𝑁(𝐴, 𝐶) ≤ 𝑆𝑁(𝐴, 𝐵)  and 𝑆𝑁(𝐴, 𝐶) ≤ 𝑆𝑁(𝐵, 𝐶) if 𝐶  is neutrosophic set in 𝑋  and 𝐴 ⊆

𝐵 ⊆ 𝐶.  
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All proofs for these properties were discussed in [13] and [12]. 

2.3. Accuracy and roughness approximation  

Definition 2.3.1 [10]. For a subset of object 𝑋 ⊆ 𝑈, the accuracy measure is defined as: 

 

𝛼𝐸(𝑋) =
|𝑎𝑝𝑟𝐸(𝑋)|+|(𝑎𝑝𝑟𝐸(𝑋))𝑐|

|𝑈|
                   (5) 

 

where 𝑋 is a non-empty set, 𝐸 ∈ 𝑋, 𝑎𝑝𝑟𝐸(𝑋) is a lower approximation of set 𝐸, 𝑎𝑝𝑟
𝐸

(𝑋) is an upper 

approximation of set 𝐸 , |. | denotes the cardinality of a set 𝐸 , and 0 ≤ 𝛼𝐸(𝑋) ≤ 1. Based on the 

accuracy measure, the roughness measure is defined by: 

 

𝜌𝐸(𝑋) = 1 − 𝛼𝐸(𝑋)                                                                         (6) 

3. Distance-based similarity measure with roughness approximation 

This section introduces a distance-based similarity measure with roughness approximation, 

where the roughness approximation as in Equations 5 and 6 is defined simultaneously with an 

extended Hausdorff distance measure. The determination of the roughness measure is defined 

between a lower and upper approximation of rough neutrosophic set theory instead of the average 

measurement between them. 

3.1. Distance-based Similarity Measure 

Assume that 𝐴 and 𝐵 be any two rough neutrosophic sets in the universe of discourse 𝑈 as 

follows: 

𝐴 = 〈𝑥𝑗 ,
[𝑇𝑁(𝐴)(𝑥𝑗), 𝐼𝑁(𝐴)(𝑥𝑗), 𝐹𝑁(𝐴)(𝑥𝑗)],

[𝑇𝑁(𝐴)(𝑥𝑗), 𝐼𝑁(𝐴)(𝑥𝑗), 𝐹𝑁(𝐴)(𝑥𝑗)]
|𝑥𝑗 ∈ 𝑈〉 and                                      

𝐵 = 〈𝑥𝑗 ,
[𝑇𝑁(𝐵)(𝑥𝑗), 𝐼𝑁(𝐵)(𝑥𝑗), 𝐹𝑁(𝐵)(𝑥𝑗)],

[𝑇𝑁(𝐵)(𝑥𝑗), 𝐼𝑁(𝐵)(𝑥𝑗), 𝐹𝑁(𝐵)(𝑥𝑗)]
|𝑥𝑗 ∈ 𝑈〉  

 

Then, the distance-based similarity measure for RNS 𝐴 and 𝐵 is defined as: 

 

Definition 3.1.1: Extended Hausdorff distance with roughness operator is given by 

     𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) =

1

𝑘
∑ 𝑚𝑎𝑥 {

|∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐵)(𝑥𝑗)|, |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐵)(𝑥𝑗)|,

|∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐵)(𝑥𝑗)|
}𝑘

𝑗=1            (7)                                                                 

 

where; 

∆𝑇𝑁(𝐴)(𝑥𝑗) = 1 − (
𝑇𝑁(𝐴)(𝑥𝑗)+(𝑇

𝑁(𝐴)(𝑥𝑗))
𝑐

|𝑋|
), ∆𝑇𝑁(𝐵)(𝑥𝑗) = 1 − (

𝑇𝑁(𝐵)(𝑥𝑗)+(𝑇
𝑁(𝐵)(𝑥𝑗))

𝑐

|𝑋|
), 

∆𝐼𝑁(𝐴)(𝑥𝑗) = 1 − (
𝐼𝑁(𝐴)(𝑥𝑗)+(𝐼

𝑁(𝐴)(𝑥𝑗))
𝑐

|𝑋|
), ∆𝐼𝑁(𝐵)(𝑥𝑗) = 1 − (

𝐼𝑁(𝐵)(𝑥𝑗)+(𝐼
𝑁(𝐵)(𝑥𝑗))

𝑐

|𝑋|
), 

∆𝐹𝑁(𝐴)(𝑥𝑗) = 1 − (
𝐹𝑁(𝐴)(𝑥𝑗)+(𝐹

𝑁(𝐴)(𝑥𝑗))
𝑐

|𝑋|
), and ∆𝐹𝑁(𝐵)(𝑥𝑗) = 1 − (

𝐹𝑁(𝐵)(𝑥𝑗)+(𝐹
𝑁(𝐵)(𝑥𝑗))

𝑐

|𝑋|
). 
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Here,  ∆ denotes the “roughness approximation” operator by rough approximation between the 

lower and upper approximation of RNS, while |. | is the cardinality of the universal X.  

 

Proposition 2. The extended Hausdorff distance 𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) between rough neutrosophic 𝐴 and 

𝐵 satisfies the following properties: 

 (D1)     𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) ≥ 0. (non-negative) 

 (D2)     𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵, for all 𝐴, 𝐵 ∈ 𝑅𝑁𝑆. (definiteness) 

 (D3)     𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) = 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐵, 𝐴). (symmetry) 

 (D4)     If 𝐴 ⊆ 𝐵 ⊆ 𝐶, for 𝐴, 𝐵, 𝐶 ∈ 𝑅𝑁𝑆, then 𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐶) ≥ 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐴, 𝐵) and             

             𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐶) ≥ 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐵, 𝐶). (triangle inequality) 

Proof:  

(D1)      𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) ≥ 0. 

As ∆𝑇𝑁(𝐴)(𝑥𝑗), ∆𝐼𝑁(𝐴)(𝑥𝑗), ∆𝐹𝑁(𝐴)(𝑥𝑗)  ∊ [0, 1] , ∆𝑇𝑁(𝐵)(𝑥𝑗), ∆𝐼𝑁(𝐵)(𝑥𝑗), ∆𝐹𝑁(𝐵)(𝑥𝑗)  ∊ [0, 1]  for all 

𝐴, 𝐵 ∈ 𝑅𝑁𝑆, the distance measurement based on these functions also lies between [0, 1].  

(D2)     𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵, for all 𝐴, 𝐵 ∈ 𝑅𝑁𝑆. 

For any two 𝑅𝑁𝑆  𝐴 and 𝐵, if 𝐴 =  𝐵, then the following relations hold for any ∆𝑇𝑁(𝐴)(𝑥𝑗) =

∆𝑇𝑁(𝐵)(𝑥𝑗) , ∆𝐼𝑁(𝐴)(𝑥𝑗) = ∆𝐼𝑁(𝐵)(𝑥𝑗) , ∆𝐹𝑁(𝐴)(𝑥𝑗) = ∆𝐹𝑁(𝐵)(𝑥𝑗) which states that |∆𝑇𝑁(𝐴)(𝑥𝑗) −

∆𝑇𝑁(𝐵)(𝑥𝑗)| = 0 , |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐵)(𝑥𝑗)| = 0 , and |∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐵)(𝑥𝑗)| = 0 . Thus, 

𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) = 0. Conversely, if 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐴, 𝐵) = 0, then the zero distance measure is possible only if  

|∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐵)(𝑥𝑗)| = 0 , |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐵)(𝑥𝑗)| = 0 , and |∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐵)(𝑥𝑗)| = 0 . 

This resulted from ∆𝑇𝑁(𝐴)(𝑥𝑗) = ∆𝑇𝑁(𝐵)(𝑥𝑗) , ∆𝐼𝑁(𝐴)(𝑥𝑗) = ∆𝐼𝑁(𝐵)(𝑥𝑗) , and ∆𝐹𝑁(𝐴)(𝑥𝑗) =

∆𝐹𝑁(𝐵)(𝑥𝑗) for all 𝑖, 𝑗 values. Hence 𝐴 = 𝐵. 

(D3)     𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) = 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐵, 𝐴). The proof is obvious. 

(D4)    If 𝐴 ⊆ 𝐵 ⊆ 𝐶 , for 𝐴, 𝐵, 𝐶 ∈ 𝑅𝑁𝑆 , then 𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐶) ≥ 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐴, 𝐵)  and 𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐶) ≥

𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐵, 𝐶). 

Let 𝐴 ⊆ 𝐵 ⊆ 𝐶 , which implies that; ∆𝑇𝑁(𝐴)(𝑥𝑗) ≤ ∆𝑇𝑁(𝐵)(𝑥𝑗) ≤ ∆𝑇𝑁(𝐶)(𝑥𝑗) , ∆𝐼𝑁(𝐴)(𝑥𝑗) ≥

∆𝐼𝑁(𝐵)(𝑥𝑗) ≥ ∆𝐼𝑁(𝐶)(𝑥𝑗),  ∆𝐹𝑁(𝐴)(𝑥𝑗) ≥  ∆𝐹𝑁(𝐵)(𝑥𝑗) ≥  ∆𝐹𝑁(𝐶)(𝑥𝑗) for every  𝑥𝑗∊ 𝑋;  

Then, we obtain the following relation: 

a) | ∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐵)(𝑥𝑗)| ≤ |∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐶)(𝑥𝑗)|, 

              |∆𝑇𝑁(𝐵)(𝑥𝑗) − ∆𝑇𝑁(𝐶)(𝑥𝑗)| ≤ |∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐶)(𝑥𝑗)|, 

b) | ∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐵)(𝑥𝑗)| ≤ |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐶)(𝑥𝑗)|,          

|∆𝐼𝑁(𝐵)(𝑥𝑗) − ∆𝐼𝑁(𝐶)(𝑥𝑗)| ≤ |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐶)(𝑥𝑗)|, 

c) | ∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐵)(𝑥𝑗)| ≤ |∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐶)(𝑥𝑗)|,          

|∆𝐹𝑁(𝐵)(𝑥𝑗) − ∆𝐹𝑁(𝐶)(𝑥𝑗)| ≤ |∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐶)(𝑥𝑗)|, 

Combining a), b), and (c), we obtain 
1

𝑘
∑ 𝑚𝑎𝑥{|∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐵)(𝑥𝑗)|, |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐵)(𝑥𝑗)|, |∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐵)(𝑥𝑗)|}𝑘

𝑗=1 ≤
1

𝑘
∑ 𝑚𝑎𝑥{|∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐶)(𝑥𝑗)|, |𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐶)(𝑥𝑗)|, |∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐶)(𝑥𝑗)|}𝑘

𝑗=1  and 
1

𝑘
∑ 𝑚𝑎𝑥{|∆𝑇𝑁(𝐵)(𝑥𝑗) − ∆𝑇𝑁(𝐶)(𝑥𝑗)|, |∆𝐼𝑁(𝐵)(𝑥𝑗) − ∆𝐼𝑁(𝐶)(𝑥𝑗)|, |∆𝐹𝑁(𝐵)(𝑥𝑗) − ∆𝐹𝑁(𝐶)(𝑥𝑗)|} ≤𝑘

𝑗=1
1

𝑘
∑ 𝑚𝑎𝑥{|∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐶)(𝑥𝑗)|, |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐶)(𝑥𝑗)|, |∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐶)(𝑥𝑗)|}𝑘

𝑗=1 . This 

implies that 𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) ≤ 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐴, 𝐶) and 𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐵, 𝐶) ≤ 𝑑𝑅𝑁𝑆

𝐸𝐻 (𝐴, 𝐶). Thus, the property (D4) is 

satisfied.  

This completes the proof. ∎ 

4. Methodology 

In this study, there are four phases to complete the medical diagnosis findings via distance-based 

similarity measure of a rough neutrosophic set (RNS). 
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Phase 1: Collection of data involving the information regarding the symptoms and diseases versus 

patients and symptoms from the medical report. 

In this phase, the data collected on the relationship between symptoms and diseases as well as 

patients and symptoms are collected from the medical personnel.  

Phase 2: Construct the RNS-set for the medical report.  

The data collection is converted to RNS-set by using Definitions 2.1.1, as in Equation (1). 

Phase 3: The determination of roughness approximation simultaneously with the distance-based 

similarity measure of RNS-set for medical findings. 

RNS-set is used to determine the distance-based similarity measure of the relationship between 

symptoms and diseases as well as patients and symptoms using Definition 3.1.1 and Equations (2) 

and (7).  

Phase 4: Discussion of a complete medical report. 

Lastly, the complete medical report can be written to determine which patient’s symptoms and 

diseases are related. If the distance measure is closer to zero, the conclusion is that the patient possibly 

suffers from the disease. Meanwhile, for similarity measure, if the measurement is greater than 0.5, 

then the conclusion is that the patient possibly suffers from the disease. On the other hand, if the 

similarity measure is less than 0.5, then the conclusion is that the patient may not possibly suffer from 

the disease. 

5. Case Study: Implementation in Medical Diagnosis 

In this section, the relationship between symptoms and diseases as well as patients and 

symptoms are considered in the same equivalence relation. Table 1 shows an example of the 

medical findings of patients represented in a tabular form. For diagnosis purpose, the patient is 

kept under supervision for a one-time inspection. 

Table 1. Example of a medical finding of a patient 

Temperature Headache Stomach pain Cough Chest pain 

High Yes (moderate) Yes (moderate) Yes (high) Yes (high) 

The main feature of this study is to consider the degree of truth membership, indeterminacy 

membership, and falsity membership for each element between two approximations. The data 

is adapted from Pramanik and Mondal [6]. Let  𝑃 = { 𝑝1, 𝑝2, 𝑝3}  be a set of patients, 𝐷 =

{ 𝑑1, 𝑑2, 𝑑3, 𝑑4} be a set of diseases, and 𝑆 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} be a set of symptoms. The relation 

between patients and symptoms (see Table 2) and the relation between symptoms and diseases 

(see Table 3) are considered in the same equivalence relation.  

Table 2. The relation between patients and symptoms 

Relation, 
𝐴 

Temperature 
(𝑥1) 

Headache 
  (𝑥2) 

Stomach pain 
(𝑥3) 

Cough     
(𝑥4) 

Chest pain   
(𝑥5)  

Patient 
(𝑝1) ⟨

(0.6, 0.4, 0.3),

(0.8, 0.2, 0.1)
⟩ ⟨

(0.4, 0.4, 0.4),

(0.6, 0.2, 0.2)
⟩ ⟨

(0.5, 0.3, 0.2),

(0.7, 0.1, 0.2)
⟩ ⟨

(0.6, 0.2, 0.4),

(0.8, 0.0, 0.2)
⟩ ⟨

(0.4, 0.4, 0.4),

(0.6, 0.2, 0.2)
⟩ 

Patient 
(𝑝2) ⟨

(0.5, 0.3, 0.4),

(0.7, 0.3, 0.2)
⟩ ⟨

(0.5, 0.5, 0.3),

(0.7, 0.3, 0.3)
⟩ ⟨

(0.5, 0.3, 0.4),

(0.7, 0.1, 0.4)
⟩ ⟨

(0.5, 0.3, 0.3),

(0.9, 0.1, 0.3)
⟩ ⟨

(0.5, 0.3, 0.3),

(0.7, 0.1, 0.3)
⟩ 

Patient 
(𝑝3) ⟨

(0.6, 0.4, 0.4),

(0.8, 0.2, 0.2)
⟩ ⟨

(0.5, 0.2, 0.3),

(0.7, 0.0, 0.1)
⟩ ⟨

(0.4, 0.3, 0.4),

(0.8, 0.1, 0.2)
⟩ ⟨

(0.6, 0.1, 0.4),

(0.8, 0.1, 0.2)
⟩ ⟨

(0.5, 0.3, 0.3),

(0.7, 0.1, 0.1)
⟩ 
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Table 3. The relation between symptoms and diseases 

Relation,   𝐵 Temperature 
(𝑥1) 

Headache 
  (𝑥2) 

Stomach pain 
(𝑥3) 

Cough     
(𝑥4) 

Chest pain   
(𝑥5)  

Viral fever 
 (𝑑1) ⟨

(0.6, 0.5, 0.4),

(0.8, 0.3, 0.2)
⟩ ⟨

(0.5, 0.3, 0.4),

(0.7, 0.3, 0.2)
⟩ ⟨

(0.2, 0.3, 0.4),

(0.4, 0.3, 0.2)
⟩ ⟨

(0.4, 0.3, 0.3),

(0.6, 0.1, 0.1)
⟩ ⟨

(0.2, 0.4, 0.4),

(0.4, 0.2, 0.2)
⟩ 

Malaria  
   (𝑑2) ⟨

(0.1, 0.4, 0.4),

(0.5, 0.2, 0.2)
⟩ ⟨

(0.2, 0.3, 0.4),

(0.6, 0.3, 0.2)
⟩ ⟨

(0.1, 0.4, 0.4),

(0.3, 0.2, 0.2)
⟩ ⟨

(0.3, 0.3, 0.3),

(0.5, 0.1, 0.3)
⟩ ⟨

(0.1, 0.3, 0.3),

(0.3, 0.1, 0.1)
⟩ 

Stomach problem   
(𝑑3) ⟨

(0.3, 0.4, 0.4),

(0.5, 0.2, 0.2)
⟩ ⟨

(0.2, 0.3, 0.3),

(0.4, 0.1, 0.1)
⟩ ⟨

(0.4, 0.3, 0.4),

(0.6, 0.1, 0.2)
⟩ ⟨

(0.1, 0.6, 0.6),

(0.3, 0.4, 0.4)
⟩ ⟨

(0.1, 0.4, 0.4),

(0.3, 0.2, 0.2)
⟩ 

Chest problem 
(𝑑4) ⟨

(0.2, 0.4, 0.6),

(0.4, 0.4, 0.4)
⟩ ⟨

(0.1, 0.5, 0.5),

(0.5, 0.3, 0.3)
⟩ ⟨

(0.1, 0.4, 0.6),

(0.3, 0.2, 0.4)
⟩ ⟨

(0.5, 0.3, 0.4),

(0.7, 0.3, 0.2)
⟩ ⟨

(0.4, 0.4, 0.4),

(0.6, 0.2, 0.2)
⟩ 

 

Based on Pawlak [2], the lower approximation explains that the element set surely belongs to 

the object, while the upper approximation possibly belongs to the object. For example, based on the 

data collected in Table 2, the truth membership degree for temperature (𝑥1) that surely belongs to 

patient 1 (𝑝1)  is equal to 0.6 and which possibly belongs to patient 1 (𝑝1) is equal to 0.8. The 

indeterminacy membership degree for temperature (𝑥1) that surely belongs to patient 1 (𝑝1) is equal 

to 0.4 and which possibly belongs to patient 1 (𝑝1) is equal to 0.2. Meanwhile, the falsity membership 

degree for temperature (𝑥1) which surely belongs to patient 1 (𝑝1) is equal to 0.3 and which possibly 

belongs to patient 1 (𝑝1) is equal to 0.2. The same description is indicated for each data in Table 2 

and Table 3. 

Next, the determination of roughness approximation simultaneously with the distance-based 

similarity measurement by extended Hausdorff distance is used to determine the proper medical 

diagnosis for model RNS for each patient. By using an Equation (2) and roughness operator in 

Definition 3.1.1, the truth roughness measure for relation 𝐴 for patient (𝑝1) is calculated as follows: 

∆𝑇𝑁(𝐴)(𝑥1) = 1 − (
𝑇𝑁(𝐴)(𝑥1)+(𝑇

𝑁(𝐴)
(𝑥1))

𝑐

|𝑋|
) = 1 − (

0.6+0.1

|5|
) = 0.86. 

Then, by using the same equation and definition, the roughness measure for all membership function 

for each relation 𝐴 and relation 𝐵 for patient (𝑝1), is presented as follows: 

∆𝑇𝑁(𝐴)(𝑥2) = 0.88, ∆𝑇𝑁(𝐴)(𝑥3) = 0.86, ∆𝑇𝑁(𝐴)(𝑥4) = 0.84, and ∆𝑇𝑁(𝐴)(𝑥5) = 0.88; 

∆𝐼𝑁(𝐴)(𝑥1) = 0.76, ∆𝐼𝑁(𝐴)(𝑥2) = 0.76, ∆𝐼𝑁(𝐴)(𝑥3) = 0.76, ∆𝐼𝑁(𝐴)(𝑥4) = 0.76, and ∆𝐼𝑁(𝐴)(𝑥5) = 0.76; 

∆𝐹𝑁(𝐴)(𝑥1) = 0.78, ∆𝐹𝑁(𝐴)(𝑥2) = 0.8, ∆𝐹𝑁(𝐴)(𝑥3) = 0.82, ∆𝐹𝑁(𝐴)(𝑥4) = 0.76, and ∆𝐹𝑁(𝐴)(𝑥5) = 0.8; 

∆𝑇𝑁(𝐵)(𝑥1) = 0.84, ∆𝑇𝑁(𝐵)(𝑥2) = 0.86, ∆𝑇𝑁(𝐵)(𝑥3) = 0.92, ∆𝑇𝑁(𝐵)(𝑥4) = 0.9, and  

∆𝑇𝑁(𝐵)(𝑥5) = 0.92 ; ∆𝐼𝑁(𝐵)(𝑥1) = 0.76, ∆𝐼𝑁(𝐵)(𝑥2) = 0.8 , ∆𝐼𝑁(𝐵)(𝑥3) = 0.8, ∆𝐼𝑁(𝐵)(𝑥4) = 0.76 , and 

∆𝐼𝑁(𝐵)(𝑥5) = 0.76 ; ∆𝐹𝑁(𝐵)(𝑥1) = 0.76, ∆𝐹𝑁(𝐵)(𝑥2) = 0.8 , ∆𝐹𝑁(𝐵)(𝑥3) = 0.84, ∆𝐹𝑁(𝐵)(𝑥4) = 0.82 , 

and ∆𝐹𝑁(𝐵)(𝑥5) = 0.84; 

Then, simultaneously using Equation (7), the extended Hausdorff distance for medical diagnosis of 

patient 1 (𝑝1) with viral fever (𝑑1) symptom is calculated as follows: 

𝑑𝑅𝑁𝑆
𝐸𝐻 (𝐴, 𝐵) =

1

5
∑ 𝑚𝑎𝑥 {

|∆𝑇𝑁(𝐴)(𝑥𝑗) − ∆𝑇𝑁(𝐵)(𝑥𝑗)|, |∆𝐼𝑁(𝐴)(𝑥𝑗) − ∆𝐼𝑁(𝐵)(𝑥𝑗)|,

|∆𝐹𝑁(𝐴)(𝑥𝑗) − ∆𝐹𝑁(𝐵)(𝑥𝑗)|
}

5

𝑗=1

 

 

=
1

5
(𝑚𝑎𝑥{|0.86 − 0.84|, |0.76 − 0.76|, |0.78 − 0.76|} + 𝑚𝑎𝑥{|0.88 − 0.86|, |0.76 − 0.8|, |0.8 − 0.8|} +

𝑚𝑎𝑥{|0.86 − 0.92|, |0.76 − 0.8|, |0.82 − 0.84|} + 𝑚𝑎𝑥{|0.84 − 0.9|, |0.76 − 0.76|, |0.76 − 0.82|} +

𝑚𝑎𝑥 {|0.88 − 0.92|, |0.76 − 0.76|, |0.8 − 0.84|}) =
1

5
(0.02 + 0.04 + 0.06 + 0.06 + 0.04) =

1

5
(0.22) =

0.044.  
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Therefore, the extended Hausdorff distance for patient 1 (𝑝1) with viral fever (𝑑1) symptoms 

are 0.044. Then, a similar calculation will be repeated to obtain the result of medial finding for each 

patient by employing extended Hausdorff distance. The summary result for the proposed extended 

Hausdorff distance measure with roughness approximation is represented in Table 4. 

Table 4. The proposed extended Hausdorff distance measure with roughness approximation 

Proposed extended 

Hausdorff distance 

Viral fever 
(𝒅𝟏) 

Malaria 
(𝒅𝟐) 

Stomach problem 
(𝒅𝟑) 

Chest problem  
(𝒅𝟒) 

Patient (𝑝1) 0.0440 0.0720 0.0560 0.0280 

Patient (𝑝2) 0.0640 0.0960 0.0620 0.0400 

Patient (𝑝3) 0.0440 0.0800 0.0600 0.0360 

 

According to the result, all the proposed distance measure is close to zero. Here, the closest value 

to zero indicates the result is possibly “more suffering”. Therefore, it shows that all patients are 

suffering from a chest problem.  

By comparing the similarity measure as in Equation (4) with the previous result by Pramanik 

and Mondal [6] shown in Table 5, we can see that previously all patients were diagnosed with a viral 

fever. Therefore, a different diagnose result is determined for this study. However, all the similarity 

measure values are greater than 0.5, indicating that the patients possibly suffer from the disease. The 

closest similarity value to one indicates the highest possibility of diseases.   

Table 5. The Cosine similarity measure and proposed distance-based similarity measure 

Cosine similarity 

measure 

Viral fever (𝒅𝟏) Malaria (𝒅𝟐) Stomach 

problem (𝒅𝟑) 

Chest 

problem  
(𝒅𝟒) 

Patient (𝑝1) 0.9595 0.9114 0.8498 0.8743 

Patient (𝑝2) 

Patient (𝑝3) 

0.9624 

0.9405 

0.9320 

0.8873 

0.8935 

0.8487 

0.8307 

0.8372 

A proposed distance-

based similarity measure  

    

Patient (𝑝1) 0.9560 0.9280 0.9440 0.9720 

Patient (𝑝2) 

Patient (𝑝3) 

0.9360 

0.9560 

0.9040 

0.9200 

0.9380 

0.9400 

0.9600 

0.9640 

 

However, the proposed distance-based similarity result is more accurate since the roughness 

between the lower and upper approximations of RNS is considered simultaneously with the 

extended Hausdorff distance instead of only the mean operator between the lower and upper 

approximation of RNS. Even the other similarity measures led to the same final answer but extended 

Hausdorff distance shows the simplest and easiest way. Therefore, the chances to obtain the wrong 

answer are less than other similarity measures. 

6. Conclusions  

The complete medical diagnosis covered all the relation between the collection of medical 

information, such as the relationship between patients and symptoms as well as symptoms and 

diseases. This study successfully examines all the factors needed to complete the medical diagnosis 

where the distance-based similarity between the medical information is taken over for the first phase. 

The new notion of roughness approximation for medical information via lower and upper 

approximations of a rough neutrosophic set is successfully presented. In future work, it is valid to 

use the same method that involved data with upper and lower approximations. Besides that, 

distance-based similarity measures by extended Hausdorff distance can be applied in other fields 
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such as the distance for a spatial object in Geographical Information Science (GIS), object recognition 

for multimedia application, and others.  
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Abstract:  The aim of this paper is to introduce a simplified presentation of a new 

computing procedure for solving trapezoidal neutrosophic linear programming (TrNLP) 

problem under uncertainties. Therefore, we firstly define the concept of single valued 

neutrosophic (SVN) numbers and ranking functions. A new strategy is planned for solving 

the NLP problem without any ranking function. The planned strategy is depends on 

multi-objective LP (MOLP) issue and lexicographic order (LO). By following the means of 

planned strategy, the problem is changed into crisp LP (CLP) problem. In addition to this, a 

theoretical analysis is provided. Numerical examples are illustrated the proposed method and 

the consequences are in contrast with the distinct choice methods. The outcome shows that 

the proposed technique defeats the deficiencies and constraints of the existing method.     

Keywords: Neutrosophic trapezoidal numbers; lexicographic method; linear programming, 

multi-objective linear programming 

1. Introduction 

Over the last few decades, LP has found numerous successful applications in diverse 

fields, including Operation Research (O.R), manufacturing, information technology, big 

science data, energy optimization, and the list goes on. LP has strongly influenced the 

mathematicians to develop various methods to handle this.  

In traditional LP, all the parameters and decision variables are expected to take on 

exact numerical values. In actuality circumstances, the information is conflicting and 
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undetermined. Due to uncertainty, the decision-maker cannot generally detail the issue in an 

all around characterized way and careful, nor can they in every case unequivocally anticipate 

the result of practical choices. For Example: In India, there are three candidates A, B, and C 

for M.P (Member of Parliament) contested in the election. If the probability is applied for the 

possible outcome, then the uncertainty can be known. Suppose that A wins is 45%, then there 

is a chance for loosing 55% too. In case of B, we say that 33% of winning chance, it does not 

mean that the probability that C wins is 22%, since there may be some NOTA votes (voters 

reject both all candidates) or not choosing any candidate. However, there is a chance of some 

error when calculating the possibility. From the above real examples, one may clear that the 

decision-makers (voters) cannot decide the outcome of the result accurately or precisely, 

because all the parameters are uncertain and imprecision. Therefore, the fuzzy set principle 

used to be delivered to handle such type of parameters by decision-makers. Firstly, the fuzzy 

set was once added by means of Zadeh[31]. The idea of selection making in fuzzy 

surrounding was proposed by Bellman and Zadeh[32]. Numerous researchers received this 

idea and stretched out it to take care of the linear programming issue. This problem is called 

fuzzy linear programming (FLP) problem.  

There are two types of problems in the LP problem under a fuzzy environment: (i) symmetric 

(ii) non-symmetric, which was proposed by Zimmermann [1]. Many researchers 

[2,9,11-18,33-34] considered the problem of FLP and proposed various methods. The 

conception of the practical solution and  methodical solutions of the FLP problem was 

proposed by Ramik [19]. Ghanbari et al. [29] introduced a technique for tackling fuzzy LP 

issues with crisp formulations of the fuzzy problem. Using the ranking function for tackling 

the FLP issue was established by Maleki et al. [20]. In the study, Mahadevi-Amiri and Nasiri 

[13] introduced the duality approach for solving the FLP problem. The concept of sensitivity 

analysis for solving the FLP problem was proposed by Ebrahimnejad [35]. Jimenez et al. [30] 

considered the problem of FLP using a ranking function to rank with fuzzy in objectives and 

to deal with inequality constraints. Wan and Dong [22] considered the possibility of LP 
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issues having trapezoidal fuzzy numbers using multi-objective programming problems and 

using membership function. A new type of fuzzy symmetric trapezoidal fuzzy number was 

considered by Ganesan, and Veeramani [21], and the technique was solved in absence of 

changing to crisp LP problems. Ebrahimnejad and Tavana [4] introduce another technique 

for tackling FLP issues, and the authors convert the problem into a parallel crisp LP issue and 

the issue was solved by primal simplex method. 

If the parameters, variables, and constraints are taken fuzzy numbers, then it is called fully 

fuzzy problems, and the linear programming is known as a fully fuzzy LP (FFLP) problem.  

Lotfi et al. (7) considered an FFLP problem with equality constraints and solved by using 

lexicographic order (Lo) for ranking symmetric triangular fuzzy numbers. A problem of 

FFLP with equality constraints and gives a unique solution based on ranking function was 

proposed by Kumar et al. [6]. Followed by the method [6], a few revisions to make the model 

well, when all is said in done, was proposed by Najafi and Edalatpanah [8].  In the study, 

Khan et al. [5] proposed a technique for solving the FFLP problem with triangular fuzzy 

numbers, and the authors give a solution without transforming them into a classical problem.  

Dehghan et al. [3] introduced some realistic technique to understand a FF linear system 

(FFLS) that are related to the common techniques. At that point they broadened another 

strategy utilizing Linear Programming (LP) for illuminating close and non-close fuzzy 

frameworks.  Veeramani and Duraisamy [10] proposed another methodology of taking care 

of the FFLP issue utilizing the idea of closest symmetric triangular fuzzy number estimate 

with save anticipated interim. Ezati et al. [14] put in lexicographic method on fuzzy 

triangular numbers, and the MOLP issue acquainted another calculation with illuminate 

FFLP. Das et al. [25] proposed a lexicographic strategy for taking care of FFLP issues with 

equality and inequality constraints having trapezoidal fuzzy numbers. Das [26] proposed 

another method for solving the FFLP problem having triangular fuzzy numbers by using 

lexicographic order (Lo). Ozkok et al. [36] presented a strategy for solving the FFLP problem 

having mixed constraints.  
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 Due to some drawbacks of the fuzzy set, they can handle only membership function and 

cannot handle other parameters of vagueness. Therefore, Atanassov [39] established the 

concept of intuitionistic fuzzy sets (IFS), which is a hybrid of fuzzy sets. They considered 

both membership and non-membership functions. Here also, some researchers focusing on 

the use of IFSs in the LP problem; see [53-57].  

Still, in practical conditions, it is facing some difficulty in case of decision making due to 

incomplete information. Therefore, a new set theory was introduced, which contains 

incomplete, inconsistent, and indeterminate information. This tool is called the neutrosophic 

set (NS). Neutrosophy was presented by Smarandache [58] as another speculation of fuzzy 

sets and IFSs. Neutrosophy set might be described by three autonomous degrees,  i.e. (i) 

truth-membership degree (T), (ii) indeterminacy membership degree (I), (iii) falsity 

membership degree (F). 

Wang et al., [52] introduced a single value neutrosophic set (SVNS) problem for solving a 

practical problem. There are also some scholars [43-46,59] considered the problem of SVNS 

and applied it in practical problems like the educational and social sectors. The basic 

definitions and notion of neutrosophic number (NN) was introduced by Samarandache [50]. 

Some researchers [37,40-42] considered various problems like optimization problems and 

gave some strategy to solve them. Recently, Abdel-Basset et al. [38] using some ranking 

functions for the trapezoidal neutrosophic numbers, presented a novel technique for 

neutrosophic LP. Currently, a direct model for solving the LP problem having triangular 

neutrosophic numbers was proposed by Edalatpanah [49]. Ye et al. [51] introduced to find 

the optimal solution of the LP problem in NNs environment. 

For the best of our mind, fewer studies have used trapezoidal neutrosophic  numbers 

in LP problems. Recently, an exciting method was proposed by Abdel-Basset et al. [38] for 

solving  neutrosophic LP (NLP) having parameters are represented trapezoidal neutrosophic 

numbers. Following the method of [38], some modifications was suggested by Singh et al. 

[60]. The authors have used two ranking functions for both maximization and minimization 
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separately. Now the problem of NP is transformed into a CLP problem and solved by the 

simplex method. 

Using a ranking function in the solution strategies is a weak spot as the use of 

different ranking functions in a solution method might also result in obtaining different 

solutions. This weak spot is an inspiration for this investigation to present a solution method 

that is now not based on any ranking function. For this point, the LP with trapezoidal 

neutrosophic parameters is converted to a MOLP in which considering all the objective 

functions together gives an neutrosophic objective function value. By using the LO method, 

the obtained multi-objective crisp linear programming is changed into single CLP problem. 

As a preferred position of such methodology, it offers greater flexibility to decision maker. 

The obtained outcomes from the computational trials of the investigation exhibit the 

prevalence of the proposed multi-objective optimization method comparing to these of 

literature.  

Contribution: 

The main advantage of neutrosophic set is that it’s help the decision-makers making by 

considering truth degree, falsity degree and indeterminacy degree. Here indeterminacy 

degree is for the most part considered as a free factor which has a significant commitment 

in decision-making. Due to some uncertainty in real world problem, it is better to use 

TrNLP problem instead of classical LP problem. For avoiding the unrealistic modeling we 

used TrNLP model in practical situations. In this article, a TrLP issue is thought of, where 

all the coefficients are thought to be a trapezoidal neutrosophic numbers. Along these lines, 

we are proposing a calculation for taking care of TrNLP issue with the assistance of the 

newly developed LO. To best of our knowledge, it would be the first method to solve the 

TrNLP problem with help of LO. Thus, for the approval of created technique, direct 

correlation with relative strategies doesn’t emerge. Another Diet outline issue is delineated 

to show the effectiveness and utilization of our technique, in actuality, issue. 

Motivation 
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Neutrosophic sets plays an important role in uncertainty modeling. The development of 

uncertainty theory plays a fundamental role in formulation of real-life scientific 

mathematical model, structural modeling in engineering field, medical diagnoses problem 

etc. Recently, some of researchers have introduced their model to solve TrNLP problem by 

using ranking function. How can we implement it in a linear programming based operation 

research problem? Is it possible to apply in real life problem? Still there is no method for 

applying LO technique in TrNLP problem. From this aspect we try to extend this research 

article. 

Novelties 

In this current decade, researchers have exposed their considerations to make progress with 

the theories related to neutrosophic area and constantly try to endorse its sufficient scope 

applications in dissimilar branches of neutrosophic domain. However, justifying all the 

views connecting to TrNLP theory our main objective is to support the theory efficiently 

with these following points. 

1. Introduced LO function and its efficiency. 

2. Application of TrNLP problem. 

3. Compared the results with previous established results. 

1.1 The rest of the paper is orchestrated in the accompanying way. Some basic definitions 

and notations are present in Section 2. In Section 3, the general form of FFLP with new 

method is presented. To show the applications of the proposed method, some real life 

problem and comparison analysis are discussed in Section 4. In Section 5, advantages of the 

proposed method over some existing methods are discussed. Finally, the conclusion is been 

drawn in the last section. 

2. Preliminaries 

In this area, we present some fundamental definitions and arithmetic operations 

on neutrosophic sets.  
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Definition 1 [28]. A set 
neE  in the universal discourse X, which is denoted generically by 

x, is said to be a neutrosophic set if { :[ ( ), ( ), ( )] : }
ne ne ne

ne E E E
E x x x x x X      . The set is 

characterized by a truth-membership function i.e. degree of confidence:

( ) : [0,1]
neE

x X  , an indeterminacy membership function i.e. degree of uncertainty: 

( ) : [0,1]
neE

x X   and a falsity-membership function: degree of falsity:

( ) : [0,1]
neE

x X   . SVN satisfies the condition: 

                 
( ) ( ) ( )0 3.

ne ne neE E E
x x x     

Definition 2 [28]. For SVNSs A and B, A ⊆ B if and only if 

( ) ( ), ( ) ( ) ( ) ( )
ne ne ne ne ne ne

A B A B A BE E E E E E
x x x x and x x        for every x in X. 

Definition 3 [38]. A trapezoidal neutrosophic number (TrNNs) is denoted by 

( , , , ),( , , )l l l l

neM p q r s v   whose the three membership functions for the truth, 

indeterminacy, and falsity of x can be defined as follows: 
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Where, ( ) ( ) ( ) 3,0 .
ne ne ne

neE E E
x x x x M      Additionally, when 0,lp 

neM  is 

called a nonnegative TrNN. Similarly, when 0,lp 
neM becomes a negative TrNN.

 

Definition 4 [38]. Suppose
1 1 1 1 1 1 1( , , , ),( , , )a a a a

neM p q r s      and  

2 2 2 2 2 2 2( , , , ),( , , )a a a a

neN p q r s    be two TNNs. Then the arithmetic relations are defined as: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , , , ),( , , )a a a a a a a a

ne nei M N p p q q r r s s                 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , , , ),( , , )a a a a a a a a

ne neii M N p s q r r q s p                 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1( ) ( , , , ), 0,( , , 0, ) ,a a a a a a a a a a

ne neiii M N p p q q r r s qpifs              

1 1 1 1 1 1 1

1 1 1 1 1 1 1

( , , , ), ( , , ) , 0
( )

( , , , ), ( , , ) , 0

a a a a

ne a a a a

p q r s if
iv M

s r q p if

       


       

  
 

    

 

1 1 1 1
1 2 1 2 1 2 1 2

2 2 2 2

1 1 1 1
1 2 1 2 1 2 1 2

2 2 2 2

1 1 1 1
1 2 1 2 1 2 1

2 2 2 2

( , , , );

( ) ( , , ,

( , , ) ( 0, 0)

( , , ) ( 0, 0)

( , ,

);

( , , ) ) (, ;
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Definition 5. [38] A ranking function of neutrosophic numbers is a function : ( ) ,R N R R

where ( )N R  is a set of neutrosophic numbers characterized on set of real numbers, which 

convert each neutrosophic number into the real line.   
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Let 
1 1 1 1 1 1 1( , , , ),( , , )a a a a

neM p q r s     and
2 2 2 2 2 2 2( , , , ),( , , )a a a a

neN p q r s     be two 

trapezoidal neutrosophic numbers (TrNN), at that point: 

1. If ( ) ( )ne neR M R N  then 
ne neM N . 

2. If ( ) ( )ne neR M R N  then 
ne neM N . 

3. If ( ) ( )ne neR M R N  then 
ne neM N . 

Definition 6 Let  
1 1 1 1 1 1 1( , , , ),( , , )a a a a

neM p q r s     and
2 2 2 2 2 2 2( , , , ),( , , )a a a a

neN p q r s      
 be 

any two neutrosophic trapezoidal numbers, then 
1 2

a ap p , 
1 2

a aq q , 
1 2

a ar r , 
1 2

a as s , 

1 2 1 2,v v   , and 1 2  . 

3. Proposed method 

Consider the standard form of neutrosophic linear programming (NLP) problem with m 

constraints and n variables having all coefficients and resources are represented trapezoidal 

neutrosophic numbers as follows:  

maximize (minimize) ( )

s. t

,

0.

tc y

Dy h

y





      ( 1.1) 

 After all 
ij m n

D d


    is the coefficient matrix, 
1 2 3
, , , ,

t

m
h h h h h    is the trapezoidal 

neutrosophic available resource vector,  1 2 3
, , , ,

t

n
c c c c c is the target coefficient  and y  

is the selection variable vector. 

Let  
*,r y   be a possible location and an actual most effective answer of issue (1.1), 

individually. In the event that there exist an 'y r  so as to fulfils the constraint Dy h , then, 

' *y yT T
c c ,then 'y  is also an novel optimal solution of problem (1.1) and is called an 

substitute  exact optimal solution. 
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The objective function of model (1.1) is a TrNN as 

        1 2 3 4 1 1 1, , , ; , ,
T T T T

l l l lz y y y y y v y y  c c c c . This objective function should be maximized 

as a TrNN. The constraints of model (1.1) is a TrNN consider as: 

1 2 3 4 1 2 3 4( , , , ; , , ), ( , , , ; , , )l l l l l l l l

d d d h h hD d d d d v h h h h h v     . 

The steps of the proposed method are as follows: 

Step 1: By utilizing definition 3 and 4, the issue (1.1) might be composed as by the 

accompanying multi-objective structure for example  

maximize (minimize) 
1 2 3 4 1 1 1{( ) ,( ) ,( ) ,( ) ;( ) ,( ) ,( )}l t l t l t l tc y c y c y c y y v y y      (2.2) 

s.t                

1 2 3 4 1 2 3 4{( ) ,( ) ,( ) ,( ) ;( ) ,( ) ,( ) } {( ) ,( ) ,( ) ,( ) ;( ) ,( ) ,( ) }l l l l l l l l

d d d h h hd y d y d y d y y v y y h y h y h y h y y v y y   

 

         0.y     

Step-2. Now the issue (2.2) is changed into the accompanying MOLP issue:  

   1 2 1min (max )
T T

l limize imize Z y y c c  

 2 2max (min )
T

limize imize Z y c  

    3 2 3

1
max (min )

2

T T
l limize imize Z y y c c  

   4 4 3max (min )
T T

l limize imize Z y y c c  

   5 1 1max (min )imize imize Z y y    

 6 1max (min )imize imize Z v y
 

   7 1 1min (max )imize imize Z y y    

Subject to                                                                       (3.3) 

                     1 1

l ld y h  

                     1 2

l ld y h  

                    3 3

l ld y h  
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                    4 4

l ld y h  

                   d hy   

                    d hv y v  

                   d hy   

                      .y  0  

Step-3. Presently the issue (3.3) is likewise a MOLP issue. In objective functions, the 

lexicographic technique will be utilized to get lexicographic optimal solution of issue (3.3), 

we have: 

   1 2 1min (max )
T T

l limize imize Z y y c c
                                (4.4) 

Subject to 

                     1 1

l ld y h  

                     1 2

l ld y h  

                    3 3

l ld y h  

                    4 4

l ld y h  

                   d hy   

                    d hv y v  

                   d hy   

                      .y  0  

If (4.4) has a special best solution, at that point it is an ideal arrangement of (2.2). Else 

ourselves continue to following pace. 

Step-4. Tackle the accompanying issue above ideal arrangement that is discovered in step-3 

as succeed:  

                   2 2max (min )
T

limize imize Z y c
       (5.5) 

Subject to 
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                         2 1

T T
l ly y J c c

 

                     all constraints of problem (4.4). 

Where J is the optimal value of the Problem (4.4). In the event that (5.5) has a novel optimal 

result, at that point it is an ideal result of (2.2) and stop. In any case go to the following step.  

Step-5. Tackle the accompanying issue above the ideal results that are observed in step-4 as 

succeed: 

  2 3

1
max (min ) (( ) ( ) )

2

l t l timize imize c y c y
                     (6.6)

 

Subject to 

      2( )l tc y K
 

                        2 1

T T
l ly y J c c

 

                    all constraints of problem (4.4). 

where K  is the optimal value of the problem (5.5). If (6.6) has a novel optimal solution, at 

that point it is an ideal result of (2.2) and stop. In any case go to the following step.  

Step-6. Tackle the accompanying issue above the ideal results that are resolved in step-5 as 

succeed: 

                          
4 3max (min )( ) ( )l T l Timize imize c y c y             (7.7) 

Subject to  

                                     

   

2 3

2

2 1

1
(( ) ( ) )

2

( )

int (4.4).

l t l t

l t

T T
l l

c y c y L

c y K

y y J

all constra s of problem

 



 c c
 

where L  is the optimal value of the  problem (6.6). If (7.7) has a novel optimal solution, at 

that point it is an ideal result of (2.2) and end. Else go to following step.  

Step-7. Tackle the accompanying issue above the ideal results that are resolved in step-6 as 

succeed: 
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             1 1max (min )( ) ( )imize imize y y              (8.8) 

Subject to  

          

   

4 3

2 3

2

2 1

( ) ( )

1
(( ) ( ) )

2

( )

int (4.4).

l T l T

l t l t

l t

T T
l l

c y c y M

c y c y L

c y K

y y J

all constra s of problem

 

 



 c c
 

where M  is the optimal value of issue (7.7). If (8.8) has novel optimal solution, at that point 

it is ideal result of (2.2) and end. In any case go to following step.  

Step-8. Tackle the accompanying issue above the ideal solutions that are resolved in step-7 as 

succeed: 

                          1ma x ( mi n ) ( )i m i z e i m i z e v y           (9.9) 

Subject to  

               

   

1 1

4 3

2 3

2

2 1

( ) ( )

( ) ( )

1
(( ) ( ) )

2

( )

int (4.4).

l T l T

l t l t

l t

T T
l l

y y N

c y c y M

c y c y L

c y K

y J

all constra s of problem

  

 

 



 c c x

 

where N  is the optimal value of issue (8.8). If (9.9) has a novel optimal solution, at that 

point it is an ideal result of (2.2) and end. In other case go to the following step. 
 

Step-9. Tackle the accompanying issue above the ideal solutions that are resolved in step-8 as 

succeed: 

                          1 1min (max )( ) ( )imize imize y y             (10.10) 

Subject to  
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1

1 1

4 3

2 3

2

2 1

( )

( ) ( )

( ) ( )

1
(( ) ( ) )

2

( )

int (4.4).

l T l T

l t l t

l t

T T
l l

v y O

y y N

c y c y M

c y c y L

c y K

y y J

all constra s of problem

 



 

 

 



 c c

 

where O  is the ideal value of issue (9.9).  

In Step-9, we get an precise ideal solution which is equal to the  issue (2.2).  

The stream outline depicts the technique of the proposed strategy as appeared in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Neutrosophic Sets and Systems, Vol. 46, 2021 165  

 

 

Sapan Kumar Das, S. A. Edalatpanah and Jatindra Kumar Dash, A novel lexicographical-based method for trapezoidal 

neutrosophic linear programming problem 

 

 

 

 

 

 

 

                                                                                               YES 

 

                                                                             

                                        NO      

                                  

                                                  NO   

   YES 

                                       

 

NO 

                                                         YES 

   

                     YES 
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           NO  

       

   

                     Fig-1. FlowchartTdepictingTtheTproposedTsolutionTmethod 

START 

Convert NLP problem into MOLP 

Convert constraints into 

1 1 4 4 1 1 1......., , , , ,b b ba x b a x b x v x v x       

 

Get optimal solution of problem (4) 

Is it unique 

optimal 

solution? 

Get optimal solution of problem (5) 

 

Get optimal solution of problem (6) 

Get optimal solution of problem (7) 

Is 

unique? 

Is 

unique? 

Is 

unique

? 

Get optimal solution of Problem (8) 

Is 

unique

? 

Get optimal solution of problem (9) 
Is 

unique

? 

Get optimal solution of (10) and 

the problem is equivalent to (2) 

STOP 
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4. Numerical example  

In this area, to demonstrate the pertinence and efficiency of our proposed model of NLP 

problems, we tackled the issue where the decision-makers always think the truth degree, 

indeterminacy, and falsity degree. Here the managers not fixed the conformation degree, and 

the confirmation degree may change as per real-life situation.  

Example-1:  

The information gathered from a proprietor of a provincial Electrical Cable maker 

(information is furnished with a legitimate understanding that the title of the organization 

won't occur unveiled) arranged with Bhubaneswar do appeared in desk-1. 

An Electrical Cable maker makes two sorts of cable p1 and p2. These cable comprises of 

Metal and Plastic (R1, R2) utilized in per unit of cable. The accessibility of cables relies upon 

its creation however creation relies upon men, machine and so forth of cables are not known 

precisely because of electricity-failure, employment extra effort, surprising disappointments 

during instrument and so on. The shipping value of every day provide Metal with Plastic isn't 

familiar precisely because of varieties in paces of fuel, traffic issues and so on. In this way, all 

the parameters of the creation organization are unsure amounts with faltering. As per old 

incident of the proprietor the day by day provides of load is spoken to trapezoidal 

neutrosophic numbers in desk-1. The normal expense of per meter of p1 and p2 are 

(1,3,4,7;.8,0.2,0.4) and (4,6,8,10;0.9,0.3,0.5) units, individually. The most extreme every day 

supplies metals R1 and R2 are around (10,15,20,25;0.6,0.0,0.5) and 

(10,20,25,300.9,0.45,0.3) units individually. The maker needs to know so as to maximize the 

expense of Metal and Plastic what number of meters of Cables P1 and p2 he should deliver 

every day? 

                     

 

 Table-1: The statistics of day to day provides of Metal along with Plastic 

                      Outcomes 



Neutrosophic Sets and Systems, Vol. 46, 2021 167  

 

 

Sapan Kumar Das, S. A. Edalatpanah and Jatindra Kumar Dash, A novel lexicographical-based method for trapezoidal 

neutrosophic linear programming problem 

 

Load Metal (p1) Plastic (p2) 

R1 (2,4,6,8;0.8,0.2,0.4) (3,5,9,12,0.7,0.2,0.1) 

R2 (4,7,10,13;0.7,0.4,0.2) (3,6,9,14;0.8,0.5,0.3) 

Now the issue might be rewritten as  

1 2

1 2

1 2

max (1,3, 4,7;0.8,0.2,0.4) (4,6,8,10;0.9,0.3,0.5)

. .

(2, 4,6,8;0.6,0.1,0.3) (3,5,9,12;0.7,0.2,0.1) (10,15, 20, 25;0.6,0.0,0.5)

(4,7,10,13;0.7,0.4,0.2) (3,6,9,14;0.8,0.5,0.3) (10, 20, 25,3;0.9,0.

Z x x

s t

x x

x x

 

 

 

1 2

45,0.3)

, 0.x x 

  

By sing Step-1, the problem may be rewritten as; 

1 1 1 1 1 1 1 2 2 2 2 2 2 2

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 1 1 1

max ( ,3 ,4 ,7 ;0.8 ,0.2 ,0.4 ) (4 ,6 ,8 ,10 ;0.9 ,0.3 ,0.5 )

. .

(2 ,4 ,6 ,8 ;0.6 ,0.1 ,0.3 ) (3 ,5 ,9 ,12 ;0.7 ,0.2 ,0.1 )

(10,15,20,25;0.6,0.0,0.5)

(4 ,7 ,10 ,13 ;0

Z x x x x x x x x x x x x x x

s t

x x x x x x x x x x x x x x x

x x x x

 





1 1 1 2 2 2 2 2 2 2

1 2

.7 ,0.4 ,0.2 ) (3 ,6 ,9 ,14 ;0.8 ,0.5 ,0.3 )

(10,20,25,30;0.9,0.45,0.3)

, 0.

x x x x x x x x x x

x x







 

Found on Step-2, the above model may be changed into MOLP model 
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1 1 2

2 1 2

3 1 2

4 1 2

5 1

6 1 2

7 1 2

1 2

1 2

1 2

1 2

1

2

1

1 2

1 2

1 2

min 2 2

max 3 6

max 5.5 9

max 3 2

max 0.8

max 0.8 0.4

min 0.8 0.4

. .

2 3 10

4 5 15

6 9 20

8 25 25

0.6 0.6

0.2 0

0.3 0.5

4 3 10

7 6 20

10 9 25

Z x x

Z x x

Z x x

Z x x

Z x

Z x x

Z x x

s t

x x

x x

x x

x x

x

x

x

x x

x x

x x

 

 

 

 



 

 

 

 

 

 







 

 

 

1 2

1

2

2

1 2

13 14 30

0.7 0.9

0.5 0.45

0.3 0.3

, 0.

x x

x

x

x

x x

 









          (11) 

Using step3 to Step-9, the ideal answer of the problem is done as follows: 

As a multi-objective formulation, the model (11) was solved by the proposed solution 

approach (steps 3-9).  The obtained results are as : 1 21.25, 0x x   and the objective 

solution is: 3Z  . 

TheTbelowTtableTexpressTtheTqualityTphaseTofTourTproposedTmethodTisTthatTitToff

ersTnewTperfectTcostTregardsTasTdifferentiatedTandTtheTpresentTexistingTsystem.T 

ThisTisTshowedTupTinTTableT2(NumericalTassessmentTwithTexistingTprocedures)Texc

lusively. 

 

Table-2.TComparisonTofTtheTproposedTmethodTwithTexistingTmethodsT[38] 
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Approach Optimal solution Crisp objective 

value 

Neutrosophic optimal value 

Proposed 

Method 

1 21.25, 0x x    3Z    (1.25,3.75,5,8.75;0.8,0.2,0.4) 

Existing 

Method [38] 

1 21.523, 0x x   2.75Z   (1.523,4.569,6.092,10.661;1,0,0) 

Example-2  

In this section, we consider the symmetric trapezoidal numbers in form of ( , , , )l ua a   . 

Where ( , , , )l ua a    represented the lower, upper bound and first, second median value of 

trapezoidal number respectively. Additionally,  here we consider the confirmation degree is 

(1,0,0). We shows the applicability of our proposed method, we consider the problem of Das 

et al. [25], Ganesan and Veeramani [21]. 

 

1 2 3

1 2 3

1 3

1 2

1 2 3

max (13,15,2,2) (12,14,3,3) (15,17,2,2)

. .

(11,13,2,2) (12,14,1,1) (11,13,2,2) (475,505,6,6)

(12,16,1,1) (12,14,1,1) (460,480,8,8)

(11,13,2,2) (14,16,3,3) (465,495,5,5)

, , 0.

Z x x x

s t

x x x

x x

x x

x x x

  

  

 

 



  

By using our proposed method (Steps 1 to 9), we get the results of Table-3.  

Table-3. Comparison of the  proposed method with existing methods [21,25,38] 

Approach Optimal solution Crisp 

objective 

value 

Neutrosophic optimal value 

Proposed 

Method 

1 2 30, 4.44, 37.29x x x     838.21Z    (612.63,696.09,87.9,87.9;1,0,0) 

Existing 

Method 

1 2 30, 4.11, 37.38x x x    825.71Z   (610.02,693,87.09,87.09;1,0,0) 
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[38] 

Existing 

method 

[25] 

1 2 30, 4.23, 34.28x x x    622.97Z   (564.96,680.98,80.98,80.98) 

  

4. Result Analysis 

At first, we examined the example-1, we compare our result with existing method 

Abdel-Basset[38], we conclude that, 

1. In our method, the objective values equal to 3 and the existing method [38], the 

optimal value s 2.75. As the problem is maximization, therefore, our problem is better 

than the other method.  

2. In our method, we do not use the slack variables in constraints. However, the existing 

method the authors have used the slack variables and solved in the simplex method.  

For example-2, we consider the problem which was proposed by Das et al. [25] on the  

trapezoidal fuzzy number and Abdel-basset [38], and we compare it with our proposed 

method having trapezoidal neutrosophic numbers. 

3. From table-3, it is clear that our objective values is maximized and equal to 838.21 as 

the problem is maximized given. In our comparison, neutrosophic is better handling 

than fuzzy in real-life situations. 

4. In our lexicographic method is better than the ranking function of Abdel-Basset [38] 

method.TheTresultsTareTsupportedTbyTtheTfactTthatTtheTexistingTmethodT[38]

TuseTaTsingleTrankingTfunction,TinTthisTcaseTtheToptimizationTcriterion,Twhi

chTcanTnotTguaranteeTtheTfeasibilityTofTtheTsolution.THowever,TproposedTme

thodTinTthisTpaperTisTmoreTconcentrateTregardingTtheTindeterminacyTandTco

nvertTtoTMOLPTproblemTbyTutilizingTtheTLO. 

5. In the existing method [38], the authors considered two types of ranking functions for 

handling different types of NLP problems. However, in our proposed method, we 
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propose only one type of method called the lexicographic method and that method 

can handle any type of NLP problem.  

From the above Table-2 and Table-3, one can conclude that the optimum value of NLP 

problem is higher side of the present methods. Therefore, we can conclude that our proposed 

algorithm isTaTnewTwayTtoThandleTtheTproblemTandTitsTmoreTeffective.T 

AllTtheTproblemsTareTsolvedTbyTLINGOTversionT18.0.TTherefore,TfromTtheTaboveT

real-lifeTproblemTandTtheTaboveTdiscussion,TweTcanTconcludeTthatTourTproposedTm

ethodTismoreTrobustTthanTtheTmethodTproposedTinT[21,25,38]. 

4.1 Advantages and limitations of the proposed method 

Here, in this paper, we proposed a new technique for trapezoidal neutrosophic fuzzy 

numbers based on lexicographic technique orders and the significant advantages of the 

proposed measure are given as follows. 

 Trapezoidal fuzzy neutrosophic number is a simple design of arithmetic operations 

and easy and perceptive interpretation as well. Therefore the proposed measure is an 

easy and effective one under neutrosophic environment. 

 Lexicographic Orders can be estimated with simple algorithm and significant level 

of accuracy can be acquired as well. 

 While taking the inequality constraints convert to equality constraints we used LO 

technique instead of any slack variables.  

 Also it can be applied in location planning, operations management, Neutrosophic 

Statistics,clustering, medical diagnosis, Optimization and image processing to get 

more accurate results without any computational complexity. 

Limitations 

 While used LO technique to convert multi-objective LP problem the numbers of 

constraints are bigger than original LP problem.  

 Very slow response while applied in linear fractional problem and quadratic 

programming problem. 
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5.Conclusion 

In a real-world environment, we handle imprecise, vague, and insufficient information by 

using the neutrosophic set. In this paper, we considered an NLP problem having trapezoidal 

neutrosophic numbers and transformed it into a MOLP problem. Based on the LO method, 

we solve the MOLP problem corresponding to the linear programming problem. It is 

believed that our method for the solution of NLP problem in the application of practical issue 

along with the simple issue might be adopted by scholars who are working in this field. 

Meantime, a numerical example was provided to show the efficiency of the proposed method 

and illustrate the solution process. The new model not only richens uncertain linear 

programming methods but also provides a new effective way for handling indeterminate 

optimization problems. Further, comparative analysis has been done with the existing 

methods to show the potential of the proposed LO method and various forms of trapezoidal 

fuzzy neutrosophic number have been listed and shown the uniqueness of the proposed 

tabular representation. Furthermore, advantages of the proposed measure are given. In 

future, the present work may be extended to other special types of neutrosophic set like 

pentagonal neutrosophic set, neutrosophic rough set, interval valued neutrosophic set and 

plithogeneic environments. 
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Abstract: The quadripartitioned single-valued neutrosophic set (QSVNS) is developed to understand the 

concept of indeterminacy more clearly. It takes care of the diverse approaches while dealing with uncertainty 

under single-valued neutrosophic environment. To make the QSVNS more functional and logical, the notion of 

quadripartioned single-valued neutrosophic Pythagorean set (QSVNPS) is introduced. In QSVNPS, the 

components , , ,T C U F are dependent in such a manner that T F  1, 1C U  , and 

2 2 2 2 2T C U F    . So, the QSVNPS is a powerful framework for modeling the imprecise human 

knowledge in a specific manner. To calculate the arithmetic operations, we consider the quadripartitioned 

single-valued neutrosophic Pythagorean numbers (QSVNPNs) associated with QSVNPSs. The main advantage 

of using QSVNPNs is that it allows the decision-makers to carry out the calculation on uncertain 

parameters. The present paper aims to study Dombi operators and to establish some new Dombi weight 

aggregate operators and develop some properties under QSVNPN environment for solving multi-criteria 

decision-making(MCDM) problems that we encounter in our day-to-day life process. Then we define the score 

and accuracy functions for ranking the QSVNPNs to choose the best-preferred alternative that goes through 

under a set of certain criteria. A model for MCDM problems based on Dombi operators under QSVNPNs has 

been introduced. To check the feasibility of the new approach, a numerical example is demonstrated that shows 

the effectiveness of the proposed model for multi-criteria decision-making. Finally, a comparative analysis 

between the rankings, obtained by using the proposed model, of the given set of alternatives under a certain set 

of criteria gives the optimal choice.   

  

Keywords: Pythagorean fuzzy set; Quadripartitioned neutrosophic Pythagorean set; Dombi operator; MCDM. 

 

 

 

1. Introduction 

The introduction of the fuzzy set(FS)[1] proposed by Zadeh is a conceptual framework to be formed 

by replacing the two-valued characteristic function with the fuzzy membership function to define 

the imprecise information that we encounter in physical world phenomenon. It has the rich potential 



Neutrosophic Sets and Systems, Vol. 46, 2021    181  

 

 

Somen Debnath, Quadripartitioned Single Valued Neutrosophic Pythagorean Dombi Aggregate Operators in MCDM 

Problems 

to address ambiguous issues. Due to the novelty of the FS, it has a wide range of applicability in 

information communication, pattern recognition, artificial intelligence, operation research, medical 

diagnosis, computer science, game theory, economics, environmental science, engineering, 

robotics, etc. In FS, every object of the universe is characterized by a membership function and the 

degree of membership is ranging between 0 and 1. Some contributed works related to fuzzy sets are 

proposed in the literature given in [2-6]. Later on, after critical investigation, it has been identified by 

the researchers that, the concept of hesitancy that is natural in human thinking cannot be described 

by FS due to its inherent difficulty. So, there is an information gap in FS and to eradicate such gap a 

new mathematical structure called intuitionistic fuzzy set (IFS) [7, 8] is introduced by adding a 

non-membership degree to the FS. In IFS, every object of the universe has a membership and a 

non-membership degree, and their sum cannot exceed 1. The hesitancy membership can be obtained 

by subtracting the sum of the membership and the non-membership degree from 1. Thus, the 

IFS provides incomplete information to the decision-maker and it can be viewed as an extension of 

FS. IFS can be reduced to an FS when its non-membership degree is 0. Some recent works on IFS are 

proposed in the literature given in [9-12]. 

However, researchers find the existence of an environment which cannot be addressed by FS and 

IFS. For example, suppose under a certain environment, the membership and the non-membership 

degrees of an object provided to the decision-maker are 0.5 and 0.7. Then, their sum 

is 0.5 0.7 1.2 1   . So, this type of phenomenon cannot be defined by FS and IFS. We need 

another powerful tool that can easily solve this problem. For the demand of the situation, the 

Pythagorean fuzzy set (PFS) [13] is introduced where the sum of the squares of the membership and 

the non-membership degree cannot exceed 1. With the help of PFS, the above problem can be easily 

defined, as
2 20.5 0.7 0.74 1   . Therefore, the Pythagorean environment is capable to 

accommodate both the fuzzy and the intuitionistic fuzzy environment to solve diverse problems. In 

PFS, with the help of Pythagorean fuzzy membership and non-membership function, we can 

enhance the applicability of FS and IFS. Different authors use PFS from different angles and develop 

some new operators which are capable to solve real decision-making problems. Some significant 

works related to PFSs are studied in the proposed literature given in [14-18]. 

There is another aspect of extending the notion of IFS and it is due to the unavailability of 

indeterminacy membership in IFS. The concept of indeterminacy is found relevant in human 

thinking. For example, in a certain class, a teacher asks a true-false type question to a group of 30 

students in that class. The response of the students recorded as 20 says true, 5 say false and 

according to the remaining 5 students, it is neither true nor false. This gives a clear idea about how 

indeterminacy exists in our communication information. In 2005, Smarandache[19]introduced 

neutrosophic set(NS) as a generalization of the crisp set, FS, IFS, paraconsistent set, PFS, etc. Later 

on, for scientific and technical application, Wang et al. [20] introduced a single-valued neutrosophic 

set (SVNS) to develop the operators used in NS. In SVNS, each object of the universe is characterized 

by the three membership functions called truth-membership, indeterminacy-membership, and 

falsity-membership function in such a way that the sum of the three membership values cannot 

exceed 3. So, the SVNS is enabled to take care of the issues that contain uncertainty that contains 
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indeterminacy. In [21], Jansi et al. introduced the correlation measures for Pythagorean neutrosophic 

sets (PNSs) with truth and falsity as dependent components. Furthermore, sometimes while 

working with NS, there is a doubt in the mind of the researchers that the indeterminacy to an 

element occurs due to the belongingness or non-belongingness. Such issues were presented by 

Chatterjee et al. [22] by introducing a quadripartitioned single-valued neutrosophic set (QSVNS). 

The QSVNS is a more generalized framework than SVNS and the motivation behind adopting this 

idea is due to Smarandache’s four-valued neutrosophic logic and Belnap’s four-valued logic. In 

QSNS, the indeterminacy component is being divided into two parts, namely, contradiction and 

unknown. By combining QSVNS and PFS, Radha et al. [23] introduced a new model known as 

a quadripartitioned single-valued neutrosophic Pythagorean set (QSVNPS). In QSVNPS, truth and 

falsity make one pair of a dependent component on the other hand contradiction and an unknown or 

ignorance make another pair of dependent components. Therefore, it looks quite logical to apply 

Pythagorean property on QSVNS. 

The relationship of different types of sets in the context of the proposed study is exhibited in the 

form of an arrow diagram given as: 

 

 

  

 

 

 

 

 

 

 

                             

                     

                  

                 Fig 1.  Arrow diagram to represent the relationship of different types of sets 

 

Dombi operators have an excellent potential with operational parameters and due to these 

operational parameters, it is flexible to operate. In 1982, Dombi[24] introduced triangular t-norm and 

t-conorm operators. Roychoudhury et al. [25] generalize the Dombi class, intuitionistic fuzzy Dombi 

aggregation operator and their application to MADM proposed in [26], Dombi prioritized weighted 

aggregation operator on single-valued neutrosophic set for MADM is given by Wei et al. [27], Jana et 

al.[28]presented the bipolar fuzzy Dombi aggregation operators, Ashraf et al. [29] introduced the 

spherical fuzzy Dombi aggregation operator and their application in GDM, Garg et al. [30] initiated 

the neutrality operations based Pythagorean fuzzy aggregation operators and its application to 

MAGDM, Qiyas et al. [31] defined linguistic picture fuzzy aggregation operator. Furthermore, the 

Pythagorean Dombi fuzzy aggregation operator presented by Akram et al. [32], Khan et al. [33] 
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introduced the Pythagorean fuzzy Dombi aggregation operators and their application in decision 

support system, Jana et al. [34] described the Pythagorean fuzzy Dombi aggregation operators and 

their application in MADM, Akram et al. [35] extended the Dombi aggregation operator for DM 

under m-polar fuzzy information, bipolar neutrosophic Dombi aggregation operators with 

application in MADM problems are introduced by Mahmood et al. [36], etc. 

Over the last decades, decision-making (DM) is an effective scientific approach for making decisions 

by assessing a set of alternatives and achieve the best results. There are various DM approaches or 

strategies that help to choose the optimal choice. In real-life scenarios, uncertainty plays an 

important role in decision-making and it captures considerable attention in various research areas. 

For getting more information about decision-making we discuss the following: correlation 

coefficient based TOPSIS method under interval-valued intuitionistic fuzzy soft environment and 

their aggregate operators for DM are defined in [37]. In [38], Zulqarnain et al. presented a correlation 

coefficient based TOPSIS method under Pythagorean fuzzy soft environment and apply it in green 

supply chain management. DM approach under interval-valued neutrosophic hypersoft set defined 

in [39]. Development of TOPSIS method under Pythagorean fuzzy hypersoft set for the selection of 

antivirus mask is given in [40]. In [41], an algorithm is introduced by using the generalized 

multipolar neutrosophic soft set for medical diagnosis DM problems. An extension of the TOPSIS 

technique based on the correlation coefficient under the neutrosophic hypersoft set is proposed for 

the selection of effective hand sanitizer to reduce the covid-19 effects as defined in [42]. Another 

extension of the TOPSIS method under intuitionistic fuzzy hypersoft environment is to solve the DM 

problem in [43]. Using the matrix representation of the neutrosophic hypersoft set, the MADM 

problems are solved in [44]. Some other popular DM approaches under different environments were 

studied in [45-51].    

 

Motivated by the above discussion, we introduce QSVNPNs and studied various operational laws 

and properties on them. In addition, based on QSVNPNs, we define score function, accuracy 

function, and the operators QSVNPWA and QSVPWG. Furthermore, based on Dombi t-norm and 

t-co-norm operators, we introduce two new aggregate operators for the MCDM problem. Some 

properties based on these two new operators are also investigated in the study. A new model has 

been proposed by using the new aggregate operators. Also, we execute the model by taking a 

suitable example. 

1.1 Motivation 

The Dombi aggregate operators under quadripartitioned single-valued neutrosophic Pythagorean 

numbers environment has not yet been studied till date. This gives us the motivation to present the 

proposed study.  

The rest of the paper is organized in the form: In section 2, we review some basic definitions that are 

useful for the subsequent sections. In section 3, we establish some Dombi operators on QSVNPNs. In 

section 4, we propose the Dombi weighted aggregation operators under QSVNPNs environment. 

Further, in section 5, we initiate an algorithm-based model for MCDM using QSVNP Information. A 
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practical application based on the proposed model is discussed in section 6. Conclusion and the 

future scope are presented in section 7. 

 

2. Preliminaries 

In this section, we recall some basic definitions that are fundamental to the proposed topic. 

Definition 2.1 [13-15] A PFS   over the set of the universe  is an object of the 

form     , , :s s s s     , where  : 0,1  and  : 0,1  are respectively 

the membership and the non-membership functions with the restriction that 

     
2 2

0 1s s     and the hesitancy is measured 

by        
2 2

1s s s       . We represent the Pythagorean fuzzy number (PFN) 

as ,    . 

Definition 2.2 [20] A SVNS   over the set of the universe  is an object of the 

form       , , , :s T s I s F s s     , where  : 0,1T  ,  : 0,1I  and 

 : 0,1F  are respectively the truth, indeterminacy and falsity membership functions with the 

restriction      0 3T s I s F s      . The SVNN is represented by , ,T I F   . 

Definition 2.3 [22] A QSVNS  over the set of the universe  is an object of the 

form         , , , , :s T s C s U s F s s      , where      , ,T s C s U s   , and  F s ar

e respectively the truth, contradiction, unknown and falsity membership values with the 

condition        0 4T s C s U s F s        . 

Definition 2.4 [23] A QSVNPS   with dependent neutrosophic components over the universe of 

discourse  is an object of the form         , , , , :s T s C s U s F s s       

where      , ,T s C s U s   , and  F s are respectively the truth, contradiction, unknown and 

falsity membership values with the condition 

    1T s F s   ,     1C s U s   , and        2 2 2 20 2T s C s U s F s        . The 

QSVNPN is denoted by , , ,T C U F     . 

Definition 2.5 For any two QSVNPNs
1 1 1 11 , , ,T C U F     and

2 2 2 22 , , ,T C U F    
 

We have the following properties: 
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1 21.  iff for any   , 

               
1 2 1 2 1 2 1 2

, ,T T C C and U U F F                   

1 22.  iff 1 2  and 2 1   

       
1 2 1 2 1 2 1 21 23. max , ,max , ,min , ,min ,T T C C U U F F           

       
1 2 1 2 1 2 1 21 24. min , ,min , ,max , ,max ,T T C C U U F F           

1 1 1 115. , , ,c F U C T    
 

Definition 2.6 For two QSVNPNs 
1 1 1 11 , , ,T C U F     and

2 2 2 22 , , ,T C U F     , the 

basic operational laws between them are given by: 

1. 1 2  =
1 1 1 1
, , ,T C U F    

2 2 2 2
, , ,T C U F   

=

1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2. , . , . , .T T T T C C C C U U F F                

2. 1 2  =
1 1 1 1
, , ,T C U F    

2 2 2 2
, , ,T C U F   

=

1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2 2 2. , . , . , .T T C C U U U U F F F F                

3. For any 0  ,    2 21 1 , 1 1 , ,k kT C U F
 

           

4. For any 0  , 
 =    2 2, , 1 1 , 1 1k kT C U F

 

        

Definition 2.7 For any QSVNPN , , ,T C U F     the score function    and the accuracy 

function    can be defined as 

  2 2 2 2T C U I
   

      , where    1,1     and    =
2 2 2 2T C U I
   
   , where 

   0,1    

Definition 2.8 Let 
1 1 1 11 , , ,T C U F     and

2 2 2 22 , , ,T C U F     be two QSVNPNs over 

the common universe of discourse  and their corresponding score and accuracy functions are 

respectively    1 2,    and    1 2,    . Then we consider the following: 
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1. If    1 2    , then 1 2   

2. If    1 2    , then 1 2   

3. If    1 2    , then we compare their accuracy function as: 

(a)If    1 2     , then 1 2   

(b)If    1 2     , then 1 2   

(c) If    1 2     , then 1 2  
 

Theorem 2.9  

For any three QSVNPNs
1 1 1 11 , , ,T C U F     ,

 2 2 2 22 , , ,T C U F      and 3 = 

3 3 3 3
, , ,T C U F   

over the universe of discourse  and 1 2, 0   . Then, 

1. 1 2 2 1     

2. 1 2 2 1     

3.    1 2 3 1 2 3        

4. 
 

   1 2 3 1 2 3        

5.  1 1 2 1 1 1 2 1, 0           

6.   1 1 1

1 2 1 2 1, 0
         

7.  1 1 2 1 1 2 1 1 2, and 0             

8. 1 2 1 2

1 1 1 1 2, and 0          

Proof: All proofs are obvious. 

Definition 2.10   Let
 m = , , ,

m m m m
T C U F   

be a collection of QSVPNs in   

where 1,2,3,....,m n . 

Then the quadripartitioned single-valued neutrosophic Pythagorean weighted averaging 

(QSVNPWA)operator with weight vector 
 1,2,....,m m n  where 0m  and 

1

1
n

m

m




 is 

given by 
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 1 2 1
, ,...,

n

n m mm
QSVNPWA 


     . 

Definition 2.11   Let
 m = , , ,

m m m m
T C U F   

be a collection of QSVPNs in   

where 1,2,3,....,m n . 

Then the quadripartitioned single-valued neutrosophic Pythagorean weighted 

geometric (QSVNPWG)operator with weight vector 
 1,2,....,m m n  where 0m  and 

1

1
n

m

m




 is given by 

   1 2

1

, ,...,
m

n

n m

m

QSVNPWA




     . 

3. Dombi Operations on QSVNPNs 

Definition 3.1 [24] Let p and q be any two real numbers where      , 0,1 0,1p q    with 1  . 

Then Dombi’s t-norms and t-co-norms are defined as  

  1

1
,

1 1
1

H p q

p q

p q


 




     

     
     

and 

  1

1
, 1

1
1 1

G p q

p q

p q


 



 
    

     
      

respectively. 

Based on definition 3.1, we define the following Dombi’s t-norms and t-co-norms operational laws 

on QSVNPNs: 

Definition 3.2 Let 
1 1 1 11 , , ,T C U F     and

2 2 2 22 , , ,T C U F     be two QSVNPNs over 

with 0  and 1  . Then the Dombi’s t-norms and t-co-norms operational laws defined on 

QSVNPNs are given by: 

1. 

1
1 ,

1
2 2

1 2
1

2 2
1 1

1 2

1 1
,

1

1 1 1 1
1 2 1 2

1 1

1 2 1 2

1
1 ,

1

2 2

1 21
2 2

1 1
1 2

1 2

C C

C C

U U F F

U U F F

T T

T T

  

  

  



 
 

  

      
   

   



 
 

  
  

                   
                  

    

      
      
      
      

1
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2. 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1

1 2

1
2 2 2 2

2 2 2 2

1 1
, ,

1 1 1 1
1 1

1 1
1 , 1

1 1
1 1 1 1

T T C C

T T C C

U U F F

U U F F

    


  

   

   

   

   

             
             
                    

  

 
        
          
                  

1 
 

 
 

 

 

3. 

1 1

2 2

2 2

1 1

1 1
1 , 1 ,

1 1
1 1

1 1
,

1 1
1 1

T C

T C

U F

U F

  

  

 



 

 

 

 

 

 

      
       

          
 

       
       
         

 

 

4. 

1 1

1 1

2 2

2 2

1 1
, ,

1 1
1 1

1 1
1 , 1 ,

1 1
1 1

T C

T C

U F

U F

  



  

 

 

 

 

 

 

       
       
         

 

 

      
       

          

 

 

Example 3.2.1 Let 1 0.6,0.4,0.6,0.3  and 2 0.3,0.6,0.4,0.5  be two QSVNPNs over 

 with 0.5  and 1.4  . Then we compute the above Dombi’s t-norms and t-co-norms 

operators based on QSVNPNs as follows: 

0.611,0.627,0.372,0.261
1 2

    

1 2 0.276,0.353,0.627,0.522    

10.5 0.505,0.322,0.711,0.412   

0.5

1 0.711,0.522,0.505,0.238   
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4. Dombi Weighted Aggregation Operators under QSVNPNs environment 

In this section, based on Dombi operational laws on QSVNPNs, two Dombi ordered weighted 

aggregation operators, namely, quadripartitioned single-valued neutrosophic Pythagorean Dombi 

ordered weighted arithmetic aggregation(QSVNPDOWAA) operator and quadripartitioned 

single-valued neutrosophic Pythagorean Dombi ordered weighted geometric 

aggregation(QSVNPDOWGA) operator are formed. After that, some significant results based on 

these two operators are investigated. 

Definition 4.1 Let m = , , ,
m m m m

T C U F   
be a collection of QSVNPNs with the weight vector 

 1 2, ,......,
t

mW    where 1,2,..., ml   and 0l  ,
1

1
m

l

l




 .Then the operator 

QSVNPDOWAA: 
m   is defined as  

   1 2
1

, ,...,
m

m l l
l

QSVNPDOWAA





     
,
 where       1 2

, ,.......,
m  

   is the 

permutation of  1 2, ,..., m   such that    1l l 
  for all 1,2,...,l m . 

Theorem 4.2 If m = , , ,
m m m m

T C U F   
be a collection of QSVNPNs, then the resulting of these 

numbers by using QSVNPDOWAA operator defined above is again a QSVNPN and the resulting 

number can be obtained by using the following formula: 

   

 

 

 

 

 

 

 

 

1 2
1

1 1

2 2

2 2
1 1

1 1

1 1

, ,...,

1 1
1 , 1 ,

1 1
1 1

.......
1 1

,

1 1
1 1

m

m l l
l

m m
l l

l l

l ll l

m m
l l

l l

l ll l

QSVNPDOWAA

T C

T C

U F

U F



  

 

 

  

 

 



 

 



 

 

      

 

      
       

       
      

       
       

      
      

 

 

(1)

 

Proof: By mathematical induction, we can prove the theorem given as. 

Based on the Dombi operational laws of QSVNPNs for m=2, we have 
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1 1

2 2 2 2

1 2 1 2
1 2 1 22 2 2 2

1 2 1 2

1 2 1 1 2 2

1

1 2 1 2
1 2 1 2

1 2 1 2

1 1
1 , 1 ,

1 1
1 1 1 1

,
1 1

,

1 1 1 1
1 1

T T C C

T T C C
QSVNPDOWAA

U U F F

U U F F

    

  

   

 

   

 

          
             

                      

         
         
       

1

1 1

2 22
2

2 21
1

1 1

2 2

1 1

1 1
1 , 1 ,

1 1
1 1

1 1
,

1 1
1 1

l l
l ll

ll l

l l
l l

l ll l

T C

T C

U F

U F

 

  

  

 

 




 

  
  
   

 

      
       

          

       
       
         

 

 

 Suppose the equation (1) holds for m=p, where p N . Then, we have  

 

 

1 1

2 2

2 21
1

1 2

1 1

1 1

1 1
1 , 1 ,

1 1
1 1

, ,.....,
1 1

,

1 1
1 1

p
p l l

l ll
ll l

p

p p

l l
l l

l ll l

T C

T C
QSVNPDOWAA

U F

U F

  

  

 

 




 

 

      
       

             

       
       
         

 

 

 

Now, we shall have to show that the equation (1) is true for m=p+1 whenever it is already true for 

m=p 

 1 2 1

1 1

2 2

2 21
1

1 1

1 1

1 1

, ,....., ,

1 1
1 , 1 ,

1 1
1 1

1 1
,

1 1
1 1

p p

p
p l l

l ll
ll l

p P

p p

l l
l l

l ll l

QSVNPDOWAA

T C

T C

U F

U F
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1 1

2 2

2 21
1

1 1

1 1

1 1
1 , 1 ,

1 1
1 1

1 1
,

1 1
1 1

p
p l l

l ll
ll l

p p

l l
l l

l ll l

T C

T C

U F

U F

  

  

 

 




 

 

      
       

           

       
       
         

 

 

 

1 1

2 2

1 1

1 12 2

1 1

1 1

1 1

1 1

1 1

1 1
1 , 1 ,

1 1
1 1

1 1
,

1 1
1 1

p p

p p

p p

p p

p p

p p

T C

T C

U F

U F

  

  

 

 

 

 

 

 

 

 

 

      
                    

       
                   

 

1 1

2 21
1

2 21
1

1 1

1 1

1 1

1 1
1 , 1 ,

1 1
1 1

1 1
,

1 1
1 1

p
p l l

l ll
ll l

p p

l l
l l

l ll l

T C

T C

U F

U F

  

  

 

 







 

 

 

      
       

          

       
       
         

 

 

 

Thus, by the principle of mathematical induction, equation (1) holds for any natural number.

 

Example 4.2.1 Four farmers namely 1 2 3, ,F F F and 4F want to check the expected fertility of a field 

for cultivation. The level of fertility of the field can be determined by using QSVNPNs under 

considering certain criteria by the decision-maker. According to the four farmers, the level of fertility 

of the soil is specified under the QSVNPN environment is given 

by 1 0.4,0.3,0.5,0.3  , 2 0.6,0.4,0.2,0.3  , 3 0.2,0.3,0.4,0.6  and 

4 0.3,0.4,0.6,0.4  respectively and the corresponding weight vector of the farmers is given by 

0.4,0.25,0.15,0.2W  . 

First, we determine the score of each  1,2,3,4l l  given by, 
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  2 2 2 2

1 0.4 0.3 0.5 0.3 0.09         

Similarly,  2 0.39   ,  3 0.39     and  4 0.27     

Thus,        2 1 4 3         

Therefore,        2 1 4 31 2 3 4
, , ,

   
         

Thus, by using the QSVNPDOWAA operator with 2   we have, 

 1 2 3 4

1
1 ,

1
2 2 2 2 2

2 2 2 2
0.6 0.4 0.3 0.2

1 0.25 0.4 0.2 0.15
2 2 2 2

1 0.6 1 0.4 1 0.3 1 0.2

1
1

2 2
2 2 2

0.4 0.3 0.4
1 0.25 0.4 0.2

2 2 2
1 0.4 1 0.3 1 0.4

, , ,QSVNPDOWAA



   
   



  
  

   

        
                        

    
        
    



,
1

2 2 2
2

0.3
0.15

2
1 0.3

1

1
2 2 2 2 2

1 0.2 1 0.5 1 0.6 1 0.4
1 0.25 0.4 0.2 0.15

0.2 0.5 0.6 0.4

,

1

2 2 2
1 0.3 1 0.3 1 0.4 1 0.

1 0.25 0.4 0.2 0.15
0.3 0.3 0.4




   
   

   
   

   
         

        
        

         

     
     
     

1
2 2

6

0.6

  
  

   

 

= 0.486,0.358,0.312,0.331  

Therefore,  1 2 3 4, , ,QSVNPDOWAA     = 0.486,0.358,0.312,0.331  

So, the aggregate of four QSVNPNs under Dombi operation is again a QSVNPN. We can generalize 

it for any finite numbers. 

Theorem 4.3 (Idempotency) For any QSVNPN , , ,T C U F     we have 

  , , ,..........,QSVNPDOWAA      . 

Proof: Assuming l   1,2,...,l m and then applying equation (1), we have 
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 1 2
1

1 1

2 2

2 2
1 1

1 1

1 1

, ,...,

1 1
1 , 1 ,

1 1
1 1

1 1
,

1 1
1 1

m

m l l
l

m m
l l

l l

l ll l

m m
l l

l l

l ll l

QSVNPDOWAA

T C

T C

U F

U F

  

  



 

 



 

 

      

 

      
       

          

       
       
         

 

 

 

=

2 2

2 2

1 1
1 , 1 ,

1 1
1 1

1 1
,

11
11

l l

l l

ll

ll

T C

T C

FU

FU

 
   

    
    

    
    
   

=  

Hence proved. 

Theorem 4.4 (Boundedness) Consider the collection of QSVNPNs  1 2, ,....., m   , where 

, , , , 1,2,...,
l l l ll T C U F l m     

 
in such a manner that  min 1 2min , ,....., m    

, 

and  max 1 2max , ,....., m     . Then,  min 1 2 max, ,....., mQSVNPDOWAA      . 

Proof: Suppose that  

 min 1 2 * * * *min , ,....., , , ,m T C U F     
, 

and 

  * * * *

max 1 2max , ,....., , , ,m T C U F      . 

Then,  * min lT T ,  * min lC C ,  * max lU U ,  * max lF F and  * max lT T ,

 * max lC C ,  * min lU U ,  * min lF F  

Therefore, we have the following inequalities for the membership, contradictory, ignorance, and 

falsity membership respectively 

1 1 1

2 2 *2

*

2 *22
1 11*

1 1 1
1 1 1

1 11
1 11

m mm
l

l ll

l ll l

T T T

T TT
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1 1 1

2 2 *2

*

2 *22
1 11*

1 1 1
1 1 1

1 11
1 11

m mm
l

l ll

l ll l

C C C

C CC

    

 
 

    

          
           

              
 

 

1 1 1

*2 2 2

*

*2 22
1 11 *

1 1 1
1 1 1

1 11
1 11

m mm
l

l ll

l ll l

U U U

U UU

    

 
 

    

          
           

              
 

 

1 1 1

2 2 *2

*

2 *22
1 11*

1 1 1
1 1 1

1 11
1 11

m mm
l

l ll

l ll l

C C C

C CC

    

 
 

    

          
           

              
 

 

This completes the proof. 

Theorem 4.5 (Monotonicity) suppose the two collections of QSVNPNs are  ' ' '

1 2, ,....., m   and 

 1 2, ,....., m   where ' ' ' '

' , , , , , , , , 1,2,...,
l l l ll l l l

l lT C U F T C U F l m      
    

 

In such a manner that
' ',

l ll l

T T C C  
 

, 
and ' ',

l ll l

U U F F  
  . Then 

 QSVNPDOWAA  ' ' '

1 2, ,....., m    QSVNPDOWAA  1 2, ,....., m   . 

Proof: Suppose QSVNPDOWAA  ' ' ' ' ' ' '

1 2, ,....., , , ,m T C U F    and 

QSVNPDOWAA  1 2, ,....., , , ,m T C U F    . At first, we shall show that
'T T . 

Since,
'

'

'

2 2

2 21 1

l l

l l

l l

T T
T T

T T

 

 

 

  
 

. Using this result we can write, 
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1 1

'2 2

'2 2
1 1

1 1

'2 2

'2 2
1 1

1

'2 2

'2 2
1

1 1

1 1
1 1

1 1

1 1
1 1

m m
l l

l l

l ll l

m m
l l

l l

l ll l

m
l l

l l

l l l

T T

T T

T T
or

T T

or

T T

T T

  

  

 

 

 

 

 

 



      
      

          

      
        

          



    
     

      

 

 



1

1

1 1

'2 2

'2 2
1 1

1 1

'2 2

'2 2
1 1

1 1
1

1 1
1 1

1 1
1

1 1
1 1

m

l

m m
l l

l l

l ll l

m m
l l

l l

l ll l

or

T T

T T

or

T T

T T



  

  

 

 



 

 

 
 
  

 

      
       

          

 

      
       

          



 

 

 

Hence, 
'T T . Similarly, we can show that

'C C ,
'U U and 

'I I . 

Theorem 4.6 (Reducibility) suppose 1 2, ,....., m   be a collection of QSVNPNs in such a manner 

that , , , , 1,2,...,
l l l ll T C U F l m       with the corresponding weight 

vector  1 2

1 1 1
, ,...., , ,......,

t
t

mW
m m m

  
 

   
 

. Then we can write  

 1 2

1 1

2 2

2 2
1 1

1 1

1 1

, ,.....,

1 1
1 , 1 ,

1 1
1 1

1 1

1 1
,

1 11 1
1 1

m

m m
l l

l ll l

m m
l l

l ll l

QSVNPDOWAA

T C

m T m C

U F

m U m F
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Definition 4.7 Let m = , , ,
m m m m

T C U F   
be a collection of QSVNPNs with the weight vector 

 1 2, ,......,
t

mW    where 1,2,..., ml   and 0m  ,
1

1
m

l

l




 .Then the operator 

QSVNPDOWGA: 
m   is defined as  

   1 2
1

, ,...,
m

m l l
l

QSVNPDOWGA





      Where       1 2
, ,.......,

m  
   is the 

permutation of  1 2, ,..., m   such that    1l l 
  for all 1,2,...,l m . 

Theorem 4.8 If m = , , ,
m m m m

T C U F   
be a collection of QSVNPNs, then the resulting of these 

numbers by using QSVNPDOWGA operator defined above is again a QSVNPN and the aggregate 

number can be obtained by using the following formula: 

   

 

 

 

 

 

 

 

 

1 2
1

1 1

1 1

1 1

2 2

2 2
1 1

, ,...,

1 1
, ,

1 1
1 1

1 1
1 , 1

1 1
1 1

m

m l l
l

m m
l l

l l

l ll l

m m
l l

l l

l ll l

QSVNPDOWGA

T C

T C

U F

U F



  

 

 

  

 

 



 

 



 

 

      

       
       

      
      

 

      
       

       
      

 

 

 

Proof: the proof is similar to the proof of Theorem 4.2 

Example 4.8.1 Revisiting example 4.2.1, we can obtain the QSVNPDOWGA operator as follows 

   

4

1 2 3 4
1

, , , l l
l

QSVNPDOWGA
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1
,

1
2 2 2 2 2

1 0.6 1 0.4 1 0.3 1 0.2
1 0.25 0.4 0.2 0.15

0.6 0.4 0.3 0.2

1
,

1
2 2 2 2 2

1 0.4 1 0.3 1 0.4 1 0.3
1 0.25 0.4 0.2 0.15

0.4 0.3 0.4 0.3

1
1

2
0.2

1 0.25
1 0.2

   
   

   
   






        
        

         

        
        

         

,
1

2 2 2 2 2
2 2 2

0.5 0.6 0.4
0.4 0.2 0.15

2 2 2 2
1 0.5 1 0.6 1 0.4

1
1

1
2 2 2 2 2

2 2 2 2
0.3 0.3 0.4 0.6

1 0.25 0.4 0.2 0.15
2 2 2 2

1 0.3 1 0.3 1 0.4 1 0.6

  
  



   
   

        
                        

        
                          

 

0.320,0.333,0.502,0.445  

The aggregate is of four QSVNPNs under the QSVNPDOWGA operator is again a QSVNPN. 

Theorem 4.9 (Idempotency) for any QSVNPN , , ,T C U F     we have 

  , , ,..........,QSVNPDOWGA      . 

Theorem 4.10 (Boundedness) Consider the collection of QSVNPNs  1 2, ,....., m   , where 

, , , , 1,2,...,
l l l ll T C U F l m     

 
in such a manner 

that  min 1 2min , ,....., m    
, 

and  max 1 2max , ,....., m     . 

Then,  min 1 2 max, ,....., mQSVNPDOWGA      . 

Theorem 4.11 (Monotonicity) suppose the two collection of QSVNPNs are  ' ' '

1 2, ,....., m   and 

 1 2, ,....., m   where ' ' ' '

' , , , , , , , , 1,2,...,
l l l ll l l l

l lT C U F T C U F l m      
    

 

In such a manner that 
' ',

l ll l

T T C C  
  and ' ',

l ll l

U U F F  
  . Then 

 QSVNPDOWGA  ' ' '

1 2, ,....., m    QSVNPDOWGA  1 2, ,....., m   . 
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Theorem 4.12 (Reducibility) suppose  1 2, ,....., m   be a collection of QSVNPNs in such a 

manner that , , , , 1,2,...,
l l l ll T C U F l m       with the corresponding 

weight vector  1 2

1 1 1
, ,...., , ,......,

t
t

mW
m m m

  
 

   
 

. Then we can write  

 

1 1
,

1 1

1 11 1
1 1

1 1

1 1
, , ....., 1 , 1

1 2 1 1

2 2
1 1

1 1
2 21 11 1

T Cm ml l

l lm T m C
l l

QSVNPDOWGA m

U Fm ml l

l lm mU F
l l

  

  

 
  

 

     

  
  

      
            

      

      
      
      

         

 

Theorem 4.13 (Commutativity) 

suppose 1 2, ,....., , , , , , 1,2,...,
l l l lm l T C U F l m         be a collection of QSVNPNs and 

  ' ' ' '

' ' ' '

1 2, ,....., , , , , , 1,2,...,
l l l l

m l T C U F l m
   

      be a permutation of 1 2, ,....., m   .  

Then QSVNPDOWGA  ' ' '

1 2, ,....., m   =  1 2, ,....., mQSVNPDOWGA    . 

5. Model for MCDM Using Quadripartitioned Single-Valued Neutrosophic Pythagorean 

Information 

In this section, a model for MCDM by using quadripartitioned single-valued Pythagorean 

information is proposed. Here the decision-maker gives the information in the form of 

quadripartitioned single-valued neutrosophic number form. 

Let  1 2, ,....., mA a a a denotes the set of attributes or alternatives denoted by ia  for 

1,2,..,i m  and  1 2, ,....., nC c c c indicates the set of criteria denoted by jc for 1, 2,.., nj  . 

An expert is engaged to provide his/her evaluation of an alternative ia on a criterion jc in the form 

of QSVNPN. The expert information is recorded in the form of a decision matrix denoted 

by  M

ik m n
D


  where , , ,ij ij ij ij ijT C U F  . Also,  1 2, ,...., nW    is the weight vector of 
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the decision-maker where
1

1
n

p

p





, 

and 0p  . The criteria can be of two types called benefit 

criteria and cost criteria. If in the decision matrix, there is any cost type criteria then it can be 

converted into the normalized decision matrix and it is given by: 

  
, , , ,

, , , , cos

ik ik ik ik ikM

ik c

ik ik ik ik ik

T C U F for benefit criteria
ND s

F U C T for t criteria

 
  

 

 

The algorithm for the proposed model is given by: 

 

Algorithm 

Input: 

Step1: Input the QSVNPNs given by the expert in the form of a decision matrix(DM). 

Computations: 

Step2: Normalize the decision matrix if it is required. 

Step3: Calculate the collective information by using the proposed Dombi operators to evaluate the 

alternative preference values with associated weights. 

Step4: Find the score  pA and accuracy  pA values of the cumulative preference values. 

Output: 

Step5: Rank the alternatives and choose the best which has a maximum score value. 

We utilize this algorithm in the following practical application. 

6. An Application 

Suppose Mr. X wants to buy a smartphone and for this, he has six available alternatives denoted by 

the set  1 2 3 4 5 6, , , , ,M M M M M M M . He wants to select the best alternative based on certain 

criteria denoted by the set 

 1 2 3 4 5, , , ,C C C C C C , where 1C =price, 2C =battery capacity, 3C =storage space, 4C =camera 

quality, and 5C =looks. 

But there are certain issues with selecting the best alternative. All criteria have different units as 

price represents in a dollar, storage space in GB, battery capacity in MHA, camera quality in MP. So, 

we can’t compare criteria with different units. Another issue is the use of linguistic terms. For 

example, we do not express the looks or appearance of mobile in units as it depends on the choice of 

the customers. Moreover, criteria are of two types, namely, non-beneficial and beneficial. 

Non-beneficial are those criteria whose lower value is desirable. For example, price or cost, we desire 

a product having a lower cost. On the other hand, beneficial criteria are those whose higher value is 

desirable. For example, we always desire a mobile with higher storage, having a high megapixel 

camera with excellent looks, and have high-quality battery. Because of this Mr. X engages a 
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decision-maker or an expert. Firstly, the decision-maker assigns the weight vector associated with 

each criterion is given by  0.1,0.2,0.3,0.3,0.1W  . The performance of all the alternatives based 

on the given criteria is determined by the decision-maker in the form of a decision matrix using the 

QSVNP information is given by: 

Step1: 

3 51 2 4

1

2

3

4

5

6

0.3,0.4,0.5,0.2 0.3,0.1,0.4,0.4 0.3,0.5,0.3,0.1 0.2,0.5,0.4,0.3 0.3,0.5,0.1,0.6

0.6,0.7,0.3,0.2 0.5,0.3,0.2,0.4 0.3,0.4,0.5,0.3 0.5,0.7,0.2,0.3 0.3,0.2,0.6,0.7

0.4,0.3,0.5,0.4 0.5,0.3,0.

C CC C C

M

M

M

M
D

M

M

M

 4,0.4 0.2,0.4,0.3,0.4 0.3,0.5,0.3,0.4 0.2,0.1,0.4,0.6

0.3,0.6,0.4,0.3 0.2,0.1,0.3,0.4 0.6,0.3,0.4,0.3 0.1,0.2,0.2,0.4 0.5,0.6,0.4,0.3

0.5,0.5,0.4,0.3 0.4,0.3,0.2,0.2 0.3,0.3,0.5,0.3 0.3,0.5,0.5,0.3 0.3,0.2,0.4,0.6

0.4,0.6,0.2,0.4 0.1,0.4,0.4,0.6 0.2,0.4,0.3,0.6 0.7,0.3,0.5,0.1 0.5,0.3,0.1,0.3

 
 
 
 
 
 
 
 
 
 

 

As the criteria cost is a non-beneficiary criterion, therefore in the second step, we normalize the 

decision matrix: 

Step2: 

3 51 2 4

1

2

3

4

5

6

0.2,0.5,0.4,0.3 0.3,0.1,0.4,0.4 0.3,0.5,0.3,0.1 0.2,0.5,0.4,0.3 0.3,0.5,0.1,0.6

0.2,0.3,0.7,0.6 0.5,0.3,0.2,0.4 0.3,0.4,0.5,0.3 0.5,0.7,0.2,0.3 0.3,0.2,0.6,0.7

0.4,0.5,0.3,0.4 0.5,0.3,0

C CC C C

M

M

M

M
ND

M

M

M

 .4,0.4 0.2,0.4,0.3,0.4 0.3,0.5,0.3,0.4 0.2,0.1,0.4,0.6

0.3,0.4,0.6,0.3 0.2,0.1,0.3,0.4 0.6,0.3,0.4,0.3 0.1,0.2,0.2,0.4 0.5,0.6,0.4,0.3

0.3,0.4,0.5,0.5 0.4,0.3,0.2,0.2 0.3,0.3,0.5,0.3 0.3,0.5,0.5,0.3 0.3,0.2,0.4,0.6

0.4,0.2,0.6,0.4 0.1,0.4,0.4,0.6 0.2,0.4,0.3,0.6 0.7,0.3,0.5,0.1 0.5,0.3,0.1,0.3

 
 
 
 
 
 
 
 
 
 

 

Step3: Compute the aggregate preference value of each alternative under all the criteria using the 

Dombi operator with 3  defined in Theorem 4.2, given as 

1

2

3

4

5

6

0.279,0.486,0.189,0.141

0.458,0.626,0.238,0.330

0.411,0.452,0.317,0.407

0.527,0.458,0.259,0.332

0.338,0.433,0.294,0.267

0.626,0.368,0.189,0.142

M

M

M

M

M

M

 
 
 
 
 
 
 
 
 
 

 

Step4: Next we calculate the score of each alternative given by: 

 1 0.258M  ,  2 0.436M  ,  3 0.107M  ,  4 0.310M  ,  5 0.144M  and 

 6 0.471M   
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Step5: Rank the scores of all the alternatives, we have 

 6M   2M   4M   1M   5M   3M  

Since the alternative 6M is the best alternative as it has the highest rank among all. Therefore, Mr. X 

will buy 6M mobile. If it is not available in the market then he will prefer the second-highest rank 

alternative i.e. 2M . 

Aliter: 

We repeat up to step2.  

Step3: Compute the aggregate preference value of each alternative under all the criteria using the 

Dombi operator with 3  defined in Theorem 4.8, given as 

1

2

3

4

5

6

0.237,0.159,0.375,0.460

0.304,0.308,0.573,0.568

0.243,0.190,0.350,0.473

0.139,0.153,0.464,0.369

0.311,0.296,0.479,0.468

0.154,0.297,0.488,0.556

M

M

M

M

M

M

 
 
 
 
 
 
 
 
 
   

Step4: By using definition 2.7, the scores of each alternative are calculated as: 

 1 0.270M   ,  2 0.463M   ,  3 0.251M   ,  4 0.308M   ,  5 0.264M  
 

and  6 0.435M    

Step5: Ranking of the alternatives is given by: 

 3M   5M   1M   4M   6M   2M  

Here, 3M is the best alternative. 

To compare the results of the two methods, we consider the following table: 

Table-1 

Alternatives            Ranking Absolute 

Difference 

Modified Rank 

QSVNPDOWAA QSVNPDOWGA 

1M  
4 3 1 5.5 

2M  
2 6 4 2.5 

3M  
6 1 5        1 
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4M  
3 4 1 5.5 

5M  
5 2 3 4 

6M  
1 5 4 2.5 

 As the two methods give two different optimal choices, therefore there is a hesitation for a decision-maker to 

choose the best alternative. To sort out such an issue, we consider the table-1, where we have determined the 

modified rank against each alternative. As 3M has the highest modified rank, so 3M is our preferred choice. In 

the case of a tie, there is more than one alternative under consideration. 

 

Remark: Instead of taking 3  we can choose any value higher than or equal to 1. For each value 

of  we get the same rank of the alternatives. 

7. Conclusion   

In the present paper, we have studied the notion of QSVNPNs and their various operational laws 

based on Dombi operators. We also introduced two new Dombi operators, namely QSVNPDOWAA 

and QSVNPDOWGA in the quadripartitioned single-valued neutrosophic Pythagorean information. 

Based on these two operators we have studied different properties such as monotonicity, 

commutativity, reducibility, boundedness, and idempotency. Moreover, we have proposed a model 

for MCDM problems under the QSVNPN environment. Finally, for the practical application of the 

proposed model, a real-life based example is given by which we justify the feasibility and rationality 

of the model and shows that how it is effective in decision-making problem. In the future, the 

proposed model can be applied for risk management, disease diagnosis, control theory, MADM, 

game theory, and many other diverse fields for decision-making. 
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Abstract: In this paper a new concept of neutrosophic closed sets called neutrosophic β generalized α closed 

set is introduced and their properties are thoroughly studied and analyzed and also discuss their 

relationship between basic closed sets in neutrosophic topological spaces. Some new interesting theorems 

are presented using newly introduced set.  

Keywords: Neutrosophic β generalized α closed sets. 

______________________________________________________________________________________________ 

1. Introduction 

The concept of intuitionistic fuzzy sets introduced by Atanassov(1), intuitionistic fuzzy topological spac by 

Coker(2),after that Floretin Smarandache(3) in 1999 extended the neutrosophic sets, neutrosophic 

topological spaces by  A. A. Salama and S. A. Alblowi(9). Further the basic sets like neutrosophic open 

sets(N-OS), neutrosophic semi open sets(N-SOS), neutrosophic pre open sets(N-POS), neutrosophic α open 

sets(N- αOS), neutrosophic regular open sets(N-ROS), neutrosophic β open sets(N- βos), neutrosophic b 

open sets(N-bOS) are introduced in neutrosophic topological spaces and their properties are studied by 

various authors(8,10).  

The main aim of this paper is to analyze a new concept of neutrosophic closed sets called neutrosophic 

β generalized α closed sets also specialized some of their basic properties with examples. 

mailto:gomathimathaiyan@gmail.com
mailto:gomathim@skcet.ac.in
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2. Preliminaries: 

Here in this paper (X, τ) is the neutrosophic topological space .Also the neutrosophic interior is 

denoted by N-Int(A), neutrosophic closure is denoted by N-Cl(A) and  

the complement of a neutrosophic set A is denoted by N-C(A) and the empty and whole sets are denoted by 

0 and 1 respectively. 

Definition 2.1: Let X be a non-empty fixed set. A neutrosophic set (NS) A is an object having the form A = 

{x, μA(x), σA(x), νA(x): x∈X} where μA(x) represent the degree of membership , σA(x) represent degree of 

indeterminacy and νA(x)  represent  the degree of nonmembership 

Nonmembership respectively of each element x ∈ X to the set A. 

A Neutrosophic set A = {x, μA(x), σA(x), νA(x): x∈X} can be identified as an ordered triple  μA, σA, νA  

in ]-0, 1+[ on X. 

Definition 2.2: Let A =  μA, σA, νA  be a NS on X, then the complement Neutrosophic-C(A) may be defined 

as 

1. Neutrosophic -C (A) = {x, (1-μA (x)), (1- νA(x)) : x ∈ X} 

2. Neutrosophic -C (A) = {x, νA(x), σA(x), μA (x) : x ∈ X} 

3. Neutrosophic -C (A) = {x, νA(x), (1-σA(x)), μA (x) : x ∈X} 

Definition 2.3: For any two neutrosophic sets A = {x, μA (x), σA(x), νA(x) : x∈X} and  

B = {x, μB (x), σB(x), νB(x) : x∈X} is 

1. (A ⊆ B)   μA (x) ≤ μB (x), σA(x) ≤ σB(x) and νA(x) ≥ νB(x)   x ∈ X 

2. (A ⊆ B)   μA (x) ≤ μB (x), σA(x) ≥ σB(x) and νA(x) ≥ νB(x)   x ∈ X 

3. (A   B)   μA (x)   μB (x), σA(x)   σB(x) and νA(x)   νB(x)  

4. (A  B)   μA (x)   μB (x), σA(x)   σB(x) and νA(x)   νB(x)  

5. (A    B)   μA (x)   μB (x), σA(x)   σB(x) and νA(x)   νB(x)  

6. (A   B)   μA (x)   μB (x), σA(x)   σB(x) and νA(x)   νB(x)  

Definition 2.4: A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic subsets in 

X satisfies the following axioms: 
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(NT1) 0N, 1N ∈ τ 

(NT2) G1   G2 ∈ τ  for any G1, G2 ∈ τ 

(NT3)   Gi ∈ τ   { Gi : i ∈ J} ⊆τ 

In this case the pair (X, τ) is a neutrosophic topological space (NTS) and any neutrosophic set in τ is known 

as a neutrosophic open set (N-OS) in X. A neutrosophic set A is a neutrosophic closed set (NCS) if and only 

if its complement N-C(A) is a neutrosophic open set in X. 

Definition 2.6: A neutrosophic set  A of a NTS X is said to be 

(i) A neutrosophic pre-open set (NP-OS) if A ⊆  NInt(NCl(A)) 

(ii) A neutrosophic semi-open set (NS-OS) if A ⊆ NCl(NInt(A)) 

(iii) A neutrosophic α-open set (Nα-OS) if A ⊆  NInt(NCl(NInt(A))) 

(iv) A neutrosophic β-open set (N β-OS) if A ⊆ N-cl(N-int(N-cl(A))). 

(v) A neutrosophic  regular open set (N-ROS) if N-int(N-cl(A)) = A,    

(vi) A neutrosophic b open set (N-bOS) if  A ⊆ N-int(N-cl(A)) ∪ N-cl(N-int(A)) 

       

Definition 2.7: A neutrosophic set   A of a NTS X is said to be 

(i) A neutrosophic pre-closed set (NP-CS) if NCl(NInt(A)) ⊆  A 

(ii) A neutrosophic semi-closed set (NS-CS) if NInt(NCl(A)) ⊆  A 

(iii) A neutrosophic α-closed set (Nα-CS) if NCl(NInt(NCl(A))) ⊆  A 

(iv) A neutrosophic β-closed set (Nα-CS) if Nint(Ncl(Nint(A))) ⊆ A 

(v)A neutrosophic regular closed set (N-RCS) if N-cl(N-int(A)) = A,   

(vi) A neutrosophic b closed set (N-bCS) if  N-int(N-cl(A))  N-cl(N-int(A)) ⊆ A 

       

Definition 2.8: 

Consider a NS A in NTS. The Neutrosophic beta interior & Neutrosophic beta closure of A are defined as  

Nβint(A)=    { G, G is a N-βOS in X and G ⊆A}  

Nβcl(A)=   { G, G is a N-βOS in X and A ⊆ K}  
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Remark 2.9 : 

Consider a NS A in NTS, then  

(1) Nβcl(A)=A Nint(Ncl(Nint(A))),  

(2) Nβint(A)=A∩Ncl(Nint(Ncl(A))).  

Definition 2.10: 

Consider a NS A in NTS. Then it is a Neutrosophic generalized beta closed set (N-GβCS) if N-βcl(A) ⊆  U 

whenever A ⊆  U and U is a NOS. 

 

3. Neutrosophic β generalized α closed sets in Topological spaces 

 

In this section we have introduced Neutrosophic β generalized α closed sets and studied some of 

their properties. 

 

Definition 3.1: An Neutrosophic set  A in an NTS (X, τ) is said to be an neutrosophic β generalized α closed 

set (NβGαCS) if Nβcl(A)  U  whenever  A  U and U is an N-αOS in (X, τ). 

The family of all N-βGαCSs of an NTS (X, τ) is denoted by N-βGαC(X). 

Example 3.2: Let X = {a, b} and G1 = x, (0.5a, 0.5b), (0.5a, 0.5b), (0.5a, 0.5b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7d), (0.6a, 0.7b). Then τ = {0, G1, G2, 1} is an NT on X. Here 

Let S = x, (0.3a, 0.2b), (0.7a, 0.8b), (0.7a, 0.8b) then S is called an N-βGαCS in X. 

Proposition 3.3: Every Neutrosophic-CS is an Neutrosophic -βGαCS in (X, τ) but reverse process is not true 

in general. 

Proof: Let S be an N-CS in X. Let we take S  U where U is said to be an N-αOS in X. As N-βcl(S)  N-cl(S) = 

S  U by hypothesis, we have N-βcl(S)  U. Thus S is an N-βGαCS in (X, τ). 

Example 3.4: Let X = {a, b}, G1 = x, (0.5a, 0.5b), (0.5a, 0.5b), (0.5a, 0.5b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7d), (0.6a, 0.7b). Then τ = {0, G1, G2, 1} is an NT on X.                                                            
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Here we take S = x, (0.3a, 0.2b), (0.7a, 0.8b), (0.7a, 0.8b) is an (N)-βGαCS but it not an (N)-CS in (X, τ) since 

N-cl(S) = G1c ≠ S. 

Proposition 3.5: Every Neutrosophic -SCS is an Neutrosophic -βGαCS in (X, τ) but reverse process is not 

true in general. 

Proof: Let A be an N-SCS in X. Let we take A  U and U is said to be an N-αOS in X. As N-βeta closure(A)  

N-semi closure(A) = A  U by hypothesis, we have N-βeta closure (A)  U. Then A is called an N-βGαCS in 

(X, τ). 

Example 3.6: Let X = {a, b}, G1 = x, (0.5a, 0.5b), (0.5a, 0.5b), (0.5a, 0.5b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7b), (0.6a, 0.7b).  Then τ = {0, G1, G2, 1} is an NT on X.  

Here we take  a point S = x, (0.3a, 0.2b), (0.7a, 0.8b), (0.7a, 0.8b)  which satisfy N-βGαCS but does not satisfy  

N-SCS in (X, τ) since N-int(N-cl(S)) = N-int(G1c) = G1 ⊈ S. 

Proposition 3.7: Every Neutrosophic-PCS is an Neutrosophic -βGαCS in (X, τ) but reverse process is not 

true in general. 

Proof: Let A be an N-PCS in X. Let we take A  U and U is said to be an N-αOS in X. As N-βeta closure(A)  

N-Pre closure(A) = A  U by hypothesis, we have N-βeta closure (A)  U. Then A is called an N-βGαCS in 

(X, τ). 

Example 3.8: Let X = {a, b}, G1 = x, (0.5a, 0.6b), (0.5a, 0.4b), (0.5a, 0.4b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7b), (0.6a, 0.7b) .  Then τ = {0, G1, G2, 1} is an NT on X. Here                               

we take A = x, (0.4a, 0.3b), (0.6a, 0.7b), (0.6a, 0.7b) which satisfy N-βGαCS but does not satisfy N-PCS in (X, τ) 

as N-cl(N-int(A)) = N-cl(G2) = G1c ⊈ A. 

Proposition 3.9: Every Neutrosophic-αCS is an Neutrosophic-βGαCS in (X, τ) but not conversely in general. 

Proof: Let A be an N-αCS in X. Let as assume A  U and U is said to be an N-αOS in X. As N-βcl(A)  

N-αcl(A) = A  U by hypothesis, we have N-βcl(A)  U. Then A is an N-βGαCS in (X, τ). 
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Example 3.10: Let X = {a, b}, G1 = x, (0.5a, 0.5b), (0.5a, 0.5b), (0.5a, 0.5b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7b), (0.6a, 0.7b) .  Then τ = {0, G1, G2, 1} is an IFT on X. Here                                  

we take S = x, (0.3a, 0.2b), (0.7a, 0.8b), (0.7a, 0.8b)  which satisfy N-βGαCS but does not satisfy  N-αCS in (X, 

τ) since N-cl(N-int(N-cl(S))) = N-cl(N-int(G1c)) = N-cl(G1) = G1c ⊈ S. 

Proposition 3.11: Every Neutrosophic-bCS  is an Neutrosophic-βGαCS in (X, τ) but reverse process is not 

true in general. 

Proof: Let A be an NbCS in X. Let as assume  A  U and U is said to be an N-αOS in X. As N-βcl(A)  

N-bcl(A) = A  U by hypothesis, we have N-βcl(A)  U. Then A is an N-βGαCS in (X, τ). 

Example 3.12: Let X = {a, b}, G1 = x, (0.5a, 0.3b), (0.5a, 0.7b), (0.5a, 0.7b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7b), (0.6a, 0.7b).  Then τ = {0, G1, G2, 1} is an NT on X. Here                                    

we assume A = x, (0.4a, 0.6b), (0.4a, 0.4b), (0.4a, 0.4b) which satisfy  N-βGαCS but does not satisfy  N-bCS in 

(X, τ) since N-int(N-cl(A))  N-cl(N-int(A)) = G1 G1c = G1⊈ A. 

Proposition 3.13: Every Neutrosophic-RCS is an Neutrosophic-βGαCS in (X, τ) but reverse process is not 

true in general. 

Proof: Let A be an N-RCS in X. Then A is an N-CS as every N-RCS is an N-CS, A is an N-βGαCS in (X, τ). 

Example 3.14: Let X = {a, b}, G1 = x, (0.5a, 0.6b), (0.5a, 0.4b), (0.5a, 0.4b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7b), (0.6a, 0.7b).  Then τ = {0, G1, G2, 1} is an NT on X. Here we take A = x, (0.4a, 

0.3b), (0.6a, 0.7b) which satisfy  N-βGαCS but does not satisfy  N-RCS in (X, τ) as N-cl(N-int(A))  

N-cl(G2) = G1c ≠ A. 

Proposition 3.15: Every Neutrosophic-βCS is an Neutrosophic-βGαCS in (X, τ) but reverse process is not 

true in general. 

Proof: Let A be an N-βCS in X. Let as assume A  U and U is said to be an N-αOS in X. Now N-βcl(A) = A  

U, by hypothesis.  Therefore we have N-βcl(A)  U. Hence A is an N-βGαCS in (X, τ). 
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Example 3.16: Let X = {a, b}, G1 = x, (0.5a, 0.3b), (0.5a, 0.7b), (0.5a, 0.7b) and                                                           

G2 = x, (0.4a, 0.3b), (0.6a, 0.7b), (0.6a, 0.7b).  Then τ = {0, G1, G2, 1} is an NT on X. Here                            

A = x, (0.4a, 0.6b), (0.4a, 0.4b), (0.4a, 0.4b) which satisfy N-βGαCS but does not satisfy  N-βCS in (X, τ) as 

N-int(N-cl(N-int(A))) = N-int(N-cl(G2)) = N-int(G1c) = G1⊈ A. 

In the following diagram, we have provided the relation between various types of neutrosophic 

closedness. 

 

 

Remark 3.17: The union of any two N-βGαCSs is not an N-βGαCS in general as seen in the following 

example. 

Example 3.18: Let us assume X = {a, b}, G1 = x, (0.5a, 0.6b), (0.5a, 0.4b), (0.5a, 0.4b),                                                           

G2 = x, (0.2a, 0.3b), (0.8a, 0.7b), (0.8a, 0.7b) and G3 = x, (0.6a, 0.7b), (0.4a, 0.3b), (0.4a, 0.3b). Then  τ  be {0, G1, G2, 

G3, 1} is an Neutrosophic Topology on X.   

N-βGαCS 

 

N-αCS 

 

N-bCS 

 

N-PCS 

 

N-SCS 

 

N-βCS 

 

 

N-CS 

 

N-RCS 
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The NSs A = 〈x, (0.1a, 0.5b), (0.9a, 0.5b), (0.9a, 0.5b)〉, B = 〈x, (0.5a, 0.2b), (0.5a, 0.8b), (0.5a, 0.8b)〉 are N-βGαCSs in 

(X, τ). But A ∪ B is not an N-βGαCS as A ∪ B = 〈x, (0.5a, 0.5b), (0.5a, 0.5b), (0.5a, 0.5b)〉 ⊆ G1 but N-βcl(A  B) = 

〈x, (0.6a, 0.7b), (0.4a, 0.3b), (0.4a, 0.3b)〉 ⊈ G1. 

Remark 3.19: The intersection of any two N-βGαCSs is not an N-βGαCS in general as seen in the following 

example. 

Example 3.20: Let X = {a, b}, G1 = x, (0.5a, 0.6b), (0.5a, 0.4b), (0.5a, 0.4b),                                                           

G2 = x, (0.2a, 0.3b), (0.8a, 0.7b), (0.8a, 0.7b) and G3 = x, (0.6a, 0.7b), (0.4a, 0.3b), (0.4a, 0.3b). Then  τ = {0, G1, G2, G3, 

1} is an NT on X. The IFSs A = 〈x, (0.5a, 0.8b), (0.5a, 0.2b), (0.5a, 0.2b)〉, B = 〈x, (0.8a, 0.6b), (0.2a, 0.4b)〉 are 

N-βGαCSs in (X, τ). But A ∩ B is not an N-βGαCS as A ∩ B = 〈x, (0.5a, 0.6b), (0.5a, 0.4b), (0.5a, 0.4b)〉 ⊆ G1 but 

N-βcl(A ∩ B) = 〈x, (0.6a, 0.7b), (0.4a, 0.3b), (0.4a, 0.3b)〉 ⊈ G1. 

Proposition 3.21: Let (X, τ) be an NTS. Then for every A ∈ N-βGαC(X) and for every B ∈ NS(X), A   B 

N-βcl(A) ⇒B ∈ N-βGαC(X). 

Proof: Let B   U and also U be an N-α open set in X. Then since A   B, A   U. By hypothesis    B 

N-βcl(A). Therefore N-βcl(B)   N-βcl(N-βcl(A)) = N-βcl(A)   U, since A is an N-βGαCS in X. Hence 

B ∈ N-βGαC(X). 

Proposition 3.22: If R is an N-αOS and an N-βGαCS  in (X, τ), then R is an N-βCS  in (X, τ). 

Proof: Since R R and R is an N-αOS in X, by hypothesis N-βcl(R)   R. But R N-βcl(R). Therefore 

N-βcl(R) = R. Then R is an N-βCS in (X, τ). 

Proposition 3.23: Let H   R   X where R is said to be an N-αOS and it is an N-βGαCS in X. Then H is an 

N-βGαCS in R if and only if H is an N-βGαCS  in X. 

Proof: Necessity: Let as assume J be an N-αOS in X and F   J. Also let H be an N-βGαCS in R. Then 

clearly H R ∩ J and R ∩ J is an N-αOS in A. Hence neutrosophic beta closure of H in R, N-βclR(H)   R ∩ J 

and by Proposition 3.22, R is an N-βCS. Therefore N-βcl(R) = R. Now neutrosophic beta closure of H in X, 
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N-βcl(H)   N-βcl(H) ∩ N-βcl(R) = N-βcl(H) ∩ R = N-βclR(H)   R ∩ J  J, that is N-βcl(H)   R, 

whenever H   R. Hence H is called N-βGαCS in X. 

Sufficiency: Let V be an N-αOS in A, such that F   V. Since A is an N-αOS in X, V is an N-αOS in X. 

Therefore N-βcl(F)   V, as F is an N-βGαCS  in X. Thus, N-βclA(F) = N-βcl(F) ∩ A   V ∩ A   V. Hence 

F is an N-βGαCS in A. 

Proposition 3.24: An NS A is both an N-OS and an N-βGαCS  if and only if  A is an N-ROS in X. 

Proof: Necessity:  Let A be both an N-OS and an N-βGαCS in X. Then A is an N-αOS and an N-βGαCS. By 

Proposition 3.22, A is an N-βCS and  N-int(N-cl(N-int(A)))   A. Since A is an N-OS, N-int(A) = A. 

Therefore N-int(N-cl(A))   A. Since A is an N-OS, it is an N-POS. Hence A N-int(N-cl(A)). Therefore A 

= N-int(N-cl(A)) and A is an N-ROS in X. 

Sufficiency: Let A be an N-ROS in X then A= N-int(N-cl(A)). Since every N-ROS is an N-OS,  A is an N-OS. 

We know N-int(N-cl(N-int(A))) = N-int(N-cl(A)) = A   A. Therefore A is an Neutrosophic β Closed set  in 

X, and by Proposition 3.15, A is an N-βGαCS in X. 

Proposition 3.25: Let (X, τ) be an NTS. Then N-βC(X) = N-βGαC(X) if every IFS in (X, τ) is an N-αOS in X. 

Proof: Suppose that every NS in (X, τ) is an N-αOS in X. Let A ∈ N-βGαC(X). Then A is also an  N-αOS by 

hypothesis. We know that A is an N-βCS. Therefore A ∈  N-βC(X).  

Hence N-βGαC(X)  N-βC(X)               (i) 

Let A ∈ N-βC(X). Then by Proposition 3.15, A is an N-βGαCS and A ∈ N-βGαC(X). Hence   N-βC(X)  

N-βGαC(X)           (ii). From (i) and (ii) N-βC(X) = N-βGαC(X).  

Proposition 3.26: Let R be an N-αOS and an N-βGαCS of (X, τ). Then R ∩ F is an N-βGαCS  of  

 (X, τ) where F is an N-CS of X. 

Proof: Suppose that R is an N-αOS and an N-βGαCS  of (X, τ),  then by Proposition 3.22, R is an N-βCS. 

But F is an N-CS in X. Hence R ∩ F is an N-βCS as every N-CS is an N-βCS. Then  R ∩ F is an N-βGαCS  in 

X. 
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Abstract: In this paper, the concepts of Pentapartitioned Neutrosophic Pythagorean resolvable , 

Pentapartitioned Neutrosophic Pythagorean irresolvable, Pentapartitioned Neutrosophic 

Pythagorean open hereditarily irresolvable and maximally Pentapartitioned Neutrosophic 

Pythagorean irresolvable spaces are introduced. Also we investigated several properties of the 

Pentapartitioned Neutrosophic Pythagorean open hereditarily irresolvable spaces besides giving 

characterization of these spaces by means of somewhat Pentapartitioned Neutrosophic Pythagorean 

continuous functions and somewhat Pentapartitioned Neutrosophic Pythagorean open functions. 

Keywords: Pentapartitioned neutrosophic pythagorean resolvable, pentapartitioned neutrosophic 

pythagorean open hereditarily irresolvable, somewhat pentapartitioned neutrosophic pythagorean 

irresolvable, pentapartitioned neutrosophic pythagorean continuous and open functions. 

 

 

1. Introduction 

Zadeh[16] introduced the important and useful concept of a fuzzy set which has invaded almost 

all branches of mathematics. The speculation of fuzzy topological space was studied and 

developed by C.L. Chang [4]. The paper of Chang sealed the approach for the 

following tremendous growth of the various fuzzy topological ideas. Since then a lot of attention 

has been paid to generalize the fundamental ideas of general topology in fuzzy setting 

and therefore a contemporary theory of fuzzy topology has been developed. Atanassov and plenty 

of researchers [1] worked on intuitionistic fuzzy sets within the literature.   Florentin 

Smarandache [13] introduced the idea of Neutrosophic set in 1995 that provides the information of 

neutral thought by introducing the new issue referred to as uncertainty within 

the set. Thus neutrosophic set was framed and it includes the parts of truth membership 

function(T), indeterminacy membership function(I), and falsity membership function(F) severally. 

Neutrosophic sets deals with non normal interval of ]−0 1+[. Pentapartitioned neutrosophic set and 

its properties were introduced by Rama Malik and Surpati Pramanik [12]. In this case, 

indeterminacy is divided into three components: contradiction, ignorance, and an unknown 

mailto:stanisarulmary@gmail.com
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membership function. The concept of Pentapartitioned neutrosophic pythagorean sets was 

initiated by R. Radha and A. Stanis Arul Mary . The concept of neutrosophic fuzzy resolvable 

spaces and irresolvable spaces was introduced by M. Caldas et.al[3]. Now we extend the concepts 

to pentapartitioned neutrosophic pythagorean sets.  

In this Paper we initiated the new concept of Pentapartitioned neutrosophic pythagorean resolvable, 

pentapartitioned neutrosophic pythagorean open hereditarily irresolvable, somewhat 

pentapartitioned neutrosophic pythagorean irresolvable, pentapartitioned neutrosophic 

pythagorean continuous and open functions and discussed some of its properties. 

2. Preliminaries  

2.1 Definition [13] 

Let X be a universe. A Neutrosophic set A on X can be defined as follows: 

𝐴 =  {< 𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >: 𝑥 ∈ 𝑋} 

Where 𝑇𝐴  , 𝐼𝐴, 𝐹𝐴: 𝑈 → [0,1] 𝑎𝑛𝑑 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴 (𝑥) ≤ 3 

Here, 𝑇𝐴(𝑥) is the degree of membership,  𝐼𝐴(𝑥) is the degree of inderminancy and 𝐹𝐴(𝑥) is the 

degree of non-membership. 

 

2.2 Definition [7] 

Let X be a universe. A Pentapartitioned neutrosophic pythagorean [PNP] set A with T, F, C and U as 

dependent neutrosophic components and I as independent component for A on X is an object of the 

form  

𝐴 =  {< 𝑥, 𝑇𝐴, 𝐶𝐴, 𝐼𝐴 , 𝑈𝐴, 𝐹𝐴 >: 𝑥 ∈ 𝑋} 

Where 𝑇𝐴  + 𝐹𝐴 ≤ 1, 𝐶𝐴  + 𝑈𝐴 ≤ 1 𝑎𝑛𝑑  

(𝑇𝐴)2 + (𝐶𝐴)2 +  (𝐼𝐴)2 + (𝑈𝐴)2 + (𝐹𝐴 )
2 ≤ 3 

Here,  𝑇𝐴(𝑥)  is the truth membership, 𝐶𝐴(𝑥)  is contradiction membership,  𝑈𝐴(𝑥)  is ignorance 

membership, 𝐹𝐴(𝑥) is the false membership and IA (𝑥) is an unknown membership. 

 

2.3 Definition [12] 

Let P be a non-empty set. A Pentapartitioned neutrosophic set A over P characterizes each element p 

in P  a truth -membership function  𝑇𝐴  , a contradiction membership function  𝐶𝐴 , an ignorance 

membership function  𝐺𝐴, unknown membership function  𝑈𝐴 and a false membership function  𝐹𝐴 

, such that for each p in P 

𝑇𝐴 + 𝐶𝐴 + 𝐺𝐴 +  𝑈𝐴 + 𝐹𝐴 ≤ 5. 

 

 

2.4 Definition [7] 

The complement of a pentapartitioned neutrosophic pythagorean set A on R is denoted by AC or A* 

and is defined   as  

AC = {< 𝑥, 𝐹𝐴(𝑥), 𝑈𝐴 (𝑥), 1 − 𝐺𝐴(𝑥), 𝐶𝐴(𝑥), 𝑇𝐴(𝑥) > ∶ 𝑥 ∈ 𝑋}  
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2.5 Definition [7] 

Let   A = < 𝑥, 𝑇𝐴(𝑥), 𝐶𝐴(𝑥), 𝐺𝐴(𝑥), 𝑈𝐴(𝑥), 𝐹𝐴(𝑥) >  and B = < 𝑥, 𝑇𝐵(𝑥), 𝐶𝐵(𝑥), 𝐺𝐵(𝑥), 𝑈𝐵(𝑥), 𝐹 𝐵(𝑥) > 

are pentapartitioned neutrosophic pythagorean sets. Then 

A ∪ B = < 𝑥, 𝑚𝑎𝑥(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)), 𝑚𝑎𝑥(𝐶𝐴(𝑥), 𝐶𝐵(𝑥)), min (𝐺𝐴(𝑥), 𝐺 𝐵(𝑥)), min (𝑈𝐴(𝑥), 𝑈 𝐵(𝑥)), 

min (𝐹𝐴(𝑥), 𝐹𝐵(𝑥)), >  

A ∩ B = < 𝑥, 𝑚𝑖𝑛(𝑇𝐴(𝑥), 𝑇𝐵(𝑥)), 𝑚𝑖𝑛(𝐶𝐴(𝑥), 𝐶𝐵(𝑥)), max (𝐺𝐴(𝑥), 𝐺 𝐵(𝑥)) 

, 𝑚𝑎𝑥(𝑈𝐴(𝑥), 𝑈𝐵(𝑥)), 𝑚𝑎𝑥(𝐹𝐴(𝑥), 𝐹 𝐵(𝑥)) > 

2.6 Definition[7] 

A PNP topology 𝜏  on a nonempty set R is a family of a PNP sets in R satisfying the following axioms 

1) 0,1∈ 𝜏  

2) 𝑅1 ∩ 𝑅2 ∈ 𝜏 for any 𝑅1, 𝑅2 ∈ 𝜏 

3) ⋃ 𝑅𝑖  ∈ 𝜏 for any 𝑅𝑖: 𝑖 ∈ 𝐼 ⊆ 𝜏 

The complement R* of PNP open set (PNPOS, in short) in PNP topological space [PNPTS] (R,𝝉), is 

called a PNP closed set [PNPCS]. 

2.7 Definition [7] 

Let (R,𝝉) be a PNPTS and L be a PNPTS in R. Then the PNP interior and PNP Closure of R denoted 

by 

Cl(L) = ⋂{𝑲: K is a PNPCS in R and L⊆ K}. 

Int(L) = ⋃{G: G is a PNPOS in R and G⊆ L}. 

 

3. Pentapartitioned Neutrosophic Pythagorean Resolvable and Irresolvable Spaces  

3.1 Definition 

A Pentapartitioned neutrosophic pythagorean (PNP) set P in Pentapartitioned neutrosophic 

pythagorean topological space (PNPTS) (R, 𝜏) is called pentapartitioned neutrosophic pythagorean 

dense if there exists no pentapartitioned neutrosophic pythagorean closed set Q in (R, 𝜏) such that 

 P ⊂ Q ⊂ 1R 

Note: If P is a PNP open set , then the complement of PNP set P is a PNP closed set and it is denoted 

by 𝑃∗.  

3.2 Example 

Let R = { e, f} and define the pentapartitioned neutrosophic pythagorean set P as  

P = {
{𝑒, 0.4,0.5,0.7,0.2,0.3}

{𝑓, 0.5,0.3,0.6,0.1,0.2}
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Then 𝜏 = {0𝑅 , 1𝑅 , 𝑃} is a pentapartitioned neutrosophic pythagorean topology on R. Hence P is a 

PNP dense set in (R, 𝜏}.  

 

3.3 Definition 

A PNPTS (R, 𝜏) is called PNP resolvable if there exists a PNP dense set P in (R, 𝜏) such that PNPCl 

(𝑃∗) = 1𝑅. Otherwise (R, 𝜏) is called PNP irresolvable. 

 

3.4 Example 

Let R = { e, f} and define the pentapartitioned neutrosophic pythagorean set P, Q and R  as  

P = {
{𝑒, 0.3,0.4,0.3,0.3,0.1}

{𝑓, 0.4,0.2,0.6,0.5,0.3}
, 

Q = {
{𝑒, 0.4,0.2,0.7,0.1,0.3}

{𝑓, 0.6,0.1,0.3,0.2,0.2}
  and 

R = {
{𝑒, 0.1,0.2,0.4,0.3,0.4}

{𝑓, 0.5,0.4,0.3,0.2,0.1}
  . 

It can be seen that 𝜏 = {0𝑅 , 1𝑅 , 𝑃} is a pentapartitioned neutrosophic pythagorean topology on R. 

Then (R, 𝜏) is a pentapartitioned neutrosophic topological space. Now PNPInt(Q) = 0𝑅, PNPInt(R) = 

0𝑅, PNPCl (Q) = 1𝑅  and PNPCl(R) = 1𝑅 . Thus P and Q are PNP dense sets in (R, 𝜏) such that 

PNPCl (𝑄∗) = 1𝑅 and PNPCl(𝑅∗) = 1𝑅. Hence the PNP topological space (R, 𝜏) is PNP resolvable. 

 

3.5 Example 

Let R = { e, f} and define the pentapartitioned neutrosophic pythagorean set P, Q and R  as  

P = {
{𝑒, 0.2,0.3,0.5,0.4,0.5}

{𝑓, 0.1,0.2,0.5,0.5,0.3}
, 

Q = {
{𝑒, 0.4,0.5,0.5,0.4,0.3}

{𝑓, 0.5,0.4,0.4,0.3,0.2}
  and 

R = {
{𝑒, 0.3,0.4,0.4,0.3,0.2}

{𝑓, 0.2,0.3,0.5  ,0.2,0.1}
  . 

It can be seen that 𝜏 = {0𝑅 , 1𝑅 , 𝑃} is a pentapartitioned neutrosophic pythagorean topology on R. 

Then (R, 𝜏) is a pentapartitioned neutrosophic topological space. Now PNPInt(Q) = A, PNPInt(R) = 

A, PNPCl (Q) = 1𝑅  and PNPCl(R) = 1𝑅 . Thus P and Q are PNP dense sets in (R, 𝜏) such that 

PNPCl (𝑄∗) = 𝑃∗  and PNPCl(𝑅∗) =𝑃∗. Hence the PNP topological space (R, 𝜏) is PNP irresolvable. 

 

3.6 Theorem   

A PNPTS (R, 𝜏) is a PNP resolvable space iff (R, 𝜏) has a pair of PNP dense set K1 and K2 such that  

K1 ⊆ 𝐾2
∗ . 

Proof 

 Let (R, 𝜏) be a PNPTS and (R, 𝜏) be PNP resolvable space. Suppose that for all PNP dense sets 𝐾𝑖 

and 𝐾𝑗, we have 𝐾𝑖 ⊈  𝐾𝑗
∗. Then 𝐾𝑖 ⊃  𝐾𝑗

∗. Then PNPCl(𝐾𝑖) ⊃ PNPCl(𝐾𝑗
∗) which implies that 1R ⊃ 

PNPCl(𝐾𝑗
∗).Then PNPCl(𝐾𝑗

∗) ≠ 1R. Also 𝐾𝑗 ⊃ 𝐾𝑖
∗, then PNPCl(𝐾𝑗) ⊃ PNPCl(𝐾𝑖

∗) which implies that 
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1R ⊃ PNPCl(𝐾𝑖
∗). Therefore PNPCl (𝐾𝑖

∗) ≠  1R. Hence PNPCl(𝐾𝑖
∗) = 1R, but PNPCl(𝐾𝑖) ≠  1R for all 

PNP set 𝐾𝑖   in  (R, 𝜏) which is a contradiction. Hence (R, 𝜏) has a pair of PNP dense set K1 and K2 

such that K1 ⊆ 𝐾2
∗. 

 Conversely, suppose that the PNP topological space (R, 𝜏) has a pair of PNP dense set 

K1 and K 2 such that 𝐾1  ⊆ 𝐾2
∗. Suppose that (R, 𝜏) is a PNP irresolvable space, Then for all PNP dense 

sets 𝐾1 and 𝐾2 in (R, 𝜏), we have PNPCl(𝐾1
∗) ≠ 1𝑅. Then PNPCl(𝐾2

∗) ≠ 1𝑅 implies that there exists 

a PNP closed set L in (R, 𝜏) such that 𝐾2
∗ ⊂ L ⊂ 1𝑅. Then 𝐾1 ⊂  𝐾2

∗ ⊂ L ⊂ 1𝑅 implies that 𝐾1 ⊂ L 

⊂ 1𝑅. But this is a contradiction. Hence (R, 𝜏) is a PNP resolvable space.  

 

3.7 Theorem 

If (R, 𝜏) is a PNP irresolvable space iff PNInt(P) ≠ 0 for all PNP dense set P in (R, 𝜏). 

Proof 

Since (R, 𝜏 ) is PNP irresolvable space for all PNP dense set P in (R, 𝜏 ), PNPCl(𝑃∗) ≠ 1𝑅 .Then 

(PNPInt(P)∗ ≠ 1𝑅  which implies PNPInt(P) ≠ 0𝑅 . 

Conversely PNPInt(P) ≠ 0𝑅, for all PNP dense set P in (R, 𝜏). Suppose that (R, 𝜏) is PNP resolvable. 

Then there exists a PNP dense set P in (R, 𝜏 ) such that PNPCl( 𝑃∗ ) = 1𝑅 . This implies that 

(PNPInt(P)∗ = 1𝑅 which again implies PNPInt(P) = 0𝑅. But this is a contradiction. Hence (R, 𝜏) is 

PNP resolvable space. 

 

3.8 Definition  

 A PNP topological space (R, τ) is called a PNP submaximal space if for each PNP set P in (R, τ), 

PNPCl(P) = 1R. 

3.9 Proposition  

 If the PNP topological space (R, τ) is PNP submaximal, then (R, τ) is PNP irresolvable. 

Proof. Let (R, τ) be a PNP submaximal space. Assume that (R, τ) is a PNP resolvable space. Let P be 

a PNP dense set in (R, τ ). Then PNPCl( P∗ ) = 1R . Hence (PNPInt(P)∗ = 1R  which implies that 

PNPInt(P) = 0R . Then P ∉ τ. This is a contradiction. Hence (R, τ) is PNP irresolvable space.  

The converse of the above theorem is not true, which can be shown by the following example. See 

example 3.5.  

 

3.10 Definition   

A PNP topological space (R, τ) is called a maximal PNP irresolvable space if (R, τ) is PNP irresolvable 

and every PNP dense set P of (R, τ) is PNP open. 

 

3.11 Example  

Let R = { e, f} and define the pentapartitioned neutrosophic pythagorean set Q and R  as  

Q = {
{𝑒, 0.3,0.4,0.3,0.3,0.1}

{𝑓, 0.4,0.2,0.6,0.5,0.3}
 and 
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R = {
{𝑒, 0.1,0.2,0.4,0.3,0.4}

{𝑓, 0.5,0.4,0.3,0.2,0.1}
  . 

It can be seen that 𝜏 = {0𝑅 , 1𝑅 , 𝑃} is a pentapartitioned neutrosophic pythagorean topology on R. 

Then (R, 𝜏) is a pentapartitioned neutrosophic topological space. Now PNPInt(𝑄∗) = 0𝑅, PNPInt(𝑅∗) 

= 0𝑅, PNPCl (Q) = 1𝑅  and PNPCl(R) = 1𝑅 . Thus P and Q are PNP dense sets in (R, 𝜏) such that 

PNPCl (𝑄∗) = 𝑄∗ and PNPCl(𝑅∗) =𝑅∗.Thus (R, 𝜏) is PNP irresolvable and every PNP dense set of  

(R, 𝜏) is PNP open. Therefore  PNP topological space (R, 𝜏) is maximally PNP irresolvable. 

 

4 PNP open hereditarily Irresolvable space 

 

4.1 Definition  

  A PNP topological space (R, τ ) is said to be PNP open hereditarily irresolvable if 

PNPInt(PNPCl(P))≠ 0R  and PNPInt(P)≠ 0R , for any PNP set P in (R, τ). 

4.2 Example 

 Let R = { e, f} and define the pentapartitioned neutrosophic pythagorean set Q  as  

P = {
{𝑒, 0.2,0.1,0.5,0.4,0.5}

{𝑓, 0.1,0.2,0.6,0.5,0.4}
  

It can be seen that 𝜏 = {0𝑅 , 1𝑅 , 𝑃} is a pentapartitioned neutrosophic pythagorean topology on R. 

Then (R, 𝜏) is a pentapartitioned neutrosophic topological space. Now PNPInt(P) = P ≠ 0𝑅  and 

PNPInt(PNPCl(P)) =PNPInt(𝑃∗) = P ≠ 0𝑅 . Thus (R, 𝜏) is PNP open hereditarily irresolvable space. 

 

4.3 Theorem 

 Let (R, 𝜏) be a PNP topological space. If (R, 𝜏) is PNP open hereditarily irresolvable, then (R, 𝜏) is 

PNP irresolvable. 

Proof 

 Let P be a PNP dense set in (R, 𝜏). Then PNPCl(P) = 1𝑅  which implies that PNPInt(PNPCl(P) = 1𝑅 

≠ 0𝑅  . Since (R, 𝜏) is PNP open hereditarily irresolvable, we have PNPInt(P) ≠ 0𝑅 . Therefore by 

theorem 3.7, PNPInt(P) ≠ 0𝑅 for all PNP dense set in (R, 𝜏) implies that (R, 𝜏) is PNP irresolvable. 

The converse of the above theorem is not true. See Example 4.4. 

  

4.4 Example  

Let R = { e, f} and define the pentapartitioned neutrosophic pythagorean set P, Q , R and S  as  

P = {
{𝑒, 0.1,0.5,0.5,0.2,0.6}

{𝑓, 0.2,0.3,0.6,0.3,0.3}
, 

Q = {
{𝑒, 0.4,0.5,0.1,0.2,0.4}

{𝑓, 0.3,0.2,0.7,0.2,0.1}
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R = {
{𝑒, 0.4,0.5,0.1,0.2,0.4}

{𝑓, 0.3,0.3,0.6  ,0.2,0.1}
  and 

S = {
{𝑒, 0.2,0.1,0.7,0.6,0.2}

{𝑓, 0.1,0.2,0.6  ,0.5,0.4}
  . 

 

It can be seen that 𝜏 = {0𝑅 , 1𝑅 , 𝑃, 𝑄, 𝑅} is a pentapartitioned neutrosophic pythagorean topology on 

R. Then (R, 𝜏) is a pentapartitioned neutrosophic topological space. Now PNPCl(P) = 1𝑅, PNPCl(Q) 

= 1𝑅, PNPCl(R) = 1𝑅 and PNPCl (S) = 1𝑅 . Thus P , Q,R and S are PNP dense sets in (R, 𝜏) such that 

PNPCl (𝑃∗ ) = 𝑃∗  , PNPCl (𝑄∗)  =  𝑄∗ and PNPCl(𝑅∗ ) =𝑅∗  and PNPCl (𝑆∗ ) = 𝑃∗ . Hence the PNP 

topological space (R, 𝜏) is PNP irresolvable. But PNPInt(PNPCl(𝑆∗) = PNPInt(𝑃∗) =  0𝑅. Therefore  

(R, 𝜏) is not a PNP open hereditarily irresolvable space. 

 

4.5 Theorem 

Let (R, 𝜏) be a PNP open hereditarily irresolvable. Then PNPInt(P) ⊈ PNPInt(Q)∗ for any two PNP 

dense sets P and Q in (R, 𝜏). 

Proof. 

Let P and Q be any two PNP dense sets in (R, 𝜏). Then PNPCl(P) = 1𝑅  and PNPCl(Q) =1𝑅  implies 

that PNPInt(PNPCl(P))≠ 0𝑅  and PNPInt(PNPCl(Q)≠  0𝑅 . Since (R, 𝜏 ) is PNP open hereditarily 

irresolvable, PNPInt(P) ≠ 0𝑅  and PNPInt(Q) ≠  0𝑅 . Hence by theorem 3.6, P ⊈ 𝑄∗ . Therefore 

PNPInt(P)  ⊆ 𝑃 ⊈ 𝑄∗ ⊆ (𝑃𝑁𝑃𝐼𝑛𝑡(𝑄))∗. Hence we have PNPInt(P)  ⊆ (𝑃𝑁𝑃𝐼𝑛𝑡(𝑄))∗ for any two PNP 

dense sets P and Q in (R, 𝜏). 

 

4.6 Theorem 

Let (R, 𝜏) be a PNP topological space. If (R, 𝜏) is PNP open hereditarily irresolvable, then PNPInt(P) 

= 0𝑅 for any nonzero PNP dense set P in (R, 𝜏)  which implies that PNPInt(PNPCl(P)) = 0𝑅. 

Proof:  

Let P be a PNP set in (R, 𝜏) such that PNPInt(P) = 0𝑅  . We claim that PNPInt(PNPcl(P)) = 0𝑅 .  

Suppose that PNPInt(PNPCl(P)) = 0𝑅. Since (R, 𝜏) is PNP open hereditarily irresolvable, we have 

PNPInt(P) ≠  0𝑅  which is a contradiction to PNPInt(P) = 0𝑅 . Hence PNPInt(PNPCl(P) = 0𝑅 .  

 

4.7 Theorem 

Let (R, 𝜏)  be a PNP topological space. If (R, 𝜏) is PNP open hereditarily irresolvable, then PNPCl(P) 

= 1𝑅 for  any nonzero PNP dense set P in (R, 𝜏)  which implies that PNPCl(PNPInt(P) = 0𝑅.  

Proof 

Let P be a PNP set in (R, 𝜏)  such that PNPCl(P) = 1𝑅 .Then we have (PNPCl(P))∗ = 0𝑅  which implies 

that PNPInt(𝑃∗) = 0𝑅 .Since (R, 𝜏) is PNP open hereditarily irresolvable by theorem 4.6. We have 

PNPInt(PNPCl(𝑃∗)) = 0𝑅. Therefore (PNPCl(PNPInt(P))∗ = 0𝑅  implies that PNPCl(PNPInt(P)) = 1𝑅. 
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5 Somewhat PNP Continuous and PNP Somewhat PNP open 

 

5.1 Definition  

Let (R, 𝜏) and (M, σ) be any two PNP topological spaces. A function f: (R, 𝜏) → (M, σ) is called 

somewhat PNP continuous if for a P ∈ σ and 𝑓−1(𝑃) ≠ 0𝑅, there exists a Q ∈ 𝜏 such that Q≠ 0𝑅 and 

Q ⊆ 𝑓−1(𝑃). 

 

5.2 Definition  

Let (R, 𝜏) and (M, σ) be any two PNP topological spaces. A function f: (R, 𝜏) → (M, σ) is called 

somewhat PNP open if for a P ∈ σ and 𝑃 ≠ 0𝑅 , there exists a Q ∈ 𝜏 such that Q≠ 0𝑅 and Q⊆ 𝑓(𝑃). 

 

5.3 Theorem  

Let (R, 𝜏) and (M, σ) be any two PNP topological spaces. A function f: (R, 𝜏) → (M, σ) is called 

somewhat PNP continuous and injective. If PNPInt(P) = 0𝑅 for any non-zero PNP set P in (R, 𝜏), 

then PNPInt(f(P)) = 0𝑀 in (M, σ) . 

Proof 

Let P be a non-zero PNP set in (R, 𝜏) such that PNPInt(P) = 0𝑅. Now we prove that PNPInt(f(P)) = 

0𝑀  . Suppose that PNPInt(f(P)) ≠ 0𝑀  in (M, σ) . Then there exists a nonzero PNP set Q  in 

(M, σ) such that Q ⊆ f(P). Thus , we have 𝑓−1(𝑄) ⊆ 𝑓−1(𝑓(𝑃)). Since f is somewhat PNP continuous, 

there exists a S ∈ 𝜏 such that S ≠ 0𝑅 and S ⊆  𝑓−1(𝑄). Hence S ⊆  𝑓−1(𝑄) ⊆  𝑃 which implies that 

PNPInt(P) ≠ 0𝑅  .This is a contradiction. Hence PNPInt(f(P)) = 0𝑀 in (M, σ). 

 

5.4 Theorem 

Let (R, 𝜏) and (M, σ) be any two PNP topological spaces. A function f: (R, 𝜏) → (M, σ) is called 

somewhat PNP continuous , injective and  PNPInt(PNPCl(P)) = 0𝑅 for any non-zero PNP set P in 

(R, 𝜏), then PNPInt(PNPCl(f(P))) = 0𝑀 in (M, σ) . 

Proof 

Let P be a non-zero PNP set in (R, 𝜏 ) such that PNPInt(PNPCl(P)) = 0𝑅 . Now we claim that 

(PNPCl(f(P))) = 0𝑀 . Suppose that PNPInt(PNPCl(f(P))) ≠ 0𝑀 in (M, σ) .Then PNPCl(f(P) ≠ 0𝑀   

and PNPCl(f(P))∗ ≠ 0𝑀. Now PNPCl(f(P))∗ ≠ 0𝑀 ∈ M. Since f is somewhat PNP continuous, there 

exists a Q ∈ 𝜏  such that Q ≠ 0𝑅  and Q ⊆  𝑓−1((PNPCl(f(P)))∗).  Observe that Q ⊆

 𝑓−1((PNPCl(f(P)))∗) which implies that   𝑓−1(PNPCl(f(P)))  ⊆ 𝑄∗.  

  Since f is injective, thus P ⊆  𝑓−1(f(P) ⊆ 𝑓−1(PNPCl(f(P))) ⊆ 𝑄∗  which implies that P ⊆  𝑄∗ . 

Therefore Q ⊆  𝑃∗ . This implies that PNPInt(𝑃∗ )  ≠ 0𝑅 .Let PNPInt(𝑃∗ )  = 𝑆 ≠ 0𝑅 . Then we have 

PNPCl(PNPInt( 𝑃∗ ) ) = PNPCl(S)  ≠ 1𝑅  which implies that PNPInt(PNPCl(P)) ≠  0𝑅 .This is a 

contradiction. Hence PNPInt(PNPCl(f(P))) = 0𝑀 in (M, σ). 

5.5 Theorem 
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Let (R, 𝜏 ) and (M, σ) be any two PNP topological spaces. If the function f: (R, 𝜏 )  → (M, σ)  is 

somewhat PNP open and PNPInt((P)) = 0𝑅  for any non-zero PNP set P in (M, σ) ,  then 

PNPInt(𝑓−1(P)) = 0𝑅 in (R, 𝜏). 

Proof 

Let P be a non-zero PNP set in (M, σ)  such that PNPInt(P) = 0𝑅. Now we claim that PNPInt(𝑓−1(P)) 

= 0𝑅 in (R, 𝜏). Suppose that (PNPInt(𝑓−1(P)) ≠ 0𝑅 in (R, 𝜏). Then there exists a non-zero PNP open 

set Q in (R, 𝜏) such that Q ⊆  𝑓−1(𝑃). Thus we have f(Q) ⊆  𝑓(𝑓−1(𝑃)) ⊆   𝑃.This implies that f(Q) ⊆

  𝑃. Since f is somewhat PNP open, there exists a S∈ 𝜏 such that S ≠ 0𝑅 and S ⊆ 𝑓(𝑄). Therefore  

S ⊆ 𝑓(𝑄) ⊆ 𝑃 which implies that S ⊆ 𝐴. Hence PNPInt((P) ≠ 0𝑅 which is a contradiction. Hence 

PNPInt(𝑓−1(P)) = 0𝑅 in (R, 𝜏). 

5.6 Theorem 

Let (R, 𝜏) and (M, σ) be any two PNP topological spaces Let (R, 𝜏) be a PNP open hereditarily 

irresolvable space. If the function f: (R, 𝜏 )  → (M, σ)  is somewhat PNP open, somewhat PNP 

continuous and a bijective function, then (M, σ) is a PNP open hereditarily irresolvable space.    

Proof 

Let P be a non-zero PNP set in (M, σ)  such that PNPInt(P) = 0𝑅 . Now PNPInt(P) = 0𝑅  and f is 

somewhat PNP open which implies PNPInt(𝑓−1(P)) = 0𝑅 in (R, 𝜏) by theorem 5.5. Since (R, 𝜏) is a 

PNP open hereditarily irresolvable ,we have Suppose that PNPInt(PNPCl(𝑓−1(P))) = 0𝑅 in (R, 𝜏) by 

theorem 4.6.Since PNPInt(PNPCl(𝑓−1(P))) = 0𝑅 and f is somewhat PNP continuous by theorem 5.4, 

we have that PNPInt(PNPCl(f(𝑓−1(P)))) = 0𝑅. Since f is onto, thus PNPInt(PNPCl(P) = 0𝑅. Hence, by 

theorem 4.6, (M, σ) is a PNP open hereditarily irresolvable space. 

 

5. Conclusion 

In this paper we have proposed Pentapartitioned neutrosophic pythagorean resolvable and 

irresolvable spaces and studied some of its properties. Furthermore we also characterized 

Pentapartitioned Neutrosophic Pythagorean open hereditarily spaces and open functions in 

Pentapartitioned neutrosophic pythagorean topological spaces. In the future work, we extend the 

concept to Pentapartitioned Pythagorean almost resolvable and irresolvable spaces. 
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Abstract: In this article, we have examined the Wiener index in neutrosophic graphs. Wiener index 

is one of the most important topological indices. This index is a distance-based index that is 

calculated based on the geodesic distance between two vertices. Here, after defining the Wiener 

index in neutrosophic graphs, we calculated this index for some special modes such as the complete 

neutrosophic graph, cycle, and tree. In the following, by presenting a several theorems, we 

compared this index with the connectivity index, which is one of the most important degree-based 

indicators. 

Keywords: Wiener index; partial Wiener index; totally Wiener index; neutrosophic graph; 

neutrosophic tree; strong spanning tree; connectivity index 

 

 

1. Introduction 

 The theory of fuzzy sets was first proposed by Zadeh [20] in 1965, and the concept of fuzzy 

graph was first introduced by Rosenfeld [13] in 1975. Since then, much research has been done on 

fuzzy graphs, their properties, and applications. One of these problems was the calculation of degree-

based topological indices and distance-based indices in fuzzy graphs. These indicators help by 

providing a numerical value for each graph so that we can have a good criterion for comparing 

graphs with the same number of vertices. 

After that, Atanassov [6] proposed the theory of intuitionistic fuzzy set. Finally, with the 

generalization of fuzzy theory by Smarandache [15] in 1995, new sets called neutrosophic sets were 

born. By presenting this theory, researchers tried to introduce other mathematical concepts in this 

field. Among them was the concept of graphs, which led to the new concept of neutrosophic graphs. 

In recent years, many features and applications of neutrosophic graphs have been proposed by 

theorists in this field. One of them is the problem of the Decision-Making [1], Solving the supply chain 

problem [2], application in the NeutroHyperAlgebra and AntiHyper Algebra [16], and Energy and 

Spectrum [7]. One of these topics is the study of topological indices and its applications in 

neutrosophic graphs. In [8-10], we examined some of these indicators and their applications. 

In this paper, we try to define the Wiener index, which is one of the most important topological 

indices based on distance, in neutrosophic graphs, and then calculate this index for certain conditions. 

The calculation of this index in neutrosophic graphs is done for the first time in this paper. Finally, 

we compare the connectivity index, which is one of the most important degree-based indices, with 

the Wiener index and present the results. 

 

2. Preliminaries 

This section, provides some definitions and theorems needed.  
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Definition 1. [5] Let 𝐺 = (𝑁, 𝑀) be a single-valued Neutrosophic graph, where 𝑁 is a Neutrosophic 

set on 𝑉 and, 𝑀 is a Neutrosophic set on 𝐸, which satisfy the following 

 

𝑇𝑀(𝑢, 𝑣) ≤ 𝑚𝑖𝑛(𝑇𝑁(𝑢), 𝑇𝑁(𝑣)), 

𝐼𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐼𝑁(𝑢), 𝐼𝑁(𝑣)), 

𝐹𝑀(𝑢, 𝑣) ≥ 𝑚𝑎𝑥(𝐹𝑁(𝑢), 𝐹𝑁(𝑣)), 

 

where 𝑢 and 𝑣 are two vertices of 𝐺, and (𝑢, 𝑣) ∈  𝐸 is an edge of 𝐺. 

 

Definition 2. [5] Let 𝐺 = (𝑁, 𝑀) be a Single-Valued Neutrosophic Graph and 𝑃 is a path in 𝐺. 𝑃 is 

a collection of different vertices, 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑛 such that (𝑇𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐼𝑀(𝑣𝑖−1, 𝑣𝑖), 𝐹𝑀(𝑣𝑖−1, 𝑣𝑖)) > 0 

for 0 ≤ 𝑖 ≤ 𝑛. 𝑃 is a Neutrosophic cycle if 𝑣0 = 𝑣𝑛 and 𝑛 ≥ 3. 

 

Definition 3. [5] Suppose 𝐺 = (𝑁, 𝑀) a single-valued Neutrosophic graph. 𝐺 is a connected Single-

Valued Neutrosophic Graph if there exists no isolated vertex in 𝐺. (𝑣 ∈ 𝑉𝐺 is the isolated vertex, if 

there exists no incident edge to the vertex 𝑣.) 

 

Definition 4. [9] Let 𝐺 = (𝑁, 𝑀) be the connected Neutrosophic Graph. The partial connectivity 

index of 𝐺 is defined as  

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝐶𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

where 𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣)  is the strength of truth, 𝐶𝑂𝑁𝑁𝐼𝐺

(𝑢, 𝑣)  the strength of indeterminacy and 

𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) the strength of falsity between two vertices 𝑢 and 𝑣. We have 

 

𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣) = max {min 𝑇𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣) = min {max 𝐼𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}, 

𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣) = min {max 𝐹𝑀(𝑒) | 𝑒 ∈ 𝑃 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣}. 

 

Also, the totally connectivity index of 𝐺 is defined as 

𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
. 

 

Theorem 1. [9] Let 𝐺 = (𝑁, 𝑀) be a complete neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that 

𝑡1 ≤ 𝑡2 ≤ ⋯  ≤ 𝑡𝑛,  𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛  where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗),  𝑖𝑗 = 𝐼𝑁(𝑣𝑗)  and 𝑓𝑗 =

𝐹𝑁(𝑣𝑗) for 𝑗 = 1, 2, … , 𝑛. Then  

𝑃𝐶𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝐶𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝐶𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 
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3. Wiener Index in Neutrosophic Graphs 

In this section, which is the main part of the article, we will introduce the Wiener index in 

neutrosophic graphs. The Wiener index is a distance-based index that is widely used in symmetric 

graphs. 

Like the connectivity index, we divide the Wiener index into a Totally and Partial Wiener index 

and define it as follows 

Definition 5. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph and 𝑣1, 𝑣2 ∈ 𝑉. A strong path 𝑃 from 𝑣1 

to 𝑣2 is called a neutrosophic geodesic if there is no strong shorter path between 𝑣1 and 𝑣2. 

Note that in the above definition, the shortest strong path must be calculated separately for each of 

truth (𝑇), indeterminacy (𝐼), and falsity (𝐹) states. 

 

Definition 6. Let 𝐺 = (𝑁, 𝑀) be the Neutrosophic Graph. The Partial Wiener Index (𝑷𝑾𝑰) of 𝐺 is 

defined as  

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝑊𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

𝑃𝑊𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

 

when 𝑑𝑠(𝑢, 𝑣) is the minimum, the sum of the weights of the edges in geodesic between 𝑢 and 𝑣. 

Also, the Totally Wiener Index (𝑻𝑾𝑰) of 𝐺 is defined by 

𝑇𝑊𝐼(𝐺) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺) − 2𝑃𝑊𝐼𝐹(𝐺) − 𝑃𝑊𝐼𝐼(𝐺)

6
. 

 

Example 1. Consider the Neutrosophic Graph 𝐺 = (𝑁, 𝑀) as shown in figure 1, with the vertex set 

𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}  where (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑎) = (0.4, 0.3, 0.2), (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑏) = (0.6, 0.5, 0.2),  (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑐) =

(0.7, 0.2, 0.2), and (𝑇𝑁 , 𝐼𝑁 , 𝐹𝑁)(𝑑) = (0.4, 0.2, 0.3), whit the edge set (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑎, 𝑏) = (0.3, 0.3, 0.3), 

(𝑇𝑀, 𝐼𝑀 , 𝐹𝑀)(𝑎, 𝑐) = (0.4, 0.3, 0.2) , (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑎, d)  =  (0.3, 0.3, 0.2) , (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑏, d)  =

 (0.4, 0.4, 0.3), (𝑇𝑀 , 𝐼𝑀 , 𝐹𝑀)(𝑐, d)  =  (0.4, 0.2, 0.2), We have, 

Figure 1. A neutrosophic graph 𝐺 
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Table 1. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.4 + 0.4 + 0.4 = 1.2 0.3 0.3 

𝑎, 𝑐 0.4 0.3 0.2 

𝑎, 𝑑 0.4 + 0.4 = 0.8 0.3 0.2 

𝑏, 𝑐 0.4 + 0.4 = 0.8 0.3 + 0.3 = 0.6 0.2 + 0.3 = 0.5 

𝑏, 𝑑 0.4 0.3 + 0.3 = 0.6 0.3 

𝑐, 𝑑 0.4 0.2 0.2 

 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.4)(0.6)(1.2) + (0.4)(0.7)(0.4) + (0.4)(0.4)(0.8) + (0.6)(0.7)(0.8)

+ (0.6)(0.4)(0.4) + (0.7)(0.4)(0.4) = 0.288 + 0.112 + 0.128 + 0.336 + 0.096 + 0.112

= 1.072, 

 

𝑃𝑊𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.3)(0.5)(0.3) + (0.3)(0.2)(0.3) + (0.3)(0.2)(0.3) + (0.5)(0.2)(0.6)

+ (0.5)(0.2)(0.6) + (0.2)(0.2)(0.2) = 0.045 + 0.018 + 0.018 + 0.060 + 0.060 + 0.008

= 0.209, 

 

𝑃𝑊𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.2)(0.2)(0.3) + (0.2)(0.2)(0.2) + (0.2)(0.3)(0.2) + (0.2)(0.2)(0.5)

+ (0.2)(0.3)(0.3) + (0.2)(0.3)(0.2) = 0.012 + 0.008 + 0.012 + 0.020 + 0.018 + 0.012

= 0.082. 

 

𝑇𝑊𝐼(𝐺) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺) − 2𝑃𝑊𝐼𝐹(𝐺) − 𝑃𝑊𝐼𝐼(𝐺)

6
=

4 + 2(1.072) − 2(0.209) − (0.082)

6
=

5.644

6

= 0.941. 

 

Theorem 2. Let 𝐺 = (𝑁, 𝑀) be a complete neutrosophic graph whit 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} such that 𝑡1 ≤

𝑡2 ≤ ⋯  ≤ 𝑡𝑛,  𝑖1 ≤ 𝑖2 ≤ ⋯  ≤ 𝑖𝑛 and 𝑓1 ≥ 𝑓2 ≥ ⋯  ≥ 𝑓𝑛  where 𝑡𝑗 = 𝑇𝑁(𝑣𝑗),  𝑖𝑗 = 𝐼𝑁(𝑣𝑗)  and 𝑓𝑗 =

𝐹𝑁(𝑣𝑗) for 𝑗 = 1, 2, … , 𝑛. Then  

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝑖𝑗
2

𝑛−1

𝑗=1

∑ 𝑖𝑘

𝑛

𝑘=𝑗+1

, 𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝑓𝑗
2

𝑛−1

𝑗=1

∑ 𝑓𝑘

𝑛

𝑘=𝑗+1

. 

 

Proof. Consider neutrosophic graph 𝐺 = (𝑁, 𝑀) with the conditions given in the theorem. According 

to the definition of the Wiener index 

 



Neutrosophic Sets and Systems, Vol. 46, 2021 233 

 

 

Masoud Ghods*, Zahra Rostami, Wiener index and applications in the Neutrosophic graphs 

 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣),

𝑢,𝑣 ∈𝑁

                           (1) 

 

Since 𝐺 is a complete neutrosophic graph, there is a path of length one between the two vertices. 

We show that the path is geodesic. Let 𝑢 = 𝑣1. Then for any 2 ≤ 𝑖 ≤ 𝑛, we have 𝑡1 ≤ 𝑡𝑖, it is easy to 

see that 
𝑑𝑠𝑇

(𝑣1,  𝑣𝑖) = 𝑡1, 2 ≤ 𝑖 ≤ 𝑛, 

 

now, we have for 𝑣2, 
𝑑𝑠𝑇

(𝑣2,  𝑣𝑖) = 𝑡2, 3 ≤ 𝑖 ≤ 𝑛, 

 

for 𝑣𝑘 , 
𝑑𝑠𝑇

(𝑣𝑘 ,  𝑣𝑖) = 𝑡𝑘, 𝑘 + 1 ≤ 𝑖 ≤ 𝑛, 

 

and, we have for 𝑣𝑛−1, 
𝑑𝑠𝑇

(𝑣𝑛−1,  𝑣𝑛) = 𝑡𝑛−1, 

 

now, we get by placing the above relation in (1) 

 

𝑃𝑊𝐼𝑇(𝐺) = 𝑇𝑁(𝑣1)𝑇𝑁(𝑣2)𝑡1 + ⋯ +  𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑛)𝑡1 + 𝑇𝑁(𝑣2)𝑇𝑁(𝑣3)𝑡2 + ⋯ +  𝑇𝑁(𝑣2)𝑇𝑁(𝑣𝑛)𝑡2 + ⋯

+  𝑇𝑁(𝑣𝑘)𝑇𝑁(𝑣𝑘+1)𝑡𝑘 + ⋯ +  𝑇𝑁(𝑣𝑘)𝑇𝑁(𝑣𝑛)𝑡𝑘 + ⋯ + 𝑇𝑁(𝑣𝑛−1)𝑇𝑁(𝑣𝑛)𝑡𝑛−1

=  𝑡1𝑡2𝑡1 + ⋯ + 𝑡1𝑡𝑛𝑡1 + 𝑡2𝑡3𝑡2 + ⋯ + 𝑡2𝑡𝑛𝑡2 + ⋯ + 𝑡𝑘𝑡𝑘+1𝑡𝑘 + ⋯ + 𝑡𝑘𝑡𝑛𝑡𝑘 + ⋯

+ 𝑡𝑛−1𝑡𝑛𝑡𝑛−1

=  𝑡1
2(𝑡2 + ⋯ + 𝑡𝑛) +  𝑡2

2(𝑡3 + ⋯ + 𝑡𝑛) + ⋯ +  𝑡𝑘
2(𝑡𝑘+1 + ⋯ + 𝑡𝑛) + ⋯ + 𝑡𝑛−1

2 𝑡𝑛

=  ∑ 𝑡𝑗
2

𝑛−1

𝑗=1

∑ 𝑡𝑘

𝑛

𝑘=𝑗+1

. 

 

Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

 

Corollary 1. Consider the complete neutrosophic graph 𝐺 = (𝑁, 𝑀)  with the above theorem 

conditions, then 

𝑃𝑊𝐼𝑇(𝐺) = 𝑃𝐶𝐼𝑇(𝐺), 

𝑃𝑊𝐼𝐼(𝐺) = 𝑃𝐶𝐼𝐼(𝐺), 

𝑃𝑊𝐼𝐹(𝐺) = 𝑃𝐶𝐼𝐹(𝐺). 

Also, 𝑇𝑊𝐼(𝐺) = 𝑇𝐶𝐼(𝐺). 

Proof. According to theorem 1, and the above theorem is clear. 

 

 

Theorem 3. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph with |𝑁∗| = 𝑛, such that 𝐺∗ is a tree. If for each 

𝑢𝑣 ∈ 𝑀, 𝐺 − 𝑢𝑣 has two connecting components 𝑤1 and 𝑤2, it has 𝑙 and 𝑘 vertices, respectively 

such that 𝑙 + 𝑘 = 𝑛. Then  

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑇𝑀(𝑢𝑣)

𝑢𝑣∈𝐺

∑ 𝑇𝑁(𝑢𝑖)

𝑙

𝑖=1

∑ 𝑇𝑁(𝑣𝑗)

𝑘

𝑗=1

, 

𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝐼𝑀(𝑢𝑣)

𝑢𝑣∈𝐺

∑ 𝐼𝑁(𝑢𝑖)

𝑙

𝑖=1

∑ 𝐼𝑁(𝑣𝑗)

𝑘

𝑗=1

, 
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𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝐹𝑀(𝑢𝑣)

𝑢𝑣∈𝐺

∑ 𝐹𝑁(𝑢𝑖)

𝑙

𝑖=1

∑ 𝐹𝑁(𝑣𝑗)

𝑘

𝑗=1

. 

 

Proof. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph with |𝑁∗| = 𝑛, and 𝐺∗ is a tree. Now suppose we 

remove the desired edge 𝑢𝑣, 𝑢𝑣 ∈ 𝑀, from 𝐺. Graph 𝐺 is divided into two connecting components 

𝑤1 and 𝑤2, so that 𝑤1 will contain 𝑙 vertices and 𝑤2 will contain 𝑘 = 𝑛 − 𝑙 vertices. If 𝑙 = 1 and 

𝑘 = 𝑛 − 1, and 𝑣1 ∈ 𝑤1 then 

 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

=   𝑇𝑁(𝑣1)𝑇𝑁(𝑣2)𝑇𝑀(𝑢𝑣) + 𝑇𝑁(𝑣1)𝑇𝑁(𝑣3)(𝑇𝑀
(𝑢𝑣) + 𝑒1) + ⋯

+ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑛)(𝑇𝑀
(𝑢𝑣) + ⋯ + 𝑒𝑚) + ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇

(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁−𝑣1

. 

where 𝑒𝑖 ∈ 𝑀, and 𝑒𝑖 ≠ 𝑢𝑣. Repeat the same process for ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)𝑢,𝑣 ∈𝑁−𝑣1

. We continue 

this until only one vertex remains in 𝑤2. Then, by factoring and summing the number of vertices of 

the two components, we reach the desired result. Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

 

Theorem 4. Let 𝐺 = (𝑁, 𝑀) be a connected neutrosophic graph with the unique strong spanning tree 

𝑇. then 

𝑃𝑊𝐼𝑇(𝐺) = 𝑃𝑊𝐼𝑇(𝑇), 𝑃𝑊𝐼𝐼(𝐺) = 𝑃𝑊𝐼𝐼(𝑇),   𝑃𝑊𝐼𝐹(𝐺) = 𝑃𝑊𝐼𝐹(𝑇). 

 

Hence 𝑇𝑊𝐼(𝐺) = 𝑇𝑊𝐼(𝑇). 

 

Proof. Let 𝐺 be a connected neutrosophic graph and 𝑇 is the unique strong spanning tree of 𝐺. By 

definition of strong spanning tree, if u and v are two vertices of G, we have  

 

𝑑𝑠𝑇
(𝑢, 𝑣)(𝐺) = 𝑑𝑠𝑇

(𝑢, 𝑣)(𝑇), 𝑑𝑠𝐼
(𝑢, 𝑣)(𝐺) = 𝑑𝑠𝐼

(𝑢, 𝑣)(𝑇), 𝑑𝑠𝐹
(𝑢, 𝑣)(𝐺) = 𝑑𝑠𝐹

(𝑢, 𝑣)(𝑇). 

 

Since, it is clear from the above relation that 

 

𝑃𝑊𝐼𝑇(𝐺) = 𝑃𝑊𝐼𝑇(𝑇), 𝑃𝑊𝐼𝐼(𝐺) = 𝑃𝑊𝐼𝐼(𝑇),   𝑃𝑊𝐼𝐹(𝐺) = 𝑃𝑊𝐼𝐹(𝑇). 

 

Therefore 𝑇𝑊𝐼(𝐺) = 𝑇𝑊𝐼(𝑇). 

 

 

Theorem 5. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic graph with 𝐺∗ = 𝐶𝑛. Let 𝑀 be a constant function. 

Then 

1. For 𝑛 = 2𝑚, 𝑚 ∈ ℕ 

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑘𝑡

𝑛
2

−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑡 ∑ 𝑇𝑁(𝑢𝑙)𝑇𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,  

𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝑘𝑖

𝑛
2

−1

𝑘=1

(∑ 𝐼𝑁(𝑢𝑗)𝐼𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑖 ∑ 𝐼𝑁(𝑢𝑙)𝐼𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,  
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𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝑘𝑓

𝑛
2

−1

𝑘=1

(∑ 𝐹𝑁(𝑢𝑗)𝐹𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑓 ∑ 𝐹𝑁(𝑢𝑙)𝐹𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,  

 

2. For 𝑛 = 2𝑚 + 1, 𝑚 ∈ ℕ 

𝑃𝑊𝐼𝑇(𝐺) = ∑ 𝑘𝑡

𝑛−1
2

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

), 

𝑃𝑊𝐼𝐼(𝐺) = ∑ 𝑘𝑖

𝑛−1
2

𝑘=1

(∑ 𝐼𝑁(𝑢𝑗)𝐼𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

), 

𝑃𝑊𝐼𝐹(𝐺) = ∑ 𝑘𝑓

𝑛−1
2

𝑘=1

(∑ 𝐹𝑁(𝑢𝑗)𝐹𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

). 

 

Note that for 𝑗 + 𝑘 > 𝑛, 𝑢𝑗+𝑘 = 𝑢𝑑, this is, 𝑗 + 𝑘 ≡ 𝑑 (mode 𝑛). 

 

Also for 𝐺 − 𝑢𝑣, we have 

𝑃𝑊𝐼𝑇(𝐺 − 𝑢𝑣) = ∑ 𝑘𝑡

𝑛−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛−𝑘

𝑗=1

), 

𝑃𝑊𝐼𝐼(𝐺 − 𝑢𝑣) = ∑ 𝑘𝑖

𝑛−1

𝑘=1

(∑ 𝐼𝑁(𝑢𝑗)𝐼𝑁(𝑢𝑗+𝑘)

𝑛−𝑘

𝑗=1

), 

𝑃𝑊𝐼𝐹(𝐺 − 𝑢𝑣) = ∑ 𝑘𝑓

𝑛−1

𝑘=1

(∑ 𝐹𝑁(𝑢𝑗)𝐹𝑁(𝑢𝑗+𝑘)

𝑛−𝑘

𝑗=1

). 

 

Where 𝑀 = (𝑡, 𝑖, 𝑓) is a constant function. 

 

Proof. First, we assume that 𝐺∗ is a cycle of even length, and 𝑀 = (𝑡, 𝑖, 𝑓) is a constant function. 

Hence each edge of 𝐺 is a neutral edge. Then, the maximum length of a neutrosophic geodesic in 𝐺 

is 
𝑛

2
. Now consider a case where the distance between two vertices is less than 

𝑛

2
. Suppose the distance 

between 𝑢 and 𝑣 is equal to 𝑘, where 𝑘 is less than 
𝑛

2
. In that case, we define the geodesic length 

between the two vertices 𝑢 and 𝑣 as follows 

 

𝑃𝑘 = {(𝑢, 𝑣) ∈  𝑁∗ × 𝑁∗, k is equal to the geodetic length between u and v }, 

 

On the other hand, we know that there are 
𝑛

2
 pairs of vertices (𝑢, 𝑣) such that the geodesic 

length between them is exactly equal to 
𝑛

2
(𝑡, 𝑖, 𝑓), for these 

𝑛

2
 pairs of vertices, it is sufficient to obtain 

a product of 𝑇𝑁(𝑢) in 𝑇𝑁(𝑣) [Similarly, 𝐼𝑁(𝑢) in 𝐼𝑁(𝑣), and 𝐹𝑁(𝑢) in 𝐹𝑁(𝑣)]. And then sum on 𝑢 

and 𝑣. Then we get 

 

𝑛

2
𝑡 ∑ 𝑇𝑁(𝑢𝑙)𝑇𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

,                                                  (1) 
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[Similarly for 𝐼 and 𝐹]. Now back to the state that 1 ≤ 𝑘 <
𝑛

2
. For each vertex such as 𝑢 on the cycle 

𝐶𝑛, there is a vertex with distance 𝑘𝑡 from it. Suppose 𝑘 =  1, so we have 

 

𝑇𝑁(𝑢1)𝑇𝑁(𝑢2) + 𝑇𝑁(𝑢2)𝑇𝑁(𝑢3) + ⋯ +  𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+1) + ⋯ + 𝑇𝑁(𝑢𝑛)𝑇𝑁(𝑢𝑛+1), 

 

since 𝑛 + 1 ≡ 1 (mode 𝑛), hence 𝑇𝑁(𝑢𝑛)𝑇𝑁(𝑢𝑛+1) = 𝑇𝑁(𝑢𝑛)𝑇𝑁(𝑢1). Then 
 

for 𝑘 = 1, we have 
 

1 × 𝑡 × ∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+1)

𝑛

𝑗=1

, 

for 𝑘 = 2, 

2 × 𝑡 × ∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+2)

𝑛

𝑗=1

, 

for 𝑘 = 𝑚, 𝑚 <
𝑛

2
, 

𝑚 × 𝑡 × ∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑚)

𝑛

𝑗=1

, 

 

by continuing this process and summing on 𝑘, we get 

 

∑ 𝑘𝑡

𝑛
2

−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

),                                            (2) 

 

use from (1) and (2), 

𝑃𝑊𝐼𝑇(𝐺) = (1) + (2) = ∑ 𝑘𝑡

𝑛
2

−1

𝑘=1

(∑ 𝑇𝑁(𝑢𝑗)𝑇𝑁(𝑢𝑗+𝑘)

𝑛

𝑗=1

) + 
𝑛

2
𝑡 ∑ 𝑇𝑁(𝑢𝑙)𝑇𝑁(𝑢

𝑙+
𝑛
2

)

𝑛
2

𝑙=1

.  

 

To prove that 𝑛 is odd, note that the maximum distance between the vertices 𝑢, and 𝑣 is 
𝑛−1

2
. 

The continuation of the proof is similar to the case where n is even. 

 

 

Theorem 6. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic tree |𝑁∗| ≥ 3. Then 

 

𝑃𝐶𝐼𝑇(𝐺) < 𝑃𝑊𝐼𝑇(𝐺), 𝑃𝐶𝐼𝐼(𝐺) < 𝑃𝑊𝐼𝐼(𝐺),  𝑃𝐶𝐼𝐹(𝐺) < 𝑃𝑊𝐼𝐹(𝐺). 

 

But, 𝑇𝐶𝐼(𝐺) need not be less than or equal to 𝑇𝑊𝐼(𝐺). 

 

Proof. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic tree and |𝑁∗| ≥ 3. Since in the neutrosophic tree, there is a 

unique strong path between vertices 𝑢  and 𝑣 , for any 𝑢  and 𝑣 . hence this path is the unique 

strongest path from 𝑢  to 𝑣 . then, 𝑑𝑠𝑇
(𝑢, 𝑣) , for each 𝑢  and 𝑣 , is equal the sum of the truth-

membership values of edges where those edges belong to the strong path from 𝑢 to 𝑣. In other 

hands, 𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣)  is truth-membership values of the weakest edge of the (𝑢 − 𝑣) − path. It 

follows that 
𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) ≤ 𝑑𝑠𝑇

(𝑢, 𝑣), 
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In the above relation, equality occurs when 𝑢𝑣 is a strong edge. Otherwise 

 
𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) < 𝑑𝑠𝑇

(𝑢, 𝑣), 

hhen, we have 

𝑃𝐶𝐼𝑇(𝐺) < 𝑃𝑊𝐼𝑇(𝐺). 

 

Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

 

Here we show with an example that 𝑇𝐶𝐼(𝐺) dose not always have to be less than 𝑇𝑊𝐼(𝐺). 

Example 2. Consider the Neutrosophic tree 𝐺 = (𝑁, 𝑀) as shown in figure 2, 

 

 

Figure 2. A neutrosophic tree with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} 

 

Note that here 𝑏𝑐 is a weak edge. 

Table 2. The strength of connectedness and the geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝐶𝑂𝑁𝑁𝑇𝐺(𝑢, 𝑣) 𝐶𝑂𝑁𝑁𝐼𝐺(𝑢, 𝑣) 𝐶𝑂𝑁𝑁𝐹𝐺(𝑢, 𝑣) 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.4 0.3 0.3 0.4 0.3 0.3 

𝑎, 𝑐 0.3 0.4 0.5 0.3 0.4 0.5 

𝑎, 𝑑 0.4 0.2 0.3 0.4 0.2 0.3 

𝑏, 𝑐 0.3 0.4 0.5 0.7 0.7 0.8 

𝑏, 𝑑 0.4 0.3 0.3 0.8 0.5 0.6 

𝑐, 𝑑 0.3 0.4 0.5 0.7 0.6 0.8 

 

By direct calculations, we have 

𝑃𝐶𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝐶𝑂𝑁𝑁𝑇𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.4 ∗ 0.6 ∗ 0.4 + 0.4 ∗ 0.3 ∗ 0.3 + 0.4 ∗ 0.5 ∗ 0.4 + 0.6 ∗ 0.3 ∗ 0.3 + 0.6 ∗ 0.5 ∗ 0.4

+ 0.3 ∗ 0.5 ∗ 0.3 = 0.096 +  0.036 +  0.080 +  0.054 +  0.120 +  0.045 =  0.431, 

𝑃𝐶𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝐶𝑂𝑁𝑁𝐼𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.036 + 0.080 + 0.016 + 0.060 + 0.018 + 0.040 = 0.25, 

𝑃𝐶𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝐶𝑂𝑁𝑁𝐹𝐺
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.072 + 0.14 + 0.036 + 0.21 + 0.054 + 0.105 = 0.617, 
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𝑇𝐶𝐼(𝐺) =
4 + 2𝑃𝐶𝐼𝑇(𝐺) − 2𝑃𝐶𝐼𝐹(𝐺) − 𝑃𝐶𝐼𝐼(𝐺)

6
=

3.378

6
= 0.563. 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.096 + 0.036 + 0.08 + 0.126 + 0.24 + 0.105 = 0.683, 

𝑃𝑊𝐼𝐼(𝐺) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.036 + 0.08 + 0.016 + 0.105 + 0.03 + 0.060 = 0.327, 

𝑃𝑊𝐼𝐹(𝐺) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.072 + 0.14 + 0.036 + 0.336 + 0.108 + 0.168 = 0.86, 

𝑇𝑊𝐼(𝐺) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺) − 2𝑃𝑊𝐼𝐹(𝐺) − 𝑃𝑊𝐼𝐼(𝐺)

6
=

3.319

6
= 0.553. 

As seen in this example 

𝑃𝐶𝐼𝑇(𝐺) = 0.431 < 𝑃𝑊𝐼𝑇(𝐺) = 0.683, 

  𝑃𝐶𝐼𝐼(𝐺) = 0.25 < 𝑃𝑊𝐼𝐼(𝐺) = 0.327, 

   𝑃𝐶𝐼𝐹(𝐺) = 0.617 < 𝑃𝑊𝐼𝐹(𝐺) = 0.86. 

But, we have 𝑇𝐶𝐼(𝐺) = 0.563 > 𝑇𝑊𝐼(𝐺) = 0.553. 

 

The neutrosophic graph shown in the figure below is also a tree in which 𝑃𝐶𝐼𝑇(𝐺) < 𝑃𝑊𝐼𝑇(𝐺),

𝑃𝐶𝐼𝐼(𝐺) < 𝑃𝑊𝐼𝐼(𝐺),  𝑃𝐶𝐼𝐹(𝐺) < 𝑃𝑊𝐼𝐹(𝐺). And, 𝑇𝐶𝐼(𝐺) < 𝑇𝑊𝐼(𝐺). 

 

Figure 3. A neutrosophic tree with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} 

 

Theorem 7. Let 𝐺 = (𝑁, 𝑀) be a neutrosophic tree |𝑁∗| ≥ 3, With 𝐺∗ is a star. Let 𝑀 be a constant 

function. if 𝑣1 is the center vertex and 𝑣2, 𝑣3, … , 𝑣𝑛 are the vertices adjacent to vertex 𝑣1, then  

𝑃𝑊𝐼𝑇(𝐺) = 2𝑡 ∑ 𝑇𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

, 

  𝑃𝑊𝐼𝐼(𝐺) = 2𝑖 ∑ 𝐼𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝐼𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑖𝐼𝑁(𝑣1) ∑ 𝐼(𝑣𝑗)

𝑛

𝑗=2

, 

  𝑃𝑊𝐼𝐹(𝐺) = 2𝑓 ∑ 𝐹𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝐹𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑓𝐹𝑁(𝑣1) ∑ 𝐹(𝑣𝑗)

𝑛

𝑗=2

, 
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where 𝑀 = (𝑡, 𝑖, 𝑓). 

 

Proof. Let 𝐺 = (𝑁, 𝑀)  be a neutrosophic tree |𝑁∗| ≥ 3 , With 𝐺∗  is a star. Since = (𝑡, 𝑖, 𝑓)  is a 

constant function and 𝑣𝑖 is the center vertex, for each 𝑣𝑖, 1 < 𝑖 ≤ 𝑛, we have 

  
𝑑𝑠𝑇

(𝑣1, 𝑣𝑖) = 𝑡, 𝑑𝑠𝐼
(𝑣1, 𝑣𝑖) = 𝑖, 𝑑𝑠𝐹

(𝑣1, 𝑣𝑖) = 𝑓. 

 

Also, for 𝑣𝑖 and 𝑣𝑗, 𝑖, 𝑗 ≠ 1, then 

 

𝑑𝑠𝑇
(𝑣𝑗 , 𝑣𝑖) = 2𝑡, 𝑑𝑠𝐼

(𝑣𝑗 , 𝑣𝑖) = 2𝑖, 𝑑𝑠𝐹
(𝑣𝑗 , 𝑣𝑖) = 2𝑓. 

 

Then 

𝑃𝑊𝐼𝑇(𝐺) =  ∑ 𝑇𝑁(𝑣𝑖)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣𝑖 ,  𝑣𝑗)

𝑣𝑖,𝑣𝑗 ∈𝑁

= ∑ 𝑇𝑁(𝑣1)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣1,  𝑣𝑗)

𝑣𝑗 ∈𝑁

+ ∑ 𝑇𝑁(𝑣𝑖)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣𝑖 ,  𝑣𝑗)

𝑣𝑖,𝑣𝑗 ∈𝑁

𝑖≠1

= 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

+ 2𝑡 ∑ 𝑇𝑁(𝑣𝑖)𝑇𝑁(𝑣𝑗)𝑑𝑠𝑇
(𝑣𝑖 ,  𝑣𝑗)

𝑣𝑖,𝑣𝑗 ∈𝑁

𝑖≠1

= 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

+ [2𝑡 ∑ 𝑇𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 2𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

]

=  2𝑡 ∑ 𝑇𝑁(𝑣𝑗)

𝑛−1

𝑗=1

∑ 𝑇𝑁(𝑣𝑘)

𝑛

𝑘=𝑗+1

− 𝑡𝑇𝑁(𝑣1) ∑ 𝑇(𝑣𝑗)

𝑛

𝑗=2

. 

Similarly, 𝑃𝑊𝐼𝐼(𝐺) and 𝑃𝑊𝐼𝐹(𝐺) can be proved. 

 

4. Applications  

One of the most important topics is the use of neutrosophic sets in other sciences and also the 

use of these assemblies to model various problems. Many applications have been discussed by 

experts so far. Which can be referred to as application of neutrosophic in graphs [12, 17-19], 

application in algebraic topics [11, 14], application in intelligent systems and optimization [3, 4]. 

Here the Wiener index is calculated for a neutrosophic graph associated with a real-time 

example. You can see this issue and its explanation on the website www.pantechsolutions.net. The 

neutrosophic graph of this issue is also given in [5]. There, the author examines energy, Laplacian 

energy, and signless Laplacian energy. We also use the modeling used in [5] here. This neutrosophic 

graph is intended for four different time periods. According to each time period, we define a 

neutrosophic graph in the following order: 

 G1 from 16 January 2018 to 15 February 2018 (figure 3); 

 G2 from 16 February 2018 to 15 March 2018 (figure 4); 

 G3 from 16 March 2018 to 15 April 2018 (figure 5); 

 G4 from 16 April 2018 to 15 May 2018 (figure 6); 

We now calculate the Wiener index (partial Wiener index and totally Wiener index) for each of 

the above time periods. 

http://www.pantechsolutions.net/
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Figure 4. Neutrosophic graph 𝐺1 

Table 3. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.1 0.3 + 0.2 = 0.5 0.4 

𝑎, 𝑐 0.1 0.3 0.4 + 0.3 = 0.7 

𝑎, 𝑑 0.1 + 0.2 = 0.3 0.3 + 0.4 = 0.7 0.4 + 0.4 = 0.8 

𝑏, 𝑐 0.2 + 0.3 = 0.5 0.2 0.3 

𝑏, 𝑑 0.2 0.3 0.3 + 0.3 = 0.6 

𝑐, 𝑑 0.3 0.2 + 0.3 = 0.5 0.3 

 

𝑃𝑊𝐼𝑇(𝐺1) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.2)(0.3)(0.1) + (0.2)(0.4)(0.1) + (0.2)(0.5)(0.3) + (0.3)(0.4)(0.5)

+ (0.3)(0.5)(0.2) + (0.4)(0.5)(0.3) = 0.194, 

𝑃𝑊𝐼𝐼(𝐺1) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.3)(0.1)(0.5) + (0.3)(0.1)(0.3) + (0.3)(0.2)(0.7) + (0.1)(0.1)(0.2)

+ (0.1)(0.2)(0.3) + (0.1)(0.2)(0.5) = 0.084, 

𝑃𝑊𝐼𝐹(𝐺1) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= (0.1)(0.2)(0.4) + (0.1)(0.3)(0.7) + (0.1)(0.1)(0.8) + (0.2)(0.3)(0.3)

+ (0.2)(0.1)(0.6) + (0.3)(0.1)(0.3) = 0.076, 

 

𝑇𝑊𝐼(𝐺1) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺1) − 2𝑃𝑊𝐼𝐹(𝐺1) − 𝑃𝑊𝐼𝐼(𝐺1)

6
=

4 + 2(0.194) − 2(0.076) − (0.084)

6
=

4.152

6

= 0.692. 
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Figure 5. Neutrosophic graph 𝐺2 

Table 4. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.3 0.4 0.2 

𝑎, 𝑐 0.2 0.5 0.3 

𝑎, 𝑑 0.3 0.3 + 0.5 = 0.8 0.2 + 0.3 = 0.5 

𝑏, 𝑐 0.2 0.4 + 0.5 = 0.9 0.2 + 0.3 = 0.5 

𝑏, 𝑑 0.3 0.4 + 0.5 + 0.3 = 1.2 0.3 

𝑐, 𝑑 0.2 + 0.3 = 0.5 0.3 0.3 + 0.2 + 0.3 = 0.8 

 

𝑃𝑊𝐼𝑇(𝐺2) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.072 + 0.036 + 0.090 + 0.024 + 0.060 + 0.075 = 0.357, 

𝑃𝑊𝐼𝐼(𝐺2) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.024 + 0.015 + 0.048 + 0.018 + 0.048 + 0.006 = 0.159, 

𝑃𝑊𝐼𝐹(𝐺2) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.004 + 0.018 + 0.010 + 0.015 + 0.003 + 0.024 = 0.074, 

 

𝑇𝑊𝐼(𝐺2) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺2) − 2𝑃𝑊𝐼𝐹(𝐺2) − 𝑃𝑊𝐼𝐼(𝐺2)

6
=

4 + 2(0.357) − 2(0.074) − (0.159)

6
=

4.307

6

= 0.718. 
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Figure 6. Neutrosophic graph 𝐺3 

Table 5. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.6 0.5 + 0.6 = 1.1 0.4 

𝑎, 𝑐 0.5 0.6 0.3 

𝑎, 𝑑 0.5 + 0.1 = 0.6 0.6 + 0.5 + 0.5 = 1.6 0.3 + 0.4 = 0.7 

𝑏, 𝑐 0.6 + 0.5 = 1.1 0.5 0.4 + 0.3 = 0.7 

𝑏, 𝑑 0.1 0.5 0.4 + 0.3 + 0.4 = 1.1 

𝑐, 𝑑 0.1 0.5 + 0.5 = 1 0.4 

 

𝑃𝑊𝐼𝑇(𝐺3) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.288 + 0.210 + 0.072 + 0.616 + 0.016 + 0.014 = 1.216, 

𝑃𝑊𝐼𝐼(𝐺3) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.044 + 0.018 + 0.080 + 0.060 + 0.1 + 0.15 = 0.452, 

𝑃𝑊𝐼𝐹(𝐺3) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.008 + 0.006 + 0.042 + 0.007 + 0.033 + 0.012 = 0.108 

 

𝑇𝑊𝐼(𝐺3) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺3) − 2𝑃𝑊𝐼𝐹(𝐺3) − 𝑃𝑊𝐼𝐼(𝐺3)

6
=

4 + 2(1.216) − 2(0.108) − (0.452)

6
=

5.548

6

= 0.925. 
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Figure 7. Neutrosophic graph 𝐺4 

Table 6. The sum of the weights of the edges in geodesic between each pair of vertices 𝑢 and 𝑣. 

 𝑑𝑠𝑇
(𝑢, 𝑣) 𝑑𝑠𝐼

(𝑢, 𝑣) 𝑑𝑠𝐹
(𝑢, 𝑣) 

𝑎, 𝑏 0.3 + 0.4 + 0.3 = 1 0.5 0.3 

𝑎, 𝑐 0.3 0.6 0.3 + 0.3 = 0.6 

𝑎, 𝑑 0.3 + 0.4 = 0.7 0.5 + 0.4 = 0.9 0.5 + 0.4 = 0.9 

𝑏, 𝑐 0.3 + 0.4 = 0.7 0.5 + 0.6 = 1.1 0.3 

𝑏, 𝑑 0.3 0.4 0.3 + 0.4 = 0.7 

𝑐, 𝑑 0.4 0.6 + 0.5 = 1.1 0.4 

 

𝑃𝑊𝐼𝑇(𝐺4) =  ∑ 𝑇𝑁(𝑢)𝑇𝑁(𝑣)𝑑𝑠𝑇
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.20 + 0.072 + 0.196 + 0.210 + 0.105 + 0.168 = 0.951, 

𝑃𝑊𝐼𝐼(𝐺4) =  ∑ 𝐼𝑁(𝑢)𝐼𝑁(𝑣)𝑑𝑠𝐼
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.050 + 0.180 + 0.045 + 0.066 + 0.008 + 0.033 = 0.382, 

𝑃𝑊𝐼𝐹(𝐺4) =  ∑ 𝐹𝑁(𝑢)𝐹𝑁(𝑣)𝑑𝑠𝐹
(𝑢, 𝑣)

𝑢,𝑣 ∈𝑁

= 0.009 + 0.036 + 0.108 + 0.006 + 0.028 + 0.032 = 0.219, 

 

𝑇𝑊𝐼(𝐺4) =
4 + 2𝑃𝐶𝑊𝐼𝑇(𝐺4) − 2𝑃𝑊𝐼𝐹(𝐺4) − 𝑃𝑊𝐼𝐼(𝐺4)

6
=

4 + 2(0.951) − 2(0.219) − (0.382)

6
=

5.082

6

= 0.847. 

 

Now, using the Wiener index obtained for each of the neutrosophic graphs 𝐺1, 𝐺2, 𝐺3, and 𝐺4, 

we can compare these four components in the time intervals given in the problem. 
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Figure 8. Wiener index comparison chart in 𝐺1, 𝐺2, 𝐺3, and 𝐺4 

 

As shown in Figure 7, they can be easily studied using the Wiener index and assigning a logical value 

to each of the neutrosophic graphs. 

 

Conclusion 

In this article, we examine the Wiener index in neutrosophic graphs. First, this index was defined 

for this group of graphs and then it was calculated for certain modes of neutrosophic graphs. In the 

following, we provide an example of the application of this index in real problems. As you can see 

here, this index, which is one of the most important topological indices based on distance, can be a 

good criterion for comparing neutrosophic graphs under the same conditions. This index can also be 

studied and used for bipolar and interval valued neutrosophic graphs. 
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Abstract: In this article, we introduce the concept of neutrosophic d-ideal of neutrosophic d-algebra. 

Also we have studied several properties of them. We also furnish some suitable examples. 
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1. Introduction:  

The concept of BCK algebra and BCI algebra are introduced by Imai & Iseki [18]. Thereafter, Negger 

& Kim [23] introduced the d-algebra as a generalization of BCK algebra. Negger et al. [22] discussed 

the ideal theory in d-algebra. In the year 1965, Zadeh introduced the idea of fuzzy set [26]. 

Thereafter, Atanassov introduced the notion of intuitionistic fuzzy set [1], which is the natural 

generalization of fuzzy set. Later on, Jun et al. [20] applied the notion of intuitionistic fuzzy set on 

d-algebra. Afterwards, the notion of intuitionistic fuzzy d-ideal of d-algebra was introduced by 

Hasan [16] in 2017. Thereafter, the concept of intuitionistic fuzzy d-filter was introduced by Hasan 

[17] in 2020. The concept of neutrosophic set was introduced by Smarandache [24]. In this article, we 

procure the notion of neutrosophic d-algebra and neutrosophic d-ideal by extending the notion of 

intuitionistic fuzzy d-ideal of d-algebra.   

 

Research gap: No investigation on neutrosophic d-algebra and neutrosophic d-ideal has been 

reported in the recent literature. 

Motivation: To fill the research gap, we introduce the neutrosophic d-algebra and neutrosophic 

d-ideal. 

The rest of the paper is designed as follows: 

In section-2, we recall d-algebra, d-ideal, fuzzy d-algebra, fuzzy d-ideal, intuitionistic fuzzy d-algebra, 

intuitionistic fuzzy d-ideal. In section-3, we introduce the notion of neutrosophic d-algebra, 

neutrosophic d-ideal, and the proofs of some propositions, theorems on neutrosophic d-algebra, and 

neutrosophic d-ideal. In section-4, we give the conclusions of work done in this paper. 
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2. Preliminaries and Some Results: 

Definition 2.1.[17] Assume that W be a non-empty set and 0 be a constant. Then, W with a binary 

operation  is called a d-algebra if it satisfies the following three axioms: 

(i) c ∗c =0, ∀ c∈ W 

(ii) 0 ∗c =0, ∀ c∈ W 

(iii) c ∗d =0 and d ∗c =0 c =d,  ∀ c, d ∈ W.  

We will refer to c∗d by cd. And c ≤ d iff cd = 0.  

Definition 2.2.[17] A d-algebra W is called commutative if c(cd)=d(dc), c, d∈W, and d(dc) is denoted 

by (c∧d). 

Definition 2.3.[17] A d-algebra W is called bounded if there exist a∈W such that c ≤ a for all c∈W, i.e. 

ca=0, ∀c∈W.  

Definition 2.4.[17] Let W be a d-algebra with binary operator  and A W. Then, A is said to be a 

d-sub-algebra of W, if c, dA cdA.  

Definition 2.5.[16] Let W be a d-algebra with binary operator  and a constant 0. Then, DW is called 

a d-ideal of W if it satisfies the following: 

(i) abD and bD a D; 

(ii) aD and bW  abD.  

Definition 2.6.[15] Let Y={(c,TY(c)):cW} be a fuzzy set over a d-algebra W. Then, A is called a fuzzy 

d-algebra if TY(cd) min{TY(c), TY(d)}, for all c, dW. 

Definition 2.7.[15] An fuzzy set Y={(c,TY(c),FY(c)): cW} over a d-algebra W is called the fuzzy d-ideal 

if it satisfies the following inequalities: 

(i) TY(c) min{TY(cd), TY(d)}; 

(iii) TY(cd) TY(c), for all c, dW. 

Definition 2.8.[14] Let Y={(c,TY(c),FY(c)): cW} be an intuitionistic fuzzy set over a d-algebra W. Then, 

A is called an intuitionistic fuzzy d-algebra if it satisfies the followings: 

(i) TY(cd) min{TY(c), TY(d)}; 

(ii) FY(cd) max{ FY(c), FY(d)}; 

where c, dW. 

Proposition 2.1.[14] Every intuitionistic fuzzy d-algebra Y={(c,TY(c),FY(c)): cW} of W satisfies the 

following inequalities: 

(i) TY(0) TY(c), for all cW; 

(ii) FY(0) FY(c), for all cW. 

Definition 2.9.[10] An intuitionistic fuzzy set Y={(c,TY(c),FY(c)): cW} over a d-algebra W is called the 

intuitionistic fuzzy d-ideal if it satisfies the following inequalities: 

(i) TY(c) min{TY(cd), TY(d)}; 

(ii) FY(c) max{FY(cd), FY(d)}; 

(iii) TY(cd) TY(c); 

(iv) FY(cd) FY(c); for all c, dY. 
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Proposition 2.2.[10] Let Y={(c,TY(c),FY(c)): cW} be an intuitionistic fuzzy d-ideal over a d-algebra W. 

Then, the following inequalities hold: 

TY(0) TY(c), FY(0) FY(c), for all cW. 

Definition 2.10.[18] A neutrosophic set over a universal set W is defined as follows: 

H = {(y, TH(y), IH(y), FH(y)): yW}, where TH(y), IH(y) and FH(y) (]-0,1+[) are the truth, indeterminacy 

and false membership value of y and -0  TH(y) + IH(y) + FH(y)  3+. 

Definition 2.11.[18] The neutrosophic whole set (1N) and neutrosophic null set (0N) over a universal 

set W is defined as follows: 

(i) 1N ={(y,1,0,0): yW}. 

(ii) 0N ={(y,0,0,1): yW}. 

Definition 2.12.[18] Assume that H={(y, TH(y), IH(y), FH(y)):yW} and K={(y, TK(y), IK(y), FK(y)):yW} 

are any two neutrosophic sets over X. Then, 

(i) HK= {(y,TH(y)TK(y), IH(y)IK (y), FH(y)FK(y)): yW}; 

(ii) HK= {(y, TH(y)TK(y), IH (y)IK(y), FH(y)FK(y)): yW}; 

(iii) Hc = {(y, 1-TH(y), 1-IH(y), 1-FH(y)): yW}; 

(iv) H K  TH(y)TK(y), IH(y)  IK(y), FH(y) FK(y), for each yW. 

 

3. Neutrosophic d-Algebra and Neutrosophic d-Ideal: 

Definition 3.1. Let Y={(c,TY(c),IY(c),FY(c)): cW} be an neutrosophic set over a d-algebra W. Then, A is 

called a neutrosophic d-algebra if it satisfies the followings: 

(i) TY(cd) min{TY(c), TY(d)}; 

(ii) IY(cd) max{IY(c), IY(d)}; 

(iii) FY(cd) max{FY(c), FY(d)}; 

where c, dW. 

Example 3.1. Take 𝑊 = {0, 𝑐, 𝑑, 𝑤} with the following table 

 

 

 

 

 

 

Note that if we define  

𝑇𝑌(𝑎) = {
0.2       𝑖𝑓𝑎 = 0, 𝑐
0.02   𝑖𝑓𝑎 = 𝑑, 𝑤

  , 𝐼𝑌(𝑎) = {
0.09       𝑖𝑓𝑎 = 0, 𝑐
0.8        𝑖𝑓𝑎 = 𝑑, 𝑤

  and 𝐹𝑌(𝑎) = {
0.05       𝑖𝑓𝑎 = 0, 𝑐
0.7        𝑖𝑓𝑎 = 𝑑, 𝑤

  

So we can show easily that  𝑌 = {(𝑐, 𝑇𝑌(𝑐), 𝐼𝑌(𝑐), 𝐹𝑌(𝑐)): 𝑐𝑊}  is a neutrosophic d-algebra   

 

Proposition 3.1. Every neutrosophic d-algebra Y={(c,TY(c),IY(c),FY(c)): cW} of W satisfies the 

following inequalities: 

(i) TY(0) TY(c), for all cW; 

(ii) IY(0) IY(c), for all cW; 

𝑤 𝑑 𝑐 0 ⋆ 

0 0 0 0 0 

𝑐 0 0 𝑐 𝑐 

0 0 𝑑 𝑑 𝑑 

0 𝑑 𝑤 𝑤 𝑤 
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(iii) FY(0) FY(c), for all cW. 

Proof. Assume that Y={(c,TY(c),IY(c),FY(c)): cW} be a neutrosophic d-algebra of W. Let cW. Then 

(i) TY(0)= TY(cc) min{ TY(c), TY(c)}= TY(c), (using definition 2.1. & 3.1.) 

(ii) IY(0)= IY(cc) max{ IY(c), IY(c)}= IY(c), (using definition 2.1. & 3.1.) 

(iii) FY(0)= FY(cc) max{ FY(c), FY(c)}= FY(c), (using definition 2.1. & 3.1.) 

Theorem 3.1. Let {Yi: i} be the family of neutrosophic d-algebra of W. Then, ⋂ 𝑌𝑖𝑖   is a 

neutrosophic d-algebra of W. 

Proof. Assume that {Yi: i} be the family of neutrosophic d-algebra of W. Now, 

⋂ 𝑌𝑖𝑖 ={(c,𝑇𝑌𝑖
(c),𝐼𝑌𝑖

(c),𝐹𝑌𝑖
(c)): cW}. Let c, dW. Then,  

(i) 𝑇𝑌𝑖
(cd)  min{𝑇𝑌𝑖

(c), 𝑇𝑌𝑖
(d)}= min{𝑇𝑌𝑖

(c),𝑇𝑌𝑖
(d)} 

𝑇𝑌𝑖
(cd) min{𝑇𝑌𝑖

(c),𝑇𝑌𝑖
(d)}; 

(ii) 𝐼𝑌𝑖
(cd)  max{𝐼𝑌𝑖

(c), 𝐼𝑌𝑖
(d)}= max{𝐼𝑌𝑖

(c),𝐼𝑌𝑖
(d)}  

𝐼𝑌𝑖
(cd) max{𝐼𝑌𝑖

(c),𝐼𝑌𝑖
(d)}; 

(iii) 𝐹𝑌𝑖
(cd)  max{𝐹𝑌𝑖

(c), 𝐹𝑌𝑖
(d)}= max{𝐹𝑌𝑖

(c),𝐹𝑌𝑖
(d)}  

𝐹𝑌𝑖
(cd) max{𝐹𝑌𝑖

(c),𝐹𝑌𝑖
(d)}; 

Therefore, ⋂ 𝑌𝑖𝑖  is also a neutrosophic d-algebra of W. 

Theorem 3.3. If Y={(c,TY(c),IY(c),FY(c)): cW} is a neutrosophic d-algebra of W, then the sets WT={cW: 

TY(c)=TY(0)}, WI={cW: IY(c)=IY(0)}, and WF={cW: FY(c)=FY(0)} are d-sub-algebras of W. 

Proof. Assume that Y={(c,TY(c),IY(c),FY(c)): cW} be a neutrosophic d-algebra of W. Given WT={cW: 

TY(c)=TY(0)}, WI={cW: IY(c)=IY(0)}, and WF={cW: FY(c)=FY(0)}. Let c, d WT. Therefore, TY(c)=TY(0), 

TY(d)=TY(0). Now by definition 2.1, TY(cd) min{TY(c), TY(d)}= min{TY(0), TY(0)}=TY(0), i.e. TY(cd) 

TY(0). Again from proposition 3.1, it is clear that TY(0) TY(cd). Therefore TY(cd)= TY(0). This implies 

that cd WT. Hence c, d WT   cd WT. Therefore the set WT={cW: TY(c)=TY(0)} is a d-sub-algebra 

of W.   

Similarly we can easily show that WI={cW: IY(c)=IY(0)} and WF={cW: FY(c)=FY(0)} are 

d-sub-algebras of W. 

Definition 3.2. Assume that Y = {(c,TY(c),IY(c),FY(c)): cW} be a neutrosophic set over W. Then, the 

sets W(TY,)={cW:TY(c)}, W(IY,)={cW:IY(c)}, W(FY,)={cW:FY(c)} are respectively called 

T-level -cut, I-level -cut, F-level -cut of Y.  

Theorem 3.4. Assume that Y={(c,TY(c),IY(c),FY(c)):cW} be a neutrosophic d-algebra of W. Then, for 

any [0,1], the T-level -cut, I-level -cut, F-level -cut of Y are d-sub-algebra of W. 

Proof. Assume that Y={(c,TY(c),IY(c),FY(c)):cW} be a neutrosophic d-algebra of W. Then, T-level -cut 

of Y= W(TY,)={cW:TY(c)}, I-level -cut of Y= W(IY,)={cW:IY(c)}, and F-level -cut of Y= 

W(FY,)={cW:FY(c)}. 

Let c, d W(TY,). Therefore, TY(c), TY(d). Now TY(cd)  min{ TY(c), TY(d)}  min{ , } . 

This implies, cd  W(TY,). Hence, c, d  W(TY,)  cd  W(TY,). Therefore, W(TY,) i.e. T-level 

-cut of Y is a d-sub-algebra of W. 

Similarly, we can easily show that I-level -cut, F-level -cut of Y are d-sub-algebra of W. 
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Definition 3.3. An neutrosophic set Y={(c,TY(c),IY(c),FY(c)):cW} over a d-algebra W is called a 

neutrosophic d-ideal if it satisfies the following inequalities: 

(i) TY(c)min{TY(cd), TY(d)}; 

(ii) FY(c)max{FY(cd), FY(d)}; 

(iii) IY(c)max{IY(cd), IY(d)}; 

(iv) TY(cd)TY(c); 

(v) FY(cd)FY(c);  

(vi) IY(cd)IY(c), for all c, dY. 

Example 3.2. Take 𝑊 = {0, 𝑐, 𝑑, 𝑤} with the following table 

 

 

 

 

 

Note that if we define  

𝑇𝑌(𝑎) = {
0.9        𝑖𝑓𝑎 = 0
0.01   𝑖𝑓𝑎 = 𝑐, 𝑑

  , 𝐼𝑌(𝑎) = {
0.1           𝑖𝑓𝑎 = 0
0.5        𝑖𝑓𝑎 = c, 𝑑

  and 𝐹𝑌(𝑎) = {
0.2          𝑖𝑓𝑎 = 0

0.6        𝑖𝑓𝑎 = 𝑐, 𝑑
  

Then 𝑌 = {(𝑐, 𝑇𝑌(𝑐), 𝐼𝑌(𝑐), 𝐹𝑌(𝑐)): 𝑐𝑊}  is a neutrosophic d-ideal of d-algebra  

 

Proposition 3.2. If Y={(c,TY(c),IY(c),FY(c)): cW} is a neutrosophic d-ideal of W, then TY(0) TY(c), IY(0) 

IY(c), FY(0) FY(c), for all cW. 

Proof. Assume that Y={(c,TY(c),IY(c),FY(c)): cW} is a neutrosophic d-ideal of W, and c be any arbitrary 

element of W. Since TY(cc) TY(c), so TY(0) TY(c). Similarly, since IY(cc) IY(c), so IY(0) IY(c). Again, 

since FY(cc) FY(c), so FY(0) FY(c).  

Theorem 3.6. Assume that Y={(x,TY(x),IY(x),FY(x)):xW} is a neutrosophic d-ideal of W. If xy  z, then 

TY(x) min{TY(y), TY(z)}, IY(x) max{IY(y), IY(z)}, FY(x) max{FY(y), FY(z)}. 

Proof. Assume that Y={(x,TY(x),IY(x),FY(x)):xW} be an neutrosophic d-ideal of W. Let x, y, z be any 

three element of W such that xy  z. Then by definition 2.1, (xy)z=0.  

Now, TY(x) min{TY(xy), TY(y)} min{min{TY((xy)z), TY(z)}, TY(y)}= min{min{TY(0),TY(z)}, TY(y)} 

min{TY(z), TY(y)}. Therefore, TY(x) min{TY(y), TY(z)}. 

Now, IY(x) max{IY(xy), IY(y)} max{max{IY((xy)z), IY(z)}, IY(y)}= max{max{IY(0),IY(z)}, IY(y)} 

max{IY(z), IY(y)}. Therefore, IY(x) max{IY(y), IY(z)}. 

Again, FY(x) max{FY(xy), FY(y)} max{max{FY((xy)z), FY(z)}, FY(y)}= max{max{FY(0),FY(z)}, FY(y)} 

max{FY(z), FY(y)}. Therefore, FY(x) max{FY(y), FY(z)}. 

Theorem 3.7. Assume that Y={(c,TY(c),IY(c),FY(c)): cW} is a neutrosophic d-ideal of W. If x  z, then 

TY(x)TY(z), IY(x)IY(z), FY(x)FY(z). 

Proof. Assume that Y={(c,TY(c),IY(c),FY(c)): cW} is a neutrosophic d-ideal of W. Also let x, z be any 

two element of W such that x  z. Then by the definition 2.1, xz=0.  

Now, TY(x) min{TY(xz),TY(z)}= min{TY(0),TY(z)}, TY(z)}=TY(z). Therefore, TY(x) TY(z). 

Now, IY(x) max{IY(xz),IY(z)}= max{IY(0),IY(z)}, IY(z)}=IY(z). Therefore, IY(x) IY(z). 

𝑑 𝑐 0 ⋆ 

0 0 0 0 

𝑑 0 𝑑 𝑐 

0 𝑐 𝑐 𝑑 
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Now, FY(x) max{FY(xz),FY(z)}= max{FY(0),FY(z)}, FY(z)}=FY(z). Therefore, FY(x) FY(z). 

Theorem 3.10. If {Di: i} be the collection of neutrosophic d-ideals of d-algebra W, then ⋂ 𝐷𝑖𝑖  is 

also a neutrosophic d-ideal of d-algebra W. 

Proof. Assume that {Di: i} be the collection of neutrosophic d-ideals of d-algebra W. We have 

⋂ 𝐷𝑖𝑖 = {(c,𝑇𝑌𝑖
(c),𝐼𝑌𝑖

(c),𝐹𝑌𝑖
(c)): cW}.  

Now 𝑇𝑌𝑖
(c) {min{𝑇𝑌𝑖

(cd),𝑇𝑌𝑖
(d)}}  min{𝑇𝑌𝑖

(cd), 𝑇𝑌𝑖
(d)}, 

𝐼𝑌𝑖
(c) {max{𝐼𝑌𝑖

(cd),𝐼𝑌𝑖
(d)}}  max{𝐼𝑌𝑖

(cd), 𝐼𝑌𝑖
(d)}, 

and 𝐼𝑌𝑖
(c) {max{𝐼𝑌𝑖

(cd),𝐼𝑌𝑖
(d)}}  max{𝐼𝑌𝑖

(cd), 𝐼𝑌𝑖
(d)}. 

Since 𝑇𝑌𝑖
(cd) 𝑇𝑌𝑖

(c), 𝐼𝑌𝑖
(cd) 𝐼𝑌𝑖

(c), 𝐼𝑌𝑖
(cd) 𝐼𝑌𝑖

(c), for all i, we have 𝑇𝑌𝑖
(cd)  𝑇𝑌𝑖

(c), 𝐼𝑌𝑖
(cd)  

𝐼𝑌𝑖
(c), 𝐼𝑌𝑖

(cd)  𝐼𝑌𝑖
(c), for all i. Hence ⋂ 𝐷𝑖𝑖 = {(c,𝑇𝑌𝑖

(c),𝐼𝑌𝑖
(c),𝐹𝑌𝑖

(c)): cW} is a neutrosophic 

d-ideal of W. 

Theorem 3.11. A neutrosophic set Y={(c,TY(c),FY(c),IY(c)): cW} is neutrosophic d-ideal of d-algebra W 

if and only if the corresponding fuzzy set {(c,TY(c)): cW}, {(c,1-IY(c)): cW}, {(c,1-FY(c)): cW} are 

fuzzy d-ideal of W. 

Proof. Assume that Y={(c,TY(c),FY(c),IY(c)): cW} be a neutrosophic d-ideal of W. Therefore for all 

c,dW, TY(c) min{TY(cd), TY(d)}; TY(cd)TY(c); IY(c) max{IY(cd), IY(d)}; IY(cd)IY(c); FY(c) max{FY(cd), 

FY(d)}; FY(cd)FY(c).  

Since for all c, dW, TY(c) min{TY(cd), TY(d)}; TY(cd)TY(c), so the fuzzy set {(c,TY(c)): cW} is a 

fuzzy d-ideal of W. 

Now, for all c, dW,  

IY(c)  max{IY(cd), IY(d)}  1-IY(c) min{1-IY(cd), 1-IY(d)}; 

IY(cd)  IY(c)  1-IY(cd)  1-IY(c); 

Therefore, the fuzzy set {(c,1-IY(c)): cW} is a fuzzy d-ideal of W. 

Again, for all c, dW,  

FY(c) max{FY(cd), FY(d)} 1-FY(c) min{1-FY(cd), 1-FY(d)}; 

FY(cd)FY(c) 1-FY(cd)1-FY(c); 

Therefore, the fuzzy set {(c,1-FY(c)): cW} is a fuzzy d-ideal of W. 

Hence for an neutrosophic d-ideal Y={(c,TY(c),FY(c),IY(c)): cW} of W, the corresponding fuzzy sets 

{(c,TY(c)): cW}, {(c,1-IY(c)): cW}, {(c,1-FY(c)): cW} are fuzzy d-ideal of W. 

Theorem 3.12. If a neutrosophic set Y={(c,TY(c),FY(c),IY(c)): cW} is neutrosophic d-ideal of d-algebra 

W, then the sets W(TY)={cW: TY(c)=TY(0)}, W(IY)={cW: IY(c)=IY(0)}, and W(FY)={cW: FY(c)=FY(0)} are 

d-ideal of W. 

Proof. Assume that Y={(c,TY(c),FY(c),IY(c)): cW} be a neutrosophic d-ideal of a d-algebra W. 

Let ab W(TY) and b W(TY). Therefore, TY(ab)=TY(0) and TY(b)=TY(0). Since Y is a neutrosophic 

d-ideal of a d-algebra W, so TY(a) min{TY(ab), TY(b)}= min{ TY(0), TY(0)}= TY(0). This implies that 

TY(a)TY(0). Again by proposition 3.2, it is clear that TY(0)TY(a). Hence TY(a)=TY(0), i.e. a W(TY). 

Therefore, abW(TY) and b W(TY) a W(TY). 

Again let aW(TY) and bW. Therefore, TY(a)=TY(0). Since Y is a neutrosophic d-ideal of a d-algebra 

W, so TY(ab)TY(a)=TY(0). This implies that TY(ab)TY(0). From proposition 3.2, it is clear that TY(0) 
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TY(ab). Hence TY(ab)=TY(0), i.e. abW(TY). Therefore, aW(TY) and bW  abW(TY). Hence the 

set W(TY)={cW: TY(c)=TY(0)} is a d-ideal of W.  

 Similarly we can show that, the sets W(IY)={cW: IY(c)=IY(0)}, and W(FY)={cW: FY(c)=FY(0)} are 

d-ideal of W. 

 

5. Conclusions:  

In this article, we introduce the notion of neutrosophic d-ideals of d-algebra. Further we have 

investigated different properties and study some relations on neutrosophic d-algebra. By defining 

neutrosophic d-algebra, neutrosophic d-ideals, we prove some propositions, theorems on 

neutrosophic d-algebra and d-ideal.  

In the future, we hope that many new notions namely neutrosophic d-filter, neutrosophic 

d-topology can be introduce based on these notions of neutrosophic d-algebra. 
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1. Introduction

Many investigators in business, science, economy and a variety of other branches deal with

modeling unknown data on a regular basis. For these ambiguous and uncertainties, traditional

techniques are not always successful. Lotfi A. Zadeh [16] instigated the idea of membership

or truth value to the elements of collection of well-defined objects called, sets. These systems

can handle a variety of inputs, including ambiguous, distorted, or inaccurate data. The idea of

fuzzy topology was initially developed by Chang [2] in 1967. Many topological structures and

generalizations have developed in time utilizing fuzzy sets. In addition to the degree of truth

membership, Atanassov [1] paired non-membership value called false membership, which was

the generalization of fuzzy sets, called intuitionistic fuzzy sets. In 1997, intuitionistic fuzzy

topology was found by Coker [4]. Along with the two membership values, Smarandache [11]

introduced the idea of indeterminacy membership function in 1999. Neutrosophic sets play

an important part in many aspects like, decision making, medical diagnosis, etc., Wang and

Smarandache [13] introduced the notion of interval valued neutrosophic sets.

Qualitative attributes can be easily expressed in linguistic terms, which was developed by

Zadeh [17]. The idea of linguistic variables was applied in decision making by Herrara etc.,al [9]

in 2000 and Herrara-Viedma, Vergegay [8] in 1996. Su [12] used linguistic preference informa-

tion in group decision making. Chen, Liu, etc.,al [3] introduced linguistic intuitionistic fuzzy

number(LIFN) in 2015. As LIFN lacks indeterminacy, Ye [15] in 2015, proposed the notion of
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single valued neutrosophic linguistic numbers and developed an extended TOPSIS model for

MAGDM approach utilizing SVNLNs. An extended COPRAS model for MAGDM based on

SVN 2-tuple neutrosophic environment was developed by Wei, Wu, etc.,al [14]. Fang, Zebo

etc.,al [6] found linguistic neutrosophic numbers in 2017, with a concrete definition.This paper

is categorized as follows: Section 2 deals with the basic definitions of LNNs. In Section 3, the

idea of linguistic neutrosophic topology is introduced and some properties are discussed. Lin-

guistic neutrosophic derived set is discussed in section 4. In last section, the notion of linguistic

neutrosophic continuity and linguistic neutrosophic dense sets are defined and discussed with

suitable examples.

2. Preambles

Definition 2.1. [11] Let S be a space of points (objects), with a generic element in x denoted

by S. A neutrosophic set A in S is characterized by a truth-membership function TA, an

indeterminacy membership function IA and a falsity-membership function FA. TA(x), IA(x)

and FA(x) are real standard or non-standard subsets of ]0−, 1+[. That is

TA : S →]0−, 1+[, IA : S →]0−, 1+[, FA : S →]0−, 1+[

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0− ≤ sup TA(x)+ sup IA(x)+

sup FA(x) ≤ 3+.

Definition 2.2. [11] Let S be a space of points (objects), with a generic element in x denoted

by S. A single valued neutrosophic set (SVNS) A in S is characterized by truth-membership

function TA, indeterminacy-membership function IA and falsity-membership function FA. For

each point S in S, TA(x), IA(x), FA(x) ∈ [0, 1].

When S is continuous, a SVNS A can be written as A =
∫
〈T (x), I(x), F (x)〉/x ∈ S.

When S is discrete, a SVNS A can be written as A =
∑
〈T (xi), I(xi), F (xi)〉/xi ∈ S.

Definition 2.3. [6] Let S = {sθ|θ = 0, 1, 2, ....., τ} be a finite and totally ordered discrete

term set, where τ is the even value and sθ represents a possible value for a linguistic variable.

For example, when τ = 6, S can be expressed as, S = {very bad, bad, fair, very fair, good,

very good}.

Su [12] extended the discrete linguistic term set S into a continuous term set S = {sθ|θ ∈
[0, q]}, where, if sθ ∈ S, then we call sθ the original term, otherwise it is called as a virtual

term.

Definition 2.4. [6] Let Q = {s0, s1, s2, ..., st} be a linguistic term set (LTS) with odd cardi-

nality t+1 and Q = {sh/s0 ≤ sh ≤ st, h ∈ [0, t]}. Then, a linguistic single valued neutrosophic

set A is defined by,
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A = {〈x, sθ(x), sψ(x), sσ(x)〉|x ∈ S}, where sθ(x), sψ(x), sσ(x) ∈ Q represent the linguistic

truth, linguistic indeterminacy and linguistic falsity degrees of S to A, respectively, with con-

dition 0 ≤ θ+ψ+σ ≤ 3t. This triplet (sθ, sψ, sσ) is called a linguistic single valued neutrosophic

number.

Definition 2.5. [6] Let α = (sθ, sψ, sσ), α1 = (sθ1, sψ1, sσ1), α2 = (sθ2, sψ2, sσ2) be three

LSVNNs, then

(1) αc = (sσ, sψ, sθ);

(2) α1 ∪ α2 = (max(θ1, θ2),min(ψ1, ψ2),min(σ1, σ2));

(3) α1 ∩ α2 = (min(θ1, θ2),max(ψ1, ψ2),max(σ1, σ2));

(4) α1 = α2 iff θ1 = θ2, ψ1 = ψ2, σ1 = σ2;

Definition 2.6. Let α = (lθ, lψ, lσ) be a LSVNN. The set of all labels is, L = {l0, l1, l2, ....., lt}.
Then the unit linguistic neutrosophic set (1LN ) is defined as 1LN = (lt, l0, l0), which is the

truth membership,and the zero linguistic neutrosophic set (0LN ) is defined as 0LN = (l0, lt, lt),

which is the falsehood membership.

Example 2.7. For the linguistic neutrosophic set, L = {very bad, bad, fair, very fair, good,

very good}, the set of all labels be, L = {l0, l1, l2, l3, l4, l5}.
Then the unit LNs is defined as 1LN = (l5, l0, l0), and the zero LNs is defined as 0LN =

(l0, l5, l5).

3. Linguistic Neutrosophic Topology

In this chapter, we introduce the concepts of linguistic neutrosophic topological spaces.

Definition 3.1. For a linguistic neutrosophic topology π, the collection of linguistic neutro-

sophic sets should obey,

(1) 0LN , 1LN ∈ π
(2) K1

⋂
K2 ∈ π for any K1,K2 ∈ π

(3)
⋃
Ki ∈ π,∀{Ki : i ∈ J} ⊆ π

We call, the pair (SLN , πLN ), a linguistic neutrosophic topological space.

Remark 3.2. Let (SLN , πLN ) be a linguistic neutrosophic topological space (LNTS). Then,

(SLN , πLN )c is the dual LN topology, whose elements are Kc
LN for KLN ∈ (SLN , πLN ). Any

open set in πLN is known as linguistic neutrosophic open set(LNOsS). Any closed set in πLN is

known as linguistic neutrosophic closed set(LNCS) iff it’s complement is linguistic neutrosophic

open set.
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Example 3.3. Let ULN be the universe of discourse ULN = {u, v, w, z} and SLN = {u, v}
and the linguistic term set be, L = { very poor, poor, very bad, bad, fair, good, very good}
Then L can be taken as, L = {l0, l1, l2, l3, l4, l5, l6}.
Let KLN = {〈u, (l5, l3, l4)〉, 〈v, (l4, l2, l3)〉},
That is, the element u’s degree of appurtenance to the set KLN is good(l5)

the element u’s degree of indeterminate-appurtenance to the set KLN is bad(l3)

the element u’s degree of non-appurtenance to the set KLN is fair(l4).

And the element v’s degree of appurtenance to the set KLN is fair(l4)

the element v’s degree of indeterminate-appurtenance to the set KLN is very bad(l2)

the element v’s degree of non-appurtenance to the set KLN is bad(l3).

Let, HLN = {〈u, (l6, l2, l2)〉, 〈v, (l6, l1, l0)〉}
That is, the element u’s degree of appurtenance to the set HLN is very good(l6)

the element u’s degree of indeterminate-appurtenance to the set HLN is very bad(l2)

the element u’s degree of non-appurtenance to the set HLN is very bad(l2).

And the element v’s degree of appurtenance to the set HLN is very good(l6)

the element v’s degree of indeterminate-appurtenance to the set HLN is poor(l1)

the element v’s degree of non-appurtenance to the set HLN is very poor(l0).

Similarly, let MLN = {〈u, (l6, l3, l2)〉, 〈v, (l6, l2, l0)〉}
That is, the element u’s degree of appurtenance to the set MLN is very good(l6)

the element u’s degree of indeterminate-appurtenance to the set MLN is bad(l3)

the element u’s degree of non-appurtenance to the set MLN is very bad(l2).

And the element v’s degree of appurtenance to the set MLN is very good(l6)

the element v’s degree of indeterminate-appurtenance to the set MLN is very bad(l2)

the element v’s degree of non-appurtenance to the set MLN is very poor(l0).

Then the collection πLN = {0LN ,KLN , HLN ,MLN ,KLN ∨HLN , 1LN} forms a LN topology

on (SLN , πLN ).

Definition 3.4. The linguistic neutrosophic closure and linguistic neutrosophic interior are

given by,

(i) LNint(KLN ) =
⋃
{OLN/OLN is a LNOSinSLN where OLN ⊆ KLN} and it is the

largest LN open subset of KLN .

(ii) LNcl(HLN ) =
⋂
{JLN/JLN is a LNCSinSLN whereHLN ⊆ JLN} and it is the smallest

LN closed set containing HLN .

Example 3.5. In example 3.3, LNint(KLN ) = NLN and LNcl(KLN ) = 1LN

Theorem 3.6. Let (SLN , πLN ) be a LNTS and KLN , HLN ∈ SLN . Then
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(i) KLN ∈ LNcl(KLN )

(ii) KLN is LN closed if and only if KLN = LNcl(KLN )

(iii) LNcl(φLN ) = φLN and LNcl(SLN ) = SLN .

(iv) KLN ⊆ HLN ⇒ LNcl(KLN ) ⊆ LNcl(HLN )

(v) LNcl(KLN ∪HLN ) = LNcl(KLN ) ∪ LNcl(HLN )

(vi) LNcl(KLN ∩HLN ) ⊆ LNcl(KLN ) ∩ LNcl(HLN )

(vii) LNcl(LNcl(KLN )) = LNcl(KLN )

Proof:

(i) From the definition, KLN ∈ LNcl(KLN )

(ii) If KLN is LN closed, then KLN is the smallest LN closed set containing KLN . So,

KLN = LNcl(KLN ).

Conversely, if KLN = LNcl(KLN ), then KLN is the smallest LN closed set containing

KLN and hence KLN is LN closed.

(iii) If KLN is LN closed, then KLN = LNcl(KLN ). As φLN and SLN are LN closed,

LNcl(φLN ) = φLN and LNcl(SLN ) = SLN .

(iv) When KLN ⊆ HLN , since HLN ⊆ LNcl(HLN ) and KLN ⊆ LNcl(HLN ). That is,

LNcl(HLN ) is a LN closed set that contains K. But LNcl(KLN ) is the smallest LN

closed set contains K. Thus, LNcl(KLN ) ⊆ LNcl(HLN )

(v) As KLN ⊆ KLN∩HLN and HLN ⊆ KLN∩HLN , LNcl(KLN ) ⊆ LNcl(KLN∩HLN ) and

LNcl(HLN ) ⊆ LNcl(KLN ∩HLN ). Thus, LNcl(KLN ) ∩ LNcl(HLN ) ⊆ LNcl(KLN ∩
HLN ). Since, KLN∪HLN ⊆ LNcl(KLN )∩LNcl(HLN ), and since LNcl(KLN∪HLN ) is

the smallest LN closed set containing KLN ∪HLN , LNcl(KLN ∪HLN ) ⊆ LNcl(KLN )∪
LNcl(HLN ).

Thus, LNcl(KLN ∪HLN ) = LNcl(KLN ) ∪ LNcl(HLN ).

(vi) Since (KLN ∩ HLN ) ⊆ KLN and (KLN ∩ HLN ) ⊆ HLN , LNcl(KLN ∩ HLN ) ⊆
LNcl(HLN ) ⊆ LNcl(HLN ).

(vii) AS LNcl(KLN ) is a LN closed set, LNcl(LNcl(KLN )) = LNcl(KLN ).

Remark 3.7. If LNint(KLN ) is LNcl(KLN ) is a LNCS, then we have,

(i) LNint(KLN ) = KLN if and only if KLN is LNOS in (SLN , πLN ).

(ii) LNcl(KLN ) = KLN if and only if KLN is LNCS in (SLN , πLN ).

Theorem 3.8. Let (SLN , πLN ) be a LNTS and KLN ∈ SLN . Then

(i) S − LNint(KLN ) = LNint(SLN −KLN )
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(ii) S − LNcl(KLN ) = LNcl(SLN −KLN )

Proof: (i): Let S ∈ SLN−LNint(KLN )⇒ S /∈ LNint(KLN ). Thus, G 6⊆ KLN∀ LN open set G

containing S, (i.e) CLN ∩(S−KLN ) =6= φLN , ∀ LN open set G. Hence, S ∈ LNcl(SLN −KLN )

and SLN − LNint(KLN ) ⊆ LNcl(SLN −KLN ).

Conversely, if S ∈ LNcl(SLN −KLN ), then GLN ∩ (SLN −KLN ) 6= φLN for every LN open

set containing S, (i.e) G 6⊆ A∀ LN open set G containing S. That is, S /∈ LNint(A) ⇒ S ∈
S−LNint(A). Then, LNcl(SLN−KLN ) ⊆ SLN−LNint(KLN ). Thus, SLN−LNint(KLN ) =

LNint(SLN −KLN )

(ii) Proof is similar to (i).

Remark 3.9. On taking complements on both sides of SLN −LNint(KLN ) = LNint(SLN −
KLN ) and SLN − LNcl(KLN ) = LNcl(SLN −KLN ), we have,

LNint(KLN ) = SLN − LNcl(SLN −KLN ) and LNcl(KLN ) = SLN − LNint(SLN −KLN )

Theorem 3.10. Let (SLN , πLN ) be a LNTS and KLN , HLN ∈ SLN . Then

(i) LNint(KLN ) = KLN if and only if KLN is LN open.

(ii) LNint(φLN ) = φLN and LNint(SLN ) = SLN .

(iii) KLN ⊆ HLN ⇒ LNint(KLN ) ⊆ LNint(HLN )

(iv) LNint(KLN ) ∪ LNint(HLN ) ⊆ LNint(KLN ∪HLN )

(iv) LNint(KLN ∩HLN ) = LNint(KLN ) ∩ LNint(HLN )

(vi) LNint(LNint(KLN )) = LNint(KLN )

Proof: (i): KLN is LN open if and only if SLN − KLN is LN closed, if and only if,

LNcl(SLN−KLN ) = SLN−KLN , if and only if, SLN−LNcl(KLN ) = KLN iff LNint(KLN ) =

KLN bT remark.

(ii): Since φLN and SLN are LN open, LNint(φLN ) = φLN and LNint(SLN ) = SLN

(iii): KLN ⊆ HLN ⇒ SLN − HLN ⊆ SLN − KLN . Thus, LNcl(SLN − HLN ) ⊆
LNcl(SLN − KLN ), (i.e)SLN − LNcl(SLN − KLN ) ⊆ SLN − LNcl(SLN − HLN ). Therefore,

LNint(KLN ) ⊆ LNint(HLN ).

Definition 3.11. Let SLN be a non-void set and KLN = {〈S, [TKLN
, IKLN

, FKLN
]〉} and

HLN = {〈S, [THLN
, IHLN

, FHLN
]〉} are LNSs in LNTS.

(I) KLN ∪HLN can be defined as

(a) KLN ∪HLN = {〈S, [TKLN
∧ THLN

, IKLN
∧ IHLN

, FKLN
∨ FHLN

]〉}
(II) KLN ∩HLN can be defined as

(a) KLN ∩HLN = {〈S, [TKLN
∧ THLN

, IKLN
∧ IHLN

, FKLN
∨ FHLN

]〉}
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(III) The complement of KLN = {〈S, [TKLN
, IKLN

, FKLN
]〉} is defined as,

(a) KLN
c = {〈S, [1− FKLN

, IKLN
, 1− TKLN

]〉}
(b) (KLN

c)c = KLN

(c) (KLN ∩HLN )c = KLN
c ∪HLN

c

(d) (KLN ∪HLN )c = KLN
c ∩HLN

c

Theorem 3.12. Let (SLN , πLN ) be a LNTS. S ∈ LNcl(KLN ) iff ULN ∩KLN 6= φLN for every

LN open set ULN containing S, where KLN ⊆ SLN .

Proof:

If ULN is a LN open set and if S ∈ LNcl(KLN ), thenSLN−ULN is LN closed. IfKLN∩ULN =

φLN , then KLN ⊆ SLN − ULN .

That is, SLN − ULN is LN closed set containing KLN . Therefore, LNcl(KLN ) ⊆ SLN − ULN ,

which is a contradiction, since S ∈ LNcl(KLN ) but S /∈ SLN−ULN . Hence, KLN∩ULN 6= φLN ,

for every LN open set ULN containing S.

Conversely, if KLN ∩ ULN 6= φLN , for every LN open set ULN containing S and if S /∈
LNcl(KLN ), S ∈ SLN − LNcl(KLN ) which is LN open.

Hence, (SLN − LNcl(KLN )) ∩ KLN 6= φLN . But KLN ⊆ LNcl(KLN ) and hence SLN −
LNcl(KLN ) ⊆ SLN −KLN , that implies (SLN −LNcl(KLN ))∩KLN ⊆ (SLN −KLN )∩KLN .

Thus, (SLN −KLN ) ∩KLN 6= φLN , which is a contradiction. Hence, S ∈ LNcl(KLN ).

Definition 3.13. Let (SLN , πLN ) be a LNTS and πLN = {0, SLN}. Then, π is called the LN

indiscrete topology over S.

Definition 3.14. Let π be the collection of all LN sets that can be defined over SLN . Then,

(SLN , πLN ) is the called the LN discrete topology over SLN .

Theorem 3.15. Let (SLN , π
1
LN ) and (SLN , π

2
LN ) be two LNTSs, then (SLN , π

1 ∩ π2LN ) is

a LNTS on SLN .

Proof:

(1) clearly, 0LN and 1LN ∈ π1LN ∩ π2LN
(2) Let Fi ∈ π1LN ∩ π2LN . Then, Fi ∈ π1LN and Fi ∈ π2LN∀i ∈ I.

Therefore, ∪i∈IFi ∈ π1LN and ∪i∈IFi ∈ π2LN . Thus,
⋃
i∈I Fi ∈ π1LN ∩ π2LN .

(3) Let KLN and HLN ∈ π1LN ∩ π2LN , which implies, KLN , HLN ∈ π1LN and

KLN , HLN ∈ π2LN . Since, KLN∩HLN ∈ π1LN and KLN∩HLN ∈ π2LN , KLN∩HLN ∈
π1LN ∩ π2LN

Thus, (SLN , π
1
LN

⋂
π2LN ) is a LNTS on SLN ..

Remark 3.16. Union of two LNTSs may not be a LN topology over SLN ..
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Example 3.17. Let the universe of discourse be U = {a, b, c} and S = {a}. The set of all

linguistic term is, L = { very salt(l0), salt(l1), very sour(l2), sour(l3), bitter(l4), sweet(l5), very

sweet(l6)}.
And π1LN = {0LN , 1LN ,KLN} where KLN = {〈a, (l6, l3, l3)〉}, where the element a’s degree

of appurtenance to the set KLN is very sweet(l6), the element a’s degree of indeterminate-

appurtenance to the set KLN is sour(l3), the element a’s degree of non-appurtenance to the

set KLN is bitter(l4).

Let π2LN = {0LN , 1LN , HLN} where HLN = {〈a, (l4, l5, l2)〉}, where the element a’s de-

gree of appurtenance to the set HLN is bitter(l4), the element a’s degree of indeterminate-

appurtenance to the set HLN is sweet(l5), the element a’s degree of non-appurtenance to the

set HLN is very sour(l2).

Let π1LN and π2LN be two LN topologies on SLN .

Then, π1LN ∪ π2LN = {0LN , 1LN ,KLN , HLN} = {0LN , 1LN , {〈a, (l6, l3, l3)〉}, {〈a, (l6, l5, l2)〉}}.
Now, KLN ∪HLN = {〈a, (l6, l5, l2)〉} /∈ π1LN ∪ π2LN .
KLN ∩HLN = {〈a, (l4, l3, l3)〉} /∈ π1LN ∪ π2LN .

Therefore, union of any two linguistic neutrosophic topologies need not be a linguistic neutro-

sophic topology.

Definition 3.18. Let (SLN , πLN ) be a LNTS and ULN be a LN set over SLN .. Then any point

S is a LN interior point of ULN , if there exists a LN open set VLN such that S ∈ ULN ⊆ VLN .

Definition 3.19. Let (SLN , πLN ) be a LNTS and ULN be a LN set over SLN .. Then, VLN is

called a LN neighborhood if there exists a LN open set VLN such that S ∈ ULN ⊆ VLN .

Theorem 3.20. Let (SLN , πLN ) be a LNTS, then

(1) each s ∈ S has a neighborhood.

(2) If ULN and VLN are LN neighborhoods of some x ∈ SLN , then ULN ∩ VLN is also a

LN neighborhood of s.

(3) If ULN is a LN neighborhood of S and ULN ∩VLN , then VLN is also a LN neighborhood

of s ∈ SLN .

Proof:

(1) : (2): Let ULN and VLN are LN neighborhoods of some s ∈ S, then there exists U1
LN and

V 1
LN ∈ τ such that S ∈ U1

LN ⊆ ULN and

S ∈ V 1
LN ⊆ VLN

Now, S ∈ ULN and S ∈ VLN implies that S ∈ U1
LN ∩ V 1

LN and U1
LN ∩ V 1

LN ∈ τ . So w

have S ∈ U1LN ∩ V1LN ⊆ ULN ∩ VLN .

Thus, ULN
⋂
VLN is a LN neighborhood of s.

(3): Let ULN is a LN neighborhood of s and ULN
⋂
VLN . By definition, there exists a LN open
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set U1
LN such that s ∈ U1

LN ⊆ ULN ⊆ VLN .

Then, s ∈ ULN ⊆ VLN .

Therefore, VLN is also a LN neighborhood of s ∈ S.

Theorem 3.21. Let (SLN , πLN ) be a LNTS. For any LN open set KLN over S, KLN is a LN

neighborhood of each point of ∩i∈IAi.

Proof:

Let KLN ∈ πLN . For any S ∈ ∩i∈IKLNi, we have S ∈ Ai∀i ∈ I. Thus,

S ∈ KLN and hence KLN is a LN neighborhood of S.

4. Linguistic neutrosophic derived sets

Definition 4.1. Let (SLN , πLN ) be a LNTS and KLN ⊆ SLN . Let s ∈ SLN . s is called as a

LN limit point of KLN if ELN ∩ (KLN − {s}) 6= φ for every LN open set ELN containing s.

The collection of all LN limit points of KLN is the LN derived set (LND(KLN ))ofKLN .

Theorem 4.2. LNcl(KLN ) = KLN ∪ LND(KLN ) where KLN ⊆ SLN

Proof:

If s ∈ KLN ∪ LND(KLN ), then s ∈ KLN or S ∈ LND(KLN ). If s ∈ KLN , then s ∈
LNcl(KLN ). Therefore, let s /∈ KLN . That is, s ∈ LND(KLN ). Then, ∀ LN open set ELN

containing s, ELN ∩ (KLN − s) 6= φ. Since s /∈ KLN , ELN ∩KLN /∈ φ. Thus, s ∈ LNcl(KLN ).

Hence, KLN ∪ LND(KLN ) ⊆ LNcl(KLN ). If s ∈ LNcl(KLN ) and s ∈ KLN , then s ∈
KLN ∪ LND(KLN ). If s ∈ LNcl(KLN ) but s /∈ KLN , then ELN ∩ KLN /∈ φ for every LN

open set ELN containing s and hence ELN ∩ (KLN − s) /∈ φ. Therefore, s ∈ LND(KLN ), (i.e)

s ∈ KLN ∪ LND(KLN ). Thus, LNcl(KLN ) ⊆ KLN ∪ LND(KLN ). Therefore, LNcl(KLN ) =

KLN ∪ LND(KLN ).

Theorem 4.3. If the derived set of KLN is a subset of KLN , then KLN is LN closed.

Proof:

KLN is LN closed if and only if LNcl(KLN ) = KLN , iff KLN ∪ LND(KLN ) = KLN , iff

LND(KLN ) ⊆ KLN .

Theorem 4.4. If KLN is a singleton subset of SLN , then LND(KLN ) = LNcl(KLN )−KLN .

Proof:

If s ∈ LND(KLN ), then for every LN open set ELN containing , ELN∩(KLN−s) 6= φ. Then

s /∈ KLN . Suppose if s ∈ KLN , then KLN = {s}, and ELN ∩ (KLN − s) = φ. It is true that,

LND(KLN ) ⊆ LNcl(KLN ). Then, s ∈ LNcl(KLN ) but s /∈ KLN , when s ∈ LND(KLN ).

Thus, LND(KLN ) ⊆ LNcl(KLN ) − KLN . Thus, s ∈ LNcl(KLN ) − KLN , s ∈ LNcl(KLN )
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but s /∈ KLN . Thus, ELN ∩ KLN 6= φ for every LN open set ELN containing s, (i.e)

ELN ∩ (KLN − s) 6= φ for every LN open set ELN containing s. Thus, s ∈ LND(KLN ).

Thus, LNcl(KLN )−KLN ⊆ LND(KLN ). Hence, LND(KLN ) = LNcl(KLN )−KLN , if KLN

is a singleton set.

Definition 4.5. (1) Linguistic Neutrosophic semi-closed set if LNint(LNcl(KLN )) ⊆
KLN

(2) Linguistic Neutrosophic semi-open set if KLN ⊆ LNcl(LNint(KLN ))

(3) Linguistic Neutrosophic semi-pre closed if LNint(LNcl(LNint(KLN ))⊆KLN

(4) Linguistic Neutrosophic semi-pre open if KLN ⊆ LNcl(LNint(LNcl(KLN )))

(5) Linguistic Neutrosophic pre-closed if LNcl(LNint(KLN ) ⊆ KLN -doubt

(6) Linguistic Neutrosophic pre-open if KLN ⊆ LNint(LNcl(KLN ))

(7) Linguistic Neutrosophic regular closed if KLN = LNint(LNcl(KLN ))

(8) Linguistic Neutrosophic regular open if KLN = LNcl(LNint(KLN ))

5. Linguistic Neutrosophic continuity

Definition 5.1. Define the image and pre-image of linguistic neutrosophic sets. Let SLN and

TLN be two non-void sets and f : SLN → TLN be a function, then

(i) If ELN = {〈S, [TELN
(S), IELN

(S), FELN
(S)]〉} is a LN set in TLN , then the pre image

of ELN under f is denoted by, f−1(ELN ) is defined by,

f−1(ELN ) = {〈S, [f−1(TELN
(S)), f−1(IELN

(S)), f−1(FELN
(S))]〉}

(ii) If FLN = {〈S, [TFLN
(S), IFLN

(S), FLNF (S)]〉;S ∈ SLN} is a LN set in SLN , then the

image of FLN under f is denoted bT,

f(FLN ) = {〈T, [f(TFLN
(T )), f(IFLN

(T )), f(FFLN
(T ))]〉;T ∈ TLN}

Definition 5.2. A function f : SLN → TLN is called a linguistic neutrosophic continuous func-

tion if the inverse image of every linguistic neutrosophic open set FLN is linguistic neutrosophic

open in SLN .

Example 5.3. Let the universe of discourse be ULN = {a, b, c, d, x, y, z, w} and S1 = {a, b, c}
and S2 = {x, y, z}. The set of all linguistic term is, L = { very salt(l0), salt(l1), very sour(l2),

sour(l3), bitter(l4), sweet(l5), very sweet(l6)}. Define linguistic neutrosophic sets KLN and

HLN as KLN = {s1, (a, 〈l0, l6, l0〉), (b, 〈l4, l0, l2〉), (c, 〈l2, l3, l1〉)}, where the element a’s degree

of appurtenance to the set KLN is very sweet(l0), the element a’s degree of indeterminate-

appurtenance to the set KLN is very sweet(l6), the element a’s degree of non-appurtenance to

the set KLN is very salt(l0).
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Similarly, b’s degree of appurtenance to the set KLN is bitter(l4), b’s degree of indeterminate-

appurtenance to the set KLN is very salt(l0), b’s degree of non-appurtenance to the set KLN

is very sour(l2).

And, c’s degree of appurtenance to the set KLN is very sour(l2), c’s degree of indeterminate-

appurtenance to the set KLN is sour(l3), c’s degree of non-appurtenance to the set KLN is

very salt(l1).

Also, let HLN = {s2, (x, 〈l6, l0, l0〉), (y, 〈l0, l4, l2〉), (z, 〈l3, l2, l1〉)}. Then, πLN =

{0LN , 1LN ,KLN} and ηLN = {0LN , 1LN , HLN} are linguistic neutrosophic topologies on S1, S2

respectively. Let g : (S1, πLN )→ (S2, ηLN ) be defined by g(a) = b, g(b) = a, g(c) = c. Then, g

is linguistic neutrosophic continuous function.

Theorem 5.4. A function f : SLN → TLN is linguistic neutrosophic continuous if and only

if the pre image of every linguistic neutrosophic closed set in TLN is linguistic neutrosophic

closed in SLN .

Proof:

Let f be a LN continuous function and ELN be a LN closed set in TLN , (i.e) TLN −ELN is

LN open in TLN . f−1(TLN − ELN ) is a LN open set in SLN , as f is LN continuous function.

Thus, SLN − f−1(ELN ) is LN open set in SLN . That is, f−1(ELN ) is LN closed set in SLN .

Conversely, let the inverse image of each LN closed set be LN closed. Let FLN be a LN open

set in TLN , (i.e) TLN − FLN is LN closed. Then, SLN − f−1(FLN ) is LN closed set in SLN ,

which implies, f−1(FLN ) is LN open set in SLN . Thus, f is LN continuous function on SLN .

Theorem 5.5. A function f : SLN → TLN is LN continuous if and only if f(LNcl(KLN )) ⊆
LNcl(f(KLN )) for each subset KLN of SLN .

Proof:

Let f be LN continuous function. If KLN ⊆ SLN , then f(KLN ) ⊆ TLN . As f is LN continuous

and LNcl(f(KLN )) is LN closed in TLN , f−1(LNcl(f(KLN ))) is LN closed set in SLN . Since,

f(KLN ) ⊆ LNcl(f(KLN )),KLN ⊆ f−1(LNcl(f(KLN ))), which implies, f−1(LNcl(f(KLN )))

is the smallest LN closed set that contains KLN . But, LNcl(KLN ) is the smallest LN closed

set that contains KLN . Hence, LNcl(KLN ) ⊆ f−1(LNcl(f(KLN ))), (i.e) f(LNcl(KLN )) ⊆
LNcl(f(KLN )). Conversely, let f(LNcl(HLN )) ⊆ LNcl(f(HLN )). If HLN is LN closed in

TLN , f(LNcl(f−1(HLN ))) ⊆ LNcl(HLN ). Thus, LNcl(f−1(HLN )) ⊆ f−1((LNcl(HLN ))) =

f−1((HLN )). But, f−1((HLN )) ⊆ LNcl(f−1((HLN ))), that implies, LNcl(f−1((HLN ))) =

f−1((HLN )) ⇒ f−1((HLN )) is LN closed set in SLN for each LN closed set HLN in TLN .

Therefore, f is LN continuous.

Example 5.6. In example(5.3), g is a linguistic neutrosophic continuous function. Let

KLN = {s1, 〈a, (l0, l6, l0)〉, 〈b, (l4, l0, l2)〉, 〈c, (l2, l3, l1)〉} ⊆ (S1, πLN ). Then, g(LNcl(KLN )) =
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{s1, 〈a, (l6, l6, l6)〉, 〈b, (l0, l4, l2)〉, 〈c, (l3, l5, l4)〉}.
But, LNcl(g(KLN )) = LNcl(HLN ) = Bc 6= {s1, 〈a, (l6, l6, l6)〉, 〈b, (l0, l4, l2)〉, 〈c, (l3, l5, l4)〉},
even though g is linguistic neutrosophic continuous function. Thus, equality is not necessarily

holds when g is linguistic neutrosophic continuous function.

Theorem 5.7. A function f : SLN → TLN is LN continuous if and only if LNcl(f−1(ELN )) ⊆
f−1(LNcl(ELN )) for each subset ELN of TLN .

Proof:

If f is LN continuous and ELN ⊆ TLN , then LNcl(ELN ) is LN closed in TLN and hence

f−1(LNcl(ELN )) is LN closed in SLN . Thus, LNcl(f−1(LNcl(ELN ))) = f−1(LNcl(ELN )).

Since, ELN ⊆ LNcl(ELN ), f−1(ELN ) ⊆ f−1(LNcl(ELN )). Therefore, LNcl(f−1(ELN )) ⊆
LNcl(f−1(LNcl(ELN ))) = f−1(LNcl(ELN )), (i.e) LNcl(f−1(ELN )) ⊆ f−1(LNcl(ELN )).

Conversely, let LNcl(f−1(ELN ))f−1(LNcl(ELN )) for all ELN of TLN . If ELN is LN

closed, then LNcl(ELN ) = ELN . By assumption, LNcl(f−1(ELN )) ⊆ f−1(LNcl(ELN )).

Thus, LNcl(f−1(ELN )) ⊆ f−1(ELN ). But, f−1(ELN ) ⊆ LNcl(f−1(ELN )). Thus,

LNcl(f−1(ELN )) = f−1(ELN ), (i.e) f−1(ELN ) is LN closed in SLN for every LN closed set

ELN in TLN . Hence, f is LN continuous.

Theorem 5.8. A function f : SLN → TLN is LN continuous if and only if

f−1(LNint(ELN )) ⊆ LNint(f−1(ELN )) for each subset ELN of TLN .

Proof:

Let f be LN continuous function and E ⊆ TLN . Then, f−1(LNint(ELN )) is LN open in

SLN . That means, f−1(LNint(ELN )) = LNint(f−1(LNint(ELN ))). As LNint(ELN ) ⊆
ELN , implies f−1(LNint(ELN )) ⊆ f−1(ELN ). Thus, LNint(f−1(LNint(ELN ))) ⊆
LNint(f−1(ELN )). Therefore,f−1(LNint(ELN )) ⊆ LNint(f−1(ELN )). Conversely, let

f−1(LNint(ELN )) ⊆ LNint(f−1(ELN )), for each subset ELN of TLN . If ELN is LN

open, then f−1(ELN ) ⊆ LNint(f−1(ELN )). But, LNint(f−1(ELN )) ⊆ f−1(ELN ). Thus,

f−1(ELN ) = LNint(f−1(ELN )). Hence, f is LN continuous.

Example 5.9. In example(5.3), HLN = {s2, 〈x, (l6, l0, l0)〉, 〈y, (l0, l4, l2)〉, 〈z, (l3, l2, l1)〉}.
Then, g−1(LNcl(HLN )) = g−1(HLN

c) = {s2, 〈z, (l0, l6, l0)〉, 〈y, (l4, l4, l6)〉, 〈z, (l2, l5, l3)〉}.
And LNcl(g−1(HLN )) = KLN

c. Thus, g−1(LNcl(ELN )) ⊆ LNcl(g−1(ELN )). Similarly,

g−1(LNint(ELN )) ⊆ LNint(g−1(ELN )). Even if g is LN continuous, equality does not hold

in theorems (5.7) and (5.8).

Definition 5.10. Any subset of a LN topological space (SLN , πLN ) is a LN dense set if

LNcl(KLN ) = SLN ).
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Theorem 5.11. Let f : SLN → TLN be an onto function and linguistic neutrosophic contin-

uous function. If ULN is LN dense in SLN , then f(ULN ) is LN dense in TLN .

Proof:

As ULN is LN dense in SLN , f(LNcl(ULN )) = f(SLN ) = TLN , since f is onto. Also,

f(LNcl(ULN )) ⊆ LNcl(ULN ), as f is LN continuous. Thus, TLN = LNcl(f(ULN )). But

LNcl(f(ULN )) ⊆ TLN . Hence,LNcl(f(ULN )) = TLN , which implies, f(ULN ) is LN dense set.

Conclusion

We have introduced a new type of topology called linguistic neutrosophic topology and it

was established with apt examples. Moreover, the basic properties of linguistic neutrosophic

were discussed. In addition to this, the ideas of linguistic neutrosophic continuity and linguistic

neutrosophic neighborhood were introduced and established. Linguistic neutrosophic derived

sets and linguistic neutrosophic dense sets were talked through.
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—————————————————————————————————————————-

1. Introduction

Fuzzy set theory which is a generalization of conventional set theory was proposed by Lofti A.

Zadeh in 1965 with his seminal paper ’Fuzzy Sets’ . Fuzzy set provides a simple mathematical

tool to represent vagueness, uncertainty and imprecision inherently present in day to day life.

Fuzzy Logic provides a simple way to arrive at a definite conclusion based on vague, ambigu-

ous, imprecise, noisy or missing input information. Since 1965, fuzzy set theory has witnessed

enormous development by several researchers. Fuzzy logic based applications range from con-

sumer products and industrial systems to biomedicine, decision analysis, information sciences

and control engineering.

Fuzzy automata was introduced by W. G. Wee [17]. Subsequently, number of works have

been contributed by many authors for development of generalizations of finite automata. Gen-

eral fuzzy automata was introduced by Doostfatemeh in [3]. It deals the problem of assigning

membership values to the active states.
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The neutrosophic set is the generalization of classical sets, fuzzy set [18], intuitionstic fuzzy

set [1], interval valued intuitionistic fuzzy sets [2], vague set [4] and so on. Florentin Smaran-

dache in 1998 [14] introduced the concept of neutrosophy and neutrosophic set. Single valued

and interval valued neutrosophic sets were introuced by Wang etal. in [15,16]. Recently, neutro-

sophic sets and systems have important applications in various fields especially in multicriteria

decision making problems.

Tahir Mahmood et. al in [11, 12] were introduced single valued and interval neutrosophic

finite automata. Consequently, J. Kavikumar et.al were introduced neutrosophic general finite

automata and composite neutrosophic finite automata [9, 10].

Subsystems of finite fuzzy state machines was discussed in [13]. Later, Retrievability, sub-

systems, strong subsystems, and characterizations of submachines of Interval neutrosophic

automata were discussed by V. Karthikeyan in [5–8]. In this paper, we introduce reverse sub-

system (R.S) of interval neutrosophic automata and discuss their properties. We prove that the

necessary and sufficient condition for RNQ
to be a reverse subsystem, union and intersection

of reverse subsystems of interval neutrosophic automata is reverse subsystems.

2. Preliminaries

Definition 2.1. [14] Let U be the universe of discourse. A neutrosophic set (NS) N in U is

defined by a truth membership TN , indeterminacy membership IN and a falsity membership

FN , where TN , IN , and FN are real standard or non-standard subsets of ]0−, 1+[. That is

N = {〈x, (TN (x), IN (x), FN (x))〉 , x ∈ U, TN , IN , FN ∈ ]0−, 1+[ } and

0− ≤ sup TN (x) + sup IN (x) + sup FN (x) ≤ 3+. We use the interval [0, 1] instead of ]0−, 1+[.

Definition 2.2. [16] Interval neutrosophic set (INS for short) is of the form N =

{〈αN (x), βN (x), γN (x)〉 |x ∈ U}
= {〈x, [inf αN (x), sup αN (x)], [inf βN (x), sup βN (x)], [inf γN (x), supγN (x)]〉},
x ∈ U, αN (x), βN (x), γN (x) ⊆ [0, 1] and

0 ≤ sup αN (x) + sup βN (x) + sup γN (x) ≤ 3.

Definition 2.3. [16] An INS N is empty if inf αN (x) = sup αN (x) = 0, inf βN (x) =

sup βN (x) = 1, inf γN (x) = sup γN (x) = 1 forall x ∈ U.

Definition 2.4. [11] Interval neutrosophic automaton M = (Q, Σ, N) (INAforshort), where

Q and Σ are non-empty finite sets called the set of states and input symbols respectively, and

N = {〈αN (x), βN (x), γN (x)〉} is an INS in Q× Σ×Q.
The set of all words of finite length of Σ is denoted by Σ∗. The empty word is denoted by ε,

and the length of each x ∈ Σ∗ is denoted by |x|.
Definition 2.5. [11] Let M = (Q, Σ, N) be an interval neutrosophic automaton and extended

interval neutrosophic set is defined as N∗ = {〈αN∗(x), βN∗(x), γN∗(x)〉} in Q× Σ∗ ×Q by
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αN∗(qi, ε, qj) =

[1, 1] if qi = qj

[0, 0] if qi 6= qj

βN∗(qi, ε, qj) =

[0, 0] if qi = qj

[1, 1] if qi 6= qj

γN∗(qi, ε, qj) =

[0, 0] if qi = qj

[1, 1] if qi 6= qj

αN∗(qi, w, qj) = αN∗(qi, xy, qj) = ∨qr∈Q[αN∗(qi, x, qr) ∧ αN∗(qr, y, qj)],

βN∗(qi, w, qj) = βN∗(qi, xy, qj) = ∧qr∈Q[βN∗(qi, x, qr) ∨ βN∗(qr, y, qj)],

γN∗(qi, w, qj) = γN∗(qi, xy, qj) = ∧qr∈Q[γN∗(qi, x, qr) ∨ γN∗(qr, y, qj)], ∀qi, qj ∈ Q,
w = xy, x ∈ Σ∗ and y ∈ Σ.

3. Reverse Subsystems of Interval Neutrosophic Automata

Definition 3.1. Let M = (Q, Σ, N) be an interval neutrosophic automaton and

RNQ
be an interval neutrosophic set of Q. Let qi ∈ Q, and RNQ

is defined as RNQ
={〈

αRNQ
(qi), βRNQ

(qi), γRNQ
(qi)

〉}
=

{〈
qi, [infαRNQ

(qi), supαRNQ
(qi)], [infβRNQ

(qi), supβRNQ
(qi)], [infγRNQ

(qi), supγRNQ
(qi)]

〉}
.

Here, αRNQ
(qi), βRNQ

(qi), γRNQ
(qi) ⊆ [0, 1].

Then (Q,RNQ
,Σ, N) is said to be an reverse subsystem of M if ∀qi, qj ∈ Q and x ∈ Σ such

that αRNQ
(qj) ≤ ∨qi∈Q{αRNQ

(qi) ∧ αN (qi, x, qj)},
βRNQ

(qj) ≥ ∧qi∈Q{βRNQ
(qi) ∨ βN (qi, x, qj)} and

γRNQ
(qj) ≥ ∧qi∈Q{γRNQ

(qi) ∨ γN (qi, x, qj)}.
In this case, the reverse subsystem (Q,RNQ

,Σ, N) of M is denoted by RNQ
.

Example 3.2. Let M = (Q, Σ, N) be an interval neutrosophic automaton, where

Q = {q1, q2, q3, q4, q5}, Σ = {x}, and N, NQ(qi), i = 1, 2, 3, 4, 5 are defined as below.
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>

Fig- 3.1

q1

>

[0.5, 0.6], [0.1, 0.2],[0.2, 0.3]

> q2

q3

x | [0.7, 0.8], [0.1, 0.2],[0.2, 0.3]
[0.3, 0.4], [0.2, 0.3],[0.5, 0.6]

x | [0.2, 0.3], [0.3, 0.4],[0.7, 0.8]

x |
 [0

.5,
 0.

7],
 [0

.1,
 0.

2],
[0.

2, 
0.3

]

[0.1, 0.2], [0.3, 0.4],[0.7, 0.8]

q4

q5

>

>

x | [0.1, 0.2], [0.3, 0.4],[0.7, 0.8]

[0.1, 0.2], [0.5, 0.6],[0.8, 0.9]

x |
 [0

.1,
 0.

2],
 [0

.3,
 0.

4],
[0.

7, 
0.8

]

[0.1, 0.2], [0.5, 0.6],[0.8, 0.9]

In this case the above interval neutrosophic automaton M is said to be reverse subsystem.

Theorem 3.3. Let M = (Q, Σ, N) be an interval neutrosophic automaton and RNQ
={〈

αRNQ
, βRNQ

, γRNQ

〉}
be an interval neutrosophic subset in Q. Then RNQ

is an reverse

subsystem of M if and only if ∀qi, qj ∈ Q,∀x ∈ Σ∗,

αRNQ
(qj) ≤ ∨qi∈Q{αRNQ

(qi) ∧ αN (qi, x, qj)},
βRNQ

(qj) ≥ ∧qi∈Q{βRNQ
(qi) ∨ βN (qi, x, qj)} and

γRNQ
(qj) ≤ ∧qi∈Q{γRNQ

(qi) ∨ γN (qi, x, qj)}.
Proof. Suppose RNQ

is an reverse subsystem of M. Let qi, qj ∈ Q and x ∈ Σ∗. We prove this

by induction on |x| = n. If n = 0, then x = ε. Now if qi = qj , then

αRNQ
(qj) ∧ αN∗(qi, ε, qj) = αRNQ

(qj), βRNQ
(qj) ∨ βN∗(qi, ε, qj) = βRNQ

(qj), and

γRNQ
(qj) ∨ γN∗(qi, ε, qj) = γRNQ

(qj).

Now if qi 6= qj , then

αRNQ
(qi) ∧ αN∗(qi, ε, qj) ≥ αRNQ

(qj), βRNQ
(qi) ∨ βN∗(qi, ε, qj) ≤ βRNQ

(qj), and

γRNQ
(qi) ∨ γN∗(qi, ε, qj) ≤ γRNQ

(qj).

Therefore, the statement is true for n = 0.

Assume the statement is true for all y ∈ Σ∗ such that |y| = n− 1, n > 0.

Let x = ya, |y| = n− 1, y ∈ Σ∗, a ∈ Σ. Then

∨qi∈Q{αRNQ
(qi) ∧ αN (qi, x, qj)} = ∨qi∈Q{αRNQ

(qi) ∧ αN∗(qi, ya, qj)}
= ∨qi∈Q{αRNQ

(qi) ∧ {∨qk∈Q {αN∗(qi, y, qk) ∧ αN (qk, a, qj)}}}

V. karthikeyan, R. Karuppaiya, Reverse Subsystems of Interval Neutrosophic Automata.

Neutrosophic Sets and Systems, Vol. 46, 2021                                                                                271



= ∨qi∈Q{∨qk∈Q
{
αRNQ

(qi) ∧ αN∗(qi, y, qk) ∧ αN (qk, a, qj)
}
}

≥ ∨qk∈Q
{
αRNQ

(qk) ∧ αN (qk, a, qj)
}

≥ αRNQ
(qj).

∨qi∈Q{αRNQ
(qi) ∧ αN (qi, x, qj)} ≥ αRNQ

(qj).

Thus, αRNQ
(qj) ≤ ∨qi∈Q{αRNQ

(qi) ∧ αN (qi, x, qj)}
∧qi∈Q{βRNQ

(qi) ∨ βN (qi, x, qj)} = ∧qi∈Q{βRNQ
(qi) ∨ βN (qi, ya, qj)}

= ∧qi∈Q{βRNQ
(qi) ∨ {∧qk∈Q {βN∗(qi, y, qk) ∨ βN (qk, a, qj)}}}

= ∧qi∈Q{∧qk∈Q
{
βRNQ

(qi) ∨ βN∗(qi, y, qk) ∨ βN (qk, a, qj)
}
}

≤ ∧qk∈Q
{
βRNQ

(qk) ∨ βN (qk, a, qj)
}

≤ βRNQ
(qj).

∧qi∈Q{βRNQ
(qi) ∨ βN (qi, x, qj)} ≤ βRNQ

(qj)

Thus,βRNQ
(qj) ≥ ∧qi∈Q{βRNQ

(qi) ∨ βN (qi, x, qj)} and

∧qi∈Q{γRNQ
(qi) ∨ γN (qi, x, qj)} = ∧qi∈Q{γRNQ

(qi) ∨ γN (qi, ya, qj)}
= ∧qi∈Q{γRNQ

(qi) ∨ {∧qk∈Q {γN∗(qi, y, qk) ∨ γN (qk, a, qj)}}}

= ∧qi∈Q{∧qk∈Q
{
γRNQ

(qi) ∨ γN∗(qi, y, qk) ∨ γN (qk, a, qj)
}
}

≤ ∧qk∈Q
{
γRNQ

(qk) ∨ γN (qk, a, qj)
}

≤ γRNQ
(qj).

∧qi∈Q{γRNQ
(qi) ∨ γN (qi, x, qj)} ≤ γRNQ

(qj).

Thus, γRNQ
(qj) ≥ ∧qi∈Q{γRNQ

(qi) ∨ γN (qi, x, qj)}.
The converse part is obvious.

Theorem 3.4. LetM = (Q, Σ, N) be an interval neutrosophic automaton. Let RNQ1
, and

RNQ2
be reverse subsystems of M. Then RNQ1

∨RNQ2
is an reverse subsystem of M.

Proof. Since RNQ1
and RNQ2

are reverse subsystem of an interval neutrosophic automaton

M. Then ∀ qi, qj ∈ Q and x ∈ Σ such that

αRNQ1
(qj) ≤ ∨qi∈Q{αRNQ1

(qi) ∧ αN (qi, x, qj)},
βRNQ1

(qj) ≥ ∧qi∈Q{βRNQ1
(qi) ∨ βN (qi, x, qj)},

γRNQ1
(qj) ≥ ∧qi∈Q{γRNQ1

(qi) ∨ γN (qi, x, qj)} and

αRNQ2
(qj) ≤ ∨qi∈Q{αRNQ2

(qi) ∧ αN (qi, x, qj)},
βRNQ2

(qj) ≤ ∧qi∈Q{βRNQ2
(qi) ∨ βN (qi, x, qj)},

γRNQ2
(qj) ≤ ∧qi∈Q{γRNQ2

(qi) ∨ γN (qi, x, qj)}.
Now to prove RNQ1

∨ RNQ2
is reverse subsystem of interval neutrosophic automaton M, it is

enough to prove that

(αRNQ1
∨ αRNQ2

)(qj) ≤ ∨qi∈Q{(αRNQ1
∨ αRNQ2

)(qi) ∧ αN (qi, x, qj)},
(βRNQ1

∨ βRNQ2
)(qj) ≥ ∧qi∈Q{(βRNQ1

∨ βRNQ2
)(qi) ∨ βN (qi, x, qj)}, and

(γRNQ1
∨ γRNQ2

)(qj) ≥ ∧qi∈Q{(γRNQ1
∨ γRNQ2

)(qi) ∨ γN (qi, x, qj)}.
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Now, (αRNQ1
∨ αRNQ2

)(qj) = (αRNQ1
(qj) ∨ αRNQ2

(qj))

≤ {∨qi∈Q{αRNQ1
(qi) ∧ αN (qi, x, qj)}} ∨ {∨qi∈Q{αRNQ2

(qi) ∧ αN (qi, x, qj)}}
= {∨qi∈Q{αRNQ1

(qi) ∨ αRNQ2
(qi) ∧ αN (qi, x, qj)}}

= ∨qi∈Q{(αRNQ1
∨ αRNQ2

)(qi) ∧ αN (qi, x, qj)}
Thus, (αRNQ1

∨ αRNQ2
)(qj) ≤ ∨qi∈Q{(αRNQ1

∨ αRNQ2
)(qi) ∧ αN (qi, x, qj)},—(1)

(βRNQ1
∨ βRNQ2

)(qj) = (βRNQ1
(qj) ∨ βRNQ2

(qj))

≥ {∧qi∈Q{βRNQ1
(qi) ∨ βN (qi, x, qj)}} ∨ {∧qi∈Q{βRNQ2

(qi) ∨ βN (qi, x, qj)}}
= {∧qi∈Q{βRNQ1

(qi) ∨ βRNQ2
(qi) ∨ βN (qi, x, qj)}}

= ∧qi∈Q{(βRNQ1
∨ βRNQ2

)(qi) ∨ βN (qi, x, qj)},
Thus, (βRNQ1

∨ βRNQ2
)(qj) ≥ ∧qi∈Q{(βRNQ1

∨ βRNQ2
)(qi) ∨ βN (qi, x, qj)},—(2) and

(γRNQ1
∨ γRNQ2

)(qj) = (γRNQ1
(qj) ∨ γRNQ2

(qj))

≥ {∧qi∈Q{γRNQ1
(qi) ∨ γN (qi, x, qj)}} ∨ {∧qi∈Q{γRNQ2

(qi) ∨ γN (qi, x, qj)}}
= {∧qi∈Q{γRNQ1

(qi) ∨ γRNQ2
(qi) ∨ γN (qi, x, qj)}}

= ∧qi∈Q{(γRNQ1
∨ γRNQ2

)(qi) ∨ γN (qi, x, qj)}.
Thus, (γRNQ1

∨ γRNQ2
)(qj) ≥ ∧qi∈Q{(γRNQ1

∨ γRNQ2
)(qi) ∨ γN (qi, x, qj)}.—(3)

Hence from (1), (2), and (3),RNQ1
∨ RNQ2

is reverse subsystem of interval neutrosophic au-

tomaton M.

Theorem 3.5. LetM = (Q, Σ, N) be an interval neutrosophic automaton. and RNQ1
, and

RNQ2
be reverse subsystems of M. Then RNQ1

∧RNQ2
is reverse subsystem of M.

Proof:

Since RNQ1
and RNQ2

are reverse subsystem of interval neutrosophic automaton M.

Then ∀ qi, qj ∈ Q and x ∈ Σ such that

αRNQ1
(qj) ≤ ∨qi∈Q{αRNQ1

(qi) ∧ αN (qi, x, qj)},
βRNQ1

(qj) ≥ ∧qi∈Q{βRNQ1
(qi) ∨ βN (qi, x, qj)},

γRNQ1
(qj) ≥ ∧qi∈Q{γRNQ1

(qi) ∨ γN (qi, x, qj)} and

αRNQ2
(qj) ≤ ∨qi∈Q{αRNQ2

(qi) ∧ αN (qi, x, qj)},
βRNQ2

(qj) ≤ ∧qi∈Q{βRNQ2
(qi) ∨ βN (qi, x, qj)},

γRNQ2
(qj) ≤ ∧qi∈Q{γRNQ2

(qi) ∨ γN (qi, x, qj)}.
Now we have to prove RNQ1

∧RNQ2
is a reverse subsystem of M.

It is enough to prove that

(αRNQ1
∧ αRNQ2

)(qj) ≤ ∨qi∈Q{(αRNQ1
∧ αRNQ2

)(qi) ∧ αN (qi, x, qj)},
(βRNQ1

∧ βRNQ2
)(qj) ≥ ∧qi∈Q{(βRNQ1

∧ βRNQ2
)(qi) ∨ βN (qi, x, qj)}, and

(γRNQ1
∧ γRNQ2

)(qj) ≥ ∧qi∈Q{(γRNQ1
∧ γRNQ2

)(qi) ∨ γN (qi, x, qj)}.
Now, (αRNQ1

∧ αRNQ2
)(qj) = (αRNQ1

(qj) ∧ αRNQ2
(qj))

≤ {∨qi∈Q{αRNQ1
(qi) ∧ αN (qi, x, qj)}} ∧ {∨qi∈Q{αRNQ2

(qi) ∧ αN (qi, x, qj)}}
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= {∨qi∈Q{αRNQ1
(qi) ∧ αRNQ2

(qi) ∧ αN (qi, x, qj)}}
= ∨qi∈Q{(αRNQ1

∧ αRNQ2
)(qi) ∧ αN (qi, x, qj)},

Thus, (αRNQ1
∧ αRNQ2

)(qj) ≤ ∨qi∈Q{(αRNQ1
∧ αRNQ2

)(qi) ∧ αN (qi, x, qj)},—(4) (βRNQ1
∧

βRNQ2
)(qj) = (βRNQ1

(qj) ∧ βRNQ2
(qj))

≥ {∧qi∈Q{βRNQ1
(qi) ∨ βN (qi, x, qj)}} ∧ {∧qi∈Q{βRNQ2

(qi) ∨ βN (qi, x, qj)}}
= {∧qi∈Q{βRNQ1

(qi) ∧ βRNQ2
(qi) ∨ βN (qi, x, qj)}}

= ∧qi∈Q{(βRNQ1
∧ βRNQ2

)(qi) ∨ βN (qi, x, qj)}, Thus, (βRNQ1
∧ βRNQ2

)(qj) ≥ ∧qi∈Q{(βRNQ1
∧

βRNQ2
)(qi) ∨ βN (qi, x, qj)},—(5) and

(γRNQ1
∧ γRNQ2

)(qj) = (γRNQ1
(qj) ∧ γRNQ2

(qj))

≥ {∧qi∈Q{γRNQ1
(qi) ∨ γN (qi, x, qj)}} ∧ {∧qi∈Q{γRNQ2

(qi) ∨ γN (qi, x, qj)}}
= {∧qi∈Q{γRNQ1

(qi) ∧ γRNQ2
(qi) ∨ γN (qi, x, qj)}}

= ∧qi∈Q{(γRNQ1
∧ γRNQ2

)(qi) ∨ γN (qi, x, qj)}
Thus, (γRNQ1

∧ γRNQ2
)(qj) ≥ ∧qi∈Q{(γRNQ1

∧ γRNQ2
)(qi) ∨ γN (qi, x, qj)}.—(6)

Thus, From (4), (5) and (6) RNQ1
∧ RNQ2

is reverse subsystem of interval neutrosophic au-

tomaton M.

4. Conclusions

In this paper, we introduce reverse subsystem of interval neutrosophic automata with

example. Also, we establish necessary and sufficient condition for RNQ
to be a reverse sub-

system in interval neutrosophic automaton. Finally, we prove that the union and intersection

of reverse subsystems of interval neutrosophic automaton is reverse subsystem of an interval

neutrosophic automaton.
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—————————————————————————————————————————-

1. Introduction

The concept of neutrosophic set, as a generalization of fuzzy set [18] and intuitionistic fuzzy

set [5] was introduced by smarandache [16,17]. Since 2005, the notion of the neutrosophic set

received by attantion and have many applications [1–3]. The concept of neutrosophic normed

space is a natural generalization of fuzzy normed space and intuitionistic fuzzy normed space.

However, many different types of fuzzy normed spaces were introduced in [10,11,13]. In [6] Bag

and Samanta introduced a new concept of fuzzy norm its more natural to the usual norm, they

studied the properties of bounded sets and compact set in finite dimensional fuzzy normed

linear spaces. Also, in [7] Bag and Samanta introduced types of continuous and bounded of

linear operators. In [4] Abdulgawad et al present the notion of fuzzy strongly continuous,

sequentially continuous, and continuous mappings. As well as they discussed the bounded and

isometry of the fuzzy linear operator between fuzzy normed.
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Recently, the concept of neutrosophic normed space, as a generalization of fuzzy normed

spaces and the intuitionistic fuzzy normed space was introduced in [9], they studied the prop-

erties of convergence, completeness of such spaces.

In this paper, we extend the definitions of continuous and bounded operators in neutrosophic

normed spaces. Moreover, we establish the main properties of bounded linear operators and

continuous linear operators. We obtain a generalized version of boundedness and continuity

of intuitionistic fuzzy norms, while will play an important role in study neutrosophic analysis.

Furthermore, we introduce the notion of neutrosophic Lipsechitzian mapping and neutrosophic

Banach space.

The paper is divided into the following sections:

Section 2 includes some basic results. In section 3, we introduce and study some types

of continuous linear operators in neutrosophic normed spaces and neutrosophic Lipschitzian

mapping. In section 4, we define and study some types of bounded and isometry linear

operators in neutrosophic normed spaces. In section 5, we draw some conclusions.

2. Basic concepts

In this section, we remember the basic concepts and results that are required for the present

work.

Definition 2.1. [12] A continuous t-norm is a binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] with

the following axioms:

(i) ∗ is commutative and associative.

(ii) ∗ is continuous.

(iii) ` ∗ 1 = `, , ∀ ` ∈ [0, 1].

(iv) x ∗ y ≤ u ∗ v , y ≤ v, x ≤ u and x, y, u, v ∈ [0, 1].

Definition 2.2. [14,15] A continuous t-co-norm is a binary operation � : [0, 1]× [0, 1]→ [0, 1]

with the following axioms:

(i) � is commutative and associative.

(ii) � is continuous.

(iii) ` � 0 = `, ∀ ` ∈ [0, 1].

(iv) x � y ≤ u � v , y ≤ v, x ≤ u and x, y, u, v ∈ [0, 1].

Definition 2.3. [17] Let N be the universe set. A neutrosophic set N on N (NS N ) is defined

as:

N = {< a, ρ(a), ξ(a), η(a) > |a ∈ N} .

where ρ, ξ, η : N → [0, 1].
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Definition 2.4. [15] Let U be a linear space over R and ∗, � be a continuous t-norm, a

continuous t-co-norm, respectively, then a neutrosophic subset N :< ρ, ξ, η > on V × R be a

neutrosophic norm on U if for a, b× U and c, t, s ∈ R, if the following conditions hold.

(1) 0 ≤ ρ(a, t), ξ(a, t), η(a, t) ≤ 1.

(2) 0 ≤ ρ(a, t) + ξ(a, t) + η(a, t) ≤ 3.

(3) ρ(a, t) = 0 with t ≤ 0.

(4) ρ(a, t) = 1 with t > 0 iff x = 0.

(5) ρ(ca, t) = ρ(x,
t

| c |
) ∀c 6= 0, t > 0.

(6) ρ(a, s) ∗ ρ(b, t) ≤ ρ(a+ b, s+ t) ∀s, t ∈ R.
(7) ρ(a, .) is continuous non-decreasing function for t > 0, limt→∞ ρ(a, t) = 1.

(8) ξ(a, t) = 1 with t ≤ 0.

(9) ξ(a, t) = 0 with t > 0 iff x = 0.

(10) ξ(ca, t) = ξ(x,
t

| c |
) ∀c 6= 0, t > 0.

(11) ξ(a, s) � ξ(b, t) ≥ ξ(a+ b, s+ t).

(12) ξ(a, .) is continuous non-increasing function for t > 0, limt→∞ ξ(a, t) = 0.

(13) η(a, t) = 1 with t ≤ 0.

(14) η(a, t) = 0 and t > 0 if and only if x = 0.

(15) η(ca, t) = ξ(a,
t

| c |
) ∀c 6= 0, t > 0.

(16) η(a, s) � η(b, t) ≥ η(a+ b, s+ t).

(17) η(a, .) is continuous non-increasing function for t > 0, limt→∞ η(a, t) = 0.

Further (V,N , ∗, �) is neutrosophic normed linear space (NNLS).

Definition 2.5. [14, 15] Let (an) be a sequence of points in an NNLS (U,N , ∗, �), then the

sequence converges to a point a ∈ U if and only if for given 0 < e < 1, t > 0 ∃ n0 ∈ N such

that,

ρ(an − a, t) > 1− e, ξ(an − a, t) < e, η(an − a, t) < e ∀ n ≥ n0.

lim
n→∞

ρ(an − a, t) = 1, lim
n→∞

ξ(an − a, t) = 0, lim
n→∞

η(an − a, t) = 0.

Then the sequence (an) is called a convergent sequence in the NNLS (U,N , ∗, �).

Definition 2.6. [15] Let (an) be a sequence in an NNLS (U,N , ∗, �), is said to be bounded

for 0 < e < 1, t > 0 if the following hold,

ρ(an, t) > 1− e, ξ(an, t) < e, η(an, t) < e ∀n ∈ N.

Definition 2.7. [15] A sequence (an) of points in an NNLS (U,N , ∗, �), is called a Cauchy

sequence if for given 0 < e < 1, t > 0 ∃ n0 ∈ N such that,

ρ(an − am, t) > 1− e, ξ(an − am, t) < e, η(an − am, t) < e ∀ n,m ≥ n0.
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lim
n,m→∞

ρ(an − am, t) = 1, lim
n,m→∞

ξ(an − am, t) = 0, lim
n,m→∞

η(an − am, t) = 0.

3. Continuous mappings

In this section, we introduce the concept of continuous, sequentially continuous, and strongly

continuous mappings neutrosophic normed spaces. Also, we study the relationships between

continuous, sequentially continuous, strongly continuous mappings. Moreover, this study is

enhanced with an application

Definition 3.1. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is said to be continuous at x0 ∈ U if for all x ∈ U,
for each 0 < ε < 1 and t > 0, there exists 0 < δ < 1 and s > 0, such that

ρV (T (x)− T (x0), t) > (1− ε),

ξV (T (x)− T (x0), t) < ε,

ηV (T (x)− T (x0), t) < ε,

whenever

ρU (x− x0, s) > (1− δ),

ξU (x− x0, s) < δ,

ηU (x− x0, s) < δ,

respectively. In other words:

ρU (x− x0, s) > (1− δ)⇒ ρV (T (x)− T (x0), t) > (1− ε),

ξU (x− x0, s) < δ ⇒ ξV (T (x)− T (x0), t) < ε,

ηU (x− x0, s) < δ ⇒ ηV (T (x)− T (x0), t) < ε,

(1)

T is continuous on U if it is continuous at every point in U .

Definition 3.2. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is called sequentially continuous at x0 ∈ U , any

sequence (xn) in U satisfying xn → x0 leads to T (xn)→ T (x0). In other words:

lim
n→∞

ρU (xn − x0, t) = 1⇒ lim
n→∞

ρV (T (xn)− T (x0), t) = 1,

lim
n→∞

ξU (xn − x0, t) = 0⇒ lim
n→∞

ξV (T (xn)− T (x0), t) = 0,

lim
n→∞

ηU (xn − x0, t) = 0⇒ lim
n→∞

ηV (T (xn)− T (x0), t) = 0,

(2)

where t > 0. We call T is sequentially continuous on U when T is sequentially continuous at

each point of U
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Definition 3.3. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is called strongly continuous at x0 ∈ U if for each

t > 0. ∃ s > 0 such that ∀ x ∈ U ,

ρU (x− x0, s) ≤ ρV (T (x)− T (x0), t),

ξU (x− x0, s) ≥ ξV (T (x)− T (x0), t),

ηU (x− x0, s) ≥ ηV (T (x)− T (x0), t),

(3)

we say T is strongly continuous on U when it is strongly continuous at every point in U .

Theorem 3.4. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) be continuous at x0 ∈ U if and only if T is sequen-

tially continuous at x0 ∈ U .

Proof. Assume that T is continuous at x0 ∈ U , (xn) ⊂ U if for all x ∈ U, for each 0 < ε < 1

and t > 0 ∃ 0 < δ < 1 and s > 0, such that

ρU (x− x0, s) > (1− δ)⇒ ρV (T (x)− T (x0), t) > (1− ε),

ξU (x− x0, s) < δ ⇒ ξV (T (x)− T (x0), t) < ε,

ηU (x− x0, s) < δ ⇒ ηV (T (x)− T (x0), t) < ε,

Since xn → x0, then there exists n0 ∈ N such that

ρU (xn − x0, s) > (1− δ),

ξU (xn − x0, s) < δ,

ηU (xn − x0, s) < δ.

Hence

ρV (T (xn)− T (x0), t) > (1− ε),

ξV (T (xn)− T (x0), t) < ε,

ηV (T (xn)− T (x0), t) < ε,

as 0 < ε < 1 arbitrary; so T (xn)→ T (x0). Thus, T is sequentially continuous at x0 ∈ U .

Another direction, we suppose that T is sequentially continuous at x0 ∈ U and T is not

continuous at x0. Then there exists 0 < ε < 1 and t > 0, such that for any 0 < δ < 1 and

s > 0, there exists x ∈ U , such that

ρU (x− x0, s) > (1− δ) but ρV (T (x)− T (x0), t) ≤ (1− ε),

ξU (x− x0, s) < δ but ξV (T (x)− T (x0), t) ≥ ε,

ηU (x− x0, s) < δ but ηV (T (x)− T (x0), t) ≥ ε.

(4)
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So, for δ = 1− 1

n+ 1
, s =

1

n+ 1
, n ∈ N ∃ xn such that

ρU (xn − x0,
1

n+ 1
) > (

1

n+ 1
) but ρV (T (xn)− T (x0), t) ≤ (1− ε),

ξU (xn − x0,
1

n+ 1
) < 1− 1

n+ 1
but ξV (T (xn)− T (x0), t) ≥ ε,

ηU (xn − x0,
1

n+ 1
) < 1− 1

n+ 1
but ηV (T (xn)− T (x0), t) ≥ ε.

Taking s > 0, there exists n0, such that
1

n+ 1
< s for all n ≥ n0 then

ρU (xn − x0, s) > (
1

n+ 1
),

ξU (xn − x0, s) < 1− 1

n+ 1
,

ηU (xn − x0, s) < 1− 1

n+ 1
,

hence

lim
n→∞

ρU (xn − x0, s) = 1,

lim
n→∞

ξU (xn − x0, s) = 0,

lim
n→∞

ηU (xn − x0, s) = 0,

this lead to xn → x0. However by (4),

ρV (T (xn)− T (x0), t) ≤ (1− ε),

ξV (T (xn)− T (x0), t) ≥ ε,

ηV (T (xn)− T (x0), t) ≥ ε.

Thus, T (xn) does not converges to T (x0) but xn → x0, which gives contradiction. Therefor,

the mapping T is continuous at x0 ∈ U .

Theorem 3.5. Let (U,NU , ∗, �), (V,NV , ∗, �) be two neutrosophic normed spaces and T :

(U,NU , ∗, �) → (V,NV , ∗, �). If T is a strongly continuous, then T is sequentially continuous

at x0 ∈ U .

Proof. Suppose that T is strongly continuous at x0, then for each t > 0, there exists s > 0

such that for all x ∈ U sequence (xn) in U satisfying (3). Suppose that (xn) is a sequence such

that xn → x0. If we put x = xn in (3), then we have

ρU (xn − x0, s) ≤ ρV (T (xn)− T (x0), t),

ξU (xn − x0, s) ≥ ξV (T (xn)− T (x0), t),

ηU (xn − x0, s) ≥ ηV (T (xn)− T (x0), t).
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This implies that

lim
n→∞

ρU (xn − x0, s) ≤ lim
n→∞

ρV (T (xn)− T (x0), t),

lim
n→∞

ξU (xn − x0, s) ≥ lim
n→∞

ξV (T (xn)− T (x0), t),

lim
n→∞

ηU (xn − x0, s) ≥ lim
n→∞

ηV (T (xn)− T (x0), t).

Therefore,

lim
n→∞

ρV (T (xn)− T (x0), t) = 1,

lim
n→∞

ξV (T (xn)− T (x0), t) = 0,

lim
n→∞

ηV (T (xn)− T (x0), t) = 0.

Since t > 0 is arbitrary, we obtain that T (xn)→ T (x0). Thus, T is sequentially continuous.

Remark 3.6. The converse of the above Theorem 3.5 is not true, i.e., the sequentially conti-

nuity does not imply the strongly continuity.

Now, we give an example that illustrates the above remark.

Example 3.7. Let (U = R, ‖ x ‖) be a normed linear space, where ‖ x ‖=| x | ∀x ∈ U, and

a ∗ b = min {a, b} , a � b = max {a, b} ∀a, b ∈ [0, 1]. Define ρ1, ρ2, ξ1, ξ2, η1, η2 : U ×R+ → [0, 1]

by

ρ1(x, t) =
t

t+ | x |
, ρ2(x, t) =

t

t+ c | x |
, c > 0,

ξ1(x, t) =
| x |

t+ | x |
, ξ2(x, t) =

c | x |
t+ c | x |

, c > 0,

η1(x, t) =
| x |
t
, η2(x, t) =

c | x |
t

, c > 0.

It is easy to see that (U,N1, ∗, �) and (U,N2, ∗, �) are NNLS. Let us now define, f :

(U,N1, ∗, �) → (U,N2, ∗, �), f(x) =
x4

1 + x2
for all x ∈ U . Let x0 ∈ U and (xn) be a se-

quence in U such that xn → x0 in (U,N1, ∗, �), that is, for all t > 0,

lim
n→∞

ρ1(xn − x0, t) = lim
n→∞

t

t+ | xn − x0 |
= 1,

lim
n→∞

ξ1(xn − x0, t) = lim
n→∞

c | xn − x0 |
t+ | xn − x0 |

= 0,

lim
n→∞

η1(xn − x0, t) = lim
n→∞

| xn − x0 |
t

= 0.
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In other hand,

ρ2(f(xn)− f(x0), t) =
t

t+ c | f(xn)− f(x0) |

=
t

t+ c | x4n
1 + x2n

− x40
1 + x20

|

=
t(1 + x2n)(1 + x20)

t(1 + x2n)(1 + x20) + c | x4n(1 + x20)− x40(1 + x2n) |

=
t(1 + x2n)(1 + x20)

t(1 + x2n)(1 + x20) + c | (x2n + x20)(x
2
n − x20 + x2nx

2
0(x

2
n − x20)) |

=
t(1 + x2n)(1 + x20)

t(1 + x2n)(1 + x20) + c | (xn − x0)(xn + x0)(x2n + x20 + x2nx
2
0) |

.

So

lim
n→∞

ρ2(xn − x0, t) = 1.

ξ2(f(xn)− f(x0), t) =
c | f(xn)− f(x0) |

t+ c | f(xn)− f(x0) |

=
c | (xn − x0)(xn + x0)(x

2
n + x20 + x2nx

2
0) |

t(1 + x2n)(1 + x20) + c | (xn − x0)(xn + x0)(x2n + x20 + x2nx
2
0) |

.

So

lim
n→∞

ξ2(xn − x0, t) = 0.

Finally,

η2(f(xn)− f(x0), t) =
c | f(xn)− f(x0) |

t

=
c | (xn − x0)(xn + x0)(x

2
n + x20 + x2nx

2
0) |

t | (1 + x2n)(1 + x20) |
,

and this lead to

lim
n→∞

η2(xn − x0, t) = 0.

Thus, we see that f is sequentially continuous on U .

Now, we will explain that f is not strongly continuous by a contradiction. Let f be strongly

continuous, then it holds that for all x0 ∈ U and for each t > 0 there exist s > 0 such that for

all x0 ∈ U ,

ρ1(x− x0, s) ≤ ρ2(f(x)− f(x0), t),

ξ1(x− x0, s) ≥ ξ2(f(x)− f(x0), t),

η1(x− x0, s) ≥ η2(f(x)− f(x0), t).
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Firstly, from the calculation of example [7, 8] and

c | (x− x0)(x+ x0)(x
2 + x20 + x2x20) |

t | (1 + x2)(1 + x20) |
≤ | x− x0 |

s

t | (1 + x2)(1 + x20) |
| (x+ x0)(x2 + x20 + x2x20) |

≥ c

t
s.

Then it holds that

Infx∈U

{
t | (1 + x2)(1 + x20) |

| (x+ x0)(x2 + x20 + x2x20) |

}
≥ c

t
s.

Thus,
c

t
s = 0. Since k, t > 0 then it holds that s = 0. This gives a contradiction with the fact

that s > 0. So f is not strongly continuous.

3.1. Application

Definition 3.8. A mapping T : (U,NU , ∗, �) → (V,NV , ∗, �) is said to be neutrosophic Lips-

chitzian on U if ∃ c > 0 such that

ρV (T (x)− T (y), t) ≥ ρU (x− y, t
c
),

ξV (T (x)− T (y), t) ≤ ξU (x− y, t
c
),

ηV (T (x)− T (y), t) ≤ ηU (x− y, t
c
),

∀t > 0, ∀x, y ∈ U. If c < 1, we say that T is a neutrosophic contraction.

Remark 3.9. If T is a neutrosophic Lipschitzian mapping, then T is a neutrosophic contin-

uous.

Definition 3.10. A neutrosophic Banach space is a complete neutrosophic normed linear

space.

Theorem 3.11. Let (U,NU , ∗, �) be a neutrosophic Banach space and T : (U,NU , ∗, �) →
(U,NU , ∗, �) be a neutrosophic contraction, then T has a unique fixed point.

Proof. Let x be arbitary point in U , then {T n(x)} is a Cauchy sequence. In fact, for t > 0

and m ∈ N− {0}, we get

ρ(T n+m(x)− T n(x), t) ≥ ρ(T n+m−1(x)− T n−1(x),
t

c
) ≥ ... ≥ ρ(T m(x)− x, t

cn
),

ξ(T n+m(x)− T n(x), t) ≤ ξ(T n+m−1(x)− T n−1(x),
t

c
) ≤ ... ≤ ξ(T m(x)− x, t

cn
),

η(T n+m(x)− T n(x), t) ≤ η(T n+m−1(x)− T n−1(x),
t

c
) ≤ ... ≤ η(T m(x)− x, t

cn
).

Saleh Omran and A. Elrawy, Continuous and bounded operators on neutrosophic normed spaces

Neutrosophic Sets and Systems, Vol. 46, 2021                                                                               284



As 0 < c < 1, we have that limn→∞
t

cn
=∞. So

lim
n→∞

ρ(T m(x)− x, t
cn

) = 1,

lim
n→∞

ξ(T m(x)− x, t
cn

) = 0,

lim
n→∞

η(T m(x)− x, t
cn

) = 0.

Thus,

lim
n→∞

ρ(T n+m(x)− T n(x), t) = 1,

lim
n→∞

ξ(T n+m(x)− T n(x), t) = 0,

lim
n→∞

η(T n+m(x)− T n(x), t) = 0.

Since U is complete, we have that {T n(x)} is a convergent sequence. So there exists u ∈ U
such that limn→∞ T n(x) = u. We find that

u = lim
n→∞

T n+1(x) = lim
n→∞

T (T n(x)) = T (u).

Now, we exhibit the uniqueness. Assume that ∃u, v ∈ U with u 6= v and u = T (u), v = T (v).

As u 6= v, ∃s > 0 such that

ρ(u− v, s) = a < 1,

ξ(u− v, s) = b > 0,

η(u− v, s) = c > 0,

then, for all n ∈ N∗ we obtain

a = ρ(v − u, s) = ρ(T n(v)− T n(u), s) ≥ ρ(v − u, s
cn

)→ 1,

b = ξ(v − u, s) = ξ(T n(v)− T n(u), s) ≤ ξ(v − u, s
cn

)→ 0,

c = η(v − u, s) = η(T n(v)− T n(u), s) ≤ η(v − u, s
cn

)→ 0,

thus, a = 1, b = 0, c = 0, which gives contradiction, hence the claims of theorem.

4. Neutrosophic bounded

In this section, we introduce the concept of boundedness and isometry of mappings neutro-

sophic linear operators between neutrosophic normed spaces. Also, we study the relationships

between bounded and weakly bounded linear operators.
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Definition 4.1. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. A

mapping T : U → V is called neutrosophic isometry if for each x ∈ U , t > 0 such that for all

x ∈ D,

ρV (T (x), t) = ρU (x, t),

ξV (T (x), t) = ξU (x, t),

ηV (T (x), t) = ηU (x, t).

(5)

Definition 4.2. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces and

T : U → V be a linear operator. The operator T is called neutrosophic bounded if there exist

a constant k ∈ R− {0} such that for each x ∈ U and t > 0,

ρV (T (x), t) ≥ ρU (kx, t),

ξV (T (x), t) ≤ ξU (kx, t),

ηV (T (x), t) ≤ ηU (kx, t).

(6)

Definition 4.3. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces and

T : U → V be a linear operator. The operator T is called weakly neutrosophic bounded if for

all 0 < r < 1 there exist a constant k ∈ R− {0} such that for each x ∈ U and t > 0,

ρU (kx, t) ≥ 1− r ⇒ ρV (T (x), t) ≥ 1− r,

ξU (kx, t) ≤ r ⇒ ξV (T (x), t) ≤ r,

ηU (kx, t) ≤ r ⇒ ηV (T (x), t) ≤ r.

(7)

Theorem 4.4. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

linear operator T : (U,NU , ∗, �) → (V,NV , ∗, �) be neutrosophic bounded if T is weakly neu-

trosophic bounded.

Proof. Suppose that T is a neutrosophic bounded operator. Then there exist a constant

k ∈ R − {0} such that for each x ∈ U , t > 0, and satisfied (6). Using the fact that

ρU (kx, t), ξU (kx, t), ηU (kx, t) ∈ [0, 1], we obtain that for any 0 < r < 1 there exist a kr

depends on k such that

ρU (kx, t) ≥ ρU (krx, t) ≥ 1− r,

ρU (kx, t) ≤ ρU (krx, t) ≤ r,

ρU (kx, t) ≤ ρU (krx, t) ≤ r.

Since (6) it holds that

ρV (T (x), t) ≥ 1− r,

ξV (T (x), t) ≤ r,

ηV (T (x), t) ≤ r.
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Thus, T is weakly neutrosophic bounded

Theorem 4.5. Let (U,NU , ∗, �) and (V,NV , ∗, �) be two neutrosophic normed spaces. The

linear operator T : (U,NU , ∗, �)→ (V,NV , ∗, �) is continuous iff it is neutrosophic bounded.

Proof. The first direction, let T be continuous on (U,NU , ∗, �), then it is continuous at 0 ∈ U .

Thus, for all x ∈ U, for each 0 < ε < 1 and t > 0, there exists 0 < δ < 1 and s > 0, such that

if

ρU (x− 0, s) > (1− δ)⇒ ρV (T (x)− T (0), t) > (1− ε),

ξU (x− 0, s) < δ ⇒ ξV (T (x)− T (0), t) < ε,

ηU (x− 0, s) < δ ⇒ ηV (T (x)− T (0), t) < ε.

Now, any way there exists 0 < δ < 1 such that

ρU (kx, t) > (1− δ),

ξU (kx, t) < δ,

ηU (kx, t) < δ.

So

ρU (x,
t

| k |
) = ρU (x, t) > (1− δ),

ξU (x,
t

| k |
) = ξU (kx, t) < δ,

ηU (x,
t

| k |
) = ηU (kx, t) < δ.

By putting s =
t

| k |
we obtain that

ρU (x, s) > (1− δ)⇒ ρV (T (x), t) > (1− ε),

ξU (x, s) < δ ⇒ ξV (T (x), t) < ε,

ηU (x, s) < δ ⇒ ηV (T (x), t) < ε.

Hence

ρV (T (x), t) ≥ ρU (kx, t),

ξV (T (x), t) ≤ ξU (kx, t),

ηV (T (x), t) ≤ ηU (kx, t).

Therefore, T is neutrosophic bounded.

For the other direction, suppose that T is neutrosophic bounded, then there exist a constant
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k ∈ R− {0} such that for each x ∈ U , t > 0, and satisfied (6). We have

ρV (T (x), t) ≥ ρU (kx, t) = ρU (x,
t

| k |
) = ρU (x, s),

ξV (T (x), t) ≤ ξ(kx, t) = ξU (x,
t

| k |
) = ξU (x, s),

ηV (T (x), t) ≤ ηU (kx, t) = ηU (x,
t

| k |
) = ηU (x, s).

(8)

Let x0 ∈ U, 0 < ε < 1, t > 0, put δ = ε and s =
t

| k |
> 0. Suppose that

ρU (x− x0) ≥ (1− δ),

ξU (x− x0) ≤ δ,

ηU (x− x0) ≤ δ.

Since (8) it holds that

ρV (T (x)− T (x0)) > (1− δ),

ξV (T (x)− T (x0)) < δ,

ηV (T (x)− T (x0)) < δ.

Thus, T is continuous.

5. Conclusions

In this paper, we have extended the definitions of continuous and bounded operators in

neutrosophic normed spaces. Also, we have introduced a type of continuous and bounded

operators in neutrosophic normed spaces. Moreover, we have studied some interesting rela-

tionships. These are illustrated by examples that are appropriate.
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Abstract. In this paper, we create a new type of fundamental group called the neutrosophic fundamental

group. We obtain some kinds of conditional foldings that are confined to the elements of the neutrosophic

fundamental groups. Also, we deduce the limit foldings of a neutrosophic fundamental group. We present the

variant and invariant of the neutrosophic fundamental group under the folding of the neutrosophic manifold

into itself. We show that the neutrosophic fundamental group at the ending limits of neutrosophic foldings on

the n-dimensional neutrosophic manifold into itself is the neutrosophic identity group.

Keywords: Manifold; Neutrosophic folding; Neutrosophic fundamental group.

—————————————————————————————————————————-

1. Introduction

In daily natural life, there are many uncertainties. However, standard mathematical logic is

inadequate to account for these uncertainties to describe these uncertainties mathematically

and to employ them in practice. The theory of the fuzzy set has occupied just about all areas

of mathematics waz introduced by Zadeh [1]. The concept of ”intuitionistic fuzzy set” was first

introduced by Krassimir Atanassov [2]. A neutrosophic controller has been applied to many

industrial applications, a neutrosophic controller uses scaling functions of physical variables to

cope with uncertainly in process dynamics or the control environment [3]. Robertson proposed

the folding of a manifold [4]. Many kinds of foldings and retractions were discussed in [5–9].

The fundamental group of quotient spaces was studied in [10]. Different groups are very

significant in algebraic structures since they perform the role of a fundamental in almost all

algebraic structures theories. Groups are as well important in plentiful other areas such as

combinatorics, biology, physics, chemistry, etc., in order to study the symmetries and other

performance among their components. For a continuous map F : (W, w) → (V, v) and

F̃ : π1(W, w)→ π1(V, v) is an induced map gained by using fundamental group functor [11].
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One of the standard problems in the transformation of the fundamental groups has been to

study the properties of a manifold and to illustrate them whenever possible.

section Preliminaries

Some essential concepts related to single-valued neutrosophic sets and the fundamental

groups are shown in this section.

Definition 1.1. Let W be a topological space. Then the homotopy classes of loops at a given

point w◦ with an operation [α][β] = [α · β] is called the fundamental group and denoted by

π1(W,w◦) [12].

Definition 1.2. Given spaces V and W with chosen points v◦ ∈ V and w◦ ∈ W , then the

wedge sum V ∨W is the quotient of the disjoint union V ∪Wobtained by identifying v◦ and

w◦ to a single point [13].

Definition 1.3. Let W̌ be a space of objects, a neutrosophic set B̌ in W̌ is branded by

three functions called truth membership function λB̌ (w), indeterminacy membership func-

tion ξB̌ (w), and falsity membership function σB̌ (y), for which λB̌, ξB̌, σB̌ : W̌ →
] −0, 1+[ and −0≤λB̌(w) + ξB̌(w) + σB̌(w) ≤ 3+. But in real-life application in scien-

tific and engineering problems it is hard to utilize neutrosophic set on a value of ] −0, 1+[

[3, 14, 15]. We also note that in [16] for (SVNS) all values are taken as the subsets

of [0, 1]. We’ll utilize the symbol for convenience’s sake 〈 λB̌, ξB̌, σB̌ 〉 for the neutro-

sophic set B̌ =
{
〈w, λB̌ (w) , ξB̌ (w) , σB̌ (w) 〉 : wεW̌

}
, T B̌ = 〈λB̌, ξB̌, σB̌〉 and T B̌ (w) =

〈λB̌ (w) , ξB̌ (w) , σB̌ (w)〉, for which λB̌ (w) , ξB̌ (w) , σB̌ (w) ∈ [0, 1] for all w ∈ W̌ . For a

neutrosophic point and simlicity we use (w, T (w)) for (w, T B̌ (w)).

2. Main Results

Intending to our study we will create the following definitions.

Definition 2.1. A neutrosophic path in a topological space W̃ from (w0, T (w0)) to

(w1, T (w1)) is a neutrosophic continuous map η̌ : [̃0, 1] −→ W̃ in which η̌(0, T (0)) =

(w0, T (w0)) and η̌(1, T (1)) = (w1, T (w1)).

Definition 2.2. A space W̃ is called neutrosophic arcwise connected if for any two

points (w0, T (w0)) and (w1, T (w1)) in W̃, there exists a neutrosophic path with begin

(w0, T (w0)) and end (w1, T (w1)).

Definition 2.3. Two neutrosophic continuous maps η̌ , ξ̌ : Ṽ −→ W̃ are neutrosophy homo-

topic written ( η̌ ∼= ξ̌) if there exists a neutrosophic continuous map φ̌ : Ṽ × [̃0, 1]→ W̃ , for

(v, T (v)) ∈ Ṽ,
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φ̌((v, T (v)) , (0, T (0))) = η̌(v,T (v)),

φ̌((v, T (v)) , (1, T (1))) = ξ̌(v, T (v)).

Definition 2.4. A neutrosophic path W̌ is called a neutrosophic loop if η̌(0, T (0)) =

η̌(1 , T (1)).

Definition 2.5. Let η̌ is a path from (w0, T (w0)) to (w1, T (w1)) and let ξ̌ is a path from

(w1, T (w1))to (w2, T (w2)), then

η̌ · ξ̌(t, T (t)) =

{
η̌(2t, T (2t)) (0, T (0)) ≤ (t, T (t)) ≤ (1

2 , T (1
2))

ξ̌(2t− 1), T (2t− 1)) (1
2 , T (1

2)) ≤ (t, T (t)) ≤ (1, T (1) )

Definition 2.6. The neutrosophic fundamental group in neutrosophic space W̌ at the neu-

trosophic base point b̌ is the set of neutrosophic homotopy classes of neutrosophic loops with

the product operation [ η̌][ξ̌] = [ η̌ · ξ̌] and denoted as
ne
π (W̌, b̌).

Definition 2.7. The neutrosophic group G̃ is a group with neutrosophic elements, i.e. the

neutrosophic elements g̃ can be represented as g̃=(g, Υ(g)).

Definition 2.8. Let Ñ1 and Ñ2 be two neutrosophic manifolds of dimension n1 and n2

respectively. A neutrosophic map = : Ñ1 → Ñ2 is called a neutrosophic topological folding iff

=◦ δ̃ : [̃0, 1]→ Ñ2 is an induced piecewise neutrosophic geodesic that does not preserve length

as δ̃ , whenever δ̃ : [̃0, 1]→ Ñ1 is a piecewise geodesic neutrosophic path . For simplicity, we

denote the neutrosophic topological folding by neutrosophic folding.

Example 2.9. Let S̃n be a neutrosophic sphere of dimension n. Then,
ne
π (S̃1, ǎ) ≈ Z̃,

ne
π (S̃n, ǎ) = 0̌ (neutrosophic identity group) for n ≥ 2. Also,

ne
π (R̃n, ǎ) = 0̌ for n ≥ 1.

Lemma 2.10. Two types of neutrosophic foldings =j:S̃
1
1 → S̃1

2, (j = 1, 2) without singulari-

ties induce neutrosophic foldings

=̂j:
ne
π(S̃1

1 )→ ne
π (S̃1

2) such that =̂j

(
ne
π ( S̃

1
1 )
)

=
ne
π
(
=j

(
S̃1

1

))
.

Proof. Let =1 :S̃1
1 → S̃1

2 be a neutrosophic folding such that =1

(
eiθ, T

(
eiθ
))

=

(reiθ, T (reiθ)), r > 0, θ ∈ [0, 2π) then we obtain an induced neutrosophic folding

=̂1:
ne
π (S̃1

1 ) → ne
π (S̃1

2) such that =̂1 [α, T (α)] = [rα, T (rα)], where α = ei(2mπθ), m ∈ Z, and

so =̂1

(
ne
π (S̃1

1 )
)

=
ne
π
(
=1

(
S̃1

1

))
. Also, let

=2 :S̃1
1 → S̃1

2 be a neutrosophic folding such that

=2

(
eiθ, T

(
eiθ
))

= (reiϕ, T
(
reiϕ

)
), θ, ϕ ∈ [0, 2π) 0 ≤ θ < 2π, θ− ϕ ∈ [0, 2π), then we get an

induced neutrosophic folding =̂2:
ne
π (S̃1

1 )→ ne
π (S̃1

2) such that =̂ ([α, T (α)]) = [β, T (β)], where

α = ei(2mπθ), β = ei(2mπϕ), m ∈ Z, and so =̂
(

ne
π (S̃1

1 )
)

=
ne
π
(
=2

(
S̃1

1

))
.
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Now we use some interesting transformations on a neutrosophic manifold to describe the

structure of a neutrosophic fundamental group. However, in the following theorem, we will

describe many types of neutrosophic foldings on the neutrosophic sphere of dimension 1 and

neutrosophic torus.

Theorem 2.11. There are different types of neutrosophic foldings = : S̃1
1 → S̃1

2 which

induced neutrosophic foldings =̂:
ne
π (S̃1

1 ) → ne
π(S̃1

2) such that =̂(
ne
π (S̃1

1 )) is either isomorphic

to 0̌, Z̃ or G̃, where G̃ = {(n, 0, 0, 0) : n ∈ Z }.

Proof. (i) If =: S̃1
1 → S̃1

2 is a neutrosophic folding by a cut as in Fig.(1.a), then clearly

=̂j

(
ne
π ( S̃

1
1 )
)

=
ne
π
(
=
(
S̃1

1

))
= 0̃ .

(ii) If =: S̃1
1 → S̃1

2 is a neutrosophic folding without singularity of on S̃1
1, then =(S̃1) is a

neutrosophic manifold which is homeomorphic to S̃1
1 as in Fig.(1.b) , and so =̂j

(
ne
π (S̃1

1 )
)

=

ne
π
(
=
(
S̃

1
1

))
≈ Z̃.

Figure 1

(iii) If =: S̃1
1 → S̃1

2 is a neutrosophic folding such that =(geometry) = geometry and

neutrosophic folding by a cut to all other neutrosophy as in Fig.(2) Then there is an induced

neutrosophic folding = : π̃1(S̃1
1 ) → ne

π (S̃1
2) for which =̂j

(
ne
π (S̃1

1 )
)

=
ne
π
(
=
(
S̃1

1

))
≈ G̃,

where G̃ = {(n, 0, 0, 0) : n ∈ Z }.
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Figure 2

Theorem 2.12. There are different types of neutrosophic foldings = : T̃1
1 → T̃1

2 which

induce neutrosophic foldings =̂j:π̃1(T̃1
1)→π̃1(T̃1

2) such that =̂j

(
π̃1(T̃1

1)
)
≈ G1 × G2 where

G1 and G2 are either 0̃, Z̃ or {(n, 0, 0, 0) : n ∈ Z }.

Proof. The proof of this theorem is similar to the proof of theorem 2.11.

Theorem 2.13. Let M̃ be the neutrosophic annulus and let Ẽ2 denote the closed neutrosophic

unit ball in R̃2. Then there is a sequence of neutrosophic foldings =m :M̃ −→ Ẽ
2
,m =

1, 2, .., k for which
ne
π ( lim

k→∞
(=k (M̃ ))) = 0̌.

Proof. We can define a sequence of neutrosophic foldings as follows:

=1 :M̃1−→ M̃2, M̃1 ⊆ M̃2 ⊆ Ẽ
=2 :M̃2−→ M̃3, M̃2 ⊆ M̃3 ⊆ Ẽ

...
...

=k :M̃k−1 ⊆ M̃k M̃k−1 ⊆ M̃k ⊆ Ẽ2

and so lim
k→∞

(=k (M̃ )) = 0̃ as in Fig.(3). Hence,
ne
π ( lim

k→∞
(=k (M̃ ))) =

ne
π ( Ẽ2), thus

ne
π ( lim

k→∞
(=k (M̃ ))) = 0̌.

Lemma 2.14. The neutrosophic fundamental group of the limit neutrosophic foldings of a

neutrosophic manifold which is homeomorphic to S̃n,n ≥ 2 is the neutrosophic identity group.

Proof. The proof follows explicitly from the concept of a neutrosophic folding.

Theorem 2.15. Let D̃n be the disjoint union of neutrosophic n discs on the neutrosophic

sphere S̃2. Then there is a sequence of neutrosophic foldings
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Figure 3

=m:
(
S̃2 − D̃n

)
m−1

→
(
S̃2 − D̃n

)
m

: m = 1, 2, . . . k in which

ne
π ( lim

k→∞
=k(S̃2 − D̃n)) = 0̌.

Proof. Let D̃n be the disjoint union of neutrosophic n discs on the neutrosophic sphere S̃2.

Then, we can define a sequence of neutrosophic foldings as:

= 1:
(
S̃2 − D̃n

)
0

→
(
S̃2 − D̃n

)
1
⊆ S̃2

= 2:
(
S̃2 − D̃n

)
1

→
(
S̃2 − D̃n

)
2
⊆ S̃2

...
...

...

= k:
(
S̃2 − D̃n

)
k−1

→
(
S̃2 − D̃n

)
k
⊆ S̃2,

for which lim
k→∞
=k

(
S̃2 − D̃n

)
k−1

= S̃2 as in Fig.(4) for n = 2. Hence,

ne
π( lim

k→∞
=k

(
S̃2 − D̃n

)
k−1

) =
ne
π ( S̃2). Therefore,

ne
π (=k

(
S̃2 − D̃n

)
k−1

) = 0̃.

Theorem 2.16. There is a kind of a neutrosophic folding on S̃2 for which
ne
π ( lim

m→∞
=k(S̃2))

is either a free neutrosophic group of rank n or a neutrosophic identity group.
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Figure 4

Proof. Consider the following chain of neutrosophic folding on S̃2

=1 : S̃
2 → S̃2

1 , radius ( S̃2) < radius (S̃
2

1 ),

=2 : S̃
2
1 → S̃2

2 , radius ( S̃2
1) < radius (S̃

2

2 ),
...

...

=k : S̃
2
k−1 → S̃2

k, radius (S̃2
k−1) < radius (S̃

2

k ),
then we have two cases:

Case (1) If lim
k→∞
=k(S̃2) = S̃

2 − D̃n, for some n as in Fig. (5) for n = 2 then

ne
π ( lim

k→∞
=k(S̃2)) =

ne
π (lim (

k→∞
=k(S̃

2 − D̃n))). Since
n
∨
j=1

S̃j is a neutrosophic deformation re-

tract of S̃2 − D̃n, it follows that
ne
π (S̃2 − D̃n) is a free neutrosophic group of rank n. Thus,

ne
π ( lim

m→∞
=k(S̃2)) is a free neutrosophic group of rank n.

Case(2) If
ne
π ( lim

k→∞
=k( S̃2)) is a neutrosophic sphere of radius ∞, then

ne
π ( lim

k→∞
=k(S̃2) = 0̃.

Hence, the proof is complete.

Remark 2.17. Let M̃ and M̃ 1 be two neutrosophic manifolds of the same dimension

and let = :M̃ → M̃ 1be any neutrosophic folding of M̃ into M̃ 1. Then,
ne
π ( lim

k→∞
=k(M̃

k−1)) and
ne
π (=(M̃ )) needed not to be equal.
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Figure 5

Proof. We will show this result by considering the following counter-example, Let M̃ =S̃1,

then we have a chain of neutrosophic folding as in Fig.(6), we have lim
k→∞
=k( S̃1

k−1) ≈ L̃

(neutrosophic line), and so
ne
π ( lim

k→∞
=k( S̃

1
k−1) ) =

ne
π (L̃ )= 0̌ but

ne
π (=(S̃1)) =

ne
π (S̃1) ≈ Z̃. Hence,

ne
π( lim

k→∞
= k(M̃ k−1)) 6≈ ne

π(=(M̃ )).

Theorem 2.18. The neutrosophic fundamental group at end limits of neutrosophic foldings

of an n-dimensional neutrosophic manifold M̃ n into itself is the neutrosophic identity group.

Proof. Let =i be a neutrosophic folding of an n-dimensional neutrosophic manifold M̃ n.

Then we, get the following chains,

M̃ n =1
1−→ M̃ n

1

=1
2−→ M̃ n

2 → · · · M̃ n
k−1 · · ·

lim
k→∞

=1
k

−→ M̃ n−1

M̃ n−1 =2
1−→ M̃ n−1

1

=2
2−→ M̃ n−1

2 → · · · M̃ n−1
k−1 · · ·

lim
k→∞

=2
k

−→ M̃ n−2

...
...

...
...

...

M̃ 1 =n
1−→ M̃ 1

1

=n
2−→ M̃ 1

2 · · · M̃ 1
k−1 · · ·

lim
k→∞

=n
k

−→ M̃ 0.
As a result, of the last sequence, the ending limits of neutrosophic foldings is a zero-dimensional
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Figure 6

neutrosophic manifold, it is a neutrosophic point and the neutrosophic the fundamental group

of a neutrosophic point is the neutrosophic identity group.

3. conclusions

As a result, the neutrosophic fundamental group and foldings map impact on a neutrosophic

fundamental group is introduced. We use the transformation to describe the elements of

a neutrosophic fundamental group. Under the folding map, many kinds of the isomorphic

neutrosophic group are obtained.
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Abstract. Hypersoft set, an extension of soft set, deals with disjoint attribute-valued sets corresponding to

distinct attributes. In this study, the innovation of complex fuzzy hypersoft set (CFH-set) is conferred, which

can tackle with uncertainties and vagueness that lie in the data by taking into account the amplitude and phase

terms of the complex numbers at the same time. This model establishes a gluing framework of the fuzzy set and

hypersoft set characterized in the complex plane. This structure is more flexible and useful as it consents a broad

range of values for membership function by expanding them to the unit circle in a complex plane through the

characterization of the fuzzy hypersoft set to consider the periodic nature of the information and the attributes

can further be classified into attribute-values sets for vivid understanding. With the characterization of its

some fundamental properties and operations, aggregations of complex fuzzy hypersoft set: matrix, cardinal

set, cardinal matrix of cardinal set, aggregation operator/set and matrix of aggregation set, are conceptualized

along with application in decision-making. Moreover, complex interval-valued fuzzy hypersoft set is developed

and some of its fundamentals i.e. subset, equal sets, null set, absolute set etc. and theoretic operations i.e.

compliment, union, intersection etc. are investigated.

Keywords: Complex fuzzy sets (CF-Sets), soft set, hypersoft set and complex fuzzy hypersoft set.

—————————————————————————————————————————-

1. Introduction

The concept of complex fuzzy set theory (CFS-Theory) [1] is an extension of fuzzy set

theory (FS-Theory) [2], which uses complex-valued state for the membership of its elements.

FS-Theory and CFS-Theory have some kind of complexities which restrain them to solve

problem involving uncertainty professionally. The reason for these hurdles is, possibly, the

3

1,2,3,4,5
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inadequacy of the parametrization tool. It demands a mathematical tool free of all such

impediments to tackle such issues. This scantiness is resolved with the development of soft

set theory (SS-Theory) [7] which is a new parameterized family of subsets of the universe

of discourse. The researchers [8]- [17] studied and investigated some elementary properties,

operations, laws and hybrids of SS-Theory with applications in decision making. The gluing

concept of NS-Theory and SS-Theory, is studied in [18] to make the NS-Theory adequate with

parameterized tool. In many real life situations, distinct attributes are further partitioned

in disjoint attribute-valued sets but existing SS-Theory is insufficient for dealing with such

kind of attribute-valued sets. Hypersoft set theory (HS-Theory) [19] is developed to make

the SST in line with attribute-valued sets to tackle real life scenarios. HS-Theory is an ex-

tension of SS-Theory as it transforms the single argument function into a multi-argument

function. Certain elementary properties, aggregation operations, laws, relations and functions

of HS-Theory, are investigated by [20]- [22] for proper understanding and further utilization in

different fields. The applications of HS-Theory in decision making is studied by [23]- [27] and

the intermingling study of HS-Theory with complex sets, convex and concave sets is studied

by [28, 29]. Deli [30] characterized hybrid set structures under uncertainly parameterized hy-

persoft sets with theory and applications. Gayen et al. [31] analyzed some essential aspects of

plithogenic hypersoft algebraic structures. They also investigated the notions and basic prop-

erties of plithogenic hypersoft subgroups ie plithogenic fuzzy hypersoft subgroup, plithogenic

intuitionistic fuzzy hypersoft subgroup, plithogenic neutrosophic hypersoft subgroup. Saeed

et al. [32, 33] discussed decision making techniques for neutrosophic hypersoft mapping and

complex multi-fuzzy hypersoft set. Rahman et al. [34–36] studied decision making applica-

tions based on neutrosophic parameterized hypersoft Set, fuzzy parameterized hypersoft set

and rough hypersoft set. Ihsan et al. [37] investigated hypersoft expert set with application in

decision making for the best selection of product.

1.1. Motivation

In order to address the limitation of fuzzy soft set for dealing with periodic nature of

data, Thirunavukarasu et al. [38] developed the theory of complex fuzzy soft set and dis-

cussed its some fundamentals along with applications. Kumar et al. [39] extended the work

of Thirunavukarasu et al. to complex intuitionistic fuzzy soft sets and calculated its distance

measures and entropies. Selvachandran et al. [40] investigated interval-valued complex fuzzy

soft set with application. Abd et al. [41] discussed the fundamentals, properties and appli-

cation of complex generalised fuzzy soft sets. These existing models employed single set of

attributes for dealing uncertainties under fuzzy set-like environments but there are many sit-

uations when each attribute is required to be further partitioned into its attribute-valued set.
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These existing structures has limitation regarding the consideration of such attribute-valued

sets. Inspiring from the above literature, the decision system of complex fuzzy hypersoft set is

developed with the help of the characterization of its aggregation operations and fundamental

theory of interval-valued complex fuzzy hypersoft set is investigated. The proposed structure

complex fuzzy hypersoft set (CFH-set) and interval-valued complex hypersoft set (IV-CFHS)

are more flexible and useful as they

(i) generalize the existing structures of complex fuzzy soft set.

(ii) permit a broad range of values for membership function by expanding them to the unit

circle in a complex plane.

(iii) consider the periodic nature of the information through the phase-terms.

(iv) classify distinct attributes into corresponding attribute-values sets for vivid under-

standing.

1.2. Organization of Paper

The rest of the paper is organized as: section 2 reviews the notions of fuzzy set, soft set,

complex fuzzy set and relevant definitions used in the proposed work. Section 3, presents

the decision system of complex fuzzy hypersoft set based on its some decisive aggregation

operations along with application in decision-making. Section 4, investigates the fundamental

theory of interval-valued complex fuzzy hypersoft set. Lastly, paper is summarized with future

directions.

2. Preliminaries

Here some existing fundamental concepts regarding fuzzy set, fuzzy soft set and fuzzy hy-

persoft set are presented along with their structures with complex fuzzy set from literature.

Throughout the paper, U, P (U), F (U), C(U) and Ch(U) will present universe of discourse,

power set of U, collection of fuzzy sets, collection of complex fuzzy sets on soft sets and

collection of complex fuzzy sets on hypersoft sets respectively.

Definition 2.1. [2]

Suppose a universal set U and a fuzzy set X ⊆ U. The set X will be written as X =

{(x, αX(x))|x ∈ U} such that

αX : U→ [0, 1]

where αX(x) describes the membership percentage of x ∈ X.

Definition 2.2. [1]

A complex fuzzy set Cf is of the form

Cf =
{

(ε, µCf (ε)) : ε ∈ U
}

=
{

(ε, rCf (ε)e
iωCf (ε)

) : ε ∈ U
}
.
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where µCf (ε) is a membership function of Cf with rCf (ε) ∈ [0, 1] and ωCf (ε) ∈ (0, 2π] as

amplitude and phase terms respectively and i =
√
−1.

Buckley [3] and Zhang et al. [4] presented fuzzy complex number in different way. However,

according to [5]- [6], both amplitude and phase terms are captured by fuzzy sets.

Definition 2.3. [7]

A soft set S over U, is defined as

S = {(ε, fS(ε)) : ε ∈ E1}

where fS : E1 → P (U). and E1 ⊆ E (set of parameters).

Definition 2.4. [9]

A fuzzy soft set (FS-set) ΓE1 on U, is defined as

ΓE1 = {(ε, γE1(ε)) : ε ∈ E1, γE1(ε) ∈ F (U)}

where γE1 : E1 → F (U) such that γE1(ε) = ∅ if ε /∈ E1, and for all ε ∈ E1,

γE1(ε) =
{
µγE1

(ε)(v)/v : v ∈ U, µγE1
(ε)(v) ∈ [0, 1]

}
is a fuzzy set over U. Also γE1 is the approximate function of ΓE1 and the value γA(x) is a

fuzzy set called ε-element of FS-set. Note that if γE1(ε) = ∅, then (ε, γE1(ε)) /∈ ΓE1 .

Definition 2.5. [38]

A complex fuzzy soft set (CFS-set) χE1 over U, is defined as

χE1 = {(ε, ψE1(ε)) : ε ∈ E1, ψE1(ε) ∈ C(U)} .

where ψE1 : E1 → C(U) such that ψE1(ε) = ∅ if ε /∈ E1 and it is complex fuzzy approximate

function of CFS-set χE1 and its value ψE1(ε) is called ε-member of CFS-set χE1 for all ε ∈ E1.

Operations of CF-sets and CFS-sets were defined in [1] and [38] respectively.

Definition 2.6. [19]

The pair (H,G) is called a hypersoft set over U, where G is the cartesian product of n dis-

joint sets H1, H2, H3, ....., Hn having attribute values of n distinct attributes h1, h2, h3, ....., hn

respectively and H : G→ P (U).

Definition 2.7. [19]

A hypersoft set over a fuzzy universe of discourse is called fuzzy hypersoft set.

For more definitions and operations of hypersoft set, see [20]- [22]
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2.1. Complex Fuzzy Hypersoft Set

The following subsections 2.1 and 2.2 are reviewed from [28].

Definition 2.8. Let A1, A2, A3, ....., An are disjoint sets having attribute values of n distinct

attributes a1, a2, a3, ....., an respectively for n ≥ 1, G = A1×A2×A3× .....×An and ψ(x) be a

CF-set over U for all ε = (d1, d2, d3, ....., dn) ∈ G. Then, complex fuzzy hypersoft set (CFH-set)

χG over U is defined as

χG = {(ε, ψ(ε)) : ε ∈ G,ψ(ε) ∈ C(U)}

where

ψ : G→ C(U), ψ(ε) = ∅ if ε /∈ G.

is a CF-approximate function of χG and its value ψ(ε) is called ε-member of CFH-set ∀ε ∈ G.

Example 2.9. Suppose a Department Promotion Committee (DPC) wants to ob-

serve(evaluate) the characteristics of some teachers by some defined indicators for depart-

mental promotion. For this purpose, consider a set of teachers as a universe of dis-

course U = {t1, t2, t3, t4}. The attributes of the teachers under consideration are the set

E = {A1, A2, A3}, where

A1 = Total experience in years = {3, < 10} = {e11, e12}
A2 = Total no. of publications= {10, 10 <} = {e21, e22}
A3 = Performance Evaluation Report (PER) remarks = {eligible, not eligible} = {e31, e32}
and

G = A1 ×A2 ×A3 =


(e11, e21, e31), (e11, e21, e32), (e11, e22, e31),

(e11, e22, e32), (e12, e21, e31), (e12, e21, e32),

(e12, e22, e31), (e12, e22, e32)

 = {e1, e2, e3, ...., e8}

Complex fuzzy set ψG(e1), ψG(e2), ...., ψG(e8) are defined as,

ψG(e1) =

{
0.4ei0.5π

t1
,
0.8ei0.6π

t2
,
0.8ei0.8π

t3
,
1.0ei0.75π

t4

}
,

ψG(e2) =

{
0.6ei0.7π

t1
,
0.9ei0.9π

t2
,
0.7ei0.9π

t3
,
0.75ei0.95π

t4

}
,

ψG(e3) =

{
0.5ei0.6π

t1
,
0.8ei0.9π

t2
,
0.6ei0.9π

t3
,
0.65ei0.95π

t4

}
,

ψG(e4) =

{
0.3ei0.7π

t1
,
0.7ei0.9π

t2
,
0.5ei0.9π

t3
,
0.75ei0.65π

t4

}
,

ψG(e5) =

{
0.2ei0.5π

t1
,
0.3ei0.8π

t2
,
0.8ei0.7π

t3
,
0.45ei0.65π

t4

}
,

ψG(e6) =

{
0.5ei0.9π

t1
,
0.3ei0.9π

t2
,
0.7ei0.8π

t3
,
0.85ei0.95π

t4

}
,

ψG(e7) =

{
0.6ei0.9π

t1
,
0.9ei0.6π

t2
,
0.5ei0.6π

t3
,
0.85ei0.75π

t4

}
,
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and

ψG(e8) =

{
0.8ei0.9π

t1
,
0.8ei0.8π

t2
,
0.6ei0.8π

t3
,
0.65ei0.85π

t4

}
then CFH-set χG is written by,

χG =


(e1,

0.4ei0.5π

t1
, 0.8ei0.6π

t2
, 0.8ei0.8π

t3
, 1.0ei0.75π

t4
), (e2,

0.6ei0.7π

t1
, 0.9ei0.9π

t2
, 0.7ei0.9π

t3
, 0.75ei0.95π

t4
),

(e3,
0.5ei0.6π

t1
, 0.8ei0.9π

t2
, 0.6ei0.9π

t3
, 0.65ei0.95π

t4
), (e4,

0.3ei0.7π

t1
, 0.7ei0.9π

t2
, 0.5ei0.9π

t3
, 0.75ei0.65π

t4
),

(e5,
0.2ei0.5π

t1
, 0.3ei0.8π

t2
, 0.8ei0.7π

t3
, 0.45ei0.65π

t4
), (e6,

0.5ei0.9π

t1
, 0.3ei0.9π

t2
, 0.7ei0.8π

t3
, 0.85ei0.95π

t4
),

(e7,
0.6ei0.9π

t1
, 0.9ei0.6π

t2
, 0.5ei0.6π

t3
, 0.85ei0.75π

t4
), (e8,

0.8ei0.9π

t1
, 0.8ei0.8π

t2
, 0.6ei0.8π

t3
, 0.65ei0.85π

t4
)


Definition 2.10. Let χG1 = (ψ1, G1) and χG2 = (ψ2, G2) be two CFH-sets over the same U.

The set χG1 = (ψ1, G1) is said to be the subset of χG2 = (ψ2, G2), if

i. G1 ⊆ G2

ii. ∀ x ∈ G1, ψ1(x) ⊆ ψ2(x) i.e. rG1(x) ≤ rG2(x) and ωG1(x) ≤ ωG2(x), where rG1(x)

and ωG1(x) are amplitude and phase terms of ψ1(x), whereas rG2(x) and ωG2(x) are

amplitude and phase terms of ψ2(x).

Definition 2.11. Two CFH-sets χG1 = (ψ1, G1) and χG2 = (ψ2, G2) over the same U, are

said to be equal if

i. (ψ1, G1) ⊆ (ψ2, G2)

ii. (ψ2, G2) ⊆ (ψ1, G1).

Definition 2.12. Let (ψ,G) be a CFH-set over U.Then

i. (ψ,G) is called a null CFH-set, denoted by (ψ,G)Φ if for all x ∈ G, the amplitude

and phase terms of the membership function are given by rG(x) = 0 and ωG(x) = 0π

respectively.

ii. (ψ,G) is called a absolute CFH-set, denoted by (ψ,G)∆ if for all x ∈ G, the amplitude

and phase terms of the membership function are given by rG(x) = 1 and ωG(x) = 2π

respectively.

Definition 2.13. Let (ψ1, G1) and (ψ2, G2) are two CFH-sets over the same universe U.Then

i. A CFH-set (ψ1, G1) is called a homogeneous CFH-set, denoted by (ψ1, G1)Hom if and

only if ψ1(x) is a homogeneous CF-set for all x ∈ G1.

ii. A CFH-set (ψ1, G1) is called a completely homogeneous CFH-set, denoted by

(ψ1, G1)CHom if and only if ψ1(x) is a homogeneous with ψ1(y) for all x, y ∈ G1.

iii. A CFH-set (ψ1, G1) is said to be a completely homogeneous CFH-set with (ψ2, G2) if

and only if ψ1(x) is a homogeneous with ψ2(x) for all x ∈ G1 ∩G2.
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2.2. Set Theoretic Operations and Laws on CFH-Sets

Here some basic set theoretic operations (i.e.complement, union and intersection) and laws

(commutative laws, associative laws etc.) are discussed on CFH-sets.

Definition 2.14. The complement of CFH-set (ψ,G), denoted by (ψ,G)c is defined as

(ψ,G)c = {(x, ψc(x)) : x ∈ G,ψc(x) ∈ C(U)}

such that the amplitude and phase terms of the membership function ψc(x) are given by

rcG(x) = 1− rG(x) and ωcG(x) = 2π − ωG(x) respectively.

Proposition 2.15. Let (ψ,G) be a CFH-set over U.Then ((ψ,G)c)c = (ψ,G).

Proof. Since ψ(x) ∈ C(U), therefore (ψ,G) can be written in terms of its amplitude and phase

terms as

(ψ,G) =
{(
x, rG(x)eiωG(x)

)
: x ∈ G

}
(1)

Now

ψc(x) =
{(
x, rcG(x)eiω

c
G(x)

)
: x ∈ G

}
ψc(x) =

{(
x, (1− rG(x))ei(2π−ωG(x))

)
: x ∈ G

}
((ψ,G)c)c =

{(
x, (1− rG(x))cei(2π−ωG(x)c)

)
: x ∈ G

}
((ψ,G)c)c =

{(
x, (1− (1− rG(x)))ei(2π−(2π−ωG(x)))

)
: x ∈ G

}
((ψ,G)c)c =

{(
x, rG(x)eiωG(x)

)
: x ∈ G

}
(2)

from equations (1) and (2), we have ((ψ,G)c)c = (ψ,G).

Proposition 2.16. Let (ψ,G) be a CFH-set over U.Then

i. ((ψ,G)Φ)c = (ψ,G)∆

ii. ((ψ,G)∆)c = (ψ,G)Φ

Definition 2.17. The intersection of two CFH-sets (ψ1, G1) and (ψ2, G2) over the same

universe U, denoted by (ψ1, G1)∩ (ψ2, G2), is the CFH-set (ψ3, G3), where G3 = G1 ∩G2, and

ψ3(x) = ψ1(x) ∩ ψ2(x) for all x ∈ G3.

Definition 2.18. The difference between two CFH-sets (ψ1, G1) and (ψ2, G2) is defined as

(ψ1, G1) \ (ψ2, G2) = (ψ1, G1) ∩ (ψ2, G2)c
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Definition 2.19. The union of two CFH-sets (ψ1, G1) and (ψ2, G2) over the same universe

U, denoted by (ψ1, G1) ∪ (ψ2, G2), is the CFH-set (ψ3, G3), where G3 = G1 ∪ G2, and for all

x ∈ G3,

ψ3(x) =


ψ1(x) , if x ∈ G1\G2

ψ2(x) , if x ∈ G2\G1

ψ1(x) ∪ ψ2(x) , if x ∈ G1 ∩G2

Proposition 2.20. Let (ψ,G) be a CFH-set over U.Then the following results hold true:

i. (ψ,G) ∪ (ψ,G)Φ = (ψ,G)

ii. (ψ,G) ∪ (ψ,G)∆ = (ψ,G)∆

iii. (ψ,G) ∩ (ψ,G)Φ = (ψ,G)Φ

iv. (ψ,G) ∩ (ψ,G)∆ = (ψ,G)

v. (ψ,G)Φ ∪ (ψ,G)∆ = (ψ,G)∆

vi. (ψ,G)Φ ∩ (ψ,G)∆ = (ψ,G)Φ

Proposition 2.21. Let (ψ1, G1), (ψ2, G2) and (ψ3, G3) are three CFH-sets over the same

universe U. Then the following commutative and associative laws hold true:

i. (ψ1, G1) ∩ (ψ2, G2) = (ψ2, G2) ∩ (ψ1, G1)

ii. (ψ1, G1) ∪ (ψ2, G2) = (ψ2, G2) ∪ (ψ1, G1)

iii. (ψ1, G1) ∩ ((ψ2, G2) ∩ (ψ3, G3)) = ((ψ1, G1) ∩ (ψ2, G2)) ∩ (ψ3, G3)

iv. (ψ1, G1) ∪ ((ψ2, G2) ∪ (ψ3, G3)) = ((ψ1, G1) ∪ (ψ2, G2)) ∪ (ψ3, G3)

Proposition 2.22. Let (ψ1, G1) and (ψ2, G2) are two CFH-sets over the same universe U.
Then the following De Morganss laws hold true:

i. ((ψ1, G1) ∩ (ψ2, G2))c = (ψ1, G1)c ∪ (ψ2, G2)c

ii. (ψ1, G1) ∪ (ψ2, G2))c = (ψ1, G1)c ∩ (ψ2, G2)c

3. Aggregation of Complex Fuzzy Hypersoft Set

In this section, we define an aggregation operator on complex fuzzy hypersoft set that

produces an aggregate fuzzy set from a complex fuzzy hypersoft set and its cardinal set. The

approximate functions of a complex fuzzy hypersoft set are fuzzy. Here G,E, χG and CH(U)

will be in accordance with definition (2.8).

Definition 3.1. Let χG ∈ CH(U). Assume that U = {u1, u2, ....., um} and E =

{A1, A2, ....., An} with

A1 = {e11, e12, ....., e1n}, A2 = {e21, e22, ....., e2n}, ..., An = {en1, en2, ....., enn}
and G = A1×A2× .....×An = {x1, x2, ....., xn, ....., xnn = xr}, each xi is n-tuple element of G

and |G| = r = nn then the χG can be presented as
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χG x1 x2 ... xr

u1 µψG(x1)(u1) µψG(x2)(u1) · · · µψG(xn)(u1)

u2 µψG(x1)(u2) µψG(x2)(u2) · · · µψG(xn)(u2)
...

...
...

. . .
...

um µψG(x1)(um) µψG(x2)(um) · · · µψG(xn)(um)

Where µψG(x) is the membership function of ψG. If aij = µψG(xj)(ui), for i = Nm1 and j = Nr1
then CFH-set χG is uniquely characterized by a matrix,

[aij ] =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


is called an m× r CFH-set matrix..

Definition 3.2. Let χG ∈ CH(U). Then, the cardinal set of χG is defined as

‖χG‖ =
{
µ‖χG‖(x)/x : x ∈ G

}
,

where µ‖χG‖ : G→ [0, 1] is a membership function of ‖χG‖ with µCard(χG)(x) = |ψG(x)|
|U | .

Note that ‖CH(U)‖ is the collection of all cardinal sets of CFH-sets and ‖CH(U)‖ ⊆ F (G).

Definition 3.3. Let χG ∈ CH(U) and ‖χG‖ ∈ ‖CH(U)‖. Consider E as in definition (4.1)

then ‖χG‖ can be presented as

G x1 x2 · · · xr

µ‖χG‖ µ‖χG‖(x1) µ‖χG‖(x2) · · · µ‖χG‖(xr)

If a1j = µ‖χG‖(xj), for j = Nr1 then the cardinal set ‖χG‖ is represented by a matrix,

[aij ]1×n =
[
a11 a12 · · · a1n

]
and is called cardinal matrix of ‖χG‖.

Definition 3.4. Let χG ∈ CH(U) and ‖χG‖ ∈ ‖CH(U)‖. Then CFH-aggregation operator is

defined as ︷︸︸︷
χG = ACFH (‖χG‖, χG)

where

ACFH : ‖CH(U)‖ × CH(U)→ F (U).︷︸︸︷
χG is called the aggregate fuzzy set of CFH-set χG.

Its membership function is given as

µ︷︸︸︷
χG

: U → [0, 1]
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with

µ︷︸︸︷
χG

(u) =
1

|G|
∑
x∈G

µCard(χG)(x)µCard(ψG)(u).

Definition 3.5. Let χG ∈ CH(U) and
︷︸︸︷
χG be its aggregate fuzzy set. Assume that

U = {u1, u2, ....., um}, then
︷︸︸︷
χG can be presented as

χG µ︷︸︸︷
χG

u1 µ︷︸︸︷
χG

(u1)

u2 µ︷︸︸︷
χG

(u2)

...
...

um µ︷︸︸︷
χG

(um)

If ai1 = µ︷︸︸︷
χG

(ui) for i = Nm1 then
︷︸︸︷
χG is represented by the matrix,

[ai1]m×1 =


a11

a21

...

am1


which is called aggregate matrix of

︷︸︸︷
χG over U.

3.1. Applications of Complex Fuzzy Hypersoft Set

In this section, an algorithm is presented to solve the problems in decision making by having

under consideration the concept of aggregations defined in previous section. An example is

demonstrated to explain the proposed algorithm.

It is necessary to determine an aggregate fuzzy set of CFH-set for choosing the best option

(parameter) from the given set (set of choices/alternatives). Following algorithm may help in

making appropriate decision.

Step 1: Determine a CFH-set χG over U,

Step 2: Determine ‖ χG ‖ for amplitude term and phase term separately,

Step 3: Find
︷︸︸︷
χG for amplitude term and phase term separately,

Step 4: Find the best option by max modulus of µ︷︸︸︷
χG

(u)

Example 3.6. Suppose a business man wants to buy a share from share market. There are

four same kind of share which form the set , U = {s1, s2, s3, s4}. The expert committee consider

a set of attributes , E = {e1, e2, e3}. For i = 1, 2, 3, 4, the attributes ei stand for current

trend of company performance, particular companys stock price for last one year, and Home
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country inflation rate, respectively. Corresponding to each attribute, the sets of attribute

values are: A1 = {e11, e12}; A2 = {e21} and A3 = {e31, e32}. Then the set G = A1×A2×A3 =

{ε1, ε2, ε3, ε4} where each εi is a 3-tuple. Complex fuzzy sets ψG(ε1), ψG(ε2), ψG(ε3), ψG(ε4) are

defined as,

ψG(ε1) =

{
0.4ei0.5π

s1
,
0.8ei0.6π

s2
,
0.8ei0.8π

s3
,
1.0ei0.75π

s4

}
,

ψG(ε2) =

{
0.3ei0.7π

s1
,
0.6ei0.8π

s2
,
0.5ei0.2π

s3
,
1.0ei0.85π

s4

}
,

ψG(ε3) =

{
0.6ei0.7π

s1
,
0.9ei0.9π

s2
,
0.7ei0.95π

s3
,
0.75ei0.95π

s4

}
,

and

ψG(ε4) =

{
0.5ei0.6π

s1
,
0.7ei0.8π

s2
,
0.6ei0.85π

s3
,
0.75ei0.85π

s4

}
,

Step 1: CFH-set χG is written as,

χG =


(
ε1,

0.4ei0.5π

s1
, 0.8ei0.6π

s2
, 0.8ei0.8π

s3
, 1.0ei0.75π

s4

)
,
(
ε2,

0.3ei0.7π

s1
, 0.6ei0.8π

s2
, 0.5ei0.2π

s3
, 1.0ei0.85π

s4

)
,(

ε3,
0.6ei0.7π

s1
, 0.9ei0.9π

s2
, 0.7ei0.95π

s3
, 0.75ei0.95π

s4

)
,
(
ε4,

0.5ei0.6π

s1
, 0.7ei0.8π

s2
, 0.6ei0.85π

s3
, 0.75ei0.85π

s4

) 
Step 2: The cardinal is computed as,

‖ χG ‖ (Amplitude Term) = {0.75/ε1, 0.6/ε2, 0.74/ε3, 0.64/ε4}

‖ χG ‖ (Phase Term) = {0.66/ε1, 0.64/ε2, 0.87/ε3, 0.78/ε4}

Step 3: The set
︷︸︸︷
χG can be determined as,

︷︸︸︷
χG (Apmlitude Term) =

1

4


0.4 0.3 0.6 0.5

0.8 0.6 0.9 0.7

0.8 0.5 0.7 0.6

1.0 1.0 0.75 0.75




0.75

0.6

0.74

0.64

 =


0.3110

0.5185

0.4505

0.5963



︷︸︸︷
χG (Phase Term) =

1

4


0.5 0.7 0.7 0.6

0.6 0.8 0.9 0.8

0.8 0.2 0.95 0.85

0.75 0.85 0.95 0.85




0.66

0.64

0.87

0.78

 =


0.4638

0.5788

0.5364

0.6321


︷︸︸︷
χG =

{
0.3110ei0.4638π/s1, 0.5185ei0.5788π/s2, 0.4505ei0.5364π/s3, 0.5963ei0.6321π/s4

}
Consider the modulus value of Max(µ︷︸︸︷

χG
) = {0.31098/s1, 0.5185/s2, 0.4504/s3, 0.5963/s4} =

0.5963/s4 This means that the 4th share s4 may be recommended for suitable investment.
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4. Interval-Valued Complex Fuzzy Hypersoft Set(IV-CFHS)

In this section, the basic theory of interval-valued complex fuzzy hypersoft set is developed.

Definition 4.1. Let W1,W2,W3, .....,Wn are disjoint sets having attribute values of n distinct

attributes w1, w2, w3, ....., wn respectively for n ≥ 1,W = W1×W2×W3× .....×Wn and Ψ(ω)

be a IV-CFS over U for all ω = (b1, b2, b3, ....., bn) ∈ W . Then, interval-valued complex fuzzy

hypersoft set (IV-CFHS) ΩW = (Ψ,W ) over U is defined as

ΩW = {(ω,Ψ(ω)) : ω ∈W,Ψ(ω) ∈ CIV (U)}

where

Ψ : W → CIV (U), Ψ(ω) = ∅ if ω /∈W.

is a IV-CF approximate function of ΩW and Ψ(ω) = (
←−
Ψ(ω),

−→
Ψ(ω)).

←−
Ψ(ω) = ←−r ei

←−
θ and

−→
Ψ(ω) = −→r ei

−→
θ are lower and upper bounds of the membership function of ΩW respectively

and its value Ψ(ω) is called ω-member of IV-CFHS ∀ω ∈W .

Example 4.2. Considering example 2.9 with W = {e1, e2, e3, ...., e8}, IV-Complex fuzzy sets

ΨW (e1),ΨW (e2), ....,ΨW (e8) are defined as,

ΨW (e1) =

{
[0.4, 0.5]ei[0.5,06]π

t1
,
[0.7, 0.8]ei[0.5,0.6]π

t2
,
[0.6, 0.7]ei[0.7,0.8]π

t3
,
[0.3, 0.4]ei[0.65,0.75]π

t4

}
,

ΨW (e2) =

{
[0.5, 0.6]ei[0.6,0.7]π

t1
,
[0.8, 0.9]ei[0.8,0.9]π

t2
,
[0.6, 0.7]ei[0.8,0.9]π

t3
,
[0.65, 0.75]ei[0.85,0.95]π

t4

}
,

ΨW (e3) =

{
[0.4, 0.5]ei[0.5,0.6]π

t1
,
[0.7, 0.8]ei[0.8,0.9]π

t2
,
[0.5, 0.6]ei[0.8,0.9]π

t3
,
[0.55, 0.65]ei[0.85,0.95]π

t4

}
,

ΨW (e4) =

{
[0.2, 0.3]ei[0.6,0.7]π

t1
,
[0.6, 0.7]ei[0.8,0.9]π

t2
,
[0.4, 0.5]ei[0.8,0.9]π

t3
,
[0.65, 0.75]ei[0.55,0.65]π

t4

}
,

ΨW (e5) =

{
[0.1, 0.2]ei[0.4,0.5]π

t1
,
[0.2, 0.3]ei[0.7,0.8]π

t2
,
[0.7, 0.8]ei[0.6,0.7]π

t3
,
[0.35, 0.45]ei[0.55,0.65]π

t4

}
,

ΨW (e6) =

{
[0.4, 0.5]ei[0.8,0.9]π

t1
,
[0.2, 0.3]ei[0.8,0.9]π

t2
,
[0.6, 0.7]ei[0.7,0.8]π

t3
,
[0.75, 0.85]ei[0.85,0.95]π

t4

}
,

ΨW (e7) =

{
[0.5, 0.6]ei[0.8,0.9]π

t1
,
[0.8, 0.9]ei[0.5,0.6]π

t2
,
[0.4, 0.5]ei[0.5,0.6]π

t3
,
[0.75, 0.85]ei[0.65,0.75]π

t4

}
,

and

ΨW (e8) =

{
[0.7, 0.8]ei[0.8,0.9]π

t1
,
[0.7, 0.8]ei[0.7,0.8]π

t2
,
[0.5, 0.6]ei[0.7,0.8]π

t3
,
[0.55, 0.65]ei[0.75,0.85]π

t4

}
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then IV-CFHS ΩW is written by,

ΩW =



(e1,
[0.4,0.5]ei[0.5,06]π

t1
, [0.7,0.8]ei[0.5,0.6]π

t2
, [0.6,0.7]ei[0.7,0.8]π

t3
, [0.3,0.4]ei[0.65,0.75]π

t4
),

(e2,
[0.5,0.6]ei[0.6,0.7]π

t1
, [0.8,0.9]ei[0.8,0.9]π

t2
, [0.6,0.7]ei[0.8,0.9]π

t3
, [0.65,0.75]ei[0.85,0.95]π

t4
),

(e3,
[0.4,0.5]ei[0.5,0.6]π

t1
, [0.7,0.8]ei[0.8,0.9]π

t2
, [0.5,0.6]ei[0.8,0.9]π

t3
, [0.55,0.65]ei[0.85,0.95]π

t4
),

(e4,
[0.2,0.3]ei[0.6,0.7]π

t1
, [0.6,0.7]ei[0.8,0.9]π

t2
, [0.4,0.5]ei[0.8,0.9]π

t3
, [0.65,0.75]ei[0.55,0.65]π

t4
),

(e5,
[0.1,0.2]ei[0.4,0.5]π

t1
, [0.2,0.3]ei[0.7,0.8]π

t2
, [0.7,0.8]ei[0.6,0.7]π

t3
, [0.35,0.45]ei[0.55,0.65]π

t4
),

(e6,
[0.4,0.5]ei[0.8,0.9]π

t1
, [0.2,0.3]ei[0.8,0.9]π

t2
, [0.6,0.7]ei[0.7,0.8]π

t3
, [0.75,0.85]ei[0.85,0.95]π

t4
),

(e7,
[0.5,0.6]ei[0.8,0.9]π

t1
, [0.8,0.9]ei[0.5,0.6]π

t2
, [0.4,0.5]ei[0.5,0.6]π

t3
, [0.75,0.85]ei[0.65,0.75]π

t4
),

(e8,
[0.7,0.8]ei[0.8,0.9]π

t1
, [0.7,0.8]ei[0.7,0.8]π

t2
, [0.5,0.6]ei[0.7,0.8]π

t3
, [0.55,0.65]ei[0.75,0.85]π

t4
)


Definition 4.3. Let ΩW1 = (Ψ1,W1) and ΩW2 = (Ψ2,W2) be two IV-CFHS over the same U.

The set ΩW1 = (Ψ1,W1) is said to be the subset of ΩW2 = (Ψ2,W2), if

i. W1 ⊆W2

ii. ∀ x ∈W1,Ψ1(x) ⊆ Ψ2(x) implies
←−
Ψ1(x) ⊆

←−
Ψ2(x),

−→
Ψ1(x) ⊆

−→
Ψ2(x) i.e.

←−r W1(x) ≤ ←−r W2(x),−→r W1(x) ≤ −→r W2(x),
←−
θ W1(x) ≤

←−
θ W2(x) and

−→
θ W1(x) ≤

−→
θ W2(x),

where
←−r W1(x) and

←−
θ W1(x) are amplitude and phase terms of

←−
Ψ1(x),

−→r W1(x) and
−→
θ W1(x) are amplitude and phase terms of

−→
Ψ1(x),

←−r W2(x) and
←−
θ W2(x) are amplitude and phase terms of

←−
Ψ2(x), and

−→r W2(x) and
−→
θ W2(x) are amplitude and phase terms of

−→
Ψ2(x).

Definition 4.4. Two IV-CFHS ΩW1 = (Ψ1,W1) and ΩW2 = (Ψ2,W2) over the same U, are

said to be equal if

i. (Ψ1,W1) ⊆ (Ψ2,W2)

ii. (Ψ2,W2) ⊆ (Ψ1,W1).

Definition 4.5. Let (Ψ,W ) be a IV-CFHS over U.Then

i. (Ψ,W ) is called a null IV-CFHS, denoted by (Ψ,W )Φ if for all x ∈W , the amplitude

and phase terms of the membership function are given by ←−r W (x) = −→r W (x) = 0 and
←−
θ W (x) =

−→
θ W (x) = 0π respectively.

ii. (Ψ,W ) is called a absolute IV-CFHS, denoted by (Ψ,W )∆ if for all x ∈W , the ampli-

tude and phase terms of the membership function are given by ←−r W (x) = −→r W (x) = 1

and
←−
θ W (x) =

−→
θ W (x) = 2π respectively.

Definition 4.6. Let (Ψ1,W1) and (Ψ2,W2) are two CFH-sets over the same universe U.Then

i. A IV-CFHS (Ψ1,W1) is called a homogeneous IV-CFHS, denoted by (Ψ1,W1)Hom if

and only if Ψ1(x) is a homogeneous CF-set for all x ∈W1.
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ii. A IV-CFHS (Ψ1,W1) is called a completely homogeneous IV-CFHS, denoted by

(Ψ1,W1)CHom if and only if Ψ1(x) is a homogeneous with Ψ1(y) for all x, y ∈W1.

iii. A IV-CFHS (Ψ1,W1) is said to be a completely homogeneous IV-CFHS with (Ψ2,W2)

if and only if Ψ1(x) is a homogeneous with Ψ2(x) for all x ∈W1
∏
W2.

4.1. Set Theoretic Operations and Laws on IV-CFHS

Here some basic set theoretic operations (i.e.complement, union and intersection) and laws

(commutative laws, associative laws etc.) are discussed on IV-CFHS.

Definition 4.7. The complement of IV-CFHS (Ψ,W ), denoted by (Ψ,W )c is defined as

(Ψ,W )c = {(x, (Ψ(x))c) : x ∈W, (Ψ(x))c ∈ CIV (U)}

such that the amplitude and phase terms of the membership function (Ψ(x))c are given by

(←−r W (x))c = 1−←−r W (x)

(−→r W (x))c = 1−−→r W (x)

and

(
←−
θ W (x))c = 2π −

←−
θ W (x),

(
−→
θ W (x))c = 2π −

−→
θ W (x) respectively.

Proposition 4.8. Let (Ψ,W ) be a IV-CFHS over U.Then ((Ψ,W )c)c = (Ψ,W ).

Proof. Since Ψ(x) ∈ CIV (U), therefore (Ψ,W ) can be written in terms of its amplitude and

phase terms as

(Ψ,W ) =
{(
x,
(←−r W (x)ei

←−
θ W (x),−→r W (x)ei

−→
θ G(x)

))
: x ∈W

}
(3)

Now

(Ψ,W )c(x) =
{(
x,
(

(←−r W (x))cei(
←−
θ W (x))c , (−→r W (x))cei(

−→
θ G(x))c

))
: x ∈W

}
(Ψ,W )c(x) =

{(
x,
(

(1−←−r W (x))ei(2π−
←−
θ W (x)), (1−−→r W (x))ei(2π−

−→
θ G(x))

))
: x ∈W

}
((ψ,G)c)c =

{(
x,
(

(1−←−r W (x))cei(2π−
←−
θ W (x))c , (1−−→r W (x))cei(2π−

−→
θ G(x))c

))
: x ∈W

}
((Ψ,W )c)c =

{(
x,
(

(1− (1−←−r W (x)))ei(2π−(2π−
←−
θ W (x))), (1− (1−−→r W (x)))ei(2π−(2π−

−→
θ G(x)))

))
: x ∈W

}
((Ψ,W )c)c =

{(
x,
(←−r W (x)ei

←−
θ W (x),−→r W (x)ei

−→
θ G(x)

))
: x ∈W

}
(4)

from equations (3) and (4), we have ((Ψ,W )c)c = (Ψ,W ).

Proposition 4.9. Let (Ψ,W ) be a IV-CFHS over U.Then

i. ((Ψ,W )Φ)c = (Ψ,W )∆

ii. ((Ψ,W )∆)c = (Ψ,W )Φ
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Definition 4.10. The intersection of two IV-CFHS (Ψ1,W1) and (Ψ2,W2) over the same

universe U, denoted by (Ψ1,W1)
∏

(Ψ2,W2), is the IV-CFHS (Ψ3,W3), where W3 = W1
∐
W2,

and for all x ∈W3,

←−
Ψ3(x) =


←−r W1(x)ei

←−
θ W1

(x) , if x ∈W1\W2

←−r W2(x)ei
←−
θ W2

(x) , if x ∈W2\W1

min[←−r W1(x),←−r W2(x)]eimin[
←−
θ W1

(x),
←−
θ W2

(x)] , if x ∈W1
∏
W2

and

−→
Ψ3(x) =


−→r W1(x)ei

−→
θ W1

(x) , if x ∈W1\W2

−→r W2(x)ei
−→
θ W2

(x) , if x ∈W2\W1

min[−→r W1(x),−→r W2(x)]eimin[
−→
θ W1

(x),
−→
θ W2

(x)] , if x ∈W1
∏
W2

Definition 4.11. The difference between two IV-CFHS (Ψ1,W1) and (Ψ2,W2) is defined as

(Ψ1,W1) \ (Ψ2,W2) = (Ψ1,W1)
∏

(Ψ2,W2)c

Definition 4.12. The union of two IV-CFHS (Ψ1,W1) and (Ψ2,W2) over the same universe

U, denoted by (Ψ1,W1)
∐

(Ψ2,W2), is the IV-CFHS (Ψ3,W3), where W3 = W1
∐
W2, and for

all x ∈W3,

←−
Ψ3(x) =


←−r W1(x)ei

←−
θ W1

(x) , if x ∈W1\W2

←−r W2(x)ei
←−
θ W2

(x) , if x ∈W2\W1

max[←−r W1(x),←−r W2(x)]eimax[
←−
θ W1

(x),
←−
θ W2

(x)] , if x ∈W1
∏
W2

and

−→
Ψ3(x) =


−→r W1(x)ei

−→
θ W1

(x) , if x ∈W1\W2

−→r W2(x)ei
−→
θ W2

(x) , if x ∈W2\W1

max[−→r W1(x),−→r W2(x)]eimax[
−→
θ W1

(x),
−→
θ W2

(x)] , if x ∈W1
∏
W2

Proposition 4.13. Let (Ψ,W ) be a IV-CFHS over U.Then the following results hold true:

i. (Ψ,W )
∐

(Ψ,W )Φ = (Ψ,W )

ii. (Ψ,W )
∐

(Ψ,W )∆ = (Ψ,W )∆

iii. (Ψ,W )
∏

(Ψ,W )Φ = (Ψ,W )Φ

iv. (Ψ,W )
∏

(Ψ,W )∆ = (Ψ,W )

v. (Ψ,W )Φ
∐

(Ψ,W )∆ = (Ψ,W )∆

vi. (Ψ,W )Φ
∏

(Ψ,W )∆ = (Ψ,W )Φ

Proposition 4.14. Let (Ψ1,W1), (Ψ2,W2) and (Ψ3,W3) are three CFH-sets over the same

universe U. Then the following commutative and associative laws hold true:

i. (Ψ1,W1)
∏

(Ψ2,W2) = (Ψ2,W2)
∏

(Ψ1,W1)

ii. (Ψ1,W1)
∐

(Ψ2,W2) = (Ψ2,W2)
∐

(Ψ1,W1)

iii. (Ψ1,W1)
∏

((Ψ2,W2)
∏

(Ψ3,W3)) = ((Ψ1,W1)
∏

(Ψ2,W2))
∏

(Ψ3,W3)
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iv. (Ψ1,W1)
∐

((Ψ2,W2)
∐

(Ψ3,W3)) = ((Ψ1,W1)
∐

(Ψ2,W2))
∐

(Ψ3,W3)

Proposition 4.15. Let (Ψ1,W1) and (Ψ2,W2) are two CFH-sets over the same universe U.
Then the following De Morganss laws hold true:

i. ((Ψ1,W1)
∏

(Ψ2,W2))c = (Ψ1,W1)c
∐

(Ψ2,W2)c

ii. (Ψ1,W1)
∐

(Ψ2,W2))c = (Ψ1,W1)c
∏

(Ψ2,W2)c

Conclusion

In this work, the complex fuzzy hypersoft sets (CFH-sets) are developed along with some

fundamentals, theoretic set operations and aggregations. Also a method is proposed to solve

decision making problems and demonstrated with a commerce-based application. Moreover,

the rudiments of interval-valued fuzzy hypersoft set ( IV-CFHS) are characterized with suitable

examples. CFH-sets and IV-CFHS generalize the existing structures of complex fuzzy soft set,

permit a broad range of values for membership function by expanding them to the unit circle in

a complex plane, consider the periodic nature of the information through the phase-terms and

classify distinct attributes into corresponding attribute-values sets for vivid understanding.

Further work may include:

(i) the extension of proposed work to the development of:

– complex intuitionistic fuzzy hypersoft set,

– complex neutrosophic hypersoft set,

– interval-valued complex intuitionistic fuzzy hypersoft set,

– interval-valued complex neutrosophic hypersoft set,

(ii) the application of proposed work in multi-criteria decision-making,

(iii) the determination of similarity measures and entropies for proposed structures,

(iv) the parameterization of proposed structures with fuzzy, intuitionistic fuzzy and neu-

trosophic settings,

(v) the characterization of proposed structures under multi-decisive environment,

(vi) the introduction of refinement in the proposed structures for sub-membership grades.
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Abstract. Numerous researchers have made a few models dependent on soft set, to tackle issues in decision

making and clinical analysis, yet a large portion of these models manage one expert. This causes an issue with

the clients, particularly with the individuals who use polls in their work and studies. Accordingly we present

another model i.e. fuzzy hypersoft expert set which not just addresses this constraint of fuzzy soft-like models

by accentuating the assessment, all things considered, yet additionally settle the deficiency of soft set for disjoint

attribute-valued sets comparing to distinct attributes. In this study, the existing concept of fuzzy soft expert

set is generalized to fuzzy hypersoft expert set which is more flexible and useful. Some fundamental properties

(i.e. subset, not set and equal set), results (i.e. commutative, associative, distributive and D Morgan Laws)

and set-theoretic operations (i.e. complement, union, intersection AND, and OR) are discussed. An algorithm

is proposed to solve decision-making problems and is applied to select the best product.

Keywords: Soft Set; Fuzzy Soft Set; Fuzzy Soft Expert Set; Hypersoft Set; Fuzzy Hypersoft Expert Set.

—————————————————————————————————————————-

1. Introduction

Zadeh [1] initiated fuzzy set theory as a basic model to tackle uncertainties in the data.

Molodtsov [2] presented soft set theory that is supposed to be a new parameterized class of

subsets of the universe of discourse, which addresses the inadequacy of fuzzy set-like struc-

tures for parameterization tools. It has helped the researcher (experts) to resolve efficiently the

decision-making problems involving vagueness and uncertainty. The researchers [3–15] studied

and broadened the concept of soft set and applied to different fields. The gluing concept of

soft set with expert system initiated by Alkhazaleh et al. [16] to emphasize the due status of

the opinions of all experts regarding taking any decision in decision-making system. Al-Quran
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et al. [17] proposed neutrosophic vague soft expert set theory, Alkhazaleh et al. [18] charac-

terized fuzzy soft expert set. and its application. Bashir et al. [19, 20] presented possibility

fuzzy soft expert set and fuzzy parameterized soft expert set. Sahin et al. [21] investigated

neutrosophic soft expert sets. Alhazaymeh et al. [22,23] studied mapping on generalized vague

soft expert set and generalized vague soft expert set. Alhazaymeh et al. [24] explained the

application of generalized vague soft expert set in decision making. Hassan et al. [25] reviewed

Q-neutrosophic soft expert set and its application in decision making. Ulucay et al. [26] stud-

ied generalized neutrosophic soft expert set for multiple-criteria decision-making. Al-Qudah et

al. [27] explained bipolar fuzzy soft expert set and its application in decision making. Al-Qudah

et al. [28] investigated complex multi-fuzzy soft expert set and its application. Al-Quran et

al. [29] presented the com-plex neutrosophic soft expert set and its application in decision

making. Pramanik et al. [30] studied the topsis for single valued neutrosophic soft expert

set based multi-attribute decision making problems. Abu Qamar et al. [31] investigated the

generalized Q-neutrosophic soft ex-pert set for decision under uncertainty. Adam et al. [32]

characterized the multi Q-fuzzy soft expert set and its application. Ulucay et al. [33] presented

the time-neutrosophic soft expert sets and its decision making problem. Al-Quran et al. [34]

studied fuzzy parameterised single valued neutrosophic soft expert set theory and its applica-

tion in decision making. Hazaymeh et al. [35] researched generalized fuzzy soft expert set.

There are many real life scenarios when we are to deal with disjoint attribute-valued set for

distinct attributes. In 2018, Smarandache [36] addressed this inadequacy of soft with the

development of new structure hypersoft set by replacing single attribute-valued function to

multi-attribute valued function. In 2020, Saeed et al. [37, 38] extended the concept and dis-

cussed the fundamentals of hypersoft set such as hypersoft subset, complement, not hypersoft

set, aggregation operators along with hypersoft set relation, sub relation,complement relation,

function, matrices and operations on hypersoft matrices. In the same year, Mujahid et al. [39]

discussed hypersoft points in different fuzzy-like environments. In 2020, Rahman et al. [40]

defined complex hypersoft set and developed the hybrids of hypersoft set with complex fuzzy

set, complex intuitionistic fuzzy set and complex neutrosophic set respectively. They also

discussed their fundamentals i.e. subset, equal sets, null set, absolute set etc. and theoretic

operations i.e. complement, union, intersection etc. In 2020, Rahman et al. [41] conceptualized

convexity cum concavity on hypersoft set and presented its pictorial versions with illustrative

examples. Recently the researchers [42–49] investigated on the theory of hypersoft set and

developed certain its hybrids with discussion and applications in decision making.

Dealing with disjoint attribute-valued sets is of great importance and it is vital for sensible

decisions in decision-making techniques. Results will be varied and be considered inclined

and odd on ignoring such kind of sets. Therefore, it is the need of the literature to adequate
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the exiting literature of soft and expert set for multi-attribute function. Having motivation

from [10]- [19], new notions of fuzzy hypersoft expert set are developed and an application is

discussed in decision making through a proposed method. The pattern of rest of the paper

is: section 2 reviews the notions of soft sets, fuzzy soft set, fuzzy soft expert set, hypersoft

set and relevant definitions used in the proposed work. Section 3, presents notions of fuzzy

hypersoft expert set with properties. Section 4, demonstrates an application of this concept

in a decision-making problem. Section 5, concludes the paper.

1.1. Motivation

The novelty of fuzzy hypersoft expert set (FHSE-set) is as:

• It is the extension of soft set, fuzzy soft set, soft expert set and fuzzy soft expert set,

• It tackles all the hindrances of soft set, fuzzy soft set, soft expert set and fuzzy soft

expert set for dealing with further partitions of attributes into attribute-valued sets,

• It facilitates the decision-makers to have decisions for uncertain scenarios without

encountering with any inclined situation.

2. Preliminaries

In this section, some basic definitions and terms regarding the main study, are presented

from the literature.

Definition 2.1. [1]

Let P (Ω) denote power set of Ω(universe of discourse) and F be a collection of parameters

defining Ω. A soft set M is defined by mapping

Ψ : F → P (Ω)

Definition 2.2. [3] Suppose Ω be a set of universe, while F is a set of parameters. Here IΩ

represents the power set of all fuzzy subsets of Ω. Let C ⊆ F . A pair (R,F ) is called a fuzzy

soft set with R is a mapping given by

R : C → IΩ

Definition 2.3. [4]

The union of two soft sets (Ψ1, A1) and (Ψ2, A2) over Ω is the soft set (Ψ3, A3) ; A3
.
= A1∪A2,

and ∀ ξ ∈ A3,

Ψ3(ξ) =


Ψ1(ξ)

Ψ2(ξ)

Ψ1(ξ) ∪ Ψ2(ξ)

; ξ ∈ A1 −A2

; ξ ∈ A2 −A1

; ξ ∈ A1 ∩A2
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Definition 2.4. [15]

The extended intersection of two soft sets (Ψ1, A1) and (Ψ2, A2) with Ω is the soft set (Ψ3, A3)

while A3
.
= A1 ∪A2, ; ξ ∈ A3,

Ψ3(ξ) =


Ψ1(ξ)

Ψ2(ξ)

Ψ1(ξ) ∪ Ψ2(ξ)

; ξ ∈ A1 −A2

; ξ ∈ A2 −A1

; ξ ∈ A1 ∩A2

Definition 2.5. [16]

Assume that Y be a set of specialists (operators) and Ö be a set of conclusions, T = F ×Y ×Ö
with S ⊆ T where Ω denotes the universe , F a set of parameters. A pair(Φ, S) is known as a

soft expert set over Ω, where H is a mapping given by

Φ : S → P (Ω)

Definition 2.6. [16]

A (Φ1, S) ⊆ (Φ2, P ) over Ω, if

(i) S ⊆ P,
(ii) ∀ α ∈ S,Φ1(α) ⊆ Φ2(α).

While (Φ2, P ) is known as a soft expert superset of (Φ1, S).

Definition 2.7. [18] A pair (H,C) is called a fuzzy soft expert set over Ω where F is a

mapping given by

H : C → IΩ

where IΩ the set of all fuzzy subsets of Ω.

Definition 2.8. [36]

Let h1, h2, h3, ....., hm, for m ≥ 1 , be m distinct attributes, whose corresponding attribute

values are respectively the sets H1, H2, H3, .....,Hm, with Hi ∩ Hj = ∅, for i 6= j, and i, j ∈
{1, 2, 3, ...,m}. Then the pair (Ψ, G), where G = H1×H2×H3× .....×Hm and Ψ : G→ P (Ω)

is called a hypersoft Set over Ω.

Definition 2.9. [38]

Let Γ1,Γ2,Γ3, ...Γm be disjoint attribute-valued sets for m distinct attributes . A pair (Φ,Γ)

is called fuzzy hypersoft set over Ω with Γ is the cartesian product of Γi, i = 1, 2, ....,m, and

Φ : Γ → P (Ω). In general, Φ(α) = {(x,Φ(α))(x)/x ∈ Ω};α ∈ Γ. Here P (Ω) is the collection

of all fuzzy sets.
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3. Fuzzy Hypersoft Expert set (FHSE-Set)

Definition 3.1. Fuzzy Hypersoft Expert set (FHSE-Set)

A pair(ξ,S) is known as a fuzzy hypersoft expert set over
∐

, where

ξ : S→ I
∐

where

• I
∐

is collection of all fuzzy subsets of
∐

• S ⊆ H = G × D × C
• G = G1×G2×G3× ....×Gp where Gi are disjoint attributive-valued sets corresponding

to distinct attributes gi, i = 1, 2, 3, ..., p

• D be a set of specialists (operators)

• C be a set of conclusions.

For simplicity, C = {0 = disagree, 1 = agree}.

Example 3.2. Suppose that a multi-national company aims to proceed the valuation of certain

specialists about its certain products. Let
∐

= {m1,m2,m3,m4} be a set of products and

G1 = {q11, q12}
G2 = {q21, q22}
G3 = {q31, q32}
be disjoint attributive sets for distinct attributes q1= simple to utilize, q2= nature, q3= modest.

Now

G = G1 × G2 × G3

G =

µ1 = (q11, q21, q31), µ2 = (q11, q21, q32), µ3 = (q11, q22, q31), µ4 = (q11, q22, q32),

µ5 = (q12, q21, q31), µ6 = (q12, q21, q32), µ7 = (q12, q22, q31), µ8 = (q12, q22, q32)


Now H = G × D × C

H =



(µ1, s, 0), (µ1, s, 1), (µ1, t, 0), (µ1, t, 1), (µ1, u, 0), (µ1, u, 1),

(µ2, s, 0), (µ2, s, 1), (µ2, t, 0), (µ2, t, 1), (µ2, u, 0), (µ2, u, 1),

(µ3, s, 0), (µ3, s, 1), (µ3, t, 0), (µ3, t, 1), (µ3, u, 0), (µ3, u, 1),

(µ4, s, 0), (µ4, s, 1), (µ4, t, 0), (µ4, t, 1), (µ4, u, 0), (µ4, u, 1),

(µ5, s, 0), (µ5, s, 1), (µ5, t, 0), (µ5, t, 1), (µ5, u, 0), (µ5, u, 1),

(µ6, s, 0), (µ6, s, 1), (µ6, t, 0), (µ6, t, 1), (µ6, u, 0), (µ6, u, 1),

(µ7, s, 0), (µ7, s, 1), (µ7, t, 0), (µ7, t, 1), (µ7, u, 0), (µ7, u, 1),

(µ8, s, 0), (µ8, s, 1), (µ8, t, 0), (µ8, t, 1), (µ8, u, 0), (µ8, u, 1)
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let

S =


(µ1, s, 0), (µ1, s, 1), (µ1, t, 0), (µ1, t, 1), (µ1, u, 0), (µ1, u, 1),

(µ2, s, 0), (µ2, s, 1), (µ2, t, 0), (µ2, t, 1), (µ2, u, 0), (µ2, u, 1)

(µ3, s, 0), (µ3, s, 1), (µ3, t, 0), (µ3, t, 1), (µ3, u, 0), (µ3, u, 1),


be a subset of H and D = {s, t, u, } be a set of specialists.

Following survey depicts choices of three specialists:

ξ1 = ξ(µ1, s, 1) =
{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

}
, ξ2 = ξ(µ1, t, 1) =

{
m1
0.4 ,

m2
0.8 ,

m3
0.4 ,

m4
0.2

}
,

ξ3 = ξ(µ1, u, 1) =
{
m1
0.7 ,

m2
0.5 ,

m3
0.6 ,

m4
0.3

}
, ξ4 = ξ(µ2, s, 1) =

{
m1
0.9 ,

m2
0.4 ,

m3
0.7 ,

m4
0.3

}
,

ξ5 = ξ(µ2, t, 1) =
{
m1
0.4 ,

m2
0.8 ,

m3
0.3 ,

m4
0.2

}
, ξ6 = ξ(µ2, u, 1) =

{
m1
0.5 ,

m2
0.3 ,

m3
0.6 ,

m4
0.8

}
,

ξ7 = ξ(µ3, s, 1) =
{
m1
0.2 ,

m2
0.9 ,

m3
0.4 ,

m4
0.5

}
, ξ8 = ξ(µ3, t, 1) =

{
m1
0.4 ,

m2
0.6 ,

m3
0.7 ,

m4
0.9

}
,

ξ9 = ξ(µ3, u, 1) =
{
m1
0.7 ,

m2
0.3 ,

m3
0.5 ,

m4
0.2

}
, ξ10 = ξ(µ1, s, 0) =

{
m1
0.3 ,

m2
0.2 ,

m3
0.4 ,

m4
0.1

}
,

ξ11 = ξ(µ1, t, 0) =
{
m1
0.1 ,

m2
0.9 ,

m3
0.6 ,

m4
0.2

}
, ξ12 = ξ(µ1, u, 0) =

{
m1
0.2 ,

m2
0.1 ,

m3
0.3 ,

m4
0.5

}
,

ξ13 = ξ(µ2, s, 0) =
{
m1
0.8 ,

m2
0.3 ,

m3
0.5 ,

m4
0.7

}
, ξ14 = ξ(µ2, t, 0) =

{
m1
0.7 ,

m2
0.2 ,

m3
0.9 ,

m4
0.4

}
,

ξ15 = ξ(µ2, u, 0) =
{
m1
0.6 ,

m2
0.7 ,

m3
0.3 ,

m4
0.2

}
, ξ16 = ξ(µ3, s, 0) =

{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

}
,

ξ17 = ξ(µ3, t, 0) =
{
m1
0.2 ,

m2
0.9 ,

m3
0.8 ,

m4
0.3

}
, ξ18 = ξ(µ3, u, 0) =

{
m1
0.5 ,

m2
0.3 ,

m3
0.6 ,

m4
0.1

}
,

The fuzzy soft expert set can be described as

(ξ,S) =



(
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.4 ,

m2
0.8 ,

m3
0.4 ,

m4
0.2

})
,(

(µ1, u, 1),
{
m1
0.7 ,

m2
0.5 ,

m3
0.6 ,

m4
0.3

})
,
(
(µ2, s, 1),

{
m1
0.9 ,

m2
0.4 ,

m3
0.7 ,

m4
0.3

})
,(

µ2, t, 1),
{
m1
0.4 ,

m2
0.8 ,

m3
0.3 ,

m4
0.2

})
,
(
(µ2, u, 1),

{
m1
0.5 ,

m2
0.3 ,

m3
0.6 ,

m4
0.8

})
,(

(µ3, s, 1),
{
m1
0.2 ,

m2
0.9 ,

m3
0.4 ,

m4
0.5

})
,
(
(µ3, t, 1),

{
m1
0.4 ,

m2
0.6 ,

m3
0.7 ,

m4
0.9

})
,(

(µ3, u, 1),
{
m1
0.7 ,

m2
0.3 ,

m3
0.5 ,

m4
0.2

})
,
(
(µ1, s, 0),

{
m1
0.3 ,

m2
0.2 ,

m3
0.4 ,

m4
0.1

})
,(

(µ1, t, 0),
{
m1
0.1 ,

m2
0.9 ,

m3
0.6 ,

m4
0.2

})
,
(
(µ1, u, 0),

{
m1
0.2 ,

m2
0.1 ,

m3
0.3 ,

m4
0.5

})
,(

(µ2, s, 0),
{
m1
0.8 ,

m2
0.3 ,

m3
0.5 ,

m4
0.7

})
,
(
(µ2, t, 0),

{
m1
0.7 ,

m2
0.2 ,

m3
0.9 ,

m4
0.4

})
,(

(µ2, u, 0),
{
m1
0.6 ,

m2
0.7 ,

m3
0.3 ,

m4
0.2

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,(

(µ3, t, 0),
{
m1
0.2 ,

m2
0.9 ,

m3
0.8 ,

m4
0.3

})
,
(
(µ3, u, 0),

{
m1
0.5 ,

m2
0.3 ,

m3
0.6 ,

m4
0.1

})
,


Definition 3.3. Fuzzy Hypersoft Expert subset

A hypersoft expert set (ξ1, S) is said to be fuzzy hypersoft expert subset of (ξ2, R) over
∐

, if

(i) S ⊆ R,
(ii) ∀ α ∈ S, ξ1(α) ⊆ ξ2(α).

and denoted by (ξ1,S) ⊆ (ξ2, R). Similarly (ξ2, R) is said to be fuzzy hypersoft expert superset

of (ξ1,S).

Example 3.4. Considering Example 3.2, Suppose

A1 =
{

(µ1, s, 1), (µ3, s, 0), (µ1, t, 1), (µ3, t, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0), (µ3, s, 1), (µ1, t, 1), (µ3, t, 1), (µ1, t, 0), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1), (µ1, u, 1)
}
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It is clear thatA1 ⊂ A2.Suppose (ξ1, A1) and (ξ2, A2) be defined as following

(ξ1,A1) =



(
(µ1, s, 1),

{
m1
0.1 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.3 ,

m2
0.6 ,

m3
0.2 ,

m4
0.1

})
,(

(µ3, t, 1),
{
m1
0.2 ,

m2
0.5 ,

m3
0.6 ,

m4
0.8

})
,
(
(µ3, u, 1),

{
m1
0.6 ,

m2
0.2 ,

m3
0.4 ,

m4
0.1

})
,(

(µ1, u, 0),
{
m1
0.1 ,

m2
0.1 ,

m3
0.2 ,

m4
0.4

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.3 ,

m3
0.6 ,

m4
0.7

})
,(

(µ3, t, 0)
{
m1
0.1 ,

m2
0.8 ,

m3
0.7 ,

m4
0.2

})



(ξ2,A2) =



(
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.4 ,

m2
0.8 ,

m3
0.4 ,

m4
0.2

})
,(

(µ3, s, 1),
{
m1
0.2 ,

m2
0.9 ,

m3
0.4 ,

m4
0.5

})
,
(
(µ3, t, 1),

{
m1
0.4 ,

m2
0.6 ,

m3
0.7 ,

m4
0.9

})
,(

(µ1, u, 1),
{
m1
0.7 ,

m2
0.5 ,

m3
0.6 ,

m4
0.3

})
,
(
(µ3, u, 1),

{
m1
0.7 ,

m2
0.3 ,

m3
0.5 ,

m4
0.2

})
,(

(µ1, u, 0),
{
m1
0.2 ,

m2
0.1 ,

m3
0.3 ,

m4
0.5

})
,
(
(µ1, t, 0),

{
m1
0.1 ,

m2
0.9 ,

m3
0.6 ,

m4
0.2

})
,(

(µ3, s, 0),
{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,
(
(µ3, t, 0),

{
m1
0.2 ,

m2
0.9 ,

m3
0.8 ,

m4
0.3

})


which implies that (ξ1, A1) ⊆ (ξ2, A2).

Definition 3.5. Two fuzzy hypersoft expert sets (ξ1, A1) and (ξ2, A2) over
∐

are said to be

equal if (ξ1, A1) is a hypersoft expert subset of (ξ2, A2) and (ξ2, A2) is a fuzzy hypersoft expert

subset of (ξ1, A1).

Definition 3.6. Let G be a set as defined in definition 3.1 and D , a set of experts. The NOT

set of H = G × D × C denoted by ∼ H, is defined by ∼ T = {(∼ gi, dj , ck)∀i, j, k} where ∼ gi
is not gi.

Definition 3.7. The complement of a fuzzy hypersoft expert set (ξ,S), denoted by (ξ,S)c, is

defined by (ξ,S)c = (ξc,∼ S) while ξc : ∼ S→ P (
∐

) is a mapping given by ξc(β) =
∐
−ξ(∼ β),

where β ∈∼ S.

Example 3.8. Taking complement of fuzzy hypersoft expert set determined in 3.2, we have

(ξ, S)c =



(
(∼ µ1, s, 1),

{
m1
0.8 ,

m2
0.3 ,

m3
0.5 ,

m4
0.9

})
,
(
(∼ µ1, t, 1),

{
m1
0.6 ,

m2
0.2 ,

m3
0.6 ,

m4
0.8

})
,(

(∼ µ1, u, 1),
{
m1
0.3 ,

m2
0.5 ,

m3
0.4 ,

m4
0.7

})
,
(
(∼ µ3, s, 1),

{
m1
0.8 ,

m2
0.1 ,

m3
0.6 ,

m4
0.5

})
,(

(∼ µ3, t, 1),
{
m1
0.6 ,

m2
0.4 ,

m3
0.3 ,

m4
0.1

})
,
(
(∼ µ3, u, 1),

{
m1
0.3 ,

m2
0.7 ,

m3
0.5 ,

m4
0.8

})
,(

(∼ µ2, s, 1),
{
m1
0.1 ,

m2
0.6 ,

m3
0.3 ,

m4
0.7

})
,
(
(∼ µ2, t, 1),

{
m1
0.6 ,

m2
0.2 ,

m3
0.7 ,

m4
0.8

})
,(

(∼ µ2, u, 1),
{
m1
0.5 ,

m2
0.7 ,

m3
0.4 ,

m4
0.2

})
,
(
(∼ µ1, s, 0),

{
m1
0.7 ,

m2
0.3 ,

m3
0.6 ,

m4
0.9

})
,(

(∼ µ1, t, 0),
{
m1
0.9 ,

m2
0.1 ,

m3
0.4 ,

m4
0.1

})
,
(
(∼ µ1, u, 0),

{
m1
0.8 ,

m2
0.9 ,

m3
0.7 ,

m4
0.5

})
,(

(∼ µ3, s, 0),
{
m1
0.9 ,

m2
0.6 ,

m3
0.3 ,

m4
0.2

})
,
(
(∼ µ3, t, 0),

{
m1
0.8 ,

m2
0.1 ,

m3
0.2 ,

m4
0.7

})
,(

(∼ (µ3, u, 0),
{
m1
0.5 ,

m2
0.7 ,

m3
0.4 ,

m4
0.9

}) (
(∼ µ2, s, 0),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.3

})
,(

(∼ µ2, t, 0),
{
m1
0.3 ,

m2
0.8 ,

m3
0.1 ,

m4
0.4

}
,
)
,
(
(∼ µ2, u, 0),

{
m1
0.4 ,

m2
0.3 ,

m3
0.7 ,

m4
0.8

})


Definition 3.9. An agree-fuzzy hypersoft expert set (ξ,S)ag over

∐
, is a fuzzy hypersoft

expert subset of (ξ,S) and is characterized as

(ξ,S)ag = {ξag(β) : β ∈ G×D × {1}}.
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Example 3.10. Finding agree-fuzzy hypersoft expert set determined in 3.2, we get

(ξ, S) =



(
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.4 ,

m2
0.8 ,

m3
0.4 ,

m4
0.2

})
,(

(µ1, u, 1),
{
m1
0.7 ,

m2
0.5 ,

m3
0.6 ,

m4
0.3

})
,
(
(µ3, s, 1),

{
m1
0.2 ,

m2
0.9 ,

m3
0.4 ,

m4
0.5

})
,(

(µ3, t, 1),
{
m1
0.4 ,

m2
0.6 ,

m3
0.7 ,

m4
0.9

})
,
(
(µ3, u, 1),

{
m1
0.7 ,

m2
0.3 ,

m3
0.5 ,

m4
0.2

})
,(

(µ2, s, 1),
{
m1
0.9 ,

m2
0.4 ,

m3
0.7 ,

m4
0.3

})
,
(
(µ2, u, 1),

{
m1
0.5 ,

m2
0.3 ,

m3
0.6 ,

m4
0.8

})


Definition 3.11. A disagree- fuzzy hypersoft expert set (ξ, S)dag over

∐
, is a fuzzy hypersoft

expert subset of (ξ,S) and is characterized as

(ξ, S)dag = {ξdag(β) : β ∈ G×D × {0}}.

Example 3.12. Getting disagree-fuzzy hypersoft expert set determined in 3.2,

(ξ,S) =



(
(µ1, s, 0),

{
m1
0.3 ,

m2
0.2 ,

m3
0.4 ,

m4
0.1

})
,
(
(µ1, t, 0),

{
m1
0.1 ,

m2
0.9 ,

m3
0.6 ,

m4
0.2

})
,(

(µ1, u, 0),
{
m1
0.2 ,

m2
0.1 ,

m3
0.3 ,

m4
0.5

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,(

(µ3, t, 0),
{
m1
0.2 ,

m2
0.9 ,

m3
0.8 ,

m4
0.3

})
,
(
(µ3, u, 0),

{
m1
0.5 ,

m2
0.3 ,

m3
0.6 ,

m4
0.1

})(
(µ2, s, 0),

{
m1
0.8 ,

m2
0.3 ,

m3
0.5 ,

m4
0.7

})
,
(
(µ2, t, 0),

{
m1
0.7 ,

m2
0.2 ,

m3
0.9 ,

m4
0.4

})
,(

(µ2, u, 0),
{
m1
0.6 ,

m2
0.7 ,

m3
0.3 ,

m4
0.2

})


Proposition 3.13. If (ξ,S) is a fuzzy hypersoft expert set over

∐
, then

(1). ((ξ,S)c)c = (ξ, S)

(2). (ξ,S)cag = (ξ,S)dag

(3). (ξ,S)cdag = (ξ,S)ag

Definition 3.14. The union of (ξ1, S) and (ξ2, R) over
∐

is (ξ3, L) with L = S∪R, defined as

ξ3(β) =


ξ1(β)

ξ2(β)

ξ1(β) ∪ ξ2(β)

; β ∈ S−R
; β ∈ R− S
; β ∈ S ∩R

Example 3.15. Taking into consideration the concept of example 3.2, consider the following

two sets

A1 =
{

(µ1, s, 1), (µ3, s, 0), (µ1, t, 1), (µ3, t, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0), (µ3, s, 1), (µ1, t, 1), (µ3, t, 1), (µ1, u, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1), (µ1, t, 0)
}

Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two fuzzy hypersoft expert sets such that

(ξ1,A1) =



(
(µ1, s, 1),

{
m1
0.1 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.3 ,

m2
0.6 ,

m3
0.2 ,

m4
0.1

})
,(

(µ3, t, 1),
{
m1
0.2 ,

m2
0.5 ,

m3
0.6 ,

m4
0.8

})
,
(
(µ3, u, 1),

{
m1
0.6 ,

m2
0.2 ,

m3
0.4 ,

m4
0.1

})
,(

(µ1, u, 0),
{
m1
0.1 ,

m2
0.1 ,

m3
0.2 ,

m4
0.4

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.3 ,

m3
0.6 ,

m4
0.7

})
,(

(µ3, t, 0)
{
m1
0.1 ,

m2
0.8 ,

m3
0.7 ,

m4
0.2

})
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(ξ2,A2) =



(
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.4 ,

m2
0.8 ,

m3
0.4 ,

m4
0.2

})
,(

(µ3, s, 1),
{
m1
0.2 ,

m2
0.9 ,

m3
0.4 ,

m4
0.5

})
,
(
(µ3, t, 1),

{
m1
0.4 ,

m2
0.6 ,

m3
0.7 ,

m4
0.9

})
,(

(µ1, u, 1),
{
m1
0.7 ,

m2
0.5 ,

m3
0.6 ,

m4
0.3

})
,
(
(µ3, u, 1),

{
m1
0.7 ,

m2
0.3 ,

m3
0.5 ,

m4
0.2

})
,(

(µ1, u, 0),
{
m1
0.2 ,

m2
0.1 ,

m3
0.3 ,

m4
0.5

})
,
(
(µ1, t, 0),

{
m1
0.1 ,

m2
0.9 ,

m3
0.6 ,

m4
0.2

})
,(

(µ3, s, 0),
{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,
(
(µ3, t, 0),

{
m1
0.2 ,

m2
0.9 ,

m3
0.8 ,

m4
0.3

})


Then (ξ1, A1) ∪ (ξ2, A2) = (ξ3, A3)

(ξ2,A2) =



(
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.4 ,

m2
0.8 ,

m3
0.4 ,

m4
0.2

})
,(

(µ3, s, 1),
{
m1
0.2 ,

m2
0.9 ,

m3
0.4 ,

m4
0.5

})
,
(
(µ3, t, 1),

{
m1
0.4 ,

m2
0.6 ,

m3
0.7 ,

m4
0.9

})
,(

(µ1, u, 1),
{
m1
0.7 ,

m2
0.5 ,

m3
0.6 ,

m4
0.3

})
,
(
(µ3, u, 1),

{
m1
0.7 ,

m2
0.3 ,

m3
0.5 ,

m4
0.2

})
,(

(µ1, u, 0),
{
m1
0.2 ,

m2
0.1 ,

m3
0.3 ,

m4
0.5

})
,
(
(µ1, t, 0),

{
m1
0.1 ,

m2
0.9 ,

m3
0.6 ,

m4
0.2

})
,(

(µ3, s, 0),
{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,
(
(µ3, t, 0),

{
m1
0.2 ,

m2
0.9 ,

m3
0.8 ,

m4
0.3

})


Proposition 3.16. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three fuzzy hypersoft expert sets over∐
, then

(1). (ξ1, A1) ∪ (ξ2, A2) = (ξ2, A2) ∪ (ξ1, A1)

(2). ((ξ1, A1) ∪ (ξ2, A2)) ∪ (ξ3, A3) = (ξ1, A1) ∪ ((ξ2, A2) ∪ (ξ3, A3))

Definition 3.17. The intersection of (ξ1,S) and (ξ2, R) over
∐

is (ξ3, L) with L = S ∩ R,
defined as

ξ3(β) =


ξ1(β)

ξ2(β)

ξ1(β) ∩ ξ2(β)

; β ∈ S−R
; β ∈ R− S
; β ∈ S ∩R

Example 3.18. Taking into consideration the concept of example 3.2, consider the following

two sets

A1 =
{

(µ1, s, 1), (µ3, s, 0), (µ1, t, 1), (µ3, t, 1), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0), (µ3, s, 1), (µ1, t, 1), (µ3, t, 1), (µ1, t, 0), (µ3, t, 0), (µ1, u, 0), (µ3, u, 1), , (µ1, u, 1)
}

Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two fuzzy hypersoft expert sets such that

(ξ1,A1) =



(
(µ1, s, 1),

{
m1
0.1 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.3 ,

m2
0.6 ,

m3
0.2 ,

m4
0.1

})
,(

(µ3, t, 1),
{
m1
0.2 ,

m2
0.5 ,

m3
0.6 ,

m4
0.8

})
,
(
(µ3, u, 1),

{
m1
0.6 ,

m2
0.2 ,

m3
0.4 ,

m4
0.1

})
,(

(µ1, u, 0),
{
m1
0.1 ,

m2
0.1 ,

m3
0.2 ,

m4
0.4

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.3 ,

m3
0.6 ,

m4
0.7

})
,(

(µ3, t, 0)
{
m1
0.1 ,

m2
0.8 ,

m3
0.7 ,

m4
0.2

})



(ξ2,A2) =



(
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.4 ,

m2
0.8 ,

m3
0.4 ,

m4
0.2

})
,(

(µ3, s, 1),
{
m1
0.2 ,

m2
0.9 ,

m3
0.4 ,

m4
0.5

})
,
(
(µ3, t, 1),

{
m1
0.4 ,

m2
0.6 ,

m3
0.7 ,

m4
0.9

})
,(

(µ1, u, 1),
{
m1
0.7 ,

m2
0.5 ,

m3
0.6 ,

m4
0.3

})
,
(
(µ3, u, 1),

{
m1
0.7 ,

m2
0.3 ,

m3
0.5 ,

m4
0.2

})
,(

(µ1, u, 0),
{
m1
0.2 ,

m2
0.1 ,

m3
0.3 ,

m4
0.5

})
,
(
(µ1, t, 0),

{
m1
0.1 ,

m2
0.9 ,

m3
0.6 ,

m4
0.2

})
,(

(µ3, s, 0),
{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,
(
(µ3, t, 0),

{
m1
0.2 ,

m2
0.9 ,

m3
0.8 ,

m4
0.3

})
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Then (ξ1, A1) ∩ (ξ2, A2) = (ξ3, A3)

(ξ3,A3) =



(
(µ1, s, 1),

{
m1
0.1 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.3 ,

m2
0.6 ,

m3
0.2 ,

m4
0.1

})
,(

(µ3, t, 1),
{
m1
0.2 ,

m2
0.5 ,

m3
0.4 ,

m4
0.5

})
,
(
(µ3, u, 1),

{
m1
0.6 ,

m2
0.2 ,

m3
0.4 ,

m4
0.1

})
,(

(µ1, u, 0),
{
m1
0.1 ,

m2
0.1 ,

m3
0.2 ,

m4
0.4

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.3 ,

m3
0.6 ,

m4
0.7

})
,(

(µ3, t, 0)
{
m1
0.1 ,

m2
0.8 ,

m3
0.7 ,

m4
0.2

})


Proposition 3.19. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three fuzzy hypersoft expert sets over∐
, then

(1). (ξ1, A1) ∩ (ξ2, A2) = (ξ2, A2) ∩ (ξ1, A1)

(2). ((ξ1, A1) ∩ (ξ2, A2)) ∩ (ξ3, A3) = (ξ1, A1) ∩ ((ξ2, A2) ∩ (ξ3, A3))

Proposition 3.20. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three fuzzy hypersoft expert sets over∐
, then

(1). (ξ1, A1) ∪ ((ξ2, A2) ∩ (ξ3, A3)) = ((ξ1, A1) ∪ ((ξ2, A2)) ∩ ((ξ1, A1) ∪ (ξ3, A3))

(2). (ξ1, A1) ∩ ((ξ2, A2) ∪ (ξ3, A3)) = ((ξ1, A1) ∩ ((ξ2, A2)) ∪ ((ξ1, A1) ∩ (ξ3, A3))

Definition 3.21. If (ξ1, A1) and (ξ2, A2) are two fuzzy hypersoft expert sets over
∐

then

(ξ1, A1) AND (ξ2, A2) denoted by (ξ1, A1) ∧ (ξ2, A2) is defined by

(ξ1, A1) ∧ (ξ2, A2) = (ξ3, A1 ×A2),

while ξ3(β, γ) = ξ1(β) ∩ ξ2(γ), ∀(β, γ) ∈ A1 ×A2.

Example 3.22. Taking into consideration the concept of example 3.2, let two sets

A1 =
{

(µ1, s, 1), (µ1, t, 1), (µ3, s, 0)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0)
}

Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two fuzzy hypersoft expert sets such that

(ξ1,A1) =

{ (
(µ1, s, 1),

{
m1
0.1 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.3 ,

m2
0.6 ,

m3
0.2 ,

m4
0.1

})
,

,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.3 ,

m3
0.6 ,

m4
0.7

})
,

}
(ξ2,A2) =

{ (
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,
}

Then (ξ3, A3) ∧ (ξ2, A2) = (ξ3, A1 ×A2),

(ξ3,A1 ×A2) =



(
((µ1, s, 1), (µ1, s, 1)),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,(

((µ1, t, 1), (µ1, s, 1)),
{
m1
0.3 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,(

((µ1, t, 1), (µ3, s, 0)),
{
m1
0.3 ,

m2
0.6 ,

m3
0.7 ,

m4
0.8

})
,(

((µ1, s, 1), (µ3, s, 0)),
{
m1
0.1 ,

m2
0.6 ,

m3
0.7 ,

m4
0.8

})
,(

((µ3, s, 0), (µ1, s, 1)),
{
m1
0.2 ,

m2
0.7 ,

m3
0.6 ,

m4
0.7

})
,(

((µ3, s, 0), (µ3, s, 0)),
{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
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Definition 3.23. If (ξ1, A1) and (ξ2, A2) are two fuzzy hypersoft expert sets over
∐

then

(ξ1, A1) OR (ξ2, A2) denoted by (ξ1, A1) ∨ (ξ2, A2) is defined by

(ξ1, A1) ∨ (ξ2, A2) = (ξ3, A1 ×A2),

while ξ3(β, γ) = ξ1(β) ∪ ξ2(γ),∀(β, γ) ∈ A1 ×A2.

Example 3.24. Taking into consideration the concept of example 3.2, suppose the following

sets

A1 =
{

(µ1, s, 1), (µ1, t, 1), (µ3, s, 0)
}

A2 =
{

(µ1, s, 1), (µ3, s, 0)
}

Suppose (ξ1, A1) and (ξ2, A2) over
∐

are two fuzzy hypersoft expert sets such that

(ξ1,A1) =

{ (
(µ1, s, 1),

{
m1
0.1 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,
(
(µ1, t, 1),

{
m1
0.3 ,

m2
0.6 ,

m3
0.2 ,

m4
0.1

})
,

,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.3 ,

m3
0.6 ,

m4
0.7

})
,

}
(ξ2,A2) =

{ (
(µ1, s, 1),

{
m1
0.2 ,

m2
0.7 ,

m3
0.5 ,

m4
0.1

})
,
(
(µ3, s, 0),

{
m1
0.1 ,

m2
0.4 ,

m3
0.7 ,

m4
0.8

})
,
}

Then (ξ3, A3) ∧ (ξ2, A2) = (ξ3, A1 ×A2),

(ξ3,A1 ×A2) =



(
((µ1, s, 1), (µ1, s, 1)),

{
m1
0.1 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,(

((µ1, t, 1), (µ1, s, 1)),
{
m1
0.2 ,

m2
0.6 ,

m3
0.4 ,

m4
0.1

})
,(

((µ1, t, 1), (µ3, s, 0)),
{
m1
0.1 ,

m2
0.4 ,

m3
0.2 ,

m4
0.1

})
,(

((µ1, s, 1), (µ3, s, 0)),
{
m1
0.1 ,

m2
0.4 ,

m3
0.4 ,

m4
0.1

})
,(

((µ3, s, 0), (µ1, s, 1)),
{
m1
0.1 ,

m2
0.3 ,

m3
0.5 ,

m4
0.1

})
,(

((µ3, s, 0), (µ3, s, 0)),
{
m1
0.1 ,

m2
0.3 ,

m3
0.6 ,

m4
0.7

})


Proposition 3.25. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three fuzzy hypersoft expert sets over∐
, then

(1). ((ξ1, A1) ∧ (ξ2, A2))c = ((ξ1, A1))c ∨ ((ξ2, A2))c

(2). ((ξ1, A1) ∨ (ξ2, A2))c = ((ξ1, A1))c ∧ ((ξ2, A2))c

Proposition 3.26. If (ξ1, A1),(ξ2, A2) and (ξ3, A3) are three fuzzy hypersoft expert sets over∐
, then

(1). ((ξ1, A1) ∧ (ξ2, A2)) ∧ (ξ3, A3) = (ξ1, A1) ∧ ((ξ2, A2) ∧ (ξ3, A3))

(2). ((ξ1, A1) ∨ (ξ2, A2)) ∨ (ξ3, A3) = (ξ1, A1) ∨ ((ξ2, A2) ∨ (ξ3, A3))

(3). (ξ1, A1) ∨ ((ξ2, A2) ∧ (ξ3, A3) = ((ξ1, A1) ∨ ((ξ2, A2)) ∧ ((ξ1, A1) ∨ (ξ3, A3))

(4). (ξ1, A1) ∧ ((ξ2, A2) ∨ (ξ3, A3)) = ((ξ1, A1) ∧ ((ξ2, A2)) ∨ ((ξ1, A1) ∧ (ξ3, A3))

4. An Applications to Fuzzy Hypersoft expert set

In this section, an application of fuzzy hypersoft expert set theory in a decision making

problem, is presented.

Statement of the problem

Mr. John wants to purchase a mobile from a mobile market for his personal use. He takes help
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from his some friends (Stephen, Thomas and Umar) who have expertise in mobile purchase.

Proposed Algorithm

The following algorithm is adopted for this selection (purchase).

(1). Construct fuzzy hypersoft soft expert set (ξ,K),

(2). Determine an Agree-fuzzy hypersoft expert set and a Disagree-fuzzy hypersoft expert

set,

(3). Compute di=
∑

i cij for Agree-fuzzy hypersoft expert set,

(4). Determine fi=
∑

i cij for Disagree-fuzzy hypersoft expert set,

(5). Determine gj = dj − fj for Agree-fuzzy hypersoft expert set,

(6). Compute n, for which pn= max pj for Agree-fuzzy hypersoft expert set,

Step-1

Let eight categories of mobile are there which form the universe of discourse Ω =

{c1, c2, c3, c4, c5, c6, c7, c8} and X = {E1 = Stephen,E2 = Thomas,E3 = Umar} be a set

of experts for this purchase. The following are the attribute-valued sets for prescribed at-

tributes:

L1 = Brand = {l1, l2}
L2 = Price = {l3, l4}
L3 = Colour = {l5, l6}
L4 = Memory = {l7, l8}
L5 = Resolution = {l9, l10}
and then

L = L1 × L2 × L3 × L4 × L5

L =



(l1, l3, l5, l7, l9), (l1, l3, l5, l7, l10), (l1, l3, l5, l8, l9), (l1, l3, l5, l8, l10), (l1, l3, l6, l7, l9),

(l1, l3, l6, l7, l10), (l1, l3, l6, l8, l9), (l1, l3, l6, l8, l10), (l1, l4, l5, l7, l9), (l1, l4, l5, l7, l10),

(l1, l4, l5, l8, l9), (l1, l4, l5, l8, l10), (l1, l4, l6, l7, l9), (l1, l4, l6, l7, l10), (l1, l4, l6, l8, l9),

(l1, l4, l6, l8, l10), (l2, l3, l5, l7, l9), (l2, l3, l5, l7, l10), (l2, l3, l5, l8, l9), (l2, l3, l5, l8, l10),

(l2, l3, l6, l7, l9), (l2, l3, l6, l7, l10), (l2, l3, l6, l8, l9), (l2, l3, l6, l8, l10), (l2, l4, l5, l7, l9),

(l2, l4, l5, l7, l10), (l2, l4, l5, l8, l9), (l2, l4, l5, l8, l10), (l2, l4, l6, l7, l9), (l2, l4, l6, l7, l10),

(l2, l4, l6, l8, l9), (l2, l4, l6, l8, l10)


and now take K ⊆ H as

K =

{
k1 = (l1, l3, l5, l7, l9), k2 = (l1, l3, l6, l7, l10), k3 = (l1, l4, l6, l8, l9),

k4 = (l2, l3, l6, l8, l9), k5 = (l2, l4, l6, l7, l10)

}
and
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(ξ,K) =



(
(k1, E1, 1),

{
c1
0.3 ,

c2
0.8 ,

c4
0.5 ,

c7
0.2 ,

c8
0.5

}
), ((k1, E2, 1),

{
c1
0.8 ,

c4
0.7 ,

c5
0.8 ,

c8
0.2

})
,(

(k1, E3, 1),
{

c1
0.7 ,

c3
0.8 ,

c4
0.6 ,

c5
0.1 ,

c6
0.5 ,

c7
0.3 ,

c8
0.2

})
,
(
(k2, E1, 1),

{
c1
0.3 ,

c3
0.6 ,

c5
0.2 ,

c8
0.1

})
,(

(k2, E2, 1),
{

c1
0.3 ,

c3
0.8 ,

c4
0.6 ,

c5
0.1 ,

c6
0.9 ,

c8
0.1

})
,
(
(k2, E3, 1),

{
c1
0.2 ,

c2
0.5 ,

c4
0.1 ,

c5
0.1 ,

c6
0.7 ,

c8
0.9

})
,(

(k3, E1, 1),
{

c1
0.2 ,

c4
0.8 ,

c5
0.1 ,

c7
0.9

})
,
(
(k3, E2, 1),

{
c1
0.3 ,

c2
0.7 ,

c5
0.8 ,

c8
0.1

})
,(

(k3, E3, 1),
{

c1
0.5 ,

c3
0.7 ,

c5
0.7 ,

c8
0.1

})
,
(
(k4, E1, 1),

{
c1
0.4 ,

c7
0.7 ,

c8
0.8

})
,(

(k4, E2, 1),
{

c1
0.5 ,

c4
0.8 ,

c5
0.9 ,

c8
0.1

})
,
(
(k4, E3, 1),

{
c1
0.3 ,

c6
0.7 ,

c7
0.9 ,

c8
0.7

})
,(

(k5, E1, 1),
{

c1
0.2 ,

c3
0.7 ,

c4
0.3 ,

c5
0.6 ,

c7
0.1 ,

c8
0.8

})
,
(
(k5, E2, 1),

{
c1
0.1 ,

c4
0.8 ,

c5
0.8 ,

c6
0.2 ,

c8
0.3

})
,(

(k5, E3, 1),
{

c1
0.2 ,

c3
0.7 ,

c4
0.3 ,

c5
0.9 ,

c6
0.4 ,

c7
0.1 ,

c8
0.8

})
,
(
(k1, E1, 0),

{
c1
0.3 ,

c6
0.7 ,

c7
0.4 ,

c8
0.7

})
,(

(k1, E2, 0),
{

c2
0.4 ,

c3
0.8 ,

c6
0.7 ,

c7
0.1 ,

c8
0.8

})
,
(
(k1, E3, 0),

{
c1
0.2 ,

c5
0.3

})
,(

(k2, E1, 0),
{

c1
0.1 ,

c2
0.7 ,

c4
0.3 ,

c5
0.4 ,

c6
0.5

})
,
(
(k2, E2, 0),

{
c1
0.3 ,

c7
0.2

})
,(

(k2, E3, 0),
{

c1
0.4 ,

c3
0.5 ,

c4
0.1 ,

c5
0.8 ,

c6
0.9 ,

c7
0.2

})
,
(
(k3, E1, 0),

{
c1
0.6 ,

c2
0.7 ,

c6
0.8 ,

c8
0.9

})
,(

(k3, E2, 0),
{

c3
0.2 ,

c4
0.4 ,

c6
0.5 ,

c7
0.6

})
,
(
(k3, E3, 0),

{
c1
0.2 ,

c3
0.7 ,

c4
0.8 ,

c5
0.1 ,

c7
0.9

})
,(

(k4, E1, 0),
{

c1
0.2 ,

c2
0.6 ,

c3
0.7 ,

c4
0.9 ,

c5
0.1 ,

c7
0.4

})
,
(
(k4, E2, 0),

{
c2
0.3 ,

c3
0.7 ,

c6
0.5 ,

c7
0.1

})
,(

(k4, E3, 0),
{

c1
0.4 ,

c3
0.7 ,

c4
0.8 ,

c5
0.1

})
,
(
(k5, E1, 0),

{
c1
0.6 ,

c6
0.7

})
,(

(k5, E2, 0),
{

c1
0.7 ,

c2
0.5 ,

c6
0.1 ,

c7
0.2

})
,
(
(k5, E3, 0),

{
c1
0.2 ,

c4
0.3 ,

c6
0.1

})
,


is a fuzzy hypersoft expert set.

Step-2

Table 1 presents an Agree-fuzzy hypersoft expert set and table 2 presents a Disagree-fuzzy

hypersoft expert set respectively, such that if ci ∈ ξ1(β) then cij ∈ [0, 1] otherwise cij = × = 0,

and if

ci ∈ ξ0(β)

then cij ∈ [0, 1] otherwise cij = × = 0 where cij are the entries in tables 1 and 2.

Step-(3-6)

Table 3 presents di=
∑

i cij for Agree-fuzzy hypersoft expert set, fi=
∑

i cij for Disagree-fuzzy

hypersoft expert set, gj = dj − fj for Agree-fuzzy hypersoft expert set, and n, for which pn=

max pj for Agree-fuzzy hypersoft expert set.

Decision

As g5 is maximum, so category c5 is preferred to be best for purchase.

5. Conclusions

Insufficiency of soft set, fuzzy soft set, soft expert set and fuzzy soft expert set for multi-

attribute function (attribute-valued sets) is addressed with the development and characteriza-

tion of novel hybrid structure i.e. fuzzy hypersoft expert set, in this study. Moreover

(1) The fundamentals of fuzzy hypersoft expert set (FHSE-Set) are established and the

basic properties of FHSE-Set like subset, superset, equal sets, not set, agree FHSE-Set

and disagree FHSE-Set are described with examples.

Muhammad Ihsan, Atiqe Ur Rahman and Muhammad Saeed, Fuzzy Hypersoft Expert Set with
Application in Decision Making for the Best Selection of Product

Neutrosophic Sets and Systems, Vol. 46, 2021                                                                               330



Table 1. Agree-fuzzy hypersoft expert set

C c1 c2 c3 c4 c5 c6 c7 c8

(k1, E1) 0.3 0.8 × 0.5 × × 0.2 0.5

(k1, E2) 0.8 × × 0.7 0.8 × × 0.2

(k1, E3) 0.7 × 0.8 0.6 0.1 0.5 0.3 0.2

(k2, E1) 0.3 × 0.6 × 0.2 × × 0.1

(k2, E2) 0.3 × 0.8 0.6 0.1 0.9 × 0.1

(k2, E3) 0.2 0.5 × 0.1 0.1 0.7 × 0.9

(k3, E1) 0.2 × × 0.8 0.1 × 0.9 ×
(k3, E2) 0.3 0.7 × × 0.8 × × 0.1

(k3, E3) 0.5 × 0.7 × 0.7 × × 0.1

(k4, E1) 0.4 × × × × × 0.7 0.8

(k4, E2) 0.5 × × 0.8 0.9 × × 0.1

(k4, E3) 0.3 × × × × 0.7 0.9 0.7

(k5, E1) 0.2 × 0.7 0.3 0.6 × 0.1 0.8

(k5, E2) 0.1 × × 0.8 0.8 0.2 × 0.3

(k5, E3) 0.2 × 0.7 0.3 0.9 0.4 0.1 0.8

dj =
∑

i cij 5.3 2.0 4.3 5.5 5.9 3.4 3.2 5.7

d1 d2 d3 d4 d5 d6 d7 d8

Table 2. Disagree-fuzzy hypersoft expert set

C c1 c2 c3 c4 c5 c6 c7 c8

(k1, E1) 0.3 × × × × 0.7 0.4 0.7

(k1, E2) × 0.4 0.8 × × 0.7 0.1 0.8

(k1, E3) 0.2 × × × 0.3 × × ×
(k2, E1) 0.1 0.7 × 0.3 0.4 0.5 × ×
(k2, E2) 0.3 × × × × × 0.2 ×
(k2, E3) 0.4 × 0.5 0.1 0.8 0.9 0.2 ×
(k3, E1) 0.6 0.7 × × × 0.8 × 0.9

(k3, E2) × × 0.2 0.4 × 0.5 0.6 ×
(k3, E3) 0.2 × 0.7 0.8 0.1 × 0.9 ×
(k4, E1) 0.2 0.6 0.7 0.9 0.1 × 0.4 ×
(k4, E2) × 0.3 0.7 × × 0.5 0.1 ×
(k4, E3) 0.4 × 0.7 0.8 0.1 × × ×
(k5, E1) 0.6 × × × × 0.7 × ×
(k5, E2) 0.7 0.5 × × × 0.1 0.2 ×
(k5, E3) 0.2 × × 0.3 × 0.1 × ×
fi=

∑
i cij 4.2 3.2 4.3 3.6 1.8 5.5 3.1 2.4

d1 d2 d3 d4 d5 d6 d7 d8
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Table 3. Optimal

di=
∑

i cij fi=
∑

i cij gj = dj − fj
d1 = 5.3 f1 = 4.2 g1 = 1.1

d2 = 2.0 f2 = 3.2 g2 = −1.0

d3 = 4.3 f3 = 4.3 g3 = 0.0

d4 = 5.5 f4 = 3.6 g4 = 1.9

d5 = 5.9 f5 = 1.8 g5 = 4.1

d6 = 3.4 f6 = 5.5 g6 = −2.1

d7 = 3.2 f7 = 3.1 g7 = 1.0

d8 = 5.7 f8 = 2.4 g8 = 3.3

(2) The essential set-theoretic operations on FHSE-Set like complement, union, intersec-

tion, OR and AND operations are established and some laws such as commutative,

associative and De Morgan are presented with suitable examples.

(3) A decision-making application regarding the best selection of a certain product is

presented with the help of proposed algorithm.

(4) A daily life based example is discussed for the understanding of decision making pro-

cess.

(5) Future work may include the extension of the presented work for other hypersoft-like

hybrids i.e. intuitionistic fuzzy set, interval-valued fuzzy set, pythagorean fuzzy set,

neutrosophic set etc.
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Abstract. Neutrosophic hypersoft set is the combination of neutrosophic set and hypersoft set. It resolves the

limitations of intuitionistic fuzzy sets and soft sets for the consideration of the degree of indeterminacy and

multi-argument approximate function respectively. In this research article, a novel framework i.e. neutrosophic

hypersoft graph, is formulated for handling neutrosophic hypersoft information by combining the concept of

neutrosophic hypersoft sets with graph theory. Firstly, some of essential and fundamental notions of neutro-

sophic hypersoft graph are characterized with the help of numerical examples and graphical representation.

Secondly, some set theoretic operations i.e. union, intersection and complement, are investigated with illustra-

tive examples and pictorial depiction.

Keywords: Neutrosophic Set; Soft set; Hypersoft set; Neutrosophic soft graph; Neutrosophic hypersoft set;

Neutrosophic hypersoft graph.

—————————————————————————————————————————-

1. Introduction

In different mathematical disciplines, fuzzy sets theory (FS-Theory) [1] and intuitionistic

fuzzy set theory (IFS-Theory) [2] are considered apt mathematical modes to tackle several in-

tricate problems involving various uncertainties. The former emphasizes on a certain object’s

degree of true belongingness from the initial sample space, while the latter emphasizes degree

of true membership and degree of non-membership with the state of their interdependence.

These theories portray some kind of inadequacy in terms of providing due status to a degree of

indeterminacy. The implementation of neutrosophic set theory (NS-Theory) [3, 4] overcomes

this impediment by taking into account not only the proper status of degree of indeterminacy
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but also the state of dependence. This theory is more adaptable and suitable for dealing with

inconsistent data. Wang et el [5] conceptualized single-valued neutrosophic set in which truth

membership degree, indeterminacy degree and falsity degree are restricted within unit closed

interval. Many researchers [6]- [14] have been drawn to NS-Theory for further application in

statistics, topological spaces, and the construction of some neutrosophic-like blended struc-

tures with other existing models for useful applications in decision making. Edalatpanah [15]

studied a system of neutrosophic linear equations (SNLE) based on the embedding approach.

He used (α, β, γ)-cut for transformation of SNLE into a crisp linear system. Kumar et al. [16]

exhibited a novel linear programming approach for finding the neutrosophic shortest path

problem (NSSPP) considering Gaussian valued neutrosophic number.

FS-Theory, IFS-Theory and NS-Theory have some kind of complexities which restrain them

to solve problem involving uncertainty professionally. The reason for these hurdles is, possibly,

the inadequacy of the parametrization tool. It demands a mathematical tool free of all such

impediments to tackle such issues. This scantiness is resolved with the development of soft

set theory (SS-Theory) [17] which is a new parameterized family of subsets of the universe

of discourse. The researchers [18]- [27] studied and investigated some elementary properties,

operations, laws and hybrids of SS-Theory with applications in decision making. The gluing

concept of NS-Theory and SS-Theory, is studied in [28] to make the NS-Theory adequate with

parameterized tool. In many real life situations, distinct attributes are further partitioned in

disjoint attribute-valued sets but existing SS-Theory is insufficient for dealing with such kind

of attribute-valued sets. Hypersoft set theory (HS-Theory) [29] is developed to make the SST

in line with attribute-valued sets to tackle real life scenarios. HS-Theory is an extension of SS-

Theory as it transforms the single argument function into a multi-argument function. Certain

elementary properties, aggregation operations, laws, relations and functions of HS-Theory, are

investigated by [30]- [32] for proper understanding and further utilization in different fields.

The applications of HS-Theory in decision making is studied by [33]- [37] and the intermingling

study of HS-Theory with complex sets, convex and concave sets is studied by [38,39]. Deli [40]

characterized hybrid set structures under uncertainly parameterized hypersoft sets with theory

and applications. Gayen et al. [41] analyzed some essential aspects of plithogenic hypersoft

algebraic structures. They also investigated the notions and basic properties of plithogenic

hypersoft subgroups ie plithogenic fuzzy hypersoft subgroup, plithogenic intuitionistic fuzzy

hypersoft subgroup, plithogenic neutrosophic hypersoft subgroup. Saeed et al. [42,43] discussed

decision making techniques for neutrosophic hypersoft mapping and complex multi-fuzzy hy-

persoft set. Rahman et al. [44–46] studied decision making applications based on neutrosophic

parameterized hypersoft Set, fuzzy parameterized hypersoft set and rough hypersoft set. Ihsan

et al. [47] investigated hypersoft expert set with application in decision making for the best
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selection of product. The gluing concept of graph theory with uncertain environments like

fuzzy, intuitionistic fuzzy, neutrosophic, fuzzy soft, intuitionistic fuzzy soft and neutrosophic

soft set, is discussed and characterized by the authors [48]- [54]. Inspiring from above litera-

ture in general, and from [55], [56] in specific, new notions of neutrosophic hypersoft graph are

conceptualized along with some elementary types, essential properties, aggregation operations

and generalized typical results. The rest of the paper is organized as:

In section 2, some basic definitions and terminologies are presented. In section 3, the elemen-

tary notions of neutrosophic hypersoft graphs are discussed with properties and results. In

section 4, some set theoretic operations of neutrosophic hypersoft graphs are presented with

examples. In section 5, paper is summarized with future directions.

2. Preliminaries

Here some essential terms and definitions are recalled from existing literature.

Definition 2.1. [3]

A neutrosophic set K defined as K = {(k,<MK(k), IK(k),NK(k) >)|k ∈ Z} such that

MK(k) : Z →−]0, 1[+, IK(k) : Z →−]0, 1[+ and NK(k) : Z →−]0, 1[+ where MK(k) stands

for membership, NK(k) stands for non-membership and IK(k) stands for indeterminacy under

condition −0 ≤MK(k) + IK(k) +NK(k) ≤ 3+.

Definition 2.2. [17]

A pair (ΨM ,W) is said to be soft set over Z (universe of discourse), where ΨM :W → P(Z)

and W is a subset of set of attributes X .

For more detail on soft set, see [18,19].

Definition 2.3. [29]

A pair (ξH ,R) is said to be hypersoft set over Z, where ξH : R → P(Z) and R = R1 ×
R2 ×R3 × ...×Rn, Ri are disjoint attribute-valued sets corresponding to distinct attributes

ri respectively for 1 ≤ i ≤ n.

Definition 2.4. [29]

A pair (ζN ,U) is said to be neutrosophic hypersoft set over Z if ζN : U → P(Z), where P(Z)

is a collection of all neutrosophic subsets and U = U1 × U2 × U3 × ... × Un, Ui are disjoint

attribute-valued sets corresponding to distinct attributes ui respectively for 1 ≤ i ≤ n.

For more definitions and operations of hypersoft set, see [30–32].

Definition 2.5. [56]

Let Q and G? = (V, E) be a set of parameters and a simple graph respectively with V as set
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of vertices and E as set of edges. Let N (V) be the set of all neutrosophic set in V. By a

neutrosophic soft graph (NS-Graph), we mean a 4-tuple G = (G?,Q,F,G) where F : Q →
N (V),G : Q → N (V × V) given by

F(θ) = Fθ = {〈ν, TFθ(ν), IFθ(ν),FFθ(ν)〉 , ν ∈ V}

and

G(θ) = Gθ = {〈(ν, µ), TFθ(ν, µ), IFθ(ν, µ),FFθ(ν, µ)〉 , (ν, µ) ∈ V × V}

are neutrosophic sets over V and V × V respectively with

TFθ(ν, µ) ≤ min {TFθ(ν), TFθ(µ)}

IFθ(ν, µ) ≤ min {IFθ(ν), IFθ(µ)}

FFθ(ν, µ) ≥ max {FFθ(ν),FFθ(µ)}

for all (ν, µ) ∈ (V × V) and θ ∈ Q.

3. Neutrosophic Hypersoft Graphs

In this section, notions of neutrosophic hypersoft graph are characterized with some prop-

erties and examples.

Definition 3.1. Let G? = (V, E) be a simple graph with V as set of vertices and E as set

of edges and Q1,Q2,Q3, ...,Qn are disjoint attribute-valued sets corresponding to distinct

attributes α1, α2, α3, ..., αn with Q = Q1 × Q2 × Q3 × ... × Qn. Let N (V) be the set of all

neutrosophic set in V. By a neutrosophic hypersoft graph (NHS-Graph), we mean a 4-tuple

G = (G?,Q,F,G) where F : Q → N (V),G : Q → N (V × V) given by

F(θ) = Fθ = {〈ν, TFθ(ν), IFθ(ν),FFθ(ν)〉 , ν ∈ V}

and

G(θ) = Gθ = {〈(ν, µ), TFθ(ν, µ), IFθ(ν, µ),FFθ(ν, µ)〉 , (ν, µ) ∈ V × V}

are neutrosophic sets over V and V × V with

TFθ(ν, µ) ≤ min {TFθ(ν), TFθ(µ)}

IFθ(ν, µ) ≥ min {IFθ(ν), IFθ(µ)}

FFθ(ν, µ) ≥ max {FFθ(ν),FFθ(µ)}

for all (ν, µ) ∈ (V × V) and θ ∈ Q.
Note: The collection of all neutrosophic hypersoft graphs is denoted by ΩNHSG.
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Table 1. Tabular Representation of NHS-Graph G = (G?,Q,F,G)

F ν1 ν2 ν3

θ1 (0.2, 0.4, 0.7) (0.3, 0.6, 0.3) (0, 0, 1)

θ2 (0.1, 0.4, 0.3) (0.3, 0.4, 0.5) (0, 0, 1)

θ3 (0.1, 0.5, 0.6) (0.3, 0.3, 0.8) (0.3, 0.2, 0.5)

θ4 (0.4, 0.2, 0.6) (0.3, 0.6, 0.5) (0.4, 0.3, 0.6)

G (ν1, ν2) (ν2, ν3) (ν1, ν3)

θ1 (0, 0, 1) (0, 0, 1) (0, 0, 1)

θ2 (0.1, 0.3, 0.2) (0, 0, 1) (0, 0, 1)

θ3 (0.1, 0.5, 0.4) (0.2, 0.4, 0.3) (0, 0, 1)

θ4 (0.2, 0.3, 0.4) (0.2, 0.5, 0.3) (0.4, 0.2, 0.7)

Figure 1. Graphical Representation of TABLE 1 with (a) N (θ1), (b) N (θ2),

(c) N (θ3) and (d) N (θ4)

Example 3.2. Let G? = (V, E) be a simple graph with V = {ν1, ν2, ν3} and Q1,Q2,Q3

are disjoint attribute-valued sets corresponding to distinct attributes α1, α2, α3 where Q1 =

{α11, α12}, Q2 = {α21, α22} and Q3 = {α31}. Q = Q1 × Q2 × Q3 = {θ1, θ2, θ3, θ4} where

each θi is a 3-tuple element of Q and TGθ(νi, νj) = 0, IGθ(νi, νj) = 0,FGθ(νi, νj) = 1 for

all (νi, νj) ∈ V × V\ {(ν1, ν2), (ν2, ν3), (ν1, ν3)}. The tabular and graphical representation of

NHS-Graph G = (G?,Q,F,G) are given in TABLE 1 and FIGURE 1 respectively.

Definition 3.3. A neutrosophic hypersoft graph G =
(
G?,Q1,F1,G1

)
is called a neutrosophic

hypersoft subgraph of G = (G?,A,F,G) if
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Table 2. Tabular Representation of NHS-subgraph G =
(
G?,Q1,F1,G1

)
F ν1 ν2 ν3

θ1 (0.2, 0.3, 0.7) (0.3, 0.3, 0.4) (0, 0, 1)

θ2 (0.1, 0.4, 0.3) (0.3, 0.2, 0.8) (0, 0, 1)

θ3 (0.1, 0.5, 0.6) (0.2, 0.3, 0.8) (0.2, 0.2, 0.5)

G (ν1, ν2) (ν2, ν3) (ν1, ν3)

θ1 (0, 0, 1) (0, 0, 1) (0, 0, 1)

θ2 (0.1, 0.3, 0.3) (0, 0, 1) (0, 0, 1)

θ3 (0.1, 0.5, 0.4) (0.2, 0.3, 0.3) (0, 0, 1)

Figure 2. Graphical Representation of TABLE 2 with (a) N (θ1), (b) N (θ2)

and (c) N (θ3)

(1) Q1 ⊆ Q
(2) F1

θ ⊆ f which means TF1
θ
(ν) ≤ TFθ(ν), IF1

θ
(ν) ≤ IFθ(ν),FF1

θ
(ν) ≥ FFθ(ν).

(3) G1
θ ⊆ g which means TG1

θ
(ν) ≤ TGθ(ν), IG1

θ
(ν) ≤ IGθ(ν),FG1

θ
(ν) ≥ FGθ(ν).

for all θ ∈ Q1 and Q1 = Q1 ×Q2 × ...×Qn where Q1,Q2, ...,Qn are disjoint attribute-valued

sets corresponding to distinct attributes α1, α2, ..., αn respectively.

Example 3.4. Let G? = (V, E) be a simple graph with V = {ν1, ν2, ν3} and Q1,Q2,Q3

are disjoint attribute-valued sets corresponding to disjoint attributes α1, α2, α3 where Q1 =

{α11, α12}, Q2 = {α21} and Q3 = {α31}. Q = Q1 × Q2 × Q3 = {θ1, θ2, θ3} where each θi

is a 3-tuple element of Q. The tabular and graphical representation of NHS-subgraph G =(
G?,Q1,F1,G1

)
are given in TABLE 2 and FIGURE 2 respectively. In this graph, TGθ(νi, νj) =

0, IGθ(νi, νj) = 0,FGθ(νi, νj) = 1 for all (νi, νj) ∈ V × V\ {(ν1, ν2), (ν2, ν3), (ν1, ν3)} and for all

θ ∈ Q.
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Definition 3.5. A neutrosophic hypersoft subgraph G =
(
G?,Q1,F1,G1

)
is called a neutro-

sophic hypersoft spanning subgraph of G = (G?,Q,F,G) if F1
θ(ν) = F(ν) for all ν ∈ V, e ∈ Q

where Q1 = Q1 × Q2 × ... × Qn and Q1,Q2, ...,Qn are disjoint attribute-valued sets corre-

sponding to disjoint attributes α1, α2, ..., αn respectively.

Definition 3.6. A strong neutrosophic hypersoft subgraph G = (G?,Q,F,G) is a neutrosophic

hypersoft subgraph with condition that Gθ(ν, µ) = Fθ(ν) ∩ Fθ(µ) for x, y ∈ V and e ∈ Q such

that Q = Q1 ×Q2...×Qn and Q1,Q2, ...,Qn are disjoint attribute-valued sets corresponding

to disjoint attributes α1, α2, ..., αn respectively.

4. Set Theoretic Operations of NHS-Graphs

In this section, some theoretic operations (i.e. union, intersection and complement) of neu-

trosophic hypersoft graph (NHS-Graphs) are investigated with suitable examples and results.

Definition 4.1. The union of two NHS-Graphs G1 =
(
G?

1,Q1,F1,G1
)
, G2 =

(
G?

2,Q2,F2,G2
)
,

denoted by G1∪G2, is a NHS-Graph G = (G?,Q,F,G) such that Q = Q1∪Q2. In this graph,

the neutrosophic components for F are given as follows:

TFθ(ν) =



TF1
θ
(ν)


if θ ∈ Q1 −Q2 and ν ∈ V1 − V2 or
if θ ∈ Q1 −Q2 and ν ∈ V1 ∩ V2 or
if θ ∈ Q1 ∩Q2 and ν ∈ V1 − V2

TF2
θ
(ν)


if θ ∈ Q2 −Q1 and ν ∈ V2 − V1 or
if θ ∈ Q2 −Q1 and ν ∈ V2 ∩ V1 or
if θ ∈ Q1 ∩Q2 and ν ∈ V2 − V1

max
{
TF1

θ
(ν), TF2

θ
(ν)
}{

if θ ∈ Q1 ∩Q2 and ν ∈ V1 ∩ V2
0, otherwise

and

IFθ(ν) =



IF1
θ
(ν)


if θ ∈ Q1 −Q2 and ν ∈ V1 − V2 or
if θ ∈ Q1 −Q2 and ν ∈ V1 ∩ V2 or
if θ ∈ Q1 ∩Q2 and ν ∈ V1 − V2

IF2
θ
(ν)


if θ ∈ Q2 −Q1 and ν ∈ V2 − V1 or
if θ ∈ Q2 −Q1 and ν ∈ V2 ∩ V1 or
if θ ∈ Q1 ∩Q2 and ν ∈ V2 − V1

max
{
IF1

θ
(ν), IF2

θ
(ν)
}{

if θ ∈ Q1 ∩Q2 and ν ∈ V1 ∩ V2
0, otherwise
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and

FFθ(ν) =



FF1
θ
(ν)


if θ ∈ Q1 −Q2 and ν ∈ V1 − V2 or
if θ ∈ Q1 −Q2 and ν ∈ V1 ∩ V2 or
if θ ∈ Q1 ∩Q2 and ν ∈ V1 − V2

FF2
θ
(ν)


if θ ∈ Q2 −Q1 and ν ∈ V2 − V1 or
if θ ∈ Q2 −Q1 and ν ∈ V2 ∩ V1 or
if θ ∈ Q1 ∩Q2 and ν ∈ V2 − V1

min
{
FF1

θ
(ν),FF2

θ
(ν)
}{

if θ ∈ Q1 ∩Q2 and ν ∈ V1 ∩ V2
0, otherwise

.

Also the neutrosophic components for G are given as follows:

TGθ(ν) =



TG1
θ
(ν)


if θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2) or
if θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2) or
if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2)

TG2
θ
(ν)


if θ ∈ Q2 −Q1 and (ν, µ) ∈ (V2 × V2)− (V1 × V1) or
if θ ∈ Q2 −Q1 and (ν, µ) ∈ (V2 × V2) ∩ (V1 × V1) or
if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V2 × V2)− (V1 × V1)

max
{
TG1

θ
(ν), TG2

θ
(ν)
}{

if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2)

0, otherwise

and

IGθ(ν) =



IG1
θ
(ν)


if θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2) or
if θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2) or
if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2)

IG2
θ
(ν)


if θ ∈ Q2 −Q1 and (ν, µ) ∈ (V2 × V2)− (V1 × V1) or
if θ ∈ Q2 −Q1 and (ν, µ) ∈ (V2 × V2) ∩ (V1 × V1) or
if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V2 × V2)− (V1 × V1)

max
{
IG1

θ
(ν), IG2

θ
(ν)
}{

if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2)

0, otherwise

and

FGθ(ν) =



FG1
θ
(ν)


if θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2) or
if θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2) or
if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2)

FG2
θ
(ν)


if θ ∈ Q2 −Q1 and (ν, µ) ∈ (V2 × V2)− (V1 × V1) or
if θ ∈ Q2 −Q1 and (ν, µ) ∈ (V2 × V2) ∩ (V1 × V1) or
if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V2 × V2)− (V1 × V1)

min
{
FG1

θ
(ν),FG2

θ
(ν)
}{

if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2)

0, otherwise

.

Theorem 4.2. If G1,G2 ∈ ΩNHSG then G1 ∪G2 ∈ ΩNHSG.
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Proof. Consider two NHS-Graphs G1 =
(
G?

1,Q1,F1,G1
)

and G2 =
(
G?

2,Q2,F2,G2
)

as defined

in 3.1. Let G = (G?,Q,F,G) be the union of NHS-Graphs G1 and G2 where Q = Q1 ∪Q2.

Now let θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2), then

TGθ(ν, µ) = TG1
θ
(ν, µ) ≤ min

{
TF1

θ
(ν), TF1

θ
(µ)
}

= min {TFθ(ν), TFθ(µ)}

so

TGθ(ν, µ) ≤ min {TFθ(ν), TFθ(µ)} .

Also

IGθ(ν, µ) = IG1
θ
(ν, µ) ≤ min

{
IF1

θ
(ν), IF1

θ
(µ)
}

= min {IFθ(ν), IFθ(µ)}

so

IGθ(ν, µ) ≤ min {IFθ(ν), IFθ(µ)} .

Now

FGθ(ν, µ) = FG1
θ
(ν, µ) ≥ max

{
FF1

θ
(ν),FF1

θ
(µ)
}

= max {FFθ(ν),FFθ(µ)}

so

FGθ(ν, µ) ≥ max {FFθ(ν),FFθ(µ)} .

Similar results are obtained when θ ∈ Q1 −Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2)
or θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1)− (V2 × V2).
Now if θ ∈ Q1 ∩Q2 and (ν, µ) ∈ (V1 × V1) ∩ (V2 × V2) then

TGθ(ν, µ) = max
{
TG1

θ
(ν, µ), TG2

θ
(ν, µ)

}
≤ max

{
min

{
TF1

θ
(ν), TF1

θ
(µ)
}
,min

{
TF2

θ
(ν), TF2

θ
(µ)
}}

≤ min
{

max
{
TF1

θ
(ν), TF1

θ
(µ)
}
,max

{
TF2

θ
(ν), TF2

θ
(µ)
}}

= min {TFθ(ν), TFθ(µ)} .

Also

IGθ(ν, µ) = max
{
IG1

θ
(ν, µ), IG2

θ
(ν, µ)

}
≤ max

{
min

{
IF1

θ
(ν), IF1

θ
(µ)
}
,min

{
IF2

θ
(ν), IF2

θ
(µ)
}}

≤ min
{

max
{
IF1

θ
(ν), IF1

θ
(µ)
}
,max

{
IF2

θ
(ν), IF2

θ
(µ)
}}

= min {IFθ(ν), IFθ(µ)} .

In the same way

FGθ(ν, µ) = min
{
FG1

θ
(ν, µ),FG2

θ
(ν, µ)

}
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Table 3. Tabular Representation of NHS-Graph G1 =
(
G?

1,Q1,F1,G1
)

ac-

cording to Example 4.3

F ν1 ν2 ν3

θ1 (0.2, 0.3, 0.4) (0.3, 0.6, 0.8) (0.3, 0.4, 0.5)

θ2 (0.2, 0.4, 0.8) (0.2, 0.3, 0.4) (0.5, 0.7, 0.8)

θ3 (0.6, 0.7, 0.8) (0.4, 0.5, 0.7) (0.7, 0.9, 0.9)

G (ν1, ν2) (ν2, ν3) (ν1, ν3)

θ1 (0.2, 0.3, 0.6) (0.2, 0.4, 0.9) (0.2, 0.3, 0.8)

θ2 (0.2, 0.3, 0.9) (0.2, 0.2, 0.9) (0.2, 0.3, 0.8)

θ3 (0, 0, 1) (0.3, 0.4, 0.9) (0.2, 0.4, 0.9)

≥ min
{

max
{
FF1

θ
(ν),FF1

θ
(µ)
}
,max

{
FF2

θ
(ν),FF2

θ
(µ)
}}

≥ max
{

min
{
FF1

θ
(ν),FF1

θ
(µ)
}
,min

{
FF2

θ
(ν),FF2

θ
(µ)
}}

= max {FFθ(ν),FFθ(µ)} .

Hence the union G = G1 ∪G2 is NHS-Graphs.

Example 4.3. Let G1 =
(
G?

1,Q1,F1,G1
)

be a neutrosophic hypersoft graph where G?
1 =

(V1, E1) with V1 = {ν1, ν2, ν3} and Q1,Q2,Q3 are disjoint attribute-valued sets corresponding

to distinct attributes α1, α2, α3 where Q1 = {α11}, Q2 = {α21} and Q3 = {α31, α32, α33}.
Q1 = Q1 ×Q2 ×Q3 = {θ1, θ2, θ3} where each θi is a 3-tuple element of Q1 and TGθ(νi, νj) =

0, IGθ(νi, νj) = 0,FGθ(νi, νj) = 1 for all (νi, νj) ∈ V1 × V1\ {(ν1, ν2), (ν2, ν3), (ν1, ν3)}. Its

tabular representation is given in TABLE 3. Also let G2 =
(
G?

2,Q2,F2,G2
)

be a neutro-

sophic hypersoft graph where G?
2 = (V2, E2) with V2 = {ν3, ν4, ν5} and Q3,Q4,Q5 are disjoint

attribute-valued sets corresponding to distinct attributes α3, α4, α5 where Q3 = {α31, α32},
Q4 = {α41}, Q5 = {α51}. Q2 = Q3 × Q4 × Q5 = {θ2, θ4} where each θi is a 3-

tuple element of Q2 and TGθ(νi, νj) = 0, IGθ(νi, νj) = 0,FGθ(νi, νj) = 1 for all (νi, νj) ∈
V2 × V2\ {(ν3, ν4), (ν4, ν5), (ν3, ν5)}. Its tabular representation is given in TABLE 4.

Now Let G = (G?,Q,F,G) be the union of two neutrosophic hypersoft graphs

G1 =
(
G?

1,Q1,F1,G1
)

and G2 =
(
G?

2,Q2,F2,G2
)

where Q = Q1 ∪ Q2

and TGθ(νi, νj) = 0, IGθ(νi, νj) = 0,FGθ(νi, νj) = 1 for all (νi, νj) ∈ V ×
V\ {(ν1, ν2), (ν1, ν3), (ν2, ν3), (ν3, ν4), (ν3, ν5), (ν4, ν5)}. Its (union of these two graphs) tabu-

lar representation is given in TABLE 5.

Definition 4.4. The intersection of two NHS-Graphs G1 =
(
G?

1,Q1,F1,G1
)
, G2 =(

G?
2,Q2,F2,G2

)
, denoted by G1 ∩ G2, is a NHS-Graph G = (G?,Q,F,G) such that Q =
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Figure 3. Graphical Representation of TABLE 3 with (a) N (θ1), (b) N (θ2)

and (c) N (θ3)

Table 4. Tabular Representation of NHS-Graph G2 =
(
G?

2,Q2,F2,G2
)

ac-

cording to Example 4.3

F ν3 ν4 ν5

θ2 (0.3, 0.4, 0.5) (0.2, 0.3, 0.5) (0.5, 0.7, 0.8)

θ4 (0.6, 0.8, 0.9) (0.4, 0.7, 0.9) (0.4, 0.5, 0.6)

G (ν3, ν4) (ν4, ν5) (ν3, ν5)

θ2 (0.2, 0.3, 0.9) (0.3, 0.4, 0.9) (0, 0, 1)

θ4 (0.2, 0.2, 0.9) (0.3, 0.3, 0.9) (0.3, 0.4, 0.9)

Table 5. Tabular Representation of G = G1 ∪G2

F ν1 ν2 ν3 ν4 ν5

θ1 (0.2, 0.3, 0.4) (0.3, 0.4, 0.5) (0.3, 0.6, 0.8) (0, 0, 1) (0, 0, 1)

θ2 (0.2, 0.4, 0.8) (0.2, 0.3, 0.4) (0.3, 0.5, 0.5) (0.2, 0.3, 0.4) (0.5, 0.7, 0.8)

θ3 (0.6, 0.7, 0.8) (0.4, 0.5, 0.7) (0.7, 0.9, 0.9) (0, 0, 1) (0, 0, 1)

θ4 (0, 0, 1) (0, 0, 1) (0.6, 0.8, 0.9) (0.4, 0.7, 0.9) (0.4, 0.5, 0.6)

G (ν1, ν2) (ν1, ν3) (ν2, ν3) (ν3, ν4) (ν3, ν5) (ν4, ν5)

θ1 (0.2, 0.3, 0.8) (0.2, 0.3, 0.9) (0.2, 0.4, 0.9) (0, 0, 1) (0, 0, 1) (0, 0, 1)

θ2 (0.2, 0.3, 0.8) (0.2, 0.3, 0.9) (0.2, 0.2, 0.9) (0.2, 0.3, 0.9) (0.3, 0.4, 0.9) (0, 0, 1)

θ3 (0.2, 0.4, 0.9) (0, 0, 1) (0.3, 0.4, 0.9) (0, 0, 1) (0, 0, 1) (0, 0, 1)

θ4 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0.2, 0.2, 0.9) (0.3, 0.3, 0.9) (0.3, 0.4, 0.9)
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Figure 4. Graphical Representation of TABLE 4 with (a) N (θ2) and (b) N (θ4)

Figure 5. Graphical Representation of TABLE 5 with (a) N (θ1) and (b) N (θ2)

Q1 ∩Q2,V = V1 ∩ V2. In this graph, the neutrosophic components for F are given as follows:

TFθ =


T 1
Fθ(ν) if θ ∈ Q1 −Q2

T 2
Fθ(ν) if θ ∈ Q2 −Q1

min
{
T 1
Fθ(ν), T 2

Fθ(ν)
}
if θ ∈ Q1 ∩Q2

,

and

IFθ =


I1Fθ(ν) if θ ∈ Q1 −Q2

I2Fθ(ν) if θ ∈ Q2 −Q1

min
{
I1Fθ(ν), I2Fθ(ν)

}
if θ ∈ Q1 ∩Q2

,
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Figure 6. Graphical Representation of TABLE 5 with (c) N (θ3) and (d) N (θ4)

and

FFθ =


F1
Fθ(ν) if θ ∈ Q1 −Q2

F2
Fθ(ν) if θ ∈ Q2 −Q1

max
{
F1
Fθ(ν),F2

Fθ(ν)
}
if θ ∈ Q1 ∩Q2

.

The neutrosophic components for G are given as follows:

TGθ =


T 1
Gθ(ν) if θ ∈ Q1 −Q2

T 2
Gθ(ν) if θ ∈ Q2 −Q1

min
{
T 1
Gθ(ν), T 2

Gθ(ν)
}
if θ ∈ Q1 ∩Q2

,

and

IGθ =


I1Gθ(ν) if θ ∈ Q1 −Q2

I2Gθ(ν) if θ ∈ Q2 −Q1

min
{
I1Gθ(ν), I2Gθ(ν)

}
if θ ∈ Q1 ∩Q2

,

and

FGθ =


F1
Gθ(ν) if θ ∈ Q1 −Q2

F2
Gθ(ν) if θ ∈ Q2 −Q1

max
{
F1
Gθ(ν),F2

Gθ(ν)
}
if θ ∈ Q1 ∩Q2

.

Theorem 4.5. If G1,G2 ∈ ΩNHSG then G1 ∩G2 ∈ ΩNHSG.

Proof. Consider two NHS-Graphs G1 =
(
G?

1,Q1,F1,G1
)

and G2 =
(
G?

2,Q2,F2,G2
)

as defined

in 3.1. Let G = (G?,Q,F,G) be the intersection of NHS-Graphs G1 and G2 where Q = Q1∪Q2

and V = V1 ∩ V2. Let θ ∈ Q1 −Q2 then

TGθ(ν, µ) = TG1
θ
(ν, µ)

≤ min
{
TF1

θ
(ν), TF1

θ
(µ)
}

= min {TFθ(ν), TFθ(µ)}
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so

TGθ(ν, µ) ≤ min {TFθ(ν), TFθ(µ)}

Also

IGθ(ν, µ) = IG1
θ
(ν, µ)

≤ min
{
IF1

θ
(ν), IF1

θ
(µ)
}

= min {IFθ(ν), IFθ(µ)}

so

IGθ(ν, µ) ≤ min {IFθ(ν), IFθ(µ)}

Now

FGθ(ν, µ) = FG1
θ
(ν, µ)

≥ max
{
FF1

θ
(ν),FF1

θ
(µ)
}

= max {FFθ(ν),FFθ(µ)}

so

FGθ(ν, µ) ≥ max {FFθ(ν),FFθ(µ)}

Similar results are obtained when θ ∈ Q2 −Q1

Now if θ ∈ Q1 ∩Q2 then

TGθ(ν, µ) = min
{
TG1

θ
(ν, µ), TG2

θ
(ν, µ)

}
≤ min

{
min

{
TF1

θ
(ν), TF1

θ
(µ)
}
,min

{
TF2

θ
(ν), TF2

θ
(µ)
}}

≤ min
{

min
{
TF1

θ
(ν), TF2

θ
(µ)
}
,min

{
TF1

θ
(ν), TF2

θ
(µ)
}}

= min {TFθ(ν), TFθ(µ)}

Also

IGθ(ν, µ) = min
{
IG1

θ
(ν, µ), IG2

θ
(ν, µ)

}
≤ min

{
min

{
IF1

θ
(ν), IF1

θ
(µ)
}
,min

{
IF2

θ
(ν), IF2

θ
(µ)
}}

≤ min
{

min
{
IF1

θ
(ν), IF2

θ
(µ)
}
,min

{
IF1

θ
(ν), IF2

θ
(µ)
}}

= min {IFθ(ν), IFθ(µ)}

In the same way

FGθ(ν, µ) = max
{
FG1

θ
(ν, µ),FG2

θ
(ν, µ)

}
≥ max

{
max

{
FF1

θ
(ν),FF1

θ
(µ)
}
,max

{
FF2

θ
(ν),FF2

θ
(µ)
}}

≥ max
{

max
{
FF1

θ
(ν),FF2

θ
(µ)
}
,max

{
FF1

θ
(ν),FF2

θ
(µ)
}}

= max {FFθ(ν),FFθ(µ)}

Hence the intersection G = G1 ∩G2 is NHS-Graphs.
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Table 6. Tabular Representation of NHS-Graph G1 =
(
G?

1,Q1,F1,G1
)

ac-

cording to Example 4.6

F ν1 ν2 ν3

θ1 (0.2, 0.3, 0.4) (0.3, 0.5, 0.6) (0.2, 0.6, 0.8)

θ2 (0.3, 0.4, 0.8) (0.5, 0.7, 0.8) (0.4, 0.5, 0.7)

G (ν1, ν2) (ν2, ν3) (ν1, ν3)

θ1 (0.2, 0.2, 0.7) (0.2, 0.4, 0.9) (0.2, 0.2, 0.9)

θ2 (0.3, 0.4, 0.8) (0.4, 0.5, 0.9) (0.3, 0.4, 0.8)

Table 7. Tabular Representation of NHS-Graph G2 =
(
G?

2,Q2,F2,G2
)

ac-

cording to Example 4.6

F ν2 ν3 ν4

θ2 (0.4, 0.6, 0.7) (0.5, 0.6, 0.9) (0.3, 0.5, 0.7)

θ3 (0.3, 0.5, 0.6) (0.2, 0.6, 0.8) (0.2, 0.3, 0.7)

G (ν2, ν3) (ν3, ν4) (ν2, ν4)

θ2 (0.2, 0.2, 0.7) (0.2, 0.4, 0.9) (0.2, 0.2, 0.9)

θ3 (0.3, 0.4, 0.8) (0.4, 0.5, 0.9) (0.3, 0.4, 0.8)

Example 4.6. Let G1 =
(
G?

1,Q1,F1,G1
)

be a neutrosophic hypersoft graph where G?
1 =

(V1, E1) with V1 = {ν1, ν2, ν3} and Q1,Q2,Q3 are disjoint attribute-valued sets correspond-

ing to distinct attributes α1, α2, α3 where Q1 = {α11}, Q2 = {α21} and Q3 = {α31, α32}.
Q1 = Q1 × Q2 × Q3 = {θ1, θ2} where each θi is a 3-tuple element of Q1 and TGθ(νi, νj) =

0, IGθ(νi, νj) = 0,FGθ(νi, νj) = 1 for all (νi, νj) ∈ V1 × V1\ {(ν1, ν2), (ν2, ν3), (ν1, ν3)}. Its

tabular and graphical representation are given in TABLE 6 and FIGURE 7 respectively.

Also let G2 =
(
G?

2,Q2,F2,G2
)

be a neutrosophic hypersoft graph where G?
2 = (V2, E2)

with V2 = {ν2, ν3, ν4} and Q2,Q3,Q4 are disjoint attribute-valued sets corresponding to

distinct attributes α2, α3, α4 where Q2 = {α21}, Q3 = {α31, α32}, Q4 = {α41}. Q2 =

Q2 × Q3 × Q4 = {θ2, θ3} where each θi is a 3-tuple element of Q2 and TGθ(νi, νj) =

0, IGθ(νi, νj) = 0,FGθ(νi, νj) = 1 for all (νi, νj) ∈ V2 × V2\ {(ν2, ν3), (ν3, ν4), (ν2, ν4)}. Its

tabular and graphical representation are given in TABLE 7 and FIGURE 8 respectively.

Now Let G = (G?,Q,F,G) be the intersection of two neutrosophic hypersoft graphs G1 =(
G?

1,Q1,F1,G1
)

and G2 =
(
G?

2,Q2,F2,G2
)

where Q = Q1 ∩ Q2.Its (intersection of these two

NHS-graphs) tabular and graphical representation are given in TABLE 8 and FIGURE 9

respectively.

Definition 4.7. The compliment G =
(
G?,Q,F,G

)
of strong neutrosophic hypersoft subgraph

G = (G?,Q,F,G) with Gθ(ν, µ) = Fθ(ν) ∩ Fθ(µ) where
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Figure 7. Graphical Representation of TABLE 6with (a) N (θ1) and (b) N (θ2)

Figure 8. Graphical Representation of TABLE 7with (a) N (θ2) and (b) N (θ3)

Table 8. Tabular Representation of NHS-Graph G = G1 ∩G2

F ν2 ν3

θ1 (0.3, 0.5, 0.6) (0.2, 0.6, 0.8)

θ2 (0.4, 0.6, 0.8) (0.4, 0.5, 0.9)

θ3 (0.3, 0.5, 0.6) (0.2, 0.6, 0.8)

G (ν2, ν3)

θ1 (0.2, 0.4, 0.9)

θ2 (0.3, 0.5, 0.9)

θ3 (0.2, 0.5, 0.9)

(1) Q = Q
(2) TFθ(ν) = TFθ(ν), IFθ(ν) = IFθ(ν),FFθ(ν) = FFθ(ν) for all ν ∈ V
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Figure 9. Graphical Representation of TABLE 8 with (a) N (θ1), (b) N (θ2)

and (c) N (θ3)

(3) TFθ (ν, µ) =

{
min {TFθ(ν), TFθ(µ)} if TGθ (ν, µ) = 0

0 otherwise

IFθ (ν, µ) =

{
min {IFθ(ν), IFθ(µ)} if IGθ (ν, µ) = 0

0 otherwise

FFθ (ν, µ) =

{
max {FFθ(ν),FFθ(µ)} if FGθ (ν, µ) = 0

0 otherwise
.

5. Conclusions

In this study, a gluing concept of neutrosophic hypersoft set and graph theory is charac-

terized. Some of elementary properties, types, operations and results are generalized under

neutrosophic hypersoft set environment. Future work may include the extension of this study

for the following structures and fields:

• Interval valued neutrosophic hypersoft set

• Neutrosophic parameterized hypersoft set

• m-polar neutrosophic hypersoft set

• Decision making problems

• New kinds of graphs

• Energies of graph
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Abstract: In this paper, we present the Neutrosophic quadratic residues and nonresidues with their 

basic interpretation as graphs in an algebraic manner and analog to the algebraic graphs. We 

establish the Neutrosophic, number-theoretic, and graph-theoretic properties of the set of 

Neutrosophic quadratic residues and nonresidues, many of which mirror those of the classical 

quadratic residues and nonresidues of modulo an odd prime. These properties, especially the 

algebraic ones, are connected to algebraic graphs, and thus we conclude the paper by studying the 

structural properties of Neutrosophic quadratic residue and quadratic nonresidue graphs. 

Keywords: Quadratic residues; Quadratic nonresidues; Neutrosophic quadratic residues; 

Neutrosophic quadratic nonresidues; Neutrosophic quadratic residue graph; Neutrosophic 

quadratic nonresidue graph. 

 

 

1. Introduction 

 For any positive integer , the set  is a ring under the usual 

addition and multiplication modulo . Moreover, for any prime , the ring  is a field of order  

and hence   is a group under multiplication modulo , see [1-2]. 

 For ,  is a quadratic residue modulo  if and only if  for some . Now 

suppose  denote the set of all quadratic residues modulo . Then  is a nonempty subset of , 

given by . It is clear that for any , there exists  and  in 

 such that . Therefore,  is a subgroup of  and also the index 

. This implies that  if and only if  and  are both in  or neither of them is 

in . This specifies that an element in  as a residue or nonresidue according to whether or not it 
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is a quadratic residue modulo . In particular, the set of all quadratic nonresidues modulo  in  

is denoted by . Hence . So,  is the normal subgroup and  is the only 

nonempty subset of  whose orders are equal. For more information about  and , reader 

refer [3].   

 

 Much of the specific power and utility of modern mathematics arises from its abstraction of 

important features similar to various circumstances and illustrations. But many sets and systems we 

encounter have a usual addition and multiplication defined on their elements. These operations 

often satisfy a few common properties that we want to isolate and study. Besides the obvious 

illustrations in different number systems and algebraic systems, we can operate polynomials, 

functions, matrices, etc. Studying the algebraic structure of groups, rings, and fields based on 

number theoretic and combinatorial properties has caught the interest of many researchers order the 

last decades. Recently, algebraic systems associated with neutrosophic elements and sets [4] seem to 

be more interesting and active area compare to those associated with classical algebraic structures. 

For instance, the Neutrosophic set  is generated by the multiplicative group  and the 

neutrosophic unit element  (  and  does not exist), that is,  or equivalently 

, where  is prime. This is a Neutrosophic group [5] concerning 

Neutrosophic multiplication  for every , .  

 The concept of the Neutrosophic graph of Neutrosophic structures was first introduced by 

Vasanth Kandasamy and Smarandache [6], but this work was mostly concerned with the basic 

properties of Neutrosophic algebraic structures. Recently, the authors Chalapathi and Kiran studied 

the Neutrosophic graphs [5] of finite groups. The Neutrosophic graph of a finite group , which is 

denoted by , is an undirected simple graph whose vertices are elements of the neutrosophic 

group  with two distinct vertices  and  which are adjacent if and only if either  or 

. 

 In 1879, author Cayley considered the Cayley graph for finite groups. After that, a lot of 

research has been done on various families of Cayley graphs. For instance, Quadratic residue Cayley 

graphs [7], Quartic residue Cayley graphs [8].  Many researchers exist in the literature on Cayley 

graphs quadratic residues on odd prime and prime power modules. The authors studied quadratic 

residues modulo  Cayley graphs in [9]. In this paper, we will focus on Neutrosophic quadratic 

residues and their corresponding algebraic graphs, which are not Cayley graphs. 
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2.  Neutrosophic Quadratic and Non Quadratic Residues  

 In this section, for convenience and also for later use, we define some definitions and 

notations concerning integers modulo an odd prime  , and Neutrosophic quadratic and 

nonquadratic residue modulo . 

 First, we recall some results about neutrosophic groups from [5].  

Theorem 2.1:  

1.   

2.  , where  

Theorem 2.2: Let  be a finite group with respect to multiplication modulo . Then       

 1.   and               

 2.   

 Let . Then  is a neutrosophic quadratic residue modulo  if and only if 

 for some . Now suppose  denote the set of all neutrosophic quadratic 

residues modulo . Then  is a nonempty subset of  given by 

. 

 Further, if for any , then  and  for some                  

,  so  

 Hence  is a neutrosophic subgroup of  with neutrosophic index, by the 

Theorem 2.1.                   

  . 

 Similarly, the set of all neutrosophic quadratic non-residues modulo  in  is denoted by 

with . 

Example 2.3: The following shortlist shows that the Neutrosophic quadratic and nonquadratic 

residues modulo , respectively.          
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                               ,   

               ,   

       . 

 From the above example, we observe the following:          

    and  . In particular,      

   and         

  . 

Theorem 2.4: Given , , is the neutrosophic prime subgroup of , 

where . 

Proof: It is clear from the well-known result that  is a subgroup of the group , because 

. 

Theorem 2.5: Fundamental Theorem of Neutrosophic Quadratic Residues Modulo                    

For each , we have the neutrosophic quotient group   is isomorphic to the 

neutrosophic group . 

Proof: For any , we have  and . Therefore, 

 is a neutrosophic subgroup of . So, there exists a 

Neutrosophic quotient group . Now we claim that . For this, we define a 

map  by the relation             

   

Clearly,  is a well-defined group and Neutrosophic group homomorphism, because 

 and , . 
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 Now to find a kernel of . If , then by the definition of kernel of group (classical) 

homomorphism,                   

                

                      

    . 

Similarly, if , then by the definition of a kernel of a Neutrosophic group homomorphism,  

               

                      

     . 

Hence,                      

                    

   . 

Finally, to find image of .          

                     

                

                   

        . 

By the fundamental theorem of a Neutrosophic group homomorphism, . This shows 

that .  

Remark 2.6:  is a Neutrosophic quadratic residue if and only if , otherwise, 

it is called neutrosophic quadratic residue modulo . 
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Example 2.7: For the prime , we have , , 

, ,  

.  

Theorem 2.8: The neutrosophic product of two neutrosophic quadratic residues is again a 

neutrosophic a quadratic residue modulo . Similarly, the neutrosophic product of two 

Neutrosophic quadratic nonresidues is a Neutrosophic quadratic residue modulo . 

Proof: Since  is a Neutrosophic normal subgroup of the Neutrosophic group  

whose index is . So there exists a Neutrosophic quotient group  such that , that 

is .  

 Let  such that . Then , since . Let  such 

that . Then .  

 Let    such that . Then . Let  such 

that . Then . 

 Because   and , we know that the neutrosophic 

quotient group defined as . 

(1)  If , then                 
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        , since ,                

and thus .  

(2) If , then . So there exists  such that  and . Then 

               

                       

                      

        , since    and  

Hence . 

(3) If  and , then               

               

        , since         

                       

                       

                        

        , since  iff .  

Hence . This proves the theorem. 

 Now, let us start with simple undirected graphs of neutrosophic quadratic residue and 

Neutrosophic quadratic Nonresidue graphs of the Neutrosophic graph  whose vertices are 

members in the Neutrosophic graph  where  is an odd prime. 

3.  Neutrosophic Quadratic Residue Graphs  

 Structurally, many real-world concepts, aspects, and situations can be described by using and 

applying diagrams of a set of vertices with edges joining pairs of these vertices. So, a mathematical 

abstraction of this type of diagram gives rise to the concept of a graph. A graph  and is denoted by 
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, where  and  vertex and edge sets of , respectively. A graph  is 

said to be connected if there is at least one path between every two vertices in  and disconnected if 

 has at least one pair of vertices between which there is no path. Every graph  consists of one or 

more connected graphs as subgraphs, and each such connected subgraph of  is called a 

component of  , and each component of  is denoted by . It is clear that every connected 

graph contains only one component and every disconnected graph of more than one vertex contains 

two or more components. Now a graph  is said to be complete if every vertex in  is connected to 

another vertex in .  

 A complete graph of order  is denoted by  and it has exactly edges, and it is 

called the size of . If  is a vertex of , then the number of edges incident on a vertex  is called 

the degree of  and it is denoted by . In particular, if  for every vertex  in , 

then  is called a regular graph. A graph  is said to be bipartite if its vertex set  can be 

partitioned into two non-empty disjoint subsets and  such that each edge of  connects a 

vertex of  to a vertex of , and the pair  is called bipartite of . Similarly,  is called a 

complete bipartite graph if each vertex of  is adjacent to each vertex of . Now, consider two 

graphs  and , then  and  are isomorphic to each other and it is denoted 

by  if there is a one-to-one correspondence between their vertices and between their edges 

such that the incidence relationship is preserved, see [10].         

Definition 3.1: An undirected simple graph  is called a Neutrosophic quadratic residue 

graph of the Neutrosophic group  whose vertex set is  and two distinct vertices  

and  are adjacent in  if and only if . 

 Before studying the properties of neutrosophic quadratic residue graphs, we give two 

examples to illustrate their usefulness. 
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Example 3.2: Since  is the vertex set of the graph , 

where . 

 

Figure 1. Neutrosophic Quadratic Residue Graph  of modulo 5. 

Example 3.3: For , we have  and 

. Then the graph  is represented as follows. 

 

Figure 2. Neutrosophic Quadratic Residue Graph  of modulo 7. 

 In this section, the basic properties of  being studied. We begin with the 

disconnectedness of the graph .   

Theorem 3.4: For , the graph  is disconnected. In particular, graph  

is the disjoint union of two complete components. 

Proof: Let  be an odd prime. Then the vertex set of neutrosophic quadratic residue graph 

 is . But                

               

                                          

where . This gives us that the vertex set  is partitioned into 
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two disjoint unions of  and . So, because of Theorem 2.8, we clear that 

 is disconnected. Now consider the following three cases. 

Case 1: Suppose . Then obviously . This implies that there exists an 

edge between any two vertices  and  in the graph . Thus,  has a 

complete subgraph, say  whose vertex set is . 

Case 2: Suppose . Then again by Theorem 2.8, . So, in this case also 

there exists an edge between every two vertices  and  in the graph . Thus, the 

graph,  has another complete subgraph, say  whose vertex set is 

. 

Case 3: Suppose  and . Then . It gives us that there is no 

edge between  and  when  and . 

 From the above three cases, we conclude that  and  are two 

disjoint complete components of the graph  such that        

  . 

Example 3.5: Two components of the graph  as shown below. 

 

                        

Figure 3. Components of the graph . 

 For each odd prime , the structure of  is easy to describe, because it contains 

the following properties: 
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1.  contains two disjoint connected components for each . 

2. Each component of  contains even and odd cycles for . 

3. Each component of  is not a bipartite graph for . 

 The next result gives useful and important properties of the components of the graph 

 when . 

Theorem 3.6: For each prime , . 

Proof: For each prime , the Neutrosophic quadratic residue and non-residue sets of  

are given by  and . 

 These are the vertex sets of the components  and , 

respectively. Also, we have . Now to prove that 

 and  are isomorphic as groups. For this, we define a function 

 by the relation  for every  and . Because 

of  and , the map  is a one-to-one correspondence. 

 Now, suppose  be an edge with end vertices  and  in the component         

. Then ,           

                     

          ,                            

where  be an edge with end vertices  and  in . This shows that 

there is a one-to-one correspondence between their vertices and their edges such that the incidence 

relationship is preserved. Hence, .    

 The following example illustrates the procedure of the above theorem 3.6 clearly.  

Example 3.7: Since  and . Using the map 

 as above, write the equations , ,  and 
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. These equations show that  is a one-to-one correspondence between the graph 

components  and , and thus which are isomorphic as graphs.  

 This special case of the above theorem when  occurs frequently and so we isolate it as a 

corollary.  

Corollary 3.8: Each component of the neutrosophic quadratic residue graph is isomorphic to the 

complete graph  

Proof: Due to Theorem 3.6, the only possibility of the graph  is 

. Therefore, the order and size of each component are  

and , respectively, and thus each component of the graph  is isomorphic to the 

complete graph . 

Example 3.9:  and .  

 The integer  is prime if and only if  or  . But, this paper  

will denote odd prime integer such that either  or . These prime integers 

are weapons for verifying two components of the graph  are Eulerian or not. It is now 

the time for determining the cases in which the components of the graph  are Eulerian, 

but first, we recall the following well-known result. 

Theorem 3.10 [10]: A connected graph  is Eulerian if and only if the degree of each vertex of  is 

even. 

 For  or  the following theorems show that  could 

not be Eulerian. 

Theorem 3.11: If  or , then each component of  is not 

Eulerian. 

Proof: Suppose on contrary that each component of  is Eulerian, which implies that the 

degree of each vertex is even. By Theorem 3.6, it is clear that         

  .  
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So, for every vertex  in , we have            

  . 

  , which is odd. Similarly, we can show that 

, which is also odd. Hence, we found that the degree of each vertex in 

the graph  can not be even. This contraposition shows that each component of 

 is never Eulerian when  or .  

4.  Neutrosophic Quadratic Nonresidue Graphs  

 In this section, we establish a complement graph of the neutrosophic quadratic residue graph 

, which is denoted by  and it is called a Neutrosophic quadratic 

nonresidue graph whose vertex set is the Neutrosophic group  and edge set is 

. 

Example 4.1: Since  and . The Neutrosophic quadratic 

nonresidue graph of  is shown below. 

 

Figure 4. The graph . 

 Now several interesting properties of these graphs on Neutrosophic quadratic nonresidues of 

modulo  have been obtained.  

 We begin with the basic properties of . 

 

Theorem 4.2: The Neutrosophic quadratic nonresidue graph  is connected. 

Proof: By the Theorem 2.8, whenever  and . This relates, 

for each , we have                

Neutrosophic Sets and Systems, Vol. 46, 2021                                                                                368 

 

     Chalapathi Tekuri, Sajana Shaik and Smarandache Florentin, Neutrosophic Quadratic Residues and Non-Residues



 

   ,              

  ,               

   and              

  .   

 These sets determine the elements             

  , , ...,  ;  

  , , ...,  ; 

  ...      ...        ... 

   , , ...,  ;               

  ...       ...        ...               

  , ( , ..., ( ;            

  , ( , ..., ( ;           

            ...          ...           ...            

  , ( , ..., ( ; 

            ...          ...           ...                           

are elements in  and which are the edges in the graph . Consequently, there is 

a path between any two distinct vertices in  and hence  is connected. 

Theorem 4.3: The Neutrosophic quadratic nonresidue graph  is                    

- regular. 

Proof: If  is any vertex of the Neutrosophic quadratic nonresidue graph , then  

must be an element of the Neutrosophic group . So there exist Neutrosophic quadratic 

residues  and nonresidues  such that           

  . 
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 This partition of the vertex set of the graph  implies that either               

 or . 

 Now , and if  then by Theorem 

2.8 . 

 It gives that the vertex  is adjacent to every element in . This means that    

                 

                        

                       

                              

         .  

 Next  and if . Then, again by 

the Theorem 2.8,                   

   .     

It yields that , proving that the Neutrosophic Quadratic nonresidue Graph 

 is  regular.  

 Finally looking at another basic property of the Neutrosophic quadratic nonresidue graph, we 

state the following fundamental theorem of graph theory. 

Theorem 4.4 [10]: If  is a simple undirected graph of the size . Then        

 

Theorem 4.5: The size of the graph  is .  

Proof: By the Theorem 4.3 and theorem 2.5, the size of the graph  is denoted by  

and defined as                   

               

Neutrosophic Sets and Systems, Vol. 46, 2021                                                                                370 

 

     Chalapathi Tekuri, Sajana Shaik and Smarandache Florentin, Neutrosophic Quadratic Residues and Non-Residues



 

                      

                              

                  

     .   

5.  Conclusions  

In this paper, we have studied two Neutrosophic graphical representations for determining the 

Neutrosophic Quadratic residues and nonresidues of the Neutrosophic group of modulo prime by 

using Neutrosophic algebraic theory, number theory, and classical algebraic theory. In addition to 

these, the Neutrosophic algebraic system can find Neutrosophic properties of Quadratic residues 

and nonresidues. Also, this algebraic-based application produces the complement neutrosophic 

graphs of each disjoint union of Neutrosophic Quadratic residue and nonresidue sets.  
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investigate some properties of the neutrosophic almost bitopological group.
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A list of Abbreviations

NS - neutrosophic set.

NG - neutrosophic group.

NT - neutrosophic topology.

NTS - neutrosophic topological space.

NOS - neutrosophic open set.

NCoS - neutrosophic closed set.

NBTS - neutrosophic bitopological space.

NTG - neutrosophic topological group.

NSOS - neutrosophic semi open set.

NSCoS - neutrosophic semi closed set.

NROS - neutrosophic regularly open set.

NRCS - neutrosophic regularly closed set.

NABTG - neutrosophic almost bitopological group.

B. Basumatary and N. Wary, A Note on Neutrosophic Almost Bitopological Group

Neutrosophic Sets and Systems, Vol. 46, 2021 



1. Introduction

The Fuzzy set (FS) concept was first introduced by Zadeh [29] in 1965. The concept of

membership function and explained the idea of uncertainty defined with the help of FS.

Atanassov [8] generalized the concept of fuzzy set theory (FST) and introduced the degree

of non-membership and proposed intuitionistic fuzzy set theory (IFST). Azad [9] discussed

the Fuzzy Semi-continuity (FSC), Fuzzy Almost Continuity (FAC), and Fuzzy Weakly Con-

tinuity (FWC). Chang [11] defined the concept of the fuzzy topology space (FTS) and Coker

[12] introduced the Intuitionistic fuzzy topological space (IFTS). Kandil [15] and Kelly [16]

discussed the fuzzy bitopological spaces and bitopological space. Rosenfeld [20] introduced the

fuzzy groups and Foster [13] defined the fuzzy topological groups.

F. Smarandache [25, 26] was introduced as an independent component of the degree of un-

certainty and discovered the neutrosophic set (NS). After the discovery of NS, many researchers

have developed the neutrosophic set theory for various branches of Science and Technology. NS

is used as an independent measure of uncertainty Membership and Non-Membership Function.

FS is used to control uncertainty by using the membership function only. While NS is used

to control uncertainty by using the truth membership function, indeterminacy membership

function, and falsity membership function. Salama and Alblowi [21] introduced the concept of

neutrosophic topological space (NTS). Salama et. al [22] studied closed sets and neutrosophic

continuous functions. Imran et. al [14] discussed some types of neutrosophic topological groups

in relation to neutrosophic alpha open sets. Abdel-Basset et. al [1] have applied neutrosophic

set theory (NST) as a tool on group discussion making framework. Abdel-Basset et al [2] done

the work in solving chain problems using a base-worst method based on a novel plithogenic

model. Sumathi et. al [27, 28] studied the Fuzzy Neutrosophic Groups (FNG) and Topological

Group Structure of Neutrosophic set. Mwchahary et. al [17] did their work in neutrosophic

bitopological space. Abdel-Basset et. al [3] developed supplier selection with group decision-

making under the type-2 neutrosophic number of TOPSIS technology. Abdel-Basset et. al

[4, 5] studied the chain management practices of evaluation of the green supply and defined

for achieving sustainable supplier selection of VIKOR method. Also, Abdel-Basset et. al [6,

7] developed hybrid multi-criteria decision-making for the sustainability assessment of bioen-

ergy production technologies and employed an evaluation approach for sustainable renewable

energy systems under uncertain environments.

In this paper, we try to study the neutrosophic almost bitopological group (NABTG) and

some of their properties by using the definition of neutrosophic almost continuous mapping

(NACM).
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2. Preliminaries

2.1. Definition:[28]

A NS A on a universe of discourse X can be expressed as A =
{
〈x,TA(x),IA(x),ΓA(x)〉 :

x ∈ X
}

, where T,I,Γ : X →]−0, 1+[. Note that 0 ≤ TA(x) + IA(x) + ΓA(x) ≤ 3.

2.2. Definition:[28]

The complement of NS A is expressed as Ac(x) =
{
〈x,TAc(x) = ΓA(x),IAc(x) = 1 −

IA(x),ΓAc(x) = TA(x)〉 : x ∈ X
}

.

2.3. Definition:[28]

Let X be non-empty set and A =
{
〈x,TA(x),IA(x),ΓA(x)〉 : x ∈ X

}
, B ={

〈x,TB(x),IB(x),ΓB(x)〉 : x ∈ X
}

, are NSs. Then

(i) A eB =
{
〈x,min(TA(x),TB(x)),min(IA(x),IB(x)),max(ΓA(x),ΓB(x)), 〉 : x ∈ X

}
(ii) A dB =

{
〈x,max(TA(x),TB(x)),max(IA(x),IB(x)),min(ΓA(x),ΓB(x)), 〉 : x ∈ X

}
(iii) A ≤ B if for each x ∈ X,TA(x) ≤ TB(x),IA(x) ≤ IB(x),ΓA(x) ≥ ΓB(x).

2.4. Definition:[28]

Let (X, ∗) be a group and let A be a NG in X. Then A is said to be a NG in X if it satisfies

the following conditions:

(i) TA(xy) ≥ TA(x) eTA(y), IA(xy) ≥ IA(x) e IA(y) and ΓA(xy) ≤ ΓA(x) d ΓA(y),

(ii) TA(x−1) ≥ TA(x), IA(x−1) ≥ IA(x), and ΓA(x−1) ≤ ΓA(x).

2.5. Definition:[21]

Let X be a group and let G be NG in X and e be the identity of X. We define the NS Ge by

Ge =
{
x ∈ X : TG(x) = TG(e),IG(x) = IG(e),ΓG(x) = ΓG(e)

}
.

We note for a NG G in a group X, for every x ∈ X : TG(x−1) = TG(x), IG(x−1) = IG(x) and

ΓG(x−1) = ΓG(x). Also for the identity e of the group X : TG(e) ≥ TG(x),IG(e) ≥ IG(x), and

ΓG(e) ≤ ΓG(x).

2.6. Definition:[21]

Let X be a non-empty set and a NT on X is a family kX of neutrosophic subsets of X

satisfying the following axioms:

(i) 0N , 1N ∈ kX

(ii) G1 eG2 ∈ kX for any G1, G2 ∈ kX
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(iii) d Gi ∈ kX ∀ {Gi : i ∈ J} ⊆ kX

In this case, the pair (X,kX) is called a neutrosophic topological space (NTS) and any NS in

kX is known as neuterosophic open set (NOS). The elements of kX are called NOSs, a NS F

is neutrosophic closed set (NCoS) if and only if it FC is NOS.

2.7. Definition:[8]

It is known that f : (X,kX) → (Y,kY ) is neutrosophic continuous if the preimage of each

neutrosophic open set in Y is neutrosophic open set in X.

2.8. Definition:[17]

Let (X,kX
i ) and (X,kX

j ) be the two neutrosophic topologies on X, then (X,kX
i ,kX

j ) is said

to be a neutrosophic bitopological space (NBTS). Throughout in this paper the indices i, j

take the value ∈ {i, j} and i 6= j.

2.9. Definition:[17]

Let (X,kX
i ,kX

j ) be a NBTS. Then a set for A =
{
〈x, αij , βij , γij〉 : x ∈ X

}
, neutrosophic

(kX
i ,kX

j )N ` interior of A is the union of all (kX
i ,kX

j )N ` open sets of X contained in A and

can be defined as follows:

(kG
i ,k

G
j )N ` Int(A) =

{
〈x,dkX

i
dkX

j
αij ,ekX

i
ekX

j
βij ,ekX

i
ekX

j
γij〉 : x ∈ X

}
2.10. Definition:[17]

Let (X,kX
i ,kX

j ) be a NBTS. Then a set for A =
{
〈x, αij , βij , γij〉 : x ∈ X

}
, neutrosophic

(kX
i ,kX

j )N ` closure of A is the intersection of all (kX
i ,kX

j )N ` closed sets of X contained in

A and can be defined as follows:

(kG
i ,k

G
j )N ` Cl(A) =

{
〈x,ekX

i
ekX

j
αij ,dkX

i
dkX

j
βij ,dkX

i
dkX

j
γij〉 : x ∈ X

}
2.11. Definition:[10]

Let X be a group and G be a NG on X. Let kX be a NT on G then (G,kX) is called a

neutrosophic topological group (NTG) if the following conditions are satisfied:

(i) The mapping λ : (G,kX) × (G,kX) → (G,kX) defined by λ(g1, g2) = g1g2, for all

g1, g2 ∈ X, is relatively neutrosophic continuous.

(ii) The mapping µ : (G,kX)→ (G,kX) defined by µ(g) = g−1, for all g ∈ X, is relatively

neutrosophic continuous.
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3. Main Works:

3.1. Definition:

Let A be a NS of a NBTS (X,kX
i ,kX

j ), then A is called a neutrosophic semi-open set

(NSOS) of X if there exists a B ∈ (X,kX
i ,kX

j ) such that A ⊆ (kG
i ,k

G
j )N ` Cl(B), for each

i = j = 1, 2.

3.2. Definition:

Let A be a NS of a NBTS (X,kX
i ,kX

j ), then A is called a neutrosophic semi-closed set

(NSCoS) of X if there exists a Bc ∈ (X,kX
i ,kX

j ) such that (kG
i ,k

G
j )N ` Int(B) ⊆A, for each

i = j = 1, 2.

3.3. Definition:

A NS A of a NBTS (X,kX
i ,kX

j ) is said to be a neutrosophic regularly open set (NROS), if

(kG
i ,k

G
j )N ` Int

(
(kX

i ,kX
j )N ` Cl(A)

)
= A, for each i = j = 1, 2.

3.4. Definition:

A NS A of a NBTS (X,kX
i ,kX

j ) is said to be a neutrosophic regularly closed set (NRCS),

if (kG
i ,k

G
j )N ` Cl

(
(kX

i ,kX
j )N ` Int(A)

)
= A, for each i = j = 1, 2.

3.5. Definition:

A mapping φ : (X,kX
i ,kX

j ) → (Y,kY
i ,kY

j ) is said to be a neutrosophic almost continuous

mapping (NACM), if φ−1(A) ∈ (X,kX
i ,kX

j ) for each neutrosophic regularly closed set A of

(Y,kY
i ,kY

j ); i = j = 1, 2.

Example 3.1. Let X = {x, y} and Y = {p, q}
P = {〈0.6,0.4,0.4a 〉, 〈0.7,0.2,0.3b 〉}, Q = {〈0.2,0.3,0.7a 〉, 〈0.2,0.1,0.7b 〉}, R = {〈0.6,0.3,0.3a 〉, 〈0.7,0.1,0.2b 〉},
S = {〈0.1,0.8,0.7a 〉, 〈0.1,0.8,0.7b 〉}.
Then kN1 = {0NX

, 1NX
, P}, kN2 = {0NX

, 1NX
, Q}, kN3 = {0NX

, 1NX
, R}, kN4 =

{0NX
, 1NX

, S} are neutrosophic topological spaces. Then

(kN1 ,kN2) ` open sets = {0NX
, 1NX

, P,Q}, (kN1 ,kN2) ` closed sets = {0NX
, 1NX

, PC , QC},
(kN3 ,kN4) ` open sets = {0NX

, 1NX
, R, S}, (kN1 ,kN2) ` closed sets = {0NX

, 1NX
, RC , SC}.

Let f : (X,kN1 ,kN2) → (Y,kN1 ,kN2) define by f(x) = p and f(y) = q. Then we have

(kN3 ,kN4) ` Cl(RC) is closed set.

Now, RC is (kN3 ,kN4) ` closed set in Y and f−1(RC) ⊆ P , where P is (kN1 ,kN2) ` open set

in X. Also, Cl(f−1(RC)) ⊆ P .

Therefore, f is neutrosophic almost continuous mapping.
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3.6. Definition:

Let G be a NG on a group X. Let kG
i be a NT on G for each i = 1, 2; then (G,kG

1 ,kG
2 ) is

said to be a neutrosophic almost bitopological group (NABTG) if the following conditions are

satisfied:

(i) A mapping λ : (G,kG
i )× (G,kG

i )→ (G,kG
i ) defined by λ(x, y) = xy, for all x, y ∈ X,

is neutrosophic almost i-continuous, for each i = 1, 2.

(ii) A mapping µ : (G,kG
i )→ (G,kG

i ) defined by µ(x) = x−1, for all x ∈ X, is neutrosophic

almost i-continuous, for each i = 1, 2.

Example 3.2. Let G = {a, e}, where e is the identity element of G. Then G is a group. Let

P = {〈0.6,0.4,0.4a 〉, 〈0.7,0.2,0.3b 〉}, Q = {〈0.2,0.3,0.7a 〉, 〈0.2,0.1,0.7b 〉}, R = {〈0.6,0.3,0.3a 〉, 〈0.7,0.1,0.2b 〉},
S = {〈0.1,0.8,0.7a 〉, 〈0.1,0.8,0.7b 〉}.
Then, it is clear that the mapping µ : (a, b)→ ab of (G,kG

1 ,kG
2 )×(G,kG

1 ,kG
2 ) in to (G,kG

1 ,kG
2 )

is neutrosophic almost continuous and λ : a→ a−1 of (G,kG
1 ,kG

2 ) in to (G,kG
1 ,kG

2 ) is neutro-

sophic almost continuous.

Hence, (G,kG
1 ,kG

2 ) is neutrosophic almost topological group.

Remark 3.1. (G,kG
i ) is a NABTG for each i = 1, 2; if following conditions hold good:

(i) for g1, g2 ∈ G and for every (kG
i ,kG

j )− NROS U containing g1, g2 in G, ∃ kG
i − neutro-

sophic open, i = 1, 2 nbds P and Q of g1 and g2 respectively in G so that P ∗ Q ⊆ U

and

(ii) for g ∈ G and for every (kG
i ,kG

j )− NROS Q in G containing g−1, ∃ kG
i − neutrosophic

open, i = 1, 2 nbd P of g in G such that P−1 ⊆ Q.

Theorem 3.1. Let (G,kG
i ), i = 1, 2; be a NABTG and let a ∈ G be any element of G. Then

(i) πa : (G,kG
i ) → (G,kG

i ): πa(x) = ax, for all x ∈ G, is neutrosophic almost i-

continuous, for each i = 1, 2.

(ii) σa : (G,kG
i ) → (G,kG

i ): σa(x) = xa, for all x ∈ G, is neutrosophic almost i-

continuous, for each i = 1, 2.

Proof.

(i) Let p ∈ G and let W be a (kG
i ,kG

j )− NROS, i = j = 1, 2; containing ap in G. By

Definition 3.6, ∃ kG
i − neutrosophic open, i = 1, 2 neighborhoods U,V of ap in G so

that UV ⊆ W. Especially, aV ⊆ W that is πa(V) ⊆ W. This shows that πa is NACM

at p and therefore πa is NACM.

(ii) Suppose p ∈ G and W ∈ (kG
i ,kG

j )− NROS(G), containing pa. Then ∃ kG
i − NOSs,

i = 1, 2; p ∈ U and a ∈ V in G so that UV ⊆W. This shows Ua ⊆W, i.e., σa(U) ⊆W.

This implies σa is NACM at p. As arbitrary element p is in G, σa is NACM.
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Theorem 3.2. Let G be any (kG
i ,kG

j )− NROS, i = j = 1, 2; in a NABTG (G,kG
i ). The

following conditions hold good:

(1) aU ∈ (kG
i ,kG

j )− NROS(G), for all a ∈ G.

(2) Ua ∈ (kG
i ,kG

j )− NROS(G), for all a ∈ G.

(3) U−1 ∈ (kG
i ,kG

j )− NROS(G).

Proof.

(1) First, we have to prove that aU ∈ kG
i , i = 1, 2. Let p ∈ aU. Then from Definition 3.6

of NABTGs, ∃ kG
i − neutrosophic open neighborhoods, i = 1, 2; a−1 ∈W1 and p ∈W2

in G so that W1W2 ⊆ U. Especially, a−1W2 ⊆ U. i.e., equivalently W2 ⊆ aU. This

indicates that p ∈ (kG
i ,kG

j )N ` Int(aU) and thus, (kG
i ,kG

j )N ` Int(aU) = aU. i.e.,

aU ∈ kG
i , i = 1, 2. Consequently, aU ⊆ (kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N ` Cl(aU)

)
.

Now, we have to prove that (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(aU)
)
⊆ aU. Since

U is kG
i − NOS, i = 1, 2; (kG

i ,kG
j )N ` Cl(U) ∈ (kG

i ,kG
j )− NRCS(G). From theorem

3.1, πa−1 : (G,kG
i )→ (G,kG

i ) is NACM, i = 1, 2 and therefore, a(kG
i ,kG

j )N ` Cl(U) is

kG
i − NCoS, i = 1, 2. Thus, (kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N ` Cl(aU)

)
⊆ (kG

i ,kG
j )N `

Cl(aU) ⊆ a(kG
i ,kG

j )N ` Cl(U). i.e., a−1(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(aU)
)
⊆

(kG
i ,kG

j )N ` Cl(U). Since (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(aU)
)

is (kG
i ,kG

j )−

NROS, i = j = 1, 2; it follows that a−1(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(aU)
)
⊆

(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(U)
)

= U. i.e., (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N `

Cl(aU)
)
⊆ aU. Thus, aU = (kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N ` Cl(aU)

)
. This shows

that aU ∈ (kG
i ,kG

j )− NROS(G).

(2) Following the same steps as in part (1) above, then we can prove Ua ∈ (kG
i ,kG

j )−
NROS(G), for all a ∈ G.

(3) Let x ∈ U−1, then ∃ kG
i − NOS, i = 1, 2; x ∈ W in G so that W−1 ⊆ U

⇒ W ⊆ U−1. Therefore U−1 has interior point x. Thus, U−1 is kG
i − NOS,

i = 1, 2 i.e., U−1 ⊆ (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(U−1)
)

. Now we have to

prove that (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(U−1)
)
⊆ U−1. Since U is kG

i −
NOS, i = 1, 2; (kG

i ,kG
j )N ` Cl(U) is (kG

i ,kG
j )− NRCS, i = j = 1, 2 and hence

(kG
i ,kG

j )N ` Cl(U)−1 is kG
i − NCoS, i = 1, 2 in G. Therefore, (kG

i ,kG
j )N `

Int
(
(kG

i ,kG
j )N ` Cl(U−1)

)
⊆ (kG

i ,kG
j )N ` Cl(U−1) ⊆ (kG

i ,kG
j )N ` Cl(U)−1

⇒ (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(U−1)
)
⊆ (kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N `

Cl(U)
)−1

= U−1. Thus, U−1 = (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(U−1)
)

. This

shows that U−1 ∈ (kG
i ,kG

j )− NROS(G).

Corollary 3.1. Let Q be any (kG
i ,kG

j )− NRCS, i = j = 1, 2; in a NABTG. Then
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(1) aQ ∈ (kG
i ,kG

j )− NRCS(G), for all a ∈ G.

(2) Q−1 ∈ (kG
i ,kG

j )− NRCS(G).

Theorem 3.3. Let U be any (kG
i ,kG

j )− NROS, i = j = 1, 2; in a NABTG. Then

(1) (kG
i ,kG

j )N ` Cl(Ua) = a(kG
i ,kG

j )N ` Cl(U), for each a ∈ G.

(2) (kG
i ,kG

j )N ` Cl(aU) = (kG
i ,kG

j )N ` Cl(U)a, for each a ∈ G.

(3) (kG
i ,kG

j )N ` Cl(U−1) = (kG
i ,kG

j )N ` Cl(U)−1.

Proof.

(1) Taking p ∈ (kG
i ,kG

j )N ` Cl(Ua) and consider q = pa−1. Let q ∈ W be kG
i − NOS,

i = 1, 2 in G. Then ∃ kG
i − NOSs, i = 1, 2; a−1 ∈ V1 and p ∈ V2 in G, so that V1V2 ⊆

(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(W)
)

. By assumption, there is g ∈ Ua e V2 ⇒

ga−1 ∈ U e V1V2 ⊆ U e (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(W)
)
⇒ U e (kG

i ,kG
j )N `

Int
(

(kG
i ,kG

j )N ` Cl(W)
)
6= 0N ⇒ U e

(
(kG

i ,kG
j )N ` Cl(W)

)
6= 0N .

Since U is kG
i − NOS, i = 1, 2; U eW 6= 0N . i.e., p ∈ (kG

i ,kG
j )N ` Cl(U)a.

Conversely, let q ∈ (kG
i ,kG

j )N ` Cl(U)a. Then q = pa for some p ∈ (kG
i ,kG

j )N `
Cl(U). To prove (kG

i ,kG
j )N ` Cl(U)a ⊆ (kG

i ,kG
j )N ` Cl(Ua).

Let pa ∈ W be an kG
i − NOS, i = 1, 2 in G. Then ∃ kG

i − NOSs, i = 1, 2; a ∈ V1

in G and p ∈ V2 in G, so that V1V2 ⊆ (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(W)
)

. Since

p ∈ (kG
i ,kG

j )N ` Cl(U), U e V2 6= 0N . There is g ∈ U e V2. This gives ag ∈ (Ua)e

(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(W)
)
⇒ (Ua)e

(
(kG

i ,kG
j )N ` Cl(W)

)
6= 0N . From

Theorem 3.2, Ua is kG
i − NOS, i = 1, 2 and thus (Ua) eW 6= 0N , so q ∈ (kG

i ,kG
j )N `

Cl(Ua).

Therefore, (kG
i ,kG

j )N ` Cl(Ua) = (kG
i ,kG

j )N ` Cl(U)a.

(2) Following the same steps as in part (1) above, then we can prove (kG
i ,kG

j )N `
Cl(aU) = a(kG

i ,kG
j )N ` Cl(U).

(3) Since (kG
i ,kG

j )N ` Cl(U) is (kG
i ,kG

j )− NRCS, i = j = 1, 2; (kG
i ,kG

j )N ` Cl(U)−1 is

kG
i − NCoS, i = 1, 2 in G. So, U−1 ⊆ (kG

i ,kG
j )N ` Cl(U)−1 this implies (kG

i ,kG
j )N `

Cl(U−1) ⊆ (kG
i ,kG

j )N ` Cl(U)−1. Next, q ∈ (kG
i ,kG

j )N ` Cl(U)−1. Then q =

p−1 for some p ∈ (kG
i ,kG

j )N ` Cl(U). Let q ∈ V2 be any kG
i − NOS, i = 1, 2 in

G. Then ∃ kG
i − NOS, i = 1, 2; V1 in G so that p ∈ V1 with V−1

1 ⊆ (kG
i ,kG

j )N `
Int

{
(kG

i ,kG
j )N ` Cl(V2)

}
. Also, there is g ∈ U e V1 which implies g−1 ∈ U−1e

(kG
i ,kG

j )N ` Int
{

(kG
i ,kG

j )N ` Cl(V2)
}

. i.e., ∈ U−1e (kG
i ,kG

j )N ` Int
{

(kG
i ,kG

j )N `
Cl(V2)

}
6= 0N ⇒ U−1 e (kG

i ,kG
j )N ` Cl(V2) 6= 0N ⇒ U−1 e V2 6= 0N , since U−1 is

kG
i − NOS, i = 1, 2. Therefore, q ∈ (kG

i ,kG
j )N ` Cl(U−1).

Hence (kG
i ,kG

j )N ` Cl(U−1) = (kG
i ,kG

j )N ` Cl(U)−1.
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Theorem 3.4. Let Q be (kG
i ,kG

j )− neutrosophic regularly closed, i = j = 1, 2 subset in a

NABTG G. Then the following statements are satisfied:

(1) (kG
i ,kG

j )N ` Int(aQ) = a(kG
i ,kG

j )N ` Int(Q), for all a ∈ G.

(2) (kG
i ,kG

j )N ` Int(Qa) = (kG
i ,kG

j )N ` Int(Q)a, for all a ∈ G.

(3) (kG
i ,kG

j )N ` Int(Q−1) = (kG
i ,kG

j )N ` Int(Q)−1.

Proof.

(1) Since Q is (kG
i ,kG

j )− NRCS, and (kG
i ,kG

j )N ` Int(Q) is (kG
i ,kG

j )− NROS, i = j = 1, 2

in G. Consequently, a(kG
i ,kG

j )N ` Int(Q) ⊆ (kG
i ,kG

j )N ` Int(aQ).

Conversely, let q be an arbitrary element of (kG
i ,kG

j )N ` Int(aQ). Assume that

q = ap for some p ∈ Q. By assumption, this shows aQ is kG
i − NCoS, i = 1, 2; and that

is (kG
i ,kG

j )N ` Int(aQ) is (kG
i ,kG

j )− NROS, i = j = 1, 2 in G. Suppose a ∈ U and

p ∈ V be kG
i − NOSs, i = 1, 2 in G, so that UV ⊆ (kG

i ,kG
j )N ` Int(aQ). Then aV ⊆

aQ, which it follows that aV ⊆ a(kG
i ,kG

j )N ` Int(Q). Thus, (kG
i ,kG

j )N ` Int(aQ) ⊆
a(kG

i ,kG
j )N ` Int(Q). Hence the statement follows.

(2) Following the same steps as in part (1) above, then we can prove (kG
i ,kG

j )N `
Int(Qa) ⊆ (kG

i ,kG
j )N ` Int(Q)a.

(3) Since (kG
i ,kG

j )N ` Int(Q) is (kG
i ,kG

j )− NROS, i = j = 1, 2; so, (kG
i ,kG

j )N ` Int(Q)−1

is kG
i − NOSs, i = 1, 2 in G. Therefore, Q−1 ⊆ (kG

i ,kG
j )N ` Int(Q)−1 implies that

(kG
i ,kG

j )N ` Int(Q−1) ⊆ (kG
i ,kG

j )N ` Int(Q)−1. Next, let q be an arbitrary element

of (kG
i ,kG

j )N ` Int(Q)−1. Then q = p−1 for some p ∈ (kG
i ,kG

j )N ` Int(Q). Let q ∈ V

be kG
i − NOS, i = 1, 2 in G. Then ∃ kG

i − NOS, i = 1, 2; U is in G so that p ∈ U with

U−1 ⊆ (kG
i ,kG

j )N ` Cl
(

(kG
i ,kG

j )N ` Int(V)
)

. Also, there is g ∈ Q eU which implies

g−1 ∈ Q−1e (kG
i ,kG

j )N ` Cl
(

(kG
i ,kG

j )N ` Int(V)
)

. That is Q−1 e (kG
i ,kG

j )N `

Cl
(

(kG
i ,kG

j )N ` Int(V)
)
6= 0N ⇒ Q−1 e (kG

i ,kG
j )N ` Int(V) 6= 0N ⇒ Q−1 eV 6= 0N ,

since Q−1 is kG
i − NCoS, i = 1, 2. Hence (kG

i ,kG
j )N ` Int(Q−1) = (kG

i ,kG
j )N `

Int(Q)−1.

Theorem 3.5. Let A be any (kG
i ,kG

j )− NSOS, i = 1, 2 in a NABTG G. Then

(1) (kG
i ,kG

j )N ` Cl(aA) ⊆ a(kG
i ,kG

j )N ` Cl(A), for all a ∈ G.

(2) (kG
i ,kG

j )N ` Cl(Aa) ⊆ (kG
i ,kG

j )N ` Cl(A)a, for all a ∈ G.

(3) (kG
i ,kG

j )N ` Cl(A−1) ⊆ (kG
i ,kG

j )N ` Cl(A)−1.

Proof.

(1) As A is (kG
i ,kG

j )− NSOS, and (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )− NRCS, i = j =

1, 2. From Theorem 3.1, πa−1 : (G,kG
i ) → (G,kG

i ) is NACM, for each i = 1, 2.
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So, a(kG
i ,kG

j )N ` Cl(A) is kG
i − NCoS, i = 1, 2. Hence (kG

i ,kG
j )N ` Cl(aA) ⊆

a(kG
i ,kG

j )N ` Cl(A).

(2) As A is (kG
i ,kG

j )− NSOS, and (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )− NRCS, i = j =

1, 2. From Theorem 3.1, σa−1 : (G,kG
i ) → (G,kG

i ) is NACM, for each i = 1, 2.

So, (kG
i ,kG

j )N ` Cl(A)a is kG
i − NCoS, i = 1, 2. Thus, (kG

i ,kG
j )N ` Cl(Aa) ⊆

(kG
i ,kG

j )N ` Cl(A)a.

(3) Since A is (kG
i ,kG

j )− NSOS, i = j = 1, 2; so, (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )− NRCS,

i = j = 1, 2 and hence (kG
i ,kG

j )N ` Cl(A)−1 is kG
i − NCoS, i = 1, 2. Conserquently,

(kG
i ,kG

j )N ` Cl(A−1) ⊆ (kG
i ,kG

j )N ` Cl(A)−1.

Theorem 3.6. Let A be both (kG
i ,kG

j )− neutrosophic semi open and (kG
i ,kG

j )− neutrosophic

semi closed subset of a NABTG, i = j = 1, 2. Then the following statements hold:

(1) (kG
i ,kG

j )N ` Cl(aA) = a(kG
i ,kG

j )N ` Cl(A), for all a ∈ G.

(2) (kG
i ,kG

j )N ` Cl(Aa) = (kG
i ,kG

j )N ` Cl(A)a, for all a ∈ G.

(3) (kG
i ,kG

j )N ` Cl(A−1) = (kG
i ,kG

j )N ` Cl(A)−1.

Proof.

(1) Since A is (kG
i ,kG

j )−NSOS, and (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )−NRCS, i = j = 1, 2;

from which it follows that (kG
i ,kG

j )N ` Cl(aA) ⊆ a(kG
i ,kG

j )N ` Cl(A). Fur-

ther, kG
i − neutrosophic semi-openness of A, i = 1, 2 implies (kG

i ,kG
j )N ` Cl(A) =

(kG
i ,kG

j )N ` Cl
(

(kG
i ,kG

j )N ` Int(A)
)
⇒ a(kG

i ,kG
j )N ` Cl(A) = a(kG

i ,kG
j )N `

Cl
(

(kG
i ,kG

j )N ` Int(A)
)

. As A is (kG
i ,kG

j )− NSCoS, and (kG
i ,kG

j )N ` Int(A)

is (kG
i ,kG

j )− NROS in G, i = j = 1, 2. From Theorem 3.5, a(kG
i ,kG

j )N `
Cl(A) = a(kG

i ,kG
j )N ` Cl

(
(kG

i ,kG
j )N ` Int(A)

)
= (kG

i ,kG
j )N ` Cl

(
a(kG

i ,kG
j )N `

Int(A)
)
⊆ (kG

i ,kG
j )N ` Cl(aA). Hence (kG

i ,kG
j )N ` Cl(aA) = a(kG

i ,kG
j )N `

Cl(A).

(2) Following the same steps as in part (1) above, then we can prove (kG
i ,kG

j )N `
Cl(Aa) = (kG

i ,kG
j )N ` Cl(A)a.

(3) By assumption, this shows (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )− NRCS, i = j =

1, 2 and therefore (kG
i ,kG

j )N ` Cl(A)−1 is kG
i − NCoS, i = 1, 2. Consequently,

(kG
i ,kG

j )N ` Cl(A−1) ⊆ (kG
i ,kG

j )N ` Cl(A)−1. Next, as A is (kG
i ,kG

j )− NSOS,

i = j = 1, 2; (kG
i ,kG

j )N ` Cl(A) = (kG
i ,kG

j )N ` Cl
(

(kG
i ,kG

j )N ` Int(A)
)
⇒

(kG
i ,kG

j )N ` Cl(A)−1 = (kG
i ,kG

j )N ` Cl
(

(kG
i ,kG

j )N ` Int(A)
)−1

. Also, as A is

(kG
i ,kG

j )− NSCoS, and (kG
i ,kG

j )N ` Int(A) is (kG
i ,kG

j )− NROS, i = j = 1, 2. From

Theorem 3.3, (kG
i ,kG

j )N ` Cl(A)−1 = (kG
i ,kG

j )N ` Cl
(

(kG
i ,kG

j )N ` Int(A)−1
)

⊆ (kG
i ,kG

j )N ` Cl(A−1). This shows that (kG
i ,kG

j )N ` Cl(A−1) = (kG
i ,kG

j )N `
Cl(A)−1.
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Theorem 3.7. From Theorem 3.6, the following statements hold:

(1) (kG
i ,kG

j )N ` Int(aA) = a(kG
i ,kG

j )N ` Int(A), for all a ∈ G.

(2) (kG
i ,kG

j )N ` Int(Aa) = (kG
i ,kG

j )N ` Int(A)a, for all a ∈ G.

(3) (kG
i ,kG

j )N ` Int(A−1) = (kG
i ,kG

j )N ` Int(A)−1.

Proof.

(1) As A is (kG
i ,kG

j )− NSCoS, and (kG
i ,kG

j )N ` Int(A) is (kG
i ,kG

j )− NROS, i = j =

1, 2. From Theorem 3.1, πa−1 : (G,kG
i ) → (G,kG

i ) is NACM, for each i = 1, 2. So,

π−1
a−1

(
(kG

i ,kG
j )N ` Int(A)

)
= a(kG

i ,kG
j )N ` Int(A) is kG

i − NOS, i = 1, 2. Thus,

a(kG
i ,kG

j )N ` Int(A) ⊆ (kG
i ,kG

j )N ` Int(aA). Next, by hypothesis, it follows

(kG
i ,kG

j )N ` Int(A) = (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)
⇒ a(kG

i ,kG
j )N `

Int(A) = a(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)

. As A is (kG
i ,kG

j )− NSOS,

and (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )− NRCS, i = j = 1, 2. From Theorem 3.4,

a(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)

= (kG
i ,kG

j )N ` Int
(
a(kG

i ,kG
j )N ` Cl(A)

)
⊇ (kG

i ,kG
j )N ` Int(aA). That is, (kG

i ,kG
j )N ` Int(aA) ⊆ a(kG

i ,kG
j )N ` Int(A).

Therefore, (kG
i ,kG

j )N ` Int(aA) = a(kG
i ,kG

j )N ` Int(A). Hence proved.

(2) As A is (kG
i ,kG

j )− NSCoS, and (kG
i ,kG

j )N ` Int(A) is (kG
i ,kG

j )− NROS, i = j =

1, 2. From Theorem 3.1, σa−1 : (G,kG
i ) → (G,kG

i ) is NACM, for each i = 1, 2. So,

σ−1
a−1

(
(kG

i ,kG
j )N ` Int(A)

)
= (kG

i ,kG
j )N ` Int(A)a is kG

i − NOS, i = 1, 2. Thus,

(kG
i ,kG

j )N ` Int(A)a ⊆ (kG
i ,kG

j )N ` Int(Aa). Next, by hypothesis, it shows that

(kG
i ,kG

j )N ` Int(A) = (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)
⇒ (kG

i ,kG
j )N `

Int(A)a = (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)
a. Since A is (kG

i ,kG
j )− NSOS,

and (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )− NRCS, i = j = 1, 2. From Theorem 3.4,

(kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)
a = (kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N ` Cl(A)a

)
⊇ (kG

i ,kG
j )N ` Int(Aa). That is, (kG

i ,kG
j )N ` Int(Aa) ⊆ (kG

i ,kG
j )N ` Int(A)a.

Therefore, (kG
i ,kG

j )N ` Int(Aa) = (kG
i ,kG

j )N ` Int(A)a. Hence proved.

(3) From hypothesis, this shows that (kG
i ,kG

j )N ` Int(A) is (kG
i ,kG

j )− NROS, i =

j = 1, 2 and therefore (kG
i ,kG

j )N ` Int(A)−1 is kG
i − NOS, i = 1, 2. Consequently,

(kG
i ,kG

j )N ` Int(A−1) ⊆ (kG
i ,kG

j )N ` Int(A)−1. Next, as A is (kG
i ,kG

j )− NSCoS,

i = j = 1, 2; (kG
i ,kG

j )N ` Int(A) = (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)

⇒ (kG
i ,kG

j )N ` Int(A)−1 = (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)
)−1

. Also, as A

is (kG
i ,kG

j )− NSOS, and (kG
i ,kG

j )N ` Cl(A) is (kG
i ,kG

j )− NRCS, i = j = 1, 2. From

Theorem 3.4, (kG
i ,kG

j )N ` Int(A)−1 = (kG
i ,kG

j )N ` Int
(

(kG
i ,kG

j )N ` Cl(A)−1
)

.

⊆ (kG
i ,kG

j )N ` Int(A−1). This proves that (kG
i ,kG

j )N ` Int(A−1) = (kG
i ,kG

j )N `
Int(A)−1.
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Theorem 3.8. Let A be kG
i − NOS in a NABTG G, i = 1, 2. Then aA ⊆ (kG

i ,kG
j )N `

Int
(
a(kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N ` Cl(A)

))
, for each a ∈ G.

Proof.

Since A is kG
i − NOS, i = 1, 2; so A ⊆ (kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N ` Cl(A)

)
⇒aA ⊆

a(kG
i ,kG

j )N ` Int
(
(kG

i ,kG
j )N ` Cl(A)

)
. From Theorem 3.2, a(kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N `

Cl(A)
)

is kG
i − NOS, i = 1, 2;

(
in fact,(kG

i ,kG
j )−NROS, i = j = 1, 2

)
.

Hence, aA ⊆ (kG
i ,kG

j )N ` Int
(
a(kG

i ,kG
j )N ` Int

(
(kG

i ,kG
j )N ` Cl(A)

))
.

Theorem 3.9. Let Q be any (kG
i ,kG

j )− Neutrosophic closed subset in a NABTG G, i = j =

1, 2. Then (kG
i ,kG

j )N ` Cl
(
a(kG

i ,kG
j )N ` Cl

(
(kG

i ,kG
j )N ` Int(Q)

))
⊆ aQ, for each a ∈ G.

Proof.

Since Q is kG
i − NCoS, i = 1, 2; so Q ⊇ (kG

i ,kG
j )N ` Cl

(
(kG

i ,kG
j )N ` Int(Q)

)
⇒ aQ ⊇

a(kG
i ,kG

j )N ` Cl
(
(kG

i ,kG
j )N ` Int(Q)

)
. From Theorem 3.2, a(kG

i ,kG
j )N ` Cl

(
(kG

i ,kG
j )N `

Int(Q)
)

is kG
i − NCoS, i = 1, 2;

(
in fact,(kG

i ,kG
j ) − NRCS, i = j = 1, 2

)
. Therefore, aQ ⊆

(kG
i ,kG

j )N ` Cl
(
a(kG

i ,kG
j )N ` Cl

(
(kG

i ,kG
j )N ` Int(Q)

))
.

Hence, (kG
i ,kG

j )N ` Cl
(
a(kG

i ,kG
j )N ` Cl

(
(kG

i ,kG
j )N ` Int(Q)

))
⊆ aQ.

4. Conclusion:

In this paper, we have studied the neutrosophic almost bitopological group. We defined the

definition of the neutrosophic regularly open (closed) set and proved some of their properties.

After defining the definition of the neutrosophic regularly open set we have defined the defi-

nition of the neutrosophic almost continuous mapping with an example and we proved some

properties of the neutrosophic almost continuous mapping. Finally, by using the definition of

the neutrosophic almost continuous mapping, we defined the neutrosophic almost bitopological

group and cited an example. Also, we have proved some of their properties. In future, we try

to study the Neutrosophic Almost Ideal Bitopological Group. We hope that this work shall

bring some new ideas in the development of the neutrosophic almost bitopological group.
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Abstract. In the theory of uncertainty and approximation neutrosophy plays a significant role. Neutrosophy

is tool emerged on standard or non-standard to measured the mathematical model of uncertainty, vagueness,

ambiguity etc. In light of these major issues, the paper outlines of Neutrosophic Set, Single Valued Neutrosophic

Set, Triangular Single Valued Neutrosophic Number and Trapezoidal Single Valued Neutrosophic Number. It

also propose Neutrosophic Differential Equation and shown its solution in different conditions. Thereafter min-

ing safety model via Single Valued neutrosophic number be epitomized. At last a mathematical experiment is

done to exhibit its reality and use fullness of this Number.

Keywords: neutrosophic set(NS); single valued neutrosophic set(SVNS); triangular single valued neutrosophic

number(TSVNNs); trapezoidal single valued neutrosophic number(TrSVNNs); neutrosophic differential equa-

tion(NDE); mining safety model

—————————————————————————————————————————-

1. Introduction

NS highlights the origin and nature of neutralise in different fields which is the generalization

of classical set, fuzzy set(FS), intuitionistic fuzzy set(IFS) etc. Gradually varying value is used

in FS theory rather than precise or sharp value. In 1965 [1], a famous paper was published

by Prof. L.A. Zadeh as ”Fuzzy sets” in ”Information and Control” that provided some new

mathematical tool which enable us to described and handle dubious or unclear notions. FS

theory, only shows membership degree and do not provide any idea about non-membership

degree. In reality, this linguistic statement don’t fulfill the logical statement. When choosing

the membership degree there may exist some types of doubtfulness or absence of information

are present while defining the membership. Due to this doubtfulness, an idea of IFS as gen-

eralization of FS was introduced by Atanassov in 1983 [2]. IFS consider both membership

Its Application on Mine Safety
A Model Describing the Neutrosophic Differential Equation and 
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and non-membership function. IFS only pick up incomplete information. In 2003 [3], A new

concept, say, NS was innovated by Smarandache. It deals with the study of origin, nature

and scope of neutralise, as well as their interaction with different idealism spectra. NS is the

generalization of CS, FS, IFS and so on. A NS can be distinguish by a truth membership

function ’µT ’, an indeterminacy membership function ’νI ’, and a falsity membership function

’σF ’. In NS: µT , νI and σF are not dependent, which is useful in situations such as information

fusion. In NS µT , νI , σF being the real standard or non standard subset of −]0, 1[+,moreover

in SNVS, µT , νI , σF be the subset of [0,1]. From philosophical point of view, NS generalised

the above mentioned sets but from scientific or engineering point of view, need to be defined.

Else it’s difficult to apply in many real application.

It is much noticed that when modeling some problems related to physical science and engineer-

ing, where the parameters are unknown but performed in an interval. Before, the application

of interval arithmetic managed such circumstances, where mathematical calculation is done

on intervals to get the estimate of target quantities in respective intervals. Fuzzy arithmetic is

the generalization of the intervals arithmetic. As the principle definition of FS which approve

gradation of membership for an element of the Universal set. So the situation of the modeling

based on fuzzy arithmetic is awaited to publish more realistically. There are several types of

fuzzy number are exist. These are applied in Decision-making problem and so on [4]. But it

is not efficient for any application where the knowledge about membership degree is lacking.

Latter generalization it to intuitionistic fuzzy number [5] were developed. In these paper we

define several types of neutrosophic numbers and their cuts.

In the field of science & engineering, differentiation takes on an evidential role. Many problems

stand up with uncertain or imprecise parameters. Due to this naiveness, we bear upon the dif-

ferential equation with imprecise parameters. Fuzzy differential equation [6] has been proposed

to model this uncertainty. However, it consider only membership value. Later, intuitionistic

fuzzy differential [7] equation was founded with degree of membership and non-membership

function. However, the term indeterminacy is absent in the above logic’s. Hence, neutrosophic

differential eqaution(NDE) [8–10] was developed to model indeterminacy. In this paper, a

mining safety model describe [11], this model consist of three differential equations, those dif-

ferential equations describe via Single Valued Neutrosophic Number(SVNNs). The solution of

the equation is describe later.

In reality, the collected data, in many situations, it was observed that is insufficient and

transmit some misinformation. As a result, the solution obtained from these data suffers with
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insufficiency and inconsistency. In these situations, the neutrosophic sets offer better result.

We have designed the paper in the following way: Section-2 gives some preliminaries con-

cept and definition. Section-3 contains definition of NDE. Section-4 contains solution of NDE

with numerical example. Section-5 contains Mining Safety model. Section-6 contains Mining

safety model formulation. Section-7 described solution mode of the model. Section-8 contains

numerical experiment and consequently, conclusions are discussed in Section-9. The references

are shown in Section-10.

2. Preliminaries

2.1. Definition of NS [12]

Let U be a Universal set. A NS ÃNS of U be defined by ÃNS = 〈(u;µT (u), νI(u), σF (u)) : u ∈
U〉 where µT (u), νI(u), σF (u) be outlined as the truth membership, indeterminacy membership,

falsity membership grade of u in ÃNS which are real standard or non-standard subsets of

−]0, 1[+ & µT (u) + νI(u) + σF (u) 6 3+.

2.2. Definition of SVNS [12]

Let U be a Universal set. A SVNS ÃNe of U be defined by ÃNe = 〈(u;µT (u), νI(u), σF (u)) :

u ∈ U〉 where µT (u), νI(u), σF (u) be outlined as the truth membership, indeterminacy member-

ship, falsity membership grade of u in ÃNe which are subset of [0, 1] & µT (u)+νI(u)+σF (u) 6 3.

2.3. Definition of TSVNNs [8]

A TSVNNs is denoted by ÃNe = 〈a′1, a′2, a′3;wµ, wν , wσ〉 whose truth, indeterminacy and

falsity membership functions are defined by

µT (u) =



(
u−a′1
a′2−a′1

)wµ when a′1 6 u 6 a′2

wµ when u = a′2

(
a′3−u
a′3−a′2

)wµ when a′2 6 u 6 a′3

0 when u 6 a′1 or u > a′3

νI(u) =



(a′2−u)+(u−a′1)wν

a′2−a′1
when a′1 6 u 6 a′2

wν when u = a′2
(u−a′2)+(a′3−u)wν

a′3−a′2
when a′2 6 u 6 a′3

1 when u 6 a′1 or u > a′3
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σF (u) =



(a′2−u)+(u−a′1)wσ

a′2−a′1
when a′1 6 u 6 a′2

wσ when u = a′2
(u−a′2)+(a′3−u)wσ

a′3−a′2
when a′2 6 u 6 a′3

1 when u 6 a′1 or u > a′3
where µT (u) + νI(u) + σF (u) 6 3 & wµ ∈ (0, 1], wν , wσ ∈ [0, 1).

2.4. Definition of TrSVNNs [9]

A TrSVNNs is denoted by ÃNe = 〈a′1, a′2, a′3, a′4;wµ, wν , wσ〉 whose truth, indeterminacy and

falsity membership functions are defined by

µT (u) =



(
u−a′1
a′2−a′1

)wµ when a′1 6 u 6 a′2

wµ when a′2 6 u 6 a′3

(
a′4−u
a′4−a′3

)wµ when a′3 6 u 6 a′4

0 when u 6 a′1 or u > a′4

νI(u) =



(a′2−u)+(u−a′1)wν

a′2−a′1
when a′1 6 u 6 a′2

wν when a′2 6 u 6 a′3
(u−a′3)+(a′4−u)wν

a′4−a′3
when a′3 6 u 6 a′4

1 when u 6 a′1 or u > a′4

σF (u) =



(a′2−u)+(u−a′1)wσ

a′2−a′1
when a′1 6 u 6 a′2

wσ when a′2 6 u 6 a′3
(u−a′3)+(a′4−u)wσ

a′4−a′3
when a′3 6 u 6 a′4

1 when u 6 a′1 or u > a′4
where µT (u) + νI(u) + σF (u) 6 3 & wµ ∈ (0, 1], wν , wσ ∈ [0, 1).

2.5. Cut Set [8]

Let ÃNe be any SVNS, then (r, β, γ)-cut of SVNS is denoted by ÃNe(r, β, γ)and it is defined

by ÃNe(r, β, γ)=〈u ∈ U : µT (u) > r, νI(u) 6 β, σF (u) 6 γ; 0 < r 6 1, 0 6 β < 1, 0 6 γ < 1〉.

2.6. Operation Using SVNNs: [13]

Consider two TSVNNs, ÃNe=〈a′1, a′2, a′3;wµ, wν , wσ〉; B̃Ne=〈b′1, b′2, b′3;uµ, uν , uσ〉, the follow-

ing operation are:
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• Addition:

ÃNe+B̃Ne = 〈[(a′1 + b′1, a
′
2 + b′2, a

′
3 + b′3);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉

• Substraction:

ÃNe-B̃Ne = 〈[(a′1 − b′3, a
′
2 − b′2, a

′
3 − b′1);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉

• Multiplication:

ÃNe.B̃Ne = 〈[(a′1b′1, a′2b′2, a′3b′3);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉
• Division:
ÃNe

B̃Ne
=〈[(a

′
1

b′3
,
a′2
b′2
,
a′3
b′1

);wµ ∧ uµ, wν ∨ uν , wσ ∨ uσ]〉

Where ∧ = Min,∨ = Max

3. Definition of NDE: [8]

Consider an Ordinary differential equation
dY
dt

= KY, t ∈ [0,∞) with initial condition(IC)

Y(t0) = Y0. The above ODE is called NDE if any one of the following three cases hold:

(i) K̃Ne is SVNNs & Y0 is Crisp number.

(ii) K is Crisp number & Ỹ0
Ne

is SVNNs.

(iii) Both K̃Ne & Ỹ0
Ne

are SVNNs.

Let the classical solution [14] be ỸNe(t) and its Cut be

Y(t, r, β, γ)=〈[Y1(t, r),Y2(t, r)], [Y′1(t, β),Y′2(t, β)], [Y′′1(t, γ),Y′′2(t, γ)]〉.

The solution is strong if

(i)
dY1(t, r)

dr
> 0 ,

dY2(t, r)

dr
< 0 ∀ r ∈ (0, 1], Y1(t, 1) 6 Y2(t, 1)

(ii)
dY′1(t, β)

dβ
< 0 ,

dY′2(t, β)

dβ
> 0 ∀ β ∈ [0, 1), Y′1(t, 0) 6 Y′2(t, 0)

(iii)
dY′′1(t, γ)

dγ
< 0 ,

dY′′2(t, γ)

dγ
> 0 ∀ γ ∈ [0, 1), Y′′1(t, 0) 6 Y′′2(t, 0)

Otherwise the solution is weak solution.

4. Solution of NDE

(i) K̃Ne is SVNNs & Y0 is Crisp number.

Case 1 When Sign of K̃Ne is positive.

Therefore required solutions are

Y1(t, r) = Y0e
K1(r)(t−t0); Y2(t, r) = Y0e

K2(r)(t−t0)

Y′1(t, β) = Y0e
K′

1(β)(t−t0); Y′2(t, β) = Y0e
K′

2(β)(t−t0)

Y′′1(t, γ) = Y0e
K′′

1 (γ)(t−t0); Y′′2(t, γ) = Y0e
K′′

2 (γ)(t−t0)
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Case 2 When Sign of K̃Ne is negative.

Therefore required solutions are

Y1(t, r) =
Y0

2
[(1 +

√
K2(r)

K1(r)
)e−
√

K1(r)K2(r)(t−t0) + (1−

√
K2(r)

K1(r)
)e
√

K1(r)K2(r)(t−t0)]

Y2(t, r) =
Y0

2
[(

√
K1(r)

K2(r)
+ 1)e−

√
K1(r)K2(r)(t−t0) − (

√
K1(r)

K2(r)
− 1)e

√
K1(r)K2(r)(t−t0)]

Y′1(t, β) =
Y0

2
[(1 +

√
K′2(β)

K′1(β)
)e−
√

K′
1(β)K′

2(β)(t−t0) + (1−

√
K′2(β)

K′1(β)
)e
√

K′
1(β)K′

2(β)(t−t0)]

Y′2(t, β) =
Y0

2
[(

√
K′1(β)

K′2(β)
+ 1)e−

√
K′

1(β)K′
2(β)(t−t0) − (

√
K′1(β)

K′2(β)
− 1)e

√
K′

1(β)K′
2(β)(t−t0)]

Y′′1(t, γ) =
Y0

2
[(1 +

√
K′′2(γ)

K′′1(γ)
)e−
√

K′′
1 (γ)K′′

2 (γ)(t−t0) + (1−

√
K′′2(γ)

K′′1(γ)
)e
√

K′′
1 (γ)K′′

2 (γ)(t−t0)]

Y′′2(t, γ) =
Y0

2
[(

√
K′′1(γ)

K′′2(γ)
+ 1)e−

√
K′′

1 (γ)K′′
2 (γ)(t−t0) − (

√
K′′1(γ)

K′′2(γ)
− 1)e

√
K′′

1 (γ)K′′
2 (γ)(t−t0)]

Where 〈[K1(r),K2(r)], [K′1(β),K′2(β)], [K′′1(γ),K′′2(γ)]〉 is the cut set of K̃Ne. Solutions are

strong or week if it satisfies the condition of NDE.

Similarly, we can get the solution of other two cases.

Numerical Example: Let us consider NDE
dY
dt

= KY, with IC ỸNe(0) =

〈3, 4, 5; 0.8, 0.2, 0.3〉, K =
1

3
.

Solution: Required (r, β, γ)-cut solution at t = 2 we get Y1(t, r) = [3 + 1.25r]e

2

3 ;

Y2(t, r) = [5− 1.25r]e

2

3 ; Y′1(t, β) = [
3.4− β

0.8
]e

2

3 ; Y′2(t, β) = [
3 + β

0.8
]e

2

3 ; Y′′1(t, γ) = [
3.1− γ

0.7
]e

2

3 ;

Y′′2(t, γ) = [
2.5 + γ

0.7
]e

2

3 .

When we take t = 2 and for different values of r, β, γ the solution is given in Table 1. The

graphical interpretation of the table is also shown in the form of membership function in the

Figure. 1.

5. Mining Safety Model

The miming industry has played an important role in development in the human civiliza-

tion. Extraction of minerals from the underground system of work has involved a considerable

amount of risks like roof fall over the workplace, inundation of the workplace due to the in-

flux of water from the old working, explosion, influx of poisonous gases in the workplace, etc.

Similarly, the opencast system of work has involved chances of runway of dumpers, sliding of

benches in the workplace, striking by the fly rocks blasting, etc. These phenomenon’s not only
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r, β, γ Y1(t, r) Y2(t, r) Y′1(t, β) Y′2(t, β) Y′′1(t, γ) Y′′2(t, γ)

0 5.8432 9.7387 8.2778 7.3040 8.6257 6.9561

0.1 6.0866 9.4952 8.0344 7.5474 8.3474 7.2344

0.2 6.3301 9.2517 7.7909 7.7909 8.0692 7.5127

0.3 6.5736 9.0083 7.5475 8.0344 7.7909 7.7909

0.4 6.8171 8.7648 7.3040 8.2779 7.5127 8.0692

0.5 7.0605 8.5213 7.0605 8.5213 7.2344 8.3474

0.6 7.3040 8.2779 6.8171 8.7648 6.9562 8.6257

0.7 7.5475 8.0344 6.5736 9.0082 6.6779 8.9039

0.8 7.7909 7.7909 6.3301 9.2517 6.3997 9.1822

0.9 8.0344 7.5475 6.0867 9.4952 6.1214 9.4604

1.0 8.2779 7.3040 5.8432 9.7387 5.8432 9.7387

Table 1. Solution for t = 2
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Figure 1. Membership Function Graph (at t=2).

causes injury to the workmen, sometimes lead to fatal. Improper used and malfunctioning

mining equipment or system also results an accident.

The system fails safely is denoted by λ1 and system fails unsafely is denoted by λ2 for the

mining safety model used here. Either λ1 or λ2 or both λ1 and λ2 are imprecise in nature.

Our main interest in this paper are given below:
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• Formulate Mining Safety model.

• Observe solution of the model in Crisp environment.

• Observe solution of the mining model in three ways:

(i) when λ1 is SVNNs and λ2 is crisp number.

(ii) when λ1 is crisp number and λ2 is SVNNs.

(iii) both λ1 and λ2 are SVNNs.

• Observe cut value in table form of the solution of the mining model in each of the cases

mention above and show its graphical representation.

5.1. Acceptation

(I) All events are not dependent to one another.

(II) The probability of progression from one condition to another is Ψδt; δt indicates finite

time interval, Ψ indicate the progression rate from one condition to another.

(III) (Ψδt)(Ψδt)→ 0.

(IV) P{η(δt) > 2} = o(δt), where η(δt) be the number of event that occur in δt.

(V) P{η(δt) = 1} = Ψδt + o(δt), where Ψ > 0.

(VI) limδt→0
o(δt)
δt = 0.

5.2. Input data

t= time.

λ1= mining system safe failure rate.

λ2= mining system unsafe failure rate.

5.3. Output data

P0(t)= Probability of Mining system operating normally.

P1(t)= Probability of Mining system failed safely.

P2(t)= Probability of Mining system failed unsafely.

Debapriya Mondal, Suklal Tudu, Gopal Chandra Roy and Tapan Kumar Roy, A Model Describing the 

Neutrosophic Differential Equation and Its Application on Mine Safety

Neutrosophic Sets and Systems, Vol. 46, 2021                                                                               393 



5.4. Modulator

t time.

δt finite time intervall.

P0(t + δt) operating probability in state 0 at time t + δt.

P1(t + δt) safe fail probability in state 1 at time t + δt.

P2(t + δt) unsafe fail probability in state 2 at time t + δt.

j=0 state operating normal.

j=1 state fail safe.

j=2 state fail unsafe.

Pj(t) probability in state j at time t.

λ1δt safe fail probability in finite time interval δt

λ2δt unsafe fail probability in δt

(1 - λ1δt) no safe fail probability in δt

(1 - λ1δt) no unsafe fail probability in δt

6. Model Formulation

Consider a mining system, the state space diagram is shown in Figure-2.
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Figure 2. Mining system state space diagram

From Fig.2,we get following three equations

P0(t + δt) = P0(t)(1− λ1δt)(1− λ2δt) (1)

P1(t + δt) = P1(t)(1− o(δt)) + P0(t)λ1δt (2)

P2(t + δt) = P2(t)(1− o(δt)) + P0(t)λ2δt (3)

From (1), (2), (3) we get

∴
dP0(t)
dt

= −(λ1 + λ2)P0(t) (4)

dP1(t)
dt

= λ1P0(t) (5)

dP2(t)
dt

= λ2P0(t) (6)

with IC: Pj(0) = 1 for j=0 & Pj(0) = 0 for j=1,2.

7. Solution mode

7.1. Crisp Solution:

Input data: Both λ1 and λ2 are Crisp number..

Output data: We get the values of P0(t), P1(t), P2(t).

7.2. Neutrosophic Solution:

Input data: Three cases arise

Case-1: λ̃1
Ne

=〈a′1, a′2, a′3;wµ, wν , wσ〉 & λ2 is Crisp number.

Case-2: λ1 is Crisp number & λ̃2
Ne

=〈b′1, b′2, b′3;uµ, uν , uσ〉

Case-3: λ̃1
Ne

=〈a′1, a′2, a′3;wµ, wν , wσ〉 & λ̃2
Ne

=〈b′1, b′2, b′3;uµ, uν , uσ〉
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Output data:

Let, ˜P0(t)
Ne

, ˜P1(t)
Ne

, ˜P2(t)
Ne

be the solution of the modified model with Cut

P0(t, r, β, γ)=〈[P01(t, r),P02(t, r)], [P ′01(t, β),P ′02(t, β)], [P ′′01(t, γ),P ′′02(t, γ)]〉

P1(t, r, β, γ)=〈[P11(t, r),P12(t, r)], [P ′11(t, β),P ′12(t, β)], [P ′′11(t, γ),P ′′12(t, γ)]〉

P2(t, r, β, γ)=〈[P21(t, r),P22(t, r)], [P ′21(t, β),P ′22(t, β)], [P ′′21(t, γ),P ′′22(t, γ)]〉

Solution is strong or weak if it satisfies the condition of NDE.

8. Numerical Experiment

8.1. Crisp Solution

Input data: λ1 = 0.009;λ2 = 0.001; t=20-h.

Output: P2(20)=0.018127

8.2. NS Solution

Case: 1

Input data: λ̃1
Ne

=〈0.007, 0.009, 0.011; 0.5, 0.3, 0.2〉;λ2 = 0.001; t=20-h.

Output: When we take the value t=20-h the output of λNe1 is TSVNNs & λ2 is crisp number

are shown in Table-2 and the corresponding membership function shown in Figure-3.

Case: 2

Input data: λ1=0.009; λ̃2
Ne

= 〈0.0007, 0.001, 0.0013; 0.7, 0.5, 0.4〉; t=20-h.

Output: When we take the value t=20-h the output of λ1 is Crisp number and λ̃2
Ne

is

TSVNNs are shown in Table-3 and the corresponding membership function shown in Figure-

4.

Case: 3
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r, β, γ P21(t, r) P22(t, r) P ′21(t, β) P ′22(t, β) P ′′21(t, γ) P ′′22(t, γ)

0 0.017721 0.018523 0.018298 0.017954 0.018227 0.018026

0.1 0.017803 0.018445 0.018241 0.018012 0.018177 0.018077

0.2 0.017884 0.018366 0.018184 0.018070 0.018127 0.018127

0.3 0.017966 0.018287 0.018127 0.018127 0.018077 0.018177

0.4 0.018046 0.018207 0.018070 0.018184 0.018026 0.018227

0.5 0.018127 0.018127 0.018012 0.018241 0.017976 0.018277

0.6 0.018207 0.018046 0.017954 0.018298 0.017925 0.018329

0.7 0.018287 0.017965 0.017896 0.018355 0.017874 0.018376

0.8 0.018366 0.017884 0.017838 0.018411 0.017823 0.018425

0.9 0.018445 0.017803 0.017780 0.018467 0.017772 0.018474

1.0 0.018523 0.017721 0.017721 0.018523 0.017721 0.018523

Table 2. λ̃1
Ne

is TSVNNs & λ2 is Crisp number.

r, β, γ P21(t, r) P22(t, r) P ′21(t, β) P ′22(t, β) P ′′21(t, γ) P ′′22(t, γ)

0 0.012647 0.023643 0.023643 0.012647 0.021800 0.014470

0.1 0.013427 0.022853 0.022537 0.013740 0.020881 0.015382

0.2 0.014209 0.022063 0.021432 0.014834 0.019962 0.016296

0.3 0.014991 0.021275 0.020329 0.015930 0.019044 0.017211

0.4 0.015774 0.020487 0.019227 0.017028 0.018127 0.018127

0.5 0.016557 0.019699 0.018127 0.018127 0.017211 0.019044

0.6 0.017342 0.018913 0.017028 0.019227 0.016296 0.019962

0.7 0.018127 0.018127 0.015930 0.020329 0.015382 0.020881

0.8 0.018913 0.017342 0.014834 0.021432 0.014470 0.021800

0.9 0.019699 0.016557 0.013740 0.022537 0.013558 0.022721

1.0 0.020487 0.015774 0.012647 0.023643 0.012647 0.023643

Table 3. λ1 is Crisp number & λ̃2
Ne

is TSVNNs

Input data:

λ̃1
Ne

=〈0.007, 0.009, 0.011; 0.5, 0.3, 0.2〉; λ̃2
Ne

= 〈0.0007, 0.001, 0.0013; 0.7, 0.5, 0.4〉; t=20-h.

Output: When we take the value t=20-h the output of λ̃1
Ne

& λ̃2
Ne

are TSVNNs are shown

in Table-4 and the corresponding membership function shown in Figure-5.

From the table values and graph, we see that

P1(t, r) is increasing function and

P2(t, r) is decreasing function, whereas
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r, β, γ P21(t, r) P22(t, r) P ′21(t, β) P ′22(t, β) P ′′21(t, γ) P ′′22(t, γ)

0 0.012361 0.024156 0.024156 0.012361 0.022118 0.014253

0.1 0.013188 0.023247 0.022930 0.013493 0.021109 0.015210

0.2 0.014023 0.022345 0.021714 0.014635 0.020108 0.016175

0.3 0.014866 0.021449 0.020508 0.015788 0.019165 0.017147

0.4 0.015715 0.020561 0.019312 0.016952 0.018127 0.018127

0.5 0.016573 0.019681 0.018127 0.018127 0.017147 0.019114

0.6 0.017438 0.018807 0.016952 0.019312 0.016175 0.020108

0.7 0.018310 0.017941 0.015788 0.020508 0.015210 0.021109

0.8 0.019190 0.017083 0.014635 0.021714 0.014253 0.022118

0.9 0.020077 0.016232 0.013493 0.022930 0.013303 0.023134

1.0 0.020971 0.015388 0.012361 0.024156 0.012361 0.024156

Table 4. Both λ̃1
Ne

& λ̃2
Ne

are TSVNNs
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Figure 5. Membership Function Graph (at t=20).

P ′1(t, β), P ′′1 (t, γ) are decreasing functions and

P ′2(t, β), P ′′2 (t, γ) are increasing functions. Hence, the solution is strong solution.
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9. Conclusion

• NS is a hot research topic and can be applied for solving the mathematical model of

uncertainty, vagueness, ambiguity, etc.

• The mining safety model described in this paper with two parameters which satisfies the

condition of NDE has got strong solutions.

• The solutions of the three differential equations of the mining safety model have been de-

scribed via TSVNNs.

• The paper has also proposed numerical experiment and graphical representation of truth,

indeterminacy and falsity membership function.

This will promote the future study of trapezoidal single valued neutrosophic numbers.
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neutrosophic topological space in terms of quasi-neighbourhoods.
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—————————————————————————————————————————-

1. Introduction

The notion of Fuzzy set was brought to light by Zadeh [38] in 1965 and Intuitionistic fuzzy

set, a generalized version of fuzzy set, was introduced by Atanassov [1] in 1986. After a decade,

a new branch of philosophy recognised as Neutrosophy was developed and studied by Florentin

Smarandache [25–27]. Smarandache [27] proved that neutrosophic set was a generalization

of intuitionistic fuzzy set. Like intuitionistic fuzzy set, an element in a neutrosophic set

has the degree of membership and the degree of non-membership but it has another grade

of membership known as the degree of indeterminacy and one very important point about

neutrosophic set is that all the three neutrosophic components are independent of one another.

After Smarandache had brought the thought of neutrosophy, it was studied and taken

ahead by many researchers [11, 31, 32, 35]. In the year 2002, Smarandache [26] added the

thinking of neutrosophic topology on the non-standard interval and thereafter Lupiáñez [16–19]

studied and investigated many properties of neutrosophic topological space. The author [17]

also studied the relation between interval neutrosophic sets and topology. Salma et.al. [28–

30] studied neutrosophic topological space, generalised neutrosophic topological space and

neutrosophic continuous functions. In the year 2016, Karatas and Kuru [15] redefined the
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single valued neutrosophic set operations and introduced a new neutrosophic topology and

then investigated some important properties of general topology on the redefined neutrosophic

topological space. Later, various aspects of neutrosophic topology were developed by many

researchers [2, 12,14,33].

Neutrosophy, due to the fact of its of flexibility and effectiveness, is attracting the researchers

throughout the world and is very useful not only in the developement of science and technology

but also in various other fields. For instance, Abdel-Basset et.al. [3–6] studied the applications

of neutrosophic theory in a number of scientific fields. Pramanik and Roy [24] in 2014 studied

on the conflict between India and Pakistan over Jammu-Kashmir through neutrosophic game

theory. Works on medical diagnosis [7, 36], decision making problem [8, 37], image processing

[10, 13], social issues [20, 23], educational problems [21, 22] were also done under neutrosophic

environment.

In the year 1995 Coker and Demirci [9] introduced the idea of intuitionistic fuzzy points and

their quasi-coincident relation. Very recently Ray and Dey [34] introduced the idea of neutro-

sophic point on single-valued neutrosophic sets and studied various properties. But the relation

of quasi-coincidence in case of neutrosophic points or neutrosophic sets has not been studied

so far. In this article, we define the relation of quasi-coincidence between a neutrosophic point

and a neutrosophic set as well as between two neutrosophic sets and examine some properties

based on the relation of quasi-coincidence. We then define neutrosophic quasi-neighbourhood

of a neutrosophic point and investigate some properties. Lastly we study the characterization

of neutrosophic topological space in terms of neutrosophic quasi-neighbourhoods.

2. Preliminaries

In this section we discuss some concepts related with neutrosophic sets.

2.1. Definition: [35]

Let X be the universe of discourse. A single valued neutrosophic set A over X is defined as

A = {〈x, TA(x), IA(x),FA(x)〉 : x ∈ X}, where TA, IA,FA are functions from X to [0, 1] and

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

The set of all single valued neutrosophic sets over X is denoted by N (X).

Throughout this article, a single valued neutrosophic set will simply be called a neutrosophic

set (NS, for short).

2.2. Definition: [15]

Let A,B ∈ N (X). Then
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(i) (Inclusion): If TA(x) ≤ TB(x), IA(x) ≥ IB(x),FA(x) ≥ FB(x) for all x ∈ X then A is

said to be a neutrosophic subset of B and which is denoted by A ⊆ B.

(ii) (Equality): If A ⊆ B and B ⊆ A then A = B.

(iii) (Intersection): The intersection of A and B, denoted by A ∩B, is defined as A ∩B =

{〈x, TA(x) ∧ TB(x), IA(x) ∨ IB(x),FA(x) ∨ FB(x)〉 : x ∈ X}.
(iv) (Union): The union of A and B, denoted by A∪B, is defined as A∪B = {〈x, TA(x)∨

TB(x), IA(x) ∧ IB(x),FA(x) ∧ FB(x)〉 : x ∈ X}.
(v) (Complement): The complement of the NS A, denoted by Ac, is defined as Ac =

{〈x,FA(x), 1− IA(x), TA(x)〉 : x ∈ X}
(vi) (Universal Set): If TA(x) = 1, IA(x) = 0,FA(x) = 0 for all x ∈ X then A is said to be

neutrosophic universal set and which is denoted by X̃.

(vii) (Empty Set): If TA(x) = 0, IA(x) = 1,FA(x) = 1 for all x ∈ X then A is said to be

neutrosophic empty set and which is denoted by ∅̃.

2.3. Definition: [29]

Let {Ai : i ∈M} ⊆ N (X), where M is an index set. Then

(i) ∪i∈MAi = {〈x,∨i∈MTAi(x),∧i∈MIAi(x),∧i∈MFAi(x)〉 : x ∈ X}.
(ii) ∩i∈MAi = {〈x,∧i∈MTAi(x),∨i∈MIAi(x),∨i∈MFAi(x)〉 : x ∈ X}.

2.4. Neutrosophic topological space:

2.4.1. Definition: [15]

Let τ ⊆ N (X). Then τ is called a neutrosophic topology on X if

(i) ∅̃ and X̃ belong to τ .

(ii) The union of any number of neutrosophic sets in τ belongs to τ .

(iii) The intersection of any two neutrosophic sets in τ belongs to τ .

If τ is a neutrosophic topology on X then the pair (X, τ) is called a neutrosophic topological

space (NTS, for short) over X. The members of τ are called neutrosophic open sets in X. If

for a neutrosophic set A, Ac ∈ τ then A is said to be a neutrosophic closed set in X.

2.4.2. Theorem: [15]

Let (X, τ) be a neutrosophic topological space over X. Then

(i) ∅̃ and X̃ are neutrosophic closed sets over X.

(ii) The intersection of any number of neutrosophic closed sets is a neutrosophic closed set

over X.

(iii) The union of any two neutrosophic closed sets is a neutrosophic closed set over X.
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2.5. Definition: [34]

Let N (X) be the set of all neutrosophic sets over X. A NS P = {〈x, TP (x), IP (x),FP (x)〉 :

x ∈ X} is called a neutrosophic point (NP, for short) iff for any element y ∈ X, TP (y) =

α, IP (y) = β,FP (y) = γ for y = x and TP (y) = 0, IP (y) = 1,FP (y) = 1 for y 6= x, where

0 < α ≤ 1, 0 ≤ β < 1, 0 ≤ γ < 1.

A neutrosophic point P = {〈x, TP (x), IP (x),FP (x)〉 : x ∈ X} will be denoted by P xα,β,γ or

P < x, α, β, γ > or simply by xα,β,γ . For the NP xα,β,γ , x will be called its support.

The complement of the NP P xα,β,γ will be denoted by (P xα,β,γ)c or by xcα,β,γ .

2.6. Definition: [34]

Let A be a neutrosophic set over X. Also let xα,β,γ and yα/,β/,γ/ be two neutrosophic points

in X. Then

(i) xα,β,γ is said to be contained in A, denoted by xα,β,γ ⊆ A, iff α ≤ TA(x), β ≥ IA(x), γ ≥
FA(x).

(ii) xα,β,γ is said to belong to A, denoted by xα,β,γ ∈ A, iff α ≤ TA(x), β ≥ IA(x), γ ≥
FA(x).

(iii) xα,β,γ is said to be contained in yα/,β/,γ/ , denoted by xα,β,γ ⊆ yα/,β/,γ/ , iff x = y and

α ≤ α/, β ≥ β/, γ ≥ γ/.
(iv) xα,β,γ is said to belong to yα/,β/,γ/ , denoted by xα,β,γ ∈ yα/,β/,γ/ , iff x = y and

α ≤ α/, β ≥ β/, γ ≥ γ/.

2.7. Proposition: [34]

Let {Ai : i ∈M} ⊆ N (X), where M is an index set. Let xα,β,γ and yα/,β/,γ/ be any two

neutrosophic points over X. Then the following hold good.

(i) xα,β,γ ∈
⋂
{Ai : i ∈M} ⇐⇒ xα,β,γ ∈ Ai ∀ i ∈M.

(ii) If xα,β,γ ∈ Ai for some i ∈M then xα,β,γ ∈
⋃
{Ai : i ∈M}.

(iii) If xα,β,γ ∈
⋃
{Ai : i ∈M} then there exists a NS A(xα,β,γ) such that xα,β,γ ∈ A(xα,β,γ) ⊆⋃

{Ai : i ∈M}.

For other definitions and results concerning neutrosophic points used in this article, please

see [34]
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3. Main Results

3.1. Definition:

A NP xα,β,γ ∈ N (X) is said to be quasi-coincident with a NS A ∈ N (X) or xα,β,γ ∈ N (X)

quasi-coincides with a NS A ∈ N (X), denoted by xα,β,γqA, iff α > TAc(x) or β < IAc(x) or

γ < FAc(x), i.e., α > FA(x) or β < 1− IA(x) or γ < TA(x).

A NS A is said to be quasi-coincident with a NS B at x ∈ X or A quasi-coincides with B at

x ∈ X, denoted by AqB at x, iff TA(x) > TBc(x) or IA(x) < IBc(x) or FA(x) < FBc(x). We

say A quasi-coincides with B or A is quasi-coincident with B, denoted by AqB, iff A quasi-

coincides with B at some point x ∈ X. Thus A quasi-coincides with B or A is quasi-coincident

with B iff there exists an element x ∈ X such that TA(x) > TBc(x) or IA(x) < IBc(x) or

FA(x) < FBc(x), i.e., TA(x) > FB(x) or IA(x) < 1− IB(x) or FA(x) < TB(x).

If the NP xα,β,γ is not quasi-coincident with a NS A, we shall denote it by xα,β,γ q̂A. Similarly

if the NS A is not quasi-coincident with the NS B, we shall denote it by Aq̂B.

The set of all the points in X, at which AqB, will be denoted by AΩB, i.e., AΩB = {x ∈
X : AqB at x}.

Before proceeding to the results connected to quasi-coincident relation we first prove a

simple result on neutrosophic sets.

3.2. Proposition:

Let A,B ∈ N (X). Then A ⊆ B ⇔ Bc ⊆ Ac.
Proof:

A ⊆ B

⇔TA(x) ≤ TB(x), IA(x) ≥ IB(x),FA(x) ≥ FB(x) for all x ∈ X

⇔FB(x) ≤ FA(x), 1− IA(x) ≤ 1− IB(x), TB(x) ≥ TA(x) for all x ∈ X

⇔TBc(x) ≤ TAc(x), IBc(x) ≥ IAc(x),FBc(x) ≥ FAc(x) for all x ∈ X

⇔Bc ⊆ Ac

3.3. Proposition:

Let A,B,C be three neutrosophic sets and xα,β,γ be a neutrosophic point in X. Then

(i) xα,β,γ q̂∅̃.
(ii) xα,β,γqX̃.

(iii) xα,β,γ ∈ A⇔ xα,β,γ q̂A
c.

(iv) xα,β,γqA⇔ xα,β,γ /∈ Ac.
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(v) A ⊆ B ⇔ Aq̂Bc.

(vi) AqB ⇔ A * Bc

(vii) xα,β,γqA and A ⊆ B then xα,β,γqB.

(viii) CqA and A ⊆ B then CqB.

(ix) AqB at x ⇔ BqA at x.

(x) AqB ⇔ BqA.

Proofs:

(i) Very obvious.

(ii) Very obvious.

(iii)

xα,β,γ ∈ A

⇔α ≤ TA(x), β ≥ IA(x), γ ≥ FA(x)

⇔α ≯ TA(x), β ≮ IA(x), γ ≮ FA(x)

⇔α ≯ T(Ac)c(x), β ≮ I(Ac)c(x), γ ≮ F(Ac)c(x)

⇔xα,β,γ q̂Ac

(iv)

xα,β,γqA

⇔α > TAc(x) orβ < IAc(x) or γ < FAc(x)

⇔α � TAc(x) orβ � IAc(x) or γ � FAc(x)

⇔xα,β,γ /∈ Ac

(v)

A ⊆ B

⇔TA(x) ≤ TB(x), IA(x) ≥ IB(x),FA(x) ≥ FB(x) ∀x ∈ X

⇔TA(x) ≯ TB(x), IA(x) ≮ IB(x),FA(x) ≮ FB(x) ∀x ∈ X

⇔TA(x) ≯ T(Bc)c(x), IA(x) ≮ I(Bc)c(x),FA(x) ≮ F(Bc)c(x)∀ x ∈ X

⇔Aq̂Bc
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(vi)

AqB

⇔TA(x) > TBc(x) or IA(x) < IBc(x) orFA(x) < FBc(x) for somex ∈ X

⇔TA(x) � TBc(x) or IA(x) � IBc(x) orFA(x) � FBc(x) for somex ∈ X

⇔A * Bc

(vii) Since xα,β,γqA , so α > TAc(x) orβ < IAc(x) or γ < FAc(x). Now

A ⊆ B

⇒Bc ⊆ Ac

⇒TBc(x) ≤ TAc(x), IBc(x) ≥ IAc(x),FBc(x) ≥ FAc(x) for all x ∈ X

⇒TAc(x) ≥ TBc(x), IAc(x) ≤ IBc(x),FAc(x) ≤ FBc(x) for all x ∈ X

⇒α > TBc(x) or β < IBc(x) or γ < FBc(x)

⇒xα,β,γqB

(viii) CqA⇒ C * Ac ⇒ C * Bc [ ∵ A ⊆ B ⇒ Bc ⊆ Ac ]⇒ CqB.

(ix)

AqB at x

⇔TA(x) > TBc(x) or IA(x) < IBc(x) or FA(x) < FBc(x)

⇔TA(x) > FB(x) or IA(x) < 1− IB(x) or FA(x) < TB(x)

⇔TB(x) > FA(x) or IB(x) < 1− IA(x) or FB(x) < TA(x)

⇔TB(x) > TAc(x) or IB(x) < IAc(x) or FB(x) < FAc(x)

⇔BqA at x

(x) Obvious from (ix).

3.4. Proposition:

Let xα,β,γ be a NP in X, A ∈ N (X) and {Ai : i ∈M} ⊆ N (X), M is an index set. Then

(i) xα,β,γq ∪i∈M Ai ⇔ xα,β,γqAj for some j ∈M.

(ii) Aq ∪i∈M Ai ⇔ AqAj for some j ∈M.

(iii) xα,β,γq ∩i∈M Ai ⇒ xα,β,γqAi for all i ∈M. Converse is not true.

(iv) Aq ∩i∈M Ai ⇒ AqAi for all i ∈M. Converse is not true.
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Proofs: (i)

xα,β,γq ∪i∈M Ai

⇔xα,β,γ /∈ (∪i∈MAi)c

⇔xα,β,γ /∈ ∩i∈MAci

⇔xα,β,γ /∈ Acj for some j ∈M

⇔xα,β,γqAj for some j ∈M

(ii)

Aq ∪i∈M Ai

⇔A * (∪i∈MAi)c

⇔A * ∩i∈MAci

⇔A * Acj for some j ∈M

⇔AqAj for some j ∈M

(iii)

xα,β,γq ∩i∈M Ai

⇒xα,β,γ /∈ (∩i∈MAi)c

⇒xα,β,γ /∈ ∪i∈MAci

⇒xα,β,γ /∈ Aci for all i ∈M

⇒xα,β,γqAi for all i ∈M

Converse is not true. We establish it by the following counter example.

Let X = {x, y}. Also let A = {〈x, 0.3, 0.6, 0.2〉, 〈y, 0.6, 0.7, 0.7〉}, B = {〈x, 0.3, 0.5, 0.6〉,
〈y, 0.3, 0.8, 0.7〉} and C = {〈x, 0.4, 0.5, 0.7〉, 〈y, 0.6, 0.1, 0.7〉} be three neutrosophic sets over

X. Then A ∩ B ∩ C = {〈x, 0.3, 0.6, 0.7〉, 〈y, 0.3, 0.8, 0.7〉} Let us consider the neutrosophic

point x0.3,0.4,0.8. Clearly x0.3,0.4,0.8qA , x0.3,0.4,0.8qB and x0.3,0.4,0.8qC but x0.3,0.4,0.8 is not

quasi-coincident with A ∩B ∩ C.

(iv)

Aq ∩i∈M Ai

⇒A * (∩i∈MAi)c

⇒A * ∪i∈MAci

⇒A * Aci for all i ∈M

⇒AqAi for all i ∈M
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Converse is not true. We establish it by the following counter example.

Let X = {x, y}. Also let A = {〈x, 0.3, 0.6, 0.2〉, 〈y, 0.6, 0.7, 0.7〉}, B = {〈x, 0.3, 0.5, 0.6〉,
〈y, 0.3, 0.8, 0.7〉} and C = {〈x, 0.4, 0.5, 0.7〉, 〈y, 0.6, 0.1, 0.7〉} be three neutrosophic sets over

X. Then A ∩B ∩ C = {〈x, 0.3, 0.6, 0.7〉, 〈y, 0.3, 0.8, 0.7〉} Let us consider the neutrosophic set

D = {〈x, 0.3, 0.4, 0.8〉, 〈y, 0.5, 0.7, 0.7〉}. Clearly DqA , DqB and DqC but D is not quasi-

coincident with A ∩B ∩ C.

3.5. Proposition:

(i) AΩB = BΩA.

(ii) AqB ⇔ AΩB 6= ∅.
(iii) A ⊆ B ⇒ AΩC ⊆ BΩC.

(iv) AΩ(∪i∈MAi) = ∪i∈M(AΩAi).

(v) AΩ(∩i∈MAi) ⊆ ∩i∈M(AΩAi). Converse is not true.

Proofs:

(i) AΩB = {x ∈ X : AqB atx} = {x ∈ X : BqA atx} = BΩA.

(ii)AqB ⇔ AqB at some x ∈ X ⇔ x ∈ AΩB. Therefore AqB ⇔ AΩB 6= ∅.
(iii)A ⊆ B ⇒ TA(x) ≤ TB(x), IA(x) ≥ IB(x),FA(x) ≥ FB(x) for all x ∈ X. Now

x ∈ AΩC

⇒AqC at x ∈ X

⇒TA(x) > TCc(x) or IA(x) < ICc(x) or FA(x) < FCc(x)

⇒TB(x) > TCc(x) or IB(x) < ICc(x) or FB(x) < FCc(x)

⇒BqC at x ∈ X

⇒x ∈ BΩC

∴ AΩC ⊆ BΩC.

(iv)

x ∈ AΩ(∪i∈MAi)

⇒Aq(∪i∈MAi) at x ∈ X

⇒∃ j ∈M such that AqAj at x ∈ X

⇒∃ j ∈M such that x ∈ AΩAj

⇒x ∈ ∪i∈M(AΩAi)

∴ AΩ(∪i∈MAi) ⊆ ∪i∈M(AΩAi).
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Again

x ∈ ∪i∈M(AΩAi)

⇒
∨
i∈M

(AqAi at x ∈ X)

⇒
∨
i∈M

(AiqA at x ∈ X)

⇒
∨
i∈M

[TAi(x) > TAc(x) or IAi(x) < IAc(x) or FAi(x) < FAc(x)]

⇒ sup
i∈M
TAi(x) > TAc(x) or inf

i∈M
IAi(x) < IAc(x) or inf

i∈M
FAi(x) < FAc(x)

⇒T∪Ai(x) > TAc(x) or I∪Ai(x) < IAc(x) or F∪Ai(x) < FAc(x)

⇒(∪i∈MAi)qA at x ∈ X

⇒Aq(∪i∈MAi) at x ∈ X

⇒x ∈ AΩ(∪i∈MAi)

∴ ∪i∈M (AΩAi) ⊆ AΩ(∪i∈MAi)

Hence AΩ(∪i∈MAi) = ∪i∈M(AΩAi).

(v)

x ∈ AΩ(∩i∈MAi)

⇒Aq(∩i∈MAi) at x ∈ X

⇒AqAi at x ∈ Xfor alli ∈M

⇒x ∈ AΩAifor alli ∈M

⇒x ∈ ∩i∈M(AΩAi)

∴ AΩ(∩i∈MAi) ⊆ ∩i∈M(AΩAi).

Converse is not true We establish it by the following counter example.

Let X = {x, y}. Also let A = {〈x, 0.3, 0.6, 0.2〉, 〈y, 0.6, 0.7, 0.7〉}, B = {〈x, 0.3, 0.5, 0.6〉,
〈y, 0.3, 0.8, 0.7〉} and C = {〈x, 0.4, 0.5, 0.7〉, 〈y, 0.6, 0.1, 0.7〉} be three neutrosophic sets over

X. Then A ∩B ∩ C = {〈x, 0.3, 0.6, 0.7〉, 〈y, 0.3, 0.8, 0.7〉} Let us consider the neutrosophic set

D = {〈x, 0.3, 0.4, 0.8〉, 〈y, 0.5, 0.7, 0.7〉}. Clearly DΩA = {x}, DΩB = {x}, DΩC = {x, y} and

DΩ(A ∩B ∩ C) = ∅. Therefore (DΩA) ∩ (DΩB) ∩ (DΩC) = {x} * DΩ(A ∩B ∩ C).

3.6. Definition:

Let (X, τ) be a NTS. A neutrosophic set A is called a neutrosophic quasi-neighbourhood or

simply Q-neighbourhood (Q-nhbd, for short) of a neutrosophic point xα,β,γ iff there exists a

NS B ∈ τ such that xα,β,γqB ⊆ A.
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The family consisting of all the Q-neighbourhoods of the NP xα,β,γ is called the system of

Q-neighbourhoods or Q-neighbourhood system of xα,β,γ . This family is denoted by NQ(xα,β,γ).

3.7. Proposition:

Every neutrosophic open set A in a NTS (X, τ) is a Q-nhbd of every NP quasi-coincident

with A.

Proofs: Obvious because for every NP xα,β,γqA, we have xα,β,γqA ⊆ A.

3.8. Properties of Neutrosophic Q-neighbourhoods :

Let NQ(xα,β,γ) be the collection of all Q-neighbourhoods of the NP xα,β,γ in a NTS (X, τ).

Then

N1) NQ(xα,β,γ) 6= ∅ for every NP xα,β,γ ∈ N (X).

N2) P ∈ NQ(xα,β,γ)⇒ xα,β,γqP .

N3) P ∈ NQ(xα,β,γ), P ⊆ Q⇒ Q ∈ NQ(xα,β,γ).

N4) P ∈ NQ(xα,β,γ) ⇒ there exists a Q ∈ NQ(xα,β,γ) such that Q ⊆ P and Q ∈
NQ(yα/,β/,γ/) for every NP yα/,β/,γ/ quasi-coincident withQ.

Proofs:

N1) Obviously X̃ is a Q-nhbd of every NP xα,β,γ ∈ N (X). Thus there exists at least one

Q-nhbd for every NP xα,β,γ ∈ N (X). Therefore NQ(xα,β,γ) 6= ∅ for every NP xα,β,γ ∈ N (X).

N2) P ∈ NQ(xα,β,γ) ⇒ P is a Q-nhbd of xα,β,γ ⇒ ∃ a S ∈ τ such that xα,β,γqS ⊆ P .

Therefore xα,β,γqP .

N3) P ∈ NQ(xα,β,γ) ⇒ P is a Q-nhbd of xα,β,γ ⇒ ∃ an open set G such that xα,β,γqG ⊆
P ⇒ ∃ an open set G such that xα,β,γqG ⊆ Q⇒ Q is a Q-nhbd of xα,β,γ ⇒ Q ∈ NQ(xα,β,γ)

N4) Since P ∈ NQ(xα,β,γ) , so there exists a τ -open set Q such that xα,β,γqQ ⊆ P . Since

Q is an open set, so Q ∈ NQ(xα,β,γ). Thus Q ∈ NQ(xα,β,γ) and Q ⊆ P .

Again since Q is an open set, so Q is a Q-nhbd of every NP quasi-coincident with Q.

Therefore Q ∈ NQ(yα/,β/,γ/) for every NP yα/,β/,γ/ quasi-coincident with Q .

Hence proved.

3.9. Characterization of NTS in terms of Neutrosophic Q-neighbourhoods:

Let X be a non-empty set and let x ∈ X. Let NQ(xα,β,γ) be a family of all neutrosophic

sets over X satisfying the following conditions :

N1) P ∈ NQ(xα,β,γ)⇒ xα,β,γqP .

N2) P,Q ∈ NQ(xα,β,γ)⇒ P ∩Q ∈ NQ(xα,β,γ).

N3) P ∈ NQ(xα,β,γ), P ⊆ Q⇒ Q ∈ NQ(xα,β,γ).
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Then there exists a neutrosophic topology τ on X. If, in addition to that, the following

condition (N4) is also satisfied then NQ(xα,β,γ) is exactly the Q-neighbourhood system of

xα,β,γ in the NTS (X, τ).

N4) P ∈ NQ(xα,β,γ) ⇒ there exists a Q ∈ NQ(xα,β,γ) such that Q ⊆ P and Q ∈
NQ(yα/,β/,γ/) for every NP yα/,β/,γ/ quasi-coincident withQ.

Proof: We define τ as follows :

A NS G ∈ τ iff G ∈ NQ(xα,β,γ) whenever xα,β,γqG.

We claim that τ is a neutrosophic topology on X.

T1) ∅̃ ∈ τ as no NP is quasi-coincident with ∅̃ . By (N3), X̃ ∈ τ . Thus ∅̃, X̃ ∈ τ .

T2) Suppose G1, G2 ∈ τ and xα,β,γq(G1 ∩ G2). Since xα,β,γq(G1 ∩ G2), so xα,β,γqG1 and

xα,β,γqG2. Therefore G1, G2 ∈ NQ(xα,β,γ) and so, by (N2), G1 ∩G2 ∈ NQ(xα,β,γ).

T3) Suppose {Gi : i ∈M} ⊆ τ and xα,β,γq(∪i∈MGi). We show that ∪{Gi : i ∈M} ∈ τ . Now

xα,β,γq(∪i∈MGi) ⇒ ∃ a j ∈M such thatxα,β,γqGj ⇒ ∃ a j ∈M such thatGj ∈ NQ(xα,β,γ) ⇒
∪{Gi : i ∈M} ∈ N(xα,β,γ)[by (N3)]⇒ ∪{Gi : i ∈M} ∈ τ .

Therefore τ is a neutrosophic topology on X.

Let the condition (N4) be satisfied. Suppose that N∗Q(xα,β,γ), is the family of all Q-

neighbourhoods of the NP xα,β,γ in (X, τ). We show that N∗Q(xα,β,γ) = NQ(xα,β,γ).

Let N ∈ NQ(xα,β,γ). Then by (N4) there exists a M ∈ NQ(xα,β,γ) such that M ⊆ N and

M ∈ NQ(yα/,β/,γ/) for every NP yα/,β/,γ/ quasi-coincident with M . Now M ∈ NQ(xα,β,γ)⇒
xα,β,γqM [by (N1)]. Therefore M ∈ τ . Thus M is a τ -open set such that xα,β,γqM ⊆ N .

Therefore N ∈ N∗Q(xα,β,γ) and so NQ(xα,β,γ) ⊆ N∗Q(xα,β,γ). Conversely let N ∈ N∗Q(xα,β,γ)

so that N is a Q-nhbd of xα,β,γ . Then there exists a τ -open set G such that xα,β,γqG ⊆ N .

Therefore G ∈ NQ(xα,β,γ). But G ∈ NQ(xα,β,γ) and G ⊆ N together imply by (N3) that

N ∈ NQ(xα,β,γ). Therefore N∗Q(xα,β,γ) ⊆ NQ(xα,β,γ).Thus NQ(xα,β,γ) = N∗Q(xα,β,γ).

Hence proved.

4. Conclusion

In this article we have introduced the notion of quasi-coincident relation and established

some vital properties based on that. We have also defined the quasi-neighbourhood of a neutro-

sophic point and studied some properties. At last we have thrown light on the characterization

of neutrosophic topological space through the the quasi-neighbourhoods of the neutrosophic

points. Hope that the findings in this article will assist the research fraternity to move forward

for the development of different aspects of neutrosophic topology.
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A single-valued neutrosophic set, an generalization of intuitionistic fuzzy set, is a powerful model to deal with
uncertainty. In this study we present a method to solve LR-type single-valued neutrosophic linear programming prob-
lems by using unrestricted LR-type single-valued neutrosophic numbers. We propose the ranking function to transform
LR-type single-valued neutrosophic problems into crisp problems. The arithmetic operations for unrestricted LR-type
single-valued neutrosophic numbers are introduced. We propose a method to solve the fully single-valued neutrosophic
linear programming problems with equality constraints having LR-type single-valued neutrosophic numbers as right
hand sides, parameters and variables. We describe our proposed method by solving real life examples.

Keywords: LR-type single-valued neutrosophic numbers, Ranking function, Arithmetic operations.

1 Introduction

First time in the history, Zadeh [53] introduced the theory of fuzzy sets to handel vagueness. Fuzzy logic and fuzzy
sets have been applied to many real life applications. Atanassove [8] gave the concept of intuitionistic fuzzy sets which
is an extension of fuzzy set. In intuitionistic fuzzy set, we deal with non-membership function as well as membership
function. Intuitionistic fuzzy sets are fail to deal with complete information. Intuitionistic fuzzy sets are not able to
handle inconsistent information and indeterminate information which exist commonly in the belief system. Smarandache
[46] introduced the concept of neutrosophic set theory. Neutrosophic set is an extension of Intuitionistic fuzzy set, there
are three independent membership functions namely truth membership, falsity membership and hesitancy membership
function to deal with vague information.
Linear programming is a quantitative tool to allocate optimal allocation available sources between competing procedures.
It is among the popular techniques applied to several areas like marketing, production, advertising, finance and distri-
bution and so forth. Many problems of science and engineering are modeled in such a way that information about the
situation is vague, imprecise or incomplete. Many scientists have been worked on linear programming (LP) and fuzzy
linear programming (FLP). First time Bellman and Zadeh [10] introduced the idea of decision making in fuzzy envi-
ronment. By using multi-objective function Zimmerman [54] gave a technique to solve LP problem. Behera et al. [9]
proposed two new methods to solve FLP problems. They solved two types of problems with two different methods. Kaur
and Kumar [24] gave an introduction to fuzzy linear programming problems. Kumar et al. [28] presented a method to
solve fully fuzzy linear programming (FFLP) problems. Kaur and Kumar [25] presented a method to find exact fuzzy
optimal solution of FFLP problems by using unrestricted fuzzy variables. Najafi and Edalatpanah [38] proposed a better
technique to solve FFLP problem than Kumar et al. [28]. Kaur and Kumar [26] proposed Mehar’s method for solving
FFLP problems with LR fuzzy parameters. Najafi et al. [39] solved a nonlinear model for FFLP by using unrestricted
fuzzy numbers. Based on multi objective LP problems and lexicographic method Das et al. [17] proposed a new tech-
nique to solve FFLP problem with trapezoidal fuzzy numbers. Allahviranloo et al. [6] solved FFLP problem by using
a kind of defuzzification approach. Lotfi et al. [29] considered FFLP problems in which all parameters and variable are
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triangular fuzzy numbers. They used the concept of the symmetric triangular fuzzy number and popularized a method
to defuzzify a general fuzzy quantity. For solving FFLP problems with inequality constraints Prez-Caedo et al. [43]
suggested a revised version of a lexicographical-based method.
Later on, in 1983 Atanassove [8] introduced the concept of intuitionistic fuzzy set which is an extension of fuzzy set.
In intuitionistic fuzzy set there is a non-membership function along with membership function. Many researchers have
worked at certain techniques to solve LP problems in an intuitionistic fuzzy environment by using intuitionistic fuzzy
numbers (IFNs) or LR-type IFNs. In an intuitionistic fuzzy environment Angelov [7] has introduced a new technique to
the optimization problem. Singh and Yadav [44] introduced the product of LR-type IFNs and solved LR-type intuitionis-
tic fuzzy linear programming (IFLP) problems. Abhishekh and Nishad [2] proposed a new ranking function to obtain an
optimal solution of fully LR-intuitionistic fuzzy transportation problem by using LR-type IFNs. Dubey and Mehra [18]
solved LP problems with triangular intuitionistic fuzzy numbers (TIFNs). Nagoorgani and Ponnalagu [36] introduced
division of TIFN by using accuracy function, score function, α-cut and β-cut. Edalatpanah [19] designed a model of
data envelopment analysis with TIFNs and established a strategy to solve it. Kabiraj et al. [23] solved IFLP problems
by using a method based on a method suggested by Zimmermann [54]. Malathi and Umadevi [30] IFLP problems in
an intuitionistic fuzzy environment. Prez-Caedo and Concepcin-Morales [42] proposed a method to solve LR-type fully
intuitionistic fuzzy linear programming (FIFLP) having inequality constraints in which variables and constrains are unre-
stricted LR-type IFNs. Pythagorean fuzzy linear programming is an extension of intuitionistic fuzzy linear programming.
Akram et al. [4, 5] proposed a method to solve pythagorean fuzzy linear programming problems by using pythagorean
fuzzy numbers and LR-type pythagorean fuzzy numbers.
Neutrosophic set is an extension of intuitionistic fuzzy set. In neutrosophic set there are three independent membership
functions namely truth membership, falsity membership and hesitancy membership function. Smarandache [46] intro-
duced the concept of neutrosophic set theory. Abdel-Basset et al. [1] suggested a technique to solve the fully neutrosophic
linear programming (FNLP) problems. Bera and Mahapatra [12] developed the Big-M simplex method to solve neutro-
sophic linear programming (NLP) problem. Das and Chakraborty [15] considered a pentagonal NLP problem to solve it.
Das and Dash [16] solved NLP problems with mixed constraints. Edalatpanah [20] presented a direct algorithm to solve
the linear programming problems. Khalifa et al. [27] solved NLP problem with single-valued trapezoidal neutrosophic
numbers. Recently, Ahmad et al. [3] have presented a new method to solve LPP using bipolar single-valued neutrosophic
sets.
The main contribution of this article is as follows.

1. We present the concept of LR-type SNN and arithmetic operations of LR-type SNNs by using α-cut, β-cut and
γ-cut.

2. We propose the idea of ranking function for LR-type SNNs.

3. We promote a technique to solve FSNLPP with equality constraints in which all the parameters and variables are
unrestricted LR-type SNNs.

4. We apply proposed method for solving real life problems.

This paper is arranged as follows: In Section 2, basic preliminaries and arithmetic operations are discussed. In Sections 3,
methodology for solving problems are explained. In Section 4, numerical problems are solved. In Section 5, conclusion
is given.
For more information, the readers are referred to [11, 13, 14, 21, 22, 31, 32, 33, 34, 35, 40, 41, 45, 46, 47, 48, 49, 50, 51,
52].

2 Preliminaries

Definition 1. [46] Let X be a nonempty set. A SNS B̃ in X is an object having the form

B̃ = {x, TB̃(x), IB̃(x), FB̃(x) : x ∈ X},
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where the truth membership function TB̃(x) : X → [0, 1] , indeterminacy membership function IB̃(x) : X → [0, 1] and
the falsity membership function FB̃(x) : X → [0, 1].

Definition 2. [11] Let B̃ be a SNS in X , then its α-cut, β-cut and γ-cut are defined as B̃α = {x ∈ X : T (x) ≥ α},
B̃β = {x ∈ X : I(x) ≤ β} and B̃γ = {x ∈ X : F (x) ≤ γ} with α, β, γ ∈ [0, 1].

Definition 3. A SNN B̃ = ([b; l, r; l′, r′; l′′, r′′];χ, η, ζ)LR is defined as anLR-type SNN, if its truth membership (TB̃(x)),
Indeterminacy membership (IB̃(x)) and falsity membership (FB̃(x)) functions are defined as:

TB̃(x) =

{
L( b−xl ), x ≤ b, l > 0,

R(x−br ), x ≥ b, r > 0,

IB̃(x) =

{
L′( b−xl′ ), x ≤ b, l′ > 0,

R′(x−br′ ), x ≥ b, r′ > 0,

and

FB̃(x) =

{
L′′( b−xl′′ ), x ≤ b, l′′ > 0,

R′′(x−br′′ ), x ≥ b, r′′ > 0,

where l ≤ l′ ≤ l′′, r ≤ r′ ≤ r′′, L and R are continues, non-increasing functions on [0,∞) and L′, R′, L′′andR′′ are
continuous and non-decreasing functions on [0,∞) such that

1. L(0) = R(0) = χ,

2. limx→∞R(x) = limx→∞L(x) = 0,

3. L′(0) = R′(0) = η,

4. limx→∞R
′(x) = limx→∞L

′(x) = 1,

5. L′′(0) = R′′(0) = ζ,

6. limx→∞R
′′(x) = limx→∞L

′′(x) = 1,

b is called the mean value of B̃, l and r are the left and right spreads of (TB̃(x)), l
′ and r′ are the left and right spreads

of (IB̃(x)) and l′′ and r′′ are the left and right spreads of (FB̃(x)), respectively.

Remark
If we set L(x) = R(x) = max{0, χ− x}, L′(x) = R′(x) = min{1, η+ x} and L′′(x) = R′′(x) = min{1, ζ + x} then
B̃ = ([b; l, r; l′, r′; l′′, r′′];χ, η, ζ)LR becomes LR-type triangular single-valued neutrosophic number.

L(x) = R(x) =

{
χ− x, 0 ≤ x ≤ χ,
0, otherwise,

L′(x) = R′(x) =

{
η + x, η ≤ x ≤ 1,
1, otherwise,

L′′(x) = R′′(x) =

{
ζ + x, ζ ≤ x ≤ 1,
1, otherwise,

χ, η, ζ ∈ [0, 1].

Definition 4. Based on [44], An LR-type SNN B̃ = ([b; l, r; l′, r′; l′′, r′′];χ, η, ζ)LR is non-negative, if b − l′′ ≥ 0 and
denoted as B̃ ≥ 0.

Definition 5. Based on [44], An LR-type SNN B̃ = ([b; l, r; l′, r′; l′′, r′′];χ, η, ζ)LR is non-positive, if b+ r′′ < 0.
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Definition 6. Based on [44], An LR-type SNN B̃ = ([b; l, r; l′, r′; l′′, r′′];χ, η, ζ)LR is unrestricted, if b is any real
number.

Theorem 7. Let B̃ = ([b; l, r; l′, r′; l′′, r′′];χ, η, ζ)LR be an LR-type SNN, then its α-cut, β-cut and γ-cut are B̃α =
[b − lL−1(α), b + rR−1(α)], B̃β = [b − l′L′−1(β), b + r′R

′−1(β)] and B̃γ = [b − l′′L′′−1(γ), b + r′′R
′′−1(γ)], with

α, β, γ ∈ [0, 1].
Proof. By using the Definition 2, the theorem can be proved easily.

Definition 8. Let B̃ = ([b; l, r; l′, r′; l′′, r′′];χ, η, ζ)LR be an LR-type SNN, then ranking of B̃, denoted <(B̃), can be
defined as

<(B̃) = 1
6 [(

χ∫
0

b− lL−1(α))dα+(
χ∫
0

b+ rR−1(α))dα+(
1∫
η
b− l′L′−1(β))dβ+(

1∫
η
b+ r′R

′−1(β))dβ+(
1∫
ζ

b− l′′L′′−1(γ))dγ+

(
1∫
ζ

b+ r′′R
′′−1(γ))dγ].

Let B̃1 and B̃2 be two LR-type SNNs,

• B̃1 ≺ B̃2 if <(B̃1) < <(B̃1),

• B̃1 � B̃2 if <(B̃1) > <(B̃1),

• B̃1 ≈ B̃2 if <(B̃1) = <(B̃1).

2.1 Arithmetic Operations

Theorem 9. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two

LR-type SNNs, then B̃1⊕ B̃2 = ([b1 + b2; l1 + l2, r1 + r2; l
′
1 + l′2, r

′
1 + r′2; l

′′
1 + l′′2 , r

′′
1 + r′′2 ];χ1 ∧χ2, η1 ∨ η2, ζ1 ∨ ζ2)LR

proof. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two LR-type

SNNs, then their α-cut, β-cut and γ-cut are given as;
B̃α

1 = [b1 − l1L−1(α), b1 + r1R
−1(α)], B̃α

2 = [b2 − l2L−1(α), b2 + r2R
−1(α)],

B̃β
1 = [b1 − l′1L

′−1(β), b1 + r′1R
′−1(β)], B̃β

2 = [b2 − l′2L
′−1(β), b2 + r′2R

′−1(β)],
B̃γ

1 = [b1 − l′′1L
′′−1(γ), b1 + r′′1R

′′−1(γ)], B̃γ
2 = [b2 − l′′2L

′′−1(γ), b2 + r′′2R
′′−1(γ)].

Thus,

B̃α
1 + B̃α

2 = [b1 − l1L−1(α) + b2 − l2L−1(α), b1 + r1R
−1(α) + b2 + r2R

−1(α)]. (1)

By taking α = χ in equation (1), we have

(B̃1 + B̃2)
α=χ = b1 + b2. (2)

By taking α = 0 in equation (1), we have

(B̃1 + B̃2)
α=0 = [b1 + b2 − l1 − l2, b1 + b2 + r1 + r2]. (3)

Now

B̃β
1 + B̃β

2 = [b1 − l′1L
′−1(β) + b2 − l′2L

′−1(β), b1 + r′1R
′−1(β) + b2 + r′2R

′−1(β)]. (4)

By taking β = η in equation (4), we have

(B̃1 + B̃2)
β=η = b1 + b2. (5)
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By taking β = 1 in equation (4), we have

(B̃1 + B̃2)
β=1 = [b1 + b2 − l′1 − l′2, b1 + b2 + r′1 + r′2]. (6)

Further,

B̃γ
1 + B̃γ

2 = [b1 − l′′1L
′′−1(γ) + b2 − l′′2L

′′−1(γ), b1 + r′′1R
′′−1(γ) + b2 + r′′2R

′′−1(γ)]. (7)

By taking γ = ζ in equation (7), we have

(B̃1 + B̃2)
γ=ζ = b1 + b2. (8)

By taking γ = 1 in equation (7), we have

(B̃1 + B̃2)
γ=1 = [b1 + b2 − l′′1 − l′′2 , b1 + b2 + r′′1 + r′′2 ]. (9)

By combining the equations (2),(3),(5),(6),(8), and (9), the result follows.

Theorem 10. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two

LR-type SNNs, then B̃1	 B̃2 = ([b1− b2; l1− r2, r1− l2; l′1− r′2, r′1− l′2; l′′1 − r′′2 , r′′1 − l′′2 ];χ1 ∧χ2, η1 ∨ η2, ζ1 ∨ ζ2)LR
proof. Let B̃1 = ([b1; l1, r1; l

′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two LR-type

SNNs, then their α-cut, β-cut and γ-cut are given as;
B̃α

1 = [b1 − l1L−1(α), b1 + r1R
−1(α)], B̃α

2 = [b2 − l2L−1(α), b2 + r2R
−1(α)],

B̃β
1 = [b1 − l′1L

′−1(β), b1 + r′1R
′−1(β)], B̃β

2 = [b2 − l′2L
′−1(β), b2 + r′2R

′−1(β)],
B̃γ

1 = [b1 − l′′1L
′′−1(γ), b1 + r′′1R

′′−1(γ)], B̃γ
2 = [b2 − l′′2L

′′−1(γ), b2 + r′′2R
′′−1(γ)].

Thus,

B̃α
1 − B̃α

2 = [b1 − l1L−1(α)− b2 − r2R−1(α), b1 + r1R
−1(α)− b2 + l2L

−1(α)]. (10)

By taking α = χ in equation (10), we have

(B̃1 − B̃2)
α=χ = b1 − b2. (11)

By taking α = 0 in equation (10), we have

(B̃1 − B̃2)
α=0 = [b1 − b2 − l1 − r2, b1 − b2 + r1 + l2]. (12)

Now

B̃β
1 − B̃

β
2 = [b1 − l′1L

′−1(β)− b2 − r′2R
′−1(β), b1 + r′1R

′−1(β)− b2 + l′2L
′−1(β)]. (13)

By taking β = η in equation (13), we have

(B̃1 − B̃2)
β=η = b1 − b2. (14)

By taking β = 1 in equation (13), we have

(B̃1 − B̃2)
β=1 = [b1 − b2 − l′1 − r′2, b1 − b2 + r′1 + l′2]. (15)

Further,

B̃γ
1 − B̃

γ
2 = [b1 − l′′1L

′′−1(γ)− b2 − r′′2L
′′−1(γ), b1 + r′′1R

′′−1(γ)− b2 + l′′2R
′′−1(γ)]. (16)
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By taking γ = ζ in equation (16), we have

(B̃1 − B̃2)
γ=ζ = b1 − b2. (17)

By taking γ = 1 in equation (16), we have

(B̃1 − B̃2)
γ=1 = [b1 − b2 − l′′1 − r′′2 , b1 − b2 + r′′1 + l′′2 ]. (18)

By combining the equations (11),(12),(14),(15),(17), and (18), the result follows.

Theorem 11. Let B̃ = ([b; l, r; l′, r′1; l′′, r′′];χ, η, ζ)LR be an LR-type SNN and c be any arbitrary real number, then

cB̃ =

{
(cb; cl, cr; cl′, cr′; cl′′, cr′′), c ≥ 0,
(cb;−cr,−cl;−cr′,−cl′;−cr′′,−cl′′), c < 0.

Proof. Let B̃ = ([b; l, r; l′, r′1; l′′, r′′];χ, η, ζ)LR be an LR-type SNN and c be any arbitrary real number, then
B̃α = [b− lL−1(α), b+ rR−1(α)], B̃β = [b− l′L′−1(β), b+ r′R

′−1(β)], B̃γ = [b− l′′L′′−1(γ), b+ r′′R
′′−1(γ)].

Now, if c ≥ 0, then

cB̃α = [cb− clL−1(α), cb+ crR−1(α)]. (19)

By taking α = χ in equation (19), we have

cB̃α=χ = cb. (20)

By taking α = 0 in equation (19), we have

cB̃α=0 = [cb− cl, cb+ cr]. (21)

Also,

cB̃β = [cb− cl′L′−1(β), cb+ cr′R
′−1(β)]. (22)

By taking β = η in equation (22), we have

cB̃β=η = cb. (23)

By taking β = 1 in equation (22), we have

cB̃β=1 = [cb− cl′, cb+ cr′]. (24)

Further,

cB̃γ = [cb− cl′′L′′−1(γ), cb+ cr′′R
′′−1(γ)]. (25)

By taking γ = ζ in equation (25), we have

cB̃γ=ζ = cb. (26)

By taking γ = 1 in equation (25), we have

cB̃γ=1 = [cb− cl′′, cb+ cr′′]. (27)
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By combining the equations (20),(21),(23),(24),(26), and (27), the case c ≥ 0 follows.
If c¡0, then

cB̃α = [cb+ crR−1(α), cb− clL−1(α)]. (28)

By taking α = χ in equation (28), we have

cB̃α=χ = cb. (29)

By taking α = 0 in equation (28), we have

cB̃α=0 = [cb+ cr, cb− cl]. (30)

Also,

cB̃β = [cb+ cr′R
′−1(β), cb− cl′L′−1(β)]. (31)

By taking β = η in equation (31), we have

cB̃β=η = cb. (32)

By taking β = 1 in equation (31), we have

cB̃β=1 = [cb+ cr′, cb− cl′]. (33)

Further,

cB̃γ = [cb+ cr′′R
′′−1(γ), cb− cl′′L′′−1(γ)]. (34)

By taking γ = ζ in equation (34), we have

cB̃γ=ζ = cb. (35)

By taking γ = 1 in equation (34), we have

cB̃γ=1 = [cb+ cr′′, cb− cl′′]. (36)

On combining the equations (29),(30),(32),(33),(35), and (36), the case c¡0 follows. thus proof completed.

Theorem 12. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two

non-negative LR-type SNNs, then
B̃1⊗ B̃2 = ([b1b2; b1l2+ b2l1− l1l2, b1r2+ b2r1+ r1r2; b1l′2+ b2l′1− l′1l′2, b1r′2+ b2r′1+ r′1r′2; b1l′′2 + b2l′′1 − l′′1 l′′2 , b1r′′2 +
b2r
′′
1 + r′′1r

′′
2 ];χ1 ∧ χ2, η1 ∨ η2, ζ1 ∨ ζ2).

Proof. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two non-

negative LR-type SNNs, their α−cut, β−cut and γ−cut are given as:
B̃α

1 = [b1 − l1L−1(α), b1 + r1R
−1(α)], B̃α

2 = [b2 − l2L−1(α), b2 + r2R
−1(α)],

B̃β
1 = [b1 − l′1L

′−1(β), b1 + r′1R
′−1(β)], B̃β

2 = [b2 − l′2L
′−1(β), b2 + r′2R

′−1(β)],
B̃γ

1 = [b1 − l′′1L
′′−1(γ), b1 + r′′1R

′′−1(γ)], B̃γ
2 = [b2 − l′′2L

′′−1(γ), b2 + r′′2R
′′−1(γ)].

Thus,

B̃α
1 B̃

α
2 = [(b1 − l1L−1(α))(b2 − l2L−1(α)), (b1 + r1R

−1(α))(b2 + r2R
−1(α))]. (37)
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By taking α = χ in equation (37), we have

(B̃1B̃2)
α=χ = b1b2. (38)

By taking α = 0 in equation (37), we have

(B̃1B̃2)
α=0 = [b1b2 − b1l2 − b2l1 + l1l2, b1b2 + b1r2 + b2r1 + r1r2]. (39)

Now

B̃β
1 B̃

β
2 = [(b1 − l′1L

′−1(β))(b2 − l′2L
′−1(β)), (b1 + r′1R

′−1(β))(b2 + r′2R
′−1(β))]. (40)

By taking β = η in equation (40), we have

(B̃1B̃2)
β=η = b1b2. (41)

By taking β = 1 in equation (40), we have

(B̃1B̃2)
β=1 = [b1b2 − b1l′2 − b2l′1 + l′1l

′
2, b1b2 + b1r

′
2 + b2r

′
1 + r′1r

′
2]. (42)

Also

B̃γ
1 B̃

γ
2 = [(b1 − l′′1L

′′−1(γ))(b2 − l′′2L
′′−1(γ)), (b1 + r′′1R

′′−1(γ))(b2 + r′′2R
′′−1(γ))]. (43)

By taking γ = ζ in equation (43), we have

(B̃1B̃2)
γ=ζ = b1b2. (44)

By taking γ = 1 in equation (43), we have

(B̃1B̃2)
γ=1 = [b1b2 − b1l′′2 − b2l′′1 + l′′1 l

′′
2 , b1b2 + b1r

′′
2 + b2r

′′
1 + r′′1r

′′
2 ]. (45)

By combining the equations (38),(39),(41),(42),(44), and (45), the result follows.

Theorem 13. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be non-negative LR-type SNN, and B̃2 = ([b2; l2, r2; l

′
2,

r′2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be non-positive LR-type SNN, then B̃1⊗B̃2 = ([b1b2; b1l2−b2r1+l2r1, b1r2−b2l1−l1r2; b1l′2−

b2r
′
1 + l′2r

′
1, b1r

′
2 − b2l′1 − l′1r′2; b1l′′2 − b2r′′1 + l′′2r

′′
1 , b1r

′′
2 − b2l′′1 − l′′1r′′2 ];χ1 ∧ χ2, η1 ∨ η2, ζ1 ∨ ζ2)LR.

Proof. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be non-negative LR-type SNN, and B̃2 =

([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be non-positive LR-type SNN, their α−cut, β−cut and γ−cut are given as:

B̃α
1 = [b1 − l1L−1(α), b1 + r1R

−1(α)], B̃α
2 = [b2 − l2L−1(α), b2 + r2R

−1(α)],
B̃β

1 = [b1 − l′1L
′−1(β), b1 + r′1R

′−1(β)], B̃β
2 = [b2 − l′2L

′−1(β), b2 + r′2R
′−1(β)],

B̃γ
1 = [b1 − l′′1L

′′−1(γ), b1 + r′′1R
′′−1(γ)], B̃γ

2 = [b2 − l′′2L
′′−1(γ), b2 + r′′2R

′′−1(γ)].
Thus,

B̃α
1 B̃

α
2 = [(b1 + r1R

−1(α))(b2 − l2L−1(α)), (b1 − l1L−1(α))(b2 + r2R
−1(α))]. (46)

By taking α = χ in equation (46), we have

(B̃1B̃2)
α=χ = b1b2. (47)

By taking α = 0 in equation (46), we have

(B̃1B̃2)
α=0 = [b1b2 − b1l2 + b2r1 − l2r1, b1b2 + b1r2 − b2l1 − l1r2]. (48)
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Now

B̃β
1 B̃

β
2 = [(b1 + r′1R

′−1(β))(b2 − l′2L
′−1(β)), (b1 − l′1L

′−1(β))(b2 + r′2R
′−1(β))]. (49)

By taking β = η in equation (49), we have

(B̃1B̃2)
β=η = b1b2. (50)

By taking β = 1 in equation (49), we have

(B̃1B̃2)
β=1 = [b1b2 − b1l′2 + b2r

′
1 − l′2r′1, b1b2 + b1r

′
2 − b2l′1 − l′1r′2]. (51)

Also

B̃γ
1 B̃

γ
2 = [(b1 + r′′1R

′′−1(γ))(b2 − l′′2L
′′−1(γ)), (b1 − l′′1L

′′−1(γ))(b2 + r′′2R
′′−1(γ))]. (52)

By taking γ = ζ in equation (52), we have

(B̃1B̃2)
γ=ζ = b1b2. (53)

By taking γ = 1 in equation (52), we have

(B̃1B̃2)
γ=1 = [b1b2 − b1l′′2 + b2r

′′
1 − l′′2r′′1 , b1b2 + b1r

′′
2 − b2l′′1 − l′′1r′′2 ]. (54)

By combining the equations (47),(48),(50),(51),(53), and (54), the result follows.

Theorem 14. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be non-positive LR-type SNN, and B̃2 = ([b2; l2, r2; l

′
2,

r′2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be non-negative LR-type SNN, then B̃1 ⊗ B̃2 = ([b1b2; b2l1 − b1r2 + l1r2,−b1l2 + b2r1 −

l2r1; b2l
′
1 − b1r′2 + l′1r

′
2,−b1l′2 + b2r

′
1 − l′2r′1; b2l′′1 − b1r′′2 + l′′1r

′′
2 ,−b1l′′2 + b2r

′′
1 − l′′2r′′1 ];χ1 ∧ χ2, η1 ∨ η2, ζ1 ∨ ζ2)LR.

Proof. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be non-positive LR-type SNN, and B̃2 =

([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be non-negative LR-type SNN, their α−cut, β−cut and γ−cut are given as:

B̃α
1 = [b1 − l1L−1(α), b1 + r1R

−1(α)], B̃α
2 = [b2 − l2L−1(α), b2 + r2R

−1(α)],
B̃β

1 = [b1 − l′1L
′−1(β), b1 + r′1R

′−1(β)], B̃β
2 = [b2 − l′2L

′−1(β), b2 + r′2R
′−1(β)],

B̃γ
1 = [b1 − l′′1L

′′−1(γ), b1 + r′′1R
′′−1(γ)], B̃γ

2 = [b2 − l′′2L
′′−1(γ), b2 + r′′2R

′′−1(γ)].
Thus,

B̃α
1 B̃

α
2 = [(b1 − l1L−1(α))(b2 + r2R

−1(α)), (b1 + r1R
−1(α))(b2 − l2L−1(α))]. (55)

By taking α = χ in equation (55), we have

(B̃1B̃2)
α=χ = b1b2. (56)

By taking α = 0 in equation (55), we have

(B̃1B̃2)
α=0 = [b1b2 − b2l1 + b1r2 − l1r2, b1b2 − b1l2 + b2r1 − l2r1]. (57)

Now

B̃β
1 B̃

β
2 = [(b1 − l′1L

′−1(β))(b2 + r′2R
′−1(β)), (b1 + r′1R

′−1(β))(b2 − l′2L
′−1(β))]. (58)

By taking β = η in equation (58), we have

(B̃1B̃2)
β=η = b1b2. (59)
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By taking β = 1 in equation (58), we have

(B̃1B̃2)
β=1 = [b1b2 − b2l′1 + b1r

′
2 − l′1r′2, b1b2 − b1l′2 + b2r

′
1 − l′2r′1]. (60)

Also

B̃γ
1 B̃

γ
2 = [(b1 − l′′1L

′′−1(γ))(b2 + r′′2R
′′−1(γ)), (b1 + r′′1R

′′−1(γ))(b2 − l′′2L
′′−1(γ))]. (61)

By taking γ = ζ in equation (61), we have

(B̃1B̃2)
γ=ζ = b1b2. (62)

By taking γ = 1 in equation (61), we have

(B̃1B̃2)
γ=1 = [b1b2 − b2l′′1 + b1r

′′
2 − l′′1r′′2 , b1b2 − b1l′′2 + b2r

′′
1 − l′′2r′′1 ]. (63)

By combining the equations (56),(57),(59),(60),(62), and (63), the result follows.

Theorem 15. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2,

r′2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two non-positive LR-type SNNs, then B̃1⊗ B̃2 = ([b1b2;−b1r2−b2r1−r1r2,−b1l2−b2l1+

l1l2;−b1r′2 − b2r′1 − r′1r′2,−b1l′2 − b2l′1 + l′1l
′
2;−b1r′′2 − b2r′′1 − r′′1r′′2 ,−b1l′′2 − b2l′′1 + l′′1 l

′′
2 ];χ1 ∧ χ2, η1 ∨ η2, ζ1 ∨ ζ2).

Proof. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and B̃2 = ([b2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be two non-

negative LR-type SNNs, their α−cut, β−cut and γ−cut are given as:
B̃α

1 = [b1 − l1L−1(α), b1 + r1R
−1(α)], B̃α

2 = [b2 − l2L−1(α), b2 + r2R
−1(α)],

B̃β
1 = [b1 − l′1L

′−1(β), b1 + r′1R
′−1(β)], B̃β

2 = [b2 − l′2L
′−1(β), b2 + r′2R

′−1(β)],
B̃γ

1 = [b1 − l′′1L
′′−1(γ), b1 + r′′1R

′′−1(γ)], B̃γ
2 = [b2 − l′′2L

′′−1(γ), b2 + r′′2R
′′−1(γ)].

Thus,

B̃α
1 B̃

α
2 = [(b1 + r1R

−1(α))(b2 + r2R
−1(α)), (b1 − l1L−1(α))(b2 − l2L−1(α))]. (64)

By taking α = χ in equation (64), we have

(B̃1B̃2)
α=χ = b1b2. (65)

By taking α = 0 in equation (64), we have

(B̃1B̃2)
α=0 = [b1b2 + b1r2 + b2r1 + r1r2, b1b2 − b1l2 − b2l1 + l1l2]. (66)

Now

B̃β
1 B̃

β
2 = [(b1 + r′1R

′−1(β))(b2 + r′2R
′−1(β)), (b1 − l′1L

′−1(β))(b2 − l′2L
′−1(β))]. (67)

By taking β = η in equation (67), we have

(B̃1B̃2)
β=η = b1b2. (68)

By taking β = 1 in equation (67), we have

(B̃1B̃2)
β=1 = [b1b2 + b1r

′
2 + b2r

′
1 + r′1r

′
2, b1b2 − b1l′2 − b2l′1 + l′1l

′
2]. (69)

Also

B̃γ
1 B̃

γ
2 = [(b1 + r′′1R

′′−1(γ))(b2 + r′′2R
′′−1(γ)), (b1 − l′′1L

′′−1(γ))(b2 − l′′2L
′′−1(γ))]. (70)
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By taking γ = ζ in equation (70), we have

(B̃1B̃2)
γ=ζ = b1b2. (71)

By taking γ = 1 in equation (70), we have

(B̃1B̃2)
γ=1 = [b1b2 + b1r

′′
2 + b2r

′′
1 + r′′1r

′′
2 , b1b2 − b1l′′2 − b2l′′1 + l′′1 l

′′
2 ]. (72)

By combining the equations (65),(66),(68),(69),(71), and (72), the result follows.

Theorem 16. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be an LR-type SNN in which b1− l′′1 < 0, b1− l′1 ≥ 0, and

B̃2 = ([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestrictedLR-type SNN, then B̃1⊗B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,

where b = b1b2, l = b1b2 −min{b1b2 − l2b1 − l1b2 + l1l2, b1b2 − l2b1 + r1b2 − l2r1}, r = max{b1b2 + r2b1 + r1b2 +
r1r2, b1b2+r2b1−l1b2−l1r2}−b1b2, l′ = b1b2−min{b1b2−l′2b1−l′1b2+l′1l′2, b1b2−l′2b1+r′1b2−l′2r′1}, r′ = max{b1b2+
r′2b1+r

′
1b2+r

′
1r
′
2, b1b2+r

′
2b1−l′1b2−l′1r′2}−b1b2, l′′ = b1b2−min{b1b2−l′′1b2+r′′2b1−l′′1r′′2 , b1b2+r′′1b2−l′′2b1−l′′2r′′1}

and r′′ = max{b1b2 − l′′1b2 − l′′2b1 + l′′1 l
′′
2 , b1b2 + r′′1b2 + r′′2b1 + r′′1r

′′
2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.
Proof. Let B̃1 = ([b1; l1, r1; l

′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be anLR-type SNN such that b1−l′′1 < 0, b1−l′1 ≥ 0, b1−l1 ≥ 0,

and B̃2 = ([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestricted LR-type SNN, and their α−cut, β−cut and γ−cut

are given as:
B̃α

1 = [b1 − l1L−1(α), b1 + r1R
−1(α)], B̃α

2 = [b2 − l2L−1(α), b2 + r2R
−1(α)],

B̃β
1 = [b1 − l′1L

′−1(β), b1 + r′1R
′−1(β)], B̃β

2 = [b2 − l′2L
′−1(β), b2 + r′2R

′−1(β)],
B̃γ

1 = [b1 − l′′1L
′′−1(γ), b1 + r′′1R

′′−1(γ)], B̃γ
2 = [b2 − l′′2L

′′−1(γ), b2 + r′′2R
′′−1(γ)].

Thus,

B̃α
1 B̃

α
2 = [min{(b1 − l1L−1(α))(b2 − l2L−1(α)), (b1 + r1R

−1(α))(b2 + r2R
−1(α))},

max{(b1 + r1R
−1(α))(b2 + r2R

−1(α)), (b1 − l1L−1(α))(b2 − l2L−1(α))}]. (73)

By taking α = χ in equation (73), we have

(B̃1B̃2)
α=χ = b1b2. (74)

By taking α = 0 in equation (73), we have

(B̃1B̃2)
α=0 = [min{b1b2 − b1l2 − b2l1 + l1l2, b1b2 − b1l2 + b2r1 − l2r1},

max{b1b2 + b1r2 + b2r1 + r1r2, b1b2 + b1r2 − b2l1 − l1r2}]. (75)

Now

B̃β
1 B̃

β
2 = [min{(b1 − l′1L

′−1(β))(b2 − l′2L
′−1(β)), (b1 + r′1R

′−1(β))(b2 + r′2R
′−1(β))},

max{(b1 + r′1R
′−1(β))(b2 + r′2R

′−1(β)), {(b1 − l′1L
′−1(β))(b2 − l′2L

′−1(β))}]. (76)

By taking β = η in equation (76), we have

(B̃1B̃2)
β=η = b1b2. (77)
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By taking β = 1 in equation (76), we have

(B̃1B̃2)
β=1 = [min{b1b2 − b1l′2 − b2l′1 + l′1l

′
2, b1b2 − b1l′2 + b2r

′
1 − l′2r′1},

max{b1b2 + b1r
′
2 + b2r

′
1 + r′1r

′
2, b1b2 + b1r

′
2 − b2l′1 − l′1r′2}]. (78)

Also

B̃α
1 B̃

α
2 = [min{(b1 − l′′1L

′′−1(γ))(b2 + r′′2R
′′−1(γ)), (b1 + r′′1R

′′−1(γ))(b2 − l′′2L
′′−1(γ))},

max{{(b1 − l′′1L
′′−1(γ))(b2 − l′′2L

′′−1(γ)), (b1 + r′′1R
′′−1(γ))(b2 + r′′2R

′′−1(γ))}]. (79)

By taking γ = ζ in equation (79), we have

(B̃1B̃2)
γ=ζ = b1b2. (80)

By taking γ = 1 in equation (79), we have

(B̃1B̃2)
γ=1 = [min{b1b2 + b1r

′′
2 − b2l′′1 − l′′1r′′2 , b1b2 − b1l′′2 + b2r

′′
1 − l′′2r′′1},

max{b1b2 − b1l′′2 − b2l′′1 + l′′1 l
′′
2 , b1b2 + b1r

′′
2 + b2r

′′
1 + r′′1r

′′
2}]. (81)

By combining the equations (74),(75),(77),(78),(80), and (81), the result follows.
By using similar method as used in the above theorem the following theorems can be proved easily.

Theorem 17. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be an LR-type SNN in which b1− l′1 < 0, b1− l1 ≥ 0, and

B̃2 = ([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestrictedLR-type SNN, then B̃1⊗B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,

where b = b1b2, l = b1b2 −min{b1b2 − l2b1 − l1b2 + l1l2, b1b2 − l2b1 + r1b2 − l2r1}, r = max{b1b2 + r2b1 + r1b2 +
r1r2, b1b2+r2b1−l1b2−l1r2}−b1b2, l′ = b1b2−min{b1b2−l′1b2+r′2b1−l′1r′2, b1b2+r′1b2−l′2b1−l′2r′1}, r′ = max{b1b2−
l′1b2−l′2b1+l′1l′2, b1b2+r′1b2+r′2b1+r′1r′2}−b1b2, l′′ = b1b2−min{b1b2−l′′1b2+r′′2b1−l′′1r′′2 , b1b2+r′′1b2−l′′2b1−l′′2r′′1}
and r′′ = max{b1b2 − l′′1b2 − l′′2b1 + l′′1 l

′′
2 , b1b2 + r′′1b2 + r′′2b1 + r′′1r

′′
2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.
Theorem 18. Let B̃1 = ([b1; l1, r1; l

′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be an LR-type SNN in which b1 − l1 < 0, b1 ≥ 0, and

B̃2 = ([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestrictedLR-type SNN, then B̃1⊗B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,

where b = b1b2, l = b1b2 −min{b1b2 − l1b2 + r2b1 − l1r2, b1b2 + r1b2 − l2b1 − l2r1}, r = max{b1b2 − l1b2 − l2b1 +
l1l2, b1b2+r1b2+r2b1+r1r2}−b1b2, l′ = b1b2−min{b1b2−l′1b2+r′2b1−l′1r′2, b1b2+r′1b2−l′2b1−l′2r′1}, r′ = max{b1b2−
l′1b2−l′2b1+l′1l′2, b1b2+r′1b2+r′2b1+r′1r′2}−b1b2, l′′ = b1b2−min{b1b2−l′′1b2+r′′2b1−l′′1r′′2 , b1b2+r′′1b2−l′′2b1−l′′2r′′1}
and r′′ = max{b1b2 − l′′1b2 − l′′2b1 + l′′1 l

′′
2 , b1b2 + r′′1b2 + r′′2b1 + r′′1r

′′
2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.
Theorem 19. Let B̃1 = ([b1; l1, r1; l

′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be an LR-type SNN in which b1 < 0, b1 + r1 ≥ 0, and

B̃2 = ([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestrictedLR-type SNN, then B̃1⊗B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,

where b = b1b2, l = b1b2 −min{b1b2 − l1b2 + r2b1 − l1r2, b1b2 + r1b2 − l2b1 − l2r1}, r = max{b1b2 − l1b2 − l2b1 +
l1l2, b1b2+r1b2+r2b1+r1r2}−b1b2, l′ = b1b2−min{b1b2−l′1b2+r′2b1−l′1r′2, b1b2+r′1b2−l′2b1−l′2r′1}, r′ = max{b1b2−
l′1b2−l′2b1+l′1l′2, b1b2+r′1b2+r′2b1+r′1r′2}−b1b2, l′′ = b1b2−min{b1b2−l′′1b2+r′′2b1−l′′1r′′2 , b1b2+r′′1b2−l′′2b1−l′′2r′′1}
and r′′ = max{b1b2 − l′′1b2 − l′′2b1 + l′′1 l

′′
2 , b1b2 + r′′1b2 + r′′2b1 + r′′1r

′′
2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.
Theorem 20. Let B̃1 = ([b1; l1, r1; l

′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be an LR-type SNN in which b1+r1 < 0, b1+r′1 ≥ 0, and

B̃2 = ([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestrictedLR-type SNN, then B̃1⊗B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,
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where b = b1b2, l = b1b2 −min{b1b2 − l1b2 + r2b1 − l1r2, b1b2 + r2b1 + r1b2 + r1r2}, r = max{b1b2 + r1b2 − l2b1 −
l2r1, b1b2−l2b1−l1b2+l1l2}−b1b2, l′ = b1b2−min{b1b2−l′1b2+r′2b1−l′1r′2, b1b2+r′1b2−l′2b1−l′2r′1}, r′ = max{b1b2−
l′1b2−l′2b1+l′1l′2, b1b2+r′1b2+r′2b1+r′1r′2}−b1b2, l′′ = b1b2−min{b1b2−l′′1b2+r′′2b1−l′′1r′′2 , b1b2+r′′1b2−l′′2b1−l′′2r′′1}
and r′′ = max{b1b2 − l′′1b2 − l′′2b1 + l′′1 l

′′
2 , b1b2 + r′′1b2 + r′′2b1 + r′′1r

′′
2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.

Theorem 21. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be anLR-type SNN in which b1+r′1 < 0, b1+r′′1 ≥ 0, and

B̃2 = ([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestrictedLR-type SNN, then B̃1⊗B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,

where b = b1b2, l = b1b2 −min{b1b2 − l1b2 + r2b1 − l1r2, b1b2 + r2b1 + r1b2 + r1r2}, r = max{b1b2 + r1b2 − l2b1 −
l2r1, b1b2−l2b1−l1b2+l1l2}−b1b2, l′ = b1b2−min{b1b2−l′1b2+r′2b1−l′1r′2, b1b2+r′2b1+r′1b2+r′1r′2}, r′ = max{b1b2+
r′1b2− l′2b1− l′2r′1, b1b2− l2b1− l′1b2+ l′1l′2}−b1b2, l′′ = b1b2−min{b1b2− l′′1b2+r′′2b1− l′′1r′′2 , b1b2+r′′1b2− l′′2b1− l′′2r′′1}
and r′′ = max{b1b2 − l′′1b2 − l′′2b1 + l′′1 l

′′
2 , b1b2 + r′′1b2 + r′′2b1 + r′′1r

′′
2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.

Theorem 22. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be an LR-type SNN in which b1 + r′′1 < 0, and B̃2 =

([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestricted LR-type SNN, then B̃1 ⊗ B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,

where b = b1b2, l = b1b2 −min{b1b2 − l1b2 + r2b1 − l1r2, b1b2 + r2b1 + r1b2 + r1r2}, r = max{b1b2 + r1b2 − l2b1 −
l2r1, b1b2−l2b1−l1b2+l1l2}−b1b2, l′ = b1b2−min{b1b2−l′1b2+r′2b1−l′1r′2, b1b2+r′2b1+r′1b2+r′1r′2}, r′ = max{b1b2+
r′1b2−l′2b1−l′2r′1, b1b2−l2b1−l′1b2+l′1l′2}−b1b2, l′′ = b1b2−min{b1b2−l′′1b2+r′′2b1−l′′1r′′2 , b1b2+r′′2b1+r′′1b2+r′′1r′′2}
and r′′ = max{b1b2 + r′′1b2 − l′′2b1 − l′′2r′′1 , b1b2 − l2b1 − l′′1b2 + l′′1 l

′′
2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.

Theorem 23. Let B̃1 = ([b1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR be an LR-type SNN in which b1 − l′′1 ≥ 0, and B̃2 =

([b2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR be an unrestricted LR-type SNN, then B̃1 ⊗ B̃2 = ([b; l, r; l′r′; l′′, r′′];χ, η, ζ)LR,

where b = b1b2, l = b1b2 −min{b1b2 − l2b1 − l1b2 + l1l2, b1b2 − l2b1 + r1b2 − l2r1}, r = max{b1b2 + r2b1 + r1b2 +
r1r2, b1b2+r2b1−l1b2−l1r2}−b1b2, l′ = b1b2−min{b1b2−l′2b1−l′1b2+l′1l′2, b1b2−l′2b1+r′1b2−l′2r′1}, r′ = max{b1b2+
r′2b1+r

′
1b2+r

′
1r
′
2, b1b2+r

′
2b1− l′1b2− l′1r′2}−b1b2, l′′ = b1b2−min{b1b2− l′′2b1− l′′1b2+ l′′1 l′′2 , b1b2− l′′2b1+r′′1b2− l′′2r′′1}

and r′′ = max{b1b2 + r′′2b1 + r′′1b2 + r′′1r
′′
2 , b1b2 + r′′2b1 − l′′1b2 − l′′1r′′2} − b1b2.

here χ = χ1 ∧ χ2, η = η1 ∨ η2, ζ = ζ1 ∨ ζ2.

3 Methodology

In this section, a new method is presented to find the single-valued neutrosophic optimal solution of FSNLP problems
with equality constraints, in which all the parameters are represented by LR-type SNNs.

Maximize/ Minimize
n∑
j=1

Cj ⊗Xj ; (82)

subject to

n∑
j=1

Aij ⊗Xj = Bi,∀i = 1, 2, 3, · · · ,m.

where Cj , Aij , Bi and Xj are LR-type SNNs.
Step 1. Assuming Cj = ([cj ; pj , qj ; p

′
j , q
′
j ; p
′′
j , q
′′
j ];χj , ηj , ζj)LR, Xj = ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR, Aij =

([aij ; lj , rj ; l
′
j , r
′
j ; l
′′
j , r
′′
j ]; ξij , ψij , Γij)LR, andBi = ([bi; sj , tj ; s

′
j , t
′
j ; s
′′
j , t
′′
j ]; εj , εj , φj), the FSNLP problem can be trans-
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formed as follows;

Maximize/ Minimize
( ∑n

j=1([cj ; pj , qj ; p
′
j , q
′
j ; p
′′
j , q
′′
j ];χj , ηj , ζj)LR ⊗ ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR

)
; (83)

subject to

n∑
j=1

([aij ; lj , rj ; l
′
j , r
′
j ; l
′′
j , r
′′
j ]; ξij , ψij , Γij)LR ⊗ ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR

= ([bi; sj , tj ; s
′
j , t
′
j ; s
′′
j , t
′′
j ]; εj , εj , φj)LR, ∀i = 1, 2, 3, · · · ,m.

where ([xj ; yj , zj ; y
′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR are LR-type SNN, ∀j = 1, 2, 3 · · · , n.

Step 2. Using product of LR-type SNNs defined in Section (2.1) and assuming

([aij ; lj , rj ; l
′
j , r
′
j ; l
′′
j , r
′′
j ]; ξij , ψij , Γij)LR ⊗ ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR

= ([a∗ij ; l
∗
j , r
∗
j ; l
∗′
j , r

∗′
j ; l
∗′′
j , r

∗′′
j ]; ξ∗ij , ψ

∗
ij , Γ

∗
ij)LR.

Here

ξij ∧ φj = ξ∗ij , ψij ∨ θj = ψ∗ij , Γij ∨ κj = Γ ∗ij .

The FSNLP problem (83) can be transformed as follows;

Maximize/ Minimize
( ∑n

j=1([cj ; pj , qj ; p
′
j , q
′
j ; p
′′
j , q
′′
j ];χj , ηj , ζj)LR ⊗ ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR

)
;

(84)

subject to

([a∗ij ; l
∗
j , r
∗
j ; l
∗′
j , r

∗′
j ; l
∗′′
j , r

∗′′
j ]; ξ∗ij , ψ

∗
ij , Γ

∗
ij)LR = ([bi; sj , tj ; s

′
j , t
′
j ; s
′′
j , t
′′
j ]; εj , εj , φj)LR, ∀i = 1, 2, 3, · · · ,m.

where ([xj ; yj , zj ; y
′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR are LR-type SNN, ∀j = 1, 2, 3 · · · , n.

Step 3. Using arithmetic operations defined in Section (2.1), above problem becomes:

Maximize/ Minimize
( ∑n

j=1([cj ; pj , qj ; p
′
j , q
′
j ; p
′′
j , q
′′
j ];χj , ηj , ζj)LR ⊗ ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR

)
;

(85)

subject to∑n
j=1 a

∗
ij = bi,

∑n
j=1 l

∗
j = sj ,

∑n
j=1 r

∗
j = tj ,

∑n
j=1 l

∗′
j = s′j ,

∑n
j=1 r

∗′
j = t′j ,

∑n
j=1 l

∗′′
j = s′′j ,

∑n
j=1 r

∗′′
j = t′′j ,

∧[ξ∗ij ] = εj ,∨[ψ∗ij ] = εj ,∨[Γ ∗ij ] = φj ,

yj ≥ 0, zj ≥ 0, y′j − yj ≥ 0, z′j − zj ≥ 0, y′′j − y′j ≥ 0, z′′j − z′j ≥ 0,∀j = 1, 2, 3, · · · , n.
and φj , θj , κj ∈ [0, 1].
Step 4. Now we have to find LR-type single-valued neutrosophic feasible solution
Xk = ([xkj ; y

k
j , z

k
j ; y

k′
j , z

k′
j ; yk

′′
j , zk

′′
j ];φj , θj , κj)LR. By applying ranking, the FSNLP problem can be solved

Maximize/ Minimize <
( ∑n

j=1([cj ; pj , qj ; p
′
j , q
′
j ; p
′′
j , q
′′
j ];χj , ηj , ζj)LR ⊗ ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR

)
;

(86)
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subject to∑n
j=1 a

∗
ij = bi,

∑n
j=1 l

∗
j = sj ,

∑n
j=1 r

∗
j = tj ,

∑n
j=1 l

∗′
j = s′j ,

∑n
j=1 r

∗′
j = t′j ,

∑n
j=1 l

∗′′
j = s′′j ,

∑n
j=1 r

∗′′
j = t′′j ,

∧[ξ∗ij ] = εj ,∨[ψ∗ij ] = εj ,∨[Γ ∗ij ] = φj ,

yj ≥ 0, zj ≥ 0, y′j − yj ≥ 0, z′j − zj ≥ 0, y′′j − y′j ≥ 0, z′′j − z′j ≥ 0,∀j = 1, 2, 3, · · · , n.
and φj , θj , κj ∈ [0, 1].
Step 5. Assuming ([cj ; pj , qj ; p

′
j , q
′
j ; p
′′
j , q
′′
j ];χj , ηj , ζj)LR ⊗ ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];φj , θj , κj)LR

= ([xsj ; y
s
j , z

s
j ; ys

′
j , zs

′
j ; ys

′′
j , zs

′′
j ];φ

s
j , θ

s
j , κ

s
j)LR the problem (86) can be written as:

Maximize/Minimize <
( ∑n

j=1([x
s
j ; y

s
j , z

s
j ; ys

′
j , zs

′
j ; ys

′′
j , zs

′′
j ];φ

s
j , θ

s
j , κ

s
j)LR

)
; (87)

subject to∑n
j=1 a

∗
ij = bi,

∑n
j=1 l

∗
j = sj ,

∑n
j=1 r

∗
j = tj ,

∑n
j=1 l

∗′
j = s′j ,

∑n
j=1 r

∗′
j = t′j ,

∑n
j=1 l

∗′′
j = s′′j ,

∑n
j=1 r

∗′′
j = t′′j ,

∧[ξ∗ij ] = εj ,∨[ψ∗ij ] = εj ,∨[Γ ∗ij ] = φj ,

yj ≥ 0, zj ≥ 0, y′j − yj ≥ 0, z′j − zj ≥ 0, y′′j − y′j ≥ 0, z′′j − z′j ≥ 0,∀j = 1, 2, 3, · · · , n.
and φj , θj , κj ∈ [0, 1].
Step 6. As ranking function is linear thus the problem (87) can be written as:

Maximize/Minimize
( ∑n

j=1<([xsj ; ysj , zsj ; ys′j , zs′j ; ys′′j , zs′′j ];φsj , θsj , κsj)LR
)
; (88)

subject to∑n
j=1 a

∗
ij = bi,

∑n
j=1 l

∗
j = sj ,

∑n
j=1 r

∗
j = tj ,

∑n
j=1 l

∗′
j = s′j ,

∑n
j=1 r

∗′
j = t′j ,

∑n
j=1 l

∗′′
j = s′′j ,

∑n
j=1 r

∗′′
j = t′′j ,

∧[ξ∗ij ] = εj ,∨[ψ∗ij ] = εj ,∨[Γ ∗ij ] = φj ,
(89)

yj ≥ 0, zj ≥ 0, y′j − yj ≥ 0, z′j − zj ≥ 0, y′′j − y′j ≥ 0, z′′j − z′j ≥ 0, ∀j = 1, 2, 3, · · · , n.
and φj , θj , κj ∈ [0, 1].
Step 7. Using the definition of ranking function defined in Section (2.1), the problem can be converted into:

Maximize/Minimize



∑n
j=1[

1
6{(

χ∫
0

xsj − ysjL−1(α)dα) + (
χ∫
0

xsj − zsjR−1(α)dα)+

(
1∫
η
xsj − ys

′
j L

′−1(β)dβ) + (
1∫
η
xsj − zs

′
j R

′−1(β)dβ)

+(
1∫
ζ

xsj − ys
′′
j L

′′−1(γ)dγ) + (
1∫
ζ

xsj − zs
′′
j R

′′−1(γ)dγ)}]


; (90)

subject to∑n
j=1 a

∗
ij = bi,

∑n
j=1 l

∗
j = sj ,

∑n
j=1 r

∗
j = tj ,

∑n
j=1 l

∗′
j = s′j ,

∑n
j=1 r

∗′
j = t′j ,

∑n
j=1 l

∗′′
j = s′′j ,

∑n
j=1 r

∗′′
j = t′′j ,

∧[ξ∗ij ] = εj ,∨[ψ∗ij ] = εj ,∨[Γ ∗ij ] = φj ,

yj ≥ 0, zj ≥ 0, y′j − yj ≥ 0, z′j − zj ≥ 0, y′′j − y′j ≥ 0, z′′j − z′j ≥ 0, ∀j = 1, 2, 3, · · · , n.
and φj , θj , κj ∈ [0, 1].
Step 8 Solve the crisp linear programming problem (90) by proposed method to find the optimal solution xj , yj , zj , y′j , z

′
j ,

y′′j , z
′′
j , χj , ηj , ζj . Step 9 Find the LR-type single-valued neutrosophic optimal solution Xj of the FSNLP problem by

substituting the values of xj , yj , zj , y′j , z
′
j , y
′′
j , z
′′
j , χj , ηj and ζj in Xj = ([xj ; yj , zj ; y

′
j , z
′
j ; y
′′
j , z
′′
j ];χj , ηj , ζj)LR.

Step 10 Find the LR-type single-valued neutrosophic optimal solution of the FSNLP problem (82) by substituting the
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values of Xj in
∑n

j=1Cj ⊗Xj .

Theorem 24. The solution of FSNLP problem with LR-type SNNs

Maximize/ Minimize
n∑
j=1

Cj ⊗Xj subject to
n∑
j=1

Aij ⊗Xj = Bi, ∀i = 1, 2, 3, · · · ,m. (91)

where Cj , Aij , Bi and Xj are LR-type SNNs, exists when the solution of the associated crisp LPP

Maximize/ Minimize <
( ∑n

j=1([x
s
j ; y

s
j , z

s
j ; ys

′
j , zs

′
j ; ys

′′
j , zs

′′
j ];φ

s
j , θ

s
j , κ

s
j)LR

)
;

subject to∑n
j=1 a

∗
ij = bi,

∑n
j=1 l

∗
j = sj ,

∑n
j=1 r

∗
j = tj ,

∑n
j=1 l

∗′
j = s′j ,

∑n
j=1 r

∗′
j = t′j ,

∑n
j=1 l

∗′′
j = s′′j ,

∑n
j=1 r

∗′′
j = t′′j ,

∧[ξ∗ij ] = εj ,∨[ψ∗ij ] = εj ,∨[Γ ∗ij ] = φj ,

yj ≥ 0, zj ≥ 0, y′j − yj ≥ 0, z′j − zj ≥ 0, y′′j − y′j ≥ 0, z′′j − z′j ≥ 0,∀j = 1, 2, 3, · · · , n.
and φj , θj , κj ∈ [0, 1], exists. Otherwise, there is no guarantee that the LR-type single-valued neutrosophic optimal
solution exists.

Proof. Straightforward.

4 Numerical Examples

Example 1. A Company Manufacturing Problem. A company manufactures two types of face mask: cotton face
mask and wool face mask. Each face mask has to pass through two different machines: M1 and M2. M1 ma-
chine can work for ([50; 26, 62; 38, 101; 49.2, 192]; 0.7, 0.6, 0.5)LR minutes per week and M2 machine can work for
([68; 41, 94; 54, 133; 67.8, 262]; 0.6, 0.5, 0.3)LR minutes per week. Ten hundred cotton face masks required ([5; 2, 3; 3, 5;
4.7, 6]; 0.9, 0.6, 0.3)LR minutes on M1 machine and ([6; 1, 2; 2, 3; 5.5, 5]; 0.8, 0.3, 0.2)LR minutes on M2 machine. Ten
hundred wool masks required ([7; 3, 4; 4, 5; 6.9, 7]; 0.6, 0.1, 0.2)LR minutes and ([8; 3, 4; 4, 5; 7.9, 8]; 0.7, 0.5, 0.2)LR min-
utes on M1 and M2, respectively. The profit is Rs. ([12; 5, 6; 7, 8; 10, 11]; 0.6, 0.2, 0.3)LR per thousand for cotton face
masks and Rs. ([14; 4, 7; 6, 9; 8, 13]; 0.8, 0.5, 0.4)LR per thousand for wool face masks. The company wants to maximize
the profit.
We apply the method discussed in Section (3).

Maximize([12; 5, 6; 7, 8; 10, 11]; 0.6, 0.2, 0.3)LR ⊗X1 ⊕ ([14; 4, 7; 6, 9; 8, 13]; 0.8, 0.5, 0.4)LR ⊗X2

subject to

([5; 2, 3; 3, 5; 4.7, 6]; 0.9, 0.6, 0.3)LR ⊗X1 ⊕ ([6; 1, 2; 2, 3; 5.5, 5]; 0.8, 0.3, 0.2)LR ⊗X2

= ([50; 26, 62; 38, 101; 49.2, 192]; 0.7, 0.6, 0.5)LR

([7; 3, 4; 4, 5; 6.9, 7]; 0.6, 0.1, 0.2)LR ⊗X1 ⊕ ([8; 3, 4; 4, 5; 7.9, 8]; 0.7, 0.5, 0.2)LR ⊗X2

= ([68; 41, 94; 54, 133; 67.8, 262]; 0.6, 0.5, 0.3)LR

where ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1) and ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR are LR-type SNNs.

χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].
Step 1: Let X1 = ([x1; l1, r1; l

′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and X2 = ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR, then prob-
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lems can be written as

Maximize([12; 5, 6; 7, 8; 10, 11]; 0.6, 0.2, 0.3)LR ⊗ ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR⊕

([14; 4, 7; 6, 9; 8, 13]; 0.8, 0.5, 0.4)LR ⊗ ([x2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR

subject to

([5; 2, 3; 3, 5; 4.7, 6]; 0.9, 0.6, 0.3)LR ⊗ ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR ⊕ ([6; 1, 2; 2, 3; 5.5, 5]; 0.8, 0.3, 0.2)LR

⊗ ([x2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR = ([50; 26, 62; 38, 101; 49.2, 192]; 0.7, 0.6, 0.5)LR

([7; 3, 4; 4, 5; 6.9, 7]; 0.6, 0.1, 0.2)LR ⊗ ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR ⊕ ([8; 3, 4; 4, 5; 7.9, 8]; 0.7, 0.5, 0.2)LR

⊗ ([x2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR = ([68; 41, 94; 54, 133; 67.8, 262]; 0.6, 0.5, 0.3)LR

where ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1) and ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR are LR-type SNNs.

χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].
Step 2: Using product defined in Section (2.1), the FSNLP, problem obtained in step 1, can be written as:

Maximize([12x1; 12x1 −min{7x1 − 7l1, 18x1 − 18l1},max{18x1 + 18r1, 7x1 + 7r1} − 12x1; 12x1

−min{5x1 − 5l′1, 20x1 − 20l′1},max{20x1 + 20r′1, 5x1 + 5r′1} − 12x1; 12x1 −min
{2x1 − 2l′′1 , 23x1 − 23l′′1},max{23x1 + 23r′′1 , 2x1 + 2r′′1} − 12x1]; 0.6 ∧ χ1, 0.2 ∨ η1, 0.3 ∨ ζ1)LR
⊕([14x2; 14x2 −min{10x2 − 10l2, 21x2 − 21l2},max{21x2 + 21r2, 10x2 + 10r2} − 14x2; 14x2

−min{8x2 − 8l′2, 23x2 − 23l′2},max{23x2 + 23r′2, 8x2 + 8r′2} − 14x2; 14x2 −min
{6x2 − 6l′′2 , 27x2 − 27l′′2},max{27x2 + 27r′′2 , 6x2 + 6r′′2} − 14x2]; 0.8 ∧ χ2, 0.5 ∨ η2, 0.4 ∨ ζ2)LR

subject to

([5x1; 5x1 −min{3x1 − 3l1, 8x1 − 8l1},max{8x1 + 8r1, 3x1 + 3r1} − 5x1; 5x1

−min{2x1 − 2l′1, 10x1 − 10l′1},max{10x1 + 10r′1, 2x1 + 2r′1} − 5x1; 5x1 −min
{0.3x1 − 0.3l′′1 , 11x1 − 11l′′1},max{11x1 + 11r′′1 , x1 + r′′1} − 5x1]; 0.9 ∧ χ1, 0.6 ∨ η1, 0.3 ∨ ζ1)LR

⊕([6x2; 6x2 −min{5x2 − 5l2, 8x2 − 8l2},max{8x2 + 8r2, 5x2 + 5r2} − 6x2; 6x2

−min{4x2 − 4l′2, 9x2 − 9l′2},max{9x2 + 9r′2, 4x2 + 4r′2} − 6x2; 6x2 −min
{0.5x2 − 0.5l′′2 , 11x2 − 11l′′2},max{11x2 + 11r′′2 , 2x2 + 2r′′2} − 6x2]; 0.8 ∧ χ2, 0.3 ∨ η2, 0.2 ∨ ζ2)LR

= ([50; 26, 62; 38, 101; 49.2, 192]; 0.7, 0.6, 0.5)LR

([7x1; 7x1 −min{4x1 − 4l1, 11x1 − 11l1},max{11x1 + 11r1, 4x1 + 4r1} − 7x1; 7x1

−min{3x1 − 3l′1, 12x1 − 12l′1},max{12x1 + 12r′1, 3x1 + 3r′1} − 7x1; 7x1 −min
{0.1x1 − 0.1l′′1 , 14x1 − 14l′′1},max{14x1 + 14r′′1 , x1 + r′′1} − 7x1]; 0.6 ∧ χ1, 0.1 ∨ η1, 0.2 ∨ ζ1)LR

⊕([8x2; 8x2 −min{5x2 − 5l2, 12x2 − 12l2},max{12x2 + 12r2, 5x2 + 5r2} − 8x2; 8x2

−min{4x2 − 4l′2, 13x2 − 13l′2},max{13x2 + 13r′2, 4x2 + 4r′2} − 8x2; 8x2 −min
{0.1x2 − 0.1l′′2 , 16x2 − 16l′′2},max{16x2 + 16r′′2 , 2x2 + 2r′′2} − 8x2]; 0.7 ∧ χ2, 0.5 ∨ η2, 0.2 ∨ ζ2)LR

= ([68; 41, 94; 54, 133; 67.8, 262]; 0.6, 0.5, 0.3)LR

where ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1) and ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR are LR-type SNNs.

χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].
Step 3: Using the arithmetic operations which are defined in Section (2.1), the FSNLP, problem obtained in step 2, can
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be rewritten as:

Maximize([12x1 + 14x2; 12x1 −min{7x1 − 7l1, 18x1 − 18l1}+ 14x2 −min{10x2 − 10l2, 21x2 − 21l2},
+max{18x1 + 18r1, 7x1 + 7r1} − 12x1 +max{21x2 + 21r2, 10x2 + 10r2} − 14x2; 12x1

−min{5x1 − 5l′1, 20x1 − 20l′1}+ 14x2 −min{8x2 − 8l′2, 23x2 − 23l′2},max{20x1 + 20r′1,

5x1 + 5r′1} − 12x1 +max{23x2 + 23r′2, 8x2 + 8r′2} − 14x2; 12x1 −min{2x1 − 2l′′1 , 23x1 − 23l′′1}
+ 14x2 −min{6x2 − 6l′′2 , 27x2 − 27l′′2},max{23x1 + 23r′′1 , 2x1 + 2r′′1} − 12x1 +max{27x2 + 27r′′2

, 6x2 + 6r′′2} − 14x2];∧[(0.6 ∧ χ1) ∧ (0.8 ∧ χ2)],∨[(0.2 ∨ η1) ∨ (0.5 ∨ η2)],∨[(0.3 ∨ ζ1) ∨ (0.4 ∨ ζ2)]LR

subject to

5x1 + 6x2 = 50, 7x1 + 8x2 = 68,

5x1 −min{3x1 − 3l1, 8x1 − 8l1}+ 6x2 −min{5x2 − 5l2, 8x2 − 8l2} = 26,

max{8x1 + 8r1, 3x1 + 3r1} − 5x1 +max{8x2 + 8r2, 5x2 + 5r2} − 6x2 = 62,

5x1 −min{2x1 − 2l′1, 10x1 − 10l′1}+ 6x2 −min{4x2 − 4l′2, 9x2 − 9l′2} = 38,

max{10x1 + 10r′1, 2x1 + 2r′1} − 5x1 +max{9x2 + 9r′2, 4x2 + 4r′2} − 6x2 = 101,

5x1 −min{0.3x1 − 0.3l′′1 , 11x1 − 11l′′1}+ 6x2 −min{0.5x2 − 0.5l′′2 , 11x2 − 11l′′2} = 49.2,

max{11x1 + 11r′′1 , x1 + r′′1} − 5x1 +max{11x2 + 11r′′2 , 2x2 + 2r′′2} − 6x2 = 192,

∧[(0.9 ∧ χ1) ∧ (0.8 ∧ χ2)] = 0.7,∨[(0.6 ∨ η1) ∨ (0.3 ∨ η2)] = 0.6,∨[(0.3 ∨ ζ1) ∨ (0.2 ∨ ζ2)] = 0.5,

7x1 −min{4x1 − 4l1, 11x1 − 11l1}+ 8x2 −min{5x2 − 5l2, 12x2 − 12l2} = 41,

max{11x1 + 11r1, 4x1 + 4r1} − 7x1 +max{12x2 + 12r2, 5x2 + 5r2} − 8x2 = 94,

7x1 −min{3x1 − 3l′1, 12x1 − 12l′1}+ 8x2 −min{4x2 − 4l′2, 13x2 − 13l′2} = 54,

max{12x1 + 12r′1, 3x1 + 3r′1} − 7x1 +max{13x2 + 13r′2, 4x2 + 4r′2} − 8x2 = 133,

7x1 −min{0.1x1 − 0.1l′′1 , 14x1 − 14l′′1}+ 8x2 −min{0.1x2 − 0.1l′′2 , 16x2 − 16l′′2} = 67.8,

max{14x1 + 14r′′1 , x1 + r′′1} − 7x1 +max{16x2 + 16r′′2 , 2x2 + 2r′′2} − 8x2 = 262,

∧[(0.6 ∧ χ1) ∧ (0.7 ∧ χ2)] = 0.6,∨[(0.1 ∨ η1) ∨ (0.5 ∨ η2)] = 0.5,∨[(0.2 ∨ ζ1) ∨ (0.2 ∨ ζ2)] = 0.3,

l1 ≥ 0, r1 ≥ 0, l′1 − l1 ≥ 0, r′1 − r1 ≥ 0, l′′1 − l′1 ≥ 0, r′′1 − r′1 ≥ 0, l2 ≥ 0, r2 ≥ 0, l′2 − l2 ≥ 0, r′2 − r2 ≥ 0,

l′′2 − l′2 ≥ 0, r′′2 − r′2 ≥ 0, χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].

Step 4: Using the ranking function which are defined in Section (3), the FSNLP, problem obtained in step 3, can be
rewritten as:

Maximize<([12x1 + 14x2; 12x1 −min{7x1 − 7l1, 18x1 − 18l1}+ 14x2 −min{10x2 − 10l2, 21x2 − 21l2},
+max{18x1 + 18r1, 7x1 + 7r1} − 12x1 +max{21x2 + 21r2, 10x2 + 10r2} − 14x2; 12x1

−min{5x1 − 5l′1, 20x1 − 20l′1}+ 14x2 −min{8x2 − 8l′2, 23x2 − 23l′2},max{20x1 + 20r′1,

5x1 + 5r′1} − 12x1 +max{23x2 + 23r′2, 8x2 + 8r′2} − 14x2; 12x1 −min{2x1 − 2l′′1 , 23x1 − 23l′′1}
+ 14x2 −min{6x2 − 6l′′2 , 27x2 − 27l′′2},max{23x1 + 23r′′1 , 2x1 + 2r′′1} − 12x1 +max{27x2 + 27r′′2

, 6x2 + 6r′′2} − 14x2];∧[(0.6 ∧ χ1) ∧ (0.8 ∧ χ2)],∨[(0.2 ∨ η1) ∨ (0.5 ∨ η2)],∨[(0.3 ∨ ζ1) ∨ (0.4 ∨ ζ2)])LR
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subject to

5x1 + 6x2 = 50, 7x1 + 8x2 = 68,

5x1 −min{3x1 − 3l1, 8x1 − 8l1}+ 6x2 −min{5x2 − 5l2, 8x2 − 8l2} = 26,

max{8x1 + 8r1, 3x1 + 3r1} − 5x1 +max{8x2 + 8r2, 5x2 + 5r2} − 6x2 = 62,

5x1 −min{2x1 − 2l′1, 10x1 − 10l′1}+ 6x2 −min{4x2 − 4l′2, 9x2 − 9l′2} = 38,

max{10x1 + 10r′1, 2x1 + 2r′1} − 5x1 +max{9x2 + 9r′2, 4x2 + 4r′2} − 6x2 = 101,

5x1 −min{0.3x1 − 0.3l′′1 , 11x1 − 11l′′1}+ 6x2 −min{0.5x2 − 0.5l′′2 , 11x2 − 11l′′2} = 49.2,

max{11x1 + 11r′′1 , x1 + r′′1} − 5x1 +max{11x2 + 11r′′2 , 2x2 + 2r′′2} − 6x2 = 192,

∧[(0.9 ∧ χ1) ∧ (0.8 ∧ χ2)] = 0.7,∨[(0.6 ∨ η1) ∨ (0.3 ∨ η2)] = 0.6,∨[(0.3 ∨ ζ1) ∨ (0.2 ∨ ζ2)] = 0.5,

7x1 −min{4x1 − 4l1, 11x1 − 11l1}+ 8x2 −min{5x2 − 5l2, 12x2 − 12l2} = 41,

max{11x1 + 11r1, 4x1 + 4r1} − 7x1 +max{12x2 + 12r2, 5x2 + 5r2} − 8x2 = 94,

7x1 −min{3x1 − 3l′1, 12x1 − 12l′1}+ 8x2 −min{4x2 − 4l′2, 13x2 − 13l′2} = 54,

max{12x1 + 12r′1, 3x1 + 3r′1} − 7x1 +max{13x2 + 13r′2, 4x2 + 4r′2} − 8x2 = 133,

7x1 −min{0.1x1 − 0.1l′′1 , 14x1 − 14l′′1}+ 8x2 −min{0.1x2 − 0.1l′′2 , 16x2 − 16l′′2} = 67.8,

max{14x1 + 14r′′1 , x1 + r′′1} − 7x1 +max{16x2 + 16r′′2 , 2x2 + 2r′′2} − 8x2 = 262,

∧[(0.6 ∧ χ1) ∧ (0.7 ∧ χ2)] = 0.6,∨[(0.1 ∨ η1) ∨ (0.5 ∨ η2)] = 0.5,∨[(0.2 ∨ ζ1) ∨ (0.2 ∨ ζ2)] = 0.3,

l1 ≥ 0, r1 ≥ 0, l′1 − l1 ≥ 0, r′1 − r1 ≥ 0, l′′1 − l′1 ≥ 0, r′′1 − r′1 ≥ 0, l2 ≥ 0, r2 ≥ 0, l′2 − l2 ≥ 0, r′2 − r2 ≥ 0,

l′′2 − l′2 ≥ 0, r′′2 − r′2 ≥ 0, χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].

Step 5: Using min{a, b} = a+b
2 − |

a−b
2 |, max{a, b} = a+b

2 + |a−b2 |, the FSNLP, problem obtained in step 4, can be
rewritten as:

Maximize([
(96 + 48χ− 48η − 48ζ + χ2 + (η − 1)2 + (ζ − 1)2)

12
x1+

(112 + 56χ− 56η − 56ζ + 3χ2 + 3(η − 1)2 + 5(ζ − 1)2)

12
x2 −

25

24
χ2l1 −

11

24
χ2|x1 − l1| −

31

24
χ2l2

− 11

24
χ2|x2 − l2|+

25

24
χ2r1 +

11

24
χ2|x1 + r1|+

31

24
χ2r2 +

11

24
χ2|x2 + r2| −

25

24
(η − 1)2l′1

− 15

24
(η − 1)2|x1 − l′1| −

31

24
(η − 1)2l′2 −

15

24
(η − 1)2|x2 − l′2|+

25

24
(η − 1)2r′1 +

15

24
(η − 1)2|x1 + r′1|

+
31

24
(η − 1)2r′2 +

15

24
(η − 1)2|x2 + r′2| −

25

24
(ζ − 1)2l′′1 −

21

24
(ζ − 1)2|x1 − l′′1 | −

33

24
(ζ − 1)2l′′2

− 21

24
(ζ − 1)2|x2 − l′′2 |+

25

24
(ζ − 1)2r′′1 +

21

24
(ζ − 1)2|x1 + r′′1 |+

33

24
(ζ − 1)2r′′2 +

21

24
(ζ − 1)2|x2 + r′′2 |])
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subject to

5x1 + 6x2 = 50, 7x1 + 8x2 = 68,

−1

2
x1 +

11

2
l1 +

5

2
|x1 − l1| −

x2
2

+
13

2
l2 +

3

2
|x2 − l2| = 26,

1

2
x1 +

11

2
r1 +

5

2
|x1 + r1|+

x2
2

+
13

2
r2 +

3

2
|x2 + r2| = 62,

−x1 + 6l′1 + 4|x1 − l′1| −
x2
2

+
13

2
l′2 +

5

2
|x2 − l′2| = 38,

x1 + 6r′1 + 4|x1 + r′1|+
x2
2

+
13

2
r′2 +

5

2
|x2 + r′2| = 101,

−1.3

2
x1 +

11.3

2
l′′1 +

10.7

2
|x1 − l′′1 |+

0.5

2
x2 +

11.5

2
l′′2 +

10.5

2
|x2 − l′′2 | = 49.2,

x1 + 6r′′1 + 5|x1 + r′′1 |+
x2
2

+
13

2
r′′2 +

9

2
|x2 + r′′2 | = 192,

∧[(0.9 ∧ χ1) ∧ (0.8 ∧ χ2)] = 0.7,∨[(0.6 ∨ η1) ∨ (0.3 ∨ η2)] = 0.6,∨[(0.3 ∨ ζ1) ∨ (0.2 ∨ ζ2)] = 0.5,

−1

2
x1 +

15

2
l1 +

7

2
|x1 − l1| −

x2
2

+
17

2
l2 +

7

2
|x2 − l2| = 41,

1

2
x1 +

15

2
r1 +

7

2
|x1 + r1|+

x2
2

+
17

2
r2 +

7

2
|x2 + r2| = 94,

−1

2
x1 +

15

2
l′1 +

9

2
|x1 − l′1| −

x2
2

+
17

2
l′2 +

9

2
|x2 − l′2| = 54,

1

2
x1 +

15

2
r′1 +

9

2
|x1 + r′1|+

x2
2

+
17

2
r′2 +

9

2
|x2 + r′2| = 133,

−0.1

2
x1 +

14.1

2
l′′1 +

13.9

2
|x1 − l′′1 | −

0.1

2
x2 +

16.1

2
l′′2 +

15.9

2
|x2 − l′′2 | = 67.8,

1

2
x1 +

15

2
r′′1 +

13

2
|x1 + r′′1 |+ x2 + 9r′′2 + 7|x2 + r′′2 | = 262,

∧[(0.6 ∧ χ1) ∧ (0.7 ∧ χ2)] = 0.6,∨[(0.1 ∨ η1) ∨ (0.5 ∨ η2)] = 0.5,∨[(0.2 ∨ ζ1) ∨ (0.2 ∨ ζ2)] = 0.3,

l1 ≥ 0, r1 ≥ 0, l′1 − l1 ≥ 0, r′1 − r1 ≥ 0, l′′1 − l′1 ≥ 0, r′′1 − r′1 ≥ 0, l2 ≥ 0, r2 ≥ 0, l′2 − l2 ≥ 0, r′2 − r2 ≥ 0,

l′′2 − l′2 ≥ 0, r′′2 − r′2 ≥ 0, χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].

Step 6:By solving the crisp mathematical problem obtained in step 5, we get the optimal solution x1 = 4, l1 = 1, r1 =
2, l′1 = 2, r′1 = 3, l′′1 = 3, r′′1 = 7, x2 = 5, l2 = 2, r2 = 3, l′2 = 3, r′2 = 4, l′′2 = 4, r′′2 = 6, χ1 = 0.7, η1 = 0.5, ζ1 =
0.4, χ2 = 0.9, η2 = 0.4, ζ2 = 0.5.
Step 7: Substituting the values of x1, l1, r1, l′1, r

′
1, l
′′
1 , r
′′
1 , x2, l2, r2, l

′
2, r
′
2, l
′′
2 , r
′′
2 , χ1, η1, ζ1, χ2, η2 and ζ2 inX1 = ([x1; l1,

r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and X2 = ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR the exact LR-type single-valued neutro-

sophic optimal solution is X1 = ([4; 1, 2; 2, 3; 3, 7]; 0.7, 0.5, 0.4)LR, X2 = ([5; 2, 3; 3, 4; 4, 6]; 0.9, 0.4, 0.5)LR.
Step 8: By substituting the values of X1 and X2, obtained in Step 7, into the objective function, the LR-type single-
valued neutrosophic optimal value is ([118; 67, 158; 92, 229; 110, 432]; 0.6, 0.5, 0.5)LR.

Example 2.

Minimize([10; 3, 5; 4, 6; 7, 8]; 0.8, 0.4, 0.5)LR ⊗X1 ⊕ ([16; 4, 6; 8, 10; 12, 14]; 0.7, 0.3, 0.2)LR ⊗X2
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subject to

([7; 3, 4; 4, 6; 5, 7]; 0.6, 0.5, 0.4)LR ⊗X1 ⊕ ([9; 4, 5; 6, 7; 8, 9]; 0.7, 0.1, 0.3)LR ⊗X2

= ([87; 56, 149; 75, 216; 84, 297]; 0.6, 0.5, 0.4)LR

([10; 4, 6; 8, 9; 9, 10]; 0.9, 0.2, 0.1)LR ⊗X1 ⊕ ([11; 4, 6; 6, 8; 9, 10]; 0.8, 0.3, 0.4)LR ⊗X2

= ([115; 70, 198; 101, 284; 112, 377]; 0.7, 0.5, 0.4)LR

Step 1: Let X1 = ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and X2 = ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR, then prob-

lems can be written as

Minimize([10; 3, 5; 4, 6; 7, 8]; 0.8, 0.4, 0.5)LR ⊗ ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR⊕

([16; 4, 6; 8, 10; 12, 14]; 0.7, 0.3, 0.2)LR ⊗ ([x2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR

subject to

([7; 3, 4; 4, 6; 5, 7]; 0.6, 0.5, 0.4)LR ⊗ ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR ⊕ ([9; 4, 5; 6, 7; 8, 9]; 0.7, 0.1, 0.3)LR⊗

([x2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR = ([87; 56, 149; 75, 216; 84, 297]; 0.6, 0.5, 0.4)LR

([10; 4, 6; 8, 9; 9, 10]; 0.9, 0.2, 0.1)LR ⊗ ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR ⊕ ([11; 4, 6; 6, 8; 9, 10]; 0.8, 0.3, 0.4)LR⊗

([x2; l2, r2; l
′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR = ([115; 70, 198; 101, 284; 112, 377]; 0.7, 0.5, 0.4)LR

where ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1) and ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR are LR-type SNNs.

χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].
Step 2: Using product defined in Section (2.1), the FSNLP, problem obtained in step 1, can be written as:

Minimize([10x1; 10x1 −min{7x1 − 7l1, 15x1 − 15l1},max{15x1 + 15r1, 7x1 + 7r1} − 10x1; 10x1

−min{6x1 − 6l′1, 16x1 − 16l′1},max{16x1 + 16r′1, 6x1 + 6r′1} − 10x1; 10x1 −min
{3x1 − 3l′′1 , 18x1 − 18l′′1},max{18x1 + 18r′′1 , 3x1 + 3r′′1} − 10x1]; 0.8 ∧ χ1, 0.4 ∨ η1, 0.5 ∨ ζ1)LR
⊕([16x2; 16x2 −min{12x2 − 12l2, 22x2 − 22l2},max{22x2 + 22r2, 12x2 + 12r2} − 16x2; 16x2

−min{8x2 − 8l′2, 26x2 − 26l′2},max{26x2 + 26r′2, 8x2 + 8r′2} − 16x2; 16x2 −min
{4x2 − 4l′′2 , 30x2 − 30l′′2},max{30x2 + 30r′′2 , 4x2 + 4r′′2} − 16x2]; 0.7 ∧ χ2, 0.3 ∨ η2, 0.2 ∨ ζ2)LR
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subject to

([7x1; 7x1 −min{4x1 − 4l1, 11x1 − 11l1},max{11x1 + 11r1, 4x1 + 4r1} − 7x1; 7x1

−min{3x1 − 3l′1, 13x1 − 13l′1},max{13x1 + 13r′1, 3x1 + 3r′1} − 7x1; 7x1 −min
{2x1 − 2l′′1 , 14x1 − 14l′′1},max{14x1 + 14r′′1 , 2x1 + 2r′′1} − 7x1]; 0.6 ∧ χ1, 0.5 ∨ η1, 0.4 ∨ ζ1)LR
⊕ ([9x2; 9x2 −min{5x2 − 5l2, 14x2 − 14l2},max{14x2 + 14r2, 5x2 + 5r2} − 9x2; 9x2

−min{3x2 − 3l′2, 16x2 − 16l′2},max{16x2 + 16r′2, 3x2 + 3r′2} − 9x2; 9x2 −min
{x2 − l′′2 , 18x2 − 18l′′2},max{18x2 + 18r′′2 , x2 + r′′2} − 9x2]; 0.7 ∧ χ2, 0.1 ∨ η2, 0.3 ∨ ζ2)LR
= ([87; 56, 149; 75, 216; 84, 297]; 0.6, 0.5, 0.4)LR

([10x1; 10x1 −min{6x1 − 6l1, 16x1 − 16l1},max{16x1 + 16r1, 6x1 + 6r1} − 10x1; 10x1

−min{2x1 − 2l′1, 19x1 − 19l′1},max{19x1 + 19r′1, 2x1 + 2r′1} − 10x1; 10x1 −min
{x1 − l′′1 , 20x1 − 20l′′1},max{20x1 + 20r′′1 , x1 + r′′1} − 10x1]; 0.9 ∧ χ1, 0.2 ∨ η1, 0.1 ∨ ζ1)LR
⊕ ([11x2; 11x2 −min{7x2 − 7l2, 17x2 − 17l2},max{17x2 + 17r2, 7x2 + 7r2} − 11x2; 11x2

−min{5x2 − 5l′2, 19x2 − 19l′2},max{19x2 + 19r′2, 5x2 + 5r′2} − 11x2; 11x2 −min
{2x2 − 2l′′2 , 21x2 − 21l′′2},max{21x2 + 21r′′2 , 2x2 + 2r′′2} − 11x2]; 0.8 ∧ χ2, 0.3 ∨ η2, 0.4 ∨ ζ2)LR
= ([115; 70, 198; 101, 284; 112, 377]; 0.7, 0.5, 0.4)LR

where ([x1; l1, r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1) and ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR are LR-type SNNs.

χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].
Step 3: Using the arithmetic operations which are defined in Section (2.1), the FSNLP, problem obtained in step 2, can
be rewritten as:

Minimize([10x1 + 16x2; 10x1 −min{7x1 − 7l1, 15x1 − 15l1}+ 16x2 −min{12x2 − 12l2, 22x2 − 22l2},
max{15x1 + 15r1, 7x1 + 7r1} − 10x1 +max{22x2 + 22r2, 12x2 + 12r2} − 16x2; 10x1

−min{6x1 − 6l′1, 16x1 − 16l′1}+ 16x2 −min{8x2 − 8l′2, 26x2 − 26l′2},max{16x1 + 16r′1, 6x1 + 6r′1} − 10x1

+max{26x2 + 26r′2, 8x2 + 8r′2} − 16x2; 10x1 −min{3x1 − 3l′′1 , 18x1 − 18l′′1}+ 16x2 −min{4x2 − 4l′′2 ,

30x2 − 30l′′2},max{18x1 + 18r′′1 , 3x1 + 3r′′1} − 10x1 +max{30x2 + 30r′′2 , 4x2 + 4r′′2} − 16x2];∧[(0.8 ∧ χ1)

∧ (0.7 ∧ χ2)],∨[(0.4 ∨ η1) ∨ (0.3 ∨ η2)],∨[(0.5 ∨ ζ1) ∨ (0.2 ∨ ζ2]))LR
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subject to

7x1 + 9x2 = 87, 10x1 + 11x2 = 115,

7x1 −min{4x1 − 4l1, 11x1 − 11l1}+ 9x2 −min{5x2 − 5l2, 14x2 − 14l2} = 56,

max{11x1 + 11r1, 4x1 + 4r1} − 7x1 +max{14x2 + 14r2, 5x2 + 5r2} − 9x2 = 149,

7x1 −min{3x1 − 3l′1, 13x1 − 13l′1}+ 9x2 −min{3x2 − 3l′2, 16x2 − 16l′2} = 75

max{13x1 + 13r′1, 3x1 + 3r′1} − 7x1 +max{16x2 + 16r′2, 3x2 + 3r′2} − 9x2 = 216,

7x1 −min{2x1 − 2l′′1 , 14x1 − 14l′′1}+ 9x2 −min{x2 − l′′2 , 18x2 − 18l′′2} = 84,

max{14x1 + 14r′′1 , 2x1 + 2r′′1} − 7x1) +max{18x2 + 18r′′2 , x2 + r′′2} − 9x2) = 297,

∧[((0.6 ∧ χ1) ∧ (0.7 ∧ χ2)] = 0.6,∨[(0.5 ∨ η1) ∨ (0.1 ∨ η2)] = 0.5,∨[(0.4 ∨ ζ1) ∨ (0.3 ∨ ζ2)] = 0.4,

10x1 −min{6x1 − 6l1, 16x1 − 16l1}+ 11x2 −min{7x2 − 7l2, 17x2 − 17l2} = 70,

max{16x1 + 16r1, 6x1 + 6r1} − 10x1 +max{17x2 + 17r2, 7x2 + 7r2} − 11x2 = 198,

10x1 −min{2x1 − 2l′1, 19x1 − 19l′1}+ 11x2 −min{5x2 − 5l′2, 19x2 − 19l′2} = 101,

max{19x1 + 19r′1, 2x1 + 2r′1} − 10x1 +max{19x2 + 19r′2, 5x2 + 5r′2} − 11x2 = 284,

10x1 −min{x1 − l′′1 , 20x1 − 20l′′1}+ 11x2 −min{2x2 − 2l′′2 , 21x2 − 21l′′2} = 112,

max{20x1 + 20r′′1 , x1 + r′′1} − 10x1 +max{21x2 + 21r′′2 , 2x2 + 2r′′2} − 11x2 = 377,

∧[(0.9 ∧ χ1) ∧ (0.8 ∧ χ2)] = 0.7,∨[(0.2 ∨ η1) ∨ (0.3 ∨ η2)] = 0.5,∨[(0.1 ∨ ζ1) ∨ (0.4 ∨ ζ2)] = 0.4,

l1 ≥ 0, r1 ≥ 0, l′1 − l1 ≥ 0, r′1 − r1 ≥ 0, l′′1 − l′1 ≥ 0, r′′1 − r′1 ≥ 0, l2 ≥ 0, r2 ≥ 0, l′2 − l2 ≥ 0, r′2 − r2 ≥ 0,

l′′2 − l′2 ≥ 0, r′′2 − r′2 ≥ 0, χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].

Step 4: Using the ranking function which are defined in Section (3), the FSNLP, problem obtained in step 3, can be
rewritten as:

Minimize<([10x1 + 16x2; 10x1 −min{7x1 − 7l1, 15x1 − 15l1}+ 16x2 −min{12x2 − 12l2, 22x2 − 22l2},
max{15x1 + 15r1, 7x1 + 7r1} − 10x1 +max{22x2 + 22r2, 12x2 + 12r2} − 16x2; 10x1

−min{6x1 − 6l′1, 16x1 − 16l′1}+ 16x2 −min{8x2 − 8l′2, 26x2 − 26l′2},max{16x1 + 16r′1, 6x1 + 6r′1} − 10x1

+max{26x2 + 26r′2, 8x2 + 8r′2} − 16x2; 10x1 −min{3x1 − 3l′′1 , 18x1 − 18l′′1}+ 16x2 −min{4x2 − 4l′′2 ,

30x2 − 30l′′2},max{18x1 + 18r′′1 , 3x1 + 3r′′1} − 10x1 +max{30x2 + 30r′′2 , 4x2 + 4r′′2} − 16x2];∧[(0.8 ∧ χ1)

∧ (0.7 ∧ χ2)],∨[(0.4 ∨ η1) ∨ (0.3 ∨ η2)],∨[(0.5 ∨ ζ1) ∨ (0.2 ∨ ζ2]])LR
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subject to

7x1 + 9x2 = 87, 10x1 + 11x2 = 115,

7x1 −min{4x1 − 4l1, 11x1 − 11l1}+ 9x2 −min{5x2 − 5l2, 14x2 − 14l2} = 56,

max{11x1 + 11r1, 4x1 + 4r1} − 7x1 +max{14x2 + 14r2, 5x2 + 5r2} − 9x2 = 149,

7x1 −min{3x1 − 3l′1, 13x1 − 13l′1}+ 9x2 −min{3x2 − 3l′2, 16x2 − 16l′2} = 75

max{13x1 + 13r′1, 3x1 + 3r′1} − 7x1 +max{16x2 + 16r′2, 3x2 + 3r′2} − 9x2 = 216,

7x1 −min{2x1 − 2l′′1 , 14x1 − 14l′′1}+ 9x2 −min{x2 − l′′2 , 18x2 − 18l′′2} = 84,

max{14x1 + 14r′′1 , 2x1 + 2r′′1} − 7x1) +max{18x2 + 18r′′2 , x2 + r′′2} − 9x2) = 297,

∧[((0.6 ∧ χ1) ∧ (0.7 ∧ χ2)] = 0.6,∨[(0.5 ∨ η1) ∨ (0.1 ∨ η2)] = 0.5,∨[(0.4 ∨ ζ1) ∨ (0.3 ∨ ζ2)] = 0.4,

10x1 −min{6x1 − 6l1, 16x1 − 16l1}+ 11x2 −min{7x2 − 7l2, 17x2 − 17l2} = 70,

max{16x1 + 16r1, 6x1 + 6r1} − 10x1 +max{17x2 + 17r2, 7x2 + 7r2} − 11x2 = 198,

10x1 −min{2x1 − 2l′1, 19x1 − 19l′1}+ 11x2 −min{5x2 − 5l′2, 19x2 − 19l′2} = 101,

max{19x1 + 19r′1, 2x1 + 2r′1} − 10x1 +max{19x2 + 19r′2, 5x2 + 5r′2} − 11x2 = 284,

10x1 −min{x1 − l′′1 , 20x1 − 20l′′1}+ 11x2 −min{2x2 − 2l′′2 , 21x2 − 21l′′2} = 112,

max{20x1 + 20r′′1 , x1 + r′′1} − 10x1 +max{21x2 + 21r′′2 , 2x2 + 2r′′2} − 11x2 = 377,

∧[(0.9 ∧ χ1) ∧ (0.8 ∧ χ2)] = 0.7,∨[(0.2 ∨ η1) ∨ (0.3 ∨ η2)] = 0.5,∨[(0.1 ∨ ζ1) ∨ (0.4 ∨ ζ2)] = 0.4,

l1 ≥ 0, r1 ≥ 0, l′1 − l1 ≥ 0, r′1 − r1 ≥ 0, l′′1 − l′1 ≥ 0, r′′1 − r′1 ≥ 0, l2 ≥ 0, r2 ≥ 0, l′2 − l2 ≥ 0, r′2 − r2 ≥ 0,

l′′2 − l′2 ≥ 0, r′′2 − r′2 ≥ 0, χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].

Step 5: Using min{a, b} = a+b
2 − |

a−b
2 |, max{a, b} = a+b

2 + |a−b2 |, the FSNLP, problem obtained in step 4, can be
rewritten as:

Minimize([
(80 + 40χ− 40η − 40ζ + 2χ2 + 2(η − 1)2 + (ζ − 1)2)

12
x1+

(64 + 32χ− 32η − 32ζ + χ2 + (η − 1)2 + (ζ − 1)2)

6
x2 −

11

12
χ2l1 −

1

3
χ2|x1 − l1| −

17

12
χ2l2

− 5

12
χ2|x2 − l2|+

11

12
χ2r1 +

1

3
χ2|x1 + r1|+

17

12
χ2r2 +

5

12
χ2|x2 + r2| −

11

12
(η − 1)2l′1

− 5

12
(η − 1)2|x1 − l′1| −

17

12
(η − 1)2l′2 −

9

12
(η − 1)2|x2 − l′2|+

11

12
(η − 1)2r′1 +

5

12
(η − 1)2|x1 + r′1|

+
17

12
(η − 1)2r′2 +

9

12
(η − 1)2|x2 + r′2| −

21

24
(ζ − 1)2l′′1 −

15

24
(ζ − 1)2|x1 − l′′1 | −

17

12
(ζ − 1)2l′′2

− 13

12
(ζ − 1)2|x2 − l′′2 |+

21

24
(ζ − 1)2r′′1 +

15

24
(ζ − 1)2|x1 + r′′1 |+

17

12
(ζ − 1)2r′′2 +

13

124
(ζ − 1)2|x2 + r′′2 |])
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subject to

7x1 + 9x2 = 87, 10x1 + 11x2 = 115,

−1

2
x1 +

15

2
l1 +

7

2
|x1 − l1| −

x2
2

+
19

2
l2 +

9

2
|x2 − l2| = 56,

1

2
x1 +

15

2
r1 +

7

2
|x1 + r1|+

x2
2

+
19

2
r2 +

9

2
|x2 + r2| = 149,

−x1 + 8l′1 + 5|x1 − l′1| −
x2
2

+
19

2
l′2 +

13

2
|x2 − l′2| = 75

x1 + 8r′1 + 5|x1 + r′1|+
x2
2

+
19

2
r′2 +

13

2
|x2 + r′2| = 216,

−x1 + 8l′′1 + 6|x1 − l′′1 | −
x2
2

+
19

2
l′′2 +

17

2
|x2 − l′′2 | = 84,

x1 + 8r′′1 + 6|x1 + r′′1 |+
x2
2

+
19

2
r′′2 +

17

2
|x2 + r′′2 | = 297,

∧[((0.6 ∧ χ1) ∧ (0.7 ∧ χ2)] = 0.6,∨[(0.5 ∨ η1) ∨ (0.1 ∨ η2)] = 0.5,∨[(0.4 ∨ ζ1) ∨ (0.3 ∨ ζ2)] = 0.4,

−x1 + 11l1 + 5|x1 − l1| − x2 + 12l2 + 5|x2 − l2| = 70,

x1 + 11r1 + 5|x1 + r1|+ x2 + 12r2 + 5|x2 + r2| = 198,

−1

2
x1 +

21

2
l′1 +

17

2
|x1 − l′1| − x2 + 12l′2 + 7|x2 − l′2| = 101,

1

2
x1 +

21

2
r′1 +

17

2
|x1 + r′1|+ x2 + 12r′2 + 7|x2 + r′2| = 284,

−1

2
x1 +

21

2
l′′1 +

19

2
|x1 − l′′1 | −

x2
2

+
23

2
l′′2 +

19

2
|x2 − l′′2 | = 112,

1

2
x1 +

21

2
r′′1 +

19

2
|x1 + r′′1 |+

x2
2

+
23

2
r′′2 +

19

2
|x2 + r′′2 | = 377,

∧[(0.9 ∧ χ1) ∧ (0.8 ∧ χ2)] = 0.7,∨[(0.2 ∨ η1) ∨ (0.3 ∨ η2)] = 0.5,∨[(0.1 ∨ ζ1) ∨ (0.4 ∨ ζ2)] = 0.4,

l1 ≥ 0, r1 ≥ 0, l′1 − l1 ≥ 0, r′1 − r1 ≥ 0, l′′1 − l′1 ≥ 0, r′′1 − r′1 ≥ 0, l2 ≥ 0, r2 ≥ 0, l′2 − l2 ≥ 0, r′2 − r2 ≥ 0,

l′′2 − l′2 ≥ 0, r′′2 − r′2 ≥ 0, χ1, η1, ζ1, χ2, η2, ζ2 ∈ [0, 1].

Step 6:By solving the crisp mathematical problem obtained in step 5, we get the optimal solution x1 = 6, l1 = 2, r1 =
4, l′1 = 4, r′1 = 5, l′′1 = 5, r′′1 = 6, x2 = 5, l2 = 2, r2 = 4, l′2 = 3, r′2 = 5, l′′2 = 4, r′′2 = 7, χ1 = 0.7, η1 = 0.5, ζ1 =
0.3, χ2 = 0.9, η2 = 0.3, ζ2 = 0.4.
Step 7: Substituting the values of x1, l1, r1, l′1, r

′
1, l
′′
1 , r
′′
1 , x2, l2, r2, l

′
2, r
′
2, l
′′
2 , r
′′
2 , χ1, η1, ζ1, χ2, η2 and ζ2 inX1 = ([x1; l1,

r1; l
′
1, r
′
1; l
′′
1 , r
′′
1 ];χ1, η1, ζ1)LR and X2 = ([x2; l2, r2; l

′
2, r
′
2; l
′′
2 , r
′′
2 ];χ2, η2, ζ2)LR the exact LR-type single-valued neutro-

sophic optimal solution is X1 = ([6; 2, 4; 4, 5; 5, 6]; 0.7, 0.5, 0.3)LR, X2 = ([5; 2, 4; 3, 5; 4, 7]; 0.9, 0.3, 0.4)LR.
Step 8: By substituting the values ofX1 andX2, obtained in Step 7, into the objective function, theLR-type single-valued
neutrosophic optimal value is ([140; 76, 208; 112, 296; 133, 436]; 0.7, 0.5, 0.5)LR.

5 Conclusion

In this paper, we have applied the concept of neutrosophic sets to the LPPs. We have defined unrestricted LR-type SNNs
and their arithmetic operations. We have developed ranking function of the LR-type SNN. We have proposed a method
to solve the FSNLP problems with equality constraints having unrestricted LR-type SNNs as right hand side, parameters
and variables. We have solved numerical examples to explain it which satisfies the given constraints.
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results and examples of NeutroNearrings, NeutroSubRings, NeutroQuotientNearrings and NeutroNearringHo-

momorphisms are presented.
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—————————————————————————————————————————-

1. Introduction

The NeutroDefined and AntiDefined Laws, as well as the NeutroAxioms and AntiAxioms

was first time introduced in 2019 by Smarandache [3, 5]. This concept has given birth to new

fields of research called NeutroStructures and AntiStructures. For basic and recent results on

Neutrosophy, NeutroAlgebraic structures and AntiAlgebraic structures we refer [4–8].

In [2],Agboola formally presented the notion of NeutroGroups. In this he showed that in

general, Lagrange’s theorem and first isomorphism theorem of the classical groups do not hold
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in the NeutroGroups. Also in [1], Agboola studied NeutroRing, NeutroSubring, NeutroQuo-

tientRings and he proved the 1st isomorphism theorem of the classical rings for this class of

NeutroRing.

The present paper will be concerned with the introduction of NeutroNearrings.

2. Preliminaries

Definition 2.1. [7]

(i) A classical operation is an operation well defined for all the set’s elements while a

NeutroOperation is an operation partially well defined, partially indeterminate, and

partially outer defined on the given set. An AntiOperation is an operation that is outer

defined for all the set’s elements.

(ii) A NeutroAlgebra is an algebra that has at least one NeutroOperation or one Neu-

troAxiom ( axiom that is true for some elements, indeterminate for other elements,

and false for other elements), and no AntiOperation or AntiAxiom. An AntiAlgebra

is an algebra endowed with at least one AntiOperation or at least one AntiAxiom.

Definition 2.2. A NeutroGroup is a nonempty set G with binary operation ∗ satisfying

following conditions:

(i) The ∗ is NeutroAssociative if there exists atleast one triplet (a, b, c) ∈ G such that

a ∗ (b ∗ c) = (a ∗ b) ∗ c

and there exists atleast one triplet (x, y, z) ∈ G such that

x ∗ (y ∗ z) 6= (x ∗ y) ∗ z

(ii) There exists a NeutroNeutral element in G if at least one of the below statements

occurs:

• There exists at least one element x that has no unit-element.

• There exists at least one element b ∈ G that has at least two distinct unit-elements

e1, e2 ∈ G, e1 6= e2 such that:

b ∗ e1 = e1 ∗ b = b

b ∗ e2 = e2 ∗ b = b

• There exists at least two different elements r, s ∈ G, r 6= s, such that they have

different unit elements er, es ∈ G, er 6= es, with er ∗ r = r ∗ er = r and es ∗ s =

s ∗ es = s
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(iii) There exists a NeutroInverse element in G if there is an element a ∈ G that has

an inverse b ∈ G with respect to a unit element e ∈ G that is

b ∗ a = a ∗ b = e

or there exists atleast one element b ∈ G that has two or more inverses c, d ∈ G with

respect to some unit element u ∈ G that is

b ∗ c = c ∗ b = u

b ∗ d = d ∗ b = u

In addition, if ∗ is NeutroCommutative that is there exists atleast a duplet (a, b) ∈ G
such that

a ∗ b = b ∗ a

and there exists atleast a duplet (c, d) ∈ G such that

c ∗ d 6= d ∗ c

then (G, ∗) is called a NeutroCommutative group or NeutroAbelian group.

If condition (i) is satisfied, then (G, ∗) is called a NeutroSemiGroup and if conditions (i) and

(ii) are satisfied, then (G, ∗) is called a NeutroMonoid [1].

Definition 2.3. Let R be a nonempty set and let +, · : R × R → R be binary operations of

ordinary addition and multiplication on R. Then · is both left and right NeutroDistributive

over + that is there exists atleast a triplet (a, b, c) ∈ R and atleast a triplet (d, e, f) ∈ R such

that

a.(b+ c) = a.b+ a.c

d.(e+ f) 6= d.e+ d.f

then . is left NeutroDistributive over + on a setR.

Suppose if there exists atleast a triplet (p, q, r) ∈ R and atleast a triplet (x, y, z) ∈ R such that

(p+ q).r = p.r + q.r

(x+ y).z 6= x.z + y.z

then the binary operation . is said to be right NeutroDistributive over + on a set R.

A right Nearring is a set N together with two binary operations + and · such that:

(1) (N,+) is a group (not necessarily abelian)

(2) (N, ·) is a semigroup

Vadiraja Bhatta G. R., Manasa K. J., Gautham Shenoy B., Prasanna Poojary, Chaithra B.
J., Introduction to NeutroNearrings



Neutrosophic Sets and Systems, Vol. 46, 2021 448

(3) For all n1, n2, n3 ∈ N : (n1 + n2) · n3 = n1 · n3 + n2 · n3 (right distribution law).

If n1 · (n2 + n3) = n1 · n2 + n1 · n3 instead of condition (3) then set N is a left Nearring.

NeutroNearring and their properties

A NeutroNearring is a Nearring that has either a Neutro-operation or a Neutro-axiom. In

this paper we define NeutroNearing as below.

Definition 2.4. Let N be a nonempty set and let +, · : N×N → N be binary operations of or-

dinary addition and multiplication on N. The triple (N,+, ·) is called a left NeutroNearring

if the following conditions are satisfied:

(i) (N,+) is a NeutroGroup (not necessarily abelian)

(ii) (N, ·) is a NeutroSemiGroup

(iii) the left NeutroDistributive law holds in N : that is there exists atleast one triplet

(a, b, c) ∈ N and atleast one triplet (d, e, f) ∈ N such that:

• a · (b+ c) = a · b+ a · c
• d · (e+ f) 6= d · e+ d · f

Remark 2.5. If right NeutroDistributive law holds in N : that is there exists atleast one

triplet (p, q, r) ∈ N and atleast one triplet (s, t, u) ∈ N such that:

• (p+ q) · r = p · r + q · r
• (s+ t) · u 6= s · u+ t · u

then N is called right NeutroNearring.

Example 2.6. Let X = Z12 and let ⊕ and � be two binary operations on X defined by

x ⊕ y = x + 2y and x � y = x + 4y for all x, y ∈ X where “+” is addition modulo 12. Then

(X,⊕,�) is a NeutroNearring.

Example 2.7. Let X = {a, b, c} with “+” and “·” be binary operations defined on X as

shown in the Cayley tables below:

+ a b c

a c c b

b c b c

c c c b

· a b c

a b a a

b a c a

c a a b

It is clear from the table that :
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(a+ b) + c = a+ (b+ c) = b,

(c+ a) + b = c, but c+ (a+ b) = b 6= c

This shows that (X,+) is a NeutroSemiGroup.

Next, let Nx and Ix represent additive neutral and additive inverse element respectively with

respect to any element x ∈ X. Then

Nb = b

Ib = b

Na does not exist,

Ib does not exist.

Hence, (X,+) is a NeutroGroup.

Next, consider

b(cb) = (bc)b

a(bc) = b but (ab)c = a 6= b

This shows that (X, ·) is NeutroAssociative.

Lastly, consider

b.(b+ b) = b.b+ b.b = c,

a.(b+ c) = a,but a.b+ a.c = c 6= a

This shows that “·” is left distributive over “+”. Hence, (X,+, ·) is a left NeutroNearring.

Note 2.8. Every NeutroRing is a NeutroNearring.

Notation: Let N be a NeutroNearring d ∈ N is called NeutroDistributive if there exist

atleast two pairs (n1, n2) and (m1,m2) ∈ N such that (n1 + n2)d = n1d+ n2d and

(m1 +m2)d 6= m1d+m2d. Let Nd = {d ∈ N |d is NeutroDistributive }.

Remark 2.9. Let (N,+, ·) be left NeutroNearring

(i) If (N,+) is NeutroAbelian, then N is a NeutroAbelian NeutroNearring.

(ii) If (N, .) is NeutroCommutative then N is a NeutroCommutative NeutroNearring.

(iii) If N = Nd then N is said to be NeutroDistributive.

(iv) If (N∗, ·) where N∗ = N \ {0} is a NeutroGroup then N is called NeutroNearfield.

Theorem 2.10. Let (Ni,+, ), i = 1, 2, . . . , n be a family of NeutroNearrings. Then

(1) N = ∩ni=1Ni is a NeutroNearring.
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(2) N =
∏n
i=1Ni is a NeutroNearring.

(1) Proof. Obvious

(2) Proof. Proof is by induction on n.

For n = 1 result is trivial. Let n = 2. Consider N = N1×N2 then is closed with respect

to coordinate wise addition and coordinate wise multiplication. Note that there exist

n1 ∈ N1 such that n1 + e1 = n1 and there exist n2 ∈ N2 such that n2 + e2 = n2.

Also, there doesnot exist additive identity for n
′
1 ∈ N1 and n

′
2 ∈ N2.

But (n1, n2) ∈ N such that (n1, n2) + (e1, e2) = (n1, n2) and there doesnot exist addi-

tive identity for (n
′
1, n

′
2) ∈ N .

Similarly one can observe the existence of NeutroAdditive inverse in N .

Since (N1,+) and (N2,+) are NeutroAssociative, there exist a1, b1, c1, a
′
1, b
′
1, c
′
1 ∈ N1

and a2, b2, c2, a
′
2, b
′
2, c
′
2 ∈ N2 such that a1 + (b1 + c1) = (a1 + b1) + c1

a2 + (b2 + c2) = (a2 + b2) + c2

a
′
1 + (b

′
1 + c

′
1) 6= (a

′
1 + b

′
1) + c

′
1

a
′
2 + (b

′
2 + c

′
2) 6= (a

′
2 + b

′
2) + c

′
2

Now, (a1, a2), (b1, b2), (c1, c2), (a
′
1, a

′
2), (b

′
1, b
′
2), (c

′
1, c
′
2) ∈ N such that

(a1, a2) + [(b1, b2) + (c1, c2)]=(a1, a2) + [(b1 + c1, b2 + c2)]=(a1 + (b1 + c1), a2 + (b2 + c2))

=((a1 + b1) + c1, (a2 + b2) + c2)=(a1 + b1, a2 + b2) + (c1, c2)

= [(a1, a2) + (b1, b2)] + (c1, c2)

and (a
′
1, a

′
2) + [(b1

′, b
′
2) + (c

′
1, c
′
2)] 6= [(a

′
1, a

′
2) + (b1

′, b
′
2)] + (c

′
1, c
′
2)

Similarly we prove (N, .) is NeutroAssociative.

Further there exist x1, y1, z1, x
′
1, y

′
1, z

′
1 ∈ N1 and x2, y2, z2, x

′
2, y

′
2, z

′
2 ∈ N2 such that

x1.(y1 + z1) = x1.y1 + x1.z1

x2.(y2 + z2) = x2.y2 + x2.z2

x
′
1.(y

′
1 + z

′
1) 6= x

′
1.y
′
1 + x

′
1.z
′
1

x
′
2.(y

′
2 + z

′
2) 6= x

′
2.y
′
2 + x

′
2.z
′
2

But then, (x1, x2), (y1, y2), (z1, z2), (x
′
1, x

′
2), (y

′
1, y

′
2), (z

′
1, z

′
2) ∈ N such that

(x1, x2).[(y1, y2) + (z1, z2)] = (x1, x2).(y1 + z1, y2 + z2)

= (x1(y1 + z1), x2(y2 + z2)) = (x1.y1 + x1.z1, x2.y2 + x2.z2)

= (x1.y1, x2.y2) + (x1.z1, x2.z2) = (x1, x2).(y1, y2) + (x1, x2).(z1, z2)

and (x
′
1, x

′
2).[(y

′
1, y

′
2) + (z

′
1, z

′
2)] 6= (x

′
1, x

′
2).(y

′
1, y

′
2) + (x

′
1, x

′
2).(z

′
1, z

′
2)

∴ N is a NeutroNearring for n = 2.

Let n > 2. Assume the result for n− 1. Note that M =
∏n−1
i=1 Ni forms a NeutroNear-

ring with respect to coordinate wise addition and coordinate wise multiplication.

But then, N = M × Nn forms a NeutroNearring with respect to coordinate wise

addition and coordinate wise multiplication.
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Definition 2.11. Let (N,+, .) be a NeutroNearring. A nonempty subset S of N is called a

NeutroNearSubring of N if (S,+, .) is also a NeutroNearring. The only trivial NeutroNear-

Subring of N is N.

Theorem 2.12. Let (N,+, .) be a NeutroNearring and let {Si}, i = 1, 2, . . . , n be a family of

NeutroNearSubrings of N. Then

(1) S = ∩ni=1Si is a NeutroNearSubring of N.

(2) S =
∏n
i=1 Si is a NeutroNearSubring of N.

Proof. Both result follows directly from Theorem 2.10.

Definition 2.13. Let (N,+, .) be a NeutroNearring. A nonempty subset I of R is called a

left NeutroNearIdeal of N if the following conditions hold:

(1) I is a NeutroNearSubring of N.

(2) There exist x ∈ I such that xr ∈ I, ∀r ∈ N.

Definition 2.14. Let (N,+, .) be a NeutroNearring. A nonempty subset I of N is called a

right NeutroNearIdeal of N if the following conditions hold:

(1) I is a NeutroNearSubring of N.

(2) There exist x ∈ I such that rx ∈ I, ∀r ∈ N

Definition 2.15. Let (N,+, .) be a NeutroNearring. A nonempty subset I of N is called a

NeutroNearIdeal of N if the following condition hold:

(1) I is a NeutroNearSubring of N .

(2) There exist x ∈ I such that xr, rx ∈ I, ∀r ∈ N

Theorem 2.16. Let (N,+, .) be a NeutroNearring and let {Ii}, i = 1, 2, . . . , n be a family of

NeutroNearIdeals of N . Then

(1) I = ∩ni=1Ii is a NeutroNearIdeal of N .

(2) I =
∑n

i=1 Ii is NeutroNearIdeal of N .

(1) Proof. Since each Ii, 1 ≤ i ≤ n is a NeutroNearSubring of N , it follows from Theorem

1.8 that I = ∩ni=1Ii is a NeutroNearSubring of N .

Note that there exist xi ∈ Ii such that xir, rxi ∈ Ii, ∀r ∈ N and ∀i, 1 ≤ i ≤ n.

Let y = x21x
2
2 · · ·x2n. Then y ∈ Ii, ∀i, 1 ≤ i ≤ n.

For any r ∈ N ry, yr ∈ Ii, ∀i, 1 ≤ i ≤ n
∴ y ∈ I with ry, yr ∈ I.
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(2) Obivous.

Definition 2.17. Let (N,+, .) be a NeutroNearring and let I be a NeutroNearIdeal of N. The

set N/I is defined by

N/I = {x+ I : x ∈ N}

.

for x + I, y + I ∈ N/I with at least a pair (x, y) ∈ N , let ⊕ and � be binary operations on

N/I defined as follows:

(x+ I)⊕ (y + I) = (x+ y) + I

(x+ I)� (y + I) = xy + I

Then it can be shown that the tripple (N/I,⊕,�) is a NeutroNearring which we call Neutro-

QuotientNearring.

Theorem 2.18. Let I be a NeutroNearIdeal of the NeutroNearring (N,+, .). Suppose N is

NeutroCommutative NeutroNearring with Neutro unity then so is N/I.

Proof. There exist a, b, c, d ∈ N such that ab = ba and cd 6= dc.

But then a+ I, b+ I, c+ I, d+ I ∈ N/I such that (a+ I)(b+ I) = ab+ I

= ba+ I = (b+ I)(a+ I) and (c+ I)(d+ I) = cd+ I 6= dc+ I = (d+ I)(c+ I)

Let ey be a Neutro unity of N. Then there exist y ∈ N such that yey = eyy = y

But then y + I ∈ N/I such that (y + I)(ey + I) = yey + I

= y + I = (ey + I)(y + I)

∴ N/I is NeutroCommutative NeutroNearring with Neutro unity ey + I.

Definition 2.19. Let (N,+, .) and (S,⊕,�) be any two NeutroNearrings. The mapping

φ : N → S is called a NeutroNearringHomomorphism if φ preserves the binary operations of

N and S that is if for at least a pair (x, y) ∈ N , we have:

φ(x+ y) = φ(x)⊕ φ(y)

φ(x.y) = φ(x)� φ(y)

The kernel of φ denoted by kerφ is defined as kerφ = {x ∈ N : φ(x) = eN}
Where eN ∈ N is a neutral element for at least one n ∈ N . The image of φ denoted by Imφ

is defined as

Imφ = {y ∈ S : y = φ(x)}
Vadiraja Bhatta G. R., Manasa K. J., Gautham Shenoy B., Prasanna Poojary, Chaithra B.
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for at least one x ∈ N. If in addition φ is a NeutroBijection, then φ is called a NeutroNearringI-

somorphism and we write N ∼= S. NeutroNearringEpimorphism, NeutroNearringMonomor-

phism, NeutroNearringEndomorphism and NeutroNearringAutomorphism are defined simi-

larly.

Theorem 2.20. Let R and S be two NeutroNearrings. Let Nx = eR for at least one x ∈ R and

let Ny = eS for at least one y ∈ S. Suppose that φ : R → S is a NeutroNearHomomorphism.

Then:

(1) φ(eR) is not necessarily equals eS.

(2) Ker φ is a NeutroNearSubring of R.

(3) Im φ is not necessarily a Neutro Near Subring of S.

(4) φ is NeutroInjective if and only if Ker φ = {eR} for at least one eR ∈ R.

Theorem 2.21. Let I be a NeutroNearIdeal of a NeutroNearring (N,+, .). Then the mapping

φ : N → N/I defined by φ(x) = x+ I is a NeutroNearringIsomorphism with Kerφ = I

Proof. For atleast one pair x, y in N ,

φ(x+ y) = (x+ y) + I = (x+ I) + (y + I) = φ(x) + φ(y)

and φ(xy) = xy + I = (x+ I)(y + I) = φ(x)φ(y)

Kerφ = {x ∈ N |φ(x) = eN/I}, where eN/I ∈ N/I such that Nr = eN/I for atleast one r ∈ N/I
. = {x ∈ N |x+ I = eN/I} = {x ∈ N |x ∈ I} = I

Theorem 2.22. Let φ : R→ S be a NeutroNearringHomomorphism and let K = Kerφ. Then

the mapping ψ : R/K → Imφ defined by ψ(x+K) = φ(x) is a NeutroNearringIsomorphism.

Proof. For atleast one pair x, y ∈ R
ψ((x+K) + (y +K)) = ψ((x+ y) +K) = φ(x+ y) = φ(x) + φ(y)

= ψ(x+K) + ψ(y +K) and ψ((x+K)(y +K)) = ψ((xy) +K) = φ(xy) = φ(x)φ(y)

= ψ(x+K)ψ(y +K)

Also Kerψ = {x+K ∈ R/K : ψ(x+K) = eImφ}where eImφ ∈ Imφ such that Nr = eImφ for

atleast r ∈ Imφ.

= {x+K ∈ R/K : φ(x) = eImφ} = {eR/K}
Thus ψ is a NeutroBijectiveNearringHomomorphism.

Note 2.23. The above map φ is an epimorphism. So, we can treat φ as NeutroNearringEpi-

morphism.

Theorem 2.24. NeutroNearringIsomorphism of NeutroNearrings is an equivalence relation.

Vadiraja Bhatta G. R., Manasa K. J., Gautham Shenoy B., Prasanna Poojary, Chaithra B.
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Proof. Define a relation ∼ as follows:

For any two NeutroNearrings N and N
′
, we say N ∼ N

′
iff there exist a NeutroNearringIso-

morphism between N and N
′
. Clearly ∼ is reflexive.

Suppose NeutroNearrings N,N
′

are such that N ∼ N
′
, let f : N → N

′
be NeutroNearringI-

somorphism.

Then there exist x, y ∈ N such that f(x+ y) = f(x) + f(y) and f(xy) = f(x)f(y).

Now, f(x), f(y) ∈ N ′ and

f−1(f(x) + f(y)) = f−1(f(x+ y)) = x+ y = f−1(f(x)) + f−1(f(y))

f−1(f(x)f(y)) = f−1(f(xy)) = xy = f−1(f(x))f−1(f(y))

∴ N
′ ∼ N and f−1 is a NeutroNearringIsomorphism.

Let f : N → N
′

and g : N
′ → N

′′
be NeutroNearringIsomorphisms.

Then g ◦f : N → N
′′

is bijective and there exist x
′
, y
′ ∈ N ′ such that g(x

′
+y

′
) = g(x

′
)+g(y

′
)

and g(x
′
y
′
) = g(x

′
)g(y

′
)

Now, x
′

= f(x), y
′

= f(y) for some x, y ∈ N with f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y)

Consider,

g ◦ f(x+ y) = g(f(x+ y)) = g(f(x) + f(y)) = g(x
′
+ y

′
) = g(x

′
) + g(y

′
) = g(f(x)) + g(f(y))

= g ◦ f(x) + g ◦ f(y)

and g ◦ f(xy) = g(f(xy)) = g(f(x)f(y)) = g(x
′
y
′
) = g(x

′
)g(y

′
) = g(f(x))g(f(y))

= g ◦ f(x)g ◦ f(y)

∴ N ∼ N
′′

3. Conclusion

We have introduced in this paper the concept of NeutroNearrings by considering three

NeutroAxioms(NeutroGroup(additive)), NeutroSemigroup(multiplicative) and left and right

NeutroDistributive laws(multiplication over addition). Several intresting results and exam-

ples on NeutroNearrings, NeutroSubrings, NeutroQuotientNearrings and NeutroNearringHo-

momorphisms are presented.
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Abstract 

In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding 
the NeutroGeometry & AntiGeometry.  

While the Non-Euclidean Geometries resulted from the total negation of one specific axiom
(Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more 
axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry 
such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, 
Molecular, Convex, etc.) Geometry, and the NeutroGeometry results from the partial negation of one or 
more axioms [and no total negation of no axiom] from any geometric axiomatic system and from any 
type of geometry. Generally, instead of a classical geometric Axiom, one may take any classical 
geometric Theorem from any axiomatic system and from any type of geometry, and transform it by 
NeutroSophication or AntiSophication into a NeutroTheorem or AntiTheorem respectively in order to 
construct a NeutroGeometry or AntiGeometry. Therefore, the NeutroGeometry and AntiGeometry are 
respectively alternatives and generalizations of the Non-Euclidean Geometries.

In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to 
NeutroAlgebra & AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to 
NeutroStructure & AntiStructure that naturally arise in any field of knowledge. At the end, we present 
applications of many NeutroStructures in our real world. 

Keywords: Non-Euclidean Geometries, Euclidean Geometry, Lobachevski-Bolyai-Gauss Geometry, 

Riemannian Geometry, NeutroManifold, AntiManifold, NeutroAlgebra, AntiAlgebra, NeutroGeometry, 

AntiGeometry, NeutroAxiom, AntiAxiom, NeutroTheorem, AntiTheorem, Partial Function, 

NeutroFunction, AntiFunction, NeutroOperation, AntiOperation, NeutroAttribute, AntiAttribute, 

NeutroRelation, AntiRelation, NeutroStructure, AntiStructure 

______________________________________________________________________________ 1. Introduction

In our real world, the spaces are not homogeneous, but mixed, complex, even ambiguous. And 

the elements that populate them and the rules that act upon them are not perfect, uniform, or complete - 

but fragmentary and disparate, with unclear and conflicting information, and they do not apply in the 

same degree to each element. The perfect, idealistic ones exist just in the theoretical sciences. We live in a 

multi-space endowed with a multi-structure [35]. Neither the space’s elements nor the regulations that 

mailto:smarand@unm.edu
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govern them are egalitarian, all of them are characterized by degrees of diversity and variance. The 

indeterminate (vague, unclear, incomplete, unknown, contradictory etc.) data and procedures are 

surrounding us. 

 That’s why, for example, the classical algebraic and geometric spaces and structures  were 

extended to more realistic spaces and structures [1], called respectively NeutroAlgebra & AntiAlgebra 

[2019] and respectively NeutroGeometry & AntiGeometry [1969, 2021], whose  elements do not 

necessarily behave the same, while the operations and rules onto these spaces may only be partially (not 

totally) true. 

While the Non-Euclidean Geometries resulted from the total negation of only one specific axiom 

(Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom and even of 

more axioms from any geometric axiomatic system (Euclid’s five postulates, Hilbert’s 20 axioms, etc.), 

and the NeutroAxiom results from the partial negation of one or more axioms [and no total negation of 

no axiom] from any geometric axiomatic system. 

Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of 

the Non-Euclidean Geometries. 

In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & 

AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & 

AntiStructure that naturally arise in any field of knowledge.                                                                       At 

the end, we present applications of many NeutroStructures in our real world. 

 On a given space, a classical Axiom is totally (100%) true. While a NeutroAxiom is partially true, 

partially indeterminate, and partially false. Also, an AntiAxiom is totally (100%) false.  

A classical Geometry has only totally true Axioms. While a NeutroGeometry is a geometry that 

has at least one NeutroAxiom and no AntiAxiom. Also, an AntiGeometry is a geometry that has at least 

one AntiAxiom. 

Below we introduce, in the first part of this article, the construction of NeutroGeometry & 

AntiGeometry, together with the Non-Euclidean geometries, while in the second part we recall the 

evolution from paradoxism to neutrosophy, and then to NeutroAlgebra & AntiAlgebra, culminating with 

the most general form of NeutroStructure & AntiStructure in any field of knowledge. 

A classical (100%) true statement on a given classical structure, may or may not be 100% true on 

its corresponding NeutroStructure or AntiStructure, it depends on the neutrosophication or 

antisophication procedures [1 – 24]. 

Further on, the neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra) was restrained or 

extended to all fuzzy and fuzzy extension theories (FET) triplets of the form (Algebra, NeutroFETAlgebra, 

AntiFETAlgebra), where FET may be: Fuzzy, Intuitionistic Fuzzy, Inconsistent Intuitionistic Fuzzy (Picture 

Fuzzy, Ternary Fuzzy), Pythagorean Fuzzy (Atanassov’s Intuitionistic Fuzzy of second type), q-Rung 

Orthopair Fuzzy, Spherical Fuzzy, n-HyperSpherical Fuzzy, Refined Neutrosophic, etc. 

1.1. Concept, NeutroConcept, AntiConcept 
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        Let us consider on a given geometric space a classical geometric concept (such as: axiom, postulate, 

operator, transformation, function, theorem, property, theory, etc.). 

We form the following geometric neutrosophic triplet:  

Concept(1, 0, 0), NeutroConcept(T, I, F), AntiConcept (0, 0, 1), 

where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 

 { Of course, we consider only the neutrosophic triplets (Concept, NeutroConcept, AntiConcept) 

that make sense in our everyday life and in the real world. } 

Concept(1, 0, 0) means that the degree of truth of the concept is T = 1, I = 0, F = 0, or the Concept is 

100% true, 0% indeterminate, and 0% false in the given geometric space. 

NeutroConcept (T, I, F) means that the concept is T% true, I% indeterminate, and 0% false in the 

given geometric space, with (T, I, F) ∈ [0, 1], and (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 

AntiConcept (0, 0, 1) means that T = 0, I = 0, and F = 1, or the Concept is 0% true, 0% indeterminate, 

and 100% false in the given geometric space. 

1.2. Geometry, NeutroGeometry, AntiGeometry 

We go from the neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra) to a similar 

neutrosophic triplet (Geometry, NeutroGeometry, AntiGeometry), in the same way. 

Correspondingly from the algebraic structuires, with respect to the geometries, one has: 

In the classical (Euclidean) Geometry, on a given space, all classical geometric Concepts are 100% 

true (i.e. true for all elements of the space). 

While in a NeutroGeometry, on a given space, there is at least one NeutroConcept (and no 

AntiConcept). 

In the AntiGeometry, on a given space, there is at least one AntiConcept. 

1.3. Geometric NeutroSophication and Geometric AntiSophication 

Similarly, as to the algebraic structures, using the process of NeutroSophication of a classical 

geometric structure, a NeutroGeometry is produced;  while through the process of AntiSophication of a 

classical geometric structure produces an AntiGeometry. 

Let S be a classical geometric space, and <A> be a geometric concept (such as: postulate, axiom, 

theorem, property, function, transformation, operator, theory, etc.). The <antiA> is the opposite of <A>, 

while <neutA> (also called <neutroA>) is the neutral (or indeterminate) part between <A> and <antiA>. 

The neutrosophication tri-sections S into three subspaces: 
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- the first subspace, denoted just by <A>, where the geometric concept is totally true [degree of truth T = 1]; 

we denote it by Concept(1,0,0). 

- the second subspace, denoted by <neutA>, where the geometric concept is partially true [degree of truth 

T], partially indeterminate [degree of indeterminacy I], and partially false [degree of falsehood F], 

denoted as NeutroConcept(T,I,F), where (T, I, F)   {(1,0,0), (0,0,1)}; 

- the third subspace, denoted by <antiA>, where the geometric concept is totally false [degree of falsehood F 

= 1], denoted by AntiConcept(0,0,1). 

The three subspaces may or may not be disjoint, depending on the application, but they are exhaustive 

(their union equals the whole space S). 

 1.4. Non-Euclidean Geometries 

1.4.1. The Lobachevsky (also known as Lobachevsky-Bolyai-Gauss) Geometry, and called Hyperbolic 

Geometry, is an AntiGeometry, because the Fifth Euclidean Postulate (in a plane, through a point outside a 

line, only one parallel can be drawn to that line) is 100% invalidated in the following AntiPostulate (first 

version) way: in a plane through a point outside of a line, there can be drawn infinitely many parallels to 

that line. Or (T, I, F) = (0, 0, 1). 

1.4.2. The Riemannian Geometry, which is called Elliptic Geometry, is an AntiGeometry too, since 

the Fifth Euclidean Postulate is 100% invalidated in the following AntiPostulate (second version) way: in 

a place, through a point outside of a line, no parallel can be drawn to that line. Or (T, I, F) = (0, 0, 1). 

1.4.3. The Smarandache Geometries (SG) are more complex [30 – 57]. Why this type of mixed non-

Euclidean geometries, and sometimes partially Non-Euclidean and partially Euclidean? Because the real 

geometric spaces are not pure but hybrid, and the real rules do not uniformly apply to all space’s 

elements, but they have degrees of diversity – applying to some geometrical concepts (point, line, plane, 

surface, etc.) in a smaller or bigger degree. 

From Prof. Dr. Linfan Mao’s arXiv.org paper Pseudo-Manifold Geometries with Applications [57], Cornell 

University, New York City, USA, 2006, https://arxiv.org/abs/math/0610307 : 

“A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom (1969), i.e., an 

axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only 

invalided but in multiple distinct ways and a Smarandache n-manifold is a n-manifold that support a 

Smarandache geometry.  

Iseri provided a construction for Smarandache 2-manifolds by equilateral triangular disks on a plane and a 

more general way for Smarandache 2-manifolds on surfaces, called map geometries was presented by the 

author (…).  

https://arxiv.org/abs/math/0610307
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However, few observations for cases of n ≥ 3 are found on the journals. As a kind of Smarandache 

geometries, a general way for constructing dimensional n pseudo-manifolds are presented for any integer n 

≥ 2 in this paper. Connection and principal fiber bundles are also defined on these manifolds. Following 

these constructions, nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-Bolyai 

geometry, Riemann geometry, Weyl geometry, Kahler geometry and Finsler geometry, etc. are their sub-

geometries.” 

Iseri ([34], [39 - 40]) has constructed some Smarandache Manifolds (S-manifolds) that topologically are 

piecewise linear, and whose geodesics have elliptic, Euclidean, and hyperbolic behavior. An SG geometry 

may exhibit one or more types of negative, zero, or positive curvatures into the same given space.  

1.4.3.1) If at least one axiom is validated (partially true, T > 0) and invalidated (partially false, F > 

0), and no other axiom is only invalidated (AntiAxiom), then this first class of SG geometry is a 

NeutroGeometry. 

1.4.3.2) If at least one axiom is only invalidated (or F = 1), no matter if the other axioms are 

classical or NeutroAxioms or AntiAxioms too, then this second class of SG geometry is an AntiGeometry. 

1.4.3.3) The model of an SG geometry that is a NeutroGeometry: 

Bhattacharya [38] has constructed the following SG model: 

Fig. 1. Bhattacharya’s Model for the SG geometry as a NeutroGeometry 
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The geometric space is a square ABCD, comprising all points inside and on its edges. 

“Point” means the classical point, for example: A, B, C, D, E, N, and M. 

“Line” means any segment of line connecting two points on the opposite square sides AC and BD, for 

example: AB, CD, CE, (u), and (v). 

“Parallel lines” are lines that do not intersect. 

Let us take a line CE and an exterior point N to it. We observe that there is an infinity of lines passing 

through N and parallel to CE [all lines passing through N and in between the lines (u) and (v) for 

example] – the hyperbolic case.  

Also, taking another exterior point, D, there is no parallel line passing through D and parallel to CE 

because all lines passing through D intersects CE – the elliptic case. 

Taking another exterior point M ∈ AB, then we only have one line AB parallel to CE, because only one 

line passes through the point M – the Euclidean case.  

Consequently, the Fifth Euclidean Postulate is twice invalidated, but also once validated. 

Being partially hyperbolic Non-Euclidean, partially elliptic Non-Euclidean, and partially Euclidean, 

therefore we have here a SG.  

This is not a Non-Euclidean Geometry (since the Euclid’s Fifth Postulate is not totally false, but only 

partially), but it is a NeutroGeometry. 

Theorem 1.4.3.3.1 

If a statement (proposition, theorem, lemma, property, algorithm, etc.) is (totally) true (degree of truth T = 

1, degree of indeterminacy I = 0, and degree of falsehood F = 0) in the classical geometry, the statement 

may get any logical values (i.e. T, I, F may be any values in [0, 1]) in a  NeutroGeometry or in an 

AntiGeometry  

Proof. 

The logical value the statement gets in a NeutroGeometry or in an AntiGeometry depends on what 

classical axioms the statement is based upon in the classical geometry, and how these axioms behave in 

the NeutroGeometry or AntiGeometry models. 

Let’s consider the below classical geometric proposition P(L1, L2, L3) that is 100% true:  

In a 2D-Euclidean geometric space, if two lines L1 and L2 are parallel with the third line L3, then 

they are also parallel (i.e. L1 // L2). 

 In Bhattacharya’s Model of an SG geometry, this statement is partially true and partially false. 

For example, in Fig. 1:  
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- degree of truth: the lines AB and (u) are parallel to the line CE, then AB is parallel to (u);

- degree of falsehood: the lines (u) and (v) are parallel to the line CE, but (u) and (v) are not parallel

since they intersect in the point N.

1.4.3.4) The Model of a SG geometry that is an AntiGeometry 

Let us consider the following rectangular piece of land PQRS, 

Fig. 2. Model for an SG geometry that is an AntiGeometry 

whose middle (shaded) area is an indeterminate zone (a river, with swamp, canyons, and no bridge) that 

is impossible to cross over on the ground. Therefore, this piece of land is composed from a determinate 

zone and an indeterminate zone (as above). 

“Point” means any classical (usual) point, for example: P, Q, R, S, X, Y, Z, and W that are determinate 

well-known (classical) points, and I1, I2 that are indeterminate (not well-known) points [in the 

indeterminate zone]. 
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“Line” is any segment of line that connects a point on the side PQ with a point on the side RS. For 

example, PR, QS, XY. However, these lines have an indeterminate (not well known, not clear) part that is 

the indeterminate zone. On the other hand, ZW is not a line since it does not connect the sides PQ and RS. 

The following geometric classical axiom: through two distinct points there always passes one single line, is 

totally (100%) denied in this model in the following two ways: 

through any two distinct points, in this given model, either no line passes (see the case of ZW), or only 

one partially determinate line does (see the case of XY) - therefore no fully determinate line passes. Thus, 

this SG geometry is an AntiGeometry. 

1.5.  Manifold, NeutroManifold, AntiManifold 

1.5.1. Manifold 

The classical Manifold [29] is a topological space that, on the small scales, near each point, 

resembles the classical (Euclidean) Geometry Space [i.e. in this space there are only classical 

Axioms (totally true)].                                                                                                             Or each 

point has a neighborhood that is homeomorphic to an open unit ball of the Euclidean Space 

Rn (where R is the set of real numbers). Homeomorphism is a continuous and bijective 

function whose inverse is also continuous. 

“In general, any object that is near ‘flat’ on the small scale is a manifold” [29]. 

1.5.2. NeutroManifold 

The NeutroManifold is a topological space that, on the small scales, near each point, resembles 

the NeutroGeometry Space [i.e. in this space there is at least a NeutroAxiom (partially true, partially 

indeterminate, and partially false) and no AntiAxiom].        

For example, Bhattacharya’s Model for a SG geometry (Fig. 1) is a NeutroManifold, since 

the geometric space ABCD has a NeutroAxiom (i.e. the Fifth Euclidean Postulate, which is 

partially true and partially false), and no AntiAxiom.

1.5.3. AntiManifold 

The AntiManifold is a topological space that, on the small scales, near each point, resembles the 

AntiGeometry Space [i.e. in this space there is at least one AntiAxiom (totally false)].          

 For example, the Model for a SG geometry (Fig. 2) is an AntiManifold, since the 

geometric space PQRS has an AntiAxiom (i.e., through two distinct points there always passes a 

single line - which is totally false).      

2. Evolution from Paradoxism to Neutrosophy then to NeutroAlgebra/AntiAlgebra and now to

NeutroGeometry/AntiGeometry
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Below we recall and revise the previous foundations and developments that culminated with the 

introduction of NeutroAlgebra & AntiAlgebra as new field of research, extended then to NeutroStructure 

& AntiStructure, and now particularized to NeutroGeometry & AntiGeometry that are extensions of the 

Non-Euclidean Geometries. 

2.1.  From Paradoxism to Neutrosophy 

    Paradoxism [58] is an international movement in science and culture, founded by Smarandache in 

1980s, based on excessive use of antitheses, oxymoron, contradictions, and paradoxes. During three 

decades (1980-2020) hundreds of authors from tens of countries around the globe contributed papers to 

15 international paradoxist anthologies. 

    In 1995, he extended the paradoxism (based on opposites) to a new branch of philosophy called 

neutrosophy (based on opposites and their neutral) [59], that gave birth to many scientific branches, such 

as: neutrosophic logic, neutrosophic set, neutrosophic probability, neutrosophic  statistics, neutrosophic 

algebraic structures, and so on with multiple applications in engineering, computer science, 

administrative work, medical research, social sciences, etc. 

Neutrosophy is an extension of Dialectics that have derived from the Yin-Yan Ancient Chinese 

Philosophy.  

2.2.  From Classical Algebraic Structures to NeutroAlgebraic Structures and AntiAlgebraic 

Structures  

In 2019 Smarandache [1] generalized the classical Algebraic Structures to NeutroAlgebraic Structures 

(or NeutroAlgebras) {whose operations (or laws) and axioms (or theorems ) are partially true, partially 

indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or 

AntiAlgebras) {whose operations (or laws) and axioms (or theorems) are totally false} and on 2020 he 

continued to develop them [2,3,4]. 

Generally, instead of a classical Axiom in a field of knowledge, one may take a classical Theorem in 
that field of knowledge, and transform it by NeutroSophication or AntiSophication into a 
NeutroTheorem or AntiTheorem in order to construct a NeutroStructure or AntiStructure in that field of 
knowledge. 

The NeutroAlgebras & AntiAlgebras are a new field of research, which is inspired from our real world. As 

said ahead, we may also get a NeutroAlgebra & AntiAlgebra by transforming, instead of an Axiom, a 

classical algebraic Theorem into a NeutroTheorem or AntiTheorem; the process is called 

NeutroSophication or respectively AntiSophication. 

In classical algebraic structures, all operations are 100% well-defined, and all axioms are 100% true, but in 

real life, in many cases these restrictions are too harsh, since in our world we have things that only 

partially verify some operations or some laws. 

 

By substituting Concept with Operation, Axiom, Theorem, Relation, Attribute, Algebra, Structure etc. 

respectively, into the above (Concept, NeutroConcept, AntiConcept), we get the below neutrosophic 

triplets: 
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2.3.  Operation, NeutroOperation, AntiOperation 

When we define an operation on a given set, it does not automatically mean that the operation is well-

defined. There are three possibilities: 

1) The operation is well-defined (also called inner-defined) for all set's elements [degree of truth T = 1]

(as in classical algebraic structures; this is a classical Operation). Neutrosophically we write: 

Operation(1,0,0). 

2) The operation if well-defined for some elements [degree of truth T], indeterminate for other elements

[degree of indeterminacy I], and outer-defined for the other elements [degree of falsehood F], where 

(T,I,F) is different from (1,0,0) and from (0,0,1) (this is a NeutroOperation). Neutrosophically we write: 

NeutroOperation(T,I,F). 

3) The operation is outer-defined for all set's elements [degree of falsehood F = 1] (this is an

AntiOperation). Neutrosophically we write: AntiOperation(0,0,1).   

An operation * on a given non-empty set S is actually a n-ary function, for integer n ≥ 1, : nf S S→ .

2.4.  Function, NeutroFunction, AntiFunction 

Let U be a universe of discourse, A and B be two non-empty sets included in U, and f  be a 

function: :f A B→  

Again, we have three possibilities:   

1) The function is well-defined (also called inner-defined) for all elements of its domain A [degree of

truth T = 1] (this is a classical Function), i.e. , ( )x A f x B   . Neutrosophically we write: 

Function(1,0,0). 

2) The function if well-defined for some elements of its domain, i.e. , ( )x A f x B    [degree of truth

T], indeterminate for other elements, i.e. , ( )x A f x  = indeterminate [degree of indeterminacy I], and 

outer-defined for the other elements, i.e. , ( )x A f x B    [degree of falsehood F], where (T,I,F) is 

different from (1,0,0) and from (0,0,1). This is a NeutroFunction. Neutrosophically we write: 

NeutroFunction(T,I,F). 

3) The function is outer-defined for all elements of its domain A [degree of falsehood F = 1] (this is an

AntiFunction), i.e. , ( )x A f x B   (all function’s values are outside of its codomain B; they may be 

outside of the universe of discourse too). Neutrosophically we write: AntiFunction(0,0,1).  

2.5.  NeutroFunction & AntiFunction vs. Partial Function 

We prove that the NeutroFunction & AntiFunction are extensions and alternatives of the Partial 

Function. 

Definition of Partial Function [60] 
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A function f: A→B is sometimes called a total function, to signify that f(a) is defined for every    a ∈ 

A. If C is any set such that C ⊇ A then f is also a partial function from C to B. 

Clearly if f is a function from A to B then it is a partial function from A to B, but a partial function 

need not be defined for every element of its domain. The set of elements of A for which f is 

defined is sometimes called the domain of definition. 

From other sites, the Partial Function means: for any a ∈ A one has: f(a) ∈ B or f(a) = undefined. 

Comparison 

i) “Partial” is mutually understood as there exist at least one element a1 ∈ A such that f(a1) ∈ B, 

or the Partial Function is well-defined for at least one element (therefore T > 0). 

The Partial Function does not allow the well-defined degree T = 0 (i.e. no element is well-

defined), while the NeutroFunction and AntiFunction do. 

Example 1. 

Let’s consider the set of positive integers Z = {1, 2, 3, …}, included into the universe of 

discourse R, which is the set of real numbers. Let’s define the function 

1 :f Z Z→ , 1( )
0

x
f x = , for all x ∈ Z. 

Clearly, the function f1 is 100% undefined, therefore the indeterminacy I = 1, while    T  = 

0 and F = 0. 

Hence f1 is a NeutroFunction, but not a Partial Function. 

       Example 2. 

Let’s take the set of odd positive integers D = {1, 3, 5, …}, included in the universe  of 

discourse R. Let’s define the function 2 2: , ( ) ,
2

x
f D D f x→ = for all x ∈ D. 

The function f2 is 100% outer-defined, since 
2

x
D  for all x ∈ D. Whence F = 1, T = 0, and 

I = 0. Hence this is an AntiFunction, but not a partial Function. 

ii) The Partial Function does not catch all types of indeterminacies that are allowed in a 

NeutroFunction. Indeterminacies may occur with respect to:  the function’s domain, 

codomain, or relation that connects the elements in the domain with the elements in the 

codomain. 

   Example 3. 

Let’s consider the function g: {1, 2, 3, …, 9, 10, 11} → {12, 13, …, 19}, about whom we only 

have vague, unclear information as below: 

g(1 or 2) = 12, i.e. we are not sure if g(1) = 12 or g(2) = 12; 

g(3) = 18 or 19, i.e. we are not sure if g(3) = 18 or g(3) = 19; 

g(4 or 5 or 6) = 13 or 17; 

g(7) = unknown; 

g(unknown) = 14. 

All the above values represent the function’s degree of indeterminacy (I > 0). 

http://planetmath.org/function
javascript:void(0)
http://mathworld.wolfram.com/PartialFunction.html
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g(10) = 20 that does not belong to the codomain; (outer-defined, or degree of falsehood F 

> 0);

g(11) = 15 that belongs to the codomain; (inner-defined, or degree of truth, hence T > 0).

Function g is a NeutroFunction (with I > 0, T > 0, F > 0), but not a Partial Function since

such types of indeterminacies are not characteristic to it.

iii) The Partial Fraction does not catch the outer-defined values.

Example 4.

Let S = {0, 1, 2, 3} be a subset included in the set of rational numbers Q that serves as universe

of discourse. The function h: S → S, 
2

( )h x
x

= is a NeutroFunction, since h(0) = 2/0 = 

undefined, and h(3) = 2/3 S (outer-defined, 2/3 Q S − ), but is not a Partial Function. 

2.6.  Axiom, NeutroAxiom, AntiAxiom 

Similarly for an axiom, defined on a given set, endowed with some operation(s). When we define an 

axiom on a given set, it does not automatically mean that the axiom is true for all set’s elements. We have 

three possibilities again: 

1) The axiom is true for all set's elements (totally true) [degree of truth T = 1] (as in classical algebraic

structures; this is a classical Axiom). Neutrosophically we write: Axiom(1,0,0). 

2) The axiom if true for some elements [degree of truth T], indeterminate for other elements [degree of

indeterminacy I], and false for other elements [degree of falsehood F], where (T,I,F) is different from 

(1,0,0) and from (0,0,1) (this is NeutroAxiom). Neutrosophically we write NeutroAxiom(T,I,F). 

3) The axiom is false for all set's elements [degree of falsehood F = 1](this is AntiAxiom).

Neutrosophically we write AntiAxiom(0,0,1). 

2.7.  Theorem, NeutroTheorem, AntiTheorem 

In any science, a classical Theorem, defined on a given space, is a statement that is 100% true (i.e. true for 

all elements of the space). To prove that a classical theorem is false, it is sufficient to get a single counter-

example where the statement is false. Therefore, the classical sciences do not leave room for partial truth 

of a theorem (or a statement). But, in our world and in our everyday life, we have many more examples 

of statements that are only partially true, than statements that are totally true. The NeutroTheorem and 

AntiTheorem are generalizations and alternatives of the classical Theorem in any science. 

Let's consider a theorem, stated on a given set, endowed with some operation(s). When we construct the 

theorem on a given set, it does not automatically mean that the theorem is true for all set’s elements. We 

have three possibilities again: 

1) The theorem is true for all set's elements [totally true] (as in classical algebraic structures; this is a

classical Theorem). Neutrosophically we write: Theorem(1,0,0). 

2) The theorem if true for some elements [degree of truth T], indeterminate for other elements [degree

of indeterminacy I], and false for the other elements [degree of falsehood F], where (T,I,F) is different 

from (1,0,0) and from (0,0,1) (this is a NeutroTheorem). Neutrosophically we write: 

NeutroTheorem(T,I,F). 

3) The theorem is false for all set's elements (this is an AntiTheorem). Neutrosophically we write:

AntiTheorem(0,0,1). 
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And similarly for (Lemma, NeutroLemma, AntiLemma), (Consequence, NeutroConsequence, 

AntiConsequence), (Algorithm, NeutroAlgorithm, AntiAlgorithm), (Property, NeutroProperty, 

AntiProperty), etc. 

2.8.   Relation, NeutroRelation, AntiRelation 

     1) A classical Relation is a relation that is true for all elements of the set (degree of truth T = 1). 

Neutrosophically we write Relation(1,0,0). 

     2) A NeutroRelation is a relation that is true for some of the elements (degree of truth T), indeterminate 

for other elements (degree of indeterminacy I), and false for the other elements (degree of falsehood F). 

Neutrosophically we write Relation(T,I,F), where (T,I,F) is different from (1,0,0) and (0,0,1). 

     3) An AntiRelation is a relation that is false for all elements (degree of falsehood F = 1). 

Neutrosophically we write Relation(0,0,1). 

2.9.  Attribute, NeutroAttribute, AntiAttribute 

     1) A classical Attribute is an attribute that is true for all elements of the set (degree of truth T = 1). 

Neutrosophically we write Attribute(1,0,0). 

     2) A NeutroAttribute is an attribute that is true for some of the elements (degree of truth T), 

indeterminate for other elements (degree of indeterminacy I), and false for the other elements (degree of 

falsehood F). Neutrosophically we write Attribute(T,I,F), where (T,I,F) is different from (1,0,0) and (0,0,1). 

     3) An AntiAttribute is an attribute that is false for all elements (degree of falsehood F = 1). 

Neutrosophically we write Attribute(0,0,1). 

2.10. Algebra, NeutroAlgebra, AntiAlgebra 

    1) An algebraic structure who’s all operations are well-defined and all axioms are totally true is called a 

classical Algebraic Structure (or Algebra). 

    2) An algebraic structure that has at least one NeutroOperation or one NeutroAxiom (and no 

AntiOperation and no AntiAxiom) is called a NeutroAlgebraic Structure (or NeutroAlgebra). 

    3) An algebraic structure that has at least one AntiOperation or one Anti Axiom is called an 

AntiAlgebraic Structure (or AntiAlgebra). 

    Therefore, a neutrosophic triplet is formed: <Algebra, NeutroAlgebra, AntiAlgebra>,  

where “Algebra” can be any classical algebraic structure, such as: a groupoid, semigroup, monoid, group, 

commutative group, ring, field, vector space, BCK-Algebra, BCI-Algebra, etc. 

 

2.11. Algebra, NeutroFETAlgebra, AntiFETAlgebra 

The neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra) was further on restrained or 

extended to all fuzzy and fuzzy extension theories (FET), making triplets of the form:  (Algebra, 
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NeutroFETAlgebra, AntiFETAlgebra), where FET may be: Fuzzy, Intuitionistic Fuzzy, Inconsistent 

Intuitionistic Fuzzy (Picture Fuzzy, Ternary Fuzzy), Pythagorean Fuzzy (Atanassov’s Intuitionistic Fuzzy 

of second type), q-Rung Orthopair Fuzzy, Spherical Fuzzy, n-HyperSpherical Fuzzy, Refined 

Neutrosophic, etc. See several examples below. 

2.11.1. The Intuitionistic Fuzzy Triplet (Algebra, NeutroIFAlgebra, AntiIFAlgebra) 

Herein “IF” stands for intuitionistic fuzzy. 

When Indeterminacy (I) is missing, only two components remain, T and F. 

1) The Algebra is the same as in the neutrosophic environment, i.e. a classical Algebra where all

operations are totally well-defined and all axioms are totally true (T = 1, F = 0).

2) The NeutroIFAlgebra means that at least one operation or one axiom is partially true (degree of

truth T) and partially false (degree of partially falsehood F),

with , [0,1],0 1,T F T F  +  with ( , ) (1,0)T F  that represents the classical Axiom, and

( , ) (0,1)T F  that represents the AntiIFAxiom,

and no AntiIFOperation (operation that is totally outer-defined) and no AntiIFAxiom.

3) The AntiIFAlgebra means that at least one operation or one axiom is totally false (T = 0, F = 1), no

matter how the other operations or axioms are.

   Therefore, one similarly has the triplets: (Operation, NeutroIFOperation, AntiIFOperation) and (Axiom, 

NeutroIFAxiom, AntiIFAxiom). 

2.11.2. The Fuzzy Triplet (Algebra, NeutroFuzzyAlgebra, AntiFuzzyAlgebra) 

When the Indeterminacy (I) and the Falsehood (F) are missing, only one component remains, T. 

1) The Algebra is the same as in the neutrosophic environment, i.e. a classical Algebra where all

operations are totally well-defined and all axioms are totally true (T = 1).

2) The NeutroFuzzyAlgebra means that at least one operation or one axiom is partially true (degree

of truth T), with (0,1)T ,

and no AntiFuzzyOperation (operation that is totally outer-defined) and no  AntiFuzzyAxiom.

3) The AntiIFAlgebra means that at least one operation or one axiom is totally false (F = 1), no

matter how the other operations or axioms are.

   Therefore, one similarly has the triplets: (Operation, NeutroFuzzyOperation, AntiFuzzyOperation) and 

(Axiom, NeutroFuzzyAxiom, AntiFuzzyAxiom). 

2.12. Structure, NeutroStructure, AntiStructure in any field of knowledge 
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    In general, by NeutroSophication, Smarandache extended any classical Structure, in no matter what 

field of knowledge, to a NeutroStructure, and by AntiSophication to an AntiStructure.  

i) A classical Structure, in any field of knowledge, is composed of: a non-empty space, populated by

some elements, and both (the space and all elements) are characterized by some relations among 

themselves (such as: operations, laws, axioms, properties, functions, theorems, lemmas, consequences, 

algorithms, charts, hierarchies, equations, inequalities, etc.), and by their attributes (size, weight, color, 

shape, location, etc.). 

    Of course, when analysing a structure, it counts with respect to what relations and what attributes we 

do it. 

ii) A NeutroStructure is a structure that has at least one NeutroRelation or one NeutroAttribute, and

no AntiRelation and no AntiAttribute. 

iii) An AntiStructure is a structure that has at least one AntiRelation or one AntiAttribute.

2.13. Almost all real Structures are NeutroStructures 

    The Classical Structures in science mostly exist in theoretical, abstract, perfect, homogeneous, idealistic 

spaces - because in our everyday life almost all structures are NeutroStructures, since they are neither 

perfect nor applying to the whole population, and not all elements of the space have the same relations 

and same attributes in the same degree (not all elements behave in the same way). 

    The indeterminacy and partiality, with respect to the space, to their elements, to their relations or to 

their attributes are not taken into consideration in the Classical Structures. But our Real World is full of 

structures with indeterminate (vague, unclear, conflicting, unknown, etc.) data and partialities. 

    There are exceptions to almost all laws, and the laws are perceived in different degrees by different 

people. 

2.14. Applications of NeutroStructures in our Real World 

(i) In the Christian society the marriage law is defined as the union between a male and a female

(degree of truth). 

But, in the last decades, this law has become less than 100% true, since persons of the same sex were 

allowed to marry as well (degree of falsehood). 

On the other hand, there are transgender people (whose sex is indeterminate), and people who have 

changed the sex by surgical procedures, and these people (and their marriage) cannot be included in the 

first two categories (degree of indeterminacy). 

Therefore, since we have a NeutroLaw (with respect to the Law of Marriage) we have a Christian 

NeutroStructure. 
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(ii) In India, the law of marriage is not the same for all citizen: Hindi religious men may marry only one

wife, while the Muslims may marry up to four wives. 

(iii) Not always the difference between good and bad may be clear, from a point of view a thing may be

good, while from another point of view bad. There are things that are partially good, partially neutral, 

and partially bad. 

(iv) The laws do not equally apply to all citizens, so they are NeutroLaws. Some laws apply to some

degree to a category of citizens, and to a different degree to another category. As such, there is an 

American folkloric joke: All people are born equal, but some people are more equal than others!  

- There are powerful people that are above the laws, and other people that benefit of immunity with

respect to the laws. 

- For example, in the court of law, privileged people benefit from better defense lawyers than the lower

classes, so they may get a lighter sentence. 

- Not all criminals go to jail, but only those caught and proven guilty in the court of law. Nor the

criminals that for reason of insanity cannot stand trail and do not go to jail since they cannot make a 

difference between right and wrong. 

- Unfortunately, even innocent people went and may go to jail because of sometimes jurisdiction

mistakes... 

- The Hypocrisy and Double Standard are widely spread: some regulation applies to some people, but

not to others! 

(v) Anti-Abortion Law does not apply to all pregnant women: the incest, rapes, and women whose life

is threatened may get abortions. 

(vi) Gun-Control Law does not apply to all citizen: the police, army, security, professional hunters are

allowed to bear arms. 

Etc. 

Conclusion 

In this paper we have extended the Non-Euclidean Geometries to AntiGeometry (a geometric 

space that has at least one AntiAxiom) and to NeutroGeometry (a geometric space that has at least one 
NeutroAxiom and no AntiAxiom) both in any axiomatic system and any type of geometry), similarly to 
the NeutroAlgebra and AntiAlgebra. Generally, instead of a geometric Axiom, one may take any 
classical geometric Theorem in any axiomatic system and in any type of geometry and transform it by 
NeutroSophication or AntiSophication into a NeutroTheorem or AntiTheorem in order to construct a 
NeutroGeometry or AntiGeometry respectively. 

____________________________________________________________________________________ 
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Geometries 



Neutrosophic Sets and Systems, Vol. 46, 2021 472 

____________________________________________________________________________________ 

Florentin Smarandache, NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean 

Geometries 

____________________________________________ 

A NeutroAxiom is an axiom that is partially true, partially indeterminate, and partially false in 

the same space. While the AntiAxiom is an axiom that is totally false in the given space. 

While the Non-Euclidean Geometries resulted from the total negation of one specific axiom 
(Euclid’s Fifth Postulate), the AntiGeometry (1969) resulted from the total negation of any axiom and even 
of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of 
geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, 
Computational, Molecular, Convex, etc.) Geometry, and the NeutroGeometry resulted from the partial 
negation of one or more axioms [and no total negation of no axiom] from any geometric axiomatic system 
and from any type of geometry.

Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and 
generalizations of the Non-Euclidean Geometries. 
In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & 
AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & 
AntiStructure that naturally arise in any field of knowledge.     
At the end, we present applications of many NeutroStructures in our real world. 

Further on, we have recalled and reviewed the evolution from Paradoxism to Neutrosophy, and 

from the classical algebraic structures to NeutroAlgebra and AntiAlgebra structures, and in general to the 

NeutroStructure and AntiStructure in any field of knowledge. Then many applications of 

NeutroStructures from everyday life were presented.  
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Abstract                                                                                                                                             


In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding 
the NeutroGeometry & AntiGeometry.  


While the Non-Euclidean Geometries resulted from the total negation of only one specific axiom 
(Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom and even of 
more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.), and the NeutroAxiom 
results from the partial negation of one or more axioms [and no total negation of no axiom] from any 
geometric axiomatic system. Generally, instead of a classical geometric Axiom, one may take any 
classical geometric Theorem and transform it into a NeutroTheorem or AntiTheorem in order to 
construct a NeutroGeometry or AntiGeometry. Therefore, the NeutroGeometry and AntiGeometry are 
respectively alternatives and generalizations of the Non-Euclidean Geometries. 


In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to 
NeutroAlgebra & AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to 
NeutroStructure & AntiStructure that naturally arise in any field of knowledge. At the end, we present 
applications of many NeutroStructures in our real world. 


Keywords: Non-Euclidean Geometries, Euclidean Geometry, Lobachevski-Bolyai-Gauss Geometry, 


Riemannian Geometry, NeutroManifold, AntiManifold, NeutroAlgebra, AntiAlgebra, NeutroGeometry, 


AntiGeometry, NeutroAxiom, AntiAxiom, NeutroTheorem, AntiTheorem, Partial Function, 


NeutroFunction, AntiFunction, NeutroOperation, AntiOperation, NeutroAttribute, AntiAttribute, 


NeutroRelation, AntiRelation, NeutroStructure, AntiStructure 


______________________________________________________________________________  


1. Introduction 


 In our real world, the spaces are not homogeneous, but mixed, complex, even ambiguous. And 


the elements that populate them and the rules that act upon them are not perfect, uniform, or complete - 


but fragmentary and disparate, with unclear and conflicting information, and they do not apply in the 


same degree to each element. The perfect, idealistic ones exist just in the theoretical sciences. We live in a 


multi-space endowed with a multi-structure [35]. Neither the space’s elements nor the regulations that 


govern them are egalitarian, all of them are characterized by degrees of diversity and variance. The 



mailto:smarand@unm.edu





Neutrosophic Sets and Systems, Vol. 46, 2021  457 
_____________________________________________________________________________________ 


____________________________________________________________________________________ 


Florentin Smarandache, NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean 


Geometries 


 


indeterminate (vague, unclear, incomplete, unknown, contradictory etc.) data and procedures are 


surrounding us. 


 That’s why, for example, the classical algebraic and geometric spaces and structures  were 


extended to more realistic spaces and structures [1], called respectively NeutroAlgebra & AntiAlgebra 


[2019] and respectively NeutroGeometry & AntiGeometry [1969, 2021], whose  elements do not 


necessarily behave the same, while the operations and rules onto these spaces may only be partially (not 


totally) true. 


While the Non-Euclidean Geometries resulted from the total negation of only one specific axiom 


(Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom and even of 


more axioms from any geometric axiomatic system (Euclid’s five postulates, Hilbert’s 20 axioms, etc.), 


and the NeutroAxiom results from the partial negation of one or more axioms [and no total negation of 


no axiom] from any geometric axiomatic system. 


Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of 


the Non-Euclidean Geometries. 


In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & 


AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & 


AntiStructure that naturally arise in any field of knowledge.                                                                       At 


the end, we present applications of many NeutroStructures in our real world. 


 On a given space, a classical Axiom is totally (100%) true. While a NeutroAxiom is partially true, 


partially indeterminate, and partially false. Also, an AntiAxiom is totally (100%) false.  


A classical Geometry has only totally true Axioms. While a NeutroGeometry is a geometry that 


has at least one NeutroAxiom and no AntiAxiom. Also, an AntiGeometry is a geometry that has at least 


one AntiAxiom. 


Below we introduce, in the first part of this article, the construction of NeutroGeometry & 


AntiGeometry, together with the Non-Euclidean geometries, while in the second part we recall the 


evolution from paradoxism to neutrosophy, and then to NeutroAlgebra & AntiAlgebra, culminating with 


the most general form of NeutroStructure & AntiStructure in any field of knowledge. 


A classical (100%) true statement on a given classical structure, may or may not be 100% true on 


its corresponding NeutroStructure or AntiStructure, it depends on the neutrosophication or 


antisophication procedures [1 – 24]. 


Further on, the neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra) was restrained or 


extended to all fuzzy and fuzzy extension theories (FET) triplets of the form (Algebra, NeutroFETAlgebra, 


AntiFETAlgebra), where FET may be: Fuzzy, Intuitionistic Fuzzy, Inconsistent Intuitionistic Fuzzy (Picture 


Fuzzy, Ternary Fuzzy), Pythagorean Fuzzy (Atanassov’s Intuitionistic Fuzzy of second type), q-Rung 


Orthopair Fuzzy, Spherical Fuzzy, n-HyperSpherical Fuzzy, Refined Neutrosophic, etc. 


1.1. Concept, NeutroConcept, AntiConcept 


        Let us consider on a given geometric space a classical geometric concept (such as: axiom, postulate, 


operator, transformation, function, theorem, property, theory, etc.). 
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We form the following geometric neutrosophic triplet:  


Concept(1, 0, 0), NeutroConcept(T, I, F), AntiConcept (0, 0, 1), 


where (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 


 { Of course, we consider only the neutrosophic triplets (Concept, NeutroConcept, AntiConcept) 


that make sense in our everyday life and in the real world. } 


Concept(1, 0, 0) means that the degree of truth of the concept is T = 1, I = 0, F = 0, or the Concept is 


100% true, 0% indeterminate, and 0% false in the given geometric space. 


NeutroConcept (T, I, F) means that the concept is T% true, I% indeterminate, and 0% false in the 


given geometric space, with (T, I, F) ∈ [0, 1], and (T, I, F) ∉ {(1, 0, 0), (0, 0, 1)}. 


AntiConcept (0, 0, 1) means that T = 0, I = 0, and F = 1, or the Concept is 0% true, 0% indeterminate, 


and 100% false in the given geometric space. 


1.2. Geometry, NeutroGeometry, AntiGeometry 


We go from the neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra) to a similar 


neutrosophic triplet (Geometry, NeutroGeometry, AntiGeometry), in the same way. 


Correspondingly from the algebraic structuires, with respect to the geometries, one has: 


In the classical (Euclidean) Geometry, on a given space, all classical geometric Concepts are 100% 


true (i.e. true for all elements of the space). 


While in a NeutroGeometry, on a given space, there is at least one NeutroConcept (and no 


AntiConcept). 


In the AntiGeometry, on a given space, there is at least one AntiConcept. 


1.3. Geometric NeutroSophication and Geometric AntiSophication 


Similarly, as to the algebraic structures, using the process of NeutroSophication of a classical 


geometric structure, a NeutroGeometry is produced;  while through the process of AntiSophication of a 


classical geometric structure produces an AntiGeometry. 


Let S be a classical geometric space, and <A> be a geometric concept (such as: postulate, axiom, 


theorem, property, function, transformation, operator, theory, etc.). The <antiA> is the opposite of <A>, 


while <neutA> (also called <neutroA>) is the neutral (or indeterminate) part between <A> and <antiA>. 


The neutrosophication tri-sections S into three subspaces: 


- the first subspace, denoted just by <A>, where the geometric concept is totally true [degree of truth T = 1]; 


we denote it by Concept(1,0,0). 
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- the second subspace, denoted by <neutA>, where the geometric concept is partially true [degree of truth 


T], partially indeterminate [degree of indeterminacy I], and partially false [degree of falsehood F], 


denoted as NeutroConcept(T,I,F), where (T, I, F)   {(1,0,0), (0,0,1)}; 


- the third subspace, denoted by <antiA>, where the geometric concept is totally false [degree of falsehood F 


= 1], denoted by AntiConcept(0,0,1). 


The three subspaces may or may not be disjoint, depending on the application, but they are exhaustive 


(their union equals the whole space S). 


 1.4. Non-Euclidean Geometries 


1.4.1. The Lobachevsky (also known as Lobachevsky-Bolyai-Gauss) Geometry, and called Hyperbolic 


Geometry, is an AntiGeometry, because the Fifth Euclidean Postulate (in a plane, through a point outside a 


line, only one parallel can be drawn to that line) is 100% invalidated in the following AntiPostulate (first 


version) way: in a plane through a point outside of a line, there can be drawn infinitely many parallels to 


that line. Or (T, I, F) = (0, 0, 1). 


1.4.2. The Riemannian Geometry, which is called Elliptic Geometry, is an AntiGeometry too, since 


the Fifth Euclidean Postulate is 100% invalidated in the following AntiPostulate (second version) way: in 


a place, through a point outside of a line, no parallel can be drawn to that line. Or (T, I, F) = (0, 0, 1). 


1.4.3. The Smarandache Geometries (SG) are more complex [30 – 57]. Why this type of mixed non-


Euclidean geometries, and sometimes partially Non-Euclidean and partially Euclidean? Because the real 


geometric spaces are not pure but hybrid, and the real rules do not uniformly apply to all space’s 


elements, but they have degrees of diversity – applying to some geometrical concepts (point, line, plane, 


surface, etc.) in a smaller or bigger degree. 


From Prof. Dr. Linfan Mao’s arXiv.org paper Pseudo-Manifold Geometries with Applications [57], Cornell 


University, New York City, USA, 2006, https://arxiv.org/abs/math/0610307 : 


“A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom (1969), i.e., an 


axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only 


invalided but in multiple distinct ways and a Smarandache n-manifold is a n-manifold that support a 


Smarandache geometry.  


Iseri provided a construction for Smarandache 2-manifolds by equilateral triangular disks on a plane and a 


more general way for Smarandache 2-manifolds on surfaces, called map geometries was presented by the 


author (…).  


However, few observations for cases of n ≥ 3 are found on the journals. As a kind of Smarandache 


geometries, a general way for constructing dimensional n pseudo-manifolds are presented for any integer n 



https://arxiv.org/abs/math/0610307
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≥ 2 in this paper. Connection and principal fiber bundles are also defined on these manifolds. Following 


these constructions, nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-Bolyai 


geometry, Riemann geometry, Weyl geometry, Kahler geometry and Finsler geometry, etc. are their sub-


geometries.” 


Iseri ([34], [39 - 40]) has constructed some Smarandache Manifolds (S-manifolds) that topologically are 


piecewise linear, and whose geodesics have elliptic, Euclidean, and hyperbolic behavior. An SG geometry 


may exhibit one or more types of negative, zero, or positive curvatures into the same given space.  


1.4.3.1) If at least one axiom is validated (partially true, T > 0) and invalidated (partially false, F > 


0), and no other axiom is only invalidated (AntiAxiom), then this first class of SG geometry is a 


NeutroGeometry. 


1.4.3.2) If at least one axiom is only invalidated (or F = 1), no matter if the other axioms are 


classical or NeutroAxioms or AntiAxioms too, then this second class of SG geometry is an AntiGeometry. 


1.4.3.3) The model of an SG geometry that is a NeutroGeometry: 


Bhattacharya [38] has constructed the following SG model: 


 


Fig. 1. Bhattacharya’s Model for the SG geometry as a NeutroGeometry 


 


The geometric space is a square ABCD, comprising all points inside and on its edges. 
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“Point” means the classical point, for example: A, B, C, D, E, N, and M. 


“Line” means any segment of line connecting two points on the opposite square sides AC and BD, for 


example: AB, CD, CE, (u), and (v). 


“Parallel lines” are lines that do not intersect. 


Let us take a line CE and an exterior point N to it. We observe that there is an infinity of lines passing 


through N and parallel to CE [all lines passing through N and in between the lines (u) and (v) for 


example] – the hyperbolic case.  


Also, taking another exterior point, D, there is no parallel line passing through D and parallel to CE 


because all lines passing through D intersects CE – the elliptic case. 


Taking another exterior point M ∈ AB, then we only have one line AB parallel to CE, because only one 


line passes through the point M – the Euclidean case.  


Consequently, the Fifth Euclidean Postulate is twice invalidated, but also once validated. 


Being partially hyperbolic Non-Euclidean, partially elliptic Non-Euclidean, and partially Euclidean, 


therefore we have here a SG.  


This is not a Non-Euclidean Geometry (since the Euclid’s Fifth Postulate is not totally false, but only 


partially), but it is a NeutroGeometry. 


Theorem 1.4.3.3.1 


If a statement (proposition, theorem, lemma, property, algorithm, etc.) is (totally) true (degree of truth T = 


1, degree of indeterminacy I = 0, and degree of falsehood F = 0) in the classical geometry, the statement 


may get any logical values (i.e. T, I, F may be any values in [0, 1]) in a  NeutroGeometry or in an 


AntiGeometry  


Proof. 


The logical value the statement gets in a NeutroGeometry or in an AntiGeometry depends on what 


classical axioms the statement is based upon in the classical geometry, and how these axioms behave in 


the NeutroGeometry or AntiGeometry models. 


Let’s consider the below classical geometric proposition P(L1, L2, L3) that is 100% true:  


In a 2D-Euclidean geometric space, if two lines L1 and L2 are parallel with the third line L3, then 


they are also parallel (i.e. L1 // L2). 


 In Bhattacharya’s Model of an SG geometry, this statement is partially true and partially false. 


For example, in Fig. 1:  


- degree of truth: the lines AB and (u) are parallel to the line CE, then AB is parallel to (u); 


- degree of falsehood: the lines (u) and (v) are parallel to the line CE, but (u) and (v) are not parallel 


since they intersect in the point N. 
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1.4.3.4) The Model of a SG geometry that is an AntiGeometry 


Let us consider the following rectangular piece of land PQRS, 


 


Fig. 2. Model for an SG geometry that is an AntiGeometry 


whose middle (shaded) area is an indeterminate zone (a river, with swamp, canyons, and no bridge) that 


is impossible to cross over on the ground. Therefore, this piece of land is composed from a determinate 


zone and an indeterminate zone (as above). 


“Point” means any classical (usual) point, for example: P, Q, R, S, X, Y, Z, and W that are determinate 


well-known (classical) points, and I1, I2 that are indeterminate (not well-known) points [in the 


indeterminate zone]. 


“Line” is any segment of line that connects a point on the side PQ with a point on the side RS. For 


example, PR, QS, XY. However, these lines have an indeterminate (not well known, not clear) part that is 


the indeterminate zone. On the other hand, ZW is not a line since it does not connect the sides PQ and RS. 
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The following geometric classical axiom: through two distinct points there always passes one single line, is 


totally (100%) denied in this model in the following two ways: 


through any two distinct points, in this given model, either no line passes (see the case of ZW), or only 


one partially determinate line does (see the case of XY) - therefore no fully determinate line passes. Thus, 


this SG geometry is an AntiGeometry. 


1.5.  Manifold, NeutroManifold, AntiManifold 


1.5.1. Manifold 


The classical Manifold [29] is a topological space that, on the small scales, near each point, 


resembles the classical (Euclidean) Geometry Space [i.e. in this space there are only classical 


Axioms (totally true)].                                                                                                             Or each 


point has a neighborhood that is homeomorphic to an open unit ball of the Euclidean Space 


Rn (where R is the set of real numbers). Homeomorphism is a continuous and bijective 


function whose inverse is also continuous. 


“In general, any object that is near ‘flat’ on the small scale is a manifold” [29]. 


1.5.2. NeutroManifold 


The NeutroManifold is a topological space that, on the small scales, near each point, resembles 


the NeutroGeometry Space [i.e. in this space there is at least a NeutroAxiom (partially true, partially 


indeterminate, and partially false) and no AntiAxiom].         


For example, Bhattacharya’s Model for a SG geometry (Fig. 1) is a NeutroManifold, since 


the geometric space ABCD has a NeutroAxiom (i.e. the Fifth Euclidean Postulate, which is 


partially true and partially false), and no AntiAxiom.                                                                   


1.5.3. AntiManifold 


The AntiManifold is a topological space that, on the small scales, near each point, resembles the 


AntiGeometry Space [i.e. in this space there is at least one AntiAxiom (totally false)].                                                                           


 For example, the Model for a SG geometry (Fig. 2) is an AntiManifold, since the 


geometric space PQRS has an AntiAxiom (i.e., through two distinct points there always passes a 


single line - which is totally false).                                                                   


2. Evolution from Paradoxism to Neutrosophy then to NeutroAlgebra/AntiAlgebra and now to 


NeutroGeometry/AntiGeometry 


Below we recall and revise the previous foundations and developments that culminated with the 


introduction of NeutroAlgebra & AntiAlgebra as new field of research, extended then to NeutroStructure 


& AntiStructure, and now particularized to NeutroGeometry & AntiGeometry that are extensions of the 


Non-Euclidean Geometries. 
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2.1.  From Paradoxism to Neutrosophy 


    Paradoxism [58] is an international movement in science and culture, founded by Smarandache in 


1980s, based on excessive use of antitheses, oxymoron, contradictions, and paradoxes. During three 


decades (1980-2020) hundreds of authors from tens of countries around the globe contributed papers to 


15 international paradoxist anthologies. 


    In 1995, he extended the paradoxism (based on opposites) to a new branch of philosophy called 


neutrosophy (based on opposites and their neutral) [59], that gave birth to many scientific branches, such 


as: neutrosophic logic, neutrosophic set, neutrosophic probability, neutrosophic  statistics, neutrosophic 


algebraic structures, and so on with multiple applications in engineering, computer science, 


administrative work, medical research, social sciences, etc. 


Neutrosophy is an extension of Dialectics that have derived from the Yin-Yan Ancient Chinese 


Philosophy.  


2.2.  From Classical Algebraic Structures to NeutroAlgebraic Structures and AntiAlgebraic 


Structures  


In 2019 Smarandache [1] generalized the classical Algebraic Structures to NeutroAlgebraic Structures 


(or NeutroAlgebras) {whose operations (or laws) and axioms (or theorems ) are partially true, partially 


indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or 


AntiAlgebras) {whose operations (or laws) and axioms (or theorems) are totally false} and on 2020 he 


continued to develop them [2,3,4]. 


Generally, instead of a classical Axiom in a field of knowledge, one may take a classical Theorem in 
that field of knowledge, and transform it into a NeutroTheorem or AntiTheorem in order to construct a 
NeutroStructure or AntiStructure in that field of knowledge. 


The NeutroAlgebras & AntiAlgebras are a new field of research, which is inspired from our real world. As 


said ahead, we may also get a NeutroAlgebra & AntiAlgebra by transforming, instead of an Axiom, a 


classical algebraic Theorem into a NeutroTheorem or AntiTheorem; the process is called 


NeutroSophication or respectively AntiSophication. 


In classical algebraic structures, all operations are 100% well-defined, and all axioms are 100% true, but in 


real life, in many cases these restrictions are too harsh, since in our world we have things that only 


partially verify some operations or some laws. 


 


By substituting Concept with Operation, Axiom, Theorem, Relation, Attribute, Algebra, Structure etc. 


respectively, into the above (Concept, NeutroConcept, AntiConcept), we get the below neutrosophic 


triplets: 


2.3.  Operation, NeutroOperation, AntiOperation 


When we define an operation on a given set, it does not automatically mean that the operation is well-


defined. There are three possibilities: 


    1) The operation is well-defined (also called inner-defined) for all set's elements [degree of truth T = 1] 
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(as in classical algebraic structures; this is a classical Operation). Neutrosophically we write: 


Operation(1,0,0). 


    2) The operation if well-defined for some elements [degree of truth T], indeterminate for other elements 


[degree of indeterminacy I], and outer-defined for the other elements [degree of falsehood F], where 


(T,I,F) is different from (1,0,0) and from (0,0,1) (this is a NeutroOperation). Neutrosophically we write: 


NeutroOperation(T,I,F). 


    3) The operation is outer-defined for all set's elements [degree of falsehood F = 1] (this is an 


AntiOperation). Neutrosophically we write: AntiOperation(0,0,1).   


An operation * on a given non-empty set S is actually a n-ary function, for integer n ≥ 1, : nf S S→ . 


2.4.  Function, NeutroFunction, AntiFunction 


 


Let U be a universe of discourse, A and B be two non-empty sets included in U, and f  be a 


function: :f A B→  


Again, we have three possibilities:     


    1) The function is well-defined (also called inner-defined) for all elements of its domain A [degree of 


truth T = 1] (this is a classical Function), i.e. , ( )x A f x B   . Neutrosophically we write: 


Function(1,0,0). 


    2) The function if well-defined for some elements of its domain, i.e. , ( )x A f x B    [degree of truth 


T], indeterminate for other elements, i.e. , ( )x A f x  = indeterminate [degree of indeterminacy I], and 


outer-defined for the other elements, i.e. , ( )x A f x B    [degree of falsehood F], where (T,I,F) is 


different from (1,0,0) and from (0,0,1). This is a NeutroFunction. Neutrosophically we write: 


NeutroFunction(T,I,F). 


    3) The function is outer-defined for all elements of its domain A [degree of falsehood F = 1] (this is an 


AntiFunction), i.e. , ( )x A f x B   (all function’s values are outside of its codomain B; they may be 


outside of the universe of discourse too). Neutrosophically we write: AntiFunction(0,0,1).  


2.5.  NeutroFunction & AntiFunction vs. Partial Function 


We prove that the NeutroFunction & AntiFunction are extensions and alternatives of the Partial 


Function. 


Definition of Partial Function [60] 


A function f: A→B is sometimes called a total function, to signify that f(a) is defined for every    a ∈ 


A. If C is any set such that C ⊇ A then f is also a partial function from C to B. 


Clearly if f is a function from A to B then it is a partial function from A to B, but a partial function 


need not be defined for every element of its domain. The set of elements of A for which f is 


defined is sometimes called the domain of definition. 



http://planetmath.org/function

javascript:void(0)

http://mathworld.wolfram.com/PartialFunction.html
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From other sites, the Partial Function means: for any a ∈ A one has: f(a) ∈ B or f(a) = undefined. 


Comparison 


i) “Partial” is mutually understood as there exist at least one element a1 ∈ A such that f(a1) ∈ B, 


or the Partial Function is well-defined for at least one element (therefore T > 0). 


The Partial Function does not allow the well-defined degree T = 0 (i.e. no element is well-


defined), while the NeutroFunction and AntiFunction do. 


Example 1. 


Let’s consider the set of positive integers Z = {1, 2, 3, …}, included into the universe of 


discourse R, which is the set of real numbers. Let’s define the function 


1 :f Z Z→ , 1( )
0


x
f x = , for all x ∈ Z. 


Clearly, the function f1 is 100% undefined, therefore the indeterminacy I = 1, while    T  = 


0 and F = 0. 


Hence f1 is a NeutroFunction, but not a Partial Function. 


       Example 2. 


Let’s take the set of odd positive integers D = {1, 3, 5, …}, included in the universe  of 


discourse R. Let’s define the function 2 2: , ( ) ,
2


x
f D D f x→ = for all x ∈ D. 


The function f2 is 100% outer-defined, since 
2


x
D  for all x ∈ D. Whence F = 1, T = 0, and 


I = 0. Hence this is an AntiFunction, but not a partial Function. 


ii) The Partial Function does not catch all types of indeterminacies that are allowed in a 


NeutroFunction. Indeterminacies may occur with respect to:  the function’s domain, 


codomain, or relation that connects the elements in the domain with the elements in the 


codomain. 


   Example 3. 


Let’s consider the function g: {1, 2, 3, …, 9, 10, 11} → {12, 13, …, 19}, about whom we only 


have vague, unclear information as below: 


g(1 or 2) = 12, i.e. we are not sure if g(1) = 12 or g(2) = 12; 


g(3) = 18 or 19, i.e. we are not sure if g(3) = 18 or g(3) = 19; 


g(4 or 5 or 6) = 13 or 17; 


g(7) = unknown; 


g(unknown) = 14. 


All the above values represent the function’s degree of indeterminacy (I > 0). 


g(10) = 20 that does not belong to the codomain; (outer-defined, or degree of falsehood F 


> 0); 


g(11) = 15 that belongs to the codomain; (inner-defined, or degree of truth, hence T > 0). 


Function g is a NeutroFunction (with I > 0, T > 0, F > 0), but not a Partial Function since 


such types of indeterminacies are not characteristic to it.  


iii) The Partial Fraction does not catch the outer-defined values. 


   Example 4. 
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Let S = {0, 1, 2, 3} be a subset included in the set of rational numbers Q that serves as universe 


of discourse. The function h: S → S, 
2


( )h x
x


= is a NeutroFunction, since h(0) = 2/0 = 


undefined, and h(3) = 2/3 S (outer-defined, 2/3 Q S − ), but is not a Partial Function.  


 


2.6.  Axiom, NeutroAxiom, AntiAxiom 


Similarly for an axiom, defined on a given set, endowed with some operation(s). When we define an 


axiom on a given set, it does not automatically mean that the axiom is true for all set’s elements. We have 


three possibilities again: 


    1) The axiom is true for all set's elements (totally true) [degree of truth T = 1] (as in classical algebraic 


structures; this is a classical Axiom). Neutrosophically we write: Axiom(1,0,0). 


    2) The axiom if true for some elements [degree of truth T], indeterminate for other elements [degree of 


indeterminacy I], and false for other elements [degree of falsehood F], where (T,I,F) is different from 


(1,0,0) and from (0,0,1) (this is NeutroAxiom). Neutrosophically we write NeutroAxiom(T,I,F). 


    3) The axiom is false for all set's elements [degree of falsehood F = 1](this is AntiAxiom). 


Neutrosophically we write AntiAxiom(0,0,1).   


2.7.  Theorem, NeutroTheorem, AntiTheorem 


In any science, a classical Theorem, defined on a given space, is a statement that is 100% true (i.e. true for 


all elements of the space). To prove that a classical theorem is false, it is sufficient to get a single counter-


example where the statement is false. Therefore, the classical sciences do not leave room for partial truth 


of a theorem (or a statement). But, in our world and in our everyday life, we have many more examples 


of statements that are only partially true, than statements that are totally true. The NeutroTheorem and 


AntiTheorem are generalizations and alternatives of the classical Theorem in any science. 


Let's consider a theorem, stated on a given set, endowed with some operation(s). When we construct the 


theorem on a given set, it does not automatically mean that the theorem is true for all set’s elements. We 


have three possibilities again: 


    1) The theorem is true for all set's elements [totally true] (as in classical algebraic structures; this is a 


classical Theorem). Neutrosophically we write: Theorem(1,0,0). 


    2) The theorem if true for some elements [degree of truth T], indeterminate for other elements [degree 


of indeterminacy I], and false for the other elements [degree of falsehood F], where (T,I,F) is different 


from (1,0,0) and from (0,0,1) (this is a NeutroTheorem). Neutrosophically we write: 


NeutroTheorem(T,I,F). 


    3) The theorem is false for all set's elements (this is an AntiTheorem). Neutrosophically we write: 


AntiTheorem(0,0,1). 


And similarly for (Lemma, NeutroLemma, AntiLemma), (Consequence, NeutroConsequence, 


AntiConsequence), (Algorithm, NeutroAlgorithm, AntiAlgorithm), (Property, NeutroProperty, 


AntiProperty), etc. 


2.8.   Relation, NeutroRelation, AntiRelation 
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     1) A classical Relation is a relation that is true for all elements of the set (degree of truth T = 1). 


Neutrosophically we write Relation(1,0,0). 


     2) A NeutroRelation is a relation that is true for some of the elements (degree of truth T), indeterminate 


for other elements (degree of indeterminacy I), and false for the other elements (degree of falsehood F). 


Neutrosophically we write Relation(T,I,F), where (T,I,F) is different from (1,0,0) and (0,0,1). 


     3) An AntiRelation is a relation that is false for all elements (degree of falsehood F = 1). 


Neutrosophically we write Relation(0,0,1). 


2.9.  Attribute, NeutroAttribute, AntiAttribute 


     1) A classical Attribute is an attribute that is true for all elements of the set (degree of truth T = 1). 


Neutrosophically we write Attribute(1,0,0). 


     2) A NeutroAttribute is an attribute that is true for some of the elements (degree of truth T), 


indeterminate for other elements (degree of indeterminacy I), and false for the other elements (degree of 


falsehood F). Neutrosophically we write Attribute(T,I,F), where (T,I,F) is different from (1,0,0) and (0,0,1). 


     3) An AntiAttribute is an attribute that is false for all elements (degree of falsehood F = 1). 


Neutrosophically we write Attribute(0,0,1). 


2.10. Algebra, NeutroAlgebra, AntiAlgebra 


    1) An algebraic structure who’s all operations are well-defined and all axioms are totally true is called a 


classical Algebraic Structure (or Algebra). 


    2) An algebraic structure that has at least one NeutroOperation or one NeutroAxiom (and no 


AntiOperation and no AntiAxiom) is called a NeutroAlgebraic Structure (or NeutroAlgebra). 


    3) An algebraic structure that has at least one AntiOperation or one Anti Axiom is called an 


AntiAlgebraic Structure (or AntiAlgebra). 


    Therefore, a neutrosophic triplet is formed: <Algebra, NeutroAlgebra, AntiAlgebra>,  


where “Algebra” can be any classical algebraic structure, such as: a groupoid, semigroup, monoid, group, 


commutative group, ring, field, vector space, BCK-Algebra, BCI-Algebra, etc. 


 


2.11. Algebra, NeutroFETAlgebra, AntiFETAlgebra 


The neutrosophic triplet (Algebra, NeutroAlgebra, AntiAlgebra) was further on restrained or 


extended to all fuzzy and fuzzy extension theories (FET), making triplets of the form:  (Algebra, 


NeutroFETAlgebra, AntiFETAlgebra), where FET may be: Fuzzy, Intuitionistic Fuzzy, Inconsistent 


Intuitionistic Fuzzy (Picture Fuzzy, Ternary Fuzzy), Pythagorean Fuzzy (Atanassov’s Intuitionistic Fuzzy 


of second type), q-Rung Orthopair Fuzzy, Spherical Fuzzy, n-HyperSpherical Fuzzy, Refined 


Neutrosophic, etc. See several examples below. 
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2.11.1. The Intuitionistic Fuzzy Triplet (Algebra, NeutroIFAlgebra, AntiIFAlgebra) 


Herein “IF” stands for intuitionistic fuzzy. 


When Indeterminacy (I) is missing, only two components remain, T and F. 


1) The Algebra is the same as in the neutrosophic environment, i.e. a classical Algebra where all 


operations are totally well-defined and all axioms are totally true (T = 1, F = 0). 


2) The NeutroIFAlgebra means that at least one operation or one axiom is partially true (degree of 


truth T) and partially false (degree of partially falsehood F), 


with , [0,1],0 1,T F T F  +  with ( , ) (1,0)T F  that represents the classical Axiom, and 


( , ) (0,1)T F  that represents the AntiIFAxiom,  


and no AntiIFOperation (operation that is totally outer-defined) and no AntiIFAxiom. 


3) The AntiIFAlgebra means that at least one operation or one axiom is totally false (T = 0, F = 1), no 


matter how the other operations or axioms are. 


   Therefore, one similarly has the triplets: (Operation, NeutroIFOperation, AntiIFOperation) and (Axiom, 


NeutroIFAxiom, AntiIFAxiom). 


2.11.2. The Fuzzy Triplet (Algebra, NeutroFuzzyAlgebra, AntiFuzzyAlgebra) 


When the Indeterminacy (I) and the Falsehood (F) are missing, only one component remains, T. 


1) The Algebra is the same as in the neutrosophic environment, i.e. a classical Algebra where all 


operations are totally well-defined and all axioms are totally true (T = 1). 


2) The NeutroFuzzyAlgebra means that at least one operation or one axiom is partially true (degree 


of truth T), with (0,1)T ,  


and no AntiFuzzyOperation (operation that is totally outer-defined) and no  AntiFuzzyAxiom. 


3) The AntiIFAlgebra means that at least one operation or one axiom is totally false (F = 1), no 


matter how the other operations or axioms are. 


   Therefore, one similarly has the triplets: (Operation, NeutroFuzzyOperation, AntiFuzzyOperation) and 


(Axiom, NeutroFuzzyAxiom, AntiFuzzyAxiom). 


 


2.12. Structure, NeutroStructure, AntiStructure in any field of knowledge 


    In general, by NeutroSophication, Smarandache extended any classical Structure, in no matter what 


field of knowledge, to a NeutroStructure, and by AntiSophication to an AntiStructure.  


     i) A classical Structure, in any field of knowledge, is composed of: a non-empty space, populated by 


some elements, and both (the space and all elements) are characterized by some relations among 


themselves (such as: operations, laws, axioms, properties, functions, theorems, lemmas, consequences, 
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algorithms, charts, hierarchies, equations, inequalities, etc.), and by their attributes (size, weight, color, 


shape, location, etc.). 


    Of course, when analysing a structure, it counts with respect to what relations and what attributes we 


do it. 


      ii) A NeutroStructure is a structure that has at least one NeutroRelation or one NeutroAttribute, and 


no AntiRelation and no AntiAttribute. 


     iii) An AntiStructure is a structure that has at least one AntiRelation or one AntiAttribute.   


2.13. Almost all real Structures are NeutroStructures 


    The Classical Structures in science mostly exist in theoretical, abstract, perfect, homogeneous, idealistic 


spaces - because in our everyday life almost all structures are NeutroStructures, since they are neither 


perfect nor applying to the whole population, and not all elements of the space have the same relations 


and same attributes in the same degree (not all elements behave in the same way). 


    The indeterminacy and partiality, with respect to the space, to their elements, to their relations or to 


their attributes are not taken into consideration in the Classical Structures. But our Real World is full of 


structures with indeterminate (vague, unclear, conflicting, unknown, etc.) data and partialities. 


    There are exceptions to almost all laws, and the laws are perceived in different degrees by different 


people. 


2.14. Applications of NeutroStructures in our Real World 


     (i) In the Christian society the marriage law is defined as the union between a male and a female 


(degree of truth). 


But, in the last decades, this law has become less than 100% true, since persons of the same sex were 


allowed to marry as well (degree of falsehood). 


On the other hand, there are transgender people (whose sex is indeterminate), and people who have 


changed the sex by surgical procedures, and these people (and their marriage) cannot be included in the 


first two categories (degree of indeterminacy). 


Therefore, since we have a NeutroLaw (with respect to the Law of Marriage) we have a Christian 


NeutroStructure. 


    (ii) In India, the law of marriage is not the same for all citizen: Hindi religious men may marry only one 


wife, while the Muslims may marry up to four wives. 
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    (iii) Not always the difference between good and bad may be clear, from a point of view a thing may be 


good, while from another point of view bad. There are things that are partially good, partially neutral, 


and partially bad. 


    (iv) The laws do not equally apply to all citizens, so they are NeutroLaws. Some laws apply to some 


degree to a category of citizens, and to a different degree to another category. As such, there is an 


American folkloric joke: All people are born equal, but some people are more equal than others!  


     - There are powerful people that are above the laws, and other people that benefit of immunity with 


respect to the laws. 


    - For example, in the court of law, privileged people benefit from better defense lawyers than the lower 


classes, so they may get a lighter sentence.  


    - Not all criminals go to jail, but only those caught and proven guilty in the court of law. Nor the 


criminals that for reason of insanity cannot stand trail and do not go to jail since they cannot make a 


difference between right and wrong. 


    - Unfortunately, even innocent people went and may go to jail because of sometimes jurisdiction 


mistakes...  


    - The Hypocrisy and Double Standard are widely spread: some regulation applies to some people, but 


not to others! 


   (v) Anti-Abortion Law does not apply to all pregnant women: the incest, rapes, and women whose life 


is threatened may get abortions. 


   (vi) Gun-Control Law does not apply to all citizen: the police, army, security, professional hunters are 


allowed to bear arms. 


Etc. 


Conclusion 


In this paper we have extended the Non-Euclidean Geometries to NeutroGeometry (a geometric 


space that has at least one NeutroAxiom and no AntiAxiom) and to AntiGeometry (a geometric space 


that has at least one AntiAxiom) similarly to the NeutroAlgebras and AntiAlgebras. Generally, instead of 


a geometric Axiom, one may take any classical geometric Theorem and transform it into a 


NeutroTheorem or AntiTheorem in order to construct a NeutroGeometry or AntiGeometry. 


A NeutroAxiom is an axiom that is partially true, partially indeterminate, and partially false in 


the same space. While the AntiAxiom is an axiom that is totally false in the given space. 


While the Non-Euclidean Geometries resulted from the total negation of only one specific axiom 


(Euclid’s Fifth Postulate), the AntiGeometry (1969) results from the total negation of any axiom and even 
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of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.), and the NeutroAxiom 


results from the partial negation of one or more axioms [and no total negation of no axiom] from any 


geometric axiomatic system. 


Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of 


the Non-Euclidean Geometries. 


In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & 


AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & 


AntiStructure that naturally arise in any field of knowledge.                                                                             


At the end, we present applications of many NeutroStructures in our real world. 


Further on, we have recalled and reviewed the evolution from Paradoxism to Neutrosophy, and 


from the classical algebraic structures to NeutroAlgebra and AntiAlgebra structures, and in general to the 


NeutroStructure and AntiStructure in any field of knowledge. Then many applications of 


NeutroStructures from everyday life were presented.  
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